20.03.2013 Views

Altered Glycosylation in Cancer: Sialic Acids and Sialyltransferases

Altered Glycosylation in Cancer: Sialic Acids and Sialyltransferases

Altered Glycosylation in Cancer: Sialic Acids and Sialyltransferases

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Altered</strong> <strong>Glycosylation</strong> <strong>in</strong> <strong>Cancer</strong>: <strong>Sialic</strong> <strong>Acids</strong> <strong>and</strong><br />

<strong>Sialyltransferases</strong><br />

Peng-Hui Wang 1<br />

Review Article<br />

Department of Obstetrics <strong>and</strong> Gynecology, Taipei Veterans General Hospital, <strong>and</strong> Institute of Emergency Medic<strong>in</strong>e<br />

<strong>and</strong> Critical Care, National Yang-M<strong>in</strong>g University School of Medic<strong>in</strong>e, Taipei, Taiwan<br />

Abnormal prote<strong>in</strong> glycosylation, result<strong>in</strong>g <strong>in</strong> expression of altered carbohydrate deter-<br />

m<strong>in</strong>ants, is well associated with malignant transformation of the cell. One family of im-<br />

portant molecules related to aberrant glycosylation is sialic acids (SAs) <strong>and</strong> their de-<br />

rivatives, which are ubiquitous at the term<strong>in</strong>al positions of the oligosaccharides of gly-<br />

coprote<strong>in</strong>s. Sialylation affects the half-lives of many circulat<strong>in</strong>g glycoprote<strong>in</strong>s <strong>and</strong><br />

plays roles <strong>in</strong> a variety of biologic processes such as cell-cell communication, cell-<br />

matrix <strong>in</strong>teraction, adhesion, <strong>and</strong> prote<strong>in</strong> target<strong>in</strong>g. The transfer of sialic acids from<br />

CMP-sialic acids to the acceptor carbohydrates is catalyzed by the sialyltransferase<br />

(ST) family, which <strong>in</strong>cludes 20 glycoprote<strong>in</strong>- <strong>and</strong> glycolipid-specific α2,3-, α2,6- <strong>and</strong><br />

α2,8-l<strong>in</strong>kage transferr<strong>in</strong>g enzymes described up to date. Cell surface SA levels are<br />

ma<strong>in</strong>ly correlated with the mRNA levels of ST genes. In human, STs are expressed <strong>in</strong><br />

many tissues at different levels. Moreover, the level of ST expression is dramatically<br />

changed dur<strong>in</strong>g cancer transformation <strong>and</strong> this alteration can be achieved transcrip-<br />

tionally through tissue-specific or cell type-specific promoters that lead to the produc-<br />

tion of mRNA species which diverge <strong>in</strong> the 5’-untranslated region. Evidence shows that<br />

altered ST expression have a significant correlation with oncogenesis, tumor progres-<br />

sion, <strong>and</strong> lymph node metastases. Therefore, the functional roles of ST <strong>in</strong> cancer<br />

pathogenesis should be elucidated with the assistance of advanced molecular technol-<br />

ogy. In this paper, an overview of sialylation changes <strong>in</strong> cancer is highlighted. Gett<strong>in</strong>g<br />

<strong>in</strong>sights <strong>and</strong> underst<strong>and</strong><strong>in</strong>gs of altered glycosylation <strong>in</strong> cancers will offer a br<strong>and</strong>-new<br />

vision <strong>in</strong> modify<strong>in</strong>g cancer behavior <strong>and</strong> treat<strong>in</strong>g these highly lethal diseases <strong>in</strong> the near<br />

future.<br />

Journal of <strong>Cancer</strong> Molecules 1(2): 73-81, 2005.<br />

Introduction<br />

<strong>Glycosylation</strong> is one of the most frequently occurr<strong>in</strong>g coor<br />

post-translational modifications made to prote<strong>in</strong>s <strong>and</strong><br />

lipids <strong>in</strong> the secretion mach<strong>in</strong>ery of the cell, with resultant<br />

carbohydrate side cha<strong>in</strong>s to have very complex oligosaccharide<br />

sequences <strong>and</strong> concomitant structural diversity [1-3].<br />

More than half of known prote<strong>in</strong> sequences can potentially<br />

be glycosylated [2,3]. <strong>Glycosylation</strong> can be ma<strong>in</strong>ly divided<br />

<strong>in</strong>to two major types, <strong>in</strong>clud<strong>in</strong>g O-glycosylation, where the<br />

sugar is bound to the hydroxyl of a ser<strong>in</strong>e (Ser 2 ) or a<br />

threon<strong>in</strong>e (Thr) residue, <strong>and</strong> N-glycosylation, where the sugar<br />

is attached to the amide group of an asparag<strong>in</strong>e (Asn) <strong>in</strong><br />

the consensus sequence Asn-X-Ser/Thr, where X is any residue<br />

but a prol<strong>in</strong>e (Figure 1)[4]. There is a database of Oglycosylated<br />

prote<strong>in</strong>s [5] <strong>and</strong> statistical analysis has been<br />

Received 8/19/05; Revised 11/28/05; Accepted 12/8/05.<br />

1 Correspondence: Dr. Peng-Hui Wang, Department of Obstetrics <strong>and</strong><br />

Gynecology, Taipei Veterans General Hospital, No. 201, Shih-Pai Road<br />

Sec. 2, Taipei 112, Taiwan. E-mail: phwang@vghtpe.gov.tw<br />

2 Abbreviations: Ser, ser<strong>in</strong>e; Thr, threon<strong>in</strong>e; Asn, asparag<strong>in</strong>e; SA, sialic<br />

acid; Neu5Ac, N-acetylneuram<strong>in</strong>ic acid; Gal, galactose; GalNAc, Nacetylgalactosam<strong>in</strong>e;<br />

ST, sialyltransferase; GlcNAc, N-acetylglucosam<strong>in</strong>e.<br />

Keywords:<br />

neoplasms<br />

sialic acid<br />

sialylation<br />

sialyltransferase<br />

performed on the sequences around such sites to identify<br />

preferential motifs for O-glycosylation [6]. Potential Nglycosylation<br />

sites can be identified by the presence of the<br />

Asn-X-Ser/Thr sequence <strong>in</strong> peptide sequence databases [2].<br />

The prote<strong>in</strong> sequence is completely encoded by the genome;<br />

however, the diversity of prote<strong>in</strong> can be achieved by different<br />

sequence <strong>and</strong> structure of the sugar moiety, or glycan<br />

attachment. The appropriate <strong>and</strong> accurate modification of<br />

sugar or glycan depends on the action of highly specific <strong>and</strong><br />

precisely located enzymes known as glycosyltransferases<br />

<strong>and</strong> glycosidases <strong>in</strong> different tissue or cells. Thus, the glycan<br />

structure is determ<strong>in</strong>ed not only by the nature of the<br />

prote<strong>in</strong> it is bound to, but also by the tissue or cell where it<br />

is made [3]. These carbohydrate side cha<strong>in</strong>s modulate the<br />

<strong>in</strong>teraction of a prote<strong>in</strong> with its environment, <strong>in</strong>fluenc<strong>in</strong>g its<br />

solubility, activity, <strong>and</strong> biologic fate. The function of the<br />

glycans covers a wide spectrum, from relatively trivial to<br />

crucial for the growth, development, <strong>and</strong> survival of cells<br />

<strong>and</strong> organisms. However, sugars are often overlooked,<br />

compared to the extent of research on genes <strong>and</strong> prote<strong>in</strong>s<br />

[3]. This is ma<strong>in</strong>ly due to their complexity, which makes<br />

them difficult to sequence <strong>and</strong> study. Glycan structures<br />

cannot be readily obta<strong>in</strong>ed because they cannot be amplified<br />

© 2005 MedUnion Press 73


Wang J. <strong>Cancer</strong> Mol. 1(2): 73-81, 2005<br />

Figure 1: Examples of the attachment forms of glycans on a prote<strong>in</strong><br />

as nucleic acids can, they generally come as a highly heterogeneous<br />

mix of different species bound to a s<strong>in</strong>gle prote<strong>in</strong>,<br />

they are non-l<strong>in</strong>ear molecules, <strong>and</strong> there is no universal<br />

method to precisely determ<strong>in</strong>e the structure of a glycan species<br />

without mak<strong>in</strong>g assumptions regard<strong>in</strong>g the biologic<br />

system [7]. There is <strong>in</strong>creas<strong>in</strong>g evidence that glycosylation<br />

also depends on the precise location of the N-glycosylation<br />

sites because the quality control mechanism appears to be<br />

regional <strong>and</strong> so not all glycans are equally important <strong>in</strong> the<br />

fold<strong>in</strong>g process [4]. Considerable work has been done to<br />

characterize the sequences of oligosaccharides attached to<br />

prote<strong>in</strong>s [8,9] <strong>and</strong> to determ<strong>in</strong>e their 3D structures [10]. Databases<br />

are available for glycan primary structures [11].<br />

Among the glycans, one of the particular important<br />

molecules is the sialic acid (SA) [12].<br />

<strong>Sialic</strong> acids <strong>and</strong> sialyltransferases<br />

<strong>Sialic</strong> acids (SAs) are a group of neuram<strong>in</strong>ic acid (5-amido-<br />

3,5-dideoxy-D-glycero-D-galacto-nonulosonic acid) <strong>and</strong><br />

widely distributed <strong>in</strong> nature as term<strong>in</strong>al sugars on oligosaccharides<br />

attached to prote<strong>in</strong> or lipid moieties. The members<br />

<strong>in</strong>clude the n<strong>in</strong>e-carbon am<strong>in</strong>o acid, N-acetylneuram<strong>in</strong>ic acid<br />

(Neu5Ac, Figure 2), <strong>and</strong> its derivatives. Neu5Ac is the most<br />

ubiquitous SA <strong>and</strong> is the biosynthetic precursor for all other<br />

SAs. All SAs have a carboxylate at the C1 position that is<br />

typically ionized at physiological pH [13]. SA derivatives are<br />

ubiquitous at the term<strong>in</strong>al positions of the oligosaccharides<br />

of glycoprote<strong>in</strong>s [14-16], which determ<strong>in</strong>e the half-lives of<br />

many circulat<strong>in</strong>g glycoprote<strong>in</strong>s. It has been documented<br />

that the term<strong>in</strong>al SA of glycans is an important residue <strong>in</strong><br />

affect<strong>in</strong>g cell behavior [17]. Usually, sialyl residues are<br />

l<strong>in</strong>ked to the <strong>in</strong>ner sugar residue galactose (Gal) via α2,6 or<br />

α2,3-l<strong>in</strong>kage or l<strong>in</strong>ked to galactosam<strong>in</strong>e or Nacetylgalactosam<strong>in</strong>e<br />

(GalNAc) via α2,6-l<strong>in</strong>kage (Figure 3).<br />

Moreover, SA can also be l<strong>in</strong>ked to the C8 position of another<br />

SA residue. The biosynthesis of these molecules may act<br />

as a cod<strong>in</strong>g system, s<strong>in</strong>ce they are able to <strong>in</strong>teract with high<br />

specificity <strong>and</strong> selectivity with carbohydrate-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s<br />

<strong>in</strong>clud<strong>in</strong>g lect<strong>in</strong>s, antibodies, receptors, <strong>and</strong> enzymes<br />

[18]. These molecules are also <strong>in</strong>volved <strong>in</strong> cell communication<br />

such as cell-cell <strong>and</strong> cell-matrix <strong>in</strong>teractions <strong>and</strong><br />

molecular recognition dur<strong>in</strong>g tumor development, differentiation<br />

