04.04.2013 Views

1. WKB harmonic oscillator

1. WKB harmonic oscillator

1. WKB harmonic oscillator

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

HW6.nb 1<br />

HW 6<br />

<strong>1.</strong> <strong>WKB</strong> <strong>harmonic</strong> <strong>oscillator</strong><br />

a) Energy levels<br />

(Hitoshi does this problem in his <strong>WKB</strong> notes, on page 8.)<br />

The classical turning points a, b are where KE=0, i.e.<br />

E Vx 1<br />

mΩ 2 2 x2 so<br />

a, b 2E<br />

m Ω2 .<br />

We apply or Vx and the turning points to take the energy condition<br />

b <br />

2mE Vx x n <br />

a<br />

1<br />

Π 2<br />

and integrate the l.h.s.:<br />

We find E Π<br />

a0 2E0<br />

; b0 a0;<br />

m Ω2 V0x_ m Ω2 x2 ;<br />

2<br />

IntegrateSqrt2mE0 V0x, x, a0, b0, Assumptions m 0, Ω 0, E0 0<br />

E0 Π<br />

<br />

Ω<br />

n Ω 1<br />

Π 2<br />

such that<br />

E n 1<br />

Ω 2<br />

as desired.<br />

b) SHO <strong>WKB</strong> wavefunctions<br />

(Let us proceed in the units m Ω <strong>1.</strong>)<br />

The trick here is that we want to use the classically−allowed <strong>WKB</strong> wavefunction for SHO in between the turning points,<br />

and the "tunneling" <strong>WKB</strong> wavefunctions in the forbidden regions, which extend to . This can be seen easily on a plot<br />

of the ground state, where the turning points are at 1:


HW6.nb 2<br />

PlotΠ14 Exp x2 x2<br />

, , x, 2, 2, PlotStyle Dashing, Dashing.05, .05;<br />

2 2<br />

2<br />

<strong>1.</strong>5<br />

1<br />

0.5<br />

-2 -1 1 2<br />

Our SHO energies (from part (a)), potential function, and classical turning points are:<br />

Enn_ n 1<br />

<br />

2 ;<br />

Vx_ x2<br />

;<br />

2<br />

an_ <br />

2 Enn ;<br />

bn_ an;<br />

We construct the wavefunction in allowed region using Eq. 30 in the notes. We split up the integral around x 0 and<br />

consider the two turning points a and b separately, so Mathematica doesn’t give a trivial result:<br />

Ψa1x_, n_ <br />

2AbsV ’an<br />

<br />

13<br />

<br />

Π <br />

<br />

CosIntegrate<br />

2Enn Vx <br />

<br />

2Enn Vt ,<br />

t, an, x, Assumptions n 0, an x, x 0 Π<br />

;<br />

4<br />

12<br />

12<br />

Ψa2x_, n_ <br />

2AbsV ’bn<br />

<br />

13<br />

<br />

Π <br />

<br />

CosIntegrate<br />

2Enn Vx <br />

<br />

2Enn Vt , t, x, bn, Assumptions n 0, x 0, x bn Π<br />

;<br />

4<br />

Similarly, for the forbidden regions we use Eq. 31:<br />

12<br />

Ψf1x_, n_ <br />

2AbsV ’an<br />

<br />

13<br />

<br />

Π <br />

<br />

<br />

2Vx Enn <br />

1<br />

<br />

2<br />

ExpIntegrate <br />

2Vt Enn , t, x, an, Assumptions n 0, x an;<br />

12<br />

Ψf2x_, n_ <br />

2AbsV ’bn<br />

<br />

13<br />

<br />

Π <br />

<br />

<br />

2Vx Enn <br />

1<br />

<br />

2<br />

ExpIntegrate <br />

2Vt Enn , t, bn, x, Assumptions n 0, x bn;


HW6.nb 3<br />

Ok, now what about the regions right around the classical turning points a and b? We know that the wavefunctions above<br />

blow up near these points. So, let’s define a radius about the turning points inside which we treat specially:<br />

Ε 0.5;<br />

Next, we construct a piecewise function from the asymptotic wavefunctions above outside these regions (using ’UnitStep’):<br />

