04.04.2013 Views

Proofs of Divergence of the Harmonic Series - Prairie State College

Proofs of Divergence of the Harmonic Series - Prairie State College

Proofs of Divergence of the Harmonic Series - Prairie State College

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

More <strong>Pro<strong>of</strong>s</strong> <strong>of</strong> <strong>Divergence</strong> <strong>of</strong> <strong>the</strong> <strong>Harmonic</strong> <strong>Series</strong><br />

Steven J. Kifowit<br />

<strong>Prairie</strong> <strong>State</strong> <strong>College</strong><br />

In an earlier article, Kifowit and Stamps [13] summarized a number <strong>of</strong> elementary pro<strong>of</strong>s <strong>of</strong><br />

divergence <strong>of</strong> <strong>the</strong> harmonic series:<br />

∞<br />

n=1<br />

1 1 1 1 1<br />

= 1+ + + + +··· = ∞.<br />

n 2 3 4 5<br />

For a variety <strong>of</strong> reasons, some very nice pro<strong>of</strong>s never made it into <strong>the</strong> final draft <strong>of</strong> that article.<br />

With this in mind, <strong>the</strong> collection <strong>of</strong> divergence pro<strong>of</strong>s continues here. This informal note is a<br />

work in progress 1 . On occasion more pro<strong>of</strong>s will be added. Accessibility to first-year calculus<br />

students is a common thread that will continue (usually) to connect <strong>the</strong> pro<strong>of</strong>s.<br />

Pro<strong>of</strong> 21 (A geometric series pro<strong>of</strong>)<br />

Choose a positive integer k.<br />

∞<br />

n=1<br />

1<br />

n<br />

= 1+<br />

k terms<br />

<br />

<br />

1 1 1<br />

+ +···+<br />

2 3 k +1<br />

<br />

+<br />

k 2 terms<br />

<br />

1 1<br />

+<br />

k +2 k +3 +···+<br />

1<br />

k2 <br />

+k +1<br />

k 3 terms<br />

<br />

1<br />

+<br />

k2 +k +2 +<br />

1<br />

k2 +k +3 +···+<br />

1<br />

k3 +k2 <br />

+···<br />

+k +1<br />

k 2<br />

> 1+ k<br />

k +1 +<br />

k2 +k +1 +<br />

k3 +k2 +k +1 +···<br />

2 3 k k k<br />

> 1+ + + +···<br />

k +1 k +1 k +1<br />

=<br />

1<br />

1− k<br />

k+1<br />

= k +1<br />

Since this is true for any positive integer k, <strong>the</strong> harmonic series must diverge.<br />

1 First posted January 2006. Last updated February 16, 2013.<br />

k 3


Pro<strong>of</strong> 22<br />

The following pro<strong>of</strong> was given by Fearnehough [8] and later by Havil [9]. After substituting u = e x , this<br />

pro<strong>of</strong> is equivalent to Pro<strong>of</strong> 10 <strong>of</strong> [13].<br />

0<br />

ex dx =<br />

1−e x<br />

−∞<br />

=<br />

=<br />

=<br />

0<br />

−∞<br />

0<br />

−∞<br />

0<br />

e x (1−e x ) −1 dx<br />

e x (1+e x +e 2x +e 3x +···)dx<br />

(e<br />

−∞<br />

x +e 2x +e 3x +···)dx<br />

<br />

e x + 1<br />

2 e2x + 1<br />

3 e3x 0 +···<br />

= 1+ 1 1<br />

+<br />

2 3 +···<br />

= [−ln(1−e x )] 0<br />

−∞ = ∞<br />

Pro<strong>of</strong> 23 (A telescoping series pro<strong>of</strong>)<br />

This pro<strong>of</strong> was given by Bradley [2]. We begin with <strong>the</strong> inequality x ≥ ln(1+x), which holds for all x > −1.<br />

From this it follows that<br />

for any positive integer k. Now we have<br />

Hn =<br />

≥<br />

k=1<br />

k=1<br />

<br />

1<br />

≥ ln 1+<br />

k 1<br />

<br />

= ln(k +1)−ln(k)<br />

k<br />

n 1<br />

k<br />

n<br />

<br />

ln 1+ 1<br />

<br />

k<br />

=<br />

n<br />

<br />

k +1<br />

ln<br />

k<br />

k=1<br />

= [ln(n+1)−ln(n)]+[ln(n)−ln(n−1)]+···+[(ln(2)−ln(1)]<br />

= ln(n+1).<br />

Therefore {Hn} is unbounded, and <strong>the</strong> harmonic series diverges.<br />

Pro<strong>of</strong> 24 (A limit comparison pro<strong>of</strong>)<br />

In <strong>the</strong> last pro<strong>of</strong> <strong>the</strong> harmonic series was directly compared to <strong>the</strong> divergent series<br />

<strong>of</strong> <strong>the</strong> inequality x ≥ ln(1+x) can be avoided by using limit comparison. Since<br />

ln<br />

lim<br />

x→∞<br />

1+ 1<br />

<br />

x −<br />

= lim<br />

x→∞<br />

1<br />

x2 <br />

1 = 1,<br />

−<br />

<strong>the</strong> harmonic series diverges by limit comparison.<br />

1<br />

x<br />

2<br />

1+ 1<br />

x<br />

x 2<br />

−∞<br />

∞<br />

k=1<br />

<br />

ln 1+ 1<br />

<br />

. The use<br />

k


Pro<strong>of</strong> 25<br />

In an interesting pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Egyptian fraction <strong>the</strong>orem, Owings [18] showed that no number appears more<br />

than once in any single row <strong>of</strong> <strong>the</strong> following tree.<br />

