29.03.2013 Views

Determination of Ethanol Concentration in Aqueous Solutions

Determination of Ethanol Concentration in Aqueous Solutions

Determination of Ethanol Concentration in Aqueous Solutions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

College <strong>of</strong> Science<br />

<strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong>Ethanol</strong> <strong>Concentration</strong> <strong>in</strong> <strong>Aqueous</strong> <strong>Solutions</strong><br />

Safety<br />

The amount <strong>of</strong> unreacted dichromate is then<br />

determ<strong>in</strong>ed by add<strong>in</strong>g potassium iodide solution which<br />

is also oxidised by the potassium dichromate form<strong>in</strong>g<br />

Lab coats, safety glasses and enclosed footwear must iod<strong>in</strong>e.<br />

be worn at all times <strong>in</strong> the laboratory.<br />

<strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong>Ethanol</strong> <strong>Concentration</strong> 2− <strong>in</strong> + − 3+<br />

The acid dichromate solution needs to be prepared Cr O + 14 H + 6 I → 2 Cr + 3 I2 + 7 H O<br />

2 7<br />

2<br />

with care. <strong>Aqueous</strong> Any concentrated <strong>Solutions</strong> acid spills must be cleaned The iod<strong>in</strong>e is then titrated with a standard solution <strong>of</strong><br />

up by very carefully dilut<strong>in</strong>g with water before wip<strong>in</strong>g sodium thiosulfate and the titration results are used to<br />

up. Take care to put the water <strong>in</strong> the flask first before calculate the ethanol content <strong>of</strong> the orig<strong>in</strong>al solution.<br />

add<strong>in</strong>g the Introduction acid, and add the acid slowly with constant a flask and the alcoholic beverage sample is suspended<br />

<strong>in</strong> a small conta<strong>in</strong>er above it (see diagram).The water 2− 2− −<br />

swirl<strong>in</strong>g. This The method flask uses will a redox get titration quite to hot. f<strong>in</strong>d the<br />

2 S O + I2 → S O + 2 I<br />

and ethanol slowly evaporate and as the ethanol 2 3 comes 4 6<br />

<strong>in</strong> contact with the Because dichromate alcoholic it first dissolves, beverages and is such as w<strong>in</strong>e or beer<br />

then oxidised. More ethanol evaporates until eventually<br />

Introduction<br />

all the ethanol from conta<strong>in</strong> the beverage other has left oxidisable the sample substances that could <strong>in</strong>terfere<br />

and reacted with with the dichromate. the titration, S<strong>in</strong>ce this transfer the dichromate solution is placed <strong>in</strong><br />

takes time, it is necessary to leave the flask with the<br />

This method uses a redox titration to f<strong>in</strong>d the suspended sample a <strong>in</strong> flask a warm and place the overnight. alcoholic beverage sample is suspended<br />

concentration <strong>of</strong> ethanol <strong>in</strong> an aqueous solution. The <strong>in</strong> a small conta<strong>in</strong>er above it (see diagram). The water<br />

ethanol is oxidised to ethanoic acid by react<strong>in</strong>g Equipment it with Needed and ethanol slowly evaporate and as the ethanol comes<br />

an excess <strong>of</strong> potassium dichromate <strong>in</strong> acid. 250 mL conical flasks <strong>in</strong> contact with rubber with stoppers the dichromate it first dissolves, and is<br />

burette then oxidised. More ethanol evaporates until eventually<br />

5 mL beakers or small glass vials all the ethanol from the beverage has left the sample and<br />

beer or w<strong>in</strong>e sample<br />

reacted with the dichromate. S<strong>in</strong>ce this transfer takes<br />

10 mL and 1 mL pipettes<br />

time, it is necessary to leave the flask with the suspended<br />

<strong>in</strong>cubator (optional)<br />

sample <strong>in</strong> a warm place overnight.<br />

<strong>Solutions</strong> Needed<br />

1<br />

concentration <strong>of</strong> ethanol <strong>in</strong> an aqueous solution. The<br />

ethanol is oxidised to ethanoic acid by react<strong>in</strong>g it with<br />

an excess <strong>of</strong> potassium dichromate <strong>in</strong> acid.<br />

