25.03.2013 Views

Circular Complex Delta Function - Gauge-institute.org

Circular Complex Delta Function - Gauge-institute.org

Circular Complex Delta Function - Gauge-institute.org

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

<strong>Complex</strong> <strong>Delta</strong> <strong>Function</strong>,<br />

<strong>Complex</strong> Fourier Transform,<br />

and Fourier Integral Theorem<br />

H. Vic Dannon<br />

vic0@comcast.net<br />

January, 2011<br />

Abstract The Cauchy Integral Formula for the function<br />

f () z = 1on<br />

the Infinitesimal Circle ζ − z = dr<br />

follows from the<br />

sifting property for a <strong>Circular</strong> Hyper-<strong>Complex</strong> <strong>Delta</strong> <strong>Function</strong> in<br />

Hyper-<strong>Complex</strong> Calculus.<br />

The Hyper-<strong>Complex</strong> <strong>Circular</strong> <strong>Delta</strong> <strong>Function</strong> is a Plane <strong>Delta</strong><br />

<strong>Function</strong> that spikes to<br />

ζ − z = dr.<br />

1<br />

2 πζ− ( z)<br />

on the Infinitesimal Circle<br />

Keywords: Infinitesimal, Infinite-Hyper-Real, Hyper-Real,<br />

Cardinal, Infinity. Non-Archimedean, Non-Standard Analysis,<br />

Calculus, Limit, Continuity, Derivative, Integral, <strong>Complex</strong><br />

Variable, <strong>Complex</strong> Analysis, Analytic <strong>Function</strong>s, Holomorphic,<br />

1


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

Cauchy Integral Theorem, Cauchy Integral Formula, Contour<br />

Integral.<br />

2000 Mathematics Subject Classification 26E35; 26E30;<br />

26E15; 26E20; 26A06; 26A12; 03E10; 03E55; 03E17; 03H15;<br />

46S20; 97I40; 97I30.<br />

Contents<br />

Introduction<br />

1. Hyper-<strong>Complex</strong> Plane<br />

2. Hyper-<strong>Complex</strong> Path Integral<br />

3. <strong>Circular</strong> Hyper-<strong>Complex</strong> <strong>Delta</strong><br />

4. <strong>Circular</strong> <strong>Delta</strong> <strong>Function</strong> Plots<br />

5. <strong>Circular</strong> <strong>Delta</strong> Properties<br />

6. Primitive and Derivatives of the <strong>Circular</strong> <strong>Delta</strong><br />

7. δ (()) f z<br />

8. Circulation of the <strong>Circular</strong> <strong>Delta</strong><br />

9. Sifting by ( z , and<br />

δ ζ − ) d δCircle ( ζ − z)<br />

Circle<br />

10. Representing f () z by Cauchy Integral Formula<br />

11. Fourier Transform of<br />

δ()<br />

z<br />

12. Fourier Integral Theorem for f () z<br />

References<br />

dz<br />

2


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

Introduction<br />

For z in the interior of γ , Cauchy Integral Formula gives an<br />

analytic<br />

Thus,<br />

f () z as the convolution of f with<br />

1 1<br />

2πi ζ− z<br />

1 1<br />

2πiζ .<br />

1 1<br />

f () z = ∫ f()<br />

ζ d ζ<br />

2πi<br />

ζ − z<br />

γ<br />

recovers the value of a complex function f () ζ at the<br />

point z in the interior of a loop γ , by sifting through the values of<br />

f () ζ on γ .<br />

If the integration path is the infinitesimal circle<br />

the sifting is performed by<br />

1 1<br />

2 i − z<br />

ζ − z = dr,<br />

{ ζ z dr} () ζ δCircle( ζ z)<br />

.<br />

π ζ χ − = ≡ −<br />

We call δ ( ζ − z)<br />

the Hyper-<strong>Complex</strong> <strong>Circular</strong> <strong>Delta</strong> <strong>Function</strong>.<br />

Circle<br />

Unlike the Hyper-Real Linear <strong>Delta</strong> function [Dan4], the<br />

integration path does not cross the Infinitesimal Hyper-<strong>Complex</strong><br />

disk. Instead, the path encircles the singularity.<br />

In [Dan7], we showed that<br />

3


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

∫<br />

ζ−<br />

z = dr<br />

1 1<br />

dζ<br />

= 1.<br />

2πi<br />

ζ − z<br />

Due to 1<br />

, the <strong>Complex</strong> <strong>Delta</strong> spikes to<br />

ζ − z<br />

1 1 1<br />

ζ<br />

= e<br />

2πidζ 2πidr<br />

on the infinitesimal Circle ζ − z = dr.<br />

−iArg( −z)<br />

The primitive of the <strong>Complex</strong> <strong>Delta</strong> on the Circle is<br />

1<br />

Log( ζ − z)<br />

,<br />

2πi<br />

and the derivative of the <strong>Complex</strong> <strong>Delta</strong> on the disk is<br />

1 1<br />

2 πi ( ζ − z)<br />

Since on the infinitesimal circle, ζ − z is a hyper-complex<br />

−iArg( ζ−z)<br />

infinitesimal ( dr) e , we recall the Hyper-<strong>Complex</strong> Plane<br />

that we introduced in [Dan7].<br />

4<br />

2<br />

.


