03.04.2013 Views

Background on Hmong - UCLA Department of Linguistics

Background on Hmong - UCLA Department of Linguistics

Background on Hmong - UCLA Department of Linguistics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Background</str<strong>on</strong>g> <strong>on</strong> Hm<strong>on</strong>g<br />

• Hm<strong>on</strong>g-Mien language family<br />

• Spoken in China, Laos, Vietnam, Thailand<br />

• Also large populati<strong>on</strong>s in California, Minnesota, and<br />

Wisc<strong>on</strong>sin<br />

• Several varieties (White, Green, Black, etc.) with various<br />

levels <strong>of</strong> mutual intelligibility<br />

• ~3-4 milli<strong>on</strong> speakers <strong>of</strong> all dialects, 200,000 Hm<strong>on</strong>g in<br />

US (most <strong>of</strong> whom speak White or Green varieties)<br />

1


White Hm<strong>on</strong>g t<strong>on</strong>es<br />

T<strong>on</strong>e<br />

(Esposito, to<br />

appear)<br />

Orthographic<br />

t<strong>on</strong>e symbol<br />

Example<br />

in IPA<br />

High-rising (45) -b [pɔ 45 ] pob ‘ball’<br />

Mid (33) ∅ [pɔ 33 ] po ‘spleen’<br />

Low (22) -s [pɔ 22 ] pos ‘thorn’<br />

High-falling (52) -j [pɔ 52 ] poj ‘female’<br />

Mid-rising (24) -v [pɔ 24 ] pov ‘to throw’<br />

Low-falling<br />

creaky (21)<br />

High-falling<br />

breathy (42, 52)<br />

-m [pɔ̰ 21 ] pom ‘to see’<br />

Example in White Hm<strong>on</strong>g<br />

orthography<br />

-g [pɔ̤ 52/42 ] pog ‘grandmother’<br />

• There is also an eighth (-d) t<strong>on</strong>e, which is a syntactic variety <strong>of</strong> the –m t<strong>on</strong>e<br />

2


Importance <strong>of</strong> ph<strong>on</strong>ati<strong>on</strong><br />

• The relative importance <strong>of</strong> ph<strong>on</strong>ati<strong>on</strong> cues to t<strong>on</strong>e<br />

identificati<strong>on</strong> in White Hm<strong>on</strong>g is unclear<br />

• Breathy (52/42) t<strong>on</strong>e and modal (52) t<strong>on</strong>e both have<br />

similar falling pitch<br />

• Creaky (21) t<strong>on</strong>e and modal (22) t<strong>on</strong>e are less similar in<br />

pitch<br />

• Low modal (22) t<strong>on</strong>e is significantly l<strong>on</strong>ger in durati<strong>on</strong> than<br />

creaky (21) t<strong>on</strong>e 1<br />

1. Esposito (to appear)<br />

3


T<strong>on</strong>e and ph<strong>on</strong>ati<strong>on</strong> c<strong>on</strong>trasts<br />

• Languages may c<strong>on</strong>trast ph<strong>on</strong>ati<strong>on</strong> à ‘register’<br />

languages (e.g. Ch<strong>on</strong>g) 1<br />

• Many others c<strong>on</strong>trast t<strong>on</strong>es (e.g. Thai) 2<br />

• Some languages cross-classify t<strong>on</strong>es and ph<strong>on</strong>ati<strong>on</strong> types<br />

(e.g. Jalapa Mazatec) 3<br />

• In some t<strong>on</strong>e languages, ph<strong>on</strong>ati<strong>on</strong> changes are<br />

associated with certain t<strong>on</strong>es (e.g. Hm<strong>on</strong>g) 4<br />

1. DiCanio (2009); 2. Tingsabadh & Abrams<strong>on</strong> (1993); 3. Garellek & Keating (2011); 4.<br />

Esposito (to appear)<br />

4


Ph<strong>on</strong>ati<strong>on</strong> in t<strong>on</strong>e systems<br />

• Ph<strong>on</strong>ati<strong>on</strong> can be used as an independent dimensi<strong>on</strong><br />

