05.04.2013 Views

Changing concepts in soil classification. The structure of

Changing concepts in soil classification. The structure of

Changing concepts in soil classification. The structure of

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Szent István<br />

U n i v e rs i t y<br />

Erika Michéli<br />

H u n g a r y


<strong>Chang<strong>in</strong>g</strong> <strong>concepts</strong><br />

<strong>in</strong> <strong>soil</strong> <strong>classification</strong>


Unlike plants and animals<br />

<strong>soil</strong> is a cont<strong>in</strong>uum


1927


As <strong>classification</strong> is result<br />

<strong>of</strong> human th<strong>in</strong>k<strong>in</strong>g<br />

It reflects the current knowledge and need


Most <strong>soil</strong> <strong>classification</strong> schemes developed on<br />

genetic basis


Vasili Dokuchaev<br />

<strong>The</strong> Russian School<br />

Soil form<strong>in</strong>g factors<br />

Soil form<strong>in</strong>g processes<br />

Different Soils


Mendelejev Dokuchaev<br />

Sibirtsev Gl<strong>in</strong>ka<br />

<strong>The</strong> Russian School


Hans Jenny:<br />

Factors <strong>of</strong> <strong>soil</strong> formation<br />

(1941)<br />

S = ƒ (cl, o, r, p, t..)<br />

(climate, organisms, topography, parent material, time) time


Guy Smiths<br />

‘‘<strong>The</strong> processes that go on can rarely be observed or measured. Nevertheless, the<br />

genesis <strong>of</strong> <strong>soil</strong>s is extremely important both to the taxonomy <strong>of</strong> <strong>soil</strong>s and to the mapp<strong>in</strong>g<br />

<strong>in</strong> the field. Genesis is important to the <strong>classification</strong> partly because it produces the<br />

observable or measureable differences that can be used as differentiae. Genesis does<br />

not appear <strong>in</strong> the def<strong>in</strong>itions <strong>of</strong> the taxa but lies beh<strong>in</strong>d them.’’


In 1952 G. Smith presented his diagnostic approach <strong>in</strong> Belgium<br />

“time zero <strong>of</strong> modern <strong>soil</strong> <strong>classification</strong>”


Richard Arnold Peter Schad<br />

“Soil processes are poorly understood……<br />

Soil properties result from <strong>soil</strong> processes and are more<br />

readily quantifiable than <strong>soil</strong> processes”


Atkár


Soil processes are poorly understood, and<br />

specific pedogenic processes occur simultaneously<br />

<strong>in</strong> a given <strong>soil</strong>, re<strong>in</strong>forc<strong>in</strong>g or contradict<strong>in</strong>g one<br />

another.<br />

It is also assumed that polygenesis likely has<br />

occurred <strong>in</strong> most, if not all <strong>soil</strong>s, mak<strong>in</strong>g genetic<br />

<strong>in</strong>terpretations difficult.<br />

Soil properties result from <strong>soil</strong> processes and<br />

are more readily quantifiable than <strong>soil</strong><br />

processes.


Start<strong>in</strong>g with the ‘‘Seventh Approximation’’, 1960<br />

and culm<strong>in</strong>at<strong>in</strong>g with Soil Taxonomy, 1975<br />

(Soil Survey Staff, USDA) <strong>soil</strong>s were classified with<br />

quantitative properties, particularly morphological<br />

properties, del<strong>in</strong>eated as diagnostic horizons and<br />

properties.<br />

Soil-form<strong>in</strong>g processes were de-emphasized and kept<br />

<strong>in</strong> the background.


<strong>soil</strong>-form<strong>in</strong>g factors<br />

↓<br />

<strong>soil</strong>-form<strong>in</strong>g processes<br />

↓<br />

diagnostic horizons, properties, materials<br />

↓<br />

<strong>soil</strong> taxonomic system


A similar approach was used by the<br />

FAO-UNESCO system (1974), (1988)<br />

World Reference Base for Soil Resources WRB, 1998<br />

and are used <strong>in</strong> most new national systems (Russian,<br />

Check, Ch<strong>in</strong>ese, etc.)


