24.03.2013 Views

Rexroth IndraDyn L Synchronous Linear Motors - Elogia

Rexroth IndraDyn L Synchronous Linear Motors - Elogia

Rexroth IndraDyn L Synchronous Linear Motors - Elogia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Industrial<br />

Hydraulics<br />

Electric Drives<br />

and Controls<br />

exroth IndraControl VCP 20<br />

<strong>Linear</strong> Motion and<br />

Assembly Technologies Pneumatics<br />

<strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

<strong>Synchronous</strong> <strong>Linear</strong> <strong>Motors</strong><br />

Project Planning Manual<br />

Service<br />

Automation<br />

Mobile<br />

Hydraulics<br />

R911293635<br />

Edition 01


About this documentation <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Title<br />

Type of Documentation<br />

Document Typecode<br />

Internal File Reference<br />

Purpose of Documentation<br />

Record of Revisions<br />

Copyright<br />

Validity<br />

Published by<br />

Note<br />

<strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

<strong>Synchronous</strong> <strong>Linear</strong> <strong>Motors</strong><br />

Project Planning Manual<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

• R91129363501_Book.doc<br />

• Document Number, 120-1500-B319-01-EN<br />

This documentation ....<br />

• explains product features and applications, technical data as well as<br />

conditions and limits for operation<br />

• provides guidlines for product selection, application, handling and<br />

operation.<br />

Description Release<br />

Date<br />

Notes<br />

DOK-MOTOR*-MLF********-PR01-EN-P June04 1 st edition<br />

© Bosch <strong>Rexroth</strong> AG, 2004<br />

Copying this document, giving it to others and the use or communication<br />

of the contents thereof without express authority, are forbidden.<br />

Offenders are liable for the payment of damages. All rights are reserved<br />

in the event of the grand of a patent or the registration of a utility model<br />

or design (DIN 34-1).<br />

The specified data is for product description purposes only and may not<br />

be deemed to be guaranteed unless expressly confirmed in the contract.<br />

All rights are reserved with respect to the content of this documentation<br />

and the availability of the product.<br />

Bosch <strong>Rexroth</strong> AG<br />

Bgm.-Dr.-Nebel-Str. 2 • D-97816 Lohr a. Main<br />

Tel +49 (0)93 52 / 40-0 • Tx 68 94 21 • Fax +49 (0)93 52 / 40-48 85<br />

http://www.boschrexroth.com/<br />

Dept. BRC/EDM1 (FS)<br />

This document has been printed on chlorine-free bleached paper.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Contents I<br />

Contents<br />

1 Introduction to the Product 1<br />

1.1 Application range of linear direct drives .......................................................................................1<br />

1.2 About this Documentation............................................................................................................3<br />

Additional components ...........................................................................................................4<br />

Feedback ...............................................................................................................................4<br />

Standards...............................................................................................................................4<br />

2 Important directions for use 2-1<br />

2.1 Appropriate use........................................................................................................................2-1<br />

Introduction .........................................................................................................................2-1<br />

Areas of use and application................................................................................................2-2<br />

2.2 Inappropriate use .....................................................................................................................2-2<br />

3 Safety Instructions for Electric Drives and Controls 3-1<br />

3.1 Introduction ..............................................................................................................................3-1<br />

3.2 Explanations ............................................................................................................................3-1<br />

3.3 Hazards by Improper Use.........................................................................................................3-2<br />

3.4 General Information..................................................................................................................3-3<br />

3.5 Protection Against Contact with Electrical Parts........................................................................3-4<br />

3.6 Protection Against Electric Shock by Protective Low Voltage (PELV)........................................3-6<br />

3.7 Protection Against Dangerous Movements ...............................................................................3-7<br />

3.8 Protection Against Magnetic and Electromagnetic Fields During Operation and<br />

Mounting..................................................................................................................................3-9<br />

3.9 Protection Against Contact with Hot Parts...............................................................................3-10<br />

3.10 Protection During Handling and Mounting...............................................................................3-10<br />

3.11 Battery Safety.........................................................................................................................3-10<br />

3.12 Protection Against Pressurized Systems.................................................................................3-11<br />

4 Technical Data <strong>IndraDyn</strong> L 1<br />

4.1 Explanation to technical data.......................................................................................................1<br />

4.2 Technical data – size 040............................................................................................................4<br />

4.3 Technical data – size 070............................................................................................................5<br />

4.4 Technical data – size 100............................................................................................................7<br />

4.5 Technical data – size 140............................................................................................................8<br />

4.6 Technical data – size 200............................................................................................................9<br />

4.7 Technical data – size 300..........................................................................................................10<br />

5 Dimensions, installation dimension and - tolerances 5-1<br />

5.1 Installation tolerances...............................................................................................................5-1<br />

DOK-MOTOR*-MLF********-PR01-EN-P


II Contents <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

5.2 Mounting Sizes.........................................................................................................................5-3<br />

Size 040, primary in standard encapsulation........................................................................5-3<br />

Size 040, primary in thermal encapsulation..........................................................................5-4<br />

Size 040, secondary............................................................................................................5-5<br />

Size 070, primary in standard encapsulation........................................................................5-6<br />

Size 070, primary in thermal encapsulation..........................................................................5-7<br />

Size 070, secondary............................................................................................................5-8<br />

Size 100, primary in standard encapsulation........................................................................5-9<br />

Size 100, primary in thermal encapsulation........................................................................5-10<br />

Size 100, secondary..........................................................................................................5-11<br />

Size 140, primary in standard encapsulation......................................................................5-12<br />

Size 140, primary in thermal encapsulation........................................................................5-13<br />

Size 140, secondary..........................................................................................................5-14<br />

Size 200, primary in standard encapsulation......................................................................5-15<br />

Size 200, primary in thermal encapsulation........................................................................5-16<br />

Size 200, secondary..........................................................................................................5-17<br />

Size 300, primary in standard encapsulation......................................................................5-18<br />

Size 300, primary in thermal encapsulation........................................................................5-19<br />

Size 300, secondary..........................................................................................................5-20<br />

6 Type codes for the <strong>IndraDyn</strong> L 1<br />

6.1 Description..................................................................................................................................1<br />

Type code of the Primary – The MLP......................................................................................2<br />

Type code of the Secondary – The MLS .................................................................................4<br />

6.2 Type code for <strong>IndraDyn</strong> L 040 .....................................................................................................6<br />

6.3 Type code <strong>IndraDyn</strong> L 070 ..........................................................................................................8<br />

6.4 Type code for <strong>IndraDyn</strong> L 100 ...................................................................................................10<br />

6.5 Type code for <strong>IndraDyn</strong> L 140 ...................................................................................................12<br />

6.6 Type code for <strong>IndraDyn</strong> L 200 ...................................................................................................14<br />

6.7 Type code for <strong>IndraDyn</strong> L 300 ...................................................................................................16<br />

7 Accessories and Options 7-1<br />

7.1 Hall sensor box ........................................................................................................................7-1<br />

Schematic assembly............................................................................................................7-2<br />

8 Electrical connection 8-1<br />

8.1 Power connection.....................................................................................................................8-1<br />

Connection cable on the primary .........................................................................................8-1<br />

Power Cable Connection .....................................................................................................8-3<br />

Connection of IndraDrive Drive Controller ............................................................................8-6<br />

Connection of DIAX04 and EcoDrive Drive-Controllers ........................................................8-8<br />

8.2 Connection of linear feedback devices....................................................................................8-10<br />

9 Application and Construction Instructions 9-1<br />

9.1 Functional principle ..................................................................................................................9-1<br />

9.2 Motor Design............................................................................................................................9-2<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Inhaltsverzeichnis III<br />

Primary in standard encapsulation.......................................................................................9-3<br />

Primary in thermal encapsulation.........................................................................................9-4<br />

Design secondary part.........................................................................................................9-5<br />

Motor Sizes .........................................................................................................................9-6<br />

9.3 Requirements on the Machine Design ......................................................................................9-7<br />

Mass reduction....................................................................................................................9-7<br />

Mechanical rigidity...............................................................................................................9-7<br />

9.4 Arrangement of Motor Components..........................................................................................9-9<br />

Single arrangement .............................................................................................................9-9<br />

Several motors per axis.....................................................................................................9-10<br />

Vertical axes......................................................................................................................9-17<br />

9.5 Feed and Attractive Forces.....................................................................................................9-18<br />

Attractive forces between the primary and the secondary...................................................9-18<br />

Air-gap-related attractive forces between the primary and the secondary ...........................9-19<br />

Air-gap-related attractive forces vs. power supply ..............................................................9-19<br />

Air-gap-related feed force ..................................................................................................9-20<br />

Reduced overlapping between the primary and the secondary...........................................9-20<br />

9.6 Motor cooling .........................................................................................................................9-22<br />

Thermal behavior of linear motors......................................................................................9-22<br />

Cooling concept of <strong>IndraDyn</strong> L synchronous linear motors .................................................9-24<br />

Coolant..............................................................................................................................9-26<br />

Sizing the cooling circuit ....................................................................................................9-29<br />

Liquid cooling system ........................................................................................................9-33<br />

9.7 Motor temperature Monitoring Circuit......................................................................................9-38<br />

9.8 Setup Elevation and Ambient Conditions ................................................................................9-41<br />

9.9 Protection Class .....................................................................................................................9-42<br />

9.10 Compatibility ..........................................................................................................................9-42<br />

9.11 Magnetic Fields ......................................................................................................................9-43<br />

9.12 Vibration and Shock ...............................................................................................................9-44<br />

9.13 Enclosure surface ..................................................................................................................9-45<br />

9.14 Noise emission.......................................................................................................................9-45<br />

9.15 Length Measuring System ......................................................................................................9-46<br />

Selection criteria for linear scales.......................................................................................9-46<br />

Mounting <strong>Linear</strong> scales......................................................................................................9-52<br />

9.16 <strong>Linear</strong> Guides.........................................................................................................................9-53<br />

9.17 Braking Systems and Holding Devices ...................................................................................9-53<br />

9.18 End Position shock absorber ..................................................................................................9-54<br />

9.19 Axis Cover System.................................................................................................................9-55<br />

9.20 Wipers ...................................................................................................................................9-56<br />

9.21 Drive and Control of <strong>IndraDyn</strong> L motors..................................................................................9-57<br />

Drive controller and power supply modules........................................................................9-57<br />

Control systems.................................................................................................................9-57<br />

9.22 Shutdown upon EMERGENCY STOP and in the Event of a Malfunction.................................9-58<br />

Shutdown by the drive .......................................................................................................9-58<br />

Shutdown by a master control............................................................................................9-59<br />

Shutdown via mechanical braking device...........................................................................9-59<br />

DOK-MOTOR*-MLF********-PR01-EN-P


IV Inhaltsverzeichnis <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Response to a mains failure ..............................................................................................9-60<br />

Short-circuit of DC bus ......................................................................................................9-60<br />

9.23 Maximum Acceleration Changes (Jerk Limitation)...................................................................9-61<br />

9.24 Position and Velocity Resolution.............................................................................................9-63<br />

9.25 Load Rigidity ..........................................................................................................................9-64<br />

Static load rigidity ..............................................................................................................9-65<br />

Dynamic load rigidity .........................................................................................................9-65<br />

10 Motor-Controller-Combinations 10-1<br />

10.1 General explanation ...............................................................................................................10-1<br />

Explanation of the variables...............................................................................................10-2<br />

10.2 Motor/Controller Combinations; one primary per drive ............................................................10-3<br />

Controlled DC Bus Voltage, mains supply voltage - 3 x 480 VAC.......................................10-3<br />

10.3 Motor/Controller Combinations; parallel primaries on single drive controllers...........................10-6<br />

Controlled DC Bus Voltage, mains supply voltage - 3 x 480 VAC.......................................10-6<br />

11 Motor Sizing 1<br />

11.1 General Procedure......................................................................................................................1<br />

11.2 Basic formulae ............................................................................................................................2<br />

General equations of motion...................................................................................................2<br />

Feed forces ............................................................................................................................3<br />

Average velocity.....................................................................................................................5<br />

Trapezoidal velocity................................................................................................................6<br />

Triangular velocity ................................................................................................................10<br />

Sinusoidal velocity................................................................................................................11<br />

11.3 Duty cycle and Feed Force........................................................................................................13<br />

Determining the duty cycle....................................................................................................13<br />

11.4 Determining the Drive Power.....................................................................................................15<br />

Continuous Output ...............................................................................................................15<br />

Maximum Output..................................................................................................................16<br />

Cooling capacity...................................................................................................................17<br />

Regeneration energy ............................................................................................................17<br />

11.5 Efficiency ..................................................................................................................................18<br />

11.6 Sizing Examples........................................................................................................................19<br />

Handling axis........................................................................................................................19<br />

Machine tool feed axis; sizing via duty cycle .........................................................................28<br />

12 Handling, transportion and storage of the units 12-1<br />

12.1 Identification of the motor components ...................................................................................12-1<br />

Primary .............................................................................................................................12-1<br />

Secondary.........................................................................................................................12-1<br />

12.2 Delivery status and Packaging................................................................................................12-2<br />

12.3 Transportation and Storage ....................................................................................................12-3<br />

Specifics for transporting secondaries of synchronous linear motors..................................12-4<br />

12.4 Checking the motor components ............................................................................................12-5<br />

Factory checks ..................................................................................................................12-5<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Inhaltsverzeichnis V<br />

Customer’s receiving inspection ........................................................................................12-5<br />

13 Mounting Instructions 13-1<br />

13.1 Basic precondition..................................................................................................................13-1<br />

13.2 General procedure at mounting of the motor components.......................................................13-1<br />

Installation at spanned secondary parts over the entire traverse path.................................13-1<br />

Installation at whole secondary over the entire traverse path .............................................13-3<br />

13.3 Installation of the secondary segments ...................................................................................13-5<br />

13.4 Installation of the primary........................................................................................................13-7<br />

13.5 Connection liquid cooling........................................................................................................13-7<br />

13.6 Screw locking.........................................................................................................................13-8<br />

14 Startup, Operation and Maintenance 14-1<br />

14.1 General information for startup of <strong>IndraDyn</strong> L motors..............................................................14-1<br />

14.2 General precondition ..............................................................................................................14-2<br />

Adherence of all electrically and mechanically components ...............................................14-2<br />

Implements .......................................................................................................................14-3<br />

14.3 General start-up procedure.....................................................................................................14-4<br />

14.4 Parametrization......................................................................................................................14-5<br />

Entering motor parameters ................................................................................................14-5<br />

Input of linear scale parameters.........................................................................................14-6<br />

Input of drive limitations and application-related parameters ..............................................14-6<br />

14.5 Determining the Polarity of the linear scale .............................................................................14-7<br />

14.6 Commutation adjustment........................................................................................................14-9<br />

Method 1: Measuring the reference between the primary and the secondary ...................14-11<br />

Method 2: Current flow method manually activated..........................................................14-14<br />

Method 3: Current flow method automatically activated....................................................14-15<br />

14.7 Setting and Optimizing the Control Loop...............................................................................14-16<br />

General sequence ...........................................................................................................14-16<br />

Parameter value assignments and optimization of Gantry axes........................................14-18<br />

Estimating the moved mass using a velocity ramp ...........................................................14-19<br />

14.8 Maintenance and check of Motor components ......................................................................14-21<br />

Check of Motor and Auxiliary Components ......................................................................14-21<br />

Electrical check of motor components..............................................................................14-21<br />

15 Service & Support 15-1<br />

15.1 Helpdesk................................................................................................................................15-1<br />

15.2 Service-Hotline.......................................................................................................................15-1<br />

15.3 Internet...................................................................................................................................15-1<br />

15.4 Vor der Kontaktaufnahme... - Before contacting us... ..............................................................15-1<br />

15.5 Kundenbetreuungsstellen - Sales & Service Facilities.............................................................15-2<br />

16 Appendix 16-1<br />

16.1 Recommended suppliers of additional components ................................................................16-1<br />

Length Measuring System .................................................................................................16-1<br />

<strong>Linear</strong> Guide......................................................................................................................16-1<br />

DOK-MOTOR*-MLF********-PR01-EN-P


VI Inhaltsverzeichnis <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Energy Chains...................................................................................................................16-1<br />

Heat-exchanger Unit..........................................................................................................16-2<br />

Coolant Additives ..............................................................................................................16-2<br />

Coolant Tubes...................................................................................................................16-2<br />

Axis Cover System ............................................................................................................16-2<br />

End Position Shock Absorbers...........................................................................................16-3<br />

Clamping Elements for <strong>Linear</strong> Guideways..........................................................................16-3<br />

External Mechanical Brakes ..............................................................................................16-4<br />

Weight Compensation Systems .........................................................................................16-4<br />

Wipers...............................................................................................................................16-4<br />

16.2 Enquiry form for <strong>Linear</strong> Drives ................................................................................................16-5<br />

17 Index 17-1<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Introduction to the Product 1<br />

1 Introduction to the Product<br />

1.1 Application range of linear direct drives<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

New technologies found in high-production equipment, demand more<br />

and more numerically driven movements with extreme requirements on<br />

acceleration, speed and exactness.<br />

Conventional NC-drives consisting of a rotating electrical motor and<br />

mechanical transmission elements, i.e. gearboxes, belt transmissions or<br />

gear rack pinions, can only fulfill these demands with great effort.<br />

In many cases, linear direct drive technology is an optimal alternative<br />

providing significant benefits including:<br />

• High velocity and acceleration<br />

• Excellent control quality and positioning behavior<br />

• Direct power transfer – no mechanical transmission elements like ball<br />

srews, toothed belts or gear racks.<br />

• Maintenance-free drive (no wearing parts on the motor)<br />

• Simplified machine structure<br />

• High static and dynamic load rigidity<br />

Fig. 1-1: Illustration of an <strong>IndraDyn</strong> L<br />

<strong>IndraDyn</strong>_L.jpg<br />

Due to the direct installation into the machine, there are no wearing<br />

mechanical components. This produces a power train with no or minimal<br />

backlash and permits very high control qualities with gains in the position<br />

control loop (Kv factor) of more than 20 m/min/mm.<br />

In conventional electromagnetic systems, positioning tasks with high<br />

feed rates or highly-accelerated, short-stroke movements in quick<br />

succession lead to premature wear of mechanical parts and thus to<br />

failures and significant costs. In these applications linear direct drives<br />

offer decisive advantages.


2 Introduction to the Product <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Performance Overview<br />

Vorschubkraft in N<br />

Feed Forces in N<br />

ORMMM<br />

OMMMM<br />

NRMMM<br />

NMMMM<br />

RMMM<br />

M<br />

21500<br />

16300<br />

11000<br />

300<br />

Considering the above-mentioned benefits, the following application are<br />

well-suited for linear synchronous direct drives:<br />

• High-speed cutting in transfer lines and machining centers<br />

• Grinding of camshafts and crankshafts<br />

• Laser machining<br />

• Precision and ultra-precision machining<br />

• Sheet-metal working<br />

• Material handling, textile and packaging machines<br />

• Free-form surface machining<br />

• Wood wooking,<br />

• Machining of printed circuit boards<br />

• ......<br />

Due to a practice-oriented combination of motor technology and<br />

intelligent digital drive controllers, the linear direct drive technique offers<br />

new solutions with significantly improved performance.<br />

The development status of the synchronous linear technique of Bosch<br />

<strong>Rexroth</strong> permits a very high force density.<br />

The spectrum of Bosch <strong>Rexroth</strong> synchronous linear drive technology,<br />

which is described below, permits feed drive systems of 250 N up to<br />

21,000 N per motor and speeds over 600 m/min.<br />

The following diagram gives an overview of the performance spectrum of<br />

the Bosch <strong>Rexroth</strong> motors type <strong>IndraDyn</strong> L.<br />

3520<br />

6720<br />

5150<br />

17750<br />

14250<br />

10900<br />

7450<br />

200<br />

2415<br />

5560<br />

7650<br />

4460<br />

3465<br />

5200<br />

140<br />

10000<br />

1680<br />

3150<br />

2415<br />

7150<br />

5600<br />

3750<br />

100<br />

1785<br />

1180<br />

2310<br />

Fig. 1-2: Performance spectrum of <strong>IndraDyn</strong> L motors<br />

3800<br />

2600<br />

2000<br />

70<br />

Dauernennkraft FdN<br />

Continuos Force F dN<br />

Maximalkraft FMax<br />

Maximum Force F Max<br />

1200<br />

820<br />

1150<br />

630 800 250<br />

40<br />

370<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

A<br />

D<br />

C<br />

B<br />

Baugröße<br />

Size KRAFTSPEKTRUM M LF.XLS


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Introduction to the Product 3<br />

1.2 About this Documentation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Document Structure<br />

This documentation includes safety instructions, technical data and<br />

operating instructions. The following setup provides an overview of the<br />

contents of this documentation.<br />

Sect. Title Content<br />

1 Introduction General information<br />

2<br />

3<br />

Important Instructions on Use<br />

Safety<br />

Important safety instructions<br />

4 Technical data<br />

5 Dimensional Details<br />

6 Type Code<br />

7 Accessories<br />

8 Connection System<br />

9<br />

Operating condition and application<br />

instructions<br />

10 Motor-Controller-Combinations<br />

11 Motordimensionierung<br />

12 Handling, Transport and Storage<br />

13 Installation<br />

14 Startup, Operation and<br />

15 Service & Support<br />

16 Appendix<br />

17 Index<br />

Fig. 1-3: Chapter structure<br />

Additional documentation<br />

Product descriptions<br />

for planners and project<br />

managers<br />

Practical information<br />

Additional information<br />

for operating and maintenance<br />

personnel<br />

To plan your project using an <strong>IndraDyn</strong> L motor, you may need additional<br />

documentation depending on the complexity of your system. Bosch<br />

<strong>Rexroth</strong> provides all product documentation on CD in a PDF-format. To<br />

plan your project, you will not necessary use all the documentation<br />

included on the CD.<br />

Note: All documentation on the CD are also available in print. You<br />

can order the required product documentation through your<br />

Bosch <strong>Rexroth</strong> sales office.<br />

Material no.: Title / description<br />

R911281882 -Produktdokumentation Electric Drives and Controls Version xx 1)<br />

DOK-GENRL-CONTR*DRIVE-GNxx-DE-D650<br />

R911281883 -Product documentation Electric Drives and Controls Version xx 1)<br />

DOK-GENRL-CONTR*DRIVE-GNxx-EN-D650<br />

1) The index (e.g. ..02-...) identifies the version of the CD.<br />

Fig. 1-4: Additional documentation


4 Introduction to the Product <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Additional components<br />

Feedback<br />

Standards<br />

Documentation for external systems which are connected to Bosch<br />

<strong>Rexroth</strong> components are not included in the scope of delivery and must<br />

be ordered directly from the particular manufacturers.<br />

For information about the manufacturers see chapter 16 “Appendix”<br />

Your experiences are an essential part of the process of improving both<br />

product and documentation.<br />

Please do not hesitate to inform us of any mistakes you detect in this<br />

documentation or of any modifications you might desire. We would<br />

appreciate your feedback.<br />

Please send your remarks to:<br />

Bosch <strong>Rexroth</strong> AG<br />

Dept. BRC/EDM1<br />

Bürgermeister-Dr.-Nebel-Strasse 2<br />

D-97816 Lohr, Germany<br />

Fax +49 (0) 93 52 / 40-43 80<br />

This documentation refers to German, European and international<br />

technical standards. Documents and sheets on standards are subject to<br />

the protection by copyright and may not be passed on to third parties by<br />

BOSCH REXROTH AG. If necessary, please address the authorized<br />

sales outlets or, in Germany, directly to:<br />

BEUTH Verlag GmbH<br />

Burggrafenstrasse 6<br />

10787 Berlin<br />

Phone +49-(0)30-26 01-22 60, Fax +49-(0)30-26 01-12 60<br />

Internet: http://www.din.de/beuth postmaster@beuth.de<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Important directions for use 2-1<br />

2 Important directions for use<br />

2.1 Appropriate use<br />

Introduction<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Bosch <strong>Rexroth</strong> products represent state-of-the-art developments and<br />

manufacturing. They are tested prior to delivery to ensure operating<br />

safety and reliability.<br />

The products may only be used in the manner that is defined as<br />

appropriate. If they are used in an inappropriate manner, then situations<br />

can develop that may lead to property damage or injury to personnel.<br />

Note: Bosch <strong>Rexroth</strong>, as manufacturer, is not liable for any<br />

damages resulting from inappropriate use. In such cases, the<br />

guarantee and the right to payment of damages resulting<br />

from inappropriate use are forfeited. The user alone carries<br />

all responsibility of the risks.<br />

Before using <strong>Rexroth</strong> products, make sure that all the pre-requisites for<br />

appropriate use of the products are satisfied:<br />

• Personnel that in any way, shape or form uses our products must first<br />

read and understand the relevant safety instructions and be familiar<br />

with appropriate use.<br />

• If the product takes the form of hardware, then they must remain in<br />

their original state, in other words, no structural changes are<br />

permitted. It is not permitted to decompile software products or alter<br />

source codes.<br />

• Do not mount damaged or faulty products or use them in operation.<br />

• Make sure that the products have been installed in the manner<br />

described in the relevant documentation.


2-2 Important directions for use <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Areas of use and application<br />

2.2 Inappropriate use<br />

<strong>Rexroth</strong> <strong>IndraDyn</strong> L motors are designed to be used as linear servo drive<br />

motors.<br />

Available for an application-specific use of the motors are unit types with<br />

differing drive power and different interfaces.<br />

Control and monitoring of the motors may require additional sensors and<br />

actors.<br />

Note: The motors may only be used with the accessories and parts<br />

specified in this document. If a component has not been<br />

specifically named, then it may not be either mounted or<br />

connected. The same applies to cables and lines.<br />

Operation is only permitted in the specified configurations<br />

and combinations of components using the software and<br />

firmware as specified in the relevant function descriptions.<br />

Every drive controller has to be programmed before starting it up,<br />

making it possible for the motor to execute the specific functions of an<br />

application.<br />

The motors may only be operated under the assembly, installation and<br />

ambient conditions as described here (temperature, protection<br />

categories, humidity, EMC requirements, etc.) and in the position<br />

specified.<br />

Using the motors outside of the above-referenced areas of application or<br />

under operating conditions other than described in the document and the<br />

technical data specified is defined as “inappropriate use".<br />

<strong>IndraDyn</strong> L motors may not be used if<br />

• they are subject to operating conditions that do not meet the above<br />

specified ambient conditions. This includes, for example, operation<br />

under water, in the case of extreme temperature fluctuations or<br />

extremely high maximum temperatures or if<br />

• Bosch <strong>Rexroth</strong> has not specifically released them for that intended<br />

purpose. Please note the specifications outlined in the general<br />

Safety Instructions!<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Safety Instructions for Electric Drives and Controls 3-1<br />

3 Safety Instructions for Electric Drives and Controls<br />

3.1 Introduction<br />

3.2 Explanations<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Read these instructions before the initial startup of the equipment in<br />

order to eliminate the risk of bodily harm or material damage. Follow<br />

these safety instructions at all times.<br />

Do not attempt to install or start up this equipment without first reading<br />

all documentation provided with the product. Read and understand these<br />

safety instructions and all user documentation of the equipment prior to<br />

working with the equipment at any time. If you do not have the user<br />

documentation for your equipment, contact your local Bosch <strong>Rexroth</strong><br />

representative to send this documentation immediately to the person or<br />

persons responsible for the safe operation of this equipment.<br />

If the equipment is resold, rented or transferred or passed on to others,<br />

then these safety instructions must be delivered with the equipment.<br />

WARNING<br />

Improper use of this equipment, failure to follow<br />

the safety instructions in this document or<br />

tampering with the product, including disabling<br />

of safety devices, may result in material<br />

damage, bodily harm, electric shock or even<br />

death!<br />

The safety instructions describe the following degrees of hazard<br />

seriousness in compliance with ANSI Z535. The degree of hazard<br />

seriousness informs about the consequences resulting from noncompliance<br />

with the safety instructions.<br />

Warning symbol with signal<br />

word<br />

DANGER<br />

WARNING<br />

CAUTION<br />

Degree of hazard seriousness according<br />

to ANSI<br />

Death or severe bodily harm will occur.<br />

Death or severe bodily harm may occur.<br />

Bodily harm or material damage may occur.<br />

Fig. 3-1: Hazard classification (according to ANSI Z535)


3-2 Safety Instructions for Electric Drives and Controls <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

3.3 Hazards by Improper Use<br />

DANGER<br />

DANGER<br />

WARNING<br />

WARNING<br />

CAUTION<br />

CAUTION<br />

CAUTION<br />

High voltage and high discharge current!<br />

Danger to life or severe bodily harm by electric<br />

shock!<br />

Dangerous movements! Danger to life, severe<br />

bodily harm or material damage by unintentional<br />

motor movements!<br />

High electrical voltage due to wrong<br />

connections! Danger to life or bodily harm by<br />

electric shock!<br />

Health hazard for persons with heart<br />

pacemakers, metal implants and hearing aids in<br />

proximity to electrical equipment!<br />

Surface of machine housing could be extremely<br />

hot! Danger of injury! Danger of burns!<br />

Risk of injury due to improper handling! Bodily<br />

harm caused by crushing, shearing, cutting and<br />

mechanical shock or incorrect handling of<br />

pressurized systems!<br />

Risk of injury due to incorrect handling of<br />

batteries!<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Safety Instructions for Electric Drives and Controls 3-3<br />

3.4 General Information<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

• Bosch <strong>Rexroth</strong> AG is not liable for damages resulting from failure to<br />

observe the warnings provided in this documentation.<br />

• Read the operating, maintenance and safety instructions in your<br />

language before starting up the machine. If you find that you cannot<br />

completely understand the documentation for your product, please<br />

ask your supplier to clarify.<br />

• Proper and correct transport, storage, assembly and installation as<br />

well as care in operation and maintenance are prerequisites for<br />

optimal and safe operation of this equipment.<br />

• Only persons who are trained and qualified for the use and operation<br />

of the equipment may work on this equipment or within its proximity.<br />

• The persons are qualified if they have sufficient knowledge of the<br />

assembly, installation and operation of the equipment as well as<br />

an understanding of all warnings and precautionary measures<br />

noted in these instructions.<br />

• Furthermore, they must be trained, instructed and qualified to<br />

switch electrical circuits and equipment on and off in accordance<br />

with technical safety regulations, to ground them and to mark them<br />

according to the requirements of safe work practices. They must<br />

have adequate safety equipment and be trained in first aid.<br />

• Only use spare parts and accessories approved by the manufacturer.<br />

• Follow all safety regulations and requirements for the specific<br />

application as practiced in the country of use.<br />

• The equipment is designed for installation in industrial machinery.<br />

• The ambient conditions given in the product documentation must be<br />

observed.<br />

• Use only safety features and applications that are clearly and<br />

explicitly approved in the Project Planning Manual.<br />

For example, the following areas of use are not permitted:<br />

construction cranes, elevators used for people or freight, devices and<br />

vehicles to transport people, medical applications, refinery plants,<br />

transport of hazardous goods, nuclear applications, applications<br />

sensitive to high frequency, mining, food processing, control of<br />

protection equipment (also in a machine).<br />

• The information given in the documentation of the product with<br />

regard to the use of the delivered components contains only<br />

examples of applications and suggestions.<br />

The machine and installation manufacturer must<br />

• make sure that the delivered components are suited for his<br />

individual application and check the information given in this<br />

documentation with regard to the use of the components,<br />

• make sure that his application complies with the applicable safety<br />

regulations and standards and carry out the required measures,<br />

modifications and complements.<br />

• Startup of the delivered components is only permitted once it is sure<br />

that the machine or installation in which they are installed complies<br />

with the national regulations, safety specifications and standards of<br />

the application.


3-4 Safety Instructions for Electric Drives and Controls <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

• Operation is only permitted if the national EMC regulations for the<br />

application are met.<br />

The instructions for installation in accordance with EMC requirements<br />

can be found in the documentation "EMC in Drive and Control<br />

Systems".<br />

The machine or installation manufacturer is responsible for<br />

compliance with the limiting values as prescribed in the national<br />

regulations.<br />

• Technical data, connections and operational conditions are specified<br />

in the product documentation and must be followed at all times.<br />

3.5 Protection Against Contact with Electrical Parts<br />

Note: This section refers to equipment and drive components with<br />

voltages above 50 Volts.<br />

Touching live parts with voltages of 50 Volts and more with bare hands<br />

or conductive tools or touching ungrounded housings can be dangerous<br />

and cause electric shock. In order to operate electrical equipment,<br />

certain parts must unavoidably have dangerous voltages applied to<br />

them.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Safety Instructions for Electric Drives and Controls 3-5<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

DANGER<br />

High electrical voltage! Danger to life, severe<br />

bodily harm by electric shock!<br />

⇒ Only those trained and qualified to work with or on<br />

electrical equipment are permitted to operate, maintain<br />

or repair this equipment.<br />

⇒ Follow general construction and safety regulations<br />

when working on high voltage installations.<br />

⇒ Before switching on power the ground wire must be<br />

permanently connected to all electrical units according<br />

to the connection diagram.<br />

⇒ Do not operate electrical equipment at any time, even<br />

for brief measurements or tests, if the ground wire is<br />

not permanently connected to the points of the<br />

components provided for this purpose.<br />

⇒ Before working with electrical parts with voltage higher<br />

than 50 V, the equipment must be disconnected from<br />

the mains voltage or power supply. Make sure the<br />

equipment cannot be switched on again unintended.<br />

⇒ The following should be observed with electrical drive<br />

and filter components:<br />

⇒ Wait five (5) minutes after switching off power to allow<br />

capacitors to discharge before beginning to work.<br />

Measure the voltage on the capacitors before<br />

beginning to work to make sure that the equipment is<br />

safe to touch.<br />

⇒ Never touch the electrical connection points of a<br />

component while power is turned on.<br />

⇒ Install the covers and guards provided with the<br />

equipment properly before switching the equipment on.<br />

Prevent contact with live parts at any time.<br />

⇒ A residual-current-operated protective device (RCD)<br />

must not be used on electric drives! Indirect contact<br />

must be prevented by other means, for example, by an<br />

overcurrent protective device.<br />

⇒ Electrical components with exposed live parts and<br />

uncovered high voltage terminals must be installed in a<br />

protective housing, for example, in a control cabinet.


3-6 Safety Instructions for Electric Drives and Controls <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

To be observed with electrical drive and filter components:<br />

DANGER<br />

High electrical voltage on the housing!<br />

High leakage current! Danger to life, danger of<br />

injury by electric shock!<br />

⇒ Connect the electrical equipment, the housings of all<br />

electrical units and motors permanently with the<br />

safety conductor at the ground points before power is<br />

switched on. Look at the connection diagram. This is<br />

even necessary for brief tests.<br />

⇒ Connect the safety conductor of the electrical<br />

equipment always permanently and firmly to the<br />

supply mains. Leakage current exceeds 3.5 mA in<br />

normal operation.<br />

⇒ Use a copper conductor with at least 10 mm² cross<br />

section over its entire course for this safety conductor<br />

connection!<br />

⇒ Prior to startups, even for brief tests, always connect<br />

the protective conductor or connect with ground wire.<br />

Otherwise, high voltages can occur on the housing<br />

that lead to electric shock.<br />

3.6 Protection Against Electric Shock by Protective Low<br />

Voltage (PELV)<br />

All connections and terminals with voltages between 0 and 50 Volts on<br />

<strong>Rexroth</strong> products are protective low voltages designed in accordance<br />

with international standards on electrical safety.<br />

WARNING<br />

High electrical voltage due to wrong<br />

connections! Danger to life, bodily harm by<br />

electric shock!<br />

⇒ Only connect equipment, electrical components and<br />

cables of the protective low voltage type (PELV =<br />

Protective Extra Low Voltage) to all terminals and<br />

clamps with voltages of 0 to 50 Volts.<br />

⇒ Only electrical circuits may be connected which are<br />

safely isolated against high voltage circuits. Safe<br />

isolation is achieved, for example, with an isolating<br />

transformer, an opto-electronic coupler or when<br />

battery-operated.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Safety Instructions for Electric Drives and Controls 3-7<br />

3.7 Protection Against Dangerous Movements<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Dangerous movements can be caused by faulty control of the connected<br />

motors. Some common examples are:<br />

• improper or wrong wiring of cable connections<br />

• incorrect operation of the equipment components<br />

• wrong input of parameters before operation<br />

• malfunction of sensors, encoders and monitoring devices<br />

• defective components<br />

• software or firmware errors<br />

Dangerous movements can occur immediately after equipment is<br />

switched on or even after an unspecified time of trouble-free operation.<br />

The monitoring in the drive components will normally be sufficient to<br />

avoid faulty operation in the connected drives. Regarding personal<br />

safety, especially the danger of bodily injury and material damage, this<br />

alone cannot be relied upon to ensure complete safety. Until the<br />

integrated monitoring functions become effective, it must be assumed in<br />

any case that faulty drive movements will occur. The extent of faulty<br />

drive movements depends upon the type of control and the state of<br />

operation.


3-8 Safety Instructions for Electric Drives and Controls <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

DANGER<br />

Dangerous movements! Danger to life, risk of<br />

injury, severe bodily harm or material damage!<br />

⇒ Ensure personal safety by means of qualified and<br />

tested higher-level monitoring devices or measures<br />

integrated in the installation. Unintended machine<br />

motion is possible if monitoring devices are disabled,<br />

bypassed or not activated.<br />

⇒ Pay attention to unintended machine motion or other<br />

malfunction in any mode of operation.<br />

⇒ Keep free and clear of the machine’s range of motion<br />

and moving parts. Possible measures to prevent<br />

people from accidentally entering the machine’s<br />

range of motion:<br />

- use safety fences<br />

- use safety guards<br />

- use protective coverings<br />

- install light curtains or light barriers<br />

⇒ Fences and coverings must be strong enough to<br />

resist maximum possible momentum, especially if<br />

there is a possibility of loose parts flying off.<br />

⇒ Mount the emergency stop switch in the immediate<br />

reach of the operator. Verify that the emergency stop<br />

works before startup. Don’t operate the machine if<br />

the emergency stop is not working.<br />

⇒ Isolate the drive power connection by means of an<br />

emergency stop circuit or use a starting lockout to<br />

prevent unintentional start.<br />

⇒ Make sure that the drives are brought to a safe<br />

standstill before accessing or entering the danger<br />

zone. Safe standstill can be achieved by switching off<br />

the power supply contactor or by safe mechanical<br />

locking of moving parts.<br />

⇒ Secure vertical axes against falling or dropping after<br />

switching off the motor power by, for example:<br />

- mechanically securing the vertical axes<br />

- adding an external braking/ arrester/ clamping<br />

mechanism<br />

- ensuring sufficient equilibration of the vertical<br />

axes<br />

The standard equipment motor brake or an external<br />

brake controlled directly by the drive controller are<br />

not sufficient to guarantee personal safety!<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Safety Instructions for Electric Drives and Controls 3-9<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

⇒ Disconnect electrical power to the equipment using a<br />

master switch and secure the switch against<br />

reconnection for:<br />

- maintenance and repair work<br />

- cleaning of equipment<br />

- long periods of discontinued equipment use<br />

⇒ Prevent the operation of high-frequency, remote<br />

control and radio equipment near electronics circuits<br />

and supply leads. If the use of such equipment<br />

cannot be avoided, verify the system and the<br />

installation for possible malfunctions in all possible<br />

positions of normal use before initial startup. If<br />

necessary, perform a special electromagnetic<br />

compatibility (EMC) test on the installation.<br />

3.8 Protection Against Magnetic and Electromagnetic Fields<br />

During Operation and Mounting<br />

Magnetic and electromagnetic fields generated near current-carrying<br />

conductors and permanent magnets in motors represent a serious health<br />

hazard to persons with heart pacemakers, metal implants and hearing<br />

aids.<br />

WARNING<br />

Health hazard for persons with heart<br />

pacemakers, metal implants and hearing aids in<br />

proximity to electrical equipment!<br />

⇒ Persons with heart pacemakers, hearing aids and<br />

metal implants are not permitted to enter the<br />

following areas:<br />

- Areas in which electrical equipment and parts are<br />

mounted, being operated or started up.<br />

- Areas in which parts of motors with permanent<br />

magnets are being stored, operated, repaired or<br />

mounted.<br />

⇒ If it is necessary for a person with a heart pacemaker<br />

to enter such an area, then a doctor must be<br />

consulted prior to doing so. Heart pacemakers that<br />

are already implanted or will be implanted in the<br />

future, have a considerable variation in their electrical<br />

noise immunity. Therefore there are no rules with<br />

general validity.<br />

⇒ Persons with hearing aids, metal implants or metal<br />

pieces must consult a doctor before they enter the<br />

areas described above. Otherwise, health hazards<br />

will occur.


3-10 Safety Instructions for Electric Drives and Controls <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

3.9 Protection Against Contact with Hot Parts<br />

CAUTION<br />

Housing surfaces could be extremely hot!<br />

Danger of injury! Danger of burns!<br />

⇒ Do not touch housing surfaces near sources of heat!<br />

Danger of burns!<br />

⇒ After switching the equipment off, wait at least ten<br />

(10) minutes to allow it to cool down before touching<br />

it.<br />

⇒ Do not touch hot parts of the equipment, such as<br />

housings with integrated heat sinks and resistors.<br />

Danger of burns!<br />

3.10 Protection During Handling and Mounting<br />

3.11 Battery Safety<br />

Under certain conditions, incorrect handling and mounting of parts and<br />

components may cause injuries.<br />

CAUTION<br />

Risk of injury by incorrect handling! Bodily harm<br />

caused by crushing, shearing, cutting and<br />

mechanical shock!<br />

⇒ Observe general installation and safety instructions<br />

with regard to handling and mounting.<br />

⇒ Use appropriate mounting and transport equipment.<br />

⇒ Take precautions to avoid pinching and crushing.<br />

⇒ Use only appropriate tools. If specified by the product<br />

documentation, special tools must be used.<br />

⇒ Use lifting devices and tools correctly and safely.<br />

⇒ For safe protection wear appropriate protective<br />

clothing, e.g. safety glasses, safety shoes and safety<br />

gloves.<br />

⇒ Never stand under suspended loads.<br />

⇒ Clean up liquids from the floor immediately to prevent<br />

slipping.<br />

Batteries contain reactive chemicals in a solid housing. Inappropriate<br />

handling may result in injuries or material damage.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Safety Instructions for Electric Drives and Controls 3-11<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

CAUTION<br />

Risk of injury by incorrect handling!<br />

⇒ Do not attempt to reactivate discharged batteries by<br />

heating or other methods (danger of explosion and<br />

cauterization).<br />

⇒ Never charge non-chargeable batteries (danger of<br />

leakage and explosion).<br />

⇒ Never throw batteries into a fire.<br />

⇒ Do not dismantle batteries.<br />

⇒ Do not damage electrical components installed in the<br />

equipment.<br />

Note: Be aware of environmental protection and disposal! The<br />

batteries contained in the product should be considered as<br />

hazardous material for land, air and sea transport in the<br />

sense of the legal requirements (danger of explosion).<br />

Dispose batteries separately from other waste. Observe the<br />

legal requirements in the country of installation.<br />

3.12 Protection Against Pressurized Systems<br />

Certain motors and drive controllers, corresponding to the information in<br />

the respective Project Planning Manual, must be provided with<br />

pressurized media, such as compressed air, hydraulic oil, cooling fluid<br />

and cooling lubricant supplied by external systems. Incorrect handling of<br />

the supply and connections of pressurized systems can lead to injuries<br />

or accidents. In these cases, improper handling of external supply<br />

systems, supply lines or connections can cause injuries or material<br />

damage.<br />

CAUTION<br />

Danger of injury by incorrect handling of<br />

pressurized systems !<br />

⇒ Do not attempt to disassemble, to open or to cut a<br />

pressurized system (danger of explosion).<br />

⇒ Observe the operation instructions of the respective<br />

manufacturer.<br />

⇒ Before disassembling pressurized systems, release<br />

pressure and drain off the fluid or gas.<br />

⇒ Use suitable protective clothing (for example safety<br />

glasses, safety shoes and safety gloves)<br />

⇒ Remove any fluid that has leaked out onto the floor<br />

immediately.<br />

Note: Environmental protection and disposal! The media used in<br />

the operation of the pressurized system equipment may not<br />

be environmentally compatible. Media that are damaging the<br />

environment must be disposed separately from normal waste.<br />

Observe the legal requirements in the country of installation.


3-12 Safety Instructions for Electric Drives and Controls <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Notes<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Technical Data <strong>IndraDyn</strong> L 1<br />

4 Technical Data <strong>IndraDyn</strong> L<br />

4.1 Explanation to technical data<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

All relevant technical motor data as well as the functional principle of<br />

these motors are given on the following pages in terms of tables and<br />

characteristic curves. The following parameters will be taken into<br />

consideration :<br />

• Size and length of the primary<br />

• Type of winding of the primary<br />

• Available power supply or DC link voltage<br />

Note: Unless otherwise noted, all data and characteristic curves are<br />

based on the following conditions:<br />

• Motor-winding temperature of 135°C.<br />

• Nominal air gap<br />

• Cooling with water with a supply temperature of 30°C<br />

Note: Resulting data from certain motor-controller combinations can<br />

differ from the given data. See Chapter 10 “Motor-controller<br />

combinations”.<br />

Characteristic force/speed curve<br />

The characteristic force vs. speed curve is given shows the limiting<br />

curve. The shapes of these characteristic curves are defined by the DC<br />

bus voltage and the relevant motor-specific data, e.g. inductivity,<br />

resistance and the motor constants. Varying the DC bus voltage (using<br />

different drives, power supplies or supply voltages) and/or using different<br />

motor windings will result in different characteristic curves (see Fig. 4-1).