<strong>and</strong> progression [1,19,20], which is catalyzed by enzymes<br />

of the sialyltransferase (ST) family [19], <strong>in</strong>clud<strong>in</strong>g<br />

glycoprote<strong>in</strong> <strong>and</strong> glycolipid-specific α2,3-, α2,6- <strong>and</strong> α2,8l<strong>in</strong>kage<br />

transferr<strong>in</strong>g enzymes [21-36].<br />

<strong>Sialyltransferases</strong> (STs) can be further classified <strong>in</strong>to four<br />

families accord<strong>in</strong>g to the carbohydrate l<strong>in</strong>kage they synthesize:<br />

the ST3Gal (α2,3-ST), ST6Gal (α2,6-ST), ST6GalNAc,<br />

<strong>and</strong> ST8Sia (α2,8-ST) families (Figure 3)[37]. Every family<br />

can be further classified <strong>in</strong>to many subtypes (Table 1). All<br />

enzymes of the ST3Gal family transfer Neu5Ac residues <strong>in</strong><br />

α2,3-l<strong>in</strong>kage to term<strong>in</strong>al Gal residues found <strong>in</strong> glycoprote<strong>in</strong>s<br />

or glycolipids (Figure 3). In the ST3Gal family, the ST3Gal-I<br />

<strong>and</strong> -II subfamilies use exclusively the type 3 oligosaccharide<br />

structure Galß1→3GalNAc-R, whereas the ST3Gal-III, -IV,<br />

-V, <strong>and</strong> -VI use the oligosaccharide isomers Galß1→<br />

3/4GlcNAc-R. Moreover, the ST3Gal-V subfamily uses exclusively<br />

the lactosyl-ceramide (i.e. Galß1→4GlcNAc-Cer) as an<br />

acceptor substrate, giv<strong>in</strong>g rise to the synthesis of the ganglioside<br />

G M3 [38]. The enzymes of the ST6Gal family comprise<br />

only two subfamilies, ST6Gal-I <strong>and</strong> -II, that both use the<br />

Galß1→4GlcNAc-R as the acceptor substrate. The enzymes<br />

of the ST6GalNAc family catalyze the transfer of Neu5Ac<br />

residues <strong>in</strong> α2,6 l<strong>in</strong>kage to the GalNAc residues found <strong>in</strong> Oglycosylprote<strong>in</strong>s<br />

(ST6GalNAc-I, -II <strong>and</strong> -IV) or found <strong>in</strong> glycolipids<br />

(ST6GalNAc-III, -V <strong>and</strong> -VI). ST6GalNAc-I <strong>and</strong> -II<br />

(ST6GalNAc subfamily I) catalyze the transfer of Neu5Ac<br />

onto Galß1→3GalNAc peptides (sialylated or not), <strong>and</strong> their<br />

activity greatly depends on the peptide moiety. Whereas,<br />

ST6GalNAc-III, -IV, -V, <strong>and</strong> -VI (ST6GalNAc subfamily II) exhibit<br />

a more restricted substrate specificity, only utiliz<strong>in</strong>g<br />

sialylated acceptor substrates (Neu5Acα2→3Galß1→<br />

3GalNAc-R), found either <strong>in</strong> glycoprote<strong>in</strong>s or glycolipids<br />

such as G M1b. Each of these subfamilies has characteristic<br />

sequence motifs not present <strong>in</strong> the other subfamily [41].<br />

Enzymes of the ST8Sia family mediate the transfer of<br />

Neu5Ac residues <strong>in</strong> α2,8-l<strong>in</strong>kage to other Neu5Ac residues<br />

found <strong>in</strong> glycoprote<strong>in</strong>s <strong>and</strong> glycolipids. The two ma<strong>in</strong><br />

branches of this family tree conta<strong>in</strong> three subfamilies each:<br />

ST8Sia-I, -V <strong>and</strong> -VI <strong>in</strong> the first branch <strong>and</strong> ST8Sia-II, -III <strong>and</strong> -<br />

IV <strong>in</strong> the second branch.<br />

All vertebrate STs have a similar architecture. They are<br />

type II transmembrane glycoprote<strong>in</strong>s that predom<strong>in</strong>antly<br />

reside <strong>in</strong> the trans-Golgi compartment [38]. They have a<br />

short N-term<strong>in</strong>al cytoplasmic tail, a unique transmembrane<br />

doma<strong>in</strong>, <strong>and</strong> a stem region with a variable length from 20 to<br />

200 am<strong>in</strong>o acids followed by a large C-term<strong>in</strong>al catalytic doma<strong>in</strong>.<br />

The members of ST8Sia family appear to have higher<br />

sequence conservation whereas the ST6GalNAc family has<br />

the lowest sequence conservation. The members of ST3Gal<br />

<strong>and</strong> ST8Sia families share significant sequence similarities;<br />

<strong>in</strong> contrast, the ST6Gal family is dist<strong>in</strong>ct from the ST6GalNAc<br />

family.<br />

The vertebrate ST am<strong>in</strong>o acid sequences described up to<br />

date show overall limited sequence identity (from 15 to 57%<br />

for human STs), but share four peptide conserved motifs<br />

called the sialylmotifs: L (large), S (small), motif III [39], <strong>and</strong><br />

motif VS (very small) [40,41]. These four motifs are common<br />

<strong>in</strong> all the STs, irrespective of the l<strong>in</strong>kage- <strong>and</strong> acceptor saccharide-specificities<br />

<strong>and</strong> are <strong>in</strong>volved <strong>in</strong> the formation of<br />

essential disulfide bonds <strong>and</strong> are implicated <strong>in</strong> the recognition<br />

of both donor <strong>and</strong> acceptor substrates [42] <strong>and</strong> <strong>in</strong> the<br />

Figure 2: Structure of sialic acid: N-acetyl-neuram<strong>in</strong>ic acid (Neu5Ac)<br />

as an example.<br />

74 Pr<strong>in</strong>t ISSN 1816-0735; Onl<strong>in</strong>e ISSN 1817-4256


Figure 3: Types of sialyltransferases <strong>and</strong> their ma<strong>in</strong> substrates <strong>and</strong> l<strong>in</strong>kage patterns. CMP, cytos<strong>in</strong>e 5’-monophosphate.<br />

catalytic activity [39]. The well-documented L-, S-, <strong>and</strong> VSmotifs<br />

<strong>and</strong> motif III represent residue conservation patterns<br />

at the superfamily level. As has been mentioned, these residues<br />

will either have a structural role or a functional role that<br />

is common to all the STs. The l<strong>in</strong>kage-specific motifs identified<br />

by Patel <strong>and</strong> Balaji [41] represent the second level of<br />

residue conservation pattern. The residues conserved at<br />

this level are expected to be important for l<strong>in</strong>kage specificity<br />

<strong>and</strong> for recogniz<strong>in</strong>g the monosaccharide moiety that accepts<br />

sialic acid. The third level of residue conservation pattern,<br />

as has been analyzed by Hardu<strong>in</strong>-Lepers et al. [38], del<strong>in</strong>eates<br />

residues that are conserved <strong>in</strong> each of the twenty subfamilies.<br />

These residues are expected to contribute to the<br />

overall acceptor substrate specificity, which is not the same<br />

for the various subfamilies. These conserved residues are<br />

hallmarks for the identification of eukaryotic ST genes [38].<br />

Cell surface SA levels are dependent on the mRNA levels<br />

of ST genes [43,44]. In humans, ST is expressed <strong>in</strong> many<br />

tissues at different levels [45-47]. In addition, the level of ST<br />

expression is dramatically changed dur<strong>in</strong>g cancer transformation<br />

<strong>and</strong> this alteration of ST expression can be achieved<br />

transcriptionally through tissue-specific or cell type-specific<br />

promoters that lead to the production of mRNA species<br />

which diverge <strong>in</strong> the 5’-untranslated region [48-56]. For example,<br />

transcriptional regulation of human ST6Gal-I has<br />

been studied most thoroughly, <strong>in</strong>clud<strong>in</strong>g three major mRNA<br />

species [57]. The first, from a placenta cDNA library, conta<strong>in</strong>s<br />

the 5’-untranslated exons Y <strong>and</strong> Z (placental or Y + Z<br />

form: 250 bp) <strong>and</strong> is thought to represent the basal or<br />

housekeep<strong>in</strong>g expression of the gene [51-54]. A second<br />

species lacks exons Y <strong>and</strong> Z but conta<strong>in</strong>s a specific sequence<br />

<strong>in</strong> front of exon I <strong>and</strong> represents the major liver transcript<br />

(hepatic or H form: 446 bp) [49,51,54]. The third form,<br />

specific to B-lymphocytes, lacks exons Y <strong>and</strong> Z but conta<strong>in</strong>s<br />

the 5’-untranslated exon X (X form or X transcript: 128<br />

bp)[48,50,56]. This tissue or cell type-selective expression of<br />

different ST6Gal-I transcripts suggests that gene expression<br />

of ST6Gal-I can be controlled by utilization of specific pro-<br />

<strong>Sialic</strong> <strong>Acids</strong> <strong>and</strong> <strong>Sialyltransferases</strong> <strong>in</strong> <strong>Cancer</strong><br />

moter <strong>and</strong> correspond<strong>in</strong>g transcriptional factors, which allows<br />

quantitative regulation of ST6Gal-I expression [55]. In<br />

addition, the product of ras oncogene might contribute the<br />

regulation of ST6Gal-I transcription [58-60]. The liverenriched<br />

factor hepatocyte nuclear factor-1 (HNF1) is also<br />

thought to participate <strong>in</strong> the hepatocyte-specific P1 promoter<br />

activity [61]. Xu et al. have characterized the P1 promoter<br />

region, which regulates Form 1 mRNA expression. They<br />

used luciferase assays to show that -156 to -1 region, which<br />

conta<strong>in</strong>s the HNF1 recognition element, was important for<br />

the transcriptional activity of the ST6Gal-I gene <strong>in</strong> colon<br />

adenocarc<strong>in</strong>oma cell l<strong>in</strong>es, because mutation of the HNF1<br />

site reduced luciferase activity by ~80% compared with the<br />

wild-type construct [61]. Similar to ST6Gal-I, multiple promoters<br />

are found <strong>in</strong> the ST3Gal-IV, ST3Gal-V (G M3 synthase),<br />

<strong>and</strong> ST3Gal-VI genes, which result <strong>in</strong> multiple isoforms of<br />

each given ST. These promoters may respond to different<br />

physiologic signals <strong>and</strong> stimuli <strong>in</strong> different cell types.<br />

Other examples show<strong>in</strong>g complexity <strong>in</strong> study<strong>in</strong>g STs are<br />

ST3Gal-IV <strong>and</strong> ST3Gal-III. The orig<strong>in</strong>al structures <strong>and</strong> chromosomal<br />

locations of ST3Gal-IV genes have been determ<strong>in</strong>ed<br />

[62,63]. The mRNA of ST3Gal-IV <strong>in</strong> human is consisted<br />

of many isoforms, A1, A2, B1, B2, B3, <strong>and</strong> BX [63,64].<br />

These transcripts are produced by a comb<strong>in</strong>ation of alternative<br />

promoter utilization <strong>and</strong> RNA splic<strong>in</strong>g [65]. The ST3Gal-<br />

IV mRNA can be transcribed from different promoters, pA,<br />

pB1, pB2, pB3, <strong>and</strong> pBX, respectively [66]. The type B mRNA<br />

is expressed <strong>in</strong> several cells, whereas the type A mRNA is<br />

specifically expressed <strong>in</strong> testis, ovary, <strong>and</strong> placenta [43].<br />

