29.03.2013 Views

Lefschetz fibrations on adjoint orbits - PMA

Lefschetz fibrations on adjoint orbits - PMA

Lefschetz fibrations on adjoint orbits - PMA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong><br />

Elizabeth Gasparim (Unicamp)<br />

Maringá – November 2012<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


C<strong>on</strong>structing Letschetz <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> via Lie theory<br />

This is a report of joint work with Lino Grama and Luiz A. B.<br />

San Martin. We show that <strong>adjoint</strong> <strong>orbits</strong> have the structure of<br />

<str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g>.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Motivati<strong>on</strong><br />

I want to explain the motivati<strong>on</strong> carefully, and this will take a little<br />

detour away from Lie theory. Our main motivati<strong>on</strong>s is the<br />

Mirror Symmetry C<strong>on</strong>jecture<br />

which proposes that every object has a mirror. This leaves us with<br />

the obvious questi<strong>on</strong>:<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Motivati<strong>on</strong><br />

I want to explain the motivati<strong>on</strong> carefully, and this will take a little<br />

detour away from Lie theory. Our main motivati<strong>on</strong>s is the<br />

Mirror Symmetry C<strong>on</strong>jecture<br />

which proposes that every object has a mirror. This leaves us with<br />

the obvious questi<strong>on</strong>:<br />

◮ What is a mirror?<br />

or, more interestingly,<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Motivati<strong>on</strong><br />

I want to explain the motivati<strong>on</strong> carefully, and this will take a little<br />

detour away from Lie theory. Our main motivati<strong>on</strong>s is the<br />

Mirror Symmetry C<strong>on</strong>jecture<br />

which proposes that every object has a mirror. This leaves us with<br />

the obvious questi<strong>on</strong>:<br />

◮ What is a mirror?<br />

or, more interestingly,<br />

◮ Where is the mirror?<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Good news<br />

Lie theory is useful to help uncover what is behind the mirrors.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Mirror Symmetry for Calabi–Yaus<br />

To every Calabi–Yau variety X there corresp<strong>on</strong>ds a mirror<br />

Calabi–Yau variety ˆ X such that the Hodge diam<strong>on</strong>d of ˆ X is<br />

obtained from the Hodge diam<strong>on</strong>d of X by reflecti<strong>on</strong> <strong>on</strong> the<br />

mirror.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Mirror Symmetry for Calabi–Yaus<br />

To every Calabi–Yau variety X there corresp<strong>on</strong>ds a mirror<br />

Calabi–Yau variety ˆ X such that the Hodge diam<strong>on</strong>d of ˆ X is<br />

obtained from the Hodge diam<strong>on</strong>d of X by reflecti<strong>on</strong> <strong>on</strong> the<br />

mirror.<br />

So we need to define the Hodge diam<strong>on</strong>d.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


This is NOT the Hodge diam<strong>on</strong>d<br />

Toric diagram of a CY threefold.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Basic Hodge Theory<br />

Theorem (Hodge Decompositi<strong>on</strong> Theorem)<br />

Let X be a compact Kähler manifold of dimensi<strong>on</strong> n. Then there<br />

exists a decompositi<strong>on</strong><br />

H k (X , C) = <br />

H p,q (X )<br />

p+q=k<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Basic Hodge Theory<br />

Theorem (Hodge Decompositi<strong>on</strong> Theorem)<br />

Let X be a compact Kähler manifold of dimensi<strong>on</strong> n. Then there<br />

exists a decompositi<strong>on</strong><br />

H k (X , C) = <br />

H p,q (X )<br />

Classical Symmetries:<br />

p+q=k<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Basic Hodge Theory<br />

Theorem (Hodge Decompositi<strong>on</strong> Theorem)<br />

Let X be a compact Kähler manifold of dimensi<strong>on</strong> n. Then there<br />

exists a decompositi<strong>on</strong><br />

H k (X , C) = <br />

H p,q (X )<br />

Classical Symmetries:<br />

p+q=k<br />

1. C<strong>on</strong>jugati<strong>on</strong> H p,q (X ) ∼ = H q,p (X )<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Basic Hodge Theory<br />

