25.03.2013 Views

In te rn a tio n a l E le ctro n ic J o u rn a l o f P u re a n d A p p lie d M ...

In te rn a tio n a l E le ctro n ic J o u rn a l o f P u re a n d A p p lie d M ...

In te rn a tio n a l E le ctro n ic J o u rn a l o f P u re a n d A p p lie d M ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s<br />

——————————————————————————————<br />

Volume 1 No. 3 2010, 235-242<br />

INTEGRAL SOLUTIONS TO HEUN’S DIFFERENTIAL<br />

EQUATION VIA SOME RATIONAL TRANSFORMATION<br />

A. Anjorin<br />

Department of Mathemat<strong>ic</strong>s<br />

Lagos Sta<strong>te</strong> University (LASU)<br />

P.O. Box 1087, Apapa Lagos, NIGERIA<br />

e-mail: anjomaths@yahoo.com<br />

Abstract: The p<strong>re</strong>sent work de<strong>te</strong>rmines the in<strong>te</strong>gral form of solu<strong>tio</strong>ns obtained<br />

from the transforma<strong>tio</strong>n of Heun’s equa<strong>tio</strong>n to hypergeometr<strong>ic</strong> equa<strong>tio</strong>n by ra<strong>tio</strong>nal<br />

substitu<strong>tio</strong>n. All <strong>re</strong><strong>le</strong>vant solu<strong>tio</strong>ns a<strong>re</strong> provided.<br />

AMS Subject Classif<strong>ic</strong>a<strong>tio</strong>n: 33Cxx<br />

Key Words: hypergeometr<strong>ic</strong> func<strong>tio</strong>ns, Heun’s func<strong>tio</strong>ns<br />

1. <strong>In</strong>troduc<strong>tio</strong>n<br />

The hypergeometr<strong>ic</strong> equa<strong>tio</strong>n has th<strong>re</strong>e <strong>re</strong>gular singular points. Heun’s equa<strong>tio</strong>n has<br />

four singular points. The prob<strong>le</strong>m of conversion from Heun’s equa<strong>tio</strong>n to hypergeometr<strong>ic</strong><br />

equa<strong>tio</strong>n has been t<strong>re</strong>a<strong>te</strong>d in the works of K. Kuiken [10]. The purpose of<br />

this work is to derive some in<strong>te</strong>gra<strong>te</strong>d forms of solu<strong>tio</strong>ns to the Heun’s equa<strong>tio</strong>n via<br />

some ra<strong>tio</strong>nal transforma<strong>tio</strong>n as sta<strong>te</strong>d in [10]. The s<strong>te</strong>ps taken will be the conversion<br />

of Heun’s func<strong>tio</strong>ns to the hypergeometr<strong>ic</strong> func<strong>tio</strong>ns then taken the in<strong>te</strong>gra<strong>tio</strong>n,<br />

and through a push and pull back process we arrive back to a new Heun’s func<strong>tio</strong>ns<br />

diffe<strong>re</strong>nt from the original Heun’s func<strong>tio</strong>n.<br />

Every homogenous linear second order diffe<strong>re</strong>ntial equa<strong>tio</strong>n with four <strong>re</strong>gular<br />

singularities can be transformed into (see [12])<br />

d2u +<br />

dt2 γ<br />

t<br />

δ ǫ<br />

+ +<br />

t − 1 t − d<br />

du<br />

dt +<br />

αβt − q<br />

u = 0, (1.1)<br />

t(t − 1)(t − d)<br />

whe<strong>re</strong> {α,β,γ,δ,ǫ,d,q} (d = 0,1) a<strong>re</strong> parame<strong>te</strong>rs, generally comp<strong>le</strong>x and arbitrary,<br />

linked by the Fuschian constraint α + β + 1 = γ + δ + ǫ. This equa<strong>tio</strong>n has four<br />

Received: March 27, 2010 c○ 2010 Academ<strong>ic</strong> Publ<strong>ic</strong>a<strong>tio</strong>ns


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

236 A. Anjorin<br />

<strong>re</strong>gular singular points at {0,1,a, ∞}, with the exponents of these singularities being<br />

<strong>re</strong>spectively, {0,1 −γ}, {0,1 −δ}, {0,1 −ǫ}, and {α,β}. The equa<strong>tio</strong>n (1.1) is cal<strong>le</strong>d<br />