Ψwkbasyx_, n_ 1 n Ψf1x, n1 UnitStepx an Ε <br />

1 n Ψa1x, nUnitStepx an Ε1 UnitStepx <br />

Ψa2x, nUnitStepx1 UnitStepx bn Ε Ψf2x, nUnitStepx bn Ε;<br />

Now, in the special regions, we use the Airy functions themselves, and again construct a piecewise function:<br />

Ψwkbtpax_, n_ 1 n AiryAi2AbsV ’an 13 x anUnitStepx an Ε<br />

1 UnitStepx an Ε AiryAi2AbsV ’bn 13 x bn<br />

UnitStepx bn Ε1 UnitStepx bn Ε;<br />

Finally, we add these two chunks to get the whole function:<br />

Ψwkbx_, n_ Ψwkbasyx, n Ψwkbtpax, n;<br />

WAIT: If we’re using the asymptotic wavefunctions mated to the actual Airy functions in the transition regions, why not<br />

just use the Airy functions everywhere, expanding about the turning points? A moment’s reflection gives the answer: this<br />

would work great coming in from and passing through the turning points, but as you move into the classically−allowed<br />

region, the Airy function would not reach its cosine−shaped asymptote fast enough! The reason we do it piecewise is that<br />

we want accurate results where E V , and live with nastiness in the transition regions. (In the classically−forbidden<br />

regions, the Airy function should decay fast enough to match the asymptotic solution.)<br />

To see this, let’s construct this all−Airy function wavefunction by expanding around the two turning points:<br />

Ψairx_, n_ 1 n AiryAi2AbsV ’an 13 x an1 UnitStepx <br />

AiryAi2AbsV ’bn 13 x bnUnitStepx;<br />

Finally, we wish to compare to the exact results:<br />

1<br />

Ψexax_, n_ <br />

<br />

2n Π<br />

Factorialn<br />

14 Exp x2<br />

HermiteHn, x;<br />

2<br />

Let’s compare the exact and <strong>WKB</strong> solutions for n 1:


HW6.nb 4<br />

PlotΨexax, 1, Ψwkbx, 1, x, 4, 4, PlotStyle GrayLevel0, Hue0;<br />

0.6<br />

0.4<br />

0.2<br />

-4 -2 2 4<br />

-0.2<br />

-0.4<br />

-0.6<br />

Our <strong>WKB</strong> solutions looks great at x and x 0 where E V and E V respectively, as expected. The Airy<br />

function matches nicely with the decaying wavefunctions in the forbidden regions, but does indeed mismatch the wavefunction<br />

in the allowed region.<br />

Now, let’s compare the exact and all−Airy solutions:<br />

PlotΨexax, 1, Ψairx, 1, x, 4, 4, PlotStyle GrayLevel0, Hue0;<br />

0.6<br />

0.4<br />

0.2<br />

-4 -2 2 4<br />

-0.2<br />

-0.4<br />

-0.6<br />

As expected, we get the opposite behavior. Coming in from , the wavefunction matches the exact solution nicely.<br />

However, as we move toward x 0, the discrepancy builds up until you get a mismatch.<br />

Now let’s look at n 10:


HW6.nb 5<br />

PlotΨexax, 10, Ψwkbx, 10, x, 7, 7, PlotStyle GrayLevel0, Hue0;<br />

0.4<br />

0.2<br />

-6 -4 -2 2 4 6<br />

-0.2<br />

-0.4<br />

Fantastic! Because the energy is much higher, the approximation is far more accurate (i.e, the state is much more classical),<br />

and on this plot the mismatch between the Airy function in the transition region and the wavefunction in the allowed region<br />

is not even visible.<br />

Now let’s look at the all−Airy solution for n 10:<br />

PlotΨexax, 10, Ψairx, 10, x, 7, 7, PlotStyle GrayLevel0, Hue0;<br />

0.4<br />

0.2<br />

-6 -4 -2 2 4 6<br />

-0.2<br />

-0.4<br />

A bit better than n <strong>1.</strong> The discrepancy builds up again coming toward x 0 from the turning points; however, because n<br />

is even, there is no mismatch at x 0, just a sharp point.<br />

Finally, let us look at n 20:


HW6.nb 6<br />

PlotΨexax, 20, Ψwkbx, 20, x, 10, 10, PlotStyle GrayLevel0, Hue0;<br />

0.4<br />

0.2<br />

-10 -5 5 10<br />

-0.2<br />

-0.4<br />

We see that the <strong>WKB</strong> solution has a bit of overshoot due to the higher energy; otherwise the agreement is quite good.<br />

