24.03.2013 Views

Lattice QED and QCD - 2009 Taipei Workshop on Lattice QCD

Lattice QED and QCD - 2009 Taipei Workshop on Lattice QCD

Lattice QED and QCD - 2009 Taipei Workshop on Lattice QCD

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Lattice</str<strong>on</strong>g> <str<strong>on</strong>g>QED</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>QCD</str<strong>on</strong>g><br />

Taku Izubuchi<br />

for Riken-BNL-Columbia/UK<str<strong>on</strong>g>QCD</str<strong>on</strong>g> collaborati<strong>on</strong><br />

RIKEN BNL Reserch Center<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 1


Electromagnetic Splittings<br />

<str<strong>on</strong>g>QED</str<strong>on</strong>g> + <str<strong>on</strong>g>QCD</str<strong>on</strong>g> simulati<strong>on</strong>s<br />

[T.Blum, T.Doi, M.Hayakawa, T.Izubuchi, S.Uno, N.Yamada <str<strong>on</strong>g>and</str<strong>on</strong>g> R.Zhou] , in preparati<strong>on</strong><br />

[R. Zhou, S. Uno] , “Isospin symmetry breaking in 2+1 flavor <str<strong>on</strong>g>QCD</str<strong>on</strong>g>+<str<strong>on</strong>g>QED</str<strong>on</strong>g>” PoS(LAT<str<strong>on</strong>g>2009</str<strong>on</strong>g>) 182.<br />

[T.Izubuchi] , “Studies of the <str<strong>on</strong>g>QCD</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>QED</str<strong>on</strong>g> effects <strong>on</strong> Isospin breaking” PoS(KAON09) 034.<br />

[R. Zhou, T.Blum, T.Doi, M.Hayakawa, T.Izubuchi, <str<strong>on</strong>g>and</str<strong>on</strong>g> N.Yamada] ,<br />

“Isospin symmetry breaking effects in the pi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> nucle<strong>on</strong> masses” PoS(LAT2008) 131.<br />

[T. Blum, T. Doi, M. Hayakawa, T.Izubuchi, N. Yamada] ,<br />

“Determinati<strong>on</strong> of light quark masses from the electromagnetic splitting of psedoscalar mes<strong>on</strong><br />

masses computed with two flavors of domain wall fermi<strong>on</strong>s” Phys. Rev.D76 (2007) 114508<br />

“The isospin breaking effect <strong>on</strong> bary<strong>on</strong>s with Nf=2 domain wall fermi<strong>on</strong>s” PoS(LAT2006) 174<br />

“Electromagnetic properties of hadr<strong>on</strong>s with two flavors of dynamical domain wall fermi<strong>on</strong>s”<br />

PoS(LAT2005) 092<br />

“Hadr<strong>on</strong>ic light-by light scattering c<strong>on</strong>tributi<strong>on</strong> to the mu<strong>on</strong> g-2 from lattice <str<strong>on</strong>g>QCD</str<strong>on</strong>g>: Methodology”<br />

PoS(LAT2005) 353<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 2


Isospin Breaking Effects<br />

• The first principle calculati<strong>on</strong>s of isospin breaking effects<br />

due to electromagnetic (EM) <str<strong>on</strong>g>and</str<strong>on</strong>g> the up, down quark mass<br />

difference are necessary for accurate hadr<strong>on</strong> spectrum,<br />

quark mass determinati<strong>on</strong>.<br />

• Isospin breaking’s are measured very accurately :<br />

m π ± − m π 0 = 4.5936(5)MeV,<br />

m K ± − m K 0 = −3.9272(27)MeV<br />

mN − mP = 1.2933317(5)MeV<br />

cf. splitting for vector mes<strong>on</strong> is c<strong>on</strong>sistent with zero<br />

experimentally.<br />

u<br />

2/3 e<br />

q<br />

Q e<br />

¼ +<br />

(repulsive)<br />

¼ 0<br />

(attractive)<br />

• Positive mass difference between Neutr<strong>on</strong> (udd) <str<strong>on</strong>g>and</str<strong>on</strong>g> Prot<strong>on</strong> (uud) stabilizes prot<strong>on</strong><br />

thus make our world as it is. mN − mP = 1.2933317(5)MeV<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 3<br />

d<br />

1/3e<br />

q<br />

-Q e


Isospin <str<strong>on</strong>g>and</str<strong>on</strong>g> SU(3)F Breaking Effects <strong>on</strong> spectrum<br />

• PS mes<strong>on</strong> spectrum <str<strong>on</strong>g>and</str<strong>on</strong>g> quark masses.<br />

• Asymmetry due to Quark mass differences :<br />

mu = md = ms<br />

• Asymmetry due to <str<strong>on</strong>g>QED</str<strong>on</strong>g> interacti<strong>on</strong>s :<br />

Qu = 2/3e, Qd = Qs = −1/3e<br />

• <str<strong>on</strong>g>QCD</str<strong>on</strong>g> axial anomaly makes m ′<br />

η heavy.<br />

• A few % effect: O(mu − md), O(α)<br />

¼ ¡<br />

K 0 K +<br />

d¹u<br />

d¹s u¹s<br />

s¹u<br />

¼ 0 ´ ´ 0<br />

s ¹ d<br />

K ¡ ¹ K 0<br />

• Could mu 0, which would explain the very small Neutr<strong>on</strong> EDM ? (Str<strong>on</strong>g CP problem)<br />

[D.Nels<strong>on</strong>,G.Fleming, G.Kilcup,PRL90:021601,2003. ]<br />

• m +<br />

ρ<br />

− m0<br />

ρ , Γ ρ +, Γ ρ 0 are related to the c<strong>on</strong>versi<strong>on</strong> of Γ(τ → Hadr<strong>on</strong>s) to Γ(e + e − →<br />