à PHONATION AND PITCH INDEPENDENCE<br />

• N<strong>on</strong>-modal ph<strong>on</strong>ati<strong>on</strong> (types <strong>of</strong> creaky/laryngealized voice) can<br />

accompany pitch height due to physiological interdependencies 1<br />

• Vocal fold tenseness is comm<strong>on</strong> at very high F0<br />

• Creak or vocal fry is comm<strong>on</strong> at very low F0<br />

• Creaky ph<strong>on</strong>ati<strong>on</strong> can be used to reach pitch target, but breathy ph<strong>on</strong>ati<strong>on</strong> can<br />

occur at any pitch height as an additi<strong>on</strong>al c<strong>on</strong>trast 2<br />

• C<strong>on</strong>versely, certain voice registers (e.g. faucalized voice) are accompanied by<br />

changes in pitch 3<br />

à PHONATION AND PITCH INTERDEPENDENCE<br />

• Both <strong>of</strong> these possible for role <strong>of</strong> ph<strong>on</strong>ati<strong>on</strong> in White Hm<strong>on</strong>g<br />

1. Sundberg (1987); 2. Kuang (2012); 3. Edm<strong>on</strong>ds<strong>on</strong> & Esling (2006)<br />

5


Hm<strong>on</strong>g t<strong>on</strong>e percepti<strong>on</strong><br />

• Little is known about White Hm<strong>on</strong>g t<strong>on</strong>al percepti<strong>on</strong><br />

• Andruski (2006) found better identificati<strong>on</strong> <strong>of</strong> natural<br />

tokens <strong>of</strong> breathy/creaky t<strong>on</strong>es than modal <strong>on</strong>es in White<br />

Hm<strong>on</strong>g/Green M<strong>on</strong>g<br />

• Possible that improved identificati<strong>on</strong> is facilitated by n<strong>on</strong>modal<br />

ph<strong>on</strong>ati<strong>on</strong> <strong>of</strong> the breathy (52) and creaky (21) t<strong>on</strong>es<br />

• But relative importance <strong>of</strong> ph<strong>on</strong>ati<strong>on</strong> compared to other<br />

cues (F0, durati<strong>on</strong>) is still unknown<br />

6


Insight from other t<strong>on</strong>e languages<br />

• Studies <strong>on</strong> other t<strong>on</strong>e languages show that n<strong>on</strong>-modal<br />

ph<strong>on</strong>ati<strong>on</strong> helps in the identificati<strong>on</strong> <strong>of</strong> certain lexical t<strong>on</strong>es<br />

• Cant<strong>on</strong>ese 1<br />

• Karen 2<br />

• Mandarin 3<br />

• Vietnamese 4<br />

• These studies point to the advantage <strong>of</strong> creaky voice in<br />

particular<br />

• Ongoing work <strong>on</strong> Black Miao (Black Hm<strong>on</strong>g) reveals perceptual<br />

advantage <strong>of</strong> breathiness 5<br />

1. Yu & Lam (2011); 2. Brunelle & Finkeldey (2011); 3. Belotel-Grenié & Grenié (1997); 4.<br />

Brunelle (2009); 5. Kuang (to appear)<br />

7


Goals <strong>of</strong> this study<br />

• Determine how ph<strong>on</strong>ati<strong>on</strong> cues are used in White Hm<strong>on</strong>g,<br />

where n<strong>on</strong>-modal ph<strong>on</strong>ati<strong>on</strong> is associated with certain<br />

t<strong>on</strong>es<br />

• Determine the relative importance <strong>of</strong> ph<strong>on</strong>ati<strong>on</strong> cues in<br />

t<strong>on</strong>al recogniti<strong>on</strong> in Hm<strong>on</strong>g<br />

• Better understand the relati<strong>on</strong>ship between pitch and<br />

voice quality in t<strong>on</strong>e<br />

8


Present study<br />

• 7-alternative forced-choice task, implemented in Praat<br />

• chose which word they heard (7 t<strong>on</strong>es à 7 alternatives)<br />

• 15 participants (8 female, 7 male), all native speakers <strong>of</strong><br />

