06.04.2013 Views

Annual Meeting Proceedings - American Academy of Orthopaedic ...

Annual Meeting Proceedings - American Academy of Orthopaedic ...

Annual Meeting Proceedings - American Academy of Orthopaedic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AAOS 2011<br />

A N N U A L M E E T I N G<br />

E D U C A T I O N • C M E • N E T W O R K I N G<br />

P R O C E E D I N G S<br />

S A N DIEGO, C A LIFORNIA<br />

M EETING DAT ES: FEBRUARY 15 –19<br />

E XHIBIT DAT ES: FEBRUARY 16 –18<br />

• TEC HN ICAL EXHIBITS • WHAT ’S NEW


Dear Colleagues:<br />

Welcome to the AAOS <strong>Annual</strong> <strong>Meeting</strong>! In a collaborative effort, the Central Program Committee, Exhibits<br />

Committee and Multimedia Education Center Subcommittee have combined the abstracts from selected<br />

scientific portions <strong>of</strong> the <strong>Annual</strong> <strong>Meeting</strong>.<br />

The CD-ROM is divided into sections which include symposia handouts, podium and poster abstracts,<br />

scientific exhibit abstracts, and multimedia education. Each section is classified by subspecialty.<br />

We also have included:<br />

•<br />

•<br />

•<br />

the subspecialty guide to the <strong>Annual</strong> <strong>Meeting</strong> (which separates presentations by subspecialty)<br />

an author index<br />

a key word index<br />

The <strong>Proceedings</strong> material is also available in a Smartphone version and as a pdf on the AAOS website. As a<br />

green initiative, the book is no longer printed.<br />

These compiled materials comprise some <strong>of</strong> the most exciting topics presented at the 2011 <strong>Annual</strong> <strong>Meeting</strong>.<br />

We hope that you find this resource useful now and in the future.<br />

Sincerely,<br />

Annunziato Amendola, MD<br />

Chair, Program Committee<br />

William H. Seitz, Jr., MD<br />

Chair, Exhibits Committee<br />

6300 North River Road<br />

Rosemont, Illinois 60018<br />

P. 847.823.7186<br />

F. 847.823.8125<br />

www.aaos.org<br />

Kevin D. Plancher, MD<br />

Chair, Multimedia Education Center<br />

Subcommittee


Subspecialty Guide to the <strong>Annual</strong> <strong>Meeting</strong> ........4<br />

Committee Listing . . . . . . . . . . . . . . . . . . . . . . . . . .16<br />

Disclosures ..................................19<br />

Symposia Handouts<br />

3<br />

Adult Reconstruction Hip ...................68<br />

Adult Reconstruction Knee .................119<br />

Foot and Ankle ...........................164<br />

General .................................178<br />

Hand and Wrist ..........................233<br />

Pediatrics. ...............................253<br />

Practice Management ......................280<br />

Shoulder and Elbow. ......................346<br />

Spine ...................................374<br />

Sports Medicine and Arthroscopy ............402<br />

Trauma .................................428<br />

Tumor/Metabolic Disease ..................438<br />

TABLE OF CONTENTS<br />

Abstracts <strong>of</strong> Podium Presentations, Poster<br />

Presentations, and Scientific Exhibits<br />

Adult Reconstruction Hip ..................445<br />

Adult Reconstruction Knee .................518<br />

Basic Research ............................579<br />

Foot and Ankle ...........................581<br />

General .................................602<br />

Hand and Wrist ..........................603<br />

Pediatrics. ...............................622<br />

Practice Management/Non-clinical. ..........648<br />

Rehabilitation ............................664<br />

Shoulder and Elbow. ......................672<br />

Spine ...................................717<br />

Sports Medicine and Arthroscopy ............763<br />

Trauma .................................810<br />

Tumor ..................................861<br />

Abstracts <strong>of</strong> Multimedia Education. ............882<br />

Author Index. ...............................894<br />

Key Word Index .............................935


4<br />

SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

Tuesday, February 15<br />

1:00-6:00 PM 1:30-3:30 PM 1:30-5:30 PM 1:30-6:00 PM 4:00-6:00 PM<br />

Adult ReconstRuction Hip And Knee<br />

Instructional Courses 102<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Papers<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

Symposia<br />

BAsic ReseARcH<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Symposia<br />

Foot And AnKle<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Papers<br />

SE01-SE16 - Hip<br />

SE17-SE29 - Knee<br />

P001-P207<br />

SE30-SE33<br />

SE34-SE35<br />

Adult Knee I: Outcomes <strong>of</strong><br />

Total Knee Replacement<br />

(001-015) Room 5<br />

New Frontiers in Cartilage<br />

Imaging <strong>of</strong> the Hip (ORSI)<br />

Room 6B<br />

Can Platelet-Rich Plasma Really<br />

Improve Connective Tissue<br />

Healing? Making Sense <strong>of</strong> it All<br />

(C - 1:30-2:30 PM) Room 8<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

GeneRAl<br />

P208-P228<br />

Instructional Courses 101<br />

Symposia<br />

HAnd And WRist<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Symposia<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

pediAtRics<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE36-SE38<br />

P229-P244<br />

SE39-SE40<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P245-P264<br />

pRActice MAnAGeMent / non-clinicAl<br />

Instructional Courses 181 182- NO CME CREDIT<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

sHouldeR And elBoW<br />

SE41-SE48<br />

P265-P289<br />

Adult Hip I: Hip Surfacing/<br />

Osteotomy (031- 045)<br />

Room 5<br />

Debates on Contemporary<br />

Issues in Total Knee<br />

Replacement (B) Ballroom 20<br />

Foot and Ankle I: Trauma<br />

and Arthroplasty<br />

(046-060)<br />

Room 7<br />

Research for Immediate<br />

Translation to <strong>Orthopaedic</strong><br />

Practice (ORSII) Room 6B<br />

Operative Fixation <strong>of</strong><br />

Pediatric Hand and Upper<br />

Extremity Fractures: Case<br />

Based Symposium<br />

(D - 4:00-5:00pm) Room 8<br />

Instructional Courses 112<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

spine<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Papers<br />

SE49-SE55<br />

P290-P350<br />

SE56-SE59<br />

Spine I: Cervical Spine<br />

(016-030)<br />

Room 7<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P351-P411<br />

spoRts Medicine And ARtHRoscopy<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE60-SE73<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P412-P461<br />

Symposia<br />

Complex Shoulder Pathology<br />

in the Young Athlete: A


5<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

Tuesday, February 15<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P290-P350<br />

1:00-6:00 PM 1:30-3:30 PM 1:30-5:30 PM 1:30-6:00 PM 4:00-6:00 PM<br />

Adult spine ReconstRuction Hip And Knee<br />

Instructional Scientific Exhibits Courses<br />

1:00 PM-6:00 PM<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Papers<br />

Scientific Papers<br />

SE56-SE59<br />

SE01-SE16 - Hip<br />

SE17-SE29 - Knee<br />

102<br />

Spine I: Cervical Spine<br />

Adult Knee (016-030) I: Outcomes <strong>of</strong><br />

Total Knee Room Replacement 7<br />

(001-015) Room 5<br />

Adult Hip I: Hip Surfacing/<br />

Osteotomy (031- 045)<br />

Room 5<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P351-P411 P001-P207<br />

spoRts Medicine And ARtHRoscopy New Frontiers in Cartilage<br />

Symposia<br />

Scientific Exhibits<br />

Imaging <strong>of</strong> the Hip (ORSI)<br />

1:00 PM-6:00 PM<br />

SE60-SE73<br />

Room 6B<br />

BAsic Scientific Posters ReseARcH<br />

Scientific 1:00 PM-6:00 Exhibits PM<br />

P412-P461<br />

1:00 PM-6:00 PM<br />

SE30-SE33<br />

Complex Shoulder Pathology<br />

Debates on Contemporary<br />

Issues in Total Knee<br />

Replacement (B) Ballroom 20<br />

Symposia<br />

Symposia<br />

Can in Platelet-Rich the Young Plasma Athlete: Really A<br />

Case-Based Improve Connective Symposium Tissue (A)<br />

Healing? Ballroom Making Sense 20 <strong>of</strong> it All<br />

tRAuMA<br />

Foot And AnKle<br />

(C - 1:30-2:30 PM) Room 8<br />

Instructional Courses<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE34-SE35<br />

111<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE74-SE80<br />

Foot and Ankle I: Trauma<br />

Scientific Posters Papers<br />

1:00 PM-6:00 PM<br />

P462-P526<br />

and Arthroplasty<br />

(046-060)<br />

Room 7<br />

tuMoR Scientific Posters / MetABolic<br />

1:00 PM-6:00 PM<br />

P208-P228<br />

diseAse<br />

GeneRAl<br />

Scientific Exhibits<br />

Instructional 1:00 PM-6:00 Courses PM<br />

SE81-SE85<br />

101<br />

Research for Immediate<br />

Symposia<br />

Translation to <strong>Orthopaedic</strong><br />

Practice (ORSII) Room 6B<br />

HAnd Scientific Posters And WRist<br />

1:00 PM-6:00 PM<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

P527-P553<br />

SE36-SE38<br />

Operative Fixation <strong>of</strong><br />

Pediatric Hand and Upper<br />

Symposia<br />

Extremity Fractures: Case<br />

Based Symposium<br />

(D - 4:00-5:00pm) Room 8<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

pediAtRics<br />

P229-P244<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE39-SE40<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P245-P264<br />

pRActice MAnAGeMent / non-clinicAl<br />

Instructional Courses 181 182- NO CME CREDIT<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

sHouldeR And elBoW<br />

SE41-SE48<br />

P265-P289<br />

Instructional Courses 112<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

spine<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

Scientific Papers<br />

P265-P289<br />

sHouldeR And elBoW<br />

Instructional Courses 112<br />

SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE49-SE55<br />

SE49-SE55<br />

P290-P350<br />

SE56-SE59<br />

Spine I: Cervical Spine<br />

(016-030)<br />

Room 7<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P351-P411<br />

spoRts Medicine And ARtHRoscopy<br />

Scientific Exhibits<br />

1:00 PM-6:00 PM<br />

SE60-SE73<br />

Scientific Posters<br />

1:00 PM-6:00 PM<br />

P412-P461<br />

Complex Shoulder Pathology<br />

in the Young Athlete: A


6<br />

wednesday, February 16<br />

7:00-10:00 AM 8:00-10:00 AM 8:00-11:00 AM 10:30 AM-12:30 PM 1:30-3:30 PM 1:30-4:30 PM 4:00-6:00 PM<br />

Adult ReconstRuction Hip And Knee<br />

Instructional Courses 201, 202 221, 222 241, 242 261, 262, 263<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Scientific Papers<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

Symposia<br />

BAsic ReseARcH<br />

SE01-SE16 - Hip<br />

SE17-SE29 - Knee<br />

P001-P207<br />

Adult Hip II: Metal on Metal Bearing<br />

Surfaces (061-075) Room 6B<br />

Current Controversies in TJA (E)<br />

Ballroom 20<br />

Adult Knee II: Infection and Other<br />

Complications (121-135) Room 6B<br />

Joint Preservation Hip Surgery: How<br />

To Avoid And Treat Complications and<br />

Failures (J) Room 6A<br />

Instructional Courses 224<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE30-SE33<br />

Adult Hip III: Revision Hip<br />

Arthroplasty (181-195) Room 6B<br />

Adult Knee III: Revision Total Knee<br />

Replacement (241-255) Room 6D<br />

Foot And AnKle<br />

Instructional Courses 203 223 243 264<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE34-SE35<br />

Scientific Papers<br />

Foot and Ankle II: Ankle and<br />

Hindfoot (091-105) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P208-228<br />

The Land <strong>of</strong> Ligaments: Navigating<br />

Symposia<br />

GeneRAl<br />

Sprains, Strains and Ruptures About<br />

the Foot and Ankle (K) Room 6C<br />

Instructional Courses 204 281 268<br />

Symposia<br />

HAnd And WRist<br />

Instructional Courses 205 225 246 265<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE36-SE38<br />

Hand and Wrist I: Outcomes:<br />

Scientific Papers<br />

Hand (271-285)<br />

Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

pediAtRics<br />

P229-P244<br />

Instructional Courses 206 226 247, 253 3SK 266<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Scientific Papers<br />

SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

SE39-SE40<br />

Pediatrics I: Trauma (166-180)<br />

Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P245-P264<br />

pRActice MAnAGeMent / non-clinicAl<br />

Instructional Courses 207 227, 234 244, 254<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE41-SE48<br />

Scientific Papers<br />

Practice Management I: Health Care<br />

Economics (106-120) Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

Symposia<br />

sHouldeR And elBoW<br />

AAOS Quality Initiatives, Health care<br />

Reform and You (F) Room 6C<br />

Hospital-Based Employment <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgeons: Passing Trend<br />

or New Paradigm? (L) Room 6A<br />

Instructional Courses 1SK 208, 209 228, 229 248 287, 2SK 269, 270<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Scientific Papers<br />

Shoulder and Elbow I: Shoulder<br />

Arthroplasty (076-090) Room 6D<br />

Shoulder and Elbow II: Rotator<br />

Cuff (151-165) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P290-P350<br />

Symposia<br />

spine<br />

Lessons Learned: How to Minimize<br />

Complications in Common and Complex<br />

Shoulder Surgery - A Case-based<br />

Symposium (H) Ballroom 20<br />

Instructional Courses 210 284 231 252 274<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE56-SE59<br />

Scientific Papers Spine II: Lumbar Spine (256-270) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P351-P411<br />

Symposia<br />

Cervical Spine Trauma: Current<br />

Concepts (G) Room 6A<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional Courses 211 283 230 250, 251 267, 271<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE60-SE73<br />

Sports Medicine/Arthroscopy I:<br />

Scientific Papers<br />

Articular Cartilage Clinical and<br />

Research (196-210) Room 6D


7<br />

Symposia<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Scientific Papers<br />

SE39-SE40<br />

AAOS Quality Initiatives, Health care<br />

Reform and You (F) Room 6C<br />

Pediatrics I: Trauma (166-180)<br />

Room 7<br />

<strong>Orthopaedic</strong> Surgeons: Passing Trend<br />

or New Paradigm? (L) Room 6A<br />

sHouldeR And elBoW<br />

Instructional Courses<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

1SK 208, 209 228, 229 248 287, 2SK<br />

SE49-SE55 SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

269, 270<br />

Scientific Papers<br />

Shoulder and Elbow I: Shoulder<br />

Arthroplasty (076-090) Room 6D<br />

Shoulder and Elbow II: Rotator<br />

Cuff (151-165) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P290-P350<br />

Symposia<br />

7:00-10:00 AM 8:00-10:00 AM<br />

Lessons Learned: How to Minimize<br />

wednesday, February Complications in Common and Complex 16<br />

Shoulder Surgery - A Case-based<br />

8:00-11:00 AM 10:30 Symposium AM-12:30 (H) Ballroom 20 PM 1:30-3:30 PM 1:30-4:30 PM 4:00-6:00 PM<br />

Adult spine ReconstRuction Hip And Knee<br />

Instructional Courses<br />

Scientific Exhibits<br />

Scientific 7:00 AM-6:00 Exhibits PM<br />

7:00<br />

Scientific<br />

AM-6:00<br />

Papers<br />

PM<br />

SE01-SE16 SE56-SE59 - Hip<br />

SE17-SE29 - Knee<br />

201, 210 202 284 221, 231 222 241, 252 242 261, 262, 274 263<br />

Spine II: Lumbar Spine (256-270) Room 5<br />

Scientific Posters<br />

Scientific<br />

7:00 AM-6:00<br />

Papers<br />

PM<br />

P351-P411<br />

Adult Hip II: Metal on Metal Bearing<br />

Surfaces (061-075) Room 6B<br />

Adult Knee II: Infection and Other<br />

Complications (121-135) Room 6B<br />

Adult Hip III: Revision Hip<br />

Arthroplasty (181-195) Room 6B<br />

Adult Knee III: Revision Total Knee<br />

Replacement (241-255) Room 6D<br />

Scientific SymposiaPosters<br />

7:00 AM-6:00 PM<br />

P001-P207<br />

Cervical Spine Trauma: Current<br />

Concepts (G) Room 6A<br />

spoRts Medicine And ARtHRoscopy<br />

Symposia<br />

Current Controversies in TJA (E)<br />

Instructional Courses<br />

Ballroom<br />

211<br />

20<br />

Scientific Exhibits<br />

BAsic 7:00 AM-6:00 ReseARcH PM<br />

SE60-SE73<br />

283<br />

Joint Preservation Hip Surgery: How<br />

To Avoid And Treat 230 Complications and<br />

Failures (J) Room 6A<br />

250, 251 267, 271<br />

Instructional Scientific Papers Courses 224<br />

Sports Medicine/Arthroscopy I:<br />

Articular Cartilage Clinical and<br />

Research (196-210) Room 6D<br />

Scientific Exhibits Posters<br />

7:00 AM-6:00 PM<br />

tRAuMA<br />

P412-P461 SE30-SE33<br />

Foot Instructional And Courses AnKle<br />

212, 213 282 232, 233 245, 249 286 272, 273<br />

Instructional Scientific Exhibits Courses<br />

Scientific<br />

7:00 AM-6:00<br />

Exhibits<br />

PM<br />

7:00 Scientific AM-6:00 Papers PM<br />

Scientific Papers<br />

Scientific Posters<br />

Scientific<br />

7:00 AM-6:00<br />

Posters<br />

PM<br />

7:00 AM-6:00 PM<br />

SE74-SE80<br />

SE34-SE35<br />

P462-P526<br />

P208-228<br />

203<br />

Foot and Ankle II: Ankle and<br />

Hindfoot (091-105) Room 5<br />

223<br />

Trauma I: Basic Science (136-<br />

150) Room 6D<br />

243<br />

Trauma II: Pelvis Acetabulum Hip<br />

(211-225) Room 5<br />

264<br />

tuMoR Symposia / MetABolic diseAse<br />

Instructional Courses 214<br />

The Land <strong>of</strong> Ligaments: Navigating<br />

Sprains, Strains and Ruptures About<br />

the Foot and Ankle (K) Room 6C<br />

285<br />

Scientific GeneRAl Exhibits<br />

7:00 Instructional AM-6:00 Courses PM<br />

Scientific Papers<br />

Symposia<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

HAnd And WRist<br />

Symposia Instructional Courses<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE81-SE85<br />

P527-553<br />

SE36-SE38<br />

204<br />

205<br />

281<br />

Imaging Interpretation <strong>of</strong> Oncologic<br />

Musculoskeletal Conditions: 225 Understand<br />

What You See! (I) Room 6C<br />

Tumor/Metabolic Disease I: Diagnosis and<br />

Prognostic Facotrs (226-240) Room 7AB<br />

246<br />

268<br />

265<br />

Hand and Wrist I: Outcomes:<br />

Scientific Papers<br />

Hand (271-285)<br />

Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

pediAtRics<br />

P229-P244<br />

Instructional Courses 206 226 247, 253 3SK 266<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P245-P264<br />

pRActice MAnAGeMent / non-clinicAl<br />

Instructional Courses 207 227, 234 244, 254<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE41-SE48<br />

Scientific Papers<br />

Practice Management I: Health Care<br />

Economics (106-120) Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

Symposia<br />

sHouldeR And elBoW<br />

AAOS Quality Initiatives, Health care<br />

Reform and You (F) Room 6C<br />

Hospital-Based Employment <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgeons: Passing Trend<br />

or New Paradigm? (L) Room 6A<br />

Instructional Courses 1SK 208, 209 228, 229 248 287, 2SK 269, 270<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Scientific Papers<br />

Shoulder and Elbow I: Shoulder<br />

Arthroplasty (076-090) Room 6D<br />

Shoulder and Elbow II: Rotator<br />

Cuff (151-165) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P290-P350<br />

Symposia<br />

spine<br />

Lessons Learned: How to Minimize<br />

Complications in Common and Complex<br />

Shoulder Surgery - A Case-based<br />

Symposium (H) Ballroom 20<br />

Instructional Courses 210 284 231 252 274<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE56-SE59<br />

Scientific Papers Spine II: Lumbar Spine (256-270) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P351-P411<br />

Symposia<br />

Cervical Spine Trauma: Current<br />

Concepts (G) Room 6A<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional Courses 211 283 230 250, 251 267, 271<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE60-SE73<br />

Sports Medicine/Arthroscopy I:<br />

Scientific Papers<br />

Articular Cartilage Clinical and<br />

Research (196-210) Room 6D


8<br />

Thursday, February 17<br />

7:00-10:00 AM 8:00-10:00 AM 8:00-11:00 AM 10:30 AM-12:30 PM 1:30-3:30 PM 1:30-4:30 PM 4:00-6:00 PM<br />

Adult ReconstRuction Hip And Knee<br />

Instructional Courses 301, 302 321, 322, 323 341, 342 386 361, 362, 365<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Scientific Papers<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

Symposia<br />

BAsic ReseARcH<br />

SE01-SE16 - Hip<br />

SE17-SE29 - Knee<br />

P001-P207<br />

Adult Knee IV: Basic Science<br />

(286-300) Room 6B<br />

Instructional Courses 304<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE30-SE33<br />

Adult Hip IV: Hip Arthroplasty:<br />

(346-360) Room 6B<br />

Adult Knee V: Outcomes <strong>of</strong> Total Knee<br />

Replacement II (406-420) Room 6B<br />

Adult Hip V: Complications and<br />

Infections (466-480) Room 6B<br />

Current Controversies in<br />

Partial Knee Arthroplasty (P)<br />

Ballroom 20<br />

Foot And AnKle<br />

Instructional Courses 303 324 343 7SK 364<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE34-SE35<br />

Scientific Papers<br />

SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

Foot and Ankle III: Research and<br />

Forefoot (496-510)<br />

Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

GeneRAl<br />

P208-P228<br />

Instructional Courses 305 381 327 344, 353 363<br />

Disaster-Relief <strong>Orthopaedic</strong>s:<br />

Symposia<br />

HAnd And WRist<br />

What You Need to Know Before<br />

You Go (N) Room 6C<br />

Instructional Courses 306 382 325 345 374<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE36-SE38<br />

Scientific Papers<br />

Hand and Wrist II: Outcomes:<br />

Wrist (331-345) Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P229-P244<br />

Symposia<br />

pediAtRics<br />

Distal Radius Fractures: Current Concepts<br />

and Evolving Technologies (O) Room 6A<br />

Instructional Courses 307 330 346 385 372<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE39-SE40<br />

Scientific Papers<br />

Pediatrics II: Spine (391-405)<br />

Room 7<br />

Pediatrics III: Foot, Lower Extremity<br />

and General (421-435) Room 6D<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P245-P264<br />

Symposia<br />

pRActice MAnAGeMent / non-clinicAl<br />

Adult Consequences <strong>of</strong><br />

Pediatric <strong>Orthopaedic</strong><br />

Conditions (R) Room 6A<br />

Instructional Courses 312 326 354 366<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE41-SE48<br />

Scientific Papers<br />

Practice Management II: Conflict<br />

<strong>of</strong> Interest, Education and<br />

Practice Environment<br />

(451-465) Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

sHouldeR And elBoW<br />

Instructional Courses 4SK 309, 310 384 328, 329 347, 348 6SK 367, 368, 373<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Shoulder and Elbow III: Revision<br />

Scientific Papers<br />

Shoulder Arthroplasty and<br />

Miscellaneous (361-375) Room 6D<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P290-P350<br />

Symposia<br />

spine<br />

Hot Topics and Controversies in Primary<br />

Shoulder Arthroplasty (M) Ballroom 20<br />

Instructional Courses 5SK 308 333 350 371<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE56-SE59<br />

Scientific Papers<br />

Spine III: Spinal Deformity<br />

(436-450) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P351-P411<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional Courses 311 331 349, 352 387<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE60-SE73<br />

Scientific Papers<br />

Sports Medicine/Arthroscopy II:<br />

ACL Reconstruction Adult<br />

(316-330) Room 5<br />

Sports Medicine/Arthroscopy III: ACL<br />

Reconstruction Pediatric, Revision, PCL<br />

and Meniscus (481-495) Room 6D<br />

Scientific Posters<br />

P412-461


9<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

sHouldeR And elBoW<br />

Instructional Courses<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

4SK 309, 310 384 328, 329 347, 348 6SK<br />

SuBSpECiALTy SE49-SE55<br />

guidE TO ANNuAL MEETiNg<br />

367, 368, 373<br />

Shoulder and Elbow III: Revision<br />

Scientific Papers<br />

Shoulder Arthroplasty and<br />

Miscellaneous (361-375) Room 6D<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

Symposia<br />

P290-P350<br />

7:00-10:00 AM 8:00-10:00 AM<br />

Thursday, February 17<br />

8:00-11:00 AM 10:30 AM-12:30 PM<br />

Hot Topics and Controversies in Primary<br />

Shoulder 1:30-3:30 Arthroplasty (M) PM Ballroom 20 1:30-4:30 PM 4:00-6:00 PM<br />

Adult spine ReconstRuction Hip And Knee<br />

Instructional Courses 5SK 301, 308 302 321, 322, 333 323 341, 350 342 386 361, 362, 371 365<br />

Scientific<br />

Scientific<br />

Exhibits<br />

Exhibits<br />

7:00<br />

7:00<br />

AM-6:00<br />

AM-6:00<br />

PM<br />

PM<br />

SE01-SE16 SE56-SE59 - Hip<br />

SE17-SE29 - Knee<br />

Scientific Papers<br />

Scientific Papers<br />

Adult Knee IV: Basic Science<br />

(286-300) Room 6B<br />

Adult Hip IV: Hip Arthroplasty:<br />

(346-360) Room 6B<br />

Spine III: Spinal Deformity<br />

Adult Knee (436-450) V: Outcomes Room <strong>of</strong> Total 5 Knee<br />

Replacement II (406-420) Room 6B<br />

Adult Hip V: Complications and<br />

Infections (466-480) Room 6B<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P001-P207 P351-P411<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional<br />

Symposia<br />

Courses<br />

Scientific Exhibits<br />

BAsic 7:00 AM-6:00 ReseARcH PM<br />

SE60-SE73<br />

311 331 349, 352 387<br />

Current Controversies in<br />

Partial Knee Arthroplasty (P)<br />

Ballroom 20<br />

Instructional Scientific Papers Courses<br />

Sports Medicine/Arthroscopy II:<br />

ACL Reconstruction 304 Adult<br />

(316-330) Room 5<br />

Sports Medicine/Arthroscopy III: ACL<br />

Reconstruction Pediatric, Revision, PCL<br />

and Meniscus (481-495) Room 6D<br />

Scientific Exhibits Posters<br />

7:00 AM-6:00 PM<br />

tRAuMA<br />

SE30-SE33 P412-461<br />

Foot Instructional And Courses AnKle<br />

313 383 332, 334 351 369, 370<br />

Instructional Scientific Exhibits Courses<br />

7:00<br />

Scientific<br />

AM-6:00<br />

Exhibits<br />

PM<br />

Scientific 7:00 AM-6:00 Papers PM<br />

SE74-SE80<br />

SE34-SE35<br />

303<br />

Trauma III: Femur (301-315) Room 6D<br />

324<br />

Trauma IV: Lower Extremity and<br />

Bone Grafting (376-390) Room 5<br />

343 7SK 364<br />

Scientific Posters<br />

7:00 Scientific AM-6:00 Papers PM<br />

P462-P526<br />

Foot and Ankle III: Research and<br />

Forefoot (496-510)<br />

Symposia<br />

Advances and Challenges Room in 5the<br />

Management<br />

<strong>of</strong> Extremity Blast Injuries (Q) Room 6C<br />

tuMoR Scientific Posters / MetABolic diseAse<br />

Instructional 7:00 AM-6:00 Courses PM<br />

P208-P228<br />

314<br />

GeneRAl<br />

Scientific Exhibits<br />

Instructional 7:00 AM-6:00 Courses PM<br />

Scientific Papers<br />

Symposia<br />

SE81-SE85<br />

305 381 327 344, 353<br />

Disaster-Relief <strong>Orthopaedic</strong>s:<br />

What You Need to Know Before<br />

You Go (N) Room 6C<br />

363<br />

Tumor/Metabolic Disease II:<br />

Treatment, Surgical Techniques and<br />

Outcomes (511-525) Room 7<br />

HAnd Scientific Posters And WRist<br />

Instructional 7:00 AM-6:00 Courses PM<br />

P527-P553<br />

306 382 325 345 374<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE36-SE38<br />

Scientific Papers<br />

Hand and Wrist II: Outcomes:<br />

Wrist (331-345) Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P229-P244<br />

Symposia<br />

pediAtRics<br />

Distal Radius Fractures: Current Concepts<br />

and Evolving Technologies (O) Room 6A<br />

Instructional Courses 307 330 346 385 372<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE39-SE40<br />

Scientific Papers<br />

Pediatrics II: Spine (391-405)<br />

Room 7<br />

Pediatrics III: Foot, Lower Extremity<br />

and General (421-435) Room 6D<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P245-P264<br />

Symposia<br />

pRActice MAnAGeMent / non-clinicAl<br />

Adult Consequences <strong>of</strong><br />

Pediatric <strong>Orthopaedic</strong><br />

Conditions (R) Room 6A<br />

Instructional Courses 312 326 354 366<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE41-SE48<br />

Scientific Papers<br />

Practice Management II: Conflict<br />

<strong>of</strong> Interest, Education and<br />

Practice Environment<br />

(451-465) Room 7<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

sHouldeR And elBoW<br />

Instructional Courses 4SK 309, 310 384 328, 329 347, 348 6SK 367, 368, 373<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Shoulder and Elbow III: Revision<br />

Scientific Papers<br />

Shoulder Arthroplasty and<br />

Miscellaneous (361-375) Room 6D<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P290-P350<br />

Symposia<br />

spine<br />

Hot Topics and Controversies in Primary<br />

Shoulder Arthroplasty (M) Ballroom 20<br />

Instructional Courses 5SK 308 333 350 371<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE56-SE59<br />

Scientific Papers<br />

Spine III: Spinal Deformity<br />

(436-450) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P351-P411<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional Courses 311 331 349, 352 387<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE60-SE73<br />

Scientific Papers<br />

Scientific Posters<br />

Sports Medicine/Arthroscopy II:<br />

ACL Reconstruction Adult<br />

(316-330) Room 5<br />

Sports Medicine/Arthroscopy III: ACL<br />

Reconstruction Pediatric, Revision, PCL<br />

and Meniscus (481-495) Room 6D


Friday, February 18<br />

7:00-10:00 AM 8:00-10:00 AM 8:00-11:00 AM 10:30 AM-12:30 PM 1:30-3:30 PM 1:30-4:30 PM 4:00-6:00 PM<br />

Adult ReconstRuction Hip And Knee<br />

Instructional Courses 401, 402, 403 421, 422 441 484 461, 462, 463<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Scientific Papers<br />

SE01-SE16 - Hip<br />

SE17-SE29 - Knee<br />

Adult Hip VI: Highly Cross-Linked Polyethylene and<br />

Thromboembolic Prophylaxis (526-540) Room 6B<br />

Adult Knee VI: Complications <strong>of</strong> Knee Arthroplasty<br />

(586-600) Room 6B<br />

Adult Hip VII: Biomechanics and Practice Issues<br />

(706-720) Room 6B<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P001-P207<br />

Symposia<br />

BAsic ReseARcH<br />

Managing Complications after Primary Total Hip<br />

Arthroplasty in Your Practice (V) Ballroom 20<br />

Instructional Courses 405<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Foot And AnKle<br />

SE30-SE33<br />

Instructional Courses 404 483 423 443 464<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE34-SE35<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

GeneRAl<br />

P208-P228<br />

Instructional Courses 445 469<br />

Symposia<br />

HAnd And WRist<br />

Bone Defects: When Are Orthobiologics Indicated?<br />

(W) Room 6C<br />

Instructional Courses 481 425<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE36-SE38<br />

Scientific Papers<br />

Hand and Wrist III: Basic Science and Complications<br />

(556-570) Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

pediAtRics<br />

P229-P244<br />

Instructional Courses 8SK 406 426, 427 446 466<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE39-SE40<br />

Scientific Papers<br />

Pediatrics IV: Hip/Neuromuscular/General (541-555)<br />

Room 6D<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P245-P264<br />

Pediatric Sports Medicine:<br />

Symposia<br />

A Case-Based Update (Z)<br />

Room 6A<br />

pRActice MAnAGeMent / non-clinicAl<br />

Instructional Courses 408, 413 424, 428, 430, 434 442, 447, 448 468, 474<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE41-SE48<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

Symposia<br />

Healthcare Reform Bill: Past, Present and Future (S)<br />

Ballroom 20<br />

EMR: Mandatory Components and Efficient Use for the<br />

Practicing <strong>Orthopaedic</strong> Surgeon (X)<br />

Room 6A<br />

Measuring Value in <strong>Orthopaedic</strong>s:<br />

What a Clinician Needs to<br />

Know (Y)<br />

Room 6C<br />

The Elephant in the Living Room: Impact <strong>of</strong> Emotional<br />

Health on Functional Outcomes (AA)<br />

Room 6C<br />

ReHABilitAtion<br />

Scientific Papers<br />

sHouldeR And elBoW<br />

Rehabilitation Medicine I (616-630)<br />

Room 5<br />

Instructional Courses 409, 410 433 452 472, 473<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Scientific Papers<br />

Shoulder and Elbow IV: Shoulder Trauma and<br />

Instability (601-615)<br />

Room 6D<br />

Shoulder and Elbow V:<br />

Elbow and Acromioclavicular Joint<br />

(676-690)<br />

Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

spine<br />

P290-P350<br />

Instructional Courses 407, 412 429 450<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE56-SE59<br />

Scientific Papers<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P351-P411<br />

Spine IV: Bone Graft Substitutes,<br />

Fracture and Infection (661-675)<br />

Room 6D<br />

Spine V: General Topics (736-750)<br />

Room 5<br />

Spinal Deformity: What Every <strong>Orthopaedic</strong> Surgeon<br />

Symposia<br />

Needs to Know (T)<br />

Room 6C<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional Courses 411 482 449 485 465, 467, 470<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE60-SE73<br />

Scientific Papers<br />

SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

Sports Medicine/Arthroscopy IV: Shoulder Cuff and<br />

Instability (571-585)<br />

Room 7<br />

Sports Medicine/Arthroscopy V:Hip Impingement,<br />

Arthroscopy and Hamstring (631-645)<br />

Room 7<br />

Sports Medicine/Arthroscopy<br />

VI: Leg, Ankle and Arthroscopy<br />

(646-660)<br />

Room 6B<br />

Scientific Posters<br />

7:00 AM-6:00 10 PM<br />

P412-P461<br />

Multiple Ligament Injured Knees: Cases and<br />

Symposia<br />

tRAuMA<br />

Controversies (BB)<br />

Room 6A<br />

Instructional Courses 9SK 414 431, 432 451, 453 486 471<br />

Scientific Exhibits<br />

SE74-SE80


ReHABilitAtion<br />

Scientific Papers<br />

sHouldeR And elBoW<br />

Instructional Courses<br />

Rehabilitation Medicine I (616-630)<br />

Room 5<br />

SuBSpECiALTy 409, 410 guidE TO 433ANNuAL MEETiNg<br />

452 472, 473<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Scientific Papers<br />

Scientific Posters<br />

7:00 AM-6:00 PM 7:00-10:00 P290-P350AM<br />

8:00-10:00 AM<br />

Shoulder and Elbow IV: Shoulder Trauma and<br />

Instability (601-615)<br />

Room 6D<br />

Friday, February 18<br />

8:00-11:00 AM 10:30 AM-12:30 PM<br />

Shoulder and Elbow V:<br />

Elbow and Acromioclavicular Joint<br />

(676-690)<br />

Room 5<br />

1:30-3:30 PM 1:30-4:30 PM 4:00-6:00 PM<br />

spine Adult ReconstRuction Hip And Knee<br />

Instructional Courses 401, 407, 402, 412403 421, 429422 450 441 484 461, 462, 463<br />

Scientific<br />

Scientific<br />

Exhibits<br />

Exhibits<br />

7:00<br />

7:00<br />

AM-6:00<br />

AM-6:00<br />

PM<br />

PM<br />

SE01-SE16 SE56-SE59 - Hip<br />

SE17-SE29 - Knee<br />

Scientific<br />

Scientific<br />

Papers<br />

Papers<br />

Scientific Posters<br />

Scientific 7:00 AM-6:00 Posters PM<br />

7:00 AM-6:00 PM<br />

Symposia<br />

Symposia BAsic ReseARcH<br />

P001-P207<br />

P351-P411<br />

Adult Hip VI: Highly Cross-Linked Polyethylene and<br />

Thromboembolic Prophylaxis (526-540) Room 6B<br />

Spinal Deformity: What Every <strong>Orthopaedic</strong> Surgeon<br />

Needs to Know (T)<br />

Adult Knee VI: Complications <strong>of</strong> Knee Arthroplasty<br />

(586-600) Room 6B<br />

Managing Complications after Primary Total Hip<br />

Arthroplasty in Your Practice (V) Ballroom 20<br />

Spine IV: Bone Graft Substitutes,<br />

Fracture and Infection (661-675)<br />

Room 6D<br />

Adult Hip<br />

Spine<br />

VII:<br />

V:<br />

Biomechanics<br />

General Topics<br />

and<br />

(736-750)<br />

Practice Issues<br />

(706-720)<br />

Room<br />

Room<br />

5<br />

6B<br />

Instructional Courses Room 4056C<br />

Scientific Exhibits<br />

7:00 spoRts AM-6:00 Medicine PM And SE30-SE33 ARtHRoscopy<br />

Instructional<br />

Foot And<br />

Courses<br />

AnKle<br />

Scientific Exhibits<br />

7:00<br />

Instructional<br />

AM-6:00<br />

Courses<br />

PM<br />

SE60-SE73<br />

411<br />

404<br />

482<br />

483 423<br />

449<br />

443<br />

485 465, 467, 470<br />

464<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Scientific Papers<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

SE34-SE35<br />

P208-P228<br />

Sports Medicine/Arthroscopy IV: Shoulder Cuff and<br />

Instability (571-585)<br />

Room 7<br />

Sports Medicine/Arthroscopy V:Hip Impingement,<br />

Arthroscopy and Hamstring (631-645)<br />

Room 7<br />

Sports Medicine/Arthroscopy<br />

VI: Leg, Ankle and Arthroscopy<br />

(646-660)<br />

Room 6B<br />

Scientific GeneRAl Posters<br />

7:00<br />

Instructional<br />

AM-6:00<br />

Courses<br />

PM<br />

P412-P461<br />

445 469<br />

Symposia<br />

HAnd And WRist<br />

Bone Defects: When Are Orthobiologics Indicated?<br />

(W) Room 6C<br />

Multiple Ligament Injured Knees: Cases and<br />

Controversies (BB)<br />

Room 6A<br />

tRAuMA<br />

Instructional Courses 481 425<br />

Instructional Scientific Exhibits Courses<br />

Scientific 7:00 AM-6:00 Exhibits PM<br />

7:00<br />

Scientific<br />

AM-6:00<br />

Papers<br />

PM<br />

Scientific Posters<br />

Scientific<br />

7:00 AM-6:00<br />

Papers<br />

PM<br />

pediAtRics<br />

Instructional Scientific Posters Courses<br />

7:00 AM-6:00 PM<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

Symposia<br />

Scientific Papers<br />

SE36-SE38<br />

9SK<br />

SE74-SE80<br />

P229-P244<br />

P462-P526 8SK<br />

SE39-SE40<br />

414<br />

Hand and Wrist III: Basic Science and Complications<br />

(556-570) Room 5<br />

406<br />

Pediatrics<br />

<strong>Orthopaedic</strong><br />

IV: Hip/Neuromuscular/General<br />

Trauma Mythbusters II<br />

(541-555)<br />

(U)<br />

Room<br />

Room<br />

6D<br />

6A<br />

431, 432<br />

426, 427<br />

451, 453<br />

Trauma V: Upper Extremity,<br />

Amputations and Biomechanics<br />

(691-705)<br />

Room 7<br />

446<br />

486 471<br />

Trauma VI: Multi-trauma, Wound Care and Infections<br />

(721-735)<br />

Room 6D<br />

466<br />

Scientific Posters<br />

tuMoR 7:00 AM-6:00 / PM MetABolic P245-P264 diseAse<br />

Instructional Courses<br />

Scientific SymposiaExhibits<br />

7:00 AM-6:00 PM<br />

SE81-SE85<br />

Pediatric 444, Sports 454 Medicine:<br />

A Case-Based Update (Z)<br />

Room 6A<br />

Scientific pRActice PostersMAnAGeMent<br />

/ non-clinicAl<br />

7:00 AM-6:00 PM<br />

P527-P553<br />

Instructional Courses 408, 413 424, 428, 430, 434 442, 447, 448 468, 474<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE41-SE48<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P265-P289<br />

Symposia<br />

ReHABilitAtion<br />

Healthcare Reform Bill: Past, Present and Future (S)<br />

Ballroom 20<br />

EMR: Mandatory Components and Efficient Use for the<br />

Practicing <strong>Orthopaedic</strong> Surgeon (X)<br />

Room 6A<br />

Measuring Value in <strong>Orthopaedic</strong>s:<br />

What a Clinician Needs to<br />

Know (Y)<br />

Room 6C<br />

The Elephant in the Living Room: Impact <strong>of</strong> Emotional<br />

Health on Functional Outcomes (AA)<br />

Room 6C<br />

Scientific Papers<br />

sHouldeR And elBoW<br />

Rehabilitation Medicine I (616-630)<br />

Room 5<br />

Instructional Courses 409, 410 433 452 472, 473<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE49-SE55<br />

Scientific Papers<br />

Shoulder and Elbow IV: Shoulder Trauma and<br />

Instability (601-615)<br />

Room 6D<br />

Shoulder and Elbow V:<br />

Elbow and Acromioclavicular Joint<br />

(676-690)<br />

Room 5<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

spine<br />

P290-P350<br />

Instructional Courses 407, 412 429 450<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE56-SE59<br />

Scientific Papers<br />

Scientific Posters<br />

7:00 AM-6:00 PM<br />

P351-P411<br />

Spine IV: Bone Graft Substitutes,<br />

Fracture and Infection (661-675)<br />

Room 6D<br />

Spine V: General Topics (736-750)<br />

Room 5<br />

Spinal Deformity: What Every <strong>Orthopaedic</strong> Surgeon<br />

Symposia<br />

Needs to Know (T)<br />

Room 6C<br />

spoRts Medicine And ARtHRoscopy<br />

Instructional Courses 411 482 449 485 465, 467, 470<br />

Scientific Exhibits<br />

7:00 AM-6:00 PM<br />

SE60-SE73<br />

Scientific Papers<br />

Sports Medicine/Arthroscopy IV: Shoulder Cuff and<br />

Instability (571-585)<br />

Room 7<br />

Sports Medicine/Arthroscopy V:Hip Impingement,<br />

Arthroscopy and Hamstring (631-645)<br />

Room 7<br />

Sports Medicine/Arthroscopy<br />

VI: Leg, Ankle and Arthroscopy<br />

(646-660)<br />

Room 6B<br />

Scientific Posters<br />

7:00 AM-6:00 11 PM<br />

P412-P461<br />

Multiple Ligament Injured Knees: Cases and<br />

Symposia<br />

tRAuMA<br />

Controversies (BB)<br />

Room 6A<br />

Instructional Courses<br />

Scientific Exhibits<br />

9SK 414 431, 432 451, 453 486 471


12<br />

SuBSpECiALTy guidE TO ANNuAL MEETiNg<br />

saTurday, February 19<br />

7:00 AM-5:30 PM Specialty Day – Times Vary and Subject to Change (See Below)<br />

Adult ReconstRuction Hip And Knee<br />

Hip Society/AAHKS 8:00 AM – 5:00 PM<br />

Marriott Hotel & Marina, Marriott Hall, Salon1<br />

Specialty Day<br />

Knee Society/AAHKS 8:00 AM – 5:00 PM<br />

Marriott Hotel & Marina, Marriott Hall, Salon 4<br />

LLRS 7:40 AM – 5:00 PM<br />

SDCC, Room 4<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

BAsic ReseARcH<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Foot And AnKle<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

HAnd And WRist<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

pediAtRics<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

SE01-SE16 - Hip<br />

SE17-SE29 - Knee<br />

P001-P207<br />

SE30-SE33<br />

SE34-SE35<br />

P208-P228<br />

SE36-SE38<br />

P229-P244<br />

SE39-SE40<br />

P245-P264<br />

pRActice MAnAGeMent / non-clinicAl<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

ReHABilitAtion<br />

Specialty Day<br />

sHouldeR And elBoW<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

spine<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

spoRts Medicine And ARtHRoscopy<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

SE41-SE48<br />

P265-P289<br />

SE49-SE55<br />

P290-P350<br />

SE56-SE59<br />

P351-P411<br />

SE60-SE73<br />

AOFAS 7:00 AM – 5:00 PM<br />

SDCC, Room 6C<br />

ASSH/AAHS 7:30 AM – 6:00 PM<br />

Marriott Hotel & Marina, Marina Ballroom E<br />

POSNA 8:00 AM – 5:00 PM<br />

SDCC, Room 5<br />

ORA 7:30 AM – 3:30 PM<br />

SDCC, Room 1B<br />

ASES 7:25 AM – 5:00 PM<br />

SDCC, Room 6A<br />

FOSA 7:55 AM – 5:10 PM<br />

SDCC, Room 6D<br />

AANA 7:50 AM – 5:00 PM<br />

SDCC, Ballroom 20C<br />

AOSSM 7:30 AM – 5:00 PM<br />

SDCC, Ballroom 20A


13<br />

ReHABilitAtion<br />

Specialty Day<br />

sHouldeR And elBoW<br />

SuBSpECiALTy guidE TO ANNuAL ASES 7:25 AM MEETiNg<br />

– 5:00 PM<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

saTurday, February 19<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

P290-P350<br />

7:00 AM-5:30 PM Specialty Day – Times Vary and Subject to Change (See Below)<br />

Adult spine ReconstRuction Hip And Knee<br />

Specialty Day<br />

Specialty Day<br />

Hip Society/AAHKS 8:00 AM – 5:00 PM<br />

Marriott Hotel FOSA & 7:55 Marina, AM – Marriott 5:10 PM Hall, Salon1<br />

Knee Society/AAHKS SDCC, Room 8:00 6D AM – 5:00 PM<br />

Marriott Hotel & Marina, Marriott Hall, Salon 4<br />

LLRS 7:40 AM – 5:00 PM<br />

Scientific Exhibits<br />

7:00 Scientific AM-5:30 Exhibits PM<br />

7:00 AM-5:30 PM<br />

SE01-SE16 SE56-SE59 - Hip<br />

SE17-SE29 - Knee<br />

SDCC, Room 4<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 BAsic AM-5:30 ReseARcH PM<br />

P001-P207<br />

P351-P411<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

SE30-SE33<br />

spoRts Medicine And ARtHRoscopy<br />

Foot And AnKle<br />

AANA 7:50 AM – 5:00 PM<br />

Specialty<br />

Specialty<br />

Day<br />

Day<br />

SDCC, Ballroom 20C<br />

AOFAS 7:00 AM – 5:00 PM<br />

AOSSM SDCC, 7:30 Room AM – 6C 5:00 PM<br />

SDCC, Ballroom 20A<br />

Scientific Exhibits<br />

Scientific 7:00 AM-5:30 Exhibits PM<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

Scientific 7:00 AM-5:30 Posters PM<br />

7:00 AM-5:30 PM<br />

HAnd And WRist<br />

tRAuMA<br />

Specialty Day<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 Scientific AM-5:30 Exhibits PM<br />

7:00 AM-5:30 PM<br />

pediAtRics<br />

SE34-SE35<br />

SE60-SE73<br />

P208-P228<br />

P412-P461<br />

SE36-SE38<br />

P229-P244<br />

SE74-SE80<br />

Specialty<br />

Scientific Posters<br />

Day<br />

7:00 AM-5:30 PM<br />

P462-P526<br />

Scientific Exhibits<br />

7:00 tuMoR AM-5:30 / PM MetABolic diseAse<br />

SE39-SE40<br />

Specialty Day<br />

Scientific Posters<br />

Scientific 7:00 AM-5:30 Exhibits PM<br />

P245-P264<br />

7:00 AM-5:30 PM<br />

SE81-SE85<br />

Scientific pRActice PostersMAnAGeMent<br />

/ non-clinicAl<br />

7:00 AM-5:30 PM<br />

P527-P553<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

SE41-SE48<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

ReHABilitAtion<br />

Specialty Day<br />

sHouldeR And elBoW<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

spine<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

7:00 AM-5:30 PM<br />

spoRts Medicine And ARtHRoscopy<br />

Specialty Day<br />

Scientific Exhibits<br />

7:00 AM-5:30 PM<br />

Scientific Posters<br />

SE49-SE55<br />

P265-P289<br />

SE49-SE55<br />

P290-P350<br />

SE56-SE59<br />

P351-P411<br />

SE60-SE73<br />

ORA 7:30 AM – 3:30 PM<br />

SDCC, Room 1B<br />

SDCC, Room 6A<br />

ASSH/AAHS 7:30 AM – 6:00 PM<br />

Marriott Hotel & Marina, Marina Ballroom E<br />

OTA 7:30 AM – 5:30 PM<br />

SDCC, Room 6B<br />

POSNA 8:00 AM – 5:00 PM<br />

SDCC, Room 5<br />

MSTS 7:00 AM – 4:00 PM<br />

SDCC, Room 2<br />

ORA 7:30 AM – 3:30 PM<br />

SDCC, Room 1B<br />

ASES 7:25 AM – 5:00 PM<br />

SDCC, Room 6A<br />

FOSA 7:55 AM – 5:10 PM<br />

SDCC, Room 6D<br />

AANA 7:50 AM – 5:00 PM<br />

SDCC, Ballroom 20C<br />

AOSSM 7:30 AM – 5:00 PM<br />

SDCC, Ballroom 20A


DISCLAIMER<br />

The material presented at the <strong>Annual</strong> <strong>Meeting</strong> has been made<br />

available by the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons for<br />

educational purposes only. This material is not intended to represent<br />

the only, nor necessarily best, method or procedure appropriate for<br />

the medical situations discussed, but rather is intended to present an<br />

approach, view, statement or opinion <strong>of</strong> the faculty which may be<br />

helpful to others who face similar situations.<br />

The AAOS disclaims any and all liability for injury or other damages<br />

resulting to any individuals attending a session for all claims, which<br />

may arise out <strong>of</strong> the use <strong>of</strong> the techniques demonstrated therein<br />

by such individuals, whether these claims shall be asserted by a<br />

physician or any other person.<br />

No reproductions <strong>of</strong> any kind, including still photography, audiotapes<br />

and videotapes, may be made <strong>of</strong> the presentation at the <strong>Academy</strong>’s<br />

<strong>Annual</strong> <strong>Meeting</strong>. The <strong>Academy</strong> reserves all <strong>of</strong> its rights to such<br />

material, and commercial reproduction is specifically prohibited.<br />

DISCLOSURE<br />

Each participant in the <strong>Annual</strong> <strong>Meeting</strong> has been asked to disclose<br />

if he or she has received something <strong>of</strong> value from a commercial<br />

company, which relates directly or indirectly to the subject <strong>of</strong> their<br />

presentation. The <strong>Academy</strong> has identified the options to disclose as<br />

follows:<br />

1 – Royalties<br />

2 – Speakers Bureau/paid presentations<br />

3a. – Employee<br />

3b. – Paid consultant<br />

3c. – Unpaid consultant<br />

4 – Stock or stock options; or<br />

5 – Research or institutional support as a principal investigator has<br />

been received;<br />

6 – Other financial or material support;<br />

7 – Royalties, financial or material support from publishers;<br />

n – No conflicts to disclose<br />

These codes reflect the numbers used in a series <strong>of</strong> questions<br />

answered by all persons participating in the <strong>Academy</strong>’s overall<br />

online Disclosure Program, which is available at .<br />

www.aaos.org/disclosure.<br />

The <strong>Academy</strong> does not view the existence <strong>of</strong> these disclosed interests<br />

or commitments as necessarily implying bias or decreasing the value<br />

<strong>of</strong> the author’s participation in the meeting; however, these data<br />

are <strong>of</strong>fered to the audience as additional information that may be<br />

helpful in evaluating the educational presentations.<br />

The alphabetical disclosure list begins on page 19.<br />

14<br />

FDA STATEMENT<br />

Some drugs or medical devices demonstrated at the <strong>Annual</strong> <strong>Meeting</strong><br />

have not been cleared by the FDA or have been cleared by the FDA for<br />

specific purposes only. The FDA has stated that it is the responsibility<br />

<strong>of</strong> the physician to determine the FDA clearance status <strong>of</strong> each drug<br />

or medical devices he or she wishes to use in clinical practice.<br />

<strong>Academy</strong> policy provides that “<strong>of</strong>f label” uses <strong>of</strong> a drug or medical<br />

device may be described in the <strong>Academy</strong>’s CME activities so long as<br />

the “<strong>of</strong>f label” use <strong>of</strong> the drug or medical device is also specifically<br />

disclosed (i.e. it must be disclosed that the FDA has not cleared<br />

the drug or device for the described purpose). Any drug or medical<br />

device is being used “<strong>of</strong>f label” if the described use is not set forth on<br />

the products approval label.<br />

Product Code #05236


15<br />

Start here<br />

to begin your participation in the<br />

2012 <strong>Annual</strong> <strong>Meeting</strong><br />

San Francisco, California<br />

February 7 – 11<br />

Call for Abstracts<br />

Share your research with orthopaedic surgeons from around the world at the 2012 <strong>Annual</strong><br />

<strong>Meeting</strong>. Nowhere else will your discoveries reach such a wide-ranging orthopaedic audience.<br />

NEW Abstract Submission Website<br />

Submit full-page abstracts, attach images, and more!<br />

Present your research to its best advantage on our new user-friendly website.<br />

Submissions open Spring 2011. Watch for announcements!<br />

ATTENTION PRESENTERS:<br />

DISCLOSURE RULES<br />

KNOW Your Co-Authors. Be sure to obtain up-to-date contact information for your co-authors.<br />

All co-authors must disclose financial relationships in the AAOS Disclosure Database prior to abstract submission.<br />

Abstracts will not be graded without this information.


16<br />

2011 ANNuAL MEETiNg COMMiTTEES<br />

The following AAOS Committees are responsible for the scientific program, the scientific exhibits and the multimedia education program.<br />

They grade abstracts and applications, suggest moderators, identify hot topics and evaluate sessions all in an effort to bring you an exciting and<br />

innovative program.<br />

EXHiBiTS COMMiTTEE<br />

William H . Seitz, Jr ., MD, Cleveland, OH,<br />

Chair<br />

George W. Balfour, MD, Van Nuys, CA<br />

J. David Blaha, MD, Ann Arbor, MI<br />

Dennis B. Brooks, MD, Pepper Pike, OH<br />

A. Seth Greenwald, D. Phil (Oxon),<br />

Cleveland, OH<br />

Steven M. Kurtz, PhD, Philadelphia, PA<br />

Pekka A. Mooar, MD, Philadelphia, PA<br />

Joseph T. Moskal, MD, Roanoke, VA<br />

David L. Nelson, MD, Greenbrae, CA<br />

John R. Tenny, MD, Dallas, TX<br />

ADULT RECONSTRUCTION HIP<br />

Adolph V Lombardi Jr, MD, New Albany, OH,<br />

Chair,<br />

David Christopher Ayers, MD, Worcester, MA<br />

Thomas J Blumenfeld, MD, Sacramento, CA<br />

Mathias P G Bostrom, MD, New York, NY<br />

Paul E DiCesare, MD, Sacramento, CA<br />

Brian A Klatt, MD, Pittsburgh, PA<br />

James Charles Kudrna, MD, Glenview, IL<br />

Glenn C Landon, MD, Houston, TX<br />

Gwo-Chin Lee, MD, Philadelphia, PA<br />

Scott E Marwin, MD, Westbury, NY<br />

Bassam A Masri, MD, Vancouver, BC<br />

John B Meding, MD, Mooresville, IN<br />

J Wesley Mesko, MD, Lansing, MI<br />

Douglas E Padgett, MD, New York, NY<br />

Wayne Gregory Paprosky, MD, Winfield, IL<br />

Jeffrey M Passick, MD, Chappaqua, NY<br />

Christopher L Peters, MD, Salt Lake City, UT<br />

Juan J Rodrigo, MD, Spartanburg, SC<br />

Edwin P Su, MD, New York, NY<br />

Dean C Sukin, MD, Billings, MT<br />

Marc Evan Umlas, MD, Miami Beach, FL<br />

Michael B Vessely, MD, Lake Oswego, OR<br />

Richard E White, Jr MD, Albuquerque, NM<br />

ADULT RECONSTRUCTION KNEE<br />

Giles R Scuderi, MD, New York, NY, Chair<br />

James B Benjamin, MD, Tucson, AZ<br />

Keith R Berend, MD, New Albany, OH<br />

Hari Bezwada, MD, Philadelphia, PA<br />

Gary W. Bradley, MD, Santa Barbara, CA<br />

Fred D Cushner, MD, New York, NY<br />

David F Dalury, MD, Baltimore, MD<br />

Kevin L Garvin, MD, Omaha, NE<br />

Jeffrey A Geller, MD, New York, NY<br />

Terence J Gioe, MD, Apple Valley, MN<br />

Atul B Joshi, MD, Lubbock, TX<br />

E Michael Keating, MD, Mooresville, IN<br />

MuLTiMEdiA EduCATiON<br />

CENTEr SuBCOMMiTTEE<br />

Kevin D . Plancher, MD, New York, NY, Chair<br />

Joseph A. Abboud, MD, Philadelphia, PA<br />

James M. Bennett, MD, Missouri City, TX<br />

William B. Geissler, MD, Jackson, MS<br />

Michael L. Granberry, MD, Mobile, AL<br />

Tally E. Lassiter, Jr, MD, Durham, NC<br />

Peter Maurus, MD, Coralville, IA<br />

Russell D. Meldrum, MD, Indianapolis, IN<br />

Ronald A. Navarro, MD, Rolling Hills, CA<br />

Mark W. Zawadsky, MD, Washington, DC<br />

Robert H. Quinn, MD, Consultant,<br />

Albuquerque, NM<br />

Mark T. Scarborough, MD, Consultant,<br />

Gainesville, FL<br />

prOgrAM SuBCOMMiTTEE MEMBErS<br />

Michael A Kelly, MD, Hackensack, NJ<br />

Matthew J Kraay, MD, Cleveland, OH<br />

Ormonde M Mahoney, MD, Athens, GA<br />

Arthur L Malkani, MD, Louisville, KY<br />

Thomas A Malvitz, MD, Grand Rapids, MI<br />

William Michael Mihalko, MD, PhD, Memphis, TN<br />

David J Olysav, MD, Springfield, IL<br />

Jeffery L Pierson, MD, Carmel, IN<br />

James A Shaw, MD, Cabin John, MD<br />

FOOT AND ANKLE<br />

Steven L Haddad, MD, Glenview, IL, Chair<br />

Donald R Bohay, MD, Grand Rapids, MI<br />

Daniel C Farber, MD, Baltimore, MD<br />

Justin K Greisberg, MD, New York, NY<br />

Stuart D Miller, MD, Baltimore, MD<br />

HAND AND WRIST<br />

Thomas E Trumble, MD, Seattle, WA, Chair<br />

George Walter Balfour, MD, Van Nuys, CA<br />

Gordon A Brody, MD, Palo Alto, CA<br />

Richard T Herrick, MD, Pinellas Park, FL<br />

Joseph E Imbriglia, MD, Wexford, PA<br />

PEDIATRICS<br />

Martin Joseph Herman, MD, Philadelphia, PA,<br />

Chair<br />

Kerwyn Jones, MD, Akron, OH<br />

Donna M Pacicca, MD, Kansas City, MO<br />

Peter D Pizzutillo, MD, Philadelphia, PA<br />

Jeffrey R Sawyer, MD, Germantown, TN<br />

PRACTICE MANAgEMENT<br />

John DiPaola, MD, Tualatin, OR<br />

Ty Henry Goletz, MD, San Antonio, TX<br />

Patrick J Horan, MD, Tampa, FL<br />

Bertrand Paul Kaper, MD, Prescott, AZ<br />

Thomas A Malvitz, MD, Grand Rapids, MI<br />

prOgrAM COMMiTTEE<br />

Annunziato Amendola, MD, Iowa City, IA,<br />

Chair<br />

Scott D. Boden, MD, Atlanta, GA<br />

Joseph A. Bosco, III, MD, New York, NY<br />

Steven L. Frick, MD, Charlotte, NC<br />

Michael J. Stuart, MD, Rochester, MN<br />

SHOULDER AND ELbOW<br />

John William Sperling, MD, Rochester, MN, Chair<br />

Theodore A Blaine, MD, Providence, RI<br />

Raymond M Carroll, MD, Cary, NC<br />

Lynn A Crosby, MD, Augusta, GA<br />

Mark A Frankle, MD, Temple Terrace, FL<br />

David L Glaser, MD, Philadelphia, PA<br />

G Russell Huffman, MD, Philadelphia, PA<br />

Spero G Karas, MD, Atlanta, GA<br />

Keith Kenter, MD, Cincinnati, OH<br />

Michael J Pagnani, MD, Nashville, TN<br />

Steve A Petersen, MD, Lutherville, MD<br />

Stephen C Weber, MD, Sacramento, CA<br />

Riley Joseph Williams, MD, New York, NY<br />

SPINE<br />

Michael Vives, MD, Newark, NJ, Chair<br />

Charles J Banta II, MD, Dallas, TX<br />

Norman Barrington Chutkan, MD, Augusta, GA<br />

John G Finkenberg, MD, San Diego, CA<br />

Walter J Finnegan, MD, Allentown, PA<br />

Christian Ivan Fras, MD, Haverford, PA<br />

Christopher George Furey, MD, Cleveland, OH<br />

Hubert Lee Gooch, Jr MD, Asheville, NC<br />

Steven M Mardjetko, MD, Morton Grove, IL<br />

Thomas A McNally, MD, Bartlett, IL<br />

James W Ogilvie, MD, Brighton, UT<br />

Jory Richman, MD, Pittsburgh, PA<br />

Paul Saiz, MD, Las Cruces, NM<br />

Eeric Truumees, MD, Royal Oak, MI<br />

SPORTS MEDICINE/ARTHROSCOPy<br />

Diane Lynn Dahm, MD, Rochester, MN, Chair<br />

James C Dreese, MD, Monkton, MD<br />

Michael S George, MD, Houston, TX<br />

Darren L Johnson, MD, Lexington, KY<br />

Morgan H Jones, MD, Cleveland Heights, OH<br />

Robert F LaPrade, MD, PHD,Vail, CO<br />

Keith W Lawhorn, MD, Fairfax, VA<br />

Dean K Matsuda, MD, Los Angeles, CA


SPORTS MEDICINE/ARTHROSCOPy (Cont.)<br />

K Kip Owen, MD, Mc Allen, TX<br />

Kevin D Plancher, MD, New York, NY<br />

Jeffrey M Schwartz, MD, New York, NY<br />

Daniel Jordan Solomon, MD, Novato, CA<br />

Patrick St Pierre, MD, Rancho Mirage, CA<br />

Robin Vereeke West, MD, Presto, PA<br />

Ronald W B Wyatt, MD, Walnut Creek, CA<br />

TRAUMA<br />

Bruce Ziran, MD, Decatur, GA, Chair<br />

Animesh Agarwal, MD, San Antonio, TX<br />

Peter L Althausen, MD, Reno, NV<br />

Craig Scott Bartlett, MD, South Burlington, VT<br />

David F Beigler, MD, Glenview, IL<br />

Jose A Bossolo, MD, Brownsville, TX<br />

Cory Alan Collinge, MD, Fort Worth, TX<br />

Gregory John Della Rocca, MD, Columbia, MO<br />

Thomas J Ellis, MD, Columbus, OH<br />

Paul Levin, MD, Bronx, NY<br />

Robert M Orfaly, MD, Portland, OR<br />

Henry Claude Sagi, MD, Tampa, FL<br />

Philip R Wolinsky, MD, Sacramento, CA<br />

TUMOR AND METAbOLIC DISEASE<br />

R Lor Randall, MD, Salt Lake City, UT, Chair<br />

Joel Mayerson, MD, Columbus, OH<br />

Bryan Scott Moon, MD, Houston, TX<br />

Shervin V Oskouei, MD, Atlanta, GA<br />

Jason Scott Weisstein, MD, Boca Raton, FL<br />

17<br />

prOgrAM SuBCOMMiTTEE MEMBErS<br />

(continued)<br />

This <strong>Proceedings</strong> Book is divided into four sections, Symposia<br />

handouts and then Podium Presentations, Poster Presentations,<br />

and Scientific Exhibits by classification and finally Multimedia<br />

Education.<br />

PODIUM PRESENTATIONS<br />

The Scientific Program features 750 podium presentations. All<br />

podium presentations are six minutes in groups <strong>of</strong> three followed by<br />

an open floor discussion moderated by chosen <strong>Academy</strong> members.<br />

The Scientific Program takes place at the San Diego Convention<br />

Center at various times and locations please see the final program<br />

for the schedule.<br />

POSTER PRESENTATIONS<br />

Five hundred and seventy eight Poster Presentations will be exhibited<br />

during the <strong>Annual</strong> <strong>Meeting</strong>. All Poster Presentations will be displayed<br />

the entire five days <strong>of</strong> the meeting. Included in these are Board <strong>of</strong><br />

Specialty Societies (BOS) posters. The BOS posters will be indicated<br />

by their Society’s name or the name <strong>of</strong> their presentation. The Program<br />

also features selected posters from the <strong>Orthopaedic</strong> Research Society.<br />

We hope that you spend time visiting the poster presentations and<br />

discussing the information with the presenters who will be at their<br />

display from 11:30 AM until 12:30 PM Wednesday through Friday in<br />

<strong>Academy</strong> Hall, Sails Pavilion.<br />

The Scientific Program Committee is very appreciative <strong>of</strong> the effort<br />

extended by all the presenters and congratulates them on the high<br />

quality <strong>of</strong> the abstracts that were submitted for evaluation.<br />

Poster awards will be presented to the highest rated poster in each<br />

<strong>of</strong> the 11 classifications and from them one overall winner will be<br />

chosen.<br />

Adult Hip. ............................... P001 – P110, ORS1<br />

Adult Knee. .............................. P111 – P205, ORS2<br />

Foot and Ankle . ..........................P206 – P225, ORS3<br />

Hand and Wrist. ..........................P226 – P240, ORS4<br />

Pediatrics ......................................P241 – P260<br />

Practice Management/Rehabilitation ...............P261 – P285<br />

Shoulder and Elbow .......................P286 – P345, ORS5<br />

Spine ...................................P346 – P405, ORS6<br />

Sports Medicine and Arthroscopy ..................P406 – P455<br />

Trauma. .................................P456 – P520, BOS2<br />

Tumor ............................P521 – P545, ORS7, BOS1<br />

Best <strong>of</strong> ORS ....................................P546 – P555<br />

Allied Health ...................................P556 – P559<br />

Guest Nation – Turkey ...........................P560 – P569<br />

SCIENTIFIC EXHIbITS<br />

San Diego Convention Center, <strong>Academy</strong> Hall, Sails Pavilion<br />

The Scientific Exhibit format is used to graphically illustrate a study or<br />

a complex procedure. It differentiates itself from a poster presentation<br />

in the amount <strong>of</strong> material that is presented and uses audiovisual,<br />

interactive demonstration, or some other type <strong>of</strong> enhancement in<br />

its presentation. The Scientific Exhibits are located in <strong>Academy</strong> Hall,<br />

Sails Pavilion and open at 1:00 PM on Tuesday, March 9, and at 7:00<br />

AM, Wednesday through Saturday, to allow you to view the exhibits<br />

before the scientific program sessions. The authors <strong>of</strong> the exhibits are<br />

requested to be present Wednesday through Friday between 11:30<br />

AM and 12:30 PM to discuss their ideas and presentation.


Scientific Exhibits have been grouped in the following categories:<br />

Adult Reconstruction Hip. .........................SE01 - SE16<br />

Adult Reconstruction Knee. ....................... SE17 - SE29<br />

Basic Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SE30 - SE33<br />

Foot/Ankle .................................... SE34 - SE35<br />

Hand/Wrist .................................... SE36 - SE38<br />

Pediatrics ...................................... SE39 - SE40<br />

Practice Management .............................SE41 - SE48<br />

Shoulder/Elbow ................................ SE49 - SE55<br />

Spine ......................................... SE56 - SE59<br />

Sports Medicine/Arthroscopy. ..................... SE60 - SE73<br />

Trauma. ....................................... SE74 - SE80<br />

Tumor .........................................SE81 - SE85<br />

AAOS Committees Scientific Exhibits:<br />

Biological Implants Committee. ..................SE60<br />

Committee on Pr<strong>of</strong>essionalism ...................SE46<br />

Evidence-Based Practice Committee ...............SE43<br />

Extremity War Injuries &<br />

Disaster Preparedness Project ....................SE74<br />

Medical Liability Committee .....................SE47<br />

<strong>Orthopaedic</strong> Device Forum ......................SE84<br />

Patient Safety Committee. .......................SE45<br />

Women’s Health Issues Advisory Board ............SE32<br />

BOS Scientific Exhibits:<br />

<strong>American</strong> Association for Hand Surgery ............SE37<br />

Limb Lengthening and Reconstruction Society ......SE39<br />

Musculoskeletal Tumor Society ...................SE81<br />

<strong>Orthopaedic</strong> Research Society ....................SE33<br />

18<br />

POSTERS, SCIENTIFIC EXHIbITS, AND<br />

THE MULTIMEDIA EDUCATION CENTER<br />

ARE LOCATED IN THE SAN DIEgO<br />

CONVENTION CENTER, ACADEMy HALL<br />

IN THE SAILS PAVILION<br />

POSTER EXHIbIT, SCIENTIFIC EXHIbIT AND MULTIMEDIA<br />

EDUCATION CENTER HOURS:<br />

Tuesday, February 15 ....................1:00 PM – 6:00 PM<br />

Wednesday- Friday, February 16-18. ........7:00 AM – 6:00 PM<br />

Saturday, February 19 ....................7:00 AM – 5:30 PM<br />

MULTIMEDIA EDUCATION CENTER<br />

<strong>Orthopaedic</strong> education benefits greatly from visual examples. This is<br />

the place to learn by example and to prepare for your future. Select<br />

from dozens <strong>of</strong> surgical technique videos and multimedia programs<br />

and enjoy them at your convenience. Learn more about leading<br />

edge technologies and techniques in minimally invasive surgery.<br />

Strengthen your knowledge <strong>of</strong> surgical anatomy, exposures, and<br />

more.<br />

We are deeply indebted to our program authors. Without their<br />

voluntary contributions <strong>of</strong> know-how, time, and talent, the<br />

Multimedia Education Center would not be possible.<br />

Video and multimedia programs are grouped by area <strong>of</strong> anatomy:<br />

Award Programs . ........................... MEC01 - MEC04<br />

Adult Reconstruction Hip: Primary ............. MEC05 - MEC07<br />

Adult Reconstruction Hip: Revision ............MEC08 - MEC12<br />

Adult Reconstruction Knee ...................MEC13 - MEC17<br />

A dult Reconstruction Knee: Unicompartmental. ..MEC18 - MEC19<br />

Foot and Ankle .............................MEC20 - MEC22<br />

Hand and Wrist. ....................................MEC23<br />

Pediatrics Sports: ACL. .......................MEC24 - MEC25<br />

Pediatrics: Hip. .............................MEC26 - MEC27<br />

Elbow. ....................................MEC28 - MEC37<br />

Shoulder: Reverse Total Shoulder .............. MEC29 - MEC31<br />

Shoulder ..................................MEC32 - MEC37<br />

Spine .............................................MEC38<br />

S ports Medicine/Arthroscopy: Upper Extremity. ..MEC39 - MEC40<br />

Sports Medicine/Arthroscopy: Knee ............ MEC41 - MEC43<br />

Trauma. ...................................MEC44 - MEC45<br />

Tumors & Metabolic Disease . . . . . . . . . . . . . . . . . . MEC46 - MEC53


NAME DISCLOSURE NAME DISCLOSURE<br />

NAME DISCLOSURE NAME DISCLOSURE<br />

19<br />

Why disclosure?<br />

As an accredited provider <strong>of</strong> continuing medical education<br />

(CME) the <strong>Academy</strong> is required by the Accreditation Council for<br />

Continuing Medical Education (ACCME) to obtain and share with<br />

participants <strong>of</strong> any AAOS CME activity any potential conflicts <strong>of</strong><br />

interest by faculty, program developers, and CME planners.<br />

The ACCME Standards <strong>of</strong> Commercial Support, Standard 2 states<br />

the requirements:<br />

2.1 The provider must be able to show that everyone who is in<br />

a position to control the content <strong>of</strong> an education activity has<br />

disclosed all relevant financial relationships with any commercial<br />

interest to the provider.<br />

2.2 An individual who refuses to disclose relevant financial<br />

relationships will be disqualified from being a planning committee<br />

member, a teacher, or an author <strong>of</strong> CME, and cannot have<br />

control <strong>of</strong>, or responsibility for, the development, management,<br />

presentation or evaluation <strong>of</strong> the CME activity.<br />

The AAOS disclosure policy requires that faculty submit all<br />

financial relationships with industry occurring within the past 12<br />

months.<br />

Each participant in the <strong>Annual</strong> <strong>Meeting</strong> has been asked to disclose<br />

if he or she has received something <strong>of</strong> value from a commercial<br />

company, which relates directly or indirectly to the subject <strong>of</strong> their<br />

presentation. The <strong>Academy</strong> has identified the options to disclose<br />

as follows:<br />

disclosure<br />

Board <strong>of</strong> Directors<br />

John J. Callaghan, MD President: 1 – DePuy, A Johnson & Johnson Company;<br />

7 – Wolters Kluwer Health - Lippincott, Williams & Wilkins<br />

Daniel J. Berry, MD 1st Vice President: 1, 5 – DePuy, A Johnson & Johnson Company<br />

John R. Tongue, MD 2nd Vice President: ........................................n<br />

Frederick M. Azar, MD Treasurer: 4 – Pfizer; 7 – Saunders/Mosby-Elsevier<br />

Joseph D. Zuckerman, MD Past President: 1 – Exactech, Inc.; 4 – Neostem; 7 – SLACK<br />

Incorporated, Thieme, Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

Richard J. Barry, MD Chair Board <strong>of</strong> Councilors: 2 – Zimmer<br />

David Teuscher, MD Chair-Elect Board <strong>of</strong> Councilors: .............................n<br />

Fred C. Redfern, MD Secretary Board <strong>of</strong> Councilors: ...............................n<br />

M. Bradford Henley, MD, MBA, FACS Chair BOS: 1 – Zimmer; 2 – Stryker, Zimmer;<br />

3B – Gerson Lehrman Group, Guidepoint Global, MedACorp, Medical Resource<br />

Network, Milliman Care Guidelines, Premera Blue Cross, Providence Health & Services,<br />

Stryker, United Health Care, Zimmer; 3C – DeRoyal, Karen Zupko and Assts., Smith &<br />

Nephew, Synergy Surgical Technologies, Zimmer; 4 – Synergy Surgical Technologies;<br />

7 – Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

Jeffrey Anglen, MD Chair-Elect BOS: ...........................................n<br />

Gregory A. Mencio, MD Secretary BOS: 6 – 3M, Covidien/Kendall, Ethicon Medical<br />

Mission Assistance Program, Schmidt Trust, Stewart Trust, Surgical Resource<br />

George Zachary Wilhoit, MS, MBA Lay Member: 4 – Amgen Co., Pfizer<br />

Kevin P. Black, MD Member at Large: ..........................................n<br />

Michael Lloyd Parks, MD Member at Large: 3B, 5 – Zimmer; 4 – Johnson & Johnson,<br />

Merck, Pfizer, Procter & Gamble, Zimmer<br />

Paul Tornetta III, MD Member at Large: 1, 3B – Smith & Nephew;<br />

7 – Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

Daniel W. White, MD Member at Large: ........................................n<br />

Karen L. Hackett, FACHE, CAE Ex-Officio: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Council on Education<br />

Edward Akelman, MD Chair: 1 – Integra; 2, 5 – Auxillium Pharmaceuticals;<br />

3B – Biomimetic Therapeutics; 4 – Biomimetic Therapeutics, Osteospring Medical;<br />

7 – Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

Charles N. Cornell, MD Member: 1 – Exactech, Inc.; 7 – Clinical <strong>Orthopaedic</strong>s and<br />

Related Research<br />

Daryll C. Dykes, MD Member: 2 – Stryker; 3B – Stryker, Zimmer<br />

Stuart James Fischer, MD Member: 7 – Jones and Bartlett<br />

1 – Royalties<br />

2 – Speakers Bureau/paid presentations<br />

3a. – Employee<br />

3b. – Paid consultant<br />

3c. – Unpaid consultant<br />

4 – Stock or stock options; or<br />

5 – Research or institutional support as a principal investigator<br />

has been received;<br />

6 – Other financial or material support;<br />

7 - Royalties, financial or material support from publishers;<br />

n – No conflicts to disclose<br />

These codes reflect the numbers used in a series <strong>of</strong> questions<br />

answered by all persons participating in the <strong>Academy</strong>’s overall<br />

online Disclosure Program, which is available at www.aaos.org/<br />

disclosure.<br />

The <strong>Academy</strong> does not view the existence <strong>of</strong> these disclosed interests<br />

or commitments as necessarily implying bias or decreasing the<br />

value <strong>of</strong> the author’s participation in the meeting; however, these<br />

data are <strong>of</strong>fered to the audience as additional information that<br />

may be helpful in evaluating the educational presentations.<br />

Jeffrey S. Fischgrund, MD Member: 1 – DePuy, A Johnson & Johnson Company;<br />

3B – Apatech, DePuy, A Johnson & Johnson Company, Relieveant, Smith & Nephew,<br />

Stryker; 5 – Apatech, Axial Biotech, Smith & Nephew, Stryker; 7 – JAAOS<br />

Evan L. Flatow, MD Member: 1, 2, 3c – Zimmer; 5 – Wyeth; 7 – Wolters Kluwer Health -<br />

Lippincott, Williams & Wilkins<br />

Mark C. Gebhardt, MD Member at Large: 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

William A. Grana, MD, MPH Member: .........................................n<br />

Thomas J. Grogan, MD Member: 4 – Excelerate, Pfizer, Zimmer<br />

Jesse B. Jupiter, MD Member: 3B – OHK; 3C – Eisomed, Synthes; 4 – OHK; 5 – AO<br />

Foundation; 7 – Elsevier Thieme<br />

Kenneth J. Koval, MD Member at Large: 1 – Biomet; 2 – Biomet, San<strong>of</strong>i-Aventis, Stryker;<br />

3B, 5 – Biomet, Stryker; 7 – Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

William J. Maloney MD Member at Large: 1 – Wright Medical Technology, Inc., Zimmer;<br />

3C – ISTO Technologies, Moximed; 4 – Abbott, Gillead, ISTO Technologies, Johnson &<br />

Johnson, Merck, Moximed, Pfizer; 5 – AO, Biomet, DePuy Spine, DePuy, A Johnson &<br />

Johnson Company, Nuvasive, Smith & Nephew, Stryker, Zimmer<br />

Norman Y. Otsuka, MD Member: .............................................n<br />

Chad T. Price, MD Member: 1, 2, 3B – Biomet; 5 – Wright Medical Technology, Inc.<br />

Craig S. Roberts, MD Member: 5 – Synthes; 7 – Skeletal Trauma<br />

Vincent James Sammarco, MD Member: n<br />

Matthew S. Shapiro, MD Member: 1 – Hely-Weber Company<br />

David Teuscher, MD Member: ................................................n<br />

John R. Tongue, MD Member: ................................................n<br />

Gerald R. Williams, Jr., MD Member: 1 – DePuy, A Johnson & Johnson Company;<br />

2 – DePuy, A Johnson & Johnson Company, Mitek; 3B, 5 – Tornier; 4 – In<br />

Vivo Therapeutics; 7 – Journal <strong>of</strong> Shoulder and Elbow Surgery, Wolters Kluwer<br />

Health – Lippincott, Williams & Wilkins<br />

Mark Wieting, MA Staff Liaison: 4 – Abbott, GE Healthcare, Pfizer<br />

<strong>Annual</strong> <strong>Meeting</strong> Committee<br />

Charles T. Price, MD Chair: 1, 2, 3B – Biomet; 5 – Wright Medical Technology, Inc.<br />

Annunziato Amendola, MD 2010 Program Committee Chair: 1 – Arthrex, Inc.,<br />

Arthrosurface; 3B – Arthrex, Inc.; 4 – Arthrosurface<br />

Edward D. Arrington, MD BOC Representative: 6 – Geneva Foundation, Henry M.<br />

Jackson Foundation for the Advancement <strong>of</strong> Military Medicine<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Oheneba Boachie-Adjei, MD International Committee Representative and<br />

BOS Member: 1 – DePuy, A Johnson & Johnson Company, K2 Medical, Inc.;<br />

2, 3B, 5 – DePuy, A Johnson & Johnson Company, K2 Medical, Inc., Osteotech, Trans1;<br />

4 – K2 Medical, Inc.; 6 – DePuy, A Johnson & Johnson Company, K2 Medical, Inc.,<br />

Osteotech<br />

George J. Haidukewych, MD Member at Large: 1 – DePuy, A Johnson & Johnson<br />

Company; 4 – Orthopediatrics, Surmodics<br />

Timothy J. Hunt, MD Allied Health Representative: ................................n<br />

Theodore Miclau, MD ORS Representative: 3B – Amgen Co.; 4 – Johnson & Johnson,<br />

Merck, Pfizer; 5 – Stryker, Synthes, Zimmer<br />

Mark W. Pagnano, MD 2012 Instructional Course Committee Chair: 1 – DePuy, A Johnson<br />

& Johnson Company, MAKO; 5 – Zimmer; 7 – Clinical <strong>Orthopaedic</strong>s and Related<br />

Research<br />

William H. Seitz Jr., MD Exhibits Committee Chair: 2 – Stryker, Tornier; 3B – Kapp<br />

Surgical, SBI, Stryker, Tornier<br />

Michael J. Stuart, MD 2012 Program Committee Chair: 3B – Arthrex, Inc., Fios;<br />

5 – Stryker<br />

Paul Tornetta III, MD 2011 Instructional Course Committee Chair: 1, 3B – Smith &<br />

Nephew; 7 – Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

Adolph J. Yates Jr., MD Member at Large: 3A – GlaxoSmithKline<br />

James C. Krieg, MD LFP Member: 1 – CMF, SAM Medical, Synthes; 3B – Synthes<br />

Aaron Omotola, MD Resident at Large: .........................................n<br />

Susan A. McSorley Staff Liaison: ..............................................n<br />

Exhibits Committee<br />

William H. Seitz Jr., MD Chair: 2 – Stryker, Tornier; 3B – Kapp Surgical, SBI, Stryker,<br />

Tornier<br />

George Walter Balfour, MD Member: 3B – Upex<br />

J. David Blaha, MD Member: 1, 3B – Wright Medical Technology, Inc.<br />

Dennis B. Brooks, MD Member: ..............................................n<br />

A. Seth Greenwald, DPhil Oxon Member: 3B – DePuy, A Johnson & Johnson Company;<br />

5 – Acumed, LLC, Amedica, ConforMIS, Encore Medical, Japan Medical Materials,<br />

Maxx Health, Nuvasive, Ranier, SBI, Synvasive, TJO, Wright Medical Technology, Inc.;<br />

7 – Seminars in Arthroplasty<br />

Steven M. Kurtz, PhD Member: 5 – Active Implants, Biomet, Invibio, Medtronic,<br />

Stelkast, Stryker, Synthes, Ticona, Zimmer<br />

Pekka A. Mooar, MD Member: 3B – Baxter<br />

Joseph T. Moskal, MD Member: 1 – DePuy, A Johnson & Johnson Company; 2, 3B,<br />

3C – DePuy, A Johnson & Johnson Company, Zimmer<br />

David L. Nelson, MD Member: 1, 3B, 4, 6 – Orth<strong>of</strong>ix, Inc.; 2 – Orth<strong>of</strong>ix, Inc., Synthes<br />

John R. Tenny, MD Member: .................................................n<br />

Pat Whitaker Staff Liaison: ...................................................n<br />

Instructional Course Committee<br />

Paul Tornetta III, MD 2011 Chair: 1, 3B – Smith & Nephew; 7 – Wolters Kluwer<br />

Health – Lippincott, Williams & Wilkins<br />

Kenneth A. Egol, MD Member: 3C – Exactech, Inc.; 4 – Johnson & Johnson, Surgix<br />

Inc.; 5 – Biomet, Stryker, Synthes; 7 – SLACK Incorporated, Wolters Kluwer Health -<br />

Lippincott, Williams & Wilkins<br />

Robert A. Hart, MD Member: 1 – SeaSpine; 2 – DePuy, A Johnson & Johnson Company,<br />

Synthes; 3B – DePuy, A Johnson & Johnson Company; 4 – SpineConnect; 5 – DePuy, A<br />

Johnson & Johnson Company, Medtronic, OREF, Synthes<br />

Mary I. O’Connor, MD Member: 3B – Zimmer; 3C, 4 – Accelalox, Inc.<br />

Mark W. Pagnano, MD Member: 1 – DePuy, A Johnson & Johnson Company, MAKO;<br />

5 – Zimmer; 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

Dempsey S. Springfield, MD Ex-Officio: 4 – Johnson & Johnson, Merck<br />

Kathie Niesen Staff Liaison: ..................................................n<br />

Program Committee<br />

Annunziato Amendola, MD Chair: 1 – Arthrex, Inc., Arthrosurface; 3B – Arthrex, Inc.;<br />

4 – Arthrosurface<br />

Scott D. Boden, MD Member: 1 – Osteotech; 7 – Saunders/Mosby-Elsevier<br />

Joseph A. Bosco, III MD Member: .............................................n<br />

Steven L. Frick, MD Member: 5 – Biomet<br />

Michael J. Stuart, MD Member: 3B – Arthrex, Inc., Fios; 5 – Stryker<br />

20<br />

disclosure<br />

Kathie Niesen Staff Liaison: ..................................................n<br />

Subcommittees<br />

Adult Reconstruction Hip Instructional Course Subcommittee<br />

Jay R. Lieberman, MD Chair: 3B – DePuy, A Johnson & Johnson Company; 5 – Amgen<br />

Co., Arthrex, Inc.<br />

Edward M. Adler, MD Member: 3B – Stryker; 4 – Abbott, Procter & Gamble<br />

Gary Ferguson, MD Member: 1 – DJ <strong>Orthopaedic</strong>s, Encore Medical, 2, 3B, 3 C – Encore<br />

Medical<br />

Frank A. B. Gottschalk, MD Member: ..........................................n<br />

John F. Tilzey, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

William G. Ward, MD Member: 3B – Smith & Nephew, Wright Medical Technology, Inc.;<br />

5 – Musculoskeletal Transplant Foundation, Wright Medical Technology, Inc.<br />

Adult Reconstruction Knee Instructional Course Subcommittee<br />

Brett R. Levine, MD Chair: 2 – Angiotech, Ethicon; 3B – Zimmer; 5 – Biomet, Zimmer<br />

Douglas A. Dennis, MD Member: 1 – DePuy, A Johnson & Johnson Company,<br />

Innomed; 2, 3B – DePuy, A Johnson & Johnson Company; 5 – DePuy, A Johnson &<br />

Johnson Company, Porter Adventist Hospital<br />

Timothy S. Kavanaugh, MD Member: 4 - Zimmer<br />

Jay D. Mabrey, MD Member: 1, 2, 3B – Exactech, Inc.<br />

Amar S. Ranawat, MD Member: 1, 2, 5, 6 – DePuy, A Johnson & Johnson Company,<br />

Stryker; 3B – DePuy, A Johnson & Johnson Company, MAKO; 3C, 4 – ConforMIS,<br />

Stryker<br />

Bryan Donald Springer, MD Member: 2 – DePuy, A Johnson & Johnson Company;<br />

3B – Stryker Convatec Surgical<br />

Foot and Ankle Instructional Course Subcommittee<br />

Mark P. Slovenkai, MD Chair: 2 – Tornier<br />

Richard J. De Asla, MD Member: 4 – Pfizer<br />

John E. Femino, MD Member: ................................................n<br />

Thomas Gregory Harris, MD Member: 1 – Arthrex, Inc.; 2, 3B – Arthrex, Inc., Integra<br />

Lifescience<br />

Garnett Andrew Murphy, MD Member: 3C – Wright Medical Technology, Inc.;<br />

5 – Biomimetic; 7 – Saunders/Mosby-Elsevier<br />

Gene W. Shaffer, MD Member: ................................................n<br />

Hand and Wrist Instructional Course Subcommittee<br />

Marco Rizzo, MD Chair: 3C – Synthes; 5 – Ascension, SBI<br />

Michael S. Bednar, MD Member: 2 – DePuy, A Johnson & Johnson Company<br />

Nicholas Benjamin Bruggeman, MD Member: n<br />

Lewis B. Lane, MD Member: ..................................................n<br />

Matthew J. Meunier, MD Member: ............................................n<br />

Steven S. Shin, MD Member: 2 – MicroAire Corporation<br />

Pediatric Instructional Course Subcommittee<br />

Anthony A. Stans, MD Chair: ................................................n<br />

Richard E. Bowen, MD Member: ..............................................n<br />

Timothy Desmond Brown, MD Member: .......................................n<br />

J. Eric Gordon, MD Member: 1, 3B – Orthopediatrics<br />

Daniel J. Hedequist, MD Member: 3B – Medtronic S<strong>of</strong>amor Danek<br />

Kelly L. Vanderhave, MD Member: ............................................n<br />

Practice Management Instructional Course Subcommittee<br />

A. Herbert Alexander, MD Chair: .............................................n<br />

Robert H. Blotter, MD Member: 4 – Alpha Med-Surge, Inc., Pioneer Surgical<br />

Thomas R. Burgdorff, MD Member: ...........................................n<br />

Stanley H. Dysart, MD Member: 2 – Ferring Pharmaceuticals, Accelero, 3B – Ferring<br />

Pharmaceuticals<br />

Ira H. Kirschenbaum, MD Member: 1 – Innomed; 2, 3B, 4, 5 – Stryker<br />

Shoulder and Elbow Instructional Course Subcommittee<br />

William N. Levine, MD Chair: ................................................n<br />

Carl J. Basamania, MD Member: 1 – DePuy, A Johnson & Johnson Company; 2,<br />

3B – DePuy, A Johnson & Johnson Company, Sonoma <strong>Orthopaedic</strong> Products, Inc.<br />

Edward V. Craig, MD Member: 1, 2, 3B – Biomet; 7 – Wolters Kluwer<br />

Health – Lippincott, Williams & Wilkins<br />

Larry D. Field, MD Member: 3B – Smith & Nephew; 5 – Arthrex, Inc., Mitek, Smith &<br />

Nephew<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Gordon I. Groh, MD Member: 1 – Encore Medical; 2 – Arthrocare, DePuy, A Johnson &<br />

Johnson Company, DJ <strong>Orthopaedic</strong>s; 3B – Ascension <strong>Orthopaedic</strong>s, DePuy, A Johnson<br />

& Johnson Company, DJ <strong>Orthopaedic</strong>s, Upex; 4 – Upex; 5 – Ascension, DePuy, A<br />

Johnson & Johnson Company; 7 – DJ <strong>Orthopaedic</strong>s<br />

Wesley M. Nottage, MD Member: 6 – Arthrex, Inc., Conmed Linvatec, Smith and<br />

Nephew<br />

Spine Instructional Course Subcommittee<br />

Robert V. Dawe, MD Chair: 3B – Medtronic; 4 – Spinewave<br />

Edward Ratcliffe Anderson, III, MD Member: ...................................n<br />

Jacob M. Buchowski, MD Member: 2, 3B – Stryker<br />

Joseph H. Perra, MD Member: 1, 2, 3B, 4 – Medtronic; 5 – DePuy, A Johnson & Johnson<br />

Company<br />

Paul D. Sponseller, MD Member: 1 – DePuy, A Johnson & Johnson Company, Globus<br />

Medical; 3B, 5 – DePuy, A Johnson & Johnson Company; 7 – Oakstone Medical<br />

Mark Weidenbaum, MD Member: 2 – Shona Ika<br />

Sports Medicine/Arthroscopy Instructional Course Subcommittee<br />

Samuel D. Young III, MD Chair: ..............................................n<br />

Jeffrey S. Abrams, MD Member: 1 – Arthrocare, ConMed Linvatec; 2 – Mitek;<br />

3B – Arthrocare, ConMed Linvatec, Wright Medical Technology, Inc.; 4 – Arthrocare,<br />

Cayenne Medical, Ingen Medical, KFx Medical; 7 – Springer<br />

Peter E. Rork, MD Member: ..................................................n<br />

Richard K. N. Ryu, MD Member: 2 – Mitek; 3B – MedBridge<br />

Marc Safran, MD Member: 1 – Stryker; 3B – Arthrocare, Cool Systems, Inc.;<br />

3C – Biomimedica, Cool Systems, Inc., Cradle Medical, Inc., Ferring Pharmaceuticals;<br />

4 – Biomimedica, Cool Systems, Inc., Cradle Medical, Inc.; 5 – Ferring Pharmaceuticals;<br />

7 – Saunders/Mosby-Elsevier, Wolters Kluwer Health – Lippincott, Williams & Wilkins<br />

Felix H. Savoie, III, MD Member: 3B, 5 – Mitek, Smith & Nephew;<br />

3C, 4 – Cayenne Medical<br />

Trauma Instructional Course Subcommittee<br />

Paul J. Dougherty, MD Chair: ................................................n<br />

Cory Alan Collinge, MD Member: 1 – Advanced Orthopedic Systems, Biomet, Smith &<br />

Nephew; 3B – Biomet<br />

Kevin Joseph Pugh, MD Member: 2 – Medtronic, Smith & Nephew, Synthes; 3B,<br />

5 – Medtronic, Smith & Nephew; 3C – Synthes<br />

David C. Templeman, MD Member: 1 – Zimmer; 2, 3B – Stryker; 3C – Asut<br />

Tumor/Metabolic Disease Instructional Course Subcommittee<br />

Valerae O. Lewis, MD Chair: 5 – Stryker<br />

Joseph Benevenia, MD Member: 2 – Musculoskeletal Transplant Foundation;<br />

5 – Biomet, Musculoskeletal Transplant Foundation<br />

B. Hudson Berrey, MD, FACS Member: .........................................n<br />

Timothy Rapp, MD Member: 5 – Department <strong>of</strong> <strong>Orthopaedic</strong> Surgery Hospital for Joint<br />

Diseases at NYU Langone Medical Center: AO Spine, Arthrex, Arthritis Foundation–NY<br />

Chapter, Arthritis National Research Foundation, Asterland, Biomet, DePuy, DJO,<br />

Encore, Exactech, Ferring Pharmaceuticals, Geisinger, Integra, Johnson & Johnson, KCI,<br />

Medtronic, NIH, OMEGA, OREF, <strong>Orthopaedic</strong> Trauma Association, Osteosynthesis and<br />

Trauma Care Foundation, Paradigm Spine, Progenics, SBI, Smith and Nephew, Stryker,<br />

Surgix, Synthes<br />

Adult Reconstruction Hip Program Subcommittee<br />

Adolph V. Lombardi, Jr., MD Chair: 1 – Biomet, Innomed; 2, 3B, 5 – Biomet<br />

David Christopher Ayers, MD Member: 5 – Zimmer<br />

Thomas J. Blumenfeld, MD Member: 1, 2, 3B – DePuy, A Johnson & Johnson Company<br />

Mathias P. G. Bostrom, MD Member: 3B – Smith & Nephew; 5 – Bone Support, Smith<br />

& Nephew<br />

Paul E. DiCesare, MD Member: 3B – Stryker; 5 – GlaxoSmithKline, Stryker<br />

Brian A. Klatt, MD Member: 7 – SLACK Incorporated<br />

James Charles Kudrna, MD Member: 1 – DePuy, A Johnson & Johnson Company,<br />

Innomed; 2 – Convatec, DePuy, A Johnson & Johnson Company; 3B, 4 – DePuy, A<br />

Johnson & Johnson Company<br />

Glenn C. Landon, MD Member: 3B – CareFusion, Wright Medical Technology, Inc.<br />

Gwo-Chin Lee, MD Member: .................................................n<br />

Scott E. Marwin, MD Member: 1, 2, 3B – Smith & Nephew<br />

Bassam A. Masri, MD Member: 2 – DePuy, A Johnson & Johnson Company, Zimmer;<br />

3B – Zimmer<br />

John B. Meding, MD Member: 1 – Biomet<br />

J. Wesley Mesko, MD Member: 3B – Stryker; 6 – Biomet<br />

21<br />

disclosure<br />

Douglas E. Padgett, MD Member: 3B, 4 – MAKO<br />

Wayne G. Paprosky, MD Member: 1 – Wright Medical Technology, Inc., Zimmer;<br />

2 – Zimmer; 3B – Biomet, Zimmer; 7 – Journal <strong>of</strong> Arthroplasty<br />

Jeffrey M. Passick, MD Member: ..............................................n<br />

Christopher L. Peters, MD Member: 1, 3B, 5, 6 – Biomet<br />

Juan J. Rodrigo, MD Member: 5 – Arthrocare, Breg, DJ <strong>Orthopaedic</strong>s, Greenville<br />

Hospital Systems University Medical Center, Medequip, Inc., Ossur, Smith & Nephew<br />

Edwin P. Su, MD Member: 3B – Smith & Nephew; 5 – Cool Systems, Inc., Smith &<br />

Nephew<br />

Dean C. Sukin, MD Member: 2 – Biomet, 4 – Johnson & Johnson<br />

Marc Evan Umlas, MD Member: ..............................................n<br />

Michael B. Vessely, MD Member: 4 – Forest Laboratories, Protein Design Laboratories<br />

Richard E. White, Jr. MD Member: 1 – Zimmer; 3B – Ardent Health Services Lovelace<br />

Medical Center<br />

Adult Reconstruction Knee Program Subcommittee<br />

Giles R. Scuderi, MD Chair: 1, 2, 3B – Salient Surgical, Zimmer; 7 – Springer Elsevier<br />

Thieme, World Scientific<br />

James B. Benjamin, MD Member: 2, 3B – DePuy, A Johnson & Johnson Company<br />

Keith R. Berend, MD Member: 1 – Biomet; 3B – Biomet, Salient Surgical, Synvasive;<br />

4 – Angiotech;<br />

5 – Biomet, Salient Surgical<br />

Hari Bezwada, MD Member: 2 – Genzyme; 3B – Biomet, Zimmer<br />

Gary Worthington Bradley, MD Member: 1 – Innomed; 3B – Medacta, Wright Medical<br />

Technology, Inc.<br />

Fred D. Cushner, MD Member: 1 – Smith & Nephew; 2 – San<strong>of</strong>i-Aventis; 3B,<br />

4 – Angiotech; 7 – Thieme<br />

David F. Dalury, MD Member: 1, 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Kevin L. Garvin, MD Member: 1, 3A – Biomet; 2 – ConvaTec; 7 – Wolters Kluwer<br />

Health – Lippincott, Williams & Wilkins<br />

Jeffrey A. Geller, MD Member: ................................................n<br />

Terence J. Gioe, MD Member: 4 – Eli Lilly, Johnson & Johnson; 5 – DePuy, A Johnson &<br />

Johnson Company<br />

Atul B. Joshi, MD Member: 2 - Genzyme<br />

E. Michael Keating, MD Member: 1, 5 – Biomet; 2, 3B – Biomet, Johnson & Johnson;<br />

4 – Johnson & Johnson<br />

Michael A. Kelly, MD Member: 1 – Zimmer; 3B – Johnson & Johnson, Zimmer;<br />

4 – Pfizer<br />

Matthew J. Kraay, MD Member: 5 – National Institutes <strong>of</strong> Health NIAMS & NICHD,<br />

Zimmer<br />

Ormonde M. Mahoney, MD Member: 1, 2, 3B, 5 – Stryker<br />

Arthur L. Malkani, MD Member: 1, 3B – Stryker; 5 – Synthes, Stryker<br />

Thomas A. Malvitz, MD Member: 6 – DePuy, A Johnson & Johnson Company<br />

William M. Mihalko, MD, PhD Member: 1, 2, 3B, 6 – Aesculap/B.Braun; 5 – Aesculap/B.<br />

Braun, Corin U.S.A., Smith & Nephew, Stryker; 7 – Elsevier Inc.<br />

David J. Olysav, MD Member: 3C – Zimmer; 4 – Eli Lilly, Zimmer; 5 – Cubist<br />

Jeffery L. Pierson, MD Member: 3B – Zimmer<br />

James A. Shaw, MD Member: .................................................n<br />

Foot and Ankle Program Subcommittee<br />

Steven L. Haddad, MD Chair: 2 – Stryker; 3B – Wright Medical Technology, Inc.; 3C,<br />

4 – OrthoHelix Surgical Designs; 5 – Biomimetic<br />

Donald R. Bohay, MD Member: 1, 5 – MMI; 2, 3B – BESPA; 4 – Biomemetic, Osteotech<br />

Daniel C. Farber, MD Member: 4 – JMEA, Inc.<br />

Justin K. Greisberg, MD Member: 7 – Saunders/Mosby-Elsevier<br />

Stuart D. Miller, MD Member: 1 – Biomet; 2 – IntegraLifesciences; 3B – Biomet,<br />

IntegraLifesciences; 4 – Arthrocare, IntegraLifesciences, Orthovita, Osiris<br />

Hand and Wrist Program Subcommittee<br />

Thomas E. Trumble, MD Chair: 3B – Biomet, MicroAire Surgical Instruments LLC<br />

George W. Balfour, MD Member: 3B – Upex<br />

Gordon A. Brody, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Richard T. Herrick, MD Member: ..............................................n<br />

Joseph E. Imbriglia, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Pediatric Program Subcommittee<br />

Martin Joseph Herman, MD Chair: ...........................................n<br />

Kerwyn Jones, MD Member: 3C – Orthopediatrics; 7 – Cambridge Publishing<br />

Donna M. Pacicca, MD Member: ..............................................n<br />