2− + 2 Cr O + 16 H + 3 C2H OH →<br />

2 7<br />

5<br />

4 Cr3+ + 11 H O + 3 CH COOH<br />

2 3<br />

The amount <strong>of</strong> unreacted dichromate is then<br />

determ<strong>in</strong>ed by add<strong>in</strong>g potassium iodide solution which<br />

is also oxidised by the potassium dichromate form<strong>in</strong>g<br />

iod<strong>in</strong>e.<br />

2− + − 3+ Cr O + 14 H + 6 I → 2 Cr + 3 I2 + 7 H O<br />

2 7 2− + 2<br />

The 2 iod<strong>in</strong>e Cris Othen titrated + 16 with H a + standard 3 C2Hsolution OH <strong>of</strong> →<br />

2 7<br />

5<br />

sodium thiosulfate and the titration results are used to<br />

4 Cr calculate the ethanol content <strong>of</strong> the orig<strong>in</strong>al solution.<br />

2− 2− −<br />

2 S O + I2 → S O + 2 I 2 3<br />

4 6<br />

Because alcoholic beverages such as w<strong>in</strong>e or beer<br />

conta<strong>in</strong> other oxidisable substances that could <strong>in</strong>terfere<br />

with the titration, the dichromate solution is placed <strong>in</strong><br />

3+ + 11 H O + 3 CH COOH<br />

2 3<br />

250 mL Conical flask<br />

(wide mouth)<br />

Sample holder<br />

Acid dichromate<br />

solution<br />

Rubber stopper<br />

Glass hook<br />

Equipment Needed<br />

Acid dichromate solution: (0.01 molL-1 <strong>in</strong> 5.0 molL-1 sulfuric acid) (see safety notes). Add 125 mL <strong>of</strong> water<br />

to a 500 mL conical flask. Carefully add 70 mL <strong>of</strong><br />

concentrated sulfuric acid with constant swirl<strong>in</strong>g. Cool<br />

flask under cold water tap and add 0.75 g <strong>of</strong> potassium<br />

dichromate. Dilute to 250 mL with distilled water.<br />

Starch <strong>in</strong>dicator solution: (1.0% solution) Dissolve 1.0 g<br />

<strong>of</strong> soluble starch <strong>in</strong> 100 mL <strong>of</strong> recently boiled water. Stir<br />

until dissolved.<br />

Sodium thiosulfate solution: (0.03molL -1 ). Add 7.44 g <strong>of</strong><br />

Na S O .5H O to a 1L volumetric flask, dissolve <strong>in</strong> distilled<br />

2 2 3 2<br />

water and dilute up to the mark.<br />

Potassium iodide solution: (1.2molL -1 burette<br />

beer or w<strong>in</strong>e sample<br />

10 mL and 1 mL pipettes<br />

<strong>in</strong>cubator (optional)<br />

) Dissolve 5 g <strong>of</strong> KI<br />

<strong>in</strong> 25 mL <strong>of</strong> water.<br />

250 mL conical flasks with rubber stoppers<br />

5 mL beakers or small glass vials


<strong>Solutions</strong> Method Needed<br />

Method<br />

Sample Method Preparation<br />

Sample Method Preparation<br />

Acid dichromate solution: (0.01 molL<br />

1. Dilute beer samples 1:20 (10 mL <strong>in</strong> 200 mL) with<br />

distilled 1. Sample Dilute water. Preparation beer samples 1:20 (10 mL <strong>in</strong> 200 mL) with<br />

distilled Sample 1. Dilute water. Preparation beer samples 1:20 (10 mL <strong>in</strong> 200 mL) with<br />

2. Dilute w<strong>in</strong>e samples 1:50 (20 mL <strong>in</strong> 1000 mL) with<br />

distilled 2. 1. distilled Dilute water.<br />

water. w<strong>in</strong>e beer samples 1:20 1:50 (10 (20 mL mL <strong>in</strong> <strong>in</strong> 200 1000 mL) mL) with with<br />

distilled 2. Dilute water. w<strong>in</strong>e samples 1:50 (20 mL <strong>in</strong> 1000 mL) with<br />

