03.04.2013 Views

Post-Newtonian methods and applications - Philippe G. LeFloch

Post-Newtonian methods and applications - Philippe G. LeFloch

Post-Newtonian methods and applications - Philippe G. LeFloch

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

POST-NEWTONIAN METHODS AND APPLICATIONS<br />

Luc Blanchet<br />

Gravitation et Cosmologie (GRεCO)<br />

Institut d’Astrophysique de Paris<br />

4 novembre 2009<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 1 / 38


Ground-based laser interferometric detectors<br />

LIGO GEO<br />

LIGO/VIRGO/GEO observe the GWs in<br />

the high-frequency b<strong>and</strong><br />

10 Hz f 10 3 Hz<br />

VIRGO<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 2 / 38


Space-based laser interferometric detector<br />

LISA<br />

LISA will observe the GWs in the low-frequency b<strong>and</strong><br />

10 −4 Hz f 10 −1 Hz<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 3 / 38


The inspiral <strong>and</strong> merger of compact binaries<br />

Neutron stars spiral <strong>and</strong> coalesce Black holes spiral <strong>and</strong> coalesce<br />

1 Neutron star (M = 1.4 M⊙) events will be detected by ground-based<br />

detectors LIGO/VIRGO/GEO<br />

2 Stellar size black hole (5 M⊙ M 20 M⊙) events will also be detected by<br />

ground-based detectors<br />

3 Supermassive black hole (10 5 M⊙ M 10 8 M⊙) events will be detected<br />

by the space-based detector LISA<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 4 / 38


Supermassive black-hole coalescences as detected by LISA<br />

When two galaxies collide their central supermassive black holes may form a<br />

bound binary system which will spiral <strong>and</strong> coalesce. LISA will be able to detect the<br />

gravitational waves emitted by such enormous events anywhere in the Universe<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 5 / 38


GRAVITATIONAL WAVE TEMPLATES<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 6 / 38


Methods to compute gravitational-wave templates<br />

4<br />

3<br />

2<br />

1<br />

0<br />

log 10 (r 12 /m)<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

Numerical<br />

Relativity<br />

0 1 2 3<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

&<br />

Perturbation<br />

Theory<br />

Perturbation<br />

Theory<br />

4<br />

log 10 (m 2 /m 1 )<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 7 / 38


Methods to compute gravitational-wave templates<br />

4<br />

3<br />

2<br />

1<br />

0<br />

log 10 (r 12 /m)<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

Numerical<br />

Relativity<br />

m 2<br />

r 12<br />

0 1 2 3<br />

m 1<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

&<br />

Perturbation<br />

Theory<br />

Perturbation<br />

Theory<br />

4<br />

log 10 (m 2 /m 1 )<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 7 / 38


Methods to compute gravitational-wave templates<br />

4<br />

3<br />

2<br />

1<br />

0<br />

log 10 (r 12 /m)<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

Numerical<br />

Relativity<br />

0 1 2 3<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

&<br />

Perturbation<br />

Theory<br />

Perturbation<br />

Theory<br />

4<br />

m 1<br />

log 10 (m 2 /m 1 )<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 7 / 38<br />

m 2


Methods to compute gravitational-wave templates<br />

4<br />

3<br />

2<br />

1<br />

0<br />

log 10 (r 12 /m)<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

Numerical<br />

Relativity<br />

0 1 2 3<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

&<br />

Perturbation<br />

Theory<br />

Perturbation<br />

Theory<br />

4<br />

log 10 (m 2 /m 1 )<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 7 / 38


The inspiral (or chirp) of compact binary systems<br />

The most interesting known source of gravitational waves for the<br />

LIGO/VIRGO detectors <strong>and</strong> a very important one for LISA<br />

The dynamics of these systems is driven by gravitational radiation reaction<br />

effects or equivalently by the loss of energy by gravitational radiation<br />

Theoretical waveforms (templates) for detection <strong>and</strong> analysis of the signals<br />

should be very accurate in terms of a post-<strong>Newtonian</strong> expansion<br />

<strong>Post</strong>-<strong>Newtonian</strong> waveforms for the inspiral should be completed by numerical<br />

calculations of the merger <strong>and</strong> ringdown phases<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 8 / 38


