22.03.2013 Views

Biogas from Pig Farm

Biogas from Pig Farm

Biogas from Pig Farm

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biogas</strong> <strong>from</strong> <strong>Pig</strong> <strong>Farm</strong><br />

FOR<br />

S O L A R E N E R G Y<br />

1 / 2 0 1 1 C L A S S<br />

BY<br />

P A N T H U I S A R A N K U R A<br />

5 3 4 0 2 6 4 2<br />

E N E R G Y T E C H .


Background & Scope<br />

Last Lampang visit, found that there is a big pig farm<br />

~ 10,000 pigs without <strong>Biogas</strong> production.<br />

Searched to find 3 interesting papers (pdf);<br />

1. Kestutis NAVICKAS, Lithuanian University of Agriculture<br />

November 2007<br />

2. Poon Thiengburanathum, Ph.D., Faculty of Engineering,<br />

Chiang Mai University<br />

3. Choke Mikled, Faculty of Agriculture, Dept. of Animal<br />

Science and Aquaculture, Chiang Mai University


Technical POV<br />

<strong>Biogas</strong> has CH4 around 55 – 88 %(65%), remaining<br />

15-45 of CO2, saturated vapor, H2S < 5 ppm, and<br />

NH3 < 0.5 ppm<br />

Energy Value<br />

1. 20-25 MJ/cubic m., 5.5-8.0 kWh/cubic m.<br />

2. 1.2-1.4 kWh/cubic m. (0.46 kg LPG)<br />

3. 23.4 MJ/cubic m., 1.2 kWh/cubic m.<br />

Opportunity <strong>from</strong> Crisis<br />

Change Pollution to Energy<br />

Capture CH4 ( 25 time of CO2 global warming)


BIOGAS FOR FARMING, ENERGY CONVERSION<br />

AND ENVIRONMENT PROTECTION<br />

Kestutis NAVICKAS<br />

29 Novembra 2007, Rakičan<br />

Department of Agroenergetics<br />

Lithuanian University of Agriculture<br />

Rakičan, 2007


Number of plants<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

1990<br />

Development of biogas industry in Germany<br />

100 120 139 159 186<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

P. Weiland, 2007<br />

274 370 450<br />

1996<br />

1997<br />

Rakičan, 2007<br />

1998<br />

617<br />

1999<br />

850<br />

2000<br />

1050<br />

2001<br />

2000<br />

1800<br />

1600<br />

2002<br />

2003<br />

2004<br />

2400<br />

3500<br />

2800<br />

2005<br />

2006


Process design<br />

Technology flows and elements<br />

Substrate<br />

collection and holding<br />

pretreatment - separation, cutting, mixing, sanitation<br />

loading and removal<br />

digestate storage and utilization<br />

Process<br />

mixing<br />

heating<br />

<strong>Biogas</strong><br />

collection and holding<br />

conversion<br />

Rakičan, 2007


AD Process scheme<br />

Rakičan, 2007<br />

British Biogen


Process parameters<br />

Temperature<br />

Psychrophilic (10 o C - 25 o C)<br />

Mesophilic (25 o C - 45 o C)<br />

Thermophilic (55 o C - 60 o C)<br />

Hydraulic retention time HRT<br />

(the average time the substrate remain in a digester)<br />

HRT = Vl / Sd (Vl – liquid volume, Sd – daily flow)<br />

Cattle manure - 12 – 18 days<br />

<strong>Pig</strong> manure - 10 – 15 days<br />

Organic loading rate OLR<br />

(organic material fed daily per m 3 of digester volume)<br />

Cattle manure - 2.5 –3.5 kg VS/ m 3 day<br />

<strong>Pig</strong> manure - 3.0 –3.5 kg VS/ m 3 day<br />

Rakičan, 2007


Process indicators<br />

SUBSTRATE<br />

• Composition (TS, VS, Proteins, Fats and Carbohydrates)<br />

• pH level (about 7.0)<br />

• Rate of C:N<br />

• <strong>Biogas</strong> yield potential (m 3 /kg substrate or m 3 /kg TS)<br />

BIOGAS<br />

• <strong>Biogas</strong> rate (m 3 /m 3 of digester volume per day)<br />

• <strong>Biogas</strong> composition and energy potential<br />

OTHER<br />

• Energy efficiency or biogas utilization factors<br />

• BOD and COD in feed and removal or VS in feed and removal<br />

• Pay back<br />

Rakičan, 2007


Substrate, t<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Influence on biogas production of the<br />

industrial substrate<br />

manure industrial waste biogas per week<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Weeks<br />