Titration 2. distilled Dilute water. (described w<strong>in</strong>e samples for one 1:50 (20 beverage) mL <strong>in</strong> 1000 mL) with<br />

1. Titration distilled Transfer water. (described 10 mL <strong>of</strong> for the one acid beverage) dichromate solution (see<br />

1. Titration safety Transfer notes) (described to 10 a mL 250 <strong>of</strong> mL for the conical one acid beverage) dichromate flask with match<strong>in</strong>g solution (see<br />

Titration 1. rubber safety Transfer notes) stopper. (described to 10 a mL 250 <strong>of</strong> mL for the conical one acid beverage) dichromate flask with match<strong>in</strong>g solution (see<br />

1. rubber safety<br />

2. Transfer notes) stopper. to<br />

Pipette 1 10 a<br />

mL mL 250<br />

<strong>of</strong> <strong>of</strong> mL<br />

the the conical<br />

diluted acid dichromate flask with match<strong>in</strong>g<br />

beverage sample solution <strong>in</strong>to (see<br />

the 2. safety rubber<br />

sample Pipette notes) stopper.<br />

holder. 1 to mL a 250 <strong>of</strong> This the mL can diluted conical be a beverage flask 5mL beaker with sample match<strong>in</strong>g or glass <strong>in</strong>to<br />

vial. the rubber 2. sample Prepare Pipette stopper. holder. three 1 mL <strong>of</strong> samples This the can diluted <strong>of</strong> be the a beverage 5mL beverage beaker sample as or the glass <strong>in</strong>to entire<br />

contents vial. 2. the sample Prepare Pipette <strong>of</strong> holder. the three 1 mL flask <strong>of</strong> samples This the are can diluted used <strong>of</strong> be the <strong>in</strong> a beverage the 5mL beverage titration. beaker sample as or the glass <strong>in</strong>to entire<br />

contents <strong>of</strong> the flask are used <strong>in</strong> the titration.<br />

3. the vial. sample Prepare<br />

Suspend holder. three samples<br />

the sample This can <strong>of</strong><br />

holder be the a 5mL beverage<br />

over beaker as<br />

the dichromate or the glass entire<br />

solution 3. vial. contents Prepare Suspend <strong>of</strong> the<br />

and three hold the flask sample <strong>in</strong> samples are used<br />

place holder with <strong>of</strong> the <strong>in</strong> the<br />

the over beverage titration.<br />

rubber the dichromate stopper as the entire (see<br />

figure solution contents 3. Suspend 1). and <strong>of</strong> the hold the flask sample <strong>in</strong> place are used holder with <strong>in</strong> the the over rubber titration. the dichromate stopper (see<br />

figure 1).<br />

4. 3. solution<br />

Store Suspend and hold<br />

the the flask sample <strong>in</strong> place<br />

overnight holder with the<br />

at 25–30°C over rubber the (an dichromate stopper (see<br />

<strong>in</strong>cubator<br />

is 4. solution figure<br />

ideal). Store 1). and the hold flask <strong>in</strong> overnight place with at the 25–30°C rubber (an stopper <strong>in</strong>cubator (see<br />

is figure 4. ideal). Store 1). the flask overnight at 25–30°C (an <strong>in</strong>cubator<br />

5. Next morn<strong>in</strong>g allow the flask to come to room<br />

temperature, 5. 4. is ideal). Next Store morn<strong>in</strong>g the then flask loosen allow overnight the flask stopper at 25–30°C to come carefully (an to <strong>in</strong>cubator room and<br />

remove temperature, is 5. ideal). Next and morn<strong>in</strong>g discard then loosen allow the sample the flask stopper holder. to come carefully to room and<br />

remove and discard the sample holder.<br />

6. 5. temperature,<br />

R<strong>in</strong>se Next morn<strong>in</strong>g then loosen<br />

the walls allow <strong>of</strong> the the<br />

flask flask stopper<br />

with to come carefully<br />

distilled to water, room and<br />

then 6. temperature, remove R<strong>in</strong>se and<br />

add about the discard then walls 100 loosen the<br />

mL <strong>of</strong> the sample<br />

<strong>of</strong> the distilled flask stopper holder. with water distilled carefully and 1 water, mL and <strong>of</strong><br />

