04.04.2013 Views

Finite segments of the harmonic series

Finite segments of the harmonic series

Finite segments of the harmonic series

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Finite</strong> <strong>segments</strong> <strong>of</strong> <strong>the</strong> <strong>harmonic</strong> <strong>series</strong><br />

Allan Silberger 1<br />

Donald Silberger 2<br />

Sylvia Silberger 3<br />

2011 October 27<br />

Dedicated to Paul Erdös 1913-1996<br />

Abstract<br />

Let σ(m, k) := k−1<br />

j=0 1/(m + j). For {m, k, m′ } ⊂ N we define<br />

k ′ by σ(m ′ , k ′ − 1) < σ(m, k) ≤ σ(m ′ , k ′ ). Extending work by<br />

Taeisinger, Kürschák, Erdös, Belbachir, and Khelladi, we prove:<br />

1. If σ(m, k) is <strong>the</strong> reciprocal <strong>of</strong> an integer <strong>the</strong>n k = 1.<br />

2. (k /∈ [2, m)∨k ′ ≥ 2(m+k)∨m ′ ≥ 4m 2 ) ⇒ σ(m ′ , k ′ ) = σ(m, k).<br />

Conjecture: The function σ : N × N → Q + is injective.<br />

§1. Introduction.<br />

This paper studies <strong>the</strong> set H <strong>of</strong> all <strong>harmonic</strong> rationals,<br />

σ(m, k) :=<br />

k−1 1<br />

j=0 m + j , where 〈m, k〉 ∈ N2 and N := {1, 2, 3, . . .}.<br />

It focuses on <strong>the</strong> function σ : N 2 → Q + defined by σ : 〈m, k〉 ↦→ σ(m, k).<br />

Let Hn := H ∩ {σ(m, k) : m ≥ n}. Of course H = H1 ⊇ H2 ⊇ H3 ⊇ . . .<br />

Theorem 1. Let n ∈ N. Then Hn is dense in [0, ∞).<br />

Pro<strong>of</strong>. Let 0 < l < r be real numbers. There exists an integer m > n<br />

such that 1/m < min{l, r − l}. Since limj→∞ σ(m, j) = ∞, <strong>the</strong>re exists<br />

k ≥ 2 such that σ(m, k − 1) ≤ l < σ(m, k). Hence l < σ(m, k) =<br />

σ(m, k − 1) + 1/(m + k − 1) < l + 1/m < l + (r − l). So σ(m, k) ∈ (l, r).<br />

This paper partially supports our belief that σ : N 2 → Q + is injective.<br />

Via <strong>the</strong> notion <strong>of</strong> a prime power that is “sylvester” for a set <strong>of</strong> integers,<br />

we consider <strong>the</strong> coprime pairs 〈ν, δ〉 such that ν/δ ∈ H.<br />

1


In 1915, L. Taeisinger proved that σ(1, k) ∈ N only if k = 1. In 1918,<br />

J. Kürschák showed that σ(m, k) is an integer only if m = k = 1. P.<br />

Erdös, [1932E] and Page 157 in [1998H], extended Kürschák’s <strong>the</strong>orem to<br />

finite arithmetic sub<strong>series</strong> <strong>of</strong> <strong>the</strong> <strong>harmonic</strong> <strong>series</strong>:<br />

k−1 1<br />

j=0 m + dj<br />

∈ N if (m, d) = 1 .<br />

H. Belbachir and A. Khelladi [2007BK] generalized <strong>the</strong> Erdös result thus:<br />

For α0, α1, . . . , αk−1 any positive integers,<br />

k−1<br />

<br />

j=0<br />

1<br />

(m + dj) αj<br />

∈ N if (m, d) = 1 .<br />

Let 1/N := {1/n : n ∈ N}. We will prove: σ(m, k) ∈ 1/N ⇒ k = 1.<br />

We will write x ≈ y to assert that |x − y| is small enough not to<br />

invalidate size relationships based upon our approximation to x = y.<br />

§2. Sylvester powers.<br />

For S a finite nonempty set <strong>of</strong> positive integers, σ(S) := <br />

j∈S 1/j, and<br />

µ(S) := <strong>the</strong> least common multiple <strong>of</strong> <strong>the</strong> elements in S. Observe that<br />

