05.03.2013 Views

Presentation Headline Arial 40pt; Title Case; May Be Up to ... - Sign In

Presentation Headline Arial 40pt; Title Case; May Be Up to ... - Sign In

Presentation Headline Arial 40pt; Title Case; May Be Up to ... - Sign In

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Wastewater Treatment<br />

Techniques for pumping<br />

sludge<br />

Paul A. Nelsen<br />

ITT Flygt Corporation<br />

Marketing & Business Development<br />

Manager<br />

paul.nelsen@itt.com


Choosing the “right” pump…<br />

….is like choosing the right golf club<br />

at the Augusta National


…is like selecting the correct golf<br />

club <strong>to</strong> match the conditions!<br />

•Transfer (Driver)<br />

•Metering (Putter)


Pumping Sludge<br />

• Properties or the rheology of sludge<br />

• What type of pump do I use?<br />

• Advantages & Disadvantages<br />

• Progressing Cavity<br />

• Rotary Lobe<br />

• Special Centrifugal<br />

• Practical examples of sludge pumping


What’s your application?<br />

− Return Activated<br />

− Waste Activated<br />

− Primary<br />

− Supernatant<br />

− Scum<br />

− Digester feed<br />

− Imported<br />

− Centrifuge feed<br />

− <strong>Be</strong>lt press feed


Sludge video #1


Sludge video #2


Sludge video #3


Sludge video #4


To select a pump, you must know<br />

the following properties:<br />

1. Performance<br />

a. Flow rate<br />

b. Discharge Pressure<br />

c. Suction Pressure (NPSHa)<br />

2. % Dry Solids<br />

3. Solid size<br />

4. Abrasiveness<br />

5. Do you need <strong>to</strong> Transfer & Meter Sludge?


Viscosity<br />

• Viscosity, property of a fluid that tends <strong>to</strong> prevent it from<br />

flowing when subjected <strong>to</strong> an applied force. The tenacity<br />

with which a moving layer of fluid drags adjacent layers of<br />

fluid.<br />

Viscosity is the fluid property responsible for friction.


Viscosity as a function of shear rate<br />

Viscosity is the property of a fluid that prevents it from flowing when<br />

subjected <strong>to</strong> an applied force.<br />

The tenacity with which a moving layer of fluid drags adjacent layers of fluid


NEWTONIAN<br />

• Viscosity decreases<br />

with the rate of shear.<br />

Non NEWTONIAN<br />

“thixotropic”<br />

NON NEWTONIAN<br />

“dilatant”<br />

• Viscosity increases with<br />

the rate of shear.


Measuring viscosity<br />

Viscosity testing using both a Searle & Hache viscometer


Municipal wastewater sludge<br />

• Municipal wastewater sludge is a Non-New<strong>to</strong>nian Fluid.<br />

• Sludge can start out at 300,000 cps and with the addition<br />

of shear can come down <strong>to</strong> less then 300 cps.<br />

• A centrifugal pump can not pump a viscosity >350 cps<br />

and a sludge density of >6-8 percent.<br />

<strong>Be</strong>ware: water treatment sludge uses ALUM which is dilatant or<br />

shear thickening.


Why do we<br />

need <strong>to</strong> know<br />

the type of<br />

sludge?


What is the Rheology of the<br />

sludge?<br />

Things we need <strong>to</strong> know…<br />

DS content?<br />

Are there flocculants/polymers?


We hired a<br />

team of<br />

scientists<br />

and<br />

technicians<br />

<strong>to</strong> perform<br />

field tests<br />

The test rig consisted of a tank, a dry-mounted pump N-<br />

3127HT and a 4 inch flow loop with a flow meter, two pressure<br />

transmitters and a control valve.


