22.03.2013 Views

The Mathematics of Escalators on the London ... - The Engineer

The Mathematics of Escalators on the London ... - The Engineer

The Mathematics of Escalators on the London ... - The Engineer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Ma<strong>the</strong>matics</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Escalators</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> L<strong>on</strong>d<strong>on</strong><br />

Underground<br />

Transport for L<strong>on</strong>d<strong>on</strong><br />

Mechanical <strong>Engineer</strong>ing<br />

Figure-1: <str<strong>on</strong>g>Escalators</str<strong>on</strong>g> at Canary Wharf Stati<strong>on</strong><br />

SOME SIMPLE CALCULATIONS OF SCALE<br />

4 milli<strong>on</strong> people use <strong>the</strong> L<strong>on</strong>d<strong>on</strong> Underground<br />

every day. In <strong>the</strong> morning rush, around 20,000<br />

people per hour travel down <strong>the</strong> 23 escalators at<br />

Canary Wharf Underground stati<strong>on</strong>. That’s more<br />

than 300 people every minute.<br />

20000 people per hour<br />

60 minutes per hour<br />

=<br />

333 people per minute<br />

<str<strong>on</strong>g>Escalators</str<strong>on</strong>g> <strong>on</strong> L<strong>on</strong>d<strong>on</strong> Underground travel at a<br />

standard 0.75 m/sec <strong>on</strong> a standard 30° incline. An<br />

escalator step is 1 m wide and 400 mm (0.4 m)<br />

from fr<strong>on</strong>t to back so a fresh step rolls out at <strong>the</strong><br />

top <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> escalator every 0.533 sec<strong>on</strong>ds.<br />

0.<br />

4m<br />

0.<br />

75m/sec<br />

=<br />

0.<br />

533<br />

sec<br />

If every step carries <strong>on</strong>e pers<strong>on</strong> <strong>the</strong>n <strong>the</strong><br />

maximum capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> escalator is<br />

approximately 6,750 people per hour.<br />

3600 sec/hr<br />

0.533 sec/step<br />

=<br />

6754 steps and people<br />

C<strong>on</strong>sider an escalator that is 15 m al<strong>on</strong>g <strong>the</strong><br />

incline. A step will take 20 sec<strong>on</strong>ds to travel that<br />

distance and, including 5 flat steps at <strong>the</strong> top and<br />

4 at <strong>the</strong> bottom, <strong>the</strong>re will be around 46 steps<br />

available for people to occupy at any <strong>on</strong>e time. 37<br />

people would take 20 sec<strong>on</strong>ds to rise a height <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7.5 m in <strong>the</strong> vertical plane.<br />

opposite height<br />

sin =<br />

hypoteneuse<br />

15<br />

( 30)<br />

=<br />

m<br />

height = 15 × sin =<br />

( 30)<br />

7.<br />

5m<br />

If <strong>the</strong> average pers<strong>on</strong> has a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 kg, <strong>the</strong>n<br />

<strong>the</strong> power required to lift 37 people would be<br />

about 10 kW.<br />

mass × g × height 75 × 9.<br />

81×<br />

7.<br />

5 × 37<br />

power =<br />

=<br />

= 10.<br />

21 kW<br />

time<br />

20<br />

Here, g is <strong>the</strong> accelerati<strong>on</strong> due to gravity. In<br />

additi<strong>on</strong> to <strong>the</strong> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pers<strong>on</strong>, <strong>the</strong> step <strong>the</strong>y<br />

are standing <strong>on</strong> has a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 35 kg and <strong>the</strong><br />

secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chain driving it a fur<strong>the</strong>r 10 kg. But for<br />

every step travelling up <strong>on</strong> an escalator, <strong>the</strong>re is<br />

ano<strong>the</strong>r travelling down, so <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

additi<strong>on</strong>al mass is neglected. But <str<strong>on</strong>g>of</str<strong>on</strong>g> course, <strong>the</strong><br />

escalator can accommodate almost 50% more<br />

people walking al<strong>on</strong>gside those standing.<br />

Allowing 2 kW more for fricti<strong>on</strong>, and assuming a<br />

motor efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> 90% this 15m escalator<br />

typically c<strong>on</strong>sumes about 20 kW <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical<br />

power.<br />

HOW GREEN ARE ESCALATORS?<br />

How much CO2 gets emitted for a single pers<strong>on</strong><br />

<strong>on</strong> a 15 m escalator? 1 kW-hr <str<strong>on</strong>g>of</str<strong>on</strong>g> coal-fired<br />

electricity typically produces 0.9 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. Thus,<br />