σ(S) = σ(S)µ(S)<br />

µ(S)<br />

ν(S)<br />

= , and that {σ(S)µ(S), µ(S)} ⊂ N, where<br />

δ(S)<br />

〈ν(S), δ(S)〉 is a uniquely determined coprime pair <strong>of</strong> positive integers.<br />

Our interest lies in <strong>the</strong> intervals [m, m + k) := {m, m + 1, . . . , m + k − 1}<br />

<strong>of</strong> consecutive positive integers. We write σ([m, m + k)), µ([m, m + k)),<br />

etc. simply as σ(m, k), µ(m, k), etc.; indeed we may simplify fur<strong>the</strong>r by<br />

writing instead σ, µ, and so forth when m and k are understood.<br />

We evoke two classic results:<br />

Bertrand’s Postulate/Chebyshev’s Theorem. (See Erdös [1934E]) If<br />

2 ≤ n ∈ N <strong>the</strong>n <strong>the</strong>re is a prime p ∈ (n, 2n).<br />

Sylvester’s Theorem. ([1892S] and [1934E]) If m > k <strong>the</strong>n p|µ for<br />

some prime p > k.<br />

2


One writes x n y in order to state that both x n |y and ¬ x n+1 |y.<br />

Definition. If X ⊆ N, if p is a prime, and if v ∈ N, <strong>the</strong>n we call p v<br />

sylvester for X iff p v µ(X) while p v |s for exactly one element s ∈ X.<br />

S(X) := {p v : p v is sylvester for X}, and S(m, k) := S([m, m + k)).<br />

Lemma 2. (Noted also in [2007BK]) Let <strong>the</strong> prime power p v be sylvester<br />

for a finite nonempty set F ⊆ N. Then p v δ(F ).<br />

Pro<strong>of</strong>. Let xp be <strong>the</strong> unique element in F with p v xp. Among <strong>the</strong> |F |<br />

distinct integers µ(F )/x whose sum is µ(F )σ(F ), only µ(F )/xp fails to<br />

be a multiple <strong>of</strong> p. So p is not a factor <strong>of</strong> <strong>the</strong> integer µ(F )σ(F ). Thus<br />

p v δ(F ), since p v µ(F ) and since µ(F )σ(F )/µ(F ) = ν(F )/δ(F ).<br />

Lemma 3. For each 〈m, k〉 with k ≥ 2, <strong>the</strong>re is a 2 v that is sylvester<br />

for [m, m + k). Indeed k/2 < 2 v < m + k.<br />

Pro<strong>of</strong>. Since k ≥ 2 we have that 2 v µ(m, k) for some v ≥ 1. Let s<br />

be <strong>the</strong> smallest multiple <strong>of</strong> 2 v in [m, m + k). Plainly s = 2 v a for some<br />

odd integer a. Then b := 2 v a + 2 v is <strong>the</strong> smallest multiple <strong>of</strong> 2 v with<br />

b > s. Since b = 2 v (a + 1), and since <strong>the</strong> integer a + 1 is even, we have<br />

that 2 v+1 |b. Hence b ≥ m + k since ¬ 2 v+1 |µ(m, k). Thus s is <strong>the</strong><br />

only multiple <strong>of</strong> 2 v in [m, m + k). So 2 v is sylvester for [m, m + k).<br />

The first claim is established. The second claim follows from <strong>the</strong> facts that<br />