Labora<strong>to</strong>ry & Field test results<br />

• Pump derating:<br />

• Performance curve:<br />

- 1% per % DS (H)<br />

• Power requirement:<br />

Head - [m]<br />

20<br />

15<br />

10<br />

5<br />

1 - 8 %<br />

1 – 8 %<br />

+ 1% per % DS<br />

0<br />

0 50 100 150 200 0<br />

Flow - [m³/h]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Power - [kW]


Pipe dimension 1%<br />

DS<br />

4”<br />

6”<br />

8”<br />

We charted the results<br />

0.01 1)<br />

1) 44 gpm 2) 132 gpm<br />

0.01 2)<br />

2%<br />

DS<br />

3%<br />

DS<br />

4%<br />

DS<br />

5%<br />

DS<br />

6%<br />

DS<br />

7%<br />

DS<br />

0.0. 0.02 0.05 0.1 0.15 0.25 0.35<br />

0.01 0.01 0.01 0.02 0.04 0.07 0.11 0.17<br />

0.01 0.01 0.01 0.01 0.02 0.04 0.06 0.09<br />

8%<br />

DS<br />

0.01 0.04 0.08 0.15 0.25 0.38 0.54<br />

0.01 0.01 0.01 0.03 0.06 0.11 0.17 0.24<br />

0.01 0.01 0.01 0.02 0.03 0.06 0.1 0.14<br />

Pressure loss estimation (ft/ft pipeline)


Things we learned:<br />

• When designing system<br />

• for DS>4% start-up condition must be considered (Δp>t x 4L/d)<br />

• DS change of 2.5% → 4.5%, yield stress increases by fac<strong>to</strong>r of 5<br />

• DS change of 2.5% → 8.5%, yield stress increases by fac<strong>to</strong>r of 30<br />

Definition: Yield point, is defined in materials science as the stress at<br />

which a material begins <strong>to</strong> plastically deform.


“TR185”<br />

and<br />

“Frost”


• Hydraulic gradient<br />

• Pressure gradient<br />

dP<br />

dl<br />

i<br />

TR 185<br />

<br />

<br />

2<br />

V<br />

g D<br />

2<br />

2<br />

<br />

V<br />

D<br />

f<br />

2<br />

f<br />

where,<br />

i= hydraulic gradient (m/m)<br />

V= average velocity (m/s)<br />

g= gravity acc. (m/s 2 )<br />

D= pipe diam. (m)<br />

ρ= density (kg/m 3 )<br />

f= Fanning friction fac<strong>to</strong>r<br />

dP/dl= pressure gradient


TR 185<br />

Reynolds number<br />

R<br />

<br />

Flow parameters:<br />

<br />

V<br />

D 8 V<br />

<br />

<br />

<br />

e L<br />

D<br />

L – laminar viscosity (Nsn/m2)<br />

n – power law index<br />

( 1n<br />

)<br />

where,<br />

ρ= density (kg/m 3 )<br />

V= av. velocity (m/s)<br />

D= diameter (m)<br />

L= laminar viscosity<br />

(Ns n /m 2 )<br />

n= power law index


TR 185<br />

h<br />

<br />

where,<br />

2<br />

V<br />

F<br />

K <br />

2<br />

g<br />

K= point loss fac<strong>to</strong>r<br />

Fittings-loss fac<strong>to</strong>r<br />

1000<br />

Empirical relation between fitting-loss fac<strong>to</strong>r and<br />

100<br />

10<br />

1<br />

0,1<br />

Reynolds number<br />

F <br />

1<br />

1 10 100 1000 10000 100000<br />

Reynolds number<br />

2000<br />

Re


Pump de-rating<br />

• Performance curve: -<br />

1% per % DS (H)<br />

• Power requirement: +<br />

1% per % DS (kW)<br />

Head - [m]<br />

20<br />

15<br />

10<br />

5<br />

1 - 8 %<br />

1 – 8 %<br />

0<br />

0 50 100 150 200 0<br />

Flow - [m³/h]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Power - [kW]


Flygt’s Sludge Module within FLYPS.<br />

Flyps pump selection program <strong>to</strong> derate<br />

pump curves.<br />

Also, FLYPS can help you evaluate the<br />

added losses experienced through<br />

pipe work and fittings when pumping<br />

sludge, as well as correct the mo<strong>to</strong>r<br />

power data.


Enough about the fluids!<br />

Let’s talk pumps!!!


Types of pumps used for “Thickened<br />

sludge”<br />

Diaphragm<br />

Progressing<br />

Cavity<br />

Pumping<br />

sludge<br />

Rotary<br />

Lobe<br />

Special<br />

Centrifugal


WEAR & TEAR!!!!!!!!!!!!!


