03.03.2013 Views

Atomic units; Molecular Hamiltonian; Born-Oppenheimer ...

Atomic units; Molecular Hamiltonian; Born-Oppenheimer ...

Atomic units; Molecular Hamiltonian; Born-Oppenheimer ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1. <strong>Atomic</strong> Units<br />

<strong>Atomic</strong> <strong>units</strong>; <strong>Molecular</strong> <strong>Hamiltonian</strong>;<br />

<strong>Born</strong>-<strong>Oppenheimer</strong> approximation<br />

The atomic <strong>units</strong> have been chosen such that the fundamental electron properties are all<br />

equal to one atomic unit. (me=1, e=1, = h/2π = 1, ao=1, and the potential energy in<br />

the hydrogen atom (e 2 /4πε0ao = 1).<br />

Symbol Quantity Value in a.u. Value in SI <strong>units</strong><br />

me Mass (Electron mass) 1 9.1094·10 -31 Kg<br />

e Charge (Electron charge) 1 1.6022·10 -19 C<br />

a0<br />

Length (Bohr first radius<br />

( 2<br />

/me 2 ))<br />

In atomic <strong>units</strong> the mass of a proton (1.6726 x 10-27 kg) would be 1836.15 au, and the<br />

reduced mass of the hydrogen molecule (.503913 g/mol) would be 925.260 au.<br />

The use of atomic <strong>units</strong> also simplifies Schrödinger's equation. For example the<br />

<strong>Hamiltonian</strong> for an electron in the Hydrogen atom would be:<br />

SI <strong>units</strong>:<br />

<strong>Atomic</strong> <strong>units</strong>:<br />

Other frequently used energy <strong>units</strong>:<br />

2<br />

2 1<br />

<br />

2 4<br />

<br />

m e<br />

0<br />

2<br />

e<br />

r<br />

1 2 1<br />

<br />

2 r<br />

1a.u. = 27.212eV = 627.51Kcal/mol = 219470 cm -1 1Kcal/mol = 4.184KJ/mol<br />

Debye: 1ea0 = 2.54181De; 1De=0.3934ea0<br />

1 0.52918·10 -10 m<br />

EH Energy (EH= 2 /mea0 2 ) 1 27.2114eV=4.3597·10 -18 J<br />

Angular momentum 1 1.0546·10 -34 Js<br />

vB Velocity (α·c=e 2 /4πε0 ) 1 2.187691·10 6 m·s -1<br />

τ0 Time (τ0= /EH) 1 2.418884·10 -17 s<br />

4πε0 Vacuum permittivity 1 1.113·10 -10 C 2 /(Jm)<br />

d0 Electric dipole moment (ea0) 1 8.478·10 -30 Cm<br />

e 2 a0 2 EH -1 Electric polarizability 1 1.649·10 -41 C 2 m 2 J -1<br />

Derived <strong>units</strong><br />

h Planck’s constant 2π 6.626·10 -34 Js<br />

c Speed of light (c=vB/α) 137.036 2.998·10 8 m/s<br />

μB Bohr magneton (e /2me) ½ 9.274·10 -24 J/T<br />

μN Nuclear magneton 2.723·10 -4<br />

5.051·10 -27 J/T<br />

μ0 Vacuum permeability (4π/c 2 ) 6.629·10 -4 4π·10 -7 Js 2 /(mC 2 )<br />

E0 Electric field strength 1 5.1423·10 11 V/m<br />

1


Energy conversion factors<br />

Hartree(a.u.) KJ/mol Kcal/mol eV cm -1<br />

Hartree(a.u.) 1 2625.5 627.51 27.212 219470<br />

KJ/mol 0.00038088 1 0.23901 0.010364 83.593<br />

Kcal/mol 0.0015936 4.184 1 0.043363 349.75<br />

eV 0.036749 96.485 23.061 1 8065.5<br />

cm-1 4.5563E-06 0.011963 0.0028591 0.00012398 1<br />

Other fundamental constants:<br />

Boltzmann’s constant: k=1.38066·10 -23 J/K<br />

Avogadro’s number: NA=6.02205·10 23 mol -1<br />

Rydberg constant: R∞=1.097373·10 7 m -1<br />

Compton wavelength of electron: λC=2.426309·10 -12 m<br />

Stefan-Boltzmann constant: σ=5.67032·10 8 W/(m 2 K 4 )<br />

Electric field unit:<br />

Field=X+a means that an electric field of a*10 -4 a.u. is applied along the X direction.<br />