Theorem (Hodge Decompositi<strong>on</strong> Theorem)<br />

Let X be a compact Kähler manifold of dimensi<strong>on</strong> n. Then there<br />

exists a decompositi<strong>on</strong><br />

H k (X , C) = <br />

H p,q (X )<br />

Classical Symmetries:<br />

p+q=k<br />

1. C<strong>on</strong>jugati<strong>on</strong> H p,q (X ) ∼ = H q,p (X )<br />

2. Hodge ⋆−operator H p,q (X ) ∼ = H n−q,n−p (X )<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Basic Hodge Theory<br />

Theorem (Hodge Decompositi<strong>on</strong> Theorem)<br />

Let X be a compact Kähler manifold of dimensi<strong>on</strong> n. Then there<br />

exists a decompositi<strong>on</strong><br />

H k (X , C) = <br />

H p,q (X )<br />

Classical Symmetries:<br />

p+q=k<br />

1. C<strong>on</strong>jugati<strong>on</strong> H p,q (X ) ∼ = H q,p (X )<br />

2. Hodge ⋆−operator H p,q (X ) ∼ = H n−q,n−p (X )<br />

3. Serre duality H p,q (X ) ∼ = H n−p,n−q (X )<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Basic Hodge Theory<br />

Theorem (Hodge Decompositi<strong>on</strong> Theorem)<br />

Let X be a compact Kähler manifold of dimensi<strong>on</strong> n. Then there<br />

exists a decompositi<strong>on</strong><br />

H k (X , C) = <br />

H p,q (X )<br />

Classical Symmetries:<br />

p+q=k<br />

1. C<strong>on</strong>jugati<strong>on</strong> H p,q (X ) ∼ = H q,p (X )<br />

2. Hodge ⋆−operator H p,q (X ) ∼ = H n−q,n−p (X )<br />

3. Serre duality H p,q (X ) ∼ = H n−p,n−q (X )<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Definiti<strong>on</strong><br />

Hodge numbers<br />

h p,q (X ) := dim(H p,q (X ))<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


The Hodge Diam<strong>on</strong>d<br />

h n,n<br />

h n,n−1 h n−1,n<br />

h n,n−2 h n−1,n−1 h n−2,n<br />

hn,0 · · ·<br />

. ..<br />

.<br />

. ..<br />

<br />

Serre · · · h0,n ↕ H<br />

.<br />

h 2,0 h 1,1 h 0,2<br />

h 1,0 h 0,1<br />

h 0,0<br />

←→<br />

C<strong>on</strong>jugati<strong>on</strong><br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


The Hodge Diam<strong>on</strong>d<br />

h n,n<br />

h n,n−1 h n−1,n<br />

h n,n−2 h n−1,n−1 h n−2,n<br />

.<br />

. ..<br />

hn,0 · · · hm,m · · · h0,n ↕ H<br />

. ..<br />

.<br />

h2,0 h1,1 h0,2 h 1,0 h 0,1<br />

h 0,0<br />

←→<br />

C<strong>on</strong>jugati<strong>on</strong><br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Amusing c<strong>on</strong>sequence of the classical symmetries<br />

Corollary (Odd Betti numbers are even)<br />

Let X be a compact Kähler manifold. Then b2k+1 ∈ 2Z.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Amusing c<strong>on</strong>sequence of the classical symmetries<br />

Corollary (Odd Betti numbers are even)<br />

Let X be a compact Kähler manifold. Then b2k+1 ∈ 2Z.<br />

Proof.<br />

The Hodge Diam<strong>on</strong>d ⇒ br (X ) = <br />

⇒ b2k+1 = <br />

p+q=2k+1<br />

h p,q = 2<br />

p+q=r<br />

h p,q<br />

k<br />

h p,2k+1−p .<br />

p=0<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Example 1: Smooth Elliptic Curve<br />

h 1,1 = 1<br />

h 1,0 = 1 h 0,1 = 1<br />

h 0,0 = 1<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Example 2: Hodge Diam<strong>on</strong>d of a K3 Surface<br />

1<br />

0 0<br />

1 20 1<br />

0 0<br />

1<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Example 3: Hodge Diam<strong>on</strong>d of a CY threefold<br />

