26.03.2013 Views

On the Schwinger limit attainability with extreme power lasers

On the Schwinger limit attainability with extreme power lasers

On the Schwinger limit attainability with extreme power lasers

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>On</strong> <strong>the</strong> <strong>Schwinger</strong> <strong>limit</strong> <strong>attainability</strong><br />

<strong>with</strong> <strong>extreme</strong> <strong>power</strong> <strong>lasers</strong><br />

Sergey V. Bulanov<br />

Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215, Japan


Acknowledgment<br />

T.Esirkepov, Y.Hayashi, M.Kando, H.Kiriyama, J.Koga, K.Kondo, H.Kotaki, A.S.Pirozhkov<br />

Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215, Japan<br />

Y.Kato<br />

The Graduate School for <strong>the</strong> Creation of New Photonics Industries, Hamamatsu, Japan<br />

S.S.Bulanov<br />

University of California, Berkeley, CA 94720, USA<br />

A.G.R.Tomas<br />

University of Michigan, Centre of Ultrafast Optical Sciences, Ann Arbor, MI 48109, USA<br />

G.Korn<br />

Max Plank Institute of Quantum Optics, Garching, Germany<br />

A.G.Zhidkov<br />

Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan


Preface<br />

The critical electric field of quantum electrodynamics, called also <strong>the</strong> <strong>Schwinger</strong> field, is so<br />

strong that it produces electron-positron pairs from vacuum, converting <strong>the</strong> energy of light<br />

into matter. Since <strong>the</strong> dawn of quantum electrodynamics <strong>the</strong>re has been a dream on how to<br />

reach it on Earth. With <strong>the</strong> rise of <strong>the</strong> laser technologies this field becomes feasible through<br />

construction of <strong>extreme</strong> <strong>power</strong> <strong>lasers</strong> or <strong>with</strong> <strong>the</strong> sophisticated usage of nonlinear processes<br />

in relativistic plasmas.<br />

Recently <strong>the</strong>re were raised doubts on whe<strong>the</strong>r or not <strong>the</strong> <strong>Schwinger</strong> field can be reached<br />

<strong>with</strong> <strong>lasers</strong>. It was claimed that <strong>the</strong> laser <strong>with</strong> intensity well below <strong>the</strong> <strong>Schwinger</strong> <strong>limit</strong> creates<br />

an avalanche of electron-positron pairs similar to a discharge, and <strong>the</strong> focused laser pulse<br />

exhausts its energy before attaining <strong>the</strong> <strong>Schwinger</strong> field. This reasoning weakens one of <strong>the</strong><br />

most attractive motivations for <strong>extreme</strong> <strong>power</strong> laser development, i.e. producing matter from<br />

vacuum by pure light in fundamental process of quantum electrodynamics in <strong>the</strong><br />

nonperturbative regime.<br />

•A. R. Bell and J. G. Kirk, “Possibility of Prolific Pair Production <strong>with</strong> High-Power Lasers ” Phys. Rev. Lett. 101, 200403 (2008)<br />

•A. M. Fedotov, N. B. Narozhny, G. Mourou, G. Korn, “Limitations on <strong>the</strong> Attainable Intensity of High Power Lasers” Phys. Rev. Lett. 105, 080402 (2010)