<strong>the</strong> kW-hr per pers<strong>on</strong> <strong>on</strong> a single trip is:<br />

( 10.<br />

21 + 2)<br />

37<br />

×<br />

20<br />

3600<br />

=<br />

0.<br />

00183<br />

0 . 00183 × 0.<br />

9 = 0.<br />

00165 kg =<br />

kW-hr<br />

1.<br />

65 g<br />

Thus, 1.65 g <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 is being emitted per pers<strong>on</strong><br />

per trip.<br />

How does this compare with <strong>the</strong> carb<strong>on</strong><br />

emissi<strong>on</strong>s from travel <strong>on</strong> <strong>the</strong> underground trains<br />

<strong>the</strong>mselves? This is comm<strong>on</strong>ly taken as 68 g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO2 per passenger kilometre. <str<strong>on</strong>g>The</str<strong>on</strong>g> equivalent<br />

emissi<strong>on</strong>s <strong>on</strong> <strong>the</strong> escalator are:<br />

1000<br />

15<br />

×<br />

1.<br />

65<br />

≈<br />

110 g<br />

So, 110 g <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 is being emitted per passenger<br />

kilometre going uphill. Going downhill <strong>the</strong> figure<br />

drops to 18 g (<strong>the</strong> figure required to overcome<br />

fricti<strong>on</strong> and motor inefficiency al<strong>on</strong>e). Both <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong>se figures are better than <strong>the</strong> emissi<strong>on</strong>s from a<br />

standard family car that emits 200 g <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 per<br />

passenger kilometre with <strong>on</strong>ly <strong>on</strong>e vehicle<br />

occupant. But <strong>the</strong> escalator emissi<strong>on</strong>s are 162%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> train emissi<strong>on</strong>s. So why have escalators<br />

at all?<br />

Firstly, <strong>on</strong>ly <strong>the</strong> very fittest people could walk up<br />

<strong>the</strong> 100 or so stairs found at <strong>the</strong> typical deep tube<br />

stati<strong>on</strong> <strong>on</strong> <strong>the</strong> Underground. Also, even if


every<strong>on</strong>e was super-fit, <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> people<br />

able to access, say Waterloo stati<strong>on</strong> in <strong>the</strong><br />

morning rush, would drop from 51,000 to<br />

something like 34,000 assuming that a pers<strong>on</strong><br />

can travel upstairs at a speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 m/sec.<br />

0.<br />

5<br />

×<br />

0.<br />

75<br />

51,<br />

000<br />

=<br />

34,<br />

000<br />

Replicated around <strong>the</strong> whole tube network,<br />

assuming that 3,000,000 people access <strong>the</strong> Tube<br />

network by escalator, this means a milli<strong>on</strong> less<br />

people a day could access <strong>the</strong> Tube network.<br />

⎛ 0.<br />

5<br />

⎞<br />

3 , 000,<br />

000 − ⎜ × 3,<br />

000,<br />

000 ⎟ =<br />

⎝ 0.<br />

75<br />

⎠<br />

1,<br />

000,<br />

000<br />

If those milli<strong>on</strong> people drove <strong>on</strong>ly 5 km in a car,<br />

<strong>the</strong>y would emit perhaps<br />

1 , 000,<br />

000 × 0.<br />

2 × 5 = 1,<br />

000 t<strong>on</strong>nes CO2.<br />

Whereas, 5 km by underground would emit<br />

1 , 000,<br />

000 × 0.<br />

068 × 5 = 340 t<strong>on</strong>nes CO2.<br />

This saves 640 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 for those 5 km.<br />