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

1.<br />

Hyper-<strong>Complex</strong> Plane<br />

Each complex number α + iβ<br />

can be represented by a Cauchy<br />

sequence of rational complex numbers,<br />

so that r + is → α + iβ.<br />

n n<br />

r + is , r + is , r + is ...<br />

1 1 2 2 3 3<br />

The constant sequence ( α + iβ, α + iβ, α + iβ,...)<br />

is a Constant<br />

Hyper-<strong>Complex</strong> Number.<br />

Following [Dan2] we claim that,<br />

1. Any set of sequences ( ι + iο , ι + iο , ι + iο<br />

,...) , where<br />

( ι1, ι2, ι3,...)<br />

belongs to one family of infinitesimal hyper reals,<br />

and ( ο , ο , ο ,...) belongs to another family of infinitesimal<br />

1 2 3<br />

hyper-reals, constitutes a family of infinitesimal hyper-<br />

complex numbers.<br />

1 1 2 2 3 3<br />

2. Each hyper-complex infinitesimal has a polar representation<br />

iφ<br />

( ) * , where is an infinitesimal, and<br />

iφ<br />

dz = dr e = ο e<br />

dr = ο*<br />

φ =<br />

arg( dz)<br />

.<br />

5


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

3. The infinitesimal hyper-complex numbers are smaller in<br />

length, than any complex number, yet strictly greater than<br />

zero.<br />

1 1 1<br />

4. Their reciprocals ( , , ,...<br />

ι1+ iο1 ι2+ iο2 ι3+ iο<br />

) are the infinite hyper-<br />

3<br />

complex numbers.<br />

5. The infinite hyper-complex numbers are greater in length<br />

than any complex number, yet strictly smaller than infinity.<br />

6. The sum of a complex number with an infinitesimal hyper-<br />

complex is a non-constant hyper-complex.<br />

7. The Hyper-<strong>Complex</strong> Numbers are the totality of constant<br />

hyper-complex numbers, a family of hyper-complex<br />

infinitesimals, a family of infinite hyper-complex, and non-<br />

constant hyper-complex.<br />

8. The Hyper-<strong>Complex</strong> Plane is the direct product of a Hyper-<br />

Real Line by an imaginary Hyper-Real Line.<br />

9. In Cartesian Coordinates, the Hyper-Real Line serves as an<br />

x<br />

line.<br />

coordinate line, and the imaginary as an iy coordinate<br />

10. In Polar Coordinates, the Hyper-Real Line serves as a<br />

Range r line, and the imaginary as an i θ coordinate. Radial<br />

symmetry leads to Polar Coordinates.<br />

6


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

11. The Hyper-<strong>Complex</strong> Plane includes the complex<br />

numbers separated by the non-constant hyper-complex<br />

numbers. Each complex number is the center of a disk of<br />

hyper-complex numbers, that includes no other complex<br />

number.<br />

12. In particular, zero is separated from any complex<br />

number by a disk of complex infinitesimals.<br />

13. Zero is not a complex infinitesimal, because the length<br />

of zero is not strictly greater than zero.<br />

14. We do not add infinity to the hyper-complex plane.<br />

15. The hyper-complex plane is embedded in , and is<br />

not homeomorphic to the <strong>Complex</strong> Plane . There is no bi-<br />

continuous one-one mapping from the hyper-complex Plane<br />

onto the <strong>Complex</strong> Plane.<br />

16. In particular, there are no points in the <strong>Complex</strong> Plane<br />

that can be assigned uniquely to the hyper-complex<br />

infinitesimals, or to the infinite hyper-complex numbers, or<br />

to the non-constant hyper-complex numbers.<br />

17. No neighbourhood of a hyper-complex number is<br />

homeomorphic to a ball. Therefore, the Hyper-<strong>Complex</strong><br />

Plane is not a manifold.<br />

n<br />

7<br />


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

18. The Hyper-<strong>Complex</strong> Plane is not spanned by two<br />

elements, and is not two-dimensional.<br />

8


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

2.<br />

Hyper-<strong>Complex</strong> Path Integral<br />

Following the definition of the Hyper-real Integral in [Dan3],<br />

the Hyper-<strong>Complex</strong> Integral of f () z over a path zt () , t ∈ [ αβ , ] , in<br />

