04.04.2013 Views

Notes on Euler-Poincaré Theory: From the Rigid ... - GMC Network

Notes on Euler-Poincaré Theory: From the Rigid ... - GMC Network

Notes on Euler-Poincaré Theory: From the Rigid ... - GMC Network

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Notes</str<strong>on</strong>g> <strong>on</strong> <strong>Euler</strong>-<strong>Poincaré</strong> <strong>Theory</strong>:<br />

<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s<br />

<strong>GMC</strong> Summer School, Miraflores, 22–26 June 2012<br />

Darryl D Holm Imperial College L<strong>on</strong>d<strong>on</strong> d.holm@ic.ac.uk<br />

http://www.ma.ic.ac.uk/~dholm/<br />

Texts for <strong>the</strong> course:<br />

Geometric Mechanics I & II, by Darryl D Holm<br />

World Scientific: Imperial College Press, Singapore, Sec<strong>on</strong>d editi<strong>on</strong> (2011).<br />

ISBN 978-1-84816-195-5<br />

Where are we going in this course?<br />

1. <strong>Euler</strong>–<strong>Poincaré</strong> <strong>the</strong>orem<br />

2. <strong>Rigid</strong> body, EPSO(3)<br />

3. C<strong>on</strong>tinuum spin chain, or SO(3)-strand<br />

4. Heavy top, EP(SO(3) × V )<br />

e<br />

5. EPDiff(H 1 )<br />

6. Peak<strong>on</strong> soluti<strong>on</strong>s<br />

7. Generalizati<strong>on</strong>s of EPDiff<br />

ALiegroupG is a manifold. Its tangent space at <strong>the</strong> identity TeG is its Lie algebra g.<br />

1


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 3<br />

8 Symmetry breaking by potential energy – heavy top 75<br />

8.1 Heavy top: Introducti<strong>on</strong> and definiti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 75<br />

8.2 Heavy-top acti<strong>on</strong> principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

8.3 Lie–Poiss<strong>on</strong> brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

8.4 Lie–Poiss<strong>on</strong> brackets and momentum maps . . . . . . . . . . . . . . . . . . . 77<br />

8.5 Lie–Poiss<strong>on</strong> brackets for <strong>the</strong> heavy top . . . . . . . . . . . . . . . . . . . . . 78<br />

8.6 Heavy top: Clebsch acti<strong>on</strong> principle . . . . . . . . . . . . . . . . . . . . . . . 79<br />

8.7 Heavy top: Kaluza–Klein c<strong>on</strong>structi<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 80<br />

9 <strong>Euler</strong>–<strong>Poincaré</strong> reducti<strong>on</strong> for c<strong>on</strong>tinua 84<br />

10 EPDiff 86<br />

10.1 The n-dimensi<strong>on</strong>al EPDiff equati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . 86<br />

10.2 Variati<strong>on</strong>al derivati<strong>on</strong> of EPDiff . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

10.3 Noe<strong>the</strong>r’s <strong>the</strong>orem for EPDiff . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

11 EPDiff soluti<strong>on</strong> behaviour 91<br />

11.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91<br />

11.2 Steepening lemma: <strong>the</strong> peak<strong>on</strong>-formati<strong>on</strong> mechanism . . . . . . . . . . . . . 92<br />

12 Shallow-water background 96<br />

12.1 Hamilt<strong>on</strong>ian dynamics of EPDiff peak<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . 98<br />

12.2 Puls<strong>on</strong>s: Singular soluti<strong>on</strong>s of EPDiff for o<strong>the</strong>r Green’s functi<strong>on</strong>s . . . . . . . 99<br />

12.3 Peak<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

12.3.1 Puls<strong>on</strong>–Puls<strong>on</strong> interacti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

12.3.2 C<strong>on</strong>servati<strong>on</strong> laws and reducti<strong>on</strong> to quadrature . . . . . . . . . . . . 102<br />

12.4 Puls<strong>on</strong>–anti-puls<strong>on</strong> interacti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

12.4.1 Head-<strong>on</strong> puls<strong>on</strong>–anti-puls<strong>on</strong> collisi<strong>on</strong> . . . . . . . . . . . . . . . . . . 105<br />

13 Integrability of EPDiff in 1D 108<br />

13.1 The CH equati<strong>on</strong> is bi-Hamilt<strong>on</strong>ian . . . . . . . . . . . . . . . . . . . . . . . 108<br />

13.2 Magri’s lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

13.3 Applying Magri’s lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />

13.4 The CH equati<strong>on</strong> is isospectral . . . . . . . . . . . . . . . . . . . . . . . . . . 111


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 22<br />

• The initial eigenvalues of <strong>the</strong> matrix M(0) are preserved by <strong>the</strong> moti<strong>on</strong>; that is, dλ/dt =<br />

0in<br />

M(t)ψ(t) =λψ(t) ,<br />

provided its eigenvectors ψ ∈ R n evolve according to<br />

ψ(t) =O(t) −1 ψ(0) .<br />

The proof of this statement follows from <strong>the</strong> corresp<strong>on</strong>ding property of similarity transformati<strong>on</strong>s.<br />

• Its matrix invariants are preserved:<br />

for every n<strong>on</strong>-negative integer power K.<br />

d<br />

dt tr(M − λId)K =0,<br />

This is clear because <strong>the</strong> invariants of <strong>the</strong> matrix M may be expressed in terms of its<br />

eigenvalues; but <strong>the</strong>se are invariant under a similarity transformati<strong>on</strong>.<br />

Theorem<br />

3.18. Isospectrality allows <strong>the</strong> quadratic rigid-body dynamics (3.38) <strong>on</strong> SO(n) to<br />

be rephrased as a system of two coupled linear equati<strong>on</strong>s: <strong>the</strong> eigenvalue problem for M<br />

and an evoluti<strong>on</strong> equati<strong>on</strong> for its eigenvectors ψ, as follows:<br />