1/5<br />

.<br />

1/4<br />

1/20<br />

.<br />

1/3<br />

1/13<br />

.<br />

1/12<br />

1/156<br />

.<br />

1/2<br />

1/8<br />

.<br />

1/7<br />

1/56<br />

.<br />

1/6<br />

1/43<br />

.<br />

1/42<br />

1/1806<br />

The elements <strong>of</strong> each row have a sum <strong>of</strong> 1/2, and <strong>the</strong>re are infinitely rows with no elements in common. (For<br />

example, one could, starting with row 1, find <strong>the</strong> maximum denominator in <strong>the</strong> row, and <strong>the</strong>n jump to that<br />

row.) It follows that <strong>the</strong> harmonic series diverges.<br />

Pro<strong>of</strong> 26<br />

This pro<strong>of</strong> is actually a pair <strong>of</strong> very similar pro<strong>of</strong>s. They are closely related to a number <strong>of</strong> o<strong>the</strong>r pro<strong>of</strong>s, but<br />

most notably to Pro<strong>of</strong> 4 <strong>of</strong> [13]. In <strong>the</strong>se pro<strong>of</strong>s Hn denotes <strong>the</strong> nth partial sum <strong>of</strong> <strong>the</strong> harmonic series:<br />

Pro<strong>of</strong> (A): First notice that<br />

Hn = 1+ 1 1<br />

+<br />

2 3<br />

so that when all is said and done, we have<br />

1<br />

+···+ , n = 1,2,3,....<br />

n<br />

Hn +H2n = 2Hn + 1 1 1<br />

+ +···+<br />

n+1 n+2 2n ≥ 2Hn + n<br />

2n ,<br />

Hn +H2n ≥ 2Hn + 1<br />

2 .<br />

Now suppose <strong>the</strong> harmonic series converges with sum S.<br />

The contradiction 2S ≥ 2S + 1<br />

2<br />

2S = lim<br />

n→∞ Hn + lim<br />

n→∞ H2n<br />

= lim<br />

n→∞ (Hn +H2n)<br />

≥ lim<br />

n→∞<br />

<br />

= 2S + 1<br />

2<br />

concludes <strong>the</strong> pro<strong>of</strong>.<br />

Pro<strong>of</strong> (B): This pro<strong>of</strong> was given by Ward [20].<br />

2Hn + 1<br />

<br />

2<br />

H2n −Hn = 1 1 1 n 1<br />

+ +···+ ≥ =<br />

n+1 n+2 2n 2n 2<br />

3<br />

.


Suppose <strong>the</strong> harmonic series converges.<br />

The contradiction 0 ≥ 1<br />

2<br />

Pro<strong>of</strong> 27<br />

concludes <strong>the</strong> pro<strong>of</strong>.<br />

0 = lim<br />

n→∞ H2n − lim<br />

n→∞ Hn<br />

= lim<br />

n→∞ (H2n −Hn)<br />

1 1<br />

≥ lim =<br />

n→∞ 2 2<br />

This proposition follows immediately from <strong>the</strong> harmonic mean/arithmetic mean inequality, but an alternate<br />

pro<strong>of</strong> is given here.<br />

Proposition: For any natural number k,<br />

Pro<strong>of</strong>:<br />

exp<br />

<br />

1 1 1 1<br />

+ + +···+<br />

k k +1 k +2 3k<br />

1 1 1<br />

+ +···+<br />

k k +1 3k<br />

> 1.<br />

= e 1/k ·e 1/(k+1) ·e 1/(k+2) ···e 1/(3k)<br />

><br />

=<br />

<br />

1+ 1<br />

<br />

· 1+<br />

k<br />

1<br />

<br />

· 1+<br />

k +1<br />

1<br />

<br />

··· 1+<br />

k +2<br />

1<br />

<br />

3k<br />

<br />

k +1 k +2 k +3 3k +1<br />

· · ···<br />

k k +1 k +2 3k<br />

= 3k +1<br />

> 3.<br />

k<br />

(In this proposition <strong>the</strong> denominator 3k could be replaced by ⌊ek⌋, but even this choice is<br />

not optimal. See [1] and [11].)<br />

Based on this proposition, we have <strong>the</strong> following result:<br />

∞<br />

<br />

1 1 1 1 1 1 1<br />

= 1+ +···+ + +···+ + +···+ +···<br />

n 2 6 7 21 22 66<br />

n=1<br />

> 1+1+1+1+···<br />

Pro<strong>of</strong> 28 (A Fibonacci number pro<strong>of</strong>)<br />

The following pro<strong>of</strong> was given by Kifowit and Stamps [12] and by Chen and Kennedy [3].<br />

The Fibonacci numbers are defined recursively as follows:<br />

f0 = 1, f1 = 1; fn+1 = fn +fn−1, n = 1,2,3....<br />

For example, <strong>the</strong> first ten are given by 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. The sequence <strong>of</strong> Fibonacci numbers<br />

makes an appearance in a number <strong>of</strong> modern calculus textbooks (for instance, see [14] or [19]). Often <strong>the</strong><br />

limit<br />

fn+1<br />

lim = φ =<br />

n→∞ fn<br />

1+√5 2<br />

4


is proved or presented as an exercise. This limit plays an important role in this divergence pro<strong>of</strong>.<br />