Introduction<br />

Outline<br />

What is better, circular or linear table top accelerators,<br />

for reaching <strong>the</strong> quantum <strong>limit</strong>s?<br />

Towards antimatter creation in vacuum in experiments<br />

<strong>with</strong> present day <strong>lasers</strong><br />

Conclusion


Introduction


e - - e + pairs created in <strong>the</strong> trident type process<br />

• e - - e + generation in laser-solid target interaction<br />

(trident mechanism of <strong>the</strong> e - - e + pair generation)<br />

C.Gahn, et al., Phys. Plasmas 9, 987 (2002)<br />

H.Chen, et al., Phys. Plasmas 16, 122702 (2009)<br />

H.Chen, et al., Phys. Rev. Lett. 105, 015003 (2010)<br />

28<br />

<br />

<br />

e N e<br />

e e<br />

2 2<br />

re( Z)<br />

ln 1<br />

<br />

27<br />

mc e<br />

r e / m c , e / c<br />

1/137<br />

2 2 2<br />

e e<br />

p <br />

<br />

2


Breit-Wheeler process of e - - e + <br />

generation 'e e <strong>with</strong><br />

if<br />

' e mc <br />

2 2 4<br />

Multiphoton inverse Compton<br />

&<br />

Multiphoton B-W processes<br />

50 GeV<br />

Breit-Wheeler process of e - - e + generation<br />

30GeV<br />

G. Breit, J. A. Wheeler, Phys. Rev. 46, 1087 (1934)<br />

D. L. Burke, et al., Phys. Rev. Lett. 79, 1627 (1997)<br />

e N <br />

e<br />

<br />

0<br />

<br />

N e e<br />

<br />

1.6 ps a0 0.3<br />

0<br />

<br />

( E/ E ) 0.3<br />

e S e<br />

<br />

r<br />

<br />

ee<br />

2<br />

( E / ES)( / mec) 0.15<br />

2 2<br />

e


“<strong>Schwinger</strong>” mechanism of e - - e + pair creation<br />

The energy is plotted against <strong>the</strong> momentum and<br />

coordinate (<strong>the</strong> electric field is parallel z-axis). The<br />

solution to <strong>the</strong> Dirac equation shows that <strong>the</strong> -<br />

function is large only in <strong>the</strong> regions I and III. In <strong>the</strong><br />

region II, it decreases exponentially. Therefore <strong>the</strong><br />

transmission coefficient through region II, which gives<br />

<strong>the</strong> pair creation probability, has <strong>the</strong> order of<br />

2 3<br />

magnitude exp m c / | e | E<br />

.<br />

<br />

e<br />

Quasiclassical regime ( F. Sauter, 1931)<br />

2 z2 mec<br />

/ eE <br />

<br />

2<br />

w Aexp <br />

| p( z) | dz<br />

<br />

<br />

<br />

z m<br />

c / eE <br />

1<br />

2<br />

e<br />

2 3 1<br />

4mc<br />

<br />

e<br />

2 <br />

Aexp <br />

<br />

1 d<br />

<br />

| e | E<br />

<br />

<br />

ES<br />

<br />

exp<br />

<br />

<br />

E <br />

w<br />

0<br />

Probability<br />

( W.Heisenberg, H.Euler, 193 6)<br />

2<br />

1 2 3<br />

2 3<br />

| e | E mec mec mec<br />

<br />

<br />

exp<br />

3 <br />

<br />

2 3<br />

4<br />

<br />

<br />

m c<br />

<br />

<br />

| e | E<br />

<br />

<br />

e


We reach a <strong>limit</strong> when <strong>the</strong> nonlinear QED <strong>with</strong> <strong>the</strong> electron-positron pair creation in <strong>the</strong><br />

vacuum comes into play, at <strong>the</strong> “<strong>Schwinger</strong> electric field”, which corresponds to so strong<br />

electric field that it starts to create <strong>the</strong> electron-positron pairs at <strong>the</strong> Compton length<br />

/ mc <br />

C e<br />

, i.e.<br />

2 3 2<br />

e e<br />

It corresponds to <strong>the</strong> intensity410<br />

W / cm<br />

O. Klein (1929)<br />

N. Bohr (1931)<br />

F. Sauter (1931)<br />

W.Heisenberg, H.Euler (1936)<br />

J. <strong>Schwinger</strong> (1951)<br />

E.Brezin, C.Itzykson (1970)<br />

V. S. Popov (1971)<br />

V.I.Ritus (1979)<br />

A. Ringwald (2001)<br />

Upper Limit on <strong>the</strong> EM wave amplitude<br />

E<br />

S<br />

m c m c<br />

<br />

e e<br />

29 2<br />

C<br />

V. S. Popov, Phys. Lett. A 298, 83 (2002)<br />

N. B. Narozhny et al., Phys. Lett. A 330, 1 (2004)<br />

S. S. Bulanov et al., Phys. Rev E 71, 016404 (2005)<br />

S. S. Bulanov et al., JETP, 102, 9 (2006)<br />

A. Di Piazza et al., Phys. Rev. Lett. 103, 170403 (2009)<br />

R. Schutzhold, Adv. Sci. Lett. 2, 121 (2009)<br />

G. V. Dunne et al., Phys. Rev. D 80, 111301(R) (2009)<br />

C. K. Dumlu, G. V. Dunne, Phys. Rev. Lett. 104, 250402 (2010)<br />

R. Ruffini et al., Phys. Rep. 487, 1 (2010)


2 2 2<br />

E B F F F<br />

*<br />

F inv, G ( EB) inv<br />

2 4 4<br />

2 2 2 2<br />

E F G F, B F G F<br />

are <strong>the</strong> electric and magnetic fields in <strong>the</strong> frame where <strong>the</strong>y are parallel<br />

W<br />

<br />

ee<br />

for e 0probability W 0<br />

2 2<br />

eES<br />

b <br />

ebcoth<br />

exp<br />

3 3 <br />

4<br />

c e e <br />

b = B/ E , e E/ E<br />

<br />

ee<br />

S S<br />

2 2<br />

eESchw<br />

2 <br />

at b 0 probability W <br />

e exp <br />

ee 2 3 <br />

4<br />

c e <br />

+ -<br />

The number<br />

of eepairs<br />

Dimensionless parameters<br />

c lxl ylz 4 <br />

N W dVdt<br />

exp<br />

e e e<br />

e e<br />

4 4 m 64<br />

C em


Laser Power to Achieve <strong>the</strong> <strong>Schwinger</strong> Field<br />

