28.03.2013 Views

influence of filler fractional voids on mastic and mixture performance

influence of filler fractional voids on mastic and mixture performance

influence of filler fractional voids on mastic and mixture performance

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INFLUENCE OF FILLER FRACTIONAL VOIDS ON MASTIC AND MIXTURE<br />

PERFORMANCE<br />

Ahmed F. Faheem (Corresp<strong>on</strong>ding Author)<br />

Manager, Research Department<br />

Bloom Companies LLC<br />

10501 W. Research Drive, Suite 100<br />

Milwaukee, WI 53226<br />

Email: afaheem@bloomcos.com<br />

Cassie Hintz<br />

Graduate Research Assistant<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil <strong>and</strong> Envir<strong>on</strong>mental Engineering<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin - Madis<strong>on</strong>, 53706<br />

Email: cahintz@wisc.edu<br />

Hussain Bahia<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil <strong>and</strong> Envir<strong>on</strong>mental Engineering<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin - Madis<strong>on</strong>, 53706<br />

Email: bahia@engr.wisc.edu<br />

Imad Al-Qadi<br />

Founding Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois-Urbana-Champaign<br />

Email: alqadi@illinois.edu<br />

Submitted for publicati<strong>on</strong> <strong>and</strong> presentati<strong>on</strong> at the<br />

Transportati<strong>on</strong> Research Board Annual Meeting<br />

January 22-26, 2012<br />

Washingt<strong>on</strong>, D.C.<br />

Submissi<strong>on</strong> date: August 1, 2011<br />

Word count 4642 plus 9 Tables <strong>and</strong> 3 Figures<br />

Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> words: 7372<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

1


INFLUENCE OF FILLER FRACTIONAL VOIDS ON MASTIC AND MIXTURE<br />

PERFORMANCE<br />

ABSTRACT<br />

This study proposes the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> test for mineral <str<strong>on</strong>g>filler</str<strong>on</strong>g>s introduced by Rigden in 1947,<br />

<strong>and</strong> currently adopted by the European Norms, as part <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt <strong>mixture</strong> design <strong>and</strong> quality<br />

c<strong>on</strong>trol. Laboratory testing c<strong>on</strong>ducted in this study included a large collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <strong>and</strong><br />

manufactured <str<strong>on</strong>g>filler</str<strong>on</strong>g>s currently used in various regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the United States. Results show that the<br />

<str<strong>on</strong>g>filler</str<strong>on</strong>g> <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <str<strong>on</strong>g>influence</str<strong>on</strong>g> the <strong>mastic</strong> viscosity <strong>and</strong> n<strong>on</strong>-recoverable compliance. These<br />

<strong>mastic</strong> properties are also found to be highly correlated with <strong>mixture</strong> <strong>performance</strong> measures. This<br />

study utilized <strong>mixture</strong> <strong>performance</strong> limits to derive <strong>mastic</strong> limits based <strong>on</strong> the <strong>mixture</strong>-to-<strong>mastic</strong><br />

correlati<strong>on</strong>s. The regressi<strong>on</strong> models developed to predict the <strong>mastic</strong> <strong>performance</strong> as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the <str<strong>on</strong>g>filler</str<strong>on</strong>g>s <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>and</strong> asphalt binders properties are proposed as means for incorporating<br />

the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> into the mix design procedure as quality c<strong>on</strong>trol measure. This paper covers a<br />

summary <str<strong>on</strong>g>of</str<strong>on</strong>g> materials used, analysis approach, <strong>and</strong> summary <str<strong>on</strong>g>of</str<strong>on</strong>g> data justifying the limits<br />

proposed.<br />

INTRODUCTION<br />

The capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g> to hold asphalt binder can be estimated using the <str<strong>on</strong>g>voids</str<strong>on</strong>g> entrapped in a<br />

compacted sample <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g>. The void c<strong>on</strong>tent is estimated by compacting dry <str<strong>on</strong>g>filler</str<strong>on</strong>g>s in a mold<br />

using a specified compacti<strong>on</strong> effort. The c<strong>on</strong>cept is similar to the Fine Aggregate Angularity test<br />

utilized in the Superpave system to measure the angularity <str<strong>on</strong>g>of</str<strong>on</strong>g> fine aggregates (AASHTO 304),<br />

but includes a st<strong>and</strong>ard compacti<strong>on</strong> device to pack the <str<strong>on</strong>g>filler</str<strong>on</strong>g>. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g><br />

was introduced by Rigden in 1947 (1). Hence, most researchers refer to the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> test<br />

as the “Rigden Voids” test (2,3).<br />

Rigden (1) c<strong>on</strong>sidered the asphalt required to the fill the <str<strong>on</strong>g>voids</str<strong>on</strong>g> in the dry compacted<br />

sample as fixed asphalt while asphalt in excess <str<strong>on</strong>g>of</str<strong>on</strong>g> that fixed is c<strong>on</strong>sidered as free asphalt. Rigden<br />

postulated that the percent free asphalt is the main factor defining the c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> filled<br />

systems <strong>and</strong> reported that changes in viscosity are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt characteristics or any<br />

<str<strong>on</strong>g>filler</str<strong>on</strong>g> characteristics other than the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g>.<br />

Fillers, irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> their properties, are known to stiffen the asphalt. DeSmedt was the<br />

first to use <str<strong>on</strong>g>filler</str<strong>on</strong>g>s intenti<strong>on</strong>ally in an attempt to duplicate rock asphalt in Washingt<strong>on</strong>, D.C. in the<br />

1870’s (4). Later studies found that <str<strong>on</strong>g>filler</str<strong>on</strong>g> gradati<strong>on</strong> <str<strong>on</strong>g>influence</str<strong>on</strong>g>s the stiffening level <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mastic</strong>s (5-<br />

7). Studies show the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> free asphalt explains the <str<strong>on</strong>g>filler</str<strong>on</strong>g> stiffening effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g>s (8). A<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies c<strong>on</strong>cluded <str<strong>on</strong>g>filler</str<strong>on</strong>g> geometric characteristics (size, shape, angularity, <strong>and</strong> texture)<br />

affect Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g>. Thus, <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> is an effective indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the interactive effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these characteristics <strong>on</strong> stiffening <str<strong>on</strong>g>of</str<strong>on</strong>g> binders (9-22). These important studies exhibit that <str<strong>on</strong>g>filler</str<strong>on</strong>g>s<br />

properties significantly <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>mastic</strong> <strong>performance</strong>. However, the relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> the results to<br />