Mψ = λψ and ˙ ψ = − Ωψ, with Ω=O −1 ˙ O(t) .<br />

Proof. Applying isospectrality in <strong>the</strong> time derivative of <strong>the</strong> first equati<strong>on</strong> yields<br />

( ˙ M +[Ω,M])ψ +(M − λId)( ˙ ψ +Ωψ) =0.<br />

Now substitute <strong>the</strong> sec<strong>on</strong>d equati<strong>on</strong> to recover <strong>the</strong> SO(n) rigid-bodydynamics(3.38).<br />

3.7 Manakov’s integrati<strong>on</strong> of <strong>the</strong> SO(n) rigid body<br />

Manakov [Man1976] observed that Equati<strong>on</strong>s (3.36) may be “deformed” into<br />

d<br />

(M + λA) =[(M + λA), (Ω + λB)] , (3.39)<br />

dt<br />

where A, B are also n×n matrices and λ is a scalar c<strong>on</strong>stant parameter. For <strong>the</strong>se deformed<br />

rigid-body equati<strong>on</strong>s <strong>on</strong> SO(n) toholdforanyvalueofλ, <strong>the</strong>coefficientofeachpowermust<br />

vanish.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 23<br />

• The coefficent of λ 2 is<br />

0=[A, B] .<br />

Therefore, A and B must commute. For this, let <strong>the</strong>m be c<strong>on</strong>stant and diag<strong>on</strong>al:<br />

Aij =diag(ai)δij , Bij =diag(bi)δij (no sum).<br />

• The coefficent of λ is<br />

0= dA<br />

=[A, Ω] + [M,B] .<br />

dt<br />

Therefore, by antisymmetry of M and Ω,<br />

which implies that<br />

(ai − aj)Ωij =(bi − bj)Mij ,<br />

Ωij = bi − bj<br />

Mij (no sum).<br />

ai − aj<br />

Hence, angular velocity Ω is a linear functi<strong>on</strong> of angular momentum, M.<br />

• Finally, <strong>the</strong> coefficent of λ 0 recovers <strong>the</strong> <strong>Euler</strong> equati<strong>on</strong><br />

dM<br />

dt<br />

=[M,Ω] ,<br />

but now with <strong>the</strong> restricti<strong>on</strong> that <strong>the</strong> moments of inertia are of <strong>the</strong> form<br />

Ωij = bi − bj<br />

Mij (no sum).<br />

ai − aj<br />

This relati<strong>on</strong> turns out to possess <strong>on</strong>ly five free parameters for n =4.<br />

Under <strong>the</strong>se c<strong>on</strong>diti<strong>on</strong>s, Manakov’s deformati<strong>on</strong> of <strong>the</strong> SO(n) rigid-bodyequati<strong>on</strong>into<strong>the</strong><br />

commutator form (3.39) implies for every n<strong>on</strong>-negative integer power K that<br />

d<br />

dt (M + λA)K =[(M + λA) K , (Ω + λB)] .<br />

Since <strong>the</strong> commutator is antisymmetric, its trace vanishes and K c<strong>on</strong>servati<strong>on</strong> laws emerge,<br />

as<br />

d<br />

dt tr(M + λA)K =0,<br />

after commuting <strong>the</strong> trace operati<strong>on</strong> with <strong>the</strong> time derivative. C<strong>on</strong>sequently,<br />

tr(M + λA) K =c<strong>on</strong>stant,<br />

for each power of λ. That is, all <strong>the</strong> coefficients of each power of λ are c<strong>on</strong>stant in time<br />

for <strong>the</strong> SO(n) rigidbody. Manakov[Man1976]provedthat<strong>the</strong>sec<strong>on</strong>stantsofmoti<strong>on</strong>are<br />

sufficient to completely determine <strong>the</strong> soluti<strong>on</strong> for n =4.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 24


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 51


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 59


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 66<br />

{·, ·} L1 L2 L3<br />

M1 0 2N2−2N3 M2 − 2N1 0 2N3<br />

2N1 − 2N2 0<br />

M3<br />

{·, ·} N1 N2 N3<br />

M1 0 − 2L2 2L3<br />

M2<br />

M3<br />

2L1 0 −2L3<br />

− 2L1 2L2 0<br />

{·, ·} L1 L2 L3<br />

N1<br />

N2<br />

N3<br />

M2 − M3 − N3 N2<br />

N3 M3 − M1 − N1<br />

− N2 N1 M1 − M2<br />

As expected, <strong>the</strong> system is closed and it has <strong>the</strong> angular momentum Poiss<strong>on</strong> bracket<br />

table as a closed subset. Next, we will come to understand that this is because <strong>the</strong> Lie<br />

algebra su(2) is a subalgebra of su(3).<br />

(ii) The rotati<strong>on</strong> group SO(3) is a subgroup of SU(3). An element Q ∈ su(3) ∗ transforms<br />

under SO(3) by <strong>the</strong> coAdjoint acti<strong>on</strong><br />

Ad ∗<br />

R Q = R −1 QR = R −1 SR + iR −1 AR .<br />

Choose R ∈ SO(3) so that R −1 SR = D =diag(d1,d2,d3) isdiag<strong>on</strong>al.(Thatis,rotate<br />

into principal axis coordinates for S.) The eigenvalues are unique up to <strong>the</strong>ir order,<br />

which <strong>on</strong>e may fix as, say, d1 ≥ d2 ≥ d3. While it diag<strong>on</strong>alises <strong>the</strong> symmetric part of<br />