Peter D. Pizzutillo, MD Member: .............................................n<br />

Jeffrey R. Sawyer, MD Member: 3B – Synthes; 3C – Medtronic<br />

Practice Management Program Subcommittee<br />

John DiPaola, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Ty Henry Goletz, MD Member: ...............................................n<br />

Patrick J. Horan, MD Member: ................................................n<br />

Bertrand Paul Kaper, MD Member: 3B – Smith & Nephew<br />

Thomas A. Malvitz, MD Member: 6 – DePuy, A Johnson & Johnson Company<br />

Shoulder and Elbow Program Subcommittee<br />

John William Sperling, MD, MBA Chair: 1 – Biomet, DJ <strong>Orthopaedic</strong>s; 3B – Tornier;<br />

4 – Emerge Surgical, Tornier<br />

Theodore A. Blaine, MD Member: 2, 3B – Zimmer<br />

Raymond M. Carroll, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Lynn A. Crosby, MD Member: 1, 2, 3B, 5 – Exactech, Inc.<br />

Mark A. Frankle, MD Member: 1, 2, 3B – DJ <strong>Orthopaedic</strong>s; 3C – DePuy, A Johnson &<br />

Johnson Company; 5, 6 – DJ <strong>Orthopaedic</strong>s, EBI, Eli Lilly, Encore Medical; 7 – SLACK<br />

Incorporated<br />

David L. Glaser, MD Member: 4 – GlaxoSmithKline, 5 - Mitek<br />

G. Russell Huffman, MD Member: ............................................n<br />

Spero G. Karas, MD Member: 1, 2 3B – DJ <strong>Orthopaedic</strong>s; 5 – Synthes; 6 – Arthrex, Inc.,<br />

ConMed Linvatec, Mitek<br />

Keith Kenter, MD Member: ...................................................n<br />

Michael J. Pagnani, MD Member: 4 – Baxter, Norvartis; 6 – STAR Physical Therapy<br />

Steve A. Petersen, MD Member: 5 – DJ <strong>Orthopaedic</strong>s<br />

Stephen C. Weber, MD Member: 3C – DePuy, A Johnson & Johnson Company<br />

Riley Joseph Williams, MD Member: 1 – Arthrex, Inc.; 5 – Smith & Nephew;<br />

7 – Springer<br />

Spine Program Subcommittee<br />

Michael Vives, MD Chair: 2 – Biomet, Musculoskeletal Transplant Foundation;<br />

3B – Zimmer; 4 – Accelalox<br />

Charles J. Banta, II, MD Member: 1, 3B - Biomet<br />

Norman Barrington Chutkan, MD Member: 1, 3C – Globus Medical<br />

John G. Finkenberg, MD Member: 1, 6 – Biomet; 2, 3, 4 – EBI<br />

Walter J. Finnegan, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Christian Ivan Fras, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Christopher George Furey, MD Member: .......................................n<br />

Hubert Lee Gooch, Jr., MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Steven M. Mardjetko, MD Member: 3C – DePuy, A Johnson & Johnson Company, K2M<br />

Corporation, Medtronic S<strong>of</strong>amor Danek; 4 – Axial Biotech, Spinecraft Corporation;<br />

5 – K2M Corporation<br />

Thomas A. McNally, MD Member: 2, 3B – DePuy, A Johnson & Johnson Company<br />

James W. Ogilvie, MD Member: 1 – Medtronic; 2 – DePuy, A Johnson & Johnson<br />

Company; 4 –Axial Biotech, Nuvasive; 7 – Wolters Kluwer Health – Lippincott, Williams<br />

& Wilkins;<br />

Jory Richman, MD Member: ..................................................n<br />

Paul Saiz, MD Member: 2, 3B, 5 - Zimmer<br />

Eeric Truumees, MD Member: 1 – Stryker; 4 – Doctor’s Research Group; 7 – North<br />

<strong>American</strong> Spine Society<br />

Sports Medicine/Arthroscopy Program Subcommittee<br />

Diane Lynn Dahm, MD Chair: ...............................................n<br />

James C. Dreese, MD Member:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Michael S. George, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Darren L. Johnson, MD Member: 3B – Smith & Nephew; 5 – DJ <strong>Orthopaedic</strong>s<br />

Morgan H. Jones, MD Member: 5 - Arthrosurface<br />

22<br />

disclosure<br />

Robert F. LaPrade, MD, PhD Member: 1, 3B – Arthrex, Inc.; 5 – Arthrex, Inc., Ossur,<br />

Smith & Nephew; 7 – Thieme<br />

Keith W. Lawhorn, MD Member: 1, 3B – Biomet<br />

Dean K. Matsuda, MD Member: 1 – Arthrocare, Smith & Nephew<br />

K. Kip Owen, MD Member: ..................................................n<br />

Kevin D. Plancher, MD Member: ..............................................n<br />

Jeffrey M. Schwartz, MD Member: 4 – Eli Lilly, Johnson & Johnson, Merck, Procter &<br />

Gamble<br />

Daniel Jordan Solomon, MD Member: 2 – Arthrex, Inc., Pacific Medical<br />

Patrick St Pierre, MD Member: 1 – DJ <strong>Orthopaedic</strong>s; 2, 3B – DJ <strong>Orthopaedic</strong>s, Mitek<br />

Robin Vereeke West, MD Member: ............................................n<br />

Ronald W. B. Wyatt, MD Member: .............................................n<br />

Trauma Program Subcommittee<br />

Bruce Ziran, MD Chair: 2 – Stryker, Synthes; 3B – Mondeal/Forcetec, Stryker, Synthes,<br />

Tekartis; 4 – Osteotech, Stryker<br />

Animesh Agarwal, MD Member: 3B – Acrymed, Medtronic, Smith & Nephew, Synthes<br />

Peter L. Althausen, MD Member: ..............................................n<br />

Craig Scott Bartlett, MD Member: 4 – Merck<br />

David F. Beigler, MD Member: ................................................n<br />

Jose A. Bossolo, MD Member: ................................................n<br />

Cory Alan Collinge, MD Member: 1 – Advanced Orthopedic Systems, Biomet, Smith &<br />

Nephew; 3B – Biomet<br />

Gregory John Della Rocca, MD Member: 4 – Amedica; 5 – Smith & Nephew, Stryker,<br />

Synthes, Wound Care Technologies<br />

Thomas J. Ellis, MD Member: 1 – Acute Innovations; 3B, 5 – Stryker<br />

Paul Levin, MD Member: ....................................................n<br />

Robert M. Orfaly, MD Member: 1, 3B – Acumed, LLC; 2 – DePuy, A Johnson & Johnson<br />

Company, MicroAire Surgical Instruments LLC<br />

Henry Claude Sagi, MD Member: 2, 3B, 5 – Smith & Nephew, Stryker, Synthes<br />

Philip R. Wolinsky, MD Member: 3B – Biomet, Zimmer; 5 – Synthes<br />

Tumor/Metabolic Disease Subcommittee<br />

R. Lor Randall, MD Chair: ...................................................n<br />

Joel Mayerson, MD Member: .................................................n<br />

Bryan Scott Moon, MD Member: ..............................................n<br />

Shervin V. Oskouei, MD Member: 2 – Wright Medical Technology, Inc., Orth<strong>of</strong>ix, Inc.,<br />

3B – Wright Medical Technology, Inc.<br />

Jason Scott Weisstein, MD Member: ...........................................n<br />

Multimedia Education Center Subcommittee Disclosures<br />

Kevin D. Plancher, MD Chair: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Joseph A. Abboud, MD Member: 2 – DePuy, A Johnson & Johnson Company;<br />

3B – Ascension <strong>Orthopaedic</strong>s; 7 – Wolters Kluwer Health – Lippincott, Williams &<br />

Wilkins<br />

James Michael Bennett, MD Member: 2, 3C – Ascension <strong>Orthopaedic</strong>s<br />

William Bennett Geissler, MD Member: 1 – Acumed, LLC, Arthrex, Inc.; 2 – Acumed,<br />

LLC, Arthrex, Inc., Ascension <strong>Orthopaedic</strong>s, Medartis, 3B – Acumed, LLC, Ascension<br />

<strong>Orthopaedic</strong>s; 4 – Tornier; 7 – Springer<br />

Michael Lee Granberry, MD Member: 5 – DePuy, A Johnson & Johnson Company<br />

Tally E. Lassiter Jr, MD Member: ..............................................n<br />

Peter B. Maurus, MD Member: 2, 3B – Wright Medical Technology, Inc.<br />

Russell D. Meldrum, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Ronald Anthony Navarro, MD Member: ........................................n<br />

Robert H. Quinn, MD Consultant 5–OREF, Smith & Nephew, Stryker, Synthes<br />

Mark T. Scarborough, MD<br />

Consultant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Mark W. Zawadsky, MD Member: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n<br />

Reid L. Stanton Staff Liaison: 4 – Abbott, Bristol-Myers Squibb, Eli Lilly, Exact Sciences,<br />

Hologic, Pfizer, Reservelogix<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

23<br />

disclosure<br />

FACULTY<br />

Shahram Aarabi, MD, MPH .................................................n<br />

Eline Aas, PhD ............................................................n<br />

Aziz Abbaspour, PhD .......................................................n<br />

Emam Abdel Fatah .........................................................n<br />

Ahmed Mohammed Abdel-aal, MD ...........................................n<br />

Matthew P Abdel, MD ......................................................n<br />

William A Abdu, MD .......................................................n<br />

Jesse Abeler, ATC, OTC ......................................................n<br />

Linda Abella, ONC .........................................................n<br />

Nicholas S Aberle, II MD ....................................................n<br />

Nicholas A Abidi, MD 1 – Acumed, LLC, Arthrex, Inc.; 2, 3B – Acumed, LLC, Arthrex,<br />

Inc., Biomet; 4 – Global <strong>Orthopaedic</strong> Solutions, LLC<br />

Celeste Abjornson, PhD ....................................................n<br />

Albert J Aboulafia, MD 7 – AAOS<br />

Simon Abram, BA ..........................................................n<br />

Jeffrey S Abrams, MD 1 – ConMed Linvatec, Arthrocare; 2 – Mitek; 3B – ConMed<br />

Linvatec, Arthrocare, Wright Medical Technology, Inc.; 4 – Arthrocare, Cayenne Medical,<br />

KFx Medical, Ingen Medical; 7 – Springer<br />

Joshua Matthew Abzug, MD .................................................n<br />

Francesco Acri, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Silvano Adami, MD 2 – GlaxoSmith Kline, Merck, Amgen Co., Eli Lilly; 3B – Amgen<br />

Co., GlaxoSmithKline; 5 – Merck<br />

Annette L Adams, PhD ......................................................n<br />

Brian D Adams, MD 5 – Tornier<br />

Joanne B Adams, BFA, CMI ..................................................n<br />

Julie E Adams, MD 3B – Arthrex, Inc., DePuy, A Johnson & Johnson Company, Wright<br />

Medical Technology, Inc.<br />

Mary Jo Adams, BSN .......................................................n<br />

Samuel Bruce Adams, Jr MD .................................................n<br />

Gregory J Adamson, MD ....................................................n<br />

Samer Adeeb, PhD .........................................................n<br />

Anthony Adili, MD .........................................................n<br />

Bahar Adeli, BA ............................................................n<br />

Ronald S Adler, MD, PhD 3B – Philips Medical<br />

Per Y Adolphson, MD 4 – AstraZeneca<br />

Sean Adwar, BA ............................................................n<br />

Richard Afable, MD ........................................................n<br />

Steven Agabegi, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Gabriel Agar, MD 3C – Procon; 4 – APOS Medical & Sports Technologies Ltd.<br />

Animesh Agarwal, MD 3B – Medtronic, Smith & Nephew, Synthes, Acrymed<br />

Ajay Aggarwal, MD .........................................................n<br />

Purnima Aggarwal, MD .....................................................n<br />

Mehran Aghazadeh, MD ....................................................n<br />

Gary Aghazarian, BS .......................................................n<br />

Ismail Agir, MD ............................................................n<br />

Samuel G Agnew, MD 3B – Zimmer Delphi HealthCare Partners; 3C – Accelero Health<br />

Care Partners, Select International; 7 – eMedicine<br />

Uzondu Francis Agochukwu, MD ............................................n<br />

Meenakshi Agrawal, MD ....................................................n<br />

Marc A Agulnick, MD 2 – Stryker<br />

Haluk Agus, MD, Pr<strong>of</strong> ......................................................n<br />

Torbjorn E Ahl ............................................................n<br />

Elke R Ahlmann, MD .......................................................n<br />

Christopher S Ahmad, MD 3B – Acumed, LLC, Arthrex, Inc.; 5 – Stryker; 6 – Zimmer<br />

Tashfeen Ahmad, MD ......................................................n<br />

Kasra Ahmadinia, MD ......................................................n<br />

Issaq Ahmed, MRCS ........................................................n<br />

Christine Ahn, BA ..........................................................n<br />

Michael Craig Ain, MD 1 – LANX; 2, 3B, 6 – Stryker<br />

Yukio Akasaki, MD, PhD ....................................................n<br />

Michael Akbar, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Behrooz A Akbarnia, MD 1 – DePuy Spine; 2 – Nuvasive, K2M; 3B – Nuvasive, K2M,<br />

Ellipse, K Spine, DePuy, A Johnson & Johnson Company; 4 – Nuvasive, Ellipse, K Spine,<br />

Nocimed; 5 – K2M, DePuy Spine, Nuvasive, Ellipse<br />

Christopher F Ake, PhD .....................................................n<br />

Koji Akeda, MD, PhD ......................................................n<br />

Yelena Akelina .............................................................n<br />

Edward Akelman, MD 1 – Integra; 2, 5 – Auxillium Pharmaceuticals; 3B – BioMimetic<br />

Therapeutics; 4 – BioMimetic Therapeutics, Osteospring Medical; 7 – Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Mariam Al-Hamad, BS ......................................................n<br />

Ghassan Alami, MD ........................................................n<br />

Marco Alberghini, MD ......................................................n<br />

Christoph Emanuel Albers, MD ..............................................n<br />

Todd J Albert, MD 1, 3B – DePuy, A Johnson & Johnson Company; 4 – Bioassets,<br />

Biomerix, Breakaway Imaging, Crosstree, Gentis, International <strong>Orthopaedic</strong> Alliance,<br />

Invuity, Paradigm Spine, PIONEER, Reville Consortium; Vertech; 6 – United Healthcare;<br />

7 – Saunders/Mosby-Elsevier, Thieme<br />

Francis G Alberta, MD 2, 3B – Arthrex, Inc.<br />

Jose Carlos Alcerro, MD ....................................................n<br />

Kris J Alden, MD ...........................................................n<br />

Thomas J Aleto, MD ........................................................n<br />

Peter G Alexander, PhD .....................................................n<br />

Michael M Alexiades, MD 3B – Biomet<br />

Daniel Alfonso, MD ........................................................n<br />

Sheila Marie Algan, MD .....................................................n<br />

Omid Alizadehkhaiyat, MD .................................................n<br />

D Gordon Allan, MD 5 – DePuy, A Johnson & Johnson Company, Corin U.S.A.<br />

Allison Allgier, OTR/L ......................................................n<br />

Daniel C Allison, MD ......................................................n<br />

Valeria Allizond ...........................................................n<br />

Luiz Henrique Almeida, MD .................................................n<br />

Fredrik Almqvist, MD 3B – Tigenix<br />

Julian Alonso, MS ..........................................................n<br />

Hasson Alosh, MD .........................................................n<br />

Mhd Alsawaf, MD ..........................................................n<br />

Sattar Alshryda, MD ........................................................n<br />

Helen Alsop, BSc(Hons) MSCP, SRP ..........................................n<br />

David W Altchek, MD ......................................................n<br />

Peter L Althausen, MD ......................................................n<br />

Carlos M Alvarado, MD .....................................................n<br />

Abdullatif Alzolibani, MD ...................................................n<br />

Derek Amanatullah, MD 4 – Stryker, Merck; 5 – Stryker<br />

Kanzo Amano, MD .........................................................n<br />

Eyal Amar, MD ............................................................n<br />

Marcus Vinicius Galvao Amaral, MD ..........................................n<br />

Terry David Amaral, MD ....................................................n<br />

Divya Ambati, A ...........................................................n<br />

Annunziato Amendola, MD 1 – Arthrex, Inc., Arthrosurface; 3B – Arthrex, Inc.;<br />

4 – Arthrosurface<br />

Luca Amendola, MD .......................................................n<br />

Richard Amendola, Post Grad 1 – Arthrex, Inc., Arthrosurface, Inc.; 3B – Arthrex, Inc.;<br />

4 – Arthrosurface Inc.; 7 – Journal <strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons<br />

Christopher Ames, MD 1 – Aesculap/B.Braun Lanx; 2, 5 – Medtronic, DePuy, Stryker;<br />

3B – Medtronic; 4 – Trans1<br />

S Elizabeth Ames, MD 5 – Stryker<br />

Osama Ahmed Amin, MD ...................................................n<br />

Farid Amirouche, MD ......................................................n<br />

Harlan C Amstutz, MD 1, 5 – Wright Medical Technology, Inc.<br />

Angel An, MS ..............................................................n<br />

Ana Garcia De Frutos, MD ..................................................n<br />

Raymond E Anakwe, MRCS Ed ...............................................n<br />

Okechukwu A Anakwenze, MD ..............................................n<br />

Ashish Anand, MD .........................................................n<br />

Rajan Anand, MBBS ........................................................n<br />

Aditya Ancha, BA ..........................................................n<br />

Matthew Anderle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Romney C Andersen, MD ...................................................n<br />

Allen F Anderson, MD 3B – Orthopediatrics; 7 – <strong>American</strong> Journal <strong>of</strong> Sports Medicine<br />

Andrew E Anderson, PhD ...................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

D Greg Anderson, MD 1, 2 – Medtronic, DePuy, A Johnson & Johnson Company;<br />

3B – DePuy, A Johnson & Johnson Company, Medtronic, Synthes, Sea spine; 5 – DePuy,<br />

A Johnson & Johnson Company; 7 – Thieme<br />

David T Anderson, MD .....................................................n<br />

Donald D Anderson, PhD ...................................................n<br />

Edward Ratcliffe Anderson, III MD ...........................................n<br />

John Anthony Anderson, MD ................................................n<br />

John G Anderson, MD 4 – Pfizer<br />

Kyle Anderson, MD 1, 2, 3B – Arthrex, Inc.; 3A – Mitek<br />

Lucas Anderson, MD .......................................................n<br />

Mark W Anderson, MD 4 – Pfizer; 7 – Elsevier<br />

Megan E Anderson, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Paul A Anderson, MD 1 – Pioneer, Stryker; 3B – Aesculap/B.Braun, Expanding<br />

Orthopedics, Medtronic S<strong>of</strong>amor Danek, Spartec, Titan Surgical; 4 – Pioneer Surgical, SI<br />

Bone, Spartec, Titan, Titan Surgical<br />

Robert B Anderson, MD 1 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s, Wright Medical<br />

Technology, Inc.; 3B, 5 – Wright Medical Technology, Inc.; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Sarah Anderson, MD .......................................................n<br />

Christopher Andrecovich, BS ................................................n<br />

Brett M Andres, MD ........................................................n<br />

J Glynne Andrew, MD ......................................................n<br />

Christopher Mark Andrews, Mr 2, 3 – JRI Ltd.<br />

James R Andrews, MD 1 – Biomet Sports Medicine, Biomet; 3A – Biomet Sports<br />

Medicine, Bauerfiend, Theralase, Mimed, Physiotherapy Associates; 3B – Biomet<br />

Sports Medicine, Bauerfiend, Theralase, Mimed; 4 – Patient Connection, Connective<br />

<strong>Orthopaedic</strong>s<br />

Jack T Andrish, MD ........................................................n<br />

David Angelillo, MD .......................................................n<br />

Andrea Angelini, MD .......................................................n<br />

Richard L Angelo, MD 2, 3B – DePuy, A Johnson & Johnson Company<br />

Aslam Anis, PhD ...........................................................n<br />

Aneel Ansari, MBBS ........................................................n<br />

Dr Pierluigi Antinolfi 2 – San<strong>of</strong>i-Aventis; 6 – Smith & Nephew<br />

Anne Antonellis, BA ........................................................n<br />

John Antoniou, MD 2 – DePuy, A Johnson & Johnson Company, Bayer; 3B, 5 – DePuy,<br />

A Johnson & Johnson Company<br />

Chie Aoki, MD ............................................................n<br />

Stephen K Aoki, MD 5 – Biomet<br />

Tomoki Aoyama, MD, PhD ..................................................n<br />

Alexios Apazidis, MD .......................................................n<br />

Luis Alberto Aponte-Tinao, MD ..............................................n<br />

Paul Appleton, MD 2 – Acumed, LLC<br />

Sebastian Apprich, MD .....................................................n<br />

Alessandro Aprato, MD .....................................................n<br />

Michael T Archdeacon, MD 2 – Smith & Nephew, Stryker, AO North America;<br />

3B – Stryker, CardioMEMS; 6 – Stryker; 7 – SLACK Incorporated<br />

Kristin Archer, PhD ........................................................n<br />

Douglas Archibald, PhD(c) .................................................n<br />

Jason Archibald, MD .......................................................n<br />

Robert A Arciero, MD 2, 5 – Arthrex, Inc.<br />

Nigel Arden, MD ...........................................................n<br />

Sergio Arellano, MS ........................................................n<br />

Elizabeth A Arendt, MD 3B – Tornier<br />

Jean-Noel A Argenson, MD 1, 3B – Zimmer; 5 – Johnson & Johnson, Stryker, Zimmer,<br />

Adler-Ortho, Symbios, Angiotech, Bayer<br />

Giuseppe Argento, MD .....................................................n<br />

Takashi Ariizumi, MD ......................................................n<br />

Jun Arimizu ...............................................................n<br />

Ronald Arky, MD ..........................................................n<br />

Bryan M Armitage, MD .....................................................n<br />

April D Armstrong, MD .....................................................n<br />

Douglas G Armstrong, MD ..................................................n<br />

Sally Arno, MSc ............................................................n<br />

24<br />

disclosure<br />

Steven P Arnoczky, DVM 2 – Musculoskeletal Transplant Foundation, Wright<br />

Medical Technology, Inc.; 3B – Musculoskeletal Transplant Foundation, Regeneration<br />

Technologies, Inc., Wright Medical Technology, Inc., Smith & Nephew, Novalign, Active<br />

Implants, Rotation Medical<br />

Edward D Arrington, MD 6 – Geneva Foundation, Henry M. Jackson Foundation for<br />

the Advancement <strong>of</strong> Military Medicine<br />

Buchi R B Arumilli, MRCS ..................................................n<br />

Tsuyoshi Asano, MD .......................................................n<br />

Yumiko Asanuma, MD, PhD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Rudolf Ascherl, MD ........................................................n<br />

Murat Asci, MD ............................................................n<br />

Adedayo O Ashana, BA .....................................................n<br />

Elizabeth Ashby, MRCS .....................................................n<br />

Nomaan Ashraf, MD .......................................................n<br />

Fiona Ashton, MB ChB 3A – Johnson & Johnson<br />

Mehmet Asik, MD ..........................................................n<br />

Michael Askew 5 – Medtronic, Stryker, IC Med Tech<br />

Vipin Asopa, MRCS ........................................................n<br />

Dimitrios Aspros, MRCS ....................................................n<br />

Mathieu Assal, MD .........................................................n<br />

William Aston, FRCS .......................................................n<br />

Ata Can Atalar, MD .........................................................n<br />

Alfred Atanda, MD .........................................................n<br />

Ozgur Ahmet Atay, MD, Pr<strong>of</strong> ................................................n<br />

Tolga Atay, Asst Pr<strong>of</strong>, MD ...................................................n<br />

Kivanc Israel Atesok, MD ...................................................n<br />

NA Athanasou 3B – Smith & Nephew<br />

George S. Athwal, MD 2 – ConMed Linvatec; 5 – Wright Medical Technologies,<br />

Arthrosurface, ConMed Linvatec, Tornier, Arthrex<br />

Farhaan Atlaf, MRCS .......................................................n<br />

David E Attarian, MD 7 – DataTrace<br />

Jereme B Atupan, MD ......................................................n<br />

Joerg Atzwanger, MD .......................................................n<br />

Keegan Peter Au, MD .......................................................n<br />

Jean-Manuel Aubaniac, MD .................................................n<br />

Michelle Aubin, MD ........................................................n<br />

Joshua D Auerbach, MD 3B – Paradigm Spine, Synthes Spine, Musculoskeletal Clinical<br />

Regulatory Advisors (MCRA); 5 – Paradigm Spine, Centinel Spine<br />

Peter Augat, PhD 3B – Amgen Co., Stryker, Eli Lilly; 3C – Arthrex, Inc., Smith &<br />

Nephew; 5 – Aesculap/B.Braun, Stryker, Servier, Eli Lilly<br />

Salvador Augustin, MD .....................................................n<br />

Luke Austin, MD ...........................................................n<br />

Matthew Austin, MD 3B – Zimmer; 5 – DePuy, A Johnson & Johnson Company<br />

Thomas W Axelrad, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

David Christopher Ayers, MD 5 – Zimmer<br />

Miguel Angel Ayerza, MD ...................................................n<br />

Michael C Aynardi, MD .....................................................n<br />

Frederick M Azar, MD 4 – Pfizer; 7 – Saunders/Mosby-Elsevier<br />

Abdul Aziz, BSc ............................................................n<br />

Bieta Azmoudeh, BS ........................................................n<br />

Takashi Azuma, MD ........................................................n<br />

Pr<strong>of</strong> Muharrem Babacan ....................................................n<br />

George Babis, MD 2 – Bayer; 5 – Bayer, Amgen Co.<br />

Geneva Baca ..............................................................n<br />

Bernard R Bach Jr, MD 7 – SLACK Incorporated<br />

Katrien Backers, PhD .......................................................n<br />

David Backstein, MD 2, 3B – Stryker, Zimmer<br />

Sherry I Backus, PT .........................................................n<br />

Marie Badalamente, PhD 1 – Biospecifics Technologies Corp.; 3B, 5 – Auxilium<br />

Pharmaceuticals<br />

Sameer Badarudeen, MD ....................................................n<br />

Dae Kyung Bae, MD ........................................................n<br />

Donald S Bae, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Hyun W Bae, MD 1 – Biomet, Stryker, Zimmer, Nuvasive; 2 – Medtronic, Synthes;<br />

3B – Medtronic, Zimmer, Synthes; 4 – Medtronic, Stryker, Orthovita, Spinal Restoration,<br />

Difusion; 5 – Stryker, LDR, Johnson & Johnson, Orthovita, Medtronic<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Ki-Cheor Bae, MD ..........................................................n<br />

Won Bae ..................................................................n<br />

David G Baer, PhD .........................................................n<br />

Ramin Bagheri, MD 1 – Nuvasive, Lanx; 2, 3B, 5 – Nuvasive; 4 – Phygen, Embassy<br />

Spine<br />

Armita Bahrami, MD .......................................................n<br />

James R Bailey, MD ........................................................n<br />

Gregory I Bain, MD 2 – SBI, Zimmer; 3B – AO Foundation<br />

Glen Olsen Baird, MD ......................................................n<br />

Sarvottam Bajaj, BE ........................................................n<br />

Alex Baker, FRCS ...........................................................n<br />

Mr Charlie Baker 3A, 4 – Smith & Nephew<br />

Christine P Baker, PT, EdD ..................................................n<br />

Dale Baker ................................................................n<br />

Erin Ann Baker, MS ........................................................n<br />

Joseph Baker, MD ..........................................................n<br />

Kevin Baker, MS ...........................................................n<br />

Hatem MA Bakr, MD .......................................................n<br />

B Sonny Bal, MD 1, 3B – Zimmer; 4 – Amedica<br />

Eric Balaguer, MD ..........................................................n<br />

Halil I Balci, MD ...........................................................n<br />

Todd H Baldini 6 – Synthes, Stryker<br />

Christine Baldus, MD ......................................................n<br />

Keith D Baldwin, MD 4 – Pfizer<br />

George Walter Balfour, MD 3B – Upex<br />

Chris Balinger, MD 4 – Pfizer<br />

Scott T Ball, MD 3C – DePuy, A Johnson & Johnson Company<br />

Jorge Ballester .............................................................n<br />

H Brent Bamberger, DO 1, 4 – Upex<br />

Giuliana Banche ...........................................................n<br />

Lorenzo Banci, MD 5 – Johnson & Johnson Medical Ltd.<br />

Philip Band, PhD 2 – Smith & Nephew; 3B – Smith & Nephew Baxter Healthcare<br />

Becton Dickinson; 3C – Avanca Medical Devices<br />

Stefano Bandiera, MD ......................................................n<br />

Shunichi Bandoh, PhD .....................................................n<br />

Rahul Banerjee, MD, FACS 5 – Synthes, Smith & Nephew, Medtronic, Stryker;<br />

7 – Elsevier<br />

Yannic Bangert, MD ........................................................n<br />

Trevor Banka, MD .........................................................n<br />

Charles J Banta II, MD 1, 3B – Biomet<br />

Yaron Bar Ziv, MD .........................................................n<br />

Mark E Baratz, MD 1, 2, 5 – Integra Life Sciences; 3B – Elizur; 4 – Upex; 7 – SLACK<br />

Incorporated<br />

Michael Baratz, MD ........................................................n<br />

David Barei, MD, FRCS(C) 2, 5 – Zimmer, Synthes; 3B – Synthes<br />

William R Barfield, PhD ....................................................n<br />

Alexej Barg, MD ...........................................................n<br />

Brian Barlow, MD ..........................................................n<br />

Ian W Barlow, FRCS ........................................................n<br />

Jonathan D Barlow, MD ....................................................n<br />

C Lowry Barnes, MD 1, 3C – Wright Medical Technology, Inc.; 5 – Johnson & Johnson,<br />

Stryker, Wright Medical Technology, Inc., ConforMIS<br />

Clint D Barnett, MD ........................................................n<br />

Steven L Barnett, MD 2, 3B – DePuy, A Johnson & Johnson Company; 5 – DePuy, A<br />

Johnson & Johnson Company, Stryker<br />

Jonathan C Barnwell, MD ...................................................n<br />

Joseph S Barr Jr, MD .......................................................n<br />

Robert L Barrack, MD 1 – Smith & Nephew; 5 – Biomet, Biospace Med, Medical<br />

Compression Systems, National Institutes <strong>of</strong> Health (NIAMS & NICHD), Smith &<br />

Nephew, Wright Medical Technology, Inc.; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

William P Barrett, MD 1, 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

John W Barrington, MD 3B, 5 – Biomet<br />

Thomas Barrington, DDS ...................................................n<br />

25<br />

disclosure<br />

Wael K Barsoum, MD 1 – Exactech, Inc., Wright Medical Technology, Inc., Shukla<br />

Medical; 2 – Stryker; 3B – Stryker, Wright Medical Technology, Inc., Shukla Medical;<br />

4 – Otismed; 5 – Stryker, Zimmer, TissueLink, Orthovita, Cool Systems, Brand X<br />

Robert Boyd Bartelt, MD ....................................................n<br />

Craig Scott Bartlett, MD 4 – Merck<br />

Gavin Bartlett, MBBS .......................................................n<br />

Carrie Bartley, MA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Stephen Bartol, MD 3C – Musculoskeletal Transplant Foundation, Innovative Surgical<br />

Solutions, LLC; 4 – Innovative Surgical Solutions, LLC<br />

Yair Barzilay, MD 3C – MAZOR Surgical Technologies<br />

Carl J Basamania, MD 1 – DePuy, A Johnson & Johnson Company; 2, 3B – DePuy, A<br />

Johnson & Johnson Company, Sonoma Orthopedic Products, Inc.<br />

Luca Basiglini, MD .........................................................n<br />

Aroon Baskaradas, MRCS ...................................................n<br />

Harpreet Singh Basran, MD .................................................n<br />

Johannes Dominik Bastian, MD .............................................n<br />

Tracey Bastrom, MA ........................................................n<br />

Vineet Batta, MD ..........................................................n<br />

Milva Battaglia, MD ........................................................n<br />

Nicholas Battaglia, BS ......................................................n<br />

Andrea S Bauer, MD ........................................................n<br />

Jennifer M Bauer ...........................................................n<br />

Thomas W Bauer, MD, PhD 3B – Alphatec Spine, Biomet, Osteotech, Smith & Nephew,<br />

Stryker; 4 – Alphatec Spine; 5 – DePuy, A Johnson & Johnson Company<br />

Sebastian F Baumbach, MD .................................................n<br />

Judith F Baumhauer, MD, MPH 3B – DJ <strong>Orthopaedic</strong>s, Carticept, Extremity Medical;<br />

3C – BioMimetic; 5 – DJO<br />

Eric D Bava, MD ...........................................................n<br />

Metin Lutfi Baydar, MD .....................................................n<br />

Barbaros Yakup Baykal, MD, Assoc Pr<strong>of</strong> .......................................n<br />

Keith E Baynes, MD ........................................................n<br />

Alp Bayramoglu, MD, Assoc Pr<strong>of</strong> .............................................n<br />

William R Beach, MD 5 – Arthrex, Inc., Smith & Nephew, Bon Secours Health Systems,<br />

Synthes<br />

Doug Beall, MD 2 3B, 4, 5 – Lilly, Amendia, Medtronic<br />

Timothy C Beals, MD .......................................................n<br />

Brandon S Beamer, MD 3A – Medtronic S<strong>of</strong>amor Danek<br />

Thomas F Bear, MD 5 – Zimmer, Astro Met, IC-MedTech<br />

David J Beard, DPhil 3B – Biomet, Stryker; 5 – Wright Medical Technology, Inc.,<br />

Stryker, Genzyme, Biomet<br />

Dorcas Beaton, OT .........................................................n<br />

Cammie Beattie, PT ........................................................n<br />

James H Beaty, MD 6 – Orthopaediatrics; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins, Saunders/Mosby-Elsevier<br />

Christopher Paul Beauchamp, MD 3B – DePuy, A Johnson & Johnson Company;<br />

7 – Saunders/Mosby-Elsevier<br />

Paul E Beaule, MD 1, 4 – Wright Medical Technology, Inc.; 2 – Wright Medical<br />

Technology, Inc., Smith-Nephew; 3B – Corin U.S.A., Smith & Nephew, Wright Medical<br />

Technology, Inc.; 5 – Corin U.S.A.; 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong><br />

Eric Beaumont, PhD .......................................................n<br />

Pierre H Beaumont, MD ....................................................n<br />

Lauren Beaupre, PhD .......................................................n<br />

Edward H Becker, III MD ...................................................n<br />

Jeremy Beckworth, MD .....................................................n<br />

Hany Bedair, MD ..........................................................n<br />

Asheesh Bedi, MD 2 – Mitek, Smith & Nephew; 3B – Smith & Nephew<br />

Michael J Beebe, MD .......................................................n<br />

Farhana Begum, BscEng ....................................................n<br />

Steve Brian Behrens, MD ....................................................n<br />

Bob Beitcher ..............................................................n<br />

Jacques Bejui-Hugues, MD 1, 6 – Amplitude<br />

Jeff Belkora ...............................................................n<br />

John-Erik Bell, MD .........................................................n<br />

Kimberly Bell, BA ..........................................................n<br />

Rebecca Bell, BS ...........................................................n<br />

Simon Bell, MD 3C – Mathys Ltd.<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Carlo Bellabarba, MD 2 – Synthes; 5 – Stryker, Synthes<br />

Enrico Bellato, MD .........................................................n<br />

Johan Bellemans, MD 1 – Smith & Nephew; 2, 3B – Smith & Nephew Mobilife<br />

Boehringer Ingelheim; 4 – Pfizer, Tigenix, Praxim, Stryker; 5 – Zimmer, San<strong>of</strong>i,<br />

Aventis, Biomet, DePuy Johnson and Johnson, Regentis, Synthes, Smith and Nephew,<br />

Boehringer Ingelheim, Heraeus, TOB, Orteq, Serica; 6 – Praxim Brainlab; 7 – Acco<br />

Springer Verlag<br />

Philip J Belmont, Jr MD ....................................................n<br />

Mohan Belthur, MD ........................................................n<br />

Michael John Beltran, MD ..................................................n<br />

Etienne Belzile, MD 2 – Bayer Inc., DePuy, A Johnson & Johnson Company;<br />

5 – Arthrex, Inc., Bristol-Myers Squibb, Canadian Institutes <strong>of</strong> Health Research (CIHR),<br />

Medtronic S<strong>of</strong>amor Danek, Stryker<br />

Oren Ben Lulu, MD ........................................................n<br />

Peleg Ben-Galim 5 – Medtronic, DePuy, Smith & Nephew, Persys Medical<br />

Edward T Bender, PhD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

John A Bendo, MD .........................................................n<br />

Shaike Benedict, MD .......................................................n<br />

Joseph Benevenia, MD 2 – Musculoskeletal Transplant Foundation; 5 – Biomet,<br />

Musculoskeletal Transplant Foundation<br />

Stephen K Benirschke, MD 3C – Synthes, Zimmer<br />

James B Benjamin, MD 2, 3B – DePuy, A Johnson & Johnson Company<br />

Michael T Benke, MD .......................................................n<br />

Rodney W Benner, MD .....................................................n<br />

Phillip W Bennion, MD .....................................................n<br />

George Bentley, CHM FRCS 7 – Journal <strong>of</strong> Arthroplasty<br />

Max Robert Berdichevsky, MD ...............................................n<br />

Pedro K Beredjiklian, MD 4 – Tornier<br />

Keith R Berend, MD 1 – Biomet; 3B – Biomet, Salient Surgical, Synvasive;<br />

4 – Angiotech; 5 – Biomet; Salient<br />

Michael E Berend, MD 1, 2 – Biomet; 3B – Angiotech; 5 – Biomet; ERMI<br />

Richard A Berger, MD 1 – Zimmer; 3B – Salient Surgical, Smith & Nephew<br />

Patrick F Bergin, MD .......................................................n<br />

Neil R Bergman, MD 3B – Stryker<br />

Alexandros Beris, MD ......................................................n<br />

Eric N Berkowitz, PhD ......................................................n<br />

Mark J Berkowitz, MD ......................................................n<br />

Scott D Berkowitz, MD 3A – Bayer HealthCare Pharmaceuticals<br />

Gregory Charles Berlet, MD 1 – Bledsoe Brace, Wright Medical Technology, Inc.;<br />

2, 3B – Wright Medical Technology, Inc.; 4 – Bledsoe Technologies, Wright Medical<br />

Technology, Inc.; 5 – DJ <strong>Orthopaedic</strong>s; 7 – Foot and Ankle Specialist (SAGE)<br />

Orjan K Berlin, MD ........................................................n<br />

Matthew S Bernard, MD ....................................................n<br />

Thomas L Bernasek, MD 1, 3B – DePuy, A Johnson & Johnson Company<br />

Nicholas Bernat, BA ........................................................n<br />

Andrew S Bernhardson, MD .................................................n<br />

Joseph Bernstein, MD 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

Nicholas Bernthal, MD .....................................................n<br />

Daniel J Berry, MD 1, 5 – DePuy, A Johnson & Johnson Company<br />

John C Berschback, MD ....................................................n<br />

Jack M Bert, MD 2 – Genzyme, Regen Biologics; 3B – Genzyme; 5 – Exactech, Inc.,<br />

Genzyme, Wright Medical Technology, Inc.<br />

Alexander Bertelsen, PA .....................................................n<br />

Nicky Bertollo, PhD ........................................................n<br />

J Bertumen, BS ............................................................n<br />

Sigurd H Berven, MD 2, 3B – Medtronic S<strong>of</strong>amor Danek, Alphatec Spine, Biomet,<br />

DePuy, A Johnson & Johnson Company; 4 – Baxano, Simpirica, Providence Medical,<br />

Axis, AccuLif; 5 – OREF, AO Foundation, Medtronic S<strong>of</strong>amor Danek<br />

James L Beskin, MD ........................................................n<br />

Javier Besomi, MD .........................................................n<br />

Thomas M Best, MD, PhD, FACSM ...........................................n<br />

Alex Betech, MD ...........................................................n<br />

Graziano Bettelli, MD ......................................................n<br />

Brad W Betz, MD 3C – GE Healthcare<br />

26<br />

disclosure<br />

Randal R Betz, MD 1 – DePuy, A Johnson & Johnson Company, Medtronic, Osteotech,<br />

Synthes; 2 – DePuy, A Johnson & Johnson Company, Osteotech; 3B – DePuy, A<br />

Johnson & Johnson Company, Medtronic, Osteotech, Synthes, Orthocon, SpineGuard,<br />

Orthovita, SpineMedica; 3C – Orthobond; 4 – SpineGuard, SpineMedica, Orthocon;<br />

5 – DePuy, A Johnson & Johnson Company, Synthes; 7 Thieme<br />

Catherine Bevan, MD .......................................................n<br />

Michael Bey, PhD 5 – DJ <strong>Orthopaedic</strong>s<br />

Sarah Beykirch ............................................................n<br />

Shaul Beyth, MD ...........................................................n<br />

Hari Bezwada, MD 2 – Genzyme; 3B – Biomet, Zimmer<br />

Arup K Bhadra, MD ........................................................n<br />

Mohit Bhandari, MD 3B – Amgen Co., Eli Lilly, Pfizer, Stryker, Smith & Nephew<br />

Tarun Bhargava, MD .......................................................n<br />

Suneel B Bhat, MPhil .......................................................n<br />

Nitin N Bhatia, MD 1, 5 – Alphatec Spine, Sea spine; 2, 3B – Biomet, Alphatec Spine,<br />

Sea spine; 4 – DiFusion<br />

Sanjeev Bhatia, MD ........................................................n<br />

Timothy Bhattacharyya, MD 3B – Best Doctors, AllMed<br />

Leela C Biant, FRSCEd 5 – JRI (Joint Replacement Instrumentation)<br />

Orhan Bican, MD ..........................................................n<br />

Ali Bicimoglu, MD .........................................................n<br />

Jacob Bickels, MD 3B – Synthes<br />

Alison M Biercevicz, BS 6 – RIH <strong>Orthopaedic</strong> Foundation, Inc.<br />

Louis U Bigliani, MD 1 – Zimmer<br />

Simone Bignozzi 3A, 6 – I + S.r.l.<br />

Fikri Erkal Bilen, MD .......................................................n<br />

Fabrizio Billi, PhD 3B – Biomet; 5 – Biomet, DePuy, A Johnson & Johnson Company,<br />

Medtronic S<strong>of</strong>amor Danek, National Institutes <strong>of</strong> Health (NIAMS & NICHD), Stryker,<br />

Wright Medical Technology, Inc.<br />

Victor Joseph Bilotta, MD 3A – Aesculap/B.Braun<br />

Randipsingh R Bindra, MD 1 – Tornier; 2 – AM Surgical, Integra NeuroSciences;<br />

3B – Acumed, LLC, Anspach, Integra LifeSciences, Tornier<br />

Francois Binette, Dr 3A – Medtronic; 4 – Medtronic, Johnson & Johnson<br />

Stefano Alec Bini, MD ......................................................n<br />

Odion Binitie, MD .........................................................n<br />

Cynthia A Bir ..............................................................n<br />

Ann Birch, MD ............................................................n<br />

John G Birch, MD 1 – Orth<strong>of</strong>ix, Inc.; 7 – Mosby-Elsevier<br />

Sherri B Birchansky, MD ....................................................n<br />

Ali Birjandinejad, Pr<strong>of</strong> 5 – Synthes<br />

Patrick Birmingham, MD ...................................................n<br />

Allen T Bishop, MD ........................................................n<br />

Michael J Bishop 4 – Eli Lilly, GlaxoSmithKline, Pfizer, Merck<br />

Pepijn Bisseling, MD .......................................................n<br />

Alessandro Bistolfi .........................................................n<br />

Rudi Bitsch, MD 2 – DePuy, A Johnson & Johnson Company; 5 – Biomet, DePuy, A<br />

Johnson & Johnson Company, Smith & Nephew, Wright Medical Technology, Inc.,<br />

Zimmer<br />

Dennis Black 2 – Amgen Co.; 5 – Novartis, Roche, Merck<br />

James Clinton Black, MD ...................................................n<br />

Kevin P Black, MD .........................................................n<br />

Lorne H Blackbourne, MD ..................................................n<br />

J David Blaha, MD 1, 3B – Wright Medical Technology, Inc.<br />

Theodore A Blaine, MD 2, 3B – Zimmer<br />

James Alan Blair, MD .......................................................n<br />

Jamie L Blair, BS ...........................................................n<br />

Kim Blake, CTC ............................................................n<br />

Laurel C Blakemore, MD 2, 3B, 5 – K2M<br />

Ryan Blalock, BS ...........................................................n<br />

Char Blanchard ............................................................n<br />

Agustin Blanco Pozo, MD ...................................................n<br />

John S Blanco, MD .........................................................n<br />

Donna G Blankenbaker, MD ................................................n<br />

Theodore Blatt, MD ........................................................n<br />

John J Block, MD ..........................................................n<br />

Davide Blonna, MD ........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Robert H Blotter, MD 4 – Pioneer Surgical, Alpha Med-Surge, Inc.<br />

Yossef C Blum, MD ........................................................n<br />

Eric Michael Bluman, MD 3B – Arthrex, Inc., DePuy, A Johnson & Johnson Company,<br />

Joint Restoration Foundation; 6 – EMS/Swiss Dolorclast<br />

Todd Blumberg, BS ........................................................n<br />

Thomas J Blumenfeld, MD 1, 2, 3B – DePuy, A Johnson & Johnson Company<br />

Oheneba Boachie-Adjei, MD 1 – DePuy, A Johnson & Johnson Company, K2 Medical,<br />

Inc.; 2, 3B, 5 – k2 Medical, Inc., DePuy, A Johnson & Johnson Company, Osteotech,<br />

Trans1; 4 – K2 Medical, Inc.; 6 – k2 Medical, Inc., DePuy, A Johnson & Johnson<br />

Company, Osteotech<br />

David Laurence Boardman, MD ..............................................n<br />

J Dennis Bobyn, PhD .......................................................n<br />

Chandra Sekhar Bodanki, MS ...............................................n<br />

Henrik Boden, MD, PhD ....................................................n<br />

Scott D Boden, MD 1 – Osteotech; 7 – Saunders/Mosby-Elsevier<br />

Teresa Bodette, BA .........................................................n<br />

Nathan Daniel Bodin, MD 3A, 4 – AstraZeneca Pharmaceuticals, LLP<br />

R Paul Boesch, MD .........................................................n<br />

Christoph Boese, MD .......................................................n<br />

Friedrich Boettner, MD 3C, 5 – Smith & Nephew; 4 – Smith & Nephew, Zimmer,<br />

Wright Medical Technology, Inc.<br />

Michele B<strong>of</strong>fano ...........................................................n<br />

Ghassan Boghosian, DO ....................................................n<br />

Donald R Bohay, MD 1 – MMI; 2, 3B – Stryker, MMI, Osteotech; 4 – Osteotech,<br />

BioMimetic; 5 – MMI<br />

Henry H Bohlman, MD .....................................................n<br />

Eric R Bohm, MD 2 – DePuy, A Johnson & Johnson Company; 3B – Smith & Nephew<br />

Walther Hartmuth Bohne, MD ...............................................n<br />

Pascal Boileau, MD 1 – Tornier; 3B – Smith & Nephew<br />

Alicja Bojan, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

William Seth Bolling, MD ...................................................n<br />

Michael P Bolognesi, MD 2 – Zimmer; 3B – Zimmer, Biomet, Total Joint Orthopedic;<br />

3C – Amedica; 4 – Amedica, Total Joint Orthopedic; 5 – DePuy, A Johnson & Johnson<br />

Company, Zimmer, Wright Medical Technology, Inc.<br />

Tommaso Bonanzinga, MD .................................................n<br />

Fiona Bonar, MBBS ........................................................n<br />

Davide E Bonasia, MD ......................................................n<br />

Jeffrey R Bond, MD ........................................................n<br />

Jennifer Bondy, BSc ........................................................n<br />

Daniel Lluch Bonete, MD ...................................................n<br />

Nicolas Bonnevialle, MD ....................................................n<br />

Michel Bonnin, MD 1 – Tornier, Zimmer; 7 – Springer<br />

Christopher M Bono, MD 6 – Barricaid; 7 – Informa, Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

James V Bono, MD 3B – Stryker; 7 – Springer<br />

Peter M Bonutti, MD 1 – Arthrocare, Stryker, Synthes, Biomet, Joint Active Systems, Inc.;<br />

2, 3B – Stryker; 4 – Joint Active Systems, Inc.<br />

Hikel Alfred Boohaker ......................................................n<br />

David Warner Boone, MD 4 – Pfizer<br />

Harm-Willem Boons, MD ...................................................n<br />

Robert E Booth, Jr MD 2, 3A – Zimmer<br />

Barbara Bordini, MD .......................................................n<br />

Olivier Borens, MD ........................................................n<br />

Luca Boriani, MD ..........................................................n<br />

Stefano Boriani, MD .......................................................n<br />

Lindsey Bornstein ..........................................................n<br />

Joseph Borrelli, Jr MD 3B – Wright Medical Technology, Inc.<br />

Michael J Borr<strong>of</strong>f 3A – DePuy, A Johnson & Johnson Company; 4 – Johnson & Johnson<br />

Mrs Ellis Bos ..............................................................n<br />

Joseph A Bosco, III MD .....................................................n<br />

Santiago Bosio, MD ........................................................n<br />

Frederiek Bosscher, MD .....................................................n<br />

Michael J Bosse, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Bora Bostan, MD ..........................................................n<br />

Mathias P G Bostrom, MD 3B – Smith & Nephew; 5 – Smith & Nephew, Bone Support<br />

Sergiu O Botolin, MD ......................................................n<br />

27<br />

disclosure<br />

Itamar Botser ..............................................................n<br />

Michael J Botte, MD ........................................................n<br />

Michael Bottlang, PhD 1, 2 – Synthes; Zimmer<br />

Nicholas J Bottomley, MRCS .................................................n<br />

Martin Boublik, MD 4 – Arthrocare, Cayenne Medical<br />

Martin Bouliane 6 – Synthes<br />

Christina B Boulton, MD 6 – Synthes Resident Program<br />

Gerard Martin Bourke, FRACS 1 – Arthrex, Inc.; 5 – Endotech<br />

Robert Barry Bourne, MD 1 – Genesis II/Legion TKRs R3 Acetabular Cup, Smith &<br />

Nephew; 3B – Genesis II/Legion TKRs R3 Acetabular Socket; 5 – Stryker, DePuy<br />

Thomas R Bowen, MD ......................................................n<br />

Lyndsay N Bowers, BS, MS ..................................................n<br />

Russell Bowman, MSc 6 – Stryker<br />

Robert Bowser, PhD 3B, 4 – Cytonics Corporation<br />

John Bowsher, PhD ........................................................n<br />

Barbara D Boyan, PhD 2 – TitanSpine, Inc.; 3B – Exactech, Inc., Musculoskeletal<br />

Transplant Foundation, National Institutes <strong>of</strong> Health (NIAMS & NICHD); 3C – Institut<br />

Straumann AG; 4 – MedShape Solutions, Arthrocare, Carticept Medical, Inc.;<br />

5 – Musculoskeletal Transplant Foundation<br />

Louise Reid Boyce Nichols, MD ..............................................n<br />

Martin I Boyer, MD 1 – OrthoHelix; 4 – Mimed, OrthoHelix; 7 – <strong>American</strong> Society for<br />

Surgery <strong>of</strong> the Hand<br />

David Boyle, MS 5 – Pfizer, Genentech<br />

David J Bozentka, MD 2 – Medartis<br />

Kevin John Bozic, MD, MBA .................................................n<br />

Laura Bozzuto, AB .........................................................n<br />

Pierangiola Bracco .........................................................n<br />

Elena Brach Del Prever, Pr<strong>of</strong> .................................................n<br />

Gary Worthington Bradley, MD 1 – Innomed; 3B – Wright Medical Technology, Inc.,<br />

Medacta<br />

James P Bradley, MD 1, 5 – Arthrex, Inc.<br />

Neil Bradley, FRCS .........................................................n<br />

Charles R Bragdon, PhD 1 – Zimmer<br />

Michael E Brage, MD .......................................................n<br />

Brett Braly, MD ............................................................n<br />

Jefferson C Brand Jr, MD ....................................................n<br />

Richard A Brand, MD 7 – Association <strong>of</strong> Bone and Joint Surgeons (Owners <strong>of</strong> Clinical<br />

<strong>Orthopaedic</strong>s and Related Research)<br />

Bruno Lobo Brandao, MD ..................................................n<br />

Rickard Branemark 3A, 4 – Integrum<br />

Richard Jackson Bransford, MD 2, 5 – Synthes<br />

Nicholas Brassart ..........................................................n<br />

Adam Brekke ..............................................................n<br />

Ivan Brenkel, FRCS 2 – Bayer; 4 – Bayer, GlaxoSmithKline<br />

Kindyle L Brennan, PhD ....................................................n<br />

Michael L Brennan, MD ....................................................n<br />

Mark Brezinski, MD, PhD ...................................................n<br />

Hans-Peter Brickwede, MD ..................................................n<br />

Keith H Bridwell, MD 3B – DePuy, A Johnson & Johnson Company, Medtronic, Stryker;<br />

7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Karen K Briggs, MPH 5 – Ossur, Smith & Nephew, Arthrex, Inc., Siemens<br />

Lisa Briggs, Sonographer ....................................................n<br />

Tim Briggs, FRCS 5 – Biomet<br />

Ole Brink, MD, PhD, MPA ..................................................n<br />

Martin Brix, CM ...........................................................n<br />

Darrel S Brodke, MD 1 – DePuy, Amedica; 3B – Medtronic, DePuy; 4 – Amedica,<br />

Pioneer, Vertiflex<br />

James White Brodsky, MD 5 – Synthes, Small Bone Innovations<br />

Gordon A Brody, MD .......................................................n<br />

Henry M. Broekhuyse, MD 5–Stryker, Synthes<br />

Amanda E Brooks, PhD .....................................................n<br />

Peter J Brooks, MD 3B – Stryker, Smith & Nephew<br />

Robert H Brophy, MD 3B – DePuy, A Johnson & Johnson Company<br />

Justin Brothers, MD ........................................................n<br />

Kim M Brouwer, MSC ......................................................n<br />

Haydee C. Brown, MD ......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Kate Brown ...............................................................n<br />

Kate V Brown, BM BCh .....................................................n<br />

Matthew L Brown ..........................................................n<br />

Nicholas M Brown, BS ......................................................n<br />

Richard A Brown, MD 2 – Auxilium; 4 – Merck, Pfizer<br />

Thomas D Brown, PH D 3B – Smith & Nephew; 7 – Journal <strong>of</strong> Bone and Joint<br />

Surgery - <strong>American</strong><br />

James Andrew Browne, MD .................................................n<br />

Martin Browne, PhD 3A, 3B – Finsbury Development<br />

Richard H Browne, PhD ....................................................n<br />

Bruce D Browner, MD ......................................................n<br />

William Timothy Brox, MD .................................................n<br />

Thomas Bruckner, Dipl.Math. ...............................................n<br />

Robert J Brumback, MD 3B – Biomet, Zimmer<br />

Danilo Bruni, MD .........................................................n<br />

Samuel Brunner, MD .......................................................n<br />

Lance Michael Brunton, MD .................................................n<br />

Matteo Bruzzone, MD ......................................................n<br />

Deniz Bucak, BS ...........................................................n<br />

Christina Bucci-Rechtweg, MD 3A, 4 – Novartis<br />

Barbara Buch, MD .........................................................n<br />

Jacob M Buchowski, MD 2, 3B – Stryker<br />

Jenni M Buckley, PhD 5 – Acumed, LLC, Arthrex, Inc., Biomet, Brainlab, DePuy, A<br />

Johnson & Johnson Company, MAZOR Surgical Technologies, Medtronic, Nuvasive,<br />

OREF, Philips, Sawbones/Pacific Research Laboratories, SBI, Smith & Nephew, Stryker,<br />

Synthes, Ulrich Medical<br />

Richard E Buckley, MD .....................................................n<br />

Joseph A Buckwalter, MD 3B – ISTO and Carbylan Bioscience; 7 – Journal <strong>of</strong><br />

<strong>Orthopaedic</strong> Research<br />

Roberto Buda .............................................................n<br />

Rogerio Serpone Bueno, MD ................................................n<br />

William Bugbee, MD 1 – DePuy, A Johnson & Johnson Company, Zimmer, Smith &<br />

Nephew; 3B – DePuy, A Johnson & Johnson Company, Smith & Nephew, Zimmer, Joint<br />

Restoration Foundation, Moximed, Advanced BioHealing; 4 – Moximed, OrthAlign;<br />

5 – NIH, Joint Restoration Foundation, OrthAlign, Alter-G<br />

Susan V Bukata, MD 2 – Amgen Co., Eli Lilly, Novartis; 3B – Amgen Co., Eli Lilly<br />

Peter G Bullough, MD ......................................................n<br />

Robert L Buly, MD 4 – Pivot Medical<br />

Janice Y Bunn, PhD ........................................................n<br />

Shane Burch, MD 2, 3B – Medtronic; 3C – Eli Lilly; 5 – Eli Lilly, Nuvasive<br />

Christoph Burger, MD ......................................................n<br />

Evalina L Burger, MD 2 – Stryker<br />

Travis Burgers, PhD ........................................................n<br />

Mary F Burke, MPH ........................................................n<br />

Stephen S Burkhart, MD 1, 3B, 5 – Arthrex, Inc.; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Wayne Z Burkhead Jr, MD 1, 2, 4 – Tornier; 3B – Tornier, Wright Medical Technology,<br />

Inc.; 5 – Wright Medical Technology, Inc.<br />

Colin Burnell, MD 2 – DePuy, A Johnson & Johnson Company; 3B – DePuy, A Johnson<br />

& Johnson Company, Smith & Nephew; 5 – DePuy, A Johnson & Johnson Company,<br />

Smith & Nephew, Stryker, Zimmer<br />

Travis C Burns, MD ........................................................n<br />

Brandon Burris, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Douglas C Burton, MD 3A – Pfizer; 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Lucas J Burton, MD ........................................................n<br />

Matthew L Busam, MD .....................................................n<br />

Michael T Busch, MD .......................................................n<br />

Tiziana Buscio, MD ........................................................n<br />

Daniel D Buss, MD 3B – Wright Medical Technology, Inc.; 4 – Disc Dynamics;<br />

6 – Minnesota Twins<br />

Dale R Butler, MD 4 – Stryker<br />

Ian R Byram, MD 3A, 4 – Eli Lilly<br />

J W Thomas Byrd, MD 3B – Smith & Nephew, A2 Surgical; 4 – A2 Surgical; 5 – Smith<br />

& Nephew<br />

Daniel Byrne, PhD .........................................................n<br />

Young Soo Byun, MD .......................................................n<br />

28<br />

disclosure<br />

David N Caborn, MD 1 – Arthrex, Inc.; 2 – Genzyme, Zimmer, Joint Restoration<br />

Foundation; 3B – ConMed Linvatec, Zimmer, Smith & Nephew, Regen, Joint Restoration<br />

Foundation; 4 – IBalance Medical, Zimmer; 6 – Smith & Nephew<br />

Enrique Caceres, Pr<strong>of</strong> 1 – Surgival; 2 – Medtronic; 3B – DePuy, A Johnson & Johnson<br />

Company<br />

Patrick John Cahill, MD 3B – DePuy, A Johnson & Johnson Company, Osteotech,<br />

Synthes; 5 – DePuy, A Johnson & Johnson Company<br />

Michelle S Caird, MD .......................................................n<br />

Gokhan Cakmak, Asst. Pr<strong>of</strong>. .................................................n<br />

Teresa Calabro, MD ........................................................n<br />

Lucia Calbucci, MD ........................................................n<br />

James Calder, MD 2, 3B – Smith & Nephew; 5 – DePuy, A Johnson & Johnson<br />

Company, DJ <strong>Orthopaedic</strong>s<br />

Joseph M Caldwell, II MD ...................................................n<br />

Ryan Patrick Calfee, MD 5 – Medartis<br />

Jason H Calhoun, MD 5 – Biocomposites<br />

John Callaci, PhD ..........................................................n<br />

John J Callaghan, MD 1 – DePuy, A Johnson & Johnson Company; 7 – Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Barbara Callewaert .........................................................n<br />

Briana Calore, MD .........................................................n<br />

Javier Camacho-Galindo, MD ................................................n<br />

Frank P Cammisa Jr, MD 1 – Nuvasive, HydroCision, K2M, Orthovita; 3B – Centinel<br />

Spine, Disc Motion Technologies, HydroCision, K2M, Orthovita, Paradigm Spine,<br />

Vertebral Technologies; 4 – Alphatec Spine, Disc Motion Technologies, Healthpoint<br />

Capital, HydroCision, K2M, Major, Nuvasive, Paradigm Spine, Orthovita, Royer, Scent’s<br />

USA, Spinal Kinetics, Vertebral Technologies<br />

John Camp, MD 3C – Sonosite, Inc.<br />

Antonio Campacci .........................................................n<br />

Elizabeth Campagnna, MS ..................................................n<br />

Jane Campbell .............................................................n<br />

Joel Campbell, BA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Patricia A Campbell, PhD 2 – Biomet; 5 – DePuy, A Johnson & Johnson Company,<br />

Wright Medical Technology, Inc., Zimmer, Smith & Nephew Inc., Corin/Stryker Inc.<br />

Fabrizio Campi, MD .......................................................n<br />

Jonathon Campion, FRCS ...................................................n<br />

S Terry Canale, MD 7 – Campbells Operative<br />

Lautaro Candioti, MD ......................................................n<br />

Eugenio Canesin Dal Molin, MD .............................................n<br />

Arturo C Canete, MD .......................................................n<br />

Philippa Cann, PhD ........................................................n<br />

Lisa K Cannada, MD 5 – Zimmer, Synthes<br />

William N Capello, MD 1, 3B, 4 – Stryker<br />

Ludovico Caperna, MD .....................................................n<br />

Jason Capo, MD ...........................................................n<br />

John T Capo, MD 1 – Wright Medical Technology, Inc.; 3B – Synthes, Wright Medical<br />

Technology, Inc.; 7 – Informa Healthcare<br />

James D Capozzi, MD 1 – BodyworksMD; 4 – Pfizer<br />

Auro Caraffa, MD ..........................................................n<br />

Mario J Cardoso, MD .......................................................n<br />

James L Carey, MD .........................................................n<br />

Jason P Carey, PhD .........................................................n<br />

Yannick Carillon, MD ......................................................n<br />

Graeme S Carlile, MBChB, MRCS ............................................n<br />

John Carlisle, MD ..........................................................n<br />

Fernando Carlos, MSc 2, 3B – Roche; 6 – Eli Lilly, Roche, Johnson & Johnson, San<strong>of</strong>i-<br />

Aventis<br />

Fulvio Carluzzo, MD .......................................................n<br />

Kelly D Carmichael, MD ....................................................n<br />

Kimberly Carney Young, MD ................................................n<br />

Cyrus Theodore Caroom, MD ...............................................n<br />

James E Carpenter, MD 4 – Stryker, Pfizer<br />

Andrew J Carr 6 – Smith & Nephew; 7 – Oxford University Press<br />

Christopher Carr ..........................................................n<br />

Diana Deane Carr, MD .....................................................n<br />

John Austin Carr, MS .......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Eugene Carragee, MD 3B – Synthes, Medtronic, Dept. <strong>of</strong> Justice, Dept. <strong>of</strong> Defense,<br />

Ascension Health; 3C – BioAssets, Intrinsic, Cytonics, Simpirica; 4 – BioAssets, Cytonics,<br />

Simpirica; 5 – AOSpine, DePuy, OREF<br />

Joaquin Carrasco, PhD .....................................................n<br />

Guillermo Carrera, MD .....................................................n<br />

Jean-Paul Carret, MD 1 – Amplitude<br />

Richard Carrington, MD 2 – Smith & Nephew<br />

John Anthony Carrino, MD 3C – GE Healthcare, Carestream Health, Siemens Medical<br />

Systems; 5 – Siemens Medical Systems, Carestream Health, Toshiba Medical<br />

Charles Carroll IV, MD .....................................................n<br />

Colin Carroll, BS ..........................................................n<br />

Kaitlin M Carroll, BS .......................................................n<br />

Michael E Carroll 3A, 4 – Wright Medical Technology, Inc.<br />

Jeffrey L Carson, MD .......................................................n<br />

William Carson, PhD 1, 4 – Isola Implants Inc.<br />

Aaron Carter ..............................................................n<br />

Thomas R Carter, MD 1 – Arthrex, Inc.; 2 – Arthrex, Inc., Musculoskeletal Transplant<br />

Foundation, Regeneration Technologies, Inc.; 3B – Arthrex, Inc., Regeneration<br />

Technologies, Inc.; 5 – Regeneration Technologies, Inc.<br />

Philippe Edmond Cartier, MD 1, 2, 3B – Smith & Nephew<br />

Jacob Cartner 3A – Smith & Nephew<br />

Christian Carulli, MD ......................................................n<br />

Salvatore Caruso, MD ......................................................n<br />

Danielle Casagrande, MD ...................................................n<br />

William J Casey, MD .......................................................n<br />

Kara Cashman, BSc (HONS) ................................................n<br />

Paul M Caskey, MD ........................................................n<br />

Garrick Wayne Cason, MD ..................................................n<br />

David Casper, MD .........................................................n<br />

Kyle Cassas, MD ...........................................................n<br />

Ezequiel H Cassinelli, MD 3B – Globus Medical, Synthes, Stryker<br />

Nelson Cassis, MD .........................................................n<br />

Renan C Castillo, MD ......................................................n<br />

Tiffany Castillo ............................................................n<br />

Filippo Castoldi, MD .......................................................n<br />

Roberto Castracini, MD .....................................................n<br />

Louis W Catalano III, MD ...................................................n<br />

Yves Catonne, MD .........................................................n<br />

Charles Catton 2 – Abbott<br />

Rafael Cavalcanti, BS .......................................................n<br />

Marco Cavallo, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Peter Cavanagh, PhD 4 – Zin Medical DIApedia<br />

Ivana Cechova, MD ........................................................n<br />

Giuliano Cerulli, MD .......................................................n<br />

Eugenio Cesari, MD ........................................................n<br />

Gokben Nesrin Cetin, Asst Pr<strong>of</strong>, MD .........................................n<br />

Luca Cevolani, MD .........................................................n<br />

Aron Chacko ..............................................................n<br />

Harbinder S Chadha, MD 2, 3B – Wright Medical Technology, Inc.<br />

Dara Chafik, MD ..........................................................n<br />

Nadeen Chahine, PhD 6 – Medtronic, Spinal Associates<br />

Aaron Mark Chamberlain, MD ...............................................n<br />

Hank G Chambers, MD 3B – Allergan Corporation<br />

Lauchlan Chambers, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Bill Champion ............................................................n<br />

Gilbert Chan, MD ..........................................................n<br />

Ka Yan Chan ..............................................................n<br />

Keith Chan, MD ...........................................................n<br />

Rajesh Chandra, MS ........................................................n<br />

Bong-Soon Chang, MD 2, 3C, 4, 5 – Bioalpha<br />

Chong Bum Chang, MD 2 – Pfizer, DePuy, A Johnson & Johnson Company,<br />

GlaxoSmithKline; 3B – GlaxoSmithKline; 5 – Smith & Nephew<br />

Edward Chang, MD ........................................................n<br />

Ki Young Chang, MD .......................................................n<br />

Cholawish Chanlalit, MD ...................................................n<br />

29<br />

disclosure<br />

Jens R Chapman, MD 2 – Synthes; 5 – Medtronic, Stryker<br />

Christopher D Chaput, MD 2 – Globus Medical; 3B – DePuy, A Johnson & Johnson<br />

Company; 3C – Link <strong>Orthopaedic</strong>s; 5 – DePuy, A Johnson & Johnson Company, Stryker,<br />

Nuvasive, Spine Guard<br />

Susan Charkin, MPH .......................................................n<br />

Susan Charman, BSc .......................................................n<br />

John Charopoulos, MD .....................................................n<br />

Kory Charron .............................................................n<br />

Dr Moahmmadreza Chehrassan .............................................n<br />

Albert C Chen, PhD ........................................................n<br />

Antonia Chen, MD 3A – Novartis<br />

Chun-Ho Chen, MD ........................................................n<br />

Dan Chen, MS .............................................................n<br />

Justin Chen, BS ............................................................n<br />

Lan Chen, MD .............................................................n<br />

Minsi Chen, PhD ..........................................................n<br />

Pei-yu Chen, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Po Quang Chen, MD, PhD 2 – Honorarium from university-based conference in China<br />

Yuexin Chen, BS ...........................................................n<br />

Edward Y Cheng, MD 1 – Innomed; 4 – Fulfillium, Inc., Sensurtec, Inc.; 5 – Aastrom<br />

Biosciences; 6 – Musculoskeletal Transplant Foundation<br />

Ivan Cheng, MD 1 – Nuvasive; 3A – Synthes; 3B – Stryker Medtronic; 4 – Orthovita;<br />

5 – Stryker<br />

Joseph S Cheng, MD, MS 2 – Synthes; 5 – Medtronic S<strong>of</strong>amor Danek<br />

Robert Cheng, MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

David Cheong, MD ........................................................n<br />

John Cherf, MD, MPH, MBA 1 – Innomed; 2, 3 – Breg; 4 – DePuy, A Johnson &<br />

Johnson Company<br />

Sunny Cheung, MD ........................................................n<br />

Christophe J Chevillotte, MD ................................................n<br />

Abhinav Bobby Chhabra, MD 7 – Saunders/Mosby-Elsevier<br />

Shi-lu Chia, MBBS 5 – DePuy, A Johnson & Johnson Company; 6 – DePuy, A Johnson<br />

& Johnson Company, Zimmer<br />

Eugenio Chiarello, MD .....................................................n<br />

Catharina Chiari, MD ......................................................n<br />

Rosetta M Chiavacci, BSN ...................................................n<br />

Samir Chihab, MD .........................................................n<br />

Zachary Allen Child, MD ....................................................n<br />

Dylan Childs, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Matthew S Chin, MD .......................................................n<br />

Pak Lin Chin, FRCSEd 3C – Zimmer; Stryker<br />

Vernon Chinchilli, PhD 3B – Bristol-Myers Squibb, Centocor<br />

Christopher P Chiodo, MD 1 – Aircast (DJ), Arthrex, Inc.; 3B – MMI; 4 – Johnson &<br />

Johnson, Merck, Zimmer; 5 – DJ <strong>Orthopaedic</strong>s, EBI<br />

Vanessa Chiu, MPH ........................................................n<br />

Byung Ki Cho, MD .........................................................n<br />

Chul-Hyun Cho, MD, PhD ..................................................n<br />

Hyung Joon Cho, MD ......................................................n<br />

Kye-Youl Cho, MD .........................................................n<br />

Robert Hyun Cho, MD ......................................................n<br />

Samuel Kang-Wook Cho, MD ................................................n<br />

Woojin Cho, MD ..........................................................n<br />

Hyonmin Choe, MD ........................................................n<br />

Daniel Choi, MS ...........................................................n<br />

Dr Duck-Hyun Choi ........................................................n<br />

Euisung Choi, MD .........................................................n<br />

Horim Choi, MD ..........................................................n<br />

In Ho Choi, MD ...........................................................n<br />

Ja-Young Choi .............................................................n<br />

Leera Choi, BA ............................................................n<br />

Young-Seok Choi, PhD .....................................................n<br />

Theodore J Choma, MD 2, 3B – Stryker; 4 – Gentis, Inc.; 5 – DePuy, A Johnson &<br />

Johnson Company, Stryker<br />

Hwei Chi Chong ...........................................................n<br />

Loretta Chou, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jack Choueka, MD .........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

James Chow, MD 2, 5 – Wright Medical Technology, Inc.; 3B – Wright Medical<br />

Technology, Inc., Smith & Nephew<br />

Roxanne Chow, MD ........................................................n<br />

Kevin P Christensen, MD ...................................................n<br />

Thomas Christensen, MD ...................................................n<br />

Michael J Christie, MD 1 – DePuy, A Johnson & Johnson Company, Zimmer;<br />

4 – Exactech, Inc.<br />

Laurent-Panayiotis Christ<strong>of</strong>ilopoulos 3C – Medacta Switzerland<br />

Constance R Chu, MD ......................................................n<br />

Susanna G Chubinskaya, PhD 5 – Zimmer, Joint Restoration Foundation, Regentis,<br />

LLC<br />

Yong-Min Chun, MD .......................................................n<br />

Byung June Chung, MD .....................................................n<br />

Chin Youb Chung, MD, PhD ................................................n<br />

Christine Chung, MD ......................................................n<br />

Dae-Huk Chung, MD .......................................................n<br />

Jae Yoon Chung, MD .......................................................n<br />

Kyung-Chil Chung, MD .....................................................n<br />

Seok Won Chung, MD ......................................................n<br />

Chris Church, PT ..........................................................n<br />

Norman Barrington Chutkan, MD 1, 3C – Globus Medical<br />

Michael G Ciccotti, MD .....................................................n<br />

Alec Cikes, MD ............................................................n<br />

Alessandro Ciompi, MD ....................................................n<br />

Cara A Cipriano, MD .......................................................n<br />

Musa Citak, MD ...........................................................n<br />

Alfred Cividino, MD 2 – Abbott, Roche, GlaxoSmithKline; 3B – Abbott, Roche;<br />

5 – Abbott, Bristol-Myers Squibb, Canadian Institutes <strong>of</strong> Health Research (CIHR),<br />

Merck, Pfizer, Roche, Wyeth; 6 – Abbott<br />

Roberto Civinini, MD ......................................................n<br />

Steven AJ Claes, MD ........................................................n<br />

Thomas O Clanton, MD 2 – Arthrex, Inc., Small Bone Innovations; 3B – Arthrex, Inc.;<br />

3C – Wright Medical Technology, Inc.<br />

Charles Richard Clark, MD 1, 2 – DePuy, A Johnson & Johnson Company; 3B,<br />

5 – DePuy, A Johnson & Johnson Company, Smith & Nephew; 6 – Zimmer; 7 – Journal<br />

<strong>of</strong> Bone and Joint Surgery - <strong>American</strong><br />

H Jolene Clark .............................................................n<br />

Jason C Clark, MD .........................................................n<br />

Henry D Clarke, MD 5 – Stryker<br />

Theodore J Clarke, MD .....................................................n<br />

Martin Clauss, MD .........................................................n<br />

Philippe Clavert, MD, PhD 3B – Tornier, Mitek<br />

Catharine Clay ............................................................n<br />

Jean-Luc Clement, MD 1, 3B, 3C – Medicrea International<br />

Nicholas D Clement, MRCS Ed ..............................................n<br />

Jill Clemente, MS ..........................................................n<br />

John C Clohisy, MD 2, 3B – Biomet; 5 – Wright Medical Technology, Inc., Zimmer, Inc.<br />

Myles Clough, MD 3C, 4 – <strong>Orthopaedic</strong> Web Links (OWL)<br />

Frederic C Cloutier, MD ....................................................n<br />

Terry A Clyburn, MD 1, 7 – Nimbic Systems; 2, 3B – ConforMIS; 4 – Nimbic,<br />

ConforMIS<br />

Andrew Cobb, MD 5, 6 – DePuy, A Johnson & Johnson Company<br />

Justin Peter Cobb, MD 2 – Biomet; 3B – Aesculap/B.Braun, DePuy, A Johnson &<br />

Johnson Company; 3C – JRI, Ceramtec; 4 – Stanmore Implants Worldwide; 5 – DePuy,<br />

A Johnson & Johnson Company, Ceramtec<br />

Elizabeth Cody, BS .........................................................n<br />

Stephanie Cody, BS ........................................................n<br />

Marcus P Coe, MD .........................................................n<br />

J Chris Coetzee, MD 1 – Arthrex, Inc., DePuy, A Johnson & Johnson Company; 2,<br />

3B – Arthrex, Inc.; DePuy, A Johnson & Johnson Company, Tornier; 3C, 4 – KMI;<br />

5 – DePuy, A Johnson & Johnson Company<br />

Robert H C<strong>of</strong>ield, MD 1 – DJ <strong>Orthopaedic</strong>s, Smith & Nephew; 7 – Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Benjamin Cohen, MD ......................................................n<br />

Bruce E Cohen, MD 1 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s, Wright Medical Technology,<br />

Inc.; 3B, 5 – Wright Medical Technology, Inc.; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

30<br />

disclosure<br />

Marcio Theo Cohen, MD ....................................................n<br />

Mark S Cohen, MD 1, 5 – Integra; 2, 3B – Mylad<br />

Steven Brad Cohen, MD 2 – Smith & Nephew; 3B – Smith & Nephew, Knee Creations,<br />

Inc.; 4 – Knee Creations, Inc.<br />

Henry B Colaco, MRCS .....................................................n<br />

Marco Colangeli, MD .......................................................n<br />

Fabio Colantonio, MD ......................................................n<br />

Ashley Cole, MPH ..........................................................n<br />

Brian J Cole, MD 1 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s, Lippincott, Elsevier; 2 – Genzyme;<br />

3B – Zimmer, Arthrex, Inc., Carticept, BioMimetic, Allosource, DePuy; 5 – Regentis,<br />

Arthrex, Smith and Nephew, DJ Ortho; 7 – Lippincott, Elsevier, WB Saunders<br />

Peter A Cole, MD 3B – Synthes<br />

Jill Coleman, RN 3A, 4 – San<strong>of</strong>i-Aventis<br />

Struan H Coleman, MD 3B – Stryker<br />

John P Collier, DE 3B, 5 – DePuy, A Johnson & Johnson Company; 4 – Stryker<br />

Cory Alan Collinge, MD 1 – Biomet, Smith & Nephew, Advanced Orthopedic Systems;<br />

3B – Biomet<br />

Gianluca Collo, MD ........................................................n<br />

Matthew Colman, MD ......................................................n<br />

Clifford W Colwell Jr, MD 5 – Stryker, Medical Compression Systems<br />

Thomas Krebs Comfort, MD 5 – Stryker<br />

Michael A Conditt, PhD 3A, 4 – MAKO Surgical Corp.<br />

Sean B Conkle, OTC ........................................................n<br />

Chad Stephen Conner, MD ..................................................n<br />

Patrick J Connolly, MD 3B, 7 – K2M; 5 – ApaTech<br />

Patrick Michael Connor, MD 1 – Biomet; 3B – Zimmer<br />

Fabio Conteduca, MD ......................................................n<br />

Jacopo Conteduca, MD .....................................................n<br />

Juan S Contreras ...........................................................n<br />

Richard Contreras, MS ......................................................n<br />

Janet Donohue Conway, MD 1 – University <strong>of</strong> Florida; 3B – Orth<strong>of</strong>ix, Inc.;<br />

5 – Medtronic, Synthes<br />

Chad Cook, PT ............................................................n<br />

James L Cook, DVM, PhD 1 – Arthrex, Inc.; 2 – Arthrex, Inc., Pfizer; 3B – Arthrex, Inc.,<br />

Pfizer, Zimmer, Stryker; 5 – Arthrex, Inc., Musculoskeletal Transplant Foundation, Pfizer,<br />

Zimmer<br />

Jon R COOK, PT ...........................................................n<br />

Stephen D Cook, PhD 2 – Biomet; 5 – Medtronic S<strong>of</strong>amor Danek; 6 – DePuy, A<br />

Johnson & Johnson Company, Zimmer, Smith & Nephew, Stryker<br />

Todd Cook, MD ...........................................................n<br />

Nicholas Cooke, FRCS ......................................................n<br />

Richard RH Coombs, DM ...................................................n<br />

William P Cooney, III MD 1 – Small Bone Innovations, OREF; 2, 3B, 4, 6 – Small Bone<br />

Innovations; 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Ross Cooper, MA ..........................................................n<br />

Charlotte Coopmans, MSc ..................................................n<br />

Julie Coplan, DScPT ........................................................n<br />

Lawson A B Copley, MD ....................................................n<br />

Steven Copp, MD 2 – Stryker; 4 – Nuvasive<br />

Ian Corcoran-Schwartz .....................................................n<br />

Ronda Cordill, RN, CIC, MPH ...............................................n<br />

Bryan Cornwall, PhD 3A, 4 – Nuvasive<br />

Adrian J Correa, MD, MBA ..................................................n<br />

Eva Correa ................................................................n<br />

Rickson Guedes De Moraes Correia, MD ......................................n<br />

Krist<strong>of</strong>f Corten, MD ........................................................n<br />

Doug Cortez, BS ...........................................................n<br />

Andrew J Cosgarea, MD 7 – Elsevier<br />

Anthony Costa, MD ........................................................n<br />

Christopher R Costa, MD ...................................................n<br />

Luigi Costa, Pr<strong>of</strong> ...........................................................n<br />

John George Costouros, MD ................................................n<br />

Ralph Richard Coughlin, MD ................................................n<br />

Marlon Osman Coulibaly, MD ...............................................n<br />

Charles M Court-Brown, MD 7 – Wolters Kluwer Health - Lippincott Williams &<br />

Wilkins<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Etevaldo Coutinho, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Ian Cowgill, MS ...........................................................n<br />

Christopher Cox, MD ......................................................n<br />

Catelyn Coyle, BS ..........................................................n<br />

Ellen Coyne, MS ...........................................................n<br />

Edward V Craig, MD 1, 2, 3B – Biomet; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Matthew Craig, MD ........................................................n<br />

Mattia Cravino, MD ........................................................n<br />

Alvin Howell Crawford, MD 1, 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Charles H Crawford, III MD 2, 6 – Medtronic<br />

Haemish Alexander Crawford, Mb.chB 6 – Synthes<br />

Kelli Crawford, PA-C .......................................................n<br />

Lindsay Michele Crawford, MD ..............................................n<br />

Scott Nicholas Crawford, MD ................................................n<br />

Aaron Creek. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

William R Creevy, MD, MBA .................................................n<br />

Robert Alexander Creighton, MD 2 – Mitek<br />

Renn J Crichlow, MD 2, 3C – Stryker; Synthes<br />

Brett D Crist, MD 4 – Amedica Corporation; 5 – KCI, Medtronic, Novalign, Smith &<br />

Nephew, Stryker, Synthes, Wound Care Technologies<br />

Lynn A Crosby, MD 1, 2, 3B, 5 – Exactech, Inc.<br />

Jessica Dale Cross, MD .....................................................n<br />

Michael B Cross, MD .......................................................n<br />

William Wood Cross, MD ...................................................n<br />

Lawrence S Crossett, MD 1, 2, 3B – DePuy, A Johnson & Johnson Company<br />

Aristides I Cruz, Jr MD ......................................................n<br />

Rick P Csintalan, MD .......................................................n<br />

Anna Maria Cuffini .........................................................n<br />

William Cumberland, MD ..................................................n<br />

Don R Cummings, CP LP ...................................................n<br />

Nancy Madsen Cummings, MD 4 – Cardiosolutions<br />

Stephen H Cummings, MD ..................................................n<br />

Steven Cummings, MD 3C – Amgen Co., Eli Lilly<br />

Frances Cuomo, MD .......................................................n<br />

Thomas W Currey, MD .....................................................n<br />

Barbara H Currier, MChE 2, 3B, 3C – DePuy, A Johnson & Johnson Company;<br />

4 – Johnson & Johnson<br />

John H Currier, MS 2, 3B, 3C – DePuy, A Johnson & Johnson Company; 4 – Johnson<br />

& Johnson<br />

Jessica I Curry, MS .........................................................n<br />

Patrick Curry ..............................................................n<br />

Brian M Curtin, MD ........................................................n<br />

Shane Curtiss .............................................................n<br />

Fred D Cushner, MD 1 – Smith & Nephew; 2 – San<strong>of</strong>i-Aventis; 3B, 4 – Angiotech;<br />

7 – Thieme<br />

Daniel J Cuttica, DO .......................................................n<br />

Jean-Claude D’Alleyrand, MD ................................................n<br />

Jean D’Angelo, BA 7 – National Board <strong>of</strong> Medical Examiners, <strong>American</strong> Board <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgery<br />

James A D’Antonio, MD 1, 2, 3B, 5 – Stryker<br />

Michele R D’Apuzzo, MD ...................................................n<br />

THERESA D’ERRICO 3A, 4 – Stryker<br />

Darryl D D’Lima, MD 3B – National Institutes <strong>of</strong> Health (NIAMS & NICHD), MAKO<br />

Surgical; 3C – Stryker, Zimmer, Orthocyte; 5 – Stryker, Zimmer, Smith & Nephew<br />

Luca D’Orazio, Med Student ................................................n<br />

Hossam Dabis, MB ChB FCRS ...............................................n<br />

Shlomo Dadia, MD ........................................................n<br />

Kwon Dae Gyu, MD ........................................................n<br />

Nirvikar Dahiya, MD .......................................................n<br />

Annette W Dahl, PHD ......................................................n<br />

Diane Lynn Dahm, MD .....................................................n<br />

Joseph Michael Dai III, MD .................................................n<br />

Monica Daigl Cattaneo, MS .................................................n<br />

George Daikos, MD 2, 3B – Novartis; 5 – Pfizer<br />

31<br />

disclosure<br />

Michael T Daines, MD ......................................................n<br />

Danilo Canesin Dal Molin, MD ..............................................n<br />

Eden Dal Molin, MD .......................................................n<br />

Paul A Dale, MD ...........................................................n<br />

Erika L Daley, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jacqueline A Daley, MLT 2 – 3M; 4 – Pfizer, GE Healthcare, 3M<br />

Aaron Daluiski, MD 3B – Wright Medical Technology, Inc.<br />

David F Dalury, MD 1, 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Timothy A Damron, MD 5 – Wright Medical Technology, Inc., Genentech, Inc.,<br />

Orthovita, Inc.; 7 – Lippincott, Williams, and Wilkins, Wolters Kluwer Health<br />

Lindsay Dancy, BS .........................................................n<br />

Daniel Choi, BA ...........................................................n<br />

Stephen Daniels, DO .......................................................n<br />

Timothy Rudolf Daniels, MD 2 – BioMimetic, Wright Medical Technology, Inc.,<br />

Carticept, Hintegra (New Deal); 3B – Carticept, BioMimetic, Wright Medical;<br />

5 – BioMimetic, Arthrex, Inc., Carticept, New Deal (Hintegra)<br />

Beate Danielson, PhD ......................................................n<br />

Samira Daou, Med Student ..................................................n<br />

Aditi Das, MBBS ...........................................................n<br />

Anat Daskal, MSc ..........................................................n<br />

Michael David Daubs, MD 3B – Synthes; 5 – Stryker<br />

Margot C Daugherty, MSN, MEd, RN, EMT-P ...................................n<br />

J Rod Davey, MD 1 – Biomet; 2, 3B – Stryker, Exactech, Inc., Biomet; 6 – Smith &<br />

Nephew<br />

Dr Bertrand David 5 – Osteotech<br />

Tal S David, MD 2 – Arthrex, Inc., Cayenne Medical, Inc.; 3C, 4 – Cayenne Medical,<br />

Inc.; 7 – SLACK Incorporated<br />

Nadav Davidovic, MD ......................................................n<br />

Roy Davidovitch, MD 3C, 4 – Surgix Ltd.<br />

Jon R Davids, MD ..........................................................n<br />

David Davidson, MD .......................................................n<br />

Philip A Davidson, MD 2 – Arthrosurface, Kensey Nash; 3B – Arthrosurface, Kensey<br />

Nash, Core Essence; 4 – Arthrosurface, Core Essence; 5 – Kensey Nash<br />

Adrian Thomas Davis, MD 5 – Synthes, Zimmer<br />

Brent R Davis, MD .........................................................n<br />

Brian Davis, PhD ..........................................................n<br />

Charles M Davis III, MD ....................................................n<br />

Chris Davis, BS 6 – Kensey-Nash<br />

Dr Jason J Davis ...........................................................n<br />

Kenneth Davis, MS 4 – Merck, Lilly, Giliad, Pfizer<br />

Rebecca Davis, MS .........................................................n<br />

William Hodges Davis, MD 1 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s, Wright Medical<br />

Technology, Inc.; 2 – DJ <strong>Orthopaedic</strong>s, Smith & Nephew, Wright Medical Technology,<br />

Inc.; 3B – Smith & Nephew, Wright Medical Technology, Inc.; 4 – Wright Medical<br />

Technology, Inc.; 5, 6 – DJ <strong>Orthopaedic</strong>s, Wright Medical Technology, Inc.; 7 – Wolters<br />

Kluwer Health - Lippincott Williams & Wilkins<br />

Ross Dawkins, MD .........................................................n<br />

Charles S Day, MD, MBA 5 – Boston Scientific, Small Bone Innovations<br />

Judd Day, PhD 3A – Exponent, Inc.; 6 – Stryker; Zimmer<br />

Michael S Day, MPhil .......................................................n<br />

Nicky Day ................................................................n<br />

Justin Dazley, MD ..........................................................n<br />

Massimo De Benedetto, MD .................................................n<br />

Joost De Bruijn, PhD 3A, 4 – Progentix Orthobiology BV<br />

Angelo De Carli, MD .......................................................n<br />

Marcello De Fine, MD ......................................................n<br />

Anthony De Giacomo, MD ..................................................n<br />

Juan Carlos De La Fuente, MD ...............................................n<br />

Adriana De La Rocha .......................................................n<br />

Francis De Neve, Med Student ...............................................n<br />

Nicholas De Roeck, FRCS ...................................................n<br />

Richard De Steiger, MD 3B – Zimmer; 5 – Brainlab<br />

Henrica CW De Vet, Pr<strong>of</strong>, PhD ...............................................n<br />

Lieven De Wilde ...........................................................n<br />

Allison De Young ..........................................................n<br />

Daniel Brian Dean, MD .....................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Laura E Dean ..............................................................n<br />

Rebecca Dean, MA .........................................................n<br />

John T Dearborn, MD 1 – Zimmer<br />

Thomas M DeBerardino, MD 2, 5 – Arthrex, Inc., Genzyme, Musculoskeletal Transplant<br />

Foundation; 3B – Arthrex, Inc.; 3C, 4 – Advanced Biomedical Technologies, Inc.<br />

Ronen Debi, MD ...........................................................n<br />

David Kent DeBoer, MD 1 – DePuy, A Johnson & Johnson Company, Wright Medical<br />

Technology, Inc.; 3B – Wright Medical Technology, Inc.<br />

Michael Decker ............................................................n<br />

Michael DeFranco, MD .....................................................n<br />

Florence Degroot, PhD .....................................................n<br />

Henry DeGroot, MD 4 – Abbott, Merck, Pfizer, GlaxoSmithKline<br />

Emile Dehoux, PhD 3C – Zimmer<br />

Angelo Del Buono, MD .....................................................n<br />

Rainero Del Din, MD .......................................................n<br />

Daniel J Del Gaizo, MD .....................................................n<br />

Mylene A Dela Rosa ........................................................n<br />

Katrina Dela Torre, MS .....................................................n<br />

Michael Delacruz, MD ......................................................n<br />

Rick B Delamarter, MD 1 – Stryker, Synthes, Zimmer; 3B – Synthes; 6 – Synthes<br />

Jonathan T Deland, MD 3B – Arthrex, Inc., Tornier, Zimmer<br />

Kevin Delaney, MD .........................................................n<br />

Ronald Emilio Delanois, MD 2, 3B – Stryker; 5 – Wright Medical Technology, Inc.<br />

Regidor B Deleon III, MD 3A – ADJ’s Trading<br />

Richard M Dell, MD ........................................................n<br />

Gregory John Della Rocca, MD 4 – Amedica; 5 – Synthes, Smith & Nephew, Stryker,<br />

Wound Care Technologies<br />

Craig J Della Valle, MD B – Angiotech, Biomet, Kinamed, Smith & Nephew; 5 – Pacira,<br />

Zimmer<br />

Demetris Delos, MD .......................................................n<br />

Peter A De Luca, MD .......................................................n<br />

Peter F DeLuca, MD ........................................................n<br />

Kevin Deluzio, MSC 3B – Nuvasive; 5 – DePuy, A Johnson & Johnson Company<br />

Marlene DeMaio, MD ......................................................n<br />

Nicolas Demaurex, MD, PhD ................................................n<br />

Constantine Demetracopoulos, MD ..........................................n<br />

Deniz Demiryurek, MD, Assoc Pr<strong>of</strong> ..........................................n<br />

Satoru Demura, MD ........................................................n<br />

Vincenzo Denaro, MD ......................................................n<br />

Xiang-Hua Deng, MD ......................................................n<br />

Douglas A Dennis, MD 1 – DePuy, A Johnson & Johnson Company, Innomed; 2,<br />

3B – DePuy, A Johnson & Johnson Company; 5 – DePuy, A Johnson & Johnson<br />

Company, Porter Adventist Hospital<br />

James E Dennis, PhD 4, 5 – Cell Targeting, Inc.; 6 – Zimmer<br />

David G Dennison, MD 5 – DePuy, A Johnson & Johnson Company<br />

Ricardo E Dent, MD 3A, 4 – Amgen Co.<br />

James Keith DeOrio, MD 1 – Merete; 2 – Acumed, LLC, Wright Medical Technology,<br />

Inc., SBI, Tornier, Integra, Datatrace Publishing; 3B – SBI, Exactech, Inc., Wright Medical<br />

Technology, Inc., Acumed, LLC, Integra, Arthrex; 3C – BioPro; 4 – Wright Medical<br />

Technology, Inc.; 5 – Synthes, Arthrex, Inc.<br />

Peter Derman, BS ..........................................................n<br />

G Paul De Rosa, MD .......................................................n<br />

Sergulen Dervisoglu, Pr<strong>of</strong> ...................................................n<br />

Rasesh R Desai, MD ........................................................n<br />

Kaat Desloovere, PhD ......................................................n<br />

Arthur A DeSmet, MD ......................................................n<br />

Koen Aime DeSmet, MD 1 – Wright Medical Technology, Inc.; 2, 3B – Finsbury, Wright<br />

Medical Technology, Inc.; 3C – Ceramtec; 5 – Biomet, Smith & Nephew<br />

Federico Dettoni, MD ......................................................n<br />

PJ Devereaux, MD, MSc .....................................................n<br />

Clinton J Devin, MD 5 – DePuy, A Johnson & Johnson Company<br />

Vedat Deviren, MD 1 – Nuvasive; 3B – Nuvasive, Stryker, Guidepoint Global;<br />

5 – Nuvasive, Stryker<br />

Christopher J DeWald, MD 4 – Medtronic, Phygen<br />

Ashvin Kumar Dewan, MD ..................................................n<br />

Christopher B Dewing, MD .................................................n<br />

32<br />

disclosure<br />

Francesco Di Caprio, MD ...................................................n<br />

Alberto Di Martino, MD ....................................................n<br />

Alessandro Di Martino, MD .................................................n<br />

Berardo Di Matteo, Med Student .............................................n<br />

Christian Di Paola, MD 2 – Medtronic; 3B – DePuy, A Johnson & Johnson Company,<br />

Allem Medical Systems<br />

Vincenzo Di Sanzo, MD ....................................................n<br />

Priscilla Di Sette, MD .......................................................n<br />

Mohammed Atef Diab, MD ..................................................n<br />

Beverly E Diamond, DSW ...................................................n<br />

Veronica A Diaz, MD .......................................................n<br />

Francesco DiCaprio ........................................................n<br />

Paul E DiCesare, MD 3B – Stryker; 5 – GlaxoSmithKline; Stryker<br />

Daniel Dichter, BA .........................................................n<br />

Kyle F Dickson, MD 3C – Trauma Research Corporation, DJ <strong>Orthopaedic</strong>s, Stryker<br />

Paul Didomenico, MD ......................................................n<br />

Glenn Diekmann, MD ......................................................n<br />

Paul Diesfeld, PA-C ........................................................n<br />

Jason P Dieterle, DO .......................................................n<br />

Rachel L DiFazio, MS, RN, cPNP .............................................n<br />

Anthony M DiGioia III, MD 4 – Blue Belt Technologies, Inc.<br />

Benedict F DiGiovanni, MD .................................................n<br />

Christopher W DiGiovanni, MD 1 – Extremity Medical, Inc.; 2, 3B, 4 – BioMimetic<br />

Extremity Medical, Inc.; 5 – BioMimetic; 6 – Curamedix, Inc., Performance Orthotics,<br />

Inc.; 7 – Saunders Elsevier<br />

Goksel Dikmen, MD .......................................................n<br />

Erica Dillon, BS ...........................................................n<br />

David M Dines, MD 1 – Biomet, Tornier; 3B, 6 – BioMimetic, Biomet, Tornier;<br />

7 – Journal <strong>of</strong> Shoulder and Elbow Surgery<br />

Joshua Dines, MD 1 – Biomet; 2 – Arthrex, Inc.; 3B – Arthrex, Inc., Tornier;<br />

5 – BioMimetic; 7 – Elsevier<br />

Anthony Ding, MD .........................................................n<br />

John DiPaola, MD .........................................................n<br />

Douglas R. Dirschl, MD 1–Biomet<br />

Jessice M Dirusso, SPT ......................................................n<br />

Mauricio Disilvo, MD, FACS .................................................n<br />

Jeffrey S. Dlott, MD ........................................................n<br />

Anton E Dmitriev ..........................................................n<br />

Huong Do, MS ............................................................n<br />

Nam Hoon Do, MD ........................................................n<br />

Josh Doan, MS ............................................................n<br />

Matthew Barrett Dobbs, MD 1, 3B – D-Bar Enterprises; 7 – Clinical <strong>Orthopaedic</strong>s and<br />

Related Research<br />

Christopher A F Dodd, FRCS 1, 2, 3B – Biomet; 5 – Stryker; 7 – Oxford University Press<br />

Christopher Dodson, MD ...................................................n<br />

Michael Doerner, BA .......................................................n<br />

Stephan Domayer ..........................................................n<br />

Benjamin Domb, MD 3B, 5 – Arthrex, Inc.<br />

Henry J Donahue, PhD .....................................................n<br />

William F Donaldson III, MD 5 – Stryker<br />

Derek J Donegan, MD ......................................................n<br />

Ryan P Donegan, MD ......................................................n<br />

Brian Gerard Donley, MD 1 – Extremity Medical; 2 – Tornier, Extremity Medical;<br />

3B – Medtronic, Tornier, Extremity Medical, Tensegrity; 4 – Extremity Medical, Infoslate;<br />

7 – Belvoir Publications<br />

Onorfio Donzelli, MD ......................................................n<br />

Josef Doornink, MS ........................................................n<br />

Ryan M Dopirak, MD .......................................................n<br />

Mahmut Nedim Doral, MD .................................................n<br />

John P Dormans, MD 5 – Synthes, Medtronic; 7 – Brooke’s Publishing, Elsevier, Mosby<br />

Ronald Dorotka, MD .......................................................n<br />

Lawrence D Dorr, MD 1 – Zimmer; 3C – MAKO Surgical Corp.; 4 – MAKO Surgical<br />

Corp., Total Joint Orthopedics<br />

Ian G Dorward, MD ........................................................n<br />

Sonia Dosanjh, MSW .......................................................n<br />

Keith C Douglas, MD .......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Sepehr Doustdar, MD ......................................................n<br />

Thomas Charles Dowd, MD .................................................n<br />

Katheryne Downes, MPH ...................................................n<br />

Brian Downie, PA ..........................................................n<br />

Mike S Doyle ..............................................................n<br />

Shevaun Mackie Doyle, MD .................................................n<br />

Gabriele Drago, MD ........................................................n<br />

Jason L Dragoo, MD 3B – Genzyme, Ossur; 5 – Linvatec, Ossur<br />

James C Dreese, MD ........................................................n<br />

Niv Dreiangel, MD .........................................................n<br />

Brian Drew, MD ...........................................................n<br />

Jacob M Drew, MD .........................................................n<br />

Michael Drexler, MD .......................................................n<br />

David M Dromsky, MD .....................................................n<br />

Darren Sean Drosdowech, MD, FRCSC ...6 – DePuy, A Johnson & Johnson Company<br />

Marcel Dudda, MD .........................................................n<br />

Thomas Edward Dudley, MD ................................................n<br />

Rosanna Duester, PA-C .....................................................n<br />

Jeffrey R Dugas, MD 1 – Biomet<br />

Jules Arthur Dumais, MD ...................................................n<br />

Michael Dunbar, MD, PhD 3B, 5 – Stryker<br />

Robert Paul Dunbar, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Clive P Duncan, MD 2 – Zimmer; 3B – Smith & Nephew, Zimmer; 5 – DePuy, A<br />

Johnson & Johnson Company<br />

Douglas D Duncan, MD 5 – Biomet<br />

Daniel V Dungca, MD ......................................................n<br />

Godfredo V Dungca III, MD 2, 3C – Merck Sharpe & Dohme, Philippines Speakers’<br />

Bureau<br />

Warren Dunn, MD, MPH 6 – Arthrex, Inc.<br />

Page Dunning .............................................................n<br />

Thomas Duquin, MD .......................................................n<br />

Xavier A Duralde, MD ......................................................n<br />

Craig Dushey, MD 4 – San<strong>of</strong>i-Aventis<br />

Anil K Dutta, MD 1 – Ortho Helix; 2 – Tornier, Synthes; 3B – Tornier<br />

Arup Dutta, FRCS ..........................................................n<br />

Jason R Dutton, DO ........................................................n<br />

Marcel F Dvorak, MD 1, 3B – Medtronic S<strong>of</strong>amor Danek; 2 – Medtronic S<strong>of</strong>amor<br />

Danek, Synthes; 5 – Medtronic S<strong>of</strong>amor Danek, DePuy, A Johnson & Johnson<br />

Company, Synthes, Arcus; 6 – DePuy, A Johnson & Johnson Company, Medtronic<br />

S<strong>of</strong>amor Danek, Synthes; 7 – Thieme<br />

Christopher John Dy, MD ...................................................n<br />

George S Dyer, MD .........................................................n<br />

Michael Eagan, MD ........................................................n<br />

Emily Earl-Royal, BA 3A – Allergan, Inc.; 4 – GlaxoSmithKline, Allergan, Inc.<br />

Mark E Easley, MD 2 – Small Bone Innovations; 7 – Saunders/Mosby-Elsevier<br />

Patrick Brian Ebeling, MD ..................................................n<br />