Hadr<strong>on</strong>s) to determine leading <str<strong>on</strong>g>QCD</str<strong>on</strong>g> correcti<strong>on</strong> to mu<strong>on</strong> g − 2.<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 4<br />

u ¹ d<br />

¼ 0


ChPT with EM<br />

• Axial WT identity with EM for massless quarks (NF = 3),<br />

Lem = eAem µ(x)¯qQemγµq(x), Q = diag(2/3, −1/3, −1/3)<br />

∂ µ A a<br />

µ = ieAem µ q [T a , Q] γ µ γ5q − α<br />

2π tr (QT a ) F µν<br />

em e Fem µν ,<br />

neutral currents, four A a<br />

µ (x), are c<strong>on</strong>served (ignoring O(α2 ) effects):<br />

π 0 , (K 0 , K 0 , η8) are still a NG bos<strong>on</strong>s.<br />

• NG field U(x) = e iΦ(x)/F 0 of SU(NF )L × SU(NF )R/SU(NF )V<br />

Lχ = 1 2<br />

FEM 4<br />

1 D<br />

2<br />

+ F0 DµU<br />

4 † E<br />

DµU<br />

+<br />

D<br />

χU † + χ † E<br />

U<br />

DµU = ∂µU − iQReAem,µU + iUQLeAem,µ .<br />

symmetric under<br />

U → gRUg †<br />

L ,<br />

χ = 2B0diag(mu, md, · · · ) → gRχg †<br />

L ,<br />

QL → gLQLg †<br />

L , QR → gRQRg †<br />

R ,<br />

+ C<br />

D<br />

QRUQLU †E<br />

,<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 5


• Using the half field u = √ U<br />

u → gRuh † = hug †<br />

L<br />

with the SU(3)V transformati<strong>on</strong> h = h[gL, gR, U].<br />

• List basic building blocks in the c<strong>on</strong>vinient form, e O = u † Ou †<br />

eO → h e Oh under O → gROg †<br />

L .<br />

• <str<strong>on</strong>g>QCD</str<strong>on</strong>g> Building blocks<br />

uµ = i g DµU = {u † (∂µu − iRµu) − u(∂µu † − iLµu † )},<br />

χ± = eχ ± eχ †<br />

• <str<strong>on</strong>g>QED</str<strong>on</strong>g> Building blocks<br />

eQL = uQLu † , e QR = u † QLu,<br />

• For SU(2)+Ka<strong>on</strong> ChPT, Ka<strong>on</strong> multiplet K = (K + , K 0 ) T is transformed as K → hK<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Ka<strong>on</strong> building blocks are<br />

KK † , DµKK † ∓ KDµK †<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 6


• For SU(3)+ EM PQChPT, there are <strong>on</strong>e O(e 2 ) term (Dashen’s term C), <str<strong>on</strong>g>and</str<strong>on</strong>g> 14(unitary)+2(PQ)<br />

O(e 2 m) terms.<br />

• PS mass formula at O(p 4 , p 2 e 2 ) [Bijnens Danielss<strong>on</strong>, PRD75 (07)]<br />

M 2<br />

π ± = 2mB0 + 2e 2 C<br />

f 2 0<br />

+O(m 2 log m, m 2 ) + I0e 2 m log m + K0e 2 m<br />

M 2<br />

π0 = 2mB0<br />

+O(m 2 log m, m 2 ) + I±e 2 m log m + K±e 2 m<br />

• Dashen’s theorem :<br />

The difference of squared pi<strong>on</strong> mass is independent of quark mass up to O(e 2 m),<br />

∆M 2<br />

π<br />

≡ M 2<br />

π ± − M 2<br />

π 0 = 2e 2 C<br />

f 2 0<br />

+ (I± − I0)e 2 m log m + (K± − K0)e 2 m<br />

C, K±, K0 is a new low energy c<strong>on</strong>stant. I±, I0 is known in terms of them.<br />

• We will also use preliminary mass formula from SU(2)+Ka<strong>on</strong>+EM PQChPT, which would<br />

have a better c<strong>on</strong>vergence for our NF = 2 + 1 simulati<strong>on</strong> regi<strong>on</strong> treating Ka<strong>on</strong> as a<br />

heavy Iso-doublet: [M.Hayakawa & S. Uno, T.Blum & TI]<br />

K(x) = e iMv·x k(x),<br />

L0 = ∂µK † ∂ µ K − M 2 K † K → (−2iMv µ k † ∂µk + ∂µk † ∂ µ k)<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 7


<str<strong>on</strong>g>QCD</str<strong>on</strong>g>+<str<strong>on</strong>g>QED</str<strong>on</strong>g> lattice simulati<strong>on</strong><br />

• In 1996, Duncan, Eichten, Thacker carried out SU(3)×U(1) simulati<strong>on</strong> to do the EM<br />

splittings for the hadr<strong>on</strong> spectroscopy using quenched Wils<strong>on</strong> fermi<strong>on</strong> <strong>on</strong> a −1 ∼ 1.15<br />

GeV, 12 3 × 24 lattice. [Duncan, Eichten, Thacker PRL76(96) 3894, PLB409(97) 387]<br />

• Using NF = 2 + 1 Dynamical DWF ensemble (RBC/UK<str<strong>on</strong>g>QCD</str<strong>on</strong>g>) would have benefits of<br />

chiral symmetry, such as better scaling <str<strong>on</strong>g>and</str<strong>on</strong>g> smaller quenching errors.<br />

• Especially smaller systematic errors due to the the quark massless limits,<br />

mf → −mres(Qi), has smaller Qi dependence than that of Wils<strong>on</strong> fermi<strong>on</strong>, κ →<br />

κc(Qi) (PCAC).<br />

• Generate Coulomb gauge fixed (quenched) n<strong>on</strong>-compact U(1) gauge acti<strong>on</strong> with<br />