potassium then remove 6. R<strong>in</strong>se add and about the iodide discard walls 100 solution. mL the <strong>of</strong> the <strong>of</strong> sample distilled flask Swirl holder. with to water mix. distilled and 1 water, mL <strong>of</strong><br />

potassium iodide solution. Swirl to mix.<br />

7. 6. then<br />

Prepare R<strong>in</strong>se add about the 3 blank walls 100 mL <strong>of</strong> titrations the <strong>of</strong> distilled flask by with water<br />

add<strong>in</strong>g distilled and 1<br />

10 mL water, mL <strong>of</strong><br />

<strong>of</strong> acid<br />

dichromate 7. then potassium Prepare add about iodide<br />

solution 3 blank 100 solution. mL titrations to <strong>of</strong> a conical distilled Swirl by to<br />

flask, add<strong>in</strong>g water mix.<br />

add<strong>in</strong>g and 10 mL 1 100 mL <strong>of</strong> acid <strong>of</strong> mL<br />

<strong>of</strong> dichromate potassium 7. water Prepare and iodide solution 1 3 mL blank solution. <strong>of</strong> potassium titrations to a conical Swirl by iodide to flask, add<strong>in</strong>g mix. solution add<strong>in</strong>g 10 mL 100 <strong>of</strong> and acid mL<br />

swirl<strong>in</strong>g <strong>of</strong> 7. dichromate water Prepare to and mix. solution 1 3 mL blank <strong>of</strong> potassium titrations to a conical by iodide flask, add<strong>in</strong>g solution add<strong>in</strong>g 10 mL 100 <strong>of</strong> and acid mL<br />

swirl<strong>in</strong>g to mix.<br />

8. dichromate <strong>of</strong> water and<br />

Fill a burette solution 1 mL <strong>of</strong> potassium<br />

with to sodium a conical iodide<br />

thiosulfate flask, solution add<strong>in</strong>g solution 100 and mL<br />

and 8. <strong>of</strong> swirl<strong>in</strong>g water titrate Fill to a and burette mix.<br />

each 1 mL flask <strong>of</strong> with potassium with sodium sodium thiosulfate iodide thiosulfate. solution solution When and<br />

the and swirl<strong>in</strong>g 8. brown titrate Fill to a burette iod<strong>in</strong>e each mix. flask colour with with sodium fades sodium to thiosulfate yellow thiosulfate. (figure solution When 2), add<br />

1 the 8. and mL brown titrate <strong>of</strong> Fill starch a burette iod<strong>in</strong>e each solution flask colour with with and sodium fades sodium keep to thiosulfate titrat<strong>in</strong>g yellow thiosulfate. (figure until solution the When 2), add blue<br />

colour 1 and the mL brown titrate <strong>of</strong> disappears starch iod<strong>in</strong>e each solution flask colour (figures with and fades 3-5). sodium keep to Titrate titrat<strong>in</strong>g yellow thiosulfate. the (figure until blank the When 2), flasks add blue<br />

first, colour the 1 mL brown <strong>of</strong> and disappears starch repeat iod<strong>in</strong>e solution until colour (figures concordant and fades 3-5). keep to Titrate titrat<strong>in</strong>g yellow results the (figure are until blank obta<strong>in</strong>ed the 2), flasks add blue<br />

(titres first, 1 colour mL <strong>of</strong> and agree<strong>in</strong>g disappears starch repeat solution to until (figures with<strong>in</strong> concordant and 0.1 3-5). keep mL). Titrate titrat<strong>in</strong>g Then results the titrate are until blank obta<strong>in</strong>ed each the flasks blue <strong>of</strong> the<br />

alcohol (titres colour first, and agree<strong>in</strong>g disappears samples. repeat to until If (figures with<strong>in</strong> the concordant three 0.1 3-5). mL). samples Titrate Then results <strong>of</strong> the titrate the are blank beverage obta<strong>in</strong>ed each flasks <strong>of</strong> the do<br />