Prouskeh Ebrahimpour, MD ................................................n<br />

Edward Ebramzadeh, PhD 5 – Zimmer<br />

Jason C Eck, DO 2 – Medtronic, Stryker; 7 – Saunders/Mosby-Elsevier, Thieme<br />

Eckart Mayr, MD 2, 3B, 5 – Stryker<br />

Tobin Eckel, MD ...........................................................n<br />

Timo M Ecker, MD .........................................................n<br />

Kostas Economopoulos, MD ................................................n<br />

Avram A Edidin, PhD 3A, 4 – Medtronic<br />

Eric Edmonds, MD 5 – Synthes<br />

Christopher Edwards, BA ...................................................n<br />

Paul K Edwards, MD .......................................................n<br />

Thomas Bradley Edwards, MD 1 – Tornier, Orthohelix; 2, 5, 6 – Tornier; 3B – Kinamed,<br />

Tornier; 3C – Gulf Coast Surgical Services; 7 – Journal <strong>of</strong> Shoulder and Elbow Surgery,<br />

Saunders/Mosby-Elsevier<br />

Turgay Efe, MD ............................................................n<br />

Takeshi Egi, MD 5 – Astellas Pharma Inc.<br />

W Andrew Eglseder, MD 2, 3B – Mylad Orthopedic Solutions LLC<br />

Kenneth A Egol, MD 3C – Exactech, Inc.; 4 – Johnson & Johnson, Surgix Inc.;<br />

5 – Biomet, Stryker, Synthes; 7 – SLACK Incorporated, Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

33<br />

disclosure<br />

Natalia Egorova, PhD, MPH .................................................n<br />

Michael G Ehrlich, MD 3B, 4 – BioMimetic, Carbylan<br />

John R Ehteshami, MD .....................................................n<br />

Markus Eichler, MD ........................................................n<br />

Thomas A Einhorn, MD 1 – Osteotech; 2 – Smith & Nephew; 3B – Smith & Nephew,<br />

Lilly, Novartis, Anika, Kuros; 4 – Osteogenix, Biomineral Holdings, HealthpointCapital,<br />

NeoStem, Implant Protection; 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong>,<br />

Lippincott Williams and Wilkins, Elsevier<br />

Eric Eisemon, MD ..........................................................n<br />

Gerald Eisenberg, MD 5 – Abbott, Genzyme, Roche<br />

Eric A Eisner, MD ..........................................................n<br />

Leandro Ejnisman, Md .....................................................n<br />

Anders L Ekelund, MD 1, 2, 3C – DePuy, A Johnson & Johnson Company<br />

Carl Ekholm, MD ..........................................................n<br />

Axel Ekkernkamp, MD 2 – DePuy, A Johnson & Johnson Company, Johnson &<br />

Johnson Medical; 5 – Biomet, DePuy, A Johnson & Johnson Company, Pfizer, Bayer-<br />

Schering<br />

Antoun El Chemaly, PhD ...................................................n<br />

Yasser H El Miligui, MD, FRCS ...............................................n<br />

Sherif El Shafie, MB BCh ....................................................n<br />

Saadiq F El-Amin, III MD ...................................................n<br />

Hebah El-Gendi, MS .......................................................n<br />

Bassel El-Osta, MB BCh .....................................................n<br />

Mohammad Mostafa El-Sharkawi,<br />

MD ......................................................................n<br />

Neal S ElAttrache, MD 1, 2, 3A, 3B, 4, 5, 6 – Arthrex, Inc.<br />

Salah Elfatori, MD .........................................................n<br />

Bassem T Elhassan, MD .....................................................n<br />

John J Elias, PHD 6 – Arthrex, Inc.<br />

Ilia Elkinson, MD ..........................................................n<br />

Erik Brian Eller, MD ........................................................n<br />

Dawn M Elliott, PhD .......................................................n<br />

Winston Elliott ............................................................n<br />

Andrew R Ellis .............................................................n<br />

David J Ellis, FRCS .........................................................n<br />

Scott Ellis, MD ............................................................n<br />

Thomas J Ellis, MD 1 – Acute Innovations; 3B, 5 – Stryker<br />

Brad Ellison, MD ..........................................................n<br />

Karim Ahmed Elsharkawy, MD ..............................................n<br />

Barbara Elspas, MPH .......................................................n<br />

John B Emans, MD 1, 5 – Synthes; 3B, 3C – Medtronic S<strong>of</strong>amor Danek, Synthes<br />

Gwendolyn Beth Emerson, MD ..............................................n<br />

Roger H Emerson, Jr MD 1, 2, 5 Biomet; 3B – Biomet Salient Surgical Technologies<br />

Sanford E Emery, MD, MBA 6 – Medtronic<br />

MAKOto Emori, MD .......................................................n<br />

Ivan Encalada, MD .........................................................n<br />

Naoto Endo, MD ..........................................................n<br />

Terrence J Endres, MD ......................................................n<br />

C Anderson Engh Jr, MD 1, 2, 3B – DePuy, A Johnson & Johnson Company; 4 – DePuy,<br />

A Johnson & Johnson Company, Stryker; 5 – DePuy, A Johnson & Johnson Company,<br />

Smith & Nephew, Inova Health Care Services<br />

Charles A Engh, Sr MD 1, 5 – DePuy, A Johnson & Johnson Company; 4 – Johnson &<br />

Johnson, Stryker, Alexandria Research Technology<br />

Gerard Anderson Engh, MD 1 – DePuy, A Johnson & Johnson Company, Innomed;<br />

2 – Smith & Nephew; 3B – DePuy, A Johnson & Johnson Company, Smith &<br />

Nephew; 3C, 4 – Alexandria Research Technologies; 5 – DePuy, A Johnson & Johnson<br />

Company, Smith & Nephew, U.S. Army Medical Research & Materiel Command &<br />

the Telemedicine & Advanced Technology Research Center, Medtronic, Inova Health<br />

Systems<br />

Vahid Entezari, MD ........................................................n<br />

Ge<strong>of</strong>frey Epie, MBBS .......................................................n<br />

David M Epstein, MD .......................................................n<br />

Noah Epstein, MD .........................................................n<br />

Levent Eralp ...............................................................n<br />

Erik M Erbe, PhD 3A, 4 – Nuvasive<br />

Burcu Ercakmak, MD .......................................................n<br />

Mehmet Erdem, MD ........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Meghan A Erdman, MS .....................................................n<br />

Rifat Erginer, MD ..........................................................n<br />

Jill Erickson, PA ...........................................................n<br />

Mark A Erickson, MD 2 – Biomet<br />

Unal Erkorkmaz, PhD ......................................................n<br />

Gurkan Erkula, MD ........................................................n<br />

Thomas J Errico, MD 1 – K2M, Fastenetix; 3B – Stryker; 3C – Orthocon; 4 – K2M,<br />

Stryker; 5 – Paradigm Spine; 7 –Elsevier<br />

James C Esch, MD 1 – Breg; 2, 3B – Smith & Nephew Endoscopy; 4 – KFx Medical<br />

Mark Eskander, MD ........................................................n<br />

Birgitte Espehaug, PhD .....................................................n<br />

Christina Ilona Esposito ....................................................n<br />

Amanda Esquivel, PhD .....................................................n<br />

Aaron Essner, MS 2, 3A, 6 – Stryker; 4 – Stryker, Pfizer<br />

Daniel M Estok II, MD ......................................................n<br />

Arthur Ethington, PA-C .....................................................n<br />

Susan L Ettner, PhD ........................................................n<br />

Selena Eunice, MSPH .......................................................n<br />

Nick Eustace, FRCA ........................................................n<br />

Gregory Thomas Evangelista, MD ............................................n<br />

Bruce G Evans, MD .........................................................n<br />

Christopher H Evans, PhD 3B – TissueGene Inc.; 4 – Orthogen AG<br />

Heather N Evans, BA .......................................................n<br />

Korboi N Evans, MD .......................................................n<br />

Richard Parker Evans, MD 2 – Cubist; 3B – DePuy, A Johnson & Johnson Company,<br />

Smith & Nephew<br />

David C Evans, GED ........................................................n<br />

Jesse L Even, MD ...........................................................n<br />

Jesse Exaltacion, MD .......................................................n<br />

Kace A Ezzet, MD 3B – Smith & Nephew; 5 – Smith & Nephew, Wright Medical<br />

Technology, Inc.<br />

Nicola Fabbri, MD .........................................................n<br />

Ken Faber, MD 1 – Tenet Medical; 4 – Zimmer<br />

David W Fabi, MD .........................................................n<br />

Meredith Fabing, DO .......................................................n<br />

Peter David Fabricant, MD ..................................................n<br />

Paul Fadale, MD ...........................................................n<br />

Bryan C Fagan, MD 3B – Smith & Nephew<br />

Juan-Carlos Falcon, MD, MSc ................................................n<br />

Richard Falcone Jr, MD, MPH ................................................n<br />

Cesare Faldini, MD .........................................................n<br />

Yuri Falkinstein, MD .......................................................n<br />

Gregory Carl Fanelli, MD 7 – Sports Medicine and Arthroscopy Review, Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Chien-Feng Fang, MD ......................................................n<br />

Bobbi A Farber, MD ........................................................n<br />

Daniel C Farber, MD 4 – JMEA, Inc.<br />

Mariana Custodio Farcetta, PhD .............................................n<br />

Jean-Pierre C Farcy, MD 3B – Stryker; 5 – DePuy, A Johnson & Johnson Company<br />

German Luis Farfalli, MD ...................................................n<br />

Yasser Farid, MD, PhD ......................................................n<br />

Philip M Faris, MD 1, 5 – Biomet; 3B – Zimmer<br />

Payam Farjoodi, MD .......................................................n<br />

Frances A Farley, MD 4 – Medtronic; 5 – Medtronic, DJ <strong>Orthopaedic</strong>s, Johnson &<br />

Johnson, Genzyme, Pfizer, Stryker, Wright Medical Technology, Inc., Zimmer, Synthes<br />

Eugene Farng, MD 3A, 4 – IVAX Corporation<br />

Courtney Fahnhorst, BA ....................................................n<br />

Christine L Farnsworth, MS .................................................n<br />

Frances Faro, MD ..........................................................n<br />

Francine Farouz, PhD ......................................................n<br />

Jack Farr II, MD 1 – Stryker, DePuy, Johnson & Johnson Companies; 2 – Genzyme,<br />

DePuy, Johnson & Johnson Companies, Zimmer; 3B – Genzyme, Arthrex, Inc., DePuy,<br />

A Johnson & Johnson Company, Mitek, Regeneration Technologies, Inc., Zimmer,<br />

Stryker, ABS, VOT; 4 – ABS, VOT; 5 – Genzyme, Mitek, Stryker, Biomet, Regeneration<br />

Technologies, Inc., ABS, Zimmer, Advanced Bio Surfaces, DePuy/ATRM, Osiris<br />

Therapeutics, Eli Lilly, Biomet<br />

34<br />

disclosure<br />

Mazda Farshad, MD ........................................................n<br />

Luc Favard, MD 1, 3C – Tornier<br />

Tony Elias Fayad, MD MRCS .................................................n<br />

Umberto Giuseppe Fazzi, FRCS ..............................................n<br />

Alexander N Fedenko, MD ..................................................n<br />

Catherine Julia Fedorka, MD ................................................n<br />

Brian Feeley, MD ...........................................................n<br />

Keith Fehring, MD 1, 2, 3B, 5, 6 – DePuy, A Johnson & Johnson Company<br />

Thomas K Fehring, MD 1, 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Edward V Fehringer, MD 1, 2, 4, 5 – Tornier; 7 – Elsevier<br />

John E Femino, MD ........................................................n<br />

Duncan Ferguson, MD .....................................................n<br />

James Ferguson, MRCS .....................................................n<br />

Peter Ferguson, MD ........................................................n<br />

Richard D Ferkel, MD 1, 3B – Smith & Nephew; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Edwin Darren Fern, MBChB .................................................n<br />

Mariano Fernandez-Fairen, MD ..............................................n<br />

Joel Ferreira, MD ..........................................................n<br />

Louis Ferreira, MSc .........................................................n<br />

Andrea Ferretti ............................................................n<br />

Matteo Ferretti, MD ........................................................n<br />

Andrea Ferro, MD ..........................................................n<br />

Alberto Ferruzzi, MD .......................................................n<br />

Jonas Meling Fevang, MD ...................................................n<br />

James R Ficke, MD .........................................................n<br />

Larry D Field, MD 3B – Smith & Nephew; 5 – Arthrex, Inc., Mitek, Smith & Nephew<br />

Giuseppe Filardo, MD ......................................................n<br />

Anthony Fine, BS ..........................................................n<br />

Kenneth M Fine, MD 2 – San<strong>of</strong>i-Aventis<br />

Henry A Finn, MD 1, 2, 3B – Biomet<br />

Marta Fiocco, PhD .........................................................n<br />

Gary S Firestein, MD .......................................................n<br />

Charla R Fischer, MD .......................................................n<br />

Jeffrey S Fischgrund, MD 1 – DePuy, A Johnson & Johnson Company; 3B – Apatech,<br />

DePuy, A Johnson & Johnson Company, Relieveant, Smith & Nephew, Stryker;<br />

5 – Apatech, Axial Biotech, Smith & Nephew, Stryker; 7 – JAAOS<br />

Anthony Colin Fisher, PhD 7 – Elsevier<br />

Charles G Fisher, MD 1 – Medtronic S<strong>of</strong>amor Danek, Nuvasive; 2 – Medtronic S<strong>of</strong>amor<br />

Danek, Synthes, DePuy, A Johnson & Johnson Company, Nuvasive; 3B – Nuvasive,<br />

Medtronic S<strong>of</strong>amor Danek<br />

David A Fisher, MD 1, 2, 3B – DePuy, A Johnson & Johnson Company;<br />

3C – Orthopediatrics; 4 – Eli Lilly, Pfizer, Tornier, Incisive Surgical, Visible Assets;<br />

5 – DePuy, A Johnson & Johnson Company, Incisive Surgical<br />

Steven Fisher, MBA .........................................................n<br />

Erica Fisk, MD .............................................................n<br />

Robert D Fitch, MD ........................................................n<br />

Wolfgang Fitz, MD 1, 3B, 4 – ConforMIS Inc.; 5 – Oped Inc., IGB.com<br />

John D Fitzgerald, MD, PhD, MPH ...........................................n<br />

Daniel C Fitzpatrick, MD 1 – Synthes, CMF, Zimmer; 2, 3B – Synthes, CMF<br />

Evan L Flatow, MD 1, 2, 3C – Zimmer; 5 – Wyeth; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Erin E Fleck, MD ...........................................................n<br />

Cassie M Fleckenstein ......................................................n<br />

Thomas B Fleeter, MD ......................................................n<br />

Nicholas D Fletcher, MD ....................................................n<br />

Kathy J. Flint, RN ..........................................................n<br />

Charles Henri Flouzat-Lachaniette,<br />

MD ......................................................................n<br />

Evelyn Flynn, MA ..........................................................n<br />

Dr Jeffrey Flynn ............................................................n<br />

Jack M Flynn, MD 1 – Biomet; 7 – Wolters Kluwer Health - Lippincott Williams &<br />

Wilkins<br />

Patrick Flynn, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Susan Foad, MS ............................................................n<br />

Kathryn Fong, BS ..........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Li Foong Foo, MD 3B – Histogenics Inc.<br />

Jared R H Foran, MD .......................................................n<br />

Kevin Ray Ford, MS ........................................................n<br />

Andrew Forester, FRCS .....................................................n<br />

Stefan Fornalski, MD .......................................................n<br />

Eric D Fornari, MD .........................................................n<br />

Douglas S Fornfeist, MD ....................................................n<br />

Maryam Forootan, BS ......................................................n<br />

Jonathan Agner Forsberg, MD ...............................................n<br />

Rosemarie Forstner, MD ....................................................n<br />

Antonio Maria Foruria de Diego, MD, PhD ....................................n<br />

John R Fowler, MD .........................................................n<br />

Alice JS Fox, MSc ...........................................................n<br />

Joshua C Fox, MD ..........................................................n<br />

Marilyn L Fox, PhD ........................................................n<br />

Austin Thomas Fragomen, MD 1 – Small Bone Innovations; 2, 5 – Biomet, Smith &<br />

Nephew, Small Bone Innovations<br />

Christian R Fraitzl, MD .....................................................n<br />

Caroline Frampton, BS .....................................................n<br />

John C France, MD 6 – Medtronic S<strong>of</strong>amor Danek<br />

Francesco Franceschi, MD ...................................................n<br />

Dunia Francesconi, MD .....................................................n<br />

Elizabeth Frank, MS ........................................................n<br />

Dr Jeremy S Frank .........................................................n<br />

Rachel Frank ..............................................................n<br />

Mark A Frankle, MD 1, 2, 3B – DJ <strong>Orthopaedic</strong>s; 3C – DePuy, A Johnson & Johnson<br />

Company; 5, 6 – DJ <strong>Orthopaedic</strong>s, EBI, Eli Lilly, Encore Medical; 7 – SLACK<br />

Incorporated<br />

Patricia Franklin, MD 5 – Zimmer<br />

Frank J Frassica, MD .......................................................n<br />

Robert W Frederick, MD 1 – Arthrotex/Biomed, Arthrex, Inc.<br />

Brett Freedman, MD 5 – Medtronic<br />

Ilan S Freedman, MD .......................................................n<br />

Michael Q Freehill, MD .....................................................n<br />

Michael T Freehill, MD .....................................................n<br />

Carl R Freeman, MD 1 – Innomed<br />

Heather Freeman, PT .......................................................n<br />

Robert Freeman, MBBS .....................................................n<br />

Theresa Freeman, PhD 5 – Cerapedics<br />

Andrew A Freiberg, MD 1, 3B – Biomet; Zimmer; 4 – ArthroSurface<br />

Per Freitag, MD 2 – Alphatec Spine<br />

Bruce Green French, MD 3B – Biomet<br />

Steven L Frick, MD 5 – Biomet<br />

Kevin B Fricka, MD 5 – Zimmer, INOVA Health Care Services<br />

Jan Friden, MD, PhD .......................................................n<br />

Laura Frieboes, PhD ........................................................n<br />

Gary E Friedlaender, MD 3B – BioMimetic Therapeutics, Inc.; 4 – BioMimetic<br />

Therapeutics, Medtronic, Pfizer, Stryker, CrossCart; 6 – BioMimetic<br />

Daniel Friedman, BSc ......................................................n<br />

Richard J Friedman, MD 1 – DJ <strong>Orthopaedic</strong>s; 3B – Boehringer Ingelheim, DJO<br />

Surgical; 5 – Astellas US; 7 – CRC Press<br />

Nicole A Friel, MD .........................................................n<br />

Jennifer K Friend, AS .......................................................n<br />

Darin M Friess, MD 3B – Acumed, LLC<br />

Helga Fritsch, MD 3B – Stryker<br />

Germaine R Fritz, DO ......................................................n<br />

John Marshal Froelich, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Simon Frostick, MD 1 – Biomet; 2 – Biomet, Boehringer Ingelheim, Bristol-Myers<br />

Squibb, Pfizer; 3B – Biomet, Boehringer-Ingelheim; 3C – DePuy, A Johnson & Johnson<br />

Company; 5 – DePuy, A Johnson & Johnson Company, Johnson & Johnson<br />

Freddie H Fu, MD 1 – Arthrocare; 3A – Stryker; 3C, 5 – Smith & Nephew<br />

Pr<strong>of</strong>essor Susanne Fuchs-Winkelmann ........................................n<br />

Carl Hans Fuersenberg, MD .................................................n<br />

Duretti Fufa, MD ..........................................................n<br />

Takeshi Fuji, MD ...........................................................n<br />

35<br />

disclosure<br />

Hiroshi Fujimaki, MD ......................................................n<br />

Jun Fujimori, MD ..........................................................n<br />

Satoru Fujita, MD ..........................................................n<br />

Hiroyoshi Fujiwara, MD ....................................................n<br />

Shingo Fukagawa, MD ......................................................n<br />

John P Fulkerson, MD 1 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s; 3C – DJ <strong>Orthopaedic</strong>s;<br />

4 – Merck; 6 – Kinamed, Smith & Nephew; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

T Ted Funahashi, MD .......................................................n<br />

Philipp Theodor Funovics, MD ..............................................n<br />

Christopher George Furey, MD ..............................................n<br />

Bridgette D Furman, PhD ...................................................n<br />

Ove Nord Furnes, MD 2 – OrtoMedic, Norway; 5 – Smith & Nephew, OrtoMedic,<br />

Norway<br />

Moritoshi Furu, MD, PhD ...................................................n<br />

Kazuma Futai, MD .........................................................n<br />

Joanne Daggy, PhD ........................................................n<br />

Keith Robert Gabriel, MD ...................................................n<br />

Bishoy V Gad, MD 4 – Advanced Cell Technology Inc. (ACTC)<br />

Naomi Gadinsky, Research Coor.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Varun Kashyap Gajendran, MD ..............................................n<br />

Jorge O Galante, MD 3B – Biomet; 4 – Johnson & Johnson, Zimmer<br />

Leesa M Galatz, MD 3C – Tornier<br />

Kieran R Gallagher, MRCS ..................................................n<br />

Jiri Gallo, MD 6 – Aesculap/B.Braun, Zimmer, Bayer<br />

Marc T Galloway, MD 6 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s, DePuy, A Johnson & Johnson<br />

Company<br />

Karina Galoian, PhD .......................................................n<br />

Armen Galoyan, MD, PhD ..................................................n<br />

James G Gamble, MD, PhD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Rajiv Gandhi, MD ...................................................5 – Pfizer<br />

Theodore J Ganley, MD 3B – OrthoPediatrics Corp.<br />

George D Gantsoudes, MD ..................................................n<br />

Reinhold Ganz, MD 3C, 4 – Pivot<br />

Tigran Garabekyan, MD ....................................................n<br />

Nickolas G Garbis, MD .....................................................n<br />

Donald S Garbuz, MD 3B – Zimmer; 5 – DePuy, A Johnson & Johnson Company,<br />

Zimmer<br />

Grant Garcia ..............................................................n<br />

Ryan Garcia, MD ...........................................................n<br />

Michael J Gardner, MD 3B – Synthes, DGI Med, Amgen Co.; 5 – Synthes, Amgen Co.;<br />

7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Thomas R Gardner, MCE ....................................................n<br />

Bhavuk Garg, MS Ortho ....................................................n<br />

Rishi Garg, MD ............................................................n<br />

Rohit Garg, MBBS ..........................................................n<br />

Sudhir Garg, MD ..........................................................n<br />

Sumeet Garg, MD ..........................................................n<br />

Jonathan P Garino, MD 1 – DePuy, A Johnson & Johnson Company, Smith & Nephew;<br />

2 – Smith & Nephew; 3B – Ceramtec<br />

Matthew Robert Garner, MD .................................................n<br />

David N Garras, MD ........................................................n<br />

William E Garrett, Jr MD 2 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s; 3B – Omeros; 5 – DJ<br />

<strong>Orthopaedic</strong>s, Omeros<br />

Kevin L Garvin, MD 1, 3A – Biomet; 2 – ConvaTec; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Alessandro Gasbarrini, MD .................................................n<br />

Selom Gasinu .............................................................n<br />

Olivier Gastaud, MD .......................................................n<br />

Charles J Gatt, Jr MD 2 – Musculoskeletal Transplant Foundation, Smith & Nephew;<br />

5 – Musculoskeletal Transplant Foundation<br />

Rachel E Gaume, BS ........................................................n<br />

Elizabeth Gausden, BS ......................................................n<br />

Deepa Gavini, MS ..........................................................n<br />

Andre Nicolas Gay, MD .....................................................n<br />

David Gay, MD 4 – Pfizer<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Zulma Gazit, PhD ..........................................................n<br />

Dongxia Ge, MD, MS .......................................................n<br />

Mark C Gebhardt, MD 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

Albert Ooguen Gee, MD ....................................................n<br />

William H Geerts, MD 2, 3B, 3C, 6 – Pfizer, San<strong>of</strong>i-Aventis<br />

Rudolph Gerbrand Geesink, MD,PhD 2, 3B – Stryker; 7 – Springer<br />

Thorsten Gehrke, MD ......................................................n<br />

Robin Michael Gehrmann, MD ..............................................n<br />

William Bennett Geissler, MD 1 – Acumed, LLC, Arthrex, Inc.; 2 – Acumed, LLC,<br />

Arthrex, Inc., Medartis; 3B – Acumed, LLC, Ascension; 4 – Tornier; 7 – Springer<br />

James Genuario, MD .......................................................n<br />

Michael S George, MD ......................................................n<br />

Christian Gerber, MD 1 – Zimmer; 3B – Storz; 5 – Medacta<br />

Tad L Gerlinger, MD ........................................................n<br />

Margherita Germano, MD ...................................................n<br />

Charles L Getz, MD 2 – Mitek; 5 – Zimmer<br />

Ghislain Geurts, MD .......................................................n<br />

Alexander J Ghanayem, MD .................................................n<br />

Raju S Ghate, MD 3B – Zimmer<br />

Ebrahim Ghayem Hassankhani ..............................................n<br />

Riccardo Ghermandi, MD ...................................................n<br />

Gary Ghiselli, MD 1 – Zimmer; 4 – Rhygen Difusion Technologies<br />

Neil S Ghodadra, MD ......................................................n<br />

Hassan Ghomrawi, PhD ....................................................n<br />

Ali Ghoz, MB BCH MRCS MRCS<br />

(Ed) ......................................................................n<br />

Giannis Giakas, MD ........................................................n<br />

Silvio Giannetti, MD .......................................................n<br />

Sandro Giannini, MD ......................................................n<br />

Peter Giannoudis, MD 2 – DePuy, A Johnson & Johnson Company, Stryker, Synthes, Eli<br />

Lilly; 3B, 5 – DePuy, A Johnson & Johnson Company, Stryker, Synthes; 3C – Pfizer<br />

Christopher T Gibbons, FRCS ...............................................n<br />

Max Gibbons, FRCS 3B, 3C – Biomet<br />

Johnny M Gibbs, MD .......................................................n<br />

Anthony Gibson 6 – Nuvasive<br />

Graham Allan Gie, MD 1, 3B, 5 – Stryker<br />

Corey A Gilbert, MD .......................................................n<br />

Josh W Giles, BESc .........................................................n<br />

Harinderjit Singh Gill, PHD 2, 3B – Wright Medical Technology, Inc.; 5 – Wright<br />

Medical Technology, Inc., DePuy, A Johnson & Johnson Company, Stryker<br />

Richie H S Gill, MD 2, 3B – Wright Medical Technology, Inc.; 5 – DePuy, A Johnson &<br />

Johnson Company, Stryker, Wright Medical Technology, Inc., Zimmer<br />

Thomas James Gill, MD 3B – ConMed Linvatec<br />

David L Gilliam, MD .......................................................n<br />

Scott D Gillogly, MD 3B – Genzyme, Exactech, Inc., Carticept; 4 – Pfizer; 5 – Smith &<br />

Nephew, Genzyme, Arthrex, Inc.<br />

Allison Gilmore, MD .......................................................n<br />

Louis A Gilula, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Terence J Gioe, MD 4 – Eli Lilly, Johnson & Johnson; 5 – DePuy, A Johnson & Johnson<br />

Company<br />

Giovanni Giordano, MD ....................................................n<br />

Nicholas John Giori, MD ...................................................n<br />

Federico Pablo Girardi, MD 1 – DePuy, A Johnson & Johnson Company, Nuvasive,<br />

LifeSpine, OrthoDevelopment; 3B – Centinel Spine, DePuy, A Johnson & Johnson<br />

Company, LifeSpine, OrthoDevelopment, Osteotech, Orthogem, Orthovita;<br />

4 – Nuvasive<br />

Ida Leah Gitajn, MD ........................................................n<br />

Jennifer L Giuffre, MD ......................................................n<br />

Jeffrey R Giuliani, MD ......................................................n<br />

M. Russell Giveans, PhD ....................................................n<br />

Jan-Erik Gjertsen, MD, PhD .................................................n<br />

David L Glaser, MD 3A, 4 – GlaxoSmithKline; 5 – Mitek<br />

Diana A Glaser, PhD 5 – Alphatec Spine<br />

John A Glaser, MD 4 – Mekanika<br />

Andrew H Glassman, MD 1 – Innomed, Zimmer; 3B – Exactech, Inc.; 4 – Stryker<br />

David Michael Glassman, MD ...............................................n<br />

36<br />

disclosure<br />

Steven D Glassman, MD 1, 3B – Medtronic S<strong>of</strong>amor Danek<br />

Mark Glazebrook, MD 2 – BioMimetic, Wright Medical Technology, Inc.;<br />

3B – BioMimetic, BioSet, ConMed Linvatec, Wright Medical Technology, Inc.; 4 – Smith<br />

& Nephew, Stryker, Wright Medical Technology, Inc.; 5 – Boise, DePuy, A Johnson &<br />

Johnson Company<br />

Nicholas Glembotski, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Steven Z Glickel, MD 4 – Abbott, Zimmer, Pfizer, Johnson & Johnson<br />

David Glos ................................................................n<br />

Michael P Glotzbecker, MD .................................................n<br />

Sion Glyn-Jones, MA MBBS 2 – Zimmer, Stryker, Wright Medical Technology, Inc.;<br />

3B – Zimmer, Stryker; 3C – Corin U.S.A.; 5 – Zimmer<br />

Alberto Gobbi, MD ........................................................n<br />

Reuben Gobezie, MD 3B – Arthrex, Inc.; 5 – Arthrex, Inc., Tornier, Neurowave<br />

Can Gocuk, MD ...........................................................n<br />

Maria S Goddard, MD ......................................................n<br />

Jonathan Godin, BA ........................................................n<br />

Tom Goehre, MD ..........................................................n<br />

Anshul Goel, MBBS ........................................................n<br />

Danny Goel, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Devon D Goetz, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Tom Goetz, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Frank Gohlke, MD 3C – Tornier; 7 – Journal <strong>of</strong> Shoulder and Elbow Surgery<br />

Ziya L Gokaslan 4 – Spinal Kinetics and U.S. Spine; 5 – Integra, AO North America;<br />

6 – DePuy, A Johnson & Johnson Company, Medtronic<br />

Stuart M Gold, MD 2, 3B – Smith & Nephew; Stryker; 5 – Stryker<br />

Michael J Goldberg, MD ....................................................n<br />

Charles A Goldfarb, MD ....................................................n<br />

Ariel Goldman, MD 2 – Osteotech; 5 – Stryker<br />

Steven R Goldring, MD 2 – Fidia Framiceuticals, NicOx, Inc.; 3B – Biomet, Novartis,<br />

Roche, Pfizer, Merck Serono, Abbott; 5 – Merck Serono, Boehringer Ingelheim, Abbott<br />

Jeffrey Andrew Goldstein, MD 2 – Synthes; 3B – Medtronic S<strong>of</strong>amor Danek, Nuvasive,<br />

Synthes, K2M; 4 – K2M<br />

Wayne M Goldstein, MD 1 – Smith & Nephew, Innomed; 2, 3B, 6 – DePuy, A Johnson<br />

& Johnson Company, Osteotech, Smith & Nephew; 4 – Doctors Research Group;<br />

5 – DePuy, A Johnson & Johnson Company<br />

Elan Michael Goldwyn, MD .................................................n<br />

Ty Henry Goletz, MD .......................................................n<br />

Michael Golf, DPM .........................................................n<br />

S Raymond Golish, MD, PHD 3B, 4 – Cytonics, Inc.<br />

Francisco Gomar, MD ......................................................n<br />

Bruna Gomes, BS ..........................................................n<br />

Joao Ellera Gomes, MD .....................................................n<br />

Dominic T Gomez-Leonardelli, MD ..........................................n<br />

Andreas H Gomoll, MD 2 – Arthrex, Inc., Genzyme; 3B – Genzyme; 5 – Genzyme,<br />

ConforMIS; 7 – SLACK Incorporated<br />

Alejandro M Gonzalez Della Valle, MD 3B – Stryker<br />

Bernal Gonzalez, MD .......................................................n<br />

Humberto Gonzalez Ugalde, MD ............................................n<br />

Guillem Gonzalez-Lomas, MD ...............................................n<br />

Miguel Gonzalez-Thompson, MD ............................................n<br />

Ruben Gonzalez, MD .......................................................n<br />

Hubert Lee Gooch, Jr MD 4 – Johnson & Johnson, Medtronic S<strong>of</strong>amor Danek, Procter<br />

& Gamble, Pioneer Surgical<br />

Gens Pierce Goodman, DO .................................................n<br />

Mark A Goodman, MD .....................................................n<br />

Murray J Goodman, MD 4 – Genzyme, Johnson & Johnson, Merck, Pfizer, Stryker,<br />

Zimmer<br />

Stuart Barry Goodman, MD 3B – BioMimetic, Synthes; 4 – Accelalox, StemCor, Tibion;<br />

5 – Amgen Co., Musculoskeletal Transplant Foundation, National Institutes <strong>of</strong> Health<br />

(NIAMS & NICHD); 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

Andrew D Goodwillie, MD ..................................................n<br />

Robert S Gorab, MD 1 – Stryker, DePuy, A Johnson & Johnson Company; 3B,<br />

5 – DePuy, A Johnson & Johnson Company<br />

John T Gorczyca, MD 3B – Zimmer<br />

J Eric Gordon, MD 1, 3B – Orthopediatrics<br />

Wade T Gordon, MD .......................................................n<br />

Simon Gortz, MD 6 – Joint Restoration Foundation<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Richard A Gosselin, MD ....................................................n<br />

Tarun Goswami, DSc .......................................................n<br />

Akira Goto, MD, PhD ......................................................n<br />

Hideyuki Goto, MD ........................................................n<br />

Christian Gotze, MD .......................................................n<br />

Yannick Goubau, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Krista Goulding, MD .......................................................n<br />

Monique C Gourdine-Shaw, DPM ............................................n<br />

Amrit Goyal, MD ..........................................................n<br />

Nitin Goyal, MD ...........................................................n<br />

Robin Nestor Goytia, MD ...................................................n<br />

Vadim Goz, BA ............................................................n<br />

Gregory Grabowski, MD ....................................................n<br />

Ivan A Gradisar Jr, MD 3B, 4 – Exactech, Inc.<br />

Ronald D Graff, PhD .......................................................n<br />

David Grainger, PhD 3C – Accelr8 Technologies, Inc.; 4 – Accelr8 Technologies, Inc.,<br />

CellSeed, Ltd.; 6 – Accelr8 Technologies, Inc.<br />

George A Grammatopoulos, MRCS ...........................................n<br />

William A Grana, MD, MPH .................................................n<br />

Daniel A Grande, PhD 3B – Tigenix; 4 – Cartilix, Tigenix; 5 – BioMimetic<br />

Gian Luca Grandi, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Struan F Grant, PhD 1 – COLIA1, Sequenom<br />

Guido Grappiolo, MD 1 – Zimmer; 2, 3B – Biomet; Zimmer; 3C – Lima, Finceramica;<br />

5 – San<strong>of</strong>i-Aventis<br />

Carly Gratopp .............................................................n<br />

Mathew Graves, MD ........................................................n<br />

Stephen Graves, MD ........................................................n<br />

Sascha Gravius, MD ........................................................n<br />

Robert R Gray, MD .........................................................n<br />

Tinker Gray, MA, ELS .......................................................n<br />

Frank E Greaves, OPA-C, OTC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Andrew Green, MD 1 – Tornier; 2 – DJ <strong>Orthopaedic</strong>s; 3B – IlluminOss, Tornier;<br />

4 – IlluminOss Medical, Pfizer; 5 – Arthrex, Inc., Smith & Nephew, Wyeth; 7 – Elsevier<br />

Daniel William Green, MD 1 – Pega Medical; 3B – DePuy, A Johnson & Johnson<br />

Company; 7 – Current Opinion in Pediatrics<br />

Steven Marshall Green, MD 4 – GlaxoSmithKline, Pfizer, Stryker, Auxilium<br />

Stuart A Green, MD 1 – Smith & Nephew ;3B, 4 – Ellipse Technologies<br />

Jordan N Greenbaum, MD, MBA .............................................n<br />

Jeffrey A Greenberg, MD 3B – Stryker; 5 – Acumed, LLC<br />

Richard A. Greendyk, BS ....................................................n<br />

Denise Greene, RNP ........................................................n<br />

Joseph Greene, MD ........................................................n<br />

Meridith Greene 6 – Biomet, Zimmer<br />

A Seth Greenwald, DPhil Oxon 3B – DePuy, A Johnson & Johnson Company;<br />

5 – Amedica, SBI, Wright Medical Technology, Inc., Maxx Health, ConforMIS, Encore<br />

Medical, Nuvasive, Synvasive, TJO, Acumed, LLC, Ranier, Japan Medical Materials;<br />

7 – Seminars in Arthroplasty<br />

Pr<strong>of</strong> Paul J Gregg ..........................................................n<br />

Nelson Victor Greidanus, MD 5 – Zimmer<br />

Thomas H Greidanus, MD ..................................................n<br />

Justin K Greisberg, MD 7 – Saunders/Mosby-Elsevier<br />

Mike Greiwe, MD ..........................................................n<br />

Ruby Grewal, MD ..........................................................n<br />

Michael Griesser, MD .......................................................n<br />

Anthony M Griffin, MSC ....................................................n<br />

Harry Grigg, BSc ...........................................................n<br />

Nathan L Grimm, MD ......................................................n<br />

Charles Simpson Grimshaw, MD .............................................n<br />

Tahnee Groat, MPH ........................................................n<br />

Alan J Grodzinsky, PhD .....................................................n<br />

Thomas J Grogan, MD 4 – Pfizer, Excelerate, Zimmer<br />

Gordon I Groh, MD 1 – Encore Medical; 2 – Arthrocare, DePuy, A Johnson & Johnson<br />

Company, DJ <strong>Orthopaedic</strong>s; 3B – DePuy, A Johnson & Johnson Company; DJ<br />

<strong>Orthopaedic</strong>s; Ascension <strong>Orthopaedic</strong>s, Upex; 4 – Upex; 5 – Ascension, DePuy; 7 - DJ<br />

<strong>Orthopaedic</strong>s<br />

Allan E Gross, MD, FRCSC 1, 2, 3B – Zimmer<br />

37<br />

disclosure<br />

Jonathan Michael Gross, MD ................................................n<br />

Thomas Gross, MD, PhD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Joshua D Grossman, BA ....................................................n<br />

Alexander Gruebl, MD 2 – DePuy, A Johnson & Johnson Company<br />

Gary S Gruen, MD 3B – Smith & Nephew<br />

Robert C Grumet, MD ......................................................n<br />

Thomas Grupp, MD 3A – Aesculap/B.Braun<br />

Konrad Gruson, MD 4 – Amgen Co., Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline,<br />

Johnson & Johnson, Medtronic, Merck, Pfizer, Procter & Gamble, Stryker, Zimmer<br />

Stephen Gryzlo, MD ........................................................n<br />

Yang Gu, BS ...............................................................n<br />

Carlos Guanche, MD 2 – Tornier, Smith & Nephew; 3B – Tornier; 6 – Allen Medical;<br />

7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Teja Guda, PhD ............................................................n<br />

Suribabu Gudipati, MBBS, MRCS ............................................n<br />

Scott Guelcher, PhD 3B, 5, 6 – Osteotech<br />

Enrico Guerra, MD .........................................................n<br />

Giovanni Guerra, MD ......................................................n<br />

Marcos Guerrero, MD ......................................................n<br />

Joseph Guettler, MD 4 – Johnson & Johnson, Genzyme, Stryker; 5 – Omeros<br />

Benjamin G Guevara, MD ...................................................n<br />

Farshid Guilak, PhD 3B, 4, 6 – Cytex Therapeutics; 5 – Osteotech; 7 – Osteoarthritis<br />

and Cartilage Journal <strong>of</strong> Biomechanics<br />

Oscar Guillamondegui, MD, MPH ...........................................n<br />

Farid Guirguis, MD ........................................................n<br />

Thierry Guitton, MSc .......................................................n<br />

Ashish Gulati, MS, DNB ....................................................n<br />

Bethany C Gulick, RT .......................................................n<br />

Lawrence Gulotta, MD 3C – Collplant, Inc.<br />

Mahir Gulsen, Pr<strong>of</strong>.Dr. .....................................................n<br />

Kenneth Robert Gundle, MD ................................................n<br />

Roger Gundle 2 – Biomet<br />

Adem Gundogan, MD ......................................................n<br />

Taner Gunes, MD ..........................................................n<br />

Akash Gupta, BA ...........................................................n<br />

Ranjan Gupta, MD 5 – Arthrex, Inc., Smith & Nephew, Synthes; 7 – McGraw<br />

Rishi R Gupta, MD .........................................................n<br />

Tushar Gupta, MBBS .......................................................n<br />

Vikas Gupta, MS ...........................................................n<br />

Sabahat Gurdezi, BPharm, MBBS, FRCS .......................................n<br />

Jennifer Gurske de Perio, MD ................................................n<br />

Kenneth A Gustke, MD 2, 4, 5 – Zimmer; 3B – Zimmer, MAKO<br />

Sergio Gutierrez, PHD ......................................................n<br />

Gordon Guyatt, MD ........................................................n<br />

Olivier Guyen, MD 1, 6 – Amplitude Company<br />

Charles H Guymon, MA ....................................................n<br />

Gregory P Guyton, MD .....................................................n<br />

David E Gwinn, MD ........................................................n<br />

Chul Won Ha, MD 5 – Medipost<br />

Eun-Young Ha, MD ........................................................n<br />

Yong-chan Ha, Pr<strong>of</strong> ........................................................n<br />

Janet Haas, MD ............................................................n<br />

Joerg Haasters, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Rohan Ashok Habbu, MS, MBBS .............................................n<br />

Pr<strong>of</strong> Dr Peter Habermeyer ...................................................n<br />

Sadia Habib, MSc ..........................................................n<br />

Donald A Hackbarth Jr, MD 6 – Musculoskeletal Transplant Foundation<br />

Thomas R Hackett, MD 2 – Arthrex, Inc., Sonoma <strong>Orthopaedic</strong>s; 3B – Regeneration<br />

Technologies, Inc., Arthrex, Inc., Sonoma <strong>Orthopaedic</strong>s; 4 – Sonoma <strong>Orthopaedic</strong>s;<br />

5 – Arthrex, Inc,<br />

Fares Sami Haddad, FRCS 1, 5 – Smith & Nephew; 2 – Pfizer; 3B – DePuy, A Johnson<br />

& Johnson Company, Smith & Nephew, Stryker<br />

Steven L Haddad, MD 2 – Stryker; 3B – Wright Medical Technology, Inc.; 3C,<br />

4 – OrthoHelix Surgical Designs; 5 – BioMimetic<br />

Scott R Hadley, MD ........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Moustafa Ismail Hafez, PhD .................................................n<br />

Tomonobu Hagio, MD .....................................................n<br />

Michael P Hahn, MD .......................................................n<br />

Theodore J Hahn, MD ......................................................n<br />

George John Haidukewych, MD 1 – DePuy, A Johnson & Johnson Company;<br />

4 – Surmodics, Orthopediatrics<br />

David J Hak, MD 2 – Medtronic; 3B – Medtronic, Amgen; 4 – Emerge; 5 – Synthes,<br />

Stryker<br />

Arnavaz Hakimiyan, BS .....................................................n<br />

Sam Hakki, MD 2, 3C – Aesculap/B.Braun; 5 – Aesculap/B.Braun, Pfizer<br />

Sema Hakki, DT ...........................................................n<br />

Hakon Hakonarson, MD, PhD ...............................................n<br />

Matthew Halanski, MD 3C – Orthopaediatrics; 5 – Biomet and Stryker<br />

Abdul Ahad Haleem, MD ...................................................n<br />

Jeremy Hall, MD, FRCS (ORTHO), MEd 5, 6 – Pfizer, Zimmer, Synthes, Stryker, Smith<br />

& Nephew, Amgen Co.<br />

Carolina Halliburton .......................................................n<br />

Benjamin Warren Halligan, MD ..............................................n<br />

Mark Halstead, MD ........................................................n<br />

Moussa Hamadouche, MD PhD 3B, 5 – Osteotech<br />

Dustin Hambright, BA ......................................................n<br />

Nady Hamid, MD ..........................................................n<br />

Christopher Lawrence Hamill, MD ...........................................n<br />

William G Hamilton, MD 2 – DePuy, A Johnson & Johnson Company, Salient Surgical;<br />

3B – DePuy, A Johnson & Johnson Company; 5 – DePuy, A Johnson & Johnson<br />

Company, Inova Health Care Services<br />

Kyle E Hammond, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Sommer Hammoud, MD ....................................................n<br />

Chang-Dong Han, MD .....................................................n<br />

Seung Beom Han, MD ......................................................n<br />

Nicholas J Hancock, FRCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Douglas P Hanel, MD 3B – Aptis Medical LLC<br />

Lewis Hanna, PhD 3A – Cytonics Corporation; 4 – Bristol-Myers Squibb, Johnson &<br />

Johnson, Cytonics Corporation<br />

Sammy A Hanna, MRCS ....................................................n<br />

Benjamin Hansen, MD 3A – Forest Pharmaceuticals, Myriad Genetics<br />

Patricia L Hansen, BS .......................................................n<br />

Sigvard T Hansen Jr, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins,<br />

Thieme Medical Publishers<br />

Sarah Hanslow, MD ........................................................n<br />

Beate Hanson, MD .........................................................n<br />

Jean Hanson, RN, PhD .....................................................n<br />

Arlen D Hanssen, MD 1 – Stryker, Ortho Development Corp.; 5 – Biomet, A Johnson &<br />

Johnson Company, Stryker, Zimmer<br />

Josa Hanzlik, MS ..........................................................n<br />

Toshiaki Hara, PhD ........................................................n<br />

Yoshitada Harada, MD 2 – Biomet, San<strong>of</strong>i-Aventis, Wright Medical Technology, Inc.;<br />

3B – Stryker, Wright Medical Technology, Inc.; 3C – Stryker, Smith & Nephew; 5 – Smith<br />

& Nephew<br />

Ziad Harb, MRCS ..........................................................n<br />

John McCall Hardcastle, V MD ...............................................n<br />

L Alberto Harfush-Nasser, MD ...............................................n<br />

Kengo Harigane, MD .......................................................n<br />

Sanaz Hariri, MD ..........................................................n<br />

Alain Harisboure, MD 2, 3B – Aesculap/B.Braun<br />

Jaap Harlaar, PhD 5 – Prosensa; 6 – OIM, Netherlands<br />

William Harmsen, MS ......................................................n<br />

Christopher D Harner, MD 5 – DePuy, A Johnson & Johnson Company<br />

Paul Richard Harnett, MB, ChB ..............................................n<br />

Alex HS Harris, PhD, MS ....................................................n<br />

Joshua Harris, MD .........................................................n<br />

Michael D Harris, BS .......................................................n<br />

Mitchel B Harris, MD .......................................................n<br />

Steven M Harris, JD ........................................................n<br />

Alicia Karin Harrison, MD ..................................................n<br />

Jim Harrison, MBBS ........................................................n<br />

38<br />

disclosure<br />

James Harrop, MD 2 – DePuy, A Johnson & Johnson Company, Stryker, Neurostem;<br />

3B – DePuy, A Johnson & Johnson Company; 3C – Geron, AScubio; 4 – Axiomed<br />

Alister Hart, FRCS 3A, 4 – Corin; 5 – Biomet, Corin U.S.A., DePuy, A Johnson &<br />

Johnson Company, Finsbury, Mathys Ltd., Smith & Nephew, Zimmer<br />

Deborah Hart, MD .........................................................n<br />

Nathan Hart, MD ..........................................................n<br />

Robert A Hart, MD 1 – SeaSpine; 2 – DePuy, Synthes; 3B – DePuy; 4 – SpineConnect;<br />

5 – DePuy, Medtronic, OREF, Synthes<br />

Gary Dean Harter, MD 2 – DJ <strong>Orthopaedic</strong>s, Genzyme; 3B, 5 – DJ <strong>Orthopaedic</strong>s<br />

Robert Hartman, MS .......................................................n<br />

Zane Hartsell 3A, 4 – Smith & Nephew; 4 – Smith & Nephew<br />

Langdon A Hartsock, MD 5 – Synthes<br />

Mark A Hartzband, MD 1, 2, 3B, 5 – Zimmer<br />

Satonaka Haruhiko, MD, PhD ...............................................n<br />

Katherine F Harvey-Kelly, MB BSc ............................................n<br />

Edward J Harvey, MD 3C – MedTexel; 5 – Synthes, Stryker, Smith & Nephew, Zimmer<br />

Samer S Hasan, MD, PhD 3B – DJ <strong>Orthopaedic</strong>s; 5 – DJ <strong>Orthopaedic</strong>s, Arthrex, Inc.<br />

Saqib Hasan, BS ...........................................................n<br />

Zabeolla Hasanzadeh, MD ..................................................n<br />

Thomas Hash, MD .........................................................n<br />

Amir Hasharoni, MD .......................................................n<br />

Zaid Hashim, MBBS ........................................................n<br />

Hideo Hashimoto, MD .....................................................n<br />

Tomoyuki Hashimoto, MD ..................................................n<br />

Yusuke Hashimoto, MD ....................................................n<br />

Andrew Haskell, MD .......................................................n<br />

Joachim Hassenpflug, MD ..................................................n<br />

Hiroshi Hatano ............................................................n<br />

Kazuhika Hatayama, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

H Paul Hatten Jr, MD 3B – BoneSupport, AB, DFine, Inc.<br />

Steven J Hattrup, MD 3B – Zimmer<br />

Michael Hausman, MD 1 – Smith & Nephew; 3B – Checkpoint Surgical;<br />

4 – Checkpoint Surgical, NDI Medical<br />

Leif Ivar Havelin, MD .......................................................n<br />

Ammar Hawasli, MD, PhD ..................................................n<br />

David Hawkes, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Richard J Hawkins, MD 1 – DePuy, A Johnson & Johnson Company, Ossur;<br />

5 – Arthrocare, DJ <strong>Orthopaedic</strong>s, Breg, Smith & Nephew, Medica, OrthoRehab;<br />

7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Nicola Hawkinson, MA, RNFA, NP 3B – DePuy, A Johnson & Johnson Company<br />

Mary Hawn, MD, FACS .....................................................n<br />

Hiroyuki Hayashi, MD ......................................................n<br />

Katsuhiro Hayashi, MD .....................................................n<br />

Kenji Hayashida, MD 3B – Zimmer<br />

Roman A Hayda, MD 2 – AONA; 3C – BioIntraface<br />

Brett Hayden, BA ..........................................................n<br />

Rex Haydon, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Solomon Hayon, BS 3A – Biogen, Idec<br />

Peyton Hays, MD ..........................................................n<br />

Sprague Hazard, MD .......................................................n<br />

Alexandra Hazlerigg, MBBS, MRCS ...........................................n<br />

Tong-Chuan He, MD, PhD ..................................................n<br />

John H Healey, MD, FACS 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

William L Healy, MD 1 – DePuy, A Johnson & Johnson Company<br />

Wendell M Rogan Heard, MD 6 – Stryker, Extremity Medical<br />

Andrew C Hecht, MD 2, 3B – Stryker<br />

James D Heckman, MD 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong>, Wolters<br />

Kluwer Health - Lippincott Williams & Wilkins<br />

Kimberly Heckman, RN .....................................................n<br />

David Hedden, MD 3B – Smith & Nephew; 5 – Zimmer; 6 – DePuy, A Johnson &<br />

Johnson Company, Pfizer, Smith & Nephew<br />

Daniel J Hedequist, MD 3B – Medtronic S<strong>of</strong>amor Danek<br />

Eric Hegedus, DPT, MSC 7 – Prentice-Hall<br />

Jo Ellen Hegmann .........................................................n<br />

Christine S Heim ..........................................................n<br />

John P Heiner, MD .........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

David Leonard Helfet, MD 3C – Synthes, OHK Medical Devices, FxDevices<br />

John G Heller, MD 1, 2, 4 – Medtronic; 3B – Medtronic, Zimmer<br />

Yonah Heller, BS ...........................................................n<br />

Edward J Hellman, MD .............................2, 3B – Stryker, NovoNordisk<br />

Michael Hellman, MD ......................................................n<br />

Hany F Helmy, MD 5 – Corin U.S.A.<br />

Xavier Hemery, MD ........................................................n<br />

Stefan Hemmer, MD .......................................................n<br />

Cynthia Henderson, OTC, CO 2 – Bledsoe Brace; 3A, 3B, 4 – Viscent Orthopedic<br />

Solutions; 3C – Bledsoe Brace, BSN Healthcare; 6 – Viscent Orthopedic Solutions, BSN<br />

Healthcare<br />

Drew Henderson, MSIV .....................................................n<br />

Eric Henderson, MD 3A – Medtronic S<strong>of</strong>amor Danek<br />

William G Henderson, PhD .................................................n<br />

John D Henley, PhD 1 – Motion Analysis<br />

M Bradford Henley, MD, MBA, FACS 1 – Zimmer; 2 – Stryker, Zimmer; 3B – Gerson<br />

Lehrman Group, Guidepoint Global, MedACorp., Medical Resource Network, Milliman<br />

Care Guidelines, Premera Blue Cross, Providence Health & Services, Stryker, United<br />

Health Care, Zimmer; 3C – DeRoyal, Karen Zupko and Assts., Smith & Nephew, Synergy<br />

Surgical Technologies, Zimmer; 4 – Synergy Surgical Technologies; 7 – Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

R Frank Henn, III MD ......................................................n<br />

William L Hennrikus Jr, MD .................................................n<br />

Robert Mikael Henshaw, MD 5 – Amgen Co.<br />

Matthew Hepinstall, MD ....................................................n<br />

Jonah Hebert-Davies, MD ...................................................n<br />

Harry N Herkowitz, MD 1 – Medtronic; 4 – Globus Medical; 7 – Saunders/Mosby-<br />

Elsevier<br />

Martin Joseph Herman, MD .................................................n<br />

Alexia Hernandez-Soria, MD ................................................n<br />

James H Herndon, MD 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong><br />

Philippe Hernigou, PhD ....................................................n<br />

Richard T Herrick, MD .....................................................n<br />

Wolfgang Herzberg ........................................................n<br />

John E Herzenberg, MD 4 – Voyant<br />

Mary A Herzog, MD ........................................................n<br />

Susanne Hess, MD 3A – Bayer Schering Pharma<br />

Sydney Hester, MD .........................................................n<br />

Iftach Hetsroni, MD ........................................................n<br />

Carolyn Hettrich, MD, MPH .................................................n<br />

Hinrich JD Heuer, MS ......................................................n<br />

Peter Heumann, MD .......................................................n<br />

Timothy E Hewett, PhD .....................................................n<br />

Nurettin Heybeli, MD, MSc ..................................................n<br />

Alma Heyl, CCRC ..........................................................n<br />

Thomas Jan Heyse, MD 3B – Smith & Nephew<br />

Benton E Heyworth, MD ....................................................n<br />

Noguchi Hideo, MD ........................................................n<br />

Laurence D Higgins, MD 1 – Zimmer; 2, 3B – Johnson & Johnson<br />

Thomas F Higgins, MD 2 – AONA, Smith & Nephew<br />

Hiroshi Higuchi, MD .......................................................n<br />

Carlos A Higuera, MD ......................................................n<br />

Kevin A Hildebrand, MD ....................................................n<br />

Alan S Hilibrand, MD 1 – Aesculap/B.Braun, Alphatec Spine, Amedica, Biomet, Stryker,<br />

Zimmer; 4 – Amedica, Benvenue Medical, Life Spine, Nexgen, Paradigm Spine, Pioneer<br />

Surgical, PSD, Syndicom, Vertiflex<br />

Joshua Hillman, MS ........................................................n<br />

Howard Hillstrom, PhD 5 – Ossur<br />

Ryan Himes ...............................................................n<br />

Cynthia K Hinds ...........................................................n<br />

Beat Hintermann, MD 1, 3B, 5 – Integra<br />

Anthony Christopher Hinz, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

John Hipp, PhD 3A, 4 – Medical Metrics, Inc.<br />

Cori Hirai, BS .............................................................n<br />

Kazuo Hirakawa, MD 2 – Zimmer, Biomet, San<strong>of</strong>i-Aventis; 3B, 5 – Zimmer<br />

Jayme Hiratzka, MD ........................................................n<br />

39<br />

disclosure<br />

Ryo Hirosima, MD .........................................................n<br />

Philip Hirst, MD 3B – DePuy, A Johnson & Johnson Company; 4 – Advanced Medical<br />

Solutions<br />

Kristin Hitchcock ..........................................................n<br />

Kirby Hitt, MD 1, 3B, 5, 6 – Stryker; 2 – Stryker Convatec<br />

Murat Hiz, MD ............................................................n<br />

Karen Hjerstedt, RN ........................................................n<br />

Christine Ann Ho, MD .....................................................n<br />

Duarte Y Ho, BS ...........................................................n<br />

Henry Ho, MSC 4 – Pfizer<br />

Jessica Mayan Ho, MD ......................................................n<br />

Pei-Ran Ho, MD 3A, 4 – Amgen Co.<br />

Bang H Hoang, MD ........................................................n<br />

H J Hoekstra, MD 5 – Biomet<br />

Heinz R Hoenecke Jr, MD 1 – Tornier, Arthrex, Inc.; 2, 3B, 5 – Tornier<br />

Thomas H<strong>of</strong>felner, MD .....................................................n<br />

Martin H<strong>of</strong>fman, MD .......................................................n<br />

Robert M H<strong>of</strong>fman, PhD ....................................................n<br />

Pierre J H<strong>of</strong>fmeyer, MD 5 – DePuy, A Johnson & Johnson Company, Zimmer, Synthes,<br />

Medacta<br />

Aaron Adam H<strong>of</strong>mann, MD 3B – Zimmer<br />

Jochen G H<strong>of</strong>staetter, MD ...................................................n<br />

Paul C Hogrebe, BS ........................................................n<br />

Justin Hohl, MD ...........................................................n<br />

Tatsuya Hojo ..............................................................n<br />

Jorge Hokama, MD ........................................................n<br />

Annemiek Hol, MsC ........................................................n<br />

David W Holdsworth .......................................................n<br />

Danny C Holland, DO ......................................................n<br />

James Holland, MD 2 – Finsbury; Zimmer; 5 – Smith & Nephew<br />

Julianne Holloway, BS ......................................................n<br />

April Holmes ..............................................................n<br />

Laurens Holmes, PhD, DrPH ................................................n<br />

Ginger E Holt, MD .........................................................n<br />

Kathleen Holtzman, BA, BS .................................................n<br />

Nicolas Holzer, MD, PhD ...................................................n<br />

Martin Homering, PhD 3A, 4 – Bayer Schering Pharma<br />

Gabriel James Hommel, MD ................................................n<br />

Sittisak Honsawek, MD, PhD ................................................n<br />

Gary John Hooper, MD .....................................................n<br />

M Hoover, SPT ............................................................n<br />

Stephen A Hoover, Jr MD 1 – Innomed<br />

William John Hopkinson, MD 4 – DePuy, A Johnson & Johnson Company, Zimmer,<br />

Pfizer<br />

Robert Hopper, PhD 5 – DePuy, A Johnson & Johnson Company<br />

Martha Hoque, PhD ........................................................n<br />

Ryan David Horazdovsky, MD ...............................................n<br />

Kazuichiro Hori, MD .......................................................n<br />

Shuji Horibe, MD ..........................................................n<br />

Yutaka Horinouchi, MD ....................................................n<br />

Walter Horne, DVM 3B – Athersys, Inc.<br />

John G Horneff, MD .......................................................n<br />

Francis J Hornicek, MD 3B, 5 – Stryker<br />

MaryBeth Horodyski, EdD, ATC,<br />

LAT ......................................................................n<br />

Daniel Scott Horwitz, MD 1 – DePuy, A Johnson & Johnson Company; 2, 3B – DePuy,<br />

A Johnson & Johnson Company, Stryker<br />

Harish Sadanand Hosalkar, MD 2, 3B – Synthes; 4 – GlaxoSmithKline, Johnson &<br />

Johnson, Pfizer; 5 – Zimmer; 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong>, Turner<br />

White<br />

Christopher Max Hoshino, MD ..............................................n<br />

Yuichi Hoshino, MD .......................................................n<br />

Munier Hossain, FRCS, MSc .................................................n<br />

Richard Hotchkiss, MD .....................................................n<br />

Robert N Hotchkiss, MD 7 – Saunders/Mosby-Elsevier<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Tetsuo Hotta, MD ..........................................................n<br />

Justin Houman, BS .........................................................n<br />

Thomas Houston, MD ......................................................n<br />

Lennart Hovelius, MD ......................................................n<br />

Caitlin Howard, AB ........................................................n<br />

Jonathan Richard Howell, MD 1, 3B, 5 – Stryker;<br />

Stephen M Howell, MD 1 – Biomet; 2, 3B – Biomet, Stryker; 7 – Saunders/Mosby-<br />

Elsevier<br />

William J Hozack, MD 1, 3B, 5 – Stryker<br />

Michael Timothy Hresko, MD 3B – Abbott; 4 – Johnson and Johnson; 6 – Biogen Idec<br />

Adam H Hsieh, PhD 5 – Synthes<br />

Jui-Yang Hsieh, MD ........................................................n<br />

Jason Hsu, MD ............................................................n<br />

Joseph R Hsu, MD 5 – The Geneva Foundation<br />

Patricia A Hsu, MD .........................................................n<br />

Wellington Hsu, MD 2 – Stryker; 5 – Baxter, Medtronic S<strong>of</strong>amor Danek, Pioneer<br />

Surgical<br />

Serena S Hu, MD 3B – Medtronic S<strong>of</strong>amor Danek; 5 – DePuy, A Johnson & Johnson<br />

Company<br />

Yue-Yung Hu, MD ..........................................................n<br />

Hsiang-Yao Huang, MD .....................................................n<br />

Ronald Huang .............................................................n<br />

Russel C Huang, MD .......................................................n<br />

Johnny Huard, PhD 3B – Cook Myosite<br />

James I Huddleston, III MD 2, 5 – Biomet; 3B – Biomet, Smith & Nephew, Zimmer,<br />

Porosteon<br />

Paul M Huddleston, MD 3B – Synthes; 4 – Johnson & Johnson, Medtronic S<strong>of</strong>amor<br />

Danek, Novartis, Amgen Co.; 5 – Regeneration Technologies, Inc.<br />

Axel Hueber, MD ..........................................................n<br />

Janet L Huebner 4 – Johnson & Johnson, Pfizer<br />

Carmen Huemmer, MD .....................................................n<br />

G Russell Huffman, MD ....................................................n<br />

Alexander P Hughes, MD 3B – BOSS Medical / Bovie; 5 – Nuvasive<br />

Jeannie Huh, MD ..........................................................n<br />

Catherine Hui, MD .........................................................n<br />

Emily Hui .................................................................n<br />

Olga Huk, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jason Ray Hull, MD ........................................................n<br />

Maury L Hull, PhD 6 – Stryker<br />

Heidi Hullinger, MD .......................................................n<br />

Kristina G Hulten, PhD .....................................................n<br />

Matthew Thomas Hummel, MD ..............................................n<br />

Catherine A Humphrey, MD 3B – Synthes<br />

Clark T Hung, PhD .........................................................n<br />

Marc Wilson Hungerford, MD 3B – Zimmer<br />

Devyani Hunt, MD .........................................................n<br />

Kenneth Hunt, MD 2 – Smith & Nephew<br />

Kim Hunter, FRCA .........................................................n<br />

Robert E Hunter, MD 3B – Breg, Smith & Nephew; 5 – Breg, Biomet, Smith & Nephew<br />

Tomy S Huon, BS ..........................................................n<br />

Jennifer Caitlin Huot 6 – DePuy, A Johnson & Johnson Company<br />

Patrick E Hurley, DO .......................................................n<br />

Jason Michael Hurst, MD ...................................................n<br />

Lawrence C Hurst, MD 1 – Biospecifics Technologies Corp.; 3B, 5 – Auxilium<br />

Pharmaceuticals, Inc.<br />

Simon A Hurst, MBBS BSc ..................................................n<br />

James A Hurt, III MD .......................................................n<br />

Shepard R Hurwitz, MD 7 – Saunders/Mosby-Elsevier<br />

Sohail Husain, MD .........................................................n<br />

Nasir Hussain .............................................................n<br />

Mark R Hutchinson, MD ....................................................n<br />

Jonathan R Hutt, MBBS, MRCS ..............................................n<br />

Lorraine Hutzler, BA .......................................................n<br />

Bo-Hyun Hwang, MD ......................................................n<br />

Byoung-Yoon Hwang, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

40<br />

disclosure<br />

Steven W Hwang, MD 5 – DePuy, A Johnson & Johnson Company<br />

Robert Hymes, MD 2 – Smith & Nephew; 3B – Smith & Nephew LifeNet Health;<br />

5 – Southeastern Fracture Consortium<br />

Joseph P Iannotti, MD, PhD 1 – DePuy, A Johnson & Johnson Company; 3B – DePuy,<br />

A Johnson & Johnson Company, Tornier, Wyeth; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Dr Tsuyoshi Ichinose .......................................................n<br />

Takahiro Ida, MD ..........................................................n<br />

Osaretin B Idusuyi, MD .....................................................n<br />

Toru Iga, MD ..............................................................n<br />

Hirotaka Iguchi, MD 2, 3C – DJ <strong>Orthopaedic</strong>s<br />

Takahiro Iida, MD .........................................................n<br />

Katsunori Ikari, MD 2 – Abbott, Eisai, Mitsubishi-Tanabe<br />

Tessyu Ikawa, MD ..........................................................n<br />

Hiroyuki Ike, MD ..........................................................n<br />

Mitsuhiko Ikebuchi, MD ....................................................n<br />

Ryosuke Ikeguchi, MD ......................................................n<br />

Roberto Ikemoto, MD ......................................................n<br />

Victor Manuel Ilizaliturri Sanchez, Jr MD 1, 5 – Smith & Nephew; 2, 3B – Biomet<br />

Smith & Nephew<br />

Kevin Ilo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Asif Ilyas, MD 2 – Medartis; 3B – Integra, Wright Medical Technology, Inc.; 5 – Medartis,<br />

Wright Medical Technology, Inc.<br />

Kan Imai, MD .............................................................n<br />

Carl W Imhauser, PhD ......................................................n<br />

Igor Immerman, MD .......................................................n<br />

Meghan N Imrie, MD .......................................................n<br />

Yutaka Inaba, MD 2 – GlaxoSmithKline, Stryker, San<strong>of</strong>i-Aventis, Smith & Nephew;<br />

5 – Stryker, Smith & Nephew<br />

Maria Carolina Secorun Inacio, MS ...........................................n<br />

Stephen J Incavo, MD 1, 2 – Wright Medical Technology, Inc., Stryker; 3B – Wright<br />

Medical Technology, Inc.; 4 – Wright Medical Technology, Inc., Stryker, Nimbic Systems;<br />

5 – Stryker, Surgical Monitoring Associates, Inc., Surgical Synergies, Synthes<br />

Zach Ingwer, BS ...........................................................n<br />

Alan Innes, MD ............................................................n<br />

Bernardo Innocenti, PhD 3A – Smith & Nephew<br />

Massimo Innocenti, MD ....................................................n<br />

Hirokazu Inoue, MD .......................................................n<br />

Masayuki Inoue, MD .......................................................n<br />

Shinichi Inoue, MD ........................................................n<br />

Taucha Inrig, RN ...........................................................n<br />

Carrie Inwards, MD ........................................................n<br />

Christopher August Iobst, MD 2 – Smith & Nephew<br />

Carlo Iorio, MD ...........................................................n<br />

Raffaele Iorio, MD .........................................................n<br />

Richard Iorio, MD .........................................................n<br />

Michael Iosifidis, MD .......................................................n<br />

Lisa Ipp, MD ..............................................................n<br />

James J Irrgang, PhD .......................................................n<br />

Takashi Ishida, MD ........................................................n<br />

Katsushi Ishii, MD .........................................................n<br />

Yoshinori Ishii, MD ........................................................n<br />

Craig L Israelite, MD 3B – Zimmer<br />

Nomura Issei, MD .........................................................n<br />

Eiji Itoi, MD 1 – Alcare; 2 – Eli Lilly, San<strong>of</strong>i-Aventis; 5 – Smith & Nephew<br />

Shintaro Iwai, MD .........................................................n<br />

Hiroyoshi Iwaki, MD .......................................................n<br />

Naoyuki Iwamoto, MD .....................................................n<br />

Takuji Iwamoto, MD 2 Abbott, Mitsubishi Tanabe Pharma<br />

Yukihide Iwamoto, MD .....................................................n<br />

Michael Iwanik, PhD .......................................................n<br />

Junichi Iwasaki, MD ........................................................n<br />

Henry J Iwinski, MD .......................................................n<br />

Teruaki Izaki, MD ..........................................................n<br />

Byron H Izuka, MD ........................................................n<br />

Atiba Jackson, MD .........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Mark P Jackson, FRCS MBBS ................................................n<br />

Nancy M Jackson ..........................................................n<br />

William Jackson, FRCS 2 – Biomet; 4 – Smith & Nephew<br />

Craig Jacobs, DC ...........................................................n<br />

Joshua J Jacobs, MD 3B – Medtronic S<strong>of</strong>amor Danek, Zimmer; 3C, 4 – Implant<br />

Protection; 5 – Medtronic S<strong>of</strong>amor Danek, Spinal Motion, Zimmer<br />

Michael A Jacobs, MD 1, 2 – Smith & Nephew, Biomet; 3B – Biomet, Corin U.S.A.;<br />

6 – Brainlab<br />

Justin Jacobson, MD .......................................................n<br />

David Joseph Jac<strong>of</strong>sky, MD 1 – Stryker, Smith-Nephew; 3B – Stryker; 4 – Bacterin;<br />

5 – Biomet, Stryker, Smith-Nephew, Arthrex; 7 – SLACK Incorporated<br />

Marc C Jac<strong>of</strong>sky, PhD 1 – Stryker; Smith & Nephew; 3B – Stryker, Bacterin; 4 – Bacterin;<br />

5 – Stryker; 6 – Arthrex, Inc., Corin U.S.A., Mitek, Stryker, Smith & Nephew, Wyeth, KCI,<br />

Exactech, Inc., Biomet, VQ Orthocare<br />

Christina L. Jacovides ......................................................n<br />

Robin Jacquet .............................................................n<br />

George N Jada .............................................................n<br />

Sebastian Jaeger, MSc .......................................................n<br />

S. Mehdi Jafari, MD ........................................................n<br />

Fredrick Francis Jaffe, MD 2, 3B – Stryker<br />

William L Jaffe, MD 3B, 5 – Stryker<br />

Amit Jain, BS ..............................................................n<br />

Viral Jain, MD .............................................................n<br />

Parag Kumar Jaiswal, MRCS .................................................n<br />

Amir A Jamali, MD 3B – Biomet<br />

Omar Jameel, MD ..........................................................n<br />

Philip James, PhD 6 – management consultant for a medical data company<br />

James S Jelinek, MD ........................................................n<br />

Stephen E James, FRCS .....................................................n<br />

Simon Jameson ............................................................n<br />

Miranda Jamieson 3A – MAKO Surgical Corp.<br />

James M Jamison, PhD 3C, 5 – IC MedTech<br />

Jim Janey, DC .............................................................n<br />

Jak Jang, MD ..............................................................n<br />

Sung-Won Jang, MD ........................................................n<br />

Yoon Jong Jang, MD ........................................................n<br />

Jai Jani, MD ...............................................................n<br />

Abigail Trinidad Jao, BS, MEM-BME 3A – <strong>Orthopaedic</strong> International, Inc.<br />

Bryan T Jarrett .............................................................n<br />

Claudius Jarrett, MD .......................................................n<br />

Pooya Javidan, MD .........................................................n<br />

Andrew Jawa, MD ..........................................................n<br />

Muhammad Umar Jawad, MD ...............................................n<br />

Subramanyan Jayasankar, MD ................................................<br />

Arvind Jayaswal, MS ........................................................n<br />

Reza Jazayeri, MD ..........................................................n<br />

Laith M Jazrawi, MD 2 – Smith and Nephew; 3B – Ferring Pharmaceuticals, Core<br />

Essence<br />

Kelly Jeans, MSc ...........................................................n<br />

Mehrad M Jaberi ...........................................................n<br />

Louis George Jenis, MD 3B – Stryker; 5 – OREF<br />

Cathy Jenkins, MA .........................................................n<br />

Cathy Jenkins, MSc .........................................................n<br />

Matthew V Jenkins, MD .....................................................n<br />

Paul John Jenkins, MRCSEd .................................................n<br />

Cyrus D. Jensen, MB BS, MRCS ..............................................n<br />

Kelly Jensen, DO ...........................................................n<br />

Eun Kee Jeong, PhD ........................................................n<br />

Jae-heon Jeong, MD ........................................................n<br />

Mun Su Jeong, MD .........................................................n<br />

Kyle James Jeray, MD 2 – AONA; 3B – Zimmer; 5 – Synthes, Zimmer<br />

Hyung-min Ji, MD .........................................................n<br />

Xia<strong>of</strong>eng Jia, MD, PhD .....................................................n<br />

Ching Chuan Jiang, MD ....................................................n<br />

Chunyan Jiang, MD ........................................................n<br />

41<br />

disclosure<br />

Ramon L Jimenez, MD 3B – Zimmer<br />

Rohit Jindal, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Riyaz H Jinnah, MD 1 – Wright Medical Technology, Inc.; 2, 3B – Wright Medical<br />

Technology, Inc., MAKO Surgical; 5 – Smith & Nephew, Wright Medical, MAKO Surgical<br />

William A Jiranek, MD 1, 3B – DePuy, A Johnson & Johnson Company; 5 – Stryker<br />

Sungkweon Jo, MD ........................................................n<br />

Frank W Jobe, MD .........................................................n<br />

Charles M Jobin, MD .......................................................n<br />

Anders Joensson, MD, PhD .................................................n<br />

Siddharth B Joglekar, MD ...................................................n<br />

Norman A Johanson, MD 1 – Exactech, Inc.<br />

Aaron J Johnson, MD .......................................................n<br />

Anthony E Johnson, MD 4 – Pfizer<br />

Darren L Johnson, MD 3B – Smith & Nephew; 5 – DJ <strong>Orthopaedic</strong>s<br />

Derek R Johnson, MD ......................................................n<br />

Donald Hugh Johnson, MD 3C – Arthrex, Inc.; 5 – Biosyntech<br />

Ge<strong>of</strong>frey V Johnson, FRCS 2 – JRI<br />

James A Johnson, PhD ......................................................n<br />

Jared Johnson, MD .........................................................n<br />

Jeffrey Einer Johnson, MD 1 – OrthoHelix Surgical Designs, Inc.; 3B – OrthoHelix<br />

Surgical Designs, Inc., Midwest Stone Institute; 4 – OrthoHelix Surgical Designs, Inc.,<br />

Midwest Therapy, LLC; 5 – Midwest Stone Institute, Inc.<br />

Marie-Clare Johnson, GDP, MMACP ..........................................n<br />

Mia Johnson, MPH .........................................................n<br />

Michael Johnson, MD ......................................................n<br />

Timothy Shane Johnson, MD ................................................n<br />

Casey D Johnston, MD .....................................................n<br />

Charles Eugene Johnston II, MD 1, 2, 3C, 5 – Medtronic S<strong>of</strong>amor Danek;<br />

7 – Saunders/Mosby-Elsevier<br />

Donald William Cooper Johnston,<br />

MD ......................................................................n<br />

Richard C Johnston, MD ....................................................n<br />

Katherine Johnston, SPT ....................................................n<br />

Carroll Payne Jones, MD 1 – Arthrex, Inc., Wright Medical Technology, Inc.;<br />

2, 3B – Wright Medical Technology, Inc., Smith & Nephew; 4 – Wright Medical<br />

Technology, Inc., RTIX; 5 – Orth<strong>of</strong>ix, Inc.; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Clifford B Jones, MD 2 – AONA<br />

Deryk G Jones, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Grant L Jones, MD 3C – Arthrotek; 5 – Biomet, Genzyme<br />

Kay S Jones, RN ............................................................n<br />

Kerwyn Jones, MD 3C – Orthopediatrics;7 – Cambridge Publishing<br />

Kevin Jones, MD ...........................................................n<br />

Krist<strong>of</strong>er Jones, MD ........................................................n<br />

Lynne C Jones, PhD ........................................................n<br />

Jong-Hwan Joo, MD ........................................................n<br />

Yonsik Yoo ................................................................n<br />

Charles J Jordan, MD .......................................................n<br />

Martin I Jordanov, MD ......................................................n<br />

Anton Yang Jorgensen, MD ..................................................n<br />

Rohan Joshi, BA ...........................................................n<br />

Bernhard Jost, MD 3B, 5 – Zimmer<br />

Patrick Jost, MD ...........................................................n<br />

Thomas Joyce, PhD ........................................................n<br />

Kevin L Ju, MD ............................................................n<br />

Kethy Jules-Elysee, MD .....................................................n<br />

Ho Joong Jung ............................................................n<br />

Kwang Am Jung, MD .......................................................n<br />

Martin Jung, MD ...........................................................n<br />

Michael Jung, PhD .........................................................n<br />

Mr Woo Bin Jung ..........................................................n<br />

Woon-hwa Jung, MD .......................................................n<br />

Young-Bok Jung, MD .......................................................n<br />

Donald Jungkind, MD 6 – Pfizer<br />

Jesse B Jupiter, MD 3B, 4 – OHK; 3C – Synthes, Eisomed; 5 – AO Foundation;<br />

7 – Elsevier Thieme<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Tamon Kabata, MD ........................................................n<br />

Korush Kabir, MD .........................................................n<br />

Ron Kaczmarek, MD .......................................................n<br />

Anish Raj Kadakia, MD .....................................................n<br />

Yoshinori Kadoya, MD 1, 2 – Biomet<br />

Warren R Kadrmas, MD 3C, 4 – Pivot Medical<br />

Christopher C Kaeding, MD 3B – Biomet; 5 – Omeros Company<br />

David M Kaehr, MD ........................................................n<br />

Dinesh Kafle, MD ..........................................................n<br />

Yoan Kagoma, BS ..........................................................n<br />

Alexandra Kaider, MSc ......................................................n<br />

David N Kaimrajh 5 – Novalign, FxDevices, Alphatec, Nutek, Mediscope<br />

Yoshitomo Kajino, MD .....................................................n<br />

Sanjeev Kakar, MD .........................................................n<br />

Masataka Kakihana, MD ....................................................n<br />

Ryosuke Kakinoki, MD .....................................................n<br />

David Mark Kalainov, MD 2 – UPEX<br />

Michael Kalisvaart, MD .....................................................n<br />

Niraj Kalore, MD ..........................................................n<br />

Check C Kam, MD .........................................................n<br />

Satoshi Kamada, MD .......................................................n<br />

Atul F Kamath, MD 7 – Elsevier, Vindico<br />

Koya Kamikawa, MD .......................................................n<br />

Srinath Kamineni, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Christine Kaminski, BA .....................................................n<br />

Nikolaos K Kanakaris, MD 3B – Stryker; 5 – DePuy, A Johnson & Johnson Company,<br />

AMGEN, KUROS, Synthes<br />

Masahiro Kanayama, MD 2 – DePuy, A Johnson & Johnson Company, Stryker;<br />

3B – Robert-Reid Inc.<br />

Kazuki Kanazawa, MD ......................................................n<br />

Vamsi Kancherla, MD ......................................................n<br />

Utku Kandemir, MD 5 – Biomet, Stryker, Synthes<br />

Patrick Kane, MD ..........................................................n<br />

Takeshi Kaneko, MD, MS ...................................................n<br />

Tetsuya Kaneko, MD .......................................................n<br />

Tomonori Kaneko, MD .....................................................n<br />

Bun-Jung Kang, MD ........................................................n<br />

Daniel Kang, MD ..........................................................n<br />

Hyun-Guy Kang, MD .......................................................n<br />

James Kang, MD 5 – Johnson & Johnson, Stryker<br />

Jung Ho Kang, MD .........................................................n<br />

Kyung-Do Kang, MD .......................................................n<br />

Matthew M Kang, MD ......................................................n<br />

Richard W Kang, MD .......................................................n<br />

Yeon Gwi Kang, MD ........................................................n<br />

Linda E A Kanim, MA 4 – Medtronic<br />

Mr Wajdi Kanj .............................................................n<br />

Masanobu Kano, MD .......................................................n<br />

Stephen R Kantor, MD 3C – DePuy, A Johnson & Johnson Company; 4, 5 – DePuy,<br />

A Johnson & Johnson Company, Stryker, Zimmer<br />

Bertrand Paul Kaper, MD 3B – Smith & Nephew<br />

Leon Kaplan, MD 3C – Medtronic S<strong>of</strong>amor Danek, MAZOR Surgical Technologies<br />

Lige Kaplan, MD ...........................................................n<br />

Sheldon L Kaplan, MD 5 – Cubist; 7 – Elsevier<br />

Thomas Kappe, MD ........................................................n<br />

Ashley L Kapron, BS ........................................................n<br />

Bart L Kaptein, PhD ........................................................n<br />

Mustafa Karahan, MD ......................................................n<br />

Georgios I Karaliotas, MD, MSc ..............................................n<br />

Spero G Karas, MD 1, 2, 3B – DJ <strong>Orthopaedic</strong>s; 5 – Synthes; 6 – Mitek, ConMed<br />

Linvatec, Arthrex, Inc.<br />

Hirotaka Karashima, MD ...................................................n<br />

Lauren E Karbach, MS ......................................................n<br />

Rami Kardosh, MD .........................................................n<br />

Judson W Karlen, MD ......................................................n<br />

42<br />

disclosure<br />

Jon Karlsson, MD ..........................................................n<br />

Lori A Karol, MD 7 – Journal <strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons,<br />

Saunders/Mosby-Elsevier<br />

Johan Nils Karrholm, MD 2 – Stryker, Link <strong>Orthopaedic</strong>s; 4 – RSA Biomedical, Umeå,<br />

Sweden; 5 – Zimmer, Biomet, DePuy, A Johnson & Johnson Company<br />

Yuichi Kasai, MD 1 – KiSCO Co. Ltd.<br />

Nobuhiro Kashima, MD ....................................................n<br />

Monika Kasinova, SPT ......................................................n<br />

Sina Kasraeian, MD 4 – Stryker, Smith & Nephew<br />

James R Kasser, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Satoshi Kato, MD ..........................................................n<br />

Yuki Kato, MD .............................................................n<br />

Pavlos Katonis, MD ........................................................n<br />

Gregory Katz ..............................................................n<br />

Jeffrey N Katz, MD .........................................................n<br />

Annette Kaufman, PhD, MPH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Akira Kawabata, MD .......................................................n<br />

Norio Kawahara, MD .......................................................n<br />

Kosei Kawakami, MD .......................................................n<br />

Keiichi Kawanabe 1 – Nakashima Medical (Japan); 2 – Japan Medical Materials<br />

Osamu Kawano, MD .......................................................n<br />

Hiroyuki Kawashima, MD ...................................................n<br />

David B Kay, MD 3C, 4 – OrthoHelix Surgical Designs<br />

Mitsunori Kaya, MD ........................................................n<br />

Kathryn E Kean, BA ........................................................n<br />

Thomas J Kean, PhD 3B, 3C – Cell Targeting LLC; 4 – Aastrom Bioscience, GE<br />

Healthcare<br />

Stephen Kearing, MS .......................................................n<br />

Sean Patrick Kearney, MD ...................................................n<br />

Kenneth Kearns, MD .......................................................n<br />

E Michael Keating, MD 1, 5 – Biomet; 2, 3B – Biomet, Johnson & Johnson; 4 – Johnson<br />

& Johnson<br />

Gail Sue Keating, OPA 1, 6 – Biomet; 2 – Johnson & Johnson; 3B – Biomet, Johnson &<br />

Johnson; 5 – Baxter<br />

Khaled M- Kebaish, MD 2 – DePuy, A Johnson & Johnson Company, Stryker; 3B,<br />

5 – DePuy, A Johnson & Johnson Company; 4 – K2M<br />

Johannes Keck .............................................................n<br />

Eric Keefer, MD ............................................................n<br />

Marius Keel, MD ...........................................................n<br />

John Joseph Keeling, MD ...................................................n<br />

Mary Ann E Keenan, MD ....................................................n<br />

James S Keene, MD .........................................................n<br />

Jay D Keener, MD ..........................................................n<br />

James A Keeney, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Rose Kelem, RN ...........................................................n<br />

Mehmet Halidun Kelestemur, Assc Pr<strong>of</strong> .......................................n<br />

James F Kellam, MD ........................................................n<br />

Andres Keller, MD .........................................................n<br />

Julie M Keller, MD .........................................................n<br />

Catherine Kellett, FRCS .....................................................n<br />

Todd Kelley, MD ...........................................................n<br />

Paula Kelly-Pettersson, RN ..................................................n<br />

Anne Mary Kelly, MD .......................................................n<br />

Bryan T Kelly, MD 3C, 4 – Pivot Medical, A-2 Surgical; 5 – Pivot Medical<br />

Derek Michael Kelly, MD ....................................................n<br />

James D Kelly, II MD 2, 3B, 4, 5 – Tornier<br />

John D Kelly IV, MD 7 – SLACK Incorporated<br />

Matthew J Kelly, MD 6 – Arthrocare<br />

Michael Kelly, PA-C 4 – OMNI Life Science Osseon<br />

Michael A Kelly, MD 1 – Zimmer; 3B – Johnson & Johnson, Zimmer; 4 – Pfizer<br />

Natalie Kelly ..............................................................n<br />

Sean Kelly ................................................................n<br />

Graham Kemp, DM ........................................................n<br />

Dan Kemper, MD ..........................................................n<br />

Laurence Kempton, MD ....................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Daniel Kend<strong>of</strong>f, MD ........................................................n<br />

Benjamin JL Kendrick, MRCS ................................................n<br />

Oguro Kenji, MD ..........................................................n<br />

John G Kennedy, MD .......................................................n<br />

William R Kennedy, MD 5, 6 – Corin U.S.A.<br />

Julia A Kenniston, MD ......................................................n<br />

Keith Kenter, MD ..........................................................n<br />

Iwasaki Kenyu, MD ........................................................n<br />

Gun Keorochana, MD ......................................................n<br />

Curtis J Kephart, MD .......................................................n<br />

Christopher Kepler, MD ....................................................n<br />

James Kercher, MD .........................................................n<br />

Brian Scott Kern, MD .......................................................n<br />

Michael Kertzner ...........................................................n<br />

David Keyes, MD ..........................................................n<br />

Mahmoud Michael Khair, MD ...............................................n<br />

Saurabh Khakharia, MD ....................................................n<br />

Yaser Emam Khalifa ........................................................n<br />

Jad Khalil, MD 6 – GE Healthcare<br />

Bushra Khan, RN ..........................................................n<br />

Shah Alam Khan, MD ......................................................n<br />

A Jay Khanna, MD 3B – Orth<strong>of</strong>ix, Inc.; 4 – New Era <strong>Orthopaedic</strong>s, LLC; 6 – Siemens,<br />

Inc.; 7 – Thieme Medical Publishers<br />

Monica Khanna, MD .......................................................n<br />

Harpal Singh Khanuja, MD .................................................n<br />

Monti Khatod, MD .........................................................n<br />

Dharmesh Khatri, MS ......................................................n<br />

Dr Michael S Khazzam .....................................................n<br />

Ahmed Khefacha. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Akbar Khodadadi, MD ......................................................n<br />

Amal Khoury, MD ..........................................................n<br />

Anthony Khoury, BS ........................................................n<br />

W Benjamin Kibler, MD 3C, 4 – Alignmed<br />

Leonard K Kibuule, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Karl-Philipp Kienle .........................................................n<br />

Theresa Kijek, BS ..........................................................n<br />

Ayhan Kilic, MD ...........................................................n<br />

Kathleen Killeen, OT .......................................................n<br />

Cecilia E Kim, BA 3B, 4, 5 – ELAN<br />

Choll Kim, MD 1 – Hydrocision; 2, 3B – Globus Medical, Synthes, Spine view;<br />

4 – Globus Medical<br />

David Kim, MD ............................................................n<br />

Dong-Soo Kim, MD ........................................................n<br />

Dongwook Kim, MD .......................................................n<br />

Hee Joong Kim, MD 1 – Corentec, Zimmer; 3B – Bayer; 4 – Corentec<br />

Hubert T Kim, MD .........................................................n<br />

Hye Ran Kim, PA ...........................................................n<br />

Hyeon Joo Kim, PhD .......................................................n<br />

Hyun Min Kim, MD ........................................................n<br />

Hyunchul Kim, MS .........................................................n<br />

Jae Kwang Kim, MD ........................................................n<br />

Jaehon M Kim, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jeffrey D Kim, BS ..........................................................n<br />

Jeong Suh Kim, MD ........................................................n<br />

Joon Yub Kim, MD .........................................................n<br />

Joon-Hyung Kim, BS .......................................................n<br />

Jun Shik Kim, MD .........................................................n<br />

Jung Man Kim, MD ........................................................n<br />

Kang-Il Kim, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Ki-Choul Kim, MD .........................................................n<br />

Paul D Kim, MD ...........................................................n<br />

Paul R Kim, MD 3B – Stryker, Wright Medical Technology, Inc.; 5 – Wright Medical<br />

Technology, Inc.<br />

Raymond H Kim, MD 2, 5 – DePuy, A Johnson & Johnson Company<br />

Sae Hoon Kim, MD ........................................................n<br />

43<br />

disclosure<br />

Seong Eun Kim, PhD .......................................................n<br />

Seung-Ho Kim, MD 3B – Arthrex, Inc.; 5 – Arthrex, Inc., Tornier, Neurowave<br />

Dr Stephen Kim ...........................................................n<br />

Sung-Hwan Kim, MD .......................................................n<br />

Sung-Jae Kim, MD .........................................................n<br />

Sun-Mi Kim, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Sunny H Kim, PhD 3B – Heraeus Medical GmbH<br />

Tae Kyun Kim, MD 2, 3B, 5 – Smith & Nephew; Aesculap/B.Braun<br />

Tae-young Kim, Pr<strong>of</strong> .......................................................n<br />

Woo Kim, PhD ............................................................n<br />

Yang-Soo Kim, MD .........................................................n<br />

Yong Sik Kim, MD .........................................................n<br />

Yong-Min Kim, MD ........................................................n<br />

Yong H Kim, MD 3B – Biomet<br />

Yongjung J Kim, MD 5 – DePuy, A Johnson & Johnson Company<br />

Young-Hoo Kim, MD 1 – DePuy, A Johnson & Johnson Company<br />

Young Jo Kim, MD 3C, 6 – Siemens Heath Care; 4 – Johnson & Johnson, Procter &<br />

Gamble; 5 – Bayer Health Care, Siemens Health Care<br />

Atsushi Kimura, MD .......................................................n<br />

Hiroaki Kimura, MD .......................................................n<br />

Kirk Kindsfater, MD 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Akilah B King, BA ..........................................................n<br />

David M King, MD .........................................................n<br />

Graham J W King, MD 1 – Wright Medical Technology, Inc., Tornier, Tenet Medical;<br />

3B – Wright Medical Technology, Inc., Tornier<br />

Joseph John King, III MD ...................................................n<br />

Tammy King ..............................................................n<br />

Kouichi Kinoshita, MD .....................................................n<br />

Stuart D Kinsella, BA .......................................................n<br />

Tracy Kinsey, RN 5 – Stryker<br />

Amit Kiran, MA ............................................................n<br />

Kiran Singisetti, MRCS .....................................................n<br />

Jess McKarns Kirby, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Joern Kircher, MD 2 – Bayer Healthcare; 3B – Lima SPO SPA<br />

Andrew Kirkpatrick, BS .....................................................n<br />

Kevin L Kirk, DO ..........................................................n<br />

Kelley Kirkpatrick, BS ......................................................n<br />

Marcus Kirkpatrick, MD ....................................................n<br />

John M Kirkwood, MD .....................................................n<br />

Faraj Kirmanj, MD .........................................................n<br />

Shunji Kishida, MD 5 – Wright Medical Technology, Inc.; 6 – Stryker<br />

John D Kisiday, PhD .......................................................n<br />

Michael John Kissenberth, MD ..............................................n<br />

Alison Kitay, MD ...........................................................n<br />

Diana L Kivirahk ..........................................................n<br />

Takahiko Kiyama, MD ......................................................n<br />

Brian A Klatt, MD 7 – SLACK Incorporated<br />

Joshua Klatt, MD ..........................................................n<br />

Wolfgang Klauser, MD 1, 3B, 5 – Zimmer; 2 – Link <strong>Orthopaedic</strong>s, Zimmer<br />

Brian D Kleiber, MD .......................................................n<br />

Gregg R Klein, MD 2 – Zimmer; 3B – Biomet, Zimmer<br />

Sandra E Klein, MD ........................................................n<br />

Conor P Kleweno, MD ......................................................n<br />

Alison K Klika, MS .........................................................n<br />

Matthew L Klima, DO ......................................................n<br />

Erica Knavel, BS ...........................................................n<br />

Jeffrey B Knox, MD .........................................................n<br />

Markus Knupp, MD ........................................................n<br />

Jih-Yang Ko, MD ...........................................................n<br />

Hiroaki Kobashi ...........................................................n<br />

Masaaki Kobayashi .........................................................n<br />

Naomi Kobayashi, MD .....................................................n<br />

Tsutomu Kobayashi, MD ....................................................n<br />

Nursen Koc, PhD ..........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Tugrul Kocak, MD .........................................................n<br />

Baris Kocaoglu, MD ........................................................n<br />

Pr<strong>of</strong> Mehmet Kocaoglu .....................................................n<br />

Mininder S Kocher, MD, MPH 1 – Biomet; 3B – Biomet, OrthoPediatrics, PediPed,<br />

Smith & Nephew; 4 – Fixes 4 Kids, Pivot Medical; 7 – WB Saunders<br />

Gautam Kodikal, MD .......................................................n<br />

Elizabeth A Koehler, MS ....................................................n<br />

Steven Koehler ............................................................n<br />

Werner Koehnlein, MD .....................................................n<br />

Linda A Koester ............................................................n<br />

John Koethe, ND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Atsushi Koguchi, PT ........................................................n<br />

In Jun Koh, MD ...........................................................n<br />

Jason L Koh, MD 3B – Aesculap/B.Braun, Arthrex, Inc.; 3C – Aperion<br />

Kyoung-Hwan Koh, MD ....................................................n<br />

Young Do Koh, MD, PhD ...................................................n<br />

Joachim Kohn PhD 1 – TyRx Pharma, Inc., Reva Medical, Inc.; 3B, 4, 5 – Reva Medical,<br />

Inc., Trident Biomedical, Inc., Lux Biosciences, Inc.<br />

Tatsuya Koike 2, 5 – Abbott, Bristol-Myers Squibb, Takeda, Eisai, Mitsubishi Tanabe,<br />

Chugai, Ono, Teijin; 3C – Bristol-Myers Squibb; 6 – Kyusai<br />

Hayato Koishi .............................................................n<br />

Kota Koizumi, MD .........................................................n<br />

Alison Kok ................................................................n<br />

Alexander Kolb, MD ........................................................n<br />

David J Kolessar, MD 2 – Ferring Pharmaceuticals; 4 – Zimmer<br />

Patricia A Kolowich, MD ....................................................n<br />

David E Komatsu, PhD 4 – Amgen Co., Medtronic<br />

Richard D Komistek, PhD 3B – DePuy, A Johnson & Johnson Company; 5 – DePuy,<br />

A Johnson & Johnson Company, Medtronic, National Institutes <strong>of</strong> Health (NIAMS &<br />

NICHD), Tornier, Wright Medical Technology, Inc.<br />

Elizaveta Kon, MD .........................................................n<br />

Sujith Konan, MRCS .......................................................n<br />

Ge<strong>of</strong>frey Konopka, MPH ....................................................n<br />

Kyung-Hoi Koo, MD .......................................................n<br />

Kyung Hoe Koo, MD .......................................................n<br />

Dr Deborah Kopansky-Giles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Wael MT Koptan, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Yael Korin, PhD ...........................................................n<br />

Feza Korkusuz, MD ........................................................n<br />

Petek Korkusuz, MD, PhD ..................................................n<br />

Martin B Kornblum, MD 3B, 4 – Nuvasive<br />

Tatiana Korotkova .........................................................n<br />

Yona Kosashvili, MD .......................................................n<br />

Nusret Kose, MD ...........................................................n<br />

Resit Dogan Koseoglu, MD ..................................................n<br />

Paul K Kosmatka, MD ......................................................n<br />

Dhanasekaran Kotilingam, MD ..............................................n<br />

Stephen Kottmeier, MD .....................................................n<br />

Prakash Kotwal, MS ........................................................n<br />

Suhel Kotwal, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Dimitrios Kotzamelos, MD ..................................................n<br />

Denise Koueiter ...........................................................n<br />

Stelios A Koutsoumbelis, MD ................................................n<br />

Rudy Kovachevich, MD .....................................................n<br />

Mark W Kovacik 4 – Cardinal Health; 5 – Zimmer, Astro Met, IC-MedTech<br />

Kenneth J Koval, MD 1 – Biomet; 2 – Biomet, San<strong>of</strong>i-Aventis, Stryker; 3B, 5 – Biomet,<br />

Stryker; 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Jens Kowal, PhD 3B – Surgical Planning Associates<br />

Marc S Kowalsky, MD ......................................................n<br />

Loukas Koyonos, MD .......................................................n<br />

Milan Kolar, MD, PhD 2 – Pfizer, Merck, Abbott<br />

Jeanine Kozich, MD ........................................................n<br />

Scott H Kozin, MD .........................................................n<br />

Matthew J Kraay, MD 5 – Zimmer, National Institutes <strong>of</strong> Health (NIAMS & NICHD)<br />

Kenneth A Krackow, MD1, 3B, 5 – Stryker<br />

44<br />

disclosure<br />

Paul Kraemer, MD 2 – Stryker; 3A – Exactech, Inc.<br />

Martin Hans Krag, MD 1 – DePuy, A Johnson & Johnson Company; 3B, 5 – Spineology<br />

John F Kragh Jr, MD 3C – Tiger Tourniquet, LLC, Tactical Medical Solutions, LLC,<br />

Combat Medical Solutions, Inc., Composite Resources Inc., Delfi Medical Innovations,<br />

Inc., North <strong>American</strong> Rescue Products LLC, H & H Associates, Inc., Creative & Effective<br />

Technologies, Inc., TEMS Solutions, LLC, Blackhawk Products Group, Hemaclear<br />

Patricia Kramer, PhD .......................................................n<br />

Nadine Kraska, MD ........................................................n<br />

Svetlana Krasnokutsky, MD .................................................n<br />

Andrew Kraszewski, MS .....................................................n<br />

Virginia Byers Kraus, PhD 3B – GlaxoSmithKline, Regeneron, TransPharma<br />

James A Krcik, MD .........................................................n<br />

Viktor Erik Krebs, MD 1 – Shukla Medical (Extract-All); 2 – Shukla Medical (Extract-<br />

All), Stryker, Salient Surgical; 3B – Stryker, Shukla Medical (Extract-All)<br />

Hans J Kreder, MD 5 – Synthes, Biomet, Zimmer<br />

Philip James Kregor, MD 3C – Synthes, AO Technical Commission<br />

Cole Robert Kre<strong>of</strong>sky, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jennifer Kreshak, MD ......................................................n<br />

James C Krieg, MD 1 – SAM Medical, Synthes, CMF; 3B – Synthes<br />

Sumant G Krishnan, MD 1 – Tornier, TAG Medical, Ossur; 2 – Tornier; 3B – Tornier,<br />

TAG Medical; 6 – Deputy, Mitek, Tornier; 7 – Wolters Kluwer<br />

Ajit A Krishnaney, MD ......................................................n<br />

Martin Krismer, MD 5 – Stryker; 6 – Link <strong>Orthopaedic</strong>s<br />

Chad A Krueger, MD .......................................................n<br />

Lisa M Kruse, MD 3A, 4 – Medtronic<br />

Aaron J Krych, MD .........................................................n<br />

William J Krywicki, MD 4 – Johnson & Johnson<br />

Erik Kubiak, MD 3B – DJ <strong>Orthopaedic</strong>s, <strong>Orthopaedic</strong> Development Co. (ODC),<br />

Tornier, Zimmer; 6 – Biomet, Synthes<br />

Tadahiko Kubo, MD, PhD ...................................................n<br />

Toshikazu Kubo, MD .......................................................n<br />

Mitchell D Kuhl, DO .......................................................n<br />

John E Kuhn, MD 1 – Pfizer; 5 – Arthrex, Inc.<br />

Matt Kuklis, MS 4 – Pfizer, Procter & Gamble<br />

Abhaya V Kulkarni, MD .....................................................n<br />

Sachin Kulkarni, MD .......................................................n<br />

Ashok Kumar, MS Orth .....................................................n<br />

Vijay Kumar, MD ..........................................................n<br />

Kensuke Kume, ME ........................................................n<br />

Sanford S Kunkel, MD ......................................................n<br />

Tsutomu Kurata, PT ........................................................n<br />

Mark F Kurd, MD ..........................................................n<br />

Michael Kurdziel, BS .......................................................n<br />

Daisuke Kuroda, MD .......................................................n<br />

Anton Kurtz, MD ..........................................................n<br />

Steven M Kurtz, PhD 5 – Stryker, Zimmer, Biomet, Medtronic, Synthes, Invibio,<br />

Stelkast, Ticona, Active Implants<br />

William B Kurtz, MD 3C – Wright Medical Technology, Inc.<br />

John Kurylo, MD ..........................................................n<br />

Peter R Kurzweil, MD 2 – Covidien; 3C – Pierce Surgical Corporation; 4 – Orteq<br />

Harvey Kushner, PhD 3A, 4 – Auxilium<br />

Ifedayo Kuye ..............................................................n<br />

Paul Robert Kuzyk, MD, FRCSC, MSc 5 – Stryker<br />

Steve Kwak, MD ...........................................................n<br />

Seok-hyun Kweon, Pr<strong>of</strong> .....................................................n<br />

