22.03.2013 Views

"Lessons In Electric Circuits, Volume III -- Semiconductors"

"Lessons In Electric Circuits, Volume III -- Semiconductors"

"Lessons In Electric Circuits, Volume III -- Semiconductors"

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FifthEdition,lastupdateMarch29,2009


<strong>Lessons</strong><strong>In</strong><strong>Electric</strong><strong>Circuits</strong>,<strong>Volume</strong><strong>III</strong>–<br />

Semiconductors<br />

ByTonyR.Kuphaldt<br />

FifthEdition,lastupdateMarch29,2009


c○2000-2013,TonyR.Kuphaldt<br />

ThisbookispublishedunderthetermsandconditionsoftheDesignScienceLicense.These<br />

termsandconditionsallowforfreecopying,distribution,and/ormodificationofthisdocument<br />

bythegeneralpublic.ThefullDesignScienceLicensetextisincludedinthelastchapter.<br />

Asanopenandcollaborativelydevelopedtext,thisbookisdistributedinthehopethat<br />

itwillbeuseful,butWITHOUTANYWARRANTY;withouteventheimpliedwarrantyof<br />

MERCHANTABILITYorFITNESSFORAPARTICULARPURPOSE.SeetheDesignScience<br />

Licenseformoredetails.<br />

AvailableinitsentiretyaspartoftheOpenBookProjectcollectionat:<br />

openbookproject.net/electric<strong>Circuits</strong><br />

PRINTINGHISTORY<br />

• FirstEdition:PrintedinJuneof2000.Plain-ASCIIillustrationsforuniversalcomputer<br />

readability.<br />

• SecondEdition:PrintedinSeptemberof2000.Illustrationsreworkedinstandardgraphic<br />

(epsandjpeg)format.SourcefilestranslatedtoTexinfoformatforeasyonlineandprinted<br />

publication.<br />

• ThirdEdition:PrintedinJanuary2002.SourcefilestranslatedtoSubMLformat.SubML<br />

isasimplemarkuplanguagedesignedtoeasilyconverttoothermarkupslikeL ATEX,<br />

HTML,orDocBookusingnothingbutsearch-and-replacesubstitutions.<br />

• FourthEdition: PrintedinDecember2002. Newsectionsadded,anderrorcorrections<br />

made,sincethirdedition.<br />

• FithEdition: PrintedinJuly2007. Newsectionsadded,anderrorcorrectionsmade,<br />

formatchange.<br />

i


Contents<br />

1 AMPLIFIERSANDACTIVEDEVICES 1<br />

1.1 Fromelectrictoelectronic................................ 1<br />

1.2 Activeversuspassivedevices .............................. 3<br />

1.3 Amplifiers ......................................... 3<br />

1.4 Amplifiergain. ...................................... 6<br />

1.5 Decibels .......................................... 8<br />

1.6 AbsolutedBscales .................................... 14<br />

1.7 Attenuators ........................................ 16<br />

2 SOLID-STATEDEVICETHEORY 27<br />

2.1 <strong>In</strong>troduction........................................ 27<br />

2.2 Quantumphysics..................................... 28<br />

2.3 ValenceandCrystalstructure ............................. 41<br />

2.4 Bandtheoryofsolids................................... 47<br />

2.5 Electronsand“holes”................................... 50<br />

2.6 TheP-Njunction ..................................... 55<br />

2.7 Junctiondiodes ...................................... 58<br />

2.8 Bipolarjunctiontransistors............................... 60<br />

2.9 Junctionfield-effecttransistors............................. 65<br />

2.10 <strong>In</strong>sulated-gatefield-effecttransistors(MOSFET) . ................. 70<br />

2.11 Thyristors ......................................... 73<br />

2.12 Semiconductormanufacturingtechniques ...................... 75<br />

2.13 Superconductingdevices................................. 80<br />

2.14 Quantumdevices ..................................... 83<br />

2.15 SemiconductordevicesinSPICE . ........................... 91<br />

Bibliography ........................................... 93<br />

3 DIODESANDRECTIFIERS 97<br />

3.1 <strong>In</strong>troduction........................................ 98<br />

3.2 Metercheckofadiode . ................................. 103<br />

3.3 Dioderatings . ...................................... 107<br />

3.4 Rectifiercircuits ..................................... 108<br />

3.5 Peakdetector . ...................................... 115<br />

3.6 Clippercircuits ...................................... 117<br />

iii


iv CONTENTS<br />

3.7 Clampercircuits ..................................... 121<br />

3.8 Voltagemultipliers .................................... 123<br />

3.9 <strong>In</strong>ductorcommutatingcircuits ............................. 130<br />

3.10 Diodeswitchingcircuits ................................. 132<br />

3.11 Zenerdiodes........................................ 135<br />

3.12 Special-purposediodes. ................................. 143<br />

3.13 Otherdiodetechnologies................................. 163<br />

3.14 SPICEmodels. ...................................... 163<br />

Bibliography ........................................... 171<br />

4 BIPOLARJUNCTIONTRANSISTORS 173<br />

4.1 <strong>In</strong>troduction........................................ 174<br />

4.2 Thetransistorasaswitch................................ 176<br />

4.3 Metercheckofatransistor ............................... 179<br />

4.4 Activemodeoperation . ................................. 183<br />

4.5 Thecommon-emitteramplifier ............................. 189<br />

4.6 Thecommon-collectoramplifier............................. 202<br />

4.7 Thecommon-baseamplifier ............................... 210<br />

4.8 Thecascodeamplifier . ................................. 218<br />

4.9 Biasingtechniques .................................... 222<br />

4.10 Biasingcalculations ................................... 235<br />

4.11 <strong>In</strong>putandoutputcoupling................................ 247<br />

4.12 Feedback.......................................... 256<br />

4.13 Amplifierimpedances . ................................. 263<br />

4.14 Currentmirrors...................................... 264<br />

4.15 Transistorratingsandpackages . ........................... 269<br />

4.16 BJTquirks......................................... 271<br />

Bibliography ........................................... 278<br />

5 JUNCTIONFIELD-EFFECTTRANSISTORS 281<br />

5.1 <strong>In</strong>troduction........................................ 281<br />

5.2 Thetransistorasaswitch................................ 283<br />

5.3 Metercheckofatransistor ............................... 286<br />

5.4 Active-modeoperation . ................................. 288<br />

5.5 Thecommon-sourceamplifier–PENDING ...................... 297<br />

5.6 Thecommon-drainamplifier–PENDING ...................... 298<br />

5.7 Thecommon-gateamplifier–PENDING . ...................... 298<br />

5.8 Biasingtechniques–PENDING . ........................... 298<br />

5.9 Transistorratingsandpackages–PENDING .................... 299<br />

5.10 JFETquirks–PENDING ................................ 299<br />

6 INSULATED-GATEFIELD-EFFECTTRANSISTORS 301<br />

6.1 <strong>In</strong>troduction........................................ 301<br />

6.2 Depletion-typeIGFETs ................................. 302<br />

6.3 Enhancement-typeIGFETs–PENDING . ...................... 311<br />

6.4 Active-modeoperation–PENDING .......................... 311


CONTENTS v<br />

6.5 Thecommon-sourceamplifier–PENDING ...................... 312<br />

6.6 Thecommon-drainamplifier–PENDING ...................... 312<br />

6.7 Thecommon-gateamplifier–PENDING . ...................... 312<br />

6.8 Biasingtechniques–PENDING . ........................... 312<br />

6.9 Transistorratingsandpackages–PENDING .................... 312<br />

6.10 IGFETquirks–PENDING ............................... 313<br />

6.11 MESFETs–PENDING ................................. 313<br />

6.12 IGBTs ........................................... 313<br />

7 THYRISTORS 317<br />

7.1 Hysteresis ......................................... 317<br />

7.2 Gasdischargetubes ................................... 318<br />

7.3 TheShockleyDiode.................................... 322<br />

7.4 TheDIAC ......................................... 329<br />

7.5 TheSilicon-ControlledRectifier(SCR)......................... 329<br />

7.6 TheTRIAC ........................................ 341<br />

7.7 Optothyristors. ...................................... 344<br />

7.8 TheUnijunctionTransistor(UJT) ........................... 344<br />

7.9 TheSilicon-ControlledSwitch(SCS).......................... 350<br />

7.10 Field-effect-controlledthyristors . ........................... 352<br />

Bibliography ........................................... 354<br />

8 OPERATIONALAMPLIFIERS 355<br />

8.1 <strong>In</strong>troduction........................................ 355<br />

8.2 Single-endedanddifferentialamplifiers........................ 356<br />

8.3 The”operational”amplifier ............................... 360<br />

8.4 Negativefeedback .................................... 366<br />

8.5 Dividedfeedback ..................................... 369<br />

8.6 Ananalogyfordividedfeedback . ........................... 372<br />

8.7 Voltage-to-currentsignalconversion.......................... 378<br />

8.8 Averagerandsummercircuits ............................. 380<br />

8.9 Buildingadifferentialamplifier . ........................... 382<br />

8.10 Theinstrumentationamplifier ............................. 384<br />

8.11 Differentiatorandintegratorcircuits ......................... 385<br />

8.12 Positivefeedback ..................................... 388<br />

8.13 Practicalconsiderations ................................. 392<br />

8.14 Operationalamplifiermodels .............................. 408<br />

8.15 Data . ........................................... 413<br />

9 PRACTICALANALOGSEMICONDUCTORCIRCUITS 415<br />

9.1 ElectroStaticDischarge ................................. 415<br />

9.2 Powersupplycircuits–INCOMPLETE ........................ 420<br />

9.3 Amplifiercircuits–PENDING ............................. 422<br />

9.4 Oscillatorcircuits–INCOMPLETE .......................... 422<br />

9.5 Phase-lockedloops–PENDING . ........................... 424<br />

9.6 Radiocircuits–INCOMPLETE............................. 424


vi CONTENTS<br />

9.7 Computationalcircuits. ................................. 433<br />

9.8 Measurementcircuits–INCOMPLETE........................ 455<br />

9.9 Controlcircuits–PENDING .............................. 456<br />

Bibliography ........................................... 456<br />

10ACTIVEFILTERS 459<br />

11DCMOTORDRIVES 461<br />

11.1 PulseWidthModulation................................. 461<br />

12INVERTERSANDACMOTORDRIVES 465<br />

13ELECTRONTUBES 467<br />

13.1 <strong>In</strong>troduction........................................ 467<br />

13.2 Earlytubehistory .................................... 468<br />

13.3 Thetriode ......................................... 471<br />

13.4 Thetetrode ........................................ 473<br />

13.5 Beampowertubes .................................... 474<br />

13.6 Thepentode ........................................ 476<br />

13.7 Combinationtubes .................................... 476<br />

13.8 Tubeparameters ..................................... 479<br />

13.9 Ionization(gas-filled)tubes ............................... 481<br />

13.10Displaytubes . ...................................... 485<br />

13.11Microwavetubes ..................................... 488<br />

13.12TubesversusSemiconductors.............................. 491<br />

A-1ABOUTTHISBOOK 495<br />

A-2CONTRIBUTORLIST 499<br />

A-3DESIGNSCIENCELICENSE 507<br />

INDEX 511


Chapter1<br />

AMPLIFIERSANDACTIVE<br />

DEVICES<br />

Contents<br />

1.1 Fromelectrictoelectronic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

1.2 Activeversuspassivedevices . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.3 Amplifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.4 Amplifiergain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.5 Decibels......................................... 8<br />

1.6 AbsolutedBscales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.7 Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.7.1 Decibels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

1.7.2 T-sectionattenuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

1.7.3 PI-sectionattenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

1.7.4 L-sectionattenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

1.7.5 BridgedTattenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

1.7.6 Cascadedsections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

1.7.7 RFattenuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

1.1 Fromelectrictoelectronic<br />

Thisthirdvolumeofthebookseries<strong>Lessons</strong><strong>In</strong><strong>Electric</strong><strong>Circuits</strong>makesadeparturefromthe<br />

formertwointhatthetransitionbetweenelectriccircuitsandelectroniccircuitsisformally<br />

crossed. <strong>Electric</strong>circuitsareconnectionsofconductivewiresandotherdeviceswherebythe<br />

uniformflowofelectronsoccurs. Electroniccircuitsaddanewdimensiontoelectriccircuits<br />

inthatsomemeansofcontrolisexertedovertheflowofelectronsbyanotherelectricalsignal,<br />

eitheravoltageoracurrent.<br />

1


2 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

<strong>In</strong>andofitself,thecontrolofelectronflowisnothingnewtothestudentofelectriccircuits.Switchescontroltheflowofelectrons,asdopotentiometers,especiallywhenconnected<br />

asvariableresistors(rheostats). Neithertheswitchnorthepotentiometershouldbenewto<br />

yourexperiencebythispointinyourstudy.Thethresholdmarkingthetransitionfromelectric<br />

toelectronic,then,isdefinedbyhowtheflowofelectronsiscontrolledratherthanwhetheror<br />

notanyformofcontrolexistsinacircuit.Switchesandrheostatscontroltheflowofelectrons<br />

accordingtothepositioningofamechanicaldevice,whichisactuatedbysomephysicalforce<br />

externaltothecircuit.<strong>In</strong>electronics,however,wearedealingwithspecialdevicesabletocontroltheflowofelectronsaccordingtoanotherflowofelectrons,orbytheapplicationofastatic<br />

voltage.<strong>In</strong>otherwords,inanelectroniccircuit,electricityisabletocontrolelectricity.<br />

ThehistoricprecursortothemodernelectronicserawasinventedbyThomasEdisonin<br />

1880whiledevelopingtheelectricincandescentlamp. Edisonfoundthatasmallcurrent<br />

passedfromtheheatedlampfilamenttoametalplatemountedinsidethevacuumenvelop.<br />

(Figure1.1(a))Todaythisisknownasthe“Edisoneffect”.Notethatthebatteryisonlynecessarytoheatthefilament.Electronswouldstillflowifanon-electricalheatsourcewasused.<br />

e -1 e -1<br />

-<br />

(a) (b)<br />

+<br />

control<br />

Figure1.1: (a)Edisoneffect,(b)Flemingvalveorvacuumdiode,(c)DeForestaudiontriode<br />

vacuumtubeamplifier.<br />

By1904MarconiWirelessCompanyadviserJohnFlemmingfoundthatanexternallyappliedcurrent(platebattery)onlypassedinonedirectionfromfilamenttoplate(Figure1.1(b)),butnotthereversedirection(notshown).Thisinventionwasthevacuumdiode,usedtoconvertalternatingcurrentstoDC.TheadditionofathirdelectrodebyLeeDeForest(Figure1.1<br />

(c))allowedasmallsignaltocontrolthelargerelectronflowfromfilamenttoplate.<br />

Historically,theeraofelectronicsbeganwiththeinventionoftheAudiontube,adevice<br />

controllingtheflowofanelectronstreamthroughavacuumbytheapplicationofasmall<br />

voltagebetweentwometalstructureswithinthetube.Amoredetailedsummaryofso-called<br />

electrontubeorvacuumtubetechnologyisavailableinthelastchapterofthisvolumeforthose<br />

whoareinterested.<br />

Electronicstechnologyexperiencedarevolutionin1948withtheinventionofthetransistor.<br />

ThistinydeviceachievedapproximatelythesameeffectastheAudiontube,butin<br />

avastlysmalleramountofspaceandwithlessmaterial.Transistorscontroltheflowofelec-<br />

e -1<br />

-<br />

(c)<br />

+


1.2. ACTIVEVERSUSPASSIVEDEVICES 3<br />

tronsthroughsolidsemiconductorsubstancesratherthanthroughavacuum,andsotransistor<br />

technologyisoftenreferredtoassolid-stateelectronics.<br />

1.2 Activeversuspassivedevices<br />

Anactivedeviceisanytypeofcircuitcomponentwiththeabilitytoelectricallycontrolelectron<br />

flow(electricitycontrollingelectricity). <strong>In</strong>orderforacircuittobeproperlycalledelectronic,<br />

itmustcontainatleastoneactivedevice. Componentsincapableofcontrollingcurrentby<br />

meansofanotherelectricalsignalarecalledpassivedevices.Resistors,capacitors,inductors,<br />

transformers,andevendiodesareallconsideredpassivedevices. Activedevicesinclude,but<br />

arenotlimitedto,vacuumtubes,transistors,silicon-controlledrectifiers(SCRs),andTRIACs.<br />

Acasemightbemadeforthesaturablereactortobedefinedasanactivedevice,sinceitisable<br />

tocontrolanACcurrentwithaDCcurrent,butI’veneverhearditreferredtoassuch. The<br />

operationofeachoftheseactivedeviceswillbeexploredinlaterchaptersofthisvolume.<br />

Allactivedevicescontroltheflowofelectronsthroughthem. Someactivedevicesallowa<br />

voltagetocontrolthiscurrentwhileotheractivedevicesallowanothercurrenttodothejob.<br />

Devicesutilizingastaticvoltageasthecontrollingsignalare,notsurprisingly,calledvoltagecontrolleddevices.Devicesworkingontheprincipleofonecurrentcontrollinganothercurrent<br />

areknownascurrent-controlleddevices.Fortherecord,vacuumtubesarevoltage-controlled<br />

deviceswhiletransistorsaremadeaseithervoltage-controlledorcurrentcontrolledtypes.The<br />

firsttypeoftransistorsuccessfullydemonstratedwasacurrent-controlleddevice.<br />

1.3 Amplifiers<br />

Thepracticalbenefitofactivedevicesistheiramplifyingability.Whetherthedeviceinquestionbevoltage-controlledorcurrent-controlled,theamountofpowerrequiredofthecontrollingsignalistypicallyfarlessthantheamountofpoweravailableinthecontrolledcurrent.<br />

<strong>In</strong>otherwords,anactivedevicedoesn’tjustallowelectricitytocontrolelectricity;itallowsa<br />

smallamountofelectricitytocontrolalargeamountofelectricity.<br />

Becauseofthisdisparitybetweencontrollingandcontrolledpowers,activedevicesmaybe<br />

employedtogovernalargeamountofpower(controlled)bytheapplicationofasmallamount<br />

ofpower(controlling).Thisbehaviorisknownasamplification.<br />

Itisafundamentalruleofphysicsthatenergycanneitherbecreatednordestroyed.Stated<br />

formally,thisruleisknownastheLawofConservationofEnergy,andnoexceptionstoithave<br />

beendiscoveredtodate.IfthisLawistrue–andanoverwhelmingmassofexperimentaldata<br />

suggeststhatitis–thenitisimpossibletobuildadevicecapableoftakingasmallamountof<br />

energyandmagicallytransformingitintoalargeamountofenergy.Allmachines,electricand<br />

electroniccircuitsincluded,haveanupperefficiencylimitof100percent. Atbest,powerout<br />

equalspowerinasinFigure1.2.<br />

Usually,machinesfaileventomeetthislimit,losingsomeoftheirinputenergyintheform<br />

ofheatwhichisradiatedintosurroundingspaceandthereforenotpartoftheoutputenergy<br />

stream.(Figure1.3)<br />

Manypeoplehaveattempted,withoutsuccess,todesignandbuildmachinesthatoutput<br />

morepowerthantheytakein.Notonlywouldsuchaperpetualmotionmachineprovethatthe


4 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

P input<br />

Perfect machine<br />

Efficiency = P output<br />

P input<br />

= 1 = 100%<br />

P output<br />

Figure1.2:Thepoweroutputofamachinecanapproach,butneverexceed,thepowerinput<br />

for100%efficiencyasanupperlimit.<br />

P input<br />

Realistic machine<br />

Efficiency = P output<br />

P input<br />

< 1 = less than 100%<br />

P output<br />

P lost (usually waste heat)<br />

Figure1.3:Arealisticmachinemostoftenlosessomeofitsinputenergyasheatintransformingitintotheoutputenergystream.


1.3. AMPLIFIERS 5<br />

LawofConservationofEnergywasnotaLawafterall,butitwouldusherinatechnological<br />

revolutionsuchastheworldhasneverseen,foritcouldpoweritselfinacircularloopand<br />

generateexcesspowerfor“free”.(Figure1.4)<br />

P input<br />

Perpetual-motion<br />

machine<br />

Efficiency = P output<br />

P input<br />

P<br />

Perpetual-motion<br />

input machine<br />

> 1 = more than 100%<br />

P output<br />

P output<br />

P "free"<br />

Figure1.4:Hypothetical“perpetualmotionmachine”powersitself?<br />

Despitemucheffortandmanyunscrupulousclaimsof“freeenergy”orover-unitymachines,<br />

notonehaseverpassedthesimpletestofpoweringitselfwithitsownenergyoutputand<br />

generatingenergytospare.<br />

Theredoesexist,however,aclassofmachinesknownasamplifiers,whichareabletotakein<br />

small-powersignalsandoutputsignalsofmuchgreaterpower.Thekeytounderstandinghow<br />

amplifierscanexistwithoutviolatingtheLawofConservationofEnergyliesinthebehavior<br />

ofactivedevices.<br />

Becauseactivedeviceshavetheabilitytocontrolalargeamountofelectricalpowerwitha<br />

smallamountofelectricalpower,theymaybearrangedincircuitsoastoduplicatetheform<br />

oftheinputsignalpowerfromalargeramountofpowersuppliedbyanexternalpowersource.<br />

Theresultisadevicethatappearstomagicallymagnifythepowerofasmallelectricalsignal<br />

(usuallyanACvoltagewaveform)intoanidentically-shapedwaveformoflargermagnitude.<br />

TheLawofConservationofEnergyisnotviolatedbecausetheadditionalpowerissupplied<br />

byanexternalsource,usuallyaDCbatteryorequivalent. Theamplifierneithercreatesnor<br />

destroysenergy,butmerelyreshapesitintothewaveformdesiredasshowninFigure1.5.<br />

<strong>In</strong>otherwords,thecurrent-controllingbehaviorofactivedevicesisemployedtoshapeDC<br />

powerfromtheexternalpowersourceintothesamewaveformastheinputsignal,producing<br />

anoutputsignaloflikeshapebutdifferent(greater)powermagnitude.Thetransistororother<br />

activedevicewithinanamplifiermerelyformsalargercopyoftheinputsignalwaveformout<br />

ofthe“raw”DCpowerprovidedbyabatteryorotherpowersource.<br />

Amplifiers,likeallmachines,arelimitedinefficiencytoamaximumof100percent.Usually,electronicamplifiersarefarlessefficientthanthat,dissipatingconsiderableamountsof<br />

energyintheformofwasteheat.Becausetheefficiencyofanamplifierisalways100percent


6 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

P input<br />

External<br />

power source<br />

Amplifier<br />

P output<br />

Figure1.5:Whileanamplifiercanscaleasmallinputsignaltolargeoutput,itsenergysource<br />

isanexternalpowersupply.<br />

orless,onecanneverbemadetofunctionasa“perpetualmotion”device.<br />

Therequirementofanexternalsourceofpoweriscommontoalltypesofamplifiers,electricalandnon-electrical.<br />

Acommonexampleofanon-electricalamplificationsystemwould<br />

bepowersteeringinanautomobile,amplifyingthepowerofthedriver’sarmsinturningthe<br />

steeringwheeltomovethefrontwheelsofthecar.Thesourceofpowernecessaryfortheamplificationcomesfromtheengine.Theactivedevicecontrollingthedriver’s“inputsignal”isa<br />

hydraulicvalveshuttlingfluidpowerfromapumpattachedtotheenginetoahydraulicpiston<br />

assistingwheelmotion.Iftheenginestopsrunning,theamplificationsystemfailstoamplify<br />

thedriver’sarmpowerandthecarbecomesverydifficulttoturn.<br />

1.4 Amplifiergain<br />

Becauseamplifiershavetheabilitytoincreasethemagnitudeofaninputsignal,itisusefulto<br />

beabletorateanamplifier’samplifyingabilityintermsofanoutput/inputratio.Thetechnical<br />

termforanamplifier’soutput/inputmagnituderatioisgain.Asaratioofequalunits(power<br />

out/powerin,voltageout/voltagein,orcurrentout/currentin),gainisnaturallyaunitless<br />

measurement.Mathematically,gainissymbolizedbythecapitalletter“A”.<br />

Forexample,ifanamplifiertakesinanACvoltagesignalmeasuring2voltsRMSand<br />

outputsanACvoltageof30voltsRMS,ithasanACvoltagegainof30dividedby2,or15:<br />

A V = V output<br />

V input<br />

A V =<br />

A V = 15<br />

30 V<br />

2 V<br />

Correspondingly,ifweknowthegainofanamplifierandthemagnitudeoftheinputsignal,<br />

wecancalculatethemagnitudeoftheoutput.Forexample,ifanamplifierwithanACcurrent


1.4. AMPLIFIERGAIN 7<br />

gainof3.5isgivenanACinputsignalof28mARMS,theoutputwillbe3.5times28mA,or<br />

98mA:<br />

I output = (A I)(I input)<br />

I output = (3.5)(28 mA)<br />

I output = 98 mA<br />

<strong>In</strong>thelasttwoexamplesIspecificallyidentifiedthegainsandsignalmagnitudesinterms<br />

of“AC.”Thiswasintentional,andillustratesanimportantconcept:electronicamplifiersoften<br />

responddifferentlytoACandDCinputsignals,andmayamplifythemtodifferentextents.<br />

Anotherwayofsayingthisisthatamplifiersoftenamplifychangesorvariationsininput<br />

signalmagnitude(AC)atadifferentratiothansteadyinputsignalmagnitudes(DC).The<br />

specificreasonsforthisaretoocomplextoexplainatthistime,butthefactofthematteris<br />

worthmentioning.Ifgaincalculationsaretobecarriedout,itmustfirstbeunderstoodwhat<br />

typeofsignalsandgainsarebeingdealtwith,ACorDC.<br />

<strong>Electric</strong>alamplifiergainsmaybeexpressedintermsofvoltage,current,and/orpower,in<br />

bothACandDC.Asummaryofgaindefinitionsisasfollows. Thetriangle-shaped“delta”<br />

symbol(∆)representschangeinmathematics,so“∆Voutput/ ∆Vinput”means“changeinoutput<br />

voltagedividedbychangeininputvoltage,”ormoresimply,“ACoutputvoltagedividedbyAC<br />

inputvoltage”:<br />

Voltage<br />

Current<br />

Power<br />

DC gains AC gains<br />

A V = V output<br />

V input<br />

A I = I output<br />

I input<br />

A P =<br />

P output<br />

P input<br />

A V = ∆V output<br />

∆V input<br />

A I = ∆I output<br />

∆I input<br />

A P = (∆V output)(∆I output)<br />

(∆V input)(∆I input)<br />

A P = (A V)(A I)<br />

∆ = "change in . . ."<br />

Ifmultipleamplifiersarestaged,theirrespectivegainsformanoverallgainequaltothe<br />

product(multiplication)oftheindividualgains.(Figure1.6)Ifa1Vsignalwereappliedtothe<br />

inputofthegainof3amplifierinFigure1.6a3Vsignaloutofthefirstamplifierwouldbe<br />

furtheramplifiedbyagainof5atthesecondstageyielding15Vatthefinaloutput.


8 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

<strong>In</strong>put signal Amplifier<br />

Amplifier<br />

Output signal<br />

gain = 3<br />

gain = 5<br />

Overall gain = (3)(5) = 15<br />

Figure1.6:Thegainofachainofcascadedamplifiersistheproductoftheindividualgains.<br />

1.5 Decibels<br />

<strong>In</strong>itssimplestform,anamplifier’sgainisaratioofoutputoverinput. Likeallratios,this<br />

formofgainisunitless.However,thereisanactualunitintendedtorepresentgain,anditis<br />

calledthebel.<br />

Asaunit,thebelwasactuallydevisedasaconvenientwaytorepresentpowerlossintelephonesystemwiringratherthangaininamplifiers.Theunit’snameisderivedfromAlexanderGrahamBell,thefamousScottishinventorwhoseworkwasinstrumentalindevelopingtelephonesystems.Originally,thebelrepresentedtheamountofsignalpowerlossduetoresistanceoverastandardlengthofelectricalcable.Now,itisdefinedintermsofthecommon<br />

(base10)logarithmofapowerratio(outputpowerdividedbyinputpower):<br />

A P(ratio) = P output<br />

P input<br />

A P(Bel) = log P output<br />

P input<br />

Becausethebelisalogarithmicunit,itisnonlinear.Togiveyouanideaofhowthisworks,<br />

considerthefollowingtableoffigures,comparingpowerlossesandgainsinbelsversussimple<br />

ratios:<br />

Table: Gain / loss in bels<br />

Loss/gain as<br />

a ratio<br />

P output<br />

P input<br />

100<br />

10<br />

1<br />

(no loss or gain)<br />

Loss/gain<br />

in bels<br />

log<br />

1000 3 B<br />

P output<br />

P input<br />

2 B<br />

1 B<br />

0 B<br />

Loss/gain as<br />

a ratio<br />

P output<br />

P input<br />

Loss/gain<br />

in bels<br />

log<br />

P output<br />

P input<br />

0.1 -1 B<br />

0.01 -2 B<br />

0.001 -3 B<br />

0.0001 -4 B<br />

Itwaslaterdecidedthatthebelwastoolargeofaunittobeuseddirectly,andsoitbecame


1.5. DECIBELS 9<br />

customarytoapplythemetricprefixdeci(meaning1/10)toit,makingitdecibels,ordB.Now,<br />

theexpression“dB”issocommonthatmanypeopledonotrealizeitisacombinationof“deci-”<br />

and“-bel,”orthatthereevenissuchaunitasthe“bel.” Toputthisintoperspective,hereis<br />

anothertablecontrastingpowergain/lossratiosagainstdecibels:<br />

Table: Gain / loss in decibels<br />

Loss/gain as<br />

a ratio<br />

P output<br />

P input<br />

1000<br />

100<br />

10<br />

1<br />

(no loss or gain)<br />

Loss/gain<br />

in decibels<br />

10 log<br />

30 dB<br />

20 dB<br />

10 dB<br />

0 dB<br />

P output<br />

P input<br />

Loss/gain as<br />

a ratio<br />

P output<br />

P input<br />

0.1<br />

0.01<br />

0.001<br />

Loss/gain<br />

in decibels<br />

10 log<br />

-10 dB<br />

-20 dB<br />

-30 dB<br />

0.0001 -40 dB<br />

P output<br />

Asalogarithmicunit,thismodeofpowergainexpressioncoversawiderangeofratioswith<br />

aminimalspaninfigures. Itisreasonabletoask,“whydidanyonefeeltheneedtoinventa<br />

logarithmicunitforelectricalsignalpowerlossinatelephonesystem?”Theanswerisrelated<br />

tothedynamicsofhumanhearing,theperceptiveintensityofwhichislogarithmicinnature.<br />

Humanhearingishighlynonlinear:inordertodoubletheperceivedintensityofasound,<br />

theactualsoundpowermustbemultipliedbyafactoroften.Relatingtelephonesignalpower<br />

lossintermsofthelogarithmic“bel”scalemakesperfectsenseinthiscontext:apowerlossof<br />

1beltranslatestoaperceivedsoundlossof50percent,or1/2.Apowergainof1beltranslates<br />

toadoublingintheperceivedintensityofthesound.<br />

AnalmostperfectanalogytothebelscaleistheRichterscaleusedtodescribeearthquake<br />

intensity:a6.0Richterearthquakeis10timesmorepowerfulthana5.0Richterearthquake;a<br />

7.0Richterearthquake100timesmorepowerfulthana5.0Richterearthquake;a4.0Richter<br />

earthquakeis1/10aspowerfulasa5.0Richterearthquake,andsoon. Themeasurement<br />

scaleforchemicalpHislikewiselogarithmic,adifferenceof1onthescaleisequivalentto<br />

atenfolddifferenceinhydrogenionconcentrationofachemicalsolution. Anadvantageof<br />

usingalogarithmicmeasurementscaleisthetremendousrangeofexpressionaffordedbya<br />

relativelysmallspanofnumericalvalues,anditisthisadvantagewhichsecurestheuseof<br />

RichternumbersforearthquakesandpHforhydrogenionactivity.<br />

Anotherreasonfortheadoptionofthebelasaunitforgainisforsimpleexpressionofsystemgainsandlosses.Considerthelastsystemexample(Figure1.6)wheretwoamplifierswere<br />

connectedtandemtoamplifyasignal.Therespectivegainforeachamplifierwasexpressedas<br />

aratio,andtheoverallgainforthesystemwastheproduct(multiplication)ofthosetworatios:<br />

Overall gain = (3)(5) = 15<br />

P input<br />

Ifthesefiguresrepresentedpowergains,wecoulddirectlyapplytheunitofbelstothetask


10 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

ofrepresentingthegainofeachamplifier,andofthesystemaltogether.(Figure1.7)<br />

A P(Bel) = log A P(ratio)<br />

A P(Bel) = log 3 A P(Bel) = log 5<br />

<strong>In</strong>put signal<br />

Amplifier<br />

gain = 3<br />

Amplifier<br />

gain = 5<br />

Output signal<br />

gain = 0.477 B gain = 0.699 B<br />

Overall gain = (3)(5) = 15<br />

Overall gain (Bel) = log 15 = 1.176 B<br />

Figure1.7:Powergaininbelsisadditive:0.477B+0.699B=1.176B.<br />

Closeinspectionofthesegainfiguresintheunitof“bel”yieldsadiscovery:they’readditive.<br />

Ratiogainfiguresaremultiplicativeforstagedamplifiers,butgainsexpressedinbelsadd<br />

ratherthanmultiplytoequaltheoverallsystemgain.Thefirstamplifierwithitspowergain<br />

of0.477Baddstothesecondamplifier’spowergainof0.699Btomakeasystemwithanoverall<br />

powergainof1.176B.<br />

Recalculatingfordecibelsratherthanbels,wenoticethesamephenomenon.(Figure1.8)<br />

A P(dB) = 10 log A P(ratio)<br />

A P(dB) = 10 log 3 A P(dB) = 10 log 5<br />

<strong>In</strong>put signal<br />

Amplifier<br />

gain = 3<br />

Amplifier<br />

gain = 5<br />

Output signal<br />

gain = 4.77 dB gain = 6.99 dB<br />

Overall gain = (3)(5) = 15<br />

Overall gain (dB) = 10 log 15 = 11.76 dB<br />

Figure1.8:Gainofamplifierstagesindecibelsisadditive:4.77dB+6.99dB=11.76dB.<br />

Tothosealreadyfamiliarwiththearithmeticpropertiesoflogarithms,thisisnosurprise.<br />

Itisanelementaryruleofalgebrathattheantilogarithmofthesumoftwonumbers’logarithm<br />

valuesequalstheproductofthetwooriginalnumbers.<strong>In</strong>otherwords,ifwetaketwonumbers<br />

anddeterminethelogarithmofeach,thenaddthosetwologarithmfigurestogether,then<br />

determinethe“antilogarithm”ofthatsum(elevatethebasenumberofthelogarithm–inthis<br />

case,10–tothepowerofthatsum),theresultwillbethesameasifwehadsimplymultiplied<br />

thetwooriginalnumberstogether. Thisalgebraicruleformstheheartofadevicecalleda<br />

sliderule,ananalogcomputerwhichcould,amongotherthings,determinetheproductsand<br />

quotientsofnumbersbyaddition(addingtogetherphysicallengthsmarkedonslidingwood,<br />

metal,orplasticscales). Givenatableoflogarithmfigures,thesamemathematicaltrick<br />

couldbeusedtoperformotherwisecomplexmultiplicationsanddivisionsbyonlyhavingto<br />

doadditionsandsubtractions,respectively. Withtheadventofhigh-speed,handheld,digital<br />

calculatordevices,thiselegantcalculationtechniquevirtuallydisappearedfrompopularuse.<br />

However,itisstillimportanttounderstandwhenworkingwithmeasurementscalesthatare


1.5. DECIBELS 11<br />

logarithmicinnature,suchasthebel(decibel)andRichterscales.<br />

Whenconvertingapowergainfromunitsofbelsordecibelstoaunitlessratio,themathematicalinversefunctionofcommonlogarithmsisused:powersof10,ortheantilog.<br />

If:<br />

A P(Bel) = log A P(ratio)<br />

Then:<br />

A P(ratio) = 10 A P(Bel)<br />

Convertingdecibelsintounitlessratiosforpowergainismuchthesame,onlyadivision<br />

factorof10isincludedintheexponentterm:<br />

If:<br />

A P(dB) = 10 log A P(ratio)<br />

Then:<br />

A P(ratio) = 10<br />

A P(dB)<br />

10<br />

Example: Powerintoanamplifieris1Watt,thepoweroutis10Watts.Findthepower<br />

gainindB.<br />

A P(dB)=10log10(PO/PI)=10log10(10/1)=10log10(10)=10(1)=10dB<br />

Example: FindthepowergainratioA P(ratio)=(PO/PI)fora20dBPowergain.<br />

A P(dB)=20=10log10A P(ratio)<br />

20/10=log10A P(ratio)<br />

10 20/10 = 10 log10(A P(ratio))<br />

100=A P(ratio)=(PO/PI)<br />

Becausethebelisfundamentallyaunitofpowergainorlossinasystem,voltageorcurrent<br />

gainsandlossesdon’tconverttobelsordBinquitethesameway.Whenusingbelsordecibels<br />

toexpressagainotherthanpower,beitvoltageorcurrent,wemustperformthecalculation<br />

intermsofhowmuchpowergaintherewouldbeforthatamountofvoltageorcurrentgain.<br />

Foraconstantloadimpedance,avoltageorcurrentgainof2equatestoapowergainof4(2 2 );<br />

avoltageorcurrentgainof3equatestoapowergainof9(3 2 ). Ifwemultiplyeithervoltage<br />

orcurrentbyagivenfactor,thenthepowergainincurredbythatmultiplicationwillbethe<br />

squareofthatfactor.ThisrelatesbacktotheformsofJoule’sLawwherepowerwascalculated<br />

fromeithervoltageorcurrent,andresistance:


12 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

P = E2<br />

R<br />

P = I 2 R<br />

Power is proportional to the square<br />

of either voltage or current<br />

Thus,whentranslatingavoltageorcurrentgainratiointoarespectivegainintermsofthe<br />

belunit,wemustincludethisexponentintheequation(s):<br />

AP(Bel) = log AP(ratio) 2<br />

AV(Bel) = log AV(ratio) 2<br />

AI(Bel) = log AI(ratio) Exponent required<br />

Thesameexponentrequirementholdstruewhenexpressingvoltageorcurrentgainsin<br />

termsofdecibels:<br />

AP(dB) = 10 log AP(ratio) 2<br />

AV(dB) = 10 log AV(ratio) 2<br />

AI(dB) = 10 log AI(ratio) Exponent required<br />

However,thankstoanotherinterestingpropertyoflogarithms,wecansimplifytheseequationstoeliminatetheexponentbyincludingthe“2”asamultiplyingfactorforthelogarithm<br />

function.<strong>In</strong>otherwords,insteadoftakingthelogarithmofthesquareofthevoltageorcurrent<br />

gain,wejustmultiplythevoltageorcurrentgain’slogarithmfigureby2andthefinalresult<br />

inbelsordecibelswillbethesame:<br />

For bels:<br />

2<br />

AV(Bel) = log AV(ratio) . . . is the same as . . .<br />

AV(Bel) = 2 log AV(ratio) For decibels:<br />

2<br />

AI(Bel) = log AI(ratio) . . . is the same as . . .<br />

AI(Bel) = 2 log AI(ratio) 2<br />

AV(dB) = 10 log AV(ratio) 2<br />

AI(dB) = 10 log AI(ratio) . . . is the same as . . . . . . is the same as . . .<br />

AV(dB) = 20 log AV(ratio) AI(dB) = 20 log AI(ratio) Theprocessofconvertingvoltageorcurrentgainsfrombelsordecibelsintounitlessratios<br />

ismuchthesameasitisforpowergains:


1.5. DECIBELS 13<br />

If:<br />

A V(Bel) = 2 log A V(ratio)<br />

Then:<br />

A V(Bel)<br />

A V(ratio) = 10 2<br />

A I(Bel) = 2 log A I(ratio)<br />

A I(ratio) = 10<br />

Herearetheequationsusedforconvertingvoltageorcurrentgainsindecibelsintounitless<br />

ratios:<br />

If:<br />

A V(dB) = 20 log A V(ratio)<br />

Then:<br />

A V(ratio) = 10<br />

A V(dB)<br />

A I(Bel)<br />

A I(dB) = 20 log A I(ratio)<br />

20 20<br />

A I(ratio) = 10<br />

Whilethebelisaunitnaturallyscaledforpower,anotherlogarithmicunithasbeeninventedtodirectlyexpressvoltageorcurrentgains/losses,anditisbasedonthenaturallogarithmratherthanthecommonlogarithmasbelsanddecibelsare.<br />

Calledtheneper,itsunit<br />

symbolisalower-case“n.”<br />

A V(ratio) = V output<br />

V input<br />

AV(neper) = ln AV(ratio) AI(neper) = ln AI(ratio) Forbetterorforworse,neitherthenepernoritsattenuatedcousin,thedecineper,ispopularlyusedasaunitinAmericanengineeringapplications.<br />

Example: Thevoltageintoa600 Ωaudiolineamplifieris10mV,thevoltageacrossa600<br />

Ωloadis1V.FindthepowergainindB.<br />

2<br />

A I(dB)<br />

A I(ratio) = I output<br />

I input<br />

A (dB)=20log10(VO/VI)=20log10(1/0.01)=20log10(100)=20(2)=40dB<br />

Example: FindthevoltagegainratioA V (ratio)=(VO/VI)fora20dBgainamplifier<br />

havinga50 Ωinputandoutimpedance.<br />

A V (dB)=20log10A V (ratio)<br />

20=20log10A V (ratio)<br />

20/20=log10A P(ratio)<br />

10 20/20 = 10 log10(A V (ratio))<br />

10=A V (ratio)=(VO/VI)<br />

• REVIEW:<br />

• Gainsandlossesmaybeexpressedintermsofaunitlessratio,orintheunitofbels(B)<br />

ordecibels(dB).Adecibelisliterallyadeci-bel:one-tenthofabel.


14 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

• Thebelisfundamentallyaunitforexpressingpowergainorloss. Toconvertapower<br />

ratiotoeitherbelsordecibels,useoneoftheseequations:<br />

• A P(Bel) = log A P(ratio) A P(db) = 10 log A P(ratio)<br />

• Whenusingtheunitofthebelordecibeltoexpressavoltageorcurrentratio,itmustbe<br />

castintermsofanequivalentpowerratio. Practically,thismeanstheuseofdifferent<br />

equations,withamultiplicationfactorof2forthelogarithmvaluecorrespondingtoan<br />

exponentof2forthevoltageorcurrentgainratio:<br />

•<br />

A V(Bel) = 2 log A V(ratio)<br />

A I(Bel) = 2 log A I(ratio)<br />

A V(dB) = 20 log A V(ratio)<br />

A I(dB) = 20 log A I(ratio)<br />

• Toconvertadecibelgainintoaunitlessratiogain,useoneoftheseequations:<br />

•<br />

A V(ratio) = 10<br />

A V(dB)<br />

20<br />

A I(dB)<br />

20<br />

AI(ratio) = 10<br />

A P(ratio) = 10<br />

A P(dB)<br />

10<br />

• Again(amplification)isexpressedasapositivebelordecibelfigure.Aloss(attenuation)<br />

isexpressedasanegativebelordecibelfigure.Unitygain(nogainorloss;ratio=1)is<br />

expressedaszerobelsorzerodecibels.<br />

• Whencalculatingoverallgainforanamplifiersystemcomposedofmultipleamplifier<br />

stages,individualgainratiosaremultipliedtofindtheoverallgainratio. Belordecibelfiguresforeachamplifierstage,ontheotherhand,areaddedtogethertodetermine<br />

overallgain.<br />

1.6 AbsolutedBscales<br />

Itisalsopossibletousethedecibelasaunitofabsolutepower,inadditiontousingitasan<br />

expressionofpowergainorloss.Acommonexampleofthisistheuseofdecibelsasameasurementofsoundpressureintensity.<strong>In</strong>caseslikethese,themeasurementismadeinreferenceto<br />

somestandardizedpowerleveldefinedas0dB.Formeasurementsofsoundpressure,0dBis<br />

looselydefinedasthelowerthresholdofhumanhearing,objectivelyquantifiedas1picowatt<br />

ofsoundpowerpersquaremeterofarea.<br />

Asoundmeasuring40dBonthedecibelsoundscalewouldbe10 4 timesgreaterthanthe<br />

thresholdofhearing.A100dBsoundwouldbe10 10 (tenbillion)timesgreaterthanthethresholdofhearing.<br />

Becausethehumanearisnotequallysensitivetoallfrequenciesofsound,variationsofthe<br />

decibelsound-powerscalehavebeendevelopedtorepresentphysiologicallyequivalentsound<br />

intensitiesatdifferentfrequencies. Somesoundintensityinstrumentswereequippedwith<br />

filternetworkstogivedisproportionateindicationsacrossthefrequencyscale,theintentof


1.6. ABSOLUTEDBSCALES 15<br />

whichtobetterrepresenttheeffectsofsoundonthehumanbody.Threefilteredscalesbecame<br />

commonlyknownasthe“A,”“B,”and“C”weightedscales.Decibelsoundintensityindications<br />

measuredthroughtheserespectivefilteringnetworksweregiveninunitsofdBA,dBB,and<br />

dBC.Today,the“A-weightedscale”ismostcommonlyusedforexpressingtheequivalentphysiologicalimpactonthehumanbody,andisespeciallyusefulforratingdangerouslyloudnoise<br />

sources.<br />

Anotherstandard-referencedsystemofpowermeasurementintheunitofdecibelshasbeen<br />

establishedforuseintelecommunicationssystems.ThisiscalledthedBmscale.(Figure1.9)<br />

Thereferencepoint,0dBm,isdefinedas1milliwattofelectricalpowerdissipatedbya600 Ω<br />

load.Accordingtothisscale,10dBmisequalto10timesthereferencepower,or10milliwatts;<br />

20dBmisequalto100timesthereferencepower,or100milliwatts.SomeACvoltmeterscome<br />

equippedwithadBmrangeorscale(sometimeslabeled“DB”)intendedforuseinmeasuring<br />

ACsignalpoweracrossa600 Ωload. 0dBmonthisscaleis,ofcourse,elevatedabovezero<br />

becauseitrepresentssomethinggreaterthan0(actually,itrepresents0.7746voltsacrossa<br />

600 Ωload,voltagebeingequaltothesquarerootofpowertimesresistance;thesquareroot<br />

of0.001multipliedby600).Whenviewedonthefaceofananalogmetermovement,thisdBm<br />

scaleappearscompressedontheleftsideandexpandedontherightinamannernotunlikea<br />

resistancescale,owingtoitslogarithmicnature.<br />

Radiofrequencypowermeasurementsforlowlevelsignalsencounteredinradioreceivers<br />

usedBmmeasurementsreferencedtoa50 Ωload.Signalgeneratorsfortheevaluationofradio<br />

receiversmayoutputanadjustabledBmratedsignal.Thesignallevelisselectedbyadevice<br />

calledanattenuator,describedinthenextsection.<br />

Table: Absolute power levels in dBm (decibel milliwatt)<br />

Power in<br />

watts<br />

1<br />

0.1<br />

0.01<br />

Power in<br />

milliwatts<br />

1000<br />

100<br />

10<br />

Power in<br />

dBm<br />

30 dB<br />

20 dB<br />

10 dB<br />

0.002 2<br />

3 dB<br />

Power in<br />

milliwatts<br />

1<br />

0.1<br />

0.01<br />

0.004 4 6 dB 0.001<br />

0.0001<br />

Power in<br />

dBm<br />

0 dB<br />

-10 dB<br />

-20 dB<br />

-30 dB<br />

-40 dB<br />

Figure1.9:AbsolutepowerlevelsindBm(decibelsreferencedto1milliwatt).<br />

AnadaptationofthedBmscaleforaudiosignalstrengthisusedinstudiorecordingand<br />

broadcastengineeringforstandardizingvolumelevels,andiscalledtheVUscale.VUmeters<br />

arefrequentlyseenonelectronicrecordinginstrumentstoindicatewhetherornottherecorded<br />

signalexceedsthemaximumsignallevellimitofthedevice,wheresignificantdistortionwill


16 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

occur. This“volumeindicator”scaleiscalibratedinaccordingtothedBmscale,butdoesnot<br />

directlyindicatedBmforanysignalotherthansteadysine-wavetones. Theproperunitof<br />

measurementforaVUmeterisvolumeunits.<br />

Whenrelativelylargesignalsaredealtwith,andanabsolutedBscalewouldbeusefulfor<br />

representingsignallevel,specializeddecibelscalesaresometimesusedwithreferencepoints<br />

greaterthanthe1mWusedindBm. SuchisthecaseforthedBWscale,withareference<br />

pointof0dBWestablishedat1Watt.AnotherabsolutemeasureofpowercalledthedBkscale<br />

references0dBkat1kW,or1000Watts.<br />

• REVIEW:<br />

• Theunitofthebelordecibelmayalsobeusedtorepresentanabsolutemeasurementof<br />

powerratherthanjustarelativegainorloss. Forsoundpowermeasurements,0dBis<br />

definedasastandardizedreferencepointofpowerequalto1picowattpersquaremeter.<br />

AnotherdBscalesuitedforsoundintensitymeasurementsisnormalizedtothesame<br />

physiologicaleffectsasa1000Hztone,andiscalledthedBAscale. <strong>In</strong>thissystem,0<br />

dBAisdefinedasanyfrequencysoundhavingthesamephysiologicalequivalenceasa1<br />

picowatt-per-square-metertoneat1000Hz.<br />

• AnelectricaldBscalewithanabsolutereferencepointhasbeenmadeforuseintelecommunicationssystems.CalledthedBmscale,itsreferencepointof0dBmisdefinedas1<br />

milliwattofACsignalpowerdissipatedbya600 Ωload.<br />

• AVUmeterreadsaudiosignallevelaccordingtothedBmforsine-wavesignals.Because<br />

itsresponsetosignalsotherthansteadysinewavesisnotthesameastruedBm,itsunit<br />

ofmeasurementisvolumeunits.<br />

• dBscaleswithgreaterabsolutereferencepointsthanthedBmscalehavebeeninvented<br />

forhigh-powersignals.ThedBWscalehasitsreferencepointof0dBWdefinedas1Watt<br />

ofpower.ThedBkscalesets1kW(1000Watts)asthezero-pointreference.<br />

1.7 Attenuators<br />

Attenuatorsarepassivedevices.Itisconvenienttodiscussthemalongwithdecibels.Attenuatorsweakenorattenuatethehighleveloutputofasignalgenerator,forexample,toprovide<br />

alowerlevelsignalforsomethingliketheantennainputofasensitiveradioreceiver. (Figure1.10)Theattenuatorcouldbebuiltintothesignalgenerator,orbeastand-alonedevice.<br />

Itcouldprovideafixedoradjustableamountofattenuation. Anattenuatorsectioncanalso<br />

provideisolationbetweenasourceandatroublesomeload.<br />

<strong>In</strong>thecaseofastand-aloneattenuator,itmustbeplacedinseriesbetweenthesignal<br />

sourceandtheloadbybreakingopenthesignalpathasshowninFigure1.10. <strong>In</strong>addition,<br />

itmustmatchboththesourceimpedanceZIandtheloadimpedanceZO,whileprovidinga<br />

specifiedamountofattenuation. <strong>In</strong>thissectionwewillonlyconsiderthespecial,andmost<br />

common,casewherethesourceandloadimpedancesareequal.Notconsideredinthissection,<br />

unequalsourceandloadimpedancesmaybematchedbyanattenuatorsection.However,the<br />

formulationismorecomplex.


1.7. ATTENUATORS 17<br />

Z I<br />

Z O<br />

Attenuator<br />

Figure1.10: ConstantimpedanceattenuatorismatchedtosourceimpedanceZI andload<br />

impedanceZO.ForradiofrequencyequipmentZis50 Ω.<br />

Z I<br />

T attenuator Π attenuator<br />

Figure1.11:Tsectionand Πsectionattenuatorsarecommonforms.<br />

CommonconfigurationsaretheTand ΠnetworksshowninFigure1.11Multipleattenuator<br />

sectionsmaybecascadedwhenevenweakersignalsareneededasinFigure1.19.<br />

1.7.1 Decibels<br />

Voltageratios,asusedinthedesignofattenuatorsareoftenexpressedintermsofdecibels.<br />

Thevoltageratio(Kbelow)mustbederivedfromtheattenuationindecibels.Powerratiosexpressedasdecibelsareadditive.Forexample,a10dBattenuatorfollowedbya6dBattenuator<br />

provides16dBofattenuationoverall.<br />

10dB+6db=16dB<br />

Changingsoundlevelsareperceptibleroughlyproportionaltothelogarithmofthepower<br />

ratio(PI/PO).<br />

soundlevel=log10(PI/PO)<br />

Achangeof1dBinsoundlevelisbarelyperceptibletoalistener,while2dbisreadily<br />

perceptible.Anattenuationof3dBcorrespondstocuttingpowerinhalf,whileagainof3db<br />

correspondstoadoublingofthepowerlevel.Againof-3dBisthesameasanattenuationof<br />

+3dB,correspondingtohalftheoriginalpowerlevel.<br />

Thepowerchangeindecibelsintermsofpowerratiois:<br />

dB=10log10(PI/PO)<br />

AssumingthattheloadRI atPI isthesameastheloadresistorROatPO(RI =RO),the<br />

decibelsmaybederivedfromthevoltageratio(VI/VO)orcurrentratio(II/IO):<br />

Z O


18 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

PO=VOIO=VO 2 /R=IO 2 R<br />

PI=V<strong>III</strong>=VI 2 /R=II 2 R<br />

dB=10log10(PI/PO)=10log10(VI 2 /VO 2 )=20log10(VI/VO)<br />

dB=10log10(PI/PO)=10log10(II 2 /IO 2 )=20log10(II/IO)<br />

Thetwomostoftenusedformsofthedecibelequationare:<br />

dB=10log10(PI/PO) or dB=20log10(VI/VO)<br />

Wewillusethelatterform,sinceweneedthevoltageratio.Onceagain,thevoltageratio<br />

formofequationisonlyapplicablewherethetwocorrespondingresistorsareequal. Thatis,<br />

thesourceandloadresistanceneedtobeequal.<br />

Example: Powerintoanattenuatoris10Watts,thepoweroutis1Watt. Findthe<br />

attenuationindB.<br />

dB=10log10(PI/PO)=10log10(10/1)=10log10(10)=10(1)=10dB<br />

Example: Findthevoltageattenuationratio(K=(VI/VO))fora10dBattenuator.<br />

dB=10=20log10(VI/VO)<br />

10/20=log10(VI/VO)<br />

10 10/20 = 10 log10(VI/VO)<br />

3.16=(VI/VO)=A P(ratio)<br />

Example: Powerintoanattenuatoris100milliwatts,thepoweroutis1milliwatt.Find<br />

theattenuationindB.<br />

dB=10log10(PI/PO)=10log10(100/1)=10log10(100)=10(2)=20dB<br />

Example: Findthevoltageattenuationratio(K=(VI/VO))fora20dBattenuator.<br />

dB=20=20log10(VI/VO)<br />

10 20/20 = 10 log10(VI/VO)<br />

10=(VI/VO)=K


1.7. ATTENUATORS 19<br />

dB = attenuation in decibels<br />

Z = source/load impedance (resistive)<br />

K > 1<br />

K = = 10 dB/20<br />

R 1 = Z<br />

R 2 = Z<br />

V I<br />

V O<br />

K-1<br />

K+1<br />

2K<br />

K 2 -1<br />

R 1<br />

R 1<br />

VI VO<br />

R2 ⇐ Ζ⇒<br />

T attenuator<br />

⇐Ζ⇒<br />

Resistors for T-section<br />

Z = 50<br />

Attenuation<br />

dB K=Vi/Vo R1 R2<br />

1.0 1.12 2.88 433.34<br />

2.0 1.26 5.73 215.24<br />

3.0 1.41 8.55 141.93<br />

4.0 1.58 11.31 104.83<br />

6.0 2.00 16.61 66.93<br />

10.0 3.16 25.97 35.14<br />

20.0 10.00 40.91 10.10<br />

Figure1.12:FormulasforT-sectionattenuatorresistors,givenK,thevoltageattenuationratio,<br />

andZI=ZO=50 Ω.<br />

1.7.2 T-sectionattenuator<br />

TheTand ΠattenuatorsmustbeconnectedtoaZsourceandZloadimpedance. TheZ-<br />

(arrows)pointingawayfromtheattenuatorinthefigurebelowindicatethis. TheZ-(arrows)<br />

pointingtowardtheattenuatorindicatesthattheimpedanceseenlookingintotheattenuator<br />

withaloadZontheoppositeendisZ,Z=50 Ωforourcase.Thisimpedanceisaconstant(50<br />

Ω)withrespecttoattenuation–impedancedoesnotchangewhenattenuationischanged.<br />

ThetableinFigure1.12listsresistorvaluesfortheTand Πattenuatorstomatcha50 Ω<br />

source/load,asistheusualrequirementinradiofrequencywork.<br />

Telephoneutilityandotheraudioworkoftenrequiresmatchingto600 Ω. MultiplyallR<br />

valuesbytheratio(600/50)tocorrectfor600 Ωmatching.Multiplyingby75/50wouldconvert<br />

tablevaluestomatcha75 Ωsourceandload.<br />

TheamountofattenuationiscustomarilyspecifiedindB(decibels).Though,weneedthe<br />

voltage(orcurrent)ratioKtofindtheresistorvaluesfromequations.SeethedB/20termin<br />

thepowerof10termforcomputingthevoltageratioKfromdB,above.<br />

TheT(andbelow Π)configurationsaremostcommonlyusedastheyprovidebidirectional<br />

matching. Thatis,theattenuatorinputandoutputmaybeswappedendforendandstill<br />

matchthesourceandloadimpedanceswhilesupplyingthesameattenuation.<br />

DisconnectingthesourceandlookingintotherightatVI,weneedtoseeaseriesparallel<br />

combinationofR1,R2,R1,andZlookinglikeanequivalentresistanceofZIN,thesameasthe<br />

source/loadimpedanceZ:(aloadofZisconnectedtotheoutput.)<br />

ZIN=R1+(R2 ||(R1+Z))<br />

Forexample,substitutethe10dBvaluesfromthe50 ΩattenuatortableforR1andR2as<br />

showninFigure1.13.<br />

ZIN=25.97+(35.14 ||(25.97+50))<br />

ZIN=25.97+(35.14 ||75.97)<br />

ZIN=25.97+24.03=50


20 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

Thisshowsusthatwesee50 Ωlookingrightintotheexampleattenuator(Figure1.13)with<br />

a50 Ωload.<br />

Replacingthesourcegenerator,disconnectingloadZatVO,andlookingintotheleft,should<br />

giveusthesameequationasabovefortheimpedanceatVO,duetosymmetry.Moreover,the<br />

threeresistorsmustbevalueswhichsupplytherequiredattenuationfrominputtooutput.<br />

ThisisaccomplishedbytheequationsforR1andR2aboveasappliedtotheT-attenuator<br />

below.<br />

Z<br />

⇐ Ζ⇒<br />

=50<br />

T attenuator<br />

R 1=26.0 R 1<br />

V I VO<br />

R2= 35.1<br />

⇐ Ζ⇒<br />

=50<br />

10 dB attenuators for matching input/output to Z= 50 Ω.<br />

Figure1.13:10dBT-sectionattenuatorforinsertionbetweena50 Ωsourceandload.<br />

1.7.3 PI-sectionattenuator<br />

ThetableinFigure1.14listsresistorvaluesforthe Πattenuatormatchinga50 Ωsource/load<br />

atsomecommonattenuationlevels. Theresistorscorrespondingtootherattenuationlevels<br />

maybecalculatedfromtheequations.<br />

dB = attenuation in decibels<br />

K > 1<br />

K = = 10 dB/20<br />

Z = source/load impedance (resistive)<br />

V R3 I<br />

VO R 3 = Z<br />

R 4 = Z<br />

K<br />

2K<br />

K+ 1<br />

K-1<br />

2 -1<br />

VI VO<br />

R4 R4 ⇐Ζ⇒ ⇐ Ζ⇒<br />

Π attenuator<br />

Z<br />

Resistors for Π-section<br />

Z=50.00<br />

Attenuation<br />

dB K=Vi/Vo R3 R4<br />

1.0 1.12 5.77 869.55<br />

2.0 1.26 11.61 436.21<br />

3.0 1.41 17.61 292.40<br />

4.0 1.58 23.85 220.97<br />

6.0 2.00 37.35 150.48<br />

10.0 3.16 71.15 96.25<br />

20.0 10.00 247.50 61.11<br />

Figure1.14: Formulasfor Π-sectionattenuatorresistors,givenK,thevoltageattenuation<br />

ratio,andZI=ZO=50 Ω.<br />

Theaboveapplytothe π-attenuatorbelow.


1.7. ATTENUATORS 21<br />

Z<br />

R 3=71.2<br />

VI R4= VO<br />

96.2 R4 ⇐Ζ⇒<br />

=50<br />

Π attenuator<br />

⇐Ζ⇒<br />

=50<br />

Figure1.15:10dB Π-sectionattenuatorexampleformatchinga50 Ωsourceandload.<br />

Whatresistorvalueswouldberequiredforboththe Πattenuatorsfor10dBofattenuation<br />

matchinga50 Ωsourceandload?<br />

The10dBcorrespondstoavoltageattenuationratioofK=3.16inthenexttolastlineofthe<br />

abovetable.Transfertheresistorvaluesinthatlinetotheresistorsontheschematicdiagram<br />

inFigure1.15.<br />

1.7.4 L-sectionattenuator<br />

ThetableinFigure1.16listsresistorvaluesfortheLattenuatorstomatcha50 Ωsource/<br />

load.ThetableinFigure1.17listsresistorvaluesforanalternateform.Notethattheresistor<br />

valuesarenotthesame.<br />

dB = attenuation in decibels<br />

Z = source/load impedance (resistive)<br />

K > 1<br />

VI VO K = = 10 dB/20<br />

R5 = Z<br />

K-1<br />

K<br />

Z<br />

R6 =<br />

(K-1)<br />

R 5<br />

V I VO<br />

⇐Ζ⇒ Ζ⇒<br />

R 6<br />

L attenuator<br />

Resistors for L-section<br />

Z=,50.00<br />

Attenuation L<br />

dB K=Vi/Vo R5 R6<br />

1.0 1.12 5.44 409.77<br />

2.0 1.26 10.28 193.11<br />

3.0 1.41 14.60 121.20<br />

4.0 1.58 18.45 85.49<br />

6.0 2.00 24.94 50.24<br />

10.0 3.16 34.19 23.12<br />

20.0 10.00 45.00 5.56<br />

Figure1.16:L-sectionattenuatortablefor50 Ωsourceandloadimpedance.<br />

TheaboveapplytotheLattenuatorbelow.<br />

1.7.5 BridgedTattenuator<br />

ThetableinFigure1.18listsresistorvaluesforthebridgedTattenuatorstomatcha50 Ω<br />

sourceandload.Thebridged-Tattenuatorisnotoftenused.Whynot?<br />

Z


22 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

dB = attenuation in decibels<br />

Z = source/load impedance (resistive)<br />

K > 1<br />

K = = 10 dB/20<br />

VI VO R 7 = Z(K-1)<br />

R 8 = Z K K-1<br />

V I<br />

R 8<br />

R 7<br />

V O<br />

⇐ Ζ⇒ Ζ⇒<br />

L attenuator<br />

Resistors for L-section<br />

Z=50.00<br />

Attenuation<br />

dB K=Vi/Vo R7 R8<br />

1.0 1.12 6.10 459.77<br />

2.0 1.26 12.95 243.11<br />

3.0 1.41 20.63 171.20<br />

4.0 1.58 29.24 135.49<br />

6.0 2.00 49.76 100.24<br />

10.0 3.16 108.11 73.12<br />

20.0 10.00 450.00 55.56<br />

Figure1.17:AlternateformL-sectionattenuatortablefor50 Ωsourceandloadimpedance.<br />

dB = attenuation in decibels<br />

Z = source/load impedance (resistive)<br />

K > 1<br />

VI VO K = = 10 dB/20<br />

R6 =<br />

Z<br />

(K-1)<br />

R7 = Z(K-1)<br />

VI ⇐Ζ⇒<br />

R 7<br />

Ζ Ζ<br />

R 6<br />

Bridged T attenuator<br />

V O<br />

⇐Ζ⇒<br />

Resistors for bridged T<br />

Z=50.00<br />

Attenuation<br />

dB K=Vi/Vo R7 R6<br />

1.0 1.12 6.10 409.77<br />

2.0 1.26 12.95 193.11<br />

3.0 1.41 20.63 121.20<br />

4.0 1.58 29.24 85.49<br />

6.0 2.00 49.76 50.24<br />

10.0 3.16 108.11 23.12<br />

20.0 10.00 450.00 5.56<br />

Figure1.18:Formulasandabbreviatedtableforbridged-Tattenuatorsection,Z=50 Ω.


1.7. ATTENUATORS 23<br />

1.7.6 Cascadedsections<br />

AttenuatorsectionscanbecascadedasinFigure1.19formoreattenuationthanmaybeavailablefromasinglesection.Forexampletwo10dbattenuatorsmaybecascadedtoprovide20<br />

dBofattenuation,thedBvaluesbeingadditive.ThevoltageattenuationratioKorVI/VOfor<br />

a10dBattenuatorsectionis3.16.Thevoltageattenuationratioforthetwocascadedsections<br />

istheproductofthetwoKsor3.16x3.16=10forthetwocascadedsections.<br />

section 1 section 2<br />

Figure1.19:Cascadedattenuatorsections:dBattenuationisadditive.<br />

Variableattenuationcanbeprovidedindiscretestepsbyaswitchedattenuator. TheexampleFigure1.20,showninthe0dBposition,iscapableof0through7dBofattenuationby<br />

additiveswitchingofnone,oneormoresections.<br />

S1 S2 S3<br />

4 dB 2 dB 1 dB<br />

Figure1.20:Switchedattenuator:attenuationisvariableindiscretesteps.<br />

Thetypicalmultisectionattenuatorhasmoresectionsthantheabovefigureshows. The<br />

additionofa3or8dBsectionaboveenablestheunittocoverto10dBandbeyond. Lower<br />

signallevelsareachievedbytheadditionof10dBand20dBsections,orabinarymultiple16<br />

dBsection.<br />

1.7.7 RFattenuators<br />

Forradiofrequency(RF)work(


24 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES<br />

metalic conductor<br />

resistive disc<br />

resistive rod<br />

Coaxial T-attenuator for radio frequency work<br />

Figure1.21:CoaxialT-attenuatorforradiofrequencywork.<br />

metalic conductor<br />

resistive rod<br />

resistive disc<br />

Coaxial Π-attenuator for radio frequency work<br />

Figure1.22:Coaxial Π-attenuatorforradiofrequencywork.


1.7. ATTENUATORS 25<br />

RFconnectors,notshown,areattachedtotheendsoftheaboveTand Πattenuators.<br />

Theconnectorsallowindividualattenuatorstobecascaded,inadditiontoconnectingbetween<br />

asourceandload. Forexample,a10dBattenuatormaybeplacedbetweenatroublesome<br />

signalsourceandanexpensivespectrumanalyzerinput. Eventhoughwemaynotneedthe<br />

attenuation,theexpensivetestequipmentisprotectedfromthesourcebyattenuatingany<br />

overvoltage.<br />

Summary:Attenuators<br />

• Anattenuatorreducesaninputsignaltoalowerlevel.<br />

• Theamountofattenuationisspecifiedindecibels(dB).Decibelvaluesareadditivefor<br />

cascadedattenuatorsections.<br />

• dBfrompowerratio: dB=10log10(PI/PO)<br />

• dBfromvoltageratio: dB=20log10(VI/VO)<br />

• Tand Πsectionattenuatorsarethemostcommoncircuitconfigurations.<br />

Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

ColinBarnard(November2003):CorrectionregardingAlexanderGrahamBell’scountry<br />

oforigin(Scotland,nottheUnitedStates).


26 CHAPTER1. AMPLIFIERSANDACTIVEDEVICES


Chapter2<br />

SOLID-STATEDEVICETHEORY<br />

Contents<br />

2.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.2 Quantumphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

2.3 ValenceandCrystalstructure. . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br />

2.4 Bandtheoryofsolids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

2.5 Electronsand“holes” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

2.6 TheP-Njunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

2.7 Junctiondiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

2.8 Bipolarjunctiontransistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

2.9 Junctionfield-effecttransistors. . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

2.10 <strong>In</strong>sulated-gatefield-effecttransistors(MOSFET). . . . . . . . . . . . . . . 70<br />

2.11 Thyristors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

2.12 Semiconductormanufacturingtechniques. . . . . . . . . . . . . . . . . . . 75<br />

2.13 Superconductingdevices.............................. 80<br />

2.14 Quantumdevices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br />

2.15 SemiconductordevicesinSPICE......................... 91<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

2.1 <strong>In</strong>troduction<br />

Thischapterwillcoverthephysicsbehindtheoperationofsemiconductordevicesandshow<br />

howtheseprinciplesareappliedinseveraldifferenttypesofsemiconductordevices. Subsequentchapterswilldealprimarilywiththepracticalaspectsofthesedevicesincircuitsand<br />

omittheoryasmuchaspossible.<br />

27


28 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

2.2 Quantumphysics<br />

“Ithinkitissafetosaythatnooneunderstandsquantummechanics.”<br />

PhysicistRichardP.Feynman<br />

Tosaythattheinventionofsemiconductordeviceswasarevolutionwouldnotbeanexaggeration.<br />

Notonlywasthisanimpressivetechnologicalaccomplishment,butitpavedthe<br />

wayfordevelopmentsthatwouldindeliblyaltermodernsociety.Semiconductordevicesmade<br />

possibleminiaturizedelectronics,includingcomputers,certaintypesofmedicaldiagnosticand<br />

treatmentequipment,andpopulartelecommunicationdevices,tonameafewapplicationsof<br />

thistechnology.<br />

Butbehindthisrevolutionintechnologystandsanevengreaterrevolutioningeneralscience:thefieldofquantumphysics.Withoutthisleapinunderstandingthenaturalworld,thedevelopmentofsemiconductordevices(andmoreadvancedelectronicdevicesstillunderdevelopment)wouldneverhavebeenpossible.Quantumphysicsisanincrediblycomplicatedrealm<br />

ofscience.Thischapterisbutabriefoverview.WhenscientistsofFeynman’scalibersaythat<br />

“nooneunderstands[it],”youcanbesureitisacomplexsubject.Withoutabasicunderstandingofquantumphysics,oratleastanunderstandingofthescientificdiscoveriesthatledtoitsformulation,though,itisimpossibletounderstandhowandwhysemiconductorelectronicdevicesfunction.MostintroductoryelectronicstextbooksI’vereadtrytoexplainsemiconductors<br />

intermsof“classical”physics,resultinginmoreconfusionthancomprehension.<br />

ManyofushaveseendiagramsofatomsthatlooksomethinglikeFigure2.1.<br />

e<br />

e<br />

e<br />

N<br />

P P N<br />

N P<br />

P<br />

N P<br />

P N N<br />

e<br />

e<br />

e<br />

e<br />

P<br />

N<br />

= electron<br />

= proton<br />

= neutron<br />

Figure2.1:Rutherfordatom:negativeelectronsorbitasmallpositivenucleus.<br />

Tinyparticlesofmattercalledprotonsandneutronsmakeupthecenteroftheatom;electronsorbitlikeplanetsaroundastar.Thenucleuscarriesapositiveelectricalcharge,owingto


2.2. QUANTUMPHYSICS 29<br />

thepresenceofprotons(theneutronshavenoelectricalchargewhatsoever),whiletheatom’s<br />

balancingnegativechargeresidesintheorbitingelectrons. ThenegativeelectronsareattractedtothepositiveprotonsjustasplanetsaregravitationallyattractedbytheSun,yetthe<br />

orbitsarestablebecauseoftheelectrons’motion.Weowethispopularmodeloftheatomtothe<br />

workofErnestRutherford,whoaroundtheyear1911experimentallydeterminedthatatoms’<br />

positivechargeswereconcentratedinatiny,densecoreratherthanbeingspreadevenlyabout<br />

thediameteraswasproposedbyanearlierresearcher,J.J.Thompson.<br />

Rutherford’sscatteringexperimentinvolvedbombardingathingoldfoilwithpositively<br />

chargedalphaparticlesasinFigure2.2.YounggraduatestudentsH.GeigerandE.Marsden<br />

experiencedunexpectedresults. AfewAlphaparticlesweredeflectedatlargeangles. Afew<br />

Alphaparticleswereback-scattering,recoilingatnearly180 o . Mostoftheparticlespassed<br />

throughthegoldfoilundeflected,indicatingthatthefoilwasmostlyemptyspace. Thefact<br />

thatafewalphaparticlesexperiencedlargedeflectionsindicatedthepresenceofaminuscule<br />

positivelychargednucleus.<br />

alpha<br />

particles<br />

Gold foil<br />

Figure2.2:Rutherfordscattering:abeamofalphaparticlesisscatteredbyathingoldfoil.<br />

AlthoughRutherford’satomicmodelaccountedforexperimentaldatabetterthanThompson’s,itstillwasn’tperfect.<br />

Furtherattemptsatdefiningatomicstructurewereundertaken,<br />

andtheseeffortshelpedpavethewayforthebizarrediscoveriesofquantumphysics.Todayour<br />

understandingoftheatomisquiteabitmorecomplex.Nevertheless,despitetherevolutionof<br />

quantumphysicsanditscontributiontoourunderstandingofatomicstructure,Rutherford’s<br />

solar-systempictureoftheatomembeddeditselfinthepopularconsciousnesstosuchadegree<br />

thatitpersistsinsomeareasofstudyevenwheninappropriate.<br />

Considerthisshortdescriptionofelectronsinanatom,takenfromapopularelectronics<br />

textbook:<br />

Orbitingnegativeelectronsarethereforeattractedtowardthepositivenucleus,<br />

whichleadsustothequestionofwhytheelectronsdonotflyintotheatom’snucleus.<br />

Theansweristhattheorbitingelectronsremainintheirstableorbitbecauseoftwo<br />

equalbutoppositeforces. Thecentrifugaloutwardforceexertedontheelectrons<br />

becauseoftheorbitcounteractstheattractiveinwardforce(centripetal)tryingto<br />

pulltheelectronstowardthenucleusbecauseoftheunlikecharges.


30 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

<strong>In</strong>keepingwiththeRutherfordmodel,thisauthorcaststheelectronsassolidchunksof<br />

matterengagedincircularorbits,theirinwardattractiontotheoppositelychargednucleus<br />

balancedbytheirmotion. Thereferenceto“centrifugalforce”istechnicallyincorrect(even<br />

fororbitingplanets),butiseasilyforgivenbecauseofitspopularacceptance:inreality,there<br />

isnosuchthingasaforcepushinganyorbitingbodyawayfromitscenteroforbit. Itseems<br />

thatwaybecauseabody’sinertiatendstokeepittravelinginastraightline,andsincean<br />

orbitisaconstantdeviation(acceleration)fromstraight-linetravel,thereisconstantinertial<br />

oppositiontowhateverforceisattractingthebodytowardtheorbitcenter(centripetal),beit<br />

gravity,electrostaticattraction,oreventhetensionofamechanicallink.<br />

Therealproblemwiththisexplanation,however,istheideaofelectronstravelingincircularorbitsinthefirstplace.<br />

Itisaverifiablefactthatacceleratingelectricchargesemit<br />

electromagneticradiation,andthisfactwasknowneveninRutherford’stime.Sinceorbiting<br />

motionisaformofacceleration(theorbitingobjectinconstantaccelerationawayfromnormal,<br />

straight-linemotion),electronsinanorbitingstateshouldbethrowingoffradiationlikemud<br />

fromaspinningtire.Electronsacceleratedaroundcircularpathsinparticleacceleratorscalled<br />

synchrotronsareknowntodothis,andtheresultiscalledsynchrotronradiation.Ifelectrons<br />

werelosingenergyinthisway,theirorbitswouldeventuallydecay,resultingincollisionswith<br />

thepositivelychargednucleus. Nevertheless,thisdoesn’tordinarilyhappenwithinatoms.<br />

<strong>In</strong>deed,electron“orbits”areremarkablystableoverawiderangeofconditions.<br />

Furthermore,experimentswith“excited”atomsdemonstratedthatelectromagneticenergy<br />

emittedbyanatomonlyoccursatcertain,definitefrequencies. Atomsthatare“excited”by<br />

outsideinfluencessuchaslightareknowntoabsorbthatenergyandreturnitaselectromagneticwavesofspecificfrequencies,likeatuningforkthatringsatafixedpitchnomatterhowitisstruck.Whenthelightemittedbyanexcitedatomisdividedintoitsconstituentfrequencies(colors)byaprism,distinctlinesofcolorappearinthespectrum,thepatternofspectrallinesbeinguniquetothatelement.Thisphenomenoniscommonlyusedtoidentifyatomicelements,andevenmeasuretheproportionsofeachelementinacompoundorchemicalmixture.<br />

AccordingtoRutherford’ssolar-systematomicmodel(regardingelectronsaschunksofmatter<br />

freetoorbitatanyradius)andthelawsofclassicalphysics,excitedatomsshouldreturnenergyoveravirtuallylimitlessrangeoffrequenciesratherthanaselectfew.<strong>In</strong>otherwords,if<br />

Rutherford’smodelwerecorrect,therewouldbeno“tuningfork”effect,andthelightspectrum<br />

emittedbyanyatomwouldappearasacontinuousbandofcolorsratherthanasafewdistinct<br />

lines.<br />

ApioneeringresearcherbythenameofNielsBohrattemptedtoimproveuponRutherford’smodelafterstudyinginRutherford’slaboratoryforseveralmonthsin1912.<br />

Tryingto<br />

harmonizethefindingsofotherphysicists(mostnotably,MaxPlanckandAlbertEinstein),<br />

Bohrsuggestedthateachelectronhadacertain,specificamountofenergy,andthattheirorbitswerequantizedsuchthateachmayoccupycertainplacesaroundthenucleus,asmarbles<br />

fixedincirculartracksaroundthenucleusratherthanthefree-rangingsatelliteseachwere<br />

formerlyimaginedtobe.(Figure2.3)<strong>In</strong>deferencetothelawsofelectromagneticsandacceleratingcharges,Bohralludedtothese“orbits”asstationarystatestoescapetheimplicationthat<br />

theywereinmotion.<br />

AlthoughBohr’sambitiousattemptatre-framingthestructureoftheatomintermsthat<br />

agreedclosertoexperimentalresultswasamilestoneinphysics,itwasnotcomplete. His<br />

mathematicalanalysisproducedbetterpredictionsofexperimentaleventsthananalysesbelongingtopreviousmodels,buttherewerestillsomeunansweredquestionsaboutwhyelec-


2.2. QUANTUMPHYSICS 31<br />

P<br />

O<br />

Lyman<br />

series<br />

N<br />

M<br />

Balmer<br />

series<br />

Paschen<br />

series<br />

Bracket<br />

series<br />

n=4<br />

n=5<br />

n=6<br />

n=3<br />

n=2 (L)<br />

n=1 (K)<br />

nucleus<br />

discharge lamp<br />

slit<br />

Hδ Hγ Hβ H α<br />

4102 A<br />

4340<br />

4861<br />

6563<br />

Balmer series<br />

Figure2.3:Bohrhydrogenatom(withorbitsdrawntoscale)onlyallowselectronstoinhabit<br />

discreteorbitals. Electronsfallingfromn=3,4,5,or6ton=2accountsforBalmerseriesof<br />

spectrallines.<br />

tronsshouldbehaveinsuchstrangeways.Theassertionthatelectronsexistedinstationary,<br />

quantizedstatesaroundthenucleusaccountedforexperimentaldatabetterthanRutherford’s<br />

model,buthehadnoideawhatwouldforceelectronstomanifestthoseparticularstates.The<br />

answertothatquestionhadtocomefromanotherphysicist,LouisdeBroglie,aboutadecade<br />

later.<br />

DeBroglieproposedthatelectrons,asphotons(particlesoflight)manifestedbothparticlelikeandwave-likeproperties.<br />

Buildingonthisproposal,hesuggestedthatananalysisof<br />

orbitingelectronsfromawaveperspectiveratherthanaparticleperspectivemightmakemore<br />

senseoftheirquantizednature.<strong>In</strong>deed,anotherbreakthroughinunderstandingwasreached.<br />

node<br />

node<br />

antinode antinode<br />

node<br />

Figure2.4:Stringvibratingatresonantfrequencybetweentwofixedpointsformsstanding<br />

wave.<br />

TheatomaccordingtodeBroglieconsistedofelectronsexistingasstandingwaves,aphenomenonwellknowntophysicistsinavarietyofforms.<br />

Asthepluckedstringofamusical<br />

instrument(Figure2.4)vibratingataresonantfrequency,with“nodes”and“antinodes”atstablepositionsalongitslength.DeBroglieenvisionedelectronsaroundatomsstandingaswaves<br />

bentaroundacircleasinFigure2.5.<br />

Electronsonlycouldexistincertain,definite“orbits”aroundthenucleusbecausethose<br />

weretheonlydistanceswherethewaveendswouldmatch. <strong>In</strong>anyotherradius,thewave


32 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

antinode<br />

node node<br />

nucleus<br />

antinode<br />

node<br />

node<br />

antinode<br />

antinode<br />

antinode<br />

(a) (b)<br />

antinode<br />

node<br />

node<br />

antinode<br />

node<br />

nucleus<br />

node<br />

antinode<br />

node<br />

node<br />

antinode<br />

Figure2.5:“Orbiting”electronasstandingwavearoundthenucleus,(a)twocyclesperorbit,<br />

(b)threecyclesperorbit.<br />

shoulddestructivelyinterferewithitselfandthusceasetoexist.<br />

DeBroglie’shypothesisgavebothmathematicalsupportandaconvenientphysicalanalogy<br />

toaccountforthequantizedstatesofelectronswithinanatom,buthisatomicmodelwasstill<br />

incomplete.Withinafewyears,though,physicistsWernerHeisenbergandErwinSchrodinger,<br />

workingindependentlyofeachother,builtupondeBroglie’sconceptofamatter-waveduality<br />

tocreatemoremathematicallyrigorousmodelsofsubatomicparticles.<br />

ThistheoreticaladvancefromdeBroglie’sprimitivestandingwavemodeltoHeisenberg’s<br />

matrixandSchrodinger’sdifferentialequationmodelswasgiventhenamequantummechanics,anditintroducedarathershockingcharacteristictotheworldofsubatomicparticles:the<br />

traitofprobability,oruncertainty. Accordingtothenewquantumtheory,itwasimpossible<br />

todeterminetheexactpositionandexactmomentumofaparticleatthesametime. The<br />

popularexplanationofthis“uncertaintyprinciple”wasthatitwasameasurementerror(i.e.<br />

byattemptingtopreciselymeasurethepositionofanelectron,youinterferewithitsmomentumandthuscannotknowwhatitwasbeforethepositionmeasurementwastaken,andvice<br />

versa).Thestartlingimplicationofquantummechanicsisthatparticlesdonotactuallyhave<br />

precisepositionsandmomenta,butratherbalancethetwoquantitiesinasuchwaythattheir<br />

combineduncertaintiesneverdiminishbelowacertainminimumvalue.<br />

Thisformof“uncertainty”relationshipexistsinareasotherthanquantummechanics.As<br />

discussedinthe“Mixed-FrequencyACSignals”chapterinvolumeIIofthisbookseries,there<br />

isamutuallyexclusiverelationshipbetweenthecertaintyofawaveform’stime-domaindata<br />

anditsfrequency-domaindata. <strong>In</strong>simpleterms,themorepreciselyweknowitsconstituent<br />

frequency(ies),thelesspreciselyweknowitsamplitudeintime,andviceversa. Toquote<br />

myself:<br />

Awaveformofinfiniteduration(infinitenumberofcycles)canbeanalyzedwith<br />

absoluteprecision,butthelesscyclesavailabletothecomputerforanalysis,theless<br />

precisetheanalysis. . . Thefewertimesthatawavecycles,thelesscertainits<br />

antinode


2.2. QUANTUMPHYSICS 33<br />

frequencyis. Takingthisconcepttoitslogicalextreme,ashortpulse–awaveform<br />

thatdoesn’tevencompleteacycle–actuallyhasnofrequency,butratheractsasan<br />

infiniterangeoffrequencies.Thisprincipleiscommontoallwave-basedphenomena,<br />

notjustACvoltagesandcurrents.<br />

<strong>In</strong>ordertopreciselydeterminetheamplitudeofavaryingsignal,wemustsampleitover<br />

averynarrowspanoftime. However,doingthislimitsourviewofthewave’sfrequency.<br />

Conversely,todetermineawave’sfrequencywithgreatprecision,wemustsampleitover<br />

manycycles,whichmeansweloseviewofitsamplitudeatanygivenmoment.Thus,wecannot<br />

simultaneouslyknowtheinstantaneousamplitudeandtheoverallfrequencyofanywavewith<br />

unlimitedprecision.Strangeryet,thisuncertaintyismuchmorethanobserverimprecision;it<br />

residesintheverynatureofthewave.Itisnotasthoughitwouldbepossible,giventheproper<br />

technology,toobtainprecisemeasurementsofbothinstantaneousamplitudeandfrequencyat<br />

once.Quiteliterally,awavecannothavebothaprecise,instantaneousamplitude,andaprecise<br />

frequencyatthesametime.<br />

Theminimumuncertaintyofaparticle’spositionandmomentumexpressedbyHeisenberg<br />

andSchrodingerhasnothingtodowithlimitationinmeasurement;ratheritisanintrinsic<br />

propertyoftheparticle’smatter-wavedualnature.Electrons,therefore,donotreallyexistin<br />

their“orbits”aspreciselydefinedbitsofmatter,orevenaspreciselydefinedwaveshapes,but<br />

ratheras“clouds”–thetechnicaltermiswavefunction–ofprobabilitydistribution,asifeach<br />

electronwere“spread”or“smeared”overarangeofpositionsandmomenta.<br />

Thisradicalviewofelectronsasimprecisecloudsatfirstseemstocontradicttheoriginal<br />

principleofquantizedelectronstates:thatelectronsexistindiscrete,defined“orbits”around<br />

atomicnuclei. Itwas,afterall,thisdiscoverythatledtotheformationofquantumtheory<br />

toexplainit. Howodditseemsthatatheorydevelopedtoexplainthediscretebehaviorof<br />

electronsendsupdeclaringthatelectronsexistas“clouds”ratherthanasdiscretepiecesof<br />

matter.However,thequantizedbehaviorofelectronsdoesnotdependonelectronshavingdefinitepositionandmomentumvalues,butratheronotherpropertiescalledquantumnumbers.<br />

<strong>In</strong>essence,quantummechanicsdispenseswithcommonlyheldnotionsofabsolutepositionand<br />

absolutemomentum,andreplacesthemwithabsolutenotionsofasorthavingnoanaloguein<br />

commonexperience.<br />

Eventhoughelectronsareknowntoexistinethereal,“cloud-like”formsofdistributedprobabilityratherthanasdiscretechunksofmatter,those“clouds”haveothercharacteristicsthatarediscrete.Anyelectroninanatomcanbedescribedbyfournumericalmeasures(thepreviouslymentionedquantumnumbers),calledthePrincipal,AngularMomentum,Magnetic,<br />

andSpinnumbers.Thefollowingisasynopsisofeachofthesenumbers’meanings:<br />

PrincipalQuantumNumber:Symbolizedbythelettern,thisnumberdescribestheshell<br />

thatanelectronresidesin. Anelectron“shell”isaregionofspacearoundanatom’snucleus<br />

thatelectronsareallowedtoexistin,correspondingtothestable“standingwave”patternsof<br />

deBroglieandBohr. Electronsmay“leap”fromshelltoshell,butcannotexistbetweenthe<br />

shellregions.<br />

Theprinciplequantumnumbermustbeapositiveinteger(awholenumber,greaterthan<br />

orequalto1). <strong>In</strong>otherwords,principlequantumnumberforanelectroncannotbe1/2or<br />

-3.Theseintegervalueswerenotarrivedatarbitrarily,butratherthroughexperimentalevidenceoflightspectra:thedifferingfrequencies(colors)oflightemittedbyexcitedhydrogen<br />

atomsfollowasequencemathematicallydependentonspecific,integervaluesasillustratedin


34 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

Figure2.3.<br />

Eachshellhasthecapacitytoholdmultipleelectrons.Ananalogyforelectronshellsisthe<br />

concentricrowsofseatsofanamphitheater.Justasapersonseatedinanamphitheatermust<br />

choosearowtositin(onecannotsitbetweenrows),electronsmust“choose”aparticularshell<br />

to“sit”in.Asinamphitheaterrows,theoutermostshellsholdmoreelectronsthantheinner<br />

shells. Also,electronstendtoseekthelowestavailableshell,aspeopleinanamphitheater<br />

seektheclosestseattothecenterstage.Thehighertheshellnumber,thegreatertheenergy<br />

oftheelectronsinit.<br />

Themaximumnumberofelectronsthatanyshellmayholdisdescribedbytheequation2n 2 ,<br />

where“n”istheprinciplequantumnumber. Thus,thefirstshell(n=1)canhold2electrons;<br />

thesecondshell(n=2)8electrons,andthethirdshell(n=3)18electrons.(Figure2.6)<br />

K L M N O P Q<br />

n = 1 2 3 4<br />

2n 2 = 2 8 18 32<br />

observed fill = 2 8 18 32 18 18 2<br />

Figure2.6: Principalquantumnumbernandmaximumnumberofelectronspershellboth<br />

predictedby2(n 2 ),andobserved.Orbitalsnottoscale.<br />

Electronshellsinanatomwereformerlydesignatedbyletterratherthanbynumber.The<br />

firstshell(n=1)waslabeledK,thesecondshell(n=2)L,thethirdshell(n=3)M,thefourth<br />

shell(n=4)N,thefifthshell(n=5)O,thesixthshell(n=6)P,andtheseventhshell(n=7)Q.<br />

AngularMomentumQuantumNumber:Ashell,iscomposedofsubshells. Onemight<br />

beinclinedtothinkofsubshellsassimplesubdivisionsofshells,aslanesdividingaroad.<br />

Thesubshellsaremuchstranger. Subshellsareregionsofspacewhereelectron“clouds”are<br />

allowedtoexist,anddifferentsubshellsactuallyhavedifferentshapes. Thefirstsubshell<br />

isshapedlikeasphere,(Figure2.7(s))whichmakessensewhenvisualizedasacloudof<br />

electronssurroundingtheatomicnucleusinthreedimensions.Thesecondsubshell,however,<br />

resemblesadumbbell,comprisedoftwo“lobes”joinedtogetheratasinglepointneartheatom’s<br />

center. (Figure2.7(p))Thethirdsubshelltypicallyresemblesasetoffour“lobes”clustered<br />

aroundtheatom’snucleus. Thesesubshellshapesarereminiscentofgraphicaldepictionsof<br />

radioantennasignalstrength,withbulbouslobe-shapedregionsextendingfromtheantenna<br />

invariousdirections.(Figure2.7(d))<br />

Validangularmomentumquantumnumbersarepositiveintegerslikeprincipalquantum<br />

numbers,butalsoincludezero.Thesequantumnumbersforelectronsaresymbolizedbythe<br />

letterl. Thenumberofsubshellsinashellisequaltotheshell’sprincipalquantumnumber.<br />

Thus,thefirstshell(n=1)hasonesubshell,numbered0;thesecondshell(n=2)hastwo<br />

subshells,numbered0and1;thethirdshell(n=3)hasthreesubshells,numbered0,1,and2.


2.2. QUANTUMPHYSICS 35<br />

z<br />

y<br />

1 of 1<br />

(s)<br />

x<br />

p x shown<br />

p y, p z similar<br />

(p) (d x 2 -y 2)<br />

x<br />

1 of 3 1 of 5<br />

d x 2 -y 2 shown<br />

d xy, d yz, d xz similar<br />

d z 2 shown<br />

Figure2.7:Orbitals:(s)Threefoldsymmetry.(p)Shown:px,oneofthreepossibleorientations<br />

(px,py,pz),abouttheirrespectiveaxes.(d)Shown:dx 2 -y 2 similartodxy,dyz,dxz.Shown:dz 2 .<br />

Possibled-orbitalorientations:five.<br />

Anolderconventionforsubshelldescriptionusedlettersratherthannumbers.<strong>In</strong>thisnotation,thefirstsubshell(l=0)wasdesignateds,thesecondsubshell(l=1)designatedp,thethird<br />

subshell(l=2)designatedd,andthefourthsubshell(l=3)designatedf.Theletterscomefrom<br />

thewordssharp,principal(nottobeconfusedwiththeprincipalquantumnumber,n),diffuse,<br />

andfundamental.Youwillstillseethisnotationalconventioninmanyperiodictables,usedto<br />

designatetheelectronconfigurationoftheatoms’outermost,orvalence,shells.(Figure2.8)<br />

K<br />

n = 1<br />

2 8 18 18 1<br />

electrons<br />

S L PL<br />

(d z 2)<br />

1 of 5<br />

2 2 2 10 2 10 1<br />

6 6 6<br />

l = 0 0,1 0, 1, 2 0,1, 2 0<br />

2 3 4 5<br />

n = 1 2 3 4 5<br />

(a)<br />

1s<br />

(b)<br />

2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 1<br />

L M N O<br />

spectroscopic<br />

notation<br />

S K<br />

SMPMDMS N<br />

PN<br />

DN SO Figure2.8: (a)BohrrepresentationofSilveratom,(b)SubshellrepresentationofAgwith<br />

divisionofshellsintosubshells(angularquantumnumberl). Thisdiagramimpliesnothing<br />

abouttheactualpositionofelectrons,butrepresentsenergylevels.<br />

MagneticQuantumNumber:Themagneticquantumnumberforanelectronclassifies<br />

whichorientationitssubshellshapeispointed. The“lobes”forsubshellspointinmultiple<br />

directions.Thesedifferentorientationsarecalledorbitals.Forthefirstsubshell(s;l=0),which<br />

resemblesaspherepointinginno“direction”,sothereisonlyoneorbital. Forthesecond<br />

(p;l=1)subshellineachshell,whichresemblesdumbbellspointinthreepossibledirections.


36 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

Thinkofthreedumbbellsintersectingattheorigin,eachorientedalongadifferentaxisina<br />

three-axiscoordinatespace.<br />

Validnumericalvaluesforthisquantumnumberconsistofintegersrangingfrom-ltol,and<br />

aresymbolizedasmlinatomicphysicsandlzinnuclearphysics.Tocalculatethenumberof<br />

orbitalsinanygivensubshell,doublethesubshellnumberandadd1,(2·l+1).Forexample,the<br />

firstsubshell(l=0)inanyshellcontainsasingleorbital,numbered0;thesecondsubshell(l=1)<br />

inanyshellcontainsthreeorbitals,numbered-1,0,and1;thethirdsubshell(l=2)contains<br />

fiveorbitals,numbered-2,-1,0,1,and2;andsoon.<br />

Likeprincipalquantumnumbers,themagneticquantumnumberarosedirectlyfromexperimentalevidence:TheZeemaneffect,thedivisionofspectrallinesbyexposinganionized<br />

gastoamagneticfield,hencethename“magnetic”quantumnumber.<br />

SpinQuantumNumber: Likethemagneticquantumnumber,thispropertyofatomic<br />

electronswasdiscoveredthroughexperimentation.Closeobservationofspectrallinesrevealed<br />

thateachlinewasactuallyapairofveryclosely-spacedlines,andthisso-calledfinestructure<br />

washypothesizedtoresultfromeachelectron“spinning”onanaxisasifaplanet. Electrons<br />

withdifferent“spins”wouldgiveoffslightlydifferentfrequenciesoflightwhenexcited. The<br />

name“spin”wasassignedtothisquantumnumber.Theconceptofaspinningelectronisnow<br />

obsolete,beingbettersuitedtothe(incorrect)viewofelectronsasdiscretechunksofmatter<br />

ratherthanas“clouds”;but,thenameremains.<br />

Spinquantumnumbersaresymbolizedasmsinatomicphysicsandszinnuclearphysics.<br />

Foreachorbitalineachsubshellineachshell,theremaybetwoelectrons,onewithaspinof<br />

+1/2andtheotherwithaspinof-1/2.<br />

ThephysicistWolfgangPaulidevelopedaprincipleexplainingtheorderingofelectrons<br />

inanatomaccordingtothesequantumnumbers. Hisprinciple,calledthePauliexclusion<br />

principle,statesthatnotwoelectronsinthesameatommayoccupytheexactsamequantum<br />

states.Thatis,eachelectroninanatomhasauniquesetofquantumnumbers.Thislimitsthe<br />

numberofelectronsthatmayoccupyanygivenorbital,subshell,andshell.<br />

Shownhereistheelectronarrangementforahydrogenatom:<br />

K shell<br />

(n = 1)<br />

subshell<br />

(l)<br />

0 0<br />

orbital<br />

(m l)<br />

spin<br />

(m s)<br />

Hydrogen<br />

Atomic number (Z) = 1<br />

(one proton in nucleus)<br />

Spectroscopic notation: 1s 1<br />

1 /2 One electron<br />

Withoneprotoninthenucleus,ittakesoneelectrontoelectrostaticallybalancetheatom<br />

(theproton’spositiveelectricchargeexactlybalancedbytheelectron’snegativeelectriccharge).<br />

Thisoneelectronresidesinthelowestshell(n=1),thefirstsubshell(l=0),intheonlyorbital<br />

(spatialorientation)ofthatsubshell(ml=0),withaspinvalueof1/2. Acommonmethodof<br />

describingthisorganizationisbylistingtheelectronsaccordingtotheirshellsandsubshells


2.2. QUANTUMPHYSICS 37<br />

inaconventioncalledspectroscopicnotation.<strong>In</strong>thisnotation,theshellnumberisshownasan<br />

integer,thesubshellasaletter(s,p,d,f),andthetotalnumberofelectronsinthesubshell(all<br />

orbitals,allspins)asasuperscript.Thus,hydrogen,withitsloneelectronresidinginthebase<br />

level,isdescribedas1s 1 .<br />

Proceedingtothenextatom(inorderofatomicnumber),wehavetheelementhelium:<br />

K shell<br />

(n = 1)<br />

subshell<br />

(l)<br />

0 0<br />

Spectroscopic notation:<br />

orbital<br />

(m l)<br />

spin<br />

(m s)<br />

0 0 - 1 / 2 electron<br />

1 /2<br />

Helium<br />

Atomic number (Z) = 2<br />

(two protons in nucleus)<br />

1s 2<br />

electron<br />

Aheliumatomhastwoprotonsinthenucleus,andthisnecessitatestwoelectronstobalancethedouble-positiveelectriccharge.Sincetwoelectrons–onewithspin=1/2andtheother<br />

withspin=-1/2–fitintooneorbital,theelectronconfigurationofheliumrequiresnoadditional<br />

subshellsorshellstoholdthesecondelectron.<br />

However,anatomrequiringthreeormoreelectronswillrequireadditionalsubshellsto<br />

holdallelectrons,sinceonlytwoelectronswillfitintothelowestshell(n=1).Considerthenext<br />

atominthesequenceofincreasingatomicnumbers,lithium:<br />

L shell<br />

(n = 2)<br />

K shell<br />

(n = 1)<br />

subshell<br />

(l)<br />

0 0<br />

0 0<br />

Spectroscopic notation:<br />

orbital<br />

(m l)<br />

spin<br />

(m s)<br />

0 0 - 1 / 2 electron<br />

1 /2<br />

Lithium<br />

Atomic number (Z) = 3<br />

1s 2 2s 1<br />

1 /2 electron<br />

electron<br />

AnatomoflithiumusesafractionoftheLshell’s(n=2)capacity.Thisshellactuallyhasa<br />

totalcapacityofeightelectrons(maximumshellcapacity=2n 2 electrons).Ifweexaminethe<br />

organizationoftheatomwithacompletelyfilledLshell,wewillseehowallcombinationsof<br />

subshells,orbitals,andspinsareoccupiedbyelectrons:


38 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

L shell<br />

(n = 2)<br />

K shell<br />

(n = 1)<br />

subshell<br />

(l)<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

0 0<br />

orbital<br />

(m l)<br />

0<br />

0<br />

spin<br />

(m s)<br />

1 - 1 / 2<br />

1<br />

1 /2<br />

- 1 / 2<br />

1 /2<br />

-1 -<br />

-1<br />

1<br />

/2<br />

1 / 2<br />

0 0 - 1 / 2<br />

1 /2<br />

0 0 -<br />

0 0<br />

1<br />

/2<br />

1 / 2<br />

Neon<br />

Atomic number (Z) = 10<br />

Spectroscopic notation: 1s 2 2s 2 2p 6<br />

p subshell<br />

(l = 1)<br />

6 electrons<br />

s subshell<br />

(l = 0)<br />

2 electrons<br />

s subshell<br />

(l = 0)<br />

2 electrons<br />

Often,whenthespectroscopicnotationisgivenforanatom,anyshellsthatarecompletely<br />

filledareomitted,andtheunfilled,orthehighest-levelfilledshell,isdenoted. Forexample,<br />

theelementneon(showninthepreviousillustration),whichhastwocompletelyfilledshells,<br />

maybespectroscopicallydescribedsimplyas2p 6 ratherthan1s 2 2s 2 2p 6 . Lithium,withitsK<br />

shellcompletelyfilledandasolitaryelectronintheLshell,maybedescribedsimplyas2s 1<br />

ratherthan1s 2 2s 1 .<br />

Theomissionofcompletelyfilled,lower-levelshellsisnotjustanotationalconvenience.It<br />

alsoillustratesabasicprincipleofchemistry:thatthechemicalbehaviorofanelementisprimarilydeterminedbyitsunfilledshells.Bothhydrogenandlithiumhaveasingleelectronin<br />

theiroutermostshells(1s 1 and2s 1 ,respectively),givingthetwoelementssomesimilarproperties.Botharehighlyreactive,andreactiveinmuchthesameway(bondingtosimilarelements<br />

insimilarmodes).ItmatterslittlethatlithiumhasacompletelyfilledKshellunderneathits<br />

almost-vacantLshell:theunfilledLshellistheshellthatdeterminesitschemicalbehavior.<br />

Elementshavingcompletelyfilledoutershellsareclassifiedasnoble,andaredistinguished<br />

byalmostcompletenon-reactivitywithotherelements.Theseelementsusedtobeclassifiedas<br />

inert,whenitwasthoughtthatthesewerecompletelyunreactive,butarenowknowntoform<br />

compoundswithotherelementsunderspecificconditions.<br />

Sinceelementswithidenticalelectronconfigurationsintheiroutermostshell(s)exhibit<br />

similarchemicalproperties,DimitriMendeleevorganizedthedifferentelementsinatable<br />

accordingly.Suchatableisknownasaperiodictableoftheelements,andmoderntablesfollow<br />

thisgeneralforminFigure2.9.


2.2. QUANTUMPHYSICS 39<br />

He 2<br />

Helium<br />

4.00260<br />

1s 2<br />

Ne 10<br />

Neon<br />

20.179<br />

2p 6<br />

Ar 18<br />

Argon<br />

39.948<br />

3p 6<br />

Kr 36<br />

Krypton<br />

83.80<br />

4p 6<br />

Xe 54<br />

Xenon<br />

131.30<br />

5p 6<br />

13 V<strong>III</strong>A<br />

Rn 86<br />

Radon<br />

(222)<br />

K 19<br />

Potassium<br />

39.0983<br />

4s 1<br />

Ca 20<br />

Calcium<br />

4s 2<br />

Na 11<br />

Sodium<br />

3s 1<br />

Mg 12<br />

Magnesium<br />

3s 2<br />

H 1<br />

Hydrogen<br />

1s 1<br />

Li 3<br />

Lithium<br />

6.941<br />

2s 1<br />

Be 4<br />

Beryllium<br />

2s 2<br />

Sc 21<br />

Scandium<br />

3d 1 4s 2<br />

Ti 22<br />

Titanium<br />

3d 2 4s 2<br />

V 23<br />

Vanadium<br />

50.9415<br />

3d 3 4s 2<br />

Cr 24<br />

Chromium<br />

3d 5 4s 1<br />

Mn 25<br />

Manganese<br />

3d 5 4s 2<br />

Fe 26<br />

Iron<br />

55.847<br />

3d 6 4s 2<br />

Co 27<br />

Cobalt<br />

3d 7 4s 2<br />

Ni 28<br />

Nickel<br />

3d 8 4s 2<br />

Cu 29<br />

Copper<br />

63.546<br />

3d 10 4s 1<br />

Zn 30<br />

Zinc<br />

3d 10 4s 2<br />

Ga 31<br />

Gallium<br />

4p 1<br />

B 5<br />

Boron<br />

10.81<br />

2p 1<br />

C 6<br />

Carbon<br />

12.011<br />

2p 2<br />

N 7<br />

Nitrogen<br />

14.0067<br />

2p 3<br />

O 8<br />

Oxygen<br />

15.9994<br />

2p 4<br />

F 9<br />

Fluorine<br />

18.9984<br />

2p 5<br />

K 19<br />

Potassium<br />

39.0983<br />

4s 1<br />

Symbol Atomic number<br />

Name<br />

Atomic mass<br />

Electron<br />

configuration Al 13<br />

Aluminum<br />

26.9815<br />

3p 1<br />

Si 14<br />

Silicon<br />

28.0855<br />

3p 2<br />

P 15<br />

Phosphorus<br />

30.9738<br />

3p 3<br />

S 16<br />

Sulfur<br />

32.06<br />

3p 4<br />

Cl 17<br />

Chlorine<br />

35.453<br />

3p 5<br />

Periodic Table of the Elements<br />

Germanium<br />

4p 2<br />

Ge 32 As 33<br />

Arsenic<br />

4p 3<br />

Se 34<br />

Selenium<br />

78.96<br />

4p 4<br />

Br 35<br />

Bromine<br />

79.904<br />

4p 5<br />

I 53<br />

Iodine<br />

126.905<br />

5p 5<br />

37<br />

Rubidium<br />

85.4678<br />

5s 1<br />

Sr 38<br />

Strontium<br />

87.62<br />

5s 2<br />

Y 39<br />

Yttrium<br />

4d 1 5s 2<br />

Zr 40<br />

Zirconium<br />

91.224<br />

4d 2 5s 2<br />

Nb 41<br />

Niobium<br />

92.90638<br />

4d 4 5s 1<br />

Mo 42<br />

Molybdenum<br />

95.94<br />

4d 5 5s 1<br />

Tc 43<br />

Technetium<br />

(98)<br />

4d 5 5s 2<br />

Ru 44<br />

Ruthenium<br />

101.07<br />

4d 7 5s 1<br />

Rh 45<br />

Rhodium<br />

4d 8 5s 1<br />

Pd 46<br />

Palladium<br />

106.42<br />

4d 10 5s 0<br />

Ag 47<br />

Silver<br />

107.8682<br />

4d 10 5s 1<br />

Cd 48<br />

Cadmium<br />

112.411<br />

4d 10 5s 2<br />

<strong>In</strong> 49<br />

<strong>In</strong>dium<br />

114.82<br />

5p 1<br />

Sn 50<br />

Tin<br />

118.710<br />

5p 2<br />

Sb 51<br />

Antimony<br />

121.75<br />

5p 3<br />

Te 52<br />

Tellurium<br />

127.60<br />

5p 4<br />

Po 84<br />

Polonium<br />

(209)<br />

6p 4<br />

At 85<br />

Astatine<br />

(210)<br />

6p 5<br />

Metalloids Nonmetals<br />

Metals<br />

Rb<br />

Cs 55<br />

Cesium<br />

132.90543<br />

6s 1<br />

Ba 56<br />

Barium<br />

137.327<br />

6s 2<br />

57 - 71 Hf 72<br />

Lanthanide Hafnium<br />

series 178.49<br />

5d 2 6s 2<br />

Ta 73<br />

Tantalum<br />

180.9479<br />

5d 3 6s 2<br />

W 74<br />

Tungsten<br />

183.85<br />

5d 4 6s 2<br />

Re 75<br />

Rhenium<br />

186.207<br />

5d 5 6s 2<br />

Os 76<br />

Osmium<br />

190.2<br />

5d 6 6s 2<br />

Ir 77<br />

Iridium<br />

192.22<br />

5d 7 6s 2<br />

Pt 78<br />

Platinum<br />

195.08<br />

5d 9 6s 1<br />

Au 79<br />

Gold<br />

196.96654<br />

5d 10 6s 1<br />

Hg 80<br />

Mercury<br />

200.59<br />

5d 10 6s 2<br />

Tl 81<br />

Thallium<br />

204.3833<br />

6p 1<br />

Pb 82<br />

Lead<br />

207.2<br />

6p 2<br />

Bi 83<br />

Bismuth<br />

208.98037<br />

6p 3<br />

1 IA<br />

1.00794<br />

2 IIA<br />

Group new 1 IA Group old<br />

13 <strong>III</strong>A 14 IVA 15 VA 16 VIA 17 VIIA<br />

9.012182<br />

(averaged according to<br />

occurence on earth)<br />

22.989768 24.3050<br />

3 <strong>III</strong>B 4 IVB 5 VB 6 VIB 7 VIIB 8 V<strong>III</strong>B 9 V<strong>III</strong>B 10 V<strong>III</strong>B 11 IB 12 IIB<br />

40.078 44.955910 47.88 51.9961 54.93805 58.93320 58.69 65.39 69.723 72.61 74.92159<br />

88.90585 102.90550<br />

Fr 87 Ra 88 89 - 103 Unq 104 Unp 105 Unh 106 Uns 107 108 109<br />

Francium Radium Actinide Unnilquadium Unnilpentium Unnilhexium Unnilseptium<br />

(223) (226) series (261) (262) (263) (262)<br />

6p 6<br />

6d 4 7s 2<br />

6d 3 7s 2<br />

6d 2 7s 2<br />

7s 2<br />

7s 1<br />

Lu 71<br />

Lutetium<br />

174.967<br />

4f 14 5d 1 6s 2<br />

Yb 70<br />

Ytterbium<br />

173.04<br />

Tm 69<br />

Thulium<br />

168.93421<br />

Er 68<br />

Erbium<br />

167.26<br />

Ho 67<br />

Holmium<br />

164.93032<br />

Dy 66<br />

Dysprosium<br />

162.50<br />

Tb 65<br />

Terbium<br />

158.92534<br />

Gd 64<br />

Gadolinium<br />

157.25<br />

Eu 63<br />

Europium<br />

151.965<br />

Sm 62<br />

Samarium<br />

150.36<br />

Nd 60 Pm 61<br />

NeodymiumPromethium<br />

(145)<br />

4f 5 6s 2<br />

Pr 59<br />

Praseodymium<br />

140.90765<br />

Ce 58<br />

Cerium<br />

140.115<br />

4f 1 5d 1 6s 2<br />

La 57<br />

Lanthanum<br />

138.9055<br />

Lanthanide<br />

series<br />

4f 14 6s 2<br />

4f 13 6s 2<br />

4f 12 6s 2<br />

4f 11 6s 2<br />

4f 10 6s 2<br />

4f 9 6s 2<br />

4f 7 5d 1 6s 2<br />

4f 7 6s 2<br />

4f 6 6s 2<br />

144.24<br />

4f 4 6s 2<br />

Figure2.9:Periodictableofchemicalelements.<br />

4f 3 6s 2<br />

5d 1 6s 2<br />

Lr 103<br />

Lawrencium<br />

(260)<br />

No 102<br />

Nobelium<br />

(259)<br />

Md 101<br />

Mendelevium<br />

(258)<br />

Fm 100<br />

Fermium<br />

(257)<br />

5f 12 6d 0 7s 2<br />

Es 99<br />

Einsteinium<br />

(252)<br />

5f 11 6d 0 7s 2<br />

Cf 98<br />

Californium<br />

(251)<br />

5f 10 6d 0 7s 2<br />

Bk 97<br />

Berkelium<br />

(247)<br />

5f 9 6d 0 7s 2<br />

Cm 96<br />

Curium<br />

(247)<br />

5f 7 6d 1 7s 2<br />

Am 95<br />

Americium<br />

(243)<br />

5f 7 6d 0 7s 2<br />

Pu 94<br />

Plutonium<br />

(244)<br />

5f 6 6d 0 7s 2<br />

Np 93<br />

Neptunium<br />

(237)<br />

5f 4 6d 1 7s 2<br />

U 92<br />

Uranium<br />

238.0289<br />

5f 3 6d 1 7s 2<br />

Pa 91<br />

Protactinium<br />

231.03588<br />

Th 90<br />

Thorium<br />

232.0381<br />

Ac 89<br />

Actinium<br />

(227)<br />

Actinide<br />

series<br />

6d 1 7s 2<br />

6d 0 7s 2<br />

5f 13 6d 0 7s 2<br />

5f 2 6d 1 7s 2<br />

6d 2 7s 2<br />

6d 1 7s 2


40 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

DmitriMendeleev,aRussianchemist,wasthefirsttodevelopaperiodictableoftheelements.AlthoughMendeleevorganizedhistableaccordingtoatomicmassratherthanatomicnumber,andproducedatablethatwasnotquiteasusefulasmodernperiodictables,hisdevelopmentstandsasanexcellentexampleofscientificproof.Seeingthepatternsofperiodicity(similarchemicalpropertiesaccordingtoatomicmass),Mendeleevhypothesizedthatallelementsshouldfitintothisorderedscheme.<br />

Whenhediscovered“empty”spotsinthetable,<br />

hefollowedthelogicoftheexistingorderandhypothesizedtheexistenceofheretoforeundiscoveredelements.Thesubsequentdiscoveryofthoseelementsgrantedscientificlegitimacyto<br />

Mendeleev’shypothesis,furtheringfuturediscoveries,andleadingtotheformoftheperiodic<br />

tableweusetoday.<br />

Thisishowscienceshouldwork:hypothesesfollowedtotheirlogicalconclusions,andaccepted,modified,orrejectedasdeterminedbytheagreementofexperimentaldatatothoseconclusions.Anyfoolmayformulateahypothesisafter-the-facttoexplainexistingexperimentaldata,andmanydo.<br />

Whatsetsascientifichypothesisapartfromposthocspeculationis<br />

thepredictionoffutureexperimentaldatayetuncollected,andthepossibilityofdisproofasa<br />

resultofthatdata.Toboldlyfollowahypothesistoitslogicalconclusion(s)anddaretopredict<br />

theresultsoffutureexperimentsisnotadogmaticleapoffaith,butratherapublictestofthat<br />

hypothesis,opentochallengefromanyoneabletoproducecontradictorydata.<strong>In</strong>otherwords,<br />

scientifichypothesesarealways“risky”duetotheclaimtopredicttheresultsofexperiments<br />

notyetconducted,andarethereforesusceptibletodisproofiftheexperimentsdonotturnout<br />

aspredicted. Thus,ifahypothesissuccessfullypredictstheresultsofrepeatedexperiments,<br />

itsfalsehoodisdisproven.<br />

Quantummechanics,firstasahypothesisandlaterasatheory,hasproventobeextremely<br />

successfulinpredictingexperimentalresults,hencethehighdegreeofscientificconfidence<br />

placedinit. Manyscientistshavereasontobelievethatitisanincompletetheory,though,<br />

asitspredictionsholdtruemoreatmicrophysicalscalesthanatmacroscopicdimensions,but<br />

neverthelessitisatremendouslyusefultheoryinexplainingandpredictingtheinteractions<br />

ofparticlesandatoms.<br />

Asyouhavealreadyseeninthischapter,quantumphysicsisessentialindescribingand<br />

predictingmanydifferentphenomena. <strong>In</strong>thenextsection,wewillseeitssignificanceinthe<br />

electricalconductivityofsolidsubstances,includingsemiconductors. Simplyput,nothingin<br />

chemistryorsolid-statephysicsmakessensewithinthepopulartheoreticalframeworkofelectronsexistingasdiscretechunksofmatter,whirlingaroundatomicnucleilikeminiaturesatellites.<br />

Itiswhenelectronsareviewedas“wavefunctions”existingindefinite,discretestates<br />

thattheregularandperiodicbehaviorofmattercanbeexplained.<br />

• REVIEW:<br />

• Electronsinatomsexistin“clouds”ofdistributedprobability,notasdiscretechunksof<br />

matterorbitingthenucleusliketinysatellites,ascommonillustrationsofatomsshow.<br />

• <strong>In</strong>dividualelectronsaroundanatomicnucleusseekunique“states,”describedbyfour<br />

quantumnumbers: thePrincipalQuantumNumber,knownastheshell;theAngular<br />

MomentumQuantumNumber,knownasthesubshell;theMagneticQuantumNumber,<br />

describingtheorbital(subshellorientation);andtheSpinQuantumNumber,orsimply<br />

spin. Thesestatesarequantized,meaningthatno“in-between”conditionsexistforan<br />

electronotherthanthosestatesthatfitintothequantumnumberingscheme.


2.3. VALENCEANDCRYSTALSTRUCTURE 41<br />

• ThePrincipalQuantumNumber(n)describesthebasiclevelorshellthatanelectron<br />

residesin. Thelargerthisnumber,thegreaterradiustheelectroncloudhasfromthe<br />

atom’snucleus,andthegreaterthatelectron’senergy. Principalquantumnumbersare<br />

wholenumbers(positiveintegers).<br />

• TheAngularMomentumQuantumNumber(l)describestheshapeoftheelectroncloud<br />

withinaparticularshellorlevel,andisoftenknownasthe“subshell.”Thereareasmany<br />

subshells(electroncloudshapes)inanygivenshellasthatshell’sprincipalquantum<br />

number.Angularmomentumquantumnumbersarepositiveintegersbeginningatzero<br />

andendingatonelessthantheprincipalquantumnumber(n-1).<br />

• TheMagneticQuantumNumber(ml)describeswhichorientationasubshell(electron<br />

cloudshape)has. Subshellsmayassumeasmanydifferentorientationsas2-timesthe<br />

subshellnumber(l)plus1,(2l+1)(E.g.forl=1,ml=-1,0,1)andeachuniqueorientation<br />

iscalledanorbital.Thesenumbersareintegersrangingfromthenegativevalueofthe<br />

subshellnumber(l)through0tothepositivevalueofthesubshellnumber.<br />

• TheSpinQuantumNumber(ms)describesanotherpropertyofanelectron,andmaybe<br />

avalueof+1/2or-1/2.<br />

• Pauli’sExclusionPrinciplesaysthatnotwoelectronsinanatommaysharetheexact<br />

samesetofquantumnumbers.Therefore,nomorethantwoelectronsmayoccupyeach<br />

orbital(spin=1/2andspin=-1/2),2l+1orbitalsineverysubshell,andnsubshellsinevery<br />

shell,andnomore.<br />

• Spectroscopicnotationisaconventionfordenotingtheelectronconfigurationofanatom.<br />

Shellsareshownaswholenumbers,followedbysubshellletters(s,p,d,f),withsuperscriptednumberstotalingthenumberofelectronsresidingineachrespectivesubshell.<br />

• Anatom’schemicalbehaviorissolelydeterminedbytheelectronsintheunfilledshells.<br />

Low-levelshellsthatarecompletelyfilledhavelittleornoeffectonthechemicalbonding<br />

characteristicsofelements.<br />

• Elementswithcompletelyfilledelectronshellsarealmostentirelyunreactive,andare<br />

callednoble(formerlyknownasinert).<br />

2.3 ValenceandCrystalstructure<br />

Valence: Theelectronsintheoutermostshell,orvalenceshell,areknownasvalenceelectrons.<br />

Thesevalenceelectronsareresponsibleforthechemicalpropertiesofthechemical<br />

elements.Itistheseelectronswhichparticipateinchemicalreactionswithotherelements.An<br />

oversimplifiedchemistryruleapplicabletosimplereactionsisthatatomstrytoformacompleteoutershellof8electrons(twofortheLshell).<br />

Atomsmaygiveawayafewelectronsto<br />

exposeanunderlyingcompleteshell.Atomsmayacceptafewelectronstocompletetheshell.<br />

Thesetwoprocessesformionsfromatoms.Atomsmayevenshareelectronsamongatomsin<br />

anattempttocompletetheoutershell. Thisprocessformsmolecularbonds. Thatis,atoms<br />

associatetoformamolecule.


42 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

ForexamplegroupIelements:Li,Na,K,Cu,Ag,andAuhaveasinglevalenceelectron.<br />

(Figure2.10)Theseelementsallhavesimilarchemicalproperties. Theseatomsreadilygive<br />

awayoneelectrontoreactwithotherelements. Theabilitytoeasilygiveawayanelectron<br />

makestheseelementsexcellentconductors.<br />

Li<br />

Na<br />

K<br />

Cu Ag<br />

Au<br />

Figure2.10:PeriodictablegroupIAelements:Li,Na,andK,andgroupIBelements:Cu,Ag,<br />

andAuhaveoneelectronintheouter,orvalence,shell,whichisreadilydonated.<strong>In</strong>nershell<br />

electrons:Forn=1,2,3,4;2n 2 =2,8,18,32.<br />

GroupVIIAelements:Fl,Cl,Br,andIallhave7electronsintheoutershell. Theseelementsreadilyacceptanelectrontofilluptheoutershellwithafull8electrons.(Figure2.11)<br />

Iftheseelementsdoacceptanelectron,anegativeionisformedfromtheneutralatom.These<br />

elementswhichdonotgiveupelectronsareinsulators.<br />

F Cl<br />

Br<br />

Figure2.11: PeriodictablegroupVIIAelements: F,Cl,Br,andIwith7valenceelectrons<br />

readilyacceptanelectroninreactionswithotherelements.<br />

Forexample,aClatomacceptsanelectronfromanNaatomtobecomeaCl − ionasshownin<br />

Figure2.12.Anionisachargedparticleformedfromanatombyeitherdonatingoraccepting<br />

anelectron.AstheNaatomdonatesanelectron,itbecomesaNa + ion.ThisishowNaandCl<br />

atomscombinetoformNaCl,tablesalt,whichisactuallyNa + Cl − ,apairofions.TheNa + and<br />

Cl − carryingoppositecharges,attractoneother.<br />

SodiumchloridecrystallizesinthecubicstructureshowninFigure2.16.Thismodelisnot<br />

toscaletoshowthethreedimensionalstructure.TheNa + Cl − ionsareactuallypackedsimilar<br />

tolayersofstackedmarbles.Theeasilydrawncubiccrystalstructureillustratesthatasolid<br />

crystalmaycontainchargedparticles.<br />

GroupV<strong>III</strong>Aelements:He,Ne,Ar,Kr,Xeallhave8electronsinthevalenceshell.(Figure<br />

I


2.3. VALENCEANDCRYSTALSTRUCTURE 43<br />

=<br />

Na Cl Na +<br />

+ -<br />

Figure2.12:NeutralSodiumatomdonatesanelectrontoneutralChlorineatomformingNa +<br />

andCl − ions.<br />

below)Thatis,thevalenceshelliscompletemeaningtheseelementsneitherdonatenoraccept<br />

electrons. NordotheyreadilyparticipateinchemicalreactionssincegroupV<strong>III</strong>Aelements<br />

donoteasilycombinewithotherelements.<strong>In</strong>recentyearschemistshaveforcedXeandKrto<br />

formafewcompounds,howeverforthepurposesofourdiscussionthisisnotapplicable.These<br />

elementsaregoodelectricalinsulatorsandaregasesatroomtemperature.<br />

He Ne<br />

Ar<br />

Kr<br />

Figure2.13:GroupV<strong>III</strong>Aelements:He,Ne,Ar,Kr,Xearelargelyunreactivesincethevalence<br />

shelliscomplete..<br />

GroupIVAelements: C,Si,Ge,having4electronsinthevalenceshellasshowninFigure2.14formcompoundsbysharingelectronswithotherelementswithoutformingions.This<br />

sharedelectronbondingisknownascovalentbonding. Notethatthecenteratom(andthe<br />

othersbyextension)hascompleteditsvalenceshellbysharingelectrons.Notethatthefigure<br />

isa2-drepresentationofbonding,whichisactually3-d. Itisthisgroup,IVA,thatweare<br />

interestedinforitssemiconductingproperties.<br />

Crystalstructure:Mostinorganicsubstancesformtheiratoms(orions)intoanordered<br />

arrayknownasacrystal. Theouterelectroncloudsofatomsinteractinanorderlymanner.<br />

Evenmetalsarecomposedofcrystalsatthemicroscopiclevel. Ifametalsampleisgiven<br />

anopticalpolish,thenacidetched,themicroscopicmicrocrystallinestructureshowsasin<br />

Figure2.15. Itisalsopossibletopurchase,atconsiderableexpense,metallicsinglecrystal<br />

specimensfromspecializedsuppliers.Polishingandetchingsuchaspecimendisclosesnomicrocrystallinestructure.<br />

Practicallyallindustrialmetalsarepolycrystalline. Mostmodern<br />

semiconductors,ontheotherhand,aresinglecrystaldevices.Weareprimarilyinterestedin<br />

monocrystallinestructures.<br />

Manymetalsaresoftandeasilydeformedbythevariousmetalworkingtechniques. The<br />

microcrystalsaredeformedinmetalworking. Also,thevalenceelectronsarefreetomove<br />

aboutthecrystallattice,andfromcrystaltocrystal. Thevalenceelectronsdonotbelongto<br />

Cl -<br />

Xe


44 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

C Si<br />

Ge<br />

(a)<br />

(b)<br />

Figure2.14: (a)GroupIVAelements: C,Si,Gehaving4electronsinthevalenceshell,(b)<br />

completethevalenceshellbysharingelectronswithotherelements.<br />

(a) (b) (c)<br />

Figure2.15:(a)Metalsample,(b)polished,(c)acidetchedtoshowmicrocrystallinestructure.<br />

anyparticularatom,buttoallatoms.<br />

TherigidcrystalstructureinFigure2.16iscomposedofaregularrepeatingpatternof<br />

positiveNaionsandnegativeClions.TheNaandClatomsformNa + andCl − ionsbytransferringanelectronfromNatoCl,withnofreeelectrons.Electronsarenotfreetomoveabout<br />

thecrystallattice,adifferencecomparedwithametal.Noraretheionsfree.Ionsarefixedin<br />

placewithinthecrystalstructure.Though,theionsarefreetomoveaboutiftheNaClcrystal<br />

isdissolvedinwater.However,thecrystalnolongerexists.Theregular,repeatingstructureis<br />

gone.EvaporationofthewaterdepositstheNa + andCl − ionsintheformofnewcrystalsas<br />

theoppositelychargedionsattracteachother.Ionicmaterialsformcrystalstructuresdueto<br />

thestrongelectrostaticattractionoftheoppositelychargedions.<br />

SemiconductorsinGroup14(formerlypartofGroupIV)formatetrahedralbondingpatternutilizingthesandporbitalelectronsabouttheatom,sharingelectron-pairbondstofouradjacentatoms.(Figure2.18(a)).Group14elementshavefourouterelectrons:twoinasphericals-orbitalandtwoinp-orbitals.<br />

Oneofthep-orbitalsisunoccupied. Thethreep-orbitals<br />

hybridizewiththes-orbitaltoformfoursp 3 molecularorbitals.ThesefourelectroncloudsrepeloneanothertoequidistanttetrahedralspacingabouttheSiatom,attractedbythepositive<br />

nucleusasshowninFigure2.17.<br />

Everysemiconductoratom,Si,Ge,orC(diamond)ischemicallybondedtofourotheratoms<br />

bycovalentbonds,sharedelectronbonds. Twoelectronsmayshareanorbitalifeachhave<br />

oppositespinquantumnumbers. Thus,anunpairedelectronmayshareanorbitalwithan<br />

electronfromanotheratom. ThiscorrespondstooverlappingFigure2.18(a)oftheelectron


2.3. VALENCEANDCRYSTALSTRUCTURE 45<br />

z<br />

y<br />

s z 2<br />

Figure2.16:NaClcrystalhavingacubicstructure.<br />

x<br />

+ +<br />

p x<br />

Figure2.17:Ones-orbitalandthreep-orbitalelectronshybridize,formingfoursp 3 molecular<br />

orbitals.<br />

p y<br />

Cl -<br />

Na +<br />

=<br />

sp 3


46 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

clouds,orbonding.Figure2.18(b)isonefourthofthevolumeofthediamondcrystalstructure<br />

unitcellshowninFigure2.19attheorigin. Thebondsareparticularlystrongindiamond,<br />

decreasinginstrengthgoingdowngroupIVtosilicon,andgermanium.Siliconandgermanium<br />

bothformcrystalswithadiamondstructure.<br />

(a)<br />

(b)<br />

Figure2.18:(a)TetrahedralbondingofSiatom.(b)leadsto1/4ofthecubicunitcell<br />

Thediamondunitcellisthebasiccrystalbuildingblock. Figure2.19showsfouratoms<br />

(dark)bondedtofourotherswithinthevolumeofthecell. Thisisequivalenttoplacingone<br />

ofFigure2.18(b)attheorigininFigure2.19,thenplacingthreemoreonadjacentfacestofill<br />

thefullcube. Sixatomsfallonthemiddleofeachofthesixcubefaces,showingtwobonds.<br />

Theothertwobondstoadjacentcubeswereomittedforclarity.Outofeightcubecorners,four<br />

atomsbondtoanatomwithinthecube. Wherearetheotherfouratomsbonded? Theother<br />

fourbondtoadjacentcubesofthecrystal.Keepinmindthateventhoughfourcorneratoms<br />

shownobondsinthecube,allatomswithinthecrystalarebondedinonegiantmolecule. A<br />

semiconductorcrystalisbuiltupfromcopiesofthisunitcell.<br />

Thecrystaliseffectivelyonemolecule.Anatomcovalentbondstofourothers,whichinturn<br />

bondtofourothers,andsoon.Thecrystallatticeisrelativelystiffresistingdeformation.Few<br />

electronsfreethemselvesforconductionaboutthecrystal.Apropertyofsemiconductorsisthat<br />

onceanelectronisfreed,apositivelychargedemptyspacedevelopswhichalsocontributesto<br />

conduction.<br />

• REVIEW<br />

• Atomstrytoformacompleteouter,valence,shellof8-electrons(2-electronsfortheinnermostshell).Atomsmaydonateafewelectronstoexposeanunderlyingshellof8,accept<br />

afewelectronstocompleteashell,orshareelectronstocompleteashell.<br />

• Atomsoftenformorderedarraysofionsoratomsinarigidstructureknownasacrystal.<br />

• Aneutralatommayformapositiveionbydonatinganelectron.<br />

• Aneutralatommayformanegativeionbyacceptinganelectron<br />

• ThegroupIVAsemiconductors:C,Si,Gecrystallizeintoadiamondstructure.Eachatom<br />

inthecrystalispartofagiantmolecule,bondingtofourotheratoms.


2.4. BANDTHEORYOFSOLIDS 47<br />

Face centered atoms<br />

Atom bonded to 4 others<br />

Other atoms bonded to<br />

chain in cube<br />

Atoms bonded outside of<br />

cube<br />

Figure2.19:Si,Ge,andC(diamond)forminterleavedfacecenteredcube.<br />

• Mostsemiconductordevicesaremanufacturedfromsinglecrystals.<br />

2.4 Bandtheoryofsolids<br />

Quantumphysicsdescribesthestatesofelectronsinanatomaccordingtothefour-foldscheme<br />

ofquantumnumbers. Thequantumnumbersdescribetheallowablestateselectronsmayassumeinanatom.<br />

Tousetheanalogyofanamphitheater,quantumnumbersdescribehow<br />

manyrowsandseatsareavailable.<strong>In</strong>dividualelectronsmaybedescribedbythecombination<br />

ofquantumnumbers,likeaspectatorinanamphitheaterassignedtoaparticularrowand<br />

seat.<br />

Likespectatorsinanamphitheatermovingbetweenseatsandrows,electronsmaychange<br />

theirstatuses,giventhepresenceofavailablespacesforthemtofit,andavailableenergy.<br />

Sinceshellleveliscloselyrelatedtotheamountofenergythatanelectronpossesses,“leaps”<br />

betweenshell(andevensubshell)levelsrequirestransfersofenergy.Ifanelectronistomove<br />

intoahigher-ordershell,itrequiresthatadditionalenergybegiventotheelectronfroman<br />

externalsource.Usingtheamphitheateranalogy,ittakesanincreaseinenergyforaperson<br />

tomoveintoahigherrowofseats,becausethatpersonmustclimbtoagreaterheightagainst<br />

theforceofgravity. Conversely,anelectron“leaping”intoalowershellgivesupsomeofits<br />

energy,likeapersonjumpingdownintoalowerrowofseats,theexpendedenergymanifesting<br />

asheatandsound.<br />

Notall“leaps”areequal.Leapsbetweendifferentshellsrequireasubstantialexchangeof<br />

energy,butleapsbetweensubshellsorbetweenorbitalsrequirelesserexchanges.


48 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

Whenatomscombinetoformsubstances, theoutermostshells, subshells, andorbitals<br />

merge,providingagreaternumberofavailableenergylevelsforelectronstoassume. When<br />

largenumbersofatomsareclosetoeachother,theseavailableenergylevelsformanearly<br />

continuousbandwhereinelectronsmaymoveasillustratedinFigure2.20<br />

Significant leap required<br />

for an electron to move<br />

to the next higher level<br />

3p<br />

3s<br />

Single atom<br />

Shorter leap<br />

required<br />

3p<br />

3s<br />

Five atoms<br />

in close proximity<br />

Overlap permits<br />

electrons to freely<br />

drift between bands<br />

3p<br />

Overlap<br />

3s<br />

Multitudes of atoms<br />

in close proximity<br />

Figure2.20:Electronbandoverlapinmetallicelements.<br />

Itisthewidthofthesebandsandtheirproximitytoexistingelectronsthatdetermines<br />

howmobilethoseelectronswillbewhenexposedtoanelectricfield. <strong>In</strong>metallicsubstances,<br />

emptybandsoverlapwithbandscontainingelectrons,meaningthatelectronsofasingleatom<br />

maymovetowhatwouldnormallybeahigher-levelstatewithlittleornoadditionalenergy<br />

imparted.Thus,theouterelectronsaresaidtobe“free,”andreadytomoveatthebeckoning<br />

ofanelectricfield.<br />

Bandoverlapwillnotoccurinallsubstances,nomatterhowmanyatomsareclosetoeach<br />

other. <strong>In</strong>somesubstances,asubstantialgapremainsbetweenthehighestbandcontaining<br />

electrons(theso-calledvalenceband)andthenextband,whichisempty(theso-calledconductionband).<br />

SeeFigure2.21. Asaresult,valenceelectronsare“bound”totheirconstituent<br />

atomsandcannotbecomemobilewithinthesubstancewithoutasignificantamountofimpartedenergy.Thesesubstancesareelectricalinsulators.<br />

Materialsthatfallwithinthecategoryofsemiconductorshaveanarrowgapbetweenthe<br />

valenceandconductionbands. Thus,theamountofenergyrequiredtomotivateavalence<br />

electronintotheconductionbandwhereitbecomesmobileisquitemodest.(Figure2.22)<br />

Atlowtemperatures,littlethermalenergyisavailabletopushvalenceelectronsacross<br />

thisgap,andthesemiconductingmaterialactsmoreasaninsulator.Athighertemperatures,<br />

though,theambientthermalenergybecomesenoughtoforceelectronsacrossthegap,andthe<br />

materialwillincreaseconductionofelectricity.<br />

Itisdifficulttopredicttheconductivepropertiesofasubstancebyexaminingtheelectron<br />

configurationsofitsconstituentatoms. Althoughthebestmetallicconductorsofelectricity<br />

(silver,copper,andgold)allhaveouterssubshellswithasingleelectron,therelationship<br />

betweenconductivityandvalenceelectroncountisnotnecessarilyconsistent:


2.4. BANDTHEORYOFSOLIDS 49<br />

Significant leap required<br />

for an electron to enter<br />

the conduction band and<br />

travel through the material<br />

Multitudes of atoms<br />

in close proximity<br />

Conduction band<br />

"Energy gap"<br />

Valence band<br />

Figure2.21:Electronbandseparationininsulatingsubstances.<br />

Small leap required<br />

for an electron to enter<br />

the conduction band and<br />

travel through the material<br />

semiconducting substance<br />

metalic substance for reference<br />

(a)<br />

Conduction band<br />

"Energy gap"<br />

Valence band<br />

(b)<br />

<strong>In</strong>significant leap<br />

for electron to<br />

enter conduction<br />

band<br />

Figure2.22:Electronbandseparationinsemiconductingsubstances,(a)multitudesofsemiconductingcloseatomsstillresultsinasignificantbandgap,(b)multitudesofclosemetal<br />

atomsforreference.


50 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

Element<br />

Silver (Ag)<br />

Specific resistance<br />

(ρ) at 20 o Electron<br />

Celsius configuration<br />

9.546 Ω⋅cmil/ft 4d 10 5s 1<br />

Copper (Cu) 10.09 Ω⋅cmil/ft 3d 10 4s 1<br />

Gold (Au) 13.32 Ω⋅cmil/ft 5d 10 6s 1<br />

Aluminum (Al) 15.94 Ω⋅cmil/ft 3p 1<br />

Tungsten (W) 31.76 Ω⋅cmil/ft 5d 4 6s 2<br />

Element<br />

Specific resistance<br />

(ρ) at 20 o Electron<br />

Celsius configuration<br />

Molybdenum (Mo) 32.12 Ω⋅cmil/ft 4d 5 5s 1<br />

Zinc (Zn) 35.49 Ω⋅cmil/ft 3d 10 4s 2<br />

Nickel (Ni) 41.69 Ω⋅cmil/ft 3d 8 4s 2<br />

Iron (Fe) 57.81 Ω⋅cmil/ft 3d 6 4s 2<br />

Platinum (Pt) 63.16 Ω⋅cmil/ft 5d 9 6s 1<br />

Theelectronbandconfigurationsproducedbycompoundsofdifferentelementsdefieseasy<br />

associationwiththeelectronconfigurationsofitsconstituentelements.<br />

• REVIEW:<br />

• Energyisrequiredtoremoveanelectronfromthevalencebandtoahigherunoccupied<br />

band,aconductionband.Moreenergyisrequiredtomovebetweenshells,lessbetween<br />

subshells.<br />

• Sincethevalenceandconductionbandsoverlapinmetals,littleenergyremovesanelectron.Metalsareexcellentconductors.<br />

• Thelargegapbetweenthevalenceandconductionbandsofaninsulatorrequireshigh<br />

energytoremoveanelectron.Thus,insulatorsdonotconduct.<br />

• Semiconductorshaveasmallnon-overlappinggapbetweenthevalenceandconduction<br />

bands.Puresemiconductorsareneithergoodinsulatorsnorconductors.Semiconductors<br />

aresemi-conductive.<br />

2.5 Electronsand“holes”<br />

Puresemiconductorsarerelativelygoodinsulatorsascomparedwithmetals,thoughnotnearly<br />

asgoodasatrueinsulatorlikeglass.Tobeusefulinsemiconductorapplications,theintrinsic<br />

semiconductor(pureundopedsemiconductor)musthavenomorethanoneimpurityatomin<br />

10billionsemiconductoratoms. Thisisanalogoustoagrainofsaltimpurityinarailroad<br />

boxcarofsugar.Impure,ordirtysemiconductorsareconsiderablymoreconductive,thoughnot<br />

asgoodasmetals.Whymightthisbe?Toanswerthatquestion,wemustlookattheelectron<br />

structureofsuchmaterialsinFigure2.23.<br />

Figure2.23(a)showsfourelectronsinthevalenceshellofasemiconductorformingcovalent<br />

bondstofourotheratoms. Thisisaflattened,easiertodraw,versionofFigure2.19. All<br />

electronsofanatomaretiedupinfourcovalentbonds,pairsofsharedelectrons.Electronsare<br />

notfreetomoveaboutthecrystallattice.Thus,intrinsic,pure,semiconductorsarerelatively<br />

goodinsulatorsascomparedtometals.<br />

ThermalenergymayoccasionallyfreeanelectronfromthecrystallatticeasinFigure2.23<br />

(b).Thiselectronisfreeforconductionaboutthecrystallattice.Whentheelectronwasfreed,<br />

itleftanemptyspotwithapositivechargeinthecrystallatticeknownasahole.Thisholeis<br />

notfixedtothelattice;but,isfreetomoveabout.Thefreeelectronandholebothcontribute


2.5. ELECTRONSAND“HOLES” 51<br />

(a)<br />

hole electron<br />

(b)<br />

Figure2.23:(a)<strong>In</strong>trinsicsemiconductorisaninsulatorhavingacompleteelectronshell. (b)<br />

However,thermalenergycancreatefewelectronholepairsresultinginweakconduction.<br />

toconductionaboutthecrystallattice. Thatis,theelectronisfreeuntilitfallsintoahole.<br />

Thisiscalledrecombination. Ifanexternalelectricfieldisappliedtothesemiconductor,the<br />

electronsandholeswillconductinoppositedirections. <strong>In</strong>creasingtemperaturewillincrease<br />

thenumberofelectronsandholes,decreasingtheresistance.Thisisoppositeofmetals,where<br />

resistanceincreaseswithtemperaturebyincreasingthecollisionsofelectronswiththecrystal<br />

lattice.Thenumberofelectronsandholesinanintrinsicsemiconductorareequal.However,<br />

bothcarriersdonotnecessarilymovewiththesamevelocitywiththeapplicationofanexternal<br />

field.Anotherwayofstatingthisisthatthemobilityisnotthesameforelectronsandholes.<br />

Puresemiconductors,bythemselves,arenotparticularlyuseful.Though,semiconductors<br />

mustberefinedtoahighlevelofpurityasastartingpointpriortheadditionofspecificimpurities.<br />

Semiconductormaterialpureto1partin10billion,mayhavespecificimpuritiesadded<br />

atapproximately1partper10milliontoincreasethenumberofcarriers. Theadditionofa<br />

desiredimpuritytoasemiconductorisknownasdoping.Dopingincreasestheconductivityof<br />

asemiconductorsothatitismorecomparabletoametalthananinsulator.<br />

Itispossibletoincreasethenumberofnegativechargecarrierswithinthesemiconductor<br />

crystallatticebydopingwithanelectrondonorlikePhosphorus.Electrondonors,alsoknown<br />

asN-typedopantsincludeelementsfromgroupVAoftheperiodictable:nitrogen,phosphorus,<br />

arsenic,andantimony.NitrogenandphosphorusareN-typedopantsfordiamond.Phosphorus,<br />

arsenic,andantimonyareusedwithsilicon.<br />

ThecrystallatticeinFigure2.24(b)containsatomshavingfourelectronsintheouter<br />

shell,formingfourcovalentbondstoadjacentatoms. Thisistheanticipatedcrystallattice.<br />

Theadditionofaphosphorusatomwithfiveelectronsintheoutershellintroducesanextra<br />

electronintothelatticeascomparedwiththesiliconatom. Thepentavalentimpurityforms<br />

fourcovalentbondstofoursiliconatomswithfourofthefiveelectrons,fittingintothelattice<br />

withoneelectronleftover.Notethatthisspareelectronisnotstronglybondedtothelatticeas<br />

theelectronsofnormalSiatomsare.Itisfreetomoveaboutthecrystallattice,notbeingbound<br />

tothePhosphoruslatticesite.Sincewehavedopedatonepartphosphorusin10millionsilicon<br />

atoms,fewfreeelectronswerecreatedcomparedwiththenumeroussiliconatoms.However,<br />

manyelectronswerecreatedcomparedwiththefewerelectron-holepairsinintrinsicsilicon.<br />

Applicationofanexternalelectricfieldproducesstrongconductioninthedopedsemiconductor<br />

intheconductionband(abovethevalenceband). Aheavierdopinglevelproducesstronger


52 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

conduction.Thus,apoorlyconductingintrinsicsemiconductorhasbeenconvertedintoagood<br />

electricalconductor.<br />

(a)<br />

P<br />

Si<br />

B<br />

(b)<br />

Si Si Si Si<br />

Si Si Si Si<br />

Si<br />

Si<br />

P<br />

Si Si<br />

Si Si Si<br />

electron<br />

Si<br />

B<br />

Si Si<br />

(c)<br />

Si Si Si Si<br />

hole<br />

hole movement<br />

electron<br />

movement<br />

Figure2.24: (a)OutershellelectronconfigurationofdonorN-typePhosphorus,Silicon(for<br />

reference),andacceptorP-typeBoron. (b)N-typedonorimpuritycreatesfreeelectron(c)Ptypeacceptorimpuritycreateshole,apositivechargecarrier.<br />

Itisalsopossibletointroduceanimpuritylackinganelectronascomparedwithsilicon,<br />

havingthreeelectronsinthevalenceshellascomparedwithfourforsilicon. <strong>In</strong>Figure2.24<br />

(c),thisleavesanemptyspotknownasahole,apositivechargecarrier.Theboronatomtries<br />

tobondtofoursiliconatoms,butonlyhasthreeelectronsinthevalenceband.<strong>In</strong>attempting<br />

toformfourcovalentbondsthethreeelectronsmovearoundtryingtoformfourbonds. This<br />

makestheholeappeartomove.Furthermore,thetrivalentatommayborrowanelectronfrom<br />

anadjacent(ormoredistant)siliconatomtoformfourcovalentbonds. However,thisleaves<br />

thesiliconatomdeficientbyoneelectron.<strong>In</strong>otherwords,theholehasmovedtoanadjacent(or<br />

moredistant)siliconatom.Holesresideinthevalenceband,alevelbelowtheconductionband.<br />

Dopingwithanelectronacceptor,anatomwhichmayacceptanelectron,createsadeficiencyof<br />

electrons,thesameasanexcessofholes.Sinceholesarepositivechargecarriers,anelectron<br />

acceptordopantisalsoknownasaP-typedopant.TheP-typedopantleavesthesemiconductor<br />

withanexcessofholes,positivechargecarriers. TheP-typeelementsfromgroup<strong>III</strong>Aofthe<br />

periodictableinclude: boron,aluminum,gallium,andindium. BoronisusedasaP-type<br />

dopantforsiliconanddiamondsemiconductors,whileindiumisusedwithgermanium.<br />

The“marbleinatube”analogytoelectronconductioninFigure2.25relatesthemovement<br />

ofholeswiththemovementofelectrons. Themarblerepresentelectronsinaconductor,the<br />

tube. ThemovementofelectronsfromlefttorightasinawireorN-typesemiconductoris<br />

explainedbyanelectronenteringthetubeattheleftforcingtheexitofanelectronatthe<br />

right. ConductionofN-typeelectronsoccursintheconductionband. Comparethatwiththe<br />

movementofaholeinthevalenceband.<br />

ForaholetoenterattheleftofFigure2.25(b),anelectronmustberemoved.Whenmoving<br />

aholelefttoright,theelectronmustbemovedrighttoleft.Thefirstelectronisejectedfrom<br />

theleftendofthetubesothattheholemaymovetotherightintothetube. Theelectronis<br />

movingintheoppositedirectionofthepositivehole. Astheholemovesfarthertotheright,<br />

electronsmustmovelefttoaccommodatethehole. Theholeistheabsenceofanelectronin<br />

thevalencebandduetoP-typedoping.Ithasalocalizedpositivecharge.Tomovetheholein<br />

agivendirection,thevalenceelectronsmoveintheoppositedirection.<br />

ElectronflowinanN-typesemiconductorissimilartoelectronsmovinginametallicwire.


