22.03.2013 Views

Ultrasonic Pig Detection at Pipelines - PPSA, the Pigging Products ...

Ultrasonic Pig Detection at Pipelines - PPSA, the Pigging Products ...

Ultrasonic Pig Detection at Pipelines - PPSA, the Pigging Products ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ultrasonic</strong> <strong>Pig</strong> <strong>Detection</strong> <strong>at</strong><br />

<strong>Pipelines</strong><br />

or<br />

The Power of Acoustic Methods<br />

Peter Holstein<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


SONOTEC – The Ultrasound Specialist<br />

SONOTEC Ultraschallsensorik<br />

Halle GmbH<br />

Nauendorfer Straße 2<br />

D-06112 Halle<br />

Deutschland<br />

Tel.: +49 (0) 3 45-1 33 17-0<br />

Fax.: +49 (0) 3 45-1 33 17-99<br />

Email: sonotec@sonotec.de<br />

www: http://www.sonotec.de<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Fundamentals<br />

Frequencies for acoustic and ultrasonic engineering solutions<br />

Technical<br />

acoustics<br />

& vibr<strong>at</strong>ions<br />

Sound emission<br />

(„passive“)<br />

NDT<br />

non-destructive<br />

testing<br />

& “active” US<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Basic Effects<br />

Propag<strong>at</strong>ion / Sound fields<br />

→ estim<strong>at</strong>ion of travel times<br />

→ <strong>at</strong>tenu<strong>at</strong>ion<br />

Sound speed depends on m<strong>at</strong>erial<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Basic Effects<br />

→ Diffraction<br />

→ Reflection<br />

→ propag<strong>at</strong>ion of waves<br />

→ m<strong>at</strong>erial properties<br />

→ surfaces / geometry<br />

sinα1<br />

c<br />

=<br />

sinα<br />

c<br />

2<br />

→ (Back- )Sc<strong>at</strong>tering e.g.<br />

Doppler-Effect in Fluids<br />

→ Refraction<br />

1<br />

2<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


important formula<br />

(simplified)<br />

m<strong>at</strong>erial dependent !<br />

Source: Helke, Piezoelektrische Keramiken, TAE 2008, page 21<br />

m<strong>at</strong>erial density (kgm -3 ) sound velocity (ms -1 ) impedance (kgm -2 s -1 )<br />

steel 7850 5920 3.92·10 7<br />

w<strong>at</strong>er 1000 1484 1.48·10 6<br />

air (1 bar) 1.04 343 4.13·10 2<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Applic<strong>at</strong>ions for <strong>Ultrasonic</strong> Probes<br />

→ Non-intrusive m<strong>at</strong>erial testing<br />

→ Autom<strong>at</strong>ion<br />

→ Process measurement techniques<br />

→ Medical technologies<br />

→ Consumer techniques<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Requirements for <strong>Ultrasonic</strong> Probes<br />

→ Acoustic parameters<br />

→ Constructive parameters<br />

→ Electric parameters<br />

→ Applic<strong>at</strong>ion specific parameters<br />

→ Economic parameters<br />

→ Design<br />

- Sound field characteristic<br />

- Oper<strong>at</strong>ing frequency<br />

- Sensitivity<br />

- Signal-to-noise r<strong>at</strong>io<br />

- Acoustic impedance<br />

- Pulse shape<br />

- Focusing<br />

- M<strong>at</strong>erial resistance<br />

- Pressure resistance<br />

- Radi<strong>at</strong>ion resistance<br />

- Explosion-proof version<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Selection of Industrial <strong>Ultrasonic</strong> Probes<br />

from left:<br />

contact technique, immersion, mini<strong>at</strong>ur, multi-channel, low frequency,<br />

phased-array, angle transmitter-receiver<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Applic<strong>at</strong>ions<br />

limit switch<br />

object detection<br />

(e.g. pigs)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Applic<strong>at</strong>ions in Pipeline Industry and Service (selection)<br />

