05.03.2013 Views

Presentation Headline Arial 40pt; Title Case; May Be Up to ... - Sign In

Presentation Headline Arial 40pt; Title Case; May Be Up to ... - Sign In

Presentation Headline Arial 40pt; Title Case; May Be Up to ... - Sign In

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Wastewater Treatment<br />

Techniques for pumping<br />

sludge<br />

Paul A. Nelsen<br />

ITT Flygt Corporation<br />

Marketing & Business Development<br />

Manager<br />

paul.nelsen@itt.com


Choosing the “right” pump…<br />

….is like choosing the right golf club<br />

at the Augusta National


…is like selecting the correct golf<br />

club <strong>to</strong> match the conditions!<br />

•Transfer (Driver)<br />

•Metering (Putter)


Pumping Sludge<br />

• Properties or the rheology of sludge<br />

• What type of pump do I use?<br />

• Advantages & Disadvantages<br />

• Progressing Cavity<br />

• Rotary Lobe<br />

• Special Centrifugal<br />

• Practical examples of sludge pumping


What’s your application?<br />

− Return Activated<br />

− Waste Activated<br />

− Primary<br />

− Supernatant<br />

− Scum<br />

− Digester feed<br />

− Imported<br />

− Centrifuge feed<br />

− <strong>Be</strong>lt press feed


Sludge video #1


Sludge video #2


Sludge video #3


Sludge video #4


To select a pump, you must know<br />

the following properties:<br />

1. Performance<br />

a. Flow rate<br />

b. Discharge Pressure<br />

c. Suction Pressure (NPSHa)<br />

2. % Dry Solids<br />

3. Solid size<br />

4. Abrasiveness<br />

5. Do you need <strong>to</strong> Transfer & Meter Sludge?


Viscosity<br />

• Viscosity, property of a fluid that tends <strong>to</strong> prevent it from<br />

flowing when subjected <strong>to</strong> an applied force. The tenacity<br />

with which a moving layer of fluid drags adjacent layers of<br />

fluid.<br />

Viscosity is the fluid property responsible for friction.


Viscosity as a function of shear rate<br />

Viscosity is the property of a fluid that prevents it from flowing when<br />

subjected <strong>to</strong> an applied force.<br />

The tenacity with which a moving layer of fluid drags adjacent layers of fluid


NEWTONIAN<br />

• Viscosity decreases<br />

with the rate of shear.<br />

Non NEWTONIAN<br />

“thixotropic”<br />

NON NEWTONIAN<br />

“dilatant”<br />

• Viscosity increases with<br />

the rate of shear.


Measuring viscosity<br />

Viscosity testing using both a Searle & Hache viscometer


Municipal wastewater sludge<br />

• Municipal wastewater sludge is a Non-New<strong>to</strong>nian Fluid.<br />

• Sludge can start out at 300,000 cps and with the addition<br />

of shear can come down <strong>to</strong> less then 300 cps.<br />

• A centrifugal pump can not pump a viscosity >350 cps<br />

and a sludge density of >6-8 percent.<br />

<strong>Be</strong>ware: water treatment sludge uses ALUM which is dilatant or<br />

shear thickening.


Why do we<br />

need <strong>to</strong> know<br />

the type of<br />

sludge?


What is the Rheology of the<br />

sludge?<br />

Things we need <strong>to</strong> know…<br />

DS content?<br />

Are there flocculants/polymers?


We hired a<br />

team of<br />

scientists<br />

and<br />

technicians<br />

<strong>to</strong> perform<br />

field tests<br />

The test rig consisted of a tank, a dry-mounted pump N-<br />

3127HT and a 4 inch flow loop with a flow meter, two pressure<br />

transmitters and a control valve.


