21.03.2013 Views

Advances in encapsulation technologies for the management of ...

Advances in encapsulation technologies for the management of ...

Advances in encapsulation technologies for the management of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

<strong>Advances</strong> <strong>in</strong> <strong>encapsulation</strong> <strong>technologies</strong> <strong>for</strong> <strong>the</strong> <strong>management</strong> <strong>of</strong><br />

mercury-contam<strong>in</strong>ated hazardous wastes <br />

Paul Randall a,∗ , Sandip Chattopadhyay b,1<br />

a National Risk Management Research Laboratory, Land Remediation and Pollution Control Division, U.S. Environmental Protection Agency,<br />

Office <strong>of</strong> Research and Development, 26 W. Mart<strong>in</strong> Lu<strong>the</strong>r K<strong>in</strong>g Drive, C<strong>in</strong>c<strong>in</strong>nati, OH 45268, USA<br />

b Environmental Restoration Department, Battelle Memorial Institute, 505 K<strong>in</strong>g Avenue, Columbus, OH 43201, USA<br />

Received 20 January 2004; received <strong>in</strong> revised <strong>for</strong>m 4 August 2004; accepted 18 August 2004<br />

Available onl<strong>in</strong>e 30 September 2004<br />

Although <strong>in</strong>dustrial and commercial uses <strong>of</strong> mercury have been curtailed <strong>in</strong> recent times, <strong>the</strong>re is a demonstrated need <strong>for</strong> <strong>the</strong> development<br />

<strong>of</strong> reliable hazardous waste <strong>management</strong> techniques because <strong>of</strong> historic operations that have led to significant contam<strong>in</strong>ation and ongo<strong>in</strong>g<br />

hazardous waste generation. This study was per<strong>for</strong>med to evaluate whe<strong>the</strong>r <strong>the</strong> U.S. EPA could propose treatment and disposal alternatives<br />

to <strong>the</strong> current land disposal restriction (LDR) treatment standards <strong>for</strong> mercury. The focus <strong>of</strong> this article is on <strong>the</strong> current state <strong>of</strong> <strong>encapsulation</strong><br />

<strong>technologies</strong> that can be used to immobilize elemental mercury, mercury-contam<strong>in</strong>ated debris, and o<strong>the</strong>r mercury-contam<strong>in</strong>ated<br />

wastes, soils, sediments, or sludges. The range <strong>of</strong> <strong>encapsulation</strong> materials used <strong>in</strong> bench-scale, pilot-scale, and full-scale applications <strong>for</strong><br />

mercury-contam<strong>in</strong>ated wastes are summarized. Several studies have been completed regard<strong>in</strong>g <strong>the</strong> application <strong>of</strong> sulfur polymer stabilization/solidification,<br />

chemically bonded phosphate ceramic <strong>encapsulation</strong>, and polyethylene <strong>encapsulation</strong>. O<strong>the</strong>r materials reported <strong>in</strong> <strong>the</strong> literature<br />

as under development <strong>for</strong> <strong>encapsulation</strong> use <strong>in</strong>clude asphalt, polyester res<strong>in</strong>s, syn<strong>the</strong>tic elastomers, polysiloxane, sol–gels, Dolocrete TM ,<br />

and carbon/cement mixtures. The primary objective <strong>of</strong> <strong>the</strong>se <strong>encapsulation</strong> methods is to physically immobilize <strong>the</strong> wastes to prevent contact<br />

with leach<strong>in</strong>g agents such as water. However, when used <strong>for</strong> mercury-contam<strong>in</strong>ated wastes, several <strong>of</strong> <strong>the</strong>se methods require a pretreatment<br />

or stabilization step to chemically fix mercury <strong>in</strong>to a highly <strong>in</strong>soluble <strong>for</strong>m prior to <strong>encapsulation</strong>. Per<strong>for</strong>mance data is summarized from <strong>the</strong><br />

test<strong>in</strong>g and evaluation <strong>of</strong> various encapsulated, mercury-contam<strong>in</strong>ated wastes. Future technology development and research needs are also<br />

discussed.<br />

Published by Elsevier B.V.<br />

Keywords: Mercury; Encapsulation; Stabilization; Solidification; Hazardous wastes<br />

This paper has not been subjected to <strong>the</strong> Agency’s review and <strong>the</strong>re<strong>for</strong>e<br />

does not necessarily reflect <strong>the</strong> views <strong>of</strong> <strong>the</strong> Agency, and no <strong>of</strong>ficial endorsement<br />

should be <strong>in</strong>ferred. Mention <strong>of</strong> trade names or commercial products<br />

does not constitute endorsement or recommendation <strong>for</strong> use. Though <strong>the</strong> data<br />

cited <strong>in</strong> this paper were collected from published literature, no attempt has<br />

been made to verify <strong>the</strong> quality <strong>of</strong> data collected from <strong>the</strong> various sources.<br />

∗ Correspond<strong>in</strong>g author. Tel.: +1 513 569 7673; fax: +1 513 569 7620.<br />

E-mail addresses: randall.paul@epa.gov (P. Randall), chattopadhyays@battelle.org<br />

(S. Chattopadhyay).<br />

1 Tel.: +1 614 424 3661; fax: +1 614 424 3667.<br />

0304-3894/$ – see front matter. Published by Elsevier B.V.<br />

doi:10.1016/j.jhazmat.2004.08.010<br />

1. Introduction<br />

The development <strong>of</strong> effective treatment options <strong>for</strong><br />

mercury-contam<strong>in</strong>ated wastes is a significant technical and<br />

practical challenge. There is little to no economic benefit<br />

derived from mercury recovery and recycl<strong>in</strong>g. In addition,<br />

effective treatment is <strong>of</strong>ten challeng<strong>in</strong>g due to <strong>the</strong> high toxicity,<br />

volatility, and environmental mobility <strong>of</strong> mercury and<br />

<strong>the</strong> varied nature and composition <strong>of</strong> <strong>in</strong>dustrial waste products.<br />

Pr<strong>in</strong>cipal <strong>in</strong>dustrial sources <strong>of</strong> mercury-contam<strong>in</strong>ated<br />

wastes <strong>in</strong>clude chlor-alkali manufactur<strong>in</strong>g, weapons production,<br />

copper and z<strong>in</strong>c smelt<strong>in</strong>g, gold m<strong>in</strong><strong>in</strong>g, pa<strong>in</strong>t applications,<br />

and o<strong>the</strong>r processes [1]. Although <strong>in</strong>dustrial and com-


212 P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

mercial uses <strong>of</strong> mercury have been curtailed <strong>in</strong> recent times,<br />

<strong>the</strong>re is a demonstrated need <strong>for</strong> <strong>the</strong> development <strong>of</strong> reliable<br />

hazardous waste <strong>management</strong> techniques because <strong>of</strong> historic<br />

operations that have led to significant contam<strong>in</strong>ation and ongo<strong>in</strong>g<br />

hazardous waste generation. This article focuses on <strong>the</strong><br />

current state <strong>of</strong> <strong>encapsulation</strong> materials be<strong>in</strong>g used to immobilize<br />

elemental mercury, mercury-contam<strong>in</strong>ated debris, and<br />

mercury-contam<strong>in</strong>ated wastes, soils, sediments, and sludges.<br />

A technology overview is provided, along with a summary<br />

<strong>of</strong> <strong>the</strong> regulatory drivers and test<strong>in</strong>g and evaluation criteria<br />

<strong>in</strong>volved with implementation <strong>of</strong> <strong>the</strong>se treatment approaches.<br />

The various <strong>encapsulation</strong> materials under <strong>in</strong>vestigation are<br />

discussed and future technology development and research<br />

needs are provided.<br />

2. Technology overview<br />

As an <strong>in</strong>organic element, mercury cannot be destroyed,<br />

but it can be converted <strong>in</strong>to less soluble or leachable <strong>for</strong>ms<br />

to <strong>in</strong>hibit migration <strong>in</strong>to <strong>the</strong> environment after disposal. Encapsulation<br />

<strong>technologies</strong> are based primarily on solidification<br />

processes that act to “substantially reduce surface exposure<br />

to potential leach<strong>in</strong>g media” (40 Code <strong>of</strong> Federal Register<br />

[CFR] 268.42). Encapsulation <strong>technologies</strong> can also <strong>in</strong>volve<br />

a comb<strong>in</strong>ation <strong>of</strong> physical entrapment through solidification<br />

and chemical stabilization through precipitation, adsorption,<br />

or o<strong>the</strong>r <strong>in</strong>teractions. This comb<strong>in</strong>ed treatment approach is<br />

sometimes referred to as stabilization/solidification.<br />

Hazardous waste materials can be encapsulated <strong>in</strong> two<br />

ways: micro<strong>encapsulation</strong> or macro<strong>encapsulation</strong>. Micro<strong>encapsulation</strong><br />

<strong>in</strong>volves mix<strong>in</strong>g <strong>the</strong> waste toge<strong>the</strong>r with <strong>the</strong> encas<strong>in</strong>g<br />

material be<strong>for</strong>e solidification occurs. Macro<strong>encapsulation</strong><br />