If <strong>the</strong> laser intensity approaches <strong>the</strong> <strong>Schwinger</strong> <strong>limit</strong><br />

being focused into <strong>the</strong> “lambda-cube” volume, <strong>the</strong> required <strong>power</strong> is<br />

Vacuum polarization <strong>with</strong> <strong>the</strong> cross-focusing due to nonlinear terms in <strong>the</strong> H-E Lagrangian<br />

<br />

becomes seen at i.e. at<br />

cr<br />

<br />

I 410 29 2<br />

W/cm<br />

2<br />

1 <br />

<br />

FF 5FF14FFFF 16 64<br />

<br />

2 2 2<br />

45<br />

cE<br />

24 S<br />

cr<br />

2.510 <br />

<br />

W<br />

4<br />

1μm <br />

2<br />

2 3<br />

2 3<br />

1 | e | E mecmec mc<br />

<br />

e<br />

w <br />

exp<br />

3 <br />

<br />

<br />

2 3<br />

<br />

4 mc<br />

<br />

| e| E<br />

<br />

<br />

Huge pre-exponential factor lowers <strong>the</strong> intensity (and <strong>power</strong>) at which <strong>the</strong> pairs occur<br />

e<br />

QED<br />

2<br />

21 <br />

cr<br />

10 <br />

<br />

<br />

W<br />

1μm <br />

<br />

2<br />

G. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)


The number of electron-positron pairs produced in<br />

<strong>the</strong> focus of a single pulse or two colliding pulses<br />

I, W/cm 2 E 0/E s N e , single<br />

pulse<br />

N e , two<br />

pulses<br />

2.5x10 26 4x10 -2 - 14<br />

5x10 26 5.7x10 -2 - 2.6x10 7<br />

5x10 27 0.18 25<br />

1x10 28 0.25 3x10 7<br />

S. S. Bulanov, N. B. Narozhny, V. D. Mur, V.S. Popov, JETP, 102, 9 (2006)


Multiple Colliding EM pulses:<br />

The scheme of<br />

interaction<br />

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, V. S. Popov, Phys. Rev. Lett. 104, 220404 (2010)<br />

A Way to Lower <strong>the</strong> Threshold<br />

of Pair Production from<br />

Vacuum<br />

N pulses N ± at W=10 kJ W(kJ)<br />

to produce one pair<br />

2 9.0 x 10 -19 40<br />

4 3.0 x 10 -9 20<br />

8 4.0 10<br />

16 1.8 x 10 3 8<br />

24 4.2 x 10 6 5.1


In <strong>the</strong> case of time - dependent field :<br />

2 2mc<br />

e<br />

Here K <strong>with</strong> K0<br />

<br />

K e<br />

<br />

0<br />

Nonadiabatic Pair Production<br />

2<br />

p|| p <br />

<br />

W <br />

exp g K b1Kb2K ee <br />

<br />

mecmec <br />

e <br />

<br />

In adiabatic regime (tunneling), 1, <br />

8 2 4<br />

2 2 2<br />

K K K<br />

K g K 1 , b1K, b2K1<br />

4<br />

In nonadiabatic<br />

regime (multiphoton), K 1, g K <br />

K<br />

1 <br />

<br />

1ln 0.386 ,<br />

2 K <br />

8<br />

K <br />

<br />

2<br />

b1K <br />

ln K<br />

2<br />

0.386 , b2K<br />

<br />

ln K 1.39<br />

K K<br />

5/ 2<br />

<br />

4 2K0<br />

1 mc e <br />

4<br />

K <br />

The probability W <br />

w<br />

ee n 3/ 2 3 2 V. S. Popov, “Tunnel and multiphoton<br />

nK 2 c m 0<br />

ec<br />

e ionization of atoms and ions in an intense<br />

laser field (Keldysh <strong>the</strong>ory)”<br />

Phys.-Usp. 47 855 (2004)


What is better, circular or linear table top accelerators,<br />

for reaching <strong>the</strong> quantum <strong>limit</strong>s?<br />

S. S. Bulanov, T. Zh. Esirkepov, A. G. R. Thomas, J. K. Koga, S. V. Bulanov,<br />

“<strong>On</strong> <strong>the</strong> <strong>Schwinger</strong> <strong>limit</strong> <strong>attainability</strong> <strong>with</strong> <strong>extreme</strong> <strong>power</strong> <strong>lasers</strong>”<br />

