04.03.2013 Views

Strengths and weaknesses of organic farming in the - NJF

Strengths and weaknesses of organic farming in the - NJF

Strengths and weaknesses of organic farming in the - NJF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Strengths</strong> <strong>and</strong> <strong>weaknesses</strong> <strong>of</strong><br />

<strong>organic</strong> <strong>farm<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> context<br />

<strong>of</strong> susta<strong>in</strong>ability<br />

Urs Niggli<br />

www.fibl.org <strong>of</strong> susta<strong>in</strong>ability


www.fibl.org<br />

Contents<br />

Challenges ahead <strong>of</strong> agriculture <strong>and</strong> food<br />

production.<br />

Performance <strong>of</strong> state-<strong>of</strong>-<strong>the</strong>-art <strong>organic</strong><br />

agriculture.<br />

Weaknesses <strong>of</strong> <strong>organic</strong> agriculture<br />

Potentials <strong>of</strong> <strong>organic</strong> agriculture <strong>and</strong><br />

research gaps.


www.fibl.org<br />

FiBL, active <strong>in</strong> <strong>organic</strong> research s<strong>in</strong>ce 1974<br />

125 staff <strong>in</strong> Switzerl<strong>and</strong><br />

15 staff <strong>in</strong> Germany<br />

15 staff <strong>in</strong> Austria


www.fibl.org<br />

60 % <strong>of</strong> ecosystem services degraded<br />

W<strong>in</strong>d <strong>and</strong> water erosion,<br />

SOM m<strong>in</strong>eralization<br />

Loss <strong>of</strong> natural biodiversity,<br />

regulat<strong>in</strong>g <strong>and</strong> support<strong>in</strong>g services,<br />

e.g. poll<strong>in</strong>ators<br />

Millennium Ecosystem Assessment, 2005<br />

Deteriorated dr<strong>in</strong>k<strong>in</strong>g<br />

water, irrigation


www.fibl.org


www.fibl.org<br />

Food security <strong>and</strong> climate change


www.fibl.org<br />

Co-benefits <strong>of</strong> <strong>organic</strong> <strong>farm<strong>in</strong>g</strong><br />

Nitrate pollution reduced by 35 to 65 %.<br />

‘No’ herbicide <strong>and</strong> pesticide residues <strong>in</strong> soils,<br />

water <strong>and</strong> foods.<br />

Strongly reduced soil erosion or even restored<br />

carbon storage by us<strong>in</strong>g legum<strong>in</strong>ous plants,<br />

green manure <strong>and</strong> recycl<strong>in</strong>g livestock manure.<br />

Higher diversity on farm, field, species <strong>and</strong> crop<br />

genetics level.<br />

Improved water use efficiency <strong>in</strong> drought periods.<br />

Reduced fossil fuel use.


www.fibl.org<br />

Review papers<br />

• Stolze, M., A. Piorr, A. Här<strong>in</strong>g <strong>and</strong> S. Dabbert (2000). The environmental<br />

impacts <strong>of</strong> <strong>organic</strong> <strong>farm<strong>in</strong>g</strong> <strong>in</strong> Europe. Organic <strong>farm<strong>in</strong>g</strong> <strong>in</strong> Europe, Volume<br />

6, University <strong>of</strong> Stuttgart-Hohenheim, Stuttgart<br />

• El-Hage Scialabba, N. <strong>and</strong> Hattam, C. (2002).Organic agriculture,<br />

environment <strong>and</strong> food security. Environment <strong>and</strong> Natural Resources Series<br />

No. 4, FAO. Rome, 258 pp.<br />

• Mäder, P., Fliessbach, A., Dubois, D, Gunst, L., Fried P. <strong>and</strong> Niggli, U.<br />

(2002). Soil fertility <strong>and</strong> biodiversity <strong>in</strong> <strong>organic</strong> <strong>farm<strong>in</strong>g</strong>. Science 296, p.<br />

1694-1697.<br />

• Hole D G, Perk<strong>in</strong>s A J, Wilson J D, Alex<strong>and</strong>er I H, Grice P V <strong>and</strong> Evans A<br />

D (2005). Does <strong>organic</strong> <strong>farm<strong>in</strong>g</strong> benefit biodiversity? Biological<br />

Conservation 122, 113-130.<br />

• Niggli, U., Slabe, A., Schmid, O., Halberg, N. <strong>and</strong> Schlüter, M. (2008).<br />