not alcohol first, (titres give and agree<strong>in</strong>g samples. concordant repeat to until If with<strong>in</strong> the results, concordant three 0.1 mL). further samples Then results samples <strong>of</strong> titrate the are beverage obta<strong>in</strong>ed will each need <strong>of</strong> the do to<br />

be not (titres alcohol prepared. give agree<strong>in</strong>g samples. concordant to If with<strong>in</strong> the results, three 0.1 mL). further samples Then samples <strong>of</strong> titrate the beverage will each need <strong>of</strong> the do to<br />

be alcohol not prepared. give samples. concordant If the results, three further samples samples <strong>of</strong> the beverage will need do to<br />

not be prepared. give concordant results, further samples will need to<br />

be prepared.<br />

-1 <strong>in</strong> 5.0 molL-1 sulfuric acid) (see safety notes). Add 125 mL <strong>of</strong> water<br />

to a 500 mL conical flask. Carefully add 70 mL <strong>of</strong><br />

concentrated sulfuric acid with constant swirl<strong>in</strong>g. Cool<br />

flask under cold water tap and add 0.75 g <strong>of</strong> potassium<br />

dichromate. Dilute to 250 mL with distilled water.<br />

Starch <strong>in</strong>dicator solution: (1.0% solution) Dissolve 1.0 g<br />

<strong>of</strong> soluble starch <strong>in</strong> 100 mL <strong>of</strong> recently boiled water. Stir<br />

until dissolved.<br />

Sodium thiosulfate solution: (0.03molL-1 ). Add 7.44g<br />

<strong>of</strong> Na S O .5H O to a 1L volumetric flask, dissolve <strong>in</strong><br />

2 2 3 2<br />

distilled water and dilute up to the mark.<br />

Potassium iodide solution: (1.2molL-1 ) Dissolve 5 g <strong>of</strong> KI<br />

<strong>in</strong> 25 mL <strong>of</strong> water.<br />

Method<br />

Sample Preparation<br />

1. Dilute beer samples 1:20 (10 mL <strong>in</strong> 200 mL) with<br />

distilled water.<br />

2. Dilute w<strong>in</strong>e samples 1:50 (20 mL <strong>in</strong> 1000 mL) with<br />

distilled water.<br />

Titration (described for one beverage)<br />

1. Transfer 10 mL <strong>of</strong> the acid dichromate solution (see<br />

safety notes) to a 250 mL conical flask with match<strong>in</strong>g<br />

rubber stopper.<br />

2. Pipette 1mL <strong>of</strong> the diluted beverage sample <strong>in</strong>to the<br />

sample holder. This can be a 5 mL beaker or glass<br />

vial. Prepare three samples <strong>of</strong> the beverage as the<br />

entire contents <strong>of</strong> the flask are used <strong>in</strong> the titration.<br />

3. Suspend the sample holder over the dichromate<br />

solution and hold <strong>in</strong> place with the rubber stopper<br />

(see figure 1).<br />

4. Store the flask overnight at 25–30°C<br />

(an <strong>in</strong>cubator is ideal).<br />

5. Next morn<strong>in</strong>g allow the flask to come to room<br />

temperature, then loosen the stopper carefully and<br />

remove and discard the sample holder.<br />

6. R<strong>in</strong>se the walls <strong>of</strong> the flask with distilled water, then<br />

add about 100 mL <strong>of</strong> distilled water and<br />

1 mL <strong>of</strong> potassium iodide solution. Swirl to mix.<br />

7. Prepare 3 blank titrations by add<strong>in</strong>g 10 mL <strong>of</strong> acid<br />

dichromate solution to a conical flask, add<strong>in</strong>g 100<br />

mL <strong>of</strong> water and 1 mL <strong>of</strong> potassium iodide solution<br />

and swirl<strong>in</strong>g to mix.<br />

8 Fill a burette with sodium thiosulfate solution and<br />

titrate each flask with sodium thiosulfate. When the<br />

2<br />

2<br />

2<br />

Figure Figure 1 Experimental 1 Experimental setup setup for<br />

oxidation Figure for oxidation 1 Experimental <strong>of</strong> ethanol. <strong>of</strong> ethanol. Conical setup for flask<br />