Rakičan, 2007<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

<strong>Biogas</strong>, 10 3 . m 3


Composition of <strong>Biogas</strong><br />

Component Dimension Content<br />

CH 4 % 55 - 80<br />

CO 2 % 15 - 45<br />

H 2 S mg/m 3 0 - 5000<br />

NH 3 mg/m 3 0 - 450<br />

Humidity - Saturated<br />

Caloric value MJ/m 3 20 - 25<br />

Caloric value kWh/m 3 5,5 – 8,0<br />

Rakičan, 2007


<strong>Biogas</strong> use<br />

BIOGAS<br />

Boiler Cogenerator Fuel cell Storage<br />

Heat<br />

Separation of sulphur, dust and moisture<br />

Rakičan, 2007<br />

Upgrading<br />

Conversion Compression<br />

Electricity Heat Electricity Heat Liquid fuel


<strong>Pig</strong> <strong>Farm</strong> <strong>Biogas</strong> Plant, Lithuania<br />

60 m3 pig manure / day + Industrial wastes: ~ 3 t / day<br />

Digester: 3 x 300 m3 horizontal steel digesters<br />

<strong>Biogas</strong> production: 1200 - 2500 m3 /d<br />

Co-generation: 1 x 75 kW and 1 x 110 kW<br />

2 x 300 kW gas burners<br />

Rakičan, 2007


<strong>Pig</strong> <strong>Farm</strong> <strong>Biogas</strong> Plant, Lithuania 2<br />

