05.04.2013 Views

Uveal Coloboma and True Klinefelter Syndrome - Journal of Medical ...

Uveal Coloboma and True Klinefelter Syndrome - Journal of Medical ...

Uveal Coloboma and True Klinefelter Syndrome - Journal of Medical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

<strong>Journal</strong> <strong>of</strong> <strong>Medical</strong> Genetics (1970). 7, 213.<br />

<strong>Uveal</strong> <strong>Coloboma</strong> <strong>and</strong> <strong>True</strong> <strong>Klinefelter</strong> <strong>Syndrome</strong><br />

J. FRAN(;OIS,"* M. Th. MATTON-VAN LEUVEN, <strong>and</strong> Ph. GOMBAULT<br />

The clinical features <strong>of</strong> '<strong>Klinefelter</strong>' syndrome<br />

were first described by <strong>Klinefelter</strong>, Reifenstein, <strong>and</strong><br />

Albright (1942). The true <strong>Klinefelter</strong> syndrome<br />

is chromatin-positive <strong>and</strong> is due to X chromosome<br />

polysomy, most frequently 47,XXY (Jacobs <strong>and</strong><br />

Strong, 1959), but karyotypes with one or more<br />

X's or Y's additional to the XXY formula, such as<br />

48,XXXY, 49,XXXXY, <strong>and</strong> mosaicisms <strong>of</strong> XXY<br />

with other stem-lines, are variants <strong>of</strong> the syndrome<br />

(Barr et al., 1959; Ford et al., 1959; Fraccaro <strong>and</strong><br />

Lindsten, 1960; Muldal <strong>and</strong> Ockey, 1960; Ellis<br />

et al., 1961; Harnden <strong>and</strong> Jacobs, 1961). The somatic<br />

abnormalities <strong>of</strong> the syndrome are relatively<br />

minor, especially at an early age <strong>and</strong> mostly only observed<br />

at or after puberty. They are: hypogonadism,<br />

testicular underdevelopment <strong>and</strong> atrophy<br />

(hyalinization <strong>of</strong> seminiferous tubules), inconstant<br />

gynaecomastia, <strong>and</strong> hormonal deviations, such as<br />

increased excretion <strong>of</strong> gonadotrophins. The following<br />

extragenital manifestations are frequent: poorly<br />

developed musculature, osteoporosis, skeletal anomalies,<br />

cutaneous angiomata, <strong>and</strong> mental retardation.<br />

The clinical picture <strong>of</strong> XXXY <strong>and</strong> other variants<br />

is similar to that <strong>of</strong> XXY subjects, though there<br />

seems to be a higher frequency <strong>of</strong> additional congenital<br />

abnormalities.<br />

The purpose <strong>of</strong> this paper is to report the presence<br />

<strong>of</strong> bilateral uveal coloboma in a 46,XX/47,XXY<br />

chromatin-positive boy.<br />

Case History<br />

This boy (H. Franky) was referred to us at the age <strong>of</strong> 4<br />

months; he was the son <strong>of</strong> healthy but consanguineous<br />

parents (Fig. 1), both aged 23 years, after a full-term<br />

uneventful pregnancy. The mother had had one x-ray<br />

<strong>of</strong> the abdominal region at the age <strong>of</strong> 15 years after an<br />

injury. The child had seizures on the 5th day, which<br />

lasted 20 minutes. The temperature <strong>and</strong> blood calcium<br />

levels were normal.<br />

Intramuscular administration <strong>of</strong> phenobarbitone<br />

(25 mg.) was helpful. Three days later, there was sudden<br />

high fever <strong>and</strong> his general condition became poor, due to<br />

* Address: Cytogenetics Laboratory, Ophthalmological Clinic <strong>of</strong><br />

the University <strong>of</strong> Ghent, De Pintelaan 115, Ghent, Belgium.<br />

213<br />

a urinary infection (Esch. coli) which was treated with<br />

'pentrexyl'. The EEG was disturbed <strong>and</strong> showed<br />

paroxysmal bisynchronous spike waves. After a week<br />

the patient was free <strong>of</strong> fever <strong>and</strong> urography was normal.<br />

The EEG returned to normal.<br />

The patient's physical <strong>and</strong> psychological development<br />

continued satisfactorily <strong>and</strong> he could walk without<br />

help at 12 months. The genitalia were normally developed<br />

for his age: both testes had descended since<br />

birth (Fig. 2).<br />

Ocular examination. This revealed bilateral coloboma<br />

<strong>of</strong> the iris (Fig. 3) <strong>and</strong> choroid, more pronounced<br />

in the right eye, where it included the optic nerve. In<br />

the left eye, the macular region <strong>and</strong> optic nerve have<br />

been spared. Both fundi had an albinoid aspect, normal<br />

for his age.<br />

The child was last seen at the age <strong>of</strong> 16 months. He<br />

was alert <strong>and</strong> his mental status seemed entirely normal.<br />

Careful questioning <strong>of</strong> the parents <strong>and</strong> personal examination<br />

<strong>of</strong> several members <strong>of</strong> the prob<strong>and</strong>'s <strong>and</strong> <strong>of</strong> the<br />

parents' generation did not reveal the occurrence <strong>of</strong> a<br />

colobomatous lesion or equivalent.<br />

FIG. 1. Consanguinity <strong>of</strong> the prob<strong>and</strong>'s parents.


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

214 Frangois, Matton-Van Leuven, <strong>and</strong> Gombault<br />

Cytogenetic examination. This was performed in<br />

leucocytes, cultured following a micromethod seen in<br />

Pr<strong>of</strong>essor Lejeune's laboratory. A total <strong>of</strong> 75 cells was<br />

analysed numerically. In 5 cells, 2 or more chromosomes<br />

had been lost during the techmcal in vitro<br />

manipulations. In the remaining 70 cells, 2n was distributed<br />

as follows: 45: 8%/', 46: 37%, 47: 490o, <strong>and</strong><br />

48: 6%. In each <strong>of</strong> these groups, karyotypes were<br />

\ Ww analysed (28 in total). Of the cells with 2n=47,<br />

11 karyotypes were prepared. They constantly were<br />

47,XXY (Fig. 4). Of the cells with 2n=46, 12 karyotypes<br />

x a _ s:were analysed: 10 <strong>of</strong> them were 46,XX (Fig. 5) <strong>and</strong> 2<br />

<strong>of</strong> them were 46,XY. Of the cells with 2n = 45, 3 karyotypes<br />

were analysed: 2 <strong>of</strong> them had lost an autosome<br />

each in a different group <strong>and</strong> could be interpreted as<br />

45,XX; the remaining one had an autosome missing in<br />

.........;. f the C group <strong>and</strong> could be interpreted as 45,X. Of the<br />

FIG. 2. Outer genitalia. cells with 2n = 48, 2 karyotypes were prepared: one could<br />

be interpreted as 48,XXXY <strong>and</strong> the other possibly as<br />

48,XXYY.<br />

The sex chromosomal configuration is thus distributed<br />

in the 28 karyotypes as follows: XX in 12 karyotypes<br />

(43%O); XXY in 11 (39%); XY in 2 (7%); XXXY in 1<br />

.... (35%); XXYY in 1 (3,5%); XO in 1 (in vitro loss?)<br />

(3-5%).<br />

Structurally, the chromosomes were normal. In<br />

many karyotypes, however, the Y chromosome had long<br />

long arms. The mean Y/F index, i.e. the total length <strong>of</strong><br />

the Y expressed as a ratio <strong>of</strong> the mean total length <strong>of</strong> the F<br />

chromosomes, was 0-96. The karyotypes were the result<br />

<strong>of</strong> three different blood cultures: the first time only<br />

XXY karyotypes were obtained. As the quality <strong>of</strong> the<br />

metaphases was not very good, a second blood culture<br />

revealed a high majority <strong>of</strong> cells with 46,XX. A third<br />

culture revealed a majority <strong>of</strong> cells with 47,XXY.<br />

The sex chromatin was evaluated in buccal mucosa on<br />

three occasions by the same observer: the first time Barr<br />

FIG. 3. Bilateral iris coloboma. bodies were seen in 12o% <strong>of</strong> the cells (orcein stain), the<br />

:. .. :: ... s ;: . . .s; - , : .:........<br />

...... ...-RRSo "-'';......................<br />

A.. > &.: ,:'<br />

............................................ b':<br />

.~~I...... ...... .... ... ...<br />

-: '.-;.. ....... '- -. .A<br />

* ...... .. .-eE y E - . ' ........ . f X -; . y; ;-X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ....... .. .. .. ...<br />

119 ........... X i _ ... ......<br />

.......... ... .. a._ ........ ...:t_:.-<br />

_._?... :........ ...:..... ......<br />

. --::--.<br />

.. * W0JU,<br />

' ';'X' '........::. y''<br />

1 ... . : .~~~~~~~~~.......<br />

:.: :;<br />

* Z :<br />

,,,.:.::;:. .<br />

4Ut:Q :<br />

FIG. 4. Karyotype with 2n = 47,XXY (propositus).<br />

;:::. ::.............<br />

'M


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

<strong>Uveal</strong> <strong>Coloboma</strong> <strong>and</strong> <strong>True</strong> <strong>Klinefelter</strong> <strong>Syndrome</strong><br />

,,,., %....A<br />

second time in 160o (orcein stain), the third time in 10%<br />

(Shorr stain). These results indicated the presence <strong>of</strong><br />

two X chromosomes.<br />

The drumstick evaluation revealed 0-4% polymorphs<br />

with a drumstick appendage. The lobulation <strong>of</strong> the<br />

polymorphs was extremely low.<br />

Cytogenetic evaluation was also performed in the<br />

patient's parents. The karyotype <strong>of</strong> the mother was<br />

normal (46,XX), both numerically <strong>and</strong> structurally.<br />

The karyotype <strong>of</strong> the father was numerically normal<br />

(46,XY). Structurally, most karyotypes showed a long<br />

Y chromosome, the relative length <strong>of</strong> which was generally<br />

even longer than in the prob<strong>and</strong> (Fig. 6). The mean<br />

Y/F index was 1-13.<br />

Dermatoglyphic examination (Table I). This<br />

was carried out on the prob<strong>and</strong> <strong>and</strong> his parents.<br />