PN templates for inspiralling compact binaries<br />

d<br />

i<br />

r<br />

e<br />

c<br />

t<br />

i<br />

o<br />

n<br />

a<br />

s<br />

c<br />

e<br />

n<br />

d<br />

i<br />

n<br />

g<br />

n<br />

o<br />

d<br />

e<br />

m 2<br />

ascending node<br />

<br />

i<br />

observer<br />

m 1<br />

orbital plane<br />

The orbital phase φ(t) should be monitored in<br />

LIGO/VIRGO detectors with precision<br />

δφ ∼ π<br />

φ(t) = φ0 −<br />

o<br />

f<br />

1<br />

<br />

GMω<br />

32ν c3 −5/3 1 +<br />

<br />

result of the quadrupole formalism<br />

(sufficient for the binary pulsar)<br />

1PN 1.5PN<br />

+<br />

c2 c3 <br />

3PN<br />

+ · · · + + · · ·<br />

c6 <br />

needs to be computed with high PN precision<br />

Detailed data analysis (using the sensitivity noise curve of LIGO/VIRGO<br />

detectors) show that the required precision is at least 2PN for detection <strong>and</strong> 3PN<br />

for parameter estimation<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 9 / 38


Matching the PN inspiral to numerical merger waveforms<br />

The numerical merger waveform is matched with high accuracy to the PN inspiral<br />

waveform. Current precision of the PN waveform is<br />

3.5PN order in phase [LB, Faye, Iyer & Joguet 2002; LB, Damour, Esposito-Farèse & Iyer 2004]<br />

3PN order in amplitude [LB, Faye, Iyer & Siddhartha 2008]<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 10 / 38


PN prediction for the ICO of binary black holes<br />

The convergence of the st<strong>and</strong>ard Taylor<br />

exp<strong>and</strong>ed PN series is very good.<br />

Numerical point is from [Gourgoulhon,<br />

Gr<strong>and</strong>clément & Bonazzola 2001]<br />

There is an excellent agreement with the<br />

st<strong>and</strong>ard 3PN prediction. Numerical<br />

points are from [Caudill, Cook, Grigsby & Pfeiffer<br />

2006]<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 11 / 38


PN contributions to the number of GW cycles<br />

Table: PN cycles accumulated in the b<strong>and</strong>width of LIGO/VIRGO<br />

(10 + 10)M⊙<br />

(1.4 + 1.4)M⊙<br />

<strong>Newtonian</strong> 601 16034<br />

1PN +59.3 +441<br />

1.5PN −51.4+16.0 κ1 χ1 + 16.0 κ2 χ2 −211+65.7 κ1 χ1 + 65.7 κ2 χ2<br />

2PN +4.1−3.3 κ1 κ2 χ1 χ2 + 1.1 ξ χ1 χ2 +9.9−8.0 κ1 κ2 χ1 χ2 + 2.8 ξ χ1 χ2<br />

2.5PN<br />

3PN<br />

−7.1+5.5 κ1 χ1 + 5.5 κ2 χ2<br />

+2.2<br />

−11.7+9.0 κ1 χ1 + 9.0 κ2 χ2<br />

+2.6<br />

3.5PN −0.8 −0.9<br />

Table: PN cycles accumulated in the b<strong>and</strong>width of LISA<br />

(10 6 + 10 6 )M⊙<br />

(10 5 + 10 5 )M⊙<br />

<strong>Newtonian</strong> 2267 9570<br />

1PN +134 +323<br />

1.5PN −92.4+28.8 κ1 χ1 + 28.8 κ2 χ2 −170+53 κ1 χ1 + 53 κ2 χ2<br />

2PN +6.0−4.8 κ1 κ2 χ1 χ2 + 1.7 ξ χ1 χ2 +8.7−7.1 κ1 κ2 χ1 χ2 + 2.4 ξ χ1 χ2<br />

2.5PN −9.0+6.9 κ1 χ1 + 6.9 κ2 χ2 −11.0+8.5 κ1 χ1 + 8.5 κ2 χ2<br />

3PN +2.3 +2.5<br />

3.5PN −0.9 −0.9<br />

Spin effects are indicated in green <strong>and</strong> tail effects are in red<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 12 / 38