World Soil Resources Reports 84<br />

1988<br />

WORLD REFERENCE BASE FOR<br />

SOIL RESOURCES<br />

RUSSIAN SOIL<br />

CLASSIFICATION<br />

SYSTEM<br />

Moscow<br />

2001


History <strong>of</strong> WRB (1)<br />

In the past decades there has been an <strong>in</strong>creased<br />

<strong>in</strong>terest <strong>in</strong> <strong>soil</strong> <strong>in</strong>formation for global environmental<br />

studies.<br />

<strong>The</strong> 20 year old, but still the only available<br />

harmonized global <strong>soil</strong> map, the FAO-UNESCO<br />

Soil Map <strong>of</strong> the World (1:5 M), is based on<br />

<strong>in</strong>formation collected thirty or more years ago.


History <strong>of</strong> WRB (2)<br />

<strong>The</strong> orig<strong>in</strong>al FAO Map legend ( FAO, 1974) was<br />

based on diagnostic horizons and properties<br />

borrowed from USDA Soil Taxonomy<br />

26 Major Soil Units, 152 Soil Units<br />

Revised legends (FAO-Un esco-ISRIC, 1988; 1990)


History <strong>of</strong> WRB (3)<br />

Based on conclusions <strong>of</strong> several meet<strong>in</strong>gs<br />

<strong>in</strong>ternational agreement on major <strong>soil</strong> groups, and<br />

common language was necessary.<br />

WRB , World Reference Base for Soil Resources<br />

– based on the FAO Revised legend<br />

– new pedological, ecological knowledge <strong>in</strong>corporated<br />

(World Reference Base for Soil Resources, FAO/ISRIC/ISSS, 1998)


WRB is designed as…<br />

an easy means <strong>of</strong> communication among scientists to<br />

identify, characterize and name major types <strong>of</strong> <strong>soil</strong>s.<br />

It is not meant to replace national <strong>soil</strong> <strong>classification</strong><br />

systems, but be a tool for better correlation between<br />

national systems.<br />

It aims to help <strong>in</strong> improv<strong>in</strong>g national systems


History <strong>of</strong> WRB (4)<br />

In 1998 the Internationa l Union <strong>of</strong> Soil Science<br />

endorsed the WRB as the recommended <strong>soil</strong><br />

correlation system for all <strong>soil</strong> scientists.<br />

<strong>The</strong> European Commission selected WRB as<br />

correlation scheme for harmonized <strong>soil</strong> maps and<br />

databases for Europe.


<strong>The</strong> 1 st <strong>of</strong>ficial maps published with WRB units (1)<br />

Soil Digital Data Base<br />

for Europe, 1:1 M


<strong>The</strong> 1 st <strong>of</strong>ficial maps published with WRB units (2)


Current <strong>structure</strong> and pr<strong>in</strong>ciples<br />

<strong>The</strong> taxonomic units <strong>of</strong> the WRB are based on<br />

diagnostic (reference) horizons, <strong>soil</strong> properties<br />

and/or <strong>soil</strong> materials.<br />

First level: 30 Reference Soil Groups (def<strong>in</strong>ed by<br />

key)<br />

Lower level (s) are def<strong>in</strong>ed by set <strong>of</strong> prefixes as<br />

unique qualifiers added to the reference <strong>soil</strong><br />

groups.


Current <strong>structure</strong> and pr<strong>in</strong>ciples…cont<br />

Qualifiers are listed <strong>in</strong> priority sequence for each<br />

reference <strong>soil</strong> groups.<br />

Two qualifiers may be used <strong>in</strong> <strong>soil</strong> unit names.<br />

If additional qualifiers are needed, those follow<br />

the Reference Soil Group name between brackets.<br />

e.g.: Sapri-cryic Histosol (Dystric)