Q, <strong>the</strong>rotati<strong>on</strong>R takes <strong>the</strong> antisymmetric part from <strong>the</strong> spatial frame to <strong>the</strong> body<br />

frame, where S is diag<strong>on</strong>al. At <strong>the</strong> same time <strong>the</strong> spatial angular momentum matrix<br />

A is transformed to B = R −1 AR, whichis<strong>the</strong>bodyangularmomentum.Thus,<br />

Ad ∗<br />

R Q = R −1 SR + iR −1 AR =: D + iB .<br />

Define <strong>the</strong> body angular velocity Ω = R −1 ˙ R ∈ so(3), which is left-invariant. The<br />

Hamilt<strong>on</strong>ian dynamical system obeys<br />

For B = R −1 AR, thisimplies<br />

˙Q = {Q, H(Q)} .<br />

˙B +[Ω,B]=R −1 ˙ AR = R −1 {A, H(Q)}R.<br />

However, H(Q) being rotati<strong>on</strong>ally symmetric means <strong>the</strong> spatial angular momentum A<br />

will be time-independent ˙ A = {A, H(Q)} = 0. Hence,<br />

˙B +[Ω,B]=0.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 83


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 91


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 95<br />

Figure 11.2: This is <strong>the</strong> velocity profile (12.35) for <strong>the</strong> peak<strong>on</strong>-antipeak<strong>on</strong> head-<strong>on</strong> collisi<strong>on</strong> as a functi<strong>on</strong><br />

of separati<strong>on</strong> between <strong>the</strong> peaks [FH01].<br />

Remark<br />

11.3. Suppose <strong>the</strong> initial c<strong>on</strong>diti<strong>on</strong> is anti-symmetric, so <strong>the</strong> inflecti<strong>on</strong> point at u =0is<br />

fixed and dx/dt =0, due to <strong>the</strong> symmetry (u, x) → (−u, −x) admitted by eqn (13.1). In this<br />

case, M =0and no matter how small |s(0)| (with s(0) < 0) verticality s →−∞develops at<br />

x in finite time.<br />

Remark<br />

11.4. The steepening lemma indicates that travelling wave soluti<strong>on</strong>s of <strong>the</strong> EPDiff equati<strong>on</strong><br />

(11.1) cannot have <strong>the</strong> sech 2 shape that appears for KdV solit<strong>on</strong>s, since inflecti<strong>on</strong> points with<br />

sufficiently negative slope can lead to unsteady changes in <strong>the</strong> shape of <strong>the</strong> profile if inflecti<strong>on</strong><br />

points are present. In fact, numerical simulati<strong>on</strong>s show that <strong>the</strong> presence of an inflecti<strong>on</strong><br />

point of negative slope in any c<strong>on</strong>fined initial velocity distributi<strong>on</strong> triggers <strong>the</strong> steepening<br />

lemma as <strong>the</strong> mechanism for <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> peak<strong>on</strong>s. Namely. <strong>the</strong> initial (positive)<br />

velocity profile “leans” to <strong>the</strong> right and steepens, <strong>the</strong>n produces a peak<strong>on</strong> that is taller than


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 105<br />

Propositi<strong>on</strong><br />

12.9 (Preservati<strong>on</strong> of puls<strong>on</strong> order). For overtaking, or rear-end, collisi<strong>on</strong>s, <strong>the</strong><br />

2-puls<strong>on</strong> dynamics preserves <strong>the</strong> sign c<strong>on</strong>diti<strong>on</strong><br />

q = q1 − q2 < 0 .<br />

Proof. Suppose <strong>the</strong> peaks were to overlap in an overtaking collisi<strong>on</strong> with c1c2 > 0, <strong>the</strong>reby<br />

producing q = 0 during a collisi<strong>on</strong>. The c<strong>on</strong>diti<strong>on</strong> G(0) = 1 implies <strong>the</strong> sec<strong>on</strong>d term in<br />

eqn (12.30) would diverge if this overlap were to occur. However, such a divergence would<br />

c<strong>on</strong>tradict p 2 ≥ 0.<br />

C<strong>on</strong>sequently, seen as a collisi<strong>on</strong> between two ‘particles’ with initial speeds c1 and c2<br />

that are initially well separated, <strong>the</strong> separati<strong>on</strong> q(t) reaches a n<strong>on</strong>-zero distance of closest<br />

approach qmin in an overtaking, or rear-end, collisi<strong>on</strong> that may be expressed in terms of <strong>the</strong><br />

pulse shape, as follows.<br />

Corollary 12.10 (Minimum separati<strong>on</strong> distance).<br />

The minimum separati<strong>on</strong> distance reachable in two-puls<strong>on</strong> collisi<strong>on</strong>s with c1c2 > 0 is given<br />

by,<br />

1 − G(qmin) = 4c1c2<br />

. (12.31)<br />

(c1 + c2) 2<br />

Proof. Set p 2 =0ineqn(12.30).<br />

Propositi<strong>on</strong><br />

12.11 (Head-<strong>on</strong> collisi<strong>on</strong>s admit q → 0).<br />

The 2-puls<strong>on</strong> dynamics allows <strong>the</strong> overlap q → 0 in head-<strong>on</strong> collisi<strong>on</strong>s.<br />

Proof. Because p 2 ≥ 0, <strong>the</strong> overlap q → 0implyingg → 1is<strong>on</strong>lypossibleineqn(12.30)for<br />

c1c2 < 0. That is, for <strong>the</strong> head-<strong>on</strong> collisi<strong>on</strong>s.<br />

Remark<br />

12.12 (Divergence of head-<strong>on</strong> momentum).<br />

Equati<strong>on</strong> (12.30) implies that p 2 →∞diverges when q → 0 in head-<strong>on</strong> collisi<strong>on</strong>s. As we<br />

shall discuss, this signals <strong>the</strong> development of a vertical slope in <strong>the</strong> velocity profile of <strong>the</strong><br />

soluti<strong>on</strong> at <strong>the</strong> moment of collisi<strong>on</strong>.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 108<br />

Figure 12.2: Velocity profile (12.35) for <strong>the</strong> head-<strong>on</strong> collisi<strong>on</strong> of <strong>the</strong> triangular peak<strong>on</strong>–anti-peak<strong>on</strong> pair as<br />

a functi<strong>on</strong> of separati<strong>on</strong> between <strong>the</strong> peaks [FH01].