2 v+1 |µ(m, k) if 2 v ≤ k/2, and that 2 v < m + k since 2 v |µ(m, k).<br />

Corollary 4. If 〈m, k〉 = 〈1, 1〉 <strong>the</strong>n S(m, k) = ∅.<br />

Remark. If p > 2 is prime <strong>the</strong>n ¬ (p v µ(F ) ⇒ p v ∈ S(F )). E.g., 5 2 is<br />

not sylvester for [25, 51) := {25, 26, . . . , 50} although 5 2 µ(25, 26).<br />

Kürschák’s Theorem. ([1918K]) If σ(m, k) ∈ N <strong>the</strong>n m = k = 1.<br />

Pro<strong>of</strong>. Let 〈m, k〉 = 〈1, 1〉. Then Lemmas 2 and 3 imply that δ(m, k) is<br />

even. So ν(m, k)/δ(m, k) is not an integer.<br />

Corollary 5. If a/b ∈ H with (a, b) = 1 and with a > 1, <strong>the</strong>n 2|b.<br />

3


Corollary 6. Let a/b ∈ H with (a, b) = 1. Then <strong>the</strong>re is a pair 〈m, k〉<br />

such that b|µ(m, k), and such that µ(m, k)/b = σ(m, k)µ(m, k)/a.<br />

Pro<strong>of</strong>. There exists 〈m, k〉 ∈ N 2 for which 〈a, b〉 = 〈ν(m, k), δ(m, k)〉.<br />

But ν/δ is <strong>the</strong> lowest-terms form <strong>of</strong> <strong>the</strong> rational number σµ/µ. It follows<br />

that µ/b = q = σµ/a for some q ∈ N.<br />

Corollary 7. The integer µ/δ = σµ/ν is a product <strong>of</strong> powers p n <strong>of</strong> odd<br />

primes p ≤ k.<br />

The next result engenders our guess that σ : N 2 → Q + is injective.<br />

Theorem 8. If k ≥ 2 <strong>the</strong>n σ(m, k) ∈ 1/N.<br />

Pro<strong>of</strong>. Pretend <strong>the</strong> <strong>the</strong>orem fails for a given k ≥ 2 and m ≥ 1. That is,<br />

we pretend that σ = 1/δ.<br />

If kδ < m <strong>the</strong>n 1/kδ > 1/m > 1/(m+1) > · · · > 1/(m+k−1), whence<br />

1/δ = k · 1/kδ > 1/m + 1/(m + 1) + · · · + 1/(m + k − 1) =: σ. Similarly, if<br />

kδ > m + k − 1 <strong>the</strong>n 1/δ < σ. Hence m ≤ kδ ≤ m + k − 1 if σ = 1/δ.<br />

From k ≥ 2 we get 1/m < σ = 1/δ. Thus 2 ≤ δ < m. So<br />

kδ ≤ m + k − 1 implies k ≤ k(δ − 1) ≤ m − 1 < m, giving us m > k.<br />

Sylvester’s <strong>the</strong>orem implies that <strong>the</strong>re is a prime p > k and v ∈ N such<br />

that p v ∈ S(m, k). Then p v xp for exactly one xp ∈ [m, m + k), and<br />

(p, x) = 1 for every x ∈ [m, m + k) \ {xp}. Hence (µ/xp, p) = 1, while<br />

p|µ/x for each x ∈ [m, m + k) \ {xp}. So (µσ, p) = 1 while p v µ.<br />

Therefore p v δ, since µσ/µ = 1/δ. We must infer that xp = kδ.<br />

Define σ ′ := σ − 1/kδ = c/d with (c, d) = 1. Then σ ′ = 1/δ − 1/kδ =<br />

(k − 1)/kδ. Now p|kδ, but (k − 1, p) = 1 since p > k. So p|d. On<br />

<strong>the</strong> o<strong>the</strong>r hand, σ ′ = (µσ − µ/kδ)/µ, and p v | (µσ − µ/kδ) since p v µ/x<br />