90 m3 pig manure / day + Industrial wastes: ~ 10 t / day<br />

1 x 2000 m3 vertical steel digester<br />

<strong>Biogas</strong> production: 3000 - 3500 m3 /d<br />

Co-generation: 4 x 150 kWel Rakičan, 2007


Benefits for environment<br />

Mitigation atmospheric methane concentrations<br />

reduces impacts on global climate change<br />

Treatment of wastes reduces water, air<br />

pollution, odors and destroys pathogens<br />

Application of digestate fulfils the phosphorus<br />

requirements of the crops and completes the<br />

nitrogen requirements <strong>from</strong> mineral fertiliser.<br />

Displacement of fossil fuels reduces CO2 emissions<br />

Rakičan, 2007


Thailand Swine <strong>Farm</strong> <strong>Biogas</strong><br />

Implementation<br />

Programs/Policies<br />

Poon Thiengburanathum, Ph.D.,<br />

Faculty of Engineering, Chiang Mai University


Swine in Thailand<br />

<strong>Farm</strong> Size<br />

There are 7.15 million<br />

swine in Thailand<br />

No. or<br />

pigs<br />

No. of<br />

<strong>Farm</strong>s<br />

Total<br />

<strong>Pig</strong>s<br />

head<br />

(million)<br />

Small 50-500 >200,000 3<br />

Medium 500-5,000 1,309 1.36<br />

Large >5,000 186 2.78<br />

Source: Department Livestock Development


Scope / Marketing<br />

Issues/Analysis<br />

Annual number of swine in Thailand (animals)<br />

65


<strong>Farm</strong>’s Environment


Key Types of System<br />

• Fixed Dome: Small Scale<br />

• Plastic Bag System: Small Scale<br />

• Cover Lagoon: Medium to Large Scale<br />

• Chanel Digester: Medium to Large Scale<br />

• CSTR: Medium to Large Scale


Cover Lagoon


Cannel Digester


H-UASB


IC-UASB


<strong>Biogas</strong> System is introduced


• Pre-Treatment<br />

• Bioreactor<br />

• Post-<br />

Treatment<br />

• Energy<br />

Utilization<br />

Electrical/heat utilization in farm<br />

<strong>Pig</strong>gery<br />

<strong>Farm</strong>s<br />

Reused water<br />

<strong>Biogas</strong> Flare<br />

System<br />

Garbage/Large<br />

Aggregate<br />

Screen<br />

<strong>Biogas</strong><br />

<strong>Biogas</strong><br />

Reactor<br />

Effluence<br />

Gas<br />

Storage<br />

Gas<br />

Utilization<br />

System<br />

Collecting<br />

Tank<br />

Sand Trapping,<br />

Cyclone<br />

Sludge Drying<br />

System<br />

Garbage/<br />

Large<br />

aggregate<br />

Sand<br />

Post<br />

Treatment<br />

Pond<br />

Open<br />

Pond<br />

Water<br />

Reserved<br />

Pond<br />

Energy Fertilizer Fertilizer


Facts<br />

• 1 LU = 500 kg = Average 8.3 pigs<br />

• 37-40 liters/day<br />

• 10-12 kg of solid waste<br />

• 25-27 liters of urine<br />

• 185-190 liters/day of water/farming activity<br />

• 0.9 cu.m./day (@ 0.55 biodegradable rate)<br />

• 1 cu.m. of <strong>Biogas</strong><br />

• 0.46 kg LPG<br />

• 0.67 liters of gasoline<br />

• 1.2-1.4 kwh


Pre-Treatment: CT


Pre-Treatment: ST


Reactor


Reactor


Post-Treatment: Solar Drying


Post-Treatment: Liquid Fertilizer and<br />

Artificial Pond


GAS Utilization: Heat


GAS Utilization: Electricity


Join Funding or Subsidy Issues<br />

• Small scale > Department of Agricultural Extension (DOAE)<br />

Implemented by DOAE since 1996-2004<br />

Installed 1,655 fixed dome biogas unit<br />

Total digester volume is 75,000 m 3<br />

Government subsidized 45%<br />

• Medium-Large farms > Chiang Mai University<br />

The technology modified <strong>from</strong> an imported<br />

prototype in 1984<br />

Installed 150 plants in medium-large swine farms<br />

Channel Digester + UASB, remove 80-90% COD<br />

Government subsidized: Phase I (1995-1998) 47%,<br />

Phase II (1997-2003) 33% and Phase III (2002-2008)<br />

18%<br />

Financial : Energy Conservation Fund, Energy Policy and Planning Office (EPPO), Ministry of Energy


Provide<br />

Technical<br />

Assistance<br />

and O&M<br />

MoU<br />

ERDI’s agents<br />

ERDI<br />

LOI/ERPA<br />

<strong>Farm</strong> 1 <strong>Farm</strong> 2 <strong>Farm</strong> 3 <strong>Farm</strong> 4 <strong>Farm</strong>s …<br />

Buyers<br />

Signed Emission Reduction<br />

rights transfer agreement<br />

ERDI = Energy Research and Development Institute, Chiang Mai University<br />

The World Bank = Assist in Project Development and Purchase Emission Reduction<br />

MOU = Memorandum of Understanding<br />

LOI = Letter of Intend<br />

ERPA = Emission Reduction Purchase Agreement


April 6, 2009<br />

Project Component<br />

24 of 8


Technology Selection


Development of biogas<br />

technology for livestock<br />

farms in Thailand<br />

Choke Mikled<br />

Department of Animal Science and Aquaculture,<br />

Faculty of Agriculture, Chiang Mai University,<br />

Chiang Mai 50200, Thailand.<br />

E-mail: agani008@chiangmai.ac.th


Development of biogas<br />

technology<br />

<strong>Biogas</strong> technology was first introduced to<br />

Thailand around 1950 at Kasetsart<br />

University with the Indian floating drum<br />

system for dairy farms.<br />

Later the biogas systems were utilized for<br />

the purpose of sanitation on the village<br />

level where the farmers usually raised<br />

their livestock (cattle, buffalo, pig and<br />

poultry) under livestock-cropping systems.


The first phase<br />

Began in 1960, the Department of<br />

Health, Ministry of Public Health<br />

promoted biogas digester<br />

as a mean of reducing pollution <strong>from</strong><br />

livestock wastes in the village.<br />

The project ran <strong>from</strong> 1960-1992,<br />

approximately 6,000 floating drum type<br />

biodigesters were constructed.


The second phase<br />

The biogas production systems were operated by<br />

National Energy Institute <strong>from</strong> 1970-1980 during<br />

the period of energy crisis.<br />

In each village at least one floating drum type<br />

biodigester was constructed as the demonstration<br />

unit<br />

and if any farmers willing to construct a<br />

biodigester, the Government would support the<br />

budget for 1,200-1,500 Baht per farm.


Chinese Fixed Dome System in <strong>Pig</strong> <strong>Farm</strong>s


The third Phase<br />

The third phase of the<br />

development of biogas<br />

technology began with the<br />

Thai-German <strong>Biogas</strong><br />

Programme (TG-BP) <strong>from</strong><br />

1988-1995.