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 111<br />

Lemma 13.2 (Magri 1978). Let {·, ·}1 and {·, ·}2 denote <strong>the</strong> Poiss<strong>on</strong> brackets defined,<br />

respectively, by B1 and B2, which are assumed to be compatible Hamilt<strong>on</strong>ian operators. Let<br />

H1, H2, ... be an infinite sequence of Hamilt<strong>on</strong>ian functi<strong>on</strong>als c<strong>on</strong>structed from eqns (13.7)<br />

and (13.9). Then, <strong>the</strong>se Hamilt<strong>on</strong>ian functi<strong>on</strong>als mutually commute under both Poiss<strong>on</strong><br />

brackets:<br />

{ Hm, Hn }1 = { Hm, Hn }2 =0, for all m, n ≥ 1 . (13.10)<br />

Definiti<strong>on</strong><br />

13.3. A set of functi<strong>on</strong>ally independent Hamilt<strong>on</strong>ians that Poiss<strong>on</strong>-commute am<strong>on</strong>g <strong>the</strong>mselves<br />

is said to be in involuti<strong>on</strong>.<br />

Remark<br />

13.4. The c<strong>on</strong>diti<strong>on</strong> for a can<strong>on</strong>ical Hamilt<strong>on</strong>ian system with N degrees of freedom to be<br />

completely integrable is that it possess N c<strong>on</strong>stants of moti<strong>on</strong> in involuti<strong>on</strong>. The bi-<br />

Hamilt<strong>on</strong>ian property is important because it produces <strong>the</strong> corresp<strong>on</strong>ding c<strong>on</strong>diti<strong>on</strong> for an<br />

infinite-dimensi<strong>on</strong>al system. The infinite-dimensi<strong>on</strong>al case introduces additi<strong>on</strong>al questi<strong>on</strong>s,<br />

such as <strong>the</strong> completeness of <strong>the</strong> infinite set of independent c<strong>on</strong>stants of moti<strong>on</strong> in involuti<strong>on</strong>.<br />

However, such questi<strong>on</strong>s are bey<strong>on</strong>d our present scope.<br />

13.3 Applying Magri’s lemmas<br />

The bi-Hamilt<strong>on</strong>ian property of eqn (13.1) allows <strong>on</strong>e to c<strong>on</strong>struct an infinite number of<br />

Poiss<strong>on</strong>-commuting c<strong>on</strong>servati<strong>on</strong> laws for it by applying Magri’s lemmas. According to<br />

[Mag78], <strong>the</strong>se c<strong>on</strong>servati<strong>on</strong> laws may be c<strong>on</strong>structed for n<strong>on</strong>-degenerate B1 by defining <strong>the</strong><br />

transpose operator R T = B −1<br />

1 B2 that leads from <strong>the</strong> variati<strong>on</strong>al derivative of <strong>on</strong>e c<strong>on</strong>servati<strong>on</strong><br />

law to <strong>the</strong> next,<br />

δHn<br />

δm<br />

= RT δHn−1<br />

δm<br />

, n = −1, 0, 1, 2,.... (13.11)<br />

The operator R T = B −1<br />

1 B2 recursively takes <strong>the</strong> variati<strong>on</strong>al derivative of H−1 to that of H0,<br />

to that of H1, <strong>the</strong>ntothatofH2, etc. Thenextstepsarenotsoeasyfor<strong>the</strong>integrable<br />

CH hierarchy, because each applicati<strong>on</strong> of <strong>the</strong> recursi<strong>on</strong> operator introduces an additi<strong>on</strong>al<br />

c<strong>on</strong>voluti<strong>on</strong> integral into <strong>the</strong> sequence. Corresp<strong>on</strong>dingly, <strong>the</strong> recursi<strong>on</strong> operator R =<br />

B2B −1<br />

1 leads to a hierarchy of commuting flows, defined by Kn+1 = RKn, forn =0, 1, 2,...,<br />

m (n+1)<br />

δHn<br />

t = Kn+1[m] =−B1<br />

δm<br />

δHn−1<br />

= − B2<br />

δm<br />

The first three flows in <strong>the</strong> ‘positive hierarchy’ when c0,γ → 0are<br />

= B2B −1<br />

1 Kn[m] . (13.12)<br />

m (1)<br />

t =0, m (2)<br />

t = − mx , m (3)<br />

t = − (m∂ + ∂m)u, (13.13)


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 117<br />

References<br />

[AS06] Ablowitz, M. J. and Segur, H. [2006] Solit<strong>on</strong>s and <strong>the</strong> Inverse Scattering Transform.<br />

Cambridge University Press, New York.<br />

[AbMa1978] Abraham, R. and Marsden, J. E. [1978] Foundati<strong>on</strong>s of Mechanics, 2nded.<br />

Reading, MA: Addis<strong>on</strong>-Wesley.<br />

[BlIs2006] Bloch, A. M. and Iserles, A. [2006] On an isospectral Lie-Poiss<strong>on</strong> system and its<br />

Lie algebra. Found. Comput. Math. 6, 121–144.<br />

[Bo1985] Bogoyavlensky, O. I. [1985] Integrable <strong>Euler</strong> equati<strong>on</strong>s <strong>on</strong> Lie algebras arising in<br />

problems of ma<strong>the</strong>matical physics. Math. USSR Izvestiya 25, 207–257.<br />

