20.03.2013 Views

Additional documentation for the RE-squared ellipsoidal ... - Lammps

Additional documentation for the RE-squared ellipsoidal ... - Lammps

Additional documentation for the RE-squared ellipsoidal ... - Lammps

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Additional</strong> <strong>documentation</strong> <strong>for</strong> <strong>the</strong> <strong>RE</strong>-<strong>squared</strong> <strong>ellipsoidal</strong><br />

potential<br />

as implemented in LAMMPS<br />

Mike Brown, Sandia National Labs, October 2007<br />

Let <strong>the</strong> shape matrices Si = diag(ai, bi, ci) be given by <strong>the</strong> ellipsoid<br />

radii. Let <strong>the</strong> relative energy matrices Ei = diag(ɛia, ɛib, ɛic) be given by<br />

<strong>the</strong> relative well depths (dimensionless energy scales inversely proportional<br />

to <strong>the</strong> well-depths of <strong>the</strong> respective orthogonal configurations of <strong>the</strong> interacting<br />

molecules). Let A1 and A2 be <strong>the</strong> trans<strong>for</strong>mation matrices from <strong>the</strong><br />

simulation box frame to <strong>the</strong> body frame and r be <strong>the</strong> center to center vector<br />

between <strong>the</strong> particles. Let A12 be <strong>the</strong> Hamaker constant <strong>for</strong> <strong>the</strong> interaction<br />

given in LJ units by A12 = 4π 2 ɛLJ(ρσ 3 ) 2 .<br />

The <strong>RE</strong>-<strong>squared</strong> anisotropic interaction between pairs of <strong>ellipsoidal</strong> particles<br />

is given by<br />

Uα = A12<br />

mα<br />

U = UA + UR,<br />

( σ<br />

h )nα (1 + oαηχ σ <br />

aibici<br />

) ×<br />

h (ai + h/pα)(bi + h/pα)(ci + h/pα) ,<br />

i<br />

mA = −36, nA = 0, oA = 3, pA = 2,<br />

mR = 2025, nR = 6, oR = 45/56, pR = 60 1/3 ,<br />

χ = 2ˆr T B −1 ˆr,<br />

ˆr = r/|r|,<br />

B = A T 1 E1A1 + A T 2 E2A2<br />

1


η = det[S1]/σ 2 1 + det[S2]/σ 2 2<br />

[det[H]/(σ1 + σ2)] 1/2 ,<br />

σi = (ˆr T A T i S −2<br />

i Aiˆr) −1/2 ,<br />

H = 1<br />

A<br />

σ1<br />

T 1 S 2 1A1 + 1<br />

A<br />

σ2<br />

T 2 S 2 2A2<br />

Here, we use <strong>the</strong> distance of closest approach approximation given by <strong>the</strong><br />

Perram reference, namely<br />

and<br />

h = |r| − σ12,<br />

σ12 = [ 1<br />

2 ˆrT G −1 ˆr] −1/2 ,<br />

G = A T 1 S 2 1A1 + A T 2 S 2 2A2<br />

The <strong>RE</strong>-<strong>squared</strong> anisotropic interaction between a <strong>ellipsoidal</strong> particle and<br />

a Lennard-Jones sphere is defined as <strong>the</strong> lima2−>0 U under <strong>the</strong> constraints<br />

that a2 = b2 = c2 and 4<br />

3 πa3 2ρ = 1:<br />

Uαelj = (3σ3 c 3 α<br />

4πh 3 elj<br />

) A12elj<br />

(<br />

mα<br />

σ<br />

helj<br />

Uelj = UAelj + URelj ,<br />

) nα (1+oαχelj<br />

σ<br />

helj<br />

A12elj = 4π2 ɛLJ(ρσ 3 ),<br />

a1b1c1<br />

)×<br />

(a1 + helj/pα)(b1 + helj/pα)(c1 + helj/pα) ,<br />

with helj and χelj calculated as above by replacing B with Belj and G with<br />

Gelj:<br />

Belj = A T 1 E1A1 + I,<br />

2


Gelj = A T 1 S 2 1A1.<br />

The interaction between two LJ spheres is calculated as:<br />

⎡<br />

σ<br />

Ulj = 4ɛ ⎣<br />

|r|<br />

12<br />

−<br />

⎤<br />

6<br />

σ<br />

⎦<br />

|r|<br />

The analytic derivatives are used <strong>for</strong> all <strong>for</strong>ce and torque calculation.<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!