<strong>in</strong>volves pour<strong>in</strong>g <strong>the</strong> encas<strong>in</strong>g material over and around<br />

a larger mass <strong>of</strong> waste, <strong>the</strong>reby enclos<strong>in</strong>g it <strong>in</strong> a solidified<br />

block. Sometimes <strong>the</strong>se processes are comb<strong>in</strong>ed. For example,<br />

S<strong>in</strong>gh et al. (1998) demonstrated <strong>the</strong> micro<strong>encapsulation</strong><br />

<strong>of</strong> mercury-contam<strong>in</strong>ated crushed light bulbs <strong>in</strong> which <strong>the</strong><br />

glass was crushed and mixed with <strong>the</strong> encas<strong>in</strong>g material prior<br />

to solidification [2]. Mattus (1998) reported <strong>the</strong> macro<strong>encapsulation</strong><br />

<strong>of</strong> mercury-contam<strong>in</strong>ated lead pipes by pour<strong>in</strong>g <strong>the</strong><br />

encas<strong>in</strong>g material over and around <strong>the</strong> lead pipes [3].<br />

There are a wide variety <strong>of</strong> materials currently be<strong>in</strong>g evaluated<br />

<strong>in</strong> <strong>the</strong> scientific community and <strong>in</strong> <strong>in</strong>dustry <strong>for</strong> <strong>the</strong> <strong>encapsulation</strong><br />

<strong>of</strong> hazardous wastes. This review focuses on <strong>the</strong><br />

per<strong>for</strong>mance data related to <strong>the</strong> <strong>encapsulation</strong> <strong>of</strong> mercurycontam<strong>in</strong>ated<br />

wastes, which has proven to be especially challeng<strong>in</strong>g<br />

given mercury’s chemical and physical properties and<br />

<strong>the</strong> varied nature <strong>of</strong> <strong>in</strong>dustrial wastes. Conventional stabilization/solidification<br />

methods typically <strong>in</strong>clude <strong>the</strong> fixation<br />

<strong>of</strong> metals us<strong>in</strong>g Portland cement and fly ash. This produces<br />

an impermeable, solid waste <strong>for</strong>m at a high pH (typically<br />


4. Test<strong>in</strong>g and evaluation background<br />

P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223 213<br />

Per<strong>for</strong>mance data <strong>for</strong> encapsulated wastes typically <strong>in</strong>clude<br />

both physical data (e.g., strength, density, and permeability)<br />

and/or chemical data (e.g., leachability). For<br />

macroencapsulated waste, <strong>the</strong> most important evaluation criteria<br />

are <strong>the</strong> compressive strength, <strong>the</strong> waste <strong>for</strong>m density,<br />

<strong>the</strong> presence <strong>of</strong> void spaces, and <strong>the</strong> barrier thickness. The<br />

primary focus dur<strong>in</strong>g macro<strong>encapsulation</strong> is to create an <strong>in</strong>ert<br />

surface coat<strong>in</strong>g or jacket around <strong>the</strong> waste that substantially<br />

reduces <strong>the</strong> potential <strong>for</strong> exposure to leach<strong>in</strong>g media [3].For<br />

microencapsulated waste, <strong>the</strong> toxicity characteristic leach<strong>in</strong>g<br />

procedure (TCLP) <strong>in</strong> <strong>the</strong> EPA publication SW-846, plays an<br />

important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g whe<strong>the</strong>r or not <strong>the</strong> material<br />

can be accepted by a landfill. Accord<strong>in</strong>g to <strong>the</strong> LDR rules,<br />

mercury hazardous waste is def<strong>in</strong>ed as any waste that has<br />

a TCLP value greater than 0.2 mg/L. Mercury-contam<strong>in</strong>ated<br />

wastes that exceed this value generally must be treated to<br />

meet <strong>the</strong> Universal Treatment Standard (UTS) <strong>of</strong> 0.025 mg/L<br />

or less prior to disposal <strong>in</strong> a landfill. In addition, some states<br />

may set criteria that def<strong>in</strong>e hazardous wastes given <strong>the</strong> total<br />

metal concentration such as Cali<strong>for</strong>nia’s Total Threshold<br />

Limit Concentration (TTLC) <strong>of</strong> 20 mg/kg <strong>for</strong> mercury. The<br />

U.S. Nuclear Regulatory Commission (NRC) has also developed<br />

its own waste <strong>for</strong>m acceptance criteria <strong>for</strong> mixed<br />

(e.g. radioactive) wastes. In general, NRC waste <strong>for</strong>m test<strong>in</strong>g<br />

procedures exam<strong>in</strong>e <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> various environmental<br />

factors <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> effect <strong>of</strong> <strong>the</strong>rmal cycl<strong>in</strong>g and immersion<br />

on compressive strength, <strong>the</strong> impact <strong>of</strong> biodegradation and irradiation<br />

on waste <strong>for</strong>m stability, and <strong>the</strong> long-term leach<strong>in</strong>g<br />

behavior.<br />

5. Encapsulation materials review<br />

The follow<strong>in</strong>g materials were identified dur<strong>in</strong>g a comprehensive<br />

literature review as hav<strong>in</strong>g been used <strong>for</strong> <strong>the</strong> <strong>encapsulation</strong><br />

<strong>of</strong> mercury-contam<strong>in</strong>ated wastes.<br />

6. Sulfur polymer stabilization/solidification<br />

The SPSS process can be used to convert mercury compounds<br />

<strong>in</strong>to <strong>the</strong> highly <strong>in</strong>soluble HgS <strong>for</strong>m and to simultaneously<br />

encapsulate <strong>the</strong> waste. The SPSS process relies upon<br />

<strong>the</strong> use <strong>of</strong> a <strong>the</strong>rmoplastic material which conta<strong>in</strong>s 95 wt.%<br />

elemental sulfur and 5 wt.% <strong>of</strong> organic modifiers, dicyclopentadiene<br />

and oligomers <strong>of</strong> cyclopentadiene. This material is<br />

referred to <strong>in</strong> <strong>the</strong> literature as sulfur polymer cement (SPC),<br />

although it is not a cementitious material. SPC melts at approximately<br />

235 ◦ F and sets rapidly upon cool<strong>in</strong>g. It is relatively<br />

impermeable to water compared to conventional concrete<br />

and has a high mechanical strength at approximately<br />

double that <strong>of</strong> conventional concrete. SPC is also well suited<br />

to harsh environments with high levels <strong>of</strong> m<strong>in</strong>eral acids, corrosive<br />

electrolytes, or salt solutions [9].<br />

Fig. 1. Sulfur polymer stabilization/solidification process.<br />

Fig. 1 provides a simplified block-diagram <strong>for</strong> <strong>the</strong> SPSS<br />

<strong>encapsulation</strong> process [10]. For macro<strong>encapsulation</strong>, molten<br />

SPC is poured over and around <strong>the</strong> waste or debris and is<br />

<strong>the</strong>n allowed to set <strong>in</strong>to a monolithic waste <strong>for</strong>m. The recommended<br />

mix<strong>in</strong>g temperature <strong>for</strong> SPC is between 260 and<br />

280 ◦ F. For micro<strong>encapsulation</strong> <strong>of</strong> liquid, elemental mercury,<br />

a two-stage process is followed that has been patented by Kalb<br />

et al. <strong>of</strong> Brookhaven National Laboratory (BNL) under U.S.<br />

Patent No. 6,399,849. First, <strong>the</strong> elemental mercury is mixed<br />

<strong>in</strong> a heated reaction vessel at 104 ◦ F with powdered SPC.<br />

O<strong>the</strong>r chemical stabilization agents such as sodium sulfide<br />

and triisobutyl phosph<strong>in</strong>e sulfide can also be added dur<strong>in</strong>g<br />

this <strong>in</strong>itial step. The heated reaction vessel helps to accelerate<br />

<strong>the</strong> reaction between mercury, SPC, and <strong>the</strong> additives to<br />

<strong>for</strong>m HgS. An <strong>in</strong>ert gas atmosphere is also used <strong>in</strong> <strong>the</strong> vessel<br />

to prevent <strong>the</strong> <strong>for</strong>mation <strong>of</strong> mercuric oxide. Next, additional<br />

SPC is added and <strong>the</strong> mixture is heated to 266 ◦ F to <strong>for</strong>m a<br />

homogenous molten liquid. The liquid is <strong>the</strong>n poured <strong>in</strong>to a<br />

mold and allowed to set <strong>in</strong>to a monolithic waste <strong>for</strong>m. This<br />

two-step process m<strong>in</strong>imizes both <strong>the</strong> oxidation <strong>of</strong> mercury to<br />

mercuric oxide and <strong>the</strong> amount <strong>of</strong> unreacted mercury. BNL<br />

recently licensed <strong>the</strong> SPSS technology to Newmont M<strong>in</strong><strong>in</strong>g<br />