Taniguchi <strong>and</strong> Matsumoto suggest that epithelial cellspecific<br />

regulation of ST3Gal-IV gene expression is mediated<br />

by specific <strong>in</strong>teraction of AP2 with the DNA region -520 to -<br />

420 [64]. AP2 belongs to the group of transcription factors<br />

<strong>in</strong>volved <strong>in</strong> epithelium cell-specific gene expression [67,68].<br />

About ST3Gal-III, Grahn et al. have cloned <strong>and</strong> sequenced<br />

human ST3Gal-III gene transcripts from peripheral blood<br />

leukocytes, <strong>and</strong> isolated 19 different transcripts with a wide<br />

variety of deletions <strong>in</strong> nt 45 to 896 region <strong>and</strong> <strong>in</strong>sertions <strong>in</strong> nt<br />

© 2005 MedUnion Press 75


Wang J. <strong>Cancer</strong> Mol. 1(2): 73-81, 2005<br />

Table 1: Summary of the human sialyltransferase family<br />

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene)<br />

Symbol Enzyme Name<br />

Chromosome<br />

Location<br />

ST3Gal (α2,3-ST)<br />

ST3GAL1<br />

ST3 β-galactoside α-2,3-sialyltransferase 1<br />

HGNC: 10862, Gal-NAc6S, MGC9183, SIAT4A, SIATFL, ST3Gal A.1,<br />

ST3Gal IA, ST3O<br />

8q24.22 6482<br />

ST3GAL2<br />

ST3 β-galactoside α-2,3-sialyltransferase 2<br />

HGNC: 10863, Gal-NAc6S, SIAT4B, ST3Gal II, ST3GalA.2<br />

16q22.1 6483<br />

ST3GAL3<br />

ST3 β-galactoside α-2,3-sialyltransferase 3<br />

HGNC: 10866, SIAT6, ST3Gal II, ST3Gal III, ST3N<br />

ST3 β-galactoside α-2,3-sialyltransferase 4<br />

1p34.1 6487<br />

ST3GAL4 HGNC: 10864, CGS23, FLJ11867, NANTA3, SAT3, SIAT4, SIAT4C,<br />

ST3Gal IV, STZ<br />

11q23-q24 6484<br />

ST3GAL5<br />

ST3 β-galactoside α-2,3-sialyltransferase 5<br />

HGNC: 10872, SIAT9, SIATGM3S, ST3Gal V<br />

2p11.2 8869<br />

ST3GAL6<br />

ST3 β-galactoside α-2,3-sialyltransferase 6<br />

HGNC: 18080, SIAT10, ST3Gal VI<br />

3q12.1 10402<br />

LOC343705<br />

ST6Gal (α2,6-ST)<br />

similar to β-galactoside α-2,3-sialyltransferase 20q11.22 343705<br />

ST6GAL1<br />

ST6 β-galactosamide α-2,6-sialyltranferase 1<br />

HGNC: 10860, CD75, MGC48859, SIAT1, ST6Gal I<br />

3q27-q28 6480<br />

ST6GAL2<br />

ST6GalNAc<br />

β-galactosamide α-2,6-sialyltranferase 2<br />

HGNC: 10861, KIAA1877, SIAT2, ST6Gal II<br />

ST6 (α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-1,3)-N-acetylgalactosam<strong>in</strong>ide<br />

2q11.2-q12.1 84620<br />

ST6GALNAC1 α-2,6-sialyltransferase 1<br />

HGNC: 23614, HSY11339, SIAT7A, ST6GalNAc I<br />

ST6 (α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-1,3)-N-acetylgalactosam<strong>in</strong>ide<br />

17q25.1 55808<br />

ST6GALNAC2 α-2,6-sialyltransferase 2<br />

HGNC: 10867, SIAT7, SIAT7B, SIATL1, ST6GalNAc II, STHM<br />

ST6 (α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-1,3)-N-acetylgalactosam<strong>in</strong>ide<br />

17q25.1 10610<br />

ST6GALNAC3 α-2,6-sialyltransferase 3<br />

HGNC: 19343, PRO7177, SIAT7C, ST6GalNAc III<br />

1p31.1 256435<br />

ST6GALNAC4<br />

ST6 (α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-1,3)-N-acetylgalactosam<strong>in</strong>ide<br />

α-2,6-sialyltransferase 4<br />

HGNC:17846, SIAT3C, SIAT7D, ST6GalNAc IV<br />

similar to α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-<br />

9q34 27090<br />

LOC390377<br />

1,3-N-acetyl-galactosam<strong>in</strong>ide α-2,6-sialyltransferase (NeuAc-α-2,3-Gal-β-<br />

1,3-GalNAc-α-2,6-sialyltransferase)<br />

ST6GalNAc IV, Sialyltransferase 7D, Sialyltransferase 3C<br />

13q12.11 390377<br />

ST6GALNAC5<br />

ST6 (α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-1,3)-N-acetylgalactosam<strong>in</strong>ide<br />

α-2,6-sialyltransferase 5<br />

HGNC: 19342, MGC3184, SIAT7E, ST6GalNAc V<br />

1p31.1 81849<br />

ST6GALNAC6<br />

ST8Sia (α2,8-ST)<br />

ST6 (α-N-acetyl-neuram<strong>in</strong>yl-2,3-β-galactosyl-1,3)-N-acetylgalactosam<strong>in</strong>ide<br />

α-2,6-sialyltransferase 6<br />

9q34.11 30815<br />

ST8SIA1<br />

ST8 α-N-acetyl-neuram<strong>in</strong>ide α-2,8-sialyltransferase 1<br />

HGNC: 10869, GD3S, SIAT8, SIAT8A, ST8Sia I<br />

12p12.1-p11.2 6489<br />

ST8SIA2<br />

ST8 α-N-acetyl-neuram<strong>in</strong>ide α-2,8-sialyltransferase 2<br />

HGNC: 10870, HsT19690, MGC116854, SIAT8B, ST8SIA-II, STX<br />

15q26 8128<br />

ST8SIA3<br />

ST8 α-N-acetyl-neuram<strong>in</strong>ide α-2,8-sialyltransferase 3<br />

HGNC: 14269, SIAT8C, ST8Sia III<br />

18q21.31 51046<br />

ST8SIA4<br />

ST8 α-N-acetyl-neuram<strong>in</strong>ide α-2,8-sialyltransferase 4<br />

HGNC: 10871, MGC34450, MGC61459, PST, PST1, SIAT8D, ST8SIA-IV<br />

5q21 7903<br />

ST8SIA5<br />

ST8 α-N-acetyl-neuram<strong>in</strong>ide α-2,8-sialyltransferase 5<br />

HGNC: 17827, SIAT8E, ST8Sia V<br />

18q21.1 29906<br />

ST8SIA6<br />

ST8 α-N-acetyl-neuram<strong>in</strong>ide α-2,8-sialyltransferase 6<br />

HGNC: 23317, SIAT8F, ST8SIA-VI, ST8Sia VI<br />

10p12.33 338596<br />

76 Pr<strong>in</strong>t ISSN 1816-0735; Onl<strong>in</strong>e ISSN 1817-4256<br />

Gene<br />

ID


Figure 4: A schematic model<br />

for granulocyte b<strong>in</strong>d<strong>in</strong>g to<br />

activated endothelial cells.<br />

Unstimulated endothelial cells<br />

express low amounts of ICAM-1<br />

<strong>and</strong> ICAM-2. After stimulation<br />

by cytok<strong>in</strong>es, the amounts of<br />

ICAM-1 <strong>and</strong> ICAM-2 are upregulated<br />

<strong>and</strong> the levels of E<br />

<strong>and</strong> P-select<strong>in</strong> are <strong>in</strong>duced.<br />

B<strong>in</strong>d<strong>in</strong>g of E or P-select<strong>in</strong> with<br />

the sialyl Lewis X of CD11/CD18<br />

on granulocytes can trigger<br />

activation of CD11/ CD18 <strong>and</strong><br />

lead granulocytes to firm attachment<br />

onto endothelial cells<br />

via association with ICAM-1 <strong>and</strong><br />

ICAM-2. This model is generally<br />

thought to be applicable to the<br />

mode of tumor cell adhesion<br />

<strong>and</strong> metastasis.<br />

26 to 173 [69]. In the aspect of transcriptional regulation,<br />

Taniguchi et al. found that the transcription <strong>in</strong>itiation site of<br />

ST3Gal-III gene have been mapped to -181 bp from the<br />

translation start<strong>in</strong>g codon <strong>in</strong> four cell l<strong>in</strong>es (K-562, HT-29,<br />

PC-3, <strong>and</strong> HepG2) <strong>and</strong> that the ST3Gal-III gene does not have<br />

multiple mRNAs as have been identified for ST3Gal-IV to -VI<br />

genes [70]. They also noted that the 5’-untranslated region<br />

was divided <strong>in</strong>to two exons E1 <strong>and</strong> E2, <strong>in</strong>dicat<strong>in</strong>g that the<br />

transcriptional regulation of ST3Gal-III could be dependent<br />

on the pIII promoter locat<strong>in</strong>g upstream of exon E1, <strong>and</strong> that<br />

ubiquitous transcription factors such as Sp1 may be important<br />

for ST3Gal-III gene expression [70].<br />

Together all, the study of STs is relatively complicated<br />

[38,71], because all <strong>in</strong>volve tumor-associated changes <strong>in</strong> the<br />

expression of cell-surface sialyl-glycoconjugates [72]. In<br />

addition, the specificity studies <strong>and</strong> clon<strong>in</strong>g of STs from<br />

different cell types reveal significant differences between<br />

enzymes with similar activities. In fact, the six exhibited<br />

activities towards more than one substrate <strong>and</strong> could overlap<br />

<strong>in</strong> their specificity, except for ST3Gal-V [35]. Therefore,<br />

the critical specificity of the enzymes is dependent on when<br />

<strong>and</strong> <strong>in</strong> which cells the enzyme meets with an acceptor substrate<br />

[73]. The established theory of “one enzyme-one l<strong>in</strong>kage”<br />

has been revised to “one enzyme family-usually one<br />

l<strong>in</strong>kage” [74]. Moreover, many splic<strong>in</strong>g forms of the <strong>in</strong>dividual<br />

STs have also been detected. It is quite difficult to<br />

study all STs or all splic<strong>in</strong>g forms of the <strong>in</strong>dividual STs at the<br />

same time.<br />

<strong>Glycosylation</strong> contributes to the tumor behavior<br />

The metastasis of the tumor is of the most important<br />

process for tumor spread<strong>in</strong>g, which <strong>in</strong>volves the multistep<br />

series of adhesive events <strong>and</strong> signal<strong>in</strong>g events [75]. The<br />

process is very similar to the leukocyte response to <strong>in</strong>fection<br />

or <strong>in</strong>jury (Figure 4), which can be found <strong>in</strong> the normal physiological<br />

<strong>and</strong>/or pathological process [76]. To <strong>in</strong>itiate these<br />

responses, circulat<strong>in</strong>g leukocytes must adhere to the vascular<br />

wall under shear forces. Select<strong>in</strong>s mediate the first<br />

adhesive step, which is characterized by tether<strong>in</strong>g <strong>and</strong> roll<strong>in</strong>g<br />

of leukocytes on endothelial cells, platelets or other leukocytes<br />

[77,78]. L-select<strong>in</strong>, expressed on most leukocytes,<br />

b<strong>in</strong>ds to lig<strong>and</strong>s on some endothelial cells <strong>and</strong> on other leukocytes.<br />