<strong>performance</strong> is unclear.<br />

Since the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> device, some changes took place to its<br />

design. In 1973, Anders<strong>on</strong> <strong>and</strong> Goetz proposed reducing the sample size as well as compacti<strong>on</strong><br />

effort (23). This new design is adopted by the Nati<strong>on</strong>al Asphalt Pavement Associati<strong>on</strong>, the<br />

Kansas Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, <strong>and</strong> the Ontario Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>. In Europe <strong>on</strong><br />

the other h<strong>and</strong>, the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> test as proposed by Rigden was st<strong>and</strong>ardized as part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

European Norm under the designati<strong>on</strong> EN 1097-4 (24). Table 1 includes the specifics <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

different Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> tests used currently, as well as the original Rigden used device.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

2


Table 1. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Different Fracti<strong>on</strong>al Voids Tests<br />

NAPA / Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Transportati<strong>on</strong><br />

(Ontario) / Kansas<br />

DOT<br />

European<br />

Norms<br />

(EN 1097-4)<br />

Rigden<br />

Apparatus<br />

(1947)<br />

Drop Weight 100g 350g 350g<br />

Hammer<br />

Diameter<br />

12.65mm 25mm 25mm<br />

Sample Size 1 - 1.3g 10g 10g<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Impact blows<br />

25 100 100<br />

In this study, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>on</strong> <strong>mastic</strong> <strong>and</strong> <strong>mixture</strong> <strong>performance</strong>s is evaluated<br />

to provide a comprehensive evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this test. This study is c<strong>on</strong>ducted with the intenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proposing the Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> test as a quality c<strong>on</strong>trol measure for predicting <str<strong>on</strong>g>filler</str<strong>on</strong>g>s’ <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong><br />

Hot Mix Asphalt (HMA) <strong>performance</strong>. The Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> are measured in this study using the<br />

European norms method. The European device is available commercially while the NAPA<br />

device was very hard to find commercially. Based <strong>on</strong> discussi<strong>on</strong> with a number <str<strong>on</strong>g>of</str<strong>on</strong>g> experts in the<br />

field, it was decided to proceed with using the European versi<strong>on</strong> due to c<strong>on</strong>cerns about sample<br />

size, repeatability, <strong>and</strong> durability <str<strong>on</strong>g>of</str<strong>on</strong>g> using the smaller NAPA versi<strong>on</strong>. The European st<strong>and</strong>ards<br />

include recommendati<strong>on</strong>s to classify <str<strong>on</strong>g>filler</str<strong>on</strong>g>s in regards to their reactivity, <strong>and</strong> combines Rigden<br />

<str<strong>on</strong>g>voids</str<strong>on</strong>g> with other characteristics in the classificati<strong>on</strong> system. Unlike the European practice, the<br />

American st<strong>and</strong>ards allow extensive use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>filler</str<strong>on</strong>g>s (<str<strong>on</strong>g>filler</str<strong>on</strong>g>s produced during the crushing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aggregates). Additi<strong>on</strong>ally, “mineral dust” collected in dust c<strong>on</strong>trol systems, such as baghouse<br />

fine collectors, is very comm<strong>on</strong> in North America. Today, there is lack <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol <strong>on</strong> <str<strong>on</strong>g>filler</str<strong>on</strong>g><br />

quality, <strong>and</strong> a rather simplistic dust-to-binder ratio criteri<strong>on</strong> used in the Superpave system.<br />

EXPERIMENTAL PLAN<br />

In this study 13 <str<strong>on</strong>g>filler</str<strong>on</strong>g>s from 11 different mineralogies <strong>and</strong>/or sources were selected <strong>and</strong> tested.<br />

The <str<strong>on</strong>g>filler</str<strong>on</strong>g>s were also classified based <strong>on</strong> hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> the base rock. The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g><br />

hardness is based <strong>on</strong> the Los Angeles Abrasi<strong>on</strong> (LAA) loss test <strong>on</strong> the rocks. A hard rock<br />

corresp<strong>on</strong>d to LAA loss less than 20. A s<str<strong>on</strong>g>of</str<strong>on</strong>g>t rock corresp<strong>on</strong>d to LAA loss greater than 40. The<br />

LAA loss results were provided by the <str<strong>on</strong>g>filler</str<strong>on</strong>g> suppliers. Table 2 lists the <str<strong>on</strong>g>filler</str<strong>on</strong>g>s evaluated.<br />

Table 2 List <str<strong>on</strong>g>of</str<strong>on</strong>g> Fillers Incorporated in this Study<br />

Number Filler Code Mineralogy (Source)<br />

Name<br />

1 AN1 Andesite<br />

2 BH1 Hard Basalt (1)<br />

3 BH2 Hard Basalt (2)<br />

4 CA2 Calicies<br />

5 DH1 Hard Dolomite (1)<br />

6 DS2 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Dolomite (2)<br />

7 GH1 Hard Granite (1)<br />

8 GH2 Hard Granite (2)<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

3


9 GRQ2 Gravel Quartzite (2)<br />

10 GS1 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Granite (1)<br />

11 GS2 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Granite (2)<br />

12 LH1 Hard Limest<strong>on</strong>e (1)<br />

13 LS2 S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Limest<strong>on</strong>e (2)<br />

Two base binders were used from two sources with the same <strong>performance</strong> grade (PG64-<br />

22), One binder has high asphaltene c<strong>on</strong>tent (heavy). The other binder has low asphaltene<br />

c<strong>on</strong>tent (light). The heavy asphalt is modified with SBS <strong>and</strong> PPA to obtain two additi<strong>on</strong>al<br />

binders <str<strong>on</strong>g>of</str<strong>on</strong>g> PG 76 grade. The four binders (two modified, <strong>and</strong> two unmodified) are blended with<br />

the 13 <str<strong>on</strong>g>filler</str<strong>on</strong>g>s at <strong>on</strong>e <str<strong>on</strong>g>filler</str<strong>on</strong>g> to binder (F/B) ratio, which was kept at the mass ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0 for a total<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 52 <strong>mastic</strong>s. Based <strong>on</strong> the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>mastic</strong> populati<strong>on</strong>, 12 <strong>mastic</strong>s are selected to be<br />

used to c<strong>on</strong>struct <strong>mixture</strong> specimens for two gradati<strong>on</strong>s (fine, course). The selected <strong>mastic</strong>s cover<br />

the range <str<strong>on</strong>g>of</str<strong>on</strong>g> data observed <strong>and</strong> balance between the binders such that all four binders are equally<br />

present in the selecti<strong>on</strong>. The following sequential diagram represents the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> work in<br />

this study. Table 3 lists the <strong>mastic</strong> characteristics measured <strong>and</strong> the associated test methods.<br />