Finally, let us compare the exact and all−Airy solutions for n 20:<br />

PlotΨexax, 20, Ψairx, 20, x, 10, 10, PlotStyle GrayLevel0, Hue0;<br />

0.4<br />

0.2<br />

-10 -5 5 10<br />

-0.2<br />

-0.4<br />

The overshoot is still there, but the discrepancy is less approaching x 0 as one would expect with the higher energy.<br />

N.B.: Of course, one could just use polynomial to handle the transition regions. But, if we’re going to use numerical<br />

methods, we might as well use the variational method instead of <strong>WKB</strong>. :P


HW6.nb 7<br />

2. Classical limit of hydrogen atom<br />

a) Correspondence between orbital motion and emitted photon<br />

One can derive the Bohr model by taking the energy of an electron circling a proton (CGS units)<br />

E 1<br />

m v 2 2 Z e2<br />

r<br />

and applying the quantization condition<br />

Ln m v r n .<br />

(This justification for this quantization is just units; we know that the ground state in fact has no angular momentum. One<br />

can also derive the Bohr model by requiring whole wavelengths to fit on a circle of radius r.)<br />

Substituting for v, we get<br />

E 1 n <br />

m 2 m r 2<br />

Z e2<br />

. r<br />

We require one more condition to eliminate r. Let us use the force balance<br />

m v2<br />

Z e2<br />

F <br />

r r2 which gives<br />

Z e2<br />

r m v2 Z e2<br />

m<br />

and finally<br />

rn n2 2<br />

m r<br />

n 2<br />

Z e2 m .<br />

Substituting this back in to the energy,<br />

En 1<br />

to obtain<br />

En Z2 e4 m<br />

<br />

Similarly,<br />

vn <br />

2 n2 2 m rn 2 Z e2<br />

rn n2 2 n <br />

<br />

m rn<br />

2n 2 2 .<br />

n <br />

<br />

m Z e2 m<br />

n2 2 <br />

<br />

2m Z e2 m<br />

<br />

Z e2<br />

<br />

n .<br />

n 2 2 2<br />

Z e2 Z e2 m<br />

n2 2 <br />

Having derived these basic quantities, we can express the frequency of orbital motion in state n as<br />

Νo vn<br />

Z e2<br />

<br />

2Π rn 2Π n <br />

n3 3 .<br />

On the other hand, we know that the frequency of a photon due to a change from state n to n k is<br />

ΝΓ En Enk 1<br />

<br />

2Π 2Π<br />

Z2 e4 m<br />

23 1<br />

n2 1<br />

<br />

nk 2 1<br />

2Π<br />

Z2 e4 m<br />

2n2 3 <br />

1<br />

<br />

1 k<br />

n 2 1 <br />

Approximating k n,<br />

.<br />

<br />

ΝΓ 1<br />

2Π<br />

Z2 e4 m<br />

2n2 3 1 2k<br />

1<br />

1 <br />

n 2Π Z2 e4 m<br />

n3 3 k.<br />

1<br />

Z e2 m<br />

n2 2 1<br />

2Π Z2 e4 m<br />

As indicated in the hint, we find that the frequency of the photon ΝΓ is an integer multiple of the frequency of orbital<br />

motion Νo .


HW6.nb 8<br />

b) Correspondence between classical radiation and mean lifetime<br />

Under classical dynamics the electron is being continually accelerated, so it should emit radiation. To know the mean<br />

lifetime Τ of a state n, we must know how fast it loses power. Since the model is semiclassical, we can use a classical<br />