its domain, is the sum of the areas<br />

rectangles with base z '( t) dt = dz , and height f () z .<br />

f ()'() zz tdt= fzdzt () () of the<br />

2.1 Hyper-<strong>Complex</strong> Path Integral Definition<br />

Let f () z be hyper-complex function, defined on a domain in the<br />

Hyper-<strong>Complex</strong> Plane. The domain may not be bounded.<br />

f () z may take infinite hyper-complex values, and need not be<br />

bounded.<br />

Let zt () , t ∈ [ αβ , ] , be a path, γ(,) ab , so that dz = z '( t) dt , and z'( t)<br />

is continuous.<br />

For each t , there is a hyper-complex rectangle with base<br />

[() zt − ,( zt)<br />

+ , height f () z , and area f (()) zt dzt () .<br />

2<br />

2 ]<br />

dz dz<br />

We form the Integration Sum of all the areas that start at<br />

z( α ) = a , and end at z( β ) = b,<br />

9


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

∑<br />

t∈[<br />

αβ , ]<br />

f (()) zt dzt () .<br />

If for any infinitesimal dz = z '( t) dt , the Integration Sum equals<br />

the same hyper-complex number, then<br />

Integrable over the path γ(,)<br />

ab .<br />

f () z is Hyper-<strong>Complex</strong><br />

Then, we call the Integration Sum the Hyper-<strong>Complex</strong> Integral of<br />

f () z over the γ(,)<br />

ab , and denote it by<br />

∫<br />

γ(,)<br />

ab<br />

f () zdz.<br />

If the hyper-complex number is an infinite hyper-complex, then it<br />

equals<br />

∫<br />

γ(,)<br />

ab<br />

f () zdz.<br />

If the hyper-complex number is finite, then its constant part<br />

equals<br />

∫<br />

γ(,)<br />

ab<br />

f () zdz.<br />

The Integration Sum may take infinite hyper-complex values,<br />

such as 1 , but may not equal to ∞ .<br />

dz<br />

The Hyper-<strong>Complex</strong> Integral of the function<br />

that goes through z = 0 diverges.<br />

fz ()<br />

2.2 The Countability of the Integration Sum<br />

1<br />

= over a path<br />

z<br />

In [Dan1], we established the equality of all positive infinities:<br />

10


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

We proved that the number of the Natural Numbers,<br />

Card , equals the number of Real Numbers, 2 , and<br />

Card<br />

Card =<br />

we have<br />

2 Card<br />

2<br />

Card<br />

Card = ( Card)<br />

= .... = 2 = 2 = ... ≡ ∞.<br />

In particular, we demonstrated that the real numbers may be<br />

well-ordered.<br />

Consequently, there are countably many real numbers in the<br />

interval [ αβ , ] , and the Integration Sum has countably many<br />

terms.<br />

While we do not sequence the real numbers in the interval, the<br />

summation takes place over countably many f () zdz.<br />

2.3 Continuous f () z is Path-Integrable<br />

Hyper-<strong>Complex</strong> f () z Continuous on D is Path-Integrable on D<br />

Proof:<br />

Let zt () , t ∈ [ αβ , ] , be a path, γ(,) ab , so that dz = z '( t) dt , and z'( t)<br />

is continuous. Then,<br />

( ( )) '( ) = ( ( ( ), ( )) + ( ( ), ( )) )( '( ) + '( ))<br />

f z t z t u x t y t iv x t y t x t iy t<br />

= ⎡uxt ((), yt ()) x'() t −vxt<br />

((), yt ()) y'() t ⎤<br />

⎣ ⎦<br />

+<br />

Ut ()<br />

11


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

+ iuxt ⎡ ((), yt ()) y'() t + vxt ((), yt ()) x'() t⎤<br />

⎣ ⎦<br />

= Ut () + iVt ()<br />

,<br />

V() t<br />

where Ut () , and Vt () are Hyper-Real Continuous on [ αβ , ] .<br />

Therefore, by [Dan3, 12.4], Ut () , and Vt () are integrable on [ αβ , ] .<br />

Hence, f (()) zt z'() t is integrable on [ αβ , ] .<br />

Since<br />

t=<br />

β<br />

∫ f (()) zt z'() tdt= ∫ f() zdz,<br />

t= α γ(,)<br />

a b<br />

f () z is Path-Integrable on γ(,)<br />

ab .<br />

12


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

3.<br />

<strong>Circular</strong> Hyper-<strong>Complex</strong> <strong>Delta</strong><br />

3.1 Domain and Range of <strong>Circular</strong> <strong>Delta</strong><br />

The Hyper-<strong>Complex</strong> <strong>Circular</strong> <strong>Delta</strong> <strong>Function</strong> is defined from the<br />

Hyper-<strong>Complex</strong> plane into the set of two hyper-complex numbers,<br />