Labora<strong>to</strong>ry & Field test results<br />

• Pump derating:<br />

• Performance curve:<br />

- 1% per % DS (H)<br />

• Power requirement:<br />

Head - [m]<br />

20<br />

15<br />

10<br />

5<br />

1 - 8 %<br />

1 – 8 %<br />

+ 1% per % DS<br />

0<br />

0 50 100 150 200 0<br />

Flow - [m³/h]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Power - [kW]


Pipe dimension 1%<br />

DS<br />

4”<br />

6”<br />

8”<br />

We charted the results<br />

0.01 1)<br />

1) 44 gpm 2) 132 gpm<br />

0.01 2)<br />

2%<br />

DS<br />

3%<br />

DS<br />

4%<br />

DS<br />

5%<br />

DS<br />

6%<br />

DS<br />

7%<br />

DS<br />

0.0. 0.02 0.05 0.1 0.15 0.25 0.35<br />

0.01 0.01 0.01 0.02 0.04 0.07 0.11 0.17<br />

0.01 0.01 0.01 0.01 0.02 0.04 0.06 0.09<br />

8%<br />

DS<br />

0.01 0.04 0.08 0.15 0.25 0.38 0.54<br />

0.01 0.01 0.01 0.03 0.06 0.11 0.17 0.24<br />

0.01 0.01 0.01 0.02 0.03 0.06 0.1 0.14<br />

Pressure loss estimation (ft/ft pipeline)


Things we learned:<br />

• When designing system<br />

• for DS>4% start-up condition must be considered (Δp>t x 4L/d)<br />

• DS change of 2.5% → 4.5%, yield stress increases by fac<strong>to</strong>r of 5<br />

• DS change of 2.5% → 8.5%, yield stress increases by fac<strong>to</strong>r of 30<br />

Definition: Yield point, is defined in materials science as the stress at<br />

which a material begins <strong>to</strong> plastically deform.


“TR185”<br />

and<br />

“Frost”


• Hydraulic gradient<br />

• Pressure gradient<br />

dP<br />

dl<br />

i<br />

TR 185<br />

<br />

<br />

2<br />

V<br />

g D<br />

2<br />

2<br />

<br />

V<br />

D<br />

f<br />

2<br />

f<br />

where,<br />

i= hydraulic gradient (m/m)<br />

V= average velocity (m/s)<br />

g= gravity acc. (m/s 2 )<br />

D= pipe diam. (m)<br />

ρ= density (kg/m 3 )<br />

f= Fanning friction fac<strong>to</strong>r<br />

dP/dl= pressure gradient


TR 185<br />

Reynolds number<br />

R<br />

<br />

Flow parameters:<br />

<br />

V<br />

D 8 V<br />

<br />

<br />

<br />

e L<br />

D<br />

L – laminar viscosity (Nsn/m2)<br />

n – power law index<br />

( 1n<br />

)<br />

where,<br />

ρ= density (kg/m 3 )<br />

V= av. velocity (m/s)<br />

D= diameter (m)<br />

L= laminar viscosity<br />

(Ns n /m 2 )<br />

n= power law index


TR 185<br />

h<br />

<br />

where,<br />

2<br />

V<br />

F<br />

K <br />

2<br />

g<br />

K= point loss fac<strong>to</strong>r<br />

Fittings-loss fac<strong>to</strong>r<br />

1000<br />

Empirical relation between fitting-loss fac<strong>to</strong>r and<br />

100<br />

10<br />

1<br />

0,1<br />

Reynolds number<br />

F <br />

1<br />

1 10 100 1000 10000 100000<br />

Reynolds number<br />

2000<br />

Re


Pump de-rating<br />

• Performance curve: -<br />

1% per % DS (H)<br />

• Power requirement: +<br />

1% per % DS (kW)<br />

Head - [m]<br />

20<br />

15<br />

10<br />

5<br />

1 - 8 %<br />

1 – 8 %<br />

0<br />

0 50 100 150 200 0<br />

Flow - [m³/h]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Power - [kW]


Flygt’s Sludge Module within FLYPS.<br />

Flyps pump selection program <strong>to</strong> derate<br />

pump curves.<br />

Also, FLYPS can help you evaluate the<br />

added losses experienced through<br />

pipe work and fittings when pumping<br />

sludge, as well as correct the mo<strong>to</strong>r<br />

power data.


Enough about the fluids!<br />

Let’s talk pumps!!!


Types of pumps used for “Thickened<br />

sludge”<br />

Diaphragm<br />

Progressing<br />

Cavity<br />

Pumping<br />

sludge<br />

Rotary<br />

Lobe<br />

Special<br />

Centrifugal


WEAR & TEAR!!!!!!!!!!!!!