= exp[−iAem µ(x)].<br />

β<str<strong>on</strong>g>QED</str<strong>on</strong>g> = 1. U EM<br />

µ<br />

• Quark propagator, Sq i (x) with EM charge Qi = qie with Coulomb gauge fixed wall<br />

source<br />

D ˆ (U EM<br />

µ<br />

) Qi SU(3) ˜<br />

× Uµ Sq (x) = bsrc, (i = up,down)<br />

i<br />

qup = 2/3, qdown = −1/3<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 8


phot<strong>on</strong> field <strong>on</strong> lattice<br />

• n<strong>on</strong>-compact U(1) gauge is generated by using Fast Fourier Transformati<strong>on</strong> (FFT).<br />

Coulomb gauge ∂jAem j(x) = 0, Ãem µ=0(p0, 0) = 0 with eliminating zero modes.<br />

(NF = 2 + 1: Feynman gauge)<br />

• static lept<strong>on</strong> potential <strong>on</strong> 16 3 × 32 lattice (β<str<strong>on</strong>g>QED</str<strong>on</strong>g> = 100, 4,000 c<strong>on</strong>fs) vs lattice<br />

Coulomb potential.<br />

• L=16 has significant finite volume effect for ra > 6 ∼ 1.5r0 ∼ 0.75 fm. It would be<br />

worth c<strong>on</strong>sidering for generati<strong>on</strong> of U(1) <strong>on</strong> a larger lattice <str<strong>on</strong>g>and</str<strong>on</strong>g> cutting it off.<br />

0 wils<strong>on</strong>_vs_r.dat_shift<br />

V_t13.dat<br />

V_t14.dat<br />

V_t15.dat<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

Coulomb potential V(r)-V(1)<br />

ncU(1) simulati<strong>on</strong> vs FFT predicti<strong>on</strong> at beta=100<br />

0 1 2 3 4 5<br />

0 L=16<br />

L=32<br />

L=64<br />

L=128<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Finite size effect<br />

0 5 10 15 20<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 9


simulati<strong>on</strong> parameters<br />

• NF = 2 + 1 Dynamical DWF c<strong>on</strong>figurati<strong>on</strong> for <str<strong>on</strong>g>QCD</str<strong>on</strong>g><br />

• a −1 = 1.784(44) GeV.<br />

• Quark masses:<br />

aml,sea = 0.005, 0.01, 0.02, 0.03<br />

amval = 0.001, 0.005, 0.01, 0.02, 0.03, 0.04<br />

∼ 12(valence <strong>on</strong>ly, mπ ∼ 240 MeV), 25, 40, 70, 100, 130 MeV.<br />

• One sea strange quark point, amh = 0.04<br />

(∼ 20% heavier than the physical).<br />

• 16 3 × 32 (1.8 fm) 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 24 3 × 64 (2.7 fm) 3 .<br />

• Ls = 16, mresa = 0.00321 or a couple of MeV.<br />

• EM charge: e = ±0.3028 = p 4π/137<br />

• ∼ 200 c<strong>on</strong>figurati<strong>on</strong>s for each m with 20 (40 for ml = 0.005) traj separati<strong>on</strong>.<br />

• <strong>on</strong>e or two <str<strong>on</strong>g>QED</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong> per a <str<strong>on</strong>g>QCD</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>.<br />

• All 16 mes<strong>on</strong> c<strong>on</strong>nected correlators + Neutr<strong>on</strong>, Prot<strong>on</strong>, +Bary<strong>on</strong>s.<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 10


EM spectrum <strong>on</strong> lattice<br />

• By neglecting O(α 2 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> O((mu − md) 2 ), we approximate π 0 mass squared by that<br />

of π 3 , which doesn’t have the noisy disc<strong>on</strong>nected diagram.<br />

• We will not use π 0 mass to determine quark masses.<br />

• The correlator for π 3 , ρ 3 mes<strong>on</strong> is calculated using the interpolati<strong>on</strong> field of the a = 3<br />

comp<strong>on</strong>ent of isospin:<br />

C X 0(t) = 1<br />

2<br />

hD<br />

J uu<br />

X<br />

uu†<br />

(t)JX (0)<br />

E<br />

c<strong>on</strong>n<br />

+<br />

D<br />

J dd<br />

X<br />

dd†<br />

(t)JX (0)<br />

E<br />

c<strong>on</strong>n<br />

i<br />

, X = π, ρ<br />

• massless limit of DWF D is defined through Axial Ward identity of degenerate quarks,<br />

mf = −mres = − J a<br />

5q (t)P a E<br />

(0) / 〈P a (t)P a (0)〉<br />

O(α) effect is parametrized in the generic form<br />

mres(α) = mres(0) + C2(Q 2<br />

1<br />

+ Q2<br />

2 )<br />

for currents made of quarks of charges q1 <str<strong>on</strong>g>and</str<strong>on</strong>g> q3 (No q1q3 term).<br />

mres(0), C2 → 0 at Ls → ∞.<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 11


Effect of the residual chiral symmetry breaking’s in<br />

NF = 2 + 1 <str<strong>on</strong>g>QCD</str<strong>on</strong>g>+<str<strong>on</strong>g>QED</str<strong>on</strong>g> simulati<strong>on</strong>s<br />

• mres for Ls = 16 <str<strong>on</strong>g>and</str<strong>on</strong>g> 32 for V=16 3 lattice.<br />

• Also fit to the charge splittings δm 2 of neutral mes<strong>on</strong><br />

δm 2 = M 2<br />

PS 0(e = 0) − M 2<br />

PS 0(e = 0) = δmres(q 2<br />

1<br />

+ q2<br />

3 )<br />

• Ls = 16 <str<strong>on</strong>g>and</str<strong>on</strong>g> 32 c<strong>on</strong>sistent with quark mass shift mres(e) = mres(0) + C2(q 2<br />