This programme was supported by<br />

German Technical Coorperation<br />

(Deutsche Gesellschaft fuer Techische<br />

Zusammenarbeit GmbH-GTZ)<br />

in cooperation with Chiang Mai<br />

University<br />

and Department of Agricultural<br />

Extension, Ministry of Agriculture and<br />

Cooperative.


The model of plug flow channel type<br />

digesters (2 x 100 m3)<br />

and a UASB (50 m3) digester in<br />

connection with sand-bed filter was<br />

constructed<br />

as a research and demonstration unit at<br />

the Chiang Mai University <strong>Farm</strong>.


In pig farms, the plug flow channel type<br />

digester<br />

plus the UASB (Upflow Anaerobic<br />

Sludge Blanket) digester<br />

were designed to use, mainly in<br />

medium size<br />

and large-scale farming systems (sizes<br />

of 600 and 1,000 m3).


Apart <strong>from</strong> that, studies on utilization of<br />

fermented slurry<br />

as biofertilizer for vegetables and<br />

forages were also carried out (Mikled et<br />

al, 2002).


Table 1 Number of pig and dairy farms<br />

with potential of biogas production<br />

Catories <strong>Pig</strong> farm Dairy<br />

farm<br />

-Total no. of farms<br />

-No. of farms wanted to<br />

have biodigester<br />

-No. of farms with<br />

potential of biogas<br />

production<br />

- LSU 1)<br />

- Size of biodigester, m 3<br />

5,978<br />

1,984<br />

1,247<br />

127,946<br />

255,892<br />

1) 1 LSU = 500 kg LW<br />

1 LSU required 2.0 m3 biodigester.<br />

Source: Potikanond et al (2,000)<br />

13,261<br />

4,590<br />

2,120<br />

22,702<br />

45,404<br />

Total<br />

19,239<br />

6,574<br />

3,367<br />

150,648<br />

301,296


The programme of dissemination has<br />

been operated according to the budget<br />

supported into different phases as<br />

follows:<br />

Phase I: <strong>from</strong> 1995-1998 with 6<br />

medium and large-scale pig farms and a<br />

total volume of 10,000 m3 biodigesters.


Phase II: <strong>from</strong> 1997- 2003 with 14<br />

medium and large-scale pig farms<br />

and a total volume of 46,000 m3<br />

biodigesters.


Phase III: <strong>from</strong> 2002-2010 which divided<br />

into 2 sections as follows:-<br />

Section 1: with 215 medium size pig farms<br />

and a total volume of 150,000 m3<br />

biodigesters.<br />

Section 2: with 34 large-scale pig farms and a<br />

total volume of 130,000 m3 biodigesters.


Phase IV: <strong>from</strong> 2008-2013 which also<br />

divided into 2 sections as follows:-<br />

Section 1: with medium size pig farms<br />

and large-scale pig farms.<br />

Section 2: with small size pig farms (<<br />

60 LSU) used would be CD-Junior<br />

(Channel Digester- Junior) plus Fixed<br />

Dome biodigesters.


The target of this phase would be with<br />

at least 240,000 LSU<br />

or approximately 2,000,000 pigs for the<br />

medium and large-scale pig farms<br />

and at least 400,000 pigs in the small<br />

size pig farms.


<strong>Biogas</strong> produced contains approximately<br />

65 % methane by volume<br />

and can be used as a substitute for<br />

LPG, fuel oils<br />

or directly supply to biogas engine for<br />

power generation.


A cubic meter (m3) of biogas contains<br />

23.40 MJ<br />

which equivalent to 0.46 kg of LPG<br />

or 0.55 liter of fuel oil<br />

converting to 1.2 KW-hr of electricity.


Since the beginning of the project,<br />

EDRI completely designs and<br />

constructions of more than 300 medium<br />

and large-scale biogas systems<br />

producing approximately 80 million m 3<br />

of biogas per year.


Biodigester for Large-scale <strong>Pig</strong> <strong>Farm</strong>s


Biodigester for Cassava Processing Factory


Biodigester for <strong>Pig</strong> Sluaghterhouse


Biodigester for wastes <strong>from</strong> hotels


Biodigester for Oil Palm Factory


Anaerobic Covered Lagoon<br />

Using HDPE Plastic Sheet


In conclusion<br />

The biogas production in<br />

Thailand becomes increasingly<br />

important<br />

particular to reduce pollution<br />

<strong>from</strong> wastes in the livestock<br />

farms.


Thank you<br />

for your kind attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!