06.03.2013 Views

Chlorine atom and molecule dynamics in an inductively ... - Leti

Chlorine atom and molecule dynamics in an inductively ... - Leti

Chlorine atom and molecule dynamics in an inductively ... - Leti

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Chlor<strong>in</strong>e</strong> <strong>atom</strong> <strong><strong>an</strong>d</strong> <strong>molecule</strong> <strong>dynamics</strong><br />

Laboratoire de Physique des Plasmas<br />

<strong>in</strong> <strong>an</strong> <strong>in</strong>ductively coupled plasma<br />

<strong>in</strong> pure Cl 2<br />

Je<strong>an</strong>-Paul Booth<br />

Nish<strong>an</strong>t Sirse, Yasm<strong>in</strong>a Azamoum<br />

Pascal Chabert


•Test/calibrate/improve models : HPEM from Mark Kushner<br />

•Underst<strong><strong>an</strong>d</strong> pulsed plasmas – for process<strong>in</strong>g<br />

Measure:<br />

• Cl <strong>atom</strong>s - Absolute densities (time <strong><strong>an</strong>d</strong> space resolved)<br />

• Cl 2 <strong>molecule</strong>s ….. ……..<br />

• Electron density<br />

• Gas temperatures<br />

•Dynamics <strong>in</strong> pulsed plasmas :<br />

Laboratoire de Physique des Plasmas<br />

Objectives<br />

•Cl recomb<strong>in</strong>ation at the reactor walls


Gas outlet grid<br />

13.56 MHz<br />

power supply<br />

Al 2O 3 w<strong>in</strong>dow<br />

550mm chamber<br />

200mm chuck<br />

Laboratoire de Physique des Plasmas<br />

Anodized alum<strong>in</strong>ium chamber<br />

ICP reactor at LPP:<br />

Cl 2, HBr, O 2, Ar<br />

Supplied via showerhead<br />

4 turn spiral <strong>an</strong>tenna<br />

Pump<strong>in</strong>g port<br />

-Industrial Scale Reactor<br />

(550mm, 100mm high)<br />

-Industrial gases (Cl 2, HBr)<br />

-All surfaces Al 2O 3<br />

-Adv<strong>an</strong>ced diagnostics:<br />

TALIF<br />

Hairp<strong>in</strong> proben e<br />

Laser photodetachement<br />

IRLAS etc


n e ( x10 16 m -3 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Laboratoire de Physique des Plasmas<br />

Electron density (at centre)<br />

50mm from top/Cl 2 /Centre<br />

500W<br />

400W<br />

300W<br />

200W<br />

100W<br />

0<br />

0 20 40 60 80 100<br />

Pressure (mT)<br />

• Measure us<strong>in</strong>g microwave<br />

hairp<strong>in</strong> resonator<br />

• Maximum density at 10 mTorr<br />

– 9x10 16 m -3


Electron density (10 10 cm -3 )<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Laboratoire de Physique des Plasmas<br />

Comparison simulation to experiment<br />

Electron density at reactor centre<br />

500W<br />

Experimental<br />

Simulation<br />

0<br />

0 10 20 30 40 50 60 70 80 90<br />

Cl 2 pressure (mTorr)<br />

• Good agreement at very low<br />

pressure<br />

• Increas<strong>in</strong>gly wrong (low) at<br />

higher pressure<br />

• What is wrong <strong>in</strong> the<br />

simulation?