2.5. ELECTRONSAND“HOLES” 53<br />

(a)<br />

electron movement<br />

(b)<br />

hole movement<br />

electron movement<br />

Figure2.25: Marbleinatubeanalogy: (a)Electronsmoverightintheconductionbandas<br />

electronsentertube.(b)Holemovesrightinthevalencebandaselectronsmoveleft.<br />

TheN-typedopantatomswillyieldelectronsavailableforconduction. Theseelectrons,due<br />

tothedopantareknownasmajoritycarriers,fortheyareinthemajorityascomparedtothe<br />

veryfewthermalholes. IfanelectricfieldisappliedacrosstheN-typesemiconductorbarin<br />

Figure2.26(a),electronsenterthenegative(left)endofthebar,traversethecrystallattice,<br />

andexitatrighttothe(+)batteryterminal.<br />

electron enters electron exits<br />

(a) N-type<br />

crystal lattice<br />

(b) P-type<br />

Figure2.26:(a)N-typesemiconductorwithelectronsmovinglefttorightthroughthecrystal<br />

lattice.(b)P-typesemiconductorwithholesmovinglefttoright,whichcorrespondstoelectrons<br />

movingintheoppositedirection.<br />

CurrentflowinaP-typesemiconductorisalittlemoredifficulttoexplain. TheP-type<br />

dopant,anelectronacceptor,yieldslocalizedregionsofpositivechargeknownasholes. The<br />

majoritycarrierinaP-typesemiconductoristhehole.Whileholesformatthetrivalentdopant<br />

atomsites,theymaymoveaboutthesemiconductorbar.NotethatthebatteryinFigure2.26<br />

(b)isreversedfrom(a).ThepositivebatteryterminalisconnectedtotheleftendoftheP-type<br />

bar.Electronflowisoutofthenegativebatteryterminal,throughtheP-typebar,returningto<br />

thepositivebatteryterminal.Anelectronleavingthepositive(left)endofthesemiconductor<br />

barforthepositivebatteryterminalleavesaholeinthesemiconductor,thatmaymovetothe<br />

right. Holestraversethecrystallatticefromlefttoright. Atthenegativeendofthebaran<br />

electronfromthebatterycombineswithahole,neutralizingit.Thismakesroomforanother<br />

holetomoveinatthepositiveendofthebartowardtheright.Keepinmindthatasholesmove<br />

lefttoright,thatitisactuallyelectronsmovingintheoppositedirectionthatisresponsiblefor<br />

theapparantholemovement.


54 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

TheelementsusedtoproducesemiconductorsaresummarizedinFigure2.27. TheoldestgroupIVAbulksemiconductormaterialgermaniumisonlyusedtoalimitedextenttoday.Siliconbasedsemiconductorsaccountforabout90%ofcommercialproductionofallsemiconductors.Diamondbasedsemiconductorsarearesearchanddevelopmentactivitywithconsiderablepotentialatthistime.Compoundsemiconductorsnotlistedincludesilicongermanium<br />

(thinlayersonSiwafers),siliconcarbideand<strong>III</strong>-Vcompoundssuchasgalliumarsenide.<strong>III</strong>-<br />

VIcompoundsemiconductorsinclude:AlN,GaN,<strong>In</strong>N,AlP,AlAs,AlSb,GaP,GaAs,GaSb,<strong>In</strong>P,<br />

<strong>In</strong>As,<strong>In</strong>Sb,AlxGa1−xAsand<strong>In</strong>xGa1−xAs. ColumnsIIandVIofperiodictable,notshownin<br />

thefigure,alsoformcompoundsemiconductors.<br />

Elemental semiconductors<br />

C(diamond), Si, Ge<br />

B<br />

P-type dopant for C<br />

B, Al, Ga, <strong>In</strong><br />

P-type dopant for Si<br />

Al, Ga, <strong>In</strong><br />

P-type dopant for Ge<br />

13 <strong>III</strong>A 14 IVA 15 VA<br />

B 5<br />

Boron<br />

10.81<br />

2p 1<br />

Al 13<br />

Aluminum<br />

26.9815<br />

3p 1<br />

Ga 31 Ge 32 As 33<br />

Gallium Germanium Arsenic<br />

69.723 72.61 74.92159<br />

4p 1<br />

<strong>In</strong> 49<br />

<strong>In</strong>dium<br />

114.82<br />

5p 1<br />

C 6<br />

Carbon<br />

12.011<br />

2p 2<br />

Si 14<br />

Silicon<br />

28.0855<br />

3p 2<br />

4p 2<br />

N 7<br />

Nitrogen<br />

14.0067<br />

2p 3<br />

P 15<br />

Phosphorus<br />

30.9738<br />

3p 3<br />

4p 3<br />

Sb 51<br />

Antimony<br />

121.75<br />

5p 3<br />

N, P<br />

N-type dopant for C<br />

P, As, Sb<br />

N-type dopant for Si, Ge<br />

Figure2.27:Group<strong>III</strong>AP-typedopants,groupIVbasicsemiconductormaterials,andgroup<br />

VAN-typedopants.<br />

Themainreasonfortheinclusionofthe<strong>III</strong>AandVAgroupsinFigure2.27istoshowthe<br />

dopantsusedwiththegroupIVAsemiconductors.Group<strong>III</strong>Aelementsareacceptors,P-type<br />

dopants,whichacceptelectronsleavingaholeinthecrystallattice,apositivecarrier.Boron<br />

istheP-typedopantfordiamond,andthemostcommondopantforsiliconsemiconductors.<br />

<strong>In</strong>diumistheP-typedopantforgermanium.<br />

GroupVAelementsaredonors,N-typedopants,yieldingafreeelectron. Nitrogenand<br />

PhosphorusaresuitableN-typedopantsfordiamond. Phosphorusandarsenicarethemost<br />

commonlyusedN-typedopantsforsilicon;though,antimonycanbeused.<br />

• REVIEW:<br />

• <strong>In</strong>trinsicsemiconductormaterials,pureto1partin10billion,arepoorconductors.<br />

• N-typesemiconductorisdopedwithapentavalentimpuritytocreatefreeelectrons.Such<br />

amaterialisconductive.Theelectronisthemajoritycarrier.<br />

• P-typesemiconductor,dopedwithatrivalentimpurity,hasanabundanceoffreeholes.<br />

Thesearepositivechargecarriers. TheP-typematerialisconductive. Theholeisthe<br />

majoritycarrier.


2.6. THEP-NJUNCTION 55<br />

• MostsemiconductorsarebasedonelementsfromgroupIVAoftheperiodictable,silicon<br />

beingthemostprevalent. Germaniumisallbutobsolete. Carbon(diamond)isbeing<br />

developed.<br />

• Compoundsemiconductorssuchassiliconcarbide(groupIVA)andgalliumarsenide(group<br />

<strong>III</strong>-V)arewidelyused.<br />

2.6 TheP-Njunction<br />

IfablockofP-typesemiconductorisplacedincontactwithablockofN-typesemiconductorin<br />

Figure2.28(a),theresultisofnovalue. Wehavetwoconductiveblocksincontactwitheach<br />

other,showingnouniqueproperties.Theproblemistwoseparateanddistinctcrystalbodies.<br />

Thenumberofelectronsisbalancedbythenumberofprotonsinbothblocks. Thus,neither<br />

blockhasanynetcharge.<br />

However,asinglesemiconductorcrystalmanufacturedwithP-typematerialatoneendand<br />

N-typematerialattheotherinFigure2.28(b)hassomeuniqueproperties.TheP-typematerial<br />

haspositivemajoritychargecarriers,holes,whicharefreetomoveaboutthecrystallattice.<br />

TheN-typematerialhasmobilenegativemajoritycarriers,electrons. Nearthejunction,the<br />

N-typematerialelectronsdiffuseacrossthejunction,combiningwithholesinP-typematerial.<br />

TheregionoftheP-typematerialnearthejunctiontakesonanetnegativechargebecause<br />

oftheelectronsattracted. SinceelectronsdepartedtheN-typeregion,ittakesonalocalized<br />

positivecharge.Thethinlayerofthecrystallatticebetweenthesechargeshasbeendepleted<br />

ofmajoritycarriers,thus,isknownasthedepletionregion.Itbecomesnonconductiveintrinsic<br />

semiconductormaterial. <strong>In</strong>effect,wehavenearlyaninsulatorseparatingtheconductiveP<br />

andNdopedregions.<br />

N<br />

electron<br />

(a)<br />

P<br />

crystal lattice<br />

hole<br />

(b)<br />

no charge<br />

separation<br />

N P<br />

intrinsic<br />

charge<br />

separation<br />

Figure2.28:(a)BlocksofPandNsemiconductorincontacthavenoexploitableproperties.(b)<br />

SinglecrystaldopedwithPandNtypeimpuritiesdevelopsapotentialbarrier.<br />

ThisseparationofchargesatthePNjunctionconstitutesapotentialbarrier.Thispotential<br />

barriermustbeovercomebyanexternalvoltagesourcetomakethejunctionconduct. The<br />

formationofthejunctionandpotentialbarrierhappensduringthemanufacturingprocess.<br />

Themagnitudeofthepotentialbarrierisafunctionofthematerialsusedinmanufacturing.<br />

SiliconPNjunctionshaveahigherpotentialbarrierthangermaniumjunctions.


56 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

<strong>In</strong>Figure2.29(a)thebatteryisarrangedsothatthenegativeterminalsupplieselectrons<br />

totheN-typematerial. Theseelectronsdiffusetowardthejunction. Thepositiveterminal<br />

removeselectronsfromtheP-typesemiconductor,creatingholesthatdiffusetowardthejunction.<br />

Ifthebatteryvoltageisgreatenoughtoovercomethejunctionpotential(0.6VinSi),<br />

theN-typeelectronsandP-holescombineannihilatingeachother.Thisfreesupspacewithin<br />

thelatticeformorecarrierstoflowtowardthejunction.Thus,currentsofN-typeandP-type<br />

majoritycarriersflowtowardthejunction.Therecombinationatthejunctionallowsabattery<br />

currenttoflowthroughthePNjunctiondiode.Suchajunctionissaidtobeforwardbiased.<br />

depletion region<br />

electrons holes electrons holes<br />

N P<br />

N<br />

P<br />

(a) Forward (b) Reverse<br />

Figure2.29: (a)Forwardbatterybiasrepelscarrierstowardjunction,whererecombination<br />

resultsinbatterycurrent.(b)Reversebatterybiasattractscarrierstowardbatteryterminals,<br />

awayfromjunction.Depletionregionthicknessincreases.Nosustainedbatterycurrentflows.<br />

IfthebatterypolarityisreversedasinFigure2.29(b)majoritycarriersareattractedaway<br />

fromthejunctiontowardthebatteryterminals.ThepositivebatteryterminalattractsN-type<br />

majoritycarriers,electrons,awayfromthejunction. ThenegativeterminalattractsP-type<br />

majoritycarriers,holes,awayfromthejunction. Thisincreasesthethicknessofthenonconductingdepletionregion.Thereisnorecombinationofmajoritycarriers;thus,noconduction.<br />

Thisarrangementofbatterypolarityiscalledreversebias.<br />

ThediodeschematicsymbolisillustratedinFigure2.30(b)correspondingtothedoped<br />

semiconductorbarat(a).Thediodeisaunidirectionaldevice.Electroncurrentonlyflowsin<br />

onedirection,againstthearrow,correspondingtoforwardbias.Thecathode,bar,ofthediode<br />

symbolcorrespondstoN-typesemiconductor. Theanode,arrow,correspondstotheP-type<br />

semiconductor. Torememberthisrelationship,Not-pointing(bar)onthesymbolcorresponds<br />

toN-typesemiconductor.Pointing(arrow)correspondstoP-type.<br />

IfadiodeisforwardbiasedasinFigure2.30(a),currentwillincreaseslightlyasvoltageis<br />

increasedfrom0V.<strong>In</strong>thecaseofasilicondiodeameasurablecurrentflowswhenthevoltage<br />

approaches0.6VinFigure2.30(c).Asthevoltageincreasespast0.6V,currentincreasesconsiderablyaftertheknee.<strong>In</strong>creasingthevoltagewellbeyond0.7Vmayresultinhighenough<br />

currenttodestroythediode.Theforwardvoltage,VF,isacharacteristicofthesemiconductor:<br />

0.6to0.7Vforsilicon,0.2Vforgermanium,afewvoltsforLightEmittingDiodes(LED).<br />

TheforwardcurrentrangesfromafewmAforpointcontactdiodesto100mAforsmallsignal<br />

diodestotensorthousandsofamperesforpowerdiodes.<br />

Ifthediodeisreversebiased,onlytheleakagecurrentoftheintrinsicsemiconductorflows.<br />

ThisisplottedtotheleftoftheorigininFigure2.30(c). Thiscurrentwillonlybeashighas<br />

1 µAforthemostextremeconditionsforsiliconsmallsignaldiodes. Thiscurrentdoesnot


2.6. THEP-NJUNCTION 57<br />

(a)<br />

electrons holes<br />

N<br />

N-type<br />

(not pointing)<br />

P-type<br />

(pointing)<br />

(b) cathode anode<br />

P<br />

(c)<br />

reverse bias<br />

breakdown<br />

I<br />

mA<br />

µA<br />

forward<br />

bias V<br />

0.7<br />

Figure2.30: (a)ForwardbiasedPNjunction,(b)Correspondingdiodeschematicsymbol(c)<br />

SiliconDiodeIvsVcharacteristiccurve.<br />

increaseappreciablywithincreasingreversebiasuntilthediodebreaksdown.Atbreakdown,<br />

thecurrentincreasessogreatlythatthediodewillbedestroyedunlessahighseriesresistance<br />

limitscurrent. Wenormallyselectadiodewithahigherreversevoltageratingthananyappliedvoltagetopreventthis.<br />

Silicondiodesaretypicallyavailablewithreversebreakdown<br />

ratingsof50,100,200,400,800Vandhigher. Itispossibletofabricatediodeswithalower<br />

ratingofafewvoltsforuseasvoltagestandards.<br />

WepreviouslymentionedthatthereverseleakagecurrentofunderaµAforsilicondiodes<br />

wasduetoconductionoftheintrinsicsemiconductor.Thisistheleakagethatcanbeexplained<br />

bytheory. Thermalenergyproducesfewelectronholepairs,whichconductleakagecurrent<br />

untilrecombination.<strong>In</strong>actualpracticethispredictablecurrentisonlypartoftheleakagecurrent.Muchoftheleakagecurrentisduetosurfaceconduction,relatedtothelackofcleanlinessofthesemiconductorsurface.Bothleakagecurrentsincreasewithincreasingtemperature,approachingaµAforsmallsilicondiodes.Forgermanium,theleakagecurrentisordersofmagnitudehigher.Sincegermaniumsemiconductorsarerarelyusedtoday,thisisnotaprobleminpractice.<br />

• REVIEW:<br />

• PNjunctionsarefabricatedfromamonocrystallinepieceofsemiconductorwithbotha<br />

P-typeandN-typeregioninproximityatajunction.<br />

• ThetransferofelectronsfromtheNsideofthejunctiontoholesannihilatedonthePside<br />

ofthejunctionproducesabarriervoltage.Thisis0.6to0.7Vinsilicon,andvarieswith<br />

othersemiconductors.<br />

• AforwardbiasedPNjunctionconductsacurrentoncethebarriervoltageisovercome.<br />

Theexternalappliedpotentialforcesmajoritycarrierstowardthejunctionwhererecombinationtakesplace,allowingcurrentflow.


58 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

• AreversebiasedPNjunctionconductsalmostnocurrent. Theappliedreversebiasattractsmajoritycarriersawayfromthejunction.Thisincreasesthethicknessofthenonconductingdepletionregion.<br />

• ReversebiasedPNjunctionsshowatemperaturedependentreverseleakagecurrent.<br />

ThisislessthanaµAinsmallsilicondiodes.<br />

2.7 Junctiondiodes<br />

Thereweresomehistoriccrude,butusablesemiconductorrectifiersbeforehighpuritymaterialswereavailable.FerdinandBrauninventedaleadsulfide,PbS,basedpointcontactrectifier<br />

in1874. Cuprousoxiderectifierswereusedaspowerrectifiersin1924. Theforwardvoltage<br />

dropis0.2V.ThelinearcharacteristiccurveperhapsiswhyCu2Owasusedasarectifierfor<br />

theACscaleonD’Arsonvalbasedmultimeters.Thisdiodeisalsophotosensitive.<br />

Seleniumoxiderectifierswereusedbeforemodernpowerdioderectifiersbecameavailable.<br />

TheseandtheCu2Orectifierswerepolycrystallinedevices.Photoelectriccellswereoncemade<br />

fromSelenium.<br />

Beforethemodernsemiconductorera,anearlydiodeapplicationwasasaradiofrequency<br />

detector,whichrecoveredaudiofromaradiosignal.The“semiconductor”wasapolycrystalline<br />

pieceofthemineralgalena,leadsulfide,PbS.Apointedmetallicwireknownasacatwhisker<br />

wasbroughtincontactwithaspotonacrystalwithinthepolycrystallinemineral.(Figure2.31)<br />

Theoperatorlaboredtofinda“sensitive”spotonthegalenabymovingthecatwhiskerabout.<br />

PresumablytherewerePandN-typespotsrandomlydistributedthroughoutthecrystaldue<br />

tothevariabilityofuncontrolledimpurities. Lessoftenthemineralironpyrites,foolsgold,<br />

wasused,aswasthemineralcarborundum,siliconcarbide,SiC,anotherdetector,partofa<br />

foxholeradio,consistedofasharpenedpencilleadboundtoabentsafetypin,touchingarusty<br />

blue-bladedisposablerazorblade.Theseallrequiredsearchingforasensitivespot,easilylost<br />

becauseofvibration.<br />

ReplacingthemineralwithanN-dopedsemiconductor(Figure2.32(a))makesthewhole<br />

surfacesensitive,sothatsearchingforasensitivespotwasnolongerrequired.Thisdevicewas<br />

perfectedbyG.W.Pickardin1906.ThepointedmetalcontactproducedalocalizedP-typeregion<br />

withinthesemiconductor.Themetalpointwasfixedinplace,andthewholepointcontactdiode<br />

encapsulatedinacylindricalbodyformechanicalandelectricalstability.(Figure2.32(d))Note<br />

thatthecathodebarontheschematiccorrespondstothebaronthephysicalpackage.<br />

SiliconpointcontactdiodesmadeanimportantcontributiontoradarinWorldWarII,detectinggiga-hertzradiofrequencyechosignalsintheradarreceiver.Theconcepttobemade<br />

clearisthatthepointcontactdiodeprecededthejunctiondiodeandmodernsemiconductors<br />

byseveraldecades.Eventothisday,thepointcontactdiodeisapracticalmeansofmicrowave<br />

frequencydetectionbecauseofitslowcapacitance.Germaniumpointcontactdiodeswereonce<br />

morereadilyavailablethantheyaretoday,beingpreferredforthelower0.2Vforwardvoltage<br />

insomeapplicationslikeself-poweredcrystalradios.Pointcontactdiodes,thoughsensitiveto<br />

awidebandwidth,havealowcurrentcapabilitycomparedwithjunctiondiodes.<br />

Mostdiodestodayaresiliconjunctiondiodes. Thecross-sectioninFigure2.32(b)looksa<br />

bitmorecomplexthanasimplePNjunction;though,itisstillaPNjunction.Startingatthe<br />

cathodeconnection,theN + indicatesthisregionisheavilydoped,havingnothingtodowith


2.7. JUNCTIONDIODES 59<br />

Anode<br />

P +<br />

N<br />

Figure2.31:Crystaldetector<br />

Anode<br />

Anode<br />

Cathode<br />

(a) (b) (c) (d)<br />

Cathode<br />

Cathode<br />

Figure2.32:Silicondiodecross-section:(a)pointcontactdiode,(b)junctiondiode,(c)schematic<br />

symbol,(d)smallsignaldiodepackage.<br />

P +<br />

N -<br />

N +


60 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

polarity. Thisreducestheseriesresistanceofthediode. TheN − regionislightlydopedas<br />

indicatedbythe(-).Lightdopingproducesadiodewithahigherreversebreakdownvoltage,<br />

importantforhighvoltagepowerrectifierdiodes.Lowervoltagediodes,evenlowvoltagepower<br />

rectifiers,wouldhavelowerforwardlosseswithheavierdoping. Theheaviestlevelofdoping<br />

producezenerdiodesdesignedforalowreversebreakdownvoltage. However,heavydoping<br />

increasesthereverseleakagecurrent. TheP + regionattheanodecontactisheavilydoped<br />

P-typesemiconductor,agoodcontactstrategy.Glassencapsulatedsmallsignaljunctiondiodes<br />

arecapableof10’sto100’sofmAofcurrent. Plasticorceramicencapsulatedpowerrectifier<br />

diodeshandleto1000’sofamperesofcurrent.<br />

• REVIEW:<br />

• Pointcontactdiodeshavesuperbhighfrequencycharacteristics,usablewellintothemicrowavefrequencies.<br />

• Junctiondiodesrangeinsizefromsmallsignaldiodestopowerrectifierscapableof1000’s<br />

ofamperes.<br />

• Thelevelofdopingnearthejunctiondeterminesthereversebreakdownvoltage. Light<br />

dopingproducesahighvoltagediode.Heavydopingproducesalowerbreakdownvoltage,<br />

andincreasesreverseleakagecurrent. Zenerdiodeshavealowerbreakdownvoltage<br />

becauseofheavydoping.<br />

2.8 Bipolarjunctiontransistors<br />

Thebipolarjunctiontransistor(BJT)wasnamedbecauseitsoperationinvolvesconductionby<br />

twocarriers:electronsandholesinthesamecrystal.Thefirstbipolartransistorwasinvented<br />

atBellLabsbyWilliamShockley,WalterBrattain,andJohnBardeensolatein1947thatit<br />

wasnotpublisheduntil1948. Thus,manytextsdifferastothedateofinvention. Brattain<br />

fabricatedagermaniumpointcontacttransistor,bearingsomeresemblancetoapointcontact<br />

diode.Withinamonth,Shockleyhadamorepracticaljunctiontransistor,whichwedescribein<br />

followingparagraphs.TheywereawardedtheNobelPrizeinPhysicsin1956forthetransistor.<br />

ThebipolarjunctiontransistorshowninFigure2.33(a)isanNPNthreelayersemiconductorsandwichwithanemitterandcollectorattheends,andabaseinbetween.Itisasifathird<br />

layerwereaddedtoatwolayerdiode. Ifthisweretheonlyrequirement,wewouldhaveno<br />

morethanapairofback-to-backdiodes.<strong>In</strong>fact,itisfareasiertobuildapairofback-to-back<br />

diodes.Thekeytothefabricationofabipolarjunctiontransistoristomakethemiddlelayer,<br />

thebase,asthinaspossiblewithoutshortingtheoutsidelayers,theemitterandcollector.We<br />

cannotoveremphasizetheimportanceofthethinbaseregion.<br />

ThedeviceinFigure2.33(a)hasapairofjunctions,emittertobaseandbasetocollector,<br />

andtwodepletionregions.<br />

Itiscustomarytoreversebiasthebase-collectorjunctionofabipolarjunctiontransistor<br />

asshownin(Figure2.33(b). Notethatthisincreasesthewidthofthedepletionregion. The<br />

reversebiasvoltagecouldbeafewvoltstotensofvoltsformosttransistors.Thereisnocurrent<br />

flow,exceptleakagecurrent,inthecollectorcircuit.


2.8. BIPOLARJUNCTIONTRANSISTORS 61<br />

N +- P - +<br />

N<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

(a) B<br />

(b)<br />

N +- P-<br />

+<br />

N<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

+- - +<br />

emitter base collector emitter base collector<br />

E<br />

C E<br />

B<br />

C<br />

- +<br />

- +<br />

Figure2.33:(a)NPNjunctionbipolartransistor.(b)Applyreversebiastocollectorbasejunction.<br />

<strong>In</strong>Figure2.34(a),avoltagesourcehasbeenaddedtotheemitterbasecircuit.Normallywe<br />

forwardbiastheemitter-basejunction,overcomingthe0.6Vpotentialbarrier.Thisissimilar<br />

toforwardbiasingajunctiondiode. Thisvoltagesourceneedstoexceed0.6Vformajority<br />

carriers(electronsforNPN)toflowfromtheemitterintothebasebecomingminoritycarriers<br />

intheP-typesemiconductor.<br />

Ifthebaseregionwerethick,asinapairofback-to-backdiodes,allthecurrententering<br />

thebasewouldflowoutthebaselead. <strong>In</strong>ourNPNtransistorexample,electronsleavingthe<br />

emitterforthebasewouldcombinewithholesinthebase,makingroomformoreholestobe<br />

createdatthe(+)batteryterminalonthebaseaselectronsexit.<br />

However,thebaseismanufacturedthin.Afewmajoritycarriersintheemitter,injectedas<br />

minoritycarriersintothebase,actuallyrecombine.SeeFigure2.34(b).Fewelectronsinjected<br />

bytheemitterintothebaseofanNPNtransistorfallintoholes.Also,fewelectronsentering<br />

thebaseflowdirectlythroughthebasetothepositivebatteryterminal. Mostoftheemitter<br />

currentofelectronsdiffusesthroughthethinbaseintothecollector.Moreover,modulatingthe<br />

smallbasecurrentproducesalargerchangeincollectorcurrent.Ifthebasevoltagefallsbelow<br />

approximately0.6Vforasilicontransistor,thelargeemitter-collectorcurrentceasestoflow.<br />

<strong>In</strong>Figure2.35wetakeacloserlookatthecurrentamplificationmechanism.Wehavean<br />

enlargedviewofanNPNjunctiontransistorwithemphasisonthethinbaseregion.Though<br />

notshown,weassumethatexternalvoltagesources1)forwardbiastheemitter-basejunction,<br />

2)reversebiasthebase-collectorjunction.Electrons,majoritycarriers,entertheemitterfrom<br />

the(-)batteryterminal.Thebasecurrentflowcorrespondstoelectronsleavingthebaseterminalforthe(+)batteryterminal.Thisisbutasmallcurrentcomparedtotheemittercurrent.<br />

MajoritycarrierswithintheN-typeemitterareelectrons,becomingminoritycarrierswhen<br />

enteringtheP-typebase.TheseelectronsfacefourpossiblefatesenteringthethinP-typebase.<br />

AfewatFigure2.35(a)fallintoholesinthebasethatcontributestobasecurrentflowtothe<br />

(+)batteryterminal. Notshown,holesinthebasemaydiffuseintotheemitterandcombine<br />

withelectrons,contributingtobaseterminalcurrent. Fewat(b)flowonthroughthebaseto<br />

the(+)batteryterminalasifthebasewerearesistor.Both(a)and(b)contributetothevery<br />

smallbasecurrentflow. Basecurrentistypically1%ofemitterorcollectorcurrentforsmall<br />

signaltransistors. Mostoftheemitterelectronsdiffuserightthroughthethinbase(c)into


62 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

N P-<br />

+<br />

N<br />

- +<br />

- +<br />

- +<br />

- +<br />

- +<br />

- +<br />

- +<br />

(a)<br />

- +<br />

E<br />

- +<br />

B<br />

C<br />

- +<br />

- +<br />

(b)<br />

N<br />

P<br />

-<br />

-<br />

-<br />

+<br />

+<br />

+<br />

+<br />

N<br />

- +<br />

E C<br />

- + B<br />

- +<br />

- +<br />

Figure2.34: NPNjunctionbipolartransistorwithreversebiasedcollector-base: (a)Adding<br />

forwardbiastobase-emitterjunction,resultsin(b)asmallbasecurrentandlargeemitterand<br />

collectorcurrents.<br />

holes<br />

electrons<br />

- +<br />

- + depletion<br />

region<br />

(c)<br />

(a)<br />

(d)<br />

-<br />

-<br />

+<br />

+<br />

(b)<br />

depletion<br />

N<br />

emitter<br />

P region<br />

base<br />

N<br />

collector<br />

Figure2.35: Dispositionofelectronsenteringbase: (a)Lostduetorecombinationwithbase<br />

holes. (b)Flowsoutbaselead. (c)Mostdiffusefromemitterthroughthinbaseintobasecollectordepletionregion,and(d)arerapidlysweptbythestrongdepletionregionelectricfield<br />

intothecollector.


2.8. BIPOLARJUNCTIONTRANSISTORS 63<br />

thebase-collectordepletionregion.Notethepolarityofthedepletionregionsurroundingthe<br />

electronat(d). Thestrongelectricfieldsweepstheelectronrapidlyintothecollector. The<br />

strengthofthefieldisproportionaltothecollectorbatteryvoltage. Thus99%oftheemitter<br />

currentflowsintothecollector.Itiscontrolledbythebasecurrent,whichis1%oftheemitter<br />

current.Thisisapotentialcurrentgainof99,theratioofIC/IB,alsoknownasbeta, β.<br />

Thismagic,thediffusionof99%oftheemittercarriersthroughthebase,isonlypossibleif<br />

thebaseisverythin.Whatwouldbethefateofthebaseminoritycarriersinabase100times<br />

thicker? Onewouldexpecttherecombinationrate,electronsfallingintoholes,tobemuch<br />

higher. Perhaps99%,insteadof1%,wouldfallintoholes,nevergettingtothecollector. The<br />

secondpointtomakeisthatthebasecurrentmaycontrol99%oftheemittercurrent,onlyif<br />

99%oftheemittercurrentdiffusesintothecollector.Ifitallflowsoutthebase,nocontrolis<br />

possible.<br />

Anotherfeatureaccountingforpassing99%oftheelectronsfromemittertocollectoristhat<br />

realbipolarjunctiontransistorsuseasmallheavilydopedemitter.Thehighconcentrationof<br />

emitterelectronsforcesmanyelectronstodiffuseintothebase.Thelowerdopingconcentration<br />

inthebasemeansfewerholesdiffuseintotheemitter,whichwouldincreasethebasecurrent.<br />

Diffusionofcarriersfromemittertobaseisstronglyfavored.<br />

Thethinbaseandtheheavilydopedemitterhelpkeeptheemitterefficiencyhigh,99%for<br />

example.Thiscorrespondsto100%emittercurrentsplittingbetweenthebaseas1%andthe<br />

collectoras99%.Theemitterefficiencyisknownas α=IC/IE.<br />

BipolarjunctiontransistorsareavailableasPNPaswellasNPNdevices. Wepresenta<br />

comparisonofthesetwoinFigure2.36.Thedifferenceisthepolarityofthebaseemitterdiode<br />

junctions,assignifiedbythedirectionoftheschematicsymbolemitterarrow. Itpointsin<br />

thesamedirectionastheanodearrowforajunctiondiode,againstelectroncurrentflow.See<br />

diodejunction,Figure2.30. ThepointofthearrowandbarcorrespondtoP-typeandN-type<br />

semiconductors,respectively.ForNPNandPNPemitters,thearrowpointsawayandtoward<br />

thebaserespectively.Thereisnoschematicarrowonthecollector.However,thebase-collector<br />

junctionisthesamepolarityasthebase-emitterjunctioncomparedtoadiode.Note,wespeak<br />

ofdiode,notpowersupply,polarity.<br />

(a)<br />

N P<br />

N<br />

- +<br />

E<br />

- +<br />

B<br />

- +<br />

- +<br />

(b)<br />

P<br />

C E<br />

+<br />

-<br />

N<br />

+ - B + -<br />

Figure2.36:CompareNPNtransistorat(a)withthePNPtransistorat(b).Notedirectionof<br />

emitterarrowandsupplypolarity.<br />

ThevoltagesourcesforPNPtransistorsarereversedcomparedwithanNPNtransistors<br />

+<br />

C<br />

-<br />

P


64 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

asshowninFigure2.36.Thebase-emitterjunctionmustbeforwardbiasedinbothcases.The<br />

baseonaPNPtransistorisbiasednegative(b)comparedwithpositive(a)foranNPN.<strong>In</strong>both<br />

casesthebase-collectorjunctionisreversebiased.ThePNPcollectorpowersupplyisnegative<br />

comparedwithpositiveforanNPNtransistor.<br />

N +<br />

N -<br />

P<br />

Collector<br />

N +<br />

Base Emitter<br />

(a)<br />

Base<br />

(b)<br />

(c)<br />

Collector<br />

Emitter<br />

P+<br />

Base<br />

P substrate<br />

Emitter Collector<br />

N +<br />

N + P base<br />

N collector epitaxial layer<br />

buried<br />

Figure2.37:Bipolarjunctiontransistor:(a)discretedevicecross-section,(b)schematicsymbol,<br />

(c)integratedcircuitcross-section.<br />

NotethattheBJTinFigure2.37(a)hasheavydopingintheemitterasindicatedbythe<br />

N + notation.ThebasehasanormalP-dopantlevel.Thebaseismuchthinnerthanthenotto-scalecross-sectionshows.<br />

ThecollectorislightlydopedasindicatedbytheN − notation.<br />

Thecollectorneedstobelightlydopedsothatthecollector-basejunctionwillhaveahigh<br />

breakdownvoltage.Thistranslatesintoahighallowablecollectorpowersupplyvoltage.Small<br />

signalsilicontransistorshavea60-80Vbreakdownvoltage.Though,itmayruntohundreds<br />

ofvoltsforhighvoltagetransistors.Thecollectoralsoneedstobeheavilydopedtominimize<br />

ohmiclossesifthetransistormusthandlehighcurrent.Thesecontradictingrequirementsare<br />

metbydopingthecollectormoreheavilyatthemetalliccontactarea. Thecollectornearthe<br />

baseislightlydopedascomparedwiththeemitter.Theheavydopingintheemittergivesthe<br />

emitter-basealowapproximate7Vbreakdownvoltageinsmallsignaltransistors.Theheavily<br />

dopedemittermakestheemitter-basejunctionhavezenerdiodelikecharacteristicsinreverse<br />

bias.<br />

TheBJTdie,apieceofaslicedanddicedsemiconductorwafer,ismountedcollectordown<br />

toametalcaseforpowertransistors. Thatis,themetalcaseiselectricallyconnectedtothe<br />

collector. Asmallsignaldiemaybeencapsulatedinepoxy. <strong>In</strong>powertransistors,aluminum<br />

bondingwiresconnectthebaseandemittertopackageleads. Smallsignaltransistordies<br />

maybemounteddirectlytotheleadwires.Multipletransistorsmaybefabricatedonasingle<br />

diecalledanintegratedcircuit.Eventhecollectormaybebondedouttoaleadinsteadofthe<br />

case.Theintegratedcircuitmaycontaininternalwiringofthetransistorsandotherintegrated<br />

components.TheintegratedBJTshownin(Figure??)ismuchthinnerthanthe“nottoscale”<br />

drawing.TheP + regionisolatesmultipletransistorsinasingledie.Analuminummetalization<br />

layer(notshown)interconnectsmultipletransistorsandothercomponents.Theemitterregion<br />

isheavilydoped,N + comparedtothebaseandcollectortoimproveemitterefficiency.<br />

DiscretePNPtransistorsarealmostashighqualityastheNPNcounterpart.However,in-<br />

N +


2.9. JUNCTIONFIELD-EFFECTTRANSISTORS 65<br />

tegratedPNPtransistorsarenotnearlyagoodastheNPNvarietywithinthesameintegrated<br />

circuitdie.Thus,integratedcircuitsusetheNPNvarietyasmuchaspossible.<br />

• REVIEW:<br />

• Bipolartransistorsconductcurrentusingbothelectronsandholesinthesamedevice.<br />

• Operationofabipolartransistorasacurrentamplifierrequiresthatthecollector-base<br />

junctionbereversebiasedandtheemitter-basejunctionbeforwardbiased.<br />

• Atransistordiffersfromapairofbacktobackdiodesinthatthebase,thecenterlayer,is<br />

verythin.Thisallowsmajoritycarriersfromtheemittertodiffuseasminoritycarriers<br />

throughthebaseintothedepletionregionofthebase-collectorjunction,wherethestrong<br />

electricfieldcollectsthem.<br />

• Emitterefficiencyisimprovedbyheavierdopingcomparedwiththecollector. Emitter<br />

efficiency: α=IC/IE,0.99forsmallsignaldevices<br />

• Currentgainis β=IC/IB,100to300forsmallsignaltransistors.<br />

2.9 Junctionfield-effecttransistors<br />

ThefieldeffecttransistorwasproposedbyJuliusLilienfeldinUSpatentsin1926and1933<br />

(1,900,018). Moreover,Shockley,Brattain,andBardeenwereinvestigatingthefieldeffect<br />

transistorin1947.Though,theextremedifficultiessidetrackedthemintoinventingthebipolar<br />

transistorinstead.Shockley’sfieldeffecttransistortheorywaspublishedin1952.However,the<br />

materialsprocessingtechnologywasnotmatureenoughuntil1960whenJohnAtallaproduced<br />

aworkingdevice.<br />

Afieldeffecttransistor(FET)isaunipolardevice,conductingacurrentusingonlyone<br />

kindofchargecarrier.IfbasedonanN-typeslabofsemiconductor,thecarriersareelectrons.<br />

Conversely,aP-typebaseddeviceusesonlyholes.<br />

Atthecircuitlevel,fieldeffecttransistoroperationissimple.Avoltageappliedtothegate,<br />

inputelement,controlstheresistanceofthechannel,theunipolarregionbetweenthegate<br />

regions. (Figure2.38)<strong>In</strong>anN-channeldevice,thisisalightlydopedN-typeslabofsilicon<br />

withterminalsattheends.Thesourceanddrainterminalsareanalogoustotheemitterand<br />

collector,respectively,ofaBJT.<strong>In</strong>anN-channeldevice,aheavyP-typeregiononbothsidesof<br />

thecenteroftheslabservesasacontrolelectrode,thegate.Thegateisanalogoustothebase<br />

ofaBJT.<br />

“Cleanlinessisnexttogodliness”appliestothemanufactureoffieldeffecttransistors.<br />

Thoughitispossibletomakebipolartransistorsoutsideofacleanroom,itisanecessity<br />

forfieldeffecttransistors. Eveninsuchanenvironment,manufactureistrickybecauseof<br />

contaminationcontrolissues. Theunipolarfieldeffecttransistorisconceptuallysimple,but<br />

difficulttomanufacture.Mosttransistorstodayareametaloxidesemiconductorvariety(later<br />

section)ofthefieldeffecttransistorcontainedwithinintegratedcircuits. However,discrete<br />

JFETdevicesareavailable.<br />

AproperlybiasedN-channeljunctionfieldeffecttransistor(JFET)isshowninFigure2.38.<br />

Thegateconstitutesadiodejunctiontothesourcetodrainsemiconductorslab. Thegateis


66 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

Source<br />

N<br />

Gate<br />

P<br />

Drain<br />

N<br />

+ - Channel<br />

Figure2.38:Junctionfieldeffecttransistorcross-section.<br />

reversebiased.Ifavoltage(oranohmmeter)wereappliedbetweenthesourceanddrain,the<br />

N-typebarwouldconductineitherdirectionbecauseofthedoping.Neithergatenorgatebias<br />

isrequiredforconduction.Ifagatejunctionisformedasshown,conductioncanbecontrolled<br />

bythedegreeofreversebias.<br />

Figure2.39(a)showsthedepletionregionatthegatejunction. Thisisduetodiffusionof<br />

holesfromtheP-typegateregionintotheN-typechannel,givingthechargeseparationabout<br />

thejunction,withanon-conductivedepletionregionatthejunction. Thedepletionregion<br />

extendsmoredeeplyintothechannelsideduetotheheavygatedopingandlightchannel<br />

doping.<br />

ThethicknessofthedepletionregioncanbeincreasedFigure2.39(b)byapplyingmoderate<br />

reversebias. Thisincreasestheresistanceofthesourcetodrainchannelbynarrowingthe<br />

channel.<strong>In</strong>creasingthereversebiasat(c)increasesthedepletionregion,decreasesthechannelwidth,andincreasesthechannelresistance.<br />

<strong>In</strong>creasingthereversebiasVGSat(d)will<br />

pinch-offthechannelcurrent. Thechannelresistancewillbeveryhigh. ThisVGSatwhich<br />

pinch-offoccursisVP,thepinch-offvoltage. Itistypicallyafewvolts. <strong>In</strong>summation,the<br />

channelresistancecanbecontrolledbythedegreeofreversebiasingonthegate.<br />

Thesourceanddrainareinterchangeable,andthesourcetodraincurrentmayflowin<br />

eitherdirectionforlowleveldrainbatteryvoltage(¡0.6V).Thatis,thedrainbatterymay<br />

bereplacedbyalowvoltageACsource. Forahighdrainpowersupplyvoltage,to10’sof<br />

voltsforsmallsignaldevices,thepolaritymustbeasindicatedinFigure2.40(a). Thisdrain<br />

powersupply,notshowninpreviousfigures,distortsthedepletionregion,enlargingitonthe<br />

drainsideofthegate. ThisisamorecorrectrepresentationforcommonDCdrainsupply<br />

voltages,fromafewtotensofvolts.AsdrainvoltageVDSincreased,thegatedepletionregion<br />

expandstowardthedrain. Thisincreasesthelengthofthenarrowchannel,increasingits<br />

resistancealittle. Wesay”alittle”becauselargeresistancechangesareduetochanging<br />

gatebias. Figure2.40(b)showstheschematicsymbolforanN-channelfieldeffecttransistor


2.9. JUNCTIONFIELD-EFFECTTRANSISTORS 67<br />

S<br />

N<br />

P-type<br />

G<br />

S N<br />

D<br />

D<br />

(b)<br />

S N<br />

D<br />

(a) (c)<br />

S N<br />

D<br />

G G<br />

Figure2.39: N-channelJFET:(a)Depletionatgatediode. (b)Reversebiasedgatediodeincreasesdepletionregion.(c)<strong>In</strong>creasingreversebiasenlargesdepletionregion.(d)<strong>In</strong>creasing<br />

reversebiaspinches-offtheS-Dchannel.<br />

comparedtothesiliconcross-sectionat(a). Thegatearrowpointsinthesamedirectionas<br />

ajunctiondiode. The“pointing”arrowand“non-pointing”barcorrespondtoPandN-type<br />

semiconductors,respectively.<br />

S<br />

electron current<br />

P-type to G<br />

N<br />

G<br />

(a) (b)<br />

D<br />

Figure2.40:N-channelJFETelectroncurrentflowfromsourcetodrainin(a)cross-section,(b)<br />

schematicsymbol.<br />

Figure2.40showsalargeelectroncurrentflowfrom(-)batteryterminal,toFETsource,<br />

outthedrain,returningtothe(+)batteryterminal. Thiscurrentflowmaybecontrolledby<br />

varyingthegatevoltage. Aloadinserieswiththebatteryseesanamplifiedversionofthe<br />

changinggatevoltage.<br />

P-channelfieldeffecttransistorsarealsoavailable. ThechannelismadeofP-typematerial.<br />

ThegateisaheavilydoppedN-typeregion. Allthevoltagesourcesarereversedinthe<br />

P-channelcircuit(Figure2.41)ascomparedwiththemorepopularN-channeldevice. Also<br />

note,thearrowpointsoutofthegateoftheschematicsymbol(b)oftheP-channelfieldeffect<br />

transistor.<br />

Asthepositivegatebiasvoltageisincreased,theresistanceoftheP-channelincreases,<br />

decreasingthecurrentflowinthedraincircuit.<br />

Discretedevicesaremanufacturedwiththecross-sectionshowninFigure2.42.Thecross-<br />

S<br />

G<br />

G<br />

D<br />

(d)


68 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

P<br />

S D<br />

G<br />

to G<br />

N-type<br />

(a) (b)<br />

S D<br />

G<br />

Figure2.41:P-channelJFET:(a)N-typegate,P-typechannel,reversedvoltagesourcescomparedwithN-channeldevice.(b)Notereversedgatearrowandvoltagesourcesonschematic.<br />

section,orientedsothatitcorrespondstotheschematicsymbol,isupsidedownwithrespect<br />

toasemiconductorwafer. Thatis,thegateconnectionsareonthetopofthewafer. The<br />

gateisheavilydoped,P + ,todiffuseholeswellintothechannelforalargedepletionregion.<br />

ThesourceanddrainconnectionsinthisN-channeldeviceareheavilydoped,N + tolower<br />

connectionresistance. However,thechannelsurroundingthegateislightlydopedtoallow<br />

holesfromthegatetodiffusedeeplyintothechannel.ThatistheN − region.<br />

P +<br />

N +<br />

N -<br />

N +<br />

Drain<br />

Gate Source<br />

P +<br />

(a)<br />

Gate<br />

(b)<br />

(c)<br />

Source<br />

Drain<br />

Source<br />

N<br />

P substrate<br />

Gate<br />

P +<br />

Drain<br />

Figure2.42: Junctionfieldeffecttransistor: (a)Discretedevicecross-section,(b)schematic<br />

symbol,(c)integratedcircuitdevicecross-section.<br />

AllthreeFETterminalsareavailableonthetopofthediefortheintegratedcircuitversion<br />

sothatametalizationlayer(notshown)caninterconnectmultiplecomponents.(Figure2.42(c)<br />

)<strong>In</strong>tegratedcircuitFET’sareusedinanalogcircuitsforthehighgateinputresistance..The<br />

N-channelregionunderthegatemustbeverythinsothattheintrinsicregionaboutthegate<br />

cancontrolandpinch-offthechannel.Thus,gateregionsonbothsidesofthechannelarenot<br />

necessary.<br />

Thestaticinductionfieldeffecttransistor(SIT)isashortchanneldevicewithaburiedgate.<br />

(Figure2.43)Itisapowerdevice,asopposedtoasmallsignaldevice.Thelowgateresistance<br />

andlowgatetosourcecapacitancemakeforafastswitchingdevice. TheSITiscapableof<br />

hundredsofampsandthousandsofvolts.And,issaidtobecapableofanincrediblefrequency<br />

of10gHz.[25]


2.9. JUNCTIONFIELD-EFFECTTRANSISTORS 69<br />

Gate<br />

P +<br />

Cross-section<br />

Drain<br />

P +<br />

N +<br />

N -<br />

N +<br />

P +<br />

P +<br />

Junction field-effect transistor<br />

(static induction type)<br />

Gate<br />

Schematic symbol<br />

Drain<br />

Source<br />

Source (a) (b)<br />

Figure 2.43: Junction field effect transistor (static induction type): (a) Cross-section, (b)<br />

schematicsymbol.<br />

Gate<br />

Drain<br />

Source<br />

N +<br />

(a) Source (b) substrate<br />

Gate<br />

N -<br />

Drain<br />

Figure2.44:Metalsemiconductorfieldeffecttransistor(MESFET):(a)schematicsymbol,(b)<br />

cross-section.<br />

N +


70 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

TheMetalsemiconductorfieldeffecttransistor(MESFET)issimilartoaJFETexceptthe<br />

gateisaschottkydiodeinsteadofajunctiondiode. Aschottkydiodeisametalrectifying<br />

contacttoasemiconductorcomparedwithamorecommonohmiccontact.<strong>In</strong>Figure2.44the<br />

sourceanddrainareheavilydoped(N + ). Thechannelislightlydoped(N − ). MESFET’sare<br />

higherspeedthanJFET’s.TheMESETisadepletionmodedevice,normallyon,likeaJFET.<br />

Theyareusedasmicrowavepoweramplifiersto30gHz.MESFET’scanbefabricatedfromsilicon,galliumarsenide,indiumphosphide,siliconcarbide,andthediamondallotropeofcarbon.<br />

• REVIEW:<br />

• Theunipolarjunctionfieldeffecttransistor(FETorJFET)issocalledbecauseconduction<br />

inthechannelisduetoonetypeofcarrier<br />

• TheJFETsource,gate,anddraincorrespondtotheBJT’semitter,base,andcollector,<br />

respectively.<br />

• Applicationofreversebiastothegatevariesthechannelresistancebyexpandingthe<br />

gatediodedepletionregion.<br />

2.10 <strong>In</strong>sulated-gatefield-effecttransistors(MOSFET)<br />

Theinsulated-gatefield-effecttransistor(IGFET),alsoknownasthemetaloxidefieldeffect<br />

transistor(MOSFET),isaderivativeofthefieldeffecttransistor(FET).Today,mosttransistorsareoftheMOSFETtypeascomponentsofdigitalintegratedcircuits.<br />

Thoughdiscrete<br />

BJT’saremorenumerousthandiscreteMOSFET’s.TheMOSFETtransistorcountwithinan<br />

integratedcircuitmayapproachhundredsofamillion.ThedimensionsofindividualMOSFET<br />

devicesareunderamicron,decreasingevery18months.MuchlargerMOSFET’sarecapable<br />

ofswitchingnearly100amperesofcurrentatlowvoltages;somehandlenearly1000Vatlower<br />

currents. Thesedevicesoccupyagoodfractionofasquarecentimeterofsilicon. MOSFET’s<br />

findmuchwiderapplicationthanJFET’s.However,MOSFETpowerdevicesarenotaswidely<br />

usedasbipolarjunctiontransistorsatthistime.<br />

TheMOSFEThassource,gate,anddrainterminalsliketheFET.However,thegatelead<br />

doesnotmakeadirectconnectiontothesiliconcomparedwiththecasefortheFET.The<br />

MOSFETgateisametallicorpolysiliconlayeratopasilicondioxideinsulator.Thegatebears<br />

aresemblancetoametaloxidesemiconductor(MOS)capacitorinFigure2.45.Whencharged,<br />

theplatesofthecapacitortakeonthechargepolarityoftherespectivebatteryterminals.<br />

ThelowerplateisP-typesiliconfromwhichelectronsarerepelledbythenegative(-)battery<br />

terminaltowardtheoxide,andattractedbythepositive(+)topplate.Thisexcessofelectrons<br />

neartheoxidecreatesaninverted(excessofelectrons)channelundertheoxide.Thischannel<br />

isalsoaccompaniedbyadepletionregionisolatingthechannelfromthebulksiliconsubstrate.<br />

<strong>In</strong>Figure2.46(a)theMOScapacitorisplacedbetweenapairofN-typediffusionsinaPtypesubstrate.Withnochargeonthecapacitor,nobiasonthegate,theN-typediffusions,the<br />

sourceanddrain,remainelectricallyisolated.<br />

Apositivebiasappliedtothegate,chargesthecapacitor(thegate).Thegateatoptheoxide<br />

takesonapositivechargefromthegatebiasbattery.TheP-typesubstratebelowthegatetakes<br />

onanegativecharge. Aninversionregionwithanexcessofelectronsformsbelowthegate


2.10. INSULATED-GATEFIELD-EFFECTTRANSISTORS(MOSFET) 71<br />

P<br />

oxide<br />

P<br />

(a) (b)<br />

+<br />

-<br />

oxide<br />

P<br />

+ + + + + +<br />

- - - - - -<br />

depletion<br />

Figure2.45:N-channelMOScapacitor:(a)nocharge,(b)charged.<br />

Source Gate Drain<br />

Ν<br />

N + N +<br />

depletion<br />

(a) (b)<br />

N +<br />

P<br />

- +<br />

S G D<br />

inverted channel<br />

+ + + + + +<br />

- - - - - -<br />

depletion<br />

-<br />

inverted<br />

channel<br />

Figure2.46:N-channelMOSFET(enhancementtype):(a)0Vgatebias,(b)positivegatebias.<br />

oxide. ThisregionnowconnectsthesourceanddrainN-typeregions,formingacontinuous<br />

N-regionfromsourcetodrain. Thus,theMOSFET,liketheFETisaunipolardevice. One<br />

typeofchargecarrierisresponsibleforconduction. ThisexampleisanN-channelMOSFET.<br />

Conductionofalargecurrentfromsourcetodrainispossiblewithavoltageappliedbetween<br />

theseconnections. Apracticalcircuitwouldhavealoadinserieswiththedrainbatteryin<br />

Figure2.46(b).<br />

TheMOSFETdescribedaboveinFigure2.46isknownasanenhancementmodeMOSFET.<br />

Thenon-conducting,off,channelisturnedonbyenhancingthechannelbelowthegateby<br />

applicationofabias.Thisisthemostcommonkindofdevice.TheotherkindofMOSFETwill<br />

notbedescribedhere. Seethe<strong>In</strong>sulated-gatefield-effecttransistorchapterforthedepletion<br />

modedevice.<br />

TheMOSFET,liketheFET,isavoltagecontrolleddevice. Avoltageinputtothegate<br />

controlstheflowofcurrentfromsourcetodrain.Thegatedoesnotdrawacontinuouscurrent.<br />

Though,thegatedrawsasurgeofcurrenttochargethegatecapacitance.<br />

Thecross-sectionofanN-channeldiscreteMOSFETisshowninFigure2.47(a).Discrete<br />

devicesareusuallyoptimizedforhighpowerswitching.TheN + indicatesthatthesourceand<br />

drainareheavilyN-typedoped.Thisminimizesresistivelossesinthehighcurrentpathfrom<br />

sourcetodrain.TheN − indicateslightdoping.TheP-regionunderthegate,betweensource<br />

anddraincanbeinvertedbyapplicationofapositivebiasvoltage. Thedopingprofileisa<br />

cross-section,whichmaybelaidoutinaserpentinepatternonthesilicondie. Thisgreatly<br />

increasesthearea,andconsequently,thecurrenthandlingability.<br />

TheMOSFETschematicsymbolinFigure2.47(b)showsa“floating”gate,indicatingno<br />

N +<br />

N +<br />

+


72 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

N +<br />

N -<br />

Drain<br />

P<br />

N +<br />

(a) Gate Source<br />

inversion<br />

= silicon dioxide<br />

insulator<br />

Gate<br />

Drain<br />

Source<br />

Figure2.47:N-channelMOSFET(enhancementtype):(a)Cross-section,(b)schematicsymbol.<br />

directconnectiontothesiliconsubstrate.Thebrokenlinefromsourcetodrainindicatesthat<br />

thisdeviceisoff,notconducting,withzerobiasonthegate. Anormally“off”MOSFETis<br />

anenhancementmodedevice. Thechannelmustbeenhancedbyapplicationofabiastothe<br />

gateforconduction.The“pointing”endofthesubstratearrowcorrespondstoP-typematerial,<br />

whichpointstowardanN-typechannel,the“non-pointing”end. Thisisthesymbolforan<br />

N-channelMOSFET.ThearrowpointsintheoppositedirectionforaP-channeldevice(not<br />

shown).MOSFET’sarefourterminaldevices:source,gate,drain,andsubstrate.Thesubstrate<br />

isconnectedtothesourceindiscreteMOSFET’s,makingthepackagedpartathreeterminal<br />

device. MOSFET’s,thatarepartofanintegratedcircuit,havethesubstratecommontoall<br />

devices,unlesspurposelyisolated.Thiscommonconnectionmaybebondedoutofthediefor<br />

connectiontoagroundorpowersupplybiasvoltage.<br />

(a)<br />

N +<br />

Gate<br />

N +<br />

N -<br />

Drain<br />

P P<br />

N +<br />

Source<br />

inversion<br />

= silicon dioxide<br />

insulator<br />

Gate<br />

(b)<br />

Drain<br />

Source<br />

Figure2.48:N-channel“V-MOS”transistor:(a)Cross-section,(b)schematicsymbol.<br />

TheV-MOSdevicein(Figure2.48)isanimprovedpowerMOSFETwiththedopingprofile<br />

arrangedforloweron-statesourcetodrainresistance. VMOStakesitsnamefromtheVshapedgateregion,whichincreasesthecross-sectionalareaofthesource-drainpath.<br />

This<br />

(b)


2.11. THYRISTORS 73<br />

minimizeslossesandallowsswitchingofhigherlevelsofpower. UMOS,avariationusinga<br />

U-shapedgrove,ismorereproducibleinmanufacture.<br />

• REVIEW:<br />

• MOSFET’sareunipoarconductiondevices,conductionwithonetypeofchargecarrier,<br />

likeaFET,butunlikeaBJT.<br />

• AMOSFETisavoltagecontrolleddevicelikeaFET.Agatevoltageinputcontrolsthe<br />

sourcetodraincurrent.<br />

• TheMOSFETgatedrawsnocontinuouscurrent,exceptleakage.However,aconsiderable<br />

initialsurgeofcurrentisrequiredtochargethegatecapacitance.<br />

2.11 Thyristors<br />

Thyristorsareabroadclassificationofbipolar-conductingsemiconductordeviceshavingfour<br />

(ormore)alternatingN-P-N-Players. Thyristorsinclude: siliconcontrolledrectifier(SCR),<br />

TRIAC,gateturnoffswitch(GTO),siliconcontrolledswitch(SCS),ACdiode(DIAC),unijunctiontransistor(UJT),programmableunijunctiontransistor(PUT).OnlytheSCRisexamined<br />

inthissection;thoughtheGTOismentioned.<br />

Shockleyproposedthefourlayerdiodethyristorin1950. Itwasnotrealizeduntilyears<br />

lateratGeneral<strong>Electric</strong>. SCR’sarenowavailabletohandlepowerlevelsspanningwatts<br />

tomegawatts. Thesmallestdevices,packagedlikesmall-signaltransistors,switch100’sof<br />

milliampsatnear100VAC.Thelargestpackageddevicesare172mmindiameter,switching<br />

5600Ampsat10,000VAC.ThehighestpowerSCR’smayconsistofawholesemiconductor<br />

waferseveralinchesindiameter(100’sofmm).<br />

P<br />

N<br />

P P<br />

Gate N Gate<br />

(a)<br />

Anode<br />

N<br />

Cathode<br />

(b)<br />

Anode<br />

+<br />

−<br />

Cathode<br />

Figure2.49:Siliconcontrolledrectifier(SCR):(a)dopingprofile,(b)BJTequivalentcircuit.<br />

ThesiliconcontrolledrectifierisafourlayerdiodewithagateconnectionasinFigure2.49<br />

(a).Whenturnedon,itconductslikeadiode,foronepolarityofcurrent.Ifnottriggeredon,<br />

itisnonconducting. Operationisexplainedintermsofthecompoundconnectedtransistor<br />

equivalentinFigure2.49(b).Apositivetriggersignalisappliedbetweenthegateandcathode


74 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

terminals.ThiscausestheNPNequivalenttransistortoconduct.ThecollectoroftheconductingNPNtransistorpullslow,movingthePNPbasetowardsitscollectorvoltage,whichcauses<br />

thePNPtoconduct.ThecollectoroftheconductingPNPpullshigh,movingtheNPNbasein<br />

thedirectionofitscollector.Thispositivefeedback(regeneration)reinforcestheNPN’salready<br />

conductingstate. Moreover,theNPNwillnowconductevenintheabsenceofagatesignal.<br />

OnceanSCRconducts,itcontinuesforaslongasapositiveanodevoltageispresent.Forthe<br />

DCbatteryshown,thisisforever. However,SCR’saremostoftenusedwithanalternating<br />

currentorpulsatingDCsupply.Conductionceaseswiththeexpirationofthepositivehalfof<br />

thesinewaveattheanode.Moreover,mostpracticalSCRcircuitsdependontheACcyclegoing<br />

tozerotocutofforcommutatetheSCR.<br />

Figure2.50(a)showsthedopingprofileofanSCR.Notethatthecathode,whichcorrespondstoanequivalentemitterofanNPNtransistorisheavilydopedasN<br />

+ indicates. The<br />

anodeisalsoheavilydoped(P + ). ItistheequivalentemitterofaPNPtransistor. Thetwo<br />

middlelayers,correspondingtobaseandcollectorregionsoftheequivalenttransistors,are<br />

lessheavilydoped:N − andP.ThisprofileinhighpowerSCR’smaybespreadacrossawhole<br />

semiconductorwaferofsubstantialdiameter.<br />

P +<br />

P +<br />

N -<br />

P<br />

Anode<br />

N +<br />

(a)<br />

Gate Cathode<br />

schematic symbols<br />

Anode<br />

Gate<br />

Cathode<br />

Anode<br />

Gate<br />

Cathode<br />

SCR GTO<br />

(b) (c)<br />

Figure2.50:Thyristors:(a)Cross-section,(b)siliconcontrolledrectifier(SCR)symbol,(c)gate<br />

turn-offthyristor(GTO)symbol.<br />

TheschematicsymbolsforanSCRandGTOareshowninFigures2.50(b&c).Thebasic<br />

diodesymbolindicatesthatcathodetoanodeconductionisunidirectionallikeadiode. The<br />

additionofagateleadindicatescontrolofdiodeconduction. Thegateturnoffswitch(GTO)<br />

hasbidirectionalarrowsaboutthegatelead,indicatingthattheconductioncanbedisabledby<br />

anegativepulse,aswellasinitiatedbyapositivepulse.<br />

<strong>In</strong>additiontotheubiquitoussiliconbasedSCR’s,experimentalsiliconcarbidedeviceshave<br />

beenproduced.Siliconcarbide(SiC)operatesathighertemperatures,andismoreconductive<br />

ofheatthananymetal,secondtodiamond.Thisshouldallowforeitherphysicallysmalleror<br />

higherpowercapabledevices.<br />

• REVIEW:<br />

• SCR’sarethemostprevalentmemberofthethyristorfourlayerdiodefamily.


2.12. SEMICONDUCTORMANUFACTURINGTECHNIQUES 75<br />

• ApositivepulseappliedtothegateofanSCRtriggersitintoconduction. Conduction<br />

continuesevenifthegatepulseisremoved. Conductiononlyceaseswhentheanodeto<br />

cathodevoltagedropstozero.<br />

• SCR’saremostoftenusedwithanACsupply(orpulsatingDC)becauseofthecontinuous<br />

conduction.<br />

• Agateturnoffswitch(GTO)maybeturnedoffbyapplicationofanegativepulsetothe<br />

gate.<br />

• SCR’sswitchmegawattsofpower,upto5600Aand10,000V.<br />

2.12 Semiconductormanufacturingtechniques<br />

Themanufactureofonlysiliconbasedsemiconductorsisdescribedinthissection;mostsemiconductorsaresilicon.Siliconisparticularlysuitableforintegratedcircuitsbecauseitreadily<br />

formsanoxidecoating,usefulinpatterningintegratedcomponentsliketransistors.<br />

SiliconisthesecondmostcommonelementintheEarth’scrustintheformofsilicondioxide,<br />

SiO2,otherwiseknownassilicasand. Siliconisfreedfromsilicondioxidebyreductionwith<br />

carboninanelectricarcfurnace<br />

SiO2 + C = CO2+ Si<br />

Suchmetalurgicalgradesiliconissuitableforuseinsiliconsteeltransformerlaminations,<br />

butnotnearlypureenoughforsemiconductorapplications. ConversiontothechlorideSiCl4<br />

(orSiHCl3)allowspurificationbyfractionaldistillation.Reductionbyultrapurezincormagnesiumyieldsspongesilicon,requiringfurtherpurification.<br />

Or,thermaldecompositionona<br />

hotpolycrystallinesiliconrodheaterbyhydrogenyieldsultrapuresilicon.<br />

Si + 3HCl = SiHCl3 + H2<br />

SiHCl3 + H2 = Si + 3HCl2<br />

Thepolycrystallinesiliconismeltedinafusedsilicacrucibleheatedbyaninductionheated<br />

graphitesuceptor. Thegraphiteheatermayalternatelybedirectlydrivenbyalowvoltage<br />

athighcurrent. <strong>In</strong>theCzochralskiprocess,thesiliconmeltissolidifiedontoapencilsized<br />

monocrystalsiliconrodofthedesiredcrystallatticeorientation. (Figure2.51)Therodisrotatedandpulledupwardataratetoencouragethediametertoexpandtoseveralinches.Once<br />

thisdiameterisattained,thebouleisautomaticallypulledataratetomaintainaconstant<br />

diametertoalengthofafewfeet. Dopantsmaybeaddedtothecruciblemelttocreate,for<br />

example,aP-typesemiconductor. Thegrowingapparatusisenclosedwithinaninertatmosphere.<br />

Thefinishedbouleisgroundtoaprecisefinaldiameter,andtheendstrimmed.Theboule<br />

isslicedintowafersbyaninsidediameterdiamondsaw. Thewafersaregroundflatand<br />

polished. ThewaferscouldhaveanN-typeepitaxiallayergrownatopthewaferbythermal<br />

depositionforhigherquality.Wafersatthisstageofmanufacturearedeliveredbythesilicon<br />

wafermanufacturertothesemiconductormanufacturer.<br />

Theprocessingofsemiconductorsinvolvesphotolithography,aprocessformakingmetal<br />

lithographicprintingplatesbyacidetching. Theelectronicsbasedversionofthisistheprocessingofcopperprintedcircuitboards.ThisisreviewedinFigure2.53asaneasyintroduction<br />

tothephotolithographyinvolvedinsemiconductorprocessing.


76 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

lift rod<br />

Si boule<br />

fused silica crucible<br />

graphite suceptor<br />

RF induction coil<br />

Si melt<br />

Figure2.51:Czochralskimonocrystallinesilicongrowth.<br />

Si boule<br />

diamond blade<br />

driven edge<br />

cut wafers<br />

Figure2.52:Siliconbouleisdiamondsawedintowafers.


2.12. SEMICONDUCTORMANUFACTURINGTECHNIQUES 77<br />

(a) copper PCB (b) apply photoresist (c) place artwork (d) expose<br />

(e) remove artwork (f) develop resist (g) etch copper (h) strip resist<br />

Figure2.53: Processingofcopperprintedcircuitboardsissimilartothephotolithographic<br />

stepsofsemiconductorprocessing.<br />

WestartwithacopperfoillaminatedtoanepoxyfiberglassboardinFigure2.53(a). We<br />

alsoneedpositiveartworkwithblacklinescorrespondingtothecopperwiringlinesandpads<br />

thataretoremainonthefinishedboard.Positiveartworkisrequiredbecausepositiveacting<br />

resistisused.Though,negativeresistisavailableforbothcircuitboardsandsemiconductor<br />

processing. At(b)theliquidpositivephotoresistisappliedtothecopperfaceoftheprinted<br />

circuitboard(PCB).Itisallowedtodryandmaybebakedinanoven. Theartworkmaybe<br />

aplasticfilmpositivereproductionoftheoriginalartworkscaledtotherequiredsize. The<br />

artworkisplacedincontactwiththecircuitboardunderaglassplateat(c). Theboardis<br />

exposedtoultravioletlight(d)toformalatentimageofsoftenedphotoresist.Theartworkis<br />

removed(e)andthesoftenedresistwashedawaybyanalkalinesolution(f). Therinsedand<br />

dried(baked)circuitboardhasahardenedresistimageatopthecopperlinesandpadsthat<br />

aretoremainafteretching. Theboardisimmersedintheetchant(g)toremovecoppernot<br />

protectedbyhardenedresist.Theetchedboardisrinsedandtheresistremovedbyasolvent.<br />

Themajordifferenceinthepatterningofsemiconductorsisthatasilicondioxidelayeratop<br />

thewafertakestheplaceoftheresistduringthehightemperatureprocessingsteps.Though,<br />

theresistisrequiredinlowtemperaturewetprocessingtopatternthesilicondioxide.<br />

AnN-typedopedsiliconwaferinFigure2.54(a)isthestartingmaterialinthemanufacture<br />

ofsemiconductorjunctions.Asilicondioxidelayer(b)isgrownatopthewaferinthepresence<br />

ofoxygenorwatervaporathightemperature(over1000 o Cinadiffusionfurnace. Apool<br />

ofresistisappliedtothecenterofthecooledwafer,thenspuninavacuumchucktoevenly<br />

distributetheresist.Thebakedonresist(c)hasachromeonglassmaskappliedtothewafer<br />

at(d).Thismaskcontainsapatternofwindowswhichisexposedtoultravioletlight(e).<br />

AfterthemaskisremovedinFigure2.54(f),thepositiveresistcanbedeveloped(g)in<br />

analkalinesolution,openingwindowsintheUVsoftenedresist.Thepurposeoftheresistis<br />

toprotectthesilicondioxidefromthehydrofluoricacidetch(h),leavingonlyopenwindows<br />

correspondingtothemaskopenings.Theremainingresist(i)isstrippedfromthewaferbefore<br />

returningtothediffusionfurnace. ThewaferisexposedtoagaseousP-typedopantathigh<br />

temperatureinadiffusionfurnace(j). Thedopantonlydiffusesintothesiliconthroughthe<br />

openingsinthesilicondioxidelayer. EachP-diffusionthroughanopeningproducesaPN


78 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

(a) N-type wafer (b) grow SiO 2 (c) apply photoresist (d) place mask<br />

(e) expose (f) remove mask (g) develop resist (h) HF etch<br />

(i) strip resist<br />

BH 3<br />

(j) P-type diffusion<br />

Figure2.54:Manufactureofasilicondiodejunction.<br />

junction.Ifdiodeswerethedesiredproduct,thewaferwouldbediamondscribedandbroken<br />

intoindividualdiodechips. However,thewholewafermaybeprocessedfurtherintobipolar<br />

junctiontransistors.<br />

Toconvertthediodesintotransistors,asmallN-typediffusioninthemiddleoftheexistingP-regionisrequired.<br />

Repeatingthepreviousstepswithamaskhavingsmalleropenings<br />

accomplishesthis.ThoughnotshowninFigure2.54(j),anoxidelayerwasprobablyformedin<br />

thatstepduringtheP-diffusion.TheoxidelayerovertheP-diffusionisshowninFigure2.55<br />

(k).Positivephotoresistisappliedanddried(l).Thechromeonglassemittermaskisapplied<br />

(m),andUVexposed(n). Themaskisremoved(o). TheUVsoftenedresistintheemitter<br />

openingisremovedwithanalkalinesolution(p). Theexposedsilicondioxideisetchedaway<br />

withhydrofluoricacid(HF)at(q)<br />

Aftertheunexposedresistisstrippedfromthewafer(r),itisplacedinadiffusionfurnace<br />

(Figure2.55(s)forhightemperatureprocessing.AnN-typegaseousdopant,suchphosphorus<br />

oxychloride(POCl)diffusesthroughthesmallemitterwindowintheoxide(s). Thiscreates<br />

NPNlayerscorrespondingtotheemitter,base,andcollectorofaBJT.Itisimportantthatthe<br />

N-typeemitternotbedrivenallthewaythroughtheP-typebase,shortingtheemitterand<br />

collector. Thebaseregionbetweentheemitterandcollectoralsoneedstobethinsothatthe<br />

transistorhasauseful β. Otherwise,athickbaseregioncouldformapairofdiodesrather<br />

thanatransistor. At(t)metalizationisshownmakingcontactwiththetransistorregions.<br />

Thisrequiresarepeatoftheprevioussteps(notshownhere)withamaskforcontactopenings<br />

throughtheoxide. Anotherrepeatwithanothermaskdefinesthemetalizationpatternatop<br />

theoxideandcontactingthetransistorregionsthroughtheopenings.<br />

Themetalizationcouldconnectnumeroustransistorsandothercomponentsintoanintegratedcircuit.<br />

Though,onlyonetransistorisshown. Thefinishedwaferisdiamondscribed<br />

andbrokenintoindividualdiesforpackaging.Finegaugealuminumwirebondsthemetalized<br />

contactsonthedietoaleadframe,whichbringsthecontactsoutofthefinalpackage.


2.12. SEMICONDUCTORMANUFACTURINGTECHNIQUES 79<br />

(k) grow SiO 2 (l) apply photoresist (m) place mask (n) expose<br />

(o) remove mask (p) develop resist (q) HF etch<br />

POCl<br />

(s) N-type diffusion<br />

C B E<br />

(t) metalization<br />

(r) strip resist<br />

Figure2.55: Manufactureofabipolarjunctiontransistor,continuationofManufactureofa<br />

silicondiodejunction.<br />

• REVIEW:<br />

• Mostsemiconductorarebasedonultrapuresiliconbecauseitformsaglassoxideatopthe<br />

wafer. Thisoxidecanbepatternedwithphotolithography,makingcomplexintegrated<br />

circuitspossible.<br />

• SausageshapedsinglecrystalsofsiliconaregrownbytheCzochralskiprocess,Theseare<br />

diamondsawedintowafers.<br />

• Thepatterningofsiliconwafersbyphotolithographyissimilartopatterningcopper<br />

printedcircuitboards.Photoresistisappliedtothewafer,whichisexposedtoUVlight<br />

throughamask.Theresistisdeveloped,thenthewaferisetched.<br />

• hydrofluoricacidetchingopenswindowsintheprotectivesilicondioxideatopthewafer.<br />

• Exposuretogaseousdopantsathightemperatureproducessemiconductorjunctionsas<br />

definedbytheopeningsinthesilicondioxidelayer.<br />

• Thephotolithographyisrepeatedformorediffusions,contacts,andmetalization.<br />

• Themetalizationmayinterconnectmultiplecomponentsintoanintegratedcircuit.


80 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

2.13 Superconductingdevices<br />

Superconductingdevices,thoughnotwidelyused,havesomeuniquecharacteristicsnotavailableinstandardsemiconductordevices.Highsensitivitywithrespecttoamplificationofelectricalsignals,detectionofmagneticfields,anddetectionoflightareprizedapplications.High<br />

speedswitchingisalsopossible,thoughnotappliedtocomputersatthistime. Conventional<br />

superconductingdevicesmustbecooledtowithinafewdegreesof0Kelvin(-273 o C).Though,<br />

workisproceedingatthistimeonhightemperaturesuperconductorbaseddevices,usableat90<br />

Kandbelow.Thisissignificantbecauseinexpensiveliquidnitrogenmaybeusedforcooling.<br />

Superconductivity:HeikeOnnesdiscoveredsuperconductivityinmercury(Hg)in1911,<br />

forwhichhewonaNobelprize. Mostmetalsdecreaseelectricalresistancewithdecreasing<br />

temperature. Though,mostdonotdecreasetozeroresistanceas0Kelvinisapproached.<br />

Mercuryisuniqueinthatitsresistanceabruptlydropstozero Ωat4.2K.Superconductors<br />

loseallresistanceabruptlywhencooledbelowtheircriticaltemperature,TcApropertyof<br />

superconductivityisnopowerlossinconductors.Currentmayflowinaloopofsuperconducting<br />

wireforthousandsofyears.Superconductorsincludelead(Pb),aluminum,(Al),tin(Sn)and<br />

niobium(Nb).<br />

Cooperpair:Losslessconductioninsuperconductorsisnotbyordinaryelectronflow.Electronflowinnormalconductorsencountersoppositionascollisionswiththerigidionicmetal<br />

crystallattice. Decreasingvibrationsofthecrystallatticewithdecreasingtemperatureaccountsfordecreasingresistance–uptoapoint.Latticevibrationsceaseatabsolutezero,but<br />

nottheenergydissipatingcollisionsofelectronswiththelattice.Thus,normalconductorsdo<br />

notloseallresistanceatabsolutezero.<br />

Electronsinsuperconductorsformapairofelectronscalledacooperpair,astemperature<br />

dropsbelowthecriticaltemperatureatwhichsuperconductivitybegins.Thecooperpairexists<br />

becauseitisatalowerenergylevelthanunpairedelectrons. Theelectronsareattractedto<br />

eachotherduetotheexchangeofphonons,verylowenergyparticlesrelatedtovibrations.This<br />

cooperpair,quantummechanicalentity(particleorwave)isnotsubjecttothenormallaws<br />

ofphysics. Thisentitypropagatesthroughthelatticewithoutencounteringthemetalions<br />

comprisingthefixedlattice. Thus,itdissipatesnoenergy. Thequantummechanicalnature<br />

ofthecooperpaironlyallowsittoexchangediscreteamountsofenergy,notcontinuously<br />

variableamounts.Anabsoluteminimumquantumofenergyisacceptabletothecooperpair.<br />

Ifthevibrationalenergyofthecrystallatticeisless,(duetothelowtemperature),thecooper<br />

paircannotacceptit,cannotbescatteredbythelattice.Thus,underthecriticaltemperature,<br />

thecooperpairsflowunimpededthroughthelattice.<br />

Josephsonjunctions:BrianJosephsonwonaNobelprizeforhis1962predictionofthe<br />

Josephesonjunction.AJosephsonjunctionisapairofsuperconductorsbridgedbyathininsulator,asinFigure2.56(a),throughwhichelectronscantunnel.ThefirstJosephsonjunctions<br />

wereleadsuperconductorsbridgedbyaninsulator. Thesedaysatri-layerofaluminumand<br />

niobiumispreferred. Electronscantunnelthroughtheinsulatorevenwithzerovoltageappliedacrossthesuperconductors.<br />

Ifavoltageisappliedacrossthejunction,thecurrentdecreasesandoscillatesatahigh<br />

frequencyproportionaltovoltage. Therelationshipbetweenappliedvoltageandfrequency<br />

issoprecisethatthestandardvoltisnowdefinedintermsofJosephsonjunctionoscillation<br />

frequency.TheJosephsonjunctioncanalsoserveasahyper-sensitivedetectoroflowlevelmagneticfields.<br />

Itisalsoverysensitivetoelectromagneticradiationfrommicrowavestogamma


2.13. SUPERCONDUCTINGDEVICES 81<br />

rays.<br />

lead (Pb)<br />

lead oxide<br />

gate<br />

(a) (b)<br />

Figure2.56:(a)Josephsonjunction,(b)Josephsontransistor.<br />

Josephsontransistor:AnelectrodeclosetotheoxideoftheJosephsonjunctioncaninfluencethejunctionbycapacitivecoupling.<br />

SuchanassemblyinFigure2.56(b)isaJosephson<br />

transistor. AmajorfeatureoftheJosephsontransistorislowpowerdissipationapplicable<br />

tohighdensitycircuitry,forexample,computers. Thistransistorisgenerallypartofamore<br />

complexsuperconductingdevicelikeaSQUIDorRSFQ.<br />

SQUID:ASuperconductingquantuminterferencedeviceorSQUIDisanassemblyofJosephsonjunctionswithinasuperconductingring.OnlytheDCSQUIDisconsideredinthisdiscussion.Thisdeviceishighlysensitivetolowlevelmagneticfields.<br />

AconstantcurrentbiasisforcedacrosstheringinparallelwithbothJosephsonjunctions<br />

inFigure2.57. Thecurrentdividesequallybetweenthetwojunctionsintheabsenceofan<br />

appliedmagneticfieldandnovoltageisdevelopedacrossacrossthering.[4]Whileanyvalue<br />

ofMagneticflux(Φ)maybeappliedtotheSQUID,onlyaquantizedvalue(amultipleofthe<br />

fluxquanta)canflowthroughtheopeninginthesuperconductingring.[2]Iftheappliedfluxis<br />

notanexactmultipleofthefluxquanta,theexcessfluxiscancelledbyacirculatingcurrent<br />

aroundtheringwhichproducesafractionalfluxquanta.Thecirculatingcurrentwillflowin<br />

thatdirectionwhichcancelsanyexcessfluxaboveamultipleofthefluxquanta.Itmayeither<br />

addto,orsubtractfromtheappliedflux,upto ±(1/2)afluxquanta.Ifthecirculatingcurrent<br />

flowsclockwise,thecurrentaddstothetopJosephesonjunctionandsubtractsfromthelower<br />

one.Changingappliedfluxlinearlycausesthecirculatingcurrenttovaryasasinusoid.[3]This<br />

canbemeasuredasavoltageacrosstheSQUID.Astheappliedmagneticfieldisincreased,a<br />

voltagepulsemaybecountedforeachincreasebyafluxquanta.[19]<br />

ASQUIDissaidtobesensitiveto10 −14 Tesla,Itcandetectthemagneticfieldofneural<br />

currentsinthebrainat10 −13 Tesla. Comparethiswiththe30x10 −6 Teslastrengthofthe<br />

Earth’smagneticfield.<br />

Rapidsinglefluxquantum(RSFQ):Ratherthanmimicsiliconsemiconductorcircuits,<br />

RSFQcircuitsrelyuponnewconcepts: magneticfluxquantizationwithinasuperconductor,<br />

andmovementofthefluxquantaproducesapicosecondquantizedvoltagepulse.Magneticflux<br />

canonlyexistwithinasectionofsuperconductorquantizedindiscretemultiples.Thelowest<br />

fluxquantaallowedisemployed. ThepulsesareswitchedbyJosephsonjunctionsinsteadof<br />

conventionaltransistors. Thesuperconductorsarebasedonatriplelayerofaluminumand


82 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

+<br />

-<br />

I constant<br />

JJ<br />

Φ<br />

JJ<br />

±∆Ι V<br />

counter<br />

Figure2.57:Superconductionquantuminterferencedevice(SQUID):Josephsonjunctionpair<br />

withinasuperconductingring. AchangeinfluxproducesavoltagevariationacrosstheJJ<br />

pair.<br />

niobiumwithacriticaltemperatureof9.5K,cooledto5K.<br />

RSQF’soperateatover100gHzwithverylittlepowerdissipation.Manufactureissimple<br />

withexistingphotolithographictechniques. Though,operationrequiresrefrigerationdown<br />

to5K.Realworldcommercialapplicationsincludeanalog-to-digitalanddigitaltoanalog<br />

converters,toggleflip-flops,shiftregisters,memory,adders,andmultipliers.[5]<br />

Hightemperaturesuperconductors:Hightemperaturesuperconductorsarecompounds<br />

exhibitingsuperconductivityabovetheliquidnitrogenboilingpointof77K.Thisissignificant<br />

becauseliquidnitrogenisreadilyavailableandinexpensive.Mostconventionalsuperconductorsaremetals;widelyusedhightemperaturesuperconductorsarecuprates,mixedoxidesof<br />

copper(Cu),forexampleYBa2Cu3O7−x,criticaltemperature,Tc=90K.Alistofothersis<br />

available.[23]Mostofthedevicesdescribedinthissectionarebeingdevelopedinhightemperaturesuperconductorversionsforlesscriticalapplications.<br />

Thoughtheydonothavethe<br />

performanceoftheconventionalmetalsuperconductordevices,theliquidnitrogencoolingis<br />

moreavailable.<br />

• REVIEW:<br />

• Mostmetalsdecreaseresistanceastheyapproachabsolute0;though,theresistancedoes<br />

notdropto0.Superconductorsexperiencearapiddroptozeroresistanceattheircritical<br />

temperatureonbeingcooled.TypicallyTciswithin10Kofabsolutezero.<br />

• ACooperpair,electronpair,aquantummechanicalentity,movesunimpededthroughthe<br />

metalcrystallattice.<br />

• ElectronsareabletotunnelthroughaJosephsonjunction,aninsulatinggapacrossa<br />

pairofsuperconductors.<br />

• Theadditionofathirdelectrode,orgate,nearthejunctionconstitutesaJosephsontransistor.<br />

• ASQUID,Superconductionquantuminterferencedevice,isahighlysensitivedetector<br />

ofmagneticfields.Itcountsquantumunitsofamagneticfieldwithinasuperconducting<br />

ring.<br />

• RSFQ,Rapidsinglefluxquantumisahighspeedswitchingdevicebasedonswitching<br />

themagneticquantaexistingwithingasuperconductingloop.


2.14. QUANTUMDEVICES 83<br />

• Hightemperaturesuperconductors,Tcaboveliquidnitrogenboilingpoint,mayalsobe<br />

usedtobuildthesuperconductingdevicesinthissection.<br />

2.14 Quantumdevices<br />

Mostintegratedcircuitsaredigital,basedonMOS(CMOS)transistors.Everycoupleofyears<br />

sincethelate1960’sageometryshrinkhastakenplace,increasingthecircuitdensity–more<br />

circuitryatlowercostinthesamespace. Asofthiswriting(2006),theMOStransistorgate<br />

lengthis65-nmforleadingedgeproduction,with45-nmanticipatedwithinayear. At65nmleakagecurrentswerebecomingevident.<br />

At45-nm,heroicinnovationswererequiredto<br />

minimizethisleakage. TheendofshrinkageinMOStransistorsisexpectedat20-to30nm.<br />

Thoughsomethinkthat1-to2-nmisthelimit. Photolithography,orotherlithographic<br />

techniques,willcontinuetoimprove,providingeversmallergeometry.However,conventional<br />

MOStransistorsarenotexpectedtobeusableatthesesmallergeometriesbelow20-to30-nm.<br />

Improvedphotolithographywillhavetobeappliedtootherthantheconventionaltransistors,dimensions(under20-to30-nm).<br />

TheobjectionalMOSleakagecurrentsaredueto<br />

quantummechanicaleffects–electrontunnelingthroughgateoxide,andthenarrowchannel.<br />

<strong>In</strong>summary,quantummechanicaleffectsareahindrancetoeversmallerconventionalMOS<br />

transistors. Thepathtoeversmallergeometrydevicesinvolvesuniqueactivedeviceswhich<br />

makepracticaluseofquantummechanicalprinciples. Asphysicalgeometrybecomesvery<br />

small,electronsmaybetreatedasthequantummechanicalequivalent: awave. Devices<br />

makinguseofquantummechanicalprinciplesinclude: resonanttunnelingdiodes,quantum<br />

tunnelingtransistors,metalinsulatormetaldiodes,andquantumdottransistors.<br />

Quantumtunneling: isthepassingofelectronsthroughaninsulatingbarrierwhichis<br />

thincomparedtothedeBroglie(page31)electronwavelength.Ifthe“electronwave”islarge<br />

comparedtothebarrier,thereisapossibilitythatthewaveappearsonbothsidesofthebarrier.<br />

Energy<br />

Energy<br />

Clasical view Quantum mechanical view<br />

Figure2.58:Classicalviewofanelectronsurmountingabarrier,ornot.Quantummechanical<br />

viewallowsanelectrontotunnelthroughabarrier. Theprobability(green)isrelatedtothe<br />

barrierthickness.AfterFigure1[22]<br />

<strong>In</strong>classicalphysics,anelectronmusthavesufficientenergytosurmountabarrier. Otherwise,itrecoilsfromthebarrier.<br />

(Figure2.58)Quantummechanicsallowsforaprobability<br />

oftheelectronbeingontheothersideofthebarrier. Iftreatedasawave,theelectronmay<br />

lookquitelargecomparedtothethicknessofthebarrier.Evenwhentreatedasawave,there<br />

isonlyasmallprobabilitythatitwillbefoundontheothersideofathickbarrier.Seegreen<br />

Energy


84 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

portionofcurve,Figure2.58.Thinningthebarrierincreasestheprobabilitythattheelectron<br />

isfoundontheothersideofthebarrier.[22]<br />

Tunneldiode: Theunqualifiedtermtunneldiodereferstotheesakitunneldiode,an<br />

earlyquantumdevice.Areversebiaseddiodeformsadepletionregion,aninsulatingregion,<br />

betweentheconductiveanodeandcathode.Thisdepletionregionisonlythinascomparedto<br />

theelectronwavelengthwhenheavilydoped–1000timesthedopingofarectifierdiode.With<br />

properbiasing,quantumtunnelingispossible.See(page144)fordetails.<br />

RTD,resonanttunnelingdiode:Thisisaquantumdevicenottobeconfusedwiththe<br />

Esakitunneldiode,(page144),aconventionalheavilydopedbipolarsemiconductor.Electrons<br />

tunnelthroughtwobarriersseparatedbyawellinflowingsourcetodraininaresonanttunnelingdiode.Tunnelingisalsoknownasquantummechanicaltunneling.Theflowofelectrons<br />

iscontrolledbydiodebias.Thismatchestheenergylevelsoftheelectronsinthesourcetothe<br />

quantizedlevelinthewellsothatelectronscantunnelthroughthebarriers.Theenergylevel<br />

inthewellisquantizedbecausethewellissmall. Whentheenergylevelsareequal,aresonanceoccurs,allowingelectronflowthroughthebarriersasshowninFigure2.59(b).Nobias<br />

ortoomuchbias,inFigures2.59(a)and(c)respectively,yieldsanenergymismatchbetween<br />

thesourceandthewell,andnoconduction.<br />

Energy eV<br />

1<br />

0<br />

GaAs<br />

AlAs AlAs<br />

<strong>In</strong>GaAs<br />

<strong>In</strong>GaAs<br />

<strong>In</strong>GaAs<br />

GaAs<br />

Energy eV<br />

1<br />

0<br />

barrier barrier<br />

energy<br />

level<br />

source<br />

10 20 30 40 nm 10 20 30 40 nm<br />

10 20 30 40 nm<br />

(a) (b) (c)<br />

well<br />

Figure2.59:Resonanttunnelingdiode(RTD):(a)Nobias,sourceandwellenergylevelsnot<br />

matched,noconduction.(b)Smallbiascausesmatchedenergylevels(resonance);conduction<br />

results.(c)Furtherbiasmismatchesenergylevels,decreasingconduction.<br />

AsbiasisincreasedfromzeroacrosstheRTD,thecurrentincreasesandthendecreases,<br />

correspondingtooff,on,andoffstates. Thismakessimplificationofconventionaltransistor<br />

circuitspossiblebysubstitutingapairofRTD’sfortwotransistors.Forexample,twoback-tobackRTD’sandatransistorformamemorycell,usingfewercomponents,lessareaandpower<br />

comparedwithaconventionalcircuit. ThepotentialapplicationofRTD’sistoreducethe<br />

componentcount,area,andpowerdissipationofconventionaltransistorcircuitsbyreplacing<br />

some,thoughnotall,transistors.[11]RTD’shavebeenshowntooscillateupto712gHz.[8]<br />

Double-layertunnelingtransistor:TheDeltt,otherwiseknownastheDouble-layertunnelingtransistorisconstructedofapairofconductivewellsseparatedbyaninsulatororhigh<br />

bandgapsemiconductor.(Figure2.60)Thewellsaresothinthatelectronsareconfinedtotwo<br />

dimensions.Theseareknownasquantumwells.Apairofthesequantumwellsareinsulated<br />

byathinGaAlAs,highbandgap(doesnoteasilyconduct)layer.Electronscantunnelthrough<br />

theinsulatinglayeriftheelectronsinthetwoquantumwellshavethesamemomentumand<br />

energy. Thewellsaresothinthattheelectronmaybetreatedasawave–thequantummechanicaldualityofparticlesandwaves.<br />

Thetopandoptionalbottomcontrolgatesmaybe<br />

adjustedtoequalizetheenergylevels(resonance)oftheelectronstoallowconductionfrom<br />

drain<br />

Energy eV<br />

1<br />

0


2.14. QUANTUMDEVICES 85<br />

sourcetodrain.Figure2.60,barrierdiagramredbarsshowunequalenergylevelsinthewells,<br />

an“off-state”condition.Properbiasingofthegatesequalizestheenergylevelsofelectronsin<br />

thewells,the“on-state”condition. Thebarswouldbeatthesamelevelintheenergylevel<br />

diagram.<br />

well<br />

barrier<br />

well<br />

barrier<br />

diagram<br />

bottom quantum well<br />

contact (drain)<br />

top gate<br />

top quantum well<br />

depletion<br />

tunneling<br />

bottom<br />

depletion gate<br />

top depletion<br />

gate<br />

GaAs<br />

GaAlAs<br />

top quantum well<br />

contact (drain)<br />

depletion<br />

insulator<br />

GaAs<br />

bottom quantum well<br />

bottom gate (optional)<br />

Figure2.60:Double-layertunnelingtransistor(Deltt)iscomposedoftwoelectroncontaining<br />

wellsseparatedbyanonconductingbarrier. Thegatevoltagesmaybeadjustedsothatthe<br />

energyandmomentumoftheelectronsinthewellsareequalwhichpermitselectronstotunnel<br />

throughthenonconductivebarrier. (Theenergylevelsareshownasunequalinthebarrier<br />

diagram.)<br />

Ifgatebiasisincreasedbeyondthatrequiredfortunneling,theenergylevelsinthequantumwellsnolongermatch,tunnelingisinhibited,sourcetodraincurrentdecreases.Tosummarize,increasinggatebiasfromzeroresultsinon,off,onconditions.<br />

Thisallowsapairof<br />

Deltt’stobestackedinthemannerofaCMOScomplementarypair;though,differentp-andntypetransistorsarenotrequired.Powersupplyvoltageisabout100mV.ExperimentalDeltt’s<br />

havebeenproducedwhichoperatenear4.2K,77K,and0 o C.Roomtemperatureversionsare<br />

expected.[11][13][20]<br />

MIIMdiode:Themetal-insulator-insulator-metal(MIIM)diodeisaquantumtunnelingdevice,notbasedonsemiconductors.See“MIIMdiodesection”Figure2.61.Theinsulatorlayers<br />

mustbethincomparedtothedeBroglie(page31)electronwavelength,forquantumtunneling<br />

tobepossible. Fordiodeaction,theremustbeapreferedtunnelingdirection,resultingina<br />

sharpbendinthediodeforwardcharacteristiccurve.TheMIIMdiodehasasharperforward<br />

curvethanthemetalinsulatormetal(MIM)diode,notconsideredhere.<br />

TheenergylevelsofM1andM2areequalin“nobias”Figure2.61. However,(thermal)<br />

electronscannotflowduetothehighI1andI2barriers.ElectronsinmetalM2haveahigher<br />

energylevelin“reversebias”Figure2.61,butstillcannotovercometheinsulatorbarrier.As<br />

“forwardbias”Figure2.61isincreased,aquantumwell,anareawhereelectronsmayexist,<br />

isformedbetweentheinsulators. ElectronsmaypassthroughinsulatorI1ifM1isbisedat<br />

thesameenergylevelasthequantumwell.Asimpleexplanationisthatthedistancethrough<br />

theinsulatorsisshorter. Alongerexplanationisthatasbiasincreases,theprobabilityof<br />

theelectronwaveoverlappingfromM1tothequantumwellincreases. Foramoredetailed


86 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

M 1<br />

I 1<br />

I 2<br />

M 2<br />

Energy<br />

M 1<br />

I 1 I 2<br />

M 2<br />

Energy<br />

quantum<br />

well<br />

Distance<br />

Distance<br />

Distance<br />

MIIM diode<br />

section No bias Forward bias Reverse bias<br />

Energy<br />

M1 I2 I1 M2 M1 I1 I2 Figure2.61: Metalinsulatorinsulatormetal(MIIM)diode: Crosssectionofdiode. Energy<br />

levelsfornobias,forwardbias,andreversebias.AfterFigure1[21].<br />

explanationseePhiarCorp.[21]<br />

MIIMdevicesoperateathigherfrequencies(3.7THz)thanmicrowavetransistors.[16]The<br />

additionofathirdelectrodetoaMIIMdiodeproducesatransistor.<br />

Quantumdottransistor: Anisolatedconductormaytakeonacharge, measuredin<br />

coulombsforlargeobjects. Foranano-scaleisolatedconductorknownasaquantumdot,the<br />

chargeismeasuredinelectrons. Aquantumdotof1-to3-nmmaytakeonanincremental<br />

chargeofasingleelectron. Thisisthebasisofthequantumdottransistor,alsoknownasa<br />

singleelectrontransistor.<br />

Aquantumdotplacedatopathininsulatoroveranelectronrichsourceisknownasasingle<br />

electronbox.(Figure2.62(a))Theenergyrequiredtotransferanelectronisrelatedtothesize<br />

ofthedotandthenumberofelectronsalreadyonthedot.<br />

Agateelectrodeabovethequantumdotcanadjusttheenergylevelofthedotsothatquantummechanicaltunnelingofanelectron(asawave)fromthesourcethroughtheinsulatoris<br />

possible.(Figure2.62(b))Thus,asingleelectronmaytunneltothedot.<br />

gate<br />

quantum<br />

dot<br />

source<br />

tunnel<br />

barrier<br />

---<br />

+++<br />

(a) (b) (c)<br />

+++<br />

---<br />

tunneling<br />

source drain<br />

tunnel<br />

barrier<br />

Figure2.62:(a)Singleelectronbox,anisolatedquantumdotseparatedfromanelectronsource<br />

byaninsulator.(b)Positivechargeonthegatepolarizesquantumdot,tunnelinganelectron<br />

fromthesourcetothedot. (c)Quantumtransistor:channelisreplacedbyquantumdotsurroundedbytunnelingbarrier.<br />

+<br />

Ifthequantumdotissurroundedbyatunnelbarrierandembeddedbetweenthesource<br />

M 2


2.14. QUANTUMDEVICES 87<br />

anddrainofaconventionalFET,asinFigure2.62(c),thechargeonthedotcanmodulatethe<br />

flowofelectronsfromsourcetodrain. Asgatevoltageincreases,thesourcetodraincurrent<br />

increases,uptoapoint. Afurtherincreaseingatevoltagedecreasesdraincurrent. Thisis<br />

similartothebehavioroftheRTDandDelttresonantdevices.Onlyonekindoftransistoris<br />

requiredtobuildacomplementarylogicgate.[11]<br />

Singleelectrontransistor:Ifapairofconductors,superconductors,orsemiconductors<br />

areseparatedbyapairoftunnelbarriers(insulator),surroundingatinyconductiveisland,<br />

likeaquantumdot,theflowofasinglecharge(aCooperpairforsuperconductors)maybe<br />

controlledbyagate.ThisisasingleelectrontransistorsimilartoFigure2.62(c).<strong>In</strong>creasing<br />

thepositivechargeonthegate,allowsanelectrontotunneltotheisland.Ifitissufficiently<br />

small,thelowcapacitancewillcausethedotpotentialtorisesubstantiallyduetothesingle<br />

electron.Nomoreelectronscantunneltotheislandduetheelectroncharge.Thisisknownat<br />

thecoulombblockade.Theelectronwhichtunneledtotheisland,cantunneltothedrain.<br />

Singleelectrontransistorsoperateatnearabsolutezero. Theexceptionisthegraphene<br />

singleelectrontransistor,havingagrapheneisland.Theyareallexperimentaldevices.<br />

Graphenetransistor:Graphite,anallotropeofcarbon,doesnothavetherigidinterlockingcrystallinestructureofdiamond.<br />

Nonetheless,ithasacrystallinestructure–oneatom<br />

thick,asocalledtwo-dimensionalstructure.Agraphiteisathree-dimensionalcrystal.However,itcleavesintothinsheets.<br />

Experimenters,takingthistotheextreme,producemicron<br />

sizedspecksasthinasasingleatomknownasgraphene.(Figure2.63(a))Thesemembranes<br />

haveuniqueelectronicproperties.Highlyconductive,conductionisbyeitherelectronsorholes,<br />

withoutdopingofanykind.[12]<br />

Graphenesheetsmaybecutintotransistorstructuresbylithographictechniques. The<br />

transistorsbearsomeresemblancetoaMOSFET.Agatecapacitivelycoupledtoagraphene<br />

channelcontrolsconduction.<br />

Assilicontransistorsscaletosmallersizes,leakageincreasesalongwithpowerdissipation.<br />

Andtheygetsmallereverycoupleofyears.Graphenetransistorsdissipatelittlepower.And,<br />

theyswitchathighspeed.Graphenemightbeareplacementforsiliconsomeday.<br />

Graphenecanbefashionedintodevicesassmallassixtyatomswide. Graphenequantumdotswithinatransistorthissmallserveassingleelectrontransistors.<br />

Previoussingle<br />

electrontransistorsfashionedfromeithersuperconductorsorconventionalsemiconductors<br />

operatenearabsolutezero. Graphenesingleelectrontransistorsuniquelyfunctionatroom<br />

temperature.[24]<br />

Graphenetransistorsarelaboratorycuriositiesatthistime.Iftheyaretogointoproductiontwodecadesfromnow,graphenewafersmustbeproduced.<br />

Thefirststep,productionof<br />

graphenebychemicalvapordeposition(CVD)hasbeenaccomplishedonanexperimentalscale.<br />

Though,nowafersareavailabletodate.<br />

Carbonnanotubetransistor:Ifa2-Dsheetofgrapheneisrolled,theresulting1-Dstructureisknownasacarbonnanotube.(Figure2.63(b))Thereasontotreatitas1-dimensionalis<br />

thatitishighlyconductive.Electronstraversethecarbonnanotubewithoutbeingscatteredby<br />

acrystallattice.Resistanceinnormalmetalsiscausedbyscatteringofelectronsbythemetalliccrystallinelattice.<br />

Ifelectronsavoidthisscattering,conductionissaidtobebyballistic<br />

transport. Bothmetallic(acting)andsemiconductingcarbonnanotubeshavebeenproduced.<br />

[6]<br />

Fieldeffecttransistorsmaybefashionedfromacarbonnanotubesbydepositingsource<br />

anddraincontactsontheends,andcapacitivelycouplingagatetothenanotubebetweenthe


88 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

(a) (b)<br />

Figure2.63:(a)Graphene:Asinglesheetofthegraphiteallotropeofcarbon. Theatomsare<br />

arrangedinahexagonalpatternwithacarbonateachintersection. (b)Carbonnanotube:A<br />

rolled-upsheetofgraphene.<br />

contacts. Bothp-andn-typetransistorshavebeenfabricated. Whytheinterestincarbon<br />

nanotubetransistors? NanotubesemiconductorsareSmaller,faster,lowerpowercompared<br />

withsilicontransistors.[7]<br />

Spintronics: Conventionalsemiconductorscontroltheflowofelectroncharge,current.<br />

Digitalstatesarerepresentedby“on”or“off”flowofcurrent.Assemiconductorsbecomemore<br />

densewiththemovetosmallergeometry,thepowerthatmustbedissipatedasheatincreases<br />

tothepointthatitisdifficulttoremove. Electronshavepropertiesotherthanchargesuch<br />

asspin.Atentativeexplanationofelectronspinistherotationofdistributedelectroncharge<br />

aboutthespinaxis,analogoustodiurnalrotationoftheEarth.Theloopsofcurrentcreatedby<br />

chargemovement,formamagneticfield.However,theelectronismorelikeapointchargethan<br />

adistributedcharge,Thus,therotatingdistributedchargeanalogyisnotacorrectexplanation<br />

ofspin. Electronspinmayhaveoneoftwostates: upordownwhichmayrepresentdigital<br />

states.Morepreciselythespin(ms)quantumnumbermaybe ±1/2theangularmomentum(l)<br />

quantumnumber.[1]<br />

Controllingelectronspininsteadofchargeflowconsiderablyreducespowerdissipationand<br />

increasesswitchingspeed. Spintronics,anacronymforSPINTRansportelectrONICS,isnot<br />

widelyappliedbecauseofthedifficultyofgenerating,controlling,andsensingelectronspin.<br />

However,highdensity,non-volatilemagneticspinmemoryisinproductionusingmodified<br />

semiconductorprocesses.Thisisrelatedtothespinvalvemagneticreadheadusedincomputer<br />

harddiskdrives,notmentionedfurtherhere.<br />

Asimplemagnetictunneljunction(MTJ)isshowninFigure2.64(a),consistingofapairof<br />

ferromagnetic,strongmagneticpropertieslikeiron(Fe),layersseparatedbyathininsulator.<br />

Electronscantunnelthroughasufficientlythininsulatorduetothequantummechanical<br />

propertiesofelectrons–thewavenatureofelectrons.ThecurrentflowthroughtheMTJisa<br />

functionofthemagnetization,spinpolarity,oftheferromagneticlayers.Theresistanceofthe<br />

MTJislowifthemagneticspinofthetoplayerisinthesamedirection(polarity)asthebottom<br />

layer.Ifthemagneticspinsofthetwolayersoppose,theresistanceishigher.[9]<br />

Thechangeinresistancecanbeenhancedbytheadditionofanantiferromagnet,material<br />

havingspinsalignedbutopposing,belowthebottomlayerinFigure2.64(b).Thisbiasmagnet<br />

pinsthelowerferromagneticlayerspintoasingleunchangingpolarity.Thetoplayermagnetization(spin)maybeflippedtorepresentdatabytheapplicationofanexternalmagneticfield


2.14. QUANTUMDEVICES 89<br />

(a)<br />

contact<br />

ferromagnet<br />

tunneling<br />

insulator<br />

ferromagnet<br />

contact<br />

antiferromagnet<br />

contact<br />

Figure2.64: (a)Magnetictunneljunction(MTJ):Pairofferromagneticlayersseparatedby<br />

athininsulator. Theresistancevarieswiththemagnetizationpolarityofthetoplayer(b)<br />

Antiferromagneticbiasmagnetandpinnedbottomferromagneticlayerincreasesresistance<br />

sensitivitytochangesinpolarityofthetopferromagneticlayer.Adaptedfrom[9]Figure3.<br />

notshowninthefigure. Thepinnedlayerisnotaffectedbyexternalmagneticfields. Again,<br />

theMTJresistanceislowestwhenthespinofthetopferromagneticlayeristhesamesenseas<br />

thebottompinnedferromagneticlayer.[9]<br />

TheMTJmaybeimprovedfurtherbysplittingthepinnedferromagneticlayerintotwo<br />

layersseparatedbyabufferlayerinFigure 2.65(a).Thisisolatesthetoplayer.Thebottom<br />

ferromagneticlayerispinnedbytheantiferromagnetasinthepreviousfigure.Theferromagneticlayeratopthebufferisattractedbythebottomferromagneticlayer.<br />

Oppositesattract.<br />

Thus,thespinpolarityoftheadditionallayerisoppositeofthatinthebottomlayerdueto<br />

attraction.Thebottomandmiddleferromagneticlayersremainfixed.Thetopferromagnetic<br />

layermaybesettoeitherspinpolaritybyhighcurrentsinproximateconductors(notshown).<br />

Thisishowdataarestored. Dataarereadoutbythedifferenceincurrentflowthroughthe<br />

tunneljunction.Resistanceislowestifthelayersonbothsidesoftheinsultinglayerareofthe<br />

samespin.[9]<br />

Anarrayofmagnetictunneljunctionsmaybeembeddedinasiliconwaferwithconductors<br />

connectingthetopandbottomterminalsforreadingdatabitsfromtheMTJ’swithconventionalCMOScircuitry.<br />

OnesuchMTJisshowninFigure2.65(b)withthereadconductors.<br />

Notshown,anothercrossedarrayofconductorscarryingheavywritecurrentsswitchthemagneticspinofthetopferromagneticlayertostoredata.Acurrentisappliedtooneofmany“X”<br />

conductorsanda“Y”conductor. OneMTJinthearrayismagnetizedundertheconductors’<br />

cross-over. DataarereadoutbysensingtheMTJcurrentwithconventionalsiliconsemiconductorcircuitry.[10]<br />

Themainreasonforinterestinmagnetictunneljunctionmemoryisthatitisnonvolatile.It<br />

doesnotlosedatawhenpowered“off”.Othertypesofnonvolatilememoryarecapableofonly<br />

limitedstoragecycles. MTJmemoryisalsohigherspeedthanmostsemiconductormemory<br />

types.Itisnow(2006)acommercialproduct.[18]<br />

Notacommercialproduct,orevenalaboratorydevice,isthetheoreticalspintransistor<br />

(b)


90 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

pinned layers data<br />

top contact<br />

ferromagnet<br />

tunneling<br />

insulator<br />

ferromagnet<br />

coupling layer<br />

ferromagnet<br />

antiferromagnet<br />

(a) bottom contact<br />

(b)<br />

Figure2.65:(a)Splittingthepinnedferromagneticlayerof(b)byabufferlayerimprovesstabilityandisolatesthetopferromagneticunpinnedlayer.Dataarestoredinthetopferromagnetic<br />

layerbasedonspinpolarity(b)MTJcellembeddedinreadlinesofasemiconductordie–one<br />

ofmanyMTJ’s.Adaptedfrom[10]<br />

whichmightonedaymakespinlogicgatespossible.Thespintransistorisaderivativeofthe<br />

theoreticalspindiode.<br />

Ithasbeenknownforsometimethatelectronsflowingthroughacobalt-ironferromagnet<br />

becomespinpolarized. Theferromagnetactsasafilterpassingelectronsofonespinpreferentially.Theseelectronsmayflowintoanadjacentnonmagneticconductor(orsemiconductor)<br />

retainingthespinpolarizationforashorttime,nano-seconds. Though,spinpolarizedelectronsmaypropagateaconsiderabledistancecomparedwithsemiconductordimensions.<br />

The<br />

spinpolarizedelectronsmaybedetectedbyanickel-ironferromagneticlayeradjacenttothe<br />

semiconductor.[1][15]<br />

Ithasalsobeenshownthatelectronspinpolarizationoccurswhencircularlypolarizedlight<br />

illuminatessomesemiconductormaterials.Thus,itshouldbepossibletoinjectspinpolarized<br />

electronsintoasemiconductordiodeortransistor.Theinterestinspinbasedtransistorsand<br />

gatesisbecauseofthenon-dissipativenatureofspinpropagation,comparedwithdissipative<br />

chargeflow. Asconventionalsemiconductorsarescaleddowninsize,powerdissipationincreases.<br />

Atsomepointthescalingdownwillnolongerbepractical. Researchersarelooking<br />

forareplacementfortheconventionalchargeflowbasedtransistor.Thatdevicemaybebased<br />

onspintronics.[14]<br />

• REVIEW:<br />

• AsMOSgateoxidethinswitheachgenerationofsmallertransistors,excessivegateleakagecausesunacceptablepowerdissipationandheating.Thelimitofscalingdownconventionalsemiconductorgeometryiswithinsight.<br />

• Resonanttunnelingdiode(RTD):Quantummechanicaleffects,whichdegradeconven-


2.15. SEMICONDUCTORDEVICESINSPICE 91<br />

tionalsemiconductors,areemployedintheRTD.Theflowofelectronsthroughasufficientlythininsulator,isbythewavenatureoftheelectron–particlewaveduality.<br />

The<br />

RTDfunctionsasanamplifier.<br />

• Doublelayertunnelingtransistor(Deltt):TheDelttisatransistorversionoftheRTD.<br />

Gatebiascontrolstheabilityofelectronstotunnelthroughathininsulatorfromone<br />

quantumwelltoanother(sourcetodrain).<br />

• Quantumdottransistor:Aquantumdot,capableofholdingacharge,issurroundedbya<br />

thintunnelbarrierreplacingthegateofaconventionalFET.Thechargeonthequantum<br />

dotcontrolssourcetodraincurrentflow.<br />

• Spintronics: Electronshavetwobasicproperties: chargeandspin. Conventionalelectronicdevicescontroltheflowofcharge,dissipatingenergy.Spintronicdevicesmanipulateelectronspin,apropagative,non-dissipativeprocess.<br />

2.15 SemiconductordevicesinSPICE<br />

TheSPICE(simulationprogram,integratedcircuitemphesis)electronicsimulationprogram<br />

providescircuitelementsandmodelsforsemiconductors. TheSPICEelementnamesbegin<br />

withd,q,j,ormcorrespondtodiode,BJT,JFETandMOSFETelements,respectively.These<br />

elementsareaccompaniedbycorresponding“models”Thesemodelshaveextensivelistsof<br />

parametersdescribingthedevice.Though,wedonotlistthemhere.<strong>In</strong>thissectionweprovide<br />

averybrieflistingofsimplespicemodelsforsemiconductors,justenoughtogetstarted.For<br />

moredetailsonmodelsandanextensivelistofmodelparametersseeKuphaldt. [17]This<br />

referencealsogivesinstructionsonusingSPICE.<br />

Diode:Thediodestatementbeginswithadiodeelementnamewhichmustbeginwith“d”<br />

plusoptionalcharacters. Someexamplediodeelementnamesinclude: d1,d2,dtest,da,db,<br />

d101,etc.Twonodenumbersspecifytheconnectionoftheanodeandcathode,respectively,to<br />

othercomponents. Thenodenumbersarefollowedbyamodelname,referringtoa“.model”<br />

statement.<br />

Themodelstatementlinebeginswith“.model”,followedbythemodelnamematchingone<br />

ormorediodestatements. Nextisa“d”indicatingthatadiodeisbeingmodeled. TheremainderofthemodelstatementisalistofoptionaldiodeparametersoftheformParameterName=ParameterValue.<br />

Noneareshownintheexamplebelow. Foralist,seereference,<br />

“diodes”.[17]<br />

General form: d[name] [anode] [cathode] [model]<br />

.model [modelname] d ( [parmtr1=x] [parmtr2=y] . . .)<br />

Example: d1 1 2 mod1<br />

.model mod1 d<br />

Modelsforspecificdiodepartnumbersareoftenfurnishedbythesemiconductordiodemanufacturer.<br />

Thesemodelsincludeparameters. Otherwise,theparametersdefaulttosocalled<br />

“defaultvalues”,asintheexample.


92 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

BJT,bipolarjunctiontransistor:TheBJTelementstatementbeginswithanelement<br />

namewhichmustbeginwith“q”withassociatedcircuitsymboldesignatorcharacters,example:q1,q2,qa,qgood.TheBJTnodenumbers(connections)identifythewiringofthecollector,<br />

base,emitterrespectively. Amodelnamefollowingthenodenumbersisassociatedwitha<br />

modelstatement.<br />

General form: q[name] [collector] [base] [emitter] [model]<br />

.model [modelname] [npn or pnp] ([parmtr1=x] . . .)<br />

Example: q1 2 3 0 mod1<br />

.model mod1 pnp<br />

Example: q2 7 8 9 q2n090<br />

.model q2n090 npn ( bf=75 )<br />

Themodelstatementbeginswith“.model”,followedbythemodelname,followedbyone<br />

of“npn”or“pnp”. Theoptionallistofparametersfollows,andmaycontinueforafewlines<br />

beginningwithlinecontinuationsymbol“+”,plus. Shownaboveistheforward βparameter<br />

setto75forthehypotheticalq2n090model. Detailedtransistormodelsareoftenavailable<br />

fromsemiconductormanufacturers.<br />

FET,fieldeffecttransistorThefieldeffecttransistorelementstatementbeginswithan<br />

elementnamebeginningwith“j”forJFETassociatedwithsomeuniquecharacters,example:<br />

j101,j2b,jalpha,etc. Thenodenumbersfollowforthedrain,gateandsourceterminals,respectively.Thenodenumbersdefineconnectivitytoothercircuitcomponents.Finally,amodel<br />

nameindicatestheJFETmodeltouse.<br />

General form: j[name] [drain] [gate] [source] [model]<br />

.model [modelname] [njf or pjf] ( [parmtr1=x] . . .)<br />

Example: j1 2 3 0 mod1<br />

.model mod1 pjf<br />

j3 4 5 0 mod2<br />

.model mod2 njf ( vto=-4.0 )<br />

The“.model”intheJFETmodelstatementisfollowedbythemodelnametoidentifythis<br />

modeltotheJFETelementstatement(s)usingit.Followingthemodelnameiseitherpjfornjf<br />

forp-channelorn-channelJFET’srespectively.AlonglistofJFETparametersmayfollow.We<br />

onlyshowhowtosetVp,pinchoffvoltage,to-4.0Vforann-channelJFETmodel.Otherwise,<br />

thisvtoparameterdefaultsto-2.5Vor2.5Vforn-channelorp-channeldevices,respectively.<br />

MOSFET,metaloxidefieldeffecttransistorTheMOSFETelementnamemustbegin<br />

with“m”,andisthefirstwordintheelementstatement.Followingarethefournodenumbers<br />

forthedrain,gate,source,andsubstrate,respectively.Nextisthemodelname.Notethatthe<br />

sourceandsubstratearebothconnectedtothesamenode“0”intheexample.DiscreteMOS-<br />

FET’sarepackagedasthreeterminaldevices,thesourceandsubstratearethesamephysical<br />

terminal.<strong>In</strong>tegratedMOSFET’sarefourterminaldevices;thesubstrateisafourthterminal.<br />

<strong>In</strong>tegratedMOSFET’smayhavenumerousdevicessharingthesamesubstrate,separatefrom<br />

thesources.Though,thesourcesmightstillbeconnectedtothecommonsubstrate.<br />

General form: m[name] [drain] [gate] [source] [substrate] [model]<br />

.model [modelname] [nmos or pmos] ( [parmtr1=x] . . . )


BIBLIOGRAPHY 93<br />

Example: m1 2 3 0 0 mod1<br />

m5 5 6 0 0 mod4<br />

.model mod1 pmos<br />

.model mod4 nmos ( vto=1 )<br />

TheMOSFETmodelstatementbeginswith“.model”followedbythemodelnamefollowed<br />

byeither“pmos”or“nmos”.OptionalMOSFETmodelparametersfollow.Thelistofpossible<br />

parametersislong.See<strong>Volume</strong>5,“MOSFET”fordetails.[17]MOSFETmanufacturersprovide<br />

detailedmodels.Otherwise,defaultsareineffect.<br />

ThebareminimumsemiconductorSPICEinformationisprovidedinthissection.Themodelsshownhereallowsimulationofbasiccircuits.<br />

<strong>In</strong>particular,thesemodelsdonotaccount<br />

forhighspeedorhighfrequencyoperation.Simulationsareshowninthe<strong>Volume</strong>5Chapter7,<br />

“UsingSPICE...”.<br />

• REVIEW:<br />

• SemiconductorsmaybecomputersimulatedwithSPICE.<br />

• SPICEprovideselementstatementsandmodelsforthediode,BJT,JFET,andMOSFET.<br />

Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

MaciejNoszczyski(December2003):CorrectedspellingofNielsBohr’sname.<br />

BillHeath(September2002):Pointedouterrorinillustrationofcarbonatom–thenucleus<br />

wasshownwithsevenprotonsinsteadofsix.<br />

Bibliography<br />

[1] DavidD.Awschalom,MichaelE.Flatte,NitinSamarth,“Spintronics”,ScientificAmerican,June2002at<br />

http://www.sciam.com<br />

[2] John Bland, “The Fluxoid” in “A Mossbauer Spectroscopy and Magnetometry<br />

Study of Magnetic Multilayers and Oxides”, Oliver Lodge<br />

Laboratory, Department of Physics, University of Liverpool, 2002, at<br />

http://www.cmp.liv.ac.uk/frink/thesis/thesis/node45.html<br />

[3] John Bland, “Superconducting Quantum <strong>In</strong>terference Device (SQUID)” in “A Mossbauer<br />

Spectroscopy and Magnetometry Study of Magnetic Multilayers and Oxides”,<br />

Oliver Lodge Laboratory, Department of Physics, University of Liverpool, 2002, at<br />

http://www.cmp.liv.ac.uk/frink/thesis/thesis/node48.html<br />

[4] John Bland, “SQUID Magnetometer” in “A Mossbauer Spectroscopy and<br />

Magnetometry Study of Magnetic Multilayers and Oxides”, Oliver Lodge


94 CHAPTER2. SOLID-STATEDEVICETHEORY<br />

Laboratory, Department of Physics, University of Liverpool, 2002, at<br />

http://www.cmp.liv.ac.uk/frink/thesis/thesis/node48.html<br />

[5] Darren K. Brock, “RSFQ Technology: <strong>Circuits</strong> and Systems”, Hypres, <strong>In</strong>c., NY, at<br />

http://www.hypres.com/papers/Brock-RSFQ-CirSys-Rev01.pdf<br />

[6] MatthewBroersma,“Nanotubesbreaksemiconductingrecord”,CnetNews,December<br />

19,2003,at http://news.com.com/2100-1006-5129761.html<br />

[7] “Carbon Nanotube Transistor”, Physics News Graphics, May 13, 1998, at<br />

http://www.aip.org/mgr/png/html/tubefet.htm<br />

[8] E. R. Brown, C. D. Parker, “Resonant Tunnel Diodes as Submillimetre-Wave<br />

Sources”, Philosophical Transactions: Mathematical, Physical and Engineering<br />

Sciences, Vol. 354, No. 1717, The Current Status of Semiconductor Tunnelling<br />

Devices (Oct. 15, 1996), pp. 2365-2381 at http://links.jstor.org/<br />

sici?sici=1364-503X(19961015)354%3A1717%3C2365%3ARTDASS%3E2.0.CO%3B2-Q<br />

[9] W. J. Gallagher, S. S. P. Parkin, “Development of the magnetic tunnel junction<br />

MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip”,<br />

IBM Research and Development, Spintronics, <strong>Volume</strong> 50, Number 1, 2006, at<br />

http://www.research.ibm.com/journal/rd/501/gallagher.html<br />

[10] “IBM,<strong>In</strong>fineonDevelopMostAdvancedMRAMTechnologytoDate”,IBMResearch,at<br />

http://domino.research.ibm.com/comm/pr.nsf/pages/news.20030610 mram.html<br />

[11] LindaGeppert“QuantumTransistors:towardnanoectronic”,IEEESpectrum,September<br />

2000,at http://www.ece.osu.edu/˜berger/press/quan0900.pdf<br />

[12] A.K.Geim1andK.S.Novoselov1,“Theriseofgraphene”,NatureMaterials,6,2007,at<br />

http://www.nature.com/nmat/journal/v6/n3/full/nmat1849.html<br />

[13] IlanGreenberg,“TransistorTechnologyTakesaQuantumLeap”,WiredNews,December<br />

8,1997,at http://www.wired.com/news/technology/0,1282,8994,00.html<br />

[14] R. Colin Johnson, “Spintronics approach advances toward live chips,” EE Times,<br />

11/06/2006,at http://www.eetimes.com/showArticle.jhtml?articleID=193500309<br />

[15] R.ColinJohnson“U.ofDelawareresearchersedgeclosertospintronics,”EETimes,<br />

07/26/2007,at http://www.eetimes.com/news/design/showArticle.jhtml?articleID=201201400<br />

[16] R.ColinJohnson,“Canmetal-insulatorelectronicsdoitbetter,sanssemiconductors?”<br />

http://www.eetimes.com/showArticle.jhtml?articleID=201200024<br />

[17] Tony R. Kuphaldt, “<strong>Lessons</strong> in <strong>Electric</strong>ity”, Reference, Vol. 5, Ch 7, 2007 at<br />

http://www.ibiblio.org/obp/electric<strong>Circuits</strong>/Ref/spice.html<br />

[18] Tom Lee, “Is nonvolatile MRAM right for your consumer embedded<br />

device application? ”, Freescale Semiconductor at<br />

http://www.acumeninfo.com/subscriber/article/getArticle.jhtml?<br />

articleId=197006965


BIBLIOGRAPHY 95<br />

[19] HyperPhysics, “SQUID Magnetometer”, HyperPhysics at<br />

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html<br />

[20] Phillip F. Schewe, Ben Stein, “A Quantum Tunneling Transistor”,<br />

Physics Nessw Update, Number 357, February 4, 1998, at<br />

http://www.aip.org/pnu/1998/physnews.357.htm<br />

[21] “WhyMIIM?”,PhiarCorporation,at http://www.phiar.com/whyMIIM.php4<br />

[22] “What is Quantum Tunneling?”, Phiar Corporation, at<br />

http://www.phiar.com/whatQuantum.php4<br />

[23] Oxford University, “Theory, Superconductor Synthesis”, Oxford University, 1996, at<br />

http://www.chem.ox.ac.uk/vrchemistry/super/theory.htm<br />

[24] John Walko, “Graphene transistor to rival silicon, say researchers”, EE Times Europe,03/02/2007,at<br />

http://www.eetimes.com/news/design/showArticle.jhtml?<br />

articleID=197700700<br />

[25] Ying-Yu Tzou,“Power Electronics: An <strong>In</strong>troduction”, <strong>In</strong>stitute<br />

of Control Engineering, National Chiao Tung University, at<br />

http://pemclab.cn.nctu.edu.tw/peclub/w3cnotes


96 CHAPTER2. SOLID-STATEDEVICETHEORY


Chapter3<br />

DIODESANDRECTIFIERS<br />

Contents<br />

3.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

3.2 Metercheckofadiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103<br />

3.3 Dioderatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107<br />

3.4 Rectifiercircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108<br />

3.5 Peakdetector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115<br />

3.6 Clippercircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117<br />

3.7 Clampercircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121<br />

3.8 Voltagemultipliers..................................123<br />

3.9 <strong>In</strong>ductorcommutatingcircuits . . . . . . . . . . . . . . . . . . . . . . . . . .130<br />

3.10 Diodeswitchingcircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132<br />

3.10.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132<br />

3.10.2 Analogswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134<br />

3.11 Zenerdiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135<br />

3.12 Special-purposediodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143<br />

3.12.1 Schottkydiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143<br />

3.12.2 Tunneldiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144<br />

3.12.3 Light-emittingdiodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146<br />

3.12.4 Laserdiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150<br />

3.12.5 Photodiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152<br />

3.12.6 Solarcells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154<br />

3.12.7 Varicaporvaractordiodes . . . . . . . . . . . . . . . . . . . . . . . . . . .158<br />

3.12.8 Snapdiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159<br />

3.12.9 PINdiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159<br />

3.12.10IMPATTdiode..................................160<br />

3.12.11Gunndiode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161<br />

3.12.12Shockleydiode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162<br />

3.12.13Constant-currentdiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . .162<br />

97


98 CHAPTER3. DIODESANDRECTIFIERS<br />

3.13 Otherdiodetechnologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163<br />

3.13.1 SiCdiodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163<br />

3.13.2 Polymerdiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163<br />

3.14 SPICEmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171<br />

3.1 <strong>In</strong>troduction<br />

Adiodeisanelectricaldeviceallowingcurrenttomovethroughitinonedirectionwithfar<br />

greatereasethanintheother. Themostcommonkindofdiodeinmoderncircuitdesignis<br />

thesemiconductordiode,althoughotherdiodetechnologiesexist. Semiconductordiodesare<br />

symbolizedinschematicdiagramssuchasFigure3.1.Theterm“diode”iscustomarilyreserved<br />

forsmallsignaldevices,I≤1A.Thetermrectifierisusedforpowerdevices,I>1A.<br />

Figure3.1:Semiconductordiodeschematicsymbol:Arrowsindicatethedirectionofelectron<br />

currentflow.<br />

Whenplacedinasimplebattery-lampcircuit,thediodewilleitheralloworpreventcurrent<br />

throughthelamp,dependingonthepolarityoftheappliedvoltage.(Figure3.2)<br />

+<br />

- +<br />

(a) (b)<br />

Figure3.2: Diodeoperation: (a)Currentflowispermitted;thediodeisforwardbiased. (b)<br />

Currentflowisprohibited;thediodeisreversedbiased.<br />

Whenthepolarityofthebatteryissuchthatelectronsareallowedtoflowthroughthe<br />

diode,thediodeissaidtobeforward-biased.Conversely,whenthebatteryis“backward”and<br />

thediodeblockscurrent,thediodeissaidtobereverse-biased.Adiodemaybethoughtofas<br />

likeaswitch:“closed”whenforward-biasedand“open”whenreverse-biased.<br />

Oddlyenough,thedirectionofthediodesymbol’s“arrowhead”pointsagainstthedirection<br />

ofelectronflow. Thisisbecausethediodesymbolwasinventedbyengineers,whopredominantlyuseconventionalflownotationintheirschematics,showingcurrentasaflowofcharge<br />

fromthepositive(+)sideofthevoltagesourcetothenegative(-).Thisconventionholdstrue<br />

forallsemiconductorsymbolspossessing“arrowheads:”thearrowpointsinthepermitteddirectionofconventionalflow,andagainstthepermitteddirectionofelectronflow.<br />

-


3.1. INTRODUCTION 99<br />

Hydraulic<br />

check valve<br />

+ -<br />

- +<br />

(a) Flow permitted (b) Flow prohibited<br />

Figure3.3: Hydrauliccheckvalveanalogy: (a)Electroncurrentflowpermitted. (b)Current<br />

flowprohibited.<br />

Diodebehaviorisanalogoustothebehaviorofahydraulicdevicecalledacheckvalve. A<br />

checkvalveallowsfluidflowthroughitinonlyonedirectionasinFigure3.3.<br />

Checkvalvesareessentiallypressure-operateddevices: theyopenandallowflowifthe<br />

pressureacrossthemisofthecorrect“polarity”toopenthegate(intheanalogyshown,greater<br />

fluidpressureontherightthanontheleft). Ifthepressureisoftheopposite“polarity,”the<br />

pressuredifferenceacrossthecheckvalvewillcloseandholdthegatesothatnoflowoccurs.<br />

Likecheckvalves,diodesareessentially“pressure-”operated(voltage-operated)devices.<br />

Theessentialdifferencebetweenforward-biasandreverse-biasisthepolarityofthevoltage<br />

droppedacrossthediode. Let’stakeacloserlookatthesimplebattery-diode-lampcircuit<br />

shownearlier,thistimeinvestigatingvoltagedropsacrossthevariouscomponentsinFigure3.4.<br />

+<br />

+<br />

0.7 V<br />

V Ω<br />

A COM<br />

-<br />

5.3 V<br />

A COM<br />

6 V 6 V<br />

- +<br />

(a) (b)<br />

V Ω<br />

Figure3.4:Diodecircuitvoltagemeasurements:(a)Forwardbiased.(b)Reversebiased.<br />

Aforward-biaseddiodeconductscurrentanddropsasmallvoltageacrossit,leavingmost<br />

ofthebatteryvoltagedroppedacrossthelamp.Ifthebattery’spolarityisreversed,thediode<br />

becomesreverse-biased,anddropsallofthebattery’svoltageleavingnoneforthelamp.Ifwe<br />

considerthediodetobeaself-actuatingswitch(closedintheforward-biasmodeandopenin<br />

thereverse-biasmode),thisbehaviormakessense.Themostsubstantialdifferenceisthatthe<br />

diodedropsalotmorevoltagewhenconductingthantheaveragemechanicalswitch(0.7volts<br />

versustensofmillivolts).<br />

-<br />

6.0 V<br />

-<br />

V Ω<br />

A COM<br />

+<br />

0.0 V<br />

V Ω<br />

A COM


100 CHAPTER3. DIODESANDRECTIFIERS<br />

Thisforward-biasvoltagedropexhibitedbythediodeisduetotheactionofthedepletion<br />

regionformedbytheP-Njunctionundertheinfluenceofanappliedvoltage. Ifnovoltage<br />

appliedisacrossasemiconductordiode,athindepletionregionexistsaroundtheregionofthe<br />

P-Njunction,preventingcurrentflow.(Figure3.5(a))Thedepletionregionisalmostdevoidof<br />

availablechargecarriers,andactsasaninsulator:<br />

(a)<br />

(b)<br />

(c)<br />

P-type<br />

material<br />

N-type<br />

material<br />

Depletion region<br />

Anode Cathode<br />

Stripe marks cathode<br />

P-N junction representation<br />

Schematic symbol<br />

Real component appearance<br />

Figure3.5:Dioderepresentations:PN-junctionmodel,schematicsymbol,physicalpart.<br />

TheschematicsymbolofthediodeisshowninFigure3.5(b)suchthattheanode(pointing<br />

end)correspondstotheP-typesemiconductorat(a).Thecathodebar,non-pointingend,at(b)<br />

correspondstotheN-typematerialat(a). Alsonotethatthecathodestripeonthephysical<br />

part(c)correspondstothecathodeonthesymbol.<br />

Ifareverse-biasingvoltageisappliedacrosstheP-Njunction,thisdepletionregionexpands,furtherresistinganycurrentthroughit.(Figure3.6)<br />

-<br />

P N<br />

Reverse-biased Depletion region<br />

Figure3.6:Depletionregionexpandswithreversebias.<br />

Conversely,ifaforward-biasingvoltageisappliedacrosstheP-Njunction,thedepletion<br />

regioncollapsesbecomingthinner.Thediodebecomeslessresistivetocurrentthroughit.<strong>In</strong><br />

+


3.1. INTRODUCTION 101<br />

orderforasustainedcurrenttogothroughthediode;though,thedepletionregionmustbe<br />

fullycollapsedbytheappliedvoltage. Thistakesacertainminimumvoltagetoaccomplish,<br />

calledtheforwardvoltageasillustratedinFigure3.7.<br />

0.4 V 0.7 V<br />

Partial forward-biased Forward-biased<br />

P N P N<br />

(a) Depletion region (b) Depletion region fully collapsed<br />

Figure3.7:<strong>In</strong>ceasingforwardbiasfrom(a)to(b)decreasesdepletionregionthickness.<br />

Forsilicondiodes,thetypicalforwardvoltageis0.7volts,nominal.Forgermaniumdiodes,<br />

theforwardvoltageisonly0.3volts.ThechemicalconstituencyoftheP-Njunctioncomprising<br />

thediodeaccountsforitsnominalforwardvoltagefigure,whichiswhysiliconandgermanium<br />

diodeshavesuchdifferentforwardvoltages. Forwardvoltagedropremainsapproximately<br />

constantforawiderangeofdiodecurrents,meaningthatdiodevoltagedropisnotlikethatofa<br />

resistororevenanormal(closed)switch.Formostsimplifiedcircuitanalysis,thevoltagedrop<br />

acrossaconductingdiodemaybeconsideredconstantatthenominalfigureandnotrelatedto<br />

theamountofcurrent.<br />

Actually,forwardvoltagedropismorecomplex. Anequationdescribestheexactcurrent<br />

throughadiode,giventhevoltagedroppedacrossthejunction,thetemperatureofthejunction,<br />

andseveralphysicalconstants.Itiscommonlyknownasthediodeequation:<br />

I D = I S (e qV D/NkT - 1)<br />

Where,<br />

I D = Diode current in amps<br />

IS = Saturation current in amps<br />

e = Euler’s constant (~ 2.718281828)<br />

q = charge of electron (1.6 x 10 -19 (typically 1 x 10<br />

coulombs)<br />

-12 amps)<br />

V D = Voltage applied across diode in volts<br />

N = "Nonideality" or "emission" coefficient<br />

(typically between 1 and 2)<br />

k = Boltzmann’s constant (1.38 x 10 -23 )<br />

T = Junction temperature in Kelvins


102 CHAPTER3. DIODESANDRECTIFIERS<br />

ThetermkT/qdescribesthevoltageproducedwithintheP-Njunctionduetotheactionof<br />

temperature,andiscalledthethermalvoltage,orVtofthejunction. Atroomtemperature,<br />

thisisabout26millivolts.Knowingthis,andassuminga“nonideality”coefficientof1,wemay<br />

simplifythediodeequationandre-writeitassuch:<br />

ID = IS (e VD/0.026 -1)<br />

Where,<br />

I D = Diode current in amps<br />

IS = Saturation current in amps<br />

(typically 1 x 10<br />

e = Euler’s constant (~ 2.718281828)<br />

-12 amps)<br />

V D = Voltage applied across diode in volts<br />

Youneednotbefamiliarwiththe“diodeequation”toanalyzesimplediodecircuits. Just<br />

understandthatthevoltagedroppedacrossacurrent-conductingdiodedoeschangewiththe<br />

amountofcurrentgoingthroughit,butthatthischangeisfairlysmalloverawiderangeof<br />

currents.Thisiswhymanytextbookssimplysaythevoltagedropacrossaconducting,semiconductordioderemainsconstantat0.7voltsforsiliconand0.3voltsforgermanium.However,<br />

somecircuitsintentionallymakeuseoftheP-Njunction’sinherentexponentialcurrent/voltage<br />

relationshipandthuscanonlybeunderstoodinthecontextofthisequation.Also,sincetemperatureisafactorinthediodeequation,aforward-biasedP-Njunctionmayalsobeusedasa<br />

temperature-sensingdevice,andthuscanonlybeunderstoodifonehasaconceptualgraspon<br />

thismathematicalrelationship.<br />

Areverse-biaseddiodepreventscurrentfromgoingthroughit,duetotheexpandeddepletionregion.<strong>In</strong>actuality,averysmallamountofcurrentcananddoesgothroughareversebiaseddiode,calledtheleakagecurrent,butitcanbeignoredformostpurposes.<br />

Theability<br />

ofadiodetowithstandreverse-biasvoltagesislimited,asitisforanyinsulator. Iftheappliedreverse-biasvoltagebecomestoogreat,thediodewillexperienceaconditionknownas<br />

breakdown(Figure3.8),whichisusuallydestructive.Adiode’smaximumreverse-biasvoltage<br />

ratingisknownasthePeak<strong>In</strong>verseVoltage,orPIV,andmaybeobtainedfromthemanufacturer.<br />

Likeforwardvoltage,thePIVratingofadiodevarieswithtemperature,exceptthat<br />

PIVincreaseswithincreasedtemperatureanddecreasesasthediodebecomescooler–exactly<br />

oppositethatofforwardvoltage.<br />

Typically,thePIVratingofageneric“rectifier”diodeisatleast50voltsatroomtemperature.DiodeswithPIVratingsinthemanythousandsofvoltsareavailableformodestprices.<br />

• REVIEW:<br />

• Adiodeisanelectricalcomponentactingasaone-wayvalveforcurrent.<br />

• Whenvoltageisappliedacrossadiodeinsuchawaythatthediodeallowscurrent,the<br />

diodeissaidtobeforward-biased.<br />

• Whenvoltageisappliedacrossadiodeinsuchawaythatthediodeprohibitscurrent,the<br />

diodeissaidtobereverse-biased.


3.2. METERCHECKOFADIODE 103<br />

reverse-bias<br />

breakdown!<br />

forward<br />

reverse<br />

I D<br />

0.7 V<br />

forward-bias<br />

VD Figure3.8:Diodecurve:showingkneeat0.7VforwardbiasforSi,andreversebreakdown.<br />

• Thevoltagedroppedacrossaconducting,forward-biaseddiodeiscalledtheforwardvoltage.Forwardvoltageforadiodevariesonlyslightlyforchangesinforwardcurrentand<br />

temperature,andisfixedbythechemicalcompositionoftheP-Njunction.<br />

• Silicondiodeshaveaforwardvoltageofapproximately0.7volts.<br />

• Germaniumdiodeshaveaforwardvoltageofapproximately0.3volts.<br />

• Themaximumreverse-biasvoltagethatadiodecanwithstandwithout“breakingdown”<br />

iscalledthePeak<strong>In</strong>verseVoltage,orPIVrating.<br />

3.2 Metercheckofadiode<br />

Beingabletodeterminethepolarity(cathodeversusanode)andbasicfunctionalityofadiode<br />

isaveryimportantskillfortheelectronicshobbyistortechniciantohave. Sinceweknow<br />

thatadiodeisessentiallynothingmorethanaone-wayvalveforelectricity,itmakessense<br />

weshouldbeabletoverifyitsone-waynatureusingaDC(battery-powered)ohmmeterasin<br />

Figure3.9.Connectedonewayacrossthediode,themetershouldshowaverylowresistance<br />

at(a).Connectedtheotherwayacrossthediode,itshouldshowaveryhighresistanceat(b)<br />

(“OL”onsomedigitalmetermodels).<br />

Ofcourse,todeterminewhichendofthediodeisthecathodeandwhichistheanode,you<br />

mustknowwithcertaintywhichtestleadofthemeterispositive(+)andwhichisnegative(-)<br />

whensettothe“resistance”or“Ω”function.WithmostdigitalmultimetersI’veseen,thered<br />

leadbecomespositiveandtheblackleadnegativewhensettomeasureresistance,inaccordancewithstandardelectronicscolor-codeconvention.However,thisisnotguaranteedforall<br />

meters. Manyanalogmultimeters,forexample,actuallymaketheirblackleadspositive(+)


104 CHAPTER3. DIODESANDRECTIFIERS<br />

V A<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

Anode<br />

Cathode<br />

+<br />

V A<br />

V<br />

- A COM<br />

(a) (b)<br />

OFF<br />

A<br />

Cathode<br />

Figure3.9:Determinationofdiodepolarity:(a)Lowresistanceindicatesforwardbias,black<br />

leadiscathodeandredleadanode(formostmeters)(b)Reversingleadsshowshighresistance<br />

indicatingreversebias.<br />

andtheirredleadsnegative(-)whenswitchedtothe“resistance”function,becauseitiseasier<br />

tomanufactureitthatway!<br />

Oneproblemwithusinganohmmetertocheckadiodeisthatthereadingsobtainedonly<br />

havequalitativevalue,notquantitative.<strong>In</strong>otherwords,anohmmeteronlytellsyouwhichway<br />

thediodeconducts;thelow-valueresistanceindicationobtainedwhileconductingisuseless.If<br />

anohmmetershowsavalueof“1.73ohms”whileforward-biasingadiode,thatfigureof1.73<br />

Ωdoesn’trepresentanyreal-worldquantityusefultousastechniciansorcircuitdesigners.<br />

Itneitherrepresentstheforwardvoltagedropnorany“bulk”resistanceinthesemiconductor<br />

materialofthediodeitself,butratherisafiguredependentuponbothquantitiesandwillvary<br />

substantiallywiththeparticularohmmeterusedtotakethereading.<br />

Forthisreason,somedigitalmultimetermanufacturersequiptheirmeterswithaspecial<br />

“diodecheck”functionwhichdisplaystheactualforwardvoltagedropofthediodeinvolts,<br />

ratherthana“resistance”figureinohms. Thesemetersworkbyforcingasmallcurrent<br />

throughthediodeandmeasuringthevoltagedroppedbetweenthetwotestleads.(Figure3.10)<br />

Theforwardvoltagereadingobtainedwithsuchameterwilltypicallybelessthanthe<br />

“normal”dropof0.7voltsforsiliconand0.3voltsforgermanium,becausethecurrentprovided<br />

bythemeterisoftrivialproportions.Ifamultimeterwithdiode-checkfunctionisn’tavailable,<br />

oryouwouldliketomeasureadiode’sforwardvoltagedropatsomenon-trivialcurrent,the<br />

circuitofFigure3.11maybeconstructedusingabattery,resistor,andvoltmeter<br />

Connectingthediodebackwardstothistestingcircuitwillsimplyresultinthevoltmeter<br />

indicatingthefullvoltageofthebattery.<br />

Ifthiscircuitweredesignedtoprovideaconstantornearlyconstantcurrentthroughthe<br />

diodedespitechangesinforwardvoltagedrop,itcouldbeusedasthebasisofatemperaturemeasurementinstrument,thevoltagemeasuredacrossthediodebeinginverselyproportional<br />

todiodejunctiontemperature.Ofcourse,diodecurrentshouldbekepttoaminimumtoavoid<br />

self-heating(thediodedissipatingsubstantialamountsofheatenergy),whichwouldinterfere<br />

withtemperaturemeasurement.<br />

Bewarethatsomedigitalmultimetersequippedwitha“diodecheck”functionmayoutput<br />

averylowtestvoltage(lessthan0.3volts)whensettotheregular“resistance”(Ω)function:<br />

Anode<br />

+<br />

-


3.2. METERCHECKOFADIODE 105<br />

V A<br />

V A<br />

A<br />

OFF<br />

COM<br />

+<br />

-<br />

Anode<br />

Cathode<br />

Figure3.10: Meterwitha“Diodecheck”functiondisplaystheforwardvoltagedropof0.548<br />

voltsinsteadofalowresistance.<br />

+<br />

V<br />

-<br />

V<br />

(a) (b)<br />

V A<br />

A<br />

OFF<br />

COM<br />

A<br />

+ -<br />

Resistor<br />

Battery<br />

Diode<br />

Figure3.11: Measuringforwardvoltageofadiodewithout“diodecheck”meterfunction: (a)<br />

Schematicdiagram.(b)Pictorialdiagram.<br />

+<br />

-


106 CHAPTER3. DIODESANDRECTIFIERS<br />

toolowtofullycollapsethedepletionregionofaPNjunction. Thephilosophyhereisthat<br />

the“diodecheck”functionistobeusedfortestingsemiconductordevices,andthe“resistance”<br />

functionforanythingelse. Byusingaverylowtestvoltagetomeasureresistance,itiseasierforatechniciantomeasuretheresistanceofnon-semiconductorcomponentsconnected<br />

tosemiconductorcomponents,sincethesemiconductorcomponentjunctionswillnotbecome<br />

forward-biasedwithsuchlowvoltages.<br />

Considertheexampleofaresistoranddiodeconnectedinparallel,solderedinplaceon<br />

aprintedcircuitboard(PCB).Normally,onewouldhavetounsoldertheresistorfromthe<br />

circuit(disconnectitfromallothercomponents)beforemeasuringitsresistance,otherwiseany<br />

parallel-connectedcomponentswouldaffectthereadingobtained. Whenusingamultimeter<br />

whichoutputsaverylowtestvoltagetotheprobesinthe“resistance”functionmode,the<br />

diode’sPNjunctionwillnothaveenoughvoltageimpressedacrossittobecomeforward-biased,<br />

andwillonlypassnegligiblecurrent.Consequently,themeter“sees”thediodeasanopen(no<br />

continuity),andonlyregisterstheresistor’sresistance.(Figure3.12)<br />

V A<br />

V A<br />

A<br />

OFF<br />

COM<br />

k<br />

R1<br />

Printed circuit board<br />

Figure3.12:Ohmmeterequippedwithalowtestvoltage(


3.3. DIODERATINGS 107<br />

V A<br />

V A<br />

A<br />

OFF<br />

COM<br />

M<br />

Figure3.13:Ohmmeterequippedwithalowtestvoltage,toolowtoforwardbiasdiodes,does<br />

notseediodes.<br />

whichisnegative!Theactualpolaritymaynotfollowthecolorsoftheleadsasyoumight<br />

expect,dependingontheparticulardesignofmeter.<br />

• Somemultimetersprovidea“diodecheck”functionthatdisplaystheactualforwardvoltageofthediodewhenitsconductingcurrent.<br />

Suchmeterstypicallyindicateaslightly<br />

lowerforwardvoltagethanwhatis“nominal”foradiode,duetotheverysmallamount<br />

ofcurrentusedduringthecheck.<br />

3.3 Dioderatings<br />

<strong>In</strong>additiontoforwardvoltagedrop(Vf)andpeakinversevoltage(PIV),therearemanyother<br />

ratingsofdiodesimportanttocircuitdesignandcomponentselection. Semiconductormanufacturersprovidedetailedspecificationsontheirproducts–diodesincluded–inpublications<br />

knownasdatasheets. Datasheetsforawidevarietyofsemiconductorcomponentsmaybe<br />

foundinreferencebooksandontheinternet. Iprefertheinternetasasourceofcomponent<br />

specificationsbecauseallthedataobtainedfrommanufacturerwebsitesareup-to-date.<br />

Atypicaldiodedatasheetwillcontainfiguresforthefollowingparameters:<br />

Maximumrepetitivereversevoltage=VRRM,themaximumamountofvoltagethediode<br />

canwithstandinreverse-biasmode,inrepeatedpulses.Ideally,thisfigurewouldbeinfinite.<br />

MaximumDCreversevoltage=VRorVDC,themaximumamountofvoltagethediodecan<br />

withstandinreverse-biasmodeonacontinualbasis.Ideally,thisfigurewouldbeinfinite.<br />

Maximumforwardvoltage=VF,usuallyspecifiedatthediode’sratedforwardcurrent.Ideally,thisfigurewouldbezero:thediodeprovidingnooppositionwhatsoevertoforwardcurrent.<br />

<strong>In</strong>reality,theforwardvoltageisdescribedbythe“diodeequation.”<br />

Maximum(average)forwardcurrent=I F(AV ),themaximumaverageamountofcurrent<br />

thediodeisabletoconductinforwardbiasmode.Thisisfundamentallyathermallimitation:<br />

howmuchheatcanthePNjunctionhandle,giventhatdissipationpowerisequaltocurrent(I)<br />

multipliedbyvoltage(VorE)andforwardvoltageisdependentuponbothcurrentandjunction<br />

temperature.Ideally,thisfigurewouldbeinfinite.