2 Technical Data <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

force<br />

F max<br />

F dN<br />

1 2 3 4 5<br />

VFMAX V N velocity<br />

FVKENNLIN-MLF-EN.EPS<br />

[1]: 3 x 400V providing an unregulated DC bus voltage, UDC = 540V<br />

(Possible with an HCS compact drive controller or with an HMS or<br />

HMD drive controller in combination with an HMV power supply)<br />

[2]: 3 x 440V providing an unregulated DC bus voltage, UDC = 600V<br />

(Possible with an HCS compact drive controller or with an HMS or<br />

HMD drive controller in combination with an HMV power supply)<br />

[3]: 3 x 480V providing an unregulated DC bus voltage, UDC = 650V<br />

(Possible with an HCS compact drive controller or with an HMS or<br />

HMD drive controller in combination with an HMV power supply)<br />

[4]: 3 x 480V providing an regulated DC bus voltage, UDC = 650V<br />

(Possible with an HMS or HMD drive controller in combination with<br />

an HMV power supply)<br />

[5]: 3 x 400....480V providing an regulated DC bus voltage, UDC = 750V<br />

(Possible with an HMS or HMD drive controller in combination with<br />

an HMV power supply)<br />

Fig. 4-1: Characteristic force vs. Speed curve<br />

The maximum force, FMAX, is available up to a limited velocity, vFMAX.<br />

When the velocity rises, the available DC bus voltage is reduced by the<br />

velocity-dependent Back EMF of the motor. This leads to a reduction of<br />

the maximum feed force at higher velocities. The characteristic curves<br />

are specified up to the continuous nominal force. The velocity that<br />

belongs to the continuous nominal force is known as nominal velocity,<br />

vN.<br />

Note: If the connection voltages or mains voltages are different, the<br />

specified characteristic curves can be converted linearly<br />

according to the existing voltages.<br />

Where power supply modules with unregulated DC bus<br />

voltage are concerned, voltage drops – from simultaneous<br />

acceleration of several axes, for example - must be taken into<br />

consideration.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Technical Data <strong>IndraDyn</strong> L 3<br />

Parallel connection of two<br />

primaries on one drive controller<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The following interrelations exist for the parallel connection of two<br />

primaries on one drive controller:<br />

• Doubling of currents and feed forces<br />

(unless limited by the drive controller)<br />

• Velocities vFMAX and vNENN as in single arrangement<br />

• Same motor and voltage constants (kiF, kE)<br />

• Halved motor resistances and inductances.<br />

feed force<br />

F max<br />

F dN<br />

parallel arrangement<br />

F max<br />

F dN<br />

single arrangement<br />

VFMAX<br />

velocity<br />

V N<br />

FVKENNLIN1-MLF-EN.EPS<br />

Fig. 4-2: Characteristic force vs. Speed curves for single and parallel<br />

connection of primaries to one drive controller<br />

Note: To facilitate the commissioning of parallel connection of two<br />

primaries to one drive controller, this document has<br />

corresponding selection data for motor – controller<br />

combinations and the motor parameters (see chapter 10<br />

“Motor – Controller Combinations” and Chapter 14<br />

“Commissioning”)


4 Technical Data <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

4.2 Technical data – size 040<br />

Description Symbol Unit MLP040<br />

Motor data 1 )<br />

Frame length A B<br />

Winding code 0300 0150 0250 0300<br />

Corresponding secondaries MLS040S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 800 1150<br />

Continuous nominal force FdN N 250 370<br />

Max. current imax A 20 20 27 35<br />

Continuous current idN A 4.2 4.2 5.3 6<br />

Maximum speed with Fmax 3)<br />

vFmax m/min 300 150 250 300<br />

Nominal velocity 3)<br />

vN m/min 500 300 400 500<br />

Force constant KiFN N/A 60 88 70 62<br />

Voltage constant 4)<br />

KEMF Vs/m in preparation<br />

Winding resistance at 20°C R12 Ohm 8.6 i.p. i.p. 5.1<br />

Winding inductivety L12 mH 54.2 i.p. i.p. 33.2<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 1<br />

Rated power loss PvN W 400 550<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 1200 1700<br />

Mass of primary - standard encapsulation mPS kg 4.7 6.1<br />

Mass of primary - thermal encapsulation mPT kg 6.1 8.1<br />

Unit mass if secondary mS kg/m 5.4<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 0.57 0.79<br />

standard encapsulation<br />

Pressure loss constant<br />

0.16 0.16<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.16 0.16<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

0.06<br />

0.06<br />

0.10<br />

0.11<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min in preparation<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperature TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-: Priming black (RAL 9005)<br />

-FS-: stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

Fig. 4-3: Data sheet motor size 040<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Technical Data <strong>IndraDyn</strong> L 5<br />

4.3 Technical data – size 070<br />

Description<br />

Motor data<br />

Symbol Unit MLP070<br />

1)<br />

Frame length A B<br />

Winding code 0150 0220 0300 0100 0120 0150 0250 0300<br />

Corresponding secondaries MLS070S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 2000 2600<br />

Continuous nominal force FdN N 630 820<br />

Max. current imax A 27 35 55 28 42 48 55 70<br />

Continuous current idN A 5.3 6.3 10.5 5.5 5.8 6.2 10 12<br />

Maximum speed with Fmax 3)<br />

vFmax m/mi 150 220 300 100 120 150 250 300<br />

Nominal velocity 3)<br />

vN m/mi 250 360 450 200 220 260 400 450<br />

Force constant KiFN N/A 119 100 60 149 141 132 82 68<br />

Voltage constant 4)<br />

KEMF Vs/ i.p. i.p. 20 i.p. 80 i.p. i.p. i.p.<br />

Winding resistance at 20°C R12 Ohm i.p. i.p. 2.8 i.p. 9.2 i.p. i.p. i.p.<br />

Winding inductivety L12 mH i.p. i.p. 14.3 i.p. 51.6 i.p. i.p. i.p.<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 1<br />

Rated power loss PvN W 780 900<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 2900 3750<br />

Mass of primary - standard encapsulation mPS kg 8.4 10.4<br />

Mass of primary - thermal encapsulation mPT kg 10.9 13.4<br />

Unit mass if secondary mS kg/m 9.4<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 1.12 1.29<br />

standard encapsulation<br />

Pressure loss constant<br />

0.18 0.18<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.18 0.18<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

0.22<br />

0.22<br />

0.28<br />

0.29<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min 6 5.7<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperature TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-:<br />

-FS-:<br />

Priming black (RAL 9005)<br />

stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 4-4: Data sheet motor size 070(1/2)


6 Technical Data <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Description Symbol Unit MLP070<br />

Motor data 1)<br />

Frame length C<br />

Winding code 0120 0150 0240 0300<br />

Corresponding secondaries MLS070S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 3800<br />

Continuous nominal force FdN N 1200<br />

Max. current imax A 55 62 70 110<br />

Continuous current idN A 8.9 10 13 19<br />

Maximum speed with Fmax 3)<br />

vFmax m/min 120 150 240 300<br />

Nominal velocity 3)<br />

vN m/min 180 250 350 450<br />

Force constant KiFN N/A 135 120 92 63<br />

Voltage constant 4)<br />

KEMF Vs/m 78 i.p. i.p. i.p.<br />

Winding resistance at 20°C R12 Ohm 5.7 i.p. i.p. 1.5<br />

Winding inductivety L12 mH 33.9 i.p. i.p. 12.3<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 1 2.5<br />

Rated power loss PvN W 1100<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 5500<br />

Mass of primary - standard encapsulation mPS kg 14.5<br />

Mass of primary - thermal encapsulation mPT kg 18.4<br />

Unit mass if secondary mS kg/m 9.4<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 1.58<br />

standard encapsulation<br />

Pressure loss constant<br />

0.19<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.19<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

0.43<br />

0.43<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min 7.5<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperature TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-:<br />

-FS-:<br />

Priming black (RAL 9005)<br />

stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

Fig. 4-5: Data sheet motor size 070(2/2)<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Technical Data <strong>IndraDyn</strong> L 7<br />

4.4 Technical data – size 100<br />

Description Symbol Unit MLP100<br />

Motor data 1)<br />

Frame length A B C<br />

Winding code 0090 0120 0150 0190 0120 0250 0090 0120 0190<br />

Corresponding secondaries MLS100S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 3750 5600 7150<br />

Continuous nominal force FdN N 1180 1785 2310<br />

Max. current imax A 38 44 55 70 70 130 70 85 140<br />

Continuous current idN A 6.6 8 10 12 12 22 13 15 23<br />

Maximum speed with Fmax 3)<br />

vFmax m/mi 90 120 150 190 120 250 90 120 190<br />

Nominal velocity 3)<br />

vN m/mi 150 190 220 290 190 350 170 190 290<br />

Force constant KiFN N/A 169 148 118 98 149 81 178 154 100<br />

Voltage constant 4)<br />

KEMF Vs/ i.p. i.p. i.p. i.p. 87 i.p. i.p. 89 i.p.<br />

Winding resistance at 20°C R12 Ohm 8.8 8 i.p. i.p. 4.45 i.p. i.p. 3.8 i.p.<br />

Winding inductivety L12 mH 55 49 i.p. i.p. 25 i.p. i.p. 21.1 i.p.<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 1 2.5 1 1.5 4<br />

Rated power loss PvN W 900 1300 1600<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 5400 8000 10400<br />

Mass of primary - standard encapsulation mPS kg 13.5 18.7 24<br />

Mass of primary - thermal encapsulation mPT kg 17 23.3 29.7<br />

Unit mass if secondary mS kg/m 13.4<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 1.29 1.87 2.3<br />

standard encapsulation<br />

Pressure loss constant<br />

0.19 0.18 0.19<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.19 0.18 0.19<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

0.29<br />

0.3<br />

0.52<br />

0.54<br />

0.8<br />

0.82<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min i.p. 7 6.8<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperature TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-:<br />

-FS-:<br />

Priming black (RAL 9005)<br />

stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 4-6: Data sheet size 100


8 Technical Data <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

4.5 Technical data – size 140<br />

Description Symbol Unit MLP140<br />

Motor data 1)<br />

Frame length A B C<br />

Winding code 0120 0090 0120 0050 0120 0170<br />

Corresponding secondaries MLS140S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 5200 7650 10000<br />

Continuous nominal force FdN N 1680 2415 3150<br />

Max. current imax A 70 70 105 70 125 140<br />

Continuous current idN A 12 13 18 13 21 29<br />

Maximum speed with Fmax 3)<br />

vFmax m/min 120 90 120 50 120 170<br />

Nominal velocity 3)<br />

vN m/min 190 160 190 110 190 250<br />

Force constant KiFN N/A 140 186 134 242 150 109<br />

Voltage constant 4)<br />

KEMF Vs/m i.p. i.p. i.p. i.p. i.p. i.p.<br />

Winding resistance at 20°C R12 Ohm 4 i.p. 2.6 i.p. 2.6 i.p.<br />

Winding inductivety L12 mH 28.2 i.p. 19.8 i.p. 12.3 i.p.<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 1 2.5 1 2.5 4<br />

Rated power loss PvN W 1300 1700 2000<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 7500 11000 14400<br />

Mass of primary - standard encapsulation mPS kg 17 24.5 32<br />

Mass of primary - thermal encapsulation mPT kg 21.2 30.1 38.9<br />

Unit mass if secondary mS kg/m 18.8<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 1.87 2.44 2.87<br />

standard encapsulation<br />

Pressure loss constant<br />

0.18 0.18 0.18<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.19 0.19 0.19<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

0.54<br />

0.56<br />

0.87<br />

0.89<br />

1.15<br />

1.18<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min in preparation<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperature TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-:<br />

-FS-:<br />

Priming black (RAL 9005)<br />

stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

Fig. 4-7: Data sheet size 140<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Technical Data <strong>IndraDyn</strong> L 9<br />

4.6 Technical data – size 200<br />

Description Symbol Unit MLP200<br />

Motor data 1)<br />

Frame length A B C D<br />

Winding code 0090 0120 0040 0120 0090 0120 0170 0060 0100 0120<br />

Corresponding secondaries MLS200S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 7450 10900 14250 17750<br />

Continuous nominal force FdN N 2415 3465 4460 5560<br />

Max. current imax A 70 88 70 130 140 175 210 140 210 225<br />

Continuous current idN A 13 16 13 22 29 30 46 28 46 53<br />

Maximum speed with Fmax 3)<br />

vFmax m/mi 90 120 40 120 90 120 170 60 100 120<br />

Nominal velocity 3)<br />

vN m/mi 170 190 100 190 170 190 220 140 180 190<br />

Force constant KiFN N/A 186 151 267 158 147 142 92 199 121 105<br />

Voltage constant 4)<br />

KEMF Vs/ in preparation<br />

Winding resistance at 20°C R12 Ohm i.p. 2.3 i.p. 1.7 i.p. 2.7 i.p. i.p. i.p. 1.3<br />

Winding inductivety L12 mH i.p. 10.9 i.p. 16.4 i.p. 13.1 i.p. i.p. i.p. 12.4<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 1 2.5 1 2.5 4 6 10 4 10 10<br />

Rated power loss PvN W 1700 2200 2700 3000<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 10700 15600 20500 25400<br />

Mass of primary - standard encapsulation mPS kg 23 33 42 51<br />

Mass of primary - thermal encapsulation mPT kg 28.3 40 50.7 61.3<br />

Unit mass if secondary mS kg/m 26.9<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 2.44 3.16 3.88 4.31<br />

standard encapsulation<br />

Pressure loss constant<br />

0.18 0.18 0.19 0.19<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.19 0.19 0.19 0.19<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

0.88<br />

0.9<br />

1.38<br />

1.41<br />

1.99<br />

2.04<br />

2.4<br />

2.45<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min in preparation<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperature TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-:<br />

-FS-:<br />

Priming black (RAL 9005)<br />

stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 4-8: Data sheet size 200


10 Technical Data <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

4.7 Technical data – size 300<br />

Description Symbol Unit MLP300<br />

Motordaten 1)<br />

Frame length A B C<br />

Winding code 0090 0120 0070 0120 0060 0090<br />

Corresponding secondaries MLS300S-3A-****-NNNN<br />

Maximum force 2)<br />

Fmax N 11000 16300 21500<br />

Continuous nominal force FdN N 3520 5150 6720<br />

Max. current imax A 110 138 140 205 140 212<br />

Continuous current idN A 19 23 28 35 29 37<br />

Maximum speed with Fmax 3)<br />

vFmax m/min 90 120 70 120 60 90<br />

Nominal velocity 3)<br />

vN m/min 160 190 140 190 110 150<br />

Force constant KiFN N/A 176 146 184 147 232 182<br />

Voltage constant 4)<br />

KEMF Vs/m i.p. i.p. i.p. i.p. i.p. i.p.<br />

Winding resistance at 20°C R12 Ohm i.p. 2 i.p. 1.3 i.p. 1<br />

Winding inductivety L12 mH i.p. 20.8 i.p. 13.6 i.p. 9.9<br />

Minimum cross-section of connection cable 5)<br />

APL mm² 2.5 4 4 6 4 6<br />

Rated power loss PvN W 2200 2900 3200<br />

Nominal air gap δ mm 1.0 ±0.4<br />

Attractive force 6)<br />

FATT N 16000 23400 30700<br />

Mass of primary - standard encapsulation mPS kg 33 48 62<br />

Mass of primary - thermal encapsulation mPT kg 40.8 58.3 74.9<br />

Unit mass if secondary mS kg/m 45.4<br />

Required coolant flow ∆ϑN 10)<br />

Qmin l/min 3.16 4.17 4.6<br />

standard encapsulation<br />

Pressure loss constant<br />

0.19 0.19 0.19<br />

7)<br />

thermal encapsulation<br />

kdp<br />

0.19 0.19 0.19<br />

Pressure loss at QN<br />

standard encapsulation<br />

thermal encapsulation<br />

∆p bar<br />

1.41<br />

1.44<br />

2.29<br />

2.34<br />

2.72<br />

2.78<br />

Coolant inlet temperature 8)<br />

ϑin °C +15...+40<br />

Temperature rise at PvN 9)<br />

∆ϑN K 10<br />

Thermal time constant Tth min in preparation<br />

Permissible temperature of secondary TSmax °C 70<br />

Permissible ambient temperature Tum °C 0...+45<br />

Permissible storage and transport temperatur TL °C -10...+60<br />

Protection class IP65<br />

Insulation class acc. to DIN VDE 0530-1 F<br />

Housing surface of primary<br />

-FT-:<br />

-FS-:<br />

Priming black (RAL 9005)<br />

stainless steel blank / priming black (RAL 9005)<br />

1<br />

)<br />

2<br />

)<br />

The measured values are effective values acc. to IEC 60034-1, unless other values are given. Reference value is 540 VDC.<br />

The maximum obtainable force depends on the drive controller.<br />

3<br />

) The obtain velocity depends on the DC bus voltage.<br />

4<br />

)<br />

-1<br />

EMF=Electromagnetic force. Effective value refer to 1 min .<br />

5<br />

) Dimensioned to EN 60204-1(1993), laying system B2 and conversion factor for Bosch <strong>Rexroth</strong> cable at 40°C environmental<br />

temperature. When using other cables, other cross-sections may be required. For additional notes to connection and power cables<br />

see Chapter 8.1.<br />

6<br />

) Nominal air gap between primary and secondary, No voltage applied to primary, see Chapter 9.5.<br />

7<br />

) Coolant medium is water. Actual pressure loss is dependent on the coolant flow, see Chapter 9.6.<br />

8<br />

) The coolant inlet temperature may be max. 5°K under the ambient temperature due to danger of condensation!<br />

9<br />

) Operation with liquid cooling using water as coolant with a supply temperature of 30°C.<br />

10<br />

) For further notes see Chapter 9.6 “Motor coolant, flow rate“.<br />

Fig. 4-9: Data sheet size 300<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-1<br />

5 Dimensions, installation dimension and -<br />

tolerances<br />

5.1 Installation tolerances<br />

L1<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

L2<br />

In order to ensure a constant force along the entire travel length, a<br />

defined air gap height must be guaranteed. For this purpose, the<br />

individual parts of the motor (primary and secondary) are tolerated<br />

accordingly. The distance of the mounting surface, the parallelism and<br />

the symmetry of the primary and secondary of the linear motor in the<br />

machine must be within a certain tolerance above the entire travel<br />

length. Any deformations that result from weight, attractive forces and<br />

process forces must be taken into account. A deviation of the specified<br />

nominal air gap may lead<br />

• to a reduction or modification of the specified performance data,<br />

• to a contact between the primary and the secondary and thus to<br />

damaged and destroyed motor components.<br />

For the installation of the motors into the machine structure, Bosch<br />

<strong>Rexroth</strong> specifies a defined installation height including tolerances (see<br />

installation size L1 in Fig. 5-1). Thus, the specified size and tolerances of<br />

the air gap are maintained automatically – even if individual motor<br />

components are replaced.<br />

Machine<br />

Primary<br />

Secondary<br />

Machine<br />

Size Primary Design Primary Design<br />

Secondary<br />

40, 070, 100, 140, 200<br />

300<br />

040, 070, 100, 140, 200<br />

300<br />

standard<br />

encapsulation<br />

standard<br />

encapsulation<br />

thermal<br />

encapsulation<br />

thermal<br />

encapsulation<br />

MLSxxxS-*<br />

Fig. 5-1: Mounting Sizes and Tolerances<br />

Installation<br />

Height<br />

L1<br />

61,4 +0,1<br />

63,4 +0,1<br />

73,9 +0,1<br />

77,9 +0,1<br />

Measurable<br />

Air Gap L2<br />

1,0 ± 0,4


5-2 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Parallelism and symmetry<br />

between primary and secondary<br />

Figure 5-2 defines the parallelism and symmetry between primary and<br />

secondary to be kept.<br />

Secondary<br />

0.1/1000<br />

0.5<br />

Primary<br />

Fig. 5-2: Parallelism and symmetry between primary and secondary<br />

PARALSYSM-MLF-EN.EPS<br />

Note: The specified installation height with the corresponding<br />

tolerances has to be observed absolutely.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-3<br />

5.2 Mounting Sizes<br />

Size 040, primary in standard encapsulation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-3: Size 040, primary in standard encapsulation<br />

mlp040-standard.tif


5-4 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 040, primary in thermal encapsulation<br />

Fig. 5-4: Size 040, primary in thermal encapsulation<br />

mlp040-thermo.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-5<br />

Size 040, secondary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-5: Size 040, secondary<br />

mls040.tif


5-6 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 070, primary in standard encapsulation<br />

Fig. 5-6: Size 070, primary in standard encapsulation<br />

mlp070-standard.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-7<br />

Size 070, primary in thermal encapsulation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-7: Size 070, primary in thermal encapsulation<br />

mlp070-thermo.tif


5-8 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 070, secondary<br />

Fig. 5-8: Size 070, secondary<br />

mls070.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-9<br />

Size 100, primary in standard encapsulation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-9: Size 100, primary in standard encapsulation<br />

mlp100-standard.tif


5-10 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 100, primary in thermal encapsulation<br />

Fig. 5-10: Size 100, primary in thermal encapsulation<br />

mlp100-thermo.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-11<br />

Size 100, secondary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-11: Size 100, secondary<br />

mls100.tif


5-12 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 140, primary in standard encapsulation<br />

Fig. 5-12: Size 140, primary in standard encapsulation<br />

mlp140-standard.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-13<br />

Size 140, primary in thermal encapsulation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-13: Size 140, primary in thermal encapsulation<br />

mlp140-thermo.tif


5-14 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 140, secondary<br />

Fig. 5-14: Size 140, secondary<br />

mls140.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-15<br />

Size 200, primary in standard encapsulation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-15: Size 200, primary in standard encapsulation<br />

mlp200-fs.tif


5-16 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 200, primary in thermal encapsulation<br />

Fig. 5-16: Size 200, primary in thermal encapsulation<br />

mlp200-ft.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-17<br />

Size 200, secondary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-17: Size 200, secondary<br />

mls200.tif


5-18 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 300, primary in standard encapsulation<br />

Fig. 5-18: Size 300, primary in standard encapsulation<br />

mlp300-standard.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Dimensions, installation dimension and - tolerances 5-19<br />

Size 300, primary in thermal encapsulation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Fig. 5-19: Size 300, primary in thermal encapsulation<br />

mlp300-thermo.tif


5-20 Dimensions, installation dimension and - tolerances <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Size 300, secondary<br />

Fig. 5-20: Size 300, secondary<br />

mls300.tif<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 1<br />

6 Type codes for the <strong>IndraDyn</strong> L<br />

6.1 Description<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The type code describes the available motor variations. It is the basis for<br />

selecting and ordering products from BOSCH REXROTH. This applies to<br />

both new products as well as spare parts and repairs.<br />

<strong>IndraDyn</strong> L is the overall product designation for synchronous linear<br />

motors. This designation describes the whole system, which consists of<br />

a primary and a secondary. As linear motors are kit motors, the<br />

primaries and secondaries each have their own additional, unambiguous<br />

three-letter abbreviations: MLP and MLS, respectively.<br />

- FS -<br />

standard encapsulation<br />

MLP<br />

primary<br />

<strong>IndraDyn</strong> L<br />

synchronous-linear<br />

motor<br />

- FT -<br />

thermo encapsulation<br />

Fig. 6-1: Abbreviations for <strong>IndraDyn</strong> L motor and components<br />

MLS<br />

secondary<br />

<strong>IndraDyn</strong>L_Bausatz_EN.EPS<br />

The following figures give an example of motor type codes for the<br />

primary and secondary. The type code allows you to exactly define the<br />

individual parts, e.g. for orders.<br />

The following description gives an overview of the separate positions of<br />

the type code and their meanings.<br />

Note: When selecting a product, always consider the detailed<br />

specifications in Chapter 4 “Technical Data” and Chapter 9<br />

“Notes Regarding Applications”.


2 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Type code of the Primary – The MLP<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9<br />

Example: M L LPP1 0100A -00 1 2 0 - F S - N 0 C N - NNNN<br />

0 1 2 3 4 5 6 7 8 9 0<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

. . . . . = MLP<br />

2. Motor size<br />

2.1 100 . . . . . . . . . . . . . . . . . = 100<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . . . = A, B, C<br />

4. Windings code<br />

4.1 MLP100A . . . . . . . . . . . . = 0120, 0150, 0190<br />

4.2 MLP100B . . . . . . . . . . . . = 0120, 0250<br />

4.3 MLP100C . . . . . . . . . . . . = 0090, 0120, 0190<br />

5. Cooling mode<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Standard encapsulation. . . . . . . . . . . . . . . . . . . . . . . . = S<br />

6.2 Thermo-encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = T<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Wire conducted through front of primary part . . . . . . . . . . . . . . = CN<br />

SAMPLE<br />

9. Other design<br />

9.1 none. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP100<br />

A<br />

D<br />

1 2 3 4 5 6<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

Fig. 6-2: Example of a type code for an MLP100 primary<br />

INN-41-43-Muster2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 3<br />

Positions 1 2 3<br />

Positions 4 5 6<br />

Positions 7<br />

Positions 9 10 11 12<br />

Position 14<br />

Position 15<br />

Positions 17 18<br />

Positions 19 20<br />

Positions 22 23 24 25<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Subcomponent MLP<br />

MLP is the designation of the primary part of an <strong>IndraDyn</strong> L motor.<br />

2. Motor Frame Size<br />

The motor frame size is derived from the active magnet width of the<br />

secondary and represents different power ranges.<br />

3. Motor Frame Length<br />

Within a frame size, the graduation of increasing motor frame length is<br />

indicated by ID letters in alphabetic order.<br />

Frame lengths are, for example, A, B, or C.<br />

4. Winding Code<br />

The numbers of the winding code describe the obtainable maximum<br />

speed, Fmax in m/min.<br />

5. Cooling<br />

In general, the primary of the <strong>IndraDyn</strong> L motors are provided with liquid<br />

cooling for operation and thus only available with liquid cooling.<br />

6. Encapselation<br />

• S = standard encapsulation stainless steel encapsulation with the<br />

liquid cooling integrated into the back of the motor to dissipate the<br />

lost heat.<br />

• T = thermal encapsulation: stainless steel encapsulation with<br />

additional liquid cooling on the back of the motor and additional<br />

conductive plates for optimal thermal decoupling from the machine<br />

frame.<br />

7. Motor encoder<br />

The feedback system is not in the scope of delivery of Bosch <strong>Rexroth</strong><br />

and has to be provided and mounted by the machine manufacturer<br />

himself.<br />

8. Electric connection<br />

The primaries of <strong>IndraDyn</strong> L synchronous linear motors are fitted with a<br />

highly-flexible shielded cable. The power cable is brought out through<br />

the front of the primary and is fixed to it.<br />

9. Other types<br />

These fields for future use.


4 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Type code of the Secondary – The MLS<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4<br />

xample: Example: MLS100<br />

MLS100S-3A-0150-NNNN<br />

5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

1. Product<br />

1.1 MLS. . . . . . . . = MLS<br />

2. Motor size<br />

2.1 100 . . . . . . . . . . . . . . = 100<br />

3. Type<br />

3.1 Secondary part. . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing with screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

SAMPLE<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS100<br />

1<br />

2<br />

3<br />

4<br />

. . . . = MLS<br />

1<br />

4<br />

1 2 3 4 5 6<br />

2<br />

3<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

Fig. 6-3: Example of a type code for an MLS100 secondary<br />

RNC-41431-Muster2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 5<br />

Positions 1 2 3<br />

Positions 4 5 6<br />

Position 7<br />

Position 9<br />

Position 10<br />

Positions 12 13 14 15<br />

Positions 17 18 19 20<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Subcomponents MLS<br />

MLS is the designation of the secondary part of an <strong>IndraDyn</strong> L motor.<br />

2. Motor Frame Size<br />

The motor frame size is derived from the active magnet width of the<br />

secondary and represents different power ranges.<br />

3. Type<br />

S = secondary<br />

4. Mechanical design<br />

The number 3 indicates that the secondary will be bolted along the outer<br />

edge of the secondary.<br />

5. Mechanical protection<br />

To ensure the utmost operation reliability, the permanent magnets of the<br />

secondary are protected against corrosion, coolants, oil and mechanical<br />

damage by an integrated, stainless-steel cover plate.<br />

6. Segment length<br />

Secondary segments are available in 150mm, 450mm and 600mm<br />

lengths.<br />

7. Other types<br />

These fields for future use.


6 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

6.2 Type code for <strong>IndraDyn</strong> L 040<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Example: M L P 0 4 0 A - 0 3 0 0 - F S - N 0 C N - NNNN<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

2. Motor size<br />

2.1 040 . . . . . . . . . . . . . . . . . = 040<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . . . . . = A, B<br />

4. Windings code<br />

4.1 MLP040A . . . . . . . . . . . . = 0300<br />

4.2 MLP040B . . . . . . . . . . . . = 0150, 0250, 0300<br />

5. Cooling mode<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Standard encapsulation . . . . . . . . . . . . . . . . . . . . . . . = S<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Wire conducted through front of primary part . . . . . . . . . . . . . . = CN<br />

9. Other design<br />

9.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP040<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Fig. 6-4: Type code for primary 040<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

INN-41-43-T04-01-M05-MLP2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 7<br />

Abbrev.<br />

1<br />

2<br />

3<br />

Column<br />

1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9<br />

Example: MLS040S-3A-0150-NNNN<br />

1. Product<br />

1.1 MLS . . . . . . . . = MLS<br />

2. Motor size<br />

2.1 040 . . . . . . . . . . . . . . = 040<br />

3. Type<br />

3.1 Secondary part . . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing with screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS040<br />

2<br />

1<br />

2<br />

3<br />

4<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

RNC-41430-402_NOR_E_D0_2003-06-162.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

1<br />

4<br />

3<br />

Fig. 6-5: Type code for secondary 040<br />

4<br />

0


8 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

6.3 Type code <strong>IndraDyn</strong> L 070<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Example: M L P 0 7 0 A - 0 3 0 0 - F T - N 0 C N - NNNN<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

2. Motor size<br />

2.1 070 . . . . . . . . . . . . . . . . . = 070<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . . . = A, B, C<br />

4. Windings code<br />

4.1 MLP070A = 0150, 0220, 0300<br />

4.2 MLP070B = 0100, 0120, 0150, 0250, 0300<br />

4.3 MLP070C = 0120, 0150, 0240, 0300<br />

5. Cooling mode<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Standard encapsulation . . . . . . . . . . . . . . . . . . . . . . . = S<br />

6.2 Thermo-encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = T<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Wire conducted through front of primary part . . . . . . . . . . . . . . = CN<br />

9. Other design<br />

9.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP070<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Fig. 6-6: Type code for primary 070<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

INN-41-43-T07-01-M06-MLP2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 9<br />

Abbrev.<br />

1<br />

2<br />

3<br />

Column<br />

1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9<br />

Example: MLS070S-3A-0150-NNNN<br />

1. Product<br />

1.1 MLS . . . . . . . . = MLS<br />

2. Motor size<br />

2.1 070 . . . . . . . . . . . . . . = 070<br />

3. Type<br />

3.1 Secondary part . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing with screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS070<br />

1<br />

2<br />

3<br />

4<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

RNC-41430-702_NOR_E_D0_2003-06-162.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

1<br />

4<br />

2<br />

3<br />

Fig. 6-7: Type code for secondary 070<br />

4<br />

0


10 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

6.4 Type code for <strong>IndraDyn</strong> L 100<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Example: M L P 1 0 0 A - 0 1 2 0 - F S - N 0 C N - NNNN<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

2. Motor size<br />

2.1 100 . . . . . . . . . . . . . . . . . = 100<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . . . = A, B, C<br />

4. Windings code<br />

4.1 MLP100A . . . . . . . . . . . . = 0120, 0150, 0190<br />

4.2 MLP100B . . . . . . . . . . . . = 0120, 0250<br />

4.3 MLP100C . . . . . . . . . . . . = 0090, 0120, 0190<br />

5. Cooling mode<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Standard encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = S<br />

6.2 Thermo-encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = T<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Wire conducted through front of primary part . . . . . . . . . . . . . . = CN<br />

9. Other design<br />

9.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP100<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Fig. 6-8: Type code for primary 0100<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

INN-41-43-T10-01-M06-MLP2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 11<br />

Abbrev.<br />

1<br />

2<br />

3<br />

Column<br />

1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9<br />

Example: MLS100S-3A-0150-NNNN<br />

1. Product<br />

1.1 MLS . . . . . . . . = MLS<br />

2. Motor size<br />

2.1 100 . . . . . . . . . . . . . . = 100<br />

3. Type<br />

3.1 Secondary part . . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing with screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS100<br />

1<br />

2<br />

3<br />

4<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

1<br />

4<br />

2<br />

3<br />

Fig. 6-9: Type code for secondary 0100<br />

4<br />

0<br />

RNC-41431-002_NOR_E_D0_2003-06-122.EPS


12 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

6.5 Type code for <strong>IndraDyn</strong> L 140<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Example: M L P 1 4 0 A - 0 1 2 0 - F S - N 0 C N - NNNN<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

2. Motor size<br />

2.1 140 . . . . . . . . . . . . . . . . . = 140<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . . . = A, B, C<br />

4. Windings code<br />

4.1 MLP140A . . . . . . . . . . . . = 0120<br />

4.2 MLP140B . . . . . . . . . . . . = 0090, 0120<br />

4.3 MLP140C . . . . . . . . . . . . = 0050, 0120, 0170<br />

5. Cooling mode<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Standard encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = S<br />

6.2 Thermo-encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = T<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Wire conducted through front of primary part . . . . . . . . . . . . . . = CN<br />

9. Other design<br />

9.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP140<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Fig. 6-10: Type code for primary 0140<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

INN-41-43-T14-01-M06-MLP2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 13<br />

Abbrev.<br />

1<br />

2<br />

3<br />

Column<br />

1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9<br />

Example: MLS140S-3A-0150-NNNN<br />

1. Product<br />

1.1 MLS . . . . . . . . = MLS<br />

2. Motor size<br />

2.1 140 . . . . . . . . . . . . . . = 140<br />

3. Type<br />

3.1 Secondary part . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing with screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS140<br />

1<br />

2<br />

3<br />

4<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

RNC-41431-402_NOR_E_D0_2003-06-122.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

1<br />

4<br />

2<br />

3<br />

Fig. 6-11: Type code for secondary 0140<br />

4<br />

0


14 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

6.6 Type code for <strong>IndraDyn</strong> L 200<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Example: M L P 2 0 0 A - 0 1 2 0 - F S - N 0 C N - NNNN<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

2. Motor size<br />

2.1 200 . . . . . . . . . . . . . . . . . = 200<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . = A, B, C, D<br />

4. Windings code<br />

4.1 MLP200A . . . . . . . . . . . . = 0090, 0120<br />

4.2 MLP200B . . . . . . . . . . . . = 0040, 0120<br />

4.3 MLP200C . . . . . . . . . . . . = 0090, 0120, 0170<br />

4.4 MLP200D . . . . . . . . . . . . = 0060, 0100, 0120<br />

5. Cooling mode<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Standard encapsulation . . . . . . . . . . . . . . . . . . . . . . . = S<br />

6.2 Thermo-encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = T<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Wire conducted through front of primary part . . . . . . . . . . . . . . = CN<br />

9. Other design<br />

9.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP200<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Fig. 6-12: Type code for primary 0200<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

INN-41-43-T20-01-M05-MLP2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 15<br />

Abbrev.<br />

1<br />

2<br />

3<br />

Column<br />

1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9<br />

Example: MLS200S-3A-0150-NNNN<br />

1. Product<br />

1.1 MLS . . . . . . . . = MLS<br />

2. Motor size<br />

2.1 200 . . . . . . . . . . . . . . = 200<br />

3. Type<br />

3.1 Secondary part . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing with screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS200<br />

2<br />

1<br />

2<br />

3<br />

4<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

1<br />

4<br />

3<br />

Fig. 6-13: Type code for secondary 0200<br />

4<br />

0<br />

RNC-41432-002_NOR_E_D0_2003-06-122.EPS


16 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

6.7 Type code for <strong>IndraDyn</strong> L 300<br />

Abbrev.<br />

1<br />

2<br />

3<br />

4<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Example: M L P 3 0 0 B - 0 1 2 0 - F T - N 0 C N - NNNN<br />

1. Product<br />

1.1 MLP . . . . . . . . . . = MLP<br />

2. Motor size<br />

2.1 300 . . . . . . . . . . . . . . . . . = 300<br />

3. Motor length<br />

3.1 Lengths . . . . . . . . . . . . . . . = A, B, C<br />

4. Windings code<br />

4.1 MLP300A . . . . . . . . . . . . . . . . . = 0090, 0120<br />

4.2 MLP300B . . . . . . . . . . . . . . . . . = 0070, 0120<br />

4.3 MLP300C . . . . . . . . . . . . . . . . . = 0060, 0090<br />

5. Cooling<br />

5.1 Liquid cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = F<br />

6. Encapsulation<br />

6.1 Thermo-encapsulation . . . . . . . . . . . . . . . . . . . . . . . . = T<br />

7. Motor encoder<br />

7.1 without encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = N0<br />

8. Electrical connection<br />

8.1 Cable conducted through front of the primary part . . . . . . . . . . = CN<br />

9. Other design<br />

9.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLP300<br />

A<br />

D<br />

B<br />

C<br />

A<br />

B<br />

C<br />

D<br />

Fig. 6-14: Type code for primary 0300<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation<br />

or Thermo-encapsulation)<br />

Electrical connection<br />

Screw mounting (from above)<br />

INN-41-43-T30-01-M03-MLP2.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Type codes for the <strong>IndraDyn</strong> L 17<br />

Abbrev.<br />

1<br />

2<br />

3<br />

Column<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9<br />

Example: MLS300S-3A-0150-NNNN<br />

1. Product<br />

1.1 MLS . . . . . . . . = MLS<br />

2. Motor size<br />

2.1 300 . . . . . . . . . . . . . . = 300<br />

3. Type<br />

3.1 Secondary part . . . . . . . . . . = S<br />

4. Mechanical design<br />

4.1 Fixing per screws . . . . . . . . . . . . = 3<br />

5. Mechanical protection<br />

5.1 with cover sheet . . . . . . . . . . . . . . . = A<br />

6. Segment length<br />

6.1 Secondary part length 150 mm . . . . . . . = 0150<br />

6.2 Secondary part length 450 mm . . . . . . . = 0450<br />

6.3 Secondary part length 600 mm . . . . . . . = 0600<br />

7. Other design<br />

7.1 none . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = NNNN<br />

Illustration example: MLS300<br />

1<br />

2<br />

3<br />

4<br />

Secondary part MLS<br />

Primary part MLP (Standard encapsulation or Thermo-encapsulation)<br />

Power connection<br />

Screw mounting (from above)<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

1<br />

4<br />

2<br />

3<br />

Fig. 6-15: Type code for secondary 0300<br />

4<br />

0<br />

RNC-41433-002_NOR_E_D0_2003-06-122.EPS


18 Type codes for the <strong>IndraDyn</strong> L <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Accessories and Options 7-1<br />

7 Accessories and Options<br />

7.1 Hall sensor box<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The SHL01.1 hall sensor box is an optional component for drive<br />

controllers with incremental measuring systems and Bosch <strong>Rexroth</strong><br />

<strong>IndraDyn</strong> L motors.<br />

When using an incremental measuring system without an SHL box, the<br />

axis must be commutated every time the drive is powered up. This is<br />

due to a drive-internal procedure. Without determining the proper<br />

commutation, the motor cannot be operated. An SHL box eliminates this<br />

necessity.<br />

Note: The commutation is determined automatically during the<br />

phase step up by the SHL-Box. Therefore, no power switchon<br />

is necessary.<br />

Possible applications are, for example<br />

• Commutation of motors on vertically axes,<br />

• Commutation of motors which should not move for safety reasons<br />

during the commutation process .<br />

• Gantry-arrangement of the motors.<br />

SHL hall-effect-sensor boxes can be delivered<br />

• ex works, as accessory of an <strong>IndraDyn</strong> L motor,<br />

• as a spare part for retrofitting existing machines with <strong>IndraDyn</strong> L<br />

motors and <strong>IndraDyn</strong> or Ecodrive drive controllers.<br />

Note: With the appropriate firmware, DIAX04-type controllers are<br />

also compatible with the SHL hall-effect-sensor boxes.<br />

Fig. 7-1: Accessory SHL01.1<br />

Hallbox10.EPS


7-2 Accessories and Options <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Schematic assembly<br />

1<br />

X4<br />

H1<br />

S1<br />

S3 S2<br />

0 1<br />

0 1<br />

2<br />

2<br />

9<br />

9<br />

8<br />

8<br />

3<br />

3<br />

4<br />

4<br />

7<br />

7<br />

5 5 6<br />

6<br />

2<br />

1 2 3 4<br />

1 2 3 4 5 6 7 8 9 1 2 3 4<br />

5 6 7 8<br />

111213141516 1718 5 6 7 8<br />

3 ~<br />

4 5 6<br />

IKS4374<br />

3<br />

Hallbox1.EPS<br />

1: Control 4: Secondary<br />

2: Control unit 5: Primary<br />

3: <strong>Linear</strong> scale 6: SHL Hall-effect-sensor box<br />

with cable<br />

Fig. 7-2: Schematic assembly of <strong>IndraDyn</strong> L and SHL box<br />

Note: Notice the notes within the “SHL01.1, Functional description”<br />

documentation, part-No. R911292537.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Electrical connection 8-1<br />

8 Electrical connection<br />

8.1 Power connection<br />

Connection cable on the primary<br />

Motor Frame<br />

Size<br />

primary<br />

Power cable on<br />

the primary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

<strong>IndraDyn</strong> L motor primaries are fitted with a two-meter, flexible, shielded<br />

power cable.<br />

screwed conduit entry<br />

2000 +10<br />

power cable<br />

ferrules<br />

100 +10<br />

1 - U<br />

2 - V<br />

3 - W<br />

5 -<br />

PTC SNM.150.DK300<br />

6 -<br />

7 -<br />

PTC KTY84-130<br />

8 -<br />

GE/GR<br />

ANSCHLKAB-MLF-EN.EPS<br />

Fig. 8-1: Design of power cable for the primary of the <strong>IndraDyn</strong> L, the MLP<br />

The following overview gives the technical data of the power cables for<br />

each motor size.<br />

Cross-section of<br />

power<br />

conductors<br />

Cross-section of<br />

controller<br />

conductors<br />

Cross-section of<br />

cable<br />

Bending radius<br />

of cable<br />

MLP040x-xxxx INK653 1.0 mm² 0.75 mm² 12 mm 72 mm<br />

MLP070x-xxxx INK603 4.0 mm² 16.3 mm 100 mm<br />

MLP100x-xxxx<br />

MLP140x-xxxx<br />

MLP200A-xxxx<br />

MLP200B-xxxx<br />

MLP200C-0090<br />

MLP200C-0120<br />

MLP200D-0060<br />

MLP200C-0170<br />

MLP200D-0100<br />

MLP200D-0120<br />

MLP300x-xxxx<br />

INK604 6.0 mm² 18.5 mm 110 mm<br />

INK605 10.0 mm²<br />

1.0 or 1.5 mm²<br />

Fig. 8-2: Power cable data for <strong>IndraDyn</strong> L primaries<br />

22.2 mm 130 mm


8-2 Electrical connection <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Laying the primary power cable<br />

The power cable which is connected to the primary has flying leads<br />

terminated with ferrules (see Fig. 8-1). This power cable may not be<br />

exposed to dynamic bending forces (repeated flexing). The power cable<br />

on the primary should therefore never be laid in a moving cable track.<br />

We recommend ridgidly laying the cable and terminating it with<br />

• a flange socket<br />

• a connection coupling or<br />

• a terminal box (not in the scope of delivery of Bosch <strong>Rexroth</strong>)<br />

From this junction, the main power cable can be laid in a cable track or<br />

in the machine construction. Ready-made connection cables are<br />

available from Bosch <strong>Rexroth</strong>.<br />

drive controller<br />

energy chain<br />

ongoing<br />

connecting cable<br />

connection point<br />

- flange socket<br />

- coupling<br />

- terminal box<br />

primary<br />

power cable<br />

motor<br />

Fig. 8-3: Laying of the connection cable attached to the primary<br />

WARNING<br />

MOTORANSCHL-MLF-EN.EPS<br />

Damage of the connection cable (and, thus, the<br />

motor) through repeated flexing!<br />

⇒ Do not lay the power cable of the primary in a cable<br />

track.<br />

⇒ Lay the connecting cable, after the junction, in a<br />

cable track.<br />

Note: The connection cables of the primaries are designed for the<br />

highest current of a given motor size, so, in certain<br />

circumstances, the cross-section of the power cable after the<br />

junction could be smaller.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Electrical connection 8-3<br />

Power Cable Connection<br />

Connection via flange socket or<br />

connection coupling<br />

Terminal box connection<br />

Parallel motor connection<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The following diagrams show the power cable connection plans for the<br />

respective connection types.<br />

M<br />

3 ~<br />

flange socket coupling power connector<br />

PTC<br />

J<br />

PTC<br />

J<br />

8<br />

7<br />

6<br />

5<br />

3<br />

2<br />

1<br />

GNYE<br />

G<br />

F<br />

H<br />

E<br />

C<br />

B<br />

A<br />

D<br />

G<br />

F<br />

H<br />

E<br />

C<br />

B<br />

A<br />

D<br />

8 (-)<br />

7 (+)<br />

6<br />

5<br />

3<br />

2<br />

1<br />

GNYE<br />

KTY84-130<br />

SNM.150.DK.***<br />

motor temperature<br />

sensor (connection<br />

to drive controller)<br />

ELCON01-MLF-EN.EPS<br />

Fig. 8-4: Electrical connection when using a flange socket or a connection<br />

coupling<br />

M<br />

3 ~<br />

PTC<br />

PTC<br />

J<br />

J<br />

8<br />

7<br />

6<br />

5<br />

3<br />

2<br />

1<br />

GNYE<br />

terminal box<br />

W<br />

V<br />

U<br />

8 (-)<br />

7 (+)<br />

6<br />

5<br />

3<br />

2<br />

1<br />

GNYE<br />

Fig. 8-5: Electric connection when using a terminal box.<br />

KTY84-130<br />

SNM.150.DK.***<br />

motor temperature<br />

sensor (connection<br />

to drive controller)<br />

ELCON02-MLF-EN.EPS<br />

Laying of cable and cable cross-sectional areas<br />

When connecting two or more motors parallel onto one drive controller,<br />

the following connection possibilities exist for connection cable:<br />

• Lay a common cable with a higher cross-section (Fig. 8-8)<br />

• Lay two separate parallel cables (Fig. 8-7)<br />

The latter possibility gives a possible advantage of a lower bending<br />

radius. The summation of the cross-section of the cables layed in parallel<br />

must correspond to the increased requirement of the combination of<br />

motors installed in parallel.


8-4 Electrical connection <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Power connection with a single<br />

motor arrangement<br />

Power connection with a parallel<br />

motor arrangement and separate<br />

power cables<br />

Power connection with a parallel<br />

motor arrangement and a<br />

common power cable with an<br />

increased cross-sectional area<br />

drive controller<br />

energy chain<br />

connection point<br />

Fig. 8-6: Power connection with a single motor arrangement<br />

drive controller<br />

connection<br />

point<br />

energy chain<br />

connection point<br />

connection point<br />

motor<br />

MOTORANSCHL01-MLF-EN.EPS<br />

motor 1<br />

motor 2<br />

MOTORANSCHL02-MLF-EN.EPS<br />

Fig. 8-7: Power connection with a parallel motor arrangement, and separate<br />

power cables<br />

drive controller<br />

energy chain<br />

connection<br />

point<br />

motor 1<br />

motor 2<br />

MOTORANSCHL03-MLF-EN.EPS<br />

Fig. 8-8: Power connection with a parallel motor arrangement and a common<br />

power cable with increased cross-sectional area<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Electrical connection 8-5<br />

Power Cable (after the junction<br />

with the primaries connection<br />

cable)<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The selection of the correct cable cross-sectional area depends on the<br />

way the cable is laid. The decision should be made according to the<br />

following table:<br />

<strong>IndraDyn</strong> L<br />

RMS Motor<br />

Motor Type<br />

phase-current [A]<br />

MLP040A-0300 4<br />

MLP040B-0150 4<br />

MLP040B-0250 5<br />

MLP040B-0300 6<br />

MLP070A-0150 5<br />

MLP 070A-0220 6<br />

Power cable arrangement<br />

acc. to Figs. 8-6 and 8-7<br />

Power cable arrangement<br />

according to Fig. 8-8<br />

1.0 mm² (INK653)<br />

MLP 070A-0300 10 2.5 mm² (INK602)<br />

MLP 070B-0100 5.2<br />

1.0 mm² (INK653)<br />

MLP 070B-0120 5.8<br />

1.0 mm² (INK653)<br />

MLP 070B-0150 6.2<br />

MLP 070B-0250 10 2.5 mm² (INK602)<br />

MLP 070B-0300 12 4 mm² (INK603)<br />

MLP 070C-0120 8.9<br />

MLP 070C-0150 10<br />

MLP 070C-0240 13<br />

2.5 mm² (INK602)<br />

4 mm² (INK603)<br />

MLP 070C-0300 19 2.5 mm² (INK602) 6 mm² (INK604)<br />

MLP 100A-0090 6.6<br />

MLP 100A-0120 8<br />

MLP 100A-0150 10<br />

MLP 100A-0190 12<br />

MLP100B-0120 12<br />

1.0 mm² (INK653)<br />

2.5 mm² (INK602)<br />

4 mm² (INK603)<br />

MLP100B-0250 22 2.5 mm² (INK602) 10 mm² (INK605)<br />

MLP100C-0090 13 1.0 mm² (INK653) 4 mm² (INK603)<br />

MLP100C-0120 16 2.5 mm² (INK602) 6 mm² (INK604)<br />

MLP100C-0190 23 4 mm² (INK603) 10 mm² (INK605)<br />

MLP140A-0120 12<br />

MLP140B-0090 13<br />

1.0 mm² (INK653) 4 mm² (INK603)<br />

MLP140B-0120 18 2.5 mm² (INK602) 6 mm² (INK604)<br />

MLP140C-0050 13 1.0 mm² (INK653) 4 mm² (INK603)<br />

MLP140C-0120 21 2.5 mm² (INK602) 10 mm² (INK605)<br />

MLP140C-0170 29 4 mm² (INK603) 16 mm² (INK606)<br />

MLP200A-0090 13 1.0 mm² (INK653) 4 mm² (INK603)<br />

MLP200A-0120 16 2.5 mm² (INK602) 6 mm² (INK604)<br />

MLP200B-0040 13 1.0 mm² (INK653) 4 mm² (INK603)<br />

MLP200B-0120 22 2.5 mm² (INK602) 10 mm² (INK605)<br />

MLP200C-0090 29 4 mm² (INK603)<br />

MLP200C-0120 30 6 mm² (INK604)<br />

16 mm² (INK606)<br />

MLP200C-0170 46 10 mm² (INK605) 25 mm² (INK607)<br />

MLP200D-0060 28 4 mm² (INK603) 16 mm² (INK606)<br />

MLP200D-0100 46<br />

10 mm² (INK605)<br />

25 mm² (INK607)<br />

MLP200D-0120 53<br />

-----<br />

MLP300A-0090 19 2.5 mm² (INK602) 6 mm² (INK604)<br />

MLP300A-0120 23<br />

4 mm² (INK603)<br />

10 mm² (INK605)<br />

MLP300B-0070 28<br />

MLP300B-0120 35 6 mm² (INK604)<br />

16 mm² (INK606)<br />

MLP300C-0060 29 4 mm² (INK603)<br />

MLP300C-0090 37 6 mm² (INK604) 25 mm² (INK607)<br />

Fig. 8-9: Required cross-sectional areas of the conductors in the power cable<br />

depending on the motor type, the way the cables are laid and the<br />

way the motors are arranged


8-6 Electrical connection <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Connection of IndraDrive Drive Controller<br />

Drive device Terminal block<br />

power connection<br />

HMS0x.x<br />

HMD0x.x<br />

Separate arrangement<br />

Note: For additional descriptions of the power cables on the<br />

primaries and the power connection cables, see the<br />

documentation entitled “Connection Cable” Selection Data,<br />

Mat-No.: R911280894.<br />

The following overview shows the connection and termination<br />

designations for the motor power conductors and the motor temperature<br />

sensors.<br />

Note: For additional information about motor temperature<br />

monitoring, see Chapter 9-7.<br />

Termination<br />

designation of the<br />

power connection<br />

Terminal block<br />

designation of the<br />

motor temperature<br />

sensors<br />

Termination<br />

designation of the<br />

motor temperature<br />

sensors<br />

X5 1, 2, 3 X6 1, 2<br />

Fig. 8-10: Termination designation at the drive-controller<br />

X5<br />

1<br />

1 2 3<br />

2<br />

M<br />

3<br />

drive controller<br />

3<br />

GNYE<br />

+24VBr<br />

motor<br />

0VBr<br />

MotTemp+<br />

1<br />

5<br />

2<br />

MotTemp-<br />

6<br />

7<br />

PTC<br />

SNM.150.DK.*<br />

X6<br />

motor cable<br />

screen connection<br />

8<br />

PTC<br />

KTY84-130<br />

temperature sensors<br />

ELCON06-MLF-EN.EPS<br />

Fig. 8-11: Connection to the drive-controller – one primary per drive controller<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Electrical connection 8-7<br />

Parallel arrangement<br />

Power cable connection of the<br />

primary using a parallel<br />

arrangement of the motors<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

X5<br />

1<br />

1 2 3<br />

2<br />

M<br />

3<br />

drive controller<br />

3<br />

GNYE<br />

+24VBr<br />

motor<br />

0VBr<br />

1 MotTemp+<br />

2<br />

MotTemp-<br />

5<br />

6<br />

7<br />

PTC<br />

SNM.150.DK.*<br />

X6<br />

8<br />

PTC<br />

KTY84-130<br />

temperature sensors<br />

motor cable<br />

screen connection<br />

1<br />

2<br />

M<br />

3<br />

3<br />

GNYE<br />

motor<br />

5<br />

6<br />

7<br />

PTC<br />

SNM.150.DK.*<br />

8<br />

PTC<br />

KTY84-130<br />

temperature sensors<br />

ELCON07-MLF-EN.EPS<br />

Fig. 8-12: Sample connection to the drive controller – parallel arrangement of<br />

primaries on one drive controller.<br />

The way the power conductors are connected to the drive controller<br />

when you have a parallel arrangement of the primaries depends on the<br />

direction(s) of the connection cable outputs from the primaries.<br />

Connection with an arrangement according to Fig. 9-8<br />

Cable outputs in the same direction<br />

Drive controller X5 1 2 3<br />

Primary 1 1 2 3<br />

Primary 2 1 2 3<br />

Connection with an arrangement according to Fig. 9-12<br />

Cable outputs in the OPPOSITE direction<br />

Drive controller X5 1 2 3<br />

Primary 1 1 2 3<br />

Primary 2 1 3 2<br />

Fig. 8-13: Connection to the drive controller of the power conductors of parallel<br />

motors to a single drive controller – dependent on layout of<br />

primaries


8-8 Electrical connection <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Connection of DIAX04 and EcoDrive Drive-Controllers<br />