White Hm<strong>on</strong>g<br />

• Study was c<strong>on</strong>ducted at the Hm<strong>on</strong>g-American Partnership<br />

in St. Paul, MN<br />

9


Experimental setup<br />

• Participants chose which word they heard<br />

• They could hear the stimulus as many times as they<br />

chose<br />

• They could change their resp<strong>on</strong>se before moving to the<br />

next stimulus<br />

10


Experimental setup<br />

11


Stimuli<br />

• Sample tokens <strong>of</strong> /pɔ/ with 6 <strong>of</strong> 7 t<strong>on</strong>es were recorded by<br />

female native speaker (t<strong>on</strong>e 33 resynthesized from 22)<br />

• F0 was resynthesized in Praat using PSOLA, which<br />

preserves voice quality (i.e. spectral, noise)<br />

characteristics 1<br />

• Post-hoc acoustic analysis indeed revealed no change in<br />

voice quality as a functi<strong>on</strong> <strong>of</strong> pitch manipulati<strong>on</strong><br />

1. Moulines & Charpentier (1990)<br />

12


F0 and durati<strong>on</strong> manipulati<strong>on</strong>s<br />

• The F0 manipulati<strong>on</strong>s are used to determine the extent to<br />

which ph<strong>on</strong>ati<strong>on</strong> can be relied <strong>on</strong> when the F0 <strong>of</strong> a<br />

stimulus does not match the expected pitch c<strong>on</strong>tour<br />

• E.g. if stimulus is breathy but has a very different pitch c<strong>on</strong>tour than<br />

52/42, will it still be heard as breathy?<br />

• Because the modal (22) and creaky (21) also differ in<br />

durati<strong>on</strong><br />

• Will a l<strong>on</strong>ger stimulus with creak be heard as the creaky (21) t<strong>on</strong>e?<br />

• Will a shorter stimulus with a 21 c<strong>on</strong>tour but no creak be heard as<br />

the modal (22) t<strong>on</strong>e?<br />

13


Breathy t<strong>on</strong>e manipulati<strong>on</strong>s<br />

Manipulati<strong>on</strong> 1: Flat F0 at different levels<br />

Original breathy<br />

c<strong>on</strong>tour<br />

Manipulati<strong>on</strong> 2: Varying end <strong>of</strong> F0 fall<br />

Original breathy<br />

c<strong>on</strong>tour<br />

End <strong>of</strong> F0 fall raised by<br />

10 Hz increments<br />

Manipulati<strong>on</strong> 3: F0 shift <strong>of</strong> entire c<strong>on</strong>tour<br />

Original breathy<br />

c<strong>on</strong>tour<br />

F0<br />

Flattened c<strong>on</strong>tour lowered<br />

at 10 Hz increments<br />

F0<br />

F0<br />

Entire c<strong>on</strong>tour shifted by<br />

10 Hz increments<br />

14


Creaky t<strong>on</strong>e manipulati<strong>on</strong>s<br />

Manipulati<strong>on</strong> 1: Varying F0 in modal porti<strong>on</strong> <strong>of</strong> creaky t<strong>on</strong>e's F0 c<strong>on</strong>tour<br />

Original creaky<br />

c<strong>on</strong>tour<br />

Manipulati<strong>on</strong> 2: Varying F0 in creaky porti<strong>on</strong> <strong>of</strong> creaky t<strong>on</strong>e's F0 c<strong>on</strong>tour<br />

Original creaky<br />

c<strong>on</strong>tour<br />

L<strong>on</strong>g vs. short<br />

stimuli<br />

L<strong>on</strong>g vs. short<br />

stimuli<br />

F0<br />

F0<br />

F0 lowering in 10 Hz<br />

increments in modal<br />

porti<strong>on</strong> before F0 fall<br />

F0<br />

F0<br />

F0 raising in 10 Hz<br />

increments in creaky<br />

porti<strong>on</strong> at F0 fall<br />

15


Low modal t<strong>on</strong>e manipulati<strong>on</strong>s<br />

Manipulati<strong>on</strong> 1: Varying F0 level for the low modal t<strong>on</strong>e<br />

Original low<br />

modal c<strong>on</strong>tour<br />

L<strong>on</strong>g vs. short<br />

stimuli<br />

F0 raised<br />

by 10 Hz increments<br />

Manipulati<strong>on</strong> 2: Falling F0 c<strong>on</strong>tour for the low modal t<strong>on</strong>e<br />