108 CHAPTER3. DIODESANDRECTIFIERS<br />

Maximum(peakorsurge)forwardcurrent=IFSMori f(surge),themaximumpeakamount<br />

ofcurrentthediodeisabletoconductinforwardbiasmode.Again,thisratingislimitedbythe<br />

diodejunction’sthermalcapacity,andisusuallymuchhigherthantheaveragecurrentrating<br />

duetothermalinertia(thefactthatittakesafiniteamountoftimeforthediodetoreach<br />

maximumtemperatureforagivencurrent).Ideally,thisfigurewouldbeinfinite.<br />

Maximumtotaldissipation=PD,theamountofpower(inwatts)allowableforthediodeto<br />

dissipate,giventhedissipation(P=IE)ofdiodecurrentmultipliedbydiodevoltagedrop,and<br />

alsothedissipation(P=I 2 R)ofdiodecurrentsquaredmultipliedbybulkresistance. Fundamentallylimitedbythediode’sthermalcapacity(abilitytotoleratehightemperatures).<br />

Operatingjunctiontemperature=TJ,themaximumallowabletemperatureforthediode’s<br />

PNjunction,usuallygivenindegreesCelsius( o C).Heatisthe“Achilles’heel”ofsemiconductor<br />

devices:theymustbekeptcooltofunctionproperlyandgivelongservicelife.<br />

Storagetemperaturerange=TSTG,therangeofallowabletemperaturesforstoringadiode<br />

(unpowered). Sometimesgiveninconjunctionwithoperatingjunctiontemperature(TJ),becausethemaximumstoragetemperatureandthemaximumoperatingtemperatureratings<br />

areoftenidentical.Ifanything,though,maximumstoragetemperatureratingwillbegreater<br />

thanthemaximumoperatingtemperaturerating.<br />

Thermalresistance=R(Θ),thetemperaturedifferencebetweenjunctionandoutsideair<br />

(R(Θ)JA)orbetweenjunctionandleads(R(Θ)JL)foragivenpowerdissipation. Expressedin<br />

unitsofdegreesCelsiusperwatt( o C/W).Ideally,thisfigurewouldbezero,meaningthatthe<br />

diodepackagewasaperfectthermalconductorandradiator,abletotransferallheatenergy<br />

fromthejunctiontotheoutsideair(ortotheleads)withnodifferenceintemperatureacross<br />

thethicknessofthediodepackage.Ahighthermalresistancemeansthatthediodewillbuild<br />

upexcessivetemperatureatthejunction(whereitscritical)despitebesteffortsatcoolingthe<br />

outsideofthediode,andthuswilllimititsmaximumpowerdissipation.<br />

Maximumreversecurrent=IR,theamountofcurrentthroughthediodeinreverse-bias<br />

operation,withthemaximumratedinversevoltageapplied(VDC).Sometimesreferredtoas<br />

leakagecurrent. Ideally,thisfigurewouldbezero,asaperfectdiodewouldblockallcurrent<br />

whenreverse-biased.<strong>In</strong>reality,itisverysmallcomparedtothemaximumforwardcurrent.<br />

Typicaljunctioncapacitance=CJ,thetypicalamountofcapacitanceintrinsictothejunction,duetothedepletionregionactingasadielectricseparatingtheanodeandcathodeconnections.Thisisusuallyaverysmallfigure,measuredintherangeofpicofarads(pF).<br />

Reverserecoverytime=trr,theamountoftimeittakesforadiodeto“turnoff”whenthe<br />

voltageacrossitalternatesfromforward-biastoreverse-biaspolarity.Ideally,thisfigurewould<br />

bezero:thediodehaltingconductionimmediatelyuponpolarityreversal.Foratypicalrectifier<br />

diode,reverserecoverytimeisintherangeoftensofmicroseconds;fora“fastswitching”diode,<br />

itmayonlybeafewnanoseconds.<br />

Mostoftheseparametersvarywithtemperatureorotheroperatingconditions,andsoa<br />

singlefigurefailstofullydescribeanygivenrating.Therefore,manufacturersprovidegraphs<br />

ofcomponentratingsplottedagainstothervariables(suchastemperature),sothatthecircuit<br />

designerhasabetterideaofwhatthedeviceiscapableof.<br />

3.4 Rectifiercircuits


3.4. RECTIFIERCIRCUITS 109<br />

Nowwecometothemostpopularapplicationofthediode: rectification. Simplydefined,<br />

rectificationistheconversionofalternatingcurrent(AC)todirectcurrent(DC).Thisinvolves<br />

adevicethatonlyallowsone-wayflowofelectrons. Aswehaveseen,thisisexactlywhata<br />

semiconductordiodedoes. Thesimplestkindofrectifiercircuitisthehalf-waverectifier. It<br />

onlyallowsonehalfofanACwaveformtopassthroughtotheload.(Figure3.14)<br />

AC<br />

voltage<br />

source<br />

+<br />

-<br />

Load<br />

Figure3.14:Half-waverectifiercircuit.<br />

Formostpowerapplications,half-waverectificationisinsufficientforthetask. Theharmoniccontentoftherectifier’soutputwaveformisverylargeandconsequentlydifficultto<br />

filter. Furthermore,theACpowersourceonlysuppliespowertotheloadonehalfeveryfull<br />

cycle,meaningthathalfofitscapacityisunused. Half-waverectificationis,however,avery<br />

simplewaytoreducepowertoaresistiveload.Sometwo-positionlampdimmerswitchesapplyfullACpowertothelampfilamentfor“full”brightnessandthenhalf-waverectifyitfora<br />

lesserlightoutput.(Figure3.15)<br />

AC<br />

voltage<br />

source<br />

Bright<br />

Dim<br />

Figure3.15:Half-waverectifierapplication:Twolevellampdimmer.<br />

<strong>In</strong>the“Dim”switchposition,theincandescentlampreceivesapproximatelyone-halfthe<br />

poweritwouldnormallyreceiveoperatingonfull-waveAC.Becausethehalf-waverectified<br />

powerpulsesfarmorerapidlythanthefilamenthastimetoheatupandcooldown,thelamp<br />

doesnotblink. <strong>In</strong>stead,itsfilamentmerelyoperatesatalessertemperaturethannormal,<br />

providinglesslightoutput.Thisprincipleof“pulsing”powerrapidlytoaslow-respondingload<br />

devicetocontroltheelectricalpowersenttoitiscommonintheworldofindustrialelectronics.<br />

Sincethecontrollingdevice(thediode,inthiscase)iseitherfullyconductingorfullynonconductingatanygiventime,itdissipateslittleheatenergywhilecontrollingloadpower,making<br />

thismethodofpowercontrolveryenergy-efficient.Thiscircuitisperhapsthecrudestpossible<br />

methodofpulsingpowertoaload,butitsufficesasaproof-of-conceptapplication.<br />

IfweneedtorectifyACpowertoobtainthefulluseofbothhalf-cyclesofthesinewave,<br />

adifferentrectifiercircuitconfigurationmustbeused. Suchacircuitiscalledafull-wave<br />

rectifier.Onekindoffull-waverectifier,calledthecenter-tapdesign,usesatransformerwitha<br />

center-tappedsecondarywindingandtwodiodes,asinFigure3.16.


110 CHAPTER3. DIODESANDRECTIFIERS<br />

AC<br />

voltage<br />

source<br />

+<br />

-<br />

Load<br />

Figure3.16:Full-waverectifier,center-tappeddesign.<br />

Thiscircuit’soperationiseasilyunderstoodonehalf-cycleatatime.Considerthefirsthalfcycle,whenthesourcevoltagepolarityispositive(+)ontopandnegative(-)onbottom.Atthis<br />

time,onlythetopdiodeisconducting;thebottomdiodeisblockingcurrent,andtheload“sees”<br />

thefirsthalfofthesinewave,positiveontopandnegativeonbottom.Onlythetophalfofthe<br />

transformer’ssecondarywindingcarriescurrentduringthishalf-cycleasinFigure3.17.<br />

+<br />

-<br />

+<br />

-<br />

Figure3.17: Full-wavecenter-taprectifier: Tophalfofsecondarywindingconductsduring<br />

positivehalf-cycleofinput,deliveringpositivehalf-cycletoload..<br />

Duringthenexthalf-cycle,theACpolarityreverses.Now,theotherdiodeandtheotherhalf<br />

ofthetransformer’ssecondarywindingcarrycurrentwhiletheportionsofthecircuitformerly<br />

carryingcurrentduringthelasthalf-cyclesitidle.Theloadstill“sees”halfofasinewave,of<br />

thesamepolarityasbefore:positiveontopandnegativeonbottom.(Figure3.18)<br />

-<br />

+<br />

-<br />

+<br />

Figure3.18: Full-wavecenter-taprectifier: Duringnegativeinputhalf-cycle,bottomhalfof<br />

secondarywindingconducts,deliveringapositivehalf-cycletotheload.<br />

Onedisadvantageofthisfull-waverectifierdesignisthenecessityofatransformerwitha<br />

+<br />

-<br />

+<br />

-


3.4. RECTIFIERCIRCUITS 111<br />

center-tappedsecondarywinding.Ifthecircuitinquestionisoneofhighpower,thesizeand<br />

expenseofasuitabletransformerissignificant.Consequently,thecenter-taprectifierdesign<br />

isonlyseeninlow-powerapplications.<br />

Thefull-wavecenter-tappedrectifierpolarityattheloadmaybereversedbychangingthe<br />

directionofthediodes. Furthermore,thereverseddiodescanbeparalleledwithanexisting<br />

positive-outputrectifier. Theresultisdual-polarityfull-wavecenter-tappedrectifierinFigure3.19.<br />

Notethattheconnectivityofthediodesthemselvesisthesameconfigurationasa<br />

bridge.<br />

AC voltage source<br />

Loads<br />

Figure3.19:Dualpolarityfull-wavecentertaprectifier<br />

Another,morepopularfull-waverectifierdesignexists,anditisbuiltaroundafour-diode<br />

bridgeconfiguration.Forobviousreasons,thisdesigniscalledafull-wavebridge.(Figure3.20)<br />

+<br />

-<br />

+<br />

AC<br />

voltage<br />

source +<br />

Load<br />

Figure3.20:Full-wavebridgerectifier.<br />

Currentdirectionsforthefull-wavebridgerectifiercircuitareasshowninFigure3.21for<br />

positivehalf-cycleandFigure3.22fornegativehalf-cyclesoftheACsourcewaveform. Note<br />

thatregardlessofthepolarityoftheinput,thecurrentflowsinthesamedirectionthrough<br />

theload. Thatis,thenegativehalf-cycleofsourceisapositivehalf-cycleattheload. The<br />

currentflowisthroughtwodiodesinseriesforbothpolarities. Thus,twodiodedropsofthe<br />

sourcevoltagearelost(0.7·2=1.4VforSi)inthediodes.Thisisadisadvantagecomparedwith<br />

afull-wavecenter-tapdesign.Thisdisadvantageisonlyaprobleminverylowvoltagepower<br />

supplies.<br />

Rememberingtheproperlayoutofdiodesinafull-wavebridgerectifiercircuitcanoftenbe<br />

frustratingtothenewstudentofelectronics.I’vefoundthatanalternativerepresentationof<br />

thiscircuitiseasierbothtorememberandtocomprehend.It’stheexactsamecircuit,except<br />

alldiodesaredrawninahorizontalattitude,all“pointing”thesamedirection.(Figure3.23)<br />

-<br />

-


112 CHAPTER3. DIODESANDRECTIFIERS<br />

+<br />

-<br />

Figure3.21:Full-wavebridgerectifier:Electronflowforpositivehalf-cycles.<br />

-<br />

+<br />

Figure3.22:Full-wavebridgerectifier:Electronflowfornegativehalf=cycles.<br />

AC<br />

voltage<br />

source +<br />

Load<br />

Figure3.23:AlternativelayoutstyleforFull-wavebridgerectifier.<br />

+<br />

-<br />

+<br />

-<br />

-


3.4. RECTIFIERCIRCUITS 113<br />

Oneadvantageofrememberingthislayoutforabridgerectifiercircuitisthatitexpands<br />

easilyintoapolyphaseversioninFigure3.24.<br />

3-phase<br />

AC source<br />

+<br />

Load<br />

Figure3.24:Three-phasefull-wavebridgerectifiercircuit.<br />

Eachthree-phaselineconnectsbetweenapairofdiodes:onetoroutepowertothepositive<br />

(+)sideoftheload,andtheothertoroutepowertothenegative(-)sideoftheload.Polyphase<br />

systemswithmorethanthreephasesareeasilyaccommodatedintoabridgerectifierscheme.<br />

Takeforinstancethesix-phasebridgerectifiercircuitinFigure3.25.<br />

6-phase<br />

AC source<br />

Figure3.25:Six-phasefull-wavebridgerectifiercircuit.<br />

-<br />

+<br />

Load<br />

WhenpolyphaseACisrectified,thephase-shiftedpulsesoverlapeachothertoproduceaDC<br />

outputthatismuch“smoother”(haslessACcontent)thanthatproducedbytherectificationof<br />

single-phaseAC.Thisisadecidedadvantageinhigh-powerrectifiercircuits,wherethesheer<br />

physicalsizeoffilteringcomponentswouldbeprohibitivebutlow-noiseDCpowermustbe<br />

obtained.ThediagraminFigure3.26showsthefull-waverectificationofthree-phaseAC.<br />

<strong>In</strong>anycaseofrectification–single-phaseorpolyphase–theamountofACvoltagemixed<br />

withtherectifier’sDCoutputiscalledripplevoltage.<strong>In</strong>mostcases,since“pure”DCisthedesiredgoal,ripplevoltageisundesirable.Ifthepowerlevelsarenottoogreat,filteringnetworks<br />

maybeemployedtoreducetheamountofrippleintheoutputvoltage.<br />

-


114 CHAPTER3. DIODESANDRECTIFIERS<br />

1 2 3<br />

TIME<br />

Resultant DC waveform<br />

Figure3.26:Three-phaseACand3-phasefull-waverectifieroutput.<br />

Sometimes,themethodofrectificationisreferredtobycountingthenumberofDC“pulses”<br />

outputforevery360 o ofelectrical“rotation.”Asingle-phase,half-waverectifiercircuit,then,<br />

wouldbecalleda1-pulserectifier,becauseitproducesasinglepulseduringthetimeofone<br />

completecycle(360 o )oftheACwaveform. Asingle-phase,full-waverectifier(regardlessof<br />

design,center-taporbridge)wouldbecalleda2-pulserectifier,becauseitoutputstwopulses<br />

ofDCduringoneACcycle’sworthoftime.Athree-phasefull-waverectifierwouldbecalleda<br />

6-pulseunit.<br />

Modernelectricalengineeringconventionfurtherdescribesthefunctionofarectifiercircuit<br />

byusingathree-fieldnotationofphases,ways,andnumberofpulses. Asingle-phase,halfwaverectifiercircuitisgiventhesomewhatcrypticdesignationof1Ph1W1P(1phase,1way,<br />

1pulse),meaningthattheACsupplyvoltageissingle-phase,thatcurrentoneachphaseof<br />

theACsupplylinesmovesinonlyonedirection(way),andthatthereisasinglepulseofDC<br />

producedforevery360 o ofelectricalrotation. Asingle-phase,full-wave,center-taprectifier<br />

circuitwouldbedesignatedas1Ph1W2Pinthisnotationalsystem:1phase,1wayordirection<br />

ofcurrentineachwindinghalf,and2pulsesoroutputvoltagepercycle.Asingle-phase,fullwave,bridgerectifierwouldbedesignatedas1Ph2W2P:thesameasforthecenter-tapdesign,<br />

exceptcurrentcangobothwaysthroughtheAClinesinsteadofjustoneway.Thethree-phase<br />

bridgerectifiercircuitshownearlierwouldbecalleda3Ph2W6Prectifier.<br />

Isitpossibletoobtainmorepulsesthantwicethenumberofphasesinarectifiercircuit?<br />

Theanswertothisquestionisyes:especiallyinpolyphasecircuits.Throughthecreativeuse<br />

oftransformers,setsoffull-waverectifiersmaybeparalleledinsuchawaythatmorethan<br />

sixpulsesofDCareproducedforthreephasesofAC.A30 o phaseshiftisintroducedfrom<br />

primarytosecondaryofathree-phasetransformerwhenthewindingconfigurationsarenot<br />

ofthesametype. <strong>In</strong>otherwords,atransformerconnectedeitherY-∆or ∆-Ywillexhibit<br />

this30 o phaseshift,whileatransformerconnectedY-Yor ∆-∆willnot. Thisphenomenon<br />

maybeexploitedbyhavingonetransformerconnectedY-Yfeedabridgerectifier,andhave<br />

anothertransformerconnectedY-∆feedasecondbridgerectifier,thenparalleltheDCoutputs<br />

ofbothrectifiers.(Figure3.27)Sincetheripplevoltagewaveformsofthetworectifiers’outputs<br />

arephase-shifted30 o fromoneanother,theirsuperpositionresultsinlessripplethaneither<br />

rectifieroutputconsideredseparately:12pulsesper360 o insteadofjustsix:


3.5. PEAKDETECTOR 115<br />

3-phase<br />

AC input<br />

3Ph2W12P rectifier circuit<br />

Primary<br />

Secondary<br />

Secondary<br />

+<br />

DC<br />

output<br />

-<br />

Figure3.27:Polyphaserectifiercircuit:3-phase2-way12-pulse(3Ph2W12P)<br />

• REVIEW:<br />

• Rectificationistheconversionofalternatingcurrent(AC)todirectcurrent(DC).<br />

• Ahalf-waverectifierisacircuitthatallowsonlyonehalf-cycleoftheACvoltagewaveform<br />

tobeappliedtotheload,resultinginonenon-alternatingpolarityacrossit.Theresulting<br />

DCdeliveredtotheload“pulsates”significantly.<br />

• Afull-waverectifierisacircuitthatconvertsbothhalf-cyclesoftheACvoltagewaveform<br />

toanunbrokenseriesofvoltagepulsesofthesamepolarity.TheresultingDCdelivered<br />

totheloaddoesn’t“pulsate”asmuch.<br />

• Polyphasealternatingcurrent,whenrectified,givesamuch“smoother”DCwaveform<br />

(lessripplevoltage)thanrectifiedsingle-phaseAC.<br />

3.5 Peakdetector<br />

ApeakdetectorisaseriesconnectionofadiodeandacapacitoroutputtingaDCvoltageequal<br />

tothepeakvalueoftheappliedACsignal. ThecircuitisshowninFigure3.28withthecorrespondingSPICEnetlist.<br />

AnACvoltagesourceappliedtothepeakdetector,chargesthe<br />

capacitortothepeakoftheinput. Thediodeconductspositive“halfcycles,”chargingthecapacitortothewaveformpeak.<br />

WhentheinputwaveformfallsbelowtheDC“peak”stored<br />

onthecapacitor,thediodeisreversebiased,blockingcurrentflowfromcapacitorbacktothe<br />

source.Thus,thecapacitorretainsthepeakvalueevenasthewaveformdropstozero.Another<br />

viewofthepeakdetectoristhatitisthesameasahalf-waverectifierwithafiltercapacitor<br />

addedtotheoutput.<br />

IttakesafewcyclesforthecapacitortochargetothepeakasinFigure3.29duetothe<br />

seriesresistance(RC“timeconstant”).Whydoesthecapacitornotchargeallthewayto5V?


116 CHAPTER3. DIODESANDRECTIFIERS<br />

1<br />

1.0kΩ<br />

5 V p-p<br />

0 V offset<br />

1 kHz<br />

0<br />

3<br />

V(2)<br />

output<br />

2<br />

0.1uF<br />

*SPICE 03441.eps<br />

C1 2 0 0.1u<br />

R1 1 3 1.0k<br />

V1 1 0 SIN(0 5 1k)<br />

D1 3 2 diode<br />

.model diode d<br />

.tran 0.01m 50mm<br />

.end<br />

Figure3.28: Peakdetector: Diodeconductsonpositivehalfcycleschargingcapacitortothe<br />

peakvoltage(lessdiodeforwarddrop).<br />

Itwouldchargeto5Vifan“idealdiode”wereobtainable. However,thesilicondiodehasa<br />

forwardvoltagedropof0.7Vwhichsubtractsfromthe5Vpeakoftheinput.<br />

Figure3.29:Peakdetector:Capacitorchargestopeakwithinafewcycles.<br />

ThecircuitinFigure3.28couldrepresentaDCpowersupplybasedonahalf-waverectifier.<br />

TheresistancewouldbeafewOhmsinsteadof1kΩduetoatransformersecondarywinding<br />

replacingthevoltagesourceandresistor. Alarger“filter”capacitorwouldbeused. Apower<br />

supplybasedona60Hzsourcewithafilterofafewhundred µFcouldsupplyupto100mA.<br />

Half-wavesuppliesseldomsupplymoreduetothedifficultyoffilteringahalf-wave.<br />

Thepeakdetectormaybecombinedwithothercomponentstobuildacrystalradio(page<br />

424).


3.6. CLIPPERCIRCUITS 117<br />

3.6 Clippercircuits<br />

Acircuitwhichremovesthepeakofawaveformisknownasaclipper. Anegativeclipperis<br />

showninFigure3.30.ThisschematicdiagramwasproducedwithXcircuitschematiccapture<br />

program.XcircuitproducedtheSPICEnetlistFigure3.30,exceptforthesecond,andnextto<br />

lastpairoflineswhichwereinsertedwithatexteditor.<br />

1 2<br />

0<br />

5 V p<br />

0 V offset<br />

1 kHz<br />

1.0kΩ<br />

V(2)<br />

output<br />

*SPICE 03437.eps<br />

* A K ModelName<br />

D1 0 2 diode<br />

R1 2 1 1.0k<br />

V1 1 0 SIN(0 5 1k)<br />

.model diode d<br />

.tran .05m 3m<br />

.end<br />

Figure3.30:Clipper:clipsnegativepeakat-0.7V.<br />

Duringthepositivehalfcycleofthe5Vpeakinput,thediodeisreversedbiased.Thediode<br />

doesnotconduct. Itisasifthediodewerenotthere. Thepositivehalfcycleisunchanged<br />

attheoutputV(2)inFigure3.31.Sincetheoutputpositivepeaksactuallyoverlaystheinput<br />

sinewaveV(1),theinputhasbeenshiftedupwardintheplotforclarity.<strong>In</strong>Nutmeg,theSPICE<br />

displaymodule,thecommand“plotv(1)+1)”accomplishesthis.<br />

Figure3.31:V(1)+1isactuallyV(1),a10Vptpsinewave,offsetby1Vfordisplayclarity.V(2)<br />

outputisclippedat-0.7V,bydiodeD1.<br />

DuringthenegativehalfcycleofsinewaveinputofFigure3.31,thediodeisforwardbiased,


118 CHAPTER3. DIODESANDRECTIFIERS<br />

thatis,conducting.Thenegativehalfcycleofthesinewaveisshortedout.Thenegativehalf<br />

cycleofV(2)wouldbeclippedat0Vforanidealdiode. Thewaveformisclippedat-0.7V<br />

duetotheforwardvoltagedropofthesilicondiode.Thespicemodeldefaultsto0.7Vunless<br />

parametersinthemodelstatementspecifyotherwise.GermaniumorSchottkydiodesclipat<br />

lowervoltages.<br />

Closerexaminationofthenegativeclippedpeak(Figure3.31)revealsthatitfollowsthe<br />

inputforaslightperiodoftimewhilethesinewaveismovingtoward-0.7V.Theclipping<br />

actionisonlyeffectiveaftertheinputsinewaveexceeds-0.7V.Thediodeisnotconductingfor<br />

thecompletehalfcycle,though,duringmostofit.<br />

Theadditionofananti-paralleldiodetotheexistingdiodeinFigure3.30yieldsthesymmetricalclipperinFigure3.32.<br />

1 2<br />

0<br />

5 V p<br />

0 V offset<br />

1 kHz<br />

1.0kΩ<br />

D2 D1<br />

*SPICE 03438.eps<br />

D1 0 2 diode<br />

D2 2 0 diode<br />

R1 2 1 1.0k<br />

V1 1 0 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.05m 3m<br />

.end<br />

Figure3.32: Symmetricalclipper: Anti-paralleldiodesclipbothpositiveandnegativepeak,<br />

leavinga±0.7Voutput.<br />

DiodeD1clipsthenegativepeakat-0.7Vasbefore.TheadditionaldiodeD2conductsfor<br />

positivehalfcyclesofthesinewaveasitexceeds0.7V,theforwarddiodedrop.Theremainder<br />

ofthevoltagedropsacrosstheseriesresistor. Thus,bothpeaksoftheinputsinewaveare<br />

clippedinFigure3.33.ThenetlistisinFigure3.32<br />

ThemostgeneralformofthediodeclipperisshowninFigure3.34.Foranidealdiode,the<br />

clippingoccursattheleveloftheclippingvoltage,V1andV2. However,thevoltagesources<br />

havebeenadjustedtoaccountforthe0.7Vforwarddropoftherealsilicondiodes. D1clips<br />

at1.3V+0.7V=2.0Vwhenthediodebeginstoconduct.D2clipsat-2.3V-0.7V=-3.0VwhenD2<br />

conducts.<br />

TheclipperinFigure3.34doesnothavetoclipbothlevels. Toclipatonelevelwithone<br />

diodeandonevoltagesource,removetheotherdiodeandsource.<br />

ThenetlistisinFigure3.34. ThewaveformsinFigure3.35showtheclippingofv(1)at<br />

outputv(2).<br />

Thereisalsoazenerdiodeclippercircuitinthe“Zenerdiode”section.Azenerdiodereplaces<br />

boththediodeandtheDCvoltagesource.<br />

Apracticalapplicationofaclipperistopreventanamplifiedspeechsignalfromoverdriving<br />

aradiotransmitterinFigure3.36. Overdrivingthetransmittergeneratesspuriousradio<br />

signalswhichcausesinterferencewithotherstations.Theclipperisaprotectivemeasure.<br />

Asinewavemaybesquaredupbyoverdrivingaclipper.Anotherclipperapplicationisthe<br />

protectionofexposedinputsofintegratedcircuits.TheinputoftheICisconnectedtoapairof<br />

diodesasatnode“2”ofFigure??.Thevoltagesourcesarereplacedbythepowersupplyrails


3.6. CLIPPERCIRCUITS 119<br />

Figure3.33: DiodeD1clipsat-0.7Vasitconductsduringnegativepeaks. D2conductsfor<br />

positivepeaks,clippingat0.7V.<br />

1 2<br />

0<br />

V3<br />

5Vp 0Voffset 1kHz<br />

1.0 kΩ<br />

D1<br />

V2<br />

D2<br />

3<br />

V1<br />

+<br />

− 1.3V<br />

4<br />

V2<br />

+<br />

− -2.3V<br />

*SPICE 03439.eps<br />

V1 3 0 1.3<br />

V2 4 0 -2.3<br />

D1 2 3 diode<br />

D2 4 2 diode<br />

R1 2 1 1.0k<br />

V3 1 0 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.05m 3m<br />

.end<br />

Figure3.34:D1clipstheinputsinewaveat2V.D2clipsat-3V.


120 CHAPTER3. DIODESANDRECTIFIERS<br />

Figure3.35:D1clipsthesinewaveat2V.D2clipsat-3V.<br />

preamp<br />

microphone<br />

clipper<br />

transmitter<br />

Figure3.36:Clipperpreventsoverdrivingradiotransmitterbyvoicepeaks.


3.7. CLAMPERCIRCUITS 121<br />

oftheIC.Forexample,CMOSIC’suse0Vand+5V.Analogamplifiersmightuse ±12Vforthe<br />

V1andV2sources.<br />

• REVIEW<br />

• AresistoranddiodedrivenbyanACvoltagesourceclipsthesignalobservedacrossthe<br />

diode.<br />

• Apairofanti-parallelSidiodesclipsymmetricallyat ±0.7V<br />

• Thegroundedendofaclipperdiode(s)canbedisconnectedandwiredtoaDCvoltageto<br />

clipatanarbitrarylevel.<br />

• Aclippercanserveasaprotectivemeasure,preventingasignalfromexceedingtheclip<br />

limits.<br />

3.7 Clampercircuits<br />

ThecircuitsinFigure3.37areknownasclampersorDCrestorers.Thecorrespondingnetlist<br />

isinFigure3.38. ThesecircuitsclampapeakofawaveformtoaspecificDClevelcompared<br />

withacapacitivelycoupledsignalwhichswingsaboutitsaverageDClevel(usually0V).Ifthe<br />

diodeisremovedfromtheclamper,itdefaultstoasimplecouplingcapacitor–noclamping.<br />

Whatistheclampvoltage? And,whichpeakgetsclamped? <strong>In</strong>Figure3.37(a)theclamp<br />

voltageis0Vignoringdiodedrop,(moreexactly0.7VwithSidiodedrop).<strong>In</strong>Figure3.38,the<br />

positivepeakofV(1)isclampedtothe0V(0.7V)clamplevel.Whyisthis?Onthefirstpositive<br />

halfcycle,thediodeconductschargingthecapacitorleftendto+5V(4.3V).Thisis-5V(-4.3<br />

V)ontherightendatV(1,4).NotethepolaritymarkedonthecapacitorinFigure3.37(a).The<br />

rightendofthecapacitoris-5VDC(-4.3V)withrespecttoground.ItalsohasanAC5Vpeak<br />

sinewavecoupledacrossitfromsourceV(4)tonode1.Thesumofthetwoisa5Vpeaksine<br />

ridingona-5VDC(-4.3V)level.Thediodeonlyconductsonsuccessivepositiveexcursions<br />

ofsourceV(4)ifthepeakV(4)exceedsthechargeonthecapacitor. Thisonlyhappensifthe<br />

chargeonthecapacitordrainedoffduetoaload,notshown. Thechargeonthecapacitoris<br />

equaltothepositivepeakofV(4)(less0.7diodedrop). TheACridingonthenegativeend,<br />

rightend,isshifteddown.Thepositivepeakofthewaveformisclampedto0V(0.7V)because<br />

thediodeconductsonthepositivepeak.<br />

SupposethepolarityofthediodeisreversedasinFigure3.37(b)?Thediodeconductson<br />

thenegativepeakofsourceV(4). Thenegativepeakisclampedto0V(-0.7V).SeeV(2)in<br />

Figure3.38.<br />

ThemostgeneralrealizationoftheclamperisshowninFigure3.37(c)withthediode<br />

connectedtoaDCreference.Thecapacitorstillchargesduringthenegativepeakofthesource.<br />

NotethatthepolaritiesoftheACsourceandtheDCreferenceareseriesaiding. Thus,the<br />

capacitorchargestothesumtothetwo,10VDC(9.3V).Couplingthe5Vpeaksinewave<br />

acrossthecapacitoryieldsFigure3.38V(3),thesumofthechargeonthecapacitorandthe<br />

sinewave. Thenegativepeakappearstobeclampedto5VDC(4.3V),thevalueoftheDC<br />

clampreference(lessdiodedrop).<br />

DescribethewaveformiftheDCclampreferenceischangedfrom5Vto10V.Theclamped<br />

waveformwillshiftup. Thenegativepeakwillbeclampedto10V(9.3). Supposethatthe


122 CHAPTER3. DIODESANDRECTIFIERS<br />

1000pF<br />

4 + - 1<br />

+<br />

-<br />

5 V peak<br />

0 V offset<br />

1 kHz 0<br />

-4.3 V DC<br />

1000pF<br />

4 2 4 1000pF<br />

3<br />

-<br />

- +<br />

4.3 VDC -<br />

- +<br />

+ 0<br />

+<br />

(a) (b) (c)<br />

0<br />

9.3 V DC<br />

Figure3.37:Clampers:(a)Positivepeakclampedto0V.(b)Negativepeakclampedto0V.(c)<br />

Negativepeakclampedto5V.<br />

+ −5V<br />

*SPICE 03443.eps<br />

V1 6 0 5<br />

D1 6 3 diode<br />

C1 4 3 1000p<br />

D2 0 2 diode<br />

C2 4 2 1000p<br />

C3 4 1 1000p<br />

D3 1 0 diode<br />

V2 4 0 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.01m 5m<br />

.end<br />

Figure3.38: V(4)sourcevoltage5Vpeakusedinallclampers. V(1)clamperoutputfrom<br />

Figure3.37(a).V(1,4)DCvoltageoncapacitorinFigure(a).V(2)clamperoutputfromFigure<br />

(b).V(3)clamperoutputfromFigure(c).


3.8. VOLTAGEMULTIPLIERS 123<br />

amplitudeofthesinewavesourceisincreasedfrom5Vto7V?Thenegativepeakclamplevel<br />

willremainunchanged.Though,theamplitudeofthesinewaveoutputwillincrease.<br />

Anapplicationoftheclampercircuitisasa“DCrestorer”in“compositevideo”circuitryin<br />

bothtelevisiontransmittersandreceivers.AnNTSC(USvideostandard)videosignal“white<br />

level”correspondstominimum(12.5%)transmittedpower.Thevideo“blacklevel”corresponds<br />

toahighlevel(75%oftransmitterpower.Thereisa“blackerthanblacklevel”correspondingto<br />

100%transmittedpowerassignedtosynchronizationsignals.TheNTSCsignalcontainsboth<br />

videoandsynchronizationpulses. Theproblemwiththecompositevideoisthatitsaverage<br />

DClevelvarieswiththescene,darkvslight. Thevideoitselfissupposedtovary. However,<br />

thesyncmustalwayspeakat100%.Topreventthesyncsignalsfromdriftingwithchanging<br />

scenes,a“DCrestorer”clampsthetopofthesyncpulsestoavoltagecorrespondingto100%<br />

transmittermodulation.[2]<br />

• REVIEW:<br />

• AcapacitivelycoupledsignalalternatesaboutitsaverageDClevel(0V).<br />

• ThesignaloutofaclamperappearsthehaveonepeakclampedtoaDCvoltage.Example:<br />

Thenegativepeakisclampedto0VDC,thewaveformappearstobeshiftedupward.The<br />

polarityofthediodedetermineswhichpeakisclamped.<br />

• Anapplicationofaclamper,orDCrestorer,isinclampingthesyncpulsesofcomposite<br />

videotoavoltagecorrespondingto100%oftransmitterpower.<br />

3.8 Voltagemultipliers<br />

Avoltagemultiplierisaspecializedrectifiercircuitproducinganoutputwhichistheoretically<br />

anintegertimestheACpeakinput,forexample,2,3,or4timestheACpeakinput. Thus,<br />

itispossibletoget200VDCfroma100VpeakACsourceusingadoubler,400VDCfroma<br />

quadrupler.Anyloadinapracticalcircuitwilllowerthesevoltages.<br />

AvoltagedoublerapplicationisaDCpowersupplycapableofusingeithera240VACor120<br />

VACsource.Thesupplyusesaswitchselectedfull-wavebridgetoproduceabout300VDCfrom<br />

a240VACsource.The120Vpositionoftheswitchrewiresthebridgeasadoublerproducing<br />

about300VDCfromthe120VAC.<strong>In</strong>bothcases,300VDCisproduced.Thisistheinputtoa<br />

switchingregulatorproducinglowervoltagesforpowering,say,apersonalcomputer.<br />

Thehalf-wavevoltagedoublerinFigure3.39(a)iscomposedoftwocircuits:aclamperat<br />

(b)andpeakdetector(half-waverectifier)inFigure3.28,whichisshowninmodifiedformin<br />

Figure3.39(c).C2hasbeenaddedtoapeakdetector(half-waverectifier).<br />

ReferringtoFigure3.39(b),C2chargesto5V(4.3Vconsideringthediodedrop)onthe<br />

negativehalfcycleofACinput.TherightendisgroundedbytheconductingD2.Theleftend<br />

ischargedatthenegativepeakoftheACinput.Thisistheoperationoftheclamper.<br />

Duringthepositivehalfcycle,thehalf-waverectifiercomesintoplayatFigure3.39(c).<br />

DiodeD2isoutofthecircuitsinceitisreversebiased. C2isnowinserieswiththevoltage<br />

source.NotethepolaritiesofthegeneratorandC2,seriesaiding.Thus,rectifierD1seesatotal<br />

of10Vatthepeakofthesinewave,5Vfromgeneratorand5VfromC2.D1conductswaveform<br />

v(1)(Figure3.40),chargingC1tothepeakofthesinewaveridingon5VDC(Figure3.40v(2)).


124 CHAPTER3. DIODESANDRECTIFIERS<br />

1000pF<br />

4 1<br />

5V p-p<br />

0V offset<br />

1kHz 0<br />

(a)<br />

C2 D2<br />

D1<br />

1000pF<br />

2<br />

C1<br />

-<br />

+<br />

5 V<br />

-<br />

+<br />

C2<br />

D2<br />

+<br />

-<br />

-<br />

5 V<br />

5 V<br />

(b) (c)<br />

C2<br />

+<br />

D1 C1<br />

Figure3.39: Half-wavevoltagedoubler(a)iscomposedof(b)aclamperand(c)ahalf-wave<br />

rectifier.<br />

Waveformv(2)istheoutputofthedoubler,whichstabilizesat10V(8.6Vwithdiodedrops)<br />

afterafewcyclesofsinewaveinput.<br />

10V<br />

+<br />

-<br />

*SPICE 03255.eps<br />

C1 2 0 1000p<br />

D1 1 2 diode<br />

C2 4 1 1000p<br />

D2 0 1 diode<br />

V1 4 0 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.01m 5m<br />

.end<br />

Figure3.40: Voltagedoubler: v(4)input. v(1)clamperstage. v(2)half-waverectifierstage,<br />

whichisthedoubleroutput.<br />

Thefull-wavevoltagedoubleriscomposedofapairofseriesstackedhalf-waverectifiers.<br />

(Figure3.41)ThecorrespondingnetlistisinFigure3.41. ThebottomrectifierchargesC1on<br />

thenegativehalfcycleofinput. ThetoprectifierchargesC2onthepositivehalfcycle. Each<br />

capacitortakesonachargeof5V(4.3Vconsideringdiodedrop).Theoutputatnode5isthe<br />

seriestotalofC1+C2or10V(8.6Vwithdiodedrops).<br />

Notethattheoutputv(5)Figure3.42reachesfullvaluewithinonecycleoftheinputv(2)<br />

excursion.<br />

Figure3.43illustratesthederivationofthefull-wavedoublerfromapairofoppositepolarityhalf-waverectifiers(a).<br />

Thenegativerectifierofthepairisredrawnforclarity(b). Both<br />

arecombinedat(c)sharingthesameground.At(d)thenegativerectifierisre-wiredtoshare


3.8. VOLTAGEMULTIPLIERS 125<br />

2<br />

5Vp-p 0Voffset 1kHz<br />

D2<br />

D1<br />

C2<br />

C1<br />

5<br />

1000pF<br />

3<br />

1000pF<br />

0<br />

*SPICE 03273.eps<br />

*R1 3 0 100k<br />

*R2 5 3 100k<br />

D1 0 2 diode<br />

D2 2 5 diode<br />

C1 3 0 1000p<br />

C2 5 3 1000p<br />

V1 2 3 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.01m 5m<br />

.end<br />

Figure3.41:Full-wavevoltagedoublerconsistsoftwohalf-waverectifiersoperatingonalternatingpolarities.<br />

Figure3.42: Full-wavevoltagedoubler: v(2)input,v(3)voltageatmidpoint,v(5)voltageat<br />

output


126 CHAPTER3. DIODESANDRECTIFIERS<br />

onevoltagesourcewiththepositiverectifier.Thisyieldsa±5V(4.3Vwithdiodedrop)power<br />

supply;though,10Vismeasurablebetweenthetwooutputs. Thegroundreferencepointis<br />

movedsothat+10Visavailablewithrespecttoground.<br />

+5V<br />

-5V<br />

+5V +5V +5V<br />

-5V<br />

(a) (b) (c) (d) (e)<br />

-5V<br />

Figure3.43:Full-wavedoubler:(a)Pairofdoublers,(b)redrawn,(c)sharingtheground,(d)<br />

sharethesamevoltagesource.(e)movethegroundpoint.<br />

Avoltagetripler(Figure3.44)isbuiltfromacombinationofadoublerandahalfwave<br />

rectifier(C3,D3).Thehalf-waverectifierproduces5V(4.3V)atnode3.Thedoublerprovides<br />

another10V(8.4V)betweennodes2and3.foratotalof15V(12.9V)attheoutputnode2<br />

withrespecttoground.ThenetlistisinFigure3.45.<br />

1000pF<br />

4 1<br />

5Vp-p 0Voffset 1kHz Doubler 3<br />

(a)<br />

C2 D2<br />

D1<br />

Single stage rectifier<br />

1000pF<br />

1000pF<br />

D3 0<br />

Figure3.44:Voltagetriplercomposedofdoublerstackedatopasinglestagerectifier.<br />

NotethatV(3)inFigure3.45risesto5V(4.3V)onthefirstnegativehalfcycle.<strong>In</strong>putv(4)<br />

isshiftedupwardby5V(4.3V)dueto5Vfromthehalf-waverectifier.And5Vmoreatv(1)<br />

duetotheclamper(C2,D2).D1chargesC1(waveformv(2))tothepeakvalueofv(1).<br />

AvoltagequadruplerisastackedcombinationoftwodoublersshowninFigure3.46.Each<br />

doublerprovides10V(8.6V)foraseriestotalatnode2withrespecttogroundof20V(17.2<br />

V).ThenetlistisinFigure3.47.<br />

ThewaveformsofthequadruplerareshowninFigure3.47.TwoDCoutputsareavailable:<br />

v(3),thedoubleroutput,andv(2)thequadrupleroutput. Someoftheintermediatevoltages<br />

2<br />

C1<br />

C3<br />

-5V<br />

10V<br />

5V<br />

15V<br />

+10V<br />

+<br />

-<br />

+5V<br />

+<br />

-


3.8. VOLTAGEMULTIPLIERS 127<br />

*SPICE 03283.eps<br />

C3 3 0 1000p<br />

D3 0 4 diode<br />

C1 2 3 1000p<br />

D1 1 2 diode<br />

C2 4 1 1000p<br />

D2 3 1 diode<br />

V1 4 3 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.01m 5m<br />

.end<br />

Figure3.45: Voltagetripler: v(3)half-waverectifier,v(4)input+5V,v(1)clamper,v(2)final<br />

output.<br />

1000pF<br />

4 1<br />

5V p-p<br />

0V offset<br />

1kHz<br />

C2<br />

doubler 1<br />

doubler 2<br />

1000pF<br />

C22<br />

D2<br />

D22<br />

5<br />

D11<br />

D1<br />

1000pF<br />

3<br />

1000pF<br />

Figure3.46: Voltagequadrupler,composedoftwodoublersstackedinseries,withoutputat<br />

node2.<br />

2<br />

C1<br />

C11<br />

0<br />

10V<br />

10V<br />

20V


128 CHAPTER3. DIODESANDRECTIFIERS<br />

atclampersillustratethattheinputsinewave(notshown),whichswingsby¡plusminus)¿5V,<br />

issuccessivelyclampedathigherlevels:atv(5),v(4)andv(1). Strictlyv(4)isnotaclamper<br />

output.ItissimplytheACvoltagesourceinserieswiththev(3)thedoubleroutput.Nonethe<br />

less,v(1)isaclampedversionofv(4)<br />

*SPICE 03441.eps<br />

*SPICE 03286.eps<br />

C22 4 5 1000p<br />

C11 3 0 1000p<br />

D11 0 5 diode<br />

D22 5 3 diode<br />

C1 2 3 1000p<br />

D1 1 2 diode<br />

C2 4 1 1000p<br />

D2 3 1 diode<br />

V1 4 3 SIN(0 5 1k)<br />

.model diode d<br />

.tran 0.01m 5m<br />

.end<br />

Figure3.47: Voltagequadrupler: DCvoltageavailableatv(3)andv(2). <strong>In</strong>termediatewaveforms:Clampers:v(5),v(4),v(1).<br />

Somenotesonvoltagemultipliersareinorderatthispoint. Thecircuitparametersused<br />

intheexamples(V=5V1kHz,C=1000pf)donotprovidemuchcurrent,microamps.Furthermore,loadresistorshavebeenomitted.Loadingreducesthevoltagesfromthoseshown.Ifthe<br />

circuitsaretobedrivenbyakHzsourceatlowvoltage,asintheexamples,thecapacitorsare<br />

usually0.1to1.0 µFsothatmilliampsofcurrentareavailableattheoutput.Ifthemultipliers<br />

aredrivenfrom50/60Hz,thecapacitorareafewhundredtoafewthousandmicrofaradsto<br />

providehundredsofmilliampsofoutputcurrent.Ifdrivenfromlinevoltage,payattentionto<br />

thepolarityandvoltageratingsofthecapacitors.<br />

Finally,anydirectlinedrivenpowersupply(notransformer)isdangeroustotheexperimenterandlineoperatedtestequipment.Commercialdirectdrivensuppliesaresafebecausethehazardouscircuitryisinanenclosuretoprotecttheuser.Whenbreadboardingthesecircuitswithelectrolyticcapacitorsofanyvoltage,thecapacitorswillexplodeifthepolarityis<br />

reversed.Suchcircuitsshouldbepoweredupbehindasafetyshield.<br />

Avoltagemultiplierofcascadedhalf-wavedoublersofarbitrarylengthisknownasa<br />

Cockcroft-Walton multiplierasshowninFigure3.48. Thismultiplierisusedwhenahigh<br />

voltageatlowcurrentisrequired.Theadvantageoveraconventionalsupplyisthatanexpensivehighvoltagetransformerisnotrequired–atleastnotashighastheoutput.<br />

Thepairofdiodesandcapacitorstotheleftofnodes1and2inFigure3.48constitutea<br />

half-wavedoubler. Rotatingthediodesby45 o counterclockwise,andthebottomcapacitorby<br />

90 o makesitlooklikeFigure3.39(a).Fourofthedoublersectionsarecascadedtotherightfor


3.8. VOLTAGEMULTIPLIERS 129<br />

1000pF<br />

99 1<br />

1000pF<br />

3<br />

5Vp-p 0Voffset 1kHz<br />

2<br />

1000pF<br />

1000pF<br />

1000pF<br />

1000pF<br />

5 7<br />

4 6 8<br />

1000pF<br />

1000pF<br />

Figure3.48:Cockcroft-Waltonx8voltagemultiplier;outputatv(8).<br />

atheoreticalx8multiplicationfactor.Node1hasaclamperwaveform(notshown),asinewave<br />

shiftedupby1x(5V).Theotheroddnumberednodesaresinewavesclampedtosuccessively<br />

highervoltages.Node2,theoutputofthefirstdoubler,isa2xDCvoltagev(2)inFigure3.49.<br />

Successiveevennumberednodeschargetosuccessivelyhighervoltages:v(4),v(6),v(8)<br />

Figure3.49:Cockcroft-Walton(x8)waveforms.Outputisv(8).<br />

D1 7 8 diode<br />

C1 8 6 1000p<br />

D2 6 7 diode<br />

C2 5 7 1000p<br />

D3 5 6 diode<br />

C3 4 6 1000p<br />

D4 4 5 diode<br />

C4 3 5 1000p<br />

D5 3 4 diode<br />

C5 2 4 1000p<br />

D6 2 3 diode<br />

D7 1 2 diode<br />

C6 1 3 1000p<br />

C7 2 0 1000p<br />

C8 99 1 1000p<br />

D8 0 1 diode<br />

V1 99 0 SIN(0 5<br />

1k)<br />

.model diode d<br />

.tran 0.01m 50m<br />

.end<br />

Withoutdiodedrops,eachdoubleryields2Vinor10V,consideringtwodiodedrops(10-<br />

1.4)=8.6Visrealistic.Foratotalof4doublersoneexpects4·8.6=34.4Voutof40V.Consulting<br />

Figure3.49,v(2)isaboutright;however,v(8)is


130 CHAPTER3. DIODESANDRECTIFIERS<br />

paredwith5msforpreviouscircuits.Itrequired40msecforthevoltagestorisetoaterminal<br />

valueforthiscircuit.ThenetlistinFigure3.49hasa“.tran0.010m50m”commandtoextend<br />

thesimulationtimeto50msec;though,only40msecisplotted.<br />

TheCockcroft-Waltonmultiplierservesasamoreefficienthighvoltagesourceforphotomultipliertubesrequiringupto2000V.[3]Moreover,thetubehasnumerousdynodes,terminalsrequiringconnectiontothelowervoltage“evennumbered”nodes.Theseriesstringof<br />

multipliertapsreplacesaheatgeneratingresistivevoltagedividerofpreviousdesigns.<br />

AnAClineoperatedCockcroft-Waltonmultiplierprovideshighvoltageto“iongenerators”<br />

forneutralizingelectrostaticchargeandforairpurifiers.<br />

• REVIEW:<br />

• AvoltagemultiplierproducesaDCmultiple(2,3,4,etc)oftheACpeakinputvoltage.<br />

• Themostbasicmultiplierisahalf-wavedoubler.<br />

• Thefull-wavedoubleisasuperiorcircuitasadoubler.<br />

• Atriplerisahalf-wavedoublerandaconventionalrectifierstage(peakdetector).<br />

• Aquadruplerisapairofhalf-wavedoublers<br />

• Alongstringofhalf-wavedoublersisknownasaCockcroft-Waltonmultiplier.<br />

3.9 <strong>In</strong>ductorcommutatingcircuits<br />

Apopularuseofdiodesisforthemitigationofinductive“kickback:”thepulsesofhighvoltage<br />

producedwhendirectcurrentthroughaninductorisinterrupted. Take,forexample,this<br />

simplecircuitinFigure3.50withnoprotectionagainstinductivekickback.<br />

+<br />

−<br />

+<br />

−<br />

+<br />

+<br />

−<br />

− − +<br />

(a) (b) (c) (d)<br />

Figure3.50: <strong>In</strong>ductivekickback: (a)Switchopen. (b)Switchclosed,electroncurrentflows<br />

frombatterythroughcoilwhichhaspolaritymatchingbattery. Magneticfieldstoresenergy.<br />

(c)Switchopen,Currentstillflowsincoilduetocollapsingmagneticfield.Notepolaritychange<br />

oncoil.(d)Coilvoltagevstime.<br />

Whenthepushbuttonswitchisactuated,currentgoesthroughtheinductor,producing<br />

amagneticfieldaroundit. Whentheswitchisde-actuated,itscontactsopen,interrupting<br />

currentthroughtheinductor,andcausingthemagneticfieldtorapidlycollapse.Becausethe<br />

voltageinducedinacoilofwireisdirectlyproportionaltotherateofchangeovertimeof<br />

magneticflux(Faraday’sLaw:e=NdΦ/dt),thisrapidcollapseofmagnetismaroundthecoil<br />

producesahighvoltage“spike”.<br />

V<br />

off<br />

on<br />

off


3.9. INDUCTORCOMMUTATINGCIRCUITS 131<br />

Iftheinductorinquestionisanelectromagnetcoil,suchasinasolenoidorrelay(constructedforthepurposeofcreatingaphysicalforceviaitsmagneticfieldwhenenergized),the<br />

effectofinductive“kickback”servesnousefulpurposeatall. <strong>In</strong>fact,itisquitedetrimental<br />

totheswitch,asitcausesexcessivearcingatthecontacts,greatlyreducingtheirservicelife.<br />

Ofthepracticalmethodsformitigatingthehighvoltagetransientcreatedwhentheswitchis<br />

opened,nonesosimpleastheso-calledcommutatingdiodeinFigure3.51.<br />

+<br />

-<br />

+<br />

-<br />

(a) (b) (c)<br />

Figure3.51: <strong>In</strong>ductivekickbackwithprotection: (a)Switchopen. (b)Switchclosed,storing<br />

energyinmagneticfield.(c)Switchopen,inductivekickbackisshortedbydiode.<br />

<strong>In</strong>thiscircuit,thediodeisplacedinparallelwiththecoil,suchthatitwillbereverse-biased<br />

whenDCvoltageisappliedtothecoilthroughtheswitch. Thus,whenthecoilisenergized,<br />

thediodeconductsnocurrentinFigure3.51(b).<br />

However,whentheswitchisopened,thecoil’sinductancerespondstothedecreaseincurrentbyinducingavoltageofreversepolarity,inanefforttomaintaincurrentatthesame<br />

magnitudeandinthesamedirection.Thissuddenreversalofvoltagepolarityacrossthecoil<br />

forward-biasesthediode,andthediodeprovidesacurrentpathfortheinductor’scurrent,so<br />

thatitsstoredenergyisdissipatedslowlyratherthansuddenlyinFigure3.51(c).<br />

Asaresult,thevoltageinducedinthecoilbyitscollapsingmagneticfieldisquitelow:<br />

merelytheforwardvoltagedropofthediode,ratherthanhundredsofvoltsasbefore. Thus,<br />

theswitchcontactsexperienceavoltagedropequaltothebatteryvoltageplusabout0.7volts<br />

(ifthediodeissilicon)duringthisdischargetime.<br />

<strong>In</strong>electronicsparlance,commutationreferstothereversalofvoltagepolarityorcurrentdirection.Thus,thepurposeofacommutatingdiodeistoactwhenevervoltagereversespolarity,<br />

forexample,onaninductorcoilwhencurrentthroughitisinterrupted.Alessformaltermfor<br />

acommutatingdiodeissnubber,becauseit“snubs”or“squelches”theinductivekickback.<br />

Anoteworthydisadvantageofthismethodistheextratimeitimpartstothecoil’sdischarge.<br />

Becausetheinducedvoltageisclampedtoaverylowvalue,itsrateofmagneticfluxchange<br />

overtimeiscomparativelyslow. RememberthatFaraday’sLawdescribesthemagneticflux<br />

rate-of-change(dΦ/dt)asbeingproportionaltotheinduced,instantaneousvoltage(eorv).If<br />

theinstantaneousvoltageislimitedtosomelowfigure,thentherateofchangeofmagnetic<br />

fluxovertimewilllikewisebelimitedtoalow(slow)figure.<br />

Ifanelectromagnetcoilis“snubbed”withacommutatingdiode,themagneticfieldwilldissipateatarelativelyslowratecomparedtotheoriginalscenario(nodiode)wherethefield<br />

disappearedalmostinstantlyuponswitchrelease. Theamountoftimeinquestionwillmost<br />

likelybelessthanonesecond,butitwillbemeasurablyslowerthanwithoutacommutatingdiodeinplace.<br />

Thismaybeanintolerableconsequenceifthecoilisusedtoactuatean<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

-<br />

+<br />

-<br />

+


132 CHAPTER3. DIODESANDRECTIFIERS<br />

electromechanicalrelay,becausetherelaywillpossessanatural“timedelay”uponcoildeenergization,andanunwanteddelayofevenafractionofasecondmaywreakhavocinsome<br />

circuits.<br />

Unfortunately,onecannoteliminatethehigh-voltagetransientofinductivekickbackand<br />

maintainfastde-magnetizationofthecoil:Faraday’sLawwillnotbeviolated.However,ifslow<br />

de-magnetizationisunacceptable,acompromisemaybestruckbetweentransientvoltageand<br />

timebyallowingthecoil’svoltagetorisetosomehigherlevel(butnotsohighaswithouta<br />

commutatingdiodeinplace).TheschematicinFigure3.52showshowthiscanbedone.<br />

(a)<br />

Figure3.52:(a)Commutatingdiodewithseriesresistor.(b)Voltagewaveform.(c)Levelwith<br />

nodiode.(d)Levelwithdiode,noresistor.(e)Compromiselevelwithdiodeandresistor.<br />

Aresistorplacedinserieswiththecommutatingdiodeallowsthecoil’sinducedvoltageto<br />

risetoalevelgreaterthanthediode’sforwardvoltagedrop,thushasteningtheprocessofdemagnetization.This,ofcourse,willplacetheswitchcontactsundergreaterstress,andsothe<br />

resistormustbesizedtolimitthattransientvoltageatanacceptablemaximumlevel.<br />

3.10 Diodeswitchingcircuits<br />

Diodescanperformswitchinganddigitallogicoperations.Forwardandreversebiasswitcha<br />

diodebetweenthelowandhighimpedancestates,respectively.Thus,itservesasaswitch.<br />

3.10.1 Logic<br />

Diodescanperformdigitallogicfunctions:AND,andOR.Diodelogicwasusedinearlydigital<br />

computers. Itonlyfindslimitedapplicationtoday. Sometimesitisconvenienttofashiona<br />

singlelogicgatefromafewdiodes.<br />

AnANDgateisshowninFigure3.53.Logicgateshaveinputsandanoutput(Y)whichis<br />

afunctionoftheinputs. Theinputstothegatearehigh(logic1),say10V,orlow,0V(logic<br />

0). <strong>In</strong>thefigure,thelogiclevelsaregeneratedbyswitches. Ifaswitchisup,theinputis<br />

effectivelyhigh(1).Iftheswitchisdown,itconnectsadiodecathodetoground,whichislow<br />

(0).TheoutputdependsonthecombinationofinputsatAandB.Theinputsandoutputare<br />

customarilyrecordedina“truthtable”at(c)todescribethelogicofagate. At(a)allinputs<br />

arehigh(1). Thisisrecordedinthelastlineofthetruthtableat(c). Theoutput,Y,ishigh<br />

(1)duetotheV + onthetopoftheresistor.Itisunaffectedbyopenswitches.At(b)switchA<br />

pullsthecathodeoftheconnecteddiodelow,pullingoutputYlow(0.7V).Thisisrecordedin<br />

V<br />

(b)<br />

off<br />

on<br />

off<br />

(d)<br />

(e)<br />

(c)


3.10. DIODESWITCHINGCIRCUITS 133<br />

1<br />

1<br />

A<br />

B<br />

V +<br />

V +<br />

Y=1 Y=0<br />

0 A<br />

1<br />

(a) (b) (c)<br />

Figure3.53:DiodeANDgate<br />

B<br />

A B Y<br />

0 0 0<br />

0 1 0<br />

1 0 0<br />

1 1 1<br />

thethirdlineofthetruthtable. Thesecondlineofthetruthtabledescribestheoutputwith<br />

theswitchesreversedfrom(b).SwitchBpullsthediodeandoutputlow.Thefirstlineofthe<br />

truthtablerecordestheOutput=0forbothinputlow(0). Thetruthtabledescribesalogical<br />

ANDfunction.Summary:bothinputsAandBhighyieldsahigh(1)out.<br />

AtwoinputORgatecomposedofapairofdiodesisshowninFigure??.Ifbothinputsare<br />

logiclowat(a)assimulatedbybothswitches“downward,”theoutputYispulledlowbythe<br />

resistor.Thislogiczeroisrecordedinthefirstlineofthetruthtableat(c).Ifoneoftheinputs<br />

ishighasat(b),ortheotherinputishigh,orbothinputshigh,thediode(s)conduct(s),pulling<br />

theoutputYhigh.Theseresultsarereorderedinthesecondthroughfourthlinesofthetruth<br />

table.Summary:anyinput“high”isahighoutatY.<br />

0<br />

0<br />

V +<br />

A<br />

B<br />

Y=0<br />

1<br />

0<br />

V +<br />

A<br />

B<br />

Y=1<br />

A B Y<br />

0 0 0<br />

0 1 1<br />

1 0 1<br />

1 1 1<br />

(a) (b) (c)<br />

line<br />

operated<br />

power<br />

supply<br />

backup<br />

battery<br />

Figure3.54:ORgate:(a)Firstline,truthtable(TT).(b)ThirdlineTT.(d)LogicalORofpower<br />

linesupplyandback-upbattery.<br />

AbackupbatterymaybeOR-wiredwithalineoperatedDCpowersupplyinFigure3.54(d)<br />

topoweraload,evenduringapowerfailure.WithACpowerpresent,thelinesupplypowers<br />

theload,assumingthatitisahighervoltagethanthebattery.<strong>In</strong>theeventofapowerfailure,<br />

thelinesupplyvoltagedropsto0V;thebatterypowerstheload.Thediodesmustbeinseries<br />

withthepowersourcestopreventafailedlinesupplyfromdrainingthebattery,andtoprevent<br />

itfromoverchargingthebatterywhenlinepowerisavailable.DoesyourPCcomputerretain<br />

itsBIOSsettingwhenpoweredoff?DoesyourVCR(videocassetterecorder)retaintheclock<br />

settingafterapowerfailure?(PCYes,oldVCRno,newVCRyes.)<br />

+<br />

(d)<br />

+<br />

+<br />

load


134 CHAPTER3. DIODESANDRECTIFIERS<br />

3.10.2 Analogswitch<br />

Diodescanswitchanalogsignals. Areversebiaseddiodeappearstobeanopencircuit. A<br />

forwardbiaseddiodeisalowresistanceconductor.TheonlyproblemisisolatingtheACsignal<br />

beingswitchedfromtheDCcontrolsignal. ThecircuitinFigure3.55isaparallelresonant<br />

network: resonanttuninginductorparalleledbyone(ormore)oftheswitchedresonatorcapacitors.ThisparallelLCresonantcircuitcouldbeapreselectorfilterforaradioreceiver.It<br />

couldbethefrequencydeterminingnetworkofanoscillator(notshown). Thedigitalcontrol<br />

linesmaybedrivenbyamicroprocessorinterface.<br />

switching<br />

diode<br />

RFC<br />

decoupling<br />

capacitor<br />

switched<br />

resonator<br />

capacitor<br />

RFC<br />

digital control<br />

RFC<br />

RFC<br />

+5V<br />

resonant<br />

tuning<br />

inductor<br />

large value<br />

DC blocking<br />

capacitor<br />

Figure3.55:Diodeswitch:Adigitalcontrolsignal(low)selectsaresonatorcapacitorbyforward<br />

biasingtheswitchingdiode.<br />

ThelargevalueDCblockingcapacitorgroundstheresonanttuninginductorforACwhile<br />

blockingDC.ItwouldhavealowreactancecomparedtotheparallelLCreactances. This<br />

preventstheanodeDCvoltagefrombeingshortedtogroundbytheresonanttuninginductor.<br />

Aswitchedresonatorcapacitorisselectedbypullingthecorrespondingdigitalcontrollow.This<br />

forwardbiasestheswitchingdiode. TheDCcurrentpathisfrom+5VthroughanRFchoke<br />

(RFC),aswitchingdiode,andanRFCtogroundviathedigitalcontrol.ThepurposeoftheRFC<br />

atthe+5VistokeepACoutofthe+5Vsupply.TheRFCinserieswiththedigitalcontrolisto<br />

keepACoutoftheexternalcontrolline.ThedecouplingcapacitorshortsthelittleACleaking<br />

throughtheRFCtoground,bypassingtheexternaldigitalcontrolline.<br />

Withallthreedigitalcontrollineshigh(≥+5V),noswitchedresonatorcapacitorsareselectedduetodiodereversebias.<br />

Pullingoneormorelineslow,selectsoneormoreswitched<br />

resonatorcapacitors,respectively. Asmorecapacitorsareswitchedinparallelwiththeresonanttuninginductor,theresonantfrequencydecreases.<br />

Thereversebiaseddiodecapacitancemaybesubstantialcomparedwithveryhighfrequencyorultrahighfrequencycircuits.PINdiodesmaybeusedasswitchesforlowercapacitance.


3.11. ZENERDIODES 135<br />

3.11 Zenerdiodes<br />

IfweconnectadiodeandresistorinserieswithaDCvoltagesourcesothatthediodeis<br />

forward-biased,thevoltagedropacrossthediodewillremainfairlyconstantoverawiderange<br />

ofpowersupplyvoltagesasinFigure3.56(a).<br />

Accordingtothe“diodeequation”(page101),thecurrentthroughaforward-biasedPN<br />

junctionisproportionaltoeraisedtothepoweroftheforwardvoltagedrop.Becausethisisan<br />

exponentialfunction,currentrisesquiterapidlyformodestincreasesinvoltagedrop.Another<br />

wayofconsideringthisistosaythatvoltagedroppedacrossaforward-biaseddiodechanges<br />

littleforlargevariationsindiodecurrent.<strong>In</strong>thecircuitshowninFigure3.56(a),diodecurrent<br />

islimitedbythevoltageofthepowersupply,theseriesresistor,andthediode’svoltagedrop,<br />

whichasweknowdoesn’tvarymuchfrom0.7volts. Ifthepowersupplyvoltageweretobe<br />

increased,theresistor’svoltagedropwouldincreasealmostthesameamount,andthediode’s<br />

voltagedropjustalittle. Conversely,adecreaseinpowersupplyvoltagewouldresultinan<br />

almostequaldecreaseinresistorvoltagedrop,withjustalittledecreaseindiodevoltagedrop.<br />

<strong>In</strong>aword,wecouldsummarizethisbehaviorbysayingthatthediodeisregulatingthevoltage<br />

dropatapproximately0.7volts.<br />

Voltageregulationisausefuldiodepropertytoexploit. Supposewewerebuildingsome<br />

kindofcircuitwhichcouldnottoleratevariationsinpowersupplyvoltage,butneededtobe<br />

poweredbyachemicalbattery,whosevoltagechangesoveritslifetime.Wecouldformacircuit<br />

asshownandconnectthecircuitrequiringsteadyvoltageacrossthediode,whereitwould<br />

receiveanunchanging0.7volts.<br />

Thiswouldcertainlywork,butmostpracticalcircuitsofanykindrequireapowersupply<br />

voltageinexcessof0.7voltstoproperlyfunction. Onewaywecouldincreaseourvoltage<br />

regulationpointwouldbetoconnectmultiplediodesinseries,sothattheirindividualforward<br />

voltagedropsof0.7voltseachwouldaddtocreatealargertotal.Forinstance,ifwehadten<br />

diodesinseries,theregulatedvoltagewouldbetentimes0.7,or7voltsinFigure3.56(b).<br />

≈ 0.7 V<br />

(a) (b)<br />

≈ ≈7.0 7.0 V<br />

Figure3.56:ForwardbiasedSireference:(a)singlediode,0.7V,(b)10-diodesinseries7.0V.<br />

Solongasthebatteryvoltageneversaggedbelow7volts,therewouldalwaysbeabout7<br />

voltsdroppedacrosstheten-diode“stack.”<br />

Iflargerregulatedvoltagesarerequired,wecouldeitherusemorediodesinseries(aninelegantoption,inmyopinion),ortryafundamentallydifferentapproach.Weknowthatdiode<br />

forwardvoltageisafairlyconstantfigureunderawiderangeofconditions,butsoisreverse<br />

breakdownvoltage,andbreakdownvoltageistypicallymuch,muchgreaterthanforwardvoltage.Ifwereversedthepolarityofthediodeinoursingle-dioderegulatorcircuitandincreased<br />

thepowersupplyvoltagetothepointwherethediode“brokedown”(couldnolongerwithstand


136 CHAPTER3. DIODESANDRECTIFIERS<br />

thereverse-biasvoltageimpressedacrossit),thediodewouldsimilarlyregulatethevoltageat<br />

thatbreakdownpoint,notallowingittoincreasefurtherasinFigure3.57(a).<br />

+<br />

≈ 50 V<br />

150 V ≈ 100 V<br />

-<br />

(a) (b)<br />

Zener diode<br />

Cathode<br />

Anode<br />

Figure3.57:(a)ReversebiasedSismall-signaldiodebreaksdownatabout100V.(b)Symbol<br />

forZenerdiode.<br />

Unfortunately,whennormalrectifyingdiodes“breakdown,”theyusuallydosodestructively.<br />

However,itispossibletobuildaspecialtypeofdiodethatcanhandlebreakdown<br />

withoutfailingcompletely.Thistypeofdiodeiscalledazenerdiode,anditssymbollookslike<br />

Figure3.57(b).<br />

Whenforward-biased,zenerdiodesbehavemuchthesameasstandardrectifyingdiodes:<br />

theyhaveaforwardvoltagedropwhichfollowsthe“diodeequation”andisabout0.7volts.<br />

<strong>In</strong>reverse-biasmode,theydonotconductuntiltheappliedvoltagereachesorexceedsthesocalledzenervoltage,atwhichpointthediodeisabletoconductsubstantialcurrent,andin<br />

doingsowilltrytolimitthevoltagedroppedacrossittothatzenervoltagepoint.Solongas<br />

thepowerdissipatedbythisreversecurrentdoesnotexceedthediode’sthermallimits,the<br />

diodewillnotbeharmed.<br />

Zenerdiodesaremanufacturedwithzenervoltagesranginganywherefromafewvoltsto<br />

hundredsofvolts. Thiszenervoltagechangesslightlywithtemperature,andlikecommon<br />

carbon-compositionresistorvalues,maybeanywherefrom5percentto10percentinerror<br />

fromthemanufacturer’sspecifications.However,thisstabilityandaccuracyisgenerallygood<br />

enoughforthezenerdiodetobeusedasavoltageregulatordeviceincommonpowersupply<br />

circuitinFigure3.58.<br />

+<br />

-<br />

≈ 12.6 V<br />

Figure3.58:Zenerdioderegulatorcircuit,Zenervoltage=12.6V).<br />

Pleasetakenoteofthezenerdiode’sorientationintheabovecircuit:thediodeisreversebiased,andintentionallyso.<br />

Ifwehadorientedthediodeinthe“normal”way,soastobe<br />

forward-biased,itwouldonlydrop0.7volts,justlikearegularrectifyingdiode. Ifwewant<br />

toexploitthisdiode’sreversebreakdownproperties,wemustoperateitinitsreverse-bias<br />

mode.Solongasthepowersupplyvoltageremainsabovethezenervoltage(12.6volts,inthis<br />

example),thevoltagedroppedacrossthezenerdiodewillremainatapproximately12.6volts.


3.11. ZENERDIODES 137<br />

Likeanysemiconductordevice,thezenerdiodeissensitivetotemperature.Excessivetemperaturewilldestroyazenerdiode,andbecauseitbothdropsvoltageandconductscurrent,itproducesitsownheatinaccordancewithJoule’sLaw(P=IE).Therefore,onemustbecarefultodesigntheregulatorcircuitinsuchawaythatthediode’spowerdissipationratingis<br />

notexceeded.<strong>In</strong>terestinglyenough,whenzenerdiodesfailduetoexcessivepowerdissipation,<br />

theyusuallyfailshortedratherthanopen.Adiodefailedinthismannerisreadilydetected:it<br />

dropsalmostzerovoltagewhenbiasedeitherway,likeapieceofwire.<br />

Let’sexamineazenerdioderegulatingcircuitmathematically,determiningallvoltages,<br />

currents,andpowerdissipations.Takingthesameformofcircuitshownearlier,we’llperform<br />

calculationsassumingazenervoltageof12.6volts,apowersupplyvoltageof45volts,anda<br />

seriesresistorvalueof1000 Ω(we’llregardthezenervoltagetobeexactly12.6voltssoasto<br />

avoidhavingtoqualifyallfiguresas“approximate”inFigure3.59(a)<br />

Ifthezenerdiode’svoltageis12.6voltsandthepowersupply’svoltageis45volts,therewill<br />

be32.4voltsdroppedacrosstheresistor(45volts-12.6volts=32.4volts).32.4voltsdropped<br />

across1000 Ωgives32.4mAofcurrentinthecircuit.(Figure3.59(b))<br />

45 V<br />

+<br />

-<br />

1 kΩ<br />

12.6 V<br />

45 V<br />

(a) (b)<br />

+<br />

-<br />

32.4 V<br />

1 kΩ<br />

32.4 mA<br />

32.4 mA<br />

12.6 V<br />

Figure3.59:(a)ZenerVoltageregulatorwith1000 Ωresistor.(b)Calculationofvoltagedrops<br />

andcurrent.<br />

Poweriscalculatedbymultiplyingcurrentbyvoltage(P=IE),sowecancalculatepower<br />

dissipationsforboththeresistorandthezenerdiodequiteeasily:<br />

P resistor = (32.4 mA)(32.4 V)<br />

P resistor = 1.0498 W<br />

P diode = (32.4 mA)(12.6 V)<br />

P diode = 408.24 mW<br />

Azenerdiodewithapowerratingof0.5wattwouldbeadequate,aswouldaresistorrated<br />

for1.5or2wattsofdissipation.<br />

Ifexcessivepowerdissipationisdetrimental,thenwhynotdesignthecircuitfortheleast<br />

amountofdissipationpossible? Whynotjustsizetheresistorforaveryhighvalueofresistance,thusseverelylimitingcurrentandkeepingpowerdissipationfiguresverylow?Takethis<br />

circuit,forexample,witha100kΩresistorinsteadofa1kΩresistor.Notethatboththepower<br />

supplyvoltageandthediode’szenervoltageinFigure3.60areidenticaltothelastexample:


138 CHAPTER3. DIODESANDRECTIFIERS<br />

45 V<br />

+<br />

-<br />

32.4 V<br />

100 kΩ<br />

324 µA<br />

324 µA<br />

12.6 V<br />

Figure3.60:Zenerregulatorwith100kΩresistor.<br />

Withonly1/100ofthecurrentwehadbefore(324 µAinsteadof32.4mA),bothpower<br />

dissipationfiguresshouldbe100timessmaller:<br />

P resistor = (324 µA)(32.4 V)<br />

P resistor = 10.498 mW<br />

P diode = (324 µA)(12.6 V)<br />

P diode = 4.0824 mW<br />

Seemsideal,doesn’tit? Lesspowerdissipationmeansloweroperatingtemperaturesfor<br />

boththediodeandtheresistor,andalsolesswastedenergyinthesystem,right? Ahigher<br />

resistancevaluedoesreducepowerdissipationlevelsinthecircuit,butitunfortunatelyintroducesanotherproblem.Rememberthatthepurposeofaregulatorcircuitistoprovideastable<br />

voltageforanothercircuit. <strong>In</strong>otherwords,we’reeventuallygoingtopowersomethingwith<br />

12.6volts,andthissomethingwillhaveacurrentdrawofitsown.Considerourfirstregulator<br />

circuit,thistimewitha500 ΩloadconnectedinparallelwiththezenerdiodeinFigure3.61.<br />

45 V<br />

+<br />

-<br />

32.4 V<br />

1 kΩ<br />

32.4 mA<br />

32.4 mA<br />

7.2 mA<br />

25.2 mA<br />

25.2 mA<br />

12.6 V<br />

R load<br />

500 Ω<br />

Figure3.61:Zenerregulatorwith1000 Ωseriesresistorand500 Ωload.<br />

If12.6voltsismaintainedacrossa500 Ωload,theloadwilldraw25.2mAofcurrent. <strong>In</strong><br />

orderforthe1kΩseries“dropping”resistortodrop32.4volts(reducingthepowersupply’s<br />

voltageof45voltsdownto12.6acrossthezener),itstillmustconduct32.4mAofcurrent.<br />

Thisleaves7.2mAofcurrentthroughthezenerdiode.<br />

Nowconsiderour“power-saving”regulatorcircuitwiththe100kΩdroppingresistor,deliv-


3.11. ZENERDIODES 139<br />

eringpowertothesame500 Ωload. Whatitissupposedtodoismaintain12.6voltsacross<br />

theload,justlikethelastcircuit. However,aswewillsee,itcannotaccomplishthistask.<br />

(Figure3.62)<br />

45 V<br />

44.776 V<br />

100 kΩ<br />

447.76 µA<br />

0 µA<br />

224 mV<br />

447.76 µA 447.76 µA<br />

447.76 µA<br />

R load<br />

500 Ω<br />

Figure3.62:Zenernon-regulatorwith100KΩseriesresistorwith500 Ωload.¿<br />

Withthelargervalueofdroppingresistorinplace,therewillonlybeabout224mVof<br />

voltageacrossthe500 Ωload,farlessthantheexpectedvalueof12.6volts!Whyisthis?Ifwe<br />

actuallyhad12.6voltsacrosstheload,itwoulddraw25.2mAofcurrent,asbefore.Thisload<br />

currentwouldhavetogothroughtheseriesdroppingresistorasitdidbefore,butwithanew<br />

(muchlarger!) droppingresistorinplace,thevoltagedroppedacrossthatresistorwith25.2<br />

mAofcurrentgoingthroughitwouldbe2,520volts!Sinceweobviouslydon’thavethatmuch<br />

voltagesuppliedbythebattery,thiscannothappen.<br />

Thesituationiseasiertocomprehendifwetemporarilyremovethezenerdiodefromthe<br />

circuitandanalyzethebehaviorofthetworesistorsaloneinFigure3.63.<br />

45 V<br />

44.776 V<br />

100 kΩ<br />

447.76 µA<br />

447.76 µA 447.76 µA<br />

447.76 µA<br />

224 mV<br />

Figure3.63:Non-regulatorwithZenerremoved.<br />

R load<br />

500 Ω<br />

Boththe100kΩdroppingresistorandthe500 Ωloadresistanceareinserieswitheach<br />

other,givingatotalcircuitresistanceof100.5kΩ.Withatotalvoltageof45voltsandatotal<br />

resistanceof100.5kΩ,Ohm’sLaw(I=E/R)tellsusthatthecurrentwillbe447.76 µA.Figuring<br />

voltagedropsacrossbothresistors(E=IR),wearriveat44.776voltsand224mV,respectively.<br />

Ifweweretore-installthezenerdiodeatthispoint,itwould“see”224mVacrossitaswell,<br />

beinginparallelwiththeloadresistance.Thisisfarbelowthezenerbreakdownvoltageofthe<br />

diodeandsoitwillnot“breakdown”andconductcurrent.Forthatmatter,atthislowvoltage<br />

thediodewouldn’tconductevenifitwereforward-biased!Thus,thediodeceasestoregulate<br />

voltage.Atleast12.6voltsmustbedroppedacrossto“activate”it.


140 CHAPTER3. DIODESANDRECTIFIERS<br />

Theanalyticaltechniqueofremovingazenerdiodefromacircuitandseeingwhetheror<br />

notenoughvoltageispresenttomakeitconductisasoundone. Justbecauseazenerdiode<br />

happenstobeconnectedinacircuitdoesn’tguaranteethatthefullzenervoltagewillalways<br />

bedroppedacrossit!Rememberthatzenerdiodesworkbylimitingvoltagetosomemaximum<br />

level;theycannotmakeupforalackofvoltage.<br />

<strong>In</strong>summary,anyzenerdioderegulatingcircuitwillfunctionsolongastheload’sresistance<br />

isequaltoorgreaterthansomeminimumvalue. Iftheloadresistanceistoolow,itwill<br />

drawtoomuchcurrent,droppingtoomuchvoltageacrosstheseriesdroppingresistor,leaving<br />

insufficientvoltageacrossthezenerdiodetomakeitconduct. Whenthezenerdiodestops<br />

conductingcurrent,itcannolongerregulatevoltage,andtheloadvoltagewillfallbelowthe<br />

regulationpoint.<br />

Ourregulatorcircuitwiththe100kΩdroppingresistormustbegoodforsomevalueof<br />

loadresistance,though. Tofindthisacceptableloadresistancevalue,wecanuseatableto<br />

calculateresistanceinthetwo-resistorseriescircuit(nodiode),insertingtheknownvaluesof<br />

totalvoltageanddroppingresistorresistance,andcalculatingforanexpectedloadvoltageof<br />

12.6volts:<br />

Rdropping Rload Total<br />

E<br />

I<br />

R<br />

100 k<br />

12.6<br />

45<br />

Volts<br />

Amps<br />

Ohms<br />

With45voltsoftotalvoltageand12.6voltsacrosstheload,weshouldhave32.4voltsacross<br />

Rdropping:<br />

E<br />

I<br />

R<br />

R dropping R load Total<br />

32.4<br />

100 k<br />

12.6<br />

45<br />

Volts<br />

Amps<br />

Ohms<br />

With32.4voltsacrossthedroppingresistor,and100kΩworthofresistanceinit,thecurrent<br />

throughitwillbe324 µA:<br />

Rdropping Rload Total<br />

E<br />

I<br />

R<br />

32.4<br />

324 µ<br />

100 k<br />

Ohm’s Law<br />

I = E<br />

R<br />

12.6<br />

45<br />

Volts<br />

Amps<br />

Ohms


3.11. ZENERDIODES 141<br />

Beingaseriescircuit,thecurrentisequalthroughallcomponentsatanygiventime:<br />

Rdropping Rload Total<br />

E<br />

I<br />

R<br />

32.4<br />

100 k<br />

12.6<br />

45<br />

324 µ 324 µ 324 µ<br />

Volts<br />

Amps<br />

Ohms<br />

Rule of series circuits:<br />

ITotal = I1 = I2 = . . . <strong>In</strong> CalculatingloadresistanceisnowasimplematterofOhm’sLaw(R=E/I),givingus38.889<br />

kΩ:<br />

Rdropping Rload Total<br />

E<br />

I<br />

R<br />

32.4<br />

100 k<br />

12.6<br />

45<br />

324 µ 324 µ 324 µ<br />

38.889 k<br />

Ohm’s Law<br />

R = E<br />

I<br />

Volts<br />

Amps<br />

Ohms<br />

Thus,iftheloadresistanceisexactly38.889kΩ,therewillbe12.6voltsacrossit,diodeor<br />

nodiode. Anyloadresistancesmallerthan38.889kΩwillresultinaloadvoltagelessthan<br />

12.6volts,diodeornodiode. Withthediodeinplace,theloadvoltagewillberegulatedtoa<br />

maximumof12.6voltsforanyloadresistancegreaterthan38.889kΩ.<br />

Withtheoriginalvalueof1kΩforthedroppingresistor,ourregulatorcircuitwasable<br />

toadequatelyregulatevoltageevenforaloadresistanceaslowas500 Ω. Whatweseeisa<br />

tradeoffbetweenpowerdissipationandacceptableloadresistance.Thehigher-valuedropping<br />

resistorgaveuslesspowerdissipation,attheexpenseofraisingtheacceptableminimumload<br />

resistancevalue.Ifwewishtoregulatevoltageforlow-valueloadresistances,thecircuitmust<br />

bepreparedtohandlehigherpowerdissipation.<br />

Zenerdiodesregulatevoltagebyactingascomplementaryloads,drawingmoreorlesscurrentasnecessarytoensureaconstantvoltagedropacrosstheload.<br />

Thisisanalogousto<br />

regulatingthespeedofanautomobilebybrakingratherthanbyvaryingthethrottleposition:<br />

notonlyisitwasteful,butthebrakesmustbebuilttohandlealltheengine’spowerwhen<br />

thedrivingconditionsdon’tdemandit.Despitethisfundamentalinefficiencyofdesign,zener<br />

dioderegulatorcircuitsarewidelyemployedduetotheirsheersimplicity. <strong>In</strong>high-powerapplicationswheretheinefficiencieswouldbeunacceptable,othervoltage-regulatingtechniques<br />

areapplied.Buteventhen,smallzener-basedcircuitsareoftenusedtoprovidea“reference”<br />

voltagetodriveamoreefficientamplifiercircuitcontrollingthemainpower.<br />

ZenerdiodesaremanufacturedinstandardvoltageratingslistedinTable 3.1.Thetable<br />

“Commonzenerdiodevoltages”listscommonvoltagesfor0.3Wand1.3Wparts.Thewattage


142 CHAPTER3. DIODESANDRECTIFIERS<br />

correspondstodieandpackagesize,andisthepowerthatthediodemaydissipatewithout<br />

damage.<br />

Table3.1:Commonzenerdiodevoltages<br />

0.5W<br />

2.7V 3.0V 3.3V 3.6V 3.9V 4.3V 4.7V<br />

5.1V 5.6V 6.2V 6.8V 7.5V 8.2V 9.1V<br />

10V 11V 12V 13V 15V 16V 18V<br />

20V 24V 27V 30V<br />

1.3W<br />

4.7V 5.1V 5.6V 6.2V 6.8V 7.5V 8.2V<br />

9.1V 10V 11V 12V 13V 15V 16V<br />

18V 20V 22V 24V 27V 30V 33V<br />

36V 39V 43V 47V 51V 56V 62V<br />

68V 75V 100V 200V<br />

Zenerdiodeclipper: Aclippingcircuitwhichclipsthepeaksofwaveformatapproximatelythezenervoltageofthediodes.<br />

ThecircuitofFigure3.64hastwozenersconnected<br />

seriesopposingtosymmetricallyclipawaveformatnearlytheZenervoltage. Theresistor<br />

limitscurrentdrawnbythezenerstoasafevalue.<br />

1 2<br />

0<br />

20V p<br />

0 V offset<br />

1 kHz<br />

1.0kΩ<br />

V(2)<br />

output<br />

Figure3.64:Zenerdiodeclipper:<br />

*SPICE 03445.eps<br />

D1 4 0 diode<br />

D2 4 2 diode<br />

R1 2 1 1.0k<br />

V1 1 0 SIN(0 20<br />

1k)<br />

.model diode d<br />

bv=10<br />

.tran 0.001m 2m<br />

.end<br />

Thezenerbreakdownvoltageforthediodesissetat10Vbythediodemodelparameter<br />

“bv=10”inthespicenetlistinFigure3.64.Thiscausesthezenerstoclipatabout10V.The<br />

back-to-backdiodesclipbothpeaks.Forapositivehalf-cycle,thetopzenerisreversebiased,<br />

breakingdownatthezenervoltageof10V.Thelowerzenerdropsapproximately0.7Vsince<br />

itisforwardbiased. Thus,amoreaccurateclippinglevelis10+0.7=10.7V.Similarnegative<br />

half-cycleclippingoccursa-10.7V.(Figure3.65)showstheclippinglevelatalittleover ±10V.<br />

• REVIEW:<br />

• Zenerdiodesaredesignedtobeoperatedinreverse-biasmode,providingarelativelylow,<br />

stablebreakdown,orzenervoltageatwhichtheybegintoconductsubstantialreverse


3.12. SPECIAL-PURPOSEDIODES 143<br />

current.<br />

Figure3.65:Zenerdiodeclipper:v(1)inputisclippedatwaveformv(2).<br />

• Azenerdiodemayfunctionasavoltageregulatorbyactingasanaccessoryload,drawing<br />

morecurrentfromthesourceifthevoltageistoohigh,andlessifitistoolow.<br />

3.12 Special-purposediodes<br />

3.12.1 Schottkydiodes<br />

Schottkydiodesareconstructedofametal-to-NjunctionratherthanaP-Nsemiconductor<br />

junction.Alsoknownashot-carrierdiodes,Schottkydiodesarecharacterizedbyfastswitching<br />

times(lowreverse-recoverytime),lowforwardvoltagedrop(typically0.25to0.4voltsfora<br />

metal-siliconjunction),andlowjunctioncapacitance.<br />

TheschematicsymbolforaschottkydiodeisshowninFigure3.66.<br />

Anode<br />

Cathode<br />

Figure3.66:Schottkydiodeschematicsymbol.<br />

Theforwardvoltagedrop(VF),reverse-recoverytime(trr),andjunctioncapacitance(CJ)of<br />

Schottkydiodesareclosertoidealthantheaverage“rectifying”diode.Thismakesthemwell<br />

suitedforhigh-frequencyapplications.Unfortunately,though,Schottkydiodestypicallyhave<br />

lowerforwardcurrent(IF)andreversevoltage(VRRMandVDC)ratingsthanrectifyingdiodes


144 CHAPTER3. DIODESANDRECTIFIERS<br />

andarethusunsuitableforapplicationsinvolvingsubstantialamountsofpower.Thoughthey<br />

areusedinlowvoltageswitchingregulatorpowersupplies.<br />

Schottkydiodetechnologyfindsbroadapplicationinhigh-speedcomputercircuits,where<br />

thefastswitchingtimeequatestohighspeedcapability,andthelowforwardvoltagedrop<br />

equatestolesspowerdissipationwhenconducting.<br />

Switchingregulatorpowersuppliesoperatingat100’sofkHzcannotuseconventionalsilicondiodesasrectifiersbecauseoftheirslowswitchingspeed.<br />

Whenthesignalappliedtoa<br />

diodechangesfromforwardtoreversebias,conductioncontinuesforashorttime,whilecarriersarebeingsweptoutofthedepletionregion.Conductiononlyceasesafterthistr<br />

reverse<br />

recoverytimehasexpired.Schottkydiodeshaveashorterreverserecoverytime.<br />

Regardlessofswitchingspeed,the0.7Vforwardvoltagedropofsilicondiodescausespoor<br />

efficiencyinlowvoltagesupplies.Thisisnotaproblemin,say,a10Vsupply.<strong>In</strong>a1Vsupply<br />

the0.7Vdropisasubstantialportionoftheoutput.Onesolutionistouseaschottkypower<br />

diodewhichhasalowerforwarddrop.<br />

3.12.2 Tunneldiodes<br />

Tunneldiodesexploitastrangequantumphenomenoncalledresonanttunnelingtoprovidea<br />

negativeresistanceforward-biascharacteristics.Whenasmallforward-biasvoltageisapplied<br />

acrossatunneldiode,itbeginstoconductcurrent.(Figure3.67(b))Asthevoltageisincreased,<br />

thecurrentincreasesandreachesapeakvaluecalledthepeakcurrent(IP). Ifthevoltage<br />

isincreasedalittlemore,thecurrentactuallybeginstodecreaseuntilitreachesalowpoint<br />

calledthevalleycurrent(IV). Ifthevoltageisincreasedfurtheryet,thecurrentbeginsto<br />

increaseagain,thistimewithoutdecreasingintoanother“valley.” Theschematicsymbolfor<br />

thetunneldiodeshowninFigure3.67(a).<br />

Tunnel diode<br />

Anode<br />

Cathode<br />

Forward<br />

current<br />

I P<br />

I V<br />

(a) (b) VP VV Forward voltage (c)<br />

Figure3.67:Tunneldiode(a)Schematicsymbol.(b)Currentvsvoltageplot(c)Oscillator.<br />

Theforwardvoltagesnecessarytodriveatunneldiodetoitspeakandvalleycurrentsare<br />

knownaspeakvoltage(VP)andvalleyvoltage(VV),respectively. Theregiononthegraph<br />

wherecurrentisdecreasingwhileappliedvoltageisincreasing(betweenVP andVV onthe<br />

horizontalscale)isknownastheregionofnegativeresistance.<br />

Tunneldiodes,alsoknownasEsakidiodesinhonoroftheirJapaneseinventorLeoEsaki,<br />

areabletotransitionbetweenpeakandvalleycurrentlevelsveryquickly,“switching”between<br />

highandlowstatesofconductionmuchfasterthanevenSchottkydiodes.Tunneldiodecharacteristicsarealsorelativelyunaffectedbychangesintemperature.<br />

+<br />


3.12. SPECIAL-PURPOSEDIODES 145<br />

Breakdown voltage (V)<br />

1000<br />

100<br />

10<br />

1<br />

10 14<br />

Ge<br />

Si<br />

10 15<br />

GaAs<br />

10 16<br />

GaP<br />

Doping concentration (cm -3 )<br />

tunneling<br />

Figure3.68:Reversebreakdownvoltageversusdopinglevel.AfterSze[22]<br />

TunneldiodesareheavilydopedinboththePandNregions,1000timesthelevelina<br />

rectifier.ThiscanbeseeninFigure3.68.Standarddiodesaretothefarleft,zenerdiodesnear<br />

totheleft,andtunneldiodestotherightofthedashedline. Theheavydopingproducesan<br />

unusuallythindepletionregion. Thisproducesanunusuallylowreversebreakdownvoltage<br />

withhighleakage. Thethindepletionregioncauseshighcapacitance. Toovercomethis,the<br />

tunneldiodejunctionareamustbetiny. Theforwarddiodecharacteristicconsistsoftworegions:anormalforwarddiodecharacteristicwithcurrentrisingexponentiallybeyondVF,0.3<br />

VforGe,0.7VforSi.Between0VandVFisanadditional“negativeresistance”characteristic<br />

peak. Thisisduetoquantummechanicaltunnelinginvolvingthedualparticle-wavenature<br />

ofelectrons.Thedepletionregionisthinenoughcomparedwiththeequivalentwavelengthof<br />

theelectronthattheycantunnelthrough.Theydonothavetoovercomethenormalforward<br />

diodevoltageVF. TheenergyleveloftheconductionbandoftheN-typematerialoverlaps<br />

thelevelofthevalencebandintheP-typeregion.Withincreasingvoltage,tunnelingbegins;<br />

thelevelsoverlap;currentincreases,uptoapoint. Ascurrentincreasesfurther,theenergy<br />

levelsoverlapless;currentdecreaseswithincreasingvoltage.Thisisthe“negativeresistance”<br />

portionofthecurve.<br />

Tunneldiodesarenotgoodrectifiers,astheyhaverelativelyhigh“leakage”currentwhen<br />

reverse-biased.Consequently,theyfindapplicationonlyinspecialcircuitswheretheirunique<br />

tunneleffecthasvalue. Toexploitthetunneleffect,thesediodesaremaintainedatabias<br />

voltagesomewherebetweenthepeakandvalleyvoltagelevels,alwaysinaforward-biased<br />

polarity(anodepositive,andcathodenegative).<br />

Perhapsthemostcommonapplicationofatunneldiodeisinsimplehigh-frequencyoscillatorcircuitsasinFigure3.67(c),whereitallowsaDCvoltagesourcetocontributepowertoan<br />

LC“tank”circuit,thediodeconductingwhenthevoltageacrossitreachesthepeak(tunnel)<br />

levelandeffectivelyinsulatingatallothervoltages. Theresistorsbiasthetunneldiodeata<br />

10 17<br />

10 18


146 CHAPTER3. DIODESANDRECTIFIERS<br />

fewtenthsofavoltcenteredonthenegativeresistanceportionofthecharacteristiccurve.The<br />

L-Cresonantcircuitmaybeasectionofwaveguideformicrowaveoperation.Oscillationto5<br />

GHzispossible.<br />

Atonetimethetunneldiodewastheonlysolid-statemicrowaveamplifieravailable.Tunnel<br />

diodeswerepopularstartinginthe1960’s. Theywerelongerlivedthantravelingwavetube<br />

amplifiers,animportantconsiderationinsatellitetransmitters.Tunneldiodesarealsoresistanttoradiationbecauseoftheheavydoping.Todayvarioustransistorsoperateatmicrowave<br />

frequencies.Evensmallsignaltunneldiodesareexpensiveanddifficulttofindtoday.Thereis<br />

oneremainingmanufacturerofgermaniumtunneldiodes,andnoneforsilicondevices.They<br />

aresometimesusedinmilitaryequipmentbecausetheyareinsensitivetoradiationandlarge<br />

temperaturechanges.<br />

Therehasbeensomeresearchinvolvingpossibleintegrationofsilicontunneldiodesinto<br />

CMOSintegratedcircuits.Theyarethoughttobecapableofswitchingat100GHzindigital<br />

circuits. Thesolemanufacturerofgermaniumdevicesproducesthemoneatatime. Abatch<br />

processforsilicontunneldiodesmustbedeveloped,thenintegratedwithconventionalCMOS<br />

processes.[21]<br />

TheEsakitunneldiodeshouldnotbeconfusedwiththeresonanttunnelingdiode(page<br />

84),ofmorecomplexconstructionfromcompoundsemiconductors.TheRTDisamorerecent<br />

developmentcapableofhigherspeed.<br />

3.12.3 Light-emittingdiodes<br />

Diodes,likeallsemiconductordevices,aregovernedbytheprinciplesdescribedinquantum<br />

physics.Oneoftheseprinciplesistheemissionofspecific-frequencyradiantenergywhenever<br />

electronsfallfromahigherenergyleveltoalowerenergylevel. Thisisthesameprinciple<br />

atworkinaneonlamp,thecharacteristicpink-orangeglowofionizedneonduetothespecific<br />

energytransitionsofitselectronsinthemidstofanelectriccurrent.Theuniquecolorofaneon<br />

lamp’sglowisduetothefactthatitsneongasinsidethetube,andnotduetotheparticular<br />

amountofcurrentthroughthetubeorvoltagebetweenthetwoelectrodes. Neongasglows<br />

pinkish-orangeoverawiderangeofionizingvoltagesandcurrents. Eachchemicalelement<br />

hasitsown“signature”emissionofradiantenergywhenitselectrons“jump”betweendifferent,<br />

quantizedenergylevels. Hydrogengas,forexample,glowsredwhenionized;mercuryvapor<br />

glowsblue.Thisiswhatmakesspectrographicidentificationofelementspossible.<br />

ElectronsflowingthroughaPNjunctionexperiencesimilartransitionsinenergylevel,and<br />

emitradiantenergyastheydoso.Thefrequencyofthisradiantenergyisdeterminedbythe<br />

crystalstructureofthesemiconductormaterial,andtheelementscomprisingit. Somesemiconductorjunctions,composedofspecialchemicalcombinations,emitradiantenergywithin<br />

thespectrumofvisiblelightastheelectronschangeenergylevels. Simplyput,thesejunctionsglowwhenforwardbiased.Adiodeintentionallydesignedtoglowlikealampiscalleda<br />

light-emittingdiode,orLED.<br />

ForwardbiasedsilicondiodesgiveoffheataselectronandholesfromtheN-typeandP-type<br />

regions,respectively,recombineatthejunction.<strong>In</strong>aforwardbiasedLED,therecombinationof<br />

electronsandholesintheactiveregioninFigure3.69(c)yieldsphotons.Thisprocessisknown<br />

aselectroluminescence.Togiveoffphotons,thepotentialbarrierthroughwhichtheelectrons<br />

fallmustbehigherthanforasilicondiode.Theforwarddiodedropcanrangetoafewvoltsfor<br />

somecolorLEDs.


3.12. SPECIAL-PURPOSEDIODES 147<br />

Diodesmadefromacombinationoftheelementsgallium,arsenic,andphosphorus(called<br />

gallium-arsenide-phosphide)glowbrightred,andaresomeofthemostcommonLEDsmanufactured.<br />

ByalteringthechemicalconstituencyofthePNjunction,differentcolorsmaybe<br />

obtained.EarlygenerationsofLEDswerered,green,yellow,orange,andinfra-red,latergenerationsincludedblueandultraviolet,withvioletbeingthelatestcoloraddedtotheselection.<br />

Othercolorsmaybeobtainedbycombiningtwoormoreprimary-color(red,green,andblue)<br />

LEDstogetherinthesamepackage,sharingthesameopticallens.Thisallowedformulticolor<br />

LEDs,suchastricolorLEDs(commerciallyavailableinthe1980’s)usingredandgreen(which<br />

cancreateyellow)andlaterRGBLEDs(red,green,andblue),whichcovertheentirecolor<br />

spectrum.<br />

TheschematicsymbolforanLEDisaregulardiodeshapeinsideofacircle,withtwosmall<br />

arrowspointingaway(indicatingemittedlight),showninFigure3.69.<br />

Anode<br />

long<br />

Cathode short<br />

(a) (b)<br />

flat<br />

(c)<br />

+<br />

−<br />

p-type<br />

active region<br />

n-type<br />

substrate<br />

electron<br />

hole<br />

Figure3.69: LED,LightEmittingDiode: (a)schematicsymbol. (b)Flatsideandshortlead<br />

ofdevicecorrespondtocathode,aswellastheinternalarrangementofthecathode.(c)Cross<br />

sectionofLeddie.<br />

Thisnotationofhavingtwosmallarrowspointingawayfromthedeviceiscommontothe<br />

schematicsymbolsofalllight-emittingsemiconductordevices.Conversely,ifadeviceislightactivated(meaningthatincominglightstimulatesit),thenthesymbolwillhavetwosmall<br />

arrowspointingtowardit.LEDscansenselight.Theygenerateasmallvoltagewhenexposed<br />

tolight,muchlikeasolarcellonasmallscale. Thispropertycanbegainfullyappliedina<br />

varietyoflight-sensingcircuits.<br />

BecauseLEDsaremadeofdifferentchemicalsubstancesthansilicondiodes,theirforward<br />

voltagedropswillbedifferent.Typically,LEDshavemuchlargerforwardvoltagedropsthan<br />

rectifyingdiodes,anywherefromabout1.6voltstoover3volts,dependingonthecolor.Typical<br />

operatingcurrentforastandard-sizedLEDisaround20mA.WhenoperatinganLEDfrom<br />

aDCvoltagesourcegreaterthantheLED’sforwardvoltage,aseries-connected“dropping”<br />

resistormustbeincludedtopreventfullsourcevoltagefromdamagingtheLED.Considerthe<br />

examplecircuitinFigure3.70(a)usinga6Vsource.<br />

WiththeLEDdropping1.6volts,therewillbe4.4voltsdroppedacrosstheresistor.Sizing<br />

theresistorforanLEDcurrentof20mAisassimpleastakingitsvoltagedrop(4.4volts)and<br />

dividingbycircuitcurrent(20mA),inaccordancewithOhm’sLaw(R=E/I).Thisgivesusa<br />

figureof220 Ω. Calculatingpowerdissipationforthisresistor,wetakeitsvoltagedropand<br />

multiplybyitscurrent(P=IE),andendupwith88mW,wellwithintheratingofa1/8watt<br />

resistor. Higherbatteryvoltageswillrequirelarger-valuedroppingresistors,andpossibly


148 CHAPTER3. DIODESANDRECTIFIERS<br />

+<br />

−<br />

6 V<br />

R dropping<br />

220 Ω<br />

Red LED,<br />

V F = 1.6 V typical<br />

I F = 20 mA typical<br />

(a) (b)<br />

+<br />

−<br />

24 V<br />

R dropping<br />

1.12 kΩ<br />

Figure3.70:SettingLEDcurrentat20ma.(a)fora6Vsource,(b)fora24Vsource.<br />

higher-powerratingresistorsaswell. ConsidertheexampleinFigure??(b)forasupply<br />

voltageof24volts:<br />

Here,thedroppingresistormustbeincreasedtoasizeof1.12kΩtodrop22.4voltsat20<br />

mAsothattheLEDstillreceivesonly1.6volts. Thisalsomakesforahigherresistorpower<br />

dissipation:448mW,nearlyone-halfawattofpower!Obviously,aresistorratedfor1/8watt<br />

powerdissipationoreven1/4wattdissipationwilloverheatifusedhere.<br />

DroppingresistorvaluesneednotbepreciseforLEDcircuits. Supposeweweretousea<br />

1kΩresistorinsteadofa1.12kΩresistorinthecircuitshownabove. Theresultwouldbea<br />

slightlygreatercircuitcurrentandLEDvoltagedrop,resultinginabrighterlightfromthe<br />

LEDandslightlyreducedservicelife. Adroppingresistorwithtoomuchresistance(say,1.5<br />

kΩinsteadof1.12kΩ)willresultinlesscircuitcurrent,lessLEDvoltage,andadimmerlight.<br />

LEDsarequitetolerantofvariationinappliedpower,soyouneednotstriveforperfectionin<br />

sizingthedroppingresistor.<br />

MultipleLEDsaresometimesrequired,sayinlighting. IfLEDsareoperatedinparallel,<br />

eachmusthaveitsowncurrentlimitingresistorasinFigure??(a)toensurecurrentsdividing<br />

moreequally. However,itismoreefficienttooperateLEDsinseries(Figure3.71(b))witha<br />

singledroppingresistor.AsthenumberofseriesLEDsincreasestheseriesresistorvaluemust<br />

decreasetomaintaincurrent,toapoint.ThenumberofLEDsinseries(Vf)cannotexceedthe<br />

capabilityofthepowersupply.MultipleseriesstringsmaybeemployedasinFigure3.71(c).<br />

<strong>In</strong>spiteofequalizingthecurrentsinmultipleLEDs,thebrightnessofthedevicesmaynot<br />

matchduetovariationsintheindividualparts.Partscanbeselectedforbrightnessmatching<br />

forcriticalapplications.<br />

+<br />

−<br />

6 V<br />

(a)<br />

220 Ω +<br />

−<br />

140 Ω<br />

6 V<br />

+<br />

−<br />

(b) (c)<br />

6 V<br />

140 Ω<br />

Figure3.71:MultipleLEDs:(a)<strong>In</strong>parallel,(b)inseries,(c)series-parallel


3.12. SPECIAL-PURPOSEDIODES 149<br />

Alsobecauseoftheiruniquechemicalmakeup,LEDshavemuch,muchlowerpeak-inverse<br />

voltage(PIV)ratingsthanordinaryrectifyingdiodes. AtypicalLEDmightonlyberatedat<br />

5voltsinreverse-biasmode. Therefore,whenusingalternatingcurrenttopoweranLED,<br />

connectaprotectiverectifyingdiodeanti-parallelwiththeLEDtopreventreversebreakdown<br />

everyotherhalf-cycleasinFigure3.72(a).<br />

(a)<br />

+<br />

−<br />

24 V<br />

R dropping<br />

1.12 kΩ<br />

rectifying diode<br />

Red LED,<br />

V F = 1.6 V typical<br />

I F = 20 mA typical<br />

V R = 5 V maximum<br />

Figure3.72:DrivinganLEDwithAC<br />

Theanti-paralleldiodeinFigure3.72canbereplacedwithananti-parallelLED.Theresultingpairofanti-parallelLED’silluminateonalternatinghalf-cyclesoftheACsinewave.<br />

Thisconfigurationdraws20ma,splittingitequallybetweentheLED’sonalternatingAChalf<br />

cycles.EachLEDonlyreceives10mAduetothissharing.ThesameistrueoftheLEDantiparallelcombinationwitharectifier.TheLEDonlyreceives10ma.If20mAwasrequiredfor<br />

theLED(s),Theresistorvaluecouldbehalved.<br />

TheforwardvoltagedropofLED’sisinverselyproportionaltothewavelength(λ).Aswavelengthdecreasesgoingfrominfraredtovisiblecolorstoultraviolet,Vfincreases.<br />

Whilethis<br />

trendismostobviousinthevariousdevicesfromasinglemanufacturer,Thevoltagerangefor<br />

aparticularcolorLEDfromvariousmanufacturersvaries.Thisrangeofvoltagesisshownin<br />

Table3.2.<br />

Table3.2:OpticalandelectricalpropertiesofLED’s<br />

LED λnm(=10 −9 m) Vf(from) Vf(to)<br />

infrared 940 1.2 1.7<br />

red 660 1.5 2.4<br />

orange 602-620 2.1 2.2<br />

yellow,green 560-595 1.7 2.8<br />

white,blue,violet - 3 4<br />

ultraviolet 370 4.2 4.8<br />

Aslamps,LEDsaresuperiortoincandescentbulbsinmanyways. Firstandforemostis<br />

efficiency:LEDsoutputfarmorelightpowerperwattofelectricalinputthananincandescent<br />

lamp. Thisisasignificantadvantageifthecircuitinquestionisbattery-powered,efficiency<br />

translatingtolongerbatterylife. SecondisthefactthatLEDsarefarmorereliable,having<br />

amuchgreaterservicelifethanincandescentlamps.ThisisbecauseLEDsare“cold”devices:<br />

theyoperateatmuchcoolertemperaturesthananincandescentlampwithawhite-hotmetal<br />

filament,susceptibletobreakagefrommechanicalandthermalshock.Thirdisthehighspeed<br />

atwhichLEDsmaybeturnedonandoff. Thisadvantageisalsoduetothe“cold”operation


150 CHAPTER3. DIODESANDRECTIFIERS<br />

ofLEDs: theydon’thavetoovercomethermalinertiaintransitioningfromofftoonorvice<br />

versa.Forthisreason,LEDsareusedtotransmitdigital(on/off)informationaspulsesoflight,<br />

conductedinemptyspaceorthroughfiber-opticcable,atveryhighratesofspeed(millionsof<br />

pulsespersecond).<br />

LEDsexcelinmonochromaticlightingapplicationsliketrafficsignalsandautomotivetail<br />

lights. <strong>In</strong>candescentsareabysmalinthisapplicationsincetheyrequirefiltering,decreasing<br />

efficiency.LEDsdonotrequirefiltering.<br />

OnemajordisadvantageofusingLEDsassourcesofilluminationistheirmonochromatic<br />

(single-color)emission. Noonewantstoreadabookunderthelightofared,green,orblue<br />

LED.However,ifusedincombination,LEDcolorsmaybemixedforamorebroad-spectrum<br />

glow.AnewbroadspectrumlightsourceisthewhiteLED.Whilesmallwhitepanelindicators<br />

havebeenavailableformanyyears,illuminationgradedevicesarestillindevelopment.<br />

Table3.3:Efficiencyoflighting<br />

Lamptype Efficiencylumen/watt Lifehrs notes<br />

WhiteLED 35 100,000 costly<br />

WhiteLED,future 100 100,000 R&Dtarget<br />

<strong>In</strong>candescent 12 1000 inexpensive<br />

Halogen 15-17 2000 highqualitylight<br />

Compactfluorescent 50-100 10,000 costeffective<br />

Sodiumvapor,lp 70-200 20,000 outdoor<br />

Mercuryvapor 13-48 18,000 outdoor<br />

AwhiteLEDisablueLEDexcitingaphosphorwhichemitsyellowlight. Theblueplus<br />

yellowapproximateswhitelight.Thenatureofthephosphordeterminesthecharacteristicsof<br />

thelight.Aredphosphormaybeaddedtoimprovethequalityoftheyellowplusbluemixture<br />

attheexpenseofefficiency. Table 3.3compareswhiteilluminationLEDstoexpectedfuture<br />

devicesandotherconventionallamps. Efficiencyismeasuredinlumensoflightoutputper<br />

wattofinputpower.Ifthe50lumens/wattdevicecanbeimprovedto100lumens/watt,white<br />

LEDswillbecomparabletocompactfluorescentlampsinefficiency.<br />

LEDsingeneralhavebeenamajorsubjectofR&Dsincethe1960’s. Becauseofthisit<br />

isimpracticaltocoverallgeometries,chemistries,andcharacteristicsthathavebeencreated<br />

overthedecades. Theearlydeviceswererelativelydimandtookmoderatecurrents. TheefficiencieshavebeenimprovedinlatergenerationstothepointitishazardoustolookcloselyanddirectlyintoanilluminatedLED.Thiscanresultineyedamage,andtheLEDsonlyrequiredaminorincreaseindroppingvoltage(Vf)andcurrent.<br />

Modernhighintensitydevices<br />

havereached180lumensusing0.7Amps(82lumens/watt,LuxeonRebelseriescoolwhite),<br />

andevenhigherintensitymodelscanuseevenhighercurrentswithacorrespondingincrease<br />

inbrightness.Otherdevelopments,suchasquantumdots,arethesubjectofcurrentresearch,<br />

soexpecttoseenewthingsforthesedevicesinthefuture<br />

3.12.4 Laserdiodes<br />

Thelaserdiodeisafurtherdevelopmentupontheregularlight-emittingdiode,orLED.The<br />

term“laser”itselfisactuallyanacronym,despitethefactitsoftenwritteninlower-caseletters.


3.12. SPECIAL-PURPOSEDIODES 151<br />

“Laser”standsforLightAmplificationbyStimulatedEmissionofRadiation,andrefersto<br />

anotherstrangequantumprocesswherebycharacteristiclightemittedbyelectronsfalling<br />

fromhigh-leveltolow-levelenergystatesinamaterialstimulateotherelectronsinasubstance<br />

tomakesimilar“jumps,”theresultbeingasynchronizedoutputoflightfromthematerial.This<br />

synchronizationextendstotheactualphaseoftheemittedlight,sothatalllightwavesemitted<br />

froma“lasing”materialarenotjustthesamefrequency(color),butalsothesamephaseas<br />

eachother,sothattheyreinforceoneanotherandareabletotravelinaverytightly-confined,<br />

nondispersingbeam.Thisiswhylaserlightstayssoremarkablyfocusedoverlongdistances:<br />

eachandeverylightwavecomingfromthelaserisinstepwitheachother.<br />

(a)<br />

(b)<br />

(c)<br />

"white"<br />

light<br />

source<br />

monochromatic<br />

light<br />

source<br />

laser<br />

light<br />

source<br />

Figure3.73: (a)Whitelightofmanywavelengths. (b)Mono-chromaticLEDlight,asingle<br />

wavelength.(c)Phasecoherentlaserlight.<br />

<strong>In</strong>candescentlampsproduce“white”(mixed-frequency,ormixed-color)lightasinFigure3.73<br />

(a).RegularLEDsproducemonochromaticlight:samefrequency(color),butdifferentphases,<br />

resultinginsimilarbeamdispersioninFigure3.73(b). LaserLEDsproducecoherentlight:<br />

lightthatisbothmonochromatic(single-color)andmonophasic(single-phase),resultingin<br />

precisebeamconfinementasinFigure3.73(c).<br />

Laserlightfindswideapplicationinthemodernworld:everythingfromsurveying,where<br />

astraightandnondispersinglightbeamisveryusefulforprecisesightingofmeasurement<br />

markers,tothereadingandwritingofopticaldisks,whereonlythenarrownessofafocused<br />

laserbeamisabletoresolvethemicroscopic“pits”inthedisk’ssurfacecomprisingthebinary<br />

1’sand0’sofdigitalinformation.<br />

Somelaserdiodesrequirespecialhigh-power“pulsing”circuitstodeliverlargequantitiesof<br />

voltageandcurrentinshortbursts.Otherlaserdiodesmaybeoperatedcontinuouslyatlower<br />

power.<strong>In</strong>thecontinuouslaser,laseractionoccursonlywithinacertainrangeofdiodecurrent,<br />

necessitatingsomeformofcurrent-regulatorcircuit.Aslaserdiodesage,theirpowerrequirementsmaychange(morecurrentrequiredforlessoutputpower),butitshouldberemembered<br />

thatlow-powerlaserdiodes,likeLEDs,arefairlylong-liveddevices,withtypicalservicelives<br />

inthetensofthousandsofhours.


152 CHAPTER3. DIODESANDRECTIFIERS<br />

3.12.5 Photodiodes<br />

Aphotodiodeisadiodeoptimizedtoproduceanelectroncurrentflowinresponsetoirradiationbyultraviolet,visible,orinfraredlight.Siliconismostoftenusedtofabricatephotodiodes;<br />

though,germaniumandgalliumarsenidecanbeused. Thejunctionthroughwhichlightentersthesemiconductormustbethinenoughtopassmostofthelightontotheactiveregion<br />

(depletionregion)wherelightisconvertedtoelectronholepairs.<br />

<strong>In</strong>Figure3.74ashallowP-typediffusionintoanN-typewaferproducesaPNjunctionnear<br />

thesurfaceofthewafer. TheP-typelayerneedstobethintopassasmuchlightaspossible.<br />

AheavyN+diffusiononthebackofthewafermakescontactwithmetalization. Thetop<br />

metalizationmaybeafinegridofmetallicfingersonthetopofthewaferforlargecells. <strong>In</strong><br />

smallphotodiodes,thetopcontactmightbeasolebondwirecontactingthebareP-typesilicon<br />

top.<br />

+<br />

-<br />

top metal contact<br />

p diffusion<br />

depletion region<br />

n type<br />

n+ contact region<br />

bottom metal contact<br />

Figure3.74:Photodiode:Schematicsymbolandcrosssection.<br />

Lightenteringthetopofthephotodiodestackfalloffexponentiallyinwithdepthofthe<br />

silicon. AthintopP-typelayerallowsmostphotonstopassintothedepletionregionwhere<br />

electron-holepairsareformed.Theelectricfieldacrossthedepletionregionduetothebuiltin<br />

diodepotentialcauseselectronstobesweptintotheN-layer,holesintotheP-layer. Actually<br />

electron-holepairsmaybeformedinanyofthesemiconductorregions.However,thoseformed<br />

inthedepletionregionaremostlikelytobeseparatedintotherespectiveNandP-regions.<br />

Manyoftheelectron-holepairsformedinthePandN-regionsrecombine. Onlyafewdoso<br />

inthedepletionregion. Thus,afewelectron-holepairsintheNandP-regions,andmostin<br />

thedepletionregioncontributetophotocurrent,thatcurrentresultingfromlightfallingonthe<br />

photodiode.<br />

Thevoltageoutofaphotodiodemaybeobserved.Operationinthis photovoltaic(PV)mode<br />

isnotlinearoveralargedynamicrange,thoughitissensitiveandhaslownoiseatfrequencies<br />

lessthan100kHz.Thepreferredmodeofoperationisoftenphotocurrent(PC)modebecause<br />

thecurrentislinearlyproportionaltolightfluxoverseveraldecadesofintensity,andhigher<br />

frequencyresponsecanbeachieved.PCmodeisachievedwithreversebiasorzerobiasonthe<br />

photodiode.Acurrentamplifier(transimpedanceamplifier)shouldbeusedwithaphotodiode<br />

+<br />

-


3.12. SPECIAL-PURPOSEDIODES 153<br />

inPCmode.LinearityandPCmodeareachievedaslongasthediodedoesnotbecomeforward<br />

biased.<br />

Highspeedoperationisoftenrequiredofphotodiodes,asopposedtosolarcells. Speed<br />

isafunctionofdiodecapacitance,whichcanbeminimizedbydecreasingcellarea. Thus,a<br />

sensorforahighspeedfiberopticlinkwilluseanareanolargerthannecessary,say1mm 2 .<br />

Capacitancemayalsobedecreasedbyincreasingthethicknessofthedepletionregion,inthe<br />

manufacturingprocessorbyincreasingthereversebiasonthediode.<br />

PINdiodeThep-i-ndiodeorPINdiodeisaphotodiodewithanintrinsiclayerbetween<br />

thePandN-regionsasinFigure3.75. TheP-<strong>In</strong>trinsic-Nstructureincreasesthedistance<br />

betweenthePandNconductivelayers,decreasingcapacitance,increasingspeed.Thevolume<br />

ofthephotosensitiveregionalsoincreases,enhancingconversionefficiency. Thebandwidth<br />

canextendto10’sofgHz. PINphotodiodesarethepreferredforhighsensitivity,andhigh<br />

speedatmoderatecost.<br />

top metal contact<br />

p diffusion<br />

intrinsic region<br />

(larger depletion<br />

region)<br />

n type<br />

n+ contact region<br />

bottom metal contact<br />

+<br />

-<br />

Figure3.75: PINphotodiode: Theintrinsicregionincreasesthethicknessofthedepletion<br />

region.<br />

Avalanchephotodiode:Anavalanchephotodiode(APD)designedtooperateathighreversebiasexhibitsanelectronmultipliereffectanalogoustoaphotomultipliertube.Thereversebiascanrunfrom10’sofvoltstonearly2000V.Thehighlevelofreversebiasacceleratesphotoncreatedelectron-holepairsintheintrinsicregiontoahighenoughvelocitytofreeadditionalcarriersfromcollisionswiththecrystallattice.Thus,manyelectronsperphotonresult.<br />

ThemotivationfortheAPDistoachieveamplificationwithinthephotodiodetoovercomenoise<br />

inexternalamplifiers.Thisworkstosomeextent.However,theAPDcreatesnoiseofitsown.<br />

AthighspeedtheAPDissuperiortoaPINdiodeamplifiercombination,thoughnotforlow<br />

speedapplications.APD’sareexpensive,roughlythepriceofaphotomultipliertube.So,they<br />

areonlycompetitivewithPINphotodiodesfornicheapplications. Onesuchapplicationis<br />

singlephotoncountingasappliedtonuclearphysics.


154 CHAPTER3. DIODESANDRECTIFIERS<br />

3.12.6 Solarcells<br />

Aphotodiodeoptimizedforefficientlydeliveringpowertoaloadisthesolarcell.Itoperatesin<br />

photovoltaicmode(PV)becauseitisforwardbiasedbythevoltagedevelopedacrosstheload<br />

resistance.<br />

Monocrystallinesolarcellsaremanufacturedinaprocesssimilartosemiconductorprocessing.Thisinvolvesgrowingasinglecrystalboulefrommoltenhighpuritysilicon(P-type),<br />

though,notashighpurityasforsemiconductors.Thebouleisdiamondsawedorwiresawed<br />

intowafers.Theendsoftheboulemustbediscardedorrecycled,andsiliconislostinthesaw<br />

kerf.Sincemoderncellsarenearlysquare,siliconislostinsquaringtheboule.Cellsmaybe<br />

etchedtotexture(roughen)thesurfacetohelptraplightwithinthecell.Considerablesilicon<br />

islostinproducingthe10or15cmsquarewafers. Thesedays(2007)itiscommonforsolar<br />

cellmanufacturertopurchasethewafersatthisstagefromasuppliertothesemiconductor<br />

industry.<br />

P-typeWafersareloadedback-to-backintofusedsilicaboatsexposingonlytheoutersurface<br />

totheN-typedopantinthediffusionfurnace.Thediffusionprocessformsathinn-typelayeron<br />

thetopofthecell.Thediffusionalsoshortstheedgesofthecellfronttoback.Theperiphery<br />

mustberemovedbyplasmaetchingtounshortthecell. Silverandoraluminumpasteis<br />

screenedonthebackofthecell,andasilvergridonthefront.Thesearesinteredinafurnace<br />

forgoodelectricalcontact.(Figure3.76)<br />

Thecellsarewiredinserieswithmetalribbons. Forcharging12Vbatteries,36cellsat<br />

approximately0.5Varevacuumlaminatedbetweenglass,andapolymermetalback. The<br />

glassmayhaveatexturedsurfacetohelptraplight.<br />

top metal contact<br />

N diffusion<br />

depletion region<br />

P type wafer<br />

bottom metal<br />

contact<br />

-<br />

Figure3.76:SiliconSolarcell<br />

Theultimatecommercialhighefficiency(21.5%)singlecrystalsiliconsolarcellshaveall<br />

contactsonthebackofthecell. Theactiveareaofthecellisincreasedbymovingthetop(-)<br />

contactconductorstothebackofthecell.Thetop(-)contactsarenormallymadetotheN-type<br />

siliconontopofthecell.<strong>In</strong>Figure3.77the(-)contactsaremadetoN + diffusionsonthebottom<br />

interleavedwith(+)contacts. Thetopsurfaceistexturedtoaidintrappinglightwithinthe<br />

cell..[18]<br />

Multicyrstallinesiliconcellsstartoutasmoltensiliconcastintoarectangularmold.As<br />

+


3.12. SPECIAL-PURPOSEDIODES 155<br />

Antireflectrive coating<br />

Silicon dioxide passivation<br />

N-type diffusion<br />

P-type wafer<br />

N + diffusion<br />

- contact<br />

N + P<br />

diffusion<br />

+ diffusion<br />

+ contact<br />

- contact<br />

Figure3.77:Highefficiencysolarcellwithallcontactsontheback.AdaptedfromFigure1[18]<br />

thesiliconcools,itcrystallizesintoafewlarge(mmtocmsized)randomlyorientedcrystals<br />

insteadofasingleone.Theremainderoftheprocessisthesameasforsinglecrystalcells.The<br />

finishedcellsshowlinesdividingtheindividualcrystals,asifthecellswerecracked.Thehigh<br />

efficiencyisnotquiteashighassinglecrystalcellsduetolossesatcrystalgrainboundaries.<br />

Thecellsurfacecannotberoughenedbyetchingduetotherandomorientationofthecrystals.<br />

However,anantireflectrivecoatingimprovesefficiency.Thesecellsarecompetitiveforallbut<br />

spaceapplications.<br />

Threelayercell:Thehighestefficiencysolarcellisastackofthreecellstunedtoabsorb<br />

differentportionsofthesolarspectrum.Thoughthreecellscanbestackedatoponeanother,<br />

amonolithicsinglecrystalstructureof20semiconductorlayersismorecompact. At32%<br />

efficiency,itisnow(2007)favoredoversiliconforspaceapplication. Thehighcostprevents<br />

itfromfindingmanyearthboundapplicationsotherthanconcentratorsbasedonlensesor<br />

mirrors.<br />

<strong>In</strong>tensiveresearchhasrecentlyproducedaversionenhancedforterrestrialconcentrators<br />

at400-1000sunsand40.7%efficiency.ThisrequireseitherabiginexpensiveFresnellensor<br />

reflectorandasmallareaoftheexpensivesemiconductor. Thiscombinationisthoughttobe<br />

competitivewithinexpensivesiliconcellsforsolarpowerplants.[9][23]<br />

Metalorganicchemicalvapordeposition(MOCVD)depositsthelayersatopaP-typegermaniumsubstrate.ThetoplayersofNandP-typegalliumindiumphosphide(Ga<strong>In</strong>P)having<br />

abandgapof1.85eV,absorbsultravioletandvisiblelight. Thesewavelengthshaveenough<br />

energytoexceedthebandgap.Longerwavelengths(lowerenergy)donothaveenoughenergy<br />

tocreateelectron-holepairs,andpassonthroughtothenextlayer.Agalliumarsenidelayers<br />

havingabandgapof1.42eV,absorbsnearinfraredlight. Finallythegermaniumlayerand<br />

substrateabsorbfarinfrared.Theseriesofthreecellsproduceavoltagewhichisthesumof<br />

thevoltagesofthethreecells. Thevoltagedevelopedbyeachmaterialis0.4Vlessthanthe<br />

bandgapenergylistedinTable3.4. Forexample,forGa<strong>In</strong>P:1.8eV/e-0.4V=1.4V.Forall<br />

threethevoltageis1.4V+1.0V+0.3V=2.7V.[4]<br />

Crystallinesolarcellarrayshavealongusablelife. Manyarraysareguaranteedfor25


156 CHAPTER3. DIODESANDRECTIFIERS<br />

Table3.4:Highefficiencytriplelayersolarcell.<br />

Layer Bandgap Lightabsorbed<br />

Galliumindiumphosphide 1.8eV UV,visible<br />

Galliumarsenide 1.4eV nearinfrared<br />

Germanium 0.7eV farinfrared<br />

years,andbelievedtobegoodfor40years. Theydonotsufferinitialdegradationcompared<br />

withamorphoussilicon.<br />

Bothsingleandmulticrystallinesolarcellsarebasedonsiliconwafers.Thesiliconisboth<br />

thesubstrateandtheactivedevicelayers. Muchsiliconisconsumed. Thiskindofcellhas<br />

beenaroundfordecades,andtakesapproximately86%ofthesolarelectricmarket.Forfurther<br />

informationaboutcrystallinesolarcellsseeHonsberg.[8]<br />

Amorphoussiliconthinfilmsolarcellsusetinyamountsoftheactiverawmaterial,silicon.Approximatelyhalfthecostofconventionalcrystallinesolarcellsisthesolarcellgrade<br />

silicon. Thethinfilmdepositionprocessreducesthiscost. Thedownsideisthatefficiencyis<br />

abouthalfthatofconventionalcrystallinecells.Moreover,efficiencydegradesby15-35%upon<br />

exposuretosunlight.A7%efficientcellsoonagesto5%efficiency.Thinfilmamorphoussilicon<br />

cellsworkbetterthancrystallinecellsindimlight.Theyareputtogooduseinsolarpowered<br />

calculators.<br />

Non-siliconbasedsolarcellsmakeupabout7%ofthemarket. Thesearethin-filmpolycrystallineproducts.Variouscompoundsemiconductorsarethesubjectofresearchanddevelopment.Somenon-siliconproductsareinproduction.Generally,theefficiencyisbetterthan<br />

amorphoussilicon,butnotnearlyasgoodascrystallinesilicon.<br />

Cadmiumtellurideasapolycrystallinethinfilmonmetalorglasscanhaveahigher<br />

efficiencythanamorphoussiliconthinfilms.Ifdepositedonmetal,thatlayeristhenegative<br />

contacttothecadmiumtelluridethinfilm.ThetransparentP-typecadmiumsulfideatopthe<br />

cadmiumtellurideservesasabufferlayer.Thepositivetopcontactistransparent,electrically<br />

conductivefluorinedopedtinoxide.Theselayersmaybelaiddownonasacrificialfoilinplace<br />

oftheglassintheprocessinthefollowingpargraph. Thesacrificialfoilisremovedafterthe<br />

cellismountedtoapermanentsubstrate.<br />

AprocessfordepositingcadmiumtellurideonglassbeginswiththedepositionofN-type<br />

transparent,electricallyconducive,tinoxideonaglasssubstrate. ThenextlayerisP-type<br />

cadmiumtelluride;though,N-typeorintrinsicmaybeused. Thesetwolayersconstitutethe<br />

NPjunction.AP + (heavyP-type)layerofleadtellurideaidsinestablishingalowresistance<br />

contact.Ametallayermakesthefinalcontacttotheleadtelluride.Theselayersmaybelaid<br />

downbyvacuumdeposition,chemicalvapordeposition(CVD),screenprinting,electrodeposition,oratmosphericpressurechemicalvapordeposition(APCVD)inhelium.[10]<br />

Avariationofcadmiumtellurideismercurycadmiumtelluride. Havinglowerbulkresistanceandlowercontactresistanceimprovesefficiencyovercadmiumtelluride.<br />

Cadmium<strong>In</strong>diumGalliumdiSelenide: Amostpromisingthinfilmsolarcellatthis<br />

time(2007)ismanufacturedonateninchwiderollofflexiblepolyimide–Cadmium<strong>In</strong>dium<br />

GalliumdiSelenide(CIGS).Ithasaspectacularefficiencyof10%.Though,commercialgrade<br />

crystallinesiliconcellssurpassedthisdecadesago,CIGSshouldbecostcompetitive. The<br />

depositionprocessesareatalowenoughtemperaturetouseapolyimidepolymerasasubstrate


3.12. SPECIAL-PURPOSEDIODES 157<br />

+<br />

glass substrate<br />

n Tin oxide<br />

cadmium suflide<br />

p cadmium telluride<br />

(phosphorus doped)<br />

p+ lead telluride<br />

metal substrate<br />

metal contact<br />

Figure3.78:Cadmiumtelluridesolarcellonglassormetal.<br />

Tin oxide<br />

Zinc oxide<br />

Cadmium suflide<br />

CIGS Cadmium <strong>In</strong>dium<br />

Gallium diSelenide<br />

Molybdenum<br />

Polyimide substrate<br />

-<br />

-<br />

−<br />

+<br />

top contact<br />

N-type transparent<br />

conductor<br />

buffer layer<br />

P type<br />

bottom contact<br />

Figure3.79:Cadmium<strong>In</strong>diumGalliumdiSelenidesolarcell(CIGS)


158 CHAPTER3. DIODESANDRECTIFIERS<br />

insteadofmetalorglass. (Figure3.79)TheCIGSismanufacturedinarolltorollprocess,<br />

whichshoulddrivedowncosts. GIGScellsmayalsobeproducedbyaninherentlylowcost<br />

electrochemicalprocess.[7]<br />

• REVIEW:<br />

• Mostsolarcellsaresiliconsinglecrystalormulticrystalbecauseoftheirgoodefficiency<br />

andmoderatecost.<br />

• Lessefficientthinfilmsofvariousamorphousorpolycrystallinematerialscomprisethe<br />

restofthemarket.<br />

• Table 3.5comparesselectedsolarcells.<br />

Solarcelltype<br />

Table3.5:Solarcellproperties<br />

Maximum Practical Notes<br />

effiefficiencyciency Selenium,polycrystalline 0.7% - 1883,CharlesFritts<br />

Silicon,singlecrystal - 4% 1950’s,firstsiliconsolarcell<br />

Silicon, single crystal PERL, 25% - solarcars, cost=100xcommer-<br />

terrestrial,space cialSilicon,singlecrystal,commer-<br />

24%<br />

cialterrestrial<br />

14-17% $5-$10/peakwatt<br />

Cypress Semiconductor, Sun- 21.5%<br />

power,siliconsinglecrystal<br />

19% allcontactsoncellback<br />

Gallium <strong>In</strong>dium Phosphide/ -<br />

Gallium Arsenide/ Germanium,singlecrystal,multilayer<br />

32% Preferredforspace.<br />

Advancedterrestrialversionof -<br />

above.<br />

40.7% Usesopticalconcentrator.<br />

Silicon,multicrystalline 18.5% 15.5% -<br />

Thinfilms, - - -<br />

Silicon,amorphous 13% 5-7% Degradesinsunlight.Goodindoorsforcalculatorsorcloudy<br />

outdoors.<br />

Cadmium telluride, polycrys- 16%<br />

talline<br />

- glassormetalsubstrate<br />

Copper indium arsenide dise- 18% 10% 10 inch flexible polymer web.<br />

lenide,polycrystalline [17]<br />

Organicpolymer,100%plastic 4.5% - R&Dproject<br />

3.12.7 Varicaporvaractordiodes<br />

Avariablecapacitancediodeisknownasavaricapdiodeorasavaractor.Ifadiodeisreverse<br />

biased,aninsulatingdepletionregionformsbetweenthetwosemiconductivelayers.<strong>In</strong>many


3.12. SPECIAL-PURPOSEDIODES 159<br />

diodesthewidthofthedepletionregionmaybechangedbyvaryingthereversebias. This<br />

variesthecapacitance.Thiseffectisaccentuatedinvaricapdiodes.Theschematicsymbolsis<br />

showninFigure3.80,oneofwhichispackagedascommoncathodedualdiode.<br />

capacitance<br />

symbol voltage<br />

−<br />

+<br />

V control<br />

varicap diode<br />

C large C optional<br />

Figure3.80:Varicapdiode:Capacitancevarieswithreversebias.Thisvariesthefrequencyof<br />

aresonantnetwork.<br />

IfavaricapdiodeispartofaresonantcircuitasinFigure3.80,thefrequencymaybe<br />

variedwithacontrolvoltage,Vcontrol.Alargecapacitance,lowXc,inserieswiththevaricap<br />

preventsVcontrolfrombeingshortedoutbyinductorL.Aslongastheseriescapacitorislarge,<br />

ithasminimaleffectonthefrequencyofresonantcircuit. Coptionalmaybeusedtosetthe<br />

centerresonantfrequency.Vcontrolcanthenvarythefrequencyaboutthispoint.Notethatthe<br />

requiredactivecircuitrytomaketheresonantnetworkoscillateisnotshown.Foranexample<br />

ofavaricapdiodetunedAMradioreceiversee“electronicvaricapdiodetuning,”(page428)<br />

Somevaricapdiodesmaybereferredtoasabrupt,hyperabrupt,orsuperhyperabrupt.<br />

Theserefertothechangeinjunctioncapacitancewithchangingreversebiasasbeingabrupt<br />

orhyper-abrupt,orsuperhyperabrupt. Thesediodesofferarelativelylargechangeincapacitance.<br />

Thisisusefulwhenoscillatorsorfiltersaresweptoveralargefrequencyrange.<br />

Varyingthebiasofabruptvaricapsovertheratedlimits,changescapacitancebya4:1ratio,<br />

hyperabruptby10:1,superhyperabruptby20:1.<br />

Varactordiodesmaybeusedinfrequencymultipliercircuits. See“Practicalanalogsemiconductorcircuits,”Varactormultiplier<br />

3.12.8 Snapdiode<br />

Thesnapdiode,alsoknownasthesteprecoverydiodeisdesignedforuseinhighratiofrequencymultipliersupto20gHz.Whenthediodeisforwardbiased,chargeisstoredinthePN<br />

junction. Thischargeisdrawnoutasthediodeisreversebiased. Thediodelookslikealow<br />

impedancecurrentsourceduringforwardbias.Whenreversebiasisapplieditstilllookslike<br />

alowimpedancesourceuntilallthechargeiswithdrawn.Itthen“snaps”toahighimpedance<br />

statecausingavoltageimpulse,richinharmonics. Anapplicationsisacombgenerator,a<br />

generatorofmanyharmonics.Moderatepower2xand4xmultipliersareanotherapplication.<br />

3.12.9 PINdiodes<br />

APINdiodeisafastlowcapacitanceswitchingdiode.DonotconfuseaPINswitchingdiode<br />

withaPINphotodiode(page153).APINdiodeismanufacturedlikeasiliconswitchingdiode<br />

L


160 CHAPTER3. DIODESANDRECTIFIERS<br />

withanintrinsicregionaddedbetweenthePNjunctionlayers.Thisyieldsathickerdepletion<br />

region,theinsulatinglayeratthejunctionofareversebiaseddiode. Thisresultsinlower<br />

capacitancethanareversebiasedswitchingdiode.<br />

top metal contact<br />

p+ contact region<br />

p diffusion<br />

intrinsic region<br />

(larger depletion<br />

region)<br />

n type<br />

n+ contact region<br />

bottom metal contact<br />

Figure3.81:Pindiode:Crosssectionalignedwithschematicsymbol.<br />

PINdiodesareusedinplaceofswitchingdiodesinradiofrequency(RF)applications,for<br />

example,aT/Rswitch(page431). The1n40071000V,1Ageneralpurposepowerdiodeis<br />

reportedtobeusableasaPINswitchingdiode.Thehighvoltageratingofthisdiodeisachieved<br />

bytheinclusionofanintrinsiclayerdividingthePNjunction.Thisintrinsiclayermakesthe<br />

1n4007aPINdiode.AnotherPINdiodeapplicationisastheantennaswitch(page431)fora<br />

directionfinderreceiver.<br />

PINdiodesserveasvariableresistorswhentheforwardbiasisvaried.Onesuchapplication<br />

isthevoltagevariableattenuator(page431).ThelowcapacitancecharacteristicofPINdiodes,<br />

extendsthefrequencyflatresponseoftheattenuatortomicrowavefrequencies.<br />

3.12.10 IMPATTdiode<br />

¡TheIMPactAvalancheTransitTimediodeisahighpowerradiofrequency(RF)generator<br />

operatingfrom3to100gHz.IMPATTdiodesarefabricatedfromsilicon,galliumarsenide,or<br />

siliconcarbide.<br />

AnIMPATTdiodeisreversebiasedabovethebreakdownvoltage. Thehighdopinglevels<br />

produceathindepletionregion. Theresultinghighelectricfieldrapidlyacceleratescarriers<br />

whichfreeothercarriersincollisionswiththecrystallattice. HolesaresweptintotheP+<br />

region.ElectronsdrifttowardtheNregions.Thecascadingeffectcreatesanavalanchecurrent<br />

whichincreasesevenasvoltageacrossthejunctiondecreases. Thepulsesofcurrentlagthe<br />

voltagepeakacrossthejunction.A“negativeresistance”effectinconjunctionwitharesonant<br />

circuitproducesoscillationsathighpowerlevels(highforsemiconductors).<br />

TheresonantcircuitintheschematicdiagramofFigure3.82isthelumpedcircuitequivalentofawaveguidesection,wheretheIMPATTdiodeismounted.DCreversebiasisapplied


3.12. SPECIAL-PURPOSEDIODES 161<br />

+ −<br />

choke<br />

resonant circuit<br />

drift<br />

avalanche<br />

Figure3.82:IMPATTdiode:OscillatorcircuitandheavilydopedPandNlayers.<br />

throughachokewhichkeepsRFfrombeinglostinthebiassupply.Thismaybeasectionof<br />

waveguideknownasabiasTee.LowpowerRADARtransmittersmayuseanIMPATTdiode<br />

asapowersource.Theyaretoonoisyforuseinthereceiver.[20]<br />

3.12.11 Gunndiode<br />

Diode,gunnGunndiode<br />

AgunndiodeissolelycomposedofN-typesemiconductor. Assuch,itisnotatruediode.<br />

Figure3.83showsalightlydopedN−layersurroundedbyheavilydopedN+layers.Avoltage<br />

appliedacrosstheN-typegalliumarsenidegunndiodecreatesastrongelectricfieldacrossthe<br />

lightlydopedN − layer.<br />

+ −<br />

choke<br />

resonant circuit<br />

N +<br />

N -<br />

N +<br />

I<br />

1<br />

N -<br />

N +<br />

N +<br />

P +<br />

threshold<br />

Figure3.83: Gunndiode: OscillatorcircuitandcrosssectionofonlyN-typesemiconductor<br />

diode.<br />

Asvoltageisincreased,conductionincreasesduetoelectronsinalowenergyconduction<br />

band.Asvoltageisincreasedbeyondthethresholdofapproximately1V,electronsmovefrom<br />

thelowerconductionbandtothehigherenergyconductionbandwheretheynolongercontributetoconduction.<strong>In</strong>otherwords,asvoltageincreases,currentdecreases,anegativeresistancecondition.Theoscillationfrequencyisdeterminedbythetransittimeoftheconduction<br />

electrons,whichisinverselyrelatedtothethicknessoftheN − layer.<br />

Thefrequencymaybecontrolledtosomeextentbyembeddingthegunndiodeintoaresonantcircuit.ThelumpedcircuitequivalentshowninFigure3.83isactuallyacoaxialtrans-<br />

V


162 CHAPTER3. DIODESANDRECTIFIERS<br />

missionlineorwaveguide.Galliumarsenidegunndiodesareavailableforoperationfrom10<br />

to200gHzat5to65mwpower.Gunndiodesmayalsoserveasamplifiers.[19][14]<br />

3.12.12 Shockleydiode<br />

TheShockleydiodeisa4-layerthyristorusedtotriggerlargerthyristors. Itonlyconductsin<br />

onedirectionwhentriggeredbyavoltageexceedingthebreakovervoltage,about20V.See<br />

“Thyristors,”TheShockleyDiode.Thebidirectionalversioniscalledadiac.See“Thyristors,”<br />

TheDIAC.<br />

3.12.13 Constant-currentdiodes<br />

Aconstant-currentdiode,alsoknownasacurrent-limitingdiode,orcurrent-regulatingdiode,<br />

doesexactlywhatitsnameimplies:itregulatescurrentthroughittosomemaximumlevel.<br />

TheconstantcurrentdiodeisatwoterminalversionofaJFET.Ifwetrytoforcemorecurrent<br />

throughaconstant-currentdiodethanitscurrent-regulationpoint,itsimply“fightsback”by<br />

droppingmorevoltage.IfweweretobuildthecircuitinFigure3.84(a)andplotdiodecurrent<br />

againstdiodevoltage,we’dgetagraphthatrisesatfirstandthenlevelsoffatthecurrent<br />

regulationpointasinFigure3.84(b).<br />

R dropping<br />

constant-current<br />

diode<br />

I diode<br />

(a) (b)<br />

Figure3.84:Constantcurrentdiode:(a)Testcircuit,(b)currentvsvoltagecharacteristic.<br />

Oneapplicationforaconstant-currentdiodeistoautomaticallylimitcurrentthroughan<br />

LEDorlaserdiodeoverawiderangeofpowersupplyvoltagesasinFigure??.<br />

Ofcourse,theconstant-currentdiode’sregulationpointshouldbechosentomatchtheLED<br />

orlaserdiode’soptimumforwardcurrent.Thisisespeciallyimportantforthelaserdiode,not<br />

somuchfortheLED,asregularLEDstendtobemoretolerantofforwardcurrentvariations.<br />

Anotherapplicationisinthechargingofsmallsecondary-cellbatteries,whereaconstant<br />

chargingcurrentleadstopredictablechargingtimes. Ofcourse,largesecondary-cellbattery<br />

banksmightalsobenefitfromconstant-currentcharging,butconstant-currentdiodestendto<br />

beverysmalldevices,limitedtoregulatingcurrentsinthemilliamprange.<br />

V diode


3.13. OTHERDIODETECHNOLOGIES 163<br />

3.13 Otherdiodetechnologies<br />

3.13.1 SiCdiodes<br />

Diodesmanufacturedfromsiliconcarbidearecapableofhightemperatureoperationto400 o C.<br />

Thiscouldbeinahightemperatureenvironment: downholeoilwelllogging,gasturbine<br />

engines,autoengines. Or,operationinamoderateenvironmentathighpowerdissipation.<br />

NuclearandspaceapplicationsarepromisingasSiCis100timesmoreresistanttoradiation<br />

comparedwithsilicon. SiCisabetterconductorofheatthananymetal. Thus,SiCisbetter<br />

thansiliconatconductingawayheat.BreakdownvoltageisseveralkV.SiCpowerdevicesare<br />

expectedtoreduceelectricalenergylossesinthepowerindustrybyafactorof100.<br />

3.13.2 Polymerdiode<br />

Diodesbasedonorganicchemicalshavebeenproducedusinglowtemperatureprocesses.Hole<br />

richandelectronrichconductivepolymersmaybeinkjetprintedinlayers. MostoftheresearchanddevelopmentisoftheorganicLED(OLED).However,developmentofinexpensiveprintableorganicRFID(radiofrequencyidentification)tagsisongoing.<strong>In</strong>thiseffort,apentaceneorganicrectifierhasbeenoperatedat50MHz.Rectificationto800MHzisadevelopmentgoal.Aninexpensivemetalinsulatormetal(MIM)diodeactinglikeaback-to-backzener<br />

diodeclipperhasbeendelveloped.Also,atunneldiodelikedevicehasbeenfabricated.<br />

3.14 SPICEmodels<br />

TheSPICEcircuitsimulationprogramprovidesformodelingdiodesincircuitsimulations.<br />

Thediodemodelisbasedoncharacterizationofindividualdevicesasdescribedinaproduct<br />

datasheetandmanufacturingprocesscharacteristicsnotlisted. Someinformationhasbeen<br />

extractedfroma1N4004datasheetinFigure3.85.<br />

Thediodestatementbeginswithadiodeelementnamewhichmustbeginwith“d”plus<br />

optionalcharacters. Examplediodeelementnamesinclude:d1,d2,dtest,da,db,d101. Two<br />

nodenumbersspecifytheconnectionoftheanodeandcathode,respectively,toothercomponents.<br />

Thenodenumbersarefollowedbyamodelname,referringtoasubsequent“.model”<br />

statement.<br />

Themodelstatementlinebeginswith“.model,” followedbythemodelnamematching<br />

oneormorediodestatements. Next,a“d”indicatesadiodeisbeingmodeled. TheremainderofthemodelstatementisalistofoptionaldiodeparametersoftheformParameter-<br />

Name=ParameterValue. NoneareusedinExamplebelow. Example2hassomeparameters<br />

defined.Foralistofdiodeparameters,seeTable3.6.<br />

General form: d[name] [anode] [cathode] [modelname]<br />

.model ([modelname] d [parmtr1=x] [parmtr2=y] . . .)<br />

Example: d1 1 2 mod1<br />

.model mod1 d


164 CHAPTER3. DIODESANDRECTIFIERS<br />

I F instaneous forward current (I)<br />

10<br />

1.0<br />

0.1<br />

0.01<br />

0.925<br />

0.6 0.8 1.0 1.2 1.4 1.6<br />

VF instaneous forward voltage (V)<br />

Max avg rectified current I O (A) 1<br />

Peak repetitive reverse voltage V RRM (V) 400<br />

Peak forward surge current IFSM (A) 30<br />

Total capacitance CT (pF) 15<br />

C J junction capacitance (pF)<br />

100<br />

30<br />

10<br />

1<br />

1 10<br />

VR reverse voltage (V)<br />

100<br />

Forward voltage drop V F (V) 1<br />

@ I F (A) 1<br />

Max reverse current I R (µΑ) 5<br />

Figure3.85:Datasheet1N4004excerpt,after[6].<br />

@ V R (V) 400<br />

Example2: D2 1 2 Da1N4004<br />

.model Da1N4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u CJO=30<br />

M=0.333 N=2)<br />

TheeasiestapproachtotakeforaSPICEmodelisthesameasforadatasheet: consult<br />

themanufacturer’swebsite.Table3.7liststhemodelparametersforsomeselecteddiodes.A<br />

fallbackstrategyistobuildaSPICEmodelfromthoseparameterslistedonthedatasheet.<br />

Athirdstrategy,notconsideredhere,istotakemeasurementsofanactualdevice. Then,<br />

calculate,compareandadjusttheSPICEparameterstothemeasurements.<br />

Ifdiodeparametersarenotspecifiedasin“Example”modelabove,theparameterstakeon<br />

thedefaultvalueslistedinTable3.6andTable3.7. Thesedefaultsmodelintegratedcircuit<br />

diodes. ThesearecertainlyadequateforpreliminaryworkwithdiscretedevicesFormore<br />

criticalwork,useSPICEmodelssuppliedbythemanufacturer[5],SPICEvendors,andother<br />

sources.[16]<br />

Otherwise,derivesomeoftheparametersfromthedatasheet.Firstselectavalueforspice<br />

parameterNbetween1and2. Itisrequiredforthediodeequation(n). Massobrio[1]pp9,<br />

recommends”..n,theemissioncoefficientisusuallyabout2.”<strong>In</strong>Table3.7,weseethatpower<br />

rectifiers1N3891(12A),and10A04(10A)bothuseabout2.Thefirstfourinthetablearenot<br />

relevantbecausetheyareschottky,schottky,germanium,andsiliconsmallsignal,respectively.<br />

Thesaturationcurrent,IS,isderivedfromthediodeequation,avalueof(VD,ID)onthegraph<br />

inFigure3.85,andN=2(ninthediodeequation).