Heun’s equa<strong>tio</strong>n (see [12]).<br />

The hypergeometr<strong>ic</strong> equa<strong>tio</strong>n (see [12])<br />

z(1 − z) d2y + [c − (a + b + 1)z]dy − aby = 0, (1.2)<br />

dz2 dz<br />

has th<strong>re</strong>e <strong>re</strong>gular singular points. <strong>In</strong> the works of [10], it has been shown that these<br />

two equa<strong>tio</strong>ns above can be transformed to one another via six ra<strong>tio</strong>nal polynomials<br />

z = R(t), whe<strong>re</strong> R(t) = t 2 ,1 − t 2 ,(t − 1) 2 ,2t − t 2 ,(2t − 1) 2 ,4t(1 − t). The following<br />

parame<strong>te</strong>r <strong>re</strong>la<strong>tio</strong>ns we<strong>re</strong> deduced [10].<br />

For the polynomial R(t) = t 2<br />

• α + β = 2(a + b), αβ = 4ab, γ = −1 + 2c, δ = 1 + a + b − c, ǫ = δ, q = 0 and<br />

d = −1.<br />

For the polynomial R(t) = 1 − t 2<br />

• α + β = 2(a + b), αβ = 4ab, γ = 1 − 2c + 2a + 2b, δ = c, ǫ = δ = c, q = 0 and<br />

d = −1.<br />

For the polynomial R(t) = (t − 1) 2<br />

• α + β = 2(a + b), αβ = 4ab, γ = 1 + a + b − c, δ = −1 + 2c, ǫ = γ, q = 4ab<br />

and d = 2.<br />

For the polynomial R(t) = 2t − t 2<br />

• α + β = 2(a + b), αβ = 4ab, γ = c, δ = 1 − 2c + 2a + 2b, ǫ = δ = c, q = 4ab<br />

and d = 2.<br />

For the polynomial R(t) = (2t − 1) 2<br />

• α + β = 2(a + b), αβ = 4ab, γ = −1 + a + b − c, δ = γ, ǫ = δ = −1 + 2c,<br />

q = 2ab and d = 1/2.<br />

For the polynomial R(t) = 4t(1 − t)<br />

• α + β = 2(a + b), αβ = 4ab, γ = c, δ = γ, ǫ = 1 − 2c + 2a + 2b, q = 2ab and<br />

d = 1/2.<br />

Assuming H(d,q;α,β,γ,δ,ǫ;t) and 2F1(a,b;c;z = R(t)) a<strong>re</strong> <strong>re</strong>p<strong>re</strong>sentative forms<br />

of the solu<strong>tio</strong>ns of (1.1) and (1.2) <strong>re</strong>spectively, toghether with the paramet<strong>re</strong>s above<br />

<strong>re</strong>la<strong>tio</strong>ns can de established between these two forms via the polynomials data given<br />

above. We provide an answer to this in the <strong>re</strong>sent paper. <strong>In</strong>deed, we provide that<br />

the in<strong>te</strong>gral of the solu<strong>tio</strong>n of GHE can be exp<strong>re</strong>ssed in <strong>te</strong>rms of another GHE<br />

solu<strong>tio</strong>n.


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

INTEGRAL SOLUTIONS TO HEUN’S DIFFERENTIAL... 237<br />

2. Main Results: <strong>In</strong><strong>te</strong>gral Solu<strong>tio</strong>ns<br />

<strong>In</strong> this sec<strong>tio</strong>n we shall apply the <strong>re</strong>la<strong>tio</strong>ns above in deriving the in<strong>te</strong>gral form of<br />

solu<strong>tio</strong>ns via these polynomial transforma<strong>tio</strong>ns. Let I = <br />

be an in<strong>te</strong>gral operator<br />

defined over a compact in<strong>te</strong>rval C. Since (a)n−1 = (a−1)n<br />

a−1<br />

C<br />

, we have<br />

I2F1(a,b;c;z = R(t)) = R∗ (t)(c − 1)<br />

(a − 1)(b − 1) 2F1(a − 1,b − 1;c − 1;z = R(t)),<br />

whe<strong>re</strong> R ∗ (t) is a polynomial factor derived from the in<strong>te</strong>grand and through a push<br />

and pull-back processes we have the following possib<strong>le</strong> solu<strong>tio</strong>ns;<br />