E-select<strong>in</strong>, expressed on cytok<strong>in</strong>e-activated endothelial<br />

cells, b<strong>in</strong>ds to lig<strong>and</strong>s on most leukocytes. P-select<strong>in</strong>,<br />

<strong>Sialic</strong> <strong>Acids</strong> <strong>and</strong> <strong>Sialyltransferases</strong> <strong>in</strong> <strong>Cancer</strong><br />

expressed on activated platelets <strong>and</strong> endothelial cells, also<br />

b<strong>in</strong>ds to lig<strong>and</strong>s on most leukocytes. The regulated expression<br />

of the select<strong>in</strong>s <strong>and</strong> their lig<strong>and</strong>s helps <strong>in</strong>itiate <strong>and</strong> term<strong>in</strong>ate<br />

the <strong>in</strong>flammatory response. However, <strong>in</strong>appropriate<br />

expression of these molecules contributes to leukocytemediated<br />

tissue damage <strong>in</strong> a variety of <strong>in</strong>flammatory <strong>and</strong><br />

thrombotic disorders [79]. The <strong>in</strong>teractions between tumor<br />

cells <strong>and</strong> endothelial cells, the attachment <strong>and</strong> <strong>in</strong>vasion of<br />

tumor cells through the endothelium via b<strong>in</strong>d<strong>in</strong>g of select<strong>in</strong>s<br />

to their lig<strong>and</strong>s, may be an important step <strong>in</strong> the metastatic<br />

process [80].<br />

Overexpression of sialylated antigens, <strong>in</strong>clud<strong>in</strong>g sialyl-Tn,<br />

sialyl-T, sialyl-Le a , <strong>and</strong> sialyl-Le x , at the surface of cancer<br />

cells has been widely reported [81]. Tumor cells with muc<strong>in</strong><br />

type O-glycans <strong>and</strong> sialyl-Le x lig<strong>and</strong>s readily b<strong>in</strong>d to Eselect<strong>in</strong>s<br />

on activated endothelium [82-84]. In several experimental<br />

models, O-glycans are critical for metastases<br />

[80,85,86]. Inhibition of O-glycan extension by GalNAcbenzyl<br />

prevents this b<strong>in</strong>d<strong>in</strong>g of human colon cancer cells to<br />

E-select<strong>in</strong>, <strong>and</strong> thus reduces liver metastases of LS174T<br />

human cancer cells <strong>in</strong> nude mice [87]. Because expression<br />

of Lewis antigens can be <strong>in</strong>hibited with GalNAc-benzyl, these<br />

appear to be ma<strong>in</strong>ly attached to O-glycans [88,89]. While<br />

sialyl-Le x attached to O-glycans may promote cell adhesion<br />

<strong>and</strong> <strong>in</strong>vasiveness, other O-glycan structures may also play<br />

important roles on cancer cell surfaces [90]. Compared to<br />

primary tumors, expression of Tn <strong>and</strong> T antigens is decreased<br />

<strong>in</strong> metastatic colon cancer cells, with a correspond<strong>in</strong>g<br />

<strong>in</strong>crease <strong>in</strong> sialyl-Tn, sialyl-T, sialyl-Le a , <strong>and</strong> sialyl-<br />

Le x [91]. The tissue distribution of sialyl-Tn <strong>and</strong> Le y antigens<br />

differs significantly between primary tumors <strong>and</strong> metastases<br />

of cervical cancer [90].<br />

Sialyl-Tn is an important carbohydrate antigen overexpressed<br />

<strong>in</strong> several epithelial cancers (i.e. gastric, pancreatic,<br />

colorectal, ovarian <strong>and</strong> breast cancers), <strong>and</strong> is usually associated<br />

with poor prognosis [92]. Sialyl-Tn is synthesized by<br />

ST6GalNAc-I, which transfers a sialic acid residue <strong>in</strong> α2,6l<strong>in</strong>kage<br />

to the GalNAcα1-O-Ser/Thr moiety [93-95].<br />

GalNAc-benzyl treatment of B16 L6 melanoma cells <strong>in</strong>creases<br />

peanut agglut<strong>in</strong><strong>in</strong> (PNA) b<strong>in</strong>d<strong>in</strong>g, probably due to<br />

the exposure of the T antigen on its cell surface, which results<br />

<strong>in</strong> enhanced adhesion of tumor cells to activated endothelial<br />

cells or platelets mediated by endothelial leukocyte<br />

adhesion molecule-1 (ELAM-1, i.e. E-select<strong>in</strong>) or granule<br />

membrane prote<strong>in</strong> 140 (GMP-140, i.e. P-select<strong>in</strong>), <strong>and</strong> re-<br />

© 2005 MedUnion Press 77


Wang J. <strong>Cancer</strong> Mol. 1(2): 73-81, 2005<br />

duces sialylation of CD44 while enhanc<strong>in</strong>g the metastatic<br />

capacity [84].<br />

In variants of human KM12 colon cancer cells, the expression<br />

of sialyl-dimeric Le x attached to muc<strong>in</strong>-type cha<strong>in</strong>s corresponds<br />

to high <strong>in</strong>vasiveness [96]. Sialyl-dimeric Le x is<br />

frequently <strong>in</strong>creased <strong>in</strong> metastatic colon cancer [97,98].<br />

These sialylated Lewis structures may play roles <strong>in</strong> cancer<br />

metastasis other than through their select<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g properties.<br />

SA has repeatedly been implicated <strong>in</strong> the metastatic<br />

process [99]. Inhibition of sialylation <strong>and</strong> O-glycan extension<br />

<strong>and</strong> sialylation reduces the metastatic potential of cancer<br />

cells [87,100]. Metastatic colon cancer cells produce<br />

hypersialylated muc<strong>in</strong>s, which appear to play an important<br />

role <strong>in</strong> cell adhesion [101,102]. It is possible that cha<strong>in</strong>s<br />

carry<strong>in</strong>g SA may regulate the <strong>in</strong>teraction of cancer cells with<br />

other cells <strong>and</strong> with the cell matrix. These cha<strong>in</strong>s may therefore<br />

be responsible for adhesion as well as anti-adhesion,<br />

<strong>and</strong> for extend<strong>in</strong>g the survival time of cancer cells <strong>in</strong> the<br />

blood stream. <strong>Sialic</strong> acid may also be <strong>in</strong>volved <strong>in</strong> growth<br />

regulation [103]. Because sialyl-glycoconjugates regulate<br />

adhesion <strong>and</strong> promote motility, they may be important for<br />

the colonization <strong>and</strong> metastatic potential of cancer cells<br />

[104-106].<br />

The β 1 <strong>in</strong>tegr<strong>in</strong> heterodimerizes with one of 12 possible α<br />

subunits <strong>and</strong> mediates cell adhesion, spread<strong>in</strong>g, <strong>and</strong> migration<br />

on multiple lig<strong>and</strong>s <strong>in</strong>clud<strong>in</strong>g collagen, lam<strong>in</strong><strong>in</strong>, <strong>and</strong> fibronect<strong>in</strong><br />

[107-109]. Accord<strong>in</strong>gly, this <strong>in</strong>tegr<strong>in</strong> is ideally<br />

suited to <strong>in</strong>fluence tumor cell behavior <strong>in</strong> diverse extracellular<br />

matrix milieus. As evidence of the central role of β 1 <strong>in</strong>tegr<strong>in</strong><br />

<strong>in</strong> the colon adenocarc<strong>in</strong>oma phenotype, block<strong>in</strong>g<br />

antibodies aga<strong>in</strong>st β 1 <strong>in</strong>tegr<strong>in</strong>s were shown to reduce metastasis<br />

of human colon carc<strong>in</strong>oma cells <strong>in</strong> an <strong>in</strong> vivo nude<br />

mouse model [110]. The elevated α2,6-sialylation of β 1 <strong>in</strong>tegr<strong>in</strong>s<br />

has been observed <strong>in</strong> colon adenocarc<strong>in</strong>oma tissues,<br />

which likely alters <strong>in</strong>teractions of colon tumor cells with their<br />

local matrix environment [111]. As verification of the role of<br />

sialylation <strong>in</strong> β 1 <strong>in</strong>tegr<strong>in</strong> function, Seales et al. found that<br />

forced ST6Gal-I expression <strong>in</strong> SW48 cells led to <strong>in</strong>creased β 1<br />

<strong>in</strong>tegr<strong>in</strong>-mediated attachment <strong>and</strong> migration on collagen I<br />

<strong>and</strong> <strong>in</strong>creased coupl<strong>in</strong>g of the β 1 subunit to the cytoskeletalassociated<br />

prote<strong>in</strong> tal<strong>in</strong> [111]. In addition to directly modulat<strong>in</strong>g<br />

β 1 <strong>in</strong>tegr<strong>in</strong>-lig<strong>and</strong> <strong>in</strong>teractions, ST6Gal-I-mediated sialylation<br />

could <strong>in</strong>fluence other, more <strong>in</strong>direct mechanisms of<br />

<strong>in</strong>tegr<strong>in</strong> activation. For example, up-regulated α2,6sialylation<br />

might alter the lateral association of β 1-conta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>tegr<strong>in</strong>s with other membrane-associated prote<strong>in</strong>s, such as<br />

tetraspan<strong>in</strong>s [112] <strong>and</strong> urok<strong>in</strong>ase-type plasm<strong>in</strong>ogen activator<br />

receptor [113], to coord<strong>in</strong>ately regulate <strong>in</strong>tegr<strong>in</strong>-dependent<br />

processes. In particular, the <strong>in</strong>teraction of α 3β 1 <strong>and</strong> α 5β 1 heterodimers<br />

with tetraspan<strong>in</strong> CD 82 seems to be dependent on<br />

the glycosylation state of both the respective <strong>in</strong>tegr<strong>in</strong> <strong>and</strong> CD<br />

82 [114]. In addition to ST6Gal-I, ST3Gal-IV might be also<br />

important for tumor cell adhesion <strong>and</strong> migration. For example,<br />

Soyasapon<strong>in</strong> I was able to <strong>in</strong>hibit cellular ST3Gal-IV activity,<br />

result<strong>in</strong>g <strong>in</strong> significantly decreased expression of cell<br />

surface α2,3-sialic acids on MCF-7 breast cancer cells <strong>and</strong><br />

thus significantly <strong>in</strong>creased adhesion of MCF-7 cells onto<br />

the extracellular matrix [115]. Likewise, Soyasapon<strong>in</strong> I significantly<br />

impaired metastatic ability of MDA-MB-231 breast<br />

cancer cells [115].<br />

The antigenicity of one muc<strong>in</strong> glycoprote<strong>in</strong>, episial<strong>in</strong><br />

(MUC1), is altered <strong>in</strong> many k<strong>in</strong>ds of cancers [116-118]. The<br />

changes <strong>in</strong> expression level <strong>and</strong> post-translational modification<br />

of MUC1, especially glycosylation <strong>and</strong>/or sialylation,<br />

have been found to affect the behavior of cancer cells, particularly<br />

<strong>in</strong> relation to <strong>in</strong>teractions with other cells <strong>and</strong> with<br />

the extracellular matrix [119]. In the normal gl<strong>and</strong>ular epithelial<br />

cell, MUC1 expression is limited to the apical surface<br />

border<strong>in</strong>g a lumen. In cancer cells however, which have lost<br />

polarity, the MUC1 is expressed all over the surface. Because<br />

of its rod-like structure, the molecule extends more than<br />

100-200 nm above the surface, which is 5-10-fold the length<br />

of most membrane molecules. By virtue of the high abundance<br />

of sialic acid, MUC1 exhibits negatively charged <strong>and</strong><br />

cells express<strong>in</strong>g high levels of MUC1 may repel each other.<br />