Ono, JVSTA 1992<br />

Laboratoire de Physique des Plasmas<br />

Two-Photon Laser-Induced Fluorescence<br />

(TALIF) of <strong>atom</strong>ic <strong>Chlor<strong>in</strong>e</strong><br />

Laser: 233.2nm,<br />

1-3 mJ, 5ns<br />

Detect Fluorescence<br />

at 726nm (Gated redsensitive<br />

PMT)<br />

•Measures relative concentrations with<br />

high spatial <strong><strong>an</strong>d</strong> temporal resolution


TALIF Laser:<br />

233.2nm, 3<br />

mJ, 5ns<br />

Detect Fluorescence at 726nm<br />

(Photomultiplier + filter)<br />

Laboratoire de Physique des Plasmas<br />

Calibration :<br />

Photo-dissociation of Cl 2 at 355 nm<br />

Pump<strong>in</strong>g port<br />

Absorpt<strong>in</strong> cross-section (10 -24 m 2 )<br />

Photolysis Laser<br />

355 nm, 10 mJ 2mm<br />

9% dissociation of Cl 2<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Cl 2 absorption spectrum<br />

= 15.9x10 -24 m 2 @355nm<br />

0<br />

250 300 350 400 450 500<br />

Wavelength (nm)


TALIF signal (arb. units)<br />

50 mTorr Cl 2:<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Laboratoire de Physique des Plasmas<br />

Compare TALIF signals Plasma/laser:<br />

50 mTorr Cl 2<br />

Laser<br />

photolysis<br />

233.200 233.205 233.210<br />

Laser wavelength (nm)<br />

500 W Plasma<br />

Photolysis products have higher velocity :<br />

Doppler broaden<strong>in</strong>g<br />

-Ratio of <strong>in</strong>tegrated signals:<br />

S plasma/S laser= 0.498<br />

n Cl = 8.3x10 13 cm -3 @ 50 mTorr 500W<br />

In practice, 355nm beam quality limits<br />

precision (±20%)


Cl <strong>atom</strong> density, n Cl (10 13 cm -3 )<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 100 200 300 400 500<br />

Laboratoire de Physique des Plasmas<br />

RF Power (W)<br />

Results : Cl density<br />

Cl 2 pressure:<br />

50 mTorr<br />

20 mTorr<br />

10 mTorr<br />

5 mTorr<br />

2 mTorr<br />

Severe test of model, but:<br />

Model : all parameter for one plasma<br />

condition<br />

Expt: one parameter for all plasma<br />

conditions!


n /n Cl 0<br />

Cl2<br />

0.20<br />

0.15<br />

0.10<br />

Laboratoire de Physique des Plasmas<br />

Cl normalised to <strong>in</strong>itial gas density<br />

0.05<br />

20 mTorr<br />

50 mTorr<br />

0.00<br />

0 100 200 300 400 500<br />

RF Power (W)<br />

2 mTorr<br />

5 mTorr<br />

10 mTorr<br />

Normalise to Cl 2 density before plasma:<br />

•Dissociation fraction highest for lowest pressure<br />

•20% @ 2mTorr 500W<br />

• 5-7% at higher pressure, saturates with RF power<br />

•Why so low? (n e peaks at 10 mT)<br />

•What is Cl 2 density dur<strong>in</strong>g plasma?


• Plasma + 355nm laser :<br />

Laboratoire de Physique des Plasmas<br />

Cl 2 <strong>molecule</strong> density <strong>in</strong> plasma<br />

– produces <strong>an</strong> additional signal,<br />

– n(Cl 2) dur<strong>in</strong>g plasma<br />

• Calculate Cl 2 density relative<br />

• to “no plasma” from:<br />

nCl I plasma laser I<br />

2<br />

<br />

<br />

n I<br />

Cl<br />

0<br />

2<br />

laser<br />

plasma<br />

TALIF <strong>in</strong>tensity<br />

20<br />

15<br />

10<br />

5<br />

0<br />

20mTorr 500W<br />

355nm laser<br />

plasma<br />

plasma + 355nm laser<br />

233.200 233.205 233.210<br />

Laser wavelength (nm)


Cl /Cl 2 0<br />

2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Laboratoire de Physique des Plasmas<br />

Cl 2 density<br />

0 100 200 300 400 500<br />

RF power (W)<br />

Cl 2 relative density<br />

2mT<br />

5 mT<br />

10 mT<br />

20mT<br />

50mT<br />

Cl 2 density strongly depleted <strong>in</strong> plasma:<br />

-<strong>in</strong>creases with RF power, <strong><strong>an</strong>d</strong> pressure<br />

-dissociation<br />

-gas heat<strong>in</strong>g?