1. For polynomial R(t) = t 2 :<br />

(a) Using c = (γ + 1)/2, we obtain<br />

IH(−1,0;α,β,γ,δ,ǫ;t)<br />

=<br />

2(γ − 1)t 3<br />

3(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;<br />

2<br />

γ − 1<br />

;R(t) = t<br />

2<br />

2 )|C<br />

2(γ − 1)t<br />

=<br />

3<br />

H(−1,0;α − 2,β − 2,γ − 2,<br />

3(α − 2)(β − 2)<br />

α + β − γ − 1<br />

,<br />

2<br />

α + β − γ − 1<br />

;t))|C. (2.1)<br />

2<br />

(b) Using c = 1 − δ + a + b, we get<br />

IH(−1,0;α,β,γ,δ,ǫ;t)<br />

= 4(α + β − 2δ)t3<br />

3(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;α + β − 2δ;R(t) = t<br />

2<br />

2 )|C<br />

= 4(α + β − 2δ)t3<br />

× H(−1,0;α − 2,β − 2,2(α + β − 2δ) − 1,<br />

3(α − 2)(β − 2)<br />

4δ − (α + β) − 2<br />

,<br />

2<br />

4δ − (α + β) − 2<br />

;t))|C. (2.2)<br />

2<br />

2. For polynomial R(t) = 1 − t 2 :<br />

(a) Using c = δ, we have<br />

IH(−1,0;α,β,γ,δ,ǫ;t)<br />

= 4(δ − 1)(3t − t3 )<br />

3(α − 2)(β − 2)<br />

= 4(δ − 1)(3t − t3 )<br />

3(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;δ − 1;R(t) = 1 − t<br />

2<br />

2 )|C<br />

× H(−1,0;α − 2,β − 2,α + β − 2δ − 1,δ − 1,δ − 1;t))|C. (2.3)