What’s really important <strong>to</strong> WWTP?<br />

• Reducing Operations Budget<br />

• <strong>In</strong>crease reliability (solve clogging issues)<br />

• <strong>In</strong>crease resistance <strong>to</strong> wear<br />

• Reduce Energy Costs<br />

• Flood-proof Protection<br />

(i.e. recent floods in Nashville & Atlanta)


Positive displacement pumps are..<br />

• Those in which energy is imparted <strong>to</strong> the liquid in a fixed<br />

displacement volume.<br />

Dynamic pumps are…<br />

Dynamic pumps impart energy <strong>to</strong> the liquid by means of<br />

an impeller or propeller.<br />

This force is converted <strong>to</strong> pressure as the fluid is pushed<br />

against the pump casing.


PD versus Centrifugal pumps<br />

• Positive displacement or “PD” pumps<br />

PD pumps are good metering devices.<br />

PD pumps self-prime themselves.<br />

• will supply as much pressure as needed until<br />

the rated mo<strong>to</strong>r horsepower is exceeded.<br />

• Centrifugal pumps<br />

Centrifugal pumps do not meter.<br />

Centrifugal pumps will not self-prime<br />

• Need flooded suction<br />

Flow rate will change as head pressure changes<br />

(variations in suction or discharge pressure will<br />

change flow rate).


Why use a Centrifugal pump?<br />

• Low initial cost (< $$$’s)<br />

• Lower cost of operation (< $$$’s)<br />

• Less maintenance<br />

• Easy maintenance<br />

• Less energy consumption<br />

• Reliable Operation<br />

• Less chance of clogging<br />

• More durable materials<br />

• Less components <strong>to</strong> break<br />

• No gear box required


Progressing Cavity Pumps


Manufacturers of “PC” pumps<br />

• Moyno<br />

• Monoflo (Mono)<br />

• Netzsch<br />

• Allweiler<br />

• Seepex<br />

• Tarby


Progressive Cavity Pumps<br />

A single helix ro<strong>to</strong>r turning in a double helix sta<strong>to</strong>r creating a<br />

progressive cavity as the ro<strong>to</strong>r turns


Advantages<br />

•Pressures <strong>to</strong> 400 psig<br />

•Pulls suction <strong>to</strong> 28 in-Hg V<br />

•Metered flow<br />

•Low shear<br />

Disadvantages<br />

•Will not run dry<br />

•High starting <strong>to</strong>rque<br />

•Must run 180 rpm or less<br />

•Requires a macera<strong>to</strong>r<br />

•Costly repairs & difficult <strong>to</strong> rebuild in place<br />

•Liquid wants <strong>to</strong> be 200-300 cps viscosity or greater<br />

Progressing Cavity<br />

•Wears 3-4 times faster than a centrifugal pump in hard iron<br />

•Typical WWTP application exposes mechanical seal <strong>to</strong> full discharge pressure