X = Fermat quintic X<br />

1<br />

0 0<br />

1 1 1<br />

1 101 101 1<br />

1 1 1<br />

0 0<br />

1<br />

ˆ X = X /(Z5) 3<br />

1<br />

0 0<br />

1 101 1<br />

1 1 1 1<br />

1 101 1<br />

0 0<br />

1<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Hodge Diam<strong>on</strong>ds of Mirror Pairs<br />

h n,n<br />

h n,n−1 h n−1,n<br />

h n,n−2 h n−1,n−1 h n−2,n<br />

hn,0 · · ·<br />

. ..<br />

.<br />

. ..<br />

<br />

Serre · · · h0,n ↕ H<br />

.<br />

h 2,0 h 1,1 h 0,2<br />

h 1,0 h 0,1<br />

h 0,0<br />

←→<br />

C<strong>on</strong>jugati<strong>on</strong><br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Hodge Diam<strong>on</strong>ds of Mirror Pairs<br />

h n,n<br />

h n,n−1 h n−1,n<br />

h n,n−2 h n−1,n−1 h n−2,n<br />

.<br />

. ..<br />

hn,0 · · · hm,m · · · h0,n ↕ H<br />

. ..<br />

.<br />

h2,0 h1,1 h0,2 h 1,0 h 0,1<br />

h 0,0<br />

←→<br />

C<strong>on</strong>jugati<strong>on</strong><br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Compact Calabi Yaus are few...<br />

◮ 1D: Only tori, hence elliptic curves in the algebraic case.<br />

◮ 2D: K3 surfaces, possibly a couple more examples depending<br />

<strong>on</strong> your definiti<strong>on</strong>.<br />

◮ 3D: Quintic <strong>on</strong> P 4 , and unknown classificati<strong>on</strong>, open problem,<br />

c<strong>on</strong>jecturally there are finitely many.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Mirror Symmetry is a duality<br />

For our CYs:<br />

The duality is:<br />

Calabi–Yau = trivial can<strong>on</strong>ical bundle<br />

trivial cotangent bundle ⇔ parallelizable manifold<br />

vector space ⇔ dual vector space<br />

tangent bundle ⇔ cotangent bundle<br />

complex geometry ⇔ symplectic geometry<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


K<strong>on</strong>tsevich’s Homological Mirror Symmetry c<strong>on</strong>jecture<br />

New versi<strong>on</strong> of Mirror Symmetry:<br />

DCoh(X ) ∼ = DFuk( ˆX , W )<br />

These are equivalences of derived categories. By B<strong>on</strong>dal–Orlov<br />

rec<strong>on</strong>structi<strong>on</strong> theorem, in the case of case of Fano or general type<br />

the derived categories determine the varieties.<br />

(Detailed explanati<strong>on</strong>s in Maranhão before Carnaval 2013)<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Known cases of the HMS c<strong>on</strong>jecture<br />

The HMS c<strong>on</strong>jecture has been proved in very few cases.<br />

The mirror of an elliptic curve is another elliptic curve<br />

(Zaslow–Polishschuk).<br />

Various partial results were obtained for the case of toric varieties<br />

(Hori–Vafa, P. Clarke).<br />

However, full computati<strong>on</strong>s of the Fukaya–Seidel category were<br />

completed in just a couple of cases.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


AKO Mirror of a Projective Plane<br />

Theorem (Auroux-Katzarkov–Orlov)<br />

The Mirror of CP 2 is the Landau–Ginzburg model which is the<br />

elliptic fibrati<strong>on</strong> with 3 singular fibers, determined by the fiberwise<br />

compactificati<strong>on</strong> of the superpotential W0 : (C ∗ ) 2 → C given by<br />

W0 = x + y + 1<br />

xy<br />

This superpotential has a natural compactificati<strong>on</strong> to an elliptic<br />

fibrati<strong>on</strong><br />

W0 : M → CP 1<br />

in which the fiber over infinity c<strong>on</strong>sists of 9 rati<strong>on</strong>al comp<strong>on</strong>ents.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


AKO Mirror of a Del Pezzo Surface<br />

Theorem (Auroux–Katzarkov–Orlov)<br />

Given any Del Pezzo surface obtained by blowing up CP 2 at k<br />

points, there exists a complexified symplectic form B + iω <strong>on</strong> M<br />

for which<br />

D b (Coh(Xk)) ∼ = D b (Lag(Wk))<br />

where Wk : M → CP 1 is a deformati<strong>on</strong> of Wo such that k of the<br />

critical points in the fiber over infinity have been displaced towards<br />

finite values of the superpotential.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