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

238 A. Anjorin<br />

(b) Using c = ǫ, we have<br />

IH(−1,0;α,β,γ,δ,ǫ;t)<br />

= 4(ǫ − 1)(3t − t3 )<br />

3(α − 2)(β − 2)<br />

= 4(ǫ − 1)(3t − t3 )<br />

3(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;ǫ − 1;R(t) = 1 − t<br />

2<br />

2 )|C<br />

× H(−1,0;α − 2,β − 2,α + β − 2ǫ − 1,ǫ − 1,ǫ − 1;t))|C. (2.4)<br />

(c) Using c = (1 − γ + 2a + 2b)/2, we arrive at<br />

IH(−1,0;α,β,γ,δ,ǫ;t)<br />

= 2(α + β − γ − 1)(3t − t3 )<br />

2F1(<br />

3(α − 2)(β − 2)<br />

= 2(α + β − γ − 1)(3t − t3 )<br />

3(α − 2)(β − 2)<br />

× H(−1,0;α − 2,β − 2,γ − 2,<br />

3. For polynomial R(t) = 2t − t 2 :<br />

β − 2<br />

,<br />

2<br />

α − 2<br />

(a) Using c = (δ + 1)/2, we obtain<br />

IH(2,αβ; α,β,γ,δ,ǫ;t)<br />

= 2(δ − 1)t2 (3 − t 2 )<br />

3(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;<br />

2<br />

α + β − γ − 1<br />

α + β − γ − 1<br />

,<br />

2<br />

α + β − γ − 1<br />

;R(t) = 1 − t<br />

2<br />

2 )|C<br />

;t)|C.<br />

2<br />

;<br />

2<br />

δ − 1<br />

2 ;R(t) = 2t − t2 )|C<br />

(2.5)<br />

= 2(δ − 1)t2 (3 − t2 )<br />

α + β − δ − 1<br />

H(2,(α − 2)(β − 2);α − 2,β − 2, ,δ − 2,<br />

3(α − 2)(β − 2) 2<br />

α + β − δ − 1<br />

;t)|C. (2.6)<br />

2<br />

(b) Using c = 1 + a + b − γ, we get<br />

IH(2,αβ; β,α,γ,δ,ǫ;t)<br />

= 2(α + β − 2γ)t2 (3 − t2 )<br />

2F1(<br />

3(α − 2)(β − 2)<br />

β − 2<br />

,<br />

2<br />

α − 2<br />

;γ + 1;R(t) = 2t − t<br />

2<br />

2 )|C<br />

= 2(α + β − 2γ)t2 (3 − t2 )<br />

γ − 2<br />

H(2,(α − 2)(β − 2);α − 2,β − 2, ,<br />

3(α − 2)(β − 2)<br />

2<br />

γ − 2<br />

α + β − γ − 1, ;t))|C. (2.7)<br />

2


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

INTEGRAL SOLUTIONS TO HEUN’S DIFFERENTIAL... 239<br />

4. For polynomial R(t) = (t − 1) 2<br />

(a) Using c = (1 − δ + 2a + 2b)/2, we get<br />

IH(2,αβ,α,β,γ,δ,ǫ;t)<br />

= 2(α + β − δ − 1)(t − 1)3<br />

2F1(<br />

3(α − 2)(β − 2)<br />

= 2(α + β − δ − 1)(t − 1)3<br />

3(α − 2)(β − 2)<br />

β − 2<br />

,<br />

2<br />

α − 2<br />

× H(2,(α − 2)(β − 2);α − 2,β − 2,<br />

;<br />

2<br />

α + β − δ − 1<br />

;R(t) = (t − 1)<br />

2<br />

2 )|C<br />

α + β − δ − 1<br />

,<br />

2<br />

α + β − δ − 1<br />

,<br />

2<br />

α + β − δ − 1<br />

;t))|C. (2.8)<br />

2<br />

(b) Using c = γ, we have<br />

IH(2,αβ;α,β,γ,δ,ǫ;t)<br />

= 2(γ − 1)(t − 1)3 β − 2<br />

2F1( ,<br />

3(α − 2)(β − 2) 2<br />

α − 2<br />

;γ − 1;R(t) = (t − 1)<br />

2<br />

2 )|C<br />

= 2(γ − 1)<br />

H(2,(α − 2)(β − 2);α − 2,β − 2,γ − 1,<br />

(α − 2)(β − 2)<br />

α + β − 2γ − 1,α + β − 2γ − 1;t))|C. (2.9)<br />

(c) By changing γ to ǫ in (2.9), similar <strong>re</strong>la<strong>tio</strong>n can be obtained.<br />

5. For polynomial R(t) = (2t − 1) 2<br />

(a) Using c = (ǫ + 1)/2 = (δ + 1)/2<br />

IH(1/2,αβ/2;α,β,γ,δ,ǫ; t)<br />

= 2(ǫ − 1)(2t − 1)3<br />

6(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;<br />

2<br />

ǫ − 1<br />

2 ;R(t) = (2t − 1)2 )|C<br />

= 2(ǫ − 1)(2t − 1)3 (α − 2)(β − 2) α + β − ǫ − 5<br />

H(1/2, ;α − 2,β − 2, ,<br />

6(α − 2)(β − 2) 2<br />

2<br />

α + β − ǫ − 5<br />

,ǫ − 2;t)|C. (2.10)<br />

2<br />

By changing ǫ to δ a similar exp<strong>re</strong>ssion can be obtained.<br />

(b) Using c = −1 + a + b − γ, we obtain<br />

IH(1/2,αβ/2;α,β,γ,δ,ǫ; t)<br />

= 2(α + β − 2(γ + 2))(2t − 1)3<br />

6(α − 2)(β − 2)


