06.03.2013 Views

Partisan Subtraction Games - Thane Plambeck

Partisan Subtraction Games - Thane Plambeck

Partisan Subtraction Games - Thane Plambeck

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Partisan</strong> <strong>Subtraction</strong> <strong>Games</strong><br />

Working Notes: Comments welcome!<br />

<strong>Thane</strong> <strong>Plambeck</strong><br />

2341 Tasso Street<br />

Palo Alto, California 94301<br />

Tel: (415) 321-4816 Fax: (415) 321-4829<br />

plambeck@cs.stanford.edu<br />

February 12, 1995


Contents<br />

1 Introduction 2<br />

2 De nitions and background 2<br />

2.1 Example games : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2<br />

2.2 Outcome classes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3<br />

2.3 Reversible move simpli cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3<br />

2.4 Dominated option simpli cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4<br />

3 The games S L =(1 2), S R =(1k) 4<br />

3.1 The game S L =(1 2), S R =(1 3) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4<br />

3.2 The game S L =(1 2), S R =(1 4) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6<br />

3.3 Atomic weights and game values for k 5 : : : : : : : : : : : : : : : : : : : : : : : : 7<br />

3.3.1 Game values : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8<br />

3.3.2 Extending the daggers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10<br />

4 References 10<br />

math/games/subtract/partnew.tex 1


1 Introduction<br />

Our basic de nitions follow those of Fraenkel and Kotzig, whom we quote (almost verbatim) from<br />

the abstract to their paper [FrKo87]:<br />

A subtraction game S =(s 1:::s k)isatwo-player game of complete information<br />

that can be played using piles of tokens. At his turn, a player removes a number m of<br />

tokens from some pile, provided m 2 S. The player rst unable to move loses. This<br />

impartial game becomes partisan if, instead of one set S, two nite sets S L and S R are<br />

given: Left removes tokens as speci ed by S L, and Right asspeci edby S R. Wesay<br />

that S L dominates S R (and write S L S R) if for all su ciently large piles Left wins<br />

both as rst and second player.<br />

Fraenkel and Kotzig show that the dominance relation is nontransitive on the class of sets S<br />

and give<br />

(1 2 6) (1 3 5) (2 3 4) (1 2 6)<br />

as an example. They also observe that every partisan subtraction game is periodic in the sense that<br />

its single heap outcome classes eventually fall into a repeating pattern as the pile size increases.<br />

Here, we study sums of partisan subtraction games, under certain conditions nding exact<br />

game values and atomic weights [Con76]. Some particular games are solved completely others only<br />

partially.<br />

2 De nitions and background<br />

This section summarizes background combinatorial game de nitions and facts with little further<br />

explanation. For more information, see Conway [Con76], or Berlekamp, Conway and Guy [BCH82].<br />

2.1 Example games<br />

Some numbers and games we will encounter are as follows:<br />

math/games/subtract/partnew.tex 2


2.2 Outcome classes<br />

0 zero fjg<br />

1 one f0 jg<br />

2 two f1 jg = f0 1 jg =1+1<br />

3 three f2 jg = f0 1 2 jg =1+1+1<br />

1<br />

2 one-half f0 j1g<br />

star f0 j0g = 1<br />

2 star two f0 j0 g<br />

2 two star f2 j2g =2+<br />

" up f0 j g<br />

# down f j0g<br />

" up star f0 j0g = " +<br />

# down star f0 j0 g = # +<br />

* double up f0 j" g = " + "<br />

* double up star f0 j"g= " + " +<br />

" 2 up second f0 j# g<br />

The following miscellaneous facts and de nitions regarding outcome classes and the simpli cation<br />

of games [BCG82], [Con76] will be employed throughout our work:<br />

G>0orG is positive if Left wins in best play<br />

GHmeans that G is better than H for Left.<br />

G


2.4 Dominated option simpli cation<br />

If G = fABC:::jD E F : : :g and A B, then A is dominated by B, and the option A may be<br />

dropped from G without a ecting its value.<br />

If G = fA B C : : : jDEF:::g and D E, then E is dominated by D, and the option E may<br />

be dropped from G without a ecting its value.<br />

Note that dominated option simpli cation and Fraenkel and Kotzig's relation are di erent notions.<br />