Vision for an Organic Food <strong>and</strong> Farm<strong>in</strong>g Research Agenda to 2025.<br />

Published by <strong>the</strong> IFOAM EU Group <strong>and</strong> FiBL. 48 pages.


www.fibl.org<br />

Biodiversity on <strong>organic</strong> farms (global<br />

literature review <strong>of</strong> comparison studies)<br />

Taxon Positive Negative<br />

No<br />

difference<br />

Birds 7 2<br />

Mammals 2<br />

Butterflies 1 1<br />

Spiders 7 3<br />

Earthworms 7 2 4<br />

Beetles 13 5 3<br />

O<strong>the</strong>r arthropods 7 1 2<br />

Plants 13 2<br />

Soil microbes 9 8<br />

Total 66 8 25<br />

Hole et al., 2005


www.fibl.org<br />

Biodiversity as part <strong>of</strong> <strong>the</strong> production method


www.fibl.org<br />

Biodiversity <strong>and</strong> l<strong>and</strong>scape


www.fibl.org<br />

DOK long term comparision experiment,<br />

Therwil/Switzerl<strong>and</strong><br />

• runn<strong>in</strong>g s<strong>in</strong>ce 1978<br />

• 7 year crop rotation (P-WW-Veg-WW-WB-GC-GC)<br />

• 0 – bio dynamic - <strong>organic</strong> - IP - conventional<br />

• Loess soil, 833 mm precipitation, 9.4 ºC temperature


www.fibl.org<br />

Performance <strong>of</strong> <strong>farm<strong>in</strong>g</strong> systems (DOK trial)<br />

Yields (3 x 7 years)<br />

Erträge<br />

Nutrients efficiency<br />

Düngereffizienz (N,P,K)<br />

Energy efficiency<br />

Energieeffizienz<br />

Soil percolation stability<br />

Perkolationsstabilität<br />

Soil aggregate stability<br />

Krümelstabilität<br />

Abundance <strong>of</strong> beneficials<br />

Häufigkeit von Nützl<strong>in</strong>gen<br />

Earthworm biomass<br />

Biomasse von Regenwürmern<br />

Microbial biomass<br />

Mikrobielle Biomasse<br />

Enzyme activities<br />

Bodenenzyme<br />

Mycorrhiza<br />

Symbiontische Mykorrhizapilze<br />

Energy efficiency <strong>of</strong> MO<br />

Energieeffizienz MO<br />

Weed diversity<br />

Beikräuter-Vielfalt<br />

IPM stockless<br />

IP ohne Wirtschaftsdünger<br />

IPM plus manure<br />

IP mit Wirtschaftsdünger<br />

Ökologisch Organics<br />

- 50% 0% + 50% + 100%<br />

Mäder et al. 2002, Science


www.fibl.org<br />

Resource use efficiency (DOK trial, 28 years)<br />

Parameter Unit Organic<br />

<strong>farm<strong>in</strong>g</strong><br />

Integrated<br />

<strong>farm<strong>in</strong>g</strong> (IP)<br />

with FYM<br />

Organic<br />

<strong>in</strong> %<br />

<strong>of</strong> IP<br />

Nutrient <strong>in</strong>put kg N total ha -1 yr -1 101 157 64 %<br />

kg N m<strong>in</strong> ha -1 yr -1 34 112 30 %<br />

kg P ha -1 yr -1 25 40 62 %<br />

kg K ha -1 yr -1 162 254 64 %<br />

Pesticides applied kg ha -1 yr -1 1.5 42 4 %<br />

Fuel use l ha -1 yr -1 808 924 87 %<br />

Total yield output<br />

for 28 years % 83 100 83 %<br />

Soil microbial<br />

biomass „output“ tons ha -1 40 24 167 %<br />

Mäder, Fliessbach, Niggli (2002), Science 296


www.fibl.org<br />

Carbon sequestration <strong>in</strong> long term experiments<br />

Average difference<br />

between <strong>the</strong> best <strong>organic</strong><br />

<strong>and</strong> <strong>the</strong> conventional<br />

treatments: 590 kg<br />

carbon ( 2.2 t CO 2) per<br />

hectare <strong>and</strong> year.<br />

Niggli et al., 2009, FAO brochure


www.fibl.org<br />

Are <strong>organic</strong>ally managed systems more resilient<br />

<strong>and</strong> help farmers adapt to climate change?<br />

Adaptive management by community knowledge <strong>and</strong><br />

knowledge-<strong>in</strong>tensive <strong>farm<strong>in</strong>g</strong> methods (Borron, 2006).<br />