Such repulsive effects have been demonstrated by show<strong>in</strong>g<br />

that MUC1 transfectants show reduced aggregation as compared<br />

to the non-express<strong>in</strong>g parental cells [119] <strong>and</strong> <strong>in</strong>teractions<br />

with the extracellular matrix are also <strong>in</strong>hibited [120].<br />

With E-cadher<strong>in</strong>-mediated cell <strong>in</strong>teractions, MUC1 has been<br />

reported to be the <strong>in</strong>hibitory molecule for cell adhesion [121].<br />

In contrast, MUC1 could enhance adhesion by <strong>in</strong>teract<strong>in</strong>g<br />

with β-caten<strong>in</strong> [122]. In consider<strong>in</strong>g the effects of MUC1 on<br />

cell-cell <strong>in</strong>teractions, it is clear that without specific <strong>in</strong>teractions,<br />

for example with a lect<strong>in</strong> molecule, the long highly<br />

charged molecule can easily result <strong>in</strong> repulsion between<br />

cells. This <strong>in</strong>hibitory effect on cell <strong>in</strong>teractions appears to<br />

depend on the large size <strong>and</strong> the negative charge of the<br />

molecule [120,121]. However, where a specific <strong>in</strong>teraction is<br />

possible, for example a particular carbohydrate epitope<br />

b<strong>in</strong>d<strong>in</strong>g to a lect<strong>in</strong>, then cell <strong>in</strong>teractions may be enhanced.<br />

Therefore, MUC1 has been reported to be a lig<strong>and</strong> for ICAM1<br />

expressed by endothelial cells [123] <strong>and</strong> to enhance antigen<br />

presentation to T-cells, possibly operat<strong>in</strong>g through <strong>in</strong>teraction<br />

with lect<strong>in</strong> [124]. Furthermore, MUC1 has been shown to<br />

be a lig<strong>and</strong> for sialoadhes<strong>in</strong>, a macrophage restricted adhesion<br />

molecule, which specifically b<strong>in</strong>ds Neu5Acα2→3Gal <strong>and</strong><br />

so may be <strong>in</strong>volved <strong>in</strong> recruit<strong>in</strong>g macrophages <strong>in</strong>to the tumour<br />

site [125]. When the glycosylation pattern of the muc<strong>in</strong><br />

is changed <strong>in</strong> carc<strong>in</strong>omas, result<strong>in</strong>g <strong>in</strong> the production of<br />

different glycoforms, such carbohydrate-dependent <strong>in</strong>teractions<br />

will be affected. The O-glycans on cancer muc<strong>in</strong>s vary<br />

with cancer types, so that while select<strong>in</strong> lig<strong>and</strong>s may appear<br />

on MUC1 produced by colon carc<strong>in</strong>oma cells but may not be<br />

present <strong>in</strong> breast cancer cells. How the MUC1 on cancer cell<br />

surface may <strong>in</strong>fluence metastatic progression is not clear,<br />

although <strong>in</strong> MUC1-null mice, mammary tumour progression<br />

has been reported to be delayed [126]. In null mutant mice<br />

of β1,6-N-acetylglucosam<strong>in</strong>yltransferase V, a rate-limit<strong>in</strong>g<br />

enzyme <strong>in</strong> the N-glycan pathway, tumor growth <strong>and</strong> metastasis<br />

are remarkably suppressed [127].<br />

Conclusion<br />

<strong>Altered</strong> sialylation is very common <strong>and</strong> important <strong>in</strong> cancers,<br />

<strong>in</strong>clud<strong>in</strong>g cancer transformation <strong>and</strong> cancer metastasis.<br />

More underst<strong>and</strong><strong>in</strong>gs of the role <strong>in</strong> glycosylation, especially<br />

sialylation, for cancers will offer a new vision <strong>in</strong> manag<strong>in</strong>g<br />

cancers <strong>in</strong> the near future.<br />

Acknowledgment<br />

This work was supported by grants from the National<br />

Science Council (NSC-93-2314-B-075-047 <strong>and</strong> NSC-94-2314-<br />

B-075-013) <strong>and</strong> Taipei Veterans General Hospital (94VGH-<br />

195).<br />

References<br />

1. Halliday AJ, Franks AH, Ramsdale TE, Mart<strong>in</strong> R, Palant E. A<br />

rapid semi-automated method for detection of Galβ1-4GlcNAc<br />

α2,6 sialyltransferase (EC2.4.99.1) activity us<strong>in</strong>g the lect<strong>in</strong> Sambucus<br />

nigra agglut<strong>in</strong><strong>in</strong>. Glycobiology 11: 557-564, 2001.<br />

2. Apweiler R, Hermjakob H, Sharon N. On the frequency of prote<strong>in</strong><br />

glycosylation, as deduced from analysis of the SWISS-PROT database.<br />

Biochim Biophys Acta 1473: 4-8, 1999.<br />

3. Marchal I, Golfier G, Dugas O, Majed M. Bio<strong>in</strong>formatics <strong>in</strong> glycobiology.<br />

Biochimie 85: 75-81, 2003.<br />

78 Pr<strong>in</strong>t ISSN 1816-0735; Onl<strong>in</strong>e ISSN 1817-4256


4. Petrescu AJ, Milac AL, Petrescu SM, Dwek RA, Wormald MR.<br />

Statistical analysis of the prote<strong>in</strong> environment of Nglycosylation<br />

sites: implications for occupancy, structure, <strong>and</strong><br />

fold<strong>in</strong>g. Glycobiology 14: 103-114, 2004<br />

5. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE. O-<br />

GLYCBASE version 4.0: a revised database of O-glycosylated<br />

prote<strong>in</strong>s. Nucleic <strong>Acids</strong> Res 27: 370-372, 1999.<br />

6. Christlet THT, Veluraja K. Database analysis of O-glycosylation<br />

sites <strong>in</strong> prote<strong>in</strong>s. Biophys J 80: 952-960, 2001.<br />

7. La<strong>in</strong>e RA. A calculation of all possible oligosaccharide isomers<br />

both branched <strong>and</strong> l<strong>in</strong>ear yields 1.05 x 10 12 structures for a reduc<strong>in</strong>g<br />

hexasaccharide: the isomer barrier to development of<br />

s<strong>in</strong>gle-method saccharide sequenc<strong>in</strong>g or synthesis systems.<br />

Glycobiology 4: 759-767, 1994.<br />

8. Rudd PM, Dwek RA. Rapid, sensitive sequenc<strong>in</strong>g of oligosaccharides<br />

from glycoprote<strong>in</strong>s. Curr Op<strong>in</strong> Biotechnol 8: 488-497,<br />

1997.<br />

9. Duus JO, Gotfredsen CH, Bock K. Carbohydrate structural determ<strong>in</strong>ation<br />

by NMR spectroscopy: modern methods <strong>and</strong> limitations.<br />

Chem Rev 100: 4589-4614, 2000.<br />

10. Imberty A, Perez S. Structure, conformation <strong>and</strong> dynamics of<br />

bioactive oligosaccharides: theroretical approaches <strong>and</strong> experimental<br />

validations. Chem Rev 100: 4567-4588, 2000.<br />

11. Cooper CA, Harrison MJ, Wilk<strong>in</strong>s MR, Packer NH. GlycoSuiteDB:<br />

a new curated relational database of glycoprote<strong>in</strong> glycan structures<br />

<strong>and</strong> their biological sources. Nucleic <strong>Acids</strong> Res 29: 332-<br />

335, 2001.<br />

12. Wang PH. <strong>Altered</strong> sialylation <strong>and</strong> sialyltransferase expression <strong>in</strong><br />

gynecologic cancers. Taiwanese J Obstet Gynecol 43: 53-63,<br />

2004.<br />

13. Varki A. <strong>Sialic</strong> acids as lig<strong>and</strong>s <strong>in</strong> recognition phenomena.<br />

FASEB J 11: 248-255, 1997.<br />

14. Petretti T, Kemmner W, Schulze B, Schlag PM. <strong>Altered</strong> mRNA<br />

expression of glycosyltransferase <strong>in</strong> human colorectal carc<strong>in</strong>omas<br />

<strong>and</strong> liver metastases. Gut 46: 359-366, 2000.<br />

15. Lowe JB. Carbohydrate recognition <strong>in</strong> cell-cell <strong>in</strong>teraction. In:<br />

Fukuda M, H<strong>in</strong>dsgaul O, ed. Molecular Glycobiology. Oxford:<br />

Oxford University Press 1994: 163-194.<br />

16. Gabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code:<br />

functional lect<strong>in</strong>omics. Biochim Biophys Acta 1572: 165-177,<br />

2002.<br />

17. Schauer R Achievement <strong>and</strong> challenges of sialic acid research.<br />

Glycoconj J 17: 485-499, 2000.<br />

18. Thomas P. Cell surface sialic acid as a mediator of metastatic<br />

potential <strong>in</strong> colorectal cancer. <strong>Cancer</strong> J 9: 1-10, 1996.<br />

19. Schauer R. <strong>Sialic</strong> acids <strong>and</strong> their role as biological masks.<br />

Trends Biochem Sci 10: 357-360, 1985.<br />

20. Kim YJ, Kim KS, Kim SH, Kim CH, Ko JH, Choe IS, Tsuji S, Lee<br />

YC. Molecular clon<strong>in</strong>g <strong>and</strong> expression of human<br />

Galβ1,3GalNAcα2,3-sialyltransferase (hST3Gal II). Biochim Biophys<br />

Res Commun 228: 324-327, 1996.<br />

21. Lee KY, Kim HG, Hwang MR, Chae JI, Yang JM, Lee YC, Choo<br />

YK, Lee YI, Lee SS, Do SI. The hexapeptide <strong>in</strong>hibitor of<br />

Galβ1,3GalNAc-specific α2,3-sialyltransferase as a generic <strong>in</strong>hibitor<br />

of sialyltransferases. J Biol Chem 277: 49341-49351, 2002.<br />

22. Fukuda M. Possible roles of tumor-associated carbohydrate<br />

antigens. <strong>Cancer</strong> Res 56: 2237-2244, 1996.<br />

23. Hakomori S. Tumor malignancy def<strong>in</strong>ed by aberrant glycosylation<br />

<strong>and</strong> sph<strong>in</strong>go(glyco)lipid metabolism. <strong>Cancer</strong> Res 56: 5309-<br />

5318, 1996.<br />

24. Dorudi S, K<strong>in</strong>rade E, Marshall NC, Feak<strong>in</strong>s R, Williams NS,<br />

Bust<strong>in</strong> SA. Genetic detection of lymph node micrometastases <strong>in</strong><br />

patients with colorectal cancer. Br J Surg 85: 98-100, 1998.<br />

25. Aubert M, Panicot L, Crotte C, Gibier P, Lombardo D, Sadoulet<br />

MO, Mas E. Restoration of α (1,2) fucosyltransferase activity decreases<br />

adhesive <strong>and</strong> metastatic properties of human pancreatic<br />

cancer cells. <strong>Cancer</strong> Res 60: 1449-1456, 2000.<br />

26. Zhu Y, Srivatana U, Ullah A, Gagneja H, Berenson CS, Lance P.<br />

Suppression of a sialyltransferase by antisense DNA reduces<br />

<strong>in</strong>vasiveness of human colon cancer cells <strong>in</strong> vitro. Biochim Biophys<br />