What’s really important <strong>to</strong> WWTP?<br />

• Reducing Operations Budget<br />

• <strong>In</strong>crease reliability (solve clogging issues)<br />

• <strong>In</strong>crease resistance <strong>to</strong> wear<br />

• Reduce Energy Costs<br />

• Flood-proof Protection<br />

(i.e. recent floods in Nashville & Atlanta)


Positive displacement pumps are..<br />

• Those in which energy is imparted <strong>to</strong> the liquid in a fixed<br />

displacement volume.<br />

Dynamic pumps are…<br />

Dynamic pumps impart energy <strong>to</strong> the liquid by means of<br />

an impeller or propeller.<br />

This force is converted <strong>to</strong> pressure as the fluid is pushed<br />

against the pump casing.


PD versus Centrifugal pumps<br />

• Positive displacement or “PD” pumps<br />

PD pumps are good metering devices.<br />

PD pumps self-prime themselves.<br />

• will supply as much pressure as needed until<br />

the rated mo<strong>to</strong>r horsepower is exceeded.<br />

• Centrifugal pumps<br />

Centrifugal pumps do not meter.<br />

Centrifugal pumps will not self-prime<br />

• Need flooded suction<br />

Flow rate will change as head pressure changes<br />

(variations in suction or discharge pressure will<br />

change flow rate).


Why use a Centrifugal pump?<br />

• Low initial cost (< $$$’s)<br />

• Lower cost of operation (< $$$’s)<br />

• Less maintenance<br />

• Easy maintenance<br />

• Less energy consumption<br />

• Reliable Operation<br />

• Less chance of clogging<br />

• More durable materials<br />

• Less components <strong>to</strong> break<br />

• No gear box required


Progressing Cavity Pumps


Manufacturers of “PC” pumps<br />

• Moyno<br />

• Monoflo (Mono)<br />

• Netzsch<br />

• Allweiler<br />

• Seepex<br />

• Tarby


Progressive Cavity Pumps<br />

A single helix ro<strong>to</strong>r turning in a double helix sta<strong>to</strong>r creating a<br />

progressive cavity as the ro<strong>to</strong>r turns


Advantages<br />

•Pressures <strong>to</strong> 400 psig<br />

•Pulls suction <strong>to</strong> 28 in-Hg V<br />

•Metered flow<br />

•Low shear<br />

Disadvantages<br />

•Will not run dry<br />

•High starting <strong>to</strong>rque<br />

•Must run 180 rpm or less<br />

•Requires a macera<strong>to</strong>r<br />

•Costly repairs & difficult <strong>to</strong> rebuild in place<br />

•Liquid wants <strong>to</strong> be 200-300 cps viscosity or greater<br />

Progressing Cavity<br />

•Wears 3-4 times faster than a centrifugal pump in hard iron<br />

•Typical WWTP application exposes mechanical seal <strong>to</strong> full discharge pressure