This is NOT where our vanishing cycle lives<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Vanishing cycle - mathematician’s picture<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Vanishing cycle - physicist’s picture<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Fukaya category<br />

A category whose objects are vanishing cycles or Lagrangian<br />

thimbles. One c<strong>on</strong>siders a symplectic fibrati<strong>on</strong><br />

W : (M, ω) → C<br />

with isolated n<strong>on</strong>-degenerate critical points, at distinct critical<br />

values λ0, . . . , λr of W .<br />

On picks a regular value λ∗ of W and draws arcs γ0, . . . γr joining<br />

λ∗ to the various critical values. By parallel transport al<strong>on</strong>g γi <strong>on</strong>e<br />

obtains a Lagrangian thimbles associated to the vanishing cycles.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


System of arcs<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Fukaya–Seidel category<br />

Definiti<strong>on</strong><br />

The category of vanishing cycles Lag(W , γi) is an A∞-category<br />

which objects L0, . . . , Lr corresp<strong>on</strong>ding to the vanishing cycles.<br />

The morphisms between the objects are given by<br />

⎧<br />

⎨<br />

Hom(Li, Lj) =<br />

⎩<br />

CF ∗ (Li, Lj; R) = R [Li ∩Lj ] if i < j<br />

R · id if i = j<br />

0 if i > j<br />

The differential m1, compositi<strong>on</strong> m2 and higher order products Mk<br />

are defined in terms of Lagrangian Floer homology.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Topological <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> fibrati<strong>on</strong> - definiti<strong>on</strong><br />

Let X be a compact complex variety of dimensi<strong>on</strong> n together with<br />

a surjective map f : X → P 1 . We say that f is a topological<br />

<str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> fibrati<strong>on</strong> (TLF) if:<br />

1. The differential df is surjective outside a finite set of points<br />

{Q1, . . . , Qµ} ⊂ X .<br />

2. For any p ∈ S 2 \ {f (Q1), . . . , f (Qµ)} the fibre f −1 (p) is a<br />

smooth complex variety of dimensi<strong>on</strong> n.<br />

3. The images qi := f (Qi) are distinct for different Qi.<br />

4. Let Xi be the fibre f c<strong>on</strong>taining Qi. Then for each i there<br />

exist small discs qi ∈ Ui and Qi ⊂ UQi ⊂ X such that<br />

f : UQi → Ui is a holomorphic Morse functi<strong>on</strong> and in<br />

coordinates (x0, . . . , xn) ∈ UQi e z ∈ Ui,<br />

z = f (x0, . . . , xn) = x 2 0 + · · · + x 2 n.<br />

5. f |X − {Xi} is locally trivial.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


M<strong>on</strong>odromy representati<strong>on</strong><br />

Since X \ Xi is a fibrati<strong>on</strong> it has the unique path lifting property.<br />

Thus, the choice of a system of arcs determines the m<strong>on</strong>odromy<br />

representati<strong>on</strong><br />

π1(S 2 \ {q1, . . . , qµ}, o) → Aut(π1(X0))<br />

ci ↦→ m<strong>on</strong>(ci)<br />

where X0 is the regular fibre.<br />

Remark<br />

If f : X → S 2 is a TLF in dimnesi<strong>on</strong> 4 and of genus g ≥ 2, then<br />

the m<strong>on</strong>odromy representati<strong>on</strong> determines the diffeomorphism type<br />

of f . A characterizati<strong>on</strong> for higher dimensi<strong>on</strong>s is an open questi<strong>on</strong>.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong><br />

,


M<strong>on</strong>odromy<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Symplectic <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g><br />

Let (X , ω) be a symplectic manifold together with a TLF<br />

f : X → S 2 . We say that f is a symplectic Letschetz fibrati<strong>on</strong> if for<br />

every p ∈ S 2 the symplectic form ω is n<strong>on</strong>degenerate <strong>on</strong> the fibre<br />

Xp over p in the sense that:<br />

◮ Xp is a symplectic sub manifold of X , and<br />

◮ for each i the symplectic form ωQi is n<strong>on</strong> degenerate over the<br />

tangent c<strong>on</strong>e of Xi at Qi.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Examples from algebraic geometry<br />