Total finger ridge count. Prob<strong>and</strong>, not determined;<br />

ulnar loops on all fingers, except on right thumb on<br />

which a whorl was present. Father, 68; mother, 146.<br />

Axial triradius <strong>and</strong> atd angle. Prob<strong>and</strong>, distal displacement<br />

to position t", more pronounced on the left<br />

FIG. 6. G group chromosomes in karyotypes <strong>of</strong> the patient <strong>and</strong> his<br />

father.<br />

FIG. 5. Karyotype with 2n=46,XX (propositus).<br />

h<strong>and</strong>; atd right, 570; atd left, 68°. Father, triradius in<br />

position t; atd right, 430; atd left, 40°. Mother, distal<br />

displacement <strong>of</strong> axial triradius to position t'; atd right,<br />

48°; atd left, 540.<br />

Digital triradii. Prob<strong>and</strong>, left h<strong>and</strong>; triradius c absent.<br />

Father, all present; mother, all present.<br />

a-b ridge count. Prob<strong>and</strong>, right 32, left 40, summed<br />

72. Father, right, not counted because <strong>of</strong> burn scars;<br />

left 40. Mother, right 37, left 37, summed 74.<br />

.............<br />

TABLE I<br />

FORMULAE OF DERMATOGLYPHS<br />

Main Line Index<br />

Prob<strong>and</strong> r fRight Left 11.9.0.5'.13.t'.0.0.0.0.0 11.9.7.5'.13.tr.O.O.O.L.0 16<br />

Father fRight Not RLeft 11.7.7.3.13.t.O.O.O.O.L determined<br />

14<br />

Mother fRight 9.9.57.5'.13t'°.O.O.O.L.D 14<br />

Left 11.9.7.5.'.13.t'.O.O.O.L.0 16<br />

215<br />

Discussion<br />

A: Sex Chromosomal Anomalies<br />

The sex chromatin values suggested the presence <strong>of</strong><br />

two X chromosomes. The extremely low nuclear<br />

lobulation <strong>of</strong> the polymorphonuclear leucocytes,<br />

observed in our prob<strong>and</strong>, has been reported as<br />

typical for <strong>Klinefelter</strong> syndrome (Mittwoch, 1964;<br />

Fr0l<strong>and</strong>, 1969).<br />

The blood cultures revealed the presence <strong>of</strong> two<br />

main cell lines <strong>of</strong> about equal importance: 46,XX/<br />

47,XXY. The XX/XXY type <strong>of</strong> mosaicism has<br />

been reported a few times in the <strong>Klinefelter</strong><br />

syndrome (Ford et al., 1959; Hayward, 1960;<br />

Rohde, 1963; Court Brown et al., 1964).


216<br />

Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

Three questions have to be answered:<br />

(1) Do these two cell lines exist in vivo ?<br />

(2) If they exist in vivo, how did they arise <strong>and</strong><br />

how are they distributed in the patient ?<br />

(3) Have the minor cell lines 45,X, 46,XY,<br />

48,XXXY, <strong>and</strong> 48,XXYY originated in vitro<br />

through erroneous mitoses, or do they also exist in<br />

vivo ?<br />

Though the different ratios obtained in the three<br />

cultures might indicate the origin or the preferential<br />

growth <strong>of</strong> one <strong>of</strong> the cell lines in vitro, we feel that<br />

the two main cell lines exist in vivo <strong>and</strong> that the<br />

patient's karyotype is 46,XX/47,XXY. Indeed,<br />

our results were obtained from short-term blood<br />

cultures in which only one or two mitoses take<br />

place, <strong>and</strong> in which it is less likely than in long-term<br />

fibroblast cultures that selective forces for preferential<br />

growth for one or other cell line play an important<br />

role, or that a cell line with a karyotype other<br />

than the original one arises.<br />

There are two ways in which the two main cell<br />

lines may have arisen in the patient.<br />

(1) From an XY zygote. This hypothesis requires<br />

the occurrence <strong>of</strong> at least 2 successive mitotic<br />

errors: (a) mitotic nondisjunction <strong>of</strong> the X chromosome<br />

at the first division <strong>of</strong> the XY zygote, with<br />

production <strong>of</strong> XXY <strong>and</strong> YO cells <strong>and</strong> loss <strong>of</strong> the<br />

non-viable YO cell; (b) further early post-zygotic<br />

mitotic error, i.e. the loss <strong>of</strong> a Y chromosome at<br />

division <strong>of</strong> an XXY cell with production <strong>of</strong> XXY<br />

<strong>and</strong> XX cells.<br />

(2) From an XXY zygote. This requires the<br />

subsequent occurrence <strong>of</strong> two different pathological<br />

conditions: an imbalanced gamete <strong>and</strong> erroneous<br />

somatic mitoses at or shortly after the first cleavage<br />

division.<br />

(a) Imbalanced gamete. As the parents' karyotypes<br />

were normal, the possibility <strong>of</strong> a parental<br />

numerical chromosomal abnormality can be ruled<br />

out. The possibility <strong>of</strong> a gametogenetic error<br />

can neither be proved nor rejected. The hypothesis<br />

<strong>of</strong> meiotic nondisjunction could not be substantiated<br />

by data on the parents' ages which were<br />

normal (i.e. both 23 years), or by other cases <strong>of</strong><br />

aneuploidy in the family, or by a history <strong>of</strong> a virus<br />

infection <strong>of</strong> the mother. The x-ray examination <strong>of</strong><br />

the abdominal region at the age <strong>of</strong> 15 years can be<br />

rejected as responsible for an erroneous cell division<br />

taking place years later at ovulation.<br />

The father had, however, an unusually long Y<br />

chromosome. The question whether such a Y can<br />

determine abnormal behaviour <strong>of</strong> the XY bivalent<br />

at meiosis with consecutive nondisjunction is not<br />

Frangois, Matton-Van Leuven, <strong>and</strong> Gombault<br />

yet solved. More reports on the presence <strong>of</strong> long Y<br />

chromosomes in the families <strong>of</strong> aneuploid patients<br />

are needed to evaluate a possible causal relation.<br />

In order to have an idea <strong>of</strong> the variation <strong>of</strong> the<br />

length <strong>of</strong> the Y chromosome in the Belgian population,<br />

we determined the Y/F index in the karyotypes<br />

<strong>of</strong> 120 males who were referred to our laboratory,<br />

either as patients or as normal relatives <strong>of</strong><br />

affected subjects. This control series had a Y/F<br />

index= 087 + 0-16.<br />

Data from published reports on the Y/F value are<br />

as follows: 088±0-11 in Asiatic Indians, 1-00+<br />

0-15 in Japanese, 0-92 ± 0-09 in American Negroes,<br />

0 94 + 0 10 in Jews <strong>of</strong> eastern European extraction,<br />

<strong>and</strong> 0-86 ± 0 09 in non-Jews <strong>of</strong> Anglo Saxon origin<br />

(Cohen, Shaw, <strong>and</strong> MacCluer, 1966). In Japan,<br />

the Y/F was reported to vary between 0-78-0-93 in<br />

control patients with a normal Y, <strong>and</strong> between<br />

1-07-1-56 in patients with a long Y (Makino et al.,<br />

1963; Tonomura <strong>and</strong> Ono, 1963; Makino <strong>and</strong><br />

Takagi, 1965).<br />

Though it is mostly accepted that a long Y<br />

chromosome is a variation <strong>of</strong> the normal karyotype,<br />

its presence in association with somatic <strong>and</strong> genital<br />

malformations, <strong>and</strong> also in association with other<br />

karyotypic anomalies, might indicate a possible adverse<br />

effect. Association <strong>of</strong> a long Y chromosome<br />

with sexual anomalies was reported by Van Wijck,<br />

Tijdink, <strong>and</strong> Stolte (1962), de la Chapelle <strong>and</strong><br />

Hortling (1963), Gropp et al. (1963), Gustavson et<br />

al. (1964b), Makino et al. (1964), Makino <strong>and</strong> Takagi<br />

(1965), Kjessler (1966), Fraccaro et al. (1966),<br />

Nusso et al. (1967), Beer, Pfeiffer, <strong>and</strong> Dammer<br />

(1 967), <strong>and</strong> Dumars <strong>and</strong> Fisher (1968). Association<br />

<strong>of</strong> a long Y chromosome with other cytogenetic<br />

abnormalities was observed in trisomy 21 (de la<br />

Chapelle <strong>and</strong> Hortling, 1963; Jacobs <strong>and</strong> Harnden,<br />

cited by Penrose, 1961; Bishop, Blank, <strong>and</strong> Hunter,<br />

1962; Gripenberg, 1964; Makino <strong>and</strong> Takagi,<br />

1965). Familial occurrence <strong>of</strong> a long Y chromosome<br />

in families with a mongoloid prob<strong>and</strong> was<br />

noted by Bishop et al. (1962), Dekaban, Bender, <strong>and</strong><br />

Economos (1963), <strong>and</strong> Makino et al. (1963).<br />

A mosaic karyotype similar to the one found in<br />

our patient, 46,XX/47,XXY, where the Y chromosome<br />

was long, was reported by Burgio, Severi, <strong>and</strong><br />

Biscatti (1965) in a patient with a right endoabdominal<br />

testis <strong>and</strong> left gonadic agenesis.<br />

Comparison <strong>of</strong> the Y/F index <strong>of</strong> our prob<strong>and</strong><br />