Drive device Terminal block<br />

power connection<br />

HDS0x.x<br />

DKCxx.x<br />

Single Connection<br />

The following describes the connection of the power supply and the<br />

temperature sensors to DIAX04 and EcoDrive (DKCx.3) drivecontrollers.<br />

The following overview shows the connection and termination<br />

designations for the power connection and the motor temperature<br />

sensors.<br />

Note: For additional information about motor temperature<br />

monitoring, see Chapter 9-7.<br />

Termination<br />

designation of the<br />

power conductors<br />

Terminal block<br />

designation for the<br />

motor temperature<br />

sensors<br />

Termination<br />

designation of the<br />

motor-temperaturesensor<br />

conductors<br />

X5 A1, A2, A3 X6 1, 2<br />

Fig. 8-14: Termination designations of the drive-controller<br />

drive controller<br />

X5<br />

A1 A2 A3<br />

1<br />

2<br />

M<br />

3<br />

3<br />

GNYE<br />

4<br />

BR+<br />

motor<br />

5<br />

BR-<br />

1<br />

TM+<br />

5<br />

2<br />

TM-<br />

6<br />

3<br />

UB<br />

6<br />

0VB<br />

7<br />

temperature sensors<br />

X6<br />

SNM.150.DK.* KTY84-130<br />

XS1<br />

motor cable<br />

screen connection<br />

Fig. 8-15: Connection to the drive-controller – separate primary<br />

ELCON03-MLF-EN.EPS<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Electrical connection 8-9<br />

Parallel arrangement<br />

Connection of the power<br />

conductors of parallel-arranged<br />

primaries<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

drive controller<br />

X5<br />

A1 A2 A3<br />

1<br />

2<br />

M<br />

3<br />

3<br />

GNYE<br />

motor<br />

5<br />

4<br />

BR+<br />

6<br />

5<br />

BR-<br />

1<br />

TM+<br />

7<br />

2<br />

TM-<br />

8<br />

3<br />

UB<br />

SNM.150.DK.* KTY84-130<br />

temperature sensors<br />

6<br />

0VB<br />

7<br />

X6<br />

XS1<br />

motor cable<br />

screen connection<br />

1<br />

2<br />

M<br />

3<br />

3<br />

GNYE<br />

motor<br />

5<br />

6<br />

7<br />

8<br />

SNM.150.DK.* KTY84-130<br />

temperature sensors<br />

ELCON04-MLF-EN.EPS<br />

Fig. 8-16: Connection on the drive-controller – parallel arrangement of<br />

primaries<br />

The way the power conductors are connected to the drive controller<br />

when you have a parallel arrangement of the primaries depends on the<br />

direction(s) of the connection cable outputs from the primaries.<br />

Connection with an arrangement according to Fig. 9-8<br />

Cable outputs in the same direction<br />

Drive-controller X5 A1 A2 A3<br />

Primary 1 1 2 3<br />

Primary 2 1 2 3<br />

Connection with an arrangement according to Fig. 9-12<br />

Cable outputs in the OPPOSITE direction<br />

Drive-controller X5 A1 A2 A3<br />

Primary 1 1 2 3<br />

Primary 2 1 3 2<br />

Fig. 8-17: Connection to the drive controller of the power conductors of parallel<br />

motors to a single drive controller – dependent on layout of primaries


8-10 Electrical connection <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

8.2 Connection of linear feedback devices<br />

The connection of linear feedback devices is made via ready-made<br />

cables.<br />

drive controller<br />

cable assembly<br />

(available from Bosch <strong>Rexroth</strong>)<br />

material measure<br />

connecting cable for scan head<br />

(part of the length measuring systems,<br />

supplied by the measuring system manufacturer)<br />

connector or<br />

coupling<br />

scan head<br />

Fig. 8-18: Connection example of a linear feedback device<br />

ELCON05-MLF-EN.EPS<br />

The following table shows an overview of the ready-made cables for<br />

linear feedback devices.<br />

Measuring system type Absolut, ENDAT Incremental<br />

Output variable Voltage Voltage<br />

Signal flow line Sine Sine<br />

Signal amplitude 1Vp-p 1Vp-p<br />

Position interface DAG DLF<br />

Bosch <strong>Rexroth</strong> ready-made cables – designed with<br />

Connector for DIAX04<br />

Connector for DKCxx.3<br />

Connector for<br />

IndraDrive<br />

Coupling for DIAX04<br />

Coupling for DKCxx.3<br />

RKG 4142<br />

RKG 4001<br />

RKG 4038<br />

RKG 4384<br />

RKG 4002<br />

RKG 4041<br />

Coupling for IndraDrive<br />

-<br />

RKG 4040<br />

Fig. 8-19: Connection components for linear feedback devices<br />

-<br />

-<br />

RKG 4383<br />

RKG 4389<br />

Note: For additional descriptions, see documentation “Connection<br />

Cable” Selection Data, Mat-Nr. R911280894.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-1<br />

9 Application and Construction Instructions<br />

9.1 Functional principle<br />

Axis installation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The following figure shows the principal design of <strong>IndraDyn</strong> L motors.<br />

N S N S N<br />

secondary<br />

with permanent magnets<br />

primary<br />

with three-phase winding<br />

Fig. 9-1: General construction of an <strong>IndraDyn</strong> L motor<br />

power connection<br />

AUFBAU-MLF-EN.EPS<br />

The force generation of the <strong>IndraDyn</strong> L motor, a synchronous-linear<br />

motor, is the same as the torque generation at rotative synchronous<br />

motors. The primary (active part) has a three-phase winding; the<br />

secondary (passive part) has permanent magnets (see Fig. 9-1).<br />

Both, the primary and the secondary can be moved.<br />

Realization of any traverse path length can be done by stringing together<br />

several secondaries.<br />

The <strong>IndraDyn</strong> L motor is a kit motor. The components primary and<br />

secondary are delivered separately and completed by the user via linear<br />

guide and the linear measuring system.<br />

The construction of an axis fitted with an <strong>IndraDyn</strong> L motor (see Fig. 9-2)<br />

normally consists of<br />

• Primary with three-phase winding,<br />

• one or more secondaries with permanent magnets,<br />

• <strong>Linear</strong> scale<br />

• linear guide,<br />

• energy flow as well as<br />

• slide or machine construction


9-2 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.2 Motor Design<br />

secondary<br />

primary<br />

cable track<br />

linear scale<br />

Fig. 9-2: General construction of an axis with an <strong>IndraDyn</strong> L<br />

linear guideways<br />

slide and/or<br />

machine<br />

structure<br />

ACHSAUFBAU-MLF-EN.EPS<br />

For force multiplication can be two or more primaries mechanically<br />

coupled, arranged parallel or in-line. For further information see chapter<br />

9.4 “Arrangement of Motor Components”.<br />

Note: Only the primary and the secondary belong to the scope of<br />

delivery of the motor.<br />

<strong>Linear</strong> guide and length scale as well as further additional<br />

components have to be made available by the user. For<br />

recommendations to tested additional components see<br />

chapter 16 “Recommended suppliers of additional<br />

components”<br />

<strong>IndraDyn</strong> L motors of Bosch <strong>Rexroth</strong> are tested drive components. They<br />

have the following characters:<br />

• Modular system with different motor sizes and lengths for feed forces<br />

up to 21.500 N per motor and speeds over 600 m/min<br />

• Different winding constructions at any motor size for optimum<br />

adjustment to different speed demands.<br />

• All motor components are completely encapsulated, i.e. crack<br />

initiation within casting compounds, damage or corrosion of magnets<br />

a.s.o. are excluded.<br />

• Different designs regarding cooling and encapsulation of the primary<br />

(see below: “standard and thermal encapsulation”)<br />

• Protection class IP65 (all motor components)<br />

• High operation safety for DC-link voltage up to 750V.<br />

• No mechanical wastage<br />

• Protection of the motor winding against thermal overstress by<br />

integrated temperature sensors<br />

• Flexible, shielded and strain-bearing power lead wire<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-3<br />

Design of cooling and<br />

encapsulation<br />

Primary in standard encapsulation<br />

Main application area<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

To make the optimum motor for the different uses, regarding technical<br />

demands and costs available, are primary parts in different designs in<br />

cooling and encapsulation available.<br />

• Standard encapsulation: stainless steel encapsulation with a liquid<br />

cooling integrated into the back of the motor to dissipate the lost heat.<br />

• Thermal encapsulation: stainless steel encapsulation with an<br />

additional liquid cooling on the back of the motor and heat conductive<br />

plates for optimum thermal decoupling to the machine construction.<br />

At use with less thermal demands on the exactness of the machine,<br />

primaries in standard encapsulation present an economy solution.<br />

Primaries with standard encapsulation are mainly used in the general<br />

automation sector. There, the electrical motor components are protected<br />

by a stainless steel encapsulation. The cooling system of this motor<br />

design is integrated into the motor and can only be used to discharge<br />

lost heat or keeping the specified continuous feedrate. It offers no<br />

additional thermal decoupling on the motor side to the machine.<br />

laminated core<br />

motor winding<br />

integrated<br />

cooling<br />

fixing thread<br />

permanent magnets<br />

primary<br />

secondary<br />

cooling connection<br />

(G 1/4)<br />

STANDARDKAPSELUNG-MLP-EN.EPS<br />

Fig. 9-3: Primary with standard encapsulation (see fig. with secondary)<br />

Note: For further information to liquid cooling see Chapter 9.6<br />

“Motor cooling”.<br />

The main application areas of this design of the primary can be found in<br />

the sectors:<br />

• General automation<br />

• Handling


9-4 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Primary in thermal encapsulation<br />

Main application area<br />

Primaries in thermal encapsulation reach an high constant temperature<br />

on the mounting surface due to an additional – into the encapsulation<br />

integrated liquid coolant for thermal encapsulation to the machine<br />

construction. At design “Thermal encapsulation”, a maximum<br />

temperature rise on the screw-on surface in opposite to the coolant inlet<br />

temperature of 2 K can be reached.<br />

integrated<br />

cooling<br />

laminated core<br />

motor winding<br />

additional cooling<br />

directions<br />

fixing thread<br />

permanent magnets<br />

primary<br />

cooling connection<br />

(G 1/4)<br />

secondary<br />

THERMOKAPSELUNG-MLP-EN.EPS<br />

Fig. 9-4: Primary with thermal encapsulation (see fig. with secondary)<br />

The primary is not completely connected with the mounting surface on<br />

the machine side, but only lays on increased bearing points. This offers<br />

the following advantages:<br />

• Additional thermal encapsulation and therewith further minimization of<br />

the possible heat-flow into the machine<br />

• Processing of the screw-on surface on the machine side makes it<br />

easier to keep the necessary mounting tolerances.<br />

Note: For further information to liquid cooling see Chapter 9.6<br />

“Motor cooling”.<br />

Main application areas of this primary design are, e.g.<br />

• Machine tools<br />

• Precision applications<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-5<br />

Design secondary part<br />

Available length of the<br />

secondaries<br />

Required length of the<br />

secondary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The secondary consists of a steel base plate with fitted permanent<br />

magnets. The fastening holes are located on the outer edge along the<br />

secondary.<br />

To ensure the utmost operation reliability, the permanent magnets of the<br />

secondary are always protected against corrosion, action of outer<br />

influences (e.g. coolants and oil) and against mechanical damage, due<br />

to an integrated rustless cover plate.<br />

It is possible to use a scraper direct on the secondary (see also Chapter<br />

9.20 “Scraper”).<br />

Fig. 9-5: MLS-secondary<br />

MLS.tif<br />

Note: The design of the secondary is independent from the design<br />

of the primary.<br />

Secondaries are available in the following lengths (see also Chapter 5<br />

“Specification)<br />

• 150mm<br />

• 450mm<br />

• 600mm<br />

The required length L of the secondary can be defined as follows:<br />

L ≥ L + L<br />

Secondary part<br />

Traverse path<br />

Fig. 9-6: Defining the required length of the secondary<br />

Pr imary part


9-6 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Motor Sizes<br />

Sizes<br />

For adjusting on different feed force requirements, Bosch <strong>Rexroth</strong> offers<br />

<strong>IndraDyn</strong> L motors in a modular system with different sizes and lengths.<br />

The active breadth of the primary and the secondary at linear motors<br />

serve to define the size. A linear motor with e.g. size 100 has a<br />

laminated core and magnet breadth of 100 mm. The <strong>IndraDyn</strong> L modular<br />

system contains the following motor sizes:<br />

40 70 100 140 200 300<br />

Fig. 9-7: Sizes of <strong>IndraDyn</strong> L synchronous linear motors<br />

Baugrösse_Breite_MLF.EPS<br />

Every primary is graduated in different motor lengths. The designation of<br />

the length of the primary is done by the letters A, B, C, D.<br />

A B C D<br />

Fig. 9-8: Different lengths of the primaries<br />

Baugrösse_Länge_MLF.EPS<br />

Note: For detailed information to sizes and length see Chapter 5<br />

“Specification”.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-7<br />

9.3 Requirements on the Machine Design<br />

Mass reduction<br />

Mechanical rigidity<br />

Natural frequencies<br />

Mechanically linked axes<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Derived from design and properties of linear direct drives, the machine<br />

design must meet various requirements. For example, the moved<br />

masses should be minimized whilst the rigidity is kept at a high level.<br />

To ensure a high acceleration capability, the mass of the moved<br />

machine elements must be reduced to a minimum. This can be done by<br />

using materials of a low specific weight (e.g. aluminum or compound<br />

materials) and by design measures (e.g. skeleton structures).<br />

If there are no requirements for extreme acceleration, masses up to<br />

several tons can be moved without any problems. There is no controlengineering<br />

correlation between the moved slide mass and the motor´s<br />

mass, as this is the case with rotary drives.<br />

Precondition therefore is, a very stiff coupling of the motor to the weight.<br />

In conjunction with the mass and the resulting resonant frequency, the<br />

rigidity of the individual mechanical components within a machine chiefly<br />

determines the quality a machine can reach. The rigidity of a motion axis<br />

is determined by the overall mechanical structure. The goal of the<br />

construction must be to obtain an axis structure that is as compact as<br />

possible.<br />

The increased loop bandwidth of linear drives required higher<br />

mechanical natural frequencies of the machine structure in order to<br />

avoid the excitation of vibrations.<br />

To ensure an adequate control quality, the lowest natural frequency that<br />

occurs inside the axis should not be less than approximately 200 Hz.<br />

The natural frequencies of axes with masses that are not constantly<br />

moving (e.g. due to workpieces that must be machined differently)<br />

change, so that the natural frequency is reduced with f ≈ 1/<br />

m as the<br />

mass increases.<br />

The elasticity´s of the axes (both, the mechanical and the controlengineering<br />

component) add up. This must be taken into account with<br />

respect to the rigidity of cinematically coupled axes.<br />

If several axes must cinematically be coupled in order to produce path<br />

motions (e.g. cross-table or gantry structure), the mutual effects of the<br />

individual axes on each other should be minimized. Thus, cinematic<br />

chains should be avoided in machines with several axes. Axis<br />

configurations with long projections that change during operation are<br />

particularly critical.


9-8 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Reactive forces<br />

Integrating the linear scale<br />

Initiated by acceleration, deceleration or process forces of the moved<br />

axis, reactive forces can deform the stationary machine base or cause it<br />

to vibrate.<br />

Ds m<br />

a<br />

STEIFIGKEIT01-MLF-EN.EPS<br />

Fig. 9-9: Deformation of the machine base caused by the reactive force<br />

during the acceleration process<br />

m ⋅ a<br />

∆s<br />

=<br />

c<br />

base plate<br />

500 kg ⋅10<br />

m/s²<br />

=<br />

= 5 µ m<br />

1000 N/ µ m<br />

∆s: Deformation of displacement of the machine base in µm<br />

m: Mass in kg<br />

a: Acceleration in m/s²<br />

c: Rigidity of the machine base in N/µm<br />

Fig. 9-10: Typical calculation of the machine base deformation<br />

The rigidity of the length measuring system integration is particularly<br />

important. Please refer to Chapter 9.15 for explanations.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-9<br />

9.4 Arrangement of Motor Components<br />

Single arrangement<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The single arrangement of the primary is the most common<br />

arrangement.<br />

Fig. 9-11: Single arrangement of the primaries<br />

The independent operation of two or more primaries on a secondary is<br />

possible too (see Fig. 9-11 right-hand sight). In such an arrangement,<br />

the length measuring system can also be equipped with two or more<br />

scanning heads.<br />

Note: Due to the higher sealing lip friction, the number of scanning<br />

heads in encapsulated linear scales is usually limited to two.<br />

Please contact the scale manufacturer for details.<br />

controller drive controller<br />

3 ~<br />

linear scale<br />

primary secondary<br />

EINZELANORDNUNG01-MLF-EN.EPS<br />

Fig. 9-12: Controlling a linear motor with single arrangement of the motor<br />

components


9-10 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Several motors per axis<br />

The arrangement of several motors per axis provides the following<br />

benefits:<br />

• Multiplied feed forces<br />

• With corresponding arrangement, compensation of the attractive<br />

forces “outwards”<br />

Fig. 9-13: Arrangement of several motors per axis<br />

Depending on the application, the motors can be controlled in two<br />

different ways:<br />

• Two motors at one drive controller and one linear scale (parallel<br />

arrangement)<br />

• Two motors at two drive controllers and two linear scales (Gantry<br />

arrangement)<br />

Parallel arrangement<br />

The arrangement of two or more primaries on one drive controller in<br />

conjunction with a linear scale is known as parallel arrangement. Parallel<br />

arrangement is possible if the coupling between the motors can be very<br />

rigid.<br />

controller drive controller<br />

3 ~<br />

primary<br />

mechanically<br />

rigid coupling<br />

primary<br />

secondary<br />

1 linear scale<br />

secondary<br />

PARALLELANORDNUNG01-MLF-EN.EPS<br />

Fig. 9-14: Parallel arrangement of two primaries on one drive controller in<br />

conjunction with a length measuring system<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-11<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

To ensure successful operation, the axis must fulfill the following<br />

requirements in parallel arrangement:<br />

• Identical primary and secondary parts<br />

• Very rigid coupling of the motors within the axis<br />

• Position offset between the primary parts


9-12 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Cable entry in the same direction<br />

Parallel arrangement: Arrangement of primaries in<br />

succession<br />

In a parallel arrangement – within a Gantry arrangement, too – the<br />

primaries in feed direction can mechanically be coupled and be arranged<br />

in succession (see Fig. 9-5 center).<br />

To ensure successful operation, the primaries must be arranged in a<br />

specific grid. The determination of the grid sizes that must be adhered to<br />

depends on the direction of the cable entry and the permissible bending<br />

radius of the power cable.<br />

If the primaries are arranged behind each other with the cable entries in<br />

the same direction (see Fig. 9-9), an integer multiple of twice the<br />

electrical pole pitch must be adhered to:<br />

S<br />

primary 1<br />

Dxp<br />

secondary<br />

xpmin<br />

Dxp<br />

primary 2<br />

PARALLELANORDNUNG03-MLF-EN.EPS<br />

Fig. 9-16: Arrangement of the primaries behind each other and cable entry in<br />

the same direction<br />

Note: When you determine the correct primary distance with cable<br />

entries in the same direction acc. to Fig. 9-8, you must<br />

always use the same reference point for both primaries (e.g.<br />

the same mounting hole).<br />

∆x = n ⋅ 2 ⋅τ<br />

P<br />

∆xP: Required grid spacing between the primaries in mm<br />

τP: Electrical pole pitch in <strong>IndraDyn</strong> L motors in mm (all sizes 37.5 mm)<br />

n: Integer factor (depends on mounting distance)<br />

Fig. 9-17: Determining the grid distance between the primaries with cable<br />

entries in the same direction<br />

p<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

N


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-13<br />

Minimum distances between the<br />

primaries<br />

Requirement<br />

Cable entry in opposite direction<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

According to Fig. 9-9 and 9-10, the following minimum distances<br />

between the primaries result at a motor arrangement with the cable<br />

entries in the same direction:<br />

Standard encapsulation<br />

sizes (all)<br />

Motor version Xpmin in mm<br />

15 mm + n ⋅ 2 ⋅τ<br />

Thermal encapsulation<br />

sizes (all) 65 mm + n ⋅ 2 ⋅τ<br />

p<br />

n: The integer factor n must be chosen in that way, so that the following<br />

conditions can be kept.<br />

τP: Electrical pole pitch in <strong>IndraDyn</strong> L motors in mm (all sizes 37.5 mm)<br />

Fig. 9-18: Distance xpmin to be kept between the two primaries with cable<br />

entries in the same direction<br />

x p min<br />

><br />

permissible<br />

bending radius motor cable<br />

Fig. 9-19: Distance xpmin to be kept between the two primaries with cable<br />

entries in the same direction<br />

Option 1:<br />

If the primaries are arranged behind each other and with cable entries in<br />

opposite directions to Fig. 9-20 a defined distance must be kept between<br />

the primaries according to Fig. 9-21.<br />

S<br />

primary 1 secondary primary 2 N<br />

xpmin<br />

PARALLELANORDNUNG04-MLF-EN.EPS<br />

Fig. 9-20: Option 1: Arrangement of primaries behind each other with cable<br />

entries in opposite directions<br />

Note: When you determine the correct primary distance with cable<br />

entries in opposite directions according to Fig. 9-20, you can<br />

use the distance between the primary end faces xp as<br />

reference point.<br />

x = n ⋅ 2 ⋅τ<br />

+ x<br />

P<br />

p<br />

pmin<br />

xP: Required grid spacing between the primaries in mm<br />

τP: Electrical pole pitch in <strong>IndraDyn</strong> L motors in mm (all sizes 37.5 mm)<br />

n: Integer factor (depends on mounting distance)<br />

Fig. 9-21: Determining the grid distance between the primaries with cable<br />

entries in opposite directions<br />

p


9-14 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Minimum distance between the<br />

primaries (Option 1)<br />

Cable entry in opposite direction<br />

For a motor arrangement with cable entries at opposite directions, the<br />

following size-related minimum distances between the primaries result<br />

from:<br />

Standard encapsulation<br />

sizes (all)<br />

Thermal encapsulation<br />

sizes (all)<br />

Motor version Xpmin in mm<br />

65mm<br />

59mm<br />

Fig. 9-22: Distance xpmin to be kept between the two primaries with cable<br />

entries in opposite direction<br />

Option 2:<br />

If the primaries are arranged behind each other and with cable entries in<br />

opposite directions to Fig. 9-20 a defined distance must be kept between<br />

the primaries according to Fig. 9-21.<br />

primary 1<br />

secondary<br />

S N<br />

xp<br />

primary 2<br />

PARALLELANORDNUNG05-MLF-EN.EPS<br />

Fig. 9-23: Option 2: Arrangement of the primaries behind each other with cable<br />

entries in opposite directions<br />

Note: When you determine the correct primary distance with cable<br />

entries in opposite directions according to Fig. 9-20, you can<br />

use the distance between the primary end faces xp as<br />

reference point.<br />

x = n ⋅ 2 ⋅τ<br />

+ x<br />

P<br />

p<br />

pmin<br />

xP: Required grid spacing between the primaries in mm<br />

τP: Electrical pole pitch in <strong>IndraDyn</strong> L motors in mm (all sizes 37.5 mm)<br />

n: Integer factor (depends on mounting distance)<br />

Fig. 9-24: Determining the grid distance between the primaries with cable<br />

entries in opposite directions<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-15<br />

Minimum distance between the<br />

primaries (Option 2)<br />

Requirement<br />

Power cable connection<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

For a motor arrangement with cable entries at opposite directions, the<br />

following size-related minimum distances between the primaries result<br />

from:<br />

Motor version Xpmin in mm<br />

Standard encapsulation<br />

sizes (all) 40mm + n ⋅ 2 ⋅τ<br />

p<br />

Thermal encapsulation<br />

sizes (all) 71mm + n ⋅ 2 ⋅τ<br />

p<br />

n: The integer factor n must be chosen in that way, so that the following<br />

conditions can be kept.<br />

τP: Electrical pole pitch in <strong>IndraDyn</strong> L motors in mm (all sizes 37.5 mm)<br />

Fig. 9-25: Distance xpmin to be kept between the two primaries with cable<br />

entries in opposite direction<br />

x p min<br />

><br />

permissible<br />

bending radius motor cable<br />

Fig. 9-26: Distance xpmin to be kept between the two primaries with cable<br />

entries in opposite direction<br />

The connection of the power wires of the connection cable on the drive<br />

controller at parallel arrangement of the primaries with outgoing cable in<br />

the cross-direction depend on the direction of the outgoing cable.<br />

Connection at arrangement acc. to Fig. 9-9<br />

Outgoing cable in the same direction<br />

Drive-controller X5 1 2 3<br />

Primary 1 1 2 3<br />

Primary 2 1 2 3<br />

Connection at arrangement acc. to Fig. 9-20<br />

Outgoing cable in the same direction<br />

Drive-controller X5 1 2 3<br />

Primary 1 1 2 3<br />

Primary 2 1 3 2<br />

Fig. 9-27: Connection of the power wires at parallel arrangement of the<br />

primaries on a drive-controller<br />

Note: For detailed information to electrical connection please refer<br />

to Chapter 8 Connection system.<br />

Note: The primary 1 according to Fig. 9-20 is always the reference<br />

motor that is used for determining the sensor polarity and for<br />

commutation setting. See also Chapter 14 “Commissioning”.<br />

Ensure that the secondary is correctly aligned.


9-16 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Gantry Arrangement<br />

Operation with two linear scales and drive controllers (Gantry<br />

arrangement) should be planned if there are load conditions that are<br />

different with respect to place and time, and sufficient rigidity between<br />

the motors cannot be ensured. This is frequently the case with axis in a<br />

Gantry structure, for example.<br />

Note: Parallel motors may also be used with a Gantry arrangement.<br />

controller 2 drive controllers<br />

3 ~<br />

Fig. 9-28: Gantry arrangement<br />

length measuring system<br />

length measuring system<br />

primary<br />

no mechanically<br />

rigid coupling<br />

primary<br />

secondary<br />

secondary<br />

GANTRYANORDNUNG01-MLF-EN.EPS<br />

With Gantry arrangements it must be remembered that the motors may<br />

be stressed unsymmetrically, although the position offset is minimized.<br />

As a consequence, this permanently existing bas load may lead to a<br />

generally higher stress than in a single arrangement. This must be taken<br />

into account when the drive is selected.<br />

Note: The asymmetric stress can be reduced to a minimum by<br />

exactly aligning the length measuring system and the primary<br />

and secondary parts to each other, and by a drive-internal<br />

axis error compensation.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-17<br />

Vertical axes<br />

Weight compensation<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

WARNING<br />

Uncontrolled movements<br />

⇒ When linear motors are used in vertical axes, it<br />

must be taken into account that the motor is not<br />

self-locking when power is switched off. Lowering<br />

the axis can only be secured by an appropriate<br />

holding brake (see also Chapter 9.17 “Braking<br />

Systems and Holding Devices”).<br />

Suitable holding devices must be used for preventing the axis from<br />

sinking after the power has been switched off. These holding devices<br />

can be actuated electrically, pneumatically or hydraulically.<br />

Note:<br />

• Adequate holding devices are integrated in most of today´s weight<br />

compensation systems.<br />

• On vertical axis, the use of an absolute measuring system is<br />

recommended. Alternatively, also an incremental measuring system,<br />

in connection with a hall sensor box (see Chapter 7 “Accessories”)<br />

can be used.<br />

An additionally used weight compensation ensures that the motor is not<br />

exposed to an unnecessary thermal stress that is caused by the holding<br />

forces and the acceleration capability of the axis is independent of the<br />

motion direction. The weight compensation can be pneumatic or<br />

hydraulic.<br />

Weight compensation with a counterweight is not suitable since the<br />

counterweight must also be accelerated.


9-18 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.5 Feed and Attractive Forces<br />

Attractive forces between the primary and the secondary<br />

Considering the attractive force<br />

in motor installation<br />

When it is installed, a synchronous linear motor has a permanently<br />

effective attractive force between the primary and the secondary that<br />

results from its principle. With synchronous linear motors, this attractive<br />

force also exists when the motor is switched off.<br />

primary<br />

F<br />

secondary<br />

attractive force<br />

Fig. 9-29: Attractive force between the primary and the secondary<br />

ANZKRAFT01-MLF-EN.EPS<br />

These attractive forced must always be taken into account in the<br />

mechanical design of the system.<br />

Depending on the motor arrangement, the attractive forces must be<br />

accommodated by linear guides and the slide and machine structure.<br />

With an unfavorable arrangement of the motors, the attractive forces<br />

can cause deformations (deflection) in the machine structure and<br />

unacceptable transverse stress on the linear guides. The following points<br />

should therefore be taken into account during the design integration of<br />

the motors:<br />

• Arrange the linear guides as close to the motor as possible.<br />

• To compensate the attractive forces, you can use the parallel<br />

arrangement shown at the right-hand side in Fig. 9-13.<br />

Note: When installed, the attractive force must not reduce the air<br />

gap between the primary and the secondary. The mechanical<br />

design must provide sufficient rigidity.<br />

Note: The attractive forces at the nominal air gap are specified in<br />

each data sheet of a motor in Chapter 4 “Technical Data”.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-19<br />

Air-gap-related attractive forces between the primary and the secondary<br />

attractire force rel. To norminal air gap<br />

160%<br />

140%<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

nominal air gap<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The attractive force rises as the distance between the primary and the<br />

secondary is reduce.<br />

When lowering the primary on the secondary, result by reducing the air<br />

gap increasing attractive forces.<br />

The curve in the following diagram shows the attractive force as a<br />

function of the air gap.<br />

0%<br />

0 mm 5 mm 10 mm 15 mm<br />

measurable air gap<br />

20 mm 25 mm 30 mm<br />

ANZIEHUNGSKRAFT.XLS<br />

Fig. 9-30: Attractive force vs. distance between the primary and the secondary<br />

Air-gap-related attractive forces vs. power supply<br />

The attractive force decreases with rising power supply of the primary.<br />

The curve in the following diagram shows the attractive force vs. the<br />

power supply.<br />

FATT<br />

0<br />

FATT: Attractive force<br />

imax: Max. voltage<br />

Fig. 9-31: Attractive force vs. power supply<br />

imax<br />

-6...7%<br />

ANZIEH_BESTROM-MLF.EPS


9-20 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Air-gap-related feed force<br />

feed force, rel. to nominal air gap<br />

103%<br />

102%<br />

101%<br />

100%<br />

99%<br />

98%<br />

Air gap tolerances<br />

The feed force detailed in the specifications are related to the specified<br />

rated air gap. The tolerances permissible for the measurable air gap<br />

have a slight effect on the feed forces that can be achieved. The<br />

following diagram shows this relationship:<br />

nominal air<br />

gap<br />

97%<br />

0,7 mm 0,8 mm 0,9 mm 1,0 mm 1,1 mm 1,2 mm 1,3 mm<br />

measurable air gap<br />

LUFTSPALTABHÄNGIGE VORSCHUBKRAFT MLF_EN.XLS<br />

Fig. 9-32: Feed force within the air gap tolerance of synchronous linear motors<br />

<strong>IndraDyn</strong> L<br />

Note: Sizes in Fig. 9-32 are only valid for <strong>IndraDyn</strong> L synchronous<br />

linear motors; there is no general correlation for other motor<br />

types.<br />

Reduced overlapping between the primary and the secondary<br />

Inception of the force reduction<br />

When moving in the end position range of an axis, it can be necessary<br />

that the primary moves beyond the end of the secondary. This results in<br />

a partial coverage between the primary and the secondary.<br />

If the primary and the secondary are only partially covered, follows a<br />

reduced feed force and attractive force.<br />

The force reduction does not start immediately. It differs according to the<br />

encapsulation types and the installation position of the primary.<br />

Outside the beginning and end areas, the force is reduced linearly as a<br />

function of the reduced coverage area.<br />

The following diagram illustrates the correlation between the coverage<br />

between the primary and the secondary and the resulting force<br />

reduction.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-21<br />

feed and attractive force as a function<br />

of the coverage factor between<br />

primary and secondary part<br />

100 %<br />

90 %<br />

80 %<br />

70 %<br />

60 %<br />

50 %<br />

40 %<br />

30 %<br />

20 %<br />

10 %<br />

0 %<br />

SR1<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

s R<br />

overall length of the primary part<br />

s R<br />

PRIMPARTOVSEC02-MLF-EN.EPS<br />

Fig. 9-33: Force reduction with partial coverage of the primary and the<br />

secondary<br />

MOUNTING POSITION 1<br />

SR2<br />

primary<br />

secondary<br />

primary primary<br />

secondary<br />

SR1<br />

MOUNTING POSITION 2<br />

SR2<br />

primary<br />

secondary<br />

secondary<br />

PRIMPARTOVSEC04-MLF-EN.EPS<br />

Fig. 9-34: Presentation of force reduction with regard to Fig. 9-33<br />

Motor version<br />

Installation position 1<br />

SR1 [mm] SR2 [mm]<br />

Standard encapsulation 30 5<br />

Thermal encapsulation 52 8<br />

Installation position 2<br />

Standard encapsulation 5 30<br />

Thermal encapsulation 8 52<br />

Fig. 9-35: Partial coverage vs. installation position<br />

The partial coverage of the primary and the secondary must not be used<br />

in continuous operation since there is an increased current consumption<br />

of the motor. Instabilities in the control loop can be expected from a<br />

certain reduction of the degree of coverage onwards.<br />

WARNING<br />

Malfunctions and uncontrolled motor<br />

movements due to partial coverage of the<br />

primary and the secondary!<br />

⇒ Partial coverage of the primary and the secondary<br />

only when moving to the end position during a drive<br />

error<br />

⇒ Minimum coverage factor 75%


9-22 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.6 Motor cooling<br />

Thermal behavior of linear motors<br />

Power loss<br />

Thermal time constant<br />

The rated feed force of a synchronous linear motor can be achieved is<br />

mainly determined by the power loss PV that is produced during the<br />

energy conversion process. The power loss fully dissipates in form of<br />

heat. Due to the limited permissible winding temperature it must not<br />

exceed a specific value.<br />

Note: The maximum winding temperature of <strong>IndraDyn</strong> L motors is<br />

155°C. This corresponds to insulation class F.<br />

The total losses of synchronous linear motors are chiefly determined by<br />

the direct load loss of the primary due to the low relative velocities<br />

between the primary and the secondary:<br />

3<br />

4<br />

2<br />

PV ≈ PVi<br />

= ⋅i<br />

⋅R12<br />

⋅<br />

PV: Total loss in W<br />

PVi: Direct load losses in W<br />

i: Current in motor cable in A<br />

R12: Electrical resistance of the motor at 20°C in Ohm<br />

(see Chapter 5 “Technical Data)<br />

fT: Factor temperature-related resistance raise<br />

Fig. 9-36: Power loss of synchronous linear motors<br />

Note: When you determine the power loss according to Figure 9-<br />

36, you must take the temperature-related rise of the<br />

electrical resistance into account. At a temperature rise of<br />

115 K (from 20°C up to 135°C), for example, the electrical<br />

resistance goes up by the factor fT = 1.45.<br />

The temperature variation vs. the time is determined by the produced<br />

power loss and the heat-dissipation and –storage capability of the motor.<br />

The heat-dissipation and –storage capability of an electrical machine is<br />

(combined in one variable) specified as the thermal time constant.<br />

Note: With liquid cooling systems, the thermal time constant is<br />

between 5...10 min (depending on size).<br />

The following Figure 9-37 shows a typical heating and cooling process of<br />

an electrical machine. The thermal time constant is the period within<br />

which 63% of the final over temperature is reached. With liquid cooling,<br />

the cooling time constant corresponds to the heating time constant.<br />

Thus, the heating process and the cooling process can both be specified<br />

with the specified thermal time constant (heating time constant) of the<br />

motor.<br />

In conjunction with the duty cycle, the correlation to Fig. 9-38 and Fig. 9-<br />

40 are used for defining the duty type, e.g. acc. to DIN VDE 0530.<br />

f<br />

T<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-23<br />

Overtemperature<br />

63 %<br />

t th<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

heating up with initial overtemperature > 0<br />

heating up with final<br />

overtemperature = 0<br />

Heating up<br />

Final over temperature<br />

Cooling<br />

Time<br />

final overtemperture<br />

cooling<br />

Fig. 9-37: Heating up and cooling down of an electrical machine<br />

t ⎛ − ⎞<br />

tth<br />

ϑ(<br />

t)<br />

= ϑe<br />

⋅ ⎜1−<br />

e ⎟ + ϑa<br />

⋅ e<br />

⎜ ⎟<br />

⎝ ⎠<br />

t<br />

−<br />

tth<br />

ERWAERMUNG MLF_EN.XLS<br />

ϑe: Final over temperature in K<br />

ϑa: Initial over temperature in K<br />

t: Time in min<br />

tth: Thermal time constant in min (see Chapter 4 “Technical Data)<br />

Fig. 9-38: Heating up (over temperature) of an electrical machine compared<br />

with coolant<br />

Since the final over temperature is proportional to the power loss, the<br />

expected final over temperature ϑe can be estimated according to Fig.<br />

9-39:<br />

2<br />

Pce<br />

Feff<br />

ϑe = ⋅ϑe<br />

max = ⋅ 2<br />

PvN<br />

FdN<br />

ϑ<br />

emax<br />

Pce: Permanent power loss or average power loss vs. duty cycle time in<br />

W (see Chapter 11.4 “Determining the Drive Power)<br />

Nominal power loss of the motor in W<br />

PVN:<br />

ϑemax: Maximum final over temperature of the motor in K<br />

Feff: Effective force in N (from application)<br />

FdN: Rated force of the motor in N (see Chapter 4 “Technical data”)<br />

tth: Thermal time constant in min (see Chapter 4 “Technical Data)<br />

Fig. 9-39: Expected final over temperature of the motor<br />

ϑ(<br />

t)<br />

= ϑ<br />

−<br />

e ⋅ e<br />

ϑe: Final over temperature or shutdown temperature in K<br />

t: Time in min<br />

tth: Thermal time constant in min (see Chapter 4 “Technical Data)<br />

Fig. 9-40: Cooling down of an electrical machine<br />

t<br />

t<br />

th


9-24 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Cooling concept of <strong>IndraDyn</strong> L synchronous linear motors<br />

Standard encapsulation<br />

Thermal encapsulation<br />

The request for highest feed forces and minimum installation volume<br />

usually requires linear motors to be equipped with a liquid cooling. The<br />

liquid cooling ensures:<br />

• that the power loss is removed and, consequently, rated feed forces<br />

are maintained;<br />

• that a certain temperature level is maintained at the machine<br />

The cooling and encapsulation concept of <strong>IndraDyn</strong> L motors includes<br />

two different solutions:<br />

Primaries with standard encapsulation are mainly used in the general<br />

automation sector. The cooling system of this motor design is integrated<br />

into the motor and can only be used to discharge lost heat or keeping<br />

the specified continuous feedrate. It offers no additional thermal<br />

decoupling on the motor side to the machine. The maximum<br />

temperature of the contact surface can locally rise up to 60°C. These<br />

maximum temperature gradients can occur independently of the coolant<br />

inlet temperature.<br />

For an optimum thermal decoupling between the motor and the machine<br />

structure, the primary parts of the thermal encapsulation version have an<br />

additional liquid cooling system at the back of the motor and at<br />

longitudinal and frond ends. The constant temperature that can easily be<br />

attained and the minimum heat transfer into the machine make the<br />

primary parts of the thermal encapsulation version particularly suitable<br />

for the utilization in machine tools and in other precision applications.<br />

Inside the motor there is already an optimum connection between the<br />

internal cooling circulation used for removing the power loss and the<br />

cooling ducts of the thermal encapsulation.<br />

The primary is not completely connected with the mounting surface on<br />

the machine side, but only lays on increased bearing points. This<br />

provides an additional thermal decoupling and, consequently, further<br />

minimization of the possible heat transfer into the machine (see Fig. 9-<br />

41).<br />

Note: Using the thermal encapsulation does not provide any<br />

improved performance date, e.g. for the continuous feed<br />

force. The power ratings are identical for both versions.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-25<br />

air gap (1mm)<br />

(additional thermal<br />

decoupling)<br />

2 K<br />

thermal isolation<br />

(not a part of the<br />

secondary)<br />

Secondaries<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

P v<br />

temperature rise of the attachment surface A<br />

against the coolant inlet temperature<br />

machine structure<br />

machine structure<br />

cooling at machine side (option)<br />

Fig. 9-41: Cooling concept for thermal encapsulation<br />

A<br />

A<br />

seating ledges<br />

THERMOKAPSELUNG02-MLF-EN.EPS<br />

The secondary version is identical for both primary part versions. The<br />

secondary does not develop any power loss. With inadvertent conditions<br />

(extended standstill or slow velocity of the primary together with a<br />

simultaneously acting high continuous force), there can be a heat<br />

transfer by the primary due to radiation or convection.<br />

Note: The secondary does not develop any power loss. The<br />

maximum heat infiltration possible of the primary at standstill<br />

and continuous nominal force is approximately 3% of the<br />

motor´s nominal power loss.<br />

The heat transfer depends on the ambient temperature and on the<br />

installation conditions in the machine.<br />

To maintain a constant temperature level in the machine, cooling can be<br />

done at the machine side (e.g. via two cooling pipes). See Fig. 9-41.


9-26 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Coolant<br />

The specified motor data and the characteristics of the motor cooling<br />

system (e.g. continuous feed forces, pressure losses, and flow<br />

characteristics), and all the other specifications in this Chapter are<br />

related to liquid cooling with coolant water. Most cooling devices use<br />

water, too.<br />

The following coolants can be used:<br />

• Water<br />

• Oil<br />

• Air<br />

Note: The specified motor data and the characteristics of the motor<br />

cooling system (e.g. continuous feed forces, pressure losses,<br />

and flow characteristics), and all the other specifications in<br />

this Chapter are related to liquid cooling with coolant water.<br />

This data is no longer valid and must again be calculated or determined<br />

empirically if coolants with different material characteristics are used.<br />

An impairment of the thermal decoupling may also have to be taken into<br />

account, if necessary.<br />

WARNING<br />

Impairing the cooling effect of damaging the<br />

cooling system!<br />

⇒ Adjust coolant and flow to the required motor<br />

performance data<br />

⇒ With coolant water use anticorrosion agent and<br />

observe the specified mixture and the pH-value.<br />

⇒ Use approved anticorrosion agents, only<br />

⇒ Do not use cooling lubricants from machining<br />

process<br />

⇒ Filter the coolant<br />

⇒ Do not use flowing water<br />

⇒ Use a closed cooling circuit<br />

⇒ Adhere to the specified inlet temperatures<br />

⇒ Do not exceed the maximum pressure<br />

⇒ Motor operation not without liquid cooling<br />

Coolant additives<br />

Corrosion protection and chemical stabilization required a suitable<br />

additive to be added to the cooling water. The corrosion protection<br />

agent must be suitable for a mixed installation (steel or iron, aluminum,<br />

copper and brass). The required mix (acc. to the manufacturer´s<br />

specifications) must be adhered to and/or verified. Larger differences<br />

can lead to changes in the stability of the emulsion, the behavior towards<br />

sealant, and the corrosion protection capability.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-27<br />

Watery solutions<br />

Emulsion with corrosion<br />

protection oil<br />

pH-value coolant<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Watery solutions ensure a reliable corrosion protection without<br />

significant changes of the physical property of the water. The<br />

recommended additives do not contain any water-endangering<br />

substances, according to the water endangering classes (WGK).<br />

Corrosion protection oils for coolant systems contain emulsifiers which<br />

ensure a fine allocation of the oil in the water. The oily components of<br />

the emulsion protect the metal surface of the coolant duct against<br />

corrosion and cavitation. Herewith, an oil content of 0.5 – 2 volume<br />

percent has proved itself. Does the corrosion protection oil compared<br />

with the corrosion protection has also the coolant pumping lubricant,<br />

then the oil content of 5 volume percent is necessary. (observe the<br />

requirements of the pump manufacturers!)<br />

Description<br />

1%...3% emulsions<br />

Manufacturer<br />

Aquaplus 22 Petrofer, Hildesheim<br />

Varidos 1+1 Schilling Chemie, Freiburg<br />

33%-emulsions<br />

Glycoshell Deutsche Shell Chemie GmbH, Eschborn<br />

Tyfocor L Tyforop Chemie GmbH, Hamburg<br />

OZO Frostschutz Deutsche Total GmbH, Düsseldorf<br />

Aral Kühler-Frostschutz A ARAL AG, Bochum<br />

BP antifrost X 2270 A Deutsche BP AG, Hamburg<br />

Emulsifiable mineral oil concentrate<br />

Shell Donax CC (WGK: 3) Shell, Hamburg<br />

Fig. 9-42: Recommended coolant additives<br />

Note: The specified coolant additives are only a recommendation of<br />

BOSCH REXROTH. Please contact your responsible sales<br />

representative when using another coolant additive.<br />

Not only the mixture, but also the pH-value of the used coolant must be<br />

checked in suitable distances. The coolant should be chemically neutral.<br />

Larger differences can lead to changes in the stability of the emulsion,<br />

the behavior towards sealant, and the corrosion protection capability.<br />

Note: Keep the pH-value of the used coolant controlled in 6-8 pH!