Modify a <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> pencil by blowing up the base locus<br />

transforming it to a TLF.<br />

Figure : Pencil to fibrati<strong>on</strong>.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Symplectic structure <strong>on</strong> the blow-up<br />

The pull-back of the symplectic form becomes degenerate <strong>on</strong> the<br />

blow-up, hence does not give the TLF the structure of a symplectic<br />

fibrati<strong>on</strong>.<br />

Seidel c<strong>on</strong>structs a symplectic form over the <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> fibrati<strong>on</strong> by<br />

modifying the symplectic form <strong>on</strong> a tubular neighborhood of the<br />

excepti<strong>on</strong>al divisor using partiti<strong>on</strong>s of unity.<br />

But now we loose track of vanishing cycles and thimbles.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


A flag<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


A flag<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


<str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> via Lie theory<br />

Notati<strong>on</strong>/definiti<strong>on</strong>:<br />

Let g be a complex semisimple Lie algebra and G a c<strong>on</strong>nected Lie<br />

group with Lie algebra g.<br />

The Cartan–Killing form of g,<br />

〈X , Y 〉 = tr (ad (X ) ad (Y )) ∈ C<br />

is symmetric and n<strong>on</strong>degenerate.<br />

Fix a Cartan subalgebra h ⊂ g. A root of h is a linear functi<strong>on</strong>al<br />

α : h → C, α = 0. Denote the set of all roots by Π.<br />

An element H ∈ h is regular if α (H) = 0 for all α ∈ Π.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Adjoint orbit<br />

The <strong>adjoint</strong> representati<strong>on</strong> of G in g is denoted by Ad (g) X ,<br />

g ∈ G and X ∈ g. An <strong>adjoint</strong> orbit is given by<br />

O (X ) = Ad(G) · X = {Ad(g) · X ∈ g : g ∈ G}.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Main result<br />

Given H0 ∈ h and H ∈ hR with H a regular element. Then, the<br />

“height functi<strong>on</strong> ” fH : O (H0) → C defined by<br />

fH (x) = 〈H, x〉 x ∈ O (H0)<br />

has a finite number of isolated singularities and defines a <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g><br />

fibrati<strong>on</strong>, that is,<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


<str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> from Lie theory<br />

the following properties hold:<br />

1. The singularities are n<strong>on</strong>degenerate (Hessian n<strong>on</strong> degenerate).<br />

2. If c1, c2 ∈ C are regular values then the level manifolds<br />

f −1<br />

H (c1) and f −1<br />

H (c2) are diffeomorphic.<br />

3. There exists a symplectic form Ω in O (H0) such that if c ∈ C<br />

is a regular value then the level manifold f −1<br />

H (c) is<br />

symplectic, that is, the restricti<strong>on</strong> of Ω to f −1<br />

H (c) is a<br />

symplectic (n<strong>on</strong>degenerate) form.<br />

4. If c ∈ C is a singular value, then f −1<br />

H (c) c<strong>on</strong>tains affine<br />

subspaces (c<strong>on</strong>tained in O (H0)). These subspaces are<br />

symplectic with respect to the form Ω from the previous<br />

item.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Most interesting part of the proof<br />

Lemma<br />

x is a singular point for fH if and <strong>on</strong>ly if x ∈ O (H0) ∩ h = W · H0,<br />

where W is the Weyl group.<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


What I think we proved<br />

Theorem<br />

The Fukaya category for the Landau–Ginzburg model (O(H0), fH)<br />

has at least as many generators as the Weyl group of G.<br />

Proof.<br />

By the fundamental lemma of Picard–<str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> theory, to every<br />

singularity of the <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> fibrati<strong>on</strong> there corresp<strong>on</strong>ds at least <strong>on</strong>e<br />

vanishing cycle.<br />

for me details, and applicati<strong>on</strong>s to HMS...<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>


Third Latin C<strong>on</strong>gress <strong>on</strong> Symmetries in Geometry and<br />

Physics - São Luís, Maranhão, February 1 –10, 2013<br />

Elizabeth Gasparim <str<strong>on</strong>g>Lefschetz</str<strong>on</strong>g> <str<strong>on</strong>g>fibrati<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>adjoint</strong> <strong>orbits</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!