GRAVITATIONAL SELF-FORCE THEORY<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 13 / 38


General problem of the self-force<br />

A particle is moving on a background<br />

space-time<br />

Its own stress-energy tensor modifies the<br />

background gravitational field<br />

Because of the “back-reaction” the motion<br />

of the particle deviates from a background<br />

geodesic hence the appearance of a self force<br />

u <br />

u<br />

f<br />

The self acceleration of the particle is proportional to its mass<br />

Dū µ<br />

dτ = f µ <br />

m1<br />

= O<br />

The gravitational self force includes both dissipative (radiation reaction) <strong>and</strong><br />

conservative effects.<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 14 / 38<br />

m2<br />

m 1<br />

f <br />

m 2


Self-force in perturbation theory<br />

The space-time metric gµν is decomposed as a background metric ¯gµν plus<br />

hµν = linearized parturbation of the background space-time<br />

The field equation in an harmonic gauge reads<br />

u<br />

<br />

particle's trajectory<br />

<br />

z<br />

h µν µ ν<br />

+ 2R ρ σ h ρσ = −16π T µν<br />

x<br />

The retarded solution is<br />

h µν <br />

µν<br />

(x) = 4m1 G ρσ(x, z) ū<br />

ret<br />

ρ ū σ + O(m 2 1)<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 15 / 38<br />

Γ


Green function responsible for the self-force [Detweiler & Whiting 2003]<br />

The symmetric (S) Green function is defined by the prescription<br />

G =<br />

S<br />

1<br />

<br />

G<br />

2 ret + G <br />

−H<br />

adv<br />

where H is homogeneous solution of the wave equation<br />

1 GS is symmetric under a time reversal hence corresponds to stationary waves<br />

at infinity <strong>and</strong> does not produce a reaction force on the particle<br />

2 It has the same divergent behavior as Gret on the particle’s worldline<br />

3 It is non zero only when x <strong>and</strong> z are related by a space-like interval<br />

The radiative (R) Green function responsible for the self force is then<br />

G(x, z) = G(x, z) − G(x, z) =<br />

R<br />

ret S<br />

1<br />

<br />

G<br />

2 ret − G <br />

+H<br />

adv<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 16 / 38


Causal behaviour of the radiative Green function<br />

The radiative Green function is<br />

1 causal in the sense that<br />

G(x) = lim G(x, z)<br />

R x→z R<br />

depends only on the particle’s past history<br />

2 smooth (i.e. C ∞ ) on the particle’s trajectory<br />

z<br />

G (x,z)<br />

ret<br />

z<br />

x<br />

G (x,z)<br />

S<br />

x<br />

z<br />

G (x,z)<br />

adv<br />

z<br />

G (x,z)<br />

R<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 17 / 38<br />

x<br />

x


Computation of the self-force [Mino, Sasaki & Tanaka 1997; Quinn & Wald 1997]<br />

The metric perturbation is decomposed as<br />

hµν = h µν<br />

S<br />

<br />

+ h µν<br />

R<br />

<br />

particular solution homogeneous solution<br />

The particular solution h µν<br />

S (symmetric in a time reversal) diverges on the<br />

particle’s location but the homogeneous solution h µν<br />

R is perfectly regular<br />

The self-force f µ is computed from the geodesic motion with respect to<br />

g SF<br />

µν ≡ ¯gµν + h R µν<br />

The divergence on the particle’s trajectory due to GS can be renormalized in a<br />

redefinition of the particle’s mass<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 18 / 38


POST-NEWTONIAN VERSUS SELF-FORCE PREDICTIONS<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 19 / 38


Common regime of validity of SF <strong>and</strong> PN<br />

4<br />

3<br />

2<br />

1<br />

0<br />

log 10 (r 12 /m)<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

Numerical<br />

Relativity<br />

0 1 2 3<br />

<strong>Post</strong>­<strong>Newtonian</strong><br />

Theory<br />

&<br />

Perturbation<br />

Theory<br />

Perturbation<br />

Theory<br />

4<br />

log 10 (m 2 /m 1 )<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 20 / 38<br />

m 2<br />

r 12<br />

m 1


Motivation for this work [LB, Detweiler, Le Tiec & Whiting 2009]<br />

Both the PN <strong>and</strong> SF approaches use a self-field regularization for point particles<br />

followed by a renormalization. However, the prescription are very different<br />