Corporation <strong>for</strong> <strong>the</strong> <strong>encapsulation</strong> <strong>of</strong> liquid elemental mercury<br />

generated as a byproduct <strong>of</strong> gold m<strong>in</strong><strong>in</strong>g operations.<br />

Newmont and BNL are currently work<strong>in</strong>g on scal<strong>in</strong>g-up <strong>the</strong><br />

technology <strong>for</strong> <strong>in</strong>dustrial use [11,12].<br />

Several studies have been completed regard<strong>in</strong>g <strong>the</strong> use <strong>of</strong><br />

SPC <strong>for</strong> heavy metal-contam<strong>in</strong>ated wastes [13,3,14,9]. Key<br />

per<strong>for</strong>mance data from <strong>the</strong>se studies are provided <strong>in</strong> Table 1.<br />

Fuhrmann et al. (2002) presents <strong>the</strong> results from a benchscale<br />

SPSS treatment <strong>of</strong> radioactive elemental mercury. The<br />

study explored three issues <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> leachability <strong>of</strong> <strong>the</strong><br />

treated waste, <strong>the</strong> <strong>for</strong>mation <strong>of</strong> mercuric sulfide, and mercury<br />

vaporization dur<strong>in</strong>g process<strong>in</strong>g. Micro<strong>encapsulation</strong> <strong>of</strong> <strong>the</strong>


214 P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

Table 1<br />

Key per<strong>for</strong>mance data <strong>for</strong> sulfur polymer stabilization/solidification<br />

Author/<br />

vendor<br />

Mattus<br />

(1998)<br />

Mattus<br />

(1998)<br />

Fuhrmann<br />

et al.<br />

(2002)<br />

Fuhrmann<br />

et al.<br />

(2002)<br />

Fuhrmann<br />

et al.<br />

(2002)<br />

Darnell<br />

(1996) a<br />

Kalb et al.<br />

(1996)<br />

Pildysh<br />

Technologies,<br />

Inc.<br />

Type Scale Waste type Waste <strong>for</strong>m<br />

size<br />

Waste load<strong>in</strong>g<br />

(wt.%)<br />

Compressive<br />

strength (psi)<br />

Density<br />

(g/cm 3 )<br />

Hg leachate<br />

untreated (mg/L)<br />

Hg leachate<br />

treated (mg/L)<br />

MA BP Mixed waste cadmium<br />

sheets<br />

5 gallons 15.8–28.6 NR NR NA NA<br />

MA BP Mixed waste lead<br />

pipes/gloves<br />

contam<strong>in</strong>ated with Hg<br />

5 gallons 31.3–38.8 NR NR NA NA<br />

MI BP Radioactive Hg0 5 gallons 33.3 NR NR 2.64 0.020 to >0.40<br />

MI BP Radioactive Hg0 with<br />

3 wt.% triisobutyl<br />

phosph<strong>in</strong>e sulfide<br />

additive to SPC<br />

5 gallons 33.3 NR NR 2.64 >0.40<br />

MI BP Radioactive Hg0 with<br />

3 wt.% Na2S·9H2O additive<br />

to SPC<br />

5 gallons 33.3 NR NR 2.64 0.0013–0.050<br />

MI BP/F Metal oxides <strong>in</strong>clud<strong>in</strong>g<br />

Hg, Pb, Ag, As, Ba,<br />

and Cr at 5 wt.% each<br />

NR 40 4000 NR 250b


P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223 215<br />

vert metal oxides to more leach-resistant metal sulfides. The<br />

U.S. EPA TCLP limits were achieved <strong>for</strong> all metals [9].<br />

Based on <strong>the</strong> <strong>in</strong><strong>for</strong>mation reviewed from <strong>the</strong> sources previously<br />

identified, some <strong>of</strong> <strong>the</strong> advantages <strong>of</strong> <strong>the</strong> SPSS process<br />

are as follows: (i) high concentration mercury wastes<br />

can be effectively treated, <strong>in</strong>clud<strong>in</strong>g elemental mercury; (ii)<br />

relatively low temperature process (260–280 ◦ F); (iii) superior<br />

water tightness (e.g., low permeability and porosity)<br />

compared to Portland cement; (iv) high resistance to corrosive<br />

environments (e.g., acids and salts); (v) high mechanical<br />

strength; (vi) simple to implement because mix<strong>in</strong>g and<br />

pour<strong>in</strong>g equipment is readily available; (vii) easier to use<br />

than o<strong>the</strong>r <strong>the</strong>rmoplastics, like polyethylene, because <strong>of</strong> its<br />

low viscosity and low-melt temperature; (viii) SPC can be<br />

remelted and re<strong>for</strong>mulated.<br />

Pildysh Technologies, Inc. has developed a proprietary,<br />

<strong>the</strong>rmoplastic sulfur-based technology, called TerraBond TM ,<br />

<strong>for</strong> encapsulat<strong>in</strong>g and stabiliz<strong>in</strong>g hazardous wastes. The primary<br />

physical <strong>encapsulation</strong> is <strong>in</strong>duced by allotropic sulfur<br />

crystal conversions. A hydrophobic sealant (secondary <strong>encapsulation</strong>)<br />

applied to <strong>the</strong> pellet surface provides a barrier<br />

aga<strong>in</strong>st contam<strong>in</strong>ant leach<strong>in</strong>g.<br />

One must also be aware <strong>of</strong> <strong>the</strong> limitations <strong>of</strong> <strong>the</strong> abovementioned<br />

processes. Some <strong>of</strong> <strong>the</strong>m are as follows: (i) volatile<br />

losses <strong>of</strong> mercury may occur and eng<strong>in</strong>eer<strong>in</strong>g controls are<br />

needed; (ii) aqueous wastes must be dewatered prior to process<strong>in</strong>g;<br />

(iii) SPC can develop an excess <strong>of</strong> voids or air pockets<br />

if cooled too quickly; (iv) metal debris or pieces with<br />

large <strong>the</strong>rmal mass may require preheat<strong>in</strong>g to prevent <strong>the</strong><br />

<strong>for</strong>mation <strong>of</strong> air pockets; (v) not compatible with strong alkal<strong>in</strong>e<br />

solutions (>10%), strong oxidiz<strong>in</strong>g agents, aromatic or<br />

chlor<strong>in</strong>ated solvents, or expand<strong>in</strong>g clays; (vi) SPC handl<strong>in</strong>g<br />

requires <strong>the</strong> use <strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g controls to mitigate possible<br />

ignition and explosion hazards; (vii) if excessive temperatures<br />

are created, SPC will emit hydrogen sulfide gas and<br />

sulfur vapor.<br />

7. Chemically bonded phosphate ceramic<br />

<strong>encapsulation</strong><br />

Chemically bonded phosphate ceramics (CBPCs) are well<br />

suited <strong>for</strong> <strong>encapsulation</strong> because <strong>the</strong> solidification <strong>of</strong> this material<br />

occurs at low temperatures and with<strong>in</strong> a wide pH range.<br />

Similar to SPSS, successful treatment with CBPC is due to<br />

both chemical stabilization and physical <strong>encapsulation</strong>. Although<br />

mercury will <strong>for</strong>m low-solubility phosphate solids,<br />

stabilization with a small amount <strong>of</strong> sodium sulfide (Na2S)<br />

or potassium sulfide (K2S) to <strong>for</strong>m HgS greatly improves <strong>the</strong><br />

per<strong>for</strong>mance <strong>of</strong> <strong>the</strong> f<strong>in</strong>al CBPC waste <strong>for</strong>m. Hg3(PO4)2 has<br />

a solubility product <strong>of</strong> 7.9 × 10 −46 , compared to HgS with<br />

a solubility product <strong>of</strong> 2.0 × 10 −49 [7]. CBPCs are <strong>for</strong>med<br />

through an acid–base reaction between calc<strong>in</strong>ed magnesium<br />

oxide (MgO) and monopotassium phosphate (KH2PO4) <strong>in</strong><br />

solution to from a hard, dense ceramic <strong>of</strong> magnesium potas-<br />

Fig. 2. Chemically bonded phosphate ceramic process.<br />

sium phosphate hydrate as shown <strong>in</strong> <strong>the</strong> reaction below:<br />

MgO + KH2PO4 + 5H2O → MgKPO4 · 6H2O (MKP)<br />

Iron oxide phosphates can also be used to <strong>for</strong>m a lowtemperature<br />

ceramic, but research <strong>in</strong>to <strong>the</strong> use <strong>of</strong> this material<br />

is limited [16].<br />

Fig. 2 provides a simplified block-diagram <strong>for</strong> <strong>the</strong> CBPC<br />

<strong>encapsulation</strong> process. First, enough water is added to <strong>the</strong><br />

waste <strong>in</strong> <strong>the</strong> disposal drum to reach <strong>the</strong> stoichiometric water<br />

content. Next, calc<strong>in</strong>ed magnesium oxide and monopotassium<br />

phosphate b<strong>in</strong>ders are ground to a powder and blended <strong>in</strong><br />

a one-to-one molar ratio. Additional <strong>in</strong>gredients (e.g., fly ash<br />

or K2S <strong>for</strong> mercury fixation) also are added to <strong>the</strong> b<strong>in</strong>ders. The<br />

water, b<strong>in</strong>ders, additional <strong>in</strong>gredients, and waste are mixed<br />