Original low<br />

modal c<strong>on</strong>tour<br />

L<strong>on</strong>g vs. short<br />

stimuli<br />

F0 falls by 10 Hz<br />

increments<br />

F0<br />

F0<br />

F0<br />

F0<br />

16


Other t<strong>on</strong>e manipulati<strong>on</strong>s<br />

• Tokens <strong>of</strong> /pɔ/ with 3 other modal t<strong>on</strong>es (45, 52, 24) were<br />

included<br />

• These also had F0 manipulated: whole F0 c<strong>on</strong>tour was<br />

raised or lowered in 10 Hz increments<br />

• 127 stimuli were created, each presented twice<br />

• 25 from breathy (52) t<strong>on</strong>e<br />

• 30 from creaky (21) t<strong>on</strong>e<br />

• 24 from low-modal (22) t<strong>on</strong>e<br />

• 38 from other modal t<strong>on</strong>es<br />

17


Results: analysis<br />

• Two logistic mixed-effects models were used to<br />

determine what factors were significant in predicting<br />

• breathy-t<strong>on</strong>e resp<strong>on</strong>se (pog) vs. a modal-t<strong>on</strong>e resp<strong>on</strong>se (pob, poj,<br />

pov, po, pos)<br />

• creaky-t<strong>on</strong>e resp<strong>on</strong>se (pom) vs. a modal-t<strong>on</strong>e resp<strong>on</strong>se<br />

Models’ fixed effects Models’ random effect<br />

Original ph<strong>on</strong>ati<strong>on</strong> (B, M, C) Participant<br />

Start F0<br />

End F0<br />

Mean F0<br />

Pitch c<strong>on</strong>tour (flat/dynamic)<br />

Vowel length (l<strong>on</strong>g/short, for creaky<br />

model)<br />

18


Results: breathy-t<strong>on</strong>e resp<strong>on</strong>ses<br />

• Originally breathy stimuli increased likelihood <strong>of</strong> obtaining<br />

a ‘breathy t<strong>on</strong>e’ resp<strong>on</strong>se<br />

• No other factor was significant<br />

19


Results: breathy-t<strong>on</strong>e resp<strong>on</strong>ses<br />

Propoti<strong>on</strong> 'breathy' resp<strong>on</strong>se"<br />

1"<br />

0.9"<br />

0.8"<br />

0.7"<br />

0.6"<br />

0.5"<br />

0.4"<br />

0.3"<br />

0.2"<br />

0.1"<br />

0"<br />

R² = 0.06"<br />

257" 247" 237" 227" 217" 207" 197" 187" 177"<br />

Start <strong>of</strong> F0 fall (Hz)"<br />

20


Results: creaky-t<strong>on</strong>e resp<strong>on</strong>ses<br />

• Originally creaky stimuli did not increase likelihood <strong>of</strong><br />

obtaining a ‘creaky t<strong>on</strong>e’ resp<strong>on</strong>se<br />

• Falling F0 and shorter durati<strong>on</strong> were significant<br />

21


Results: creaky-t<strong>on</strong>e resp<strong>on</strong>ses<br />

Proporti<strong>on</strong> 'creaky' resp<strong>on</strong>se"<br />

1"<br />

0.9"<br />

0.8"<br />

0.7"<br />

0.6"<br />

0.5"<br />

0.4"<br />

0.3"<br />

0.2"<br />

0.1"<br />

0"<br />

R² = 0.35"<br />

Short creaky (21) tokens"<br />

22<br />

Shortened modal (22) tokens"<br />

R² = 0.58"<br />

-70" -60" -50" -40" -30" -20" -10"<br />

Pitch fall (Hz)"


Summary <strong>of</strong> results<br />

• Originally-breathy stimuli were significantly more likely to<br />

be chosen as breathy-t<strong>on</strong>ed, regardless <strong>of</strong> F0<br />

• Originally-creaky stimuli were not significantly more likely<br />

to be chosen as creaky-t<strong>on</strong>ed<br />

• Creaky-t<strong>on</strong>ed resp<strong>on</strong>ses best predicted by F0 fall and<br />

durati<strong>on</strong><br />

• Bigger F0 drop à more likely to be creaky-t<strong>on</strong>ed<br />

• Short durati<strong>on</strong> à more likely to be creaky-t<strong>on</strong>ed<br />