3.14. SPICEMODELS 165<br />

Table3.6:DiodeSPICEparameters<br />

Symbol Name Parameter Units Default<br />

IS IS Saturationcurrent(diodeequa- A<br />

tion)<br />

1E-14<br />

RS RS Parsiticresistance(seriesresis- Ω<br />

tance)<br />

0<br />

n N Emissioncoefficient,1to2 - 1<br />

τD TT Transittime s 0<br />

CD(0) CJO Zero-biasjunctioncapacitance F 0<br />

φ0 VJ Junctionpotential V 1<br />

m M Junctiongradingcoefficient - 0.5<br />

- - 0.33forlinearlygradedjunc- -<br />

tion<br />

-<br />

- - 0.5forabruptjunction - -<br />

Eg EG Activationenergy: eV 1.11<br />

- - Si:1.11 - -<br />

- - Ge:0.67 - -<br />

- - Schottky:0.69 - -<br />

pi XTI IStemperatureexponent - 3.0<br />

- - pnjunction:3.0 - -<br />

- - Schottky:2.0 - -<br />

kf KF Flickernoisecoefficient - 0<br />

af AF Flickernoiseexponent - 1<br />

FC FC Forwardbiasdepletioncapaci- -<br />

tancecoefficient<br />

0.5<br />

BV BV Reversebreakdownvoltage V ∞<br />

IBV IBV Reversebreakdowncurrent A 1E-3<br />

Table3.7:SPICEparametersforselecteddiodes;sk=schottkyGe=germanium;elsesilicon.<br />

Part IS RS N TT CJO M VJ EG XTI BV IBV<br />

Default 1E-14 0 1 0 0 0.5 1 1.11 3 ∞ 1m<br />

1N5711sk 315n 2.8 2.03 1.44n 2.00p 0.333 - 0.69 2 70 10u<br />

1N5712sk 680p 12 1.003 50p 1.0p 0.5 0.6 0.69 2 20 -<br />

1N34Ge 200p 84m 2.19 144n 4.82p 0.333 0.75 0.67 - 60 15u<br />

1N4148 35p 64m 1.24 5.0n 4.0p 0.285 0.6 - - 75 -<br />

1N3891 63n 9.6m 2 110n 114p 0.255 0.6 - - 250 -<br />

10A0410A 844n 2.06m 2.06 4.32u 277p 0.333 - - - 400 10u<br />

1N4004 76.9n 42.2m 1.45 4.32u 39.8p 0.333 - - - 400 5u<br />

1A<br />

1N4004<br />

datasheet<br />

18.8n - 2 - 30p 0.333 - - - 400 5u


166 CHAPTER3. DIODESANDRECTIFIERS<br />

ID = IS(e VD/nVT − 1)<br />

VT = 26 mV at 25 o C n = 2.0 VD = 0.925 V at 1 A from graph<br />

1 A = IS(e (0.925V )/(2)(26mV ) − 1)<br />

IS = 18.8E-9<br />

ThenumericalvaluesofIS=18.8nandN=2areenteredinlastlineofTable3.7forcomparisontothemanufacturersmodelfor1N4004,whichisconsiderablydifferent.RSdefaultsto0<br />

fornow.Itwillbeestimatedlater.TheimportantDCstaticparametersareN,IS,andRS.<br />

Rashid[15]suggeststhatTT, τD,thetransittime,beapproximatedfromthereverserecoverystoredchargeQRR,adatasheetparameter(notavailableonourdatasheet)andIF,<br />

forwardcurrent.<br />

ID = IS(e VD/nVT − 1)<br />

τD = QRR/IF<br />

WetaketheTT=0defaultforlackofQRR.ThoughitwouldbereasonabletotakeTTfora<br />

similarrectifierlikethe10A04at4.32u. The1N3891TTisnotavalidchoicebecauseitisa<br />

fastrecoveryrectifier.CJO,thezerobiasjunctioncapacitanceisestimatedfromtheVRvsCJ<br />

graphinFigure3.85.Thecapacitanceatthenearesttozerovoltageonthegraphis30pFat<br />

1V.Ifsimulatinghighspeedtransientresponse,asinswitchingregulatorpowersupplies,TT<br />

andCJOparametersmustbeprovided.<br />

ThejunctiongradingcoefficientMisrelatedtothedopingprofileofthejunction.Thisisnot<br />

adatasheetitem.Thedefaultis0.5foranabruptjunction.WeoptforM=0.333corresponding<br />

toalinearlygradedjunction.ThepowerrectifiersinTable3.7uselowervaluesforMthan0.5.<br />

WetakethedefaultvaluesforVJandEG.ManymorediodesuseVJ=0.6thanshownin<br />

Table3.7.Howeverthe10A04rectifierusesthedefault,whichweuseforour1N4004model<br />

(Da1N4001inTable3.6).UsethedefaultEG=1.11forsilicondiodesandrectifiers.Table3.6<br />

listsvaluesforschottkyandgermaniumdiodes.TaketheXTI=3,thedefaultIStemperature<br />

coefficientforsilicondevices.SeeTable3.6forXTIforschottkydiodes.<br />

Theabbreviateddatasheet,Figure3.85,listsIR=5µA@VR=400V,correspondingto<br />

IBV=5uandBV=400respectively.The1n4004SPICEparametersderivedfromthedatasheet<br />

arelistedinthelastlineofTable3.7forcomparisontothemanufacturer’smodellistedabove<br />

it.BVisonlynecessaryifthesimulationexceedsthereversebreakdownvoltageofthediode,<br />

asisthecaseforzenerdiodes.IBV,reversebreakdowncurrent,isfrequentlyomitted,butmay<br />

beenteredifprovidedwithBV.<br />

Figure3.86showsacircuittocomparethemanufacturersmodel,themodelderivedfrom<br />

thedatasheet,andthedefaultmodelusingdefaultparameters.Thethreedummy0Vsources<br />

arenecessaryfordiodecurrentmeasurement.The1Vsourceissweptfrom0to1.4Vin0.2<br />

mVsteps.See.DCstatementinthenetlistinTable3.8.DI1N4004isthemanufacturer’sdiode<br />

model,Da1N4004isourderiveddiodemodel.


3.14. SPICEMODELS 167<br />

+ − 1V<br />

0<br />

1<br />

D1 D2<br />

+ −0V<br />

Figure3.86:SPICEcircuitforcomparisonofmanufacturermodel(D1),calculateddatasheet<br />

model(D2),anddefaultmodel(D3).<br />

Table3.8:SPICEnetlistparameters:(D1)DI1N4004manufacturer’smodel,(D2)Da1N40004<br />

datasheetderived,(D3)defaultdiodemodel.<br />

*SPICE circuit from XCircuit v3.20<br />

D1 1 5 DI1N4004<br />

V1 5 0 0<br />

D2 1 3 Da1N4004<br />

V2 3 0 0<br />

D3 1 4 Default<br />

V3 4 0 0<br />

V4 1 0 1<br />

.DC V4 0 1400mV 0.2m<br />

.model Da1N4004 D (IS=18.8n RS=0 BV=400 IBV=5.00u CJO=30<br />

+M=0.333 N=2.0 TT=0)<br />

.MODEL DI1N4004 D (IS=76.9n RS=42.0m BV=400 IBV=5.00u CJO=39.8p<br />

+M=0.333 N=1.45 TT=4.32u)<br />

.MODEL Default D<br />

.end<br />

+ −0V<br />

D3<br />

+ −0V


168 CHAPTER3. DIODESANDRECTIFIERS<br />

WecomparethethreemodelsinFigure3.87.andtothedatasheetgraphdatainTable3.9.<br />

VDisthediodevoltageversusthediodecurrentsforthemanufacturer’smodel,ourcalculated<br />

datasheetmodelandthedefaultdiodemodel. Thelastcolumn“1N4004graph”isfromthe<br />

datasheetvoltageversuscurrentcurveinFigure3.85whichweattempttomatch.Comparison<br />

ofthecurrentsforthethreemodeltothelastcolumnshowsthatthedefaultmodelisgoodat<br />

lowcurrents,themanufacturer’smodelisgoodathighcurrents,andourcalculateddatasheet<br />

modelisbestofallupto1A.Agreementisalmostperfectat1AbecausetheIScalculationis<br />

basedondiodevoltageat1A.Ourmodelgrosslyoverstatescurrentabove1A.<br />

Figure3.87:Firsttrialofmanufacturermodel,calculateddatasheetmodel,anddefaultmodel.<br />

ThesolutionistoincreaseRSfromthedefaultRS=0. ChangingRSfrom0to8minthe<br />

datasheetmodelcausesthecurvetointersect10A(notshown)atthesamevoltageasthe<br />

manufacturer’smodel.<strong>In</strong>creasingRSto28.6mshiftsthecurvefurthertotherightasshownin<br />

Figure3.88.Thishastheeffectofmorecloselymatchingourdatasheetmodeltothedatasheet<br />

graph(Figure3.85).Table3.10showsthatthecurrent1.224470e+01Aat1.4Vmatchesthe<br />

graphat12A.However,thecurrentat0.925Vhasdegradedfrom1.096870e+00aboveto<br />

7.318536e-01.<br />

Suggestedreaderexercise:decreaseNsothatthecurrentatVD=0.925Visrestoredto1<br />

A.Thismayincreasethecurrent(12.2A)atVD=1.4VrequiringanincreaseofRStodecrease<br />

currentto12A.<br />

Zenerdiode:Therearetwoapproachestomodelingazenerdiode:settheBVparameter<br />

tothezenervoltageinthemodelstatement,ormodelthezenerwithasubcircuitcontaininga<br />

diodeclampersettothezenervoltage. Anexampleofthefirstapproachsetsthebreakdown<br />

voltageBVto15forthe1n446915Vzenerdiodemodel(IBVoptional):<br />

.model D1N4469 D ( BV=15 IBV=17m )


3.14. SPICEMODELS 169<br />

Table3.9:Comparisonofmanufacturermodel,calculateddatasheetmodel,anddefaultmodel<br />

to1N4004datasheetgraphofVvsI.<br />

model model model<br />

1N4004<br />

index<br />

graph<br />

VD manufacturer datasheet default<br />

3500<br />

0.01<br />

7.000000e-01 1.612924e+00 1.416211e-02 5.674683e-03<br />

4001<br />

0.13<br />

8.002000e-01 3.346832e+00 9.825960e-02 2.731709e-01<br />

4500<br />

0.7<br />

9.000000e-01 5.310740e+00 6.764928e-01 1.294824e+01<br />

4625<br />

1.0<br />

9.250000e-01 5.823654e+00 1.096870e+00 3.404037e+01<br />

5000<br />

2.0<br />

1.000000e-00 7.395953e+00 4.675526e+00 6.185078e+02<br />

5500<br />

3.3<br />

1.100000e+00 9.548779e+00 3.231452e+01 2.954471e+04<br />

6000<br />

5.3<br />

1.200000e+00 1.174489e+01 2.233392e+02 1.411283e+06<br />

6500<br />

8.0<br />

1.300000e+00 1.397087e+01 1.543591e+03 6.741379e+07<br />

7000 1.400000e+00 1.621861e+01 1.066840e+04 3.220203e+09 12.<br />

Figure3.88:Secondtrialtoimprovecalculateddatasheetmodelcomparedwithmanufacturer<br />

modelanddefaultmodel.


170 CHAPTER3. DIODESANDRECTIFIERS<br />

Table3.10:ChangingDa1N4004modelstatementRS=0toRS=28.6mdecreasesthecurrentat<br />

VD=1.4Vto12.2A.<br />

.model Da1N4004 D (IS=18.8n RS=28.6m BV=400 IBV=5.00u CJO=30<br />

+M=0.333 N=2.0 TT=0)<br />

model model 1N4001<br />

index VD manufacturer datasheet graph<br />

3505 7.010000e-01 1.628276e+00 1.432463e-02 0.01<br />

4000 8.000000e-01 3.343072e+00 9.297594e-02 0.13<br />

4500 9.000000e-01 5.310740e+00 5.102139e-01 0.7<br />

4625 9.250000e-01 5.823654e+00 7.318536e-01 1.0<br />

5000 1.000000e-00 7.395953e+00 1.763520e+00 2.0<br />

5500 1.100000e+00 9.548779e+00 3.848553e+00 3.3<br />

6000 1.200000e+00 1.174489e+01 6.419621e+00 5.3<br />

6500 1.300000e+00 1.397087e+01 9.254581e+00 8.0<br />

7000 1.400000e+00 1.621861e+01 1.224470e+01 12.<br />

Thesecondapproachmodelsthezenerwithasubcircuit.ClamperD1andVZinFigure??<br />

modelsthe15Vreversebreakdownvoltageofa1N4477Azenerdiode.DiodeDRaccountsfor<br />

theforwardconductionofthezenerinthesubcircuit.<br />

A<br />

K<br />

1<br />

2<br />

3<br />

D1<br />

+ − 13.7V<br />

.SUBCKT DI-1N4744A<br />

1 2<br />

* Terminals A K<br />

D1 1 2 DF<br />

DZ 3 1 DR<br />

VZ 2 3 13.7<br />

.MODEL DF D (<br />

IS=27.5p RS=0.620<br />

N=1.10<br />

+ CJO=78.3p<br />

VJ=1.00 M=0.330<br />

TT=50.1n )<br />

.MODEL DR D (<br />

IS=5.49f RS=0.804<br />

N=1.77 )<br />

.ENDS<br />

Figure3.89:Zenerdiodesubcircuitusesclamper(D1andVZ)tomodelzener.<br />

Tunneldiode:Atunneldiodemaybemodeledbyapairoffieldeffecttransistors(JFET)<br />

inaSPICEsubcircuit.[11]Anoscillatorcircuitisalsoshowninthisreference.<br />

Gunndiode:AGunndiodemayalsobemodeledbyapairofJFET’s.[12]Thisreference<br />

showsamicrowaverelaxationoscillator.<br />

• REVIEW:


BIBLIOGRAPHY 171<br />

• DiodesaredescribedinSPICEbyadiodecomponentstatementreferringto.modelstatement.The.modelstatementcontainsparametersdescribingthediode.Ifparametersare<br />

notprovided,themodeltakesondefaultvalues.<br />

• StaticDCparametersincludeN,IS,andRS.Reversebreakdownparameters:BV,IBV.<br />

• AccuratedynamictimingrequiresTTandCJOparameters<br />

• Modelsprovidedbythemanufacturerarehighlyrecommended.<br />

Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

JeredWierzbicki(December2002): Pointedouterrorindiodeequation–Boltzmann’s<br />

constantshownincorrectly.<br />

Bibliography<br />

[1] PaoloAntognetti, GiuseppeMassobrio“SemiconductorDeviceModelingwithSPICE,”<br />

ISBN0-07-002107-4,1988<br />

[2] ATCO Newsletter, <strong>Volume</strong> 14 No. 1, January 1997 at<br />

http://www.atco.tv/homepage/vol14 1.pdf<br />

[3] D.A.Brunner,etal,,“ACockcroft-WaltonBasefortheFEU84-3PhotomultiplierTube,”<br />

DepartmentofPhysics,<strong>In</strong>dianaUniversity,Bloomington,<strong>In</strong>diana47405January1998,<br />

at http://dustbunny.physics.indiana.edu/˜paul/cwbase/<br />

[4] BrentonBurnet,“TheBasicPhysicsandDesignof<strong>III</strong>-VMultijunctionSolar,”NREL,at<br />

photochemistry.epfl.ch/EDEY/NREL.pdf<br />

[5] Diodes<strong>In</strong>corporated http://www.diodes.com/products/spicemodels/index.php<br />

[6] Diodes <strong>In</strong>corporated, “1N4001/L - 1N4007/l, 1.0A rectifier,” at<br />

http://www.diodes.com/datasheets/ds28002.pdf<br />

[7] “Solar firm gains $30 million in funding,” EE Times, 07/12/2007 at<br />

http://www.eetimes.com/news/latest/showArticle.jhtml?articleID=201001129<br />

[8] Christiana Honsberg, Stuart Bowden, “Photovoltaics CDROM,” at<br />

http://www.udel.edu/igert/pvcdrom/<br />

[9] R. R. King, et. al., “40% efficient metamorphic Ga<strong>In</strong>P/Ga<strong>In</strong>As/Ge multijunction<br />

solar cells”, Applied Physics Letters, 90, 183516 (2007) , at<br />

http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&<br />

id=APPLAB000090000018183516000001&idtype=cvips&gifs=yes


172 CHAPTER3. DIODESANDRECTIFIERS<br />

[10] KimWMitchell,“Methodofmakingathinfilmcadmiumtelluridesolarcell,”United<br />

StatesPatent4734381,http://www.freepatentsonline.com/4734381.html<br />

[11] KarlH.Muller“RF/MicrowaveAnalysis”<strong>In</strong>tusoftNewsletter#51,November1997,at<br />

http://www.intusoft.com/nlhtm/nl51.htm<br />

[12] “A Gunn Diode Relaxation Oscillator,” <strong>In</strong>tusoft Newsletter #52, February 1998, at<br />

http://www.intusoft.com/nlhtm/nl52.htm<br />

[13] OAK Solar., “Technical LED’s LED color chart,” at<br />

http://www.oksolar.com/led/led color chart.htm<br />

[14] IanPoole,“SummaryoftheGunnDiode,”at http://www.radio-electronics.com/<br />

nfo/data/semicond/gunndiode/gunndiode.php<br />

[15] MuhammadH.Rashid,“SPICEforPowerElectronicsand<strong>Electric</strong>Power,”ISBN0-13-<br />

030420-4,1993<br />

[16] “SPICE model index,” V2.16 30-Nov-05, at http://homepages.which.net/<br />

˜paul.hills/<strong>Circuits</strong>/Spice/Model<strong>In</strong>dex.html<br />

[17] NeilThomas,“AdvancingCIGSSolarCellManufacturingTechnology,”April6,2007at<br />

http://www.renewableenergyaccess.com/rea/news/story?id=48033&src=rss<br />

[18] P.J. Verlinden, Sinton, K. Wickham, R.M. Swanson Crane, “BACKSIDE-<br />

CONTACT SILICON SOLAR CELLS WITH IMPROVED EFFICIENCY.” at<br />

http://www.sunpowercorp.com/techpapers/EPSEC97.pdf<br />

[19] Christian Wolff, “Radar Principles,” Radar components, Gunn diodes at at<br />

http://www.radartutorial.eu/17.bauteile/bt12.en.htm<br />

[20] L. Yuan, M. R. Melloch, J. A. Cooper, K. J. Webb,“Silicon Carbide IM-<br />

PATT Oscillators for High-Power Microwave and Millimeter-Wave Generation,”<br />

IEEE/Cornell Conference on Advanced Concepts in High Speed<br />

Semiconductor Devices and <strong>Circuits</strong>, Ithaca, NY, August 7-9, 2000. at<br />

http://www.ecn.purdue.edu/WBG/Device Research/IMPATT Diodes/<strong>In</strong>dex.html<br />

[21] Alan Seabaugh, Zhaoming HU, Qingmin LIU, David Rink, Jinli<br />

Wang, “Silicon Based Tunnel Diodes and <strong>In</strong>tegrated <strong>Circuits</strong>,” at<br />

http://www.nd.edu/˜nano/0a1003QFDpaper v1.pdf<br />

[22] S.M.Sze,G.Gibbons,“Avalanchebreakdownvoltagesofabruptandlinearlygradedp-n<br />

junctionsinGe,Si,GaAs,andGaP,”Appl.Phys.Lett.,8,111(1966).<br />

[23] LisaZyga,“40%efficientsolarcellstobeusedforsolarelectricity”,PhysOrgForum,at<br />

http://www.physorg.com/news99904887.html


Chapter4<br />

BIPOLARJUNCTION<br />

TRANSISTORS<br />

Contents<br />

4.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174<br />

4.2 Thetransistorasaswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176<br />

4.3 Metercheckofatransistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . .179<br />

4.4 Activemodeoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183<br />

4.5 Thecommon-emitteramplifier . . . . . . . . . . . . . . . . . . . . . . . . . .189<br />

4.6 Thecommon-collectoramplifier . . . . . . . . . . . . . . . . . . . . . . . . .202<br />

4.7 Thecommon-baseamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . .210<br />

4.8 Thecascodeamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218<br />

4.9 Biasingtechniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222<br />

4.10 Biasingcalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235<br />

4.10.1 BaseBias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235<br />

4.10.2 Collector-feedbackbias . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236<br />

4.10.3 Emitter-bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237<br />

4.10.4 Voltagedividerbias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243<br />

4.11 <strong>In</strong>putandoutputcoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247<br />

4.12 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256<br />

4.13 Amplifierimpedances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263<br />

4.14 Currentmirrors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264<br />

4.15 Transistorratingsandpackages . . . . . . . . . . . . . . . . . . . . . . . . .269<br />

4.16 BJTquirks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271<br />

4.16.1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272<br />

4.16.2 Temperaturedrift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272<br />

4.16.3 Thermalrunaway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274<br />

4.16.4 Junctioncapacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274<br />

4.16.5 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275<br />

173


174 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

4.16.6 Thermalmismatch(problemwithparallelingtransistors).........275<br />

4.16.7 Highfrequencyeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278<br />

4.1 <strong>In</strong>troduction<br />

Theinventionofthebipolartransistorin1948usheredinarevolutioninelectronics.Technical<br />

featspreviouslyrequiringrelativelylarge,mechanicallyfragile,power-hungryvacuumtubes<br />

weresuddenlyachievablewithtiny,mechanicallyrugged,power-thriftyspecksofcrystalline<br />

silicon.Thisrevolutionmadepossiblethedesignandmanufactureoflightweight,inexpensive<br />

electronicdevicesthatwenowtakeforgranted.Understandinghowtransistorsfunctionisof<br />

paramountimportancetoanyoneinterestedinunderstandingmodernelectronics.<br />

Myintenthereistofocusasexclusivelyaspossibleonthepracticalfunctionandapplication<br />

ofbipolartransistors,ratherthantoexplorethequantumworldofsemiconductortheory.Discussionsofholesandelectronsarebetterlefttoanotherchapterinmyopinion.<br />

HereIwant<br />

toexplorehowtousethesecomponents,notanalyzetheirintimateinternaldetails. Idon’t<br />

meantodownplaytheimportanceofunderstandingsemiconductorphysics,butsometimes<br />

anintensefocusonsolid-statephysicsdetractsfromunderstandingthesedevices’functions<br />

onacomponentlevel. <strong>In</strong>takingthisapproach,however,Iassumethatthereaderpossesses<br />

acertainminimumknowledgeofsemiconductors: thedifferencebetween“P”and“N”doped<br />

semiconductors,thefunctionalcharacteristicsofaPN(diode)junction,andthemeaningsof<br />

theterms“reversebiased”and“forwardbiased.”Iftheseconceptsareuncleartoyou,itisbest<br />

torefertoearlierchaptersinthisbookbeforeproceedingwiththisone.<br />

Abipolartransistorconsistsofathree-layer“sandwich”ofdoped(extrinsic)semiconductor<br />

materials,eitherP-N-PinFigure4.1(b)orN-P-Nat(d).Eachlayerformingthetransistorhas<br />

aspecificname,andeachlayerisprovidedwithawirecontactforconnectiontoacircuit.The<br />

schematicsymbolsareshowninFigure4.1(a)and(d).<br />

collector<br />

base<br />

emitter<br />

collector<br />

base<br />

P<br />

N<br />

P<br />

collector<br />

base<br />

emitter<br />

collector<br />

base<br />

(a) emitter (b) (c) emitter (d)<br />

Figure4.1:BJTtransistor:(a)PNPschematicsymbol,(b)physicallayout(c)NPNsymbol,(d)<br />

layout.<br />

ThefunctionaldifferencebetweenaPNPtransistorandanNPNtransistoristheproper<br />

biasing(polarity)ofthejunctionswhenoperating.Foranygivenstateofoperation,thecurrent<br />

directionsandvoltagepolaritiesforeachkindoftransistorareexactlyoppositeeachother.<br />

N<br />

P<br />

N


4.1. INTRODUCTION 175<br />

Bipolartransistorsworkascurrent-controlledcurrentregulators.<strong>In</strong>otherwords,transistorsrestricttheamountofcurrentpassedaccordingtoasmaller,controllingcurrent.Themain<br />

currentthatiscontrolledgoesfromcollectortoemitter,orfromemittertocollector,depending<br />

onthetypeoftransistoritis(PNPorNPN,respectively).Thesmallcurrentthatcontrolsthe<br />

maincurrentgoesfrombasetoemitter,orfromemittertobase,onceagaindependingonthe<br />

kindoftransistoritis(PNPorNPN,respectively).Accordingtothestandardsofsemiconductor<br />

symbology,thearrowalwayspointsagainstthedirectionofelectronflow.(Figure4.2)<br />

B<br />

C<br />

E<br />

= small, controlling current = large, controlled current<br />

Figure4.2:Smallelectronbasecurrentcontrolslargecollectorelectroncurrentflowingagainst<br />

emitterarrow.<br />

Bipolartransistorsarecalledbipolarbecausethemainflowofelectronsthroughthemtakes<br />

placeintwotypesofsemiconductormaterial:PandN,asthemaincurrentgoesfromemitter<br />

tocollector(orviceversa).<strong>In</strong>otherwords,twotypesofchargecarriers–electronsandholes–<br />

comprisethismaincurrentthroughthetransistor.<br />

Asyoucansee,thecontrollingcurrentandthecontrolledcurrentalwaysmeshtogether<br />

throughtheemitterwire,andtheirelectronsalwaysflowagainstthedirectionofthetransistor’sarrow.<br />

Thisisthefirstandforemostruleintheuseoftransistors:allcurrentsmustbe<br />

goingintheproperdirectionsforthedevicetoworkasacurrentregulator. Thesmall,controllingcurrentisusuallyreferredtosimplyasthebasecurrentbecauseitistheonlycurrent<br />

thatgoesthroughthebasewireofthetransistor.Conversely,thelarge,controlledcurrentis<br />

referredtoasthecollectorcurrentbecauseitistheonlycurrentthatgoesthroughthecollector<br />

wire. Theemittercurrentisthesumofthebaseandcollectorcurrents,incompliancewith<br />

Kirchhoff’sCurrentLaw.<br />

Nocurrentthroughthebaseofthetransistor,shutsitofflikeanopenswitchandprevents<br />

currentthroughthecollector.Abasecurrent,turnsthetransistoronlikeaclosedswitchand<br />

allowsaproportionalamountofcurrentthroughthecollector. Collectorcurrentisprimarily<br />

limitedbythebasecurrent,regardlessoftheamountofvoltageavailabletopushit.Thenext<br />

sectionwillexploreinmoredetailtheuseofbipolartransistorsasswitchingelements.<br />

• REVIEW:<br />

• Bipolartransistorsaresonamedbecausethecontrolledcurrentmustgothroughtwo<br />

typesofsemiconductormaterial:PandN.Thecurrentconsistsofbothelectronandhole<br />

B<br />

C<br />

E


176 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

flow,indifferentpartsofthetransistor.<br />

• BipolartransistorsconsistofeitheraP-N-PoranN-P-Nsemiconductor“sandwich”structure.<br />

• ThethreeleadsofabipolartransistorarecalledtheEmitter,Base,andCollector.<br />

• Transistorsfunctionascurrentregulatorsbyallowingasmallcurrenttocontrolalarger<br />

current.Theamountofcurrentallowedbetweencollectorandemitterisprimarilydeterminedbytheamountofcurrentmovingbetweenbaseandemitter.<br />

• <strong>In</strong>orderforatransistortoproperlyfunctionasacurrentregulator,thecontrolling(base)<br />

currentandthecontrolled(collector)currentsmustbegoingintheproperdirections:<br />

meshingadditivelyattheemitterandgoingagainsttheemitterarrowsymbol.<br />

4.2 Thetransistorasaswitch<br />

Becauseatransistor’scollectorcurrentisproportionallylimitedbyitsbasecurrent,itcanbe<br />

usedasasortofcurrent-controlledswitch. Arelativelysmallflowofelectronssentthrough<br />

thebaseofthetransistorhastheabilitytoexertcontroloveramuchlargerflowofelectrons<br />

throughthecollector.<br />

Supposewehadalampthatwewantedtoturnonandoffwithaswitch. Suchacircuit<br />

wouldbeextremelysimpleasinFigure4.3(a).<br />

Forthesakeofillustration,let’sinsertatransistorinplaceoftheswitchtoshowhowitcan<br />

controltheflowofelectronsthroughthelamp.Rememberthatthecontrolledcurrentthrough<br />

atransistormustgobetweencollectorandemitter. Sinceitisthecurrentthroughthelamp<br />

thatwewanttocontrol,wemustpositionthecollectorandemitterofourtransistorwherethe<br />

twocontactsoftheswitchwere. Wemustalsomakesurethatthelamp’scurrentwillmove<br />

againstthedirectionoftheemitterarrowsymboltoensurethatthetransistor’sjunctionbias<br />

willbecorrectasinFigure4.3(b).<br />

switch<br />

+ +<br />

NPN<br />

transistor<br />

PNP<br />

transistor<br />

(a) (b) (c)<br />

Figure4.3:(a)mechanicalswitch,(b)NPNtransistorswitch,(c)PNPtransistorswitch.<br />

APNPtransistorcouldalsohavebeenchosenforthejob.ItsapplicationisshowninFigure4.3(c).<br />

ThechoicebetweenNPNandPNPisreallyarbitrary. Allthatmattersisthattheproper<br />

currentdirectionsaremaintainedforthesakeofcorrectjunctionbiasing(electronflowgoing<br />

againstthetransistorsymbol’sarrow).<br />

+


4.2. THETRANSISTORASASWITCH 177<br />

GoingbacktotheNPNtransistorinourexamplecircuit,wearefacedwiththeneedto<br />

addsomethingmoresothatwecanhavebasecurrent.Withoutaconnectiontothebasewire<br />

ofthetransistor,basecurrentwillbezero,andthetransistorcannotturnon,resultingina<br />

lampthatisalwaysoff. RememberthatforanNPNtransistor,basecurrentmustconsistof<br />

electronsflowingfromemittertobase(againsttheemitterarrowsymbol,justlikethelamp<br />

current).Perhapsthesimplestthingtodowouldbetoconnectaswitchbetweenthebaseand<br />

collectorwiresofthetransistorasinFigure4.4(a).<br />

switch<br />

(a) (b)<br />

+<br />

switch<br />

Figure4.4:Transistor:(a)cutoff,lampoff;(b)saturated,lampon.<br />

IftheswitchisopenasinFigure4.4(a),thebasewireofthetransistorwillbeleft“floating”<br />

(notconnectedtoanything)andtherewillbenocurrentthroughit.<strong>In</strong>thisstate,thetransistor<br />

issaidtobecutoff.IftheswitchisclosedasinFigure4.4(b),electronswillbeabletoflowfrom<br />

theemitterthroughtothebaseofthetransistor,throughtheswitch,uptotheleftsideofthe<br />

lamp,backtothepositivesideofthebattery.Thisbasecurrentwillenableamuchlargerflow<br />

ofelectronsfromtheemitterthroughtothecollector,thuslightingupthelamp.<strong>In</strong>thisstate<br />

ofmaximumcircuitcurrent,thetransistorissaidtobesaturated.<br />

Ofcourse,itmayseempointlesstouseatransistorinthiscapacitytocontrolthelamp.<br />

Afterall,we’restillusingaswitchinthecircuit,aren’twe? Ifwe’restillusingaswitchto<br />

controlthelamp–ifonlyindirectly–thenwhat’sthepointofhavingatransistortocontrol<br />

thecurrent?Whynotjustgobacktoouroriginalcircuitandusetheswitchdirectlytocontrol<br />

thelampcurrent?<br />

Twopointscanbemadehere,actually.Firstisthefactthatwhenusedinthismanner,the<br />

switchcontactsneedonlyhandlewhatlittlebasecurrentisnecessarytoturnthetransistoron;<br />

thetransistoritselfhandlesmostofthelamp’scurrent.Thismaybeanimportantadvantage<br />

iftheswitchhasalowcurrentrating:asmallswitchmaybeusedtocontrolarelativelyhighcurrentload.<br />

Moreimportantly,thecurrent-controllingbehaviorofthetransistorenablesus<br />

tousesomethingcompletelydifferenttoturnthelamponoroff.ConsiderFigure4.5,wherea<br />

pairofsolarcellsprovides1Vtoovercomethe0.7VBEofthetransistortocausebasecurrent<br />

flow,whichinturncontrolsthelamp.<br />

Or,wecoulduseathermocouple(manyconnectedinseries)toprovidethenecessarybase<br />

currenttoturnthetransistoroninFigure4.6.<br />

Evenamicrophone(Figure4.7)withenoughvoltageandcurrent(fromanamplifier)output<br />

couldturnthetransistoron,provideditsoutputisrectifiedfromACtoDCsothattheemitterbasePNjunctionwithinthetransistorwillalwaysbeforward-biased:<br />

Thepointshouldbequiteapparentbynow: anysufficientsourceofDCcurrentmaybe<br />

usedtoturnthetransistoron,andthatsourceofcurrentonlyneedbeafractionofthecurrent<br />

+


178 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

solar<br />

cell<br />

thermocouple<br />

Figure4.5:Solarcellservesaslightsensor.<br />

+<br />

-<br />

source of<br />

heat<br />

Figure4.6:Asinglethermocoupleprovideslessthan40mV.Manyinseriescouldproducein<br />

excessofthe0.7VtransistorVBEtocausebasecurrentflowandconsequentcollectorcurrent<br />

tothelamp.<br />

source of<br />

sound<br />

microphone<br />

Figure4.7: AmplifiedmicrophonesignalisrectifiedtoDCtobiasthebaseofthetransistor<br />

providingalargercollectorcurrent.


4.3. METERCHECKOFATRANSISTOR 179<br />

neededtoenergizethelamp.Hereweseethetransistorfunctioningnotonlyasaswitch,but<br />

asatrueamplifier: usingarelativelylow-powersignaltocontrolarelativelylargeamount<br />

ofpower. Pleasenotethattheactualpowerforlightingupthelampcomesfromthebattery<br />

totherightoftheschematic.Itisnotasthoughthesmallsignalcurrentfromthesolarcell,<br />

thermocouple,ormicrophoneisbeingmagicallytransformedintoagreateramountofpower.<br />

Rather,thosesmallpowersourcesaresimplycontrollingthebattery’spowertolightupthe<br />

lamp.<br />

• REVIEW:<br />

• TransistorsmaybeusedasswitchingelementstocontrolDCpowertoaload. The<br />

switched(controlled)currentgoesbetweenemitterandcollector;thecontrollingcurrent<br />

goesbetweenemitterandbase.<br />

• Whenatransistorhaszerocurrentthroughit,itissaidtobeinastateofcutoff(fully<br />

nonconducting).<br />

• Whenatransistorhasmaximumcurrentthroughit,itissaidtobeinastateofsaturation<br />

(fullyconducting).<br />

4.3 Metercheckofatransistor<br />

Bipolartransistorsareconstructedofathree-layersemiconductorsandwich,eitherPNPor<br />

NPN.Assuch,transistorsregisterastwodiodesconnectedback-to-backwhentestedwitha<br />

multimeter’sresistanceordiodecheckfunctionasillustratedinFigurebelow.Lowresistance<br />

readingsonthebasewiththeblacknegative(-)leadscorrespondtoanN-typematerialinthe<br />

baseofaPNPtransistor. Onthesymbol,theN-typematerialis”pointed”tobythearrowof<br />

thebase-emitterjunction,whichisthebaseforthisexample.TheP-typeemittercorresponds<br />

totheotherendofthearrowofthebase-emitterjunction,theemitter. Thecollectorisvery<br />

similartotheemitter,andisalsoaP-typematerialofthePNjunction.<br />

V A<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

V A<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

base<br />

collector<br />

emitter<br />

V A<br />

V A<br />

Figure4.8: PNPtransistormetercheck: (a)forwardB-E,B-C,resistanceislow;(b)reverse<br />

B-E,B-C,resistanceis ∞.<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

base<br />

collector<br />

emitter


180 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

HereI’massumingtheuseofamultimeterwithonlyasinglecontinuityrange(resistance)<br />

functiontocheckthePNjunctions.Somemultimetersareequippedwithtwoseparatecontinuitycheckfunctions:resistanceand“diodecheck,”eachwithitsownpurpose.Ifyourmeter<br />

hasadesignated“diodecheck”function,usethatratherthanthe“resistance”range,andthe<br />

meterwilldisplaytheactualforwardvoltageofthePNjunctionandnotjustwhetherornotit<br />

conductscurrent.<br />

Meterreadingswillbeexactlyopposite,ofcourse,foranNPNtransistor,withbothPN<br />

junctionsfacingtheotherway.Lowresistancereadingswiththered(+)leadonthebaseisthe<br />

“opposite”conditionfortheNPNtransistor.<br />

Ifamultimeterwitha“diodecheck”functionisusedinthistest,itwillbefoundthat<br />

theemitter-basejunctionpossessesaslightlygreaterforwardvoltagedropthanthecollectorbasejunction.Thisforwardvoltagedifferenceisduetothedisparityindopingconcentration<br />

betweentheemitterandcollectorregionsofthetransistor:theemitterisamuchmoreheavily<br />

dopedpieceofsemiconductormaterialthanthecollector,causingitsjunctionwiththebaseto<br />

produceahigherforwardvoltagedrop.<br />

Knowingthis,itbecomespossibletodeterminewhichwireiswhichonanunmarkedtransistor.Thisisimportantbecausetransistorpackaging,unfortunately,isnotstandardized.All<br />

bipolartransistorshavethreewires,ofcourse,butthepositionsofthethreewiresontheactual<br />

physicalpackagearenotarrangedinanyuniversal,standardizedorder.<br />

Supposeatechnicianfindsabipolartransistorandproceedstomeasurecontinuitywitha<br />

multimetersetinthe“diodecheck”mode.Measuringbetweenpairsofwiresandrecordingthe<br />

valuesdisplayedbythemeter,thetechnicianobtainsthedatainFigure4.9.<br />

1<br />

2 3<br />

• Metertouchingwire1(+)and2(-):“OL”<br />

• Metertouchingwire1(-)and2(+):“OL”<br />

• Metertouchingwire1(+)and3(-):0.655V<br />

• Metertouchingwire1(-)and3(+):“OL”<br />

• Metertouchingwire2(+)and3(-):0.621V<br />

• Metertouchingwire2(-)and3(+):“OL”<br />

Figure4.9: Unknownbipolartransistor. Whichterminalsareemitter,base,andcollector?<br />

Ω-meterreadingsbetweenterminals.<br />

Theonlycombinationsoftestpointsgivingconductingmeterreadingsarewires1and3<br />

(redtestleadon1andblacktestleadon3),andwires2and3(redtestleadon2andblacktest<br />

leadon3). Thesetworeadingsmustindicateforwardbiasingoftheemitter-to-basejunction<br />

(0.655volts)andthecollector-to-basejunction(0.621volts).<br />

Nowwelookfortheonewirecommontobothsetsofconductivereadings. Itmustbethe<br />

baseconnectionofthetransistor,becausethebaseistheonlylayerofthethree-layerdevice<br />

commontobothsetsofPNjunctions(emitter-baseandcollector-base). <strong>In</strong>thisexample,that<br />

wireisnumber3,beingcommontoboththe1-3andthe2-3testpointcombinations.<strong>In</strong>both


4.3. METERCHECKOFATRANSISTOR 181<br />

thosesetsofmeterreadings,theblack(-)metertestleadwastouchingwire3,whichtellsus<br />

thatthebaseofthistransistorismadeofN-typesemiconductormaterial(black=negative).<br />

Thus,thetransistorisaPNPwithbaseonwire3,emitteronwire1andcollectoronwire2as<br />

describedinFigure4.10.<br />

1<br />

Emitter<br />

2 3<br />

Collector Base<br />

• EandChighR:1(+)and2(-):“OL”<br />

• CandEhighR:1(-)and2(+):“OL”<br />

• EandBforward:1(+)and3(-):0.655V<br />

• EandBreverse:1(-)and3(+):“OL”<br />

• CandBforward:2(+)and3(-):0.621V<br />

• CandBreverse:2(-)and3(+):“OL”<br />

Figure4.10:BJTterminalsidentifiedby Ω-meter.<br />

Pleasenotethatthebasewireinthisexampleisnotthemiddleleadofthetransistor,asone<br />

mightexpectfromthethree-layer“sandwich”modelofabipolartransistor.Thisisquiteoften<br />

thecase,andtendstoconfusenewstudentsofelectronics.Theonlywaytobesurewhichlead<br />

iswhichisbyametercheck,orbyreferencingthemanufacturer’s“datasheet”documentation<br />

onthatparticularpartnumberoftransistor.<br />

Knowingthatabipolartransistorbehavesastwoback-to-backdiodeswhentestedwitha<br />

conductivitymeterishelpfulforidentifyinganunknowntransistorpurelybymeterreadings.<br />

Itisalsohelpfulforaquickfunctionalcheckofthetransistor.Ifthetechnicianweretomeasurecontinuityinanymorethantwooranylessthantwoofthesixtestleadcombinations,<br />

heorshewouldimmediatelyknowthatthetransistorwasdefective(orelsethatitwasn’ta<br />

bipolartransistorbutrathersomethingelse–adistinctpossibilityifnopartnumberscanbe<br />

referencedforsureidentification!). However,the“twodiode”modelofthetransistorfailsto<br />

explainhoworwhyitactsasanamplifyingdevice.<br />

Tobetterillustratethisparadox,let’sexamineoneofthetransistorswitchcircuitsusingthe<br />

physicaldiagraminFigure4.11ratherthantheschematicsymboltorepresentthetransistor.<br />

ThiswaythetwoPNjunctionswillbeeasiertosee.<br />

Agrey-coloreddiagonalarrowshowsthedirectionofelectronflowthroughtheemitter-base<br />

junction.Thispartmakessense,sincetheelectronsareflowingfromtheN-typeemittertothe<br />

P-typebase:thejunctionisobviouslyforward-biased.However,thebase-collectorjunctionis<br />

anothermatterentirely. Noticehowthegrey-coloredthickarrowispointinginthedirection<br />

ofelectronflow(up-wards)frombasetocollector.WiththebasemadeofP-typematerialand<br />

thecollectorofN-typematerial,thisdirectionofelectronflowisclearlybackwardstothedirectionnormallyassociatedwithaPNjunction!<br />

AnormalPNjunctionwouldn’tpermitthis<br />

“backward”directionofflow,atleastnotwithoutofferingsignificantopposition. However,a<br />

saturatedtransistorshowsverylittleoppositiontoelectrons,allthewayfromemittertocollector,asevidencedbythelamp’sillumination!


182 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

solar<br />

cell<br />

N<br />

P<br />

N<br />

collector<br />

base<br />

emitter<br />

Figure4.11:Asmallbasecurrentflowingintheforwardbiasedbase-emitterjunctionallowsa<br />

largecurrentflowthroughthereversebiasedbase-collectorjunction.<br />

Clearlythen,somethingisgoingonherethatdefiesthesimple“two-diode”explanatory<br />

modelofthebipolartransistor.WhenIwasfirstlearningabouttransistoroperation,Itriedto<br />

constructmyowntransistorfromtwoback-to-backdiodes,asinFigure4.12.<br />

solar<br />

cell<br />

no light!<br />

no current!<br />

Figure4.12:Apairofback-to-backdiodesdon’tactlikeatransistor!<br />

Mycircuitdidn’twork,andIwasmystified. Howeverusefulthe“twodiode”description<br />

ofatransistormightbefortestingpurposes,itdoesn’texplainhowatransistorbehavesasa<br />

controlledswitch.<br />

Whathappensinatransistoristhis:thereversebiasofthebase-collectorjunctionprevents<br />

collectorcurrentwhenthetransistorisincutoffmode(thatis,whenthereisnobasecurrent).<br />

Ifthebase-emitterjunctionisforwardbiasedbythecontrollingsignal,thenormally-blocking<br />

actionofthebase-collectorjunctionisoverriddenandcurrentispermittedthroughthecollector,despitethefactthatelectronsaregoingthe“wrongway”throughthatPNjunction.This<br />

actionisdependentonthequantumphysicsofsemiconductorjunctions,andcanonlytake<br />

placewhenthetwojunctionsareproperlyspacedandthedopingconcentrationsofthethree<br />

layersareproperlyproportioned. Twodiodeswiredinseriesfailtomeetthesecriteria;the<br />

topdiodecannever“turnon”whenitisreversedbiased,nomatterhowmuchcurrentgoes<br />

throughthebottomdiodeinthebasewireloop.See(page??)formoredetails.<br />

Thatdopingconcentrationsplayacrucialpartinthespecialabilitiesofthetransistoris<br />

furtherevidencedbythefactthatcollectorandemitterarenotinterchangeable. Ifthetransistorismerelyviewedastwoback-to-backPNjunctions,ormerelyasaplainN-P-NorP-N-Psandwichofmaterials,itmayseemasthougheitherendofthetransistorcouldserveascollec-<br />

+


4.4. ACTIVEMODEOPERATION 183<br />

tororemitter.This,however,isnottrue.Ifconnected“backwards”inacircuit,abase-collector<br />

currentwillfailtocontrolcurrentbetweencollectorandemitter.Despitethefactthatboththe<br />

emitterandcollectorlayersofabipolartransistorareofthesamedopingtype(eitherNorP),<br />

collectorandemitteraredefinitelynotidentical!<br />

Currentthroughtheemitter-basejunctionallowscurrentthroughthereverse-biasedbasecollectorjunction.Theactionofbasecurrentcanbethoughtofas“openingagate”forcurrent<br />

throughthecollector.Morespecifically,anygivenamountofemitter-to-basecurrentpermitsa<br />

limitedamountofbase-to-collectorcurrent.Foreveryelectronthatpassesthroughtheemitterbasejunctionandonthroughthebasewire,acertain,numberofelectronspassthroughthe<br />

base-collectorjunctionandnomore.<br />

<strong>In</strong>thenextsection,thiscurrent-limitingofthetransistorwillbeinvestigatedinmoredetail.<br />

• REVIEW:<br />

• Testedwithamultimeterinthe“resistance”or“diodecheck”modes,atransistorbehaves<br />

liketwoback-to-backPN(diode)junctions.<br />

• Theemitter-basePNjunctionhasaslightlygreaterforwardvoltagedropthanthecollectorbasePNjunction,becauseofheavierdopingoftheemittersemiconductorlayer.<br />

• Thereverse-biasedbase-collectorjunctionnormallyblocksanycurrentfromgoingthrough<br />

thetransistorbetweenemitterandcollector.However,thatjunctionbeginstoconductif<br />

currentisdrawnthroughthebasewire. Basecurrentmaybethoughtofas“openinga<br />

gate”foracertain,limitedamountofcurrentthroughthecollector.<br />

4.4 Activemodeoperation<br />

Whenatransistorisinthefully-offstate(likeanopenswitch),itissaidtobecutoff. Conversely,whenitisfullyconductivebetweenemitterandcollector(passingasmuchcurrentthroughthecollectorasthecollectorpowersupplyandloadwillallow),itissaidtobesaturated.<br />

Thesearethetwomodesofoperationexploredthusfarinusingthetransistorasa<br />

switch.<br />

However,bipolartransistorsdon’thavetoberestrictedtothesetwoextrememodesofoperation.Aswelearnedintheprevioussection,basecurrent“opensagate”foralimitedamount<br />

ofcurrentthroughthecollector. Ifthislimitforthecontrolledcurrentisgreaterthanzero<br />

butlessthanthemaximumallowedbythepowersupplyandloadcircuit,thetransistorwill<br />

“throttle”thecollectorcurrentinamodesomewherebetweencutoffandsaturation.Thismode<br />

ofoperationiscalledtheactivemode.<br />

Anautomotiveanalogyfortransistoroperationisasfollows:cutoffistheconditionofno<br />

motiveforcegeneratedbythemechanicalpartsofthecartomakeitmove.<strong>In</strong>cutoffmode,the<br />

brakeisengaged(zerobasecurrent),preventingmotion(collectorcurrent).Activemodeisthe<br />

automobilecruisingataconstant,controlledspeed(constant,controlledcollectorcurrent)as<br />

dictatedbythedriver.Saturationtheautomobiledrivingupasteephillthatpreventsitfrom<br />

goingasfastasthedriverwishes. <strong>In</strong>otherwords,a“saturated”automobileisonewiththe<br />

acceleratorpedalpushedallthewaydown(basecurrentcallingformorecollectorcurrentthan<br />

canbeprovidedbythepowersupply/loadcircuit).


184 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Let’ssetupacircuitforSPICEsimulationtodemonstratewhathappenswhenatransistor<br />

isinitsactivemodeofoperation.(Figure4.13)<br />

Current<br />

source<br />

I 1<br />

1<br />

Q 1<br />

V ammeter<br />

2 3<br />

0 V<br />

0 0 0<br />

V 1<br />

bipolar transistor<br />

simulation<br />

i1 0 1 dc 20u<br />

q1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 npn<br />

.dc v1 0 2 0.05<br />

.plot dc<br />

i(vammeter)<br />

.end<br />

Figure4.13:Circuitfor“activemode”SPICEsimulation,andnetlist.<br />

“Q”isthestandardletterdesignationforatransistorinaschematicdiagram,justas“R”<br />

isforresistorand“C”isforcapacitor. <strong>In</strong>thiscircuit,wehaveanNPNtransistorpowered<br />

byabattery(V1)andcontrolledbycurrentthroughacurrentsource(I1). Acurrentsource<br />

isadevicethatoutputsaspecificamountofcurrent,generatingasmuchoraslittlevoltage<br />

acrossitsterminalstoensurethatexactamountofcurrentthroughit. Currentsourcesare<br />

notoriouslydifficulttofindinnature(unlikevoltagesources,whichbycontrastattemptto<br />

maintainaconstantvoltage,outputtingasmuchoraslittlecurrentinthefulfillmentofthat<br />

task),butcanbesimulatedwithasmallcollectionofelectroniccomponents.Asweareabout<br />

tosee,transistorsthemselvestendtomimictheconstant-currentbehaviorofacurrentsource<br />

intheirabilitytoregulatecurrentatafixedvalue.<br />

<strong>In</strong>theSPICEsimulation,we’llsetthecurrentsourceataconstantvalueof20 µA,then<br />

varythevoltagesource(V1)overarangeof0to2voltsandmonitorhowmuchcurrentgoes<br />

throughit. The“dummy”battery(Vammeter)inFigure4.13withitsoutputof0voltsserves<br />

merelytoprovideSPICEwithacircuitelementforcurrentmeasurement.<br />

Theconstantbasecurrentof20 µAsetsacollectorcurrentlimitof2mA,exactly100times<br />

asmuch. Noticehowflatthecurveisin(Figure4.15)forcollectorcurrentovertherangeof<br />

batteryvoltagefrom0to2volts. Theonlyexceptiontothisfeaturelessplotisatthevery<br />

beginning,wherethebatteryincreasesfrom0voltsto0.25volts.There,thecollectorcurrent<br />

increasesrapidlyfrom0ampstoitslimitof2mA.<br />

Let’sseewhathappensifwevarythebatteryvoltageoverawiderrange,thistimefrom0<br />

to50volts.We’llkeepthebasecurrentsteadyat20 µA.(Figure4.15)<br />

Sameresult!ThecollectorcurrentinFigure4.15holdsabsolutelysteadyat2mA,although<br />

thebattery(v1)voltagevariesallthewayfrom0to50volts.Itwouldappearfromoursimulationthatcollector-to-emittervoltagehaslittleeffectovercollectorcurrent,exceptatverylow<br />

levels(justabove0volts). Thetransistorisactingasacurrentregulator,allowingexactly2<br />

mAthroughthecollectorandnomore.


4.4. ACTIVEMODEOPERATION 185<br />

Figure4.14:ASweepingcollectorvoltage0to2Vwithbasecurrentconstantat20 µAyields<br />

constant2mAcollectorcurrentinthesaturationregion.<br />

bipolar transistor<br />

simulation<br />

i1 0 1 dc 20u<br />

q1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 npn<br />

.dc v1 0 50 2<br />

.plot dc<br />

i(vammeter)<br />

.end<br />

Figure4.15:Sweepingcollectorvoltage0to50Vwithbasecurrentconstantat20 µAyields<br />

constant2mAcollectorcurrent.


186 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Nowlet’sseewhathappensifweincreasethecontrolling(I1)currentfrom20 µAto75<br />

µA,onceagainsweepingthebattery(V1)voltagefrom0to50voltsandgraphingthecollector<br />

currentinFigure4.16.<br />

bipolar transistor<br />

simulation<br />

i1 0 1 dc 75u<br />

q1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 npn<br />

.dc v1 0 50 2 i1<br />

15u 75u 15u<br />

.plot dc<br />

i(vammeter)<br />

.end<br />

Figure4.16:Sweepingcollectorvoltage0to50V(.dcv10502)withbasecurrentconstantat<br />

75 µAyieldsconstant7.5mAcollectorcurrent.Othercurvesaregeneratedbycurrentsweep<br />

(i115u75u15u)inDCanalysisstatement(.dcv10502i115u75u15u).<br />

Notsurprisingly,SPICEgivesusasimilarplot:aflatline,holdingsteadythistimeat7.5<br />

mA–exactly100timesthebasecurrent–overtherangeofbatteryvoltagesfromjustabove<br />

0voltsto50volts.Itappearsthatthebasecurrentisthedecidingfactorforcollectorcurrent,<br />

theV1batteryvoltagebeingirrelevantaslongasitisaboveacertainminimumlevel.<br />

Thisvoltage/currentrelationshipisentirelydifferentfromwhatwe’reusedtoseeingacross<br />

aresistor.Witharesistor,currentincreaseslinearlyasthevoltageacrossitincreases.Here,<br />

withatransistor,currentfromemittertocollectorstayslimitedatafixed,maximumvalueno<br />

matterhowhighthevoltageacrossemitterandcollectorincreases.<br />

Oftenitisusefultosuperimposeseveralcollectorcurrent/voltagegraphsfordifferentbase<br />

currentsonthesamegraphasinFigure4.17.Acollectionofcurveslikethis–onecurveplotted<br />

foreachdistinctlevelofbasecurrent–foraparticulartransistoriscalledthetransistor’s<br />

characteristiccurves:<br />

Eachcurveonthegraphreflectsthecollectorcurrentofthetransistor,plottedoverarange<br />

ofcollector-to-emittervoltages,foragivenamountofbasecurrent.Sinceatransistortendsto<br />

actasacurrentregulator,limitingcollectorcurrenttoaproportionsetbythebasecurrent,itis<br />

usefultoexpressthisproportionasastandardtransistorperformancemeasure. Specifically,<br />

theratioofcollectorcurrenttobasecurrentisknownastheBetaratio(symbolizedbythe<br />

Greekletter β):


4.4. ACTIVEMODEOPERATION 187<br />

I collector<br />

(mA)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

I base = 75 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

E collector-to-emitter<br />

Figure4.17:Voltagecollectortoemittervscollectorcurrentforvariousbasecurrents.<br />

β = I collector<br />

I base<br />

β is also known as h fe<br />

Sometimesthe βratioisdesignatedas“hfe,”alabelusedinabranchofmathematicalsemiconductoranalysisknownas“hybridparameters”whichstrivestoachieveprecisepredictions<br />

oftransistorperformancewithdetailedequations.Hybridparametervariablesaremany,but<br />

eachislabeledwiththegeneralletter“h”andaspecificsubscript. Thevariable“hfe”isjust<br />

another(standardized)wayofexpressingtheratioofcollectorcurrenttobasecurrent,andis<br />

interchangeablewith“β.”The βratioisunitless.<br />

βforanytransistorisdeterminedbyitsdesign:itcannotbealteredaftermanufacture.Itis<br />

raretohavetwotransistorsofthesamedesignexactlymatchbecauseofthephysicalvariables<br />

afecting β.Ifacircuitdesignreliesonequal βratiosbetweenmultipletransistors,“matched<br />

sets”oftransistorsmaybepurchasedatextracost. However,itisgenerallyconsideredbad<br />

designpracticetoengineercircuitswithsuchdependencies.<br />

The βofatransistordoesnotremainstableforalloperatingconditions. Foranactual<br />

transistor,the βratiomayvarybyafactorofover3withinitsoperatingcurrentlimits. For<br />

example,atransistorwithadvertised βof50mayactuallytestwithIc/Ibratiosaslowas30<br />

andashighas100,dependingontheamountofcollectorcurrent,thetransistor’stemperature,<br />

andfrequencyofamplifiedsignal,amongotherfactors.Fortutorialpurposesitisadequateto<br />

assumeaconstant βforanygiventransistor;realizethatreallifeisnotthatsimple!<br />

Sometimesitishelpfulforcomprehensionto“model”complexelectroniccomponentswitha<br />

collectionofsimpler,better-understoodcomponents.ThemodelinFigure4.18isusedinmany<br />

(V)


188 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

introductoryelectronicstexts.<br />

B<br />

C<br />

E<br />

NPN<br />

diode-rheostat<br />

model<br />

Figure4.18:Elementarydioderesistortransistormodel.<br />

Thismodelcaststhetransistorasacombinationofdiodeandrheostat(variableresistor).<br />

Currentthroughthebase-emitterdiodecontrolstheresistanceofthecollector-emitterrheostat(asimpliedbythedashedlineconnectingthetwocomponents),thuscontrollingcollector<br />

current. AnNPNtransistorismodeledinthefigureshown,butaPNPtransistorwouldbe<br />

onlyslightlydifferent(onlythebase-emitterdiodewouldbereversed).Thismodelsucceedsin<br />

illustratingthebasicconceptoftransistoramplification:howthebasecurrentsignalcanexert<br />

controloverthecollectorcurrent.However,Idon’tlikethismodelbecauseitmiscommunicates<br />

thenotionofasetamountofcollector-emitterresistanceforagivenamountofbasecurrent.<br />

Ifthisweretrue,thetransistorwouldn’tregulatecollectorcurrentatalllikethecharacteristiccurvesshow.<br />

<strong>In</strong>steadofthecollectorcurrentcurvesflatteningoutaftertheirbriefriseas<br />

thecollector-emittervoltageincreases,thecollectorcurrentwouldbedirectlyproportionalto<br />

collector-emittervoltage,risingsteadilyinastraightlineonthegraph.<br />

Abettertransistormodel,oftenseeninmoreadvancedtextbooks,isshowninFigure4.19.<br />

B<br />

C<br />

E<br />

B<br />

B<br />

NPN<br />

diode-current source<br />

model<br />

Figure4.19:Currentsourcemodeloftransistor.<br />

Itcaststhetransistorasacombinationofdiodeandcurrentsource,theoutputofthecurrentsourcebeingsetatamultiple(βratio)ofthebasecurrent.Thismodelisfarmoreaccurate<br />

C<br />

E<br />

C<br />

E


4.5. THECOMMON-EMITTERAMPLIFIER 189<br />

indepictingthetrueinput/outputcharacteristicsofatransistor:basecurrentestablishesacertainamountofcollectorcurrent,ratherthanacertainamountofcollector-emitterresistance<br />

asthefirstmodelimplies. Also,thismodelisfavoredwhenperformingnetworkanalysison<br />

transistorcircuits,thecurrentsourcebeingawell-understoodtheoreticalcomponent.Unfortunately,usingacurrentsourcetomodelthetransistor’scurrent-controllingbehaviorcanbe<br />

misleading:innowaywillthetransistoreveractasasourceofelectricalenergy.Thecurrent<br />

sourcedoesnotmodelthefactthatitssourceofenergyisaexternalpowersupply,similarto<br />

anamplifier.<br />

• REVIEW:<br />

• Atransistorissaidtobeinitsactivemodeifitisoperatingsomewherebetweenfullyon<br />

(saturated)andfullyoff(cutoff).<br />

• Basecurrentregulatescollectorcurrent. Byregulate,wemeanthatnomorecollector<br />

currentcanexistthanwhatisallowedbythebasecurrent.<br />

• Theratiobetweencollectorcurrentandbasecurrentiscalled“Beta”(β)or“hfe”.<br />

• βratiosaredifferentforeverytransistor,and<br />

• βchangesfordifferentoperatingconditions.<br />

4.5 Thecommon-emitteramplifier<br />

Atthebeginningofthischapterwesawhowtransistorscouldbeusedasswitches,operatingin<br />

eithertheir“saturation”or“cutoff”modes.<strong>In</strong>thelastsectionwesawhowtransistorsbehave<br />

withintheir“active”modes,betweenthefarlimitsofsaturationandcutoff.Becausetransistors<br />

areabletocontrolcurrentinananalog(infinitelydivisible)fashion,theyfinduseasamplifiers<br />

foranalogsignals.<br />

Oneofthesimplertransistoramplifiercircuitstostudypreviouslyillustratedthetransistor’sswitchingability.(Figure4.20)<br />

solar<br />

cell<br />

Figure4.20:NPNtransistorasasimpleswitch.<br />

Itiscalledthecommon-emitterconfigurationbecause(ignoringthepowersupplybattery)<br />

boththesignalsourceandtheloadsharetheemitterleadasacommonconnectionpointshown<br />

inFigure4.21.Thisisnottheonlywayinwhichatransistormaybeusedasanamplifier,as<br />

wewillseeinlatersectionsofthischapter.


190 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

solar<br />

cell<br />

V in<br />

B<br />

E<br />

V out<br />

C Load<br />

Figure4.21:Common-emitteramplifier:Theinputandoutputsignalsbothshareaconnection<br />

totheemitter.<br />

Before,asmallsolarcellcurrentsaturatedatransistor,illuminatingalamp.Knowingnow<br />

thattransistorsareableto“throttle”theircollectorcurrentsaccordingtotheamountofbase<br />

currentsuppliedbyaninputsignalsource,weshouldseethatthebrightnessofthelampin<br />

thiscircuitiscontrollablebythesolarcell’slightexposure. Whenthereisjustalittlelight<br />

shoneonthesolarcell,thelampwillglowdimly.Thelamp’sbrightnesswillsteadilyincrease<br />

asmorelightfallsonthesolarcell.<br />

Supposethatwewereinterestedinusingthesolarcellasalightintensityinstrument.We<br />

wanttomeasuretheintensityofincidentlightwiththesolarcellbyusingitsoutputcurrent<br />

todriveametermovement. Itispossibletodirectlyconnectametermovementtoasolar<br />

cell(Figure4.22)forthispurpose.<strong>In</strong>fact,thesimplestlight-exposuremetersforphotography<br />

workaredesignedlikethis.<br />

solar<br />

cell<br />

+ -<br />

Figure4.22:Highintensitylightdirectlydriveslightmeter.<br />

Althoughthisapproachmightworkformoderatelightintensitymeasurements,itwould<br />

notworkaswellforlowlightintensitymeasurements.Becausethesolarcellhastosupplythe<br />

metermovement’spowerneeds,thesystemisnecessarilylimitedinitssensitivity.Supposing<br />

thatourneedhereistomeasureverylow-levellightintensities,wearepressedtofindanother<br />

solution.<br />

Perhapsthemostdirectsolutiontothismeasurementproblemistouseatransistor(Figure4.23)toamplifythesolarcell’scurrentsothatmoremeterdeflectionmaybeobtainedfor<br />

lessincidentlight.<br />

Currentthroughthemetermovementinthiscircuitwillbe βtimesthesolarcellcurrent.<br />

Withatransistor βof100,thisrepresentsasubstantialincreaseinmeasurementsensitivity.<br />

Itisprudenttopointoutthattheadditionalpowertomovethemeterneedlecomesfromthe<br />

batteryonthefarrightofthecircuit,notthesolarcellitself.Allthesolarcell’scurrentdoes


4.5. THECOMMON-EMITTERAMPLIFIER 191<br />

solar<br />

cell<br />

+<br />

-<br />

Figure4.23:Cellcurrentmustbeamplifiedforlowintensitylight.<br />

iscontrolbatterycurrenttothemetertoprovideagreatermeterreadingthanthesolarcell<br />

couldprovideunaided.<br />

Becausethetransistorisacurrent-regulatingdevice,andbecausemetermovementindicationsarebasedonthecurrentthroughthemovementcoil,meterindicationinthiscircuit<br />

shoulddependonlyonthecurrentfromthesolarcell,notontheamountofvoltageprovidedby<br />

thebattery.Thismeanstheaccuracyofthecircuitwillbeindependentofbatterycondition,a<br />

significantfeature!Allthatisrequiredofthebatteryisacertainminimumvoltageandcurrent<br />

outputabilitytodrivethemeterfull-scale.<br />

Anotherwayinwhichthecommon-emitterconfigurationmaybeusedistoproducean<br />

outputvoltagederivedfromtheinputsignal,ratherthanaspecificoutputcurrent.Let’sreplace<br />

themetermovementwithaplainresistorandmeasurevoltagebetweencollectorandemitter<br />

inFigure4.24<br />

solar<br />

cell<br />

+<br />

-<br />

-<br />

R<br />

V output<br />

Figure4.24:Commonemitteramplifierdevelopsvoltageoutputduetocurrentthroughload<br />

resistor.<br />

Withthesolarcelldarkened(nocurrent),thetransistorwillbeincutoffmodeandbehave<br />

asanopenswitchbetweencollectorandemitter. Thiswillproducemaximumvoltagedrop<br />

betweencollectorandemitterformaximumVoutput,equaltothefullvoltageofthebattery.<br />

Atfullpower(maximumlightexposure),thesolarcellwilldrivethetransistorintosaturationmode,makingitbehavelikeaclosedswitchbetweencollectorandemitter.Theresult<br />

willbeminimumvoltagedropbetweencollectorandemitter,oralmostzerooutputvoltage.<br />

<strong>In</strong>actuality,asaturatedtransistorcanneverachievezerovoltagedropbetweencollectorand<br />

emitterbecauseofthetwoPNjunctionsthroughwhichcollectorcurrentmusttravel. However,this“collector-emittersaturationvoltage”willbefairlylow,aroundseveraltenthsofa<br />

+<br />

+<br />

-<br />

+<br />

-


192 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

volt,dependingonthespecifictransistorused.<br />

Forlightexposurelevelssomewherebetweenzeroandmaximumsolarcelloutput,thetransistorwillbeinitsactivemode,andtheoutputvoltagewillbesomewherebetweenzeroand<br />

fullbatteryvoltage.Animportantqualitytonotehereaboutthecommon-emitterconfiguration<br />

isthattheoutputvoltageisinverselyproportionaltotheinputsignalstrength. Thatis,the<br />

outputvoltagedecreasesastheinputsignalincreases. Forthisreason,thecommon-emitter<br />

amplifierconfigurationisreferredtoasaninvertingamplifier.<br />

AquickSPICEsimulation(Figure4.26)ofthecircuitinFigure4.25willverifyourqualitativeconclusionsaboutthisamplifiercircuit.<br />

I 1<br />

1<br />

0<br />

2<br />

0<br />

Q 1<br />

R<br />

5 kΩ<br />

V output<br />

V 1<br />

3<br />

+<br />

15 V<br />

-<br />

0<br />

*common-emitter<br />

amplifier<br />

i1 0 1 dc<br />

q1 2 1 0 mod1<br />

r 3 2 5000<br />

v1 3 0 dc 15<br />

.model mod1 npn<br />

.dc i1 0 50u 2u<br />

.plot dc v(2,0)<br />

.end<br />

Figure4.25:CommonemitterschematicwithnodenumbersandcorrespondingSPICEnetlist.<br />

Figure4.26:Commonemitter:collectorvoltageoutputvsbasecurrentinput.<br />

AtthebeginningofthesimulationinFigure4.26wherethecurrentsource(solarcell)is<br />

outputtingzerocurrent,thetransistorisincutoffmodeandthefull15voltsfromthebattery


4.5. THECOMMON-EMITTERAMPLIFIER 193<br />

isshownattheamplifieroutput(betweennodes2and0).Asthesolarcell’scurrentbeginsto<br />

increase,theoutputvoltageproportionallydecreases,untilthetransistorreachessaturation<br />

at30 µAofbasecurrent(3mAofcollectorcurrent). Noticehowtheoutputvoltagetraceon<br />

thegraphisperfectlylinear(1voltstepsfrom15voltsto1volt)untilthepointofsaturation,<br />

whereitneverquitereacheszero. Thisistheeffectmentionedearlier,whereasaturated<br />

transistorcanneverachieveexactlyzerovoltagedropbetweencollectorandemitterdueto<br />

internaljunctioneffects. Whatwedoseeisasharpoutputvoltagedecreasefrom1voltto<br />

0.2261voltsastheinputcurrentincreasesfrom28 µAto30 µA,andthenacontinuingdecrease<br />

inoutputvoltagefromthenon(albeitinprogressivelysmallersteps). Thelowesttheoutput<br />

voltageevergetsinthissimulationis0.1299volts,asymptoticallyapproachingzero.<br />

Sofar,we’veseenthetransistorusedasanamplifierforDCsignals.<strong>In</strong>thesolarcelllight<br />

meterexample,wewereinterestedinamplifyingtheDCoutputofthesolarcelltodrivea<br />

DCmetermovement,ortoproduceaDCoutputvoltage. However,thisisnottheonlyway<br />

inwhichatransistormaybeemployedasanamplifier.OftenanACamplifierforamplifying<br />

alternatingcurrentandvoltagesignalsisdesired.Onecommonapplicationofthisisinaudio<br />

electronics(radios,televisions,andpublic-addresssystems).Earlier,wesawanexampleofthe<br />

audiooutputofatuningforkactivatingatransistorswitch. (Figure4.27)Let’sseeifwecan<br />

modifythatcircuittosendpowertoaspeakerratherthantoalampinFigure4.28.<br />

source of<br />

sound<br />

microphone<br />

Figure4.27:Transistorswitchactivatedbyaudio.<br />

<strong>In</strong>theoriginalcircuit,afull-wavebridgerectifierwasusedtoconvertthemicrophone’sAC<br />

outputsignalintoaDCvoltagetodrivetheinputofthetransistor.Allwecaredaboutherewas<br />

turningthelamponwithasoundsignalfromthemicrophone,andthisarrangementsufficed<br />

forthatpurpose. ButnowwewanttoactuallyreproducetheACsignalanddriveaspeaker.<br />

Thismeanswecannotrectifythemicrophone’soutputanymore,becauseweneedundistorted<br />

ACsignaltodrivethetransistor!Let’sremovethebridgerectifierandreplacethelampwitha<br />

speaker:<br />

SincethemicrophonemayproducevoltagesexceedingtheforwardvoltagedropofthebaseemitterPN(diode)junction,I’veplacedaresistorinserieswiththemicrophone.Let’ssimulate<br />

thecircuitinFigure4.29withSPICE.Thenetlistisincludedin(Figure4.30)<br />

Thesimulationplots(Figure4.30)boththeinputvoltage(anACsignalof1.5voltpeak<br />

amplitudeand2000Hzfrequency)andthecurrentthroughthe15voltbattery,whichisthe<br />

sameasthecurrentthroughthespeaker.WhatweseehereisafullACsinewavealternating<br />

inbothpositiveandnegativedirections,andahalf-waveoutputcurrentwaveformthatonly


194 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

source of<br />

sound<br />

microphone<br />

speaker<br />

Figure4.28:Commonemitteramplifierdrivesspeakerwithaudiofrequencysignal.<br />

V input<br />

1.5 V<br />

2 kHz<br />

1<br />

R 1<br />

1 kΩ<br />

2<br />

3 8 Ω 4<br />

Q 1<br />

speaker<br />

V 1<br />

0 0 0<br />

15 V<br />

Figure4.29:SPICEversionofcommonemitteraudioamplifier.<br />

common-emitter<br />

amplifier<br />

vinput 1 0 sin (0<br />

1.5 2000 0 0)<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 8<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.tran 0.02m 0.74m<br />

.plot tran v(1,0)<br />

i(v1)<br />

.end<br />

Figure4.30:SignalclippedatcollectorduetolackofDCbasebias.


4.5. THECOMMON-EMITTERAMPLIFIER 195<br />

pulsesinonedirection. Ifwewereactuallydrivingaspeakerwiththiswaveform,thesound<br />

producedwouldbehorriblydistorted.<br />

What’swrongwiththecircuit?Whywon’titfaithfullyreproducetheentireACwaveform<br />

fromthemicrophone?Theanswertothisquestionisfoundbycloseinspectionofthetransistor<br />

diodecurrentsourcemodelinFigure4.31.<br />

B<br />

C<br />

E<br />

B<br />

NPN<br />

diode-current source<br />

model<br />

Figure4.31:Themodelshowsthatbasecurrentflowinondirection.<br />

Collectorcurrentiscontrolled,orregulated,throughtheconstant-currentmechanismaccordingtothepacesetbythecurrentthroughthebase-emitterdiode.Notethatbothcurrent<br />

pathsthroughthetransistoraremonodirectional:onewayonly!Despiteourintenttousethe<br />

transistortoamplifyanACsignal,itisessentiallyaDCdevice,capableofhandlingcurrents<br />

inasingledirection.WemayapplyanACvoltageinputsignalbetweenthebaseandemitter,<br />

butelectronscannotflowinthatcircuitduringthepartofthecyclethatreverse-biasesthe<br />

base-emitterdiodejunction. Therefore,thetransistorwillremainincutoffmodethroughout<br />

thatportionofthecycle. Itwill“turnon”initsactivemodeonlywhentheinputvoltageis<br />

ofthecorrectpolaritytoforward-biasthebase-emitterdiode,andonlywhenthatvoltageis<br />

sufficientlyhightoovercomethediode’sforwardvoltagedrop. Rememberthatbipolartransistorsarecurrent-controlleddevices:theyregulatecollectorcurrentbasedontheexistenceof<br />

base-to-emittercurrent,notbase-to-emittervoltage.<br />

Theonlywaywecangetthetransistortoreproducetheentirewaveformascurrentthrough<br />

thespeakeristokeepthetransistorinitsactivemodetheentiretime.Thismeanswemust<br />

maintaincurrentthroughthebaseduringtheentireinputwaveformcycle.Consequently,the<br />

base-emitterdiodejunctionmustbekeptforward-biasedatalltimes. Fortunately,thiscan<br />

beaccomplishedwithaDCbiasvoltageaddedtotheinputsignal.Byconnectingasufficient<br />

DCvoltageinserieswiththeACsignalsource,forward-biascanbemaintainedatallpoints<br />

throughoutthewavecycle.(Figure4.32)<br />

Withthebiasvoltagesourceof2.3voltsinplace,thetransistorremainsinitsactivemode<br />

throughouttheentirecycleofthewave,faithfullyreproducingthewaveformatthespeaker.<br />

(Figure4.33)Noticethattheinputvoltage(measuredbetweennodes1and0)fluctuatesbetweenabout0.8voltsand3.8volts,apeak-to-peakvoltageof3voltsjustasexpected(source<br />

voltage=1.5voltspeak). Theoutput(speaker)currentvariesbetweenzeroandalmost300<br />

mA,180 o outofphasewiththeinput(microphone)signal.<br />

TheillustrationinFigure4.34isanotherviewofthesamecircuit,thistimewithafew<br />

C<br />

E


196 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V input<br />

1.5 V<br />

2 kHz<br />

1<br />

5<br />

R 1<br />

1 kΩ<br />

+ -<br />

V bias<br />

2.3 V<br />

2<br />

Q 1<br />

speaker<br />

3 8 Ω 4<br />

0<br />

Figure4.32:Vbiaskeepstransistorintheactiveregion.<br />

V 1<br />

0<br />

15 V<br />

Figure4.33:UndistortedoutputcurrentI(v(1)duetoVbias<br />

common-emitter<br />

amplifier<br />

vinput 1 5 sin (0<br />

1.5 2000 0 0)<br />

vbias 5 0 dc 2.3<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 8<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.tran 0.02m 0.78m<br />

.plot tran v(1,0)<br />

i(v1)<br />

.end


4.5. THECOMMON-EMITTERAMPLIFIER 197<br />

oscilloscopes(“scopemeters”)connectedatcrucialpointstodisplayallthepertinentsignals.<br />

V input<br />

1.5 V<br />

2 kHz<br />

R 1<br />

1 kΩ<br />

+ -<br />

V bias<br />

Q 1<br />

speaker<br />

8 Ω<br />

V 1<br />

15 V<br />

Figure4.34:<strong>In</strong>putisbiasedupwardatbase.Outputisinverted.<br />

Theneedforbiasingatransistoramplifiercircuittoobtainfullwaveformreproductionis<br />

animportantconsideration.Aseparatesectionofthischapterwillbedevotedentirelytothe<br />

subjectbiasingandbiasingtechniques.Fornow,itisenoughtounderstandthatbiasingmay<br />

benecessaryforpropervoltageandcurrentoutputfromtheamplifier.<br />

Nowthatwehaveafunctioningamplifiercircuit,wecaninvestigateitsvoltage,current,<br />

andpowergains. ThegenerictransistorusedintheseSPICEanalyseshasaβof100,as<br />

indicatedbytheshorttransistorstatisticsprintoutincludedinthetextoutputinTable 4.1<br />

(thesestatisticswerecutfromthelasttwoanalysesforbrevity’ssake).<br />

type npn<br />

is 1.00E-16<br />

bf 100.000<br />

nf 1.000<br />

br 1.000<br />

nr 1.000<br />

Table4.1:BJTSPICEmodelparameters.<br />

βislistedundertheabbreviation“bf,”whichactuallystandsfor“beta,forward”. Ifwe<br />

wantedtoinsertourown βratioforananalysis,wecouldhavedonesoonthe .modellineof<br />

theSPICEnetlist.<br />

Since βistheratioofcollectorcurrenttobasecurrent,andwehaveourloadconnectedin<br />

serieswiththecollectorterminalofthetransistorandoursourceconnectedinserieswiththe<br />

base,theratioofoutputcurrenttoinputcurrentisequaltobeta.Thus,ourcurrentgainfor<br />

thisexampleamplifieris100,or40dB.<br />

Voltagegainisalittlemorecomplicatedtofigurethancurrentgainforthiscircuit. As<br />

always,voltagegainisdefinedastheratioofoutputvoltagedividedbyinputvoltage.<strong>In</strong>order<br />

toexperimentallydeterminethis,wemodifyourlastSPICEanalysistoplotoutputvoltage<br />

ratherthanoutputcurrentsowehavetwovoltageplotstocompareinFigure4.35.<br />

+


198 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

common-emitter<br />

amplifier<br />

vinput 1 5 sin (0<br />

1.5 2000 0 0)<br />

vbias 5 0 dc 2.3<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 8<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.tran 0.02m 0.78m<br />

.plot tran v(1,0)<br />

v(3)<br />

.end<br />

Figure4.35:V(3),theoutputvoltageacrossrspkr,comparedtotheinput.<br />

Plottedonthesamescale(from0to4volts),weseethattheoutputwaveforminFigure4.35<br />

Tobehonest,thislowvoltagegainisnotcharacteristictoallcommon-emitteramplifiers.<br />

Itisaconsequenceofthegreatdisparitybetweentheinputandloadresistances. Ourinput<br />

resistance(R1)hereis1000 Ω,whiletheload(speaker)isonly8Ω.Becausethecurrentgain<br />

ofthisamplifierisdeterminedsolelybythe βofthetransistor,andbecausethat βfigure<br />

isfixed,thecurrentgainforthisamplifierwon’tchangewithvariationsineitherofthese<br />

resistances. However,voltagegainisdependentontheseresistances. Ifwealtertheload<br />

resistance,makingitalargervalue,itwilldropaproportionatelygreatervoltageforitsrange<br />

ofloadcurrents,resultinginalargeroutputwaveform.Let’stryanothersimulation,onlythis<br />

timewitha30 ΩinFigure4.36loadinsteadofan8Ωload.<br />

ThistimetheoutputvoltagewaveforminFigure4.36issignificantlygreaterinamplitude<br />

thantheinputwaveform.Lookingclosely,wecanseethattheoutputwaveformcrestsbetween<br />

0andabout9volts:approximately3timestheamplitudeoftheinputvoltage.<br />

Wecandoanothercomputeranalysisofthiscircuit,thistimeinstructingSPICEtoanalyze<br />

itfromanACpointofview,givinguspeakvoltagefiguresforinputandoutputinsteadofa<br />

time-basedplotofthewaveforms.(Table4.2)<br />

Peakvoltagemeasurementsofinputandoutputshowaninputof1.5voltsandanoutput<br />

of4.418volts.Thisgivesusavoltagegainratioof2.9453(4.418V/1.5V),or9.3827dB.


4.5. THECOMMON-EMITTERAMPLIFIER 199<br />

Figure4.36:<strong>In</strong>creasingrspkrto30 Ωincreasestheoutputvoltage.<br />

common-emitter<br />

amplifier<br />

vinput 1 5 sin (0<br />

1.5 2000 0 0)<br />

vbias 5 0 dc 2.3<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 30<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.tran 0.02m 0.78m<br />

.plot tran v(1,0)<br />

v(3)<br />

.end<br />

Table4.2:SPICEnetlistforprintingACinputandoutputvoltages.<br />

common-emitter amplifier<br />

vinput 1 5 ac 1.5<br />

vbias 5 0 dc 2.3<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 30<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.ac lin 1 2000 2000<br />

.print ac v(1,0) v(4,3)<br />

.end<br />

freq v(1) v(4,3)<br />

2.000E+03 1.500E+00 4.418E+00


200 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

A V = V out<br />

V in<br />

A V =<br />

4.418 V<br />

1.5 V<br />

A V = 2.9453<br />

A V(dB) = 20 log A V(ratio)<br />

A V(dB) = 20 log 2.9453<br />

A V(dB) = 9.3827 dB<br />

Becausethecurrentgainofthecommon-emitteramplifierisfixedby β,andsincetheinputandoutputvoltageswillbeequaltotheinputandoutputcurrentsmultipliedbytheir<br />

respectiveresistors,wecanderiveanequationforapproximatevoltagegain:<br />

A V = β R out<br />

R in<br />

A V = (100) 30 Ω<br />

1000 Ω<br />

A V = 3<br />

A V(dB) = 20 log A V(ratio)<br />

A V(dB) = 20 log 3<br />

A V(dB) = 9.5424 dB<br />

Asyoucansee,thepredictedresultsforvoltagegainarequiteclosetothesimulatedresults.<br />

Withperfectlylineartransistorbehavior,thetwosetsoffigureswouldexactlymatch.SPICE<br />

doesareasonablejobofaccountingforthemany“quirks”ofbipolartransistorfunctioninits<br />

analysis,hencetheslightmismatchinvoltagegainbasedonSPICE’soutput.<br />

Thesevoltagegainsremainthesameregardlessofwherewemeasureoutputvoltagein<br />

thecircuit: acrosscollectorandemitter,oracrosstheseriesloadresistoraswedidinthe<br />

lastanalysis. Theamountofoutputvoltagechangeforanygivenamountofinputvoltage<br />

willremainthesame. ConsiderthetwofollowingSPICEanalysesasproofofthis. Thefirst<br />

simulationinFigure4.37istime-based,toprovideaplotofinputandoutputvoltages. You<br />

willnoticethatthetwosignalsare180 o outofphasewitheachother.Thesecondsimulation<br />

inTable4.3isanACanalysis,toprovidesimple,peakvoltagereadingsforinputandoutput.<br />

Westillhaveapeakoutputvoltageof4.418voltswithapeakinputvoltageof1.5volts.The<br />

onlydifferencefromthelastsetofsimulationsisthephaseoftheoutputvoltage.<br />

Sofar,theexamplecircuitsshowninthissectionhaveallusedNPNtransistors.PNPtran-


4.5. THECOMMON-EMITTERAMPLIFIER 201<br />

common-emitter<br />

amplifier<br />

vinput 1 5 sin (0<br />

1.5 2000 0 0)<br />

vbias 5 0 dc 2.3<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 30<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.tran 0.02m 0.74m<br />

.plot tran v(1,0)<br />

v(3,0)<br />

.end<br />

Figure4.37:Common-emitteramplifiershowsavoltagegainwithRspkr=30Ω<br />

Table4.3:SPICEnetlistforACanalysis<br />

common-emitter amplifier<br />

vinput 1 5 ac 1.5<br />

vbias 5 0 dc 2.3<br />

r1 1 2 1k<br />

q1 3 2 0 mod1<br />

rspkr 3 4 30<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.ac lin 1 2000 2000<br />

.print ac v(1,0) v(3,0)<br />

.end<br />

freq v(1) v(3)<br />

2.000E+03 1.500E+00 4.418E+00


202 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

sistorsarejustasvalidtouseasNPNinanyamplifierconfiguration,aslongastheproper<br />

polarityandcurrentdirectionsaremaintained,andthecommon-emitteramplifierisnoexception.<br />

TheoutputinvertionandgainofaPNPtransistoramplifierarethesameasitsNPN<br />

counterpart,justthebatterypolaritiesaredifferent.(Figure4.38)<br />

• REVIEW:<br />

V input<br />

-<br />

V bias<br />

Figure4.38:PNPversionofcommonemitteramplifier.<br />

• Common-emittertransistoramplifiersareso-calledbecausetheinputandoutputvoltage<br />

pointssharetheemitterleadofthetransistorincommonwitheachother,notconsidering<br />

anypowersupplies.<br />

• TransistorsareessentiallyDCdevices:theycannotdirectlyhandlevoltagesorcurrents<br />

thatreversedirection. TomakethemworkforamplifyingACsignals,theinputsignal<br />

mustbeoffsetwithaDCvoltagetokeepthetransistorinitsactivemodethroughoutthe<br />

entirecycleofthewave.Thisiscalledbiasing.<br />

• Iftheoutputvoltageismeasuredbetweenemitterandcollectoronacommon-emitter<br />

amplifier,itwillbe180 o outofphasewiththeinputvoltagewaveform.Thus,thecommonemitteramplifieriscalledaninvertingamplifiercircuit.<br />

• Thecurrentgainofacommon-emittertransistoramplifierwiththeloadconnectedin<br />

serieswiththecollectorisequalto β. Thevoltagegainofacommon-emittertransistor<br />

amplifierisapproximatelygivenhere:<br />

•<br />

A V = β R out<br />

R in<br />

• Where“Rout”istheresistorconnectedinserieswiththecollectorand“Rin”istheresistor<br />

connectedinserieswiththebase.<br />

4.6 Thecommon-collectoramplifier<br />

Ournexttransistorconfigurationtostudyisabitsimplerforgaincalculations. Calledthe<br />

common-collectorconfiguration,itsschematicdiagramisshowninFigure4.39.<br />

+<br />

-<br />

+


4.6. THECOMMON-COLLECTORAMPLIFIER 203<br />

V in<br />

+<br />

-<br />

V out<br />

R load<br />

Figure4.39:Commoncollectoramplifierhascollectorcommontobothinputandoutput.<br />

Itiscalledthecommon-collectorconfigurationbecause(ignoringthepowersupplybattery)<br />

boththesignalsourceandtheloadsharethecollectorleadasacommonconnectionpointas<br />

inFigure4.40.<br />

V in<br />

B<br />

V out<br />

Figure4.40:Commoncollector:<strong>In</strong>putisappliedtobaseandcollector.Outputisfromemittercollectorcircuit.<br />

Itshouldbeapparentthattheloadresistorinthecommon-collectoramplifiercircuitreceivesboththebaseandcollectorcurrents,beingplacedinserieswiththeemitter.Sincethe<br />

emitterleadofatransistoristheonehandlingthemostcurrent(thesumofbaseandcollector<br />

currents,sincebaseandcollectorcurrentsalwaysmeshtogethertoformtheemittercurrent),<br />

itwouldbereasonabletopresumethatthisamplifierwillhaveaverylargecurrentgain.This<br />

presumptionisindeedcorrect:thecurrentgainforacommon-collectoramplifierisquitelarge,<br />

largerthananyothertransistoramplifierconfiguration.However,thisisnotnecessarilywhat<br />

setsitapartfromotheramplifierdesigns.<br />

Let’sproceedimmediatelytoaSPICEanalysisofthisamplifiercircuit,andyouwillbeable<br />

toimmediatelyseewhatisuniqueaboutthisamplifier. ThecircuitisinFigure4.41. The<br />

netlistisinFigure4.42.<br />

Unlikethecommon-emitteramplifierfromtheprevioussection,thecommon-collectorproducesanoutputvoltageindirectratherthaninverseproportiontotherisinginputvoltage.<br />

SeeFigure4.42.Astheinputvoltageincreases,sodoestheoutputvoltage.Moreover,aclose<br />

examinationrevealsthattheoutputvoltageisnearlyidenticaltotheinputvoltage,lagging<br />

C<br />

E<br />

R load<br />

+<br />

-


204 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V in<br />

1<br />

1<br />

2<br />

3<br />

Q 1<br />

R load<br />

5 kΩ<br />

V 1<br />

0 0 0<br />

2<br />

15 V<br />

Figure4.41:CommoncollectoramplifierforSPICE.<br />

common-collector<br />

amplifier<br />

vin 1 0<br />

q1 2 1 3 mod1<br />

v1 2 0 dc 15<br />

rload 3 0 5k<br />

.model mod1 npn<br />

.dc vin 0 5 0.2<br />

.plot dc v(3,0)<br />

.end<br />

Figure4.42:Commoncollector:Outputequalsinputlessa0.7VVBEdrop.


4.6. THECOMMON-COLLECTORAMPLIFIER 205<br />

behindbyabout0.7volts.<br />

Thisistheuniquequalityofthecommon-collectoramplifier: anoutputvoltagethatis<br />

nearlyequaltotheinputvoltage. Examinedfromtheperspectiveofoutputvoltagechange<br />

foragivenamountofinputvoltagechange,thisamplifierhasavoltagegainofalmostexactly<br />

unity(1),or0dB.Thisholdstruefortransistorsofany βvalue,andforloadresistorsofany<br />

resistancevalue.<br />

Itissimpletounderstandwhytheoutputvoltageofacommon-collectoramplifierisalways<br />

nearlyequaltotheinputvoltage.ReferringtothediodecurrentsourcetransistormodelinFigure4.43,weseethatthebasecurrentmustgothroughthebase-emitterPNjunction,which<br />

isequivalenttoanormalrectifyingdiode. Ifthisjunctionisforward-biased(thetransistor<br />

conductingcurrentineitheritsactiveorsaturatedmodes),itwillhaveavoltagedropofapproximately0.7volts,assumingsiliconconstruction.This0.7voltdropislargelyirrespective<br />

oftheactualmagnitudeofbasecurrent;thus,wecanregarditasbeingconstant:<br />

V in<br />

B<br />

+<br />

0.7 V<br />

-<br />

Figure4.43:Emitterfollower:Emittervoltagefollowsbasevoltage(lessa0.7VVBEdrop.)<br />

Giventhevoltagepolaritiesacrossthebase-emitterPNjunctionandtheloadresistor,we<br />

seethatthesemustaddtogethertoequaltheinputvoltage,inaccordancewithKirchhoff’s<br />

VoltageLaw.<strong>In</strong>otherwords,theloadvoltagewillalwaysbeabout0.7voltslessthantheinput<br />

voltageforallconditionswherethetransistorisconducting. Cutoffoccursatinputvoltages<br />

below0.7volts,andsaturationatinputvoltagesinexcessofbattery(supply)voltageplus0.7<br />

volts.<br />

Becauseofthisbehavior,thecommon-collectoramplifiercircuitisalsoknownasthevoltagefolloweroremitter-followeramplifier,becausetheemitterloadvoltagesfollowtheinputso<br />

closely.<br />

Applyingthecommon-collectorcircuittotheamplificationofACsignalsrequiresthesame<br />

input“biasing”usedinthecommon-emittercircuit: aDCvoltagemustbeaddedtotheAC<br />

inputsignaltokeepthetransistorinitsactivemodeduringtheentirecycle. Whenthisis<br />

done,theresultisthenon-invertingamplifierinFigure4.44.<br />

TheresultsoftheSPICEsimulationinFigure4.45showthattheoutputfollowstheinput.<br />

Theoutputisthesamepeak-to-peakamplitudeastheinput.Though,theDClevelisshifted<br />

C<br />

E<br />

+<br />

-<br />

R load


206 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V in<br />

1<br />

4<br />

1.5 V<br />

2 kHz<br />

1<br />

+ -<br />

V bias<br />

2.3 V<br />

downwardbyoneVBEdiodedrop.<br />

2<br />

3<br />

0<br />

Q 1<br />

R load<br />

5 kΩ<br />

V 1<br />

2<br />

0<br />

15 V<br />

common-collector<br />

amplifier<br />

vin 1 4 sin(0 1.5<br />

2000 0 0)<br />

vbias 4 0 dc 2.3<br />

q1 2 1 3 mod1<br />

v1 2 0 dc 15<br />

rload 3 0 5k<br />

.model mod1 npn<br />

.tran .02m .78m<br />

.plot tran v(1,0)<br />

v(3,0)<br />

.end<br />

Figure4.44:Commoncollector(emitter-follower)amplifier.<br />

Figure4.45:Commoncollector(emitter-follower):OutputV3followsinputV1lessa0.7VVBE<br />

drop.<br />

Here’sanotherviewofthecircuit(Figure4.46)withoscilloscopesconnectedtoseveral<br />

pointsofinterest.<br />

Sincethisamplifierconfigurationdoesn’tprovideanyvoltagegain(infact,inpracticeit<br />

actuallyhasavoltagegainofslightlylessthan1),itsonlyamplifyingfactoriscurrent. The<br />

common-emitteramplifierconfigurationexaminedintheprevioussectionhadacurrentgain<br />

equaltothe βofthetransistor,beingthattheinputcurrentwentthroughthebaseandthe


4.6. THECOMMON-COLLECTORAMPLIFIER 207<br />

V in<br />

1.5 V<br />

2 kHz<br />

+ -<br />

R load<br />

5 kΩ<br />

V 1<br />

15 V<br />

Figure4.46:Commoncollectornon-invertingvoltagegainis1.<br />

output(load)currentwentthroughthecollector,and βbydefinitionistheratiobetweenthe<br />

collectorandbasecurrents.<strong>In</strong>thecommon-collectorconfiguration,though,theloadissituated<br />

inserieswiththeemitter,andthusitscurrentisequaltotheemittercurrent.Withtheemitter<br />

carryingcollectorcurrentandbasecurrent,theloadinthistypeofamplifierhasallthecurrent<br />

ofthecollectorrunningthroughitplustheinputcurrentofthebase.Thisyieldsacurrentgain<br />

of βplus1:<br />

A I = I emitter<br />

I base<br />

A I =<br />

Icollector+ Ibase Ibase AI = Icollector + 1<br />

Ibase A I = β + 1<br />

Onceagain,PNPtransistorsarejustasvalidtouseinthecommon-collectorconfiguration<br />

asNPNtransistors. Thegaincalculationsareallthesame,asisthenon-invertingofthe<br />

amplifiedsignal. Theonlydifferenceisinvoltagepolaritiesandcurrentdirectionsshownin<br />

Figure4.47.<br />

Apopularapplicationofthecommon-collectoramplifierisforregulatedDCpowersupplies,<br />

whereanunregulated(varying)sourceofDCvoltageisclippedataspecifiedleveltosupply<br />

regulated(steady)voltagetoaload. Ofcourse,zenerdiodesalreadyprovidethisfunctionof<br />

voltageregulationshowninFigure4.48.<br />

However,whenusedinthisdirectfashion,theamountofcurrentthatmaybesuppliedto<br />

theloadisusuallyquitelimited. <strong>In</strong>essence,thiscircuitregulatesvoltageacrosstheloadby<br />

keepingcurrentthroughtheseriesresistoratahighenoughleveltodropalltheexcesspower<br />

sourcevoltageacrossit,thezenerdiodedrawingmoreorlesscurrentasnecessarytokeepthe<br />

voltageacrossitselfsteady.Forhigh-currentloads,aplainzenerdiodevoltageregulatorwould<br />

havetoshuntaheavycurrentthroughthediodetobeeffectiveatregulatingloadvoltagein<br />

theeventoflargeloadresistanceorvoltagesourcechanges.<br />

+<br />

-


208 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V in<br />

-<br />

+<br />

R load<br />

Figure4.47:PNPversionofthecommon-collectoramplifier.<br />

Unregulated<br />

DC voltage<br />

source<br />

R<br />

Zener<br />

diode<br />

R load<br />

Figure4.48:Zenerdiodevoltageregulator.<br />

-<br />

+<br />

Regulated voltage<br />

across load<br />

Onepopularwaytoincreasethecurrent-handlingabilityofaregulatorcircuitlikethisis<br />

touseacommon-collectortransistortoamplifycurrenttotheload,sothatthezenerdiode<br />

circuitonlyhastohandletheamountofcurrentnecessarytodrivethebaseofthetransistor.<br />

(Figure4.49)<br />

Unregulated<br />

DC voltage<br />

source<br />

R<br />

Zener<br />

diode<br />

R load<br />

Figure4.49:Commoncollectorapplication:voltageregulator.<br />

There’sreallyonlyonecaveattothisapproach:theloadvoltagewillbeapproximately0.7<br />

voltslessthanthezenerdiodevoltage,duetothetransistor’s0.7voltbase-emitterdrop.Since<br />

this0.7voltdifferenceisfairlyconstantoverawiderangeofloadcurrents,azenerdiodewith


4.6. THECOMMON-COLLECTORAMPLIFIER 209<br />

a0.7volthigherratingcanbechosenfortheapplication.<br />

Sometimesthehighcurrentgainofasingle-transistor,common-collectorconfigurationisn’t<br />

enoughforaparticularapplication.Ifthisisthecase,multipletransistorsmaybestagedtogetherinapopularconfigurationknownasaDarlingtonpair,justanextensionofthecommoncollectorconceptshowninFigure4.50.<br />

B<br />

Figure4.50:AnNPNdarlingtonpair.<br />

Darlingtonpairsessentiallyplaceonetransistorasthecommon-collectorloadforanother<br />

transistor,thusmultiplyingtheirindividualcurrentgains. Basecurrentthroughtheupperlefttransistorisamplifiedthroughthattransistor’semitter,whichisdirectlyconnectedtothe<br />

baseofthelower-righttransistor,wherethecurrentisagainamplified. Theoverallcurrent<br />

gainisasfollows:<br />

Darlington pair current gain<br />

A I = (β 1 + 1)(β 2 + 1)<br />

Where,<br />

β 1 = Beta of first transistor<br />

β 2 = Beta of second transistor<br />

Voltagegainisstillnearlyequalto1iftheentireassemblyisconnectedtoaloadincommoncollectorfashion,althoughtheloadvoltagewillbeafull1.4voltslessthantheinputvoltage<br />

showninFigure4.51.<br />

Darlingtonpairsmaybepurchasedasdiscreteunits(twotransistorsinthesamepackage),<br />

ormaybebuiltupfromapairofindividualtransistors.Ofcourse,ifevenmorecurrentgain<br />

isdesiredthanwhatmaybeobtainedwithapair,Darlingtontripletorquadrupletassemblies<br />

maybeconstructed.<br />

• REVIEW:<br />

• Common-collectortransistoramplifiersareso-calledbecausetheinputandoutputvoltagepointssharethecollectorleadofthetransistorincommonwitheachother,notcon-<br />

C<br />

E


210 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V in<br />

+<br />

-<br />

+ -<br />

0.7 V + -<br />

0.7 V<br />

R load<br />

V out = V in - 1.4<br />

Figure4.51:Darlingtonpairbasedcommon-collectoramplifierlosestwoVBEdiodedrops.<br />

sideringanypowersupplies.<br />

V out<br />

• Thecommon-collectoramplifierisalsoknownasanemitter-follower.<br />

• Theoutputvoltageonacommon-collectoramplifierwillbeinphasewiththeinputvoltage,makingthecommon-collectoranon-invertingamplifiercircuit.<br />

• Thecurrentgainofacommon-collectoramplifierisequalto βplus1.Thevoltagegainis<br />

approximatelyequalto1(inpractice,justalittlebitless).<br />

• ADarlingtonpairisapairoftransistors“piggybacked”ononeanothersothattheemitter<br />

ofonefeedscurrenttothebaseoftheotherincommon-collectorform. Theresultisan<br />

overallcurrentgainequaltotheproduct(multiplication)oftheirindividualcommoncollectorcurrentgains(βplus1).<br />

4.7 Thecommon-baseamplifier<br />

Thefinaltransistoramplifierconfiguration(Figure4.52)weneedtostudyisthecommon-base.<br />

Thisconfigurationismorecomplexthantheothertwo,andislesscommonduetoitsstrange<br />

operatingcharacteristics.<br />

Itiscalledthecommon-baseconfigurationbecause(DCpowersourceaside),thesignal<br />

sourceandtheloadsharethebaseofthetransistorasacommonconnectionpointshownin<br />

Figure4.53.<br />

Perhapsthemoststrikingcharacteristicofthisconfigurationisthattheinputsignalsource<br />

mustcarrythefullemittercurrentofthetransistor,asindicatedbytheheavyarrowsinthe<br />

firstillustration. Asweknow,theemittercurrentisgreaterthananyothercurrentinthe<br />

transistor,beingthesumofbaseandcollectorcurrents. <strong>In</strong>thelasttwoamplifierconfigurations,thesignalsourcewasconnectedtothebaseleadofthetransistor,thushandlingtheleast<br />

currentpossible.


4.7. THECOMMON-BASEAMPLIFIER 211<br />

−<br />

V in<br />

+<br />

−<br />

+<br />

R load<br />

Figure4.52:Common-baseamplifier<br />

−<br />

E<br />

V in<br />

+<br />

B<br />

C<br />

−<br />

Figure4.53:Common-baseamplifier:<strong>In</strong>putbetweenemitterandbase,outputbetweencollectorandbase.<br />

Becausetheinputcurrentexceedsallothercurrentsinthecircuit,includingtheoutput<br />

current,thecurrentgainofthisamplifierisactuallylessthan1(noticehowRloadisconnected<br />

tothecollector,thuscarryingslightlylesscurrentthanthesignalsource). <strong>In</strong>otherwords,<br />

itattenuatescurrentratherthanamplifyingit. Withcommon-emitterandcommon-collector<br />

amplifierconfigurations,thetransistorparametermostcloselyassociatedwithgainwas β.<br />

<strong>In</strong>thecommon-basecircuit,wefollowanotherbasictransistorparameter:theratiobetween<br />

collectorcurrentandemittercurrent,whichisafractionalwayslessthan1. Thisfractional<br />

valueforanytransistoriscalledthealpharatio,or αratio.<br />

Sinceitobviouslycan’tboostsignalcurrent,itonlyseemsreasonabletoexpectittoboost<br />

signalvoltage.ASPICEsimulationofthecircuitinFigure4.54willvindicatethatassumption.<br />

2<br />

1<br />

−<br />

R 1<br />

100Ω<br />

V in<br />

+<br />

Q 1<br />

0<br />

−<br />

+<br />

V 1<br />

15 V<br />

+<br />

R load<br />

4<br />

3<br />

R load<br />

V out<br />

5.0kΩ<br />

Figure4.54:Common-basecircuitforDCSPICEanalysis.<br />

NoticeinFigure4.55thattheoutputvoltagegoesfrompracticallynothing(cutoff)to15.75<br />

volts(saturation)withtheinputvoltagebeingsweptoverarangeof0.6voltsto1.2volts.<strong>In</strong><br />

fact,theoutputvoltageplotdoesn’tshowariseuntilabout0.7voltsattheinput,andcutsoff


212 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Figure4.55:Common-baseamplifierDCtransferfunction.<br />

common-base<br />

amplifier<br />

vin 0 1<br />

r1 1 2 100<br />

q1 4 0 2 mod1<br />

v1 3 0 dc 15<br />

rload 3 4 5k<br />

.model mod1 npn<br />

.dc vin 0.6 1.2<br />

.02<br />

.plot dc v(3,4)<br />

.end<br />

(flattens)atabout1.12voltsinput.Thisrepresentsaratherlargevoltagegainwithanoutput<br />

voltagespanof15.75voltsandaninputvoltagespanofonly0.42volts:againratioof37.5,<br />

or31.48dB.Noticealsohowtheoutputvoltage(measuredacrossRload)actuallyexceedsthe<br />

powersupply(15volts)atsaturation,duetotheseries-aidingeffectoftheinputvoltagesource.<br />

AsecondsetofSPICEanalyses(circuitinFigure4.56)withanACsignalsource(andDC<br />

biasvoltage)tellsthesamestory:ahighvoltagegain<br />

R 1<br />

100Ω<br />

2<br />

1<br />

−<br />

V bias<br />

V in<br />

0.12 Vp-p 0Voffset 2kHz<br />

5<br />

+<br />

Q 1<br />

0.95 V<br />

0<br />

−<br />

R load<br />

5.0kΩ<br />

V 1<br />

15 V<br />

+<br />

4<br />

3<br />

V out<br />

Figure4.56:Common-basecircuitforSPICEACanalysis.<br />

Asyoucansee,theinputandoutputwaveformsinFigure4.57areinphasewitheachother.<br />

Thistellsusthatthecommon-baseamplifierisnon-inverting.<br />

TheACSPICEanalysisinTable4.4atasinglefrequencyof2kHzprovidesinputand<br />

outputvoltagesforgaincalculation.


4.7. THECOMMON-BASEAMPLIFIER 213<br />

Figure4.57:<br />

common-base<br />

amplifier<br />

vin 5 2 sin (0<br />

0.12 2000 0 0)<br />

vbias 0 1 dc 0.95<br />

r1 2 1 100<br />

q1 4 0 5 mod1<br />

v1 3 0 dc 15<br />

rload 3 4 5k<br />

.model mod1 npn<br />

.tran 0.02m 0.78m<br />

.plot tran v(5,2)<br />

v(4)<br />

.end<br />

Table4.4:Common-baseACanalysisat2kHz–netlistfollowedbyoutput.<br />

common-base amplifier<br />

vin 5 2 ac 0.1 sin<br />

vbias 0 1 dc 0.95<br />

r1 2 1 100<br />

q1 4 0 5 mod1<br />

v1 3 0 dc 15<br />

rload 3 4 5k<br />

.model mod1 npn<br />

.ac dec 1 2000 2000<br />

.print ac vm(5,2) vm(4,3)<br />

.end<br />

frequency mag(v(5,2)) mag(v(4,3))<br />

--------------------------------------------<br />

0.000000e+00 1.000000e-01 4.273864e+00


214 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Voltagefiguresfromthesecondanalysis(Table4.4)showavoltagegainof42.74(4.274V/<br />

0.1V),or32.617dB:<br />

A V = V out<br />

V in<br />

A V =<br />

4.274 V<br />

0.10 V<br />

AV = 42.74<br />

A V(dB) = 20 log A V(ratio)<br />

A V(dB) = 20 log 42.74<br />

A V(dB) = 32.62 dB<br />

Here’sanotherviewofthecircuitinFigure4.58,summarizingthephaserelationsandDC<br />

offsetsofvarioussignalsinthecircuitjustsimulated.<br />

−<br />

V bias<br />

V in<br />

+<br />

Q 1<br />

−<br />

R load<br />

V 1<br />

Figure4.58:PhaserelationshipsandoffsetsforNPNcommonbaseamplifier.<br />

...andforaPNPtransistor:Figure4.59.<br />

Predictingvoltagegainforthecommon-baseamplifierconfigurationisquitedifficult,and<br />

involvesapproximationsoftransistorbehaviorthataredifficulttomeasuredirectly.Unlikethe<br />

otheramplifierconfigurations,wherevoltagegainwaseithersetbytheratiooftworesistors<br />

(common-emitter),orfixedatanunchangeablevalue(common-collector),thevoltagegainof<br />

thecommon-baseamplifierdependslargelyontheamountofDCbiasontheinputsignal.As<br />

itturnsout,theinternaltransistorresistancebetweenemitterandbaseplaysamajorrolein<br />

determiningvoltagegain,andthisresistancechangeswithdifferentlevelsofcurrentthrough<br />

theemitter.<br />

Whilethisphenomenonisdifficulttoexplain,itisrathereasytodemonstratethroughthe<br />

useofcomputersimulation. WhatI’mgoingtodohereisrunseveralSPICEsimulationson<br />

acommon-baseamplifiercircuit(Figure4.56),changingtheDCbiasvoltageslightly(vbias<br />

inFigure4.60)whilekeepingtheACsignalamplitudeandallothercircuitparametersconstant.<br />

Asthevoltagegainchangesfromonesimulationtoanother,differentoutputvoltage<br />

+


4.7. THECOMMON-BASEAMPLIFIER 215<br />

V in<br />

V bias<br />

+ −<br />

Q 1<br />

R load<br />

V 1<br />

+ −<br />

Figure4.59:PhaserelationshipsandoffsetsforPNPcommonbaseamplifier.<br />

amplitudeswillbenoted.<br />

Althoughtheseanalyseswillallbeconductedinthe“transferfunction”mode,eachwas<br />

first“proofed”inthetransientanalysismode(voltageplottedovertime)toensurethatthe<br />

entirewavewasbeingfaithfullyreproducedandnot“clipped”duetoimproperbiasing. See<br />

”*.tran0.02m0.78m”inFigure4.60,the“commentedout”transientanalysisstatement.Gain<br />

calculationscannotbebasedonwaveformsthataredistorted.SPICEcancalculatethesmall<br />

signalDCgainforuswiththe“.tfv(4)vin”statement.Theoutputisv(4)andtheinputasvin.<br />

Atthecommandline,spice-bfilename.cirproducesaprintedoutputduetothe.tfstatement:<br />

transferfunction,outputimpedance,andinputimpedance. Theabbreviatedoutput<br />

listingisfromrunswithvbiasat0.85,0.90,0.95,1.00VasrecordedinTable 4.5.<br />

AtrendshouldbeevidentinTable 4.5. WithincreasesinDCbiasvoltage,voltagegain<br />

(transferfunction)increasesaswell. Wecanseethatthevoltagegainisincreasingbecause<br />

eachsubsequentsimulation(vbias=0.85,0.8753,0.90,0.95,1.00V)producesgreatergain<br />

(transferfunction=37.6,39.440.8,42.7,44.0),respectively. Thechangesarelargelydueto<br />

minusculevariationsinbiasvoltage.<br />

ThelastthreelinesofTable ??(right)showtheI(v1)/Iincurrentgainof0.99. (Thelast<br />

twolineslookinvalid.) Thismakessensefor β=100; α= β/(β+1), α=0.99=100/(100-1). The<br />

combinationoflowcurrentgain(alwayslessthan1)andsomewhatunpredictablevoltagegain<br />

conspireagainstthecommon-basedesign,relegatingittofewpracticalapplications.<br />

Thosefewapplicationsincluderadiofrequencyamplifiers.Thegroundedbasehelpsshield<br />

theinputattheemitterfromthecollectoroutput,preventinginstabilityinRFamplifiers.The<br />

commonbaseconfigurationisusableathigherfrequenciesthancommonemitterorcommon<br />

collector. See“ClassCcommon-base750mWRFpoweramplifier”(page431). Foramore<br />

elaboratecircuitsee“ClassAcommon-basesmall-signalhighgainamplifier”(page431).<br />

• REVIEW:<br />

• Common-basetransistoramplifiersareso-calledbecausetheinputandoutputvoltage<br />

pointssharethebaseleadofthetransistorincommonwitheachother,notconsidering<br />

anypowersupplies.<br />

• Thecurrentgainofacommon-baseamplifierisalwayslessthan1.Thevoltagegainisa<br />

functionofinputandoutputresistances,andalsotheinternalresistanceoftheemitter-


216 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

common-base amp<br />

vbias=0.85V<br />

vin 5 2 sin (0 0.12 2000<br />

0 0)<br />

vbias 0 1 dc 0.85<br />

r1 2 1 100<br />

q1 4 0 5 mod1<br />

v1 3 0 dc 15<br />

rload 3 4 5k<br />

.model mod1 npn<br />

*.tran 0.02m 0.78m<br />

.tf v(4) vin<br />

.end<br />

common-base amp current gain<br />

Iin 55 5 0A<br />

vin 55 2 sin (0 0.12 2000 0<br />

0)<br />

vbias 0 1 dc 0.8753<br />

r1 2 1 100<br />

q1 4 0 5 mod1<br />

v1 3 0 dc 15<br />

rload 3 4 5k<br />

.model mod1 npn<br />

*.tran 0.02m 0.78m<br />

.tf I(v1) Iin<br />

.end<br />

Transfer function<br />

information:<br />

transfer function =<br />

9.900990e-01<br />

iin input impedance =<br />

9.900923e+11<br />

v1 output impedance =<br />

1.000000e+20<br />

Figure4.60: SPICEnetlist: Common-base,transferfunction(voltagegain)forvariousDC<br />

biasvoltages. SPICEnetlist: Common-baseampcurrentgain;Note.tfv(4)vinstatement.<br />

TransferfunctionforDCcurrentgainI(vin)/Iin;Note.tfI(vin)Iinstatement.


4.7. THECOMMON-BASEAMPLIFIER 217<br />

Table4.5:SPICEoutput:Common-basetransferfunction.<br />

Circuit: common-base amp vbias=0.85V<br />

transfer function = 3.756565e+01<br />

output impedance at v(4) = 5.000000e+03<br />

vin#input impedance = 1.317825e+02<br />

Circuit: common-base amp vbias=0.8753V Ic=1 mA<br />

Transfer function information:<br />

transfer function = 3.942567e+01<br />

output impedance at v(4) = 5.000000e+03<br />

vin#input impedance = 1.255653e+02<br />

Circuit: common-base amp vbias=0.9V<br />

transfer function = 4.079542e+01<br />

output impedance at v(4) = 5.000000e+03<br />

vin#input impedance = 1.213493e+02<br />

Circuit: common-base amp vbias=0.95V<br />

transfer function = 4.273864e+01<br />

output impedance at v(4) = 5.000000e+03<br />

vin#input impedance = 1.158318e+02<br />

Circuit: common-base amp vbias=1.00V<br />

transfer function = 4.401137e+01<br />

output impedance at v(4) = 5.000000e+03<br />

vin#input impedance = 1.124822e+02


218 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

basejunction,whichissubjecttochangewithvariationsinDCbiasvoltage. Sufficeto<br />

saythatthevoltagegainofacommon-baseamplifiercanbeveryhigh.<br />

• Theratioofatransistor’scollectorcurrenttoemittercurrentiscalled α.The αvaluefor<br />

anytransistorisalwayslessthanunity,orinotherwords,lessthan1.<br />

4.8 Thecascodeamplifier<br />

WhiletheC-B(common-base)amplifierisknownforwiderbandwidththantheC-E(commonemitter)configuration,thelowinputimpedance(10sof<br />

Ω)ofC-Bisalimitationformany<br />

applications.ThesolutionistoprecedetheC-BstagebyalowgainC-Estagewhichhasmoderatelyhighinputimpedance(kΩs).SeeFigure4.61.Thestagesareinacascodeconfiguration,<br />

stackedinseries,asopposedtocascadedforastandardamplifierchain. See“Capacitorcoupledthreestagecommon-emitteramplifier”(page253)foracascadeexample.<br />

Thecascode<br />

amplifierconfigurationhasbothwidebandwidthandamoderatelyhighinputimpedance.<br />

Vi<br />

R L<br />

Vo<br />

Vi<br />

R L<br />

Vo<br />

Common<br />

base<br />

Vi<br />

Common<br />

emitter<br />

Common-base Common-emitter Cascode<br />

Figure4.61:Thecascodeamplifieriscombinedcommon-emitterandcommon-base.Thisisan<br />

ACcircuitequivalentwithbatteriesandcapacitorsreplacedbyshortcircuits.<br />

ThekeytounderstandingthewidebandwidthofthecascodeconfigurationistheMiller<br />

effect.The(page277)isthemultiplicationofthebandwidthrobbingcollector-basecapacitance<br />

byvoltagegainAv.ThisC-BcapacitanceissmallerthantheE-Bcapacitance.Thus,onewould<br />

thinkthattheC-Bcapacitancewouldhavelittleeffect.However,intheC-Econfiguration,the<br />

collectoroutputsignalisoutofphasewiththeinputatthebase. Thecollectorsignalcapacitivelycoupledbackopposesthebasesignal.<br />

Moreover,thecollectorfeedbackis(1-Av)times<br />

largerthanthebasesignal.Thus,thesmallC-Bcapacitanceappears(1-Av)timeslargerthan<br />

itsactualvalue.Thiscapacitivegainreducingfeedbackincreaseswithfrequency,reducingthe<br />

highfrequencyresponseofaC-Eamplifier.<br />

TheapproximatevoltagegainoftheC-EamplifierinFigure4.62is-RL/REE.Theemitter<br />

currentissetto1.0mAbybiasing.REE=26mV/IE=26mV/1.0ma=26 Ω.Thus,Av=-RL/REE=<br />

-4700/26=-181.Thepn2222datasheetlistCcbo=8pF.[5]ThemillercapacitanceisCcbo(1-Av).<br />

GainAv=-181,negativesinceitisinvertinggain.Cmiller=Ccbo(1-Av)=8pF(1-(-181)=1456pF<br />

R L<br />

Vo


4.8. THECASCODEAMPLIFIER 219<br />

Acommon-baseconfigurationisnotsubjecttotheMillereffectbecausethegroundedbase<br />

shieldsthecollectorsignalfrombeingfedbacktotheemitterinput.Thus,aC-Bamplifierhas<br />

betterhighfrequencyresponse. Tohaveamoderatelyhighinputimpedance,theC-Estage<br />

isstilldesirable. Thekeyistoreducethegain(toabout1)oftheC-Estagewhichreduces<br />

theMillereffectC-Bfeedbackto1·CCBO.ThetotalC-Bfeedbackisthefeedbackcapacitance<br />

1·CCBplustheactualcapacitanceCCBforatotalof2·CCBO.Thisisaconsiderablereduction<br />

from181·CCBO.Themillercapacitanceforagainof-2C-EstageisCmiller=Ccbo(1-Av)=Cmiller<br />

=Ccbo(1-(-1))=Ccbo·2.<br />

Thewaytoreducethecommon-emittergainistoreducetheloadresistance.Thegainofa<br />

C-EamplifierisapproximatelyRC/RE. TheinternalemitterresistanceREEat1mAemitter<br />

currentis26Ω.Fordetailsonthe26Ω,see“DerivationofREE”,see(page241).Thecollector<br />

loadRCistheresistanceoftheemitteroftheC-BstageloadingtheC-Estage,26Ωagain.CE<br />

gainamplifiergainisapproximatelyAv=RC/RE=26/26=1. ThisMillercapacitanceisCmiller<br />

=Ccbo(1-Av)=8pF(1-(-1)=16pF.WenowhaveamoderatelyhighinputimpedanceC-Estage<br />

withoutsufferingtheMillereffect,butnoC-EdBvoltagegain. TheC-Bstageprovidesa<br />

highvoltagegain,AV =-181. Currentgainofcascodeis βoftheC-Estage,1fortheC-B, β<br />

overall. Thus,thecascodehasmoderatelyhighinputimpedanceoftheC-E,goodgain,and<br />

goodbandwidthoftheC-B.<br />

1<br />

R3<br />

80kΩ<br />

2<br />

V4<br />

+<br />

− 11.5 V<br />

C2<br />

10n F<br />

V3<br />

C3<br />

10n F<br />

4 5<br />

0.1 V R5<br />

p-p<br />

0V 80 kΩ<br />

offset<br />

1kHz<br />

1.5V<br />

6<br />

+ −<br />

V6<br />

Cascode<br />

3<br />

Q2<br />

Α<br />

R4<br />

4.7 kΩ<br />

9<br />

V5<br />

+<br />

Q3 −<br />

VCC 20 V<br />

V3<br />

10 nF<br />

4<br />

C1<br />

15<br />

R1<br />

4.7 kΩ<br />

R2<br />

80 kΩ<br />

1.5 V<br />

16<br />

+ −<br />

V2<br />

13<br />

Q1<br />

V1<br />

19<br />

Common-base<br />

Figure4.62:SPICE:Cascodeandcommon-baseforcomparison.<br />

+ − 10 V<br />

TheSPICEversionofbothacascodeamplifier,andforcomparison,acommon-emitteramplifierisshowninFigure4.62.<br />

ThenetlistisinTable4.6. TheACsourceV3drivesboth<br />

amplifiersvianode4.Thebiasresistorsforthiscircuitarecalculatedinanexampleproblem<br />

(page246).<br />

ThewaveformsinFigure4.63showtheoperationofthecascodestage. Theinputsignal<br />

isdisplayedmultipliedby10sothatitmaybeshownwiththeoutputs. Notethatboththe<br />

Cascode,Common-emitter,andVa(intermediatepoint)outputsareinvertedfromtheinput.<br />

BoththeCascodeandCommonemitterhavelargeamplitudeoutputs.TheVapointhasaDC<br />

levelofabout10V,abouthalfwaybetween20Vandground.Thesignalislargerthancanbe<br />

accountedforbyaC-Egainof1,Itisthreetimeslargerthanexpected.<br />

Figure4.64showsthefrequencyresponsetoboththecascodeandcommon-emitterampli-


220 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Figure4.63:SPICEwaveforms.Notethat<strong>In</strong>putismultipliedby10forvisibility.<br />

Figure4.64:Cascodevscommon-emitterbanwidth.


4.8. THECASCODEAMPLIFIER 221<br />

Table4.6:SPICEnetlistforprintingACinputandoutputvoltages.<br />

*SPICE circuit from XCircuit v3.20<br />

V1 19 0 10<br />

Q1 13 15 0 q2n2222<br />

Q2 3 2 A q2n2222<br />

R1 19 13 4.7k<br />

V2 16 0 1.5<br />

C1 4 15 10n<br />

R2 15 16 80k<br />

Q3 A 5 0 q2n2222<br />

V3 4 6 SIN(0 0.1 1k) ac 1<br />

R3 1 2 80k<br />

R4 3 9 4.7k<br />

C2 2 0 10n<br />

C3 4 5 10n<br />

R5 5 6 80k<br />

V4 1 0 11.5<br />

V5 9 0 20<br />

V6 6 0 1.5<br />

.model q2n2222 npn (is=19f bf=150<br />

+ vaf=100 ikf=0.18 ise=50p ne=2.5 br=7.5<br />

+ var=6.4 ikr=12m isc=8.7p nc=1.2 rb=50<br />

+ re=0.4 rc=0.3 cje=26p tf=0.5n<br />

+ cjc=11p tr=7n xtb=1.5 kf=0.032f af=1)<br />

.tran 1u 5m<br />

.AC DEC 10 1k 100Meg<br />

.end


222 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

fiers.TheSPICEstatementsresponsiblefortheACanalysis,extractedfromthelisting:<br />

V3 4 6 SIN(0 0.1 1k) ac 1<br />

.AC DEC 10 1k 100Meg<br />

Notethe“ac1”isnecessaryattheendoftheV3statement. Thecascodehasmarginally<br />

bettermid-bandgain.However,weareprimarilylookingforthebandwidthmeasuredatthe<br />

-3dBpoints,downfromthemidbandgainforeachamplifier.Thisisshownbytheverticalsolid<br />

linesinFigure4.64.Itisalsopossibletoprintthedataofinterestfromnutmegtothescreen,<br />

theSPICEgraphicalviewer(command,firstline):<br />

nutmeg 6 -> print frequency db(vm(3)) db(vm(13))<br />

<strong>In</strong>dex frequency db(vm(3)) db(vm(13))<br />

22 0.158MHz 47.54 45.41<br />

33 1.995MHz 46.95 42.06<br />

37 5.012MHz 44.63 36.17<br />

<strong>In</strong>dex22givesthemidbanddBgainforCascodevm(3)=47.5dBandCommon-emittervm(13)=45.4dB.<br />

Outofmanyprintedlines,<strong>In</strong>dex33wastheclosesttobeing3dBdownfrom45.4dBat42.0dB<br />

fortheCommon-emittercircuit.Thecorresponding<strong>In</strong>dex33frequencyisapproximately2Mhz,<br />

thecommon-emitterbandwidth. <strong>In</strong>dex37vm(3)=44.6dbisapproximately3dbdownfrom<br />

47.5db. Thecorresponding<strong>In</strong>dex37frequencyis5Mhz,thecascodebandwidth. Thus,the<br />

cascodeamplifierhasawiderbandwidth.Wearenotconcernedwiththelowfrequencydegradationofgain.Itisduetothecapacitors,whichcouldberemediedwithlargerones.The5MHzbandwithofourcascodeexample,whilebetterthanthecommon-emitterexample,isnotexemplaryforanRF(radiofrequency)amplifier.<br />

ApairofRFormicrowave<br />

transistorswithlowerinterelectrodecapacitancesshouldbeusedforhigherbandwidth. BeforetheinventionoftheRFdualgateMOSFET,theBJTcascodeamplifiercouldhavebeen<br />

foundinUHF(ultrahighfrequency)TVtuners.<br />

• REVIEW<br />

• Acascodeamplifierconsistsofacommon-emitterstageloadedbytheemitterofacommonbasestage.<br />

• TheheavilyloadedC-Estagehasalowgainof1,overcomingtheMillereffect<br />

• Acascodeamplifierhasahighgain,moderatelyhighinputimpedance,ahighoutput<br />

impedance,andahighbandwidth.<br />

4.9 Biasingtechniques<br />

<strong>In</strong>thecommon-emittersectionofthischapter,wesawaSPICEanalysiswheretheoutput<br />

waveformresembledahalf-waverectifiedshape:onlyhalfoftheinputwaveformwasreproduced,withtheotherhalfbeingcompletelycutoff.<br />

Sinceourpurposeatthattimewasto<br />

reproducetheentirewaveshape,thisconstitutedaproblem.Thesolutiontothisproblemwas<br />

toaddasmallbiasvoltagetotheamplifierinputsothatthetransistorstayedinactivemode<br />

throughouttheentirewavecycle.Thisadditionwascalledabiasvoltage.


4.9. BIASINGTECHNIQUES 223<br />

Ahalf-waveoutputisnotproblematicforsomeapplications.<strong>In</strong>fact,someapplicationsmay<br />

necessitatethisverykindofamplification. Becauseitispossibletooperateanamplifierin<br />

modesotherthanfull-wavereproductionandspecificapplicationsrequiredifferentrangesof<br />

reproduction,itisusefultodescribethedegreetowhichanamplifierreproducestheinput<br />

waveformbydesignatingitaccordingtoclass. Amplifierclassoperationiscategorizedwith<br />

alphabeticalletters:A,B,C,andAB.<br />

ForClassAoperation,theentireinputwaveformisfaithfullyreproduced.AlthoughIdidn’t<br />

introducethisconceptbackinthecommon-emittersection,thisiswhatwewerehopingtoattaininoursimulations.<br />

ClassAoperationcanonlybeobtainedwhenthetransistorspends<br />

itsentiretimeintheactivemode,neverreachingeithercutofforsaturation.Toachievethis,<br />

sufficientDCbiasvoltageisusuallysetatthelevelnecessarytodrivethetransistorexactly<br />

halfwaybetweencutoffandsaturation. Thisway,theACinputsignalwillbeperfectly“centered”betweentheamplifier’shighandlowsignallimitlevels.<br />

V input<br />

V bias<br />

+<br />

-<br />

Class A<br />

Amplifier<br />

Figure4.65:ClassA:Theamplifieroutputisafaithfulreproductionoftheinput.<br />

ClassBoperationiswhatwehadthefirsttimeanACsignalwasappliedtothecommonemitteramplifierwithnoDCbiasvoltage.<br />

Thetransistorspenthalfitstimeinactivemode<br />

andtheotherhalfincutoffwiththeinputvoltagetoolow(orevenofthewrongpolarity!) to<br />

forward-biasitsbase-emitterjunction.<br />

V input<br />

Class B<br />

Amplifier<br />

Little or no DC bias voltage<br />

Figure4.66:ClassB:Biasissuchthathalf(180 o )ofthewaveformisreproduced.<br />

Byitself,anamplifieroperatinginclassBmodeisnotveryuseful.<strong>In</strong>mostcircumstances,<br />

theseveredistortionintroducedintothewaveshapebyeliminatinghalfofitwouldbeunacceptable.However,classBoperationisausefulmodeofbiasingiftwoamplifiersareoperated


224 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

asapush-pullpair,eachamplifierhandlingonlyhalfofthewaveformatatime:<br />

<strong>In</strong>put components<br />

omitted for simplicity<br />

Q 1<br />

Q 2<br />

V output<br />

+<br />

−<br />

Power<br />

supply<br />

Figure4.67: ClassBpushpullamplifier: Eachtransistorreproduceshalfofthewaveform.<br />

Combiningthehalvesproducesafaithfulreproductionofthewholewave.<br />

TransistorQ1“pushes”(drivestheoutputvoltageinapositivedirectionwithrespectto<br />

ground),whiletransistorQ2“pulls”theoutputvoltage(inanegativedirection,toward0volts<br />

withrespecttoground). <strong>In</strong>dividually,eachofthesetransistorsisoperatinginclassBmode,<br />

activeonlyforone-halfoftheinputwaveformcycle.Together,however,bothfunctionasateam<br />

toproduceanoutputwaveformidenticalinshapetotheinputwaveform.<br />

AdecidedadvantageoftheclassB(push-pull)amplifierdesignovertheclassAdesignis<br />

greateroutputpowercapability.WithaclassAdesign,thetransistordissipatesconsiderable<br />

energyintheformofheatbecauseitneverstopsconductingcurrent.Atallpointsinthewave<br />

cycleitisintheactive(conducting)mode,conductingsubstantialcurrentanddroppingsubstantialvoltage.Thereissubstantialpowerdissipatedbythetransistorthroughoutthecycle.<br />

<strong>In</strong>aclassBdesign,eachtransistorspendshalfthetimeincutoffmode,whereitdissipates<br />

zeropower(zerocurrent=zeropowerdissipation).Thisgiveseachtransistoratimeto“rest”<br />

andcoolwhiletheothertransistorcarriestheburdenoftheload.ClassAamplifiersaresimplerindesign,buttendtobelimitedtolow-powersignalapplicationsforthesimplereasonof<br />

transistorheatdissipation.<br />

AnotherclassofamplifieroperationknownasclassAB,issomewherebetweenclassA<br />

andclassB:thetransistorspendsmorethan50%butlessthan100%ofthetimeconducting<br />

current.<br />

Iftheinputsignalbiasforanamplifierisslightlynegative(oppositeofthebiaspolarity<br />

forclassAoperation),theoutputwaveformwillbefurther“clipped”thanitwaswithclassB<br />

biasing,resultinginanoperationwherethetransistorspendsmostofthetimeincutoffmode:<br />

Atfirst,thisschememayseemutterlypointless.Afterall,howusefulcouldanamplifierbe<br />

ifitclipsthewaveformasbadlyasthis?Iftheoutputisuseddirectlywithnoconditioningof<br />

anykind,itwouldindeedbeofquestionableutility. However,withtheapplicationofatank


4.9. BIASINGTECHNIQUES 225<br />

V input<br />

V bias<br />

-<br />

+<br />

Class C<br />

Amplifier<br />

Figure4.68:ClassC:Conductionisforlessthanahalfcycle(


226 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

<strong>In</strong>put<br />

Output<br />

Figure4.70:ClassDamplifier:<strong>In</strong>putsignalandunfilteredoutput.<br />

theoutputsquarewavepulse. IftherecanbeanygoalstatedoftheclassDdesign,itisto<br />

avoidactive-modetransistoroperation. SincetheoutputtransistorofaclassDamplifieris<br />

neverintheactivemode,onlycutofforsaturated,therewillbelittleheatenergydissipated<br />

byit.Thisresultsinveryhighpowerefficiencyfortheamplifier.Ofcourse,thedisadvantage<br />

ofthisstrategyistheoverwhelmingpresenceofharmonicsontheoutput. Fortunately,since<br />

theseharmonicfrequenciesaretypicallymuchgreaterthanthefrequencyoftheinputsignal,<br />

thesecanbefilteredoutbyalow-passfilterwithrelativeease,resultinginanoutputmore<br />

closelyresemblingtheoriginalinputsignalwaveform. ClassDtechnologyistypicallyseen<br />

whereextremelyhighpowerlevelsandrelativelylowfrequenciesareencountered,suchas<br />

inindustrialinverters(devicesconvertingDCintoACpowertorunmotorsandotherlarge<br />

devices)andhigh-performanceaudioamplifiers.<br />

Atermyouwilllikelycomeacrossinyourstudiesofelectronicsissomethingcalledquiescent,whichisamodifierdesignatingthezeroinputconditionofacircuit.Quiescentcurrent,<br />

forexample,istheamountofcurrentinacircuitwithzeroinputsignalvoltageapplied.Bias<br />

voltageinatransistorcircuitforcesthetransistortooperateatadifferentlevelofcollector<br />

currentwithzeroinputsignalvoltagethanitwouldwithoutthatbiasvoltage.Therefore,the<br />

amountofbiasinanamplifiercircuitdeterminesitsquiescentvalues.<br />

<strong>In</strong>aclassAamplifier,thequiescentcurrentshouldbeexactlyhalfofitssaturationvalue<br />

(halfwaybetweensaturationandcutoff,cutoffbydefinitionbeingzero). ClassBandclassC<br />

amplifiershavequiescentcurrentvaluesofzero,sincethesearesupposedtobecutoffwithno<br />

signalapplied.ClassABamplifiershaveverylowquiescentcurrentvalues,justabovecutoff.<br />

Toillustratethisgraphically,a“loadline”issometimesplottedoveratransistor’scharacteristic<br />

curvestoillustrateitsrangeofoperationwhileconnectedtoaloadresistanceofspecificvalue<br />

showninFigure4.71.<br />

Aloadlineisaplotofcollector-to-emittervoltageoverarangeofcollectorcurrents.Atthe<br />

lower-rightcorneroftheloadline,voltageisatmaximumandcurrentisatzero,representing<br />

aconditionofcutoff.Attheupper-leftcorneroftheline,voltageisatzerowhilecurrentisata<br />

maximum,representingaconditionofsaturation.Dotsmarkingwheretheloadlineintersects<br />

thevarioustransistorcurvesrepresentrealisticoperatingconditionsforthosebasecurrents


4.9. BIASINGTECHNIQUES 227<br />

saturation<br />

I collector<br />

0<br />

I base = 75 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

"Load line"<br />

E collector-to-emitter<br />

V supply<br />

cutoff<br />

Figure4.71: ExampleloadlinedrawnovertransistorcharacteristiccurvesfromVsupply to<br />

saturationcurrent.<br />

given.<br />

Quiescentoperatingconditionsmaybeshownonthisgraphintheformofasingledotalong<br />

theloadline.ForaclassAamplifier,thequiescentpointwillbeinthemiddleoftheloadline<br />

asin(Figure4.72.<br />

I collector<br />

0<br />

I base = 75 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

E collector-to-emitter<br />

Quiescent point<br />

for class A<br />

operation<br />

V supply<br />

Figure4.72:Quiescentpoint(dot)forclassA.<br />

<strong>In</strong>thisillustration,thequiescentpointhappenstofallonthecurverepresentingabase<br />

currentof40 µA.Ifweweretochangetheloadresistanceinthiscircuittoagreatervalue,it<br />

wouldaffecttheslopeoftheloadline,sinceagreaterloadresistancewouldlimitthemaximum<br />

collectorcurrentatsaturation,butwouldnotchangethecollector-emittervoltageatcutoff.<br />

Graphically,theresultisaloadlinewithadifferentupper-leftpointandthesamelower-right


228 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

pointasin(Figure4.73)<br />

I collector<br />

The nonhorizontal<br />

portion of<br />

the curve<br />

represents<br />

transistor<br />

saturation<br />

0<br />

I base = 75 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

E collector-to-emitter<br />

V supply<br />

Figure4.73:Loadlineresultingfromincreasedloadresistance.<br />

Notehowthenewloadlinedoesn’tinterceptthe75 µAcurvealongitsflatportionasbefore.<br />

Thisisveryimportanttorealizebecausethenon-horizontalportionofacharacteristiccurve<br />

representsaconditionofsaturation. Havingtheloadlineinterceptthe75 µAcurveoutside<br />

ofthecurve’shorizontalrangemeansthattheamplifierwillbesaturatedatthatamountof<br />

basecurrent. <strong>In</strong>creasingtheloadresistorvalueiswhatcausedtheloadlinetointerceptthe<br />

75 µAcurveatthisnewpoint,anditindicatesthatsaturationwilloccuratalesservalueof<br />

basecurrentthanbefore.<br />

Withtheold,lower-valueloadresistorinthecircuit,abasecurrentof75 µAwouldyield<br />

aproportionalcollectorcurrent(basecurrentmultipliedby β). <strong>In</strong>thefirstloadlinegraph,a<br />

basecurrentof75 µAgaveacollectorcurrentalmosttwicewhatwasobtainedat40 µA,asthe<br />

βratiowouldpredict.However,collectorcurrentincreasesmarginallybetweenbasecurrents<br />

75 µAand40 µA,becausethetransistorbeginstolosesufficientcollector-emittervoltageto<br />

continuetoregulatecollectorcurrent.<br />

Tomaintainlinear(no-distortion)operation,transistoramplifiersshouldn’tbeoperatedat<br />

pointswherethetransistorwillsaturate;thatis,wheretheloadlinewillnotpotentiallyfall<br />

onthehorizontalportionofacollectorcurrentcurve. We’dhavetoaddafewmorecurvesto<br />

thegraphinFigure4.74beforewecouldtelljusthowfarwecould“push”thistransistorwith<br />

increasedbasecurrentsbeforeitsaturates.<br />

Itappearsinthisgraphthatthehighest-currentpointontheloadlinefallingonthe<br />

straightportionofacurveisthepointonthe50 µAcurve.Thisnewpointshouldbeconsidered<br />

themaximumallowableinputsignallevelforclassAoperation.AlsoforclassAoperation,the<br />

biasshouldbesetsothatthequiescentpointishalfwaybetweenthisnewmaximumpointand<br />

cutoffshowninFigure4.75.<br />

NowthatweknowalittlemoreabouttheconsequencesofdifferentDCbiasvoltagelevels,<br />

itistimetoinvestigatepracticalbiasingtechniques. Sofar,I’veshownasmallDCvoltage<br />

source(battery)connectedinserieswiththeACinputsignaltobiastheamplifierforwhatever<br />

desiredclassofoperation. <strong>In</strong>reallife,theconnectionofaprecisely-calibratedbatterytothe


4.9. BIASINGTECHNIQUES 229<br />

I collector<br />

0<br />

I base = 75 µA<br />

I base = 60 µA<br />

I base = 50 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

E collector-to-emitter<br />

V supply<br />

Figure4.74:Morebasecurrentcurvesshowssaturationdetail.<br />

I collector<br />

0<br />

I base = 75 µA<br />

I base = 60 µA<br />

I base = 50 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

E collector-to-emitter<br />

New quiescent point<br />

V supply<br />

Figure4.75:Newquiescentpointavoidssaturationregion.