John Y Kwon, MD 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong><br />

Michael Soon Kwon, MD ...................................................n<br />

Sae Kwang Kwon, MD ......................................................n<br />

Soon Yong Kwon, MD ......................................................n<br />

Young-Min Kwon, MD, PhD .................................................n<br />

Young W Kwon, MD, PhD 3B – Exactech, Inc., Smith & Nephew<br />

Richard F Kyle, MD 1, 3B – Smith & Nephew, Zimmer<br />

Lee Kyoung Min, MD .......................................................n<br />

Gonzalo Labarca, MS .......................................................n<br />

Luca Labianca, MD .........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Sameh A Labib, MD 2 – Arthrex, Inc.; 4 – ConforMIS Inc., Zimmer<br />

Paul F Lachiewicz, MD 1 – Innomed; 3B – GlaxoSmithKline; 5 – Zimmer<br />

Debra Lackie, BSN .........................................................n<br />

Richard D Lackman, MD 3B, 5 – Stryker<br />

Amy L Ladd, MD 1 – Orthohelix; 3B – Acumed, LLC; 4 – Articulinx LLC, Extremity<br />

Medical LLC, Illuminoss, OsteoSpring Medical, Inc.; 5 – OREF<br />

Rani Lador, MD ............................................................n<br />

Virginia Lafage 4 – Nemaris LLC<br />

George Yves Laflamme, MD 3B – Stryker; 5 – Smith & Nephew, Synthes, DePuy, A<br />

Johnson & Johnson Company<br />

Laurent Lafosse, MD 1, 2, 3B, 3C, 5 – TAG<br />

Daniel Lage, BA ............................................................n<br />

Catherine N Laible, MD .....................................................n<br />

Dror Lakstein, MD .........................................................n<br />

Ferdinand Lali, PhD ........................................................n<br />

Patrick H Lam .............................................................n<br />

Lauren Elizabeth Lamont, MD ...............................................n<br />

Mario Lamontagne .........................................................n<br />

Gerard F Lancaster, MD .....................................................n<br />

Sarah L Lancianese, PhD 3A, 4 – Wright Medical Technology, Inc.<br />

Stefan Landgraeber, MD 3B – Wright Medical Technology, Inc.<br />

William J Landis ...........................................................n<br />

Glenn C Landon, MD 3B – Wright Medical Technology, Inc., CareFusion<br />

Joseph M Lane, MD 2 – Eli Lilly, Harvest Technologies, Inc., Novartis, Weber Chilcott;<br />

3B – Amgen Co., BioMimetic, Zimmer, DFine, Inc., Graftys SA, Eli Lilly, Bone<br />

Therapeutics, Inc., Innovative Clinical Solutions, Zelos, Inc., Kuros, Inc.<br />

Jeffrey K Lange, MD ........................................................n<br />

Maxwell K Langfitt, MD .....................................................n<br />

David Langton 2 – Wright Medical Technology, Inc., DePuy, A Johnson & Johnson<br />

Company; 3B – Wright Medical Technology, Inc.<br />

Todd Joseph Lansford, MD ..................................................n<br />

David Lansky, PhD .........................................................n<br />

Jacob Lantry, MD ..........................................................n<br />

Joseph T Lanzi, Jr MD ......................................................n<br />

William Lanzinger, MD .....................................................n<br />

Anthony S Lapinsky, MD 3B – Pioneer<br />

Peter Lapner, MD ..........................................................n<br />

Dawn LaPorte, MD 4 – Auxilium<br />

Robert F LaPrade, MD, PHD 1, 3B – Arthrex, Inc.; 5 – Arthrex, Inc., Smith & Nephew,<br />

Ossur; 7 – Thieme<br />

Joaquin Lara, MD 3B - Stryker<br />

Justin M LaReau, MD 2, 6 – Arthrex, Inc.<br />

Robert Kamiel Lark, MD ....................................................n<br />

Connor Raymond LaRose, MD ...............................................n<br />

Annalise Noelle Larson, MD .................................................n<br />

Christopher Larson, MD 2, 5 – Smith & Nephew; 3B – Smith & Nephew, A2 Surgical;<br />

4 – A2 Surgical<br />

Tally E Lassiter Jr, MD ......................................................n<br />

Carmen Latona, MD ........................................................n<br />

Loren L Latta, PhD 3B – Biedermann Motech, GmbH; 3C – FxDevices, NuTek<br />

<strong>Orthopaedic</strong>s; 5 – Alphatec Spine, DePuy, A Johnson & Johnson Company, Lippincott,<br />

National Institutes <strong>of</strong> Health (NIAMS & NICHD), Synthes, DOD; 7 – Springer,<br />

Saunders/Mosby-Elsevier<br />

Michael J Latteier, MD ......................................................n<br />

Edmund Lau, MS 3B – Stryker, Kyphon Inc., Amgen Co., Alcon Corp.<br />

Kristen Lauing, BS .........................................................n<br />

Cato T Laurencin, MD, PhD 2 – Zimmer, Smith and Nephew; 3B – S<strong>of</strong>t Tissue<br />

Regeneration; 4 – Osteotech, Bristol-Myers Squibb<br />

Carlos J Lavernia, MD 1, 3B, 5 – MAKO Surgical Corp.; 4 – Johnson & Johnson,<br />

Zimmer<br />

Keith W Lawhorn, MD 1, 3B – Biomet<br />

J. Todd R. Lawrence, MD 4 – Practice Medical Instruments, LLC<br />

Bryan K Lawson, MSc .......................................................n<br />

Michel Jean Le Duff ........................................................n<br />

Jason T Le, BS .............................................................n<br />

Ryan W Leaver, DPT ........................................................n<br />

45<br />

disclosure<br />

Darren R Lebl, MD .........................................................n<br />

Christopher T LeBrun, MD ..................................................n<br />

Lance E LeClere, MD .......................................................n<br />

Stephane Leduc, MD 2, 3B – Stryker; 5 – Amgen Co., DePuy, A Johnson & Johnson<br />

Company, Synthes, Stryker, Smith & Nephew<br />

Arthur T Lee, MD ..........................................................n<br />

Choon-Ki Lee .............................................................n<br />

Choong-Hee Lee, MD .......................................................n<br />

Chung-Chien Lee, MD ......................................................n<br />

Donald H Lee, MD 1, 2, 3B, 5, 6 – Biomet; 7 – Elsevier<br />

Dong-Ho Lee, MD .........................................................n<br />

Elaine Lee 3A – Johnson & Johnson, Medtronic, Medtronic S<strong>of</strong>amor Danek;<br />

4 – Johnson & Johnson, Medtronic<br />

Eric K Lee, MD ............................................................n<br />

Gwo-Chin Lee, MD .........................................................n<br />

Gye Wang Lee, MD .........................................................n<br />

Ho Hyung Lee, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Hyun-Il Lee, MD ...........................................................n<br />

Hyun-Joo Lee, MD .........................................................n<br />

Hyung-joon Lee, MD .......................................................n<br />

Jae Young Lee, MD .........................................................n<br />

Joe Lee, MD ...............................................................n<br />

Jonathan H Lee, MD ........................................................n<br />

Joon Kyu Lee, MD ..........................................................n<br />

Joon Yung Lee, MD .........................................................n<br />

Kenny Won Jae Lee, MD ....................................................n<br />

Keun Bae Lee ..............................................................n<br />

Ki Seok Lee, Pr<strong>of</strong> ...........................................................n<br />

Kil Jae Lee, MD ............................................................n<br />

Kwang-Bok Lee, MD ........................................................n<br />

Kyung-Hag Lee, MD ........................................................n<br />

Kyung-Jae Lee, MD .........................................................n<br />

Lorrin SK Lee, MD .........................................................n<br />

Mark A Lee, MD 2 – Synthes, Zimmer; 3B – Synthes, Zimmer, Biomet; 5 – Synthes,<br />

Zimmer, Smith & Nephew; 6 – Synthes<br />

Myung Chul Lee, MD .......................................................n<br />

Paul T H Lee, MD ..........................................................n<br />

Sahnghoon Lee, MD ........................................................n<br />

Sang Hak Lee, MD .........................................................n<br />

Sang-Min Lee, MD .........................................................n<br />

Seung Yup Lee, MD ........................................................n<br />

Simon Lee, MD ............................................................n<br />

Stella Lee, BA ..............................................................n<br />

Steve K Lee, MD 3C – Arthrex, Inc., Synthes; 5 – Arthrex, Inc., Stryker, Mitek<br />

Su-Chan Lee, MD ..........................................................n<br />

Sung-Yoon Lee, MD ........................................................n<br />

Thay Q Lee, PhD 5 – Arthrex, Inc., Smith & Nephew, Synthes; 7 – McGraw<br />

Tong Joo Lee, MD, PhD .....................................................n<br />

Woo Suk Lee, MD ..........................................................n<br />

Young-Kyun Lee, MD .......................................................n<br />

Yun-Kyoung Lee ...........................................................n<br />

Mark C Leeson, MD, FACS ..................................................n<br />

Arabella I Leet, MD ........................................................n<br />

Sean Lefloch, BS 3B – Synthes<br />

Ronald Arthur Lehman, MD .................................................n<br />

Ross K Leighton, MD 1 – Zimmer; 2 – Biometric, DePuy, A Johnson & Johnson<br />

Company, Etex, Smith & Nephew, Stryker, Synthes; 3B – Etex, Smith & Nephew;<br />

5 – DePuy, A Johnson & Johnson Company, Smith & Nephew, Synthes; 6 – Etex, Smith<br />

& Nephew<br />

Charles F Leinberry, MD 1, 7 – Core Essence; 2 – Auxilium, Core Essence; 3B – Core<br />

Essence, Auxilium, Xylos, Knee Creations, Core Essence; 4 – Knee Creations; 5 – Xylos<br />

Jeff Leiter, MSc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Andreas Leithner, MD ......................................................n<br />

Elliott H Leitman, MD ......................................................n<br />

Angela LeMarr, RN .........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Tom E Lemaster, MSN, MEd, RN, EMT-P ......................................n<br />

Mesfin A Lemma, MD 2, 3B – Orth<strong>of</strong>ix, Inc.<br />

Jack E Lemons, PhD 2, 3B – Biomet, Smith and Nephew; 6 – Biomet, Smith and<br />

Nephew, Stryker, Zimmer<br />

Stephen E Lemos, MD, PhD .................................................n<br />

Christopher J Lenarz, MD ...................................................n<br />

Martha K Lenhart, MD ......................................................n<br />

Mark Lenh<strong>of</strong>f 4 – Pfizer<br />

Lawrence G Lenke, MD 1, 3C – Medtronic; 5 – DePuy, A Johnson & Johnson Company,<br />

Medtronic, Axial Biotech; 7 – Quality Medical Publishing<br />

Roorda Leo, MD, PhD 5 – Pfizer, Servier<br />

James Patrick Leonard, MD .................................................n<br />

James Leonards ............................................................n<br />

Danilo Leonetti, MD .......................................................n<br />

Seth S Leopold, MD ........................................................n<br />

Daniel M Lerman, MD ......................................................n<br />

Benjamin A. Lerner, AB .....................................................n<br />

Pisit Lertwanich, MD .......................................................n<br />

James Lesko, PhD 3B – DePuy, A Johnson & Johnson Company<br />

Bryson Lesniak, MD ........................................................n<br />

G Douglas Letson, MD 2, 3B – Stryker<br />

Michael Leunig, MD 3B – Smith & Nephew; 3C, 4 – Pivot Medical<br />

Brian Levack ..............................................................n<br />

Fraser J Leversedge, MD 1, 3B, 4, 5 – Orthohelix Surgical Designs; 7 – Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Gabriel Levi, MD ..........................................................n<br />

Paul Levin, MD ............................................................n<br />

Brett Russell Levine, MD 2 – Angiotech, Ethicon; 3B – Zimmer; 5 – Zimmer, Biomet<br />

David S Levine, MD ........................................................n<br />

Harlan B Levine, MD 2 – Zimmer; 3B – Biomet<br />

William N Levine, MD ......................................................n<br />

Timothy J Levison, MS ......................................................n<br />

Seth Levitz, MD ............................................................n<br />

Bruce A Levy, MD 1 – VOT Solutions; 3B – Arthrex, Inc.<br />

David Levy, MD 1 – Trainer’s Choice Sports Medicine Products<br />

Jonathan Chad Levy, MD 2 – Arthrex, Inc.; 3B, 5 – DJ <strong>Orthopaedic</strong>s; 4 – MAKO Surgical<br />

David G Lewallen, MD 1 – Orthosonics, Osteotech, Zimmer<br />

Nicholas Lewing, BS ........................................................n<br />

Courtland G Lewis, MD 5 – Biomet<br />

Gregory S Lewis, PhD ......................................................n<br />

John Strudwick Lewis, Jr MD ................................................n<br />

Paul B Lewis, MD 3A – Baxter<br />

Valerae O Lewis, MD 5 – Stryker<br />

Dan Lewitus, MS ...........................................................n<br />

Bing Li, PhD ..............................................................n<br />

Guoan Li, PhD ............................................................n<br />

Rachel W Li, MD, PhD ......................................................n<br />

Robert Li, BS ..............................................................n<br />

Ru Li, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Xin Li, MD ................................................................n<br />

Yi-Chen Li, MD ............................................................n<br />

Zhongyu John Li, MD 5 – Wright Medical Technology, Inc.<br />

Sherry Liang, BS ...........................................................n<br />

Jen-Chung Liao, MD .......................................................n<br />

Cesar Libanati, MD 3A, 4 – Amgen Co.<br />

Sven Lichtenberg, MD 1, 2, 3B – Arthrex, Inc.<br />

Richard L Lieber, PhD 2, 3C – Mainstay Medical; 3B, 5, 6 – Allergan, Inc.; 7 – Wolters<br />

Kluwer Health - Lippincott Williams & Wilkins<br />

Meir Liebergall, MD ........................................................n<br />

Isador H Lieberman, MD, MBA, FRCSC 1 – AxioMed, MAZOR Surgical Technologies,<br />

Stryker, Merlot Orthopaedix; 2 – Trans1 Inc.; 3B, 6 – AxioMed, MAZOR Surgical<br />

Technologies, Merlot Orthopaedix; 4 – AxioMed, MAZOR Surgical Technologies, Merlot<br />

Orthopaedix, CrossTrees; 7 – Quality Medical Publishers<br />

Jay R Lieberman, MD 3B – DePuy, A Johnson & Johnson Company; 5 – Amgen Co.,<br />

Arthrex, Inc.<br />

Jeremy A Lieberman, MD 3B – Medtronic<br />

46<br />

disclosure<br />

Thoralf R Liebs 5 – DePuy, A Johnson & Johnson Company<br />

John Lien, MD .............................................................n<br />

Terry R Light, MD ..........................................................n<br />

Steven A Lillmars, DO ......................................................n<br />

Byung-Ho Lim, MD ........................................................n<br />

Kerry Lim, MBBCh .........................................................n<br />

Letitia Lim, MD ............................................................n<br />

Moojoon Lim, MD .........................................................n<br />

Seung-Jae Lim, MD .........................................................n<br />

Tae Kang Lim, MD .........................................................n<br />

Young Wook Lim, MD ......................................................n<br />

Edward Lin, MD ...........................................................n<br />

Hui-Wen Lin, PhD .........................................................n<br />

Michael Y Lin, MD .........................................................n<br />

Patrick P Lin, MD 5 – Pfizer<br />

Daniel Lindbom, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Derek P Lindsey, MS .......................................................n<br />

Breton G Line, BS ..........................................................n<br />

Elizabeth Anne Lingard, MD 6 – DePuy, A Johnson & Johnson Company, Smith &<br />

Nephew, Stryker<br />

Moi-Lin Lingg, MBBS .......................................................n<br />

Thomas Link 3B – GE Healthcare, Merck<br />

James Linklater, MD ........................................................n<br />

Raymond J Linovitz, MD 1 – Orth<strong>of</strong>ix, Inc.; 2 – Orthovita; 3B – Orth<strong>of</strong>ix, Inc., Zimmer,<br />

Spinal Kinetics, BioTissue; 4 – Axiomed, Spinal Kinetics, Core Technologies<br />

David M Lintner, MD 2, 3B – Mitek; 6 – Breg<br />

Frank A Liporace, MD 2, 3B – DePuy, A Johnson & Johnson Company, Osteotech,<br />

Synthes, Smith & Nephew; 3C – AO; 5 – Synthes, Smith & Nephew<br />

William Lippert, MPH ......................................................n<br />

Andrzej Lisowski, MD ......................................................n<br />

Mr Lukas Lisowski .........................................................n<br />

Robert B Litchfield, MD 2 – Ferring Pharmaceuticals, Smith & Nephew, Linvatec, Mitek;<br />

3B – Wright Medical Technology, Inc., BioMimetic, Smith & Nephew; 4 – Smith &<br />

Nephew, Johnson & Johnson; 5 – Wright Medical Technology, Inc., Smith & Nephew<br />

Chris Little ................................................................n<br />

Kevin James Little, MD .....................................................n<br />

Bin Liu, MD ...............................................................n<br />

Chuan-ju Liu, PhD .........................................................n<br />

Fang Liu, MD, PhD .........................................................n<br />

Raymond Liu, MD .........................................................n<br />

Sen Liu, MD ...............................................................n<br />

Shing-Hwa Liu, PhD .......................................................n<br />

Steve S Liu, MD ............................................................n<br />

Wanjun Liu, MD ...........................................................n<br />

Xuhui Liu, MD ............................................................n<br />

Victoria Liublinska, PhD ....................................................n<br />

Roald Jon Llado, MD .......................................................n<br />

Joan C Lo, MD 5 – Johnson & Johnson, GlaxoSmithKline<br />

Ngai-Nung Lo, MD 1, 3B – Zimmer; 5 – Eli Lilly, Zimmer<br />

Terrence R Lock, MD .......................................................n<br />

Randy W L<strong>of</strong>tus, MD .......................................................n<br />

Rajani Logishetty, FRCS .....................................................n<br />

Stefan Lohmander, PhD ....................................................n<br />

Christine Loiseau, BS .......................................................n<br />

Adolph V Lombardi Jr, MD 1 – Biomet, Innomed; 2, 3B, 5 – Biomet<br />

Umile Guiseppe Longo, MD .................................................n<br />

Baron Lonner, MD 2 – DePuy, A Johnson & Johnson Company, Spine Wave; 3B,<br />

5 – DePuy, A Johnson & Johnson Company; 4 – K2M, Axial Biotech, Paradigm<br />

Jess H Lonner, MD 1 – Zimmer; 2, 3B – Zimmer, MAKO Surgical; 4 – MAKO Surgical;<br />

7 – Wolters Kluwer Health - Lippincott Williams & Wilkins, Saunders/Mosby-Elsevier<br />

Nicola Lopomo, MSc, PhD ..................................................n<br />

James Lord, MSc ...........................................................n<br />

Dean G Lorich, MD ........................................................n<br />

Elena Losina, MD ..........................................................n<br />

Paul A Lotke, MD 1 – DePuy, A Johnson & Johnson Company, Innomed; 2 – DePuy, A<br />

Johnson & Johnson Company; 3B, 6 – Stryker; 7 – Springer<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Scott Traver Lovald, PhD, MBA ...............................................n<br />

Elizabeth Lowder ..........................................................n<br />

Anthony Lowman, PhD 1, 5 – Synthes<br />

Santiago A. Lozano Calderon, MD ...........................................n<br />

Zhen Lu ..................................................................n<br />

Anne Lubbeke-Wolff, MD, DSc ..............................................n<br />

Brennen L Lucas, MD .......................................................n<br />

Justin Lucas, BS ............................................................n<br />

Deianira Luciani, MD ......................................................n<br />

Scott J Luhmann, MD 1 – Globus Medical; 2 – Medtronic S<strong>of</strong>amor Danek, Stryker;<br />

3B – Globus Medical, Medtronic S<strong>of</strong>amor Danek, Stryker; 5 – Stryker<br />

Trevor Lujan, PhD .........................................................n<br />

Daniel Pizarro Luna, MSc, MD ...............................................n<br />

Jeffrey TP. Luna, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Douglas W Lundy, MD 2 – AO, Synthes; 3C – Synthes; 4 – Livengood Engineering<br />

Jon D Lurie, MD 3B – San<strong>of</strong>i-Aventis<br />

Gaurav Aman Luther, BA ....................................................n<br />

Kevin Feldman Lutsky, MD ..................................................n<br />

Hue H Luu, MD ...........................................................n<br />

Kyle Lybrand, BS ...........................................................n<br />

Stephen Lyman, PhD .......................................................n<br />

Scott A Lynch, MD .........................................................n<br />

Russ Lyon, MD 3B – Medtronic<br />

Steven Thomas Lyons, MD 1 – Zimmer; 3B – Zimmer, Total Joint <strong>Orthopaedic</strong>s;<br />

4 – Zimmer, Stryker, Amedica, Total Joint <strong>Orthopaedic</strong>s<br />

ChunBong Benjamin Ma, MD 5 – Wyeth, Histogenics<br />

Yan Ma, PhD ..............................................................n<br />

Travis G Maak, MD .........................................................n<br />

William B Macaulay, MD 3B – United HealthCare, Goldman Sachs; 6 – Pfizer, Wright<br />

Medical Technology, Inc.<br />

Elena Maccagnan, MD ......................................................n<br />

Joy C MacDermid, PhD .....................................................n<br />

Daniel MacDonald .........................................................n<br />

David Macdonald, FRCS ....................................................n<br />

Peter Benjamin MacDonald, MD 3C – ConMed Linvatec<br />

Steven J MacDonald, MD 1 3B – DePuy, A Johnson & Johnson Company; 5 – DePuy, A<br />

Johnson & Johnson Company, Smith & Nephew, Stryker<br />

John Dougald MacGillivray, MD 2, 3B, 5, 6 – Stryker<br />

Michael Shaun Machen, MD .................................................n<br />

Nicola Mackay, BMSc .......................................................n<br />

John D MacKenzie, MD .....................................................n<br />

William G Mackenzie, MD ..................................................n<br />

Grady Maddox, MD ........................................................n<br />

Steven Michael Madey, MD 1, 3C – Zimmer, Synthes<br />

Uma Maduekwe, MD .......................................................n<br />

Takashi Maeda 2 – DePuy, A Johnson & Johnson Company<br />

Toru Maeda, MD ...........................................................n<br />

Ruben Maenza, MD ........................................................n<br />

Tristan Maerz, BS ..........................................................n<br />

Akira Maeyama, MD ........................................................n<br />

Pr<strong>of</strong>essor Nicola Maffulli ...................................................n<br />

Rajesh Magattil, MRCS ......................................................n<br />

Jay Magaziner, MD 3B – Amgen Co., Eli Lilly, San<strong>of</strong>i-Aventis; 5 – Merck, Eli Lilly,<br />

Novartis<br />

Petra Magosch, MD ........................................................n<br />

Kathleen Maguire, BA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Clara Magyar, PhD .........................................................n<br />

John Mahajan, BS ..........................................................n<br />

Shahab Mahboubian, DO ...................................................n<br />

Suzanne A Maher, PhD 3B – Kensey Nash Corporation; 5 – Stryker, Kensey Nash<br />

Corporation, Orteq Ltd.<br />

Rohit Maheshwari, FRCS ....................................................n<br />

Mohamed Mahfouz, PhD 1 – Zimmer; 3B, 5 – Biomet; Zimmer<br />

Mostafa Mahmoud, MD ....................................................n<br />

Nizar Mahomed, MD 5 – Bayer<br />

47<br />

disclosure<br />

Ormonde M Mahoney, MD 1, 2, 3B, 5 – Stryker<br />

Kenny Mai, MD ............................................................n<br />

Martin Majewski, MD ......................................................n<br />

Anna Lena MAKOwski, MS ..................................................n<br />

Martin M Malawer, MD .....................................................n<br />

Henrik Malchau, MD 1 – Smith & Nephew; 3B – Biomet, Smith & Nephew; 4, 6 – RSA<br />

Biomedical Inc.; 5 – Biomet, Smith & Nephew, Zimmer<br />

Matthew M Malerich, MD ...................................................n<br />

Gregory B Maletis, MD .....................................................n<br />

Margaret M Maley, BSN, MS 3B – Wright Medical Technology, Inc., CareFusion<br />

Rajesh Malhotra, MS .......................................................n<br />

Robert Andrew Malinzak, MD 2, 3B – Biomet; 5 – Biomet, Zimmer, DePuy<br />

Arthur L Malkani, MD 1, 3B – Stryker; 5 – Synthes, Stryker<br />

William J Maloney MD 1 – Wright Medical Technology, Inc., Zimmer; 3C – ISTO<br />

Technologies, Moximed; 4 – Abbott, Gillead, ISTO Technologies, Johnson & Johnson,<br />

Merck, Moximed, Pfizer; 5 – AO, Biomet, DePuy Spine, DePuy, A Johnson & Johnson<br />

Company, Nuvasive, Smith & Nephew, Stryker, Zimmer<br />

Thomas A Malvitz, MD 6 – DePuy, A Johnson & Johnson Company<br />

Ajay Malviya, MD ..........................................................n<br />

Tallal C Mamisch, MD 3B – Siemens Healthcare AG, EMD Serono; 4 – Roche Siemens;<br />

6 – Merck Serono SA<br />

Peter J Mandell, MD ........................................................n<br />

Marco Manfrini, MD .......................................................n<br />

Devin R Mangold, BS .......................................................n<br />

Henry J Mankin, MD .......................................................n<br />

Gideon Mann, MD .........................................................n<br />

Jeffrey Adam Mann, MD 2 – San<strong>of</strong>i-Aventis, Small Bone Innovations; 3B – Small Bone<br />

Innovations<br />

Roger A Mann, MD 2, 3B – SBI; 7 – Elsevier<br />

Sandeep Mannava ..........................................................n<br />

David W Manning, MD 2, 3B – Biomet; Smith & Nephew<br />

Andrei Manolescu, MD .....................................................n<br />

Theodore T Manson, MD ...................................................n<br />

Jacob B Manuel, MD .......................................................n<br />

Givenchy Manzano, BS .....................................................n<br />

Dayle L Maples, MD 4 – Stryker<br />

Nidu Maran ...............................................................n<br />

Robert Marburger, RN ......................................................n<br />

Maurilio Marcacci, MD 1, 5– Finceramica S.p.A.<br />

Andrew J Marcantonio, DO .................................................n<br />

David Marcantonio, MD ....................................................n<br />

Gerard March, MD .........................................................n<br />

Giulio Marcheggiani Muccioli, MD 6 – Regen Biologics<br />

Luis Marchi, MS ...........................................................n<br />

Randall Evan Marcus, MD 4 – Stryker, Medtronic, Steris<br />

Rodrigo M Mardones, MD 1 – Bios Chile; 2 – Boehringer; 3B – Smith & Nephew<br />

Ge<strong>of</strong>frey Marecek, MD ......................................................n<br />

David Stephen Margolis, MD ................................................n<br />

Danica Marinac-Dabic, MD, PhD ............................................n<br />

Alessandro Marinelli, MD ...................................................n<br />

Eleonora Marini, MD .......................................................n<br />

Chad Marion, MD .........................................................n<br />

Michael W Mariscalco, MD ..................................................n<br />

David C Markel, MD 2, 3B, 5 – Stryker; 4 – Novi Bone and Joint Center, Pfizer, Stryker,<br />

Biogen<br />

David R Marker ............................................................n<br />

Andrew David Markiewitz, MD 7 – CRC Press<br />

Barbara Marks .............................................................n<br />

Michelle Marks, NMD ......................................................n<br />

Timothy Marks, BS .........................................................n<br />

Victoriano Marlet ..........................................................n<br />

Meir Tibi Marmor, MD .....................................................n<br />

Antongiulio Marmotti, MD ..................................................n<br />

Guido Marra, MD 3B – Zimmer<br />

Tricia Marriott, PA-C .......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

John Lawrence Marsh, MD 1 – Biomet; 7 – Oxford Press<br />

John M Martell, MD 3B – Biomet, Smith & Nephew, Stryker, Zimmer, Harris<br />

Foundation<br />

Ashley J Martin 6 – DePuy, A Johnson & Johnson Company<br />

James A Martin, PhD .......................................................n<br />

Sadie Martin, MD ..........................................................n<br />

Scott David Martin, MD ....................................................n<br />

Tamara Lynn Martin, MD ...................................................n<br />

William Martin III, MD .....................................................n<br />

Sara Martinez-Martos .......................................................n<br />

Rodrigo Klafke Martini, MD .................................................n<br />

Jeffrey Dean Martins .......................................................n<br />

Keishi Maruo, MD .........................................................n<br />

Julianne Marvin, MD .......................................................n<br />

Simran Marwah, MBBS .....................................................n<br />

Robert G Marx, MD ........................................................n<br />

Michelle Mary .............................................................n<br />

Kazuhiro Masada, MD ......................................................n<br />

AS M Mashfiqul, FRCS ......................................................n<br />

Brendan David Masini, MD .................................................n<br />

Edward O Mason, PhD .....................................................n<br />

James Mason ..............................................................n<br />

James Mason, PhD .........................................................n<br />

Bassam A Masri, MD 2 – Zimmer, DePuy, A Johnson & Johnson Company;<br />

3B – Zimmer<br />

Alessandro Masse, MD ......................................................n<br />

Robyn Masseth, OTC .......................................................n<br />

Patrick Allen Massey, MD ...................................................n<br />

Michael Massini, MD 1 – DePuy, A Johnson & Johnson Company, Stryker; 2, 3B,<br />

5 – Stryker; 4 – Procter & Gamble, Annika Therapeutics, Angiotech Products<br />

Koichi Masuda, MD 3A – Nuvasive; 5 – Johnson & Johnson, Medtronic, Zimmer,<br />

Nuvasive, Nippon Zoki, Halozyme<br />

Antonia Matamalas, MD ....................................................n<br />

Fabrizio Matassi, MD .......................................................n<br />

Doug Matey, DO ...........................................................n<br />

Gulraj Matharu, BSc ........................................................n<br />

Travis H Matheney, MD .....................................................n<br />

Richard C Mather, III MD 5 – Forest Pharmaceuticals<br />

Vasilios Mathews, MD 3B, 6 – Wright Medical Technology, Inc., Biomet; 5 – Biomet<br />

Kenneth B Mathis, MD 1 – Smith & Nephew, Zimmer; 2, 3B – Smith & Nephew<br />

Sameer Mathur, MD ........................................................n<br />

Amir Matityahu, MD 1 – Synthes; 2 – Synthes, DePuy, A Johnson & Johnson Company;<br />

3B – DePuy, A Johnson & Johnson Company; 4 – Anthem <strong>Orthopaedic</strong>s, LLC;<br />

5 – Stryker<br />

Kjell Matre, MD 2 – Stryker; 5 – Smith & Nephew<br />

Frederick A Matsen III, MD 1 – Kinamed<br />

Hidenori Matsubara, MD ...................................................n<br />

Dean K Matsuda, MD 1 – Arthrocare, Smith & Nephew<br />

Shuichi Matsuda, MD ......................................................n<br />

Ko Matsudaira, MD, PhD ...................................................n<br />

Toshihiro Matsuo, MD, PhD ................................................n<br />

Masatake Matsuoka, MD ....................................................n<br />

Takashi Matsushita, MD 2 – Smith & Nephew, San<strong>of</strong>i-Aventis, Stryker; 3B – Stryker;<br />

5 – Teijin Pharma Limited<br />

Ashley Matthies, BSc .......................................................n<br />

Krist<strong>of</strong>er S Matullo, MD 2 – Synthes<br />

Elizabeth G Matzkin, MD ...................................................n<br />

Raphael Mauprivez, MD ....................................................n<br />

Craig S Mauro, MD ........................................................n<br />

Konstantinos Mavridis, BSc .................................................n<br />

Andreas Mavrogenis, MD ...................................................n<br />

Megan May, MD ...........................................................n<br />

Mark Mayer, MD ...........................................................n<br />

Michael Mayer, MD ........................................................n<br />

Joel Mayerson, MD .........................................................n<br />

48<br />

disclosure<br />

Robert E Mayle, MD ........................................................n<br />

David Jacob Mayman, MD 2, 3B – Smith & Nephew; 4 – OrthAlign<br />

Michael B Mayor, MD 1, 3C – DePuy, A Johnson & Johnson Company<br />

Jason S Mazza, OPA-C ......................................................n<br />

Timothy R McAdams, MD ...................................................n<br />

Steven McAnany, MD .......................................................n<br />

Mark Philip McAndrew, MD .................................................n<br />

Craig Joseph McAsey, MD ...................................................n<br />

Richard W McCalden, MD 2, 3B – Smith & Nephew; 5 – Smith & Nephew, J&J, DePuy,<br />

Stryker<br />

Richard Evan McCall, MD 3C – Medtronic<br />

Peter D McCann, MD 7 – <strong>American</strong> Journal <strong>of</strong> Orthopedics<br />

Edward F McCarthy Jr, MD ..................................................n<br />

James J McCarthy, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Joseph C McCarthy, MD 1, 6 – Arthrex, Inc., Innomed, Stryker; 3B – Stryker<br />

Moira Margaret McCarthy, MD ...............................................n<br />

Richard E McCarthy, MD 3C – Medtronic S<strong>of</strong>amor Danek<br />

Leroy Pearce McCarty, III MD 2 – Genzyme Corporation for Carticel; 3B – Wright<br />

Medical Technology, Inc.<br />

Michael McCaslin, CPA 4 – Pfizer<br />

Robert Trigg McClellan, MD 3C, 5 – Skeletal Kinetics, LLC; 4 – Biomineral Holdings,<br />

LLC<br />

Anna McClung, RN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Scott McCLURE, bs .........................................................n<br />

Vance McCollom, MD ......................................................n<br />

Jody McCollum, MPAS ......................................................n<br />

Richard A McCormack, MD .................................................n<br />

Frank McCormick, MD .....................................................n<br />

Jeremy J McCormick, MD 2 – Smith & Nephew; 6 – Midwest Stone Institute, Wright<br />

Medical Technology, Inc.<br />

Christopher McCrum, BS ...................................................n<br />

Kirk A McCullough, MD ....................................................n<br />

Heather McDonald-Blumer, MD 2 – Amgen Co., Bristol-Myers Squibb, Eli Lilly, Merck,<br />

Novartis, Procter & Gamble, San<strong>of</strong>i-Aventis<br />

Erik McDonald 3A, 4 – Boston Scientific<br />

Lucas McDonald, MD ......................................................n<br />

E Barry McDonough, MD 2 – Ferring Pharmaceuticals<br />

Edward G McFarland, MD 3B – Stryker DePuy-Mitke, DePuy, A Johnson & Johnson<br />

Company, Stryker; 5, 6 – DJ <strong>Orthopaedic</strong>s<br />

Eric D McFeely, BA .........................................................n<br />

Michelle H McGarry, MD 3A, 4 – Alphatec Spine<br />

Kevin C McGill, MPH .......................................................n<br />

Mark McGinnis, MD ........................................................n<br />

Tim James McGlaston, BS 4 – Merck<br />

Richard Louis McGough, MD ................................................n<br />

Linda McGrail, RN .........................................................n<br />

Ciara Megan McGuire, MD ..................................................n<br />

Kathleen A McHale, MD ....................................................n<br />

Terence McIff, PhD .........................................................n<br />

Jody McIlroy, PhD .........................................................n<br />

Pr<strong>of</strong>essor Iain B McInnes ...................................................n<br />

Neil McInnis ..............................................................n<br />

Louis F McIntyre, MD 3B, 4 – Tornier<br />

Michael D McKee, MD 1 – Stryker; 2, 3B – Synthes; Zimmer; 5 – Wright Medical<br />

Technology, Inc., Zimmer; 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Kathleen E McKeon, MD ....................................................n<br />

Peter McLardy-Smith, FRCS 1 – Biomet; 2 – Zimmer, Wright Medical Technology, Inc.;<br />

3B – Wright Medical Technology, Inc.; 3C – Zimmer<br />

Alexander C McLaren, MD 5 – OREF Herb Loius Fund, AO North America, SWOTA<br />

(South West <strong>Orthopaedic</strong> Trauma Assoc.), Banner Health, Arizona Biomedical Research<br />

Commission; 6 – Synthes, Hanger Prosthetics and Orthotics, Artificial Limb Specialists,<br />

Stryker, Banner Health<br />

Toni M McLaurin, MD ......................................................n<br />

Alexander Stewart McLawhorn, MD, MBA .....................................n<br />

Ryan McLemore, PhD ......................................................n<br />

James F McMillan, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Thomas A McNally, MD 2, 3B – DePuy, A Johnson & Johnson Company<br />

Gary L McPhail, MD ........................................................n<br />

Edward J McPherson, MD 1, 2, 3B – Biomet<br />

Laura McPherson, BA 1, 2, 3B – Biomet<br />

Margaret M McQueen, MD 5 – Acumed, LLC<br />

Sheila McRae, MSc .........................................................n<br />

James D McDermott, BA ....................................................n<br />

Sean McSweeney, MD ......................................................n<br />

James R McWilliam, MD ....................................................n<br />

Nelson Mead, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Simon Mears, MD 4 – MAKO<br />

John Medige, PhD .........................................................n<br />

John B Meding, MD 1 – Biomet<br />

Robert J Med<strong>of</strong>f, MD 3A, 4 – Trimed<br />

Michael Medvecky, MD 2 – Smith & Nephew; 5 – Wyeth<br />

John Patrick Meehan, MD 2 – DePuy, A Johnson & Johnson Company; 5 – DePuy, A<br />

Johnson & Johnson Company, DJ <strong>Orthopaedic</strong>s, EBI, Eli Lilly<br />

Dominic Meek, MD FRCS 3C – DePuy, A Johnson & Johnson Company; 6 – Hereaus<br />

Patrick A Meere, MD .......................................................n<br />

Geert Meermans, MD 6 – Johnson & Johnson, Smith & Nephew<br />

Morteza Meftah, MD .......................................................n<br />

Amir A Mehbod, MD 1, 3B – Stryker; 4 – Medtronic, Stryker, Nuvasive<br />

Susan Clay Mehle ..........................................................n<br />

Charles T Mehlman, DO, MPH 3C – Stryker; 7 – Oakstone Medical Publishing<br />

Shahid Mehmood, MRCS ...................................................n<br />

David R Mehr, MD .........................................................n<br />

Samir Mehta, MD 2 – Zimmer, Smith & Nephew, AO North America; 3B – Smith &<br />

Nephew; 5 – Amgen Co., Medtronic, Smith & Nephew; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Eric G Meinberg, MD 2 – Synthes<br />

Robert J Meislin, MD 3B – Mitek, Musculoskeletal Transplant Foundation<br />

J Mark Melhorn, MD 2, 5 – Auxilium; 4 – Abbott, Bristol-Myers Squibb, Eli Lilly,<br />

Johnson & Johnson, Merck, Pfizer; 7 – <strong>American</strong> Medical Association Publications<br />

Barbara Melis, MD .........................................................n<br />

Vicente Meliton, MS ........................................................n<br />

Isaac Meller, MD ...........................................................n<br />

Stephen J Mellon, PhD .....................................................n<br />

Stavros G Memtsoudis, MD, PhD ............................................n<br />

Katrin Mende, PhD .........................................................n<br />

Robert Michael Meneghini, MD 3B, 5, 6 – Stryker<br />

Lawrence R Menendez, MD 3B – Stryker<br />

Brandon Mennaer, BS ......................................................n<br />

Frank D Mentch, MS .......................................................n<br />

Deana Mercer, MD .........................................................n<br />

Michael Mercincavage, BS, MAd, CPHQ .......................................n<br />

Mario Mercuri, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Praveen Mereddy, MRCS ....................................................n<br />

Antonio Merono, MD ......................................................n<br />

Addisu Mesfin, MD .........................................................n<br />

Thomas Meskey, BS ........................................................n<br />

J Wesley Mesko, MD 3B – Stryker; 6 – Biomet<br />

Adam Messina, BS 3A, 4, 6 – Smith & Nephew<br />

Umesh Metkar, MD ........................................................n<br />

Paul D Metzger, MD ........................................................n<br />

Matthew J Meunier, MD .....................................................n<br />

Dominik Christoph Meyer, MD 3B, 7 – Woodwelding Ltd,, Schlieren Switzerland;<br />

3C – Synthes; 4 – Mestex AG, Zürich<br />

Robert Scott Meyer, MD 4 – Bristol-Myers Squibb, Pfizer, Procter & Gamble<br />

Susan Meyer, MD ..........................................................n<br />

Kathleen Meyers, MS .......................................................n<br />

Mark S Myerson, MD 1 – Biomet, DePuy, A Johnson & Johnson Company; 2 – Biomet,<br />

DePuy, A Johnson & Johnson Company, Orthohelix; 3B – Biomet, DePuy, A Johnson<br />

& Johnson Company, Medtronic, Stryker, Tornier, Orthohelix, Extremity Medical;<br />

3C – Medtronic; 4 – Orthohelix; 5 – Biomet, OREF, Allosource; 7 – Elsevier<br />

Giovanni Micera, MD .......................................................n<br />

Andrew W Michael, MD ....................................................n<br />

49<br />

disclosure<br />

Jefferey E Michaelson, MD 2, 3B – Biomet; 4 – Parcus Medical<br />

Karl Michaelsson, MD, PhD .................................................n<br />

Linda J Michaud, MD .......................................................n<br />

Lyle J Micheli, MD 3C – Carticel; 5 – Genzyme<br />

Elisabeth Michels 4 – Procter & Gamble<br />

Ryan F Michels ............................................................n<br />

Theodore Miclau, MD 3B – Amgen Co.; 4 – Johnson & Johnson, Merck, Pfizer;<br />

5 – Stryker, Synthes, Zimmer<br />

Saskia Middeldorp, MD, PhD ...............................................n<br />

Fiona Middleton, MRCS ....................................................n<br />

Scott Middleton, Mb, ChB ...................................................n<br />

William D Middleton, MD 7 – Saunders/Mosby-Elsevier<br />

Megan Mignemi, MD .......................................................n<br />

William Michael Mihalko, MD, PhD 1, 2, 3B, 6 – Aesculap/B.Braun; 5 – Aesculap/B.<br />

Braun, Smith & Nephew, Stryker, Corin U.S.A.; 7 – Elsevier Inc.<br />

Hidenobu Miki, MD ........................................................n<br />

Joseph C Milbrandt, PhD 5 – Corin U.S.A.<br />

Todd A Milbrandt, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Andrew Hill Milby, MD .....................................................n<br />

Neal L Millar, MD ..........................................................n<br />

Bjarne Moller-Madsen, MD, MSCI ............................................n<br />

Bruce S Miller, MD .........................................................n<br />

Daniel James Miller, BS .....................................................n<br />

Freeman Miller, MD 7 – Springer<br />

Geraldine Miller, MD 3B – Pfizer<br />

Lisa Miller, BSc ............................................................n<br />

Mark C Miller, PHD 5 – Zimmer; 6 – Integra Life Sciences<br />

Mark D Miller, MD 6 – Miller <strong>Orthopaedic</strong> Research & Education (MORE);<br />

7 – Saunders/Mosby-Elsevier, Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Matthew D Miller, MD ......................................................n<br />

Micah Miller, BS ...........................................................n<br />

Robert Andrew Miller, BS ...................................................n<br />

Stuart D Miller, MD 1 – Biomet; 2 – IntegraLifesciences; 3B – Biomet;<br />

IntegraLifesciences; 4 – Arthrocare, IntegraLifesciences, Osiris, Orthovita<br />

Peter J Millett, MD, MSc 1 – Arthrex, Inc.; 3B – Arthrex, Inc., Arthrocare; 4 – Game<br />

Ready, VuMedi; 5 – Arthrex, Inc., Arthrocare, OrthoRehab, Ossur Americas, Siemens<br />

Medical Solutions USA, Smith & Nephew<br />

Michael B Millis, MD .......................................................n<br />

Edward L Milne 6 – Alphatec Spine, Embrace Medical, FxDevices LLC<br />

Byung Woo Min, MD .......................................................n<br />

Kyong Su Min, MD .........................................................n<br />

Tom Minas, MD 1, 4 – ConforMIS; 2, 3B – Genzyme, ConforMIS<br />

Yukihide Minoda, MD 5 – Biomet, Wright Medical Technology, Inc., DePuy, A Johnson<br />

& Johnson Company<br />

Joan Miquel ...............................................................n<br />

Amer J Mirza, MD 3C – Seattle Information Systems<br />

Faisal Mirza, MD, FRCSC 2, 3B – Acumed, LLC; 4 – Tensegrity Technologies<br />

Maria Teresa Miscione, MD ..................................................n<br />

Adam Mitchell, MD ........................................................n<br />

Joseph W Mitchell .........................................................n<br />

Naoto Mitsugi, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Hiroto Mitsui, MD .........................................................n<br />

Kim Mitsunari, MD ........................................................n<br />

Hiroaki Mitsuyasu, MD .....................................................n<br />

Shinji Miwa, MD ...........................................................n<br />

Masunao Miyao, MD .......................................................n<br />

Hideki Mizuuchi, MD ......................................................n<br />

Yuichi Mochida, MD .......................................................n<br />

Pablo Mococain, MD .......................................................n<br />

Berton R Moed, MD 1 – DePuy, A Johnson & Johnson Company; 5 – Stryker;<br />

7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

Ahmed Salem Mohamed, MD ...............................................n<br />

Saqr Mohamed, MD ........................................................n<br />

Vivek Mohan, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Karen J Mohr, PT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Gregory Moineau, MD ......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Daniel Mole, MD 1 – Tornier<br />

Massimo Molinari, MD .....................................................n<br />

Ryan Molli, DO ............................................................n<br />

Anne Molloy, RN ..........................................................n<br />

Robert M Molloy, MD 5 – Stryker<br />

Shigeki Momohara 2 – Abbott, Pfizer, Wyeth, Astellas Pharma, Chugai, Eisai, Kaken<br />

Pharmaceutical, Mitsubishi Tanabe, Santen, Bristol-Myers Squibb; 3B – Zimmer, Bristol-<br />

Myers Squibb<br />

Keith Oster Monchik, MD 3B – Depuy Mitek, Symmetry Medical, Smith & Nephew;<br />

5 – Stryker<br />

James T Monica, MD .......................................................n<br />

Andrew P Monk, MRCS .....................................................n<br />

Michael A Mont, MD 1 – Stryker; 3B – Stryker, Wright Medical Technology, Inc.;<br />

5 – National Institutes <strong>of</strong> Health (NIAMS & NICHD), Stryker, Tissue Gene, Wright<br />

Medical Technology, Inc.<br />

Antonello Montanaro, MD ..................................................n<br />

Aldo Campusano Montaño .................................................n<br />

Martim Teixiera Monteiro, MD ...............................................n<br />

Pasquale X Montesano, MD 1 – Scient’x, Spinal USA; 4 – Cytonics<br />

Park Moon Seok, MD .......................................................n<br />

Bryan Scott Moon, MD .....................................................n<br />

Kyoung Ho Moon, MD 2 – DePuy, A Johnson & Johnson Company, Korea Bone Bank;<br />

3C, 4, 5 – Korea Bone Bank<br />

Young-Wan Moon, MD .....................................................n<br />

James F Mooney III, MD 3B – Synthes Spine<br />

Molly Moor ...............................................................n<br />

Andrew M Moore, MD ......................................................n<br />

Drew Douglas Moore, MD ..................................................n<br />

Claude T Moorman III, MD 2 – Nutramax Corp.; 3B – Smith & Nephew;<br />

4 – Healthsport; 5 – Stryker, Histogenics, Breg, Mitek, DJ <strong>Orthopaedic</strong>s, Arthrex<br />

Claudio Moraga, MD .......................................................n<br />

Luis Moraleda, MD .........................................................n<br />

Raymond Moran, FRCS .....................................................n<br />

Steven L Moran, MD 1, 2 – Ascension<br />

Lawrence G Morawa, MD 1, 3B – Stryker<br />

Dan Morell, MBBS, BS ......................................................n<br />

Vincent Michael Moretti, MD ................................................n<br />

Dr Joseph A Morgan .......................................................n<br />

Eiji Mori, MD .............................................................n<br />

Mario Moric, MS ...........................................................n<br />

Ryo Morimoto, MD ........................................................n<br />

Tetsuro Morita, MD ........................................................n<br />

Deml Moritz, MD ..........................................................n<br />

Tokuhide Moriyama, MD ...................................................n<br />

Antonio Moroni, MD 2, 3B, 4 – Active Implants; 7 – Orth<strong>of</strong>ix<br />

Edward Morra, MSME ......................................................n<br />

Bernard F Morrey, MD 1 – SBI, Don Joy; 3B – Zimmer; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins, Elsevier<br />

Brent J Morris, MD .........................................................n<br />

Carol D Morris, MD ........................................................n<br />

Michael James Morris, MD 5 – Biomet<br />

Carol Morrison, PhD .......................................................n<br />

William B Morrison, MD 1, 3C – Apriomed, Inc.; 2 , 3B – General Electric Medical<br />

Systems; 7 – Elsevier, Amirsys<br />

Melanie Morscher ..........................................................n<br />

Saam Morshed, MD 5 – Stryker, Synthes<br />

S M Javad Mortazavi, MD ...................................................n<br />

Anne Morton, PhD .........................................................n<br />

Vincent Stephen Mosca, MD .................................................n<br />

Colin F Moseley, MD 3C – Orthopaediatrics<br />

Rami Mosheiff, MD ........................................................n<br />

Timothy J Mosher MD 3B – Kensey Nash Corporation; 4 – Johnson & Johnson<br />

Mathew Most, MD 5 – DePuy, A Johnson & Johnson Company<br />

Richard A Mostardi, PhD 5 – Zimmer, Astro Met<br />

John Motley, PT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Michael P Mott, MD 4 – Johnson & Johnson; 5 – GE Healthcare<br />

50<br />

disclosure<br />

Geraldo Motta, MD ........................................................n<br />

Calin Stefan Moucha, MD ...................................................n<br />

Loran Mounir-Soliman, MD .................................................n<br />

Waleed Fouad Mourad, MD .................................................n<br />

Alexandre Mouttet, MD .....................................................n<br />

Vasilios Moutzouros, MD ...................................................n<br />

Petter Mowinckel, PhD .....................................................n<br />

Luis Emilio Moya , MD .....................................................n<br />

Kyle C Moylan, MD ........................................................n<br />

Thomas Edward Mroz, MD 2 – Stryker; 4 – PearlDiver, Inc.<br />

Scott J Mubarak, MD 4, 6 – Rhino Pediatric Orthopedic Designs, Inc.<br />

Chaitanya S Mudgal, MD ...................................................n<br />

John P Mueller, PhD 6 – Medtronic, DePuy, A Johnson & Johnson Company, Wright<br />

Medical Technology, Inc.<br />

Sarah Muirhead-Allwood FRCS 1, 3B – DePuy, A Johnson & Johnson Company,<br />

Zimmer, Corin U.S.A.; 5 – Zimmer<br />

Debi P Mukherjee, Sc.D .....................................................n<br />

Kevin James Mulhall, MD ...................................................n<br />

Scott Muller, MBBS MD, FRCS ...............................................n<br />

Brian Mullis, MD 5 – Amgen Co., Synthes<br />

Kishore Mulpuri, MD .......................................................n<br />

Gregory M Mundis, MD 2 – Nuvasive, K2M; 3B – K2M, Nuvasive; 5 – Nuvasive, DePuy,<br />

A Johnson & Johnson Company, OREF<br />

Joel Murachovsky, MD ......................................................n<br />

Akira Murakami, MD .......................................................n<br />

Hideki Murakami, MD .....................................................n<br />

Orhun K Muratoglu, PhD 1 – Biomet, Zimmer, Corin U.S.A.; 2, 3C – Biomet;<br />

5 – Biomet, Zimmer, MAKO, DePuy<br />

Christopher D Murawski ....................................................n<br />

Pr<strong>of</strong>essor Antonio Murcia Asensio ...........................................n<br />

Antonio Murcia-Mazon, MD .................................................n<br />

Garnett Andrew Murphy, MD 3C – Wright Medical Technology, Inc.; 5 – BioMimetic;<br />

7 – Saunders/Mosby-Elsevier<br />

James Murphy, MD .........................................................n<br />

Stephen B Murphy, MD 1 – Wright Medical Technology, Inc.; 3B – Wright Medical<br />

Technology, Inc., Ceramtec, AG; 4 – Surgical Planning Associates, Inc.<br />

Clint Murray, MD ..........................................................n<br />

David W Murray, MD 1 – Biomet, Wright Medical Technology, Inc.; 5 – Biomet, DePuy,<br />

A Johnson & Johnson Company, Stryker, Zimmer, Wright Medical Technology, Inc.<br />

Douglas H Murray, MD 3C – Exactech, Inc.<br />

Martha M Murray, MD 3B, 4 – Connective <strong>Orthopaedic</strong>s<br />

Michael R Murray, MD ......................................................n<br />

Paraic A Murray, MD .......................................................n<br />

Trevor G Murray, MD .......................................................n<br />

Pr<strong>of</strong> George A C Murrell, MD 5 – Arthrocare<br />

Yvonne M Murtha, MD .....................................................n<br />

Anand M Murthi, MD 3B – Zimmer, Ascension<br />

A N Murty, MBcHB, FRCS ...................................................n<br />

Volker Musahl, MD ........................................................n<br />

Dana Lynn Musapatika, MS .................................................n<br />

George F Muschler, MD 4 – Cleveland Biolabs; 5 – Synthes, Procter & Gamble<br />

Domingo Luis Muscolo, MD ................................................n<br />

Mrinal Musib, PhD .........................................................n<br />

Gregory Donald Myer, PhD .................................................n<br />

Andy Myerson, PA-C 4 – Wright Medical Technology, Inc.; 6 – Ocean Surgical Inc.<br />

Mark S Myerson, MD 1 – Biomet, DePuy, A Johnson & Johnson Company; 2 – Biomet,<br />

DePuy, A Johnson & Johnson Company, Orthohelix; 3B – Biomet, DePuy, A Johnson<br />

& Johnson Company, Medtronic, Stryker, Tornier, Orthohelix, Extremity Medical;<br />

3C – Medtronic; 4 – Orthohelix; 5 – Biomet, OREF, Allosource; 7 – Elsevier<br />

Valentin Myrtille, MS .......................................................n<br />

Karen Myung, MD .........................................................n<br />

Colin Nabb, BS ............................................................n<br />

Matthew C Nadaud, MD ....................................................n<br />

Dr Mohammad Nasir Naderi ................................................n<br />

Yuko Nagaya, MD ..........................................................n<br />

Daniel J Nagle, MD ........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Satoshi Nagoya, MD ........................................................n<br />

Lakshmi Sreedharan Nair, PhD 3C, 4 – S<strong>of</strong>t Tissue Regeneration<br />

Masatoshi Naito, MD .......................................................n<br />

Ichiro Nakahara ...........................................................n<br />

Hiroaki Nakamura, MD .....................................................n<br />

Junichi Nakamura, MD .....................................................n<br />

Nobuo Nakamura, MD .....................................................n<br />

Takashi Nakamura, MD .....................................................n<br />

Takuya Nakamura, MD 2 – Zimmer, Lima; 3B – Zimmer; 5 – JMM<br />

Yoshinari Nakamura, MD ...................................................n<br />

Yuko Nakashima, MD ......................................................n<br />

Katsuya Nakata, MD 5 – Corin; 6 – Corin Japan<br />

Amgad Ihab Nakhla, MSc, FRCS .............................................n<br />

Ufuk Nalbantoglu, MD .....................................................n<br />

Denis Nam, MD ...........................................................n<br />

Kwang Woo Nam, MD ......................................................n<br />

Robert S Namba, MD 1 – Innomed; 7 – Mc Graw Hill<br />

Surena Namdari, MD, MSc ..................................................n<br />

Chaitanya Nandipati, BS ....................................................n<br />

Matteo Nanni, MD .........................................................n<br />

Robert J. Napleton, JD ......................................................n<br />

Antoni Nargol, FRCS .......................................................n<br />

Jason Warren Nascone, MD 3B – Synthes<br />

Adam Nasreddine, BS ......................................................n<br />

Rima Nasser, MD ..........................................................n<br />

Ahmad Nassr, MD .........................................................n<br />

Sonali Natu, MD ...........................................................n<br />

Doug Naudie, MD 1 – Smith & Nephew; 2, 3B – Smith & Nephew, Stryker; 5 – Smith &<br />

Nephew, DePuy, A Johnson & Johnson Company, Stryker<br />

Aaron Nauth, MD ..........................................................n<br />

Ronald Anthony Navarro, MD ...............................................n<br />

Syed Nawaz, MRCS .........................................................n<br />

Tariq Ali Nayfeh, MD 3B – Smith & Nephew<br />

Samir Nayyar, MD .........................................................n<br />

Ara Nazarian ..............................................................n<br />

Qais Naziri, MD ...........................................................n<br />

Deborah R Neal, BS ........................................................n<br />

Stefan Nehrer, MD 5 – Arthro Kinetics, Chroma Pharma<br />

Michael John Neil, MD 2, 5 – DePuy, A Johnson & Johnson Company; 3B – Global<br />

<strong>Orthopaedic</strong> Technology<br />

Geraldine Neiss, PhD .......................................................n<br />

Rob G H H Nelissen, MD 3C – Biomet, Synthes, Stryker, BroadVector, Implantcast;<br />

5 – Stryker, Biomet, Synthes, Implantcast<br />

Kate W Nellans, MD ........................................................n<br />

Andrea Nelson, ATC, OTC ...................................................n<br />

Charles L Nelson, MD 3B – Zimmer<br />

Christopher D Nelson, DO ..................................................n<br />

David L Nelson, MD 1, 3B, 4, 6 – Orth<strong>of</strong>ix, Inc.; 2 – Orth<strong>of</strong>ix, Inc., Synthes<br />

Eric W Nelson, MD .........................................................n<br />

Fred R T Nelson, MD 7 – Elsevier<br />

Sandra Bliss Nelson, MD 4 – Abbott, Johnson & Johnson, Hospira, Biogen<br />

Scott C Nelson, MD ........................................................n<br />

Scott Nemec, DO ..........................................................n<br />

Jeffrey Nepple, MD .........................................................n<br />

Bryan J Nestor, MD .........................................................n<br />

Philip R Neubauer, MD 3A, 4 – Celgene<br />

Brian J Neuman, MD .......................................................n<br />

Adam Z Neustein, BS .......................................................n<br />

Enrico Neven, MD .........................................................n<br />

Claire Newell, BSc .........................................................n<br />

Drew K Newh<strong>of</strong>f, BA 4 – Stryker<br />

Ms Lori Newman ..........................................................n<br />

Peter O Newton, MD 1, 2, 3B – DePuy, A Johnson & Johnson Company; 3C – Stryker;<br />

4 – Nuvasive; 5 – DePuy, A Johnson & Johnson Company, Axial Biotech, Biospace Med;<br />

7 – Thieme Publishing<br />

51<br />

disclosure<br />

Lionel Neyton, MD 3B – Tornier, Mitek<br />

Aaron Ng, MD .............................................................n<br />

Cho Ng, MBBS ............................................................n<br />

Vincent Ng, MD ...........................................................n<br />

Mthunzi Ngcelwane, MD ....................................................n<br />

Trung Ngo, DC ............................................................n<br />

Dat Nguyen, PharmD 3A, 3B, 4 – Auxilium Pharmaceuticals<br />

Ngoc Quyen Nguyen, MD ...................................................n<br />

Sang-Eun Nha, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Shane Nho, MD 5 – Arthrex, Inc., Linvatec, Smith & Nephew, DJ <strong>Orthopaedic</strong>s,<br />

Miomed, Athletico<br />

Yoon-Mi Nho ..............................................................n<br />

Christophe Nich, MD 5 – Osteotech<br />

Alexander S Nicholls .......................................................n<br />

David P Nicholls, PhD ......................................................n<br />

Gregory P Nicholson, MD 1 – Innomed, Zimmer; 3B, 4 – Zimmer; 5 – EBI, Tornier,<br />

Zimmer; 7 – SLACK Incorporated<br />

Florian Nickisch, MD 2, 3B – Smith & Nephew<br />

Kathie Niesen .............................................................n<br />

Marc J Nieuwenhuijse, MD ..................................................n<br />

Marco Nigrisoli, MD .......................................................n<br />

Vassilios Nikolaou, MD .....................................................n<br />

James T Ninomiya, MD .....................................................n<br />

Lana Nirenstein, MSII ......................................................n<br />

Hideji Nishida, MD ........................................................n<br />

Takashi Nishii, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Carl Wilson Nissen, MD 2 – Genzyme<br />

Lorenzo Nistri, MD ........................................................n<br />

Marco Nitri, MD ...........................................................n<br />

Philip C Noble, PhD 1 – Zimmer, Stryker, Smith & Nephew; 2 – Smith & Nephew;<br />

3B – Smith & Nephew, Zimmer; 5 – Synthes, Zimmer; 6 – Musculoskeletal Transplant<br />

Foundation, Zimmer, Plus Orthopedics<br />

Ulrich Noeth ..............................................................n<br />

Michael M Nogler, MD 2, 3B – Stryker; 5 – Stryker, Heraeus; 7 – Springer<br />

Monica Paschoal Nogueira, MD ..............................................n<br />

Won Noh, MD .............................................................n<br />

Rahime Nohutcu, DT .......................................................n<br />

Dr Elizabeth M Nolan ......................................................n<br />

Lutz P Nolte, PhD ..........................................................n<br />

Tomohiro Nomura, MD ....................................................n<br />

Ken J Noonan, MD 1, 3B, 5 – Biomet<br />

Vanessa Noonan, PhD ......................................................n<br />

Robert L Nora, JD ..........................................................n<br />

Sean E Nork, MD 2 – Synthes, AONA; 3B – Synthes, AONA, Amgen; 5 – Synthes,<br />

AONA, OTA<br />

Masoud Norouzi ...........................................................n<br />

Casey Northam, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Mark Norton, MD 3C – Corin UK<br />

Tom F Novacheck, MD ......................................................n<br />

Eduardo Nilo Novais, MD ...................................................n<br />

Jenna B Noveau, BS ........................................................n<br />

Wendy Novic<strong>of</strong>f, PhD 3B – Exactech, Inc., Smith & Nephew<br />

Robert J Nowinski, DO 2 – Tornier; 3B – Tornier, Renovis; 5 – Tornier, Lifecell<br />

Frank R Noyes, MD 1 – Smith & Nephew; 2 – Genzyme; 6 – Arthrex, Inc., DePuy-<br />

Mitek, Regeneration Technologies, Inc., AlloSource; 7 – Saunders/Mosby-Elsevier<br />

Masahiro Nozaki, MD ......................................................n<br />

Akosua A Nti, BA ..........................................................n<br />

Gordon W Nuber, MD 4 – Johnson & Johnson, Stryker; 5 – Sage Pharmaceuticals<br />

Syam Prasad Nukavarapu, PhD ..............................................n<br />

James Albert Nunley II, MD 1 – Wright Medical Technology, Inc.; 3B – SBI, Smith &<br />

Nephew, Stryker, Wright Medical Technology, Inc., Integra Lifesciences; 4 – Bristol-Myers<br />

Squibb, Merck, Johnson & Johnson; 5 – Biomet, EBI, OREF, Pfizer, Synthes, DePuy, A<br />

Johnson & Johnson Company, Arthrex, Inc.; 7 – Springer, Datatrace<br />

Ryan Nunley, MD 3B – Smith & Nephew, Wright Medical Technology, Inc., Salient<br />

Surgical; 5 – Biomet, Wright Medical Technology, Inc., Stryker, Smith & Nephew,<br />

Biospace, Mobile Compression Systems<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Thomas Nunn, BS .........................................................n<br />

Katja MR Nuss, DVM .......................................................n<br />

Eric Nussbaum, ATC ........................................................n<br />

Benedict U Nwachukwu ....................................................n<br />

Jason Nydick, DO ..........................................................n<br />

Joseph R O’Brien, MD 3B – DePuy, A Johnson & Johnson Company, Stryker, Smith &<br />

Nephew; 4 – Doctors Research Group; 5 – BioSET, Nuvasive<br />

Daniel P O’Connor, PhD 3C – Nimbic Systems, Inc.; 7 – SLACK Incorporated<br />

Mary I O’Connor, MD 3B – Zimmer; 3C, 4 – Accelalox, Inc.<br />

Thomas FX O’Donnell, BS ..................................................n<br />

Turlough O’Donnell, MD ...................................................n<br />

Shawn W O’Driscoll, MD 1 – Acumed, LLC, Tornier, Aircast (DJ); 2 – Acumed, LLC<br />

Regis J O’Keefe, MD 4 – LaGET<br />

Martin J O’Malley, MD ......................................................n<br />

Kieran O’Shea, MD .........................................................n<br />

Brian O’Sullivan, MD .......................................................n<br />

Patrick O’Toole, MD ........................................................n<br />

Robert V O’Toole, MD 3B – Synthes; 5 – Synthes, Stryker, OREF<br />

Hannah CL Oag, MD .......................................................n<br />

Carol A Oatis, PT, PhD 7 – LWW<br />

Isi Obadan, MD ...........................................................n<br />

Shuji Obata, MD ...........................................................n<br />

Barbara Obermayer-Pietsch, MD .............................................n<br />

Beate Obermeyer, BSc ......................................................n<br />

Thomas S Obermeyer, Jr MD ................................................n<br />

Richard Obert, MS 3A, 4 – Wright Medical Technology, Inc.<br />

William Obremskey, MD 3B – Medtronic<br />

Mitsuo Ochi, MD, PhD .....................................................n<br />

Masafumi Oda, PhD .......................................................n<br />

Ryo Oda, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Saurabh Odak, MBBS, MRCS ................................................n<br />

Susan Marie Odum ........................................................n<br />

Sarah Offley, MD 5 – Endopharmaceuticals<br />

Kyo-Ichi Ogawa, MD .......................................................n<br />

Masato Ogawa, MD ........................................................n<br />

Akira Ogose, MD ..........................................................n<br />

Chang-Wug Oh, MD 2, 5 – Synthes; 3C – Zimmer<br />

Chung Hee Oh, MD ........................................................n<br />

Irvin Oh, MD ..............................................................n<br />

Joo Han Oh, MD 3B – ConMed Linvatec<br />

Kwang Jun Oh, MD ........................................................n<br />

Fumihiro Oha, MD ........................................................n<br />

Xavier Ohl, MD ............................................................n<br />

Yasuo Ohori, MD, PhD .....................................................n<br />

Hiroyuki Ohta, PhD ........................................................n<br />

Seiji Ohtori ...............................................................n<br />

Ji-Hoon Ok, MD ...........................................................n<br />

Hiroyuki Oka, MD .........................................................n<br />

Fumiaki Okada, MD .......................................................n<br />

Tadashi Okano, MD ........................................................n<br />

Hiroshi Okazaki, MD ......................................................n<br />

Ken Okazaki, MD ..........................................................n<br />

Hisashi Okumura, MD .....................................................n<br />

Tsaiwei Olee, PhD .........................................................n<br />

Daniel Oliveira, MD ........................................................n<br />

Leonardo Oliveira, MD .....................................................n<br />

Anders Ol<strong>of</strong>sson, MD ......................................................n<br />

Michael Olsen .............................................................n<br />

Steven A Olson, MD 6 – Synthes<br />

Dana Olszewski, MD .......................................................n<br />

David J Olysav, MD 3C – Zimmer; 4 – Eli Lilly, Zimmer; 5 – Cubist<br />

Hakan Omeroglu, MD, Pr<strong>of</strong> .................................................n<br />

Ted M Omilanowski, PA-C ..................................................n<br />

Yasushi Omori, MD ........................................................n<br />

52<br />

disclosure<br />

Dan Omoto, MD ..........................................................n<br />

Ercument Onder, DT .......................................................n<br />

Erol Onel, MD 3A – Pacira<br />

Alvin C Ong, MD 2 – Pfizer; 3B – Stryker, Smith & Nephew; 5 – AK Pharma, KCI,<br />

Zimmer<br />

Crispin C Ong, MD ........................................................n<br />

Kevin Ong, PhD 5 – Stryker, Medtronic<br />

Takashi Ono, MD ..........................................................n<br />

Shin Onodera, MD .........................................................n<br />

Ikechukwu Onyedika, MD ..................................................n<br />

Yasuo Oohori, MD .........................................................n<br />

Ebru Oral, MD 1 – Zimmer<br />

Joseph R Orchowski, MD ...................................................n<br />

Debbie Ordes .............................................................n<br />

Robert M Orfaly, MD 1 , 3B – Acumed, LLC; 2 – DePuy, A Johnson & Johnson<br />

Company, MicroAire Surgical Instruments LLC<br />

Lori A. Orlando, MD .......................................................n<br />

Fabio Orozco, MD 3B – Stryker; 5 – Pfizer, AKA Pharma; 6 – Pfizer<br />

Justin D Orr, MD ..........................................................n<br />

Cristian Ortiz, MD .........................................................n<br />

Uche Osadebe .............................................................n<br />

Toshihisa Osawa, MD ......................................................n<br />

Daryl C Osbahr, MD .......................................................n<br />

Daniel Osei, MD ...........................................................n<br />

Vladimir Osipov, MD .......................................................n<br />

A Lee Osterman, MD 2 – Auxilium, Medartis; 3B – Auxilium; 7 – Elsevier<br />

Robert F Ostrum, MD 5 – AONA, Synthes<br />

Daniel Osuch, MD .........................................................n<br />

Masafumi Otani, MD .......................................................n<br />

Norman Yoshinobu Otsuka, MD .............................................n<br />

Takanobu Otsuka, MD .....................................................n<br />

Karim Oudina, MS .........................................................n<br />

Elizabeth A Ouellette, MD 3B – Stryker<br />

Sylvia Ounpuu, MS ........................................................n<br />

John R Owen, PE ..........................................................n<br />

Brett D Owens, MD ........................................................n<br />

Christopher J Owens, MD ...................................................n<br />

Lesa Owens, NP ...........................................................n<br />

Michael C Owens ..........................................................n<br />

H. Mustafa Ozdemir, MD, Assoc Pr<strong>of</strong> .........................................n<br />

Handan Ozdemir, Assoc Pr<strong>of</strong> ................................................n<br />

Satoru Ozeki, MD ..........................................................n<br />

Mehmet Hakan Ozsoy, MD,<br />

Assoc Pr<strong>of</strong> ................................................................n<br />

Abdullah Ozturk, PhD ......................................................n<br />

Adnan Ozturk, DT .........................................................n<br />

Fatih Ozyer, MD ...........................................................n<br />

Cleber A Jansen Paccola ....................................................n<br />

Lorenzo Pacelli, MD 1, 2, 3B – Ascension Orthopadic<br />

Wilfredo B Pacheco, MD 3A, 4 – Warner Chilcott; 3C – Surgical Implant Generation<br />

Network (SIGN)<br />

Donna M Pacicca, MD ......................................................n<br />

Douglas E Padgett, MD 3B – MAKO, Stryker; 4 – MAKO<br />

Michelle A. Padley .........................................................n<br />

Stavroula Pagkrati, MD .....................................................n<br />

Michael J Pagnani, MD 4 – Novartis, Baxter; 6 – STAR Physical Therapy<br />

Mark W Pagnano, MD 1 – DePuy, A Johnson & Johnson Company, MAKO;<br />

5 – Zimmer; 7 – Clinical <strong>Orthopaedic</strong>s and Related Research<br />

Michael R Pagnotto, MD ....................................................n<br />

Jenny R Pahys, MPH ........................................................n<br />

Joshua Pahys, MD ..........................................................n<br />

Haines Paik, MD ...........................................................n<br />

Satya Pakianathan, MD, PhD ................................................n<br />

Nader Paksima, DO 2, 3B, 5 – Stryker; 4 – SBI<br />

Elisa Pala, MD .............................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Paolo Paladini, MD ........................................................n<br />

Lisa Palermo, PhD 3B – Nycomed<br />

George A Paletta Jr, MD 2 – Genzyme<br />

Dror Paley, MD 1 – Smith & Nephew; 7 – Springer<br />

Winnie Palispis, BS ........................................................n<br />

David Paller, MS ...........................................................n<br />

Cameron Palmer, MD ......................................................n<br />

William Palmer, MD 3B – Johnson & Johnson<br />

Giuseppe Palmese, PhD ....................................................n<br />

Alessio Palumbo, MD ......................................................n<br />

Brian Palumbo, MD ........................................................n<br />

Georgia Panagopoulos, PhD ................................................n<br />

Joaquin C Pandanan, MD ...................................................n<br />

Rajeev Pandarinath, MD 4 – Procter & Gamble, AstraZeneca<br />

Hemant G Pandit, FRCS ....................................................n<br />

Nirav Kiritkumar Pandya, MD ...............................................n<br />

Nicola Panfoli, MD ........................................................n<br />

Hee-Nee Pang, MBBS, MRCS ................................................n<br />

David Panicek, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Arsen M Pankovich, MD 7 – McGraw-Hill Publishers<br />

Pavlos Panteliadis, MD .....................................................n<br />

Jwo-Luen Pao, MD .........................................................n<br />

Rocco Papalia, MD .........................................................n<br />

Rick F Papandrea, MD 2, 3B – Acumed, LLC, Exactech, Inc.<br />

Periklis Papapetropoulos, MD ...............................................n<br />

Guido Pape, MD ...........................................................n<br />

Hans-Christoph Pape, MD 2 – Synthes; 3B – Stryker; 3C – Canadian Orthopedic<br />

Foundation; 7 – Journal <strong>of</strong> <strong>Orthopaedic</strong> Research, Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Nick D Pappas, III MD ......................................................n<br />

Wayne Gregory Paprosky, MD 1 – Wright Medical Technology, Inc., Zimmer;<br />

2 – Zimmer; 3B – Biomet, Zimmer; 7 – Journal <strong>of</strong> Arthroplasty<br />

Daniele Paravani, MD ......................................................n<br />

Ted William Parcel, DO .....................................................n<br />

Farhad Parhami, PhD ......................................................n<br />

Shital Parikh, MD ..........................................................n<br />

Byung Chul Park, MD ......................................................n<br />

Daniel K Park, MD .........................................................n<br />

Don Young Park, MD .......................................................n<br />

Gi Heon Park, MD .........................................................n<br />

Hoon Park, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jae-Hyun Park, MD .........................................................n<br />

Jangwon Park, MD .........................................................n<br />

Jeong Min Park, MD ........................................................n<br />

Ju-Kwon Park, MD .........................................................n<br />

Justin J Park, MD ..........................................................n<br />

Kun-woo Park, MD .........................................................n<br />

Kwan Kyu Park, MD ........................................................n<br />

Kyoung Jin Park, MD .......................................................n<br />

Kyung Soon Park, MD ......................................................n<br />

Min Jung Park, MD, MSc ....................................................n<br />

Sang Eun Park, MD, MBA, PHD ..............................................n<br />

Yong-Bum Park, MD .......................................................n<br />

Youn Soo Park, MD ........................................................n<br />

Brent G Parks, MSC 1 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s; 3B – Zimmer; 6 – Arthrex, Inc.,<br />

DePuy, A Johnson & Johnson Company, Synthes, Integra Life Sciences<br />

Michael Lloyd Parks, MD 3B – Zimmer; 4 – Johnson & Johnson, Merck, Pfizer, Procter<br />

& Gamble, Zimmer; 5 – Zimmer<br />

Nancy L Parks .............................................................n<br />

Raviinder Parmar, MD 4 – Stryker<br />

Nata Parnes, MD ...........................................................n<br />

Dante Parodi, MD .........................................................n<br />

Sebastian Parratte, MD .....................................................n<br />

Billy Keith Parsley, MD .....................................................n<br />

Brian S Parsley, MD 2, 5 – ConforMIS; 6 – DePuy, A Johnson & Johnson Company<br />

53<br />

disclosure<br />

Bradford Parsons, MD 2, 3B – Zimmer; 5 – Wyeth<br />

Theodore W Parsons, MD, FACS 5 – GE Healthcare<br />

Paul Francis Partington, MD 2 – Heraeus<br />

Javad Parvizi, MD 3B – Stryker; 5 – 3M, Musculoskeletal Transplant Foundation,<br />

Stryker; 7 – Saunders/Mosby-Elsevier, SLACK Incorporated, Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Ebrahim Paryavi, MD .......................................................n<br />

Dritan Pasku ..............................................................n<br />

Gilles Pasquier, MD 3C – Symbios SA<br />

Alpesh Ashwin Patel, MD 1, 3B – Amedica; 2 – Biomet, Medtronic S<strong>of</strong>amor Danek,<br />

Stryker, Amedica<br />

Amar Patel, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Amar Arun Patel, BS ........................................................n<br />

Patel’Anay Rajendra, MD ....................................................n<br />

Ashish Patel, MD ..........................................................n<br />

Chetan K Patel, MD 1 – Globus Medical; 2 – Medtronic; Stryker; 3A, 4 – Medtronic;<br />

3B – Globus Medical, Medtronic, Osteotech, Stryker<br />

Jay J Patel, MD .............................................................n<br />

Neeraj Patel, MBBS .........................................................n<br />

Priyesh Patel, MD ..........................................................n<br />

Satyam Rajnikant Patel, MD .................................................n<br />

Shelain Patel, MRCS ........................................................n<br />

Vikas Vanarsi Patel, MD 1 – Aesculap/B.Braun, Biomet; 2 – Synthes, Lanx, Baxter,<br />

Stryker; 3B – Cerapedics, Baxter, Trans-1, Aesculap/B.Braun; 4 – Medtronic S<strong>of</strong>amor<br />

Danek, Stryker, Zimmer, Cerapedics; Snowasis; 5 – Synthes, Show-Ika, Aesculap,<br />

Orth<strong>of</strong>ix, CrossTrees Medical, Cerapedics, Pioneer; 7 – Springer<br />

Silvio Patella, MD ..........................................................n<br />

Shantanu Patil, MD ........................................................n<br />

Gary Patou, MD 3A, 3B, 6 – Pacira Pharmaceuticals, Cerimon Pharmaceuticals, Peplin<br />

Ltd.; 4 – GlaxoSmithKline<br />

Laura P Patron, MS 4 – Amgen Co.; 5 – Medtronic S<strong>of</strong>amor Danek, Osteogenix,<br />

Ascension Orthopedics, Joe & Dorothy Dorsett Brown Foundation<br />

Joshua C Patt, MD .........................................................n<br />

Darren Patten .............................................................n<br />

Thilo Patzer, MD ...........................................................n<br />

Sophia Paul, BA ...........................................................n<br />

George Pavlou, Bsc, MRCS ..................................................n<br />

Jeff Pawelek ...............................................................n<br />

Liz Paxton, MA ............................................................n<br />

Terrance D Peabody, MD ....................................................n<br />

William Joseph Peace, MD ..................................................n<br />

Michael L Pearl, MD ........................................................n<br />

Andrew D Pearle, MD ......................................................n<br />

Carola Pechey .............................................................n<br />

Robert A Pedowitz, MD 7 – Springer, Wolters Kluwer Health - Lippincott Williams &<br />

Wilkins<br />

Walter J Pedowitz, MD ......................................................n<br />

Angela D Pedroza, MPH ....................................................n<br />

Sebastian Charles Peers, MD ................................................n<br />

Murat Pekmezci, MD .......................................................n<br />

Dr Syephane Pelet 5 – Arthrex, Inc.<br />

Vincent D Pellegrini Jr, MD 1 – DePuy, A Johnson & Johnson Company; 3B – Covidien<br />

Ortho McNeil Pharmaceuticals; 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong><br />

Brad L Penenberg, MD 1, 2, 3B, 5 – Wright Medical Technology, Inc.; 4 – Radlink Corp.<br />

Lauren Peng, MD ..........................................................n<br />

Jowan G Penn-Barwell, MB ChB .............................................n<br />

Scott Pennington, MD ......................................................n<br />

W Wesley Pennington, MS 5 – Smith & Nephew, Arthrex, Inc., Ossur Americas, Siemens<br />

Medical Solutions USA, Saucony, OrthoRehab, Alignmed LLC, Opedix<br />

Andrew T Pennock, MD .....................................................n<br />

Tom Penoyer, MD ..........................................................n<br />

Raymond A Pensy, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Michael Peppers, PharmD ...................................................n<br />

Marco Antonio Percope-Andrade, MD 2 – Stryker, San<strong>of</strong>i-Aventis<br />

Paul William Perdue, Jr MD .................................................n<br />

Regina Pereira, MD, PhD ...................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Renata Pereira, PhD ........................................................n<br />

Tatiana Soares Pereira, PT ...................................................n<br />

Daniel Pereles, MD 4 – Merck, Zimmer<br />

Tony Pericle ...............................................................n<br />

Georgio Perino ............................................................n<br />

Joseph H Perra, MD 1, 2, 3B, 4 – Medtronic; 5 – DePuy, A Johnson & Johnson<br />

Company<br />

Aimee Perreira, MD ........................................................n<br />

Daniel Perrien, PhD ........................................................n<br />

Kevin I Perry, MD ..........................................................n<br />

Wilfred Peter, PT ...........................................................n<br />

Christopher L Peters, MD 1, 3B, 5, 6 – Biomet<br />

Steve A Petersen, MD 5 – DJ <strong>Orthopaedic</strong>s<br />

William J Petersilge, MD ....................................................n<br />

Alain Petit, PhD ...........................................................n<br />

Herve Petite, PhD 5 – Osteotech; 6 – Biocoral<br />

Agnica Petkovic, MD .......................................................n<br />

Anthony Petrella, PhD ......................................................n<br />

Dr Massimo Petrera ........................................................n<br />

Frank Petrigliano, MD ......................................................n<br />

Brad Petrisor, MD 2, 3B – Stryker; 5 – Stryker, Synthes; 6 – Synthes<br />

David Petron, MD .........................................................n<br />

Damon H Petty, MD 3B – Breg, Stryker, I-Flow<br />

Emily Petty, MMS, PAC .....................................................n<br />

Ferris Pfeiffer, PhD .........................................................n<br />

Christian Pfirrmann, MD ...................................................n<br />

Robert Pflugmacher, MD ....................................................n<br />

Terrence Philbin, DO 1 – Orthohelix, Biomet; 2 – Arthrocare, DJ <strong>Orthopaedic</strong>s,<br />

Pfizer, Biomet, Footmax, Orthohelix; 3B – Biomet, Orthohelix; Pfizer; 4 – Orthohelix;<br />

5 – Biomet, DJ <strong>Orthopaedic</strong>s, Pfizer, BioMimetic<br />

Marc J Philippon, MD 1 – Smith & Nephew, Bledsoe, Donjoy, Arthrosurface; 2, 3B,<br />

6 – Smith & Nephew; 4 – Smith & Nephew, Arthrosurface, Hipco, MIS; 5 – Ossur,<br />

Arthrex, Savcony, OrthoRehab, Opedix, Siemens, Steadman Philippon Research<br />

Institute; 7 – SLACK Incorporated<br />

Frank M Phillips, MD 1 – Nuvasive, DePuy, A Johnson & Johnson Company;<br />

3B – DePuy, A Johnson & Johnson Company, Kyphon Inc., Stryker, K2M; 4 – Nuvasive,<br />

Baxano, Spinal Kinetics, Spinal Motion, Axiomed, Flexuspine, CrossTrees, PearlDiver,<br />

BioAssets<br />

Jonathan H Phillips, MD 1, 2, 5 – Biomet; 3B – Synthes, Biomet<br />

Lee Garrit Phillips, MD .....................................................n<br />

Michael Phillips, MD .......................................................n<br />

William A Phillips, MD 4 – Orthologic<br />

Phinit Phisitkul, MD .......................................................n<br />

Vincent Pibarot, MD 1 – Amplitude<br />

Brad Matthew Picha, MD 5 – Synthes<br />

Raymond O Pierce Jr, MD ...................................................n<br />

Jeffery L Pierson, MD 3B – Zimmer<br />

Matthew Alan Pifer, MD ....................................................n<br />

Bart G Pijls, MD ...........................................................n<br />

Jeffrey Pike, MD ...........................................................n<br />

Luiz Pimenta, MD 2, 3C, 5 – Nuvasive<br />

Mahesh Pimple, FRCS ......................................................n<br />

Leo A Pinczewski, FRACS 1, 3B – Smith & Nephew; 4 – Australian Biotechnology,<br />

<strong>Orthopaedic</strong> Group Ltd. NSW; 5 – Smith & Nephew, Surgical Synergies<br />

Stephen J Pinney, MD 3B – United Health Care<br />

Alfonso E Pino, MD ........................................................n<br />

Ellie Pinsker ..............................................................n<br />

Jonathan Pinsky, MD .......................................................n<br />

Vivek Pinto 3A, 4 – San<strong>of</strong>i-Aventis AstraZeneca; 6 – Accutrol Inc.<br />

Michael S Pinzur, MD 2 – Small Bone Innovations, Smith & Nephew, Tornier; 3B – SBI;<br />

5 – BioMimetic<br />

Piergiorgio Pirani, MD .....................................................n<br />

Shafique P Pirani, MD ......................................................n<br />

Ulrike M Pirker-Fruhauf, MS ................................................n<br />

J David Pitcher, Jr MD ......................................................n<br />

Peter D Pizzutillo, MD ......................................................n<br />

54<br />

disclosure<br />

Kevin D Plancher, MD ......................................................n<br />

Christopher Plaskos, PhD 3A – Praxim<br />

Avraam L Ploumis, MD, PHD ................................................n<br />

David A Podeszwa, MD .....................................................n<br />

Alexandre Poignard, MD ....................................................n<br />

Mahesh Polavarapu ........................................................n<br />

Daniil Polishchuk, MD .....................................................n<br />

Dijana Poljak .............................................................n<br />

Andrew N Pollak, MD 1 – Extraortho; 2 – KCI; 3B – Smith & Nephew; 5 – Smith &<br />

Nephew, Stryker; 7 – AAOS<br />

David W Polly Jr, MD 2, 3B – Former Medtronic Spine and Medtronic Navigation<br />

Brent A Ponce, MD 2 – Arthrex, Inc., Tornier<br />

Ravi Kumar Ponnappan, MD 3B – DePuy, A Johnson & Johnson Company;<br />

3C – Biomet<br />

Robin Poole 1 – IBEX Pharmaceuticals; 3B, 6 – DePuy, A Johnson & Johnson Company,<br />

Merck, Serono, IBEX Pharmaceuticals; 4 – Merck, Johnson & Johnson, Roche<br />

Rudolf W Poolman, MD,PhD 3B – Amgen Co., Link <strong>Orthopaedic</strong>s; 3C – Biomet,<br />

Zimmer; 5 – Amgen Co., AstraTech, Zimmer, Link <strong>Orthopaedic</strong>s<br />

Peter Poon, MD 5 – Lima New Zealand<br />

Manny D Porat, MD ........................................................n<br />

Giuseppe Porcellini, MD ....................................................n<br />

Daniel Porter, MD 7 – Elsevier Publishing House<br />

Martyn Porter, MD 1 – DePuy, A Johnson & Johnson Company; 2 – Boehringer<br />

Ingelheim<br />

Martin A Posner, MD .......................................................n<br />

Sivaiah Potla, MD ..........................................................n<br />

Benjamin Potter, MD .......................................................n<br />

Hollis Potter, MD 3B – Histogenics Corporation, Kensey Nash Corporation,<br />

BioMimetic, Smith & Nephew, DePuy; 5 – General Electric Healthcare<br />

Lazaros A Poultsides, MD ...................................................n<br />

James N Powell, MD 3B – Smith & Nephew<br />

David Powles, MD, FRCS ...................................................n<br />

Alexis Pozen ..............................................................n<br />

Anupam Pradhan, MD ......................................................n<br />

Luis Gustavo Prata Nascimento, MD ..........................................n<br />

Heidi Prather, DO .........................................................n<br />

Daniel Pratt, PhD ..........................................................n<br />

Michael J Prayson, MD 2 – Smith & Nephew, AO faculty; 3B – Smith & Nephew;<br />

5 – Smith & Nephew, Synthes<br />

Paul Prefontaine, PT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Nikolaos Prevezas, MD .....................................................n<br />

Erin M Prewitt, MD ........................................................n<br />

Andrew J Price, FRCS 2, 3 – Biomet; 5 – Biomet, Genzyme, Smith & Nephew, Zimmer<br />

Dritan Prifti, ECFMG .......................................................n<br />

David McKeon Prior, MD ...................................................n<br />

Tamir Pritsch, MD .........................................................n<br />

Robert A Probe, MD 2 – Stryker, Synthes; 3B – Stryker<br />

Laura J Prokuski, MD .......................................................n<br />

Matthew T Provencher, MD ..................................................n<br />

Kevin Joseph Pugh, MD 2 – Smith & Nephew, Synthes, Medtronic; 3B, 5 – Medtronic,<br />

Smith & Nephew; 3C – Synthes<br />

Miguel Puigdevall, MD .....................................................n<br />

Nicholas Pulos, BA .........................................................n<br />

Marc Puls, PhD ............................................................n<br />

Stephanie Pun, MD ........................................................n<br />

Derek Pupello 3B – DJ <strong>Orthopaedic</strong>s<br />

Ed Purdue, PhD ...........................................................n<br />

Lalit Puri, MD 1 – Stryker; 3B – Stryker, Salient Surgical; 5 – OREF<br />

Rajeev D Puri, MD .........................................................n<br />

James J Purtill, MD .........................................................n<br />

Amit B Putti, MBBS ........................................................n<br />

Christian Puttlitz, PhD 3B – Medtronic S<strong>of</strong>amor Danek; 5 – BioMimetic, Cerapedics,<br />

DePuy, A Johnson & Johnson Company, Medtronic S<strong>of</strong>amor Danek, National Institutes<br />

<strong>of</strong> Health (NIAMS & NICHD), Synthes<br />

Cornelia Putz, MD .........................................................n<br />

Tamara Pylawka, MD .......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Paul Pynsent, PhD 5 – Smith & Nephew<br />

Erion Qamirani, MD .......................................................n<br />

Erion Qanirani, MD, PhD ...................................................n<br />

Robin M Queen, PhD ......................................................n<br />

Xing Qiu, PhD ............................................................n<br />

Ryan Quigley, BS 4 – Amgen Co.; 5 – Medtronic S<strong>of</strong>amor Danek, Osteogenix,<br />

Ascension Orthopedics, Joe & Dorothy Dorsett Brown Foundation<br />

Robert H Quinn, MD 5 – OREF, Smith & Nephew, Stryker, Synthes<br />

Sheeraz Qureshi, MD 2 – Medtronic, Stryker<br />

Michael Rabago, PA 2 – Regeneration Technologies, Inc.<br />

Brien Rabenhorst, MD ......................................................n<br />

Deepthi Rachala, MS .......................................................n<br />

James Nick Rachel, MD .....................................................n<br />

Adam Wesley Racusin, MD ..................................................n<br />

Kristen E Radcliff, MD ......................................................n<br />

Christ<strong>of</strong> Radler, MD 2, 3B – Smith & Nephew<br />

Vincenza Ragone, MD ......................................................n<br />

Ole Rahbek, MD ...........................................................n<br />

Mohammad Rahimi ........................................................n<br />

Luthfur Rahman, MRCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Hans Rahme, MD ..........................................................n<br />

Steven M Raikin, MD 3B – DePuy, A Johnson & Johnson Company; 5 – BioMimetic<br />

Sam Rajaratnam, MD .......................................................n<br />

Eduardo Rajdl, MD ........................................................n<br />

PPJ Raju, FRCR ............................................................n<br />

Kawan Rakhra, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Raghu Raman, MRCS 2 – Genzyme, JRI<br />

Arun J Ramappa, MD .......................................................n<br />

Jayasree Ramaskandhan, MSc 5 – Smith & Nephew<br />

Rohit Rambani, MS(ortho) ..................................................n<br />

Palanisamy Ramesh, FRCS Orth .............................................n<br />

Claudia Ramirez, BS .......................................................n<br />

Jose G Ramon, MD 4 – Pfizer<br />

Nicholas Ramos, BA ........................................................n<br />

Matthew Lee Ramsey, MD 2 – Zimmer, Mitek; 3B – Zimmer, Ascension; 4 – Johnson &<br />

Johnson, Novartis, Teva; 5 – Biomet<br />

Rex D Ramsier, PhD ........................................................n<br />

Sumit Hamendra Rana, MD .................................................n<br />

Amar S Ranawat, MD 1, 2, 5, 6 – DePuy, A Johnson & Johnson Company, Stryker;<br />

3B – DePuy, A Johnson & Johnson Company, MAKO; 3C, 4 – ConforMIS<br />

Anil Ranawat, MD 1, 6, 7 – DePuy, A Johnson & Johnson Company, Stryker; 2 – MAKO,<br />

ConforMIS, Nova, DePuy, A Johnson & Johnson Company, Stryker; 3B – MAKO, DePuy,<br />

Stryker; 3C – ConforMIS; 4 – ConforMIS, NOVA Surgical; 5 – MAKO, DePuy, Stryker<br />

Chitranjan S Ranawat, MD 1, 2 – DePuy, A Johnson & Johnson Company, Stryker;<br />

3B – MAKO; 3C – DePuy, A Johnson & Johnson Company, Stryker, Amedica; 4,<br />

5 – DePuy, A Johnson & Johnson Company<br />

R Lor Randall, MD .........................................................n<br />

Filippo Randelli, MD 1 – San<strong>of</strong>i-Aventis, Link <strong>Orthopaedic</strong>s; 2 – San<strong>of</strong>i-Aventis, Bayer;<br />

3B – Johnson & Johnson; 3C – Smith & Nephew; 5 – San<strong>of</strong>i-Aventis<br />

Joseph C Randolph, MD 5 – Cool Systems, Inc.<br />

Scottie Rangel .............................................................n<br />

Nalini Rao, MD ............................................................n<br />

Bradley Raphael, MD .......................................................n<br />

Michael Raschke, MD .......................................................n<br />

Christopher H Rashidifard, BA ...............................................n<br />

Kevin A Raskin, MD 3C – KCI<br />

Dima Raskolnikov, BS ......................................................n<br />

Vijay J Rasquinha, MD ......................................................n<br />

Farbod Rastegar, BS ........................................................n<br />

Shishir Rastogi, MD ........................................................n<br />

Stephen J Raterman, MD 3B – Smith & Nephew<br />

Christopher Rathbone, PhD .................................................n<br />

Karl E Rathjen, MD 3C – Orthopaediatrics; 7 – Saunders/Mosby-Elsevier<br />

Dr Giovanni Ravazzolo .....................................................n<br />

Raymond B Raven III, MD 1, 2, 3B – Osteomed; 3C – Auxillium<br />

Krishna Ravi Cidambi, MD ..................................................n<br />

55<br />

disclosure<br />

Adala Raviraj, MD ..........................................................n<br />

Faizal Rayan, MBBS,MRCS,<br />

DORTHO .................................................................n<br />

Guy Raz, MD ..............................................................n<br />

Yadollah Razaei, MD .......................................................n<br />

Ali Razif, MD ..............................................................n<br />

Pasquale Razzano, MS ......................................................n<br />

Jeffrey Maurice Reagan, MD .................................................n<br />

John Realyvasquez .........................................................n<br />

Juan A Realyvasquez, MD ...................................................n<br />

Glenn R Rechtine, II MD 5 – Endo Pharmaceuticals<br />

Robert N Reddix, Jr MD 2 – Orth<strong>of</strong>ix, Inc., Smith & Nephew, Integra Life Sciences;<br />

3B – Smith & Nephew; 5 – Orth<strong>of</strong>ix, Inc.<br />

Sudheer C Reddy, MD ......................................................n<br />

Andrea Redler, MD .........................................................n<br />

Elaine Reed, PhD ..........................................................n<br />

Mike R Reed, MBBS MD 2 – Biomet, Heraeus Medical, Care fusion, Ethicon;<br />

5 – Augustine, Biomed, Ethicon, Heraeus Medical<br />

Mary E Reedy, RN ..........................................................n<br />

Harold Wharton Rees, MD ..................................................n<br />

Ricky Regalbuto, BS ........................................................n<br />

Rasham Rehman, MSc ......................................................n<br />

Heiko Reichel, MD .........................................................n<br />

J Spence Reid, MD 2 – Smith & Nephew; 3B – Smith & Nephew, Synthes<br />

Terry-Elinor R Reid .........................................................n<br />

Chris Reilly, MD 6 – DePuy, A Johnson & Johnson Company<br />

James H Reilly, PhD ........................................................n<br />

Mark C Reilly, MD 2 – Synthes, Smith & Nephew, Stryker<br />

Felipe Reinares, MD ........................................................n<br />

Adriana Reinersman ........................................................n<br />

Keith R Reinhardt, MD .....................................................n<br />

Donnie M Reinhart, DO 4 – Medtronic S<strong>of</strong>amor Danek<br />

Michael M Reinold, PT 3B – Genzyme<br />

Abilio Antunes Reis, MD 4 – Bristol-Myers Squibb<br />

Aldo Riesgo, BS ............................................................n<br />

William Reisman, MD ......................................................n<br />

Charles A Reitman, MD .....................................................n<br />

Weiping Ren, MD ..........................................................n<br />

Norma Rendon ............................................................n<br />

John A Repicci, MD 1, 3C – Biomet<br />

Herbert Resch, MD .........................................................n<br />

Camilo Restrepo, MD ......................................................n<br />

Arthur C Rettig, MD 5 – Biomet, Biologics Inc.<br />

Gregory T Reveal, MD ......................................................n<br />

Mr Matthew Revell 5 – Smith & Nephew<br />

Mauricio Reyes, PhD .......................................................n<br />

Sarah Reynolds, PT .........................................................n<br />

Shaun Reynolds, MD .......................................................n<br />

John JM Rhee, MD 1 – Biomet; 2 – Biomet, DePuy; 3B – Biomet, Synthes; 4 – Phygen;<br />

5 – DePuy, A Johnson & Johnson Company, Kineflex, Medtronic<br />

Peter C Rhee, MD ..........................................................n<br />

Monica Rho, MD ..........................................................n<br />

Anthony S Rhorer, MD 2, 3B – Medtronic S<strong>of</strong>amor Danek, Smith & Nephew; 5 – Smith<br />

& Nephew; 6 – Synthes<br />

Kee Hyung Rhyu, MD 3B – The Korean Human Tissue Bank<br />

Pedro Ricart H<strong>of</strong>fiz, MD ....................................................n<br />

William M Ricci, MD 1, 2, 3B, 3C – Smith & Nephew, Wright Medical Technology, Inc.;<br />

5 – Smith & Nephew, Wright Medical Technology, Inc., Synthes, AONA; 7 – Wolters<br />

Kluwer Health - Lippincott Williams & Wilkins<br />

Marc Joseph Richard, MD 5 – Zimmer<br />

B Stephens Richards III, MD 2 – Medtronic; 4 – Pfizer; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Justin E Richards, MD ......................................................n<br />

Meagan Richardson-Frazzitta, BS ............................................n<br />

David R Richardson, MD ...................................................n<br />

Joshua Richman ...........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Johannes S Rieger, MSc .....................................................n<br />

Michael D Ries, MD 1, 3B – Smith & Nephew<br />

K Daniel Riew, MD 1 – Biomet, Medtronic S<strong>of</strong>amor Danek, Osprey; 4 – Benvenue,<br />

Expanding Orthopedics, Nexgen, Osprey, Paradigm Spine, PSD, Spinal Kinetics,<br />

Spineology, Vertiflex<br />

Wynne M Rigal, MD ........................................................n<br />

Jeffrey Rihn, MD 5 – Medtronic S<strong>of</strong>amor Danek<br />

W J Rijnberg, MD ..........................................................n<br />

Clayton H Riley, MD .......................................................n<br />

Michelle Riley, PA ..........................................................n<br />

David C Ring, MD 1 – Wright Medical Technology, Inc.; 2 – Acumed, LLC;<br />

3B – Acumed, LLC, Biomet, Wright Medical Technology, Inc.; 4 – Illuminos, Mimedex;<br />

5 – Biomet, Stryker<br />

James R Ringler, MD .......................................................n<br />

Lawrence A Rinsky, MD .....................................................n<br />

Gilberto Rios, MD .........................................................n<br />

Pascal Rippstein, MD 1, 2, 3B – DePuy, A Johnson & Johnson Company<br />

Lucas Eduardo Ritacco, MD .................................................n<br />

Amber E Ritenour, MD .....................................................n<br />

Merrill A Ritter, MD ........................................................n<br />

Todd F Ritzman, MD .......................................................n<br />

Dennis Rivenburgh, PA-C 2 – 3M<br />

Terry E Rives, PhD .........................................................n<br />

Randy Rizek, MD ..........................................................n<br />

Claire E Robbins, PT, DPT, MS, GCS ..........................................n<br />

David Roberge, MD, FRCSC 5 – Merck<br />

Craig S Roberts, MD 5 – Synthes; 7 – Skeletal Trauma<br />

David Roberts, MD .........................................................n<br />

Matthew Roberts, MD ......................................................n<br />

Timothy Roberts ...........................................................n<br />

Otto Robertsson, MD, PhD 3C – Biomet; 4 – Astra Zeneca<br />

James Robinson, PhD 2, 5 – Genentech<br />

Michael Robinson, FRCS ....................................................n<br />

Michael Aaron Robinson, MD ...............................................n<br />

Paul S Robinson ...........................................................n<br />

Yohan Robinson, MD 6 – DePuy, A Johnson & Johnson Company, Synthes<br />

Sheri Rocha, BS ............................................................n<br />

Martin William Roche, MD 1, 4 – MAKO Surgical; 3B, 5 – DePuy MAKO Surgical<br />

Scott Alan Rodeo, MD 2 – Musculoskeletal Transplant Foundation; 3B – Novartis;<br />

4 – Cayenne; 5 – Wyeth<br />

Robert Rodine, BSc, DC .....................................................n<br />

Carlos M Rodriguez ........................................................n<br />

Edward Rodriguez, MD 1, 3B – Extra-Ortho; 4 – MXO Orthopedics; 5 – Synthes<br />

Laryssa Korduba-Rodriguez 3A, 4 – Stryker<br />

Sergio Rodriguez, MD ......................................................n<br />

Justin Phillip Roe, MD 3B, 5 – Stryker<br />

Margaret M Roebuck, PhD 1 – Biomet; 2 – Biomet, Boehringer Ingelheim, Bristol-<br />

Myers Squibb, Pfizer; 3B – Biomet, Boehringer-Ingelheim; 3C – DePuy, A Johnson &<br />