Failure points…


Rotary Lobe Pumps


Manufacturer’s of Rotary Lobe pumps…<br />

•Vogelsang<br />

•Boerger<br />

•LobePro<br />

•Alfa Laval<br />

•Swaby Lobeline<br />

•Netzsch


ROTARY LOBE Advantages<br />

•Metered flow rate<br />

•Pressures <strong>to</strong> 90 psig (really 40-50 psig)<br />

•Runs dry for 5-10 minutes<br />

•Compact<br />

•Low shear pumping<br />

•Low pulsations with screw ro<strong>to</strong>r design<br />

•Runs in either direction<br />

Disadvantages<br />

•High maintenance (3-4 times Npump)<br />

•Expensive initial & repair costs<br />

•High wear due <strong>to</strong> slip<br />

•Not rag friendly, requires a macera<strong>to</strong>r<br />

•Requires gearbox running 180 rpm or less<br />

•High starting <strong>to</strong>rque


Failures…


FLYGT A-C Series<br />

NS Non-clog Pumps


NON-CLOG PRODUCT<br />

FEATURES<br />

Tangential Discharge for ease of<br />

Solid passing Capability. Discharge<br />

Nozzle can be rotated <strong>to</strong> suit any one<br />

of 8 discharge positions<br />

Packing, Single , Double<br />

Mechanical seal, or<br />

Dynamic seal available<br />

Back pull-out design eliminates<br />

need <strong>to</strong> remove casing from piping<br />

Horizontal and vertical mounting<br />

arrangements available<br />

Handhole or Clean-out port is standard on<br />

casing (and suction nozzle when applicable)<br />

Standard Gauge Connections<br />

Standard 2-vane impellers.<br />

Available in either CW or<br />

CCW rotation<br />

Close <strong>to</strong>lerance stainless steel<br />

impeller wear ring and suction<br />

cover wear plate combination <strong>to</strong><br />

provide high and easily renewable<br />

operating efficiencies<br />

Tapered shaft/impeller fit (will<br />

not loosen and hence reduces<br />

vibration)<br />

Standard Casing Drain & Vent


Non-clog impeller


Non-clog Pumps


•Advantages<br />

Centrifugal Recessed Impeller<br />

•Slurry design<br />

•Handles large solids<br />

•Minimal contact with solids<br />

•Quiet operation<br />

•Semi-clog resistant<br />

•Disadvantages<br />

•Does not meter flow<br />

•Very low efficiency<br />

•Requires special materials


RECESSED IMPELLER or Vortex<br />

Spherical<br />

Solid Size…


Recessed<br />

Impeller<br />

Grit Pumps


Centrifugal Screw Pump<br />

Vertical leading edge which grabs rags<br />

Advantages<br />

•Solids handling<br />

•Smooth flow<br />

•Efficient <strong>to</strong> 80 percent<br />

Disadvantages<br />

•High initial cost<br />

•Requires special materials<br />

•Not a metering pump<br />

•Tough <strong>to</strong> manufacture & balance<br />

•Clogs at vertical leading edge<br />

•Very long shaft overhang causing shaft<br />

deflection<br />

•premature bearing failure and<br />

contact/interference <strong>to</strong> suction cover


Flygt N-Pump<br />

•Advantages<br />

•Solids Handling <strong>to</strong> 6-8 percent<br />

•Clog resistant (Back swept leading edge)<br />

•Cutter grove in volute “<strong>In</strong>sert ring” tears<br />

solids<br />

•Efficient operation<br />

•Small, compact design<br />

•Center-line discharge<br />

•Disadvantages<br />

• will not become air bound<br />

•Does not meter (without FMC & VFD)<br />

•Requires special materials<br />

•Must be installed in the NZ configuration


WEAR: Cast iron impeller & insert ring


Advantages<br />

Centrifugal CHOPPERS<br />

• Heavy duty design<br />

• Chops solids <strong>to</strong> small sizes<br />

• Reliable operation until cut bar wears<br />

Disadvantages<br />

• <strong>In</strong>efficient design<br />

• High wear on cutter bar<br />

• Clogs with minimal wear on cutter bar


FLYGT “Chopper” pumps<br />

Advantages<br />

• Heavy duty design<br />

• Chops solids <strong>to</strong> small sizes<br />

• Modular design<br />

• Hard iron 25% Cr<br />

• Guide pin<br />

Cast Iron Impeller<br />

Disadvantages<br />

• Efficiency drops 15-20 percent over Npump<br />

• Does not meter<br />

• Requires special materials<br />

Cast Iron <strong>In</strong>sert ring Hard-Iron <strong>In</strong>sert ring<br />

Hard-Iron Chopper ring<br />

Pump housing<br />

Hard-Iron Impeller


Pump selection recommendations<br />

Flow (gpm)<br />

30<br />

Primary<br />

sludge<br />

removal<br />

RAS<br />

WAS<br />

Digested<br />

sludge<br />

N-pump, first choice<br />

PC-pump, first choice<br />

Thickened<br />

sludge<br />

Dewatered<br />

sludge<br />

PC-pump,<br />

first choice<br />

Global market (MUSD/Year)


Let’s talk clogging…


Must handle rags!


…or these modern day clogging headaches


What is the efficiency of a clogged pump?<br />

•NP 3127 impeller 488<br />

•Pump after 5 years of operation<br />

•Never Clogged !


JEA – Jacksonville, Florida


Practical examples of pumping<br />

sludge<br />

•Oak Ridge, TN.<br />

•Tybee Island, GA.