9-28 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Temperature range<br />

Continuous feed force vs.<br />

coolant temperature<br />

Coolant temperature<br />

The recommended temperature range of the coolant is 15...40°C. The<br />

coolant temperature must never be outside this range. The adjusted<br />

coolant inlet temperature must be chosen with regard to the actual<br />

existing environmental temperature and should be max. 5°C lower than<br />

the measured environmental temperature.<br />

An overstepping of the recommended temperature range leads to a<br />

stronger reduction of the continuous feed force.<br />

Note: The coolant inlet temperature should be maximum 5k lower<br />

than the actual existing room temperature to avoid<br />

condensation.<br />

WARNING<br />

Reduction of the continuous feed force of<br />

destruction of the motor!<br />

⇒ Keep coolant within permissible temperature range<br />

The specification of the rated feed force in the technical motor<br />

specifications is related to a coolant inlet temperature of 30°C.<br />

If the inlet temperature is different, there is a minor change of the<br />

continuous feed force according to Fig. 9-43:<br />

Confinuous feed force<br />

105%<br />

100%<br />

95%<br />

15 °C 20 °C 25 °C 30 °C 35 °C 40 °C<br />

Cooling water inlet temperature<br />

KMTEMPERATUR LSF.XLS<br />

Fig. 9-43: Continuous feed force vs. coolant flow temperature<br />

Maximum pressure<br />

With all motor versions, the maximum system pressure via the internal<br />

system circulation of the motor is 10 bar.<br />

Pressure fluctuations within the cooling circuit should not exceed ± 1 bar<br />

during motor operation. Beyond pressure fluctuations or pressure peaks<br />

are not permitted!<br />

WARNING<br />

Motor destruction!<br />

⇒ Keep coolant within permissible inlet pressure.<br />

⇒ Incorrect pressure fluctuations and pressure peaks<br />

have to be excluded via constructive measures.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-29<br />

Sizing the cooling circuit<br />

Coolant temperature rise<br />

Pressure drop<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Operation of <strong>IndraDyn</strong> L synchronous linear motors<br />

without liquid cooling<br />

In certain exceptions it can be necessary or possible, to do without a<br />

liquid cooling. Depending on the size, this results in a reduction of the<br />

continuous nominal force to approximately 40...45%. It does not reduce<br />

the maximum force of the motors.<br />

Depending on the load, the temperature at the contact surface of the<br />

primary may rise up to 140%C without liquid cooling.<br />

WARNING<br />

Drastic reduction of the rated feed force and<br />

significant heating and stress of the machine<br />

structure if synchronous linear motors are used<br />

without liquid cooling!<br />

⇒ Provide liquid cooling<br />

⇒ The reduction of the rated force and the heating of<br />

the machine structure (stress due to expansion)<br />

must be included in the sizing and design of axes<br />

that are used without liquid cooling.<br />

Q<br />

T 1, p 1<br />

Q: Flow quantity<br />

T1: Coolant inlet temperature<br />

T2: Coolant outlet temperature<br />

p1: Inlet pressure<br />

p2: Outlet pressure<br />

Fig. 9-44: Liquid-cooled component<br />

P v<br />

T T T − = ∆<br />

T1: Coolant inlet temperature in K<br />

T2: Coolant outlet temperature in K<br />

∆T: Coolant temperature rise in K<br />

Fig. 9-45: Coolant temperature rise in K<br />

2<br />

p p p − = ∆<br />

1<br />

1<br />

2<br />

T 2, p 2<br />

p1: Inlet pressure<br />

p2: Outlet pressure<br />

∆p: Pressure drop<br />

Fig. 9-46: Pressure drop across traversed component<br />

KUEHLUNG01-MLF-EN.EPS


9-30 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Design criteria<br />

Coolant flow to maintain the<br />

rated feed force<br />

Maintaining a constant<br />

temperature level at thermal<br />

encapsulation<br />

Related to the motor, two basic application-related requirements must be<br />

distinguished when the cooling circuit of synchronous linear motors is<br />

sized.<br />

1. Liquid cooling is only used for removing the power loss and thus for<br />

maintaining the specified rated forces (e.g. for standard<br />

encapsulation motor version)<br />

2. At the same time, liquid cooling shall ensure a defined temperature<br />

level at the contact surface (e.g. for the thermal encapsulation motor<br />

version).<br />

Flow quantity<br />

<strong>Rexroth</strong> recommends to dimension the coolant flow for motors up to size<br />

070 to ~ 5l/min, for size 100 to ~ 6l/min.<br />

The minimum coolant flow required to maintain the rated feed force is<br />

defined in Chapter 4 “Technical Data”.<br />

The specification of this value is based on a rise of the coolant<br />

temperature by 10 K.<br />

Figures 9-47 and 9-48 are used to determine the necessary coolant flow<br />

at different temperature rises and / or different coolants:<br />

Pco<br />

⋅ 60000<br />

Q =<br />

c ⋅ ρ ⋅ ∆T<br />

Q: Rated coolant flow in l/min<br />

Pro: Removed power loss in W<br />

c: Specific heat capacity of the coolant in J / kg - K<br />

ρ: Density of the coolant in kg/m³<br />

∆T: Coolant temperature rise in K<br />

Fig. 9-47: Coolant flow required for removing a given power loss.<br />

Coolant Specific heat capacity c in J / kg -<br />

K<br />

Density ρ in kg/m³<br />

Water 4183 998,3<br />

Thermal oil<br />

(example)<br />

1000 887<br />

Air 1007 1,188<br />

Fig. 9-48: Substance values of different coolants at 20°C<br />

If you want to ensure a defined temperature level at the contact surface<br />

of the primary of the thermal encapsulation motor version, you must use<br />

the formula acc. to Fig. 9-49 to determine the coolant flow that is<br />

necessary for maintaining a maximum coolant temperature rise. It is to<br />

be taken into account that only a part of the power loss remains to be<br />

removed via the thermal encapsulation. ∆Tm is the temperature at the<br />

contact surface of the primary.<br />

Note: A defined temperature level at the contact surface can only<br />

be maintained with the thermal encapsulation motor version.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-31<br />

Pressure drop across the motor<br />

cooling system<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Pco<br />

⋅ 25200<br />

Q =<br />

c ⋅ ρ ⋅ ∆T<br />

Q: Rated coolant flow in l/min<br />

Pco: Removed power loss in W<br />

c: Specific heat capacity of the coolant in J / kg - K<br />

ρ: Density of the coolant in kg/m³<br />

∆Tm: Temperature rise on contact surface in K<br />

Fig. 9-49: Coolant flow required for maintaining a constant temperature level at<br />

the motor contact surface in the case of thermal encapsulation<br />

Prerequisites: Q ≥ Qmin (see chapter 4 “Technical Data”)<br />

Pressure drop<br />

The flow resistance at the pipe walls, curves, and changes of the crosssection<br />

produces a pressure drop along the traversed components (see<br />

Fig. 9-44).<br />

The pressure drop ∆p rises as the flow quantity rises (see Fig. 9-50).<br />

pressure drop Dp<br />

flow quantity Q<br />

Fig. 9-50: Pressure drop vs. flow quantity; general representation<br />

m<br />

KUEHLUNG02-MLF-EN.EPS<br />

On the basis of the constant for determining the pressure drop kdp that is<br />

explained in Chapter 4 “Technical Data”, the pressure drop across the<br />

internal motor cooling circuit can be determined as follows:<br />

∆p<br />

= k ⋅ Q<br />

m<br />

dp<br />

1.<br />

75<br />

pm: Pressure drop across the internal motor cooling circuit in bar<br />

Q: Flow quantity in l/min<br />

kdp: Constant for determining the pressure drop (see Chapter 4<br />

“Technical data”)<br />

Fig. 9-51: Determining the pressure drop vs. the flow quantity


9-32 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

upstream<br />

coolant<br />

Overall pressure drop<br />

heat<br />

transfer<br />

The pressure drop across the overall system is determined by the sum<br />

of a series of partial pressure drop (see Fig. 9-52). Usually, the pressure<br />

drop across the internal motor cooling system is relatively small.<br />

heat removal device<br />

Dp w<br />

container<br />

heat exchanger<br />

Dp p<br />

coolant<br />

pump<br />

Q<br />

Dp p<br />

coolant<br />

lines<br />

Dp a<br />

connections<br />

motor<br />

Dp m<br />

heat<br />

transfer<br />

KUEHLUNG03-MLF-DE.EPS<br />

Fig. 9-52: General arrangement of a liquid cooled motor with heat removal<br />

facility<br />

Note: The overall pressure drop of the cooling system is determined<br />

by various partial pressure drops (motor, feeders, connectors,<br />

etc.). This must be taken into account when the cooling circuit<br />

is sized.<br />

Note: With all motor versions, the maximum system pressure via<br />

the internal system circulation of the motor is 10 bar.<br />

Cooling capacity<br />

The specifications that are needed for determining the cooling capacity<br />

which is required for a synchronous linear motor can be found in Chapter<br />

11.4 “Determining the Drive Power”.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-33<br />

Liquid cooling system<br />

upstream<br />

coolant<br />

Heat removal device<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

heat<br />

output<br />

heat<br />

output<br />

Machines and systems can require liquid cooling for one or more<br />

working components. If several liquid-cooled drive components exist,<br />

they are connected to the heat removal device via a distribution unit.<br />

heat removal device<br />

heat removal device<br />

main distributor<br />

coolant temperature<br />

controller<br />

coolant lines<br />

control<br />

cabinet<br />

motor<br />

motor 1<br />

motor 2<br />

motor 3<br />

motor 4<br />

control cabinet air<br />

cooler<br />

distributor<br />

KUEHLUNG04-MLF-EN.EPS<br />

Fig. 9-53: General arrangement of cooling systems with one and more drive<br />

components<br />

The heat removal device carries off the total heat that was fed into the<br />

liquid into a higher-level coolant. It provides a temperature-controlled<br />

coolant and thus maintains a required temperature level at the<br />

components that are to be cooled.<br />

There are three different types of heat removal devices (see Fig. 9-54).<br />

They are identified by the type of the heat exchanger between the<br />

different media:<br />

1. Air-to liquid cooling unit<br />

2. Liquid-to-liquid cooling unit<br />

3. Cooling unit<br />

A heat removal device includes a heat exchanger, a coolant pump<br />

container and a coolant container (see Fig. 9-52).


9-34 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

5<br />

1<br />

2<br />

3<br />

air-liquid cooling unit liquid-liquid cooling unit<br />

1<br />

cooling unit<br />

Fig. 9-54: Heat removal devices<br />

Air-to liquid<br />

cooling unit<br />

2<br />

7<br />

6<br />

Liquid-to-liquid cooling<br />

unit<br />

1<br />

1 coolant pump<br />

2 coolant container<br />

3 air-liquid heat exchanger<br />

4 liquid-liquid heat exchanger<br />

5 air-cooled condenser<br />

6 compressor<br />

7 vaporizer<br />

2<br />

4<br />

KUEHLUNG05-MLF-EN.EPS<br />

Cooling unit<br />

Coolant temperature control accuracy Low (±5 K) Low (±5 K) Good (±1 K)<br />

Upstream coolant circuit required No Yes No<br />

Heating of ambient air Yes No Yes<br />

Power loss recovery No Yes No<br />

Size of the cooling unit Small Small Large<br />

Dependent of ambient temperature Yes No No<br />

Environment-damaging coolant No No Yes<br />

Comments on utilization criteria Particularly<br />

suitable for<br />

stand-alone<br />

machines that<br />

do not have an<br />

upstream<br />

coolant circuit<br />

available and<br />

do not have to<br />

fulfill high<br />

requirements<br />

on the stability<br />

of the coolant<br />

temperature.<br />

This cooling type is<br />

particularly suitable for<br />

systems with existing<br />

central feedback cooler. Id<br />

does fulfill high<br />

requirements on the<br />

stability of the coolant<br />

temperature.<br />

Particularly suitable for high<br />

requirements on the thermal<br />

stability (high-precision<br />

applications, for example).<br />

Fig. 9-55: Overview of the heat removal devices according to utilization criteria<br />

Coolant lines<br />

The coolant lines are a major part of the cooling system. They have a<br />

great influence on the system´s operational safety and pressure drop.<br />

The lines can be made up as hoses or pipes.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-35<br />

Laying flexible coolant lines<br />

within the energy chain<br />

Parallel connection<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The coolant lines of linear motor drives with moved primaries must be<br />

laid within a flexible energy chain.<br />

The continuous bending strain of the coolant lines must always be taken<br />

into account when they are sized and selected.<br />

Further optional components<br />

• Distributions<br />

• Coolant temperature controller<br />

• Flow monitor<br />

A message is output when the flow drops below a selectable<br />

minimum flow quantity.<br />

• Level monitor<br />

Chiefly minimum-maximum level monitor to check the coolant level in<br />

the coolant container<br />

• Overflow valve<br />

• Safety valve<br />

Opens a connection between the coolant inlet and the contained<br />

when a certain pressure is reached<br />

• Coolant filter (100 µm)<br />

• Coolant heatings<br />

To provide coolant of a correct temperature, in particular for coolant<br />

temperature control<br />

• Restrictor and shut-off valves<br />

Circuit types<br />

The two possible ways of connecting hydraulic components<br />

(series/parallel connection) show significant differences with respect to:<br />

• Pressure drop of the entire cooling system<br />

• Capacity of the coolant pump<br />

• Temperature level and controllability of the individual components<br />

that are to be cooled<br />

SQ<br />

J 1<br />

Q 1<br />

J 1<br />

Q2 PV2 J2 SQ<br />

Q 3<br />

P V1<br />

P V3<br />

Fig. 9-56: Parallel connection of liquid-cooled drive components<br />

Dp<br />

J 3<br />

J<br />

KUEHLUNG06-MLF-EN.EPS<br />

The parallel connection is characterized by nodes in the hydraulic<br />

system. The sum of the coolant streams flowing into a node is equal to<br />

the sum of the coolant streams flowing out of this node. Between two<br />

nodes, the pressure difference (pressure drop) is the same for all<br />

intermediate cooling system branches.


9-36 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Series connection<br />

Q = Q<br />

1<br />

+ Q<br />

∆ p = ∆p<br />

= ∆p<br />

= ∆p<br />

1<br />

2<br />

... + Q<br />

∆p: Pressure drop<br />

Q: Flow quantity<br />

Fig. 9-57: Pressure drop and flow quantity in the parallel connection of<br />

hydraulic components<br />

When several working components are cooled, a parallel connection is<br />

advantageous for the following reasons:<br />

• The individual components that are to be cooled can be cooled at the<br />

individual required flow quantity. This means a high thermal<br />

operational reliability.<br />

• Same temperature level at the coolant entry of all components (equal<br />

machine heating)<br />

• Same pressure difference between coolant entry and outlet of all<br />

components (no high overall pressure required)<br />

Q, J<br />

J 1<br />

2<br />

J < J 1 < J 2 < J 3<br />

P V1 P V2 P V3<br />

n<br />

J 2<br />

Dp 1 , DJ 1 Dp 2 , DJ 2 Dp 3 , DJ 3<br />

Dp<br />

Fig. 9-58: Series connection of liquid-cooled drive components<br />

n<br />

J 3<br />

KUEHLUNG07-MLF-EN.EPS<br />

In series connection, the same coolant stream flows through all<br />

components that are to be cooled. Each component has a pressure<br />

drop between coolant inlet and coolant outlet. The individual pressure<br />

drops add up to the overall pressure drop of the drive components.<br />

Series connection does not permit any individual selection of the flow<br />

quantity required for the individual components to be made. It is only<br />

expedient if the individual components that are to be cooled need<br />

approximately the same flow quantity and bring about only a small<br />

pressure drop or if they are installed very far away from the heat removal<br />

device.<br />

Q = Q<br />

1<br />

= Q<br />

1<br />

2<br />

= Q<br />

∆ p = ∆p<br />

+ ∆p<br />

... + ∆p<br />

∆p: Pressure drop<br />

Q: Flow quantity<br />

Fig. 9-59: Pressure drop and flow quantity in the parallel connection of<br />

hydraulic components<br />

The following disadvantages of series connection must always be taken<br />

into account:<br />

2<br />

n<br />

n<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-37<br />

Combination of series and<br />

parallel connection<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

• The required system pressure corresponds to the sum of all pressure<br />

drops of the individual components. This means a reduced hydraulic<br />

operational safety due to a high system pressure.<br />

• The temperature level of the coolant rises from one component to the<br />

next. Each power loss contribution to the coolant rises its temperature<br />

(inhomogeneous machine heating)<br />

• Some components may not be cooled as required since the flow<br />

quantity cannot be selected individually.<br />

Combining series and parallel connections of the drive components that<br />

are to be cooled permits the benefits of both connection types to be<br />

used.<br />

SQ<br />

J 0<br />

Q 1<br />

Q2 P J V2<br />

2<br />

SQ<br />

Q 3<br />

P V1<br />

P V3<br />

Q4 P J P 4 V5 J P 5 J V4<br />

V6 6<br />

Fig. 9-60: Combination of series and parallel connection<br />

Dp<br />

J 1<br />

J 3<br />

J<br />

KUEHLUNG08-MLF-EN.EPS


9-38 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.7 Motor temperature Monitoring Circuit<br />

Temperature sensor motor<br />

protection<br />

Sensors temperature<br />

measurement external<br />

In their standard configuration, the primaries of <strong>IndraDyn</strong> L motors are<br />

equipped with built-in motor protection temperature sensors. Every<br />

motor phase contains of one out of three switched in a row ceramic<br />

PTC´s, so that a sure thermical control of the motor in every operation<br />

phase is possible. These thermistors (furthermore: thermistor motor<br />

protection) have a switching character (see Fig. 9-64) and become<br />

evaluated on all Bosch <strong>Rexroth</strong> control devices.<br />

Furthermore all primaries are fitted with an additional thermistor for<br />

external temperature measurement. These sensors (furthermore: sensor<br />

temperature measurement) has nearly a linear characteristic curve (see<br />

Fig. 9-65).<br />

PTC<br />

J<br />

PTC<br />

J<br />

M<br />

3 ~<br />

lead identification<br />

8 (-)<br />

7 (+)<br />

6<br />

5<br />

3<br />

2<br />

1<br />

GNYE<br />

KTY84-130<br />

sensor external temperature measurement<br />

no connection to drive controller<br />

PTC SNM.150.DK.***<br />

motor protection temperatute sensor<br />

connected to drive controller<br />

power connection<br />

Fig. 9-61: Arrangement of temperature sensors at <strong>IndraDyn</strong> L motors<br />

Type PTC SNM.150.DK.***<br />

Rated response temperature ϑNAT<br />

150 °C<br />

Resistor at 25°C ≈ 100...250 Ohm<br />

Fig. 9-62: Temperature sensor motor protection<br />

TEMPSENS01-MLF-EN.EPS<br />

Note: For the parallel arrangement of two or more primary parts, the<br />

motor protection temperature sensors of all primary parts are<br />

connected in series. For further details, please see Chapter 8<br />

“Electrical Connection”.<br />

Type KTY84-130<br />

Resistor at 25°C 577 Ohm<br />

Resistor at 100°C 1000 Ohm<br />

Continuous current at 100°C 2 mA<br />

Fig. 9-63: Temperature measurement sensor<br />

Note: Notice the correct polarity when using the sensor for<br />

temperature measurement external.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-39<br />

temperature sensor resistance in ohms<br />

temperature sensor resistance in ohms<br />

100000<br />

10000<br />

1000<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Motor protection temperature sensors<br />

connecting cores 5 and 6<br />

norminal responce temperature 150°C<br />

=Q=éêáã~êáÉë=áå=ëÉêáÉë=<br />

O=éêáã~êáÉë=áå=ëÉêáÉë<br />

N=íÉãéÉê~íìêÉ=ëÉåëçê=EN=éêáã~êóF=<br />

100<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170<br />

motor winding temperature in °C<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

TEMPERATURSENSOREN LSF.XLS<br />

Fig. 9-64: Characteristik of temperature sensors motor protection (PTC)<br />

temperature measuring sensor KTY84-130<br />

connecting cores 7 (+) und 8 (-)<br />

500<br />

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170<br />

motor winding temperature in °C<br />

Fig. 9-65: Characteristik sensor temperature measurement KTY84-130 (PTC)<br />

A polynomial of degree 3 proves sufficient for describing the resistance<br />

characteristic of the sensor used for temperature measurement (KTY84-<br />

130). Below, this is specified for determining a temperature from a given<br />

resistance, and vice versa.


9-40 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Temperature vs. resistance<br />

Resistance vs. temperature<br />

3<br />

Tw = A ⋅R<br />

KTY + B ⋅RKTY<br />

+ C ⋅RKTY<br />

+ D<br />

Tw: Winding temperature of the motor in °C<br />

RKTY: Resistance of the temperature sensor in Ohms<br />

A: 3.039 ·10 -8<br />

B: -1.44 ·10 -4<br />

C: 0.358<br />

D: -143.78<br />

Fig. 9-66: Polynomial used for determining the temperature with a known<br />

sensor resistance (KTY84)<br />

3<br />

RKTY = A ⋅ Tw<br />

+ B ⋅ Tw<br />

+ C ⋅ Tw<br />

+ D<br />

Tw: Winding temperature of the motor in °C<br />

RKTY: Resistance of the temperature sensor in Ohms<br />

A: 1.065 ·10 -6<br />

B: 0.011<br />

C: 3.93<br />

D: 492.78<br />

Fig. 9-67: Polynomial used for determining the sensor resistance (KTY84) with<br />

a known temperature<br />

2<br />

2<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-41<br />

9.8 Setup Elevation and Ambient Conditions<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The performance data specified for the motors apply in the following<br />

conditions:<br />

• Ambient temperature + 0 bis + 40° C<br />

• Setup heights of 0 m up to 1000 m above MSL<br />

Different conditions lead to a departing of the data according to the<br />

following diagrams. Do occur deviating ambient temperatures and higher<br />

setup elevations at the same time, both utilization factors must be<br />

multiplied.<br />

fT<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

4 40 5 50<br />

tA [°C]<br />

55<br />

0,4<br />

0<br />

1<br />

1 2<br />

(1): Utilization depending on the ambient temperature<br />

(2): Utilization depending on the site altitude<br />

fT: Temperature utilization factor<br />

tA: Ambient temperature in degrees Celsius<br />

fH: Height utilization factor<br />

h: Site altitude in meters<br />

Fig. 9-68: <strong>IndraDyn</strong> L height utilization<br />

fH<br />

0,8<br />

0,6<br />

1000 3000 5000<br />

h [m]<br />

UMGEBHOE-MLF-DE.EPS<br />

If either the ambient temperature or the site altitude exceeds the<br />

nominal data:<br />

1. Multiply the motor data provided in the selection data with the<br />

calculated utilization factor.<br />

2. Ensure that the reduced torque data are not exceeded by your<br />

application.<br />

If both the ambient temperature and the site altitude exceed the nominal<br />

data:<br />

1. Multiply the determined utilization factors fT and fH by each other.<br />

2. Multiply the value obtained by the motor data specified in the<br />

selection data.<br />

Ensure that the reduced motor data are not exceeded by your<br />

application.<br />

Note: The details for the utilization against the site altitude and<br />

environmental temperature do not apply to the defined liquid<br />

coolant on the motor, but on the whole drive system,<br />

consisting of motor, drive controller and mains supply.


9-42 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.9 Protection Class<br />

9.10 Compatibility<br />

The design of the <strong>IndraDyn</strong> L synchronous linear motors complies with<br />

the following degrees of protection according to DIN VDE 0470, Part 1,<br />

ed. 11/1992 (EN 60 529):<br />

Motor components Protection class<br />

Primary in standard encapsulation<br />

Primary in thermal encapsulation<br />

IP 65<br />

Secondary segment<br />

Fig. 9-69: Protection class of <strong>IndraDyn</strong> L motors<br />

The type of protection is defined by the identification symbol IP<br />

(International Protection) and two code numbers specifying the degree of<br />

protection.<br />

The first code number defines the degree of protection against contact<br />

and penetration of foreign particles. The second code number defines<br />

the degree of protection against water.<br />

First figure Degree of protection<br />

6<br />

Protection against penetration of dust (dust-proof);<br />

complete shock protection<br />

Second figure Degree of protection<br />

5<br />

Fig. 9-70: IP degrees of protection<br />

Protection against a water jet from a nozzle directed<br />

against the housing from all directions (jet water)<br />

Note: Tests regarding the second characteristic numeral must be<br />

performed using fresh water. If cleaning is effected using high<br />

pressure and/or solvents, coolants, or penetrating oils, it<br />

might be necessary to select a higher degree of protection.<br />

WARNING<br />

Personal injuries, damaging or destroying motor<br />

components!<br />

⇒ Use <strong>IndraDyn</strong> L synchronous linear motors only in<br />

environments for which the specified class of<br />

protection proves sufficient.<br />

All <strong>Rexroth</strong> controls and drives are developed and tested according to<br />

the state-of-the-art.<br />

However, as it is impossible to follow up the permanent new<br />

development of all material which may come into contact with our<br />

controllers and drives (e.g. lubricants for machine tools), we cannot<br />

generally exclude any reaction with the materials used in our systems.<br />

For this reason, you will have to carry out a test on compatibility among<br />

new lubricants, detergents, etc. and our housing and device materials.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-43<br />

9.11 Magnetic Fields<br />

induction B<br />

0,8 T<br />

0,7 T<br />

0,6 T<br />

0,5 T<br />

0,4 T<br />

0,3 T<br />

0,2 T<br />

0,1 T<br />

0,0 T<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

2<br />

1<br />

The secondaries of synchronous linear motors are equipped with<br />

permanent magnets, which are not magnetic shielded.<br />

To be able to assess EMC problems (e.g. the influence on inductive<br />

switches or inductive measuring systems), chip attraction, and for<br />

human protection, the values of the magnetic induction as a function of<br />

the distance to the secondary are specified below.<br />

The representation distinguishes between ferromagnetic materials (e.g.<br />

steel) and non-ferromagnetic materials (e.g. air), and between different<br />

directions.<br />

1: direction 1, ferromagnetic material<br />

2: direction 1, non-ferromagnetic material<br />

3: direction 2 and 3, areas of both materials<br />

0 mm 10 mm 20 mm 30 mm 40 mm 50 mm 60 mm 70 mm 80 mm 90 mm<br />

Chip attraction<br />

distance to the secondary<br />

INDUKTIONSVERTEILUNG M<br />

Fig. 9-71: Magnetic induction in ferromagnetic and non-ferromagnetic materials<br />

vs. the distance to the secondary<br />

Note: Secondaries of <strong>IndraDyn</strong> L motors generate a static magnetic<br />

field.<br />

Ferromagnetic chips are not attracted at a distance of approximately 100<br />

mm from the surface of the secondary.<br />

Note: It must be ensured that the secondary is not located in the<br />

immediate chip area of the machine. Suitable covers must be<br />

provided.


9-44 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.12 Vibration and Shock<br />

According to IEC 721-3-3 Issue 1987 or EN 60721-3-3 Issue 06/1994,<br />

<strong>IndraDyn</strong> L motors are approved for the utilization in areas that are<br />

exposed to vibration and/or shock as given in Fig. 9-72 and 9-73.<br />

<strong>IndraDyn</strong> L motors may be used in stationary weather-proof operation<br />

corresponding to class 3M5.<br />

Influencing quantity Unit Maximum<br />

value<br />

Amplitude of the excursion at 2 to 9 Hz mm 0,3<br />

Amplitude of the acceleration at 9 to 200<br />

Hz<br />

Fig. 9-72: Limit data for sinusoidal vibrations<br />

m/s² 1<br />

Influencing quantity Unit Maximum<br />

value<br />

Total shock-response spectrum<br />

(according to IEC721-1, :1990; Table 1,<br />

Section 6)<br />

Reference acceleration,<br />

in IEC 721: Peak acceleration<br />

Type II<br />

m/s² 250<br />

Duration ms 6<br />

Fig. 9-73: Limits for shock load<br />

WARNING<br />

Motor damage and loss of warranty!<br />

⇒ A motor, used outside of specified operating<br />

conditions can be damaged. In addition, any<br />

warranty claim will expire.<br />

⇒ Ensure that the maximum values specified in Fig. 9-<br />

72 and Fig. 9-73 for storage, transport, and<br />

operation of the motors are not exceeded.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-45<br />

9.13 Enclosure surface<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The following table shows the condition of the enclosure surface when<br />

delivered.<br />

Motor component Layout of enclosure / enclosure<br />

surface<br />

Primary in standard encapsulation<br />

Primary in thermal encapsulation<br />

Secondary<br />

9.14 Noise emission<br />

Stainless steel V4A<br />

black printing (RAL 9005)<br />

Stainless steel V4A<br />

black printing (RAL 9005); front side<br />

aluminium blank<br />

Cover plate V4A<br />

magnet base carrier C45, chromatic<br />

Fig. 9-74: Layout of enclosure surface<br />

Remarks<br />

Varnish resistant to weather,<br />

yellowing, chalking, thinned acids<br />

and thinned lyes<br />

Varnish resistant to weather,<br />

yellowing, chalking, thinned acids<br />

and thinned lyes<br />

Note: The surface of the motor components may be painted with<br />

additional varnish.<br />

The noise emission of synchronous linear drives can be compared with<br />

conventional inverter-operated feed drives.<br />

Experience has shown that the noise generation chiefly depends on<br />

• the employed linear guides (velocity-related travel noise),<br />

• The mechanical design (following cover, etc.), and<br />

• the settings of drive and controller (e.g. switching frequency)<br />

A generally valid specification is therefore not possible.


9-46 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.15 Length Measuring System<br />

open systems<br />

model<br />

ensapsulated<br />

systems<br />

Peculiarities of synchronous<br />

linear motors<br />

A linear scale is required for measuring the position and the velocity.<br />

Particularly high requirements are placed upon the linear scale and its<br />

mechanical connection. The linear scale serves for high-resolution<br />

position sensing and to determine the current speed.<br />

Note: The necessary length measuring system is not in the scope<br />

of delivery of Bosch <strong>Rexroth</strong> and has to be provided and<br />

mounted from the machine manufacturer himself. (see Fig. 9-<br />

80).<br />

linear scale<br />

integrated into<br />

linear guides<br />

Selection criteria for linear scales<br />

incremental<br />

Fig. 9-75: Classification of linear scales<br />

measuring<br />

principle<br />

incremental,<br />

distance-encoded<br />

reference marks<br />

absolute<br />

It is necessary at synchronous linear motors to receive the position of<br />

the primary relating on the secondary by return after start or after a<br />

malfunction (pole position recognition). Using an absolute linear scale is<br />

the optimum solution here.<br />

Depending on the operating conditions, open or encapsulated linear<br />

scales with different measuring principles and signal periods can be<br />

used. The selection of a suitable linear scales mainly depends on:<br />

• the maximum feed rate (model, signal period)<br />

• the maximum travel (measuring length, model)<br />

• if applicable, utilization of coolant lubricants (model)<br />

• produced dirt, chips etc. (model)<br />

• the accuracy requirements (signal period)<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-47<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Models<br />

Open model Encapsulated model Measuring system,<br />

integrated in rail guides<br />

Advantages:<br />

- High traverse rates<br />

- No friction<br />

- High accuracy<br />

Disadvantage:<br />

- Low protection mode<br />

- Currently no absolute measurement<br />

systems available<br />

- More complicated mounting and<br />

adjustment<br />

Open model<br />

Encapsulated model<br />

Measuring system,<br />

integrated in rail guides<br />

- Easy installation<br />

- High protection rating<br />

- Incremental and absolute<br />

measurement available<br />

- Maximum velocity<br />

currently 120m/min<br />

- Combined guidance and<br />

measurement<br />

- No additional installation required<br />

- Highest protection rating<br />

- High traverse rates<br />

- Little space required<br />

- No absolute measurement systems<br />

available<br />

Fig. 9-76: Advantages and disadvantages of different linear scales models<br />

If there are no dirt, chips, etc. in a machine or system and if coolant<br />

lubricants will never be used, employing an open linear scale is<br />

recommended. Thus open linear scale are frequently used for handling<br />

axes, precision and measuring machines, and in the semiconductor<br />

industry.<br />

Encapsulated systems should be employed if chips are produced and/or<br />

coolant lubricants are used. To achieve highest operational reliability, an<br />

encapsulated system can have additional sealing air. Encapsulated<br />

linear scales are chiefly used at chip-producing machine tools.<br />

The ball and roller rail guides from <strong>Rexroth</strong> are available with an<br />

integrated inductive linear scales. The system consists of a separate<br />

scanner (read head) and a material measure that is integrated into the<br />

rail. The material measure is accommodated in a groove of the guide<br />

rail, and is protected by a tightly welded stainless steel type. The read<br />

head is attached directly to the guide carriage.<br />

The system is insensitive against soiling (e.g. dust, chips, coolant, etc.)<br />

and magnetic fields. Due to the little space required, the compact and<br />

robust device (measuring system and guides) permits simplified<br />

structures compared with an externally attached measuring system.<br />

There are no costs for material and installation of external systems.


9-48 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Absolute scales<br />

Measuring principle<br />

The advantages of an absolute linear scale result from the fact that a<br />

high availability and operational reliability of the axis of motion and,<br />

consequently, of the entire system is guaranteed.<br />

Advantage<br />

• Monitoring and diagnosis functions of the electronic drive system are<br />

possible without any additional wiring<br />

• No axis travel limit switches required<br />

• The maximum available motor force is available at any point of the<br />

travel immediately after power-up.<br />

• No referencing required<br />

• Easy commissioning of horizontal and vertical axes<br />

• pole position recognition only required for initial commissioning<br />

Disadvantage:<br />

• Maximum measuring length is limited (3040mm)<br />

• Only encapsulated systems available<br />

Note: An ENDAT interface is required if absolute linear scales are<br />

used.<br />

Using an absolute linear scales makes it possible that the pole position<br />

recognition of the motor need only be performed once for initial<br />

commissioning. This drive-internal procedure is possible without<br />

activating the power. This provides advantages when commissioning<br />

vertical axes, in particular.<br />

<strong>Rexroth</strong> recommends the absolute linear scale LS181 and LC481 from<br />

Heidenhain. Both systems are equipped with an ENDAT interface.<br />

Fig. 9-77: Absolute encapsulated length measuring system LC181<br />

LC181_1.TIF<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-49<br />

Incremental scales<br />

Incremental linear scales with<br />

distance-encoded reference<br />

marks<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

When an incremental linear scale is used together with a synchronous<br />

linear motor, the pole position must be measured upon each power-up.<br />

This is done, using a drive-internal procedure that must be executed<br />

whenever the axis is switched on. After this, a force processing of the<br />

motor is possible.<br />

Note: With incremental linear scales, the drive-internal pole position<br />

recognition procedure must be executed upon each powerup.<br />

Pole position recognition required the primary part to be<br />

moved!<br />

Advantage<br />

• Depending on the model, travels up to 30 m (or unlimited distance)<br />

possible<br />

• high feed rate possible<br />

• Different signal periods and, consequently, different position<br />

resolutions possible.<br />

Disadvantage:<br />

• Pole position must be measured upon each power-up.<br />

• Pole position recognition required the primary part to be moved<br />

• Pole position recognition is not possible for vertical axes<br />

• Pole position recognition is not possible for securely braked axes or<br />

for axes at the hard stop<br />

• Pole position recognition of Gantry axes may cause problems<br />

• Reference point interpretation and homing switch are required<br />

• Safety limit switch is required<br />

Incremental linear scales with distance-encoded reference marks offer<br />

the benefit of a simplified and, even more important, shortened<br />

referencing. With such a system, referencing requires the axis merely to<br />

be moved by several centimeters (depends on the model).<br />

Note: Distance-encoded scales do not perform absolute<br />

measurement. Pole position recognition must also be<br />

performed upon each power-up (like incremental systems that<br />

are not distance encoded).<br />

lida185.tif<br />

Fig. 9-78: Open incremental linear scales LIDA185C with distance-encoded<br />

reference marks


9-50 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Maximum permissible feed rate<br />

Maximum permissible<br />

acceleration in the measuring<br />

direction<br />

Maximum permissible velocity and acceleration<br />

One limitation factor of the maximum permissible feed rate of a length<br />

measuring system are the sealing lips and the guides of the scan<br />

carriage on the glass rule. Currently, the velocity of an encapsulated<br />

system is limited to 120 m/min.<br />

The other limitation factor of the maximum permissible feed rate is the<br />

frequency limit of the output signals (manufacturer´s specifications) or<br />

the maximum permissible input frequency of subsequent circuits (drive<br />

controller).<br />

v max = fmax<br />

⋅ Signal period ⋅ 60<br />

vmax: Maximum feed rate in m/min<br />

Signal period: Signal period of linear scale in mm<br />

fMAX: Maximum input frequency of scale interface<br />

DAG 1 VSS: 500kHz<br />

DLF 1 VSS: 500kHz<br />

Fig. 9-79: Maximum traverse rate of linear scale related to the maximum input<br />

frequency of the scale interface<br />

The very rigid internal structure of open linear scales permits maximum<br />

acceleration values in the measuring direction of up to 200m/s². To<br />

permit relatively high attachment tolerances, the scan carriage of<br />

encapsulated linear scales cannot rigidly be connected with the mounting<br />

foot. Encapsulated linear scales systems for linear motors, however, are<br />

comparatively rigid and may be used for maximum accelerations in the<br />

measuring direction between 50 m/s² and 100 m/s² (depending on the<br />

length measuring system employed).<br />

Note: Please refer to the documents from the corresponding<br />

manufacturer for detailed and updated information.<br />

Position resolution and positioning accuracy<br />

To reach a high resolution of the linear scale, an interpolation of the<br />

sinusoidal input signal of the linear scale is performed in the drive<br />

controller (see Fig. 10-9). Depending on the maximum travel range and<br />

on the signal period, a drive-internal position resolution of less than 1<br />

mm is possible. (See also Chapter 10.4 Position and Velocity Resolution)<br />

Note: The drive-internal position resolution does not correspond to<br />

the positioning accuracy! The absolute positioning accuracy<br />

is depending on the entire drive system, including mechanical<br />

systems.<br />

Measuring system cables<br />

Ready-made cables of <strong>Rexroth</strong> are available for the electrical connection<br />

between the output of the linear scale and the input of the scale<br />

interface. To ensure maximum transmission and scale interference<br />

safety, you should preferably use these ready-made cables.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-51<br />

Manufacturer<br />

type<br />

Heidenhain<br />

LC 181<br />

Heidenhain<br />

LC 481<br />

Heidenhain<br />

LS 486<br />

Heidenhain<br />

LS 486C<br />

Heidenhain<br />

LS 186<br />

Heidenhain<br />

LS 186C<br />

Heidenhain<br />

LB 382<br />

Heidenhain<br />

LB 382C<br />

Heidenhain<br />

LF 183<br />

Heidenhain<br />

LF 183C<br />

Heidenhain<br />

LF 481<br />

Heidenhain<br />

LF 481C<br />

Heidenhain<br />

LIDA 185<br />

Heidenhain<br />

LIDA 185C<br />

Heidenhain<br />

LIDA 187<br />

Heidenhain<br />

LIDA 187C<br />

Renishaw<br />

RG 2<br />

Heidenhain<br />

LIF 181R<br />

Heidenhain<br />

LIF 181C<br />

Heidenhain LIP<br />

481R<br />

<strong>Rexroth</strong><br />

IML<br />

Signal period<br />

in mm<br />

(S-0-0116)<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Recommended linear scales for linear motors<br />

Model Output<br />

signals<br />

0.016 Encapsulated Sine 1 Vss<br />

0.016 Encapsulated Sine 1 Vss<br />

Measuring<br />

principle<br />

absolute<br />

ENDAT<br />

absolute<br />

ENDAT<br />

Maximum<br />

measuring<br />

length in mm<br />

Maximum<br />

velocity in<br />

m/min<br />

3040 120 8<br />

2040 120 8<br />

0.02 Encapsulated Sine 1 Vss Incremental 2040 120 2<br />

P-0-0074 Reference marks<br />

None<br />

(absolute)<br />

None<br />

(absolute)<br />

one<br />

(Center meas.<br />

length)<br />

0.02 Encapsulated Sine 1 Vss Incremental 2040 120 2 Distance-encoded<br />

0.02 Encapsulated Sine 1 Vss Incremental 3040 120 2<br />

one<br />

(Center meas.<br />

length)<br />

0.02 Encapsulated Sine 1 Vss Incremental 3040 120 2 Distance-encoded<br />

0.04 Encapsulated Sine 1 Vss Incremental 30040 120 2<br />

Selectable by<br />

masks<br />

0.04 Encapsulated Sine 1 Vss Incremental 30040 120 2 Distance-encoded<br />

0.004 Encapsulated Sine 1 Vss Incremental 3040 60 2<br />

Selectable by<br />

magnets<br />

0.004 Encapsulated Sine 1 Vss Incremental 3040 60 2 Distance-encoded<br />

0.004 Encapsulated Sine 1 Vss Incremental 1220 60 2<br />

one<br />

(Center meas.<br />

length)<br />

0.004 Encapsulated Sine 1 Vss Incremental 1220 60 2 Distance-encoded<br />

0.04 Open Sine 1 Vss Incremental 30040 480 2<br />

Selectable by<br />

magnets<br />

0.04 Open Sine 1 Vss Incremental 30040 480 2 Distance-encoded<br />

0.04 Open Sine 1 Vss Incremental 6040 480 2<br />

Selectable by<br />

magnets<br />

0.04 Open Sine 1 Vss Incremental 6040 480 2 Distance-encoded<br />

0.02 Open Sine 1 Vss Incremental 30040 500 2<br />

0.004 Open Sine 1 Vss Incremental 3040 120 2<br />

Selectable by<br />

magnets<br />

one<br />

(Center meas.<br />

length)<br />

0.004 Open Sine 1 Vss Incremental 3040 120 2 Distance-encoded<br />

0.002 Open Sine 1 Vss Incremental 420 60 2<br />

1.000<br />

Integrated in<br />

rail guides<br />

Sine 1 Vss Incremental 4000 600 2<br />

P-0-0074: Drive parameter “Encoder type 1”<br />

S-0-0116: Drive parameter “Encoder 1 resolution”<br />

Fig. 9-80: Recommended linear scales for linear motors<br />

one<br />

(Center meas.<br />

length)<br />

One<br />

(Position to<br />

customer request)<br />

Note:<br />

• To ensure maximum interference immunity, <strong>Rexroth</strong> recommends the<br />

voltage interface with 1Vpp.<br />

• Please refer to the documents from the corresponding manufacturer<br />

for detailed and possibly updated information.


9-52 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Mounting <strong>Linear</strong> scales<br />

Elasticity of the coupling to the<br />

machine<br />

Mounting method<br />

Open linear scales systems<br />

Encapsulated linear scales<br />

systems<br />

Parallel arrangement of motors<br />

with one linear scale system<br />

Gantry axes<br />

With linear drives, the mounting of the measuring system to the machine<br />

can limit the bandwidth of the position control loop. As a consequence<br />

for the design, this means that the coupling between the scan unit and<br />

the rule of an open linear scale, or between the rule enclosure of an<br />

encapsulated linear scale, and the machine – with respect to the natural<br />

frequency – must be significantly higher than the one of the linear scale.<br />

The natural frequencies of today´s encapsulated linear scales are 2kHz<br />

and higher.<br />

It must also be ensured that the linear scales is not attached to vibrating<br />

machine components. In particular, attaching the system in the vicinity of<br />

vibration maximal must be avoided.<br />

In order to minimize the moved masses and to obtain the highest rigidity<br />

in the measuring direction, the scanner unit should always be moved if<br />

possible.<br />

The user should provide an encapsulation if an open linear scale is<br />

employed despite adverse conditions (chips, dust, etc.). It must also be<br />

noted that the scanning head must be adjusted when the open linear<br />

scale is installed. Corresponding adjustment possibilities must be<br />

provided in the design (please heed the specifications of the<br />

manufacturer).<br />

To obtain relatively high installation tolerances, the scan carriage of<br />

encapsulated linear scale is connected with the mounting base via<br />

coupling that is very rigid in the measuring direction and slightly flexible<br />

perpendicularly to the measuring direction. If the rigidity of this coupling<br />

in the measuring direction is too weak, there are low natural frequencies<br />

in the feedback of the position and velocity control loop that can limit the<br />

bandwidth. The encapsulated linear scales that are recommended for<br />

linear motors usually possess a natural frequency in the measuring<br />

direction that is above 2 kHz. Thus, the natural frequency of the linear<br />

scale in the measuring direction can be neglected with respect to the<br />

mechanical natural frequencies of the machine.<br />

If several motors on an axis are used with a single linear scale, the<br />

motors should be positioned as symmetrically as possible.<br />

With a Gantry axis, where each motor of pair of motors is assigned to a<br />

linear scale system, the distance between motor and linear scale should<br />

be as small as possible. The accuracy of the linear scale as such and<br />

with respect to each other should be less than 5 µm/m. Drive-internal<br />

axis error compensations can minimize remaining misalignments<br />

between the linear scales.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-53<br />

9.16 <strong>Linear</strong> Guides<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Depending on the motor arrangement, the attractive, feed and process<br />

forces and the velocities of more than 600 m/min that can be reached<br />

today stress the linear guides. The employed linear guides must the<br />

able to handle<br />

• Attractive force between the primary and the secondary and<br />

• Machining and acceleration forces<br />

Depending on the application, the following linear guides are employed:<br />

• Ball or roll rail guides<br />

• Slideways<br />

• Hydrostatic guides<br />

• Aerostatic guides<br />

The following requirements should be taken into account when a suitable<br />

linear guide system is selected:<br />

• High accuracy and no backlash<br />

• Low friction and no stick-slip effect<br />

• High rigidity<br />

• Steady run, even at high velocities<br />

• Easy mounting and adjustment<br />

9.17 Braking Systems and Holding Devices<br />

The following systems can be used as braking systems and/or holding<br />

devices for linear motors:<br />

• External braking devices<br />

• Clamping elements for linear guides<br />

• Holding brakes integrated in the weight compensation<br />

See also Chapter 16 “Recommended suppliers of additional<br />

components”.<br />

Note: Additional information about stopping linear motors can be<br />

found in the Chapters 9.18 End Position and 9.21 Stopping at<br />

EMERGENCY STOP and in the event of malfunction and in<br />

the appropriate documentation of the used drive-controller.


9-54 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.18 End Position shock absorber<br />

Maximum deceleration when<br />

driving against end stop<br />

Braking distance to be kept<br />

when driving against end stop<br />

Where linear drives with frequently high traverse rates and accelerations<br />

are concerned, uncontrolled movements (such as coasting after a mains<br />

failure) cannot always safely be avoided.<br />

Suitable energy-absorbing end position shock absorber must be<br />

provided in order to protect the machine during uncontrolled coasting of<br />

an axis.<br />

WARNING<br />

Damage on machine or motor components<br />

when driving against hard stop!<br />

⇒ Use suitable energy-absorbing end position shock<br />

absorber<br />

⇒ Adhere to the specified maximum decelerations<br />

Note: The necessary spring excursion of the shock absorbers must<br />

be taken into account when the end position shock absorber<br />

are integrated into the machine (in particular when the total<br />

travel path is determined).<br />

Given by the type of attachment and by the type of the primary (number<br />

of mounting screws, attractive force, mass, etc.), there is a maximum<br />

deceleration in the movement onto an end stop.<br />

If this maximum deceleration is exceeded, this can lead to loosening the<br />

primary and to damaging of motor components.<br />

The maximum permissible deceleration upon moving against end stop is<br />

300 m/s².<br />

Note: Using a suitable end stop shock absorber, the maximum<br />

permissible deceleration for moving against an end stop must<br />

be limited to 300 m/s².<br />

With the known maximum deceleration of 300 m/s² and the maximum<br />

possible velocity, the minimum spring excursion can be calculated as<br />

follwos:<br />

s<br />

min =<br />

2<br />

vmax<br />

2158<br />

smin : Minimum braking distance in mm<br />

vmax: Maximum possible velocity in m/min<br />

Fig. 9-81: Braking distance to be kept when driving against end stop<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-55<br />

9.19 Axis Cover System<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Depending on the application, design, operational principle and features<br />

of synchronous linear motors the following requirements on axis cover<br />

systems apply:<br />

• High dynamic properties (no overshoot, little masses)<br />

• Accuracy and smooth run<br />

• Protection of motor components against chips, dust and<br />

contamination (in particular ferromagnetic parts),<br />

• Resistance to oil and coolant lubricants<br />

• Robustness and wear resistance<br />

The following axis cover systems can be used:<br />

• Bellow covers<br />

• Telescopic covers<br />

• Roller covers<br />

A suitable axis cover system should be configured, if possible, during the<br />

early development process of the machine or system – supportet by the<br />

corresponding specialized supplier (see Chapter “Recommended<br />

suppliers of additional components”).


9-56 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.20 Wipers<br />

Secondary part segments<br />

Ferromagnetic chips<br />

Temperature produced by<br />

friction<br />

Mounting the wiper<br />

It is generally possible, to use a wiper for removing chips directly from<br />

the secondary. The following points must be taken into account when a<br />

suitable wiper system is selected and used.<br />

If possible, a wiper should be used on a whole secondary. If more than<br />

one secondary is used, joints between the secondaries must be taken<br />

into account (destruction of wiper or of secondaries). In these cases, a<br />

defined distance – smaller than the air gap among the primary and the<br />

secondary – between wiper and the secondary or a wiper in the form of a<br />

hard brush can help.<br />

The secondary attracts ferromagnetic chips at a distance of approx. 100<br />

mm. These attractive forces must be taken into account when<br />

ferromagnetic chips are removed.<br />

If the utilization of the wiper causes a significant rise of the temperature<br />

on the secondary surface, it must be ensured that this temperature does<br />

not exceed the limit of 70°C.<br />

The wiper should be mounted to the superordinated machine<br />

construction. Mounting the wiper in additional holes directly on the<br />

primary is not permitted.<br />

WARNING<br />

Damage or destruction of motor components by<br />

inappropriate utilization of a wiper on the<br />

secondary part!<br />

⇒ If possible, utilization only on whole secondaries<br />

⇒ Take slightly height differences of the secondaries<br />

into account<br />

⇒ Take temperature rises due to friction into account<br />

⇒ Mounting the wiper in additional holes directly on<br />

the primary is not permitted<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-57<br />

9.21 Drive and Control of <strong>IndraDyn</strong> L motors<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The following figures shows a complete linear direct drive, consisting of a<br />

synchronous linear motor, length scale system, drive controller and<br />

superordinate control.<br />

master control<br />

act. pos. values,<br />

communication<br />

Fig. 9-82: <strong>Linear</strong> direct drive<br />

Drive controller and power supply modules<br />

Control systems<br />

drive controller<br />

ðcurrent control<br />

ðvelocity control<br />

ðspeed control<br />

ðfine interpolation<br />

power,<br />

sensor signals<br />

3~<br />

motor Motor<br />

linear scale<br />

ðabsolute ENDAT<br />

ðincremental<br />

ðdistance-encoded<br />

ANTRSYST01-MLF-EN.EPS<br />

To control <strong>IndraDyn</strong> L motors, different digital drive controllers and power<br />

supply modules are available. These drive systems are configurable and<br />

of a modular or compact structure.<br />

Note: The drive controllers and the related firmware for the<br />

<strong>IndraDyn</strong> L motors are the same as for the rotary drives from<br />

Bosch <strong>Rexroth</strong>.<br />

A master control is required for generating defined movements.<br />

Depending on the functionality of the whole machine and the used<br />

control systems, Bosch <strong>Rexroth</strong> offers different control systems.


9-58 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

9.22 Shutdown upon EMERGENCY STOP and in the Event of a<br />

Malfunction<br />

Shutdown by the drive<br />

The shutdown of an axis, equipped with an <strong>IndraDyn</strong> L motor, can be<br />

initiated by<br />

• EMERGENCY STOP,<br />

• drive fault (e.g. response of the encoder monitoring function) or<br />

• mains failure<br />

For the options of shutting down an <strong>IndraDyn</strong> L motor in the event of a<br />

malfunction, distinction must be made between<br />

• Shutdown by the drive,<br />

• Shutdown by a master control and<br />

• Shutdown by a mechanical braking device.<br />

As long as there is no fault or malfunction in the drive system, shutdown<br />

by the drive is possible. The shutdown possibilities depend on the<br />

occurred drive error and on the selected error response of the drive.<br />

Certain faults (interface faults or fatal faults) lead to a force<br />

disconnection of the drive.<br />

WARNING<br />

Death, serious injuries or damage to equipment<br />

may result from an uncontrolled coasting of a<br />

switched-off linear drive!<br />

⇒ Construction and design according to the safety<br />

standards<br />

⇒ Protection of people by suitable barriers and<br />

enclosures<br />

⇒ Using external mechanical braking facilities<br />

⇒ Use suitable energy-absorbing end position shock<br />

absorber<br />

The parameter values of the drive response to interface faults and nonfatal<br />

faults can be selected. The drive switches off at the end of each<br />

fault response.<br />

The following fault responses can be selected:<br />

0 – Setting velocity command value to zero<br />

Setting force command value to zero<br />

Setting velocity command value to zero with command value ramp and<br />

filter<br />

3 - Retraction<br />

Note: Please refer to the corresponding firmware function<br />

description for additional information about the reaction to<br />

faults and the related parameter value assignments.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-59<br />

Shutdown by a master control<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Shutdown by control functions<br />

Shutdown via mechanical braking device<br />

Shutdown by the master control should be performed in the following<br />

steps:<br />

1. The machine PLC or the machine I/O level reports the fault to the<br />

CNC control<br />

2. The CNC control shuts down the drives via a ramp in the fastest<br />

possible way<br />

3. The CNC control causes the power at the power supply module to be<br />

shut down.<br />

Drive initiated by the control shutdown<br />

Shutdown by the master control should be performed in the following<br />

steps:<br />

1. The machine I/O level reports the fault to the CNC control and SPS<br />

2. The CNC control or the PLC resets the drive enabling signal of the<br />

drives. If SERCOS interface is used, it deactivates the “E-STOP”<br />

input at the SERCOS interface module.<br />

3. The drive responds with the selected error response.<br />

4. The power at the power supply module must be switched off 500 ms<br />

after the drive enabling signal has been reset or the “E-STOP” input<br />

has been deactivated.<br />

Note: The delayed power shutdown ensures the safe shutdown of<br />

the drive by the drive controller. With an undelayed power<br />

shutdown, the drive coasts in an uncontrolled way once the<br />

DC bus energy has been used up.<br />

Shutdown by mechanical braking devices should be activated<br />

simultaneously with switching off the power at the power supply module.<br />

Integration into the holding brake control of the drive controllers is<br />

possible, too. The following must be observed:<br />

• Braking devices with electrical 24V DC control (electrically un-locking)<br />

and currents < 2 A can directly be triggered.<br />

• Braking devices with electrical 24V DC control and currents > 2 A can<br />

be triggered via a suitable contractor.<br />

Once the drive enabling signal has been removed, the holding brake<br />

control has the following effect:<br />

• Fault reaction “0”, “1” and “3”.<br />

The holding brake control drops to 0 V once the velocity is less than<br />

10 mm/min or a time of 400 ms has elapsed.<br />

• Fault reaction “2”<br />

The holding brake control drops to 0 V immediately after the drive<br />

enabling signal has been removed.