Active pulse methods<br />

→ Liquid level estim<strong>at</strong>ion<br />

→ Recognition of different liquids<br />

→ Measurement of wall thickness<br />

→ Level limits<br />

→ Inspection and monitoring of sediment<strong>at</strong>ion and deposits<br />

→ Measurement of <strong>the</strong> accumul<strong>at</strong>ion of sand, debris,<br />

incrust<strong>at</strong>ion in tanks, pipelines, barrels<br />

→ Advanced NDT-tasks (e.g. „intelligent“ pigging, m<strong>at</strong>erial<br />

testing)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Passive Sound Emission Methods<br />

→ Acoustic detection of moving sand in pipelines<br />

→ Amount of debris<br />

→ Condens<strong>at</strong>e inspection (e.g. in valves and traps)<br />

→ <strong>Detection</strong> of leakages<br />

→ Flowing sand and debris in pipelines<br />

→ Monitoring of m<strong>at</strong>erials and constructions<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Typical Industrial Applic<strong>at</strong>ions<br />

Measurement through <strong>the</strong> wall<br />

left: level control of liquids (travel time and intensity are used for <strong>the</strong><br />

estim<strong>at</strong>ion of filling heights or for <strong>the</strong> control of defined filling levels)<br />

right: measurement of wall thickness (travel time of <strong>the</strong> echo(s))<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


<strong>Pig</strong> <strong>Detection</strong> in Oil <strong>Pipelines</strong><br />

Standard configur<strong>at</strong>ion of a transmitting ultrasonic probe for <strong>the</strong><br />

applic<strong>at</strong>ion <strong>at</strong> crude oil pipelines<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


… in Gas <strong>Pipelines</strong><br />

Active <strong>Ultrasonic</strong>s<br />

Principle of pig signalling by means of an <strong>at</strong>tenu<strong>at</strong>ion technique<br />

1 2<br />

→ The probes are radially arranged on <strong>the</strong> circumference<br />

→ <strong>Ultrasonic</strong> pulses via probe 1 (→ multi-reflections)<br />

→ Enhanced <strong>at</strong>tenu<strong>at</strong>ion (probe 2) in <strong>the</strong> moment of pig passing<br />

right: lab exp. (intensity of echo vs. time)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Active <strong>Ultrasonic</strong> <strong>Detection</strong><br />

Field experiment (cleaning pig run)<br />

peak-to-peak voltage (V)<br />

0.3<br />

0.28<br />

0.26<br />

0.24<br />

0.22<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0 500 1000<br />

time (s)<br />

1500 2000<br />

The baseline is also affected since <strong>the</strong> inner side of <strong>the</strong> wall has been<br />

influenced by residual oil collected by <strong>the</strong> pig in th<strong>at</strong> pipeline.<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Passive Acoustics<br />

Sound Emission as <strong>Pig</strong> Signalling Tool<br />

Typical sensor install<strong>at</strong>ions<br />

(for permanent oper<strong>at</strong>ion<br />

or for temporary service)<br />

Schem<strong>at</strong>ic sketch of a typical situ<strong>at</strong>ion <strong>at</strong> pig receiver trap of a gas pipeline. The<br />

sensors are axially arranged (in contrast to <strong>the</strong> „active“ method ).<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Real-time<br />

Correl<strong>at</strong>ion of<br />

an acoustic signal<br />

voltage (V)<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

2.7 2.75 2.8 2.85 2.9 2.95 3<br />

time (s )<br />

1.5<br />

correl<strong>at</strong>ion 1 (S1,S2)<br />

sensor 1<br />

0.08<br />

0.06<br />

0.04 sensor 2<br />

2.7 2.75 2.8 2.85 2.9 2.95 3<br />

time (s )<br />

(Excit<strong>at</strong>ion by means of a (low intensity) hammer pulse <strong>at</strong> sensor 1,<br />

sensor 2 in a distance of about 10 m).<br />

The dashed line illustr<strong>at</strong>es <strong>the</strong> lag of <strong>the</strong> shift.<br />

voltage (V)<br />

2<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

voltage (V)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25<br />

time (s)