[CH93] Camassa,R. and Holm, D. D. [1993] An integrable shallow water equati<strong>on</strong> with<br />

peaked solit<strong>on</strong>s. Phys. Rev. Lett., 71:1661–64.<br />

[LDP2000] Memoirs of Lorenzo Da P<strong>on</strong>te, [2000] Translated by E. Abbott; edited and annotated<br />

by A. Livingst<strong>on</strong>; introducti<strong>on</strong> by C. Rosen. The New York Review of Books,<br />

New York.<br />

[Da1994] Darling, R. W. R. [1994] Differential Forms and C<strong>on</strong>necti<strong>on</strong>s. Cambridge: Cambridge<br />

University Press.<br />

[DHH03] Degasperis, A., Holm, D. D. and H<strong>on</strong>e,A. N. W. [2003] Integrable and n<strong>on</strong>integrable<br />

equati<strong>on</strong>s with peak<strong>on</strong>s. In M. J. Ablowitz, M. Boiti, F. Pempinelli, and B. Prinari,<br />

editors, N<strong>on</strong>linear Physics: <strong>Theory</strong> and Experiment (Gallipoli 2002) Vol II, pages37–43.<br />

World Scientific, Singapore.<br />

[doCa1976] do Carmo, M. P. [1976] Differential Geometry of Curves and Surfaces. Englewood<br />

Cliffs, NJ: Prentice-Hall.<br />

[DGH04] Dullin, H., Gottwald, G. and Holm, D. D. [2004] On asymptotically equivalent<br />

shallow water wave equati<strong>on</strong>s. Physica D, 190:1–14.<br />

[EM70] Ebin, D. G. and Marsden, J. E. [1970] Groups of diffeomorphisms and <strong>the</strong> moti<strong>on</strong><br />

of an incompressible fluid. Ann. of Math., 92:102–163.<br />

[FaTa1987] Faddeev, L. D. and Takhtajan, L. A. [1987] Hamilt<strong>on</strong>ian Methods in <strong>the</strong> <strong>Theory</strong><br />

of Solit<strong>on</strong>s. New York: Springer.<br />

[Fl1963] Flanders, H. [1963] Differential Forms with Applicati<strong>on</strong>s to <strong>the</strong> Physical Sciences.<br />

New York: Academic Press.<br />

[FH01] Fringer, O. B. and Holm, D. D. [2001] Integrable vs n<strong>on</strong>integrable geodesic solit<strong>on</strong><br />

behavior. Physica D, 150:237–263.<br />

[Fuc96] Fuchssteiner, B. [1996] Some tricks from <strong>the</strong> symmetry-toolbox for n<strong>on</strong>linear equati<strong>on</strong>s:<br />

Generalizati<strong>on</strong>s of <strong>the</strong> Camassa-Holm equati<strong>on</strong>. Physica D, 95:229–243.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 118<br />

[GBRa2008] Gay-Balmaz, F. and Ratiu, T.S. [2008] The geometric structure of complex<br />

fluids. Adv. in Appl. Math. 42 (2), 176–275.<br />

[GaVi2010] Gay-Balmaz F. and Vizman, C. [2011] Dual pairs in fluid dynamics. Ann. Glob.<br />

Anal. Geom. 41, 1–24.<br />

[GD79] Gelfand, I. M. and Dorfman, I. Ya. R. [1979] Hamilt<strong>on</strong>ian operators and algebraic<br />

structures associated with <strong>the</strong>m. Funct. Anal. Appl., 13:248–254.<br />

[GiHoKu1982] Gibb<strong>on</strong>s, J., Holm, D. D. and Kupershmidt, B. A. [1982] Gauge-invariant<br />

Poiss<strong>on</strong> brackets for chromohydrodynamics. Phys. Lett. A 90, 281–283.<br />

[GrKrMa1988] Grossman, R., Krishnaprasad, P. S. and Marsden, J. E. [1988] The dynamics<br />

of two coupled rigid bodies. In Dynamical Systems Approaches to N<strong>on</strong>linear Problems in<br />

Systems and Circuits, edited by F. M. Abdel Salam and M. Levi, Engineering Foundati<strong>on</strong>,<br />

United States Army Research Office, and U.S. Nati<strong>on</strong>al Science Foundati<strong>on</strong>. Philadelphia,<br />

PA: SIAM, pp. 373–378.<br />

[Ho2002] Holm, D. D. [2002] <strong>Euler</strong>–<strong>Poincaré</strong> dynamics of perfect complex fluids. In Geometry,<br />

Mechanics, and Dynamics: In H<strong>on</strong>or of <strong>the</strong> 60th Birthday of Jerrold E. Marsden,<br />

edited by P. Newt<strong>on</strong>, P. Holmes and A. Weinstein. New York: Springer, pp. 113–167.<br />

[Ho2005] Holm, D. D. [2005] The <strong>Euler</strong>–<strong>Poincaré</strong> variati<strong>on</strong>al framework for modeling fluid<br />

dynamics. In Geometric Mechanics and Symmetry: The Peyresq Lectures, edited by J.<br />

M<strong>on</strong>taldi and T. Ratiu. L<strong>on</strong>d<strong>on</strong> Ma<strong>the</strong>matical Society Lecture <str<strong>on</strong>g>Notes</str<strong>on</strong>g> Series 306. Cambridge:<br />

Cambridge University Press.<br />

[Ho2011GM] Holm, D. D. [2011]<br />

Geometric Mechanics I: Dynamics and Symmetry,<br />

Sec<strong>on</strong>d editi<strong>on</strong>, World Scientific: Imperial College Press, Singapore, .<br />