1 SF theory is based on a prescription for the Green function GR that is at once<br />

regular <strong>and</strong> causal<br />

2 PN theory uses dimensional regularization <strong>and</strong> it was shown that subtle issues<br />

appear at the 3PN order due to the appearance of poles ∝ (d − 3) −1<br />

How can we make a meaningful comparison?<br />

To find a gauge-invariant observable computable in both formalisms<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 21 / 38


Circular orbits admit a helical Killing vector<br />

Black hole<br />

u <br />

1<br />

Particle's trajectory<br />

Light cylinder<br />

<br />

k 1<br />

k k<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 22 / 38


Choice of a gauge-invariant observable [Detweiler 2008]<br />

1 For exactly circular orbits the geometry admits a<br />

helical Killing vector (HKV) with<br />

k µ ∂µ = ∂t + ω ∂ϕ (asymptotically)<br />

2 The four-velocity of the particle is necessarily<br />

tangent to the HKV hence<br />

u µ<br />

1 = uT1 k µ<br />

1<br />

3 The relation u T 1 (ω) is well-defined in both PN <strong>and</strong><br />

SF approaches <strong>and</strong> is gauge-invariant<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 23 / 38<br />

time<br />

m 2<br />

u <br />

<br />

u t<br />

space<br />

m 1


<strong>Post</strong>-<strong>Newtonian</strong> calculation<br />

In a coordinate system such that k µ ∂µ = ∂t + ω ∂ϕ everywhere this invariant<br />

quantity reduces to the zero component of the particle’s four-velocity,<br />

u t 1 =<br />

<br />

− Reg 1 [gµν]<br />

<br />

regularized metric<br />

v µ<br />

1 vν 1<br />

c2 −1/2 One needs a self-field regularization<br />

Hadamard regularization will yield an ambiguity at 3PN order<br />

Dimensional regularization will be free of any ambiguity at 3PN order<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 24 / 38<br />

y 1<br />

v 1<br />

r 12<br />

v 2<br />

y 2


Dimensional regularization [’t Hooft & Veltman 1972]<br />

1 Perform the PN iteration in d spatial dimensions<br />

P (x) = ∆ −1 F (x) ≡ − k<br />

<br />

d<br />

4π<br />

d x ′ F (x ′ )<br />

|x ′ − x| d−2<br />

2 Obtain value when x → y1 using analytic dimensional continuation<br />

P (y1) = − k<br />

<br />

4π<br />

3 Exp<strong>and</strong> when ε ≡ d − 3 → 0 to obtain<br />

d d x<br />

F (x)<br />

r d−2<br />

1<br />

P (y1) = 1<br />

ε P−1(y1) + P0(y1) +O (ε)<br />

<br />

<br />

finite part<br />

pole part<br />

4 Compute the finite part by means of Hadamard’s partie finie<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 25 / 38


3PN result for the gauge-invariant observable<br />

The result is expressed in terms of the orbital frequency through x ≡ GMω<br />

c3 3/2 as<br />

u T = 1 + CN x + C1PN x 2 + C2PN x 3 + C3PN x 4 + O(x 5 )<br />

The coefficients depend on mass ratios η ≡ m1m2/M 2 <strong>and</strong> ∆ ≡ (m1 − m2)/M.<br />

C3PN = 2835<br />

<br />

2835 2183 41<br />

+ ∆ − −<br />

256 256 48 64 π2<br />

<br />

12199 41<br />

η − −<br />

384 64 π2<br />

<br />

∆ η<br />

<br />

17201 41<br />

+ −<br />

576 192 π2<br />

<br />

η 2 + 795<br />

128 ∆ η2 − 2827<br />

864 η3 + 25<br />

1728 ∆ η3 + 35<br />

10368 η4<br />

We find that the poles ∝ ε −1 cancel out<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 26 / 38