Oak Ridge, TN


Tybee Island, GA<br />

Flygt replaced two 25 hp PC pumps with two 5hp<br />

NT3102-465 pump!<br />

Application = RAS


Summary<br />

If it flows, use gravity.<br />

If gravity does not work… use a centrifugal pump.<br />

Lower Life Cycle Cost (LCC)<br />

A centrifugal pump can not pump a viscosity<br />

>350 cps and a sludge density of >8 percent.<br />

Keep pipe work simple with short suction line<br />

constant diameter<br />

no bends or elbows


Paul A. Nelsen<br />

Marketing & Business Development Mgr<br />

FLYGT Products<br />

paul.nelsen@itt.com


• What’s really important <strong>to</strong> this market?<br />

• Selling against competing technologies:<br />

• Sludge Pumps<br />

• Reciprocating<br />

• Progressing Cavity<br />

• Rotary Lobe<br />

• <strong>In</strong>fluent Pumps<br />

• Archimedes Screw Pumps<br />

• Miscellaneous<br />

• Cutter pumps<br />

Agenda<br />

• Presenting ITT’s Sludge Handbook


What’s really important <strong>to</strong> this cus<strong>to</strong>mer?<br />

• Reducing his Operations Budget<br />

• <strong>In</strong>crease reliability (solve clogging issues)<br />

• <strong>In</strong>crease resistance <strong>to</strong> wear (3-4 times the life)<br />

• Reduce Energy Costs<br />

• Flood-proof Protection<br />

(i.e. recent floods in Nashville & Atlanta)


But <strong>to</strong> properly select a pump,<br />

you must know the following properties:<br />

Performance expectations<br />

a. Flow rate<br />

b. Discharge Pressure<br />

c. Suction Pressure (NPSHa)<br />

d. % Dry Solids<br />

e. Does cus<strong>to</strong>mer need <strong>to</strong> Transfer & Meter Sludge?


It’s like choosing the right golf club….<br />

•Transfer (Driver)<br />

•Metering (Putter)


Types of pumps used for sludge<br />

Plunger,<br />

Double Disc,<br />

&<br />

Diaphragm<br />

Progressing<br />

Cavity<br />

Pumping<br />

sludge<br />

Rotary<br />

Lobe<br />

Centrifugal


Positive displacement pumps are..<br />

• Those in which energy is imparted <strong>to</strong> the liquid in a fixed<br />

displacement volume.<br />

• Such as a casing or a cylinder, by the rotary motion of gears,<br />

screws or vanes, or by reciprocating pis<strong>to</strong>ns or plungers.<br />

Dynamic pumps are…<br />

Dynamic pumps impart energy <strong>to</strong> the liquid by means of<br />

an impeller or propeller.<br />

This force is converted <strong>to</strong> pressure as the fluid is pushed<br />

against the pump casing.


PD vs. Centrifugal pumps<br />

• Positive displacement or “PD” pumps<br />

PD pumps are good metering devices.<br />

PD pumps self-prime themselves.<br />

PD pumps will supply as much pressure as needed until<br />

the rated mo<strong>to</strong>r horsepower is exceeded<br />

• Centrifugal pumps<br />

× Centrifugal pumps do not meter.<br />

× Centrifugal pumps will not self-prime<br />

× Need flooded suction<br />

× Flow rate will change as head pressure changes<br />

(variations in suction or discharge pressure will change flow rate)


Why use an Npump?<br />

• Lower initial cost (< $$$’s)<br />

• Lower cost of operation (< $$$’s)<br />

• Less maintenance<br />

• Easy maintenance<br />

• Less energy consumption<br />

• No Macera<strong>to</strong>r required<br />

• Reliable Operation<br />

• Eliminates potential for clogging<br />

• More durable materials<br />

• Less components <strong>to</strong> break<br />

• No gear box required


Competing Technologies


Plunger Pumps


How does a Plunger pump work?


Manufacturers of Plunger pumps<br />

•WASTECORP.<br />

•Komline-Sanderson<br />

•Carter Pumps <strong>In</strong>c.


Easy <strong>to</strong> Maintain????


Here’s a “typical” parts list…


Advantages<br />

• Positive displacement<br />

• Self priming<br />

• Meters flow<br />

• Flow rate is not system head<br />

dependent<br />

• Flow rate is not sludge<br />

concentration dependent<br />

• Easy clean out capability<br />

• Low cost of maintenance???<br />

Plunger Pumps<br />

Disadvantages<br />

• High Capital Cost<br />

• High Maintenance<br />

• Lots &Lots of Parts<br />

• Packing Leaks<br />

• Must lubricate Babbit that<br />

drives plungers<br />

(2-3 drops/min = 1 quart/day)<br />

• Very Messy


Existing TWAS Pump


New TWAS Pump<br />

• NT3102 – 5hp was installed in 2002.<br />

• Empties tank in less than a third of the time it <strong>to</strong>ok the previous pump.