1<br />

c<strong>on</strong>sistent with PCAC : residual chiral symmetry breaking is under a c<strong>on</strong>trol.<br />

U(L) U(R)<br />

q(L) q(R)<br />

0 2 ... Ls/2-1 ... Ls-1<br />

mf<br />

Ω<br />

δm 2 (<str<strong>on</strong>g>Lattice</str<strong>on</strong>g> Unit)<br />

0.0003<br />

0.00025<br />

0.0002<br />

0.00015<br />

0.0001<br />

5e-05<br />

0<br />

16 3 Ls=16 <str<strong>on</strong>g>and</str<strong>on</strong>g> 32 result, fit range 0.01-0.02<br />

Ls=16<br />

Ls=32<br />

B0*C2*(...)<br />

dmres*(...)<br />

0 0.05 0.1 0.15 0.2<br />

m 2 ps<br />

+ q2<br />

3 )<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 12


Analysis methods<br />

• Analysis method I (main method) :<br />

Fit correlator for each charge combinati<strong>on</strong> separately,<br />

then calculate the mass splittings under the jackknife.<br />

X = π, ρ, N :∆MX = M X ± − M X 0,<br />

• Analysis method II (Illustrati<strong>on</strong> purpose)):<br />

Subtract charged correlator by neutral correlator,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> fit it by a linear functi<strong>on</strong> in t:<br />

CX(t) = A(e 2 )e −M X (e2 )t<br />

C X ±(t) − C X 0(t)<br />

C X 0(t)<br />

G(t; q1, q2) =<br />

1<br />

2<br />

1<br />

2<br />

e 2 : q1q2 q 2 1 q 2 2<br />

= ∆MX × t + C<strong>on</strong>st<br />

1<br />

2<br />

1<br />

2<br />

e 4 : q2 1q 2 2<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 13<br />

1<br />

2<br />

q 2 1 q2 2<br />

1<br />

2


propagator ratio<br />

• G(t) = 〈J5(0)J5(t)〉 at m = 0.04 <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.03.<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

∆ G (t)/ G(t) ps<br />

m sea =m val =0.04<br />

∆M=2.5MeV<br />

∆M=10MeV<br />

∆M = 5 MeV<br />

down-down<br />

up-down<br />

up-up<br />

-0.04<br />

0 5 10 15<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

-0.03<br />

∆ G (t)/ G(t) ps<br />

m sea =m val =0.03<br />

∆M=2.5MeV<br />

∆M=10MeV<br />

∆M = 5 MeV<br />

down-down<br />

up-down<br />

up-up<br />

-0.04<br />

0 5 10 15<br />

• Fluctuati<strong>on</strong>s due to SU(3) are comparable to that from U(1): by double the <str<strong>on</strong>g>QED</str<strong>on</strong>g><br />

statistics: ∆Mπ reduces by ∼ 4, 10, (30) % for A4, J5, (N) resp. at m = 0.04.<br />

σ 2<br />

<str<strong>on</strong>g>QCD</str<strong>on</strong>g><br />

+ 0.5σ2<br />

<str<strong>on</strong>g>QED</str<strong>on</strong>g><br />

σ 2 <str<strong>on</strong>g>QCD</str<strong>on</strong>g> + σ2 <str<strong>on</strong>g>QED</str<strong>on</strong>g><br />

= (0.9) 2 =⇒ σ<str<strong>on</strong>g>QED</str<strong>on</strong>g>/σ<str<strong>on</strong>g>QCD</str<strong>on</strong>g> ∼ 0.85<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 14


O(e) error reducti<strong>on</strong><br />

• On the infinitely large statistical ensemble,<br />

term proporti<strong>on</strong>al to odd powers of<br />

e vanishes. But for finite statistics,<br />

〈O〉 e = 〈C0〉 + 〈C1〉 e + 〈C2〉 e 2 + · · ·<br />

〈C2n−1〉 could be finite <str<strong>on</strong>g>and</str<strong>on</strong>g> source of<br />

large statistical error as e 2n−1 vs e 2n .<br />

• By averaging +e <str<strong>on</strong>g>and</str<strong>on</strong>g> −e measurement<br />

<strong>on</strong> the same set of <str<strong>on</strong>g>QCD</str<strong>on</strong>g>+<str<strong>on</strong>g>QED</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>,<br />

1<br />

2 [〈O〉 e +〈O〉 −e ] = 〈C0〉+〈C2〉 e 2 +· · ·<br />

O(e) is exactly canceled.<br />

2 2<br />

-mdd<br />

m ud<br />

0.0014<br />

0.0012<br />

0.001<br />

0.0008<br />

0.0006<br />

0 0.01 0.02 0.03 0.04 0.05<br />

m l<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 15


ChPT+EM at NLO<br />

• Double expansi<strong>on</strong> of M 2<br />

PS (m1, q1; m3, q3) in O(α), O(mq).<br />

<str<strong>on</strong>g>QCD</str<strong>on</strong>g> LO:<br />

M 2<br />

PS = χ13 = B0(m1 + m3)<br />

<str<strong>on</strong>g>QCD</str<strong>on</strong>g> NLO: (1/F 2<br />

0 ×)<br />

(2L6 − L4)χ 2<br />

13 + (2L5 − L8)χ13 ¯χ1 + χ13<br />

<str<strong>on</strong>g>QED</str<strong>on</strong>g> LO: (Dashen’s term)<br />

2C<br />

(q1 − q3) 2<br />

F 2 0<br />

<str<strong>on</strong>g>QED</str<strong>on</strong>g> NLO: ( ¯ Q2 = P q 2<br />

sea−i , no ¯ Q1 in SU(3)N F )<br />

X<br />

I=1,3,π,η<br />

RIχI log(χI/Λ 2<br />

χ ),<br />

−Y1 ¯ Q2χ13 + Y2(q 2<br />

1 χ1 + q 2<br />

3 χ3) + Y3q 2<br />

13 χ13 − Y4q1q3χ13 + Y5q 2<br />

13 ¯χ1<br />

+χ13 log(χ13/Λ 2<br />

χ )q2<br />

13 + ¯ B(χγ, χ13, χ13)q 2<br />

13 χ13 − ¯ B1(χγ, χ13, χ13)q 2<br />

13 χ13 + · · ·<br />

• <str<strong>on</strong>g>QED</str<strong>on</strong>g> LO adds mass to π ± at mq = 0, <str<strong>on</strong>g>QED</str<strong>on</strong>g> NLO changes slope,B0, in mq.<br />