(nCl+nCl )/nCl 2 0<br />

2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 100 200 300 400 500<br />

Laboratoire de Physique des Plasmas<br />

RF power (W)<br />

Total gas density<br />

Total gas density<br />

(relative to no plasma)<br />

2mT<br />

5 mT<br />

10mT<br />

20mT<br />

50mT<br />

? No other possible product <strong>in</strong><br />

pure Cl 2<br />

Total gas density = n Cl + n Cl2<br />

Gas density severely depleted <strong>in</strong><br />

the plasma at higher pressure<br />

Strong gas heat<strong>in</strong>g?<br />

(Electron pressure negligible<br />

-Max = 0.3mT @10mT)


T (K)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Gas temp (without corr)<br />

T(2mT)<br />

T(5mT)<br />

T(10mT)<br />

T(20mT)<br />

T(50mT)<br />

Laboratoire de Physique des Plasmas<br />

Estimate gas temperature<br />

0 100 200 300 400 500<br />

RF power (W)<br />

From ideal gas law :<br />

T plasma =T 0.n 0/n plasma<br />

(total pressure unch<strong>an</strong>ged by plasma)<br />

Estimated T gas = 2300K!<br />

Nb: TALIF only measures Cl density <strong>in</strong><br />

P 3/2 ground state.<br />

If P 1/2 state (at 0.11eV) is populated by<br />

electron collisions (up to 50% more<br />

density) T gas 1900K


Cross-section(10 -20 cm 2 )<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Temperature variation of Cl 2 absorption<br />

291K<br />

441K<br />

554K<br />

699K<br />

853K<br />

1038K<br />

0<br />

260 280 300 320 340 360 380 400 420<br />

Laboratoire de Physique des Plasmas<br />

Cl 2 absorption spectrum<br />

355 nm<br />

wavelength (nm)<br />

(Gibson <strong><strong>an</strong>d</strong> Bayliss,<br />

Phys. Rev., 44, 188 (1933))<br />

absorption cross-secion (10 -20 cm 2 )<br />

15<br />

10<br />

5<br />

(354.7nm)<br />

Cl 2 absorption cross-section<br />

-Temperature dependence<br />

- cross-section 30%<br />

lower at 2300K ?<br />

0<br />

300 600 900 1200 1500 1800 2100<br />

Temperature (K)<br />

? assume exponential<br />

dependence ?<br />

Cl 2 density underestimated by 30%<br />

at 2300K<br />

Corrected Tgas 1900K


Temperature (K)<br />

1200<br />

900<br />

600<br />

Gas temperature from Ar m spectroscopy:<br />

5mT<br />

10mT<br />

20mT<br />

50mT<br />

300<br />

0 100 200 300 400 500<br />

Laboratoire de Physique des Plasmas<br />

Ar:Cl 2 /50:50/LIF<br />

Power (W)<br />

50% Cl 2/ 50% Ar<br />

Laser-Induced Fluorescence : at reactor<br />

centre<br />

•T m1250K @ 50mTorr 500W<br />

•TALIF : 2300/1900K <strong>in</strong> pure Cl 2<br />

(Measurements not possible with less<br />

Ar at higher pressures)


Laboratoire de Physique des Plasmas<br />

Cl <strong>atom</strong> recomb<strong>in</strong>ation coefficient, g<br />

• Cl recomb<strong>in</strong>ation at reactor walls has strong effect on plasma<br />

physics <strong><strong>an</strong>d</strong> chemistry:<br />

– Determ<strong>in</strong>es dissociation fraction Cl/Cl 2<br />

– Impacts etch behaviour – Cl spont<strong>an</strong>eous etch<strong>in</strong>g, uniformity<br />