That’s a good ec<strong>on</strong>omics.<br />

A 15 m up escalator, running for <strong>the</strong> typical 20<br />

hours service each day <strong>on</strong> <strong>the</strong> L<strong>on</strong>d<strong>on</strong><br />

Underground, produces 220 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2.<br />

( 10.<br />

2 + 2)<br />

× 0.<br />

9 × 20 ≈ 220kg<br />

= 0.<br />

22 t<strong>on</strong>nes CO2.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>e going down produces 36 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. With<br />

418 escalators <strong>on</strong> <strong>the</strong> network, this means<br />

approximately 54 t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 being released<br />

everyday by <strong>the</strong> escalators each day.<br />

( 220 +<br />

2<br />

36)<br />

EXTENSION ACTIVITY – 1:<br />

× 418 =<br />

53.<br />

5 t<strong>on</strong>nes<br />

CO2.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are many hidden assumpti<strong>on</strong>s in this<br />

ec<strong>on</strong>omic argument. What are <strong>the</strong>y?<br />

APPLICATIONS OF TRIGONOMETRY AND OF DIFFERENTIATION<br />

We know that passenger flows in and out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stati<strong>on</strong>s peak in <strong>the</strong> morning and evening rush<br />

hours and slow right down at o<strong>the</strong>r times. Even <strong>on</strong><br />

<strong>the</strong> busiest stati<strong>on</strong>s, <strong>the</strong>re will be times when <strong>the</strong><br />

escalator is operating with nobody <strong>on</strong> it. How<br />

about we introduce an automated system that<br />

<strong>on</strong>ly operates <strong>the</strong> escalator when <strong>the</strong>re is<br />

somebody <strong>the</strong>re to ride it? This would clearly save<br />

a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2. But it’s not easy.<br />

EXTENSION ACTIVITY – 2:<br />

If people approach a self-starting escalator from<br />

both ends simultaneously – will it go up or down?<br />

Try to think <str<strong>on</strong>g>of</str<strong>on</strong>g> ways to avoid this problem.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> comm<strong>on</strong> standard for escalators calls for<br />

accelerati<strong>on</strong> levels <strong>on</strong> start-up or stop to be less<br />

than 1 m/sec 2 al<strong>on</strong>g <strong>the</strong> incline. Any more and<br />

<strong>the</strong>re is significant risk <str<strong>on</strong>g>of</str<strong>on</strong>g> people being knocked<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong>ir feet. How is that measured?<br />

Accelerometers (piezo-electric devices that sense<br />

accelerati<strong>on</strong>) are fitted to an escalator step to<br />

measure vertical and horiz<strong>on</strong>tal accelerati<strong>on</strong> as<br />

shown below<br />

Figure-2: Horiz<strong>on</strong>tal and Vertical Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Accelerati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> accelerati<strong>on</strong> al<strong>on</strong>g <strong>the</strong> incline is <strong>the</strong>refore<br />

accelerati<strong>on</strong> = x˙<br />

˙ cosθ<br />

+ z˙<br />

˙ sinθ<br />

That accelerati<strong>on</strong> could be integrated to yield<br />

velocity al<strong>on</strong>g <strong>the</strong> incline. Data <str<strong>on</strong>g>of</str<strong>on</strong>g> this type is<br />

shown in Figure – 3. <str<strong>on</strong>g>The</str<strong>on</strong>g> ideal velocity time<br />

history is shown with a dotted line. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromechanical<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> an escalator is less<br />

than ideal so <strong>the</strong> actual velocity time history is<br />

something different.<br />

Figure-3: Velocity vs. Time<br />

APPLICATIONS OF PERCENTAGES<br />

<str<strong>on</strong>g>Escalators</str<strong>on</strong>g> are important to maximizing passenger<br />

flows <strong>on</strong> <strong>the</strong> Underground network. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

<strong>the</strong>ir availability is measured.<br />

availabili ty =<br />

running time<br />

planned running time<br />

<str<strong>on</strong>g>Escalators</str<strong>on</strong>g> in service are very reliable, giving<br />

100% availability. But if a hand rail slips, and<br />

takes 6 hours to repair? What will availability drop<br />

to if <strong>the</strong> reporting period for availability is 4<br />

weeks?<br />

⎛ 6 ⎞<br />

100 − ⎜<br />

⎟ × 100 =<br />

⎝ 4 × 7 × 20 ⎠<br />

WHERE TO FIND MORE<br />

98.<br />

93%<br />

1. Basic <strong>Engineer</strong>ing <str<strong>on</strong>g>Ma<strong>the</strong>matics</str<strong>on</strong>g>, John Bird,<br />

2007, published by Elsevier Ltd.