• Partially quenched formula (msea = mval) SU(3)N F [Bijnens Danielss<strong>on</strong>, PRD75 (07)]<br />

SU(2)N F +heavy Ka<strong>on</strong>+FiniteV [Hayakawa Uno, PTP 120(08) 413] [RBC/UK<str<strong>on</strong>g>QCD</str<strong>on</strong>g>;<br />

T.Blum’s talk] (also [ C. Haefeli, M. A. Ivanov <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Schmid, EPJ C53(08)549] )<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 16


mass-squared difference (lattice units)<br />

SU(3) PQChPT fit in NF = 2 + 1 <str<strong>on</strong>g>QCD</str<strong>on</strong>g>+<str<strong>on</strong>g>QED</str<strong>on</strong>g> simulati<strong>on</strong>s<br />

0.0015<br />

0.001<br />

0.0005<br />

• SU(3) PQChPT fit.<br />

0<br />

m sea = 0.02<br />

ud mes<strong>on</strong><br />

dd mes<strong>on</strong><br />

uu mes<strong>on</strong><br />

ds mes<strong>on</strong><br />

us mes<strong>on</strong><br />

ss mes<strong>on</strong><br />

0 0.02 0.04 0.06 0.08 0.1<br />

(m 1 +m 2 )<br />

• a −1 ∼ 1.8 GeV from Ω − bary<strong>on</strong><br />

mass (no log in NLO).<br />

• Five degenerate up/down quark<br />

masses in the simulati<strong>on</strong>:<br />

∼ 12(valence <strong>on</strong>ly), 25, 40, 70, 100<br />

MeV.<br />

• One strange quark point<br />

(∼ 20% heavier than the physical).<br />

• Two volumes:<br />

(1.8 fm) 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> (2.7 fm) 3<br />

• Determine 3 <str<strong>on</strong>g>QCD</str<strong>on</strong>g> LEC + 5 <str<strong>on</strong>g>QED</str<strong>on</strong>g> LEC (also 3 <str<strong>on</strong>g>QCD</str<strong>on</strong>g> LEC for fπ)<br />

• In total about 240 charge,quark mass combinati<strong>on</strong>s are<br />

measured.<br />

MPS(m1, q1; m2, q2; ml)<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 17


• By fitting charge splitting<br />

SU(3)+EM ChPT LEC [R. Zhou]<br />

δM 2 = M 2<br />

PS (m1, q1; m2, q2; ml) − M 2<br />

PS (m1, 0; m2, 0; ml)<br />

by SU(3) ChPT+EM formula at NLO, 3 <str<strong>on</strong>g>QCD</str<strong>on</strong>g> LECs (1 LO + 2 NLO), 5 <str<strong>on</strong>g>QED</str<strong>on</strong>g> LECs (1 LO + 4<br />

NLO) are determined.<br />

• Requiring m1, m3, ml ≤ 40 MeV (70 MeV), 48 (120) partially quenched data for<br />

MPS(m1, q1; m2, q2; ml) are used in the fit (to see NNLO effects).<br />

• Finite volume effects are observed by repeating the fit <strong>on</strong> (1.8 fm) 3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> (2.7 fm) 3 : δm 2<br />

π0<br />

δm 2 (<str<strong>on</strong>g>Lattice</str<strong>on</strong>g> Unit)<br />

0.0016<br />

0.0014<br />

0.0012<br />

0.001<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

unitary point<br />

wlog 0.001-0.02<br />

wlog 0.001-0.01<br />

24 3 lat.<br />

0<br />

0 0.05 0.1<br />

m<br />

0.15 0.2<br />

2<br />

ps<br />

has negligible FV, δm2<br />

π ± has ∼ 10 % increase.<br />

δm 2 (<str<strong>on</strong>g>Lattice</str<strong>on</strong>g> Unit)<br />

0.0016<br />

0.0014<br />

0.0012<br />

0.001<br />

0.0008<br />

0.0006<br />

0.0004<br />

0.0002<br />

unitary point<br />

wlog 0.01-0.03<br />

wlog 0.01-0.02<br />

16 3 lat. fit range:0.01-0.03<br />

0<br />

0 0.05 0.1<br />

m<br />

0.15 0.2<br />

2<br />

ps<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 18


Finite Volume Effect<br />

SU(3) LEC<br />

10 6 C 10 2 Y2 10 3 Y3 10 3 Y4 10 2 Y5 10 3 δmres χ 2 /dof<br />

ours 0.27(19) 1.59(10) -10.6(7) 9.8(16) 2.00(68) 5.08(9) 2.11(73)<br />

BD 7.3 0.38 1.58 2.83 -0.953 N/A N/A<br />

• Ours are fit for (2.7 fm) 3 , mq = 12 − 40 MeV.<br />

• BD: A parameter set chosen for illustrati<strong>on</strong>, (55) of [J. Bijnens <str<strong>on</strong>g>and</str<strong>on</strong>g> N. Danielss<strong>on</strong> Phys.<br />

Rev. D. 75, (2007) 014505]<br />

• The Dashen’s term, C, is very small in our fit. This may indicate (1) FV (2) sea strange<br />

term behaves as a c<strong>on</strong>stant in our fit. (3) poor c<strong>on</strong>vergence of SU(3).<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 19