⎧ ⎪ 1 ⎫⎪<br />

⎨0, ⎪<br />

⎬.<br />

⎪ ⎪⎩ 2πidz ⎪ ⎪⎭<br />

The hyper-complex 0 is the sequence 0, 0, 0,... .<br />

The infinite hyper-complex<br />

depends on<br />

1 1 1 1<br />

= e<br />

2πidz 2πidr<br />

Arg z = φ ,<br />

and on our choice of the infinitesimal dr .<br />

We will usually choose the family of infinitesimals that is spanned<br />

by the sequences 1<br />

n ,<br />

1<br />

n<br />

2<br />

,<br />

1<br />

n<br />

3<br />

−iφ<br />

,… It is a semigroup with<br />

respect to vector addition, and includes all the scalar multiples of<br />

the generating sequences that are non-zero. That is, the family<br />

includes infinitesimals with negative sign.<br />

13


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

Therefore, 1<br />

dr<br />

will mean the sequence n .<br />

Alternatively, we may choose the family spanned by the sequences<br />

1<br />

2 n<br />

,<br />

1<br />

2 2 n<br />

,<br />

1<br />

3 2 n<br />

,… Then, 1<br />

dr will mean the sequence 2n .<br />

3.2 is an infinite hyper-complex on the infinitesimal<br />

z δ<br />

Circle ()<br />

hyper-complex circle z = dr,<br />

In particular,<br />

Proof: Since dr > 0 , we have<br />

3.3 Definition of<br />

For any infinitesimal dz ,<br />

δ<br />

This means that<br />

δ


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

off the circle, for z −z0≠ dr , δ ( z − z ) = 0.<br />

3.4 <strong>Delta</strong> in Polar Coordinates<br />

iArg( z−z )<br />

Circle 0<br />

If z − z 0<br />

0 = ( dr) e , then, for any infinitesimal dr ,<br />

δ<br />

where<br />

1 −iArg( z−z0) ( z − z ) = e { z− z0= dr}<br />

( z),<br />

2πidr<br />

Circle 0<br />

χ − =<br />

χ<br />

⎧⎪ 0, z −z0≠ dr<br />

{ z z0 dr}<br />

() z = ⎪<br />

⎨ .<br />

⎪<br />

⎪⎩<br />

1, z − z0= dr<br />

15


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

4.<br />

<strong>Circular</strong> <strong>Delta</strong> <strong>Function</strong> Plots<br />

4.1 <strong>Delta</strong> Plot for dr =<br />

δ<br />

1<br />

n<br />

1 −iφ<br />

() z = e χ{ z = } (),2 z χ 1 1<br />

{ }<br />

(),3 z χ{<br />

}<br />

(),... z ,<br />

z = z =<br />

2πi<br />

2 3<br />

Circle 1<br />

is a sequence of shrinking circles with increasing heights<br />

16


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

The circles lie on the surface of revolution of<br />

4.2 <strong>Delta</strong> Plot for dr =<br />

δ<br />

Circle<br />

1<br />

2 n<br />

1 1<br />

= .<br />

z r<br />

χ χ χ χ<br />

{ z = 1 1 1 1<br />

0} { z =<br />

1} { z =<br />

2} { z =<br />

3}<br />

1 −iφ<br />

() z = e (),2 z (),4 z (),8 z ()... z<br />

2πi<br />

2 2 2 2<br />

17


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

is a sequence of shrinking circles with increasing heights that lie<br />

on the surface of revolution of<br />

1 1<br />

= .<br />

z x 2 2<br />

18


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

5.<br />

<strong>Circular</strong> <strong>Delta</strong> Properties<br />

5.1<br />

δ (0) = 0<br />

Circle<br />

Proof: z = 0 is off the infinitesimal circle z = dr.<br />

1 1 −i( φ−φ 5.2 0 )<br />

δCircle(<br />

z − z0) = e { z− z0= dr}<br />

( z),<br />

2πidr<br />

χ<br />

φ = arg z , φ 0 = arg z0<br />

n 1 1 −inφ<br />

5.3 ( δCircle(<br />

z)) = e { z dr}<br />

( )<br />

n n<br />

= z , n = 2, 3,...<br />

(2 πi)<br />

( dr)<br />

19<br />

χ


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

6.<br />

Primitive and Derivatives of the<br />

<strong>Circular</strong> <strong>Delta</strong><br />

The Hyper-<strong>Complex</strong> Log <strong>Function</strong> is the primitive of the <strong>Circular</strong><br />