23


Discussi<strong>on</strong><br />

• Creaky ph<strong>on</strong>ati<strong>on</strong> in White Hm<strong>on</strong>g enhances the lowfalling<br />

creaky t<strong>on</strong>e’s pitch dynamics, but is not a primary<br />

cue in t<strong>on</strong>al recogniti<strong>on</strong><br />

• The creaky t<strong>on</strong>e is sometimes called ‘checked’ ([Vʔ]) 1<br />

which appears to be appropriate given our findings<br />

• Also, acoustic evidence showing that creakiness is predominately<br />

at end <strong>of</strong> vowel2, 3<br />

1. Ratliff (1992); 2. Garellek (2012); 3. Esposito (to appear)<br />

24


Discussi<strong>on</strong><br />

• Breathy voice is the most important factor in predicting<br />

breathy-t<strong>on</strong>ed resp<strong>on</strong>ses<br />

• Likely due to similarity in pitch between breathy –g and modal –j t<strong>on</strong>es<br />

• In Karen & N. Vietnamese, breathiness was not significant factor in<br />

identificati<strong>on</strong> <strong>of</strong> t<strong>on</strong>es with breathy voice quality<br />

• But breathiness also significant in Black Miao (Hm<strong>on</strong>g) t<strong>on</strong>e recogniti<strong>on</strong><br />

• Unlike previous work <strong>on</strong> Cant<strong>on</strong>ese, Karen, Mandarin,<br />

and Vietnamese<br />

• Creaky voice in Hm<strong>on</strong>g does not aid significantly in t<strong>on</strong>e<br />

identificati<strong>on</strong><br />

25


Discussi<strong>on</strong><br />

• Ph<strong>on</strong>ati<strong>on</strong> and pitch can be independent…<br />

• Breathy ph<strong>on</strong>ati<strong>on</strong> in Hm<strong>on</strong>g à categorical shift in voice quality<br />

from modal t<strong>on</strong>es, not affected by F0<br />

• …but they are also interdependent<br />

• Creaky ph<strong>on</strong>ati<strong>on</strong> in Hm<strong>on</strong>g à Enhances the low pitch <strong>of</strong> the lowfalling<br />

t<strong>on</strong>e, not necessary for t<strong>on</strong>e recogniti<strong>on</strong><br />

26


Discussi<strong>on</strong><br />

• Listeners might still hear F0 falls as creaky!<br />

• A sharp drop in F0 can be perceptually equivalent to<br />

glottalizati<strong>on</strong>/creaky voice, even when no other irregularity<br />

is found 1,2<br />

• Listeners might hear F0 drop as creaky and thus still listening for<br />

‘creak’<br />

1. Hillenbrand & Houde (1996); 2. Gerfen & Baker (2005)<br />

27


C<strong>on</strong>clusi<strong>on</strong>s<br />

• N<strong>on</strong>-modal ph<strong>on</strong>ati<strong>on</strong> can play a primary and sec<strong>on</strong>dary<br />

role in t<strong>on</strong>e identificati<strong>on</strong> within the same language<br />

• Cue weighting depends <strong>on</strong> the c<strong>on</strong>trast<br />

• In Hm<strong>on</strong>g, breathy ph<strong>on</strong>ati<strong>on</strong> is the primary cue to the identificati<strong>on</strong><br />

<strong>of</strong> the breathy (52) t<strong>on</strong>e, unlike breathy ph<strong>on</strong>ati<strong>on</strong> in other<br />

languages<br />

• Creaky ph<strong>on</strong>ati<strong>on</strong>, ins<strong>of</strong>ar as not tied to pitch dynamics, is not a<br />

major cue to the creaky (21) t<strong>on</strong>e<br />

28


Ua tsaug [u 3 ɔ 3 tʂʌ̤ 5 ṳ 2 ] Thank you<br />

Thanks also to Jody Kreiman, Susan Yang, the Hm<strong>on</strong>g-<br />

American Partnership, and members <strong>of</strong> the <strong>UCLA</strong><br />

Ph<strong>on</strong>etics Lab. Work supported by NSF grant<br />

BCS-0720304.<br />

29


References<br />

• Andruski, J. E. (2006). “T<strong>on</strong>e clarity in mixed pitch/ph<strong>on</strong>ati<strong>on</strong>-type t<strong>on</strong>es,” JPh<strong>on</strong> 34, 388–404.<br />