13 <str<strong>on</strong>g>filler</str<strong>on</strong>g>s<br />

52 Mastics: Combine 13 <str<strong>on</strong>g>filler</str<strong>on</strong>g>s with 4 binders<br />

24 <strong>mixture</strong>s: 12 <strong>mastic</strong>s selected combined with two gradati<strong>on</strong>s<br />

TABLE 3 Mastic Testing Program<br />

Mastic Resp<strong>on</strong>se Test Method Temperature Aging<br />

Characteristic Variable<br />

1. C<strong>on</strong>structability Viscosity<br />

Rotati<strong>on</strong>al<br />

Viscosity<br />

135°C Un-aged<br />

Accumulated Dynamic Shear<br />

Strain Rheometer<br />

2. Rutting<br />

Resistance<br />

N<strong>on</strong><br />

Recoverable<br />

(DSR)/ Multiple<br />

Stress Creep <strong>and</strong><br />

Recovery<br />

64°C<br />

Un-aged<br />

Compliance (MSCR)<br />

25 mm PP<br />

C<strong>on</strong>structability<br />

To evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g> <strong>on</strong> <strong>mastic</strong> workability, viscosity was measured at 135°C using a<br />

Brookfield Rotati<strong>on</strong>al Viscometer. Viscosity testing was c<strong>on</strong>ducted using a size 27 spindle. In<br />

the procedure, the spindle is rotated at 20rpm for 600sec after 40 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> thermal<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

4


equilibrati<strong>on</strong>. Viscosity measurements over the last 300sec <str<strong>on</strong>g>of</str<strong>on</strong>g> testing are averaged as the<br />

apparent viscosity. It should be menti<strong>on</strong>ed that several experiments were c<strong>on</strong>ducted to evaluate<br />

the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> shear rate <strong>on</strong> viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mastic</strong>s. Although the <strong>mastic</strong>s were found to be shear<br />

dependent, the relative ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mastic</strong>s did not change as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear rates covered<br />

in the testing. It was therefore determined most appropriate to use the results at <strong>on</strong>ly <strong>on</strong>e shear<br />

rate. The shear rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 20rpm was used because it is currently the most frequently used shear rate<br />

in binder testing. Mixture c<strong>on</strong>structability was measured as the number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to 92%<br />

maximum density in the Superpave Gyratory Compactor. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to 92% is<br />

used as an indicator for workability since it is the typical target density for field projects.<br />

Permanent Deformati<strong>on</strong><br />

Mastic <strong>and</strong> binder rutting resistance was evaluated using the Multiple Stress Creep <strong>and</strong> Recovery<br />

(MSCR) test in accordance with ASTM D7405. Testing included three stresses (0.1kPa, 3.2kPa,<br />

<strong>and</strong> 10kPa) <strong>and</strong> two temperatures (58°C <strong>and</strong> 64°C). The n<strong>on</strong>-recoverable creep compliance, (Jnr),<br />

<strong>and</strong> percent recovery, at a stress level <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.2 kPa <strong>and</strong> 58°C, were chosen as the indicators <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rutting resistance. These test c<strong>on</strong>diti<strong>on</strong>s are chosen since changing the temperature to 64°C <strong>and</strong><br />

the stress level to 10kPa led to the same ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mastic</strong>s.<br />

Flow number testing was used to determine <strong>mixture</strong> rutting resistance according to<br />

procedures recommended in the NCHRP 9-19 project report with target air <str<strong>on</strong>g>voids</str<strong>on</strong>g> in the <strong>mixture</strong><br />

equal to 7%. According to NCHRP 9-19, the deviator stress level used in the flow number test<br />

should be within the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 70 to 210kPa for unc<strong>on</strong>fined tests. In this study, the flow number<br />

tests were c<strong>on</strong>ducted using uniaxial compressi<strong>on</strong> loads without c<strong>on</strong>finement at 58°C. A loading<br />

stress level <str<strong>on</strong>g>of</str<strong>on</strong>g> 200kPa was selected to attain tertiary flow in a reas<strong>on</strong>able number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles for<br />

various <strong>mixture</strong>s with different binders, gradati<strong>on</strong>s, <strong>and</strong> mineral <str<strong>on</strong>g>filler</str<strong>on</strong>g>s. The <strong>mixture</strong>s were tested<br />

with 0.1sec <str<strong>on</strong>g>of</str<strong>on</strong>g> creep loading <strong>and</strong> 0.9sec <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery per cycle. Flow number, which represents<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated creep at which the <strong>mixture</strong> enters a tertiary creep flow regi<strong>on</strong>,<br />

was used as the indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> rutting resistance (25).<br />

FILLER TEST RESULTS<br />

The Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> results collected in this study are shown in Figure 1. The results show a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> values (29.4 % - 47.1%) for the tested <str<strong>on</strong>g>filler</str<strong>on</strong>g>s. There appears to be no trend in<br />

Rigden Voids values with source or mineralogy <str<strong>on</strong>g>of</str<strong>on</strong>g> natural <str<strong>on</strong>g>filler</str<strong>on</strong>g>s.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

5


Rigden Voids (%)<br />

50.0<br />

45.0<br />

40.0<br />

35.0<br />

30.0<br />

25.0<br />

Rigden<br />

Voids (%)<br />

DS2 LH1 BH1 BH2 LS2 GRQ2 GH2 GS1 AN1 GH1 DH1 CA2 GS2<br />

29.4 32.2 33.2 33.8 35.4 36.5 38.8 40.2 41.9 42.6 42.8 45.0 47.0<br />

FIGURE 1 Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> results.<br />

EFFECT OF FILLERS FRACTIONAL VOIDS ON MASTICS<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>filler</str<strong>on</strong>g>s’ <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>on</strong> the <strong>mastic</strong>s was investigated using multivariate<br />

regressi<strong>on</strong> analysis. This analysis was c<strong>on</strong>ducted to highlight the level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rigden<br />

Voids <strong>and</strong> to quantify this effect in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> a regressi<strong>on</strong> equati<strong>on</strong> relating the <strong>mastic</strong><br />

