22.03.2013 Views

Chapter 19 Polycyclic & Heterocyclic Aromatic Compounds ...

Chapter 19 Polycyclic & Heterocyclic Aromatic Compounds ...

Chapter 19 Polycyclic & Heterocyclic Aromatic Compounds ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>19</strong><br />

<strong>Polycyclic</strong> & <strong>Heterocyclic</strong> <strong>Aromatic</strong> <strong>Compounds</strong><br />

Naphthalene<br />

Was first proposed in 1866 by Erlenmeyer:<br />

- Used as mothballs<br />

- Derivatives of it are used in motor fuels &<br />

lubricants<br />

Introduction<br />

Graphite<br />

Top view Side view<br />

Planes of fused benzene rings with an interdistance of 3.5 Ǻ.<br />

This interesting structure enables it to be used as:<br />

- A lubricrant<br />

- An inert electrode


Heterocycles<br />

N<br />

H<br />

Yohimban<br />

A ring having two or more different elements that can<br />

be aromatic.<br />

H<br />

N<br />

H<br />

Nomenclature<br />

- PAHs have individual names<br />

- Numbering is fixed by convention regardless of the position<br />

of the substituent<br />

7<br />

6<br />

8<br />

5<br />

9<br />

10<br />

1<br />

4<br />

2<br />

3<br />

7<br />

6<br />

8<br />

5<br />

1<br />

4<br />

Naphthalene<br />

Anthracene Phenanthrene<br />

2<br />

3<br />

H<br />

3<br />

4<br />

5<br />

6<br />

2 9<br />

1 10<br />

7<br />

8<br />

Nomenclature of PAH<br />

Nomenclature<br />

- Monosubstituted naphthalenes can be designated by Greek<br />

letters too:<br />

b<br />

b<br />

a<br />

a<br />

O O<br />

N<br />

a<br />

a<br />

b<br />

b<br />

1-Nitronaphthalene<br />

Nitronaphthalene 2-Nitronaphthalene<br />

Nitronaphthalene<br />

α-Nitronaphthalene<br />

Nitronaphthalene β-Nitronaphthalene<br />

Nitronaphthalene<br />

7<br />

6<br />

8<br />

5<br />

1<br />

4<br />

2<br />

3<br />

O<br />

N<br />

O


Bonding in PAHs<br />

Resonance energy<br />

Fused aromatics have lower resonance energy than expected<br />

Resonance energy<br />

expected (Kcal/mol): 36<br />

72<br />

Resonance energy<br />

Calculated (Kcal/mol): 36<br />

61<br />

72 108 108<br />

61 84 92<br />

<strong>Aromatic</strong>ity<br />

- Conjugated<br />

- Planar<br />

- Satisfies the Huckel’s Huckel rule (4n+2)<br />

10 π electrons 14 π electrons 14 π electrons<br />

n = 2 n = 3 n = 3<br />

Resonance energy<br />

All carbon bonds in benzene have the same bond length<br />

The carbon bond lengths in naphthalene aren’t aren t all the same:<br />

7<br />

6<br />

8<br />

5<br />

1<br />

4<br />

2<br />

3<br />

Two out of the three resonance structures show C1-C2 C1 C2<br />

double bond


Resonance energy<br />

Phenanthrene shows similar differences among the C9-C10 C9 C10<br />

bond that shows an alkene character:<br />

Br Br<br />

Oxidation<br />

Benzene is difficult to oxidize whereas PAHs are oxidized<br />

more easily but they retain at least one phenyl group to keep<br />

the aromaticity<br />

V 2 O 5 , air, heat<br />

CrO 3 , AcOH<br />

heat<br />

O<br />

O<br />

O<br />

Br<br />

OH<br />

OH<br />

O<br />

1,4-naphthoquinone<br />

Br<br />

- H 2O<br />

O<br />

O<br />

O<br />

Oxidation of PAHs<br />

Reduction of PAHs


Reduction<br />

PAHs can be reduced with sodium and ethanol:<br />

Na, EtOH<br />

Na, EtOH<br />

Na, EtOH<br />

No reaction<br />

tetralin<br />

9,10-dihydroanthracene<br />

EAS of Naphthalenes<br />

Reduction<br />

Hydrogenation of PAHs can be carried out under high T and<br />

Pressure of hydrogen:<br />

+<br />

+<br />

5 H 2<br />

3 H 2<br />

Pt, 35 atm<br />

255 C<br />

Naphthalene<br />

H<br />

1<br />

H<br />

2<br />

H<br />

H H<br />

two sites possible for electrophilic<br />

aromatic substitution<br />

H<br />

Decalin<br />

all other sites at which substitution can occur<br />

are equivalent to 1 and 2<br />

H<br />

H


EAS of Naphthalene<br />

Electrophilic <strong>Aromatic</strong> Substitution reactions of naphthalenes<br />