SU(2)-heavy Ka<strong>on</strong>+EM ChPT Fit (preliminary))<br />

[S.Uno, R. Zhou] [Hayakawa Uno, PTP 120(08) 413]<br />

• Treating Ka<strong>on</strong> as heavy particle (no chiral log from η).<br />

• Finite volume analysis is d<strong>on</strong>e.<br />

• Ultimately should give our main quote.<br />

• EM splitting NLO/LO is still large (∼ 50% at mq = 40 MeV) for Pi<strong>on</strong><br />

but small (∼ 10% at mq = 70 MeV) for Ka<strong>on</strong>.<br />

0.0018<br />

0.0017<br />

0.0016<br />

0.0015<br />

0.0014<br />

0.0013<br />

m Π 2<br />

SU2heavy ka<strong>on</strong> chipt, qi23,qj23, infinite<br />

Pi<strong>on</strong><br />

Ka<strong>on</strong><br />

data<br />

mj 0.005 0.010 0.015 0.020 0.025 0.030 0.035<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

LO vs NLO, SU2heavy ka<strong>on</strong> chipt, pi<strong>on</strong>, qi23,qj23<br />

m Π 2 NLO<br />

m Π 2 LO<br />

mj 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

LO vs NLO, SU2heavy ka<strong>on</strong> chipt, ka<strong>on</strong>, qi23,qj23<br />

m Π 2 NLO<br />

m Π 2 LO<br />

mj 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 20


Quark mass determinati<strong>on</strong><br />

• Using the LECs, B0, F0, Li, C0, Yi, from the fit, we could determine the quark masses<br />

mup, mdwn, mstr by the solving equati<strong>on</strong>s [PDG08] :<br />

MPS(mup, 2/3, mdwn, −1/3) = 139.57018(35)MeV<br />

MPS(mup, 2/3, mstr, −1/3) = 493.673(14)MeV<br />

MPS(mdwn, −1/3, mstr, −1/3) = 497.614(24)MeV<br />

• (mup − mdwn) is mainly determined by Ka<strong>on</strong> charge splittings,<br />

M 2<br />

K ± − M 2<br />

K0 = B0(mup − mdwn) + 2C<br />

(q1 − q3) 2 + NLO<br />

• π 0 mass is not used for now (disc<strong>on</strong>nected quark loops).<br />

F 2 0<br />

• The term proporti<strong>on</strong>al to sea quark charge, −Y1 ¯ Q2χ13, is omitted. We will estimate<br />

the systematics by varying Y1.<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 21


Quark mass results (Preliminary) [R. Zhou , S.Uno]<br />

• MS at 2 GeV.N<strong>on</strong>-perturbative technique for the mass renormalizati<strong>on</strong> c<strong>on</strong>stant is<br />

used.<br />

[RBC/UK<str<strong>on</strong>g>QCD</str<strong>on</strong>g>, PRD78(08)054510]<br />

• Quark mass have small finite size volume effects. SU(3)N F <str<strong>on</strong>g>and</str<strong>on</strong>g> SU(2)N F in infinite<br />

volume.<br />

• Uncertainties in <str<strong>on</strong>g>QED</str<strong>on</strong>g> LEC have small effect to quark mass. (π 0 is excluded)<br />

• Statistical error <strong>on</strong>ly. We use FPS(e = 0) in fitting LEC.<br />

c.f. SU(2) results mud = 3.72(16), ms =107.3(4.4) MeV [RBC/UK<str<strong>on</strong>g>QCD</str<strong>on</strong>g> PRD78(08)<br />

114509 ] due to this difference in two analyzes.<br />

lat mq range mu md ms mu/md ms/mud<br />

(2.7 fm) 3 SU(3)∞ 12-40 MeV 2.79(37) 4.84(52) 95.9(9.6) 0.57(1) 25.1(5)<br />

(2.7 fm) 3 SU(3)∞ 25-40 MeV 2.48(18) 4.77(30) 95(7) 0.52(3) 26.3(6)<br />

(2.7 fm) 3<br />

25-70 MeV 2.50(18) 4.81(30) 95(8) 0.52(3) 26.1(6)<br />

(1.8 fm) 3<br />

25-70 MeV 2.64(19) 4.81(32) 95(9) 0.55(4) 25.5(8)<br />

(2.7 fm) 3 SU(2)∞ 12-40 MeV 2.8(5) 4.7(1) 105(3)<br />

(2.7 fm) 3 SU(2)∞ 25-40 MeV 2.24(16) 4.62(24) 101(5)<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 22


Quark masses results (preliminary)<br />

Particle Data Group 2008<br />

Up Quark mass [MeV]<br />

RBC09 Preliminary:<br />

2.80 (36) Stat. (21) FV,ChPT<br />

• Statistical + incomplete estimati<strong>on</strong> of systematic errors <strong>on</strong>ly:<br />

Down Quark mass [MeV]<br />

RBC09 Preliminary:<br />

4.85 (57) Stat. (11) FV,ChPT<br />

• From PDG08, the world-averaging of each individual up <str<strong>on</strong>g>and</str<strong>on</strong>g> down quark masses were<br />

started. There are <strong>on</strong>ly 4 (2 lattice + 2 model) results so far.<br />

• PDG09 (PDGlive) world average (MS[NDR] 2GeV)<br />

mup = 2.70 ± 0.18MeVmdown = 5.00 ± 0.23MeV<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 23


Quark masses (preliminary)<br />

red NF = 2 + 1 DWF blue NF =2 DWF (2.7 fm) 3<br />

(Only statistical errors are shown).<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 24


Comp<strong>on</strong>ents of Ka<strong>on</strong> masses splittings<br />

• Reas<strong>on</strong> why the iso doublet, (K + , K 0 ), has the mass splitting<br />