3PN prediction for the self-force<br />

With q ≡ m1/m2 ≪ 1 <strong>and</strong> y ≡ Gm2ω<br />

c3 3/2<br />

u T = u T Schw + q u T SF + q<br />

<br />

self-force<br />

2 u T PSF<br />

<br />

+O(q<br />

post-self-force<br />

3 )<br />

where u T SF = −y − 2y 2 − 5y 3 <br />

+ − 121 41<br />

+<br />

3 32 π2<br />

<br />

y 4 + O(y 5 )<br />

The 3PN self-force coefficient is [LB, Detweiler, Le Tiec & Whiting 2009]<br />

C3PN = − 121 41<br />

+<br />

3 32 π2 = −27.6879 · · ·<br />

which agrees with the SF numerical calculation at the 2σ level<br />

C SF<br />

3PN = −27.677 ± 0.005<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 27 / 38


Comparison between PN <strong>and</strong> SF predictions<br />

u t SF<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

N<br />

1PN<br />

2PN<br />

3PN<br />

Exact<br />

6 8 10 12 14 16 18 20<br />

y -1<br />

↑<br />

ISCO<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 28 / 38


GRAVITATIONAL RECOIL OF BINARY BLACK HOLES<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 29 / 38


Gravitational recoil of BH binaries<br />

The linear momentum ejection is in the direction of the lighter mass’ velocity<br />

v 2<br />

momentum<br />

ejection<br />

smaller mass<br />

m2 center−of−mass<br />

motion<br />

Vrecoil<br />

v<br />

1<br />

m<br />

1<br />

larger mass<br />

In the <strong>Newtonian</strong> approximation [with f(η) ≡ η 2√ 1 − 4η]<br />

4 6M f(η)<br />

Vrecoil = 20 km/s<br />

r fmax<br />

4 2M f(η)<br />

= 1500 km/s<br />

r<br />

fmax<br />

[Fitchett 1983]<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 30 / 38


The 2PN linear momentum [LB, Qusailah & Will 2005]<br />

dP i<br />

dt<br />

GW<br />

1PN<br />

= − 464<br />

<br />

f(η) x11/2 1 + −<br />

105 452 1139<br />

−<br />

87 522 η<br />

tail<br />

<br />

309<br />

x + π x3/2<br />

58<br />

<br />

+ − 71345 36761 147101<br />

+ η +<br />

22968 2088 68904 η2<br />

<br />

x 2<br />

<br />

ˆλ<br />

<br />

2PN<br />

i<br />

The recoil of the center-of-mass follows from integrating<br />

dP i recoil<br />

dt<br />

= −<br />

dP i<br />

dt<br />

GW<br />

We find a maximum recoil velocity of 22 km/s at the ISCO<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 31 / 38


Estimating the recoil during the plunge<br />

1 The plunge is approximated by that of a test particle of mass µ moving on a<br />

geodesic of the Schwarzschild metric of a BH of mass M<br />

2 The 2PN linear momentum flux is integrated on that orbit (y ≡ M/r)<br />

∆V i<br />

plunge = L<br />

ISCO<br />

M<br />

horizon<br />

ISCO<br />

plunging geodesic<br />

of Schwarzschild<br />

1<br />

M ω<br />

dP i <br />

dt<br />

dy<br />

E 2 − (1 − 2y)(1 + L 2 y 2 )<br />

E <strong>and</strong> L are the constant energy <strong>and</strong><br />

angular momentum of the Schwarzschild<br />

plunging orbit<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 32 / 38


Recoil up to coalescence at r = 2M [LB, Qusailah & Will 2005]<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 33 / 38


Comparison with numerical works<br />

v (km/s)<br />

v (km/s)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 100 200 300<br />

t (M )<br />

ADM<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

h1<br />

h2<br />

h3<br />

r 0 = 6.0 M<br />

r 0 = 7.0 M<br />

r 0 = 8.0 M<br />

0<br />

0 100 200 300 400 500<br />

t (M ) ADM<br />

Mass ratio η = 0.24 [Baker, Centrella, Choi,<br />

Koppitz, van Meter & Miller 2006]<br />

Kick at the maximum is 175 km/s<br />

Final kick is 105 km/s<br />

Mass ratio η = 0.19 [Gonzalez, Sperhake,<br />

Bruegmann, Hannam & Husa 2006]<br />

Kick at the maximum is 250 km/s<br />

Final kick is 160 km/s<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 34 / 38