1.a.u.=Hartree/(charge*bohr) = 27.2114*1.6 10 -19 J/(1.6 10 -19 C * 5.29177 10 -11 m)<br />

1 a.u. = 5.1423 10 11 V/m<br />

1 a.u. = 51.423 V/Å<br />

Ef(V/Å)=51.423Ef(a.u.)<br />

Field=X+1000 means a field of 0.1a.u. (5.1423V/Å) is applied along the X direction<br />

2. Basic concepts<br />

- structure of many-electron operators (e.g. <strong>Hamiltonian</strong>)<br />

- form of many-electron wave-functions<br />

(Slater determinants, and linear combination of them)<br />

- Hartree-Fock (HF) approximation<br />

- more sophisticated approaches which use the HF method as a starting point<br />

(correlated post-Hartree Fock methods)<br />

Aproximations made in the framework of the Hartree-Fock-Roothaan-Hall theory<br />

2


<strong>Molecular</strong> <strong>Hamiltonian</strong><br />

The non-relativistic time-independent Schrödinger equation:<br />

H|Ψ>=E|Ψ><br />

H – <strong>Hamiltonian</strong> operator for a system of nuclei and electrons<br />

N<br />

<br />

riA<br />

| riA<br />

| |<br />

ri<br />

RA<br />

|<br />

<br />

rij<br />

| rij<br />

| |<br />

ri<br />

rj<br />

|<br />

<br />

RAB<br />

|<br />

RAB<br />

| |<br />

RA<br />

RB<br />

|<br />

1 2 1 2 ZA<br />

1 ZAZB<br />

i<br />

A<br />

<br />

M <br />

<br />

A A<br />

r <br />

2 2<br />

i i<br />

A iA r<br />

i j i ij R<br />

1<br />

1<br />

1 1<br />

1 A<br />

<br />

<br />

1 B<br />

A<br />

AB<br />

T<br />

e<br />

M<br />

T<br />

N<br />

N<br />

M<br />

V<br />

eN<br />

N1<br />

V<br />

N<br />

ee<br />

M1<br />

H <br />

<br />

<br />

2<br />

i<br />

A molecular coordinate system<br />

2<br />

<br />

<br />

<br />

<br />

xi<br />

2<br />

2<br />

<br />

<br />

y<br />

2<br />

i<br />

2<br />

<br />

<br />

z<br />

2<br />

i<br />

<br />

<br />

<br />

<br />

- the major challenge in solving the time-independent Schrodinger<br />

equation<br />

MA - the ratio of the mass of nucleus A to the mass of an electron<br />

ZA – the atomic number of nucleus A<br />

Te – the operator for the kinetic energy of the electrons<br />

TN – the operator for the kinetic energy of the nuclei<br />

VeN – the operator for the Coulomb attraction between electrons and nuclei<br />

Vee – the operator for the repulsion between electrons<br />

VNN – the operator for the repulsion between nuclei<br />

(1)– represents the general problem<br />

to be separated in two parts: electronic and nuclear problems<br />

Exact solution for systems containing more than one electron is unknown!<br />

approximations, approximations<br />

i, j – electrons (N)<br />

A, B – nuclei (M)<br />

M<br />

V<br />

NN<br />

(1)<br />

3


<strong>Born</strong>-<strong>Oppenheimer</strong> Approximation<br />

Ψ=Ψ(x1,…,xN, X1,…,XM)<br />

The term VeN in the <strong>Hamiltonian</strong> prevents any wave-function Ψ(x,X) solution of the time<br />

independent Schrödinger equation from being written as a product of an electronic<br />