M K ± − M K 0 = −3.937(29) MeV, [PDG08]<br />

⊲ (m dwn − mup) : makes M K + − M K 0 negative.<br />

⊲ (qu − qd) : makes M K + − M K 0 positive.<br />

• Using the determined quark masses <str<strong>on</strong>g>and</str<strong>on</strong>g> SU(3) LEC, we could isolate (to O((mup −<br />

mdwn)α)) each of c<strong>on</strong>tributi<strong>on</strong>s,<br />

M 2<br />

PS (mup, 2/3, mstr, −1/3) − M 2<br />

PS (mdwn, −1/3, mstr, −1/3)<br />

M 2<br />

PS (mup, 0, mstr, 0) − M 2<br />

PS (mdwn, 0, mstr, 0) [∆M(mup − mdwn)]<br />

+M 2<br />

PS ( ¯mud, 2/3, ¯mud, −1/3) − M 2<br />

PS ( ¯mud, −1/3, mstr, −1/3) [∆M(qu − qd)]<br />

• ⊲ ∆M(mup − m dwn) = -5.7(1) MeV [145% in ∆M 2 (mup − m dwn)]<br />

⊲ ∆M(qu − qd) = 1.8(1) MeV [-45% in ∆M 2 (qu − qd)]<br />

Also SU(2) ChPT, ∆M(mup − mdwn)=-5.3(7) MeV <str<strong>on</strong>g>and</str<strong>on</strong>g> ∆M(qu − qd)=1.4(7) MeV.<br />

• Similar analysis for π is possible, but facing a difficulty of isolating sea strange quark<br />

terms. SU(2) analysis gives a reas<strong>on</strong>able value.<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 25


Nucle<strong>on</strong> mass splitting in NF = 2, 2 + 1 (Preliminary)<br />

[R.Zhou, T.Doi]<br />

m p -m n [MeV]<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

(qu − qd) effect<br />

Cottingham formula<br />

Nf=2 (1.9 fm) 3<br />

Nf=2+1 (1.8 fm) 3<br />

Nf=2+1 (2.7 fm) 3<br />

m P - m N [MeV]<br />

0<br />

-20<br />

-40<br />

-60<br />

(mup − mdwn) effect<br />

-80<br />

0 20 40 60 80<br />

(m - m ) [MeV]<br />

u d<br />

0 0.1 0.2 0.3 0.4 0.5<br />

m 2<br />

ps [GeV2 -0.5<br />

]<br />

• Only EM effect, mu = md case, are shown. c.f. [Gasser Leutwyler, PR87(82)77]<br />

MN − Mp|EM = −0.76(30) MeV<br />

MN − Mp|quark mass = 2.05(30) MeV<br />

Wed Jun 10 02:05:49 <str<strong>on</strong>g>2009</str<strong>on</strong>g><br />

(∼ 2 MeV at mup − mdwn)<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 26


Systematic errors<br />

• Chiral extrapolati<strong>on</strong>: mq ≤ 40 or 70 MeV.<br />

• <str<strong>on</strong>g>QCD</str<strong>on</strong>g>’s Zm : Λ<str<strong>on</strong>g>QCD</str<strong>on</strong>g> = 250 − 300 MeV, O(α) ∼ 1%.<br />

• π 0 : disc<strong>on</strong>nected loops ( η ′ from DWF [K. Hashimoto TI PTP (08) ] )<br />

• Quenched <str<strong>on</strong>g>QED</str<strong>on</strong>g> O(ααS):<br />

ChPT <str<strong>on</strong>g>and</str<strong>on</strong>g> a clever combinati<strong>on</strong>s of masses [Bijnens Danielss<strong>on</strong>, PRD75 (07) 014505 ]<br />

• One lattice spacing results, O(a 2 ).<br />

• Finite Size Effect from vector-saturati<strong>on</strong> model: ∆π,EM = m 2<br />

π + − m 2<br />

π 0, to be<br />

∆π,EM(L) =<br />

3 α<br />

4π<br />

∆π,EM(∞)<br />

1<br />

a 2<br />

∆π,EM(L ≈ 1.9 fm)<br />

2 4 · π 2<br />

N<br />

X<br />

q∈ e Γ ′<br />

= 1.10 .<br />

(amρ) 2 (amA) 2<br />

bq 2 (bq 2 + (amρ) 2 ) (bq 2 + (amA) 2 ) ,<br />

Generally quark masses are stable against ∆π,EM ∼ 10 %,<br />

Finite volume for P-N case may be larger [1/3 closer by (1.8 fm) 3 −→ (2.7 fm) 3 .]<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 27


• Systematic uncertainties due to<br />

Home works<br />

• SU(2)+Ka<strong>on</strong>+EM, O(m, α, αm, m 2 , α 2 )<br />

• Omissi<strong>on</strong> of sea quark charges: Reweighting [T. Ishikawa]<br />

Y<br />

f=u,d,s<br />

n<br />

det[Df(e = 0)Df(e = 0) −1 o<br />

]<br />

• Omissi<strong>on</strong> of sea quark mass difference mu = md<br />

det<br />

n<br />

D(mud + ∆m)D(mud − ∆m)D(mud) 2o<br />

= 1 + O((ms − ml)α, α 2 )<br />

= 1 + O(α∆m, ∆m 2 ) (1)<br />

• π 0 , (<str<strong>on</strong>g>and</str<strong>on</strong>g> η, η ′ ) need disc<strong>on</strong>nected diagrams<br />

• Decay c<strong>on</strong>stant, Γ(π + → µ + νµ, µ + νµγ) + Vud(exp)<br />

f π + = 130.7 ± 0.1 ± 0.36MeV PDG 2004<br />

(the last error is due to the uncertainty in the part of O(α) radiative correcti<strong>on</strong>s.)<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 28