Failure points…


Rotary Lobe Pumps


Manufacturer’s of Rotary Lobe pumps…<br />

•Vogelsang<br />

•Boerger<br />

•LobePro<br />

•Alfa Laval<br />

•Swaby Lobeline<br />

•Netzsch


ROTARY LOBE Advantages<br />

•Metered flow rate<br />

•Pressures <strong>to</strong> 90 psig (really 40-50 psig)<br />

•Runs dry for 5-10 minutes<br />

•Compact<br />

•Low shear pumping<br />

•Low pulsations with screw ro<strong>to</strong>r design<br />

•Runs in either direction<br />

Disadvantages<br />

•High maintenance (3-4 times Npump)<br />

•Expensive initial & repair costs<br />

•High wear due <strong>to</strong> slip<br />

•Not rag friendly, requires a macera<strong>to</strong>r<br />

•Requires gearbox running 180 rpm or less<br />

•High starting <strong>to</strong>rque


Failures…


FLYGT A-C Series<br />

NS Non-clog Pumps


NON-CLOG PRODUCT<br />

FEATURES<br />

Tangential Discharge for ease of<br />

Solid passing Capability. Discharge<br />

Nozzle can be rotated <strong>to</strong> suit any one<br />

of 8 discharge positions<br />

Packing, Single , Double<br />

Mechanical seal, or<br />

Dynamic seal available<br />

Back pull-out design eliminates<br />

need <strong>to</strong> remove casing from piping<br />

Horizontal and vertical mounting<br />

arrangements available<br />

Handhole or Clean-out port is standard on<br />

casing (and suction nozzle when applicable)<br />

Standard Gauge Connections<br />

Standard 2-vane impellers.<br />

Available in either CW or<br />

CCW rotation<br />

Close <strong>to</strong>lerance stainless steel<br />

impeller wear ring and suction<br />

cover wear plate combination <strong>to</strong><br />

provide high and easily renewable<br />

operating efficiencies<br />

Tapered shaft/impeller fit (will<br />

not loosen and hence reduces<br />

vibration)<br />

Standard Casing Drain & Vent


Non-clog impeller


Non-clog Pumps


•Advantages<br />

Centrifugal Recessed Impeller<br />

•Slurry design<br />

•Handles large solids<br />

•Minimal contact with solids<br />

•Quiet operation<br />

•Semi-clog resistant<br />

•Disadvantages<br />

•Does not meter flow<br />

•Very low efficiency<br />

•Requires special materials


RECESSED IMPELLER or Vortex<br />

Spherical<br />

Solid Size…


Recessed<br />

Impeller<br />

Grit Pumps


Centrifugal Screw Pump<br />

Vertical leading edge which grabs rags<br />

Advantages<br />

•Solids handling<br />

•Smooth flow<br />

•Efficient <strong>to</strong> 80 percent<br />

Disadvantages<br />

•High initial cost<br />

•Requires special materials<br />

•Not a metering pump<br />

•Tough <strong>to</strong> manufacture & balance<br />

•Clogs at vertical leading edge<br />

•Very long shaft overhang causing shaft<br />

deflection<br />

•premature bearing failure and<br />

contact/interference <strong>to</strong> suction cover


Flygt N-Pump<br />

•Advantages<br />

•Solids Handling <strong>to</strong> 6-8 percent<br />

•Clog resistant (Back swept leading edge)<br />

•Cutter grove in volute “<strong>In</strong>sert ring” tears<br />

solids<br />

•Efficient operation<br />

•Small, compact design<br />

•Center-line discharge<br />

•Disadvantages<br />

• will not become air bound<br />

•Does not meter (without FMC & VFD)<br />

•Requires special materials<br />

•Must be installed in the NZ configuration


WEAR: Cast iron impeller & insert ring


Advantages<br />

Centrifugal CHOPPERS<br />

• Heavy duty design<br />

• Chops solids <strong>to</strong> small sizes<br />

• Reliable operation until cut bar wears<br />

Disadvantages<br />

• <strong>In</strong>efficient design<br />

• High wear on cutter bar<br />

• Clogs with minimal wear on cutter bar


FLYGT “Chopper” pumps<br />

Advantages<br />

• Heavy duty design<br />

• Chops solids <strong>to</strong> small sizes<br />

• Modular design<br />

• Hard iron 25% Cr<br />

• Guide pin<br />

Cast Iron Impeller<br />

Disadvantages<br />

• Efficiency drops 15-20 percent over Npump<br />

• Does not meter<br />

• Requires special materials<br />

Cast Iron <strong>In</strong>sert ring Hard-Iron <strong>In</strong>sert ring<br />

Hard-Iron Chopper ring<br />

Pump housing<br />

Hard-Iron Impeller


Pump selection recommendations<br />

Flow (gpm)<br />

30<br />

Primary<br />

sludge<br />

removal<br />

RAS<br />

WAS<br />

Digested<br />

sludge<br />

N-pump, first choice<br />

PC-pump, first choice<br />

Thickened<br />

sludge<br />

Dewatered<br />

sludge<br />

PC-pump,<br />

first choice<br />

Global market (MUSD/Year)


Let’s talk clogging…


Must handle rags!


…or these modern day clogging headaches


What is the efficiency of a clogged pump?<br />

•NP 3127 impeller 488<br />

•Pump after 5 years of operation<br />

•Never Clogged !


JEA – Jacksonville, Florida


Practical examples of pumping<br />

sludge<br />

•Oak Ridge, TN.<br />

•Tybee Island, GA.