First notice that<br />

<br />

fn−1 fn+1 −fn<br />

lim = lim = lim 1−<br />

n→∞ fn+1 n→∞ fn+1 n→∞<br />

fn<br />

<br />

= 1−<br />

fn+1<br />

1<br />

≈ 0.381966.<br />

φ<br />

Now we have<br />

∞<br />

n=1<br />

1<br />

n<br />

1 1 1 1 1<br />

= 1+ + + + +<br />

2 3 4 5 6 +···<br />

= 1+ 1 1<br />

+<br />

2 3 +<br />

<br />

1 1 1 1 1<br />

+ + + +<br />

4 5 6 7 8<br />

<br />

1 1 1 1<br />

+ +···+ + +···+ +···<br />

9 13 14 21<br />

≥ 1+ 1 1<br />

+<br />

2 3<br />

∞<br />

= 1+<br />

fn−1<br />

fn+1<br />

n=1<br />

2 3 5 8<br />

+ + + +<br />

5 8 13 21 +···<br />

fn−1<br />

Since lim = 0, this last series diverges. It follows that <strong>the</strong> harmonic series diverges.<br />

n→∞ fn+1<br />

Pro<strong>of</strong> 29<br />

This pro<strong>of</strong> is essentially <strong>the</strong> same as Pro<strong>of</strong> 2 <strong>of</strong> [13]. First notice that since <strong>the</strong> sequence<br />

11<br />

10<br />

increases and converges to 10/9, <strong>the</strong> sequence<br />

10<br />

11<br />

, 111<br />

100<br />

, 100<br />

111<br />

, 1111<br />

1000<br />

, 1000<br />

1111<br />

decreases and converges to 9/10. With this in mind, we have<br />

∞<br />

n=1<br />

1<br />

n<br />

= 1+<br />

+<br />

10 terms<br />

<br />

<br />

1 1 1<br />

+ +···+<br />

2 3 11<br />

1000 terms<br />

11111<br />

, , ...<br />

10000<br />

10000<br />

, , ...<br />

11111<br />

<br />

+<br />

<br />

1 1 1<br />

+ +···+ +···<br />

112 113 1111<br />

> 1+ 10 100 1000<br />

+ +<br />

11 1111 1111 +···<br />

> 1+ 9 9 9<br />

+ +<br />

10 10 10 +···<br />

5<br />

100 terms<br />

<br />

1 1 1<br />

+ +···+<br />

12 13 111


Pro<strong>of</strong> 30<br />

The following visual pro<strong>of</strong>s show that by carefully rearranging terms, <strong>the</strong> harmonic series can be made<br />

greater than itself.<br />

Pro<strong>of</strong> (A): This pro<strong>of</strong> without words was posted on The Everything Seminar (<strong>Harmonic</strong> Digression,<br />

http://cornellmath.wordpress.com/2007/07/12/harmonic-digression/).<br />

: :<br />

. ..<br />

Figure 1: Pro<strong>of</strong> 30(A)<br />

Pro<strong>of</strong> (B): This visual pro<strong>of</strong> leaves less to <strong>the</strong> imagination than Pro<strong>of</strong> (A). It is due to Jim Belk and<br />

was posted on The Everything Seminar as a follow-up to <strong>the</strong> previous pro<strong>of</strong>. Belk’s pro<strong>of</strong> is a visualization<br />

<strong>of</strong> Johann Bernoulli’s pro<strong>of</strong> (see Pro<strong>of</strong> 13 <strong>of</strong> [13]).<br />

: :<br />

.. .<br />

Figure 2: Pro<strong>of</strong> 30(B)<br />

Pro<strong>of</strong>(C): Thispro<strong>of</strong>isavisualrepresentation<strong>of</strong><strong>Pro<strong>of</strong>s</strong>6and7<strong>of</strong>[13]. Withsomeminormodifications,<br />

6<br />

· · ·<br />

· · ·


a similar visual pro<strong>of</strong> could be used to show that one-half <strong>of</strong> <strong>the</strong> harmonic series ( 1 1 1<br />

2 + 4 + 6 +···) is strictly<br />

less than its remaining half (in <strong>the</strong> spirit <strong>of</strong> Pro<strong>of</strong> 8 <strong>of</strong> [13]).<br />

Pro<strong>of</strong> 31<br />

1<br />

1<br />

1/2<br />

1/3<br />

1/2<br />

1/4 1/5 1/6 1/7 1/8 · · ·<br />

Figure 3: Pro<strong>of</strong> 30(C)<br />

1/3 1/4 · · ·<br />

Here is ano<strong>the</strong>r pro<strong>of</strong> in which 1/k and 1/xdx are compared. Unlike its related pro<strong>of</strong>s (e.g. Pro<strong>of</strong> 9 <strong>of</strong><br />

[13]), this one focuses on arc length.<br />

The graph shown here is that <strong>of</strong> <strong>the</strong> polar function r(θ) = π/θ on [π,∞).<br />