occur on C-1 C 1 predominantly:<br />

Br<br />

predominantly:<br />

+<br />

Br 2<br />

HNO 3, H2SO4<br />

H 2SO4 conc.<br />

AcCl, AlCl 3<br />

O<br />

NO 2<br />

SO 3H<br />

CCH 3<br />

EAS of Naphthalene<br />

E<br />

H<br />

when attack is at C-2 C<br />

in order for carbocation to be stabilized by allylic<br />

resonance, the benzenoid character of the other<br />

ring is sacrificed<br />

+<br />

E<br />

H<br />

EAS of Naphthalene<br />

E H E H<br />

+<br />

when attack is at C-1 C<br />

carbocation is stabilized by allylic resonance<br />

benzenoid character of other ring is maintained<br />

EAS of naphthalene<br />

Sulfonation reaction of naphthalene is more complex and is T<br />

controlled:<br />

SO3H At 80 C:<br />

At 160 C:<br />

+ SO 3<br />

fast<br />

slow<br />

+<br />

91% Kinetic<br />

15% Thermodynamic<br />

SO 3H<br />

9% Kinetic<br />

85% Thermodynamic


EAS of naphthalene<br />

2-substituted substituted naphthalene is more stable than1-naphthalene<br />

than1 naphthalene<br />

sulfonic acid:<br />

H<br />

H<br />

H<br />

H H<br />

SO 3H<br />

More repulsion<br />

Less stable<br />

H<br />

H<br />

H<br />

H<br />

Nomenclature<br />

H H<br />

H<br />

H<br />

Less Repulsion<br />

More stable<br />

<strong>Aromatic</strong> heterocycles have individual names<br />

5<br />

6<br />

4<br />

N 1<br />

3<br />

2<br />

Pyridine<br />

4<br />

5<br />

S<br />

1<br />

N<br />

3<br />

2<br />

4<br />

5<br />

N<br />

H<br />

1<br />

N<br />

3<br />

2<br />

Thiazole Imidazole<br />

SO 3H<br />

<strong>Aromatic</strong> heterocycles with one heteroatom can be designated<br />

by Greek letters<br />

α<br />

γ<br />

β β<br />

β β<br />

N<br />

Pyridine<br />

α<br />

H<br />

α<br />

N<br />

H<br />

Pyrrole<br />

α<br />

N<br />

Nomenclature of <strong>Aromatic</strong> <strong>Heterocyclic</strong><br />

<strong>Compounds</strong><br />

Some Important <strong>Aromatic</strong> Heterocycles<br />

N<br />

N<br />

H<br />

Pyrrole Furan Thiophene<br />

H<br />

N<br />

N<br />

Pyrimidine Indole<br />

Quinoline Isoquinoline<br />

N<br />

O S<br />

H<br />

N<br />

N<br />

Purine<br />

N<br />

N


Pyridine, a Six-Membered Six Membered <strong>Aromatic</strong><br />

Heterocycle<br />

Pyridine<br />

Pyridine is very unreactive; it resembles<br />

nitrobenzene in its reactivity.<br />

Presence of electronegative atom (N) in ring<br />

causes ππ electrons to be held more strongly than<br />

in benzene.<br />

N<br />

There is none.<br />

Generalization<br />

There are so many different kinds of heterocyclic<br />

aromatic compounds that no generalization<br />

is possible.<br />

Some heterocyclic aromatic compounds<br />

are very reactive toward electrophilic<br />

aromatic substitution, others are very unreactive.<br />

δ +<br />

N δ ¯<br />

Pyridine doesn’t doesn t undergo any Friedel-Crafts Friedel Crafts reaction<br />