[Ho2011] Holm, D. D. [2011]<br />

Applicati<strong>on</strong>s of Poiss<strong>on</strong> geometry to physical problems,<br />

Geometry & Topology M<strong>on</strong>ographs 17, 221–384.<br />

[HoKu1988] Holm, D. D. and Kupershmidt, B. A. [1988] The analogy between spin glasses<br />

and Yang–Mills fluids. J. Math Phys. 29, 21–30.<br />

[HoMa2004] Holm, D. D. and Marsden, J. E. [2004] Momentum maps and measure valued<br />

soluti<strong>on</strong>s (peak<strong>on</strong>s, filaments, and sheets) for <strong>the</strong> EPDiff equati<strong>on</strong>. In The Breadth of Symplectic<br />

and Poiss<strong>on</strong> Geometry, edited by J. Marsden, and T. Ratiu. Bost<strong>on</strong>: Birkhäuser.<br />

arXiv.nlin.CD/0312048.<br />

[HoMaRa1998] Holm, D. D., Marsden, J. E. and Ratiu, T. S. [1998] The <strong>Euler</strong>–<strong>Poincaré</strong><br />

equati<strong>on</strong>s and semidirect products with applicati<strong>on</strong>s to c<strong>on</strong>tinuum <strong>the</strong>ories. Adv. Math.<br />

137, 1–81.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 119<br />

[HoSmSt2009] Holm, D. D., Schmah, T. and Stoica, C. [2009]<br />

Geometric Mechanics and Symmetry: <strong>From</strong> Finite to Infinite Dimensi<strong>on</strong>s,<br />

Oxford University Press.<br />

[HS03] Holm, D. D. and Staley, M. F. [2003] Wave structures and n<strong>on</strong>linear balances in a<br />

family of 1+1 evoluti<strong>on</strong>ary pdes. SIAM J. Appl. Dyn. Syst., 2:323–380.<br />

[HoVi2010] Holm, D. D. and Vizman, C. [2010] The n:m res<strong>on</strong>ance dual pair. Preprintat<br />

http://arxiv.org/abs/1102.4377.<br />

[HZ94] Hunter, J. K. and Zheng, Y. [1994] On a completely integrable n<strong>on</strong>linear hyperbolic<br />

variati<strong>on</strong>al equati<strong>on</strong>. Physica D, 79:361–386.<br />

[Iv2006] Ivanov, R. [2006] Hamilt<strong>on</strong>ian formulati<strong>on</strong> and integrability of a complex symmetric<br />

n<strong>on</strong>linear system. Phys. Lett. A 350, 232–235.<br />

[JKLOR2011] Jia, S., Kirsten, J., Lai, E., Ortmann, K. and Raithatha, A. [2011] An Applicati<strong>on</strong><br />

(and Translati<strong>on</strong>) of Henri <strong>Poincaré</strong>’s Paper, “Sur une forme nouvelle des équati<strong>on</strong>s<br />

de la mécanique” [Po1901].<br />

[Ku1978] Kummer, M. [1978] On res<strong>on</strong>ant classical Hamilt<strong>on</strong>ians with two equal frequencies.<br />

Commun. Math. Phys. 58, 85–112.<br />

[Mag78] Magri, F. [1978] A simple model of <strong>the</strong> integrable Hamilt<strong>on</strong>ian equati<strong>on</strong>. J. Math.<br />

Phys., 19:1156–1162.<br />

[Man1976] Manakov, S. V. [1976] Note <strong>on</strong> <strong>the</strong> integrati<strong>on</strong> of <strong>Euler</strong>’s equati<strong>on</strong>s of <strong>the</strong> dynamics<br />

of and n-dimensi<strong>on</strong>al rigid body. Funct. Anal. Appl. 10, 328–329.<br />

[MaRa1994] Marsden, J. E. and Ratiu, T. S. [1994]<br />

Introducti<strong>on</strong> to Mechanics and Symmetry.<br />

Texts in Applied Ma<strong>the</strong>matics, Vol. 75. New York: Springer-Verlag.<br />

[MaRaWe1984a] Marsden, J. E., Ratiu, T. S. and Weinstein, A. [1984a] Semidirect products<br />

and reducti<strong>on</strong> in mechanics. Trans. Amer. Math. Soc. 281(1), 147–177.<br />

[MaRaWe1984b] Marsden, J. E., Ratiu, T. S. and Weinstein, A. [1984b] Reducti<strong>on</strong> and<br />

Hamilt<strong>on</strong>ian structures <strong>on</strong> duals of semidirect product Lie algebras. C<strong>on</strong>temporary Math.<br />

28, 55–100.<br />

[MN02] Mikhailov, A. V. and Novikov, V. S. [2002] Perturbative symmetry approach. J.<br />

Phys. A, 35:4775–4790.<br />

[Olv00] Olver, P. J. [2000] Applicati<strong>on</strong>s of Lie Groups to Differential Equati<strong>on</strong>s. Springer,<br />

New York.<br />

[OrRa2004] Ortega, J.-P. and Ratiu, T. S. [2004] Momentum Maps and Hamilt<strong>on</strong>ian Reducti<strong>on</strong>.<br />

ProgressinMa<strong>the</strong>matics,Vol.222.Bost<strong>on</strong>:Birkhäuser.