230 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

inputofanamplifierissimplynotpractical.Evenifitwerepossibletocustomizeabatteryto<br />

producejusttherightamountofvoltageforanygivenbiasrequirement,thatbatterywould<br />

notremainatitsmanufacturedvoltageindefinitely.Onceitstartedtodischargeanditsoutput<br />

voltagedrooped,theamplifierwouldbegintodrifttowardclassBoperation.<br />

Takethiscircuit,illustratedinthecommon-emittersectionforaSPICEsimulation,for<br />

instance,inFigure4.76.<br />

V input<br />

1.5 V<br />

2 kHz<br />

1<br />

5<br />

R 1<br />

1 kΩ<br />

+ -<br />

V bias<br />

2.3 V<br />

2<br />

Q 1<br />

speaker<br />

3 8 Ω 4<br />

0<br />

V 1<br />

Figure4.76:Impracticalbasebatterybias.<br />

0<br />

15 V<br />

That2.3volt“Vbias”batterywouldnotbepracticaltoincludeinarealamplifiercircuit.A<br />

farmorepracticalmethodofobtainingbiasvoltageforthisamplifierwouldbetodevelopthe<br />

necessary2.3voltsusingavoltagedividernetworkconnectedacrossthe15voltbattery.After<br />

all,the15voltbatteryisalreadytherebynecessity,andvoltagedividercircuitsareeasyto<br />

designandbuild.Let’sseehowthismightlookinFigure4.77.<br />

V input<br />

1.5 V<br />

2 kHz<br />

1<br />

0<br />

R 2<br />

R 3<br />

4<br />

0<br />

R 1<br />

1 kΩ<br />

V bias<br />

2<br />

Q 1<br />

speaker<br />

3 8 Ω 4<br />

Figure4.77:Voltagedividerbias.<br />

IfwechooseapairofresistorvaluesforR2andR3thatwillproduce2.3voltsacrossR3from<br />

atotalof15volts(suchas8466 ΩforR2and1533 ΩforR3),weshouldhaveourdesiredvalue<br />

of2.3voltsbetweenbaseandemitterforbiasingwithnosignalinput. Theonlyproblemis,<br />

thiscircuitconfigurationplacestheACinputsignalsourcedirectlyinparallelwithR3ofour<br />

0<br />

V 1<br />

0<br />

15 V


4.9. BIASINGTECHNIQUES 231<br />

voltagedivider.Thisisnotacceptable,astheACsourcewilltendtooverpoweranyDCvoltage<br />

droppedacrossR3.Parallelcomponentsmusthavethesamevoltage,soifanACvoltagesource<br />

isdirectlyconnectedacrossoneresistorofaDCvoltagedivider,theACsourcewill“win”and<br />

therewillbenoDCbiasvoltageaddedtothesignal.<br />

Onewaytomakethisschemework,althoughitmaynotbeobviouswhyitwillwork,is<br />

toplaceacouplingcapacitorbetweentheACvoltagesourceandthevoltagedividerasin<br />

Figure4.78.<br />

V input<br />

1.5 V<br />

2 kHz<br />

1<br />

0<br />

C<br />

5<br />

R 2<br />

R 3<br />

4<br />

0<br />

8.466 kΩ<br />

5<br />

R 1<br />

1 kΩ<br />

1.533 kΩ<br />

2<br />

Q 1<br />

speaker<br />

3 8 Ω 4<br />

Figure4.78:Couplingcapacitorpreventsvoltagedividerbiasfromflowingintosignalgenerator.<br />

Thecapacitorformsahigh-passfilterbetweentheACsourceandtheDCvoltagedivider,<br />

passingalmostalloftheACsignalvoltageontothetransistorwhileblockingallDCvoltage<br />

frombeingshortedthroughtheACsignalsource. Thismakesmuchmoresenseifyouunderstandthesuperpositiontheoremandhowitworks.Accordingtosuperposition,anylinear,<br />

bilateralcircuitcanbeanalyzedinapiecemealfashionbyonlyconsideringonepowersource<br />

atatime,thenalgebraicallyaddingtheeffectsofallpowersourcestofindthefinalresult.<br />

IfweweretoseparatethecapacitorandR2−−R3voltagedividercircuitfromtherestofthe<br />

amplifier,itmightbeeasiertounderstandhowthissuperpositionofACandDCwouldwork.<br />

WithonlytheACsignalsourceineffect,andacapacitorwithanarbitrarilylowimpedance<br />

atsignalfrequency,almostalltheACvoltageappearsacrossR3:<br />

WithonlytheDCsourceineffect,thecapacitorappearstobeanopencircuit,andthus<br />

neitheritnortheshortedACsignalsourcewillhaveanyeffectontheoperationoftheR2−−R3<br />

voltagedividerinFigure4.80.<br />

CombiningthesetwoseparateanalysesinFigure4.81,wegetasuperpositionof(almost)<br />

1.5voltsACand2.3voltsDC,readytobeconnectedtothebaseofthetransistor.<br />

Enoughtalk–itsabouttimeforaSPICEsimulationofthewholeamplifiercircuitin<br />

Figure4.82. Wewilluseacapacitorvalueof100 µFtoobtainanarbitrarilylow(0.796 Ω)<br />

impedanceat2000Hz:<br />

NotethesubstantialdistortionintheoutputwaveforminFigure4.82. Thesinewaveis<br />

beingclippedduringmostoftheinputsignal’snegativehalf-cycle.Thistellsusthetransistor<br />

isenteringintocutoffmodewhenitshouldn’t(I’massumingagoalofclassAoperationas<br />

before). Whyisthis? Thisnewbiasingtechniqueshouldgiveusexactlythesameamountof<br />

DCbiasvoltageasbefore,right?<br />

0<br />

V 1<br />

0<br />

15 V


232 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V input<br />

1.5 V<br />

2 kHz<br />

R 2<br />

R 3<br />

8.466<br />

kΩ<br />

1.533<br />

kΩ<br />

≈ 1.5 V<br />

2 kHz<br />

Figure4.79: Duetothecouplingcapacitor’sverylowimpedanceatthesignalfrequency,it<br />

behavesmuchlikeapieceofwire,thuscanbeomittedforthisstepinsuperpositionanalysis.<br />

R 2<br />

R 3<br />

8.466<br />

kΩ<br />

1.533<br />

kΩ<br />

2.3 V<br />

Figure4.80:ThecapacitorappearstobeanopencircuitasfarattheDCanalysisisconcerned<br />

V input<br />

1.5 V<br />

2 kHz<br />

C<br />

R 2<br />

R 3<br />

8.466<br />

kΩ<br />

1.533<br />

kΩ<br />

V 1<br />

Figure4.81:CombinedACandDCcircuit.<br />

V 1<br />

15 V<br />

15 V


4.9. BIASINGTECHNIQUES 233<br />

Figure4.82:SPICEsimulationofvoltagedividerbias.<br />

voltage divider<br />

biasing<br />

vinput 1 0 sin (0<br />

1.5 2000 0 0)<br />

c1 1 5 100u<br />

r1 5 2 1k<br />

r2 4 5 8466<br />

r3 5 0 1533<br />

q1 3 2 0 mod1<br />

rspkr 3 4 8<br />

v1 4 0 dc 15<br />

.model mod1 npn<br />

.tran 0.02m 0.78m<br />

.plot tran v(1,0)<br />

i(v1)<br />

.end<br />

WiththecapacitorandR2−−R3resistornetworkunloaded,itwillprovideexactly2.3volts<br />

worthofDCbias. However,onceweconnectthisnetworktothetransistor,itisnolonger<br />

unloaded. Currentdrawnthroughthebaseofthetransistorwillloadthevoltagedivider,<br />

thusreducingtheDCbiasvoltageavailableforthetransistor.Usingthediodecurrentsource<br />

transistormodelinFigure4.83toillustrate,thebiasproblembecomesevident.<br />

V input<br />

C<br />

R 2<br />

R 3<br />

I R3 + I bias<br />

I R3<br />

R 1<br />

I bias<br />

I R3<br />

Q 1<br />

speaker<br />

Figure4.83:Diodetransistormodelshowsloadingofvoltagedivider.<br />

Avoltagedivider’soutputdependsnotonlyonthesizeofitsconstituentresistors,butalso<br />

onhowmuchcurrentisbeingdividedawayfromitthroughaload. Thebase-emitterPN<br />

junctionofthetransistorisaloadthatdecreasestheDCvoltagedroppedacrossR3,duetothe<br />

factthatthebiascurrentjoinswithR3’scurrenttogothroughR2,upsettingthedividerratio<br />

formerlysetbytheresistancevaluesofR2andR3.ToobtainaDCbiasvoltageof2.3volts,the<br />

V 1


234 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

valuesofR2and/orR3mustbeadjustedtocompensatefortheeffectofbasecurrentloading.<br />

ToincreasetheDCvoltagedroppedacrossR3,lowerthevalueofR2,raisethevalueofR3,or<br />

both.<br />

Figure4.84:NodistortionoftheoutputafteradjustingR2andR3.<br />

voltage divider<br />

biasing<br />

vinput 1 0 sin (0<br />

1.5 2000 0 0)<br />

c1 1 5 100u<br />

r1 5 2 1k<br />

r2 4 5 6k


4.10. BIASINGCALCULATIONS 235<br />

afewcyclesaftereach“kick”fromtheamplifier.Becausethetransistorisnotconducting<br />

mostofthetime,powerefficienciesarehighforaclassCamplifier.<br />

• ClassDoperationrequiresanadvancedcircuitdesign,andfunctionsontheprincipleof<br />

representinginstantaneousinputsignalamplitudebythedutycycleofahigh-frequency<br />

squarewave.Theoutputtransistor(s)neveroperateinactivemode,onlycutoffandsaturation.Littleheatenergydissipatedmakesenergyefficiencyhigh.<br />

• DCbiasvoltageontheinputsignal,necessaryforcertainclassesofoperation(especially<br />

classAandclassC),maybeobtainedthroughtheuseofavoltagedividerandcoupling<br />

capacitorratherthanabatteryconnectedinserieswiththeACsignalsource.<br />

4.10 Biasingcalculations<br />

Althoughtransistorswitchingcircuitsoperatewithoutbias,itisunusualforanalogcircuitsto<br />

operatewithoutbias.Oneofthefewexamplesis“TROne,onetransistorradio”(page425)with<br />

anamplifiedAM(amplitudemodulation)detector.Notethelackofabiasresistoratthebasein<br />

thatcircuit.<strong>In</strong>thissectionwelookatafewbasicbiascircuitswhichcansetaselectedemitter<br />

currentIE.GivenadesiredemittercurrentIE,whatvaluesofbiasresistorsarerequired,RB,<br />

RE,etc?<br />

4.10.1 BaseBias<br />

Thesimplestbiasingappliesabase-biasresistorbetweenthebaseandabasebatteryVBB.<br />

ItisconvenienttousetheexistingVCCsupplyinsteadofanewbiassupply. Anexampleof<br />

anaudioamplifierstageusingbase-biasingis“Crystalradiowithonetransistor...”(page<br />

425). Notetheresistorfromthebasetothebatteryterminal. Asimilarcircuitisshownin<br />

Figure4.85.<br />

WriteaKVL(Krichhoff’svoltagelaw)equationabouttheloopcontainingthebattery,RB,<br />

andtheVBEdiodedroponthetransistorinFigure4.85. NotethatweuseVBBforthebase<br />

supply,eventhoughitisactuallyVCC. If βislargewecanmaketheapproximationthatIC<br />

=IE.ForsilicontransistorsVBE ∼ =0.7V.<br />

+<br />

_<br />

V BE=<br />

0.7V<br />

R B<br />

+ _<br />

R C<br />

V CC<br />

+<br />

_<br />

V BB -I ΒR B - V BE = 0<br />

V BB - V BE = I BR B<br />

I B =<br />

V BB - V BE<br />

R B<br />

I E = (β+1)Ι Β ≈ βI B<br />

I E =<br />

V BB - V BE<br />

R B/β<br />

Figure4.85:Base-bias<br />

(KVL)<br />

(IE base-bias)


236 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Siliconsmallsignaltransistorstypicallyhaveaβintherangeof100-300.Assumingthat<br />

wehaveaβ=100transistor,whatvalueofbase-biasresistorisrequiredtoyieldanemitter<br />

currentof1mA?<br />

SolvingtheIEbase-biasequationforRB andsubstituting β,VBB,VBE,andIE yields<br />

930kΩ.Thecloseststandardvalueis910kΩ.<br />

β = 100 VBB = 10V IC ≈ IE = 1ma<br />

R B =<br />

V BB - V BE<br />

I E /β<br />

10 - 0.7<br />

= 1mA/100 = 930k<br />

Whatistheemittercurrentwitha910kΩresistor? Whatistheemittercurrentifwe<br />

randomlygetaβ=300transistor?<br />

β = 100 VBB = 10V RB = 910k VBE = 0.7V<br />

IE =<br />

VBB - VBE RB/β =<br />

10 - 0.7<br />

910k / 100<br />

= 1.02mA<br />

β = 300<br />

IE =<br />

10 - 0.7<br />

910k / 300<br />

= 3.07mA<br />

Theemittercurrentislittlechangedinusingthestandardvalue910kΩresistor.However,<br />

withachangein βfrom100to300,theemittercurrenthastripled.Thisisnotacceptablein<br />

apoweramplifierifweexpectthecollectorvoltagetoswingfromnearVCCtonearground.<br />

However,forlowlevelsignalsfrommicro-voltstoaaboutavolt,thebiaspointcanbecentered<br />

foraβofsquarerootof(100·300)=173.Thebiaspointwillstilldriftbyaconsiderableamount<br />

.However,lowlevelsignalswillnotbeclipped.<br />

Base-biasbyitsselfisnotsuitableforhighemittercurrents,asusedinpoweramplifiers.<br />

Thebase-biasedemittercurrentisnottemperaturestable. Thermalrunawayistheresult<br />

ofhighemittercurrentcausingatemperatureincreasewhichcausesanincreaseinemitter<br />

current,whichfurtherincreasestemperature.<br />

4.10.2 Collector-feedbackbias<br />

VariationsinbiasduetotemperatureandbetamaybereducedbymovingtheVBBendofthe<br />

base-biasresistortothecollectorasinFigure4.86.Iftheemittercurrentweretoincrease,the<br />

voltagedropacrossRCincreases,decreasingVC,decreasingIBfedbacktothebase.This,in<br />

turn,decreasestheemittercurrent,correctingtheoriginalincrease.<br />

WriteaKVLequationabouttheloopcontainingthebattery,RC,RB,andtheVBEdrop.<br />

SubstituteIC ∼ =IEandIB ∼ =IE/β.SolvingforIEyieldstheIECFB-biasequation.SolvingforIB<br />

yieldstheIBCFB-biasequation.<br />

Findtherequiredcollectorfeedbackbiasresistorforanemittercurrentof1mA,a4.7K<br />

collectorloadresistor,andatransistorwith β=100.FindthecollectorvoltageVC.Itshouldbe<br />

approximatelymidwaybetweenVCCandground.


4.10. BIASINGCALCULATIONS 237<br />

R B<br />

+<br />

_<br />

V BE=<br />

0.7V<br />

+ _<br />

+<br />

_<br />

R C<br />

VC VCC +<br />

_<br />

IC = βIB IC ≈ IE IE ≈ βIB VCC - ICRC - IBRB - VBE = 0<br />

VCC - IERC - (IE/β)RB - VBE = 0<br />

VCC - VBE = IERC + (IE/β)RB VCC - VBE = IE((RB/β) + RC) VCC - VBE IE =<br />

RB/β + RC R B = β<br />

V CC - V BE<br />

I E<br />

- R C<br />

Figure4.86:Collector-feedbackbias.<br />

β = 100 VCC = 10V IC ≈ IE = 1ma RC = 4.7k<br />

VCC - VBE = 10 - 0.7<br />

RB = β - R 100 -4.7k<br />

C<br />

1mA<br />

I E<br />

V C = V CC - I CR C = 10 - (1mA)⋅(4.7k) = 5.3V<br />

= 460k<br />

(KVL)<br />

(IE CFB-bias)<br />

(RB CFB-bias)<br />

Thecloseststandardvaluetothe460kcollectorfeedbackbiasresistoris470k. Findthe<br />

emittercurrentIEwiththe470Kresistor. Recalculatetheemittercurrentforatransistor<br />

with β=100and β=300.<br />

β = 100 VCC = 10V RC = 4.7k RB = 470k<br />

I E =<br />

V CC - V BE<br />

R B/β + R C<br />

β = 300<br />

VCC - VBE IE =<br />

RB/β + RC 10 - 0.7<br />

= = 0.989mA<br />

470k/100 + 4.7k<br />

10 - 0.7<br />

= = 1.48mA<br />

470k/300 + 4.7k<br />

Weseethatasbetachangesfrom100to300,theemittercurrentincreasesfrom0.989mA<br />

to1.48mA.Thisisanimprovementoverthepreviousbase-biascircuitwhichhadanincrease<br />

from1.02mAto3.07mA.Collectorfeedbackbiasistwiceasstableasbase-biaswithrespectto<br />

betavariation.<br />

4.10.3 Emitter-bias<br />

<strong>In</strong>sertingaresistorREintheemittercircuitasinFigure4.87causesdegeneration,alsoknown<br />

asnegativefeedback.ThisopposesachangeinemittercurrentIEduetotemperaturechanges,<br />

resistortolerances,betavariation,orpowersupplytolerance.Typicaltolerancesareasfollows:<br />

resistor—5%,beta—100-300,powersupply—5%.Whymighttheemitterresistorstabilizea


238 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

changeincurrent? ThepolarityofthevoltagedropacrossREisduetothecollectorbattery<br />

VCC. Theendoftheresistorclosesttothe(-)batteryterminalis(-),theendclosesttothe<br />

(+)terminalit(+). Notethatthe(-)endofREisconnectedviaVBBbatteryandRBtothe<br />

base.AnyincreaseincurrentflowthroughREwillincreasethemagnitudeofnegativevoltage<br />

appliedtothebasecircuit,decreasingthebasecurrent,decreasingtheemittercurrent.This<br />

decreasingemittercurrentpartiallycompensatestheoriginalincrease.<br />

_<br />

+<br />

R B<br />

V BB<br />

+<br />

_<br />

+<br />

_<br />

R C<br />

V BE=<br />

0.7V<br />

+<br />

_<br />

R E<br />

V CC<br />

KVL loop<br />

+<br />

_<br />

VBB -IΒRB - VBE - IERE = 0<br />

IE = (b+1)IB ≈ βIB VBB -(IΕ/β)RB - VBE - IERE = 0<br />

VBB - VBE = IE( (RB/β) + RE )<br />

IE =<br />

VBB - VBE RB/β + RE RB/β + RE =<br />

VBB - VBE R B = β<br />

V BB - V BE<br />

I E<br />

I E<br />

Figure4.87:Emitter-bias<br />

- R E<br />

(IE emitter-bias)<br />

(RB emitter-bias)<br />

Notethatbase-biasbatteryVBBisusedinsteadofVCCtobiasthebaseinFigure4.87.<br />

Laterwewillshowthattheemitter-biasismoreeffectivewithalowerbasebiasbattery.<br />

Meanwhile,wewritetheKVLequationfortheloopthroughthebase-emittercircuit,payingattentiontothepolaritiesonthecomponents.WesubstituteIB<br />

∼ =IE/βandsolveforemitter<br />

currentIE.ThisequationcanbesolvedforRB,equation:RBemitter-bias,Figure4.87.<br />

Beforeapplyingtheequations:RBemitter-biasandIEemitter-bias,Figure4.87,weneed<br />

tochoosevaluesforRCandRE. RCisrelatedtothecollectorsupplyVCCandthedesired<br />

collectorcurrentICwhichweassumeisapproximatelytheemittercurrentIE.Normallythe<br />

biaspointforVCissettohalfofVCC. Though,itcouldbesethighertocompensateforthe<br />

voltagedropacrosstheemitterresistorRE. Thecollectorcurrentiswhateverwerequireor<br />

choose.Itcouldrangefrommicro-AmpstoAmpsdependingontheapplicationandtransistor<br />

rating.WechooseIC=1mA,typicalofasmall-signaltransistorcircuit.Wecalculateavalue<br />

forRCandchooseaclosestandardvalue.Anemitterresistorwhichis10-50%ofthecollector<br />

loadresistorusuallyworkswell.<br />

V C = V CC/2 = 10/2 = 5V<br />

R C = Vc/I C = 5/1mA = 5k (4.7k standard value)<br />

R E = 0.10R C = 0.10(4.7K) = 470Ω


4.10. BIASINGCALCULATIONS 239<br />

Ourfirstexamplesetsthebase-biassupplytohighatVBB=VCC=10Vtoshowwhyalower<br />

voltageisdesirable.Determinetherequiredvalueofbase-biasresistorRB.Chooseastandard<br />

valueresistor.Calculatetheemittercurrentfor β=100and β=300.Comparethestabilization<br />

ofthecurrenttopriorbiascircuits.<br />

β= 100 IE ≈ IC=1ma Vcc=V BB=10V RE=470Ω R B = β<br />

V BB - V BE<br />

I E<br />

- R E<br />

10 - 0.7<br />

= 100 - 470 = 883k<br />

0.001<br />

An883kresistorwascalculatedforRB,an870kchosen.At β=100,IEis1.01mA.<br />

β= 100 R B = 870k<br />

VBB - VBE 10 - 0.7<br />

IE = =<br />

= 1.01mA<br />

RB/β + RE 870K/100 + 470<br />

β= 300<br />

VBB - VBE 10 - 0.7<br />

IE = =<br />

= 2.76mA<br />

RB/β + RE 870K/300 + 470<br />

For β=300theemittercurrentsareshowninTable4.7.<br />

Table4.7:Emittercurrentcomparisonfor β=100, β=300.<br />

Biascircuit IC β=100 IC β=300<br />

base-bias 1.02mA 3.07mA<br />

collectorfeedbackbias 0.989mA 1.48mA<br />

emitter-bias,VBB=10V 1.01mA 2.76mA<br />

Table4.7showsthatforVBB=10V,emitter-biasdoesnotdoaverygoodjobofstabilizing<br />

theemittercurrent.Theemitter-biasexampleisbetterthanthepreviousbase-biasexample,<br />

but,notbymuch.ThekeytoeffectiveemitterbiasisloweringthebasesupplyVBBnearerto<br />

theamountofemitterbias.<br />

HowmuchemitterbiasdoweHave? Rounding,thatisemittercurrenttimesemitterresistor:<br />

IERE=(1mA)(470)=0.47V.<strong>In</strong>addition,weneedtoovercometheVBE=0.7V.Thus,<br />

weneedaVBB >(0.47+0.7)Vor >1.17V.Ifemittercurrentdeviates,thisnumberwillchange<br />

comparedwiththefixedbasesupplyVBB,causingacorrectiontobasecurrentIBandemitter<br />

currentIE.AgoodvalueforVB >1.17Vis2V.<br />

β= 100 IE ≈ IC=1ma Vcc=10V VBB=2V RE=470Ω R B = β<br />

V BB - V BE<br />

I E<br />

- R E<br />

2 - 0.7<br />

= 100 - 470 = 83k<br />

0.001<br />

Thecalculatedbaseresistorof83kismuchlowerthantheprevious883k.Wechoose82k<br />

fromthelistofstandardvalues.Theemittercurrentswiththe82kRBfor β=100and β=300<br />

are:


240 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

β= 100 R B = 82k<br />

I E =<br />

β= 300<br />

I E =<br />

V BB - V BE<br />

R B/β + R E<br />

V BB - V BE<br />

R B/β + R E<br />

2 - 0.7<br />

=<br />

82K/100 + 470<br />

2 - 0.7<br />

=<br />

82K/300 + 470<br />

= 1.01mA<br />

= 1.75mA<br />

Comparingtheemittercurrentsforemitter-biaswithVBB=2Vat β=100and β=300to<br />

thepreviousbiascircuitexamplesinTable4.8,weseeconsiderableimprovementat1.75mA,<br />

though,notasgoodasthe1.48mAofcollectorfeedback.<br />

Table4.8:Emittercurrentcomparisonfor β=100, β=300.<br />

Biascircuit IC β=100 IC β=300<br />

base-bias 1.02mA 3.07mA<br />

collectorfeedbackbias 0.989mA 1.48mA<br />

emitter-bias,VBB=10V 1.01mA 2.76mA<br />

emitter-bias,VBB=2V 1.01mA 1.75mA<br />

Howcanweimprovetheperformanceofemitter-bias?Eitherincreasetheemitterresistor<br />

RBordecreasethebase-biassupplyVBBorboth.Asanexample,wedoubletheemitterresistor<br />

totheneareststandardvalueof910Ω.<br />

β= 100 IE ≈ IC=1ma Vcc=10V VBB=2V RE=910Ω R B = β<br />

V BB - V BE<br />

I E<br />

- R E<br />

= 100<br />

2 - 0.7<br />

- 910 = 39k<br />

0.001<br />

ThecalculatedRB=39kisastandardvalueresistor.NoneedtorecalculateIEfor β=100.<br />

For β=300,itis:<br />

β= 300 R B = 39k<br />

VBB - VBE 2 - 0.7<br />

IE = =<br />

= 1.25mA<br />

RB/β + RE 39K/300 + 910<br />

Theperformanceoftheemitter-biascircuitwitha910¡Onega¿emitterresistorismuch<br />

improved.SeeTable 4.9.<br />

Asanexercise,reworktheemitter-biasexamplewiththebaseresistorrevertedbackto<br />

470Ω,andthebase-biassupplyreducedto1.5V.<br />

β= 100 IE ≈ IC=1ma Vcc=10V VBB=1.5V RE=470Ω R B = β<br />

V BB - V BE<br />

I E<br />

- R E<br />

= 100<br />

1.5 - 0.7<br />

- 470 = 33k<br />

0.001


4.10. BIASINGCALCULATIONS 241<br />

Table4.9:Emittercurrentcomparisonfor β=100, β=300.<br />

Biascircuit IC β=100 IC β=300<br />

base-bias 1.02mA 3.07mA<br />

collectorfeedbackbias 0.989mA 1.48mA<br />

emitter-bias,VBB=10V 1.01mA 2.76mA<br />

emitter-bias,VBB=2V,RB=470 1.01mA 1.75mA<br />

emitter-bias,VBB=2V,RB=910 1.00mA 1.25mA<br />

The33kbaseresistorisastandardvalue,emittercurrentat β=100isOK.Theemitter<br />

currentat β=300is:<br />

VBB - VBE 1.5 - 0.7<br />

IE = =<br />

= 1.38mA<br />

RB/β + RE 33K/300 + 470<br />

Table 4.10belowcomparestheexerciseresults1mAand1.38mAtothepreviousexamples.<br />

Table4.10:Emittercurrentcomparisonfor β=100, β=300.<br />

Biascircuit IC β=100 IC β=300<br />

base-bias 1.02mA 3.07mA<br />

collectorfeedbackbias 0.989mA 1.48mA<br />

emitter-bias,VBB=10V 1.01mA 2.76mA<br />

emitter-bias,VBB=2V,RB=470 1.01mA 1.75mA<br />

emitter-bias,VBB=2V,RB=910 1.00mA 1.25mA<br />

emitter-bias,VBB=1.5V,RB=470 1.00mA 1.38mA<br />

Theemitter-biasequationshavebeenrepeatedinFigure4.88withtheinternalemitter<br />

resistanceincludedforbetteraccuracy. Theinternalemitterresistanceistheresistancein<br />

theemittercircuitcontainedwithinthetransistorpackage. ThisinternalresistanceREEis<br />

significantwhenthe(external)emitterresistorREissmall,orevenzero.Thevalueofinternal<br />

resistanceREisafunctionofemittercurrentIE,Table4.11.<br />

Table4.11:DerivationofREE<br />

REE = KT/IEm<br />

where:<br />

K=1.38×10 −23 watt-sec/ o C, Boltzman’s constant<br />

T= temperature in Kelvins ∼ =300.<br />

IE = emitter current<br />

m = varies from 1 to 2 for Silicon<br />

REE ∼ = 0.026V/IE = 26mV/IE<br />

Forreferencethe26mVapproximationislistedasequationREEinFigure4.88.<br />

Themoreaccurateemitter-biasequationsinFigure4.88maybederivedbywritingaKVL<br />

equation. Alternatively, startwithequationsIEemitter-biasandRB emitter-biasinFigure4.87,substitutingREwithREE+RE.TheresultisequationsIEEBandRBEB,respectively


242 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

R B<br />

_<br />

+<br />

+ _ +<br />

V BE=<br />

0.7V<br />

+<br />

_ V BB<br />

R C<br />

R EE_<br />

R E<br />

V CC<br />

+<br />

_<br />

VBB -IΒRB - VBE - IEREE - IERE= 0<br />

IE = (β+1)IB ≈ βIB VBB-(IE/ β)RB-V BE-I EREE-I ERE=0 VBB-V BE=(IE(RB / β) + IEREE + IERE) IE =<br />

VBB - VBE RB/β + REE + RE RB/β + REE + RE =<br />

VBB - VBE R B = β<br />

V BB - V BE<br />

I E<br />

R EE = 26mV/I E<br />

I E<br />

- R EE -R E<br />

(KVL)<br />

(IE EB)<br />

(RB EB)<br />

(REE)<br />

Figure4.88:Emitter-biasequationswithinternalemitterresistanceREEincluded..<br />

inFigure4.88.<br />

RedotheRBcalculationinthepreviousexample(page239)withtheinclusionofREEand<br />

comparetheresults.<br />

β=100 IE ≈ IC=1ma Vcc=10V VBB= 2V RE=470Ω R E E = 26mV/1mA = 26Ω<br />

R B = β<br />

Vcc-V BE<br />

I E<br />

-R EE -R E<br />

= 100<br />

2.0 - 0.7<br />

0.001<br />

- 26 - 470<br />

=80.4k<br />

TheinclusionofREEinthecalculationresultsinalowervalueofthebaseresistorRBa<br />

showninTable4.12.Itfallsbelowthestandardvalue82kresistorinsteadofaboveit.<br />

Table4.12:EffectofinclusionofREEoncalculatedRB<br />

REE? REEValue<br />

WithoutREE 83k<br />

WithREE 80.4k<br />

BypassCapacitorforRE<br />

Oneproblemwithemitterbiasisthataconsiderablepartoftheoutputsignalisdropped<br />

acrosstheemitterresistorRE(Figure4.89).Thisvoltagedropacrosstheemitterresistorisin<br />

serieswiththebaseandofoppositepolaritycomparedwiththeinputsignal.(Thisissimilarto<br />

acommoncollectorconfigurationhaving


4.10. BIASINGCALCULATIONS 243<br />

DCemittercurrentstillexperiencesdegenerationintheemitterresistor,thus,stabilizingthe<br />

DCcurrent.<br />

C coupling<br />

R in<br />

V in<br />

+<br />

_<br />

R B<br />

R E<br />

R C<br />

V CC<br />

+<br />

_<br />

C coupling<br />

R in<br />

V in<br />

+<br />

_<br />

R B<br />

33k<br />

R E<br />

470<br />

R C<br />

4.7k<br />

C bypass<br />

Figure4.89:CbypassisrequiredtopreventACgainreduction.<br />

Whatvalueshouldthebypasscapacitorbe? Thatdependsonthelowestfrequencytobe<br />

amplified.ForradiofrequenciesCbpasswouldbesmall.Foranaudioamplifierextendingdown<br />

to20Hzitwillbelarge.A“ruleofthumb”forthebypasscapacitoristhatthereactanceshould<br />

be1/10oftheemitterresistanceorless.Thecapacitorshouldbedesignedtoaccommodatethe<br />

lowestfrequencybeingamplified.Thecapacitorforanaudioamplifiercovering20Hzto20kHz<br />

wouldbe:<br />

XC =<br />

1<br />

2πfC<br />

C =<br />

1<br />

2πfXC<br />

C =<br />

1<br />

2π20(470/10)<br />

= 169µF<br />

NotethattheinternalemitterresistanceREEisnotbypassedbythebypasscapacitor.<br />

4.10.4 Voltagedividerbias<br />

Stableemitterbiasrequiresalowvoltagebasebiassupply,Figure4.90.Thealternativetoa<br />

basesupplyVBBisavoltagedividerbasedonthecollectorsupplyVCC.<br />

Thedesigntechniqueistofirstworkoutanemitter-biasdesign,ThenconvertittothevoltagedividerbiasconfigurationbyusingThevenin’sTheorem.[4]ThestepsareshowngraphicallyinFigure4.91.<br />

Drawthevoltagedividerwithoutassigningvalues. Breakthedivider<br />

loosefromthebase.(Thebaseofthetransistoristheload.)ApplyThevenin’sTheoremtoyield<br />

asingleTheveninequivalentresistanceRthandvoltagesourceVth.<br />

TheTheveninequivalentresistanceistheresistancefromloadpoint(arrow)withthebattery(VCC)reducedto0(ground).<br />

<strong>In</strong>otherwords,R1||R2.TheTheveninequivalentvoltageis<br />

theopencircuitvoltage(loadremoved).Thiscalculationisbythevoltagedividerratiomethod.<br />

V CC<br />

+<br />

_


244 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

R B<br />

_<br />

+<br />

+<br />

+ _ +<br />

V BE=<br />

0.7V<br />

_ V BB<br />

R C<br />

R EE<br />

_<br />

R E<br />

V CC<br />

+<br />

_<br />

+<br />

_<br />

R1<br />

+<br />

R2<br />

_<br />

+ _ +<br />

V BE=<br />

0.7V<br />

R C<br />

R EE_<br />

R E<br />

V CC<br />

Emitter-bias Voltage divider bias<br />

Figure4.90:VoltageDividerbiasreplacesbasebatterywithvoltagedivider.<br />

R1<br />

+<br />

R2<br />

-<br />

+ _ +<br />

V BE=<br />

0.7V<br />

R C<br />

R EE_<br />

R E<br />

V CC<br />

+<br />

_<br />

+<br />

_<br />

V CC<br />

+<br />

_<br />

R1<br />

+<br />

R2<br />

_<br />

Vth<br />

Vth<br />

Figure4.91:Thevenin’sTheoremconvertsvoltagedividertosinglesupplyVthandresistance<br />

Rth.<br />

+<br />

_<br />

+<br />

_<br />

Rth<br />

+<br />

_


4.10. BIASINGCALCULATIONS 245<br />

R1isobtainedbyeliminatingR2fromthepairofequationsforRthandVth.Theequationof<br />

R1isintermsofknownquantitiesRth,Vth,Vcc.NotethatRthisRB,thebiasresistorfrom<br />

theemitter-biasdesign.TheequationforR2isintermsofR1andRth.<br />

Rth = R1 || R2 Vth = V CC<br />

1 1 1<br />

= +<br />

Rth R1 R2<br />

1 R2+R1<br />

= =<br />

Rth R1⋅R2<br />

R1 =<br />

Rth<br />

f<br />

V CC<br />

1<br />

R1<br />

= Rth<br />

Vth<br />

R2+R1<br />

R2<br />

f =<br />

R2<br />

R1 +R2<br />

Vth R2<br />

=<br />

R1 +R2<br />

V CC<br />

=<br />

1<br />

R1<br />

⋅<br />

1<br />

f<br />

1<br />

R2<br />

=<br />

1 1<br />

-<br />

Rth R1<br />

Convertthispreviousemitter-biasexampletovoltagedividerbias.<br />

V BB<br />

R B<br />

33k<br />

+<br />

_<br />

R E<br />

R C<br />

V CC<br />

10V<br />

470<br />

+<br />

_<br />

R1<br />

R2<br />

?<br />

?<br />

R E<br />

R C<br />

V CC<br />

10V<br />

470<br />

Figure4.92:Emitter-biasexampleconvertedtovoltagedividerbias.<br />

Thesevalueswerepreviouslyselectedorcalculatedforanemitter-biasexample<br />

β= 100 IE ≈ IC=1ma Vcc=10V VBB=1.5V RE=470Ω R B = β<br />

V BB - V BE<br />

I E<br />

- R E<br />

= 100<br />

1.5 - 0.7<br />

- 470 = 33k<br />

0.001<br />

SubstitutingVCC,VBB,RByieldsR1andR2forthevoltagedividerbiasconfiguration.<br />

+<br />

_


246 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V BB = Vth = 1.5V<br />

R B = Rth = 33k<br />

R1<br />

R1<br />

VCC = Rth<br />

Vth<br />

= 33k<br />

10<br />

= 220k<br />

1.5<br />

1<br />

R2<br />

1<br />

R2<br />

=<br />

=<br />

R2 = 38.8k<br />

1 1<br />

-<br />

Rth R1<br />

1 1<br />

-<br />

33k 220k<br />

R1isastandardvalueof220K.ThecloseststandardvalueforR2correspondingto38.8kis<br />

39k.ThisdoesnotchangeIEenoughforustocalculateit.<br />

Problem:CalculatethebiasresistorsforthecascodeamplifierinFigure4.93.VB2isthe<br />

biasvoltageforthecommonemitterstage. VB1isafairlyhighvoltageat11.5becausewe<br />

wantthecommon-basestagetoholdtheemitterat11.5-0.7=10.8V,about11V.(Itwillbe10V<br />

afteraccountingforthevoltagedropacrossRB1.)Thatis,thecommon-basestageistheload,<br />

substituteforaresistor,forthecommon-emitterstage’scollector. Wedesirea1mAemitter<br />

current.<br />

+<br />

Vi<br />

R B1<br />

V B1<br />

R B2<br />

+<br />

V B2<br />

Q1<br />

Q2<br />

A<br />

Cascode<br />

Vo<br />

+<br />

R L<br />

V CC<br />

V CC = 20V I E = 1mA β = 100 V A = 10V<br />

V BB1 = 11.5V<br />

I E =<br />

R B1 =<br />

R B2 =<br />

V BB - V BE<br />

R B/β<br />

V BB - V BE<br />

I E/β<br />

V BB2 - V BE<br />

I E /β<br />

V BB2 = 1.5V<br />

(IE base-bias)<br />

(V BB1 - V A) - V BE<br />

I E/β<br />

Figure4.93:Biasforacascodeamplifier.<br />

=<br />

(1.5) - 0.7<br />

= = 80k<br />

1mA/100<br />

R L = 4.7k<br />

(11.5-10) - 0.7<br />

= = 80k<br />

1mA/100<br />

Problem:Convertthebasebiasresistorsforthecascodeamplifiertovoltagedividerbias<br />

resistorsdrivenbytheVCCof20V.


4.11. INPUTANDOUTPUTCOUPLING 247<br />

R BB1 = 80k V CC = Vth = 20V<br />

V BB1 = 11.5V<br />

V BB = Vth = 11.5V<br />

R B = Rth = 80k<br />

R1<br />

R1<br />

1<br />

R2<br />

1<br />

R2<br />

VCC = Rth<br />

Vth<br />

= 80k<br />

20<br />

= 139.1k<br />

11.5<br />

=<br />

=<br />

R2 = 210k<br />

1 1<br />

-<br />

Rth R1<br />

1 1<br />

-<br />

80k 139.1k<br />

R BB2 = 80k<br />

V BB2 = 1.5V<br />

V BB = Vth = 1.5V<br />

R B = Rth = 80k<br />

R3<br />

R3<br />

1<br />

R4<br />

1<br />

R4<br />

VCC = Rth<br />

Vth<br />

= 80k<br />

20<br />

= 1.067Meg<br />

1.5<br />

=<br />

=<br />

R4 = 86.5k<br />

1 1<br />

-<br />

Rth R3<br />

1 1<br />

-<br />

80k 1067k<br />

Thefinalcircuitdiagramisshowninthe“PracticalAnalog<strong>Circuits</strong>”chapter,“ClassA<br />

cascodeamplifier...”(page431).<br />

• REVIEW:<br />

• SeeFigure4.94.<br />

• Selectbiascircuitconfiguration<br />

• SelectRCandIEfortheintendedapplication.ThevaluesforRCandIEshouldnormally<br />

setcollectorvoltageVCto1/2ofVCC.<br />

• CalculatebaseresistorRBtoachievedesiredemittercurrent.<br />

• RecalculateemittercurrentIEforstandardvalueresistorsifnecessary.<br />

• Forvoltagedividerbias,performemitter-biascalculationsfirst,thendetermineR1and<br />

R2.<br />

• ForACamplifiers,abypasscapacitorinparallelwithREimprovesACgain.SetXC≤0.10RE<br />

forlowestfrequency.<br />

4.11 <strong>In</strong>putandoutputcoupling<br />

ToovercomethechallengeofcreatingnecessaryDCbiasvoltageforanamplifier’sinputsignal<br />

withoutresortingtotheinsertionofabatteryinserieswiththeACsignalsource,weuseda<br />

voltagedividerconnectedacrosstheDCpowersource.Tomakethisworkinconjunctionwith<br />

anACinputsignal,we“coupled”thesignalsourcetothedividerthroughacapacitor,which<br />

actedasahigh-passfilter. Withthatfilteringinplace,thelowimpedanceoftheACsignal<br />

sourcecouldn’t“shortout”theDCvoltagedroppedacrossthebottomresistorofthevoltage<br />

divider.Asimplesolution,butnotwithoutanydisadvantages.


248 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

+<br />

RC VCC +<br />

RC VCC R1<br />

R C<br />

_<br />

R C<br />

R B<br />

_<br />

R B<br />

V C<br />

R2<br />

V BB +<br />

R B<br />

+<br />

V CC<br />

R E<br />

+<br />

V CC<br />

R E<br />

_<br />

_<br />

_<br />

V BB = Vth<br />

VBB - VBE RB/β + RE I E =<br />

VCC - VBE RB/β + RC I E =<br />

VBB - VBE RB/β I E =<br />

RB = Rth<br />

VCC R1 = Rth<br />

Vth<br />

1 1 1<br />

= -<br />

R2 Rth R1<br />

RE ⇐ RE + REE to include REE - R C<br />

VCC - VBE IE R B = β<br />

VBB - VBE IE/β R B =<br />

R EE = 26mv/I E<br />

Figure4.94:Biasingequationssummary.<br />

- R E<br />

VBB - VBE IE R B = β<br />

Voltage divider bias<br />

Emitter-bias<br />

Collector feedback bias<br />

Base-bias


4.11. INPUTANDOUTPUTCOUPLING 249<br />

Mostobviousisthefactthatusingahigh-passfiltercapacitortocouplethesignalsource<br />

totheamplifiermeansthattheamplifiercanonlyamplifyACsignals. Asteady,DCvoltage<br />

appliedtotheinputwouldbeblockedbythecouplingcapacitorjustasmuchasthevoltage<br />

dividerbiasvoltageisblockedfromtheinputsource.Furthermore,sincecapacitivereactance<br />

isfrequency-dependent,lower-frequencyACsignalswillnotbeamplifiedasmuchashigherfrequencysignals.Non-sinusoidalsignalswilltendtobedistorted,asthecapacitorresponds<br />

differentlytoeachofthesignal’sconstituentharmonics.Anextremeexampleofthiswouldbe<br />

alow-frequencysquare-wavesignalinFigure4.95.<br />

V input<br />

C<br />

R 2<br />

R 3<br />

Figure4.95:Capacitivelycoupledlowfrequencysquare-waveshowsdistortion.<br />

<strong>In</strong>cidentally,thissameproblemoccurswhenoscilloscopeinputsaresettothe“ACcoupling”modeasinFigure4.97.<strong>In</strong>thismode,acouplingcapacitorisinsertedinserieswiththe<br />

measuredvoltagesignaltoeliminateanyverticaloffsetofthedisplayedwaveformduetoDC<br />

voltagecombinedwiththesignal. ThisworksfinewhentheACcomponentofthemeasured<br />

signalisofafairlyhighfrequency,andthecapacitorofferslittleimpedancetothesignal.<br />

However,ifthesignalisofalowfrequency,orcontainsconsiderablelevelsofharmonicsover<br />

awidefrequencyrange,theoscilloscope’sdisplayofthewaveformwillnotbeaccurate. (Figure4.97)Lowfrequencysignalsmaybeviewedbysettingtheoscilloscopeto“DCcoupling”in<br />

Figure4.96.<br />

<strong>In</strong>applicationswherethelimitationsofcapacitivecoupling(Figure4.95)wouldbeintolerable,anothersolutionmaybeused:directcoupling.Directcouplingavoidstheuseofcapacitors<br />

oranyotherfrequency-dependentcouplingcomponentinfavorofresistors. Adirect-coupled<br />

amplifiercircuitisshowninFigure4.98.<br />

Withnocapacitortofiltertheinputsignal,thisformofcouplingexhibitsnofrequency<br />

dependence. DCandACsignalsalikewillbeamplifiedbythetransistorwiththesamegain<br />

(thetransistoritselfmaytendtoamplifysomefrequenciesbetterthanothers,butthatis<br />

anothersubjectentirely!).<br />

IfdirectcouplingworksforDCaswellasforACsignals,thenwhyusecapacitivecoupling<br />

foranyapplication? OnereasonmightbetoavoidanyunwantedDCbiasvoltagenaturally<br />

presentinthesignaltobeamplified. SomeACsignalsmaybesuperimposedonanuncontrolledDCvoltagerightfromthesource,andanuncontrolledDCvoltagewouldmakereliable<br />

transistorbiasingimpossible. Thehigh-passfilteringofferedbyacouplingcapacitorwould<br />

V 1


250 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

40.00<br />

coarse<br />

Hz<br />

fine<br />

FUNCTION GENERATOR<br />

1 10 100 1k 10k 100k 1M<br />

DC<br />

output<br />

OSCILLOSCOPE<br />

vertical<br />

V/div<br />

trigger<br />

timebase<br />

s/div<br />

Y<br />

DC GND AC<br />

X<br />

DC GND AC<br />

Figure4.96: WithDCcoupling,theoscilloscopeproperlyindicatestheshapeofthesquare<br />

wavecomingfromthesignalgenerator.<br />

workwellheretoavoidbiasingproblems.<br />

Anotherreasontousecapacitivecouplingratherthandirectisitsrelativelackofsignal<br />

attenuation.Directcouplingthrougharesistorhasthedisadvantageofdiminishing,orattenuating,theinputsignalsothatonlyafractionofitreachesthebaseofthetransistor.<strong>In</strong>many<br />

applications,someattenuationisnecessaryanywaytopreventsignallevelsfrom“overdriving”<br />

thetransistorintocutoffandsaturation,soanyattenuationinherenttothecouplingnetwork<br />

isusefulanyway.However,someapplicationsrequirethattherebenosignallossfromtheinputconnectiontothetransistor’sbaseformaximumvoltagegain,andadirectcouplingscheme<br />

withavoltagedividerforbiassimplywon’tsuffice.<br />

Sofar,we’vediscussedacoupleofmethodsforcouplinganinputsignaltoanamplifier,but<br />

haven’taddressedtheissueofcouplinganamplifier’soutputtoaload. Theexamplecircuit<br />

usedtoillustrateinputcouplingwillservewelltoillustratetheissuesinvolvedwithoutput<br />

coupling.<br />

<strong>In</strong>ourexamplecircuit,theloadisaspeaker.Mostspeakersareelectromagneticindesign:<br />

thatis,theyusetheforcegeneratedbyanlightweightelectromagnetcoilsuspendedwithina<br />

strongpermanent-magnetfieldtomoveathinpaperorplasticcone,producingvibrationsin<br />

theairwhichourearsinterpretassound. Anappliedvoltageofonepolaritymovesthecone<br />

outward,whileavoltageoftheoppositepolaritywillmovetheconeinward.Toexploitcone’s<br />

fullfreedomofmotion,thespeakermustreceivetrue(unbiased)ACvoltage.DCbiasappliedto<br />

thespeakercoiloffsetstheconefromitsnaturalcenterposition,andthislimitstheback-andforthmotionitcansustainfromtheappliedACvoltagewithoutovertraveling.<br />

However,our<br />

examplecircuit(Figure4.98)appliesavaryingvoltageofonlyonepolarityacrossthespeaker,


4.11. INPUTANDOUTPUTCOUPLING 251<br />

40.00<br />

coarse<br />

Hz<br />

fine<br />

FUNCTION GENERATOR<br />

1 10 100 1k 10k 100k 1M<br />

DC<br />

output<br />

OSCILLOSCOPE<br />

vertical<br />

V/div<br />

trigger<br />

timebase<br />

s/div<br />

Y<br />

DC GND AC<br />

X<br />

DC GND AC<br />

Figure4.97:Lowfrequency:WithACcoupling,thehigh-passfilteringofthecouplingcapacitor<br />

distortsthesquarewave’sshapesothatwhatisseenisnotanaccuraterepresentationofthe<br />

realsignal.<br />

V input<br />

1<br />

0<br />

R input<br />

R 2<br />

R 3<br />

4<br />

0<br />

2<br />

3 4<br />

speaker<br />

Figure4.98:Directcoupledamplifier:directcouplingtospeaker.<br />

Q1<br />

0<br />

V 1<br />

0


252 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

becausethespeakerisconnectedinserieswiththetransistorwhichcanonlyconductcurrent<br />

oneway.Thiswouldbeunacceptableforanyhigh-poweraudioamplifier.<br />

SomehowweneedtoisolatethespeakerfromtheDCbiasofthecollectorcurrentsothat<br />

itonlyreceivesACvoltage. Onewaytoachievethisgoalistocouplethetransistorcollector<br />

circuittothespeakerthroughatransformerinFigure4.99)<br />

V input<br />

R<br />

R<br />

R<br />

Q1<br />

speaker<br />

Figure4.99:TransformercouplingisolatesDCfromtheload(speaker).<br />

Voltageinducedinthesecondary(speaker-side)ofthetransformerwillbestrictlydueto<br />

variationsincollectorcurrent,becausethemutualinductanceofatransformeronlyworkson<br />

changesinwindingcurrent.<strong>In</strong>otherwords,onlytheACportionofthecollectorcurrentsignal<br />

willbecoupledtothesecondarysideforpoweringthespeaker. Thespeakerwill“see”true<br />

alternatingcurrentatitsterminals,withoutanyDCbias.<br />

Transformeroutputcouplingworks,andhastheaddedbenefitofbeingabletoprovide<br />

impedancematchingbetweenthetransistorcircuitandthespeakercoilwithcustomwinding<br />

ratios. However,transformerstendtobelargeandheavy,especiallyforhigh-powerapplications.<br />

Also,itisdifficulttoengineeratransformertohandlesignalsoverawiderangeof<br />

frequencies,whichisalmostalwaysrequiredforaudioapplications. Tomakemattersworse,<br />

DCcurrentthroughtheprimarywindingaddstothemagnetizationofthecoreinonepolarity<br />

only,whichtendstomakethetransformercoresaturatemoreeasilyinoneACpolaritycycle<br />

thantheother. Thisproblemisreminiscentofhavingthespeakerdirectlyconnectedinserieswiththetransistor:aDCbiascurrenttendstolimithowmuchoutputsignalamplitude<br />

thesystemcanhandlewithoutdistortion.Generally,though,atransformercanbedesignedto<br />

handlealotmoreDCbiascurrentthanaspeakerwithoutrunningintotrouble,sotransformer<br />

couplingisstillaviablesolutioninmostcases.SeethecouplingtransformerbetweenQ4and<br />

thespeaker,(page425)asanexampleoftransformercoupling.<br />

AnothermethodtoisolatethespeakerfromDCbiasintheoutputsignalistoalterthe<br />

circuitabitanduseacouplingcapacitorinamannersimilartocouplingtheinputsignal<br />

(Figure4.100)totheamplifier.<br />

ThiscircuitinFigure4.100resemblesthemoreconventionalformofcommon-emitteramplifier,withthetransistorcollectorconnectedtothebatterythrougharesistor.Thecapacitor<br />

actsasahigh-passfilter,passingmostoftheACvoltagetothespeakerwhileblockingall<br />

DCvoltage.Again,thevalueofthiscouplingcapacitorischosensothatitsimpedanceatthe<br />

V 1


4.11. INPUTANDOUTPUTCOUPLING 253<br />

V input<br />

R<br />

R<br />

R<br />

R<br />

Q1<br />

C<br />

speaker<br />

Figure4.100:CapacitorcouplingisolatesDCfromtheload.<br />

expectedsignalfrequencywillbearbitrarilylow.<br />

TheblockingofDCvoltagefromanamplifier’soutput,beitviaatransformeroracapacitor,<br />

isusefulnotonlyincouplinganamplifiertoaload,butalsoincouplingoneamplifiertoanother<br />

amplifier.“Staged”amplifiersareoftenusedtoachievehigherpowergainsthanwhatwould<br />

bepossibleusingasingletransistorasinFigure4.101.<br />

V input<br />

First stage Second stage Third stage<br />

V 1<br />

V output<br />

Figure4.101:Capacitorcoupledthreestagecommon-emitteramplifier.<br />

Whileitispossibletodirectlycoupleeachstagetothenext(viaaresistorratherthana<br />

capacitor),thismakesthewholeamplifierverysensitivetovariationsintheDCbiasvoltageof<br />

thefirststage,sincethatDCvoltagewillbeamplifiedalongwiththeACsignaluntilthelast<br />

stage.<strong>In</strong>otherwords,thebiasingofthefirststagewillaffectthebiasingofthesecondstage,<br />

andsoon.However,ifthestagesarecapacitivelycoupledshownintheaboveillustration,the<br />

biasingofonestagehasnoeffectonthebiasingofthenext,becauseDCvoltageisblockedfrom<br />

passingontothenextstage.<br />

Transformercouplingbetweenamplifierstagesisalsoapossibility,butlessoftenseendue<br />

tosomeoftheproblemsinherenttotransformersmentionedpreviously.Onenotableexception<br />

tothisruleisinradio-frequencyamplifiers(Figure4.102)withsmallcouplingtransformers,<br />

havingaircores(makingthemimmunetosaturationeffects),thatarepartofaresonantcircuit<br />

toblockunwantedharmonicfrequenciesfrompassingontosubsequentstages. Theuseof


254 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

resonantcircuitsassumesthatthesignalfrequencyremainsconstant,whichistypicalofradio<br />

circuitry. Also,the“flywheel”effectofLCtankcircuitsallowsforclassCoperationforhigh<br />

efficiency.<br />

V input<br />

First stage Second stage Third stage<br />

V output<br />

Figure4.102:ThreestagetunedRFamplifierillustratestransformercoupling.<br />

NotethetransformercouplingbetweentransistorsQ1,Q2,Q3,andQ4,(page425). The<br />

threeintermediatefrequency(IF)transformerswithinthedashedboxescoupletheIFsignal<br />

fromcollectortobaseoffollowingtransistorIFamplifiers.Theintermediatefreqencyampliers<br />

areRFamplifiers,though,atadifferentfrequencythantheantennaRFinput.<br />

Havingsaidallthis,itmustbementionedthatitispossibletousedirectcouplingwithina<br />

multi-stagetransistoramplifiercircuit.<strong>In</strong>caseswheretheamplifierisexpectedtohandleDC<br />

signals,thisistheonlyalternative.<br />

Thetrendofelectronicstomorewidespreaduseofintegratedcircuitshasencouragedthe<br />

useofdirectcouplingovertransformerorcapacitorcoupling. Theonlyeasilymanufactured<br />

integratedcircuitcomponentisthetransistor.Moderatequalityresistorscanalsobeproduced.<br />

Though,transistorsarefavored. <strong>In</strong>tegratedcapacitorstoonlyafew10’sofpFarepossible.<br />

Largecapacitorsarenotintegrable.Ifnecessary,thesecanbeexternalcomponents.Thesame<br />

istrueoftransformers. Sinceintegratedtransistorsareinexpensive,asmanytransistorsas<br />

possiblearesubstitutedfortheoffendingcapacitorsandtransformers.Asmuchdirectcoupled<br />

gainaspossibleisdesignedintoICsbetweentheexternalcouplingcomponents.Whileexternal<br />

capacitorsandtransformersareused,theseareevenbeingdesignedoutifpossible.Theresult<br />

isthatamodernICradio(See“ICradio”,(page428))looksnothingliketheoriginal4-transistor<br />

radio(page425).<br />

Evendiscretetransistorsareinexpensivecomparedwithtransformers.Bulkyaudiotransformerscanbereplacedbytransistors.<br />

Forexample,acommon-collector(emitterfollower)<br />

configurationcanimpedancematchalowoutputimpedancelikeaspeaker.Itisalsopossible<br />

toreplacelargecouplingcapacitorswithtransistorcircuitry.<br />

Westillliketoillustratetextswithtransformercoupledaudioamplifiers. Thecircuits<br />

aresimple. Thecomponentcountislow. And,thesearegoodintroductorycircuits—easyto<br />

understand.<br />

ThecircuitinFigure4.103(a)isasimplifiedtransformercoupledpush-pullaudioamplifier.<br />

<strong>In</strong>push-pull,pairoftransistorsalternatelyamplifythepositiveandnegativeportionsofthe<br />

inputsignal. Neithertransistornortheotherconductsfornosignalinput. Apositiveinput


4.11. INPUTANDOUTPUTCOUPLING 255<br />

signalwillbepositiveatthetopofthetransformersecondarycausingthetoptransistorto<br />

conduct.Anegativeinputwillyieldapositivesignalatthebottomofthesecondary,drivingthe<br />

bottomtransistorintoconduction. Thusthetransistorsamplifyalternatehalvesofasignal.<br />

Asdrawn,neithertransistorinFigure4.103(a)willconductforaninputbelow0.7Vpeak.<br />

Apracticalcircuitconnectsthesecondarycentertaptoa0.7V(orgreater)resistordivider<br />

insteadofgroundtobiasbothtransistorfortrueclassB.<br />

input<br />

+Vcc<br />

input<br />

(a) (b)<br />

Figure4.103:(a)Transformercoupledpush-pullamplifier.(b)Directcoupledcomplementarypairamplifierreplacestransformerswithtransistors.<br />

ThecircuitinFigure4.103(b)isthemodernversionwhichreplacesthetransformerfunctionswithtransistors.<br />

TransistorsQ1andQ2arecommonemitteramplifiers,invertingthe<br />

signalwithgainfrombasetocollector.TransistorsQ3andQ4areknownasacomplementary<br />

pairbecausetheseNPNandPNPtransistorsamplifyalternatehalves(positiveandnegative,respectively)ofthewaveform.<br />

Theparallelconnectionthebasesallowsphasesplitting<br />

withoutaninputtransformerat(a). ThespeakeristheemitterloadforQ3andQ4. Parallel<br />

connectionoftheemittersoftheNPNandPNPtransistorseliminatesthecenter-tappedoutputtransformerat(a)Thelowoutputimpedanceoftheemitterfollowerservestomatchthe<br />

low8Ωimpedanceofthespeakertotheprecedingcommonemitterstage.Thus,inexpensive<br />

transistorsreplacetransformers.Forthecompletecircuitsee“Directcoupledcomplementary<br />

symmetry3waudioamplifier,”(page423)<br />

• REVIEW:<br />

• Capacitivecouplingactslikeahigh-passfilterontheinputofanamplifier. Thistends<br />

tomaketheamplifier’svoltagegaindecreaseatlowersignalfrequencies. CapacitivecoupledamplifiersareallbutunresponsivetoDCinputsignals.<br />

• Directcouplingwithaseriesresistorinsteadofaseriescapacitoravoidstheproblemof<br />

frequency-dependentgain,buthasthedisadvantageofreducingamplifiergainforall<br />

signalfrequenciesbyattenuatingtheinputsignal.<br />

R 3<br />

R 4<br />

R 1<br />

R 5<br />

Q 1<br />

Q 2<br />

R 2<br />

Q 3<br />

Q 4<br />

+Vcc


256 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

• Transformersandcapacitorsmaybeusedtocoupletheoutputofanamplifiertoaload,<br />

toeliminateDCvoltagefromgettingtotheload.<br />

• Multi-stageamplifiersoftenmakeuseofcapacitivecouplingbetweenstagestoeliminate<br />

problemswiththebiasfromonestageaffectingthebiasofanother.<br />

4.12 Feedback<br />

Ifsomepercentageofanamplifier’soutputsignalisconnectedtotheinput,sothattheamplifieramplifiespartofitsownoutputsignal,wehavewhatisknownasfeedback.<br />

Feedback<br />

comesintwovarieties:positive(alsocalledregenerative),andnegative(alsocalleddegenerative).Positivefeedbackreinforcesthedirectionofanamplifier’soutputvoltagechange,while<br />

negativefeedbackdoesjusttheopposite.<br />

Afamiliarexampleoffeedbackhappensinpublic-address(“PA”)systemswheresomeone<br />

holdsthemicrophonetooclosetoaspeaker:ahigh-pitched“whine”or“howl”ensues,because<br />

theaudioamplifiersystemisdetectingandamplifyingitsownnoise. Specifically,thisisan<br />

exampleofpositiveorregenerativefeedback,asanysounddetectedbythemicrophoneisamplifiedandturnedintoaloudersoundbythespeaker,whichisthendetectedbythemicrophone<br />

again,andsoon. . . theresultbeinganoiseofsteadilyincreasingvolumeuntilthesystem<br />

becomes“saturated”andcannotproduceanymorevolume.<br />

Onemightwonderwhatpossiblebenefitfeedbackistoanamplifiercircuit,givensuchan<br />

annoyingexampleasPAsystem“howl.”Ifweintroducepositive,orregenerative,feedbackinto<br />

anamplifiercircuit,ithasthetendencyofcreatingandsustainingoscillations,thefrequency<br />

ofwhichdeterminedbythevaluesofcomponentshandlingthefeedbacksignalfromoutputto<br />

input. ThisisonewaytomakeanoscillatorcircuittoproduceACfromaDCpowersupply.<br />

Oscillatorsareveryusefulcircuits,andsofeedbackhasadefinite,practicalapplicationforus.<br />

See“Phaseshiftoscillator”(page423)forapracticalapplicationofpositivefeedback.<br />

Negativefeedback,ontheotherhand,hasa“dampening”effectonanamplifier: ifthe<br />

outputsignalhappenstoincreaseinmagnitude,thefeedbacksignalintroducesadecreasing<br />

influenceintotheinputoftheamplifier,thusopposingthechangeinoutputsignal. While<br />

positivefeedbackdrivesanamplifiercircuittowardapointofinstability(oscillations),negative<br />

feedbackdrivesittheoppositedirection:towardapointofstability.<br />

Anamplifiercircuitequippedwithsomeamountofnegativefeedbackisnotonlymore<br />

stable,butitdistortstheinputwaveformlessandisgenerallycapableofamplifyingawider<br />

rangeoffrequencies.Thetradeofffortheseadvantages(therejusthastobeadisadvantageto<br />

negativefeedback,right?)isdecreasedgain.Ifaportionofanamplifier’soutputsignalis“fed<br />

back”totheinputtoopposeanychangesintheoutput,itwillrequireagreaterinputsignal<br />

amplitudetodrivetheamplifier’soutputtothesameamplitudeasbefore.Thisconstitutesa<br />

decreasedgain.However,theadvantagesofstability,lowerdistortion,andgreaterbandwidth<br />

areworththetradeoffinreducedgainformanyapplications.<br />

Let’sexamineasimpleamplifiercircuitandseehowwemightintroducenegativefeedback<br />

intoit,startingwithFigure4.104.<br />

Theamplifierconfigurationshownhereisacommon-emitter,witharesistorbiasnetwork<br />

formedbyR1andR2. ThecapacitorcouplesVinputtotheamplifiersothatthesignalsource<br />

doesn’thaveaDCvoltageimposedonitbytheR1/R2dividernetwork. ResistorR3serves


4.12. FEEDBACK 257<br />

V input<br />

R 1<br />

R 2<br />

R 3<br />

R load<br />

V output<br />

Figure4.104:Common-emitteramplifierwithoutfeedback.<br />

thepurposeofcontrollingvoltagegain.Wecouldomititformaximumvoltagegain,butsince<br />

baseresistorslikethisarecommonincommon-emitteramplifiercircuits,we’llkeepitinthis<br />

schematic.<br />

Likeallcommon-emitteramplifiers,thisoneinvertstheinputsignalasitisamplified.<strong>In</strong><br />

otherwords,apositive-goinginputvoltagecausestheoutputvoltagetodecrease,ormove<br />

towardnegative,andviceversa.TheoscilloscopewaveformsareshowninFigure4.105.<br />

V input<br />

R 1<br />

R 2<br />

R 3<br />

R load<br />

Figure4.105:Common-emitteramplifier,nofeedback,withreferencewaveformsforcomparison.<br />

Becausetheoutputisaninverted,ormirror-image,reproductionoftheinputsignal,any<br />

connectionbetweentheoutput(collector)wireandtheinput(base)wireofthetransistorin<br />

Figure4.106willresultinnegativefeedback.<br />

TheresistancesofR1,R2,R3,andRfeedbackfunctiontogetherasasignal-mixingnetwork<br />

sothatthevoltageseenatthebaseofthetransistor(withrespecttoground)isaweighted<br />

averageoftheinputvoltageandthefeedbackvoltage,resultinginsignalofreducedamplitude<br />

+<br />

-<br />

+<br />


258 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

V input<br />

R 1<br />

R 2<br />

R 3<br />

R feedback<br />

R load<br />

Figure4.106:Negativefeedback,collectorfeedback,decreasestheoutputsignal.<br />

goingintothetransistor. So,theamplifiercircuitinFigure4.106willhavereducedvoltage<br />

gain,butimprovedlinearity(reduceddistortion)andincreasedbandwidth.<br />

Aresistorconnectingcollectortobaseisnottheonlywaytointroducenegativefeedback<br />

intothisamplifiercircuit,though.Anothermethod,althoughmoredifficulttounderstandat<br />

first,involvestheplacementofaresistorbetweenthetransistor’semitterterminalandcircuit<br />

groundinFigure4.107.<br />

V input<br />

R 1<br />

R 2<br />

R 3<br />

R load<br />

R feedback<br />

Figure4.107: Emitterfeedback: Adifferentmethodofintroducingnegativefeedbackintoa<br />

circuit.<br />

Thisnewfeedbackresistordropsvoltageproportionaltotheemittercurrentthroughthe<br />

transistor,anditdoessoinsuchawayastoopposetheinputsignal’sinfluenceonthebaseemitterjunctionofthetransistor.Let’stakeacloserlookattheemitter-basejunctionandsee<br />

whatdifferencethisnewresistormakesinFigure4.108.<br />

WithnofeedbackresistorconnectingtheemittertogroundinFigure4.108(a),whatever<br />

levelofinputsignal(Vinput)makesitthroughthecouplingcapacitorandR1/R2/R3resistor<br />

+<br />

-<br />

+<br />

-


4.12. FEEDBACK 259<br />

networkwillbeimpresseddirectlyacrossthebase-emitterjunctionasthetransistor’sinput<br />

voltage(VB−E). <strong>In</strong>otherwords,withnofeedbackresistor,VB−EequalsVinput. Therefore,if<br />

Vinputincreasesby100mV,thenVB−Eincreasesby100mV:achangeinoneisthesameasa<br />

changeintheother,sincethetwovoltagesareequaltoeachother.<br />

Nowlet’sconsidertheeffectsofinsertingaresistor(Rfeedback)betweenthetransistor’s<br />

emitterleadandgroundinFigure4.108(b).<br />

V input<br />

(a)<br />

+<br />

-<br />

I base<br />

V B-E<br />

+<br />

-<br />

I collector<br />

I emitter<br />

V input<br />

(b)<br />

+<br />

-<br />

I base<br />

V B-E<br />

+<br />

-<br />

I collector<br />

I emitter<br />

+<br />

Rfeedback -<br />

V feedback<br />

Figure4.108:(a)Nofeedbackvs(b)emitterfeedback.Awaveformatthecollectorisinverted<br />

withrespecttothebase.At(b)theemitterwaveformisin-phase(emitterfollower)withbase,<br />

outofphasewithcollector. Therefore,theemittersignalsubtractsfromthecollectoroutput<br />

signal.<br />

NotehowthevoltagedroppedacrossRfeedback addswithVB−E toequalVinput. With<br />

RfeedbackintheVinput −−VB−Eloop,VB−EwillnolongerbeequaltoVinput. Weknowthat<br />

Rfeedbackwilldropavoltageproportionaltoemittercurrent,whichisinturncontrolledbythe<br />

basecurrent,whichisinturncontrolledbythevoltagedroppedacrossthebase-emitterjunctionofthetransistor(VB−E).Thus,ifVinputweretoincreaseinapositivedirection,itwould<br />

increaseVB−E,causingmorebasecurrent,causingmorecollector(load)current,causingmore<br />

emittercurrent,andcausingmorefeedbackvoltagetobedroppedacrossRfeedback. Thisincreaseofvoltagedropacrossthefeedbackresistor,though,subtractsfromVinputtoreducethe<br />

VB−E,sothattheactualvoltageincreaseforVB−Ewillbelessthanthevoltageincreaseof<br />

Vinput.Nolongerwilla100mVincreaseinVinputresultinafull100mVincreaseforVB−E,<br />

becausethetwovoltagesarenotequaltoeachother.<br />

Consequently,theinputvoltagehaslesscontroloverthetransistorthanbefore,andthe<br />

voltagegainfortheamplifierisreduced:justwhatweexpectedfromnegativefeedback.<br />

<strong>In</strong>practicalcommon-emittercircuits,negativefeedbackisn’tjustaluxury;itsanecessity<br />

forstableoperation.<strong>In</strong>aperfectworld,wecouldbuildandoperateacommon-emittertransistoramplifierwithnonegativefeedback,andhavethefullamplitudeofVinputimpressedacross<br />

thetransistor’sbase-emitterjunction.Thiswouldgiveusalargevoltagegain.Unfortunately,<br />

though,therelationshipbetweenbase-emittervoltageandbase-emittercurrentchangeswith<br />

temperature,aspredictedbythe“diodeequation.” Asthetransistorheatsup,therewillbe<br />

lessofaforwardvoltagedropacrossthebase-emitterjunctionforanygivencurrent. This<br />

causesaproblemforus,astheR1/R2voltagedividernetworkisdesignedtoprovidethecorrect<br />

quiescentcurrentthroughthebaseofthetransistorsothatitwilloperateinwhateverclass


260 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

ofoperationwedesire(inthisexample,I’veshowntheamplifierworkinginclass-Amode).If<br />

thetransistor’svoltage/currentrelationshipchangeswithtemperature,theamountofDCbias<br />

voltagenecessaryforthedesiredclassofoperationwillchange. Ahottransistorwilldraw<br />

morebiascurrentforthesameamountofbiasvoltage,makingitheatupevenmore,drawing<br />

evenmorebiascurrent.Theresult,ifunchecked,iscalledthermalrunaway.<br />

Common-collectoramplifiers,(Figure4.109)however,donotsufferfromthermalrunaway.<br />

Whyisthis?Theanswerhaseverythingtodowithnegativefeedback.<br />

V input<br />

R 1<br />

R 2<br />

R 3<br />

R load<br />

Figure4.109:Commoncollector(emitterfollower)amplifier.<br />

Notethatthecommon-collectoramplifier(Figure4.109)hasitsloadresistorplacedinexactlythesamespotaswehadtheRfeedbackresistorinthelastcircuitinFigure4.108(b):betweenemitterandground.Thismeansthattheonlyvoltageimpressedacrossthetransistor’sbase-emitterjunctionisthedifferencebetweenVinputandVoutput,resultinginaverylowvoltagegain(usuallycloseto1foracommon-collectoramplifier).Thermalrunawayisimpossibleforthisamplifier:ifbasecurrenthappenstoincreaseduetotransistorheating,emitter<br />

currentwilllikewiseincrease,droppingmorevoltageacrosstheload,whichinturnsubtracts<br />

fromVinputtoreducetheamountofvoltagedroppedbetweenbaseandemitter.<strong>In</strong>otherwords,<br />

thenegativefeedbackaffordedbyplacementoftheloadresistormakestheproblemofthermal<br />

runawayself-correcting.<strong>In</strong>exchangeforagreatlyreducedvoltagegain,wegetsuperbstability<br />

andimmunityfromthermalrunaway.<br />

Byaddinga“feedback”resistorbetweenemitterandgroundinacommon-emitteramplifier,<br />

wemaketheamplifierbehavealittlelesslikean“ideal”common-emitterandalittlemorelike<br />

acommon-collector. Thefeedbackresistorvalueistypicallyquiteabitlessthantheload,<br />

minimizingtheamountofnegativefeedbackandkeepingthevoltagegainfairlyhigh.<br />

Anotherbenefitofnegativefeedback,seenclearlyinthecommon-collectorcircuit,isthat<br />

ittendstomakethevoltagegainoftheamplifierlessdependentonthecharacteristicsofthe<br />

transistor. Notethatinacommon-collectoramplifier,voltagegainisnearlyequaltounity<br />

(1),regardlessofthetransistor’s β. Thismeans,amongotherthings,thatwecouldreplace<br />

thetransistorinacommon-collectoramplifierwithonehavingadifferent βandnotseeany<br />

significantchangesinvoltagegain.<strong>In</strong>acommon-emittercircuit,thevoltagegainishighlydependenton<br />

β.Ifweweretoreplacethetransistorinacommon-emittercircuitwithanotherof<br />

+<br />

-


4.12. FEEDBACK 261<br />

differing β,thevoltagegainfortheamplifierwouldchangesignificantly.<strong>In</strong>acommon-emitter<br />

amplifierequippedwithnegativefeedback,thevoltagegainwillstillbedependentupontransistor<br />

βtosomedegree,butnotasmuchasbefore,makingthecircuitmorepredictabledespite<br />

variationsintransistor β.<br />

Thefactthatwehavetointroducenegativefeedbackintoacommon-emitteramplifierto<br />

avoidthermalrunawayisanunsatisfyingsolution. Isitpossibetoavoidthermalrunaway<br />

withouthavingtosuppresstheamplifier’sinherentlyhighvoltagegain?Abest-of-both-worlds<br />

solutiontothisdilemmaisavailabletousifwecloselyexaminetheproblem:thevoltagegain<br />

thatwehavetominimizeinordertoavoidthermalrunawayistheDCvoltagegain,nottheAC<br />

voltagegain.Afterall,itisn’ttheACinputsignalthatfuelsthermalrunaway:itstheDCbias<br />

voltagerequiredforacertainclassofoperation:thatquiescentDCsignalthatweuseto“trick”<br />

thetransistor(fundamentallyaDCdevice)intoamplifyinganACsignal.WecansuppressDC<br />

voltagegaininacommon-emitteramplifiercircuitwithoutsuppressingACvoltagegainifwe<br />

figureoutawaytomakethenegativefeedbackonlyfunctionwithDC.Thatis,ifweonlyfeed<br />

backaninvertedDCsignalfromoutputtoinput,butnotaninvertedACsignal.<br />

TheRfeedbackemitterresistorprovidesnegativefeedbackbydroppingavoltageproportional<br />

toloadcurrent.<strong>In</strong>otherwords,negativefeedbackisaccomplishedbyinsertinganimpedance<br />

intotheemittercurrentpath.IfwewanttofeedbackDCbutnotAC,weneedanimpedance<br />

thatishighforDCbutlowforAC.WhatkindofcircuitpresentsahighimpedancetoDCbut<br />

alowimpedancetoAC?Ahigh-passfilter,ofcourse!<br />

ByconnectingacapacitorinparallelwiththefeedbackresistorinFigure4.110,wecreate<br />

theverysituationweneed:apathfromemittertogroundthatiseasierforACthanitisfor<br />

DC.<br />

V input<br />

R 1<br />

R 2<br />

R 3<br />

R load<br />

R feedback Cbypass<br />

Figure4.110:HighACvoltagegainreestablishedbyaddingCbypassinparallelwithRfeedback<br />

Thenewcapacitor“bypasses”ACfromthetransistor’semittertoground,sothatnoappreciableACvoltagewillbedroppedfromemittertogroundto“feedback”totheinputandsuppressvoltagegain.Directcurrent,ontheotherhand,cannotgothroughthebypasscapacitor,andsomusttravelthroughthefeedbackresistor,droppingaDCvoltagebetweenemitterandgroundwhichlowerstheDCvoltagegainandstabilizestheamplifier’sDCresponse,preventingthermalrunaway.<br />

Becausewewantthereactanceofthiscapacitor(XC)tobeaslow<br />

+<br />

-


262 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

aspossible,Cbypassshouldbesizedrelativelylarge.Becausethepolarityacrossthiscapacitor<br />

willneverchange,itissafetouseapolarized(electrolytic)capacitorforthetask.<br />

Anotherapproachtotheproblemofnegativefeedbackreducingvoltagegainistousemultistageamplifiersratherthansingle-transistoramplifiers.<br />

Iftheattenuatedgainofasingle<br />

transistorisinsufficientforthetaskathand,wecanusemorethanonetransistortomake<br />

upforthereductioncausedbyfeedback. Anexamplecircuitshowingnegativefeedbackina<br />

three-stagecommon-emitteramplifierisFigure4.111.<br />

V input<br />

R in<br />

R feedback<br />

V output<br />

Figure4.111: Feedbackaroundan“odd”numberofdirectcoupledstagesproducenegative<br />

feedback.<br />

Thefeedbackpathfromthefinaloutputtotheinputisthroughasingleresistor,Rfeedback.<br />

Sinceeachstageisacommon-emitteramplifier(thusinverting),theoddnumberofstages<br />

frominputtooutputwillinverttheoutputsignal;thefeedbackwillbenegative(degenerative).<br />

Relativelylargeamountsoffeedbackmaybeusedwithoutsacrificingvoltagegain,becausethe<br />

threeamplifierstagesprovidemuchgaintobeginwith.<br />

Atfirst,thisdesignphilosophymayseeminelegantandperhapsevencounter-productive.<br />

Isn’tthisarathercrudewaytoovercomethelossingainincurredthroughtheuseofnegative<br />

feedback,tosimplyrecovergainbyaddingstageafterstage? Whatisthepointofcreatinga<br />

hugevoltagegainusingthreetransistorstagesifwe’rejustgoingtoattenuateallthatgain<br />

anywaywithnegativefeedback?Thepoint,thoughperhapsnotapparentatfirst,isincreased<br />

predictabilityandstabilityfromthecircuitasawhole. Ifthethreetransistorstagesaredesignedtoprovideanarbitrarilyhighvoltagegain(inthetensofthousands,orgreater)withno<br />

feedback,itwillbefoundthattheadditionofnegativefeedbackcausestheoverallvoltagegain<br />

tobecomelessdependentoftheindividualstagegains,andapproximatelyequaltothesimple<br />

ratioRfeedback/Rin.Themorevoltagegainthecircuithas(withoutfeedback),themoreclosely<br />

thevoltagegainwillapproximateRfeedback/Rinoncefeedbackisestablished. <strong>In</strong>otherwords,<br />

voltagegaininthiscircuitisfixedbythevaluesoftworesistors,andnothingmore.<br />

Thisisanadvantageformass-productionofelectroniccircuitry:ifamplifiersofpredictable<br />

gainmaybeconstructedusingtransistorsofwidelyvaried βvalues,iteasestheselectionand<br />

replacementofcomponents. Italsomeanstheamplifier’sgainvarieslittlewithchangesin<br />

temperature. Thisprincipleofstablegaincontrolthroughahigh-gainamplifier“tamed”by<br />

negativefeedbackiselevatedalmosttoanartforminelectroniccircuitscalledoperational<br />

+<br />

-


4.13. AMPLIFIERIMPEDANCES 263<br />

amplifiers,orop-amps.Youmayreadmuchmoreaboutthesecircuitsinalaterchapterofthis<br />

book!<br />

• REVIEW:<br />

• Feedbackisthecouplingofanamplifier’soutputtoitsinput.<br />

• Positive,orregenerativefeedbackhasthetendencyofmakinganamplifiercircuitunstable,sothatitproducesoscillations(AC).Thefrequencyoftheseoscillationsislargely<br />

determinedbythecomponentsinthefeedbacknetwork.<br />

• Negative,ordegenerativefeedbackhasthetendencyofmakinganamplifiercircuitmore<br />

stable,sothatitsoutputchangeslessforagiveninputsignalthanwithoutfeedback.<br />

Thisreducesthegainoftheamplifier,buthastheadvantageofdecreasingdistortionand<br />

increasingbandwidth(therangeoffrequenciestheamplifiercanhandle).<br />

• Negativefeedbackmaybeintroducedintoacommon-emittercircuitbycouplingcollector<br />

tobase,orbyinsertingaresistorbetweenemitterandground.<br />

• Anemitter-to-ground“feedback”resistorisusuallyfoundincommon-emittercircuitsas<br />

apreventativemeasureagainstthermalrunaway.<br />

• Negativefeedbackalsohastheadvantageofmakingamplifiervoltagegainmoredependentonresistorvaluesandlessdependentonthetransistor’scharacteristics.<br />

• Common-collectoramplifiershavemuchnegativefeedback,duetotheplacementofthe<br />

loadresistorbetweenemitterandground.Thisfeedbackaccountsfortheextremelystablevoltagegainoftheamplifier,aswellasitsimmunityagainstthermalrunaway.<br />

• Voltagegainforacommon-emittercircuitmaybere-establishedwithoutsacrificingimmunitytothermalrunaway,byconnectingabypasscapacitorinparallelwiththeemitter<br />

“feedbackresistor.”<br />

• Ifthevoltagegainofanamplifierisarbitrarilyhigh(tensofthousands,orgreater),and<br />

negativefeedbackisusedtoreducethegaintoreasonablelevels,itwillbefoundthat<br />

thegainwillapproximatelyequalRfeedback/Rin. Changesintransistor βorotherinternalcomponentvalueswillhavelittleeffectonvoltagegainwithfeedbackinoperation,<br />

resultinginanamplifierthatisstableandeasytodesign.<br />

4.13 Amplifierimpedances<br />

<strong>In</strong>putimpedancevariesconsiderablywiththecircuitconfigurationshowninFigure4.112.It<br />

alsovarieswithbiasing.Notconsideredhere,theinputimpedanceiscomplexandvarieswith<br />

frequency. Forthecommon-emitterandcommon-collectoritisbaseresistancetimes β. The<br />

baseresistancecanbebothinternalandexternaltothetransistor.Forthecommon-collector:<br />

Rin = βRE<br />

Itisabitmorecomplicatedforthecommon-emittercircuit.Weneedtoknowtheinternal<br />

emitterresistanceREE.Thisisgivenby:


264 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

REE = KT/IEm<br />

where:<br />

K=1.38×10 −23 watt-sec/ o C, Boltzman’s constant<br />

T= temperature in Kelvins ∼ =300.<br />

IE = emitter current<br />

m = varies from 1 to 2 for Silicon<br />

RE ∼ = 0.026V/IE = 26mV/IE<br />

Thus,forthecommon-emittercircuitRinis<br />

Rin = βREE/IE<br />

Asanexampletheinputresistanceofa, β=100,CEconfigurationbiasedat1mAis:<br />

REE = 26mV/1mA = 0.26Ω<br />

Rin = βREE = 100(26) = 2600Ω<br />

Moreover,amoreaccurateRinforthecommon-collectorshouldhaveincludedRe’<br />

Rin = β(RE + REE)<br />

Thisequation(above)isalsoapplicabletoacommon-emitterconfigurationwithanemitter<br />

resistor.<br />

<strong>In</strong>putimpedanceforthecommon-baseconfigurationisRin=REE.<br />

Thehighinputimpedanceofthecommon-collectorconfigurationmatcheshighimpedance<br />

sources. Acrystalorceramicmicrophoneisonesuchhighimpedancesource. ThecommonbasearrangementissometimesusedinRF(radiofrequency)circuitstomatchalowimpedance<br />

source,forexample,a50 Ωcoaxialcablefeed.Formoderateimpedancesources,thecommonemitterisagoodmatch.Anexampleisadynamicmicrophone.<br />

TheoutputimpedancesofthethreebasicconfigurationsarelistedinFigure4.112. The<br />

moderateoutputimpedanceofthecommon-emitterconfigurationhelpsmakeitapopular<br />

choiceforgeneraluse. TheLowoutputimpedanceofthecommon-collectorisputtogood<br />

useinimpedancematching,forexample,tranformerlessmatchingtoa4Ohmspeaker.There<br />

donotappeartobeanysimpleformulasfortheoutputimpedances.However,R.VictorJones<br />

developsexpressionsforoutputresistance.[3]<br />

• REVIEW:<br />

• SeeFigure4.112.<br />

4.14 Currentmirrors<br />

Anoften-usedcircuitapplyingthebipolarjunctiontransistoristheso-calledcurrentmirror,<br />

whichservesasasimplecurrentregulator,supplyingnearlyconstantcurrenttoaloadovera<br />

widerangeofloadresistances.<br />

Weknowthatinatransistoroperatinginitsactivemode,collectorcurrentisequaltobase<br />

currentmultipliedbytheratio β. Wealsoknowthattheratiobetweencollectorcurrentand<br />

emittercurrentiscalled α.Becausecollectorcurrentisequaltobasecurrentmultipliedby β,<br />

andemittercurrentisthesumofthebaseandcollectorcurrents, αshouldbemathematically<br />

derivablefrom β.Ifyoudothealgebra,you’llfindthat α=β/(β+1)foranytransistor.<br />

We’veseenalreadyhowmaintainingaconstantbasecurrentthroughanactivetransistor<br />

resultsintheregulationofcollectorcurrent,accordingtothe βratio.Well,the αratioworks


4.14. CURRENTMIRRORS 265<br />

Basic circuit<br />

Voltage gain<br />

Current gain<br />

Power gain<br />

Phase inversion<br />

<strong>In</strong>put<br />

impedance<br />

Output<br />

impedance<br />

Common emitter Common collector Common base<br />

high<br />

high<br />

high<br />

Vo<br />

less than unity<br />

yes no no<br />

moderate ≈ 1 k<br />

moderate ≈ 50 k<br />

high<br />

moderate<br />

less than unity<br />

moderate<br />

highest ≈ 300 k low ≈ 50 Ω<br />

low ≈ 300 Ω<br />

Vo<br />

+ - - + + - - +<br />

-<br />

Vo<br />

+ - +<br />

high, same as CE<br />

highest ≈ 1 Meg<br />

Cascode<br />

+<br />

+<br />

high, same as CB<br />

high, same as CE<br />

highest<br />

yes<br />

same as CE, ≈ 1 k<br />

Vo<br />

+<br />

same as CB, ≈ 1 Meg<br />

Figure4.112:Amplifiercharacteristics,adaptedfromGETransistorManual,Figure1.21.[2]<br />

similarly:ifemittercurrentisheldconstant,collectorcurrentwillremainatastable,regulated<br />

valuesolongasthetransistorhasenoughcollector-to-emittervoltagedroptomaintainitin<br />

itsactivemode. Therefore,ifwehaveawayofholdingemittercurrentconstantthrougha<br />

transistor,thetransistorwillworktoregulatecollectorcurrentataconstantvalue.<br />

Rememberthatthebase-emitterjunctionofaBJTisnothingmorethanaPNjunction,just<br />

likeadiode,andthatthe“diodeequation”specifieshowmuchcurrentwillgothroughaPN<br />

junctiongivenforwardvoltagedropandjunctiontemperature:<br />

I D = I S (e qV D/NkT - 1)<br />

Where,<br />

I D = Diode current in amps<br />

IS = Saturation current in amps<br />

e = Euler’s constant (~ 2.718281828)<br />

q = charge of electron (1.6 x 10 -19 (typically 1 x 10<br />

coulombs)<br />

-12 amps)<br />

V D = Voltage applied across diode in volts<br />

N = "Nonideality" or "emission" coefficient<br />

(typically between 1 and 2)<br />

k = Boltzmann’s constant (1.38 x 10 -23 )<br />

T = Junction temperature in Kelvins<br />

Ifbothjunctionvoltageandtemperatureareheldconstant,thenthePNjunctioncurrent<br />

willbeconstant. Followingthisrationale,ifweweretoholdthebase-emittervoltageofa


266 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

transistorconstant,thenitsemittercurrentwillbeconstant,givenaconstanttemperature.<br />

(Figure4.113)<br />

V base<br />

(constant)<br />

I collector<br />

(constant)<br />

(constant)<br />

Ibase I emitter<br />

(constant)<br />

R load<br />

β (constant)<br />

α (constant)<br />

Figure4.113:ConstantVBEgivesconstantIB,constantIE,andconstantIC.<br />

Thisconstantemittercurrent,multipliedbyaconstant αratio,givesaconstantcollector<br />

currentthroughRload,ifenoughbatteryvoltageisavailabletokeepthetransistorinitsactive<br />

modeforanychangeinRload’sresistance.<br />

Tomaintainaconstantvoltageacrossthetransistor’sbase-emitterjunctionuseaforwardbiaseddiodetoestablishaconstantvoltageofapproximately0.7volts,andconnectitinparallel<br />

withthebase-emitterjunctionasinFigure4.114.<br />

0.7 V<br />

(constant)<br />

R bias<br />

I collector<br />

(constant)<br />

(constant)<br />

Ibase I diode<br />

(constant)<br />

R load<br />

β (constant)<br />

α (constant)<br />

I emitter<br />

(constant)<br />

Figure4.114:Diodejunction0.7Vmaintainsconstantbasevoltage,andconstantbasecurrent.<br />

Thevoltagedroppedacrossthediodeprobablywon’tbe0.7voltsexactly.Theexactamount<br />

offorwardvoltagedroppedacrossitdependsonthecurrentthroughthediode,andthediode’s<br />

temperature,allinaccordancewiththediodeequation.Ifdiodecurrentisincreased(say,by<br />

reducingtheresistanceofRbias),itsvoltagedropwillincreaseslightly,increasingthevoltage<br />

dropacrossthetransistor’sbase-emitterjunction,whichwillincreasetheemittercurrentby<br />

thesameproportion,assumingthediode’sPNjunctionandthetransistor’sbase-emitterjunctionarewell-matchedtoeachother.<br />

<strong>In</strong>otherwords,transistoremittercurrentwillclosely


4.14. CURRENTMIRRORS 267<br />

equaldiodecurrentatanygiventime.IfyouchangethediodecurrentbychangingtheresistancevalueofRbias,thenthetransistor’semittercurrentwillfollowsuit,becausetheemitter<br />

currentisdescribedbythesameequationasthediode’s,andbothPNjunctionsexperiencethe<br />

samevoltagedrop.<br />

Remember,thetransistor’scollectorcurrentisalmostequaltoitsemittercurrent,asthe<br />

αratioofatypicaltransistorisalmostunity(1). Ifwehavecontroloverthetransistor’s<br />

emittercurrentbysettingdiodecurrentwithasimpleresistoradjustment,thenwelikewise<br />

havecontroloverthetransistor’scollectorcurrent.<strong>In</strong>otherwords,collectorcurrentmimics,or<br />

mirrors,diodecurrent.<br />

CurrentthroughresistorRloadisthereforeafunctionofcurrentsetbythebiasresistor,the<br />

twobeingnearlyequal.Thisisthefunctionofthecurrentmirrorcircuit:toregulatecurrent<br />

throughtheloadresistorbyconvenientlyadjustingthevalueofRbias. Currentthroughthe<br />

diodeisdescribedbyasimpleequation:powersupplyvoltageminusdiodevoltage(almosta<br />

constantvalue),dividedbytheresistanceofRbias.<br />

TobettermatchthecharacteristicsofthetwoPNjunctions(thediodejunctionandthe<br />

transistorbase-emitterjunction),atransistormaybeusedinplaceofaregulardiode,asin<br />

Figure4.115(a).<br />

R bias<br />

R load<br />

(a) current sinking<br />

+<br />

− R load<br />

R bias<br />

(b) current-sourcing<br />

Figure4.115:Currentmirrorcircuits.<br />

Becausetemperatureisafactorinthe“diodeequation,”andwewantthetwoPNjunctions<br />

tobehaveidenticallyunderalloperatingconditions,weshouldmaintainthetwotransistorsat<br />

exactlythesametemperature.Thisiseasilydoneusingdiscretecomponentsbygluingthetwo<br />

transistorcasesback-to-back.Ifthetransistorsaremanufacturedtogetheronasinglechipof<br />

silicon(asaso-calledintegratedcircuit,orIC),thedesignersshouldlocatethetwotransistors<br />

closetooneanothertofacilitateheattransferbetweenthem.<br />

ThecurrentmirrorcircuitshownwithtwoNPNtransistorsinFigure4.115(a)issometimes<br />

calledacurrent-sinkingtype,becausetheregulatingtransistorconductscurrenttotheload<br />

fromground(“sinking”current),ratherthanfromthepositivesideofthebattery(“sourcing”<br />

current). Ifwewishtohaveagroundedload,andacurrentsourcingmirrorcircuit,wemay<br />

usePNPtransistorslikeFigure4.115(b).<br />

WhileresistorscanbemanufacturedinICs,itiseasiertofabricatetransistors.ICdesigners<br />

avoidsomeresistorsbyreplacingloadresistorswithcurrentsources.Acircuitlikeanoperationalamplifierbuiltfromdiscretecomponentswillhaveafewtransistorsandmanyresistors.<br />

+<br />


268 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Anintegratedcircuitversionwillhavemanytransistorsandafewresistors.<strong>In</strong>Figure4.116<br />

Onevoltagereference,Q1,drivesmultiplecurrentsources:Q2,Q3,andQ4.IfQ2andQ3are<br />

equalareatransistorstheloadcurrentsIloadwillbeequal.Ifweneeda2·Iload,parallelQ2and<br />

Q3.Betteryetfabricateonetransistor,sayQ3withtwicetheareaofQ2.CurrentI3willthen<br />

betwiceI2.<strong>In</strong>otherwords,loadcurrentscaleswithtransistorarea.<br />

R bias<br />

R load<br />

I load<br />

Q1 Q2 Q3 Q4<br />

Figure4.116:Multiplecurrentmirrorsmaybeslavedfromasingle(Q1-Rbias)voltagesource.<br />

Notethatitiscustomarytodrawthebasevoltagelinerightthroughthetransistorsymbols<br />

formultiplecurrentmirrors! OrinthecaseofQ4inFigure4.116,twocurrentsourcesare<br />

associatedwithasingletransistorsymbol. Theloadresistorsaredrawnalmostinvisibleto<br />

emphasizethefactthatthesedonotexistinmostcases.Theloadisoftenanother(multiple)<br />

transistorcircuit,sayapairofemittersofadifferentialamplifier,forexampleQ3andQ4in<br />

”Asimpleoperationalamplifier”(page410). Often,thecollectorloadofatransistorisnota<br />

resistorbutacurrentmirror. ForexamplethecollectorloadofQ4collector(page410)isa<br />

currentmirror(Q2).<br />

ForanexampleofacurrentmirrorwithmultiplecollectoroutputsseeQ13inthemodel741<br />

op-amp(page410).TheQ13currentmirroroutputssubstituteforresistorsascollectorloads<br />

forQ15andQ17.Weseefromtheseexamplesthatcurrentmirrorsarepreferredasloadsover<br />

resistorsinintegratedcircuitry.<br />

• REVIEW:<br />

• Acurrentmirrorisatransistorcircuitthatregulatescurrentthroughaloadresistance,<br />

theregulationpointbeingsetbyasimpleresistoradjustment.<br />

• Transistorsinacurrentmirrorcircuitmustbemaintainedatthesametemperaturefor<br />

preciseoperation.Whenusingdiscretetransistors,youmaygluetheircasestogetherto<br />

dothis.<br />

• Currentmirrorcircuitsmaybefoundintwobasicvarieties:thecurrentsinkingconfiguration,wheretheregulatingtransistorconnectstheloadtoground;andthecurrent<br />

sourcingconfiguration,wheretheregulatingtransistorconnectstheloadtothepositive<br />

terminaloftheDCpowersupply.<br />

I load<br />

+<br />


4.15. TRANSISTORRATINGSANDPACKAGES 269<br />

4.15 Transistorratingsandpackages<br />

Likeallelectricalandelectroniccomponents,transistorsarelimitedintheamountsofvoltageandcurrenteachonecanhandlewithoutsustainingdamage.Sincetransistorsaremore<br />

complexthansomeoftheothercomponentsyou’reusedtoseeingatthispoint,thesetendto<br />

havemorekindsofratings.Whatfollowsisanitemizeddescriptionofsometypicaltransistor<br />

ratings.<br />

Powerdissipation:Whenatransistorconductscurrentbetweencollectorandemitter,italso<br />

dropsvoltagebetweenthosetwopoints.Atanygiventime,thepowerdissipatedbyatransistorisequaltotheproduct(multiplication)ofcollectorcurrentandcollector-emittervoltage.Justlikeresistors,transistorsareratedforhowmanywattseachcansafelydissipatewithoutsustainingdamage.<br />

Hightemperatureisthemortalenemyofallsemiconductordevices,<br />

andbipolartransistorstendtobemoresusceptibletothermaldamagethanmost.Powerratingsarealwaysreferencedtothetemperatureofambient(surrounding)air.Whentransistors<br />

aretobeusedinhotterenvironments(>25o,theirpowerratingsmustbederatedtoavoida<br />

shortenedservicelife.<br />

Reversevoltages: Aswithdiodes, bipolartransistorsareratedformaximumallowable<br />

reverse-biasvoltageacrosstheirPNjunctions. ThisincludesvoltageratingsfortheemitterbasejunctionVEB,collector-basejunctionVCB,andalsofromcollectortoemitterVCE.<br />

VEB,themaximumreversevoltagefromemittertobaseisapproximately7Vforsome<br />

smallsignaltransistors. SomecircuitdesignersusediscreteBJTsas7Vzenerdiodeswith<br />

aseriescurrentlimitingresistor. Transistorinputstoanalogintegratedcircuitsalsohavea<br />

VEBrating,whichifexceededwillcausedamage,nozeneringoftheinputsisallowed.<br />

Theratingformaximumcollector-emittervoltageVCEcanbethoughtofasthemaximum<br />

voltageitcanwithstandwhileinfull-cutoffmode(nobasecurrent).Thisratingisofparticular<br />

importancewhenusingabipolartransistorasaswitch.Atypicalvalueforasmallsignaltransistoris60to80V.<strong>In</strong>powertransistors,thiscouldrangeto1000V,forexample,ahorizontal<br />

deflectiontransistorinacathoderaytubedisplay.<br />

Collectorcurrent:AmaximumvalueforcollectorcurrentICwillbegivenbythemanufacturerinamps.Typicalvaluesforsmallsignaltransistorsare10sto100sofmA,10sofAfor<br />

powertransistors. Understandthatthismaximumfigureassumesasaturatedstate(minimumcollector-emittervoltagedrop).Ifthetransistorisnotsaturated,andinfactisdropping<br />

substantialvoltagebetweencollectorandemitter,themaximumpowerdissipationratingwill<br />

probablybeexceededbeforethemaximumcollectorcurrentrating.Justsomethingtokeepin<br />

mindwhendesigningatransistorcircuit!<br />

Saturationvoltages:Ideally,asaturatedtransistoractsasaclosedswitchcontactbetween<br />

collectorandemitter,droppingzerovoltageatfullcollectorcurrent. <strong>In</strong>realitythisisnever<br />

true.Manufacturerswillspecifythemaximumvoltagedropofatransistoratsaturation,both<br />

betweenthecollectorandemitter,andalsobetweenbaseandemitter(forwardvoltagedrop<br />

ofthatPNjunction). Collector-emittervoltagedropatsaturationisgenerallyexpectedtobe<br />

0.3voltsorless,butthisfigureisofcoursedependentonthespecifictypeoftransistor. Low<br />

voltagetransistors,lowVCE,showlowersaturationvoltages. Thesaturationvoltageisalso<br />

lowerforhigherbasedrivecurrent.<br />

Base-emitterforwardvoltagedrop,kVBE,issimilartothatofanequivalentdiode, ∼ =0.7V,<br />

whichshouldcomeasnosurprise.<br />

Beta:Theratioofcollectorcurrenttobasecurrent, βisthefundamentalparameterchar-


270 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

acterizingtheamplifyingabilityofabipolartransistor. βisusuallyassumedtobeaconstant<br />

figureincircuitcalculations,butunfortunatelythisisfarfromtrueinpractice. Assuch,<br />

manufacturersprovideasetof β(or“hfe”)figuresforagiventransistoroverawiderangeof<br />

operatingconditions,usuallyintheformofmaximum/minimum/typicalratings. Itmaysurpriseyoutoseejusthowwidely<br />

βcanbeexpectedtovarywithinnormaloperatinglimits.One<br />

popularsmall-signaltransistor,the2N3903,isadvertisedashavingaβrangingfrom15to<br />

150dependingontheamountofcollectorcurrent.Generally, βishighestformediumcollector<br />

currents,decreasingforverylowandveryhighcollectorcurrents.hfeissmallsignalACgain;<br />

hFEislargeACsignalgainorDCgain.<br />

Alpha:theratioofcollectorcurrenttoemittercurrent, α=IC/IE. αmaybederivedfrom<br />

β,being α=β/(β+1).<br />

Bipolartransistorscomeinawidevarietyofphysicalpackages. Packagetypeisprimarilydependentupontherequiredpowerdissipationofthetransistor,muchlikeresistors:the<br />

greaterthemaximumpowerdissipation,thelargerthedevicehastobetostaycool. Figure4.117showsseveralstandardizedpackagetypesforthree-terminalsemiconductordevices,<br />

anyofwhichmaybeusedtohouseabipolartransistor.Therearemanyothersemiconductor<br />

devicesotherthanbipolartransistorswhichhavethreeconnectionpoints.Notethatthepinoutsofplastictransistorscanvarywithinasinglepackagetype,e.g.TO-92inFigure4.117.It<br />

isimpossibletopositivelyidentifyathree-terminalsemiconductordevicewithoutreferencing<br />

thepartnumberprintedonit,orsubjectingittoasetofelectricaltests.<br />

TO-3<br />

case, Collector<br />

E<br />

B<br />

16.89<br />

30.15<br />

39.37<br />

5.8<br />

TO-39<br />

9.4<br />

5.3<br />

E Β C<br />

E Β C<br />

TO-18<br />

6.6<br />

10.7<br />

Β C E<br />

B C E<br />

TO-3 (300 w) TO-220 (150 w) (TO-247 250 w)<br />

15.5<br />

5.2<br />

5.3<br />

E Β C<br />

E C Β<br />

TO-92<br />

Figure4.117:Transistorpackages,dimensionsinmm.<br />

SmallplastictransistorpackagesliketheTO-92candissipateafewhundredmilliwatts.<br />

Themetalcans,TO-18andTO-39candissipatemorepower,severalhundredmilliwatts.Plas-<br />

16<br />

21


4.16. BJTQUIRKS 271<br />

ticpowertransistorpackagesliketheTO-220andTO-247dissipatewellover100watts,approachingthedissipationoftheallmetalTO-3.ThedissipationratingslistedinFigure4.117arethemaximumeverencounteredbytheauthorforhighpowereddevices.Mostpowertransistorsareratedathalforlessthanthelistedwattage.Consultspecificdevicedatasheetsfor<br />

actualratings.ThesemiconductordieintheTO-220andTO-247plasticpackagesismounted<br />

toaheatconductivemetalslugwhichtransfersheatfromthebackofthepackagetoametal<br />

heatsink,notshown. Athincoatingofthermallyconductivegreaseisappliedtothemetal<br />

beforemountingthetransistortotheheatsink.SincetheTO-220andTO-247slugs,andthe<br />

TO-3caseareconnectedtothecollector,itissometimesnecessarytoelectricallyisolatethese<br />

fromagroundedheatsinkbyaninterposedmicaorpolymerwasher.Thedatasheetratingsfor<br />

thepowerpackagesareonlyvalidwhenmountedtoaheatsink.Withoutaheatsink,aTO-220<br />

dissipatesapproximately1wattsafelyinfreeair.<br />

Datasheetmaximumpowerdisipationratingsaredifficulttoacheiveinpractice.Themaximumpowerdissipationisbasedonaheatsinkmaintainingthetransistorcaseatnomorethan<br />

25 o C.Thisisdifficultwithanaircooledheatsink.Theallowablepowerdissipationdecreases<br />

withincreasingtemperature. Thisisknownasderating. Manypowerdevicedatasheetsincludeadissipationversuscasetermperauregraph.<br />

• REVIEW:<br />

• Powerdissipation:maximumallowablepowerdissipationonasustainedbasis.<br />

• Reversevoltages:maximumallowableVCE,VCB,VEB.<br />

• Collectorcurrent:themaximumallowablecollectorcurrent.<br />

• SaturationvoltageistheVCEvoltagedropinasaturated(fullyconducting)transistor.<br />

• Beta: β=IC/IB<br />

• Alpha: α=IC/IE α= β/(β+1)<br />

• TransistorPackagesareamajorfactorinpowerdissipation. Largerpackagesdissipate<br />

morepower.<br />

4.16 BJTquirks<br />

Anidealtransistorwouldshow0%distortioninamplifyingasignal. Itsgainwouldextend<br />

toallfrequencies.Itwouldcontrolhundredsofamperesofcurrent,athundredsofdegreesC.<br />

<strong>In</strong>practice,availabledevicesshowdistortion. Amplificationislimitedatthehighfrequency<br />

endofthespectrum.Realpartsonlyhandletensofampereswithprecautions.Caremustbe<br />

takenwhenparallelingtransistorsforhighercurrent.Operationatelevatedtemperaturescan<br />

destroytransistorsifprecautionsarenottaken.


272 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Figure4.118:Distortioninlargesignalcommon-emitteramplifier.<br />

4.16.1 Nonlinearity<br />

TheclassAcommon-emitteramplifier(similartoFigure4.34)isdrivenalmosttoclippingin<br />

Figure4.118.Notethatthepositivepeakisflatterthanthenegativepeaks.Thisdistortionis<br />

unacceptableinmanyapplicationslikehigh-fidelityaudio.<br />

Smallsignalamplifiersarerelativelylinearbecausetheyuseasmalllinearsectionofthe<br />

transistorcharacteristics.Largesignalamplifiersarenot100%linearbecausetransistorcharacteristicslike<br />

βarenotconstant,butvarywithcollectorcurrent. βishighatlowcollector<br />

current,andlowatverylowcurrentorhighcurrent.Though,weprimarilyencounterdecreasing<br />

βwithincreasingcollectorcurrent.<br />

TheSPICElistinginTable4.119illustrateshowtoquantifytheamountofdistortion.The<br />

”.fourier2000v(2)”commandtellsSPICEtopermafourieranalysisat2000Hzontheoutput<br />

v(2). Atthecommandline”spice-bcircuitname.cir”producestheFourieranalysisoutputin<br />

Table4.119.ItshowsTHD(totalharmonicdistortion)ofover10%,andthecontributionofthe<br />

individualharmonics.<br />

Apartialsolutiontothisdistortionistodecreasethecollectorcurrentoroperatetheamplifieroverasmallerportionoftheloadline.Theultimatesolutionistoapplynegativefeedback.<br />

See(page256).<br />

4.16.2 Temperaturedrift<br />

TemperatureaffectstheACandDCcharacteristicsoftransistors. Thetwoaspectstothis<br />

problemareenvironmentaltemperaturevariationandself-heating. Someapplications,like<br />

militaryandautomotive,requireoperationoveranextendedtemperaturerange.<strong>Circuits</strong>ina<br />

benignenvironmentaresubjecttoself-heating,inparticularhighpowercircuits.


4.16. BJTQUIRKS 273<br />

common-emitter amplifier<br />

Vbias 4 0 0.74<br />

Vsig 5 4 sin (0 125m 2000 0 0)<br />

rbias 6 5 2k<br />

q1 2 6 0 q2n2222<br />

r 3 2 1000<br />

v1 3 0 dc 10<br />

.model q2n2222 npn (is=19f bf=150<br />

+ vaf=100 ikf=0.18 ise=50p ne=2.5<br />

br=7.5<br />

+ var=6.4 ikr=12m isc=8.7p nc=1.2<br />

rb=50<br />

+ re=0.4 rc=0.3 cje=26p tf=0.5n<br />

+ cjc=11p tr=7n xtb=1.5 kf=0.032f<br />

af=1)<br />

.fourier 2000 v(2)<br />

.tran 0.02m 0.74m<br />

.end<br />

spice -b ce.cir<br />

Fourier analysis<br />

v(2):<br />

THD: 10.4688<br />

Har Freq Norm<br />

Mag<br />

--- ----<br />

---------<br />

0 0 0<br />

1 2000 1<br />

2 4000<br />

0.0979929<br />

3 6000<br />

0.0365461<br />

4 8000<br />

0.00438709<br />

5 10000<br />

0.00115878<br />

6 12000<br />

0.00089388<br />

7 14000<br />

0.00021169<br />

8 16000<br />

3.8158e-05<br />

9 18000<br />

3.3726e-05<br />

Figure4.119:SPICEnetlist:fortransientandfourieranalyses.Fourieranalysisshows10%<br />

totalharmonicdistortion(THD).


274 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

LeakagecurrentICOand βincreasewithtemperature.TheDC βhFEincreasesexponentially.TheAC<br />

βhfeincreases,butnotasrapidly.Itdoublesovertherangeof-55 o to85 o C.As<br />

temperatureincreases,theincreaseinhfewillyieldalargercommon-emitteroutput,which<br />

couldbeclippedinextremecases.TheincreaseinhFEshiftsthebiaspoint,possiblyclipping<br />

onepeak. Theshiftinbiaspointisamplifiedinmulti-stagedirect-coupledamplifiers. The<br />

solutionissomeformofnegativefeedbacktostabilizethebiaspoint.ThisalsostabilizesAC<br />

gain.<br />

<strong>In</strong>creasingtemperatureinFigure4.120(a)willdecreaseVBEfromthenominal0.7Vfor<br />

silicontransistors.DecreasingVBEincreasescollectorcurrentinacommon-emitteramplifier,<br />

furthershiftingthebiaspoint.ThecureforshiftingVBEisapairoftransistorsconfiguredas<br />

adifferentialamplifier.IfbothtransistorsinFigure4.120(b)areatthesametemperature,the<br />

VBEwilltrackwithchangingtemperatureandcancel.<br />

+<br />

VBE +Vcc<br />

-<br />

+<br />

VBE -<br />

-Vee<br />

(a) (b)<br />

+Vcc<br />

-Vee<br />

+<br />

- V BE<br />

Figure4.120:(a)singleendedCEamplifiervs(b)differentialamplifierwithVBEcancellation.<br />

Themaximumrecommendedjunctiontemperatureforsilicondevicesisfrequently125 o C.<br />

Though,thisshouldbederatedforhigherreliability.Transistoractionceasesbeyond150 o C.<br />

Siliconcarbideanddiamondtransistorswilloperateconsiderablyhigher.<br />

4.16.3 Thermalrunaway<br />

Theproblemwithincreasingtemperaturecausingincreasingcollectorcurrentisthatmorecurrentincreasethepowerdissipatedbythetransistorwhich,inturn,increasesitstemperature.<br />

Thisself-reinforcingcycleisknownasthermalrunaway,whichmaydestroythetransistor.<br />

Again,thesolutionisabiasschemewithsomeformofnegativefeedbacktostabilizethebias<br />

point.<br />

4.16.4 Junctioncapacitance<br />

Capacitanceexistsbetweentheterminalsofatransistor.Thecollector-basecapacitanceCCB<br />

andemitter-basecapacitanceCEBdecreasethegainofacommonemittercircuitathigher<br />

frequencies.


4.16. BJTQUIRKS 275<br />

<strong>In</strong>acommonemitteramplifier,thecapacitivefeedbackfromcollectortobaseeffectively<br />

multipliesCCBby β.Theamountofnegativegain-reducingfeedbackisrelatedtobothcurrent<br />

gain,andamountofcollector-basecapacitance.ThisisknownastheMillereffect,(page277).<br />

4.16.5 Noise<br />

Theultimatesensitivityofsmallsignalamplifiersislimitedbynoiseduetorandomvariations<br />

incurrentflow.Thetwomajorsourcesofnoiseintransistorsareshotnoiseduetocurrentflow<br />

ofcarriersinthebaseandthermalnoise.Thesourceofthermalnoiseisdeviceresistanceand<br />

increaseswithtemperature:<br />

V n = 4kTRB n<br />

where<br />

k = boltzman’s conatant (1.38•10 −23 watt-sec/K)<br />

T = resistor tempeature in kelvins<br />

R = resistance in Ohms<br />

B n = noise bandwidth in Hz<br />

Noiseinatransistoramplifierisdefinedintermsofexcessnoisegeneratedbytheamplifier,<br />

notthatnoiseamplifiedfrominputtooutput,butthatgeneratedwithintheamplifier.Thisis<br />

determinedbymeasuringthesignaltonoiseratio(S/N)attheamplifierinputandoutput.The<br />

ACvoltageoutputofanamplifierwithasmallsignalinputcorrespondstoS+N,signalplus<br />

noise.TheACvoltagewithnosignalincorrespondstonoiseN.ThenoisefigureFisdefinedin<br />

termsofS/Nofamplifierinputandoutput:<br />

F = (S/N) i<br />

(S/N) o<br />

F dB = 10 log F<br />

ThenoisefigureFforRF(radiofrequency)transistorsisusuallylistedontransistordata<br />

sheetsindecibels,FdB. AgoodVHF(veryhighfrequency,30MHzto300Mhz)noisefigure<br />

is


276 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Noise figure F (decibels)<br />

1/f noise<br />

-10 dB/decade<br />

f Ln<br />

shot noise and<br />

thermal noise<br />

white noise region<br />

f Hn<br />

20 dB/decade<br />

Log Frequency<br />

Figure4.121:SmallsignaltransistornoisefigurevsFrequency.AfterThiele,Figure11.147[1]<br />

<strong>In</strong>correct<br />

+V +V<br />

Correct<br />

Figure4.122:Transistorsparalleledforincreasedpowerrequireemitterballastresistors


4.16. BJTQUIRKS 277<br />

Itisnotpracticaltoselectidenticaltransistors.The βforsmallsignaltransistorstypically<br />

hasarangeof100-300,powertransistors:20-50.Ifeachonecouldbematched,onestillmight<br />

runhotterthantheotherduetoenvironmentalconditions.Thehottertransistordrawsmore<br />

currentresultinginthermalrunaway.Thesolutionwhenparallelingbipolartransistorsisto<br />

insertemitterresistorsknownasballastresistorsoflessthananohm.Ifthehottertransistor<br />

drawsmorecurrent,thevoltagedropacrosstheballastresistorincreases—negativefeedback.<br />

Thisdecreasesthecurrent. Mountingalltransistorsonthesameheatsinkhelpsequalize<br />

currenttoo.<br />

4.16.7 Highfrequencyeffects<br />

Theperformanceofatransistoramplifierisrelativelyconstant,uptoapoint,asshownbythe<br />

smallsignalcommon-emittercurrentgainwithincreasingfrequencyinFigure4.123.Beyond<br />

thatpointtheperformanceofatransistordegradesasfrequencyincreases.<br />

Betacutofffrequency,fTisthefrequencyatwhichcommon-emittersmallsignalcurrent<br />

gain(hfe)fallstounity. (Figure4.123)Apracticalamplifiermusthaveagain >1. Thus,a<br />

transistorcannotbeusedinapracticalamplifieratfT.Amoreusablelimitforatransistoris<br />

0.1·fT.<br />

h fe<br />

100<br />

10<br />

1<br />

log f<br />

Figure4.123:Common-emittersmallsignalcurrentgain(hfe)vsfrequency.<br />

SomeRFsiliconbipolartransistorsareusableasamplifersuptoafewGHz. Silicongermaniumdevicesextendtheupperrangeto10GHz.<br />

Alphacutofffrequency,falphaisthefrequencyatwhichthe αfallsto0.707oflowfrequency<br />

α,0 α=0.707α0.Alphacutoffandbetacutoffarenearlyequal:falpha ∼ =fTBetacutofffT<br />

isthepreferredfigureofmeritofhighfrequencyperformance.<br />

fmaxisthehighestfrequencyofoscillationpossibleunderthemostfavorableconditionsof<br />

biasandimpedancematching.Itisthefrequencyatwhichthepowergainisunity.Allofthe<br />

outputisfedbacktotheinputtosustainoscillations. fmaxisanupperlimitforfrequencyof<br />

operationofatransistorasanactivedevice.Though,apracticalamplifierwouldnotbeusable<br />

atfmax.<br />

Millereffect:Thehighfrequencylimitforatransistorisrelatedtothejunctioncapacitances.ForexampleaPN2222AhasaninputcapacitanceCobo=9pFandanoutputcapacitance<br />

f T


278 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS<br />

Cibo=25pFfromC-BandE-Brespectively. [5]AlthoughtheC-Ecapacitanceof25pFseems<br />

large,itislessofafactorthantheC-B(9pF)capacitance.becauseoftheMillereffect,theC-B<br />

capacitancehasaneffectonthebaseequivalenttobetatimesthecapacitanceinthecommonemitteramplifier.<br />

Whymightthisbe? Acommon-emitteramplifierinvertsthesignalfrom<br />

basetocollector. Theinvertedcollectorsignalfedbacktothebaseopposestheinputonthe<br />

base. Thecollectorsignalisbetatimeslargerthantheinput. ForthePN2222A, β=50–300.<br />

Thus,the9pFC-Ecapacitancelookslike9·50=450pFto9·300=2700pF.<br />

Thesolutiontothejunctioncapacitanceproblemistoselectahighfrequencytransistorfor<br />

widebandwidthapplications—RF(radiofrequency)ormicrowavetransistor.Thebandwidth<br />

canbeextendedfurtherbyusingthecommon-baseinsteadofthecommon-emitterconfiguration.<br />

Thegroundedbaseshieldstheemitterinputfromcapacitivecollectorfeedback. A<br />

two-transistorcascodearrangementwillyieldthesamebandwidthasthecommon-base,with<br />

thehigherinputimpedanceofthecommon-emitter.<br />

• REVIEW:<br />

• Transistoramplifiersexhibitdistortionbecauseof βvariationwithcollectorcurrent.<br />

• Ic,VBE, βandjunctioncapacitancevarywithtemperature.<br />

• AnincreaseintemperaturecancauseanincreaseinIC,causinganincreaseintemperature,aviciouscycleknownasthermalrunaway.<br />

• Junctioncapacitancelimitshighfrequencygainofatransistor.TheMillereffectmakes<br />

Ccblook βtimeslargeratthebaseofaCEamplifier.<br />

• Transistornoiselimitstheabilitytoamplifysmallsignals. Noisefigureisafigureof<br />

meritconcerningtransistornoise.<br />

• Whenparallelingpowertransistorsforincreasedcurrent,insertballastresistorsinseries<br />

withtheemitterstoequalizecurrent.<br />

• FT istheabsoluteupperfrequencylimitforaCEamplifier,smallsignalcurrentgain<br />

fallstounity,hfe=1.<br />

• Fmaxistheupperfrequencylimitforanoscillatorunderthemostidealconditions.<br />

Bibliography<br />

[1] A.G.ThieleinLoydP.Hunter,“HandbookofSemiconductorElectronics,”LowFrequency<br />

Amplifiers,ISBN-07-031305-9,1970<br />

[2] “GETransistorManual”,General<strong>Electric</strong>,1964.<br />

[3] R. Victor Jones, “Basic BJT Amplifier Configurations”, November 7, 2001. at<br />

http://people.seas.harvard.edu/˜jones/es154/lectures/lecture 3/<br />

bjt amps/bjt amps.html


BIBLIOGRAPHY 279<br />

[4] Tony Kuphaldt,“<strong>Lessons</strong> in <strong>Electric</strong> <strong>Circuits</strong>”, Vol. 1, DC, DC Network Analysis,<br />

Thevenin’s Theorem, at http://www.openbookproject.net/electric<strong>Circuits</strong>/<br />

DC/DC 10.html#xtocid102679<br />

[5] “PN2222 Datasheet”,Fairchild Semiconductor Corporation, 2007 at<br />

http://www.fairchildsemi.com/ds/PN/PN2222A.pdf


280 CHAPTER4. BIPOLARJUNCTIONTRANSISTORS


Chapter5<br />

JUNCTIONFIELD-EFFECT<br />

TRANSISTORS<br />

Contents<br />

5.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281<br />

5.2 Thetransistorasaswitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283<br />

5.3 Metercheckofatransistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . .286<br />

5.4 Active-modeoperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288<br />

5.5 Thecommon-sourceamplifier–PENDING...................297<br />

5.6 Thecommon-drainamplifier–PENDING. . . . . . . . . . . . . . . . . . . .298<br />

5.7 Thecommon-gateamplifier–PENDING . . . . . . . . . . . . . . . . . . . .298<br />

5.8 Biasingtechniques–PENDING..........................298<br />

5.9 Transistorratingsandpackages–PENDING . . . . . . . . . . . . . . . . .299<br />

5.10 JFETquirks–PENDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299<br />

***INCOMPLETE***<br />

5.1 <strong>In</strong>troduction<br />

Atransistorisalinearsemiconductordevicethatcontrolscurrentwiththeapplicationofa<br />

lower-powerelectricalsignal. Transistorsmayberoughlygroupedintotwomajordivisions:<br />

bipolarandfield-effect.<strong>In</strong>thelastchapterwestudiedbipolartransistors,whichutilizeasmall<br />

currenttocontrolalargecurrent. <strong>In</strong>thischapter,we’llintroducethegeneralconceptofthe<br />

field-effecttransistor–adeviceutilizingasmallvoltagetocontrolcurrent–andthenfocus<br />

ononeparticulartype: thejunctionfield-effecttransistor. <strong>In</strong>thenextchapterwe’llexplore<br />

anothertypeoffield-effecttransistor,theinsulatedgatevariety.<br />

Allfield-effecttransistorsareunipolarratherthanbipolardevices.Thatis,themaincurrentthroughthemiscomprisedeitherofelectronsthroughanN-typesemiconductororholes<br />

281


282 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

throughaP-typesemiconductor. Thisbecomesmoreevidentwhenaphysicaldiagramofthe<br />

deviceisseen:<br />

gate<br />

drain<br />

source<br />

N-channel JFET<br />

gate<br />

drain<br />

P N<br />

source<br />

schematic symbol physical diagram<br />

<strong>In</strong>ajunctionfield-effecttransistor,orJFET,thecontrolledcurrentpassesfromsourceto<br />

drain,orfromdraintosourceasthecasemaybe.Thecontrollingvoltageisappliedbetween<br />

thegateandsource. NotehowthecurrentdoesnothavetocrossthroughaPNjunctionon<br />

itswaybetweensourceanddrain: thepath(calledachannel)isanuninterruptedblockof<br />

semiconductormaterial. <strong>In</strong>theimagejustshown,thischannelisanN-typesemiconductor.<br />

P-typechannelJFETsarealsomanufactured:<br />

gate<br />

drain<br />

source<br />

P-channel JFET<br />

gate<br />

drain<br />

schematic symbol physical diagram<br />

N<br />

P<br />

source<br />

Generally,N-channelJFETsaremorecommonlyusedthanP-channel.Thereasonsforthis<br />

havetodowithobscuredetailsofsemiconductortheory,whichI’drathernotdiscussinthis<br />

chapter.Aswithbipolartransistors,Ibelievethebestwaytointroducefield-effecttransistor<br />

usageistoavoidtheorywheneverpossibleandconcentrateinsteadonoperationalcharacteristics.<br />

TheonlypracticaldifferencebetweenN-andP-channelJFETsyouneedtoconcern<br />

yourselfwithnowisbiasingofthePNjunctionformedbetweenthegatematerialandthe<br />

channel.


5.2. THETRANSISTORASASWITCH 283<br />

Withnovoltageappliedbetweengateandsource,thechannelisawide-openpathforelectronstoflow.However,ifavoltageisappliedbetweengateandsourceofsuchpolaritythatitreverse-biasesthePNjunction,theflowbetweensourceanddrainconnectionsbecomeslimited,orregulated,justasitwasforbipolartransistorswithasetamountofbasecurrent.<br />

Maximumgate-sourcevoltage”pinchesoff”allcurrentthroughsourceanddrain,thusforcing<br />

theJFETintocutoffmode. ThisbehaviorisduetothedepletionregionofthePNjunction<br />

expandingundertheinfluenceofareverse-biasvoltage,eventuallyoccupyingtheentirewidth<br />

ofthechannelifthevoltageisgreatenough.Thisactionmaybelikenedtoreducingtheflowof<br />

aliquidthroughaflexiblehosebysqueezingit:withenoughforce,thehosewillbeconstricted<br />

enoughtocompletelyblocktheflow.<br />

water<br />

water<br />

hose nozzle<br />

Hose constricted by squeezing,<br />

water flow reduced or stopped<br />

Notehowthisoperationalbehaviorisexactlyoppositeofthebipolarjunctiontransistor.<br />

Bipolartransistorsarenormally-offdevices:nocurrentthroughthebase,nocurrentthrough<br />

thecollectorortheemitter. JFETs,ontheotherhand,arenormally-ondevices: novoltage<br />

appliedtothegateallowsmaximumcurrentthroughthesourceanddrain. Alsotakenote<br />

thattheamountofcurrentallowedthroughaJFETisdeterminedbyavoltagesignalrather<br />

thanacurrentsignalaswithbipolartransistors. <strong>In</strong>fact,withthegate-sourcePNjunction<br />

reverse-biased,thereshouldbenearlyzerocurrentthroughthegateconnection. Forthis<br />

reason,weclassifytheJFETasavoltage-controlleddevice,andthebipolartransistorasa<br />

current-controlleddevice.<br />

Ifthegate-sourcePNjunctionisforward-biasedwithasmallvoltage,theJFETchannel<br />

will”open”alittlemoretoallowgreatercurrentsthrough. However,thePNjunctionofa<br />

JFETisnotbuilttohandleanysubstantialcurrentitself,andthusitisnotrecommendedto<br />

forward-biasthejunctionunderanycircumstances.<br />

ThisisaverycondensedoverviewofJFEToperation.<strong>In</strong>thenextsection,we’llexplorethe<br />

useoftheJFETasaswitchingdevice.<br />

5.2 Thetransistorasaswitch<br />

Likeitsbipolarcousin,thefield-effecttransistormaybeusedasanon/offswitchcontrolling<br />

electricalpowertoaload. Let’sbeginourinvestigationoftheJFETasaswitchwithour<br />

familiarswitch/lampcircuit:


284 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

switch<br />

RememberingthatthecontrolledcurrentinaJFETflowsbetweensourceanddrain,we<br />

substitutethesourceanddrainconnectionsofaJFETforthetwoendsoftheswitchinthe<br />

abovecircuit:<br />

Ifyouhaven’tnoticedbynow,thesourceanddrainconnectionsonaJFETlookidentical<br />

ontheschematicsymbol. Unlikethebipolarjunctiontransistorwheretheemitterisclearly<br />

distinguishedfromthecollectorbythearrowhead,aJFET’ssourceanddrainlinesbothrun<br />

perpendicularintothebarrepresentingthesemiconductorchannel.Thisisnoaccident,asthe<br />

sourceanddrainlinesofaJFETareofteninterchangeableinpractice!<strong>In</strong>otherwords,JFETs<br />

areusuallyabletohandlechannelcurrentineitherdirection,fromsourcetodrainorfrom<br />

draintosource.<br />

NowallweneedinthecircuitisawaytocontroltheJFET’sconduction.Withzeroapplied<br />

voltagebetweengateandsource,theJFET’schannelwillbe”open,”allowingfullcurrentto<br />

thelamp.<strong>In</strong>ordertoturnthelampoff,wewillneedtoconnectanothersourceofDCvoltage<br />

betweenthegateandsourceconnectionsoftheJFETlikethis:<br />

switch<br />

Closingthisswitchwill”pinchoff”theJFET’schannel,thusforcingitintocutoffandturningthelampoff:<br />

switch


5.2. THETRANSISTORASASWITCH 285<br />

Notethatthereisnocurrentgoingthroughthegate. Asareverse-biasedPNjunction,it<br />

firmlyopposestheflowofanyelectronsthroughit. Asavoltage-controlleddevice,theJFET<br />

requiresnegligibleinputcurrent.ThisisanadvantageoustraitoftheJFEToverthebipolar<br />

transistor:thereisvirtuallyzeropowerrequiredofthecontrollingsignal.<br />

Openingthecontrolswitchagainshoulddisconnectthereverse-biasingDCvoltagefrom<br />

thegate,thusallowingthetransistortoturnbackon.Ideally,anyway,thisishowitworks.<strong>In</strong><br />

practicethismaynotworkatall:<br />

switch<br />

No lamp current after the switch opens!<br />

Whyisthis?Whydoesn’ttheJFET’schannelopenupagainandallowlampcurrentthrough<br />

likeitdidbeforewithnovoltageappliedbetweengateandsource?Theanswerliesintheoperationofthereverse-biasedgate-sourcejunction.Thedepletionregionwithinthatjunctionacts<br />

asaninsulatingbarrierseparatinggatefromsource.Assuch,itpossessesacertainamountof<br />

capacitancecapableofstoringanelectricchargepotential.Afterthisjunctionhasbeenforcibly<br />

reverse-biasedbytheapplicationofanexternalvoltage,itwilltendtoholdthatreverse-biasing<br />

voltageasastoredchargeevenafterthesourceofthatvoltagehasbeendisconnected.What<br />

isneededtoturntheJFETonagainistobleedoffthatstoredchargebetweenthegateand<br />

sourcethrougharesistor:<br />

switch<br />

Resistor bleeds off stored charge in<br />

PN junction to allow transistor to<br />

turn on once again.<br />

Thisresistor’svalueisnotveryimportant.ThecapacitanceoftheJFET’sgate-sourcejunctionisverysmall,andsoevenaratherhigh-valuebleedresistorcreatesafastRCtimeconstant,allowingthetransistortoresumeconductionwithlittledelayoncetheswitchisopened.<br />

Likethebipolartransistor,itmatterslittlewhereorwhatthecontrollingvoltagecomes<br />

from.Wecoulduseasolarcell,thermocouple,oranyothersortofvoltage-generatingdeviceto<br />

supplythevoltagecontrollingtheJFET’sconduction.Allthatisrequiredofavoltagesource<br />

forJFETswitchoperationissufficientvoltagetoachievepinch-offoftheJFETchannel.This<br />

levelisusuallyintherealmofafewvoltsDC,andistermedthepinch-offorcutoffvoltage.<br />

Theexactpinch-offvoltageforanygivenJFETisafunctionofitsuniquedesign,andisnota


286 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

universalfigurelike0.7voltsisforasiliconBJT’sbase-emitterjunctionvoltage.<br />

• REVIEW:<br />

• Field-effecttransistorscontrolthecurrentbetweensourceanddrainconnectionsbya<br />

voltageappliedbetweenthegateandsource.<strong>In</strong>ajunctionfield-effecttransistor(JFET),<br />

thereisaPNjunctionbetweenthegateandsourcewhichisnormallyreverse-biasedfor<br />

controlofsource-draincurrent.<br />

• JFETsarenormally-on(normally-saturated)devices.Theapplicationofareverse-biasing<br />

voltagebetweengateandsourcecausesthedepletionregionofthatjunctiontoexpand,<br />

thereby”pinchingoff”thechannelbetweensourceanddrainthroughwhichthecontrolled<br />

currenttravels.<br />

• Itmaybenecessarytoattacha”bleed-off”resistorbetweengateandsourcetodischarge<br />

thestoredchargebuiltupacrossthejunction’snaturalcapacitancewhenthecontrolling<br />

voltageisremoved. Otherwise,achargemayremaintokeeptheJFETincutoffmode<br />

evenafterthevoltagesourcehasbeendisconnected.<br />

5.3 Metercheckofatransistor<br />

TestingaJFETwithamultimetermightseemtobearelativelyeasytask,seeingashowit<br />

hasonlyonePNjunctiontotest:eithermeasuredbetweengateandsource,orbetweengate<br />

anddrain.<br />

V A<br />

V<br />

V A<br />

V<br />

A<br />

A<br />

OFF<br />

OFF<br />

COM<br />

COM<br />

A<br />

A<br />

gate<br />

drain<br />

source<br />

N-channel transistor<br />

gate<br />

-<br />

-<br />

drain<br />

+<br />

P N<br />

+<br />

source<br />

physical diagram<br />

Both meters show non-continuity<br />

(high resistance) through gatechannel<br />

junction.


5.3. METERCHECKOFATRANSISTOR 287<br />

V A<br />

V<br />

V A<br />

V<br />

A<br />

A<br />

OFF<br />

OFF<br />

COM<br />

COM<br />

A<br />

A<br />

gate<br />

drain<br />

source<br />

N-channel transistor<br />

+<br />

gate<br />

+<br />

drain<br />

-<br />

P N<br />

-<br />

source<br />

physical diagram<br />

Both meters show continuity (low<br />

resistance) through gate-channel<br />

junction.<br />

Testingcontinuitythroughthedrain-sourcechannelisanothermatter,though. Rememberfromthelastsectionhowastoredchargeacrossthecapacitanceofthegate-channelPN<br />

junctioncouldholdtheJFETinapinched-offstatewithoutanyexternalvoltagebeingapplied<br />

acrossit? Thiscanoccurevenwhenyou’reholdingtheJFETinyourhandtotestit! Consequently,anymeterreadingofcontinuitythroughthatchannelwillbeunpredictable,sinceyou<br />

don’tnecessarilyknowifachargeisbeingstoredbythegate-channeljunction.Ofcourse,ifyou<br />

knowbeforehandwhichterminalsonthedevicearethegate,source,anddrain,youmayconnectajumperwirebetweengateandsourcetoeliminateanystoredchargeandthenproceed<br />

totestsource-draincontinuitywithnoproblem.However,ifyoudon’tknowwhichterminals<br />

arewhich,theunpredictabilityofthesource-drainconnectionmayconfuseyourdetermination<br />

ofterminalidentity.<br />

AgoodstrategytofollowwhentestingaJFETistoinsertthepinsofthetransistorinto<br />

anti-staticfoam(thematerialusedtoshipandstorestatic-sensitiveelectroniccomponents)<br />

justpriortotesting.Theconductivityofthefoamwillmakearesistiveconnectionbetweenall<br />

terminalsofthetransistorwhenitisinserted. Thisconnectionwillensurethatallresidual<br />

voltagebuiltupacrossthegate-channelPNjunctionwillbeneutralized,thus”openingup”the<br />

channelforanaccuratemetertestofsource-to-draincontinuity.<br />

SincetheJFETchannelisasingle,uninterruptedpieceofsemiconductormaterial,thereis<br />

usuallynodifferencebetweenthesourceanddrainterminals.Aresistancecheckfromsource<br />

todrainshouldyieldthesamevalueasacheckfromdraintosource.Thisresistanceshouldbe<br />

relativelylow(afewhundredohmsatmost)whenthegate-sourcePNjunctionvoltageiszero.<br />

Byapplyingareverse-biasvoltagebetweengateandsource,pinch-offofthechannelshouldbe<br />

apparentbyanincreasedresistancereadingonthemeter.