(alkylation alkylation, , acylation). acylation).<br />

Pyridine<br />

If reacted with a Lewis Acid<br />

the ring becomes more e-deficient e deficient<br />

Pyridine doesn’t doesn t make any coupling with diazonium salts.<br />

Bromination only proceeds at high T. Substitution occurs at<br />

the 3-position 3 position<br />

δ ++<br />

N +<br />

¯FeBr3 FeBr


N<br />

Pyridine can be sulfonated at high temperature.<br />

EAS takes place at C-3. C 3.<br />

Pyridine<br />

SO 3, , H 2SO SO4 HgSO 4, , 230°C 230<br />

N<br />

71%<br />

SO 3H Like benzene, pyridine resists oxidation reactions<br />

on its ring<br />

N<br />

CH 3<br />

Pyridine<br />

KMnO 4, H 3O +<br />

N<br />

CO 2H<br />

Pyridine<br />

Though it is less basic than alkyl amines, pyridine<br />

undergoes many reactions typical of amines<br />

N<br />

HCl<br />

CH 3 I<br />

N<br />

H Cl -<br />

+<br />

N<br />

CH 3 +<br />

When benzene bears EWG, it undergoes a nucleophilic<br />

substitution reaction on its ring:<br />

O 2 N<br />

Nucleophilic Substitution on Pyridine<br />

NO 2<br />

NO 2<br />

Cl<br />

NH 3<br />

O 2 N<br />

I -<br />

NO 2<br />

NO 2<br />

NH 2


Nucleophilic Substitution on Pyridine<br />

Nitrogen in pyridine withdraws electrons from the ring making<br />

it electron deficient:<br />

N<br />

Loss of H -<br />

NH 3, heat<br />

N Br N NH2 Cl NH 2<br />

NH 3, heat<br />

N N<br />

Substitution occurs at C-2 C 2 and C-4 C 4 but not on C-3 C<br />

NH 2 -<br />

N NH 2<br />

N<br />

H -<br />

Mechanism<br />

H<br />

NH 2<br />

N<br />

N NH<br />

H<br />

NH 2<br />

H 2O<br />

N<br />

H<br />

NH 2<br />

N NH 2<br />

Nucleophilic Substitution on Pyridine<br />

Pyridine can undergo substitution if a very strong base is used:<br />

NH 2 - , heat<br />

-H2 N N<br />

N<br />

+<br />

Li<br />

Heat<br />

NH -<br />

N<br />

H 2O<br />

Quinoline and Isoquinoline<br />

N NH 2


N<br />

7<br />

6<br />

8<br />

5<br />

Nomenclature<br />

N 1<br />

4<br />

2<br />

3<br />

Quinoline Isoquinoline<br />

- Both compounds behave like pyridine<br />

- They are weak bases (pK ( pKb = 9.1 & 8.6)<br />

- They undergo EAS more easily than pyridine but on C-5 C 5 & C-8 C<br />

Nucleophilic Substitution Reactions<br />

Like Pyridine, they undergo substitution if a very strong base<br />

is used:<br />

N<br />

N<br />

1- NH 2 -<br />

2- H 2O<br />

1- CH 3Li<br />

2- H 2O<br />

N<br />

N<br />

CH 3<br />

7<br />

6<br />

N<br />

8<br />

5<br />

NH 2<br />

1<br />

4<br />

N 2<br />

3<br />

N<br />

N<br />

EAS Reactions<br />

HNO 3<br />

H 2SO 4<br />

HNO 3<br />

H 2SO 4<br />

NO 2<br />

NO 2<br />

N<br />

N<br />

NO 2<br />

NO 2<br />

Pyrrole, a Five-Membered Five Membered <strong>Aromatic</strong><br />

Heterocycle<br />

N<br />

N


N<br />

H<br />

Pyrrole, Furan, and Thiophene<br />

••<br />

N<br />

H<br />

••<br />

O<br />

••<br />

••<br />

S<br />

••<br />

Have 1 less ring atom than benzene or<br />

pyridine to hold same number of ππ electrons<br />

(6).<br />

ππ electrons are held less strongly.<br />

These compounds are relatively reactive<br />

toward EAS..<br />

EAS of Pyrrole<br />

O O<br />

BF 3<br />

O<br />

+ CH 3COCCH COCCH3 N CCH<br />

H<br />

75-92% 75 92%<br />

undergoes EAS readily<br />

C-2 2 is most reactive position<br />

CCH 3<br />

Reactions<br />

Unlike pyridine, pyrrole is not basic under usual conditions (pK ( pKb ~ 14)<br />

N<br />

H<br />

N<br />

H<br />

H 3O +<br />

No stable cation<br />

In Pyrrole, the unshared pair of electrons of the<br />

nitrogen atom participate in conjugation which leaves<br />

no more additional electrons to react with a proton<br />

δ +<br />

N δ ¯<br />

δ ¯<br />

••<br />

N<br />

H<br />

Porphyrins<br />

Four pyrrole units joined by =CH- =CH groups<br />

N<br />

H<br />

N N<br />

H<br />

N<br />

Fully aromatic<br />

Important biological unit found in heme, chlorophyll, and in the cytochrome<br />

A metal ion can penetrate inside the macrocycle<br />

δ +


N<br />

N Fe N<br />

N<br />

Porphyrins<br />

HOOC<br />

H 3C<br />

HOOC<br />

H 2C<br />

N<br />

N<br />

Fe<br />

N<br />

Heme<br />

CH 3<br />

CH 3<br />

N<br />

CH 3<br />

CH 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!