The total arc length is unbounded:<br />

<br />

∞<br />

Arc Length = r2 2 dr<br />

+ dθ ≥<br />

dθ<br />

π<br />

∞<br />

π<br />

y<br />

r(θ) = π<br />

θ<br />

√ r 2 dθ =<br />

7<br />

∞<br />

π<br />

x<br />

rdθ =<br />

∞<br />

π<br />

π<br />

θ<br />

<br />

<br />

dθ = π lnθ<br />

∞<br />

π<br />

= ∞


Now let <strong>the</strong> polar function ρ be defined by<br />

⎧<br />

1,<br />

1/2,<br />

⎪⎨ 1/3,<br />

π ≤ θ < 2π<br />

2π ≤ θ < 3π<br />

3π ≤ θ < 4π<br />

ρ(θ) =<br />

.<br />

.<br />

⎪⎩<br />

1/n, nπ ≤ θ < (n+1)π<br />

.<br />

The graph <strong>of</strong> ρ is made up <strong>of</strong> semi-circular arcs, <strong>the</strong> nth arc having radius 1/n. The total arc length <strong>of</strong><br />

<strong>the</strong> graph <strong>of</strong> ρ is<br />

π + π<br />

<br />

π π<br />

+ + +··· = π 1+<br />

2 3 4 1 1 1<br />

+ +<br />

2 3 4 +···<br />

<br />

.<br />

The graphs <strong>of</strong> r (dashed) and ρ (solid) on [π,6π] are shown below.<br />

y<br />

By comparing <strong>the</strong> graphs <strong>of</strong> <strong>the</strong> two functions over intervals <strong>of</strong> <strong>the</strong> form [nπ,(n+1)π], we see that <strong>the</strong><br />

graph <strong>of</strong> ρ must be “longer” than <strong>the</strong> graph <strong>of</strong> r. It follows that<br />

<br />

π 1+ 1 1 1<br />

+ +<br />

2 3 4 +···<br />

<br />

must be unbounded.<br />

Pro<strong>of</strong> 32<br />

The divergence <strong>of</strong> <strong>the</strong> harmonic series follows immediately from <strong>the</strong> Cauchy Condensation Test:<br />

∞<br />

Suppose {an} is a non-increasing sequence with positive terms. Then an converges if and<br />

only if<br />

∞<br />

2 k a2k converges.<br />

k=0<br />

8<br />

.<br />

x<br />

n=1


Pro<strong>of</strong> 33<br />

This pro<strong>of</strong> is similar to Pro<strong>of</strong> 4 <strong>of</strong> [13]. Just as above, Hn denotes <strong>the</strong> nth partial sum <strong>of</strong> <strong>the</strong> harmonic series:<br />

or<br />

Consider <strong>the</strong> figure shown here:<br />

1<br />

n<br />

1<br />

n+1<br />

Referring to <strong>the</strong> figure, we see that<br />

Repeated use <strong>of</strong> this result gives<br />

1 1<br />

+···+<br />

<br />

n+1<br />

<br />

2n<br />

<br />

H2n−Hn<br />

Hn = 1+ 1 1<br />

+<br />

2 3<br />

y = 1<br />

x<br />

1<br />

n+1 <<br />

<<br />

1<br />

+···+ , n = 1,2,3,....<br />

n<br />

n n+1<br />

2n<br />

n<br />

n+1<br />

n<br />

1 1<br />

dx <<br />

x n .<br />

1 1 1<br />

dx = ln2 < +···+<br />

x<br />

<br />

n<br />

<br />

2n−1<br />

<br />

H2n −Hn < ln2 < H2n −Hn + 1 1<br />

− .<br />

<br />

n<br />

<br />

2n<br />

<br />

1/2n<br />

From this it follows that<br />

ln2− 1<br />

2n < H2n −Hn < ln2.<br />

Therefore H2n −Hn → ln2, and <strong>the</strong> sequence {Hn} must diverge.<br />

Pro<strong>of</strong> 34<br />

H2n−1−Hn−1<br />

In [7] Paul Erdős gave two remarkably clever pro<strong>of</strong>s <strong>of</strong> <strong>the</strong> divergence <strong>of</strong> <strong>the</strong> series 1/p (p prime), where<br />

<strong>the</strong> sum is taken over only <strong>the</strong> primes. O<strong>the</strong>r pro<strong>of</strong>s <strong>of</strong> this fact, such as one given by Euler (see [6]), make<br />

use <strong>of</strong> <strong>the</strong> harmonic series. Erdős’ pro<strong>of</strong>s do not, and as a consequence, <strong>the</strong>y establish <strong>the</strong> divergence <strong>of</strong> <strong>the</strong><br />

harmonic series.<br />

9


The pro<strong>of</strong>s are ra<strong>the</strong>r complicated, but accessible and well worth <strong>the</strong> effort required to follow <strong>the</strong>m<br />

through. A few elementary ideas are required before we begin:<br />

(i) ⌊x⌋ denotes <strong>the</strong> greatest integer less than or equal to x.<br />

(ii) We denote <strong>the</strong> primes, in ascending order, by p1,p2,p3,p4,....<br />

(iii) Let N be a given positive integer. For any positive integer m, <strong>the</strong>re are ⌊N/m⌋ integers between 1 and<br />

N that are divisible by m.<br />

This is <strong>the</strong> first <strong>of</strong> Erdős’ pro<strong>of</strong>s. We begin by assuming<br />

integer K such that<br />

∞<br />

1<br />

pi<br />

i=K+1<br />

< 1<br />

2 .<br />

∞<br />

1<br />

pi<br />

i=1<br />

converges. It follows that <strong>the</strong>re exists an<br />

We will call pK+1,pK+2,pK+3,... <strong>the</strong> “large primes,” and p1,p2,...,pK <strong>the</strong> “small primes.”<br />