<strong>for</strong> about 30 m<strong>in</strong>. Under most conditions, heat from <strong>the</strong> reaction<br />

causes <strong>the</strong> waste matrix to reach a maximum temperature<br />

<strong>of</strong> approximately 176 ◦ F. After mix<strong>in</strong>g is stopped, <strong>the</strong> waste<br />

<strong>for</strong>m typically sets <strong>in</strong> about 2 h and cures <strong>in</strong> about 2 weeks.<br />

Mix<strong>in</strong>g can be completed <strong>in</strong> a 55-gallon disposal drum with a<br />

planetary type mixer. The waste, water, b<strong>in</strong>der, and additives<br />

can be charged to <strong>the</strong> drum us<strong>in</strong>g hoppers, feed<strong>in</strong>g chutes, and<br />

pip<strong>in</strong>g as needed. Argonne National Laboratory (ANL) has<br />

six patents cover<strong>in</strong>g <strong>the</strong> use <strong>of</strong> this material <strong>for</strong> <strong>the</strong> <strong>encapsulation</strong><br />

<strong>of</strong> hazardous wastes. The technology has been licensed<br />

to Wangtec, Inc., <strong>for</strong> <strong>the</strong> treatment <strong>of</strong> <strong>in</strong>c<strong>in</strong>erator ashes from<br />

power plants <strong>in</strong> Taiwan [17].<br />

Several detailed studies have been completed to demonstrate<br />

<strong>the</strong> use <strong>of</strong> CBPCs <strong>for</strong> both macro<strong>encapsulation</strong> and<br />

micro<strong>encapsulation</strong> <strong>of</strong> hazardous wastes [2,7,17,18]. Table 2<br />

summarizes key per<strong>for</strong>mance data from <strong>the</strong>se studies.<br />

S<strong>in</strong>gh et al. (1998) demonstrated <strong>the</strong> <strong>encapsulation</strong> <strong>of</strong><br />

four waste streams with CBPC <strong>in</strong>clud<strong>in</strong>g cyr<strong>of</strong>ractured debris,<br />

lead bricks, lead-l<strong>in</strong>ed plastic gloves, and mercurycontam<strong>in</strong>ated<br />

crushed light bulbs. The study was a bench-


216 P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

Table 2<br />

Key per<strong>for</strong>mance data <strong>for</strong> chemically bonded phosphate ceramic <strong>encapsulation</strong><br />

Author/vendor<br />

S<strong>in</strong>gh et al.<br />

(1998)<br />

S<strong>in</strong>gh et al.<br />

(1998)<br />

S<strong>in</strong>g et al.<br />

(1998)<br />

Type Scale Waste type Waste <strong>for</strong>m<br />

size<br />

S<strong>in</strong>gh et al. MI BP Hg-contam<strong>in</strong>ated<br />

(1998)<br />

crushed light bulbs<br />

DOE (1999a) a MI BP DOE surrogate wastes<br />

<strong>of</strong> nitrate salts and<br />

<strong>of</strong>f-gas scrub solution<br />

Wagh et al.<br />

(2000) a<br />

MI BP DOE ash (HgCl2 at<br />

0.5 wt.%)<br />

Wagh et al.<br />

(2000) a<br />

Wagh et al.<br />

(2000) a<br />

Wagh and<br />

Jeong<br />

(2001) b<br />

Wagh and<br />

Jeong<br />

(2001) b<br />

Waste load<strong>in</strong>g<br />

(wt.%)<br />

Compressive<br />

strength (psi)<br />

Density<br />

(g/cm 3 )<br />

Hg leachate<br />

untreated (mg/L)<br />

MA BP Cyr<strong>of</strong>ractured debris 1.2–3 gallons 35 5000–7000 1.81 NA NA<br />

MA BP Lead bricks NR NR 5000–7000 1.8 NA NA<br />

MA BP Lead-l<strong>in</strong>ed gloves 5 gallons NR 5000–7000 1.8 NA NA<br />

MI BP Delphi DETOX (with<br />

0.5 wt.% each HgCl2,<br />

Ce2O3, Pb(NO3)2)<br />

MI BP Soil (HgCl2 at<br />

0.5 wt.%)<br />

MI BP DETOX Wastestream<br />

(HgCl2 at 0.5 wt.%)<br />

MI BP DETOX Wastestream<br />

(Hg at 0.5 wt.%)<br />

a Potassium sulfide was added to reduce metal leachability.<br />

b Sodium sulfide nonahydrate was added to reduce metal leachability.<br />

c Untreated waste TCLP not reported, so estimated based on total Hg level <strong>in</strong> waste divided by 20.<br />

scale project with waste <strong>for</strong>m sizes rang<strong>in</strong>g from 1.2 to 5<br />

gallons and consequently some material handl<strong>in</strong>g and size<br />

reduction (e.g., shredd<strong>in</strong>g) was necessary. The CBPC fabrication<br />

process was approximately <strong>the</strong> same <strong>for</strong> each waste<br />

with <strong>the</strong> exception <strong>of</strong> m<strong>in</strong>or <strong>for</strong>mula changes <strong>in</strong> <strong>the</strong> wt.% <strong>of</strong><br />

water, ash, or b<strong>in</strong>ders and <strong>the</strong> addition <strong>of</strong> potassium sulfide<br />

(K2S) <strong>in</strong> <strong>the</strong> mixture <strong>for</strong> <strong>the</strong> mercury-contam<strong>in</strong>ated crushed<br />

light bulbs. The mercury-contam<strong>in</strong>ated crushed light bulbs<br />

were pretreated by mix<strong>in</strong>g with a potassium sulfide solution<br />

<strong>for</strong> approximately 1 h. The glass was <strong>the</strong>n set <strong>in</strong>to CBPC<br />

with a <strong>for</strong>mulation <strong>of</strong> 40 wt.% ash, 40 wt.% b<strong>in</strong>der (MgO and<br />

KH2PO4 powders mixed <strong>in</strong> 1:1 molar ratio) and 20 wt.% water.<br />

Mercury levels <strong>in</strong> <strong>the</strong> glass waste were around 200 parts<br />

per million (ppm). The crushed glass ranged <strong>in</strong> size from 2 to<br />

3 cm long × 1 to 2 cm wide. Dur<strong>in</strong>g <strong>the</strong> mix<strong>in</strong>g <strong>of</strong> <strong>the</strong> waste<br />

with <strong>the</strong> b<strong>in</strong>der, <strong>the</strong> glass was crushed down to sizes less than<br />

60 mm and a waste load<strong>in</strong>g <strong>of</strong> approximately 40 wt.% was<br />

achieved. Each waste <strong>for</strong>m was allowed to cure <strong>for</strong> about<br />

2 weeks prior to per<strong>for</strong>mance test<strong>in</strong>g. The cross sections <strong>of</strong><br />

<strong>the</strong> f<strong>in</strong>al waste <strong>for</strong>ms were observed to be very homogenous,<br />

dense, and free <strong>of</strong> air pockets. A complete, <strong>in</strong>tact coat<strong>in</strong>g with<br />

cont<strong>in</strong>uous adhesion was observed around <strong>the</strong> wastes and no<br />

gaps were present at waste–b<strong>in</strong>der <strong>in</strong>terfaces. TCLP tests on<br />

<strong>the</strong> mercury-contam<strong>in</strong>ated wastes showed 200–202 g/L <strong>in</strong><br />

<strong>the</strong> untreated wastes compared to


P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223 217<br />

rogate wastes <strong>in</strong>clud<strong>in</strong>g DOE ash waste, secondary waste<br />

streams from <strong>the</strong> DETOX SM wet oxidation process, and<br />

contam<strong>in</strong>ated topsoil [7]. The surrogate waste streams were<br />

dosed with mercuric chloride (HgCl2) at 0.1–0.5 wt.% and<br />

also with o<strong>the</strong>r metals <strong>in</strong>clud<strong>in</strong>g lead and cesium. Initial tests<br />

showed that <strong>encapsulation</strong> with CBPC alone caused mercury<br />

leach<strong>in</strong>g to decrease by a factor <strong>of</strong> three to five times. However,<br />

<strong>for</strong> adequate mercury stabilization, Wagh et al. determ<strong>in</strong>ed<br />

that a small amount <strong>of</strong> Na2SorK2S should be used <strong>in</strong><br />

<strong>the</strong> b<strong>in</strong>der. For use with CBPC, <strong>the</strong> K2S <strong>for</strong>mulation was <strong>in</strong>itially<br />

deemed to be <strong>the</strong> most appropriate because <strong>the</strong> CBPC<br />

b<strong>in</strong>der is a potassium-based material. O<strong>the</strong>r potential additives<br />

<strong>for</strong> mercury stabilization referenced by <strong>the</strong> author <strong>in</strong>clude<br />