Acta 1536: 148-160, 2001.<br />

27. Yamamoto H, Oviedo A, Sweeley C, Saito T, Moskal JR. α2,6sialylation<br />

of cell-surface N-glycans <strong>in</strong>hibits glioma formation <strong>in</strong><br />

vivo. <strong>Cancer</strong> Res 61: 6822-6829, 2001.<br />

28. Schneider F, Kemmner W, Haensch W, Franke G, Gretschel S,<br />

Karsten U, Schlag PM. Overexpression of sialyltransferase CMPsialic<br />

acid: Galβ1,3GalNAc-Rα6-sialyltransferase is related to<br />

poor patient survival <strong>in</strong> human colorectal carc<strong>in</strong>omas. <strong>Cancer</strong><br />

Res 61: 4605-4611, 2001.<br />

29. Wang PH, Li YF, Juang CM, Lee YR, Chao HT, Tsai YC, Yuan CC.<br />

<strong>Altered</strong> mRNA expression of sialyltransferase <strong>in</strong> squamous cell<br />

carc<strong>in</strong>omas of the cervix. Gynecol Oncol 83: 121-127, 2001.<br />

<strong>Sialic</strong> <strong>Acids</strong> <strong>and</strong> <strong>Sialyltransferases</strong> <strong>in</strong> <strong>Cancer</strong><br />

30. Wu CY, Hsu CC, Chen ST, Tsai YC. Soyasapon<strong>in</strong> I, a potent <strong>and</strong><br />

specific sialyltransferase <strong>in</strong>hibitor. Biochem Biophy Res Commun<br />

284: 466-469, 2001.<br />

31. Recchi MA, Hebbar M, Hornez L, Hardu<strong>in</strong>-Lepers A, Peyrat JP,<br />

Delannoy P. Multiplex reverse transcription polymerase cha<strong>in</strong><br />

reaction assessment of sialyltransferase expression <strong>in</strong> human<br />

breast cancer. <strong>Cancer</strong> Res 58: 4066-4070, 1998.<br />

32. Recchi MA, Hardu<strong>in</strong>-Lepers A, Boilly-Marer Y, Verbert A, Delannoy<br />

P. Multiplex RT-PCR method for the analysis of the expression<br />

of human sialyltransferase: application to breast cancer<br />

cells. Glycoconj J 15: 19-27, 1998.<br />

33. Brockhausen I, Yang J, Lehotay M, Ogata S, Itzkowitz S. Pathways<br />

of muc<strong>in</strong> O-glycosylation <strong>in</strong> normal <strong>and</strong> malignant rat<br />

colonic epithelial cells reveal a mechanism for cancerassociated<br />

sialyl-Tn antigen expression. Biol Chem 382: 219-232,<br />

2001.<br />

34. Kannagi R. Carbohydrate-mediated cell adhesion <strong>in</strong>volved <strong>in</strong><br />

hematogenous metastasis of cancer. Glycoconj J 14: 577-584,<br />

1997.<br />

35. Hardu<strong>in</strong>-Lepers A, Recchi MA, Delannoy P. 1994, the year of<br />

sialyltransferases. Glycobiology 5: 741-758, 1995.<br />

36. Tsuji S. Molecular clon<strong>in</strong>g <strong>and</strong> functional analysis of sialyltransferases.<br />

J Biochem 120: 1-13, 1996.<br />

37. Takashima S, Tachida Y, Nakagawa T, Hamamoto T, Tsuji S.<br />

Quantitative analysis of expression of mouse sialyltransferase<br />

gene by competitive PCR. Biochem Biophys Res Commun 260:<br />

23-27, 1999.<br />

38. Hardu<strong>in</strong>-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal<br />

sialyltransferases <strong>and</strong> sialyltransferase-related genes: a phylogenetic<br />

approach. Glycobiology 15: 805-817, 2005.<br />

39. Patel RY, Balaji PV. Identification of L<strong>in</strong>kage-Specific Sequence<br />

Motifs <strong>in</strong> <strong>Sialyltransferases</strong>. Glycobiology 2005 Oct 5: Epub<br />

ahead of pr<strong>in</strong>t.<br />

40. Jeanneau C, Chazalet V, Auge C, Soumpasis DM, Hardu<strong>in</strong>-<br />

Lepers A, Delannoy P, Imberty A, Breton C. Structure-function<br />

analysis of the human sialyltransferase ST3Gal I: role of Nglycosylation<br />

<strong>and</strong> a novel conserved sialylmotif. J Biol Chem<br />

279: 13461-13468, 2004.<br />

41. Hardu<strong>in</strong>-Lepers A, Vallejo-Ruiz V, Krzew<strong>in</strong>ski-Recchi MA,<br />

Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase<br />

family. Biochimie 83: 727-737, 2001.<br />

42. Datta AK, Paulson JC. The sialyltransferase ‘sialylmotif’ participates<br />

<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g the donor substrate CMP-NeuAc. J Biol Chem<br />

270: 1497-1500, 1995.<br />

43. Taniguchi A, Hioki M, Matsumoto K. Transcriptional regulation<br />

of human Galβ1,3GalNAc/Galβ1,4Glcα2,3-sialyltransferase<br />

(hST4Gal IV) gene <strong>in</strong> testis <strong>and</strong> ovary cell l<strong>in</strong>e. Biochem Biophys<br />

Res Commun 301: 764-768, 2003.<br />

44. Kitagawa H, Paulson JC. Differential expression of five sialyltransferase<br />

genes <strong>in</strong> human tissues. J Biol Chem 269: 17872-<br />

17878, 1994.<br />

45. Paulson JC, Weiste<strong>in</strong> J, Schauer A. Tissue-specific expression<br />

of sialyltransferases. J Biol Chem 264: 10931-10934, 1989.<br />

46. Aasheim HC, Aas-Eng DA, Deggerdal A, Blomhoff HK, Funderud<br />

S, Smel<strong>and</strong> EB. Cell-specific expression of human β-galactoside<br />

α-2,6-sialyltransferase transcripts differ<strong>in</strong>g <strong>in</strong> the 5’-untranslated<br />

region. Eur J Biochem 213: 467-475, 1993.<br />

47. Lo NW, Lau JT. Transcription of the β-galactoside α2,6sialyltransferase<br />

gene (SIAT1) <strong>in</strong> B-lymphocytes: cell typespecific<br />

expression correlates with presence of the divergent 5’untranslated<br />

sequence. Glycobiology 9: 907-914, 1999.<br />

48. Yamada N, Chung YS, Takatsuka S, Arimota Y, Sawada T, Dohi T,<br />

Sowa M. Increased sialyl Lewis a expression <strong>and</strong> fucosyltransferase<br />

activity with acquisition of a high metastatic capacity <strong>in</strong> a<br />

colon cancer cell l<strong>in</strong>e. Br J <strong>Cancer</strong> 76: 582-587, 1997.<br />

49. Aas-Eng DA, Asheim HC, Deggerdal A, Smel<strong>and</strong> E, Funderud S.<br />

Characterization of a promoter region support<strong>in</strong>g transcription<br />

of a novel human β-galactoside α-2,6-sialyltransferase transcript<br />

<strong>in</strong> HepG2 cells. Biochim Biophys Acta 1261: 166-169, 1995.<br />

50. Stamenkovic I, Asheim HC, Deggerdal A, Blomhoff HK, Smel<strong>and</strong><br />

EB, Funderud S. The B cell antigen CD75 is a cell surface sialyltransferase.<br />

J Exp Med 172: 641-643, 1990.<br />

51. Wang X, O’Hanlon TP, Young RF, Lau JT. Rat β-galactoside<br />

α2,6-sialyltransferase genomic organization: alternate promoters<br />

direct the synthesis of liver <strong>and</strong> kidney transcripts. Glycobiology<br />

1: 25-31, 1990.<br />

52. Grundmann U, Nerlich C, Re<strong>in</strong> T, Zettlmeissl G. Complete cDNA<br />

sequence encod<strong>in</strong>g human β-galactoside α2,6-sialyltransferase.<br />

Nucl <strong>Acids</strong> Res 18: 667-668, 1990.<br />

53. Wen DX, Svensson EC, Paulson JC. Tissue-specific alternative<br />

splic<strong>in</strong>g of the β-galactoside α2,6-sialyltransferase gene. J Biol<br />

Chem 267: 2512-2518, 1992.<br />

54. Taniguchi A, Hasegawa Y, Higai K, Matsumoto K. Transcriptional<br />

regulation of human β-galactoside α2,6-sialyltransferase<br />

© 2005 MedUnion Press 79


Wang J. <strong>Cancer</strong> Mol. 1(2): 73-81, 2005<br />

(hST6Gal I) gene dur<strong>in</strong>g differentiation of the HL-60 cell l<strong>in</strong>e.<br />

Glycobiology 10: 623-628, 2000.<br />

55. Dall’Olio F. The sialyl-α2,6-lactosam<strong>in</strong>yl-structure: biosynthesis<br />

<strong>and</strong> functional role. Glycoconj J 17: 669-676, 2000.<br />

56. Wang X, Vert<strong>in</strong>o A, Eddy RL, Byers MG, Jani-Sait SN, Shows TB,<br />

Lau JT. Chromosome mapp<strong>in</strong>g <strong>and</strong> organization of the human βgalactoside<br />

α2,6-sialyltransferase gene. Differential <strong>and</strong> celltype<br />

specific usage of upstream exon sequences <strong>in</strong> Blymphoblastoid<br />

cells. J Biol Chem 268: 4355-4361, 1993.<br />

57. Dall’Olio FD, Chiricolo M, Lau JT. Differential expression of the<br />

hepatic transcript of β-galactoside α2,6 sialyltransferase <strong>in</strong> human<br />

colon cancer cell l<strong>in</strong>es. Int J <strong>Cancer</strong> 81: 243–247, 1999.<br />

58. Le Marer N, Laudet V, Svensson EC, Cazlaris H, Van Hille B,<br />

Lagrou C, Stehel<strong>in</strong> D, Montreuil J, Verbert A, Delannoy P. The c-<br />

Ha-ras oncogene <strong>in</strong>duces <strong>in</strong>creased expression of β-galactoside<br />

α-2,6-sialyltransferase <strong>in</strong> rat fibroblast (FR3T3) cells. Glycobiology<br />

2: 49-56, 1992.<br />

59. Le Marer N, Stéhel<strong>in</strong> D. High α2,6-sialylation of Nacetyllactosam<strong>in</strong>e<br />

sequences <strong>in</strong> ras-transformed rat fibroblasts<br />

correlates with high <strong>in</strong>vasive potential. Glycobiology 5: 219-226,<br />

1995.<br />

60. Seales EC, Jurado GA, S<strong>in</strong>ghal A, Bellis SL. Ras oncogene directs<br />

expression of a differentially sialylated, functionally altered<br />

β1 <strong>in</strong>tegr<strong>in</strong>. Oncogene 22: 7137-7145, 2003.<br />