(0 96) <strong>and</strong> <strong>of</strong> his father (1 -13) with, on the one h<strong>and</strong><br />

the data from published reports, <strong>and</strong> on the other<br />

h<strong>and</strong> the values in the Belgian controls, shows that<br />

the father certainly has a longer Y chromosome than<br />

normal, but that the prob<strong>and</strong>, though at the upper<br />

limit, is still within the normal variation. This is a


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

puzzling fact. However, in the karyotypes which<br />

showed 5 chromosomes in the G group, the 5th<br />

chromosome was interpreted as a Y. Indeed, if<br />

there were an autosomal anomaly, the child would<br />

be expected to be mentally retarded, which is not<br />

the case in our prob<strong>and</strong>. The child is well developed<br />

both physiologically <strong>and</strong> psychologically<br />

<strong>and</strong> is by no means mentally retarded.<br />

(b) Mitotic error in the 47,XXY foetus, early<br />

post-zygotic after the first cleavage division, such as<br />

the following:<br />

(i) Somatic non-disjunction <strong>of</strong> 47,XXY cells with<br />

production <strong>of</strong> either 48,XXXY <strong>and</strong> 46,XY cells or<br />

46,XX <strong>and</strong> 48,XXYY cells. This is not very likely<br />

in view <strong>of</strong> the percentages obtained for the different<br />

cell lines.<br />

(ii) Direct loss <strong>of</strong> a Y chromosome giving rise to<br />

47,XXY <strong>and</strong> 46,XX cells, which is more likely to<br />

have occurred.<br />

The percentages suggest that whether the karyotype<br />

<strong>of</strong> the zygote was 46,XY or 47,XXY, a divisional<br />

error (including loss <strong>of</strong> a Y chromosome)<br />

must have occurred very early, resulting in the production<br />

<strong>of</strong> 46,XX <strong>and</strong> 47,XXY cell lines in about<br />

the same quantity.<br />

Mitotic errors may have occurred occasionally in<br />

the XXY cells, with production <strong>of</strong> the minor cell<br />

lines, 45,X, 46,XY, 48,XXXY, <strong>and</strong> 48,XXYY,<br />

either very late in embryonic life or in vitro during<br />

culture. In view <strong>of</strong> the extremely low frequency<br />

<strong>of</strong> these cell lines, it was impossible to judge<br />

whether they represented true mosaicism or accidental<br />

deviations. The 46,XY configuration was<br />

indeed found only in two <strong>and</strong> the 48,XXXY,<br />

48,XXYY, <strong>and</strong> 45,X configurations, respectively,<br />

only in one karyotype, whereas the 47,XXY <strong>and</strong><br />

46,XX cells represented the great majority <strong>of</strong> cells.<br />

It was impossible to perform a skin or fascia<br />

biopsy so that the frequency <strong>of</strong> the different cell<br />

lines in tissue other than blood could not be studied.<br />

In any case, blood mosaicism indicates that the<br />

error must have occurred at or before the gastrula<br />

stage, i.e. around or shortly after the 14th day.<br />

The clinical picture <strong>of</strong> mosaic patients is probably<br />

less dependent on the number <strong>of</strong> cell lines<br />

than on the relative frequency <strong>of</strong> the cells in each<br />

cell line. This frequency depends on the stage <strong>of</strong><br />

embryonic development at which the non-disjunction<br />

which causes the mosaicism takes place. The<br />

earlier mosaicism originates in embryonic life, the<br />

more severe probably is the influence on the phenotype.<br />

The relative influence <strong>of</strong> the different cell<br />

lines will only become evident at puberty. Repeated<br />

cultures are sometimes necessary in order to<br />

reveal the existence <strong>of</strong> mosaicism. A mosaic<br />

<strong>Uveal</strong> <strong>Coloboma</strong> <strong>and</strong> <strong>True</strong> <strong>Klinefelter</strong> <strong>Syndrome</strong><br />

217<br />

pattern can indeed be overlooked if an inadequate<br />

number <strong>of</strong> cells is counted. We can compare in<br />

this respect our patient with the patient reported by<br />

Hecht et al. (1966) who was originally described as a<br />

46,XX patient without Y chromosomes, in whom,<br />

when further investigations were carried out, a<br />

mosaic cell line (1 %) was detected.<br />

B: <strong>Coloboma</strong><br />

<strong>Coloboma</strong> results from abnormal closure <strong>of</strong> the<br />

foetal cup cleft soon after gastrulation at the end <strong>of</strong><br />

the first or the beginning <strong>of</strong> the second foetal<br />

month, when the optic vesicle is in an active state <strong>of</strong><br />

differentiation (Duke-Elder, 1940; Mann, 1957).<br />

This faulty development <strong>of</strong> the ectodermal eye<br />

structures can be caused by chromosomal, Mendelian,<br />

<strong>and</strong> environmental intrauterine teratogenous<br />

factors.<br />

(I) Chromosomal anomalies. <strong>Coloboma</strong> <strong>and</strong><br />

other eye defects have been found in anomalies <strong>of</strong><br />

all the autosomal groups <strong>and</strong> are not specific for any<br />

particular chromosomal abnormality: A group<br />

(Lele, Dent, <strong>and</strong> Delhanty, 1965; El Massri <strong>and</strong><br />

Riad, 1965), B group (Hirschhorn <strong>and</strong> Cooper,<br />

1961; Hirschhorn, Cooper, <strong>and</strong> Firschein, 1965;<br />

Gustavson et al., 1964b; Shaw, Cohen, <strong>and</strong><br />

Hildebr<strong>and</strong>t, 1965; Wolf et al., 1965; D. Jesberg,<br />

personal communication, 1966), C group (Salonius<br />

<strong>and</strong> Opitz, 1964), D group (Patau et al., 1960),<br />

<strong>and</strong> E group (Francois et al., 1965; D. Jesberg,<br />

personal communication, 1966).<br />

<strong>Coloboma</strong>tous lesions <strong>of</strong> the eye ball have not<br />

been found in trisomy 21.<br />

A t(B/G) translocation trisomy was found in a<br />

child with multiple anomalies among which were<br />

blepharophimosis <strong>and</strong> colobomata <strong>of</strong> the irides<br />

(Gustavson et al., 1964a). <strong>Uveal</strong> colobomata are<br />

part <strong>of</strong> the oculo-anal syndrome, which is caused by<br />

an extra small submedian chromosome in girls<br />

with mongoloid slant <strong>of</strong> the eyelids, hypertelorism,<br />

microphthalmia, anal atresia, recto-vaginal fistulae,<br />

pre-auricular fistulae, renal malformations, <strong>and</strong><br />

mental retardation (Schachenmann et al., 1965;<br />

Cagianut, 1968).<br />

<strong>Coloboma</strong>ta were also found associated with<br />

oligophrenia, various congenital abnormalities,<br />

exotropia, myopia, <strong>and</strong> the presence <strong>of</strong> a small<br />

extrametacentric chromosome in a sex chromatinnegative<br />

boy (Heimann, Jaeger, <strong>and</strong> Dollmann,<br />

1968).<br />

The importance <strong>of</strong> a chromosome aberration as a<br />

causal factor should not be overstressed.<br />

(i) In the case <strong>of</strong> autosomal aberrations, the coloboma<br />

is only part <strong>of</strong> the general pathological<br />

condition.


218<br />

Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

(ii) Chromosomal aberrations are usually absent<br />

in cases <strong>of</strong> isolated coloboma with an otherwise<br />

normal phenotype.<br />

(iii) When a coloboma is found in association with<br />

a chromosomal peculiarity, but when the latter is<br />

also present in one <strong>of</strong> the phenotypically normal<br />

parents (Lele et al., 1965), the causal relation between<br />

the coloboma <strong>and</strong> the chromosomal peculiarity<br />

becomes doubtful.<br />

(iv) There exist several reports <strong>of</strong> coloboma<br />

patients with associated multiple congenital malformations,<br />

who had a normal karyotype (Edwards,<br />

Young, <strong>and</strong> Finley, 1961; Angelman, 1961).<br />

In sex chromosomal aberrations, ocular anomalies<br />

are infrequent <strong>and</strong> uveal coloboma is exceptional.<br />

In the <strong>Klinefelter</strong> syndrome the eyes are usually<br />

normal. Other severe somatic malformations are<br />

also extremely infrequent. A possible explanation<br />

is that the major part <strong>of</strong> the extra X chromosome is<br />

genetically inactivated. Out <strong>of</strong> the impressive<br />

bibliography on <strong>Klinefelter</strong> syndrome, including<br />

review studies on large series (Court Brown et al.,<br />

1964; Frol<strong>and</strong>, 1969), on smaller series, <strong>and</strong> the<br />

numerous individual case reports (Nowakowski,<br />

1961; de la Chapelle <strong>and</strong> Hortling, 1963;<br />

Prader, Murset, <strong>and</strong> Hauschteck, 1964, etc.), totalling<br />

400-500 karyotyped or sex chromatin typed<br />

<strong>Klinefelter</strong> patients, the following ocular morphological<br />

features were noted.<br />

47,XXY karyotype: Myopic astigmatism (Nowakowski,<br />

1961, case 6), high myopia (Nowakowski, 1961, case 7),<br />

bilateral coloboma <strong>of</strong> iris <strong>and</strong> choroid (Appelmans,<br />

Michiels, <strong>and</strong> Guzik, 1965), Marfan syndrome (Bessiere<br />

et al., 1962), pigmentary retinopathy (Nagy, Leowei, <strong>and</strong><br />

Kakuk, 1965), associated achondroplasia, <strong>and</strong> posterior<br />

corneal dysgenesis <strong>and</strong> atrophy <strong>of</strong> iris root, condensations<br />