Histic or Folic horizon > 40 cm deep<br />

↓no<br />

Cryic horizon<br />

↓ no<br />

Human modifications<br />

↓ no<br />

Depth < 25 cm<br />

↓ no<br />

> 35% clay, vertic horizon<br />

↓ no<br />

Fluvic materials<br />

↓ no<br />

Salic horizon<br />

↓ no<br />

Gleyic properties<br />

↓ no<br />

Andic or vitric horizon<br />

↓ no<br />

Spodic horizon<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

yes<br />

→<br />

HISTOSOLS<br />

CRYOSOLS<br />

ANTHROSOLS<br />

LEPTOSOLS<br />

VERTISOLS<br />

FLUVISOLS<br />

SOLONCHAKS<br />

GLEYSOLS<br />

ANDOSOLS<br />

PODZOLS


World Reference Base for Soil Resources<br />

HISTOSOLS<br />

CRYOSOLS<br />

ANTHROSOLS<br />

LEPTOSOLS<br />

VERTISOLS<br />

FLUVISOLS<br />

SOLONCHAKS<br />

GLEYSOLS<br />

ANDOSOLS<br />

PODZOLS<br />

PLINTHOSOLS<br />

FERRALSOLS<br />

SOLONETZ<br />

PLANOSOLS<br />

CHERNOZEMS<br />

KASTANOZEMS<br />

PHAEOZEMS<br />

GYPSISOLS<br />

DURISOLS<br />

CALCISOLS<br />

ALBELUVISOLS<br />

ALISOLS<br />

NITISOLS<br />

ACRISOLS<br />

LUVISOLS<br />

LIXISOLS<br />

UMBRISOLS<br />

CAMBISOLS<br />

ARENOSOLS<br />

REGOSOLS


EXAMPLE<br />

Velence<br />

Diagnostics<br />

Mollic horizon<br />

Cambic horizon<br />

Calcic horizon<br />

Based on<br />

the key<br />

Chernozems


Chernic<br />

Vertic<br />

Gleyic<br />

Luvic<br />

Glossic<br />

Calcic<br />

Siltic<br />

Vermic<br />

Haplic<br />

A Chernozems referenciacsoport m<strong>in</strong>ősítői<br />

(qualifiers) prioritási sorrendben<br />

CHERNOZEMS<br />

Silti-<br />

Calcic Chernozem (Vermic)


Major po<strong>in</strong>ts <strong>of</strong> debate<br />

Disagreements on def<strong>in</strong>itions <strong>of</strong> diagnostic<br />

categories<br />

Term<strong>in</strong>ology questions<br />

List<strong>in</strong>g / rank<strong>in</strong>g <strong>of</strong> qualifiers?<br />

(“strong expression qualifiers’, “<strong>in</strong>tergrade<br />

qualifiers”, “secondary characteristics qualifiers”)<br />

How many qualifiers (levels)?


<strong>The</strong> WRB publications :<br />

World Reference Base for Soil Resources: Introduction<br />

(Work<strong>in</strong>g Group RB,1998a);<br />

World Reference Base for Soil Resources: Atlas<br />

(Work<strong>in</strong>g Group RB, 1998b);<br />

World Reference Base for Soil<br />

Resources:(FAO/ISRIC/ISSS, 1998).<br />

http://www.fao.org/ag/agl/agll/wrb


Soil Reference Groups <strong>of</strong> WRB (and<br />

related diagnostic criteria)<br />

Discussion <strong>of</strong> Reference Groups will be based on the<br />

FAO World Soil Resources Report # 94<br />

“LECTURE NOTES ON THE MAJOR SOILS OF THE WORLD”<br />

available also:<br />

http://www.<br />

http:// www.fao fao.org/ .org/ag ag/agl agl/agll agll/wrb wrb/


<strong>The</strong> 30 Reference Soil Groups are aggregated<br />

<strong>in</strong> 10 ‘sets’ on the basis <strong>of</strong> 'dom<strong>in</strong>ant<br />

identifiers', i.e. those <strong>soil</strong> form<strong>in</strong>g factor(s)<br />

which most clearly <strong>in</strong>fluenced <strong>soil</strong> formation.


SET # 1<br />

Organic <strong>soil</strong>s. Soils with more than a<br />

def<strong>in</strong>ed quantity <strong>of</strong> 'organic <strong>soil</strong> materials'.<br />

Reference Soil Group: the HISTOSOLS.


SET # 2<br />

Soils <strong>of</strong> set # 2 vary widely <strong>in</strong> properties<br />

and appearance and can occur <strong>in</strong> any<br />

environment but have <strong>in</strong> common that their<br />

properties are strongly affected by<br />

human activity.<br />

Reference Soil Group: ANTHROSOLS.