for every x ∈ [m, m + k) \ {kδ}. Thus, recalling that p v µ we infer that<br />

(p, d) = 1, reaching a contradiction: p|d ∧ (p, d) = 1. So σ = 1/δ.<br />

Notice that Theorem 8 implies that Hn ⊃ Hn+1 for all n ∈ N.<br />

Henceforth fix 〈m, k, m ′ 〉 ∈ N 3 with k ≥ 2 and m ′ ≥ m + k; define<br />

k ′ = min{j : σ(m ′ , j) ≥ σ(m, k)}. Observe that 0 ≤ σ(m ′ , k ′ ) − σ(m, k) <<br />

σ(m ′ , k ′ ) − σ(m ′ , k ′ − 1) = 1/(m ′ + k ′ − 1) ≤ 1/(m + 2k).<br />

Theorem 9. Let m ′ ≤ k ′ . Then σ(m ′ , k ′ ) = σ(m, k).<br />

4


Pro<strong>of</strong>. Since 2m ′ ≤ m ′ + k ′ , by Bertrand’s Postulate <strong>the</strong>re is a largest<br />

prime p with m ′ ≤ (m ′ +k ′ )/2 < p < m ′ +k ′ , and 2p ∈ [m ′ , m ′ +k ′ ). Surely<br />

p 1 is sylvester for [m ′ , m ′ +k ′ ), whence p|δ(m ′ , k ′ ) by Lemma 2. But p > i<br />

for every i ∈ [1, m ′ − 1]. Thus, ¬ p|j for all j ∈ [m, m + k) ⊆ [1, m ′ − 1],<br />

and so ¬ p|µ(m, k) whence ¬ p|δ(m, k). Therefore σ(m, k) = σ(m ′ , k ′ ).<br />

The following lemma utilizes a tightening <strong>of</strong> <strong>the</strong> fact that<br />

m+k−1<br />

σ(m, k) ≈<br />

m<br />

dx<br />

x<br />

= ln(1 + k − 1<br />

m ).<br />

Lemma 10. Let k ≥ 2. Then 1 + k/m ≤ m ′ /m < (k ′ − 1)/(k − 1).<br />

Pro<strong>of</strong>. We can view σ(m, k) as a step function above 1/x, and note that<br />

σ(m, k − 1) > ln(1 +<br />

k − 1<br />

m ).<br />

Therefore, since σ(m, k) = σ(m, k − 1) + 1/(m + k − 1), we infer that<br />

1<br />

m + k − 1<br />

< σ(m, k) − ln(1 + k − 1<br />

m ).<br />

Next, viewing σ(m + 1, k − 1) as a step function under 1/x, we see that<br />

σ(m + 1, k − 1) < ln(1 +<br />

k − 1<br />

m )<br />

and hence, since σ(m, k) = σ(m + 1, k − 1) + 1/m, we infer that<br />

σ(m, k) − ln(1 +<br />

Combining inequalities, we get that<br />

1<br />

m + k − 1<br />

Similarly we infer that<br />

k − 1 1<br />

) <<br />

m m .<br />

k − 1 1<br />

< σ(m, k) − ln(1 + ) <<br />

m m .<br />

− 1<br />

m ′ < ln(1 + k′ − 1<br />

m ′ ) − σ(m ′ , k ′ 1<br />

) < −<br />

m ′ + k ′ − 1 .<br />

5


From <strong>the</strong> immediately preceding two sets <strong>of</strong> inequalities we get that<br />