Now let N be an integer such that N > pK. Let N1 be <strong>the</strong> number <strong>of</strong> integers between 1 and N whose<br />

divisors are all small primes, and let N2 be <strong>the</strong> number <strong>of</strong> integers between 1 and N that have at least one<br />

large prime divisor. It follows that N = N1 +N2.<br />

By <strong>the</strong> definition <strong>of</strong> N2 and using (iii) above, it follows that<br />

From this we get<br />

N2 ≤<br />

N<br />

pK+1<br />

<br />

N N<br />

+ + +··· =<br />

pK+2 pK+3<br />

N2 ≤<br />

∞<br />

i=K+1<br />

<br />

N<br />

≤<br />

pi<br />

∞<br />

N<br />

pi<br />

i=K+1<br />

where <strong>the</strong> last part <strong>of</strong> <strong>the</strong> inequality follows from <strong>the</strong> definition <strong>of</strong> K.<br />

< N<br />

2 ,<br />

∞<br />

i=K+1<br />

Now, referring back to <strong>the</strong> small primes, let x ≤ N be a positive integer with only small prime divisors.<br />

Write x = yz 2 , where y and z are positive integers, y is squarefree (i.e. has no perfect square divisors), and<br />

z ≤ √ N. The integer y must have <strong>the</strong> factorization<br />

y = p m1<br />

1 pm2<br />

2 pm3<br />

3 ···p mK<br />

K ,<br />

where each exponent mi has value 0 or 1. It follows from <strong>the</strong> multiplication principle that <strong>the</strong>re are 2 K<br />

possible choices for <strong>the</strong> integer y. Since z ≤ √ N, <strong>the</strong>re are at most √ N possible choices for <strong>the</strong> integer z.<br />

Therefore <strong>the</strong>re are at most 2 K√ N possible choices for <strong>the</strong> integer x. Recalling <strong>the</strong> definition <strong>of</strong> x, we see<br />

that we must have N1 ≤ 2 K√ N.<br />

So now we have established that<br />

N = N1 +N2 < 2 K√ N + N<br />

2 .<br />

However, by simply choosing N such that N > 22K+2 , we are lead to a contradiction:<br />

N = N1 +N2 < 2 K√ N + N<br />

2 <<br />

√<br />

N√<br />

N<br />

N + = N.<br />

2 2<br />

10<br />

N<br />

pi<br />

<br />

.


Pro<strong>of</strong> 35<br />

This is Erdős’ second pro<strong>of</strong> <strong>of</strong> <strong>the</strong> divergence <strong>of</strong> 1/p (p prime) [7]. It uses <strong>the</strong> same notation and concepts<br />

as <strong>the</strong> previous pro<strong>of</strong>.<br />

We begin by using <strong>the</strong> fact that<br />

to establish that<br />

Now assume that<br />

∞<br />

1<br />

pi<br />

i=1<br />

∞<br />

1<br />

p<br />

i=1<br />

2 i<br />

∞<br />

i=2<br />

1<br />

i(i+1) =<br />

∞<br />

i=2<br />

<br />

1 1<br />

− =<br />

i i+1<br />

1<br />

2<br />

< 1 1 1 1 1 1 3<br />

+ + + +··· = + =<br />

4 2·3 3·4 4·5 4 2 4 .<br />

converges. It follows that <strong>the</strong>re exists an integer K such that<br />

∞<br />

1<br />

pi<br />

i=K+1<br />

< 1<br />

8 .<br />

As above, we will call pK+1,pK+2,pK+3,... <strong>the</strong> “large primes,” and p1,p2,...,pK <strong>the</strong> “small primes.”<br />

Let N be a positive integer and let y ≤ N be a positive, squarefree integer with only small prime divisors.<br />

The integer y must have <strong>the</strong> factorization<br />

y = p m1<br />

1 pm2<br />

2 pm3<br />

3 ···p mK<br />

K ,<br />

where each exponent mi has value 0 or 1. It follows from <strong>the</strong> multiplication principle that <strong>the</strong>re are 2 K possi-<br />

ble choices for <strong>the</strong> integer y. Those 2 k integers must remain after we remove from <strong>the</strong> sequence 1,2,3,...,N<br />

all those integers that are not squarefree or have large prime divisors. Therefore, we must have <strong>the</strong> following<br />

inequality:<br />

2 K ≥ N −<br />

K<br />

<br />

N<br />

i=1<br />

p 2 i<br />

<br />

−<br />

∞<br />

K N N<br />

≥ N − −<br />

i=K+1<br />

pi<br />

p<br />

i=1<br />

2 i<br />

However, if we simply choose N ≥ 2 K+3 , we have a contradiction.<br />

11<br />

∞<br />

N<br />

pi<br />

i=K+1<br />

> N − 3 1 N<br />

N − N =<br />

4 8 8 .


