29.03.2013 Views

Frank Hekking - Physics@Technion

Frank Hekking - Physics@Technion

Frank Hekking - Physics@Technion

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Superconducting charge pumps<br />

<strong>Frank</strong> <strong>Hekking</strong><br />

Université Joseph Fourier<br />

& Institut Universitaire de France<br />

Laboratoire de Physique et Modélisation<br />

des Milieux Condensés<br />

Maison des Magistères Jean Perrin<br />

CNRS-Grenoble, France<br />

Together with V. Brosco, R. Fazio, F. Taddei, Pisa (Italy)<br />

M. Möttönen, J. Pekola, J. Vartiainen, Helsinki (Finland)<br />

M. Governale, Bochum (Germany)<br />

Acknowledgment: D. Greenbaum, Y. Gefen<br />

Quantum Pumping, January 7-12, 2007<br />

The Lewiner Institute for Theoretical Physics, Technion, Haifa, Israel


Introduction & Motivation<br />

Outline<br />

Adiabatic charge transfer in Cooper pair pumps<br />

- Relation between pumped charge and geometric phase<br />

Open Cooper pump<br />

-Adiabatic manipulation of Andreev bound states<br />

Closed Cooper pump<br />

-Effect of measuring device on pumped charge<br />

Conclusion


Introduction & Motivation


Parametric pumping in the normal state<br />

« Open » systems « Closed » systems<br />

(Brouwer PRB98)<br />

- modulation of transmission phase<br />

- electronic phase coherence crucial<br />

- interactions weak<br />

- non-integer number of electrons per cycle<br />

(Thouless PRB83, Brouwer PRB98<br />

Switkes et al. Science99)<br />

(Zorin JAP00)<br />

- modulation of Coulomb blockade<br />

- interactions crucial (charge quantization)<br />

- interference effects weak<br />

- integer number of electrons per cycle<br />

(Delft-Saclay, NIST Boulder<br />

PTB Braunschweig, TKK Helsinki)


Normal three-junction pump<br />

Central idea: controlled charge transfer<br />

upon gate modulation<br />

I = e f


Experiment (Delft-Saclay)<br />

(Pothier et al. EPL92)


Single Cooper pair pump (Delft-Saclay)<br />

(Geerligs et al., ZPB ’91)


Revived interest in superconducting pumps<br />

Metrology:<br />

operation of normal state multijunction pumps limited by RC-time<br />

- Pekola et al. PRB99: theory of coherent charge transfer<br />

- Zorin et al. cond-mat00: experiment on a resistive pump<br />

- Vartiainen et al, cond-mat 06, nanoampere pumping of Cooper pairs<br />

Quantum information processing:<br />

adiabatic manipulation of individual Cooper pairs<br />

- Averin cond-mat97: adiabatic quantum computing with Cooper pairs<br />

- Falci et al., Science 00: geometricJosephson qubits<br />

- Ioffe & Feigelman PRB02: protected Josephson qubits<br />

- Bibow et al . PRL02: experiment on resonant tunnelling through coherent charge states


Adiabatic charge transfer in Cooper pair pumps<br />

Relation between pumped charge and geometric phase<br />

Möttönen et al, PRB06<br />

Brosco et al., unpublished


Adiabatic charge transfer in Cooper pair pumps<br />

H(t) = H(Φ, {λ i(t)})<br />

Phase difference across pump<br />

Control parameters<br />

Adiabatic transfer of Cooper pairs is obtained by slow periodic modulation of<br />

control parameters


Adiabatic expansion<br />

Solution of Schrödinger equation up to first<br />

order in 1/T<br />

T denotes the duration of a<br />

pumping cycle<br />

Dynamical contribution, O(T) Geometrical<br />

contribution, O(0)