2. <strong>Engineer</strong>ing <str<strong>on</strong>g>Ma<strong>the</strong>matics</str<strong>on</strong>g>, Fifth Editi<strong>on</strong>, John<br />

Bird, 2007, published by Elsevier Ltd.<br />

T<strong>on</strong>y Miller – <strong>Engineer</strong> <strong>on</strong> L<strong>on</strong>d<strong>on</strong> Underground<br />

3. http://science.howstuffworks.com/escalator1.h<br />

tm<br />

Studied Physics before becoming an engineer in <strong>the</strong> power industry. <str<strong>on</strong>g>The</str<strong>on</strong>g>n he transferred to<br />

railways working first <strong>on</strong> rolling stock before moving into stati<strong>on</strong> machinery such as lifts and<br />

escalators.


INFORMATION FOR TEACHERS<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> teachers should have some knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Manipulating and using trig<strong>on</strong>ometric functi<strong>on</strong>s (ratios in right-angled triangle)<br />

How to calculate percentages<br />

How to plot <strong>the</strong> graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> simple functi<strong>on</strong>s using excel or o<strong>the</strong>r resources<br />

TOPICS COVERED FROM “MATHEMATICS FOR ENGINEERING”<br />

Topic 4: Functi<strong>on</strong>s<br />

Topic 5: Geometry<br />

Topic 6: Differentiati<strong>on</strong> and Integrati<strong>on</strong><br />

LEARNING OUTCOMES<br />

LO 03: Understand <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> trig<strong>on</strong>ometry to model situati<strong>on</strong>s involving oscillati<strong>on</strong>s<br />

LO 04: Understand <strong>the</strong> ma<strong>the</strong>matical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s and be familiar with <strong>the</strong>ir graphs<br />

LO 06: Know how to use differentiati<strong>on</strong> and integrati<strong>on</strong> in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> engineering analysis and<br />

problem solving<br />

LO 09: C<strong>on</strong>struct rigorous ma<strong>the</strong>matical arguments and pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s in engineering c<strong>on</strong>text<br />

LO 10: Comprehend translati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> realistic engineering c<strong>on</strong>texts into ma<strong>the</strong>matics<br />

ASSESSMENT CRITERIA<br />

AC 3.1: Solve problems in engineering requiring knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> trig<strong>on</strong>ometric functi<strong>on</strong>s<br />

AC 4.1: Identify and describe functi<strong>on</strong>s and <strong>the</strong>ir graphs<br />

AC 6.1: Calculate <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong><br />

AC 6.3: Find definite and indefinite integrals <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s<br />

AC 9.2: Manipulate ma<strong>the</strong>matical expressi<strong>on</strong>s<br />

AC 10.1: Read critically and comprehend l<strong>on</strong>ger ma<strong>the</strong>matical arguments or examples <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s.<br />

LINKS TO OTHER UNITS OF THE ADVANCED DIPLOMA IN ENGINEERING<br />

Unit-1: Investigating <strong>Engineer</strong>ing Business and <strong>the</strong> Envir<strong>on</strong>ment<br />

Unit-3: Selecti<strong>on</strong> and Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Engineer</strong>ing Materials<br />

Unit-5: Maintaining <strong>Engineer</strong>ing Plant, Equipment and Systems<br />

Unit-6: Investigating Modern Manufacturing Techniques used in <strong>Engineer</strong>ing<br />

Unit-7: Innovative Design and Enterprise<br />

Unit-8: Ma<strong>the</strong>matical Techniques and Applicati<strong>on</strong>s for <strong>Engineer</strong>s<br />

Unit-9: Principles and Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Engineer</strong>ing Science

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!