wavefunction and a nuclear wavefunction.<br />

Thus, we need approximations!<br />

The nuclei are much heavier than electrons (mproton=1836me)<br />

they move much more slowly<br />

the nuclei can be considered frozen in a single arrangement<br />

(molecular conformation)<br />

the electrons can respond almost instantaneously to any change<br />

in the nuclear position<br />

The electrons in a molecule are moving in the field of fixed nuclei. Neglecting the spin of<br />

nuclei, the total wavefunction is written as:<br />

On this basis:<br />

► 2-nd term in (1) can be neglected<br />

► 5-th term in (1) is a constant<br />

Electronic <strong>Hamiltonian</strong>:<br />

Ψ=Ψe(x,{R})ΨN(R)<br />

– separable form<br />

- describes the motion of N electrons in the field of M fixed point charges<br />

N<br />

i1<br />

N<br />

M<br />

i1<br />

A 1<br />

iA<br />

N1<br />

N<br />

1 2 ZA<br />

1<br />

He(<br />

R ) <br />

i<br />

<br />

2<br />

r <br />

(2)<br />

r<br />

i1<br />

ji<br />

He(R) means that He depends on the nuclei positions<br />

Electronic Schrödinger equation:<br />

ij<br />

He(R)Ψe(x;R)=Ee(R)Ψe(x;R) (3)<br />

Ψe=Ψe(x;R) (4)<br />

Ee = Ee(R) (5)<br />

(4) - is the electronic wave-function which describes the motion of the electrons<br />

- describes electronic states for fixed nuclear coordinates {R}<br />

- explicitly depends on the electronic coordinates<br />

- parametrically depends on the nuclear coordinates because H is a function of<br />

the positions R of the nuclei<br />

Another approximation: for each value of the nuclear positions, the electronic system is<br />

in the electronic ground state, corresponding to the lowest Ee(R).<br />

4


parametric dependence<br />

- the nuclear coordinates do not appear explicitly in Ψe.<br />

- from the point of view of the electrons, the nuclear degrees of freedom are fixed<br />

- a different electronic wave-function is obtained for each nuclear configuration<br />

The total energy:<br />

M 1 M<br />

pot<br />

ZAZB<br />

Etot ( R ) Ee<br />

<br />

(6)<br />

R<br />

A 1 B A<br />

Equations (2) – (6) ≡ electronic problem<br />

The electronic energy is not a constant but depends on the nuclear geometry (molecular<br />

conformation). This geometry dependent electronic energy plays the role of the<br />

potential energy in the Schrodinger equation for the nuclear motion and it is generally<br />

termed potential energy surface (PES).<br />

If the electronic problem is solved<br />

► we can solve for the motion of the nuclei using the electronic energy E(R) as<br />

the potential energy in Schrödinger equation for the nuclear motion.<br />

Since the electrons move much faster than the nuclei<br />

► we can replace the electronic coordinates by their average values (averaged<br />

over the electronic wave-function)<br />

nuclear <strong>Hamiltonian</strong><br />

o describes the motion of the nuclei in the average field of the electrons<br />

H<br />

N<br />

<br />

<br />

<br />

M<br />

N<br />

N M N1<br />

N<br />

1 2 1 2 ZA<br />

A i<br />

M <br />

2<br />

r <br />

A A<br />

2<br />

1 i1<br />

i1<br />

A 1<br />

iA i1<br />

j<br />

i<br />

M<br />

<br />

A 1<br />

M<br />

<br />

A 1<br />

1<br />

2M<br />

1<br />

2M<br />

A<br />

A<br />

<br />

<br />

2<br />

A<br />

2<br />

A<br />

E<br />

({ R})<br />

<br />

E<br />

e<br />

pot<br />

tot<br />

Potential energy surface (PES)<br />

({ R})<br />

M1<br />

M<br />

<br />

A 1 B A<br />

Z<br />

A<br />

R<br />

Z<br />

AB<br />

B<br />

pot<br />

Etot<br />

({R})<br />

AB<br />

1<br />

r<br />

ij<br />

<br />

M1<br />

M<br />

<br />

A 1 B A<br />

Schematic illustration of a potential energy surface<br />

The equilibrium conformation of the molecule corresponds to the minimum of the<br />

potential energy curve<br />

Z<br />

A<br />

R<br />

Z<br />

AB<br />

B<br />

5


nuclear Schrödinger equation<br />

ΨN - nuclear wavefunction<br />

HN|ΨN> = E|ΨN><br />

o solution of the ro-vibrational problem for the nuclear coordinates, in the<br />

presence of an electronic potential energy surface<br />

o describes the vibration, rotation and translation of a molecule<br />

E - total energy of the molecule (in the <strong>Born</strong>-<strong>Oppenheimer</strong> approximation)<br />