Oak Ridge, TN


Tybee Island, GA<br />

Flygt replaced two 25 hp PC pumps with two 5hp<br />

NT3102-465 pump!<br />

Application = RAS


Summary<br />

If it flows, use gravity.<br />

If gravity does not work… use a centrifugal pump.<br />

Lower Life Cycle Cost (LCC)<br />

A centrifugal pump can not pump a viscosity<br />

>350 cps and a sludge density of >8 percent.<br />

Keep pipe work simple with short suction line<br />

constant diameter<br />

no bends or elbows


Paul A. Nelsen<br />

Marketing & Business Development Mgr<br />

FLYGT Products<br />

paul.nelsen@itt.com


• What’s really important <strong>to</strong> this market?<br />

• Selling against competing technologies:<br />

• Sludge Pumps<br />

• Reciprocating<br />

• Progressing Cavity<br />

• Rotary Lobe<br />

• <strong>In</strong>fluent Pumps<br />

• Archimedes Screw Pumps<br />

• Miscellaneous<br />

• Cutter pumps<br />

Agenda<br />

• Presenting ITT’s Sludge Handbook


What’s really important <strong>to</strong> this cus<strong>to</strong>mer?<br />

• Reducing his Operations Budget<br />

• <strong>In</strong>crease reliability (solve clogging issues)<br />

• <strong>In</strong>crease resistance <strong>to</strong> wear (3-4 times the life)<br />

• Reduce Energy Costs<br />

• Flood-proof Protection<br />

(i.e. recent floods in Nashville & Atlanta)


But <strong>to</strong> properly select a pump,<br />

you must know the following properties:<br />

Performance expectations<br />

a. Flow rate<br />

b. Discharge Pressure<br />

c. Suction Pressure (NPSHa)<br />

d. % Dry Solids<br />

e. Does cus<strong>to</strong>mer need <strong>to</strong> Transfer & Meter Sludge?


It’s like choosing the right golf club….<br />

•Transfer (Driver)<br />

•Metering (Putter)


Types of pumps used for sludge<br />

Plunger,<br />

Double Disc,<br />

&<br />

Diaphragm<br />

Progressing<br />

Cavity<br />

Pumping<br />

sludge<br />

Rotary<br />

Lobe<br />

Centrifugal


Positive displacement pumps are..<br />

• Those in which energy is imparted <strong>to</strong> the liquid in a fixed<br />

displacement volume.<br />

• Such as a casing or a cylinder, by the rotary motion of gears,<br />

screws or vanes, or by reciprocating pis<strong>to</strong>ns or plungers.<br />

Dynamic pumps are…<br />

Dynamic pumps impart energy <strong>to</strong> the liquid by means of<br />

an impeller or propeller.<br />

This force is converted <strong>to</strong> pressure as the fluid is pushed<br />

against the pump casing.


PD vs. Centrifugal pumps<br />

• Positive displacement or “PD” pumps<br />

PD pumps are good metering devices.<br />

PD pumps self-prime themselves.<br />

PD pumps will supply as much pressure as needed until<br />

the rated mo<strong>to</strong>r horsepower is exceeded<br />

• Centrifugal pumps<br />

× Centrifugal pumps do not meter.<br />

× Centrifugal pumps will not self-prime<br />

× Need flooded suction<br />

× Flow rate will change as head pressure changes<br />

(variations in suction or discharge pressure will change flow rate)


Why use an Npump?<br />

• Lower initial cost (< $$$’s)<br />

• Lower cost of operation (< $$$’s)<br />

• Less maintenance<br />

• Easy maintenance<br />

• Less energy consumption<br />

• No Macera<strong>to</strong>r required<br />

• Reliable Operation<br />

• Eliminates potential for clogging<br />

• More durable materials<br />

• Less components <strong>to</strong> break<br />

• No gear box required


Competing Technologies


Plunger Pumps


How does a Plunger pump work?


Manufacturers of Plunger pumps<br />

•WASTECORP.<br />

•Komline-Sanderson<br />

•Carter Pumps <strong>In</strong>c.


Easy <strong>to</strong> Maintain????


Here’s a “typical” parts list…


Advantages<br />

• Positive displacement<br />

• Self priming<br />

• Meters flow<br />

• Flow rate is not system head<br />

dependent<br />

• Flow rate is not sludge<br />

concentration dependent<br />

• Easy clean out capability<br />

• Low cost of maintenance???<br />

Plunger Pumps<br />

Disadvantages<br />

• High Capital Cost<br />

• High Maintenance<br />

• Lots &Lots of Parts<br />

• Packing Leaks<br />

• Must lubricate Babbit that<br />

drives plungers<br />

(2-3 drops/min = 1 quart/day)<br />

• Very Messy


Existing TWAS Pump


New TWAS Pump<br />

• NT3102 – 5hp was installed in 2002.<br />

• Empties tank in less than a third of the time it <strong>to</strong>ok the previous pump.