Hyper-<strong>Complex</strong> <strong>Delta</strong>, on the Hyper-<strong>Complex</strong> Plane<br />

d 1<br />

δ ( ζ − z) = Log( ζ − z)<br />

( ζ )<br />

dz 2 i<br />

6.1 Circle<br />

( ) { ζ z dr}<br />

π χ − =<br />

χ − =<br />

d<br />

1 1<br />

6.2 δCircle( ζ − z) =<br />

2 { ζ z dr}<br />

( z)<br />

dz 2 πi ( ζ − z)<br />

This means that<br />

d<br />

1 1 −2iθ<br />

on the circle ζ − z = dr,<br />

δCircle( ζ − z) = e .<br />

dz 2 πi<br />

2<br />

( dr)<br />

off the circle, in z d<br />

k<br />

ζ − ≠ r, Circle<br />

d<br />

δ ( ζ − z)<br />

= 0.<br />

dz<br />

χ =<br />

d 1 k!<br />

6.3 δCircle( ζ − z) =<br />

1 { z dr}<br />

( z)<br />

k 2 i k<br />

dz π + ( ζ − z)<br />

20


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

This means that<br />

d k!<br />

1<br />

θ<br />

Circle − = ,<br />

k 2 i k 1<br />

dz π + ( dr)<br />

− ik ( + 1)<br />

on the circle, ζ − z = dr,<br />

δ ( ζ z) e<br />

off the circle, on z d<br />

k<br />

ζ − ≠ r,<br />

k Circle<br />

21<br />

d<br />

dz<br />

k<br />

δ ( ζ − z)<br />

= 0.


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

7.<br />

Circle (()) fz δ<br />

1<br />

( az) = ( z)<br />

a<br />

7.1 δCircle δCircle<br />

1 1<br />

Proof: δCircle(<br />

az) = χ { az = dr } ( z)<br />

2 πidaz<br />

( )<br />

1 1 1<br />

= χ<br />

a 2πidz =<br />

a<br />

1 1 1<br />

=<br />

a 2πidz<br />

{ z 1 dr}<br />

χ =<br />

() z<br />

{ z dz } () z<br />

1 1<br />

Circle()<br />

z<br />

a 2 i δ = .<br />

π<br />

7.2 z = only zero of () ,<br />

1<br />

fz 1<br />

f '( z ) ≠ 0 ⇒<br />

1<br />

δ (()) f z = δ(<br />

z − z )<br />

Circle 1<br />

f '( z1)<br />

Proof: δ (()) f z = δ ( f() z − f( z ) )<br />

For z − z = infinitesimal ,<br />

1<br />

Circle Circle 1<br />

( f '( z )( z z ) )<br />

= δ<br />

−<br />

Circle 1 1<br />

22


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

1<br />

= δCircle(<br />

z − z 1)<br />

, by 6.1.<br />

f '( z )<br />

7.3 z1, z 2 are the only zeros of f () z ; f '( z1), f '( z2) ≠ 0 ⇒<br />

1<br />

1 1<br />

δ (()) f z = δ(<br />

z − z ) + δ( z −z<br />

)<br />

Circle 1 2<br />

f '( z1) f '( z2)<br />

(()) f z = f() z − f( z ) + f() z − f(<br />

z )<br />

Proof: δ δ ( ) δ (<br />

Circle Circle 1 Circle 2<br />

For z − z = infinitesimal , z − z2=<br />

infinitesimal ,<br />

1<br />

( ) (<br />

δ ( f ( z)) = δ f '( z )( z − z ) + δ f '( z )( z − z )<br />

Circle Circle 1 1 Circle 2 2<br />

1 1<br />

= δ ( z − z ) + δ ( z − z ) .<br />

f '( z ) f '( z )<br />

Circle 1 Circle 2<br />

1 2<br />

1 1<br />

( z − a ) = ( z − a) + ( z + a)<br />

2a 2a<br />

2 2<br />

7.4 δCircle δCircle δCircle<br />

7.5<br />

1 1<br />

δCircle ( ( z −a)( z − b) ) = δCircle(<br />

z − a) + δ Circle(<br />

z −b)<br />

a −b b −a<br />

7.6 1 are the only zeros of<br />

,... z z n<br />

f () z ; f '( z1),.., f '( zn) ≠ 0 ⇒<br />

23<br />

)<br />

)


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

1 1<br />

δ ( f ( z)) = δ ( z − z ) + ... + δ ( z −z<br />

)<br />

Circle Circle 1 Circle<br />

f '( z1) f '( zn)<br />

7.7 z1, z 2,..<br />

. are zeros of f () z , f '( z1), f '( z2),... ≠ 0 ⇒<br />

7.8<br />

1 1<br />

δ ( f( z)) = δ ( z − z ) + δ ( z − z ) + ...<br />

Circle Circle 1 Circle<br />

f '( z1) f '( zn)<br />

δ (sin z) = ... + δ ( z + 2 π) − δ ( z + π)<br />

+<br />

Circle Circle Circle<br />

+ δ ( z) −δ ( z − π) + δ ( z −2<br />

π)<br />

+ ...<br />

Circle Circle Circle<br />

Proof: The zeros of si n z are ... −2 π, −π,<br />

0, π,2 π,...<br />

and …,co s( − π)<br />

= −1, co s(0) = 1,<br />

co s( π ) =−1,…<br />

<br />

24<br />

n<br />

n


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

8.<br />

Circulation of <strong>Circular</strong> <strong>Delta</strong><br />

The <strong>Circular</strong> Hyper-complex <strong>Delta</strong> <strong>Function</strong> is singular on<br />