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 120<br />

[Po1901] <strong>Poincaré</strong>, H. [1901] Sur une forme nouvelle des équati<strong>on</strong>s de la méchanique,<br />

C.R. Acad. Sci. 132 369-371.<br />

[Ra1982] Ratiu, T. [1982] <strong>Euler</strong>–Poiss<strong>on</strong> equati<strong>on</strong>s <strong>on</strong> Lie algebras and <strong>the</strong> N-dimensi<strong>on</strong>al<br />

heavy rigid body. Am. J. Math. 104, 409–448.<br />

[RaTuSbSoTe2005] Ratiu, T. S., Tudoran, R., Sbano, L., Sousa Dias, E. and Terra, G. [2005]<br />

Acrashcourseingeometricmechanics.<br />

In Geometric Mechanics and Symmetry: The Peyresq Lectures,<br />

edited by J. M<strong>on</strong>taldi and T. Ratiu. L<strong>on</strong>d<strong>on</strong> Ma<strong>the</strong>matical Society Lecture <str<strong>on</strong>g>Notes</str<strong>on</strong>g> Series<br />

306. Cambridge: Cambridge University Press.<br />

[RaVM1982] Ratiu, T. and van Moerbeke, P. [1982] The Lagrange rigid body moti<strong>on</strong>. Annales<br />

de l´institut Fourier 32(1), 211–234.<br />

[Sk1961] Skyrme, T. H. R. [1961] A n<strong>on</strong>linear field <strong>the</strong>ory. Proc. R. Soc. A 260, 127–138.<br />

[Tay96] Taylor, M. E. [1996] Partial Differential Equati<strong>on</strong>s I. Springer-Verlag, New York.<br />

[We1983a] Weinstein, A. [1983a] Sophus Lie and symplectic geometry. Expo. Math. 1, 95–96.<br />

[We1983b] Weinstein, A. [1983b] The local structure of Poiss<strong>on</strong> manifolds. J. Differ. Geom.<br />

18, 523–557.<br />

[We2002] Weinstein, A. [2002] Geometry of momentum. ArXiv:math/SG0208108 v1.


Index<br />

alien life forms<br />

Bers, 41<br />

Bichr<strong>on</strong>s, 45<br />

Tets, 38<br />

angular momentum<br />

body, 73<br />

Poiss<strong>on</strong> bracket table, 63<br />

b-equati<strong>on</strong>, 92<br />

bi-Hamilt<strong>on</strong>ian, 104<br />

Bloch–Iserles equati<strong>on</strong>, 67<br />

Camassa–Holm equati<strong>on</strong><br />

CH, 92<br />

Camassa-Holm equati<strong>on</strong><br />

complete integrability, 104<br />

isospectral problem, 104, 107<br />

Cartan<br />

structure equati<strong>on</strong>s, 46<br />

characteristic form<br />

of EPDiff, 84<br />

chiral model, 55<br />

Christoffel coefficients, 48<br />

Clebsch acti<strong>on</strong> principle<br />

heavy top, 76<br />

compatibility<br />

of two Hamilt<strong>on</strong>ian operators, 105<br />

compatibility c<strong>on</strong>diti<strong>on</strong>, 108<br />

complete integrability<br />

CH in 1D, 104<br />

for N-peak<strong>on</strong> dynamics, 110<br />

completely integrable, 106<br />

complex fluid, 53<br />

c<strong>on</strong>stants of moti<strong>on</strong><br />

for N-peak<strong>on</strong> dynamics, 110<br />

c<strong>on</strong>strained variati<strong>on</strong>al principle<br />

Clebsch, 30<br />

Hamilt<strong>on</strong>–P<strong>on</strong>tryagin, 14<br />

implicit, 31<br />

Kaluza–Klein, 77<br />

coordinate expressi<strong>on</strong><br />

for ad ∗<br />

u, 84<br />

121<br />

covariant derivative, 48<br />

curvature two-form, 46<br />

Degasperis-Processi equati<strong>on</strong>, 94<br />

delta functi<strong>on</strong>, 88<br />

diffeomorphism<br />

Diff(D), 81<br />

geodesic moti<strong>on</strong>, 85<br />

dual pairs, 60<br />

Dym equati<strong>on</strong>, 107<br />

emergent phenomen<strong>on</strong><br />

peak<strong>on</strong> wave train, 88<br />

EPDiff equati<strong>on</strong>, 83, 84<br />

complete integrability of CH in 1D, 104<br />

c<strong>on</strong>servati<strong>on</strong> of momentum, 109<br />

in n dimensi<strong>on</strong>s, 82<br />

Noe<strong>the</strong>r’s <strong>the</strong>orem, 85<br />

peak<strong>on</strong> soluti<strong>on</strong>, 87<br />

puls<strong>on</strong> soluti<strong>on</strong>s, 95<br />

<strong>Euler</strong>’s equati<strong>on</strong>s<br />

rigid body, 9<br />

<strong>Euler</strong>–<strong>Poincaré</strong> equati<strong>on</strong><br />

right invariant, 80<br />

c<strong>on</strong>tinuum spin chain, 51<br />

for Sp(2), 56<br />

heavy top, 73<br />

<strong>Euler</strong>–<strong>Poincaré</strong> reducti<strong>on</strong><br />

<strong>the</strong>orem, 5, 80<br />

<strong>Euler</strong>-Lagrange equati<strong>on</strong>s, 80<br />

evoluti<strong>on</strong> equati<strong>on</strong><br />

for <strong>the</strong> isospectral eigenfuncti<strong>on</strong>, 108<br />

fibre derivative, 16<br />

G-invariant Lagrangian, 80<br />

G-strand, 50<br />

Green’s functi<strong>on</strong>, 82<br />

group<br />

special orthog<strong>on</strong>al SO(4), 38<br />

Hamilt<strong>on</strong>’s can<strong>on</strong>ical equati<strong>on</strong>s, 94, 97, 109<br />