Close-limit expansion with PN initial conditions [Le Tiec & LB 2009]<br />

1 Start with the 2PN-accurate metric<br />

of two point-masses<br />

g 2PN<br />

00<br />

= −1 + 2Gm1<br />

c 2 r1<br />

+ 2Gm2<br />

c 2 r2<br />

2 Exp<strong>and</strong> it formally in CL form i.e.<br />

r12<br />

r<br />

→ 0<br />

+ ...<br />

3 Identify the perturbation from the<br />

Schwarzschild BH<br />

g 2PN<br />

µν = g Schw<br />

µν + hµν<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 35 / 38<br />

x<br />

m 2<br />

y 2<br />

n 2<br />

r 2<br />

φ<br />

θ<br />

z<br />

β<br />

r<br />

n<br />

n 12<br />

x<br />

r 12<br />

r 1<br />

y 1<br />

n 1<br />

m 1<br />

y


Numerical evolution of the perturbation<br />

1 We recast the initial PN perturbation in Regge-Wheeler-Zerilli formalism<br />

hµν = h (e)<br />

µν<br />

<br />

+ h<br />

polar modes<br />

(o)<br />

µν<br />

<br />

axial modes<br />

2 Starting from these PN conditions the Regge-Wheeler <strong>and</strong> Zerilli master<br />

functions are evolved numerically<br />

∂ 2<br />

∂2<br />

−<br />

∂t2 ∂r2 + V<br />

∗<br />

(e,o)<br />

ℓ<br />

<br />

Ψ (e,o)<br />

ℓ,m<br />

= 0<br />

3 The linear momentum flux is obtained in a st<strong>and</strong>ard way as<br />

dPx<br />

dt<br />

+ i dPy<br />

dt<br />

= − 1<br />

8π<br />

<br />

ℓ,m<br />

+bℓ,m<br />

<br />

i aℓ,m ˙ Ψ (e)<br />

ℓ,m ˙¯ Ψ (o)<br />

ℓ,m+1<br />

<br />

˙Ψ (e)<br />

ℓ,m ˙¯ (e)<br />

Ψ ℓ+1,m+1 + ˙ Ψ (o)<br />

ℓ,m ˙¯<br />

<br />

(o)<br />

Ψ ℓ+1,m+1<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 36 / 38


Final recoil velocity [Le Tiec, LB & Will 2009]<br />

Kick Velocity (km/s)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Sopuerta et al.<br />

Baker et al.<br />

Campanelli<br />

Damour & Gopakumar<br />

Herrmann et al.<br />

González et al. 07<br />

González et al. 09<br />

BQW<br />

This work<br />

0.1 0.15 0.2 0.25<br />

η<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 37 / 38


The unreasonable effectiveness of the PN approximation 1<br />

1 Clifford Will, adapting “The unreasonable effectiveness of mathematics in the natural sciences”<br />

1 <strong>Post</strong>-<strong>Newtonian</strong> theory has proved to be the appropriate tool to describe the<br />

inspiral phase of compact binaries up to the ICO.<br />

2 The 3.5PN templates should be sufficient for detection <strong>and</strong> analysis of<br />

neutron star binary inspirals in LIGO/VIRGO<br />

3 For massive BH binaries the PN templates should be matched to the results<br />

of numerical relativity for the merger <strong>and</strong> ringdown phases<br />

4 The PN approximation is now tested against different approaches such as the<br />

SF <strong>and</strong> performs very well. This provides a test of the self-field regularization<br />

scheme for point particles<br />

5 A combination of semi-analytic approximations based on PN theory gives the<br />

correct result for the recoil (essentially generated in the strong field regime)<br />

Luc Blanchet (GRεCO) <strong>Post</strong>-<strong>Newtonian</strong> <strong>methods</strong> <strong>and</strong> <strong>applications</strong> Chevaleret 2009 38 / 38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!