the infinitesimal circle ζ − z = dr.<br />

Its integration path encircles the singularity of<br />

ζ = z .<br />

1<br />

ζ − z<br />

at<br />

The Circulation of <strong>Delta</strong> along the infinitesimal circle is 1.<br />

8.1 Circle<br />

Proof: Put<br />

Then,<br />

∫<br />

ζ−<br />

z = dr<br />

δ ( ζ − zd ) ζ = 1.<br />

( ) i z dr e α<br />

ζ − =<br />

( ) i<br />

d i dr e d<br />

α<br />

ζ = α.<br />

α= 2π<br />

1 1 1 1 iα<br />

dζ i(<br />

) α<br />

2πi ∫= ζ − z 2 πi<br />

∫ dr e d ,<br />

iα<br />

( dr) e<br />

i<br />

ζ− z = dr<br />

α=<br />

0<br />

Since ( dr) e 0,<br />

for any infinitesimal dr , and any α ,<br />

α ≠<br />

α= 2π<br />

1<br />

= i dα=<br />

1<br />

2πi<br />

∫ .<br />

25<br />

α=<br />

0


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

9.<br />

Sifting by δ ( ζ − z)<br />

and<br />

d<br />

dz<br />

δ ( ζ − z)<br />

Circle<br />

9.1 Sifting by<br />

Proof:<br />

( ) z δ ζ −<br />

Circle<br />

Circle<br />

If f () z is Hyper-<strong>Complex</strong> Differentiable function at z<br />

∫<br />

Then, f ()( ζδζ− zd ) ζ=<br />

f() z<br />

ζ−<br />

z = dr<br />

Since f () ζ is differentiable at z , on the circle ( ) ,<br />

i<br />

z dr e α<br />

ζ − =<br />

∫<br />

ζ−<br />

z = dr<br />

f()( ζδζ− z) dζ=<br />

( ) i z dr e α<br />

ζ = + ,<br />

( ) i<br />

d i dr e d α<br />

ζ = α<br />

iα iα<br />

f ( z + ( dr) e ) = f( z) + f '( z)( dr) e ,<br />

<br />

iα<br />

1 1<br />

= fz () ∫ δCircle( ζ − zd ) ζ + f'() zdr∫ e dζ<br />

2πi ζ − z<br />

− = − =<br />

iα<br />

( )<br />

<br />

ζ z dr ζ z dr idredα 1<br />

26<br />

1 −iα<br />

e<br />

dr


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

α= 2π<br />

1 iα 1 iα<br />

= f () z + f '()( z dr) e i( dr) e α<br />

2 πi<br />

∫ d<br />

iα<br />

( dr) e<br />

α=<br />

0<br />

α= 2π<br />

1<br />

iα<br />

= f () z + f '()( z dr) e α<br />

2πi<br />

∫ d<br />

= f () z .<br />

<br />

α=<br />

0<br />

0<br />

d d<br />

9.2 f () z = f()<br />

ζ δ( ζ )<br />

dz ∫<br />

−z<br />

dζ<br />

dz<br />

Proof:<br />

ζ−<br />

z = dr<br />

d 1 f ( ζ)<br />

f () z =<br />

dζ<br />

dz 2 πi ∫<br />

2<br />

( ζ − z)<br />

ζ−<br />

z = dr<br />

d<br />

= ∫ f () ζ δCircle( ζ − zd ) ζ.<br />

dz<br />

ζ−<br />

z = dr<br />

k k<br />

d d<br />

9.3 f () z = f()<br />

Circle(<br />

)<br />

k ∫ ζ δ ζ −z<br />

dζ<br />

k<br />

dz dz<br />

Proof:<br />

ζ−<br />

z = dr<br />

! ( )<br />

()<br />

2 1<br />

( ) k<br />

d k f ζ<br />

f z =<br />

dζ<br />

dz πi ∫<br />

+<br />

ζ − z<br />

ζ−<br />

z = dr<br />

k<br />

d<br />

= ∫ f () ζ δCircle( ζ − zd ) ζ.<br />

k dz<br />

ζ−<br />

z = dr<br />

27


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

10.<br />

Representing fz () by Cauchy<br />

Integral Formula<br />

10.1 Cauchy Integral Formula<br />

If f () z is Hyper-<strong>Complex</strong> Differentiable function on a Hyper-<br />