<strong>of</strong> the Schwalbe ring, <strong>and</strong> abnormal insertion <strong>of</strong> iris root,<br />

forming radial arcades which masked the ciliary b<strong>and</strong><br />

(Amalric et al., 1966), hypertelorism in a premature child<br />

with multiple malformations <strong>and</strong> triploidy (2n = 69:<br />

66A + XXY) (Bernard et al., 1967).<br />

48,XXXY karyotype. Severe myopia (Ferguson-<br />

Smith, Johnston, <strong>and</strong> H<strong>and</strong>maker, 1960).<br />

49, XXXXY karyotype. Esotropia <strong>and</strong> myopia (-18D)<br />

(Anders et al., 1960), hypertelorism (Fraccaro, Klinger,<br />

<strong>and</strong> Schutt, 1962; Barr et al., 1962), hypertelorism,<br />

epicanthus, strabismus internus concomitans, myopia<br />

(- 3D) (Pfeiffer, 1962), alternating esotropia <strong>and</strong> hypertropia<br />

caused by obvious overaction <strong>of</strong> the inferior<br />

obliques (Atkins <strong>and</strong> Connelly, 1963), conspicuous<br />

epicanthus (Farquhar <strong>and</strong> Walker, 1964), hypertelorism,<br />

palpebral fissures, slanting downwards <strong>and</strong> medially<br />

(Joseph, Anders, <strong>and</strong> Taylor, 1964), strabismus (Fraser<br />

et al., 1961), divergent strabismus <strong>and</strong> hypertelorism<br />

(Barr et al., 1962), strabismus, bilateral coloboma <strong>of</strong><br />

iris <strong>and</strong> optic nerve (Joannides <strong>and</strong> Tsenki, 1968),<br />

pronounced epicanthus (Frol<strong>and</strong>, 1969, case 47),<br />

Frangois, Matton-Van Leuven, <strong>and</strong> Gombault<br />

pronounced epicanthus, slight hypertelorism, alternating<br />

external strabismus, high myopia (-20D), <strong>and</strong> myopic<br />

fundus degeneration (Frol<strong>and</strong>, 1969, case 48).<br />

49,XXXYY karyotype. Blepharophimosis <strong>and</strong> prominent<br />

supra-orbital ridges (Bray <strong>and</strong> Ann Josephine,<br />

1963).<br />

48,XXYY karyotype. Cataract, strabismus, high myopia,<br />

<strong>and</strong> choroidal atrophy (Laurence, Ishmael, <strong>and</strong><br />

Davies, 1963), epicanthus (Mirouze et al., 1964),<br />

myopia (Herbeuval et al., 1965), iris aplasia (Warburg,<br />

1968), prominent supra-orbital ridges (Ellis et al.,<br />

1961). In a case <strong>of</strong> Amalric et al. (1966) there was a<br />

uveal dystrophy: iris atrophy <strong>and</strong> atrophic insertion <strong>of</strong><br />

this iris root. The iris atrophy was more pronounced in<br />

the periphery. The sphincter zone was yellow. The<br />

zone <strong>of</strong> the dilator muscle fibres was grey. This bicolour<br />

iris atrophy reminded one <strong>of</strong> the atrophies found<br />

in genetic mesodermal syndromes. Atrophy in the<br />

chamber angle was especially pronounced between 4 <strong>and</strong><br />

6 o'clock. The iris root continued there only in a thin<br />

grey-yellow strip, attaching itself very high up. This<br />

atrophic iris insertion masked all the underlying structures.<br />

Mosaic karyotypes<br />

48,XXYY/49,XXXYY: epicanthus, right iris coloboma,<br />

<strong>and</strong> bilateral choroidal colobomata adjacent to the<br />

papilla in a 48, XXYY/71, XXXYY infant with peculiar<br />

facies, syndactyly, <strong>and</strong> multiple minor malformations<br />

(Schmid <strong>and</strong> Vischer, 1967).<br />

47,XXY/46,XX/46,XY/45,X: severe myopia <strong>and</strong> pigmentary<br />

retinopathy (Nowakowski, 1961; Bergman,<br />

Nowakowski, <strong>and</strong> Reitalu, 1969).<br />

47,XYY/48,XXYY: Prominent supra-orbital ridges<br />

<strong>and</strong> myopia (Spencer, Eyles, <strong>and</strong> Mason, 1969), prominent<br />

supra-orbital ridges <strong>and</strong> optic atrophy (Spencer<br />

et al., 1969).<br />

48,XXXY/49,XXXXY/50,XXXXXY: high myopia<br />

(- 18D) <strong>and</strong> convergent strabism (Anders et al., 1960).<br />

Long Y: coloboma, developmental errors <strong>of</strong> the brain<br />

<strong>and</strong> the heart, cleft scrotum, small penis, in a child in<br />

whom 'preliminary investigations pointed to some<br />

chromosome abnormality' (Angelman, 1961): the boy<br />

had 46 chromosomes, but had a larger Y than normal<br />

(H. Angleman, personal communication, 1969).<br />

47,XXY+ chromosome resembling a no. 15: myopic<br />

astigmatism (Nowakowski, 1961: Case 9), myopia<br />

(Nowakowski, 1961: Case 11).<br />

This review shows that the association <strong>of</strong> coloboma<br />

with <strong>Klinefelter</strong> syndrome has been reported<br />

only three times (Appelmans et al., 1965; Schmid<br />

<strong>and</strong> Vischer, 1967; Joannides <strong>and</strong> Tsenki, 1968).<br />

To our knowledge, our prob<strong>and</strong> is the fourth case.<br />

In this connexion it is interesting to note that the<br />

peculiar iris observed by Amalric et al. (1966) in the<br />

48,XXYY <strong>Klinefelter</strong> patient <strong>and</strong> in the 47,XXY<br />

<strong>Klinefelter</strong>/achondroplasic patient, was most pronounced<br />

at the lower half <strong>of</strong> the angle, i.e. at the<br />

localization <strong>of</strong> the foetal cleft. The lesions found


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

in the anterior chamber were classified by these<br />

authors as belonging to the malformative group <strong>of</strong><br />

cleavage <strong>of</strong> the anterior chamber together with other<br />

pathological conditions, such as persistence <strong>of</strong><br />

mesenchymatous tissue, posterior embryotoxon,<br />

hyaline corneal membrane, posterior marginal dysplasia<br />

<strong>of</strong> Streiff, <strong>and</strong> mesodermic dysgenesis <strong>of</strong><br />

Rieger (Amalric et al., 1966).<br />

The small number <strong>of</strong> reported ocular anomalies<br />

in the <strong>Klinefelter</strong> syndrome might be due to incomplete<br />

examination <strong>of</strong> the patient, omitting an<br />

ophthalmological examination, or to the fact that<br />

the ocular functions are not always disturbed, so<br />

that the patient does not complain <strong>and</strong> is not referred<br />

to an ophthalmological department. The<br />

frequent associated mental retardation also makes<br />

complete ophthalmic examination difficult. <strong>Coloboma</strong><br />

<strong>of</strong> the iris, being an easily seen congenital<br />

anomaly, is however not likely to be overlooked, or to<br />

be omitted in a report when it is present in a patient.<br />

We examined extensively the eyes <strong>of</strong> 3 adult<br />

<strong>Klinefelter</strong> patients, including evaluation <strong>of</strong> the<br />

refraction, mobility, fundus, <strong>and</strong> anterior chamber<br />

angle: these patients were karyotyped in our<br />

laboratory <strong>and</strong> all were 47,XXY, <strong>and</strong> we did not<br />

notice any ocular abnormality (Table II).<br />

The results <strong>of</strong> different sex chromatin surveys in<br />

newborn males, normal adult males, males with<br />

mental retardation, <strong>and</strong> other institutionalized<br />

patients, indicated that an additional X chromosome<br />

was present in some or all <strong>of</strong> the cells <strong>of</strong> 2-07 per<br />

1000 newborn male babies <strong>and</strong> <strong>of</strong> 1 96-2-18 per<br />

1000 adult males (Prader et al., 1958; Moore, 1959;<br />

Berlemann, 1961; Maclean, Harnden, <strong>and</strong> Court<br />

Brown, 1961; Maclean et al., 1964; Paulsen et al.,<br />

1964; Maclean, 1966; Taylor <strong>and</strong> Moores, 1967;<br />

Maclean et al., 1968; Fr0l<strong>and</strong>, 1969).<br />

<strong>Coloboma</strong> <strong>of</strong> the iris is judged to have an incidence<br />

<strong>of</strong> about 1:6000 (Duke-Elder, 1940), i.e.<br />

1:12,000 males. Knowing that the frequency <strong>of</strong><br />

<strong>Klinefelter</strong> syndrome is 2:1000 males, it can be<br />

calculated that there is a probability <strong>of</strong> about 1 in 6<br />

million that the two conditions would occur in the<br />

same individual by chance alone.<br />

The fact that in the published reports <strong>of</strong> 400-500<br />

karyotyped or sex chromatin-typed <strong>Klinefelter</strong><br />

patients, coloboma was found 4 times ( ± 1%), can<br />

indicate that coloboma may possibly be part <strong>of</strong> the<br />

phenotypic expression <strong>of</strong> <strong>Klinefelter</strong> syndrome,<br />

though the causal mechanism remains entirely obscure.<br />

The idea has gained ground that the human sex<br />

chromosomes act in two different ways (Commoner,<br />

1964).<br />

(a) The euchromatic X chromosome exerts its<br />

<strong>Uveal</strong> <strong>Coloboma</strong> <strong>and</strong> <strong>True</strong> <strong>Klinefelter</strong> <strong>Syndrome</strong><br />