Reweighting (calculati<strong>on</strong> of det D ′ D −1 )<br />

• For Ω = Dtarget(Dgenerati<strong>on</strong>) −1 , reweighting factor is<br />

fl<br />

w = det Ω =<br />

fi<br />

e −ξ† (Ω−1)ξ<br />

ξ<br />

• There is, at least, two failure mode:<br />

• 1. Estimati<strong>on</strong> for w is too hard.<br />

• 2. The fluctuati<strong>on</strong> of w[U] is too large (insufficient overlap between target <str<strong>on</strong>g>and</str<strong>on</strong>g> original<br />

ensemble )<br />

• The former could be fixed by stepping:<br />

Ω =<br />

w =<br />

nY<br />

i<br />

Ωi<br />

nY<br />

det Ωi =<br />

i<br />

nY<br />

i<br />

fi<br />

e −ξ† fl<br />

(Ωi−1)ξ ξ<br />

with Ωi close to unity. Eg. mass stepping Ωi = D(mi+1)D(mi) −1<br />

et.al.] or Ωi = [Ω] 1/n . [T. Ishikawa, Y.Aoki, TI LAT09]<br />

[A. Hasenfratz<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 29


h<br />

H eff<br />

-1000<br />

-1050<br />

-1100<br />

-1150<br />

-1200<br />

-1100<br />

-1200<br />

-1300<br />

-1400<br />

-1500<br />

n=1<br />

0 100 200<br />

hit<br />

1 2 4 8 16 32<br />

n<br />

h eff<br />

h<br />

-340<br />

-350<br />

-360<br />

Reweighting (c<strong>on</strong>td)<br />

n=4<br />

h eff<br />

0 100 200<br />

hit<br />

• Reweighting factor for Ls = 8 →<br />

h<br />

-86<br />

-87<br />

-88<br />

-89<br />

-90<br />

-91<br />

-92<br />

-93<br />

n=16<br />

h eff<br />

0 100 200 300 400<br />

hit<br />

h<br />

-43<br />

-44<br />

-45<br />

-46<br />

n=32<br />

h eff<br />

0 100 200 300 400<br />

hit<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 30


Other works of isospin breaking effects <strong>on</strong> lattice<br />

• ETMC 2+1+1 (or 1+1+1+1) [K. Jansen’s talk]<br />

• [McNeile, Michael, Urbach (ETMC) PLB674(09) 286] ρ − ω mass splitting using twisted<br />

Wils<strong>on</strong> fermi<strong>on</strong>. Discussed ρ − ω mixing from mup − md. Measure disc<strong>on</strong>nected quark<br />

loop correlati<strong>on</strong>.<br />

• [JL<str<strong>on</strong>g>QCD</str<strong>on</strong>g> PRL 101(08) 242001, PRD79(09)] Calculate ΠV −ΠA , derive the EM c<strong>on</strong>tributi<strong>on</strong><br />

to the pi<strong>on</strong>’s charge splittings in quark massless limit <str<strong>on</strong>g>and</str<strong>on</strong>g> the S-parameter using overlap<br />

fermi<strong>on</strong>.<br />

• [MILC Collaborati<strong>on</strong> (S. Basak et al.) <str<strong>on</strong>g>Lattice</str<strong>on</strong>g>08 arXiv:0812.4486 ] EM spectrum using<br />

staggered ensemble to get the breaking of Dashen’s theorem<br />

∆M 2<br />

D<br />

= (M 2<br />

K ± − M 2<br />

K 0)em − (M 2<br />

π ± − M 2<br />

π 0)em<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 31


Summary <str<strong>on</strong>g>and</str<strong>on</strong>g> Future perspective<br />

• Individual up, down, strange quark masses are determined using NF = 2 + 1 DWF <str<strong>on</strong>g>QCD</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> n<strong>on</strong>-compact quenched <str<strong>on</strong>g>QED</str<strong>on</strong>g>.<br />

• SU(2) + Ka<strong>on</strong> + EM Partially Quenched Chiral Perturbati<strong>on</strong> are being finilized.<br />

• Break-ups of Ka<strong>on</strong> charge splitting <str<strong>on</strong>g>and</str<strong>on</strong>g> p-n splittings into electric charge/(mu − md)<br />

effects are examined.<br />

• Isospin breaking effects are interesting <str<strong>on</strong>g>and</str<strong>on</strong>g> inevitable for precise underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing of<br />

hadr<strong>on</strong> physics, which could now be addressed by <str<strong>on</strong>g>QCD</str<strong>on</strong>g>+<str<strong>on</strong>g>QED</str<strong>on</strong>g> simulati<strong>on</strong>s from the first<br />

principle: quark masses, (mup 0 ?), mN − mP >0, ...,<br />

Future plans<br />

• Complete systematical errors estimati<strong>on</strong>.<br />

• Analysis <strong>on</strong> the finer lattice, a ∼ 0.08 fm or larger volume. [T.Blum’s 1st talk]<br />

• EM splittings using the direct calculati<strong>on</strong> of the <str<strong>on</strong>g>QED</str<strong>on</strong>g> diagrams [JL<str<strong>on</strong>g>QCD</str<strong>on</strong>g> OPE] .<br />

• Dynamical <str<strong>on</strong>g>QED</str<strong>on</strong>g> effects by reweighting [T.Ishikawa]<br />

• O(α) c<strong>on</strong>tributi<strong>on</strong> to gµ − 2 (pure <str<strong>on</strong>g>QED</str<strong>on</strong>g>). O(α 3 ) c<strong>on</strong>tributi<strong>on</strong> (light-by-light) to gµ − 2.<br />

Chiral magnetic effect in QGP. [T.Blum’s 2nd talk]<br />

Taku Izubuchi, <str<strong>on</strong>g>Taipei</str<strong>on</strong>g>, TW<str<strong>on</strong>g>QCD</str<strong>on</strong>g>09, Decmber 15, <str<strong>on</strong>g>2009</str<strong>on</strong>g> 32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!