Pro<strong>of</strong> 36<br />

Nick Lord [15] provided this “visual catalyst” for Pro<strong>of</strong> 23.<br />

Consider <strong>the</strong> graph <strong>of</strong> y = sin(e x ) for 0 ≤ x < ∞.<br />

y<br />

y = sin(e x )<br />

The graph has an x-intercept at <strong>the</strong> point where x = lnnπ for each positive integer n. This sequence <strong>of</strong><br />

x-values diverges to infinity, and <strong>the</strong> distance between each pair <strong>of</strong> intercepts is given by<br />

<br />

n+1<br />

ln(n+1)π−lnnπ = ln = ln 1+<br />

n<br />

1<br />

<br />

.<br />

n<br />

Since ln(1+ 1 1<br />

n ) < n for each n, <strong>the</strong> series <strong>of</strong> gaps between intercepts has a total length less than <strong>the</strong> harmonic<br />

series:<br />

∞<br />

n=1<br />

<br />

ln 1+ 1<br />

<br />

<<br />

n<br />

Since <strong>the</strong> sequence <strong>of</strong> x-intercepts diverges, <strong>the</strong> harmonic series must diverge.<br />

12<br />

∞<br />

n=1<br />

1<br />

n .<br />

x


Pro<strong>of</strong> 37<br />

This is ano<strong>the</strong>r visual pro<strong>of</strong> comparing <strong>the</strong> harmonic series to a divergent integral. It is similar to Pro<strong>of</strong> 9<br />

<strong>of</strong> [13].<br />

Pro<strong>of</strong> 38<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y<br />

.<br />

1/7<br />

1/6<br />

1/5<br />

1/4<br />

1/3<br />

1/2<br />

1<br />

1/2<br />

y =<br />

1 − x<br />

x<br />

1+ 1<br />

1<br />

1 1 1<br />

+ + + +··· ><br />

2 3 4 5 0<br />

1<br />

1−x<br />

x<br />

dx = ∞<br />

Here is a matrix version <strong>of</strong> Johann Bernoulli’s pro<strong>of</strong> (Pro<strong>of</strong> 13 <strong>of</strong> [13]). We start by defining <strong>the</strong> infinite<br />

matrices M (square) and h:<br />

⎡<br />

⎤ ⎡ ⎤<br />

0 2 0 0 0 0 ··· 1<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢ 0 0 3 0 0 0 ··· ⎥ ⎢ 1/2 ⎥<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢<br />

M = ⎢ 0 0 0 4 0 0 ···<br />

⎥ ⎢<br />

⎥,<br />

h = ⎢ 1/3<br />

⎥<br />

⎢<br />

⎥ ⎢ ⎥<br />

⎢<br />

⎣<br />

0 0 0 0 5 0 ··· ⎥ ⎢<br />

⎦ ⎣<br />

1/4 ⎥<br />

⎦<br />

.<br />

. . . . . . .. .<br />

Notice that hTMh = ∞ n=1 1 1 1 1<br />

n = 1+ 2 + 3 + 4 +···. Therefore our goal is to show that hTMh = ∞.<br />

Let Jk be <strong>the</strong> infinite square matrix with ones along <strong>the</strong> superdiagonal starting at row k and with zeros<br />

13<br />

x


elsewhere. For example,<br />

⎡<br />

⎤<br />

0 0 0 0 0 0 ···<br />

⎢<br />

⎥<br />

⎢<br />

0 0 0 0 0 0 ··· ⎥<br />

⎢<br />

⎥<br />

⎢ 0 0 0 1 0 0 ··· ⎥<br />

J3 = ⎢<br />

⎥<br />

⎢ 0 0 0 0 1 0 ··· ⎥.<br />

⎥<br />

⎢<br />

⎥<br />

⎢ 0 0 0 0 0 1 ··· ⎥<br />

⎣<br />

⎦<br />

.<br />

. . . . . . ..<br />

It follows that M = J1+J1+J2+J3+J4+··· (in <strong>the</strong> sense that, for any n, <strong>the</strong> equality holds for <strong>the</strong> n×n<br />

leading, principal submatrices).<br />

By expanding h T J1h, we find that<br />

h T J1h =<br />

∞<br />

n=1<br />

From here it is easy to show (perhaps by induction) that<br />

1<br />

= 1.<br />

n(n+1)<br />

h T Jkh = 1<br />

k .<br />

Now suppose that <strong>the</strong> harmonic series converges with sum S. Then we have<br />

S = h T Mh = h T (J1 +J1 +J2 +J3 +J4 +···)h<br />

= h T J1h+h T J1h+h T J2h+h T J3h+h T J4h+···<br />

= 1+1+ 1 1 1<br />

2 + 3 + 4 +···<br />

= 1+S.<br />

The conclusion, S = 1+S, is impossible unless S = ∞.<br />

Pro<strong>of</strong> 39 (Cesàro summability)<br />

It is not difficult to prove <strong>the</strong> following result (see for example [10, pages 128–129]), which was studied in<br />

detail by <strong>the</strong> Italian ma<strong>the</strong>matician Ernesto Cesàro.<br />

Suppose that ∞ k=1ak converges with sum S and let Sn = n k=1ak. Then <strong>the</strong> sequence <strong>of</strong><br />

average partial sums, { 1 n n k=1Sk} ∞ n=1, also converges to S.<br />

In order to use this result, let<br />

and notice that<br />

1<br />

n<br />

k=1<br />

Hn = 1+ 1 1 1 1<br />

+ + +···+<br />

2 3 4 n ,<br />

n<br />

Hk = 1<br />

<br />

n n−1<br />

+<br />

n 1 2<br />

= 1<br />

n<br />

n<br />

k=1<br />

n−k +1<br />

k<br />

(A Pro<strong>of</strong> Without Words for this last fact is given in [17].)<br />

14<br />

+ n−2<br />

3<br />

<br />

1<br />

+···+<br />

n<br />

= Hn −1+ Hn<br />

n<br />

.