• Belotel-Grenié, A. & Grenié, M. (1997). “Types de ph<strong>on</strong>ati<strong>on</strong> et t<strong>on</strong>s en chinois standard,” Cahiers de linguistique - Asie<br />

orientale 26, 249–279.<br />

• Brunelle, M. (2009). “T<strong>on</strong>e percepti<strong>on</strong> in Northern and Southern Vietnamese,” JPh<strong>on</strong> 37, 79–96.<br />

• Brunelle, M. &Finkeldey, J. (2011). “T<strong>on</strong>e percepti<strong>on</strong> in Sgaw Karen”, in Proceedings <strong>of</strong> ICPhS 17, 372–375.<br />

• DiCanio, C. T. “The ph<strong>on</strong>etics <strong>of</strong> register in Takhian Th<strong>on</strong>g Ch<strong>on</strong>g,” JIPA 39, 162–188.<br />

• Edm<strong>on</strong>ds<strong>on</strong>, J. E., & Esling, J. H. (2006). The valves <strong>of</strong> the throat and their functi<strong>on</strong>ing in t<strong>on</strong>e, vocal register, and stress:<br />

laryngoscopic case studies. Ph<strong>on</strong> 23, 157,191.<br />

• Esposito, C. M. (to appear). “An acoustic and electroglottographic study <strong>of</strong> White Hm<strong>on</strong>g ph<strong>on</strong>ati<strong>on</strong>,” JPh<strong>on</strong>.<br />

• Garellek, M. (2012). “The timing and sequencing <strong>of</strong> coarticulated n<strong>on</strong>-modal ph<strong>on</strong>ati<strong>on</strong> in English and White<br />

Hm<strong>on</strong>g,” JPh<strong>on</strong> 40, 152–161.<br />

• Garellek, M. & Keating, P. (2011). “The acoustic c<strong>on</strong>sequences <strong>of</strong> ph<strong>on</strong>ati<strong>on</strong> and t<strong>on</strong>e interacti<strong>on</strong>s in Jalapa<br />

Mazatec,” JIPA 41, 185–205.<br />

• Gerfen, C. & Baker, K. (2005). “The producti<strong>on</strong> and percepti<strong>on</strong> <strong>of</strong> laryngealized vowels in Coatzospan Mixtec,” JPh<strong>on</strong> 33,<br />

311–334.<br />

• Hillenbrand, J. M. & Houde, R. A. (1996). “Role <strong>of</strong> F0 and amplitude in the percepti<strong>on</strong> <strong>of</strong> glottal stops,” JSHR 39, 1182–1190.<br />

• Kuang, J. (to appear). “How is a 5 level t<strong>on</strong>e c<strong>on</strong>trast possible?” Talk to be presented at Acoustics 2012, H<strong>on</strong>g K<strong>on</strong>g, China.<br />

• Moulines, E. & Charpentier, F. (1990). “Pitch-synchr<strong>on</strong>ous waveform processing techniques for text-to-speech<br />

synthesis using diph<strong>on</strong>es,” Speech Communicati<strong>on</strong> 9, 453–467.<br />

• Ratliff, M. (1992). “Meaningful T<strong>on</strong>e: A study <strong>of</strong> t<strong>on</strong>al morphology in compounds, form classes and expressive<br />

phrases in White Hm<strong>on</strong>g,” M<strong>on</strong>ograph Series <strong>on</strong> Southeast Asia (Northern Illinois University, Center for<br />

Southeast Asian Studies, DeKalb, IL).<br />

• Sundberg, J. (1987). “The science <strong>of</strong> the singing voice,” Northern Illinois University Press, DeKalb IL.<br />

• Tingsabadh, M.R. K. & Abrams<strong>on</strong>, A. S. (1993). “Thai (Illustrati<strong>on</strong>s <strong>of</strong> the IPA),” JIPA 23, 24-28.<br />

• Yu, K. M. & Lam, H. W. (2011). “The role <strong>of</strong> creaky voice in Cant<strong>on</strong>ese t<strong>on</strong>al percepti<strong>on</strong>,” in Proceedings <strong>of</strong> ICPhS 17, 2240–<br />

2243.<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!