Instantaneous eigenstates<br />

Initial condition<br />

Instantaneous eigenstates<br />

Expansion in terms of instantaneous eigenstates<br />

Dynamical phase Berry phase


Charge pumped in a cycle of duration T<br />

Dynamical<br />

contribution, O(T)<br />

Geometrical<br />

contribution, O(0)<br />

Berry phase


First example: « open » Cooper pump<br />

Adiabatic manipulation of Andreev bound states<br />

Governale et al, PRL05


−φ/2<br />

Δ0 Hamiltonian<br />

0<br />

0<br />

Open SNS pump<br />

φ(r)<br />

Δ(r)<br />

φ/2<br />

Δ 0


Andreev bound states in the absence of normal<br />

scattering<br />

Plane-wave solutions for particles and holes<br />

Matching yields discrete spectrum<br />

(Kulik, Sov. Phys. JETP70)<br />

NS interface:<br />

Andreev reflection process<br />

χ<br />

Scattering amplitude: α e<br />

±i χ


Andreev bound states in the presence of normal<br />

scattering<br />

(Beenakker, Les Houches 94)<br />

Andreev reflection<br />

Phase factor<br />

Normal scattering<br />

Normal state scattering matrix


Andreev bound states in a short single channel pump<br />

Schrödinger equation<br />

Instantaneous eigenstates<br />

If W < ξ 0<br />

States above the gap do not contribute to current


Dynamical contribution, O(T)<br />

Pumped charge<br />

Geometrical contribution, O(0)


Results<br />

Difference in scales<br />

Q Jos(φ) is O(T), Q p(φ) is O(1)<br />

Parity:<br />

Q Jos(φ) odd, Q p(φ) even<br />

Measure Q(φ)+Q(−φ)<br />

Adiabaticity condition


Second example: « closed » Cooper pair pump<br />

Effect of measuring device<br />

on geometrically pumped charge<br />

Fazio et al, PRB03


Superconducting three-junction pump<br />

Charging energy dominates!


Charging energy: stability diagram


Josephson coupling: coherent mixing of charge states


Results


(Pekola et al. PRB99)<br />

Coherent Cooper pair pump<br />

Triangular gating sequence<br />

incoherent classical<br />

contribution<br />

coherent correction<br />

Interference due to higher order process


Pump: current generates<br />

flux through SQUID<br />

SQUID: critical current<br />

depends on flux<br />

Two possible measuring circuits<br />

Pump: current generates extra<br />

current through escape junction<br />

Escape junction in quantum limit:<br />

voltage sensitive to small current changes<br />

I (μA)<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

V=0<br />

V~2Δ/e<br />

-0.6 -0.4 -0.2 0 0.2 0.4 0.6<br />

Uech (mV)


Measurement circuit: the model<br />

Phase across junction fluctuates<br />

Physics governed by partition function


Integrate out circuit degrees of freedom<br />

Here<br />

Second order: interaction term<br />

Effective theory<br />

First order: renormalized Josephson coupling<br />

where


up to a frequency ω c<br />

RG-analysis:<br />

Resistive environment<br />

Effect on pumped charge<br />

where<br />

logarithmic divergence!<br />

low energy cut-off ω 0 = max (f, eV, …)


Coulomb blockade<br />

lifted at finite bias<br />

Resistive Cooper pair pump<br />

(Zorin, cond-mat00)<br />

Coulomb blockade at<br />

zero bias


α = ω<br />

LCL LCL<br />

s/R s/R<br />

Measurement with a SQUID loop<br />

Frequency-dependent impedance<br />

γ = M 2 /(L s L)<br />

Renormalized Josephson coupling<br />

independent of low energy cut-off!


η 0 R K/ω LCL J<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

Measurement with an escape junction<br />

2 4 6 8 10 12 14<br />

α = ωLCLJ/R Value of R: trade-off hysteresis-fluctuations<br />

Frequency-dependent<br />

impedance<br />

Renormalized Josephson coupling<br />

independent of low energy cut-off!


Conclusions<br />

Adiabatic charge transfer in Cooper pair pumps<br />

- Relation between pumped charge and geometric phase<br />

“Open” Cooper pump<br />

-Adiabatic manipulation of Andreev bound states<br />

“Closed” Cooper pump<br />

-Effect of measuring device on pumped charge:<br />

suppression of Josephson energy<br />

Examples<br />

-Resistive environment: efficiently suppresses coherent part<br />

-Inductive environment: coherent part survives<br />

-SQUID<br />

-Escape junction

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!