Resilience with<strong>in</strong> agroecosystems:<br />

Soils fertility build<strong>in</strong>g, physical soil properties<br />

(Reganold, 1987, Mäder et al., 2002, Pimentel et al., 2005).<br />

Above <strong>and</strong> below ground macro <strong>and</strong> micro flora &<br />

fauna (Hole et al., 2005; Bengtsson et al, 2005).<br />

Crop diversity <strong>in</strong> time <strong>and</strong> space<br />

Genetic diversity <strong>in</strong> crops (Kotschi, 2006).


www.fibl.org<br />

Adaptive capacities <strong>of</strong> <strong>organic</strong>ally managed soils<br />

Soils under <strong>organic</strong> management reta<strong>in</strong> significantly more<br />

ra<strong>in</strong>water thanks to <strong>the</strong> ‘sponge properties’ <strong>of</strong> <strong>organic</strong> matter.<br />

Soil structure stability was 20–40% higher <strong>in</strong> <strong>organic</strong>ally<br />

managed than <strong>in</strong> conventional soils <strong>in</strong> Switzerl<strong>and</strong> (DOK).<br />

Water capture <strong>in</strong> <strong>organic</strong> plots was twice as high as <strong>in</strong><br />

conventional plots dur<strong>in</strong>g torrential ra<strong>in</strong>s (Rodale<br />

experiment <strong>in</strong> Pennsylvania/USA)<br />

The amount <strong>of</strong> water percolat<strong>in</strong>g through <strong>the</strong> top 36 cm was<br />

15–20% greater <strong>in</strong> <strong>the</strong> <strong>organic</strong> systems <strong>of</strong> <strong>the</strong> Rodale trial<br />

compared to conventional systems.<br />

The <strong>organic</strong> soils held 816,000 litres per ha <strong>in</strong> <strong>the</strong> upper 15 cm.<br />

This water reservoir was likely <strong>the</strong> reason for higher yields <strong>of</strong><br />

corn <strong>and</strong> soybean <strong>in</strong> dry years.<br />

Mäder et al. (2002); Pimentel et al., 2005, Lotter et al. (2003)


www.fibl.org<br />

100 % conversion would impact yields<br />

M<strong>in</strong>us 20 to 40 % <strong>in</strong> <strong>in</strong>tensively farmed regions<br />

under best geo-climate conditions.<br />

M<strong>in</strong>us 0 to 20 % <strong>in</strong> less favourable regions.<br />

Plus 116 % (UNTAD/UNEP, 2008) <strong>in</strong> <strong>the</strong> context<br />

<strong>of</strong> subsistence agriculture <strong>and</strong> <strong>in</strong> region with<br />

periodic disruptions <strong>of</strong> water supply (droughts,<br />

floods).