H2S or NaHS. In this study, K2S was mixed directly<br />

with MgO and KH2PO4 powders to <strong>for</strong>m one b<strong>in</strong>der powder.<br />

The optimal range <strong>of</strong> K2S <strong>in</strong> <strong>the</strong> b<strong>in</strong>der powder was<br />

found to be 0.5 wt.% and it was also established that levels<br />

significantly above this dose resulted <strong>in</strong> <strong>the</strong> <strong>for</strong>mation<br />

<strong>of</strong> Hg2SO4, which has a much higher solubility than HgS<br />

(Hg2SO4 has a solubility product <strong>of</strong> 7.99 × 10 −7 versus HgS<br />

with a solubility product <strong>of</strong> 2.0 × 10 −49 ). All <strong>of</strong> <strong>the</strong> surrogate<br />

wastes were successfully treated to levels below <strong>the</strong> U.S.<br />

EPA TCLP criteria <strong>for</strong> mercury. Long-term (90-day) leach<strong>in</strong>g<br />

tests <strong>in</strong>dicated that <strong>the</strong> diffusion <strong>of</strong> mercury through <strong>the</strong><br />

CBPC matrix is 10 orders <strong>of</strong> magnitude lower than <strong>in</strong> cement<br />

systems.<br />

Wagh and Jeong (2001) cont<strong>in</strong>ued work related to <strong>the</strong><br />

<strong>encapsulation</strong> <strong>of</strong> DETOX SM wastes [18]. The study <strong>in</strong>vestigated<br />

with <strong>the</strong> effect <strong>of</strong> hematite (Fe2O3) on <strong>the</strong> fabrication<br />

and sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> CBPC waste <strong>for</strong>m. The DETOX SM<br />

wastes conta<strong>in</strong>ed approximately 95 wt.% Fe2O3, which was<br />

found to be highly reactive and caused <strong>the</strong> CBPC slurry to<br />

set too quickly be<strong>for</strong>e mercury could be effectively fixed <strong>in</strong>to<br />

HgS. Additional tests were conducted <strong>in</strong> order to modify <strong>the</strong><br />

CBPC fabrication process to account <strong>for</strong> <strong>the</strong> reactive nature<br />

<strong>of</strong> <strong>the</strong>se wastes. Two surrogate wastes were created <strong>in</strong>clud<strong>in</strong>g<br />

a waste stream with 0.5 wt.% HgCl2 and 94.32 wt.% Fe2O3<br />

and a waste stream with 0.5 wt.% Hg 0 and 95 wt.% Fe2O3.<br />

Two samples <strong>of</strong> each surrogate waste were pretreated with<br />

sodium sulfide nonahydrate (Na2S·9H2O) <strong>for</strong> 2 h, which allowed<br />

sufficient time <strong>for</strong> <strong>the</strong> mercury to <strong>for</strong>m HgS. The b<strong>in</strong>der<br />

was <strong>the</strong>n added and <strong>the</strong> slurry was mixed until it set. The<br />

CBPC samples were cured <strong>for</strong> 3 weeks and subjected to<br />

<strong>the</strong> U.S. EPA TCLP test. F<strong>in</strong>al TCLP results <strong>for</strong> <strong>the</strong> treated<br />

HgCl2 waste ranged from 4.7 to 15.1 g/L and <strong>the</strong> Hg 0 wastes<br />

ranged from 7.19 to 7.64 g/L. Waste load<strong>in</strong>gs <strong>of</strong> 60–78 wt.%<br />

were achieved. Sett<strong>in</strong>g times were rapid (10–18 m<strong>in</strong>) and<br />

<strong>the</strong> authors suggested that it may be possible <strong>in</strong> large-scale<br />

systems to slow down <strong>the</strong> reaction by add<strong>in</strong>g boric acid<br />

(at


218 P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

Fig. 3 provides a simplified block-diagram <strong>for</strong> <strong>the</strong><br />

polyethylene macro<strong>encapsulation</strong> process. The key equipment<br />

used <strong>in</strong> this process typically <strong>in</strong>cludes a polymer extruder<br />

and feed hoppers. K<strong>in</strong>etic mixers have also been used<br />

<strong>for</strong> polyethylene <strong>encapsulation</strong> [20]. Polyethylene macro<strong>encapsulation</strong><br />

typically <strong>in</strong>volves <strong>the</strong> use <strong>of</strong> a basket placed <strong>in</strong>side<br />

a drum to allow at least a 1 <strong>in</strong>. barrier around <strong>the</strong> waste<br />

material. Molten polyethylene is <strong>the</strong>n poured from an extruder<br />

over and around <strong>the</strong> waste <strong>in</strong> <strong>the</strong> drum. In addition,<br />

an alternative to on-site pour<strong>in</strong>g is <strong>the</strong> use <strong>of</strong> premanufactured<br />

conta<strong>in</strong>ers as discussed below. Polyethylene micro<strong>encapsulation</strong><br />

typically <strong>in</strong>volves directly mix<strong>in</strong>g <strong>the</strong> waste material<br />

and polyethylene at an elevated temperature (typically<br />

248–302 ◦ F) <strong>in</strong> an extruder. The mixture <strong>of</strong> waste material<br />

and polyethylene is <strong>the</strong>n poured <strong>in</strong>to a drum and allowed<br />

to set. Micro<strong>encapsulation</strong> may require several pretreatment<br />

steps, <strong>in</strong>clud<strong>in</strong>g dry<strong>in</strong>g <strong>of</strong> wet wastes and physical separation<br />

to resize or improve <strong>the</strong> particle distribution <strong>of</strong> <strong>the</strong> waste.<br />

In addition, <strong>of</strong>f-gas treatment is needed <strong>for</strong> any water vapor,<br />

volatile organic compounds (VOCs), or volatile metals<br />

(e.g., arsenic and mercury) <strong>in</strong> <strong>the</strong> waste [21]. Both polyethylene<br />

micro<strong>encapsulation</strong> and macro<strong>encapsulation</strong> services<br />

are commercially available. In 1998, <strong>the</strong> Envirocare facility<br />

<strong>in</strong> Utah <strong>in</strong>stalled and permitted a s<strong>in</strong>gle screw extruder system<br />

that can process up to 5 tonnes <strong>of</strong> waste per day. The f<strong>in</strong>al<br />

waste <strong>for</strong>ms are typically set <strong>in</strong> 30- to 55-gallon drums and<br />

have a m<strong>in</strong>imum exterior surface coat<strong>in</strong>g <strong>of</strong> LDPE <strong>of</strong> 1–2 <strong>in</strong>.<br />

[20].<br />

Several studies have been carried out us<strong>in</strong>g polyethylene<br />

<strong>for</strong> both macro<strong>encapsulation</strong> and micro<strong>encapsulation</strong> <strong>of</strong><br />

hazardous wastes [21–24]. In addition, several commercial<br />

vendors (e.g., Chemical Waste Management, Boh Environmental,<br />

and Ultra-Tech, International) provide macro<strong>encapsulation</strong><br />

services us<strong>in</strong>g premanufactured HDPE conta<strong>in</strong>ers.<br />

Only one study was found which dealt with <strong>the</strong> polyethylene<br />

micro<strong>encapsulation</strong> <strong>of</strong> two types <strong>of</strong> mercury-contam<strong>in</strong>ated<br />

wastes [23]. In general, <strong>the</strong>re is little to no per<strong>for</strong>mance<br />

data available on <strong>the</strong> effectiveness <strong>of</strong> polyethylene <strong>encapsulation</strong><br />

<strong>for</strong> mercury-contam<strong>in</strong>ated wastes. Table 3 summarizes<br />

key per<strong>for</strong>mance data from several polyethylene <strong>encapsulation</strong><br />

case studies (both with and without mercury<br />

wastes).<br />

Burbank and We<strong>in</strong>gardt explored <strong>the</strong> use <strong>of</strong> polyethylene<br />

<strong>for</strong> <strong>the</strong> micro<strong>encapsulation</strong> <strong>of</strong> mixed wastestreams at <strong>the</strong> DOE<br />

site <strong>in</strong> Han<strong>for</strong>d, Wash<strong>in</strong>gton. Two wastes were tested that had<br />

relatively low concentrations <strong>of</strong> mercury, along with o<strong>the</strong>r<br />

heavy metals. An ammonium sulfate cake waste conta<strong>in</strong>ed<br />

9.2 ppm <strong>of</strong> mercury and a solar evaporation bas<strong>in</strong> sludge conta<strong>in</strong>ed<br />

1.3 ppm <strong>of</strong> mercury. These wastes were <strong>in</strong>corporated<br />

<strong>in</strong>to polyethylene at a 40–50 wt.% load<strong>in</strong>g. Prior to <strong>encapsulation</strong>,<br />

calcium oxide was added to <strong>the</strong> higher waste load<strong>in</strong>g<br />