Spectral Behaviour of Pipeline Noise<br />

a m p litu d e (V)<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

gas flow only<br />

0 2 4 6 8 10 12<br />

x 10 4<br />

frequency (Hz)<br />

a m p litu d e (V)<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

additional<br />

unknown mechanical<br />

sources<br />

of noise<br />

0 2 4 6 8 10 12<br />

x 10 4<br />

frequency (Hz)<br />

a m plitude (V)<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

friction noise<br />

of a passing pig<br />

0 2 4 6 8 10 12<br />

x 10 4<br />

frequency (Hz)<br />

Frequency characteristics (5 s intervals) of noise during a pig run in a (gas<br />

transport<strong>at</strong>ion) pipeline<br />

The clearly enhanced signal part <strong>at</strong> ultrasonic frequencies is obvious<br />

when a moving pig passes <strong>the</strong> sensor position.<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


A Complete Scenario<br />

vo lta g e (V)<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

time (s)<br />

vo lta g e (V)<br />

x 10-3<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

Long time recording of <strong>the</strong> acoustic signals (cleaning pig, 900 mm pipeline diameter, unco<strong>at</strong>ed) received<br />

<strong>at</strong> <strong>the</strong> sensors 1 and 2 – left: r.m.s. (root mean square) signal without filtering,<br />

middle: <strong>the</strong> pig passage (unfiltered) <strong>at</strong> sensor 1. This signal in <strong>the</strong> proximity of <strong>the</strong> pig receiver results from a<br />

fairly complic<strong>at</strong>ed motion. There is no smooth travel of <strong>the</strong> pig. It moves r<strong>at</strong>her in a stick-slip-procedure<br />

which makes it impossible to use a „simple“ level indic<strong>at</strong>or as an alarm for a passage.<br />

right: <strong>the</strong> same recording but re-calcul<strong>at</strong>ed with a filter for ultrasonic frequencies. Consequently, <strong>the</strong><br />

intensity is drastically reduced but still sufficient. Fur<strong>the</strong>rmore, „longe range“ distortions can be elimin<strong>at</strong>ed<br />

more effectively.<br />

time (s)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


<strong>Ultrasonic</strong> Signal during Passage of a <strong>Pig</strong><br />

v o lta g e (V )<br />

x 10-3<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2500 2520 2540 2560 2580 2600<br />

time (s)<br />

v o lta g e (V)<br />

x 10-3<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

2500 2520 2540 2560 2580 2600<br />

time (s)<br />

v o lta g e (V )<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

x 10 -3<br />

2500 2520 2540 2560 2580 2600<br />

time (s)<br />

The digitally r.m.s. filtered signals (20 ...60 kHz) of <strong>the</strong><br />

passing pig <strong>at</strong> sensor 1 (left) and 2 (middle). The difference (right) signal<br />

(which is <strong>the</strong> source for <strong>the</strong> alarm) is fed into an integr<strong>at</strong>ion algorithm.<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


voltage (V)<br />

voltage (V)<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0<br />

0.05<br />

200 400 600 800<br />

time (s)<br />

1000 1200 1400<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

0 200 400 600<br />

time (s)<br />

800 1000 1200<br />

voltage (V)<br />

volta g e (V)<br />

0.05<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

1088 1088.5 1089 1089.5<br />

time (s)<br />

1090 1090.5 1091<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

968 969 970 971<br />

time (s)<br />

972 973<br />

volta ge (V)<br />

voltage (V)<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.05<br />

0.045<br />

0.04<br />

0.035<br />

0.03<br />

0.025<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

1088 1088.5 1089 1089.5<br />

time (s)<br />

1090 1090.5 1091<br />

0<br />

968 969 970 971<br />

time (s)<br />

972 973<br />

1088 1088.5 1089 1089.5 1090 1090.5 1091<br />

time (s)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de<br />

volta ge (V)<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

vo lta g e (V)<br />

x 10-3<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

968 969 970 971 972 973<br />

time (s)<br />

Two fur<strong>the</strong>r examples of caliper and cleaning pig runs (in <strong>the</strong> same<br />

campaign / identical sensor positions)<br />

The ultrasonic signal is given only.