219<br />

influence via sex-linked Mendelian genes <strong>and</strong> control<br />

biochemical specificity. (b) The second heterochromatic<br />

X chromosome would act as an agent <strong>of</strong><br />

nucleotide sequestration <strong>and</strong> regulate metabolic<br />

processes, which result in quantitative differences.<br />

The difference between the sexes would be <strong>of</strong> a<br />

quantitative rather than <strong>of</strong> a qualitative nature, <strong>and</strong><br />

would not be correlated with any biochemical<br />

specificity. In this respect, <strong>Klinefelter</strong> patients can<br />

be considered as males having a quantitatively altered<br />

production <strong>of</strong> sex hormones. According to Ohno<br />

(1967) <strong>and</strong> Mittwoch (1967), the metabolic pathway<br />

<strong>of</strong> steroid sex hormone synthesis is such that 'the<br />

functional difference between <strong>and</strong>rogen-producing<br />

interstitial cells <strong>and</strong> estrogen-producing follicular cells<br />

is not qualitative, but quantitative. The former inhibits<br />

further conversion <strong>of</strong> <strong>and</strong>rostenedione, while<br />

the latter does not permit the accumulation <strong>of</strong> <strong>and</strong>rostenedione,<br />

but converts it further to estrone.'<br />

(II) Mendelian heredity. Though uveal coloboma<br />

occurs most frequently as a sporadic condition,<br />

it can be familial <strong>and</strong> is then usually transmitted as<br />

an irregular dominant trait. On rare occasions,<br />

however, recessive transmission has been reported<br />

(Waardenburg, 1934; Gesell <strong>and</strong> Blake, 1936;<br />

McLain <strong>and</strong> Dekaban, 1963). Consanguinity <strong>of</strong><br />

the parents was reported by Waardenburg (1932).<br />

We have observed an occurrence <strong>of</strong> coloboma <strong>of</strong><br />

the uvea, which can best be explained by recessive<br />

transmission rather than by dominant transmission<br />

(Franqois, 1966): a father <strong>and</strong> a daughter are<br />

affected, but the mother also has a nephew who<br />

suffers from it. Therefore, a marriage between a<br />

homozygote <strong>and</strong> a heterozygote giving rise to the<br />

manifestation in the daughter (pseudo-dominance)<br />

could be postulated.<br />

Isolated cases <strong>of</strong> <strong>Klinefelter</strong> syndrome have been<br />

associated with other Mendelian diseases, such as<br />

Ehlers-Danlos syndrome (Hsu, Geller, <strong>and</strong> Nemhauser,<br />

1966), achondroplasia (Sendrail et al.,<br />

1967),* familial spino-cerebellar degeneration,t<br />

(Indemini <strong>and</strong> Ammann, 1961), <strong>and</strong> thyroid hyp<strong>of</strong>unction<br />

(Herbeuval et al., 1968). In the present<br />

case family data were entirely negative. So, though<br />

the parents were consanguineous, the chance exists<br />

that the coloboma in our prob<strong>and</strong> is not due to<br />

Mendelian heredity.<br />

(Ill) Disturbed embryogenesis. As possible<br />

adverse influences on the closing <strong>of</strong> the optic cup the<br />

following have been suggested: inflammation<br />

* The frequency <strong>of</strong> achondroplasia is estimated to be around 0.1<br />

per 1000; it is inherited either in a dominant or a recessive mode.<br />

t In a sibship <strong>of</strong> 5, <strong>Klinefelter</strong> syndrome was associated with a<br />

neurological syndrome including ocular manifestations; 3 sibs had a<br />

paresis <strong>of</strong> an external ocular muscle; 2 had Fuch's heterochromia.


220<br />

Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

(Mann, 1957), vascular defect (Stroeva, 1961),<br />

germinal defect in the epiblast (Von Szily, 1924),<br />

<strong>and</strong> defect in the mesoblastic tissue surrounding the<br />

optic cup (Von Hippel, 1903).<br />

C: Dermatoglyphs<br />

Developmental disturbances taking place during<br />

the third <strong>and</strong> fourth months <strong>of</strong> foetal life affect the<br />

arrangements <strong>of</strong> the dermal ridges. Contrary to the<br />

specific dermatoglyphs, discernible on first view,<br />

which are found in autosomal trisomies, the peculiarities<br />

in <strong>Klinefelter</strong> syndrome are mainly quantitative,<br />

<strong>and</strong> consist <strong>of</strong> a tendency to fingertip patterns<br />

with a low ridge count. Many loops have so few<br />

ridges that they constitute a transition to arches.<br />

The frequency <strong>of</strong> true arches is also increased. The<br />

mean total finger ridge count (TFRC) <strong>of</strong> <strong>Klinefelter</strong>s<br />

(1178) was found to be about 30 ridges<br />

lower than the mean <strong>of</strong> control males, <strong>and</strong> about<br />

9 ridges lower than the mean <strong>of</strong> control females.<br />

As in all races, normal females have more arches,<br />

fewer whorls, <strong>and</strong> lower ridge counts; this finding<br />

has been interpreted as suggestive for sex reversal<br />

(Forbes, 1964).<br />

Our prob<strong>and</strong> could not be tested for fingertip<br />

counting. His father had a very low TFRC (68),<br />

whereas his mother had a high TFRC (146).<br />

The axial triradius tends to be situated low in the<br />

palm in <strong>Klinefelter</strong> patients (Holt, 1968), corresponding<br />

with a normal maximum atd angle. Surprisingly,<br />

our prob<strong>and</strong>'s axial triradius is displaced<br />

distally, a phenomenon that is not typical <strong>of</strong><br />

<strong>Klinefelter</strong> syndrome.<br />

According to Holt (1968), genetic as well as environmental<br />

factors must play a role in the determination<br />

<strong>of</strong> the position <strong>of</strong> the axial triradius. In<br />

this respect it must be mentioned that the atd<br />

angles <strong>of</strong> the father were normal, i.e. less than 450<br />

(corresponding with position t <strong>of</strong> the axial triradius),<br />

but that the atd angles <strong>of</strong> the mother were intermediate<br />

(490 <strong>and</strong> 540) corresponding with position<br />

t' <strong>of</strong> the axial triradius. This makes it difficult to<br />

judge whether the distal displacement <strong>of</strong> the axial<br />

triradius in the prob<strong>and</strong> is inherited from the mother<br />

or whether it reveals an intrauterine disturbance<br />

during the third or fourth month.<br />

The fact that the triradius c was absent needs to<br />

be stressed. An absent triradius c on both palms,<br />

d being sited nearer to the radial border <strong>of</strong> each<br />

palm than normal, was reported by Jancar (1964)<br />

in a 49,XXXXY patient. Vague et al. (1968) reported<br />

<strong>Klinefelter</strong> syndrome in monozygotic twins,<br />

in one <strong>of</strong> whom triradius c was absent on the left<br />

h<strong>and</strong>. In our own series, the triradius c was absent<br />

in the prob<strong>and</strong> <strong>and</strong> in another patient on the left<br />

Frangois, Matton-Van Leuven, <strong>and</strong> Gombault<br />

TABLE II<br />

OCULAR AND DERMATOGLYPHIC<br />

EVALUATION OF KLINEFELTER PATIENTS<br />

Patient Karyotype Dermatoglyphs Eye<br />

V. d. V. Willy 47,XXY<br />

TFRC low (42);<br />

bilateral, very<br />

proximal<br />

Normal<br />

V. E. Gerard 47,XXY Normal Normal<br />

V. C. Eric 47,XXY<br />

Left h<strong>and</strong>,<br />

absent<br />

triradius c<br />

Slight<br />

astigmatism,<br />

otherwise<br />

normal<br />

H. Franky 46,XX/47,XXY<br />

Bilateral distal<br />

displacementBiael<br />

to tr <strong>of</strong> axialBiael<br />

triradius; left coloboma <strong>of</strong><br />

h<strong>and</strong>, irss <strong>and</strong><br />

triradtius c choroid<br />

absent<br />

h<strong>and</strong> (Table II, V. C. Eric). It has to be remembered,<br />

however, that even in a normal population in<br />

some palms one <strong>of</strong> the digital triradii, most commonly<br />

c, is absent. More data on dermatoglyphs<br />

in <strong>Klinefelter</strong> patients are needed in order to interpret<br />

this finding.<br />

In <strong>Klinefelter</strong> syndrome the distance between<br />

triradii a <strong>and</strong> b tends to be shortened as compared<br />

with the distance in the general population, where<br />

the range <strong>of</strong> ab counts summed for both h<strong>and</strong>s lies<br />

between 47 <strong>and</strong> 122 ridges. The ab ridge count is<br />

genetically controlled, though environmental factors<br />

exert a greater effect on the ab ridge count in early<br />

prenatal life than they do on the finger ridge count<br />

(Holt, 1968). The ab ridge count <strong>of</strong> our family<br />

did not allow any conclusion regarding a possible<br />

diminution <strong>of</strong> the a-b distance in the prob<strong>and</strong>.<br />

As can be seen from the palmar formulae, the<br />

direction <strong>of</strong> the main lines is normal, <strong>and</strong> no special<br />

patterns were present in the thenar or hypothenar<br />

areas. The main line indices were also within<br />

normal range, as compared with the mean main<br />

line index <strong>of</strong> the population: 16 38 (Holt, 1968).<br />

Conclusions<br />

The prob<strong>and</strong> presents the association <strong>of</strong> three<br />

pathological conditions which may have arisen at<br />

different embryonic stages.<br />

(1) Sex chromosomal aneuploidy <strong>and</strong> mosaicism<br />

47,XXY/46,XX around or shortly after the 14th day.<br />

(2) <strong>Uveal</strong> colobomata at the end <strong>of</strong> the first or the<br />

beginning <strong>of</strong> the second foetal month.<br />

(3) Abnormal dermatoglyphs during the third or<br />

fourth months.<br />

Whether the three conditions are causally linked<br />

can neither be proved nor rejected. Published data<br />

indicate however that coloboma may be part <strong>of</strong> the


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

phenotypic expression <strong>of</strong> the <strong>Klinefelter</strong> syndrome.<br />