SET #3<br />

M<strong>in</strong>eral <strong>soil</strong>s whose formation is conditioned by the<br />

particular properties <strong>of</strong> their parent material.<br />

Reference Soil Groups (3)<br />

ANDOSOLS <strong>of</strong> volcanic regions<br />

the sandy ARENOSOLS<br />

the swell<strong>in</strong>g and shr<strong>in</strong>k<strong>in</strong>g heavy clayey<br />

VERTISOLS


SET #4<br />

M<strong>in</strong>eral <strong>soil</strong>s whose formation was <strong>in</strong>fluenced ma<strong>in</strong>ly by<br />

their topographic/physiographic sett<strong>in</strong>g.<br />

Reference Soil Groups (4):<br />

In low terra<strong>in</strong> positions:<br />

Young alluvial FLUVISOLS, which show stratification recent<br />

sedimentation<br />

Non-stratified GLEYSOLS <strong>in</strong> waterlogged areas.<br />

In elevated and/or erod<strong>in</strong>g areas:<br />

Shallow LEPTOSOLS over hard rock or highly calcareous<br />

material,<br />

Deeper REGOSOLS, which occur <strong>in</strong> unconsolidated materials.


SET #4


SET # 5<br />

Soils that are only moderately developed on<br />

account <strong>of</strong> their limited pedogenetic age or<br />

because <strong>of</strong> rejuvenation <strong>of</strong> the <strong>soil</strong> material.<br />

<strong>The</strong>y have not more <strong>in</strong> common than 'signs <strong>of</strong><br />

beg<strong>in</strong>n<strong>in</strong>g <strong>soil</strong> formation'<br />

Reference Soil Group: the CAMBISOLS.


SET #6<br />

Red and yellow <strong>soil</strong>s <strong>of</strong> wet tropical and subtropical<br />

regions.<br />

PLINTHOSOLS on old weather<strong>in</strong>g surfaces with ‘pl<strong>in</strong>thite’<br />

deeply weathered FERRALSOLS that have a very low cation<br />

exchange capacity<br />

ALISOLS with high cation exchange capacity and much<br />

exchangeable alum<strong>in</strong>ium,<br />

deep NITISOLS <strong>in</strong> relatively rich parent material<br />

strongly leached, red and yell ow ACRISOLS on acid parent<br />

rock<br />

LIXISOLS with a low cation exchange capacity but high<br />

base saturation percentage.


SET #7<br />

Soils <strong>in</strong> arid and semi-arid regions..<br />

Soluble salts may accumulate at some depth or, <strong>in</strong><br />

areas with shallow ground-water, near the <strong>soil</strong><br />

surface.<br />

– SOLONCHAKS with a high content <strong>of</strong> soluble salts,<br />

– SOLONETZ with a high percentage <strong>of</strong> adsorbed<br />

sodium ions,<br />

– GYPSISOLS with a horizon <strong>of</strong> secondary gypsum<br />

enrichment,<br />

– DURISOLS with a layer or nodules <strong>of</strong> <strong>soil</strong> material<br />

that is cemented by silica, and<br />

– CALCISOLS with secondary carbonate enrichment.


SET #8<br />

<strong>soil</strong>s <strong>in</strong> the steppe zone<br />

CHERNOZEMS with deep, very dark surface <strong>soil</strong>s and<br />

carbonate enrichment <strong>in</strong> the sub<strong>soil</strong>,<br />

KASTANOZEMS with less deep, brownish surface <strong>soil</strong>s<br />

and carbonate and/or gypsum accumulation at some depth<br />

PHAEOZEMS, the dusky red <strong>soil</strong> s <strong>of</strong> prairie regions with<br />

high base saturation but no visible signs <strong>of</strong> secondary<br />

carbonate accumulation.


SET #9<br />

<strong>soil</strong>s <strong>of</strong> humid temperate regions with evidence <strong>of</strong><br />

redistribution <strong>of</strong> clay and/or or-ga-nic matter.<br />

acid PODZOLS with a bleached eluviation horizon over<br />

an accumula-tion horizon <strong>of</strong> organic matter with alum<strong>in</strong>ium<br />

and/or iron,<br />

PLANOSOLS with a bleached top<strong>soil</strong> over dense, slowly<br />

permeable sub<strong>soil</strong>,<br />

base-poor ALBELUVISOLS with a bleached eluviation<br />

horizon tongu<strong>in</strong>g <strong>in</strong>to a clay-enriched subsurface horizon,<br />

base-rich LUVISOLS with a dist<strong>in</strong>ct clay accumulation<br />

horizon, and<br />

UMBRISOLS with a thick, dark, acid surface horizon that<br />

is rich <strong>in</strong> organic matter.


SET #10<br />

CRYOSOLS - Soils formed <strong>in</strong> a permafrost<br />

environment.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!