05.04.2013 Views

Bio-intrusion barrier made of plants p with allelopathic effects to ...

Bio-intrusion barrier made of plants p with allelopathic effects to ...

Bio-intrusion barrier made of plants p with allelopathic effects to ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Bio</strong>‐<strong>intrusion</strong> <strong>barrier</strong> <strong>made</strong> <strong>of</strong> <strong>plants</strong> p<br />

<strong>with</strong> <strong>allelopathic</strong> <strong>effects</strong> <strong>to</strong> improve<br />

long term performance <strong>of</strong> cover <strong>with</strong><br />

capillary <strong>barrier</strong> <strong>effects</strong><br />

Evgeniya Smirnova<br />

Bruno Bussière, Yves Bergeron, Francine Tremblay,<br />

Nelson Thiffault, Gilles Joanisse, Abdelkabir Maqsoud,<br />

Réal Marcotte


CCBE<br />

Objective : <strong>to</strong> limit the oxigen<br />

migration, hence Acid mine<br />

drainage (ADM ) generation<br />

How? by maintaining one <strong>of</strong> the<br />

layers at high water saturation<br />

level by using the <strong>effects</strong> <strong>of</strong><br />

capillary <strong>barrier</strong> (Aubertin et al.<br />

1995; Dagenais et al. 2005)<br />

Concern : good performance in<br />

short-term, but not clear long-term g<br />

performance (Bussiere et al. 2009)<br />

<strong>Bio</strong>-<strong>intrusion</strong> <strong>Bio</strong> <strong>intrusion</strong> (Trépanier et al.<br />

2006 ; Smirnova et al. 2009-CLRA)<br />

Configuration <strong>of</strong> the CCBE<br />

Surface layer<br />

Protection layer<br />

Drainage layer<br />

Moisture retaining layer<br />

Support layer<br />

Tailings<br />

2FeS<br />

4<br />

2+<br />

2−<br />

+<br />

2 + 7O2<br />

+ 2H2O<br />

→ 2Fe<br />

+ 4SO4<br />

+ H<br />

E. Smirnova et al., Amos, 2011


Example : CCBE <strong>of</strong> the Lorraine mine site<br />

‐Cu‐Zn mine, operating since 1964 <strong>to</strong> 1968<br />

‐ 600 000 t <strong>of</strong> residuals on the area <strong>of</strong> 15.5 ha<br />

‐ AMD‐generating tailings<br />

‐CCBE constructed in 1998 by the MRNF<br />

‐CCBE CCBE <strong>of</strong> three layers: 30 cm /50 cm / 30 cm<br />

‐ AMD moni<strong>to</strong>ring<br />

‐Vegetation survey: 2003, 2005, 2007, 2008<br />


0<br />

‐20<br />

‐40<br />

‐60<br />

‐80<br />

‐100 100<br />

‐120<br />

‐140 140<br />

‐160<br />

‐180 180<br />

Depth <strong>of</strong> tree roots<br />

Willow<br />

Bals Bals.<br />

Bl Bl.<br />

sp. Alder J. Pine Poplar Aspen Larch P.Birch Spruce<br />

Root depth, cm


PROBLEMATIC<br />

Main riscks associated <strong>to</strong> bio-<strong>intrusion</strong> on the CCBE<br />

Development <strong>of</strong> roots may cause :<br />

1. Water saturation reduction<br />

2. Macroporozity<br />

3. Physical deterioration:<br />

a) ) up-rooting g( (ex. spruces) )<br />

b) stem break-up (ex. aspen)<br />

(DOE 1990; Handel et al. 1997;<br />

Hutchings et al. 2001)<br />

PPotential t ti l bi bio-<strong>barrier</strong>s b i<br />

(Cooke and Johnson 2002)<br />

E. Smirnova et al., Amos, 2011


Allelopathic Effects<br />

Allelopathic <strong>effects</strong> : inhibition <strong>of</strong> germination and growth <strong>of</strong> a certain<br />

species <strong>of</strong> plant, by the use <strong>of</strong> another<br />

Competitive<br />

depletion<br />

Allelopathic<br />

interference<br />

Space<br />

Litter<br />

Light<br />

Pluviolessivates<br />

Wt Water<br />

Nutrients<br />

RRoot texudation dti<br />

Indirect sources <strong>of</strong><br />

interference<br />

Soil microorganisms<br />

Harboring b i <strong>of</strong> f herbivores h bi<br />

Etc.<br />

(Fuerst and Punam, 1983; Siciliano and Germida 1998; Vivanco et al. 2004)<br />

E. Smirnova et al., Amos, 2011


Impact <strong>of</strong> the <strong>allelopathic</strong> compounds on the roots<br />