Double Disc & Diaphragm Pumps


Manufacturers of Disk or Diaphragm pumps<br />

• Penn Valley<br />

• SSP Alfa Laval<br />

• Dorr Oliver ODS<br />

• Carter Pumps<br />

• Gorman-Rupp


Operating Principle<br />

The Double Disc is based on a “Free Diaphragm”<br />

technology, the pump utilizes a unique principle of<br />

operation where the discs perform the duties of both<br />

diaphragm and valve.<br />

Suction Cycle Discharge Cycle


Operation sequence of Diaphragm pumps


Features & <strong>Be</strong>nefits<br />

Repair-in-Place design w/ hinged housings<br />

Only 5 wetted components<br />

Self-priming with high suction lifts<br />

Seal-less design, no packing or mechanical seals<br />

No seal water required<br />

Runs dry without damage<br />

No check valves, no fouling problems<br />

Handles up <strong>to</strong> 3/4” solids<br />

Two (2) year warranty


Do It Yourself with genuine Double Disc parts.


Double Disc & Diaphragm Pumps<br />

Advantages<br />

• Simple, rugged design<br />

• Easy maintenance<br />

Disadvantages<br />

• High purchase price<br />

• Frequent maintenance<br />

• Flexure life = 400,000 cycles<br />

• large pulsations w/o dampeners<br />

• Do not handle bottle caps


Midland, Texas – Diaphragm pump<br />

• Eight Gorman-Rupp pumps being powered by six – 7.5 <strong>to</strong> 10hp compressors<br />

• Efficiency goes from 100% theoretical <strong>to</strong> 20-22% because of high cost for making air.


Progressing Cavity Pumps


Manufacturers of “PC” pumps<br />

• Moyno<br />

• Monoflo (Mono)<br />

• Netzsch<br />

• Allweiler<br />

• Seepex<br />

• Tarby


Progressive Cavity Pumps<br />

A single helix ro<strong>to</strong>r turning in a double helix sta<strong>to</strong>r creating a<br />

progressive cavity as the ro<strong>to</strong>r turns


Advantages<br />

•Pressures <strong>to</strong> 400 psig<br />

•Pulls suction <strong>to</strong> 28 in-Hg V<br />

•Metered flow<br />

•Low shear<br />

Disadvantages<br />

•Will not run dry<br />

•High starting <strong>to</strong>rque<br />

•Must run 180 rpm or less<br />

•Requires a macera<strong>to</strong>r<br />

•Costly repairs & difficult <strong>to</strong> rebuild in place<br />

•Liquid wants <strong>to</strong> be 200-300 cps viscosity or greater<br />

Progressing Cavity<br />

•Wears 3-4 times faster than a centrifugal pump in hard iron<br />

•Typical WWTP application exposes mechanical seal <strong>to</strong> full discharge pressure


Failure points…


6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

Primary Sludge<br />

• 3-5% Dry Solids<br />

• Transfer 360 ft, 30ft Static<br />

• Pumps Start with Flooded Suction<br />

• Then Run on Suction Lift<br />

• $4000 Savings – per pump/yr.<br />

Capex Energy Spares Labor Total<br />

P C Pump<br />

N Pump<br />

Saving


Digester Recirculation<br />

• Replaced existing “PC” pumps<br />

• Pumps run 24/7 with minimal spare parts usage<br />

• 8-9 degF rise in digester temperature (82 <strong>to</strong> 91 degF)<br />

(Less energy input in<strong>to</strong> heat exchanger)<br />

• Reduced cost of ownership


Digester Recirculation<br />

• Digester Recirculation Sludge ~ 5% DS<br />

• Very Raggy, existing pumps block daily<br />

• Expensive <strong>to</strong> Repair ~ $9500<br />

• Digester Temp. 9 o F Higher<br />

• Three Pumps <strong>In</strong>stalled in Total<br />

• Process down-time eliminated!