(50 wt.%) specimens to help reduce metal leachability. However,<br />

<strong>the</strong> calcium oxide amendment did not reduce, but actually<br />

<strong>in</strong>creased mercury leachability. The ammonium sulfate<br />

cake waste microencapsulated with polyethylene alone had a<br />

mercury TCLP <strong>of</strong> 0.442 mg/L. With <strong>the</strong> addition <strong>of</strong> calcium<br />

oxide, this same waste stream had a higher mercury TCLP <strong>of</strong><br />

1.07 mg/L. It is clear from <strong>the</strong>se results that polyethylene <strong>encapsulation</strong><br />

alone cannot adequately reduce <strong>the</strong> availability or<br />

leachability <strong>of</strong> mercury, even at relatively low concentrations<br />

[23].<br />

Also, due to <strong>the</strong> high process<strong>in</strong>g temperatures <strong>of</strong> polyethylene<br />

<strong>encapsulation</strong>, it is likely that a large fraction <strong>of</strong> mercury<br />

would be volatilized unless it was pretreated or chemically<br />

fixed. This issue is highlighted by work completed by Carter<br />

et al. (1995) with arsenic, which is also a highly volatile<br />

metal. Carter et al. (1995) used HDPE with a melt<strong>in</strong>g po<strong>in</strong>t<br />

<strong>of</strong> 266 ◦ F and an operat<strong>in</strong>g range at (356–410 ◦ F) to microencapsulate<br />

powdered arsenic trioxide (As2O3). It was<br />

found that at a 20 vol.% load<strong>in</strong>g <strong>of</strong> this compound, <strong>the</strong> viscosity<br />

<strong>of</strong> <strong>the</strong> HDPE <strong>in</strong>creased dramatically and <strong>the</strong> mixture<br />

became unworkable. Scann<strong>in</strong>g electron microscope (SEM)<br />

micrographs showed that <strong>the</strong> arsenic trioxide had sublimed<br />

and recrystallized. When arsenic trioxide was stabilized with<br />

calcium carbonate, <strong>the</strong> volatility decreased, but achievable<br />

waste load<strong>in</strong>gs <strong>in</strong> HDPE rema<strong>in</strong>ed low. Mercury and its compounds<br />

are also highly volatile (e.g., mercuric chloride sublimes<br />

at 572 ◦ F), so <strong>the</strong> results <strong>of</strong> this study provide some<br />

<strong>in</strong>sight <strong>in</strong>to <strong>the</strong> challenge <strong>of</strong> us<strong>in</strong>g polyethylene to process<br />

wastes conta<strong>in</strong><strong>in</strong>g high levels <strong>of</strong> ei<strong>the</strong>r arsenic or mercury<br />

[24].<br />

In addition to on-site process<strong>in</strong>g, <strong>the</strong>re are several vendors<br />

that provide macro<strong>encapsulation</strong> services with premanufactured<br />

HDPE conta<strong>in</strong>ers <strong>in</strong>clud<strong>in</strong>g Chemical Waste<br />

Management, Boh Environmental, and Ultra-Tech, International.<br />

In general, <strong>the</strong> use <strong>of</strong> a tank or conta<strong>in</strong>er is not<br />

considered macro<strong>encapsulation</strong>. However, premanufactured<br />

conta<strong>in</strong>ers can be used and are allowed <strong>for</strong> contam<strong>in</strong>ated<br />

debris under <strong>the</strong> LDR alternative debris standards at 40<br />

CFR 268.45. Premanufactured conta<strong>in</strong>ers can result <strong>in</strong> a<br />

reduction <strong>of</strong> <strong>the</strong> overall waste <strong>for</strong>m volume by as much<br />

as one-fourth compared to an on-site pour <strong>of</strong> polyethylene<br />

[25].<br />

Chemical Waste Management provides HDPE-l<strong>in</strong>ed roll<strong>of</strong>f<br />

boxes and 1/2-<strong>in</strong>.-thick HDPE vaults measur<strong>in</strong>g 21 ft. ×<br />

7 ft. The vaults have a lid that is secured with adhesives and<br />

screws. Boh Environmental’s Arrow-Pak TM technology consists<br />

<strong>of</strong> compact<strong>in</strong>g 55-gallon drums filled with mixed or hazardous<br />

waste debris <strong>in</strong>to 12-<strong>in</strong>.-thick pucks. The compacted<br />

drums are loaded <strong>in</strong>to an 85-gallon metal overpack drum<br />

and <strong>the</strong>n <strong>in</strong>to a 1-<strong>in</strong>.-thick HDPE tube. Ultra-Tech, International<br />

<strong>of</strong>fers a series <strong>of</strong> premanufactured, medium-density<br />

polyethylene conta<strong>in</strong>ers. The conta<strong>in</strong>ers can be custom-made<br />

<strong>in</strong> any size. A resistance wire system is embedded <strong>in</strong> <strong>the</strong> lid<br />

<strong>of</strong> each conta<strong>in</strong>er. Once <strong>the</strong> debris waste is <strong>in</strong> place, an electrical<br />

current is applied to <strong>the</strong> wires, heat<strong>in</strong>g <strong>the</strong>m up to melt<br />

<strong>the</strong> polyethylene, and creat<strong>in</strong>g an effective seal around <strong>the</strong><br />

top [26].<br />

The follow<strong>in</strong>g is a list <strong>of</strong> some <strong>of</strong> <strong>the</strong> advantages associated<br />

with <strong>the</strong> use <strong>of</strong> polyethylene as reported by previously<br />

identified researchers: (i) polyethylene has a high mechanical<br />

strength, flexibility, and chemical resistance; (ii) polyethy-


P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223 219<br />

Table 3<br />

Key per<strong>for</strong>mance data <strong>for</strong> polyethylene <strong>encapsulation</strong><br />

Author/vendor Type Material Scale Waste type Waste <strong>for</strong>m<br />

size<br />

Faucette et al.<br />

(1994)<br />

Faucette et al.<br />

(1994)<br />

Burbank and<br />

We<strong>in</strong>gardt<br />

(1996)<br />

Burbank and<br />

We<strong>in</strong>gardt<br />

(1996)<br />

Carter et al.<br />

(1995)<br />

Kalb et al.<br />

(1996)<br />

MA LDPE BP/F Combustibles,<br />

laboratory<br />

glassware,<br />

scrap metals,<br />

and lead (e.g.,<br />

sheet, bricks,<br />

tape)<br />

MI LDPE BP/F F006 waste<br />

code: nitrate<br />

salts with Cd,<br />

Cr, Pb, Ni, and<br />

Ag<br />

MI LDPE BP Ammonium<br />

sulfate/solar<br />

bas<strong>in</strong> sludge<br />

MI LDPE BP Solar bas<strong>in</strong><br />

sludge<br />

MI HDPE BP As2O3 with<br />

and without<br />

CaCO3<br />

MI LDPE BP Off-gas scrub<br />

solution<br />

Waste load<strong>in</strong>g<br />

(wt.%)<br />

a Prior to <strong>encapsulation</strong>, calcium oxide was added.<br />

b Untreated waste TCLP not reported, estimated by total Hg level <strong>in</strong> waste divided by 20.<br />

lene is readily available <strong>in</strong> post-consumer recycled <strong>for</strong>ms;<br />

(iii) <strong>encapsulation</strong> equipment is commercially available and<br />

<strong>the</strong> process can be automated; (iv) premanufactured vaults<br />

and conta<strong>in</strong>ers can be used under some circumstances; (v)<br />

polyethylene is used <strong>in</strong> landfill l<strong>in</strong>ers and extensive studies<br />

document its chemical resistance and long-term durability.<br />

The follow<strong>in</strong>g are some <strong>of</strong> <strong>the</strong> limitations <strong>of</strong> <strong>the</strong> process:<br />

(i) external heat<strong>in</strong>g is required and <strong>the</strong> process occurs at a<br />

higher temperature than <strong>the</strong> SPC and CBPC methods; (ii)<br />

<strong>the</strong> high temperatures make effective polyethylene <strong>encapsulation</strong><br />

<strong>of</strong> mercury and arsenic problematic; (iii) polyethylene<br />

does not chemically <strong>in</strong>corporate <strong>the</strong> waste and mercury<br />

volatilization and leachability are a significant concern;<br />

(iv) wastes will typically have to be preprocessed to remove<br />

moisture and/or to achieve adequate particle size distributions.<br />

The relative merits <strong>of</strong> <strong>the</strong> polyethylene <strong>encapsulation</strong> process<br />

compared to <strong>the</strong> SPSS and CBPC processes are discussed<br />

<strong>in</strong> <strong>the</strong> future development and research needs section.<br />

9. O<strong>the</strong>r <strong>encapsulation</strong> materials<br />

Several o<strong>the</strong>r materials have been developed and demonstrated<br />

<strong>for</strong> <strong>the</strong> <strong>encapsulation</strong> <strong>of</strong> mercury-contam<strong>in</strong>ated hazardous<br />

wastes <strong>in</strong>clud<strong>in</strong>g asphalt, polyester and epoxy res<strong>in</strong>s,<br />

syn<strong>the</strong>tic elastomers, polysiloxane, sol–gels (e.g., polyc-<br />