Phys. Rev. Lett. 105, 220407 (2010)


Electromagnetic cascades induced by pairs<br />

2<br />

<br />

e F p E E<br />

1<br />

n n<br />

<br />

m c E 4e<br />

e 3 4<br />

e<br />

e S<br />

I 2.510 W / cm<br />

26 2<br />

0<br />

D.L.Burke et al., PRL 79, 1626 (1997)<br />

0.3, 0.15<br />

e <br />

+<br />

e<br />

•W.Heisenberg, H.Euler (1936)<br />

•N. B. Narozhny, “Extreme Power Photonics: New Phenomena” ISTC-ELI/HiPER/PETAL Workshop, 2008<br />

•A. R. Bell and J. G. Kirk, “Possibility of Prolific Pair Production <strong>with</strong> High-Power Lasers ” Phys. Rev. Lett. 101, 200403 (2008)<br />

•A. M. Fedotov, N. B. Narozhny, G. Mourou, G. Korn, “Limitations on <strong>the</strong> Attainable Intensity of High Power Lasers” Phys. Rev. Lett. 105, 080402 (2010)<br />

-<br />

e<br />

-<br />

e<br />

-<br />

e


e - - e + , -ray plasma<br />

generation via <strong>the</strong> multi-photon B-W process<br />

Key dimensionless Lorentz invariant parameters are<br />

<br />

<br />

<br />

e A eE<br />

a <br />

m cmc 2<br />

e e<br />

e e <br />

F<br />

3<br />

p<br />

4<br />

2<br />

<br />

<br />

e<br />

E<br />

<br />

2<br />

p B <br />

p E<br />

2<br />

<br />

<br />

E p<br />

e S e S e S S e<br />

<br />

m c E m cE m cE E m c<br />

2<br />

e F k<br />

2<br />

2<br />

0 <br />

3 4<br />

mec 2 4<br />

mec 0 <br />

<br />

a <br />

Nee


Probability of pair creation<br />

2 2 3<br />

3/ 2<br />

3 e me c <br />

8 <br />

|| 3 for <br />

32 2 3<br />

<br />

<br />

W ( ) exp 1<br />

<br />

7<br />

2 2 3<br />

2/3<br />

27 (2 / 3) e m 3 e c <br />

<br />

|| <br />

5 3 for <br />

56 2<br />

W ( ) 1<br />

<br />

The number of absorbed laser photons:<br />

N a<br />

0 0<br />

Photon mean - free -path before <strong>the</strong> pair is created: lm..<br />

f p 220<br />

l<br />

<br />

0.2<br />

a a<br />

H. Reiss, J. Math. Phys. 3, 59 (1962)<br />

A. I. Nikishov, and V. I. Ritus, „Interaction of Electrons and Photons <strong>with</strong> a Very Strong Electromagnetic Field‟, Sov. Phys. Usp. 13, 303 (1970)<br />

V. I. Ritus, „Quantum Effects of <strong>the</strong> Interaction of Elementary Particles <strong>with</strong> an Intense Electromagnetic Field‟, Tr. Fiz. Inst. Akad. Nauk SSSR 111, 5 (1979)<br />

K. T. McDonald, “Fundamental Physics During Violent Acceleration”, AIP Conf. Proceed. 130, 23 (1985)


, 1at I 10<br />

e<br />

<br />

Avalanche<br />

1/ 4<br />

1/ 2<br />

2<br />

mecES <br />

0<br />

2 <br />

E mec 24<br />

2( E / E ) a<br />

e S<br />

W/cm<br />

<br />

+ -<br />

The number of e - e pairs grows exponentially :<br />

0<br />

N exp( t)<br />

"... even a single electron-positron<br />

pair<br />

created by a superstrong laser field<br />

in vacuum would cause development of an avalanchelike QED cascade which<br />

rapidly depletes <strong>the</strong> incoming laser pulse.<br />

... <strong>the</strong> electric field of <strong>the</strong> critical QED strength E S could never be created...<br />

...destruction of <strong>the</strong> laser pulse will take place much earlier than discussed..."<br />

A. M. Fedotov, N. B. Narozhny, G. Mourou, G. Korn, “Limitations on <strong>the</strong> Attainable Intensity of High Power Lasers” Phys. Rev. Lett. 105, 080402 (2010)<br />