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

240 A. Anjorin<br />

= 2(α + β − 2(γ + 2))(2t − 1)3<br />

β − 2<br />

× 2F1( ,<br />

2<br />

α − 2<br />

;<br />

2<br />

α + β − 2γ − 4<br />

;R(t) = (2t − 1)<br />

2<br />

2 )|C<br />

(α + 2)(β + 2)<br />

H(1/2, ;α − 2,<br />

6(α − 2)(β − 2)<br />

2<br />

6. For polynomial R(t) = 4t(1 − t):<br />

(a) Using c = γ, we have<br />

(b)<br />

β − 2,γ − 1,γ − 1,α + β − 2γ − 5;t)|C. (2.11)<br />

IH(1/2,αβ/2;β,α,γ,δ, ǫ,;t)<br />

= 4(γ − 1)2t2 (3 − 2t)<br />

2F1(<br />

3(α − 2)(β − 2)<br />

= 4(γ − 1)2t2 (3 − 2t)<br />

3(α − 2)(β − 2)<br />

β − 2<br />

,<br />

2<br />

α − 2<br />

;γ − 1;R(t) = 4t(1 − t))|C<br />

2<br />

(α − 2)(β − 2)<br />

H(1/2, ;α − 2,β − 2,<br />

2<br />

γ − 1,γ − 1,α + β − 2γ − 1;t)|C. (2.12)<br />

IH(1/2,αβ/2;β,α,γ, δ, ǫ,;t)<br />

= 4(δ − 1)2t2 (3 − 2t)<br />

2F1(<br />

3(α − 2)(β − 2)<br />

= 4(δ − 1)2t2 (3 − 2t)<br />

3(α − 2)(β − 2)<br />

β − 2<br />

,<br />

2<br />

α − 2<br />

;δ − 1;R(t) = 4t(1 − t))|C<br />

2<br />

(α − 2)(β − 2)<br />

H(1/2, ;α − 2,β − 2,<br />

2<br />

δ − 1,δ − 1,α + β − 2δ − 1;t)|C. (2.13)<br />

(c) Using c = (1 − ǫ + 2a + 2b)/2<br />

IH(1/2,αβ/2;α,β,γ,δ,ǫ,;t)<br />

= 2(α + β − ǫ − 1)2t2 (3 − 2t)<br />

3(α − 2)(β − 2)<br />

β − 2<br />

2F1( ,<br />

2<br />

α − 2<br />

;<br />

2<br />

α + β − ǫ − 1<br />

;R(t) = 4t(1 − t))|C<br />

2<br />

= 2(α + β − ǫ − 1)2t2 (3 − 2t) (β − 2)(α − 2)<br />

H(1/2, ;α − 2,β − 2,<br />

3(α − 2)(β − 2)<br />

2<br />

α + β − ǫ − 1<br />

,<br />

2<br />

α + β − ǫ − 1<br />

,ǫ − 2;t)|C. (2.14)<br />

2


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

INTEGRAL SOLUTIONS TO HEUN’S DIFFERENTIAL... 241<br />

3. Concluding Remarks and Sugges<strong>tio</strong>ns<br />

<strong>In</strong> this paper, we have shown that the parame<strong>te</strong>r <strong>re</strong>la<strong>tio</strong>ns obtained in the works<br />

of K. Kuiken [10] <strong>le</strong>ad to some in<strong>te</strong>gral forms of solu<strong>tio</strong>ns to the general Heun’s<br />

equa<strong>tio</strong>n. The multip<strong>le</strong> choise of close form solu<strong>tio</strong>ns arises from the papame<strong>te</strong>r<br />

<strong>re</strong>la<strong>tio</strong>ns. For examp<strong>le</strong>, consider the quadrat<strong>ic</strong> equa<strong>tio</strong>n arising from the <strong>re</strong>la<strong>tio</strong>ns<br />

α + β = 2(a + b) and αβ = 4ab <strong>le</strong>ads to the parame<strong>te</strong>r choise a = β/2 and b = α/2<br />

or a = α/2 and b = β/2. The first <strong>le</strong>ads to all the <strong>re</strong>la<strong>tio</strong>ns above whi<strong>le</strong> the la<strong>te</strong>r<br />

<strong>re</strong>pea<strong>te</strong>s all the <strong>re</strong>la<strong>tio</strong>ns described above by changing α to β. This method has<br />

being ex<strong>te</strong>nded in the works [8] and the work of Robert Maier [11], pp. 15.<br />

Refe<strong>re</strong>nces<br />

[1] A. Ambramowitz, J.A. S<strong>te</strong>gun, Handbook of Mathemat<strong>ic</strong>al Func<strong>tio</strong>ns, New<br />

York, Dover (1965).<br />

[2] R.K. Bhadari, A. Kha<strong>re</strong>, J. Law, M.V.N. Murthy, D. Sen, J. Phys. A: Math.<br />

Gen., 30 (1997), 2557.<br />

[3] E.S. Cheb-Terrab, New closed form solu<strong>tio</strong>ns in <strong>te</strong>rms of pFq for fami<strong>lie</strong>s of<br />

the general, confluent and b<strong>ic</strong>onfluent Heun diffe<strong>re</strong>ntial equa<strong>tio</strong>ns, J. Phys. A:<br />