radiation formula. We found above that the velocity goes like 1<br />

, so the motion at large n is non−relativistic and so we can<br />

n<br />

just use the Larmor power formula (again in CGS)<br />

.<br />

From above,<br />

P 2e2 a2 3c3 <br />

an Fn<br />

Substituting,<br />

m <br />

P 2Z6 e 14 m 2<br />

.<br />

3c 3 n 8 8<br />

Z e2<br />

<br />

m rn 2 <br />

The mean lifetime should be<br />

Rearranging,<br />

Z e2<br />

<br />

m Z e2 m<br />

n2 2 2<br />

Z3 e6 m<br />

n4 4 Τ En En1 P<br />

Z2 e4 m<br />

n3 2 1 3c3 n8 8 <br />

as expected.<br />

1<br />

Τ 2<br />

3 e2 Z e2<br />

c c 4 <br />

m c2<br />

<br />

1<br />

n5 2Z 6 e 14 m 2 3c3 n 5 6<br />

.<br />

<br />

Z 4 e 10 m .<br />

c) Comparison of classical and quantum lifetimes<br />

We implement the correct expression above (with in units of eV s):<br />

lifetimecn_ <br />

<br />

<br />

2<br />

ΑZ Α<br />

3 4 mec2 1<br />

<br />

hbar n5 <br />

<br />

Computing for n 2, 4, 6 we find respectively<br />

2, 4, 6 lifetimec<br />

1<br />

2.98388 10 9 , 9.54841 10 8 , 7.25082 10 7 <br />

. Α 137 1 , Z 1, mec2 511000, hbar 6.582 10 16 ;<br />

These are accurate to within an order of magnitude of the given quantum values, and seem to improve with increasing n as<br />

we would expect.


HW6.nb 9<br />

3. Spin precession in magnetic field<br />

a) Time evolution of eigenstates<br />

The Schrödinger equation is<br />

e<br />

e B<br />

i t Ψ H Ψ g S B Ψ g <br />

2m c 2m c Sz Ψ Ω Sz Ψ <br />

where we defined Ω g<br />

e B<br />

<br />

2m c .<br />

Then, for Ψ Sz ; we have<br />

i t Sz ; Ω<br />

<br />

2 Sz ; <br />

and for Ψ Sz ; we have<br />

i t Sz ; Ω<br />

<br />

2 Sz ; .<br />

So we have for the solutions<br />

Sz ; , t e<br />

Sz ; , t e<br />

Ω<br />

i <br />

i Ω<br />

2 t Sz ; <br />

2 t Sz ; .<br />

For a state aligned with the quantization axis, the "precession" is just a rotating phase.<br />

b) Dynamics of S x ; <br />

First, define the spin matrices:<br />

Sx <br />

<br />

2 0, 1, 1, 0;<br />

Sy <br />

<br />

2 0, I, I, 0;<br />

Sz <br />

<br />

2 1, 0, 0, 1;<br />

Find the eigenstates of Sx :<br />

eigenx EigensystemSx <br />

<br />

,<br />

2 <br />

, 1, 1, 1, 1<br />

2<br />

Our state Sx ; is then<br />

and so<br />

Sx ; 1<br />

Sz ; Sz ; <br />

2<br />

Sx ; , t 1<br />

Sz ; , t Sz ; , t .<br />

2<br />

In component form on the time−independent basis Sz ; , Sz ; ,


Our state Sx ; is then<br />

Sx ; 1<br />

Sz ; Sz ; <br />

HW6.nb 2 10<br />

and so<br />

Sx ; , t 1<br />

Sz ; , t Sz ; , t .<br />

2<br />

In component form on the time−independent basis Sz ; , Sz ; ,<br />

Sx ; , t 1<br />

<br />

2 <br />

e<br />

Ω<br />

ei<br />

2 t<br />

Ω<br />

i <br />

c) Showing precession<br />

2 t<br />

<br />

<br />

.<br />

Let us implement the above state in component form, as well as its conjugate−transpose:<br />

1<br />

Ψsxpt_ <br />

<br />

ExpI<br />

2<br />

Ω<br />

t, ExpI<br />

2 Ω<br />

t;<br />

2<br />

1<br />

Ψsxpctt_ <br />

<br />

ExpI<br />

2<br />

Ω<br />

t, ExpI<br />

2 Ω<br />

t;<br />

2<br />

We calculate Sx ; , t S <br />

Sx ; , t and put it into vector x, y, z form:<br />

ExpToTrigΨsxpctt.Sx .Ψsxpt1, 1,<br />

Ψsxpctt.Sy .Ψsxpt1, 1, Ψsxpctt.Sz .Ψsxpt1, 1<br />

1<br />

Cost Ω, <br />

2 1<br />

Sint Ω, 0<br />

2<br />

<br />

This is the clockwise precession about the z−axis with angular frequency Ω g of a vector of length . As<br />