Johnson Company; 5 – DePuy, A Johnson & Johnson Company, Johnson & Johnson<br />

Michael J Rogal, MD 4 – Pfizer, Merck, Eli Lilly<br />

Ann Rogers, MD ...........................................................n<br />

Benedict Rogers, MBBS 3B – Bayer<br />

John Sargent Rogerson, MD .................................................n<br />

Thana Rojpornpradit, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Andrew S Rokito, MD 3B – Core Essence <strong>Orthopaedic</strong>s<br />

Carlo Romano, MD ........................................................n<br />

J R Romanowski, MD .......................................................n<br />

Matteo Romantini, MD .....................................................n<br />

Anthony A Romeo, MD 1, 3B – Arthrex, Inc.; 2 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s;<br />

5 – Arthrex, Inc., Ossur, Smith & Nephew; 6 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s;<br />

7 – Saunders/Mosby-Elsevier<br />

Alex Romero, MD 5 – Arthrex, Inc.<br />

Joanna Helena Roocr<strong>of</strong>t, MA ................................................n<br />

Anne Roques, PhD 3A – Finsbury <strong>Orthopaedic</strong>s Ltd.<br />

Cecil H Rorabeck, MD 1, 2, 3, 4 – Smith & Nephew; 7 – JBJS (Journal <strong>of</strong> Bone & Joint<br />

Surgery (Am))<br />

56<br />

disclosure<br />

David Rose ................................................................n<br />

Peter S Rose, MD ..........................................................n<br />

Jeffrey E Rosen, MD 2, 3B – Ferring Pharmaceuticals; 5 – Ferring Pharmaceuticals,<br />

Darco, DePuy, A Johnson & Johnson Company<br />

Aaron Glen Rosenberg, FACS, MD 1, 2, 3B, 4 – Zimmer; 7 – Wolters Kluwer Health -<br />

Lippincott<br />

Melvin Paul Rosenwasser, MD 3B – Biomet, Stryker<br />

Tarek Roshdy, MD .........................................................n<br />

Michael Rosner, MD 2 – Medtronic; 5 – US Congressional Grant<br />

F Patrick Ross, PhD 4 – Amgen Co.; 5 – Medtronic S<strong>of</strong>amor Danek, Osteogenix,<br />

Ascension Orthopedics, Joe & Dorothy Dorsett Brown Foundation<br />

Mark Rossi, PhD ...........................................................n<br />

Roberto Rossi, MD .........................................................n<br />

Alan Roth, PhD ............................................................n<br />

David E Rothem, MD .......................................................n<br />

Richard H Rothman, MD 1, 3B – Stryker; 7 – Journal <strong>of</strong> Arthroplasty<br />

Roberto Rotini, MD ........................................................n<br />

Dominique Rouleau, MD 5 – DePuy, A Johnson & Johnson Company, KCI, Smith &<br />

Nephew, Stryker, Synthes<br />

Tracy Rounds ..............................................................n<br />

Yannick Roussanne, MD ....................................................n<br />

Constantinos Roussos, MD ..................................................n<br />

Rajesh Rout, MD ...........................................................n<br />

Milton L Routt Jr, MD ......................................................n<br />

Louis Roy, MD .............................................................n<br />

Marcel Roy, PhD 3C – Signal Medical Corp.<br />

David Price Roye Jr, MD 2 – DePuy, Biomet, Medtronic; 5 – Biomet<br />

S Robert Rozbruch, MD 1, 3B – Small Bone Innovations; 2, 5 – Smith & Nephew;<br />

4 – Intramed<br />

Adam Rozumalski, MS ......................................................n<br />

Harry E Rubash, MD 1 – Zimmer; 5 – Biomet, Zimmer<br />

Paul T Rubery Jr, MD 4 – Johnson & Johnson, LAGeT LLC, Axial Biotech; 5 – Axial<br />

Biotech<br />

David A Rubin, MD 4 – Amgen Co.; 5 – Medtronic S<strong>of</strong>amor Danek, Osteogenix,<br />

Ascension Orthopedics, Joe & Dorothy Dorsett Brown Foundation<br />

Todd A Rubin, BS ..........................................................n<br />

David Simms Ruch, MD ....................................................n<br />

John F Rudan, MD 2, 3B, 5 – DePuy, A Johnson & Johnson Company<br />

Guy J Alexander Rudin, MD 4 – Zimmer, Pfizer<br />

John-Paul H Rue, MD ......................................................n<br />

Alberto Ruffilli, MD ........................................................n<br />

Pr<strong>of</strong> Pietro Ruggieri ........................................................n<br />

Erin Ruh, MS ..............................................................n<br />

Michell Ruiz Suarez, MD, MS 3B – ConMed Linvatec<br />

Jeremy K Rush, MD ........................................................n<br />

George V Russell Jr, MD 2 – AONA; 4 – Zimmer; 5 – Synthes<br />

Kelvin J Russell, MD ........................................................n<br />

Thomas A (Toney) Russell, MD 1, 2, 3B – Smith & Nephew; 3C – Etex; 4 – Etex, Smith<br />

& Nephew, Stryker, Pfizer, Medtronic; 7 – Wolters Kluwer Health - Lippincott Williams<br />

& Wilkins<br />

Martin Russlies, MD ........................................................n<br />

Wolfgang Ruther, MD 1, 3B – Zimmer; 2 – Bayer; 5 – Link <strong>Orthopaedic</strong>s; 7 – Elsevier<br />

Laura Ruzzini, MD .........................................................n<br />

Paul M Ryan, MD ..........................................................n<br />

Philip Ryan, FAFPHM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Leon Rybak, MD ...........................................................n<br />

Jessica Ryu, BA ............................................................n<br />

Richard K N Ryu, MD 2 – Mitek; 3B – MedBridge<br />

Ehsan Saadat, BS ..........................................................n<br />

Coleen S Sabatini, MD .....................................................n<br />

Hamid Sabet 3A, 6 – DePuy, A Johnson & Johnson Company, Johnson & Johnson;<br />

4 – Johnson & Johnson<br />

Sanjeev Sabharwal, MD 5 – Smith & Nephew<br />

Janice T Sacks .............................................................n<br />

Stanley E Sacks, MA ........................................................n<br />

Dr Rachid Saddiki .........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Kazuhiko Saeki, MD .......................................................n<br />

Oleg Safir, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Marc Safran, MD 1 – Stryker; 3B – Cool Systems, Inc., Arthrocare; 3C – Cool Systems,<br />

Inc., Cradle Medical, Inc., Ferring Pharmaceuticals, Biomimedica; 4 – Cool Systems,<br />

Inc., Cradle Medical, Inc., Biomimedica; 5 – Ferring Pharmaceuticals; 7 – Wolters<br />

Kluwer Health - Lippincott Williams & Wilkins, Saunders/Mosby-Elsevier<br />

Henry Claude Sagi, MD 2, 3B, 5 – Stryker, Synthes, Smith & Nephew<br />

Alexander P Sah, MD .......................................................n<br />

Robert Sah, MD, ScD 3B – Alphatec Spine; 4 – GlaxoSmithKline, Johnson & Johnson,<br />

Medtronic<br />

Subrata Saha, PhD 5 – Stryker<br />

Hacer Sahin, Phd ..........................................................n<br />

Comron Saifi, BS ..........................................................n<br />

Jason C Saillant, MD .......................................................n<br />

Susumu Saito, MD .........................................................n<br />

Tomoyuki Saito, MD .......................................................n<br />

Paul Saiz, MD 2, 3B, 5 – Zimmer<br />

Hiroaki Sakai, MD .........................................................n<br />

Takashi Sakai, MD .........................................................n<br />

Toshihiko Sakakibara, MD ..................................................n<br />

Manoon Sakdinakiattikoon .................................................n<br />

Jeremy Saklatvala, MD ......................................................n<br />

Yu Sakuma, MD 2 – Mitsubishi Tanabe Pharma<br />

Nima Salari, MD ...........................................................n<br />

Pooria Salari, MD ..........................................................n<br />

Michael Salata, MD ........................................................n<br />

Khaled J Saleh, MD, MSc, FRCSC, FACS 1 – Smith & Nephew; 3B – Aesculap/ B. Braun,<br />

Osteotech, Blue Cross, Blue Shield, Kimberly Clark; 5 – Aesculap/B. Braun, Stryker,<br />

Smith & Nephew; 7 – Elsevier<br />

Jacobo Saleme, MD ........................................................n<br />

Mats Salemyr, MD 4 – AstraZeneca<br />

Samantha L Salkeld, MSE 2 – Biomet; 5 – Medtronic S<strong>of</strong>amor Danek<br />

Dr Lucy J Salmon ..........................................................n<br />

Guillem Salo, MD ..........................................................n<br />

David Salonen, MD 2 – Pfizer, Merck; 3B – Abbott, Johnson & Johnson, Merck, Pfizer<br />

Charles L Saltzman, MD 1, 4 – Tornier; 3B – Zimmer, Tornier; 7 – Saunders/Mosby-<br />

Elsevier<br />

Matthew Saltzman, MD 2 – CareFusion<br />

Eduardo Agustin Salvati, MD ................................................n<br />

Davide Salvo, MD ..........................................................n<br />

Andrew A Sama, MD 1 – DePuy, A Johnson & Johnson Company, Osteotech,<br />

Orthodevelopment Corporation; 2 – DePuy, A Johnson & Johnson Company, Bacterin<br />

Harvest; 3B – DePuy, A Johnson & Johnson Company, Osteotech, Life Spine, Spineview,<br />

Orthodevelopment Corporation; 4 – Small Bone Innovations, Paradigm Spine;<br />

5 – Mesoblast<br />

Amer Samdani, MD 2, 3B – DePuy, A Johnson & Johnson Company, Synthes,<br />

SpineGuard<br />

Yashuito Samejima, MD ....................................................n<br />

Syed Sami, MD ............................................................n<br />

Vincent James Sammarco, MD ...............................................n<br />

Barry Sampson, MD 3B – DePuy, A Johnson & Johnson Company, Implantcast<br />

Thomas G Sampson, MD 2 – Smith & Nephew, ConMed Linvatec<br />

Jonathan Samuels, MD .....................................................n<br />

Thomas P San Giovanni, MD 1 – Arthrosurface; 2 – Arthrex, Inc., Arthrosurface;<br />

3B – Arthrex, Inc.; 4 – Cytonics<br />

Joaquin Sanchez-Sotelo, MD 1 – Stryker; 5 – Stryker, DePuy, Zimmer<br />

Bengt Sanden, MBBS 5 – DePuy, A Johnson & Johnson Company, Kyphon Inc.<br />

David Sanders, MD 3B – Smith & Nephew; 5 – Smith & Nephew, Synthes<br />

James O Sanders, MD 3C – Orthopediatrics; 4 – Abbott, Hospira; 5 – Medtronic<br />

S<strong>of</strong>amor Danek<br />

Roy W Sanders, MD 1 – ConMed Linvatec, DePuy, A Johnson & Johnson Company,<br />

Smith & Nephew, Stryker; 2, 3B – Smith & Nephew, Medtronic; 5 – Health and Human<br />

Services, National Institutes <strong>of</strong> Health (NIAMS & NICHD), Medtronic, Smith &<br />

Nephew, Stryker, METRC (DOD); 7 – Journal <strong>of</strong> <strong>Orthopaedic</strong> Trauma<br />

Timothy G Sanders, MD 7 – Elsevier<br />

57<br />

disclosure<br />

Harvinder S Sandhu, MD 1 – Osteotech, Spinewave; 3B – Aesculap/B. Braun,<br />

Spinewave, Osteotech, Amedica, Simpirica; 4 – Amgen, Pfizer, San<strong>of</strong>i-Aventis,<br />

Spinewave, Amedica, Simpirica, Paradigm Spine, Providence Medical, Soalni Healthcare,<br />

K2M<br />

Bjorn Sandstrom, MD ......................................................n<br />

Jose A Sanhudo, MD .......................................................n<br />

Edward Rainier G Santos, MD 5 – Medtronic; 6 – Synthes<br />

Elhadi Sariali, MD .........................................................n<br />

Vishal Sarwahi, MD 2 – Medtronic, DePuy, A Johnson & Johnson Company;<br />

5 – DePuy, A Johnson & Johnson Company, Stryker, K2M<br />

Takeshi Sasagawa, MD ......................................................n<br />

Jun Sasahara, MD ..........................................................n<br />

Mikito Sasaki, MD .........................................................n<br />

Rick C Sasso, MD 1 – Medtronic; 4 – Biomet; 5 – Cerapedics, Medtronic, Smith &<br />

Nephew, Stryker; 7 – Saunders/Mosby-Elsevier<br />

Adam Sassoon, MD ........................................................n<br />

Robert L Satcher Jr, MD .....................................................n<br />

Keshthra Satchithananda, FRCR .............................................n<br />

Yukata Sato, MD ...........................................................n<br />

Haruhiko Satonaka, MD, PhD ...............................................n<br />

Jibanananda Satpathy, MD ..................................................n<br />

James Matthew Saucedo, MD ................................................n<br />

Katherine R Saul, PhD 3A, 6 – Wyeth, Pfizer; 4 – Pfizer<br />

Stuart M Saunders, MD .....................................................n<br />

Jason Wayne Savage, MD ....................................................n<br />

Edgar Savidge, PT, DPT, OCS ................................................n<br />

Felix H Savoie, III MD 3B, 5 – Mitek, Smith & Nephew; 3C, 4 – Cayenne Medical<br />

Feray Savrun, Pr<strong>of</strong> .........................................................n<br />

Prasad J Sawardeker, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Amy Sawhill, BA ...........................................................n<br />

Jeffrey R Sawyer, MD 3B – Synthes; 3C – Medtronic<br />

Siraj A Sayeed, MD .........................................................n<br />

Michele Scelsi, MD .........................................................n<br />

Jonathan L Schaffer, MD 1 – Zin Medical, Inc.; 3B – Zin Medical, Inc., Biorita, Inc.,<br />

AcelRx Pharmaceuticals, Inc.; 4 – iBalance Medical, Inc., Biorita, Inc.; 7 – Taylor and<br />

Francis, Elsevier<br />

Lawrence A Schaper, MD 4 – Johnson & Johnson<br />

Daniel Scharfstein, ScD 3B – Johnson & Johnson, MELA Sciences, Otsuka; 4 – Abbott,<br />

Merck, Johnson & Johnson, Pfizer<br />

Thomas J Scharschmidt, MD ................................................n<br />

Michael Schaufele, MD 3B – Medtronic, Smith & Nephew<br />

Justin Scheer ..............................................................n<br />

Emil H Schemitsch, MD 1 – Stryker; 3B – Amgen Co., Pfizer, Stryker, Synthes, Smith &<br />

Nephew, Baxter, Wright Medical Technology, Inc.; 5 – Smith & Nephew; 6 – Canadian<br />

Institutes <strong>of</strong> Health Research (CIHR), Brainlab, OMEGA; 7 – Saunders/Mosby-Elsevier<br />

David M Scher, MD ........................................................n<br />

Susan A Scherl, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Jonathan R Schiller, MD ....................................................n<br />

Cathy D Schleck ...........................................................n<br />

Theodore F Schlegel, MD 1 – DJ <strong>Orthopaedic</strong>s; 3B – DJ <strong>Orthopaedic</strong>s Rotation<br />

Medical; 4 – Cayenne Medical<br />

Thomas P Schmalzried, MD 1, 4 – DePuy, A Johnson & Johnson Company, Stryker; 2,<br />

3B, 5 – Stryker<br />

Christopher C Schmidt, MD .................................................n<br />

Jan O Schmitt, MD .........................................................n<br />

Christian Schmitz, MD .....................................................n<br />

Charlotte-Dorothe Schneckener, CM .........................................n<br />

Robert Schneider, MD 3B – DePuy, A Johnson & Johnson Company<br />

Andrew Schoenfeld, MD ....................................................n<br />

Markus Sch<strong>of</strong>er, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Vanessa A Scholtes, PhD ....................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Lew C Schon, MD 1 – Aircast(DJ)-DJ <strong>Orthopaedic</strong>s, Arthrex, Inc., Darco, Nexa<br />

<strong>Orthopaedic</strong>s, Tornier, Zimmer; 2 – Nexa <strong>Orthopaedic</strong>s, Tornier, Biomet, Zimmer,<br />

Arthrex, Inc.; 3B – Arthrex Inc., BioSET Inc., Zimmer, Nexa <strong>Orthopaedic</strong>s-Tornier,<br />

Biomet, MiMedx, Inc., Mylad, Zimmer, Guidepoint Global, Gerson Lehrman<br />

Group; 3C – Royer Biomedical, Inc., Carestream Health, The Snyder Center <strong>of</strong> Pain<br />

Pharmacology; 4 – Nexa <strong>Orthopaedic</strong>s-Tornier, Royer Biomedical, Inc., Bioactive<br />

Surgical Technologies, Inc., Healthpoint Capital; 5 – DePuy, A Johnson & Johnson<br />

Company, Synthes, Zimmer, Aircast(DJ Orthopedics), Stryker, Nexa <strong>Orthopaedic</strong>s-<br />

Tornier, Arthrex, Inc., BioMimetic, Biomet, Royer Biomedical, Inc., Integra Life Sciences,<br />

Omega, Osteotech, Trimed; 6 – Bioactive Surgical Inc., Concepts in Medicine LLC;<br />

7 – Elsevier<br />

Jan W Schoones, MSc .......................................................n<br />

Verena M Schreiber, MD ....................................................n<br />

Steven Schroder, MD .......................................................n<br />

Joshua Schroeder, MD ......................................................n<br />

William C Schroer, MD 5 – Biomet, Pfizer<br />

Samuel Ray Schroerlucke, MD ...............................................n<br />

Mark Schrumpf, MD .......................................................n<br />

Reinhard Schuh, MD .......................................................n<br />

Caitlin Schulte, BA .........................................................n<br />

Ben Schulz, MD ...........................................................n<br />

John R Schurman II, MD 2, 3B – Stryker<br />

Frank J Schwab, MD 3B, 5 – Medtronic S<strong>of</strong>amor Danek, DePuy, A Johnson & Johnson<br />

Company; 4 – Nemaris<br />

Joseph Hasbrouck Schwab, MD 6 – Globus Medical<br />

Bernd Schwantes, MD ......................................................n<br />

Daniel M Schwartz, PhD 4 – Gentis<br />

Jeffrey M Schwartz, MD 4 – Eli Lilly, Johnson & Johnson, Merck, Procter & Gamble<br />

Michael H Schwartz, PhD ...................................................n<br />

Dana M Schwarz, RN .......................................................n<br />

Ran Schwarzkopf, MD ......................................................n<br />

James Douglas Schwender, MD 1, 2, 3B – Medtronic S<strong>of</strong>amor Danek<br />

Jens Schwiesau 3A – Aesculap/B. Braun<br />

Marcus F Sciadini, MD 2 – Stryker, Smith & Nephew; 3B, 4 – Stryker<br />

John Alan Scolaro, MD .....................................................n<br />

Joanna Scoon, BA ..........................................................n<br />

Andreas Scorilas, Pr<strong>of</strong> ......................................................n<br />

David Forrest Scott, MD 2 3B – Stryker, OMNI life science; 4 – OMNI life science,<br />

Amedica; 5 – Stryker, OMNI life science, Novartis, Proctor & Gamble<br />

Kelly Scott, BA 1 – Zimmer; 7 – Saunders/Mosby-Elsevier<br />

W Norman Scott, MD 1 – Zimmer<br />

Gaetano J Scuderi, MD 4 – Cytonics, K2, Atlas Spine; 6 – Cytonics<br />

Giles R Scuderi, MD 1, 2, 3B – Zimmer, Salient Surgical; 7 – Springer, Elsevier, Thieme,<br />

World Scientific<br />

Thomas P Sculco, MD ......................................................n<br />

Sean P Scully, MD, PhD .....................................................n<br />

Renyi Benjamin Seah, MBBS ................................................n<br />

Art Sedrakyan, PhD ........................................................n<br />

Ludwig Seebauer, MD 1, 3B – DePuy, A Johnson & Johnson Company<br />

Joern Bengt Seeger .........................................................n<br />

Ego Seeman, Pr<strong>of</strong> 2 – Amgen Co., Eli Lilly, Medtronic S<strong>of</strong>amor Danek, Novartis, Procter<br />

& Gamble, Servier<br />

Julieanne P Sees, DO .......................................................n<br />

Lee S Segal, MD ...........................................................n<br />

Neil Segal, MD ............................................................n<br />

Keith A Segalman, MD ......................................................n<br />

Jennifer Sehn, BS ..........................................................n<br />

Atsushi Seichi, MD .........................................................n<br />

Christ<strong>of</strong> Seiler, PhD ........................................................n<br />

William H Seitz Jr, MD 2 – Stryker, Tornier; 3B – SBI, Stryker, Tornier, Kapp Surgical<br />

Jon K Sekiya, MD 1 – Arthrex, Inc., OrthoDynamix, LLC; 3B – Arthrex, Inc.; 3C,<br />

4 – OrthoDynamix, LLC; 7 – Elsevier<br />

David Seligson, MD 3B – Stryker<br />

Gillian Soles, MD ..........................................................n<br />

Jonathan N Sembrano, MD 5 – Nuvasive<br />

Stephen A Sems, MD 1, 3B – DePuy, A Johnson & Johnson Company<br />

Cengiz Sen ................................................................n<br />

58<br />

disclosure<br />

Chusheng Seng, MBBS, MRCS ...............................................n<br />

Dilip K Sengupta, MD 1, 2, 3C, 4, 5 – Globus Medical<br />

Eun Seok Seo, MD .........................................................n<br />

Hee Soo Seo, MD ..........................................................n<br />

Hyoung Yeon Seo, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Young-Jin Seo, Pr<strong>of</strong> ........................................................n<br />

Chang-Woo Seok, MD ......................................................n<br />

Jong-Keun Seon, MD .......................................................n<br />

Sang Cheol Seong, MD .....................................................n<br />

Fernando Serna, MD .......................................................n<br />

Anthony K Sestokas, MD ....................................................n<br />

Anil Sethi, MD ............................................................n<br />

Erik P Severson, MD .......................................................n<br />

Mathew Sewell ............................................................n<br />

Shaun Alan Sexton, FRCS ...................................................n<br />

Thorsten M Seyler, MD 3C – Heraeus Medical<br />

James J Sferra, MD 1 – Orthohelix; 2 – Acumed, LLC, Orthohelix, Arthrex<br />

Nicholas A Sgaglione, MD 1 – Biomet; 3B – ConMed Linvatec, Smith & Nephew<br />

Benjamin S Shaffer, MD 4 – Stryker<br />

Christopher I Shaffrey, MD 1 – Medtronic; 2 – Biomet, DePuy, A Johnson & Johnson<br />

Company; 3B – Medtronic, Biomet, DePuy, A Johnson & Johnson Company; 5 – DePuy,<br />

A Johnson & Johnson Company<br />

Kushal Shah, BS ...........................................................n<br />

Nirav Shah, MD ...........................................................n<br />

Ritesh Shah, MD ...........................................................n<br />

Suken A Shah, MD 1, 5 – Arthrex, Inc., DePuy Spine, A Johnson & Johnson Company;<br />

2, 3B – DePuy Spine, A Johnson & Johnson Company; 3C – K Spine, Inc.; 4 – Globus<br />

Medical<br />

Suraj Shah, BSc ............................................................n<br />

Swapnil B Shah, MD .......................................................n<br />

Ab-Rahman Shaifuzain, MBBS ...............................................n<br />

Jonathan Sham, MD ........................................................n<br />

K Samer F Shamieh, MD ....................................................n<br />

Raj Harry Shani, MD .......................................................n<br />

Frederic Shapiro, MD 3A – Millennium Pharmaceuticals; 7 – Saunders/Mosby-Elsevier<br />

Alok D Sharan, MD 3B – Paradigm Spine<br />

Peter F Sharkey, MD 1, 4 – Physician Recommended Nutriceuticals, Inc.; 2, 3B – Stryker,<br />

Stelkast, Inc.; 7 – Journal <strong>of</strong> Arthroplasty, <strong>American</strong> Journal <strong>of</strong> <strong>Orthopaedic</strong>s, Clinical<br />

<strong>Orthopaedic</strong>s & Related Research. <strong>American</strong> Journal <strong>of</strong> <strong>Orthopaedic</strong>s<br />

Adrija Sharma .............................................................n<br />

Amit Sharma, MD ..........................................................n<br />

Hemant Sharma, MRCS, MS .................................................n<br />

Vinod Kumar Sharma, MS ..................................................n<br />

Nigel E Sharrock, MD 4 – OR Comfort<br />

Christopher Shaw, FRCS ....................................................n<br />

Scott Shawen, MD 3C – Wright Medical Technology, Inc.<br />

Barbara Shay, PhD 5 – DePuy, A Johnson & Johnson Company<br />

Kevin G Shea, MD .........................................................n<br />

Natalie Shearwood-Porter, Meng .............................................n<br />

Mr Eoin C Sheehan ........................................................n<br />

Shahin Sheibani-Rad, MD ...................................................n<br />

Ali Sheikhzadeh, MD 3A, 4 – Roche<br />

K Donald Shelbourne, MD 1 – DJ <strong>Orthopaedic</strong>s; 3C – Kneebourne Therapeutics, Inc.;<br />

4 – Abbott, Pfizer<br />

John Shelton, BS ...........................................................n<br />

Walter R Shelton, MD 2, 3C – Smith & Nephew, Zimmer<br />

Francis H Shen, MD 1 – Globus Medical; 2, 3B, 6 – DePuy, A Johnson & Johnson<br />

Company, Synthes; 5 – Musculoskeletal Transplant Foundation, Medtronic;<br />

7 – Saunders/Mosby-Elsevier<br />

James Shen, MD ...........................................................n<br />

Jianhua Shen 3A, 4 – Stryker<br />

Bryan Shepherd, PhD ......................................................n<br />

Zachary R Sheppard, BS ....................................................n<br />

Seth Sherman, MD .........................................................n<br />

Dhiren S Sheth, MD ........................................................n<br />

Neil P Sheth, MD ..........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Anil Shetty, PhD ...........................................................n<br />

Kenrin Shi, MD ............................................................n<br />

Shao-Min Shi, MD .........................................................n<br />

Derek S Shia, MD 3A – Smith & Nephew<br />

Keiichiro Shiba, MD .......................................................n<br />

Kazuyuki Shibusawa, MD ...................................................n<br />

Tomonori Shigemura, MD ..................................................n<br />

Keiichi Shigenobu, MD .....................................................n<br />

Juan Manuel Shiguetomi-Medina ............................................n<br />

Matthew Charles Shillito, MD ...............................................n<br />

Sang Ho Shim, MD ........................................................n<br />

Shang Mi Shim, MD ........................................................n<br />

Norimichi Shimamoto, MD .................................................n<br />

Adam L. Shimer, MD .......................................................n<br />

Koh Shimizu, MD ..........................................................n<br />

Masaki Shimizu, MD .......................................................n<br />

Sara Shimizu, MD .........................................................n<br />

Tohru Shimizu, MD ........................................................n<br />

Shoji Shimose, MD, PhD ...................................................n<br />

Alexander Yong Shik Shin, MD 5 – Musculoskeletal Transplant Foundation, Integra<br />

Life Sciences<br />

Jin Hyup Shin, MD .........................................................n<br />

Sang-Jin Shin, MD .........................................................n<br />

Sangmin Ryan Shin, MD ....................................................n<br />

Andrew A Shinar, MD 1 – Smith & Nephew; 3B – Smith & Nephew, Zimmer<br />

Takata Shinjiro, PhD .......................................................n<br />

Rikuo Shinomiya, MD ......................................................n<br />

Tetsuya Shinozaki ..........................................................n<br />

Toshiharu Shirai, MD ......................................................n<br />

Yousef Shishani, MD .......................................................n<br />

Hitoshi Shitara, MD ........................................................n<br />

Hyun-Chul Shon, MD ......................................................n<br />

Ben Shore, MD ............................................................n<br />

Jennifer Shores, RN ........................................................n<br />

Michael Shor<strong>of</strong>sky, BS ......................................................n<br />

Michael D. Shortt, FRCS ....................................................n<br />

Rania Ayman Shourbaji .....................................................n<br />

Michael Wade Shrader, MD 5 – Biomet, Stryker; Smith & Nephew<br />

Harry L Shufflebarger, MD 1 – DePuy Spine, A Johnson & Johnson Company; 2,<br />

5 – DePuy Spine, Axial Biotech; 3B – DePuy Spine<br />

David R Shukla, MB, B Ch 6 – Acumed, LLC, Tornier<br />

Michael S Shuler, MD 1, 6 – Somanetics, Inc.; 3B – SBI<br />

Paul Shupe, MD ...........................................................n<br />

Mashfiqul Arafin Siddiqui, MBBS, MRCS ......................................n<br />

Brenda Sides, MA ..........................................................n<br />

Feroze Sidhwa, BA .........................................................n<br />

Klaus Siebenrock, MD ......................................................n<br />

Judith Siegel, MD 3B – Smith & Nephew; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Rafael Jose Sierra, MD 3B – Biomet; 5 – DePuy, A Johnson & Johnson Company,<br />

Zimmer, Stryker<br />

Debra Sietsema, PhD 2, 3B – Eli Lilly<br />

Cecilia Signorelli, MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Thea Sijbesma, MD 5 – Biomet<br />

Mauricio Silva, MD 2 – Baxter Corporation, Bayer Healthcare; 3B – Baxter Corporation<br />

Vincent J Silvaggio, MD 1, 3B – Globus Medical; 4 – Amgen Co., Globus Medical,<br />

Johnson & Johnson, Pfizer<br />

Andrew M Silverman, BS ....................................................n<br />

Matthew Silvis, MD ........................................................n<br />

Franklin H Sim, MD 7 – Saunders/Mosby-Elsevier<br />

James S Fitzsimmons, BSc 6 – Acumed, LLC<br />

Ana Christina Simoes-Silva, MD, PhD ........................................n<br />

David R Simpson, PhD 3B – Biomet<br />

Stephen H Sims, MD .......................................................n<br />

Nicole Simunovic ..........................................................n<br />

59<br />

disclosure<br />

Fabrizio Sinapi, MD ........................................................n<br />

Marc F Sinclair, MD 3B – Semeda<br />

Anshuman Singh, MD ......................................................n<br />

Jagwant Singh, MRCS ......................................................n<br />

Jasvinder Singh, MD 3B – Savient, URL Pharma, EuroRSG, Novartis; 5 – Takeda,<br />

Savient<br />

Ernest L Sink, MD 3B – Biomet<br />

Ethel Siris, MD 2 – Amgen Co., Eli Lilly; 3B – Amgen Co., Eli Lilly, Merck, Novartis,<br />

San<strong>of</strong>i-Aventis, Pfizer, Wyeth<br />

Fabio Sirugo, MD ..........................................................n<br />

Francois Sirveaux, PhD 1 – Tornier; 2 – DePuy, A Johnson & Johnson Company,<br />

San<strong>of</strong>i-Aventis<br />

Peter Siska, MD ............................................................n<br />

David Lee Skaggs, MD 2, 3B – Medtronic, Stryker; 7 – Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

Kira F Skaggs 2, 3A, 3B, 6 – Stryker, Medtronic; 5 – Axial Biotech; 7 – Lippincott<br />

Michael D Skeels, DO ......................................................n<br />

Faith Skeete ...............................................................n<br />

Jack Gerard Skendzel, MD ..................................................n<br />

John Skinner, FRCS ........................................................n<br />

Richard L Skolasky, Jr Pr<strong>of</strong> 5 – DePuy Spine<br />

Ol<strong>of</strong> Skoldenberg, MD .....................................................n<br />

Nebojsa V Skrepnik, MD 2, 3B – Auxilium; 5 – Biomet, DePuy, A Johnson & Johnson<br />

Company, Ferring Pharmaceuticals, BioMimetic, Pfizer, Smith & Nephew, Zimmer,<br />

Wyeth<br />

Mark A Slabaugh, MD ......................................................n<br />

Nicholas R Slenker, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

William Slikker, III MD .....................................................n<br />

Gerard Slobogean, MD, MPH ................................................n<br />

Jennifer Slough, BS ........................................................n<br />

James D Slover, MD 5 – Biomet<br />

David Joseph Slutsky, MD 4 – South Bay Hand Surgery, LLC; 7 – Saunders/Mosby-<br />

Elsevier<br />

Milton J Smit, MD .........................................................n<br />

E O’Brian Smith, PhD ......................................................n<br />

Frank C Smith, FRCSC, CHB, MB ............................................n<br />

Harvey Smith, MD .........................................................n<br />

Holly Smith, BSc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Julie Macaulay Smith, MBChB ...............................................n<br />

Karen Smith, CRA ..........................................................n<br />

Lucas Smith, BS ...........................................................n<br />

Michael D Smith, MD 1, 3B – Biomet<br />

Paul N Smith, MD 4 – Joint Research Pty. Ltd.; 5 – Stryker, Smith & Nephew, Synthes<br />

R Lane Smith, PhD 3B – Histogenics; 5 – Zimmer<br />

R M Smith, MD ............................................................n<br />

Thomas L Smith, PhD 5 – Zimmer, Wright Medical Technology, Inc., Medtronic, KCI,<br />

DePuy, A Johnson & Johnson Company<br />

Thomas Waddell Smith 6 – Arthrex, Inc.<br />

Wade Russell Smith, MD 2, 5 – Synthes ; 3B – Osteotech, Synthes; 7 – McGraw-Hill<br />

Jose MH Smolders, MD .....................................................n<br />

Patrick J Smolinski .........................................................n<br />

Joseph Douglas Smucker, MD 5 – Medtronic S<strong>of</strong>amor Danek, Biomet, Pioneer<br />

Surgical, Baxter, SpineGuard, Orthocon<br />

Christine Snearly, MS .......................................................n<br />

Michael A Sneller, BS .......................................................n<br />

Benjamin Matthew Snyder, MD ..............................................n<br />

Brian Snyder, MD, PhD .....................................................n<br />

Guilherme Soares, MD .....................................................n<br />

Kjeld Soballe, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jeffrey F Sodl, MD .........................................................n<br />

Elizabeth S Soileau, RN .....................................................n<br />

Shima Sokol, MD 6 – Medartis<br />

Gbolabo Olabiyi Sokunbi, MD ..............................................n<br />

Matthew C Solan, FRCS 2, 3B – DePuy, A Johnson & Johnson Company; 5 – Cartiva;<br />

6 – DePuy, A Johnson & Johnson Company, Smith & Nephew<br />

Mark Solarz, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Gandhi Nathan Solayar, MD .................................................n<br />

Daniel Jordan Solomon, MD 2 – Arthrex, Inc.; Pacific Medical<br />

Ian Solsky, BS 3A, 4 – Roche;<br />

Tomotsu Soma, MD ........................................................n<br />

Eun Kyoo Song, MD ........................................................n<br />

Frederick Suh Song, MD ....................................................n<br />

Hae Ryong Song, MD .......................................................n<br />

Ji-Hoon Song, MD .........................................................n<br />

Kyung Jin Song, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Sang Jun Song .............................................................n<br />

Yanna Song, PhD ..........................................................n<br />

Nelson Fong SooHoo, MD ..................................................n<br />

Elliott Sorene, FRCS ........................................................n<br />

Alexandra Soroceanu, MD ..................................................n<br />

Louis J Soslowsky, PhD 7 – Journal <strong>of</strong> Shoulder and Elbow Surgery<br />

Christopher D Souder, MD ..................................................n<br />

Bruno Goncalves Schroder Souza, MD 6 – Smith & Nephew<br />

Demetrios Spandidos, MD ..................................................n<br />

Jeffrey T Spang, MD 3C – Mitek<br />

Mark J Spangehl, MD 5 – Stryker<br />

Lawrence Specht, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Stacy C Specht, MPA ........................................................n<br />

Tim D Spector, MD 2 – Novartis, Pfizer; 3B – Ono, Expanscience; 5 – Pfizer<br />

Leann Speering ............................................................n<br />

John William Sperling, MD, MBA 1 – Biomet, DJ <strong>Orthopaedic</strong>s; 3B – Tornier;<br />

4 – Tornier, Emerge Surgical<br />

David Andrew Spiegel, MD ..................................................n<br />

Robert Jay Spinner, MD 3B – Mayo Medical Ventures<br />

Andrew I Spitzer, MD 1, 5 – DePuy, A Johnson & Johnson Company; 2 – Genzyme,<br />

DePuy, A Johnson & Johnson Company, San<strong>of</strong>i-Aventis; 3B – Genzyme, DePuy, A<br />

Johnson & Johnson Company<br />

Jeffrey M Spivak, MD 1, 6 – Titan Spine; 3B – Synthes, Titan Spine; 4 – Etex, Titan<br />

Spine, Paradigm Spine; 5 – Synthes<br />

Paul D Sponseller, MD 1 – Globus Medical, DePuy, A Johnson & Johnson Company;<br />

3B, 5 – DePuy, A Johnson & Johnson Company; 7 – Oakstone Medical<br />

Scott M Sporer, MD 3B – Smith & Nephew, Zimmer; 5 – Cool systems; 7 – SLACK<br />

Incorporated<br />

Sheila Sprague 3B – Amgen<br />

Bryan Donald Springer, MD . . 2 – DePuy, A Johnson & Johnson Company; 3B – Stryker,<br />

Convatec Surgical<br />

Andy Sprowson, MD .......................................................n<br />

Giannis Spyropoulos, MSc ..................................................n<br />

Michael S Sridhar, MD ......................................................n<br />

Umasuthan Srikumaran, MD 2 – Novartis; 3A – Abbott<br />

Arjun Srinath, MD .........................................................n<br />

Supatra Sritulanondha .....................................................n<br />

Lauren St John ............................................................n<br />

Patrick St Pierre, MD 1 – DJ <strong>Orthopaedic</strong>s; 2, 3B – Mitek, DJ <strong>Orthopaedic</strong>s<br />

Cara Marie Stabile, BS ......................................................n<br />

Arthur P Staddon, MD ......................................................n<br />

Giles Hugo Stafford, FRCS ..................................................n<br />

Philip Frank Stahel, MD 2 – Synthes, Stryker, NovoNordisk<br />

Kimberly Stakleff, PhD .....................................................n<br />

Alec C Stall, MD ...........................................................n<br />

Nathan Stall, BSc ..........................................................n<br />

Richard Stange ............................................................n<br />

James P Stannard, MD 2 – KCI, Medtronic S<strong>of</strong>amor Danek; 3B – KCI, Medtronic<br />

S<strong>of</strong>amor Danek, Novalign; 5 – Synthes; 7 – Theime<br />

Anthony A Stans, MD .......................................................n<br />

James Starman, MD 3A – Smith & Nephew<br />

Adam Jennings Starr, MD 1 – Starrframe, LLC; 2 – Smith & Nephew<br />

Roland Starr, MS ...........................................................n<br />

Mark Stasiak ..............................................................n<br />

Garen Steele, MD ..........................................................n<br />

Matthew Steensma, MD .....................................................n<br />

Karen Steger-May, MD 7 – Pfizer, Lilly<br />

60<br />

disclosure<br />

Benjamin Eric Stein, MD ....................................................n<br />

Lynne S Steinbach, MD 3B – Pfizer; 7 – Saunders/Mosby-Elsevier, Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Scott P Steinmann, MD 1 – DePuy, A Johnson & Johnson Company; 3B – Arthrex, Inc.,<br />

DePuy, A Johnson & Johnson Company, Wright Medical Technology, Inc.; 5 – Wright<br />

Medical Technology, Inc.; 7 – Journal <strong>of</strong> Hand Surgery - <strong>American</strong>, Journal <strong>of</strong> Shoulder<br />

and Elbow Surgery, Yearbook <strong>of</strong> Hand Surgery<br />

Michael P Steinmetz, MD 2, 3C – Biomet<br />

Julia Steinrucken, MD ......................................................n<br />

David Stelzeneder, MD .....................................................n<br />

Paul M Stemniski, MS 3A, 4 – Wright Medical Technology, Inc.<br />

Dirk Stengel 2 – Biomet, DePuy, A Johnson & Johnson Company; 5 – Biomet, DePuy, A<br />

Johnson & Johnson Company, GlaxoSmithKline, Stryker, Aesculap/B.Braun<br />

David J Stephen, MD 6 – Synthes<br />

Simon D Steppacher, MD ...................................................n<br />

Hal Sternberg, PhD 3A, 4 – BioTime Inc.<br />

Andrew Steval .............................................................n<br />

Vladan Stevanovic, MD .....................................................n<br />

Peter M Stevens, MD 1, 2, 3B – Orth<strong>of</strong>ix, Inc.<br />

Melissa Stewart, BS .........................................................n<br />

Rena Stewart, MD 5 – KCI, Pfizer, Synthes<br />

Jeffrey Stimac, MD .........................................................n<br />

Daniel J Stinner, MD 5 – Smith & Nephew, EZ Care<br />

Joel Stitzel, PhD 4 – Merck<br />

Gregory William Stocks, MD 3C, 4 – Nimbic Systems, Inc.<br />

Hans Stodkilde-Jorgenson, MD,<br />

DMSci ....................................................................n<br />

Holbrook Stoecklein, BS ....................................................n<br />

Ge<strong>of</strong>frey Stoker, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

David W Stoller, MD .......................................................n<br />

Austin V Stone, MD ........................................................n<br />

James W Stone, MD 4 – Amgen Co., Johnson & Johnson, Procter & Gamble, Pfizer<br />

Jason W Stoneback, MD 5 – Synthes<br />

Matthew Stonestreet, MD ...................................................n<br />

Michael David Stover, MD 5 – Synthes<br />

Richard E Strain Jr, MD 2, 3B – Easi, Ethicon; 5 – Pfizer, Takeda, Bristol-Myers, Meda,<br />

San<strong>of</strong>i-Aventis, Astellas<br />

Eric J. Strauss, MD .........................................................n<br />

Philipp Nicolas Streubel, MD ................................................n<br />

Keith Stringer, MD .........................................................n<br />

Roger D. Strode, JD ........................................................n<br />

Gregory Strohmeyer, MD ...................................................n<br />

Eric Strose, MD ............................................................n<br />

Peter Strzepa, MSME 3A – Fellowship <strong>of</strong> <strong>Orthopaedic</strong> Researchers, Inc.<br />

Michael J Stuart, MD 3B – Arthrex, Inc., Fios; 5 – Stryker<br />

Allston J Stubbs, IV MD 3B – Smith & Nephew, Johnson & Johnson; 4 – Johnson &<br />

Johnson<br />

Steven Andrew Stuchin, MD 3B – Osteotech<br />

Charlton Stucken, MD ......................................................n<br />

Diane Studzinski ..........................................................n<br />

Bernard N Stulberg, MD 1 – Exactech, Inc.; 2 – San<strong>of</strong>i-Aventis; 3B – Exactech, Inc.,<br />

Stryker; 5 – Corin U.S.A.<br />

S David Stulberg, MD 1 – Aesculap/B.Braun, Biomet, Innomed, Omniscience;<br />

2 – Genzyme, Stryker, Aesculap/B.Braun; 3B – Aesculap/B.Braun, Stryker, OmniScience;<br />

3C – Blue Belt Technologies; 4 – Johnson & Johnson, Stryker; 7 – Peachtree Publishers<br />

Douglass E Stull, MD .......................................................n<br />

Paul Sturch, MBBS .........................................................n<br />

Jose A Stuyck ..............................................................n<br />

Brian W Su, MD 3B – Gentis<br />

Edwin P Su, MD 3B – Smith & Nephew; 5 – Smith & Nephew, Cool Systems, Inc.<br />

Hsiu Su, MD ..............................................................n<br />

Sri Subanesh, MBBS ........................................................n<br />

Daniel J Sucato, MD 2 – Medtronic; 7 – Saunders/Mosby-Elsevier<br />

Akihiro Sudo, Pr<strong>of</strong>. ........................................................n<br />

Eduardo M Suero, MD ......................................................n<br />

Kazuomi Sugamoto, MD ....................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Nobuhiko Sugano, MD 3B – Stryker<br />

Etan Sugarman, MS ........................................................n<br />

Michelle T Sugi ............................................................n<br />

Yuko Sugioka, MD .........................................................n<br />

Takashi Sugita, MD, PhD ...................................................n<br />

Michael Suk, MD 6 – Synthes<br />

Mohamed Sukeik, MD ......................................................n<br />

Atul Sukthankar, MD .......................................................n<br />

Takanobu Sumino, MD .....................................................n<br />

Doo Hoon Sun, MD ........................................................n<br />

Jui-Sheng Sun, MD .........................................................n<br />

Toru Sunagawa ............................................................n<br />

Martin Sunberg, MD, PhD 2 – Biomet; 3C – Asept Medical; 5 – Stryker<br />

Grant Sutter, MS ...........................................................n<br />

Piriya Sutthirunjwong, MD ..................................................n<br />

Kou Suzuki, MD ...........................................................n<br />

Osami Suzuki, MD .........................................................n<br />

Olle Svensson, MD .........................................................n<br />

Chad Swaims, PAC .........................................................n<br />

Krishna Swamy, MBBS, FRCS ................................................n<br />

Russell P Swann, MD .......................................................n<br />

Christopher E Swanson, MD ................................................n<br />

David Swanson, PhD .......................................................n<br />

Eric F Swart, MD ...........................................................n<br />

Kyle Sweeney, BS ..........................................................n<br />

Fred A Sweet, MD ..........................................................n<br />

Marc F Swiontkowski, MD 3B – Baxter Healthcare, Eli Lilly, Kuros, Zimmer;<br />

7 – Saunders/Mosby-Elsevier, Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Julie A Switzer, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Ishaq Syed, MD ............................................................n<br />

Khalid Syed, MD ...........................................................n<br />

Joshua Bengtson Sykes, MD .................................................n<br />

Robert Morris Szabo, MD, MPH 5 – Medartis<br />

Edward Szuszczewicz, MD 2, 3B – Omni Life Sciences; 4 – Omni Life Sciences, Osseon<br />

Alex Taborek, BS 4 – Merck, Nuvasive<br />

Toshiya Tachibana, MD .....................................................n<br />

Masahiro Tada, MD ........................................................n<br />

Cyrus Emil Taghavi, MD ....................................................n<br />

Amir David Tahernia, MD 1 – Sea spine, Globus Medical; 2 – Orthovita;<br />

3B – Orthovita, Spinal Solutions; 5 – Facet Solutions<br />

Siti Tahir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Jenni Tahmassebi, MSc .....................................................n<br />

Tsuyoshi Tajika, MD ........................................................n<br />

Kenji Takagishi, Pr<strong>of</strong> .......................................................n<br />

Mark Takahashi, MD .......................................................n<br />

Kazuhisa Takahashi, MD ....................................................n<br />

Yoshihiro Takamori ........................................................n<br />

Karren M Takamura, BA .....................................................n<br />

Masaki Takao, MD .........................................................n<br />

Tsuneaki Takao, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Kunio Takaoka, MD ........................................................n<br />

Munetomo Takata, MD .....................................................n<br />

Kei Takato, MD ............................................................n<br />

MAKOto Takazawa, MD .....................................................n<br />

Hideaki Takeda ............................................................n<br />

Mitsuhiro Takeda, MD ......................................................n<br />

Takashi Takemae, MD ......................................................n<br />

Richelle C Takemoto, MD ...................................................n<br />

Steven Takemoto, PhD .....................................................n<br />

Munenori Takeshita, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Akihiko Takeuchi, MD ......................................................n<br />

Eiji Takeuchi, MD ..........................................................n<br />

Naoya Taki, MD ...........................................................n<br />

James B Talmage, MD 7 – <strong>American</strong> Medical Association Publications, Reed Group, Ltd.<br />

61<br />

disclosure<br />

Carl T Talmo, MD 3A – Astra-Zeneca<br />

Vishwas R Talwalkar, MD ...................................................n<br />

Thomas Tampere, BSc ......................................................n<br />

Eric Tan, MD ..............................................................n<br />

Seang Beng Tan, MD .......................................................n<br />

Tim Tan, BS ...............................................................n<br />

Virak Tan, MD 1, 3B, 4 – Wright Medical Technology, Inc.<br />

Kazunori Tanaka, MD ......................................................n<br />

MAKOto Tanaka, MD .......................................................n<br />

Miho Jean Tanaka, MD .....................................................n<br />

Sakae Tanaka, MD, PhD ....................................................n<br />

Yoshinari Tanaka, MD ......................................................n<br />

Yoshitsugu Tanaka, MD .....................................................n<br />

Aree Tanavalee, MD ........................................................n<br />

Dan Tancredi, PhD 6 – UC Davis<br />

Jessica Anne Tang, BS .......................................................n<br />

Peter Tang, MD ............................................................n<br />

Wan Tang, PhD ............................................................n<br />

Jason C Tank, MD ..........................................................n<br />

Moritz Tannast ............................................................n<br />

Yoshikazu Tanzawa, MD ....................................................n<br />

Michael Tanzer, MD 1, 3B – Zimmer; 2 – Johnson & Johnson, Zimmer; 4 – Novartis; 5,<br />

6 – Johnson & Johnson<br />

John S Taras, MD 4 – Union Surgical, LLC<br />

Ivan Seth Tarkin, MD 2, 5 – Synthes<br />

Yasutaka Tashiro, MD, PhD .................................................n<br />

Enrico Tassinari, MD .......................................................n<br />

Penny Tatman, MPH .......................................................n<br />

Michael J Taunton, MD .....................................................n<br />

Kaneaki Tawada, MD .......................................................n<br />

Bobby Tay, MD 2 – Biomet; 3C – Laurimed<br />

Keng Jin Darren Tay, FRCS ..................................................n<br />

Adrian Taylor, MD 2 – Biomet<br />

Dean C Taylor, COL, MD 5 – Histogenics<br />

Emma Taylor, MD ..........................................................n<br />

Erica Taylor, MD ...........................................................n<br />

Samuel Arthur Taylor, MD ..................................................n<br />

Sharlene A Teefey, MD 4 – Envisioneering<br />

Shawn Tejiram, bsC ........................................................n<br />

Nirmal C Tejwani, MD 1 – Biomet; 2, 3B – Zimmer, Stryker<br />

Alessandra Tellini, MD .....................................................n<br />

H Thomas Temple, MD 3B – Stryker<br />

David C Templeman, MD 1 – Zimmer; 2, 3B – Stryker; 3C – Asut<br />

Yuksel Tenekecioglu, MD ...................................................n<br />

Gregory S Tennant, DO 3A – GlaxoSmithKline, Steifel Company<br />

Richard M Terek, MD 4 – Novartis, Pfizer; 7 – Lippincott<br />

Michael L Terrin, MD, MPH .................................................n<br />

Michael A Terry, MD 1, 6 – Smith & Nephew; 2 – Victory Pharmacy, Magellan;<br />

3B – DePuy, A Johnson & Johnson Company, Smith & Nephew, Linvatec; 7 – Saunders/<br />

Mosby-Elsevier<br />

Caroline Terwee, PhD ......................................................n<br />

Sotirios Tetradis, PhD, DDS .................................................n<br />

Matthew Tetreault, BA ......................................................n<br />

David Teuscher, MD ........................................................n<br />

Ahmed Mohamed Thabet, MD ...............................................n<br />

Nikhil Anand Thakur, MD 4 – Nephros, Advanced Cell Technologies; 5 – DePuy, A<br />

Johnson & Johnson Company, Stryker<br />

Seng Choe Tham, MBBS, MMed, FRCR ........................................n<br />

Christine K Thang, BS ......................................................n<br />

John Theodoropoulos, MD 2, 5 – Smith & Nephew<br />

Benoit Theriault, MD .......................................................n<br />

Emmanuel Thienpont, MD 2 – Biomet, Zimmer; 4 – Tigenix, Boston Scientific<br />

Scott Thies, PhD 3A, 4 – Fate Therapeutics, Inc.<br />

Darryl Thomas, MD 2, 3B – Arthrocare, Genzyme<br />

Dimitri M Thomas, MD .....................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Geraint Emyr Rhys Thomas, MA, MBBS, MRCS .................................n<br />

Thad Thomas, BSE .........................................................n<br />

Steve Thomopoulos, PhD ...................................................n<br />

Darby Thompson, MS ......................................................n<br />

George H Thompson, MD 3C – OrthoPediatrics, SpineForm; 7 – Journal <strong>of</strong> Pediatric<br />

Orthopedics<br />

Matthew Thompson, MS 1 – Zimmer; 3B – MAKO Surgical Corp.<br />

Matthew T Thompson ......................................................n<br />

Norfleet Buckner Thompson, MD ............................................n<br />

Sean Thompson, MD .......................................................n<br />

Beverly Thornhill, MD ......................................................n<br />

Thomas S Thornhill, MD 1, 3B – DePuy, A Johnson & Johnson Company; 3C,<br />

4 – ConforMIS<br />

Troy Thorum, RN ..........................................................n<br />

Thomas Throckmorton, MD 2, 5 – Biomet<br />

John Vincent Tiberi, MD ....................................................n<br />

James E Tibone, MD 1 – Arthrex, Inc.<br />

Lisa Tibor, MD ............................................................n<br />

John F Tilzey, MD ..........................................................n<br />

Nina Timmesfeld, PhD .....................................................n<br />

John Timperley 1 – Stryker<br />

Muharrem Timucin, PhD ...................................................n<br />

Nicholas Ting, MD .........................................................n<br />

Scott M Tintle, MD .........................................................n<br />

John E Tis, MD ............................................................n<br />

Fotios Paul Tjoumakaris, MD ................................................n<br />

Allison Tobola, MD ........................................................n<br />

Yuki Tochigi, MD, PhD .....................................................n<br />

Dane Todd, BS ............................................................n<br />

Michael S Todd, DO ........................................................n<br />

Daisuke Togawa, MD 2, 3B – Medtronic S<strong>of</strong>amor Danek, Robert Reed Inc.<br />

Emre Togrul, MD ..........................................................n<br />

Junya Toguchida, MD, PhD .................................................n<br />

Fumiaki Tokimura, MD .....................................................n<br />

John Michael Tokish, MD 2 – Arthrex, Inc.<br />

Asami Tokita, MD 2 – Mitsubishi Tanabe Pharma<br />

Yoshio Tokuhara, MD ......................................................n<br />

Daisaku Tokunaga, MD .....................................................n<br />

Stephen R Tolhurst, MD ....................................................n<br />

Eric Thorpe Tolo, MD ......................................................n<br />

Vernon T Tolo, MD 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong>, Wolters Kluwer<br />

Health - Lippincott Williams & Wilkins<br />

Yasunori Tome, MD ........................................................n<br />

Ivan M Tomek, MD 5 – Stryker, Zimmer, DePuy, A Johnson & Johnson Company<br />

Katsuro Tomita, MD ........................................................n<br />

Lauren Tomlinson, BA ......................................................n<br />

Bryan J Tompkins, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Mayu Toner, BS ............................................................n<br />

John R Tongue, MD ........................................................n<br />

Aldo Toni, MD 2 – Zimmer, Ceramtec, Adler Ortho; 3B – Zimmer, Ceramtec, Adler<br />

Ortho<br />

Brian Christopher Toolan, MD 4 – Pfizer<br />

Jesse T Torbert, MD ........................................................n<br />

Paul Tornetta III, MD 1, 3B – Smith & Nephew; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Ian P Torode, MD 1, 3C – Medtronic S<strong>of</strong>amor Danek; 7 – Hodder-Arnold<br />

David Torrance, DC ........................................................n<br />

Carlos Torrens, MD 2, 3B – DePuy, A Johnson & Johnson Company<br />

Armando Torres-Gomez, MD ................................................n<br />

Ana Isabel Perez Torres, MD .................................................n<br />

Michael Torry, PHD 1, 4 – Alignmed, LLC, Exploramed-Moximed, LLC; 3B – Alignmed,<br />

LLC; 3C – Ossur<br />

Laura Lowe Tosi, MD 3B – Amgen Co., KCI, Medtronic<br />

Anna Tosteson, ScD 3B – Eli Lilly, Amgen Co.<br />

Tor Tosteson, ScD ..........................................................n<br />

62<br />

disclosure<br />

Alison P Toth, MD 2 – Genzyme, Tornier; 5 – Tornier<br />

John Toth, DO ............................................................n<br />

Mr Robert Toth ............................................................n<br />

Martin Totsch, MD .........................................................n<br />

Benjamin Phak Boon Tow, MD ..............................................n<br />

Shogo Toyama .............................................................n<br />

Peter G Trafton, MD 4 – Johnson & Johnson; 7 – Saunders/Mosby-Elsevier<br />

Ian A Trail, MD 1, 3B – Integra Life Sciences; 5 – Tennis Elbow Study<br />

Francesco Traina, MD ......................................................n<br />

Terry Ralph Trammell, MD 3B – Biomet, Medtronic S<strong>of</strong>amor Danek, K2M;<br />

5 – Nuvasive, Medtronic S<strong>of</strong>amor Danek, K2M<br />

Andrej Trampuz, MD 2 – Novartis; 5 – Mathys Ltd., Pfizer, Novartis<br />

Ensor E Transfeldt, MD 1, 2, 3B – Medtronic<br />

George Joseph Trappey, IV MD ..............................................n<br />

Andrew Travlos, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Marc A Tressler, DO ........................................................n<br />

Michael E Trice, MD ........................................................n<br />

Anjan Trikha, MD ..........................................................n<br />

Hans Joerg Trnka, MD 1 – OFA Rathgeber; 2 – Johnson & Johnson, Wright Medical<br />

Technology, Inc., Arthrex, Inc.; 3C – Wright Medical Technology, Inc.<br />

Christophe Trojani, MD ....................................................n<br />

Alessia Tron, MD ..........................................................n<br />

Robert T Trousdale, MD 1 – DePuy, A Johnson & Johnson Company, Wright Medical<br />

Technology, Inc., Ortho Development; 3B – DePuy, A Johnson & Johnson Company,<br />

Wright Medical Technology, Inc.<br />

Lisa Marie Truchan, MD ....................................................n<br />

Walter Huu Truong, MD ....................................................n<br />

Eeric Truumees, MD 1 – Stryker; 4 – Doctor’s Research Group; 7 – North <strong>American</strong><br />

Spine Society<br />

Alexandros Tsarouhas, MD ..................................................n<br />

Samuel Tseng .............................................................n<br />

Elefterios Tsiridis, FRCS ....................................................n<br />

Hideki Tsuboi, MD .........................................................n<br />

Toshikazu Tsuboi, MD ......................................................n<br />

Hiroyuki Tsuchiya, MD .....................................................n<br />

Koji Tsuji, MD .............................................................n<br />

Matthew Tsuji, MD .........................................................n<br />

Masaya Tsujii, MD, PhD ....................................................n<br />

Rocky S Tuan, PhD 7 – Wiley - Birth Defects Research Part C: Embryo Today,<br />

BioMedCentral - Stem Cell Research and Therapy<br />

Eray Tuccar, MD, Pr<strong>of</strong> ......................................................n<br />

John Keith Tucker, FRCS ....................................................n<br />

Kimberly K Tucker, MD .....................................................n<br />

Mike Tuke 3A, 3B – DePuy, A Johnson & Johnson Company, Finsbury; 4 – Newco<br />

Kirsten Tulchin, MS ........................................................n<br />

Chris Tulloch, FRCS ........................................................n<br />

Yucel Tumer, MD ..........................................................n<br />

Ismail Cengiz Tuncay, MD ..................................................n<br />

Christopher Tuohy, MD 2 – Synthes<br />

Luigino Turchetto ..........................................................n<br />

Robert Emile Turcotte, MD FRCSC 4 – Novartis; 6 – Stryker<br />

Alexis Turgeon, MD, MNSc, FRCPC ...........................................n<br />

Thomas Robert Turgeon, MD 5 – Smith & Nephew<br />

Metin Turkmen, Pr<strong>of</strong> .......................................................n<br />

A Simon Turner, DVM ......................................................n<br />

Alexander W Turner, PhD 3A, 4 – Nuvasive<br />

Joseph Turner, MS 3A, 4 – Medtronic, Wright Medical Technology, Inc.<br />

Francesco Turturro, MD ....................................................n<br />

Stacy L Twigg, PA-C ........................................................n<br />

Roy Twyman ..............................................................n<br />

Wakenda Tyler, MD ........................................................n<br />

Shiau-Tzu Tzeng, MD .......................................................n<br />

Maite Ubierna .............................................................n<br />

Atsumasa Uchida, MD ......................................................n<br />

Kazushi Uemura, MD ......................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Takeshi Uemura, MD .......................................................n<br />

Takayoshi Ueta ............................................................n<br />

Ali Engin Ulusal, MD .......................................................n<br />

Masood Umer, MD .........................................................n<br />

Marc Evan Umlas, MD ......................................................n<br />

Richard Underwood, PhD 6 – Biomet, DePuy, A Johnson & Johnson Company, Corin<br />

U.S.A., Finsbury, Smith & Nephew, Zimmer, Mathys Ltd.<br />

Mehmet Can Unlu, MD .....................................................n<br />

Aasis Unnanuntana, MD ....................................................n<br />

Kenneth P Unruh, MD ......................................................n<br />

Vidyadhar V Upasani, MD ..................................................n<br />

BN V Upendra, MS .........................................................n<br />

Carlos Uquillas, MD .......................................................n<br />

Michael Urban, MD ........................................................n<br />

Scott E Urch, MD ..........................................................n<br />

Molly M Usrey .............................................................n<br />

Sinan Ustundag, MD .......................................................n<br />

S<strong>of</strong>ia Uzunishvili, MD ......................................................n<br />

Alexander Vaccaro, MD, PhD 1 – Aesculap/B.Braun, DePuy, A Johnson & Johnson<br />

Company, Globus Medical, Medtronic S<strong>of</strong>amor Danek, K2M, Stout Medical, Progressive<br />

Spinal Technology, Applied Spinal Intellectual Properties; 3B – K2M; 4 – Globus<br />

Medical, Disk Motion Technology, Progressive Spinal Technologies, Advanced Spinal<br />

Intellectual Properties, Computational Biodynamics, Stout Medical, Paradigm Spine,<br />

K2M, Replication Medica, Spinology, Spine Medica, Orthovita, Vertiflex, Small Bone<br />

Technologies, NeuCore, Crosscurrent, Syndicom, In Vivo, Flagship Surgical, Pearl Driver,<br />

Location Based intelligence, Gamma Spine ;5 – AO North America, DePuy, A Johnson &<br />

Johnson Company, Medtronic S<strong>of</strong>amor Danek, Stryker; 7 – Elsevier, Thieme<br />

Antonio Vadala, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Rahul Vaidya, MD 2, 5, 6 – Synthes; 3C – Stryker<br />

Thomas Parker Vail, MD 1, 3B – DePuy, A Johnson & Johnson Company; 4 – Pivot<br />

Medical<br />

Suketu B Vaishnav, MD .....................................................n<br />

Antonis Vakis, MD .........................................................n<br />

Juanjose Valderrama, MD ...................................................n<br />

Antonio D C Valdevit 3B – Stryker; 5 – Stryker, Medtronic S<strong>of</strong>amor Danek<br />

Luigi Valeo, MD ...........................................................n<br />

Fernando Valero Gonzalez, MD ..............................................n<br />

Edward R Valstar 5 – Biomet, Stryker<br />

Douglas Van Citters, PhD 2, 3B, 5 – DePuy, A Johnson & Johnson Company;<br />

3A – Synthes<br />

Dr Michel Van den Bekerom .................................................n<br />

Hans Van der Bracht, MD ...................................................n<br />

Just Van Der Linden, MD ...................................................n<br />

Jaap Van Der Maas, MD .....................................................n<br />

Jan Van Der Meulen, MBBS ..................................................n<br />

Walter A P C van der Weegen, MD 5 – Biomet<br />

C Niek Van Dijk, MD 3C – Boehringer Ingelheim; 5 – GlaxoSmithKline, Stryker, Biomet<br />

Carola F Van Eck, MD ......................................................n<br />

Marnix Van Holsbeeck, MD 4 – GE Healthcare, Bristol-Myers Squibb, Johnson &<br />

Johnson, Novartis; 5 – GE Healthcare; 7 – Saunders/Mosby-Elsevier<br />

Hans Peter W Van Jonbergen, MD 5 – Smith & Nephew<br />

Albert van Kampen, MD ....................................................n<br />

Maarten Van Orsouw, MD ...................................................n<br />

Roger P van Riet, MD 2 – Smith & Nephew, Stryker; 6 – Zimmer, B&Co.<br />

Job L C Van Susante, MD, PHD 2, 3B – Wright Medical Technology, Inc.; 5 – Zimmer,<br />

Wright Medical Technology, Inc.<br />

Ge<strong>of</strong>frey Van Thiel, MD .....................................................n<br />

Michael Vance, MD .........................................................n<br />

Kelly L Vanderhave, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Daniel Vanel, MD ..........................................................n<br />

Francesca Vannini, MD .....................................................n<br />

Kartik Varadarajan, MS 4 – Merck, MAKO Surgical Corp.<br />

Thomas F Varecka, MD 2 – Stryker, Synthes; 3C – Stryker<br />

Daniel Varin, B.Sc. .........................................................n<br />

Eric S. Varley, DO ..........................................................n<br />

Roberto Varsalona, MD .....................................................n<br />

Dimitrios N. Varvarousis, MD ...............................................n<br />

63<br />

disclosure<br />

Tanawat Vaseenon .........................................................n<br />

Luis Vasquez, MS ..........................................................n<br />

Sebastiano Vasta, MS .......................................................n<br />

Jeffrey M Vaughn, DO ......................................................n<br />

Carlos Vaz, phD ...........................................................n<br />

David Vecchione, MD ......................................................n<br />

Ryan Vellinga, BS ..........................................................n<br />

Ricardo Velutini, MD .......................................................n<br />

John H Velyvis, MD 3B – Zimmer, Stryker, MAKO Surgical; 4 – MAKO Surgical;<br />

5 – Baxter, MAKO Surgical, Zimmer, Wright, Stryker<br />

Pascal-Andre Vendittoli, MD 2 – Stryker; 3B – Wright Medical Technology, Inc., Stryker,<br />

Zimmer; 5 – Zimmer, Wright Medical Technology, Inc., Stryker, Biomet; 6 – Biomet,<br />

OMEGA, Zimmer, Wright Medical Technology, Inc., Stryker<br />

Peter Verdonk, MD, Phd 2, 3B, 5 – Orteq Sports Medicine<br />

Rene Verdonk, MD, PhD 1 – DePuy, A Johnson & Johnson Company; 2, 3B, 4 – Orteq;<br />

7 – Springer<br />

Alejandro Verdugo, MD .....................................................n<br />

Luk Verhelst, MD ..........................................................n<br />

Christopher Verioti, DO ....................................................n<br />

Kushagra Verma, MD .......................................................n<br />

Nikhil N Verma, MD 1, 3B – Smith & Nephew; 2 – Arthrosurface; 4 – Omeros;<br />

5 – Arthrex, Inc., Smith & Nephew, Ossur, DJ <strong>Orthopaedic</strong>s; 7 – Vindico Medical-<br />

Orthopedics Hyperguide<br />

James John Verner, MD .....................................................n<br />

Frederik Verstreken, MD ....................................................n<br />

Judith Anne Vessey, PhD 4 – Johnson & Johnson, Pfizer, Wyeth<br />

Alexander Michael Vezeridis, BA .............................................n<br />

Peter S Vezeridis, MD .......................................................n<br />

Nicholas Adam Viens, MD ..................................................n<br />

Volker Vieth, MD ..........................................................n<br />

Srinivasan Vijayakumar, MD ................................................n<br />

Sridhar Vijayan, BSC, MBBS .................................................n<br />

Ola Vikerfors, MD .........................................................n<br />

Camilo E Villalobos, MD ...................................................n<br />

Marco Villano, MD .........................................................n<br />

Robert Javier Villarreal, MD .................................................n<br />

Pablo Villavicencio, MD ....................................................n<br />

Diego Villegas, MD ........................................................n<br />

Kelly Vince, MD 1, 2, 3B – Zimmer<br />

Tarjei Vinje, MD ...........................................................n<br />

Nazeem Virani, MD ........................................................n<br />

Walter W Virkus, MD 2, 3B – Smith & Nephew, Stryker; 3A – Novartis; 4 – Stryker,<br />

Johnson & Johnson<br />

Carl Virtanen ..............................................................n<br />

Michael G Vitale, MD 1 – Biomet; 3B – Biomet, Stryker; 5 – Synthes<br />

Michael Vives, MD 2 – Biomet, Musculoskeletal Transplant Foundation; 3B – Zimmer;<br />

4 – Accelalox<br />

Frank Vizesi, PhD 3A, 4 – Nuvasive<br />

Jacob Vogelstein, PhD 1–Genzyme, Biomed Valley Discoveries<br />

Pramod Babu Voleti, MD ...................................................n<br />

David A Volgas, MD 5 – Pfizer, Synthes<br />

Gian Paolo Volpato, MD ....................................................n<br />

Arvind Gabriel Von Keudell, MD .............................................n<br />

Brigitte von Rechenberg, MD 5 – National Institutes <strong>of</strong> Health (NIAMS & NICHD),<br />

Swiss National Science Foundation, Plus Orthopedics, Smith & Nephew, Synthes<br />

Anand Mahesh Vora, MD 2 – Arthrex, Inc., Smith & Nephew; 3B, 5 – Arthrex, Inc.<br />

James Turner Vosseller, MD .................................................n<br />

Mark S Vrahas, MD 4 – Pioneer Medical; 5 – Synthes, Zimmer, DePuy, A Johnson &<br />

Johnson Company<br />

Ana-Maria Vranceanu, PhD ..................................................n<br />

Gudrun Waaler, MSc .......................................................n<br />

Takuro Wada, MD,PhD .....................................................n<br />

James P Waddell, MD 1, 3B – Smith & Nephew; 6 – Smith & Nephew, Stryker;<br />

7 – Saunders/Mosby-Elsevier<br />

Charles Wade, PhD ........................................................n<br />

Veronica Marie Rita Wadey, MD ..............................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Joe Wagener, MD ..........................................................n<br />

Emilio Wagner, MD 6 – Helico<br />

Eric R Wagner, BS ..........................................................n<br />

Reese Wain, MD ...........................................................n<br />

Walid Waked, MD ..........................................................n<br />

Christopher Wakeling, MBChB,<br />

MRCS ....................................................................n<br />

Shigeyuki Wakitani 2 – Chugai Pharmaceutical Company; 3B – Sunstar; 5 – Olympus<br />

Seikagaku Corporation<br />

Gilles Walch, MD 1 – Tornier<br />

Janet Walker, MD ..........................................................n<br />

John J. Walker, PAC, DSc ....................................................n<br />

Matthew H Walker, MD .....................................................n<br />

Peter S Walker, PhD 1 – Stryker, Zimmer; 3B, 3C, 5 – Zimmer, MAKO<br />

Eric Wall, MD 1 – SpineForm, LLC; 3B – OrthoPediatrics; 3C – Stryker Trauma<br />

Lindley B Wall, MD ........................................................n<br />

Peter David Henry Wall, MBChB, MRCS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Charles Douglas Wallace, MD ...............................................n<br />

Philip Waller, MD 5 – Abbott, Bristol-Myers Squibb, Eli Lilly, GlaxoSmithKline,<br />

Johnson & Johnson, Merck, Procter & Gamble, Roche, San<strong>of</strong>i-Aventis, Wyeth<br />

Anders Walloe, MD ........................................................n<br />

Phil Walmsley, FRCS 5 – DePuy, A Johnson & Johnson Company<br />

Michael Walsh, PhD ........................................................n<br />

Pauline Walsh, BSc, PhD ....................................................n<br />

William R Walsh, PhD 2 – Surgical Synergies; 3B, 5 – Exactech, Inc., IsoTis<br />

Orthobiologics, Nuvasive, Surgical Synergies<br />

Stephen Walter, PhD .......................................................n<br />

William K Walter, MBBS, FRACS 1 – Stryker; 3B – Stryker, DePuy, A Johnson & Johnson<br />

Company; 5 – Stryker, DePuy, A Johnson & Johnson Company, Ceramtec<br />

William Lindsay Walter, MD, PhD 1 – Stryker, DePuy, A Johnson & Johnson Company;<br />

3B – DePuy; 5 – Stryker, Ceramtec, Depuy<br />

Thomas J Walters, PhD .....................................................n<br />

Andrea Wang 3A, 4 – Amgen Co., Pfizer<br />

Chen-Chie Wang, MD ......................................................n<br />

Ching-Jen Wang, MD 3B – Sanuwave; 4 – Tissue Regeneration Technology<br />

Chung-Li Wang, MD .......................................................n<br />

Cunlin Wang ..............................................................n<br />

Feng-Sheng Wang, PhD .....................................................n<br />

Jaw-Lin Wang, PhD ........................................................n<br />

Jeffrey C Wang, MD 1 – Aesculap/B.Braun, Biomet, Medtronic S<strong>of</strong>amor Danek,<br />

Stryker, Zimmer, Osprey, Alphatech, Sea spine, Amedica; 4 – Fziomed, Promethean<br />

Spine, Paradigm Spine, Benevenue, NexGen, K2 Medical, Pioneer, Amedica, Vertiflex,<br />

Electrocore, Surgitech, Invuity, Axiomed, Bone Biologics, VG Innovations, Corespine,<br />

Expanding <strong>Orthopaedic</strong>s, Syndicom, Curative Biosciences, Facet Solutions, Pearl diver<br />

Joon Ho Wang, MD ........................................................n<br />

Lingjun Wang, MA, PA-C ....................................................n<br />

Lushun Wang, MBBS, MRCS(Edin) ...........................................n<br />

Ting-Ming Wang, MD .......................................................n<br />

Vincent Wang .............................................................n<br />

Xiaomei Wang, PhD ........................................................n<br />

Yun Wang, PhD ............................................................n<br />

Zhenhai Wang, MD ........................................................n<br />

Zhong Wang, PhD .........................................................n<br />

Zhuo Wang, MD ...........................................................n<br />

John Paul Wanner, BS ......................................................n<br />

Keith K Wannomae ........................................................n<br />

Keith L Wapner, MD 2 – Small Bone Innovations, Wright Medical Technology, Inc.;<br />

3B – Small Bone Innovations, Wright Medical Technology, Inc., MemoMetal Inc.;<br />

4 – MemoMetal Inc.; 5 – Small Bone Innovations<br />

Peter Ward, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Russell A Ward, MD ........................................................n<br />

Samuel R Ward, PhD 3C – Allergan<br />

Shan G Ward, PhD 3C – Naviscan, Salient<br />

Winston J Warme, MD 2 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s; 3B – DJ <strong>Orthopaedic</strong>s;<br />

5 – Pacific Medical; 6 – Arthrex, Inc., DJ <strong>Orthopaedic</strong>s, Pacific Medical<br />

Kelly Warmington .........................................................n<br />

Cory Warner, MPT .........................................................n<br />

64<br />

disclosure<br />

Jon J P Warner, MD 1 – Zimmer; 6 – Arthrocare, DJ <strong>Orthopaedic</strong>s, Arthrex, Inc., Mitek,<br />

Breg, Smith & Nephew<br />

William C Warner Jr, MD 3C – Medtronic S<strong>of</strong>amor Danek; 7 – Saunders/Mosby-<br />

Elsevier<br />

Adam Warren, MD .........................................................n<br />

Russell F Warren, MD 1 – Biomet, Smith & Nephew, ConMed; 4 – Cayenne<br />

Scott M Wasserman, MD 3A, 4 – Amgen, Inc.<br />

Kenichi Watanabe, MD 3A – Japan Medical Materials Corporation<br />

Koji Watanabe .............................................................n<br />

Nobuyuki Watanabe, MD ...................................................n<br />

Brian Waterman, MD .......................................................n<br />

Peter M Waters, MD 4 – Sangamo, Celgene<br />

J Tracy Watson, MD 1 – DePuy, A Johnson & Johnson Company, Smith & Nephew;<br />

3B – Digimed; 3C – Accelalox<br />

Jeffrey Dean Watson, MD ...................................................n<br />

Jeffry T Watson, MD ........................................................n<br />

Tyler Steven Watters, MD 3B – Bristol-Myers Squibb<br />

Jennifer S Wayne, PhD 5 – Ascension <strong>Orthopaedic</strong>s; 6 – Trimed<br />

Justin M Weatherall, MD 4 – GE Healthcare<br />

Paul E. Weathington, JD ....................................................n<br />

DeWayne Lynn Weaver, MD .................................................n<br />

Michael J Weaver, MD ......................................................n<br />

Lawrence Xavier Webb, MD 2 – Musculoskeletal Transplant Foundation; 3B – Zimmer;<br />

6 – Synthes, Smith & Nephew, Stryker, Kinetic Concepts, Inc.<br />

Nicholas Paul Webber, MD ..................................................n<br />

Alexander Weber, MD ......................................................n<br />

Donald Weber, MD ........................................................n<br />

Kristy L Weber, MD ........................................................n<br />

Marc-Andre Weber, MD 5 – Bayer Vital AG, Bracco<br />

Robert Weber, MD .........................................................n<br />

Stephen C Weber, MD 3C – DePuy, A Johnson & Johnson Company<br />

John H Wedge, MD 4 – Procter & Gamble, Johnson & Johnson<br />

James Wee, MBBS, MRCS (Edin) .............................................n<br />

Marshall Weesner, MS ......................................................n<br />

Brian Wegman, MD ........................................................n<br />

Alexander Wegner, BS ......................................................n<br />

Derek Weichel, MD ........................................................n<br />

Dennis P Weigel, MD .......................................................n<br />

Yoram A Weil ..............................................................n<br />

Andrew J Weiland, MD 1 – Wright Medical Technology, Inc.; 3B – Acumed, LLC,<br />

Medartis<br />

Jacob Weinberg, MD .......................................................n<br />

Bradley K Weiner, MD ......................................................n<br />

Dennis S Weiner, MD .......................................................n<br />

Paul Weinhold, PhD .......................................................n<br />

James N Weinstein, DO, MS .................................................n<br />

Stuart L Weinstein, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

David M Weir, BS ..........................................................n<br />

Robert Weir, MD ...........................................................n<br />

Jennifer M Weiss, MD ......................................................n<br />

Michael Weiss, MD .........................................................n<br />

Jason Scott Weisstein, MD ..................................................n<br />

Jeffrey A Welge, PhD .......................................................n<br />

Amanda Lindsley Weller, MD ................................................n<br />

Christopher W Wells, BA ....................................................n<br />

Jessica Wells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Lawrence Wells, MD ........................................................n<br />

Haoling H Weng, MD ......................................................n<br />

Dennis R Wenger, MD 3C – Orthopediatrics, Inc.; 4 – Rhino Pediatric Orthopedic<br />

Designs; 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Doris Wenger, MD .........................................................n<br />

Joseph C Wenke, PhD 6 – Smith & Nephew<br />

Glenn Wera, MD ...........................................................n<br />

Judi Werkema, RN .........................................................n<br />

Jason Werle, MD ...........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Stefan Werlen, MD .........................................................n<br />

Brian C Werner, MD ........................................................n<br />

Jean Wessel, PhD ..........................................................n<br />

Daniel Wessell, MD, PhD ...................................................n<br />

Michael West, PhD 3A – BioTime, Inc., OrthoCyte Corporation; 4 – BioTime, Inc.;<br />

7 – Academic Press Elsevier<br />

Ge<strong>of</strong>frey H Westrich, MD 1 – Exactech, Inc.; 3B – DJ <strong>Orthopaedic</strong>s, Exactech, Inc.,<br />

Stryker; 5 – DJ <strong>Orthopaedic</strong>s, Exactech, Inc., Stryker<br />

Peter G Whang, MD 2 – Baxter; 3B – Stryker, Smith & Nephew, Cerapedics, Paradigm<br />

Spine; 4 – DiFusion; 5 – Vertiflex<br />

Gregory R White, MD 2 – Stryker<br />

Neil White, MD, FRCSC .....................................................n<br />

Richard E White, Jr MD 1 - Zimmer, 3B - Ardent Health Services Lovelace Medical<br />

Center<br />

Richard H White, MD 3B – San<strong>of</strong>i-Aventis, Boehringer Ingelheim; 5 – Johnson &<br />

Johnson<br />

Tom White, BSc, MBBS, MRCS ...............................................n<br />

Leo A Whiteside, MD 1 – Smith & Nephew, Stryker; 2, 3C – Smith & Nephew; 3A,<br />

4 – Signal Medical Corp.; 3B – Signal Medical Corp., Smith & Nephew<br />

Thomas E Whitesides Jr, MD 7 – Saunders/Mosby-Elsevier<br />

Patrick W Whitlock, MD 6 – Brainlab<br />

Duncan Whitwell, FRCS 2 – Zimmer, Biomet; 3B – Finsbury<br />

Dr Cari Whyne 3B – Relievant; 5 – Baylis Medical<br />

J Michael Wiater, MD 2 – Zimmer; 3B – Synthes, Zimmer<br />

Michael Wich, MD 1 – DePuy, A Johnson & Johnson Company; 2 – Stryker, DePuy,<br />

A Johnson & Johnson Company, Synthes; 3B – Biomet, DePuy, A Johnson & Johnson<br />

Company, Stryker<br />

Thomas L Wickiewicz, MD 1 – MAKO Surgical; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

James C Widmaier Jr, MD 2 – Synthes<br />

Roger F Widmann, MD .....................................................n<br />

John Wiebelhaus, BS .......................................................n<br />

Bernd Wiedenhoefer, MD 3C – Ulrich Medical; 5 – Aesculap/B.Braun, DePuy, A<br />

Johnson & Johnson Company, Stryker<br />

Thomas A Wiedrich, MD 2 – Auxillium; 3B – Apex; 4 – MiMedx<br />

Carl Wierks, MD ...........................................................n<br />

Britta Wieskoetter, MD .....................................................n<br />

Lindsay Wiesner, BS ........................................................n<br />

Coen A Wijdicks, MSc ......................................................n<br />

John H Wilckens, MD 7 – Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

Dana Wild, PT, PhD ........................................................n<br />

SE Wilfred, BA .............................................................n<br />

W Jaap Willems, MD, PhD 3B, 5 – Tornier<br />

Ariel Williams, MD .........................................................n<br />

Bart Williams, PhD ........................................................n<br />

Benjamin R Williams .......................................................n<br />

Dan Williams, MRCS, MSc ..................................................n<br />

Daniel K Williams, MD .....................................................n<br />

Frank Williams ............................................................n<br />

Gerald R Williams Jr, MD 1 – DePuy, A Johnson & Johnson Company; 2 – DePuy,<br />

A Johnson & Johnson Company, Mitek; 3B – Tornier; 4 – In Vivo Therapeutics;<br />

5 – Tornier; 7 – Journal <strong>of</strong> Shoulder and Elbow Surgery, Wolters Kluwer Health -<br />

Lippincott Williams & Wilkins<br />

John Barton Williams, BA 4 – Merck<br />

John Leicester Williams, PhD 5 – Corin Ltd.; 6 – LifeModeler Inc.<br />

Johnathan Williams, BS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Kelly M Williams, PA-C .....................................................n<br />

Nicole T Williams, OTC 3B – 3M Healthcare<br />

Riley Joseph Williams, MD 1 – Arthrex, Inc.; 5 – Smith & Nephew; 7 – Springer<br />

Sean Wilkinson, BA ........................................................n<br />

Chris Williamson, MD ......................................................n<br />

Matthew Parker Willis, MD 2, 5 – DJ <strong>Orthopaedic</strong>s<br />

APR Wilson, MRCP 2 – Ethicon<br />

Philip L Wilson, MD .......................................................n<br />

Vasthi Wilson, MD .........................................................n<br />

Robert Lane Wimberly, MD .................................................n<br />

Matthias Dominik Wimmer, MD 4 – GE Healthcare, Linde AG<br />

65<br />

disclosure<br />

Tyler Conway Wind, MD ....................................................n<br />

Reinhard Windhager, MD 2 – Johnson & Johnson, Boehringer Ingelheim; 5 – Johnson<br />

& Johnson<br />

Robert Winn ..............................................................n<br />

Robert A Winquist, MD 1, 3C – Zimmer<br />

Robert B Winter, MD 1 – EBI<br />

Brian Winters, MD .........................................................n<br />

Michael A Wirth, MD 1 – DePuy, A Johnson & Johnson Company; 2, 3B – DePuy, A<br />

Johnson & Johnson Company, Tornier; 4 – Tornier; 7 – Saunders/Mosby-Elsevier<br />

Dieter Wirtz, MD ..........................................................n<br />

Lauren Wisk ..............................................................n<br />

Donald A Wiss, MD ........................................................n<br />

Johan Witt, MD ............................................................n<br />

James C Wittig, MD ........................................................n<br />

Antonia Woehnl, MD .......................................................n<br />

Brian R Wolf, MD ..........................................................n<br />

Fredric M Wolf, PhD 7 – Sage Publications<br />

Jennifer Moriatis Wolf, MD 7 – SLACK Incorporated, Elsevier<br />

Carmen Wolfe, BA .........................................................n<br />

Scott W Wolfe, MD 2 – Trimed, SBI; 3B – Extremity Medical; 7 – Elsevier, Inc.<br />

Aviva Wolff, CHT, OTR/L ....................................................n<br />

Philip R Wolinsky, MD 3B – Biomet, Zimmer; 5 – Synthes<br />

Adam Laurance Wollowick, MD 2 – DePuy, A Johnson & Johnson Company;<br />

5 – Stryker, DePuy, A Johnson & Johnson Company, K2M<br />

Jennifer Woltz .............................................................n<br />

Man Hee Won, MD .........................................................n<br />

Melissa Wong .............................................................n<br />

Robert E. Wood, MD 3C – Olympus Corporation<br />

Jessica Woodcock, MD ......................................................n<br />

Barrett Ivory Woods, MD ....................................................n<br />

Chase Woodward, BS .......................................................n<br />

Spencer Woolwine, CS ......................................................n<br />

Alicia Worden, MD .........................................................n<br />

Adam Wright, MD .........................................................n<br />

Dennis Wright, MD, FACS ...................................................n<br />

Elizabeth A. Wright, PhD 4 – Johnson & Johnson, Pfizer<br />

James G Wright, MD 7 – Journal <strong>of</strong> Bone and Joint Surgery - <strong>American</strong>, Saunders/<br />

Mosby-Elsevier<br />

John Wright, MD 3B – DePuy, A Johnson & Johnson Company<br />

Judy L Wright, MD .........................................................n<br />

Patty Wright, MD ..........................................................n<br />

Rick W Wright, MD 5 – Smith & Nephew; 7 – Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins<br />

Russel C Wright, BS ........................................................n<br />

Timothy M Wright, PhD 1 – Mathys Ltd.; 4 – Exactech, Inc.; 5 – Synthes, Stryker, Smith<br />

& Nephew; 7 – Journal <strong>of</strong> <strong>Orthopaedic</strong> Research, Wolters Kluwer Health - Lippincott<br />

Williams & Wilkins;<br />

Chung-Ding Wu, MD .......................................................n<br />

Eileen Wan-Ying Wu, MD ...................................................n<br />

Karl Wu, MD ..............................................................n<br />

Tuoh Wu, MD .............................................................n<br />

Dane K Wukich, MD 1 – Arthrex<br />

Jay Wunder, MD ...........................................................n<br />

Rosanna Lisa Wustrack, MD .................................................n<br />

Ronald W B Wyatt, MD .....................................................n<br />

Christopher D Wybo, MS 3A – Innovative Surgical Solutions, LLC; 4 – Innovative<br />

Surgical Solutions, LLC, Nuvasive<br />

Jack W Wylie, MD ..........................................................n<br />

John W Xerogeanes, MD 1, 3B – Linvatec<br />

Dr Yang Xia ...............................................................n<br />

Yinghua Xu, MBBS .........................................................n<br />

Fragiskos Xypnitos, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Alem Yacob, MD ...........................................................n<br />

Shahan V Yacoubian, MD 1 – AOS; 2 – DJ <strong>Orthopaedic</strong>s; 3B – AOS, Wright Medical<br />

Technology, Inc.; 5 – AOS<br />

Stephan Vahe Yacoubian, MD 1, 5 – AOS<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Jacques YaDeau, MD 4 – Johnson & Johnson, Pfizer<br />

Mitsuru Yagi, MD, PhD .....................................................n<br />

Burak Yalcin ..............................................................n<br />

Josh Yamada, MD 2 – Integra Life Sciences Institute for Continuing Medical Education<br />

Katsuhisa Yamada, MD .....................................................n<br />

Koji Yamada, MD ..........................................................n<br />

Susumu Yamada, MD .......................................................n<br />

Masatsugu Yamagata, MD ...................................................n<br />

Ken Yamaguchi, MD ........................................................n<br />

Tamonori Yamaguchi, BS ...................................................n<br />

Go Yamako, PHD 3A – Mizuho Ikakogyo<br />

Atsushi Yamamoto, MD, PhD ................................................n<br />

Nobuyuki Yamamoto, MD ..................................................n<br />

Norio Yamamoto, MD ......................................................n<br />

Takuaki Yamamoto, MD ....................................................n<br />

Mitsuyoshi Yamamura, MD .................................................n<br />

Takayuki Yamashita ........................................................n<br />

Toshihiko Yamashita, MD ...................................................n<br />

Kensuke Yamauchi .........................................................n<br />

Alan Yong Yan, MD ........................................................n<br />

Ick-Hwan Yang, MD ........................................................n<br />

Kuender D Yang, MD .......................................................n<br />

Quinton Yang .............................................................n<br />

Rong-Sen Yang, MD ........................................................n<br />

Syngil Steven Yang, MD 3A – Pfizer; 3B – Integra Lifesciences Corporation; 4 – Pfizer<br />

Adam Blair Yanke, MD ......................................................n<br />

Koichiro Yano, MD 2 – Mitsubishi Tanabe Pharma<br />

Matthew G. Yantis, MD .....................................................n<br />

Jeffrey Yao, MD 1 – Arthrex, Inc.; 3B – Smith & Nephew, Arthrex, Inc.; 7 – Saunders/<br />

Mosby-Elsevier<br />

Jeffrey Jon-Michael Yaste, MD ................................................n<br />

Kazunori Yasuda, MD ......................................................n<br />

Natsuo Yasui ..............................................................n<br />

Yuji Yasunaga, MD .........................................................n<br />

Burt Yaszay, MD 1 – Orthopediatrics; 2, 5 – DePuy, A Johnson & Johnson Company,<br />

KCI; 3B – KCI, Synthes, K2M, Ellipse; 6 – DePuy, A Johnson & Johnson Company<br />

Michael J Yaszemski, MD, PhD 4 – BonWrx<br />

Adolph J Yates Jr, MD 3A – GlaxoSmithKline<br />

Albert C Yeh ...............................................................n<br />

Tedd Yemm, PT ............................................................n<br />

Seng-Jin Yeo, FRCS 2, 3C – DePuy, A Johnson & Johnson Company<br />

Jin-Sup Yeom, MD, PhD 2 – Medtronic S<strong>of</strong>amor Danek, DePuy, A Johnson & Johnson<br />

Company<br />

Harris S Yett, MD ..........................................................n<br />

Anthony T Yeung, MD 1 – Richard Wolf Surgical Instrument Co.; 2 – Richard Wolf<br />

Surgical Instrument Company, Elliquence Radi<strong>of</strong>requency, Surgimax, Disc FX System;<br />

4 – Bonovo, Surgitech, Ouroborous, Paradigm Spine, Replication Medical, Small Bones<br />

Innovation, Pioneer Surgical<br />

Dr Eric Yeung .............................................................n<br />

Andy Yew, PhD ............................................................n<br />

Edward Yian, MD ..........................................................n<br />

Gokce Yildirim, MSc .......................................................n<br />

David A Yngve, MD ........................................................n<br />

Lewis A Yocum, MD 3B – Mitek<br />

Yasukazu Yonetani, MD .....................................................n<br />

David Yonick, MD 4 – Baxter<br />

Jae Ho Yoo, MD ...........................................................n<br />

Jae-Chul Yoo, MD ..........................................................n<br />

Jaedoo Yoo, Pr<strong>of</strong> 3B, 4 – Korean Bone Bank<br />

Dr Je Hyun Yoo ............................................................n<br />

Jeong-hyun Yoo, MD, PhD ..................................................n<br />

Jeong Joon Yoo, MD ........................................................n<br />

Ju Hyung Yoo, MD .........................................................n<br />

Jung U Yoo, MD ...........................................................n<br />

Jangwhon Yoon, PhD, PT ...................................................n<br />

66<br />

disclosure<br />

S Tim Yoon, MD, PhD 3B – Medtronic, Meditech; 4 – Phygen; 5 – Biomet<br />

Taek Rim Yoon, MD, PhD ...................................................n<br />

Petya Yorgova, MS ..........................................................n<br />

Sally York, RN .............................................................n<br />

Hironori Yoshida, MD ......................................................n<br />

Taku Yoshida, MD .........................................................n<br />

Hideki Yoshikawa, MD .....................................................n<br />

Ichiro Yoshimura, MD ......................................................n<br />

Katsuhito Yoshioka, MD ....................................................n<br />

Shinichi Yoshiya, MD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .n<br />

Zongbing You, MD .........................................................n<br />

Allan Young, PhD 6 – Tornier<br />

Brett H Young, MD .........................................................n<br />

Simon Young, MD .........................................................n<br />

Alastair S E Younger, MD 3B – ConMed Linvatec, Small Bone Innovations, BioMimetic;<br />

5 – BioMimetic; ConMed Linvatec, Wright Medical Technology, Inc., Synthes, Integra<br />

Foundation Carticept<br />

Jim A Youssef, MD 1 – DePuy, A Johnson & Johnson Company, Nuvasive, Osprey,<br />

SeaSpine, Aesculap/B.Braun, Amedica; 3B – DePuy, A Johnson & Johnson Company,<br />

Nuvasive, Aesculap/B.Braun, SeaSpine, Vertiflex Spine; 4 – Amedica; 5 – DePuy,<br />

A Johnson & Johnson Company, Nuvasive, Stryker, Stryker Biotech, BioSurface<br />

Engineering Technologies, Facet Solutions, Advanced Technologies & Regenerative<br />

Medicine, Axial Biotech, Vertiflex Spine<br />

Warren D Yu, MD 1 – Sea spine Inc.; 2 – Stryker, Kyphon Inc.; 3B – Sea spine Inc.,<br />

SpineFrontier Inc.; 3C – Zimmer; 4 – SpineFrontier Inc., Doctors Research Group<br />

Yangyang Yu, BA ...........................................................n<br />

Brandon J Yuan, MD .......................................................n<br />

Xunhua Yuan, PHD ........................................................n<br />

Bing Yue ..................................................................n<br />

Eric J Yue, MD .............................................................n<br />

Wai Mun Yue, MD 2, 3B – DePuy, A Johnson & Johnson Company, Medtronic S<strong>of</strong>amor<br />

Danek; 5 – Medtronic S<strong>of</strong>amor Danek<br />

Itaru Yugue, MD ...........................................................n<br />

Youhei Yukizawa, MD ......................................................n<br />

Yeo-Hon Yun, MD .........................................................n<br />

Nicole Yurgin, PhD 3A – Amgen Co.<br />

James E Zachazewski, PT 4 – Abbott, Bristol-Myers Squibb, Genzyme, Medtronic,<br />

Merck, Pfizer, Procter & Gamble, Zimmer; 7 – Saunders/Mosby-Elsevier<br />

Mary Zadnik Newell, OTR ...................................................n<br />

Jayson D Zadzilka, MS ......................................................n<br />

Antonia Zaferiou, BE .......................................................n<br />

Stefano Zaffagnini, MD 6 – I + s.r.l.; 7 – Springer<br />

Michael P Zafuta, MD ......................................................n<br />

Ira Zaltz, MD 5 – DePuy, A Johnson & Johnson Company<br />

Marco Zanetti, MD .........................................................n<br />

Jana Zapletalova, PhD ......................................................n<br />

Peter Constantine Zarkadas, MD .............................................n<br />

Mohammad Zarrabian, MD .................................................n<br />

Michael Zatushevsky, MD 4, 6 – Nuvasive<br />

John Alexander Zavala, MD .................................................n<br />

Rad Zdero, PhD 6 – Stryker<br />

Lukas P. Zebala, MD ........................................................n<br />

Harald Zehetgruber, MD ....................................................n<br />

Seth Zeidman, MD 4 – Amedica, Globus<br />

Evan Zeitler, BA ............................................................n<br />

Jason Zell, DO. MPH .......................................................n<br />

Reinhard Zeller, MD, DSc, FRCSC 1 – Spinevision; 3C – Paradigm Spine<br />

Kristine Zellers Fortuna, MD ................................................n<br />

Yo Zen, MD ...............................................................n<br />

Amer Zeni, MD ............................................................n<br />

Haitao Zhang, PhD ........................................................n<br />

Hongbin Zhang, PhD ......................................................n<br />

Kai Zhang ................................................................n<br />

Yang Zhang, MS ...........................................................n<br />

Zhen Zhang, MS ...........................................................n<br />

Caixia Zhao, MD ...........................................................n<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


NAME DISCLOSURE NAME DISCLOSURE<br />

Li Zhao, PhD ..............................................................n<br />

Qianqian Zhao, MS ........................................................n<br />

Wen Zhao, MD ............................................................n<br />

Wenyan Zhao, PhD ........................................................n<br />

Gehua Zhen, MD ..........................................................n<br />

Kathy Zheng, MPH .........................................................n<br />

Jinjun Zhu, MD, PhD .......................................................n<br />

Bernard A Zicat, MD 1 – DePuy, A Johnson & Johnson Company, Zimmer; 3B – Smith<br />

& Nephew<br />

Kai Ziebarth ...............................................................n<br />

Daniel Ziegler, MD 5 – Eli Lilly<br />

Yoram Zilberman, PhD .....................................................n<br />

Sumesh M Zingde ..........................................................n<br />

Patrick Oliver Zingg, MD ...................................................n<br />

David Zingmond, MD ......................................................n<br />

Raul Zini, MD .............................................................n<br />

Argyrios Ziogas, PhD .......................................................n<br />

Lewis Evan Zionts, MD 4 – Abbott, Amgen Co., Bristol-Myers Squibb, Johnson &<br />

Johnson, Merck, Pfizer, San<strong>of</strong>i-Aventis<br />

Bruce Ziran, MD 2 – Stryker, Synthes; 3B – Stryker, Synthes, Mondeal/Forcetec, Tekartis;<br />

4 Osteotech, Stryker<br />

Michael Pawel Zlowodzki, MD ...............................................n<br />

Benjamin Zmitzkowski, MD .................................................n<br />

Angelos Zografos, MEng ....................................................n<br />

Alan Zonno, MD 5 – Arthrex, Inc.<br />

Ioannis Zouzias, MD .......................................................n<br />

Joseph D Zuckerman, MD 1 – Exactech, Inc.; 4 – Neostem; 7 – SLACK Incorporated,<br />

Thieme, Wolters Kluwer Health - Lippincott Williams & Wilkins<br />

David Zukor, MD 2 – DePuy, A Johnson & Johnson Company; 6 – DePuy, A Johnson &<br />

Johnson Company, Synthes<br />

Mark Zunkiewicz, MD 3B – Smith & Nephew; 4 – Pfizer, Johnson & Johnson,<br />

GlaxoSmithKline, Merck, Roche, Bristol-Myers Squibb, Zimmer, Siemens; 6 – Arthrex,<br />

Inc., Mitek, Smith & Nephew<br />

Karen Zupko 3B – Understand.com, Zimmer<br />

David Zurakowski PhD .....................................................n<br />

Lukas Zwicky, MSc .........................................................n<br />

Michael G Zywiel, MD ......................................................n<br />

67<br />

disclosure<br />

The codes after the name are identified as 1 – Royalties; 2 – Speakers Bureau/paid presentations, 3a. – Employee, 3b. – Paid consultant, 3c. – Unpaid consultant, 4 – Stock or stock options; 5 – Research or institutional<br />

support as a principal investigator has been received; 6 – Other financial or material support;7 - Royalties, financial or material support from publishers; n – No conflicts to disclose. For full information refer to page 19.