<strong>performance</strong> measure to <str<strong>on</strong>g>filler</str<strong>on</strong>g> Rigden Voids <strong>and</strong> binder properties. The regressi<strong>on</strong> analysis<br />

indicates that <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> has significant <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> two <strong>mastic</strong> properties: viscosity <strong>and</strong><br />

n<strong>on</strong> recoverable compliance ( Jnr). The authors c<strong>on</strong>firmed that the data set used in the analysis<br />

satisfy the basic assumpti<strong>on</strong>s for regressi<strong>on</strong> modeling.<br />

C<strong>on</strong>structability<br />

The <str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>and</strong> base binder viscosity were found to best predict <strong>mastic</strong><br />

viscosity. It is important to note that the analysis included multiple <str<strong>on</strong>g>filler</str<strong>on</strong>g> properties; however, the<br />

<str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>and</strong> the binder viscosity were the <strong>on</strong>ly two parameters to show significant<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> the <strong>mastic</strong> viscosity. Table 4 shows the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the regressi<strong>on</strong> analysis for <strong>mastic</strong><br />

viscosity.<br />

TABLE 4 Regressi<strong>on</strong> Analysis for Mastic Viscosity<br />

Predictor Coefficient<br />

T-<br />

Value<br />

P-<br />

Value<br />

C<strong>on</strong>stant -8244.00 -6.03 0.00<br />

Binder Viscosity 4.68 8.21 0.00<br />

Fracti<strong>on</strong>al Voids<br />

(%)<br />

204.83 6.24 0.00<br />

R-Squared 67.20%<br />

N 52<br />

St<strong>and</strong>ard Error 1229.72<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

6


The regressi<strong>on</strong> analysis indicates that <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> have a significant <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong><br />

<strong>mastic</strong> viscosity. Examining the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the regressi<strong>on</strong> analysis, the coefficient for the binder<br />

viscosity <strong>and</strong> <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> indicate a positive relati<strong>on</strong> with <strong>mastic</strong> viscosity. This means that<br />

as the binder viscosity <strong>and</strong> <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> increase, the overall <strong>mastic</strong> viscosity increases which<br />

follows the expected trend. This is in line with the observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> many researchers as indicated<br />

in the introducti<strong>on</strong> secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.<br />

Permanent Deformati<strong>on</strong><br />

The regressi<strong>on</strong> analysis with respect to <strong>mastic</strong> Jnr shows a str<strong>on</strong>g correlati<strong>on</strong> between the<br />

regressi<strong>on</strong> model <strong>and</strong> measured Jnr (R 2 = 73.9%).<br />

TABLE 5 Regressi<strong>on</strong> Analysis for Jnr<br />

Predictor Coefficient<br />

T-<br />

Value<br />

P-<br />

Value<br />

C<strong>on</strong>stant 1.01 7.59 0.00<br />

Binder Jnr 0.16 9.91 0.00<br />

Fracti<strong>on</strong>al Voids -0.02 -6.94 0.00<br />

R-Squared 73.90%<br />

N 52<br />

St<strong>and</strong>ard Error 0.12<br />

The coefficients for the regressi<strong>on</strong> model dem<strong>on</strong>strate trends with independent variables<br />

that make sense. The binder Jnr shows a positive relati<strong>on</strong> with the <strong>mastic</strong> Jnr. Additi<strong>on</strong>ally, the<br />

<str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> show a negative relati<strong>on</strong>ship with the <strong>mastic</strong> Jnr. An increase in the Jnr indicates a<br />

decrease in resistance to rutting. Therefore, according the model, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a binder with low Jnr<br />

or <str<strong>on</strong>g>filler</str<strong>on</strong>g> with high <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> increases the permanent deformati<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>mastic</strong>.<br />

EFFECT OF FILLER ON MIXTURE RESULTS<br />

The asphalt <strong>mixture</strong>s were prepared using short-term aging. The <str<strong>on</strong>g>filler</str<strong>on</strong>g>s were introduced during<br />

the mixing processes at the same time the binder was added. The mix design called for 4% <str<strong>on</strong>g>filler</str<strong>on</strong>g><br />

for the fine-graded mix <strong>and</strong> 5% for the coarse-graded mix by mass. The fines passing #200<br />

(0.075mm) sieve were removed from the mix by dry sieving for the coarse aggregate <strong>and</strong><br />

washing for the fine aggregate. This would allow for a c<strong>on</strong>trolled mix that isolates the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the added <str<strong>on</strong>g>filler</str<strong>on</strong>g>. When adding different <str<strong>on</strong>g>filler</str<strong>on</strong>g>s in the mix, the amount was adjusted to equate the<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the original <str<strong>on</strong>g>filler</str<strong>on</strong>g> included in the mix design. This ensured that any change in the mix<br />

<strong>performance</strong> is due to the mineral <str<strong>on</strong>g>filler</str<strong>on</strong>g> type <strong>and</strong> not the change in mix comp<strong>on</strong>ents’ volumetrics.<br />

The asphalt c<strong>on</strong>tent for the fine graded <strong>mixture</strong>s is 5.6% by weight <str<strong>on</strong>g>of</str<strong>on</strong>g> total mix <strong>and</strong> for the<br />

coarse graded mix it is 5.3%<br />

In this secti<strong>on</strong>, the relati<strong>on</strong>ship between <strong>mastic</strong> <strong>and</strong> <strong>mixture</strong> <strong>performance</strong> is evaluated.<br />

The <strong>mastic</strong> serves as a bridge between the <str<strong>on</strong>g>filler</str<strong>on</strong>g> <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>and</strong> the <strong>mixture</strong> <strong>performance</strong>.<br />

The <strong>mastic</strong> test results that were found to be <str<strong>on</strong>g>influence</str<strong>on</strong>g>d by the <str<strong>on</strong>g>filler</str<strong>on</strong>g> <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> will be<br />

correlated with the corresp<strong>on</strong>ding <strong>mixture</strong> <strong>performance</strong> measures in order to determine the<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> <strong>on</strong> the <strong>mixture</strong> <strong>performance</strong>. This can be d<strong>on</strong>e by establishing<br />

<strong>performance</strong> limits <strong>on</strong> <strong>mixture</strong>s that can be translated to <strong>mastic</strong>s. Therefore, the regressi<strong>on</strong><br />

equati<strong>on</strong>s can be used to establish <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> limits.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