9-60 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Response to a mains failure<br />

Determining the required<br />

additional DC bus capacitor<br />

Short-circuit of DC bus<br />

In order to be able to shut down the linear drive as fast as possible in the<br />

event of a mains failure,<br />

• either an uninterruptible power supply or<br />

• additional DC bus capacities (condensers), and /or<br />

• mechanical braking facilities<br />

must be provided.<br />

Additional capacities in the DC bus represent an additional energy store<br />

that can supply the brake energy required in the event of a mains failure.<br />

Note: Internal control circuits are also supplied by the DC bus;<br />

external backup is not necessary.<br />

The additional capacity required for a shutdown upon a mains failure can<br />

be determined as follows:<br />

C<br />

add<br />

m ⋅ v ⎡<br />

⎛ ⎞⎤<br />

max<br />

Fmax<br />

FR<br />

= ⋅ ⎢3,<br />

5 ⋅ ⋅R<br />

− v ⋅<br />

⎜ + 0.<br />

3<br />

⎟<br />

2<br />

2<br />

2 12 max<br />

⎥<br />

U − U ⎢⎣<br />

k<br />

⎝ F<br />

DCmax<br />

DCmin<br />

iF<br />

max ⎠⎥⎦<br />

Cadd: Required additional DC bus capacitor in mF<br />

m: Moved mass in kg<br />

vmax: Maximum velocity in m/s<br />

UDCmax: Maximum DC bus voltage in V<br />

UDCmin: Minimum DC bus voltage in V<br />

FMAX: Maximum braking force of the motor in N<br />

kiF: Motor constant (force constant) in N/A<br />

R12: Winding resistance at 20°C<br />

FR: Frictional force in N<br />

Fig. 9-83: Determining the required additional DC bus capacitor<br />

Prerequisites: - final velocity = 0- velocity-independent friction –<br />

constant deceleration – winding temperature 135°C<br />

Note: The maximum possible DC bus capacity of the employed<br />

power supply module must be taken into account when<br />

additional capacities are used in the DC bus. Do not initiate a<br />

DC voltage short-circuit when additional capacitors are<br />

employed.<br />

Most of the power supply modules of Bosch <strong>Rexroth</strong> permit the DC bus<br />

to be shortened when the power is switched off, which also establishes a<br />

short-circuit between the motor phases. When the motor moves, this<br />

causes a braking effect according to the principle of the induction;<br />

thereby the motor phases are shorted. The reachable braking force is<br />

not very high and velocity-dependend. The DC bus short-circuit can<br />

therefore only be used to support existing mechanical braking devices.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-61<br />

9.23 Maximum Acceleration Changes (Jerk Limitation)<br />

Rate of current and force rise<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The maximum rate of current and force rise is determined by the<br />

available DC bus voltage and the motor inductance. As shown in Fig. 9-<br />

84, with highly dynamic movements and short strokes, the motor<br />

inductance should be low and the DC bus voltage as high as possible.<br />

di<br />

dt<br />

dF<br />

dt<br />

U<br />

=<br />

L<br />

DC<br />

12<br />

U<br />

=<br />

L<br />

DC<br />

12<br />

⋅ k<br />

UDC: DC bus voltage in V<br />

L12: Winding inductance in H<br />

kiF: Motor constant (force constant) in N/A<br />

i: Current in A<br />

t: Time in s<br />

Fig. 9-84: Maximum rate of current and force rise<br />

The acceleration change per time unit (derivative of the acceleration) is<br />

known as jerk (see Fig. 9-87).<br />

da<br />

= ¥<br />

dt<br />

velocity<br />

Fig. 9-85: Acceleration and velocity without jerk limitation<br />

iF<br />

acceleration<br />

RUCKBEGR01-MLF-EN.EPS<br />

Note: The drive controller or the master control must delimit the<br />

maximum jerk when direct drives are employed. (acceleration<br />

ramp with da/dt ≠ ∞, Fig. 9-86.<br />

t


9-62 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Maximum jerk<br />

da<br />

¹ ¥<br />

dt<br />

velocity<br />

Fig. 9-86: Acceleration and velocity with jerk limitation<br />

acceleration<br />

RUCKBEGR02-MLF-EN.EPS<br />

The maximum jerk is determined by the maximum rate of current rise, by<br />

the moved mass and by the motor constant:<br />

r<br />

max<br />

da<br />

dt<br />

U<br />

=<br />

L<br />

DC<br />

12<br />

⋅ k<br />

⋅ m<br />

m: Moved mass in kg<br />

UDC: DC bus voltage in V<br />

kiF: Motor constant (force constant) in N/A<br />

L12: Winding inductance in H<br />

a: Acceleration in m/s²<br />

t: Time in s<br />

Fig. 9-87: Maximum jerk (acceleration change)<br />

=<br />

iF<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

t


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-63<br />

9.24 Position and Velocity Resolution<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Drive-internal position resolution and positioning<br />

accuracy<br />

In linear direct drives, a linear scale is used for measuring the position.<br />

The linear scale for linear motors supply sinusoidal output signals. The<br />

length of such a sine signal is known as the signal period. It is mainly<br />

specified in mm or µm.<br />

With the drive controllers from Bosch <strong>Rexroth</strong>, the sine signals are<br />

amplified again in the drive (see Fig. 9-89). The drive-internal<br />

amplification also depends on the maximum travel area and the signal<br />

period of the length measuring system. It always employs 2 n vertices<br />

(e.g. 2048 or 4096).<br />

f<br />

int<br />

= 2<br />

31<br />

s<br />

⋅<br />

x<br />

p<br />

max<br />

rounding to 2<br />

fint: Multiplication factor (S-0-0256, Multiplication 1)<br />

sp: <strong>Linear</strong> scale system signal period in mm (S-0-0116 resolution of<br />

encoder 1)<br />

xmax: Maximum travel (S-0-0278, maximum travel)<br />

Fig. 9-88: Multiplication factor<br />

Dxd<br />

signal period<br />

n<br />

INTPOLSIN-MLF-EN.EPS<br />

Fig. 9-89: Drive-internal multiplication and/or interpolation of the measuring<br />

system signals<br />

With a known signal period and a drive-internal multiplication, the driveinternal<br />

position resolution results as:<br />

s<br />

∆x<br />

d =<br />

f<br />

∆xd: Drive-internal position resolution<br />

sp: <strong>Linear</strong> scale system signal period (S-0-0116 resolution of encoder 1)<br />

fint: Multiplication factor (S-0-0256, Multiplication 1)<br />

Fig. 9-90: Drive-internal position resolution<br />

Note: The drive-internal position resolution is not identical to the<br />

reachable positioning accuracy.<br />

p<br />

int


9-64 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Reachable positioning accuracy<br />

9.25 Load Rigidity<br />

The reachable position accuracy depends on the mechanical and<br />

control-engineering overall system and is not identical to the driveinternal<br />

position resolution. .<br />

The reachable position accuracy can be estimated as follows (using<br />

empirical values):<br />

∆xabs<br />

= ∆xd<br />

⋅ 30...<br />

50<br />

∆xd: Drive-internal position resolution<br />

∆xabs: Position accuracy<br />

Fig. 9-91: Estimating the reachable position accuracy<br />

Prerequisites: Optimum controller setting<br />

Note: The expected position accuracy cannot be better than the<br />

smallest position command increment of the master control.<br />

Velocity resolution<br />

The resolution of the velocity (velocity quantization) is proportional to the<br />

position resolution (see Fig. 9-88) and inversely proportional to the<br />

sample time tAD from:<br />

∆x<br />

∆ v d =<br />

t<br />

∆vd: Velocity resolution in m/s<br />

∆xd: Drive-internal position resolution (see Fig. 9-90)<br />

tAD: Sample time in s (DIAX04: 250µs, ECODRIVE03: 500µs, IndraDrive:<br />

Standard Performance 250µs / High Performance 125µs)<br />

Fig. 9-92: Velocity resolution<br />

The elastic deformability resistance of a structure against an external<br />

force is known as rigidity (usually specified in N/µm). The reciprocal<br />

value of the rigidity is known as elasticity.<br />

Influence of disturbing factors on a controlled electric drive is called load<br />

rigidity. It is distinguished between static and dynamic load rigidity.<br />

AD<br />

d<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Application and Construction Instructions 9-65<br />

Static load rigidity<br />

Dynamic load rigidity<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The static load rigidity of a linear direct drive only depends on the<br />

maximum motor force and the drive-internal position resolution:<br />

c<br />

stat<br />

F<br />

=<br />

∆x<br />

cstat: Static load rigidity in N/µm<br />

FMAX: Maximum force of the motor in N<br />

∆xD: Drive-internal position resolution in µm (see Fig. 9-90)<br />

Fig. 9-93: Static load rigidity of linear direct drives<br />

Note: The rigidity of the machine structure must be taken into<br />

account when the static load rigidity of a linear direct drive is<br />

rated.<br />

d<br />

stat<br />

max<br />

∆x<br />

=<br />

F<br />

dstat: Static elasticity in N/µm<br />

FMAX: Maximum force of the motor in N<br />

∆xD: Drive-internal position resolution in µm (see Fig. 9-90)<br />

Fig. 9-94: Static elasticity of linear direct drives<br />

Dynamic load rigidity and elasticity are frequency-dependent variables.<br />

The dynamic load rigidity of a linear direct drive only depends on the<br />

controller settings (current, velocity and position controller) and on the<br />

moved masses (see Fig. 9-96). The maximum elasticity (or the minimum<br />

rigidity) is in the area of the natural frequency of the control loop.<br />

In a simplified form, the following figure shows a typical elasticity<br />

frequency response.<br />

G S( ω )<br />

µm<br />

N<br />

1.10 3<br />

0.1<br />

0.01<br />

1.10<br />

4<br />

D<br />

D<br />

max<br />

.<br />

1 10 100 1 .10 3<br />

ω<br />

2 π .<br />

Fig. 9-95: Example elasticity frequency response of a linear direct drive


9-66 Application and Construction Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Estimating the dynamic load<br />

rigidity<br />

Despite the frequency sensitivity, a sufficiently exact estimate of the<br />

dynamic rigidity can be made for the area below the natural frequency of<br />

the control loop:<br />

c<br />

dyn<br />

mit<br />

1<br />

D = ⋅<br />

2<br />

m ⋅<br />

0.<br />

06 ⋅k<br />

p<br />

( 1+<br />

0.<br />

0167 ⋅k<br />

⋅ T )<br />

0.<br />

06 ⋅k<br />

p ⋅k<br />

iF ⋅<br />

=<br />

π ⎛ −D⋅<br />

⎞ 2 ⎜<br />

1−D<br />

e ⎟<br />

Tn<br />

⋅ ⎜1+<br />

⎟<br />

2 ⎜ 1−<br />

D ⎟<br />

⎝<br />

⎠<br />

⋅k<br />

iF<br />

⋅ T<br />

( 1+<br />

0.<br />

0167 ⋅k<br />

⋅ T )<br />

cdyn: Dynamic load rigidity in N/µm<br />

D: Attenuation<br />

kiF: Motor constant (force constant) in N/A<br />

kp: Proportional gain of velocity controller in A min/m<br />

kv: Proportional gain of position controller (Kv-factor) in m/min mm<br />

Tn: Integral time of velocity controller in ms<br />

m: Moved mass in kg<br />

Fig. 9-96: Estimating the dynamic load rigidity<br />

d =<br />

dyn<br />

1<br />

c<br />

dyn<br />

cdyn: Dynamic load rigidity in N/µm<br />

ddyn: Dynamic elasticity in N/µm<br />

Fig. 9-97: Determining of the dynamic elasticity<br />

1<br />

ω0<br />

= ⋅<br />

2 ⋅π<br />

1000 ⋅k<br />

p<br />

v<br />

n<br />

⋅k<br />

iF ⋅<br />

m ⋅ T<br />

n<br />

v<br />

n<br />

( 60 + k ⋅ T )<br />

ω0: Natural frequency in Hz<br />

kiF: Motor constant (force constant) in N/A<br />

kp: Proportional gain of velocity controller in A min/m<br />

kv: Proportional gain of position controller (Kv-factor) in m/min mm<br />

Tn: Integral time of velocity controller in ms<br />

m: Moved mass in kg<br />

Fig. 9-98: Determining the controller´s natural frequency<br />

n<br />

v<br />

n<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor-Controller-Combinations 10-1<br />

10 Motor-Controller-Combinations<br />

10.1 General explanation<br />

Structure of the selection data<br />

Sorting of the lists<br />

Design of the primary<br />

Parallel motor arrangement<br />

PWM frequency of the Drive<br />

Controller<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

This chapter contains selection data for different motor/controller<br />

combinations using the IndraDrive family of motor controllers.<br />

The structure of the selection data for the <strong>IndraDyn</strong> L synchronous,<br />

linear motors depends on:<br />

• The motor controller used<br />

• The power supply used and the corresponding supply voltage<br />

• The physical arrangement of the primaries (individual or parallel)<br />

The selection data are sorted by the following criteria:<br />

1. Motor type<br />

2. Maximum force, FMAX<br />

3. Maximum speed with maximum force, vFMAX<br />

Both the standard- and thermally-encapsulated versions of the same<br />

size motors have identical specifications, so the specifications of the<br />

motor/controller combinations for both designs have been combined.<br />

Note: The specifications for motor/controller combinations for<br />

standard- and thermally-encapsulated motors are identical.<br />

Motor/controller combinations are also given for motors installed in<br />

parallel arrangement on one drive controller.<br />

Note: The specifications for the parallel arrangements of motors<br />

assume they are being powered by one drive controller.<br />

<strong>Motors</strong> mounted parallel in a gantry style and driven by<br />

separate drive controllers should be considered as individual,<br />

i.e. non-parrallel, motors.<br />

The PWM frequency of the drive controller affects the motor data. All<br />

data in this documentation is based on a 4 kHz PWM frequency.


10-2 Motor-Controller-Combinations <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Explanation of the variables<br />

FMAX<br />

vFMAX<br />

PVMAX<br />

FdN<br />

VN<br />

PvN<br />

EDFMAX<br />

FKB<br />

idN<br />

imax<br />

Maximum force of the motor. This is available for up to 400 ms (see Fig.<br />

4-1).<br />

Maximum speed with maximum force, FMAX. This is the speed available<br />

at the maximum force of the motor. (see Fig. 4-1)<br />

Maximum electrical loss of the motor. This is calculated using the<br />

maximum current of a motor and a motor winding temperature of 135°C.<br />

Nominal force of the motor (see Fig. 4-1) assuming:<br />

- liquid cooling with a coolant inlet temperature of 30°C<br />

- a motor winding temperature of 135°C, and<br />

- motor at stand still<br />

Nominal speed (see Fig. 4-1)<br />

This is the speed available when the motor is delivering it’s nominal<br />

force, FdN.<br />

Nominal power loss of the motor at FdN<br />

Relative duty cycle in %. This is given with reference to the specified<br />

maximum and continuous forces. (see Fig. 11-16)<br />

Intermittent force<br />

The intermittent force depends on the ratio between motor’s nominal<br />

current and the nominal current of the drive controller. This intermittent<br />

force can be used intermittently in S6 operation with a duty cycle of<br />

EDFKB. The maximum cycle duration corresponds to the thermal time<br />

constant of the motor (see chapter 4 “Technical Data”).<br />

ED<br />

F KB<br />

⎛ F<br />

≈ ⎜<br />

⎝ F<br />

dN<br />

KB<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⋅100%<br />

FdN: Nominal force of the motor in N<br />

FKB: Potential intermittent force in N<br />

Fig. 10-1: Calculation of the potential duty cycle as related to FKB<br />

An intermittent force higher than the nominal force of the motor is only<br />

then available when the nominal current of the drive-controller is higher<br />

than the nominal current of the motor.<br />

Nominal current of the motor at nominal force, FdN<br />

Maximum current of the motor at FMAX.<br />

Note: The specification of the current is always given in peak<br />

values unless otherwise noted.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor-Controller-Combinations 10-3<br />

10.2 Motor/Controller Combinations; one primary per drive<br />

Controlled DC Bus Voltage, mains supply voltage - 3 x 480 VAC<br />

FMAX<br />

[N]<br />

vFmax<br />

[m/min]<br />

PVMAX<br />

[kW]<br />

FdN<br />

[N]<br />

vN<br />

[m/min]<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

PvN<br />

[kW]<br />

EDFMAX<br />

[%]<br />

FKB<br />

[N]<br />

idN<br />

[A]<br />

iMAX<br />

[A]<br />

Primary MLP...<br />

Standard- / Thermal encapsulation Controller<br />

800 360 6,6 250 600 0,33 5 352 5,9 28 040A-0300 HMS01.1N-W0020<br />

800 360 6,6 250 600 0,33 5 375 5,9 28 040A-0300 HMS01.1N-W0036<br />

394 537 1,1 127 654 0,08 7 127 3 12 040A-0300 HCS02.1E-W0012<br />

800 360 6,6 250 600 0,33 5 375 5,9 28 040A-0300 HCS02.1E-W0028<br />

800 360 6,6 250 600 0,33 5 375 5,9 28 040A-0300 HCS02.1E-W0054<br />

1150 180 7,8 370 360 0,39 5 515 5,9 28 040B-0150 HMS01.1N-W0020<br />

1150 180 7,8 370 360 0,39 5 555 5,9 28 040B-0150 HMS01.1N-W0036<br />

575 313 1,4 188 402 0,1 7 188 3 12 040B-0150 HCS02.1E-W0012<br />

1150 180 7,8 370 360 0,39 5 555 5,9 28 040B-0150 HCS02.1E-W0028<br />

1150 180 7,8 370 360 0,39 5 555 5,9 28 040B-0150 HCS02.1E-W0054<br />

902 357 5,5 370 480 0,43 8 429 7,5 28 040B-0250 HMS01.1N-W0020<br />

1150 300 10 370 480 0,43 4 555 7,5 38 040B-0250 HMS01.1N-W0036<br />

477 455 0,9 148 532 0,07 7 148 3 12 040B-0250 HCS02.1E-W0012<br />

1140 303 9,8 370 480 0,43 4 416 7,5 38 040B-0250 HCS02.1E-W0028<br />

1150 300 10 370 480 0,43 4 555 7,5 38 040B-0250 HCS02.1E-W0054<br />

751 483 4 370 600 0,4 10 395 8,5 28 040B-0300 HMS01.1N-W0020<br />

1150 360 11,9 370 600 0,4 3 555 8,5 49 040B-0300 HMS01.1N-W0036<br />

1150 360 11,9 370 600 0,4 3 555 8,5 49 040B-0300 HMS01.1N-W0054<br />

1150 360 11,9 370 600 0,4 3 555 8,5 49 040B-0300 HMS01.1N-W0070<br />

432 581 0,7 131 674 0,05 7 131 3 12 040B-0300 HCS02.1E-W0012<br />

930 428 7 370 600 0,4 6 385 8,5 38 040B-0300 HCS02.1E-W0028<br />

1150 360 11,9 370 600 0,4 3 555 8,5 49 040B-0300 HCS02.1E-W0054<br />

1150 360 11,9 370 600 0,4 3 555 8,5 49 040B-0300 HCS02.1E-W0070<br />

1150 360 11,9 370 600 0,4 3 555 8,5 49 040B-0300 HCS03.1E-W0070<br />

1564 256 4,4 630 420 0,34 8 733 7,5 28 070A-0150 HMS01.1N-W0020<br />

2000 180 7,9 630 420 0,34 4 945 7,5 38 070A-0150 HMS01.1N-W0036<br />

819 387 0,7 252 487 0,05 7 252 3 12 070A-0150 HCS02.1E-W0012<br />

1982 183 7,7 630 420 0,34 4 711 7,5 38 070A-0150 HCS02.1E-W0028<br />

2000 180 7,9 630 420 0,34 4 945 7,5 38 070A-0150 HCS02.1E-W0054<br />

1293 351 2,6 630 432 0,28 11 661 8,9 28 070A-0220 HMS01.1N-W0020<br />

2000 264 7,7 630 432 0,28 4 945 8,9 49 070A-0220 HMS01.1N-W0036<br />

2000 264 7,7 630 432 0,28 4 945 8,9 49 070A-0220 HMS01.1N-W0054<br />

2000 264 7,7 630 432 0,28 4 945 8,9 49 070A-0220 HMS01.1N-W0070<br />

726 421 0,4 212 484 0,03 7 212 3 12 070A-0220 HCS02.1E-W0012<br />

1611 312 4,5 630 432 0,28 6 644 8,9 38 070A-0220 HCS02.1E-W0028<br />

2000 264 7,7 630 432 0,28 4 945 8,9 49 070A-0220 HCS02.1E-W0054<br />

2000 264 7,7 630 432 0,28 4 945 8,9 49 070A-0220 HCS02.1E-W0070<br />

2000 264 7,7 630 432 0,28 4 945 8,9 49 070A-0220 HCS03.1E-W0070<br />

1965 365 15,9 630 540 0,67 4 945 14,8 76 070A-0300 HMS01.1N-W0054<br />

2000 360 16,6 630 540 0,67 4 945 14,8 78 070A-0300 HMS01.1N-W0070<br />

2000 360 16,6 630 540 0,67 4 757 14,8 78 070A-0300 HCS02.1E-W0070<br />

2000 360 16,6 630 540 0,67 4 945 14,8 78 070A-0300 HCS03.1E-W0070<br />

1953 164 8,6 820 240 0,73 8 931 7,8 28 070B-0100 HMS01.1N-W0020<br />

2600 120 17,2 820 240 0,73 4 1230 7,8 40 070B-0100 HMS01.1N-W0036<br />

1036 226 1,5 315 274 0,11 7 315 3 12 070B-0100 HCS02.1E-W0012<br />

2467 129 15,2 820 240 0,73 5 903 7,8 38 070B-0100 HCS02.1E-W0028<br />

2600 120 17,2 820 240 0,73 4 1230 7,8 40 070B-0100 HCS02.1E-W0054<br />

1524 217 7,2 820 264 0,67 9 876 8,2 28 070B-0120 HMS01.1N-W0020<br />

2316 163 23,2 820 264 0,67 3 1170 8,2 51 070B-0120 HMS01.1N-W0036<br />

2600 144 31,2 820 264 0,67 2 1230 8,2 59 070B-0120 HMS01.1N-W0054<br />

2600 144 31,2 820 264 0,67 2 1230 8,2 59 070B-0120 HMS01.1N-W0070<br />

943 256 1,2 300 299 0,09 7 300 3 12 070B-0120 HCS02.1E-W0012<br />

1850 195 12,7 820 264 0,67 5 859 8,2 38 070B-0120 HCS02.1E-W0028<br />

2516 150 28,7 820 264 0,67 2 1044 8,2 57 070B-0120 HCS02.1E-W0054<br />

2600 144 31,2 820 264 0,67 2 1230 8,2 59 070B-0120 HCS02.1E-W0070<br />

2600 144 31,2 820 264 0,67 2 1230 8,2 59 070B-0120 HCS03.1E-W0070<br />

Further information – see next page


10-4 Motor-Controller-Combinations <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

FMAX<br />

[N]<br />

vFmax<br />

[m/min]<br />

PVMAX<br />

[kW]<br />

FdN<br />

[N]<br />

vN<br />

[m/min]<br />

PvN<br />

[kW]<br />

EDFMAX<br />

[%]<br />

FKB<br />

[N]<br />

idN<br />

[A]<br />

iMAX<br />

[A]<br />

Primary MLP...<br />

Standard- / Thermal encapsulation Controller<br />

1406 269 10,9 820 312 1,18 11 850 8,8 28 070B-0150 HMS01.1N-W0020<br />

2086 218 35,4 820 312 1,18 3 1103 8,8 51 070B-0150 HMS01.1N-W0036<br />

2600 180 63,1 820 312 1,18 2 1230 8,8 68 070B-0150 HMS01.1N-W0054<br />

2600 180 63,1 820 312 1,18 2 1230 8,8 68 070B-0150 HMS01.1N-W0070<br />

907 306 1,9 280 352 0,14 7 280 3 12 070B-0150 HCS02.1E-W0012<br />

1686 248 19,3 820 312 1,18 6 835 8,8 38 070B-0150 HCS02.1E-W0028<br />

2257 206 43,7 820 312 1,18 3 994 8,8 57 070B-0150 HCS02.1E-W0054<br />

2600 180 63,1 820 312 1,18 2 1230 8,8 68 070B-0150 HCS02.1E-W0070<br />

2600 180 63,1 820 312 1,18 2 1230 8,8 68 070B-0150 HCS03.1E-W0070<br />

2555 305 51,2 820 480 1,95 4 1230 14,1 76 070B-0250 HMS01.1N-W0054<br />

2600 300 53,4 820 480 1,95 4 1230 14,1 78 070B-0250 HMS01.1N-W0070<br />

2600 300 53,4 820 480 1,95 4 1002 14,1 78 070B-0250 HCS02.1E-W0070<br />

2600 300 53,4 820 480 1,95 4 1230 14,1 78 070B-0250 HCS03.1E-W0070<br />

2109 410 39,8 820 540 2,2 6 1230 17 76 070B-0300 HMS01.1N-W0054<br />

2600 360 66,9 820 540 2,2 3 1193 17 99 070B-0300 HMS01.1N-W0070<br />

2170 404 42,8 820 540 2,2 5 883 17 79 070B-0300 HCS02.1E-W0070<br />

2600 360 66,9 820 540 2,2 3 1230 17 99 070B-0300 HCS03.1E-W0070<br />

3736 146 32,4 1200 216 0,98 3 1800 12,6 76 070C-0120 HMS01.1N-W0054<br />

3800 144 33,8 1200 216 0,98 3 1800 12,6 78 070C-0120 HMS01.1N-W0070<br />

3800 144 33,8 1200 216 0,98 3 1520 12,6 78 070C-0120 HCS02.1E-W0070<br />

3800 144 33,8 1200 216 0,98 3 1800 12,6 78 070C-0120 HCS03.1E-W0070<br />

3392 199 27,9 1200 300 1,06 4 1800 14,1 76 070C-0150 HMS01.1N-W0054<br />

3800 180 37 1200 300 1,06 3 1800 14,1 88 070C-0150 HMS01.1N-W0070<br />

3490 194 30 1200 300 1,06 4 1404 14,1 79 070C-0150 HCS02.1E-W0070<br />

3800 180 37 1200 300 1,06 3 1800 14,1 88 070C-0150 HCS03.1E-W0070<br />

3071 325 14,2 1200 420 0,92 6 1797 18,4 76 070C-0240 HMS01.1N-W0054<br />

3800 288 23,9 1200 420 0,92 4 1710 18,4 99 070C-0240 HMS01.1N-W0070<br />

3161 321 15,3 1200 420 0,92 6 1248 18,4 79 070C-0240 HCS02.1E-W0070<br />

3800 288 23,9 1200 420 0,92 4 1800 18,4 99 070C-0240 HCS03.1E-W0070<br />

3506 381 29,2 1200 540 1,18 4 1800 26,9 141 070C-0300 HCS03.1E-W0100<br />

2252 150 9,7 1168 180 1,3 13 1168 9,8 28 100A-0090 HMS01.1N-W0020<br />

3569 113 31,3 1180 180 1,32 4 1664 9,9 51 100A-0090 HMS01.1N-W0036<br />

3750 108 35,3 1180 180 1,32 4 1770 9,9 54 100A-0090 HMS01.1N-W0054<br />

3750 108 35,3 1180 180 1,32 4 1770 9,9 54 100A-0090 HMS01.1N-W0070<br />

1285 177 1,7 358 203 0,12 7 358 3 12 100A-0090 HCS02.1E-W0012<br />

2794 135 17,1 1108 182 1,17 7 1108 9,3 38 100A-0090 HCS02.1E-W0028<br />

3750 108 35,3 1180 180 1,32 4 1548 9,9 54 100A-0090 HCS02.1E-W0054<br />

3750 108 35,3 1180 180 1,32 4 1770 9,9 54 100A-0090 HCS02.1E-W0070<br />

3750 108 35,3 1180 180 1,32 4 1770 9,9 54 100A-0090 HCS03.1E-W0070<br />

2042 200 6,2 1023 233 0,84 13 1023 9,8 28 100A-0120 HMS01.1N-W0020<br />

3187 162 20,2 1180 228 1,11 5 1530 11,3 51 100A-0120 HMS01.1N-W0036<br />

3750 144 30 1180 228 1,11 4 1770 11,3 62 100A-0120 HMS01.1N-W0054<br />

3750 144 30 1180 228 1,11 4 1770 11,3 62 100A-0120 HMS01.1N-W0070<br />

1200 227 1,1 313 256 0,08 7 313 3 12 100A-0120 HCS02.1E-W0012<br />

2513 185 11 971 235 0,75 7 971 9,3 38 100A-0120 HCS02.1E-W0028<br />

3476 153 25 1180 228 1,11 4 1347 11,3 57 100A-0120 HCS02.1E-W0054<br />

3750 144 30 1180 228 1,11 4 1770 11,3 62 100A-0120 HCS02.1E-W0070<br />

3750 144 30 1180 228 1,11 4 1770 11,3 62 100A-0120 HCS03.1E-W0070<br />

3686 182 39,3 1180 264 1,49 4 1770 14,1 76 100A-0150 HMS01.1N-W0054<br />

3750 180 40,9 1180 264 1,49 4 1770 14,1 78 100A-0150 HMS01.1N-W0070<br />

3750 180 40,9 1180 264 1,49 4 1443 14,1 78 100A-0150 HCS02.1E-W0070<br />

3750 180 40,9 1180 264 1,49 4 1770 14,1 78 100A-0150 HCS03.1E-W0070<br />

3042 261 50,7 1180 348 2,8 6 1770 17 76 100A-0190 HMS01.1N-W0054<br />

3750 228 85 1180 348 2,8 3 1719 17 99 100A-0190 HMS01.1N-W0070<br />

3129 257 54,4 1180 348 2,8 5 1271 17 79 100A-0190 HCS02.1E-W0070<br />

3750 228 85 1180 348 2,8 3 1770 17 99 100A-0190 HCS03.1E-W0070<br />

4549 167 25,3 1785 228 1,4 6 2678 17 76 100B-0120 HMS01.1N-W0054<br />

5600 144 42,5 1785 228 1,4 3 2585 17 99 100B-0120 HMS01.1N-W0070<br />

4679 164 27,2 1785 228 1,4 5 1920 17 79 100B-0120 HCS02.1E-W0070<br />

5600 144 42,5 1785 228 1,4 3 2678 17 99 100B-0120 HCS03.1E-W0070<br />

4537 334 39 1785 420 2,1 5 2678 31,1 141 100B-0250 HCS03.1E-W0100<br />

4895 153 29 2310 204 1,88 6 3134 18,4 76 100C-0090 HMS01.1N-W0054<br />

5902 133 48,7 2310 204 1,88 4 3014 18,4 99 100C-0090 HMS01.1N-W0070<br />

5020 150 31,2 2310 204 1,88 6 2377 18,4 79 100C-0090 HCS02.1E-W0070<br />

5902 133 48,7 2310 204 1,88 4 3465 18,4 99 100C-0090 HCS03.1E-W0070<br />

Further information – see next page<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor-Controller-Combinations 10-5<br />

FMAX<br />

[N]<br />

vFmax<br />

[m/min]<br />

PVMAX<br />

[kW]<br />

FdN<br />

[N]<br />

vN<br />

[m/min]<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

PvN<br />

[kW]<br />

EDFMAX<br />

[%]<br />

FKB<br />

[N]<br />

idN<br />

[A]<br />

iMAX<br />

[A]<br />

Primary MLP...<br />

Standard- / Thermal encapsulation Controller<br />

5014 181 21,6 2310 228 1,86 9 3079 21,2 76 100C-0120 HMS01.1N-W0054<br />

6121 162 36,3 2310 228 1,86 5 2947 21,2 99 100C-0120 HMS01.1N-W0070<br />

5151 179 23,2 2168 231 1,64 7 2168 19,9 79 100C-0120 HCS02.1E-W0070<br />

6121 162 36,3 2310 228 1,86 5 3465 21,2 99 100C-0120 HCS03.1E-W0070<br />

5495 269 39 2310 348 2,3 6 3465 32,5 141 100C-0190 HCS03.1E-W0100<br />

4230 167 22,8 1680 228 1,26 6 2520 17 76 140A-0120 HMS01.1N-W0054<br />

5200 144 38,2 1680 228 1,26 3 2418 17 99 140A-0120 HMS01.1N-W0070<br />

4350 164 24,5 1680 228 1,26 5 1804 17 79 140A-0120 HCS02.1E-W0070<br />

5200 144 38,2 1680 228 1,26 3 2520 17 99 140A-0120 HCS03.1E-W0070<br />

6182 132 22,8 2415 192 1,47 6 3617 18,4 76 140B-0090 HMS01.1N-W0054<br />

7650 108 38,2 2415 192 1,47 4 3441 18,4 99 140B-0090 HMS01.1N-W0070<br />

6364 129 24,5 2415 192 1,47 6 2512 18,4 79 140B-0090 HCS02.1E-W0070<br />

7650 108 38,2 2415 192 1,47 4 3622 18,4 99 140B-0090 HCS03.1E-W0070<br />

4590 193 14,8 2415 228 1,84 12 2902 25,5 76 140B-0120 HMS01.1N-W0054<br />

5556 178 24,8 2415 228 1,84 7 2787 25,5 99 140B-0120 HMS01.1N-W0070<br />

4710 191 15,9 1885 237 1,12 7 1885 19,9 79 140B-0120 HCS02.1E-W0070<br />

5556 178 24,8 2415 228 1,84 7 3475 25,5 99 140B-0120 HCS03.1E-W0070<br />

8079 80 45,5 3150 132 2,95 6 4722 18,4 76 140C-0050 HMS01.1N-W0054<br />

10000 60 76,4 3150 132 2,95 4 4493 18,4 99 140C-0050 HMS01.1N-W0070<br />

8317 78 48,9 3150 132 2,95 6 3277 18,4 79 140C-0050 HCS02.1E-W0070<br />

10000 60 76,4 3150 132 2,95 4 4725 18,4 99 140C-0050 HCS03.1E-W0070<br />

8344 164 50,7 3150 228 2,49 5 4725 29,7 141 140C-0120 HCS03.1E-W0100<br />

7531 239 29,2 3150 300 2,74 9 4708 41 141 140C-0170 HCS03.1E-W0100<br />

6038 135 17,1 2415 204 1,1 6 3571 18,4 76 200A-0090 HMS01.1N-W0054<br />

7450 108 28,7 2415 204 1,1 4 3402 18,4 99 200A-0090 HMS01.1N-W0070<br />

6213 132 18,3 2415 204 1,1 6 2509 18,4 79 200A-0090 HCS02.1E-W0070<br />

7450 108 28,7 2415 204 1,1 4 3622 18,4 99 200A-0090 HCS03.1E-W0070<br />

5086 184 13,1 2415 228 1,28 10 3125 22,6 76 200A-0120 HMS01.1N-W0054<br />

6209 165 22 2415 228 1,28 6 2991 22,6 99 200A-0120 HMS01.1N-W0070<br />

5225 181 14,1 2126 233 0,99 7 2126 19,9 79 200A-0120 HCS02.1E-W0070<br />

6209 165 22 2415 228 1,28 6 3622 22,6 99 200A-0120 HCS03.1E-W0070<br />

8815 68 33 3465 120 2,14 6 5172 18,4 76 200B-0040 HMS01.1N-W0054<br />

10900 48 55,4 3465 120 2,14 4 4922 18,4 99 200B-0040 HMS01.1N-W0070<br />

9074 66 35,5 3465 120 2,14 6 3603 18,4 79 200B-0040 HCS02.1E-W0070<br />

10900 48 55,4 3465 120 2,14 4 5198 18,4 99 200B-0040 HCS03.1E-W0070<br />

8829 168 33,1 3465 228 1,79 5 5198 31,1 141 200B-0120 HCS03.1E-W0100<br />

10645 143 78 4250 204 7,31 9 6375 41 141 200C-0090 HCS03.1E-W0100<br />

12544 158 118,4 4250 228 5,28 4 6375 42,4 212 200C-0120 HMS01.1N-W0150<br />

10589 226 83,3 4250 264 8,76 11 5406 65,1 212 200C-0170 HMS01.1N-W0150<br />

10589 226 83,3 4250 264 8,76 11 5548 65,1 212 200C-0170 HCS03.1E-W0150<br />

13394 106 52,6 5560 168 4,6 9 8340 39,6 141 200D-0060 HCS03.1E-W0100<br />

13287 155 70,2 5560 216 7,37 11 6969 65,1 212 200D-0100 HMS01.1N-W0150<br />

13287 155 70,2 5560 216 7,37 11 7142 65,1 212 200D-0100 HCS03.1E-W0150<br />

10135 118 50,7 3350 192 2,05 4 5025 26,9 141 300A-0090 HCS03.1E-W0100<br />

8477 172 39 3350 228 2,3 6 5025 32,5 141 300A-0120 HCS03.1E-W0100<br />

12316 114 52,6 5150 168 4,6 9 7725 39,6 141 300B-0070 HCS03.1E-W0100<br />

12688 171 57 5150 228 3,46 6 7116 49,5 212 300B-0120 HMS01.1N-W0150<br />

12688 171 57 5150 228 3,46 6 7269 49,5 212 300B-0120 HCS03.1E-W0150<br />

16172 94 27,3 6720 132 2,56 9 10080 41 141 300C-0060 HCS03.1E-W0100<br />

16255 134 43,9 6720 180 2,97 7 9083 52,3 212 300C-0090 HMS01.1N-W0150<br />

16255 134 43,9 6720 180 2,97 7 9280 52,3 212 300C-0090 HCS03.1E-W0150<br />

Fig. 10-2: Possible combinations of single motors on single controllers


10-6 Motor-Controller-Combinations <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

10.3 Motor/Controller Combinations; parallel primaries on<br />

single drive controllers<br />

Controlled DC Bus Voltage, mains supply voltage - 3 x 480 VAC<br />

FMAX<br />

[N]<br />

vFmax<br />

[m/min]<br />

PVMAX<br />

[kW]<br />

FdN<br />

[N]<br />

vN<br />

[m/min]<br />

PvN<br />

[kW]<br />

EDFMAX<br />

[%]<br />

FKB<br />

[N]<br />

idN<br />

[A]<br />

iMAX<br />

[A]<br />

Primary MLP...<br />

Standard- / Thermal encapsulation Controller<br />

911 511 3,4 415 619 0,45 13 415 9,8 28 040A-0300 HMS01.1N-W0020<br />

1473 388 10,9 500 600 0,65 6 659 11,8 51 040A-0300 HMS01.1N-W0036<br />

1600 360 13,1 500 600 0,65 5 750 11,8 56 040A-0300 HMS01.1N-W0054<br />

1600 360 13,1 500 600 0,65 5 750 11,8 56 040A-0300 HMS01.1N-W0070<br />

1142 460 5,9 394 624 0,4 7 394 9,3 38 040A-0300 HCS02.1E-W0028<br />

1600 360 13,1 500 600 0,65 5 579 11,8 56 040A-0300 HCS02.1E-W0054<br />

1600 360 13,1 500 600 0,65 5 750 11,8 56 040A-0300 HCS02.1E-W0070<br />

1600 360 13,1 500 600 0,65 5 750 11,8 56 040A-0300 HCS03.1E-W0070<br />

1322 293 4 615 375 0,53 13 615 9,8 28 040B-0150 HMS01.1N-W0020<br />

2120 201 12,9 740 360 0,77 6 966 11,8 51 040B-0150 HMS01.1N-W0036<br />

2300 180 15,6 740 360 0,77 5 1110 11,8 56 040B-0150 HMS01.1N-W0054<br />

2300 180 15,6 740 360 0,77 5 1110 11,8 56 040B-0150 HMS01.1N-W0070<br />

1651 255 7 583 378 0,48 7 583 9,3 38 040B-0150 HCS02.1E-W0028<br />

2300 180 15,6 740 360 0,77 5 852 11,8 56 040B-0150 HCS02.1E-W0054<br />

2300 180 15,6 740 360 0,77 5 1110 11,8 56 040B-0150 HCS02.1E-W0070<br />

2300 180 15,6 740 360 0,77 5 1110 11,8 56 040B-0150 HCS03.1E-W0070<br />

2300 300 20 740 480 0,87 4 1110 15 76 040B-0250 HMS01.1N-W0054<br />

2300 300 20 740 480 0,87 4 1110 15 76 040B-0250 HMS01.1N-W0070<br />

2300 300 20 740 480 0,87 4 916 15 76 040B-0250 HCS02.1E-W0070<br />

2300 300 20 740 480 0,87 4 1110 15 76 040B-0250 HCS03.1E-W0070<br />

1884 424 14,5 740 600 0,8 6 1110 17 76 040B-0300 HMS01.1N-W0054<br />

2300 360 23,9 740 600 0,8 3 1084 17 98 040B-0300 HMS01.1N-W0070<br />

1938 416 15,6 740 600 0,8 5 796 17 79 040B-0300 HCS02.1E-W0070<br />

2300 360 23,9 740 600 0,8 3 1110 17 98 040B-0300 HCS03.1E-W0070<br />

4000 180 15,8 1260 420 0,69 4 1890 15 76 070A-0150 HMS01.1N-W0054<br />

4000 180 15,8 1260 420 0,69 4 1890 15 76 070A-0150 HMS01.1N-W0070<br />

4000 180 15,8 1260 420 0,69 4 1569 15 76 070A-0150 HCS02.1E-W0070<br />

4000 180 15,8 1260 420 0,69 4 1890 15 76 070A-0150 HCS03.1E-W0070<br />

3262 309 9,4 1260 432 0,57 6 1890 17,8 76 070A-0220 HMS01.1N-W0054<br />

4000 264 15,5 1260 432 0,57 4 1843 17,8 98 070A-0220 HMS01.1N-W0070<br />

3358 304 10,1 1260 432 0,57 6 1332 17,8 79 070A-0220 HCS02.1E-W0070<br />

4000 264 15,5 1260 432 0,57 4 1890 17,8 98 070A-0220 HCS03.1E-W0070<br />

3684 381 27,3 1260 540 1,33 5 1890 29,6 141 070A-0300 HCS03.1E-W0100<br />

5001 127 31,3 1640 240 1,46 5 2460 15,6 76 070B-0100 HMS01.1N-W0054<br />

5200 120 34,3 1640 240 1,46 4 2460 15,6 80 070B-0100 HMS01.1N-W0070<br />

5156 122 33,6 1640 240 1,46 4 1878 15,6 79 070B-0100 HCS02.1E-W0070<br />

5200 120 34,3 1640 240 1,46 4 2460 15,6 80 070B-0100 HCS03.1E-W0070<br />

3742 193 26,2 1640 264 1,35 5 2358 16,4 76 070B-0120 HMS01.1N-W0054<br />

4534 167 44 1640 264 1,35 3 2264 16,4 99 070B-0120 HMS01.1N-W0070<br />

3840 190 28,1 1640 264 1,35 5 1763 16,4 79 070B-0120 HCS02.1E-W0070<br />

4534 167 44 1640 264 1,35 3 2460 16,4 99 070B-0120 HCS03.1E-W0070<br />

3408 247 39,8 1640 312 2,36 6 2220 17,6 76 070A-0300 HMS01.1N-W0054<br />

4088 241 66,9 1640 312 2,36 4 2139 17,6 99 070B-0150 HMS01.1N-W0070<br />

3492 243 42,8 1640 312 2,36 6 1709 17,6 79 070B-0150 HCS02.1E-W0070<br />

4088 221 66,9 1640 312 2,36 4 2460 17,6 99 070B-0150 HCS03.1E-W0070<br />

4793 321 87,7 1640 480 3,89 4 2460 28,2 141 070B-0250 HCS03.1E-W0100<br />

3971 422 68,2 1640 540 4,4 6 2460 34 141 070B-0300 HCS03.1E-W0100<br />

6383 208 47,8 2400 300 2,12 4 3600 28,2 141 070C-0150 HCS03.1E-W0100<br />

5774 335 24,4 2400 420 1,84 8 3600 36,8 141 070C-0240 HCS03.1E-W0100<br />

5658 134 35,3 2360 180 2,64 7 3357 19,8 76 100A-0090 HMS01.1N-W0054<br />

6976 115 59,2 2360 180 2,64 4 3199 19,8 99 100A-0090 HMS01.1N-W0070<br />

5822 132 37,9 2360 180 2,64 7 2366 19,8 79 100A-0090 HCS02.1E-W0070<br />

6976 115 59,2 2360 180 2,64 4 3540 19,8 99 100A-0090 HCS03.1E-W0070<br />

5087 184 22,8 2360 228 2,22 10 3085 22,6 76 100A-0120 HMS01.1N-W0054<br />

6233 165 38,2 2360 228 2,22 6 2984 22,6 99 100A-0120 HMS01.1N-W0070<br />

Further information – see next page<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor-Controller-Combinations 10-7<br />

FMAX<br />

[N]<br />

vFmax<br />

[m/min]<br />

PVMAX<br />

[kW]<br />

FdN<br />

[N]<br />

vN<br />

[m/min]<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

PvN<br />

[kW]<br />

EDFMAX<br />

[%]<br />

FKB<br />

[N]<br />

idN<br />

[A]<br />

iMAX<br />

[A]<br />

Primary MLP...<br />

Standard- / Thermal encapsulation Controller<br />

5229 181 24,5 2078 233 1,72 7 2078 19,9 79 100A-0120 HCS02.1E-W0070<br />

6233 165 38,2 2360 228 2,22 6 3540 22,6 99 100A-0120 HCS03.1E-W0070<br />

6913 190 67,3 2360 264 2,98 4 3540 28,2 141 100A-0150 HCS03.1E-W0100<br />

5726 270 86,7 2360 348 5,59 6 3540 34 141 100A-0190 HCS03.1E-W0100<br />

8567 173 43,4 3570 228 2,8 6 5355 34 141 100B-0120 HCS03.1E-W0100<br />

12933 156 83,3 4620 228 3,71 4 6930 42,4 212 100C-0120 HMS01.1N-W0150<br />

7970 173 39 3360 228 2,51 6 5040 34 141 140A-0120 HCS03.1E-W0100<br />

11624 138 39 4830 192 2,95 8 7245 36,8 68 140B-0090 HCS03.1E-W0100<br />

11715 173 57 4830 228 3,68 6 6578 51 212 140B-0120 HMS01.1N-W0150<br />

11715 173 57 4830 228 3,68 6 6719 51 212 140B-0120 HCS03.1E-W0150<br />

15190 85 78 6300 132 5,89 8 9450 36,8 141 140C-0050 HCS03.1E-W0100<br />

11364 142 29,2 4830 204 2,21 8 7245 36,8 141 200A-0090 HCS03.1E-W0100<br />

13117 159 50,4 4830 228 2,56 5 7149 45,2 212 200A-0120 HMS01.1N-W0150<br />

13117 159 50,4 4830 228 2,56 5 7245 45,2 212 200A-0120 HCS03.1E-W0150<br />

16579 73 56,5 6930 120 4,27 8 10395 36,8 141 200B-0040 HCS03.1E-W0100<br />

Fig. 10-3: Possible combinations of parallel motors on single controllers


10-8 Motor-Controller-Combinations <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 1<br />

11 Motor Sizing<br />

11.1 General Procedure<br />

F<br />

v<br />

velocity profile<br />

application working point<br />

F = f(v)<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

t<br />

v<br />

The sizing of linear drives is mainly determined by the application-related<br />

characteristics of velocity and feed force. The basic sequence of sizing<br />

linear drives is shown in the figure below.<br />

+<br />

• moved mass<br />

• friction, machining forces<br />

• motor mounting position<br />

• motion path<br />

• limit values for:<br />

- maximum velocity<br />

- maximum acceleration<br />

• effective force F EFF<br />

• maximum force F MAX<br />

• Maximum velocity<br />

v MAX<br />

• Maximum velocity<br />

at maximum force<br />

v FMAX<br />

F<br />

force profile<br />

bound. conditions<br />

• Einbauraum<br />

• motor and axis arrangement<br />

(single, parallel or Gantry)<br />

• cooling<br />

• ambient conditions<br />

(coolant lubricants,chips, etc.)<br />

• length measuring ssystem<br />

• linear guideways<br />

selection of motor or motor controller combination<br />

selection criteria:<br />

· All working points are inside the forcevelocity<br />

characteristic curve of the motor<br />

· FMAX £ FMAX,Motor · FEFF £ FdN,Motor · vMAX £ vMAX,Motor · vFMAX £ vFMAX,Motor · Motor version acc. to application<br />

(cooling, protection rating, etc.)<br />

drive controller and<br />

power supply module<br />

- power<br />

- connection voltage<br />

- DC bus voltage<br />

machine structure<br />

- moved masses<br />

- attractive forces<br />

- mounting space<br />

- rigidity<br />

F<br />

limiting curve motor F = f(v)<br />

Fig. 11-1: Basic procedure of sizing linear drives<br />

auxiliary components<br />

- length measuring system<br />

- cables<br />

- linear guideways<br />

- shock absorbers, brakes,<br />

weight compensation, etc.<br />

v<br />

t<br />

working pts.<br />

application<br />

F = f(v)<br />

DIMALLGEMEIN-MLF-EN.EPS


2 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

11.2 Basic formulae<br />

General equations of motion<br />

The variables required for sizing and selecting the motor are calculated<br />

using the equations shown in Figure 11-2.<br />

Note: When linear direct drives are configured, the process-related<br />

feed forces and velocities are used directly and without<br />

conversion for selecting the drive.<br />

Velocity<br />

Acceleration<br />

:<br />

Force :<br />

Effective force :<br />

Average velocity :<br />

v(<br />

t)<br />

a(<br />

t)<br />

F(<br />

t)<br />

v(t): Velocity profile vs. time in m/s<br />

s(t): Path profile vs. time in m<br />

a(t): Acceleration profile vs. time in m/s²<br />

F(t): Force profile vs. time in N<br />

m: Moved mass in kg<br />

F0(t): Base force in N<br />

FP(t): Process or machining force in N<br />

Feff: Effective force in N<br />

vavg: Average velocity in m/s<br />

t: Time in s<br />

T: Total time in s<br />

Fig. 11-2: General equations of motion<br />

F<br />

v<br />

eff<br />

avg<br />

s(<br />

t)<br />

=<br />

dt<br />

v(<br />

t)<br />

=<br />

dt<br />

=<br />

=<br />

=<br />

a(<br />

t)<br />

⋅ m + F ( t)<br />

+ F ( t)<br />

1<br />

T<br />

1<br />

T<br />

⋅<br />

⋅<br />

T<br />

∫<br />

0<br />

T<br />

∫<br />

0<br />

F(<br />

t<br />

)<br />

2<br />

0<br />

v(<br />

t)<br />

dt<br />

In most cases the mathematical description of the required positions vs.<br />

the time is known (NC-program, electronic cam disk). Using the<br />

preparatory function, velocity, acceleration and forces can be calculated.<br />

Standard software (such as MS Excel or MathCad) can be used for<br />

calculating the required variables, even with complex motion profiles.<br />

Note: The following Chapter provides a more detailed correlation for<br />

trapezoidal, triangular or sinusoidal velocity characteristics.<br />

dt<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 3<br />

Feed forces<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Acceleration<br />

force :<br />

Force due<br />

Frictional force :<br />

Maximum force :<br />

Effective force :<br />

F<br />

to weight :<br />

F 1<br />

t 1<br />

F 2<br />

t 2<br />

...<br />

...<br />

F<br />

F<br />

F<br />

F<br />

F<br />

t all<br />

ACC<br />

W<br />

F<br />

MAX<br />

EFF<br />

= m ⋅ a<br />

fcb<br />

= m ⋅ g ⋅ sinα<br />

⋅(<br />

1−<br />

)<br />

100<br />

= µ ⋅(m<br />

⋅ g ⋅ sinα<br />

+ F<br />

= F<br />

=<br />

ACC<br />

F<br />

2<br />

1<br />

+ F<br />

⋅ t<br />

1<br />

F<br />

+ F<br />

+ F<br />

t<br />

2<br />

2<br />

all<br />

W<br />

⋅ t<br />

2<br />

ATT<br />

+ F<br />

t<br />

FTRAPEZ01-MLF-EN.FH10<br />

P<br />

+ ...<br />

) + F<br />

FACC: Acceleration force in N<br />

FW: Force due to weight in N<br />

FF: Frictional force in N<br />

F0: Additional frictional or base force in N (e.g. by seals of linear guides)<br />

FMAX: Maximum force in N<br />

FEFF: Effective force in N<br />

FP: Machining force in N<br />

a: Acceleration in m/s²<br />

m: Moved mass in kg<br />

g: Gravitational acceleration (9.81 m/s²)<br />

α: Axis angel in degrees (0°: horizontal axis; 90°C: vertical axis)<br />

fCB: Weight compensation in %<br />

tall: Total duty cycle time in s<br />

FATT: Attractive force between primary and secondary in N<br />

µ: Friction coefficient<br />

Fig. 11-3: Determining the feed forces<br />

Note: For sizing calculations of linear motor drives, the moved<br />

mass of the motor component must be taken into account (in<br />

particular, if the slide masses are relatively small). However,<br />

the moved mass and the attractive force between the primary<br />

and secondary are only known after the motor has been<br />

selected. Thus, first make assumptions for these variables<br />

and verify these values after the motor has been selected.<br />

0


4 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

(1)<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

(6)<br />

( 7)<br />

Acceleration<br />

(up) :<br />

Const. velocity (up) :<br />

Deceleration<br />

Const. velocity (down)<br />

Deceleration<br />

(down)<br />

Idle time :<br />

(up) :<br />

Acceleration<br />

(down) :<br />

:<br />

:<br />

F = F<br />

F = F<br />

F =<br />

ACC<br />

F<br />

F = −F<br />

F = F<br />

F = F<br />

ACC<br />

F<br />

F = −F<br />

F<br />

+ F<br />

W<br />

ACC<br />

− F<br />

ACC<br />

+ F<br />

W<br />

W<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

F<br />

+ F<br />

+ F<br />

F<br />

F<br />

+ F<br />

+ F<br />

− F<br />

‚ ƒ „ … † ‡<br />

horizontal<br />

weight force F W= 0<br />

velocity<br />

force<br />

axis arrangement:<br />

F<br />

W<br />

+ F<br />

W<br />

− F<br />

W<br />

W<br />

vertical / slanted<br />

up<br />

down<br />

FVTRAPEZ01-MLF-EN.FH10<br />

FACC: Acceleration force in N<br />

FW: Force due to weight in N<br />

FF: Frictional force in N<br />

Fig. 11-4: Determining the resulting feed forces according to motion type and<br />

direction<br />

Note: With horizontal axis arrangement, the weight is FW = 0.<br />

Further directional base and process forces must be taken<br />

into account.