conta<strong>in</strong>s oxidation Figure Conical 1 Experimental<br />

yellow <strong>of</strong> flask ethanol. acid conta<strong>in</strong>s dichromate Conical setup yellow for flask<br />

solution conta<strong>in</strong>s and yellow is sealed acid dichromate with rubber<br />

stopper. solution<br />

Figure<br />

oxidation acid 1 dichromate Experimental<br />

<strong>of</strong> ethanol. solution Conical<br />

Small and is beaker sealed<br />

setup conta<strong>in</strong><strong>in</strong>g with rubber<br />

for<br />

flask and<br />

beverage stopper.<br />

oxidation<br />

conta<strong>in</strong>s is sealed yellow<br />

Small sample <strong>of</strong> with ethanol.<br />

acid rubber dichromate<br />

beaker is suspended Conical stopper.<br />

conta<strong>in</strong><strong>in</strong>g<br />

flask above<br />

from beverage<br />

conta<strong>in</strong>s<br />

solution Small and<br />

hook<br />

beaker yellow<br />

is sealed<br />

sample <strong>in</strong> rubber acid conta<strong>in</strong><strong>in</strong>g<br />

is suspended stopper. dichromate<br />

with rubber<br />

above<br />

from<br />

solution<br />

stopper. beverage Small<br />

hook<br />

and<br />

<strong>in</strong><br />

sample is<br />

beaker<br />

rubber<br />

sealed<br />

stopper.<br />

is conta<strong>in</strong><strong>in</strong>g<br />

with suspended rubber<br />

stopper.<br />

beverage<br />

above Small from<br />

sample<br />

beaker hook<br />

is suspended<br />

<strong>in</strong> conta<strong>in</strong><strong>in</strong>g rubber<br />

above<br />

beverage<br />

from hook<br />

sample<br />

<strong>in</strong> rubber<br />

is suspended<br />

stopper.<br />

stopper.<br />

above<br />

Figure<br />

from hook<br />

2 Titration<br />

<strong>in</strong> rubber<br />

<strong>of</strong> the<br />

stopper.<br />

iod<strong>in</strong>e<br />

formed. Figure Figure 2 The Titration 2 Titration left flask <strong>of</strong> the shows <strong>of</strong> iod<strong>in</strong>e the the<br />

brown-coloured formed. Figure<br />

iod<strong>in</strong>e<br />

2 The Titration<br />

formed. left flask solution<br />

<strong>of</strong><br />

The<br />

the shows left<br />

iod<strong>in</strong>e<br />

result<strong>in</strong>g flask the<br />

from brown-coloured formed. shows the formation solution <strong>of</strong> iod<strong>in</strong>e. result<strong>in</strong>g The<br />