– Electron collision rate –higher for Cl 2 then Cl (Te)<br />

– Electron attachment e + Cl 2 Cl - + Cl<br />

• plasma tr<strong>an</strong>sport ch<strong>an</strong>ged for electronegative plasmas<br />

• Still one of the biggest factors of uncerta<strong>in</strong>ty <strong>in</strong> modell<strong>in</strong>g


Previous measurements of g Cl on Al 2O 3<br />

Kota et al, JVSTA (1997)<br />

g Decreases with temperature<br />

-poor precision at higher T<br />

-ex-situ measurement<br />

Laboratoire de Physique des Plasmas<br />

Guha et al JAP (2008)<br />

-sp<strong>in</strong>n<strong>in</strong>g wall technique<br />

-quasi-<strong>in</strong>-situ<br />

g depends on n Cl/n Cl2 ratio<br />

-but surface polluted by SiO 2<br />

-large scatter for high Cl/Cl 2<br />

Compare to <strong>in</strong>-situ measurements:


TALIF signal (arb. units)<br />

Determ<strong>in</strong>e Cl lifetime <strong>in</strong><br />

afterglow of a pulse-modulated plasma by TALIF:<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0.000 0.005 0.010 0.015 0.020 0.025<br />

Laboratoire de Physique des Plasmas<br />

20mT Cl 2<br />

100W<br />

200W<br />

500W<br />

time (s)<br />

Excellent S/N ratio<br />

-follow decays up to 50 ms<br />

-pure Cl 2 :<br />

-no gas-phase loss processes<br />

-Directly deduce surface<br />

recomb<strong>in</strong>ation coefficients g Cl<br />

first ms<br />

-non-exponential decays<br />

-gas cool<strong>in</strong>g<br />

Assume gas is cold after 2ms


(Ch<strong>an</strong>try, J.Appl.Phys. 62,1141, (1987) For a cyl<strong>in</strong>der:<br />

1<br />

k<br />

g presumed equal on all surfaces<br />

-Diffusion Coefficient for Cl <strong>in</strong> Cl 2 :<br />

Laboratoire de Physique des Plasmas<br />

Determ<strong>in</strong><strong>in</strong>g recomb<strong>in</strong>ation coefficient<br />

from decay rates<br />

wall<br />

<br />

2<br />

<br />

D<br />

0<br />

<br />

V<br />

S<br />

D 0=0.149cm 2 s -1 @1 atm 298K<br />

3<br />

2 T <br />

D D0<br />

. <br />

298 <br />

2(2 -g<br />

)<br />

.<br />

vg<br />

.<br />

p<br />

p<br />

0<br />

1<br />

<br />

2<br />

0<br />

v <br />

<br />

<br />

= <br />

L <br />

8kBT<br />

m<br />

2<br />

+<br />

2<br />

2.4<br />

<br />

R


surface loss coefficient g<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Loss rates <strong><strong>an</strong>d</strong> surface recomb<strong>in</strong>ation coefficient<br />