1 1<br />

−<br />

m + k − 1 m ′ < ln(1 + k′ − 1<br />

m ′ k − 1<br />

)/(1 +<br />

m ) + σ − σ′ ,<br />

where σ and σ ′ are shorthand for σ(m, k) and σ(m ′ , k ′ ), respectively.<br />

Recall that σ − σ ′ ≤ 0. Since m + k ≤ m ′ , we have that<br />

Therefore<br />

0 < L :=<br />

The lemma follows.<br />

1 1<br />

−<br />

m + k − 1 m ′ < ln(1 + k′ − 1<br />

m ′ )/(1 +<br />

1 < e L < (1 + k′ − 1<br />

m ′ )/(1 +<br />

1 + k′ − 1<br />

m ′<br />

k − 1<br />

) , whence<br />

m<br />

k − 1<br />

> 1 +<br />

m .<br />

Theorem 11. Let m < k. Then σ(m, k) = σ(m ′ , k ′ ).<br />

k − 1<br />

) .<br />

m<br />

Pro<strong>of</strong>. Lemma 10 gives us that 1 ≤ (k−1)/m < (k ′ −1)/m ′ . So m ′ < k ′ −1<br />

whence σ(m, k) = σ(m ′ , k ′ ) by Theorem 9.<br />

Corollary 12. Let σ > 1/m + ln 2. Then σ ′ = σ.<br />

Pro<strong>of</strong>. In our pro<strong>of</strong> <strong>of</strong> Lemma 10 we saw that σ < 1/m+ln(1+(k −1)/m).<br />

So 1/m + ln 2 < σ < 1/m + ln(1 + (k − 1)/m) by hypo<strong>the</strong>sis. It follows that<br />

ln 2 < ln(1 + (k − 1)/m). Thus m < k − 1. So σ ′ = σ by Theorem 11.<br />

Given 〈m, k, m ′ 〉 ∈ N 3 , recall that k ′ is determined, and that if<br />

σ(m ′ , j) = σ(m, k) <strong>the</strong>n j = k ′ . By Theorem 11, σ(m ′ , k ′ ) = σ(m, k)<br />

when <strong>the</strong> interval [m, m + k) is “long”; i.e., when m < k. Theorem 8<br />

implies that for no m is <strong>the</strong>re a 〈m ′ , k ′ 〉 such that σ(m ′ , k ′ ) = σ(m, 1).<br />

We have not established <strong>the</strong> injectivity <strong>of</strong> σ for 2 ≤ k ≤ m. But we<br />

now show that, for each m, <strong>the</strong>re are at most finitely many m ′ > m for<br />

which <strong>the</strong> possibility σ(m ′ , k ′ ) = σ(m, k) will not yet have been eliminated.<br />

Theorem 13. Let k ′ ≥ 2(m + k). Then σ(m ′ , k ′ ) = σ(m, k).<br />

6


Pro<strong>of</strong>. By Lemma 3, 2 v ∈ S(m, k) for some v ∈ N. But 2 v ∈ S(m ′ , k ′ )<br />

since 2 v+1 |µ(m ′ , k ′ ). So 2 v+1 |δ(m ′ , k ′ ) by Lemma 2, while 2 v δ(m, k).<br />

Since <strong>the</strong> fractions ν(m, k)/δ(m, k) and ν(m ′ , k ′ )/δ(m ′ , k ′ ) are in lowest<br />

terms, we have that σ(m ′ , k ′ ) = σ(m, k).<br />

Given m and k, clearly <strong>the</strong> integers m ′ and k ′ determine each o<strong>the</strong>r.<br />

For 2 ≤ k < m this implies that k ′ < 2(m+k) ⇒ m ′ < 4m 2 . In summary,<br />

σ(m ′ , k ′ ) = σ(m, k) remains unprecluded by Theorems 8, 11, and 13 only<br />

when all three <strong>of</strong> <strong>the</strong> following conditions obtain: m ≥ 3 and 2 ≤ k < m<br />

and k ′ < 2(m + k). Note that m ′ /m ≈ k ′ /k, with k ′ ≥ m ′ k/m > k ′ − 1.<br />