right from<br />

Figure flask the<br />

2<br />

The the<br />

Titration<br />

left brown-coloured<br />

flask<br />

formation shows how <strong>of</strong><br />

<strong>of</strong><br />

the<br />

shows<br />

the iod<strong>in</strong>e.<br />

iod<strong>in</strong>e<br />

the<br />

brown The<br />

colour right<br />

formed.<br />

brown-coloured solution result<strong>in</strong>g<br />

flask fades The<br />

shows<br />

left to pale flask<br />

solution from<br />

how yellow shows<br />

result<strong>in</strong>g the<br />

the brown as the the<br />

iod<strong>in</strong>e colour<br />

brown-coloured<br />

from formation the formation <strong>of</strong> iod<strong>in</strong>e.<br />

is fades titrated to pale<br />

solution<br />

<strong>of</strong> iod<strong>in</strong>e. The<br />

with yellow thiosulfate result<strong>in</strong>g<br />

The right<br />

as the<br />

(this iod<strong>in</strong>e<br />

from<br />

right flask flask<br />

is the<br />

shows<br />

is the titrated<br />

formation<br />

shows how stage at with which <strong>of</strong><br />

the thiosulfate<br />

iod<strong>in</strong>e.<br />

brown<br />

starch The<br />

solution (this<br />

right<br />

colour<br />

is<br />

flask<br />

fades fades<br />

the should shows<br />

to pale to<br />

stage be at<br />

how pale yellow<br />

added). which<br />

the yellow<br />

starch<br />

brown<br />

as the<br />

solution<br />

colour<br />

iod<strong>in</strong>e as the is<br />

fades<br />

titrated iod<strong>in</strong>e<br />

should<br />

to pale<br />

with is titrated<br />

be added).<br />

yellow<br />

thiosulfate<br />

as with the<br />

iod<strong>in</strong>e<br />

(this thiosulfate is<br />

is<br />

the<br />

titrated<br />

stage (this at<br />

with<br />

which is thiosulfate the starch stage at<br />

Figure 3 Upon addition <strong>of</strong> starch the<br />

(this<br />

solution which is the<br />

should starch stage<br />

be<br />

at solution added).<br />

which starch should<br />

solution Figure 3 Upon takes addition on a blue-black <strong>of</strong> starch colour<br />

solution should be added).<br />

the<br />

be added).<br />

due solution Figure<br />

to<br />

3<br />

the<br />

Upon takes formation<br />

addition on a blue-black <strong>of</strong><br />

<strong>of</strong><br />

a starch-<br />

starch colour the<br />

iod<strong>in</strong>e due to complex. the formation <strong>of</strong> a starchiod<strong>in</strong>e<br />

Figure<br />

solution<br />

Figure<br />

complex.<br />

3 Upon takes 3 Upon addition on a addition blue-black<br />

<strong>of</strong> starch <strong>of</strong> colour<br />

the<br />

solution<br />

due<br />

solution starch<br />

to the<br />

takes takes the<br />

formation<br />

solution on on a blue-black blue-black<br />

<strong>of</strong> a<br />

takes<br />

starch-<br />

colour colour on a<br />

due<br />

iod<strong>in</strong>e<br />

due to complex.<br />

blue-black the formation colour <strong>of</strong> <strong>of</strong> due a starch- to the<br />

iod<strong>in</strong>e formation complex.<br />

<strong>of</strong> a starch-iod<strong>in</strong>e<br />

complex.<br />

Figure 4 As more thiosulfate is<br />

added Figure and 4 As we more near thiosulfate the titration is<br />

endpo<strong>in</strong>t, added Figure and 4 As<br />

the we more<br />

blue-black near thiosulfate the titration colour<br />

is<br />

from<br />

the endpo<strong>in</strong>t, added<br />

starch-iod<strong>in</strong>e the blue-black complex colour fades. from<br />

the<br />

Figure Figure and<br />

starch-iod<strong>in</strong>e<br />

4 As 4 we<br />

more more As near more thiosulfate thiosulfate<br />

the thiosulfate titration<br />

complex fades.<br />

is<br />

endpo<strong>in</strong>t,<br />

added is added and<br />

the<br />

we and blue-black<br />

near near we the near titration titration<br />

colour the from<br />

the<br />

endpo<strong>in</strong>t, titration starch-iod<strong>in</strong>e<br />

the endpo<strong>in</strong>t, blue-black<br />

complex the colour<br />

fades. blue- from<br />

the black starch-iod<strong>in</strong>e starch-iod<strong>in</strong>e colour from complex the fades. starchiod<strong>in</strong>e<br />

complex fades.<br />

Figure 5 The endpo<strong>in</strong>t <strong>of</strong> the<br />

titration Figure 5 The is reached endpo<strong>in</strong>t when <strong>of</strong> the just<br />

enough titration Figure 5<br />

thiosulfate<br />

The is reached endpo<strong>in</strong>t when is added<br />

<strong>of</strong> the just to react<br />

with enough all the thiosulfate iod<strong>in</strong>e present is added and to the react<br />