Replaced 25 hp PC pumps with 5hp Npumps<br />

•Trial Pump for RAS Application<br />

(immediately purchased a 2 nd pump)<br />

•Repaired PC pumps 2-3 times/yr.<br />

•3 yrs - never <strong>to</strong>uched their Npump


Rotary Lobe Pumps


Manufacturer’s of Rotary Lobe pumps…<br />

•Vogelsang<br />

•Boerger<br />

•LobePro<br />

•Alfa Laval<br />

•Swaby Lobeline<br />

•Netzsch


ROTARY LOBE Advantages<br />

•Metered flow rate<br />

•Pressures <strong>to</strong> 90 psig (really 40-50 psig)<br />

•Runs dry for 5-10 minutes<br />

•Compact<br />

•Low shear pumping<br />

•Low pulsations with screw ro<strong>to</strong>r design<br />

•Runs in either direction<br />

Disadvantages<br />

•High maintenance (3-4 times Npump)<br />

•Expensive initial & repair costs<br />

•High wear due <strong>to</strong> slip<br />

•Not rag friendly, requires a macera<strong>to</strong>r<br />

•Requires gearbox running 180 rpm or less<br />

•High starting <strong>to</strong>rque


Failures…


Replace RLP with Npumps<br />

• Cus<strong>to</strong>mer was spending $8k<br />

per month <strong>to</strong> repair the Boerger<br />

pumps (nine <strong>to</strong>tal)<br />

Boerger pump<br />

Replaced RLP with Npump on 6 month<br />

trial and cus<strong>to</strong>mer immediately<br />

purchased a second pump (before trial<br />

was completed)<br />

Flygt N-pump


Economics (Life Cycle Costs)<br />

Life Cycle Cost<br />

<strong>In</strong>itial Purchase<br />

Planned maintenance<br />

*Cost of rebuild<br />

10 year cost<br />

PC<br />

$21,000<br />

$0<br />

$7,000<br />

$42,000<br />

Lobe<br />

$19,000<br />

$0<br />

$6,000<br />

$37,000<br />

DISC<br />

$23,000<br />

$0<br />

$2,000<br />

$33,000<br />

* Considers three rebuilds for both PC & RL pumps, 5 rebuilds for DISC and no<br />

rebuilds for Npump<br />

(N pump must have Hard iron impeller & <strong>In</strong>sert Ring)<br />

N pump<br />

$11,000<br />

$4,000<br />

$0<br />

$15,000


Screw Conveyor Pumps


Why Use a Screw Pump?<br />

The Archimedes Screw Pump<br />

• Efficient in handling large volumes of liquid at relatively low lifts.<br />

• Ability <strong>to</strong> handle variable capacity with a simple constant speed drive.<br />

• Operates at or above 70% efficiency for 2/3 of its operating capacity.<br />

• No increase in pumping head caused by deep influent as required for centrifugal pumps.<br />

• Less head required because there are no friction losses created by pipe, valves, and fittings.<br />

• Non-clog


Screw Conveyor Pump Manufacturers<br />

• Siemens (US Filter)<br />

• Lakeside Equipment Company<br />

• Spaans Babcock<br />

• BioSec Enviro<br />

• Martin Sprocket & Gear, <strong>In</strong>c.<br />

• Torqueflow Sydex<br />

• Schreiber LLC.<br />

• Arlat Technology - A Div. of Price Schonstrom <strong>In</strong>c.<br />

• Landustrie Sneek BV (Landy Screw Pumps)<br />

• EPIC <strong>In</strong>ternational<br />

• Ritz-Atro GmbH<br />

• SPECO Division of WAM S.p.A.


Advantages<br />

• Rugged, Heavy-duty<br />

• Non-Clogging design<br />

• Lower cost concrete trough<br />

• Low speed<br />

• Low noise<br />

Screw Conveyor Pumps<br />

Disadvantages<br />

• Huge Capital cost<br />

• Purchase price (3-5 x’s)<br />

• <strong>In</strong>stallation cost (3-5 x’s)<br />

• Requires a lot of space<br />

• Huge grease lubrication costs<br />

(<strong>Up</strong>wards of $70,000/ yr.)<br />

• 3-4 days <strong>to</strong> remove & service<br />

• Highly inefficient when flighting <strong>to</strong><br />

concrete trough wears


Screw<br />

Conveyor<br />

Pumps


Screw Pump Replacement<br />

Delta Township, MI


Screw Pump Replacement<br />

O’Fallon, MO


JCH replaced these 10 mgd @ 50 feet CPC Screw Pumps<br />

•CP pump ran from 1992-2007 (15 years)<br />

•N pumps have since replaced C pumps (1997-<strong>to</strong>day)