Double Disc & Diaphragm Pumps


Manufacturers of Disk or Diaphragm pumps<br />

• Penn Valley<br />

• SSP Alfa Laval<br />

• Dorr Oliver ODS<br />

• Carter Pumps<br />

• Gorman-Rupp


Operating Principle<br />

The Double Disc is based on a “Free Diaphragm”<br />

technology, the pump utilizes a unique principle of<br />

operation where the discs perform the duties of both<br />

diaphragm and valve.<br />

Suction Cycle Discharge Cycle


Operation sequence of Diaphragm pumps


Features & <strong>Be</strong>nefits<br />

Repair-in-Place design w/ hinged housings<br />

Only 5 wetted components<br />

Self-priming with high suction lifts<br />

Seal-less design, no packing or mechanical seals<br />

No seal water required<br />

Runs dry without damage<br />

No check valves, no fouling problems<br />

Handles up <strong>to</strong> 3/4” solids<br />

Two (2) year warranty


Do It Yourself with genuine Double Disc parts.


Double Disc & Diaphragm Pumps<br />

Advantages<br />

• Simple, rugged design<br />

• Easy maintenance<br />

Disadvantages<br />

• High purchase price<br />

• Frequent maintenance<br />

• Flexure life = 400,000 cycles<br />

• large pulsations w/o dampeners<br />

• Do not handle bottle caps


Midland, Texas – Diaphragm pump<br />

• Eight Gorman-Rupp pumps being powered by six – 7.5 <strong>to</strong> 10hp compressors<br />

• Efficiency goes from 100% theoretical <strong>to</strong> 20-22% because of high cost for making air.


Progressing Cavity Pumps


Manufacturers of “PC” pumps<br />

• Moyno<br />

• Monoflo (Mono)<br />

• Netzsch<br />

• Allweiler<br />

• Seepex<br />

• Tarby


Progressive Cavity Pumps<br />

A single helix ro<strong>to</strong>r turning in a double helix sta<strong>to</strong>r creating a<br />

progressive cavity as the ro<strong>to</strong>r turns


Advantages<br />

•Pressures <strong>to</strong> 400 psig<br />

•Pulls suction <strong>to</strong> 28 in-Hg V<br />

•Metered flow<br />

•Low shear<br />

Disadvantages<br />

•Will not run dry<br />

•High starting <strong>to</strong>rque<br />

•Must run 180 rpm or less<br />

•Requires a macera<strong>to</strong>r<br />

•Costly repairs & difficult <strong>to</strong> rebuild in place<br />

•Liquid wants <strong>to</strong> be 200-300 cps viscosity or greater<br />

Progressing Cavity<br />

•Wears 3-4 times faster than a centrifugal pump in hard iron<br />

•Typical WWTP application exposes mechanical seal <strong>to</strong> full discharge pressure


Failure points…


6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

Primary Sludge<br />

• 3-5% Dry Solids<br />

• Transfer 360 ft, 30ft Static<br />

• Pumps Start with Flooded Suction<br />

• Then Run on Suction Lift<br />

• $4000 Savings – per pump/yr.<br />

Capex Energy Spares Labor Total<br />

P C Pump<br />

N Pump<br />

Saving


Digester Recirculation<br />

• Replaced existing “PC” pumps<br />

• Pumps run 24/7 with minimal spare parts usage<br />

• 8-9 degF rise in digester temperature (82 <strong>to</strong> 91 degF)<br />

(Less energy input in<strong>to</strong> heat exchanger)<br />

• Reduced cost of ownership


Digester Recirculation<br />

• Digester Recirculation Sludge ~ 5% DS<br />

• Very Raggy, existing pumps block daily<br />

• Expensive <strong>to</strong> Repair ~ $9500<br />

• Digester Temp. 9 o F Higher<br />

• Three Pumps <strong>In</strong>stalled in Total<br />

• Process down-time eliminated!