In fact, we shall not be interested in the dominance relation at all for the remainder of this<br />

paper.<br />

3 The games S L =(1 2), S R =(1k)<br />

3.1 The game S L =(1 2), S R =(1 3)<br />

Let G n be the one pile, n token game with S L =(1 2), and S R =(1 3). Computation of initial<br />

game values for small n yields the following results:<br />

n G n<br />

0 fjg =0<br />

1 fG 0 jG 0g = f0 j0g =<br />

2 fG 0G 1 jG 1g = f0 j g = f0 j g = "<br />

3 fG 1G 2 jG 0G 2g = f "j0 "g = f0 j0g = " = " +<br />

4 fG 2G 3 jG 1G 3g = f" " j " g = f" j g = " 2=" + " 2<br />

Here, for example, in computing G 2 = f0 j g = f0j g we have reversed Left's G 2-option to the<br />

game G 1 = through G 1 R =0because0 G2 (i.e., Left wins G 2 provided Right starts). In fact,<br />

G 2 is strictly positive (Left wins no matter who starts). Dominated option simpli cation of these<br />

expressions has performed at several points as well.<br />

Problem 1 Show that the game values G n for n 5 satisfy the simpler recursion G n = f0 jG n;3g:<br />

The values G n fall into a period 3 pattern, as follows:<br />

0 1 2<br />

0+ 0 "<br />

3+ " + " 2 2 "+<br />

6+ 2 " 2 "2+ 3 "<br />

9+ 3 "+ 3 "2 4 "+<br />

12+ 4 " 4 "2+ 5 "<br />

15+ 5 "+ 5 "2 6 "+<br />

18+ 6 " 6 "2+ 7 "<br />

21+<br />

math/games/subtract/partnew.tex 4


Note on reading table entries: our game notation follows that found for<br />

example in [Conw76, page 194 ]. The game<br />

is not the same game as<br />

2 "= " + "<br />

" 2 = " + " 2 :<br />

Multiplicative notation takes precedence over its additivecounterpart so that<br />

and<br />

G 13 =4 "2+ = " + " 2 + " + " 2 + " + " 2 + " + " 2 + <br />

G 9 =4 "+ = " + " + " + " + :<br />

Example 1 Two players, Left and Right, play a sum of partisan subtraction games as follows.<br />

Before them are several piles of colored tokens, each such pile being made up entirelyofbLue<br />

tokens (S L =(1 2), S R =(1 3)), or alternatively entirely of Red tokens (S L =(1 3), S R =(1 2)).<br />

From the position G<br />

7 3 4 1<br />

Red bLue bLue Red<br />

who has the advantage, and what are the winning moves?<br />

Solution: From left to right, the four summands are<br />

Forming their sum, we obtain<br />

or<br />

7 Red = 2 #2+<br />

3 bLue = " +<br />

4 bLue = " 2<br />

1 Red =<br />

(# + # 2 + # + # 2 + )+(" + )+(" + " 2 )+ <br />

# 2 + :<br />

Although # 2|the negativeof" 2 |is less than zero, the result of adding to # 2 is fuzzy. Therefore<br />

both Left and Right have winning moves from G, but only if each is allowed to move rst. For<br />

Right, a winning move istotake the single token from the fourth Red pile, transforming G into a<br />

math/games/subtract/partnew.tex 5


position of value # 2. Left wins from G by reducing the 7-token Red heap by one token, reaching<br />