Cutter Pumps<br />

• Vaughan<br />

• Landia<br />

• Tsurumi<br />

• Barnes<br />

• BJM


Their Sales Pitch…


Competi<strong>to</strong>r’s pump


Competi<strong>to</strong>r’s pump


Weakness as perceived by the competition


Tsurumi selling points


Advantages<br />

• Heavy duty design<br />

• Cuts solids <strong>to</strong> small sizes<br />

• Reliable operation<br />

(until cut bar wears)<br />

Disadvantages<br />

• <strong>In</strong>efficient<br />

• <strong>In</strong>ferior cutter bar material<br />

• Clogs with minimal wear<br />

CHOPPER/ CUTTER


FLYGT “Chopper” pumps<br />

Advantages<br />

• Heavy duty design<br />

• Chops solids <strong>to</strong> small sizes<br />

• Modular design<br />

• Superior Hard iron material<br />

• Guide pin<br />

Disadvantages<br />

• Efficiency drops 15-20%<br />

over Npump<br />

• Does not meter<br />

Cast Iron Impeller<br />

Cast Iron <strong>In</strong>sert ring Hard-Iron <strong>In</strong>sert ring<br />

Hard-Iron Chopper ring<br />

Pump housing<br />

Hard-Iron Impeller


Flygt N-Pump Advantages<br />

•Solids Handling <strong>to</strong> 6-8 percent<br />

•Clog resistant (Back swept leading edge)<br />

•Cutter grove in volute “<strong>In</strong>sert ring” tears solids<br />

•Efficient operation<br />

•Small, compact design<br />

•Center-line discharge<br />

• will not become air bound<br />

•Complete ownership for pump & mo<strong>to</strong>r<br />

Disadvantages<br />

•Does not meter<br />

•Does not self-prime<br />

•Not a “PD” pump


High chrome gives…<br />

4 x life vs. cast iron<br />

2 x life vs. hardened <strong>to</strong>ol steel


Vaughan Chopper Replacement<br />

• Requirement: Flygt Cutter had <strong>to</strong> Work on Vaughan Ro<strong>to</strong>Mix System<br />

• <strong>In</strong>stalled Since March 2010 w/ no sign of wear<br />

• Higher Flow than Vaughan Unit (870 vs. 443 gpm)<br />

• <strong>In</strong>dications of <strong>Be</strong>tter Mixing<br />

• Surface Crust Appears <strong>to</strong> be Breaking


Npump replaces competi<strong>to</strong>rs Chopper<br />

Lift station pump which clogged weekly due <strong>to</strong> worn cutter<br />

bar was replaced with Npump and has not clogged since!<br />

* City now has flood-proof protection!


MACERATORS


MACERATORS<br />

These types of pumps require a Macera<strong>to</strong>r:<br />

•Pis<strong>to</strong>n Plunger<br />

•Diaphragm<br />

•Double Disc<br />

•Progressing Cavity<br />

•Rotary Lobe


…because they cannot handle rags!


…or these modern day clogging headaches


Npumps do not require a Macera<strong>to</strong>r!<br />

• No Muffin Monster!<br />

• No Franklin Miller!<br />

• No Seepex!<br />

• No Vogelsang!<br />

• No Boerger!<br />

• No Allweiler!<br />

• No Monoflo!


Summary: Rule of thumb<br />

If it flows, use an Npump!<br />

Lower Life Cycle Cost (LCC)<br />

A centrifugal pump can not pump a viscosity<br />

>350 cps and a sludge density of >6-8 percent.<br />

Keep pipe work simple with short suction line<br />

constant diameter<br />

no bends or elbows<br />

no constrictions


For ALL Treatment Plant Pump Activities…<br />

Applications<br />

− RAS, WAS, TWAS & Primary<br />

− Scum pits<br />

− Digester feed<br />

− Imported<br />

− <strong>In</strong>fluent/ Final Effluent<br />

Competing technologies<br />

− Plunger<br />

− Diaphragm<br />

− Double Disc<br />

− Progressing Cavity<br />

− Rotary Lobe<br />

Please call or Email me for help &<br />

guidance:<br />

Paul Nelsen<br />

(203) 610-0853


To be released<br />

soon!


THANK<br />

YOU!<br />

Paul A. Nelsen<br />

Market Manager<br />

<strong>In</strong>dustrial & Treatment Plant Pumping<br />

paul.nelsen@itt.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!