Replaced 25 hp PC pumps with 5hp Npumps<br />

•Trial Pump for RAS Application<br />

(immediately purchased a 2 nd pump)<br />

•Repaired PC pumps 2-3 times/yr.<br />

•3 yrs - never <strong>to</strong>uched their Npump


Rotary Lobe Pumps


Manufacturer’s of Rotary Lobe pumps…<br />

•Vogelsang<br />

•Boerger<br />

•LobePro<br />

•Alfa Laval<br />

•Swaby Lobeline<br />

•Netzsch


ROTARY LOBE Advantages<br />

•Metered flow rate<br />

•Pressures <strong>to</strong> 90 psig (really 40-50 psig)<br />

•Runs dry for 5-10 minutes<br />

•Compact<br />

•Low shear pumping<br />

•Low pulsations with screw ro<strong>to</strong>r design<br />

•Runs in either direction<br />

Disadvantages<br />

•High maintenance (3-4 times Npump)<br />

•Expensive initial & repair costs<br />

•High wear due <strong>to</strong> slip<br />

•Not rag friendly, requires a macera<strong>to</strong>r<br />

•Requires gearbox running 180 rpm or less<br />

•High starting <strong>to</strong>rque


Failures…


Replace RLP with Npumps<br />

• Cus<strong>to</strong>mer was spending $8k<br />

per month <strong>to</strong> repair the Boerger<br />

pumps (nine <strong>to</strong>tal)<br />

Boerger pump<br />

Replaced RLP with Npump on 6 month<br />

trial and cus<strong>to</strong>mer immediately<br />

purchased a second pump (before trial<br />

was completed)<br />

Flygt N-pump


Economics (Life Cycle Costs)<br />

Life Cycle Cost<br />

<strong>In</strong>itial Purchase<br />

Planned maintenance<br />

*Cost of rebuild<br />

10 year cost<br />

PC<br />

$21,000<br />

$0<br />

$7,000<br />

$42,000<br />

Lobe<br />

$19,000<br />

$0<br />

$6,000<br />

$37,000<br />

DISC<br />

$23,000<br />

$0<br />

$2,000<br />

$33,000<br />

* Considers three rebuilds for both PC & RL pumps, 5 rebuilds for DISC and no<br />

rebuilds for Npump<br />

(N pump must have Hard iron impeller & <strong>In</strong>sert Ring)<br />

N pump<br />

$11,000<br />

$4,000<br />

$0<br />

$15,000


Screw Conveyor Pumps


Why Use a Screw Pump?<br />

The Archimedes Screw Pump<br />

• Efficient in handling large volumes of liquid at relatively low lifts.<br />

• Ability <strong>to</strong> handle variable capacity with a simple constant speed drive.<br />

• Operates at or above 70% efficiency for 2/3 of its operating capacity.<br />

• No increase in pumping head caused by deep influent as required for centrifugal pumps.<br />

• Less head required because there are no friction losses created by pipe, valves, and fittings.<br />

• Non-clog


Screw Conveyor Pump Manufacturers<br />

• Siemens (US Filter)<br />

• Lakeside Equipment Company<br />

• Spaans Babcock<br />

• BioSec Enviro<br />

• Martin Sprocket & Gear, <strong>In</strong>c.<br />

• Torqueflow Sydex<br />

• Schreiber LLC.<br />

• Arlat Technology - A Div. of Price Schonstrom <strong>In</strong>c.<br />

• Landustrie Sneek BV (Landy Screw Pumps)<br />

• EPIC <strong>In</strong>ternational<br />

• Ritz-Atro GmbH<br />

• SPECO Division of WAM S.p.A.


Advantages<br />

• Rugged, Heavy-duty<br />

• Non-Clogging design<br />

• Lower cost concrete trough<br />

• Low speed<br />

• Low noise<br />

Screw Conveyor Pumps<br />

Disadvantages<br />

• Huge Capital cost<br />

• Purchase price (3-5 x’s)<br />

• <strong>In</strong>stallation cost (3-5 x’s)<br />

• Requires a lot of space<br />

• Huge grease lubrication costs<br />

(<strong>Up</strong>wards of $70,000/ yr.)<br />

• 3-4 days <strong>to</strong> remove & service<br />

• Highly inefficient when flighting <strong>to</strong><br />

concrete trough wears


Screw<br />

Conveyor<br />

Pumps


Screw Pump Replacement<br />

Delta Township, MI


Screw Pump Replacement<br />

O’Fallon, MO


JCH replaced these 10 mgd @ 50 feet CPC Screw Pumps<br />

•CP pump ran from 1992-2007 (15 years)<br />

•N pumps have since replaced C pumps (1997-<strong>to</strong>day)