2 #in this pile so that the total value becomes<br />

or simply<br />

3.2 The game S L =(1 2), S R =(1 4)<br />

The recursion for the n-heap game value y n is<br />

Computing initial values, we obtain<br />

(# + #)+(" + )+(" + " 2 )+ <br />

" 2 :<br />

y n = fy n;1y n;2jy n;1y n;4gn 4<br />

y0 := 0 y12:= { 0 | y8 }<br />

y1 := { 0 | y0 } y13:= { 0 | y9 }<br />

y2 := { 0 | y1 } y14:= { 0 | y10 }<br />

y3 := { 0 | y2 } y15:= { 0 | y11 }<br />

y4 := {y3 | 0 } y16:= { 0 | y12 }<br />

y5 := { 0 | y1 } y17:= { 0 | y13 }<br />

y6 := { 0 | y2 } y18:= { 0 | y14 }<br />

y7 := { 0 | y3 } y19:= { 0 | y15 }<br />

y8 := { 0 | y4 } y20:= { 0 | y16 }<br />

y9 := {y3 | y5 } y21:= { 0 | y17 }<br />

y10:= { 0 | y6 } y22:= { 0 | y18 }<br />

y11:= { 0 | y7 } y23:= { 0 | y19 }<br />

The rst game we haven't seen before is y 4, which is<br />

G = f* j0g:<br />

We can give simple closed forms for all the game values by introducing the game " 2+ = f" j # g,<br />

which is pronounced \up-second-plus." [Con76]. The game values for S L =(1 2), S R =(1 4)<br />

break up into periods of length 4:<br />

0 1 2 3<br />

0+ 0 " 2 "+<br />

4+ 1:(" + " 2+ ) " 2 "+ 3 "<br />

8+ 2:(" + " 2+ ) " +1:(" 2+ ) 3 " 4 "+<br />

12+ 3:(" + " 2+ ) " +2:(" 2+ ) 4 "+ 5 "<br />

16+ 4:(" + " 2+ ) " +3:(" 2+ ) 5 " 6 "+<br />

math/games/subtract/partnew.tex 6


3.3 Atomic weights and game values for k 5<br />

For values k 5 the situation is more complex. The following tables summarize the results of<br />

atomic weight computations for 3 k 9.<br />

k =3<br />

k =4<br />

k =5<br />

k =6<br />

k =7<br />

k =8<br />

k =9<br />

Atomic weight<br />

0 1 2<br />

0+ 0 0 1<br />

3+<br />

0 1 2 3<br />

0+ 0 0 1 2<br />

4+<br />

0 1 2 3 4<br />

0+ 0 0 1 2 3<br />

5+ 3/2 3/2<br />

10+ 3 3<br />

15+<br />

0 1 2 3 4 5<br />

0+ 0 0 1 2 3 4<br />

6+ 2 2<br />

12+ 4 4<br />

18+<br />

0 1 2 3 4 5 6<br />

0+ 0 0 1 2 3 4 5<br />

7+ f3j2g f3j2g 2<br />

14+ 5 5 7/2<br />

21+ 5<br />

0 1 2 3 4 5 6 7<br />

0+ 0 0 1 2 3 4 5 6<br />

8+ f4j2g f4j2g 2 3<br />

16+ 6 6 4 9/2<br />

24+ 6 6<br />

0 1 2 3 4 5 6 7 8<br />

0+ 0 0 1 2 3 4 5 6 7<br />

9+ f5j2g f5j2g 2 3<br />

18+ 7 7 f5j4g 5<br />

27+ 7 7<br />

To extend an atomic weight table down a column, add one at each row to the last (always<br />

integral) atomic weight given in that column. For example, for k = 6 the atomic weight ofaheap<br />

math/games/subtract/partnew.tex 7


of 16 (= 12+4) counters is 5 (= 3 at top of column, plus 2 rows down).<br />

3.3.1 Game values<br />

Let y = y nk be the game value of the n token heap in S L =(1 2), S R =(1k), and write y ; = y n;kk<br />

when n k, and y ; = 0 otherwise. Fixing k, these game values appear to eventually fall into the<br />

recursion<br />

for all su ciently large n, with<br />

y = f0jy ; g<br />

y>f0jy ; g<br />

being the case whenever the previous equality fails.<br />

Let (k) stand for the last exceptional case (for which y>f0jy ; g). We obtained the following<br />

sequence:<br />

or<br />

k 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

(k) 4 9 12 15 24 28 32 45 50 55 72 78 84<br />

In fact, (k) is given exactly by the following quadratic equations:<br />

(3l) = 9l 2 ; 16l +11<br />

(3l +1) = 9l 2 ; 12l +12<br />

(3l +2) = 9l 2 ; 11l +14<br />

Often even more is true, with one of the equations<br />

y = f0jy ; g = y ; + "<br />

y = f0jy ; g = y ; + "2 <br />

being valid. The following game di erence tables give more speci c information for small values of<br />