2<br />

<br />

ee


Avalanche discharge as <strong>the</strong> Geiger Counter<br />

It can indicate on <strong>the</strong> <strong>Schwinger</strong> process provided <strong>the</strong> laser intensity required for <strong>the</strong><br />

avalanche is small enough, I*


Colliding EM Waves:<br />

Circularly Polarized v.s. Linearly Polarized<br />

Credit: T. Shintake<br />

<strong>power</strong> emitted by electron<br />

rotating in CP wave :<br />

2r<br />

P m c ( 1) <br />

3<br />

maximum frequency :<br />

e 2 2 2 4<br />

C, 0 e e e e<br />

0.29<br />

<br />

max 0<br />

3<br />

e<br />

<strong>power</strong> emitted by electron<br />

oscillating in LP wave :<br />

r<br />

P m c ( 1) <br />

3<br />

maximum frequency :<br />

e<br />

2 2 2<br />

L, 0 e e e<br />

2<br />

<br />

max 0<br />

2<br />

e


Radiation friction effects (LAD):<br />

Circularly Polarized v.s. Linearly Polarized<br />

energy balance<br />

a<br />

2 2 2 6<br />

0 e rad e<br />

0<br />

( 1)(1 ),<br />

1<br />

tan<br />

<br />

<br />

1/<br />

3<br />

rad<br />

3<br />

rad e<br />

radiation friction important at :<br />

a<br />

400, 23 2<br />

i.e. at I 4.510 W/cm<br />

quantum recoil important at :<br />

a ( m c / <br />

)<br />

e<br />

2 1/ 2<br />

0<br />

24 2<br />

i.e. at I 410 W/cm<br />

,<br />

energy balance<br />

mca= mc<br />

+ 2 -<br />

2 2<br />

0 e 0<br />

rad 0 e e<br />

= 2r/ 10<br />

rad<br />

a<br />

0<br />

2<br />

e<br />

1<br />

rad<br />

8<br />

radiation friction important at :<br />

i.e. at E m c e E<br />

2 4 3<br />

3 e / 3 137 S<br />

quantum recoil important at :<br />

mci.e. a mc/<br />

0. 21<br />

2 2<br />

m e e<br />

e<br />

i.e. at I 10<br />

29<br />

W/cm<br />

2<br />

0


Threshold for <strong>the</strong> e - - e + Avalanche:<br />

Circularly Polarized v.s. Linearly Polarized<br />

1/ 4<br />

<br />

E p<br />

<br />

E a <br />

sin 1,<br />

<br />

0<br />

e <br />

ES mec ES<br />

rad<br />

where<br />

0<br />

<strong>with</strong> a<br />

S<br />

I*<br />

610 3<br />

sin 1/<br />

rad e ,<br />

at a a 5.510 2 3<br />

rad S<br />

mc e 5.110 <br />

avalanche threshold :<br />

25<br />

0<br />

W/cm<br />

2<br />

5<br />

E<br />

e no any avalanches<br />

E<br />

INSTABILITY<br />

OF ELECTRON<br />

TRAJECTORY<br />

??!!<br />

S<br />

when particle velocity is parallel<br />

to its acceleration<br />

We must take into account<br />

small but finite magnetic<br />

field


The scheme of<br />

interaction<br />

S. S. Bulanov, V. D. Mur, N. B. Narozhny, J. Nees, V. S. Popov, Phys. Rev. Lett. 104, 220404 (2010)<br />

Multiple Colliding EM pulses<br />

Near <strong>the</strong> origine<br />

in <strong>the</strong> <strong>limit</strong> N<br />

E e a cos( t) e 0.1 a k r z cos( t)<br />

Be z 0 0 r 0<br />

2<br />

0 0<br />

a0 k0rsin( 0t)<br />

8<br />

pulse<br />

∞<br />

electric and magnetic field<br />

can be approximated<br />

in cylindrical coordinates as :


Bφ<br />

1<br />

0<br />

1<br />

F a<br />

TM /<br />

2<br />

3D EM configuration<br />

TM - mode<br />

The vector field shows r- and z-components of <strong>the</strong> poloidal electric field in <strong>the</strong> plane (r,z):<br />

The color density shows <strong>the</strong> toroidal magnetic field distribution B ( r, z)<br />

The first Poincare invariant<br />

2 2 2 2<br />

F / a ( E B<br />

) / 2a<br />

TM 0 0<br />

TM<br />

configuration :<br />

Magnetic field<br />

B(<br />

R,<br />

) <br />

e<br />

<br />

a sin( t) J ( k R) L (cos )<br />

0 0<br />

1/ 2<br />

8 R<br />

Electric fied l<br />

0<br />

B<br />

E ik <br />

n1/ 2 0<br />

l<br />

n<br />

E(<br />

rz , )


Eφ<br />

1<br />

0<br />

1<br />

3D EM configuration<br />

TE - mode<br />

F a<br />

TE /<br />

2<br />

The vector field shows r- and z-components of <strong>the</strong> poloidal magnetic field in <strong>the</strong> plane (r,z):<br />