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 5<br />

Average velocity<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The average velocity is required for determining the mechanical<br />

continuous output of the drive. Figure 11-2 shows the general way of<br />

determining the average velocity. The following calculation can be used<br />

for a simple determination in trapezoidal or triangular velocity profiles:<br />

v<br />

vavgi<br />

va<br />

ti<br />

vavgi<br />

ve<br />

v<br />

v<br />

avgi<br />

avg<br />

va<br />

=<br />

=<br />

v<br />

ti<br />

a<br />

all<br />

ve<br />

− v<br />

2<br />

e<br />

∑ v avg i ⋅<br />

t<br />

t<br />

i<br />

va<br />

ti<br />

ve<br />

t<br />

VAVG01-MLF-EN.FH10<br />

vavgi<br />

vavgi: Average velocity for a velocity segment of the duration ti in m/s<br />

va: Initial velocity of the velocity segment in m/s<br />

ve: Final velocity of the velocity segment in m/s<br />

vavg: Average velocity over total duty cycle time in m/s<br />

ti: Duration of velocity segment in s<br />

tall: Total duty cycle time, including breaks and/or downtime, in s<br />

Fig. 11-5: Determining the average velocity with triangular or trapezoidal<br />

velocity profile


6 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Trapezoidal velocity<br />

This mode of operation is characteristic for the most applications. An<br />

acceleration phase is followed by a movement of constant velocity up to<br />

the deceleration phase.<br />

va<br />

vc<br />

acceleration deceleration<br />

v = constant<br />

ta<br />

Fig. 11-6: Trapezoidal velocity profile<br />

Acceleration, initial velocity = 0<br />

• Velocity v ≠ constant<br />

• Initial velocity va = 0<br />

• Acceleration a = constant and positive<br />

Acceleration<br />

:<br />

Final velocity<br />

Travel :<br />

Time :<br />

:<br />

v<br />

t<br />

tc<br />

v<br />

a =<br />

t<br />

= a ⋅ t<br />

v c<br />

s = ⋅ t<br />

2<br />

a<br />

c<br />

c<br />

a<br />

v c 2 ⋅ s<br />

= = =<br />

a v<br />

tb<br />

2<br />

2 ⋅ s v c = = 2<br />

t 2 ⋅ s<br />

a<br />

a<br />

=<br />

a<br />

2<br />

v c a ⋅ t<br />

= =<br />

2 ⋅ a 2<br />

c<br />

ve<br />

VTRAPEZ01-MLF-EN.EPS<br />

2 ⋅ s<br />

2 ⋅ a ⋅ s =<br />

t<br />

2 ⋅ s<br />

a<br />

a: Acceleration in m/s²<br />

vc: Final velocity in m/s<br />

ta: Acceleration time in s<br />

s: Travel covered during acceleration in m<br />

Fig. 11-7: Constantly accelerated movement, initial velocity = 0 (acc. to Fig.<br />

11-6)<br />

2<br />

a<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

a<br />

t


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 7<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Acceleration, initial velocity ≠ 0<br />

Acceleration<br />

:<br />

Velocity :<br />

Travel :<br />

Time :<br />

• Velocity v ≠ constant<br />

• Initial velocity va ≠ 0<br />

• Acceleration a = constant and positive<br />

v<br />

a =<br />

v<br />

v<br />

s =<br />

t<br />

a<br />

c<br />

c<br />

= v<br />

c<br />

v<br />

=<br />

− v<br />

t<br />

c<br />

a<br />

a<br />

+ a ⋅ t<br />

+ v<br />

2<br />

a<br />

a<br />

− v<br />

a<br />

a<br />

2 ⋅ s 2 ⋅ v<br />

= − 2<br />

t t<br />

a<br />

⋅ t<br />

a<br />

=<br />

a<br />

2<br />

v c − v<br />

=<br />

2 ⋅ a<br />

2 ⋅ s<br />

=<br />

v + v<br />

c<br />

2 ⋅ a ⋅ s + v<br />

a<br />

a<br />

2<br />

a<br />

=<br />

a<br />

2<br />

v c − v<br />

=<br />

2 ⋅ s<br />

= v<br />

2<br />

a<br />

a<br />

2 ⋅ s<br />

= − v<br />

t<br />

⋅ t<br />

a<br />

a ⋅ t<br />

+<br />

2<br />

2 ⋅ a ⋅ s + v<br />

a: Acceleration in m/s²<br />

vc: Final velocity in m/s<br />

va: Initial velocity in m/s<br />

ta: Acceleration time in s<br />

s: Travel covered during acceleration in m<br />

Fig. 11-8: Constantly accelerated movement, initial velocity ≠ 0 (acc. to Fig.<br />

11-6)<br />

Constant velocity<br />

• Velocity v = constant<br />

• Acceleration a = 0<br />

Acceleration<br />

:<br />

Travel :<br />

Time :<br />

vc: Average velocity in m/s<br />

tC: Time during constant velocity in s<br />

sc: Travel covered constant velocity in m<br />

Fig. 11-9: Constant velocity (acc. to Fig. 11-6)<br />

v<br />

s<br />

t<br />

c<br />

c<br />

c<br />

s<br />

=<br />

t<br />

= v<br />

s<br />

=<br />

v<br />

c<br />

c<br />

c<br />

c<br />

c<br />

⋅ t<br />

c<br />

a<br />

2<br />

a<br />

a<br />

2<br />

a<br />

2<br />

a<br />

a<br />

− v<br />

a


8 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Decelerating, Final velocity = 0<br />

• Velocity v ≠ constant<br />

• Final velocity ve = 0<br />

• Acceleration a = constant and negative<br />

Acceleration<br />

:<br />

Velocity :<br />

Travel :<br />

Time :<br />

v<br />

a =<br />

t<br />

v<br />

v c<br />

s = ⋅ t<br />

2<br />

t<br />

c<br />

b<br />

c<br />

b<br />

= a ⋅ t<br />

2<br />

2 ⋅ s v c = = 2<br />

t 2 ⋅ s<br />

b<br />

b<br />

=<br />

2<br />

v c a ⋅ t<br />

= =<br />

2 ⋅ a 2<br />

v c 2 ⋅ s<br />

= = =<br />

a v<br />

b<br />

2 ⋅ s<br />

2 ⋅ a ⋅ s =<br />

t<br />

c<br />

2 ⋅ s<br />

a<br />

a: Acceleration in m/s²<br />

vc: Final velocity in m/s<br />

tb: Deceleration time in s<br />

s: Travel covered during acceleration in m<br />

Fig. 11-10: Constantly decelerated movement, final velocity = 0 (acc. to Fig. 11-<br />

6)<br />

2<br />

b<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

b


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 9<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Decelerating, Final velocity ≠ 0<br />

Acceleration<br />

:<br />

Velocity :<br />

Travel :<br />

Time :<br />

• Velocity v ≠ constant<br />

• Final velocity ve ≠ 0<br />

• Acceleration a = constant and negative<br />

v<br />

a =<br />

v<br />

v<br />

s =<br />

t<br />

a<br />

e<br />

c<br />

= v<br />

c<br />

v<br />

=<br />

c<br />

− v<br />

t<br />

c<br />

b<br />

− a ⋅ t<br />

+ v<br />

2<br />

e<br />

e<br />

− v<br />

a<br />

e<br />

2 ⋅ v<br />

=<br />

t<br />

b<br />

⋅ t<br />

b<br />

=<br />

v<br />

2<br />

v − v c =<br />

2 ⋅ a<br />

2 ⋅ s<br />

=<br />

v + v<br />

c<br />

b<br />

c<br />

2<br />

2 ⋅ s v c − v<br />

− = 2<br />

t 2 ⋅ s<br />

2<br />

c<br />

2 ⋅ s<br />

− 2 ⋅ a ⋅ s = − v<br />

t<br />

e<br />

b<br />

2<br />

e<br />

v<br />

=<br />

= v<br />

c<br />

c<br />

−<br />

⋅ t<br />

b<br />

v<br />

a ⋅ t<br />

+<br />

2<br />

2<br />

c<br />

− 2 ⋅ a ⋅ s<br />

a: Acceleration in m/s²<br />

vc: Initial velocity in m/s<br />

ve: Final velocity in m/s<br />

tb: Deceleration time in s<br />

s: Travel covered during acceleration in m<br />

Fig. 16-11: Constantly decelerated movement, final velocity ≠ 0 (acc. to Fig. 11-<br />

6)<br />

a<br />

2<br />

e<br />

b<br />

2<br />

b<br />

c


10 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Triangular velocity<br />

In contrast to the trapezoidal characteristic, this velocity profile does not<br />

have a phase of constant velocity. The acceleration phase is<br />

immediately followed by the deceleration phase. This characteristic can<br />

frequently be found in conjunction with movements of short strokes.<br />

vmax<br />

Fig. 11-12: Triangular velocity profile<br />

Acceleration<br />

:<br />

Velocity :<br />

Travel :<br />

Time :<br />

acceleration deceleration<br />

v<br />

s<br />

t<br />

2 ⋅ v<br />

a =<br />

t<br />

max<br />

all<br />

2 ⋅ v<br />

t =<br />

a<br />

max<br />

a ⋅ t<br />

= =<br />

2<br />

4 ⋅ s<br />

= 2<br />

t<br />

a ⋅ s<br />

4 ⋅ s<br />

=<br />

v<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

t<br />

VDREIECK01-MLF-EN.EPS<br />

2<br />

v<br />

=<br />

s<br />

2 ⋅ s<br />

=<br />

t<br />

2<br />

2<br />

v ⋅ t v<br />

max<br />

max a ⋅ t<br />

= = =<br />

2 4 ⋅ a 4<br />

max<br />

max<br />

all<br />

all<br />

all<br />

=<br />

max<br />

all<br />

4 ⋅ s<br />

a<br />

vmax: Maximum velocity in m/s<br />

a: Acceleration in m/s²<br />

sall: Total motion travel in m<br />

t: Positioning time in s<br />

Fig. 11-13: Calculation of triangular velocity profile (acc. to Fig. 11-12)<br />

all


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 11<br />

Sinusoidal velocity<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

This velocity profile results, for example, from the circular interpolation of<br />

two axes (circular movement) or the oscillating movement of one axis<br />

(grinding, for example).<br />

The specified variables are chiefly the motion travel or the circle<br />

diameter and the period T.<br />

velocity v<br />

Travel profile :<br />

Velocity profile :<br />

Acceleration<br />

profile :<br />

Jerk profile :<br />

period T<br />

s(<br />

t)<br />

v(<br />

t)<br />

a<br />

= r ⋅ sin( ω ⋅ t)<br />

= r ⋅ cos( ω ⋅ t)<br />

⋅ω<br />

() t = r ⋅ sin(<br />

ωt)<br />

() t = r ⋅ cos(<br />

ωt)<br />

2<br />

⋅ω<br />

3<br />

r<br />

⋅ω<br />

2 ⋅π<br />

ω = = 2 ⋅π<br />

⋅ f<br />

T<br />

s(t): Travel profile vs. time in m<br />

v(t): Velocity profile vs. time in m/s<br />

a(t): Acceleration profile vs. time in m/s<br />

r(t): Jerk profile over time t m/s³<br />

r: Motion travel in one direction (circle radius) in m<br />

ω: Angular frequency in s -1<br />

T: Period in s (time for circular motion or complete stroke)<br />

t: Time in s<br />

f: Stroke frequency in Hz<br />

Fig. 11-14: Motion profiles of an axis at sinusoidal velocity.<br />

time t


12 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

The following calculation bases on Fig. 11-14.<br />

Maximum<br />

accerlation<br />

:<br />

Maximum velocity :<br />

Average velocity :<br />

Acceleration<br />

force :<br />

Effective<br />

force :<br />

Vertical axis arrangement<br />

Base force up movement<br />

Base force down<br />

movement :<br />

:<br />

:<br />

a<br />

v<br />

v<br />

F<br />

F<br />

F<br />

F<br />

F<br />

max<br />

max<br />

avg<br />

ACC<br />

EFF<br />

EFFv<br />

0 up<br />

0 down<br />

2 ⋅π<br />

= r ⋅<br />

T<br />

2 ⋅ v<br />

=<br />

π<br />

= a<br />

max<br />

F<br />

2<br />

= F<br />

2<br />

acc<br />

F<br />

0<br />

2<br />

acc<br />

0<br />

max<br />

⋅ m<br />

+ F<br />

w<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

w<br />

= F − F<br />

2<br />

⎛ 2 ⋅π<br />

⎞<br />

= r ⋅ ⎜ ⎟<br />

⎝ T ⎠<br />

=<br />

=<br />

4 ⋅r<br />

=<br />

T<br />

+ F<br />

+ F<br />

2<br />

0<br />

2<br />

0 up<br />

2<br />

+ F<br />

amax: Maximum acceleration in m/s²<br />

vmax: Maximum velocity in m/s<br />

r: Motion travel in one direction (or circle radius) in m<br />

T: Period in s<br />

m: Moved mass in kg<br />

FACC: Acceleration force in N<br />

FEFF: Effective force in N<br />

FEFFv: Effektive force at vertical or inclined axis arrangement in N<br />

F0: Base force, e.g. frictional force in N<br />

FW: Force due to weight in N (acc. to Fig. 11-3)<br />

Fig. 11-15: Calculation formulae for sinusoidal velocity profile<br />

2<br />

0 down<br />

Note: Further directional base and process forces must additionally<br />

be taken into account.


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 13<br />

11.3 Duty cycle and Feed Force<br />

Determining the duty cycle<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The relative duty cycle ED specifies the duty cycle percentage of the<br />

load with respect to a total duty cycle time, including idle time. The<br />

thermal load capacity of the motor limits the duty cycle. Stressing the<br />

motor with rated force is possible over the entire duty cycle time. The<br />

duty cycle must be reduced at F > FdN (see Fig. 11-16) in order to not<br />

thermally overload the motor at higher feed forces.<br />

feed force<br />

in N<br />

max. motor<br />

force<br />

Fmax<br />

ED Fmax<br />

Fx<br />

ED Fx<br />

contin. nominal<br />

force of motor<br />

FdN<br />

Fig. 11-16: Correlation between duty cycle and feed force<br />

ED=100%<br />

ON time<br />

in %<br />

EDKENNLIN01-MLF-EN.EPS<br />

The approximate determination of the relative duty cycle EDideal is<br />

performed via the correlation:<br />

⎛ F<br />

=<br />

⎜<br />

⎝ F<br />

2<br />

EFF<br />

EDideal 2<br />

MAX<br />

⎞<br />

⎟ ⋅100<br />

⎠<br />

ED: Cyclic duration factor in %<br />

FEFF: Effective force or rated force in N<br />

FMAX: Maximum feed force<br />

Fig. 11-17: Approximate determination of duty cycle ED<br />

Prerequisites: <strong>Linear</strong> correlation between feed force and current.<br />

For <strong>IndraDyn</strong> L motors to Fig. 11-17, only an approximate duty cycle<br />

calculation is possible since there is a non-linear correlation between<br />

force and current.<br />

This calculation remains valid for a rough determination of possible duty<br />

cycle at short-time duty forces with FKB ≤ 1.5 FdN.<br />

Note: You must check with Figure 11-18 or Figure 11-19 to exactly<br />

determine the relative duty cycle of <strong>IndraDyn</strong> L linear motors.


14 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

ED<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

1,0 1,2 1,4<br />

The non-linearity of the characteristic curve force vs. current of<br />

synchronous linear motor leads to an increased rise of power loss at<br />

higher feed forces. This increased power loss leads – in particular at a<br />

high percentage of acceleration and deceleration processes – to a<br />

possible duty cycle that is reduced with respect to Fig. 11-17.<br />

Use Fig. 11-18 or Fig. 11-19 to determine exactly the possible relative<br />

duty cycle.<br />

ED<br />

real<br />

P<br />

=<br />

P<br />

vN<br />

AVG a<br />

⋅100<br />

EDreal: Possible relative duty cycle in %<br />

PvN<br />

Maximum removable power loss of the motor in W<br />

(continuous power loss see Chapter 5 “Technical Data”)<br />

PAVG a: Average motor power loss in application over a duty cycle time<br />

including idle time in W<br />

Fig. 11-18: Determining the duty cycle ED<br />

Prerequisites: Duty cycle time ≤ Thermal time constant of motor<br />

ideal<br />

real<br />

1,6 1,8 2,0 2,2 2,4 2,6 2,8 3,0<br />

F / FdN<br />

NORMIERTE KENNLINIEN MLF.XLS<br />

Fig. 11-19: Duty cycle vs. force for <strong>IndraDyn</strong> L synchronous linear motors<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 15<br />

11.4 Determining the Drive Power<br />

Continuous Output<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

To size the power supply module or the mains rating, you must<br />

determine the rated (continuous) and maximum power of the linear<br />

drive.<br />

Note: Take the corresponding simultaneity factor into account when<br />

determine the total power of several drives that are<br />

connected to a single power supply module.<br />

The rated output corresponds to the sum of the mechanical and<br />

electrical motor power.<br />

Total rated output<br />

Mechanical rated output<br />

Rated electrical output<br />

:<br />

:<br />

:<br />

P<br />

c<br />

P<br />

cm<br />

P<br />

= P<br />

ce<br />

cm<br />

= F<br />

eff<br />

⎛ F<br />

= ⎜<br />

⎝ F<br />

+ P<br />

⋅ v<br />

eff<br />

dn<br />

ce<br />

⎞<br />

⎟<br />

⎠<br />

avg<br />

2<br />

⋅ P<br />

vn<br />

mit<br />

F<br />

eff<br />

≤ F<br />

Pc: Rated power in W<br />

Pcm: Mechanical rated output in W<br />

Pce: Electrical rated power loss of motor in W<br />

Feff: Effective force in N (from application)<br />

vavg: Average velocity in m/s<br />

FdN: Rated force of the motor in N (see Chapter 4 “Technical data”)<br />

PvN Rated power loss of the motor in W (see Chapter 4 “Technical data”)<br />

Fig. 11-20: Rated power of the linear motor<br />

Note: The rated electrical output (see Fig. 11-20) is reduced when<br />

the rated force is reduced.<br />

dn


16 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Maximum Output<br />

P v / P vmax<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

The maximum output is also the sum of the mechanical and electrical<br />

maximum output. It must be made available to the drive during<br />

acceleration and deceleration phase or for very high machining forces,<br />

for example.<br />

Total maximum output<br />

Mechanical maximum output<br />

:<br />

:<br />

P<br />

max<br />

P<br />

maxm<br />

= P<br />

maxm<br />

= F<br />

Pmax: Total maximum power in W<br />

Pmaxm: Mechanical maximum power in W<br />

Pmaxe: Electrical maximum power in W (see Fig. 11-22)<br />

FMAX: Maximum feed force in N<br />

vFmax: Maximum velocity with Fmax in N<br />

Fig. 11-21: Maximum power of the linear motor<br />

max<br />

+ P<br />

Note: When the maximum feed force is reduced against the<br />

achievable maximum force of the motor, the electrical<br />

maximum output Pmaxe is reduced too. To determine the<br />

reduced electrical maximum output Pmaxe use Fig. 11-22.<br />

0,0<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0<br />

F / F max<br />

FMAX: Maximum force of the motor in N<br />

F: Maximum force application in N<br />

Pvmax: Maximum power loss of the motor in W<br />

PV: Power loss of the motor application in W<br />

Fig. 11-22: Diagram used for determining the reduced electrical power loss<br />

Note: The maximum power loss is specified in Chapter 10 “Motor-<br />

Controller-Combinations”.<br />

⋅ v<br />

NORMIERTE KENNLINIEN MLF.XLS<br />

maxe<br />

Fmax<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 17<br />

Cooling capacity<br />

Regeneration energy<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The necessary cooling capacity nearly corresponds to the motor´s<br />

electrical continuous power loss.<br />

=<br />

⎛ F<br />

=<br />

⎜<br />

⎝ F<br />

eff<br />

Cooling capacity : P P ⋅P<br />

with<br />

F ≤<br />

co ce<br />

vn<br />

eff<br />

Pco: Required cooling capacity in W<br />

Pce: Electrical power loss of motor in W<br />

Feff: Effective force in N<br />

FdN: Rated force of the motor in N (see Chapter 4 “Technical data”)<br />

PvN Rated power loss of the motor in W (see Chapter 4 “Technical data”)<br />

Fig. 11-23: Required cooling capacity of the linear motor<br />

Compared with rotary servo motors, the energy of a linear motor during<br />

deceleration is lower. The translatory velocity of a linear motor is usually<br />

much lower than the circumferential speed of a rotary servo motor.<br />

The regeneration energy of a synchronous linear drive results from the<br />

energy balance during the deceleration process. To size additional brake<br />

resistors or power supply units with feedback capability, it can be<br />

estimated as follows.<br />

P<br />

P<br />

R<br />

Ravg<br />

m ⋅ v<br />

=<br />

2 ⋅ t<br />

=<br />

1<br />

T<br />

b<br />

⋅<br />

2<br />

T<br />

∫<br />

0<br />

v ⋅ F<br />

−<br />

2<br />

P<br />

R<br />

R<br />

( t)<br />

dt<br />

dn<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

− 1,<br />

5 ⋅ m ⋅ R<br />

∑PR i ⋅ t<br />

=<br />

t<br />

all<br />

2<br />

bi<br />

12<br />

⎛a<br />

⋅ ⎜<br />

⎝ k<br />

PR: Regeneration energy during a deceleration phase in W<br />

PRavg: Average regeneration energy over total duty cycle time in W<br />

m: Moved mass in kg<br />

v: Maximum velocity in m/s<br />

tb: Deceleration time in s<br />

FR: Frictional force in N<br />

R12: Winding resistance of the motor at 20°C in ohms<br />

(see Chapter 4 “Technical Data”)<br />

amax: Braking deceleration (negative acceleration) in m/s²<br />

kiFN: Motor constant in N/A<br />

tall: Total duty cycle time in s<br />

Fig. 11-24: Regeneration energy of the linear motor<br />

Prerequisites: Velocity-independent friction<br />

Constant deceleration<br />

Final velocity = 0<br />

Note: If the regeneration energy that is determined according to<br />

Fig. 11-24 is negative, energy is not fed back. This means<br />

that energy must be supplied to the motor during the<br />

deceleration process.<br />

max<br />

iFN<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

F<br />

dn


18 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

11.5 Efficiency<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

The efficiency of electrical machines is the ration between the motor<br />

output and the power fed to the motor. With linear motors, it is<br />

determined by the application-related traverse rates and forces, and the<br />

corresponding motor losses.<br />

Fig. 11-25 and Fig. 11-26 can be used for determining and/or estimating<br />

the motor efficiency.<br />

η =<br />

P<br />

Pmech<br />

+ P<br />

mech<br />

V el<br />

F ⋅ v<br />

=<br />

( F ⋅ v)<br />

+ P<br />

V el<br />

η: Efficiency<br />

Pmech: Mechanical output in W<br />

PVel: Electrical power loss in W<br />

F: Feed force in N<br />

v: Velocity in m/s<br />

Fig. 11-25: Determining the efficiency of linear motors<br />

effeciency vs. continuous<br />

norminal force F dN<br />

1<br />

=<br />

Pvel<br />

1+<br />

F ⋅ v<br />

0,0<br />

0 m/min 100 m/min 200 m/min 300 m/min 400 m/min 500 m/min 600 m/min<br />

Velocity<br />

effeciency vs.<br />

maximum force F max<br />

WIRKUNGSGRAD MLF.XLS<br />

Fig. 11-26: Efficiency vs. velocity for <strong>IndraDyn</strong> L synchronous linear motors.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 19<br />

11.6 Sizing Examples<br />

Handling axis<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The example of a simple handling axis is used for describing the basic<br />

procedure of sizing a linear drive.<br />

Specifications<br />

The following data is specified:<br />

Slide mass: mS = 65 kg<br />

Maximum velocity possible: 300 m/min<br />

Maximum acceleration possible: 50 m/s²<br />

Axis arrangement:<br />

Base force through energy chain,<br />

horizontally, primary moved<br />

seals, linear guides, etc.: Fzus = 150 N (constant)<br />

Additional process forces: none<br />

Friction coefficient of linear guides: µ = 0.005<br />

Mains connection voltage: 3 x AC 400V<br />

Coolant temperature (water): ϑcoolant = 25°C<br />

Required positioning movements:<br />

No.: Stroke Positioning<br />

time<br />

Idle time after stroke Remark<br />

1 600 mm 0.32 s 0.20 s Moving from start<br />

position to part<br />

pickup<br />

2 -1,300 mm 0.50 s 0.20 s Parts transport and<br />

deposit<br />

3 700 mm 0.35 s 0.45 s Moving back to<br />

start position<br />

Fig. 11-27: Required positioning movements of the handling axis<br />

The mass of the primary must be taken into account when the feed<br />

forces are determined. The attractive force between the primary and<br />

secondary is required additionally when the frictional force is determined.<br />

The following assumptions are made to start with:<br />

Primary mass: mP = 19 kg<br />

Attractive force: FATT = 8000 N<br />

Check the calculations again when you have selected the motor.


20 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Moved total mass<br />

Base force<br />

Force due to weight<br />

Acceleration force:<br />

Maximum force:<br />

Total time or duty cycle time<br />

Calculation<br />

The following velocity and acceleration values are selected in order to<br />

maintain the required position times and specified limitations.<br />

No.: Stroke Positioning<br />

time<br />

Feed rate Acceleration<br />

1 600 mm 0.32 s 180 m/min 25 m/s²<br />

2 -1,300 mm 0.50 s 220 m/min 25 m/s²<br />

3 700 mm 0.35 s 185 m/min 25 m/s²<br />

Fig. 11-28: Selected velocities and accelerations of the handling axes<br />

Note: When you select the position velocity and positioning<br />

acceleration, you should try to find an optimum ration for the<br />

motor selection (to reach a minimum effective force, for<br />

example).<br />

m<br />

m<br />

m<br />

F<br />

F<br />

F<br />

F<br />

0<br />

0<br />

0<br />

0<br />

ges<br />

ges<br />

ges<br />

= m<br />

=<br />

=<br />

= F<br />

F<br />

S<br />

65 kg<br />

84 kg<br />

+ F<br />

= µ ⋅ (m<br />

= 194 N<br />

+ m<br />

zus<br />

ges<br />

P<br />

+ 19 kg<br />

⋅ g + F<br />

ATT<br />

) + F<br />

zus<br />

= 0.005 ⋅(84<br />

kg ⋅ 9.81m/s²<br />

+<br />

FW = 0 N (horizontal axis)<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

t<br />

t<br />

acc<br />

acc<br />

acc<br />

max<br />

max<br />

max<br />

ges<br />

ges<br />

= m<br />

=<br />

=<br />

ges<br />

⋅ a<br />

(84 kg)<br />

2100 N<br />

= F<br />

acc<br />

p<br />

⋅<br />

+ F<br />

2294 N<br />

25<br />

m/s²<br />

= 2100 N + 194N<br />

=<br />

= 2.02 s<br />

0<br />

8000 N)<br />

+ 150 N<br />

= 0.32 s + 0.2 s + 0.5 s + 0.2 s + 0.35 s + 0.45 s<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 21<br />

Velocity and force profile<br />

Effective force and average<br />

velocity<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The selected velocities and the determined forces provide the following<br />

velocity and force profile:<br />

velocity v in m/min<br />

2294 N 2294 N<br />

2294 N<br />

0.12 s<br />

180 m/min<br />

194 N 0 N 194 N<br />

0.08 s<br />

220 m/min<br />

-1906 N -1906 N -1906 N<br />

0.12 s<br />

0.2 s<br />

0.147 s<br />

0.206 s<br />

0.147 s<br />

time t<br />

185 m/min<br />

0 N 194 N 0 N<br />

0.2 s<br />

Fig. 11-29: Velocity and force profile of handling axis<br />

0.123 s 0.123 s<br />

0.104 s<br />

0.45 s<br />

force F in N<br />

DIMBSPHDL01-MLF-EN.EPS<br />

The effective force and the average velocity are determined on the basis<br />

of the force profile:<br />

No.: Time t<br />

in s<br />

Force Fi<br />

in N<br />

Average velocity vavg i<br />

in m/min<br />

1 0.120 2294 Fi = Facc+F0 90<br />

2 0.080 194 Fi = F0 180<br />

3 0.120 -1906 Fi = -Facc+F0 90<br />

4 0.200 0 0<br />

5 0.147 2294 Fi = Facc+F0 110<br />

6 0.206 194 Fi = F0 220<br />

7 0.147 -1906 Fi = -Facc+F0 110<br />

8 0.2 0 0<br />

9 0.123 2294 Fi = Facc+F0 92.5<br />

10 0.104 194 Fi = F0 185<br />

11 0.123 -1906 Fi = -Facc+F0 92.5<br />

12 0.45 0 N 0<br />

Fig. 11-30: Force profile vs. time to determine the effective force<br />

F<br />

F<br />

eff<br />

eff<br />

( Fi<br />

=<br />

t<br />

∑<br />

2<br />

ges<br />

= 1313 N<br />

⋅ t )<br />

i<br />

v<br />

v<br />

avg<br />

avg<br />

v<br />

=<br />

t<br />

∑<br />

=<br />

avg i<br />

ges<br />

⋅ t<br />

77.<br />

1 m / min<br />

i


22 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Verification of mass and<br />

attractive force<br />

Operation points and<br />

characteristic curve of the motor<br />

Selection of motor – controller combination<br />

Once the application data has been calculated, an appropriate motorcontroller<br />

combination can be selected.<br />

The standard encapsulation and the IndraDrive controller family are<br />

selected. Using the calculated data, the following combination is chosen<br />

from the selection data for motor-controller combinations (see Chapter<br />

10 “Motor-Controller Combinations”):<br />

Motor: MLP140C-0170-FS-xxxx<br />

Drive device: HMS01.1N-W150<br />

The mass of the selected primary MLP140C-0170-FS is slightly smaller<br />

than the previous mass. The same applies to the attractive force. The<br />

selected motor is retained within the scope of this example.<br />

Using the profiles of velocity and force (Fig. 11-29), the operating points<br />

of the required feed forces and the necessary velocities can be<br />

determined. These operating points and the characteristics are shown in<br />

the Figure below.<br />

force in N<br />

6000<br />

5250<br />

4500<br />

3750<br />

3000<br />

2250<br />

1500<br />

750<br />

0<br />

0 50 100 150 200 250 300 350 400 450<br />

F-v charact. curve motor<br />

working pts. application<br />

velocity in m/min<br />

Fig. 11-31: Force-velocity diagram of handling axis<br />

(operating points and motor characteristic)<br />

DIMBSPHDL02-MLF-EN.EPS<br />

Note: All operating points that are related to force and velocity of<br />

the application must be inside the characteristic curve of the<br />

selected motor – controller combination.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 23<br />

Required length of the<br />

secondary parts<br />

Selecting the secondary part<br />

segments<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Selecting the secondary segments<br />

Based on the motion profile, the effective total motion path and,<br />

consequently, the required number and/or length of the secondary<br />

segments can be determined. The effective total travel is 1300 mm; the<br />

length of the selected primary is 510 mm.<br />

L<br />

L<br />

L<br />

sec ondary<br />

secondary<br />

secondary<br />

≥ L<br />

total travel<br />

+ L<br />

primary<br />

= 1300 mm + 510 mm<br />

= 1810 mm<br />

Secondary segments for <strong>IndraDyn</strong> L synchronous linear motors are<br />

available in a length of 150 mm, 450 mm and 600 mm. Three<br />

secondaries of 600 mm each (total length of 1800 mm) are selected for<br />

the handling axes.


24 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Rated mechanical power<br />

Rated electrical power loss<br />

Total rated power<br />

Maximum output mechanical<br />

Maximum output electrical<br />

Total maximum output<br />

Cooling capacity<br />

Power calculation<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

cm<br />

cm<br />

cm<br />

ce<br />

ce<br />

ce<br />

c<br />

c<br />

c<br />

= F<br />

eff<br />

⋅ v<br />

avg<br />

77.<br />

1 m / min<br />

= 1313 N ⋅<br />

60<br />

= 1687 W<br />

⎛ F<br />

= ⎜<br />

⎝ F<br />

eff<br />

n_motor<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎛1313<br />

N⎞<br />

= ⎜ ⎟<br />

⎝1785<br />

N⎠<br />

= 703 W<br />

= P<br />

cm<br />

+ P<br />

ce<br />

= 2390 W<br />

2<br />

⋅P<br />

vN<br />

⋅1300<br />

W<br />

= 1687 W + 703 W<br />

maxm<br />

maxm<br />

maxm<br />

= F<br />

max<br />

⋅ v<br />

Fmax<br />

220 m / min<br />

= 2294 N⋅<br />

60<br />

= 8412W<br />

Figure 11-22 is used for determining the maximum electrical power loss.<br />

The ratio of required maximum force and maximum force of the motor is<br />

2294 N / 5600 N = 0.41.<br />

Thus, Figure 11-22 shows a reduction factor of 0.095 for the maximum<br />

power loss. Together with the specification of the maximum motor power<br />

loss from the selection charts for the motor-controller combination, the<br />

maximum electrical power loss results as<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

maxe<br />

maxe<br />

maxe<br />

max<br />

max<br />

max<br />

= 0.<br />

095 ⋅Pmax<br />

motor<br />

= 0.<br />

095 ⋅ 60.<br />

84 kW<br />

= 5.<br />

78 kW<br />

= P<br />

maxm<br />

= 8.<br />

41kW<br />

+ 5.<br />

78 kW<br />

= 14.19<br />

+ P<br />

kW<br />

maxe<br />

Pco = Pce<br />

= 704 W<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 25<br />

Regeneration energy<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Figure 11-24 and the motor data in Chapter 4 “Technical data” are used<br />

for determining the regeneration energy for all deceleration phases.<br />

P<br />

Ri<br />

m ⋅ v<br />

=<br />

2 ⋅ t<br />

2<br />

bi<br />

v ⋅F<br />

−<br />

2<br />

R<br />

2<br />

− 1,<br />

5 ⋅ m ⋅ R<br />

No.: Deceleration time tbi Feed rate Acceleration Regeneration energy<br />

12<br />

⎛a<br />

⋅⎜<br />

⎝ k<br />

1 0.120 s 180 m/min -25 m/s² 1678 W<br />

2 0.147 s 220 m/min -25 m/s² 2305 W<br />

3 0.123 s 185 m/min -25 m/s² 1767 W<br />

Additional capacities for<br />

stopping the axis upon a power<br />

failure<br />

max<br />

Fig. 11-32: Regeneration energy during the deceleration phases<br />

The average regeneration energy over the entire duty cycle time<br />

amounts to:<br />

PR<br />

i ⋅ tbi<br />

PRavg<br />

=<br />

t<br />

∑<br />

P<br />

Ravg<br />

= 375<br />

all<br />

W<br />

Additional DC bus capacities (capacitors) shall ensure that the axis is<br />

safely stopped in the event of a power failure. Figure 9-77 is used for<br />

determining the required additional capacities in the DC bus. The motor<br />

decelerates at maximum feed force; the minimum DC bus voltage should<br />

be 50V. The maximum velocity is 220 m/min is considered as worst<br />

case.<br />

C<br />

C<br />

C<br />

add<br />

add<br />

add<br />

=<br />

U<br />

=<br />

=<br />

m<br />

ges<br />

2<br />

DCmax<br />

84 kg<br />

⋅ v<br />

− U<br />

⋅<br />

2 ( 540 V)<br />

− ( 50 V)<br />

0.<br />

00242F<br />

max<br />

2<br />

DCmin<br />

m<br />

4.<br />

17<br />

s<br />

=<br />

2<br />

2.<br />

4 mF<br />

⎡ F<br />

⋅ ⎢3,<br />

5 ⋅<br />

⎢⎣<br />

k<br />

max_ motor<br />

2<br />

iF<br />

⋅R<br />

12<br />

iFN<br />

− v<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

max<br />

⎛<br />

⋅⎜<br />

⎜<br />

⎝ F<br />

F<br />

R<br />

max_ motor<br />

PRi<br />

⎞⎤<br />

+ 0.<br />

3⎟<br />

⎟<br />

⎥<br />

⎠⎥⎦<br />

⎡<br />

⎤<br />

⎢<br />

⎥<br />

⎢ 5600 N<br />

m ⎛ 194 N ⎞<br />

⋅ 3,<br />

5 ⋅ ⋅1.<br />

2 Ω − 4.<br />

17 ⋅ 0.<br />

3 ⎥<br />

2<br />

⎜ + ⎟<br />

⎢<br />

⎛ N ⎞<br />

s ⎝ 5600 N ⎠⎥<br />

⎢ ⎜82<br />

⎟<br />

⎥<br />

⎢⎣<br />

⎝ A ⎠<br />

⎥⎦<br />

Note: The maximum possible DC bus capacity of the employed<br />

power supply module must be taken into account when<br />

additional capacities are used in the DC bus.


26 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Selection of linear scale<br />

The linear scale can be selected when the effective total travel is known.<br />

An open incremental linear scale of the LIDA187C type is selected for<br />

the handling axis. The selected system has distance-encoded reference<br />

marks.<br />

Motor efficiency<br />

The motor efficiency, related on the continuous output, results as follows:<br />

Pcm<br />

ηc<br />

=<br />

P + P<br />

η =<br />

c<br />

cm<br />

0.<br />

706<br />

ce<br />

1687 W<br />

=<br />

1687 W + 703 W<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 27<br />

Limit overtemperature of the<br />

motor winding<br />

Final overtemperature of the<br />

motor winding<br />

Absolute final temperature of the<br />

motor winding<br />

Reaching the final temperature<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Final overtemperature of the motor<br />

ϑ<br />

ϑ<br />

ϑ<br />

wg<br />

wg<br />

wg<br />

w<br />

= ϑ<br />

w max<br />

= 155 K − 25 K<br />

= 130 K<br />

⎛ F<br />

ϑ ⎜<br />

w =<br />

⎜<br />

⎝ F<br />

eff<br />

n_motor<br />

− ϑ<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

coolant<br />

2<br />

⋅ϑ<br />

wg<br />

⎛1313<br />

N⎞<br />

ϑw<br />

= ⎜ ⎟ ⋅130K<br />

⎝1785<br />

N⎠<br />

ϑ = 70 K<br />

ϑ<br />

ϑ<br />

ϑ<br />

wabs<br />

wabs<br />

wabs<br />

= ϑ + ϑ<br />

w<br />

= 70 K + 25 K<br />

= 95 ° C<br />

coolant<br />

The thermal time constant of the selected motor is Tth = 7 min. 98% of<br />

the final temperature is reached after approximately 4 thermal time<br />

constants (i.e. after 28 minutes).<br />

Note: Additional explanations of the thermal behavior of linear<br />

motors can be found in Chapter 9.4 “Motor Cooling”.


28 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Machine tool feed axis; sizing via duty cycle<br />

Detailed information of the motion cycle are sometimes not available or<br />

are not exact. In the case of, e.g. small batch production and frequently<br />

changing port programs. Sizing of the drives is performed on the basis<br />

of the relative duty cycle of different operating phases, and based on<br />

empirical values from machine manufacturers and/or machine users.<br />

The following example explains this procedure.<br />

Specifications<br />

The following data is specified:<br />

Slide mass including motor: mS = 580 kg<br />

Velocity rapid travers: 120 m/min<br />

Velocity machining 15 m/min<br />

Maximum acceleration possible: 15 m/s²<br />

Axis arrangement: horizontally, primary moved<br />

Motion path 0.95 ... 800 mm<br />

Base force: F0 = 600 N (constant)<br />

Maximum machining force: FP = 1200 N<br />

Friction coefficient of linear guides: µ = 0.005<br />

Mains connection voltage: 3 x AC 400V<br />

Type of machining/movement Share<br />

Acceleration and declaration 10 %<br />

Rapid traverse 20 %<br />

Machining process 30 %<br />

Standstill with machining 20 %<br />

Standstill without machining 20 %<br />

Total:<br />

100 %<br />

Fig. 11-33: Percentage of individual machining processes and movements<br />

Standstill without<br />

machining<br />

20%<br />

Standstill with<br />

machining<br />

20%<br />

Acceleration/<br />

deceleration<br />

10%<br />

machining<br />

30%<br />

Rapid traverse<br />

20%<br />

Fig. 11-34: Graphical presentation of the individual operating phases<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Motor Sizing 29<br />

Acceleration force:<br />

Maximum force:<br />

Effective force and average<br />

velocity<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Calculation<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

acc<br />

acc<br />

acc<br />

max<br />

max<br />

max<br />

= m<br />

=<br />

=<br />

ges<br />

⋅ a<br />

580 kg<br />

8700 N<br />

= F<br />

acc<br />

⋅<br />

+ F<br />

= 8700 N +<br />

=<br />

9300 N<br />

15<br />

m/s²<br />

0<br />

600 N<br />

The effective force and the average velocity are determined on the basis<br />

of the specifications for the individual operating phases.<br />

Type of machining/movement EDi Force Fi Average<br />

velocity vavgi<br />

Acceleration and declaration 10 % 8700 N Fi = Facc ± F0 60 m/min<br />

Rapid traverse 20 % 600 N Fi = F0 120 m/min<br />

Machining process 30 % 1800 N Fi = FP + F0 15 m/min<br />

Standstill with machining 20 % 1200 N Fi = FP 0 m/min<br />

Standstill without machining 20 % 0 N 0 m/min<br />

Fig. 11-35: Percentage of individual machining processes and movements<br />

F<br />

F<br />

eff<br />

eff<br />

= ∑ ( Fi<br />

=<br />

2<br />

2983 N<br />

Drive selection<br />

EDi<br />

⋅ )<br />

100<br />

v<br />

v<br />

avg<br />

avg<br />

= ∑(<br />

v<br />

=<br />

34.<br />

5<br />

avgi<br />

EDi<br />

⋅ )<br />

100<br />

m / min<br />

The determined data can be used for selecting a motor-controller<br />

combination. The primary with thermal encapsulation is selected for<br />

machine tool applications.<br />

Primary MLP140C-0170-FS-N0CN-NNNN<br />

Fmax_motor: 10000 N Fn_motor: 3150 N<br />

vFmax 750V:170 m/min vNENN 750V: 250 m/min<br />

Secondary segments MLS140A-3A-xxxx-NNNN<br />

Total travel + Primary ~1,500 mm<br />

Drive device HMS01.1N-W0150<br />

Power supply module HMV ( UDC=750V, with feedback capability)<br />

<strong>Linear</strong> scale Heidenhain LC481<br />

encapsulated, absolute, ENDAT interface


30 Motor Sizing <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Rated electrical power loss<br />

Required coolant flow<br />

Determining the cooling capacity<br />

P<br />

P<br />

P<br />

co<br />

co<br />

co<br />

= P<br />

ce<br />

⎛ F<br />

= ⎜<br />

⎝ F<br />

⎛ 2983 N⎞<br />

= ⎜ ⎟<br />

⎝ 3150 N⎠<br />

= 3050 W<br />

eff<br />

n_motor<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⋅P<br />

⋅ 3400 W<br />

vN_motor<br />

The maximum temperature rise at the contact surface of the primary<br />

should not exceed 3 K. The necessary coolant flow in L/min is<br />

determined according to Fig. 9-43:<br />

Pco<br />

⋅ 25200<br />

Q =<br />

c ⋅ ρ ⋅ ∆T<br />

3050 W ⋅ 25200<br />

Q =<br />

J kg<br />

4183 ⋅ 988,<br />

3 ⋅ 3 K 3<br />

kg ⋅K<br />

m<br />

Q =<br />

6.<br />

2<br />

l<br />

min<br />

m<br />

Note: The way of determining the drive power and other more<br />

detailed data are not discussed within the scope of this<br />

example.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Handling, transportion and storage of the units 12-1<br />

12 Handling, transportion and storage of the units<br />

12.1 Identification of the motor components<br />

Primary<br />

Secondary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

A name plate is attached to the front face of the primary where the<br />

power cable and coolant connections are located. The name plate<br />

unambiguously identifies the individual primary. An additional name plate<br />

is attached to the primary. This additional name plate can be attached to<br />

the machine or can be used otherwise as the customer sees fit. The<br />

name plate contains the following data:<br />

Made in Germany<br />

PRIMARY PART OF MOTOR 7260<br />

MNR: R911297289<br />

TYP: MLP070A-0300-FT-N0CN-NNNN<br />

FD: 03W13<br />

SN: MLP070-12345 0A01 m 10,9 kg<br />

F(N) 2000 N<br />

I(N) 55.0 A<br />

1 tp 37.5 mm<br />

2<br />

5<br />

I.Cl. F<br />

IP 65<br />

3<br />

4<br />

Name_Plate_Primary.EPS<br />

(1): Rated force (N) (2): Rated voltage (A)<br />

(3): Insulation class (4): Protection class<br />

(5): Pole pitch (mm)<br />

Fig. 12-1: Name plate of the primary<br />

Due to lack of space on the secondary, no name plates are permanently<br />

attached. Two identical name plates are, however, delivered with the<br />

secondary. To ensure a safe and permanent identification of the<br />

secondary in the future, the type designation and the serial numbers are<br />

stamped directly into the secondary.<br />

The type designation and serial numbers are located between the first<br />

two mounting holes starting from the side stamped “S” to signify the<br />

south pole.<br />

1<br />

MLS<br />

MLS100S-3A-0xxx<br />

SN:0123456<br />

2 3<br />

XX/XX XX<br />

XXX<br />

(1): Type designation and serial number<br />

(2): Manufacturing date (mm/yy)<br />

(3): Supplier<br />

(4): Number of test protocol<br />

(5): Pole designation “S” (for south pole)<br />

Fig. 12-2: Positions of the identification marks on the secondary<br />

S<br />

4<br />

5<br />

MLS_KENNZ_EN.EPS


12-2 Handling, transportion and storage of the units <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Name plate<br />

Note: Independent of the length, each secondary has a magnetic<br />

north pole on one end and a magnetic south pole on the<br />

other. To indicate which end is which, the south pole is<br />

marked with an “S”.<br />

The type plate of the secondary contains the following data:<br />

Made in Germany<br />

SECONDARY PART OF MOTOR<br />

MNR: R911297292<br />

TYP: MLS070S-3A-0150-NNNN<br />

SN: MLS070-12345 0A01<br />

(1): Protection class (IP rating)<br />

(2): Mass of the secondary (kg)<br />

Fig. 12-3: Name plate of the secondary<br />

12.2 Delivery status and Packaging<br />

m 2 3.0 kg<br />

IP 1 65<br />

7260<br />

FD: 03W13<br />

Name_Plate_Secondary.EPS<br />

Primary<br />

The primaries are individually packed in wooden boxes which are<br />

marked with the type designation of the primary contained inside; this<br />

allows for easy identification of the contents.<br />

Secondary<br />

The secondaries are individually packed in cardboard boxes which are<br />

also marked with the type designation of the secondary inside.<br />

CAUTION<br />

Risk of injuries and/or damage when handling<br />

secondaries of synchronous linear motors!<br />

⇒ Strictly observe and adhere to the warnings and<br />

safety instructions<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Handling, transportion and storage of the units 12-3<br />

Warnings on the packaging of<br />

the secondaries<br />

12.3 Transportation and Storage<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The boxes containing the secondaries carry the following warnings:<br />

N<br />

S<br />

WARNING<br />

Health hazard to people with heart pacemakers,<br />

metal implants and hearing aids when in proximity<br />

to these parts!<br />

Strong magnetic fields due to permanent motor<br />

magnets!<br />

Anyone with pacemakers, metal implants or<br />

hearing aids are not permitted to approach or<br />

to handle these motor parts.<br />

If you have such conditions, consult with a<br />

physician prior to handling these parts.<br />

CAUTION VORSICHT<br />

Hazardous to sensitive parts!<br />

Keep watches, credit cards, identification cards<br />

with magnetic strips, magnetic tape and<br />

ferromagnetic material (such as iron, nickel,<br />

and cobalt) away from magnetic parts.<br />

WARNUNG<br />

CAUTION VORSICHT<br />

Hazardous to fingers and hands due to high<br />

attractive forces of permanent motor magnets!<br />

Strong magnetic fields due to permanent motor<br />

magnets!<br />

Handle only with protective gloves!<br />

Handle with extreme care.<br />

Fig. 12-4: Warning label on the MLS secondary boxes<br />

Gesundheitsgefahr für Personen mit Herzschrittmachern,<br />

metallischen Implantaten oder Splittern und<br />

Hörgeräten in unmittelbarer Umgebung dieser Teile!<br />

Starkes Magnetfeld durch Permanentmagnete<br />

der Motorteile!<br />

Personen mit Herzschrittmachern, metallischen<br />

Implantaten oder Hörgeräten dürfen sich nicht<br />

diesen Motorteilen nähern oder damit umgehen.<br />

Besteht die Notwendigkeit für solche Personen,<br />

sich diesen Teilen zu nähern, so ist das zuvor<br />

von einem Arzt zu entscheiden.<br />

Quetschgefahr von Finger und Hand durch starke<br />

Anziehungskräfte der Magnete!<br />

Starkes Magnetfeld durch Permanentmagnete<br />

der Motorteile!<br />

Nur mit Schutzhandschuhen anfassen.<br />

Vorsichtig handhaben.<br />

Zerstörungsgefahr empfindlicher Teile!<br />

Uhren, Kreditkarten, Scheckkarten und Ausweise<br />

mit Magnetstreifen sowie alle ferromagnetische<br />

Metallteile wie Eisen, Nickel und Cobalt von den<br />

Permanentmagneten der Motorteile fernhalten.<br />

WARNMAGN_MLF_EN.EPS<br />

Note: Self-adhesive warning labels, as shown in Fig. 12-4, can be<br />

ordered from Bosch <strong>Rexroth</strong> (Mat-Nr. R911278745). The<br />

approximate size is 110 mm x 150 mm.<br />

The primaries and secondaries of synchronous linear motors must be<br />

stored on flat surfaces and supported along the entire bottom – see Fig.<br />

12-5. This must be ensured even for storage of a short duration.<br />

The permissible storage and transport temperature is from –10 to +60°C<br />

(14 - 140°F). Large or periodic temperature variations during transport<br />

and storage are not permitted.<br />

+60° C<br />

-10° C<br />

Fig. 12-5: Storage of linear motor components<br />

LAGKOMP_MLF_EN.EPS


12-4 Handling, transportion and storage of the units <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

CAUTION<br />

Inappropriate handling during storage or<br />

transport can damage or destroy the motor<br />

components!<br />

⇒ Use the original packaging for permanent storage.<br />

⇒ Store for short periods according to Fig. 12-5<br />

⇒ Do not throw parts<br />

⇒ Adhere to permissible transportation and storage<br />

temperatures ranges.<br />

⇒ Remove the transportation and installation<br />

protection only during or after the installation into<br />

the machine.<br />

Specifics for transporting secondaries of synchronous linear motors<br />

Air freight<br />

The secondaries of synchronous linear motors have unshielded<br />

permanent magnets. Strictly adhere to the safety notes in chapter 3!<br />

CAUTION<br />

Magnetic fields can influence a plane’s<br />

electronics!<br />

⇒ Heed the packaging and transportation instructions<br />

(IATA 902)<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Handling, transportion and storage of the units 12-5<br />

12.4 Checking the motor components<br />

Factory checks<br />

Electrical inspections<br />

Mechanical inspections<br />

EMV radia interference<br />

suppression<br />

Customer’s receiving inspection<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

All Bosch <strong>Rexroth</strong> linear motors undergo the following electrical checks<br />

at the factory:<br />

• High-voltage test acc. to EN 60034-1/2.95 (VDE 0530 Part 1)<br />

• Insulation resistance test acc. to EN 60204-1<br />

• Verification of the specified electrical characteristics<br />

All Bosch <strong>Rexroth</strong> linear motors undergo the following mechanical tests:<br />

• Shape and location tolerances acc. to ISO 1101<br />

• Structure and fits acc. to DIN 7157<br />

• Surface characteristics acc. to DIN ISO1302<br />

• Thread test acc. to DIN 13, Part 20<br />

• Leak tests of the cooling system<br />

Note: Each motor is accompanied by a corresponding test<br />

certificate.<br />

The linear motor components of Bosch <strong>Rexroth</strong> have been subjected to<br />

EMV tests and have been certified as compliant to:<br />

EN 55011 Limit Class B, VDE 0875 Part 11<br />

If you wish to perform an additional high-voltage receiving inspection,<br />

you must contact Bosch <strong>Rexroth</strong>.<br />

CAUTION<br />

Destruction of motor components by<br />

improperly-executed high-voltage inspection!<br />

⇒ Contact Bosch <strong>Rexroth</strong> before carrying out such<br />

tests!