68<br />

u New FroNtierS iN Cartilage<br />

imagiNg oF the hip (aaoS/orS i)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

Moderator: Paul E. Beaulé MD FRCSC<br />

High resolution MRI for cartilage mappling is a rapidly evolving field in our understanding <strong>of</strong> osteoarthritis. Basic science and<br />

clinical applications for the hip will be discussed.<br />

Objectives:<br />

• Clinical applications <strong>of</strong> cartilage imaging in regards to patient selection and prognosis for joint preserving surgery <strong>of</strong> the<br />

hip i.e. osteotomy, arthrosccopy.<br />

• Understand how early diagnosis <strong>of</strong> cartilage degeneration i.e. loss <strong>of</strong> proteoglycan concentration and collagen integrity<br />

can be investigated using high resolution MRI with cartilage mapping in the knee and how this maybe applied to the hip.<br />

• Understand the application and challenges <strong>of</strong> different cartilage imaging modalities: T2, T1Rho, dGemric.<br />

• Review <strong>of</strong> current clinical results <strong>of</strong> cartilage mapping in dysplasia and femoroacetabular impingement.<br />

OUTLINE:<br />

I. Current Status <strong>of</strong> Cause and Prevention <strong>of</strong> Hip Osteoarthritis as Well as Socioeconomic Burden.<br />

Paul E. Beaulé, MD, Ottawa, ON, Canada<br />

II. Relationships Between Imaging Signal Abnormalities and Biomechanical/Compositional Abnormalities in the Knee.<br />

Thomas D. Brown, PhD, Iowa City, IA<br />

III. Overview <strong>of</strong> Techniques <strong>of</strong> Cartilage Imaging in the Hip and its Challenges.<br />

Tallal C. Mamisch, MD, Bern, Switzerland<br />

IV: Current Data and Evidence in Treatment <strong>of</strong> Hip Dysplasia.<br />

Young Jo Kim, MD, Boston, MA<br />

V. Current Data and Challenges in Femoroacetabular Impingement<br />

Kawan Rakhra, MD, Ottawa, ON, Canada<br />

VI. Discussion and Case Illustrations


69<br />

New FroNtierS iN Cartilage imagiNg oF the hip<br />

Paul E. Beaulé MD FRCSC<br />

OBJECTIVES:<br />

• Define current burden <strong>of</strong> disease <strong>of</strong> hip arthritis<br />

• Define current bony abnormalities associated with hip arthritis<br />

and current methods <strong>of</strong> clinical assessment.<br />

• Clinical applications <strong>of</strong> cartilage imaging in regards to patient<br />

selection and prognosis for joint preserving surgery <strong>of</strong> the hip<br />

i.e. osteotomy & arthroscopy.<br />

Current status <strong>of</strong> Cause and prevention <strong>of</strong> Hip Osteoarthritis as<br />

well as socioeconomic burden<br />

Osteoarthritis (OA) <strong>of</strong> the hip is a debilitating and painful condition<br />

affecting a significant proportion <strong>of</strong> the population. It is the main<br />

reason for total hip arthroplasty, <strong>of</strong> which there were over 33,000<br />

cases in Canada in 2008-09 and over 300 000 cases in the US<br />

alone. In addition, the proportion <strong>of</strong> patients requiring a total hip<br />

arthroplasty in the 45-64 age group has gone from 26% to 36% in<br />

the last decade. 1 This volume <strong>of</strong> cases will cost the Canadian and<br />

US healthcare system up to $2.4 billion and 8.5 billion, respectively<br />

over the next five years. More importantly, with patients younger<br />

and more active, avoiding or even delaying the need for a total hip<br />

replacement is critical goals in maintaining their quality <strong>of</strong> life over<br />

their life.<br />

Consequently, the development <strong>of</strong> an effective screening program<br />

for hip deformities thought to lead degenerative hip arthritis as well<br />

as answering the basic question that as treating physicians we are<br />

asked by our patients: “Will surgical correction <strong>of</strong> my hip deformity<br />

provide me with better function as well as delay and/or prevent the onset <strong>of</strong><br />

degenerative changes?” is critical.<br />

To answer this question we must better understand what clinical<br />

factors such as patient age, gender, severity <strong>of</strong> deformity are<br />

predictive <strong>of</strong> this with the overall health <strong>of</strong> the articular cartilage<br />

crucial in that regards. This symposium will focus primarily on the<br />

assessment <strong>of</strong> the structural integrity <strong>of</strong> hyaline cartilage as this is<br />

the basic foundation for a well functioning joint.<br />

Current etiology <strong>of</strong> Hip Osteoarthritis<br />

Murray2 and Stulberg et al3 both identified that childhood or young<br />

adult hip conditions were associated with the development <strong>of</strong> hip<br />

arthritis and identified the following: dysplasia; Legg-Calve Perthes;<br />

slipped capital femoral epiphysis. In addition, they coined the terms<br />

tilt and pistol grip deformity to denote minor abnormalities (i.e. not<br />

noticed during childhood) putting patient at risk <strong>of</strong> developing hip<br />

arthritis. In regards to the pathomechanism leading to degenerative<br />

changes with dysplasia4,5 insufficient coverage <strong>of</strong> the femoral head<br />

by the acetabulum leads to an intra-articular instability secondary<br />

to failure <strong>of</strong> the labral-chondral junction due to edge loading as<br />

well as pure static overloading the articular cartilage. Whereas for<br />

the tilt or pistol grip deformity, it is not until the description <strong>of</strong><br />

femoroacetabular impingement (FAI) by Ganz6 that the dynamic<br />

nature <strong>of</strong> this degenerative process was fully understood as well as<br />

defining treatment methods. FAI can be sub grouped into Pincer<br />

(acetabular retroversion/coxa pr<strong>of</strong>unda) and CAM (insufficient<br />

femoral head/neck <strong>of</strong>fset-lack <strong>of</strong> anterior neck concavity).<br />

Clinical Evaluation<br />

The history and physical examination <strong>of</strong> pre arthritic hip pain are<br />

fairly constant where patients have a history <strong>of</strong> chronic groin pain<br />

which may have been miss-diagnosed as a hip flexor injury. The<br />

length <strong>of</strong> hip symptoms can vary from several years to a few months.<br />

However, there is no real good evidence correlating length <strong>of</strong> hip<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

symptoms and degree <strong>of</strong> osteoarthritis.<br />

RADIOGRAPHIC EVALUATION<br />

Plain Radiographs<br />

The hip joint anatomy needs to be assessed with a well-centered AP<br />

radiograph as well as a specialized lateral radiograph such as the<br />

Dunn view.<br />

For Dysplasia:<br />

• Tonnis angle > 10¼ on AP<br />

• Center edge (VCE) angle <strong>of</strong> Wiberg < 20¼<br />

• Anterior center angle <strong>of</strong> Lesquesne and deSeze 7 on false-pr<strong>of</strong>ile<br />

<strong>of</strong> 50¼; lack <strong>of</strong> concavity at anterior<br />

neck.<br />

• Grading <strong>of</strong> Osteoarthritis: The AP pelvis will also provide<br />

an assessment <strong>of</strong> the condition <strong>of</strong> the articular cartilage by<br />

measuring <strong>of</strong> the width <strong>of</strong> the joint space. There is currently no<br />

consensus as to having weight-bearing or supine radiographs<br />

to measure the joint space. Most commonly, the Tonnis<br />

Classification <strong>of</strong> Hip Osteoarthritis 9 is used (Figure 1).<br />

Figure 1: Tonnis Classification 9<br />

In regards to joint preserving surgery for dysplasia and survivorship<br />

<strong>of</strong> the hip joint, Trousdale et al 10 clearly demonstrated that the<br />

degree <strong>of</strong> joint space narrowing preoperatively dictates the longevity<br />

<strong>of</strong> hip joint after osteotomy (Figure 2).


However, it is unclear if these findings necessarily apply to FAI where<br />

there is little data on joint survivorship post surgical correction<br />

based on preoperative joint space width. 11 If anything, the amount <strong>of</strong><br />

narrowing that can be acceptable maybe less than with dysplasia. In<br />

addition, because <strong>of</strong> the limitations <strong>of</strong> the 2D view provided by plain<br />

radiographs unless there is evidence <strong>of</strong> significant arthritis: narrowing<br />

>2mm; subchondral sclerosis; osteophytes and cysts, it becomes<br />

difficult for the physician to counsel the patient on the overall<br />

longevity <strong>of</strong> their native hip joint with at best recommendations<br />

such as: “you have 70-80% chance <strong>of</strong> a good to excellent result” or that<br />

“if you do not do anything your hip joint won’t get better”.<br />

MAGNETIC RESONANCE IMAGING<br />

For both conditions <strong>of</strong> dysplasia femoroacetabular, magnetic<br />

resonance imaging with gadolinium arthrography (MRA) has<br />

proved effective in the visualization <strong>of</strong> labral tears 12 , paralabral cyst<br />

formations 13 , and cartilage delamination 14 . Coronal, para-axial and<br />

para-sagittal sections are obtained in the plane <strong>of</strong> the femoral neck.<br />

REFERENCES<br />

1. Kim S. Changes in Surgical Loads and Economic Burden <strong>of</strong> Hip and Knee<br />

Replacements in the US: 1997-2004. Arthritis Rheum. 2008;59:481-88.<br />

2. Murray RO. The aetiology <strong>of</strong> primary osteoarthritis <strong>of</strong> the hip. Br.J.Radiol<br />

1965;38:810-824.<br />

3. Stulberg,SD; Cordell,LD; Harris,WH; Ramsey,PL; and MacEwen,GD.<br />

Unrecognized childhood hip disease: a major cause <strong>of</strong> idiopathic<br />

osteoarthritis <strong>of</strong> the hip. In The Hip, <strong>Proceedings</strong> <strong>of</strong> the Third Open<br />

Scientific <strong>Meeting</strong> <strong>of</strong> the Hip Society., p 212-228. Edited by H. C. Amstutz. St.<br />

Louis, C.V. Mosby, 1975.<br />

4. Murphy SB, Ganz R, Muller ME. The prognosis in untreated dysplasia <strong>of</strong> the<br />

hip. A study <strong>of</strong> radiographic factors that predict the outcome. J.Bone Joint<br />

Surg. 1995;77A:985-89.<br />

5. Cooperman DR, Wallensten R, Stulberg D. Acetabular Dysplasia in the adult.<br />

Clin.Orthop.Rel.Res. 1980;175:79-85.<br />

6. Ganz R., Leunig M, Leunig-Ganz K, Harris WH. The etiology <strong>of</strong> osteoarthritis<br />

<strong>of</strong> the hip : an integrated mechanical concept. Clin.Orthop.Rel.Res.<br />

2008;466:264-72.<br />

7. Lequesne M, de Seze S. Le faux pr<strong>of</strong>il du bassin. Nouvelle incidence<br />

radiolographique pour l’etude de la hanche. Son utilite dans les dysplasies et<br />

les differentes coxapathies. Rev.Rhum. 1961;28:643-52.<br />

8. Beaule PE, Allen DJ, Clohisy JC, Schoenecker PE, Leunig M. The young adult<br />

with hip impingement: deciding on the optimal intervention. J Bone Joint<br />

Surg 2009;91:210-221.<br />

70<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

In addition for FAI, quantitative assessment <strong>of</strong> cam impingement<br />

contour abnormality is done with the alpha angle15 . Although this<br />

imaging provides useful information in regards to macroscopic<br />

identification <strong>of</strong> cartilage defects as well as better characterization<br />

<strong>of</strong> labral changes (hypertrophy w/ dysplasia) which may provide<br />

some guidance in regards to the surgical reconstruction that might<br />

be needed at the time <strong>of</strong> surgery, it does not provide prognostic<br />

information on longevity <strong>of</strong> the hip joint. Consequently, early<br />

diagnosis <strong>of</strong> cartilage degeneration would require the ability to<br />

noninvasively detect changes in PG concentration and collagen<br />

integrity before gross morphologic changes occur.<br />

Having said that, high resolution MR imaging techniques can permit<br />

the quantification and characterization <strong>of</strong> the cartilage extracellular<br />

matrix i.e. proteoglycan content as well as orientation <strong>of</strong> the type II<br />

collagen fibers. The PG with the attached glycosaminoglcans interact<br />

with the ground substance composed <strong>of</strong> the collagen fibres (mainly<br />

type II) which are oriented parallel to the articular surface in the<br />

superficial zone, perpendicular in the radial zone, and arcade-like<br />

in the transitional zone. Early events during cartilage breakdown<br />

include the loss <strong>of</strong> PGs, changes in water content, and molecularlevel<br />

changes in collagen. These changes can quantified using high<br />

resolution MR imaging with several techniques being currently used:<br />

dGEMRIC, T2, T1Rho in the hip as well as in the knee16 .<br />

CONCLUSION:<br />

Clearly there is a relationship between severity <strong>of</strong> deformity and<br />

risk <strong>of</strong> disease progression for hip osteoarthritis. Plain radiographs<br />

provide important information in defining the bony abnormality as<br />

well as determining the classic signs <strong>of</strong> arthritis, however because <strong>of</strong><br />

its 2-dimensional nature, complete assessment <strong>of</strong> the health <strong>of</strong> the<br />

articular cartilage is limited both from a 3-dimensional nature but as<br />

well as from a structural standpoint.<br />

9. Tonnis D, Heinecke A. Acetabular and femoral anteversion:relationship with<br />

osteoarthritis <strong>of</strong> the hip. J Bone Joint Surg. 1999;81A:1747-70.<br />

10. Trousdale RT, Ekkernkamp A, Ganz R, Wallrichs SL. Periacetabular and<br />

intertrochanteric osteotomy for the treatment <strong>of</strong> osteoarthrosis in dysplastic<br />

hips. J.Bone Joint Surg.Am. 1995;77:73-85.<br />

11. Ribas M, Ledesma R, Cardenas C, Marin-Pe–a O, Toro J, Caceres E. Clinical<br />

results after anterior mini-open approach for femoroacetabular impingement<br />

in early degenerative stage. Hip Int. 2010;20(Suppl 7)(S7):36-42.<br />

12. Leunig M, Werlen S, Ungersbock A, Ito K, Ganz R. Evaluation <strong>of</strong> the<br />

acetabular labrum by MR Arthrography. J Bone Joint Surg. 1997;79B:230-<br />

234.<br />

13. Magee T, Hinson G. Association <strong>of</strong> paralabral cysts with acetabular disorders.<br />

AJR Am.J.Roentgenol. 2000;174:1381-84.<br />

14. Beaule PE, Zaragoza EJ, Copelan N. Magnetic Resonance Imaging with<br />

Gadolinium Arthrography to Assess Acetabular Cartilage Delamination. A<br />

Report <strong>of</strong> Four Cases. J Bone Joint Surg. 2004;86A:2294-98.<br />

15. Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The<br />

contour fo the femoral head-neck junction as a predictor for the risk <strong>of</strong><br />

anterior impingement. J Bone Joint Surg. 2002;84B:556-60.<br />

16. Li X, Pai A, Blumenkrantz G, Carballido-Gamio J, Link T, Ma B, Ries<br />

M, Majumdar S. Spatial distribution and relationship <strong>of</strong> T1rho and T2<br />

relaxation times in knee cartilage with osteoarthritis. Magn Reson Med.<br />

2009;61(6):1310-18.


71<br />

relatioNShipS betweeN imagiNg SigNal abNormalitieS aNd<br />

biomeChaNiCal/CompoSitioNal abNormalitieS iN the kNee<br />

Thomas D. Brown, PhD<br />

1. Introduction<br />

2. Structural assessments<br />

A. Manual segmentation [12]<br />

B. Semi-automated segmentation [6]<br />

C. Automated segmentation [13]<br />

3. Compositional assessments<br />

A. T2 [5,8]<br />

B. T1-rho [7,8,10]<br />

REFERENCES<br />

1. Deng X, Farley M, Nieminen MT, Gray M, Burstein D: Diffusion tensor<br />

imaging <strong>of</strong> native and degenerated human articular cartilage. Magnetic<br />

Resonance Imaging 25: 168-171, 2007.<br />

2. Filidoro L, Dietrich O, Weber J, Rauch E, Oerther T, Wick M: High-resolution<br />

diffusion tensor imaging <strong>of</strong> human patellar cartilage: feasibility and<br />

preliminary findings. Magnetic Resonance Imaging 53: 993-998, 2005.<br />

3. Goetz HW, Trattnig S, Scheffler KS, Szomonanyi P, Quirbach S, Marlovits S,<br />

Domayer S, Bieri O, Mamisch TC. Magnerization Transfer Contrast and T2<br />

Mapping in the Evaluation <strong>of</strong> Cartilage Repair Tissue with 3T MRI. Journal <strong>of</strong><br />

Magnetic Resonance Imaging 28: 979-986, 2008.<br />

4. Gray ML. Toward Imaging Biomarkers for Glycosaminoglycans. Journal <strong>of</strong><br />

Bone and Joint Surgery 91-A Suppl.1: 44-49, 2009.<br />

5. Gray ML, Burstein D, Kin Y-J, Maroudas A. Magnetic Resonance Imaging<br />

<strong>of</strong> Cartilage Glycosaminoglycan: Basic Principles, Imaging Technique, and<br />

Clinical Applications. Journal <strong>of</strong> <strong>Orthopaedic</strong> Research 26: 281-291, 2008.<br />

6. Koo S, Giori NJ, Gold GE, Dyrby CO, Andriacchi TP. Accuracy <strong>of</strong> 3D<br />

Cartilage Models Generated from MR Images Is Dependent on Cartilage<br />

Thickness: Laser Scanner Based Validation <strong>of</strong> In Vivo Cartilage. Journal <strong>of</strong><br />

Biomechanical Engineering 131: 121004-1 -121004-5, 2009.<br />

7. Krause FG, Klammer G, Benneker LM, Werlen S, Mamisch TC, Weber M.<br />

Biochemical T2* MR Quantification <strong>of</strong> Ankle Arthrosis in Pes Cavovarus.<br />

Journal <strong>of</strong> <strong>Orthopaedic</strong> Research 28: 1562-1568, 2010.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

C. dGEMRIC [4,5,9]<br />

D. Lesser-used modalities<br />

1. Sodium [11]<br />

2. T2* [7]<br />

3. Diffusion tensor imaging [1,2]<br />

4. Magnetization transfer [3]<br />

4. Conclusions and path forward<br />

8. Li X, Pai A, Blumankrantz G, Carballido-Gamio J, Link T, Ma B, Ries M,<br />

Majumdar S: Spatial Distribution and Relationship <strong>of</strong> T1-rho and T2<br />

Relaxation Times in Knee Cartilage with Osteoarthritis. Magnetic Resonance<br />

in Medicine 61:1310-1318, 2009.<br />

9. Pollard TCB, McNally EG, Wilson DC, Wilson DR, Madler B, Watson M,<br />

Gill HS, Carr AJ. Localized Cartilage Assessment with Three-Dimensional<br />

dGEMRIC in Asymptomatic Hips with Normal Morphology and Cam<br />

Deformity. Journal <strong>of</strong> Bone and Joint Surgery 92: 2557-2569, 2010<br />

10. Regatte RR, Akella SVS, Lonner JH, Kneeland JB, Reddy R. T1-rho Relaxation<br />

Mapping in Human Osteoarthritis Cartilage: Comparison <strong>of</strong> T1-rho with T2.<br />

Journal <strong>of</strong> Magnetic Resonance Imagine 21: 547-553, 2006.<br />

11. Staroswiecki E, Bangerter NK, Gurney PT, Grafendorfer T, Gold GE,<br />

Hargreaves BA: In Vivo Sodium Imaging <strong>of</strong> Human Patellar Cartilage with a<br />

3D Cones Sequence at 3 T and 7 T. Journal <strong>of</strong> Magnetic Resonance Imaging<br />

32: 446-451, 2010.<br />

12. Wirth W, Larroque S, Davies RY, Nevitt M, Gimona A, Baribaud F, Lee JH,<br />

Benichou O, Wyman BT, Hudelmaier M, Maschek S, Eckstein F. Comparison<br />

<strong>of</strong> One-Year versus Two-Year Change in Regional Cartilage Thickness<br />

in Osteoarthritis Results from 346 Participants from the Osteoarthritis<br />

Initiative. Osteoarthritis and Cartilage (2010). EPub ahead <strong>of</strong> print, PMID<br />

21044690.<br />

13. Yin Y, Zhang X, Williams R, Wu X, Anderson DD, Sonka M. LOGISMOS<br />

– Layered Optimal Graph Image Segmentation <strong>of</strong> Multiple Objects and<br />

Surfaces: Cartilage Segmentation in the Knee Joint. IEEE Transactions on<br />

Medical Imaging (2010), EPub ahead <strong>of</strong> print, PMID 20643602.


72<br />

overview oF teChNiqueS oF Cartilage imagiNg iN the hip aNd<br />

itS ChalleNgeS. mri FiNdiNgS iN the Normal / abNormal hip<br />

Tallal Charles Mamisch, MD<br />

Introduction<br />

For imaging <strong>of</strong> intra-articular hip pathology magnetic resonance<br />

imaging (MRI) represents the best technique due to its ability to<br />

directly visualize cartilage, superior s<strong>of</strong>t tissue contrast, and the<br />

prospect <strong>of</strong> multi-dimensional imaging. However, opinions differ<br />

on the diagnostic efficacy <strong>of</strong> MRI and on the question <strong>of</strong> which MRI<br />

technique is most appropriate.<br />

At present, magnetic resonance (MR) arthrography using intraarticular<br />

contrast material has been established as the standard<br />

method for imaging <strong>of</strong> labral lesions. However, the diagnostic<br />

reliability <strong>of</strong> cartilage lesion remains moderate. Furthermore, the<br />

diagnostic reliability <strong>of</strong> acetabular cartilage delamination by MRI is<br />

still challenging.<br />

To detect the early degenerative pathology <strong>of</strong> the hip in correlation<br />

to the morphology changes it is becoming recognized that standard<br />

coronal, axial and sagittal MRI planes are less reliable than radially<br />

reconstructed planes perpendicular to the acetabular opening<br />

around the femoral neck. For the assessment <strong>of</strong> the femoral headneck<br />

morphology (alpha-angle and head-neck <strong>of</strong>fset) as well as<br />

the depth and coverage <strong>of</strong> the acetabulum (acetabular depth),<br />

radial reconstructions along the femoral neck axis improve the<br />

understanding This imaging technique is increasingly recognized<br />

as an important tool for morphologic assessment <strong>of</strong> FAI as well as<br />

improved technique to detect early labral and chondral damage in<br />

the hip.<br />

The aim <strong>of</strong> this overview is to discuss the current use <strong>of</strong> MRI in<br />

Cartilage imaging in the hip.<br />

Normal findings<br />

Normal MRI findings in asymptomatic volunteer: Right side: PD TSE<br />

none fat sat with triangular and normal intense acetabular labrum<br />

(white arroe) 3T imaging with separation <strong>of</strong> acetabular and femoral<br />

cartilage Left Side: PD TSE fat sat sequence with normal cartilage<br />

status anterior and posterior. Separation <strong>of</strong> acetabular and femoral<br />

cartilage (white arrow) using 3T imaging<br />

Abnormal findings<br />

1. Cam Impingement:<br />

Cartilage diagnosis: None arthrography and arthrography<br />

techniques are described for the detection <strong>of</strong> cartilage lesions,<br />

where MR arthrography showed improved classification but the<br />

accuracy is reported still moderate (sensitivity <strong>of</strong> 47%). Overall<br />

the cartilage diagnosis in the hip is limited so far and no reliable<br />

staging and grading system has been established. The use <strong>of</strong><br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

new pulse sequences and 3.0 T imaging in combination with<br />

MR arthrography can overcome these limitations and improve<br />

cartilage diagnosis in the hip significantly.<br />

Cam type impingement with cartilage delamination on a sagittal<br />

PD TSE sequence using MR arthrography.<br />

2. Pincer type FAI:<br />

Acetabular Labrum: The labrum is <strong>of</strong>ten hypertrophic and torn in<br />

the anterior superior portion.<br />

Cartilage: Degeneration with thinning up to complete loss <strong>of</strong> the<br />

cartilage posterior. This can be seen in straight sagittal PD TSE<br />

images<br />

3. Mixed type FAI:<br />

In mixed type FAI, which is <strong>of</strong>ten, combination <strong>of</strong> cam-type and<br />

pincer-type findings for the acetabular labrum and cartilage can<br />

be seen.<br />

In cases <strong>of</strong> retroversion with cam type deformity <strong>of</strong> the head-


73<br />

neck <strong>of</strong>fset a acetabular rim fracture can be seen in MRI with<br />

degeneration <strong>of</strong> the cartilage anterior-superior.<br />

REFERENCES<br />

1. Locher S, Werlen S, Leunig M, et al. [MR-Arthrography with radial sequences<br />

for visualization <strong>of</strong> early hip pathology not visible on plain radiographs]. Z<br />

Orthop Ihre Grenzgeb 2002;140(1): 52-7.<br />

2. Schmid MR, Notzli HP, Zanetti M, et al. Cartilage lesions in the hip:<br />

diagnostic effectiveness <strong>of</strong> MR arthrography. Radiology 2003;226(2): 382-6.<br />

3. Pfirrmann CW, Mengiardi B, Dora C, et al. Cam and pincer femoroacetabular<br />

impingement: characteristic MR arthrographic findings in 50 patients.<br />

Radiology 2006;240(3): 778-85.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

4. Kassarjian A, Yoon LS, Belzile E, et al. Triad <strong>of</strong> MR arthrographic findings<br />

in patients with cam-type femoroacetabular impingement. Radiology<br />

2005;236(2): 588-92.<br />

5. Mamisch TC, Zilkens C, Siebenrock KA, Bittersohl B, Kim YJ, Werlen S MRI<br />

<strong>of</strong> Hip Osteoarthritis and Implications for Surgery Radiol Clin N Am , 2009.<br />

6. Mamisch TC, Bittersohl B, Hughes T, Kim YJ, Welsch GH, Dudda M,<br />

Siebenrock KA, Werlen S, Trattnig S. Magnetic resonance imaging <strong>of</strong> the hip<br />

at 3 Tesla: clinical value in femoroacetabular i mpingement <strong>of</strong> the hip and<br />

current concepts. Semin Musculoskelet Radiol. 2008 Sep;12(3):212-22.


74<br />

CurreNt data aNd evideNCe iN treatmeNt oF hip dySplaSia<br />

Young-Jo Kim, MD, PhD<br />

MRI technologies with the ability to directly visualize the molecular<br />

ultra-structure <strong>of</strong> cartilage have promising potential for orthopaedic<br />

clinical research. Several clinical studies have been performed<br />

recently which demonstrate that delayed Gadolinium enhanced<br />

MRI <strong>of</strong> cartilage (dGEMRIC) and T2 mapping can provide useful<br />

additional data in the clinical setting.<br />

Briefly, dGEMRIC is based on the fact that the fixed charge density <strong>of</strong><br />

articular cartilage is directly linked to its glycosaminoglycan (GAG)<br />

content, which is lost in early OA. Negatively charged contrast agent<br />

(GdDTPA 2-<br />

), which alters T1 relaxation time, will accumulate in an<br />

inversely proportional manner to cartilage GAG concentration after<br />

an intravenous injection and time delay for contrast equilibration in<br />

the tissue. A post-contrast T1 map can be obtained which provides<br />

quantitative information regarding the charge density <strong>of</strong> cartilage<br />

from which the amount <strong>of</strong> cartilage damage can be inferred.<br />

Aberrant hip anatomy as found in developmental dysplasia (DDH)<br />

or femoroacetabular impingement (FAI) is known to increase the<br />

risk <strong>of</strong> early OA. Surgical treatment aims to correct these anatomic<br />

deformities prior to onset <strong>of</strong> significant OA, since outcome depends<br />

on the extent <strong>of</strong> cartilage damage at the time <strong>of</strong> surgery. Conventional<br />

radiographs can assess bony deformities, but will only demonstrate<br />

late stage OA. Advanced MRI has become the favored diagnostic tool<br />

in the pre-op assessment <strong>of</strong> the hip to not only better define the<br />

abnormal bony anatomy but also to document the damaged s<strong>of</strong>t<br />

tissue structures such as articular cartilage and labrum. In particular<br />

loss <strong>of</strong> GAG is considered to be an early event in the development <strong>of</strong><br />

OA; therefore, its direct visualization by dGEMRIC has the potential<br />

ability to demonstrate the effect <strong>of</strong> joint-preserving hip surgery on<br />

OA progression.<br />

DDH<br />

In dysplasia, the shallow acetabulum leads to a reduced loadtransferring<br />

area which leads to increased mechanical stress on the<br />

cartilage. Pre-operative assessment <strong>of</strong> hips with acetabular dysplasia<br />

using dGEMRIC scans demonstrated that symptoms, assessed with<br />

the WOMAC score, correlated with the dGEMRIC index but not<br />

with joint space width measured in radiographs. Additionally, the<br />

dGEMRIC index correlated with the lateral center edge angle (LCE)<br />

demonstrating that even in young patients early articular cartilage<br />

changes could be seen in severely dysplastic hips. In a categorical<br />

comparison <strong>of</strong> the degree <strong>of</strong> dysplasia (mild, LCE > 15°, moderate,<br />

LCE between 6° and 15°, severe, LCE < 5°), the dGEMRIC indices<br />

differed significantly between all categories, while joint space width<br />

did not (1).<br />

Using a cohort <strong>of</strong> 52 hips, Cunningham, et al. (2) evaluated the<br />

predictive value <strong>of</strong> the dGEMRIC index after Bernese periacetabular<br />

osteotomy. Pre-operative demographic and radiographic variable<br />

including dGEMRIC index were compared to the early clinical and<br />

radiographic outcomes. When clinical and radiographic failure<br />

groups were compared to satisfactory groups, predictors that were<br />

identified: radiographic joint subluxation, Tšnnis Grade, joint space<br />

width, and the dGEMRIC Index (498 ± 105 ms (satisfactory) versus<br />

370 ± 88 ms (failed), P< 0.01). A multiple logistic regression model<br />

that included joint space width, joint subluxation, Tšnnis grade, and<br />

dGEMRIC index as independent variables showed the preoperative<br />

dGEMRIC value and joint subluxation prior to the surgery to<br />

be significant predictors <strong>of</strong> early postoperative failure <strong>of</strong> the<br />

periacetabular osteotomy. The probability <strong>of</strong> total hip arthroplasty<br />

increased dramatically when the dGEMRIC index was below 390 ms.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

The dGEMRIC index in morphologically normal hips averaged 570 ±<br />

90 ms; dGEMRIC index <strong>of</strong> 390 ms, which is two standard deviations<br />

below normal was thus defined as the threshold for osteoarthritis.<br />

These prior studies appear to demonstrate the validity <strong>of</strong> dGEMRIC<br />

as a metric <strong>of</strong> OA in dysplastic hips. Traditional studies on OA<br />

mainly utilized plain radiographic features <strong>of</strong> OA. In attempt<br />

to better understand the anatomic and demographic factors that<br />

may predispose a hip to early OA, a study involving 96 hips with<br />

acetabular dysplasia was performed to look at risk factors <strong>of</strong> early<br />

OA as defined using dGEMRIC (3). Using hips with dGEMRIC index<br />

below 390 ms as the definition <strong>of</strong> hips with early OA, cases below<br />

390 ms were significantly older, had significantly smaller lateral<br />

and anterior center-edge angles and joint space width, and had a<br />

significantly increased incidence <strong>of</strong> radiographic joint subluxation<br />

and labral tears. Using this data, the probability <strong>of</strong> significant OA<br />

(T1


In summary, joint preserving hip surgery for DDH already benefits<br />

from the use <strong>of</strong> the dGEMRIC in the clinical setting. dGEMRIC<br />

is helpful in identifying hips that are poor candidates for surgery,<br />

hence, leading to overall better surgical outcomes. In FAI, promising<br />

results have been reported, however the possible predictive value for<br />

the outcome after surgery, as found in DDH, remains to be evaluated.<br />

REFERENCES<br />

1. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment <strong>of</strong> early<br />

osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic<br />

resonance imaging <strong>of</strong> cartilage. J Bone Joint Surg Am. 2003;85-A(10):1987-<br />

1992.<br />

2. Cunningham T, Jessel R, Zurakowski D, Millis MB, Kim YJ. Delayed<br />

gadolinium-enhanced magnetic resonance imaging <strong>of</strong> cartilage to predict<br />

early failure <strong>of</strong> Bernese periacetabular osteotomy for hip dysplasia. J Bone<br />

Joint Surg Am. 2006;88(7):1540-1548.<br />

3. Jessel RH, Zurakowski D, Zilkens C, Burstein D, Gray ML, Kim YJ.<br />

Radiographic and patient factors associated with pre-radiographic<br />

osteoarthritis in hip dysplasia. J Bone Joint Surg Am. 2009;91(5):1120-1129.<br />

75<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

MRI at 3T has the potential to yield higher resolution images that<br />

may allow for the separate assessment <strong>of</strong> the acetabular and femoral<br />

cartilages. The presence <strong>of</strong> delamination is particularly difficult to<br />

detect. 3D dGEMRIC at 3T may aid in improving the sensitivity and<br />

specificity <strong>of</strong> detection <strong>of</strong> cartilage delamination.<br />

4. Jessel RH ZC, Tiderius C, Dudda M, Mamisch TC ,Kim YJ, . Assessment<br />

<strong>of</strong> Osteoarthritis in Hips with Femoroacetabular Impingement using<br />

Delayed Gadolinium Enhanced MRI <strong>of</strong> Cartilage. J Magn Reson Imaging.<br />

2009;30(5):1110-1115.<br />

5. Mamisch TC, Dudda M, Hughes T, Burstein D, Kim YJ. Comparison <strong>of</strong><br />

delayed gadolinium enhanced MRI <strong>of</strong> cartilage (dGEMRIC) using inversion<br />

recovery and fast T1 mapping sequences. Magn Reson Med. 2008;60(4):768-<br />

773.<br />

6. Bittersohl B, Steppacher S, Haamberg T, Kim YJ, Werlen S, Beck M,<br />

Siebenrock KA, Mamisch TC. Cartilage damage in femoroacetabular<br />

impingement (FAI): preliminary results on comparison <strong>of</strong> standard<br />

diagnostic vs delayed gadolinium-enhanced magnetic resonance imaging <strong>of</strong><br />

cartilage (dGEMRIC). Osteoarthritis Cartilage. 2009;17(10):1297-1306.


76<br />

CurreNt data aNd ChalleNgeS iN FemoroaCetabular<br />

impiNgemeNt<br />

Kawan Rakhra, MD<br />

Femoroacetabular impingement(FAI) has become a well-recognized<br />

pathogenic factor in the evolution <strong>of</strong> hip osteoarthritis(OA). The<br />

impingement is secondary to anatomic abnormalities <strong>of</strong> the femoral<br />

head-neck junction(cam type) and/or the acetabulum(pincer type).<br />

With hip motion, there is pathologic contact between the two<br />

surfaces <strong>of</strong> the joint resulting in altered biomechanics, premature<br />

degeneration and damage to hyaline and fibrocartilage, resulting in<br />

a predisposition to OA.<br />

The presence <strong>of</strong> predisposing anatomic deformities alone may<br />

not reliably predict or diagnose clinically significant FAI. The<br />

orthopaedic diagnosis and management <strong>of</strong> FAI <strong>of</strong>ten requires<br />

adjuvant radiologic evidence <strong>of</strong> a primary dysmorphism, and more<br />

importantly, <strong>of</strong> secondary joint damage such as to hyaline cartilage,<br />

prior to intervening with surgical procedures.<br />

Magnetic resonance imaging(MRI) is a powerful, non-invasive<br />

tool for evaluating hip joint hyaline cartilage. Traditional MRI and<br />

magnetic resonance arthrography(MRA) techniques have been<br />

effective in identifying macroscopic changes to cartilage. Specifically<br />

related to FAI, these MRI sequences can detect chondral injury such<br />

as focal or global, partial or full thickness defects, or delaminations.<br />

However, these gross structural alterations <strong>of</strong>ten manifest later in<br />

the OA pathway, at a point where treatment options may be limited<br />

to invasive, surgical procedures. Consequently, advanced MRI<br />

techniques are being explored in hope <strong>of</strong> detecting biochemical<br />

changes in the macromolecular matrix, which can alter the<br />

biomechanical properties <strong>of</strong> cartilage, before gross, morphologic<br />

cartilage damage occurs. These techniques may have both diagnostic<br />

and prognostic value. The early detection <strong>of</strong> hip hyaline cartilage<br />

biochemical damage may be used to confirm clinically suspected FAI<br />

before the irreversible, chondral insults evolve.<br />

Several different biochemical imaging protocols including<br />

delayed gadolinium enhanced magnetic resonance imaging <strong>of</strong><br />

cartilage(dGEMRIC), T1ρ, and T2/T2* cartilage mapping have been<br />

conducted, to varying degrees in the normal and symptomatic<br />

hip. Although found to be technically feasible, and able to detect<br />

differences in cartilage pr<strong>of</strong>iles between asymptomatic and FAI/OA<br />

hips, there is limited information in the literature on the prognostic<br />

value and impact on clinical outcomes that these methods may have<br />

in the context <strong>of</strong> FAI.<br />

dGEMRIC is a technique which indirectly measures proteoglycan<br />

content within hyaline cartilage. It requires the intravenous injection<br />

<strong>of</strong> gadolinium contrast, followed by a variable delay and/or exercise<br />

regime. The gadolinium accumulates within the hyaline cartilage,<br />

inversely proportional to the concentration <strong>of</strong> proteoglycan. In the<br />

FAI hip dGEMRIC has been shown to correlate with pain, and size <strong>of</strong><br />

the cam deformity and demonstrate abnormal cartilage pr<strong>of</strong>iles even<br />

in asymptomatic subjects with FAI predisposing joint morphology.<br />

T1-Rho(T1ρ) is another technique providing information on<br />

proteoglycan content <strong>of</strong> hyaline cartilage. However, it does not<br />

require the administration <strong>of</strong> intravenous gadolinium contrast. T1ρ<br />

has been performed in the normal asymptomatic hip, in the OA<br />

hip, and recently in the FAI hip. The technique has been able to<br />

detect differences in the cartilage pr<strong>of</strong>iles <strong>of</strong> normal and diseased<br />

hips, although the number <strong>of</strong> published studies to date is small and<br />

further validation is required.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

T2 cartilage mapping is a non-contrast based technique sensitive<br />

to changes in collagen content and architecture as well as cartilage<br />

hydration but has not been performed in the FAI hip to date. T2*<br />

mapping may proved similar information as T2 with regards to<br />

collagen status, although is sensitive to other compositional changes<br />

such as calcification in cartilage. T2* has been carried out in single<br />

study in FAI patients showing significant correlation with dGEMRIC.<br />

There are inherent challenges to biochemical imaging <strong>of</strong> hip cartilage<br />

compared to other joints such as the knee, upon which much <strong>of</strong><br />

the initial research on cartilage mapping was based. Hip hyaline<br />

cartilage is much thinner, especially in the periphery <strong>of</strong> the joint<br />

where the earliest chondral damage is known to occur in FAI. As<br />

well, the hip joint is grossly spherical with resultant curvature <strong>of</strong> the<br />

joint space and articular surfaces, such that planar acquisition slices<br />

can be susceptible to volume averaging artifacts.<br />

The articular surfaces <strong>of</strong> the acetabulum and femoral head are very<br />

closely opposed to one another, making spatial separation <strong>of</strong> the<br />

two surfaces challenging. For this reason several previous studies on<br />

cartilage mapping in the hip performed the analysis on a combined<br />

bilayer, including both the acetabular and femoral surfaces together.<br />

However, in the context <strong>of</strong> FAI, evaluating a cartilage bilayer is not<br />

optimal since it assumes that directly opposed areas <strong>of</strong> cartilage<br />

are impinging and being affected equally. This assumption should<br />

not be made as different pathomechanisms <strong>of</strong> chondral injury can<br />

preferentially affect different sides and regions <strong>of</strong> the joint, and to<br />

varying degrees. Distinguishing between both articular cartilage<br />

surfaces will allow for non-opposing surfaces <strong>of</strong> the acetabulum and<br />

femoral head to be individually analyzed and compared. Static, two<br />

dimensional images cannot capture the spatially separate impinging<br />

articular surface zones with the hip in neutral flexion and rotation.<br />

Given this, future cartilage mapping investigations in FAI should<br />

consider analyzing each cartilage surface individually while targeting<br />

the known zones <strong>of</strong> impingement and high risk sites for early<br />

cartilage damage.<br />

For these reasons, cartilage imaging in the hip requires thin slice<br />

imaging, with high in-plane spatial resolution to allow for detailed <strong>of</strong><br />

assessment <strong>of</strong> the hyaline cartilage. The advent <strong>of</strong> high field scanners<br />

(3.0 T and higher), 3D volume acquisitions, and continual advances<br />

in scanner hardware and surface coil technology will facilitate this<br />

with higher signal to noise ratios and shorter scan times. Further<br />

studies <strong>of</strong> cartilage mapping in the FAI hip are required with larger<br />

sample sizes, and further correlation with clinical joint function and<br />

post-surgical outcomes are required, similar to what has been done<br />

for hip dysplasia.<br />

MRI cartilage mapping may be able to fulfill the rapidly growing<br />

medical demand for a reliable, objective, non-invasive and<br />

quantitative investigation <strong>of</strong> cartilage status. At present, most<br />

medical and surgical therapies for OA are only palliative, and<br />

concentrate on the treatment <strong>of</strong> symptoms. However advanced<br />

biochemical imaging techniques will detect changes much earlier,<br />

possibly before any symptoms or significant joint damage occurs.<br />

This may lead to a shift in the management <strong>of</strong> OA, from palliative, to<br />

more preventative and disease modifying. Furthermore, these novel<br />

protocols may serve as a future tool in monitoring the progression<br />

<strong>of</strong> cartilage changes and the responses to therapy, in both the clinical<br />

and research environments.


SELECTED READINGS:<br />

1. Blumenkrantz, G. and S. Majumdar, Quantitative magnetic resonance<br />

imaging <strong>of</strong> articular cartilage in osteoarthritis. Eur Cell Mater, 2007. 13: p.<br />

76-86.<br />

2. Mamisch, T.C., et al., Magnetic resonance imaging <strong>of</strong> the hip at 3 Tesla:<br />

clinical value in femoroacetabular impingement <strong>of</strong> the hip and current<br />

concepts. Semin Musculoskelet Radiol, 2008. 12(3): p. 212-22.<br />

3. Pollard, T.C., et al., Localized cartilage assessment with three-dimensional<br />

dGEMRIC in asymptomatic hips with normal morphology and cam<br />

deformity. J Bone Joint Surg Am., 2010. 92(15): p. 2557-69.<br />

4. Bittersohl, B., et al., Cartilage damage in femoroacetabular impingement<br />

(FAI): preliminary results on comparison <strong>of</strong> standard diagnostic vs delayed<br />

gadolinium-enhanced magnetic resonance imaging <strong>of</strong> cartilage (dGEMRIC).<br />

Osteoarthritis Cartilage, 2009. 17(10): p. 1297-306.<br />

77<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

5. Bittersohl, B., et al., Feasibility <strong>of</strong> T2* mapping for the evaluation <strong>of</strong> hip<br />

joint cartilage at 1.5T using a three-dimensional (3D), gradient-echo (GRE)<br />

sequence: a prospective study. Magn Reson Med, 2009. 62(4): p. 896-901.<br />

6. Watanabe, A., et al., T2 mapping <strong>of</strong> hip articular cartilage in healthy<br />

volunteers at 3T: a study <strong>of</strong> topographic variation. J Magn Reson Imaging,<br />

2007. 26(1): p. 165-71.<br />

7. Carballido-Gamio, J., et al., Feasibility and reproducibility <strong>of</strong> relaxometry,<br />

morphometric, and geometrical measurements <strong>of</strong> the hip joint with<br />

magnetic resonance imaging at 3T. J Magn Reson Imaging, 2008. 28(1): p.<br />

227-35.


78<br />

CurreNt CoNtroverSieS iN tJa (e)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

Moderator: Thomas P. Vail, MD, San Francisco, CA<br />

This symposium will review current controversies in primary and total hip arthroplasty in debate format and with case based<br />

panel discussions.<br />

I. THA Bearing Surface Options – Interpreting The Latest Data<br />

a. Highly Cross-linked Polyethylene - a stellar early track record. What does the future hold?<br />

Jay R. Lieberman MD, Farmington, CT<br />

b. Ceramic on Ceramic - newer and tougher materials. Can the problem with noise be understood and managed?<br />

William J. Hozack MD, Philadelphia, PA<br />

c. Metal on Metal: Low wear and stable, will metal ion issues derail this technology?<br />

Keith Berend, MD, New Albany, OH<br />

II. Does Hip Resurfacing Have a Role For The Young Active Patient?<br />

a. Affirmative:<br />

Thomas P. Vail, MD, San Francisco, CA<br />

b. Negative:<br />

Paul F. Lachiewicz MD, Chapel Hill, NC<br />

III. Displaced Femoral Neck Fractures: THA for All<br />

a. Affirmation:<br />

Carlos J. Lavernia, MD, Coral Gables, FL<br />

b. Negative:<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Case discussions and questions<br />

IV. High Flexion TKA - Is it Technology Over Reason?<br />

a. Affirmative:<br />

Daniel J. Berry, MD, Rochester, MN<br />

b. Negative:<br />

Craig J. Della Valle, MD, Chicago, IL<br />

V. Highly X-Linked Polyethylene is Optimal for TKA<br />

a. Affirmative:<br />

Terence J. Gioe, MD, Apple Valley, MN<br />

b. Negative:<br />

David G. Lewallen, MD, Rochester, MN<br />

VI. Patella Resurfacing Is Not Necessary<br />

a. Affirmative:<br />

Robert L. Barrack, MD, Saint Louis, MO<br />

b. Negative:<br />

Thomas K. Fehring MD, Charlotte, NC<br />

Case discussions and questions.


79<br />

highly CroSSliNked polyethyleNe:<br />

a SaFe ChoiCe but iS there trouble loomiNg?<br />

Jay R. Lieberman, MD<br />

I. Highly Cross Linked Polyethylene (XLP)<br />

A. Properties<br />

1. Reduce particle load by reducing wear volume which<br />

will lead to a decrease in the incidence <strong>of</strong> osteolysis and<br />

aseptic loosening<br />

2. XLP is manufactured by irradiating UHMWPE with<br />

gamma irradiation or electron beam irradiation and<br />

the free radicals that are created are removed by a heat<br />

treatment or an annealing phase<br />

3. Cross linking enhances the wear resistance <strong>of</strong> UHMWPE<br />

but also decreases its mechanical properties (i.e. fatigue<br />

crack propagation resistance)<br />

B. Advantages <strong>of</strong> XLP<br />

1. The development <strong>of</strong> XLP is not a radical departure from<br />

prior polyethylene. The irradiation has been increased to<br />

improve the wear resistance<br />

2. Flexibility<br />

a. Multiple liner options-elevated rim, lateralized liners,<br />

protrusio<br />

b. Multiple head sizes available with numerous head/<br />

neck options<br />

c. Impingement – probably increases wear but in<br />

general is fairly well tolerated<br />

3. Low cost<br />

4. Not a hard on hard bearing<br />

a. No fractures <strong>of</strong> head or liner (i.e. ceramic on ceramic)<br />

b. No generation <strong>of</strong> metal ions or induction <strong>of</strong><br />

hypersensitivity reactions (i.e. metal on metal)<br />

c. Probably tolerates malposition better than hard on<br />

hard bearings<br />

C. Disadvantages <strong>of</strong> XLP<br />

1. Reduced mechanical properties<br />

2. Increased wear compared with hard on hard bearings<br />

II. Laboratory Data<br />

A. XLP liners have been tested extensively in hip simulators<br />

B. Components manufactured with either gamma irradiation<br />

or electron beam irradiation demonstrated minimal wear<br />

even out to 12 million cycles.<br />

REFERENCES<br />

1. Digas G, Karrholm J, Thanner J, et al. Highly cross-linked polyethylene in<br />

total hip arthroplasty. Clin Orthop. 429: 6-16. 2004<br />

2. Dorr LD, Wan Z, Shahrdar C, Sirianni L, et al. Clinical Performance <strong>of</strong> a<br />

Durasul highly cross-linked polyethylene acetabular liner for total hip<br />

arthroplasty at five years. J Bone Joint Surg Am. 87: 1816-21. 2005<br />

3. Engh CA Jr., Stepniewski AS, Ginn SD, et al. A randomized prospective<br />

evaluation <strong>of</strong> outcomes after total hip arthroplasty using cross-linked<br />

Marathon and non-cross linked Enduron polyethylene liners. J Arthroplasty.<br />

21 (Suppl 2):17-21. 2006<br />

4. Heisel C, Mauricio S, dela Rosa MA, Schmalzried TP. Short-term in vivo wear<br />

<strong>of</strong> crosslinked polyethylene. J Bone Joint Surg Am. 86: 748-751. 2004<br />

5. Martell J, Verner J, Incavo S. Clinical performance <strong>of</strong> a highly cross-linked<br />

polyethylene at two years in total hip arthroplasty: a randomized prospective<br />

trial. J Arthroplasty. 18: 55-59. 2003<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

III. Clinical Data<br />

A. Data from multiple centers in both randomized trials and<br />

matched pair analyses demonstrate significant reductions in<br />

wear when comparing short-term performance (short and<br />

medium term follow-up) <strong>of</strong> cross-linked polyethylene versus<br />

conventional polyethylene. Some <strong>of</strong> the studies that will be<br />

reviewed are listed below.<br />

Martell et al, J Arthroplasty, 2003<br />

Digas et al, CORR, 2004<br />

Heisel et al, JBJS, 2005<br />

Dorr et al, JBJS, 2005<br />

Rohrl et al, J Arthroplasty, 2005<br />

Engh et al, J Arthroplasty , 2006<br />

Digas et al, Acta Orthop, 2007<br />

Bitsch et al, JBJS, 2008<br />

Engh et al, Hip Society, 2010<br />

Malchau et al, Hip Society 2010<br />

B. Femoral head size and wear <strong>of</strong> X linked polyethylene<br />

1. Lachiewicz et al (Clin Orthop; 2009)- The authors noted<br />

greater volumetric wear in patients with X linked liners<br />

with 36 and 40mm heads than with the small heads at a<br />

mean follow-up <strong>of</strong> 5-7 years.<br />

IV. Second Generation Cross-linked Polyethylenes<br />

A. Goal: Wear reduction with improved mechanical properties<br />

1. Use irradiation to cross-link the PE and an annealing<br />

phase below the melt temperature to maintain<br />

mechanical properties<br />

2. Need to eliminate free radicals<br />

3. Methods to eliminate free radicals<br />

a. Pharmacologic additives (i.e. vitamin E doping)<br />

b. Sequential low-dose irradiation and annealing<br />

c. Mechanical deformation<br />

4. These 2nd generation XLPE liners are now available<br />

Summary: Short term data demonstrates promising results<br />

will XLPE liners. Longer studies assessing the effect <strong>of</strong> thinner<br />

polyethylene ( ie larger head size) on wear rates are necessary.<br />

6. Oral E, Christensen SD, Malhi AS, Wannomae KK, Muratoglu OK. Wear<br />

resistance and mechanical properties <strong>of</strong> highly cross-linked, ultrahighmolecular<br />

weight polyethylene doped with vitamin E. J Arthroplasty. 21:580-<br />

91, 2006<br />

7. Digas G, Karrholm J, Thanner J, Herberts P. 5-year experience <strong>of</strong> highly crosslinked<br />

polyethylene in cemented and Uncemented sockets: two randomized<br />

studies using radiostereometric analysis. Acta Orthop. 78:746-54, 2007.<br />

8. Bitsch RG, Loidolt T, Heisel C, Ball S, Schmalzried TP. Reduction <strong>of</strong> osteolysis<br />

with use <strong>of</strong> Marathon cross-linked polyethylene. A concise follow-up, at a<br />

minimum <strong>of</strong> five year, <strong>of</strong> a previous report. J Bone Joint Surg Am. 90:1487-<br />

91, 2008.<br />

9. Lachiewicz PF, Heckman DS, Soileau ES, Mangla J, Martell JM. Femoral head<br />

size and wear <strong>of</strong> highly cross-linked polyethylene at 5 to 8 years. Clin Orthop<br />

Relat Res. 2009;467(12):3290-6.<br />

10. Malchau H. et al. Seven to Eleven Year Follow-Up <strong>of</strong> Highly Cross-linked<br />

Polyethylene Liners in Total Hip Arthroplasty. Hip Society, 2010.<br />

11. Engh C. et al. A prospective Randomized Study <strong>of</strong> Crosslinked and Noncrosslinked<br />

Polyethylene for THA at 10-year Follow-up. Hip Society 2010.


80<br />

CeramiC oN CeramiC - iNterpretiNg the lateSt data<br />

William Hozack, MD<br />

Squeaking - do we understand and can we manage this problem?<br />

Clinical performance - what are the results?<br />

New ceramic bearings - are we getting what we want?<br />

COC squeaking is a phenomenon that tends to develop at about<br />

one year after surgery and can be persistent and bothersome for<br />

the patient. There seems to be a wide variation in the incidence<br />

<strong>of</strong> squeaking. Some (D’Antonio, Murphy) report an incidence less<br />

than 1%, while others identify a very high incidence (Ranawat<br />

11%, Keurentjes 21%). At this time, there is no direct evidence that<br />

squeaking adversely affects longevity although squeaking is related<br />

to a higher rate <strong>of</strong> wear (Walter, JOA 2010) and there is a report <strong>of</strong><br />

osteolysis in a squeaking ceramic hip with neck to rim impingement<br />

(Murali, JOA 2008). Restrepo (CORR, 2010) evaluated the natural<br />

history <strong>of</strong> squeaking - <strong>of</strong> 95 patients who developed a squeak, the<br />

intensity and frequency <strong>of</strong> squeaking did not change in most over<br />

time once it started. In 30% the squeaking noises diminished with<br />

time, but in none did it ever disappear entirely. 9 patients underwent<br />

revision surgery to eliminate the squeaking phenomenon. Revision<br />

for squeaking does not appear to compromise the result (Matar, JOA<br />

2010). The central cause <strong>of</strong> COC squeak is felt to be edge loading <strong>of</strong><br />

the ceramic head on the ceramic liner. The primary source <strong>of</strong> this<br />

edge loading is likely to be impingement –either prosthetic neck<br />

to rim impingement or bone and s<strong>of</strong>t tissue impingement. This<br />

leads to separation <strong>of</strong> the femoral head from the liner leading to<br />

edge loading. Edge loading leads to localized fluid-film break down<br />

creating a localized area <strong>of</strong> increased wear <strong>of</strong> the ceramic head (a<br />

wear scar or stripe), and increased friction. This results in increased<br />

frictional energy which is released through implant vibration -<br />

squeaking with a variety <strong>of</strong> activities. A recent study Chevillotte<br />

(CORR 2010) suggests that squeaking may result from titanium<br />

deposition within the bearing surface, which may develop if edge<br />

loading and impingement occurs. Component position is a key factor<br />

in edge loading and impingement. Walters (JBJS 2008) found that<br />

“squeakers” were more likely to have acetabular components placed<br />

outside the acceptable range <strong>of</strong> anteversion and abduction. This<br />

was confirmed by a recent analysis (Fraser, AAHKS, 2010) in which<br />

increased cup abduction or anteversion increased the incidence <strong>of</strong><br />

squeaking. Component selection is also a factor in the incidence <strong>of</strong><br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

squeaking. Our data found that squeaking was significantly higher<br />

with a TMZF femoral component with a V-40 neck diameter (8.6%)<br />

versus a TAV femoral component with a C-taper neck diameter<br />

(0.7%) (Restrepo, JBJS 2010). Other published data reflect this as<br />

well (Ranawat, Keurentjes). Acetabular component design also may<br />

play a role. The highest incidence <strong>of</strong> squeaking has occurred with<br />

acetabular components containing a ceramic insert with an elevated<br />

rim (Swanson, JOA 2010). It is my opinion that squeaking can be<br />

minimized, if not eliminated. Component position should be<br />

optimized to minimize impingement. This involves paying close<br />

attention to cup abduction and anteversion, as well as combined<br />

anteversion. Impingement should also be minimized by restoring<br />

hip <strong>of</strong>fset and by eliminating any potential sources <strong>of</strong> impingement.<br />

Larger femoral heads may play a role as well. Proper seating <strong>of</strong> the<br />

liner inside the cup also must be ensured at the time <strong>of</strong> surgery.<br />

Some patients may not be well suited for a COC bearing - specifically<br />

small, flexible (usually female) patients - who force the surgeon to<br />

use smaller components with smaller femoral heads and who have<br />

tremendous ROM setting up a high potential for impingement and<br />

squeaking.<br />

Clinical performance <strong>of</strong> THA with COC bearings at longer<br />

followups is encouraging. A minimum 10 year study (Lee, JBJS 2010)<br />

demonstrated a 99% survivorship, but had 2% head fractures, no<br />

liner fractures, 1% squeaking, and fretting <strong>of</strong> the femoral neck in<br />

7%. A minimum 20 year study (Petsatodis, JBJS 2010) demonstrated<br />

a 85% survivorship, with no fractures <strong>of</strong> the ceramic bearing or head.<br />

Importantly, osteolysis is almost eliminated with the use <strong>of</strong> COC<br />

bearings.<br />

Newer COC bearings <strong>of</strong>fer the potential <strong>of</strong> improved longevity with<br />

fewer complications related to squeaking (more resistant to stripe<br />

wear) and fracture (tougher) - one such material is an alumina<br />

composite with nano-sized zirconia particles. The other advantage<br />

related to the toughness <strong>of</strong> the new bearing is that it is possible to<br />

reduce the bearing thickness, thereby allowing the surgeon to use<br />

a larger diameter femoral head with smaller cup sizes, in theory<br />

reducing the risk <strong>of</strong> impingement, stripe wear, and instability. The<br />

published studies are short-term, so provide little information<br />

regarding the longevity issue. The two published studies (Hamilton<br />

CORR 2010, Lombardi CORR 2010) demonstrated persistent issues<br />

related to ceramic fractures.


81<br />

metal oN metal: low wear aNd Stable -<br />

will metal ioN iSSueS derail thiS teChNology?<br />

Conventional polyethylene was plagued by wear induced osteolysis,<br />

and both early and late dislocation. These two factors have been<br />

the driving force in the search for an optimal bearing. Metal-onmetal<br />

(MoM) articulations have a long record <strong>of</strong> use and <strong>of</strong>fer low<br />

wear, larger head size, and increased stability. However, there are<br />

increasing reports and growing concerns surrounding the issues<br />

<strong>of</strong> implant design related failures, failure <strong>of</strong> ingrowth, metallosis,<br />

pseudotumors, hypersensitivity and unexplained pain occurring in<br />

patients with MoM THA.<br />

We examined experience with 3 different MoM THA designs to<br />

examine survivorship at minimum 2-year follow-up and extrapolate<br />

the failure modes with differences in implant design. A retrospective<br />

review <strong>of</strong> all primary THA performed at our institution from 1996<br />

to 2006 identified 1590 THA in 1365 patients done utilizing 3<br />

different metal-on-metal implant designs. Design 1 represents<br />

a titanium (Ti) shell with Porous Plasma Sprayed (PPS) coating<br />

mated with a chromium cobalt (CoCr) tapered insert <strong>of</strong> 28- or 32<br />

mm inner diameter. Design 2 is a CoCr monoblock shell with Ti-<br />

PPS surface coating, a standard head diameter <strong>of</strong> 38mm, and wall<br />

thickness increasing with outer diameter. Design 3 is a resurfacing<br />

style monoblock cup <strong>of</strong> CoCr with Ti-PPS surface coating, a constant<br />

wall thickness <strong>of</strong> 3mm for an effective outer diameter 6mm larger<br />

than the femoral head, with head sizes available from 40- to 60mm.<br />

Minimum 2year follow-up was available for 1211 THA (76%) in the<br />

overall series. Of the 1211 THA with minimum 2-year follow-up, 583<br />

were in female patients and 628 were in males.<br />

Overall, our experience with MoM articulations has yielded a 94.9%<br />

survivorship at an average <strong>of</strong> 60 months. Follow-up was longest for<br />

Design 1, followed by Design 2 then Design 3. Design 2 demonstrated<br />

significantly higher early mechanical failure including failure <strong>of</strong><br />

bony ingrowth or subsidence (3.5%, defined as aseptic loosening),<br />

than the titanium shell (Design 1: 1.7%; p


8. Griffin WL, Nanson CJ, Springer BD, Davies MA, Fehring TK.Reduced<br />

articular surface <strong>of</strong> one-piece cups: a cause <strong>of</strong> runaway wear and early failure.<br />

Clin Orthop Relat Res. 2010 Sep;468(9):2328-32.<br />

9. Jacobs JJ, Urban RM, Hallab NJ, Skipor AK, Fischer A, Wimmer MA. Metalon-metal<br />

bearing surfaces. J Am Acad Orthop Surg. 2009 Feb;17(2):69-76.<br />

10. Jeffers JR, Roques A, Taylor A, Tuke MA. The problem with large diameter<br />

metal-on-metal acetabular cup inclination. Bull NYU Hosp Jt Dis.<br />

2009;67(2):189-92.<br />

11. Latteier MJ, Berend KR, Lombardi AV Jr, Ajluni AF, Seng BE, Adams JB.<br />

Gender is a significant factor for failure <strong>of</strong> metal-on-metal total hip<br />

arthroplasty. J Arthroplasty. (In submission).<br />

12. Lombardi AV Jr, Mallory TH, Cuckler JM, Williams J, Berend KR, Smith<br />

TM. Mid-term results <strong>of</strong> a polyethylene-free metal-on-metal articulation. J<br />

Arthroplasty. 2004 Oct;19(7 Suppl 2):42-7.<br />

13. Lombardi AV Jr, Skeels MD, Berend KR, Adams JB, Franchi OJ. Do large<br />

heads enhance stability and restore native anatomy in primary total hip<br />

arthroplasty? Clin Orthop Relat Res. 2010 Oct 16. [Epub ahead <strong>of</strong> print]<br />

14. Molli RG, Lombardi AV Jr, Berend KR, Adams JB, Sneller MA. Metal-on-metal<br />

versus metal-on-improved polyethylene bearings in total hip arthroplasty. J<br />

Arthroplasty. (In submission).<br />

82<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

15. Ng VY, Lombardi AV Jr, Berend KR, Skeels MD, Adams JB. Perivascular<br />

lymphocytic infiltration is not limited to metal-on-metal bearings. Clin<br />

Orthop Relat Res. 2010 Sep 28. [Epub ahead <strong>of</strong> print]<br />

16. Ollivere B, Darrah C, Barker T, Nolan J, Porteous MJ. Early clinical failure <strong>of</strong><br />

the Birmingham metal-on-metal hip resurfacing is associated with metallosis<br />

and s<strong>of</strong>t-tissue necrosis. J Bone Joint Surg Br. 2009 Aug;91(8):1025-30.<br />

17. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons<br />

CL, Ostlere S, Athanasou N, Gill HS, Murray DW. Pseudotumours<br />

associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 2008<br />

Jul;90(7):847-51.<br />

18. Park YS, Moon YW, Lim SJ, Yang JM, Ahn G, Choi YL. Early osteolysis<br />

following second-generation metal-on-metal hip replacement. J Bone Joint<br />

Surg Am. 2005 Jul;87(7):1515-21.<br />

19. Vendittoli PA, Roy A, Mottard S, Girard J, Lusignan D, Lavigne M. Metal ion<br />

release from bearing wear and corrosion with 28 mm and large-diameter<br />

metal-on-metal bearing articulations: a follow-up study. J Bone Joint Surg Br.<br />

2010 Jan;92(1):12-9.<br />

20. Williams S, Leslie I, Isaac G, Jin Z, Ingham E, Fisher J. Tribology and wear <strong>of</strong><br />

metal-onmetal hip prostheses: influence <strong>of</strong> cup angle and head position. J<br />

Bone Joint Surg Am. 2008 Aug;90 Suppl 3:111-7


83<br />

doeS hip reSurFaCiNg have a role For the youNg aNd<br />

aCtive patieNt? – aFFirmative<br />

Thomas Parker Vail, MD<br />

I. Introduction.<br />

A. Hip resurfacing is the only available hip arthroplasty option<br />

that allows femoral bone conservation.<br />

B. The ideal candidate has been refined and narrowed<br />

through analysis <strong>of</strong> clinical outcomes reports in case series,<br />

international joint registries, and retrieval studies. iii<br />

II. Indications<br />

A. Based upon the reported experience, the optimal patient for<br />

resurfacing has excellent femoral neck bone quality, is under<br />

55 years <strong>of</strong> age, has minimal biomechanical alteration due<br />

to bone loss or remodeling, and has a larger than average<br />

femoral head size. iii,iv,v<br />

B. a patient who benefits from a metal bearing is one who is at<br />

risk for wear <strong>of</strong> a polyethylene bearing due to young age or<br />

high use<br />

C. Both the diagnosis <strong>of</strong> developmental dysplasia and<br />

osteonecrosis have been reported to have increased rates <strong>of</strong><br />

early failure than osteoarthritis patient cohorts<br />

III. Contraindications<br />

A. Surface replacement is contraindicated in patients with<br />

inadequate femoral head, neck or acetabular bone.<br />

1. The definition <strong>of</strong> inadequate bone may include<br />

osteoporosis <strong>of</strong> the femoral neck, large cysts <strong>of</strong> the<br />

femoral head or neck (especially cysts >10-12 mm or<br />

cysts located at the osteo-articular junction where stress<br />

transfer is high after resurfacing)<br />

2. primary or metastatic neoplasms, active infection, posttraumatic<br />

arthrosis with extensive femoral neck bone loss<br />

3. large segments <strong>of</strong> osteonecrosis <strong>of</strong> the femoral head with<br />

collapse <strong>of</strong> the head into the neck, or proximal femoral<br />

deficiencies.<br />

B. Another important contraindication to resurfacing is a<br />

situation where the patient may be at risk for an adverse<br />

reaction to the metal substrate <strong>of</strong> the implant.<br />

1. These cases are uncommon (the exact incidence is not<br />

clearly defined, and varies geographically) but difficult or<br />

impossible to predict.<br />

2. Exposure to high levels <strong>of</strong> metal ions has been associated<br />

with aggressive, non-cancerous s<strong>of</strong>t tissue reactionsvi and<br />

hypersensitivity reactions in a small number <strong>of</strong> patients. vii<br />

a) The majority <strong>of</strong> the cases reported in the largest series<br />

are female<br />

b) no other significant demographic or biologic<br />

similarities among these patients have been<br />

consistently identified to date. viii<br />

C. Another category <strong>of</strong> patients who assume additional risk<br />

with hip resurfacing is the group <strong>of</strong> women who might<br />

become pregnant after hip resurfacing.<br />

1. Detrimental effects <strong>of</strong> metal ions on a fetus have not<br />

been demonstrated and the exact risk is not known<br />

2. it is known that metal ions will cross the placenta.<br />

D. Patients with known sensitivity to metal, renal insufficiency<br />

(which interferes with elimination <strong>of</strong> metal ions), or women<br />

<strong>of</strong> child bearing age may not be ideal candidates for hip<br />

resurfacing<br />

IV. Life expectancy<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

A. The average age <strong>of</strong> a hip resurfacing patient is 47 years.ix<br />

1. Using the National Vital Statistics Reports, a patient at 40<br />

years <strong>of</strong> age has approximately an additional 40-year life<br />

expectancy.<br />

2. For a 55 year old patient, the life expectancy is 26.6 years. x<br />

V. Bone conservation.<br />

A. A hip resurfacing obviously saves bone on the femoral side<br />

because <strong>of</strong> the conservative initial cuts.<br />

B. An additional consideration is that bone loss due to stress<br />

shielding is minimized in hip resurfacing compared to total<br />

hip replacement.<br />

1. This phenomenon is demonstrated in in vivo models<br />

using photoelastic coatings or finite element modeling,xi<br />

and from bone density analysis <strong>of</strong> patients with hip<br />

resurfacing devices implanted.<br />

VI. Biomechanical restoration.<br />

A. Hip resurfacing can correct some common biomechanical<br />

and functional problems. xii<br />

B. According to some reports, a surgeon is more likely to<br />

lengthen a leg with a total hip and more likely to shorten<br />

with a hip resurfacing. xiii,xiv<br />

C. There are many cases where hip resurfacing is not<br />

appropriate or not the best implant choice due to<br />

biomechanical considerations. These situations include:<br />

1. when the femoral neck is shortened or mal-oriented a<br />

total hip is a better option.<br />

2. a long neck, high <strong>of</strong>fset, and a metaphyseal diaphyseal<br />

mismatch,<br />

3. retained internal fixation hardware where the hip<br />

resurfacing does a better job <strong>of</strong> restoring the mechanics<br />

or avoiding hardware that could complicate standard<br />

implant insertion.<br />

4. In cases where the biomechanics are abnormal on the<br />

acetabular side, a hip resurfacing allows the surgeon to<br />

bring the hip center down and medially towards the<br />

anatomic hip center, thereby restoring leg length and<br />

joint mechanics.<br />

5. cases <strong>of</strong> high dislocation such as Crowe III and IV<br />

developmental dysplasia cases associated with segmental<br />

bone loss that could compromise the fixation <strong>of</strong> a<br />

monoblock acetabular component are not ideal for hip<br />

resurfacing<br />

6. inadequate acetabular bone available to securely<br />

and solidly implant a monoblock resurfacing cup<br />

in developmental dysplasia, and large area <strong>of</strong> head<br />

involvement or collapse in osteonecrosis should<br />

disqualify patients from consideration for hip<br />

resurfacing.<br />

VII. Functional outcome.<br />

A. a large femoral head is more resistant to dislocation,<br />

and perhaps has a better range <strong>of</strong> movement than hip<br />

resurfacing.<br />

B. some data suggesting that the gait mechanics, abductor<br />

moment and ground reaction force may be improved<br />

with hip resurfacing compared to large head total hip<br />

replacement. xv


VIII. Complications<br />

A. the procedure is technically demanding, as is reflected by the<br />

complications reported in the initial clinical experience in<br />

the United States. xvi,xvii<br />

B. the success <strong>of</strong> hip resurfacing is very dependent upon<br />

technical details. xviii,xix,xx<br />

C. Hip resurfacing has some unique complications associated<br />

with the procedure<br />

1. femoral neck fracture. xxi,xxii,xxiii,xxiv<br />

D. some hip resurfacing failures may be within the power <strong>of</strong> the<br />

surgeon to control. xxv<br />

E. Retrieval analysis shows that failures are related to damage<br />

to the femoral neck during surgery (notching and fracture),<br />

poor cement technique (failure to achieve cementbone<br />

integration, or excessive cement penetration), and<br />

incomplete component seating. xxvi<br />

1. Higher wear rates noted in retrieval analysis correlate<br />

with more vertical and anteverted socket position.<br />

Nevertheless, anteversion and inclination together<br />

explain only 30% <strong>of</strong> the variation in wear rate.<br />

2. This finding strongly implies that other factors such<br />

as subluxation due to impingement, or rim loaded<br />

situations causing secondary implant edge damage and<br />

corrosion might play a role in ion release.<br />

3. When the resurfacing bearing functions as intended, the<br />

wear rates are very low.<br />

4. Elevation in metal ion levels may serve as a marker for<br />

bearing malfunction or implant loosening xxvii<br />

5. Lymphocytic infiltrates have been found in high-wearing<br />

retrievals. Longer exposure to high metal levels or delayed<br />

type hypersensitivity in a subset <strong>of</strong> susceptible patients<br />

could lead to a higher incidence <strong>of</strong> adverse s<strong>of</strong>t tissue<br />

reaction over time.<br />

6. Recent data indicates that the majority <strong>of</strong> tissue reactions<br />

are associated with high metal ion levels.<br />

IX. Revision.<br />

A. The complexity <strong>of</strong> the revision is dictated by the reason for<br />

revision, with poorer outcomes in cases associated with<br />

damage to s<strong>of</strong>t tissues.<br />

B. Most revisions <strong>of</strong> hip resurfacing components are related to<br />

femoral neck fracture or acetabular loosening.<br />

REFERENCES<br />

i. Amstutz HC, Le Duff MJ, Campbell PA, Dorey FJ. The effects <strong>of</strong> technique<br />

changes on aseptic loosening <strong>of</strong> the femoral component in hip resurfacing.<br />

Results <strong>of</strong> 600 Conserve Plus with a 3 to 9 year follow-up. J Arthroplasty.<br />

2007;22:481-489.<br />

ii. Pollard TC, Baker RP, Eastaugh-Waring SJ, Bannister GC. Treatment <strong>of</strong> the<br />

young active patient with osteoarthritis <strong>of</strong> the hip. A five- to seven-year<br />

comparison <strong>of</strong> hybrid total hip arthroplasty and metal-on-metal resurfacing.<br />

J Bone Joint Surg Br. 2006;88:592-600.<br />

iii. Beaule PE, Dorey FJ, LeDuff M, et al: Risk factors affecting outcome <strong>of</strong> metalonmetal<br />

surface arthroplasty <strong>of</strong> the hip. Clin Orthop 2004:87-93, 2004<br />

iv. Sibanda N, Copley LP, Lewsey JD, et al: on behalf <strong>of</strong> the Steering Committee<br />

<strong>of</strong> the National Joint Registry (NJR) for England and Wales: Revision Rates<br />

after Primary Hip and Knee Replacement in England between 2003 and<br />

2006. PLoS Med. Sep 2;5(9):e179, 2008<br />

v. Australian <strong>Orthopaedic</strong> Association National Joint Replacement Registry.<br />

<strong>Annual</strong> Report 2008. Adelaide: AOA: 2008. Available at www.aoa.org.au<br />

vi. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons<br />

CL, Ostlere S, Athanasou N, Gill HS, Murray DW. Pseudotumours associated<br />

with metal-onmetal hip resurfacings. J Bone Joint Surg Br. 2008;90:847-851.<br />

vii. Campbell P, Shimmin A, Walter L, Solomon M. Metal sensitivity as a cause <strong>of</strong><br />

groin pain in metal-on-metal hip resurfacing. J Arthroplasty. 2008;23:1080-<br />

1085.<br />

84<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

C. When the revision necessitated due to the more rare cases<br />

<strong>of</strong> s<strong>of</strong>t tissue damage due to metal ion toxicity,xxviii the<br />

results could be quite different for either a total hip or a hip<br />

resurfacing conversion. xxix,xxx<br />

D. With regard to retention <strong>of</strong> the acetabular component, when<br />

a new femoral head is combined with an existing socket,<br />

wear simulator analysis shows that there is a secondary runin<br />

phase with the bearing that is about 80% <strong>of</strong> the initial<br />

run-in phase.<br />

X. Literature and registry data.<br />

A. The metal-on-metal hip resurfacing devices in common use<br />

today were introduced into clinical practice within the last<br />

decade.<br />

B. Published literature includes investigator and designing<br />

surgeon reports, non-designer case series, registry data, and<br />

limited prospective and randomized studies . xxxi,xxxii,xxxiii.xxxiv<br />

C. The synopsis <strong>of</strong> world experience indicates that patient<br />

selection, surgeon experience, and surgical technique are<br />

extremely important variables impacting the outcome. xxxv<br />

D. Registry data supports the concept that operations performed<br />

on younger patients, with larger size implants, and perhaps<br />

male gender by more experienced surgeons are associated<br />

with a lower risk <strong>of</strong> early failure.<br />

1. Newer registry data show overall failure rates that are not<br />

as good as the best published series<br />

a) In the U.K total joint registry, the revision rate for hip<br />

resurfacing is 2.6 overall at 3 years, but for males, the<br />

three-year revision rate for resurfacing is less than<br />

cementless total hip. 6<br />

b) Australian registry data from 2008, while the overall<br />

revision rate for resurfacing is high, in the males<br />

under 55 years <strong>of</strong> age out to seven years after surgery,<br />

the revision rate for resurfacing is lower than for total<br />

hip replacement. 7<br />

c) The advantage for hip resurfacing in both the<br />

Australian registry and the UK registry has not held up<br />

in the 2010 publications<br />

E. There is variability in results depending upon the device, the<br />

surgeon, and the location <strong>of</strong> surgery<br />

viii.Mabilleau G, Kwon YM, Pandit H, Murray DW, Sabokbar A. Metal-on-metal<br />

hip resurfacing arthroplasty: a review <strong>of</strong> periprosthetic biological reactions.<br />

Acta Orthop. 2008;79:734-74<br />

ix. Vail TP. Mina CA. Yergler JD. Pietrobon R. Metal-on-metal hip resurfacing<br />

compares favorably with THA at 2 years followup. Clin Orthop. 453:123-31,<br />

2006<br />

x. National Center for Health Statistics, Health, United States 2008. Available<br />

at www.cdc.gov/nchs/data<br />

xi. Vail TP, Glisson RR, Dominguez DE, et al: Position <strong>of</strong> hip resurfacing<br />

component affects strain and resistance to fracture in the femoral neck. J<br />

Bone Joint Surg Am 90:1951-1960, 2008 xii Loughead JM, Chesney D,<br />

Holland JP, McCaskie AW: Comparison <strong>of</strong> <strong>of</strong>fset in Birmingham hip<br />

resurfacing and hybrid total hip arthroplasty. J Bone Joint Surg Br. 87:163-<br />

166, 2005<br />

xiii. Girard J, Lavigne M, Vendittoli PA, et al: Biomechanical reconstruction <strong>of</strong><br />

the hip: a randomised study comparing total hip resurfacing and total hip<br />

arthroplasty. J Bone Joint Surg Br. 88:721-726, 2006<br />

xiv. Pollard TC, Baker RP, Eastaugh-Waring SJ, et al: Treatment <strong>of</strong> the young active<br />

patient with osteoarthritis <strong>of</strong> the hip. A five- to seven-year comparison <strong>of</strong><br />

hybrid total hip arthroplasty and metal-on-metal resurfacing. J Bone Joint<br />

Surg Br. 88:592-600, 2006<br />

xv. Queen RM, Abbey AN, Sabesan V, et al. Gait symmetry: hip resurfacing<br />

versus total hip arthroplasty (unpublished data).


xvi. Della Valle CF, Nunley RM, Raterman SJ, Barrack RL. Initial american<br />

experience with hip resurfacing following FDA approval. Clin Orthop Relat<br />

Res (2009) 467:72-78.<br />

xvii.Stulberg BN, Trier KK, Naughton M, Zadzilka JD. Results and lessons learned<br />

from a United States hip resurfacing investigational device exemption trial. J<br />

Bone Joint Surg Am 2008;90:21-26.<br />

xviii. Amstutz HC, Le Duff MJ, Campbell PA, et al: The effects <strong>of</strong> technique<br />

changes on aseptic loosening <strong>of</strong> the femoral component in hip resurfacing.<br />

Results <strong>of</strong> 600 Conserve Plus with a 3 to 9 year follow-up. J Arthroplasty<br />

22:481-489, 2007<br />

xix. Mont MA, Seyler TM, Ulrich SD, et al. Effect <strong>of</strong> changing indications and<br />

techniques on total hip resurfacing. Clin Orthop 465;63-70, 2007<br />

xx. Stulberg BN, Trier KK, Naughton M, et al: Results and lessons learned from a<br />

United States hip resurfacing investigational device exemption trial. J Bone<br />

Joint Surg Am 90:21-26, 2008<br />

xxi. Morlock MM, Bishop N, Zustin J, et al: Modes <strong>of</strong> implant failure after hip<br />

resurfacing: morphological and wear analysis <strong>of</strong> 267 retrieval specimens. J<br />

Bone Joint Surg Am 90 Suppl 3:89-95, 2008<br />

xxii.Shimmin AJ, Back D: Femoral neck fractures following Birmingham hip<br />

resurfacing: a national review <strong>of</strong> 50 cases. J Bone Joint Surg Br. 87:463-464,<br />

2008<br />

xxiii. Shimmin AJ, Bare J, Back DL: Complications associated with hip resurfacing<br />

arthroplasty. Orthop Clin North Am. 36:187-193, 2005<br />

xxiv. Marker DR, Seyler TM, Jinnah RH, et al: Femoral neck fractures after metalon-metal<br />

total hip resurfacing: a prospective cohort study. J Arthroplasty.<br />

22:66-71, 2007 xxv De Haan R, Campbell PA, Su EP, et al : Revision <strong>of</strong> metalon-metal<br />

resurfacing arthroplasty <strong>of</strong> the hip: the influence <strong>of</strong> malpositioning<br />

<strong>of</strong> the components. J Bone Joint Surg Br. 90:1158-1163, 2008<br />

85<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

xxvi. Morlock MM, Bishop N, Zustin J, Hahn M, Ruther W, Amling M. Modes <strong>of</strong><br />

implant failure after hip resurfacing: morphological and wear analysis <strong>of</strong> 267<br />

retrieval specimens. J Bone Joint Surg Am. 2008;90 Suppl 3:89-95.<br />

xxvii. DeSmet K, DeHaan R, Calistri A, et al. Metal ion measurement as a<br />

diagnostic tool to identify problems with metal-on-metal hip resurfacing. J<br />

Bone Joint Surg Am 2008;90:202-208.<br />

xxviii. Zustin J, Amling M, Krause M, et al: Intraosseous lymphocytic infiltrates<br />

after hip resurfacing arthroplasty : a histopathological study on 181 retrieved<br />

femoral remnants. Virchows Arch. 454:581-588, 2009<br />

xxix. Campbell P, Shimmin A, Walter L, Solomon M. Metal sensitivity as a cause<br />

<strong>of</strong> groin pain in metal-on-metal hip resurfacing. J Arthroplasty 23:1080-<br />

1085, 2008<br />

xxx.Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, et al: Pseudotumours<br />

associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br.<br />

90:847-851, 2008<br />

xxxi. Vail TP, Mont MA, McGrath MS, et al: Hip resurfacing: patient and treatment<br />

options. J Bone Joint Surg Am. 91 Suppl 5:2-4, 2009<br />

xxxii. Siebel T, Maubach S, Morlock MM. Lessons learned from early clinical<br />

experience and results <strong>of</strong> 300 ASR hip resurfacing implantations. Proc Inst<br />

Mech Eng H. 220:345353, 2006<br />

xxxiii. Della Valle CF, Nunley RM, Raterman J, et al: Initial american experience<br />

with hip resurfacing following FDA approval. Clin Orthop 467:72-78, 2009<br />

xxxiv. Shimmin A, Beaule PE, Campbell P. Metal-on-metal hip resurfacing<br />

arthroplasty. J Bone Joint Surg Am. 2008;90:637-654.<br />

xxxv. Vail TP, Glisson RR, Dominguez DE, Kitaoka K, Ottaviano D. Position <strong>of</strong><br />

hip resurfacing component affects strain and resistance to fracture in the<br />

femoral neck. J Bone Joint Surg Am 2008;90:1951-1960


86<br />

hip reSurFaCiNg iS the beSt For the youNg aCtive patieNt:<br />

Negative<br />

Paul F. Lachiewicz, MD<br />

The first decade <strong>of</strong> experience <strong>of</strong> modern metal-metal hip resurfacing<br />

(HR) has disclosed numerous problems and concerns that have not<br />

been a problem with conventional total hip arthroplasty (THA)<br />

using highly cross-linked polyethylene in young active patients.<br />

This presentation will focus on 5 particular problems:<br />

• Outcomes <strong>of</strong> HR compared to THA<br />

• Groin pain<br />

• Surgical learning curve<br />

• Rates <strong>of</strong> revision<br />

• Pseudotumour and other adverse complications<br />

Patient Outcomes Prospective Randomized Trials<br />

• No difference in hip scores, quality <strong>of</strong> life (Garbuz et al)<br />

• No difference in hip scores or most gait analysis parameters<br />

(Lavigne et al)<br />

Patient Outcomes Matched Pairs Studies<br />

Fowble et al 50 HR 50 THA<br />

• No difference in ROM or rate <strong>of</strong> dislocation<br />

• HR had higher function-activity level, but higher incidence <strong>of</strong><br />

slight or mild pain<br />

Hall et al 33 HR 99 THA<br />

• No significant benefit for one group over the other<br />

Mont et al 54 HR 54 THA<br />

• No difference in pain, outcomes, complications, revision rates<br />

at 2-5 years<br />

• HR patients had higher postop weighed activity scores than THA<br />

(but higher preop scores) and some gait parameters<br />

Range <strong>of</strong> Motion and Impingement after HR and THA<br />

(Incavo et al J Arthroplasty 2010 epub)<br />

• Combined CT and cadaver simulation study ¥ HR had worse<br />

range <strong>of</strong> motion, higher rate <strong>of</strong> impingement, and greater risk <strong>of</strong><br />

dislocation than conventional total hip!<br />

Groin Pain: An emerging serious problem after HR!<br />

Causes: Iliopsoas tendinitis<br />

Neck impingement<br />

Acetabular loosening<br />

Frequency: Nasser et al 18% (21 <strong>of</strong> 116 patients)<br />

10% limited ADL<br />

10% required pain medication<br />

Bartelt et al after conventional THA 7%<br />

Metal-metal THA 15%<br />

Hip resurfacing 18% (p=0.032)<br />

Patients with HR were more likely to have moderate or severe pain!<br />

SURGICAL LEARNING CURVE<br />

Non-experienced Surgeons<br />

1. North <strong>American</strong> safety study (Della Valle et al)<br />

• 537 BHR cases; 1 year data reported 449 HR<br />

• 40 adverse events (including 9 nerve palsies and 8<br />

dislocations)<br />

• Revision rate 3.1% (1st year)<br />

2. Multi-center Canadian Study (Kim et al)<br />

• 200 patients<br />

• 7% revision @ mean 19.5 months<br />

• 10/14 failures due to acetabular loosening<br />

3. Multicenter IDE Trial (Stulberg et al)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

• 337 Cormet¨ HRs<br />

• 24 revisions 7%<br />

Experienced Hip Surgeons (Nunley et al)<br />

• 650 HRs 5 surgeons<br />

• Complication rate only 2%<br />

• Learning curve for achieving desired component position:<br />

75-100 cases (or more)!<br />

Hip Resurfacing Revision Rates Registry Data<br />

Registry Revision rate<br />

Australian 3.7% 5yrs<br />

Swedish 3.4%<br />

England + Wales 1.8% 3yrs<br />

“Best available data” Revision rates after HR are 1.4 to 3.6 times<br />

higher than THA! McGrory et al AAOS Technology Overview<br />

JAAOS 2010<br />

Revisions <strong>of</strong> failed HR Same as primary THA?<br />

• Re-revision <strong>of</strong> revised failed HR 11% at 5 years!<br />

• Compared to 2.7% revision <strong>of</strong> primary THA @ 5yrs and<br />

8.2% re-revision THA @ 3yrs<br />

• Australian registry data (Corten + MacDonald)<br />

Adverse Reactions to Metal-Metal Articulation<br />

• Elevated metal ion levels<br />

• Hypersensitivity reactions<br />

• Pseudotumours<br />

• ALVAL type reactions<br />

Literature Search HR 2008-June 2010<br />

• 133 papers 32 papers (24.8%) related to adverse reactions<br />

14 Pseudotumour<br />

11 High metal levels<br />

7 Other adverse reactions<br />

Pseudotumours after Metal-metal HR (Glyn-Jones et al)<br />

• 1419 HR (1224 patients)<br />

• 1.8 % revision overall<br />

• At 8 years: 4% overall (95% CI: 2.2-5.8%)<br />

Men: 0.5%<br />

Women >40: 6%<br />

Women


3. Surgical learning curve remains formidable.<br />

4. Adverse tissue reactions and pseudotumours on the rise?<br />

5. Risks <strong>of</strong> metal-metal HR: revision rate and complications<br />

outweigh any possible benefit.<br />

6. Continue conventional THA in all patients.<br />

REFERENCES<br />

1. Bartelt RB, Yuan BJ, Trousdale RT, Sierra RJ.The prevalence <strong>of</strong> groin pain after<br />

metal-on-metal total hip arthroplasty and total hip resurfacing. Clin Orthop<br />

Relat Res 2010; 468: 2346-2356.<br />

2. Corten K, MacDonald SJ. Hip resurfacing data from national joint registries:<br />

what do they tell us? What do they not tell us? Clin Orthop Relat Res 2010;<br />

468:351-357.<br />

3. Della Valle CJ, Nunley RM, Raterman SJ, Barrack RL. Initial <strong>American</strong><br />

experience with hip resurfacing following FDA approval. Clin Orthop Relat<br />

Res 2009; 467:72-78.<br />

4. Fowble VA, dela Rosa MA, Mylene A, Schmalzried TP. A comparison <strong>of</strong> total<br />

hip resurfacing and total hip arthroplasty-patients and outcomes. Bull Hosp<br />

Joint Dis 2009; 67: 108-112.<br />

5. Garbuz DS, Tanzer M, Greidanus NV, Masri BA, Duncan CP. Metal-onmetal<br />

hip resurfacing versus large-diameter head metal-on-metal total hip<br />

arthroplasty A randomized clinical trial. Clin Orthop Relat Res 2010; 468:<br />

318-323.<br />

6. Glyn-Jones S, Pandit H, Kwon Y-M,Doll H, Gill HS, Murray DW. Risk factors<br />

for inflammatory pseudotumour formation following hip resurfacing. J Bone<br />

Joint Surg 2009; 91-B: 1566-1574.<br />

7. Grammatopolous G, Pandit H, Kwon Y-M, Gundle R, McLardy-Smith P,<br />

Beard DJ, Murray DW, Gill HS. Hip resurfacings revised for inflammatory<br />

pseudotumour have a poor outcome. J Bone Joint Surg 2009: 91-B: 1019-<br />

1024.<br />

8. Hall DP, Srikantharajah D, Anakwe RE, Gaston P, Howie CR. Patient-reported<br />

outcome following metal-on-metal resurfacing <strong>of</strong> the hip and total hip<br />

replacement. Hip International 2009; 19: 245-250.<br />

87<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

9. Incavo SJ, Thompson MT, Gold JE, Patel RV, Icenogle KD, Noble PC. Which<br />

procedure better restores intact hip range <strong>of</strong> motion: total hip arthroplasty<br />

or resurfacing? A combined cadaveric and computer simulation study. J<br />

Arthroplasty 2010; in press, epub.<br />

10. Kim PR, Beaule PE, Laflamme GY, Dunbar M. Causes <strong>of</strong> early failure in a<br />

multicenter clinical trial <strong>of</strong> hip resurfacing. J Arthroplasty 2008; 23(Suppl 1):<br />

44-49.<br />

11. Lavigne M, Therrien M, Nantel J, Roy A, Prince F, Vendittoli PA. the<br />

functional outcome <strong>of</strong> hip resurfacing and large-head THA is the same A<br />

randomized clinical trial. Clin Orthop Relat Res 2010; 468: 326-336<br />

12. McGrory B, Barrack R, Lachiewicz PF, Schmalzried TP, Yates AJ, Watters WC,<br />

Turkelson CM, Wies JL, St. Andre J. AAOS technology overview Modern<br />

metal-onmetal hip resurfacing. J Am Acad Orthop Surg 2010; 18: 306-314.<br />

13. Mont MA, Marker DR, Smith JM, Ulrich SD, McGrath MS. Resurfacing is<br />

comparable to total hip arthroplasty at short-term follow-up. Clin Orthop<br />

Relat Res 2009; 467: 66-71.<br />

14. Nasser AB, Beaule PE, O’Neill ME, Kim PR, Fazekas A. Incidence <strong>of</strong> groin<br />

pain after metal on metal hip resurfacing. Clin Orthop Relat Res 2010; 468:<br />

392-399.<br />

15. Nunley RM, Zhu J, Brooks PJ, Engh Jr, CA, Raterman SJ, Rogerson JS, Barrack<br />

RL. The learning curve for adopting hip resurfacing among hip specialists.<br />

Clin Orthop Relat Res 2010; 468: 382-391.<br />

16. Stulberg BN, Trier KK, Naughton M, Zadzilka JD. Results and lessons learned<br />

from a United States hip resurfacing investigational device exemption trial. J<br />

Bone Joint Surg 2008; 90-A (Suppl 3): 21-26.


Issues<br />

• Resolution <strong>of</strong> pain<br />

• Restoration <strong>of</strong> function<br />

88<br />

diSplaCed Femoral NeCk FraCtureS: tha For all<br />

(aFFirmative)<br />

Carlos J. Lavernia, MD<br />

Operative Procedure<br />

Complexity, Host, and Surgeon Experience<br />

• Internal Fixation: Less Blood Loss and Operative Time<br />

— Complications<br />

— Reoperations<br />

Internal Fixation THA<br />

42% 4%<br />

Internal Fixation THA<br />

47% 4%<br />

Perioperative Complications: OR time, Blood Loss<br />

Perioperartive complications THR<br />

• Loss <strong>of</strong> fixation components<br />

• Nerve Damage<br />

• Dislocation<br />

• Loosening with time<br />

Perioperative complications ORIF<br />

• Loss <strong>of</strong> Fixation<br />

Post Operative Function<br />

• THR<br />

— Young --- Restrictions impact loading<br />

— Old ----Faster return to preactivity level<br />

• ORIF<br />

— Young --- Longer period NWB and with restrictions<br />

Back to all activities -- longer timeframe<br />

— Old ---Harder to be NWB<br />

Back to all activities –Longer time Frame<br />

Two Years ---THR vs ORIF<br />

• Pain and Function<br />

Worldwide National Registries<br />

THA use for femoral neck fractures (2005)<br />

• Sweden 8.6%<br />

• Norway 8.2%<br />

• Canada 4%<br />

• Australia 2.7%<br />

• England 1.2%<br />

In the United States (1997-2001): hemi vs. ORIF vs. THA<br />

Treatment for femoral neck fractures<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

<strong>American</strong> Association <strong>of</strong> Hip and Knee Surgeons<br />

Treatment <strong>of</strong> Displaced Femoral Neck Fracture (2004)<br />

Long Term Results<br />

• Implant Survival<br />

• Pain 86% No Pain – Mild Pain<br />

• Complications<br />

— 17% Operative Complications<br />

— 10% Dislocations<br />

THA Versus Hemiarthroplasty: at 13 Years:<br />

• Revision Rate<br />

• Dislocations<br />

• Pain<br />

• Harris Hip Score<br />

Hemiarthroplasty THA<br />

24% 6.8%<br />

Hemiarthroplasty THA<br />

13% 20%<br />

Hemiarthroplasty THA<br />

45% 6%<br />

Hemiarthroplasty THA<br />

55% 80%<br />

Costs : Iorio et al. (2001): Costs 2 Years Postoperatively<br />

internal Fixation $24,606<br />

Unipolar Hemiarthroplasty $21,597<br />

Bipolar Hemiarthroplasty $22,043<br />

Hybrid THA $21,066<br />

Cemented THA $20,670<br />

Slover et al. (2009): Decision Model<br />

Average Cost Average QALY ICER*<br />

Hemiarthroplasty $38,100 4.44<br />

THA $41,100 5.97 $1,960<br />

ICER: Incremental Cost-Effectiveness Ratio. ($50,000 threshold to<br />

determine a cost-effective intervention)


Rogmark et al. (2003): Costs 2 Years Postoperatively<br />

89<br />

Internal Fixation $21,000<br />

THA $15,000<br />

Cognitively Impaired<br />

• High risk <strong>of</strong> dislocation in THA (32%)<br />

• Lower pain???<br />

• Costs<br />

REFERENCES<br />

1. Blomfeldt R, Tornkvist H, Ponzer S, Soderqvist A, Tidermark J. Comparison<br />

<strong>of</strong> internal fixation with total hip replacement for displaced femoral neck<br />

fractures. Randomized, controlled trial performed at four years. J Bone Joint<br />

Surg Am 2005;87-8:1680-8.<br />

2. Heetveld MJ, Rogmark C, Frihagen F, Keating J. Internal fixation versus<br />

arthroplasty for displaced femoral neck fractures: what is the evidence? J<br />

Orthop Trauma 2009;23-6:395-402.<br />

3. Hopley C, Stengel D, Ekkernkamp A, Wich M. Primary total hip arthroplasty<br />

versus hemiarthroplasty for displaced intracapsular hip fractures in older<br />

patients: systematic review. Bmj;340:c2332.<br />

4. Iorio R, Healy WL, Lemos DW, Appleby D, Lucchesi CA, Saleh KJ. Displaced<br />

femoral neck fractures in the elderly: outcomes and cost effectiveness. Clin<br />

Orthop Relat Res 2001-383:229-42.<br />

5. Iorio R, Schwartz B, Macaulay W, Teeney SM, Healy WL, York S. Surgical<br />

treatment <strong>of</strong> displaced femoral neck fractures in the elderly: a survey <strong>of</strong> the<br />

<strong>American</strong> Association <strong>of</strong> Hip and Knee Surgeons. J Arthroplasty 2006;21-<br />

8:1124-33.<br />

6. Jain NB, Losina E, Ward DM, Harris MB, Katz JN. Trends in surgical<br />

management <strong>of</strong> femoral neck fractures in the United States. Clin Orthop<br />

Relat Res 2008;466-12:3116-22.<br />

7. Johansson T, Bachrach-Lindstrom M, Aspenberg P, Jonsson D, Wahlstrom O.<br />

The total costs <strong>of</strong> a displaced femoral neck fracture: comparison <strong>of</strong> internal<br />

fixation and total hip replacement. A randomised study <strong>of</strong> 146 hips. Int<br />

Orthop 2006;30-1:1-6.<br />

8. Johansson T, Jacobsson SA, Ivarsson I, Knutsson A, Wahlstrom O. Internal<br />

fixation versus total hip arthroplasty in the treatment <strong>of</strong> displaced femoral<br />

neck fractures: a prospective randomized study <strong>of</strong> 100 hips. Acta Orthop<br />

Scand 2000;71-6:597-602.<br />

9. Keating JF, Grant A, Masson M, Scott NW, Forbes JF. Randomized comparison<br />

<strong>of</strong> reduction and fixation, bipolar hemiarthroplasty, and total hip<br />

arthroplasty. Treatment <strong>of</strong> displaced intracapsular hip fractures in healthy<br />

older patients. J Bone Joint Surg Am 2006;88-2:249-60.<br />

10. Lee BP, Berry DJ, Harmsen WS, Sim FH. Total hip arthroplasty for the<br />

treatment <strong>of</strong> an acute fracture <strong>of</strong> the femoral neck: long-term results. J Bone<br />

Joint Surg Am 1998;80-1:70-5.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

Johansson et al. (2006)<br />

Accumulated average cost within 2 years <strong>of</strong> the fracture<br />

Total Costs<br />

Lucid Cognitive Impaired*<br />

Internal Fixation EURO 14,000 EURO 11,000<br />

THA EURO 11,900 EURO 13,900<br />

* 29% Dislocation Rate<br />

11. Leonardsson O, Sernbo I, Carlsson A, Akesson K, Rogmark C. Long-term<br />

follow-up <strong>of</strong> replacement compared with internal fixation for displaced<br />

femoral neck fractures: results at ten years in a randomised study <strong>of</strong> 450<br />

patients. J Bone Joint Surg Br;92-3:406-12.<br />

12. Macaulay W, Pagnotto MR, Iorio R, Mont MA, Saleh KJ. Displaced femoral<br />

neck fractures in the elderly: hemiarthroplasty versus total hip arthroplasty. J<br />

Am Acad Orthop Surg 2006;14-5:287-93.<br />

13. Miyamoto RG, Kaplan KM, Levine BR, Egol KA, Zuckerman JD. Surgical<br />

management <strong>of</strong> hip fractures: an evidence-based review <strong>of</strong> the literature. I:<br />

femoral neck fractures. J Am Acad Orthop Surg 2008;16-10:596-607.<br />

14. Ravikumar KJ, Marsh G. Internal fixation versus hemiarthroplasty versus total<br />

hip arthroplasty for displaced subcapital fractures <strong>of</strong> femur-13 year results <strong>of</strong><br />

a prospective randomised study. Injury 2000;31-10:793-7.<br />

15. Rogmark C, Carlsson A, Johnell O, Sembo I. Costs <strong>of</strong> internal fixation and<br />

arthroplasty for displaced femoral neck fractures: a randomized study <strong>of</strong> 68<br />

patients. Acta Orthop Scand 2003;74-3:293-8.<br />

16. Rogmark C, Spetz CL, Garellick G. More intramedullary nails<br />

and arthroplasties for treatment <strong>of</strong> hip fractures in Sweden. Acta<br />

Orthop;815:588-92.<br />

17. Sayana MK, Lakshmanan P, Peehal JP, Wynn-Jones C, Maffulli N. Total hip<br />

replacement for acute femoral neck fracture: a survey <strong>of</strong> National Joint<br />

Registries. Acta Orthop Belg 2008;74-1:54-8.<br />

18. Slover J, H<strong>of</strong>fman MV, Malchau H, Tosteson AN, Koval KJ. A costeffectiveness<br />

analysis <strong>of</strong> the arthroplasty options for displaced femoral neck<br />

fractures in the active, healthy, elderly population. J Arthroplasty 2009;24-<br />

6:854-60.<br />

19. van den Bekerom MP, Hilverdink EF, Sierevelt IN, Reuling EM, Schnater<br />

JM, Bonke H, Goslings JC, van Dijk CN, Raaymakers EL. A comparison <strong>of</strong><br />

hemiarthroplasty with total hip replacement for displaced intracapsular<br />

fracture <strong>of</strong> the femoral neck: a randomised controlled multicentre trial in<br />

patients aged 70 years and over. J Bone Joint Surg Br;92-10:1422-8.