solution with<br />

Figure<br />

titration<br />

all<br />

5 5<br />

the<br />

The<br />

is reached<br />

becomes iod<strong>in</strong>e<br />

endpo<strong>in</strong>t<br />

when<br />

colourless. present<br />

<strong>of</strong> <strong>of</strong> the<br />

just<br />

Figure 5 The endpo<strong>in</strong>t and <strong>of</strong> the<br />

solution<br />

titration<br />

enough thiosulfate<br />

is<br />

becomes<br />

reached<br />

colourless.<br />

when<br />

is added<br />

just<br />

to react<br />

titration is reached when just<br />

enough<br />

with all the<br />

thiosulfate<br />

iod<strong>in</strong>e present<br />

is added added<br />

and<br />

to<br />

the<br />

react<br />

with<br />

solution<br />

enough<br />

all the<br />

becomes<br />

thiosulfate<br />

iod<strong>in</strong>e<br />

colourless.<br />

is added<br />

to react with all present the iod<strong>in</strong>e and the<br />

solution becomes colourless.<br />

present and the solution<br />

becomes colourless.


own iod<strong>in</strong>e colour fades to yellow (figure 2), add 1mL<br />

<strong>of</strong> starch solution and keep titrat<strong>in</strong>g until the blue<br />

colour disappears<br />

(figures 3–5). Titrate the blank flasks first, and repeat<br />

until concordant results are obta<strong>in</strong>ed (titres agree<strong>in</strong>g<br />

to with<strong>in</strong> 0.1 mL). Then titrate each <strong>of</strong> the alcohol<br />

samples. If the three samples <strong>of</strong> the beverage do not<br />

give concordant results, further samples will need to be<br />

prepared.<br />

Result Calculations<br />

The blank titration tells you how much acid dichromate<br />

was present at the start. As no alcohol was added the<br />

full amount <strong>of</strong> the dichromate is still present. The<br />

blank titrations are carried out so the result can be<br />

compared with those <strong>of</strong> the sample titrations.<br />

1. Determ<strong>in</strong>e the average volume <strong>of</strong> sodium<br />

thiosulfate used for your sample from your<br />

concordant sample results.<br />

2. Determ<strong>in</strong>e the average volume <strong>of</strong> sodium<br />

thiosulfate used for the blank titration from your<br />

concordant blank results.<br />

3. Subtract the volume <strong>of</strong> the sodium thiosulfate<br />

solution used for the sample titration from the<br />

volume used for the blank titration. This volume<br />

<strong>of</strong> the sodium thiosulfate solution is now used to<br />

determ<strong>in</strong>e the alcohol concentration.<br />

4. Calculate the number <strong>of</strong> moles <strong>of</strong> sodium<br />

thiosulfate <strong>in</strong> this volume.<br />

5. Us<strong>in</strong>g the equations, determ<strong>in</strong>e the relationship<br />

between the moles <strong>of</strong> sodium thiosulfate and the<br />

moles <strong>of</strong> ethanol.<br />

2- 2-<br />

– as 6 mol <strong>of</strong> S O is equivalent to 1 mol <strong>of</strong> Cr2O 2 3<br />

7<br />

2- – and 2 mol <strong>of</strong> Cr O is equivalent to 3 mol <strong>of</strong><br />

2 7<br />

C H OH 2 5<br />

2- – then 1 mol <strong>of</strong> S O is equivalent to 0.25 mol <strong>of</strong><br />

2 3<br />

C H OH 2 5<br />

6. Use this ratio to calculate the moles <strong>of</strong> alcohol <strong>in</strong> the<br />

sample solution.<br />

7. Remember to allow for the dilution factor<br />

eg. if the dilution was 1:20 the result needs to be<br />

multiplied by 20.<br />

8. Convert the answer <strong>in</strong> moles per litre to percentage<br />

(grams per 100mL) to compare with the figure given<br />

on the bottle <strong>of</strong> the alcoholic beverage tested.<br />

Contact Us<br />

If you have any questions or comments relat<strong>in</strong>g to this<br />

experiment, please contact us. Please note that this<br />

service is for senior school chemistry students <strong>in</strong> New<br />

Zealand only. We regret we are unable to respond to<br />

queries from overseas.<br />

Outreach<br />

College <strong>of</strong> Science<br />

University <strong>of</strong> Canterbury<br />

Private Bag 4800<br />

Christchurch<br />

New Zealand<br />

Phone: +64 3 364 2178<br />

Fax: +64 3 364 2490<br />

Email: outreach@canterbury.ac.nz<br />

www.outreach.canterbury.ac.nz

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!