Cl surface loss coefficient<br />

100W<br />

200W<br />

500W<br />

0.00<br />

0 5 10 15 20<br />

Laboratoire de Physique des Plasmas<br />

pressure (mT)<br />

• Deduced from decay 2-10ms<br />

• g very high ! 0.2-0.35<br />

(compare 0.02 by Guha et al)<br />

•Pressure : decrease <strong>in</strong> g<br />

•RF power : only a small effect. Trend<br />

seems to depend on pressure


TALIF signal<br />

10<br />

1<br />

0.1<br />

Laboratoire de Physique des Plasmas<br />

Background signal at long times :<br />

10 mT 200W<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

time (s)<br />

Model Exponential<br />

Equation y = y0 + A*ex<br />

p(R0*x)<br />

Reduced Chi<br />

-Sqr<br />

0.1523<br />

Adj. R-Squar 0.99599<br />

Value St<strong><strong>an</strong>d</strong>ard Err<br />

1 y0 0.23357 0.06247<br />

1 A 33.5583 0.35147<br />

1 R0 -406.348 7.69425<br />

-almost const<strong>an</strong>t background signal <strong>in</strong><br />

late afterglow (20 ms)<br />

-has same spectral shape as TALIF<br />

signal<br />

-Increased strongly by small O 2<br />

addition/low flow rates<br />

g falls to low value <strong>in</strong> late afterglow<br />

-Saturation of reaction sites?<br />

-The value of g <strong>in</strong> the late afterglow is<br />

more comparable to those measured by<br />

Guha <strong><strong>an</strong>d</strong> by Kota…..


Laboratoire de Physique des Plasmas<br />

Conclusions<br />

• Cl <strong>atom</strong> <strong><strong>an</strong>d</strong> Cl 2 <strong>molecule</strong> absolute density determ<strong>in</strong>ed by a new TALIF<br />

calibration scheme<br />

– Cl density is small compared to <strong>in</strong>itial gas density (


• Determ<strong>in</strong>e n Cl2 <strong>in</strong> afterglow<br />

• Measure Cl P 1/2 density by TALIF<br />

Laboratoire de Physique des Plasmas<br />

Future work<br />

• Cl - negative ion density by laser photodetachment<br />

• Model improvements<br />

– Add miss<strong>in</strong>g gas heat<strong>in</strong>g terms<br />

– Model the afterglow – test tr<strong>an</strong>sport modell<strong>in</strong>g<br />

– Model the breakdown phase/ vompare to experiments<br />

• Other gases:<br />

– O 2, HBr, mixtures<br />

• Work partly supported by ANR INCLINE (ANR-09 BLAN 0019) & AMAT


TALIF signal<br />

10<br />

1<br />

0.1<br />

Laboratoire de Physique des Plasmas<br />

Effect of flow rate /residence time<br />

Effect of flow rate/residence time<br />

10mT 200 W<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

Time (s)<br />

10 sccm<br />

20 sccm<br />

50 sccm<br />

100 sccm<br />

Low flow long residence time <br />

<strong>in</strong>creased import<strong>an</strong>ce of air leaks<br />

Due to O 2 impurities?<br />

- Add small amount of O 2 at high flow rate :


Cl TALIF signal (arb. units)<br />

10<br />

1<br />

Laboratoire de Physique des Plasmas<br />

Effect of impurities: small O 2 addition<br />

Effect of O addition 2 O2 addition has same affect as<br />

reduc<strong>in</strong>g flow rate<br />

10mT 200W<br />

50 sccm Cl 2<br />

0.1<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

Time (s)<br />

+3 sccm O 2<br />

+2 sccm O 2<br />

+1 sccm O 2<br />

pure Cl 2<br />

Flow rate effect appears to be l<strong>in</strong>ked<br />

to O 2 impurities:<br />

Possible orig<strong>in</strong>s:<br />

•Saturation of Cl reaction sites by O 2<br />

when no ion bombardment?<br />

•Formation of O xCl y product,<br />

photolysed by 233nm laser?


TALIF <strong>in</strong>tensity<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Laboratoire de Physique des Plasmas<br />

Persistent signal <strong>in</strong> afterglow<br />

10 mT 200W<br />

10sccm Cl 2<br />

3 sccm O 2<br />

233.185 233.190<br />

wavelength (nm)<br />

0 ms<br />

20 ms<br />

20ms (x3.7)<br />

Identical centre wavelength <strong><strong>an</strong>d</strong> l<strong>in</strong>e-width<br />

as Cl TALIF at start of afterglow:<br />

Doesn’t appear to be photolysis of a Cl xO y<br />

product (would have high energy-large<br />

Doppler width)<br />

TALIF signal<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Decay of slow sigal:<br />