The color density shows <strong>the</strong> toroidal electric field distribution, E ( r, z)<br />

The first Poincare invariant : c) 2 2 2 2<br />

F / a ( E B<br />

) / 2a<br />

TE 0 0<br />

TE configuration<br />

Electric field<br />

E(<br />

R,<br />

) <br />

e<br />

<br />

a sin( t) J ( k R) L (cos )<br />

0 0<br />

1/ 2<br />

8 R<br />

Magnetic field 0<br />

<br />

B ik E<br />

n1/ 2 0<br />

l<br />

n<br />

B(<br />

rz , )


Threshold for <strong>the</strong> e - - e + avalanche<br />

in 3D TM configuration<br />

- +<br />

INSTABILIT<br />

Y : e (e )trajectory in r, z - plane t 1, a 1<br />

p ( t) m c a t,<br />

z e<br />

0 0<br />

0 0<br />

a0k0r00t 0t<br />

pr( t) mec I 3/ 2 1 , 3/ 2 <br />

2 2 <br />

a0r0 0t a0r0 0t 0t 0t<br />

<br />

r( t) I 3/ 2 1 I 3/ 2 <br />

0 + I 3/ 2 2 3/ 2<br />

2 2 16<br />

<br />

2 2<br />

<br />

<br />

<strong>with</strong> kr<br />

(2. 5 a / a ) ; growth rate : = / 2<br />

0<br />

1/ 2 3/ 2<br />

0 S<br />

0<br />

a / a 0.105<br />

S<br />

27 2<br />

which corresponds to I*<br />

410W/cm 0<br />

0 0<br />

THRESHOLD<br />

: assuming t 0.1<br />

we find that <strong>the</strong> avalanche<br />

will start at


The pairs are created in a small 4-volume near <strong>the</strong> electric field maximum<br />

(maximum of F ) <strong>with</strong> <strong>the</strong> characteristic size<br />

TM<br />

Here normalized <strong>Schwinger</strong> field is<br />

5 a <br />

16 aS 3/ 2 4<br />

2 0 0<br />

0 0 0 5<br />

r z ct<br />

2<br />

mc e 5.110 <br />

Integrating over <strong>the</strong> 4-volume <strong>the</strong> probability of <strong>the</strong> pair creation<br />

we obtain <strong>the</strong> number of pairs produced per wave period,<br />

a<br />

S<br />

0<br />

3/ 2<br />

5 4 a S<br />

N W<br />

dVdt a 3 0 exp<br />

e e e e<br />

<br />

4<br />

a<br />

The first pairs can be observed for an one-micron wavelength laser intensity of <strong>the</strong> order of<br />

27 2<br />

10 W/cm , which corresponds to a0 / aS0.05 , i.e. a characteristic size, 0 ,<br />

Is approximately equal to<br />

r<br />

0.04<br />

0<br />

5<br />

2<br />

F a<br />

TM /<br />

0 <br />

2<br />

z0<br />

r0


Towards antimatter creation in vacuum<br />

by present day <strong>lasers</strong><br />

(experiments to conduct in next few years)<br />

S. V. Bulanov, T. Zh. Esirkepov, M. Kando, J. K. Koga, A. S. Pirozhkov, Y. Kato, S. S. Bulanov, G. Korn, A. G. Zhidkov<br />

“Extreme Field Limits in <strong>the</strong> Ultra-Relativistic Interaction of Electromagnetic Waves <strong>with</strong> Plasmas”<br />

Proceed. of XRL-2010 Conf.


Multi-photon creation of e - - e + , -ray plasma<br />

during ultrarelativistic electron beam collision<br />

<strong>with</strong> <strong>the</strong> EM pulse<br />

2 2 2 1/ 2 2 2 2 1/ 2<br />

E ( mecp0) | p0 | <br />

0 ( mecp0) | p0<br />

| <br />

e<br />

a<br />

,<br />

2<br />

E<br />

<br />

S mec <br />

mec <br />

mec <br />

<br />

The electron is not scattered aside by <strong>the</strong> PW, 30 fs laser ponderomotive force if<br />

eclasa/ 2w 500<br />

For 1mPW laser pulse focused to a few micron focus spot <strong>the</strong> amplitude is<br />

<br />

2<br />

a 10<br />

3<br />

<strong>the</strong> parameter e becomes equal to unity for 0 2.510, i.e. for <strong>the</strong> electron energy of<br />

about of 1.3 GeV.