Compressive<br />

strength (psi)<br />

Density<br />

(g/cm 3 )<br />

Hg leachate<br />

untreated (mg/L)<br />

5–10 gallons NR NR NR NA NA<br />

NR 50 NR NR NA NA<br />

1.25 gallons 40–50 a 1088–2465 NR 0.46 [9.2<br />

ppm] b<br />

1.25 gallons 40–50 1088–2465 NR 0.065 [1.3<br />

ppm] b<br />

NR 20 vol.% NR NR NA NA<br />

Hg leachate<br />

treated (mg/L)<br />

0.442–1.07<br />

0.107–0.122<br />

NR 50–70 1950–2180 1.21–1.45 0.14


220 P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

Table 4<br />

Key per<strong>for</strong>mance data <strong>for</strong> various <strong>encapsulation</strong> materials<br />

Author/vendor Type Material Scale Waste type Waste <strong>for</strong>m<br />

size<br />

Waste load<strong>in</strong>g<br />

(wt.%)<br />

Compressive<br />

strength (psi)<br />

Density (g/cm 3 ) Hg leachate<br />

untreated<br />

(mg/L)<br />

Hg leachate<br />

treated (mg/L)<br />

Kalb et al. MI Asphalt BP Off-gas scrub NR 30–60 540–610 1.08–1.42 0.14


9.5. Sol–gels<br />

P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223 221<br />

Sol–gels or polycerams are a hybrid material derived from<br />

<strong>the</strong> chemical comb<strong>in</strong>ation <strong>of</strong> organic polymers and <strong>in</strong>organic<br />

ceramics. A DOE study explored <strong>the</strong> use <strong>of</strong> a polyceram consist<strong>in</strong>g<br />

<strong>of</strong> a polybutadiene-based polymer comb<strong>in</strong>ed with silicon<br />

dioxide <strong>for</strong> <strong>the</strong> stabilization <strong>of</strong> high salt wastes. The salt<br />

waste surrogates conta<strong>in</strong>ed lead, chromium, mercury, cadmium,<br />

and nickel at 1000 ppm levels. The polymer and silicon<br />

dioxide are comb<strong>in</strong>ed first and <strong>the</strong>n mixed with <strong>the</strong> waste<br />

and <strong>the</strong>n solidified to encapsulate <strong>the</strong> waste. The sett<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> waste <strong>for</strong>m takes place at temperatures rang<strong>in</strong>g from 151<br />

to 158 ◦ F. Waste load<strong>in</strong>gs from 30 to 70 wt.% were demonstrated.<br />

The <strong>in</strong>itial waste <strong>for</strong>ms <strong>in</strong> <strong>the</strong> demonstration had a<br />

high open porosity and did not pass <strong>the</strong> TCLP test <strong>for</strong> mercury.<br />

Ano<strong>the</strong>r set <strong>of</strong> waste <strong>for</strong>ms were fabricated and subjected<br />

to a secondary <strong>in</strong>filtration <strong>of</strong> polyceram solution after<br />

<strong>in</strong>itial dry<strong>in</strong>g. The second set <strong>of</strong> tests was able to demonstrate<br />

a decrease <strong>in</strong> <strong>the</strong> mercury TCLP to 0.044 mg/L [34].<br />

9.6. Dolocrete TM<br />

Dolocrete TM is a proprietary calc<strong>in</strong>ed dolomitic b<strong>in</strong>der<br />

material that can be used <strong>for</strong> <strong>the</strong> micro<strong>encapsulation</strong> <strong>of</strong> <strong>in</strong>organic,<br />

organic, and low-level radioactive waste. Dolocrete TM<br />

is reported to successfully encapsulate wastes conta<strong>in</strong><strong>in</strong>g alum<strong>in</strong>um,<br />

antimony, arsenic, bismuth, cadmium, chromium,<br />

copper, iron, lead, mercury, nickel, t<strong>in</strong>, and z<strong>in</strong>c. Mercurycontam<strong>in</strong>ated<br />

wastes with up to 15,300 mg/kg have been reported<br />

to reach a f<strong>in</strong>al TCLP level <strong>of</strong>


222 P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223<br />

material <strong>for</strong> a given <strong>in</strong>dustrial waste stream. The selection criteria<br />

should <strong>in</strong>clude chemical compatibility <strong>of</strong> <strong>the</strong> waste and<br />

b<strong>in</strong>der materials, f<strong>in</strong>al waste <strong>for</strong>m per<strong>for</strong>mance, technology<br />

implementability (e.g., <strong>the</strong> availability <strong>of</strong> process<strong>in</strong>g equipment<br />

and vendor experience), safety and health issues, and<br />

project-specific estimated costs.<br />

Acknowledgements<br />

The U.S. Environmental Protection Agency through its<br />

Office <strong>of</strong> Research and Development funded <strong>the</strong> research described<br />

here under contract number GS-10F-0275K. The authors<br />

wish to acknowledge Wendy Condit <strong>for</strong> assistance with<br />

this paper. This paper is a summary <strong>of</strong> a more detailed EPA report<br />

titled: “Technical Report — <strong>Advances</strong> <strong>in</strong> Encapsulation<br />

Technologies <strong>for</strong> <strong>the</strong> Management <strong>of</strong> Mercury-Contam<strong>in</strong>ated<br />

Hazardous Wastes.”<br />

References<br />

[1] U.S. EPA, Technology Alternatives <strong>for</strong> <strong>the</strong> Remediation <strong>of</strong> Soils<br />

Contam<strong>in</strong>ated with As, Cd, Cr, Hg, and Pb EPA/540/S-97/500, U.S.<br />

EPA Office <strong>of</strong> Research and Development, C<strong>in</strong>c<strong>in</strong>nati, OH, 1997.<br />

[2] D. S<strong>in</strong>gh, A.S. Wagh, M. Tlustochowicz, S.Y. Jeong, Phosphate ceramic<br />

process <strong>for</strong> macro<strong>encapsulation</strong> and stabilization <strong>of</strong> low-level<br />

debris wastes, Waste Manage. 18 (1998) 135–143.<br />

[3] C.H. Mattus, Sulfur polymer cement <strong>for</strong> macro<strong>encapsulation</strong> <strong>of</strong><br />

mixed waste debris, <strong>in</strong>: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> International Conference<br />

on Decommission<strong>in</strong>g and Decontam<strong>in</strong>ation and on Nuclear and<br />

Hazardous Waste Management, Denver, Colorado, September 13–18,<br />

1998.<br />

[4] U.S. EPA, Presumptive Remedy <strong>for</strong> Metals-<strong>in</strong>-Soil Sites, EPA/540/F-<br />

98/054, U.S. EPA Office <strong>of</strong> Solid Waste and Emergency Response,<br />

Wash<strong>in</strong>gton, DC, 1999.<br />

[5] F. Sanchez, D.S. Kosson, C.H. Mattus, M.I. Morris, Use <strong>of</strong> a New<br />

Leach<strong>in</strong>g Procedure <strong>for</strong> Evaluat<strong>in</strong>g Alternative Processes <strong>for</strong> Mercury<br />

Contam<strong>in</strong>ated Mixed Waste (Hazardous and Radioactive), Department<br />

<strong>of</strong> Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>g, Vanderbilt University,<br />

Nashville, TN, 2001.<br />

[6] WPI, Got mercury? Mixed waste focus area is f<strong>in</strong>d<strong>in</strong>g answers,<br />

Initiatives Onl<strong>in</strong>e, vol. 6, Summer, Internet Website <strong>of</strong> Waste<br />

Policy Institute, 1999. http://www.wpi.org/Initiatives/<strong>in</strong>it/summer99/<br />

gotmerc.htm..<br />

[7] A.S. Wagh, D. D<strong>in</strong>gh, S.Y. Jeong, Mercury stabilization <strong>in</strong> chemically<br />

bonded phosphate ceramics, <strong>in</strong>: Invited Paper <strong>for</strong> Environmental<br />

Protection Agency’s Workshop on Mercury Products, Processes,<br />

Waste, and <strong>the</strong> Environment: Elim<strong>in</strong>at<strong>in</strong>g, Reduc<strong>in</strong>g and Manag<strong>in</strong>g<br />

Risks, Baltimore, MD, March 22–23, 2000.<br />

[8] H.L. Clever, S.A. Johnson, M.E. Derrick, The solubility <strong>of</strong> mercury<br />

and some spar<strong>in</strong>gly soluble mercury salts <strong>in</strong> water and aqueous electrolyte<br />

solutions, J. Phys. Chem. Ref. Data 14 (3) (1985) 631–680.<br />

[9] G.R. Darnell, Sulfur polymer cement, a f<strong>in</strong>al waste <strong>for</strong>m <strong>for</strong> radioactive<br />

and hazardous wastes, <strong>in</strong>: T. Michael Gilliam, C. Carlton, Wiles<br />

(Eds.), Stabilization and Solidification <strong>of</strong> Hazardous, Radioactive,<br />

and Mixed Wastes: ASTM STP 1240, vol. 3, American Society <strong>for</strong><br />