50 Cl 2 + 3 O 2<br />

0.01 0.02 0.03 0.04 0.05<br />

Time (s)<br />

Observed decay rate 5-10s -1<br />

Pump-out rate 2.5s -1 @ 10sccm<br />

-corresponds to g of 1-2%<br />

(comparable to Guha et al)


nCl+ nCl2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Laboratoire de Physique des Plasmas<br />

Effect of add<strong>in</strong>g 50% Cl P 1/2:<br />

Cl + Cl2 (without correction)<br />

Tot(2mT)<br />

Tot(5mT)<br />

Tot(10mT)<br />

Tot(20mT)<br />

Tot(50mT)<br />

0.0<br />

0 100 200 300 400 500<br />

RF power (W)<br />

Total gas density<br />

total density<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

tot with sp<strong>in</strong> orbit<br />

0.0<br />

0 100 200 300 400 500<br />

RF power (W)<br />

Tot(2mT)<br />

Tot(5mT)<br />

Tot(10mT)<br />

Tot(20mT)<br />

Tot(50mT)


n Cl /n Cl +n Cl2 )<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Pressure<br />

(mTorr)<br />

2<br />

5<br />

10<br />

20<br />

50<br />

Laboratoire de Physique des Plasmas<br />

Effect of add<strong>in</strong>g 50% Cl P 1/2:<br />

mole fraction Cl/ (Cl + Cl 2)<br />

Cl mole fraction<br />

(without P 1/2 correction)<br />

0.0<br />

0 100 200 300 400 500<br />

RF power (W)<br />

n Cl /(n Cl +n Cl2 )<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Mole fraction n Cl /(n Cl +n Cl2 )<br />

(with P 1/2 correction)<br />

Pressure (mTorr)<br />

2<br />

5<br />

10<br />

20<br />

50<br />

0.0<br />

0 100 200 300 400 500<br />

RF power (W)


Temperature (K)<br />

1200<br />

900<br />

600<br />

Gas temperature from Ar m spectropscopy:<br />

2mT<br />

3mT<br />

5mT<br />

10mT<br />

Laboratoire de Physique des Plasmas<br />

Absorption:<br />

Ar:Cl 2 /10:90<br />

300<br />

0 100 200 300 400 500<br />

Power (W)<br />

Cl 2/Ar 90/10%<br />

Temperature (K)<br />

1200<br />

900<br />

600<br />

2mT<br />

3mT<br />

5mT<br />

10mT<br />

Absorption Fluorescence<br />

No signal above 10 mTorr;<br />

Tm 800K @ 10mTorr 500W (comparable to 50% Ar)<br />

Ar:Cl 2 /10:90/LIF<br />

300<br />

0 100 200 300 400 500<br />

Power (W)


Laboratoire de Physique des Plasmas<br />

Absolute Cl calibration techniques<br />

• Niemi et al. : compare to rare gas TALIF for H, O, N<br />

– No suitable rare gas tr<strong>an</strong>sition near 233nm<br />

• Ono et al: use 233nm TALIF beam to photolyse CCl 4 (known<br />

pressure, no plasma)<br />

– Gave Cl densities 3x higher th<strong>an</strong> total gas density!<br />

– Depends on knowledge of spatio-temporal profile of 233nm beam<br />

at waist<br />

– Integrate rate equations for photolysis + simult<strong>an</strong>eous excitation<br />

– Photolysed Cl fly out of the (very small) detection volume<br />

– These effects lead to over-estimation of effective Cl density<br />

• A better technique is needed!


n Cl /n Cl2<br />

1.0<br />

0.5<br />

P (mTorr)<br />

2<br />

5<br />

10<br />

20<br />

50<br />

0.0<br />

0 100 200 300 400 500<br />

Laboratoire de Physique des Plasmas<br />

RF power (W)<br />

Ratio n Cl/n Cl2<br />

without correction Maximum 1.2 at 2 mTorr 500W<br />

(Cl mole fraction 0.55)<br />

Increas<strong>in</strong>g RF power causes more<br />

gas heat<strong>in</strong>g, rather th<strong>an</strong><br />

dissociation!