Except for the consanguinity <strong>of</strong> the parents, no<br />

familial data indicate a possible Mendelian origin <strong>of</strong><br />

the coloboma, so that it can also be the result <strong>of</strong> disturbed<br />

embryogenesis.<br />

The major cell lines, 46,XX <strong>and</strong> 47,XXY, are<br />

assumed to be present in the prob<strong>and</strong> <strong>and</strong> not to<br />

have arisen in vitro. The minor cell lines,<br />

48,XXXY <strong>and</strong> 48,XXYY, could be present in<br />

the patient, but might well have arisen in vitro.<br />

The mosaicism can as well have arisen from an XY<br />

zygote as from an XXY zygote. In the latter<br />

case the father's long Y chromosome may have<br />

played a causal role in nondisjunction. In both<br />

cases a divisional error including the loss <strong>of</strong> a Y<br />

chromosome must have occurred early in the postzygotic<br />

stage.<br />

The effect <strong>of</strong> the mosaicism on the clinical (sexual)<br />

phenotype <strong>of</strong> the patient will only become evident at<br />

puberty. The abnormal dermatoglyphs are not<br />

typical for <strong>Klinefelter</strong> syndrome, <strong>and</strong> can be the<br />

result <strong>of</strong> a disturbed embryogenesis. The displaced<br />

axial triradius may however also be inherited<br />

from the mother.<br />

REFERENCES<br />

Amalric, P., Ruffie, J., Colombies, P., <strong>and</strong> Bessou, P. (1966).<br />

Dysgenesie camerulaire chez deux malades atteints de syndrome de<br />

<strong>Klinefelter</strong>. Bulletins et Memoires de la Societe Francaise d'Ophtalmologie,<br />

79, 238-250.<br />

Anders, G., Prader, A., Hauschteck, E., Scharer, K., Siebenmann,<br />

R. E., <strong>and</strong> Heller, R. (1960). Multiples Sex-Chromatin und<br />

Komplexes chromosomales Mosaik bei einem Knaben mit<br />

Idiotie und multiplen Missbildungen. Helvetica Paediatrica<br />

Acta, 15, 515-532.<br />

Angelman, H. (1961). <strong>Syndrome</strong> <strong>of</strong> coloboma with multiple congenital<br />

abnormalities in infancy. British <strong>Medical</strong> <strong>Journal</strong>, 1,<br />

1212-1214.<br />

Appelmans, M., Michiels, J., <strong>and</strong> Guzik, A. (1965). Colobome<br />

bilateral complet associe au syndrome de <strong>Klinefelter</strong>-Albright-<br />

Reifenstein par erreur chromosomiale XXY. Bulletin de la<br />

Societe Belge d'Ophtalmologie, 140, 456-468.<br />

Atkins, L., <strong>and</strong> Connelly, J. P. (1963). XXXXY sex chromosome<br />

abnormality. American <strong>Journal</strong> <strong>of</strong> Diseases <strong>of</strong> Children, 106, 514-<br />

519.<br />

Barr, M. L., Carr, D. H., Pozonyi, J., Wilson, R. A., Dunn, H. G.<br />

Jacobson, T. S., <strong>and</strong> Miller, I. R. (1962). The XXXXY sexchromosome<br />

abnormality. Canadian <strong>Medical</strong> Association <strong>Journal</strong><br />

87, 891-901.<br />

-, Shaver, E. L., Carr, D. H., <strong>and</strong> Plunkett, E. R. (1959).<br />

unusual sex chromatin pattern in three mentally deficient subjects.<br />

<strong>Journal</strong> <strong>of</strong> Mental Deficiency Research, 3, 78-87.<br />

Beer, H., Pfeiffer, R. A., <strong>and</strong> Dammer, H. (1967). The so-called<br />

long Y chromosome in man. Fortschritte der Medizin, 85, 467-<br />

470.<br />

Bergman, S., Nowakowski, H., <strong>and</strong> Reitalu, J. (1969). Cytological<br />

<strong>and</strong> clinical observations in XXY/XX/XY/XO mosaicism.<br />

Hereditas, 61, 276-278.<br />

Berlemann, E. (1961). Geschlechtschromatinbestimmungen am<br />

Neugeborenen. Schweizerische medizinische Wochenschrift, 91,<br />

292-294.<br />

Bernard, R., Stahl, A., Coigquet, Y. B., <strong>and</strong> Passeron, P. (1967). Triploidie<br />

chomosomique chez un nouveau-ne poly-malforme.<br />

Annales de Gdnitique, 10, 70-74.<br />

Bessiere, E., Riviere, J., Leuret, J. Ph., <strong>and</strong> Mme. Le rebeller (1962).<br />

Sur une association de maladie de <strong>Klinefelter</strong> et d'anomalies congenitales<br />

(camptodactylie, macrophakie). Bulletin des Societis<br />

d'Ophtalmologie de France, 62, 197-200.<br />

<strong>Uveal</strong> <strong>Coloboma</strong> <strong>and</strong> <strong>True</strong> <strong>Klinefelter</strong> <strong>Syndrome</strong><br />

An<br />

221<br />

Bishop, A., Blank, C. E., <strong>and</strong> Hunter, H. (1962). Heritable variation<br />

in the length <strong>of</strong> the Y chromosome. Lancet, 2, 18-20.<br />

Bray, P., <strong>and</strong> Sister Ann Josephine (1963). An XXXYY sexchromosome<br />

anomaly. Report <strong>of</strong> a mentally deficient male. J7ournal<br />

<strong>of</strong> the American <strong>Medical</strong> Association, 184, 179-182.<br />

Burgio, R. G., Severi, F., <strong>and</strong> Biscatti, G. (1965). Dysgenesie<br />

gonadique mixte i caryotype XY/XX/XXY. Pediatrie, 21,687-697.<br />

Cagianut, B. (1968). Augenbefunde bei Chromosomenkrankheiten.<br />

Ophthalmologica, 155, 148-166.<br />

Cohen, M. M., Shaw, M. W., <strong>and</strong> MacCluer, J. W. (1966). Racial<br />

differences in the length <strong>of</strong> the human Y chromosome. Cytogenetics,<br />

5, 34-52.<br />

Commoner, B. (1964). Roles <strong>of</strong> deoxyribonucleic acid in inheritance.<br />

Nature (London), 202, 960-968.<br />

Court Brown, W. M., Harnden, D. G., Jacobs, P. A., Maclean, N.,<br />

<strong>and</strong> Mantle, D. J. (1964). Abnormalities <strong>of</strong> the sex chromosome<br />

complement in man. <strong>Medical</strong> Research Council. Special Report<br />

Series, No. 305.<br />

Dekaban, A. S., Bender, M. A., <strong>and</strong> Economos, G. E. (1963).<br />

Chromosome studies in mongoloids <strong>and</strong> their families. Cytogetics,<br />

2, 61-75.<br />

de la Chapelle, A., <strong>and</strong> Hortling, H. (1963). Cytogenetical <strong>and</strong><br />

clinical observations in male hypogonadism. Acta Endocrinologica,<br />

44, 165-182.<br />

Duke-Elder, W. S. (1940). Textbook <strong>of</strong> Ophthalmology, Vol. II.<br />

Mosby, St. Louis.<br />

Dumars, K. W., Jr., <strong>and</strong> Fisher, C. E. (1968). Gynecomastia, hypospermatogenesis<br />

<strong>and</strong> a large Y chromosome in a man. California<br />

Medicine, 108, 52-54.<br />

Edwards, J. H., Young, R. B., <strong>and</strong> Finley, H. V. L. (1961). <strong>Coloboma</strong><br />

with multiple congenital anomalies. British <strong>Medical</strong><br />

<strong>Journal</strong>, 2, 586-587.<br />

El Massri, A., <strong>and</strong> Riad, Z. (1965). Abnormal chromcsomal<br />

pattern in familial iridochoroidal coloboma.-Orient. Archives<br />

<strong>of</strong> Ophthalmology (Bombay), 3, 228-237.<br />

Ellis, J. R., Miller, 0. J., Penrose, L. S., <strong>and</strong> Scott, G. E. B. (1961).<br />

A male with XXYY chromosomes. Annals <strong>of</strong> Human Genetics,<br />

25, 145-151.<br />

Farquhar, H. G., <strong>and</strong> Walker, S. (1964). An XXXXY chromosome<br />

abnormality. Annals <strong>of</strong> Human Genetics, 28, 11-19.<br />

Ferguson-Smith, M. A., Johnston, A. W., <strong>and</strong> H<strong>and</strong>maker, S. D.<br />

(1960). Primary amentia <strong>and</strong> micro-orchidism associated with<br />

<strong>and</strong> XXXY sex-chromosome constitution. Lancet, 2, 184-187.<br />

Forbes, A. P. (1964). Fingerprints <strong>and</strong> palmprints (dermatoglyphics)<br />

<strong>and</strong> palmar-flexion creases in gonadal dysgenesis, pseudohypoparathyroidism<br />

<strong>and</strong> <strong>Klinefelter</strong>'s syndrome. New Engl<strong>and</strong><br />

<strong>Journal</strong> <strong>of</strong> Medicine, 270, 1268-1277.<br />

Ford, C. E., Polani, P. E., Briggs, J. H., <strong>and</strong> Bishop, P. M. F. (1959).<br />

A presumptive human XXY/XX mosaic. Nature (London), 183,<br />

1030-1032.<br />

Fraccaro, M., Klinger, H. P., <strong>and</strong> Schutt, W. (1962). A male with<br />

XXXXY sex chromosomes. Cytogenetics, 1, 52-64.<br />

-, <strong>and</strong> Lindsten, J. (1960). A child with 49 chromosomes.<br />

Lancet, 2, 1303.<br />

-, -, Klinger, H. P., Tiepolo, L., Bergstr<strong>and</strong>, C. G., Herrlin,<br />