7


C<strong>on</strong>structability<br />

Mastic <strong>and</strong> <strong>mixture</strong> workability were compared using the correlati<strong>on</strong> between <strong>mixture</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gyrati<strong>on</strong>s to 92% Gmm <strong>and</strong> <strong>mastic</strong> relative viscosity. Relative viscosity was used in place <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>mastic</strong> viscosity as the SBS modificati<strong>on</strong> produces extreme viscosities but not extreme <strong>mixture</strong><br />

<strong>performance</strong>. Analyses were separated by gradati<strong>on</strong> because gradati<strong>on</strong> was found to have a very<br />

important effect <strong>on</strong> workability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mixture</strong>s as measured by number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to 92% Gmm.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> the correlati<strong>on</strong> are shown in Figure 2 for the fine <strong>and</strong> the coarse aggregate gradati<strong>on</strong>s.<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Gyrati<strong>on</strong>s to 92% Gmm<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

±One<br />

St<strong>and</strong>ard<br />

Deviati<strong>on</strong><br />

y = 0.67x + 13.97<br />

R² = 0.20<br />

y = 2.26x + 26.95<br />

R² = 0.40<br />

0.0 2.0 4.0 6.0 8.0 10.0<br />

Relative Viscosity<br />

Coarse<br />

FIGURE 2 Correlati<strong>on</strong> between <strong>mixture</strong> <strong>and</strong> <strong>mastic</strong> workability indicators.<br />

Figure 2 shows the expected trend that the <strong>mixture</strong>s with higher relative viscosities are<br />

less workable. For fine <strong>mixture</strong>s there is little variability in the number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to reach 92%<br />

Gmm regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> relative viscosity. The results also suggest that the coarse <strong>mixture</strong>s are more<br />

sensitive to <strong>mastic</strong> viscosity than fine <strong>mixture</strong>s. Thus, gradati<strong>on</strong> dem<strong>on</strong>strates more <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong><br />

workability than the other factors.<br />

Permanent Deformati<strong>on</strong><br />

The <strong>mixture</strong> flow number (FN) results were correlated with the measured <strong>mastic</strong> Jnr. Coarse <strong>and</strong><br />

fine <strong>mixture</strong>s were separated to prevent bias in the analysis by gradati<strong>on</strong>. Additi<strong>on</strong>ally, coarse<br />

<strong>mixture</strong>s with SBS <strong>and</strong> AN1 or GRQ2 <str<strong>on</strong>g>filler</str<strong>on</strong>g>s were not included as they exhibited extremely high<br />

FN. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> the correlati<strong>on</strong>s are displayed in Figure 3.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

Fine<br />

8


Mixture Flow Number<br />

Mixture Flow Number<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

±One St<strong>and</strong>ard<br />

Deviati<strong>on</strong><br />

(a)<br />

y = ‐1,208.73x + 1,271.92<br />

R² = 0.61<br />

0.00 0.20 0.40 0.60 0.80 1.00 1.20<br />

±One St<strong>and</strong>ard<br />

Deviati<strong>on</strong><br />

Mastic Jnr (1/kPa)<br />

y = ‐1,169.24x + 1,409.82<br />

R² = 0.66<br />

0.00 0.20 0.40 0.60 0.80 1.00 1.20<br />

Mastic Jnr (1/kPa)<br />

(b)<br />

FIGURE 3 Correlati<strong>on</strong> between <strong>mixture</strong> flow number <strong>and</strong> <strong>mastic</strong> Jnr for (a) fine gradati<strong>on</strong><br />

<strong>and</strong> (b) coarse gradati<strong>on</strong>.<br />

The plots include the average trend lines represented by the center lines <strong>and</strong> reliability<br />

represented as <strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong> above <strong>and</strong> below the average trend lines. A clear trend<br />

between <strong>mixture</strong> flow number <strong>and</strong> <strong>mastic</strong> Jnr exists for both gradati<strong>on</strong>s. The correlati<strong>on</strong> trends for<br />

the gradati<strong>on</strong>s show similar slope value. The linear correlati<strong>on</strong>s have R 2 values <str<strong>on</strong>g>of</str<strong>on</strong>g> 66% <strong>and</strong> 61%<br />

for coarse <strong>and</strong> fine <strong>mixture</strong>s, respectively.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

9


PROPOSED LIMITES ON FILLER RIGDEN VOIDS FOR WORKABILITY AND<br />

RUTTING RESISTANCE<br />

To incorporate the <str<strong>on</strong>g>fracti<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>voids</str<strong>on</strong>g> into design <str<strong>on</strong>g>of</str<strong>on</strong>g> HMA, <strong>mastic</strong>s were used as the bridge between<br />

<str<strong>on</strong>g>filler</str<strong>on</strong>g> <strong>and</strong> <strong>mixture</strong> properties. Limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mastic</strong> properties that result in acceptable <strong>mixture</strong><br />

<strong>performance</strong> are presented in this secti<strong>on</strong>. To relate the <strong>mastic</strong> limits to <str<strong>on</strong>g>filler</str<strong>on</strong>g> characteristics, the<br />

regressi<strong>on</strong> equati<strong>on</strong>s relating Rigden Voids <strong>and</strong> <strong>mastic</strong> properties previously presented are used.<br />

Thus, in design, <strong>on</strong>e has two opti<strong>on</strong>s:<br />

• C<strong>on</strong>duct <strong>mastic</strong> testing to quantify the <strong>mastic</strong> property value <strong>and</strong> compare to<br />

acceptable limit directly, or<br />

• Perform binder <strong>and</strong> <str<strong>on</strong>g>filler</str<strong>on</strong>g> tests <strong>and</strong> use the regressi<strong>on</strong> equati<strong>on</strong> to estimate <strong>mastic</strong><br />

property value <strong>and</strong> compare to acceptable limit.<br />

In limit development analysis, it was necessary to sort limits by gradati<strong>on</strong>. For the<br />

purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, a coarse aggregate gradati<strong>on</strong> is defined according to the Asphalt Institute’s<br />

definiti<strong>on</strong>. Any aggregate gradati<strong>on</strong> that crosses below 0.45 power maximum density line at or<br />

before sieve #8 (2.36mm). The fine gradati<strong>on</strong> is that which passes above the sieve #8.<br />

C<strong>on</strong>structability<br />

An extensive literature search was c<strong>on</strong>ducted to determine what limits can be used to define<br />

satisfactory workability limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mixture</strong>. No such limits for the number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to<br />