n e ( x10 16 m -3 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Laboratoire de Physique des Plasmas<br />

Electron density (at centre)<br />

50mm from top/Cl 2 /Centre<br />

500W<br />

400W<br />

300W<br />

200W<br />

100W<br />

0<br />

0 20 40 60 80 100<br />

Pressure (mT)<br />

• Measure us<strong>in</strong>g microwave hairp<strong>in</strong><br />

resonator<br />

• Density at reactor centre unless<br />

stated<br />

• Maximum density at 10 mTorr<br />

– 9x10 16 m -3


n e ( x10 16 m -3 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Laboratoire de Physique des Plasmas<br />

Electron density :radial profile<br />

50mm from top/ Cl 2 / 500W / radial sc<strong>an</strong><br />

3mT<br />

5mT<br />

10mT<br />

0 50 100 150 200 250<br />

Position (mm)<br />

Peaked at centre for low<br />

pressure ……


n e ( x10 16 m -3 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Laboratoire de Physique des Plasmas<br />

Electron density :radial profile<br />

50mm from top/ Cl 2 / 500W / radial sc<strong>an</strong><br />

10mT<br />

20mT<br />

50mT<br />

90mT<br />

0 50 100 150 200 250<br />

Position (mm)<br />

Peaked at centre for low<br />

pressure<br />

Peaks away from axis at higher<br />

pressure<br />

- Local density maximum under<br />

coil


T (K)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Laboratoire de Physique des Plasmas<br />

Effect of add<strong>in</strong>g 50% Cl P 1/2:<br />

Gas temp (without corr)<br />

T(2mT)<br />

T(5mT)<br />

T(10mT)<br />

T(20mT)<br />

T(50mT)<br />

0 100 200 300 400 500<br />

RF power (W)<br />

Gas temperature<br />

T (K)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

T(2mT)<br />

T(5mT)<br />

T(10mT)<br />

T(20mT)<br />

T(50mT)<br />

-reduces peak temperature from 2300K to 1900K<br />

Gas temperature (<strong>in</strong>clud<strong>in</strong>g P1/2)<br />

0 100 200 300 400 500<br />

RF power (W)


Laboratoire de Physique des Plasmas<br />

Previous gas temperature measurements<br />

Steady state<br />

Cunge JVSTA 2009<br />

700W Cl 2/Ar<br />

centre<br />

wall<br />

Determ<strong>in</strong>ed from Ar m Doppler width.<br />

L<strong>in</strong>e-<strong>in</strong>tegrated technique<br />

-Strong axial T gradient<br />

-estimated 1000K at the centre<br />

Factor 2 lower th<strong>an</strong> our observations<br />

(& at higher power density!)<br />

IRLAS measurements <strong>in</strong> our reactor….


TALIF signal<br />

10<br />

1<br />

0.1<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

time (s)<br />

Laboratoire de Physique des Plasmas<br />

Decays vs pressure <strong><strong>an</strong>d</strong> power<br />

5 mT<br />

500W<br />

200W<br />

100W<br />

TALIF signal<br />

100<br />

10<br />

1<br />

0.1<br />

10 mT<br />

500W<br />

200W<br />

100W<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

TALIF signal<br />

10<br />

1<br />

0.1<br />

20 mT<br />

500W<br />

200W<br />

100W<br />

0.00 0.01 0.02 0.03 0.04 0.05<br />

•At long times : presence of <strong>an</strong> almost const<strong>an</strong>t background signal <strong>in</strong> all cases.<br />

•Reasonable fit with s<strong>in</strong>gle exponential + offset<br />

•RF power only has a small effect<br />

•NB data taken after stabilisation; <strong>in</strong>itial rates (when plasma first turned on) faster by<br />

10-20% (surface temperature effect?)<br />

time (s)<br />

time (s)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!