Many Many allelopchemicals inhibit root growth ex. monotrepents<br />

Stress <strong>effects</strong> are dose-dependent: depend on the duration and<br />

intensity intensity, in which the stressing agents act act, on the species species, variety and<br />

plant individual status and environmental conditions<br />

A A linear relationship between the level <strong>of</strong> root contact <strong>of</strong> inhibi<strong>to</strong>ry<br />

concentrations <strong>of</strong> phy<strong>to</strong><strong>to</strong>xin and plant inhibition and very poor <strong>to</strong> no<br />

relationship betweeen phy<strong>to</strong><strong>to</strong>xin uptake and plant inhibition<br />

Eu-stress and dis-stress<br />

(Lichtenthaler, 1996; Pedrol, N., 2006)<br />

E. Smirnova et al., Amos, 2011


OBJECTIVES<br />

1) To introduce bio‐<strong>barrier</strong> species <strong>with</strong> known<br />

<strong>allelopathic</strong> <strong>effects</strong> <strong>to</strong> an existing CCBE<br />

2) To evaluate two fac<strong>to</strong>rs: the production <strong>of</strong> phy<strong>to</strong>‐<strong>to</strong>xins<br />

and resource limitation <strong>of</strong> bio‐<strong>barrier</strong> species on the<br />

target tree species<br />

‐ TTo assess the h impact i <strong>of</strong> f the h AE species i on the h root<br />

system characteristics <strong>of</strong> target tree species [trembling<br />

aspen aspen, balsam poplar, poplar black spruce, spruce willows, willows and<br />

speckled alder]<br />

4) To evaluate the effect <strong>of</strong> AE species on CCBE water<br />

balance<br />

E. Smirnova et al., Amos, 2011


HYPOTHESIS<br />

11. Direct resource competition and <strong>allelopathic</strong><br />

interference <strong>of</strong> potential bio‐<strong>barrier</strong> species<br />

inhibit target tree species’ growth<br />

Roots <strong>of</strong> target trees<br />

a. Phy<strong>to</strong><strong>to</strong>xins decrease fine root biomass<br />

b. Phy<strong>to</strong><strong>to</strong>xins optimise coarse root ramification<br />

bb. Allelopthic <strong>effects</strong> inhibit coarse root growth<br />

&<br />

E. Smirnova et al., Amos, 2011


Boreal <strong>plants</strong> <strong>with</strong> <strong>allelopathic</strong> <strong>effects</strong><br />

Sheep laurel<br />

Labrador tea<br />

Bluejoint reedgrass<br />

black spruce, balsam fir, red pine<br />

(Titus and English 1996; Mallik and Inderjit 2001;<br />

Thiffault et al. 2004; Thiffault and Jobidon 2006; etc.)<br />

black spruce p<br />

(Nilsen et al. 1999 ; Mallik and Bloom 2005;<br />

Fen<strong>to</strong>n et al. al 2005; 2005 Lavoie La oie et al. al 2006; 2006 etc. etc )<br />

ttrembling bli aspen, white hit spruce<br />

(L (Landhäusser dhä and d Li Lieffers ff 1998 1998;<br />

Landhäusser et al. 1996; Collet et al. 2006; etc.)<br />

E. Smirnova et al., Amos, 2011


THE LTA MINE SITE<br />

Terri<strong>to</strong>ry <strong>of</strong> 60 ha, contains 12 m<br />

<strong>of</strong> sulphide tailings placed over<br />

5 m <strong>of</strong> non acid-generating<br />

material (Bussière et al., 2006)<br />

In 1995-1996, the LTA site was<br />

rehabilitated using a CCBE<br />

Hydroseeding on the slopes<br />

Vegetation succession<br />

Mechanical eradication<br />

E. Smirnova et al., Amos, 2011


WET<br />

EXPERIMENTAL DESIGN<br />

DRY<br />

Experimental Block<br />

Pop Asp Wil Spr Ald<br />

lar en low uce er<br />

Laurel+trees<br />

Labrador tea+trees<br />

RReedgrass d + trees<br />

Experimental Plot 200 m between Eco<strong>to</strong>ps<br />

50 m between Blocks<br />

3x3 m Experimental Plot size<br />

5 5 m between Experimental Plots<br />

E. Smirnova et al., Amos, 2011


Recolt and planting <strong>of</strong> Laurel and Labrador tea<br />

( (2008, 2009) )<br />

E. Smirnova et al., Amos, 2011


Bl Balsam poplar l<br />

Willow<br />

Planting <strong>of</strong> trees<br />

Speckled Alder<br />

Black spruce +Sheep laurel Willow+Sheep laurel<br />

Black spruce<br />

E. Smirnova et al., Amos, 2011


Plant survival<br />

E. Smirnova et al., Amos, 2011


Sampling p gand<br />

measurements<br />

1. Soil<br />

temperature p<br />

44. Soil and plant tissue<br />

6. Water budget<br />

7. <strong>Bio</strong>chemical analyses<br />

8. Ecophysiological measurements<br />

2. Pluviolessivates<br />

3. Root exudates<br />

E. Smirnova et al., Amos, 2011


Tree root study<br />

• Tree root architecture and <strong>to</strong>pology<br />

• Coarse root volume and biomass<br />

• Fi Fine root biomass bi<br />

E. Smirnova et al., Amos, 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!