Gamma-ray photon generation via<br />

<strong>the</strong> nonlinear Thomson scattering<br />

When a counter-propagating electron collides <strong>with</strong> <strong>the</strong> laser pulse its longitudinal momentum<br />

decreases:<br />

2<br />

a mec px | p0 | mec2221/<br />

2<br />

2[( m c p ) |<br />

p |]<br />

In <strong>the</strong> boosted frame of reference where <strong>the</strong> electron is at <strong>the</strong> rest <strong>the</strong> laser frequency is<br />

related to <strong>the</strong> laser frequency in <strong>the</strong> laboratory frame as<br />

0 1<br />

0<br />

0<br />

<br />

2<br />

1 a 1<br />

0<br />

The energy of emitted photon is<br />

The number of emitted photons during one wave period is<br />

e<br />

0.3 a<br />

<br />

0<br />

0 0<br />

3<br />

3<br />

Na 4<br />

J. Koga, T. Esirkepov, S. V. Bulanov, „Nonlinear Thomson scattering in <strong>the</strong> strong radiation damping regime‟, Phys. Plasmas 12, 093106, 2005<br />

Cross section of nonlinear<br />

Thomson scattering


What <strong>the</strong> values of e and for <strong>the</strong> parameters of<br />

JKAREN-PW + Microtron electrons are?<br />

We assume 1 PW, a=100 and 150 MeV electron energy (JAEA Microtron)<br />

&<br />

2 2 2 1/ 2<br />

0 ( mec p0 ) | p0<br />

| 02100300<br />

e a 2a<br />

<br />

2 2 e<br />

5<br />

mec <br />

mec <br />

0.12<br />

mec 5.110 The number of electrons colliding<br />

<strong>with</strong> <strong>the</strong> laser pulse is about 300.<br />

<br />

2<br />

2 4 2 2<br />

<br />

0 <br />

2 2<br />

0 1.2 (3)<br />

10 (10 )<br />

-3<br />

a 1.2<br />

2 2 2 e a 2 <br />

4 10<br />

11<br />

S e e e e 2.510 E<br />

<br />

E m c m c m c m c <br />

H. Kiriyama et al., Applied Optics, 49, 2105 (2010)


What <strong>the</strong> values of e and for <strong>the</strong> parameters of<br />

JKAREN-PW +LWFA electrons are?<br />

We assume 1 PW, a=150 and 1.25 GeV (LWFA ) electron energy:<br />

&<br />

2 2 2 1/ 2<br />

0 ( mec p0 ) | p0<br />

| 021502500<br />

e a 2a<br />

<br />

2 2 e<br />

5<br />

mec <br />

mec <br />

1.5<br />

mec 5.110 2<br />

2 6 2 2<br />

<br />

0 <br />

2 2<br />

<br />

0 1.2 (2.5) 10 (1.5 10<br />

)<br />

a 1.2<br />

2 2 2 e a 2 <br />

11<br />

S e e e e<br />

2.510 E<br />

0.4<br />

E m c m c m c mc The number of electrons colliding<br />

<strong>with</strong> <strong>the</strong> laser pulse is about 10 8 .


T. Tajima, J. M. Dawson (1979)<br />

Theory<br />

LWFA<br />

Experiment


What values of e and for <strong>the</strong> parameters<br />

of FM generated EM pulse +LWFA electrons are?<br />

We assume 1 PW, a=150, 1.25 GeV (LWFA ) electron energy, ph=5 (E=2 phE 0, =4 2 ph 0):<br />