90<br />

diSplaCed Femoral NeCk FraCture: tha For all<br />

Javad Parvizi MD, FRCS<br />

Introduction:<br />

The North <strong>American</strong> population is ageing. Projections show that<br />

by 2020, 16.3 percent <strong>of</strong> the U.S. population, and approximately 25<br />

percent <strong>of</strong> the Canadian population will be age 65 or over compared<br />

with fewer than 13 percent in this age group currently. According to<br />

statistics from World Health Organization, there has been a steady<br />

rise in life expectancy over the last decade. Currently life expectancy<br />

in North America is 75.9 years for men and 81 years for women.<br />

People are living nearly twice as long today than they lived in year<br />

1900 when life expectancy was 47.3 years. The most pr<strong>of</strong>ound trend<br />

has been the disproportionate rise in the number <strong>of</strong> elderly patients.<br />

For example, the number <strong>of</strong> octogenarians rose 274% between 1960<br />

to 1994 with 3 million (1%) <strong>of</strong> the population in 1994 being 80<br />

years <strong>of</strong> age or older. This trend will continue. It is expected that by<br />

year 2050, 19 million (5%) <strong>of</strong> the population will be octogenarians<br />

or older. In fact people 85 and over are the most rapidly growing<br />

elderly age group in the population.<br />

Life expectancy is germane to joint replacement surgery as the<br />

prevalence <strong>of</strong> osteoarthritis <strong>of</strong> the hip and knee as well as hip fracture<br />

is related to ageing. That is, the older a population, the greater the<br />

prevalence <strong>of</strong> osteoarthritis and hip fractures. Each year more than<br />

five million people in the world sustain a hip fracture.<br />

Arthroplasty for Hip Fracture<br />

Joint arthroplasty continues to confer immense benefits to patients<br />

with hip fracture. In recent years evidence has emerged that total joint<br />

arthoplasty is the better option for patients with hip fracture leading<br />

to a decline in the use <strong>of</strong> hemiarthoplasty in these patients. I accept<br />

that THA compared to hemiarthoplasty <strong>of</strong>fers better functional<br />

outcome and is associated with lower reoperation rate. I personally<br />

perform THA in most patients with displaced THA. However the<br />

following facts need to be born in mind when deciding which <strong>of</strong><br />

these options to <strong>of</strong>fer to our patients with displaced femoral neck<br />

fracture:<br />

1) Sudden Death: Previous studies have shown that patients with hip<br />

fracture are at risk <strong>of</strong> sudden death during or after hip arthroplasty.<br />

Extensive research has been performed in this field hat implicates<br />

fat and marrow embolization as the mitigating. Patients with hip<br />

fracture because <strong>of</strong> their underlying ospetopenia or osteoporosis<br />

have a wide and capacious venous canal that allows easier entry<br />

<strong>of</strong> fat and marrow emboli predisposing these patients to death.<br />

In one study, patients with hip fracture undergoing cemented<br />

hip arthroplasty were 200 times more likely to die than elective<br />

patients undergoing THA for osteoarthritis. Because <strong>of</strong> the rare,<br />

yet real, potential for mortality in hip fracture patients, there<br />

has been a trend toward the use <strong>of</strong> uncemented hip arthroplasty<br />

in this patient population. Interestingly the risk <strong>of</strong> mortality<br />

in patients with hip fracture, in one study was found to be<br />

significantly higher when the fracture is was intertrochanteric<br />

in nature and the patient was receiving total hip arthroplasty vs<br />

hemiarthroplasty.<br />

2) Instability: One <strong>of</strong> the major problems associated with THA in<br />

fracture patients is the increased incidence <strong>of</strong> instability. In fact<br />

the fear <strong>of</strong> instability averts many surgeons from performing total<br />

hip arrthroplasty in this patient population. Although lower,<br />

instability can still occur following hemiarthoplasty also. Registry<br />

data and multiple studies have shown the incidence <strong>of</strong> instability<br />

to be higher in patients undergoing hemiarthroplasty compared<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

to THA. In particular patients in the following category may be at<br />

increased risk:<br />

a. History <strong>of</strong> neuromuscular disorder: As mentioned above,<br />

one <strong>of</strong> the major problems associated with THA for patients<br />

with hip fracture is instability. Patients with Alzheimer’s,<br />

Parkinson’s disease, previous cerebrovascular accidents that<br />

has resulted in global muscle weakness, and those with<br />

hyperlaxity syndromes are particularly at risk <strong>of</strong> dislocation<br />

after THA.<br />

b. History <strong>of</strong> alcoholism: The incidence <strong>of</strong> alcoholism is believed<br />

to be much higher among elderly that previously assumed.<br />

Thus patients with ongoing alcoholism may not be ideal<br />

candidates for THA.<br />

3) Expense: The number <strong>of</strong> patients with hip fracture is on the<br />

rise and this will place an immense burden on society. With the<br />

limited resources available, we may need to be cost-conscious<br />

in selecting the type <strong>of</strong> surgical procedures. There is no doubt<br />

that THA is more costly compared to hemiarthoplasty. The<br />

differential in cost is assumed to be between $500-1400 when<br />

an acetabular component is used. The latter is widely variable<br />

as some studies only consider the cost <strong>of</strong> acetabular component<br />

and not the added operative time and possibly higher incidence<br />

<strong>of</strong> reoperation asscociated with dislocation. In addition the type<br />

<strong>of</strong> bearing surface used in the acetabulum influences the cost.<br />

4) Expected Outcome: It is a well known fact that up to 25% <strong>of</strong><br />

patients with femoral neck fraccture may die within one year<br />

<strong>of</strong> their fracture. Although the exact reason for higher mortality<br />

following hip fracture is not known, it is believed that the<br />

following patients are at risk <strong>of</strong> early death following femoral<br />

neck fracture. Hemiarthoplasty in this group <strong>of</strong> patients may be<br />

preferable to THA.<br />

a. Minimal ambulators- patients who are minimal (house)<br />

ambulators place minimal demand on their prosthesis and it<br />

is unlikely that the wear <strong>of</strong> acetabular cartilage would occur<br />

in these patients necessitating conversion to THA. In addition<br />

these patients may experience a rapid deterioration in their<br />

ambulation status following hip fracture which may lead to<br />

higher mortality.<br />

b. Patients with poor family support: In some studies this<br />

factor has been most strongly associated with early mortality<br />

following femoral neck fracture.<br />

c. History <strong>of</strong> cancer: Studies have shown that previous history <strong>of</strong><br />

cancer is also strongly associated with mortality either during<br />

arthroplasty or within one year <strong>of</strong> hip fracture. Although<br />

some patients with previous cancer may be assumed to be<br />

“cured” <strong>of</strong> their disease, history <strong>of</strong> cancer should be a strong<br />

dissuading factor from placing an acetabular component in<br />

these patients<br />

d. Severe medical comorbidity: Elderly patients with extensive<br />

medical comrbidity are particularly at risk <strong>of</strong> mortality<br />

following hip fracture. Both based on reduced life expectancy<br />

in these patients and also the fact that expeditious surgery<br />

is likely to minimize the incidence <strong>of</strong> intraoperative and<br />

postoperative complications, one may choose to perform<br />

hemiarthoplasty compared to THA in this group <strong>of</strong> patients.


REFERENCES:<br />

1. U.S. Census Bureau. U.S. Interim Projections by Age, Sex, Race, and Hispanic<br />

Origin. Edited, 2004.<br />

2. Loh S, George MV. Projected Population Sizeand Age Structure for Canada<br />

and Provinces: With and Without International Migration. Canadian Studies<br />

in Population. 2007:34(2):103-27.<br />

3. World Population Prospects: The 2002 Revision. Edited, United Nations<br />

Population Division, 2002.<br />

4. Van den Bekerom MPJ, Hilverdink EF, Sierevelt IN, Reuling EMBP, Schnater<br />

JM, Bonle H, Goslings JC, van Dijk CN, Raaymakers ELFB. A comparison<br />

<strong>of</strong> hemiarthoplasty with total hip replacement for displaced intracapsular<br />

fracture <strong>of</strong> femoral neck. J Bone Joint Surg 92-B:1422-8, 2010<br />

91<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

5. Bhandari M, Deveraux PJ, Tornetta P 3rd. Operative management <strong>of</strong><br />

displaced femoral neck fracture in elderly patients: an international survey J<br />

Bone Joint Surg 87: 2122-30, 2005<br />

6. Keating JF, Grant A, Masson M, Scott NW, Forbes JF. Randomized<br />

comparison <strong>of</strong> reduction and fixation, bipolar hemiarthoplasty, and total<br />

hip arthroplasty:treatment <strong>of</strong> displaced intracapsular hip fractures in healthy<br />

older patients. J Bone Joint Surg 88:249-60, 2006<br />

7. Blomfeldt R, Tornkvist H, Eriksson K. A andomized controlled trial<br />

comparing bipolar hemiarthoplasty with total hip replacement for displaced<br />

intracapsular fracture fractures <strong>of</strong> the femoral neck in elderly patients. J Bone<br />

Joint Surg 89-B: 16-5, 2007<br />

8. Parker MJ, Gurusamy K. Arthroplasties (with and without bone cement) for<br />

proximal fractures <strong>of</strong> adults. In: Cochrane Library 2006. Issue 3 CD001706,<br />

Chichester: John Wiley and Son 2008


92<br />

high FleXioN kNee: iS it teChNology over reaSoN?<br />

Daniel J. Berry, MD<br />

I. INTRODUCTION:<br />

A. Obtaining satisfactory motion to carry out activities <strong>of</strong> daily<br />

living is an important goal <strong>of</strong> TKA. For most activities <strong>of</strong><br />

daily living in Western societies 105 to 110¡ <strong>of</strong> knee flexion<br />

allows satisfactory function. However, it is important to<br />

recognize that greater range <strong>of</strong> motion may be appreciated<br />

by many.2 For patients in some societies, and in selected<br />

patients in Western societies, obtaining considerably greater<br />

flexion is essential to their daily goals. So-called high flexion<br />

implants were designed to facilitate or enable flexion beyond<br />

120¡ (in most cases). The main design features to achieve<br />

this include modification <strong>of</strong> the posterior condyles <strong>of</strong> the<br />

femoral component, relief <strong>of</strong> anterior tibial polyethylene,<br />

and in some cases trochlear and/or cam-post modifications.<br />

II. PERFORMANCE OF HIGH FLEXION DESIGNS<br />

A. Range <strong>of</strong> Motion<br />

1. A number <strong>of</strong> early studies suggested that “high flexion”<br />

designs could provide better range <strong>of</strong> motion than<br />

conventional TKA. However, most studies were selected<br />

series <strong>of</strong> patients.8<br />

2. In the past several years a number <strong>of</strong> high quality Level<br />

I randomized clinical trials have evaluated the ROM<br />

performance <strong>of</strong> “high flexion” TKA versus conventional<br />

TKA. The results are listed below in Table I. In aggregate<br />

these studies suggest that “high flexion” TKA designs do<br />

not provide better ROM than conventional TKA.<br />

REFERENCES<br />

1. Cho SD, Youm YS, Park KB. Three to six year follow-up results after highflexion<br />

ktax: Can we allow passive deep knee bending. Knee Surg Sports<br />

Traumatol Arthroscopy 1-5, 2010.<br />

2. Devers BN, Conditt MA, Jamieson ML, Driscoll MD, Noble PC, Parsley BS.<br />

Does greater knee flexion increase patient function and satisfaction after total<br />

knee arthroplasty? J Arthroplaasty (in press).<br />

3. Hamilton WG, Engh Jr CA, Sritulanondha S. Prospective randomized<br />

comparison <strong>of</strong> high flex and standard rotating platform TKA. AAHKS<br />

Clinical Award Paper, AAHKS 20th <strong>Annual</strong> <strong>Meeting</strong>, Dallas, TX, November<br />

5-7, 2010.<br />

4. Kim YH, Choi Y, Kim JS. Comparison <strong>of</strong> a standard and a gender-specific<br />

posterior cruciate-substituting high-flexion knee prothesis: a prospective,<br />

randomized, short-term outcome study. J Bone Joint Surg 92A:19111920,<br />

2010.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

Table I.<br />

Author Year Study Type Results<br />

Hamilton et al 3 2010 RCT<br />

Kim et al 4 2010 RCT<br />

Kim et al 5 2010 RCT<br />

McCalden et al 6 2009 RCT<br />

Nutton et al 9 2008 RCT<br />

Mehin 7 2010<br />

Metaanalysis<br />

No difference in ROM<br />

Conventional vs High Flexion<br />

No difference in ROM<br />

Conventional vs High Flexion<br />

No difference in ROM<br />

Conventional vs High Flexion<br />

No difference in ROM<br />

Conventional vs High Flexion<br />

No difference in ROM<br />

Conventional vs High Flexion<br />

No ROM difference<br />

Conventional vs High Flexion<br />

B. Implant Fixation<br />

1. Recently concerns have been raised that at least some<br />

“high flexion” designs may be associated with higher<br />

implant loosening rates.1 Some “high flexion” designs<br />

require extra posterior condylar resection and it is<br />

possible that in deep flexion the vector <strong>of</strong> force pushing<br />

the femoral component distally is greater than for<br />

conventional designs.<br />

C. Polyethylene Wear<br />

1. Studies to date are too short term to evaluate whether<br />

“high flexion” designs provide improved PE wear<br />

compared to conventional TKA. “High flexion” implants<br />

are designed to provide better PE congruity in deep<br />

flexion and this could improve PE wear in patients who<br />

achieve very high flexion.<br />

2. Whether many patients spend sufficient time in deep<br />

flexion for this design feature to prove to be a major<br />

advantage remains to be seen but could be one advantage<br />

<strong>of</strong> these implants.<br />

D. Other Issues<br />

1. Many “high flexion” designs require extra bone resection<br />

from the posterior femur. This is a drawback if revision is<br />

required.<br />

2. Many “high flexion” designs cost considerably more than<br />

their counterparts.<br />

5. Kim YH, Choi Y, Kim JS. Comparison <strong>of</strong> standard and gender-specific<br />

posterior cruciate retaining high-flexion total knee replacements: a<br />

prospective, randomized study. J Bone Joint Surg 92B:639-645, 2010.<br />

6. McCalden RW, MacDonald SJ, Bourne RB, Marr JT. A randomized controlled<br />

trial comparing “high flex” vs “standard” posterior cruciate substituting<br />

polyethylene tibial inserts in total knee arthroplasty. J Arthroplasty 24:33-38,<br />

2009.<br />

7. Mehin R, Burnett RS, Brasher PMA. Does the new generation <strong>of</strong> high-flex<br />

knee prostheses improve the postoperative range <strong>of</strong> movement? A metaanalysis.<br />

J Bone Joint Surg 92B:1429-1434, 2010.<br />

8. Murphy M, Journeaux S, Russell T. High-flexion total knee arthroplasty: a<br />

systematic review. International Orthop 33:887-893, 2009.<br />

9. Nutton RW, van der Linden ML, Rowe PJ, Gaston P, Wade FA. A prospective<br />

randomized double-blind study <strong>of</strong> functional outcome and range <strong>of</strong> flexion<br />

following total knee replacement with the NexGen standard and high flexion<br />

components. J Bone Joint Surg 90B:37-42, 2008.


93<br />

high FleXioN iN tka : teChNology over reaSoN—Negative<br />

Craig J. Della Valle, MD<br />

Introduction<br />

Total knee arthroplasty (TKA) remains the gold standard for treating<br />

end-stage arthritis <strong>of</strong> the knee that has been recalcitrant to nonoperative<br />

treatment. Although many outcome measures attest to the<br />

successfulness <strong>of</strong> the procedure, a substantial number <strong>of</strong> patients<br />

remain dissatisfied with the procedure despite objective findings that<br />

we interpret as success. Among the potential causes <strong>of</strong> dissatisfaction<br />

is limited range <strong>of</strong> motion. There is thus appeal in the idea <strong>of</strong> a<br />

specific device or version <strong>of</strong> a device that <strong>of</strong>fers the hope <strong>of</strong> “high<br />

flexion”. However, concerns exist including:<br />

• Good quality trials that prove such claims <strong>of</strong> better range <strong>of</strong><br />

motion<br />

• Increased cost <strong>of</strong> a high flexion design<br />

• Potential negative effects <strong>of</strong> a high flexion design<br />

High Flexion: Is it Necessary?<br />

The first question that needs to be answered is “Is it desirable to have<br />

higher flexion post TKA?”. The long and short <strong>of</strong> it is YES!!!! Stiffness<br />

is among the most common complaints following TKA and one <strong>of</strong><br />

the outcomes that we as surgeons and our patients use to measure<br />

the success <strong>of</strong> the TKA that we have performed.<br />

• Improvement in range <strong>of</strong> motion (ROM) is a common desire<br />

for patients<br />

• ROM is among the main focuses <strong>of</strong> post-operative physical<br />

therapy.<br />

• Critical portion <strong>of</strong> our assessment (Knee Society Score).<br />

• Facilitates the resumption <strong>of</strong> many recreational activities that<br />

patient’s value.<br />

• High flexion may be critically important in certain cultures/<br />

religions<br />

Although many <strong>of</strong> us believe that flexion <strong>of</strong> >110 degrees is a<br />

successful result, one study <strong>of</strong> more than 5,000 TKA by Ritter et. Al<br />

showed that patients with > 128 degrees <strong>of</strong> flexion had<br />

• Highest scores for pain, walking and function and the Highest<br />

overall KSS<br />

• Outcomes were compromised when ROM was < 118 degrees<br />

High Flexion: Making it Happen<br />

There seem to be several variables that effect range <strong>of</strong> motion<br />

including:<br />

• Patient related factors (specifically, pre-operative ROM seems<br />

critical).<br />

• Surgical technique and Post-Operative management<br />

• Prosthetic design? (By far, the most controversial).<br />

There are several aspects <strong>of</strong> the surgical technique that seem<br />

important:<br />

• Optimizing all aspects <strong>of</strong> your TKA!!!<br />

— Appropriate component size, rotation and slope<br />

SELECTED REFERENCES<br />

1. Ritter MA, Lutgring JD, Davis KE, Berend ME. The effect <strong>of</strong> postoperative<br />

range <strong>of</strong> motion on functional activities after posterior cruciate-retaining<br />

total knee arthroplasty. J Bone Joint Surg Am. 2008;90:777-784.<br />

2. Baker PN, van der Meulen JH, Lewsey J, Gregg PJ. The role <strong>of</strong> pain and<br />

function in determining patient satisfaction after total knee replacement.<br />

Data from the National Joint Registry for England and Wales. J Bone Joint<br />

Surg Br. 2007;89:893-900.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

— Optimized ligamentous balancing<br />

— Recreation <strong>of</strong> appropriate patell<strong>of</strong>emoral kinematics<br />

— Removal <strong>of</strong> osteophytes and redundant capsule posteriorly<br />

• PS vs. CR does not seem to matter<br />

• Similarly RP does not seem to increase flexion (some studies<br />

suggest worse ROM)<br />

Post-operative protocols that optimize pain control also seem to<br />

result (at least in the short term) in better range <strong>of</strong> motion.<br />

• CPM and variants do not seem to results in long-term<br />

improvements in ROM.<br />

• Interestingly, most studies show that similarly physiotherapy<br />

does not have much <strong>of</strong> a beneficial effect.<br />

So what about “High Flexion” prosthetic designs? Do they make a<br />

difference? Most companies now either <strong>of</strong>fer a “high flex” version or<br />

consider their designs as “high flexion”. Modifications to the femoral<br />

component including changes to the posterior condylar geometry,<br />

the sagittal geometry, femoral trochlea and/or the polyethylene<br />

are amongst the design features that either “allow” or “facilitate”<br />

flexion.<br />

What does the data show? Unfortunatley it is mixed…<br />

Author, Year Study Design Prosthesis Conclusion<br />

Choi, 2010 RCT, 170 TKA pS, Rp No difference<br />

Crow, 2010 Retrospective, 164 TKA CR High flex better<br />

Huang, 2005 Retrospective, 50 TKA pS High flex better<br />

Kim, 2005 100 TKA, bilateral study pS No difference<br />

Kim, 2009 108 TKA, bilateral study CR No difference<br />

Lee, 2010 Retrospective, 80 TKA (all<br />

< 100 degrees flexion<br />

preop)<br />

pS High flex better<br />

McCalden, 2009 RCT, 100 TKA pS No difference<br />

McCalden, 2010 Retrospective, 1534 TKA CR, pS High flex better<br />

Seon, 2009 RCT, 100 TKA CR No difference<br />

Weeden, 2007 RCT, 50 TKA pS High flex better<br />

Are there any concerns with a high flex design?<br />

• Increased cost? A real concern that may be dependent on pricing<br />

at your hospital.<br />

• Increased bony resection in some designs (is that really<br />

clinically relevant?)<br />

• Increased stresses on the poly/implant interfaces (more data is<br />

needed at longer fu)<br />

Conclusions:<br />

At this point, it is unclear if a high flexion design allows or actually<br />

can improve ROM. Further high quality studies will be required to<br />

answer this question and longer-term follow-up will be required<br />

to ensure that there are no detrimental effects <strong>of</strong> modifying the<br />

prosthetic design in the hopes <strong>of</strong> improving ROM.<br />

3. Bengs BC, Scott RD. The effect <strong>of</strong> patellar thickness on intraoperative knee<br />

flexion and patellar tracking in total knee arthroplasty. J Arthroplasty. 2006<br />

Aug;21(5):650-5.<br />

4. Ritter MA, Harty LD, Davis KE, Meding JB, Berend ME. Predicting range <strong>of</strong><br />

motion after total knee arthroplasty. Clustering, log-linear regression, and<br />

regression tree analysis. J Bone Joint Surg Am. 2003 Jul;85-A(7):1278-85.


highly X-liNked poly iS the optimal beariNg SurFaCe For tka:<br />

aFFirmative<br />

Terence J. Gioe, MD<br />

1. Wear in TKA is multifactorial<br />

A. Patient factors (BMI, activity level)<br />

B. Surgeon factors (alignment, ligament balance)<br />

C. Component factors<br />

1. Poly thickness<br />

2. Sterilization method<br />

3. Locking mechanism<br />

4. Manufacturing technique<br />

5. Shelf life<br />

6. Component geometry/surfaces<br />

2. TKA Wear Mechanisms<br />

A. Wear mechanisms in TKA differ from THA because <strong>of</strong> the<br />

bearing surface and because <strong>of</strong> the combination <strong>of</strong> rolling,<br />

sliding, and rotational motions. Less contact area increases<br />

the contact stress which leads to delamination, pitting, and<br />

fatigue fractures<br />

3. UHMWPE is a semi-crystalline polymer with crystalline and<br />

amorphous phases:<br />

A. Crystalline phase results in:<br />

ductility<br />

elastic modulus<br />

contact stresses<br />

wear<br />

mechanical properties (strength, toughness)<br />

B. Amorphous phase results in:<br />

ductility<br />

elastic modulus<br />

contact stresses<br />

wear<br />

mechanical properties<br />

4. How is highly-crosslinked poly (HXLPE) manufactured?<br />

A. HXLPE = UHMWPE with covalent bonds (“cross-links”)<br />

between polymer chains in the amorphous phase (Ries &<br />

Pruitt, CORR 2005)<br />

B. Irradiating UHMWPE creates cross-links<br />

1. Cross-Linking induced ~25kGy (2.5Mrad)<br />

2. Irradiation dosing for purposes <strong>of</strong> sterilization ~25-<br />

40kGy (2.5-4Mrad)<br />

3. Irradiation dosing for purposes <strong>of</strong> cross-linking ~90-<br />

100kGy (9-10Mrad)<br />

4. HXLPE reduces wear in vitro as shown in multiple<br />

simulator studies<br />

6. There is a delicate balance between wear resistance and<br />

toughness<br />

A. Cross-linking improves wear resistance, but results in less<br />

ductility, and less resistance to crack propagation<br />

B. Radiation-induced HXLPE contains free radicals that increase<br />

oxidative degradation<br />

C. Free radicals can be eliminated by post-processing remelting<br />

or annealing<br />

D. Remelting results in decreased mechanical properties while<br />

annealing leaves residual free radicals<br />

E. 2nd generation HXLPE uses sequential annealing cycles or<br />

Vitamin E doping to reduce free radicals while preserving<br />

better mechanical properties<br />

7. What’s available for HXLPE inserts?<br />

94<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

A. Durasul (Zimmer Natural Knee, 2001): 95 kGy<br />

B. E1 (Biomet Vanguard, 2008): 100 kGy, Vit E doped,<br />

annealed<br />

C. XLPE ( S & N): 75 kGy, remelted<br />

D. XLK (Depuy): 50 kGy, remelted<br />

E. Prolong (Zimmer): 65 kGy, remelted<br />

F. X3 (Stryker): 90 kGy sequentially annealed<br />

8. Can we make XHLPE strong enough? There have been<br />

numerous reports <strong>of</strong> tibial post fractures with UHMWPE<br />

inserts, so concern exists regarding crack propagation with<br />

HXLPE<br />

A. Oral et al (JOA, 2008) compared unaged and aged<br />

UHMWPE and Vit E-doped HXLPE in a tibial post model<br />

and found comparable bending resistance in the unaged<br />

samples and substantially improved bending resistance for<br />

the HXLPE in aged samples<br />

B. Stoller et al (JOA 2010) compared UHMWPE and HXLPE PS<br />

inserts (Prolong, Zimmer, Inc.) all aged, in knee simulator<br />

to 5m cycles<br />

1. Novel anterior/posterior testing <strong>of</strong> tibial post (unaged)<br />

2. Wear volume reduced 67-75% for HXLPE<br />

3. Superior post durability for HXLPE (longer fatigue life, p<br />

= .007 and 1/15 vs. 5/15 post fractures<br />

9. How about delamination concerns?<br />

A. Wannomae et al (JOA, 2010) compared unaged and<br />

aged UHMWPE and Vit-E doped HXLPE samples for<br />

delamination/pitting and found improved wear resistance<br />

and no delamination in the HXLPE samples, both aged/<br />

unaged, compared to the UHMWPE<br />

10. Can we simulate wear better as we test poly in vitro?<br />

A. Muratoglu et al (JOA, 2007) simulated gait wear testing (7m<br />

cycles) <strong>of</strong> UHMWPE and HXLPE (Prolong, Zimmer, Inc.)<br />

CR inserts<br />

1. All components new; within 5 days<br />

2. Gravimetrically, combined articular and backside wear<br />

roughly 5X higher for UHMWPE<br />

3. Articular surface wear rates roughly 3X higher for<br />

UHMWPE<br />

11. There is relatively little information available from retrieval<br />

studies<br />

A. Willie et al ( J Biomedical Mater Res Part B, 2008) compared<br />

5 new HXLPE inserts (Durasul) and 5 new UHMWPE<br />

(Sulene, Zimmer) inserts to:<br />

1. 13 Durasul inserts implanted for 4-27 mos and ex vivo<br />

for 0-38 mos<br />

2. 18 Sulene inserts implanted for 4-158 mos and ex vivo<br />

3-40 mos<br />

B. “Oxidation index” measured at 1.5mm subsurface depth<br />

C. The OI was NOT significantly different for new and<br />

explanted Durasul inserts--shelf age, in vivo and ex vivo<br />

duration were not significant predictors<br />

D. The OI was significantly different for new and explanted<br />

Sulene inserts, and in vivo and ex vivo duration were<br />

predictors<br />

12. Clinical studies, in this time frame, are also limited<br />

A. Hodrick et al (CORR 466, 2008) performed a retrospective


95<br />

review <strong>of</strong> 100 cases with Durasul inserts with 100<br />

immediately preceding Sulene inserts, all in Natural<br />

Knees (Zimmer)<br />

B. Mix <strong>of</strong> CR and PS knees, cemented and uncemented<br />

C. Min/mean followup: 69/75 mos and 82/91 mos<br />

D. Standard group: 20 TKAs with radiolucencies, 4 loose tibial<br />

components, 3 revised<br />

E. HXLPE group: 2 TKAs with radiolucencies, 0 loose, 0 revised<br />

SELECTED REFERENCES:<br />

1. Hodrick et al.: Highly crosslinked polyethylene is safe for use in total knee<br />

arthroplasty. CORR 466: 2806-2812, 2008.<br />

2. Muratoglu et al.: Simulated normal gait wear testing <strong>of</strong> a highly crosslinked<br />

polyethylene tibial insert. JOA 22(3): 435-444, 2007.<br />

3. Oral et al.: Highly crosslinked ultrahigh molecular weight polyethylene with<br />

improved fatigue resistance for total joint arthroplasty. JOA 23(7): 1037-<br />

1044, 2008.<br />

4. Stoller et al.: Highly crosslinked polyethylene in posterior-stabilized total<br />

knee arthroplasty. JOA, 2010 epub ahead <strong>of</strong> print.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

13. Conclusions<br />

A. HXLPE appears to have wear advantages and seems “strong<br />

enough” for PS posts in this time frame<br />

B. Second generation HXLPE MAY strike a better balance<br />

between wear and strength<br />

C. Not all HXLPE inserts are the same<br />

D. Improvement in sterilization methods, knowledge <strong>of</strong> shelf<br />

life oxidation issues, locking mechanisms, etc., has also<br />

resulted in better UHMWPE inserts<br />

5. Gencur et al.: Fatigue crack propagation resistance <strong>of</strong> virgin and highly<br />

crosslinked, thermally treated ultra-high molecular weight polyethylene.<br />

Biomaterials 27: 1550-1557, 2006.<br />

6. Willie et al.: Examining the influence <strong>of</strong> short-term implantation on<br />

oxidative degradation in retrieved highly crosslinked polyethylene tibial<br />

components. J Biomed Mater Res Part B 85B: 385-397, 2008.<br />

7. Wannomae et al.: Delamination and adhesive wear behavior <strong>of</strong> α-tocopherolstabilized<br />

irradiated ultrahigh-molecular-weight polyethylene. JOA 25: 635-<br />

643, 2010.


patella reSurFaCiNg iS Not NeCeSSary - aFFirmative (debate)<br />

Robert L. Barrack, MD<br />

I. Introduction: History Notes:<br />

A. Patella resurfacing not original part <strong>of</strong> TKA.<br />

B. 1970’s – 1980’s – Patellar resurfacing incorporated into TKA<br />

(Scuderi, et al., J AAOS 199427).<br />

C. 1980’s – Patellar resurfacing emerges as major complication<br />

<strong>of</strong> TKA.<br />

1. Accounts for 50% <strong>of</strong> revision procedures (Dennis, AJKS<br />

19929).<br />

2. Most common FDA Medical Device Report (MDR)<br />

relating to TKA (Castro, et al., J Arth 19978) was failure<br />

<strong>of</strong> patellar components.<br />

II. Disadvantages <strong>of</strong> patellar resurfacing:<br />

A. Overresection - fracture.<br />

B. Underesection – Decreased ROM, anterior knee pain.<br />

C. Oblique resection – Pain, reoperation (Pagnano, Trousdale<br />

AJKS 200024).<br />

D. Late, potentially devastating complications (Kavolus, et al., J<br />

Arth 2008)17.<br />

1. Fracture – 5.9%<br />

2. Loosening – 1%<br />

3. AVN – 8.9%<br />

4. AKP<br />

III. Advantages <strong>of</strong> not resurfacing patella:<br />

A. Avoid major complications.<br />

B. Maintains normal bone, best results if revision necessary.<br />

C. Operative time, cost (Barrack, et al., JBJS Am 19972).<br />

D. Ability <strong>of</strong> native patella to remodel.<br />

IV. Limited indications for resurfacing:<br />

A. Inflammatory arthritis.<br />

B. Deformed, maltracking patella.<br />

C. Primary patell<strong>of</strong>emoral arthritis.<br />

V. Available evidence pertinent to patellar resurfacing:<br />

A. Laboratory studies.<br />

1. Contact area, stress.<br />

a. Forces across Patell<strong>of</strong>emoral joint, 8X body weight<br />

with deep knee bend (Benjamin, et al., Orthop Trans<br />

19983).<br />

b. TKA decreases Patell<strong>of</strong>emoral contact area, increases<br />

contact stress (Matsuda, et al., J Arth 199721).<br />

c. Patellar resurfacing leads to much higher stresses<br />

and lower contact areas compared to not resurfacing<br />

(Singerman, et al., J Arth 199930; McLean, et al.,<br />

Orthop Trans 199423).<br />

d. These stresses exceed the yield point <strong>of</strong> polyethylene<br />

(Matsuda, et al., J Arth 199721).<br />

2. Kinematics:<br />

a. TKA alters kinematics to some degree.<br />

b. More normal kinematics with non-resurfaced<br />

compared to resurfaced patella (Singerman, et al., J<br />

Arth 199930).<br />

3. Anatomic studies – significant variability, in anatomy <strong>of</strong><br />

distal femur, trochlear groove (Feinstein, et al., CORR<br />

199613; Eckh<strong>of</strong>f, et al., CORR 199610).<br />

a. Patellar groove perpendicular to transepicondylar axis,<br />

BUT 16¡ range.<br />

b. Sulcus 2.4mm lateral to midpoint, BUT 10.8mm<br />

range.<br />

c. TKA therefore significantly reorients Patell<strong>of</strong>emoral<br />

96<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

anatomy, stresses in substantial percentage <strong>of</strong> cases.<br />

d. Unresurfaced patella has the ability to remodel (Shih,<br />

et al., JBJS Am 200428; Gerber, Maenza. Orthopade<br />

199815).<br />

B. Component design: “patella friendly” features<br />

1. Deeper patellar groove (Adriacchi, et al., J Arth 19971).<br />

2. Distal extent <strong>of</strong> trochlear groove (Matsuda, et al.,<br />

Orthopedics 200022).<br />

3. Smoother transition to intercondylar notch (Larson, et<br />

al., J Arth 199919).<br />

4. Increased congruency (Petersilge, et al., CORR 199426).<br />

C. Clinical studies:<br />

1. The Dilemma: Disparate results continue, even with same<br />

Notes: component, same journal.<br />

Patellar resurfacing vs. nonresurfacing<br />

in TKA<br />

Garneti, et al. J Knee Surg 2008 14 .<br />

142 Knees 239 Knees<br />

Component: Scorpio<br />

F/U Nonresurfaced 33 months<br />

Resurfaced 18 months<br />

AKp 25% Nonresurfaced<br />

7% Resurfaced<br />

Equivalent: KSS, Euroqol score, every<br />

functional parameter<br />

Outcome <strong>of</strong> patellar resurfacing vs.<br />

nonresurfacing in TKA<br />

Epinette, et al. J Knee Surg 2008 12 .<br />

Component: Scorpio<br />

F/U 9 years<br />

No difference in any parameter.<br />

“Some designs patellar friendly.”<br />

“Given the significant cost <strong>of</strong> patella<br />

resurfacing and the resulting well-known<br />

complication, we continue to avoid<br />

systematic resurfacing <strong>of</strong> the patella<br />

during Scorpio TKA.”<br />

2. Bilat TKA, one resurfaced, one not. Results either<br />

equivalent or favored nonresurfaced.<br />

Series <strong>of</strong> bilateral TKA (one side resurfaced) either equivalent or favored<br />

non-resurfaced<br />

Author Ref # Knees<br />

Levitsky 20 CORR 1993 13<br />

Enis 11 CORR 1990 25<br />

Shoji 29 JBJS 1989 34<br />

Keblish 18 JBJS 1994 30<br />

Barrack 2 JBJS 1997 32<br />

Burnett 4 CORR 2007 32<br />

3. Prospective randomized, recent:<br />

a. Smith, et al., Australia, JBJS Br 200831: 159 Pr<strong>of</strong>ix<br />

TKRs at 3.7 years blinded study. “No benefit was<br />

shown <strong>of</strong> TKR with patellar resurfacing over that<br />

without resurfacing with respect to any <strong>of</strong> the<br />

measured outcomes.”<br />

b. Campbell, et al., Australia, JBJS Br 20067: “We are<br />

unable to recommend routine patellar resurfacing in<br />

OA patients<br />

c. undergoing TKA based on our findings.” Peng, et<br />

al., Singapore Med J 200325: “The functional and<br />

symptomatic outcome <strong>of</strong> TKR with or without patellar<br />

resurfacing is the same in the local population”<br />

d. “Patella resurfacing vs. nonresurfacing in TKA:


REFERENCES:<br />

97<br />

Results <strong>of</strong> a randomized controlled clinical trial at<br />

a minimum <strong>of</strong> 10 years’ follow-up”(Burnett, et al.,<br />

CORR 2004 5 ).<br />

1) 100 AMK TKA<br />

2) Minimum 10 year follow-up<br />

3) No patient lost to F/U<br />

4) Intraoperative cartilage quality was not a predictor<br />

<strong>of</strong> outcome<br />

“The results showed no significant difference between<br />

the groups for all outcome measures at a minimum <strong>of</strong> 10<br />

years <strong>of</strong> follow-up.”<br />

e. Burnett, et al., JBJS Am In Press 6 . Minimum 10 yr<br />

follow-up <strong>of</strong> randomized blinded trial resurfaced<br />

patients lost more points on knee score over time<br />

than unresurfaced.<br />

f. Decision Tree Analysis<br />

1) “To Resurface or not to Resurface the Patella in<br />

TKA” (Helmy, et al., CORR 2008 16 ).<br />

Model predicts patellar resurfacing is best path unless AKP<br />

after nonresurfacing falls below 12%.<br />

2) “Recent tool in clinical decision making:<br />

Computer-assisted decision analysis in<br />

orthopaedics” (Zangger, et al., J Arth 200032)<br />

a. Methodology:<br />

1. Andriacchi TP, Yoder D, Conley A, Rosenberg A, Sum J, Galante JO.<br />

Patell<strong>of</strong>emoral design influences function following total knee arthroplasty. J<br />

Arthroplasty 1997;12(3):243-9.<br />

2. Barrack RL, Wolfe MW, Waldman DA, Milicic M, Bertot AJ, Myers L.<br />

Resurfacing <strong>of</strong> the patella in total knee arthroplasty. A prospective,<br />

randomized, double-blind study. The J Bone Joint Surg Am 1997;79(8):1121-<br />

31.<br />

3. Benjamin J, Szivek, JA, Hammond, AS, et al. Contact areas and pressure<br />

between native patellae and prosthetic femoral components. Orthop Trans<br />

1998;22:18.<br />

4. Burnett RS, Boone JL, McCarthy KP, Rosenzweig S, Barrack RL. A prospective<br />

randomized clinical trial <strong>of</strong> patellar resurfacing and nonresurfacing in<br />

bilateral TKA. Clin Orthop Relat Res 2007;464:65-72.<br />

5. Burnett RS, Haydon CM, Rorabeck CH, Bourne RB. Patella resurfacing versus<br />

nonresurfacing in total knee arthroplasty: results <strong>of</strong> a randomized controlled<br />

clinical trial at a minimum <strong>of</strong> 10 years’ followup. Clin Orthop Relat Res<br />

2004(428):12-25.<br />

6. Burnett RSJ, Boone JL, Rosenzweig S, Barrack RL. A Prospective Randomized<br />

Clinical Trial <strong>of</strong> Patellar Resurfacing / Nonresurfacing in Total Knee<br />

Arthroplasty: A concise Follow-up at a Minimum 10-years <strong>of</strong> a Previous<br />

Report. J Bone Joint Surg Am 2008:In Press.<br />

7. Campbell DG, Duncan WW, Ashworth M, Mintz A, Stirling J, Wakefield<br />

L, Stevenson TM. Patellar resurfacing in total knee replacement: a ten-year<br />

randomised prospective trial. J Bone Joint Surg Br 2006;88(6):734-9.<br />

8. Castro FP, Jr., Chimento G, Munn BG, Levy RS, Timon S, Barrack RL. An<br />

analysis <strong>of</strong> Food and Drug Administration medical device reports relating to<br />

total joint components. J Arthroplasty 1997;12(7):765-71.<br />

9. Dennis D. Patell<strong>of</strong>emoral complications in total knee arthroplasty: A<br />

literature review. Am J Knee Surg 1992;5:156-66.<br />

10. Eckh<strong>of</strong>f DG, Burke BJ, Dwyer TF, Pring ME, Spitzer VM, VanGerwen DP. The<br />

Ranawat Award. Sulcus morphology <strong>of</strong> the distal femur. Clin Orthop Relat<br />

Res 1996(331):23-8.<br />

11. Enis JE, Gardner R, Robledo MA, Latta L, Smith R. Comparison <strong>of</strong> patellar<br />

resurfacing versus nonresurfacing in bilateral total knee arthroplasty. Clin<br />

Orthop Relat Res 1990(260):38-42.<br />

12. Epinette JA, Manley MT. Outcomes <strong>of</strong> patellar resurfacing versus<br />

nonresurfacing in total knee arthroplasty: a 9-year experience based on a case<br />

series <strong>of</strong> scorpio PS knees. J Knee Surg 2008;21(4):293-8.<br />

13. Feinstein WK, Noble PC, Kamaric E, Tullos HS. Anatomic alignment <strong>of</strong> the<br />

patellar groove. Clin Orthop Relat Res 1996(331):64-73.<br />

14. Garneti N, Mahadeva D, Khalil A, McLaren CA. Patellar resurfacing versus<br />

no resurfacing in Scorpio total knee arthroplasty. J Knee Surg 2008;21(2):97-<br />

100.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

i. Build decision tree.<br />

ii. Meta-analysis <strong>of</strong> probabilities<br />

iii. Estimation <strong>of</strong> probabilities.<br />

iv. Computer calculation <strong>of</strong> preferable option.<br />

b. Probability theory and Bayesian logic applied<br />

to patellar resurfacing TKA.<br />

c. Not Resurfacing Favored IF:<br />

i. Probability <strong>of</strong> AKP non-resurfaced<br />


30. Singerman R, Gabriel SM, Maheshwer CB, Kennedy JW. Patellar contact<br />

forces with and without patellar resurfacing in total knee arthroplasty. J<br />

Arthroplasty 1999;14(5):603-9.<br />

31. Smith AJ, Wood DJ, Li MG. Total knee replacement with and without patellar<br />

resurfacing: a prospective, randomised trial using the pr<strong>of</strong>ix total knee<br />

system. J Bone Joint Surg Br 2008;90(1):43-9.<br />

98<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

32. Zangger P, Detsky A. Computer-assisted decision analysis in orthopedics:<br />

resurfacing the patella in total knee arthroplasty as an example. J<br />

Arthroplasty 2000;15(3):283-8.


99<br />

why i reSurFaCe all patellae iN total kNee replaCemeNt<br />

Thomas K. Fehring, MD<br />

I. Historical Evolution<br />

• Early total knees had no anterior flange. Therefore there was<br />

a high prevalence <strong>of</strong> anterior knee pain<br />

• In the early ‘70’s an anterior flange was added to address<br />

anterior knee pain. However, there was no improvement in<br />

anterior knee pain with this design modification.<br />

• In 1974, the first patella resurfacing was performed in the IB<br />

Total Condylar knee replacement to address knee pain.<br />

• A gradual refinement <strong>of</strong> early design errors and improved<br />

surgical technique have led to the policy <strong>of</strong> patella<br />

resurfacing by most arthroplasty surgeons.<br />

II. Design Evolution<br />

Historical Implants Current Implants<br />

Shallow trochlear groove<br />

with with sharp box<br />

edge leading to clunk<br />

Uniform femoral<br />

component with straight<br />

trochlear groove groove<br />

deeper, more anatomic<br />

groove distal extension to<br />

prevent clunk<br />

side specific angled<br />

trochlear groove<br />

Metal backing all poly designs<br />

(exception LCS)<br />

III. Surgical Technique Evolution<br />

patella fracture<br />

Problem Solution<br />

avascular necrosis<br />

maltracking<br />

maintaining adequate<br />

patellar thickness<br />

preserving lateral<br />

geniculate artery during<br />

lateral release<br />

recognition <strong>of</strong> the<br />

importance <strong>of</strong> femoral<br />

and tibial rotation<br />

IV. Biomechanics <strong>of</strong> the Patell<strong>of</strong>emoral Joint<br />

• Patella is the largest sesamoid bone in the body<br />

• Acts as a dynamic fulcrum for the extensor mechanism<br />

• Patella provides 50% increase in knee extension strength vs.<br />

a patellectomy<br />

V. Relative Indications for Patella Resurfacing and<br />

Nonresurfacing in Total Knee Arthroplasty – Insall & Scott,<br />

Surgery <strong>of</strong> the Knee<br />

Resurfacing Indications Nonresurfacing Indications<br />

older age younger age<br />

anterior knee pain noninflammatory arthritis<br />

inflammatory arthropathy thin patients<br />

obesity thin/hypoplastic patella<br />

female intraoperative preserved patellar<br />

cartilage<br />

history <strong>of</strong> patellar subluxation and maltracking intraoperative congruent patellar<br />

tracking<br />

intraoperative patell<strong>of</strong>emoral wear anatomic trochlea groove on<br />

femoral implant<br />

Nonanatomic trochlea groove on femoral implant<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

VI. Controversy exists whether or not to resurface the patella.<br />

There are four resources to make that determination.<br />

1. Prospective randomized studies with greater than 100<br />

patients<br />

2. Registry data<br />

3. Meta-analysis<br />

4. Results <strong>of</strong> revision <strong>of</strong> unresurfaced patella<br />

VII. Prospective randomized studies in with >100 patients<br />

• Wood et al. – JBJS, 2002<br />

— 198 patients MG II<br />

— no difference in Knee Society scores, range <strong>of</strong> motion or<br />

complications<br />

— anterior knee pain<br />

31% non-resurfaced<br />

16% resurfaced<br />

• Waters and Bentley – JBJS, 2003<br />

— 474 patients PFC<br />

— anterior knee pain<br />

25% non-resufaced<br />

5% resurfaced<br />

— in bilateral case where only one side resurfaced stat. sig.<br />

preference for resurfacing ( p


100<br />

resurfacing really matter? Pain and function in 972 patients<br />

after primary total knee arthroplasty.”<br />

— no difference in pain and function<br />

— no power numbers given - ? Type 2 error<br />

— ? selection bias – all revised patients were excluded<br />

IX. Meta-analysis<br />

• He et al., Knee, May ’10 – 3034 patients -16 RCT’s<br />

Reoperation for PF problems more common in nonresurfaced<br />

(p=0.03)<br />

• Nizard, CORR 432, Mar 2005 -__ patients – 12 RCT’s<br />

risk for reoperation, anterior knee pain, and pain with<br />

stair climbing in non-resurfaced<br />

• Parvizi et al., CORR 438, Sept., 2005 - __ pts., 14 RCT’s<br />

No difference in complications<br />

incidence <strong>of</strong> anterior knee pain and need for revision<br />

in unresurfaced<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

• Pakos et al., JBJS, July 2005 – 1223 pt., 10 RCT’s<br />

14% in anterior knee pain if resurfaced<br />

X. Results <strong>of</strong> isolated, unresurfaced patellar revision<br />

• Garcia et al., J Arthroplasty, August 2010<br />

— 17 patients<br />

— 47% (7/17) dissatisfied with continued anterior knee<br />

pain<br />

• Khatod, J Knee Surg, July 2004<br />

— 24 patients<br />

— 48% dissatisfied<br />

• Mvoneke et al., JBJS-Br., July, 2003<br />

— 20 patients<br />

— 55% not improved or worse


101<br />

JoiNt preServatioN hip Surgery:<br />

how to avoid aNd treat CompliCatioNS<br />

aNd FailureS (J)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

Moderator: John C. Clohisy, MD, Saint Louis, MO<br />

Joint preservation <strong>of</strong> the hip has become more commonplace. Multiple procedures have demonstrated pain relief, and<br />

improved function. Nevertheless, there is limited literature regarding the characteristics and management <strong>of</strong> complications<br />

and treatment failures. This symposium will explore the etiologies and treatment methods for complications and clinical<br />

failures.<br />

I. Making the Right Diagnosis<br />

Bryan T. Kelly, MD, New York, NY<br />

II. Pitfalls/Limitations <strong>of</strong> Imaging<br />

Young-Jo Kim, MD, Boston, MA<br />

III. Periacetabular Osteotomy: Avoiding and Treating Complications/Failures<br />

John C. Clohisy, MD, Saint Louis, MO<br />

IV. Surgical Dislocation <strong>of</strong> the Hip: Avoiding and Treating Complications/Failures<br />

Michael Leunig, MD, Zurich, Switzerland<br />

V. Hip Arthroscopy: Avoiding and Treating Complications/Failures<br />

Christopher Larson, MD, Edina, MN<br />

VI. Joint Preservation Technique to Optimize Future Hip Surgery<br />

Paul E. Beaule, MD, Ottawa, Canada<br />

VII. Discussion, Questions and Answers<br />

All Faculty


Purpose<br />

• To summarize the current comprehension <strong>of</strong> clinical assessment<br />

<strong>of</strong> the young adult and adolescent with non-arthritic hip pain.<br />

Introduction<br />

• Concept <strong>of</strong> Hip Preservation:<br />

— Early hip disease is not a disease per se but rather a<br />

pathomechanical process by which the human hip can fail.<br />

— There is an identifiable mechanical source <strong>of</strong> hip pathology.<br />

— Preservation <strong>of</strong> the joint spaced and cartilage surfaces.<br />

— The hip at risk…<br />

Historical background<br />

• Algorithmic Approach to Evaluation <strong>of</strong> the Non-Arthritic Hip:<br />

Why we need a team…<br />

— History<br />

— Clinical Exam<br />

— Radiographic / Mechanical Diagnosis<br />

— Intra-articular Damage Pattern<br />

— MRI / Arthrogram<br />

— Intra-operative findings<br />

Layered Approach<br />

• Layer 1: Osteochondral Layer<br />

— Structures: Femur, Pelvis, Acetabulum<br />

— Purpose: Joint congruence and normal osteo / arthro<br />

kinematics<br />

• Layer 2: Inert Layer<br />

— Structures: Labrum, joint capsule, ligamentous complex,<br />

ligamentum teres<br />

— Purpose: Static stability <strong>of</strong> the joint<br />

• Layer 3: Contractile Layer<br />

— Structures: All musculature including lumbosacral<br />

musculature<br />

— Purpose: Dynamic stability<br />

• Layer 4: Neuromechanical Layer<br />

— Structures: TLS Plexus, Lumbopelvic structures, LE structures<br />

— Purpose: Neuromuscular linking and functional control <strong>of</strong><br />

the entire segment as it functions within its environment<br />

• History<br />

• Physical Exam – Focused<br />

• ROM:<br />

• IR @ 90 degrees flexion<br />

— Flexion<br />

— External Rotation<br />

— Extension<br />

— Abduction in supine position<br />

— Craig’s Test<br />

• Provocative Pain<br />

— Impingement (FADIR)<br />

— Sub-Spine Impingement Sign<br />

— Superolateral impingement<br />

— Trochanteric Pain Sign<br />

— Lateral Rim Impingement<br />

— Instability<br />

— Posterior Impingement<br />

— Ischio-Femoral Impingement Sign<br />

• Normal Passive Hip ROM<br />

— Adduction 30˚<br />

— Abduction 45˚<br />

— Flexion 110˚<br />

— Extension 0˚<br />

102<br />

makiNg the right diagNoSiS<br />

Bryan T. Kelly, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

— IR 30˚<br />

— ER 50˚<br />

• IR Block Test<br />

— How do you assess ROM?<br />

• Strength<br />

— Hip Flexion<br />

— Adduction<br />

— Abduction<br />

• Palpation Pain<br />

— Central Pubic<br />

— Resisted Sit-Up<br />

— ASIS<br />

— Hip Flexors<br />

— Abductors<br />

— Adductors<br />

— Proximal Hamstrings<br />

— Ischium<br />

• Peritrochanteric Space Exam<br />

— Pain over trochanter<br />

— Anterior<br />

— Lateral<br />

— Posterior<br />

— Weakness in Abduction<br />

— Knee Extended<br />

— Knee Flexed<br />

— Snapping<br />

• COMPREHENSIVE EXAMINATION OF THE ADULT HIP<br />

— Five points for five body positions<br />

STANDING; SITTING; SUPINE; LATERAL; PRONE<br />

— ADDITIONAL TESTS AS NEEDED<br />

• STANDING EXAMINATION<br />

— General<br />

— Gait<br />

— Spine<br />

— Pelvis<br />

— Trendelenburg Test<br />

• SEATED EXAMINATION<br />

— Neurologic<br />

— Circulation<br />

— Skin<br />

— Lymphatic<br />

— IR/ER<br />

• SUPINE EXAMINATION<br />

— Passive ROM<br />

— Flexion, Abduction, Adduction, IR, ER<br />

— Impingement (FADIR)<br />

— Thomas Test<br />

— Patrick / Faber’s<br />

— Instability Test (extension / ER)<br />

• LATERAL EXAMINATION<br />

— Palpation GT, ABDUCTORS, SI, ISCHIAL BURSAE<br />

— Obers Test FLEXION, EXTENSION<br />

— Passive / Active ROM MEDIUS / MAX<br />

— FADDIR IMPINGEMENT<br />

— Lateral Rim Impingement<br />

– Lateral Hip Anatomy<br />

– 4 facets, 3 have distinct insertions<br />

• PRONE EXAMINATION<br />

— Craig’s Test (Femoral anteversion)<br />

— Ely’s (Rectus Femoris Contracture)


103<br />

— Hyperextension<br />

— Lumbar Spine<br />

— Palpation (Paravertebral muscles, spinous process)<br />

Arthritis<br />

• How much arthritis is too much?<br />

Treatment Plan<br />

• The location and quality <strong>of</strong> the pain should correspond to the<br />

mechanical diagnosis and secondary injury patterns.<br />

• If they do, then correcting the mechanical problems and<br />

secondary injuries should lead to a good outcome….<br />

Summary<br />

• Algorithmic Approach to Evaluation <strong>of</strong> the Non-Arthritic Hip<br />

— History<br />

— Clinical Exam<br />

— Mechanical Diagnosis<br />

— Intra-articular Damage Pattern<br />

— Intra-operative findings<br />

• Dynamic Impingement<br />

— Cam Impingement<br />

— Rim Impingement<br />

REFERENCES<br />

1. Dwek J. Pfirrmann C. Stanley A. Pathria M. Chung CB. MR imaging <strong>of</strong> the<br />

hip abductors: normal anatomy and commonly encountered pathology<br />

at the greater trochanter. Magnetic Resonance Imaging Clinics <strong>of</strong> North<br />

America. 13(4):691-704, vii, 2005 Nov<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

— Global overcoverage<br />

— Focal overcoverage<br />

— Femoral Retroversion<br />

— Femoral Varus<br />

• Static Overload<br />

— Acetabular Dysplasia<br />

— Anterior undercoverage<br />

— Lateral undercoverage<br />

— Femoral Anteversion<br />

— Femoral Valgus<br />

• Hip Instability<br />

— Traumatic labral detachment<br />

— Loose bodies<br />

— ? “Capsular Laxity”<br />

• Psoas Impingement<br />

— Internal Snapping Hip<br />

— Anterior labral pathology<br />

• Peritrochanteric Space Pathology<br />

— Combine these forces with dynamic or static overload to the<br />

joint…


Radiographic and advanced imaging is critical in characterizing the<br />

femoral and acetabular deformities that lead to hip instability or<br />

impingement. Additionally, radiographic and MRI assessment <strong>of</strong><br />

pre-existing osteoarthritis can predict surgical outcome and should<br />

be an important variable in patient selection for joint preserving<br />

surgery.<br />

The main radiographic view utilized for assessing acetabular coverage<br />

and orientation is the anteroposterior pelvic view. The view most<br />

commonly utilized is taken in the supine position, which is the same<br />

view that would be obtained intra-op to assess deformity correction.<br />

A standing AP pelvic view is useful in cases <strong>of</strong> hip instability due to<br />

the fact that a standing view will accentuate the instability and the<br />

anti-lordotic position <strong>of</strong> the pelvis in the standing position will <strong>of</strong>ten<br />

bring out the anterior undercoverage that is <strong>of</strong>ten more severe in mild<br />

acetabular dysplasia. Quantitative measures such as the center-edge<br />

angle <strong>of</strong> Wiberg, acetabular slope <strong>of</strong> Tšnnis, impingement angle, and<br />

joint space width are frequently utilized and are <strong>of</strong>ten more reliable<br />

than qualitative assessment <strong>of</strong> hip deformity. Qualitative measures<br />

<strong>of</strong> acetabular orientation and coverage are <strong>of</strong>ten used; however,<br />

these measures are sensitive to rotation and tilt <strong>of</strong> the pelvis on the<br />

radiograph; hence should be interpreted with caution. Commonly<br />

used radiographic signs are relative position <strong>of</strong> the femoral head with<br />

respect to the ilioishcial line to look for protrusio. Medial position <strong>of</strong><br />

the tear drop relative to the ilioischial line is a sign <strong>of</strong> coxa pr<strong>of</strong>unda.<br />

The presence <strong>of</strong> a cross over sign and posterior wall sign can suggest<br />

acetabular retroversion. Isolated cross over sign can suggest isolated<br />

anterior overcoverage.<br />

A lateral view <strong>of</strong> the acetabulum, which is the false pr<strong>of</strong>ile view <strong>of</strong><br />

Lequesne, is a sensitive view for detecting mild acetabular dysplasia<br />

and should be taken when hip instability condition is suspected.<br />

An abduction, internal rotation view is <strong>of</strong>ten taken in acetabular<br />

104<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

imagiNg pitFallS<br />

Young-Jo Kim, MD, PhD<br />

dysplasia to assess the congruency <strong>of</strong> the joint after acetabular<br />

orientation. A joint with poor congruency and joint space narrowing<br />

in the abduction/internal rotation view is a poor candidate for joint<br />

preservation.<br />

When hip impingement is suspected, a lateral view <strong>of</strong> the proximal<br />

femur is usually necessary to detect the cam lesion. Multiple views<br />

such as frog lateral, Dunn lateral, and true lateral views have been<br />

utilized. A combination <strong>of</strong> an AP pelvic xray and a 45 degree Dunn<br />

lateral view appears to provide the highest sensitivity for detecting<br />

an impingement deformity.<br />

Advanced imaging such as MRI is not only useful in detecting the<br />

intra-articular damage such as labral and chondral tears, but is also<br />

useful in detecting the subtle deformity. Radially projected cuts<br />

around the femoral neck axis will demonstrate the cam deformity<br />

that can be missed on radiographs. Thin cuts through the acetabular<br />

ro<strong>of</strong>, femoral neck, and distal femur will allow you to quantify<br />

the rotational pr<strong>of</strong>ile <strong>of</strong> the acetabulum and the proximal femur.<br />

High resolution MRI will allow you to characterize the shape <strong>of</strong><br />

the acetabular labrum and damage. Acetabular shape is enlarged in<br />

cases <strong>of</strong> hip instability, while, ossification <strong>of</strong> the labrum may suggest<br />

a more pincer type mechanical abnormality. Finally, acetabular<br />

cartilage can be detected on an MRI much earlier than on plain<br />

radiographs, especially, when biochemical imaging such as delayed<br />

Gadolinium Enhanced MRI <strong>of</strong> Cartilage is utilized.<br />

A combination <strong>of</strong> clinical symptoms that is consistent with the<br />

radiographically characterized deformity is necessary before joint<br />

preserving surgery is contemplated. Advanced imaging may be<br />

necessary to fully characterize the deformity and to stage the preexisting<br />

cartilage damage prior to surgery. Careful patient selection<br />

should lead to improved patient outcome.


105<br />

periaCetabular oSteotomy: avoidiNg aNd treatiNg<br />

CompliCatioNS/FailureS<br />

John C. Clohisy, MD<br />

Objectives:<br />

1) Review the potential complications and treatment failures <strong>of</strong> the<br />

PAO<br />

2) Present the indications, patient selection criteria and the<br />

surgical technique <strong>of</strong> the PAO with emphasis on avoiding<br />

complications/failures<br />

3) Discuss perioperative care strategies to avoid complications<br />

4) Present case examples <strong>of</strong> secondary surgery to treat<br />

complications/failures<br />

Introduction:<br />

The Bernese periacetabular osteotomy (PAO) is an effective<br />

surgical technique for acetabular reorientation in the treatment<br />

<strong>of</strong> symptomatic acetabular dysplasia. Multiple surgeons/centers<br />

wordwide have reported favorable results in most patients.<br />

Nevertheless, all clinical series have reported complications and<br />

treatment failures. The procedure is associated with a significant<br />

learning curve. This presentation will review the most common<br />

complications and treatment failures and will present strategies to<br />

minimize suboptimal clinical results.<br />

1) Review the potential complications and treatment failures <strong>of</strong><br />

the PAO<br />

• patient selection/surgical indication mistakes<br />

• major nerve/vascular injury/palsy<br />

• acetabular fracture<br />

• malreduction, loss <strong>of</strong> fixation<br />

• nonunions<br />

• osteonecrosis<br />

• infection, DVT, heterotopic bone, wound problems, blood<br />

loss<br />

• LFCN, symptomatic hardware<br />

2) Present the indications, patient selection criteria and the<br />

surgical technique <strong>of</strong> the PAO with emphasis on avoiding<br />

complications/failures<br />

Indications/patient selection<br />

• Majority <strong>of</strong> patients < 40 years, healthy<br />

• Symptomatic structural instability (acetabular dysplasia)<br />

• Well-preserved hip motion (unless combined FAI)<br />

• Well-preserved joint space (Tonnis 0 or I preferred)<br />

• Adequate patient compliance<br />

• Adequately conditioned, BMI < 30<br />

Surgical Technique <strong>of</strong> the PAO<br />

• Learning Curve issues<br />

REFERENCES:<br />

1. Clohisy JC, Schutz AL, St. John LC, Schoenecker PL, Wright RW.<br />

Periacetabular Osteotomy: A Systematic Literature Review. Clin Orthop Relat<br />

Res 467(8):2041-2052, 2009. PMCID: PMC2706361<br />

2. Clohisy JC, Beaule PE, O’Malley A, Safran MR, Schoenecker P. AOA<br />

Symposium. Hip Disease in the Young Adult: Current Concepts <strong>of</strong> Etiology<br />

and Surgical Treatment. J Bone Joint Surg 90(10):2267 - 2281, 2008.<br />

3. Ganz R, Gill TJ, Gautier E, Ganz K, Krugel N, Berlemann U. Surgical<br />

dislocation <strong>of</strong> the adult hip a technique with full access to the femoral head<br />

and acetabulum without the risk <strong>of</strong> avascular necrosis. J Bone Joint Surg Br<br />

2001;83(8):1119-24.<br />

4. Ganz R, Klaue K, Vinh TS, Mast JW. A new periacetabular osteotomy for the<br />

treatment <strong>of</strong> hip dysplasias. Technique and preliminary results. Clin Orthop<br />

Relat Res 1988(232):26-36.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

— Consider fluoroscopy, peripheral nerve monitoring, blood<br />

reinfusion<br />

• Exposure- LFCN, Neurovascular structures,<br />

• Periacetabular osteotomies<br />

— Ischium<br />

— Superior pubic ramus<br />

— Iliac<br />

— Posterior column<br />

— Mobilization <strong>of</strong> the acetabular fragment<br />

• Acetabular reduction and fixation<br />

— Lateral coverage, anterior coverage, sourcil inclination,<br />

horizontal position <strong>of</strong> hip center, acetabular version,<br />

secondary FAI, screw position (intraoperative radiographic<br />

assessment), range <strong>of</strong> motion check<br />

• Associated femoral procedures<br />

— Check for secondary FAI- head-neck osteochondroplasty<br />

— Proximal femoral osteotomy- residual instability (coxa valga,<br />

varus producing PFO) or poor mechanics/congruency/<br />

residual FAI (coxa vara, valgus producing PFO)<br />

3) Discuss perioperative care strategies to avoid complications<br />

• Patient selection<br />

• Preoperative planning<br />

• Surgical technique- final checks in OR<br />

• Infection prophylaxis<br />

• DVT prophylaxis<br />

• H.O. prophylaxis<br />

• Pain management<br />

• Rehabilitation (weight bearing, ROM, strengthening, return to<br />

activity/sport)<br />

4) Case examples <strong>of</strong> secondary surgery to treat complications/<br />

failures<br />

Key Points:<br />

1) With sound patient selection and surgical technique the PAO<br />

is an effective, safe surgical intervention.<br />

2) The learning curve is substantial and there is significant<br />

potential for complications and early failures.<br />

3) Patient selection for surgery and preoperative planning are<br />

extremely important.<br />

4) Precise surgical technique, knowledge <strong>of</strong> complications and<br />

awareness <strong>of</strong> potential failure mechanisms are important in<br />

optimizing clinical results and survivorship <strong>of</strong> the natural hip<br />

joint.<br />

5. Clohisy JC, Keeney JA and Schoenecker PL: Preliminary Assessment and<br />

Treatment Guidelines for Hip Disorders in Young Adults. Clin Orthop Rel<br />

Res 441: 168-179, 2005.<br />

6. Clohisy JC, Barrett SE, Gordon JE, Delgado ED and Schoenecker PL: Surgical<br />

Technique <strong>of</strong> the Periacetabular Osteotomy in the Treatment <strong>of</strong> Severe<br />

Acetabular Dysplasia. J Bone and Joint Surg 88 (Supp 1, Part 1) 65-83, 2006.<br />

7. Clohisy JC, Nunley R, Curry MC, Schoenecker PL: Periacetabular Osteotomy<br />

for the Treatment <strong>of</strong> Acetabular Dysplasia Associated with Major Aspherical<br />

Head Deformities. J Bone Joint Surg AM 89 (7): 1417-1423, 2007.<br />

8. Clohisy JC, Carlisle JC, Beaule PE, Kim YJ, Trousdale RT, Leunig M,<br />

Schoenecker PL, Millis MB. A Systematic Approach to the Radiographic<br />

Evaluation <strong>of</strong> the Young Adult Hip. J Bone Joint Surg Am Suppl 4 90:47-66,<br />

2008. PMCID: PMC2682767


9. Steppacher SD, Tannast M, Ganz R, Siebenrock KA. Mean 20-year<br />

followup <strong>of</strong> Bernese periacetabular osteotomy. Clin Orthop Relat Res<br />

2008;466(7):1633-44.<br />

10. Siebenrock KA, Leunig M, Ganz R. Periacetabular Osteotomy: The Bernese<br />

Experience. J Bone Joint Surg Am 2001;83-A:449-55.<br />

106<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

11. Leunig M, Siebenrock KA, Ganz R. Rationale <strong>of</strong> periacetabular osteotomy<br />

and background work. J Bone Joint Surg Am 2001;83:438-48.


107<br />

SurgiCal diSloCatioN oF the hip: avoidiNg aNd treatiNg<br />

CompliCatioNS/FailureS<br />

Michael Leunig, PD, MD<br />

Purpose<br />

• To describe the technique <strong>of</strong> surgical hip dislocation detailing<br />

how to avoid or treat complications<br />

Treatment timing/options<br />

• Identifying the appropriate timing for surgical intervention<br />

in treating hip disease secondary to FAI is still evolving and<br />

although physiotherapy and/or antiinflammatory therapy<br />

remain the first line <strong>of</strong> treatment <strong>of</strong> musculoskeletal injuries, its<br />

benefits in FAI are questionable<br />

• Delay in the surgical correction <strong>of</strong> symptomatic patients with<br />

these bony abnormalities may lead to disease progression to the<br />

point where joint preservation is no longer indicated<br />

• Radiographically diagnosed symptomatic FAI requires correction<br />

<strong>of</strong> the underlying bony abnormality and that is possible by<br />

surgery only<br />

Treatment goals<br />

• To safely and exactly correct morphological abnormalities, to<br />

alleviate symptoms, and to slow or stop the progression to early<br />

osteoarthritis regardless <strong>of</strong> the surgical technique.<br />

Treatment target<br />

• FAI-causing bony morphologies need to be addressed surgically.<br />

Open hip dislocation has been the first technique to treat FAI,<br />

with good to excellent short-to mid-term results around 70%<br />

to 80%. With an improved appreciation <strong>of</strong> hip pathology, less<br />

invasive approaches such as hip arthroscopy with/without mini<br />

open procedures have emerged.<br />

• Recent studies clearly demonstrated that simply resecting the<br />

labrum while neglecting the underlying bony pathology (FAI)<br />

is a major cause <strong>of</strong> treatment failures. This is due to the fact that<br />

most, if not all, labral abnormalities occur in the presence <strong>of</strong><br />

structural deformities.<br />

• Indications for labral refixation are still evolving but it currently<br />

appears that resecting the labrum from its bony attachment is<br />

to be avoided whenever possible. Considering its physiological<br />

role, the reattachment <strong>of</strong> the intact portion <strong>of</strong> the labrum<br />

appears logical since an absent labrum might, similar to<br />

meniscectomy <strong>of</strong> the knee, lead to OA.<br />

• Indications for cartilage repair (micr<strong>of</strong>racture, AMIC, mosaic<br />

plasty, etc.) <strong>of</strong> the femoral head and/acetabulum are evolving<br />

Choice on technique<br />

• Hip disorders should be characterized by the anatomic location<br />

<strong>of</strong> the disease, the presence or the absence <strong>of</strong> structural osseous<br />

abnormality, and the degree <strong>of</strong> joint degeneration.<br />

• Even today, complex bony abnormalities including<br />

REFERENCES:<br />

1. Ganz R, Huff TW, Leunig M. Extended retinacular s<strong>of</strong>t-tissue flap for<br />

intra-articular hip surgery: surgical technique, indications, and results <strong>of</strong><br />

application. Instr Course Lect 2009;58:241-55.<br />

2. Leunig M, Beaule PE, Ganz R. The concept <strong>of</strong> femoroacetabular<br />

impingement: current status and future perspectives. Clin Orthop Relat Res<br />

2009;467(3):616-22.<br />

3. Leunig M, Huff TW, Ganz R. Femoroacetabular impingement: treatment <strong>of</strong><br />

the acetabular side. Instr Course Lect 2009;58:223-9.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

extraarticular impingement, major deformities, and global<br />

pincer FAI still seem to be more precisely treated by open hip<br />

dislocation or periacetabular osteotomy.<br />

• Hip arthroscopy ± mini open techniques are a valid treatment<br />

option for intraarticular disorders without substantial<br />

structural abnormality (labral and chondral lesions, loose<br />

bodies, synovitis) and for mild structural abnormality with<br />

intraarticular deformity (cam FAI, focal pincer FAI, cam<br />

impingement secondary to mild SCFE) in the absence <strong>of</strong><br />

advanced joint deterioration.<br />

• Most importantly, the present pathomorphology, rather than<br />

the technical preference <strong>of</strong> the surgeon should govern the choice<br />

on technique.<br />

Surgical hip dislocation<br />

• Using the technique <strong>of</strong> the extended retinacular flap, the<br />

technique <strong>of</strong> surgical hip dislocation additionally allows<br />

femoral osteotomies at the level <strong>of</strong> the head/neck, base <strong>of</strong> the<br />

neck, or intertrochanteric region when these seem appropriate.<br />

• The extended retinacular s<strong>of</strong>t-tissue flap is designed for active<br />

and visual protection <strong>of</strong> the femoral head blood supply<br />

during execution <strong>of</strong> the intra-articular osteotomy. Subcapital<br />

osteotomies in SCFE but also closing-wedge osteotomies <strong>of</strong><br />

the femoral neck and rotational osteotomies can be performed<br />

similar to the subcapital osteotomy.<br />

• Even a lateral segment <strong>of</strong> the head (intracapital osteotomy) can<br />

be mobilized as a free fragment, pedicled on the retinaculum,<br />

while the medial segment remains perfused, similar to a Pipkin<br />

II fragment by the posteromedial branch <strong>of</strong> the MCFA.<br />

• To improve <strong>of</strong> muscular biomechanics and resolve extraarticular<br />

and intra-articular impingement relative lengthening <strong>of</strong><br />

the femoral neck is possible by this approach.<br />

Avoiding surgical complications<br />

• Over-/underresection: Careful preoperative planning<br />

-Trochanteric failure: Step cut osteotomy <strong>of</strong> the greater<br />

trochanter -Ectopic ossifications: Perform sufficient s<strong>of</strong>t tissue<br />

release before dislocation -AVN: Understanding <strong>of</strong> vascular<br />

anatomy <strong>of</strong> proximal femur -Adhesions: Perform early passive<br />

motion to the hip -Persisitng pain: Don’t miss concomitant<br />

pathologies -Etc.<br />

Treating complications<br />

• Over-/underresection: Overresection – osteotomy (PAO),<br />

underresection - reresection -Trochanteric pain: Hardware<br />

removal -Adhesions: Physical therapy or surgical release <strong>of</strong><br />

adhesions -Etc.<br />

4. Leunig M, Nho SJ, Turchetto L, Ganz R. Protrusio acetabuli: new insights and<br />

experience with joint preservation. Clin Orthop Relat Res 2009;467(9):2241-<br />

50.<br />

5. Parvizi J, Leunig M, Ganz R. Femoroacetabular impingement. J Am Acad<br />

Orthop Surg 2007;15(9):561-70.<br />

6. Philippon MJ, Stubbs AJ, Schenker ML, Maxwell RB, Ganz R, Leunig M.<br />

Arthroscopic management <strong>of</strong> femoroacetabular impingement: osteoplasty<br />

technique and literature review. Am J Sports Med 2007;35(9):1571-80.<br />

7. Sierra RJ, Trousdale RT, Ganz R, Leunig M. Hip disease in the young, active<br />

patient: evaluation and nonarthroplasty surgical options. J Am Acad Orthop<br />

Surg 2008;16(12):689-703.


108<br />

arthroSCopiC hip JoiNt preServatioN:<br />

avoidiNg aNd treatiNg CompliCatioNS<br />

Christopher M. Larson MD<br />

#1 = Verify Hip Joint Proper is the Source <strong>of</strong> Pain<br />

• Physical examination consistent<br />

• Relief with intra-articular anesthetic injection<br />

— Followed by Physical Examination / Exercise Challenge<br />

AVOIDING COMPLICATIONS:<br />

• Iatrogenic labral injury<br />

— Anterolateral portal made blindly using fluoroscopy • Place<br />

spinal needle and release neg pressure<br />

— Remove needle and replace under labrum<br />

— If difficult visualization or mobility think labral penetration<br />

• Remainder <strong>of</strong> portals made under direct visualization<br />

— Iatrogenic articular cartilage injury<br />

— Obtain adequate distraction (at least 10mm)<br />

— Angle cannulas / instruments towards the acetabulum<br />

– Both entering and exiting the central compartment<br />

– Avoid femoral head chondral injury<br />

• In FAI cases limited working space despite adequate distraction<br />

— Prominent anterior acetabulum / Os Acetabuli = difficulty<br />

placing anterior portal<br />

– Perform capsulotomy early and work outside the central<br />

compartment<br />

– Alternatively access through the peripheral compartment<br />

first with hip flexion<br />

• Neuropraxias<br />

— Traction / pressure<br />

• Pudendal, sciatic, femoral, peroneal, dorsum <strong>of</strong> the foot /<br />

great toe<br />

• Limit traction time to < 2 hours<br />

• I limit to < 1 hour<br />

• Alternate between central and peripheral compartment<br />

• Well padded peroneal post<br />

• Larger / more padding if longer traction times<br />

• Smaller posts if shorter traction time<br />

o Allows better dynamic assessment<br />

• Pad the dorsum <strong>of</strong> foot and medial aspect <strong>of</strong> the great toe<br />

— Portal related (anterior / mid-anterior)<br />

• Lateral femoral cutaneous<br />

• Avoid deep portal incision<br />

• Under and Over-resection<br />

— Appropriate preoperative diagnosis based on imaging studies<br />

— Structural impingement vs Structural instability<br />

– Structural instability cannot be corrected arthroscopically<br />

> Dysplasia with retroversion<br />

¬ Resection <strong>of</strong> the anterior rim creates global<br />

instability<br />

¬ Reports <strong>of</strong> iatrogenic dislocation<br />

¬ CE angles < 20, lateralization, break Shentons line<br />

† Corrective osteotomy<br />

– Not all structural impingement can be predictably<br />

managed arthroscopically<br />

> Posterior based cam lesions<br />

> Protrusio difficult to dynamically assess<br />

> Avoid resection > 30% width <strong>of</strong> the femoral neck<br />

> Lateral position<br />

¬ Tendency to under-resect antero-inf cam extension<br />

> Supine position<br />

¬ Tendency to under-resect superior cam extension<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

– Intra-operative assessment <strong>of</strong> resections • Recreate preop<br />

AP image with intra-op fluoro<br />

> Posterolateral portal for global rim resections<br />

> Hip flexion for anterior and inferior cam extension<br />

> Hip extension / IR for supero-posterior cam extension<br />

> Dynamic assessment (FADDIR, Butterfly, ext / IR)<br />

— Extra-articular impingement is difficult to define and<br />

should be addressed with an open surgical procedure when<br />

suspected<br />

– Trochanteric impingement against the pelvis / AIIS<br />

(Perthes)<br />

• Post-operative adhesions<br />

— Encourage early ROM (POD # 0 or 1) CPM or well leg cycle<br />

• Heterotopic ossification<br />

— After bony resections / Typically form at the capsulotomy<br />

— Meticulous removal <strong>of</strong> bony debris from muscle deep to<br />

capsule<br />

— NSAIDS for 3 weeks post-operatively<br />

• Failures with preoperative OA<br />

— > 50% narrowing (100% failure 3 yrs), any narrowing<br />

decreased outcome<br />

— Bipolar grade 3-4, chondral delamination > 2cm, medial<br />

head wear<br />

– Minimize the procedure if encounter the above findings<br />

— OA treated with Hip arthroplasty not arthroscopy<br />

TREATING COMPLICATIONS:<br />

• Over-resection<br />

— Avoid this!!<br />

— Limited arthroscopic options<br />

— Acute iatrogenic dislocation \<br />

– Reduction and Capsular repair<br />

— Chronic Instability<br />

– Corrective Pelvic Osteotomy / THA<br />

— Femoral Neck Fracture<br />

– Cannulated Screw fixation +- Bone grafting<br />

• Under-resection<br />

— 3D CT to verify residual impingement<br />

— Anesthetic injection to verify joint as source <strong>of</strong> pain!<br />

— Appropriate arthroscopic indications as noted previously<br />

— Use the above mentioned techniques to verify appropriate<br />

resection<br />

• Adhesions<br />

— Recreate capsulolabral recess<br />

— Take down adhesions from capsule to femoral neck<br />

— Early post-op ROM (well leg cycle / CPM)<br />

• Symptomatic Heterotopic Ossification (H.O.)<br />

— Arthroscopic resection is feasible (<strong>of</strong>ten at level <strong>of</strong><br />

capsulotomy)<br />

— Post-op Irradiation / NSAIDS<br />

• Psoas Impingement<br />

— Bruising at 3 (R hip) or 9 o clock (L hip) position<br />

— Preoperative bursal injection = relief <strong>of</strong> pain<br />

— Psoas tenotomy (central compartment / fractional<br />

lengthening)<br />

• Labral Deficiency<br />

— Most revisions able to preserve labrum<br />

— If previously excised ?? Reconstruction


109<br />

– • ITB / Gracilis / Ligamentum / Reflected head rectus<br />

— No convincing data to support if treating other pathology<br />

– Residual impingement / persistent labral tear / adhesions<br />

REFERENCES:<br />

1. Mardones RM, Gonzalez C, Chen Q, et al. Surgical treatment <strong>of</strong><br />

femoroacetabular impingement:evaluation <strong>of</strong> the effect <strong>of</strong> the size <strong>of</strong> the<br />

resection. surgical technique. J Bone Joint Surg Am. 2006;88 suppl 1:84-91<br />

2. Larson CM, Wulf CA. Intraoperative fluoroscopy for evaluation <strong>of</strong><br />

bony resection during arthroscopic management <strong>of</strong> femoroacetabular<br />

impingement in the supine position. Arthroscopy 2009; 25:1183-1192<br />

3. Matsuda D. Acute iatrogenic dislocation following hip impingement<br />

arthroscopic surgery. Arthroscopy 2009;25:400-404<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

4. Ranawat A, McClincy M, Sekiya J. Anterior dislocation <strong>of</strong> the hip after<br />

arthroscopy in a patient with capsular laxity <strong>of</strong> the hip. J Bone Joint Surg Am<br />

2009;91:192-197.<br />

5. Benali Y, Katthagen BD. Hip subluxation as a complication <strong>of</strong> arthoscopic<br />

debridement. Arthroscopy 2009;25:405-407<br />

6. Larson CM, Taylor M, Giveans MR. Does arthroscopic FAI correction improve<br />

function with radiographic arthritis? Clin Orthop Rel Res (Accepted 2010)<br />

7. Heyworth, Shindle, Voos, Rudzki, Kelly. Radiologic and intraoperative<br />

findings in revision hip arthroscopy. Arthroscopy. 2007. Dec 23(12):1295-<br />

302


JoiNt preServatioN teChNique to optimize Future hip Surgery<br />

Paul E. Beaulé, MD and Joshua K.L. Lee FRCS<br />

Beyond these classic osteotomies <strong>of</strong> perciacetabular osteotomy<br />

(PAO) and proximal femoral osteotomy (PFO), there also has<br />

been in the last ten years the emergence <strong>of</strong> impingement surgery as<br />

well as hip arthroscopy. Although successful operations there will<br />

be a proportion <strong>of</strong> patients who ultimately develop symptomatic<br />

arthritis requiring total hip arthroplasty (THA). There have been<br />

varying reports <strong>of</strong> higher complication rates and less than optimal<br />

outcomes <strong>of</strong> THA after previous surgical interventions around the<br />

hip. In this presentation we will review how these joint preserving<br />

procedures can impact the performance <strong>of</strong> a total hip arthroplasty<br />

and to minimize their clinical impact.<br />

PELVIC OSTEOTOMY: PAO & OTHERS<br />

Pelvic osteotomy for the treatment dysplasia is a well established<br />

with the Bernese PAO becoming the gold standard in recent years.<br />

Having said, patients needing a total hip will still present after other<br />

types <strong>of</strong> pelvic osteotomies such as Chiari, triple innmominate and<br />

Salter. Although the latter two have provided good results for the<br />

treatment <strong>of</strong> dysplasia they do present technical challenges that need<br />

to be considered. The Chiari osteotomy is less commonly utilised<br />

than in the past, but the results <strong>of</strong> conversion to THA may allow one<br />

to judge the outcomes with more modern pelvic osteotomies such<br />

as the PAO’s. Hashemi-Nejad et al5 reported on 28 failed hips after<br />

Chiari osteotomy with a mean interval from osteotomy to THA <strong>of</strong> 17<br />

years, compared to 50 primary THA’s for sequelae <strong>of</strong> developmental<br />

dysplasia who had not undergone Chiari osteotomy. They reported<br />

that the previous osteotomy facilitated acetabular reconstruction for<br />

THA with a significant number not needing structural bone grafting<br />

(7% vs 28%), decreased operative time as well blood loss. In addition,<br />

they noted improved host bone coverage with the hip centre <strong>of</strong><br />

rotation being more anatomical as deepening and medialization<br />

was less likely to be necessary. The complication rate, functional and<br />

radiographic outcomes and revision rate at five years was similar to<br />

the control DDH group. And they concluded that previous Chiari<br />

osteotomy does not compromise intermediate term outcomes <strong>of</strong><br />

THA. Conversely Minoda et al8 found in a shorter term study that<br />

comparing previous Chiari osteotomy compared to THA for DDH<br />

with not previous history <strong>of</strong> surgery, had a significant increase in<br />

operative time and blood loss with no observed difference in need<br />

for bone graft, functional and radiological outcomes.<br />

There has been one report on THA after triple innominate osteotomy<br />

(TIO)11. Patients with failed TIO were compared with those who had<br />

primary or secondary osteoarthritis. Though there was no difference<br />

in radiological outcomes, there was a significant difference in<br />

functional outcomes. There was a significant difference between the<br />

post-operative Harris Hip Scores (HHS), 76 in the TIO group and 88<br />

in the control with the main difference being accounted for by the<br />

pain component with scores <strong>of</strong> 32 compared to 40, the functional<br />

scores were similar. From a technical standpoint, they authors noted<br />

greater difficulty in the conversion cases with a significant greater<br />

blood loss as well as greater use <strong>of</strong> the S-ROM modular stem: 61% vs<br />

15%. The authors concluded that though TIO facilitates future THA,<br />

especially acetabular coverage, with radiographical outcomes similar<br />

to primary THA, clinical results did not reflect this.<br />

To date there have been two reports on the conversion <strong>of</strong> the Bernese<br />

osteotomy to THA. Parvizi et al10 reported on 45 hips in 41 patients<br />

who required THA after progression to symptomatic arthritis with a<br />

mean follow-up <strong>of</strong> 6.9 years: 2 revisions for aseptic loosening, one<br />

dislocation, one case <strong>of</strong> HO. BaquŽ et al1 had a smaller study group<br />

110<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

<strong>of</strong> 8 hips and a mean follow-up <strong>of</strong> 2.3 years. Both reports showed<br />

good clinical outcomes with improvements in Merle d’AubignŽ<br />

scores from 11.2 to 17.110 and 13.7 to 171. The majority <strong>of</strong> patients<br />

rated the outcome to be excellent to good. One key difference<br />

between the two series, is the use <strong>of</strong> the direct anterior approach<br />

for the conversion surgery by BaquŽ et al which further minimizes<br />

the overall impact <strong>of</strong> the PAO as the standard approach for this<br />

osteotomy is also anterior (Smith-Petersen).<br />

Key Technical Points:<br />

• Acetabular Retroversion:<br />

— Salter >>> PAO<br />

— Requires resection <strong>of</strong> anterior overhang & direction <strong>of</strong><br />

reaming into posterior column.<br />

— Consider use <strong>of</strong> modular stem such as S-ROM<br />

• Hip Center <strong>of</strong> Rotation/Press-Fit:<br />

— Chiari>>>PAO<br />

— Morsellized bone grafting<br />

— PAO: acetabulum more dishaped w/ fossa & incisura being<br />

more posterior and medial. BaquŽ et al used unaltered<br />

ilioischial line as a surrogate for the medial wall and<br />

the superior aspect <strong>of</strong> the obturator foramen for the<br />

radiographic teardrop<br />

• Routine removal <strong>of</strong> internal fixation not necessary.<br />

PROXIMAL FEMORAL OSTEOTOMY (PFO)<br />

There have been conflicting reports <strong>of</strong> results <strong>of</strong> THA post PFO,<br />

many earlier articles show poor results, but more recently the reports<br />

have been more encouraging. Most publications are regarding THA<br />

post-intertrochanteric osteotomy (ITO)2-4,6,7,9,12. Failure rates<br />

as high as 18.12 and 20.6%4 at 10 years have been reported for<br />

cemented THA’s, equally Iwase et al7 found 22.5% failure rate <strong>of</strong><br />

uncemented stems at 4 years, but 100% survival <strong>of</strong> cemented stems.<br />

It has been felt that the initial poor results with cemented stems was<br />

due to first generation cementing techniques and there has been a<br />

marked improvement <strong>of</strong> results with second generation cementing<br />

techniques with no stems revised at 16 years12.<br />

More recent reports have shown good survivorship <strong>of</strong> both<br />

cemented6 and uncemented3,9 components. Haverkamp et al6<br />

found 10 year survivorship <strong>of</strong> cemented THA <strong>of</strong> 90% compared to<br />

92% for a control group <strong>of</strong> primary THA’s in patients with primary<br />

or secondary osteoarthritis with no prior hip surgery. At 15 years<br />

the rates were similar at 83% and 81% respectively. Parsch et al9<br />

showed stem survival in uncemented THA <strong>of</strong> 91% at 15 and 20 years.<br />

Interestingly both groups used standard non-custom, non-modular<br />

implants.<br />

Though there may be contradictory results regarding implant<br />

survival, reports have shown that the clinical outcome is similar to<br />

control groups. Boos et al2 showed no differences in the HHS and<br />

improvement in HHS in patients with a prior ITO compared to a<br />

group <strong>of</strong> diagnosis matched patients. Comparing prior ITO against<br />

THA for primary and secondary osteoarthritis with no previous hip<br />

surgery, Haverkamp et al found no differences in the average HHS6.<br />

Key Technical Points:<br />

• Routine Removal Internal Fixation:<br />

— Though several authors have cautioned that empty screw<br />

holes may affect effective cement pressurisation and<br />

interdigitation2,4, as well as possible fracture with them<br />

acting as stress risers2, they have not shown worse outcomes


with concomitant removal <strong>of</strong> hardware2,4,12. Haverkamp et<br />

al felt that removal <strong>of</strong> hardware at the time <strong>of</strong> THA increased<br />

the risks <strong>of</strong> intraoperative complications, though at their<br />

institution they routinely removed hardware one to two<br />

years after the osteotomy6.<br />

— Required almost all the time.<br />

— Plan for greater blood loss.<br />

• Femoral Canal Deformity:<br />

— Trochanteric Osteotomy maybe required especially post<br />

varus osteotomy.<br />

— Rotational Alignment can be difficult as well as component<br />

sizing for <strong>of</strong>fset restoration. Consider modular implant<br />

— Sclerosis <strong>of</strong> the subtrochanteric region may require smaller<br />

canal finder or intra-operative imaging in order to avoid<br />

perforation <strong>of</strong> femoral canal.<br />

NEWER TECHNIQUES: SURGICAL DISLOCATION & HIP<br />

ARTHROSCOPY<br />

There are no reports in the literature analyzing the outcome <strong>of</strong><br />

total hip replacement after failed hip arthroscopy and/or surgical<br />

dislocation. For the former, one would assume that the surgery<br />

would be no different than a regular primary total hip replacement.<br />

Having said, with surgeons performing labral refixation techniques<br />

more commonly with or without acetabular rim trimming, the<br />

REFERENCES:<br />

1. Baque, F.; Brown, A.; and Matta, J.: Total hip arthroplasty after periacetabular<br />

osteotomy. Orthopedics, 32(6): 399, 2009.<br />

2. Boos, N.; Krushell, R.; Ganz, R.; and Muller, M. E.: Total hip arthroplasty after<br />

previous proximal femoral osteotomy. J Bone Joint Surg Br, 79(2): 247-53,<br />

1997.<br />

3. Breusch, S. J.; Lukoschek, M.; Thomsen, M.; Mau, H.; Ewerbeck, V.;<br />

and Aldinger, P. R.: Ten-year results <strong>of</strong> uncemented hip stems for failed<br />

intertrochanteric osteotomy. Arch Orthop Trauma Surg, 125(5): 304-9, 2005.<br />

4. Ferguson, G. M.; Cabanela, M. E.; and Ilstrup, D. M.: Total hip arthroplasty<br />

after failed intertrochanteric osteotomy. J Bone Joint Surg Br, 76(2): 252-7,<br />

1994.<br />

5. Hashemi-Nejad, A.; Haddad, F. S.; Tong, K. M.; Muirhead-Allwood, S. K.;<br />

and Catterall, A.: Does Chiari osteotomy compromise subsequent total hip<br />

arthroplasty? J Arthroplasty, 17(6): 731-9, 2002.<br />

6. Haverkamp, D.; de Jong, P. T.; and Marti, R. K.: Intertrochanteric osteotomies<br />

do not impair long-term outcome <strong>of</strong> subsequent cemented total hip<br />

arthroplasties. Clin Orthop Relat Res, 444: 154-60, 2006.<br />

111<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

impact <strong>of</strong> these procedures are unknown in regards to the acetabular<br />

component preparation and fixation. Finally, in regards to total hip<br />

after surgical dislocation, <strong>of</strong>ten there will retained internal fixation<br />

in the greater trochanter which will require removal and this maybe<br />

difficult since <strong>of</strong>ten there is bony overgrowth and if 3.5mm screws<br />

were used than the screw heads might easily break <strong>of</strong>f so having<br />

the broken removal screw set available is important. Using 4.5mm<br />

screws initially might facilitate this.<br />

CONCLUSION:<br />

Subsequent THA does not appear to the compromised by previous<br />

PAO, though caution needs to be taken when judging the placement<br />

<strong>of</strong> the acetabular component in relation to distorted anatomical<br />

landmarks. It is unclear if the same clinical outcome after conversion<br />

<strong>of</strong> pelvic osteotomies can be applied to other pelvic osteotomies<br />

(Chiari, TIO) or PFO. More specifically because the Chiari and Salter<br />

osteotomies do not leave the posterior column intact this can have<br />

significant implications in regards to acetabular component fixation<br />

as well as placement. Whereas with a previous PFO (inter trochanteric<br />

osteotomy) the total is technically more demanding and care needs<br />

to be taken when preparing the femur and selection <strong>of</strong> implants<br />

with specially consideration given to modular implants such as the<br />

S-ROM. Finally, there is little to no data on the outcome <strong>of</strong> total hip<br />

replacement after hip arthroscopy and/or surgical dislocation.<br />

7. Iwase, T.; Hasegawa, Y.; Iwasada, S.; Kitamura, S.; and Iwata, H.: Total hip<br />

arthroplasty after failed intertrochanteric valgus osteotomy for advanced<br />

osteoarthrosis. Clin Orthop Relat Res, (364): 175-81, 1999.<br />

8. Minoda, Y.; Kadowaki, T.; and Kim, M.: Total hip arthroplasty <strong>of</strong> dysplastic<br />

hip after previous Chiari pelvic osteotomy. Arch Orthop Trauma Surg,<br />

126(6): 394-400, 2006.<br />

9. Parsch, D.; Jung, A. W.; Thomsen, M.; Ewerbeck, V.; and Aldinger, P. R.: Good<br />

survival <strong>of</strong> uncemented tapered stems for failed intertrochanteric osteotomy:<br />

a mean 16 year follow-up study in 45 patients. Arch Orthop Trauma Surg,<br />

128(10): 1081-5, 2008.<br />

10. Parvizi, J.; Burmeister, H.; and Ganz, R.: Previous Bernese periacetabular<br />

osteotomy does not compromise the results <strong>of</strong> total hip arthroplasty. Clin<br />

Orthop Relat Res, (423): 118-22, 2004.<br />

11. Peters, C. L.; Beck, M.; and Dunn, H. K.: Total hip arthroplasty in young<br />

adults after failed triple innominate osteotomy. J Arthroplasty, 16(2): 188-<br />

95, 2001.<br />

12. Shinar, A. A., and Harris, W. H.: Cemented total hip arthroplasty following<br />

previous femoral osteotomy: an average 16-year follow-up study. J<br />

Arthroplasty, 13(3): 243-53, 1998.


112<br />

maNagiNg CompliCatioNS aFter<br />

primary total hip arthroplaSty<br />

iN your praCtiCe (v)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

Moderator: Paul F. Lachiewicz, MD, Chapel Hill, NC<br />

This symposium will assist the practicing surgeon in the management <strong>of</strong> common complications after primary total hip<br />

arthroplasty.<br />

I. Intraoperative Fracture <strong>of</strong> the Femur and Acetabulum<br />

Will address risk factors, prevention, treatment (wire, cable; adjustment PT).<br />

David G. Lewallen, MD, Rochester MN<br />

II. Dislocation<br />

Will address risk factors, use <strong>of</strong> large heads, prophylactic bracing role; treatment <strong>of</strong> first, second events; when, what type <strong>of</strong><br />

revision for recurrence.<br />

Douglas E. Padgett, MD, New York, NY<br />

III. Iliopsoas and Abductor Tendon Problems After Hip Arthroplasty<br />

Will address iliopsoas tendinitis- evaluation and treatment; abduction tendon avulsion - evaluation and treatment; treatment <strong>of</strong><br />

abductor tear at time <strong>of</strong> initial THA.<br />

Paul F. Lachiewicz, MD, Chapel Hill, NC<br />

IV. Sciatic nerve injury<br />

Will address techniques to prevent nerve injury and prognostic factors for recovery.<br />

Chitranjan S. Ranawat, MD, New York, NY<br />

V. Recognizing and Treating Problems After MoM and CoC Hip Arthroplasties<br />

Will address unexplained pain after metal/metal, pseudotumor evaluation and treatment; evaluation and treatment <strong>of</strong> ceramic/<br />

ceramic squeaking and fracture.<br />

Robert L. Barrack, MD, Saint Louis, MO<br />

VI. Management <strong>of</strong> the Draining Hip Incision and Diagnosis/Treatment <strong>of</strong> Early and Late Hip Infections<br />

Will address evaluation and treatment <strong>of</strong> early draining incision, early documented infection and late infection, with new data<br />

about cell counts, new modalities and changing microbiology.<br />

Javad Parvizi, MD, Philadelphia, PA<br />

VII. Questions and Answers<br />

Faculty


113<br />

diSloCatioN aFter total hip arthroplaSty<br />

Douglas E. Padgett, MD<br />

1. What to do with the patient who dislocates after THR?<br />

a. Who did the surgery ?<br />

i. You: what happened at primary procedure ?<br />

ii. Elsewhere: try to find out what happened at procedure ?<br />

b. Timing <strong>of</strong> Instability:<br />

i. Early (first 6-8 weeks)<br />

ii. Later<br />

iii. First timer vs multiple dislocator<br />

c. Direction <strong>of</strong> instability:<br />

i. This is important and relative to approach.<br />

1. i.e.-early dislocator who subluxes anteriorly done via<br />

a posterior approach has a different natural history<br />

than a posterior dislocator<br />

d. Mechanism:<br />

i. What were the circumstances?<br />

1. Don’t accept the “spontaneous dislocation”: I was just<br />

sitting there and my hip popped out !<br />

2. Adherence to precautions ?<br />

3. Does the patient understand them ?<br />

e. Radiographic evaluation:<br />

i. Minimal data set:<br />

1. Centered AP pelvis, true lateral <strong>of</strong> the femur<br />

a. Socket: abduction angle, version angle on true<br />

lateral<br />

b. Femur: length, <strong>of</strong>fset<br />

c. Combined <strong>of</strong>fset: look at opposite hip<br />

d. If this is the acute dislocation: must determine<br />

the direction <strong>of</strong> dislocation because it will affect<br />

reduction techniques<br />

f. Reduction <strong>of</strong> the dislocated hip:<br />

i. Knowledge <strong>of</strong> direction <strong>of</strong> instability to guide reduction<br />

maneuver<br />

1. Sedation<br />

2. Strength not as important as appropriate leverage:<br />

a. Think martial arts<br />

3. Post-reduction: check ROM for stability<br />

g. Bracing:<br />

i. Controversial<br />

ii. Data not compelling:<br />

iii. Type <strong>of</strong> brace:<br />

1. Hip abduction brace<br />

a. Posterior dislocation:<br />

i. Motion limits:<br />

• Hip flexion stop at 70 degrees<br />

• Abduction fixed at 25-30 degrees<br />

BIBLIOGRAPHY:<br />

1. Padgett DE and Warashina: The Unstable Total Hip Replacement. Clin<br />

Orthop Rel Res. 420:72-79, 2004.<br />

2. Berry DJ, von KnochM, Schleck CD, Harmsen WS.: The cumulative long term<br />

risk <strong>of</strong> dislocation after primary Charnley THR. JBJS, 86A:9-14, 2004.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

b. Anterior dislocation:<br />

i. Need to control rotation and restrict extension<br />

• Hip flexion arc 20 degrees to 70 degrees<br />

• Long leg extension to limit external rotation<br />

iv. Duration <strong>of</strong> bracing:<br />

1. Data not clear<br />

2. Most recommend 6 week course <strong>of</strong> bracing BUT<br />

reenforcement <strong>of</strong> hip precautions<br />

h. Prognosis<br />

i. Patient Factors:<br />

1. Sex, diagnosis, cognition<br />

ii. Implant Factors:<br />

1. Head size, cup size, head-neck ratio, <strong>of</strong>fset (femoral,<br />

acetabular)<br />

iii. Surgeon Factors:<br />

1. S<strong>of</strong>t tissue tension (leg length/ <strong>of</strong>fset)<br />

2. Offset affect upon impingement:<br />

a. Socket <strong>of</strong>fset<br />

b. Femoral <strong>of</strong>fset<br />

c. Combined<br />

3. Version: stem / cup and combined !<br />

iv. The Natural History <strong>of</strong> the THR:<br />

1. Cumulative Dislocation Rate<br />

2. Distribution <strong>of</strong> when dislocation occurs<br />

3. What happens to the :<br />

a. Early dislocator<br />

b. Late dislocator<br />

2. The Recurrent Dislocator:<br />

a. Role <strong>of</strong> conservative treatment:<br />

i. Limited !<br />

ii. Perhaps in the cognitively impaired, noncompliant<br />

patient<br />

b. Surgical management <strong>of</strong> the recurrent dislocator:<br />

i. Tailor to etiology (if known!)<br />

ii. Options:<br />

1. Change version (stem/cup)<br />

2. Change head size/liner<br />

3. Trochanteric advancement:<br />

a. An older but effective treatment<br />

4. Constrained liners:<br />

a. Short term success outstanding BUT:<br />

b. Same criteria for acceptable cup position in the<br />

primary THR<br />

c. Poorly placed cup is NOT salvaged by simply<br />

placing in a constrained liner.<br />

3. Shapiro GS, Weiland DE, Markel DC, Padgett DE, Sculco TP, and Pellicci PM:<br />

The Use <strong>of</strong> a constrained acetabular component for Recurrent dislocation. J<br />

Arthroplasty 18(3):250-258, 2003.


114<br />

iliopSoaS teNdiNitiS aNd abduCtor teNdoN problemS aFter<br />

total hip arthroplaSty<br />

Paul F. Lachiewicz MD<br />

Iliopsoas tendinitis after THA<br />

• An UNDERαRECOGNIZED cause <strong>of</strong> groin pain and disability<br />

after THA!<br />

Frequency <strong>of</strong> Groin Pain after THA<br />

Nasser 18% after resurfacing<br />

AlaEddine 4.3% after THA<br />

Bartlelt 18% after resurfacing<br />

15% after metalαmetal THA<br />

7% after conventional THA<br />

Iliopsoas Tendinitis after THA related to:<br />

• Prominent, malpositioned acetabular component<br />

• Acetabular cage or ring<br />

• Retained cement; long screws<br />

• Excessive <strong>of</strong>fset or leg length discrepancy (?)<br />

Iliopsoas tendinitis ? increased frequency with:<br />

• Metal –metal hip resurfacing<br />

• Very large head metal-metal THA<br />

Iliopsoas Anatomy<br />

• Confluence <strong>of</strong> 2 muscles that insert into anteromedial lesser<br />

trochanter<br />

• Bursa separates tendon from hip capsule<br />

• Tendon is extra-articular, but may become intra-articular if<br />

anterior capsule divided/resected during THA<br />

History + Physical Findings<br />

• Persistent groin pain, exacerbated by stair-climbing, arising from<br />

chair/bed, or entering/exiting auto<br />

• Onset from 1 to 96 months after THA<br />

• Slight limp; groin tenderness, mass, snap<br />

• Pain reproduced with resisted seated hip flexion, leg raise, active<br />

external rotation<br />

Initial Evaluation<br />

• ESR, CRP ------ hip aspiration if elevated<br />

• Radiographs, including shoot through lateral<br />

• Technetium bone scan, to detect occult fracture, loosening<br />

Diagnostic Tests<br />

• Plain radiographs<br />

• CT scan; ? MRI<br />

• Ultrasonography<br />

• Diagnostic injection<br />

Lateral radiograph—look for prominent anterior edge(uncovered)<br />

acetabular component<br />

CT scan—can measure version and detect tendon/bursa<br />

hypertrophy<br />

Mean prominence 5.8 mm (range 2-10) in one study;<br />

> 12 mm in 8 cases in another study<br />

Ultrasonography—tendon displaced anteriorly + medially; largest<br />

REFERENCES<br />

1. Lachiewicz PF, Kauk JR. Anterior iliopsoas impingement and tendinitis after<br />

total hip arthroplasty. J Am Acad Orthop Surg 2009; 17: 337-344<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

series 39 patients (11 THA) May be technique and experience<br />

dependent<br />

Diagnostic Injection—guided by fluro, CT, or ultrasound<br />

Radiologist injects tendon sheath with local anesthetic +/- steroid<br />

Temporary relief <strong>of</strong> pain confirms diagnosis<br />

Non-operative Treatment<br />

• Rest, medication, physical therapy stretches<br />

• Steroid injection ? repeat once if effective<br />

• Botox injection ? one case report<br />

Operative Treatment<br />

• Iliopsoas tendon release/ resection<br />

• Removal <strong>of</strong> prominent metal, cement, or screws<br />

• Acetabular component revision +/- tendon release or resection<br />

Iliopsoas tendon release/ resection<br />

• Anterior or posterior approach<br />

• Only if acetabular component not malpositioned<br />

Acetabular Component Revision<br />

• Indicated when Xray or CT scan shows that the anterior edge <strong>of</strong><br />

component protrudes in front <strong>of</strong> anterior bony rim<br />

• Medialize and antevert new acetabular component (below<br />

anterior rim)<br />

• Release or resect iliopsoas tendon/ bursa<br />

Pooled Analysis <strong>of</strong> Treatment in Literature<br />

• 112 hips, female 66% Mean patient age 57 years<br />

• Mean duration <strong>of</strong> symptoms 24 months<br />

• 84% <strong>of</strong> hips had an uncemented acetabular component<br />

Pooled Analysis <strong>of</strong> Non-Operative Treatment<br />

• Successful in only 49% <strong>of</strong> THAs (28/57)<br />

• Single largest series 19 hips (Nunley etal)<br />

29 month f/u telephone questionnaire<br />

— Injection helped 13 patients (68%) however, 9 had a 2nd<br />

injection<br />

— Surgery performed 6 patients<br />

Pooled Analysis <strong>of</strong> Operative Treatment<br />

• Tenotomy 39; Revision +/- tenotomy 40<br />

• Successful 93% Mean follow-up only 17 months<br />

• No study compared tenotomy/ resection with acetabular<br />

component revision<br />

Conclusions<br />

• Consider diagnosis in patients with groin pain and disability<br />

after THA, especially resurfacing<br />

• Evaluate with shoot-through lateral radiograph, CT scan (?MRI),<br />

or ultrasound<br />

• Diagnostic/ therapeutic injection recommended<br />

• Operative treatment—tendon release/ resection or acetabular<br />

revision highly successful<br />

2. Bartelt RB, Yuan BJ, Trousdale RT, Sierra RJ.The prevalence <strong>of</strong> groin pain after<br />

metal-on-metal total hip arthroplasty and total hip resurfacing. Clin Orthop<br />

Relat Res 2010; 468: 2346-2356.