<strong>Complex</strong> Simply-Connected Domain D .<br />

Then,<br />

1 f ( ζ)<br />

f () z =<br />

dζ<br />

2πi∫<br />

,<br />

ζ − z<br />

γ<br />

for any loop γ , and any point z in its interior.<br />

f () ζ<br />

Proof: The Hyper-<strong>Complex</strong> function is Differentiable<br />

ζ − z<br />

on the Hyper-<strong>Complex</strong> Simply-Connected domain D , and on<br />

a path that includes γ and an infinitesimal circle about z .<br />

28


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

Then, the integrals on the lines between γ and the circle have<br />

opposite signs and cancel each other.<br />

The integral over the circle has a negative sign because its<br />

direction is clockwise, and by Cauchy Integral Theorem,<br />

Therefore,<br />

f () ζ f () ζ<br />

dζ − dζ<br />

= 0<br />

ζ −z ζ −z<br />

∫ ∫<br />

.<br />

γ ζ−<br />

z = dr<br />

f () ζ f () ζ<br />

dζ =<br />

dζ<br />

ζ −z ζ −z<br />

∫ ∫<br />

γ ζ−<br />

z = dr<br />

1 1<br />

= 2 πi ∫<br />

f( ζ) dζ.<br />

2πi<br />

ζ − z<br />

ζ−<br />

z = dr <br />

δ ( ζ−z)<br />

Circle <br />

29<br />

f ( z)


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

11.<br />

Fourier Transform of<br />

δ()<br />

z<br />

The Fourier Transform of the hyper-complex function f () θ of a<br />

hyper-real variable θ is the Integration Sum<br />

θ=∞<br />

∑<br />

θ=−∞<br />

− ωθ<br />

i f () θ e dθ.<br />

i<br />

As θ varies, the exponential e spirals along its multi-plane<br />

ωθ −<br />

Riemann Surface. Such spiral, can be graphed by say<br />

ParametricPlot3D[{3 Cos[t],3 Sin[t],1/11 t},{t,-10 π,10 π}]<br />

2<br />

0<br />

-2<br />

-2<br />

-2<br />

ωθ<br />

0<br />

2<br />

0<br />

i<br />

The products f () θ e d − θ sum up to the Fourier Transform of f () θ .<br />

30<br />

2


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

f () θ may be complex valued, but so far, θ has been taken to be<br />

real. [Titchmarsh, p.42].<br />

For δ()<br />

z , the main branch vanishes anywhere except on the<br />

infinitesimal circle<br />

( ) i z dr e φ = ,<br />

and we define the Fourier Transform of the main branch of a<br />

hyper-complex <strong>Delta</strong> function by<br />

i z<br />

11.1 {()} z () z e ω −<br />

F δ = δ dz<br />

∫<br />

z = dr<br />

This suggests the choice of the infinitesimal circle path to define<br />

the Fourier Transform of the main branch of a hyper-complex f () z<br />

i z<br />

11.2 {()} f z f() z e ω −<br />

F<br />

∫<br />

= dz<br />

z = dr<br />

We define the Inverse Fourier Transform of the main branch of<br />

fˆ ( ω ) by<br />

11.3<br />

F<br />

{( ˆ )} ˆ iωz f ω = f( ω)<br />

e dω<br />

∫<br />

−1<br />

1<br />

2π<br />

ω = dr<br />

31


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

11.4 F {( δζ− z)}<br />

= 1<br />

Proof: Put<br />

Then,<br />

∫<br />

( ) i z dr e α<br />

ζ − =<br />

( ) i<br />

d i dr e d<br />

α<br />

ζ = α.<br />

( ) ( ) i<br />

−iωζ−z −iωdr<br />

e<br />

e = e<br />

i ( z)<br />

{( z)} ( z) e ωζ − −<br />

F δζ− = δζ− d ζ<br />

By 8.1,<br />

11.5<br />

ζ−<br />

z = dr<br />

i 1 i ( dr) e ... α<br />

= − ω +<br />

= 1 + infinitesimal<br />

1 1<br />

= dζ<br />

infinitesimal<br />

2πi<br />

∫<br />

+<br />

,<br />

ζ − z<br />

ζ−<br />

z = dr<br />

= 1 + infinitesimal .<br />

∫<br />

i ( z)<br />

( z) e ωζ−<br />

δζ− = dω<br />

1<br />

2π<br />

ω = dr<br />

Proof: the complex <strong>Delta</strong> is the inverse Transform of ˆ f ( ω ) = 1.<br />