k.<br />

math/games/subtract/partnew.tex 8


k =3<br />

k =4<br />

k =5<br />

k =6<br />

k =7<br />

k =8<br />

k =9<br />

Game values y ; y ;<br />

0 1 2<br />

0+ 0 "<br />

3+ " > "2 > " =<br />

6+ =<br />

0 1 2 3<br />

0+ 0 " *<br />

4+ "2 j0> " = " = " =<br />

8+ = "2 > =<br />

0 1 2 3 4<br />

0+ 0 " * 3"<br />

5+ * 3"j0> 3" j0> " = " = " =<br />

10+ * 3"j0= 3" j0> "2 > =<br />

15+ y y<br />

20+<br />

0 1 2 3 4 5<br />

0+ 0 " * 3" 4"<br />

6+ 3" 4" j0> 4"j0> " = " = " = " =<br />

12+ 3" 4" j0= 4" 4"j0jj0> "2 > "2 > =<br />

18+ y y<br />

0 1 2 3 4 5 6<br />

0+ 0 " * 3" 4" 5"<br />

7+ 4" 5"j0> 5" j0> " = " = " = " = " =<br />

14+ 4" 5"j0= 5" 5" j0jj0> 3" j0> " = = = =<br />

21+ y= y= 3" j0= "2 > =<br />

28+ y y y<br />

0 1 2 3 4 5 6 7<br />

0+ 0 " * 3" 4" 5" 6"<br />

8+ 5" 6" j0> 6"j0> " = " = " = " = " = " =<br />

16+ 5" 6" j0= 6" 6"j0jj0> 3" 4"j0> 3" j0> " = = = =<br />

24+ y= y= 3" 4"j0= 3" j0= "2 > =<br />

32+ y y y y<br />

0 1 2 3 4 5 6 7 8<br />

0+ 0 " * 3" 4" 5" 6" 7"<br />

9+ 6" 7"j0> 7" j0> " = " = " = " = " = " = " =<br />

18+ 6" 7"j0= 7" 7" j0jj0> 4" 5" j0> 4"j0> " = " = = = =<br />

27+ y= y= 4" 5" j0= 4" 4"j0jj0> "2 > "2 > =<br />

36+ y y y y<br />

The \>" or \=" subscripts in the tables indicate whether y>f0jy ; g or y = f0jy ; g is the case<br />

at a particular entry.<br />

math/games/subtract/partnew.tex 9


To extend a game value di erence table down a column that doesn't end with a dagger symbol<br />

(y), simply repeat the last given value in that column (always "2 or " ). Since the table entries<br />

are di erences, computing the actual game value for a given heap size involves adding to the given<br />

di erence table entry the entries in all rows above the desired entry in the same column. For<br />

example, the value of a heap of 31 tokens in (1 2) vs. (1 7) is<br />

3.3.2 Extending the daggers<br />

"2 + * + " + " + "2 =6" +2" 2 + :<br />

Columns that end in daggers may be extended by use of the equation<br />

y = f0jy ; g<br />

and their atomic weights increase by one at each row however, both the resulting canonical game<br />

expressions and associated di erence table entries appear to be complicated objects.<br />

Can these values be systematized in some way? Here is one observation. Fix k = 5 and consider<br />

the leftmost column in its table, beginning at heap size 10 (and write y 10y 15y 20, etc) for these<br />

games. Then<br />

y 10 +3# = 0jj0 # j3#<br />

y 15 +4# = 0jjj0 # jj # +j4#<br />

y 20 +5# = 0jjjj0 # jjj # +jj+ 3# j5#<br />

A similar equation seems to apply to the 1 mod 5 entriesinthek = 5 table. Does this continue?<br />

4 References<br />

FrKo87 A. S. Fraenkel and A. Kotzig, \Partizan Octal <strong>Games</strong>: Partizan <strong>Subtraction</strong> <strong>Games</strong>," in<br />

International Journal of Game Theory, 16, Issue 2, pages 145-154.<br />

BCG82 E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for your Mathematical Plays.<br />

Academic Press, London.<br />

Con76 J. H. Conway, On Numbers and <strong>Games</strong>. Academic Press, London.<br />

math/games/subtract/partnew.tex 10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!