The divergence <strong>of</strong> <strong>the</strong> harmonic series now follows by contradiction. Assuming that <strong>the</strong> harmonic series<br />

converges with sum S, we have<br />

<br />

1<br />

S = lim<br />

n→∞ n<br />

Pro<strong>of</strong> 40<br />

n<br />

k=1<br />

Hk<br />

<br />

<br />

= lim Hn −1+<br />

n→∞<br />

Hn<br />

<br />

= S −1+0.<br />

n<br />

The following pro<strong>of</strong> was given by Augustus De Morgan [5]. Similar to several <strong>of</strong> <strong>the</strong> previous pro<strong>of</strong>s, it is<br />

included here for its historical significance. De Morgan claims to have been shown this pro<strong>of</strong> many years<br />

prior to its publication by his young student J. J. Sylvester, who himself went on to become a famous<br />

ma<strong>the</strong>matician. De Morgan’s presentation is duplicated verbatim:<br />

“It is well known that when a−b+c−d+... consists <strong>of</strong> terms diminishing without limit, <strong>the</strong> series is<br />

convergent, with a limit between a and a−b. Now<br />

1 + 1<br />

2<br />

+ 1<br />

3<br />

+ 1<br />

4<br />

+ ... is 1 − 1<br />

2<br />

+ 1<br />

3<br />

− 1<br />

4<br />

+ 1 + 1<br />

2<br />

And if it be S, we have S = a+S, where a is finite. Hence S is infinite.”<br />

Pro<strong>of</strong> 41<br />

This pro<strong>of</strong> was given by Cusumano [4]. Suppose m is an integer greater than 1.<br />

∞<br />

n=1<br />

+ ...<br />

+ ...<br />

1<br />

n =<br />

<br />

1 1 1 1<br />

+···+ + +···+<br />

1 m m+1 m2 <br />

<br />

1<br />

+<br />

m2 1<br />

+···+<br />

+1 m3 <br />

1<br />

+<br />

m3 1<br />

+···+<br />

+1 m4 <br />

+···<br />

> m<br />

m + m2 −m<br />

m 2 + m3 −m 2<br />

m 3 + m4 −m 3<br />

m 4 +···<br />

= 1+ m(m−1)<br />

mm + m2 (m−1)<br />

m 2 m + m3 (m−1)<br />

m 3 m +···<br />

= 1+ m−1<br />

m<br />

= ∞<br />

+ m−1<br />

m<br />

+ m−1<br />

m +···<br />

Notice that if <strong>the</strong> first term on <strong>the</strong> right is rewritten,<br />

<br />

1 1 1 1<br />

+···+ = 1+ +···+ ,<br />

1 m 2 m<br />

Cusumano’s pro<strong>of</strong> becomes precisely <strong>the</strong> generalization <strong>of</strong> Oresme’s classical pro<strong>of</strong> that was described after<br />

Pro<strong>of</strong> 1 <strong>of</strong> [13].<br />

15


Pro<strong>of</strong> 42 (Euler’s constant)<br />

There are a variety <strong>of</strong> pro<strong>of</strong>s <strong>of</strong> divergence <strong>of</strong> <strong>the</strong> harmonic series that in some way make use <strong>of</strong> <strong>the</strong> Euler-<br />

Mascheroni constant. This constant is <strong>of</strong>ten defined by <strong>the</strong> following limit:<br />

<br />

n<br />

1<br />

γ = lim<br />

n→∞ k −ln(n)<br />

<br />

≈ 0.5772156649.<br />

k=1<br />

Once this limit has been established (see for example [14, page 623, exercise 75]), it is clear that <strong>the</strong> partial<br />

sums, Hn = n k=1 1<br />

k<br />

, are unbounded.<br />

Here is a different pro<strong>of</strong> involving γ. Let n be a fixed positive integer. For k = 1,2,3,..., let<br />

For example,<br />

and<br />

Since<br />

we have<br />

Sn−1 = 1<br />

n−1 −<br />

Sk = 1<br />

k −<br />

n<br />

j=1<br />

1<br />

kn+j .<br />

S1 = 1− 1 1 1<br />

− −···−<br />

n+1 n+2 2n ,<br />

S2 = 1 1 1 1<br />

− − −···−<br />

2 2n+1 2n+2 3n ,<br />

1<br />

(n−1)n+1 −<br />

n<br />

kn+n <<br />

n<br />

j=1<br />

1<br />

kn+j<br />

1 1<br />

−···−<br />

(n−1)n+2 n2. < n<br />

kn+1 ,<br />

0 < 1 n<br />

−<br />

k kn+1 < Sk < 1 n 1 1<br />

− = −<br />

k kn+n k k +1 .<br />

It follows that <strong>the</strong> sequence { m<br />

k=1 Sk} ∞ m=1 is increasing, bounded above by ∞<br />

k=1<br />

<br />

1 1<br />

k − k+1<br />

<strong>the</strong>refore convergent to a positive number no greater than 1. The limit is in fact γ (see [16]).<br />