32<br />

α


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

12.<br />

Fourier Integral Theorem for f () z<br />

12.1 Fourier Integral Theorem for f () z<br />

If f () z is the main branch of a hyper-complex function,<br />

Then, the <strong>Complex</strong> Fourier Integral Theorem holds.<br />

⎛ ⎞<br />

1 ⎜ ⎟<br />

−<br />

f () z = ⎜ f() ζ e ζ<br />

⎟<br />

2π<br />

∫ ⎜ ⎟<br />

⎜ ∫<br />

⎟<br />

⎜ ⎟<br />

ω = η⎜⎝ ζ− z = ε ⎠⎟<br />

iωζ izω<br />

d e dω<br />

Proof: By 9.1, f () z is the integration sum,<br />

∫<br />

f () z = f()( ζδz −ζ) dζ.<br />

ζ− z = ε<br />

Substituting from 11.4, ( z) 1<br />

2<br />

i ( z)<br />

e<br />

dr<br />

ωζ<br />

π<br />

−<br />

ω =<br />

∫<br />

δζ− = dω,<br />

we have<br />

⎛ ⎞<br />

1 ⎜ ⎟<br />

f () z = f() ζ ⎜ e dω ⎟<br />

e<br />

2π<br />

∫ ⎟<br />

⎜ ∫ ⎟<br />

⎜ ⎟<br />

ζ− z = ε ⎜⎝ ω = η ⎠⎟<br />

iωz −iωζ<br />

dζ.<br />

By changing the Summation order,<br />

⎛ ⎞<br />

1 ⎜ ⎟<br />

−iωζ<br />

izω<br />

f () z = ⎜ f() ζ e dζ ⎟<br />

e dω<br />

2π<br />

∫ ⎜ ⎟<br />

⎜ ∫<br />

⎟<br />

ω = η⎜ ⎟<br />

⎜⎝ ζ− z = ε ⎠⎟<br />

Therefore,<br />

.<br />

33


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

12.2 If f () z is the main branch of a hyper-complex function,<br />

Then,<br />

iωζ<br />

1) the hyper-complex integral f () ζ e d −<br />

∫ ζ converges to ˆ f ( ω )<br />

ζ− z = ε<br />

2) the hyper-complex integral 1 fˆ ( ω)<br />

e dω<br />

converges to f () z<br />

2<br />

Proof:<br />

∫<br />

π<br />

ω = η<br />

1) The <strong>Complex</strong> Fourier transform of the main branch of f () z ,<br />

∫<br />

ζ− z = ε<br />

−iωζ<br />

f () ζ e dζ,<br />

converges to a hyper-complex function ˆ f ( ω ) , some of its values<br />

may be infinite hyper-complex, like the complex <strong>Delta</strong> <strong>Function</strong>.<br />

2) The Inverse Fourier Transform of the main branch of ˆ f ( ω )<br />

1 ˆ iz<br />

f ( ) e d<br />

2<br />

ω<br />

∫ ω ω<br />

π<br />

ω = η<br />

izω<br />

converges to the hyper-complex function f () z .<br />

34


<strong>Gauge</strong> Institute Journal H. Vic Dannon<br />

References<br />

[Dan1] Dannon, H. Vic, “Well-Ordering of the Reals, Equality of all Infinities,<br />

and the Continuum Hypothesis” in <strong>Gauge</strong> Institute Journal Vol.6 No 2, May<br />

2010;<br />

[Dan2] Dannon, H. Vic, “Infinitesimals” in <strong>Gauge</strong> Institute Journal Vol.6 No<br />

4, November 2010;<br />

[Dan3] Dannon, H. Vic, “Infinitesimal Calculus” in <strong>Gauge</strong> Institute Journal<br />

Vol.7 No 4, November 2011;<br />

[Dan4] Dannon, H. Vic, “The <strong>Delta</strong> <strong>Function</strong>” in <strong>Gauge</strong> Institute Journal<br />

Vol.8 No 1, February 2012;<br />

[Dan5] Dannon, H. Vic, “Infinitesimal Vector Calculus” in <strong>Gauge</strong> Institute<br />

Journal<br />

[Dan6] Dannon, H. Vic, “<strong>Circular</strong> and Spherical <strong>Delta</strong> <strong>Function</strong>s” in <strong>Gauge</strong><br />

Institute Journal<br />

[Dan7] Dannon, H. Vic, “Infinitesimal <strong>Complex</strong> Calculus” in <strong>Gauge</strong> Institute<br />

Journal<br />

[Dan8] H. Vic Dannon, “<strong>Delta</strong> <strong>Function</strong>, the Fourier Transform, and Fourier<br />

Integral Theorem”, in <strong>Gauge</strong> Institute Journal Vol.8 No 2, May 2012.<br />

[Needham] Tristan Needham, “Visual <strong>Complex</strong> Analysis” Oxford U. Press,<br />

1998 (with corrections)<br />

[Titchmarsh] E. C. Titchmarsh “Introduction to the theory of Fourier<br />

Integrals”, Third Edition, Chelsea, 1986.<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!