288 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

5.4 Active-modeoperation<br />

JFETs,likebipolartransistors,areableto”throttle”currentinamodebetweencutoffand<br />

saturationcalledtheactivemode.TobetterunderstandJFEToperation,let’ssetupaSPICE<br />

simulationsimilartotheoneusedtoexplorebasicbipolartransistorfunction:<br />

V in<br />

jfet simulation<br />

vin 0 1 dc 1<br />

j1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 njf<br />

.dc v1 0 2 0.05<br />

.plot dc i(vammeter)<br />

.end<br />

1<br />

Q 1<br />

V ammeter<br />

2 3<br />

0 V<br />

0 0 0<br />

Notethatthetransistorlabeled”Q1”intheschematicisrepresentedintheSPICEnetlistas<br />

j1.Althoughalltransistortypesarecommonlyreferredtoas”Q”devicesincircuitschematics<br />

–justasresistorsarereferredtoby”R”designations,andcapacitorsby”C”–SPICEneedsto<br />

betoldwhattypeoftransistorthisisbymeansofadifferentletterdesignation: qforbipolar<br />

junctiontransistors,and jforjunctionfield-effecttransistors.<br />

V 1


5.4. ACTIVE-MODEOPERATION 289<br />

Here,thecontrollingsignalisasteadyvoltageof1volt,appliedwithnegativetowardsthe<br />

JFETgateandpositivetowardtheJFETsource,toreverse-biasthePNjunction.<strong>In</strong>thefirst<br />

BJTsimulationofchapter4,aconstant-currentsourceof20 µAwasusedforthecontrolling<br />

signal,butrememberthataJFETisavoltage-controlleddevice,notacurrent-controlleddevice<br />

likethebipolarjunctiontransistor.<br />

LiketheBJT,theJFETtendstoregulatethecontrolledcurrentatafixedlevelabovea<br />

certainpowersupplyvoltage,nomatterhowhighthatvoltagemayclimb. Ofcourse,this<br />

currentregulationhaslimitsinreallife–notransistorcanwithstandinfinitevoltagefrom<br />

apowersource–andwithenoughdrain-to-sourcevoltagethetransistorwill”breakdown”<br />

anddraincurrentwillsurge. ButwithinnormaloperatinglimitstheJFETkeepsthedrain<br />

currentatasteadylevelindependentofpowersupplyvoltage.Toverifythis,we’llrunanother<br />

computersimulation,thistimesweepingthepowersupplyvoltage(V1)allthewayto50volts:<br />

jfet simulation<br />

vin 0 1 dc 1<br />

j1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 njf<br />

.dc v1 0 50 2<br />

.plot dc i(vammeter)<br />

.end


290 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

Sureenough,thedraincurrentremainssteadyatavalueof100 µA(1.000E-04amps)no<br />

matterhowhighthepowersupplyvoltageisadjusted.<br />

BecausetheinputvoltagehascontrolovertheconstrictionoftheJFET’schannel,itmakes<br />

sensethatchangingthisvoltageshouldbetheonlyactioncapableofalteringthecurrent<br />

regulationpointfortheJFET,justlikechangingthebasecurrentonaBJTistheonlyaction<br />

capableofalteringcollectorcurrentregulation.Let’sdecreasetheinputvoltagefrom1voltto<br />

0.5voltsandseewhathappens:<br />

jfet simulation<br />

vin 0 1 dc 0.5<br />

j1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 njf<br />

.dc v1 0 50 2<br />

.plot dc i(vammeter)<br />

.end


5.4. ACTIVE-MODEOPERATION 291<br />

Asexpected,thedraincurrentisgreaternowthanitwasintheprevioussimulation.With<br />

lessreverse-biasvoltageimpressedacrossthegate-sourcejunction,thedepletionregionisnot<br />

aswideasitwasbefore,thus”opening”thechannelforchargecarriersandincreasingthe<br />

draincurrentfigure.<br />

Pleasenote,however,theactualvalueofthisnewcurrentfigure:225 µA(2.250E-04amps).<br />

Thelastsimulationshowedadraincurrentof100 µA,andthatwaswithagate-sourcevoltage<br />

of1volt.Nowthatwe’vereducedthecontrollingvoltagebyafactorof2(from1voltdownto<br />

0.5volts),thedraincurrentincreased,butnotbythesame2:1proportion! Let’sreduceour<br />

gate-sourcevoltageoncemorebyanotherfactorof2(downto0.25volts)andseewhathappens:<br />

jfet simulation<br />

vin 0 1 dc 0.25<br />

j1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc<br />

.model mod1 njf<br />

.dc v1 0 50 2<br />

.plot dc i(vammeter)<br />

.end


292 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

Withthegate-sourcevoltagesetto0.25volts,one-halfwhatitwasbefore,thedraincurrent<br />

is306.3 µA.Althoughthisisstillanincreaseoverthe225 µAfromthepriorsimulation,itisn’t<br />

proportionaltothechangeofthecontrollingvoltage.<br />

Toobtainabetterunderstandingofwhatisgoingonhere,weshouldrunadifferentkind<br />

ofsimulation:onethatkeepsthepowersupplyvoltageconstantandinsteadvariesthecontrolling(voltage)signal.<br />

WhenthiskindofsimulationwasrunonaBJT,theresultwasa<br />

straight-linegraph,showinghowtheinputcurrent/outputcurrentrelationshipofaBJTis<br />

linear.Let’sseewhatkindofrelationshipaJFETexhibits:<br />

jfet simulation<br />

vin 0 1 dc<br />

j1 2 1 0 mod1<br />

vammeter 3 2 dc 0<br />

v1 3 0 dc 25<br />

.model mod1 njf<br />

.dc vin 0 2 0.1<br />

.plot dc i(vammeter)<br />

.end


5.4. ACTIVE-MODEOPERATION 293<br />

Thissimulationdirectlyrevealsanimportantcharacteristicofthejunctionfield-effecttransistor:thecontroleffectofgatevoltageoverdraincurrentisnonlinear.Noticehowthedrain<br />

currentdoesnotdecreaselinearlyasthegate-sourcevoltageisincreased. Withthebipolar<br />

junctiontransistor,collectorcurrentwasdirectlyproportionaltobasecurrent:outputsignal<br />

proportionatelyfollowedinputsignal. NotsowiththeJFET!Thecontrollingsignal(gatesourcevoltage)haslessandlesseffectoverthedraincurrentasitapproachescutoff.<strong>In</strong>this<br />

simulation,mostofthecontrollingaction(75percentofdraincurrentdecrease–from400<br />

µAto100 µA)takesplacewithinthefirstvoltofgate-sourcevoltage(from0to1volt),while<br />

theremaining25percentofdraincurrentreductiontakesanotherwholevoltworthofinput<br />

signal.Cutoffoccursat2voltsinput.<br />

Linearityisgenerallyimportantforatransistorbecauseitallowsittofaithfullyamplifya<br />

waveformwithoutdistortingit. Ifatransistorisnonlinearinitsinput/outputamplification,<br />

theshapeoftheinputwaveformwillbecomecorruptedinsomeway,leadingtotheproduction<br />

ofharmonicsintheoutputsignal. Theonlytimelinearityisnotimportantinatransistor<br />

circuitiswhenitsbeingoperatedattheextremelimitsofcutoffandsaturation(offandon,<br />

respectively,likeaswitch).<br />

AJFET’scharacteristiccurvesdisplaythesamecurrent-regulatingbehaviorasforaBJT,<br />

andthenonlinearitybetweengate-to-sourcevoltageanddraincurrentisevidentinthedisproportionateverticalspacingsbetweenthecurves:


294 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

I drain<br />

Below pinch-off<br />

Triode region<br />

Ohmic region<br />

|V DS| = |V P| - |V GS|<br />

Above pinch-off<br />

Saturation region<br />

V gate-to-source =<br />

V gate-to-source =<br />

V gate-to-source =<br />

E drain-to-source<br />

1 V<br />

0 V<br />

V gate-to-source = 0.5 V<br />

2 V = V P<br />

(pinch-off)<br />

Tobettercomprehendthecurrent-regulatingbehavioroftheJFET,itmightbehelpfulto<br />

drawamodelmadeupofsimpler,morecommoncomponents,justaswedidfortheBJT:<br />

G<br />

N-channel JFET diode-regulating diode model<br />

G<br />

D<br />

S<br />

<strong>In</strong>thecaseoftheJFET,itisthevoltageacrossthereverse-biasedgate-sourcediodewhich<br />

setsthecurrentregulationpointforthepairofconstant-currentdiodes. Apairofopposing<br />

constant-currentdiodesisincludedinthemodeltofacilitatecurrentineitherdirectionbe-<br />

D<br />

S


5.4. ACTIVE-MODEOPERATION 295<br />

tweensourceanddrain,atraitmadepossiblebytheunipolarnatureofthechannel. With<br />

noPNjunctionsforthesource-draincurrenttotraverse,thereisnopolaritysensitivityinthe<br />

controlledcurrent.Forthisreason,JFETsareoftenreferredtoasbilateraldevices.<br />

AcontrastoftheJFET’scharacteristiccurvesagainstthecurvesforabipolartransistor<br />

revealsanotabledifference:thelinear(straight)portionofeachcurve’snon-horizontalareais<br />

surprisinglylongcomparedtotherespectiveportionsofaBJT’scharacteristiccurves:<br />

I drain<br />

I collector<br />

"Ohmic regions"<br />

V gate-to-source =<br />

V gate-to-source =<br />

V gate-to-source =<br />

E drain-to-source<br />

0 V<br />

V gate-to-source = 0.5 V<br />

I base = 75 µA<br />

I base = 40 µA<br />

I base = 20 µA<br />

I base = 5 µA<br />

1 V<br />

E collector-to-emitter<br />

2 V (pinch-off)<br />

AJFETtransistoroperatedinthetrioderegiontendstoactverymuchlikeaplainresistor<br />

asmeasuredfromdraintosource. Likeallsimpleresistances,itscurrent/voltagegraphisa<br />

straightline.Forthisreason,thetrioderegion(non-horizontal)portionofaJFET’scharacteristiccurveissometimesreferredtoastheohmicregion.<strong>In</strong>thismodeofoperationwherethere


296 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

isn’tenoughdrain-to-sourcevoltagetobringdraincurrentuptotheregulatedpoint,thedrain<br />

currentisdirectlyproportionaltothedrain-to-sourcevoltage.<strong>In</strong>acarefullydesignedcircuit,<br />

thisphenomenoncanbeusedtoanadvantage.Operatedinthisregionofthecurve,theJFET<br />

actslikeavoltage-controlledresistanceratherthanavoltage-controlledcurrentregulator,and<br />

theappropriatemodelforthetransistorisdifferent:<br />

G<br />

D<br />

S<br />

N-channel JFET diode-rheostat model<br />

(for saturation, or "ohmic," mode only!)<br />

G<br />

Hereandherealonetherheostat(variableresistor)modelofatransistorisaccurate. It<br />

mustberemembered,however,thatthismodelofthetransistorholdstrueonlyforanarrow<br />

rangeofitsoperation:whenitisextremelysaturated(farlessvoltageappliedbetweendrain<br />

andsourcethanwhatisneededtoachievefullregulatedcurrentthroughthedrain). The<br />

amountofresistance(measuredinohms)betweendrainandsourceinthismodeiscontrolled<br />

byhowmuchreverse-biasvoltageisappliedbetweengateandsource.Thelessgate-to-source<br />

voltage,thelessresistance(steeperlineongraph).<br />

BecauseJFETsarevoltage-controlledcurrentregulators(atleastwhenthey’reallowedto<br />

operateintheiractive),theirinherentamplificationfactorcannotbeexpressedasaunitless<br />

ratioaswithBJTs.<strong>In</strong>otherwords,thereisno βratioforaJFET.Thisistrueforallvoltagecontrolledactivedevices,includingothertypesoffield-effecttransistorsandevenelectron<br />

tubes.Thereis,however,anexpressionofcontrolled(drain)currenttocontrolling(gate-source)<br />

voltage,anditiscalledtransconductance.ItsunitisSiemens,thesameunitforconductance<br />

(formerlyknownasthemho).<br />

Whythischoiceofunits?Becausetheequationtakesonthegeneralformofcurrent(output<br />

signal)dividedbyvoltage(inputsignal).<br />

D<br />

S


5.5. THECOMMON-SOURCEAMPLIFIER–PENDING 297<br />

g fs = ∆I D<br />

∆V GS<br />

Where,<br />

gfs = Transconductance in Siemens<br />

∆ID = Change in drain current<br />

∆VGS = Change in gate-source voltage<br />

Unfortunately,thetransconductancevalueforanyJFETisnotastablequantity:itvaries<br />

significantlywiththeamountofgate-to-sourcecontrolvoltageappliedtothetransistor.Aswe<br />

sawintheSPICEsimulations,thedraincurrentdoesnotchangeproportionallywithchanges<br />

ingate-sourcevoltage. Tocalculatedraincurrentforanygivengate-sourcevoltage,thereis<br />

anotherequationthatmaybeused.Itisobviouslynonlinearuponinspection(notethepower<br />

of2),reflectingthenonlinearbehaviorwe’vealreadyexperiencedinsimulation:<br />

I D = I DSS ( 1 -<br />

Where,<br />

• REVIEW:<br />

V GS<br />

V GS(cutoff)<br />

I D = Drain current<br />

) 2<br />

I DSS = Drain current with gate shorted to source<br />

V GS = Gate-to-source voltage<br />

V GS(cutoff) = Pinch-off gate-to-source voltage<br />

• <strong>In</strong>theiractivemodes,JFETsregulatedraincurrentaccordingtotheamountofreversebiasvoltageappliedbetweengateandsource,muchlikeaBJTregulatescollectorcurrent<br />

accordingtobasecurrent. Themathematicalratiobetweendraincurrent(output)and<br />

gate-to-sourcevoltage(input)iscalledtransconductance,anditismeasuredinunitsof<br />

Siemens.<br />

• Therelationshipbetweengate-source(control)voltageanddrain(controlled)currentis<br />

nonlinear: asgate-sourcevoltageisdecreased,draincurrentincreasesexponentially.<br />

Thatistosay,thetransconductanceofaJFETisnotconstantoveritsrangeofoperation.<br />

• <strong>In</strong>theirtrioderegion,JFETsregulatedrain-to-sourceresistanceaccordingtotheamount<br />

ofreverse-biasvoltageappliedbetweengateandsource. <strong>In</strong>otherwords,theyactlike<br />

voltage-controlledresistances.<br />

5.5 Thecommon-sourceamplifier–PENDING<br />

***PENDING***


298 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

5.6 Thecommon-drainamplifier–PENDING<br />

***PENDING***<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

5.7 Thecommon-gateamplifier–PENDING<br />

***PENDING***<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

5.8 Biasingtechniques–PENDING<br />

***PENDING***<br />

• REVIEW:<br />

•<br />

•<br />


5.9. TRANSISTORRATINGSANDPACKAGES–PENDING 299<br />

5.9 Transistorratingsandpackages–PENDING<br />

***PENDING***<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

5.10 JFETquirks–PENDING<br />

***PENDING***<br />

• REVIEW:<br />

•<br />

•<br />


300 CHAPTER5. JUNCTIONFIELD-EFFECTTRANSISTORS


Chapter6<br />

INSULATED-GATE<br />

FIELD-EFFECTTRANSISTORS<br />

Contents<br />

6.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301<br />

6.2 Depletion-typeIGFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302<br />

6.3 Enhancement-typeIGFETs–PENDING. . . . . . . . . . . . . . . . . . . . .311<br />

6.4 Active-modeoperation–PENDING . . . . . . . . . . . . . . . . . . . . . . .311<br />

6.5 Thecommon-sourceamplifier–PENDING...................312<br />

6.6 Thecommon-drainamplifier–PENDING. . . . . . . . . . . . . . . . . . . .312<br />

6.7 Thecommon-gateamplifier–PENDING . . . . . . . . . . . . . . . . . . . .312<br />

6.8 Biasingtechniques–PENDING..........................312<br />

6.9 Transistorratingsandpackages–PENDING . . . . . . . . . . . . . . . . .312<br />

6.10 IGFETquirks–PENDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313<br />

6.11 MESFETs–PENDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313<br />

6.12 IGBTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313<br />

***INCOMPLETE***<br />

6.1 <strong>In</strong>troduction<br />

Aswasstatedinthelastchapter,thereismorethanonetypeoffield-effecttransistor. The<br />

junctionfield-effecttransistor,orJFET,usesvoltageappliedacrossareverse-biasedPNjunctiontocontrolthewidthofthatjunction’sdepletionregion,whichthencontrolstheconductivityofasemiconductorchannelthroughwhichthecontrolledcurrentmoves.<br />

Anothertype<br />

offield-effectdevice–theinsulatedgatefield-effecttransistor,orIGFET–exploitsasimilar<br />

principleofadepletionregioncontrollingconductivitythroughasemiconductorchannel,but<br />

itdiffersprimarilyfromtheJFETinthatthereisnodirectconnectionbetweenthegatelead<br />

301


302 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

andthesemiconductormaterialitself. Rather,thegateleadisinsulatedfromthetransistor<br />

bodybyathinbarrier,hencetheterminsulatedgate.Thisinsulatingbarrieractslikethedielectriclayerofacapacitor,andallowsgate-to-sourcevoltagetoinfluencethedepletionregion<br />

electrostaticallyratherthanbydirectconnection.<br />

<strong>In</strong>additiontoachoiceofN-channelversusP-channeldesign,IGFETscomeintwomajor<br />

types:enhancementanddepletion.ThedepletiontypeismorecloselyrelatedtotheJFET,so<br />

wewillbeginourstudyofIGFETswithit.<br />

6.2 Depletion-typeIGFETs<br />

<strong>In</strong>sulatedgatefield-effecttransistorsareunipolardevicesjustlikeJFETs: thatis,thecontrolledcurrentdoesnothavetocrossaPNjunction.ThereisaPNjunctioninsidethetransistor,butitsonlypurposeistoprovidethatnonconductingdepletionregionwhichisusedto<br />

restrictcurrentthroughthechannel.<br />

HereisadiagramofanN-channelIGFETofthe”depletion”type:<br />

gate<br />

drain<br />

source<br />

N-channel, D-type IGFET<br />

substrate<br />

gate<br />

insulating<br />

barrier<br />

drain<br />

schematic symbol physical diagram<br />

N<br />

P<br />

source<br />

substrate<br />

NoticehowthesourceanddrainleadsconnecttoeitherendoftheNchannel,andhowthe<br />

gateleadattachestoametalplateseparatedfromthechannelbyathininsulatingbarrier.<br />

Thatbarrierissometimesmadefromsilicondioxide(theprimarychemicalcompoundfoundin<br />

sand),whichisaverygoodinsulator.DuetothisMetal(gate)-Oxide(barrier)-Semiconductor<br />

(channel)construction,theIGFETissometimesreferredtoasaMOSFET.Thereareother<br />

typesofIGFETconstruction,though,andso”IGFET”isthebetterdescriptorforthisgeneral<br />

classoftransistors.<br />

NoticealsohowtherearefourconnectionstotheIGFET.<strong>In</strong>practice,thesubstratelead<br />

isdirectlyconnectedtothesourceleadtomakethetwoelectricallycommon. Usually,this<br />

connectionismadeinternallytotheIGFET,eliminatingtheseparatesubstrateconnection,<br />

resultinginathree-terminaldevicewithaslightlydifferentschematicsymbol:


6.2. DEPLETION-TYPEIGFETS 303<br />

gate<br />

drain<br />

source<br />

N-channel, D-type IGFET<br />

gate<br />

insulating<br />

barrier<br />

drain<br />

schematic symbol physical diagram<br />

N<br />

P<br />

source<br />

substrate<br />

Withsourceandsubstratecommontoeachother,theNandPlayersoftheIGFETendup<br />

beingdirectlyconnectedtoeachotherthroughtheoutsidewire.Thisconnectionpreventsany<br />

voltagefrombeingimpressedacrossthePNjunction. Asaresult,adepletionregionexists<br />

betweenthetwomaterials,butitcanneverbeexpandedorcollapsed.JFEToperationisbased<br />

ontheexpansionofthePNjunction’sdepletionregion,buthereintheIGFETthatcannot<br />

happen,soIGFEToperationmustbebasedonadifferenteffect.<br />

<strong>In</strong>deeditis,forwhenacontrollingvoltageisappliedbetweengateandsource,theconductivityofthechannelischangedasaresultofthedepletionregionmovingclosertoorfurther<br />

awayfromthegate. <strong>In</strong>otherwords,thechannel’seffectivewidthchangesjustaswiththe<br />

JFET,butthischangeinchannelwidthisduetodepletionregiondisplacementratherthan<br />

depletionregionexpansion.<br />

<strong>In</strong>anN-channelIGFET,acontrollingvoltageappliedpositive(+)tothegateandnegative<br />

(-)tothesourcehastheeffectofrepellingthePNjunction’sdepletionregion,expandingthe<br />

N-typechannelandincreasingconductivity:<br />

controlling<br />

voltage<br />

gate<br />

drain<br />

N<br />

source<br />

P<br />

R load<br />

Channel expands for greater conductivity<br />

Reversingthecontrollingvoltage’spolarityhastheoppositeeffect,attractingthedepletion<br />

regionandnarrowingthechannel,consequentlyreducingchannelconductivity:


304 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

controlling<br />

voltage<br />

gate<br />

drain<br />

N<br />

source<br />

P<br />

R load<br />

Channel narrows for less conductivity<br />

Theinsulatedgateallowsforcontrollingvoltagesofanypolaritywithoutdangerofforwardbiasingajunction,aswastheconcernwithJFETs.<br />

ThistypeofIGFET,althoughitscalled<br />

a”depletion-type,”actuallyhasthecapabilityofhavingitschanneleitherdepleted(channel<br />

narrowed)orenhanced(channelexpanded).<strong>In</strong>putvoltagepolaritydetermineswhichwaythe<br />

channelwillbeinfluenced.<br />

Understandingwhichpolarityhaswhicheffectisnotasdifficultasitmayseem.Thekey<br />

istoconsiderthetypeofsemiconductordopingusedinthechannel(N-channelorP-channel?),<br />

thenrelatethatdopingtypetothesideoftheinputvoltagesourceconnectedtothechannelby<br />

meansofthesourcelead.IftheIGFETisanN-channelandtheinputvoltageisconnectedso<br />

thatthepositive(+)sideisonthegatewhilethenegative(-)sideisonthesource,thechannel<br />

willbeenhancedasextraelectronsbuilduponthechannelsideofthedielectricbarrier.Think,<br />

”negative(-)correlateswithN-type,thusenhancingthechannelwiththerighttypeofcharge<br />

carrier(electrons)andmakingitmoreconductive.”Conversely,iftheinputvoltageisconnected<br />

toanN-channelIGFETtheotherway,sothatnegative(-)connectstothegatewhilepositive<br />

(+)connectstothesource,freeelectronswillbe”robbed”fromthechannelasthegate-channel<br />

capacitorcharges,thusdepletingthechannelofmajoritychargecarriersandmakingitless<br />

conductive.<br />

ForP-channelIGFETs,theinputvoltagepolarityandchanneleffectsfollowthesamerule.<br />

Thatistosay,ittakesjusttheoppositepolarityasanN-channelIGFETtoeitherdepleteor<br />

enhance:


6.2. DEPLETION-TYPEIGFETS 305<br />

controlling<br />

voltage<br />

controlling<br />

voltage<br />

gate<br />

drain<br />

source<br />

P N<br />

R load<br />

Channel expands for greater conductivity<br />

gate<br />

drain<br />

P N<br />

source<br />

R load<br />

Channel narrows for less conductivity<br />

IllustratingtheproperbiasingpolaritieswithstandardIGFETsymbols:


306 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

Enhanced<br />

(more drain<br />

current)<br />

Depleted<br />

(less drain<br />

current)<br />

N-channel P-channel<br />

+<br />

-<br />

Whenthereiszerovoltageappliedbetweengateandsource,theIGFETwillconductcurrentbetweensourceanddrain,butnotasmuchcurrentasitwouldifitwereenhancedby<br />

thepropergatevoltage.Thisplacesthedepletion-type,orsimplyD-type,IGFETinacategory<br />

ofitsowninthetransistorworld.Bipolarjunctiontransistorsarenormally-offdevices:with<br />

nobasecurrent,theyblockanycurrentfromgoingthroughthecollector.Junctionfield-effect<br />

transistorsarenormally-ondevices:withzeroappliedgate-to-sourcevoltage,theyallowmaximumdraincurrent(actually,youcancoaxaJFETintogreaterdraincurrentsbyapplying<br />

averysmallforward-biasvoltagebetweengateandsource,butthisshouldneverbedonein<br />

practiceforriskofdamagingitsfragilePNjunction).D-typeIGFETs,however,arenormally<br />

half-ondevices:withnogate-to-sourcevoltage,theirconductionlevelissomewherebetween<br />

cutoffandfullsaturation.Also,theywilltolerateappliedgate-sourcevoltagesofanypolarity,<br />

thePNjunctionbeingimmunefromdamageduetotheinsulatingbarrierandespeciallythe<br />

directconnectionbetweensourceandsubstratepreventinganyvoltagedifferentialacrossthe<br />

junction.<br />

Ironically,theconductionbehaviorofaD-typeIGFETisstrikinglysimilartothatofanelectrontubeofthetriode/tetrode/pentodevariety.Thesedeviceswerevoltage-controlledcurrent<br />

regulatorsthatlikewiseallowedcurrentthroughthemwithzerocontrollingvoltageapplied.A<br />

controllingvoltageofonepolarity(gridnegativeandcathodepositive)woulddiminishconductivitythroughthetubewhileavoltageoftheotherpolarity(gridpositiveandcathodenegative)<br />

wouldenhanceconductivity.Ifinditcuriousthatoneofthelatertransistordesignsinvented<br />

exhibitsthesamebasicpropertiesoftheveryfirstactive(electronic)device.<br />

AfewSPICEanalyseswilldemonstratethecurrent-regulatingbehaviorofD-typeIGFETs.<br />

First,atestwithzeroinputvoltage(gateshortedtosource)andthepowersupplysweptfrom<br />

0to50volts.Thegraphshowsdraincurrent:<br />

-<br />

+<br />

-<br />

+<br />

+<br />

-


6.2. DEPLETION-TYPEIGFETS 307<br />

Q 1<br />

n-channel igfet characteristic curve<br />

m1 1 0 0 0 mod1<br />

vammeter 2 1 dc 0<br />

v1 2 0<br />

.model mod1 nmos vto=-1<br />

.dc v1 0 50 2<br />

.plot dc i(vammeter)<br />

.end<br />

0<br />

0<br />

V ammeter<br />

1 2<br />

0 V<br />

Asexpectedforanytransistor,thecontrolledcurrentholdssteadyataregulatedvalueover<br />

awiderangeofpowersupplyvoltages.<strong>In</strong>thiscase,thatregulatedpointis10 µA(1.000E-05).<br />

Nowlet’sseewhathappenswhenweapplyanegativevoltagetothegate(withreferenceto<br />

thesource)andsweepthepowersupplyoverthesamerangeof0to50volts:<br />

0<br />

V 1


308 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

3<br />

0.5 V<br />

Q 1<br />

n-channel igfet characteristic curve<br />

m1 1 3 0 0 mod1<br />

vin 0 3 dc 0.5<br />

vammeter 2 1 dc 0<br />

v1 2 0<br />

.model mod1 nmos vto=-1<br />

.dc v1 0 50 2<br />

.plot dc i(vammeter)<br />

.end<br />

0<br />

V ammeter<br />

1 2<br />

Notsurprisingly,thedraincurrentisnowregulatedatalowervalueof2.5 µA(downfrom<br />

10 µAwithzeroinputvoltage).Nowlet’sapplyaninputvoltageoftheotherpolarity,toenhance<br />

theIGFET:<br />

0 V<br />

0<br />

V 1


6.2. DEPLETION-TYPEIGFETS 309<br />

3<br />

0.5 V<br />

Q 1<br />

n-channel igfet characteristic curve<br />

m1 1 3 0 0 mod1<br />

vin 3 0 dc 0.5<br />

vammeter 2 1 dc 0<br />

v1 2 0<br />

.model mod1 nmos vto=-1<br />

.dc v1 0 50 2<br />

.plot dc i(vammeter)<br />

.end<br />

0<br />

V ammeter<br />

1 2<br />

Withthetransistorenhancedbythesmallcontrollingvoltage,thedraincurrentisnow<br />

atanincreasedvalueof22.5 µA(2.250E-05). Itshouldbeapparentfromthesethreesets<br />

ofvoltageandcurrentfiguresthattherelationshipofdraincurrenttogate-sourcevoltageis<br />

nonlinearjustasitwaswiththeJFET.With1/2voltofdepletingvoltage,thedraincurrentis<br />

2.5 µA;with0voltsinputthedraincurrentgoesupto10 µA;andwith1/2voltofenhancing<br />

voltage,thecurrentisat22.5 µA.Toobtainabetterunderstandingofthisnonlinearity,we<br />

0 V<br />

0<br />

V 1


310 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

canuseSPICEtoplotthedraincurrentoverarangeofinputvoltagevalues,sweepingfrom<br />

anegative(depleting)figuretoapositive(enhancing)figure,maintainingthepowersupply<br />

voltageofV1ataconstantvalue:<br />

n-channel igfet<br />

m1 1 3 0 0 mod1<br />

vin 3 0<br />

vammeter 2 1 dc 0<br />

v1 2 0 dc 24<br />

.model mod1 nmos vto=-1<br />

.dc vin -1 1 0.1<br />

.plot dc i(vammeter)<br />

.end<br />

JustasitwaswithJFETs,thisinherentnonlinearityoftheIGFEThasthepotentialto<br />

causedistortioninanamplifiercircuit,astheinputsignalwillnotbereproducedwith100<br />

percentaccuracyattheoutput. Alsonoticethatagate-sourcevoltageofabout1voltinthe<br />

depletingdirectionisabletopinchoffthechannelsothatthereisvirtuallynodraincurrent.<br />

D-typeIGFETs,likeJFETs,haveacertainpinch-offvoltagerating. Thisratingvarieswith<br />

thepreciseuniqueofthetransistor,andmaynotbethesameasinoursimulationhere.<br />

PlottingasetofcharacteristiccurvesfortheIGFET,weseeapatternnotunlikethatofthe<br />

JFET:


6.3. ENHANCEMENT-TYPEIGFETS–PENDING 311<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

I drain<br />

V gate-to-source =<br />

V gate-to-source =<br />

V gate-to-source =<br />

E drain-to-source<br />

+0.5 V<br />

0 V<br />

-0.5 V<br />

6.3 Enhancement-typeIGFETs–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.4 Active-modeoperation–PENDING<br />

• REVIEW:<br />

•<br />

•<br />


312 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

6.5 Thecommon-sourceamplifier–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.6 Thecommon-drainamplifier–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.7 Thecommon-gateamplifier–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.8 Biasingtechniques–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.9 Transistorratingsandpackages–PENDING<br />

• REVIEW:<br />

•<br />

•<br />


6.10. IGFETQUIRKS–PENDING 313<br />

6.10 IGFETquirks–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.11 MESFETs–PENDING<br />

• REVIEW:<br />

•<br />

•<br />

•<br />

6.12 IGBTs<br />

Becauseoftheirinsulatedgates,IGFETsofalltypeshaveextremelyhighcurrentgain:there<br />

canbenosustainedgatecurrentifthereisnocontinuousgatecircuitinwhichelectronsmay<br />

continuallyflow. TheonlycurrentweseethroughthegateterminalofanIGFET,then,is<br />

whatevertransient(briefsurge)mayberequiredtochargethegate-channelcapacitanceand<br />

displacethedepletionregionasthetransistorswitchesfroman”on”statetoan”off”state,or<br />

viceversa.<br />

ThishighcurrentgainwouldatfirstseemtoplaceIGFETtechnologyatadecidedadvantageoverbipolartransistorsforthecontrolofverylargecurrents.<br />

Ifabipolarjunction<br />

transistorisusedtocontrolalargecollectorcurrent,theremustbeasubstantialbasecurrent<br />

sourcedorsunkbysomecontrolcircuitry,inaccordancewiththe βratio.Togiveanexample,<br />

inorderforapowerBJTwithaβof20toconductacollectorcurrentof100amps,theremustbe<br />

atleast5ampsofbasecurrent,asubstantialamountofcurrentinitselfforminiaturediscrete<br />

orintegratedcontrolcircuitrytohandle:<br />

Control<br />

circuitry<br />

5 A<br />

R load<br />

β = 20<br />

100 A<br />

105 A


314 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS<br />

Itwouldbenicefromthestandpointofcontrolcircuitrytohavepowertransistorswithhigh<br />

currentgain,sothatfarlesscurrentisneededforcontrolofloadcurrent. Ofcourse,wecan<br />

useDarlingtonpairtransistorstoincreasethecurrentgain,butthiskindofarrangementstill<br />

requiresfarmorecontrollingcurrentthananequivalentpowerIGFET:<br />

Control<br />

circuitry<br />

Control<br />

circuitry<br />

0.238 A<br />

≈ 0 A<br />

5 A<br />

R load<br />

β = 20<br />

R load<br />

100 A<br />

105 A<br />

100 A<br />

100 A<br />

Unfortunately,though,IGFETshaveproblemsoftheirowncontrollinghighcurrent:they<br />

typicallyexhibitgreaterdrain-to-sourcevoltagedropwhilesaturatedthanthecollector-toemittervoltagedropofasaturatedBJT.Thisgreatervoltagedropequatestohigherpowerdissipationforthesameamountofloadcurrent,limitingtheusefulnessofIGFETsashighpowerdevices.Althoughsomespecializeddesignssuchastheso-calledVMOStransistorhave<br />

beendesignedtominimizethisinherentdisadvantage,thebipolarjunctiontransistorisstill<br />

superiorinitsabilitytoswitchhighcurrents.<br />

AninterestingsolutiontothisdilemmaleveragesthebestfeaturesofIGFETswiththe<br />

bestoffeaturesofBJTs,inonedevicecalledan<strong>In</strong>sulated-GateBipolarTransistor,orIGBT.<br />

AlsoknownasanBipolar-modeMOSFET,aConductivity-ModulatedField-EffectTransistor<br />

(COMFET),orsimplyasan<strong>In</strong>sulated-GateTransistor(IGT),itisequivalenttoaDarlington<br />

pairofIGFETandBJT:


6.12. IGBTS 315<br />

Gate<br />

<strong>In</strong>sulated-Gate Bipolar Transistor (IGBT)<br />

(N-channel)<br />

Schematic symbols Equivalent circuit<br />

Collector<br />

Emitter<br />

Gate<br />

Collector<br />

Emitter<br />

Gate<br />

Collector<br />

Emitter<br />

<strong>In</strong>essence,theIGFETcontrolsthebasecurrentofaBJT,whichhandlesthemainload<br />

currentbetweencollectorandemitter. Thisway,thereisextremelyhighcurrentgain(since<br />

theinsulatedgateoftheIGFETdrawspracticallynocurrentfromthecontrolcircuitry),but<br />

thecollector-to-emittervoltagedropduringfullconductionisaslowasthatofanordinaryBJT.<br />

OnedisadvantageoftheIGBToverastandardBJTisitsslowerturn-offtime. Forfast<br />

switchingandhighcurrent-handlingcapacity,itsdifficulttobeatthebipolarjunctiontransistor.Fasterturn-offtimesfortheIGBTmaybeachievedbycertainchangesindesign,butonly<br />

attheexpenseofahighersaturatedvoltagedropbetweencollectorandemitter.However,the<br />

IGBTprovidesagoodalternativetoIGFETsandBJTsforhigh-powercontrolapplications.<br />

• REVIEW:<br />

•<br />

•<br />


316 CHAPTER6. INSULATED-GATEFIELD-EFFECTTRANSISTORS


Chapter7<br />

THYRISTORS<br />

Contents<br />

7.1 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317<br />

7.2 Gasdischargetubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318<br />

7.3 TheShockleyDiode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322<br />

7.4 TheDIAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329<br />

7.5 TheSilicon-ControlledRectifier(SCR) . . . . . . . . . . . . . . . . . . . . .329<br />

7.6 TheTRIAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341<br />

7.7 Optothyristors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344<br />

7.8 TheUnijunctionTransistor(UJT) . . . . . . . . . . . . . . . . . . . . . . . .344<br />

7.9 TheSilicon-ControlledSwitch(SCS). . . . . . . . . . . . . . . . . . . . . . .350<br />

7.10 Field-effect-controlledthyristors . . . . . . . . . . . . . . . . . . . . . . . . .352<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354<br />

7.1 Hysteresis<br />

Thyristorsareaclassofsemiconductorcomponentsexhibitinghysteresis,thatpropertywhereby<br />

asystemfailstoreturntoitsoriginalstateaftersomecauseofstatechangehasbeenremoved.<br />

Averysimpleexampleofhysteresisisthemechanicalactionofatoggleswitch: whenthe<br />

leverispushed,itflipstooneoftwoextremestates(positions)andwillremainthereeven<br />

afterthesourceofmotionisremoved(afteryouremoveyourhandfromtheswitchlever).To<br />

illustratetheabsenceofhysteresis,considertheactionofa”momentary”pushbuttonswitch,<br />

whichreturnstoitsoriginalstateafterthebuttonisnolongerpressed:whenthestimulusis<br />

removed(yourhand),thesystem(switch)immediatelyandfullyreturnstoitspriorstatewith<br />

no”latching”behavior.<br />

Bipolar,junctionfield-effect,andinsulatedgatefield-effecttransistorsareallnon-hysteric<br />

devices.Thatis,thesedonotinherently”latch”intoastateafterbeingstimulatedbyavoltage<br />

orcurrentsignal. Foranygiveninputsignalatanygiventime,atransistorwillexhibita<br />

317


318 CHAPTER7. THYRISTORS<br />

predictableoutputresponseasdefinedbyitscharacteristiccurve. Thyristors,ontheother<br />

hand,aresemiconductordevicesthattendtostay”on”onceturnedon,andtendtostay”off”<br />

onceturnedoff. Amomentaryeventisabletoflipthesedevicesintoeithertheironoroff<br />

stateswherethesewillremainthatwayontheirown,evenafterthecauseofthestatechange<br />

istakenaway.Assuch,theseareusefulonlyason/offswitchingdevices–muchlikeatoggle<br />

switch–andcannotbeusedasanalogsignalamplifiers.<br />

Thyristorsareconstructedusingthesametechnologyasbipolarjunctiontransistors,and<br />

infactmaybeanalyzedascircuitscomprisedoftransistorpairs.Howthen,canahystericdevice(athyristor)bemadefromnon-hystericdevices(transistors)?Theanswertothisquestion<br />

ispositivefeedback,alsoknownasregenerativefeedback.Asyoushouldrecall,feedbackisthe<br />

conditionwhereapercentageoftheoutputsignalis”fedback”totheinputofanamplifying<br />

device. Negative,ordegenerative,feedbackresultsinadiminishingofvoltagegainwithincreasesinstability,linearity,andbandwidth.Positivefeedback,ontheotherhand,resultsin<br />

akindofinstabilitywheretheamplifier’soutputtendsto”saturate.”<strong>In</strong>thecaseofthyristors,<br />

thissaturatingtendencyequatestothedevice”wanting”tostayononceturnedon,andoff<br />

onceturnedoff.<br />

<strong>In</strong>thischapterwewillexploreseveraldifferentkindsofthyristors,mostofwhichstemfrom<br />

asingle,basictwo-transistorcorecircuit.Beforewedothat,though,itwouldbebeneficialto<br />

studythetechnologicalpredecessortothyristors:gasdischargetubes.<br />

7.2 Gasdischargetubes<br />

Ifyou’veeverwitnessedalightningstorm,you’veseenelectricalhysteresisinaction(and<br />

probablydidn’trealizewhatyouwereseeing). Theactionofstrongwindandrainaccumulatestremendousstaticelectricchargesbetweencloudandearth,andbetweencloudsaswell.<strong>Electric</strong>chargeimbalancesmanifestthemselvesashighvoltages,andwhentheelectricalresistanceofaircannolongerholdthesehighvoltagesatbay,hugesurgesofcurrenttravel<br />

betweenopposingpolesofelectricalchargewhichwecall”lightning.”<br />

Thebuildupofhighvoltagesbywindandrainisafairlycontinuousprocess,therateof<br />

chargeaccumulationincreasingundertheproperatmosphericconditions.However,lightning<br />

boltsareanythingbutcontinuous:theyexistasrelativelybriefsurgesratherthancontinuous<br />

discharges.Whyisthis?Whydon’tweseesoft,glowinglightningarcsinsteadofviolentlybrief<br />

lightningbolts?Theanswerliesinthenonlinear(andhysteric)resistanceofair.<br />

Underordinaryconditions,airhasanextremelyhighamountofresistance.Itissohigh,in<br />

fact,thatwetypicallytreatitsresistanceasinfiniteandelectricalconductionthroughtheair<br />

asnegligible.Thepresenceofwateranddustinairlowersitsresistancesome,butitisstillan<br />

insulatorformostpracticalpurposes.Whenenoughhighvoltageisappliedacrossadistance<br />

ofair,though,itselectricalpropertieschange:electronsbecome”stripped”fromtheirnormal<br />

positionsaroundtheirrespectiveatomsandareliberatedtoconstituteacurrent.<strong>In</strong>thisstate,<br />

airisconsideredtobeionizedandiscalledaplasmaratherthanagas.Thisusageoftheword<br />

”plasma”isnottobeconfusedwiththemedicalterm(meaningthefluidportionofblood),but<br />

isafourthstateofmatter,theotherthreebeingsolid,liquid,andvapor(gas). Plasmaisa<br />

relativelygoodconductorofelectricity,itsspecificresistancebeingmuchlowerthanthatofthe<br />

samesubstanceinitsgaseousstate.<br />

Asanelectriccurrentmovesthroughtheplasma,thereisenergydissipatedintheplasma


7.2. GASDISCHARGETUBES 319<br />

intheformofheat,justascurrentthroughasolidresistordissipatesenergyintheformofheat.<br />

<strong>In</strong>thecaseoflightning,thetemperaturesinvolvedareextremelyhigh.Hightemperaturesare<br />

alsosufficienttoconvertgaseousairintoaplasmaormaintainplasmainthatstatewithout<br />

thepresenceofhighvoltage. Asthevoltagebetweencloudandearth,orbetweencloudand<br />

cloud,decreasesasthechargeimbalanceisneutralizedbythecurrentofthelightningbolt,the<br />

heatdissipatedbytheboltmaintainstheairpathinaplasmastate,keepingitsresistancelow.<br />

Thelightningboltremainsaplasmauntilthevoltagedecreasestotoolowaleveltosustain<br />

enoughcurrenttodissipateenoughheat.Finally,theairreturnstoagaseousstateandstops<br />

conductingcurrent,thusallowingvoltagetobuilduponcemore.<br />

Notehowthroughoutthiscycle,theairexhibitshysteresis.Whennotconductingelectricity,<br />

ittendstoremainaninsulatoruntilvoltagebuildsuppastacriticalthresholdpoint. Then,<br />

onceitchangesstateandbecomesaplasma,ittendstoremainaconductoruntilvoltagefalls<br />

belowalowercriticalthresholdpoint.Once”turnedon”ittendstostay”on,”andonce”turned<br />

off”ittendstostay”off.”Thishysteresis,combinedwithasteadybuildupofvoltageduetothe<br />

electrostaticeffectsofwindandrain,explainstheactionoflightningasbriefbursts.<br />

<strong>In</strong>electronicterms,whatwehavehereintheactionoflightningisasimplerelaxationoscillator.Oscillatorsareelectroniccircuitsthatproduceanoscillating(AC)voltagefromasteady<br />

supplyofDCpower. Arelaxationoscillatorisonethatworksontheprincipleofacharging<br />

capacitorthatissuddenlydischargedeverytimeitsvoltagereachesacriticalthresholdvalue.<br />

Oneofthesimplestrelaxationoscillatorsinexistenceiscomprisedofthreecomponents(not<br />

countingtheDCpowersupply):aresistor,capacitor,andneonlampinFigure7.1.<br />

R<br />

C Neon lamp<br />

Figure7.1:Simplerelaxationoscillator<br />

Neonlampsarenothingmorethantwometalelectrodesinsideasealedglassbulb,separatedbytheneongasinside.<br />

Atroomtemperaturesandwithnoappliedvoltage,thelamp<br />

hasnearlyinfiniteresistance.However,onceacertainthresholdvoltageisexceeded(thisvoltagedependsonthegaspressureandgeometryofthelamp),theneongaswillbecomeionized<br />

(turnedintoaplasma)anditsresistancedramaticallyreduced. <strong>In</strong>effect,theneonlampexhibitsthesamecharacteristicsasairinalightningstorm,completewiththeemissionoflight<br />

asaresultofthedischarge,albeitonamuchsmallerscale.<br />

Thecapacitorintherelaxationoscillatorcircuitshownabovechargesataninverseexponentialratedeterminedbythesizeoftheresistor.<br />

Whenitsvoltagereachesthethreshold<br />

voltageofthelamp,thelampsuddenly”turnson”andquicklydischargesthecapacitortoa<br />

lowvoltagevalue.Oncedischarged,thelamp”turnsoff”andallowsthecapacitortobuildupa


320 CHAPTER7. THYRISTORS<br />

chargeoncemore.Theresultisaseriesofbriefflashesoflightfromthelamp,therateofwhich<br />

isdictatedbybatteryvoltage,resistorresistance,capacitorcapacitance,andlampthreshold<br />

voltage.<br />

Whilegas-dischargelampsaremorecommonlyusedassourcesofillumination,theirhystericpropertieswereleveragedinslightlymoresophisticatedvariantsknownasthyratron<br />

tubes.Essentiallyagas-filledtriodetube(atriodebeingathree-elementvacuumelectrontube<br />

performingmuchasimilarfunctiontotheN-channel,D-typeIGFET),thethyratrontubecould<br />

beturnedonwithasmallcontrolvoltageappliedbetweengridandcathode,andturnedoffby<br />

reducingtheplate-to-cathodevoltage.<br />

control<br />

voltage<br />

+<br />

-<br />

R load<br />

Thyratron<br />

Tube<br />

Figure7.2:Simplethyratroncontrolcircuit<br />

high voltage<br />

AC source<br />

<strong>In</strong>essence,thyratrontubeswerecontrolledversionsofneonlampsbuiltspecificallyfor<br />

switchingcurrenttoaload.Thedotinsidethecircleoftheschematicsymbolindicatesagas<br />

fill,asopposedtothehardvacuumnormallyseeninotherelectrontubedesigns.<strong>In</strong>thecircuit<br />

shownaboveinFigure7.2.thethyratrontubeallowscurrentthroughtheloadinonedirection<br />

(notethepolarityacrosstheloadresistor)whentriggeredbythesmallDCcontrolvoltage<br />

connectedbetweengridandcathode.Notethattheload’spowersourceisAC,whichprovidesa<br />

clueabouthowthethyratronturnsoffafteritsbeentriggeredon:sinceACvoltageperiodically<br />

passesthroughaconditionof0voltsbetweenhalf-cycles,thecurrentthroughanAC-powered<br />

loadmustalsoperiodicallyhalt. Thisbriefpauseofcurrentbetweenhalf-cyclesgivesthe<br />

tube’sgastimetocool,lettingitreturntoitsnormal”off”state.Conductionmayresumeonly<br />

ifenoughvoltageisappliedbytheACpowersource(someothertimeinthewave’scycle)and<br />

iftheDCcontrolvoltageallowsit.<br />

AnoscilloscopedisplayofloadvoltageinsuchacircuitwouldlooksomethinglikeFigure7.3.<br />

AstheACsupplyvoltageclimbsfromzerovoltstoitsfirstpeak,theloadvoltageremains<br />

atzero(noloadcurrent)untilthethresholdvoltageisreached.Atthatpoint,thetubeswitches<br />

”on”andbeginstoconduct,theloadvoltagenowfollowingtheACvoltagethroughtherestof<br />

thehalfcycle.Loadvoltageexists(andthusloadcurrent)evenwhentheACvoltagewaveform<br />

hasdroppedbelowthethresholdvalueofthetube.Thisishysteresisatwork:thetubestays<br />

initsconductivemodepastthepointwhereitfirstturnedon,continuingtoconductuntil<br />

therethesupplyvoltagedropsofftoalmostzerovolts. Becausethyratrontubesareone-way<br />

(diode)devices,novoltagedevelopsacrosstheloadthroughthenegativehalf-cycleofAC.<strong>In</strong>


7.2. GASDISCHARGETUBES 321<br />

Load voltage<br />

AC supply voltage<br />

Figure7.3:Thyratronwaveforms<br />

Threshold voltage<br />

practicalthyratroncircuits,multipletubesarrangedinsomeformoffull-waverectifiercircuit<br />

tofacilitatefull-waveDCpowertotheload.<br />

Thethyratrontubehasbeenappliedtoarelaxationoscillatorcircuit. [1]Thefrequency<br />

iscontrolledbyasmallDCvoltagebetweengridandcathode. (SeeFigure7.4)ThisvoltagecontrolledoscillatorisknownasaVCO.Relaxationoscillatorsproduceaverynon-sinusoidal<br />

output,andtheyexistmostlyasdemonstrationcircuits(asisthecasehere)orinapplications<br />

wheretheharmonicrichwaveformisdesirable.[2]<br />

R<br />

C<br />

Controlling<br />

voltage<br />

Figure7.4:Voltagecontrolledthyratronrelaxationoscillator<br />

Ispeakofthyratrontubesinthepasttenseforgoodreason:modernsemiconductorcomponentshaveobsoletedthyratrontubetechnologyforallbutafewveryspecialapplications.<br />

It<br />

isnocoincidencethatthewordthyristorbearssomuchsimilaritytothewordthyratron,for<br />

thisclassofsemiconductorcomponentsdoesmuchthesamething:usehystereticallyswitch<br />

currentonandoff.Itisthesemoderndevicesthatwenowturnourattentionto.<br />

• REVIEW:<br />

• <strong>Electric</strong>alhysteresis,thetendencyforacomponenttoremain”on”(conducting)afterit<br />

beginstoconductandtoremain”off”(nonconducting)afteritceasestoconduct,helpsto<br />

explainwhylightningboltsexistasmomentarysurgesofcurrentratherthancontinuous<br />

dischargesthroughtheair.<br />

• Simplegas-dischargetubessuchasneonlampsexhibitelectricalhysteresis.


322 CHAPTER7. THYRISTORS<br />

• Moreadvancedgas-dischargetubeshavebeenmadewithcontrolelementssothattheir<br />

”turn-on”voltagecouldbeadjustedbyanexternalsignal. Themostcommonofthese<br />

tubeswascalledthethyratron.<br />

• Simpleoscillatorcircuitscalledrelaxationoscillatorsmaybecreatedwithnothingmore<br />

thanaresistor-capacitorchargingnetworkandahystereticdeviceconnectedacrossthe<br />

capacitor.<br />

7.3 TheShockleyDiode<br />

Ourexplorationofthyristorsbeginswithadevicecalledthefour-layerdiode,alsoknownas<br />

aPNPNdiode,oraShockleydiodeafteritsinventor,WilliamShockley. Thisisnottobe<br />

confusedwithaSchottkydiode,thattwo-layermetal-semiconductordeviceknownforitshigh<br />

switchingspeed.AcrudeillustrationoftheShockleydiode,oftenseenintextbooks,isafourlayersandwichofP-N-P-Nsemiconductormaterial,Figure7.5.<br />

P<br />

N<br />

P<br />

N<br />

Anode<br />

Cathode<br />

Figure7.5:Shockleyor4-layerdiode<br />

Unfortunately,thissimpleillustrationdoesnothingtoenlightenthevieweronhowitworks<br />

orwhy.Consideranalternativerenderingofthedevice’sconstructioninFigure7.6.<br />

P<br />

N<br />

P<br />

Anode<br />

N<br />

P<br />

N<br />

Cathode<br />

Figure7.6:TransistorequivalentofShockleydiode


7.3. THESHOCKLEYDIODE 323<br />

Shownlikethis,itappearstobeasetofinterconnectedbipolartransistors,onePNPand<br />

theotherNPN.Drawnusingstandardschematicsymbols,andrespectingthelayerdoping<br />

concentrationsnotshowninthelastimage,theShockleydiodelookslikethis(Figure7.7)<br />

Anode<br />

P<br />

N<br />

P<br />

N<br />

P<br />

N<br />

Anode<br />

Cathode Cathode<br />

Physical diagram Equivalent schematic Schematic symbol<br />

Figure7.7:Shockleydiode:physicaldiagram,equivalentschematicdiagram,andschematic<br />

symbol.<br />

Let’sconnectoneofthesedevicestoasourceofvariablevoltageandseewhathappens:<br />

(Figure7.8)<br />

Figure7.8:PoweredShockleydiodeequivalentcircuit.<br />

Withnovoltageapplied,ofcoursetherewillbenocurrent.Asvoltageisinitiallyincreased,<br />

therewillstillbenocurrentbecauseneithertransistorisabletoturnon:bothwillbeincutoff<br />

mode.Tounderstandwhythisis,considerwhatittakestoturnabipolarjunctiontransistor<br />

on: currentthroughthebase-emitterjunction. Asyoucanseeinthediagram,basecurrent<br />

throughthelowertransistoriscontrolledbytheuppertransistor,andthebasecurrentthrough<br />

theuppertransistoriscontrolledbythelowertransistor. <strong>In</strong>otherwords,neithertransistor<br />

canturnonuntiltheothertransistorturnson. Whatwehavehere,invernacularterms,is<br />

knownasaCatch-22.<br />

SohowcanaShockleydiodeeverconductcurrent,ifitsconstituenttransistorsstubbornly<br />

maintainthemselvesinastateofcutoff? Theanswerliesinthebehaviorofrealtransistors<br />

asopposedtoidealtransistors.Anidealbipolartransistorwillneverconductcollectorcurrent<br />

ifnobasecurrentflows,nomatterhowmuchorlittlevoltageweapplybetweencollectorand


324 CHAPTER7. THYRISTORS<br />

emitter.Realtransistors,ontheotherhand,havedefinitelimitstohowmuchcollector-emitter<br />

voltageeachcanwithstandbeforeonebreaksdownandconduct. Iftworealtransistorsare<br />

connectedinthisfashiontoformaShockleydiode,eachonewillconductifsufficientvoltageis<br />

appliedbythebatterybetweenanodeandcathodetocauseoneofthemtobreakdown.Once<br />

onetransistorbreaksdownandbeginstoconduct,itwillallowbasecurrentthroughtheother<br />

transistor,causingittoturnoninanormalfashion,whichthenallowsbasecurrentthrough<br />

thefirsttransistor.Theendresultisthatbothtransistorswillbesaturated,nowkeepingeach<br />

otherturnedoninsteadofoff.<br />

So,wecanforceaShockleydiodetoturnonbyapplyingsufficientvoltagebetweenanode<br />

andcathode.Aswehaveseen,thiswillinevitablycauseoneofthetransistorstoturnon,which<br />

thenturnstheothertransistoron,ultimately”latching”bothtransistorsonwhereeachwill<br />

tendtoremain.Buthowdowenowgetthetwotransistorstoturnoffagain?Eveniftheapplied<br />

voltageisreducedtoapointwellbelowwhatittooktogettheShockleydiodeconducting,it<br />

willremainconductingbecausebothtransistorsnowhavebasecurrenttomaintainregular,<br />

controlledconduction.Theanswertothisistoreducetheappliedvoltagetoamuchlowerpoint<br />

wheretoolittlecurrentflowstomaintaintransistorbias,atwhichpointoneofthetransistors<br />

willcutoff,whichthenhaltsbasecurrentthroughtheothertransistor,sealingbothtransistors<br />

inthe”off”stateaseachonewasbeforeanyvoltagewasappliedatall.<br />

IfwegraphthissequenceofeventsandplottheresultsonanI/Vgraph,thehysteresis<br />

isevident. First,wewillobservethecircuitastheDCvoltagesource(battery)issettozero<br />

voltage:(Figure7.9)<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.9:Zeroappliedvoltage;zerocurrent<br />

Next,wewillsteadilyincreasetheDCvoltage.Currentthroughthecircuitisatornearly<br />

atzero,asthebreakdownlimithasnotbeenreachedforeithertransistor:(Figure7.10)<br />

Whenthevoltagebreakdownlimitofonetransistorisreached,itwillbegintoconduct<br />

collectorcurrenteventhoughnobasecurrenthasgonethroughityet. Normally,thissort<br />

oftreatmentwoulddestroyabipolarjunctiontransistor,butthePNPjunctionscomprisinga<br />

Shockleydiodeareengineeredtotakethiskindofabuse,similartothewayaZenerdiodeis<br />

builttohandlereversebreakdownwithoutsustainingdamage.ForthesakeofillustrationI’ll<br />

assumethelowertransistorbreaksdownfirst,sendingcurrentthroughthebaseoftheupper<br />

transistor:(Figure7.11)<br />

Astheuppertransistorreceivesbasecurrent,itturnsonasexpected. Thisactionallows<br />

thelowertransistortoconductnormally,thetwotransistors”sealing”themselvesinthe”on”


7.3. THESHOCKLEYDIODE 325<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.10:Someappliedvoltage;stillnocurrent<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.11:Morevoltageapplied;lowertransistorbreaksdown


326 CHAPTER7. THYRISTORS<br />

state.Fullcurrentisquicklyseeninthecircuit:(Figure7.12)<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.12:Transistorsarenowfullyconducting.<br />

Thepositivefeedbackmentionedearlierinthischapterisclearlyevidenthere.Whenone<br />

transistorbreaksdown,itallowscurrentthroughthedevicestructure. Thiscurrentmaybe<br />

viewedasthe”output”signalofthedevice. Onceanoutputcurrentisestablished,itworks<br />

toholdbothtransistorsinsaturation,thusensuringthecontinuationofasubstantialoutput<br />

current.<strong>In</strong>otherwords,anoutputcurrent”feedsback”positivelytotheinput(transistorbase<br />

current)tokeepbothtransistorsinthe”on”state,thusreinforcing(orregenerating)itself.<br />

Withbothtransistorsmaintainedinastateofsaturationwiththepresenceofamplebase<br />

current,eachwillcontinuetoconducteveniftheappliedvoltageisgreatlyreducedfromthe<br />

breakdownlevel.Theeffectofpositivefeedbackistokeepbothtransistorsinastateofsaturationdespitethelossofinputstimulus(theoriginal,highvoltageneededtobreakdownone<br />

transistorandcauseabasecurrentthroughtheothertransistor):(Figure7.13)<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.13:Currentmaintainedevenwhenvoltageisreduced<br />

IftheDCvoltagesourceisturneddowntoofar,though,thecircuitwilleventuallyreacha<br />

pointwherethereisn’tenoughcurrenttosustainbothtransistorsinsaturation.Asonetransistorpasseslessandlesscollectorcurrent,itreducesthebasecurrentfortheothertransistor,<br />

thusreducingbasecurrentforthefirsttransistor. Theviciouscyclecontinuesrapidlyuntil<br />

bothtransistorsfallintocutoff:(Figure7.14)<br />

Here,positivefeedbackisagainatwork:thefactthatthecause/effectcyclebetweenboth


7.3. THESHOCKLEYDIODE 327<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.14:Ifvoltagedropstoolow,bothtransistorsshutoff.<br />

transistorsis”vicious”(adecreaseincurrentthroughoneworkstodecreasecurrentthrough<br />

theother,furtherdecreasingcurrentthroughthefirsttransistor)indicatesapositiverelationshipbetweenoutput(controlledcurrent)andinput(controllingcurrentthroughthetransistors’<br />

bases).<br />

Theresultingcurveonthegraphisclassicallyhysteretic:astheinputsignal(voltage)is<br />

increasedanddecreased,theoutput(current)doesnotfollowthesamepathgoingdownasit<br />

didgoingup:(Figure7.15)<br />

Circuit<br />

current<br />

Applied voltage<br />

Figure7.15:Hystereticcurve<br />

Putinsimpleterms,theShockleydiodetendstostayononceitsturnedon,andstayoff<br />

onceitsturnedoff. No”in-between”or”active”modeinitsoperation:itisapurelyonoroff<br />

device,asareallthyristors.<br />

AfewspecialtermsapplytoShockleydiodesandallotherthyristordevicesbuiltuponthe<br />

Shockleydiodefoundation.Firstisthetermusedtodescribeits”on”state:latched.Theword<br />

”latch”isreminiscentofadoorlockmechanism,whichtendstokeepthedoorclosedonceithas<br />

beenpushedshut.Thetermfiringreferstotheinitiationofalatchedstate.TogetaShockley<br />

diodetolatch,theappliedvoltagemustbeincreaseduntilbreakoverisattained.Thoughthis<br />

actionisbestdescribedastransistorbreakdown,thetermbreakoverisusedinsteadbecause<br />

theresultisapairoftransistorsinmutualsaturationratherthandestructionofthetransistor.<br />

AlatchedShockleydiodeisre-setbackintoitsnonconductingstatebyreducingcurrent<br />

throughituntillow-currentdropoutoccurs.<br />

NotethatShockleydiodesmaybefiredinawayotherthanbreakover: excessivevoltage


328 CHAPTER7. THYRISTORS<br />

rise,ordv/dt. Iftheappliedvoltageacrossthediodeincreasesatahighrateofchange,it<br />

maytrigger. Thisisabletocauselatching(turningon)ofthediodeduetoinherentjunction<br />

capacitanceswithinthetransistors.Capacitors,asyoumayrecall,opposechangesinvoltage<br />

bydrawingorsupplyingcurrent. IftheappliedvoltageacrossaShockleydioderisesattoo<br />

fastarate,thosetinycapacitanceswilldrawenoughcurrentduringthattimetoactivatethe<br />

transistorpair,turningthembothon.Usually,thisformoflatchingisundesirable,andcanbe<br />

minimizedbyfilteringhigh-frequency(fastvoltagerises)fromthediodewithseriesinductors<br />

andparallelresistor-capacitornetworkscalledsnubbers:(Figure7.16)<br />

Shockley<br />

diode<br />

Series inductor<br />

RC "snubber"<br />

Figure7.16: Boththeseriesinductorandparallelresistor-capacitor“snubber”circuithelp<br />

minimizetheShockleydiode’sexposuretoexcessivelyrisingvoltage.<br />

ThevoltageriselimitofaShockleydiodeisreferredtoasthecriticalrateofvoltagerise.<br />

Manufacturersusuallyprovidethisspecificationforthedevicestheysell.<br />

• REVIEW:<br />

• Shockleydiodesarefour-layerPNPNsemiconductordevices. Thesebehaveasapairof<br />

interconnectedPNPandNPNtransistors.<br />

• Likeallthyristors,Shockleydiodestendtostayononceturnedon(latched),andstayoff<br />

onceturnedoff.<br />

• TolatchaShockleydiodeexceedtheanode-to-cathodebreakovervoltage,orexceedthe<br />

anode-to-cathodecriticalrateofvoltagerise.<br />

• TocauseaShockleydiodetostopconducting,reducethecurrentgoingthroughittoa<br />

levelbelowitslow-currentdropoutthreshold.


7.4. THEDIAC 329<br />

7.4 TheDIAC<br />

Likealldiodes,Shockleydiodesareunidirectionaldevices;thatis,theseonlyconductcurrent<br />

inonedirection.Ifbidirectional(AC)operationisdesired,twoShockleydiodesmaybejoined<br />

inparallelfacingdifferentdirectionstoformanewkindofthyristor,theDIAC:(Figure7.17)<br />

DIAC equivalent circuit DIAC schematic symbol<br />

Figure7.17:TheDIAC<br />

ADIACoperatedwithaDCvoltageacrossitbehavesexactlythesameasaShockleydiode.<br />

WithAC,however,thebehaviorisdifferentfromwhatonemightexpect.Becausealternating<br />

currentrepeatedlyreversesdirection,DIACswillnotstaylatchedlongerthanone-halfcycle.If<br />

aDIACbecomeslatched,itwillcontinuetoconductcurrentonlyaslongasvoltageisavailable<br />

topushenoughcurrentinthatdirection. WhentheACpolarityreverses,asitmusttwice<br />

percycle,theDIACwilldropoutduetoinsufficientcurrent,necessitatinganotherbreakover<br />

beforeitconductsagain.TheresultisthecurrentwaveforminFigure7.18.<br />

DIAC current<br />

AC supply voltage<br />

Figure7.18:DIACwaveforms<br />

Breakover voltage<br />

Breakover voltage<br />

DIACsarealmostneverusedalone,butinconjunctionwithotherthyristordevices.<br />

7.5 TheSilicon-ControlledRectifier(SCR)<br />

Shockleydiodesarecuriousdevices,butratherlimitedinapplication. Theirusefulnessmay<br />

beexpanded,however,byequippingthemwithanothermeansoflatching. <strong>In</strong>doingso,each<br />

becomestrueamplifyingdevices(ifonlyinanon/offmode),andwerefertotheseassiliconcontrolledrectifiers,orSCRs.


330 CHAPTER7. THYRISTORS<br />

TheprogressionfromShockleydiodetoSCRisachievedwithonesmalladdition,actually<br />

nothingmorethanathirdwireconnectiontotheexistingPNPNstructure:(Figure7.19)<br />

Anode<br />

Gate<br />

P<br />

N<br />

P<br />

N<br />

P<br />

N<br />

Anode<br />

Gate<br />

Cathode Cathode<br />

Gate<br />

Anode<br />

Cathode<br />

Physical diagram Equivalent schematic Schematic symbol<br />

Figure7.19:TheSilicon-ControlledRectifier(SCR)<br />

IfanSCR’sgateisleftfloating(disconnected),itbehavesexactlyasaShockleydiode. It<br />

maybelatchedbybreakovervoltageorbyexceedingthecriticalrateofvoltagerisebetween<br />

anodeandcathode,justaswiththeShockleydiode. Dropoutisaccomplishedbyreducing<br />

currentuntiloneorbothinternaltransistorsfallintocutoffmode,alsoliketheShockleydiode.<br />

However,becausethegateterminalconnectsdirectlytothebaseofthelowertransistor,it<br />

maybeusedasanalternativemeanstolatchtheSCR.Byapplyingasmallvoltagebetween<br />

gateandcathode,thelowertransistorwillbeforcedonbytheresultingbasecurrent,which<br />

willcausetheuppertransistortoconduct,whichthensuppliesthelowertransistor’sbase<br />

withcurrentsothatitnolongerneedstobeactivatedbyagatevoltage. Thenecessarygate<br />

currenttoinitiatelatch-up,ofcourse,willbemuchlowerthanthecurrentthroughtheSCR<br />

fromcathodetoanode,sotheSCRdoesachieveameasureofamplification.<br />

ThismethodofsecuringSCRconductioniscalledtriggering,anditisbyfarthemostcommonwaythatSCRsarelatchedinactualpractice.<br />

<strong>In</strong>fact,SCRsareusuallychosensothat<br />

theirbreakovervoltageisfarbeyondthegreatestvoltageexpectedtobeexperiencedfromthe<br />

powersource,sothatitcanbeturnedononlybyanintentionalvoltagepulseappliedtothe<br />

gate.<br />

ItshouldbementionedthatSCRsmaysometimesbeturnedoffbydirectlyshortingtheir<br />

gateandcathodeterminalstogether,orby”reverse-triggering”thegatewithanegativevoltage<br />

(inreferencetothecathode),sothatthelowertransistorisforcedintocutoff. Isaythisis<br />

”sometimes”possiblebecauseitinvolvesshuntingalloftheuppertransistor’scollectorcurrent<br />

pastthelowertransistor’sbase. Thiscurrentmaybesubstantial,makingtriggeredshut-off<br />

ofanSCRdifficultatbest.AvariationoftheSCR,calledaGate-Turn-Offthyristor,orGTO,<br />

makesthistaskeasier.ButevenwithaGTO,thegatecurrentrequiredtoturnitoffmaybe<br />

asmuchas20%oftheanode(load)current!TheschematicsymbolforaGTOisshowninthe<br />

followingillustration:(Figure7.20)<br />

SCRsandGTOssharethesameequivalentschematics(twotransistorsconnectedina<br />

positive-feedbackfashion),theonlydifferencesbeingdetailsofconstructiondesignedtogrant<br />

theNPNtransistoragreater βthanthePNP.Thisallowsasmallergatecurrent(forwardor<br />

reverse)toexertagreaterdegreeofcontroloverconductionfromcathodetoanode,withthe<br />

PNPtransistor’slatchedstatebeingmoredependentupontheNPN’sthanviceversa. The


7.5. THESILICON-CONTROLLEDRECTIFIER(SCR) 331<br />

Anode<br />

Gate<br />

Cathode<br />

Figure7.20:TheGateTurn-Offthyristor(GTO)<br />

Gate-Turn-OffthyristorisalsoknownbythenameofGate-ControlledSwitch,orGCS.<br />

ArudimentarytestofSCRfunction,oratleastterminalidentification,maybeperformed<br />

withanohmmeter.BecausetheinternalconnectionbetweengateandcathodeisasinglePN<br />

junction,ametershouldindicatecontinuitybetweentheseterminalswiththeredtestleadon<br />

thegateandtheblacktestleadonthecathodelikethis:(Figure7.21)<br />

V A<br />

V<br />

A<br />

OFF<br />

COM<br />

A<br />

gate<br />

cathode<br />

Figure7.21:RudimentarytestofSCR<br />

AllothercontinuitymeasurementsperformedonanSCRwillshow”open”(”OL”onsome<br />

digitalmultimeterdisplays). Itmustbeunderstoodthatthistestisverycrudeanddoesnot<br />

constituteacomprehensiveassessmentoftheSCR.ItispossibleforanSCRtogivegood<br />

ohmmeterindicationsandstillbedefective. Ultimately,theonlywaytotestanSCRisto<br />

subjectittoaloadcurrent.<br />

Ifyouareusingamultimeterwitha”diodecheck”function,thegate-to-cathodejunction<br />

voltageindicationyougetmayormaynotcorrespondtowhat’sexpectedofasiliconPNjunction(approximately0.7volts).<br />

<strong>In</strong>somecases,youwillreadamuchlowerjunctionvoltage:<br />

merehundredthsofavolt.Thisisduetoaninternalresistorconnectedbetweenthegateand<br />

cathodeincorporatedwithinsomeSCRs.ThisresistorisaddedtomaketheSCRlesssusceptibletofalsetriggeringbyspuriousvoltagespikes,fromcircuit”noise”orfromstaticelectric<br />

discharge. <strong>In</strong>otherwords,havingaresistorconnectedacrossthegate-cathodejunctionrequiresthatastrongtriggeringsignal(substantialcurrent)beappliedtolatchtheSCR.This


332 CHAPTER7. THYRISTORS<br />

featureisoftenfoundinlargerSCRs,notonsmallSCRs.BearinmindthatanSCRwithan<br />

internalresistorconnectedbetweengateandcathodewillindicatecontinuityinbothdirections<br />

betweenthosetwoterminals:(Figure7.22)<br />

Gate<br />

Gate-to-Cathode<br />

resistor<br />

Anode<br />

Cathode<br />

Figure7.22:LargerSCRshavegatetocathoderesistor.<br />

”Normal”SCRs,lackingthisinternalresistor,aresometimesreferredtoassensitivegate<br />

SCRsduetotheirabilitytobetriggeredbytheslightestpositivegatesignal.<br />

ThetestcircuitforanSCRisbothpracticalasadiagnostictoolforcheckingsuspectedSCRs<br />

andalsoanexcellentaidtounderstandingbasicSCRoperation.ADCvoltagesourceisused<br />

forpoweringthecircuit,andtwopushbuttonswitchesareusedtolatchandunlatchtheSCR,<br />

respectively:(Figure7.23)<br />

off<br />

on<br />

SCR under<br />

test<br />

Figure7.23:SCRtestingcircuit<br />

Actuatingthenormally-open”on”pushbuttonswitchconnectsthegatetotheanode,allowingcurrentfromthenegativeterminalofthebattery,throughthecathode-gatePNjunction,<br />

throughtheswitch,throughtheloadresistor,andbacktothebattery.Thisgatecurrentshould<br />

forcetheSCRtolatchon,allowingcurrenttogodirectlyfromcathodetoanodewithoutfurther<br />

triggeringthroughthegate.Whenthe”on”pushbuttonisreleased,theloadshouldremainenergized.<br />

Pushingthenormally-closed”off”pushbuttonswitchbreaksthecircuit,forcingcurrent<br />

throughtheSCRtohalt,thusforcingittoturnoff(low-currentdropout).


7.5. THESILICON-CONTROLLEDRECTIFIER(SCR) 333<br />

IftheSCRfailstolatch,theproblemmaybewiththeloadandnottheSCR.Acertain<br />

minimumamountofloadcurrentisrequiredtoholdtheSCRlatchedinthe”on”state. This<br />

minimumcurrentleveliscalledtheholdingcurrent.Aloadwithtoogreataresistancevalue<br />

maynotdrawenoughcurrenttokeepanSCRlatchedwhengatecurrentceases,thusgiving<br />

thefalseimpressionofabad(unlatchable)SCRinthetestcircuit.Holdingcurrentvaluesfor<br />

differentSCRsshouldbeavailablefromthemanufacturers. Typicalholdingcurrentvalues<br />

rangefrom1milliampto50milliampsormoreforlargerunits.<br />

Forthetesttobefullycomprehensive,morethanthetriggeringactionneedstobetested.<br />

TheforwardbreakovervoltagelimitoftheSCRcouldbetestedbyincreasingtheDCvoltage<br />

supply(withnopushbuttonsactuated)untiltheSCRlatchesallonitsown. Bewarethat<br />

abreakovertestmayrequireveryhighvoltage: manypowerSCRshavebreakovervoltage<br />

ratingsof600voltsormore!Also,ifapulsevoltagegeneratorisavailable,thecriticalrateof<br />

voltagerisefortheSCRcouldbetestedinthesameway:subjectittopulsingsupplyvoltages<br />

ofdifferentV/timerateswithnopushbuttonswitchesactuatedandseewhenitlatches.<br />

<strong>In</strong>thissimpleform,theSCRtestcircuitcouldsufficeasastart/stopcontrolcircuitforaDC<br />

motor,lamp,orotherpracticalload:(Figure7.24)<br />

Motor<br />

off<br />

on<br />

SCR under<br />

test<br />

Figure7.24:DCmotorstart/stopcontrolcircuit<br />

AnotherpracticalusefortheSCRinaDCcircuitisasacrowbardeviceforovervoltage<br />

protection. A”crowbar”circuitconsistsofanSCRplacedinparallelwiththeoutputofa<br />

DCpowersupply,forplacingadirectshort-circuitontheoutputofthatsupplytoprevent<br />

excessivevoltagefromreachingtheload.DamagetotheSCRandpowersupplyisprevented<br />

bythejudiciousplacementofafuseorsubstantialseriesresistanceaheadoftheSCRtolimit<br />

short-circuitcurrent:(Figure7.25)<br />

SomedeviceorcircuitsensingtheoutputvoltagewillbeconnectedtothegateoftheSCR,<br />

sothatwhenanovervoltageconditionoccurs,voltagewillbeappliedbetweenthegateand<br />

cathode,triggeringtheSCRandforcingthefusetoblow.Theeffectwillbeapproximatelythe<br />

sameasdroppingasolidsteelcrowbardirectlyacrosstheoutputterminalsofthepowersupply,<br />

hencethenameofthecircuit.<br />

MostapplicationsoftheSCRareforACpowercontrol,despitethefactthatSCRsareinherentlyDC(unidirectional)devices.Ifbidirectionalcircuitcurrentisrequired,multipleSCRs<br />

maybeused,withoneormorefacingeachdirectiontohandlecurrentthroughbothhalf-cycles<br />

oftheACwave. TheprimaryreasonSCRsareusedatallforACpowercontrolapplications<br />

istheuniqueresponseofathyristortoanalternatingcurrent.Aswesaw,thethyratrontube<br />

(theelectrontubeversionoftheSCR)andtheDIAC,ahystereticdevicetriggeredonduringa


334 CHAPTER7. THYRISTORS<br />

AC<br />

power<br />

source<br />

Transformer<br />

Rectifier<br />

Filter<br />

Fuse<br />

Load<br />

Crowbar<br />

(triggering circuit<br />

omitted for simplicity)<br />

Figure7.25:CrowbarcircuitusedinDCpowersupply<br />

portionofanAChalf-cyclewilllatchandremainonthroughouttheremainderofthehalf-cycle<br />

untiltheACcurrentdecreasestozero,asitmusttobeginthenexthalf-cycle.Justpriortothe<br />

zero-crossoverpointofthecurrentwaveform,thethyristorwillturnoffduetoinsufficientcurrent(thisbehaviorisalsoknownasnaturalcommutation)andmustbefiredagainduringthe<br />

nextcycle.Theresultisacircuitcurrentequivalenttoa”choppedup”sinewave.Forreview,<br />

hereisthegraphofaDIAC’sresponsetoanACvoltagewhosepeakexceedsthebreakover<br />

voltageoftheDIAC:(Figure7.26)<br />

DIAC current<br />

AC supply voltage<br />

Figure7.26:DIACbidirectionalresponse<br />

Breakover voltage<br />

Breakover voltage<br />

WiththeDIAC,thatbreakovervoltagelimitwasafixedquantity.WiththeSCR,wehave<br />

controloverexactlywhenthedevicebecomeslatchedbytriggeringthegateatanypointin<br />

timealongthewaveform. ByconnectingasuitablecontrolcircuittothegateofanSCR,we<br />

can”chop”thesinewaveatanypointtoallowfortime-proportionedpowercontroltoaload.<br />

TakethecircuitinFigure7.27asanexample. Here,anSCRispositionedinacircuitto<br />

controlpowertoaloadfromanACsource.<br />

Beingaunidirectional(one-way)device,atmostwecanonlydeliverhalf-wavepowerto<br />

theload,inthehalf-cycleofACwherethesupplyvoltagepolarityispositiveonthetopand<br />

negativeonthebottom. However,fordemonstratingthebasicconceptoftime-proportional<br />

control,thissimplecircuitisbetterthanonecontrollingfull-wavepower(whichwouldrequire<br />

twoSCRs).


7.5. THESILICON-CONTROLLEDRECTIFIER(SCR) 335<br />

AC<br />

source<br />

Load<br />

SCR<br />

Figure7.27:SCRcontrolofACpower<br />

Withnotriggeringtothegate,andtheACsourcevoltagewellbelowtheSCR’sbreakover<br />

voltagerating,theSCRwillneverturnon. ConnectingtheSCRgatetotheanodethrough<br />

astandardrectifyingdiode(topreventreversecurrentthroughthegateintheeventofthe<br />

SCRcontainingabuilt-ingate-cathoderesistor),willallowtheSCRtobetriggeredalmost<br />

immediatelyatthebeginningofeverypositivehalf-cycle:(Figure7.28)<br />

AC<br />

source<br />

AC source voltage<br />

Load<br />

Load current<br />

Figure7.28: Gateconnecteddirectlytoanodethroughadiode; nearlycompletehalf-wave<br />

currentthroughload.<br />

WecandelaythetriggeringoftheSCR,however,byinsertingsomeresistanceintothe<br />

gatecircuit,thusincreasingtheamountofvoltagedroprequiredbeforeenoughgatecurrent<br />

triggerstheSCR.<strong>In</strong>otherwords,ifwemakeitharderforelectronstoflowthroughthegateby<br />

addingaresistance,theACvoltagewillhavetoreachahigherpointinitscyclebeforethere<br />

willbeenoughgatecurrenttoturntheSCRon.TheresultisinFigure7.29.<br />

Withthehalf-sinewavechoppeduptoagreaterdegreebydelayedtriggeringoftheSCR,<br />

theloadreceiveslessaveragepower(powerisdeliveredforlesstimethroughoutacycle).By<br />

makingtheseriesgateresistorvariable,wecanmakeadjustmentstothetime-proportioned<br />

power:(Figure7.30)<br />

Unfortunately,thiscontrolschemehasasignificantlimitation. <strong>In</strong>usingtheACsource<br />

waveformforourSCRtriggeringsignal,welimitcontroltothefirsthalfofthewaveform’s<br />

half-cycle.<strong>In</strong>otherwords,itisnotpossibleforustowaituntilafterthewave’speaktotrigger<br />

theSCR.ThismeanswecanturndownthepoweronlytothepointwheretheSCRturnsonat


336 CHAPTER7. THYRISTORS<br />

AC<br />

source<br />

AC source voltage<br />

Load<br />

Load current<br />

Figure7.29:Resistanceinsertedingatecircuit;lessthanhalf-wavecurrentthroughload.<br />

AC<br />

source<br />

Load<br />

trigger<br />

threshold<br />

Figure7.30: <strong>In</strong>creasingtheresistanceraisesthethresholdlevel,causinglesspowertobe<br />

deliveredtotheload.Decreasingtheresistancelowersthethresholdlevel,causingmorepower<br />

tobedeliveredtotheload.


7.5. THESILICON-CONTROLLEDRECTIFIER(SCR) 337<br />

theverypeakofthewave:(Figure7.31)<br />

AC<br />

source<br />

Load<br />

Figure7.31:Circuitatminimumpowersetting<br />

trigger<br />

threshold<br />

Raisingthetriggerthresholdanymorewillcausethecircuittonottriggeratall,sincenot<br />

eventhepeakoftheACpowervoltagewillbeenoughtotriggertheSCR.Theresultwillbeno<br />

powertotheload.<br />

Aningenioussolutiontothiscontroldilemmaisfoundintheadditionofaphase-shifting<br />

capacitortothecircuit:(Figure7.32)<br />

AC<br />

source<br />

Capacitor voltage<br />

Load<br />

Figure7.32:Additionofaphase-shiftingcapacitortothecircuit<br />

Thesmallerwaveformshownonthegraphisvoltageacrossthecapacitor.Forthesakeof<br />

illustratingthephaseshift,I’massumingaconditionofmaximumcontrolresistancewherethe<br />

SCRisnottriggeringatallwithnoloadcurrent,saveforwhatlittlecurrentgoesthroughthe<br />

controlresistorandcapacitor.Thiscapacitorvoltagewillbephase-shiftedanywherefrom0 o to<br />

90 o laggingbehindthepowersourceACwaveform.Whenthisphase-shiftedvoltagereachesa


338 CHAPTER7. THYRISTORS<br />

highenoughlevel,theSCRwilltrigger.<br />

WithenoughvoltageacrossthecapacitortoperiodicallytriggertheSCR,theresultingload<br />

currentwaveformwilllooksomethinglikeFigure7.33)<br />

AC<br />

source<br />

Capacitor voltage<br />

Load<br />

load<br />

current<br />

trigger<br />

threshold<br />

Figure7.33:Phase-shiftedsignaltriggersSCRintoconduction.<br />

BecausethecapacitorwaveformisstillrisingafterthemainACpowerwaveformhas<br />

reacheditspeak,itbecomespossibletotriggertheSCRatathresholdlevelbeyondthatpeak,<br />

thuschoppingtheloadcurrentwavefurtherthanitwaspossiblewiththesimplercircuit.<br />

<strong>In</strong>reality,thecapacitorvoltagewaveformisabitmorecomplexthatwhatisshownhere,its<br />

sinusoidalshapedistortedeverytimetheSCRlatcheson.However,whatI’mtryingtoillustratehereisthedelayedtriggeringactiongainedwiththephase-shiftingRCnetwork;thus,a<br />

simplified,undistortedwaveformservesthepurposewell.<br />

SCRsmayalsobetriggered,or”fired,”bymorecomplexcircuits. Whilethecircuitpreviouslyshownissufficientforasimpleapplicationlikealampcontrol,largeindustrialmotor<br />

controlsoftenrelyonmoresophisticatedtriggeringmethods.Sometimes,pulsetransformers<br />

areusedtocoupleatriggeringcircuittothegateandcathodeofanSCRtoprovideelectrical<br />

isolationbetweenthetriggeringandpowercircuits:(Figure7.34)<br />

. . .<br />

to triggering<br />

circuit<br />

. . .<br />

pulse<br />

transformer<br />

SCR<br />

. . .<br />

to power<br />

circuit<br />

Figure7.34:Transformercouplingoftriggersignalprovidesisolation.<br />

WhenmultipleSCRsareusedtocontrolpower,theircathodesareoftennotelectricallycommon,makingitdifficulttoconnectasingletriggeringcircuittoallSCRsequally.Anexample<br />

. . .


7.5. THESILICON-CONTROLLEDRECTIFIER(SCR) 339<br />

ofthisisthecontrolledbridgerectifiershowninFigure7.35.<br />

SCR 1<br />

SCR 2<br />

SCR 4<br />

SCR 3<br />

Figure7.35:Controlledbridgerectifier<br />

Load<br />

<strong>In</strong>anybridgerectifiercircuit,therectifyingdiodes(inthisexample,therectifyingSCRs)<br />

mustconductinoppositepairs.SCR1andSCR3mustbefiredsimultaneously,andSCR2and<br />

SCR4mustbefiredtogetherasapair.Asyouwillnotice,though,thesepairsofSCRsdonot<br />

sharethesamecathodeconnections,meaningthatitwouldnotworktosimplyparalleltheir<br />

respectivegateconnectionsandconnectasinglevoltagesourcetotriggerboth:(Figure7.36)<br />

SCR 1<br />

SCR 2<br />

SCR 4<br />

SCR 3<br />

Load<br />

triggering<br />

voltage<br />

(pulse voltage<br />

source)<br />

Figure7.36:ThisstrategywillnotworkfortriggeringSCR2andSCR4asapair.<br />

AlthoughthetriggeringvoltagesourceshownwilltriggerSCR4,itwillnottriggerSCR2<br />

properlybecausethetwothyristorsdonotshareacommoncathodeconnectiontoreference<br />

thattriggeringvoltage. Pulsetransformersconnectingthetwothyristorgatestoacommon<br />

triggeringvoltagesourcewillwork,however:(Figure7.37)<br />

BearinmindthatthiscircuitonlyshowsthegateconnectionsfortwooutofthefourSCRs.<br />

PulsetransformersandtriggeringsourcesforSCR1andSCR3,aswellasthedetailsofthe<br />

pulsesourcesthemselves,havebeenomittedforthesakeofsimplicity.<br />

Controlledbridgerectifiersarenotlimitedtosingle-phasedesigns.<strong>In</strong>mostindustrialcontrolsystems,ACpowerisavailableinthree-phaseformformaximumefficiency,andsolid-state


340 CHAPTER7. THYRISTORS<br />

SCR 1<br />

SCR 2<br />

SCR 4 pulse<br />

voltage<br />

source<br />

SCR 3<br />

Load<br />

Figure7.37:TransformercouplingofthegatesallowstriggeringofSCR2andSCR4.<br />

controlcircuitsarebuilttotakeadvantageofthat. Athree-phasecontrolledrectifiercircuit<br />

builtwithSCRs,withoutpulsetransformersortriggeringcircuitryshown,wouldlooklike<br />

Figure7.38.<br />

• REVIEW:<br />

3-phase source<br />

Controlled<br />

rectifier<br />

Figure7.38:Three-phasebridgeSCRcontrolofload<br />

+<br />

Load<br />

-<br />

• ASilicon-ControlledRectifier,orSCR,isessentiallyaShockleydiodewithanextraterminaladded.<br />

Thisextraterminaliscalledthegate,anditisusedtotriggerthedevice<br />

intoconduction(latchit)bytheapplicationofasmallvoltage.<br />

• Totrigger,orfire,anSCR,voltagemustbeappliedbetweenthegateandcathode,positive<br />

tothegateandnegativetothecathode.WhentestinganSCR,amomentaryconnection<br />

betweenthegateandanodeissufficientinpolarity,intensity,anddurationtotriggerit.<br />

• SCRsmaybefiredbyintentionaltriggeringofthegateterminal,excessivevoltage(breakdown)betweenanodeandcathode,orexcessiverateofvoltagerisebetweenanodeand


7.6. THETRIAC 341<br />

cathode.SCRsmaybeturnedoffbyanodecurrentfallingbelowtheholdingcurrentvalue<br />

(low-currentdropout),orby”reverse-firing”thegate(applyinganegativevoltagetothe<br />

gate).Reverse-firingisonlysometimeseffective,andalwaysinvolveshighgatecurrent.<br />

• AvariantoftheSCR,calledaGate-Turn-Offthyristor(GTO),isspecificallydesignedto<br />

beturnedoffbymeansofreversetriggering.Eventhen,reversetriggeringrequiresfairly<br />

highcurrent:typically20%oftheanodecurrent.<br />

• SCRterminalsmaybeidentifiedbyacontinuitymeter:theonlytwoterminalsshowing<br />

anycontinuitybetweenthematallshouldbethegateandcathode. Gateandcathode<br />

terminalsconnecttoaPNjunctioninsidetheSCR,soacontinuitymetershouldobtain<br />

adiode-likereadingbetweenthesetwoterminalswiththered(+)leadonthegateand<br />

theblack(-)leadonthecathode.Beware,though,thatsomelargeSCRshaveaninternal<br />

resistorconnectedbetweengateandcathode,whichwillaffectanycontinuityreadings<br />

takenbyameter.<br />

• SCRsaretruerectifiers: theyonlyallowcurrentthroughtheminonedirection. This<br />

meanstheycannotbeusedaloneforfull-waveACpowercontrol.<br />

• IfthediodesinarectifiercircuitarereplacedbySCRs,youhavethemakingsofacontrolledrectifiercircuit,wherebyDCpowertoaloadmaybetime-proportionedbytriggeringtheSCRsatdifferentpointsalongtheACpowerwaveform.<br />

7.6 TheTRIAC<br />

SCRsareunidirectional(one-way)currentdevices,makingthemusefulforcontrollingDC<br />

only.IftwoSCRsarejoinedinback-to-backparallelfashionjustliketwoShockleydiodeswere<br />

joinedtogethertoformaDIAC,wehaveanewdeviceknownastheTRIAC:(Figure7.39)<br />

Gate<br />

Main Terminal 2<br />

(MT 2)<br />

Main Terminal 1<br />

(MT1) Main Terminal 2<br />

(MT 2)<br />

Gate<br />

Main Terminal 1<br />

(MT1) TRIAC equivalent circuit TRIAC schematic symbol<br />

Figure7.39:TheTRIACSCRequivalentand,TRIACschematicsymbol<br />

BecauseindividualSCRsaremoreflexibletouseinadvancedcontrolsystems,theseare<br />

morecommonlyseenincircuitslikemotordrives;TRIACsareusuallyseeninsimple,lowpowerapplicationslikehouseholddimmerswitches.Asimplelampdimmercircuitisshownin


342 CHAPTER7. THYRISTORS<br />

Figure7.40,completewiththephase-shiftingresistor-capacitornetworknecessaryforafterpeakfiring.<br />

AC<br />

source<br />

Lamp<br />

Figure7.40:TRIACphase-controlofpower<br />

TRIACsarenotoriousfornotfiringsymmetrically.Thismeanstheseusuallywon’ttrigger<br />

attheexactsamegatevoltagelevelforonepolarityasfortheother.Generallyspeaking,this<br />

isundesirable,becauseunsymmetricalfiringresultsinacurrentwaveformwithagreatervarietyofharmonicfrequencies.Waveformsthataresymmetricalaboveandbelowtheiraverage<br />

centerlinesarecomprisedofonlyodd-numberedharmonics. Unsymmetricalwaveforms,on<br />

theotherhand,containeven-numberedharmonics(whichmayormaynotbeaccompaniedby<br />

odd-numberedharmonicsaswell).<br />

<strong>In</strong>theinterestofreducingtotalharmoniccontentinpowersystems,thefewerandless<br />

diversetheharmonics,thebetter–onemorereasonindividualSCRsarefavoredoverTRIACs<br />

forcomplex,high-powercontrolcircuits. OnewaytomaketheTRIAC’scurrentwaveform<br />

moresymmetricalistouseadeviceexternaltotheTRIACtotimethetriggeringpulse. A<br />

DIACplacedinserieswiththegatedoesafairjobofthis:(Figure7.41)<br />

AC<br />

source<br />

Lamp<br />

Figure7.41:DIACimprovessymmetryofcontrol<br />

DIACbreakovervoltagestendtobemuchmoresymmetrical(thesameinonepolarity<br />

astheother)thanTRIACtriggeringvoltagethresholds. SincetheDIACpreventsanygate<br />

currentuntilthetriggeringvoltagehasreachedacertain,repeatablelevelineitherdirection,<br />

thefiringpointoftheTRIACfromonehalf-cycletothenexttendstobemoreconsistent,and<br />

thewaveformmoresymmetricalaboveandbelowitscenterline.<br />

PracticallyallthecharacteristicsandratingsofSCRsapplyequallytoTRIACs,except<br />

thatTRIACsofcoursearebidirectional(canhandlecurrentinbothdirections). Notmuch<br />

moreneedstobesaidaboutthisdeviceexceptforanimportantcaveatconcerningitsterminal<br />

designations.


7.6. THETRIAC 343<br />

Fromtheequivalentcircuitdiagramshownearlier,onemightthinkthatmainterminals<br />

1and2wereinterchangeable. Thesearenot! AlthoughitishelpfultoimaginetheTRIAC<br />

asbeingcomposedoftwoSCRsjoinedtogether,itinfactisconstructedfromasinglepieceof<br />

semiconductingmaterial,appropriatelydopedandlayered.Theactualoperatingcharacteristicsmaydifferslightlyfromthatoftheequivalentmodel.<br />

Thisismademostevidentbycontrastingtwosimplecircuitdesigns,onethatworksand<br />

onethatdoesn’t.Thefollowingtwocircuitsareavariationofthelampdimmercircuitshown<br />

earlier,thephase-shiftingcapacitorandDIACremovedforsimplicity’ssake. Althoughthe<br />

resultingcircuitlacksthefinecontrolabilityofthemorecomplexversion(withcapacitorand<br />

DIAC),itdoesfunction:(Figure7.42)<br />

AC<br />

source<br />

Lamp<br />

Figure7.42:ThiscircuitwiththegatetoMT2doesfunction.<br />

SupposeweweretoswapthetwomainterminalsoftheTRIACaround. Accordingtothe<br />

equivalentcircuitdiagramshownearlierinthissection,theswapshouldmakenodifference.<br />

Thecircuitoughttowork:(Figure7.43)<br />

AC<br />

source<br />

Lamp<br />

Figure7.43:WiththegateswappedtoMT1,thiscircuitdoesnotfunction.<br />

However,ifthiscircuitisbuilt,itwillbefoundthatitdoesnotwork!Theloadwillreceive<br />

nopower,theTRIACrefusingtofireatall,nomatterhowloworhigharesistancevaluethe<br />

controlresistorissetto.ThekeytosuccessfullytriggeringaTRIACistomakesurethegate<br />

receivesitstriggeringcurrentfromthemainterminal2sideofthecircuit(themainterminal<br />

ontheoppositesideoftheTRIACsymbolfromthegateterminal). IdentificationoftheMT1<br />

andMT2terminalsmustbedoneviatheTRIAC’spartnumberwithreferencetoadatasheet<br />

orbook.<br />

• REVIEW:<br />

• ATRIACactsmuchliketwoSCRsconnectedback-to-backforbidirectional(AC)operation.


344 CHAPTER7. THYRISTORS<br />

• TRIACcontrolsaremoreoftenseeninsimple,low-powercircuitsthancomplex,highpowercircuits.<strong>In</strong>largepowercontrolcircuits,multipleSCRstendtobefavored.<br />

• WhenusedtocontrolACpowertoaload,TRIACsareoftenaccompaniedbyDIACsconnectedinserieswiththeirgateterminals.TheDIAChelpstheTRIACfiremoresymmetrically(moreconsistentlyfromonepolaritytoanother).<br />

• Mainterminals1and2onaTRIACarenotinterchangeable.<br />

• TosuccessfullytriggeraTRIAC,gatecurrentmustcomefromthemainterminal2(MT2)<br />

sideofthecircuit!<br />

7.7 Optothyristors<br />

Likebipolartransistors,SCRsandTRIACsarealsomanufacturedaslight-sensitivedevices,<br />

theactionofimpinginglightreplacingthefunctionoftriggeringvoltage.<br />

Optically-controlledSCRsareoftenknownbytheacronymLASCR,orLightActivated<br />

SCR.Itssymbol,notsurprisingly,lookslikeFigure7.44.<br />

Light Activated SCR<br />

LASCR<br />

Figure7.44:LightactivatedSCR<br />

Optically-controlledTRIACsdon’treceivethehonorofhavingtheirownacronym,butinsteadarehumblyknownasopto-TRIACs.TheirschematicsymbolisshowninFigure7.45.<br />

Opto-TRIAC<br />

Figure7.45:Opto-TRIAC<br />

Optothyristors(ageneraltermforeithertheLASCRortheopto-TRIAC)arecommonly<br />

foundinsidesealed”optoisolator”modules.<br />

7.8 TheUnijunctionTransistor(UJT)<br />

Unijunctiontransistor:Althoughaunijunctiontransistorisnotathyristor,thisdevicecan<br />

triggerlargerthyristorswithapulseatbaseB1.Aunijunctiontransistoriscomposedofabar


7.8. THEUNIJUNCTIONTRANSISTOR(UJT) 345<br />

ofN-typesiliconhavingaP-typeconnectioninthemiddle.SeeFigure7.46(a).Theconnections<br />

attheendsofthebarareknownasbasesB1andB2;theP-typemid-pointistheemitter.<br />

Withtheemitterdisconnected,thetotalresistanceRBBO,adatasheetitem,isthesumofRB1<br />

andRB2asshowninFigure7.46(b).RBBOrangesfrom4-12kΩfordifferentdevicetypes.The<br />

intrinsicstandoffratio ηistheratioofRB1toRBBO. Itvariesfrom0.4to0.8fordifferent<br />

devices.TheschematicsymbolisFigure7.46(c)<br />

E<br />

B2<br />

P<br />

N<br />

B1<br />

(a)<br />

B2<br />

B1<br />

(b)<br />

R B2<br />

R B1<br />

R BB0 = R B1 + R B2<br />

η =<br />

η =<br />

R B1<br />

R B1 + R B2<br />

R B1<br />

R BB0<br />

Figure7.46:Unijunctiontransistor:(a)Construction,(b)Model,(c)Symbol<br />

TheUnijunctionemittercurrentvsvoltagecharacteristiccurve(Figure7.47(a))shows<br />

thatasVEincreases,currentIEincreasesupIP atthepeakpoint. Beyondthepeakpoint,<br />

currentincreasesasvoltagedecreasesinthenegativeresistanceregion.Thevoltagereachesa<br />

minimumatthevalleypoint.TheresistanceofRB1,thesaturationresistanceislowestatthe<br />

valleypoint.<br />

IPandIV,aredatasheetparameters;Fora2n2647,IPandIV are2µAand4mA,respectively.[5]VPisthevoltagedropacrossRB1plusa0.7Vdiodedrop;seeFigure7.47(b).VV<br />

is<br />

estimatedtobeapproximately10%ofVBB.<br />

TherelaxationoscillatorinFigure7.48isanapplicationoftheunijunctionoscillator. RE<br />

chargesCEuntilthepeakpoint. Theunijunctionemitterterminalhasnoeffectonthecapacitoruntilthispointisreached.<br />

Oncethecapacitorvoltage,VE,reachesthepeakvoltage<br />

pointVP,theloweredemitter-base1E-B1resistancequicklydischargesthecapacitor. Once<br />

thecapacitordischargesbelowthevalleypointVV,theE-RB1resistancerevertsbacktohigh<br />

resistance,andthecapacitorisfreetochargeagain.<br />

DuringcapacitordischargethroughtheE-B1saturationresistance,apulsemaybeseenon<br />

theexternalB1andB2loadresistors,Figure7.48.TheloadresistoratB1needstobelowto<br />

notaffectthedischargetime.TheexternalresistoratB2isoptional.Itmaybereplacedbya<br />

shortcircuit.Theapproximatefrequencyisgivenby1/f=T=RC.Amoreaccurateexpression<br />

forfrequencyisgiveninFigure7.48.<br />

ThechargingresistorREmustfallwithincertainlimits.Itmustbesmallenoughtoallow<br />

IPtoflowbasedontheVBBsupplylessVP.ItmustbelargeenoughtosupplyIVbasedonthe<br />

VBBsupplylessVV.[6]Theequationsandanexamplefora2n2647:<br />

E<br />

(c)<br />

B2<br />

B1


346 CHAPTER7. THYRISTORS<br />

V E<br />

V P<br />

V V<br />

Peak<br />

point<br />

I P<br />

negative resistance<br />

Valley point<br />

I V<br />

(a)<br />

saturation<br />

I E<br />

R E<br />

(b)<br />

B2<br />

B1<br />

R B2<br />

0.7V<br />

+ -<br />

+<br />

+<br />

VBB ηVBB -<br />

RB1 -<br />

V P<br />

V P = 0.7 + ηV BB<br />

V V ≈ 0.10(V BB)<br />

Figure7.47:Unijunctiontransistor:(a)emittercharacteristiccurve,(b)modelforVP.<br />

f =<br />

R E<br />

100k<br />

C E<br />

10nF<br />

V BB<br />

E<br />

10V<br />

470Ω<br />

B2<br />

B1<br />

47Ω<br />

2n2647 R BBO = 4.7— 9.1k η=0.68—0.82 I V= 8mA I P=2µA<br />

1<br />

RC ln(1/(1- η))<br />

=<br />

V RE<br />

V CE<br />

V RB1<br />

1<br />

(100k)(10nF) ln(1/(1- 0.75))<br />

= 1.39kHz<br />

Figure7.48:Unijunctiontransistorrelaxationoscillatorandwaveforms.OscillatordrivesSCR.<br />

R E<br />

100k<br />

C E<br />

10nF<br />

V BB<br />

E<br />

10V<br />

470Ω<br />

B2<br />

B1


7.8. THEUNIJUNCTIONTRANSISTOR(UJT) 347<br />

V P = 0.7 + ηV BB<br />

VBB - VV < RE <<br />

IV VBB - VP IP 2n2647 R BBO =4.7— 9.1k η=0.68—0.82 I V= 8mA I P=2µA<br />

V P = 0.7 + 0.75(10) = 8.2V<br />

V V = 0.10(V BB) V V = 0.10(10) = 1V<br />

10 - 1<br />

8mA<br />

1.125k<br />

< R E <<br />

10 - 8.2<br />

2µA<br />

< R E < 900k<br />

ProgrammableUnijunctionTransistor(PUT):Althoughtheunijunctiontransistoris<br />

listedasobsolete(readexpensiveifobtainable),theprogrammableunijunctiontransistoris<br />

aliveandwell.Itisinexpensiveandinproduction.Thoughitservesafunctionsimilartothe<br />

unijunctiontransistor,thePUTisathreeterminalthyristor. ThePUTsharesthefour-layer<br />

structuretypicalofthyristorsshowninFigure7.49.Notethatthegate,anN-typelayernear<br />

theanode,isknownasan“anodegate”. Moreover,thegateleadontheschematicsymbolis<br />

attachedtotheanodeendofthesymbol.<br />

V V<br />

V P<br />

V A<br />

I P IV<br />

I A<br />

Figure7.49:Programmableunijunctiontransistor:Characteristiccurve,internalconstruction,<br />

schematicsymbol.<br />

ThecharacteristiccurvefortheprogrammableunijunctiontransistorinFigure7.49issimilartothatoftheunijunctiontransistor.<br />

ThisisaplotofanodecurrentIAversusanode<br />

voltageVA. Thegateleadvoltagesets,programs,thepeakanodevoltageVP. Asanodecurrentinceases,voltageincreasesuptothepeakpoint.Thereafter,increasingcurrentresultsin<br />

decreasingvoltage,downtothevalleypoint.<br />

ThePUTequivalentoftheunijunctiontransistorisshowninFigure7.50. ExternalPUT<br />

resistorsR1andR2replaceunijunctiontransistorinternalresistorsRB1andRB2,respectively.<br />

Theseresistorsallowthecalculationoftheintrinsicstandoffratio η.<br />

Figure7.51showsthePUTversionoftheunijunctionrelaxationoscillatorFigure7.48.<br />

ResistorRchargesthecapacitoruntilthepeakpoint,Figure7.49,thenheavyconduction<br />

movestheoperatingpointdownthenegativeresistanceslopetothevalleypoint. Acurrent<br />

spikeflowsthroughthecathodeduringcapacitordischarge,developingavoltagespikeacross<br />

thecathoderesistors.Aftercapacitordischarge,theoperatingpointresetsbacktotheslopeup<br />

G<br />

A<br />

P<br />

N<br />

P<br />

N<br />

K<br />

G<br />

A<br />

K


348 CHAPTER7. THYRISTORS<br />

E<br />

tothepeakpoint.<br />

B1<br />

Unijunction PUT equivalent<br />

R<br />

C<br />

B2<br />

B1<br />

E<br />

A<br />

K<br />

G<br />

B2<br />

R2<br />

V S<br />

R1<br />

R BB0 = R1 + R2<br />

η =<br />

R1<br />

R1 + R2<br />

V S = ηV BB<br />

V P = V T + V S<br />

Figure7.50:PUTequivalentofunijunctiontransistor<br />

V BB<br />

47Ω<br />

K<br />

10V<br />

V C<br />

V RK<br />

R1⋅R2<br />

RG =<br />

R1 + R2<br />

A G VG VP<br />

V RK<br />

R2<br />

R1<br />

Figure7.51:PUTrelaxationoscillator<br />

Problem: WhatistherangeofsuitablevaluesforRinFigure7.51,arelaxationoscillator?<br />

ThechargingresistormustbesmallenoughtosupplyenoughcurrenttoraisetheanodetoVP<br />

thepeakpoint(Figure7.49)whilechargingthecapacitor.OnceVPisreached,anodevoltage<br />

decreasesascurrentincreases(negativeresistance),whichmovestheoperatingpointtothe<br />

valley. ItisthejobofthecapacitortosupplythevalleycurrentIV. Onceitisdischarged,<br />

theoperatingpointresetsbacktotheupwardslopetothepeakpoint. Theresistormustbe<br />

largeenoughsothatitwillneversupplythehighvalleycurrentIP. Ifthechargingresistor<br />

evercouldsupplythatmuchcurrent,theresistorwouldsupplythevalleycurrentafterthe<br />

capacitorwasdischargedandtheoperatingpointwouldneverresetbacktothehighresistance<br />

conditiontotheleftofthepeakpoint.<br />

WeselectthesameVBB=10Vusedfortheunijunctiontransistorexample.Weselectvalues<br />

ofR1andR2sothat ηisabout2/3.Wecalculate ηandVS.TheparallelequivalentofR1,R2is<br />

RG,whichisonlyusedtomakeselectionsfromTable7.1.AlongwithVS=10,theclosestvalue<br />

0V


7.8. THEUNIJUNCTIONTRANSISTOR(UJT) 349<br />

toour6.3,wefindVT=0.6V,inTable7.1andcalculateVP.<br />

R1 = 27k R2 = 16k VBB = 10V<br />

η =<br />

R1<br />

R1 + R2<br />

VS = ηVBB R1⋅R2<br />

RG =<br />

R1 + R2<br />

V P = V T + V S<br />

η =<br />

27<br />

27 + 16<br />

= 0.6279<br />

V S = 0.6279(10) = 6.279V<br />

27k⋅16k<br />

RG = = 10k<br />

27k + 16k<br />

For R G=10k and V S=10V, V T = 0.6V<br />

V P = 0.6 + 6.3 = 6.9V<br />

WealsofindIPandIV,thepeakandvalleycurrents,respectivelyinTable7.1.Westillneed<br />

VV,thevalleyvoltage. Weused10%ofVBB=1V,inthepreviousunijunctionexample. Consultingthedatasheet,wefindtheforwardvoltageVF=0.8VatIF=50mA.Thevalleycurrent<br />

IV=70µAismuchlessthanIF=50mA.Therefore,VV mustbelessthanVF=0.8V.Howmuch<br />

less?TobesafewesetVV=0V.Thiswillraisethelowerlimitontheresistorrangealittle.<br />

For RG=10k and VS=10V, IP = 4.0µA<br />

V V = 0.10(V BB) not used V V = 0V<br />

VBB - VV < RE <<br />

IV VBB - VP IP For R G=10k and V S=10V, I V = 70µA<br />

10 - 0<br />

70µA<br />

143k<br />

< R E <<br />

10 - 6.9<br />

4µA<br />

< R E < 755k<br />

ChoosingR>143kguaranteesthattheoperatingpointcanresetfromthevalleypointafter<br />

capacitordischarge.R


350 CHAPTER7. THYRISTORS<br />

applicationofaPUTtriggeringanSCRisalsoshown. ThiscircuitneedsaVBBunfiltered<br />

supply(notshown)divideddownfromthebridgerectifiertoresettherelaxationoscillator<br />

aftereachpowerzerocrossing.Thevariableresistorshouldhaveaminimumresistorinseries<br />

withittopreventalowpotsettingfromhangingatthevalleypoint.<br />

R<br />

270k<br />

V BB<br />

C<br />

K<br />

3.7nF<br />

47Ω<br />

10V<br />

A G<br />

V RK<br />

R2<br />

16k<br />

V G<br />

R1<br />

27k<br />

V BB<br />

R<br />

270k<br />

A G<br />

C<br />

K<br />

33 PUT<br />

nF<br />

Figure7.52:PUTrelaxationoscillatorwithcomponentvalues.PUTdrivesSCRlampdimmer.<br />

PUTtimingcircuitsaresaidtobeusableto10kHz.Ifalinearrampisrequiredinsteadof<br />

anexponentialramp,replacethechargingresistorwithaconstantcurrentsourcesuchasa<br />

FETbasedconstantcurrentdiode.AsubstitutePUTmaybebuiltfromaPNPandNPNsilicon<br />

transistorasshownfortheSCSequivalentcircuitinFigure7.53byomittingthecathodegate<br />

andusingtheanodegate.<br />

• REVIEW:<br />

• Aunijunctiontransistorconsistsoftwobases(B1,B2)attachedtoaresistivebarofsilicon,andanemitterinthecenter.TheE-B1junctionhasnegativeresistanceproperties;<br />

itcanswitchbetweenhighandlowresistance.<br />

• APUT(programmableunijunctiontransistor)isa3-terminal4-layerthyristoractinglike<br />

aunijunctiontransistor.Anexternalresistornetwork“programs” η.<br />

• Theintrinsicstandoffratiois η=R1/(R1+R2)foraPUT;substituteRB1andRB2,respectively,foraunijunctiontransistor.Thetriggervoltageisdeterminedby<br />

η.<br />

• Unijunctiontransistorsandprogrammableunijunctiontransistorsareappliedtooscillators,timingcircuits,andthyristortriggering.<br />

R2<br />

16k<br />

V G<br />

R1<br />

27k<br />

SCR<br />

7.9 TheSilicon-ControlledSwitch(SCS)<br />

IfwetaketheequivalentcircuitforanSCRandaddanotherexternalterminal,connectedto<br />

thebaseofthetoptransistorandthecollectorofthebottomtransistor,wehaveadeviceknown<br />

asasilicon-controlled-switch,orSCS:(Figure7.53)


7.9. THESILICON-CONTROLLEDSWITCH(SCS) 351<br />

Anode<br />

Cathode<br />

Gate<br />

P<br />

N<br />

P<br />

N<br />

P<br />

N<br />

Anode<br />

Gate<br />

Anode<br />

Cathode<br />

Gate<br />

Cathode Cathode<br />

Anode<br />

Gate<br />

Anode<br />

Anode<br />

Cathode Gate<br />

Gate<br />

Cathode<br />

Physical diagram Equivalent schematic Schematic symbol<br />

Figure7.53:TheSilicon-ControlledSwitch(SCS)<br />

Thisextraterminalallowsmorecontroltobeexertedoverthedevice,particularlyinthe<br />

modeofforcedcommutation,whereanexternalsignalforcesittoturnoffwhilethemain<br />

currentthroughthedevicehasnotyetfallenbelowtheholdingcurrentvalue. Notethatthe<br />

motorisintheanodegatecircuitinFigure7.54.Thisiscorrect,althoughitdoesn’tlookright.<br />

TheanodeleadisrequiredtoswitchtheSCSoff.Thereforethemotorcannotbeinserieswith<br />

theanode.<br />

+<br />

−<br />

on<br />

R 1<br />

off<br />

Motor<br />

R 2<br />

SCS<br />

+<br />

−<br />

on<br />

R 1<br />

off<br />

Motor<br />

R 2<br />

SCS<br />

Figure7.54:SCS:Motorstart/stopcircuit,equivalentcircuitwithtwotransistors.<br />

Whenthe”on”pushbuttonswitchisactuated,thevoltageappliedbetweenthecathodegate<br />

andthecathode,forward-biasesthelowertransistor’sbase-emitterjunction,andturningiton.<br />

ThetoptransistoroftheSCSisreadytoconduct,havingbeensuppliedwithacurrentpath<br />

fromitsemitterterminal(theSCS’sanodeterminal)throughresistorR2tothepositivesideof<br />

thepowersupply.AsinthecaseoftheSCR,bothtransistorsturnonandmaintaineachother<br />

inthe”on”mode.Whenthelowertransistorturnson,itconductsthemotor’sloadcurrent,and<br />

themotorstartsandruns.<br />

Themotormaybestoppedbyinterruptingthepowersupply,aswithanSCR,andthisis<br />

callednaturalcommutation. However,theSCSprovidesuswithanothermeansofturning


352 CHAPTER7. THYRISTORS<br />

off: forcedcommutationbyshortingtheanodeterminaltothecathode. [3]Ifthisisdone<br />

(byactuatingthe”off”pushbuttonswitch),theuppertransistorwithintheSCSwillloseits<br />

emittercurrent,thushaltingcurrentthroughthebaseofthelowertransistor.Whenthelower<br />

transistorturnsoff,itbreaksthecircuitforbasecurrentthroughthetoptransistor(securing<br />

its”off”state),andthemotor(makingitstop).TheSCSwillremainintheoffconditionuntil<br />

suchtimethatthe”on”pushbuttonswitchisre-actuated.<br />

• REVIEW:<br />

• Asilicon-controlledswitch,orSCS,isessentiallyanSCRwithanextragateterminal.<br />

• Typically,theloadcurrentthroughanSCSiscarriedbytheanodegateandcathode<br />

terminals,withthecathodegateandanodeterminalssufficingascontrolleads.<br />

• AnSCSisturnedonbyapplyingapositivevoltagebetweenthecathodegateandcathode<br />

terminals. Itmaybeturnedoff(forcedcommutation)byapplyinganegativevoltage<br />

betweentheanodeandcathodeterminals,orsimplybyshortingthosetwoterminals<br />

together.Theanodeterminalmustbekeptpositivewithrespecttothecathodeinorder<br />

fortheSCStolatch.<br />

7.10 Field-effect-controlledthyristors<br />

Tworelativelyrecenttechnologiesdesignedtoreducethe”driving”(gatetriggercurrent)requirementsofclassicthyristordevicesaretheMOS-gatedthyristorandtheMOSControlled<br />

Thyristor,orMCT.<br />

TheMOS-gatedthyristorusesaMOSFETtoinitiateconductionthroughtheupper(PNP)<br />

transistorofastandardthyristorstructure,thustriggeringthedevice. SinceaMOSFETrequiresnegligiblecurrentto”drive”(causeittosaturate),thismakesthethyristorasawhole<br />

veryeasytotrigger:(Figure7.55)<br />

MOS-gated thyristor<br />

equivalent circuit<br />

Gate<br />

Cathode<br />

Anode<br />

Figure7.55:MOS-gatedthyristorequivalentcircuit<br />

GiventhefactthatordinarySCRsarequiteeasyto”drive”asitis,thepracticaladvantage<br />

ofusinganevenmoresensitivedevice(aMOSFET)toinitiatetriggeringisdebatable. Also,


7.10. FIELD-EFFECT-CONTROLLEDTHYRISTORS 353<br />

placingaMOSFETatthegateinputofthethyristornowmakesitimpossibletoturnitoffbya<br />

reverse-triggeringsignal.Onlylow-currentdropoutcanmakethisdevicestopconductingafter<br />

ithasbeenlatched.<br />

Adeviceofarguablygreatervaluewouldbeafully-controllablethyristor,wherebyasmall<br />

gatesignalcouldbothtriggerthethyristorandforceittoturnoff.Suchadevicedoesexist,and<br />

itiscalledtheMOSControlledThyristor,orMCT.ItusesapairofMOSFETsconnectedtoa<br />

commongateterminal,onetotriggerthethyristorandtheotherto”untrigger”it:(Figure7.56)<br />

MOS Controlled Thyristor<br />

(MCT) equivalent circuit<br />

Gate<br />

Cathode<br />

Anode<br />

Figure7.56:MOS-controlledthyristor(MCT)equivalentcircuit<br />

Apositivegatevoltage(withrespecttothecathode)turnsontheupper(N-channel)MOS-<br />

FET,allowingbasecurrentthroughtheupper(PNP)transistor,whichlatchesthetransistor<br />

pairinan”on”state.Oncebothtransistorsarefullylatched,therewillbelittlevoltagedropped<br />

betweenanodeandcathode,andthethyristorwillremainlatchedaslongasthecontrolled<br />

currentexceedstheminimum(holding)currentvalue. However,ifanegativegatevoltageis<br />

applied(withrespecttotheanode,whichisatnearlythesamevoltageasthecathodeinthe<br />

latchedstate),thelowerMOSFETwillturnonand”short”betweenthelower(NPN)transistor’sbaseandemitterterminals,thusforcingitintocutoff.OncetheNPNtransistorcutsoff,<br />

thePNPtransistorwilldropoutofconduction,andthewholethyristorturnsoff.Gatevoltage<br />

hasfullcontroloverconductionthroughtheMCT:toturnitonandtoturnitoff.<br />

Thisdeviceisstillathyristor,though.Ifzerovoltageisappliedbetweengateandcathode,<br />

neitherMOSFETwillturnon.Consequently,thebipolartransistorpairwillremaininwhateverstateitwaslastin(hysteresis).So,abriefpositivepulsetothegateturnstheMCTon,a<br />

briefnegativepulseforcesitoff,andnoappliedgatevoltageletsitremaininwhateverstate<br />

itisalreadyin.<strong>In</strong>essence,theMCTisalatchingversionoftheIGBT(<strong>In</strong>sulatedGateBipolar<br />

Transistor).<br />

• REVIEW:


354 CHAPTER7. THYRISTORS<br />

• AMOS-gatedthyristorusesanN-channelMOSFETtotriggerathyristor,resultinginan<br />

extremelylowgatecurrentrequirement.<br />

• AMOSControlledThyristor,orMCT,usestwoMOSFETStoexertfullcontroloverthe<br />

thyristor. Apositivegatevoltagetriggersthedevice;anegativegatevoltageforcesit<br />

toturnoff. Zerogatevoltageallowsthethyristortoremaininwhateverstateitwas<br />

previouslyin(off,orlatchedon).<br />

Bibliography<br />

[1] “PhattytronPT-1VacuumTubeSynthesizer”,TheAudioPlaygroundSynthesizerMuseumat<br />

http://www.keyboardmuseum.com/ar/m/meta/pt1.html<br />

[2] “At last, a pitch source with tube power”, METASONIX, PMB 109, 881<br />

11th Street, Lakeport CA 95453 USA at http://www.metasonix.com/i<br />

ndex.php?option=com content&task=view&id=14&Itemid=31<br />

[3] “SiliconContolledSwitches”, GETransistorManual, TheGeneral<strong>Electric</strong>Company,<br />

1964,Figure16.19(M).<br />

[4] “2N6027, 2N6028 Programmable Unijunction Transistor ”, datasheet at<br />

http://www.onsemi.com/pub link/Collateral/2N6027-D.PDF<br />

[5] “Unijunction Transistor ”, American Microsemiconductor, at<br />

http://www.americanmicrosemi.com/tutorials/unijunction.htm<br />

[6] Matthew H. Williams, “Unijunction Transistor ”, at<br />

http://baec.tripod.com/DEC90/uni tran.htm Unijunction Transistor by<br />

http://baec.tripod.com/DEC90/unitran.htm


Chapter8<br />

OPERATIONALAMPLIFIERS<br />

Contents<br />

8.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355<br />

8.2 Single-endedanddifferentialamplifiers . . . . . . . . . . . . . . . . . . . .356<br />

8.3 The”operational”amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . .360<br />

8.4 Negativefeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366<br />

8.5 Dividedfeedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369<br />

8.6 Ananalogyfordividedfeedback . . . . . . . . . . . . . . . . . . . . . . . . .372<br />

8.7 Voltage-to-currentsignalconversion . . . . . . . . . . . . . . . . . . . . . .378<br />

8.8 Averagerandsummercircuits . . . . . . . . . . . . . . . . . . . . . . . . . .380<br />

8.9 Buildingadifferentialamplifier . . . . . . . . . . . . . . . . . . . . . . . . .382<br />

8.10 Theinstrumentationamplifier . . . . . . . . . . . . . . . . . . . . . . . . . .384<br />

8.11 Differentiatorandintegratorcircuits......................385<br />

8.12 Positivefeedback...................................388<br />

8.13 Practicalconsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392<br />

8.13.1 Common-modegain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393<br />

8.13.2 Offsetvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .396<br />

8.13.3 Biascurrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398<br />

8.13.4 Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404<br />

8.13.5 Frequencyresponse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404<br />

8.13.6 <strong>In</strong>puttooutputphaseshift. . . . . . . . . . . . . . . . . . . . . . . . . . .405<br />

8.14 Operationalamplifiermodels . . . . . . . . . . . . . . . . . . . . . . . . . . .408<br />

8.15 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413<br />

8.1 <strong>In</strong>troduction<br />

Theoperationalamplifierisarguablythemostusefulsingledeviceinanalogelectroniccircuitry.Withonlyahandfulofexternalcomponents,itcanbemadetoperformawidevariety<br />

355


356 CHAPTER8. OPERATIONALAMPLIFIERS<br />

ofanalogsignalprocessingtasks.Itisalsoquiteaffordable,mostgeneral-purposeamplifiers<br />

sellingforunderadollarapiece. Moderndesignshavebeenengineeredwithdurabilityin<br />

mindaswell: several”op-amps”aremanufacturedthatcansustaindirectshort-circuitson<br />

theiroutputswithoutdamage.<br />

Onekeytotheusefulnessoftheselittlecircuitsisintheengineeringprincipleoffeedback,<br />

particularlynegativefeedback,whichconstitutesthefoundationofalmostallautomaticcontrol<br />

processes. Theprinciplespresentedhereinoperationalamplifiercircuits,therefore,extend<br />

wellbeyondtheimmediatescopeofelectronics.Itiswellworththeelectronicsstudent’stime<br />

tolearntheseprinciplesandlearnthemwell.<br />

8.2 Single-endedanddifferentialamplifiers<br />

Foreaseofdrawingcomplexcircuitdiagrams,electronicamplifiersareoftensymbolizedbya<br />

simpletriangleshape,wheretheinternalcomponentsarenotindividuallyrepresented.This<br />

symbologyisveryhandyforcaseswhereanamplifier’sconstructionisirrelevanttothegreater<br />

functionoftheoverallcircuit,anditisworthyoffamiliarization:<br />

General amplifier circuit symbol<br />

+V supply<br />

<strong>In</strong>put Output<br />

-V supply<br />

The+Vand-VconnectionsdenotethepositiveandnegativesidesoftheDCpowersupply,<br />

respectively.Theinputandoutputvoltageconnectionsareshownassingleconductors,because<br />

itisassumedthatallsignalvoltagesarereferencedtoacommonconnectioninthecircuitcalled<br />

ground.Often(butnotalways!),onepoleoftheDCpowersupply,eitherpositiveornegative,<br />

isthatgroundreferencepoint.Apracticalamplifiercircuit(showingtheinputvoltagesource,<br />

loadresistance,andpowersupply)mightlooklikethis:<br />

V input<br />

+V<br />

<strong>In</strong>put Output<br />

-V<br />

R load<br />

30 V<br />

Withouthavingtoanalyzetheactualtransistordesignoftheamplifier,youcanreadily<br />

discernthewholecircuit’sfunction:totakeaninputsignal(Vin),amplifyit,anddriveaload<br />

+<br />

-


8.2. SINGLE-ENDEDANDDIFFERENTIALAMPLIFIERS 357<br />

resistance(Rload). Tocompletetheaboveschematic,itwouldbegoodtospecifythegainsof<br />

thatamplifier(AV,AI,AP)andtheQ(bias)pointforanyneededmathematicalanalysis.<br />

IfitisnecessaryforanamplifiertobeabletooutputtrueACvoltage(reversingpolarity)<br />

totheload,asplitDCpowersupplymaybeused,wherebythegroundpointiselectrically<br />

”centered”between+Vand-V.Sometimesthesplitpowersupplyconfigurationisreferredto<br />

asadualpowersupply.<br />

V input<br />

+V<br />

<strong>In</strong>put Output<br />

-V<br />

R load<br />

15 V<br />

15 V<br />

Theamplifierisstillbeingsuppliedwith30voltsoverall,butwiththesplitvoltageDC<br />

powersupply,theoutputvoltageacrosstheloadresistorcannowswingfromatheoretical<br />

maximumof+15voltsto-15volts,insteadof+30voltsto0volts. Thisisaneasywayto<br />

gettruealternatingcurrent(AC)outputfromanamplifierwithoutresortingtocapacitiveor<br />

inductive(transformer)couplingontheoutput.Thepeak-to-peakamplitudeofthisamplifier’s<br />

outputbetweencutoffandsaturationremainsunchanged.<br />

Bysignifyingatransistoramplifierwithinalargercircuitwithatrianglesymbol,weease<br />

thetaskofstudyingandanalyzingmorecomplexamplifiersandcircuits. Oneofthesemore<br />

complexamplifiertypesthatwe’llbestudyingiscalledthedifferentialamplifier.Unlikenormalamplifiers,whichamplifyasingleinputsignal(oftencalledsingle-endedamplifiers),differentialamplifiersamplifythevoltagedifferencebetweentwoinputsignals.Usingthesimplified<br />

triangleamplifiersymbol,adifferentialamplifierlookslikethis:<br />

<strong>In</strong>put 1<br />

<strong>In</strong>put 2<br />

Differential amplifier<br />

−<br />

+<br />

+V supply<br />

-V supply<br />

Output<br />

Thetwoinputleadscanbeseenontheleft-handsideofthetriangularamplifiersymbol,the<br />

outputleadontheright-handside,andthe+Vand-Vpowersupplyleadsontopandbottom.<br />

Aswiththeotherexample,allvoltagesarereferencedtothecircuit’sgroundpoint.Noticethat<br />

oneinputleadismarkedwitha(-)andtheotherismarkedwitha(+).Becauseadifferential<br />

amplifieramplifiesthedifferenceinvoltagebetweenthetwoinputs,eachinputinfluencesthe<br />

+<br />

-<br />

+<br />

-


358 CHAPTER8. OPERATIONALAMPLIFIERS<br />

outputvoltageinoppositeways. Considerthefollowingtableofinput/outputvoltagesfora<br />

differentialamplifierwithavoltagegainof4:<br />

(-) <strong>In</strong>put 1<br />

(+) <strong>In</strong>put 2<br />

Output<br />

0<br />

0<br />

0<br />

0 0 0 1 2.5 7<br />

1 2.5 7<br />

0 0 0<br />

4 10 28 -4 -10 -28<br />

Voltage output equation: V out = A V(<strong>In</strong>put 2 - <strong>In</strong>put 1)<br />

or<br />

V out = A V(<strong>In</strong>put (+) - <strong>In</strong>put (-))<br />

3<br />

3<br />

-3<br />

3<br />

0 24<br />

Anincreasinglypositivevoltageonthe(+)inputtendstodrivetheoutputvoltagemore<br />

positive,andanincreasinglypositivevoltageonthe(-)inputtendstodrivetheoutputvoltage<br />

morenegative.Likewise,anincreasinglynegativevoltageonthe(+)inputtendstodrivethe<br />

outputnegativeaswell,andanincreasinglynegativevoltageonthe(-)inputdoesjustthe<br />

opposite.Becauseofthisrelationshipbetweeninputsandpolarities,the(-)inputiscommonly<br />

referredtoastheinvertinginputandthe(+)asthenoninvertinginput.<br />

Itmaybehelpfultothinkofadifferentialamplifierasavariablevoltagesourcecontrolled<br />

byasensitivevoltmeter,assuch:<br />

-<br />

+<br />

-<br />

G<br />

+<br />

+V<br />

-V<br />

Bearinmindthattheaboveillustrationisonlyamodeltoaidinunderstandingthebehaviorofadifferentialamplifier.Itisnotarealisticschematicofitsactualdesign.The”G”symbolrepresentsagalvanometer,asensitivevoltmetermovement.Thepotentiometerconnectedbetween+Vand-Vprovidesavariablevoltageattheoutputpin(withreferencetoonesideof<br />

theDCpowersupply),thatvariablevoltagesetbythereadingofthegalvanometer.Itmustbe<br />

understoodthatanyloadpoweredbytheoutputofadifferentialamplifiergetsitscurrentfrom<br />

theDCpowersource(battery),nottheinputsignal. Theinputsignal(tothegalvanometer)<br />

merelycontrolstheoutput.<br />

Thisconceptmayatfirstbeconfusingtostudentsnewtoamplifiers.Withallthesepolaritiesandpolaritymarkings(-and+)around,itseasytogetconfusedandnotknowwhatthe<br />

outputofadifferentialamplifierwillbe. Toaddressthispotentialconfusion,here’sasimple<br />

ruletoremember:<br />

-2<br />

-7<br />

-20


8.2. SINGLE-ENDEDANDDIFFERENTIALAMPLIFIERS 359<br />

Differential<br />

input voltage<br />

Differential<br />

input voltage<br />

-<br />

+<br />

-<br />

−<br />

+<br />

+ −<br />

+<br />

+<br />

-<br />

Output<br />

voltage<br />

-<br />

Output<br />

voltage<br />

+<br />

Whenthepolarityofthedifferentialvoltagematchesthemarkingsforinvertingandnoninvertinginputs,theoutputwillbepositive.Whenthepolarityofthedifferentialvoltageclasheswiththeinputmarkings,theoutputwillbenegative.Thisbearssomesimilaritytothemathematicalsigndisplayedbydigitalvoltmetersbasedoninputvoltagepolarity.Theredtestlead<br />

ofthevoltmeter(oftencalledthe”positive”leadbecauseofthecolorred’spopularassociation<br />

withthepositivesideofapowersupplyinelectronicwiring)ismorepositivethantheblack,<br />

themeterwilldisplayapositivevoltagefigure,andviceversa:<br />

Differential<br />

input voltage<br />

Differential<br />

input voltage<br />

blk<br />

-<br />

6 V<br />

+ red<br />

blk<br />

+<br />

6 V<br />

-<br />

red<br />

-<br />

+<br />

-<br />

+<br />

+ 6.00 V<br />

Digital Voltmeter<br />

- 6.00 V<br />

Digital Voltmeter<br />

Justasavoltmeterwillonlydisplaythevoltagebetweenitstwotestleads,anidealdifferentialamplifieronlyamplifiesthepotentialdifferencebetweenitstwoinputconnections,notthevoltagebetweenanyoneofthoseconnectionsandground.Theoutputpolarityofadifferentialamplifier,justlikethesignedindicationofadigitalvoltmeter,dependsontherelative<br />

polaritiesofthedifferentialvoltagebetweenthetwoinputconnections.<br />

Iftheinputvoltagestothisamplifierrepresentedmathematicalquantities(asisthecase<br />

withinanalogcomputercircuitry),orphysicalprocessmeasurements(asisthecasewithin<br />

analogelectronicinstrumentationcircuitry),youcanseehowadevicesuchasadifferential<br />

amplifiercouldbeveryuseful. Wecoulduseittocomparetwoquantitiestoseewhichis<br />

greater(bythepolarityoftheoutputvoltage),orperhapswecouldcomparethedifference<br />

betweentwoquantities(suchasthelevelofliquidintwotanks)andflaganalarm(basedonthe<br />

absolutevalueoftheamplifieroutput)ifthedifferencebecametoogreat.<strong>In</strong>basicautomatic<br />

controlcircuitry,thequantitybeingcontrolled(calledtheprocessvariable)iscomparedwith<br />

atargetvalue(calledthesetpoint),anddecisionsaremadeastohowtoactbasedonthe<br />

discrepancybetweenthesetwovalues.Thefirststepinelectronicallycontrollingsuchascheme


360 CHAPTER8. OPERATIONALAMPLIFIERS<br />

istoamplifythedifferencebetweentheprocessvariableandthesetpointwithadifferential<br />

amplifier.<strong>In</strong>simplecontrollerdesigns,theoutputofthisdifferentialamplifiercanbedirectly<br />

utilizedtodrivethefinalcontrolelement(suchasavalve)andkeeptheprocessreasonably<br />

closetosetpoint.<br />

• REVIEW:<br />

• A”shorthand”symbolforanelectronicamplifierisatriangle,thewideendsignifying<br />

theinputsideandthenarrowendsignifyingtheoutput. Powersupplylinesareoften<br />

omittedinthedrawingforsimplicity.<br />

• TofacilitatetrueACoutputfromanamplifier,wecanusewhatiscalledasplitordual<br />

powersupply,withtwoDCvoltagesourcesconnectedinserieswiththemiddlepoint<br />

grounded,givingapositivevoltagetoground(+V)andanegativevoltagetoground(-V).<br />

Splitpowersupplieslikethisarefrequentlyusedindifferentialamplifiercircuits.<br />

• Mostamplifiershaveoneinputandoneoutput.Differentialamplifiershavetwoinputs<br />

andoneoutput,theoutputsignalbeingproportionaltothedifferenceinsignalsbetween<br />

thetwoinputs.<br />

• Thevoltageoutputofadifferentialamplifierisdeterminedbythefollowingequation:<br />

Vout=AV(Vnoninv-Vinv)<br />

8.3 The”operational”amplifier<br />

Longbeforetheadventofdigitalelectronictechnology,computerswerebuilttoelectronically<br />

performcalculationsbyemployingvoltagesandcurrentstorepresentnumericalquantities.<br />

Thiswasespeciallyusefulforthesimulationofphysicalprocesses.Avariablevoltage,forinstance,mightrepresentvelocityorforceinaphysicalsystem.<br />

Throughtheuseofresistive<br />

voltagedividersandvoltageamplifiers,themathematicaloperationsofdivisionandmultiplicationcouldbeeasilyperformedonthesesignals.<br />

Thereactivepropertiesofcapacitorsandinductorslendthemselveswelltothesimulation<br />

ofvariablesrelatedbycalculusfunctions. Rememberhowthecurrentthroughacapacitor<br />

wasafunctionofthevoltage’srateofchange,andhowthatrateofchangewasdesignated<br />

incalculusasthederivative? Well,ifvoltageacrossacapacitorweremadetorepresentthe<br />

velocityofanobject,thecurrentthroughthecapacitorwouldrepresenttheforcerequiredto<br />

accelerateordeceleratethatobject,thecapacitor’scapacitancerepresentingtheobject’smass:<br />

i C = C dv<br />

dt<br />

F = m dv<br />

dt<br />

Where, Where,<br />

i C =<br />

C =<br />

dv<br />

<strong>In</strong>stantaneous current<br />

through capacitor<br />

Capacitance in farads<br />

dt = Rate of change of<br />

voltage over time<br />

F = Force applied to object<br />

m =<br />

dv<br />

dt =<br />

Mass of object<br />

Rate of change of<br />

velocity over time


8.3. THE”OPERATIONAL”AMPLIFIER 361<br />

Thisanalogelectroniccomputationofthecalculusderivativefunctionistechnicallyknown<br />

asdifferentiation,anditisanaturalfunctionofacapacitor’scurrentinrelationtothevoltage<br />

appliedacrossit.Notethatthiscircuitrequiresno”programming”toperformthisrelatively<br />

advancedmathematicalfunctionasadigitalcomputerwould.<br />

Electroniccircuitsareveryeasyandinexpensivetocreatecomparedtocomplexphysical<br />

systems,sothiskindofanalogelectronicsimulationwaswidelyusedintheresearchand<br />

developmentofmechanicalsystems.Forrealisticsimulation,though,amplifiercircuitsofhigh<br />

accuracyandeasyconfigurabilitywereneededintheseearlycomputers.<br />

Itwasfoundinthecourseofanalogcomputerdesignthatdifferentialamplifierswithextremelyhighvoltagegainsmettheserequirementsofaccuracyandconfigurabilitybetterthan<br />

single-endedamplifierswithcustom-designedgains. Usingsimplecomponentsconnectedto<br />

theinputsandoutputofthehigh-gaindifferentialamplifier,virtuallyanygainandanyfunctioncouldbeobtainedfromthecircuit,overall,withoutadjustingormodifyingtheinternal<br />

circuitryoftheamplifieritself. Thesehigh-gaindifferentialamplifierscametobeknownas<br />

operationalamplifiers,orop-amps,becauseoftheirapplicationinanalogcomputers’mathematicaloperations.<br />

Modernop-amps,likethepopularmodel741,arehigh-performance,inexpensiveintegrated<br />

circuits. Theirinputimpedancesarequitehigh,theinputsdrawingcurrentsintherangeof<br />

halfamicroamp(maximum)forthe741,andfarlessforop-ampsutilizingfield-effectinput<br />

transistors.Outputimpedanceistypicallyquitelow,about75 Ωforthemodel741,andmany<br />

modelshavebuilt-inoutputshortcircuitprotection,meaningthattheiroutputscanbedirectly<br />

shortedtogroundwithoutcausingharmtotheinternalcircuitry.Withdirectcouplingbetween<br />

op-amps’internaltransistorstages,theycanamplifyDCsignalsjustaswellasAC(upto<br />

certainmaximumvoltage-risetimelimits).Itwouldcostfarmoreinmoneyandtimetodesign<br />

acomparablediscrete-transistoramplifiercircuittomatchthatkindofperformance,unless<br />

highpowercapabilitywasrequired.Forthesereasons,op-ampshaveallbutobsoleteddiscretetransistorsignalamplifiersinmanyapplications.<br />

Thefollowingdiagramshowsthepinconnectionsforsingleop-amps(741included)when<br />

housedinan8-pinDIP(Dual<strong>In</strong>linePackage)integratedcircuit:


362 CHAPTER8. OPERATIONALAMPLIFIERS<br />

Typical 8-pin "DIP" op-amp<br />

integrated circuit<br />

No<br />

connection<br />

+V<br />

8 7 6<br />

−<br />

Output<br />

+<br />

5<br />

1 2 3 4<br />

Offset<br />

null<br />

Offset<br />

null<br />

Somemodelsofop-ampcometwotoapackage,includingthepopularmodelsTL082and<br />

1458.Thesearecalled”dual”units,andaretypicallyhousedinan8-pinDIPpackageaswell,<br />

withthefollowingpinconnections:<br />

8 7 6<br />

5<br />

1 2 3 4<br />

-V<br />

Dual op-amp in 8-pin DIP<br />

+V<br />

+<br />

−<br />

Operationalamplifiersarealsoavailablefourtoapackage,usuallyin14-pinDIParrangements.<br />

Unfortunately,pinassignmentsaren’tasstandardforthese”quad”op-ampsasthey<br />

areforthe”dual”orsingleunits.Consultthemanufacturerdatasheet(s)fordetails.<br />

Practicaloperationalamplifiervoltagegainsareintherangeof200,000ormore,which<br />

−<br />

+<br />

-V


8.3. THE”OPERATIONAL”AMPLIFIER 363<br />

makesthemalmostuselessasananalogdifferentialamplifierbythemselves.Foranop-amp<br />

withavoltagegain(AV)of200,000andamaximumoutputvoltageswingof+15V/-15V,all<br />

itwouldtakeisadifferentialinputvoltageof75 µV(microvolts)todriveittosaturationor<br />

cutoff!Beforewetakealookathowexternalcomponentsareusedtobringthegaindowntoa<br />

reasonablelevel,let’sinvestigateapplicationsforthe”bare”op-ampbyitself.<br />

Oneapplicationiscalledthecomparator. Forallpracticalpurposes,wecansaythatthe<br />

outputofanop-ampwillbesaturatedfullypositiveifthe(+)inputismorepositivethanthe(-)<br />

input,andsaturatedfullynegativeifthe(+)inputislesspositivethanthe(-)input.<strong>In</strong>other<br />

words,anop-amp’sextremelyhighvoltagegainmakesitusefulasadevicetocomparetwo<br />

voltagesandchangeoutputvoltagestateswhenoneinputexceedstheotherinmagnitude.<br />

V in<br />

−<br />

+<br />

+V<br />

-V<br />

LED<br />

<strong>In</strong>theabovecircuit,wehaveanop-ampconnectedasacomparator,comparingtheinput<br />

voltagewithareferencevoltagesetbythepotentiometer(R1).IfVindropsbelowthevoltage<br />

setbyR1,theop-amp’soutputwillsaturateto+V,therebylightinguptheLED.Otherwise,if<br />

Vinisabovethereferencevoltage,theLEDwillremainoff.IfVinisavoltagesignalproduced<br />

byameasuringinstrument,thiscomparatorcircuitcouldfunctionasa”low”alarm,withthe<br />

trip-pointsetbyR1.<strong>In</strong>steadofanLED,theop-ampoutputcoulddrivearelay,atransistor,an<br />

SCR,oranyotherdevicecapableofswitchingpowertoaloadsuchasasolenoidvalve,totake<br />

actionintheeventofalowalarm.<br />

Anotherapplicationforthecomparatorcircuitshownisasquare-waveconverter.Suppose<br />

thattheinputvoltageappliedtotheinverting(-)inputwasanACsinewaveratherthana<br />

stableDCvoltage.<strong>In</strong>thatcase,theoutputvoltagewouldtransitionbetweenopposingstates<br />

ofsaturationwhenevertheinputvoltagewasequaltothereferencevoltageproducedbythe<br />

potentiometer.Theresultwouldbeasquarewave:


364 CHAPTER8. OPERATIONALAMPLIFIERS<br />

V in<br />

V in<br />

−<br />

+<br />

+V<br />

-V<br />

V out<br />

Adjustmentstothepotentiometersettingwouldchangethereferencevoltageappliedto<br />

thenoninverting(+)input,whichwouldchangethepointsatwhichthesinewavewouldcross,<br />

changingtheon/offtimes,ordutycycleofthesquarewave:<br />

V in<br />

V in<br />

−<br />

+<br />

+V<br />

-V<br />

V out<br />

ItshouldbeevidentthattheACinputvoltagewouldnothavetobeasinewaveinparticular<br />

forthiscircuittoperformthesamefunction. Theinputvoltagecouldbeatrianglewave,<br />

sawtoothwave,oranyothersortofwavethatrampedsmoothlyfrompositivetonegativeto<br />

positiveagain. Thissortofcomparatorcircuitisveryusefulforcreatingsquarewavesof<br />

varyingdutycycle. Thistechniqueissometimesreferredtoaspulse-widthmodulation,or<br />

PWM(varying,ormodulatingawaveformaccordingtoacontrollingsignal,inthiscasethe<br />

signalproducedbythepotentiometer).<br />

Anothercomparatorapplicationisthatofthebargraphdriver.Ifwehadseveralop-amps<br />

V out<br />

V out


8.3. THE”OPERATIONAL”AMPLIFIER 365<br />

connectedascomparators,eachwithitsownreferencevoltageconnectedtotheinvertinginput,<br />

buteachonemonitoringthesamevoltagesignalontheirnoninvertinginputs,wecouldbuilda<br />

bargraph-stylemetersuchaswhatiscommonlyseenonthefaceofstereotunersandgraphic<br />

equalizers. Asthesignalvoltage(representingradiosignalstrengthoraudiosoundlevel)<br />

increased,eachcomparatorwould”turnon”insequenceandsendpowertoitsrespectiveLED.<br />

Witheachcomparatorswitching”on”atadifferentlevelofaudiosound,thenumberofLED’s<br />

illuminatedwouldindicatehowstrongthesignalwas.<br />

+V<br />

-V<br />

V in<br />

Simple bargraph driver circuit<br />

−<br />

+<br />

−<br />

+<br />

−<br />

+<br />

−<br />

+<br />

LED 4<br />

LED 3<br />

LED 2<br />

LED 1<br />

<strong>In</strong>thecircuitshownabove,LED1wouldbethefirsttolightupastheinputvoltageincreased<br />

inapositivedirection. Astheinputvoltagecontinuedtoincrease,theotherLED’swould<br />

illuminateinsuccession,untilallwerelit.<br />

Thisverysametechnologyisusedinsomeanalog-to-digitalsignalconverters,namelythe<br />

flashconverter,totranslateananalogsignalquantityintoaseriesofon/offvoltagesrepresentingadigitalnumber.<br />

• REVIEW:<br />

• Atriangleshapeisthegenericsymbolforanamplifiercircuit,thewideendsignifying<br />

theinputandthenarrowendsignifyingtheoutput.<br />

• Unlessotherwisespecified,allvoltagesinamplifiercircuitsarereferencedtoacommon<br />

groundpoint,usuallyconnectedtooneterminalofthepowersupply. Thisway,wecan<br />

speakofacertainamountofvoltagebeing”on”asinglewire,whilerealizingthatvoltage<br />

isalwaysmeasuredbetweentwopoints.<br />

-V


366 CHAPTER8. OPERATIONALAMPLIFIERS<br />

• Adifferentialamplifierisoneamplifyingthevoltagedifferencebetweentwosignalinputs.<br />

<strong>In</strong>suchacircuit,oneinputtendstodrivetheoutputvoltagetothesamepolarityofthe<br />

inputsignal,whiletheotherinputdoesjusttheopposite.Consequently,thefirstinputis<br />

calledthenoninverting(+)inputandthesecondiscalledtheinverting(-)input.<br />

• Anoperationalamplifier(orop-ampforshort)isadifferentialamplifierwithanextremely<br />

highvoltagegain(AV =200,000ormore).Itsnamehailsfromitsoriginaluseinanalog<br />

computercircuitry(performingmathematicaloperations).<br />

• Op-ampstypicallyhaveveryhighinputimpedancesandfairlylowoutputimpedances.<br />

• Sometimesop-ampsareusedassignalcomparators,operatinginfullcutofforsaturation<br />

modedependingonwhichinput(invertingornoninverting)hasthegreatestvoltage.<br />

Comparatorsareusefulindetecting”greater-than”signalconditions(comparingoneto<br />

theother).<br />

• Onecomparatorapplicationiscalledthepulse-widthmodulator,andismadebycomparingasine-waveACsignalagainstaDCreferencevoltage.<br />

AstheDCreferencevoltage<br />

isadjusted,thesquare-waveoutputofthecomparatorchangesitsdutycycle(positive<br />

versusnegativetimes).Thus,theDCreferencevoltagecontrols,ormodulatesthepulse<br />

widthoftheoutputvoltage.<br />

8.4 Negativefeedback<br />

Ifweconnecttheoutputofanop-amptoitsinvertinginputandapplyavoltagesignalto<br />

thenoninvertinginput,wefindthattheoutputvoltageoftheop-ampcloselyfollowsthat<br />

inputvoltage(I’veneglectedtodrawinthepowersupply,+V/-Vwires,andgroundsymbolfor<br />

simplicity):<br />

V in<br />

−<br />

+<br />

AsVinincreases,Voutwillincreaseinaccordancewiththedifferentialgain. However,as<br />

Voutincreases,thatoutputvoltageisfedbacktotheinvertinginput,therebyactingtodecrease<br />

thevoltagedifferentialbetweeninputs,whichactstobringtheoutputdown.Whatwillhappen<br />

foranygivenvoltageinputisthattheop-ampwilloutputavoltageverynearlyequaltoVin,<br />

butjustlowenoughsothatthere’senoughvoltagedifferenceleftbetweenVinandthe(-)input<br />

tobeamplifiedtogeneratetheoutputvoltage.<br />

Thecircuitwillquicklyreachapointofstability(knownasequilibriuminphysics),where<br />

theoutputvoltageisjusttherightamounttomaintaintherightamountofdifferential,which<br />

inturnproducestherightamountofoutputvoltage.Takingtheop-amp’soutputvoltageand<br />

couplingittotheinvertinginputisatechniqueknownasnegativefeedback,anditisthekey<br />

tohavingaself-stabilizingsystem(thisistruenotonlyofop-amps,butofanydynamicsystem<br />

ingeneral).Thisstabilitygivestheop-ampthecapacitytoworkinitslinear(active)mode,as<br />

V out


8.4. NEGATIVEFEEDBACK 367<br />

opposedtomerelybeingsaturatedfully”on”or”off”asitwaswhenusedasacomparator,with<br />

nofeedbackatall.<br />

Becausetheop-amp’sgainissohigh,thevoltageontheinvertinginputcanbemaintained<br />

almostequaltoVin.Let’ssaythatourop-amphasadifferentialvoltagegainof200,000.IfVin<br />

equals6volts,theoutputvoltagewillbe5.999970000149999volts. Thiscreatesjustenough<br />

differentialvoltage(6volts-5.999970000149999volts=29.99985 µV)tocause5.999970000149999<br />

voltstobemanifestedattheoutputterminal,andthesystemholdsthereinbalance.Asyou<br />

cansee,29.99985 µVisnotalotofdifferential,soforpracticalcalculations,wecanassume<br />

thatthedifferentialvoltagebetweenthetwoinputwiresisheldbynegativefeedbackexactly<br />

at0volts.<br />

29.99985 µV<br />

The effects of negative feedback<br />

6 V<br />

−<br />

+<br />

The effects of negative feedback<br />

(rounded figures)<br />

0 V<br />

6 V<br />

−<br />

+<br />

5.999970000149999 V<br />

Onegreatadvantagetousinganop-ampwithnegativefeedbackisthattheactualvoltage<br />

gainoftheop-ampdoesn’tmatter,solongasitsverylarge. Iftheop-amp’sdifferentialgain<br />

were250,000insteadof200,000,allitwouldmeanisthattheoutputvoltagewouldholdjust<br />

alittleclosertoVin(lessdifferentialvoltageneededbetweeninputstogeneratetherequired<br />

output).<strong>In</strong>thecircuitjustillustrated,theoutputvoltagewouldstillbe(forallpracticalpurposes)equaltothenon-invertinginputvoltage.<br />

Op-ampgains,therefore,donothavetobe<br />

preciselysetbythefactoryinorderforthecircuitdesignertobuildanamplifiercircuitwith<br />

6 V


368 CHAPTER8. OPERATIONALAMPLIFIERS<br />

precisegain.Negativefeedbackmakesthesystemself-correcting.Theabovecircuitasawhole<br />

willsimplyfollowtheinputvoltagewithastablegainof1.<br />

Goingbacktoourdifferentialamplifiermodel,wecanthinkoftheoperationalamplifier<br />

asbeingavariablevoltagesourcecontrolledbyanextremelysensitivenulldetector,thekind<br />

ofmetermovementorothersensitivemeasurementdeviceusedinbridgecircuitstodetecta<br />

conditionofbalance(zerovolts).The”potentiometer”insidetheop-ampcreatingthevariable<br />

voltagewillmovetowhateverpositionitmustto”balance”theinvertingandnoninverting<br />

inputvoltagessothatthe”nulldetector”haszerovoltageacrossit:<br />

6 V<br />

0 V<br />

-<br />

+<br />

null<br />

+V<br />

-V<br />

Asthe”potentiometer”willmovetoprovideanoutputvoltagenecessarytosatisfythe”null<br />

detector”atan”indication”ofzerovolts,theoutputvoltagebecomesequaltotheinputvoltage:<br />

inthiscase,6volts.Iftheinputvoltagechangesatall,the”potentiometer”insidetheop-amp<br />

willchangepositiontoholdthe”nulldetector”inbalance(indicatingzerovolts),resultingin<br />

anoutputvoltageapproximatelyequaltotheinputvoltageatalltimes.<br />

Thiswillholdtruewithintherangeofvoltagesthattheop-ampcanoutput.Withapower<br />

supplyof+15V/-15V,andanidealamplifierthatcanswingitsoutputvoltagejustasfar,it<br />

willfaithfully”follow”theinputvoltagebetweenthelimitsof+15voltsand-15volts.Forthis<br />

reason,theabovecircuitisknownasavoltagefollower. Likeitsone-transistorcounterpart,<br />

thecommon-collector(”emitter-follower”)amplifier,ithasavoltagegainof1,ahighinput<br />

impedance,alowoutputimpedance,andahighcurrentgain.Voltagefollowersarealsoknown<br />

asvoltagebuffers,andareusedtoboostthecurrent-sourcingabilityofvoltagesignalstooweak<br />

(toohighofsourceimpedance)todirectlydriveaload. Theop-ampmodelshowninthelast<br />

illustrationdepictshowtheoutputvoltageisessentiallyisolatedfromtheinputvoltage,so<br />

thatcurrentontheoutputpinisnotsuppliedbytheinputvoltagesourceatall,butrather<br />

fromthepowersupplypoweringtheop-amp.<br />

Itshouldbementionedthatmanyop-ampscannotswingtheiroutputvoltagesexactlyto<br />

+V/-Vpowersupplyrailvoltages.Themodel741isoneofthosethatcannot:whensaturated,<br />

itsoutputvoltagepeakswithinaboutonevoltofthe+Vpowersupplyvoltageandwithinabout<br />

2voltsofthe-Vpowersupplyvoltage. Therefore,withasplitpowersupplyof+15/-15volts,<br />

a741op-amp’soutputmaygoashighas+14voltsoraslowas-13volts(approximately),but<br />

nofurther. Thisisduetoitsbipolartransistordesign. Thesetwovoltagelimitsareknown<br />

6 V


8.5. DIVIDEDFEEDBACK 369<br />

asthepositivesaturationvoltageandnegativesaturationvoltage,respectively.Otherop-amps,<br />

suchasthemodel3130withfield-effecttransistorsinthefinaloutputstage,havetheabilityto<br />

swingtheiroutputvoltageswithinmillivoltsofeitherpowersupplyrailvoltage.Consequently,<br />

theirpositiveandnegativesaturationvoltagesarepracticallyequaltothesupplyvoltages.<br />

• REVIEW:<br />

• Connectingtheoutputofanop-amptoitsinverting(-)inputiscallednegativefeedback.<br />

Thistermcanbebroadlyappliedtoanydynamicsystemwheretheoutputsignalis”fed<br />

back”totheinputsomehowsoastoreachapointofequilibrium(balance).<br />

• Whentheoutputofanop-ampisdirectlyconnectedtoitsinverting(-)input,avoltage<br />

followerwillbecreated.Whateversignalvoltageisimpresseduponthenoninverting(+)<br />

inputwillbeseenontheoutput.<br />

• Anop-ampwithnegativefeedbackwilltrytodriveitsoutputvoltagetowhateverlevel<br />

necessarysothatthedifferentialvoltagebetweenthetwoinputsispracticallyzero.The<br />

highertheop-ampdifferentialgain,thecloserthatdifferentialvoltagewillbetozero.<br />

• Someop-ampscannotproduceanoutputvoltageequaltotheirsupplyvoltagewhensaturated.Themodel741isoneofthese.Theupperandlowerlimitsofanop-amp’soutput<br />

voltageswingareknownaspositivesaturationvoltageandnegativesaturationvoltage,<br />

respectively.<br />

8.5 Dividedfeedback<br />

Ifweaddavoltagedividertothenegativefeedbackwiringsothatonlyafractionoftheoutput<br />

voltageisfedbacktotheinvertinginputinsteadofthefullamount,theoutputvoltagewillbe<br />

amultipleoftheinputvoltage(pleasebearinmindthatthepowersupplyconnectionstothe<br />

op-amphavebeenomittedonceagainforsimplicity’ssake):<br />

The effects of divided negative feedback<br />

6 mA R1 6 V<br />

R2 6 mA<br />

0 V<br />

1 kΩ 1 kΩ<br />

6 V<br />

−<br />

6 V<br />

+<br />

12 V<br />

All voltage figures shown in<br />

reference to ground


370 CHAPTER8. OPERATIONALAMPLIFIERS<br />

IfR1andR2arebothequalandVinis6volts,theop-ampwilloutputwhatevervoltageis<br />

neededtodrop6voltsacrossR1(tomaketheinvertinginputvoltageequalto6volts,aswell,<br />

keepingthevoltagedifferencebetweenthetwoinputsequaltozero). Withthe2:1voltage<br />

dividerofR1andR2,thiswilltake12voltsattheoutputoftheop-amptoaccomplish.<br />

Anotherwayofanalyzingthiscircuitistostartbycalculatingthemagnitudeanddirection<br />

ofcurrentthroughR1,knowingthevoltageoneitherside(andtherefore,bysubtraction,the<br />

voltageacrossR1),andR1’sresistance.Sincetheleft-handsideofR1isconnectedtoground(0<br />

volts)andtheright-handsideisatapotentialof6volts(duetothenegativefeedbackholding<br />

thatpointequaltoVin),wecanseethatwehave6voltsacrossR1.Thisgivesus6mAofcurrent<br />

throughR1fromlefttoright.Becauseweknowthatbothinputsoftheop-amphaveextremely<br />

highimpedance,wecansafelyassumetheywon’taddorsubtractanycurrentthroughthe<br />

divider. <strong>In</strong>otherwords,wecantreatR1andR2asbeinginserieswitheachother:allofthe<br />

electronsflowingthroughR1mustflowthroughR2.KnowingthecurrentthroughR2andthe<br />

resistanceofR2,wecancalculatethevoltageacrossR2(6volts),anditspolarity.Countingup<br />

voltagesfromground(0volts)totheright-handsideofR2,wearriveat12voltsontheoutput.<br />

Uponexaminingthelastillustration,onemightwonder,”wheredoesthat6mAofcurrent<br />

go?”Thelastillustrationdoesn’tshowtheentirecurrentpath,butinrealityitcomesfromthe<br />

negativesideoftheDCpowersupply,throughground,throughR1,throughR2,throughthe<br />

outputpinoftheop-amp,andthenbacktothepositivesideoftheDCpowersupplythroughthe<br />

outputtransistor(s)oftheop-amp.Usingthenulldetector/potentiometermodeloftheop-amp,<br />

thecurrentpathlookslikethis:<br />

R 1<br />

6 V<br />

-<br />

+<br />

null<br />

R 2<br />

1 kΩ 1 kΩ<br />

The6voltsignalsourcedoesnothavetosupplyanycurrentforthecircuit: itmerely<br />

commandstheop-amptobalancevoltagebetweentheinverting(-)andnoninverting(+)input<br />

pins,andinsodoingproduceanoutputvoltagethatistwicetheinputduetothedividingeffect<br />

ofthetwo1kΩresistors.<br />

Wecanchangethevoltagegainofthiscircuit,overall,justbyadjustingthevaluesofR1<br />

andR2(changingtheratioofoutputvoltagethatisfedbacktotheinvertinginput).Gaincan<br />

becalculatedbythefollowingformula:<br />

+V<br />

-V


8.5. DIVIDEDFEEDBACK 371<br />

AV = R2 + 1<br />

R1 Notethatthevoltagegainforthisdesignofamplifiercircuitcanneverbelessthan1. If<br />

weweretolowerR2toavalueofzeroohms,ourcircuitwouldbeessentiallyidenticaltothe<br />

voltagefollower,withtheoutputdirectlyconnectedtotheinvertinginput. Sincethevoltage<br />

followerhasagainof1,thissetsthelowergainlimitofthenoninvertingamplifier.However,<br />

thegaincanbeincreasedfarbeyond1,byincreasingR2inproportiontoR1.<br />

Alsonotethatthepolarityoftheoutputmatchesthatoftheinput,justaswithavoltage<br />

follower. Apositiveinputvoltageresultsinapositiveoutputvoltage,andviceversa(with<br />

respecttoground).Forthisreason,thiscircuitisreferredtoasanoninvertingamplifier.<br />

Justaswiththevoltagefollower,weseethatthedifferentialgainoftheop-ampisirrelevant,solongasitsveryhigh.<br />

Thevoltagesandcurrentsinthiscircuitwouldhardlychange<br />

atalliftheop-amp’svoltagegainwere250,000insteadof200,000.Thisstandsasastarkcontrasttosingle-transistoramplifiercircuitdesigns,wheretheBetaoftheindividualtransistor<br />

greatlyinfluencedtheoverallgainsoftheamplifier. Withnegativefeedback,wehaveaselfcorrectingsystemthatamplifiesvoltageaccordingtotheratiossetbythefeedbackresistors,<br />

notthegainsinternaltotheop-amp.<br />

Let’sseewhathappensifweretainnegativefeedbackthroughavoltagedivider,butapply<br />

theinputvoltageatadifferentlocation:<br />

6 V<br />

6 mA R1 0 V R2 6 mA<br />

1 kΩ 1 kΩ<br />

−<br />

0 V<br />

+<br />

-6 V<br />

All voltage figures shown in<br />

reference to ground<br />

Bygroundingthenoninvertinginput,thenegativefeedbackfromtheoutputseekstohold<br />

theinvertinginput’svoltageat0volts,aswell.Forthisreason,theinvertinginputisreferred<br />

tointhiscircuitasavirtualground,beingheldatgroundpotential(0volts)bythefeedback,<br />

yetnotdirectlyconnectedto(electricallycommonwith)ground. Theinputvoltagethistime<br />

isappliedtotheleft-handendofthevoltagedivider(R1=R2=1kΩagain),sotheoutput<br />

voltagemustswingto-6voltsinordertobalancethemiddleatgroundpotential(0volts).<br />

Usingthesametechniquesaswiththenoninvertingamplifier,wecananalyzethiscircuit’s<br />

operationbydeterminingcurrentmagnitudesanddirections,startingwithR1,andcontinuing<br />

ontodeterminingtheoutputvoltage.<br />

Wecanchangetheoverallvoltagegainofthiscircuit,overall,justbyadjustingthevalues<br />

ofR1andR2(changingtheratioofoutputvoltagethatisfedbacktotheinvertinginput).Gain<br />

canbecalculatedbythefollowingformula:<br />

AV = R − 2<br />

R1 Notethatthiscircuit’svoltagegaincanbelessthan1,dependingsolelyontheratioofR2


372 CHAPTER8. OPERATIONALAMPLIFIERS<br />

toR1. Alsonotethattheoutputvoltageisalwaystheoppositepolarityoftheinputvoltage.<br />

Apositiveinputvoltageresultsinanegativeoutputvoltage,andviceversa(withrespectto<br />

ground).Forthisreason,thiscircuitisreferredtoasaninvertingamplifier.Sometimes,the<br />

gainformulacontainsanegativesign(beforetheR2/R1fraction)toreflectthisreversalof<br />

polarities.<br />

Thesetwoamplifiercircuitswe’vejustinvestigatedservethepurposeofmultiplyingor<br />

dividingthemagnitudeoftheinputvoltagesignal. Thisisexactlyhowthemathematical<br />

operationsofmultiplicationanddivisionaretypicallyhandledinanalogcomputercircuitry.<br />

• REVIEW:<br />

• Byconnectingtheinverting(-)inputofanop-ampdirectlytotheoutput,wegetnegative<br />

feedback,whichgivesusavoltagefollowercircuit.Byconnectingthatnegativefeedback<br />

througharesistivevoltagedivider(feedingbackafractionoftheoutputvoltagetothe<br />

invertinginput),theoutputvoltagebecomesamultipleoftheinputvoltage.<br />

• Anegative-feedbackop-ampcircuitwiththeinputsignalgoingtothenoninverting(+)<br />

inputiscalledanoninvertingamplifier.Theoutputvoltagewillbethesamepolarityas<br />

theinput.Voltagegainisgivenbythefollowingequation:AV=(R2/R1)+1<br />

• Anegative-feedbackop-ampcircuitwiththeinputsignalgoingtothe”bottom”ofthe<br />

resistivevoltagedivider,withthenoninverting(+)inputgrounded,iscalledaninverting<br />

amplifier. Itsoutputvoltagewillbetheoppositepolarityoftheinput. Voltagegainis<br />

givenbythefollowingequation:AV =-R2/R1<br />

8.6 Ananalogyfordividedfeedback<br />

Ahelpfulanalogyforunderstandingdividedfeedbackamplifiercircuitsisthatofamechanical<br />

lever,withrelativemotionofthelever’sendsrepresentingchangeininputandoutputvoltages,<br />

andthefulcrum(pivotpoint)representingthelocationofthegroundpoint,realorvirtual.<br />