Math Gen., 37 (2004), 9923.<br />

[4] N.H. Christ, T.D. Lee, Phys. Rev. D 12, (1975), 1606; D.P. Jatker, C.N. Kumar,<br />

A. Kha<strong>re</strong>, Phys. Lett. A 142, (1989), 200; A. Kha<strong>re</strong>, B.P. Mandal, Phys. Lett.<br />

A, 239 (1998), 197.<br />

[5] A. Decar<strong>re</strong>au, M.C.I. Dumont-Lepage, P. Maroni, A. Robert, A. Ronveaux,<br />

Formes canoniques des équa<strong>tio</strong>ns confluen<strong>te</strong>s de l’qua<strong>tio</strong>n de Heun, Ann. Soc.<br />

Sci. Bruxel<strong>le</strong>s, 92, No-s: I-II (1978), 151-189.<br />

[6] P. Do<strong>re</strong>y, J. Suzuki, R. Ta<strong>te</strong>o, J. Phys. A, 37 (2004), 2047.<br />

[7] H. Exton, A new solu<strong>tio</strong>n of the b<strong>ic</strong>onfluent Heun equa<strong>tio</strong>n, Rend<strong>ic</strong>onti di Mathemat<strong>ic</strong>a<br />

Serie VII, 18 (1998), 615.<br />

[8] M.N. Hounkonnou, A. Ronveaux, A. Anjorin, Derivative of Heun’s equa<strong>tio</strong>n<br />

from some properties of hypergeometr<strong>ic</strong> func<strong>tio</strong>n, <strong>In</strong>: Proceeding of <strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal<br />

Workshop on Geometry and Phys<strong>ic</strong>s, Marseil<strong>le</strong>, France (2007).<br />

[9] A. Ishkhanyan, K-A. Souminen, New solu<strong>tio</strong>ns of Heun general equa<strong>tio</strong>n, J.<br />

Phys. A: Math. Gen., 36 (2003), L81-L85.<br />

[10] K. Kuiken, Heun’s equa<strong>tio</strong>ns and the hypergeometr<strong>ic</strong> equa<strong>tio</strong>ns, SIAM J. Math.<br />

Anal., 10, No. 3 (1979), 655-657.


<strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal E<strong>le</strong><strong>ctro</strong>n<strong>ic</strong> Jou<strong>rn</strong>al of Pu<strong>re</strong> and App<strong>lie</strong>d Mathemat<strong>ic</strong>s – IEJPAM, Volume 1, No. 3 (2010)<br />

242 A. Anjorin<br />

[11] R.S. Maier, Heun-to-hypergeometr<strong>ic</strong> transforma<strong>tio</strong>ns, Contribu<strong>tio</strong>n to<br />

Confe<strong>re</strong>nce of Founda<strong>tio</strong>ns of Computa<strong>tio</strong>nal Mathemat<strong>ic</strong>s, 02 (2002);<br />

http://www.math.umn.edu/∼focm/c−/Maier.pdf<br />

[12] A. Ronveaux, Heun Diffe<strong>re</strong>ntial Equa<strong>tio</strong>n, Oxford University P<strong>re</strong>ss, Oxford<br />

(1995).<br />

[13] A. Ronveaux, Factorisa<strong>tio</strong>n of Heun diffe<strong>re</strong>ntial operator, J. App. Math. Comp.,<br />

141 (2003), 177-184.<br />

[14] A.O. Smirinov, Ellipt<strong>ic</strong> solu<strong>tio</strong>ns and Heun equa<strong>tio</strong>ns, <strong>In</strong>: C.R.M. Proceedings<br />

and Lectu<strong>re</strong> No<strong>te</strong>s, 32 (2002), 287.<br />

[15] M. Suzuki, E. Takasugi, H. Umetsu, Prog. Theor. Phys., 100 (1998), 491.<br />

[16] K. Takemura, Commun. Math. Phys., 235 (2003), 467; J. Nonlinear Math.<br />

Phys., 11 (2004), 21.<br />

[17] G. Val<strong>le</strong>nt, <strong>In</strong><strong>te</strong><strong>rn</strong>a<strong>tio</strong>nal Confe<strong>re</strong>nce on Diffe<strong>re</strong>ntial Equa<strong>tio</strong>ns, Special Func<strong>tio</strong>ns<br />

and Appl<strong>ic</strong>a<strong>tio</strong>ns, Mun<strong>ic</strong>h (2005).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!