www.fibl.org<br />

Relative <strong>organic</strong> yields <strong>in</strong> Europe:<br />

Source: Different publications compiled by J. S<strong>and</strong>ers, FiBL


Long-term Field<br />

Experiments <strong>in</strong><br />

Organic Farm<strong>in</strong>g<br />

<strong>in</strong> Europe<br />

www.fibl.org<br />

15<br />

14<br />

4<br />

1<br />

2<br />

5 - 10<br />

12 13<br />

http://www.is<strong>of</strong>ar.org<br />

3<br />

11<br />

1 DIAS Organic crop rotation<br />

2 KVL Clos<strong>in</strong>g rural urban<br />

nutrient cycle<br />

3 MTT Long-term trial<br />

4 GRAB Low-<strong>in</strong>put orchard<br />

5 SOEL Ecological soil<br />

management<br />

6 IBDF Long-term fertilization<br />

trial<br />

7 IOL Bonn Biodynamic preparations<br />

8 Univ.Giessen Organic arable <strong>farm<strong>in</strong>g</strong><br />

(Gladbacherh<strong>of</strong>)<br />

9 Saxony State<br />

Inst. Agric<br />

LT fertilizer trial<br />

10 BBA LTE plant protection<br />

11 Israel LT nutritional – stone<br />

fruits<br />

12 Univ. Pisa MASCOT (Mediterranean<br />

Arable Systems<br />

Comparison Trial)<br />

13 DISAT Organic – <strong>in</strong>tegrated -<br />

conventional<br />

14 FiBL/ART DOK experiment<br />

15 Univ.<br />

Nott<strong>in</strong>gham<br />

LT effects <strong>of</strong> conversion<br />

studies


www.fibl.org


www.fibl.org<br />

The strategic research avenues<br />

Niggli et al., 2008


www.fibl.org<br />

Eco-functional <strong>in</strong>tensification???<br />

Higher degree <strong>of</strong> organization <strong>of</strong> farms, knowledgebased<br />

<strong>farm<strong>in</strong>g</strong> <strong>and</strong> food systems.<br />

More complex <strong>and</strong> less <strong>in</strong>dustrialised <strong>farm<strong>in</strong>g</strong> systems<br />

(e.g. agro-forestry).<br />

Improved management <strong>of</strong> soil fertility, water, biodiversity,<br />

genetic diversity, energy <strong>and</strong> nutrients.<br />

Improved use <strong>of</strong> resilience, self-regulation <strong>and</strong> self-<br />

heal<strong>in</strong>g <strong>in</strong> <strong>farm<strong>in</strong>g</strong> systems <strong>and</strong> animal herds.<br />

Adaptation <strong>of</strong> crop <strong>and</strong> animal breed<strong>in</strong>g programs to<br />

<strong>organic</strong> systems.<br />

Novel <strong>and</strong> improved <strong>the</strong>rapies aga<strong>in</strong>st pests <strong>and</strong><br />

diseases <strong>in</strong> crop <strong>and</strong> livestock.<br />

Improved use <strong>of</strong> novel technologies like MAS,<br />

nanotechnology, robots, sensors <strong>and</strong> IT.


www.fibl.org<br />

Potatoes: diseases


www.fibl.org<br />

Crop breed<strong>in</strong>g: ideotypes adapted to <strong>organic</strong><br />

<strong>farm<strong>in</strong>g</strong><br />

Special quality requirements<br />

(nutritional/technological quality<br />

Plant health/pathogenes<br />

(field tolerance, resistance)<br />

Canopy competition<br />

(shoot architecture)<br />

Nutrient absorption/-efficiency<br />

(root system architecture)<br />

many<br />

specific<br />

breed<strong>in</strong>g<br />

goals<br />

Ulrich Köpke, 2006


www.fibl.org<br />

1980 - 2000


www.fibl.org<br />

The Frick soil tillage experiment, s<strong>in</strong>ce 2002<br />

Berner, A. et al. (2008): Crop yield <strong>and</strong> soil quality<br />

response to reduced tillage under <strong>organic</strong><br />

management. Soil & Tillage Research: 89-96.


www.fibl.org<br />

Functional diversity?<br />

Companion plants <strong>in</strong>crease life span, fecundity <strong>and</strong><br />

mobility <strong>of</strong> parasitoids<br />

Iberis amara Centaurea cyanus Diadegma semiclausum<br />

Cél<strong>in</strong>e Géneau, 2008


www.fibl.org<br />

Health promot<strong>in</strong>g agents from plants<br />

Cichorium <strong>in</strong>tybus Onobrychis viciifolia<br />

Heckendorn et al., 2006; Marley et al., 2003; Hansen et al., 2006


www.fibl.org<br />

Induced resistance (e.g. grapev<strong>in</strong>e, downy<br />

mildew, Plasmopara viticola)<br />

Control PEN (natural elicitor)


www.fibl.org<br />

Conclusions<br />

Organic agriculture is an <strong>in</strong>terest<strong>in</strong>g option <strong>in</strong> <strong>the</strong><br />

context <strong>of</strong> susta<strong>in</strong>ability <strong>and</strong> can address future<br />

challenges <strong>of</strong> agriculture <strong>in</strong> a multi-targeted way.<br />

Excellent concepts <strong>and</strong> ideas address<strong>in</strong>g gaps<br />

<strong>in</strong> performance <strong>of</strong> <strong>organic</strong> systems do exist (e.g.<br />

Technology Platform Organics).<br />

Research programs tak<strong>in</strong>g <strong>the</strong>m up are crucial<br />

(national programs, trans-national co-operations<br />

like Core Organic II, EU-Framework).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!