Thus, to prove σ injective, we need depose for each m ≥ 3 fewer than<br />

m 2 + m possible counterexamples.<br />

We have shown that S(X) = S(Y ) ⇒ σ(X) = σ(Y ), But regretably<br />

¬ [S([x, y)) = S([w, z)) ⇒ [x, y) = [w, z)]. For example, S({5, 6, 7}) =<br />

{2, 3, 5, 7} = S({14, 15}). But S({14, 15, 16}) = {2 4 , 3, 5, 7} = S({5, 6, 7}).<br />

Indeed, S({5, 6, 7}) = S([14, 14 + k)) for every k ≥ 3.<br />

Echoing Sylvester, upon its verification <strong>the</strong> following narrowly germane<br />

guess would immediately establish that σ : N 2 → Q + is injective.<br />

Conjecture. If m + 2 ≤ m + k ≤ m ′ <strong>the</strong>n S(m ′ , k ′ ) = S(m, k).<br />

Definition. We call a family D <strong>of</strong> finite subsets <strong>of</strong> N distinguished iff<br />

when X = Y are elements in D <strong>the</strong>n S(X \ Y ) = S(Y \ X).<br />

From our work thus far, <strong>the</strong> following two <strong>the</strong>orems are easy exercises.<br />

Theorem 14. If D is distinguished <strong>the</strong>n σ : D → Q + is injective.<br />

We do not allege <strong>the</strong> converse <strong>of</strong> Theorem 14.<br />

When B ⊂ N and n ∈ N, let B n := {j n : j ∈ B}. And, for D a<br />

family <strong>of</strong> finite nonempty subsets <strong>of</strong> N, let D (n) := {B n : B ∈ D}.<br />

Theorem 15. A family D <strong>of</strong> finite nonempty subsets <strong>of</strong> N is distinguished<br />

if and only if D (n) is distinguished for every n ∈ N. Hence, if D is<br />

distinguished <strong>the</strong>n σ|`D (n) is injective for every n.<br />

7


Problem. Identify <strong>the</strong> maximal distinguished subfamilies <strong>of</strong> <strong>the</strong> collection<br />

P(N) <strong>of</strong> all subsets <strong>of</strong> N?<br />

Acknowledgments<br />

Arthur Tuminaro inspired us to begin this work, and it was enlightened<br />

by conversations with Jacqueline Grace and David Hobby.<br />

References<br />

[1892S] J. J. Sylvester, On arithmetical <strong>series</strong>. Messinger <strong>of</strong> Ma<strong>the</strong>matics,<br />

XXI (1892), 1-19, 87-120, and Ma<strong>the</strong>matical Papers 4(1912), 687-731.<br />

[1932E] P. Erdös, Verallgemeinerung eines elementar-zahlenteoretischen<br />

Satzes von Kürschák. Mat. Fiz. Lapok 39(1932), 17-24.<br />

[1934E] P. Erdös, A <strong>the</strong>orem <strong>of</strong> Sylvester and Schur. J. London Math. Soc.<br />

9(1934), 282-288.<br />

[1998H] P. H<strong>of</strong>fman, “The man who loved only numbers: The story <strong>of</strong> Paul<br />

Erdös and <strong>the</strong> search for ma<strong>the</strong>matical truth.” N. Y. Hyperion. 1998.<br />

[2007BK] H. Belbachir and A. Khelladi, On a sum involving powers <strong>of</strong><br />

reciprocals <strong>of</strong> an arithmetic progression. Ann. Ma<strong>the</strong>maticae et Informaticae<br />

34(2007), 29-31. http://www.ektf.hu/tanszek/matematika/ami<br />

Addresses<br />

1 Cleveland State University, Cleveland OH 44115<br />

a.silberger@csuohio.edu<br />

2 State University <strong>of</strong> New York at New Paltz NY 12561<br />

SilbergD@lan.newpaltz.edu or preferably DonSilberger@hvc.rr.com<br />

3 H<strong>of</strong>stra University, Hempstead NY 11549<br />

matsbs@h<strong>of</strong>stra.edu<br />

MSC2010: 11A41, 11B75, 11B99<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!