K. M., Livaditus, A., Pehrson, M., <strong>and</strong> Tillinger, K. G. (1966).<br />

Cytogenetical <strong>and</strong> clinical investigations in four subjects with<br />

anomalies <strong>of</strong> sexual development. Annals <strong>of</strong> Human Genetics, 29,<br />

281-304.<br />

Fran4ois, J. (1966). Heredite des affections colobomateuses du<br />

globe oculaire. Annales d'Oculistique, 199, 545-573.<br />

--, Matton-Van Leuven, M. Th., Cieters, P., <strong>and</strong> Coppieters, R.<br />

(1965). Malformations oculaires dans la trisomie 18. Bulletin de<br />

la Societe Belge d'Ophtalmologie, 140, 444-455.<br />

Fraser, J. H., Boyd, E., Lennox, B., <strong>and</strong> Dennison, W. M. (1961). A<br />

case <strong>of</strong> XXXXY <strong>Klinefelter</strong>'s syndrome. Lancet, 2, 1064-1067.<br />

Frol<strong>and</strong>, A. (1969). <strong>Klinefelter</strong>'s syndrome, clinical, endocrinological<br />

<strong>and</strong> cytogenetical studies. Danish <strong>Medical</strong> Bulletin, 16,<br />

Suppl. VI, 1-108.<br />

Gesell, A., <strong>and</strong> Blake, E. M. (1936). Twinning <strong>and</strong> ocular pathology<br />

with a report <strong>of</strong> bilateral macular coloboma in monozygotic<br />

twins. Archives <strong>of</strong> Ophthalmology, 15, 1050-1071.<br />

Gripenberg, U. (1964). Size variation <strong>and</strong> orientation <strong>of</strong> the human<br />

Y chromosome. Chromosoma, 15, 618-629.<br />

Gropp, A., Brodehl, J., Schumacher, H., <strong>and</strong> Homstein, 0. (1963).<br />

Testiculare Feminisierung bei einem 5 Monate alten Kind,<br />

kombiniert mit familiirem, abnorm grossem Y-Chromosom.<br />

Klinische Wochenschrift, 41, 690-694.


222<br />

Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

Frangois, Matton-Van Leuven, <strong>and</strong> Gombault<br />

Gustavson, K.-H., Finley, S. C., Finley, W. H., <strong>and</strong> Jalling, B.<br />

(1964a). A 4-5/21-22 chromosomal translocation associated with<br />

multiple congenital anomalies. Acta Paediatrica, 53, 172-181.<br />

-, Hagberg, B., Knutson, H., <strong>and</strong> Sjolin, S. (1964b). The<br />

pterygium-colli syndrome in the male. Acta Paediatrica, 53,<br />

454-464.<br />

Harnden, D. G., <strong>and</strong> Jacobs, P. A. (1961). Cytogenetics <strong>of</strong> abnormal<br />

sexual development in man. British <strong>Medical</strong> Bulletin, 17,<br />

206-212.<br />

Hayward, M. D. (1960). Sex chromosome mosaicism in man.<br />

Heredity, 15, 235-240.<br />

Hecht, F., Antonius, J. I., McGuire, P., <strong>and</strong> Hale, C. G. (1966).<br />

XXY cells in predominantly XX human male: evidence for cell<br />

selection. Pediatrics, 38, 982-985.<br />

Heimann, K., Jaeger, W., <strong>and</strong> Dollmann, A. (1968). Augenmissbildungen<br />

bei einem Kind mit uberzahligem Chromosomenfragment.<br />

Ophthalmologica, 155, 390-398.<br />

Herbeuval, R., Gilgenkrantz, S., Guerci, O., <strong>and</strong> Thibaut, G.<br />

(1965). <strong>Syndrome</strong> de <strong>Klinefelter</strong> a formule XXYY. Presse<br />

<strong>Medical</strong>e, 73, 2987-2990.<br />

-, Guerci, O., Gilgenkrantz, S., Macinot, C., <strong>and</strong> Neimann, J. L.<br />

(1968). <strong>Syndrome</strong> de myxoedeme congenital et de <strong>Klinefelter</strong><br />

Revue Francaise associes.<br />

d'Endocrinologie Clinique, Nutrition et<br />

Metabolisme, 9, 394-406.<br />

Hirschhorn, K., <strong>and</strong> Cooper, H. L. (1961). Apparent deletion <strong>of</strong><br />

short arms <strong>of</strong> one chromosome (4 or 5) in a child with defects <strong>of</strong><br />

midline fusion. Human Chromosome Newsletter, 4, 14.<br />

--, -, <strong>and</strong> Firschein, I. L. (1965). Deletion <strong>of</strong> short arms <strong>of</strong><br />

chromosome 4-5 in a child with defects <strong>of</strong> midline fusion.<br />

Humangenetik, 1, 479-482.<br />

Holt, S. B. (1968). The Genetics <strong>of</strong> Dermal Ridges. Thomas,<br />

Springfield, Illinois.<br />

Hsu, L. Y. F., Geller, J., <strong>and</strong> Nemhauser, I. (1966). Triple chromosomal<br />

mosaicism XY/XXY/XXXY in <strong>Klinefelter</strong>'s syndrome.<br />

<strong>Journal</strong> <strong>of</strong> Clinical Endocrinology, 26, 104-110.<br />

Indemini, M., <strong>and</strong> Ammann, F. (1961). Heredo-degenerescence<br />

spino-cerebelleuse (HDSC) associee au syndrome de <strong>Klinefelter</strong>.<br />

<strong>Journal</strong> de Genetique Humaine, 10, 297-325.<br />

Jacobs, P. A., <strong>and</strong> Harnden, D. G., cited by Penrose, L. S. (1961).<br />

British <strong>Medical</strong> Bulletin, 17, 188.<br />

-, <strong>and</strong> Strong, J. A. (1959). A case <strong>of</strong> human intersexuality<br />

having a possible XXY sex-determining mechanism. Nature<br />

(London), 183, 302-303.<br />

Jancar, J. (1964). Mentally defective males with XXXXY chromosomes.<br />

In Proceedings <strong>of</strong> the International Copenhagen<br />

Congress on Scientific Study <strong>of</strong> Mental Retardation, Vol. 1, p. 179.<br />

Joannides, T., <strong>and</strong> Tsenki, C. (1968). Ueber ein Kind mit 49<br />

Chromosomen (XXXXY). Deutsche Ophthalmologische Gesellschaft.<br />

Bericht, 69, 419-420.<br />

Joseph, M. C., Anders, J. M., <strong>and</strong> Taylor, A. I. (1964). A boy with<br />

XXXXY sex chromosomes. <strong>Journal</strong><strong>of</strong> <strong>Medical</strong> Genetics, 1,95-101.<br />

Kjessler, B. (1966). Karyotype meiosis <strong>and</strong> spermatogenesis in a<br />

sample <strong>of</strong> men attending an infertility clinic. Monographs in<br />

Human Genetics, 2, 1-74.<br />

<strong>Klinefelter</strong>, H. F., Jr., Reifenstein, E. C., Jr., <strong>and</strong> Albright, F.<br />

(1942). <strong>Syndrome</strong> characterised by gynecomastia, aspermatogenesis<br />

with A-Leydigism <strong>and</strong> increased secretion <strong>of</strong> follicle<br />

stimulating hormone. <strong>Journal</strong> <strong>of</strong> Clinical Endocrinology <strong>and</strong> Metabolism,<br />

2, 615-627.<br />

Laurence, K. M., Ishmael, J., <strong>and</strong> Davies, T. S. (1963). A case <strong>of</strong> a<br />

mentally defective male with XXYY sex chromosome constitution.<br />

Cytogenetics, 2, 50-54.<br />

Lele, K. P., Dent, T., <strong>and</strong> Delhanty, J. D. A. (1965). Chromosome<br />

studies in five cases <strong>of</strong> coloboma <strong>of</strong> the iris. Lancet, 1, 576-578.<br />

McLain, W., <strong>and</strong> Dekaban, A. (1963). Familial syndrome <strong>of</strong> dysplastic<br />

body build, mental retardation <strong>and</strong> chorioido-retinal coloboma.<br />

<strong>Journal</strong> de Gdnltique Humaine, 12, 168-183.<br />

Maclean, N. (1966). Sex chromatin surveys <strong>of</strong> newborn babies.<br />

In The Sex Chromatin. Ed. by K. L. Moore. Saunders,<br />

Philadelphia.<br />

-, Court Brown, W. M., Jacobs, P. A., Mantle, D. J., <strong>and</strong><br />

Strong, J. A. (1968). A survey <strong>of</strong> sex chromatin abnormalities in<br />

mental hospitals. <strong>Journal</strong> <strong>of</strong> <strong>Medical</strong> Genetics, 5, 165-172.<br />

-, Harnden, D. Makino, S., <strong>and</strong> Muramoto, J. (1964). Some observations on the<br />

variability <strong>of</strong> the human Y chromosome. Proceedings <strong>of</strong> the<br />

J'apan Academy, 40, 757-761.<br />

-, Sasaki, M. S., Yamada, K., <strong>and</strong> Kujii, T. (1963). A long Y<br />

chromosome in man. Chromosoma, 14, 154-161.<br />

-, <strong>and</strong> Takagi, N. (1965). Some morphological aspects <strong>of</strong> the<br />

abnormal human Y chromosome. Cytologia, 30,274-293.<br />

, , Makita, T., <strong>and</strong> Hikita, M. (1964). A chromosome<br />

study <strong>of</strong> ten sexually abnormal patients. Proceedings <strong>of</strong> the Japan<br />