92%Gmm could be found. The most comprehensive comparis<strong>on</strong> between laboratory measured<br />

<strong>and</strong> field measured compactability found was a study by Leiva <strong>and</strong> West (26). Leiva <strong>and</strong> West<br />

evaluated the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple laboratory measured compactability indicators to predict actual<br />

<strong>mixture</strong> compactability in the field. The authors did not recommend limits <strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gyrati<strong>on</strong>s to reach 92%Gmm. They developed a multiple linear regressi<strong>on</strong> model to incorporate<br />

the multiple factors found to affect <strong>mixture</strong> compactability.<br />

Since no limits for number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to reach 92%Gmm exist in the literature, limits<br />

are based <strong>on</strong> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mixture</strong> workability testing c<strong>on</strong>ducted within the scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this study<br />

by establishing the limit at the average number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to reach 92%Gmm measured for<br />

coarse <strong>mixture</strong> plus <strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong> measured for all coarse <strong>mixture</strong>s. Because all fine<br />

<strong>mixture</strong>s exhibit low values <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to reach 92%Gmm, the results for the fine<br />

<strong>mixture</strong>s were excluded from the limits analysis. Using this strategy, the corresp<strong>on</strong>ding limit for<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to reach 92%Gmm is 43 gyrati<strong>on</strong>s. Mixture with number <str<strong>on</strong>g>of</str<strong>on</strong>g> gyrati<strong>on</strong>s to<br />

reach 92%Gmm less than 43 gyrati<strong>on</strong>s are deemed satisfactory. To increase the reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

limit <strong>and</strong> account for variability in the results, the relative viscosity limit was developed based <strong>on</strong><br />

the corresp<strong>on</strong>ding relative viscosity minus <strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong>, rounded to the nearest 0.5.<br />

Using the trend line in Figure 2 for the coarse gradati<strong>on</strong> minus <strong>on</strong>e st<strong>and</strong>ard deviati<strong>on</strong>, the<br />

limiting relative viscosity corresp<strong>on</strong>ding to the proposed <strong>mixture</strong> limit is 5.0. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

proposed limits is provided in Table 6. Binder viscosity <strong>and</strong> Rigden <str<strong>on</strong>g>voids</str<strong>on</strong>g> can be measured <strong>and</strong><br />

the regressi<strong>on</strong> equati<strong>on</strong> presented in Table 3 can be used to determine if the <strong>mastic</strong> meets the<br />

proposed limit.<br />

TABLE 6 Proposed Workability Limits<br />

Parameter Value<br />

Maximum N92 43<br />

Maximum Relative 5.0<br />

Viscosity<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

10


Permanent Deformati<strong>on</strong><br />

To derive <str<strong>on</strong>g>filler</str<strong>on</strong>g> specificati<strong>on</strong> limits to ensure acceptable rutting <strong>performance</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mixture</strong>, the<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what is acceptable was taken from previous studies. In the NCHRP Project 9-43,<br />

minimum flow numbers are proposed based <strong>on</strong> flow number data collected <strong>on</strong> several field<br />

projects (27). These flow number limits, which are based <strong>on</strong> traffic level, are displayed in Table<br />

7.<br />

It is important to note that the results reported in NCHRP 9-43 are based <strong>on</strong> testing at<br />

600kPa, which is three times higher than the stress level applied in this study. As discussed<br />

previously, 200kPa was selected for this study based <strong>on</strong> NCHRP 9-43 recommendati<strong>on</strong>s for<br />

unc<strong>on</strong>fined tests. Due to the differences in stress levels, there is a need for a transfer functi<strong>on</strong><br />

between stress levels. In the Airfield Asphalt Pavement Technology Program (AAPTP) Project<br />

04-02: PG Binder Grade Selecti<strong>on</strong> for Airfield Pavements, the following equati<strong>on</strong> relating the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> load repetiti<strong>on</strong>s <strong>and</strong> stress level was developed through the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s<br />

to predict rutting used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) <strong>and</strong><br />

other mathematical relati<strong>on</strong>s used in the MEPDG (28):<br />

· <br />

<br />

<br />

.<br />

Using the above equati<strong>on</strong>, the flow number limits at 600 kPa can be derived for a stress<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> 200kPa to arrive at the minimum flow numbers in Table 7, which are applicable to the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study.<br />

TABLE 7 Minimum flow number at 600 kPa (28)<br />

Traffic Level<br />

(Milli<strong>on</strong><br />

ESALs)<br />

Minimum<br />

Flow Number<br />

@ 600kPa<br />

Minimum<br />

Flow Number<br />

@ 200kPa<br />

< 3 ----------- -----------<br />

3 to < 10 53 530<br />

10 to < 30 105 1,050<br />

≥ 30 415 4,120<br />

It should also be noted that in the NCHRP 9-43 project, testing was c<strong>on</strong>ducted at the 50<br />

percent reliability <strong>performance</strong> grade temperature determined using LTPP Bind at a depth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

20mm without traffic volume or speed adjustments. In this study all testing was c<strong>on</strong>ducted at<br />

58°C irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>performance</strong> grade. Based <strong>on</strong> these limits, three (25%) <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse <strong>mixture</strong>s<br />

<strong>and</strong> five (42%) <str<strong>on</strong>g>of</str<strong>on</strong>g> fine <strong>mixture</strong>s do not pass the criteri<strong>on</strong> for traffic levels between 3 milli<strong>on</strong> <strong>and</strong><br />

10 milli<strong>on</strong> ESALs.<br />

Mastic Jnr limits were derived based <strong>on</strong> the average trend line minus <strong>on</strong>e st<strong>and</strong>ard<br />

deviati<strong>on</strong> for Jnr to increase the reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> the limits <strong>and</strong> account for any variability in the<br />

results. Using the models relating <strong>mastic</strong> <strong>and</strong> <strong>mixture</strong> results for coarse <strong>and</strong> fine aggregate<br />

gradati<strong>on</strong>s, the resulting <strong>mastic</strong> limits are presented in Table 8. The <strong>mastic</strong> limit for Jnr is lowest<br />

for fine aggregate gradati<strong>on</strong>s <strong>and</strong> thus most c<strong>on</strong>servative. Therefore the recommended <strong>mastic</strong><br />

limit, irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> gradati<strong>on</strong> follows the fine aggregate gradati<strong>on</strong> limit. Thus, <strong>on</strong>e can measure<br />