12-6 Handling, transportion and storage of the units <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Mounting Instructions 13-1<br />

13 Mounting Instructions<br />

13.1 Basic precondition<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Basic precondition for mounting the <strong>IndraDyn</strong> L components is the<br />

keeping of the following basic preconditions:<br />

• Precondition of the necessary installation sizes (Fig. 5-1)<br />

• Machine construction fulfills the requests for mounting (stiffness,<br />

attractive force, feed force and acceleration force, etc.)<br />

• Machine construction is prepared for mounting of all components<br />

• Mounting is done by trained personal<br />

• Compliance of danger and safety notes is guaranteed.<br />

13.2 General procedure at mounting of the motor components<br />

The installation of the motor into the machine construction depends on<br />

the arrangement of the secondary and can be done in different ways.<br />

• Installation at spanned secondaries over the entire traverse path<br />

• Installation at whole secondary over the entire traverse path<br />

Note: The described procedures are only suggestions and can be<br />

done user-specific in other forms.<br />

Installation at spanned secondary parts over the entire traverse path<br />

Installation for a spanned secondary can be done, as shown in Fig. 13-1.<br />

Thereby, only a part of the secondary is installed, so that the primary can<br />

be laid on the machine bed.<br />

WARNING<br />

Do not lay the primary directly on the secondary!<br />

⇒ Lift-off of the primary from the secondary is difficult<br />

because of high attractive forces (apparatus<br />

necessary).<br />

The assembly of the primary into the installed slide can be done now.<br />

Afterwards, the slide with installed primary can be pushed over the<br />

installed secondaries. Then, all the remaining secondaries can be<br />

installed.


13-2 Mounting Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

STEP 1<br />

STEP 2<br />

secondary segment 1<br />

machine bed<br />

secondary segment 1 primary<br />

machine bed<br />

slide<br />

total motion path<br />

slide<br />

total motion path<br />

primary<br />

secondary segment 2<br />

MOTEINBAU01-MLF-EN.EPS<br />

Fig. 13-1: Assembly of the components of linear motors at spanned secondary<br />

part<br />

CAUTION<br />

Uncontrolled movement of the slide!<br />

⇒ Safety against uncontrolled movements by partial<br />

covering of primary and secondary (force in<br />

traverse direction).<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Mounting Instructions 13-3<br />

Installation at whole secondary over the entire traverse path<br />

Example<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

At whole secondary over the entire traverse path can the primary be<br />

installed into the prepared slide. After mounting the secondary, the slide<br />

with prepared primary can be lowered on the machine bed via a suited<br />

apparatus<br />

secondary<br />

machine bed<br />

primary<br />

total motion path<br />

slide<br />

guide carriage lowering using<br />

device<br />

MOTEINBAU02MLF-EN.EPS<br />

Fig. 13-2: Installation of the linear motor components at whole secondary over<br />

the entire traverse path<br />

CAUTION<br />

When lowering the primary on the secondary,<br />

result by reducing the air gap increasing<br />

attractive forces!<br />

⇒ Heed the specifications in chapter 9.5 feeding and<br />

attractive forces<br />

⇒ Do not lower the primary on the secondary with a<br />

crane (elasticity / attractive force).<br />

Note: The apparatus for lowering the primary and the slide is not in<br />

the scope of delivery of Bosch <strong>Rexroth</strong>.<br />

Another possibility is, to lay the primary on the installed secondary – with<br />

a suited apparatus – and to screw it with fastening screws on the slide.<br />

Thereby, a non-ferromagnetic distance plate (made of plastic or wood)<br />

has to be laid among the primary and secondary so that the primary<br />

does not bear on the secondary directly. The thickness of the distance<br />

plate should be measured according to nominal air gap. After the<br />

fastening of the primary on the slide a moving of the slide should be<br />

possible.<br />

The thickness of the distance plate must be measured in such a way that<br />

the primary with the fastening screws can preferably not or only<br />

exiguously be lifted.<br />

Measurable air gap: 1.0 mm<br />

Thickness of the distance plate: 0.95 ... 0.99 mm


13-4 Mounting Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

The tightening of the fastening screws for the primary has to be made as<br />

described in chapter 13.4 “Mounting of the primary”.<br />

STEP 1<br />

STEP 2<br />

STEP 3<br />

secondary<br />

secondary<br />

secondary<br />

slide<br />

machine bed<br />

slide<br />

machine bed<br />

slide<br />

machine bed<br />

primary<br />

total motion path<br />

total motion path<br />

total motion path<br />

primary<br />

primary<br />

loweing using<br />

device<br />

non-ferromagnetic<br />

distance plate<br />

non-ferromagnetic<br />

distance plate<br />

MOTEINBAU03-MLF-EN.EPS<br />

Fig. 13-3: Installation of the linear motor components at whole secondary over<br />

the entire traverse path<br />

CAUTION<br />

When lowering the primary on the secondary,<br />

result by reducing the air gap increasing<br />

attractive forces!<br />

⇒ Heed the specifications in chapter 9.5 feeding and<br />

attractive forces<br />

⇒ Do not lower the primary on the secondary with a<br />

crane (elasticity / attractive force).<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Mounting Instructions 13-5<br />

13.3 Installation of the secondary segments<br />

Spanned secondary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

WARNING<br />

Personal injury and / or damage of motor<br />

components!<br />

⇒ Remove the transport and installation protection of<br />

the secondary only after mounting of the secondary.<br />

The secondaries have to be bolt together with the machine construction.<br />

The tightening torque of the fastening screws are given as follows:<br />

Size secondary<br />

MLS040<br />

MLS070<br />

MLS100<br />

MLS140<br />

MLS200<br />

MLS300<br />

Bolt size-<br />

ISO-grade<br />

Tightening torque<br />

M6 10 Nm<br />

Fig. 13-4: Tightening torque for the secondaries fastening screws.<br />

Using several arranged secondaries over the entire traverse path, the<br />

pole series must be kept according to the following figure.<br />

MLS100A-150<br />

0123456<br />

correct butt-mounting<br />

MLS100A-150<br />

MLS100A-150<br />

S S<br />

S<br />

MLS100A-150<br />

MLS100A-150<br />

0123456 S 0123456 S<br />

incorrect butt-mounting<br />

S<br />

MLS100A-150<br />

0123456<br />

0123456<br />

Fig. 13-5: Arrangement of several secondaries<br />

WARNING<br />

0123456<br />

MOTEINBAU04-MLF-EN.EPS<br />

Malefunction and / or uncontrolled movement of<br />

the motor result in danger of damage or risk of<br />

injury!<br />

⇒ Correct arrangement of the secondaries.


13-6 Mounting Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

WARNING<br />

Risk of injury or damage by attractive force or<br />

repulsive force when arranging the secondaries!<br />

⇒ Safety against uncontrolled movement<br />

⇒ Remove the transportation and installation<br />

protection only during or after the installation into<br />

the machine.<br />

Attractive or repulsive forces can be approx. 300N differing from the<br />

size, when arranging the secondaries.<br />

MLS100A-150<br />

0123456 S 0123456 S<br />

attractive force with correct butt-mounting<br />

F<br />

S<br />

MLS100A-150<br />

0123456<br />

S<br />

F<br />

F F<br />

MLS100A-150<br />

0123456<br />

repulsive force with incorrect butt-mounting<br />

S<br />

MLS100A-150<br />

MLS100A-150<br />

0123456<br />

MLS100A-150<br />

0123456<br />

S<br />

F<br />

MOTEINBAU05-MLF-EN.EPS<br />

Fig. 13-6: Attractive or repulsive force when arranging the secondaries<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Mounting Instructions 13-7<br />

13.4 Installation of the primary<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

...<br />

...<br />

fixing screws<br />

8<br />

6<br />

1<br />

primary<br />

3<br />

4<br />

2<br />

slide<br />

...<br />

5<br />

...<br />

7<br />

Fig. 13-7: Order of tightening the fixing screws of the primary<br />

Mounting instructions:<br />

MOTEINBAU06_MLF_EN.EPS<br />

1. Prepare the threaded holes acc. to Chapter 13.6.<br />

2. Fasten the primary with screws 1, 2, 3...n until the primary lais on the<br />

slide.<br />

3. Fasten screws 1, 2, 3 ...n with nominal tightening torque:<br />

Primary size Designs<br />

MLP040<br />

MLP070<br />

MLP100<br />

MLP140<br />

MLP200<br />

MLP300<br />

13.5 Connection liquid cooling<br />

Standard and<br />

Thermal encapsulation<br />

Bolt size-<br />

ISO-grade<br />

Nominal<br />

tightening<br />

torque<br />

M6 10 Nm<br />

Fig. 13-8: Nominal tightening torque for the fixing screws of the primaries<br />

Note: The screw-on surface among the primary and machine<br />

construction must be oil free and free of grease.<br />

Connection of the liquid cooling is made by standard threads directly on<br />

the primary. Fittings and pipes are not in the scope of delivery of the<br />

linear motor.<br />

The following connection data have to be kept. Excursion of tightening<br />

torque or depth of engagement can lead to irreversible machine<br />

damage.<br />

Max. tightening Max. depth of<br />

Primary with... Thread torque engagement<br />

standard encapsulation<br />

thermal encapsulation<br />

G1/4 30 Nm 12 mm<br />

Fig. 13-9: Connection liquid cooling


13-8 Mounting Instructions <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

13.6 Screw locking<br />

General<br />

Gluing<br />

Detach the connection<br />

LOCTITE is a plastic adhesive, which is applied to the installation parts<br />

in liquid form. The adhesive remains liquid as long as it is in contact with<br />

oxygen. Only after the parts have been mounted, it converts from its<br />

liquid state into hard plastic. This chemical conversion takes place<br />

under exclusion of air and the produced metallic contact. The result is a<br />

form-locking connection that is impact- and vibration-resistant. The<br />

hardening accelerator Activator 7649 reduces the hardening time of the<br />

adhesive.<br />

Proceed as follows:<br />

1. Clean metal chips and coarse dirt from threaded hole and screw or<br />

grub screw.<br />

2. Use LOCTITE rapid cleanser 7061 to clean oil, grease and dirt<br />

particles from threaded hole and screw/grub screw. The threads<br />

have to be absolutely restless.<br />

3. Spray LOCTITE activator into the threaded hole and let it dry.<br />

4. Use LOCTITE adhesive to moisten the same threaded hole in its<br />

entire thread length thinly and evenly.<br />

5. Screw in the matching screw/grub screw.<br />

6. Allow join to harden. Hardening times see Fig. 13-10.<br />

Securing screwed connections using LOCTITE in tapped<br />

blind holes<br />

The adhesive must always be dosed into the tapped hole, never on the<br />

screw. This prevents that the compressed air extrudes the adhesive<br />

when the screw or grub screw is screwed in.<br />

Hardened Hard to the<br />

touch without<br />

activator<br />

Hard to the<br />

touch with<br />

activator 7649<br />

LOCTITE 243 ≈ 12 h 15 to 30 min 10 bis 20 min<br />

LOCTITE 620 ≈ 24 h 1 to 2 h 15 to 30 min<br />

NOTE: All values refer to the hardening time at room temperature. The times are shorter<br />

when heat is added.<br />

Fig. 13-10: Hardening times LOCTITE adhesive<br />

Note: LOCTITE 620 is heat-resistant up to 200°C, LOCTITE 243 up<br />

to 150°C.<br />

To detach the connection, use a wrench for unscrewing the screw or<br />

grub screw in the traditional way. The breakaway torque of LOCTITE<br />

620 is 20-45 Nm, the one of LOCTITE 243 is 14-34 Nm (acc. to DIN 54<br />

454). Blowing hot air on the screw connection reduces the breakaway<br />

torque.<br />

Is the screw/grub screw removed, the residuals of the adhesive must be<br />

removed from the threaded hole (e.g. re-cutting the thread).<br />

NOTE: The German version of the chapter was checked by LOCTITE Germany for<br />

correctness and was approved for publication.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-1<br />

14 Startup, Operation and Maintenance<br />

14.1 General information for startup of <strong>IndraDyn</strong> L motors<br />

Parameter<br />

Controller optimization<br />

Moving masses<br />

Encoder polarity<br />

Commutation adjustment<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The startup of linear motors is different to the rotative servo motors.<br />

Note: Use the functional description of the drive controller for more<br />

detailed information.<br />

The following points have to be especially noticed when startup<br />

synchronous-linear motors.<br />

<strong>Synchronous</strong>-linear motors are kit motors whose single components are<br />

– completed by an encoder system – directly installed into the machine<br />

by the manufacturer. As a result of this, kit motors have no data memory<br />

to supply motor parameters or standard controller adjustment. At startup,<br />

all parameters have to be manually entered or loaded into the drive. The<br />

startup-program DriveTop makes all motor parameters of Bosch <strong>Rexroth</strong><br />

available.<br />

The procedure at controller optimization (voltage, acceleration and<br />

position controller) of linear direct drives is the same as at rotative servo<br />

drives. At linear drives are only the adjustment limits higher. At linear<br />

direct drives compared with rotative servo drives can be, for example, a<br />

10-fold higher kv-factor adjusted. Precondition therefore is an<br />

appropriate machine construction (see chapter 9.3 “Request for a<br />

machine construction”.<br />

At controlled rotative servo drives are automatic-control engineering<br />

modifications at the rate of motor-moment of inertia to demand-moment<br />

of inertia. Such a modification is not available for direct drives with linear<br />

motors. The moved foreign mass is independent from the motor selfmass.<br />

The polarity of the actual-speed (length measuring system) must agree<br />

with the force polarity of the motor. This connection has to be<br />

established before commutation-adjustment.<br />

It is necessary at synchronous linear motors to receive the position of<br />

the primary relating on the secondary by return after start or after a<br />

malfunction. This is called identification of pole position or commutation<br />

adjustment. The commutation adjustment-process is the establishment<br />

of a position reference to the electrical or magnetic model of the motor.<br />

The commutation adjustment can be done after installation of the motor<br />

components and length measuring system. The way of doing the<br />

commutation adjustment complies with the measuring principle of the<br />

length measuring system.


14-2 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

14.2 General precondition<br />

The following preconditions have to be created for a successful start-up.<br />

• Adherence of the safety instructions and notes.<br />

• Check of electrical and mechanical components on a safe function.<br />

• Availability and supply of required implements.<br />

• Adherence of the following described start-up<br />

Adherence of all electrically and mechanically components<br />

Do a check of all electrically and mechanically components before startup.<br />

Heed the following points in particular:<br />

• Safety warranty of personnel and machine<br />

• Proper installation of the motor<br />

• Correct power connection of the motor<br />

• Correct connection of the length measuring system<br />

• Function of available limit switch, door switch, a.s.o.<br />

• Proper function of the emergency stop circuit and emergency stop.<br />

• Machine construction (mechanical installation) in proper and<br />

complete condition.<br />

• Availability and function of suitable end-of-stroke damper.<br />

• Correct connection and function of the motor cooling.<br />

• Proper connection and function of the drive controller unit.<br />

WARNING<br />

WARNING<br />

Danger to life, heavy injury or damage by failure<br />

or malfunction on mechanical or electrical<br />

components!<br />

⇒ Troubleshooting at mechanical or electrical<br />

components before continue with the start-up.<br />

Risk of injury or danger to life, as well as<br />

damage due to non-adherence of warning and<br />

safety notes!<br />

⇒ Adherence of the warning and safety notes.<br />

⇒ Start-up must to be done by skilled personnel<br />

⇒ Adherence of the following described start-up<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-3<br />

Implements<br />

Start-up software DriveTop<br />

PC<br />

Start-up via NC<br />

Oscilloscope<br />

Multimeter<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The start-up can be made directly via a NC-terminal or via a special<br />

software. The start-up software DriveTop makes a menu-driven, customdesigned<br />

and motor specific parameterizing and optimization possible.<br />

For start-up with DriveTop is a usual Windows-PC needed.<br />

For start-up via NC-control, access to all drive parameters and<br />

functionalities must be guaranteed.<br />

An oscilloscope is needed for drive optimization. It serves to display the<br />

signals, which can be shown via the adjustable analog output of the drive<br />

controller. Viewable signals are, e.g. nominal and actual values of the<br />

speed, position or voltage, position lag, intermediate circuit a.s.o.<br />

At troubleshooting and check of the components can be a multimeter<br />

with the possibility to voltage metering and resistor measuring helpful.


14-4 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

14.3 General start-up procedure<br />

Verification:<br />

In the following flow-chart is the general start-up procedure at<br />

synchronous linear motors MLF shown. In the following chapters are<br />

these points explained in detail.<br />

- power connection - safety end switch<br />

- measuring system connection - motor cooling<br />

- mechanical system - controller function<br />

- end position dampers - drive control function<br />

- E STOP function<br />

error ?<br />

No<br />

initial<br />

commissioning<br />

No<br />

enter/load motor<br />

parameters<br />

enteapplication-related<br />

parameters<br />

determine sensor<br />

polarity<br />

commutation setting<br />

set and optimize<br />

control loop<br />

Yes<br />

Yes<br />

eliminate error<br />

Yes<br />

load drive parameter<br />

default values<br />

enter parameters for<br />

length measuring<br />

system<br />

enter drive limitation<br />

polarity<br />

F soll = v ist ?<br />

system is operational!<br />

Necessary information,<br />

parameters and aids<br />

- motor parameters<br />

- constant focommutation<br />

setting k mx<br />

parameter value assignments<br />

No<br />

position sensor type<br />

parameter S-0-0277 Bit 3 = 1<br />

............1001<br />

Fig. 14-1: General start-up procedure at synchronous linear motors<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-5<br />

14.4 Parametrization<br />

Entering motor parameters<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

With DriveTop, entering or editing certain parameters and executing<br />

commands during the commissioning process is done inside menudriven<br />

dialogs or in list representations. Optionally, it can also be<br />

performed via the control terminal.<br />

Note: The motor parameters are specified by <strong>Rexroth</strong> and must not<br />

be changed by the user. Commissioning is not possible, if<br />

these parameters are not available. In this case, please get<br />

into contact with your <strong>Rexroth</strong> Sales and Service Facility.<br />

WARNING<br />

Injuries and mechanical damage, if the motor is<br />

switched on immediately after the motor<br />

parameters have been entered! Entering the<br />

motor parameters does not make the motor<br />

operational!<br />

⇒ Do not switch on the motor immediately after the<br />

motor parameters have been entered.<br />

⇒ Enter the parameters for the linear scale.<br />

⇒ Check and adjust the measuring system polarity.<br />

⇒ Perform commutation setting.<br />

The motor parameters can be entered in the following way:<br />

• Use DriveTop to load all the motor parameters.<br />

• Enter the individual parameters manually via the controller.<br />

• With series machines, load a complete parameter record<br />

via the controller or DriveTop.


14-6 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Input of linear scale parameters<br />

Encoder type<br />

Signal period<br />

The type of the linear scale must be defined. The parameter P-0-0074,<br />

encoder type 1 (see also Fig. 9-83).<br />

Encoder type P-0-0074<br />

Incremental measuring system, e.g.<br />

LS486 in conjunction with high-<br />

2<br />

resolution DLF position interface<br />

Absolute encoder with ENDAT<br />

interface, e.g. LC181 in conjunction<br />

with high-resolution DAG position<br />

interface<br />

Fig. 14-2: Encoder type definition<br />

<strong>Linear</strong> scale for linear motors generate and interpret sinusoid signals.<br />

The sine signal period must be entered in the parameter S-0-0116,<br />

sensor 1 resolution.<br />

Note: The values that must be enterd for parameter S-0-0116,<br />

sonsor resolution, are specified in Fig. 9-66. The values for<br />

linear scale that are not shown in this figure must be obtained<br />

directly from the manufacturer.<br />

Input of drive limitations and application-related parameters<br />

Drive limitations<br />

Application-related parameters<br />

The possible selectable drive limitations include:<br />

• Current limitation<br />

• Force limitation<br />

• Velocity limitations<br />

• Travel range limits<br />

The application-related drive parameters include, for example, the<br />

parameters of the drive fault reaction.<br />

Note: Detailed information can be found in the description of<br />

function of the employed drive controller and/or Firmware.<br />

8<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-7<br />

14.5 Determining the Polarity of the linear scale<br />

Effective direction of motor<br />

force<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

In order to avoid direct feedback in the velocity control loop, the effective<br />

direction of the motor force and the count direction of the linear scales<br />

must be the same.<br />

WARNING<br />

Different effective directions of motor force and<br />

count direction of linear scale cause<br />

uncontrolled movements of the motor upon<br />

power-up!<br />

⇒ Safety against uncontrolled movement<br />

⇒ Adjust effective direction of motor force equal to<br />

linear scale count direction.<br />

To set the correct sensor polarity:<br />

The effective direction of the motor force is always positive in the<br />

direction of the cable connection of the primary.<br />

force direction<br />

+<br />

secondary primary<br />

Fig. 14-3: Effective direction of motor force<br />

power connection<br />

GEBPOL01-MLF-EN.EPS


14-8 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Effective direction motor force =<br />

linear scale count direction<br />

When the primary is moved in the direction of the cable connection, the<br />

count direction of the linear scale must consequently be positive:<br />

force direction<br />

+<br />

secondary primary<br />

length measuring system<br />

+<br />

count direction<br />

power connection<br />

GEBPOL02-MLF-EN.EPS<br />

Fig. 14-4: Effective direction motor force = linear scale count direction<br />

Note: The encoder polarity is selected via the primary (cable<br />

connection). The installation direction or the pole sequence of<br />

the secondary does not have any influence on the selection of<br />

the sensor polarity.<br />

The encoder polarity is selected via the parameter<br />

S-0-0277, position encoder type 1 (Bit 3)<br />

Position, velocity and force data must not be inverted when the linear<br />

scale count direction is set:<br />

S-0-0085, Force polarity parameter 0000000000000000<br />

S-0-0085, Velocity polarity parameter 0000000000000000<br />

S-0-0085, Position polarities 0000000000000000<br />

The process-related axis count direction is set as required after sensor<br />

polarity and commutation have been set.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-9<br />

14.6 Commutation adjustment<br />

Adjustment procedure<br />

absolute<br />

ENDAT<br />

Procedure 1<br />

Measuring the refernece<br />

between primary and secondary<br />

part and starting the P-0-0524<br />

command<br />

Only for initial<br />

commissioning and sensor<br />

replacement<br />

no controller enabling<br />

signal<br />

no axis movment<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Setting the correct commutation angle is a prerequisite for maximum and<br />

constant force development of the synchronous linear motor.<br />

This procedure ensures that the angle between the current vector of the<br />

primary and the flux vector of the secondary is always 90°. The motor<br />

supplies the maximum force in this state.<br />

Three different commutation adjustment procedures have been<br />

implemented in the firmware. The figure below shows the correlation<br />

between the employed linear scale and the method that is to be use.<br />

Commutation setting of<br />

synchronous linear motors<br />

measuring<br />

principle of linear scale<br />

Yes<br />

Procedure 2<br />

incremental<br />

Current flow methode by<br />

starting the P-0-0524 command<br />

Only for initial<br />

commissioning and sensor<br />

replacement<br />

with controller<br />

enabling signal<br />

axis movement<br />

initial<br />

commissioning<br />

No<br />

Procedure 3<br />

Current flow method<br />

Automatic execution after<br />

controller enabling signal is set<br />

always after power-up<br />

with controller<br />

anabling signal<br />

axis movement<br />

Fig. 14-5: Commutation adjustment method for synchronous linear motors<br />

Note: The three methods are described subsequently.<br />

Note: Method 2 and 3 cannot be employed for:<br />

• vertical axes without weight compensation<br />

• jammed or blocking axes


14-10 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Motor connection<br />

Parameter verification<br />

DANGER<br />

WARNING<br />

Malfunction due to errors in activating motors<br />

and moving elements!<br />

Commutation adjustment must always be<br />

performed in the following cases:<br />

⇒ Initial commissioning<br />

⇒ Modification of the mechanical attachment of the<br />

linear scale<br />

⇒ Replacement of the linear scale<br />

⇒ Modification of the mechanical attachment of the<br />

primary and/or secondary<br />

Malfunction and/or uncontrolled motor<br />

movement due to error in commutation<br />

adjustment!<br />

⇒ Effective direction motor force = linear scale count<br />

direction<br />

⇒ Adhering to the described setting procedures<br />

⇒ Correct motor and encoder parameterization<br />

⇒ Expedient parameter values must be assigned for<br />

current and velocity control loop.<br />

⇒ Correct connection of motor power cable<br />

⇒ Protection against uncontrolled movements<br />

The individual phases of the motor power connection must correctly be<br />

assigned. See also Chapter 8 “Electrical Connection”.<br />

To ensure a correct commutation adjustment, the following parameters<br />

should be checked again and, if necessary, set to the values specified<br />

below:<br />

Identity<br />

number<br />

Description Value<br />

S-0-0085 Torque/force polarity parameter 0000000000000000<br />

S-0-0043 Velocity polarity parameter 0000000000000000<br />

S-0-0055 Position polarity 0000000000000000<br />

P-0-4014 Motor type 3 (synchronous linear<br />

motor)<br />

P-0-0018 Number of pole pairs/pole pair<br />

width<br />

S-0-0116 S-0-0016, Encoder 1 resolution Fig. 9-83<br />

Fig. 14-6: Parameters that must be checked prior to commutation adjustment<br />

75<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-11<br />

Method 1: Measuring the reference between the primary and the<br />

secondary<br />

Measuring the relative position<br />

between the primary and the<br />

secondary<br />

Calculation of P-0-0523,<br />

commutation adjustment<br />

measured value<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

If this procedure is used for commutation adjustment, the relative<br />

position of the primary with respect to the secondary must be<br />

determined. The benefit of this procedure is that the commuation<br />

adjustment requires neither the power to be switched on nor the axes to<br />

be moved. Commutation adjustment need only be performed during the<br />

first-time commissioning.<br />

Note: This procedure requires an absolute linear scale with ENDAT<br />

interface.<br />

Depending on the accessibility of the primary and the secondary in the<br />

machine or system, the relative position between primary and secondary<br />

can be measured in different ways.<br />

‚<br />

e<br />

d<br />

secondary primary<br />

lp<br />

f ƒ<br />

g<br />

power connection<br />

„<br />

KOMMUT01-MLF-EN.EPS<br />

Fig. 14-7: Measuring the relative position between primary and secondary<br />

Note: From now on, the position of the primary must not be<br />

changed until the commutation adjustment procedure is<br />

terminated!<br />

The input value for P-0-0523 that is required for calculating the<br />

commutation offset, is determined from the measured relativce position<br />

of the primary with respect to the secondary (Fig. 14-10, distance d, e, f<br />

or g, depending on accessibility), and a motor-related constant kmx (see<br />

Fig 14-11 and Fig. 14-13).


14-12 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Motor constant for commutation<br />

adjustment kmx<br />

Reference point 1:<br />

Reference point<br />

Reference point<br />

Reference point<br />

2 :<br />

3 :<br />

4 :<br />

P − 0 − 0523 = d − k<br />

P − 0 − 0523 = e − k<br />

mx<br />

mx<br />

− 37.<br />

5 mm<br />

P − 0 − 0523 = − f − l − k<br />

P − 0 − 0523 = 37.<br />

5<br />

p<br />

mx<br />

mm − g − l<br />

mx<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

p<br />

− k<br />

P-0-0523: Commutation adjustment measured value in mm<br />

d: Relative position, reference position 1 in mm (see Fig. 14-7) )<br />

e: Relative position, reference position 2 in mm (see Fig. 14-7) f:<br />

Relative position, reference position 3 in mm (see Fig. 14-7)<br />

g: Relative position, reference position 4 in mm (see Fig. 14-7)<br />

kmx: Motor constant for commutation adjustment in mm<br />

lp: Length of the primary in mm<br />

Fig. 14-8: Calculation of P-0-0523, commutation adjustment measured value<br />

Note: Ensure that the sign is correct when you determine P-0-0523,<br />

commutation adjustment measured value.<br />

If P-0-0523 is determined with a negative sign, this must be<br />

entered when the setup procedure is started.<br />

The motor constants for adjusting the commutation offset kmx depend on<br />

the orientation of primary and secondary:<br />

arrangement A<br />

N<br />

N<br />

arrangement B<br />

N<br />

secondary primary<br />

power connection<br />

secondary primary<br />

power connection<br />

N S<br />

Fig. 14-9: Possible arrangements between primary and secondary<br />

S<br />

S<br />

S<br />

KOMMUT02-MLF-EN.EPS


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-13<br />

Standard encapsulation<br />

Size 040...300<br />

Thermal encapsulation<br />

Size 040 300<br />

Activation of commutation<br />

adjustment command<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Arrangement A<br />

(acc. to Fig. 14-9)<br />

kmx in mm<br />

Arrangement B<br />

(acc. to Fig. 14-9)<br />

kmx in mm<br />

68 105.5<br />

65 102.5<br />

Fig. 14-10: Motor constants for commutation adjustment kmx<br />

Example 1, reference point (see Fig. 14-7):<br />

d = 100 mm , kmx = 38.0 mm<br />

P-0-0523 = d - kmx = 100 mm - 38.0 mm = 62 mm<br />

Example 2, reference point (see Fig. 14-7):<br />

d = 0 mm, kmx = 38.0 mm<br />

P-0-0523 = d - kmx = 0 mm - 38.0 mm = - 38.0 mm<br />

Example 3, reference point (see Fig. 14-7):<br />

g = 180 mm , kmx = 38.0 mm , lp = 540 mm<br />

P-0-0523 = 37.5 mm - g - lp - kmx = 37.5 mm -180 mm - 540 mm - 38<br />

mm<br />

P-0-0523 = 720.5 mm<br />

Prerequisites:<br />

1. The drive must be in the A0-13 state during the subsequent<br />

adjustment procedure (ready for power connection).<br />

2. The position of the primary part and/or the slide must not have<br />

changed since the relative position of the primary part with respect to the<br />

secondary part has been measured.<br />

Once the determined value P-0-0523, commutation setting measured<br />

value, has been entered, the command P-0-0524, D300 commutation<br />

setting command must be started. The commutation offset is calculated<br />

in this step. The commutation offset is calculated in this step.<br />

Note: If the drive is in control mode when the command is started,<br />

the commutation offset is determined using the current flow<br />

method (see method 2).<br />

The command must subsequently be cleared.


14-14 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Method 2: Current flow method manually activated<br />

This method is used for the following configurations:<br />

• <strong>Synchronous</strong> linear motors with absolute linear scale. In<br />

first-time commissioning, as an alternative of method 1.<br />

1. Adjust the operation mode “Torque-force control”<br />

2. Bring the drive into control (AF).<br />

3. Start the commando via P-0-0524<br />

WARNING<br />

Injuries due to errors in activating motors and<br />

moving elements!<br />

⇒ Is the drive not accordingly commutated, then the<br />

drive must only be switched in operation mode<br />

“Torque-force control” in AF.<br />

⇒ Is the drive switched in velocity control or in position<br />

control in AF, an uncontrolled axis movement<br />

cannot be excepted.<br />

Note: The parameter P-0-0560, commutation adjustment voltage,<br />

P-0-0562 and cycle duration can individually be adjusted at<br />

initial start-up by the user.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-15<br />

Method 3: Current flow method automatically activated<br />

Controllers ECODRIVE and<br />

DIAX04<br />

Controller IndraDrive<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

This method is used for the following configurations:<br />

• <strong>Synchronous</strong> linear motor with incremental length scale in<br />

connection with controllers Ecodrive and Diax04<br />

At initial start-up of the axis, the parameter P-0-0560,<br />

commutation adjustment voltage, P-0-0562 and<br />

commutation adjustment are automatically determinated<br />

and recorded in the drive.<br />

At every re-start of the axis, the commutation adjustment<br />

is made new to method 3. The parameter values for P-0-<br />

0560 and P-0-0562 of the initial start-up serve as initial<br />

value for the procedure.<br />

Note: The parameter P-0-0560, commutation adjustment voltage,<br />

P-0-0562 and cycle duration can individually be adjusted at<br />

initial start-up by the user.<br />

This method is used for the following configurations:<br />

• <strong>Synchronous</strong> linear motors with incremental length scale in<br />

connection with IndraDrive controllers.<br />

At initial start-up of the axis, the parameters P-0-0506,<br />

peak value for angle-survey and P-0-0507, test frequency<br />

for angle-survey are automatically determinated, if in P-0-<br />

506 “0” is entered. Subsequently, the determined<br />

parameters are recorded in the drive-device.<br />

At every re-start of the axis, the commutation adjustment<br />

is made new to method 3. The parameter values for P0-<br />

0506 and P0-0507 of the initial start-up serve as initial<br />

value for the procedure.<br />

Note: The parameters P-0-0506, peak value for angle-survey and<br />

P-0-507, test frequency for angle-survey can individually be<br />

adjusted at initial start-up by the user.


14-16 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

14.7 Setting and Optimizing the Control Loop<br />

General sequence<br />

The control loop settings in a digital drive controller are significant to the<br />

characteristics of the servo axis. The control loop structure consists of a<br />

cascaded position, velocity and current controller. The corresponding<br />

mode defines the active controllers.<br />

Note: Defining the control loop settings requires the corresponding<br />

expertise.<br />

The procedure used for optimizing the control loops (current, velocity<br />

and position controllers) of linear direct drives corresponds to the one<br />

used for rotary servo drives. At linear drives are only the adjustment<br />

limits higher.<br />

setting and optimizing control loop of<br />

synchronous linear drives<br />

set current controller<br />

(part of motor parameter)<br />

optimize velocity controller<br />

filtering mechanical<br />

resonance vibrations<br />

no<br />

optimize position controller<br />

set and optimize acceleration<br />

precontrol<br />

yes<br />

set rejection frequency<br />

re-optimize velocity controller<br />

Fig. 14-11: Setting and optimizing the control loop of synchronous linear drives.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-17<br />

Automatic control loop setting<br />

Filtering mechanical resonance<br />

vibrations<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Note: Use the functional description of the drive controller for more<br />

detailed information.<br />

Drive controllers of the EcoDrive03 series are able to perform automatic<br />

control loop adjustment.<br />

Digital drives from <strong>Rexroth</strong> are able to provide a narrow-band<br />

suppression of vibrations that are produced due to the power train<br />

between motor and mechanical axis system. This results in increased<br />

drive dynamic at a good stability.<br />

The position or velocity feedback in the closed control loop excites the<br />

mechanical system of the slide that is moved by the linear drive to<br />

perform mechanical vibrations. This behavior, known as “Two-masses<br />

vibration”, is mainly in the frequency range between 400 and 800 Hz. It<br />

depends on the rigidity of the mechanical system and the spatial<br />

expansion of the system.<br />

In most cases, this “Two-masses vibration” has a clear resonant<br />

frequency that can selectively be suppressed by a rejection filter in the<br />

drive.<br />

When the mechanical resonant frequency is suppressed, improving the<br />

dynamic properties of the velocity control loop and of the position control<br />

loop with may be possible, compared with close-loop operation without<br />

the rejection filter.<br />

This leads to an increased profile accuracy and to smaller cycle times for<br />

positioning processes at a sufficient distance to the stability limit.<br />

Rejection frequency and bandwidth of the filter can be selected. The<br />

highest attenuation takes effect on the rejection frequency. The bandwith<br />

defines the frequency range at which the attenuation is less than –3dB.<br />

A higher bandwidth leads to less attenuation of the rejection frequency!<br />

0<br />

-3<br />

damping in dB bandwidth<br />

frequency f<br />

rejection frequency f sperr<br />

SPERRFILTER-MLF-EN.EPS<br />

Fig. 14-12: Amplitude frequency curve rejection filter vs. bandwidth, qualitative


14-18 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Parameter value assignments and optimization of Gantry axes<br />

Prerequisites:<br />

• The parameter settings of the axes are identical<br />

• Parallelism of the guides of the Gantry axes<br />

• Parallelism of the linear scale<br />

• In the controller, the axes are registered as individual axes<br />

Note: Drive-internal axis error compensation procedures can be<br />

used for compensating the misalignments between two linear<br />

scales as or the mechanical system. Please refer to the<br />

corresponding description of functions of the drive controller<br />

for a description of the operational principle and the<br />

parameter settings.<br />

actual position value 1 actual position value 2<br />

length meas. system 1<br />

length meas. system 2<br />

Dx<br />

ACHSKOMP-MLF-EN.EPS<br />

Fig. 14-13: Possible misalignment with the linear scale of a Gantry axes<br />

Parameter settings<br />

When using Gantry axes, your must ensure that the parameter settings<br />

of the following parameters are identical:<br />

• Motor parameters<br />

• Polarity parameters for force, velocity and position<br />

• Control loop parameters<br />

We have:<br />

k<br />

k<br />

v1<br />

p1<br />

= k<br />

= k<br />

kv: Position controller kv-factor S-0-0104<br />

kp: Velocity controller proportional gain S-0-0100<br />

Fig. 14-14: Proportional gains in the position and velocity control loop of both<br />

axes.<br />

v2<br />

p2<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-19<br />

Velocity controller integral time<br />

(integral part)<br />

Alignment of length<br />

linear scale and<br />

guides<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The following possibilities must be taken into account for the velocity<br />

controller integral time (integral part):<br />

Possibility 1 Possibility 2 Possibility 3 Possibility 4<br />

ideal not ideal not ideal not ideal<br />

Integral Part in both axes in both axes in one axis only in no axis<br />

Behaviour of the axes Since both motors<br />

follow the position<br />

command value<br />

ideally, there will not<br />

be a distortion of the<br />

mechanical system<br />

Optimization<br />

Both axes work<br />

against each other<br />

until there is an<br />

equalization via the<br />

mechanical coupling<br />

or until the maximum<br />

current of one or both<br />

drive controller(s) has<br />

been reached and a<br />

control effect is no<br />

longer possible.<br />

The axis without<br />

integral-part permits a<br />

continuous position<br />

offset. The magnitude<br />

of the position offset<br />

depends on the<br />

rigidity of the<br />

mechanical coupling<br />

of both axes and of<br />

the proportional gains<br />

in the position and<br />

velocity control loop.<br />

Both axes permit a<br />

continuous position<br />

offset. The magnitude<br />

of the position offset<br />

depends on the<br />

proportional gains in<br />

the position and<br />

velocity control loop.<br />

Fig. 14-15: Parameterization of the velocity controller integral time S-0-0101 for<br />

Gantry-axes.<br />

The previously described procedure must be followed for optimizing the<br />

position and velocity loop.<br />

Note: Any parameter modifications that are made during the<br />

optimization of Gantry axes must always be made in both<br />

axes simultaneously. If this is not possible, the parameter<br />

changes should be made during optimization in smaller<br />

subsequent steps in both axes.<br />

Estimating the moved mass using a velocity ramp<br />

Preparation<br />

Often, the exact moving mass of the machine slide is not known.<br />

Determining this mass can be made difficult by moving parts, additionally<br />

mounted parts, etc.<br />

The procedure explained below permits the moving axes mass to be<br />

estimated on the basis of a recorded velocity ramp. This permits, for<br />

example, the acceleration capability of the axis to be estimated.<br />

This procedure requires the oscillographic recording of the following<br />

parameters:<br />

• S-0-0040, actual velocity value<br />

• S-0-0080, torque/force command value<br />

You can either use an oscilloscope or the oscilloscope function of the<br />

drive in conjunction with DriveTop or NC.


14-20 Startup, Operation and Maintenance <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

F acc<br />

F dec<br />

dt<br />

dv<br />

S-0-0040,<br />

actual velocity value<br />

acceleration deceleration<br />

Fig. 14-16: Oscillogram of velocity and force<br />

m = 30 ⋅F<br />

dN<br />

⎛ FACC<br />

+ F<br />

⋅ ⎜<br />

⎝ 100%<br />

S-0-0080,<br />

force command value<br />

DEC<br />

t<br />

ERMITTLGMASSE-MLF-EN.EPS<br />

⎞ ∆t<br />

⎟ ⋅<br />

⎠ ∆v<br />

m: Moved axis mass in kg<br />

FdN: Continuous nominal force of the motor in N<br />

FACC: Force command value during acceleration in %<br />

FDEC: Force command value during braking in %<br />

v: Velocity change during constant acceleration in m/min<br />

t: Time change during constant acceleration in s<br />

Fig. 14-17: Determining the moved axis mass on the basis of a recorded velocity<br />

ramp<br />

Prerequisites: 1. Correct parameter settings of the rated motor<br />

current (basis of representation S-0-0080)<br />

2. Frictional force not directional<br />

3. Recording of v and t at constant acceleration<br />

4. Do not perform at maximum motor force to avoid<br />

non-linearities<br />

Note: Due to possible direction-related force variations, this<br />

procedure cannot or only conditionally be used for vertical<br />

axes.<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Startup, Operation and Maintenance 14-21<br />

14.8 Maintenance and check of Motor components<br />

Check of Motor and Auxiliary Components<br />

Electrical check of motor components<br />

Resistance and inductance<br />

Insulation resistance<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

The motor components of <strong>IndraDyn</strong> L do not need any maintenance.<br />

Due to external influence, the motor components can be damaged<br />

during operation. There should be a preventive maintenance of the<br />

linear motor components within the service intervals of the machine or<br />

system.<br />

The following points should be observed during the preventive check of<br />

motor and auxiliary components:<br />

• Scratches on primary and secondary<br />

• Chips in the air gap between primary and secondary<br />

• Tightness of liquid cooling, hoses and connections<br />

• State of power and encoder cables in a drag chain.<br />

• State of linear scale (e.g. soiled)<br />

• State of guides (e.g. wear of linear guides)<br />

The electrical defect of a primary can be checked by measuring electrical<br />

characteristics. The following variables are relevant:<br />

• Resistance between motor connecting wires 1-2, 2-3 and 1-3<br />

• Inductance between motor connecting wires 1-2, 2-3 and 1-3<br />

• Insulation resistance between motor connecting wired and guides<br />

The measured values of resistance and inductance can be compared<br />

with the values specified in Chapter 5 “Technical Data”. The individual<br />

values of resistance and inductance measured between the connections<br />

1-2, 2-3 and 1-3 should be identical – within a tolerance of ± 5 %. There<br />

can be a phase short circuit, a fault between windings, or a short circuit<br />

to ground if one or more values differ significantly.<br />

The insulation resistance – measured between the motor connecting<br />

leads and ground – should be at least 1 MΩ. The primary must be<br />

replaced in this case.<br />

Note: If there are and doubts during the electrical verification,<br />

please consult your <strong>Rexroth</strong> Service.