Now notice that<br />

S1 +S2 +···Sn−1 + 1<br />

n = 2Hn −H n 2.<br />

Assuming that <strong>the</strong> harmonic series converges to H and taking <strong>the</strong> limit as n → ∞, we have<br />

an obvious contradiction.<br />

Some additional pro<strong>of</strong>s<br />

γ = 2H −H = H,<br />

= 1, and<br />

Here are a couple <strong>of</strong> pro<strong>of</strong>s involving probability <strong>the</strong>ory. Because <strong>the</strong>y are too advanced for <strong>the</strong> typical<br />

calculus student, <strong>the</strong>y are not duplicated here.<br />

• 1<br />

n = ∞: A Micro-Lesson on Probability and Symmetry by Omer Adleman, Amer. Math. Monthly,<br />

November 2007, pages 809–810<br />

16


• A Pro<strong>of</strong> <strong>of</strong> <strong>Divergence</strong> <strong>of</strong> <strong>the</strong> <strong>Harmonic</strong> <strong>Series</strong> Using Probability Theory by Arnab Kumar Laha, Inter-<br />

national Journal <strong>of</strong> Ma<strong>the</strong>matical Education in Science and Technology, June 2006, pages 502–503<br />

References<br />

[1] E. R. Bobo, A sequence related to <strong>the</strong> harmonic series, <strong>College</strong> Ma<strong>the</strong>matics Journal, 26 (1995),<br />

pp. 308–310.<br />

[2] D. M. Bradley, A note on <strong>the</strong> divergence <strong>of</strong> <strong>the</strong> harmonic series, American Ma<strong>the</strong>matical Monthly,<br />

107 (2000), p. 651.<br />

[3] H. Chen and C. Kennedy, <strong>Harmonic</strong> series meets Fibonacci sequence, The <strong>College</strong> Ma<strong>the</strong>matics<br />

Journal, 43 (2012), pp. 237–243.<br />

[4] A. Cusumano, Generalization <strong>of</strong> Oresme’s standard method <strong>of</strong> showing <strong>the</strong> divergence <strong>of</strong> <strong>the</strong> harmonic<br />

series, American Ma<strong>the</strong>matical Monthly, 119 (2012), p. 210.<br />

[5] A. De Morgan, On <strong>the</strong> summation <strong>of</strong> divergent series, The Assurance Magazine, and <strong>the</strong> Journal <strong>of</strong><br />

<strong>the</strong> Institute <strong>of</strong> Actuaries, 12 (1865), pp. 245–252.<br />

[6] W. Dunham, Euler: The Master <strong>of</strong> Us All, The Ma<strong>the</strong>matical Association <strong>of</strong> America, 1999.<br />

[7] P. Erdős, Über die Reihe 1<br />

p , Ma<strong>the</strong>matica, Zutphen B 7 (1938), pp. 1–2.<br />

[8] A. Fearnehough, Ano<strong>the</strong>r method for showing <strong>the</strong> divergence <strong>of</strong> <strong>the</strong> harmonic series, The Ma<strong>the</strong>mat-<br />

ical Gazette, 75 (1991), p. 198.<br />

[9] J. Havil, Gamma: Exploring Euler’s Constant, Princeton University Press, 2003.<br />

[10] I. I. Hirschman Jr., Infinite <strong>Series</strong>, Holt, Rinehart and Winston, 1962.<br />

[11] S. J. Kifowit and D. T. Clancy, A closer look at Bobo’s sequence. To appear.<br />

[12] S. J. Kifowit and T. A. Stamps, Serious About <strong>the</strong> <strong>Harmonic</strong> <strong>Series</strong> II. Presentedat <strong>the</strong>31stAnnual<br />

Conference <strong>of</strong> <strong>the</strong> Illinois Ma<strong>the</strong>matics Association <strong>of</strong> Community <strong>College</strong>s, Monticello, IL, March 31,<br />

2006. Available at http://prairiestate.edu/skifowit/al1.pdf.<br />

[13] , The harmonic series diverges again and again, The AMATYC Review, 27 (2006), pp. 31–43.<br />

[14] R. Larson, R. P. Hostetler, and B. H. Edwards, Calculus, Houghton Mifflin Company, 8th ed.,<br />

2006.<br />

[15] N. Lord, Maths bite: seeing <strong>the</strong> divergence <strong>of</strong> <strong>the</strong> harmonic series, The Ma<strong>the</strong>matical Gazette, 87<br />

(2003), pp. 125–126.<br />

[16] J. J. Mačys, A new problem, American Ma<strong>the</strong>matical Monthly, 119 (2012), p. 82.<br />

17


[17] R. B. Nelson, <strong>Pro<strong>of</strong>s</strong> Without Words II: More Exercises in Visual Thinking, The Ma<strong>the</strong>matical As-<br />

sociation <strong>of</strong> America, 2000.<br />

[18] J. C. Owings Jr., Ano<strong>the</strong>r pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Egyptian fraction <strong>the</strong>orem, American Ma<strong>the</strong>matical Monthly,<br />

75 (1968), pp. 777–778.<br />

[19] J. Stewart, Calculus, Brooks/Cole, 5th ed., 2003.<br />

[20] A. J. B. Ward, <strong>Divergence</strong> <strong>of</strong> <strong>the</strong> harmonic series, The Ma<strong>the</strong>matical Gazette, (C) (1970), p. 277.<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!