Takeforexamplethefollowingnoninvertingop-ampcircuit.Weknowfromthepriorsection<br />

thatthevoltagegainofanoninvertingamplifierconfigurationcanneverbelessthanunity(1).<br />

Ifwedrawaleverdiagramnexttotheamplifierschematic,withthedistancebetweenfulcrum<br />

andleverendsrepresentativeofresistorvalues,themotionoftheleverwillsignifychangesin<br />

voltageattheinputandoutputterminalsoftheamplifier:


8.6. ANANALOGYFORDIVIDEDFEEDBACK 373<br />

0 V<br />

R 1<br />

R 1<br />

1 kΩ 1 kΩ<br />

−<br />

V in<br />

V in<br />

+<br />

R 2<br />

R 2<br />

V out<br />

V out<br />

V out = 2(V in)<br />

Physicistscallthistypeoflever,withtheinputforce(effort)appliedbetweenthefulcrum<br />

andoutput(load),athird-classlever.Itischaracterizedbyanoutputdisplacement(motion)at<br />

leastaslargethantheinputdisplacement–a”gain”ofatleast1–andinthesamedirection.<br />

Applyingapositiveinputvoltagetothisop-ampcircuitisanalogoustodisplacingthe”input”<br />

pointontheleverupward:


374 CHAPTER8. OPERATIONALAMPLIFIERS<br />

0 V<br />

R 1<br />

1 kΩ 1 kΩ<br />

−<br />

V in<br />

+<br />

-<br />

V in<br />

+<br />

R 2<br />

V out<br />

V out<br />

V out = 2(V in)<br />

Duetothedisplacement-amplifyingcharacteristicsofthelever,the”output”pointwillmove<br />

twiceasfarasthe”input”point,andinthesamedirection.<strong>In</strong>theelectroniccircuit,theoutput<br />

voltagewillequaltwicetheinput,withthesamepolarity.Applyinganegativeinputvoltageis<br />

analogoustomovingtheleverdownwardfromitslevel”zero”position,resultinginanamplified<br />

outputdisplacementthatisalsonegative:<br />

0 V<br />

R 1<br />

1 kΩ 1 kΩ<br />

−<br />

V in<br />

-<br />

+<br />

V in<br />

+<br />

R 2<br />

V out<br />

V out<br />

+<br />

-<br />

V out = 2(V in)<br />

-<br />

+


8.6. ANANALOGYFORDIVIDEDFEEDBACK 375<br />

IfwealtertheresistorratioR2/R1,wechangethegainoftheop-ampcircuit.<strong>In</strong>leverterms,<br />

thismeansmovingtheinputpointinrelationtothefulcrumandleverend,whichsimilarly<br />

changesthedisplacement”gain”ofthemachine:<br />

0 V<br />

R 1<br />

V in<br />

R 1<br />

1 kΩ<br />

V in<br />

R 2<br />

−<br />

+<br />

R 2<br />

3 kΩ<br />

V out<br />

V out<br />

V out = 4(V in)<br />

Now,anyinputsignalwillbecomeamplifiedbyafactoroffourinsteadofbyafactoroftwo:


376 CHAPTER8. OPERATIONALAMPLIFIERS<br />

0 V<br />

V in<br />

R 1<br />

1 kΩ<br />

V in<br />

+<br />

-<br />

−<br />

+<br />

R 2<br />

3 kΩ<br />

V out<br />

V out<br />

V out = 4(V in)<br />

<strong>In</strong>vertingop-ampcircuitsmaybemodeledusingtheleveranalogyaswell.Withtheinvertingconfiguration,thegroundpointofthefeedbackvoltagedivideristheop-amp’sinverting<br />

inputwiththeinputtotheleftandtheoutputtotheright.Thisismechanicallyequivalentto<br />

afirst-classlever,wheretheinputforce(effort)isontheoppositesideofthefulcrumfromthe<br />

output(load):<br />

V in<br />

V in<br />

R 1<br />

R 1<br />

1 kΩ 1 kΩ<br />

−<br />

+<br />

R 2<br />

R 2<br />

V out<br />

+<br />

-<br />

V out<br />

V out = -(V in)<br />

Withequal-valueresistors(equal-lengthsofleveroneachsideofthefulcrum),theoutput<br />

voltage(displacement)willbeequalinmagnitudetotheinputvoltage(displacement),butof<br />

theoppositepolarity(direction).Apositiveinputresultsinanegativeoutput:


8.6. ANANALOGYFORDIVIDEDFEEDBACK 377<br />

V in<br />

V in<br />

+<br />

-<br />

R 1<br />

1 kΩ 1 kΩ<br />

−<br />

+<br />

R 2<br />

V out<br />

V out<br />

V out = -(V in)<br />

ChangingtheresistorratioR2/R1changesthegainoftheamplifiercircuit,justaschanging<br />

thefulcrumpositionontheleverchangesitsmechanicaldisplacement”gain.”Considerthe<br />

followingexample,whereR2ismadetwiceaslargeasR1:<br />

V in<br />

V in<br />

+<br />

-<br />

R 1<br />

1 kΩ<br />

−<br />

+<br />

R 2<br />

2 kΩ<br />

V out<br />

-<br />

V out<br />

-<br />

+<br />

+<br />

V out = -2(V in)<br />

Withtheinvertingamplifierconfiguration,though,gainsoflessthan1arepossible,just<br />

aswithfirst-classlevers. ReversingR2andR1valuesisanalogoustomovingthefulcrumto<br />

itscomplementarypositiononthelever:one-thirdofthewayfromtheoutputend.There,the<br />

outputdisplacementwillbeone-halftheinputdisplacement:


378 CHAPTER8. OPERATIONALAMPLIFIERS<br />

V in<br />

V in<br />

+<br />

-<br />

R 1<br />

2 kΩ<br />

−<br />

+<br />

R 2<br />

1 kΩ<br />

V out<br />

-<br />

V out<br />

8.7 Voltage-to-currentsignalconversion<br />

V out = -0.5(V in)<br />

<strong>In</strong>instrumentationcircuitry,DCsignalsareoftenusedasanalogrepresentationsofphysical<br />

measurementssuchastemperature,pressure,flow,weight,andmotion.Mostcommonly,DC<br />

currentsignalsareusedinpreferencetoDCvoltagesignals,becausecurrentsignalsareexactlyequalinmagnitudethroughouttheseriescircuitloopcarryingcurrentfromthesource<br />

(measuringdevice)totheload(indicator,recorder,orcontroller),whereasvoltagesignalsin<br />

aparallelcircuitmayvaryfromoneendtotheotherduetoresistivewirelosses. Furthermore,current-sensinginstrumentstypicallyhavelowimpedances(whilevoltage-sensinginstrumentshavehighimpedances),whichgivescurrent-sensinginstrumentsgreaterelectrical<br />

noiseimmunity.<br />

<strong>In</strong>ordertousecurrentasananalogrepresentationofaphysicalquantity,wehavetohave<br />

somewayofgeneratingapreciseamountofcurrentwithinthesignalcircuit. Buthowdo<br />

wegenerateaprecisecurrentsignalwhenwemightnotknowtheresistanceoftheloop?<br />

Theansweristouseanamplifierdesignedtoholdcurrenttoaprescribedvalue,applying<br />

asmuchoraslittlevoltageasnecessarytotheloadcircuittomaintainthatvalue. Suchan<br />

amplifierperformsthefunctionofacurrentsource. Anop-ampwithnegativefeedbackisa<br />

perfectcandidateforsuchatask:<br />

+


8.7. VOLTAGE-TO-CURRENTSIGNALCONVERSION 379<br />

250 Ω<br />

−<br />

4 to 20 mA<br />

+<br />

4 to 20 mA<br />

+<br />

Vin 1 to 5 volt signal range<br />

-<br />

Theinputvoltagetothiscircuitisassumedtobecomingfromsometypeofphysicaltransducer/amplifierarrangement,calibratedtoproduce1voltat0percentofphysicalmeasurement,and5voltsat100percentofphysicalmeasurement.Thestandardanalogcurrentsignal<br />

rangeis4mAto20mA,signifying0%to100%ofmeasurementrange,respectively.At5volts<br />

input,the250 Ω(precision)resistorwillhave5voltsappliedacrossit,resultingin20mAof<br />

currentinthelargeloopcircuit(withRload).ItdoesnotmatterwhatresistancevalueRloadis,<br />

orhowmuchwireresistanceispresentinthatlargeloop,solongastheop-amphasahigh<br />

enoughpowersupplyvoltagetooutputthevoltagenecessarytoget20mAflowingthrough<br />

Rload. The250 Ωresistorestablishestherelationshipbetweeninputvoltageandoutputcurrent,inthiscasecreatingtheequivalenceof1-5Vin/4-20mAout.Ifwewereconvertingthe<br />

1-5voltinputsignaltoa10-50mAoutputsignal(anolder,obsoleteinstrumentationstandard<br />

forindustry),we’dusea100 Ωprecisionresistorinstead.<br />

Anothernameforthiscircuitistransconductanceamplifier. <strong>In</strong>electronics,transconductanceisthemathematicalratioofcurrentchangedividedbyvoltagechange(∆I/∆V),anditismeasuredintheunitofSiemens,thesameunitusedtoexpressconductance(themathematicalreciprocalofresistance:current/voltage).<strong>In</strong>thiscircuit,thetransconductanceratiois<br />

fixedbythevalueofthe250 Ωresistor,givingalinearcurrent-out/voltage-inrelationship.<br />

• REVIEW:<br />

• <strong>In</strong>industry,DCcurrentsignalsareoftenusedinpreferencetoDCvoltagesignalsas<br />

analogrepresentationsofphysicalquantities. Currentinaseriescircuitisabsolutely<br />

equalatallpointsinthatcircuitregardlessofwiringresistance,whereasvoltageina<br />

parallel-connectedcircuitmayvaryfromendtoendbecauseofwireresistance,making<br />

current-signalingmoreaccuratefromthe”transmitting”tothe”receiving”instrument.<br />

• Voltagesignalsarerelativelyeasytoproducedirectlyfromtransducerdevices,whereas<br />

accuratecurrentsignalsarenot.Op-ampscanbeusedto”convert”avoltagesignalinto<br />

acurrentsignalquiteeasily. <strong>In</strong>thismode,theop-ampwilloutputwhatevervoltageis<br />

necessarytomaintaincurrentthroughthesignalingcircuitatthepropervalue.<br />

-<br />

R load<br />

+


380 CHAPTER8. OPERATIONALAMPLIFIERS<br />

8.8 Averagerandsummercircuits<br />

Ifwetakethreeequalresistorsandconnectoneendofeachtoacommonpoint,thenapply<br />

threeinputvoltages(onetoeachoftheresistors’freeends),thevoltageseenatthecommon<br />

pointwillbethemathematicalaverageofthethree.<br />

V 1 V 2 V 3<br />

"Passive averager" circuit<br />

R 1<br />

R 2<br />

R 3<br />

V out<br />

=<br />

V1 R1 +<br />

V2 R2 +<br />

V3 R3 1 1 1<br />

R + +<br />

1 R2 R3<br />

With equal value resistors:<br />

Vout = V1 + V2 3<br />

+ V3 ThiscircuitisreallynothingmorethanapracticalapplicationofMillman’sTheorem:<br />

R 1 R 2 R 3<br />

V 1 V 2 V 3<br />

V out<br />

=<br />

V1 R1 +<br />

V2 R2 +<br />

V3 R3 1 1 1<br />

R + +<br />

1 R2 R3<br />

Thiscircuitiscommonlyknownasapassiveaverager,becauseitgeneratesanaveragevoltagewithnon-amplifyingcomponents.Passivesimplymeansthatitisanunamplifiedcircuit.<br />

ThelargeequationtotherightoftheaveragercircuitcomesfromMillman’sTheorem,which<br />

describesthevoltageproducedbymultiplevoltagesourcesconnectedtogetherthroughindividualresistances.Sincethethreeresistorsintheaveragercircuitareequaltoeachother,we<br />

cansimplifyMillman’sformulabywritingR1,R2,andR3simplyasR(one,equalresistance<br />

insteadofthreeindividualresistances):


8.8. AVERAGERANDSUMMERCIRCUITS 381<br />

V out =<br />

V out =<br />

V1 R<br />

V2 + R<br />

V3 + R<br />

1<br />

R +<br />

1<br />

R +<br />

1<br />

R<br />

V1 + V2 R<br />

3<br />

R<br />

+ V3 Vout = V1 + V2 + V3 3<br />

Ifwetakeapassiveaverageranduseittoconnectthreeinputvoltagesintoanop-amp<br />

amplifiercircuitwithagainof3,wecanturnthisaveragingfunctionintoanadditionfunction.<br />

Theresultiscalledanoninvertingsummercircuit:<br />

V 1<br />

V 2<br />

V 3<br />

1 kΩ 2 kΩ<br />

R<br />

R<br />

R<br />

−<br />

+<br />

Withavoltagedividercomposedofa2kΩ/1kΩcombination,thenoninvertingamplifier<br />

circuitwillhaveavoltagegainof3. Bytakingthevoltagefromthepassiveaverager,which<br />

isthesumofV1,V2,andV3dividedby3,andmultiplyingthataverageby3,wearriveatan<br />

outputvoltageequaltothesumofV1,V2,andV3:<br />

V out = 3 V 1 + V 2 + V 3<br />

3<br />

V out = V 1 + V 2 + V 3<br />

Muchthesamecanbedonewithaninvertingop-ampamplifier,usingapassiveaverager<br />

aspartofthevoltagedividerfeedbackcircuit.Theresultiscalledaninvertingsummercircuit:<br />

V out


382 CHAPTER8. OPERATIONALAMPLIFIERS<br />

V 1<br />

V 2<br />

V 3<br />

R<br />

R<br />

R<br />

I 1<br />

I 2<br />

I 3<br />

0 V<br />

0 V<br />

−<br />

+<br />

R<br />

I 1 + I 2 + I 3<br />

Now,withtheright-handsidesofthethreeaveragingresistorsconnectedtothevirtual<br />

groundpointoftheop-amp’sinvertinginput,Millman’sTheoremnolongerdirectlyappliesas<br />

itdidbefore.Thevoltageatthevirtualgroundisnowheldat0voltsbytheop-amp’snegative<br />

feedback,whereasbeforeitwasfreetofloattotheaveragevalueofV1,V2,andV3.However,<br />

withallresistorvaluesequaltoeachother,thecurrentsthrougheachofthethreeresistors<br />

willbeproportionaltotheirrespectiveinputvoltages.Sincethosethreecurrentswilladdat<br />

thevirtualgroundnode,thealgebraicsumofthosecurrentsthroughthefeedbackresistorwill<br />

produceavoltageatVoutequaltoV1+V2+V3,exceptwithreversedpolarity.Thereversalin<br />

polarityiswhatmakesthiscircuitaninvertingsummer:<br />

V out = -(V 1 + V 2 + V 3)<br />

Summer(adder)circuitsarequiteusefulinanalogcomputerdesign,justasmultiplierand<br />

dividercircuitswouldbe.Again,itistheextremelyhighdifferentialgainoftheop-ampwhich<br />

allowsustobuildtheseusefulcircuitswithabareminimumofcomponents.<br />

• REVIEW:<br />

• Asummercircuitisonethatsums,oradds,multipleanalogvoltagesignalstogether.<br />

Therearetwobasicvarietiesofop-ampsummercircuits:noninvertingandinverting.<br />

8.9 Buildingadifferentialamplifier<br />

Anop-ampwithnofeedbackisalreadyadifferentialamplifier,amplifyingthevoltagedifferencebetweenthetwoinputs.However,itsgaincannotbecontrolled,anditisgenerallytoohigh<br />

tobeofanypracticaluse.Sofar,ourapplicationofnegativefeedbacktoop-ampshasresulting<br />

inthepracticallossofoneoftheinputs,theresultingamplifieronlygoodforamplifyingasinglevoltagesignalinput.Withalittleingenuity,however,wecanconstructanop-ampcircuit<br />

maintainingbothvoltageinputs,yetwithacontrolledgainsetbyexternalresistors.<br />

V out


8.9. BUILDINGADIFFERENTIALAMPLIFIER 383<br />

V 1<br />

V 2<br />

R R<br />

−<br />

+<br />

R R<br />

Ifalltheresistorvaluesareequal,thisamplifierwillhaveadifferentialvoltagegainof1.<br />

Theanalysisofthiscircuitisessentiallythesameasthatofaninvertingamplifier,exceptthat<br />

thenoninvertinginput(+)oftheop-ampisatavoltageequaltoafractionofV2,ratherthan<br />

beingconnecteddirectlytoground.Aswouldstandtoreason,V2functionsasthenoninverting<br />

inputandV1functionsastheinvertinginputofthefinalamplifiercircuit.Therefore:<br />

V out = V 2 - V 1<br />

Ifwewantedtoprovideadifferentialgainofanythingotherthan1,wewouldhaveto<br />

adjusttheresistancesinbothupperandlowervoltagedividers,necessitatingmultipleresistor<br />

changesandbalancingbetweenthetwodividersforsymmetricaloperation.Thisisnotalways<br />

practical,forobviousreasons.<br />

Anotherlimitationofthisamplifierdesignisthefactthatitsinputimpedancesarerather<br />

lowcomparedtothatofsomeotherop-ampconfigurations,mostnotablythenoninverting<br />

(single-endedinput)amplifier. Eachinputvoltagesourcehastodrivecurrentthrougharesistance,whichconstitutesfarlessimpedancethanthebareinputofanop-ampalone.<br />

The<br />

solutiontothisproblem,fortunately,isquitesimple.Allweneedtodois”buffer”eachinput<br />

voltagesignalthroughavoltagefollowerlikethis:<br />

V 1<br />

V 2<br />

+<br />

−<br />

−<br />

+<br />

R R<br />

−<br />

+<br />

R R<br />

NowtheV1andV2inputlinesareconnectedstraighttotheinputsoftwovoltage-follower<br />

op-amps,givingveryhighimpedance.Thetwoop-ampsontheleftnowhandlethedrivingof<br />

currentthroughtheresistorsinsteadoflettingtheinputvoltagesources(whatevertheymay<br />

be)doit.Theincreasedcomplexitytoourcircuitisminimalforasubstantialbenefit.<br />

V out<br />

V out


384 CHAPTER8. OPERATIONALAMPLIFIERS<br />

8.10 Theinstrumentationamplifier<br />

Assuggestedbefore,itisbeneficialtobeabletoadjustthegainoftheamplifiercircuitwithout<br />

havingtochangemorethanoneresistorvalue,asisnecessarywiththepreviousdesignof<br />

differentialamplifier. Theso-calledinstrumentationbuildsonthelastversionofdifferential<br />

amplifiertogiveusthatcapability:<br />

V 1<br />

V 2<br />

+<br />

−<br />

−<br />

+<br />

R<br />

R gain<br />

R<br />

3<br />

4<br />

1<br />

2<br />

R R<br />

−<br />

+<br />

R R<br />

Thisintimidatingcircuitisconstructedfromabuffereddifferentialamplifierstagewith<br />

threenewresistorslinkingthetwobuffercircuitstogether.Considerallresistorstobeofequal<br />

valueexceptforRgain. Thenegativefeedbackoftheupper-leftop-ampcausesthevoltageat<br />

point1(topofRgain)tobeequaltoV1. Likewise,thevoltageatpoint2(bottomofRgain)is<br />

heldtoavalueequaltoV2. ThisestablishesavoltagedropacrossRgainequaltothevoltage<br />

differencebetweenV1andV2.ThatvoltagedropcausesacurrentthroughRgain,andsincethe<br />

feedbackloopsofthetwoinputop-ampsdrawnocurrent,thatsameamountofcurrentthrough<br />

Rgainmustbegoingthroughthetwo”R”resistorsaboveandbelowit.Thisproducesavoltage<br />

dropbetweenpoints3and4equalto:<br />

V3-4 = (V2 - V1)(1 + 2R )<br />

Rgain Theregulardifferentialamplifierontheright-handsideofthecircuitthentakesthisvoltagedropbetweenpoints3and4,andamplifiesitbyagainof1(assumingagainthatall”R”<br />

resistorsareofequalvalue).Thoughthislookslikeacumbersomewaytobuildadifferential<br />

amplifier,ithasthedistinctadvantagesofpossessingextremelyhighinputimpedancesonthe<br />

V1andV2inputs(becausetheyconnectstraightintothenoninvertinginputsoftheirrespectiveop-amps),andadjustablegainthatcanbesetbyasingleresistor.Manipulatingtheabove<br />

formulaabit,wehaveageneralexpressionforoverallvoltagegainintheinstrumentation<br />

amplifier:<br />

A 2R<br />

V = (1 + )<br />

Rgain Thoughitmaynotbeobviousbylookingattheschematic,wecanchangethedifferential<br />

gainoftheinstrumentationamplifiersimplybychangingthevalueofoneresistor:Rgain.Yes,<br />

wecouldstillchangetheoverallgainbychangingthevaluesofsomeoftheotherresistors,<br />

V out


8.11. DIFFERENTIATORANDINTEGRATORCIRCUITS 385<br />

butthiswouldnecessitatebalancedresistorvaluechangesforthecircuittoremainsymmetrical.<br />

PleasenotethatthelowestgainpossiblewiththeabovecircuitisobtainedwithRgain<br />

completelyopen(infiniteresistance),andthatgainvalueis1.<br />

• REVIEW:<br />

• Aninstrumentationamplifierisadifferentialop-ampcircuitprovidinghighinputimpedances<br />

witheaseofgainadjustmentthroughthevariationofasingleresistor.<br />

8.11 Differentiatorandintegratorcircuits<br />

Byintroducingelectricalreactanceintothefeedbackloopsofop-ampamplifiercircuits,wecan<br />

causetheoutputtorespondtochangesintheinputvoltageovertime. Drawingtheirnames<br />

fromtheirrespectivecalculusfunctions,theintegratorproducesavoltageoutputproportional<br />

totheproduct(multiplication)oftheinputvoltageandtime;andthedifferentiator(nottobe<br />

confusedwithdifferential)producesavoltageoutputproportionaltotheinputvoltage’srateof<br />

change.<br />

Capacitancecanbedefinedasthemeasureofacapacitor’soppositiontochangesinvoltage.<br />

Thegreaterthecapacitance,themoretheopposition. Capacitorsopposevoltagechangeby<br />

creatingcurrentinthecircuit:thatis,theyeitherchargeordischargeinresponsetoachange<br />

inappliedvoltage.So,themorecapacitanceacapacitorhas,thegreateritschargeordischarge<br />

currentwillbeforanygivenrateofvoltagechangeacrossit. Theequationforthisisquite<br />

simple:<br />

Changing<br />

DC<br />

voltage<br />

i = C dv<br />

dt<br />

Thedv/dtfractionisacalculusexpressionrepresentingtherateofvoltagechangeover<br />

time.IftheDCsupplyintheabovecircuitweresteadilyincreasedfromavoltageof15volts<br />

toavoltageof16voltsoveratimespanof1hour,thecurrentthroughthecapacitorwould<br />

mostlikelybeverysmall,becauseoftheverylowrateofvoltagechange(dv/dt=1volt/3600<br />

seconds). However,ifwesteadilyincreasedtheDCsupplyfrom15voltsto16voltsovera<br />

shortertimespanof1second,therateofvoltagechangewouldbemuchhigher,andthusthe<br />

chargingcurrentwouldbemuchhigher(3600timeshigher,tobeexact). Sameamountof<br />

changeinvoltage,butvastlydifferentratesofchange,resultinginvastlydifferentamountsof<br />

currentinthecircuit.<br />

Toputsomedefinitenumberstothisformula,ifthevoltageacrossa47 µFcapacitorwas<br />

changingatalinearrateof3voltspersecond,thecurrent”through”thecapacitorwouldbe<br />

(47 µF)(3V/s)=141 µA.<br />

Wecanbuildanop-ampcircuitwhichmeasureschangeinvoltagebymeasuringcurrent<br />

throughacapacitor,andoutputsavoltageproportionaltothatcurrent:<br />

C


386 CHAPTER8. OPERATIONALAMPLIFIERS<br />

V in<br />

C<br />

Differentiator<br />

0 V<br />

0 V<br />

0 V<br />

−<br />

+<br />

Theright-handsideofthecapacitorisheldtoavoltageof0volts,duetothe”virtualground”<br />

effect.Therefore,current”through”thecapacitorissolelyduetochangeintheinputvoltage.<br />

Asteadyinputvoltagewon’tcauseacurrentthroughC,butachanginginputvoltagewill.<br />

Capacitorcurrentmovesthroughthefeedbackresistor,producingadropacrossit,which<br />

isthesameastheoutputvoltage. Alinear,positiverateofinputvoltagechangewillresult<br />

inasteadynegativevoltageattheoutputoftheop-amp. Conversely,alinear,negativerate<br />

ofinputvoltagechangewillresultinasteadypositivevoltageattheoutputoftheop-amp.<br />

Thispolarityinversionfrominputtooutputisduetothefactthattheinputsignalisbeing<br />

sent(essentially)totheinvertinginputoftheop-amp,soitactsliketheinvertingamplifier<br />

mentionedpreviously. Thefastertherateofvoltagechangeattheinput(eitherpositiveor<br />

negative),thegreaterthevoltageattheoutput.<br />

Theformulafordeterminingvoltageoutputforthedifferentiatorisasfollows:<br />

V out = -RC dv in<br />

dt<br />

Applicationsforthis,besidesrepresentingthederivativecalculusfunctioninsideofananalogcomputer,includerate-of-changeindicatorsforprocessinstrumentation.Onesuchrateof-changesignalapplicationmightbeformonitoring(orcontrolling)therateoftemperaturechangeinafurnace,wheretoohighortoolowofatemperatureriseratecouldbedetrimental.TheDCvoltageproducedbythedifferentiatorcircuitcouldbeusedtodriveacomparator,<br />

whichwouldsignalanalarmoractivateacontroliftherateofchangeexceededapre-setlevel.<br />

<strong>In</strong>processcontrol,thederivativefunctionisusedtomakecontroldecisionsformaintaining<br />

aprocessatsetpoint,bymonitoringtherateofprocesschangeovertimeandtakingactionto<br />

preventexcessiveratesofchange,whichcanleadtoanunstablecondition.Analogelectronic<br />

controllersusevariationsofthiscircuitrytoperformthederivativefunction.<br />

Ontheotherhand,thereareapplicationswhereweneedpreciselytheoppositefunction,<br />

calledintegrationincalculus.Here,theop-ampcircuitwouldgenerateanoutputvoltageproportionaltothemagnitudeanddurationthataninputvoltagesignalhasdeviatedfrom0volts.Stateddifferently,aconstantinputsignalwouldgenerateacertainrateofchangeintheoutputvoltage:differentiationinreverse.Todothis,allwehavetodoisswapthecapacitorand<br />

resistorinthepreviouscircuit:<br />

R<br />

V out


8.11. DIFFERENTIATORANDINTEGRATORCIRCUITS 387<br />

V in<br />

R<br />

<strong>In</strong>tegrator<br />

0 V<br />

0 V<br />

0 V<br />

−<br />

+<br />

Asbefore,thenegativefeedbackoftheop-ampensuresthattheinvertinginputwillbeheld<br />

at0volts(thevirtualground).Iftheinputvoltageisexactly0volts,therewillbenocurrent<br />

throughtheresistor,thereforenochargingofthecapacitor,andthereforetheoutputvoltage<br />

willnotchange.Wecannotguaranteewhatvoltagewillbeattheoutputwithrespecttoground<br />

inthiscondition,butwecansaythattheoutputvoltagewillbeconstant.<br />

However,ifweapplyaconstant,positivevoltagetotheinput,theop-ampoutputwillfall<br />

negativeatalinearrate,inanattempttoproducethechangingvoltageacrossthecapacitor<br />

necessarytomaintainthecurrentestablishedbythevoltagedifferenceacrosstheresistor.<br />

Conversely,aconstant,negativevoltageattheinputresultsinalinear,rising(positive)voltage<br />

attheoutput.Theoutputvoltagerate-of-changewillbeproportionaltothevalueoftheinput<br />

voltage.<br />

C<br />

V out<br />

Theformulafordeterminingvoltageoutputfortheintegratorisasfollows:<br />

dv out<br />

dt<br />

= - V in<br />

RC<br />

or<br />

t<br />

V out = ∫ -<br />

0<br />

V in<br />

RC<br />

dt + c<br />

Where,<br />

c = Output voltage at start time (t=0)<br />

Oneapplicationforthisdevicewouldbetokeepa”runningtotal”ofradiationexposure,<br />

ordosage,iftheinputvoltagewasaproportionalsignalsuppliedbyanelectronicradiation<br />

detector.Nuclearradiationcanbejustasdamagingatlowintensitiesforlongperiodsoftime<br />

asitisathighintensitiesforshortperiodsoftime. Anintegratorcircuitwouldtakeboth<br />

theintensity(inputvoltagemagnitude)andtimeintoaccount,generatinganoutputvoltage<br />

representingtotalradiationdosage.<br />

Anotherapplicationwouldbetointegrateasignalrepresentingwaterflow,producinga<br />

signalrepresentingtotalquantityofwaterthathaspassedbytheflowmeter.Thisapplication<br />

ofanintegratorissometimescalledatotalizerintheindustrialinstrumentationtrade.


388 CHAPTER8. OPERATIONALAMPLIFIERS<br />

• REVIEW:<br />

• Adifferentiatorcircuitproducesaconstantoutputvoltageforasteadilychanginginput<br />

voltage.<br />

• Anintegratorcircuitproducesasteadilychangingoutputvoltageforaconstantinput<br />

voltage.<br />

• Bothtypesofdevicesareeasilyconstructed,usingreactivecomponents(usuallycapacitorsratherthaninductors)inthefeedbackpartofthecircuit.<br />

8.12 Positivefeedback<br />

Aswe’veseen,negativefeedbackisanincrediblyusefulprinciplewhenappliedtooperational<br />

amplifiers. Itiswhatallowsustocreateallthesepracticalcircuits,beingabletoprecisely<br />

setgains,rates,andothersignificantparameterswithjustafewchangesofresistorvalues.<br />

Negativefeedbackmakesallthesecircuitsstableandself-correcting.<br />

Thebasicprincipleofnegativefeedbackisthattheoutputtendstodriveinadirection<br />

thatcreatesaconditionofequilibrium(balance).<strong>In</strong>anop-ampcircuitwithnofeedback,there<br />

isnocorrectivemechanism,andtheoutputvoltagewillsaturatewiththetiniestamountof<br />

differentialvoltageappliedbetweentheinputs.Theresultisacomparator:<br />

Withnegativefeedback(theoutputvoltage”fedback”somehowtotheinvertinginput),the<br />

circuittendstopreventitselffromdrivingtheoutputtofullsaturation. Rather,theoutput<br />

voltagedrivesonlyashighoraslowasneededtobalancethetwoinputs’voltages:<br />

0 V<br />

V in<br />

Negative feedback<br />

−<br />

+<br />

V out = V in<br />

Whethertheoutputisdirectlyfedbacktotheinverting(-)inputorcoupledthroughasetof<br />

components,theeffectisthesame:theextremelyhighdifferentialvoltagegainoftheop-amp<br />

willbe”tamed”andthecircuitwillrespondaccordingtothedictatesofthefeedback”loop”<br />

connectingoutputtoinvertinginput.<br />

Anothertypeoffeedback,namelypositivefeedback,alsofindsapplicationinop-ampcircuits.<br />

Unlikenegativefeedback,wheretheoutputvoltageis”fedback”totheinverting(-)<br />

input,withpositivefeedbacktheoutputvoltageissomehowroutedbacktothenoninverting<br />

V out


8.12. POSITIVEFEEDBACK 389<br />

(+)input.<strong>In</strong>itssimplestform,wecouldconnectastraightpieceofwirefromoutputtononinvertinginputandseewhathappens:<br />

Positive feedback<br />

+<br />

−<br />

Theinvertinginputremainsdisconnectedfromthefeedbackloop,andisfreetoreceivean<br />

externalvoltage.Let’sseewhathappensifwegroundtheinvertinginput:<br />

0 V<br />

+<br />

−<br />

Withtheinvertinginputgrounded(maintainedatzerovolts),theoutputvoltagewillbe<br />

dictatedbythemagnitudeandpolarityofthevoltageatthenoninvertinginput.Ifthatvoltage<br />

happenstobepositive,theop-ampwilldriveitsoutputpositiveaswell,feedingthatpositive<br />

voltagebacktothenoninvertinginput,whichwillresultinfullpositiveoutputsaturation.On<br />

theotherhand,ifthevoltageonthenoninvertinginputhappenstostartoutnegative,theopamp’soutputwilldriveinthenegativedirection,feedingbacktothenoninvertinginputand<br />

resultinginfullnegativesaturation.<br />

Whatwehavehereisacircuitwhoseoutputisbistable: stableinoneoftwostates(saturatedpositiveorsaturatednegative).<br />

Onceithasreachedoneofthosesaturatedstates,it<br />

willtendtoremaininthatstate,unchanging.Whatisnecessarytogetittoswitchstatesisa<br />

voltageplacedupontheinverting(-)inputofthesamepolarity,butofaslightlygreatermagnitude.Forexample,ifourcircuitissaturatedatanoutputvoltageof+12volts,itwilltakean<br />

inputvoltageattheinvertinginputofatleast+12voltstogettheoutputtochange.Whenit<br />

changes,itwillsaturatefullynegative.<br />

So,anop-ampwithpositivefeedbacktendstostayinwhateveroutputstateitsalreadyin.<br />

It”latches”betweenoneoftwostates,saturatedpositiveorsaturatednegative. Technically,<br />

thisisknownashysteresis.<br />

Hysteresiscanbeausefulpropertyforacomparatorcircuittohave.Aswe’veseenbefore,<br />

comparatorscanbeusedtoproduceasquarewavefromanysortoframpingwaveform(sine<br />

wave,trianglewave,sawtoothwave,etc.) input. IftheincomingACwaveformisnoise-free<br />

(thatis,a”pure”waveform),asimplecomparatorwillworkjustfine.<br />

V out<br />

V out


390 CHAPTER8. OPERATIONALAMPLIFIERS<br />

V in<br />

−<br />

+<br />

+V<br />

-V<br />

Square wave<br />

output voltage<br />

AC input<br />

voltage<br />

V out<br />

A "clean" AC input waveform produces predictable<br />

transition points on the output voltage square wave<br />

DC reference<br />

voltage<br />

However,ifthereexistanyanomaliesinthewaveformsuchasharmonicsor”spikes”which<br />

causethevoltagetoriseandfallsignificantlywithinthetimespanofasinglecycle,acomparator’soutputmightswitchstatesunexpectedly:<br />

V in<br />

−<br />

+<br />

+V<br />

-V<br />

Square wave<br />

output voltage<br />

AC input<br />

voltage<br />

V out<br />

DC reference<br />

voltage<br />

Anytimethereisatransitionthroughthereferencevoltagelevel,nomatterhowtinythat<br />

transitionmaybe,theoutputofthecomparatorwillswitchstates,producingasquarewave<br />

with”glitches.”<br />

Ifweaddalittlepositivefeedbacktothecomparatorcircuit,wewillintroducehysteresis<br />

intotheoutput.Thishysteresiswillcausetheoutputtoremaininitscurrentstateunlessthe<br />

ACinputvoltageundergoesamajorchangeinmagnitude.


8.12. POSITIVEFEEDBACK 391<br />

V in<br />

−<br />

+<br />

+V<br />

-V<br />

V out<br />

Positive feedback<br />

resistor<br />

Whatthisfeedbackresistorcreatesisadual-referenceforthecomparatorcircuit. The<br />

voltageappliedtothenoninverting(+)inputasareferencewhichtocomparewiththeincoming<br />

ACvoltagechangesdependingonthevalueoftheop-amp’soutputvoltage. Whentheopampoutputissaturatedpositive,thereferencevoltageatthenoninvertinginputwillbemore<br />

positivethanbefore.Conversely,whentheop-ampoutputissaturatednegative,thereference<br />

voltageatthenoninvertinginputwillbemorenegativethanbefore. Theresultiseasierto<br />

understandonagraph:<br />

square wave<br />

output voltage<br />

AC input<br />

voltage<br />

DC reference voltages<br />

upper center lower<br />

Whentheop-ampoutputissaturatedpositive,theupperreferencevoltageisineffect,and<br />

theoutputwon’tdroptoanegativesaturationlevelunlesstheACinputrisesabovethatupper<br />

referencelevel.Conversely,whentheop-ampoutputissaturatednegative,thelowerreference<br />

voltageisineffect,andtheoutputwon’trisetoapositivesaturationlevelunlesstheACinput<br />

dropsbelowthatlowerreferencelevel.Theresultisacleansquare-waveoutputagain,despite<br />

significantamountsofdistortionintheACinputsignal. <strong>In</strong>orderfora”glitch”tocausethe<br />

comparatortoswitchfromonestatetoanother,itwouldhavetobeatleastasbig(tall)asthe<br />

differencebetweentheupperandlowerreferencevoltagelevels,andattherightpointintime<br />

tocrossboththoselevels.<br />

Anotherapplicationofpositivefeedbackinop-ampcircuitsisintheconstructionofoscillatorcircuits.Anoscillatorisadevicethatproducesanalternating(AC),oratleastpulsing,<br />

outputvoltage.Technically,itisknownasanastabledevice:havingnostableoutputstate(no<br />

equilibriumwhatsoever). Oscillatorsareveryusefuldevices,andtheyareeasilymadewith<br />

justanop-ampandafewexternalcomponents.


392 CHAPTER8. OPERATIONALAMPLIFIERS<br />

V ref<br />

Oscillator circuit using positive feedback<br />

C<br />

R<br />

V ramp<br />

V ramp<br />

V ref<br />

−<br />

+<br />

R<br />

R<br />

V out<br />

V out is a square wave just like V ref, only taller<br />

Whentheoutputissaturatedpositive,theVref willbepositive,andthecapacitorwill<br />

chargeupinapositivedirection.WhenVrampexceedsVrefbythetiniestmargin,theoutput<br />

willsaturatenegative,andthecapacitorwillchargeintheoppositedirection(polarity). Oscillationoccursbecausethepositivefeedbackisinstantaneousandthenegativefeedbackis<br />

delayed(bymeansofanRCtimeconstant).Thefrequencyofthisoscillatormaybeadjusted<br />

byvaryingthesizeofanycomponent.<br />

• REVIEW:<br />

• Negativefeedbackcreatesaconditionofequilibrium(balance).Positivefeedbackcreates<br />

aconditionofhysteresis(thetendencyto”latch”inoneoftwoextremestates).<br />

• Anoscillatorisadeviceproducinganalternatingorpulsingoutputvoltage.<br />

8.13 Practicalconsiderations<br />

Realoperationalhavesomeimperfectionscomparedtoan“ideal”model.Arealdevicedeviates<br />

fromaperfectdifferenceamplifier.Oneminusonemaynotbezero.Itmayhavehaveanoffset<br />

likeananalogmeterwhichisnotzeroed. Theinputsmaydrawcurrent. Thecharacteristics<br />

maydriftwithageandtemperature. Gainmaybereducedathighfrequencies,andphase<br />

mayshiftfrominputtooutput. Theseimperfectionmaycausenonoticableerrorsinsome<br />

applications,unacceptableerrorsinothers. <strong>In</strong>somecasestheseerrorsmaybecompensated<br />

for.Sometimesahigherquality,highercostdeviceisrequired.


8.13. PRACTICALCONSIDERATIONS 393<br />

8.13.1 Common-modegain<br />

Asstatedbefore,anidealdifferentialamplifieronlyamplifiesthevoltagedifferencebetween<br />

itstwoinputs. Ifthetwoinputsofadifferentialamplifierweretobeshortedtogether(thus<br />

ensuringzeropotentialdifferencebetweenthem),thereshouldbenochangeinoutputvoltage<br />

foranyamountofvoltageappliedbetweenthosetwoshortedinputsandground:<br />

V common-mode<br />

−<br />

+<br />

V out<br />

V out should remain the same<br />

regardless of V common-mode<br />

Voltagethatiscommonbetweeneitheroftheinputsandground,as”Vcommon−mode”is<br />

inthiscase,iscalledcommon-modevoltage. Aswevarythiscommonvoltage,theperfect<br />

differentialamplifier’soutputvoltageshouldholdabsolutelysteady(nochangeinoutputfor<br />

anyarbitrarychangeincommon-modeinput).Thistranslatestoacommon-modevoltagegain<br />

ofzero.<br />

A V = Change in V out<br />

Change in V in<br />

. . . if change in V out = 0 . . .<br />

0<br />

Change in V in<br />

A V = 0<br />

= 0<br />

Theoperationalamplifier,beingadifferentialamplifierwithhighdifferentialgain,would<br />

ideallyhavezerocommon-modegainaswell.<strong>In</strong>reallife,however,thisisnoteasilyattained.<br />

Thus,common-modevoltageswillinvariablyhavesomeeffectontheop-amp’soutputvoltage.<br />

Theperformanceofarealop-ampinthisregardismostcommonlymeasuredintermsofits<br />

differentialvoltagegain(howmuchitamplifiesthedifferencebetweentwoinputvoltages)versusitscommon-modevoltagegain(howmuchitamplifiesacommon-modevoltage).Theratio<br />

oftheformertothelatteriscalledthecommon-moderejectionratio,abbreviatedasCMRR:<br />

Differential AV CMRR =<br />

Common-mode AV Anidealop-amp,withzerocommon-modegainwouldhaveaninfiniteCMRR.Realop-amps<br />

havehighCMRRs,theubiquitous741havingsomethingaround70dB,whichworksouttoa


394 CHAPTER8. OPERATIONALAMPLIFIERS<br />

littleover3,000intermsofaratio.<br />

Becausethecommonmoderejectionratioinatypicalop-ampissohigh,common-modegain<br />

isusuallynotagreatconcernincircuitswheretheop-ampisbeingusedwithnegativefeedback.Ifthecommon-modeinputvoltageofanamplifiercircuitweretosuddenlychange,thusproducingacorrespondingchangeintheoutputduetocommon-modegain,thatchangeinoutputwouldbequicklycorrectedasnegativefeedbackanddifferentialgain(beingmuchgreater<br />

thancommon-modegain)workedtobringthesystembacktoequilibrium. Sureenough,a<br />

changemightbeseenattheoutput,butitwouldbealotsmallerthanwhatyoumightexpect.<br />

Aconsiderationtokeepinmind,though,iscommon-modegainindifferentialop-ampcircuitssuchasinstrumentationamplifiers.Outsideoftheop-amp’ssealedpackageandextremelyhighdifferentialgain,wemayfindcommon-modegainintroducedbyanimbalanceof<br />

resistorvalues. Todemonstratethis,we’llrunaSPICEanalysisonaninstrumentationamplifierwithinputsshortedtogether(nodifferentialvoltage),imposingacommon-modevoltage<br />

toseewhathappens. First,we’llruntheanalysisshowingtheoutputvoltageofaperfectly<br />

balancedcircuit. Weshouldexpecttoseenochangeinoutputvoltageasthecommon-mode<br />

voltagechanges:<br />

V 1<br />

0<br />

R jump<br />

(jumper<br />

wire)<br />

instrumentation amplifier<br />

v1 1 0<br />

rin1 1 0 9e12<br />

rjump 1 4 1e-12<br />

rin2 4 0 9e12<br />

e1 3 0 1 2 999k<br />

e2 6 0 4 5 999k<br />

e3 9 0 8 7 999k<br />

rload 9 0 10k<br />

r1 2 3 10k<br />

rgain 2 5 10k<br />

r2 5 6 10k<br />

r3 3 7 10k<br />

r4 7 9 10k<br />

r5 6 8 10k<br />

2<br />

5<br />

1<br />

4<br />

+<br />

−<br />

−<br />

+<br />

E 1<br />

E 2<br />

R 1<br />

R gain<br />

R 2<br />

3<br />

6<br />

2<br />

5<br />

R 3<br />

R 5<br />

7<br />

8<br />

7<br />

8<br />

−<br />

+<br />

E 3<br />

R 4<br />

R 6<br />

9<br />

9<br />

0<br />

V out


8.13. PRACTICALCONSIDERATIONS 395<br />

r6 8 0 10k<br />

.dc v1 0 10 1<br />

.print dc v(9)<br />

.end<br />

v1 v(9)<br />

0.000E+00 0.000E+00<br />

1.000E+00 1.355E-16<br />

2.000E+00 2.710E-16<br />

3.000E+00 0.000E+00 As you can see, the output voltage v(9)<br />

4.000E+00 5.421E-16 hardly changes at all for a common-mode<br />

5.000E+00 0.000E+00 input voltage (v1) that sweeps from 0<br />

6.000E+00 0.000E+00 to 10 volts.<br />

7.000E+00 0.000E+00<br />

8.000E+00 1.084E-15<br />

9.000E+00 -1.084E-15<br />

1.000E+01 0.000E+00<br />

Asidefromverysmalldeviations(actuallyduetoquirksofSPICEratherthanrealbehavior<br />

ofthecircuit),theoutputremainsstablewhereitshouldbe:at0volts,withzeroinputvoltage<br />

differential.However,let’sintroducearesistorimbalanceinthecircuit,increasingthevalueof<br />

R5from10,000 Ωto10,500 Ω,andseewhathappens(thenetlisthasbeenomittedforbrevity<br />

–theonlythingalteredisthevalueofR5):<br />

v1 v(9)<br />

0.000E+00 0.000E+00<br />

1.000E+00 -2.439E-02<br />

2.000E+00 -4.878E-02<br />

3.000E+00 -7.317E-02 This time we see a significant variation<br />

4.000E+00 -9.756E-02 (from 0 to 0.2439 volts) in output voltage<br />

5.000E+00 -1.220E-01 as the common-mode input voltage sweeps<br />

6.000E+00 -1.463E-01 from 0 to 10 volts as it did before.<br />

7.000E+00 -1.707E-01<br />

8.000E+00 -1.951E-01<br />

9.000E+00 -2.195E-01<br />

1.000E+01 -2.439E-01<br />

Ourinputvoltagedifferentialisstillzerovolts,yettheoutputvoltagechangessignificantly<br />

asthecommon-modevoltageischanged.Thisisindicativeofacommon-modegain,something<br />

we’retryingtoavoid. Morethanthat,itsacommon-modegainofourownmaking,having<br />

nothingtodowithimperfectionsintheop-ampsthemselves.Withamuch-tempereddifferentialgain(actuallyequalto3inthisparticularcircuit)andnonegativefeedbackoutsidethe<br />

circuit,thiscommon-modegainwillgouncheckedinaninstrumentsignalapplication.<br />

Thereisonlyonewaytocorrectthiscommon-modegain,andthatistobalancealltheresistorvalues.Whendesigninganinstrumentationamplifierfromdiscretecomponents(rather<br />

thanpurchasingoneinanintegratedpackage),itiswisetoprovidesomemeansofmaking


396 CHAPTER8. OPERATIONALAMPLIFIERS<br />

fineadjustmentstoatleastoneofthefourresistorsconnectedtothefinalop-amptobeableto<br />

”trimaway”anysuchcommon-modegain.Providingthemeansto”trim”theresistornetwork<br />

hasadditionalbenefitsaswell. Supposethatallresistorvaluesareexactlyastheyshould<br />

be,butacommon-modegainexistsduetoanimperfectioninoneoftheop-amps. Withthe<br />

adjustmentprovision,theresistancecouldbetrimmedtocompensateforthisunwantedgain.<br />

Onequirkofsomeop-ampmodelsisthatofoutputlatch-up,usuallycausedbythecommonmodeinputvoltageexceedingallowablelimits.Ifthecommon-modevoltagefallsoutsideofthe<br />

manufacturer’sspecifiedlimits,theoutputmaysuddenly”latch”inthehighmode(saturateat<br />

fulloutputvoltage).<strong>In</strong>JFET-inputoperationalamplifiers,latch-upmayoccurifthecommonmodeinputvoltageapproachestoocloselytothenegativepowersupplyrailvoltage.<br />

Onthe<br />

TL082op-amp,forexample,thisoccurswhenthecommon-modeinputvoltagecomeswithin<br />

about0.7voltsofthenegativepowersupplyrailvoltage.Suchasituationmayeasilyoccurin<br />

asingle-supplycircuit,wherethenegativepowersupplyrailisground(0volts),andtheinput<br />

signalisfreetoswingto0volts.<br />

Latch-upmayalsobetriggeredbythecommon-modeinputvoltageexceedingpowersupply<br />

railvoltages,negativeorpositive. Asarule,youshouldneveralloweitherinputvoltageto<br />

riseabovethepositivepowersupplyrailvoltage,orsinkbelowthenegativepowersupply<br />

railvoltage,eveniftheop-ampinquestionisprotectedagainstlatch-up(asarethe741and<br />

1458op-ampmodels).Attheveryleast,theop-amp’sbehaviormaybecomeunpredictable.At<br />

worst,thekindoflatch-uptriggeredbyinputvoltagesexceedingpowersupplyvoltagesmay<br />

bedestructivetotheop-amp.<br />

Whilethisproblemmayseemeasytoavoid,itspossibilityismorelikelythanyoumight<br />

think. Considerthecaseofanoperationalamplifiercircuitduringpower-up. Ifthecircuit<br />

receivesfullinputsignalvoltagebeforeitsownpowersupplyhashadtimeenoughtocharge<br />

thefiltercapacitors,thecommon-modeinputvoltagemayeasilyexceedthepowersupplyrail<br />

voltagesforashorttime. Iftheop-ampreceivessignalvoltagefromacircuitsuppliedbya<br />

differentpowersource,anditsownpowersourcefails,thesignalvoltage(s)mayexceedthe<br />

powersupplyrailvoltagesforanindefiniteamountoftime!<br />

8.13.2 Offsetvoltage<br />

Anotherpracticalconcernforop-ampperformanceisvoltageoffset. Thatis,effectofhaving<br />

theoutputvoltagesomethingotherthanzerovoltswhenthetwoinputterminalsareshorted<br />

together. Rememberthatoperationalamplifiersaredifferentialamplifiersaboveall:they’re<br />

supposedtoamplifythedifferenceinvoltagebetweenthetwoinputconnectionsandnothing<br />

more.Whenthatinputvoltagedifferenceisexactlyzerovolts,wewould(ideally)expecttohave<br />

exactlyzerovoltspresentontheoutput.However,intherealworldthisrarelyhappens.Even<br />

iftheop-ampinquestionhaszerocommon-modegain(infiniteCMRR),theoutputvoltagemay<br />

notbeatzerowhenbothinputsareshortedtogether.Thisdeviationfromzeroiscalledoffset.


8.13. PRACTICALCONSIDERATIONS 397<br />

+15 V<br />

−<br />

+<br />

-15 V<br />

V out = +14.7 V (saturated +)<br />

Aperfectop-ampwouldoutputexactlyzerovoltswithbothitsinputsshortedtogetherand<br />

grounded. However,mostop-ampsofftheshelfwilldrivetheiroutputstoasaturatedlevel,<br />

eithernegativeorpositive.<strong>In</strong>theexampleshownabove,theoutputvoltageissaturatedata<br />

valueofpositive14.7volts,justabitlessthan+V(+15volts)duetothepositivesaturation<br />

limitofthisparticularop-amp. Becausetheoffsetinthisop-ampisdrivingtheoutputtoa<br />

completelysaturatedpoint,there’snowayoftellinghowmuchvoltageoffsetispresentatthe<br />

output.Ifthe+V/-Vsplitpowersupplywasofahighenoughvoltage,whoknows,maybethe<br />

outputwouldbeseveralhundredvoltsonewayortheotherduetotheeffectsofoffset!<br />

Forthisreason,offsetvoltageisusuallyexpressedintermsoftheequivalentamountof<br />

inputvoltagedifferentialproducingthiseffect. <strong>In</strong>otherwords,weimaginethattheop-amp<br />

isperfect(nooffsetwhatsoever),andasmallvoltageisbeingappliedinserieswithoneofthe<br />

inputstoforcetheoutputvoltageonewayortheotherawayfromzero. Beingthatop-amp<br />

differentialgainsaresohigh,thefigurefor”inputoffsetvoltage”doesn’thavetobemuchto<br />

accountforwhatweseewithshortedinputs:<br />

+15 V<br />

−<br />

+<br />

-15 V<br />

<strong>In</strong>put offset voltage<br />

(internal to the real op-amp,<br />

external to this ideal op-amp)<br />

V out = +14.7 V (saturated +)<br />

Offsetvoltagewilltendtointroduceslighterrorsinanyop-ampcircuit. Sohowdowe<br />

compensateforit?Unlikecommon-modegain,thereareusuallyprovisionsmadebythemanufacturertotrimtheoffsetofapackagedop-amp.Usually,twoextraterminalsontheop-amp<br />

packagearereservedforconnectinganexternal”trim”potentiometer.Theseconnectionpoints<br />

arelabeledoffsetnullandareusedinthisgeneralway:


398 CHAPTER8. OPERATIONALAMPLIFIERS<br />

-15 V<br />

+15 V<br />

−<br />

+<br />

V out<br />

Potentiometer adjusted so that<br />

V out = 0 volts with inputs shorted together<br />

Onsingleop-ampssuchasthe741and3130,theoffsetnullconnectionpointsarepins1<br />

and5onthe8-pinDIPpackage.Othermodelsofop-ampmayhavetheoffsetnullconnections<br />

locatedondifferentpins,and/orrequireaslightlydifferenceconfigurationoftrimpotentiometerconnection.Someop-ampsdon’tprovideoffsetnullpinsatall!Consultthemanufacturer’s<br />

specificationsfordetails.<br />

8.13.3 Biascurrent<br />

<strong>In</strong>putsonanop-amphaveextremelyhighinputimpedances.Thatis,theinputcurrentsenteringorexitinganop-amp’stwoinputsignalconnectionsareextremelysmall.Formostpurposesofop-ampcircuitanalysis,wetreatthemasthoughtheydon’texistatall.Weanalyzethecircuitasthoughtherewasabsolutelyzerocurrententeringorexitingtheinputconnections.<br />

Thisidyllicpicture,however,isnotentirelytrue.Op-amps,especiallythoseop-ampswith<br />

bipolartransistorinputs,havetohavesomeamountofcurrentthroughtheirinputconnectionsinorderfortheirinternalcircuitstobeproperlybiased.<br />

Thesecurrents,logically,are<br />

calledbiascurrents.Undercertainconditions,op-ampbiascurrentsmaybeproblematic.The<br />

followingcircuitillustratesoneofthoseproblemconditions:<br />

Thermocouple Vout +<br />

Atfirstglance,weseenoapparentproblemswiththiscircuit.Athermocouple,generatinga<br />

smallvoltageproportionaltotemperature(actually,avoltageproportionaltothedifferencein<br />

temperaturebetweenthemeasurementjunctionandthe”reference”junctionformedwhenthe<br />

alloythermocouplewiresconnectwiththecopperwiresleadingtotheop-amp)drivestheopampeitherpositiveornegative.<strong>In</strong>otherwords,thisisakindofcomparatorcircuit,comparing<br />

thetemperaturebetweentheendthermocouplejunctionandthereferencejunction(nearthe<br />

op-amp). Theproblemisthis: thewireloopformedbythethermocoupledoesnotprovidea<br />

−<br />

+V<br />

-V


8.13. PRACTICALCONSIDERATIONS 399<br />

pathforbothinputbiascurrents,becausebothbiascurrentsaretryingtogothesameway<br />

(eitherintotheop-amporoutofit).<br />

I ?<br />

Thermocouple<br />

I ?<br />

+<br />

Vout -V<br />

−<br />

+V<br />

This comparator circuit won’t work<br />

<strong>In</strong>orderforthiscircuittoworkproperly,wemustgroundoneoftheinputwires,thus<br />

providingapathto(orfrom)groundforbothcurrents:<br />

Thermocouple<br />

+<br />

Vout I I<br />

-V<br />

I<br />

−<br />

+V<br />

This comparator circuit will work<br />

Notnecessarilyanobviousproblem,butaveryrealone!<br />

Anotherwayinputbiascurrentsmaycausetroubleisbydroppingunwantedvoltagesacross<br />

circuitresistances.Takethiscircuitforexample:<br />

Voltage drop due<br />

to bias current:<br />

- Rin +<br />

V in<br />

I bias<br />

Voltage at (+) op-amp input<br />

will not be exactly equal to V in<br />

Weexpectavoltagefollowercircuitsuchastheoneabovetoreproducetheinputvoltage<br />

preciselyattheoutput.Butwhatabouttheresistanceinserieswiththeinputvoltagesource?<br />

Ifthereisanybiascurrentthroughthenoninverting(+)inputatall,itwilldropsomevoltage<br />

acrossRin,thusmakingthevoltageatthenoninvertinginputunequaltotheactualVinvalue.<br />

Biascurrentsareusuallyinthemicroamprange,sothevoltagedropacrossRinwon’tbevery<br />

much,unlessRinisverylarge. Oneexampleofanapplicationwheretheinputresistance<br />

−<br />

+<br />

+V<br />

-V<br />

V out


400 CHAPTER8. OPERATIONALAMPLIFIERS<br />

(Rin)wouldbeverylargeisthatofpHprobeelectrodes,whereoneelectrodecontainsanionpermeableglassbarrier(averypoorconductor,withmillionsof<br />

Ωofresistance).<br />

Ifwewereactuallybuildinganop-ampcircuitforpHelectrodevoltagemeasurement,we’d<br />

probablywanttouseaFETorMOSFET(IGFET)inputop-ampinsteadofonebuiltwith<br />

bipolartransistors(forlessinputbiascurrent).Buteventhen,whatslightbiascurrentsmay<br />

remaincancausemeasurementerrorstooccur,sowehavetofindsomewaytomitigatethem<br />

throughgooddesign.<br />

Onewaytodosoisbasedontheassumptionthatthetwoinputbiascurrentswillbethe<br />

same.<strong>In</strong>reality,theyareoftenclosetobeingthesame,thedifferencebetweenthemreferred<br />

toastheinputoffsetcurrent. Iftheyarethesame,thenweshouldbeabletocanceloutthe<br />

effectsofinputresistancevoltagedropbyinsertinganequalamountofresistanceinseries<br />

withtheotherinput,likethis:<br />

V in<br />

I bias<br />

R in(-)<br />

- +<br />

R in(+)<br />

- +<br />

I bias<br />

−<br />

+<br />

Withtheadditionalresistanceaddedtothecircuit,theoutputvoltagewillbeclosertoVin<br />

thanbefore,evenifthereissomeoffsetbetweenthetwoinputcurrents.<br />

Forbothinvertingandnoninvertingamplifiercircuits,thebiascurrentcompensatingresistorisplacedinserieswiththenoninverting(+)inputtocompensateforbiascurrentvoltage<br />

dropsinthedividernetwork:<br />

V in<br />

+V<br />

-V<br />

Noninverting amplifier with<br />

compensating resistor<br />

R 1<br />

R comp<br />

−<br />

+<br />

R 2<br />

R comp = R 1 // R 2<br />

V out<br />

V out


8.13. PRACTICALCONSIDERATIONS 401<br />

V in<br />

R 1<br />

<strong>In</strong>verting amplifier with<br />

compensating resistor<br />

R comp<br />

Rcomp = R1 // R2 <strong>In</strong>eithercase,thecompensatingresistorvalueisdeterminedbycalculatingtheparallel<br />

resistancevalueofR1andR2.WhyisthevalueequaltotheparallelequivalentofR1andR2?<br />

WhenusingtheSuperpositionTheoremtofigurehowmuchvoltagedropwillbeproducedby<br />

theinverting(-)input’sbiascurrent,wetreatthebiascurrentasthoughitwerecomingfrom<br />

acurrentsourceinsidetheop-ampandshort-circuitallvoltagesources(VinandVout). This<br />

givestwoparallelpathsforbiascurrent(throughR1andthroughR2,bothtoground). We<br />

wanttoduplicatethebiascurrent’seffectonthenoninverting(+)input,sotheresistorvalue<br />

wechoosetoinsertinserieswiththatinputneedstobeequaltoR1inparallelwithR2.<br />

Arelatedproblem,occasionallyexperiencedbystudentsjustlearningtobuildoperational<br />

amplifiercircuits,iscausedbyalackofacommongroundconnectiontothepowersupply.Itis<br />

imperativetoproperop-ampfunctionthatsometerminaloftheDCpowersupplybecommon<br />

tothe”ground”connectionoftheinputsignal(s). Thisprovidesacompletepathforthebias<br />

currents,feedbackcurrent(s),andfortheload(output)current.Takethiscircuitillustration,<br />

forinstance,showingaproperlygroundedpowersupply:<br />

R 1<br />

6 V<br />

-<br />

+<br />

null<br />

R 2<br />

1 kΩ 1 kΩ<br />

Here,arrowsdenotethepathofelectronflowthroughthepowersupplybatteries,bothfor<br />

poweringtheop-amp’sinternalcircuitry(the”potentiometer”insideofitthatcontrolsoutput<br />

−<br />

+<br />

+V<br />

-V<br />

R 2<br />

V out


402 CHAPTER8. OPERATIONALAMPLIFIERS<br />

voltage),andforpoweringthefeedbackloopofresistorsR1andR2.Suppose,however,thatthe<br />

groundconnectionforthis”split”DCpowersupplyweretoberemoved.Theeffectofdoingthis<br />

isprofound:<br />

A power supply ground is essential to circuit operation!<br />

R 1<br />

6 V<br />

-<br />

+<br />

null<br />

R 2<br />

1 kΩ 1 kΩ<br />

+V<br />

-V<br />

broken<br />

connection<br />

Noelectronsmayflowinoroutoftheop-amp’soutputterminal,becausethepathwaytothe<br />

powersupplyisa”deadend.”Thus,noelectronsflowthroughthegroundconnectiontotheleft<br />

ofR1,neitherthroughthefeedbackloop. Thiseffectivelyrenderstheop-ampuseless:itcan<br />

neithersustaincurrentthroughthefeedbackloop,northroughagroundedload,sincethereis<br />

noconnectionfromanypointofthepowersupplytoground.<br />

Thebiascurrentsarealsostopped,becausetheyrelyonapathtothepowersupplyandback<br />

totheinputsourcethroughground.Thefollowingdiagramshowsthebiascurrents(only),as<br />

theygothroughtheinputterminalsoftheop-amp,throughthebaseterminalsoftheinput<br />

transistors,andeventuallythroughthepowersupplyterminal(s)andbacktoground.


8.13. PRACTICALCONSIDERATIONS 403<br />

Bias current paths shown, through power supply<br />

6 V<br />

I bias<br />

I bias<br />

-<br />

+<br />

Withoutagroundreferenceonthepowersupply,thebiascurrentswillhavenocomplete<br />

pathforacircuit,andtheywillhalt.Sincebipolarjunctiontransistorsarecurrent-controlled<br />

devices,thisrenderstheinputstageoftheop-ampuselessaswell,asbothinputtransistors<br />

willbeforcedintocutoffbythecompletelackofbasecurrent.<br />

• REVIEW:<br />

• Op-ampinputsusuallyconductverysmallcurrents,calledbiascurrents,neededtoproperlybiasthefirsttransistoramplifierstageinternaltotheop-amps’circuitry.Biascurrentsaresmall(inthemicroamprange),butlargeenoughtocauseproblemsinsome<br />

applications.<br />

• Biascurrentsinbothinputsmusthavepathstoflowtoeitheroneofthepowersupply<br />

”rails”ortoground.Itisnotenoughtojusthaveaconductivepathfromoneinputtothe<br />

other.<br />

• Tocancelanyoffsetvoltagescausedbybiascurrentflowingthroughresistances,justadd<br />

anequivalentresistanceinserieswiththeotherop-ampinput(calledacompensating<br />

resistor). Thiscorrectivemeasureisbasedontheassumptionthatthetwoinputbias<br />

currentswillbeequal.<br />

• Anyinequalitybetweenbiascurrentsinanop-ampconstituteswhatiscalledaninput<br />

offsetcurrent.<br />

• Itisessentialforproperop-ampoperationthattherebeagroundreferenceonsometerminalofthepowersupply,toformcompletepathsforbiascurrents,feedbackcurrent(s),<br />

andloadcurrent.<br />

+V<br />

-V


404 CHAPTER8. OPERATIONALAMPLIFIERS<br />

8.13.4 Drift<br />

Beingsemiconductordevices,op-ampsaresubjecttoslightchangesinbehaviorwithchanges<br />

inoperatingtemperature. Anychangesinop-ampperformancewithtemperaturefallunder<br />

thecategoryofop-ampdrift.Driftparameterscanbespecifiedforbiascurrents,offsetvoltage,<br />

andthelike.Consultthemanufacturer’sdatasheetforspecificsonanyparticularop-amp.<br />

Tominimizeop-ampdrift,wecanselectanop-ampmadetohaveminimumdrift,and/orwe<br />

candoourbesttokeeptheoperatingtemperatureasstableaspossible.Thelatteractionmay<br />

involveprovidingsomeformoftemperaturecontrolfortheinsideoftheequipmenthousing<br />

theop-amp(s). Thisisnotasstrangeasitmayfirstseem. Laboratory-standardprecision<br />

voltagereferencegenerators,forexample,aresometimesknowntoemploy”ovens”forkeeping<br />

theirsensitivecomponents(suchaszenerdiodes)atconstanttemperatures.Ifextremelyhigh<br />

accuracyisdesiredovertheusualfactorsofcostandflexibility,thismaybeanoptionworth<br />

lookingat.<br />

• REVIEW:<br />

• Op-amps,beingsemiconductordevices,aresusceptibletovariationsintemperature.Any<br />

variationsinamplifierperformanceresultingfromchangesintemperatureisknownas<br />

drift.Driftisbestminimizedwithenvironmentaltemperaturecontrol.<br />

8.13.5 Frequencyresponse<br />

Withtheirincrediblyhighdifferentialvoltagegains,op-ampsareprimecandidatesforaphenomenonknownasfeedbackoscillation.<br />

You’veprobablyheardtheequivalentaudioeffect<br />

whenthevolume(gain)onapublic-addressorothermicrophoneamplifiersystemisturned<br />

toohigh:thathighpitchedsquealresultingfromthesoundwaveform”feedingback”through<br />

themicrophonetobeamplifiedagain. Anop-ampcircuitcanmanifestthissameeffect,with<br />

thefeedbackhappeningelectricallyratherthanaudibly.<br />

Acaseexampleofthisisseeninthe3130op-amp,ifitisconnectedasavoltagefollower<br />

withthebareminimumofwiringconnections(thetwoinputs,output,andthepowersupply<br />

connections). Theoutputofthisop-ampwillself-oscillateduetoitshighgain,nomatter<br />

whattheinputvoltage. Tocombatthis,asmallcompensationcapacitormustbeconnected<br />

totwospecially-providedterminalsontheop-amp. Thecapacitorprovidesahigh-impedance<br />

pathfornegativefeedbacktooccurwithintheop-amp’scircuitry,thusdecreasingtheACgain<br />

andinhibitingunwantedoscillations. Iftheop-ampisbeingusedtoamplifyhigh-frequency<br />

signals,thiscompensationcapacitormaynotbeneeded,butitisabsolutelyessentialforDCor<br />

low-frequencyACsignaloperation.<br />

Someop-amps,suchasthemodel741,haveacompensationcapacitorbuiltintominimize<br />

theneedforexternalcomponents.Thisimprovedsimplicityisnotwithoutacost:duetothat<br />

capacitor’spresenceinsidetheop-amp,thenegativefeedbacktendstogetstrongerasthe<br />

operatingfrequencyincreases(thatcapacitor’sreactancedecreaseswithhigherfrequencies).<br />

Asaresult,theop-amp’sdifferentialvoltagegaindecreasesasfrequencygoesup:itbecomes<br />

alesseffectiveamplifierathigherfrequencies.<br />

Op-ampmanufacturerswillpublishthefrequencyresponsecurvesfortheirproducts.Since<br />

asufficientlyhighdifferentialgainisabsolutelyessentialtogoodfeedbackoperationinop-amp


8.13. PRACTICALCONSIDERATIONS 405<br />

circuits,thegain/frequencyresponseofanop-ampeffectivelylimitsits”bandwidth”ofoperation.Thecircuitdesignermusttakethisintoaccountifgoodperformanceistobemaintained<br />

overtherequiredrangeofsignalfrequencies.<br />

• REVIEW:<br />

• Duetocapacitanceswithinop-amps,theirdifferentialvoltagegaintendstodecreaseas<br />

theinputfrequencyincreases.Frequencyresponsecurvesforop-ampsareavailablefrom<br />

themanufacturer.<br />

8.13.6 <strong>In</strong>puttooutputphaseshift<br />

<strong>In</strong>ordertoillustratethephaseshiftfrominputtooutputofanoperationalamplifier(op-amp),<br />

theOPA227wastestedinourlab. TheOPA227wasconstructedinatypicalnon-inverting<br />

configuration(Figure8.1).<br />

Figure8.1:OPA227Non-invertingstage<br />

Thecircuitconfigurationcallsforasignalgainof ∼ =34V/Vor ∼ =50dB.Theinputexcitation<br />

atVsrcwassetto10mVp,andthreefrequenciesofinterest:2.2kHz,22kHz,and220MHz.<br />

TheOPA227’sopenloopgainandphasecurvevs.frequencyisshowninFigure8.2.<br />

Tohelppredicttheclosedloopphaseshiftfrominputtooutput,wecanusetheopenloop<br />

gainandphasecurve. Sincethecircuitconfigurationcallsforaclosedloopgain,or1/β,of<br />

∼=50dB,theclosedloopgaincurveintersectstheopenloopgaincurveatapproximately22<br />

kHz.Afterthisintersection,theclosedloopgaincurverollsoffatthetypical20dB/decadefor<br />

voltagefeedbackamplifiers,andfollowstheopenloopgaincurve.<br />

Whatisactuallyatworkhereisthenegativefeedbackfromtheclosedloopmodifiesthe<br />

openloopresponse. Closingtheloopwithnegativefeedbackestablishesaclosedlooppoleat<br />

22kHz.Muchlikethedominantpoleintheopenloopphasecurve,wewillexpectphaseshift<br />

intheclosedloopresponse.Howmuchphaseshiftwillwesee?<br />

Sincethenewpoleisnowat22kHz,thisisalsothe-3dBpointasthepolestartstorolloff<br />

theclosedloopagainat20dBperdecadeasstatedearlier. Aswithanypoleinbasiccontrol<br />

theory,phaseshiftstartstooccuronedecadeinfrequencybeforethepole,andendsat90 o of<br />

phaseshiftonedecadeinfrequencyafterthepole.Sowhatdoesthispredictfortheclosedloop<br />

responseinourcircuit?


406 CHAPTER8. OPERATIONALAMPLIFIERS<br />

Figure8.2:AVand Φvs.Frequencyplot<br />

Thiswillpredictphaseshiftstartingat2.2kHz,with45 o ofphaseshiftatthe-3dBpointof<br />

22kHz,andfinallyendingwith90 o ofphaseshiftat220kHz.ThethreeFiguresshownbelow<br />

areoscilloscopecapturesatthefrequenciesofinterestforourOPA227circuit. Figure8.3is<br />

setfor2.2kHz,andnonoticeablephaseshiftispresent. Figure8.4issetfor220kHz,and<br />

∼=45 o ofphaseshiftisrecorded.Finally,Figure8.5issetfor220MHz,andtheexpected ∼ =90 o<br />

ofphaseshiftisrecorded.ThescopeplotswerecapturedusingaLeCroy44xWavesurfer.The<br />

finalscopeplotusedax1probewiththetriggersettoHFreject.<br />

Figure8.3:OPA227Av=50dB@2.2kHz


8.13. PRACTICALCONSIDERATIONS 407<br />

Figure8.4:OPA227Av=50dB@22kHz<br />

Figure8.5:OPA227Av=50dB@220kHz


408 CHAPTER8. OPERATIONALAMPLIFIERS<br />

8.14 Operationalamplifiermodels<br />

Whilementionofoperationalamplifierstypicallyprovokesvisionsofsemiconductordevices<br />

builtasintegratedcircuitsonaminiaturesiliconchip,thefirstop-ampswereactuallyvacuum<br />

tubecircuits.Thefirstcommercial,generalpurposeoperationalamplifierwasmanufactured<br />

bytheGeorgeA.PhilbrickResearches,<strong>In</strong>corporated,in1952. DesignatedtheK2-W,itwas<br />

builtaroundtwotwin-triodetubesmountedinanassemblywithanoctal(8-pin)socketforeasy<br />

installationandservicinginelectronicequipmentchassisofthatera. Theassemblylooked<br />

somethinglikethis:<br />

approx.<br />

4 inches<br />

The Philbrick Researches<br />

op-amp, model K2-W<br />

GAP/R<br />

MODEL<br />

K2-W<br />

Theschematicdiagramshowsthetwotubes,alongwithtenresistorsandtwocapacitors,a<br />

fairlysimplecircuitdesignevenby1952standards:<br />

<strong>In</strong>verting (-)<br />

input<br />

Noninverting (+)<br />

input<br />

+300 V<br />

12AX7<br />

-300 V<br />

The Philbrick Researches op-amp, model K2-W<br />

220 kΩ<br />

220 kΩ<br />

500 pF<br />

510 kΩ<br />

1 MΩ<br />

2.2 MΩ<br />

12AX7<br />

221 kΩ<br />

9.1 kΩ<br />

680 kΩ<br />

7.5 pF<br />

120 kΩ 4.7 MΩ<br />

NE-68<br />

Output<br />

<strong>In</strong>caseyou’reunfamiliarwiththeoperationofvacuumtubes,theyoperatesimilarlytoN-


8.14. OPERATIONALAMPLIFIERMODELS 409<br />

channeldepletion-typeIGFETtransistors:thatis,theyconductmorecurrentwhenthecontrol<br />

grid(thedashedline)ismademorepositivewithrespecttothecathode(thebentlinenearthe<br />

bottomofthetubesymbol),andconductlesscurrentwhenthecontrolgridismadelesspositive<br />

(ormorenegative)thanthecathode.Thetwintriodetubeontheleftfunctionsasadifferential<br />

pair,convertingthedifferentialinputs(invertingandnoninvertinginputvoltagesignals)into<br />

asingle,amplifiedvoltagesignalwhichisthenfedtothecontrolgridofthelefttriodeof<br />

thesecondtriodepairthroughavoltagedivider(1MΩ −−2.2MΩ). Thattriodeamplifies<br />

andinvertstheoutputofthedifferentialpairforalargervoltagegain,thentheamplified<br />

signaliscoupledtothesecondtriodeofthesamedual-triodetubeinanoninvertingamplifier<br />

configurationforalargercurrentgain. Thetwoneon”glowtubes”actasvoltageregulators,<br />

similartothebehaviorofsemiconductorzenerdiodes,toprovideabiasvoltageinthecoupling<br />

betweenthetwosingle-endedamplifiertriodes.<br />

Withadual-supplyvoltageof+300/-300volts,thisop-ampcouldonlyswingitsoutput+/-<br />

50volts,whichisverypoorbytoday’sstandards. Ithadanopen-loopvoltagegainof15,000<br />

to20,000,aslewrateof+/-12volts/µsecond,amaximumoutputcurrentof1mA,aquiescent<br />

powerconsumptionofover3watts(notincludingpowerforthetubes’filaments!),andcost<br />

about$24in1952dollars.Betterperformancecouldhavebeenattainedusingamoresophisticatedcircuitdesign,butonlyattheexpenseofgreaterpowerconsumption,greatercost,and<br />

decreasedreliability.<br />

Withtheadventofsolid-statetransistors,op-ampswithfarlessquiescentpowerconsumptionandincreasedreliabilitybecamefeasible,butmanyoftheotherperformanceparametersremainedaboutthesame.TakeforinstancePhilbrick’smodelP55A,ageneral-purposesolidstateop-ampcirca1966.<br />

TheP55Asportedanopen-loopgainof40,000,aslewrateof1.5<br />

volt/µsecondandanoutputswingof+/-11volts(atapowersupplyvoltageof+/-15volts),<br />

amaximumoutputcurrentof2.2mA,andacostof$49(orabout$21forthe”utilitygrade”<br />

version).TheP55A,aswellasotherop-ampsinPhilbrick’slineupofthetime,wasofdiscretecomponentconstruction,itsconstituenttransistors,resistors,andcapacitorshousedinasolid<br />

”brick”resemblingalargeintegratedcircuitpackage.<br />

Itisn’tverydifficulttobuildacrudeoperationalamplifierusingdiscretecomponents. A<br />

schematicofonesuchcircuitisshowninFigure8.6.<br />

Whileitsperformanceisratherdismalbymodernstandards,itdemonstratesthatcomplexityisnotnecessarytocreateaminimallyfunctionalop-amp.TransistorsQ3andQ4form<br />

theheartofanotherdifferentialpaircircuit,thesemiconductorequivalentofthefirsttriode<br />

tubeintheK2-Wschematic. Asitwasinthevacuumtubecircuit,thepurposeofadifferentialpairistoamplifyandconvertadifferentialvoltagebetweenthetwoinputterminalstoa<br />

single-endedoutputvoltage.<br />

Withtheadventofintegrated-circuit(IC)technology,op-ampdesignsexperiencedadramaticincreaseinperformance,reliability,density,andeconomy.<br />

Betweentheyearsof1964<br />

and1968,theFairchildcorporationintroducedthreemodelsofICop-amps:the702,709,and<br />

thestill-popular741.Whilethe741isnowconsideredoutdatedintermsofperformance,itis<br />

stillafavoriteamonghobbyistsforitssimplicityandfaulttolerance(short-circuitprotection<br />

ontheoutput,forinstance).Personalexperienceabusingmany741op-ampshasledmetothe<br />

conclusionthatitisahardchiptokill...<br />

Theinternalschematicdiagramforamodel741op-ampisshowninFigure8.7.<br />

Byintegratedcircuitstandards,the741isaverysimpledevice: anexampleofsmallscaleintegration,orSSItechnology.<br />

Itwouldbenosmallmattertobuildthiscircuitusing


410 CHAPTER8. OPERATIONALAMPLIFIERS<br />

input (+)<br />

Q 5<br />

+V<br />

Q 1<br />

Q 3<br />

-V<br />

Q 6<br />

Q 2<br />

Q 4<br />

(-) input<br />

Output<br />

A simple operational<br />

amplifier made from<br />

discrete components<br />

Figure8.6:Asimpleoperationalamplifiermadefromdiscretecomponents.<br />

(-) input<br />

(+) input<br />

offset null<br />

offset null<br />

R 1<br />

Q 1<br />

Q 3<br />

Q 5<br />

-V<br />

+V<br />

Q 7<br />

R 3<br />

Q 8 Q 9 Q 12<br />

Q 2<br />

Q 4<br />

Q 6<br />

R 2<br />

Q 10<br />

<strong>In</strong>ternal schematic of a model 741 operational amplifier<br />

R 4<br />

R 5<br />

Q 11<br />

C 1<br />

Q 23<br />

Figure8.7:Schematicdiagramofamodel741op-amp.<br />

R 9<br />

Q 16<br />

Q 13<br />

Q 17<br />

R 8<br />

Q 24<br />

Q 18<br />

R 10<br />

Q 22<br />

Q 19<br />

R 11<br />

Q 15<br />

Q 21<br />

Q 14<br />

Q 20<br />

R 6<br />

R 7<br />

Output


8.14. OPERATIONALAMPLIFIERMODELS 411<br />

discretecomponents,soyoucanseetheadvantagesofeventhemostprimitiveintegrated<br />

circuittechnologyoverdiscretecomponentswherehighpartscountsareinvolved.<br />

Forthehobbyist,student,orengineerdesiringgreaterperformance,thereareliterallyhundredsofop-ampmodelstochoosefrom.<br />

Manysellforlessthanadollarapiece,evenretail!<br />

Special-purposeinstrumentationandradio-frequency(RF)op-ampsmaybequiteabitmore<br />

expensive.<strong>In</strong>thissectionIwillshowcaseseveralpopularandaffordableop-amps,comparing<br />

andcontrastingtheirperformancespecifications. Thevenerable741isincludedasa”benchmark”forcomparison,althoughitis,asIsaidbefore,consideredanobsoletedesign.<br />

Table8.1:Widelyusedoperationalamplifiers<br />

Model Devices/ Power Bandwidth Bias Slew Output<br />

package supply current rate current<br />

number (count) (V) (MHz) (nA) (V/µS) (mA)<br />

TL082 2 12/36 4 8 13 17<br />

LM301A 1 10/36 1 250 0.5 25<br />

LM318 1 10/40 15 500 70 20<br />

LM324 4 3/32 1 45 0.25 20<br />

LF353 2 12/36 4 8 13 20<br />

LF356 1 10/36 5 8 12 25<br />

LF411 1 10/36 4 20 15 25<br />

741C 1 10/36 1 500 0.5 25<br />

LM833 2 10/36 15 1050 7 40<br />

LM1458 2 6/36 1 800 10 45<br />

CA3130 1 5/16 15 0.05 10 20<br />

ListedinTable 8.1arebutafewofthelow-costoperationalamplifiermodelswidelyavailablefromelectronicssuppliers.Mostofthemareavailablethroughretailsupplystoressuchas<br />

RadioShack.Allareunder$1.00costdirectfromthemanufacturer(year2001prices).Asyou<br />

cansee,thereissubstantialvariationinperformancebetweensomeoftheseunits. Takefor<br />

instancetheparameterofinputbiascurrent:theCA3130winstheprizeforlowest,at0.05nA<br />

(or50pA),andtheLM833hasthehighestatslightlyover1µA.ThemodelCA3130achieves<br />

itsincrediblylowbiascurrentthroughtheuseofMOSFETtransistorsinitsinputstage.One<br />

manufactureradvertisesthe3130’sinputimpedanceas1.5tera-ohms,or1.5x10 12 Ω!Other<br />

op-ampsshownherewithlowbiascurrentfiguresuseJFETinputtransistors,whilethehigh<br />

biascurrentmodelsusebipolarinputtransistors.<br />

Whilethe741isspecifiedinmanyelectronicprojectschematicsandshowcasedinmany<br />

textbooks,itsperformancehaslongbeensurpassedbyotherdesignsineverymeasure.Even<br />

somedesignsoriginallybasedonthe741havebeenimprovedovertheyearstofarsurpass<br />

originaldesignspecifications. Onesuchexampleisthemodel1458,twoop-ampsinan8-pin<br />

DIPpackage,whichatonetimehadtheexactsameperformancespecificationsasthesingle<br />

741. <strong>In</strong>itslatestincarnationitboastsawiderpowersupplyvoltagerange,aslewrate50<br />

timesasgreat,andalmosttwicetheoutputcurrentcapabilityofa741,whilestillretaining<br />

theoutputshort-circuitprotectionfeatureofthe741.Op-ampswithJFETandMOSFETinput<br />

transistorsfarexceedthe741’sperformanceintermsofbiascurrent,andgenerallymanageto<br />

beatthe741intermsofbandwidthandslewrateaswell.


412 CHAPTER8. OPERATIONALAMPLIFIERS<br />

Myownpersonalrecommendationsforop-ampsareassuch: whenlowbiascurrentisa<br />

priority(suchasinlow-speedintegratorcircuits),choosethe3130. Forgeneral-purposeDC<br />

amplifierwork,the1458offersgoodperformance(andyougettwoop-ampsinthespaceof<br />

onepackage).Foranupgradeinperformance,choosethemodel353,asitisapin-compatible<br />

replacementforthe1458. The353isdesignedwithJFETinputcircuitryforverylowbias<br />

current,andhasabandwidth4timesaregreatasthe1458,althoughitsoutputcurrentlimit<br />

islower(butstillshort-circuitprotected).Itmaybemoredifficulttofindontheshelfofyour<br />

localelectronicssupplyhouse,butitisjustasreasonablypricedasthe1458.<br />

Iflowpowersupplyvoltageisarequirement,Irecommendthemodel324,asitfunctions<br />

onaslowas3voltsDC.Itsinputbiascurrentrequirementsarealsolow,anditprovidesfour<br />

op-ampsinasingle14-pinchip.Itsmajorweaknessisspeed,limitedto1MHzbandwidthand<br />

anoutputslewrateofonly0.25voltsper µs.Forhigh-frequencyACamplifiercircuits,the318<br />

isaverygood”generalpurpose”model.<br />

Special-purposeop-ampsareavailableformodestcostwhichprovidebetterperformance<br />

specifications.Manyofthesearetailoredforaspecifictypeofperformanceadvantage,suchas<br />

maximumbandwidthorminimumbiascurrent.Takeforinstancetheop-amps,bothdesigned<br />

forhighbandwidthinTable 8.2.<br />

Table8.2:Highbandwidthoperationalamplifiers<br />

Model Devices/ Power Bandwidth Bias Slew Output<br />

package supply current rate current<br />

number (count) (V) (MHz) (nA) (V/µS) (mA)<br />

CLC404 1 10/14 232 44,000 2600 70<br />

CLC425 1 5/14 1900 40,000 350 90<br />

TheCLC404listsat$21.80(almostasmuchasGeorgePhilbrick’sfirstcommercialopamp,albeitwithoutcorrectionforinflation),whiletheCLC425isquiteabitlessexpensiveat<br />

$3.23perunit.<strong>In</strong>bothcaseshighspeedisachievedattheexpenseofhighbiascurrentsand<br />

restrictivepowersupplyvoltageranges. Someop-amps,designedforhighpoweroutputare<br />

listedinTable8.3.<br />

Table8.3:Highcurrentoperationalamplifiers<br />

Model Devices/ Power Bandwidth Bias Slew Output<br />

package supply current rate current<br />

number (count) (V) (MHz) (nA) (V/µS) (mA)<br />

LM12CL 1 15/80 0.7 1000 9 13,000<br />

LM7171 1 5.5/36 200 12,000 4100 100<br />

Yes,theLM12CLactuallyhasanoutputcurrentratingof13amps(13,000milliamps)!<br />

Itlistsat$14.40,whichisnotalotofmoney,consideringtherawpowerofthedevice. The<br />

LM7171,ontheotherhand,tradeshighcurrentoutputabilityforfastvoltageoutputability<br />

(ahighslewrate).Itlistsat$1.19,aboutaslowassome”generalpurpose”op-amps.<br />

Amplifierpackagesmayalsobepurchasedascompleteapplicationcircuitsasopposedto<br />

bareoperationalamplifiers. TheBurr-BrownandAnalogDevicescorporations,forexample,


8.15. DATA 413<br />

bothlongknownfortheirprecisionamplifierproductlines,offerinstrumentationamplifiers<br />

inpre-designedpackagesaswellasotherspecializedamplifierdevices.<strong>In</strong>designswherehigh<br />

precisionandrepeatabilityafterrepairisimportant,itmightbeadvantageousforthecircuit<br />

designertochoosesuchapre-engineeredamplifier”block”ratherthanbuildthecircuitfrom<br />

individualop-amps.Ofcourse,theseunitstypicallycostquiteabitmorethanindividualopamps.<br />

8.15 Data<br />

Parametricaldataforallsemiconductorop-ampmodelsexcepttheCA3130comesfromNationalSemiconductor’sonlineresources,availableatthiswebsite:<br />

(http://www.national.com).<br />

DatafortheCA3130comesfromHarrisSemiconductor’sCA3130/CA3130Adatasheet(file<br />

number817.4).<br />

Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

WayneLittle(June2007):Author,“<strong>In</strong>puttooutputphaseshift”subsection,in“Practical<br />

considerations”section.


414 CHAPTER8. OPERATIONALAMPLIFIERS


Chapter9<br />

PRACTICALANALOG<br />

SEMICONDUCTORCIRCUITS<br />

Contents<br />

9.1 ElectroStaticDischarge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415<br />

9.1.1 ESDDamagePrevention. . . . . . . . . . . . . . . . . . . . . . . . . . . .416<br />

9.1.2 StorageandTransportationofESDsensitivecomponentandboards. . .419<br />

9.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420<br />

9.2 Powersupplycircuits–INCOMPLETE . . . . . . . . . . . . . . . . . . . . .420<br />

9.2.1 Unregulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421<br />

9.2.2 Linearregulated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421<br />

9.2.3 Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421<br />

9.2.4 Rippleregulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422<br />

9.3 Amplifiercircuits–PENDING. . . . . . . . . . . . . . . . . . . . . . . . . . .422<br />

9.4 Oscillatorcircuits–INCOMPLETE. . . . . . . . . . . . . . . . . . . . . . . .422<br />

9.4.1 Varactormultiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422<br />

9.5 Phase-lockedloops–PENDING..........................424<br />

9.6 Radiocircuits–INCOMPLETE . . . . . . . . . . . . . . . . . . . . . . . . . .424<br />

9.7 Computationalcircuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .433<br />

9.8 Measurementcircuits–INCOMPLETE . . . . . . . . . . . . . . . . . . . . .455<br />

9.9 Controlcircuits–PENDING . . . . . . . . . . . . . . . . . . . . . . . . . . . .456<br />

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456<br />

***INCOMPLETE***<br />

9.1 ElectroStaticDischarge<br />

<strong>Volume</strong>Ichapter1.1discussesstaticelectricity,andhowitiscreated. Thishasalotmore<br />

significancethanmightbefirstassumed,ascontrolofstaticelectricityplaysalargepartin<br />

415


416 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

modernelectronicsandotherprofessions. AnElectroStaticDischargeeventiswhenastatic<br />

chargeisbledoffinanuncontrolledfashion,andwillbereferredtoasESDhereafter.<br />

ESDcomesinmanyforms,itcanbeassmallas50voltsofelectricitybeingequalizedup<br />

totensofthousandsofvolts. Theactualpowerisextremelysmall,sosmallthatnodanger<br />

isgenerallyofferedtosomeonewhoisinthedischargepathofESD.Itusuallytakesseveral<br />

thousandvoltsforapersontoevennoticeESDintheformofasparkandthefamiliarzap<br />

thataccompaniesit.TheproblemwithESDisevenasmalldischargethatcangocompletely<br />

unnoticedcanruinsemiconductors.Astaticchargeofthousandsofvoltsiscommon,however<br />

thereasonitisnotathreatisthereisnocurrentofanysubstantialdurationbehindit.These<br />

extremevoltagesdoallowionizationoftheairandallowothermaterialstobreakdown,which<br />

istherootofwherethedamagecomesfrom.<br />

ESDisnotanewproblem.Blackpowdermanufacturingandotherpyrotechnicindustries<br />

havealwaysbeendangerousifanESDeventoccursinthewrongcircumstance. Duringthe<br />

eraoftubes(AKAvalves)ESDwasanonexistentissueforelectronics,butwiththeadventof<br />

semiconductors,andtheincreaseinminiaturization,ithasbecomemuchmoreserious.<br />

Damagetocomponentscan,andusuallydo,occurwhenthepartisintheESDpath.Many<br />

parts,suchaspowerdiodes,areveryrobustandcanhandlethedischarge,butifaparthas<br />

asmallorthingeometryaspartoftheirphysicalstructurethenthevoltagecanbreakdown<br />

thatpartofthesemiconductor.Currentsduringtheseeventsbecomequitehigh,butareinthe<br />

nanosecondtomicrosecondtimeframe. Partofthecomponentisleftpermanentlydamaged<br />

bythis,whichcancausetwotypesoffailuremodes. Catastrophicistheeasyone,leaving<br />

thepartcompletelynonfunctional.Theothercanbemuchmoreserious.Latentdamagemay<br />

allowtheproblemcomponenttoworkforhours,daysorevenmonthsaftertheinitialdamage<br />

beforecatastrophicfailure.Manytimesthesepartsarereferredtoas”walkingwounded”,since<br />

theyareworkingbutbad.Figure9.1isshownanexampleoflatent(”walkingwounded”)ESD<br />

damage. Ifthesecomponentsendupinalifesupportrole,suchasmedicalormilitaryuse,<br />

thentheconsequencescanbegrim.Formosthobbyistsitisaninconvenience,butitcanbean<br />

expensiveone.<br />

EvencomponentsthatareconsideredfairlyruggedcanbedamagedbyESD.Bipolartransistors,theearliestofthesolidstateamplifiers,arenotimmune,thoughlesssusceptible.Someofthenewerhighspeedcomponentscanberuinedwithaslittleas3volts.Therearecomponentsthatmightnotbeconsideredatrisk,suchassomespecializedresistorsandcapacitors<br />

manufacturedusingMOS(MetalOxideSemiconductor)technology,thatcanbedamagedvia<br />

ESD.<br />

9.1.1 ESDDamagePrevention<br />

BeforeESDcanbepreventeditisimportanttounderstandwhatcausesit.Generallymaterials<br />

aroundtheworkbenchcanbebrokenupinto3categories. TheseareESDGenerative,ESD<br />

Neutral,andESDDissipative(orESDConductive).ESDGenerativematerialsareactivestatic<br />

generators,suchasmostplastics,cathair,andpolyesterclothing.ESDNeutralmaterialsare<br />

generallyinsulative,butdon’ttendtogenerateorholdstaticchargesverywell.Examplesof<br />

thisincludewood,paper,andcotton.Thisisnottosaytheycannotbestaticgeneratorsoran<br />

ESDhazard,buttheriskissomewhatminimizedbyotherfactors.Woodandwoodproducts,<br />

forexample,tendtoholdmoisture,whichcanmakethemslightlyconductive.Thisistrueof<br />

alotoforganicmaterials.Ahighlypolishedtablewouldnotfallunderthiscategory,because


9.1. ELECTROSTATICDISCHARGE 417<br />

Figure9.1:<br />

theglossisusuallyplastic,orvarnish,whicharehighlyefficientinsulators.ESDConductive<br />

materialsareprettyobvious,theyarethemetaltoolslayingaround. Plastichandlescanbe<br />

aproblem,butthemetalwillbleedastaticchargeawayasfastasitisgeneratedifitisona<br />

groundedsurface.Therearealotofothermaterials,suchassomeplastics,thataredesigned<br />

tobeconductive.TheywouldfallundertheheadingofESDDissipative.Dirtandconcreteare<br />

alsoconductive,andfallundertheESDDissipativeheading.<br />

Therearealotofactivitiesthatgeneratestatic,whichyouneedtobeawareofaspartof<br />

anESDcontrolregimen.Thesimpleactofpullingtapeoffadispensercangenerateextreme<br />

voltage. Rollingaroundinachairisanotherstaticgenerator,asisscratching. <strong>In</strong>fact,any<br />

activitythatallows2ormoresurfacestorubagainsteachotherisprettycertaintogenerate<br />

somestaticcharge.Thiswasmentionedinthebeginningofthisbook,butrealworldexamples<br />

canbesubtle.Thisiswhyamethodforcontinuouslybleedingoffthisvoltageisneeded.Things<br />

thatgeneratehugeamountsofstaticshouldbeavoidedwhileworkingoncomponents.<br />

Plasticisusuallyassociatedwiththegenerationofstatic.Thishasbeengottenaroundin<br />

theformofconductiveplastics.Theusualwaytomakeconductiveplasticisanadditivethat<br />

changestheelectricalcharacteristicsoftheplasticfromaninsulatortoaconductor,although<br />

itwilllikelystillhavearesistanceofmillionsofohmspersquareinch. Plasticshavebeen<br />

developedthatcanbeusedasconductorsisinlowweightapplications,suchasthoseinthe<br />

airlineindustries.Thesearespecialistapplications,andarenotgenerallyassociatedwithESD<br />

control.<br />

ItisnotallbadnewsforESDprotection. Thehumanbodyisaprettydecentconductor.<br />

Highhumidityintheairwillalsoallowastaticchargetodissipateharmlesslyaway,aswell<br />

asmakingESDNeutralmaterialsmoreconductive. Thisiswhycoldwinterdays,wherethe<br />

humidityinsideahousecanbequitelow,canincreasethenumberofsparksonadoorknob.<br />

Summer,orrainydays,youwouldhavetoworkquitehardtogenerateasubstantialamountof<br />

static.<strong>In</strong>dustrycleanroomsandfactoryfloorsgotheefforttoregulatebothtemperatureand<br />

humidityforthisreason. Concretefloorsarealsoconductive,sotheremaybesomeexisting<br />

componentsinthehomethatcanaidinsettingupprotections.


418 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

ToestablishESDprotectiontherehastobeastandardvoltagelevelthateverythingis<br />

referencedto. Suchalevelexistsintheformofground. Thereareverygoodsafetyreasons<br />

thatgroundisusedaroundthehouseinoutlets. <strong>In</strong>somewaysthisrelatestostatic,butnot<br />

directly.Itdoesgiveusaplacetodumpourexcesselectrons,oracquiresomeifweareshort,<br />

toneutralizeanychargesourbodiesandtoolsmightacquire.Ifeverythingonaworkbenchis<br />

connecteddirectlyorindirectlytogroundviaaconductorthenstaticwilldissipatelongbefore<br />

anESDeventhasachancetooccur.<br />

Agoodgroundingpointcanbemadeseveraldifferentways.<strong>In</strong>houseswithmodernwiring<br />

thatisuptocodethegroundpinontheACplugincanbeused,orthescrewthatholdsthe<br />

outletscoverplateon. Thisisbecausehousewiringactuallyhasawireorspikegoinginto<br />

theearthsomewherewherethepoweristappedfromthemainpowerlines.Forpeoplewhose<br />

housewiringisn’tquiterightaspikedrivenintotheearthatleast3feetorasimpleelectrical<br />

connectiontometalplumbing(worstoption)canbeused. Themainthingistoestablishan<br />

electricalpathtotheearthoutsidethehouse.<br />

TenmegohmsisconsideredaconductorintheworldofESDcontrol. Staticelectricityis<br />

voltagewithnorealcurrent,andifachargeisbledoffsecondsafterbeinggenerateditis<br />

nullified.Generallya1to10megohmresistorisusedtoconnectanyESDprotectionforthis<br />

reason.IthasthebenefitofslowingthedischargerateduringanESDevent,whichincreases<br />

thelikelihoodofacomponentsurvivingundamaged.Thefasterthedischarge,thehigherthe<br />

currentspikegoingthoughthecomponent. Anotherreasonsucharesistanceisconsidered<br />

desirableisiftheuserisaccidentallyshortedtohighvoltage,suchashouseholdcurrent,it<br />

won’tbetheESDprotectionsthatkillthem.<br />

AlargeindustryhasgrownuparoundcontrollingESDintheelectronicsindustry. The<br />

stapleofanyelectronicsconstructionistheworkbenchwithastaticconductiveordissipative<br />

surface.Thissurfacecanbeboughtcommercially,orhomemadeintheformofasheetofmetal<br />

orfoil.<strong>In</strong>thecaseofametalsurfaceitmightbeagoodideatolaythinpaperontop,althoughit<br />

isnotnecessaryifyouarenotdoinganypoweredtestsonthesurface.Thecommercialversion<br />

isusuallysomeformofconductiveplasticwhoseresistanceishighenoughnottobeaproblem,<br />

whichisabettersolution. Ifyouaremakingyourownsurfacefortheworkbenchbesureto<br />

addthe10megohmresistortoground,otherwiseyouhavenoprotectionatall.<br />

TheotherbigitemthatneedsESDgroundedisyou.Peoplearewalkingstaticgenerators.<br />

Yourbodybeingconductiveitisrelativelyeasytogrounditthough,thisisusuallydonewith<br />

awriststrap.Commercialversionsalreadyhavetheresistorbuiltin,andhaveawidestrapto<br />

offeragoodcontactsurfacewithyourskin.Disposableversionscanbeboughtforafewdollars.<br />

AmetalwatchbandisalsoagoodESDprotectionconnectionpoint.Justaddawire(withthe<br />

resistor)toyourgroundingpoint.Mostindustriestaketheissueseriouslyenoughtousereal<br />

timemonitorsthatwillsoundanalarmiftheoperatorisnotproperlygrounded.<br />

Anotherwayofgroundingyourselfisaheelstrap. Aconductiveplasticpartiswrapped<br />

aroundtheheelofyourshoe,withaconductiveplasticstrapgoingupandunderyoursockfor<br />

goodcontactwiththeskin.Itonlyworksonfloorswithconductivewaxorconcrete.Themethod<br />

willkeepapersonfromgeneratinglargechargesthatcanoverwhelmotherESDprotections,<br />

andisnotconsideredadequateinandofitself.Youcangetthesameeffectbywalkingbarefoot<br />

onaconcretefloor.<br />

YetanotherESDprotectionistowearESDconductivesmocks.Liketheheelstrap,thisis<br />

asecondaryprotection,notmeanttoreplacethewriststrap.Theyaremeanttoshortcircuit<br />

anychargesthatyourclothesmaygenerate.


9.1. ELECTROSTATICDISCHARGE 419<br />

Figure9.2:<br />

Movingaircanalsogeneratesubstantialstaticcharges.Whenyoublowdustoffyourelectronicstheirwillbestaticgenerated.Anindustrialsolutiontotheproblemtothisissueistwo<br />

fold: Firstly,airgunshaveasmall,wellshieldedradioactivematerialimplantedwithinthe<br />

airguntoionizetheair.Ionizedairisaconductor,andwillbleedoffstaticchargesquitewell.<br />

Secondly,usehighvoltageelectricitytoionizetheaircomingoutofafan,whichhasthesame<br />

effectastheairgun. ThiswilleffectivelyhelpaworkstationreducethepotentialforESD<br />

generationbyalargeamount.<br />

AnotherESDprotectionisthesimplestofall,distance.Manyindustrieshaverulesstating<br />

allNeutralandGenerativematerialswillbeatleast12inchesormorefromanyworkin<br />

progress.<br />

TheusercanalsoreducethepossibilityofESDdamagebysimplynotremovingthepart<br />

outofitsprotectivepackaginguntilitistimetoinsertitintothecircuit.Thiswillreducethe<br />

likelihoodofESDexposure,andwhilethecircuitwillstillbevulnerable,thecomponentwill<br />

havesomeminorprotectionfromtherestofthecomponents,astheothercomponentswilloffer<br />

differentdischargepathsforESD.<br />

9.1.2 StorageandTransportationofESDsensitivecomponentand<br />

boards<br />

ItdoesnogoodtofollowESDprotectionsontheworkbenchifthepartsarebeingdamaged<br />

whilestoringorcarryingthem. ThemostcommonmethodistouseavariationofaFaraday<br />

cage,anESDbag.AnESDbagsurroundsthecomponentwithaconductiveshield,andusually<br />

hasanonstaticgeneratinginsulativelayerinside.<strong>In</strong>permanentFaradaycagesthisshieldis<br />

grounded,asinthecaseofRFIrooms,butwithportablecontainersthisisn’tpractical. By


420 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

puttingaESDbagonagroundedsurfacethesamethingisaccomplished.Faradaycageswork<br />

byroutingtheelectricchargearoundthecontentsandgroundingthemimmediately. Acar<br />

struckbylightningisanextremeexampleofaFaradaycage.<br />

Staticbagsarebyfarthemostcommonmethodofstoringcomponentsandboards. They<br />

aremadeusingextremelythinlayersofmetal,sothinastobealmosttransparent.Abagwith<br />

ahole,evensmallones,oronethatisnotfoldedontoptosealthecontentfromoutsidecharges<br />

isineffective.<br />

Anothermethodofprotectingpartsinstorageistotesortubes.<strong>In</strong>thesecasesthepartsare<br />

putintoconductiveboxes,withalidofthesamematerial. ThiseffectivelyformsaFaraday<br />

cage. AtubeismeantforICsandotherdeviceswithalotofpins,andstoresthepartsina<br />

moldedconductiveplastictubethatkeepsthepartssafebothmechanicallyandelectrically.<br />

9.1.3 Conclusion<br />

Figure9.3:<br />

ESDcanbeaminorunfelteventmeasuringafewvolts,oramassiveeventpresentingreal<br />

dangerstooperators.AllESDprotectionscanbeoverwhelmedbycircumstance,butthiscan<br />

becircumventedbyawarenessofwhatitisandhowtopreventit. Manyprojectshavebeen<br />

builtwithnoESDprotectionsatallandworkedwell.Giventhatprotectingtheseprojectsisa<br />

minorinconvenienceitisbettertomaketheeffort.<br />

<strong>In</strong>dustrytakestheproblemveryseriously,asbothapotentiallifethreateningissueanda<br />

qualityissue.Someonewhobuysanexpensivepieceofelectronicsorhightechhardwareisnot<br />

goingtobehappyiftheyhavetoreturnitin6months.Whenareputationisonthelineitis<br />

easiertodotherightthing.<br />

9.2 Powersupplycircuits–INCOMPLETE<br />

Therearethreemajorkindsofpowersupplies: unregulated(alsocalledbruteforce),linear<br />

regulated,andswitching.Afourthtypeofpowersupplycircuitcalledtheripple-regulated,isa<br />

hybridbetweenthe”bruteforce”and”switching”designs,andmeritsasubsectiontoitself.


9.2. POWERSUPPLYCIRCUITS–INCOMPLETE 421<br />

9.2.1 Unregulated<br />

Anunregulatedpowersupplyisthemostrudimentarytype,consistingofatransformer,rectifier,andlow-passfilter.<br />

Thesepowersuppliestypicallyexhibitalotofripplevoltage(i.e.<br />

rapidly-varyinginstability)andotherAC”noise”superimposedontheDCpower.Iftheinput<br />

voltagevaries,theoutputvoltagewillvarybyaproportionalamount. Theadvantageofan<br />

unregulatedsupplyisthatitscheap,simple,andefficient.<br />

9.2.2 Linearregulated<br />

Alinearregulatedsupplyissimplya”bruteforce”(unregulated)powersupplyfollowedbya<br />

transistorcircuitoperatinginits”active,”or”linear”mode,hencethenamelinearregulator.<br />

(Obviousinretrospect,isn’tit?)Atypicallinearregulatorisdesignedtooutputafixedvoltage<br />

forawiderangeofinputvoltages,anditsimplydropsanyexcessinputvoltagetoallowa<br />

maximumoutputvoltagetotheload. Thisexcessvoltagedropresultsinsignificantpower<br />

dissipationintheformofheat.Iftheinputvoltagegetstoolow,thetransistorcircuitwilllose<br />

regulation,meaningthatitwillfailtokeepthevoltagesteady.Itcanonlydropexcessvoltage,<br />

notmakeupforadeficiencyinvoltagefromthebruteforcesectionofthecircuit.Therefore,you<br />

havetokeeptheinputvoltageatleast1to3voltshigherthanthedesiredoutput,depending<br />

ontheregulatortype. Thismeansthepowerequivalentofatleast1to3voltsmultipliedby<br />

thefullloadcurrentwillbedissipatedbytheregulatorcircuit,generatingalotofheat.This<br />

makeslinearregulatedpowersuppliesratherinefficient.Also,togetridofallthatheatthey<br />

havetouselargeheatsinkswhichmakesthemlarge,heavy,andexpensive.<br />

9.2.3 Switching<br />

Aswitchingregulatedpowersupply(”switcher”)isanefforttorealizetheadvantagesofboth<br />

bruteforceandlinearregulateddesigns(small,efficient,andcheap,butalso”clean,”stable<br />

outputvoltage).SwitchingpowersuppliesworkontheprincipleofrectifyingtheincomingAC<br />

powerlinevoltageintoDC,re-convertingitintohigh-frequencysquare-waveACthroughtransistorsoperatedason/offswitches,steppingthatACvoltageupordownbyusingalightweighttransformer,thenrectifyingthetransformer’sACoutputintoDCandfilteringforfinaloutput.<br />

Voltageregulationisachievedbyalteringthe”dutycycle”oftheDC-to-ACinversionon<br />

thetransformer’sprimaryside.<strong>In</strong>additiontolighterweightbecauseofasmallertransformer<br />

core,switchershaveanothertremendousadvantageoverthepriortwodesigns: thistypeof<br />

powersupplycanbemadesototallyindependentoftheinputvoltagethatitcanworkonany<br />

electricpowersystemintheworld;thesearecalled”universal”powersupplies.<br />

Thedownsideofswitchersisthattheyaremorecomplex,andduetotheiroperationthey<br />

tendtogeneratealotofhigh-frequencyAC”noise”onthepowerline.Mostswitchersalsohave<br />

significantripplevoltageontheiroutputs.Withthecheapertypes,thisnoiseandripplecanbe<br />

asbadasforanunregulatedpowersupply;suchlow-endswitchersaren’tworthless,because<br />

theystillprovideastableaverageoutputvoltage,andthere’sthe”universal”inputcapability.<br />

Expensiveswitchersareripple-freeandhavenoisenearlyaslowasforsomealineartypes;<br />

theseswitcherstendtobeasexpensiveaslinearsupplies. Thereasontouseanexpensive<br />

switcherinsteadofagoodlinearisifyouneeduniversalpowersystemcompatibilityorhigh


422 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

efficiency.Highefficiency,lightweight,andsmallsizearethereasonsswitchingpowersupplies<br />

arealmostuniversallyusedforpoweringdigitalcomputercircuitry.<br />

9.2.4 Rippleregulated<br />

Aripple-regulatedpowersupplyisanalternativetothelinearregulateddesignscheme: a<br />

”bruteforce”powersupply(transformer,rectifier,filter)constitutesthe”frontend”ofthecircuit,butatransistoroperatedstrictlyinitson/off(saturation/cutoff)modestransfersDCpowertoalargecapacitorasneededtomaintaintheoutputvoltagebetweenahighandalowsetpoint.<br />

Asinswitchers,thetransistorinarippleregulatorneverpassescurrentwhileinits<br />

”active,”or”linear,”modeforanysubstantiallengthoftime,meaningthatverylittleenergy<br />

willbewastedintheformofheat.However,thebiggestdrawbacktothisregulationschemeis<br />

thenecessarypresenceofsomeripplevoltageontheoutput,astheDCvoltagevariesbetween<br />

thetwovoltagecontrolsetpoints. Also,thisripplevoltagevariesinfrequencydependingon<br />

loadcurrent,whichmakesfinalfilteringoftheDCpowermoredifficult.<br />

Rippleregulatorcircuitstendtobequiteabitsimplerthanswitchercircuitry,andthey<br />

neednothandlethehighpowerlinevoltagesthatswitchertransistorsmusthandle,making<br />

themsafertoworkon.<br />

9.3 Amplifiercircuits–PENDING<br />

Note,Q3andQ4inFigure9.4arecomplementary,NPNandPNPrespectively. Thiscircuit<br />

workswellformoderatepoweraudioamplifiers.Foranexplanationofthiscircuitsee“Direct<br />

coupledcomplementary-pair,”<br />

(page255).<br />

9.4 Oscillatorcircuits–INCOMPLETE<br />

ThephaseshiftoscillatorofFigure9.5producesasinewaveoutputintheaudiofrequency<br />

range. Resistivefeedbackfromthecollectorwouldbenegativefeedbackdueto180 o phasing<br />

(basetocollectorphaseinversion). However,thethree60 o RCphaseshifters(R1C1,R2C2,<br />

andR3C3)provideanadditional180 o foratotalof360 o . Thisin-phasefeedbackconstitutes<br />

positivefeedback.Oscillationsresultiftransistorgainexceedsfeedbacknetworklosses.<br />

9.4.1 Varactormultiplier<br />

AVaractororvariablecapacitancediodewithanonlinearcapacitancevsfrequencycharacteristicdistortstheappliedsinewavef1inFigure9.6,generatingharmonics,f3.<br />

Thefundamentalfilterpassesf1,blockingtheharmonicsfromreturningtothegenerator.<br />

ThechokepassesDC,andblocksradiofrequencies(RF)fromenteringtheVbiassupply. The<br />

harmonicfilterpassesthedesiredharmonic,saythe3rd,totheoutput,f3. Thecapacitorat<br />

thebottomoftheinductorisalargevalue,lowreactance,toblockDCbutgroundtheinductor


9.4. OSCILLATORCIRCUITS–INCOMPLETE 423<br />

R 1<br />

39 kΩ<br />

input<br />

C 1<br />

220 nF<br />

R 2<br />

120 kΩ<br />

R 3<br />

47kΩ<br />

C 2<br />

25µF<br />

C 3<br />

250 µF<br />

R 5<br />

22Ω<br />

Q 1<br />

R 4<br />

390 Ω<br />

R 6<br />

Q 2<br />

2.2 kΩ<br />

C 4<br />

3.3 nF<br />

R 7<br />

15 Ω<br />

R 8<br />

R 9<br />

2.2 Ω<br />

R 10<br />

2.2 Ω<br />

560Ω<br />

Q 3<br />

Q 4<br />

+22V<br />

C 5<br />

4000 µF<br />

Figure9.4:Directcoupledcomplementarysymmetry3waudioamplifier.AfterMullard.[2]<br />

R 5<br />

C 1 C 2 C 3<br />

R 1 R 2 R 3 R 4<br />

Figure9.5:Phaseshiftoscillator.R1C1,R2C2,andR3C3eachprovide60 o ofphaseshift.<br />

R 6<br />

Vcc<br />

C 4


424 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

capacitance<br />

voltage<br />

f1<br />

fundamental<br />

filter<br />

varactor<br />

diode<br />

Vbias RF blocking<br />

choke<br />

harmonic<br />

filter<br />

Resonant<br />

inductor<br />

DC blocking<br />

capacitor<br />

Figure9.6:Varactordiode,havinganonlinearcapacitancevsvoltagecharacteristic,servesin<br />

frequencymultiplier.<br />

forRF.Thevaricapdiodeinparallelwiththeindctorconstitutesaparallelresonantnetwork.<br />

Itistunedtothedesiredharmonic.Notethatthereversebias,Vbias,isfixed.<br />

Thevaricapmultiplierisprimarilyusedtogeneratemicrowavesignalswhichcannotbe<br />

directlyproducedbyoscillators. ThelumpedcircuitrepresentationinFigure9.6isactually<br />

striplineorwaveguidesections.FrequeniesuptohundredsofgHzmaybeproducedbyvaractor<br />

multipliers.<br />

9.5 Phase-lockedloops–PENDING<br />

9.6 Radiocircuits–INCOMPLETE<br />

L1<br />

240<br />

µΗ<br />

(a)<br />

C1<br />

365<br />

pF<br />

C2<br />

1000<br />

pf<br />

(b)<br />

(c)<br />

(d)<br />

Figure9.7:(a)Crystalradio.(b)ModulatedRFatantenna.(c)RectifiedRFatdiodecathode,<br />

withoutC2filtercapacitor.(d)Demodualtedaudiotoheadphones.<br />

Anantennagroundsystem,tankcircuit,peakdetector,andheadphonesarethethemain<br />

componentsofacrystalradio. SeeFigure9.7(a). Theantennaabsorbstransimttedradio<br />

signals(b)whichflowtogroundviatheothercomponents. ThecombinationofC1andL1<br />

comprisearesonantcircuit,referedtoasatankcircuit.Itspurposeistoselectoneoutofmany<br />

f3


9.6. RADIOCIRCUITS–INCOMPLETE 425<br />

availableradiossignals. ThevariablecapacitorC1allowsfortuningtothevarioussignals.<br />

ThediodepassesthepositivehalfcyclesoftheRF,removingthenegativehalfcycles(c). C2<br />

issizedtofiltertheradiofrequenciesfromtheRFenvelope(c),passingaudiofrequencies(d)<br />

totheheadset.Notethatnopowersupplyisrequiredforacrystalradio.Agermaniumdiode,<br />

whichhasalowerforwardvoltagedropprovidesgreatersensitvitythanasilicondiode.<br />

While2000Ωmagneticheadphonesareshownabove,aceramicearphone,sometimescalled<br />

acrystalearphone,ismoresensitive.Theceramicearphoneisdesirableforallbutthestrongest<br />

radiosignals<br />

ThecircuitinFigure9.8producesastrongeroutputthanthecrystaldetector. Sincethe<br />

transistorisnotbiasedinthelinearregion(nobasebiasresistor),itonlyconductsforpositive<br />

halfcyclesofRFinput,detectingtheaudiomodulation.Anadvantageofatransistordetector<br />

isamplificationinadditiontodetection. Thismorepowerfulcircuitcanreadilydrive2000Ω<br />

magneticheadphones.NotethetransistorisagermanuimPNPdevice.Thisisprobablymore<br />

sensitive,duetothelower0.2VVBE,comparedwithsilicon.However,asilicondeviceshould<br />

stillwork.ReversebatterypolarityforNPNsilicondevices.<br />

365<br />

pF<br />

Ge<br />

transistor<br />

1.5V<br />

+<br />

5nf<br />

-<br />

2000Ω double headphones<br />

Coil - #34 AWG magnet wire<br />

close wound over 1 in. length on<br />

1 1/4 in. dia. form. Tap 1/4 in.<br />

from bottom.<br />

Figure9.8:TROne,onetransistorradio.No-bias-resistorcausesoperationasadetector.After<br />

Stoner,Figure4.4A.[8]<br />

The2000Ωheadphonesarenolongerawidelyavailableitem.However,thelowimpedance<br />

earbudscommonlyusedwithportableaudioequipmentmaybesubstitutedwhenpairedwith<br />

asuitableaudiotransformer.See<strong>Volume</strong>6Experiments,AC<strong>Circuits</strong>,Sensitiveaudiodetector<br />

fordetails.<br />

ThecircuitinFigure9.9addsanaudioamplifiertothecrystaldetectorforgreaterheadphonevolume.<br />

Theoriginalcircuitusedagermaniumdiodeandtransistor. [8]Aschottky<br />

diodemaybesubstitutedforthegermaniumdiode. Asilicontransistormaybeusedifthe<br />

base-biasresistorischangedaccordingtothetable.<br />

Formorecrystalradiocircuits,simpleone-transistorradios,andmoreadvancedlowtransistorcountradios,seeWenzel[9]<br />

ThecircuitinFigure9.11isanintegratedcircuitAMradiocontainingalltheactiveradio<br />

frequencycircuitrywithinasingleIC.Allcapacitorsandinductors,alongwithafewresistors,<br />

areexternaltotheIC.The370PfvariablecapacitortunesthedesiredRFsignal. The320<br />

pFvariablecapacitortunesthelocaloscillator455KHzabovetheRFinputsignal. TheRF<br />

signalandlocaloscillatorfrequenciesmixproducingthesunanddifferenceofthetwoatpin<br />

15.Theexternal455KHzceramicfilterbetweenpins15and12,selectsthe455KHzdifference<br />

frequency. Mostoftheamplificationisintheintermediatefrequency(IF)amplifierbetween


426 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

365<br />

pF<br />

Ge diode<br />

500<br />

pF<br />

5<br />

nf<br />

1.5-6V<br />

−<br />

+<br />

2000Ω double<br />

headphones<br />

Resistor<br />

1.5V 6V<br />

Ge 47k 220k<br />

Si 120k 1Meg<br />

Coil - #34 AWG magnet<br />

wire close wound over<br />

1 in. length on 1 1/4 in.<br />

dia. form. Tap 1/4 in.<br />

from bottom.<br />

Figure9.9:Crystalradiowithonetransistoraudioamplifer,base-bias. AfterStoner,Figure<br />

4.3A.[8]<br />

pins12and7.Adiodeatpin7recoversaudiofromtheIF.Someautomaticgaincontrol(AGC)<br />

isrecoveredandfilteredtoDCandfedbackintopin9.<br />

Figure9.12showsconventionalmecahnicaltuning(a)oftheRFinputtunerandthelocal<br />

oscillatorwithvaractordiodetuning(b).Themeshedplatesofadualvariablecapacitormake<br />

forabulkycomponent.Itisecconomictoreplaceitwithvaricaptuningdiodes.<strong>In</strong>creasingthe<br />

reversebiasVtunedecreasescapacitancewhichincreasesfrequency. Vtunecouldbeproduced<br />

byapotentiometer.<br />

Figure9.13showsanevenlowerpartscountAMradio.Sonyengineershaveincludedthe<br />

intermediatefrequency(IF)bandpassfilterwithinthe8-pinIC.ThiseliminatesexternalIF<br />

transformersandanIFceramicfilter.L-Ctuningcomponentsarestillrequiredfortheradio<br />

frequency(RF)inputandthelocaloscillator.Though,thevariablecapacitorscouldbereplaced<br />

byvaricaptuningdiodes.<br />

Figure9.14showsalow-parts-countFMradiobasedonaTDA7021Tintegratedcircuitby<br />

NXPWireless. ThebulkyexternalIFfiltertransformershavebeenreplacedbyR-Cfilters.<br />

Theresistorsareintegrated,thecapacitorsexternal. Thiscircuithasbeensimplifiedfrom<br />

Figure5intheNXPDatasheet. SeeFigure5or8ofthedatasheetfortheomittedsignal<br />

strengthcircuit. ThesimpletuningcircuitisfromtheFigure5TestCircuit. Figure8hasa<br />

moreelaboratetuner.DatasheetFigure8showsastereoFMradiowithanaudioamplifierfor<br />

drivingaspeaker.[7]<br />

Foraconstructionproject,thesimplifiedFMRadioinFigure9.14isrecommended.Forthe<br />

56nHinductor,wind8turnsof#22AWGbarewireormagnetwireona0.125inchdrillbitor<br />

othermandrel.Removethemandrelandstrechto0.6inchlength.Thetuningcapacitormay<br />

beaminiaturetrimmercapacitor.<br />

Figure9.15isanexampleofacommon-base(CB)RFamplifier. Itisagoodillustration<br />

becauseitlookslikeaCBforlackofabiasnetwork. Sincethereisnobias,thisisaclassC<br />

amplifier.Thetransistorconductsforlessthan180 o oftheinputsignalbecauseatleast0.7V<br />

biaswouldberequiredfor180 o classB.Thecommon-baseconfigurationhashigherpowergain<br />

athighRFfrequenciesthancommon-emitter.Thisisapoweramplifier(3/4W)asopposedto<br />

asmallsignalamplifier.Theinputandoutput π-networksmatchtheemitterandcollectorto<br />

the50 Ωinputandoutputcoaxialterminations,respectively.Theoutput π-networkalsohelps


9.6. RADIOCIRCUITS–INCOMPLETE 427<br />

560 Ω 560 Ω<br />

268<br />

pF<br />

volume<br />

1 K<br />

20,000 pF<br />

− +<br />

2 µF<br />

Q3<br />

Q2<br />

Q1<br />

1000<br />

pF<br />

Q4<br />

10,000<br />

pF<br />

20,000<br />

pF<br />

3.9 K<br />

1000 pF<br />

50,000<br />

pF<br />

1000 pF<br />

50,000<br />

pF<br />

1 K +<br />

10 K<br />

2.7 K<br />

40 µF<br />

40<br />

µF<br />

Figure9.10:RegencyTR1:Firstmassproducedtransistorradio,1954.<br />

−<br />

33 K<br />

2.7 K<br />

560 Ω<br />

1000<br />

pF<br />

2.2 K<br />

2.2 K<br />

2.2 K<br />

470 K<br />

100 K<br />

22.5 V<br />

+<br />

+<br />

5 µF<br />

−<br />


428 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

370pF<br />

RF in<br />

320pF<br />

330pF<br />

370pF<br />

10nF<br />

RF in<br />

320pF<br />

Vcc<br />

10nF<br />

330pF<br />

100nF<br />

Vcc<br />

2<br />

1<br />

6<br />

5<br />

4<br />

Vcc<br />

Vcc<br />

RF 16 14<br />

IF<br />

Osc.<br />

8 15 12<br />

1.5nF<br />

47pF<br />

11 13<br />

100nF<br />

100nF<br />

455 kHz<br />

Ceramic filter<br />

3<br />

TCA440<br />

10<br />

8.2K 25µF<br />

Figure9.11:ICradio,AfterSignetics[3]<br />

2<br />

1<br />

6<br />

5<br />

4<br />

8<br />

Vcc<br />

7<br />

9<br />

47pF<br />

5µF<br />

39K<br />

6<br />

5<br />

4<br />

12K<br />

TCA440 TCA440<br />

BB113<br />

RF in<br />

RF 330nF<br />

10nF<br />

2<br />

1 RF<br />

Osc<br />

+Vtune<br />

BB113<br />

270K<br />

(a) (b)<br />

Figure9.12: ICradiocomparisonof(a)mechanicaltuningto(b)electronicvaricapdiode<br />

tuning.[3]<br />

330pF<br />

8<br />

Osc<br />

AF<br />

3.3nF


9.6. RADIOCIRCUITS–INCOMPLETE 429<br />

560<br />

µH<br />

160<br />

µF<br />

RF in<br />

8<br />

7<br />

1 2 3 4<br />

6<br />

Lo Osc<br />

5<br />

Vcc<br />

RF Amp Mixer Osc<br />

Overload<br />

& AGC<br />

AGC<br />

OL AGC<br />

Vol<br />

BPF IF Amp<br />

AGC Vol Gnd<br />

22<br />

µF<br />

4.7<br />

µF<br />

130<br />

µH<br />

100K<br />

1500<br />

µF<br />

CXA1600MP<br />

160<br />

µF<br />

Detector<br />

Audio<br />

Amp<br />

0.1<br />

µF<br />

Audio<br />

22<br />

µF<br />

220<br />

µF<br />

3 V<br />

220µF<br />

Figure9.13:CompactICradioeliminatesexternalIFfilters.AfterSony[4]<br />

+<br />

-


430 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

-<br />

+<br />

3V<br />

100<br />

nF<br />

16<br />

15<br />

14<br />

13<br />

1 2 3 4 5 6 7 8<br />

10<br />

nF<br />

3.3<br />

nF<br />

Demodulator<br />

100<br />

nF<br />

audio<br />

TDA7021T<br />

10<br />

nF<br />

220<br />

pF<br />

RF<br />

56<br />

nH<br />

antenna<br />

Mixer<br />

VCO<br />

220<br />

pF<br />

12<br />

40<br />

pF<br />

11<br />

4.7<br />

nF<br />

100<br />

nF<br />

IF<br />

10<br />

Field<br />

strength<br />

Figure9.14:ICFMradio,signalstrengthcircuitnotshown.AfterNXPWirelessFigure5.[7]<br />

1.5<br />

nF<br />

9<br />

820<br />

pF


9.6. RADIOCIRCUITS–INCOMPLETE 431<br />

filterharmonicsgeneratedbytheclassCamplifier. Though,moresectionswouldlikelybe<br />

requiredbymodernradiatedemissionsstandards.<br />

+10V<br />

100pF<br />

100pF<br />

0.68µH<br />

RFC<br />

100pF<br />

45-380<br />

pF<br />

9-180<br />

pF<br />

8-60<br />

pF<br />

9-180<br />

pF<br />

L1<br />

25nH<br />

L2<br />

25nH<br />

1.2µH<br />

RFC<br />

2N2863<br />

Figure9.15:ClassCcommon-base750mWRFpoweramplifier.L1=#10Cuwire1/2turn,5/8<br />

in.IDby3/4in.high.L2=#14tinnedCuwire11/2turns,1/2in.IDby1/3in.spacing.After<br />

Texas<strong>In</strong>struments[5]<br />

Anexampleofahighgaincommon-baseRFamplifierisshowninFigure9.16.Thecommon-<br />

basecircuitcanbepushedtoahigherfrequencythanotherconfigurations.Thisisacommon<br />

baseconfigurationbecausethetransistorbasesaregroundedforACby1000pFcapacitors.<br />

Thecapacitorsarenecessary(unliketheclassC,Figure9.15)toallowthe1KΩ-4KΩvoltage<br />

dividertobiasthetransistorbaseforclassAoperation. The500Ωresistorsareemitterbias<br />

resistors.Theystablizethecollectorcurrent.The850ΩresistorsarecollectorDCloads.The<br />

threestageamplifierprovidesanoverallgainof38dBat100MHzwitha9MHzbandwidth.<br />

1000<br />

pF<br />

4-30<br />

pF<br />

10nH<br />

2N1141<br />

1K<br />

500<br />

Ω<br />

80nH<br />

68<br />

pF<br />

1000<br />

pF<br />

4-30<br />

pF<br />

4K<br />

2<br />

nF<br />

100µH RFC<br />

820<br />

Ω<br />

1000<br />

pF<br />

2N1141<br />

1K<br />

500<br />

Ω<br />

1000<br />

pF<br />

4K<br />

2<br />

nF<br />

100µH RFC<br />

820<br />

Ω<br />

80nH<br />

4-30<br />

pF<br />

1000<br />

pF<br />

2N1141<br />

1K<br />

500<br />

Ω<br />

4K<br />

2<br />

nF<br />

100nH<br />

4-30<br />

pF<br />

820<br />

Ω<br />

-25 V<br />

1000<br />

pF<br />

Figure9.16:ClassAcommon-basesmall-signalhighgainamplifier.AfterTexas<strong>In</strong>struments<br />

[6]<br />

Acascodeamplifierhasawidebandwdthlikeacommon-baseamplifierandamoderately<br />

highinputimpedancelikeacommonemitterarrangement. Thebiasingforthiscascodeam-<br />

plifier(Figure9.17)isworkedoutinanexampleproblem(page246).<br />

Thiscircuit(Figure9.17)issimulatedinthe“Cascode”sectionoftheBJTchapter(page<br />

219).UseRFormicrowavetransistorsforbesthighfrequencyresponse.


432 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

C1<br />

10nF<br />

Vi<br />

R1<br />

150k<br />

R2<br />

220k<br />

R3<br />

1Meg<br />

R4<br />

87k<br />

C2<br />

10nF<br />

V B2<br />

V CC<br />

R L<br />

4.7k<br />

Q1<br />

Q2<br />

20V<br />

Vo<br />

C3<br />

10nF<br />

Figure9.17:ClassAcascodesmall-signalhighgainamplifier.<br />

1 K 1 K<br />

Transmitter Receiver<br />

Transmit<br />

Receive<br />

10 V<br />

10 V 10 V<br />

1 K<br />

Figure9.18:PINdiodeT/Rswitchdisconnectsreceiverfromantennaduringtransmit.<br />

left antenna right antenna<br />

1 K<br />

right<br />

left<br />

5 V<br />

-5 V<br />

RFC<br />

1 K<br />

Receiver<br />

Figure9.19:PINdiodeantennaswitchfordirectionfinderreceiver.<br />

1 K


9.7. COMPUTATIONALCIRCUITS 433<br />

330<br />

V control = 0 to 5 V<br />

47 nF 47 nF 330<br />

47 nF<br />

1.25 V<br />

150 150<br />

47 nF 47 nF<br />

Figure9.20:PINdiodeattenuator:PINdiodesfunctionasvoltagevariableresistors.AfterLin<br />

[1].<br />

ThePINdiodesarearrangedinaπ-attenuatornetwork.Theanti-seriesdiodescancelsome<br />

harmonicdistortioncomparedwithasingleseriesdiode. Thefixed1.25Vsupplyforward<br />

biasestheparalleldiodes,whichnotonlyconductingDCcurrentfromgroundviatheresistors,<br />

butalso,conductRFtogroundthroughthediodes’capacitors. ThecontrolvoltageVcontrol,<br />

increasescurrentthroughtheparalleldiodesasitincreases. Thisdecreasestheresistance<br />

andattenuation,passingmoreRFfrominputtooutput.Attenuationisabout3dBatVcontrol=<br />

5V.Attenuationis40dBatVcontrol=1Vwithflatfrequencyresponseto2gHz.AtVcontrol=<br />

0.5V,attenuationis80dBat10MHz. However,thefrequencyresponsevariestoomuchto<br />

use.[1]<br />

9.7 Computationalcircuits<br />

Whensomeonementionstheword”computer,”adigitaldeviceiswhatusuallycomestomind.<br />

Digitalcircuitsrepresentnumericalquantitiesinbinaryformat:patternsof1’sand0’srepresentedbyamultitudeoftransistorcircuitsoperatinginsaturatedorcutoffstates.<br />

However,<br />

analogcircuitrymayalsobeusedtorepresentnumericalquantitiesandperformmathematical<br />

calculations,byusingvariablevoltagesignalsinsteadofdiscreteon/offstates.<br />

Hereisasimpleexampleofbinary(digital)representationversusanalogrepresentationof<br />

thenumber”twenty-five:”<br />

330


434 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

A digital circuit representing the number 25:<br />

16 + 8 + 1 = 25<br />

1<br />

2<br />

4<br />

8<br />

16<br />

32<br />

An analog circuit representing the number 25:<br />

100 V 0<br />

Voltmeter<br />

Digitalcircuitsareverydifferentfromcircuitsbuiltonanalogprinciples. Digitalcomputationalcircuitscanbeincrediblycomplex,andcalculationsmustoftenbeperformedinsequential”steps”toobtainafinalanswer,muchasahumanbeingwouldperformarithmeticalcalculationsinstepswithpencilandpaper.<br />

Analogcomputationalcircuits,ontheother<br />

hand,arequitesimpleincomparison,andperformtheircalculationsincontinuous,real-time<br />

fashion.Thereisadisadvantagetousinganalogcircuitrytorepresentnumbers,though:imprecision.<br />

Thedigitalcircuitshownaboveisrepresentingthenumbertwenty-five,precisely.<br />

Theanalogcircuitshownabovemayormaynotbeexactlycalibratedto25.000volts,butis<br />

subjectto”drift”anderror.<br />

50<br />

100


9.7. COMPUTATIONALCIRCUITS 435<br />

<strong>In</strong>applicationswhereprecisionisnotcritical,analogcomputationalcircuitsareverypracticalandelegant.Shownhereareafewop-ampcircuitsforperforminganalogcomputation:<br />

<strong>In</strong>put 1<br />

<strong>In</strong>put 2<br />

<strong>In</strong>put (-)<br />

<strong>In</strong>put (+)<br />

Analog summer (adder) circuit<br />

R<br />

R<br />

1 kΩ<br />

−<br />

+<br />

1 kΩ<br />

Output = <strong>In</strong>put 1 + <strong>In</strong>put 2<br />

Analog subtractor circuit<br />

R R<br />

−<br />

+<br />

R R<br />

Output = <strong>In</strong>put (+) - <strong>In</strong>put (-)<br />

Output<br />

Output


436 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

<strong>In</strong>put 1<br />

<strong>In</strong>put 2<br />

Analog averager circuit<br />

R<br />

R<br />

−<br />

+<br />

Output = <strong>In</strong>put 1 + <strong>In</strong>put 2<br />

2<br />

Output<br />

(Buffer optional)<br />

Analog inverter (sign reverser) circuit<br />

<strong>In</strong>put<br />

R<br />

−<br />

+<br />

R<br />

Output = - <strong>In</strong>put<br />

Output<br />

Analog "multiply-by-constant" circuit<br />

<strong>In</strong>put<br />

K<br />

−<br />

+<br />

Output = (K)(<strong>In</strong>put)<br />

Output


9.7. COMPUTATIONALCIRCUITS 437<br />

<strong>In</strong>put<br />

Analog "divide-by-constant" circuit<br />

K<br />

−<br />

+<br />

Output =<br />

Output<br />

(Buffer optional)<br />

<strong>In</strong>put<br />

K<br />

Analog inverting "multiply/divideby-constant"<br />

circuit<br />

<strong>In</strong>put<br />

K<br />

−<br />

+<br />

Output = - (K)(<strong>In</strong>put)<br />

Output<br />

Eachofthesecircuitsmaybeusedinmodularfashiontocreateacircuitcapableofmultiple<br />

calculations.Forinstance,supposethatweneededtosubtractacertainfractionofonevariable<br />

fromanothervariable.Bycombiningadivide-by-constantcircuitwithasubtractorcircuit,we<br />

couldobtaintherequiredfunction:


438 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

<strong>In</strong>put 2<br />

Divide-by-constant<br />

K<br />

Output = <strong>In</strong>put 1 -<br />

−<br />

+<br />

<strong>In</strong>put 1<br />

<strong>In</strong>put 2<br />

K<br />

Subtractor<br />

R R<br />

−<br />

+<br />

R R<br />

Output<br />

Devicescalledanalogcomputersusedtobecommoninuniversitiesandengineeringshops,<br />

wheredozensofop-ampcircuitscouldbe”patched”togetherwithremovablejumperwiresto<br />

modelmathematicalstatements,usuallyforthepurposeofsimulatingsomephysicalprocess<br />

whoseunderlyingequationswereknown.Digitalcomputershavemadeanalogcomputersall<br />

butobsolete,butanalogcomputationalcircuitrycannotbebeatenbydigitalintermsofsheer<br />

eleganceandeconomyofnecessarycomponents.<br />

Analogcomputationalcircuitryexcelsatperformingthecalculusoperationsintegrationand<br />

differentiationwithrespecttotime,byusingcapacitorsinanop-ampfeedbackloop. Tofully<br />

understandthesecircuits’operationandapplications,though,wemustfirstgraspthemeaning<br />

ofthesefundamentalcalculusconcepts.Fortunately,theapplicationofop-ampcircuitstorealworldproblemsinvolvingcalculusservesasanexcellentmeanstoteachbasiccalculus.<br />

<strong>In</strong><br />

thewordsofJohnI.Smith,takenfromhisoutstandingtextbook,ModernOperationalCircuit<br />

Design:<br />

”Anoteofencouragementisofferedtocertainreaders:integralcalculusisoneof<br />

themathematicaldisciplinesthatoperational[amplifier]circuitryexploitsand,in<br />

theprocess,ratherdemolishesasabarriertounderstanding.”(pg.4)<br />

Mr. Smith’ssentimentsonthepedagogicalvalueofanalogcircuitryasalearningtoolfor<br />

mathematicsarenotunique.ConsidertheopinionofengineerGeorgeFoxLang,inanarticle<br />

hewrotefortheAugust2000issueofthejournalSoundandVibration,entitled,”Analogwas<br />

notaComputerTrademark!”:<br />

”Creatingarealphysicalentity(acircuit)governedbyaparticularsetofequationsandinteractingwithitprovidesuniqueinsightintothosemathematicalstatements.Thereisnobetterwaytodevelopa”gutfeel”fortheinterplaybetweenphysics<br />

andmathematicsthantoexperiencesuchaninteraction.Theanalogcomputerwas<br />

apowerfulinterdisciplinaryteachingtool;itsobsolescenceismournedbymanyeducatorsinavarietyoffields.”(pg.23)


9.7. COMPUTATIONALCIRCUITS 439<br />

Differentiationisthefirstoperationtypicallylearnedbybeginningcalculusstudents.Simplyput,differentiationisdeterminingtheinstantaneousrate-of-changeofonevariableasit<br />

relatestoanother. <strong>In</strong>analogdifferentiatorcircuits,theindependentvariableistime,andso<br />

theratesofchangewe’redealingwithareratesofchangeforanelectronicsignal(voltageor<br />

current)withrespecttotime.<br />

Supposeweweretomeasurethepositionofacar,travelinginadirectpath(noturns),from<br />

itsstartingpoint. Letuscallthismeasurement,x. Ifthecarmovesataratesuchthatits<br />

distancefrom”start”increasessteadilyovertime,itspositionwillplotonagraphasalinear<br />

function(straightline):<br />

x<br />

x<br />

Position<br />

Time<br />

Ifweweretocalculatethederivativeofthecar’spositionwithrespecttotime(thatis,<br />

determinetherate-of-changeofthecar’spositionwithrespecttotime),wewouldarriveat<br />

aquantityrepresentingthecar’svelocity. Thedifferentiationfunctionisrepresentedbythe<br />

fractionalnotationd/d,sowhendifferentiatingposition(x)withrespecttotime(t),wedenote<br />

theresult(thederivative)asdx/dt:<br />

x<br />

x<br />

Position<br />

Time<br />

dx<br />

dt<br />

Velocity<br />

Time<br />

Foralineargraphofxovertime,thederivateofposition(dx/dt),otherwiseandmore<br />

commonlyknownasvelocity,willbeaflatline,unchanginginvalue. Thederivativeofa<br />

mathematicalfunctionmaybegraphicallyunderstoodasitsslopewhenplottedonagraph,


440 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

andherewecanseethattheposition(x)graphhasaconstantslope,whichmeansthatits<br />

derivative(dx/dt)mustbeconstantovertime.<br />

Now,supposethedistancetraveledbythecarincreasedexponentiallyovertime:thatis,it<br />

beganitstravelinslowmovements,butcoveredmoreadditionaldistancewitheachpassing<br />

periodintime.Wewouldthenseethatthederivativeofposition(dx/dt),otherwiseknownas<br />

velocity(v),wouldnotbeconstantovertime,butwouldincrease:<br />

x<br />

x<br />

Position<br />

Time<br />

dx<br />

dt<br />

Velocity<br />

Time<br />

Theheightofpointsonthevelocitygraphcorrespondtotherates-of-change,orslope,of<br />

pointsatcorrespondingtimesonthepositiongraph:<br />

x<br />

Position<br />

Time<br />

dx<br />

dt<br />

Velocity<br />

Time<br />

Whatdoesthishavetodowithanalogelectroniccircuits?Well,ifweweretohaveananalog<br />

voltagesignalrepresentthecar’sposition(thinkofahugepotentiometerwhosewiperwas<br />

attachedtothecar,generatingavoltageproportionaltothecar’sposition),wecouldconnecta<br />

differentiatorcircuittothissignalandhavethecircuitcontinuouslycalculatethecar’svelocity,<br />

displayingtheresultviaavoltmeterconnectedtothedifferentiatorcircuit’soutput:


9.7. COMPUTATIONALCIRCUITS 441<br />

x<br />

Position<br />

x<br />

+<br />

V<br />

-<br />

Differentiator<br />

−<br />

+<br />

Velocity<br />

-<br />

dx<br />

V<br />

dt<br />

+<br />

Recallfromthelastchapterthatadifferentiatorcircuitoutputsavoltageproportionalto<br />

theinputvoltage’srate-of-changeovertime(d/dt).Thus,iftheinputvoltageischangingover<br />

timeataconstantrate,theoutputvoltagewillbeataconstantvalue.Ifthecarmovesinsuch<br />

awaythatitselapseddistanceovertimebuildsupatasteadyrate,thenthatmeansthecar<br />

istravelingataconstantvelocity,andthedifferentiatorcircuitwilloutputaconstantvoltage<br />

proportionaltothatvelocity. Ifthecar’selapseddistanceovertimechangesinanon-steady<br />

manner,thedifferentiatorcircuit’soutputwilllikewisebenon-steady,butalwaysatalevel<br />

representativeoftheinput’srate-of-changeovertime.<br />

Notethatthevoltmeterregisteringvelocity(attheoutputofthedifferentiatorcircuit)is<br />

connectedin”reverse”polaritytotheoutputoftheop-amp.Thisisbecausethedifferentiator<br />

circuitshownisinverting: outputtinganegativevoltageforapositiveinputvoltagerate-ofchange.Ifwewishtohavethevoltmeterregisterapositivevalueforvelocity,itwillhavetobeconnectedtotheop-ampasshown.Asimpracticalasitmaybetoconnectagiantpotentiometertoamovingobjectsuchasanautomobile,theconceptshouldbeclear:<br />

byelectronically<br />

performingthecalculusfunctionofdifferentiationonasignalrepresentingposition,weobtain<br />

asignalrepresentingvelocity.<br />

Beginningcalculusstudentslearnsymbolictechniquesfordifferentiation. However,this<br />

requiresthattheequationdescribingtheoriginalgraphbeknown.Forexample,calculusstudentslearnhowtotakeafunctionsuchasy=3xandfinditsderivativewithrespecttox(d/dx),<br />

3,simplybymanipulatingtheequation.Wemayverifytheaccuracyofthismanipulationby<br />

comparingthegraphsofthetwofunctions:


442 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

y = 3x<br />

y<br />

x = 2.5; slope = 3<br />

x = 2; slope = 3<br />

x = 1; slope = 3<br />

x<br />

x = 1; y = 3<br />

d<br />

3x = 3<br />

dx<br />

(y = 3)<br />

y<br />

x = 2; y = 3<br />

x = 2.5; y = 3<br />

x<br />

Nonlinearfunctionssuchasy=3x 2 mayalsobedifferentiatedbysymbolicmeans.<strong>In</strong>this<br />

case,thederivativeofy=3x 2 withrespecttoxis6x:<br />

y = 3x 2<br />

y<br />

x = 2; slope = 12<br />

x = 1; slope = 6<br />

x<br />

x = 0; slope = 0<br />

x = 0; y = 0<br />

3x<br />

dx<br />

2 d<br />

= 6x<br />

(y = 6x)<br />

y<br />

x = 2; y = 12<br />

x = 1; y = 6<br />

<strong>In</strong>reallife,though,weoftencannotdescribethebehaviorofanyphysicaleventbyasimple<br />

equationlikey=3x,andsosymbolicdifferentiationofthetypelearnedbycalculusstudents<br />

maybeimpossibletoapplytoaphysicalmeasurement. Ifsomeonewishedtodeterminethe<br />

derivativeofourhypotheticalcar’sposition(dx/dt=velocity)bysymbolicmeans,theywould<br />

firsthavetoobtainanequationdescribingthecar’spositionovertime,basedonpositionmeasurementstakenfromarealexperiment–anearlyimpossibletaskunlessthecarisoperated<br />

undercarefullycontrolledconditionsleadingtoaverysimplepositiongraph. However,an<br />

analogdifferentiatorcircuit,byexploitingthebehaviorofacapacitorwithrespecttovoltage,<br />

current,andtimei=C(dv/dt),naturallydifferentiatesanyrealsignalinrelationtotime,and<br />

wouldbeabletooutputasignalcorrespondingtoinstantaneousvelocity(dx/dt)atanymoment.<br />

Byloggingthecar’spositionsignalalongwiththedifferentiator’soutputsignalusing<br />

achartrecorderorotherdataacquisitiondevice,bothgraphswouldnaturallypresentthem-<br />

x


9.7. COMPUTATIONALCIRCUITS 443<br />

selvesforinspectionandanalysis.<br />

Wemaytaketheprincipleofdifferentiationonestepfurtherbyapplyingittothevelocity<br />

signalusinganotherdifferentiatorcircuit.<strong>In</strong>otherwords,useittocalculatetherate-of-change<br />

ofvelocity,whichweknowistherate-of-changeofposition.Whatpracticalmeasurewouldwe<br />

arriveatifwedidthis? Thinkofthisintermsoftheunitsweusetomeasurepositionand<br />

velocity.Ifweweretomeasurethecar’spositionfromitsstartingpointinmiles,thenwewould<br />

probablyexpressitsvelocityinunitsofmilesperhour(dx/dt).Ifweweretodifferentiatethe<br />

velocity(measuredinmilesperhour)withrespecttotime,wewouldendupwithaunitofmiles<br />

perhourperhour. <strong>In</strong>troductoryphysicsclassesteachstudentsaboutthebehavioroffalling<br />

objects,measuringpositioninmeters,velocityinmeterspersecond,andchangeinvelocityover<br />

timeinmeterspersecond,persecond. Thisfinalmeasureiscalledacceleration: therateof<br />

changeofvelocityovertime:<br />

x<br />

x<br />

Position<br />

Time<br />

dx<br />

dt<br />

Velocity<br />

Time<br />

d 2 x<br />

dt 2<br />

Differentiation Differentiation<br />

Acceleration<br />

Time<br />

Theexpressiond 2 x/dt 2 iscalledthesecondderivativeofposition(x)withregardtotime(t).<br />

Ifweweretoconnectaseconddifferentiatorcircuittotheoutputofthefirst,thelastvoltmeter<br />

wouldregisteracceleration:


444 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

x<br />

Position<br />

+<br />

V<br />

-<br />

x<br />

Differentiator<br />

−<br />

+<br />

Velocity<br />

-<br />

dx<br />

V<br />

dt<br />

+<br />

Differentiator<br />

−<br />

+<br />

+ d<br />

V<br />

Acceleration -<br />

2 x<br />

dt 2<br />

Derivingvelocityfromposition,andaccelerationfromvelocity,weseetheprincipleofdifferentiationveryclearlyillustrated.Thesearenottheonlyphysicalmeasurementsrelatedto<br />

eachotherinthisway,buttheyare,perhaps,themostcommon.Anotherexampleofcalculus<br />

inactionistherelationshipbetweenliquidflow(q)andliquidvolume(v)accumulatedina<br />

vesselovertime:<br />

Water<br />

supply<br />

dv<br />

dt<br />

= flow<br />

Water<br />

LT<br />

v = volume<br />

A”LevelTransmitter”devicemountedonawaterstoragetankprovidesasignaldirectly<br />

proportionaltowaterlevelinthetank,which–ifthetankisofconstantcross-sectionalarea<br />

throughoutitsheight–directlyequateswatervolumestored.Ifweweretotakethisvolume<br />

signalanddifferentiateitwithrespecttotime(dv/dt),wewouldobtainasignalproportional<br />

tothewaterflowratethroughthepipecarryingwatertothetank. Adifferentiatorcircuit


9.7. COMPUTATIONALCIRCUITS 445<br />

connectedinsuchawayastoreceivethisvolumesignalwouldproduceanoutputsignalproportionaltoflow,possiblysubstitutingforaflow-measurementdevice(”FlowTransmitter”)<br />

installedinthepipe.<br />

Returningtothecarexperiment,supposethatourhypotheticalcarwereequippedwitha<br />

tachogeneratorononeofthewheels,producingavoltagesignaldirectlyproportionaltovelocity.<br />

Wecoulddifferentiatethesignaltoobtainaccelerationwithonecircuit,likethis:<br />

x<br />

v<br />

Velocity<br />

+<br />

V<br />

-<br />

+ -<br />

Gen<br />

Differentiator<br />

−<br />

+<br />

Acceleration<br />

-<br />

V<br />

+<br />

dv<br />

dt =<br />

Byitsverynature,thetachogeneratordifferentiatesthecar’spositionwithrespecttotime,<br />

generatingavoltageproportionaltohowrapidlythewheel’sangularpositionchangesover<br />

time.Thisprovidesuswitharawsignalalreadyrepresentativeofvelocity,withonlyasingle<br />

stepofdifferentiationneededtoobtainanaccelerationsignal. Atachogeneratormeasuring<br />

velocity,ofcourse,isafarmorepracticalexampleofautomobileinstrumentationthanagiantpotentiometermeasuringitsphysicalposition,butwhatwegaininpracticalitywelosein<br />

positionmeasurement. Nomatterhowmanytimeswedifferentiate,wecanneverinferthe<br />

car’spositionfromavelocitysignal.Iftheprocessofdifferentiationbroughtusfromposition<br />

tovelocitytoacceleration,thensomehowweneedtoperformthe”reverse”processofdifferentiationtogofromvelocitytoposition.Suchamathematicalprocessdoesexist,anditiscalled<br />

integration.The”integrator”circuitmaybeusedtoperformthisfunctionofintegrationwith<br />

respecttotime:<br />

d 2 x<br />

dt 2


446 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

x<br />

v<br />

Velocity<br />

+<br />

V<br />

-<br />

+ -<br />

Gen<br />

<strong>In</strong>tegrator<br />

−<br />

+<br />

Differentiator<br />

−<br />

+<br />

Acceleration<br />

-<br />

V ∫ v dt = x<br />

+<br />

-<br />

V<br />

+<br />

dv<br />

dt =<br />

Recallfromthelastchapterthatanintegratorcircuitoutputsavoltagewhoserate-ofchangeovertimeisproportionaltotheinputvoltage’smagnitude.<br />

Thus,givenaconstant<br />

inputvoltage,theoutputvoltagewillchangeataconstantrate.Ifthecartravelsataconstant<br />

velocity(constantvoltageinputtotheintegratorcircuitfromthetachogenerator),thenits<br />

distancetraveledwillincreasesteadilyastimeprogresses,andtheintegratorwilloutputa<br />

steadilychangingvoltageproportionaltothatdistance. Ifthecar’svelocityisnotconstant,<br />

thenneitherwilltherate-of-changeovertimebeoftheintegratorcircuit’soutput,butthe<br />

outputvoltagewillfaithfullyrepresenttheamountofdistancetraveledbythecaratanygiven<br />

pointintime.<br />

Thesymbolforintegrationlookssomethinglikeaverynarrow,cursiveletter”S”( ).The<br />

equationutilizingthissymbol( vdt=x)tellsusthatweareintegratingvelocity(v)with<br />

respecttotime(dt),andobtainingposition(x)asaresult.<br />

So,wemayexpressthreemeasuresofthecar’smotion(position,velocity,andacceleration)<br />

intermsofvelocity(v)justaseasilyaswecouldintermsofposition(x):<br />

Position<br />

d 2 x<br />

dt 2


9.7. COMPUTATIONALCIRCUITS 447<br />

∫ v dt<br />

x<br />

Position<br />

Time<br />

v<br />

<strong>In</strong>tegration<br />

Velocity<br />

Time<br />

dv<br />

dt<br />

Differentiation<br />

Acceleration<br />

Time<br />

Ifwehadanaccelerometerattachedtothecar,generatingasignalproportionaltotherate<br />

ofaccelerationordeceleration,wecould(hypothetically)obtainavelocitysignalwithonestep<br />

ofintegration,andapositionsignalwithasecondstepofintegration:


448 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

x<br />

a<br />

Acceleration<br />

+<br />

V<br />

-<br />

Accel.<br />

<strong>In</strong>tegrator<br />

−<br />

+<br />

<strong>In</strong>tegrator<br />

−<br />

+<br />

+<br />

V ∫∫ a dt = x<br />

Position -<br />

Velocity<br />

-<br />

V ∫ a dt = v<br />

+<br />

Thus,allthreemeasuresofthecar’smotion(position,velocity,andacceleration)maybe<br />

expressedintermsofacceleration:<br />

x<br />

Position<br />

∫∫ a dt ∫ a dt<br />

Time<br />

Velocity<br />

Time<br />

<strong>In</strong>tegration <strong>In</strong>tegration<br />

a<br />

Acceleration<br />

Time


9.7. COMPUTATIONALCIRCUITS 449<br />

Asyoumighthavesuspected,theprocessofintegrationmaybeillustratedin,andapplied<br />

to,otherphysicalsystemsaswell.Takeforexamplethewaterstoragetankandflowexample<br />

shownearlier. Ifflowrateisthederivativeoftankvolumewithrespecttotime(q=dv/dt),<br />

thenwecouldalsosaythatvolumeistheintegralofflowratewithrespecttotime:<br />

Water<br />

supply<br />

FT f = flow<br />

Water<br />

∫ f dt = volume<br />

Ifweweretousea”FlowTransmitter”devicetomeasurewaterflow,thenbytime-integration<br />

wecouldcalculatethevolumeofwateraccumulatedinthetankovertime.Althoughitistheoreticallypossibletouseacapacitiveop-ampintegratorcircuittoderiveavolumesignalfromaflowsignal,mechanicalanddigitalelectronic”integrator”devicesaremoresuitableforintegrationoverlongperiodsoftime,andfindfrequentuseinthewatertreatmentanddistribution<br />

industries.<br />

Justastherearesymbolictechniquesfordifferentiation,therearealsosymbolictechniques<br />

forintegration,althoughtheytendtobemorecomplexandvaried.Applyingsymbolicintegrationtoareal-worldproblemliketheaccelerationofacar,though,isstillcontingentontheavailabilityofanequationpreciselydescribingthemeasuredsignal–oftenadifficultorimpossiblethingtoderivefrommeasureddata.<br />

However,electronicintegratorcircuitsperform<br />

thismathematicalfunctioncontinuously,inrealtime,andforanyinputsignalprofile,thus<br />

providingapowerfultoolforscientistsandengineers.<br />

Havingsaidthis,therearecaveatstotheusingcalculustechniquestoderiveonetype<br />

ofmeasurementfromanother. Differentiationhastheundesirabletendencyofamplifying<br />

”noise”foundinthemeasuredvariable,sincethenoisewilltypicallyappearasfrequencies<br />

muchhigherthanthemeasuredvariable,andhighfrequenciesbytheirverynaturepossess<br />

highrates-of-changeovertime.<br />

Toillustratethisproblem,supposewewerederivingameasurementofcaracceleration<br />

fromthevelocitysignalobtainedfromatachogeneratorwithwornbrushesorcommutator<br />

bars.Pointsofpoorcontactbetweenbrushandcommutatorwillproducemomentary”dips”in<br />

thetachogenerator’soutputvoltage,andthedifferentiatorcircuitconnectedtoitwillinterpret<br />

thesedipsasveryrapidchangesinvelocity. Foracarmovingatconstantspeed–neither<br />

acceleratingnordecelerating–theaccelerationsignalshouldbe0volts,but”noise”inthe<br />

velocitysignalcausedbyafaultytachogeneratorwillcausethedifferentiated(acceleration)<br />

signaltocontain”spikes,”falselyindicatingbriefperiodsofhighaccelerationanddeceleration:


450 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

x<br />

Differentiator<br />

−<br />

-<br />

+<br />

V<br />

v V +<br />

Acceleration +<br />

-<br />

Velocity<br />

+ -<br />

Gen<br />

Noisevoltagepresentinasignaltobedifferentiatedneednotbeofsignificantamplitudeto<br />

causetrouble:allthatisrequiredisthatthenoiseprofilehavefastriseorfalltimes.<strong>In</strong>other<br />

words,anyelectricalnoisewithahighdv/dtcomponentwillbeproblematicwhendifferentiated,evenifitisoflowamplitude.<br />

Itshouldbenotedthatthisproblemisnotanartifact(anidiosyncraticerrorofthemeasuring/computinginstrument)oftheanalogcircuitry;rather,itisinherenttotheprocessof<br />

differentiation. Nomatterhowwemightperformthedifferentiation,”noise”inthevelocity<br />

signalwillinvariablycorrupttheoutputsignal.Ofcourse,ifweweredifferentiatingasignal<br />

twice,aswedidtoobtainbothvelocityandaccelerationfromapositionsignal,theamplifiednoisesignaloutputbythefirstdifferentiatorcircuitwillbeamplifiedagainbythenext<br />

differentiator,thuscompoundingtheproblem:<br />

dv<br />

dt


9.7. COMPUTATIONALCIRCUITS 451<br />

little noise<br />

x<br />

Position<br />

+<br />

V<br />

-<br />

x<br />

Differentiator<br />

−<br />

+<br />

more noise even more noise!<br />

Velocity<br />

-<br />

dx<br />

V<br />

dt<br />

+<br />

Differentiator<br />

−<br />

+<br />

+ d<br />

V<br />

Acceleration -<br />

2 x<br />

dt 2<br />

<strong>In</strong>tegrationdoesnotsufferfromthisproblem,becauseintegratorsactaslow-passfilters,<br />

attenuatinghigh-frequencyinputsignals.<strong>In</strong>effect,allthehighandlowpeaksresultingfrom<br />

noiseonthesignalbecomeaveragedtogetherovertime,foradiminishednetresult. One<br />

mightsuppose,then,thatwecouldavoidalltroublebymeasuringaccelerationdirectlyand<br />

integratingthatsignaltoobtainvelocity;ineffect,calculatingin”reverse”fromthewayshown<br />

previously:


452 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

x<br />

a<br />

Acceleration<br />

+<br />

V<br />

-<br />

Accel.<br />

<strong>In</strong>tegrator<br />

−<br />

+<br />

Velocity<br />

-<br />

V ∫ a dt = v<br />

+<br />

Unfortunately,followingthismethodologymightleadusintootherdifficulties,onebeinga<br />

commonartifactofanalogintegratorcircuitsknownasdrift.Allop-ampshavesomeamountof<br />

inputbiascurrent,andthiscurrentwilltendtocauseachargetoaccumulateonthecapacitor<br />

inadditiontowhateverchargeaccumulatesasaresultoftheinputvoltagesignal. <strong>In</strong>other<br />

words,allanalogintegratorcircuitssufferfromthetendencyofhavingtheiroutputvoltage<br />

”drift”or”creep”evenwhenthereisabsolutelynovoltageinput,accumulatingerrorovertime<br />

asaresult. Also,imperfectcapacitorswilltendtolosetheirstoredchargeovertimedue<br />

tointernalresistance,resultingin”drift”towardzerooutputvoltage. Theseproblemsare<br />

artifactsoftheanalogcircuitry,andmaybeeliminatedthroughtheuseofdigitalcomputation.<br />

Circuitartifactsnotwithstanding,possibleerrorsmayresultfromtheintegrationofone<br />

measurement(suchasacceleration)toobtainanother(suchasvelocity)simplybecauseofthe<br />

wayintegrationworks.Ifthe”zero”calibrationpointoftherawsignalsensorisnotperfect,it<br />

willoutputaslightpositiveornegativesignaleveninconditionswhenitshouldoutputnothing.Consideracarwithanimperfectlycalibratedaccelerometer,oronethatisinfluencedby<br />

gravitytodetectaslightaccelerationunrelatedtocarmotion.Evenwithaperfectintegrating<br />

computer,thissensorerrorwillcausetheintegratortoaccumulateerror,resultinginanoutput<br />

signalindicatingachangeofvelocitywhenthecarisneitheracceleratingnordecelerating.