Test<strong>in</strong>g and Materials, West Conshohocken, PA, 1996.<br />

[10] DOE, Mixed Waste Integrated Program (MWIP) Technology Summary<br />

DOE/EM-0125P, DOE Office <strong>of</strong> Environmental Management<br />

and Office <strong>of</strong> Science and Technology, Wash<strong>in</strong>gton, DC, 1994.<br />

[11] P.D. Kalb, D. Melamed, B.R. Patel, M. Fuhrmann, Treatment <strong>of</strong><br />

mercury conta<strong>in</strong><strong>in</strong>g wastes, United States Patent 6,399,849 (2002).<br />

[12] BNL, Brookhaven Lab Licenses its Mercury-Waste Treatment<br />

Technology to Newmont M<strong>in</strong><strong>in</strong>g Corporation, 2002,<br />

Internet Website <strong>of</strong> Brookhaven National Laboratory.<br />

http://www.globaltechnoscan.com/6thJune-12thJune01/mercury.htm.<br />

[13] M. Fuhrmann, D. Melamed, P.D. Kalb, J.W. Adams, L.W. Milian,<br />

Sulfur polymer solidification/stabilization <strong>of</strong> elemental mercury<br />

waste, Waste Manage. 22 (2002) 327–333.<br />

[14] P.D. Kalb, J.W. Adams, M.L. Meyer, H.H. Burns, Thermoplastic<br />

<strong>encapsulation</strong> treatability study <strong>for</strong> a mixed waste <strong>in</strong>c<strong>in</strong>erator <strong>of</strong>fgas<br />

scrubb<strong>in</strong>g solution, <strong>in</strong>: T. Michael Gilliam, C. Wiles Carlton<br />

(Eds.), Stabilization and Solidification <strong>of</strong> Hazardous, Radioactive,<br />

and Mixed Wastes: ASTM STP 1240, vol. 3, American Society <strong>for</strong><br />

Test<strong>in</strong>g and Materials, West Conshohocken, PA, 1996.<br />

[15] ORNL, Demonstration <strong>of</strong> mixed waste debris macro<strong>encapsulation</strong> us<strong>in</strong>g<br />

sulfur polymer cement, 1997, Internet Website <strong>of</strong> Oak Ridge National<br />

Laboratory. http://www.ornl.gov/K25/techdemo/macencp.htm.<br />

[16] B.R. Seidel, D.B. Barber, J. Macheret, A.S. Aloy, D.A. Knecht,<br />

1998. Application <strong>of</strong> chemically bonded phosphate ceramics to lowtemperature<br />

stabilization <strong>of</strong> ash, <strong>in</strong>: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Waste Management<br />

Conference, April 25, 1998.<br />

[17] DOE, Stabilization Us<strong>in</strong>g Phosphate Bonded Ceramics DOE/EM-<br />

0486, DOE Office <strong>of</strong> Environmental Management and Office <strong>of</strong> Science<br />

and Technology, Wash<strong>in</strong>gton, DC, 1999.<br />

[18] A.S. Wagh, S.Y. Jeong, Report on <strong>in</strong>-house test<strong>in</strong>g <strong>of</strong> ceramicrete<br />

technology <strong>for</strong> Hg stabilization, Internal Report to National Risk<br />

Management Research Laboratory, June 25, 2001.<br />

[19] P.D. Kalb, P. Colombo, Composition and process <strong>for</strong> <strong>the</strong> <strong>encapsulation</strong><br />

<strong>of</strong> radioactive hazardous and mixed wastes, United States Patent<br />

5,649,323 (1997).<br />

[20] T.W. Jackson, Mixed waste treatment at envirocare <strong>of</strong> Utah, <strong>in</strong>: Proceed<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong> Symposium on Waste Management ’2000, February<br />

27 to March 2, 2000, Tucson, AZ, USA, 2000.<br />

[21] DOE, Polyethylene Macro<strong>encapsulation</strong>. OST Reference #30, DOE<br />

Office <strong>of</strong> Environmental Management and Office <strong>of</strong> Science and<br />

Technology, Wash<strong>in</strong>gton, DC, 1998.<br />

[22] A.M. Faucette, B.W. Logsdon, J.J. Lucerna, R.J. Yudnich, Polymer<br />

solidification <strong>of</strong> mixed wastes at <strong>the</strong> Rocky Flats Plant, <strong>in</strong>: Proceed<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong> Symposium on Waste Management, Tucson, AZ, 1994.<br />

[23] D.A. Burbank, K.M We<strong>in</strong>gardt, Mixed waste solidification test<strong>in</strong>g<br />

on polymer and cement-based waste <strong>for</strong>ms <strong>in</strong> support <strong>of</strong> Han<strong>for</strong>d’s<br />

WRAP 2A facility, <strong>in</strong>: T. Michael Gilliam, C. Wiles Carlton<br />

(Eds.), Stabilization and Solidification <strong>of</strong> Hazardous, Radioactive,<br />

and Mixed Wastes: ASTM STP 1240, vol. 3, American Society <strong>for</strong><br />

Test<strong>in</strong>g and Materials, West Conshohocken, PA, 1996.<br />

[24] M. Carter, N. Baker, R. Bur<strong>for</strong>d, Polymer <strong>encapsulation</strong> <strong>of</strong> arsenicconta<strong>in</strong><strong>in</strong>g<br />

waste, J. Appl. Polym. Sci. 58 (1995) 2039–2046.<br />

[25] INEL, A new disposal option <strong>for</strong> mixed waste debris, 2002,<br />

Internet Website <strong>of</strong> Idaho National Eng<strong>in</strong>eer<strong>in</strong>g Laboratory at:<br />

http://tmfa.<strong>in</strong>el.gov/Documents/Arrow-pak1.asp.<br />

[26] Ultra-Tech, International, Macro<strong>encapsulation</strong>, 2002, Internet Website<br />

available. http://www.radwasteproducts.com/<strong>encapsulation</strong>.htm.<br />

[27] L.A. Smith, J.L. Means, A. Chen, B. Alleman, C.C. Chapman, J.S.<br />

Tixier, S.E. Braun<strong>in</strong>g, A.R. Gavaskar, M.D. Royer, Remedial Options<br />

<strong>for</strong> Metals-contam<strong>in</strong>ated Sites., Lewis Publishers, Boca Raton, FL,<br />

1995.<br />

[28] J. Hubbard, S. Tsadwa, N. Willis, M. Evans, Site sampl<strong>in</strong>g and<br />

treatability studies <strong>for</strong> demonstration <strong>of</strong> WasteChem’s asphalt <strong>encapsulation</strong><br />

technology under EPA’s SITE program, J. Air Waste<br />

Manage. Assoc. 40 (10) (1990) 1436–1441.<br />

[29] SAIC, Technologies <strong>for</strong> Immobiliz<strong>in</strong>g High Mercury Subcatergory<br />

Wastes, Science Applications International Corporation, TechLaw<br />

Subcontract No. G-200-010, 1998.<br />

[30] DOE, Mixed Waste Encapsulation <strong>in</strong> Polyester Res<strong>in</strong>s DOE/EM-<br />

0480, DOE Office <strong>of</strong> Environmental Management and Office <strong>of</strong> Science<br />

and Technology, Wash<strong>in</strong>gton, DC, 1999.


P. Randall, S. Chattopadhyay / Journal <strong>of</strong> Hazardous Materials B114 (2004) 211–223 223<br />

[31] E.G. Orebaugh, Lead Macro<strong>encapsulation</strong> Conceptual and Experimental<br />

Studies WSRC-RP-93-227, West<strong>in</strong>ghouse Savannah River<br />

Company, Aiken, SC, 1993.<br />

[32] X. Meng, Z. Hua, D. Dermatas, W. Wang, H.Y. Kuo, Immobilization<br />

<strong>of</strong> mercury(II) <strong>in</strong> contam<strong>in</strong>ated soil with used tire rubber, J. Hazard.<br />

Mater. 57 (1998) 231–241.<br />

[33] DOE, Stabilize High Salt Content Waste Us<strong>in</strong>g Polysiloxane Stabilization<br />

DOE/EM-0474, DOE Office <strong>of</strong> Environmental Management<br />

and Office <strong>of</strong> Science and Technology, Wash<strong>in</strong>gton, DC, 1999.<br />

[34] DOE, Stabilize High Salt Content Waste Us<strong>in</strong>g Sol Gel Process<br />

DOE/EM-0473, DOE Office <strong>of</strong> Environmental Management<br />

and Office <strong>of</strong> Science and Technology, Wash<strong>in</strong>gton, DC,<br />

1999.<br />

[35] Dolomatrix, Dolocrete TM — The Product, 2001, Internet Website.<br />

http://www.dolomatrix.com/product.htm.<br />

[36] J. Zhang, P.L. Bishop, Stabilization/solidification (S/S) <strong>of</strong> mercury<br />

conta<strong>in</strong><strong>in</strong>g wastes us<strong>in</strong>g reactivated carbon and portland cement, J.<br />

Hazard. Mater. 2832 (2002) 1–14.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!