Hamilt<strong>on</strong>–P<strong>on</strong>tryagin principle


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 122<br />

rigid body, 14<br />

Hamilt<strong>on</strong>ian form, 24<br />

c<strong>on</strong>tinuum spin chain, 52<br />

hat map, 10, 11<br />

heavy top, 72<br />

Clebsch acti<strong>on</strong> principle, 76<br />

Kaluza–Klein, 77<br />

Legendre transform, 73<br />

Lie–Poiss<strong>on</strong> bracket, 75<br />

variati<strong>on</strong>al principle, 72<br />

inverse scattering transform<br />

for CH equati<strong>on</strong>, 109<br />

involuti<strong>on</strong>, 106<br />

isospectral eigenvalue problem<br />

for CH, 108<br />

for KdV, 108<br />

Jacobi identity, 11, 25<br />

kinetic-energy Lagrangian, 82<br />

Korteweg–de Vries<br />

KdV equati<strong>on</strong>, 92<br />

Lagrange-to-<strong>Euler</strong> map<br />

of <strong>the</strong> EPDiff momentum, 95<br />

Lagrangian<br />

reduced, 5<br />

Lagrangian coordinates, 95<br />

Left-equivariant momentum map, 19<br />

Legendre transform, 24<br />

heavy top, 73<br />

Leibniz, 25<br />

Lie bracket<br />

semidirect product, 75<br />

Lie derivative<br />

Cartan’s formula, 86<br />

Lie–Poiss<strong>on</strong> bracket, 26, 74, 80<br />

c<strong>on</strong>tinuum spin chain, 53<br />

heavy top, 75<br />

momentum maps, 74<br />

spin chain, 50<br />

Lie-Poiss<strong>on</strong> bracket, 16<br />

Magri’s lemmas, 105<br />

Manakov<br />

commutator form, 20, 68<br />

heavy top, 78<br />

momentum map, 32<br />

SU(3) acti<strong>on</strong> <strong>on</strong> C 3 ,64<br />

R 6 → sp(2) ∗ ,65<br />

Nambu bracket, 17, 27<br />

Nambu form<br />

geometric interpretati<strong>on</strong>, 28<br />

three-wave equati<strong>on</strong>s, 28<br />

Noe<strong>the</strong>r’s <strong>the</strong>orem<br />

EPDiff, 85<br />

rigid body, 13, 18<br />

<strong>on</strong>e-form density<br />

momentum, 83<br />

oscillators<br />

<strong>on</strong> C 3 ,61<br />

<strong>Poincaré</strong> sphere, 58<br />

pairing<br />

L 2 ,83<br />

peak<strong>on</strong> wave train, 87, 109<br />

<strong>Poincaré</strong><br />

1901 paper, 20<br />

<strong>Poincaré</strong> sphere<br />

oscillators, 58<br />

Poiss<strong>on</strong> bracket, 24<br />

rigid body, 25<br />

product rule, 25<br />

puls<strong>on</strong> soluti<strong>on</strong>s of EPDiff, 96<br />

puls<strong>on</strong>–anti-puls<strong>on</strong> interacti<strong>on</strong>s, 101<br />

puls<strong>on</strong>–puls<strong>on</strong> interacti<strong>on</strong>s, 98<br />

rec<strong>on</strong>structi<strong>on</strong><br />

formula, 13, 30<br />

rec<strong>on</strong>structi<strong>on</strong> equati<strong>on</strong>, 7<br />

recursi<strong>on</strong> operator, 106<br />

reduced Lagrangian, 5<br />

right invariance, 80<br />

right invariant<br />

Lagrangian, 80<br />

Right-equivariant momentum map, 19<br />

rigid body<br />

Clebsch approach, 30<br />

coupled, 68


<strong>From</strong> <strong>the</strong> <strong>Rigid</strong> Body to Solit<strong>on</strong>s DD Holm Madrid, 22-26 June 2012 123<br />

eigenvalue problem, 21<br />

<strong>Euler</strong>’s equati<strong>on</strong>s, 9<br />

Hamilt<strong>on</strong>ian form, 24<br />

isospectral problem, 21<br />

Lagrangian form, 9<br />

Lie–Poiss<strong>on</strong> bracket, 26<br />

Manakov’s formulati<strong>on</strong>, 20<br />

matrix <strong>Euler</strong> equati<strong>on</strong>s, 14<br />

Noe<strong>the</strong>r’s <strong>the</strong>orem, 18<br />

variati<strong>on</strong>s, 38<br />

rotating moti<strong>on</strong><br />

in complex space, 41<br />

in two times, 45<br />

rotati<strong>on</strong><br />

in complex space, 41<br />

in four dimensi<strong>on</strong>s, 38<br />

sigma model, 55<br />

singular soluti<strong>on</strong>s<br />

of EPDiff, 88, 95<br />

puls<strong>on</strong>s, 95<br />

Skyrme model, 55<br />

solit<strong>on</strong>, 92<br />

spin glass, 53<br />

steepening lemma<br />

b-equati<strong>on</strong> with b>1, 93<br />

EPDiff equati<strong>on</strong> in 1D, 89<br />

strand<br />

so(3)-valued spins, 50<br />

Sturm-Liouville problem, 108<br />

symplectic Lie group<br />

Sp(2), 64<br />

three-wave equati<strong>on</strong>s<br />

Nambu form, 28<br />

variati<strong>on</strong><br />

right invariant vector field, 85<br />

variati<strong>on</strong>al derivative, 9, 83<br />

variati<strong>on</strong>al principle, 12<br />

<strong>Euler</strong>–<strong>Poincaré</strong>, 80<br />

chiral model, 55<br />

c<strong>on</strong>tinuum spin chain, 51<br />

heavy top, 72<br />

implicit, 31<br />

rigid body, 9<br />

sigma model, 55<br />

wave train<br />

peak<strong>on</strong>s, 87<br />

puls<strong>on</strong>s, 96<br />

zero curvature relati<strong>on</strong>, 46<br />

c<strong>on</strong>tinuum spin chain, 51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!