2m c 2<br />

expected, there is no z−component. (The classical analogue is a gyroscope precessing clockwise in the plane; of course,<br />

here we can’t simultaneously have components of x/y and z.)<br />

4. Hamilton−Jacobi for light [optional]<br />

a) Apply <strong>WKB</strong> approximation to equation of motion<br />

Following the same steps we did for the Schrödinger equation, we first write the Maxwell’s equation with A 0 e i S :<br />

<br />

<br />

n2<br />

c2 2<br />

t2 2 <br />

<br />

ei S <br />

<br />

n2<br />

c2 <br />

i S<br />

<br />

<br />

<br />

i S <br />

<br />

<br />

<br />

2<br />

i 2 S<br />

<br />

<br />

<br />

i S <br />

<br />

<br />

2 <br />

<br />

ei S 0 .<br />

In the limit S , we can drop terms of OS and keep those of OS 2 :<br />

n2 c2 2<br />

S <br />

S 2 0.<br />

This is the "Hamilton−Jacobi" equation.<br />

e B


HW6.nb 11<br />

(Of course, in the Maxwell equation, there is no notion of . What we are doing is a valid approximation when the variation<br />

of the phase is very fast compared to the variation of the index of refraction. It is called "eikonal approximation" in optics.)<br />

b) Equivalence to particle in given potential<br />

The Hamiltonian of free particle in potential Vx 1<br />

2m nx 2<br />

H p2<br />

2m<br />

n2<br />

2m .<br />

Applying this to the Hamilton−Jacobi equation, we obtain<br />

1<br />

2m <br />

2<br />

S<br />

n2<br />

2m<br />

S<br />

0. t<br />

Since the action has no explicit time dependence, we can make the Legendre transformation St, x S E, x E t to get<br />

and finally<br />

2<br />

1<br />

2m S <br />

n2<br />

E 0<br />

2m<br />

n2 <br />

S 2<br />

0.<br />

If n in part (a) has no time dependence, we can do the same Legendre transformation and obtain the equivalent "H−J"<br />

equation<br />

E<br />

n c 2<br />

<br />

S 2<br />

0.<br />

c) Separate variables, integrate "action" variable<br />

Assuming nx nx, the "Hamilton−Jacobi" equation does not have an explicit dependence on y or t. Writing<br />

Sx, y, t S <br />

x, py , E py y E t,<br />

the equation becomes<br />

n 2<br />

<br />

Therefore,<br />

c2 E2 d<br />

<br />

d S <br />

<br />

d x<br />

and hence<br />

d x S<br />

<br />

<br />

n2<br />

c2 E2 py 2<br />

S <br />

<br />

x<br />

2 py 2 0.<br />

<br />

E2 py 2 d x’.<br />

nx’ 2<br />

c2 Here, the possible x−dependence of the index of refraction is emphasized.<br />

is


HW6.nb 12<br />

S <br />

<br />

x<br />

<br />

E2 py 2 d x’.<br />

nx’ 2<br />

c2 Here, the possible x−dependence of the index of refraction is emphasized.<br />

d) Integral expressions for "angle" variables<br />

S<br />

S<br />

Using t , y , we find<br />

E<br />

t <br />

y <br />

x<br />

x<br />

py<br />

nx’ 2<br />

<br />

c 2 E<br />

d x’,<br />

<br />

nx’2 <br />

c2 E2 py 2<br />

py<br />

<br />

<br />

nx’2 <br />

c2 E2 py 2<br />

e) Work to Snell’s law<br />

d x’.<br />

Assuming that nx n1 for x 0 and nx n2 for x 0, and choosing the lower end of the integration at x 0,<br />

and<br />

y x <br />

y x <br />

py<br />

<br />

n 2<br />

<br />

1<br />

c2 E2 py 2<br />

py<br />

<br />

n 2<br />

<br />

2<br />

c2 E2 py 2<br />

x for x 0<br />

x for x 0.<br />

1<br />

<br />

cot2 Α1<br />

Using the trigonometric relation sin Α , we find<br />

and hence<br />

1<br />

c py<br />

sin Α n1 E ,<br />

n 2<br />

1 E2 py 2<br />

<br />

c2 1<br />

py 2<br />

1<br />

c py<br />

sin Α n2 E ,<br />

sin Α<br />

<br />

sin Α<br />

n 2<br />

2 E2 py 2<br />

<br />

c2 1<br />

,<br />

n2 n1<br />

py 2<br />

which is nothing but the Snell’s law of refraction.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!