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Service & Support 15-1<br />

15 Service & Support<br />

15.1 Helpdesk<br />

Unser Kundendienst-Helpdesk im Hauptwerk Lohr<br />

am Main steht Ihnen mit Rat und Tat zur Seite.<br />

Sie erreichen uns<br />

15.2 Service-Hotline<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Our service helpdesk at our headquarters in Lohr am<br />

Main, Germany can assist you in all kinds of inquiries.<br />

Contact us<br />

- telefonisch - by phone: 49 (0) 9352 40 50 60<br />

über Service Call Entry Center Mo-Fr 07:00-18:00<br />

- via Service Call Entry Center Mo-Fr 7:00 am - 6:00 pm<br />

- per Fax - by fax: +49 (0) 9352 40 49 41<br />

- per e-Mail - by e-mail: service.svc@boschrexroth.de<br />

Außerhalb der Helpdesk-Zeiten ist der Service<br />

direkt ansprechbar unter<br />

15.3 Internet<br />

+49 (0) 171 333 88 26<br />

oder - or +49 (0) 172 660 04 06<br />

Unter www.boschrexroth.com finden Sie<br />

ergänzende Hinweise zu Service, Reparatur und<br />

Training sowie die aktuellen Adressen *) unserer<br />

auf den folgenden Seiten aufgeführten Vertriebsund<br />

Servicebüros.<br />

Verkaufsniederlassungen<br />

Niederlassungen mit Kundendienst<br />

Außerhalb Deutschlands nehmen Sie bitte zuerst Kontakt mit<br />

unserem für Sie nächstgelegenen Ansprechpartner auf.<br />

*) Die Angaben in der vorliegenden Dokumentation können<br />

seit Drucklegung überholt sein.<br />

After helpdesk hours, contact our service<br />

department directly at<br />

At www.boschrexroth.com you may find<br />

additional notes about service, repairs and training<br />

in the Internet, as well as the actual addresses *)<br />

of our sales- and service facilities figuring on the<br />

following pages.<br />

sales agencies<br />

offices providing service<br />

Please contact our sales / service office in your area first.<br />

*) Data in the present documentation may have become<br />

obsolete since printing.<br />

15.4 Vor der Kontaktaufnahme... - Before contacting us...<br />

Wir können Ihnen schnell und effizient helfen wenn<br />

Sie folgende Informationen bereithalten:<br />

1. detaillierte Beschreibung der Störung und der<br />

Umstände.<br />

2. Angaben auf dem Typenschild der<br />

betreffenden Produkte, insbesondere<br />

Typenschlüssel und Seriennummern.<br />

3. Tel.-/Faxnummern und e-Mail-Adresse, unter<br />

denen Sie für Rückfragen zu erreichen sind.<br />

For quick and efficient help, please have the<br />

following information ready:<br />

1. Detailed description of the failure and<br />

circumstances.<br />

2. Information on the type plate of the affected<br />

products, especially type codes and serial<br />

numbers.<br />

3. Your phone/fax numbers and e-mail address,<br />

so we can contact you in case of questions.


15-2 Service & Support <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

15.5 Kundenbetreuungsstellen - Sales & Service Facilities<br />

Deutschland – Germany vom Ausland: (0) nach Landeskennziffer weglassen!<br />

from abroad: don’t dial (0) after country code!<br />

Vertriebsgebiet Mitte<br />

Germany Centre<br />

<strong>Rexroth</strong> Indramat GmbH<br />

Bgm.-Dr.-Nebel-Str. 2 / Postf. 1357<br />

97816 Lohr am Main / 97803 Lohr<br />

Kompetenz-Zentrum Europa<br />

Tel.: +49 (0)9352 40-0<br />

Fax: +49 (0)9352 40-4885<br />

Vertriebsgebiet Süd<br />

Germany South<br />

Bosch <strong>Rexroth</strong> AG<br />

Landshuter Allee 8-10<br />

80637 München<br />

Tel.: +49 (0)89 127 14-0<br />

Fax: +49 (0)89 127 14-490<br />

Vertriebsgebiet Nord<br />

Germany North<br />

Bosch <strong>Rexroth</strong> AG<br />

Walsroder Str. 93<br />

30853 Langenhagen<br />

Tel.: +49 (0) 511 72 66 57-0<br />

Service: +49 (0) 511 72 66 57-256<br />

Fax: +49 (0) 511 72 66 57-93<br />

Service: +49 (0) 511 72 66 57-783<br />

SERVICE<br />

CALL ENTRY CENTER<br />

MO – FR<br />

von 07:00 - 18:00 Uhr<br />

from 7 am – 6 pm<br />

Tel. +49 (0) 9352 40 50 60<br />

service.svc@boschrexroth.de<br />

Vertriebsgebiet West<br />

Germany West<br />

Bosch <strong>Rexroth</strong> AG<br />

Regionalzentrum West<br />

Borsigstrasse 15<br />

40880 Ratingen<br />

Tel.: +49 (0)2102 409-0<br />

Fax: +49 (0)2102 409-406<br />

+49 (0)2102 409-430<br />

Vertriebsgebiet Mitte<br />

Germany Centre<br />

Bosch <strong>Rexroth</strong> AG<br />

Regionalzentrum Mitte<br />

Waldecker Straße 13<br />

64546 Mörfelden-Walldorf<br />

Tel.: +49 (0) 61 05 702-3<br />

Fax: +49 (0) 61 05 702-444<br />

SERVICE<br />

HOTLINE<br />

MO – FR<br />

von 17:00 - 07:00 Uhr<br />

from 5 pm - 7 am<br />

+ SA / SO<br />

Tel.: +49 (0)172 660 04 06<br />

oder / or<br />

Tel.: +49 (0)171 333 88 26<br />

Gebiet Südwest<br />

Germany South-West<br />

Bosch <strong>Rexroth</strong> AG<br />

Service-Regionalzentrum Süd-West<br />

Siemensstr.1<br />

70736 Fellbach<br />

Tel.: +49 (0)711 51046–0<br />

Fax: +49 (0)711 51046–248<br />

Vertriebsgebiet Ost<br />

Germany East<br />

Bosch <strong>Rexroth</strong> AG<br />

Beckerstraße 31<br />

09120 Chemnitz<br />

Tel.: +49 (0)371 35 55-0<br />

Fax: +49 (0)371 35 55-333<br />

SERVICE<br />

ERSATZTEILE / SPARES<br />

verlängerte Ansprechzeit<br />

- extended office time -<br />

♦ nur an Werktagen<br />

- only on working days -<br />

♦ von 07:00 - 18:00 Uhr<br />

- from 7 am - 6 pm -<br />

Tel. +49 (0) 9352 40 42 22<br />

Vertriebsgebiet Ost<br />

Germany East<br />

Bosch <strong>Rexroth</strong> AG<br />

Regionalzentrum Ost<br />

Walter-Köhn-Str. 4d<br />

04356 Leipzig<br />

Tel.: +49 (0)341 25 61-0<br />

Fax: +49 (0)341 25 61-111<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Service & Support 15-3<br />

Europa (West) - Europe (West)<br />

Austria - Österreich<br />

Bosch <strong>Rexroth</strong> GmbH<br />

Electric Drives & Controls<br />

Stachegasse 13<br />

1120 Wien<br />

Tel.: +43 (0)1 985 25 40<br />

Fax: +43 (0)1 985 25 40-93<br />

Great Britain – Großbritannien<br />

Bosch <strong>Rexroth</strong> Ltd.<br />

Electric Drives & Controls<br />

Broadway Lane, South Cerney<br />

Cirencester, Glos GL7 5UH<br />

Tel.: +44 (0)1285 863000<br />

Fax: +44 (0)1285 863030<br />

sales@boschrexroth.co.uk<br />

service@boschrexroth.co.uk<br />

France – Frankreich<br />

Bosch <strong>Rexroth</strong> SAS<br />

Electric Drives & Controls<br />

91, Bd. Irène Joliot-Curie<br />

69634 Vénissieux – Cedex<br />

Tel.: +33 (0)4 78 78 53 65<br />

Fax: +33 (0)4 78 78 53 62<br />

Italy - Italien<br />

Bosch <strong>Rexroth</strong> S.p.A.<br />

Via del Progresso, 16 (Zona Ind.)<br />

35020 Padova<br />

Tel.: +39 049 8 70 13 70<br />

Fax: +39 049 8 70 13 77<br />

Norway - Norwegen<br />

Bosch <strong>Rexroth</strong> AS<br />

Electric Drives & Controls<br />

Berghagan 1 or: Box 3007<br />

1405 Ski-Langhus 1402 Ski<br />

Tel.: +47 (0) 64 86 41 00<br />

Fax: +47 (0) 64 86 90 62<br />

Hotline: +47 (0)64 86 94 82<br />

jul.ruud@rexroth.no<br />

Sweden - Schweden<br />

Bosch <strong>Rexroth</strong> AB<br />

Electric Drives & Controls<br />

Ekvändan 7<br />

254 67 Helsingborg<br />

Tel.: +46 (0) 42 38 88 -50<br />

Fax: +46 (0) 42 38 88 -74<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

vom Ausland: (0) nach Landeskennziffer weglassen, Italien: 0 nach Landeskennziffer mitwählen<br />

from abroad: don’t dial (0) after country code, Italy: dial 0 after country code<br />

Austria – Österreich<br />

Bosch <strong>Rexroth</strong> GmbH<br />

Electric Drives & Controls<br />

Industriepark 18<br />

4061 Pasching<br />

Tel.: +43 (0)7221 605-0<br />

Fax: +43 (0)7221 605-21<br />

Finland - Finnland<br />

Bosch <strong>Rexroth</strong> Oy<br />

Electric Drives & Controls<br />

Ansatie 6<br />

017 40 Vantaa<br />

Tel.: +358 (0)9 84 91-11<br />

Fax: +358 (0)9 84 91-13 60<br />

Italy - Italien<br />

Bosch <strong>Rexroth</strong> S.p.A.<br />

Via G. Di Vittorio, 1<br />

20063 Cernusco S/N.MI<br />

Hotline: +39 02 92 365 563<br />

Tel.: +39 02 92 365 1<br />

Service: +39 02 92 365 326<br />

Fax: +39 02 92 365 500<br />

Service: +39 02 92 365 503<br />

Italy - Italien<br />

Bosch <strong>Rexroth</strong> S.p.A.<br />

Via Isonzo, 61<br />

40033 Casalecchio di Reno (Bo)<br />

Tel.: +39 051 29 86 430<br />

Fax: +39 051 29 86 490<br />

Spain - Spanien<br />

Bosch <strong>Rexroth</strong> S.A.<br />

Electric Drives & Controls<br />

Centro Industrial Santiga<br />

Obradors s/n<br />

08130 Santa Perpetua de Mogoda<br />

Barcelona<br />

Tel.: +34 9 37 47 94 00<br />

Fax: +34 9 37 47 94 01<br />

Switzerland East - Schweiz Ost<br />

Bosch <strong>Rexroth</strong> Schweiz AG<br />

Electric Drives & Controls<br />

Hemrietstrasse 2<br />

8863 Buttikon<br />

Tel. +41 (0) 55 46 46 111<br />

Fax +41 (0) 55 46 46 222<br />

Belgium - Belgien<br />

Bosch <strong>Rexroth</strong> NV/SA<br />

Henri Genessestraat 1<br />

1070 Bruxelles<br />

Tel: +32 (0) 2 582 31 80<br />

Fax: +32 (0) 2 582 43 10<br />

info@boschrexroth.be<br />

service@boschrexroth.be<br />

France - Frankreich<br />

Bosch <strong>Rexroth</strong> SAS<br />

Electric Drives & Controls<br />

Avenue de la Trentaine<br />

(BP. 74)<br />

77503 Chelles Cedex<br />

Tel.: +33 (0)164 72-70 00<br />

Fax: +33 (0)164 72-63 00<br />

Hotline: +33 (0)608 33 43 28<br />

Italy - Italien<br />

Bosch <strong>Rexroth</strong> S.p.A.<br />

Via Paolo Veronesi, 250<br />

10148 Torino<br />

Tel.: +39 011 224 88 11<br />

Fax: +39 011 224 88 30<br />

Netherlands - Niederlande/Holland<br />

Bosch <strong>Rexroth</strong> Services B.V.<br />

Technical Services<br />

Kruisbroeksestraat 1<br />

(P.O. Box 32)<br />

5281 RV Boxtel<br />

Tel.: +31 (0) 411 65 16 40<br />

+31 (0) 411 65 17 27<br />

Fax: +31 (0) 411 67 78 14<br />

+31 (0) 411 68 28 60<br />

services@boschrexroth.nl<br />

Spain – Spanien<br />

Goimendi S.A.<br />

Electric Drives & Controls<br />

Parque Empresarial Zuatzu<br />

C/ Francisco Grandmontagne no.2<br />

20018 San Sebastian<br />

Tel.: +34 9 43 31 84 21<br />

- service: +34 9 43 31 84 56<br />

Fax: +34 9 43 31 84 27<br />

- service: +34 9 43 31 84 60<br />

sat.indramat@goimendi.es<br />

Switzerland West - Schweiz West<br />

Bosch <strong>Rexroth</strong> Suisse SA<br />

Av. Général Guisan 26<br />

1800 Vevey 1<br />

Tel.: +41 (0)21 632 84 20<br />

Fax: +41 (0)21 632 84 21<br />

Denmark - Dänemark<br />

BEC A/S<br />

Zinkvej 6<br />

8900 Randers<br />

Tel.: +45 (0)87 11 90 60<br />

Fax: +45 (0)87 11 90 61<br />

France - Frankreich<br />

Bosch <strong>Rexroth</strong> SAS<br />

Electric Drives & Controls<br />

ZI de Thibaud, 20 bd. Thibaud<br />

(BP. 1751)<br />

31084 Toulouse<br />

Tel.: +33 (0)5 61 43 61 87<br />

Fax: +33 (0)5 61 43 94 12<br />

Italy - Italien<br />

Bosch <strong>Rexroth</strong> S.p.A.<br />

Via Mascia, 1<br />

80053 Castellamare di Stabia NA<br />

Tel.: +39 081 8 71 57 00<br />

Fax: +39 081 8 71 68 85<br />

Netherlands – Niederlande/Holland<br />

Bosch <strong>Rexroth</strong> B.V.<br />

Kruisbroeksestraat 1<br />

(P.O. Box 32)<br />

5281 RV Boxtel<br />

Tel.: +31 (0) 411 65 19 51<br />

Fax: +31 (0) 411 65 14 83<br />

www.boschrexroth.nl<br />

Sweden - Schweden<br />

Bosch <strong>Rexroth</strong> AB<br />

Electric Drives & Controls<br />

- Varuvägen 7<br />

(Service: Konsumentvägen 4, Älfsjö)<br />

125 81 Stockholm<br />

Tel.: +46 (0)8 727 92 00<br />

Fax: +46 (0)8 647 32 77


15-4 Service & Support <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Europa (Ost) - Europe (East)<br />

Czech Republic - Tschechien<br />

Bosch -<strong>Rexroth</strong>, spol.s.r.o.<br />

Hviezdoslavova 5<br />

627 00 Brno<br />

Tel.: +420 (0)5 48 126 358<br />

Fax: +420 (0)5 48 126 112<br />

Poland – Polen<br />

Bosch <strong>Rexroth</strong> Sp.zo.o.<br />

Biuro Poznan<br />

ul. Dabrowskiego 81/85<br />

60-529 Poznan<br />

Tel.: +48 061 847 64 62 /-63<br />

Fax: +48 061 847 64 02<br />

Russia - Russland<br />

ELMIS<br />

10, Internationalnaya<br />

246640 Gomel, Belarus<br />

Tel.: +375/ 232 53 42 70<br />

+375/ 232 53 21 69<br />

Fax: +375/ 232 53 37 69<br />

elmis_ltd@yahoo.com<br />

Czech Republic - Tschechien<br />

DEL a.s.<br />

Strojírenská 38<br />

591 01 Zdar nad Sázavou<br />

Tel.: +420 566 64 3144<br />

Fax: +420 566 62 1657<br />

Romania - Rumänien<br />

East Electric S.R.L.<br />

Bdul Basarabia no.250, sector 3<br />

73429 Bucuresti<br />

Tel./Fax:: +40 (0)21 255 35 07<br />

+40 (0)21 255 77 13<br />

Fax: +40 (0)21 725 61 21<br />

eastel@rdsnet.ro<br />

Turkey - Türkei<br />

Bosch <strong>Rexroth</strong> Otomasyon<br />

San & Tic. A..S.<br />

Fevzi Cakmak Cad No. 3<br />

34630 Sefaköy Istanbul<br />

Tel.: +90 212 413 34 00<br />

Fax: +90 212 413 34 17<br />

www.boschrexroth.com.tr<br />

vom Ausland: (0) nach Landeskennziffer weglassen<br />

from abroad: don’t dial (0) after country code<br />

Hungary - Ungarn<br />

Bosch <strong>Rexroth</strong> Kft.<br />

Angol utca 34<br />

1149 Budapest<br />

Tel.: +36 (1) 422 3200<br />

Fax: +36 (1) 422 3201<br />

Romania - Rumänien<br />

Bosch <strong>Rexroth</strong> Sp.zo.o.<br />

Str. Drobety nr. 4-10, app. 14<br />

70258 Bucuresti, Sector 2<br />

Tel.: +40 (0)1 210 48 25<br />

+40 (0)1 210 29 50<br />

Fax: +40 (0)1 210 29 52<br />

Turkey - Türkei<br />

Servo Kontrol Ltd. Sti.<br />

Perpa Ticaret Merkezi B Blok<br />

Kat: 11 No: 1609<br />

80270 Okmeydani-Istanbul<br />

Tel: +90 212 320 30 80<br />

Fax: +90 212 320 30 81<br />

remzi.sali@servokontrol.com<br />

www.servokontrol.com<br />

Poland – Polen<br />

Bosch <strong>Rexroth</strong> Sp.zo.o.<br />

ul. Staszica 1<br />

05-800 Pruszków<br />

Tel.: +48 22 738 18 00<br />

– service: +48 22 738 18 46<br />

Fax: +48 22 758 87 35<br />

– service: +48 22 738 18 42<br />

Russia - Russland<br />

Bosch <strong>Rexroth</strong> OOO<br />

Wjatskaja ul. 27/15<br />

127015 Moskau<br />

Tel.: +7-095-785 74 78<br />

+7-095 785 74 79<br />

Fax: +7 095 785 74 77<br />

laura.kanina@boschrexroth.ru<br />

Slowenia - Slowenien<br />

DOMEL<br />

Otoki 21<br />

64 228 Zelezniki<br />

Tel.: +386 5 5117 152<br />

Fax: +386 5 5117 225<br />

brane.ozebek@domel.si<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Service & Support 15-5<br />

Africa, Asia, Australia – incl. Pacific Rim<br />

Australia - Australien<br />

AIMS - Australian Industrial<br />

Machinery Services Pty. Ltd.<br />

28 Westside Drive<br />

Laverton North Vic 3026<br />

Melbourne<br />

Tel.: +61 3 93 14 3321<br />

Fax: +61 3 93 14 3329<br />

Hotlines: +61 3 93 14 3321<br />

+61 4 19 369 195<br />

enquires@aimservices.com.au<br />

China<br />

Bosch <strong>Rexroth</strong> China Ltd.<br />

15/F China World Trade Center<br />

1, Jianguomenwai Avenue<br />

Beijing 100004, P.R.China<br />

Tel.: +86 10 65 05 03 80<br />

Fax: +86 10 65 05 03 79<br />

Hongkong<br />

Bosch <strong>Rexroth</strong> (China) Ltd.<br />

6 th Floor,<br />

Yeung Yiu Chung No.6 Ind Bldg.<br />

19 Cheung Shun Street<br />

Cheung Sha Wan,<br />

Kowloon, Hongkong<br />

Tel.: +852 22 62 51 00<br />

Fax: +852 27 41 33 44<br />

alexis.siu@boschrexroth.com.hk<br />

Indonesia - Indonesien<br />

PT. Bosch <strong>Rexroth</strong><br />

Building # 202, Cilandak<br />

Commercial Estate<br />

Jl. Cilandak KKO, Jakarta 12560<br />

Tel.: +62 21 7891169 (5 lines)<br />

Fax: +62 21 7891170 - 71<br />

rudy.karimun@boschrexroth.co.id<br />

Korea<br />

Bosch <strong>Rexroth</strong>-Korea Ltd.<br />

1515-14 Dadae-Dong, Saha-gu<br />

Electric Drives & Controls<br />

Pusan Metropolitan City, 604-050<br />

Tel.: +82 51 26 00 741<br />

Fax: +82 51 26 00 747<br />

eunkyong.kim@boschrexroth.co.kr<br />

Taiwan<br />

Bosch <strong>Rexroth</strong> Co., Ltd.<br />

Taichung Branch<br />

1F., No. 29, Fu-Ann 5th Street,<br />

Xi-Tun Area, Taichung City<br />

Taiwan, R.O.C.<br />

Tel : +886 - 4 -23580400<br />

Fax: +886 - 4 -23580402<br />

jim.lin@boschrexroth.com.tw<br />

david.lai@boschrexroth.com.tw<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Australia - Australien<br />

Bosch <strong>Rexroth</strong> Pty. Ltd.<br />

No. 7, Endeavour Way<br />

Braeside Victoria, 31 95<br />

Melbourne<br />

Tel.: +61 3 95 80 39 33<br />

Fax: +61 3 95 80 17 33<br />

mel@rexroth.com.au<br />

China<br />

Bosch <strong>Rexroth</strong> China Ltd.<br />

Guangzhou Repres. Office<br />

Room 1014-1016, Metro Plaza,<br />

Tian He District, 183 Tian He Bei Rd<br />

Guangzhou 510075, P.R.China<br />

Tel.: +86 20 8755-0030<br />

+86 20 8755-0011<br />

Fax: +86 20 8755-2387<br />

India - Indien<br />

Bosch <strong>Rexroth</strong> (India) Ltd.<br />

Electric Drives & Controls<br />

Plot. No.96, Phase III<br />

Peenya Industrial Area<br />

Bangalore – 560058<br />

Tel.: +91 80 51 17 0-211...-218<br />

Fax: +91 80 83 94 345<br />

+91 80 83 97 374<br />

mohanvelu.t@boschrexroth.co.in<br />

Japan<br />

Bosch <strong>Rexroth</strong> Automation Corp.<br />

Service Center Japan<br />

Yutakagaoka 1810, Meito-ku,<br />

NAGOYA 465-0035, Japan<br />

Tel.: +81 52 777 88 41<br />

+81 52 777 88 53<br />

+81 52 777 88 79<br />

Fax: +81 52 777 89 01<br />

Malaysia<br />

Bosch <strong>Rexroth</strong> Sdn.Bhd.<br />

11, Jalan U8/82, Seksyen U8<br />

40150 Shah Alam<br />

Selangor, Malaysia<br />

Tel.: +60 3 78 44 80 00<br />

Fax: +60 3 78 45 48 00<br />

hockhwa@hotmail.com<br />

rexroth1@tm.net.my<br />

Taiwan<br />

Bosch <strong>Rexroth</strong> Co., Ltd.<br />

Tainan Branch<br />

No. 17, Alley 24, Lane 737<br />

Chung Cheng N.Rd. Yungkang<br />

Tainan Hsien, Taiwan, R.O.C.<br />

Tel : +886 - 6 –253 6565<br />

Fax: +886 - 6 –253 4754<br />

charlie.chen@boschrexroth.com.tw<br />

China<br />

Shanghai Bosch <strong>Rexroth</strong><br />

Hydraulics & Automation Ltd.<br />

Waigaoqiao, Free Trade Zone<br />

No.122, Fu Te Dong Yi Road<br />

Shanghai 200131 - P.R.China<br />

Tel.: +86 21 58 66 30 30<br />

Fax: +86 21 58 66 55 23<br />

richard.yang_sh@boschrexroth.com.cn<br />

gf.zhu_sh@boschrexroth.com.cn<br />

China<br />

Bosch <strong>Rexroth</strong> (China) Ltd.<br />

A-5F., 123 Lian Shan Street<br />

Sha He Kou District<br />

Dalian 116 023, P.R.China<br />

Tel.: +86 411 46 78 930<br />

Fax: +86 411 46 78 932<br />

India - Indien<br />

Bosch <strong>Rexroth</strong> (India) Ltd.<br />

Electric Drives & Controls<br />

Advance House, II Floor<br />

Ark Industrial Compound<br />

Narol Naka, Makwana Road<br />

Andheri (East), Mumbai - 400 059<br />

Tel.: +91 22 28 56 32 90<br />

+91 22 28 56 33 18<br />

Fax: +91 22 28 56 32 93<br />

singh.op@boschrexroth.co.in<br />

Japan<br />

Bosch <strong>Rexroth</strong> Automation Corp.<br />

Electric Drives & Controls<br />

2F, I.R. Building<br />

Nakamachidai 4-26-44, Tsuzuki-ku<br />

YOKOHAMA 224-0041, Japan<br />

Tel.: +81 45 942 72 10<br />

Fax: +81 45 942 03 41<br />

Singapore - Singapur<br />

Bosch <strong>Rexroth</strong> Pte Ltd<br />

15D Tuas Road<br />

Singapore 638520<br />

Tel.: +65 68 61 87 33<br />

Fax: +65 68 61 18 25<br />

sanjay.nemade<br />

@boschrexroth.com.sg<br />

Thailand<br />

NC Advance Technology Co. Ltd.<br />

59/76 Moo 9<br />

Ramintra road 34<br />

Tharang, Bangkhen,<br />

Bangkok 10230<br />

Tel.: +66 2 943 70 62<br />

+66 2 943 71 21<br />

Fax: +66 2 509 23 62<br />

Hotline +66 1 984 61 52<br />

sonkawin@hotmail.com<br />

China<br />

Shanghai Bosch <strong>Rexroth</strong><br />

Hydraulics & Automation Ltd.<br />

4/f, Marine Tower<br />

No.1, Pudong Avenue<br />

Shanghai 200120 - P.R.China<br />

Tel: +86 21 68 86 15 88<br />

Fax: +86 21 58 40 65 77<br />

China<br />

Melchers GmbH<br />

BRC-SE, Tightening & Press-fit<br />

13 Floor Est Ocean Centre<br />

No.588 Yanan Rd. East<br />

65 Yanan Rd. West<br />

Shanghai 200001<br />

Tel.: +86 21 6352 8848<br />

Fax: +86 21 6351 3138<br />

India - Indien<br />

Bosch <strong>Rexroth</strong> (India) Ltd.<br />

S-10, Green Park Extension<br />

New Delhi – 110016<br />

Tel.: +91 11 26 56 65 25<br />

+91 11 26 56 65 27<br />

Fax: +91 11 26 56 68 87<br />

koul.rp@boschrexroth.co.in<br />

Korea<br />

Bosch <strong>Rexroth</strong>-Korea Ltd.<br />

Electric Drives and Controls<br />

Bongwoo Bldg. 7FL, 31-7, 1Ga<br />

Jangchoong-dong, Jung-gu<br />

Seoul, 100-391<br />

Tel.: +82 234 061 813<br />

Fax: +82 222 641 295<br />

South Africa - Südafrika<br />

TECTRA Automation (Pty) Ltd.<br />

71 Watt Street, Meadowdale<br />

Edenvale 1609<br />

Tel.: +27 11 971 94 00<br />

Fax: +27 11 971 94 40<br />

Hotline: +27 82 903 29 23<br />

georgv@tectra.co.za


15-6 Service & Support <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Nordamerika – North America<br />

USA<br />

Headquarters - Hauptniederlassung<br />

Bosch <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

5150 Prairie Stone Parkway<br />

Hoffman Estates, IL 60192-3707<br />

Tel.: +1 847 6 45 36 00<br />

Fax: +1 847 6 45 62 01<br />

servicebrc@boschrexroth-us.com<br />

repairbrc@boschrexroth-us.com<br />

USA East Region – Ost<br />

Bosch <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Charlotte Regional Sales Office<br />

14001 South Lakes Drive<br />

Charlotte, North Carolina 28273<br />

Tel.: +1 704 5 83 97 62<br />

+1 704 5 83 14 86<br />

Canada East - Kanada Ost<br />

Bosch <strong>Rexroth</strong> Canada Corporation<br />

Burlington Division<br />

3426 Mainway Drive<br />

Burlington, Ontario<br />

Canada L7M 1A8<br />

Tel.: +1 905 335 5511<br />

Fax: +1 905 335 4184<br />

Hotline: +1 905 335 5511<br />

michael.moro@boschrexroth.ca<br />

USA Central Region - Mitte<br />

Bosch <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Central Region Technical Center<br />

1701 Harmon Road<br />

Auburn Hills, MI 48326<br />

Tel.: +1 248 3 93 33 30<br />

Fax: +1 248 3 93 29 06<br />

USA Northeast Region – Nordost<br />

Bosch <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Northeastern Technical Center<br />

99 Rainbow Road<br />

East Granby, Connecticut 06026<br />

Tel.: +1 860 8 44 83 77<br />

Fax: +1 860 8 44 85 95<br />

Canada West - Kanada West<br />

Bosch <strong>Rexroth</strong> Canada Corporation<br />

5345 Goring St.<br />

Burnaby, British Columbia<br />

Canada V7J 1R1<br />

Tel. +1 604 205 5777<br />

Fax +1 604 205 6944<br />

Hotline: +1 604 205 5777<br />

david.gunby@boschrexroth.ca<br />

Südamerika – South America<br />

Argentina - Argentinien<br />

Bosch <strong>Rexroth</strong> S.A.I.C.<br />

"The Drive & Control Company"<br />

Rosario 2302<br />

B1606DLD Carapachay<br />

Provincia de Buenos Aires<br />

Tel.: +54 11 4756 01 40<br />

+54 11 4756 02 40<br />

+54 11 4756 03 40<br />

+54 11 4756 04 40<br />

Fax: +54 11 4756 01 36<br />

+54 11 4721 91 53<br />

victor.jabif@boschrexroth.com.ar<br />

Columbia - Kolumbien<br />

Reflutec de Colombia Ltda.<br />

Calle 37 No. 22-31<br />

Santafé de Bogotá, D.C.<br />

Colombia<br />

Tel.: +57 1 368 82 67<br />

+57 1 368 02 59<br />

Fax: +57 1 268 97 37<br />

reflutec@neutel.com.co<br />

reflutec@007mundo.com<br />

Argentina - Argentinien<br />

NAKASE<br />

Servicio Tecnico CNC<br />

Calle 49, No. 5764/66<br />

B1653AOX Villa Balester<br />

Provincia de Buenos Aires<br />

Tel.: +54 11 4768 36 43<br />

Fax: +54 11 4768 24 13<br />

Hotline: +54 11 155 307 6781<br />

nakase@usa.net<br />

nakase@nakase.com<br />

gerencia@nakase.com (Service)<br />

USA Southeast Region - Südwest<br />

Bosch <strong>Rexroth</strong> Corporation<br />

Electric Drives & Controls<br />

Southeastern Technical Center<br />

3625 Swiftwater Park Drive<br />

Suwanee, Georgia 30124<br />

Tel.: +1 770 9 32 32 00<br />

Fax: +1 770 9 32 19 03<br />

USA West Region – West<br />

Bosch <strong>Rexroth</strong> Corporation<br />

7901 Stoneridge Drive, Suite 220<br />

Pleasant Hill, California 94588<br />

Tel.: +1 925 227 10 84<br />

Fax: +1 925 227 10 81<br />

Mexico<br />

Bosch <strong>Rexroth</strong> Mexico S.A. de C.V.<br />

Calle Neptuno 72<br />

Unidad Ind. Vallejo<br />

07700 Mexico, D.F.<br />

Tel.: +52 55 57 54 17 11<br />

Fax: +52 55 57 54 50 73<br />

mariofelipe.hernandez@boschrexroth.com.mx<br />

Brazil - Brasilien<br />

Bosch <strong>Rexroth</strong> Ltda.<br />

Av. Tégula, 888<br />

Ponte Alta, Atibaia SP<br />

CEP 12942-440<br />

Tel.: +55 11 4414 56 92<br />

+55 11 4414 56 84<br />

Fax sales: +55 11 4414 57 07<br />

Fax serv.: +55 11 4414 56 86<br />

alexandre.wittwer@rexroth.com.br<br />

USA SERVICE-HOTLINE<br />

Mexico<br />

- 7 days x 24hrs -<br />

+1-800-REX-ROTH<br />

+1 800 739 7684<br />

Bosch <strong>Rexroth</strong> S.A. de C.V.<br />

Calle Argentina No 3913<br />

Fracc. las Torres<br />

64930 Monterrey, N.L.<br />

Tel.: +52 81 83 65 22 53<br />

+52 81 83 65 89 11<br />

+52 81 83 49 80 91<br />

Fax: +52 81 83 65 52 80<br />

mario.quiroga@boschrexroth.com.mx<br />

Brazil - Brasilien<br />

Bosch <strong>Rexroth</strong> Ltda.<br />

R. Dr.Humberto Pinheiro Vieira, 100<br />

Distrito Industrial [Caixa Postal 1273]<br />

89220-390 Joinville - SC<br />

Tel./Fax: +55 47 473 58 33<br />

Mobil: +55 47 9974 6645<br />

prochnow@zaz.com.br<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Appendix 16-1<br />

16 Appendix<br />

16.1 Recommended suppliers of additional components<br />

Length Measuring System<br />

<strong>Linear</strong> Guide<br />

Energy Chains<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

DR. JOHANNES HEIDENHAIN GmbH<br />

Dr.-Johannes-Heidenhain-Straße 5 • D-83301 Traunreut<br />

Tel.: +49 (0) 8669 31 0<br />

Fax: +49 (0) 8669 50 61<br />

E-Mail: verkauf@heidenhain.de<br />

Internet: http://www.heidenhain.de/<br />

Renishaw GmbH<br />

Karl-Benz Strasse 12 • D-72124 Pliezhausen<br />

Tel.: +49 (0) 712 797 960<br />

Fax: +49 (0) 712 788 237<br />

E-Mail: germany@renishaw.com<br />

Internet: http://www.renishaw.com/encoder/<br />

<strong>Rexroth</strong><br />

Ernst-Sachs-Str. 90 • D-97419 Schweinfurt<br />

Tel.: +49 (0) 9721 937 0<br />

Fax: +49 (0) 9721 937 350<br />

E-Mail: info@rexroth-star.com<br />

Internet: http://www.rexroth.com/rexrothstar<br />

<strong>Rexroth</strong><br />

Ernst-Sachs-Str. 90 • D-97419 Schweinfurt<br />

Tel.: +49 (0) 9721 937 0<br />

Fax: +49 (0) 9721 937 350<br />

E-Mail: info@rexroth-star.com<br />

Internet: http://www.rexroth.com/rexrothstar<br />

igus GmbH<br />

Spicher Straße 1a • D-51147 Köln<br />

Tel.: +49 (0) 2203 9649 0<br />

Fax: +49 (0) 2203 9649 222<br />

E-Mail: info@igus.de<br />

Internet: http://www.igus.de/<br />

KABELSCHLEPP GMBH<br />

Marienborner Straße 75 • 57074 Siegen<br />

Tel.: +49 (0) 271 5801 0<br />

Fax: +49 (0) 271 5801 220<br />

E-Mail: info@kabelschlepp.de<br />

Internet: http://www.kabelschlepp.de/


16-2 Appendix <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

Heat-exchanger Unit<br />

Coolant Additives<br />

Coolant Tubes<br />

Axis Cover System<br />

SCHWÄMMLE GmbH & Co KG<br />

Dieselstraße 12-14 • D-71546 Aspach<br />

Tel.: +49 (0) 7191 9242 0<br />

Fax: +49 (0) 7191 225 10<br />

E-Mail: info@schwaemmle-gmbh.de<br />

Internet: http://www.schwaemmle-gmbh.de/<br />

Universal Hydraulik GmbH<br />

Siemensstrasse 33 • D-61267 Neu-Anspach<br />

Tel.: +49 (0) 6081 9418 0<br />

Fax: +49 (0) 6081 9602 20<br />

E-Mail:<br />

Internet: http://www.universalhydraulik.com/<br />

See Fig. 9-27<br />

Polyflex AG<br />

Dorfstasse 49 • CH-5430 Wettingen<br />

Tel.: +44 (0) 56-4241088<br />

Fax: +44 (0) 56-4241114<br />

E-Mail:<br />

Internet: http://www.polyflex.ch/<br />

igus GmbH<br />

Spicher Straße 1a • D-51147 Köln<br />

Tel.: +49 (0) 2203 9649 0<br />

Fax: +49 (0) 2203 9649 222<br />

E-Mail: info@igus.de<br />

Internet: http://www.igus.de/<br />

<strong>Rexroth</strong><br />

Postfach 910762 • D-30427 Hannover<br />

Tel.: +49 (0) 511 2136 0<br />

Fax: +49 (0) 511 2136 269<br />

E-Mail: infomaster@rexroth-mecman.se<br />

Internet: http://www.rexroth.com/rexrothmecman<br />

Möller Werke GmbH<br />

Möller Balg<br />

Kupferhammer • D-33649 Bielefeld<br />

Tel.: +49 (0) 521 4477 0<br />

Fax: +49 (0) 521 4477 333<br />

E-Mail: info@moellerbalg.de<br />

Internet: http://www.moellerflex.de/<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Appendix 16-3<br />

End Position Shock Absorbers<br />

Metal Braid Shock Absorbers<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

HCR-Heinrich Cremer GmbH<br />

Oppelner Str. 37 • D-41199 Mönchengladbach<br />

Tel.: +49 (0) 2166 964900<br />

Fax: +49 (0) 2166 609157<br />

E-Mail: info@hcr.de<br />

Internet: http://www.hcr.de/<br />

Gebr. HENNIG GmbH<br />

Postfach 1137 • 85729 Ismaning<br />

Tel.: +49 (0) 89 96096 0<br />

Fax: +49 (0) 89 96096 120<br />

E-Mail: HENNIGGMBH@aol.com<br />

Internet: http://www.hennig-gmbh.de/<br />

ACE Stoßdämpfer GmbH<br />

Postfach 1510 • D-40740 Langenfeld<br />

Herzogstraße 28 • D-40764 Langenfeld<br />

Tel.: +49 (0) 2173 92 26 10<br />

Fax: +49 (0) 2173 92 26 19<br />

E-Mail: info@ace-ace.de<br />

Internet: http://www.ace-ace.de/<br />

<strong>Rexroth</strong><br />

Postfach 910762 • D-30427 Hannover<br />

Tel.: +49 (0) 511 2136 0<br />

Fax: +49 (0) 511 2136 269<br />

E-Mail: infomaster@rexroth-mecman.se<br />

Internet: http://www.rexroth.com/rexrothmecman<br />

Rhodius GmbH<br />

Treuchlinger Str. 23 • D-91781 Weißenburg<br />

Tel.: +49 (0) 9141 919 0<br />

Fax: +49 (0) 9141 919 45<br />

E-Mail: rhodius@rhodius.com<br />

Internet: http://www.rhodius.com/<br />

Clamping Elements for <strong>Linear</strong> Guideways<br />

<strong>Rexroth</strong><br />

Ernst-Sachs-Str. 90 • D-97419 Schweinfurt<br />

Tel.: +49 (0) 9721 937 0<br />

Fax: +49 (0) 9721 937 350<br />

E-Mail: info@rexroth-star.com<br />

Internet: http://www.rexroth.com/rexrothstar


16-4 Appendix <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

External Mechanical Brakes<br />

Weight Compensation Systems<br />

Wipers<br />

Pneumatic<br />

Hydraulic<br />

Kendrion Binder Magnete GmbH<br />

Mönchweilerstr. 1 • D-78048 Villingen-Schwenningen<br />

Tel.: +49 (0) 7721 877 455<br />

Fax: +49 (0) 7721 877 462<br />

E-Mail:<br />

Internet: http://www.binder-magnete.de/<br />

Ortlinghaus-Werke GmbH<br />

Kenkhauser Str. 125 • D-42929 Wermelskirchen<br />

Tel.: +49 (0) 2196 85-0<br />

Fax: +49 (0) 2196 855-444<br />

E-Mail: info@ortlinghaus.com<br />

Internet: http://www.ortlinghaus.com/<br />

Ross Europa GmbH<br />

Robert-Bosch-Str. 2 • D-63225 Langen<br />

Tel.: +49 (0) 6103 7597 0<br />

Fax: +49 (0) 6103 7469 40<br />

E-Mail:<br />

Internet:<br />

<strong>Rexroth</strong><br />

Jahnstr. 3-5 • D-97816 Lohr am Main<br />

Tel.: +49 (0) 9352 18 0<br />

Fax: +49 (0) 9352 18 2598<br />

E_Mail:<br />

Internet: http://www.rexroth.com/<br />

Hunger DFE GmbH<br />

Dichtungs- und Führungselemente<br />

Alfred-Nobel Str. 26 • D-97080 Würzburg<br />

Tel.: +49 (0) 931 900 97 0<br />

Fax: +49 (0) 931 900 97 30<br />

E-Mail: info@hunger-dichtungen.de<br />

Internet: http://www.hunger-dichtungen.de/<br />

HME Dichtungssysteme<br />

Richthofenstr. 31 • D - 86343 Königsbrunn<br />

Tel.: +49 (0) 8231 9623 0<br />

Fax: +49 (0) 8231 865 16<br />

E-Mail: hme@hme-seals.de<br />

Internet: http://www.hme-seals.de/<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Appendix 16-5<br />

16.2 Enquiry form for <strong>Linear</strong> Drives<br />

<strong>Rexroth</strong> Indramat<br />

Fax:<br />

Contact person:<br />

1. Information for the user<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

..............................................................<br />

..............................................................<br />

Date: ..........................<br />

Company ..................................................... Name ...........................................................<br />

Street ..................................................... Department ...........................................................<br />

Zip Code ..................................................... Phone ...........................................................<br />

Place ..................................................... Fax ...........................................................<br />

Email ...........................................................<br />

Requesting to: O Recall O Drive dimensioning O Offer O ..................................................<br />

2. General information on use<br />

Sector O Machine Tools O Automation O Packaging O Printing<br />

O ........................................................................................................<br />

Type of use ............................................................................................................<br />

............................................................................................................<br />

Designation of the<br />

Axis<br />

............................................................................................................<br />

Axis Grouping O Single axis O Grouping of ............ axis within the machine<br />

O only linear drives O rotative and linear drives<br />

Quantity ........................... per year<br />

3. Mechanical and cinematic requirements<br />

Installation position O Horizontal O Vertical O Slant, axis angle: ............degrees<br />

Moved motor<br />

component<br />

O Primary part moves O Secondary part moves<br />

Moved mass ....................... kg (incl. guides, power feeders, etc.)<br />

Maximum velocity ..................... m/min Maximum<br />

acceleration<br />

Base force ....................... N (friction, energy supply, etc. )<br />

Machining force ....................... N (detailed specifications see point 5)<br />

....................... m/s²


16-6 Appendix <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

4. Ambient conditions<br />

Ambient temperature ....................... °C<br />

Machined material O Steel / cast iron O Light metal O Plastic O Wood<br />

O Other:......................................... O None(only handling)<br />

Dirt and aggressive media O Chips O Dust<br />

Protection of<br />

motor components<br />

5. Thermal conditions and cooling<br />

O Oil or lubricants: .........................................................................<br />

O Other: .........................................................................................<br />

O Bellows O Telescopic cover O Wiper on secondary<br />

O Other:<br />

................................................................................................<br />

Liquid cooling Coolant and additives: .............................................................................<br />

Inlet temperature, minimum: .............°C maximum: ...............°C<br />

Max. flow quantity: .........l/min Max. system pressure: .........bar<br />

Maximum heating of the machine structure: ........... K O Not relevant<br />

Maximum coolant temperature rise: ....................... K O Not relevant<br />

Additional cooling at machine O Yes O No<br />

O Air cooling, natural convection (Reducing the continuous forces to approximately 25 %)<br />

6. Drive and Control<br />

Drive series O ECODRIVE03 O DIAX04 O IndraDrive<br />

Main<br />

voltage<br />

Drive<br />

interface /<br />

bus system<br />

O 1 x 230 V O 3 x 400 V O 3 x 480 V O ................................<br />

O SERCOS interface O ANALOG ±10V O Parallel interface<br />

O Profibus O Interbus O CANopen O DeviceNet O PWM<br />

O .....................................................................................................................<br />

Control<br />

O ..................................................:..................................................................<br />

7. <strong>Linear</strong> scale<br />

Measuring principle O absolut ENDAT<br />

and interface<br />

O incremental, sine signals 1 VSS<br />

O incremental, sine signals 1 VSS, distance-encoded reference marks<br />

Model O open O encapsulated O integradted in linear<br />

buides<br />

Positioning accurary ......................... µm<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Appendix 16-7<br />

8. Motion profile<br />

Specification of<br />

motion profile<br />

8.1 Data for motion selection exists:<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

O Not required, drive selection data exist (see 8.1)<br />

O Strokes, positioning and idle times, maximum velocity and acceleration as<br />

specified under item 3 (see 8.2)<br />

O Sketch of velocity profile v(t) and process forces FP(t) (see 8.2 and 8.3)<br />

O Operating phases and duty cycles (see 8.4)<br />

O Equation of motion for s(t) and / or v(t) (see 8.5)<br />

O s(t) and / or v(t) can ve specified in digital form:<br />

O MathCad O Excel O ASCII O ...........................<br />

Fmax: .............. N FEFF / FdN: .............. N vFmax: ............. m/min vmax: ............. m/min<br />

8.2 Specification of strokes, position and idle times<br />

Stroke Travel Positioning time Idle time Stroke Travel Positioning time Idle time<br />

1 8<br />

2 9<br />

3 10<br />

4 11<br />

5 12<br />

6 13<br />

7 14<br />

8.3 Sketch of velocity profile and process forces<br />

wÉáí==áå=KKKKKK<br />

wÉáí==áå=KKKKKK


16-8 Appendix <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

8.4 Specification of operating phases and related duty cycle<br />

Force Fi<br />

Acceleration, deceleration at .............m/s²<br />

EDi<br />

............. % .............. N<br />

Acceleration, deceleration at .............m/s² and machining ............. % .............. N<br />

Rapid traverse at v = constant = ............ m/min ............. % .............. N<br />

Machining at v = ............ m/min ............. % .............. N<br />

Standstill with machining ............. % .............. N<br />

Standstill without machining ............. % .............. N<br />

................................................................................ ............. % .............. N<br />

Total:<br />

8.5 Equation of motion for s(t) or v(t)<br />

100 %<br />

Equation of motion,<br />

e.g.: s( t)<br />

= r ⋅ sin( ω⋅<br />

t)<br />

Explanation:<br />

9. Miscellaneous/comments/sketches<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

............................................................................................................................................................<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Index 17-1<br />

17 Index<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

A<br />

Air gap 9-19<br />

Appropriate use<br />

Introduction 2-1<br />

Uses 2-2<br />

Attractive forces 9-18<br />

Average velocity 5<br />

B<br />

Braking Systems 9-53<br />

C<br />

Commutation adjustment 14-9<br />

Connection cable 8-1<br />

Connection of DIAX04 and EcoDrive Drive-Controllers 8-8<br />

Connection of IndraDrive Drive Controller 8-6<br />

Connection of linear feedback devices 8-10<br />

Continuous Output 15<br />

Coolant temperature 9-28<br />

Cooling capacity 9-32, 17<br />

Customer’s receiving inspection 12-5<br />

D<br />

Delivery status 12-2<br />

different motor/controller combinations 10-1<br />

Dimensions 5-1<br />

Duty cycle 13<br />

E<br />

Enclosure surface 9-45<br />

F<br />

Factory checks 12-5<br />

feed forces 3<br />

Flow quantity 9-30<br />

Frame length 3<br />

G<br />

Gantry Arrangement 9-16<br />

General construction 9-2<br />

General equations of motion 2<br />

General start-up procedure 14-4<br />

H<br />

Holding Devices 9-53<br />

I<br />

Identification 12-1<br />

Inappropriate use 2-2<br />

Consequences, Discharge of liability 2-1<br />

Installation 13-1<br />

Integrating the linear scale 9-8


17-2 Index <strong>Rexroth</strong> <strong>IndraDyn</strong> L<br />

L<br />

Load Rigidity<br />

Dynamic load rigidity 9-65<br />

Static load rigidity 9-65<br />

M<br />

Magnetic Fields 9-43<br />

Maintenance 14-21<br />

Mass reduction 9-7<br />

Maximum Acceleration Changes 9-61<br />

Maximum Output 16<br />

maximum system pressure 9-28<br />

Measuring principle 9-48<br />

Mechanical rigidity 9-7<br />

Mechanically linked axes 9-7<br />

Motor cooling<br />

Coolants 9-26<br />

Standard encapsulation 9-24<br />

Thermal encapsulation 9-24<br />

Thermal time constant 9-22<br />

Motor cooling<br />

Power loss 9-22<br />

Motor cooling 9-22<br />

Motor Design 9-2<br />

Mounting 13-1<br />

Mounting Sizes<br />

size 070 5-6<br />

size 100 5-9<br />

size 140 5-12<br />

size 200 5-15<br />

size 300 5-18<br />

Mounting Sizes 5-3<br />

size 040 5-3<br />

N<br />

Natural frequencies 9-7<br />

Noise emission 9-45<br />

O<br />

on axis cover system 9-55<br />

Operation without liquid cooling 9-29<br />

P<br />

Packaging 12-2<br />

parallel arrangement 9-10<br />

Parameter settings 14-18<br />

Performance Overview 2<br />

pH-value coolant 9-27<br />

Position and Velocity Resolution 9-63<br />

Pressure drop 9-29, 9-31<br />

Protection class 9-42<br />

R<br />

Reactive forces 9-8<br />

Reduced overlapping 9-20<br />

Regeneration energy 17<br />

S<br />

Safety Instructions for Electric Drives and Controls 3-1<br />

Sensors temperature measurement external 9-38<br />

DOK-MOTOR*-MLF********-PR01-EN-P


<strong>Rexroth</strong> <strong>IndraDyn</strong> L Index 17-3<br />

DOK-MOTOR*-MLF********-PR01-EN-P<br />

Shock 9-44<br />

shock absorber 9-54<br />

Shutdown by a master control 9-59<br />

Shutdown by the drive 9-58<br />

Shutdown upon EMERGENCY STOP 9-58<br />

Shutdown via mechanical braking device 9-59<br />

single arrangement 9-9<br />

Sinusoidal velocity 11<br />

Sizing the cooling circuit 9-29<br />

Specifics for transporting 12-4<br />

Standard encapsulation 9-3<br />

Standards 4<br />

Storage 12-3<br />

Symmetry 5-2<br />

T<br />

Temperature sensor motor protection 9-38<br />

Thermal encapsulation 9-3<br />

Tolerances 5-1<br />

Transportation 12-3<br />

Trapezoidal velocity 6<br />

Triangular velocity 10<br />

type code 1<br />

U<br />

Use See appropriate use and inappropriate use<br />

Utilization factor 9-41<br />

V<br />

Vertical axes 9-17<br />

Vibration 9-44<br />

W<br />

Weight compensation 9-17<br />

Winding 3<br />

Wipers 9-56


R911293635<br />

Bosch <strong>Rexroth</strong> AG<br />

Electric Drives and Controls<br />

P.O. Box 13 57<br />

97803 Lohr, Germany<br />

Bgm.-Dr.-Nebel-Str. 2<br />

97816 Lohr, Germany<br />

Phone +49 (0)93 52-40-50 60<br />

Fax +49 (0)93 52-40-49 41<br />

service.svc@boschrexroth.de<br />

www.boschrexroth.com<br />

Printed in Germany<br />

DOK-MOTOR*-MLF********-PR01-EN-P

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!