9.7. COMPUTATIONALCIRCUITS 453<br />

(slight positive<br />

voltage)<br />

(no motion)<br />

x<br />

a<br />

Acceleration<br />

+<br />

V<br />

-<br />

(calibration error)<br />

Accel.<br />

<strong>In</strong>tegrator<br />

−<br />

+<br />

Velocity<br />

-<br />

V ∫ a dt = v<br />

+<br />

(small rate<br />

of change)<br />

Aswithdifferentiation,thiserrorwillalsocompounditselfiftheintegratedsignalispassed<br />

ontoanotherintegratorcircuit,sincethe”drifting”outputofthefirstintegratorwillverysoon<br />

presentasignificantpositiveornegativesignalforthenextintegratortointegrate.Therefore,<br />

careshouldbetakenwhenintegratingsensorsignals:ifthe”zero”adjustmentofthesensoris<br />

notperfect,theintegratedresultwilldrift,eveniftheintegratorcircuititselfisperfect.<br />

Sofar,theonlyintegrationerrorsdiscussedhavebeenartificialinnature:originatingfrom<br />

imperfectionsinthecircuitryandsensors.Therealsoexistsasourceoferrorinherenttothe<br />

processofintegrationitself,andthatistheunknownconstantproblem.Beginningcalculusstudentslearnthatwheneverafunctionisintegrated,thereexistsanunknownconstant(usually<br />

representedasthevariableC)addedtotheresult.Thisuncertaintyiseasiesttounderstand<br />

bycomparingthederivativesofseveralfunctionsdifferingonlybytheadditionofaconstant<br />

value:


454 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

y<br />

y = 3x 2 + 4<br />

y = 3x 2<br />

y = 3x 2 - 6<br />

dx d<br />

dx d<br />

3x 2 + 4 = 6x<br />

3x<br />

dx<br />

2 d = 6x<br />

3x 2 - 6 = 6x<br />

(y’ = 6x) y’<br />

x x<br />

Notehoweachoftheparaboliccurves(y=3x 2 +C)sharetheexactsameshape,differing<br />

fromeachotherinregardtotheirverticaloffset. However,theyallsharetheexactsame<br />

derivativefunction:y’=(d/dx)(3x 2 +C)=6x,becausetheyallshareidenticalratesofchange<br />

(slopes)atcorrespondingpointsalongthexaxis.Whilethisseemsquitenaturalandexpected<br />

fromtheperspectiveofdifferentiation(differentequationssharingacommonderivative),it<br />

usuallystrikesbeginningstudentsasoddfromtheperspectiveofintegration,becausethereare<br />

multiplecorrectanswersfortheintegralofafunction.Goingfromanequationtoitsderivative,<br />

thereisonlyoneanswer,butgoingfromthatderivativebacktotheoriginalequationleadsus<br />

toarangeofcorrectsolutions.<strong>In</strong>honorofthisuncertainty,thesymbolicfunctionofintegration<br />

iscalledtheindefiniteintegral.<br />

Whenanintegratorperformslivesignalintegrationwithrespecttotime,theoutputis<br />

thesumoftheintegratedinputsignalovertimeandaninitialvalueofarbitrarymagnitude,<br />

representingtheintegrator’spre-existingoutputatthetimeintegrationbegan.Forexample,<br />

ifIintegratethevelocityofacardrivinginastraightlineawayfromacity,calculatingthata<br />

constantvelocityof50milesperhouroveratimeof2hourswillproduceadistance( vdt)of<br />

100miles,thatdoesnotnecessarilymeanthecarwillbe100milesawayfromthecityafter2<br />

hours.Allittellsusisthatthecarwillbe100milesfurtherawayfromthecityafter2hoursof<br />

driving.Theactualdistancefromthecityafter2hoursofdrivingdependsonhowfarthecar<br />

wasfromthecitywhenintegrationbegan.Ifwedonotknowthisinitialvaluefordistance,we<br />

cannotdeterminethecar’sexactdistancefromthecityafter2hoursofdriving.<br />

Thissameproblemappearswhenweintegrateaccelerationwithrespecttotimetoobtain<br />

velocity:


9.8. MEASUREMENTCIRCUITS–INCOMPLETE 455<br />

x<br />

a<br />

Acceleration<br />

+<br />

V<br />

-<br />

Accel.<br />

<strong>In</strong>tegrator<br />

−<br />

+<br />

∫ dt<br />

Velocity<br />

-<br />

V<br />

+<br />

∫ a dt = v + v0 Where,<br />

v0 = <strong>In</strong>itial velocity<br />

<strong>In</strong>thisintegratorsystem,thecalculatedvelocityofthecarwillonlybevalidiftheintegrator<br />

circuitisinitializedtoanoutputvalueofzerowhenthecarisstationary(v=0). Otherwise,<br />

theintegratorcouldverywellbeoutputtinganon-zerosignalforvelocity(v0)whenthecar<br />

isstationary,fortheaccelerometercannottellthedifferencebetweenastationarystate(0<br />

milesperhour)andastateofconstantvelocity(say,60milesperhour,unchanging). This<br />

uncertaintyinintegratoroutputisinherenttotheprocessofintegration,andnotanartifact<br />

ofthecircuitryorofthesensor.<br />

<strong>In</strong>summary,ifmaximumaccuracyisdesiredforanyphysicalmeasurement,itisbestto<br />

measurethatvariabledirectlyratherthancomputeitfromothermeasurements.Thisisnot<br />

tosaythatcomputationisworthless.Quitetothecontrary,oftenitistheonlypracticalmeans<br />

ofobtainingadesiredmeasurement.However,thelimitsofcomputationmustbeunderstood<br />

andrespectedinorderthatprecisemeasurementsbeobtained.<br />

9.8 Measurementcircuits–INCOMPLETE<br />

Figure9.21showsaphotodiodeamplifierformeasuringlowlevelsoflight. Bestsensitivity<br />

andbandwidthareobtainedwithatransimpedanceamplifier,acurrenttovoltageamplifier,<br />

insteadofaconventionaloperationalamplifier. Thephotodioderemainsreversebiasedfor<br />

lowestdiodecapacitance,hencewiderbandwidth,andlowernoise.Thefeedbackresistorsets<br />

the“gain”,thecurrenttovoltageamplificationfactor.Typicalvaluesare1to10Meg Ω.Higher<br />

valuesyieldhighergain.AcapacitorofafewpFmayberequiredtocompensateforphotodiode<br />

capacitance,andpreventsinstabilityatthehighgain.Thewiringatthesummingnodemust<br />

beascompactaspossible. Thispointissensitivetocircuitboardcontaminantsandmustbe<br />

thoroughlycleaned.Themostsensitiveamplifierscontainthephotodiodeandamplifierwithin<br />

ahybridmicrocircuitpackageorsingledie.


456 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS<br />

−<br />

+<br />

Vo<br />

Figure9.21:Photodiodeamplifier.<br />

9.9 Controlcircuits–PENDING<br />

Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

WarrenYoung(August2002): <strong>In</strong>itialideaandtextfor”Powersupplycircuits”section.<br />

ParagraphsmodifiedbyTonyKuphaldt(changesinvocabulary,plusinclusionofadditional<br />

concepts).<br />

BillMarsden(April2008)Authorof“ElectroStaticDischarge”section.<br />

Bibliography<br />

[1] Chin-Leong Lim, Lim Yeam Ch’ng, Goh Swee Chye, “Diode Quad Is<br />

Foundation For PIN Diode Attenuator,” Microwaves & RF, May 2006, at<br />

http://www.mwrf.com/Articles/<strong>In</strong>dex.cfm?Ad=1&ArticleID=12523<br />

[2] “TransistorAudioandRadio<strong>Circuits</strong>,”TP1399,2ndEd.,pp39-40,Mullard,London,1972.<br />

[3] “AMReceiverCircuitTCA440,”AnalogDataManual,2ndEd.,pp14-20to14-26,Signetics,1982.<br />

[4] Sony “8-pin Single-Chip AM Radio with Builot-in Power Amplifier,” pp 5, at<br />

http://www.datasheetcatalog.com/datasheets pdf/C/X/A/1/CXA1600.shtml<br />

[5] Texas<strong>In</strong>struments“SolidStateCommunications,”pp318,McGraw-Hill,N.Y.,1966.<br />

[6] Texas<strong>In</strong>struments“TransistorCircuitDesign,”pp290,McGraw-Hill,N.Y.,1963.<br />

[7] “Datasheet TDA7021T”, STR-NXP Wireless, at http://www.nxp.com/<br />

acrobat download/datasheets/TDA7021T CNV 2.pdf<br />

[8] DonaldL.Stoner,L.A.Earnshaw,“TheTransistorRadioHandbook,”pp76,Editorsand<br />

Eenineers,Sumerland,CA,1963.


BIBLIOGRAPHY 457<br />

[9] ,Charles Wenzel, “Crystal Radio <strong>Circuits</strong>,” at http://www.techlib.com/e<br />

lectronics/crystal.html.


458 CHAPTER9. PRACTICALANALOGSEMICONDUCTORCIRCUITS


Chapter10<br />

ACTIVEFILTERS<br />

Contents<br />

***PENDING***<br />

459


460 CHAPTER10. ACTIVEFILTERS


Chapter11<br />

DCMOTORDRIVES<br />

Contents<br />

11.1 PulseWidthModulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461<br />

***INCOMPLETE***<br />

11.1 PulseWidthModulation<br />

PulseWidthModulation(PWM)usesdigitalsignalstocontrolpowerapplications,aswellas<br />

beingfairlyeasytoconvertbacktoanalogwithaminimumofhardware.<br />

Analogsystems,suchaslinearpowersupplies,tendtogeneratealotofheatsincetheyare<br />

basicallyvariableresistorscarryingalotofcurrent.Digitalsystemsdon’tgenerallygenerate<br />

asmuchheat. Almostalltheheatgeneratedbyaswitchingdeviceisduringthetransition<br />

(whichisdonequickly),whilethedeviceisneitheronnoroff,butinbetween.Thisisbecause<br />

powerfollowsthefollowingformula:<br />

P=EI,orWatts=VoltageXCurrent<br />

Ifeithervoltageorcurrentisnearzerothenpowerwillbenearzero. PWMtakesfull<br />

advantageofthisfact.<br />

PWMcanhavemanyofthecharacteristicsofananalogcontrolsystem,inthatthedigital<br />

signalcanbefreewheeling.PWMdoesnothavetocapturedata,althoughthereareexceptions<br />

tothiswithhigherendcontrollers.<br />

Oneoftheparametersofanysquarewaveisdutycycle.Mostsquarewavesare50%,this<br />

isthenormwhendiscussingthem,buttheydon’thavetobesymmetrical. TheONtimecan<br />

bevariedcompletelybetweensignalbeingofftobeingfullyon,0%to100%,andallranges<br />

between.<br />

Shownbelowareexamplesofa10%,50%,and90%dutycycle.Whilethefrequencyisthe<br />

sameforeach,thisisnotarequirement.<br />

461


462 CHAPTER11. DCMOTORDRIVES<br />

ThereasonPWMispopularissimple.Manyloads,suchasresistors,integratethepower<br />

intoanumbermatchingthepercentage.Conversionintoitsanalogequivalentvalueisstraightforward.<br />

LEDsareverynonlinearintheirresponsetocurrent,giveanLEDhalfitsrated<br />

currentyouyoustillgetmorethanhalfthelighttheLEDcanproduce.WithPWMthelight<br />

levelproducedbytheLEDisverylinear. Motors,whichwillbecoveredlater,arealsovery<br />

responsivetoPWM.<br />

OneofseveralwaysPWMcanbeproducedisbyusingasawtoothwaveformandacomparator.Asshownbelowthesawtooth(ortrianglewave)neednotbesymmetrical,butlinearityof<br />

thewaveformisimportant.Thefrequencyofthesawtoothwaveformisthesamplingratefor<br />

thesignal.<br />

Ifthereisn’tanycomputationinvolvedPWMcanbefast. Thelimitingfactoristhecomparatorsfrequencyresponse.Thismaynotbeanissuesincequiteafewoftheusesarefairly<br />

lowspeed. SomemicrocontrollershavePWMbuiltin,andcanrecordorcreatesignalson<br />

demand.<br />

UsesforPWMvarywidely. ItistheheartofClassDaudioamplifiers,byincreasingthe<br />

voltagesyouincreasethemaximumoutput,andbyselectingafrequencybeyondhumanhearing(typically44Khz)PWMcanbeused.<br />

Thespeakersdonotrespondtothehighfrequency,<br />

butduplicatesthelowfrequency,whichistheaudiosignal.Highersamplingratescanbeused<br />

forevenbetterfidelity,and100Khzormuchhigherisnotunheardof.<br />

Anotherpopularapplicationismotorspeedcontrol. Motorsasaclassrequireveryhigh<br />

currentstooperate. BeingabletovarytheirspeedwithPWMincreasestheefficiencyofthe


11.1. PULSEWIDTHMODULATION 463<br />

totalsystembyquiteabit. PWMismoreeffectiveatcontrollingmotorspeedsatlowRPM<br />

thanlinearmethods.<br />

PWMisoftenusedinconjunctionwithanH-Bridge. ThisconfigurationissonamedbecauseitresemblestheletterH,andallowstheeffectivevoltageacrosstheloadtobedoubled,<br />

sincethepowersupplycanbeswitchedacrossbothsidesoftheload.<strong>In</strong>thecaseofinductive<br />

loads,suchasmotors,diodesareusedtosuppressinductivespikes,whichmaydamagethe<br />

transistors. Theinductanceinamotoralsotendstorejectthehighfrequencycomponentof<br />

thewaveform.ThisconfigurationcanalsobeusedwithspeakersforClassDaudioamps.<br />

Whilebasicallyaccurate,thisschematicofanH-Bridgehasoneseriousflaw,itispossible<br />

whiletransitioningbetweentheMOSFETsthatbothtransistorsontopandbottomwillbe<br />

onsimultaneously,andwilltakethefullbruntofwhatthepowersupplycanprovide. This<br />

conditionisreferredtoasshootthrough,andcanhappenwithanytypeoftransistorusedina<br />

H-Bridge.Ifthepowersupplyispowerfulenoughthetransistorswillnotsurvive.Itishandled<br />

byusingdriversinfrontofthetransistorsthatallowonetoturnoffbeforeallowingtheother<br />

toturnon.<br />

SwitchingModePowerSupplies(SMPS)canalsousePWM,althoughothermethodsalso<br />

exist.Addingtopologiesthatusethestoredpowerinbothinductorsandcapacitorsafterthe<br />

mainswitchingcomponentscanboosttheefficienciesforthesedevicesquitehigh,exceeding<br />

90%insomecases.Belowisanexampleofsuchaconfiguration.<br />

Efficiencyinthiscaseismeasuredaswattage.IfyouhaveaSMPSwith90%efficiency,and<br />

itconverts12VDCto5VDCat10Amps,the12Vsidewillbepullingapproximately4.6Amps.<br />

The10%(5watts)notaccountedforwillshowupaswasteheat.Whilebeingslightlynoisier,<br />

thistypeofregulatorwillrunmuchcoolerthanitslinearcounterpart.<br />

Contributors<br />

Contributorstothischapterarelistedinchronologicalorderoftheircontributions,frommost<br />

recenttofirst.SeeAppendix2(ContributorList)fordatesandcontactinformation.<br />

BillMarsden(February2010)Authorof“PulseWidthModulation”section.


464 CHAPTER11. DCMOTORDRIVES


Chapter12<br />

INVERTERSANDACMOTOR<br />

DRIVES<br />

Contents<br />

***PENDING***<br />

465


466 CHAPTER12. INVERTERSANDACMOTORDRIVES


Chapter13<br />

ELECTRONTUBES<br />

Contents<br />

13.1 <strong>In</strong>troduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467<br />

13.2 Earlytubehistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468<br />

13.3 Thetriode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .471<br />

13.4 Thetetrode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473<br />

13.5 Beampowertubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .474<br />

13.6 Thepentode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476<br />

13.7 Combinationtubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476<br />

13.8 Tubeparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .479<br />

13.9 Ionization(gas-filled)tubes . . . . . . . . . . . . . . . . . . . . . . . . . . . .481<br />

13.10Displaytubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485<br />

13.11Microwavetubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .488<br />

13.12TubesversusSemiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . .491<br />

13.1 <strong>In</strong>troduction<br />

Anoftenneglectedareaofstudyinmodernelectronicsisthatoftubes,morepreciselyknownas<br />

vacuumtubesorelectrontubes.Almostcompletelyovershadowedbysemiconductor,or”solidstate”componentsinmostmodernapplications,tubetechnologyoncedominatedelectronic<br />

circuitdesign.<br />

<strong>In</strong>fact,thehistoricaltransitionfrom”electric”to”electronic”circuitsreallybeganwith<br />

tubes,foritwaswithtubesthatweenteredintoawholenewrealmofcircuitfunction:awayof<br />

controllingtheflowofelectrons(current)inacircuitbymeansofanotherelectricsignal(inthe<br />

caseofmosttubes,thecontrollingsignalisasmallvoltage). Thesemiconductorcounterpart<br />

tothetube,ofcourse,isthetransistor.Transistorsperformmuchthesamefunctionastubes:<br />

controllingtheflowofelectronsinacircuitbymeansofanotherflowofelectronsinthecaseof<br />

thebipolartransistor,andcontrollingtheflowofelectronsbymeansofavoltageinthecaseof<br />

467


468 CHAPTER13. ELECTRONTUBES<br />

thefield-effecttransistor.<strong>In</strong>eithercase,arelativelysmallelectricsignalcontrolsarelatively<br />

largeelectriccurrent.Thisistheessenceoftheword”electronic,”soastodistinguishitfrom<br />

”electric,”whichhasmoretodowithhowelectronflowisregulatedbyOhm’sLawandthe<br />

physicalattributesofwireandcomponents.<br />

Thoughtubesarenowobsoleteforallbutafewspecializedapplications,theyarestilla<br />

worthyareaofstudy. Ifnothingelse,itisfascinatingtoexplore”thewaythingsusedtobe<br />

done”inordertobetterappreciatemoderntechnology.<br />

13.2 Earlytubehistory<br />

ThomasEdison,thatprolificAmericaninventor,isoftencreditedwiththeinventionofthe<br />

incandescentlamp. Moreaccurately,itcouldbesaidthatEdisonwasthemanwhoperfected<br />

theincandescentlamp.Edison’ssuccessfuldesignof1879wasactuallyprecededby77yearsby<br />

theBritishscientistSirHumphryDavy,whofirstdemonstratedtheprincipleofusingelectric<br />

currenttoheatathinstripofmetal(calleda”filament”)tothepointofincandescence(glowing<br />

whitehot).<br />

Edisonwasabletoachievehissuccessbyplacinghisfilament(madeofcarbonizedsewing<br />

thread)insideofaclearglassbulbfromwhichtheairhadbeenforciblyremoved. <strong>In</strong>this<br />

vacuum,thefilamentcouldglowatwhite-hottemperatureswithoutbeingconsumedbycombustion:<br />

clear, glass bulb<br />

air removed<br />

filament<br />

<strong>In</strong>thecourseofhisexperimentation(sometimearound1883),Edisonplacedastripofmetal<br />

insideofanevacuated(vacuum)glassbulbalongwiththefilament.Betweenthismetalstrip<br />

andoneofthefilamentconnectionsheattachedasensitiveammeter.Whathefoundwasthat<br />

electronswouldflowthroughthemeterwheneverthefilamentwashot,butceasedwhenthe<br />

filamentcooleddown:


13.2. EARLYTUBEHISTORY 469<br />

metal strip<br />

Thewhite-hotfilamentinEdison’slampwasliberatingfreeelectronsintothevacuumof<br />

thelamp,thoseelectronsfindingtheirwaytothemetalstrip,throughthegalvanometer,and<br />

backtothefilament.Hiscuriositypiqued,Edisonthenconnectedafairlyhigh-voltagebattery<br />

inthegalvanometercircuittoaidthesmallcurrent:<br />

more<br />

current<br />

Sureenough,thepresenceofthebatterycreatedamuchlargercurrentfromthefilamentto<br />

themetalstrip.However,whenthebatterywasturnedaround,therewaslittletonocurrent<br />

atall!<br />

no<br />

current<br />

<strong>In</strong>effect,whatEdisonhadstumbleduponwasadiode!Unfortunately,hesawnopractical<br />

useforsuchadeviceandproceededwithfurtherrefinementsinhislampdesign.<br />

Theone-wayelectronflowofthisdevice(knownastheEdisonEffect)remainedacuriosityuntilJ.A.Flemingexperimentedwithitsusein1895.<br />

Flemingmarketedhisdeviceasa<br />

”valve,”initiatingawholenewareaofstudyinelectriccircuits.Vacuumtubediodes–Fleming’s”valves”beingnoexception–arenotabletohandlelargeamountsofcurrent,andso<br />

Fleming’sinventionwasimpracticalforanyapplicationinACpower,onlyforsmallelectric<br />

signals.<br />

!<br />

-<br />

A<br />

+<br />

-<br />

A<br />

+<br />

+<br />

A<br />

-


470 CHAPTER13. ELECTRONTUBES<br />

Thenin1906,anotherinventorbythenameofLeeDeForeststartedplayingaroundwith<br />

the”EdisonEffect,”seeingwhatmorecouldbegainedfromthephenomenon.<strong>In</strong>doingso,he<br />

madeastartlingdiscovery:byplacingametalscreenbetweentheglowingfilamentandthe<br />

metalstrip(whichbynowhadtakentheformofaplateforgreatersurfacearea),thestreamof<br />

electronsflowingfromfilamenttoplatecouldberegulatedbytheapplicationofasmallvoltage<br />

betweenthemetalscreenandthefilament:<br />

control<br />

voltage<br />

The DeForest "Audion" tube<br />

"plate"<br />

"grid"<br />

"filament"<br />

plate current can be controlled by the<br />

application of a small control voltage<br />

between the grid and filament!<br />

DeForestcalledthismetalscreenbetweenfilamentandplateagrid. Itwasn’tjustthe<br />

amountofvoltagebetweengridandfilamentthatcontrolledcurrentfromfilamenttoplate,it<br />

wasthepolarityaswell. Anegativevoltageappliedtothegridwithrespecttothefilament<br />

wouldtendtochokeoffthenaturalflowofelectrons,whereasapositivevoltagewouldtendto<br />

enhancetheflow. Althoughtherewassomeamountofcurrentthroughthegrid,itwasvery<br />

small;muchsmallerthanthecurrentthroughtheplate.<br />

Perhapsmostimportantlywashisdiscoverythatthesmallamountsofgridvoltageandgrid<br />

currentwerehavinglargeeffectsontheamountofplatevoltage(withrespecttothefilament)<br />

andplatecurrent. <strong>In</strong>addingthegridtoFleming’s”valve,”DeForesthadmadethevalve<br />

adjustable:itnowfunctionedasanamplifyingdevice,wherebyasmallelectricalsignalcould<br />

takecontroloveralargerelectricalquantity.<br />

TheclosestsemiconductorequivalenttotheAudiontube,andtoallofitsmoremoderntube<br />

equivalents,isann-channelD-typeMOSFET.Itisavoltage-controlleddevicewithalarge<br />

currentgain.<br />

Callinghisinventionthe”Audion,”hevigorouslyappliedittothedevelopmentofcommunicationstechnology.<br />

<strong>In</strong>1912hesoldtherightstohisAudiontubeasatelephonesignal<br />

amplifiertotheAmericanTelephoneandTelegraphCompany(ATandT),whichmadelongdistancetelephonecommunicationpractical.<strong>In</strong>thefollowingyearhedemonstratedtheuseof<br />

anAudiontubeforgeneratingradio-frequencyACsignals. <strong>In</strong>1915heachievedtheremarkablefeatofbroadcastingvoicesignalsviaradiofromArlington,VirginiatoParis,andin1916<br />

inauguratedthefirstradionewsbroadcast.SuchaccomplishmentsearnedDeForestthetitle<br />

”FatherofRadio”inAmerica.<br />

-<br />

A<br />

+


13.3. THETRIODE 471<br />

13.3 Thetriode<br />

DeForest’sAudiontubecametobeknownasthetriodetube,becauseithadthreeelements:<br />

filament,grid,andplate(justasthe”di”inthenamediodereferstotwoelements,filament<br />

andplate).Laterdevelopmentsindiodetubetechnologyledtotherefinementoftheelectron<br />

emitter: insteadofusingthefilamentdirectlyastheemissiveelement,anothermetalstrip<br />

calledthecathodecouldbeheatedbythefilament.<br />

Thisrefinementwasnecessaryinordertoavoidsomeundesiredeffectsofanincandescent<br />

filamentasanelectronemitter.First,afilamentexperiencesavoltagedropalongitslength,<br />

ascurrentovercomestheresistanceofthefilamentmaterialanddissipatesheatenergy.This<br />

meantthatthevoltagepotentialbetweendifferentpointsalongthelengthofthefilamentwire<br />

andotherelementsinthetubewouldnotbeconstant.Forthisandsimilarreasons,alternating<br />

currentusedasapowersourceforheatingthefilamentwirewouldtendtointroduceunwanted<br />

AC”noise”intherestofthetubecircuit.Furthermore,thesurfaceareaofathinfilamentwas<br />

limitedatbest,andlimitedsurfaceareaontheelectronemittingelementtendstoplacea<br />

correspondinglimitonthetube’scurrent-carryingcapacity.<br />

Thecathodewasathinmetalcylinderfittingsnuglyoverthetwistedwireofthefilament.<br />

Thecathodecylinderwouldbeheatedbythefilamentwireenoughtofreelyemitelectrons,<br />

withouttheundesirablesideeffectsofactuallycarryingtheheatingcurrentasthefilament<br />

wirehadto.Thetubesymbolforatriodewithanindirectly-heatedcathodelookslikethis:


472 CHAPTER13. ELECTRONTUBES<br />

grid<br />

plate<br />

cathode filament<br />

Sincethefilamentisnecessaryforallbutafewtypesofvacuumtubes,itisoftenomittedin<br />

thesymbolforsimplicity,oritmaybeincludedinthedrawingbutwithnopowerconnections<br />

drawntoit:<br />

no filament<br />

shown at all<br />

...<br />

...<br />

...<br />

no connections shown<br />

to filament wires<br />

Asimpletriodecircuitisshowntoillustrateitsbasicoperationasanamplifier:<br />

input<br />

voltage<br />

Triode amplifier circuit<br />

R<br />

output<br />

voltage<br />

"plate supply"<br />

DC power<br />

source<br />

Thelow-voltageACsignalconnectedbetweenthegridandcathodealternatelysuppresses,<br />

thenenhancestheelectronflowbetweencathodeandplate.Thiscausesachangeinvoltageon<br />

theoutputofthecircuit(betweenplateandcathode).TheACvoltageandcurrentmagnitudes<br />

onthetube’sgridaregenerallyquitesmallcomparedwiththevariationofvoltageandcurrent<br />

intheplatecircuit. Thus,thetriodefunctionsasanamplifieroftheincomingACsignal


13.4. THETETRODE 473<br />

(takinghigh-voltage,high-currentDCpowersuppliedfromthelargeDCsourceontheright<br />

and”throttling”itbymeansofthetube’scontrolledconductivity).<br />

<strong>In</strong>thetriode,theamountofcurrentfromcathodetoplate(the”controlled”currentisa<br />

functionbothofgrid-to-cathodevoltage(thecontrollingsignal)andtheplate-to-cathodevoltage(theelectromotiveforceavailabletopushelectronsthroughthevacuum).Unfortunately,<br />

neitheroftheseindependentvariableshaveapurelylineareffectontheamountofcurrent<br />

throughthedevice(oftenreferredtosimplyasthe”platecurrent”). Thatis,triodecurrent<br />

doesnotnecessarilyrespondinadirect,proportionalmannertothevoltagesapplied.<br />

<strong>In</strong>thisparticularamplifiercircuitthenonlinearitiesarecompounded,asplatevoltage(with<br />

respecttocathode)changesalongwiththegridvoltage(alsowithrespecttocathode)asplate<br />

currentisthrottledbythetube. Theresultwillbeanoutputvoltagewaveformthatdoesn’t<br />

preciselyresemblethewaveformoftheinputvoltage. <strong>In</strong>otherwords,thequirkinessofthe<br />

triodetubeandthedynamicsofthisparticularcircuitwilldistortthewaveshape. Ifwereallywantedtogetcomplexabouthowwestatedthis,wecouldsaythatthetubeintroduces<br />

harmonicsbyfailingtoexactlyreproducetheinputwaveform.<br />

Anotherproblemwithtriodebehavioristhatofstraycapacitance. Rememberthatany<br />

timewehavetwoconductivesurfacesseparatedbyaninsulatingmedium,acapacitorwill<br />

beformed. Anyvoltagebetweenthosetwoconductivesurfaceswillgenerateanelectricfield<br />

withinthatinsulatingregion,potentiallystoringenergyandintroducingreactanceintoacircuit.Suchisthecasewiththetriode,mostproblematicallybetweenthegridandtheplate.It<br />

isasifthereweretinycapacitorsconnectedbetweenthepairsofelementsinthetube:<br />

C grid-plate<br />

C grid-cathode<br />

C plate-cathode<br />

Now,thisstraycapacitanceisquitesmall,andthereactiveimpedancesusuallyhigh.Usually,thatis,unlessradiofrequenciesarebeingdealtwith.AswesawwithDeForest’sAudiontube,radiowasprobablytheprimeapplicationforthisnewtechnology,sothese”tiny”capacitancesbecamemorethanjustapotentialproblem.Anotherrefinementintubetechnologywas<br />

necessarytoovercomethelimitationsofthetriode.<br />

13.4 Thetetrode<br />

Asthenamesuggests,thetetrodetubecontainedfourelements: cathode(withtheimplicit<br />

filament,or”heater”),grid,plate,andanewelementcalledthescreen.Similarinconstruction<br />

tothegrid,thescreenwasawiremeshorcoilpositionedbetweenthegridandplate,connected<br />

toasourceofpositiveDCpotential(withrespecttothecathode,asusual)equaltoafraction<br />

oftheplatevoltage. Whenconnectedtogroundthroughanexternalcapacitor,thescreen<br />

hadtheeffectofelectrostaticallyshieldingthegridfromtheplate. Withoutthescreen,the


474 CHAPTER13. ELECTRONTUBES<br />

capacitivelinkingbetweentheplateandthegridcouldcausesignificantsignalfeedbackat<br />

highfrequencies,resultinginunwantedoscillations.<br />

Thescreen,beingoflesssurfaceareaandlowerpositivepotentialthantheplate,didn’t<br />

attractmanyoftheelectronspassingthroughthegridfromthecathode,sothevastmajority<br />

ofelectronsinthetubestillflewbythescreentobecollectedbytheplate:<br />

input<br />

voltage<br />

Tetrode amplifier circuit<br />

"screen"<br />

R<br />

R<br />

R C<br />

"plate supply"<br />

DC power<br />

source<br />

WithaconstantDCscreenvoltage,electronflowfromcathodetoplatebecamealmostexclusivelydependentupongridvoltage,meaningtheplatevoltagecouldvaryoverawiderange<br />

withlittleeffectonplatecurrent. Thismadeformorestablegainsinamplifiercircuits,and<br />

betterlinearityformoreaccuratereproductionoftheinputsignalwaveform.<br />

Despitetheadvantagesrealizedbytheadditionofascreen,thereweresomedisadvantages<br />

aswell. Themostsignificantdisadvantagewasrelatedtosomethingknownassecondary<br />

emission. Whenelectronsfromthecathodestriketheplateathighvelocity,theycancause<br />

freeelectronstobejarredloosefromatomsinthemetaloftheplate.Theseelectrons,knocked<br />

offtheplatebytheimpactofthecathodeelectrons,aresaidtobe”secondarilyemitted.”<strong>In</strong>a<br />

triodetube,secondaryemissionisnotthatgreataproblem,butinatetrodewithapositivelychargedscreengridincloseproximity,thesesecondaryelectronswillbeattractedtothescreen<br />

ratherthantheplatefromwhichtheycame,resultinginalossofplatecurrent. Lessplate<br />

currentmeanslessgainfortheamplifier,whichisnotgood.<br />

Twodifferentstrategiesweredevelopedtoaddressthisproblemofthetetrodetube:beam<br />

powertubesandpentodes.Bothsolutionsresultedinnewtubedesignswithapproximatelythe<br />

sameelectricalcharacteristics.<br />

13.5 Beampowertubes<br />

<strong>In</strong>thebeampowertube,thebasicfour-elementstructureofthetetrodewasmaintained,but<br />

thegridandscreenwireswerecarefullyarrangedalongwithapairofauxiliaryplatestocreate<br />

aninterestingeffect: focusedbeamsor”sheets”ofelectronstravelingfromcathodetoplate.<br />

Theseelectronbeamsformedastationary”cloud”ofelectronsbetweenthescreenandplate


13.5. BEAMPOWERTUBES 475<br />

(calleda”spacecharge”)whichactedtorepelsecondaryelectronsemittedfromtheplateback<br />

totheplate.Asetof”beam-forming”plates,eachconnectedtothecathode,wereaddedtohelp<br />

maintainproperelectronbeamfocus.Gridandscreenwirecoilswerearrangedinsuchaway<br />

thateachturnorwrapofthescreenfelldirectlybehindawrapofthegrid,whichplacedthe<br />

screenwiresinthe”shadow”formedbythegrid.Thisprecisealignmentenabledthescreento<br />

stillperformitsshieldingfunctionwithminimalinterferencetothepassageofelectronsfrom<br />

cathodetoplate.<br />

grid wires<br />

(cross-sectional view)<br />

cathode<br />

screen wires<br />

(cross-sectional view)<br />

beam-forming plates<br />

(2)<br />

-<br />

- -<br />

- -<br />

-- -<br />

-- -<br />

---<br />

--- --<br />

-<br />

-<br />

-- -- -<br />

--<br />

- -<br />

--<br />

-<br />

- - -<br />

-<br />

- -<br />

"space charge"<br />

plate<br />

electron beams<br />

Thisresultedinlowerscreencurrent(andmoreplatecurrent!) thananordinarytetrode<br />

tube,withlittleaddedexpensetotheconstructionofthetube.<br />

Beampowertetrodeswereoftendistinguishedfromtheirnon-beamcounterpartsbyadifferentschematicsymbol,showingthebeam-formingplates:<br />

The "Beam power" tetrode tube<br />

grid<br />

cathode<br />

plate<br />

screen


476 CHAPTER13. ELECTRONTUBES<br />

13.6 Thepentode<br />

Anotherstrategyforaddressingtheproblemofsecondaryelectronsbeingattractedbythe<br />

screenwastheadditionofafifthwireelementtothetubestructure: asuppressor. These<br />

five-elementtubeswerenaturallycalledpentodes.<br />

screen<br />

The pentode tube<br />

cathode<br />

plate<br />

suppressor<br />

Thesuppressorwasanotherwirecoilormeshsituatedbetweenthescreenandtheplate,<br />

usuallyconnecteddirectlytogroundpotential.<strong>In</strong>somepentodetubedesigns,thesuppressor<br />

wasinternallyconnectedtothecathodesoastominimizethenumberofconnectionpinshaving<br />

topenetratethetubeenvelope:<br />

screen<br />

cathode<br />

plate<br />

grid<br />

grid<br />

(suppressor internally<br />

connected to cathode)<br />

Thesuppressor’sjobwastorepelanysecondarilyemittedelectronsbacktotheplate: a<br />

structuralequivalentofthebeampowertube’sspacecharge. This,ofcourse,increasedplate<br />

currentanddecreasedscreencurrent,resultinginbettergainandoverallperformance. <strong>In</strong><br />

someinstancesitallowedforgreateroperatingplatevoltageaswell.<br />

13.7 Combinationtubes<br />

Similarinthoughttotheideaoftheintegratedcircuit,tubedesignerstriedintegratingdifferenttubefunctionsintosingletubeenvelopestoreducespacerequirementsinmoremodern<br />

tube-typeelectronicequipment. Acommoncombinationseenwithinasingleglassshellwas<br />

twoeitherdiodesortwotriodes. Theideaoffittingpairsofdiodesinsideasingleenvelope<br />

makesalotofsenseinlightofpowersupplyfull-waverectifierdesigns,alwaysrequiringmultiplediodes.<br />

Ofcourse,itwouldhavebeenquiteimpossibletocombinethousandsoftubeelementsinto<br />

asingletubeenvelopethewaythatthousandsoftransistorscanbeetchedontoasinglepiece


13.7. COMBINATIONTUBES 477<br />

ofsilicon,butengineersstilldidtheirbesttopushthelimitsoftubeminiaturizationand<br />

consolidation.Someofthesetubes,whimsicallycalledcompactrons,heldfourormorecomplete<br />

tubeelementswithinasingleenvelope.<br />

Sometimesthefunctionsoftwodifferenttubescouldbeintegratedintoasingle,combinationtubeinawaythatsimplyworkedmoreelegantlythantwotubesevercould.Anexampleofthiswasthepentagridconverter,moregenerallycalledaheptode,usedinsomesuperheterodyneradiodesigns.Thesetubescontainedsevenelements:5gridsplusacathodeandaplate.<br />

Twoofthegridswerenormallyreservedforsignalinput,theotherthreerelegatedtoscreening<br />

andsuppression(performance-enhancing)functions. Combiningthesuperheterodynefunctionsofoscillatorandsignalmixertogetherinonetube,thesignalcouplingbetweenthesetwo<br />

stageswasintrinsic.Ratherthanhavingseparateoscillatorandmixercircuits,theoscillator<br />

creatinganACvoltageandthemixer”mixing”thatvoltagewithanothersignal,thepentagrid<br />

converter’soscillatorsectioncreatedanelectronstreamthatoscillatedinintensitywhichthen<br />

directlypassedthroughanothergridfor”mixing”withanothersignal.<br />

Thissametubewassometimesusedinadifferentway:byapplyingaDCvoltagetooneof<br />

thecontrolgrids,thegainofthetubecouldbechangedforasignalimpressedontheothercontrolgrid.Thiswasknownasvariable-muoperation,becausethe”mu”(µ)ofthetube(itsamplificationfactor,measuredasaratioofplate-to-cathodevoltagechangeovergrid-to-cathode<br />

voltagechangewithaconstantplatecurrent)couldbealteredatwillbyaDCcontrolvoltage<br />

signal.<br />

Enterprisingelectronicsengineersalsodiscoveredwaystoexploitsuchmulti-variablecapabilitiesof”lesser”tubessuchastetrodesandpentodes.Onesuchwaywastheso-calledultralinearaudiopoweramplifier,inventedbyapairofengineersnamedHaflerandKeroes,utilizingatetrodetubeincombinationwitha”tapped”outputtransformertoprovidesubstantial<br />

improvementsinamplifierlinearity(decreasesindistortionlevels).Considera”single-ended”<br />

triodetubeamplifierwithanoutputtransformercouplingpowertothespeaker:<br />

input<br />

voltage<br />

Speaker<br />

Ifwesubstituteatetrodeforatriodeinthiscircuit,wewillseeimprovementsincircuitgain


478 CHAPTER13. ELECTRONTUBES<br />

resultingfromtheelectrostaticshieldingofferedbythescreen,preventingunwantedfeedback<br />

betweentheplateandcontrolgrid:<br />

input<br />

voltage<br />

Standard<br />

configuration<br />

of tetrode tube<br />

in a single-ended<br />

audio amplifier<br />

Speaker<br />

However,thetetrode’sscreenmaybeusedforfunctionsotherthanmerelyshieldingthe<br />

gridfromtheplate. Itcanalsobeusedasanothercontrolelement,likethegriditself. If<br />

a”tap”ismadeonthetransformer’sprimarywinding,andthistapconnectedtothescreen,<br />

thescreenwillreceiveavoltagethatvarieswiththesignalbeingamplified(feedback).More<br />

specifically,thefeedbacksignalisproportionaltotherate-of-changeofmagneticfluxinthe<br />

transformercore(dΦ/dt),thusimprovingtheamplifier’sabilitytoreproducetheinputsignal<br />

waveformatthespeakerterminalsandnotjustintheprimarywindingofthetransformer:<br />

input<br />

voltage<br />

"Ultralinear"<br />

configuration<br />

of tetrode tube<br />

in a single-ended<br />

audio amplifier<br />

Speaker


13.8. TUBEPARAMETERS 479<br />

Thissignalfeedbackresultsinsignificantimprovementsinamplifierlinearity(andconsequently,distortion),solongasprecautionsaretakenagainst”overpowering”thescreenwithtoogreatapositivevoltagewithrespecttothecathode.Asaconcept,theultralinear(screenfeedback)designdemonstratestheflexibilityofoperationgrantedbymultiplegrid-elements<br />

insideasingletube:acapabilityrarelymatchedbysemiconductorcomponents.<br />

Sometubedesignscombinedmultipletubefunctionsinamosteconomicway:dualplates<br />

withasinglecathode,thecurrentsforeachoftheplatescontrolledbyseparatesetsofcontrol<br />

grids.Commonexamplesofthesetubesweretriode-heptodeandtriode-hexodetubes(ahexode<br />

tubeisatubewithfourgrids,onecathode,andoneplate).<br />

Othertubedesignssimplyincorporatedseparatetubestructuresinsideasingleglassenvelopeforgreatereconomy.Dualdiode(rectifier)tubeswerequitecommon,asweredualtriode<br />

tubes,especiallywhenthepowerdissipationofeachtubewasrelativelylow.<br />

Dual triode tube<br />

The12AX7and12AU7modelsarecommonexamplesofdual-triodetubes,bothoflow-power<br />

rating. The12AX7isespeciallycommonasapreamplifiertubeinelectricguitaramplifier<br />

circuits.<br />

13.8 Tubeparameters<br />

Forbipolarjunctiontransistors,thefundamentalmeasureofamplificationistheBetaratio<br />

(β),definedastheratioofcollectorcurrenttobasecurrent(IC/IB). Othertransistorcharacteristicssuchasjunctionresistance,whichinsomeamplifiercircuitsmayimpactperformance<br />

asmuchas β,arequantifiedforthebenefitofcircuitanalysis.Electrontubesarenodifferent,<br />

theirperformancecharacteristicshavingbeenexploredandquantifiedlongagobyelectrical<br />

engineers.<br />

Beforewecanspeakmeaningfullyonthesecharacteristics,wemustdefineseveralmathematicalvariablesusedforexpressingcommonvoltage,current,andresistancemeasurements<br />

aswellassomeofthemorecomplexquantities:


480 CHAPTER13. ELECTRONTUBES<br />

µ = amplification factor, pronounced "mu"<br />

(unitless)<br />

gm = mutual conductance, in siemens<br />

E p = plate-to-cathode voltage<br />

E g = grid-to-cathode voltage<br />

I p = plate current<br />

I k = cathode current<br />

E s = input signal voltage<br />

r p = dynamic plate resistance, in ohms<br />

∆ = delta, the Greek symbol for change<br />

Thetwomostbasicmeasuresofanamplifyingtube’scharacteristicsareitsamplification<br />

factor(µ)anditsmutualconductance(gm),alsoknownastransconductance. Transconductanceisdefinedherejustthesameasitisforfield-effecttransistors,anothercategoryof<br />

voltage-controlleddevices. Herearethetwoequationsdefiningeachoftheseperformance<br />

characteristics:<br />

µ = ∆E p<br />

∆E g<br />

g m = ∆I p<br />

∆E g<br />

with constant I p (plate current)<br />

with constant E p (plate voltage)<br />

Anotherimportant,thoughmoreabstract,measureoftubeperformanceisitsplateresistance.Thisisthemeasurementofplatevoltagechangeoverplatecurrentchangeforaconstant<br />

valueofgridvoltage. <strong>In</strong>otherwords,thisisanexpressionofhowmuchthetubeactslikea<br />

resistorforanygivenamountofgridvoltage,analogoustotheoperationofaJFETinitsohmic<br />

mode:<br />

∆E p<br />

r p = ∆Ip<br />

with constant E g (grid voltage)<br />

Theastutereaderwillnoticethatplateresistancemaybedeterminedbydividingtheamplificationfactorbythetransconductance:


13.9. IONIZATION(GAS-FILLED)TUBES 481<br />

µ = ∆E p<br />

∆E g<br />

∆E p<br />

r p = ∆Ip<br />

∆I p<br />

g m = ∆Eg<br />

. . . dividing µ by g m . . .<br />

r p =<br />

r p = ∆E p<br />

∆E g<br />

∆E p<br />

∆E g<br />

∆I p<br />

∆E g<br />

∆E g<br />

∆I p<br />

Thesethreeperformancemeasuresoftubesaresubjecttochangefromtubetotube(justas<br />

βratiosbetweentwo”identical”bipolartransistorsareneverpreciselythesame)andbetween<br />

differentoperatingconditions.Thisvariabilityisduepartlytotheunavoidablenonlinearities<br />

ofelectrontubesandpartlyduetohowtheyaredefined. Evensupposingtheexistenceofa<br />

perfectlylineartube,itwillbeimpossibleforallthreeofthesemeasurestobeconstantover<br />

theallowablerangesofoperation. Consideratubethatperfectlyregulatescurrentatany<br />

givenamountofgridvoltage(likeabipolartransistorwithanabsolutelyconstant β): that<br />

tube’splateresistancemustvarywithplatevoltage,becauseplatecurrentwillnotchange<br />

eventhoughplatevoltagedoes.<br />

Nevertheless,tubeswere(andare)ratedbythesevaluesatgivenoperatingconditions,and<br />

mayhavetheircharacteristiccurvespublishedjustliketransistors.<br />

13.9 Ionization(gas-filled)tubes<br />

Sofar,we’veexploredtubeswhicharetotally”evacuated”ofallgasandvaporinsidetheirglass<br />

envelopes,properlyknownasvacuumtubes. Withtheadditionofcertaingasesorvapors,<br />

however,tubestakeonsignificantlydifferentcharacteristics,andareabletofulfillcertain<br />

specialrolesinelectroniccircuits.<br />

Whenahighenoughvoltageisappliedacrossadistanceoccupiedbyagasorvapor,orwhen<br />

thatgasorvaporisheatedsufficiently,theelectronsofthosegasmoleculeswillbestripped<br />

awayfromtheirrespectivenuclei,creatingaconditionofionization.Havingfreedtheelectrons<br />

fromtheirelectrostaticbondstotheatoms’nuclei,theyarefreetomigrateintheformofa<br />

current,makingtheionizedgasarelativelygoodconductorofelectricity.<strong>In</strong>thisstate,thegas<br />

ismoreproperlyreferredtoasaplasma.<br />

Ionizedgasisnotaperfectconductor. Assuch,theflowofelectronsthroughionizedgas<br />

willtendtodissipateenergyintheformofheat,therebyhelpingtokeepthegasinastate


482 CHAPTER13. ELECTRONTUBES<br />

ofionization. Theresultofthisisatubethatwillbegintoconductundercertainconditions,<br />

thentendtostayinastateofconductionuntiltheappliedvoltageacrossthegasand/orthe<br />

heat-generatingcurrentdropstoaminimumlevel.<br />

Theastuteobserverwillnotethatthisispreciselythekindofbehaviorexhibitedbyaclass<br />

ofsemiconductordevicescalled”thyristors,”whichtendtostay”on”onceturned”on”andtend<br />

tostay”off”onceturned”off.”Gas-filledtubes,itcanbesaid,manifestthissamepropertyof<br />

hysteresis.<br />

Unliketheirvacuumcounterparts,ionizationtubeswereoftenmanufacturedwithnofilament(heater)atall.Thesewerecalledcold-cathodetubes,withtheheatedversionsdesignated<br />

ashot-cathodetubes.Whetherornotthetubecontainedasourceofheatobviouslyimpacted<br />

thecharacteristicsofagas-filledtube,butnottotheextentthatlackofheatwouldimpactthe<br />

performanceofahard-vacuumtube.<br />

Thesimplesttypeofionizationdeviceisnotnecessarilyatubeatall;rather,itisconstructed<br />

oftwoelectrodesseparatedbyagas-filledgap.Simplycalledasparkgap,thegapbetweenthe<br />

electrodesmaybeoccupiedbyambientair,othertimesaspecialgas,inwhichcasethedevice<br />

musthaveasealedenvelopeofsomekind.<br />

Spark gap<br />

electrodes<br />

enclosure (optional)<br />

Aprimeapplicationforsparkgapsisinovervoltageprotection. Engineerednottoionize,<br />

or”breakdown”(beginconducting),withnormalsystemvoltageappliedacrosstheelectrodes,<br />

thesparkgap’sfunctionistoconductintheeventofasignificantincreaseinvoltage. Once<br />

conducting,itwillactasaheavyload,holdingthesystemvoltagedownthroughitslarge<br />

currentdrawandsubsequentvoltagedropalongconductorsandotherseriesimpedances.<strong>In</strong>a<br />

properlyengineeredsystem,thesparkgapwillstopconducting(”extinguish”)whenthesystem<br />

voltagedecreasestoanormallevel,wellbelowthevoltagerequiredtoinitiateconduction.<br />

Onemajorcaveatofsparkgapsistheirsignificantlyfinitelife. Thedischargegenerated<br />

bysuchadevicecanbequiteviolent,andassuchwilltendtodeterioratethesurfacesofthe<br />

electrodesthroughpittingand/ormelting.<br />

Sparkgapscanbemadetoconductoncommandbyplacingathirdelectrode(usuallywith<br />

asharpedgeorpoint)betweentheothertwoandapplyingahighvoltagepulsebetweenthat<br />

electrodeandoneoftheotherelectrodes. Thepulsewillcreateasmallsparkbetweenthe<br />

twoelectrodes,ionizingpartofthepathwaybetweenthetwolargeelectrodes,andenabling<br />

conductionbetweenthemiftheappliedvoltageishighenough:


13.9. IONIZATION(GAS-FILLED)TUBES 483<br />

main<br />

voltage<br />

source<br />

Triggered spark gap<br />

(high voltage,<br />

high current)<br />

spark gap<br />

triggering voltage source<br />

(high voltage, low current)<br />

Load<br />

third electrode<br />

Sparkgapsofboththetriggeredanduntriggeredvarietycanbebuilttohandlehuge<br />

amountsofcurrent,someevenintotherangeofmega-amps(millionsofamps)!Physicalsize<br />

istheprimarylimitingfactortotheamountofcurrentasparkgapcansafelyandreliably<br />

handle.<br />

Whenthetwomainelectrodesareplacedinasealedtubefilledwithaspecialgas,adischargetubeisformed.Themostcommontypeofdischargetubeistheneonlight,usedpopularlyasasourceofcolorfulillumination,thecolorofthelightemittedbeingdependentonthe<br />

typeofgasfillingthetube.<br />

Constructionofneonlampscloselyresemblesthatofsparkgaps,buttheoperationalcharacteristicsarequitedifferent:


484 CHAPTER13. ELECTRONTUBES<br />

electrode<br />

NEON LAMP<br />

electrode<br />

current through the tube<br />

causes the neon gas to glow<br />

high voltage power supply (AC or DC)<br />

small neon<br />

indicator lamp<br />

glass tube<br />

Neon lamp schematic symbol<br />

Bycontrollingthespacingoftheelectrodesandthetypeofgasinthetube,neonlights<br />

canbemadetoconductwithoutdrawingtheexcessivecurrentsthatsparkgapsdo. They<br />

stillexhibithysteresisinthatittakesahighervoltagetoinitiateconductionthanitdoesto<br />

makethem”extinguish,”andtheirresistanceisdefinitelynonlinear(themorevoltageapplied<br />

acrossthetube,themorecurrent,thusmoreheat,thuslowerresistance).Giventhisnonlinear<br />

tendency,thevoltageacrossaneontubemustnotbeallowedtoexceedacertainlimit,lestthe<br />

tubebedamagedbyexcessivetemperatures.<br />

Thisnonlineartendencygivestheneontubeanapplicationotherthancolorfulillumination:<br />

itcanactsomewhatlikeazenerdiode,”clamping”thevoltageacrossitbydrawingmoreand<br />

morecurrentifthevoltagedecreases.Whenusedinthisfashion,thetubeisknownasaglow<br />

tube,orvoltage-regulatortube,andwasapopularmeansofvoltageregulationinthedaysof<br />

electrontubecircuitdesign.<br />

R series<br />

glow-discharge<br />

voltage regulator<br />

tube<br />

R load<br />

voltage across load<br />

held relative constant<br />

with variations of voltage<br />

source and load resistance<br />

Pleasetakenoteoftheblackdotfoundinthetubesymbolshownabove(andintheneon<br />

lampsymbolshownbeforethat).Thatmarkerindicatesthetubeisgas-filled.Itisacommon<br />

markerusedinallgas-filledtubesymbols.<br />

OneexampleofaglowtubedesignedforvoltageregulationwastheVR-150,withanominal<br />

regulatingvoltageof150volts.Itsresistancethroughouttheallowablelimitsofcurrentcould


13.10. DISPLAYTUBES 485<br />

varyfrom5kΩto30kΩ,a6:1span. Likezenerdioderegulatorcircuitsoftoday,glowtube<br />

regulatorscouldbecoupledtoamplifyingtubesforbettervoltageregulationandhigherload<br />

currentranges.<br />

Ifaregulartriodewasfilledwithgasinsteadofahardvacuum,itwouldmanifestallthe<br />

hysteresisandnonlinearityofothergastubeswithonemajoradvantage:theamountofvoltageappliedbetweengridandcathodewoulddeterminetheminimumplate-tocathodevoltage<br />

necessarytoinitiateconduction.<strong>In</strong>essence,thistubewastheequivalentofthesemiconductor<br />

SCR(Silicon-ControlledRectifier),andwascalledthethyratron.<br />

control<br />

voltage<br />

+<br />

-<br />

R load<br />

Thyratron<br />

Tube<br />

high voltage<br />

AC source<br />

Itshouldbenotedthattheschematicshownaboveisgreatlysimplifiedformostpurposes<br />

andthyratrontubedesigns. Somethyratrons,forinstance,requiredthatthegridvoltage<br />

switchpolaritybetweentheir”on”and”off”statesinordertoproperlywork.Also,somethyratronshadmorethanonegrid!<br />

ThyratronsfounduseinmuchthesamewayasSCR’sfindusetoday:controllingrectified<br />

ACtolargeloadssuchasmotors. Thyratrontubeshavebeenmanufacturedwithdifferent<br />

typesofgasfillingsfordifferentcharacteristics:inert(chemicallynon-reactive)gas,hydrogen<br />

gas,andmercury(vaporizedintoagasformwhenactivated). Deuterium,arareisotopeof<br />

hydrogen,wasusedinsomespecialapplicationsrequiringtheswitchingofhighvoltages.<br />

13.10 Displaytubes<br />

<strong>In</strong>additiontoperformingtasksofamplificationandswitching,tubescanbedesignedtoserve<br />

asdisplaydevices.<br />

Perhapsthebest-knowndisplaytubeisthecathoderaytube,orCRT.Originallyinvented<br />

asaninstrumenttostudythebehaviorof”cathoderays”(electrons)inavacuum,thesetubes<br />

developedintoinstrumentsusefulindetectingvoltage,thenlaterasvideoprojectiondevices<br />

withtheadventoftelevision. ThemaindifferencebetweenCRTsusedinoscilloscopesand<br />

CRTsusedintelevisionsisthattheoscilloscopevarietyexclusivelyuseelectrostatic(plate)<br />

deflection,whiletelevisionsuseelectromagnetic(coil)deflection.Platesfunctionmuchbetter<br />

thancoilsoverawiderrangeofsignalfrequencies,whichisgreatforoscilloscopesbutirrelevantfortelevisions,sinceatelevisionelectronbeamsweepsverticallyandhorizontallyatfixed<br />

frequencies. ElectromagneticdeflectioncoilsaremuchpreferredintelevisionCRTconstructionbecausetheydonothavetopenetratetheglassenvelopeofthetube,thusdecreasingthe


486 CHAPTER13. ELECTRONTUBES<br />

productioncostsandincreasingtubereliability.<br />

Aninteresting”cousin”totheCRTistheCat-EyeorMagic-Eyeindicatortube. Essentially,thistubeisavoltage-measuringdevicewithadisplayresemblingaglowinggreenring.<br />

Electronsemittedbythecathodeofthistubeimpingeonafluorescentscreen,causingthe<br />

green-coloredlighttobeemitted. Theshapeoftheglowproducedbythefluorescentscreen<br />

variesastheamountofvoltageappliedtoagridchanges:<br />

large shadow<br />

"Cat-Eye" indicator tube displays<br />

slight shadow<br />

minimal shadow<br />

Thewidthoftheshadowisdirectlydeterminedbythepotentialdifferencebetweenthecontrolelectrodeandthefluorescentscreen.Thecontrolelectrodeisanarrowrodplacedbetweenthecathodeandthefluorescentscreen.Ifthatcontrolelectrode(rod)issignificantlymorenegativethanthefluorescentscreen,itwilldeflectsomeelectronsawayfromthethatareaofthe<br />

screen. Theareaofthescreen”shadowed”bythecontrolelectrodewillappeardarkerwhen<br />

thereisasignificantvoltagedifferencebetweenthetwo.Whenthecontrolelectrodeandfluorescentscreenareatequalpotential(zerovoltagebetweenthem),theshadowingeffectwillbe<br />

minimalandthescreenwillbeequallyilluminated.<br />

Theschematicsymbolfora”cat-eye”tubelookssomethinglikethis:<br />

"Cat-Eye" or "Magic-Eye"<br />

indicator tube<br />

plate<br />

amplifier<br />

grid<br />

cathode<br />

fluorescent<br />

screen<br />

control<br />

electrode<br />

Hereisaphotographofacat-eyetube,showingthecirculardisplayregionaswellasthe<br />

glassenvelope,socket(black,atfarendoftube),andsomeofitsinternalstructure:


13.10. DISPLAYTUBES 487<br />

Normally,onlytheendofthetubewouldprotrudefromaholeinaninstrumentpanel,so<br />

theusercouldviewthecircular,fluorescentscreen.<br />

<strong>In</strong>itssimplestusage,a”cat-eye”tubecouldbeoperatedwithouttheuseoftheamplifier<br />

grid.However,inordertomakeitmoresensitive,theamplifiergridisused,anditisusedlike<br />

this:<br />

signal<br />

"Cat-Eye" indicator tube circuit<br />

R<br />

As the signal voltage increases, current through<br />

the tube is choked off. This decreases the voltage<br />

between the plate and the fluorescent screen,<br />

lessening the shadow effect (shadow narrows).<br />

Thecathode,amplifiergrid,andplateactasatriodetocreatelargechangesinplate-tocathodevoltageforsmallchangesingrid-to-cathodevoltage.<br />

Becausethecontrolelectrode<br />

isinternallyconnectedtotheplate,itiselectricallycommontoitandthereforepossessesthe<br />

sameamountofvoltagewithrespecttothecathodethattheplatedoes.Thus,thelargevoltage<br />

changesinducedontheplateduetosmallvoltagechangesontheamplifiergridendupcausing<br />

largechangesinthewidthoftheshadowseenbywhoeverisviewingthetube.


488 CHAPTER13. ELECTRONTUBES<br />

Control electrode negative with<br />

respect to the fluorescent screen.<br />

This is caused by a positive<br />

amplifier grid voltage (with<br />

respect to the cathode).<br />

No voltage between control<br />

electrode and flourescent screen.<br />

This is caused by a negative<br />

amplifier grid voltage (with<br />

respect to the cathode).<br />

”Cat-eye”tubeswereneveraccurateenoughtobeequippedwithagraduatedscaleasis<br />

thecasewithCRT’sandelectromechanicalmetermovements,buttheyservedwellasnull<br />

detectorsinbridgecircuits,andassignalstrengthindicatorsinradiotuningcircuits. An<br />

unfortunatelimitationtothe”cat-eye”tubeasanulldetectorwasthefactthatitwasnot<br />

directlycapableofvoltageindicationinbothpolarities.<br />

13.11 Microwavetubes<br />

Forextremelyhigh-frequencyapplications(above1GHz),theinterelectrodecapacitancesand<br />

transit-timedelaysofstandardelectrontubeconstructionbecomeprohibitive.However,there<br />

seemstobenoendtothecreativewaysinwhichtubesmaybeconstructed,andseveralhighfrequencyelectrontubedesignshavebeenmadetoovercomethesechallenges.<br />

Itwasdiscoveredin1939thatatoroidalcavitymadeofconductivematerialcalledacavity<br />

resonatorsurroundinganelectronbeamofoscillatingintensitycouldextractpowerfromthe<br />

beamwithoutactuallyinterceptingthebeamitself.Theoscillatingelectricandmagneticfields<br />

associatedwiththebeam”echoed”insidethecavity,inamannersimilartothesoundsof<br />

travelingautomobilesechoinginaroadsidecanyon,allowingradio-frequencyenergytobe<br />

transferredfromthebeamtoawaveguideorcoaxialcableconnectedtotheresonatorwitha<br />

couplingloop.Thetubewascalledaninductiveoutputtube,orIOT:<br />

RF<br />

signal<br />

input<br />

The inductive output tube (IOT)<br />

coaxial<br />

output<br />

cable<br />

electron beam<br />

DC supply<br />

RF power<br />

output<br />

toroidal<br />

cavity


13.11. MICROWAVETUBES 489<br />

TwooftheresearchersinstrumentalintheinitialdevelopmentoftheIOT,apairofbrothers<br />

namedSigurdandRussellVarian,addedasecondcavityresonatorforsignalinputtothe<br />

inductiveoutputtube. Thisinputresonatoractedasapairofinductivegridstoalternately<br />

”bunch”andreleasepacketsofelectronsdownthedriftspaceofthetube,sotheelectronbeam<br />

wouldbecomposedofelectronstravelingatdifferentvelocities.This”velocitymodulation”of<br />

thebeamtranslatedintothesamesortofamplitudevariationattheoutputresonator,where<br />

energywasextractedfromthebeam.TheVarianbrotherscalledtheirinventionaklystron.<br />

Beam<br />

control<br />

RF<br />

signal<br />

input<br />

The klystron tube<br />

electron beam<br />

DC supply<br />

coaxial<br />

output<br />

cable<br />

RF power<br />

output<br />

AnotherinventionoftheVarianbrotherswasthereflexklystrontube.<strong>In</strong>thistube,electrons<br />

emittedfromtheheatedcathodetravelthroughthecavitygridstowardtherepellerplate,then<br />

arerepelledandreturnedbackthewaytheycame(hencethenamereflex)throughthecavity<br />

grids.Self-sustainingoscillationswoulddevelopinthistube,thefrequencyofwhichcouldbe<br />

changedbyadjustingtherepellervoltage. Hence,thistubeoperatedasavoltage-controlled<br />

oscillator.<br />

RF output<br />

The reflex klystron tube<br />

cavity<br />

grids<br />

control grid<br />

cathode<br />

repeller<br />

cavity


490 CHAPTER13. ELECTRONTUBES<br />

Asavoltage-controlledoscillator,reflexklystrontubesservedcommonlyas”localoscillators”forradarequipmentandmicrowavereceivers:<br />

Reflex klystron tube used as<br />

a voltage-controlled oscillator<br />

<strong>In</strong>itiallydevelopedaslow-powerdeviceswhoseoutputrequiredfurtheramplificationfor<br />

radiotransmitteruse,reflexklystrondesignwasrefinedtothepointwherethetubescould<br />

serveaspowerdevicesintheirownright. Reflexklystronshavesincebeensupersededby<br />

semiconductordevicesintheapplicationoflocaloscillators,butamplificationklystronscontinuetofinduseinhigh-power,high-frequencyradiotransmittersandinscientificresearch<br />

applications.<br />

Onemicrowavetubeperformsitstasksowellandsocost-effectivelythatitcontinuesto<br />

reignsupremeinthecompetitiverealmofconsumerelectronics:themagnetrontube.Thisdeviceformstheheartofeverymicrowaveoven,generatingseveralhundredwattsofmicrowave<br />

RFenergyusedtoheatfoodandbeverages,anddoingsounderthemostgruelingconditions<br />

foratube:poweredonandoffatrandomtimesandforrandomdurations.<br />

MagnetrontubesarerepresentativeofanentirelydifferentkindoftubethantheIOTand<br />

klystron.Whereasthelattertubesusealinearelectronbeam,themagnetrondirectsitselectronbeaminacircularpatternbymeansofastrongmagneticfield:


13.12. TUBESVERSUSSEMICONDUCTORS 491<br />

cavity<br />

resonators<br />

The magnetron tube<br />

electron<br />

cathode<br />

beam<br />

RF output<br />

Onceagain,cavityresonatorsareusedasmicrowave-frequency”tankcircuits,”extracting<br />

energyfromthepassingelectronbeaminductively.Likeallmicrowave-frequencydevicesusing<br />

acavityresonator,atleastoneoftheresonatorcavitiesistappedwithacouplingloop:aloop<br />

ofwiremagneticallycouplingthecoaxialcabletotheresonantstructureofthecavity,allowing<br />

RFpowertobedirectedoutofthetubetoaload.<strong>In</strong>thecaseofthemicrowaveoven,theoutput<br />

powerisdirectedthroughawaveguidetothefoodordrinktobeheated,thewatermolecules<br />

withinactingastinyloadresistors,dissipatingtheelectricalenergyintheformofheat.<br />

Themagnetrequiredformagnetronoperationisnotshowninthediagram.Magneticflux<br />

runsperpendiculartotheplaneofthecircularelectronpath.<strong>In</strong>otherwords,fromtheviewof<br />

thetubeshowninthediagram,youarelookingstraightatoneofthemagneticpoles.<br />

13.12 TubesversusSemiconductors<br />

Devotingawholechapterinamodernelectronicstexttothedesignandfunctionofelectron<br />

tubesmayseemabitstrange,seeingashowsemiconductortechnologyhasallbutobsoleted<br />

tubesinalmosteveryapplication. However,thereismeritinexploringtubesnotjustfor<br />

historicalpurposes,butalsoforthosenicheapplicationsthatnecessitatethequalifyingphrase<br />

”almosteveryapplication”inregardtosemiconductorsupremacy.<br />

<strong>In</strong>someapplications,electrontubesnotonlycontinuetoseepracticaluse,butperformtheir<br />

respectivetasksbetterthananysolid-statedeviceyetinvented.<strong>In</strong>somecasestheperformance<br />

andreliabilityofelectrontubetechnologyisfarsuperior.<br />

<strong>In</strong>thefieldsofhigh-power,high-speedcircuitswitching,specializedtubessuchashydrogen<br />

thyratronsandkrytronsareabletoswitchfarlargeramountsofcurrent,farfasterthanany<br />

semiconductordevicedesignedtodate. Thethermalandtemporallimitsofsemiconductor<br />

physicsplacelimitationsonswitchingabilitythattubes–whichdonotoperateonthesame<br />

principles–areexemptfrom.<br />

<strong>In</strong>high-powermicrowavetransmitterapplications,theexcellentthermaltoleranceoftubes<br />

alonesecurestheirdominanceoversemiconductors. Electronconductionthroughsemiconductingmaterialsisgreatlyimpactedbytemperature.Electronconductionthroughavacuum


492 CHAPTER13. ELECTRONTUBES<br />

isnot. Asaconsequence,thepracticalthermallimitsofsemiconductordevicesarerather<br />

lowcomparedtothatoftubes. Beingabletooperatetubesatfargreatertemperaturesthan<br />

equivalentsemiconductordevicesallowstubestodissipatemorethermalenergyforagiven<br />

amountofdissipationarea,whichmakesthemsmallerandlighterincontinuoushighpower<br />

applications.<br />

Anotherdecidedadvantageoftubesoversemiconductorcomponentsinhigh-powerapplicationsistheirrebuildability.Whenalargetubefails,itmaybedisassembledandrepairedat<br />

farlowercostthanthepurchasepriceofanewtube.Whenasemiconductorcomponentfails,<br />

largeorsmall,thereisgenerallynomeansofrepair.<br />

Thefollowingphotographshowsthefrontpanelofa1960’svintage5kWAMradiotransmitter.<br />

Oneoftwo”Eimac”brandpowertubescanbeseeninarecessedarea,behindthe<br />

glassdoor. Accordingtothestationengineerwhogavethefacilitytour,therebuildcostfor<br />

suchatubeisonly$800:quiteinexpensivecomparedtothecostofanewtube,andstillquite<br />

reasonableincontrasttothepriceofanew,comparablesemiconductorcomponent!<br />

Tubes,beinglesscomplexintheirmanufacturethansemiconductorcomponents,arepotentiallycheapertoproduceaswell,althoughthehugevolumeofsemiconductordeviceproductionintheworldgreatlyoffsetsthistheoreticaladvantage.Semiconductormanufactureis<br />

quitecomplex,involvingmanydangerouschemicalsubstancesandnecessitatingsuper-clean<br />

assemblyenvironments.Tubesareessentiallynothingmorethanglassandmetal,withavacuumseal.<br />

Physicaltolerancesare”loose”enoughtopermithand-assemblyofvacuumtubes,<br />

andtheassemblyworkneednotbedoneina”cleanroom”environmentasisnecessaryfor<br />

semiconductormanufacture.<br />

Onemodernareawhereelectrontubesenjoysupremacyoversemiconductorcomponents<br />

isintheprofessionalandhigh-endaudioamplifiermarkets,althoughthisispartiallydueto<br />

musicalculture. Manyprofessionalguitarplayers,forexample,prefertubeamplifiersover<br />

transistoramplifiersbecauseofthespecificdistortionproducedbytubecircuits. Anelectric<br />

guitaramplifierisdesignedtoproducedistortionratherthanavoiddistortionasisthecase<br />

withaudio-reproductionamplifiers(thisiswhyanelectricguitarsoundssomuchdifferent<br />

thananacousticalguitar),andthetypeofdistortionproducedbyanamplifierisasmucha<br />

matterofpersonaltasteasitistechnicalmeasurement. Sincerockmusicinparticularwas


13.12. TUBESVERSUSSEMICONDUCTORS 493<br />

bornwithguitaristsplayingtube-amplifierequipment,thereisasignificantlevelof”tube<br />

appeal”inherenttothegenreitself,andthisappealshowsitselfinthecontinuingdemandfor<br />

”tubed”guitaramplifiersamongrockguitarists.<br />

Asanillustrationoftheattitudeamongsomeguitarists,considerthefollowingquotetaken<br />

fromthetechnicalglossarypageofatube-amplifierwebsitewhichwillremainnameless:<br />

SolidState:Acomponentthathasbeenspecificallydesignedtomakeaguitar<br />

amplifiersoundbad.Comparedtotubes,thesedevicescanhaveaverylonglifespan,<br />

whichguaranteesthatyouramplifierwillretainitsthin,lifeless,andbuzzysound<br />

foralongtimetocome.<br />

<strong>In</strong>theareaofaudioreproductionamplifiers(musicstudioamplifiersandhomeentertainmentamplifiers),itisbestforanamplifiertoreproducethemusicalsignalwithaslittledistortionaspossible.Paradoxically,incontrasttotheguitaramplifiermarketwheredistortionisa<br />

designgoal,high-endaudioisanotherareawheretubeamplifiersenjoycontinuingconsumer<br />

demand. Thoughonemightsupposetheobjective,technicalrequirementoflowdistortion<br />

wouldeliminateanysubjectivebiasonthepartofaudiophiles,onewouldbeverywrong.The<br />

marketforhigh-end”tubed”amplifierequipmentisquitevolatile,changingrapidlywithtrends<br />

andfads,drivenbyhighlysubjectiveclaimsof”magical”soundfromaudiosystemreviewers<br />

andsalespeople.Asintheelectricguitarworld,thereisnosmallmeasureofcult-likedevotion<br />

totubeamplifiersamongsomequartersoftheaudiophileworld. Asanexampleofthisirrationality,considerthedesignofmanyultra-high-endamplifiers,withchassisbuilttodisplay<br />

theworkingtubesopenly,eventhoughthisphysicalexposureofthetubesobviouslyenhances<br />

theundesirableeffectofmicrophonics(changesintubeperformanceasaresultofsoundwaves<br />

vibratingthetubestructure).<br />

Havingsaidthis,though,thereisawealthoftechnicalliteraturecontrastingtubesagainst<br />

semiconductorsforaudiopoweramplifieruse,especiallyintheareaofdistortionanalysis.<br />

Morethanafewcompetentelectricalengineersprefertubeamplifierdesignsovertransistors,<br />

andareabletoproduceexperimentalevidenceinsupportoftheirchoice. Theprimarydifficultyinquantifyingaudiosystemperformanceistheuncertainresponseofhumanhearing.<br />

Allamplifiersdistorttheirinputsignaltosomedegree,especiallywhenoverloaded,sothe<br />

questioniswhichtypeofamplifierdesigndistortstheleast.However,sincehumanhearingis<br />

verynonlinear,peopledonotinterpretalltypesofacousticdistortionequally,andsosomeamplifierswillsound”better”thanothersevenifaquantitativedistortionanalysiswithelectronic<br />

instrumentsindicatessimilardistortionlevels.Todeterminewhattypeofaudioamplifierwill<br />

distortamusicalsignal”theleast,”wemustregardthehumanearandbrainaspartofthe<br />

wholeacousticalsystem. Sincenocompletemodelyetexistsforhumanauditoryresponse,<br />

objectiveassessmentisdifficultatbest.However,someresearchindicatesthatthecharacteristicdistortionoftubeamplifiercircuits(especiallywhenoverloaded)islessobjectionablethan<br />

distortionproducedbytransistors.<br />

Tubesalsopossessthedistinctadvantageoflow”drift”overawiderangeofoperating<br />

conditions. Unlikesemiconductorcomponents,whosebarriervoltages, βratios,bulkresistances,andjunctioncapacitancesmaychangesubstantiallywithchangesindevicetemperatureand/orotheroperatingconditions,thefundamentalcharacteristicsofavacuumtuberemainnearlyconstantoverawiderangeinoperatingconditions,becausethosecharacteristicsaredeterminedprimarilybythephysicaldimensionsofthetube’sstructuralelements


494 CHAPTER13. ELECTRONTUBES<br />

(cathode,grid(s),andplate)ratherthantheinteractionsofsubatomicparticlesinacrystalline<br />

lattice.<br />

Thisisoneofthemajorreasonssolid-stateamplifierdesignerstypicallyengineertheircircuitstomaximizepower-efficiencyevenwhenitcompromisesdistortionperformance,because<br />

apower-inefficientamplifierdissipatesalotofenergyintheformofwasteheat,andtransistor<br />

characteristicstendtochangesubstantiallywithtemperature. Temperature-induced”drift”<br />

makesitdifficulttostabilize”Q”pointsandotherimportantperformance-relatedmeasuresin<br />

anamplifiercircuit. Unfortunately,powerefficiencyandlowdistortionseemtobemutually<br />

exclusivedesigngoals.<br />

Forexample,classAaudioamplifiercircuitstypicallyexhibitverylowdistortionlevels,but<br />

areverywastefulofpower,meaningthatitwouldbedifficulttoengineerasolid-stateclassA<br />

amplifierofanysubstantialpowerratingduetotheconsequentdriftoftransistorcharacteristics.Thus,mostsolid-stateaudioamplifierdesignerschooseclassBcircuitconfigurationsfor<br />

greaterefficiency,eventhoughclassBdesignsarenotoriousforproducingatypeofdistortion<br />

knownascrossoverdistortion.However,withtubesitiseasytodesignastableclassAaudio<br />

amplifiercircuitbecausetubesarenotasadverselyaffectedbythechangesintemperature<br />

experiencedinasuchapower-inefficientcircuitconfiguration.<br />

Tubeperformanceparameters,though,tendto”drift”morethansemiconductordevices<br />

whenmeasuredoverlongperiodsoftime(years). Onemajormechanismoftube”aging”appearstobevacuumleaks:whenairenterstheinsideofavacuumtube,itselectricalcharacteristicsbecomeirreversiblyaltered.Thissamephenomenonisamajorcauseoftubemortality,<br />

orwhytubestypicallydonotlastaslongastheirrespectivesolid-statecounterparts. When<br />

tubevacuumismaintainedatahighlevel,though,excellentperformanceandlifeispossible.<br />

Anexampleofthisisaklystrontube(usedtoproducethehigh-frequencyradiowavesusedin<br />

aradarsystem)thatlastedfor240,000hoursofoperation(citedbyRobertS.SymonsofLitton<br />

ElectronDevicesDivisioninhisinformativepaper,”Tubes: Stillvitalafteralltheseyears,”<br />

printedintheApril1998issueofIEEESpectrummagazine).<br />

Ifnothingelse, thetensionbetweenaudiophilesovertubesversussemiconductorshas<br />

spurredaremarkabledegreeofexperimentationandtechnicalinnovation,servingasanexcellentresourceforthosewishingtoeducatethemselvesonamplifiertheory.<br />

Takingawider<br />

view,theversatilityofelectrontubetechnology(differentphysicalconfigurations,multiple<br />

controlgrids)hintsatthepotentialforcircuitdesignsoffargreatervarietythanispossible<br />

usingsemiconductors.Forthisandotherreasons,electrontubeswillneverbe”obsolete,”but<br />

willcontinuetoserveinnicheroles,andtofosterinnovationforthoseelectronicsengineers,<br />

inventors,andhobbyistswhoareunwillingtolettheirmindsbystifledbyconvention.


AppendixA-1<br />

ABOUTTHISBOOK<br />

A-1.1 Purpose<br />

Theysaythatnecessityisthemotherofinvention.Atleastinthecaseofthisbook,thatadage<br />

istrue. Asanindustrialelectronicsinstructor,Iwasforcedtouseasub-standardtextbook<br />

duringmyfirstyearofteaching.Mystudentsweredailyfrustratedwiththemanytypographicalerrorsandobscureexplanationsinthisbook,havingspentmuchtimeathomestruggling<br />

tocomprehendthematerialwithin.Worseyetwerethemanyincorrectanswersinthebackof<br />

thebooktoselectedproblems.Addinginsulttoinjurywasthe$100+price.<br />

Contactingthepublisherprovedtobeanexerciseinfutility. Eventhoughtheparticular<br />

textIwasusinghadbeeninprintandinpopularuseforacoupleofyears,theyclaimedmy<br />

complaintwasthefirstthey’deverheard.Myrequesttoreviewthedraftforthenextedition<br />

oftheirbookwasmetwithdisinterestontheirpart,andIresolvedtofindanalternativetext.<br />

FindingasuitablealternativewasmoredifficultthanIhadimagined. Sure,therewere<br />

plentyoftextsinprint,butthereallygoodbooksseemedabittooheavyonthemathandthe<br />

lessintimidatingbooksomittedalotofinformationIfeltwasimportant. Someofthebest<br />

bookswereoutofprint,andthosethatwerestillbeingprintedwerequiteexpensive.<br />

ItwasoutoffrustrationthatIcompiled<strong>Lessons</strong>in<strong>Electric</strong><strong>Circuits</strong>fromnotesandideasI<br />

hadbeencollectingforyears.Myprimarygoalwastoputreadable,high-qualityinformation<br />

intothehandsofmystudents,butasecondarygoalwastomakethebookasaffordableas<br />

possible.Overtheyears,Ihadexperiencedthebenefitofreceivingfreeinstructionandencouragementinmypursuitoflearningelectronicsfrommanypeople,includingseveralteachers<br />

ofmineinelementaryandhighschool.Theirselflessassistanceplayedakeyroleinmyown<br />

studies,pavingthewayforarewardingcareerandfascinatinghobby. IfonlyIcouldextend<br />

thegiftoftheirhelpbygivingtootherpeoplewhattheygavetome...<br />

So,Idecidedtomakethebookfreelyavailable.Morethanthat,Idecidedtomakeit”open,”<br />

followingthesamedevelopmentmodelusedinthemakingoffreesoftware(mostnotablythe<br />

variousUNIXutilitiesreleasedbytheFreeSoftwareFoundation,andtheLinuxoperating<br />

495


496 APPENDIXA-1. ABOUTTHISBOOK<br />

system,whosefameisgrowingevenasIwrite).Thegoalwastocopyrightthetext–soasto<br />

protectmyauthorship–butexpresslyallowanyonetodistributeand/ormodifythetexttosuit<br />

theirownneedswithaminimumoflegalencumbrance. Thiswillfulandformalrevokingof<br />

standarddistributionlimitationsundercopyrightiswhimsicallytermedcopyleft.Anyonecan<br />

”copyleft”theircreativeworksimplybyappendinganoticetothateffectontheirwork,but<br />

severalLicensesalreadyexist,coveringthefinelegalpointsingreatdetail.<br />

ThefirstsuchLicenseIappliedtomyworkwastheGPL–GeneralPublicLicense–ofthe<br />

FreeSoftwareFoundation(GNU).TheGPL,however,isintendedtocopyleftworksofcomputer<br />

software,andalthoughitsintroductorylanguageisbroadenoughtocoverworksoftext,its<br />

wordingisnotasclearasitcouldbeforthatapplication. Whenother,lessspecificcopyleft<br />

Licensesbeganappearingwithinthefreesoftwarecommunity,Ichoseoneofthem(theDesign<br />

ScienceLicense,orDSL)astheofficialnoticeformyproject.<br />

<strong>In</strong>”copylefting”thistext,Iguaranteedthatnoinstructorwouldbelimitedbyatextinsufficientfortheirneeds,asIhadbeenwitherror-riddentextbooksfrommajorpublishers.I’msure<br />

thisbookinitsinitialformwillnotsatisfyeveryone,butanyonehasthefreedomtochangeit,<br />

leveragingmyeffortstosuitvariantandindividualrequirements.Forthebeginningstudent<br />

ofelectronics,learnwhatyoucanfromthisbook,editingitasyoufeelnecessaryifyoucome<br />

acrossausefulpieceofinformation.Then,ifyoupassitontosomeoneelse,youwillbegiving<br />

themsomethingbetterthanwhatyoureceived.Fortheinstructororelectronicsprofessional,<br />

feelfreetousethisasareferencemanual,addingoreditingtoyourheart’scontent. The<br />

only”catch”isthis:ifyouplantodistributeyourmodifiedversionofthistext,youmustgive<br />

creditwherecreditisdue(tome,theoriginalauthor,andanyoneelsewhosemodificationsare<br />

containedinyourversion),andyoumustensurethatwhoeveryougivethetexttoisawareof<br />

theirfreedomtosimilarlyshareandeditthetext.Thenextchaptercoversthisprocessinmore<br />

detail.<br />

ItmustbementionedthatalthoughIstrivetomaintaintechnicalaccuracyinallofthis<br />

book’scontent,thesubjectmatterisbroadandharborsmanypotentialdangers. <strong>Electric</strong>ity<br />

maimsandkillswithoutprovocation,anddeservestheutmostrespect. Istronglyencourage<br />

experimentationonthepartofthereader,butonlywithcircuitspoweredbysmallbatteries<br />

wherethereisnoriskofelectricshock,fire,explosion,etc.High-powerelectriccircuitsshould<br />

belefttothecareoftrainedprofessionals! TheDesignScienceLicenseclearlystatesthat<br />

neither<strong>In</strong>oranycontributorstothisbookbearanyliabilityforwhatisdonewithitscontents.<br />

A-1.2 TheuseofSPICE<br />

Oneofthebestwaystolearnhowthingsworkistofollowtheinductiveapproach:toobserve<br />

specificinstancesofthingsworkingandderivegeneralconclusionsfromthoseobservations.<br />

<strong>In</strong>scienceeducation,labworkisthetraditionallyacceptedvenueforthistypeoflearning,althoughinmanycaseslabsaredesignedbyeducatorstoreinforceprinciplespreviouslylearned<br />

throughlectureortextbookreading,ratherthantoallowthestudenttolearnontheirown<br />

throughatrulyexploratoryprocess.<br />

HavingtaughtmyselfmostoftheelectronicsthatIknow,Iappreciatethesenseoffrustrationstudentsmayhaveinteachingthemselvesfrombooks.<br />

Althoughelectroniccomponents<br />

aretypicallyinexpensive,noteveryonehasthemeansoropportunitytosetupalaboratory<br />

intheirownhomes,andwhenthingsgowrongthere’snoonetoaskforhelp.Mosttextbooks


A-1.3. ACKNOWLEDGEMENTS 497<br />

seemtoapproachthetaskofeducationfromadeductiveperspective: tellthestudenthow<br />

thingsaresupposedtowork,thenapplythoseprinciplestospecificinstancesthatthestudent<br />

mayormaynotbeabletoexplorebythemselves.Theinductiveapproach,asusefulasitis,is<br />

hardtofindinthepagesofabook.<br />

However,textbooksdon’thavetobethisway. IdiscoveredthiswhenIstartedtolearna<br />

computerprogramcalledSPICE.Itisatext-basedpieceofsoftwareintendedtomodelcircuits<br />

andprovideanalysesofvoltage,current,frequency,etc.Althoughnothingisquiteasgoodas<br />

buildingrealcircuitstogainknowledgeinelectronics,computersimulationisanexcellentalternative.<strong>In</strong>learninghowtousethispowerfultool,Imadeadiscovery:SPICEcouldbeused<br />

withinatextbooktopresentcircuitsimulationstoallowstudentsto”observe”thephenomena<br />

forthemselves. Thisway,thereaderscouldlearntheconceptsinductively(byinterpreting<br />

SPICE’soutput)aswellasdeductively(byinterpretingmyexplanations). Furthermore,in<br />

seeingSPICEusedoverandoveragain,theyshouldbeabletounderstandhowtouseitthemselves,providingaperfectlysafemeansofexperimentationontheirowncomputerswithcircuit<br />

simulationsoftheirowndesign.<br />

Anotheradvantagetoincludingcomputeranalysesinatextbookistheempiricalverificationitaddstotheconceptspresented.<br />

Withoutdemonstrations,thereaderislefttotake<br />

theauthor’sstatementsonfaith,trustingthatwhathasbeenwrittenisindeedaccurate.The<br />

problemwithfaith,ofcourse,isthatitisonlyasgoodastheauthorityinwhichitisplacedand<br />

theaccuracyofinterpretationthroughwhichitisunderstood.Authors,likeallhumanbeings,<br />

areliabletoerrand/orcommunicatepoorly. Withdemonstrations,however,thereadercan<br />

immediatelyseeforthemselvesthatwhattheauthordescribesisindeedtrue.Demonstrations<br />

alsoservetoclarifythemeaningofthetextwithconcreteexamples.<br />

SPICEisintroducedearlyinvolumeI(DC)ofthisbookseries,andhopefullyinagentle<br />

enoughwaythatitdoesn’tcreateconfusion. Forthosewishingtolearnmore,achapterin<br />

theReferencevolume(volumeV)containsanoverviewofSPICEwithmanyexamplecircuits.<br />

Theremaybemoreflashy(graphic)circuitsimulationprogramsinexistence,butSPICEis<br />

free,avirtuecomplementingthecharitablephilosophyofthisbookverynicely.<br />

A-1.3 Acknowledgements<br />

First,Iwishtothankmywife,whosepatienceduringthosemanyandlongevenings(and<br />

weekends!)oftypinghasbeenextraordinary.<br />

Ialsowishtothankthosewhoseopen-sourcesoftwaredevelopmenteffortshavemadethis<br />

endeavorallthemoreaffordableandpleasurable.Thefollowingisalistofvariousfreecomputersoftwareusedtomakethisbook,andtherespectiveprogrammers:<br />

• GNU/LinuxOperatingSystem–LinusTorvalds,RichardStallman,andahostofothers<br />

toonumeroustomention.<br />

• Vimtexteditor–BramMoolenaarandothers.<br />

• Xcircuitdraftingprogram–TimEdwards.<br />

• SPICEcircuitsimulationprogram–toomanycontributorstomention.<br />

• TEXtextprocessingsystem–DonaldKnuthandothers.


498 APPENDIXA-1. ABOUTTHISBOOK<br />

• Texinfodocumentformattingsystem–FreeSoftwareFoundation.<br />

• L ATEXdocumentformattingsystem–LeslieLamportandothers.<br />

• Gimpimagemanipulationprogram–toomanycontributorstomention.<br />

AppreciationisalsoextendedtoRobertL.Boylestad,whosefirsteditionof<strong>In</strong>troductory<br />

CircuitAnalysistaughtmemoreaboutelectriccircuitsthananyotherbook.Otherimportant<br />

textsinmyelectronicsstudiesincludethe1939editionofThe”Radio”Handbook,Bernard<br />

Grob’ssecondeditionof<strong>In</strong>troductiontoElectronicsI,andForrestMims’originalEngineer’s<br />

Notebook.<br />

ThankstothestaffoftheBellinghamAntiqueRadioMuseum,whoweregenerousenough<br />

toletmeterrorizetheirestablishmentwithmycameraandflashunit.<br />

IwishtospecificallythankJeffreyElknerandallthoseatYorktownHighSchoolforbeing<br />

willingtohostmybookaspartoftheirOpenBookProject,andtomakethefirsteffortincontributingtoitsformandcontent.ThanksalsotoDavidSweet(website:<br />

(http://www.andamooka.org))<br />

andBenCrowell(website: (http://www.lightandmatter.com))forprovidingencouragement,constructivecriticism,andawideraudiencefortheonlineversionofthisbook.<br />

ThankstoMichaelStutzfordraftinghisDesignScienceLicense,andtoRichardStallman<br />

forpioneeringtheconceptofcopyleft.<br />

Lastbutcertainlynotleast,manythankstomyparentsandthoseteachersofminewho<br />

sawinmeadesiretolearnaboutelectricity,andwhokindledthatflameintoapassionfor<br />

discoveryandintellectualadventure.Ihonoryoubyhelpingothersasyouhavehelpedme.<br />

TonyKuphaldt,July2001<br />

”Acandlelosesnothingofitslightwhenlightinganother”<br />

KahlilGibran


AppendixA-2<br />

CONTRIBUTORLIST<br />

A-2.1 Howtocontributetothisbook<br />

Asacopyleftedwork,thisbookisopentorevisionandexpansionbyanyinterestedparties.<br />

Theonly”catch”isthatcreditmustbegivenwherecreditisdue.Thisisacopyrightedwork:<br />

itisnotinthepublicdomain!<br />

Ifyouwishtociteportionsofthisbookinaworkofyourown,youmustfollowthesame<br />

guidelinesasforanyothercopyrightedwork. HereisasamplefromtheDesignScienceLicense:<br />

The Work is copyright the Author. All rights to the Work are reserved<br />

by the Author, except as specifically described below. This License<br />

describes the terms and conditions under which the Author permits you<br />

to copy, distribute and modify copies of the Work.<br />

<strong>In</strong> addition, you may refer to the Work, talk about it, and (as<br />

dictated by "fair use") quote from it, just as you would any<br />

copyrighted material under copyright law.<br />

Your right to operate, perform, read or otherwise interpret and/or<br />

execute the Work is unrestricted; however, you do so at your own risk,<br />

because the Work comes WITHOUT ANY WARRANTY -- see Section 7 ("NO<br />

WARRANTY") below.<br />

Ifyouwishtomodifythisbookinanyway,youmustdocumentthenatureofthosemodificationsinthe”Credits”sectionalongwithyourname,andideally,informationconcerninghow<br />

youmaybecontacted.Again,theDesignScienceLicense:<br />

Permission is granted to modify or sample from a copy of the Work,<br />

499


500 APPENDIXA-2. CONTRIBUTORLIST<br />

producing a derivative work, and to distribute the derivative work<br />

under the terms described in the section for distribution above,<br />

provided that the following terms are met:<br />

(a) The new, derivative work is published under the terms of this<br />

License.<br />

(b) The derivative work is given a new name, so that its name or<br />

title can not be confused with the Work, or with a version of<br />

the Work, in any way.<br />

(c) Appropriate authorship credit is given: for the differences<br />

between the Work and the new derivative work, authorship is<br />

attributed to you, while the material sampled or used from<br />

the Work remains attributed to the original Author; appropriate<br />

notice must be included with the new work indicating the nature<br />

and the dates of any modifications of the Work made by you.<br />

Giventhecomplexitiesandsecurityissuessurroundingthemaintenanceoffilescomprising<br />

thisbook,itisrecommendedthatyousubmitanyrevisionsorexpansionstotheoriginalauthor<br />

(TonyR.Kuphaldt). Youare,ofcourse,welcometomodifythisbookdirectlybyeditingyour<br />

ownpersonalcopy,butwewouldallstandtobenefitfromyourcontributionsifyourideaswere<br />

incorporatedintotheonline“mastercopy”wherealltheworldcanseeit.<br />

A-2.2 Credits<br />

Allentriesarrangedinalphabeticalorderofsurname.Majorcontributionsarelistedbyindividualnamewithsomedetailonthenatureofthecontribution(s),date,contactinfo,etc.Minorcontributions(typocorrections,etc.)arelistedbynameonlyforreasonsofbrevity.PleaseunderstandthatwhenIclassifyacontributionas“minor,”itisinnowayinferiortotheeffort<br />

orvalueofa“major”contribution,justsmallerinthesenseoflesstextchanged.Anyandall<br />

contributionsaregratefullyaccepted.Iamindebtedtoallthosewhohavegivenfreelyoftheir<br />

ownknowledge,time,andresourcestomakethisabetterbook!<br />

A-2.2.1 TonyR.Kuphaldt<br />

• Date(s)ofcontribution(s):1996topresent<br />

• Natureofcontribution:Originalauthor.<br />

• Contactat: liec0@lycos.com


A-2.2. CREDITS 501<br />

A-2.2.2 DennisCrunkilton<br />

• Date(s)ofcontribution(s):July2004topresent<br />

• Natureofcontribution: Minitableofcontents,allchaptersexceptappendicies;html,<br />

latex,ps,pdf;SeeDevel/tutorial.html;01/2006.<br />

• Natureofcontribution:CompletedCh4Bipolarjunctiontransistors,CH7Thyristors;<br />

Ch9Practicalanlogckts,afewadditions;Ch8Opamps,minor;04/2009<br />

• Contactat: dcrunkilton(at)att(dot)net<br />

A-2.2.3 BillMarsden<br />

• Date(s)ofcontribution(s):May2003-present<br />

• Natureofcontribution:UpdatetoLEDsubsection,DiodesCh3,Nov2003.<br />

• Natureofcontribution:Originalauthor:“ElectroStaticDischarge”Section,Chapter<br />

9,May2008.<br />

• Natureofcontribution:Chapter3,LED’supdate,photodiodeupdate,Feburary2009.<br />

• Natureofcontribution:Chapter11,Sectionauthor:”PulseWidthModulation”,Feburary2010.<br />

• Contactat: bill marsden2(at)hotmail(dot)com<br />

A-2.2.4 JohnAnhalt<br />

• Date(s)ofcontribution(s):June2011<br />

• Natureofcontribution:UpdatedSiSP3electronhybridization,Ch2<br />

• Contactat: jpa@anhalt.org<br />

A-2.2.5 Yournamehere<br />

• Date(s)ofcontribution(s):Monthandyearofcontribution<br />

• Natureofcontribution:<strong>In</strong>serttexthere,describinghowyoucontributedtothebook.<br />

• Contactat: my email@provider.net


502 APPENDIXA-2. CONTRIBUTORLIST<br />

A-2.2.6 Typocorrectionsandother“minor”contributions<br />

• line-allaboutcircuits.com(June2005)Typographicalerrorcorrectionin<strong>Volume</strong>s1,2,3,5,<br />

variouschapters,(:s/visa-versa/viceversa/).<br />

• ColinCreitz(May2007)Chapters:several,s/it’s/its.<br />

• DennisCrunkilton(October2005)Typographicalcapitlizationcorrectiontosectiontitles,chapter9.<br />

• JeffDeFreitas(March2006)Improveappearance:replace“/”and”/”Chapters:A1,A2.<br />

• PaulStokes,ProgramChair,ComputerandElectronicsEngineeringTechnology,ITT<br />

Technical<strong>In</strong>stitute,Houston,Tx(October2004)Change(10012=-810+710=-110)to<br />

(10012=-810+110=-110),CH2,BinaryArithmetic<br />

• PaulStokes,ProgramChairComputerandElectronicsEngineeringTechnology,ITT<br />

Technical<strong>In</strong>stitute,Houston,Tx(October2004)Near”Foldupthecorners”changeOut=B’C’<br />

toOut=B’D’,14118.epssamechange,KarnaughMapping<br />

• ThestudentsofBellinghamTechnicalCollege’s<strong>In</strong>strumentationprogram,.<br />

• RogerHollingsworth(May2003)SuggestedawaytomakethePLCmotorcontrol<br />

systemfail-safe.<br />

• Jan-WillemRensman(May2002)SuggestedtheinclusionofSchmitttriggersandgate<br />

hysteresistothe”LogicGates”chapter.<br />

• DonStalkowski(June2002)TechnicalhelpwithPostScript-to-PDFfileformatconversion.<br />

• JosephTeichman(June2002)SuggestionandtechnicalhelpregardinguseofPNG<br />

imagesinsteadofJPEG.<br />

• Unregistered@allaboutcircuits.com(November2007)“Booleanalgebra”,images14019.pes<br />

14021.epsoutputofgatesincorrects/0/As/1/A.<br />

• DanSimon(February2008)“NumerationSystems”,AfterBINARYTOOCTALCON-<br />

VERSION,positionofdecimalpoint—.<br />

• TimothyKingman(March2008)Changeddefaultromanfonttonewcent.<br />

• ImranullahSyed(March2008)Suggestedcenteringofuncaptionedschematics.<br />

• Chris01720@allaboutcircuits.com(March2008)Ch15,<strong>In</strong>accuracyinvolvingCD-ROM<br />

production.<br />

• studiot@allaboutcircuits.com(March2008)Ch15,s/disk/disc/inCDROM.<br />

• Keith@allaboutcircuits.com(April2008)Ch12,s/laralel-out/parallel-out/.<br />

• KenBraswell(May2008)Ch3,s/drips/drops/.


A-2.2. CREDITS 503<br />

• Guest@allaboutcircuits.com(Oct2008)Ch2,s/areinclose/areclose/.<br />

• Radoslav@allaboutcircuits.com(Oct2008)Ch8,s/that1mAof/that6mA/.<br />

• Scanman@allaboutcircuits.com(Dec2008)Ch2,s/shellsarehold/shellshold/.<br />

• dgeorge@allaboutcircuits.com(Dec2008)Ch7,image03320.png,swappedanodeand<br />

anodegate.leftdiagram.<br />

• UnregisteredGuest@allaboutcircuits.com(Feb2009)Ch2s/thanFET’s/thanJFET’s.<br />

• UnregisteredGuest@allaboutcircuits.com(March2009)Ch8,13061.png,change<br />

formulaforinvertinggaintoinclude”-”.<br />

• dezurtrat@allaboutcircuits.com(March2009)Ch3,03443.png,s/p-p/peak.<br />

• BillMarsden@allaboutcircuits.com(April2009)Ch3,s/Iwould/Itwould/<br />

• PeterO@allaboutcircuits.com(April2009)Ch1,closingparenthesis,abovereplaced<br />

withreferencetofigure.<br />

• Nanophotonics@allaboutcircuits.com(April2009)Ch9,image53009.jpgs/courtisy/courtesy.<br />

• BillMarsden@allaboutcircuits.com(April2009)Ch8,images2001.png,2002.png<br />

appearance.<br />

• DCrunkilton(April2009)Ch4,images23006.png,23007.pngupdated.<br />

• UnregisteredGuest@allaboutcircuits.com(June2009)Ch7,s/SCRschematicsymbol/TRIACschematicsymbol.<br />

• PeterO’Dette(June2009)Ch1,s/is1watts/is1Watt,s/10watt/10Watts,s/watt/Watt<br />

.<br />

• UnregisteredGuest@allaboutcircuits.com(June2009)Ch3, s/being/begin,near<br />

”voltageatwhichthey”.s/is/innear”Thediodesmustbe”.<br />

• regrehan@allaboutcircuits.com(June2009)Ch4,s/r1121/r1121kincommonemitteramplifierSPICElist.<br />

• UnregisteredGuest@allaboutcircuits.com(July2009)Ch3,s/Notepolaritychange<br />

oncoilchanged/Notepolaritychangeoncoil.<br />

• UnregisteredGuest@allaboutcircuits.com(August2009)Ch4,SwapPNP&NPNat<br />

(b)&(c),captionof03075.png.<br />

• UnregisteredGuest@allaboutcircuits.com(August2009)equationtypos03077.png<br />

03479.png.<br />

• PeterO’Dette@allaboutcircuits.com(August2009)Ch2, Numerouschanges, and<br />

03409.png.


504 APPENDIXA-2. CONTRIBUTORLIST<br />

• BillMarsden@allaboutcircuits.com(November2009)Ch4,Betaformula,”Transistor<br />

atingsandPackages”.<br />

• UnregisteredGuest@allaboutcircuits.com(November2009)Ch3,Image03288.eps<br />

changedpolarizedcapacitortonon-polarized.<br />

• UnregisteredGuest@allaboutcircuits.com(November2009)Ch4s/hasre/share/s/common=emitter/commonemitter/.<br />

• Uisge@allaboutcircuits.com(November2009)Ch3,s/onceeveryhalf-cycle/onehalfof<br />

everyfullcycle/,s/much/half/.<br />

• UnregisteredGuest@allaboutcircuits.com(November2009)Ch4s/Tomaintaining/To<br />

maintain.<br />

• UnregisteredGuest@allaboutcircuits.com(November2009)Ch3s/[model]/[modelname]/<br />

.<br />

• gareththegeek@allaboutcircuits.com(November2009)Ch2numeroustypos,omissions.<br />

• Dcrunkilton@allaboutcircuits.com(November2009)Ch2minorchagestotextand<br />

image03392.eps.<br />

• waynerr@allaboutcircuits.com(December2009)Ch4equations4and7ofimage<br />

03488.eps.<br />

• jkenny@allaboutcircuits.com(January2010)Ch7s/willwill/will/.<br />

• BHijazi@allaboutcircuits.com(February2010)Ch1,Clarificationoftextbetweenimages03378.pngand03379.png.<br />

• SgtWookiei@allaboutcircuits.com(March2010)Ch4,image03375.png,flippedpnp<br />

andbattery.<br />

• BillMarsden@allaboutcircuits.com(March2010)Ch9,ChangestoESDsection.<br />

• SgtWookiei@allaboutcircuits.com(April2010)Ch4,image03078.png,addedresistors.<br />

• silv3rmOOn@allaboutcircuits.com(April2010)Ch4,typoinSPICElistingnearimage20004.png.<br />

• optomist1@allaboutcircuits.com(July2010)Ch2,typos/campared/compared/.<br />

• BillMarsden@allaboutcircuits.com(July2010)Ch11,change[I]toitalictagsindcdrive.sml.<br />

• Unregisteredguest@allaboutcircuits.com(August2010)Ch2,s/Thebopolartransistor/Thebipolarjunctiontransistor/.<br />

• Unregisteredguest@allaboutcircuits.com(August2010)Ch4,


A-2.2. CREDITS 505<br />

• DCrunkilton(Sept2010)Ch2s/minuscule/minuscule;Ch3,4,5,7,s/useable/usable.<br />

• beenthere@allaboutcircuits.com(Oct2010)Ch3,AClinepoweredLEDmaterialremoved.<br />

• mulebones@allaboutcircuits.com(Feb2011)Ch3,s/5Vptp/10Vptp/<br />

• Skfir@allaboutcircuits.com(Feb2011)Ch1,s/ource/source/<br />

• Skfir@allaboutcircuits.com(Feb2011)Ch2,4,A3s/thethe/the/<br />

• Skfir@allaboutcircuits.com(Feb2011)Ch2,s/insulatorinsulator/insulator/<br />

• Skfir@allaboutcircuits.com(Feb2011)Ch3, s/aapproximately/atapproximately/,<br />

s/frequencymy/frequencymay/,s/applicationa/appliationisas/,s/beenproduce/been<br />

produced/;Ch4s/approximage/approximate/s/resistorisashort/capacitorisashort/;<br />

s/Iisit/Isit/s/Thethe/The/s/thethese/these/,s/distortiondistortion/distortion/<br />

• D.Crunkilton(June2011)hi.latex,headerfile;updatedlinktoopenbookproject.net.<br />

• SamAtOz@allaboutcircuits.com(May2012)Ch2s/occurr/occurs/repells/repels/,s/is<br />

increases/increases,at(c)changedtofullreference,.<br />

• john207@allaboutcircuits.com(May2012)Ch4,various<br />

• BillMarsden@allaboutcircuits.com(May2012)Ch4,Clarificationoftextnear:Bipolartransistorsarecontructed....<br />

• kintzlr@allaboutcircuits.com(January2013)Ch4,image03495.epscorrected.Added<br />

Ohmsymbolto0.26,above2600Ohm.<br />

• sby64@allaboutcircuits.com(January2013)Ch4,captionimage03495.pngs/resistance<br />

Vth/resistanceRth.<br />

• keithostertag@allaboutcircuits.com(January2013)Ch4,captionimage03495.png<br />

s/resistanceVth/resistanceRth.<br />

• EugeneSmirnoff(January2013)Ch2,near”ASQUID’”s/isan/isa/s/Superconduction/Superconducting


506 APPENDIXA-2. CONTRIBUTORLIST


AppendixA-3<br />

DESIGNSCIENCELICENSE<br />

Copyright c○1999-2000MichaelStutz stutz@dsl.org<br />

Verbatimcopyingofthisdocumentispermitted,inanymedium.<br />

A-3.1 0.Preamble<br />

Copyrightlawgivescertainexclusiverightstotheauthorofawork, includingtherights<br />

tocopy,modifyanddistributethework(the”reproductive,””adaptative,”and”distribution”<br />

rights).<br />

Theideaof”copyleft”istowillfullyrevoketheexclusivityofthoserightsundercertain<br />

termsandconditions,sothatanyonecancopyanddistributetheworkorproperlyattributed<br />

derivativeworks,whileallcopiesremainunderthesametermsandconditionsastheoriginal.<br />

Theintentofthislicenseistobeageneral”copyleft”thatcanbeappliedtoanykindofwork<br />

thathasprotectionundercopyright.Thislicensestatesthosecertainconditionsunderwhich<br />

aworkpublishedunderitstermsmaybecopied,distributed,andmodified.<br />

Whereas”designscience”isastrategyforthedevelopmentofartifactsasawaytoreform<br />

theenvironment(notpeople)andsubsequentlyimprovetheuniversalstandardofliving,this<br />

DesignScienceLicensewaswrittenanddeployedasastrategyforpromotingtheprogressof<br />

scienceandartthroughreformoftheenvironment.<br />

A-3.2 1.Definitions<br />

”License”shallmeanthisDesignScienceLicense. TheLicenseappliestoanyworkwhich<br />

containsanoticeplacedbythework’scopyrightholderstatingthatitispublishedunderthe<br />

termsofthisDesignScienceLicense.<br />

”Work”shallmeansuchanaforementionedwork.TheLicensealsoappliestotheoutputof<br />

theWork,onlyifsaidoutputconstitutesa”derivativework”ofthelicensedWorkasdefinedby<br />

copyrightlaw.<br />

507


508 APPENDIXA-3. DESIGNSCIENCELICENSE<br />

”ObjectForm”shallmeananexecutableorperformableformoftheWork,beinganembodimentoftheWorkinsometangiblemedium.<br />

”SourceData”shallmeantheoriginoftheObjectForm,beingtheentire,machine-readable,<br />

preferredformoftheWorkforcopyingandforhumanmodification(usuallythelanguage,<br />

encodingorformatinwhichcomposedorrecordedbytheAuthor);plusanyaccompanying<br />

files,scriptsorotherdatanecessaryforinstallation,configurationorcompilationoftheWork.<br />

(Examplesof”SourceData”include,butarenotlimitedto,thefollowing: iftheWorkis<br />

animagefilecomposedandeditedin’PNG’format,thentheoriginalPNGsourcefileisthe<br />

SourceData;iftheWorkisanMPEG1.0layer3digitalaudiorecordingmadefroma’WAV’<br />

formataudiofilerecordingofananalogsource,thentheoriginalWAVfileistheSourceData;<br />

iftheWorkwascomposedasanunformattedplaintextfile,thenthatfileistheSourceData;if<br />

theWorkwascomposedinLaTeX,theLaTeXfile(s)andanyimagefilesand/orcustommacros<br />

necessaryforcompilationconstitutetheSourceData.)<br />

”Author”shallmeanthecopyrightholder(s)oftheWork.<br />

Theindividuallicenseesarereferredtoas”you.”<br />

A-3.3 2.Rightsandcopyright<br />

TheWorkiscopyrighttheAuthor.AllrightstotheWorkarereservedbytheAuthor,exceptas<br />

specificallydescribedbelow.ThisLicensedescribesthetermsandconditionsunderwhichthe<br />

Authorpermitsyoutocopy,distributeandmodifycopiesoftheWork.<br />

<strong>In</strong>addition,youmayrefertotheWork,talkaboutit,and(asdictatedby”fairuse”)quote<br />

fromit,justasyouwouldanycopyrightedmaterialundercopyrightlaw.<br />

Yourrighttooperate,perform,readorotherwiseinterpretand/orexecutetheWorkisunrestricted;however,youdosoatyourownrisk,becausetheWorkcomesWITHOUTANY<br />

WARRANTY–seeSection7(”NOWARRANTY”)below.<br />

A-3.4 3.Copyinganddistribution<br />

Permissionisgrantedtodistribute,publishorotherwisepresentverbatimcopiesoftheentire<br />

SourceDataoftheWork,inanymedium,providedthatfullcopyrightnoticeanddisclaimerof<br />

warranty,whereapplicable,isconspicuouslypublishedonallcopies,andacopyofthisLicense<br />

isdistributedalongwiththeWork.<br />

Permissionisgrantedtodistribute,publishorotherwisepresentcopiesoftheObjectForm<br />

oftheWork,inanymedium,underthetermsfordistributionofSourceDataaboveandalso<br />

providedthatoneofthefollowingadditionalconditionsaremet:<br />

(a)TheSourceDataisincludedinthesamedistribution,distributedunderthetermsof<br />

thisLicense;or<br />

(b)Awrittenofferisincludedwiththedistribution,validforatleastthreeyearsorfor<br />

aslongasthedistributionisinprint(whicheverislonger),withapublicly-accessibleaddress<br />

(suchasaURLonthe<strong>In</strong>ternet)where,forachargenotgreaterthantransportationandmedia<br />

costs,anyonemayreceiveacopyoftheSourceDataoftheWorkdistributedaccordingtothe<br />

sectionabove;or


A-3.5. 4.MODIFICATION 509<br />

(c)Athirdparty’swrittenofferforobtainingtheSourceDataatnocost,asdescribedin<br />

paragraph(b)above,isincludedwiththedistribution. Thisoptionisvalidonlyifyouarea<br />

non-commercialparty,andonlyifyoureceivedtheObjectFormoftheWorkalongwithsuch<br />

anoffer.<br />

YoumaycopyanddistributetheWorkeithergratisorforafee,andifdesired,youmay<br />

offerwarrantyprotectionfortheWork.<br />

TheaggregationoftheWorkwithotherworkswhicharenotbasedontheWork–suchas<br />

butnotlimitedtoinclusioninapublication,broadcast,compilation,orothermedia–doesnot<br />

bringtheotherworksinthescopeoftheLicense;nordoessuchaggregationvoidthetermsof<br />

theLicensefortheWork.<br />

A-3.5 4.Modification<br />

PermissionisgrantedtomodifyorsamplefromacopyoftheWork,producingaderivative<br />

work,andtodistributethederivativeworkunderthetermsdescribedinthesectionfordistributionabove,providedthatthefollowingtermsaremet:<br />

(a)Thenew,derivativeworkispublishedunderthetermsofthisLicense.<br />

(b)Thederivativeworkisgivenanewname,sothatitsnameortitlecannotbeconfused<br />

withtheWork,orwithaversionoftheWork,inanyway.<br />

(c)Appropriateauthorshipcreditisgiven: forthedifferencesbetweentheWorkandthe<br />

newderivativework,authorshipisattributedtoyou,whilethematerialsampledorusedfrom<br />

theWorkremainsattributedtotheoriginalAuthor;appropriatenoticemustbeincludedwith<br />

thenewworkindicatingthenatureandthedatesofanymodificationsoftheWorkmadeby<br />

you.<br />

A-3.6 5.Norestrictions<br />

YoumaynotimposeanyfurtherrestrictionsontheWorkoranyofitsderivativeworksbeyond<br />

thoserestrictionsdescribedinthisLicense.<br />

A-3.7 6.Acceptance<br />

Copying,distributingormodifyingtheWork(includingbutnotlimitedtosamplingfromthe<br />

Workinanewwork)indicatesacceptanceoftheseterms.Ifyoudonotfollowthetermsofthis<br />

License,anyrightsgrantedtoyoubytheLicensearenullandvoid.Thecopying,distributionor<br />

modificationoftheWorkoutsideofthetermsdescribedinthisLicenseisexpresslyprohibited<br />

bylaw.<br />

Ifforanyreason,conditionsareimposedonyouthatforbidyoutofulfilltheconditionsof<br />

thisLicense,youmaynotcopy,distributeormodifytheWorkatall.<br />

IfanypartofthisLicenseisfoundtobeinconflictwiththelaw,thatpartshallbeinterpretedinitsbroadestmeaningconsistentwiththelaw,andnootherpartsoftheLicenseshall<br />

beaffected.


510 APPENDIXA-3. DESIGNSCIENCELICENSE<br />

A-3.8 7.Nowarranty<br />

THEWORKISPROVIDED”ASIS,”ANDCOMESWITHABSOLUTELYNOWARRANTY,<br />

EXPRESSORIMPLIED,TOTHEEXTENTPERMITTEDBYAPPLICABLELAW,INCLUD-<br />

INGBUTNOTLIMITEDTOTHEIMPLIEDWARRANTIESOFMERCHANTABILITYOR<br />

FITNESSFORAPARTICULARPURPOSE.<br />

A-3.9 8.Disclaimerofliability<br />

INNOEVENTSHALLTHEAUTHORORCONTRIBUTORSBELIABLEFORANYDI-<br />

RECT,INDIRECT,INCIDENTAL,SPECIAL,EXEMPLARY,ORCONSEQUENTIALDAM-<br />

AGES(INCLUDING,BUTNOTLIMITEDTO,PROCUREMENTOFSUBSTITUTEGOODS<br />

ORSERVICES;LOSSOFUSE,DATA,ORPROFITS;ORBUSINESSINTERRUPTION)<br />

HOWEVERCAUSEDANDONANYTHEORYOFLIABILITY,WHETHERINCONTRACT,<br />

STRICTLIABILITY,ORTORT(INCLUDINGNEGLIGENCEOROTHERWISE)ARISINGIN<br />

ANYWAYOUTOFTHEUSEOFTHISWORK,EVENIFADVISEDOFTHEPOSSIBILITY<br />

OFSUCHDAMAGE.<br />

ENDOFTERMSANDCONDITIONS<br />

[$Id: dsl.txt,v 1.25 2000/03/14 13:14:14 m Exp m $]


<strong>In</strong>dex<br />

αratio,210,264<br />

βratio,186,264<br />

10-50milliampsignal,379<br />

4-20milliampsignal,379<br />

4-layerdiode,322<br />

741operationalamplifier,361<br />

A-weighteddBscale,14<br />

A/Dconverter,365<br />

AC-DCpowersupplyschematic,333<br />

Activedevice,3<br />

Activemode,transistor,183<br />

Alpharatio,210,264<br />

Amplification,definition,3<br />

Amplifier,differential,357<br />

Amplifier,inverting,371<br />

Amplifier,noninverting,371<br />

Amplifier,single-ended,357<br />

Analog-to-digitalconverter,365<br />

AngularMomentumquantumnumber,33<br />

Anti-staticfoam,287<br />

Antilogarithm,10<br />

Artifact,measurement,450<br />

Astable,391<br />

Attenuator,16<br />

Attenuator,bridgedT,21<br />

Attenuator,coaxial,23<br />

Attenuator,L,21<br />

Attenuator,PI,20<br />

Attenuator,rf,23<br />

Attenuator,T,19<br />

Avalanchephotodiode,153<br />

Averager,380<br />

Band,electron,47<br />

Bandwidth,amplifier,256<br />

Bardeen,John,60,65<br />

Beampowertube,474<br />

Bel,8<br />

Betaratio,186,264<br />

Betaratio,bipolartransistor,479<br />

Betavariations,187<br />

Biascurrent,op-amp,398<br />

Bias,BJT,base,235<br />

Bias,BJT,calculations,235<br />

Bias,BJT,collector-feedback,236<br />

Bias,BJT,emitter,237<br />

Bias,BJT,voltagedivider,243<br />

Bias,diode,98<br />

Bias,transistor,195,222<br />

Bilateral,294<br />

Bipolar-modeMOSFET,314<br />

Bistable,389<br />

Brattain,Walter,60,65<br />

Breakdown,diode,102<br />

Breakdown,transistor,327<br />

Breakover,thyristor,327<br />

Bridgerectifiercircuit,111<br />

Bridgerectifiercircuit,polyphase,111<br />

Bypasscapacitor,261<br />

Calculus,360,386,438<br />

Capacitance,diode,108<br />

Capacitor,bypass,261<br />

Capacitor,coupling,231<br />

Capacitor,op-ampcompensation,404<br />

Cascodeamplifier,218<br />

Cat-Eyetube,486<br />

Cathode,471<br />

CathodeRayTube,485<br />

Center-taprectifiercircuit,109<br />

Characteristiccurves,transistor,186,293<br />

Checkvalve,98<br />

Clampercircuit,121<br />

511


512 INDEX<br />

ClassAamplifieroperation,223<br />

ClassABamplifieroperation,224<br />

ClassBamplifieroperation,223<br />

ClassCamplifieroperation,225<br />

ClassDamplifieroperation,225<br />

Class,amplifieroperation,222<br />

Clippercircuit,117<br />

clipper,zenerdiode,142<br />

CMRR,393<br />

Cockcroft-Walton,voltagemultiplier,128<br />

Coherentlight,151<br />

Cold-cathodetube,482<br />

COMFET,314<br />

Common-baseamplifier,210<br />

Common-collectoramplifier,202<br />

Common-emitteramplifier,189<br />

Common-moderejectionratio,393<br />

Common-modevoltage,393<br />

Commutatingdiode,130,131<br />

Commutation,131<br />

Commutationtime,diode,108<br />

Commutation,forced,350,351<br />

Commutation,natural,333,351<br />

Comparator,363<br />

Compensationcapacitor,op-amp,404<br />

Conductionband,48<br />

Conductivity-ModulatedField-EffectTransis-<br />

tor,314<br />

Constant-currentdiode,162<br />

Controlledrectifier,338<br />

Conventionalflow,98<br />

Cooperpair,80<br />

Couplingcapacitor,231<br />

Couplingloop,resonator,488,491<br />

Criticalrateofvoltagerise,328,330<br />

Crossoverdistortion,494<br />

Crowbar,333<br />

CRT,485<br />

Crystalradio,424<br />

Currentmirror,264<br />

Currentsource,184,378<br />

Currentsourcingvs.sinking,267<br />

Current,diodeleakage,108<br />

Current-limitingdiode,162<br />

Current-regulatingdiode,162<br />

Curve,characteristic,186,293<br />

Cutoffvoltage,285<br />

Cutoff,transistor,177,183<br />

Czochralskiprocess,silicon,75<br />

Darlingtonpair,209<br />

Datasheet,component,107<br />

dB,8<br />

dB,absolutepowermeasurements,15,16<br />

dB,soundmeasurements,14<br />

dBA,14<br />

dBk,16<br />

dBm,15<br />

dBW,16<br />

DCrestorercircuit,121<br />

Decibel,8<br />

Decibels,attenuator,17<br />

Decineper,13<br />

Degenerativefeedback,256<br />

Derivative,calculus,439<br />

DIAC,329<br />

Differentialamplifier,357<br />

Differentialpair,408,409<br />

Differentiation,360<br />

Differentiation,calculus,386,438<br />

Diode,98<br />

Diodecheck,meterfunction,104,180<br />

Diodeequation,the,101<br />

Diodejunctioncapacitance,108<br />

Diodeleakagecurrent,108<br />

DiodePIVrating,102<br />

Diodetube,471<br />

Diode,4-layer,73<br />

Diode,constant-current,162<br />

Diode,Esaki,144<br />

Diode,four-layer,322<br />

Diode,hotcarrier,143,158<br />

Diode,IMPATT,160<br />

Diode,laser,150<br />

Diode,light-activated,152<br />

Diode,light-emitting,146<br />

diode,MIIM,85<br />

diode,MIM,163<br />

Diode,pin,159<br />

Diode,PNPN,322<br />

Diode,schottky,143<br />

Diode,Shockley,322


INDEX 513<br />

Diode,snap,159<br />

Diode,SPICE,163<br />

Diode,tunnel,144<br />

Diode,varactor,158<br />

Diode,varicap,158<br />

Diode,zener,136<br />

DIP,361<br />

Dischargetube,483<br />

Distortion,amplifier,256<br />

Distortion,crossover,494<br />

dn,13<br />

Double-layertunnelingtransistor,84<br />

Drift,op-amp,404<br />

Dropout,thyristor,327<br />

Dual<strong>In</strong>linePackage,361<br />

Dualpowersupply,357<br />

Dutycycle,squarewave,364<br />

Dutycycle,squarewave,225<br />

Edisoneffect,469<br />

Effect,Edison,469<br />

Electrode,cathode,471<br />

Electrode,grid,470<br />

Electrode,screen,473<br />

Electrode,suppressor,476<br />

Electron,28<br />

Electronflow,98<br />

Emitterfollower,205<br />

Emitter-followeramplifier,202<br />

Equation,diode,101<br />

Equilibrium,366<br />

Esakidiode,144<br />

Exclusionprinciple,36<br />

Failuremode,zenerdiode,136<br />

Faraday’sLaw,130,131<br />

Feedback,amplifier,256<br />

Feedback,negative,366<br />

Feedback,positive,388<br />

FET,fieldeffecttransistor,65<br />

Fieldeffecttransistor,65<br />

Firing,thyristor,327<br />

Flashconverter,365<br />

Floating,177,330<br />

Flow,electronvs.conventional,98<br />

Foam,anti-static,287<br />

Forcedcommutation,350,351<br />

Forwardbias,98<br />

Forwardvoltage,diode,100<br />

Four-layerdiode,322<br />

Frequencyresponse,op-amp,404<br />

Full-waverectifiercircuit,109,111<br />

Gain,6<br />

Gain,ACversusDC,7<br />

Gateturnoffswitch,73<br />

Gate-ControlledSwitch,330<br />

Gate-Turn-Offthyristor,330<br />

GCS,330<br />

Glowtube,484<br />

Grid,470<br />

Ground,356<br />

Ground,virtual,371<br />

GTO,330<br />

GTO,gateturnoffswitch,73<br />

Half-waverectifiercircuit,108<br />

Harmonic,342<br />

Harmonic,evenvs.odd,342<br />

Harmonicsandwaveformsymmetry,342<br />

Heptode,477<br />

hfe,187<br />

Hightemperaturesuperconductors:,82<br />

Holdingcurrent,SCR,332<br />

hotcarrierdiode,143<br />

Hot-cathodetube,482<br />

Hybridparameters,187<br />

Hysteresis,389,482<br />

IC,267<br />

IGBT,314,353<br />

IGFET,insulatedgatefieldeffecttransistor,<br />

70<br />

IGT,314,353<br />

IMPATTdiode,160<br />

<strong>In</strong>ductiveoutputtube,488<br />

<strong>In</strong>ertelements,38<br />

<strong>In</strong>put,inverting,358<br />

<strong>In</strong>put,noninverting,358<br />

<strong>In</strong>sulatedgatefieldeffecttransistor,70<br />

<strong>In</strong>sulated-GateBipolarTransistor,314,353<br />

<strong>In</strong>sulated-GateTransistor,314,353


514 INDEX<br />

<strong>In</strong>tegratedcircuit,267<br />

<strong>In</strong>tegration,calculus,386,438<br />

<strong>In</strong>vertingamplifier,192,371<br />

<strong>In</strong>vertingsummer,381<br />

Ionization,318,481<br />

JFET,junctionfieldeffecttransistor,65<br />

Josephsonjunctions,80<br />

Josephsontransistor,81<br />

Joule’sLaw,11,136<br />

Junctioncapacitance,diode,108<br />

Kickback,inductive,130<br />

Kirchhoff’sCurrentLaw,175<br />

Kirchhoff’sVoltageLaw,205<br />

Klystron,488<br />

Laserdiode,150<br />

Laserlight,151<br />

Latch-up,396<br />

Latching,thyristor,327<br />

Leakagecurrent,diode,102,108<br />

LED,146<br />

Light-emittingdiode,146<br />

Lilienfeld,Julius,65<br />

Loadline,226<br />

Logarithm,10<br />

Magic-Eyetube,486<br />

Magneticquantumnumber,33<br />

Magnetictunneljunction,88<br />

Mechanics,quantum,32<br />

MESFET,metalsemiconductorfieldeffecttran-<br />

sistor,68<br />

Metaloxidefieldeffecttransistor,70<br />

Mho,296<br />

Microphonics,electrontube,493<br />

MIIM,diode,85<br />

Millereffect,277<br />

MIMdiode,163<br />

Monochromaticlight,151<br />

MOSControlledThyristor,352<br />

MOS-gatedthyristor,352<br />

MOSFET,metaloxidefieldeffecttransistor,<br />

70<br />

MTJ,magnetictunneljunction,88<br />

Mu,tubeamplificationfactor,477<br />

Multipliercircuit,diode,123<br />

Multiplier,frequency,varactor,422<br />

Naturalcommutation,333,351<br />

Negativefeedback,256,366<br />

Negativeresistance,144<br />

Neper,13<br />

Neutron,28<br />

Nobleelements,38<br />

Noninvertingamplifier,371<br />

Noninvertingsummer,381<br />

Number,quantum,33<br />

Offsetnull,op-amp,397<br />

Offsetvoltage,op-amp,396<br />

Ohmicregion,JFET,295<br />

Op-amp,262,361<br />

Operationalamplifier,262,361<br />

Orbital,electron,35<br />

Oscillator,256<br />

Oscillator,op-amp,391<br />

oscillator,phaseshift,422<br />

Oscillator,relaxation,319<br />

Oscillator,voltage-controlled,489<br />

Over-unitymachine,5<br />

Passiveaverager,380<br />

Passivedevice,3<br />

Pauli,exclusionprinciple,36<br />

PCB,106<br />

Peakdetector,115<br />

Pentagridtube,477<br />

Pentodetube,306<br />

Perpetualmotionmachine,3<br />

Phaseshift,op-amp,405<br />

Photodiode,152<br />

Photodiodeamplifier,455<br />

Photodiode,APD,153<br />

Photodiode,PIN,153<br />

PI-network,16<br />

PINdiode,159<br />

PIN,photodiode,153<br />

Pinch-offvoltage,285<br />

PIVrating,diode,102<br />

Plasma,318,481


INDEX 515<br />

PNPNdiode,322<br />

Polyphasebridgerectifiercircuit,111<br />

Positivefeedback,256,318,388<br />

Powersupplyschematic,AC-DC,333<br />

Principalquantumnumber,33<br />

Printedcircuitboard,106<br />

Processvariable,359<br />

Programmableunijunctiontransistor,347<br />

Proton,28<br />

Pulse-widthmodulation,364<br />

Push-pullamplifier,223<br />

PWM,364<br />

Quantumdot,86<br />

Quantumdottransistor,86<br />

Quantummechanics,32<br />

Quantumnumber,33<br />

Quantumphysics,28<br />

quantumtunneling,83<br />

Quiescent,226<br />

Radio,crystal,424<br />

Railvoltage,368<br />

Rectifier,98<br />

Rectifiercircuit,108<br />

Rectifiercircuit,full-wave,109,111<br />

Rectifiercircuit,half-wave,108<br />

Rectifier,controlled,338<br />

Referencejunction,thermocouple,398<br />

Reflexklystron,489<br />

Regenerativefeedback,256,318<br />

Regulator,voltage,207<br />

Relaxationoscillator,319<br />

Resistance,negative,144<br />

Resonanttunnelingdiode,84<br />

Restorercircuit,121<br />

Reversebias,98<br />

Reverserecoverytime,diode,108<br />

Reversevoltagerating,diode,102<br />

Rheostat,188,296<br />

Richterscale,9<br />

Ripplevoltage,113<br />

Runaway,thermal,259<br />

s,p,d,fsubshellnotation,34<br />

Saturablereactor,3<br />

Saturationvoltage,368<br />

Saturation,transistor,177,183<br />

Schottkydiode,143<br />

SCR,329,485<br />

SCRbridgerectifier,338<br />

SCR,siliconcontrolledrectifier,73<br />

Screen,473<br />

SCS,350<br />

Secondaryemission,474<br />

Semiconductor,defined,48<br />

Sensitivegate,SCR,332<br />

Setpoint,359<br />

Shell,electron,33<br />

Shockleydiode,322<br />

Shockley,William,60,65,73<br />

Siemens,296,379<br />

Signal,10-50milliamp,379<br />

Signal,4-20milliamp,379<br />

Siliconcontrolledrectifier,73<br />

Silicon-controlledrectifier,329,485<br />

Silicon-controlledswitch,350<br />

Single-endedamplifier,357<br />

Sink,current,267<br />

Slicercircuit,117<br />

Sliderule,10<br />

Small-scaleintegration,409<br />

Snapdiode,159<br />

Snubber,131<br />

Solarcell,154<br />

Solid-state,2<br />

Soundintensitymeasurement,14<br />

Sparkgap,482<br />

SPICE,diode,163<br />

Spinquantumnumber,33<br />

Spintronics,88<br />

Splitpowersupply,357<br />

SQUID:,81<br />

SSI,409<br />

Steprecoverydiode,159<br />

Subshellnotation,34<br />

Subshell,electron,34<br />

Superconductionquantuminterferencedevice,<br />

81<br />

Superconductivity,79<br />

Superpositiontheorem,231<br />

Suppressor,476


516 INDEX<br />

Switchingtime,diode,108<br />

T-network,16<br />

Tetrodetube,306,473<br />

Theorem,Superposition,231<br />

Thermalrunaway,BJT,259<br />

Thermalvoltage,diode,101<br />

Thermocouple,398<br />

Three-phasebridgerectifiercircuit,111<br />

Thyratron,485<br />

Thyratrontube,320<br />

Thyristor,73,482<br />

Time,diodeswitching,108<br />

Totalizer,387<br />

Transconductance,296,379<br />

Transconductanceamplifier,379<br />

Transistor,fieldeffect,65<br />

Transistor,insulatedgatefieldeffect,70<br />

Transistor,Josephson,81<br />

Transistor,metaloxidefieldeffect,70<br />

Transistor,programmableunijunction,347<br />

Transistor,singleelectron,86<br />

Transistor,unijunction,344<br />

Triodetube,306,320,471<br />

Tube,discharge,483<br />

Tunneldiode,144<br />

Tunneljunction,magnetic,88<br />

tunneling,quantum,83<br />

Unijunctiontransistor,344<br />

Unipolar,conduction,65<br />

Unit,bel,8<br />

Unit,decineper,13<br />

Unit,mho,296<br />

Unit,neper,13<br />

Unit,siemens,296,379<br />

Valenceband,48<br />

Valenceshell,34<br />

Valve,“check”,98<br />

Varactordiode,158<br />

Varicapdiode,158<br />

VCO,321<br />

Virtualground,371<br />

VMOStransistor,314<br />

Voltagebuffer,368<br />

Voltagedoublercircuit,123<br />

Voltagefollower,205,368<br />

Voltagemultipliercircuit,123<br />

Voltagemultiplier,Cockcroft-Walton,128<br />

Voltageregulator,207<br />

Voltageregulatortube,484<br />

Voltagerise,criticalrateof,328,330<br />

Voltage,bias,195,222<br />

Voltage,common-mode,393<br />

Voltage,forward,100<br />

Voltage,op-ampoutputsaturation,368<br />

Voltage,ripple,113<br />

Voltage-controlledoscillator,321,489<br />

<strong>Volume</strong>units,15<br />

VUscale,15<br />

Waveformsymmetryandharmonics,342<br />

Zenerdiode,136<br />

Zenerdiodefailuremode,136<br />

Zenerdiode,clipper,142


INDEX 517<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!