Elimin<strong>at</strong>ion of distortions<br />

v o lt a g e ( V )<br />

x 10-3<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1120 1122 1124 1126 1128 1130<br />

time (s)<br />

v o lt a g e ( V )<br />

x 10-3<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

-1<br />

4<br />

-2<br />

2<br />

0<br />

-3<br />

1120 1122 1124 1126<br />

time (s)<br />

1128<br />

-4<br />

1130 1120 1122 1124 1126<br />

time (s)<br />

1128 1130<br />

Calibr<strong>at</strong>ion of probes and choosing <strong>the</strong> „right“ integr<strong>at</strong>ion time -<br />

Signals from distant sources (even with complic<strong>at</strong>e signal p<strong>at</strong>terns) can be “easily” removed by suitable<br />

filters or algorithms. The distortions of o<strong>the</strong>r noisy sources such as rain can be suppressed, too.<br />

v o lt a g e ( V )<br />

x 10-3<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


A Complete Example<br />

voltage (V)<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

0 200 400 600 800 1000 1200<br />

time (s)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Passage vs. Distortions<br />

voltage (V) voltage (V) voltage (V)<br />

0.1<br />

0.05<br />

0.05<br />

0<br />

818 820 822 824 826 828 830<br />

0.1<br />

time (s)<br />

0<br />

818<br />

0.04<br />

820 822 824 826 828 830<br />

0.02<br />

0<br />

-0.02<br />

time (s)<br />

-0.04<br />

818 820 822 824 826 828 830<br />

time (s)<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Combin<strong>at</strong>ion of Methods<br />

Highly flexible d<strong>at</strong>a processing tools and alarm functions!<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Conclusions<br />

→ acoustical technologies are powerful and vers<strong>at</strong>ile for <strong>the</strong> applic<strong>at</strong>ion<br />

in pig detection and signalling<br />

→ new applic<strong>at</strong>ions of ultrasonic methods for pig detection purposes<br />

→ no a priori knowledge about <strong>the</strong> type of <strong>the</strong> pig and <strong>the</strong> oper<strong>at</strong>ional<br />

conditions is necessary<br />

→ improvement of reliability by a combin<strong>at</strong>ion of different acoustical<br />

techniques<br />

→ increased onboard calcul<strong>at</strong>ion power and new algorithms<br />

→ <strong>the</strong> method carries <strong>the</strong> potential to be extended to pig localiz<strong>at</strong>ion<br />

We believe, th<strong>at</strong> <strong>the</strong> potential of <strong>the</strong> use of ultrasonic techniques<br />

is still underestim<strong>at</strong>ed in <strong>the</strong> pipeline and pigging sector as well.<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de


Acknowledgements<br />

For financial support, <strong>the</strong> Ministry of Employment and Economic Affairs of <strong>the</strong> Federal St<strong>at</strong>e<br />

Saxony-Anhalt (Germany) is gr<strong>at</strong>efully acknowledged (grant 0804/0009; 2007-2010). We<br />

thank VNG (Verbundgas AG Leipzig, Germany) for <strong>the</strong> support to enable <strong>the</strong> experimental<br />

work to continue.<br />

My special thank goes to <strong>the</strong> co-authors H.-J.Münch, S. zur Horst-Meyer, SONOTEC, A.<br />

Tharandt, University of Applied Sciences Leipzig, U. Bauerschäfer, L. Ledig, S. Gai, GMBU<br />

e.V. Halle.<br />

Thank you for your <strong>at</strong>tention!<br />

Prof. Dr. Peter Holstein<br />

SONOTEC Ultraschallsensorik Halle GmbH www.sonotec.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!