- includes: - electronic energy<br />

- vibrational energy<br />

- rotational energy<br />

- translational energy<br />

Total wave-function in the <strong>Born</strong>-<strong>Oppenheimer</strong> approximation:<br />

<strong>Born</strong>-<strong>Oppenheimer</strong> approximation<br />

- usually a good approximation<br />

- bad approximation for:<br />

Ψ(x,R) = Ψe(x,{R})·ΨN(R)<br />

o excited states (high energy for the nuclear motion)<br />

o degenerate or cuasidegenerate states<br />

Requirements for the wave function<br />

We will assume the <strong>Born</strong>-<strong>Oppenheimer</strong> approximation and will only be concerned with<br />

the electronic Schrödinger equation.<br />

1. Normalization<br />

For all quantum mechanical wave-function describing stationary states, is normalized<br />

to unity.<br />

<br />

( r) (<br />

r)<br />

dr<br />

1<br />

Integration is performed over the coordinates of all N electrons.<br />

The wavefunction must also be single-valued, continuous and finite.<br />

2. Antisymmetry with respect to the permutation of two electrons<br />

*<br />

Electrons are fermions and a many electron wave-function must be antisymmetric with<br />

respect to the interchange of the coordinate x (both space and spin) of any two<br />

electrons.<br />

Ψ(x1, x2, ... , xi, ..., xj, ...,xN) = -Ψ(x1, x2, ... , xj, ..., xi, ...,xN)<br />

The Pauli exclusion principle is a direct result of this antisymmetry principle.<br />

6


3. The electronic wavefunctions must be eigenfunctions of Sz and S 2 operators,<br />

with the eigenvalues MS and S(S+1).<br />

Since the electronic <strong>Hamiltonian</strong> does not contain any spin operators, it does commute<br />

with the operators Sz and S 2 defined below, with the corresponding eigenvalues MS and<br />

S(S+1), respectively.<br />

S<br />

N<br />

2<br />

sz<br />

MS<br />

S s<br />

z i<br />

i<br />

N<br />

i<br />

2<br />

i<br />

[H,Sz]=0 [H,S 2 ]=0<br />

<br />

S(<br />

S<br />

1)<br />

We take care of spin by using spin-orbitals instead of pure spatial orbitals.<br />

α(σ) and β(σ) – spin functions (complete and orthonormal)<br />

<br />

<br />

(<br />

) (<br />

) d<br />

<br />

<br />

(<br />

) ( ) d<br />

<br />

<br />

<br />

and<br />

<br />

( ) ( ) d<br />

1<br />

1<br />

( ) (<br />

) d<br />

0<br />

0<br />

The electron is described by spatial (r) and spin (σ) coordinates:<br />

Homework<br />

x={r,σ}<br />

1. Write the Z-matrix for the tetramethylsilane<br />

(TMS=Si(CH3)4) molecule in Td symmetry.<br />

2. Use the Gaussian program and obtain the PES of the water molecule in the C2v<br />

symmetry by varying the bond length from 0.9 to 1.1 and the bond angle from 100 o to<br />

110 o . Plot the PES using a dedicated software (Mathematica, MathLab, Mathcad).<br />

3. Write a C program to calculate the<br />

coordinates of the atoms in a graphene sheet<br />

(10x10 atoms) whose structure is given<br />

below. The C-C bond length in graphene is<br />

1.42Å.<br />

The Nobel prize in physics for 2010 was awarded to Andre<br />

Geim and Konstantin Novoselov at the University of Manchester "for groundbreaking experiments regarding the<br />

two-dimensional material graphene".<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!