Cutter Pumps<br />

• Vaughan<br />

• Landia<br />

• Tsurumi<br />

• Barnes<br />

• BJM


Their Sales Pitch…


Competi<strong>to</strong>r’s pump


Competi<strong>to</strong>r’s pump


Weakness as perceived by the competition


Tsurumi selling points


Advantages<br />

• Heavy duty design<br />

• Cuts solids <strong>to</strong> small sizes<br />

• Reliable operation<br />

(until cut bar wears)<br />

Disadvantages<br />

• <strong>In</strong>efficient<br />

• <strong>In</strong>ferior cutter bar material<br />

• Clogs with minimal wear<br />

CHOPPER/ CUTTER


FLYGT “Chopper” pumps<br />

Advantages<br />

• Heavy duty design<br />

• Chops solids <strong>to</strong> small sizes<br />

• Modular design<br />

• Superior Hard iron material<br />

• Guide pin<br />

Disadvantages<br />

• Efficiency drops 15-20%<br />

over Npump<br />

• Does not meter<br />

Cast Iron Impeller<br />

Cast Iron <strong>In</strong>sert ring Hard-Iron <strong>In</strong>sert ring<br />

Hard-Iron Chopper ring<br />

Pump housing<br />

Hard-Iron Impeller


Flygt N-Pump Advantages<br />

•Solids Handling <strong>to</strong> 6-8 percent<br />

•Clog resistant (Back swept leading edge)<br />

•Cutter grove in volute “<strong>In</strong>sert ring” tears solids<br />

•Efficient operation<br />

•Small, compact design<br />

•Center-line discharge<br />

• will not become air bound<br />

•Complete ownership for pump & mo<strong>to</strong>r<br />

Disadvantages<br />

•Does not meter<br />

•Does not self-prime<br />

•Not a “PD” pump


High chrome gives…<br />

4 x life vs. cast iron<br />

2 x life vs. hardened <strong>to</strong>ol steel


Vaughan Chopper Replacement<br />

• Requirement: Flygt Cutter had <strong>to</strong> Work on Vaughan Ro<strong>to</strong>Mix System<br />

• <strong>In</strong>stalled Since March 2010 w/ no sign of wear<br />

• Higher Flow than Vaughan Unit (870 vs. 443 gpm)<br />

• <strong>In</strong>dications of <strong>Be</strong>tter Mixing<br />

• Surface Crust Appears <strong>to</strong> be Breaking


Npump replaces competi<strong>to</strong>rs Chopper<br />

Lift station pump which clogged weekly due <strong>to</strong> worn cutter<br />

bar was replaced with Npump and has not clogged since!<br />

* City now has flood-proof protection!


MACERATORS


MACERATORS<br />

These types of pumps require a Macera<strong>to</strong>r:<br />

•Pis<strong>to</strong>n Plunger<br />

•Diaphragm<br />

•Double Disc<br />

•Progressing Cavity<br />

•Rotary Lobe


…because they cannot handle rags!


…or these modern day clogging headaches


Npumps do not require a Macera<strong>to</strong>r!<br />

• No Muffin Monster!<br />

• No Franklin Miller!<br />

• No Seepex!<br />

• No Vogelsang!<br />

• No Boerger!<br />

• No Allweiler!<br />

• No Monoflo!


Summary: Rule of thumb<br />

If it flows, use an Npump!<br />

Lower Life Cycle Cost (LCC)<br />

A centrifugal pump can not pump a viscosity<br />

>350 cps and a sludge density of >6-8 percent.<br />

Keep pipe work simple with short suction line<br />

constant diameter<br />

no bends or elbows<br />

no constrictions


For ALL Treatment Plant Pump Activities…<br />

Applications<br />

− RAS, WAS, TWAS & Primary<br />

− Scum pits<br />

− Digester feed<br />

− Imported<br />

− <strong>In</strong>fluent/ Final Effluent<br />

Competing technologies<br />

− Plunger<br />

− Diaphragm<br />

− Double Disc<br />

− Progressing Cavity<br />

− Rotary Lobe<br />

Please call or Email me for help &<br />

guidance:<br />

Paul Nelsen<br />

(203) 610-0853


To be released<br />

soon!


THANK<br />

YOU!<br />

Paul A. Nelsen<br />

Market Manager<br />

<strong>In</strong>dustrial & Treatment Plant Pumping<br />

paul.nelsen@itt.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!