22.03.2013 Views

The Mathematics of Escalators on the London ... - The Engineer

The Mathematics of Escalators on the London ... - The Engineer

The Mathematics of Escalators on the London ... - The Engineer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

every<strong>on</strong>e was super-fit, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> people<br />

able to access, say Waterloo stati<strong>on</strong> in <strong>the</strong><br />

morning rush, would drop from 51,000 to<br />

something like 34,000 assuming that a pers<strong>on</strong><br />

can travel upstairs at a speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 m/sec.<br />

0.<br />

5<br />

×<br />

0.<br />

75<br />

51,<br />

000<br />

=<br />

34,<br />

000<br />

Replicated around <strong>the</strong> whole tube network,<br />

assuming that 3,000,000 people access <strong>the</strong> Tube<br />

network by escalator, this means a milli<strong>on</strong> less<br />

people a day could access <strong>the</strong> Tube network.<br />

⎛ 0.<br />

5<br />

⎞<br />

3 , 000,<br />

000 − ⎜ × 3,<br />

000,<br />

000 ⎟ =<br />

⎝ 0.<br />

75<br />

⎠<br />

1,<br />

000,<br />

000<br />

If those milli<strong>on</strong> people drove <strong>on</strong>ly 5 km in a car,<br />

<strong>the</strong>y would emit perhaps<br />

1 , 000,<br />

000 × 0.<br />

2 × 5 = 1,<br />

000 t<strong>on</strong>nes CO2.<br />

Whereas, 5 km by underground would emit<br />

1 , 000,<br />

000 × 0.<br />

068 × 5 = 340 t<strong>on</strong>nes CO2.<br />

This saves 640 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 for those 5 km.<br />

That’s a good ec<strong>on</strong>omics.<br />

A 15 m up escalator, running for <strong>the</strong> typical 20<br />

hours service each day <strong>on</strong> <strong>the</strong> L<strong>on</strong>d<strong>on</strong><br />

Underground, produces 220 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2.<br />

( 10.<br />

2 + 2)<br />

× 0.<br />

9 × 20 ≈ 220kg<br />

= 0.<br />

22 t<strong>on</strong>nes CO2.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>e going down produces 36 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. With<br />

418 escalators <strong>on</strong> <strong>the</strong> network, this means<br />

approximately 54 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 being released<br />

everyday by <strong>the</strong> escalators each day.<br />

( 220 +<br />

2<br />

36)<br />

EXTENSION ACTIVITY – 1:<br />

× 418 =<br />

53.<br />

5 t<strong>on</strong>nes<br />

CO2.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are many hidden assumpti<strong>on</strong>s in this<br />

ec<strong>on</strong>omic argument. What are <strong>the</strong>y?<br />

APPLICATIONS OF TRIGONOMETRY AND OF DIFFERENTIATION<br />

We know that passenger flows in and out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stati<strong>on</strong>s peak in <strong>the</strong> morning and evening rush<br />

hours and slow right down at o<strong>the</strong>r times. Even <strong>on</strong><br />

<strong>the</strong> busiest stati<strong>on</strong>s, <strong>the</strong>re will be times when <strong>the</strong><br />

escalator is operating with nobody <strong>on</strong> it. How<br />

about we introduce an automated system that<br />

<strong>on</strong>ly operates <strong>the</strong> escalator when <strong>the</strong>re is<br />

somebody <strong>the</strong>re to ride it? This would clearly save<br />

a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. But it’s not easy.<br />

EXTENSION ACTIVITY – 2:<br />

If people approach a self-starting escalator from<br />

both ends simultaneously – will it go up or down?<br />

Try to think <str<strong>on</strong>g>of</str<strong>on</strong>g> ways to avoid this problem.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> comm<strong>on</strong> standard for escalators calls for<br />

accelerati<strong>on</strong> levels <strong>on</strong> start-up or stop to be less<br />

than 1 m/sec 2 al<strong>on</strong>g <strong>the</strong> incline. Any more and<br />

<strong>the</strong>re is significant risk <str<strong>on</strong>g>of</str<strong>on</strong>g> people being knocked<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong>ir feet. How is that measured?<br />

Accelerometers (piezo-electric devices that sense<br />

accelerati<strong>on</strong>) are fitted to an escalator step to<br />

measure vertical and horiz<strong>on</strong>tal accelerati<strong>on</strong> as<br />

shown below<br />

Figure-2: Horiz<strong>on</strong>tal and Vertical Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Accelerati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> accelerati<strong>on</strong> al<strong>on</strong>g <strong>the</strong> incline is <strong>the</strong>refore<br />

accelerati<strong>on</strong> = x˙<br />

˙ cosθ<br />

+ z˙<br />

˙ sinθ<br />

That accelerati<strong>on</strong> could be integrated to yield<br />

velocity al<strong>on</strong>g <strong>the</strong> incline. Data <str<strong>on</strong>g>of</str<strong>on</strong>g> this type is<br />

shown in Figure – 3. <str<strong>on</strong>g>The</str<strong>on</strong>g> ideal velocity time<br />

history is shown with a dotted line. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromechanical<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> an escalator is less<br />

than ideal so <strong>the</strong> actual velocity time history is<br />

something different.<br />

Figure-3: Velocity vs. Time<br />

APPLICATIONS OF PERCENTAGES<br />

<str<strong>on</strong>g>Escalators</str<strong>on</strong>g> are important to maximizing passenger<br />

flows <strong>on</strong> <strong>the</strong> Underground network. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

<strong>the</strong>ir availability is measured.<br />

availabili ty =<br />

running time<br />

planned running time<br />

<str<strong>on</strong>g>Escalators</str<strong>on</strong>g> in service are very reliable, giving<br />

100% availability. But if a hand rail slips, and<br />

takes 6 hours to repair? What will availability drop<br />

to if <strong>the</strong> reporting period for availability is 4<br />

weeks?<br />

⎛ 6 ⎞<br />

100 − ⎜<br />

⎟ × 100 =<br />

⎝ 4 × 7 × 20 ⎠<br />

WHERE TO FIND MORE<br />

98.<br />

93%<br />

1. Basic <strong>Engineer</strong>ing <str<strong>on</strong>g>Ma<strong>the</strong>matics</str<strong>on</strong>g>, John Bird,<br />

2007, published by Elsevier Ltd.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!