Rigden Voids <strong>and</strong> binder Jnr <strong>and</strong> use the equati<strong>on</strong> presented in Table 4 to determine if the <strong>mastic</strong><br />

meets permanent deformati<strong>on</strong> resistance requirements.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

(1)<br />

11


TABLE 8 Maximum values for <strong>mastic</strong> Jnr at 3.2kPa<br />

Mixture Maximum Mastic Jnr at<br />

Gradati<strong>on</strong> 3.2kPa (1/kPa)<br />

Fine 0.40<br />

Coarse 0.55<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> Recommended Limits<br />

Table 9 is proposed as the framework for c<strong>on</strong>trolling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g>s in HMA to ensure<br />

acceptable <strong>performance</strong>. The table lists the <strong>mixture</strong> <strong>performance</strong> indicators that were c<strong>on</strong>sidered,<br />

the <strong>mastic</strong> properties measured, <strong>and</strong> the proposed limits. The table includes the best fit models<br />

derived from this project to estimate <strong>mastic</strong> properties in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g> <strong>and</strong> binder properties.<br />

Due to the limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> binders used in this study, it is high recommended that these<br />

models be verified, <strong>and</strong> modified if needed, in future studies.<br />

Table 9 Mastic property <strong>and</strong> limits to ensure proper <strong>mixture</strong> <strong>performance</strong><br />

Performance Mastic Mastic<br />

Mastic Models<br />

Indicator Property Limit<br />

Workability Relative


characteristics) vary significantly between natural <str<strong>on</strong>g>filler</str<strong>on</strong>g>s <strong>and</strong> have important <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong><br />

<strong>mastic</strong> <strong>and</strong> <strong>mixture</strong> behavior.<br />

• It is important to note that although the <strong>mastic</strong> <strong>performance</strong> is used to relate <str<strong>on</strong>g>filler</str<strong>on</strong>g> to<br />

<strong>mixture</strong> properties; it is limited to the ability <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>mastic</strong> test to serve its purpose.<br />

Therefore, a weak correlati<strong>on</strong> between the <strong>mastic</strong> <strong>and</strong> <strong>mixture</strong> test results is not necessary<br />

due to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>influence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g>s, but because <str<strong>on</strong>g>of</str<strong>on</strong>g> the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s between<br />

various comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>mixture</strong>, including mineral <str<strong>on</strong>g>filler</str<strong>on</strong>g>s.<br />

• Specificati<strong>on</strong> limits for <strong>mastic</strong> properties for rutting resistance <strong>and</strong> workability were<br />

proposed. Due to the high <str<strong>on</strong>g>filler</str<strong>on</strong>g>-binder interacti<strong>on</strong>s measured in this study, the<br />

specificati<strong>on</strong> criteria proposed are based <strong>on</strong> <strong>mastic</strong> properties rather than <str<strong>on</strong>g>filler</str<strong>on</strong>g> properties.<br />

Best fit models are used to derive <strong>mastic</strong> properties in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g> <strong>and</strong> binder<br />

properties to allow for incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>filler</str<strong>on</strong>g> properties into design. Since binder<br />

viscosity is routinely c<strong>on</strong>ducted based <strong>on</strong> the current specificati<strong>on</strong>s, the Rigden Voids test<br />

can be used as quality c<strong>on</strong>trol test to insure <strong>mixture</strong> <strong>performance</strong> within the desirable<br />

ranges for workability <strong>and</strong> permanent deformati<strong>on</strong> resistance. Due to the limited number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> binders used in this study, it is highly recommended that these models be verified, <strong>and</strong><br />

modified if needed, in future studies.<br />

• Varying mass ratio was not studied, therefore, further study is required to evaluate the<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>filler</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> <strong>mastic</strong> <strong>performance</strong>.<br />

ACKNOWLEDGEMENTS<br />

The research team acknowledges the support <str<strong>on</strong>g>of</str<strong>on</strong>g> NCHRP <strong>and</strong> in particular the NCHRP 9-45<br />

project panel <strong>and</strong> Dr. Ed Harrigan. The authors would also like to acknowledge the support <strong>and</strong><br />

input <str<strong>on</strong>g>of</str<strong>on</strong>g> Dr. Erv Dukatz <strong>and</strong> Mr. Gerald Reinke <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathy C<strong>on</strong>structi<strong>on</strong> for their efforts <strong>and</strong><br />

leadership in collecting <str<strong>on</strong>g>filler</str<strong>on</strong>g>s <strong>and</strong> binders.<br />

REFERENCES<br />

1. Ridgen, P.J. The Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Fillers in Bituminous Road Surfacing – A Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Filler-Binder<br />

System in Relati<strong>on</strong> to Filler Characteristics. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Industry, No.<br />

66, 1947, pp. 9- 299.<br />

2. Anders<strong>on</strong>, D.A. <strong>and</strong> W.H. Goetz. Mechanical Behavior <strong>and</strong> Reinforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral<br />

Filler-Asphalt Mixtures. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists, Vol.<br />

42, 1973, pp. 37–66.<br />

3. Anders<strong>on</strong>, D.A. Guidelines for the Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Dust in Hot Mix Asphalt C<strong>on</strong>crete Mixtures.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists, Vol. 56, 1987, pp. 492-516.<br />

4. Richards<strong>on</strong>, C. The theory <str<strong>on</strong>g>of</str<strong>on</strong>g> the perfect sheet asphalt surface. "Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial<br />

Engineering <strong>and</strong> Chemistry", 1915, pp 463–465.<br />

5. Kallas, B.F. <strong>and</strong> V. P. Puzinauskas. A Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral Fillers in Asphalt Paving<br />

Mixtures. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists, Vol. 36, 1967, pp.<br />

493-528<br />

6. Brown, E.R., J.E. Haddock, <strong>and</strong> C. Crawford. Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> St<strong>on</strong>e Matrix Asphalt<br />

Mortars. In Transportati<strong>on</strong> Research Record: Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research<br />

Board, No. 1530, Transportati<strong>on</strong> Research Board <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academies,<br />

Washingt<strong>on</strong>, D.C., 1996; pp. 95–102<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

13


7. Heitzman, M.A. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> New Film Thickness Models for Hot Mix Asphalt.<br />

Dissertati<strong>on</strong>. Iowa State University, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Ames, Iowa. 2005.<br />

8. Mogawer, W.S. <strong>and</strong> K.D. Stuart. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral Fillers <strong>on</strong> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> St<strong>on</strong>e Matrix<br />