Academy, Vol. 274.<br />

G., <strong>and</strong> Court Brown, W. M. (1961). Abnormalities<br />

<strong>of</strong> sex chromosome constitution in newborn babies.<br />

Lancet, 2, 406-408.<br />

Bond, J., <strong>and</strong> Mantle, D. J. (1964). Sex chromosome<br />

abnormalities in newborn babies. Lancet, 1, 286-290.<br />

Mann, I. C. (1957). Developmental Abnormalities <strong>of</strong> the Eye, 2nd ed.<br />

British <strong>Medical</strong> Association, London.<br />

Mirouze, J., Emberger, J. M., Jaffiol, C., Janbon, F., <strong>and</strong> Bernard, R.<br />

(1964). Deux observations originales de syndrome <strong>Klinefelter</strong><br />

double mile XXYY et mosaique XX/XXY. Soc. Sciences Med.<br />

et Biol. Montpellier et Languedoc Medit., 7 fevrier.<br />

Mittwoch, U. (1964). Frequency <strong>of</strong> drumsticks in normal women<br />

<strong>and</strong> in patients with chromosomal abnormalities. Nature<br />

(London), 201, 317-319.<br />

(1967). Sex Chromosomes. Academic Press, New York.<br />

Moore, K. L. (1959). Sex reversal in newborn babies. Lancet, 1,<br />

217-219.<br />

Muldal, S., <strong>and</strong> Ockey, C. H. (1960). The 'double male': a new<br />

chromosome constitution in <strong>Klinefelter</strong>'s syndrome. Lancet, 2,<br />

492-493.<br />

Nagy, S., Leowei, A., <strong>and</strong> Kakuk, G. (1965). <strong>Klinefelter</strong>'s syndrome.<br />

Lancet, 2, 38.<br />

Nowakowski, H. (1961). Neuere Erkenntnisse uber das <strong>Klinefelter</strong>-<strong>Syndrome</strong>.<br />

Archiv fur klinische und experimentelle Dermatologie,<br />

213, 765-779.<br />

Nusso, F., Bompiani, A., Moneta, E., Caviezel, F., <strong>and</strong> Mussinelli,<br />

F. (1967). Some cases <strong>of</strong> structural variations <strong>of</strong> the Y chromosome<br />

in man. Atti Associazione Genetica Italiana, 12, 191-201.<br />

Ohno, S. (1967). Sex chromosomes <strong>and</strong> sex-linked genes, p. 171.<br />

Monographs on Endocrinology. Springer, Berlin, Heidelberg, <strong>and</strong><br />

New York.<br />

Patau, K., Smith, D. W., Therman, E., Inhorn, S. L., <strong>and</strong> Wagner,<br />

H. P. (1960). Multiple congenital anomaly caused by an extra<br />

autosome. Lancet, 1, 790-793.<br />

Paulsen, C. A., de Souza, A., Yoshizumi, T., <strong>and</strong> Lewis, B. M.<br />

(1964). Results <strong>of</strong> buccal smear survey in noninstitutionalized<br />

adult males. <strong>Journal</strong> <strong>of</strong> Clinical Endocrinology <strong>and</strong> Metabolism, 24,<br />

1182-1187.<br />

Pfeiffer, R. A. (1962). Beitrag zum Erscheinungsbild der XXXXY-<br />

Konstitution. Zeitschrift fur Kinderkeilkunde, 87, 356-369.<br />

Prader, A., Murset, G., <strong>and</strong> Hauschteck, E. (1964). Das XXXXY-<br />

Syndrom. Archiv fur Kinderheilkunde,170, 20-33.<br />

Schneider, J., Frances, J., <strong>and</strong> Zublin, W. (1958). Frequency<br />

<strong>of</strong> the true (chromosome positive) <strong>Klinefelter</strong>'s syndrome.<br />

Lancet, 1, 968-969.<br />

Rohde, R. A. (1963). Chromatin-positive <strong>Klinefelter</strong>'s syndrome:<br />

clinical <strong>and</strong> cytogenetic studies. <strong>Journal</strong> <strong>of</strong> Chronic Diseases, 16,<br />

1139-1149.<br />

Salonius, A. L., <strong>and</strong> Opitz, J. (1964). Partial trisomy (C/3 translocation)<br />

in a child with multiple anomalies. Transactions <strong>of</strong> the<br />

American Society Human Genetics, 361.<br />

Schachenmann, G., Schmid, W., Fraccaro, M., Mannini, A.,<br />

Tiepolo, L., Perona, G. P., <strong>and</strong> Sartori, E. (1965). Chromosomes<br />

in coloboma <strong>and</strong> anal atresia. Lancet, 2, 290.<br />

Schmid, W., <strong>and</strong> Vischer, D. (1967). A malformed boy with double<br />

aneuploidy <strong>and</strong> diploid-triploid mosaicism 48,XXYY/71,XXXYY.<br />

Cytogenetics, 6, 145-155.<br />

Sendrail, M., Gleizes, L., Sendrail-Pesque, M., <strong>and</strong> Colombies, P.<br />

(1967). Polygonosomie <strong>Klinefelter</strong>ienne et achondroplasie.<br />

Semaines des H6oitaux de Paris, 43, 1217-1225.<br />

Shaw, M. W., Cohen, M. M., <strong>and</strong> Hildebr<strong>and</strong>t, H. M. (1965). A<br />

familial 4/5 reciprocal translocation resulting in partial trisomy B.<br />

American <strong>Journal</strong> <strong>of</strong> Human Genetics, 17, 54-70.<br />

Spencer, D. A., Eyles, J. W., <strong>and</strong> Mason, M. K. (1969). XYY<br />

syndrome <strong>and</strong> XYY/XXYY mosaicism also showing features <strong>of</strong><br />

<strong>Klinefelter</strong>'s syndrome. <strong>Journal</strong> <strong>of</strong> <strong>Medical</strong> Genetics, 6, 159-165.<br />

Stroeva, 0. G. (1961). Hereditary <strong>and</strong> exogenous coloboma <strong>of</strong> the<br />

retina <strong>and</strong> the morphogenesis <strong>of</strong> the eye. Annie Biologique, 37,<br />

343-365.<br />

Taylor, A. I., <strong>and</strong> Moores, E. C. (1967). A sex chromatin survey <strong>of</strong><br />

newborn children in two London hospitals. <strong>Journal</strong> <strong>of</strong> <strong>Medical</strong><br />

Genetics, 4, 258-259.


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

Tonomura, A., <strong>and</strong> Ono, H. (1963). Variation in length <strong>of</strong> the Y<br />

chromosome in man. jap. Nat. Inst. Gen. Report, 14, 131.<br />

Vague, J., Boyer, J., Nicolino, J., Mattei, A., Luciani, J., Arnaud, A.,<br />

Pouch, J., <strong>and</strong> Valette, A. (1968). Maladie de <strong>Klinefelter</strong> chez<br />

deux jumeaux monozygotes. Annie Endocrinologique, 29, 709-<br />

729.<br />

Van Wijck, J. A. M., Tijdink, G. A. J., <strong>and</strong> Stolte, L. A. M. (1962).<br />

Anomalies in the Y chromosome. Lancet, 1, 218.<br />

Von Hippel, E. (1903). Embryologische Untersuchungen uber die<br />

Entstehungsweise der typischen angeborenen Spaltbildungen<br />

(Colobome) des Augapfels. Albrecht v. Graefes Archiv fur<br />

Ophthalomolgie, vereinigt mit Archiv fur Augenheilkunde, 55, 507-<br />

548.<br />

<strong>Uveal</strong> <strong>Coloboma</strong> <strong>and</strong> <strong>True</strong> <strong>Klinefelter</strong> <strong>Syndrome</strong><br />

223<br />

Von Szily, A. (1924). Die Ontogenese der idiotypischen (erbbildlichen)<br />

Spaltbildungen des Auges, des Mikrophthalmus und der<br />

Orbitalcysten. Ein Beitrag zum Problem der Vererbung und<br />

Erwerbung des Koloboms. Zeitschrift fur Anatomie und Entwicklungsgeschichte,<br />

74, 1-230.<br />

Waardenburg, P. J. (1932). Das menschliche Auge und seine Erbanlagen.<br />

Nijh<strong>of</strong>f, Den Haag.<br />

(1934). Demonstraties. Nederl<strong>and</strong>sch tijdschrift voor Geneeskunde,<br />

78, 1694-1695.<br />

Warburg, M. (1968). Discussion <strong>of</strong> Falbe-Hansen J. Congenital<br />

ocular anomalies in 800 mentally deficient patients. Acta<br />

Ophthalmologica, 46, 394-397.<br />

Wolf, U., Reinwein, H., Porsch, R., Schroter, R., <strong>and</strong> Baitsch, H.<br />

(1965). Defizienz an den kurzen Armen eines Chromosomes<br />

n° 4. Humangenetik, 1, 397-413.


Downloaded from<br />

jmg.bmj.com on April 5, 2013 - Published by group.bmj.com<br />

Email alerting<br />

service<br />

Notes<br />

<strong>Uveal</strong> coloboma <strong>and</strong> true<br />

<strong>Klinefelter</strong> syndrome.<br />

J François, M T Leuven <strong>and</strong> P Gombault<br />

J Med Genet 1970 7: 213-223<br />

doi: 10.1136/jmg.7.3.213<br />

Updated information <strong>and</strong> services can be found<br />

at:<br />

http://jmg.bmj.com/content/7/3/213.citation<br />

These include:<br />

To request permissions go to:<br />

http://group.bmj.com/group/rights-licensing/permissions<br />

To order reprints go to:<br />

http://journals.bmj.com/cgi/reprintform<br />

To subscribe to BMJ go to:<br />

http://group.bmj.com/subscribe/<br />

Receive free email alerts when new articles cite<br />

this article. Sign up in the box at the top right<br />

corner <strong>of</strong> the online article.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!