61. Xu L, Kurusu Y, Takizawa K, Tanaka J, Matsumoto K, Taniguchi<br />

A. Transcriptional regulation of human β-galactoside α2,6sialyltransferase<br />

(hST6Gal I) gene <strong>in</strong> colon adenocarc<strong>in</strong>oma cell<br />

l<strong>in</strong>e. Biochem Biophys Res Commun 307: 1070–1074, 2003.<br />

62. Kitagawa H, Paulson JC. Clon<strong>in</strong>g of a novel α2,3sialyltransferase<br />

that sialylates glycoprote<strong>in</strong> <strong>and</strong> glycolipid carbohydrate<br />

groups. J Biol Chem 269: 1394–1401, 1994.<br />

63. Kitagawa H, Mattei MG, Paulson JC. Genomic organization <strong>and</strong><br />

chromosomal mapp<strong>in</strong>g of the Gal β1,3GalNAc/Gal β1,4GlcNAc<br />

α2,3-sialyltransferase. J Biol Chem 271: 931–938, 1996.<br />

64. Taniguchi A, Matsumoto K. Down-regulation of human sialyltransferase<br />

gene expression dur<strong>in</strong>g <strong>in</strong> vitro human kerat<strong>in</strong>ocyte<br />

cell l<strong>in</strong>e differentiation. Biochem Biophys Res Commun 243:<br />

177-183, 1998.<br />

65. Taniguchi A, Matsumoto K. Epithelial-cell-specific transcriptional<br />

regulation of human Galβ1,3GalNAc/Galβ1,4GlcNAc α2,3sialyltransferase<br />

(hST3Gal IV) gene. Biochem Biophys Res<br />

Commun 257: 516-522, 1999.<br />

66. Chen CL, Lee WL, Tsai YC, Yuan CC, Ng HT, Wang PH. Sialyltransferase<br />

family members <strong>and</strong> cervix squamous cell carc<strong>in</strong>oma.<br />

Eur J Gynaecol Oncol 23: 514-518, 2002.<br />

67. Eckert RL, Crish JF, Banks EB, Welter JF. The epidermis: genes<br />

on – genes off. J Invest Dermatol 109: 501-509, 1997.<br />

68. Leask A, Byrne C, Fuchs E. Transcription factor AP2 <strong>and</strong> its role<br />

<strong>in</strong> epidermal-specific gene expression. Proc Natl Acad Sci USA<br />

88: 7948-7952, 1991.<br />

69. Grahn A, Barkhordar GS, Larson G. Clon<strong>in</strong>g <strong>and</strong> sequenc<strong>in</strong>g of<br />

n<strong>in</strong>eteen transcript isoforms of the human α2,3-sialyltransferase<br />

gene, ST3Gal III; its genomic organization <strong>and</strong> expression <strong>in</strong><br />

human tissues. Glycoconj J 19: 197-210, 2002.<br />

70. Taniguchi A, Saito K, Kubota T, Matsumoto K. Characterization<br />

of the promoter region of the human Galβ1,3(4)GlcNAc α2,3sialyltransferase<br />

III (hST3Gal III) gene. Biochim Biophys Acta<br />

1626: 92-96, 2003.<br />

71. Te<strong>in</strong>tenier-Lelievre M, Julien S, Juliant S, Guerardel Y, Duonor-<br />

Cerutti M, Delannoy P, Hardu<strong>in</strong>-Lepers A. Molecular clon<strong>in</strong>g <strong>and</strong><br />

expression of a human α2,8-sialyltransferase (hST8Sia VI) responsible<br />

for the synthesis of the DiSia motif on Oglycosylprote<strong>in</strong>s.<br />

Biochem J 392: 665-674, 2005.<br />

72. Hakomori S. <strong>Glycosylation</strong> def<strong>in</strong><strong>in</strong>g cancer malignancy: New<br />

w<strong>in</strong>e <strong>in</strong> an old bottle. Proc Natl Acad Science USA 99: 10231-<br />

10233, 2002.<br />

73. Opat AS, van Vliet C, Gleeson PA. Traffick<strong>in</strong>g <strong>and</strong> localisation of<br />

resident Golgi glycosylation enzymes. Biochimie 83: 763-773,<br />

2001.<br />

74. Inoue M, Fujita M, Nakazawa A, Ogawa H, Tanizawa O. Sialyl-Tn,<br />

sialyl-Lewis Xi, CA 19-9, CA 125, carc<strong>in</strong>oembryonic antigen, <strong>and</strong><br />

tissue polypeptide antigen <strong>in</strong> differentiat<strong>in</strong>g ovarian cancer from<br />

benign tumors. Obstet Gynecol 79: 434-440, 1992.<br />

75. Zhang Y, Zhang XY, Liu A, Qi HL, Chen HL. The roles of term<strong>in</strong>al<br />

sugar residues of surface glycans <strong>in</strong> the metastatic potential of<br />

human hepatocarc<strong>in</strong>oma. J <strong>Cancer</strong> Res Cl<strong>in</strong> Oncol 128: 617-620,<br />

2002.<br />

76. McEver RP, Cumm<strong>in</strong>gs RD. Role of PSGL-1 b<strong>in</strong>d<strong>in</strong>g to select<strong>in</strong>s<br />

<strong>in</strong> leukocyte recruitment. J Cl<strong>in</strong> Invest 100: 485-492, 1997.<br />

77. McEver RP, Moore KL, Cumm<strong>in</strong>gs RD. Leukocyte traffick<strong>in</strong>g<br />

mediated by select<strong>in</strong>-carbohydrate <strong>in</strong>teractions. J Biol Chem<br />

270: 11025-11028, 1995.<br />

78. Kansas GS. Select<strong>in</strong>s <strong>and</strong> their lig<strong>and</strong>s: current concepts <strong>and</strong><br />

controversies. Blood 88: 3259-3287, 1996.<br />

79. Lowe JB, Ward PA. Therapeutic <strong>in</strong>hibition of carbohydrate–prote<strong>in</strong><br />

<strong>in</strong>teractions <strong>in</strong> vivo. J Cl<strong>in</strong> Invest 99: 822-826, 1997.<br />

80. Brockhausen I. Pathways of O-glycan biosynthesis <strong>in</strong> cancer<br />

cells. Biochim Biophys Acta 1473: 67-95, 1999.<br />

81. Dabelsteen E. Cell surface carbohydrates as prognostic markers<br />

<strong>in</strong> human carc<strong>in</strong>omas. J Pathol 179: 358-369, 1996.<br />

82. Kojima N, H<strong>and</strong>a K, Newman W, Hakomori S. Multi-recognition<br />

capability of E-select<strong>in</strong> <strong>in</strong> a dynamic flow system, as evidenced<br />

by differential effects of sialidases <strong>and</strong> anti-carbohydrate antibodies<br />

on select<strong>in</strong>-mediated cell adhesion at low vs. high wall<br />

shear stress: a prelim<strong>in</strong>ary note. Biochem Biophys Res Commun<br />

189: 1686-1694, 1992.<br />

83. Kojima N, Shiota M, Sadahira Y, H<strong>and</strong>a K, Hakomori S. Cell<br />

adhesion <strong>in</strong> a dynamic flow system as compared to a static system.<br />

Glycosph<strong>in</strong>golipid-glycosph<strong>in</strong>golipid <strong>in</strong>teraction <strong>in</strong> the dynamic<br />

system predom<strong>in</strong>ates over lect<strong>in</strong>- or <strong>in</strong>tegr<strong>in</strong>-based<br />

mechanisms <strong>in</strong> adhesion of B16 melanoma cells to nonactivated<br />

endothelial cells. J Biol Chem 267: 17264-17270, 1992.<br />

84. Kojima N, H<strong>and</strong>a K, Newman W, Hakomori S. Inhibition of select<strong>in</strong>-dependent<br />

tumor cell adhesion to endothelial cells <strong>and</strong><br />

platelets by block<strong>in</strong>g O-glycosylation of these cells. Biochem<br />

Biophys Res Commun 182: 1288-1295, 1992.<br />

85. Nakano T, Matsui T, Ota T. Benzyl-α-GalNAc <strong>in</strong>hibits sialylation<br />

of O-glycosidic sugar cha<strong>in</strong>s on CD44 <strong>and</strong> enhances experimental<br />

metastatic capacity <strong>in</strong> B16BL6 melanoma cells. Anticancer<br />

Res 16: 3577-3584, 1996.<br />

86. Yoon WH, Park HD, Lim K, Hwang BD. Effect of O-glycosylated<br />

muc<strong>in</strong> on <strong>in</strong>vasion <strong>and</strong> metastasis of HM7 human colon cancer<br />

cells. Biochem Biophys Res Commun 222: 694-699, 1996.<br />

87. Bresalier RS, Niv Y, Byrd JC, Duh QY, Toribara NW, Rockwell<br />

RW, Dahiya R, Kim YS. Muc<strong>in</strong> production by human colonic carc<strong>in</strong>oma<br />

cells correlates with their metastatic potential <strong>in</strong> animal<br />

models of colon cancer metastasis. J Cl<strong>in</strong> Invest 87: 1037-1045,<br />

1991.<br />

88. Huang J, Byrd JC, Yoon WH, Kim YS. Effect of benzyl-α-GalNAc,<br />

an <strong>in</strong>hibitor of muc<strong>in</strong> glycosylation, on cancer-associated antigens<br />

<strong>in</strong> human colon cancer cells. Oncol Res 4: 507-515, 1992.<br />

89. Byrd JC, Dahiya R, Huang J, Kim YS. Inhibition of muc<strong>in</strong> synthesis<br />

by benzyl-α-GalNAc <strong>in</strong> KATO III gastric cancer <strong>and</strong> Caco-<br />

2 colon cancer cells. Eur J <strong>Cancer</strong> 31A: 1498-1505, 1995.<br />

90. Inoue M, Ogawa H, Nakanishi K, Tanizawa O, Kar<strong>in</strong>o K, Endo J.<br />

Cl<strong>in</strong>ical value of sialyl Tn antigen <strong>in</strong> patients with gynecologic<br />

tumors. Obstet Gynecol 75: 1032-1036, 1990.<br />

91. Ogawa H, Inoue M, Tanizawa O, Miyamoto M, Sakurai M. <strong>Altered</strong><br />

expression of sialyl-Tn, Lewis antigens <strong>and</strong> carc<strong>in</strong>oembryonic<br />

antigen between primary <strong>and</strong> metastatic lesions of uter<strong>in</strong>e cervical<br />

cancers. Histochemistry 97: 311-317, 1992.<br />

92. Julien S, Adriaenssens E, Ottenberg K, Furlan A, Court<strong>and</strong> G,<br />

Edouart AS, Hanisch FG, Delannoy P, Bourhis XL.ST6GalNAc I<br />

expression <strong>in</strong> MDA-MB-231 breast cancer cells greatly modifies<br />

their O-glycosylation pattern <strong>and</strong> enhances their tumourigenicity.<br />

Glycobiology 2005 Sep 6: Epub ahead of pr<strong>in</strong>t.<br />

93. Ikehara Y, Kojima N, Kurosawa N, Kudo T, Kono M, Nishihara S,<br />

Issiki S, Morozumi K, Itzkowitz S, Tsuda T, Nishimura SI, Tsuji S,<br />

Narimatsu H. Clon<strong>in</strong>g <strong>and</strong> expression of a human gene encod<strong>in</strong>g<br />

an N-acetylgalactosam<strong>in</strong>e α2,6-sialyltransferase (ST6GalNAc<br />

I): a c<strong>and</strong>idate for synthesis of cancer-associated sialyl-Tn antigens.<br />

Glycobiology 9: 1213-1224, 1999.<br />

94. Julien S, Lagadec C, Krzew<strong>in</strong>ski-Recchi MA, Court<strong>and</strong> G, Le<br />

Bourhis X, Delannoy P. Stable expression of sialyl-Tn antigen <strong>in</strong><br />

T47-D cells <strong>in</strong>duces a decrease of cell adhesion <strong>and</strong> an <strong>in</strong>crease<br />

of cell migration. Breast <strong>Cancer</strong> Res Treat 90: 77-84 2005.<br />