2 2 2 1/ 2<br />

E ( mec p0) | p0 | E 2 150 2500<br />

e 2 e ph 10<br />

5<br />

E<br />

<br />

S mec <br />

15<br />

ES<br />

5.110 <br />

& (in multi-photon inverse Compton scattering regime)<br />

E <br />

1.2 5 10 2.510 3<br />

E m c m c<br />

The number of electrons colliding<br />

<strong>with</strong> <strong>the</strong> laser pulse is about 10 6 .<br />

2 3<br />

S e<br />

<br />

2 1.2 e pha<br />

e<br />

0<br />

2 5<br />

5.110


EM Pulse Intensification and Shortening by Flying Mirror<br />

cvph '' 4<br />

<br />

c-v ph<br />

2<br />

ph 0<br />

''<br />

2<br />

max 6 <br />

ph <br />

I0<br />

<br />

I D<br />

Theory<br />

paraboloidal relativistic mirrors formed by <strong>the</strong><br />

wake wave left behind <strong>the</strong> laser driver pulse<br />

S.V.Bulanov, T. Esirkepov, T. Tajima, Phys.Rev.Lett. 91, 085001 (2003)<br />

N x , 1/sr<br />

4x10 7<br />

3x10 7<br />

2x10 7<br />

1x10 7<br />

p<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0<br />

6 8 10 12 14<br />

Experiment<br />

, nm<br />

z, m<br />

20<br />

10<br />

0<br />

-10<br />

12 m<br />

-20<br />

-400 -200 0<br />

180 fs<br />

200 , fs s<br />

x = 14.3 nm<br />

Δ x = 0.3 nm, Δ x / x = 0.02<br />

Reflected pulse duration: x ~ 1.4 fs<br />

(femtosecond pulse)<br />

, arb. u.<br />

1.0<br />

M. Kando, et al., Phys. Rev. Lett. 99, 135001 (2007)<br />

A. S. Pirozhkov, et al., Phys. Plasmas 14, 080904 (2007)<br />

M. Kando, et al., Phys. Rev. Lett., 103, 235003 (2009)<br />

0.75<br />

0.50<br />

0.25<br />

0<br />

p


These estimations are too optimistic….<br />

What is <strong>the</strong> role of <strong>the</strong> radiation damping?


Radiation friction effects<br />

du 2e<br />

ds 3c<br />

<br />

2<br />

2<br />

mec <br />

eFu <br />

g<br />

The radiation friction force in <strong>the</strong> Landau-Lifshitz form is given by<br />

Retaining <strong>the</strong> main order terms, we obtain equation for <strong>the</strong> x-component of <strong>the</strong> electron<br />

momentum<br />

2<br />

dpx 2 px re<br />

rad0 a (2 t)<br />

, rad<br />

<br />

dt m c 3<br />

Its solution is<br />

<br />

2 <br />

2<br />

2e<br />

Fe g u u F F u F u F u u<br />

3 2 <br />

3mec <br />

x<br />

mec <br />

<br />

p (0) m c m c<br />

p ( t) , p ( t)<br />

<br />

x e e<br />

x t<br />

2<br />

mec rad0px(0) a (2t ') dt '<br />

0<br />

x<br />

t<br />

2<br />

rad0lasa0 L. D. Landau, and E. M. Lifshitz, The Classical Theory of Fields, Pergamon, 1975<br />

I. Pomeranchuk, “Maximum Energy that Primary Cosmic-ray Electrons Can Acquire on <strong>the</strong> Surface of <strong>the</strong> Earth as a Result of Radiation in <strong>the</strong> Earth's Magnetic<br />

Field”, J. Phys. USSR, 2, 65 – 69, 1940<br />

e


Numerical solution of <strong>the</strong> equations of <strong>the</strong> electron motion in <strong>the</strong><br />

laser field <strong>with</strong> <strong>the</strong> radiation friction effects taken into account<br />

Time dependence of <strong>the</strong> electron and photon parameters for a 1.25 GeV electron beam<br />

interaction <strong>with</strong> a PW (a=150, 9 fs) laser pulse. a) Gaussian pulse; b) Super-Gaussian<br />

(m=4) pulse. The electron energy before and after <strong>the</strong> interaction <strong>with</strong> <strong>the</strong> laser pulse<br />

equals 1.25 GeV and 0.25 GeV, respectively. The parameter e<br />

reaches <strong>the</strong><br />

maximum value 0.5 and <br />

is equal to 0.3.


H. Kotaki et al.,<br />

Phys. Rev. Lett. (2009)<br />

Experimental setup<br />

M. Kando, et al.,<br />

Phys. Rev. Lett., 103, 235003 (2009)


Years<br />

Parameters<br />

e<br />

a 0<br />

e<br />

Schedule of planned experiments<br />

I II&III IV&V<br />

300 2500 2500<br />

100 100 10<br />

0.05 0.5 2.5<br />

a rad =(/ e -1/3 60 30 6


Conclusion


Linearly polarized pulses save room for <strong>the</strong> <strong>Schwinger</strong> <strong>limit</strong> <strong>attainability</strong>. In a linearly<br />

polarized electric field an electron moves <strong>with</strong> parallel velocity and acceleration<br />

emitting much less photons <strong>with</strong> substantially lower energy, suffering much less<br />

from <strong>the</strong> radiation friction and quantum recoil effects. Thus as a result of enabling<br />

<strong>the</strong> increase of laser intensity <strong>with</strong>out an avalanche onset, for a sufficiently small<br />

amount of residual electrons, linearly polarized tightly focused pulses will reveal<br />

“pure” <strong>Schwinger</strong> electron-positron pair creation.<br />

<strong>On</strong>e can see an analogy <strong>with</strong> circular and linear electron accelerators where <strong>the</strong><br />

constraining role of synchrotron radiation losses for <strong>the</strong> former is reduced in <strong>the</strong><br />

latter.<br />

The experiments in this field will allow modelling <strong>the</strong> state of matter in <strong>the</strong> Universe,<br />

<strong>the</strong> cosmic Gamma Ray Bursts, and will open a way for developing new type of hard<br />

EM radiation sources:<br />

20 MeV, several fs, gamma-ray burst.


Thank you for listening me!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!