Asphalt Mixtures. In Transportati<strong>on</strong> Research Record: Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong><br />

Research Board, No. 1530, 1996, pp. 86-94.<br />

9. D.A. Anders<strong>on</strong> <strong>and</strong> J.P. Tarris. "Adding Dust Collector Fines to Asphalt Paving<br />

Mixtures". Washingt<strong>on</strong>, D.C. : Transportati<strong>on</strong> Research Board, Nati<strong>on</strong>al Research<br />

Council, 1982. NCHRP Synthesis report, No. 252, Washingt<strong>on</strong>, D.C., 1982.<br />

10. Smith, B.J. <strong>and</strong> S. Hesp. Crack Pinning in Asphalt Mastic <strong>and</strong> C<strong>on</strong>crete: Regular Fatigue<br />

Studies. In Transportati<strong>on</strong> Research Record: Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research<br />

Board, No. 1728, Transportati<strong>on</strong> Research Board <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academies,<br />

Washingt<strong>on</strong>, D.C., 2000, pp. 75-81.<br />

11. Winniford, R.S. The Rheology <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt-Filler Systems as Shown by the<br />

Microviscometer. American Society for Testing <strong>and</strong> Materials, STP309, 1961, pp. 109-<br />

120.<br />

12. Heukelom, W. Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Filler in Bituminous Mixes. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt<br />

Paving Technologists, Vol 34, 1968, pp 396-429<br />

13. Heukelom, W. <strong>and</strong> P.W.O. Wija. Viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong>s governed by c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> shear. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists, Vol. 40, 1970, pp 418-437.<br />

14. Craus, J., Ishai, I. <strong>and</strong> A. Sides. Some Physico-Chemical Aspects <strong>on</strong> the Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Filler <strong>on</strong> the Properties <strong>and</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Bituminous Paving Mixtures. Proceedings from<br />

the Asphalt Paving Technologists, Vol. 47, 1978, pp. 558-588.<br />

15. K<strong>and</strong>hal, P.S. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Baghouse Fines in Bituminous Paving Mixture. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists, Vol. 50, 1981. pp 150-210.<br />

16. Dukatz, E. <strong>and</strong> D. Anders<strong>on</strong>. The Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Various Fillers <strong>on</strong> the Mechanical Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Asphalt <strong>and</strong> Asphaltic C<strong>on</strong>crete. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving<br />

Technologists, Vol. 49, 1980. pp530-549.<br />

17. Anders<strong>on</strong>, D.A., J. P. Tarris, <strong>and</strong> J. D. Brock. Dust Collector Fines <strong>and</strong> Their Influence<br />

<strong>on</strong> Mixture Design. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists,<br />

Technical Sessi<strong>on</strong>s, Kansas City, Missouri, Vol. 51, 1982, pp. 363-397.<br />

18. Shashidhar, N.R. <strong>and</strong> N. Romero. Factors Affecting the Stiffening Potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineral<br />

Fillers. In Transportati<strong>on</strong> Research Record: Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Transportati<strong>on</strong> Research<br />

Board, No. 1638, Transportati<strong>on</strong> Research Board <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nati<strong>on</strong>al Academies,<br />

Washingt<strong>on</strong>, D.C., 1998, pp. 94-100.<br />

19. N. Shashidar, S.P. Needham, <strong>and</strong> B.H. Chollar. "Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Performance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mineral Fillers in St<strong>on</strong>e Matrix Asphalt", Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving<br />

Technologists, Volume: 68 1999. Pp. 222-245.<br />

20. K<strong>and</strong>hal, P.S., C.Y. Lynn, <strong>and</strong> F. Parker. Tests for Plastic Fines in Aggregates Related to<br />

Stripping in Asphalt Paving Mixtures. NCAT Report 98-03. Auburn University, Auburn,<br />

Alabama, 1998.<br />

21. Faheem, A. <strong>and</strong> H. Bahia. C<strong>on</strong>ceptual Phenomenological Model for Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Asphalt Binders with Mineral Fillers. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving<br />

Technologists, Vol. 78, 2009,pp 679-720.<br />

22. Faheem, A. <strong>and</strong> H. Bahia. Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Mastic in Terms <str<strong>on</strong>g>of</str<strong>on</strong>g> Filler-Bitumen<br />

Interacti<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Road Materials <strong>and</strong> Pavements Design, Vol. 11 – Special Issue,<br />

2010.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

14


23. Anders<strong>on</strong>, D. A., <strong>and</strong> W. H. Goetz, "Mechanical behavior <strong>and</strong> reinforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral<br />

<str<strong>on</strong>g>filler</str<strong>on</strong>g>-asphalt <strong>mixture</strong>s." Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt Paving Technologists, Vol.<br />

42, 1973<br />

24. European Committee for St<strong>and</strong>ardizati<strong>on</strong>. EN 1097-4. Tests for Mechanical <strong>and</strong> Physical<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Aggregates, Part 4, Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Voids <str<strong>on</strong>g>of</str<strong>on</strong>g> Dry Compacted Filler.<br />

Brussels: CEN; 1999.<br />

25. Witczak, M. “Simple Performance Tests: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> Recommended Methods <strong>and</strong><br />

Database”, Nati<strong>on</strong>al Cooperative Highway Research Program Report Number 547,<br />

Transportati<strong>on</strong> research Board, Washingt<strong>on</strong>, 2005.<br />

26. Leiva-Villacorta, V. <strong>and</strong> R. West. Relati<strong>on</strong>ships Between Laboratory Measured<br />

Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> HMA <strong>and</strong> Field Compactability. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Asphalt<br />

Paving Technologists, Vol. 77, 2008. pp. 183-220.<br />

27. Advanced Asphalt Technologies, LLC. Mix Design Practices for Warm Mix Asphalt-<br />

Participant Workbook- Appendix to AASHTO R35, Simple Mix Design C<strong>on</strong>siderati<strong>on</strong>s &<br />

Methods for Warm Mix Asphalt. Nati<strong>on</strong>al Cooperative Highway Research Program<br />

(NCHRP) <strong>on</strong> Project NCHRP 9-43, October 2010.<br />

28. Advanced Asphalt Technologist, LLC. PG Binder Grade Selecti<strong>on</strong> for Airfield<br />

Pavements. Airfield Asphalt Pavement Technology Program (AAPTP) Project 04-02:<br />

Final Report, 2008.<br />

TRB 2012 Annual Meeting Paper revised from original submittal.<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!