95. Marcos NT, P<strong>in</strong>ho S, Gr<strong>and</strong>ela C, Cruz A, Samyn-Petit B,<br />

Hardu<strong>in</strong>-Lepers A, Almeida R, Silva F, Morais V, Costa J,<br />

Kihlberg J, Clausen H, Reis CA. Role of the human ST6GalNAc I<br />

<strong>and</strong> ST6GalNAc II <strong>in</strong> the synthesis of the cancer associated sialyl-Tn<br />

antigen. <strong>Cancer</strong> Res 64; 7050-7057, 2004.<br />

96. Matsushita Y, Nakamori S, Seftor EA, Hendrix MJ, Irimura T.<br />

Human colon carc<strong>in</strong>oma cells with <strong>in</strong>creased <strong>in</strong>vasive capacity<br />

obta<strong>in</strong>ed by selection for sialyl-dimeric Le X antigen. Exp Cell<br />

Res 196: 20-25, 1991.<br />

97. Hoff SD, Matsushita Y, Ota DM, Cleary KR, Yamori T, Hakomori<br />

S, Irimura T. Increased expression of sialyl-dimeric Le X antigen<br />

<strong>in</strong> liver metastases of human colorectal carc<strong>in</strong>oma. <strong>Cancer</strong> Res<br />

49: 6883-6888, 1989.<br />

98. Matsushita Y, Hoff SD, Nudelman ED. Metastatic behavior <strong>and</strong><br />

cell surface properties of HT-29 human colon carc<strong>in</strong>oma variant<br />

cells selected for their differential expression of sialyl-dimeric<br />

Le(x)-antigen. Cl<strong>in</strong> Exp Metastasis 9: 283-299, 1991.<br />

99. Yogeeswaran G, Salk PL. Metastatic potential is positively correlated<br />

with cell surface sialylation of cultured mur<strong>in</strong>e tumor cell<br />

l<strong>in</strong>es. Science 212: 1514-1516, 1981.<br />

80 Pr<strong>in</strong>t ISSN 1816-0735; Onl<strong>in</strong>e ISSN 1817-4256


100. Kijima-Suda I, Miyamoto Y, Toyoshima S, Itoh M, Osawa T. Inhibition<br />

of experimental pulmonary metastasis of mouse colon<br />

adenocarc<strong>in</strong>oma 26 subl<strong>in</strong>es by a sialic acid: nucleoside conjugate<br />

hav<strong>in</strong>g sialyltransferase <strong>in</strong>hibit<strong>in</strong>g activity. <strong>Cancer</strong> Res 46:<br />

858-862, 1986.<br />

101. Bresalier RS, Ho SB, Schoeppner HL, Kim YS, Sleisenger MH,<br />

Brodt P, Byrd JC. Enhanced sialylation of muc<strong>in</strong>-associated<br />

carbohydrate structures <strong>in</strong> human colon cancer metastasis.<br />

Gastroenterology 110: 1354-1367, 1996.<br />

102. Schwartz B, Bresalier RS, Kim YS. The role of muc<strong>in</strong> <strong>in</strong> coloncancer<br />

metastasis. Int J <strong>Cancer</strong> 52: 60-65, 1992.<br />

103. Carraway KL, Fregien N, Carraway KL III, Carraway CA. Tumor<br />

sialomuc<strong>in</strong> complexes as tumor antigens <strong>and</strong> modulators of<br />

cellular <strong>in</strong>teractions <strong>and</strong> proliferation. J Cell Sci 103: 299-307,<br />

1992.<br />

104. Dennis JW, Waller CA, Schirrmacher V. Identification of asparag<strong>in</strong>e-l<strong>in</strong>ked<br />

oligosaccharides <strong>in</strong>volved <strong>in</strong> tumor cell adhesion<br />

to lam<strong>in</strong><strong>in</strong> <strong>and</strong> type IV collagen. J Cell Biol 99: 1416-1423, 1984.<br />

105. Dennis JW, Laferte S, Yagel S, Breitman ML. Asparag<strong>in</strong>e-l<strong>in</strong>ked<br />

oligosaccharides associated with metastatic cancer. <strong>Cancer</strong><br />

Cells 1: 87-92, 1989.<br />

106. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS.<br />

Beta 1-6 branch<strong>in</strong>g of Asn-l<strong>in</strong>ked oligosaccharides is directly<br />

associated with metastasis. Science 236: 582-585, 1987.<br />

107. Hynes RO. Integr<strong>in</strong>s: bidirectional, allosteric signal<strong>in</strong>g mach<strong>in</strong>es.<br />

Cell 110: 673-687, 2002.<br />

108. Damsky CH, Ilic D. Integr<strong>in</strong> signal<strong>in</strong>g: it's where the action is.<br />

Curr Op<strong>in</strong> Cell Biol 14: 594-602, 2002.<br />

109. Bellis SL. Variant glycosylation: an underappreciated regulatory<br />

mechanism for beta1 <strong>in</strong>tegr<strong>in</strong>s. Biochim Biophys Acta 1663: 52-<br />

60, 2004.<br />

110. Fujita S, Suzuki H, K<strong>in</strong>oshita M, Hirohashi S. Inhibition of cell<br />

attachment, <strong>in</strong>vasion <strong>and</strong> metastasis of human carc<strong>in</strong>oma cells<br />

by anti-<strong>in</strong>tegr<strong>in</strong> β1 subunit antibody. Jpn J <strong>Cancer</strong> Res 83: 1317-<br />

1326, 1992.<br />

111. Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR,<br />

Bellis SL. Hypersialylation of β1 <strong>in</strong>tegr<strong>in</strong>s, observed <strong>in</strong> colon<br />

adenocarc<strong>in</strong>oma, may contribute to cancer progression by upregulat<strong>in</strong>g<br />

cell motility. <strong>Cancer</strong> Res 65: 4645-4652, 2005.<br />

112. Hemler ME. Tetraspan<strong>in</strong> prote<strong>in</strong>s mediate cellular penetration,<br />

<strong>in</strong>vasion, <strong>and</strong> fusion events <strong>and</strong> def<strong>in</strong>e a novel type of membrane<br />

microdoma<strong>in</strong>. Annu Rev Cell Dev Biol 19: 397-422, 2003.<br />

113. Preissner KT, Kanse SM, May AE. Urok<strong>in</strong>ase receptor: a<br />

molecular organizer <strong>in</strong> cellular communication. Curr Op<strong>in</strong> Cell<br />

Biol 12: 621-628, 2000.<br />

114. Ono M, H<strong>and</strong>a K, Withers DA, Hakomori S. <strong>Glycosylation</strong> effect<br />

on membrane doma<strong>in</strong> (GEM) <strong>in</strong>volved <strong>in</strong> cell adhesion <strong>and</strong> motility:<br />

a prelim<strong>in</strong>ary note on functional α3, α5-CD82 glycosylation<br />

<strong>Sialic</strong> <strong>Acids</strong> <strong>and</strong> <strong>Sialyltransferases</strong> <strong>in</strong> <strong>Cancer</strong><br />

complex <strong>in</strong> ldlD 14 cells. Biochem Biophys Res Commun 279:<br />

744-750, 2000.<br />

115. Hsu CC, L<strong>in</strong> TW, Chang WW, Wu CY, Lo WH, Wang PH, Tsai YC.<br />

Soyasapon<strong>in</strong> I modified <strong>in</strong>vasive behavior of cancer by chang<strong>in</strong>g<br />

cell surface sialic acids. Gynecol Oncol 96: 415-422, 2005.<br />

116. Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. MUC1<br />

<strong>and</strong> cancer. Biochim Biophys Acta 1455: 301-313, 1999.<br />

117. Obermair A, Schmid BC, Stimpfl M, Fasch<strong>in</strong>g B, Preyer O,<br />

Leodolter S, Cr<strong>and</strong>on AJ, Zeill<strong>in</strong>ger R. Novel MUC1 splice variants<br />

are expressed <strong>in</strong> cervical carc<strong>in</strong>oma. Gynecol Oncol 83:<br />

343-347, 2001.<br />

118. Obermair A, Schmid BC, Packer LM, Leodolter S, Birner P, Ward<br />

BG, Cr<strong>and</strong>on AJ, McGuck<strong>in</strong> MA, Zeill<strong>in</strong>ger R. Expression of<br />

MUC1 splice variants <strong>in</strong> benign <strong>and</strong> malignant ovarian tumors.<br />

Int J <strong>Cancer</strong> 100: 166-171, 2002.<br />

119. Ligtenberg MJL, Buijs F, Vos HL, Hilkens J. Suppression of<br />

cellular aggregation by high levels of episial<strong>in</strong>. <strong>Cancer</strong> Res 52:<br />

2318-2324, 1992.<br />

120. Wessel<strong>in</strong>g J, Van der Valk SW, Vos HL, Sonnenberg A, Hilkens J.<br />

Episial<strong>in</strong> (MUC1) overexpression <strong>in</strong>hibits <strong>in</strong>tegr<strong>in</strong>-mediated cell<br />

adhesion to extracellular matrix components. J Cell Biol 129:<br />

255-265, 1995.<br />

121. Wessel<strong>in</strong>g J, van der Valk SW, Hilkens J. A mechanism for <strong>in</strong>hibition<br />

of E-cadher<strong>in</strong>-mediated cell–cell adhesion by the membrane-associated<br />

muc<strong>in</strong> episial<strong>in</strong>/MUC1. Mol Biol Cell 7: 565-577,<br />

1996.<br />

122. Yamamoto M, Bharti A, Li Y, Kufe D. Interaction of the<br />

DF3/MUC1 breast carc<strong>in</strong>oma-associated antigen <strong>and</strong> β-caten<strong>in</strong><br />

<strong>in</strong> cell adhesion. J Biol Chem 272: 12492-12494, 1997.<br />

123. Regimbald LH, Pilarski LM, Longenecker BM, Reddish MA,<br />

Zimmermann G, Hugh JC. The breast muc<strong>in</strong> MUC1 as a novel<br />

adhesion lig<strong>and</strong> for endothelial <strong>in</strong>tercellular adhesion molecule<br />

1 <strong>in</strong> breast cancer. <strong>Cancer</strong> Res 56: 4244-4249, 1996.<br />

124. Bohm CM, Mulder MC, Zennadi R, Notter M, Schmitt-Graff A,<br />

F<strong>in</strong>n OJ, Taylor-Papadimitriou J, Ste<strong>in</strong> H, Clausen H, Riecken EO,<br />

Hanski C. Carbohydrate recognition on MUC1-express<strong>in</strong>g targets<br />

enhances cytotoxicity of a T cell subpopulation. Sc<strong>and</strong> J<br />

Immunol 46: 27-34, 1997.<br />

125. Nath P, Hartnell A, Happerfield L, Miles DW, Burchell J, Taylor-<br />

Papadimitriou J, Crocker PR. Macrophage–tumour cell <strong>in</strong>teractions:<br />

identification of MUC1 on breast cancer cells as a potential<br />

counter-receptor for the macrophage-restricted receptor,<br />

sialoadhes<strong>in</strong>. Immunology 98: 213-219, 1999.<br />

126. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary<br />

tumour progression <strong>in</strong> Muc-1 Null mice. J Biol Chem 270: 30093-<br />

30101, 1995.<br />

127. Granovsky M, Fata J, Pawl<strong>in</strong>g J, Muller WJ, Khokha R, Dennis<br />

JW. Suppression of tumor growth <strong>and</strong> metastasis <strong>in</strong> Mgat5deficient<br />

mice. Nat Med 6: 306-312, 2000.<br />

© 2005 MedUnion Press 81

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!