115<br />

abduCtor teNdoN problemS aFter primary<br />

total hip arthroplaSty<br />

Paul F. Lachiewicz, MD<br />

Lateral Hip Pain<br />

Greater Trochanter Pain Syndrome<br />

• Called greater trochanteric bursitis<br />

• More prominent in women, peak onset 4thα6th decade<br />

• Tenderness, limp, weakness<br />

• Usual treatment: NSAIDs, physical therapy, steroid injection<br />

Refractory Lateral Hip Pain + weakness Chronic tear <strong>of</strong> abductor<br />

tendon (“rotator cuff tear <strong>of</strong> hip”)<br />

Imaging<br />

• Plain radiographs<br />

— Usually normal<br />

— May see sclerosis, osteophytes, or cyst in greater trochanter<br />

• MRI<br />

— Partial tear increased signal T2<br />

— Full tear discontinuity <strong>of</strong> tendon<br />

— Fatty atrophy <strong>of</strong> gluteus medius poor prognosis<br />

Clinical Scenarios<br />

1. Chronic tear, no hip arthritis classic “rotator cuff tear <strong>of</strong> hip”<br />

2. Coincident finding at time <strong>of</strong> elective THA for arthritis or at<br />

athroplasty for femoral neck fx<br />

3. Abductor tendon avulsion after THA through anterolateral<br />

(Hardinge) approach<br />

SCENARIO 2 Abductor tendon tear found at time <strong>of</strong> primary<br />

THA<br />

• Found in 22% patients with femoral neck fracture<br />

• Found in 22% women, 15% men at time <strong>of</strong> elective THA for<br />

arthritis<br />

• Fluid, chronic inflammation in bursa; check integrity <strong>of</strong> anterior<br />

gluteus medius tendon<br />

Treatment<br />

• Proceed with routine arthroplasty (consider large head)<br />

• Excise trochanteric osteophytes, sclerotic bone<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

• Repair tendon with 2-3 non-absorbable sutures through<br />

transosseous tunnels<br />

• Protect with 2 supports/ walker for 6 weeks<br />

SCENARIO 3 Abductor Tendon Avulsion after Primary THA<br />

through anterolateral approach<br />

Frequency: 4.9% lateral pain (Iorio)<br />

27/97 hips had > 2 cm separation <strong>of</strong> tendon (metal<br />

marker study)<br />

• 2.5 cm correlated with limp<br />

Treatment observation, support; surgical intervention for mod/<br />

severe pain and limp<br />

Results <strong>of</strong> Repair <strong>of</strong> Abductor tendon Avulsion after THA<br />

Weber etal 5/9 limp improved; pain not reliably improved<br />

Miozzari etal 9/12 pain improved; persistent limp in 4<br />

patients<br />

Fatty atrophy <strong>of</strong> gluteus medius on MRI<br />

associated with limp, weakness<br />

Late reconstruction (repair not feasible)<br />

• Transfer gluteus maximus flap (Whitesides etal)<br />

• Achilles tendon allograft (Fehm etal)<br />

Summary Abductor Tendon Tears after THA<br />

• Consider in patients with lateral hip pain, weakness, limprefractory<br />

to nonop treatment<br />

• MRI scan sensitive + specific<br />

• Relatively common finding at time <strong>of</strong> THA or arthroplasty for<br />

femoral neck fracture<br />

• Avulsion after THA—uncommon cause <strong>of</strong> postop pain, limp,<br />

need for supports<br />

• Repair or reconstruction helpful in 3/4s <strong>of</strong> patients


116<br />

SCiatiC Nerve palSy iN primary total hip arthroplaSty<br />

Chitranjan S. Ranawat, MD<br />

Abstract:<br />

The etiology <strong>of</strong> sciatic nerve palsy after total hip arthroplasty is<br />

multifactorial, in more than half <strong>of</strong> all cases, the mechanism <strong>of</strong><br />

injury remains unknown [1-5]. Several authors have suggested that<br />

intra-operative compression and or traction from an unrecognized<br />

source may play a role in these unexplained cases [1,2,6], but the<br />

specific source <strong>of</strong> injury has not been clearly defined.<br />

The reported incidence <strong>of</strong> nerve palsy after primary total hip<br />

arthroplasty varies between 0.09% and 3.7% [6,7,8]. Combining<br />

data from multiple studies, Schmalzried et al [9] determined that<br />

the incidence <strong>of</strong> nerve injury after primary total hip arthroplasty is<br />

0.9% and that the sciatic nerve is involved in 79% <strong>of</strong> all cases <strong>of</strong><br />

postoperative nerve palsy. Female patients are at nearly twice the<br />

risk <strong>of</strong> sciatic nerve palsy as men [3,4,9], and the incidence <strong>of</strong> nerve<br />

palsy in patients with DDH (5.2%) is also greater [9]. The known<br />

causes <strong>of</strong> postoperative sciatic nerve palsy have been described to<br />

REFERENCES<br />

1. Navarro RA, Schmalzried TP, Amstutz HC, et al. Surgical approach and nerve<br />

palsy in total hip arthroplasty. J Arthroplasty 1995;10:1.<br />

2. Schmalzried TP, Amstutz HC, Dorey FJ. Nerve palsy associated with total hip<br />

replacement. Risk factors and prognosis. J Bone Joint Surg 1991;73A:1074.<br />

3. Johanson NA, Pellicci PM, Tsairis P, et al. Nerve injury in total hip<br />

arthroplasty. Clin Orthop 1983; 179:214.<br />

4. Edwards BN, Tullos HS, Noble PC. Contributory factors and etiology <strong>of</strong><br />

sciatic nerve palsy in total hip arthroplasty. Clin Orthop 1987;218:136.<br />

5. Simon JP, Van Delm I, Fabry G. Sciatic nerve palsy following hip surgery. Acta<br />

Orthop Belg 1993; 59:156.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

be direct operative trauma, constriction with suture, wire or cable,<br />

heat from polymerizing cement, excessive leg lengthening, vascular<br />

compromise, compression from retractor placement or subgluteal<br />

hematoma formation, and underlying spinal stenosis aggravating a<br />

more distal insult (double crush syndrome) [2-4,7-9]. In more than<br />

50% <strong>of</strong> cases <strong>of</strong> sciatic nerve palsy, the cause is unknown [1-5].<br />

Magnetic resonance imaging (MRI) findings in recent years (10), has<br />

localized the site <strong>of</strong> compression for the so-called “cases <strong>of</strong> unknown<br />

etiology”, the location <strong>of</strong> the compressive lesion is under the gluteus<br />

maximus tendon which becomes taut in flexion, adduction and<br />

internal rotation <strong>of</strong> the hip, creating a compressive neuropathy<br />

<strong>of</strong> the sciatic nerve at the level between the ischial tuberosity and<br />

gluteus maximus insertion.<br />

Release <strong>of</strong> the gluteus maximus tendon insertion from the femoral<br />

attachment has been shown to almost eliminate the sciatic nerve<br />

palsy after THR.<br />

6. Nercessian OA, Macaulay W, Stinchfield FE. Peripheral neuropathies<br />

following total hip arthroplasty. Clin Orthop 1994;6:645.<br />

7. Weber ER, Daube JR, Coventry MB. Peripheral neuropathies associated with<br />

total hip arthroplasty. J Bone Joint Surg 1976;58A:66.<br />

8. Wilson JN, Scales JT. The Stanmore metal on metal total hip prosthesis using<br />

a three pin type cup. A follow-up <strong>of</strong> 100 arthroplasties over nine years. Clin<br />

Orthop 1973;95:239.<br />

9. Schmalzried TP, Noordin S, Amstutz HC. Update on nerve palsy associated<br />

with total hip replacement. Clin Orthop 1997;344:188.<br />

10. Hurd JL, Potter HG, Dua V. Ranawat CS, Sciatic nerve palsy after primary<br />

total hip arthroplasty: a new perspective, J Arthroplasty 2006; 21:796.


117<br />

reCogNiziNg aNd treatiNg problemS aFter mom aNd CoC hip<br />

arthroplaStieS<br />

Robert L. Barrack, MD<br />

I. Common features <strong>of</strong> hard-on-hard bearings<br />

A. Positives:<br />

1.Increased utilization after 2000.<br />

2. Potential for low wear rate.<br />

a. Clear advantage over standard metal/PE.<br />

b. Much less clear advantage over metal/cross-linked PE<br />

3. Ability to use larger heads.<br />

a. Substantial market trend in recent years.<br />

b. May increase stability, improve ROM, decrease<br />

dislocations (major complication following THA).<br />

B. Negatives:<br />

1. Increased cost.<br />

2. Increased noise production.<br />

a. May be benign.<br />

b. May be harbinger <strong>of</strong> impending failure.<br />

3. Less margin for error in component placement.<br />

4. Fewer component options.<br />

a. Ceramics.<br />

b. Monoblock metal-metal.<br />

II. Evaluation <strong>of</strong> painful hard-on-hard bearings.<br />

A. Rule out infections – “Advanced” bearing THA get infected<br />

too.<br />

1. May be less common due to young, healthy pr<strong>of</strong>ile <strong>of</strong><br />

many cohorts.<br />

2. May delay diagnosis.<br />

3. Reports <strong>of</strong> increased infection rate for metal-metal1<br />

probably spurious, 2˚ to inaccuracy <strong>of</strong> coding <strong>of</strong> infection<br />

in administrative data bases.2<br />

B. Rule out aseptic loosening (especially monoblock acetabular<br />

components).<br />

1. Classic clinical signs.<br />

2. Tc99 scan helpful.<br />

C. Psoas impingement, groin pain may be more common with<br />

large heads, hip resurfacing.<br />

D. Carefully assess component position, potential for<br />

impingement.<br />

1. Shoot-through lateral<br />

2. CT scan.<br />

III. Complications unique to alternative bearings.<br />

A. Hip resurfacing.<br />

1. Femoral neck fracture.<br />

a. Occurs 1st 6-12 months.<br />

b. More common with notching, elderly, female, may be<br />

trauma related.<br />

c. Conversion to THA can give similar results to<br />

primary THA (if cup well aligned, well-fixed, and not<br />

damaged).<br />

2. Groin pain – reportedly more common.<br />

a. Assess component position.<br />

b. Assess anterior femoral neck and anterior acetabular.<br />

c. Treatment options.<br />

1) Conservative – P.T., nsaids, injection.<br />

2) Surgical – arthroscopic or open FAI procedure;<br />

rarely complete revision.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

B. Metal-metal hip arthroplasty.<br />

1. Malposition, impingement leading to metallosis.<br />

a. Assess radiographically.<br />

b. Metal ions <strong>of</strong>ten elevated.<br />

c. Complete revision with synovectomy, debridement<br />

<strong>of</strong>ten necessary.<br />

d. Results vary with degree <strong>of</strong> tissue damage.<br />

2. More subtle malposition leading to edge loading.<br />

a. High percentage <strong>of</strong> primary THA outside <strong>of</strong> “safe<br />

zone”.3<br />

b. Suboptimal inclination, cup version, OR combined<br />

version can lead to edge loading, increased metal<br />

debris.<br />

1) Wide spectrum <strong>of</strong> “adverse reaction to metal<br />

debris”.<br />

2) Degree <strong>of</strong> surgery and expected outcome also<br />

widely variable depending on degree <strong>of</strong> tissue<br />

destruction.<br />

3) Early recognition, treatment desirable, necessary –<br />

clinical + radiographic surveillance.<br />

4) Incidence highly dependent on component<br />

position, fixation, AND product type.<br />

c. Debris generation, corrosion from non-bearing<br />

surfaces (e.g., taper junctions).<br />

1) Highly design specific.<br />

2) Can lead to aggressive tissue response.<br />

3) May require complete revision.<br />

d. Metal hypersensitivity.<br />

1) Probably least common.<br />

2) Female preponderance?<br />

3) Single high LTT level most supportive <strong>of</strong> this<br />

diagnosis.<br />

4) Revise to different bearing.<br />

C. Ceramic-ceramic THA.<br />

1. Component fracture – liner or head.<br />

a. Less common with modern components diagnosis<br />

may be delayed – beware <strong>of</strong> any change in function,<br />

symptoms.<br />

b. Early intervention desirable.<br />

1) Complete synovectomy.<br />

2) Inspect taper, may require stem revision.<br />

3) Taper sleeve, new ceramic head may be an option.<br />

4) Results variable.<br />

i. Increased 2˚ revision rate – Allain et al4, 105<br />

cases.<br />

ii. High success rate – Sharma et al5, 8 cases.<br />

2. Squeaking.<br />

a. Variable incidence, 1-7%, design dependent.<br />

b. Numerous etiologies – impingement, microseparation<br />

stripe wear, edge loading, inadequate lubrication,<br />

component malseating.<br />

c. Assess for impingement – early revision to minimize<br />

tissue damage.<br />

d. Revision for squeaking alone – conversion to standard<br />

metal-poly reported good results.6


REFERENCES:<br />

1. Bozic KJ, Ong K, Lau E, et al. Risk <strong>of</strong> complication and revision total hip<br />

arthroplasty among Medicare patients with different bearing surfaces. Clin<br />

Orthop Relat Res. 2010;468:2357-62.<br />

2. Froimson MI. Paper No. 232: Administrative Data is a Poor Surrogate for<br />

Clinical Outcomes. In: <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons <strong>Annual</strong><br />

<strong>Meeting</strong>. New Orleans, LA, March, 2010.<br />

3. Callanan MC, Jarrett B, Bragdon CR, et al. The John Charnley Award: Risk<br />

Factors for Cup Malpositioning: Quality Improvement Through a Joint<br />

Registry at a Tertiary Hospital. Clin Orthop Relat Res. 2010.<br />

118<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR Hip<br />

4. Allain J, Roudot-Thoraval F, Delecrin J, Anract P, Migaud H, Goutallier D.<br />

Revision total hip arthroplasty performed after fracture <strong>of</strong> a ceramic femoral<br />

head. A multicenter survivorship study. J Bone Joint Surg Am. 2003;85-<br />

A:825-30.<br />

5. Sharma V, Ranawat AS, Rasquinha VJ, Weiskopf J, Howard H, Ranawat CS.<br />

Revision total hip arthroplasty for ceramic head fracture: a long-term followup.<br />

J Arthroplasty. 2010;25:342-7.<br />

6. Matar WY, Restrepo C, Parvizi J, Kurtz SM, Hozack WJ. Revision hip<br />

arthroplasty for ceramic-on-ceramic squeaking hips does not compromise<br />

the results. J Arthroplasty. 2010;25:81-6.


119<br />

debateS oN CoNtemporary iSSueS iN<br />

total kNee replaCemeNt (b)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Moderator: Arlen D. Hanssen, MD, Rochester, MN<br />

Ten mini-debates on patient-specific instruments, femoral component design, new bearing surfaces, perioperative pain<br />

management, drain use, stem fixation, patellar bone loss, and infected knee replacement.<br />

I. Introduction <strong>of</strong> Symposium and<br />

Moderator 1st Session<br />

Arlen D. Hanssen, MD, Rochester, MN<br />

II. Patient-Specific Instruments Primary TKA: For<br />

Adolph V. Lombardi, MD, New Albany, OH<br />

III. Patient-Specific Instruments Primary TKA: Against<br />

Thomas P. Vail, San Francisco, CA<br />

IV. Multi-Radius Femoral Geometry<br />

Aaron G. Rosenberg, MD, Chicago, IL<br />

V. Single Radius Femoral Geometry<br />

Ormonde M. Mahoney, MD, Athens, GA<br />

VI. High Flexion Design Improves Motion<br />

Michael A. Kelly, MD, Hackensack, NJ<br />

VII. High Flexion Design Does Not Improve Motion<br />

William L. Healy, MD, Burlington, MA<br />

VIII. Cross-linked Polys Should Be Used In TKR: For<br />

Aaron A. H<strong>of</strong>mann, MD, Holladay, UT<br />

IX. Cross-linked Polys Should Be Used In TKR: Against<br />

Kevin L. Garvin, MD, Omaha, NE<br />

X. Multi-modal Regional Block Protocols<br />

Mark W. Pagnano, MD, Rochester, MN<br />

XI. Peri-articular Injections For Optimal Pain Control<br />

Chitranjan S. Ranawat, MD, New York, NY<br />

XII. Audience Questions and Answers<br />

Arlen D. Hanssen, MD, Rochester, MN<br />

XIII. Moderator 2nd Session<br />

Robert B. Bourne, MD, London, ON, Canada<br />

XIV. CPM Machines Are Beneficial Following TKR<br />

Robert G. Booth, Jr., MD, Philadelphia, PH<br />

XV. CPM Machines Are Not Beneficial Following TKR<br />

Steven J. MacDonald, MD, London, ON, Canada<br />

XVI. Drains Should Be Used After TKR<br />

Gerard A. Engh, MD, Alexandria, VA<br />

XVII. Drains Do Not Need To Be Used After TKR<br />

Michael E. Berend, MD, Mooresville, IN<br />

XVIII. Revision Stems Should Be Cemented<br />

Robert T. Trousdale, MD, Rochester, MN<br />

XIX. Revision Stems Should Be Press-Fit And Uncemented<br />

Christopher L. Peters, MD, Salt Lake City, UT<br />

XX. Biconvex Patella For The Thin Revision Patella<br />

Robert B. Bourne, MD, London, Canada<br />

XXI. Bone Grafting For The Thin Revision Patella<br />

Arlen D. Hanssen, MD, Rochester, MN<br />

XXII. Static Spacers for Infected TKR<br />

Giles R. Scuderi, MD, New York, NY<br />

XXIII. Mobile Spacers for Infected TKR<br />

Thomas K. Fehring, MD, Charlotte, NC<br />

XXIV. Audience and Faculty Questions<br />

Robert B. Bourne, MD, London, ON, Canada<br />

XXV. Adjourn


120<br />

patieNt SpeCiFiC iNStrumeNtS For primary tkr: For<br />

Adolph V. Lombardi, Jr., MD, FACS<br />

Patient specific positioning guides for total knee arthroplasty (TKA)<br />

have been introduced with several significant goals. This technology<br />

facilitates preoperative planning by providing the surgeon with a<br />

three dimensional (3-D) anatomical reconstruction <strong>of</strong> the knee,<br />

thereby improving the surgeon’s understanding <strong>of</strong> the preoperative<br />

pathology. Intramedullary canal penetration <strong>of</strong> the femur and tibia<br />

is unnecessary, and consequently, any potential for fat emboli is<br />

eliminated. Component position and alignment are improved<br />

with decreased outliers. Surgical time is reduced due to intense<br />

preoperative planning and a decreased number <strong>of</strong> surgical steps.<br />

Operating room efficiency is improved in both set up time and<br />

turn over time. This instrument decrease has the potential to reduce<br />

operating room field contamination. A further benefit <strong>of</strong> decreased<br />

instrumentation is a decreased burden for cleaning and sterilizing <strong>of</strong><br />

instruments.<br />

It is in response to the conundrum <strong>of</strong> limited accuracy <strong>of</strong> intramedullary<br />

and extramedullary alignment guides and chaos caused<br />

by computer assisted orthopaedic surgery that patient specific<br />

instruments were developed. Patient specific instruments utilize<br />

detailed magnetic residence imaging (MRI) or computed tomography<br />

(CT) scans <strong>of</strong> the patient’s knee with additional images from the<br />

hip and ankle for determination <strong>of</strong> critical landmarks. From these<br />

studies a 3-D model <strong>of</strong> the patient’s knee is created and with the<br />

integration <strong>of</strong> rapid prototyping technology, guides are created to<br />

apply to the patient’s native anatomy to direct the placement <strong>of</strong> the<br />

cutting jigs and ultimately the placement <strong>of</strong> the components.<br />

Technique <strong>of</strong> Patient Specific Instrumentation<br />

The steps in considering utilization <strong>of</strong> patient specific instruments<br />

are as follows: 1) the surgeon determines that the patient is a<br />

candidate for TKA, 2) an MRI or CT scan is obtained at an approved<br />

facility in accordance with a specific protocol, 3) the MRI or CT<br />

is forwarded to the manufacturer, 4) the manufacturer creates the<br />

3-D reconstructions, anatomical landmarks are identified, implant<br />

size is determined, and ultimately femoral and tibial component<br />

implant placement determined via an algorithm, 4) the surgical plan<br />

is executed, 5) the physician reviews and modifies or approves the<br />

plan, 6) the jigs are then produced via rapid prototyping technology<br />

and delivered to the hospital for the surgical procedure.<br />

Guides generated from MRIs are designed to uniquely register on<br />

cartilage surface whereas guides produced from CT scans must<br />

register on bony anatomy. There are currently two types <strong>of</strong> guides<br />

produced: those which register on the femur and tibia and allow for<br />

the placement <strong>of</strong> pins to accommodate the standard resection blocks;<br />

and those produced by some manufacturers which accommodate<br />

the saw blade and therefore are a combination <strong>of</strong> resection and pin<br />

guides. Performance <strong>of</strong> the TKA procedure is facilitated by the patient<br />

specific instruments as the surgeon, manufacturer’s representative<br />

and surgical team aware <strong>of</strong> sizing required for the patient. Most<br />

manufacturers have streamlined the surgical instruments based on<br />

this preoperative knowledge; therefore, reduced OR set up time.<br />

Surgical approach is based on surgeon preference. Once the distal<br />

femur and proximal tibial are exposed the femoral guide is registered<br />

on the femur. The surgeon can choose to have the model <strong>of</strong> the<br />

patient’s femur and tibia on the field in order to visualize registration<br />

<strong>of</strong> the guide on the model and then determine if the guide registers<br />

in a similar fashion on the patient. Once the guide is registered, it<br />

is then pinned in place if being used as a resection guide or the drill<br />

holes are placed for the distal femoral cutting block and for the 4-in-<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

1 cutting block. The guide is then removed and the distal femoral<br />

resection and the AP and chamfer resections are performed. The<br />

tibia is then exposed and the tibia guide is registered. The drill pins<br />

are then placed for the tibial resection guide. Some manufacturers<br />

<strong>of</strong>fer assistance in sizing the tibia and rotation <strong>of</strong> the tibia. The tibial<br />

resection guide is then placed and tibial resection is performed.<br />

These patient specific guides assist the surgeon in performing<br />

appropriate bone resections. However, they do not substitute for<br />

the other requirements <strong>of</strong> TKA, namely attention to the s<strong>of</strong>t tissues.<br />

Only after the bony resections are performed should any peripheral<br />

osteophytes be removed since these actually secure the registration<br />

<strong>of</strong> the guides and are integral to the accurate placement <strong>of</strong> the guides.<br />

These patient specific guides should be thought <strong>of</strong> as adjunctive<br />

instrumentation to assist in proper positioning <strong>of</strong> femoral and tibial<br />

components.<br />

Validation<br />

Two surgeons performed bilateral TKA on nine cadavers, using<br />

standard instrumentation on one side and custom guides<br />

contralaterally. TKA were evaluated postoperatively with CT for<br />

accuracy <strong>of</strong> femoral and tibial resection and femoral rotation.<br />

Outliers were defined as >3˚ from goal. Accuracy for standard versus<br />

custom-guided cadaveric TKA femoral alignment averaged 2.1°±1.8˚<br />

versus 1.5°±1.4°, for rotation averaged 1.6°±1.1˚ versus 1.0°±0.6°,<br />

and for tibial alignment averaged 1.3°±0.8˚ versus 1.5°±0.7°, which<br />

are not significantly different with numbers available. There were<br />

four outliers overall in the standard group versus one using customguides<br />

(NS).<br />

Using patient-specific guides we have performed primary TKR in<br />

405 patients (469 knees). There have been no adverse events related<br />

to the use <strong>of</strong> the guides. 91 custom-guided TKA were matched<br />

retrospectively to 91 randomly selected TKA performed with manual<br />

instrumentation during the same time period. Postoperative<br />

standard AP standing radiographs were evaluated via a calibrated<br />

picture archiving and communication system by an independent<br />

observer for femorotibial, femoral component, and tibial component<br />

alignment. Outliers were defined as >3˚ from goal. In the standard<br />

film radiographic study, femorotibial, femoral component, and<br />

tibial component alignment were all significantly more accurate<br />

using custom guides. Furthermore, there were more outliers in the<br />

standard group (6.6%; 18/273) than the custom-guided group<br />

(1.5%; 4/273; p=0.002).<br />

In a separate radiographic review, long-leg standing alignment<br />

radiographs were obtained postoperatively for 93 TKA, including 59<br />

performed with custom guides and 34 with manual instrumentation.<br />

Restoration <strong>of</strong> the mechanical axis was measured by an independent<br />

observer. The mechanical axis was restored within the central third<br />

<strong>of</strong> the tibia in 90% <strong>of</strong> custom-guided TKA versus 85% <strong>of</strong> TKA<br />

performed with manual instrumentation.<br />

In a study to determine the radiographic accuracy <strong>of</strong> an MRI-based<br />

custom guides and compare it to traditional manual instrumentation,<br />

the mechanical axis and component alignment were measured on<br />

postoperative long-leg standing radiographs by two independent<br />

observers in a case-control series <strong>of</strong> 464 consecutive TKA (364 customguided,<br />

100 manual instrumenta-tion) performed by a single surgeon<br />

In all cases involving manual instrumentation, extramedullary tibial<br />

and intramedullary femoral jigs were used. The mechanical axis <strong>of</strong><br />

the extremity passed through the central third <strong>of</strong> the tibia more <strong>of</strong>ten


with custom guides (87.9%) compared to manual instrumentation<br />

(77%) (p


122<br />

patieNt SpeCiFiC iNStrumeNtS For primary tkr: For<br />

Thomas Parker Vail, MD<br />

Introduction.<br />

Patient specific instruments have been developed as an alternative to<br />

standard instrumentation for total knee replacement. The concept<br />

is that customized cutting blocks can be created using preoperative<br />

imaging. The cutting blocks would be fabricated to fit the distal femur<br />

and proximal tibia and direct a saw cut in the predetermined direction.<br />

Imaging prior to surgery is used to determine the appropriate size,<br />

cutting axis in the sagittal, coronal, and axial planes, and depth <strong>of</strong><br />

bone resection. This concept has conceptual appeal, but multiple<br />

serious pragmatic and philosophical shortcomings at this time.<br />

Patient perspective.<br />

The most appealing argument for this concept is based upon the<br />

flawed concept that this technology creates a patient specific total<br />

knee implant. One can conjure a “personalized medicine” story to<br />

go along with the fabrication <strong>of</strong> a cutting system that is based upon<br />

the patients’ own anatomy. The reality is that the implants are not<br />

different than implants used with standard cutting systems. The<br />

other reality is that true “customization” in knee surgery is achieved<br />

with intraoperative decision-making, not assumptions based upon<br />

static imaging done in the radiology suite.<br />

Surgeon perspective.<br />

For a surgeon looking for a way to sell his/her practice, the concept<br />

<strong>of</strong> marketing a total joint program around a “customized” approach<br />

has appeal. However, one can argue that such an approach would<br />

be disingenuous as it relates to this particular technology given the<br />

points previously stated about the reality <strong>of</strong> what is actually being<br />

delivered to the patient. The surgeon must add to his/her volume<br />

<strong>of</strong> work required to perform a total knee replacement when this<br />

technology is employed. There is a significant but undefined cost<br />

associated with the (unreimbursed) time associated with measuring,<br />

templating and estimating sizes, cuts, cartilage thickness, etc.<br />

The accuracy and efficiency <strong>of</strong> the technology is not proven in the<br />

published literature. One preliminary report describes 21 cases, two<br />

<strong>of</strong> which had tibial resections outside <strong>of</strong> the desired window <strong>of</strong><br />

accuracy.(1) The difference in tourniquet time between the standard<br />

technique and the custom blocks was only 13 minutes in that series.<br />

Anecdotally, surgeons have reported that the femoral blocks seem to<br />

fit the distal femur reasonably well, but the tibial blocks are not as<br />

stable or accurate. The presence <strong>of</strong> a flexion contracture, s<strong>of</strong>t tissue<br />

contracture, or unanticipated abnormality in the bone anatomy has<br />

the potential to render a custom cutting block unstable, or at worst,<br />

inaccurate in guiding either the direction or depth <strong>of</strong> resection.<br />

Even when employing a custom block, patterns <strong>of</strong> instability or<br />

contracture still require intra-operative decision-making, with<br />

confirmation <strong>of</strong> overall alignment, balanced gaps, and proper patella<br />

tracking. The custom block system is not robust when it comes to<br />

changing alignment, recutting, the bone surfaces, or dealing with<br />

any unanticipated challenges related to balancing and sizing.<br />

REFERENCES.<br />

1. Spencer BA, Mont MA, McGrath MS, Boyd B, Mitrick MF. Initial experience<br />

with custom-fit total knee replacement: intra-operative events and long-leg<br />

coronal alignment. Int Orthop (2009) 33:1571-1575.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Hospital perspective.<br />

If one can assume that the administration <strong>of</strong> the hospital relies upon<br />

the surgeon to make the call regarding the quality <strong>of</strong> the surgery and<br />

the product that is delivered to the patient, then the surgeon might<br />

be able to interest the hospital in this technology if data on quality<br />

were available. The lack <strong>of</strong> clinical data on this technique means<br />

that neither the surgeon nor the vendor can make a valid claim in<br />

support <strong>of</strong> this new product to a hospital technology assessment<br />

committee.<br />

If the quality is demonstrated, the next question that a hospital<br />

administrator will ask before supporting a new product or system<br />

centers on the “value” <strong>of</strong> the product. For example, a technology<br />

assessment committee might ask “is this method advantageous<br />

because it provides superior quality, better value, or a unique<br />

clinical niche?” The answer is no, unless the hospital sees value in<br />

embarking upon a marketing campaign unsupported by facts. At<br />

this point, the only win is for the vendor who would potentially<br />

gain the opportunity to sell to the hospital both the implant and<br />

the instruments (custom blocks). This situation could represent a<br />

major cost shift to the hospital, since the vendor was previously<br />

taking responsibility for providing the instruments and only selling<br />

the implant to the hospital. Other scenarios that could ultimately be<br />

important include the cost associated with wasting blocks that do<br />

not work as intended,<br />

Payer perspective.<br />

The payer perspective will be similar to the hospital perspective, with<br />

the additional caveat that the payer is now being asked to cover the<br />

costs associated with the advanced imaging required to fabricate<br />

the custom cutting blocks, in addition to the cost <strong>of</strong> the blocks<br />

themselves, the implants, the surgery, the surgeon, etc. Unless the<br />

custom cutting block system has a positive impact on the patient<br />

experience or significantly impacts the overall paradigm <strong>of</strong> care in<br />

total knee replacement, it is logical to assume that this approach will<br />

be met with skepticism.<br />

The “value proposition.”<br />

At present, the technology provides no value proposition for the<br />

patient, the surgeon, or the hospital. Because the fabrication <strong>of</strong> the<br />

cutting blocks and the imaging represents an additional charge for<br />

each case, the incremental cost to the system may be more than the<br />

cost <strong>of</strong> a computer navigation system or a robotic system that can<br />

be amortized over the time <strong>of</strong> use or anticipated volume <strong>of</strong> cases<br />

to which the technology is applied. The technology increases the<br />

volume <strong>of</strong> images done simply for the sake <strong>of</strong> creating the cutting<br />

blocks, these are not images that would otherwise be obtained.<br />

While musculoskeletal healthcare has benefited immeasurably from<br />

the development <strong>of</strong> new technology, the health system in the United<br />

States is also desperately in need <strong>of</strong> systems that increase quality for<br />

lesser cost. If the custom cutting block system can somehow change<br />

the paradigm <strong>of</strong> total knee replacement through value to the patient<br />

or the system, then it will be welcomed by all.


123<br />

multi-radiuS Femoral kNee geometry<br />

Aaron G Rosenberg MD, FACS<br />

During flexion the surfaces <strong>of</strong> the femur and tibia interact in a<br />

complex pattern with the contact points <strong>of</strong> the femur and tibia<br />

moving relative to one another. 2, 4, 9, 10, 11, 12, 13, 14 Some <strong>of</strong> the motion<br />

occurs through rolling while some is sliding. Pure rolling involves<br />

rotation about a contact point between a sphere or cylinder and<br />

a flat surface (in knees this would be represented by the tibi<strong>of</strong>emoral<br />

contact point-though this is not purely a flat surface). As<br />

rolling occurs it is accompanied by translation <strong>of</strong> one body relative<br />

to the other (rollback). In this situation as the opposing surfaces<br />

contact each other they translate relative to one another so that their<br />

contact areas are constantly changing. Pure sliding occurs when one<br />

surface contact region translates relative to a stationary area on the<br />

opposing contact surface. This motion can be measured about the<br />

center <strong>of</strong> a sphere or cylinder but results in no relative translation<br />

(no rollback).<br />

Normal knee motion is a complex combination <strong>of</strong> rolling and<br />

sliding with rolling pre-dominating in extension and early flexion<br />

(the stance phase <strong>of</strong> gait). The natural anatomy <strong>of</strong> the condyles is<br />

asymmetric. The distal aspect <strong>of</strong> the lateral condyle clearly has a<br />

larger radius and is flatter than the distal medial condyle. 1, 7, and 8 The<br />

medial condyle is more prone to sliding and is the basis <strong>of</strong> a term<br />

such as “medial pivot.” As flexion progresses rolling is more dramatic<br />

on the lateral condyle and is accompanied by posterior translation<br />

<strong>of</strong> the femur relative to the tibia.<br />

A single radius femur that only slides—that is to say it simply rotates<br />

about a single axis <strong>of</strong> flexion is an over-simplification <strong>of</strong> normal<br />

knee motion. Not to say that it can’t be forced upon the knee by<br />

design <strong>of</strong> the implant. A classic example is the “hinged” knee <strong>of</strong><br />

several decades ago as a pure hinge is a true single radius design.<br />

The argument for a single radius design is that there is a single axis<br />

<strong>of</strong> flexion approximated by the TEA. This is an over-simplification <strong>of</strong><br />

actual knee motion simply rotating about this axis that could only<br />

be true if knee motion was pure rolling. Motion at the femoro-tibial<br />

articulation is a combination <strong>of</strong> rolling and sliding with no single<br />

axis <strong>of</strong> flexion. The center <strong>of</strong> rotation varies instantaneously between<br />

REFERENCES:<br />

1. Pinskerova, V. et al. “The shapes and relative movements <strong>of</strong> the femur and<br />

tibia in the unloaded cadaveric knee: A study using MRI as an anatomic<br />

tool.” Chapter 10. In Surgery <strong>of</strong> the Knee, J.N. Insall & W. N. Scott (Eds.), 3rd<br />

Edition, pp. 255-282.<br />

2. Pinskerova, V. et al. “Does the femur roll-back with flexion?”, JBJS-Br, 86-<br />

B(6), 925-931, 2004.<br />

3. Li, G. et al. “Three-dimensional tibi<strong>of</strong>emoral articular contact kinematics <strong>of</strong> a<br />

cruciate-retaining total knee arthroplasty”, JBJS-Am, 88-A(2): 395-402, 2006.<br />

4. Komistek, R.D. et al. “In vivo determination <strong>of</strong> total knee arthroplasty<br />

kinematics”, J. Arthroplasty, 23(1): 41-50, 2008.<br />

5. Banks, S.A. and W.A. Hodge. “Design and activity dependence <strong>of</strong> kinematics<br />

in fixed and mobile-bearing knee arthroplasties”, J. Arthroplasty, 19(7): 809-<br />

816, 2004.<br />

6. Nuno, N. and A.M. Ahmed. “Three-dimensional morphometry <strong>of</strong> the<br />

femoral condyles”, Clinical Biomechanics, 18: 924-932, 2003.<br />

7. Siu, D. et al. “Femoral articular shape and geometry: A Three-dimensional<br />

computerized analysis <strong>of</strong> the knee”, J. Arthroplasty, 11(2): 166-173, 1996.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

the arc center <strong>of</strong> the femoral sagittal radius and the tibio-femoral<br />

contact point depending on the amount <strong>of</strong> rolling or sliding at any<br />

degree <strong>of</strong> flexion.<br />

When considering maintenance <strong>of</strong> the normal ligamentous<br />

structures <strong>of</strong> the knee (such as the PCL alone or both the ACL and<br />

PCL) the kinematic interaction <strong>of</strong> the femur and tibia should model<br />

that <strong>of</strong> the normal articular surfaces such that ligament tension is<br />

appropriate through out the range <strong>of</strong> motion. The single radius<br />

design eliminates this possibility and replaces it with motions that<br />

are designed to approximate an average center <strong>of</strong> rotation. This is<br />

more effective when the knee is going to roll only and not slide.<br />

While multiple knee designs with PCL retention have been shown<br />

to have “paradoxical” anterior motion occurring during flexion,<br />

similar analysis <strong>of</strong> patients operated on by different surgeons using a<br />

femoral implant designed with asymmetrical condylar radii were the<br />

only CR knees found to demonstrate normal differential posterior<br />

motion <strong>of</strong> the condyle on the lateral tibia. The more normal knee<br />

kinematics were attributed to the differential radius <strong>of</strong> curvature <strong>of</strong><br />

the medial and lateral condyles. 15<br />

In a study <strong>of</strong> single radius, multi-radius, asymmetric, and symmetric<br />

condyle knees kinematics the asymmetric design was the only one<br />

demonstrating a slightly medial center <strong>of</strong> axial rotation during the<br />

stance phase <strong>of</strong> gait (as seen in normal knee function) while the<br />

single radius design had a slightly lateral center. 6<br />

Even when considering the posterior stabilizing knee designs, no<br />

femoral component are truly single radius. Portions <strong>of</strong> the surface<br />

arcs are single radius, but most are very similar in this regard, even<br />

though they are “described by their manufacture as something<br />

different for marketing purposes. For example one PS “multi-radius”<br />

knee design has a constant radius over an arc <strong>of</strong> 114˚ (from 17˚-<br />

131˚) and a smaller radius for increased flexion beyond 131˚ while<br />

a knee marketed as “single radius” has a true single radius over an<br />

arc <strong>of</strong> 100˚ (10˚-110˚). The more the designer wants to accommodate<br />

normal motion and normal ligament tension when ligaments are<br />

retained, the more a single radius will not do what’s needed.<br />

8. Scarvell JM, et. al. Comparison <strong>of</strong> kinematic analysis by mapping<br />

tibi<strong>of</strong>emoral contact with movement <strong>of</strong> the femoral condylar centres in<br />

healthy and anterior cruciate ligament injured knees. J Orthop Res. 2004<br />

Sep;22(5):955-62.<br />

9. Iwaki H, et. al. Tibi<strong>of</strong>emoral movement 1: the shapes and relative<br />

movements <strong>of</strong> the femur and tibia in the unloaded cadaver knee. J Bone<br />

Joint Surg Br. 2000 Nov;82(8):1189-95.<br />

10. Hill PF, et. al. Tibio-Femoral movement 2: the loaded and unloaded living<br />

knee studied by MRI. J Bone Joint Surg Br. 2000 Nov;82(8):1196-8.<br />

11. Nakagawa S, et.al. Tibi<strong>of</strong>emoral movement 3: full flexion in the living knee<br />

studied by MRI. J Bone Joint Surg Br. 2000 Nov;82(8):1199-200.<br />

12. Freeman MA, Pinskerova V. The movement <strong>of</strong> the normal tibio-femoral joint.<br />

J Biomech. 2005 Feb;38(2):197-208.<br />

13. Johal P, et.al. Tibio-femoral movement in the living knee. A study <strong>of</strong> weight<br />

bearing and non-weight bearing knee kinematics using ‘interventional’ MRI.<br />

J Biomech. 2005 Feb;38(2):269-76.<br />

14. Komistek R, et. al. In vivo determination <strong>of</strong> total knee arthroplasty<br />

kinematics: a multicenter analysis <strong>of</strong> an asymmetrical posterior cruciate<br />

retaining total knee arthroplasty. J Arthroplasty. 2008 Jan;23(1):41-50.


124<br />

SiNgle radiuS Femoral geometry<br />

Ormonde Mahoney, MD<br />

The single flexion / extension axis <strong>of</strong> the distal femur was first<br />

identified between 1982 and 1986 by then doctoral student,<br />

Mark Kester. He utilized a devise called an axis finder, which was<br />

being used by Paul Brand to localized the centers <strong>of</strong> rotation <strong>of</strong><br />

the phalanges. Kester was searching for the isometric position for<br />

attachment <strong>of</strong> s<strong>of</strong>t tissue for extra-articular tenodesis procedures for<br />

anterior cruciate instability. Kester realized that the femoral condyles<br />

appeared spherical when viewed along the axis. 1<br />

The realization that the majority <strong>of</strong> the weight bearing articular surface<br />

<strong>of</strong> the distal femur could be described as a sphere has subsequently<br />

been confirmed by a number <strong>of</strong> independent investigators. 2-7 This<br />

anatomic characteristic has several implications for total knee<br />

design.<br />

First, since the surface is spherical there is only one rotational axis in<br />

the distal femur and it lies posterior to the axis incorporated in most<br />

classic total knee designs. Utilizing a single more posterior flexion<br />

axis results in a longer extensor moment arm and the potential for<br />

improved quad function. This has been shown in bench testing as<br />

well as in the clinical setting. 8-10<br />

REFERENCES<br />

1. Kester M. Biomechanical implications <strong>of</strong> transverse centers <strong>of</strong> rotations <strong>of</strong><br />

normal and pathologic knees [Dissertation]. Tulane University Graduate<br />

School, 1985.<br />

2. Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG. The<br />

axes <strong>of</strong> rotation <strong>of</strong> the knee. Clinical <strong>Orthopaedic</strong>s & Related Research<br />

1993(290):259-68.<br />

3. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD. The transepicondylar<br />

axis approximates the optimal flexion axis <strong>of</strong> the knee. Clinical <strong>Orthopaedic</strong>s<br />

& Related Research 1998(356):111-8.<br />

4. Eckh<strong>of</strong>f DG, Bach JM, Spitzer VM, Reinig KD, Bagur MM, Baldini TH,<br />

Flannery NM. Three-dimensional mechanics, kinematics, and morphology<br />

<strong>of</strong> the knee viewed in virtual reality. The Journal Of Bone And Joint Surgery.<br />

<strong>American</strong> Volume 2005;87 Suppl 2:71-80.<br />

5. Freeman MAR, Pinskerova V. The movement <strong>of</strong> the knee studied by magnetic<br />

resonance imaging. Clinical <strong>Orthopaedic</strong>s & Related Research 2003(410):35-<br />

43.<br />

6. Freeman MAR, Pinskerova V. The movement <strong>of</strong> the normal tibio-femoral<br />

joint. Journal <strong>of</strong> Biomechanics 2005;38(2):197-208.<br />

7. Pinskerova V, Iwaki H, Freeman MA. The shapes and relative movements <strong>of</strong><br />

the femur and tibia at the knee. Orthopade 2000;29 Suppl 1:S3-5.<br />

8. Mahoney OM, McClung CD, dela Rosa MA, Schmalzried TP. The effect <strong>of</strong><br />

total knee arthroplasty design on extensor mechanism function. The Journal<br />

Of Arthroplasty 2002;17(4):416-421.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Second, by maintaining a single flexion axis throughout the majority<br />

<strong>of</strong> the weight bearing arc, there is not radius change which could result<br />

in a symptomatic instability in mid-flexion where the change occurs<br />

in many femoral component designs. In one gait lab study patients<br />

with multi radius knees demonstrated out <strong>of</strong> plane antagonistic<br />

muscle co-contractions as they crossed the zone <strong>of</strong> radius change.<br />

This antagonistic muscle activity was not seen in a second group <strong>of</strong><br />

patients treated with a single axis knee. 11<br />

Third, since the normal condyles are spherical, it is intuitive that<br />

restoring normal geometry during arthroplasty may be more likely<br />

to result in more normal post-arthroplasty knee kinematics. Several<br />

radiographic studies have demonstrated just that. 12,13 In fact, Tamaka<br />

has demonstrated nearly normal rotational kinematic deflections in<br />

a posterior stabilized single radius total knee design. 13<br />

In summary, single radius knees have been shown to <strong>of</strong>fer improved<br />

potential for approaching more normal knee kinematics when<br />

studied through multiple modalities and by multiple authors than<br />

some multi-radius knee designs, with out sacrificing durability. 14,15<br />

9. D’Lima DD, Poole C, Chadha H, Hermida JC, Mahar A, Colwell CW, Jr.<br />

Quadriceps moment arm and quadriceps forces after total knee arthroplasty.<br />

Clinical <strong>Orthopaedic</strong>s And Related Research 2001(392):213-220.<br />

10. Hall J, Copp SN, Adelson WS, D’Lima DD, Colwell CW, Jr. Extensor<br />

mechanism function in single-radius vs multiradius femoral components for<br />

total knee arthroplasty. The Journal Of Arthroplasty 2008;23(2):216-219.<br />

11. Wang H, Simpson KJ, Chamnongkich S, Kinsey T, Mahoney OM. A<br />

biomechanical comparison between the single-axis and multi-axis total knee<br />

arthroplasty systems for the stand-to-sit movement. Clinical Biomechanics<br />

(Bristol, Avon) 2005;20(4):428-433.<br />

12. Mahoney OM, Kinsey TL, Banks AZ, Banks SA. Rotational kinematics <strong>of</strong><br />

a modern fixed-bearing posterior stabilized total knee arthroplasty. The<br />

Journal Of Arthroplasty 2009;24(4):641-645.<br />

13. Tamaki M, Tomita T, Yamazaki T, Hozack WJ, Yoshikawa H, Sugamoto K. In<br />

vivo kinematic analysis <strong>of</strong> a high-flexion posterior stabilized fixed-bearing<br />

knee prosthesis in deep knee-bending motion. The Journal Of Arthroplasty<br />

2008;23(6):879-885.<br />

14. Mahoney OM, Kinsey TL. 5-to 9-year survivorship <strong>of</strong> single-radius, posteriorstabilized<br />

TKA. Clinical <strong>Orthopaedic</strong>s and Related Research 2008;466:436-<br />

442.<br />

15. Kolisek FR, Barnes CL. Scorpio posterior-stabilized knee system: 5-year<br />

clinical and functional results. Journal <strong>of</strong> Arthroplasty 2006;21(8):1187-92.


125<br />

high FleXioN deSigN improveS motioN<br />

Michael A. Kelly, MD<br />

I. High Flexion after total knee replacement – increasingly<br />

important.<br />

A. Younger, more active patients.<br />

B. Better pre-op flexion.<br />

C. Asian lifestyles<br />

D. Middle Eastern – Religious demand.<br />

E. Patient expectations.<br />

II. Range <strong>of</strong> Motion following TKA is multifactorial.<br />

A. Patient<br />

1. pre-op range <strong>of</strong> motion.<br />

2. motivation<br />

B. Surgical techniques<br />

C. Implant design<br />

III. Regular TKA designs –concerns with high flexion.<br />

A. Posterior tibial polyethylene contact stresses/edge loading<br />

>130˚ flexion.<br />

B. Flexion instability<br />

C. Patell<strong>of</strong>emoral stresses<br />

IV. High Flexion Designs introduced into TKA.<br />

A. Posterior Cruciate substituting TKA<br />

B. PCL Retaining TKA<br />

C. Fixed and Mobile Bearings<br />

V. Design features in High Flexion TKA –<br />

A. Increased conformity with improved tibio-femoral contact<br />

stresses at high flexion.<br />

B. TKA designs to safely achieve 150-155˚ flexion.<br />

C. Fixed and Mobile-Rotating Platform designs.<br />

D. Improved tibial spine-femoral cam mechanics in PCL<br />

substituting designs.<br />

E. Increased Patellar tendon excursion with anterior tibial<br />

recess.<br />

VI. High Flexion TKA literature.<br />

VII. Morra et al.<br />

A. Six contemporary HF TKA designs (three cam-post; 3 no<br />

cam-post)<br />

REFERENCES<br />

1. Argenson, JN; Scuderi GR, Komistek RD, Scott WN, Kelly MA and Aubanrac<br />

JM: In vivo kinematic evaluation and design considerations related to high<br />

flexion in total knee arthroplasty. J. Biomech 38 (2):277-284, 2005.<br />

2. Barink, M, DeWahl Malefijt M, Celeda P, Vena P, VanKampen A and<br />

Verdonschot N. A mechanical comparison <strong>of</strong> high-flexion and conventional<br />

total knee arthroplasty. Proc I Mech E, Part H. Journal <strong>of</strong> Engineering on<br />

Medicine 2008 Vol 222 #3 p297-307.<br />

3. Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic<br />

analysis <strong>of</strong> the kinematics <strong>of</strong> deep flexion in total knee arthroplasty.<br />

Influence <strong>of</strong> posterior condylar <strong>of</strong>fset. J. Bone Joint Surg Br. 2002;84:50-3.<br />

4. Gupta SK, Ranawat AS, Shah V, Zikria BA, Zikria JF and Ranawat CS. The PFC<br />

Sigma RP-F TKA designed for improved performance: a matched-part study.<br />

Orth. 2006:29 (9 suppl): 49-52.<br />

5. Kim YH, Choi Y, Kim JS. Range <strong>of</strong> motion <strong>of</strong> standard and high-flexion<br />

posterior cruciate-retaining total knee prostheses a prospective randomized<br />

study. J Bone Joint Surg Am. 2009;91:1874-81.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

B. Complications Kinematics<br />

C. Cam-Post Designs<br />

1) more high flexion<br />

2) less osseus impingement<br />

VIII. Most E, CORR 2006<br />

A. Conventional tibi<strong>of</strong>emoral contact poly posterior edge 15-<br />

30˚ before high flexion design.<br />

B. HF-TKA contact areas similar to conventional.<br />

C. Improved tibi<strong>of</strong>emoral contact biomechanics with highflex<br />

CR TKA with flexion 150°.<br />

IX. Liet al. JBJS A 2004.<br />

A. 13 cadaveric knees with high flexion PS TKA design – robotic<br />

testing system.<br />

B. Femoral component geometry with high flexion design and<br />

increased posterior conformity up to 150˚ flexion improved<br />

tibi<strong>of</strong>emoral contact mechanics.<br />

X. McCalden RW et al.<br />

A. Evaluated conventional CR/PS and High flex PS designs<br />

B. Patients with high flexion pre-op were more likely to gain<br />

flexion with HF-PS design. (HF 32%; PS 15%; CR 4.5%)<br />

XI. Clinical studies<br />

A. No difference conventional CR or PS and High flex design.<br />

B. No difference HF CR vs. PS.<br />

C. Ranawat -Improved flexion with rotating platform HF design<br />

vs conventional.<br />

D. Most studies performed in Asian population with high preop<br />

flexion.<br />

XII. Summary<br />

A. High flexion after TKA multifactorial ie. patient surgical<br />

technique and implant design.<br />

B. High flexion designs have improved high flexion contact,<br />

reduced polyethylene stresses.<br />

C. These designs allow a more optimal environment for high<br />

flexion after TKA.<br />

D. Clinical significance <strong>of</strong> these designs in short term follow-up<br />

still to be determined.<br />

6. McCalden RW, MacDonald SJ, Charron KDJ, Bourne RB and Naudie DD.<br />

The role <strong>of</strong> polyethylene design on post operative TKA flexion: an analysis <strong>of</strong><br />

1534cases. Corr 2009 Vol 468 Issue 1<br />

7. Morra EA, Rosca M, Greenwald JFI and Greenwald AS. The influence <strong>of</strong><br />

contemporary knee design on high flexion. A kinematic comparison with the<br />

normal knee. JBJS 2008;90A:195-201.<br />

8. Most E. Tibio-femoral contact behavior is improved on high-flexion cruciate<br />

retaining TKA. Corr 2006-Vol 452, Pg. 59-64.<br />

9. Nutton RW, Vanderlinden ML, Gaston P and Wade FA. A perspective<br />

randomized double-blind study <strong>of</strong> functional outcome and range <strong>of</strong> flexion<br />

following total knee replacement with the NexGen standard and high flexion<br />

components. JBJS 2008;90-B Issue 1 37-42.<br />

10. Sultan PG, Most E. Schule S. Li G, Rubash HE. Optimizing flexion after total<br />

knee arthroplasty: advances in prosthetic design. Clin Orthop Related Res.<br />

2003; 416 -167-73.


126<br />

high FleXioN deSigN doeS Not improve kNee motioN<br />

William L. Healy, MD<br />

Range <strong>of</strong> motion following total knee arthroplasty is associated<br />

with: pre-operative range <strong>of</strong> motion, surgical technique, the TKA<br />

implant, and patient compliance with physical therapy. 1 Excellent<br />

range <strong>of</strong> motion for TKA has been defined as 120-125˚ flexion to<br />

full extension (0˚). Satisfactory range <strong>of</strong> motion has been defined<br />

as 105˚-110˚ flexion to 0-5˚ short <strong>of</strong> full extension, and this range <strong>of</strong><br />

motion is compatible with walking, kneeling, using an eighteen inch<br />

high toilet, and climbing nine to twelve inch high stairs. 2<br />

High flexion TKA designs have been developed to increase the<br />

flexion arc <strong>of</strong> reconstructed knees and increase functional range <strong>of</strong><br />

motion. Specific design features used in high flexion TKA designs<br />

to allow additional femoral roll back, enhanced posterior femoral<br />

translation, and a 155˚ flexion arc include: 3,4<br />

• Decreasing sagittal radii <strong>of</strong> curvature on the posterior femoral<br />

condyle.<br />

• Increased posterior femoral condylar <strong>of</strong>fset.<br />

• Thicker posterior femoral condyle.<br />

• Increased posterior femoral condyle conformity.<br />

• Thicker posterior femoral condyle.<br />

• Improved condylar contact in flexion.<br />

• Longer patello-femoral trochlear groove on the femoral implant.<br />

• Anterior recess for the patella tendon on the tibial implant.<br />

For posterior stabilized knees, high flexion TKA design changes also<br />

include:<br />

• Moving the tibial intercondylar post posteriorly.<br />

• Increasing the height <strong>of</strong> the tibial intercondylar post to increase<br />

the jump distance.<br />

• Increasing the depth <strong>of</strong> the intercondylar box on the femoral<br />

implant.<br />

Some high flexion TKA designs incorporate mobile bearings on the<br />

tibial implant. In order to answer the question <strong>of</strong> whether high flex<br />

knee designs increase range <strong>of</strong> motion, we must consider the three<br />

variables associated with range <strong>of</strong> motion.<br />

Pre-operative Range <strong>of</strong> Motion:<br />

The potential benefit <strong>of</strong> increasing range <strong>of</strong> motion with a high flex<br />

knee design is not likely unless the pre-operative range <strong>of</strong> motion is<br />

greater than 125˚. This is not common in western cultures. In Asian,<br />

REFERENCES<br />

1. Ranawat CS, Design May Be Counterproductive for Optimizing Flexion After<br />

TKA. Clinical <strong>Orthopaedic</strong>s. 416:174-176, November 2003.<br />

2. Rowe PJ, Myles CM, Walker C, Nutton R. Knee Joint Kinematics in Gait and<br />

Other Functional Activities Measured Using Flexible Electrogoniometry: How<br />

Much Knee Motion is Sufficient for Normal Daily Life? Gait Posture. 12:143-<br />

155, 2000.<br />

3. Long WJ, Scuderi GR. High Flexion Knee Arthroplasty. Journal <strong>of</strong><br />

Arthroplasty 23:7. Supp.1, 6-10. October 2008.<br />

4. Kelly MA. High-Flexion Knees: More Hype Than Hope? In Opposiion.<br />

Journal <strong>of</strong> Arthroplasty 21:4, Supp 1, 42-43. 2006.<br />

5. Kim YH, Choi Y, Kim J-S. Range <strong>of</strong> Motion <strong>of</strong> Standard and High<br />

Flexion Posterior Cruciate Retaining Total Knee Prosthesis: A Prospective<br />

Randomized Study. Journal <strong>of</strong> Bone & Joint Surgery. 91A, No. 8, August<br />

2009.<br />

6. Seon JK, Park SJ, Lee KB, Yoon TR, Kozanek M, Soong EK. Range <strong>of</strong> Motion<br />

in Total Knee Arthroplasty: A Prospective Comparison <strong>of</strong> High Flexion and<br />

Standard Cruciate Retaining Designs. Journal <strong>of</strong> Bone & Joint Surgery, 91A,<br />

No. 3, March 2009.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Indian and Muslim cultures, where pre-operative range <strong>of</strong> motion<br />

in arthritic knees may be 120-140˚, the high flex TKA implants may<br />

<strong>of</strong>fer a functional benefit.<br />

Surgical Technique:<br />

The technique <strong>of</strong> implanting a high flex TKA implant is not<br />

substantially different from implanting a standard TKA implant.<br />

There are small differences in preparation <strong>of</strong> the distal femoral bone,<br />

but this is guided by instruments. When using hi-flex implants,<br />

surgeons must avoid matching high flex TKA implants with standard<br />

TKA implants.<br />

TKA IMPLANTS:<br />

Posterior Cruciate Retaining:<br />

Two investigators evaluated the impact <strong>of</strong> high flex TKA implants with<br />

posterior cruciate retaining designs using a prospective randomized<br />

clinical trial. High flex PCR designs did not increase range <strong>of</strong> motion<br />

compared with standard TKA implants. 5,6<br />

Posterior Stabilized:<br />

Two investigators evaluated the impact <strong>of</strong> high flex TKA implants<br />

with posterior stabilized designs using a prospective randomized<br />

clinical trial. High flex PS designs did not increase range <strong>of</strong> motion<br />

compared with standard TKA implants. 7,8<br />

Current data suggest that high flexion TKA implants do not improve<br />

range <strong>of</strong> motion. 9 Furthermore, recent data suggest that in the event<br />

high flexion TKA implants do improve range <strong>of</strong> motion, they are not<br />

associated with improved patient satisfaction or increased patient<br />

function. 10-11<br />

High flexion TKA<br />

May <strong>of</strong>fer Asian, Indian, and Muslim patients who maintain<br />

high knee range <strong>of</strong> motion (130-150˚) with an arthritic knee the<br />

opportunity to regain painless high range <strong>of</strong> motion following TKA.<br />

Western patients who routinely participate in high flexion activities<br />

may also benefit from high flexion TKA implants.<br />

No. High flexion TKA designs do not improve range <strong>of</strong> motion<br />

following TKA. If pre-operative range <strong>of</strong> motion is greater than 125-<br />

130˚, high flexion TKA implants may have some benefit.<br />

7. McCalden RW, McDonald SJ, Bourne RB, Marr JT. A Randomized Control<br />

Trial Comparing “High Flex” vs. “Standard” Posterior Cruciate Substituting<br />

Polyethylene Tibial Inserts in Total Knee Arthroplasty. Journal <strong>of</strong><br />

Arthroplasty. Vol. 24, No.6. Supplement 1. September 2009.<br />

8. Nutton RW, van der Linden ML, Rowe PJ, Gaston P, Wade FA. A Prospective<br />

Randomised Double Blind Study <strong>of</strong> Functional Outcome and Range <strong>of</strong><br />

Flexion Following Total Knee Replacement With the NexGen Standard and<br />

High Flexion Components. Journal <strong>of</strong> Bone & Joint Surgery. 90B, No. 1,<br />

January 2008.<br />

9. Ghandi R, Tso P, Davey JR, Mahomed NN. High Flexion Implants in Primary<br />

Total Knee Arthroplasty: A Metanalysis. The Knee. 16:14-17. 2009.<br />

10. Devers BN, Conditt MA, Jamieson ML, Driscoll MD, Noble PC, Parsley BS.<br />

Does Greater Knee Flexion Increase Patient Function and Satisfaction After<br />

Total Knee Arthroplasty? J. Arthroplasty. (In Press 2010.)<br />

11. Meneghini RM, Pierson JL, Bagsay D, Ziemba-Dalis M, Berend ME, Ritter<br />

MA. Is There A Functional Benefit to Obtaining High Flexion After Total<br />

Knee Arthroplasty? Journal <strong>of</strong> Arthoplasty. 22:6. Supp. 2, 43-46. September<br />

2007.


127<br />

CroSS-liNked polyethyleNe Should be uSed iN tkr<br />

Aaron A. H<strong>of</strong>mann, MD<br />

Total knee arthroplasty failure mechanisms consist primarily <strong>of</strong> wear<br />

related issues. Irradiation induced crosslinks in the polyethylene<br />

significantly reduce wear. Material properties may suffer in wear<br />

simulator assessment <strong>of</strong> cross linked polyethylene. However, except<br />

for some early notable exceptions, clinical failures to date have not<br />

supported this in vivo. Polyethylene retrievals have demonstrated<br />

significant reduction in global wear due to crosslinks compared to<br />

REFERENCES<br />

1. Sharkey et al. Install Award paper. Why are total knee arthroplasties failing<br />

today? Clinical <strong>Orthopaedic</strong>s & Related Research (2002) (404) PP. 7-13.<br />

2. Asano et al. Dose effects <strong>of</strong> cross-linking polyethylene for total knee<br />

arthroplasty on wear performance and mechanical properties. J Biomedical<br />

Material Research (2007) vol. 83 (2) pp. 615-22.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

conventional polyethylene which will reduce the long-term revision<br />

rate for wear. Highly crosslinked polyethylene shows similar clinical<br />

findings to standard polyethylene. In our experience, there were<br />

fewer revisions and fewer osteolytic lesions seen on radiographs.<br />

Highly crosslinked polyethylene showed good durability at this<br />

intermediate interval and should continue to perform well longterm.<br />

3. Muratoglu, Rubash, Burroughs, Harris et al : Simulated normal gait wear<br />

testing <strong>of</strong> a highly crossed-linked polyethylene tibial insert. J Arthroplasty<br />

(2007) vol. 22 (3) pp. 435-<br />

4. Hodrick, H<strong>of</strong>mann et al. Highly crosslinked polyethylene is safe for use in<br />

total knee arthroplasty. Clinical <strong>Orthopaedic</strong>s & Related Research. (2008)<br />

vol. 466 (11) pp. 2806-12.


128<br />

CroSS-liNked polyethyleNe Should Not be uSed iN tkr<br />

Kevin L. Garvin, MD<br />

The long-term success <strong>of</strong> total knee arthroplasty requires a wellfunctioning<br />

and durable-bearing surface. Ultra High Molecular<br />

Weight Polyethylene (UHMWPE) has been the primary choice for<br />

the bearing surface <strong>of</strong> a total knee replacement. It has performed<br />

remarkably well and has made severe wear due to delamination an<br />

infrequent problem. This otherwise unaltered UHMWPE has been<br />

challenged because <strong>of</strong> alternative treatments with higher crosslinking<br />

to reduce further wear.<br />

Before we can endorse highly cross-linked polyethylene (HXLPE)<br />

for total knee arthroplasty we must first ask how it is defined. Is it<br />

extra radiated with electron beams or gamma rays and with what<br />

radiation dosage would it be considered highly cross-linked? Is<br />

it remelted or annealed to below melting point? If it is annealed,<br />

is it sequentially annealed and with how much radiation at each<br />

step? Further, does this include those polyethylene bearings that are<br />

also impregnated with antioxidants such as Vitamin E to remove or<br />

stabilize the residual free radicals induced during radiation crosslinking<br />

theoretically, without the resultant loss <strong>of</strong> crystallinity? What<br />

about those in which the Vitamin E is blended at the powdered stage?<br />

Are they the same? And lastly, what <strong>of</strong> Cold Irradiated Mechanically<br />

Annealed (CIMA) UHMWPE?<br />

We must also ask which patients are candidates for this new<br />

technology. Should we be concerned about this material? We must<br />

remember that the benefits <strong>of</strong> highly cross-linking have come<br />

with known risks <strong>of</strong> reduced crystallinity up to nearly half, if melttreated<br />

during or after radiation. Any free radicals that remain with<br />

annealing can still cause oxidation in the medium to long term<br />

and would compromise the UHMWPE polymer chains. While not<br />

necessarily directly affecting wear, decreased crystallinity and/or<br />

reduced oxidation resistance can cause reduced strength (modulus),<br />

increased creep, reduced strain to fracture (toughness), and decreased<br />

crack propagation resistance.<br />

REFERENCES:<br />

1. Berry DJ, Bozic KJ. Current practice patterns in primary hip and knee<br />

arthroplasty among members <strong>of</strong> the <strong>American</strong> Association <strong>of</strong> Hip and Knee<br />

Surgeons. J Arthroplasty. 2010;25:2-4.<br />

2. Currier BH, Currier JH, Mayor MB, Lyford KA, Van Citters DW, Collier JP.<br />

In vivo oxidation <strong>of</strong> gamma-barrier-sterilized ultra-high-molecular-weight<br />

polyethylene bearings. J Arthroplasty. 2007;22:721-731.<br />

3. Furmanski J, Goldberg VM. Commentary on an article by B.H. Currier,<br />

MChE, et al.: “In vivo oxidation in remelted highly cross-linked retrievals”. J<br />

Bone Joint Surg Am. 2010;92:e23.<br />

4. Hodrick JT, Severson EP, McAlister DS, Dahl B, H<strong>of</strong>mann AA. Highly<br />

crosslinked polyethylene is safe for use in total knee arthroplasty. Clin<br />

Orthop Relat Res. 2008;466:2806-2812.<br />

5. Illgen RL, Forsythe TM, Pike JW, Laurent MP, Blanchard CR. Highly<br />

crosslinked vs conventional polyethylene particles--an in vitro comparison <strong>of</strong><br />

biologic activities. J Arthroplasty. 2008;23:721-731.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

The compromised properties may be exploited because <strong>of</strong> the<br />

stresses and conformity <strong>of</strong> total knee arthroplasty. The motions<br />

required in the knee dictate relatively nonconforming articular<br />

surfaces and thus higher stresses than in the hip. Any compromised<br />

mechanical properties can be much more punishing in knee<br />

replacement. Decreased fracture toughness results in risk <strong>of</strong> fracture<br />

<strong>of</strong> components, especially at the interlocking sites <strong>of</strong> polyethylene<br />

to the base plate. Patellar pegs which are also small and under shear<br />

stress have been noted to fracture in biomechanical studies as well.<br />

Are there any clinical studies supporting its use? Hodrick et al have<br />

published their results documenting the safety <strong>of</strong> the material with<br />

no catastrophic failures at the medium-term (69-82 months) followup.<br />

Finally, if we cannot document clinical improvement, we can<br />

document increased cost for the material. While our hospitals do<br />

have discounts for implants the cost for HXLPE is still significantly<br />

greater than that for standard UHMWPE.<br />

The particle size <strong>of</strong> the debris generated has been another argument<br />

against highly cross-linked UHMWPE. Even with lower overall<br />

volumetric or gravimetric wear, very small particles have been<br />

seen and however little overall wear there might be, there would<br />

be billions <strong>of</strong> these particles generated. Small particles are more<br />

biologically active than their large predecessors and their relative<br />

long-term influence is yet to be fully determined.<br />

More research is being carried out today on the many new emerging<br />

technologies described. It is my conclusion that we must first have a<br />

clearer and simplified understanding <strong>of</strong> how we define highly crosslinked<br />

UHMWPE so that we can accurately compare the results.<br />

Second, we must more fully evaluate the current and additional basic<br />

science studies used to corroborate this information with special<br />

emphasis on more stringent laboratory tests. We have seen previous<br />

failures with carbon fiber reinforcement, heat-pressed polyethylene,<br />

and Hylamer. We must not risk repeating the past.<br />

6. Jac<strong>of</strong>sky DJ. Highly cross-linked polyethylene in total knee arthroplasty: In<br />

the affirmative. J Arthroplasty. 2008;23:28-30.<br />

7. Oral E, Malhi AS, Wannomae KK, Muratoglu OK. Highly cross-linked<br />

ultrahigh molecular weight polyethylene with improved fatigue resistance<br />

for total joint arthroplasty: Recipient <strong>of</strong> the 2006 Hap Paul Award. J<br />

Arthroplasty. 2008;23:1037-1044.<br />

8. Ries MD. Highly cross-linked polyethylene: The debate is over--in<br />

opposition. J Arthroplasty. 2005;20:59-62.<br />

9. Rimnac C, Pruitt L, Implant Wear Symposium 2007 Engineering Work<br />

Group. How do material properties influence wear and fracture mechanisms?<br />

J Am Acad Orthop Surg. 2008;16 Suppl 1:S94-100.<br />

10. Rodriguez JA. Cross-linked polyethylene in total knee arthroplasty: In<br />

opposition. J Arthroplasty. 2008;23:31-34.<br />

11. Wright TM. Polyethylene in knee arthroplasty: What is the future? Clin<br />

Orthop Relat Res. 2005;440:141-148.


129<br />

CompreheNSive multi-modal paiN maNagemeNt program<br />

Mark W. Pagnano, MD<br />

I. Effective pain management<br />

A. Improves patient satisfaction<br />

B. Decreases hospital stay<br />

C. Facilitates discharge to home instead <strong>of</strong> to assisted care<br />

II. Substantial recent knowledge regarding periop-pain<br />

management<br />

A. Emphasis on multi-modal and pre-emptive approach<br />

B. Stay ahead <strong>of</strong> pain and you limit total analgesia<br />

requirements<br />

C. Take advantage <strong>of</strong> benefits <strong>of</strong> various medications while<br />

staying below threshold for side effects<br />

D. Avoid the use <strong>of</strong> parenteral narcotics<br />

III. Components <strong>of</strong> Multi-modal strategy<br />

A. Preoperative administration <strong>of</strong> medication<br />

1. Long-acting oral narcotic (sustained release oxycodone)<br />

2. Oral anti-inflammatory: typically a Cox-II (celecoxib)<br />

3. Begin night before or morning <strong>of</strong> surgery<br />

REFERENCES<br />

1. Pagnano MW, Hebl J, Horlocker T: Assuring a painless THA: a multimodal<br />

approach emphasizing peripheral nerve blocks. J Arthroplasty 2006; 21(sup)<br />

80-84<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

B. Regional anesthesia<br />

1. Peripheral nerve blocks – most selective<br />

a. Psoas compartment block – indwelling catheter<br />

b. Sciatic nerve block – single shot vs. indwelling<br />

2. Spinal anesthesia<br />

3. Epidural anesthesia<br />

C. Postoperative Analgesia<br />

1. Sustained release oxycodone 10-20 mg bid on schedule<br />

2. Celecoxib 200-400 mg qday x 3 days or Ketorolac<br />

tromethaine 15mg IV q6 hr prn 3 doses POD #1 then<br />

celecoxib<br />

3. Acetaminophen 1000 mg 6am; Noon; 6pm on schedule<br />

4. Oxycodone for breakthrough pain – use a pure narcotic<br />

medication like oxycodone alone for this as it does<br />

not contain acetaminophen and you can thus avoid<br />

overdosing acetaminophen.<br />

2. Horlocker T, Kopp S, Pagnano MW, Hebl J: Analgesia for THA and TKA: a<br />

multimodal approach. J Am Acad Orthop Surg 2006 14:126-135.<br />

3. Hebl JR, Kopp SL, Ali M et al: A comprehensive anesthesia protocol that<br />

emphasizes peripheral nerve blockade. JBJS-Am 2005 87-S2:63-70.


peri-artiCular iNJeCtioNS For optimal paiN CoNtrol aFter tkr<br />

Chitranjan Ranawat, MD<br />

INTRODUCTION:<br />

Uncontrolled pain after total knee replacement has a deleterious<br />

effect on recovery <strong>of</strong> function, including decreased range <strong>of</strong> motion<br />

(ROM), higher complication rates, and poorer overall outcomes.<br />

MATERIALS AND METHODS:<br />

From October 1, 2003 through June 30, 2004, 36 patients (52 knees)<br />

underwent total knee replacement at our institution with an advanced<br />

postoperative pain management protocol. Preoperatively, all patients<br />

received refecoxib, 50 mg; oxycodone, 20 mg; and warfarin, 5 mg. All<br />

patients were given spinal anesthesia. Intraoperatively, a local mixture<br />

<strong>of</strong> bupivicaine. 80 mg; methylprednisolone, 40 mg; morphine, 4<br />

mg; , epinephrine, 300 mcg; cefuroxime 750 mg; and clonidine, 100<br />

mcg, was injected into the periarticular ligamentous attachments,<br />

posterior capsule, and quadriceps tendon arthrotomy site. Patients<br />

were followed with postoperative pain scales, patient assessment<br />

questionnaires, and monitored for narcotic requirements.<br />

REFERENCE<br />

1. Ranawat CS and Ranawat AS: The effect <strong>of</strong> modifying the acute postoperative<br />

pain response after TKR on recovery <strong>of</strong> function. Presented at the Knee<br />

Society Interim <strong>Meeting</strong>, September 2004.<br />

130<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

RESULTS:<br />

During the study period, narcotic pain requirements, manipulation<br />

rates, and the need for prolonged physical therapy were significantly<br />

reduced compared to historical controls. Recovery <strong>of</strong> function and<br />

ROM were achieved at an earlier period.<br />

DISCUSSION:<br />

A relationship appears to exist between acute postoperative pain and<br />

the development <strong>of</strong> arthr<strong>of</strong>ibrosis. By controlling acute pain in the<br />

critical early postoperative period following TKR (three days), the<br />

presented pain management protocol allowed for improved recovery<br />

<strong>of</strong> knee ROM and function with lower rates for manipulation and<br />

prolonged rehabilitation.


I. Origins and initial premise<br />

Bleeding/Edema/Fibrosis/Stiffness<br />

131<br />

Cpm maChiNeS are helpFul aFter tkr<br />

Robert E. Booth, Jr., MD<br />

II. Premise – to accelerate recovery and to increase flexion<br />

III. Realities<br />

• NSD @ 4-6 weeks and beyond<br />

• But: increased early motion<br />

Some decreased length <strong>of</strong> stay<br />

Some decreased pain and narcotic use<br />

IV. Benefits (Theoretical)<br />

• Decreased swelling and stiffness<br />

• Decreased venous stasis and DVT<br />

• Increased patient focus<br />

REFERENCES<br />

1. Alkire MR, Swank ML: “Use <strong>of</strong> inpatient continuous passive motion versus<br />

no CPM in computer-assisted total knee arthroplasty.” Orthop Nurs. 2010<br />

Jan-Feb;29(1):36-40.<br />

2. Lenssen TA, van Steyn MJ, Crijns YH, WaltjŽ EM, Roox GM, Geesink RJ, van<br />

den Brandt PA, De Bie RA: “Effectiveness <strong>of</strong> prolonged use <strong>of</strong> continuous<br />

passive motion (CPM), as an adjunct to physiotherapy, after total knee<br />

arthroplasty.” BMC Musculoskelet Disord. 2008 Apr 29;9:60.<br />

3. Denis M, M<strong>of</strong>fet H, Caron F, Ouellet D, Paquet J, Nolet L.: “Effectiveness <strong>of</strong><br />

continuous passive motion and conventional physical therapy after total<br />

knee arthroplasty: a randomized trial.” Phys Ther. 2006 Feb;86(2):174-85.<br />

4. Bennett LA, Brearley SC, Hart JA, Bailey MJ.: “A comparison <strong>of</strong> 2 continuous<br />

passive motion protocols after total knee arthroplasty: a controlled and<br />

randomized study.” J Arthroplasty. 2005 Feb;20(2):225-33.<br />

5. Brosseau L, Milne S, Wells G, Tugwell P, Robinson V, Casimiro L, Pelland<br />

L, Noel MJ, Davis J, Drouin H.: “Efficacy <strong>of</strong> continuous passive motion<br />

following total knee arthroplasty: a metaanalysis. J Rheumatol. 2004<br />

Nov;31(11):2251-64.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

V. Weaknesses<br />

• Prioritizes flexion over extension<br />

• Decreased patient access and mobilization<br />

• Increased nursing demands<br />

• What to do with bilaterals?<br />

VII. Sociology<br />

• Patient demand<br />

• Prior surgical experience<br />

• Substitute for therapists<br />

• Home use<br />

VIII. So why….?<br />

• Why MIS?<br />

• Whence “evidence based medicine”<br />

6. Milne S, Brosseau L, Robinson V, Noel MJ, Davis J, Drouin H, Wells G,<br />

Tugwell P: “Continuous passive motion following total knee arthroplasty.”<br />

Cochrane Database Syst Rev. 2003;(2)CD004260.<br />

7. Davies DM, Johnston DW, Beaupre LA, Lier DA: “Effect <strong>of</strong> adjunctive range<strong>of</strong>-motion<br />

therapy after primary total knee arthroplasty on the use <strong>of</strong> health<br />

services after hospital discharge.” Can J Surg. 2003 Feb;46(1):30-6.<br />

8. Hewitt B, Shakespeare D.: “Flexion vs. Extension: a comparison <strong>of</strong> postoperative<br />

total knee arthroplasty mobilsation regimes.” Knee. 2001<br />

Dec;8(4):305-9.<br />

9. Lau SK, Chiu KY: “Use <strong>of</strong> continuous passive motion after total knee<br />

arthroplasty.” J Arthroplasty. 2001 Apr;16(3):336-9.<br />

10. Chen B, Zimmerman JR, Soulen L, DeLisa JA: “Continuous passive motion<br />

after total knee arthroplasty: a prospective study. Am J Phys Med Rehabil.<br />

2000 Sep-Oct;79(5):421-6.<br />

11. O’Driscoll SW, Giori NJ:“Continuous passive motion (CPM): theory<br />

and principles <strong>of</strong> clinical application.” J Rehabil Res Dev. 2000 Mar-<br />

Apr;37(2):179-88.<br />

12. Worland RL, Arredondo J, Angles F, Lopez-Jimenez F, Jessup DE: “Home<br />

continuous passive motion machine versus pr<strong>of</strong>essional physical therapy<br />

following total knee replacement”. J Arthroplasty. 1998 Oct;13(7):784-7.


I. Introduction<br />

• Continuous passive motion (CPM) has been a proposed<br />

adjunct to the postoperative care <strong>of</strong> the total knee<br />

arthroplasty (TKA) patient<br />

• CPM could theoretically:<br />

a) increase final postoperative range <strong>of</strong> motion<br />

b) increase the speed with which postoperative range <strong>of</strong><br />

motion is attained<br />

c) reduce lengths <strong>of</strong> hospital stay<br />

d) reduce manipulation rates<br />

• there have been many well designed randomized clinical<br />

trials (RCT’s) studying CPM following TKA<br />

II. Proposed Advantages <strong>of</strong> CPM<br />

I) Range <strong>of</strong> Motion<br />

— while it is an attractive premise that patients receiving<br />

CPM following TKA will achieve both quicker and greater<br />

ultimate knee range <strong>of</strong> motion, this simply has not been<br />

borne out in multiple clinical trials. If there is a difference<br />

found, it is normally <strong>of</strong> very modest measure and <strong>of</strong><br />

questionable clinical relevance. In a Cochrane database<br />

systematic review <strong>of</strong> 20 RCT’s, CPM increased passive and<br />

active motion by only 2-3 degrees at most.<br />

II) Lengths <strong>of</strong> Stay<br />

— again this has been a proposed advantage <strong>of</strong> CPM, but<br />

multiple RCT’s have failed to demonstrate a reduction in<br />

hospital lengths <strong>of</strong> stay<br />

REFERENCES<br />

1. Denis M, M<strong>of</strong>fet H, Caron F, Ouellet D, Paquet J, Nolet L.: Effectiveness <strong>of</strong><br />

continuous passive motion and conventional physical therapy after total<br />

knee arthroplasty: a randomized clinical trial. Phys. Ther., 86(2):174-185,<br />

2006.<br />

2. Harvey LA, Brosseau L, Herbert RD.: Continuous passive motion following<br />

total knee arthroplasty in people with arthritis. Cochrane Database Syst<br />

Review, 17(3), 2010.<br />

132<br />

Cpm iS Not beNeFiCial iN tka<br />

Steve J. MacDonald, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

III) Manipulation rates<br />

— the need for manipulation is a relatively rare occurrence<br />

following TKA. To date, there is no evidence that the<br />

routine use <strong>of</strong> CPM reduces manipulation rates<br />

III. Disadvantages <strong>of</strong> CPM<br />

I) Machine costs<br />

II) Indirect costs<br />

— the machine has to be set up at the bedside, has to be<br />

adjusted at times and patients monitored. These time<br />

commitments are not cost neutral<br />

III)Postoperative pain<br />

— several studies have demonstrated that patients have<br />

increased pain while receiving CPM treatments and have<br />

increased analgesic requirements<br />

IV)Postoperative bleeding<br />

— at least one RCT has demonstrated increased blood loss<br />

in the patient cohort receiving CPM treatments<br />

IV. Conclusion<br />

I) The routine use <strong>of</strong> CPM following TKA is not supported by<br />

evidence based literature review<br />

II) There are costs, and potential clinical disadvantages, to the<br />

routine use <strong>of</strong> CPM<br />

III) For the most part, patients tolerate and seem to be<br />

inherently attracted to the use <strong>of</strong> CPM following TKA,<br />

making it difficult to not employ it if other arthroplasty<br />

surgeons in your institution are indeed using it.<br />

3. Leach W, Reid J, Murphy F.: Continuous passive motion following total knee<br />

replacement: a prospective randomized trial with follow-up to 1 year. Knee<br />

Surg Sports Traumatol Arthrosc., 14(10):922-926, 2006.<br />

4. MacDonald SJ, Bourne RB, Rorabeck CH, McCalden RW, Kramer J, Vaz M.:<br />

Prospective randomized clinical trial <strong>of</strong> continuous passive motion after total<br />

knee arthroplasty. Clin Orthop., 380:30-35, 2000.<br />

5. Pope RO, Corcoran S, McCaul K, Howie DW.: Continuous passive motion<br />

after total knee arthroplasty. Does it <strong>of</strong>fer any benefits? J Bone Joint Surg.,<br />

79(6):914-917, 1997.


133<br />

draiNS Should be uSed aFter tka<br />

Gerard A. Engh, MD<br />

The use <strong>of</strong> a drain following routine primary total knee arthroplasty<br />

has been challenged on the grounds that a wound drain might – 1)<br />

increase bleeding by eliminating the tamponade effect <strong>of</strong> a closed<br />

and undrained wound, and 2) increase the risk <strong>of</strong> infection by<br />

providing a portal <strong>of</strong> entry for bacteria.<br />

In response to premise number 1, studies evaluating blood loss<br />

following total knee arthroplasty have not found a statistically<br />

significant difference in drained versus undrained knees. In a<br />

prospective randomized study <strong>of</strong> 136 consecutive primary total knee<br />

arthroplasties, Holt1 reported no difference in decrease in hemoglobin<br />

or transfusion requirements between drained and undrained knees.<br />

Sundaram2 measured a comparable drop in hemoglobin <strong>of</strong> 3.26g/<br />

dl versus a drop <strong>of</strong> 3.33 g/dl in a retrospective review <strong>of</strong> 100 drained<br />

versus 100 undrainded primary total knee arthroplasties. Adalberth3 found no difference in drop in either hemoglobin or hematocrit in<br />

a prospective randomized study comparing 3 groups: those with no<br />

drain, those with an auto transfusion drain, and those with closed<br />

suction drains. In a retrospective study <strong>of</strong> 44 knee replacements with<br />

drains and 48 without drains, Kumar4 reported an average fall in<br />

the hemoglobin level <strong>of</strong> 2.6g% in the drained group compared to<br />

2.8g% in the undrained group and no difference between the blood<br />

transfusion units.<br />

If we can agree that post operative blood loss is not altered with the<br />

use <strong>of</strong> a drain as documented in many studies such as these, then we<br />

must consider the consequences <strong>of</strong> not evacuating the blood from<br />

the tissues surrounding the knee. When drains are used the average<br />

blood collected in the drain is an average <strong>of</strong> nearly 500 mL. 1 In<br />

REFERENCES<br />

1. Holt BT, Parks NL, Engh GA, Lawrence JM. Comparison <strong>of</strong> closed-suction<br />

drainage and no drainage after primary total knee arthroplasty. <strong>Orthopaedic</strong>s<br />

1997; 20(12): 1121-1125.<br />

2. Sundaram RO and Parkinson RW. Closed suction drains do not increase the<br />

blood transfusion rates in patients undergoing total knee arthroplasty. Intl<br />

<strong>Orthopaedic</strong>s (SICOT) 2007; 31: 613-616.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Holt’s study, the recorded number <strong>of</strong> dressing reinforcements with<br />

two to three ABD pads in 40% <strong>of</strong> the undrained group compared<br />

to 0% in the drained group. Sixty-nine percent <strong>of</strong> the undrained<br />

knees developed ecchymosis compared to 39% <strong>of</strong> the drained knees.<br />

The area <strong>of</strong> ecchymosis measured 92 cm2 in the undrained knees<br />

compared to 28cm2 in the drained knees. If we take all <strong>of</strong> these<br />

carefully measured and statistically significant perimeters, we can<br />

only conclude that when no drain is used, the blood either escapes<br />

through the wound creating an unsightly dressing or dissects into<br />

the surrounding s<strong>of</strong>t tissues. The blood <strong>of</strong>ten moves by gravity to<br />

the proximal thigh or to the ankle creating a cellulitic response that<br />

is undesirable and may contribute to the postoperative fever <strong>of</strong>ten<br />

found in patients after total knee arthroplasty.<br />

Premise number 2—that the use <strong>of</strong> a drain provides a portal <strong>of</strong><br />

entry for bacteria is purely hypothetical. No study in the literature<br />

has demonstrated a difference. Advocates <strong>of</strong> drains would argue<br />

equally strongly that the accumulation <strong>of</strong> blood within a wound is<br />

an opportune environment for infection. Unfortunately, no study<br />

in the literature has enough statistical power to address this issue <strong>of</strong><br />

infection given a reported 0.5% occurrence for this complication. 5<br />

The real question that needs to be asked is not whether drains are<br />

required with total knee arthroplasty but are drains beneficial to total<br />

knee arthroplasty. Preventing and evacuating a wound hematoma is<br />

a basic standard <strong>of</strong> care that is upheld by the practicing orthopaedic<br />

community by the routine use <strong>of</strong> a drain following total knee<br />

arthroplasty.<br />

3. Adalberth G, Bystrom S, Kolstad K, et al. Postoperative drainage <strong>of</strong> knee<br />

arthroplasty is not necessary. Acta Orthop Scand 1998; 69(5): 475-478.<br />

4. Kumar S, Penematsa S, Parekh S. Are drains required following a routine<br />

primary total joint arthroplasty? Intl <strong>Orthopaedic</strong>s (SICOT) 2007; 31: 593-<br />

596.<br />

5. Insall JN, ed. In: Surgery <strong>of</strong> the Knee. Total Joint Replacement. New York, NY:<br />

Churchill Livingston; 1984.


Introduction<br />

“To drain or not to drain”, that is the question…<br />

134<br />

draiNS do Not Need to be uSed aFter tkr<br />

Michael E. Berend, MD<br />

The decision to use a drain following TKA is steeped in dogma. “I use<br />

drains or I don’t use drains” are comments <strong>of</strong>ten bantered about by<br />

knee surgeons during discussion <strong>of</strong> this topic. In theory drains provide<br />

the opportunity to remove intra-articular blood and fluids from the<br />

knee joint. Advocates hypothesize that drains possibly decrease the<br />

risk <strong>of</strong> postoperative hematoma formation, infection, and stiffness.<br />

The evidence from randomized studies and large meta-analyses do<br />

not support the use <strong>of</strong> drains in TKA. One limitation in the literature<br />

surrounding drain use is that many studies on the subject have been<br />

underpowered to make conclusions regarding infection rates which<br />

have been reported to be lower but underpowered to reach statistical<br />

significance.<br />

Ritter, et al in a series <strong>of</strong> 415 joint replacements found “no statistical<br />

difference in:<br />

(1) the number <strong>of</strong> patients who had excessive postoperative<br />

drainage from a drained or non-drained wound<br />

(2) amount <strong>of</strong> transfused blood<br />

(3) the preoperative and postoperative hemoglobin levels<br />

between drained and non-drained knees.<br />

Furthermore, they found no statistical differences between drained<br />

and non-drained wounds with respect to the daily knee range <strong>of</strong><br />

motion during the first seven days post-op from a TKA.<br />

REFERENCES<br />

1. Ritter MA, Keating EM, Faris PM. Closed wound drainage in total hip or total<br />

knee replacement. A prospective, randomized study. J Bone Joint Surg Am.<br />

1994 Jan;76(1):35-8.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Parker, et al performed a meta-analysis on 36 studies examining 5464<br />

patients. Using the Cochrane Database they found no statistically<br />

significant difference in the incidence <strong>of</strong> wound infection, hematoma,<br />

dehiscence or re-operations between those allocated to drains and<br />

the un-drained wounds. Blood transfusion was required more<br />

frequently in those who received drains. The need for reinforcement<br />

<strong>of</strong> wound dressings and the occurrence <strong>of</strong> bruising were more<br />

common in the group without drains. They concluded that there is<br />

insufficient evidence from randomized trials to support the routine<br />

use <strong>of</strong> closed suction drainage in <strong>Orthopaedic</strong> surgery.<br />

The same authors performed another meta-analysis on 3495 patients<br />

and found the pooled results indicated that there was no significant<br />

difference between the wounds treated with a drain and those<br />

treated without a drain with respect to the occurrence <strong>of</strong> wound<br />

infection (relative risk, 0.73; 95% confidence interval, 0.47 to 1.14),<br />

wound hematoma (relative risk, 1.73; 95% confidence interval, 0.74<br />

to 4.07), or reoperations for wound complications (relative risk,<br />

0.52; 95% confidence interval, 0.13 to 1.99). A drained wound was<br />

associated with a significantly greater need for transfusion (relative<br />

risk, 1.43; 95% confidence interval, 1.19 to 1.72). Reinforcement<br />

<strong>of</strong> wound dressings was required more frequently in the group<br />

managed without drains. They also found no difference between the<br />

groups was seen with respect to limb-swelling, venous thrombosis,<br />

or hospital stay.<br />

In conclusion, the evidence does not support the use <strong>of</strong> drains in<br />

TKA.<br />

2. Parker MJ, Livingstone V, Clifton R, McKee A. Closed suction surgical wound<br />

drainage after orthopaedic surgery. Cochrane Database Syst Rev. 2007 Jul<br />

18;(3):CD001825.<br />

3. Parker MJ, Roberts CP, Hay D. Closed suction drainage for hip and<br />

knee arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2004<br />

Jun;86-A(6):1146-52.


Value <strong>of</strong> Stems in TKA Revision:<br />

• Stems <strong>of</strong>f load stress to diaphysis thereby protecting<br />

metaphyseal interface areas from failure<br />

Cemented Vs Uncemented<br />

• So, should stems be cemented or uncemented?<br />

Conclusions:<br />

• No single answer for all patients<br />

• Advantages and disadvantages <strong>of</strong> both<br />

• Use both methods <strong>of</strong> fixation in specific circumstances<br />

Uncemented Stems<br />

Advantages:<br />

• Expeditious<br />

• Compatible with IM based instrumentation<br />

• Easy to remove if necessary<br />

• Fill diaphysis, help guarantee limb alignment<br />

Disadvantages:<br />

• Offload stress but provide little true long term fixation<br />

• ? potential for end <strong>of</strong> stem pain (analogous to THA)<br />

• Don’t fit all canal deformities<br />

• Under some circumstances can force implants into<br />

malalignment<br />

Unknowns:<br />

• Optimal length<br />

• Optimal surface finish<br />

• Optimal preparation technique<br />

135<br />

reviSioN StemS Should be CemeNted<br />

Robert T. Trousdale, MD<br />

Cemented Stems<br />

Advantages:<br />

• Provide initial and long term fixation in fresh metaphyseal and<br />

diaphyseal bone<br />

• Allow more latitude in adjusting for canal geometry<br />

abnormalities<br />

Disadvantages:<br />

• More difficult to remove<br />

• Don’t fill canal, therefore don’t guarantee alignment under most<br />

circumstances<br />

Results<br />

Cemented Stems:<br />

• Favorable results at 10 years<br />

• Whaley, Trousdale, Rand, Hanssen:<br />

REFERENCES<br />

1. Shannon BD, Klassen JF, Rand JA, Berry DJ, Trousdale RT: Revision<br />

Total Knee Arthroplasty with Cemented Components and Uncemented<br />

Intramedullary Stems. J Arthroplasty, in press, J Arthroplasty. 2003 Oct;18(7<br />

Suppl 1):27-32.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

— 38 revision consecutive kinematic stabilizer prosthesis<br />

performed 1981-1989<br />

— 10 year component survival free <strong>of</strong> revision/aseptic<br />

loosening -94%<br />

Uncemented Stems:<br />

• Multiple series with favorable results at ~5 years<br />

• Shannon, Klassen, Berry, Trousdale:<br />

— 63 consecutive TKAs with cemented component fixation and<br />

uncemented stems<br />

— 10% revised for aseptic loosening at mean F/U <strong>of</strong> 5.75 years<br />

— Majority have radiodense lines about uncemented stem<br />

• Good diaphyseal bone<br />

• Canal geometry allows pressfit<br />

• Limited metaphyseal bone loss or metaphyseal loss that can be<br />

reconstructed to allow a good cement interface<br />

• Good for periprosthetic fx, APC, ? reimplant for infection<br />

Indications<br />

Cemented:<br />

• Very poor diaphyseal bone, huge canal diameter<br />

• Canal geometry unfavorable for uncemented<br />

• Such sclerotic/damaged metaphyseal bone that even after<br />

reconstruction interface fixation would be inadequate unless<br />

cementation is extending into canal<br />

Technique Issues<br />

Uncemented Stems:<br />

• Take advantage <strong>of</strong> <strong>of</strong>fset stems (femur), or <strong>of</strong>fset trays (tibial)<br />

• Don’t let the stem force you to put implant in suboptimal<br />

position<br />

• Use longer stems to engage the diaphysis<br />

• Avoid the short uncemented stem that doesn’t really engage<br />

diaphysis<br />

• Uncover cancellous bone in metaphysis<br />

• Restore cancellous bone structure to metaphysis<br />

• Push cement into metaphyseal bone<br />

Cemented Stems:<br />

• Use cement restrictors and cement gun<br />

• Use antibiotic in cement<br />

Conclusions<br />

Cemented and uncemented stems both work well in proper<br />

circumstances<br />

2. Whaley AL, Trousdale RT, Rand JA, Hanssen AD: Cemented Long-Stem<br />

Revision Total Knee Arthroplasty. J Arthroplasty, 18:592, 2003.


136<br />

reviSioN StemS Should be preSS-Fit aNd uNCemeNted<br />

Christopher L. Peters, MD<br />

I. Introduction<br />

The burden <strong>of</strong> revision total knee replacement has risen steadily<br />

over the past two decades and is estimated to double by 2015.<br />

Recent data supports the concept that sepsis is the most common<br />

cause <strong>of</strong> revision TKA and the most common failure mechanism<br />

<strong>of</strong> revision TKA. Implant fixation strategies must therefore<br />

consider reliability <strong>of</strong> fixation as well as ease <strong>of</strong> revision and<br />

preservation <strong>of</strong> femoral and tibial bone.<br />

II. Technique <strong>of</strong> “Hybrid” fixation (metaphyseal cement and<br />

press-fit cementless stems for Revision TKA.)<br />

A. General Concepts<br />

1. Stems determine implant alignment via engagement into<br />

diaphysis <strong>of</strong> femur/tibia.<br />

2. Metaphyseal floating stems provide insufficient fixation<br />

3. Cement fixation into preserved metaphyseal bone<br />

predominate fixation mode, stems further <strong>of</strong>fload<br />

interface stresses.<br />

B. Technique is simple/teachable and applicable for most<br />

revision cases.<br />

C. Offset stems help fine tune implant placement, providing<br />

near 360 degree adjustability <strong>of</strong> condylar portion <strong>of</strong> the<br />

implant relative to diaphyseal engaged stem.<br />

III. Uncemented stem advantages<br />

A. Reproducible Fixation<br />

0% aseptic loosening in recent report <strong>of</strong> 184 revision TKA<br />

B. Reproducible Alignment – due to diaphysis <strong>of</strong> femur/tibia<br />

guiding implant position.<br />

REFERENCES<br />

1. Peters, C.L., Erickson, J.A., Gililland, J.M. Clinical and Radiographic Results<br />

<strong>of</strong> 184 Consecutive Revision Total Knee Arthroplasties Placed with Modular<br />

Cementless Stems. Journal <strong>of</strong> Arthroplasty Vol. 24 No. 6 Suppl 1 2009.<br />

2. Kurtz S, et al. Projections <strong>of</strong> primary and revision hip and knee arthroplasty<br />

in the United States from 2005 to 2030. J. Bone Joint Surg Am 2007;89:780.<br />

3. Bottner F., et al. Hybrid component fixation in revision total knee<br />

arthroplasty. Clin Orthop Relat Res 2006;446:127.<br />

4. Haas SB, et al. Revision total knee arthroplasty with use <strong>of</strong> modular<br />

components with stems inserted without cement. J Bone Joint Surg Am<br />

1995;77:1700.<br />

5. Peters CL, et al. Revision total knee arthroplasty with modular components<br />

inserted with metaphyseal cement and stems without cement. J Arthroplasty<br />

2005;20:302.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

C. Revise-ability – obviates need to remove cement from<br />

diaphysis which can be difficult.<br />

D. Simple operative technique.<br />

IV. Uncemented Stem Disadvantages<br />

A. Large metaphyseal/diaphyseal alignment mismatch (due to<br />

bowing or angulation) may require smaller cemented stem<br />

placed eccentric in canal).<br />

B. Reduced volume <strong>of</strong> antibiotic impregnated cement<br />

1. Speculative importance<br />

C. End <strong>of</strong> stem pain<br />

1. Variable in nature<br />

2. Estimates 2-30%<br />

V. Literature Review Summary<br />

A. Lack <strong>of</strong> direct comparison <strong>of</strong> cemented vs uncemented stem<br />

fixation<br />

B. Clinical series in general show favorable (> 85%<br />

survivorship) with either technique at short to mid-term<br />

follow-up.<br />

C. Biomechanical studies favor cemented stems<br />

VI. New Technology<br />

A. Increased availability <strong>of</strong> highly porous metal cones/<br />

augments may improve metaphyseal fixation and allow for<br />

stem fixation.<br />

B. Increased <strong>of</strong>fset/rotational adjustment <strong>of</strong> modular stem<br />

designs facilitates optimum condylar implant position with<br />

diaphyseal stem fixation.<br />

6. Peters CL, et al. Revision total knee arthroplasty with a cemented posteriorstabilized<br />

or constrained condylar prosthesis: a minimum 3-year and average<br />

5-year follow-up study. J Arthropalsty 1997;12:896.<br />

7. Shannon BD, et al. Revision total knee arthroplasty with cemented<br />

components and uncemented intramedullary stems. J Arthroplasty<br />

2003;18(7 Suppl 1): 27.<br />

8. Fehring TK, et al. Stem fixation in revision total knee arthroplasty: a<br />

comparative analysis. Clin Orthop 2003;416: 217.<br />

9. Fehring TK, et al. Revision Total Knee Arthroplasty: Planning, Management,<br />

and Controversies. AAOS ICL, Vol 57, 2008.<br />

10. Bozic KJ, et al. The Epidemiology <strong>of</strong> Revision Total Knee Arthoplasty in the<br />

United States. Clin Orthop Relat Res (2010) 468:45-51.


137<br />

biCoNveX patella For the thiN reviSioN patella<br />

Introduction<br />

At the time <strong>of</strong> revision total knee replacement, reimplantation <strong>of</strong> a<br />

patellar implant can be difficult in the face <strong>of</strong> lost patellar bone stock<br />

(1). Some authors have advocated caution in using an onlay patellar<br />

component when there is less than ten millimeters <strong>of</strong> remaining<br />

patellar bone thickness (2). Leaving the patella unresurfaced due<br />

to poor bone stock at the time <strong>of</strong> total knee replacement revision<br />

has been associated with inferior clinical outcomes (3). Recently,<br />

three options have been advocated for revising the patella with poor<br />

remaining bone, namely the use <strong>of</strong> a biconvex patellar prosthesis<br />

(4, 5, 6), the use <strong>of</strong> a porous tantalum implant (7) and the use <strong>of</strong><br />

bone grafting (8). The purpose <strong>of</strong> this paper is to present our five<br />

to fourteen year (mean 8.3 year) clinical outcomes <strong>of</strong> 89 cemented<br />

biconvex inset patellar components used in revision total knee<br />

replacement (9).<br />

Methods<br />

Between 1990 and 2001, 89 knees in 85 patients underwent revision<br />

knee arthroplasty which included revision <strong>of</strong> an existing patellar<br />

component using a cemented biconvex patellar component. At the<br />

revision procedure, 6 knees required a tibial tubercle osteotomy, 8<br />

a quadriceps turndown and 17 a quadriceps snip for exposure. A<br />

standard 13mm thick, biconvex, cemented patellar component was<br />

used in 65 knees and a 17mm biconvex patellar component revision<br />

component in 24 knees.<br />

Results<br />

Mean patient age at the time <strong>of</strong> the revision knee arthroplasty was<br />

72 (48-88) years. There were 37 females and 48 males. The mean<br />

body mass index was 31 (17-44).The reasons for revision were wear,<br />

osteolysis or aseptic loosening in 57, infection in 25, isolated patellar<br />

revision in 5 and unexplained pain in 2 patients.<br />

At latest follow-up (mean 8.3, range 5-14 years) 30 patients (31<br />

knees) had died with their patellar component still in place, 2<br />

patellar components had been revised for aseptic loosening, 2 were<br />

removed for recurrent infection and 3 patients (3 knees) were lost to<br />

follow-up. For the two revised patellar components, one loosened at<br />

6 months following a transverse fracture <strong>of</strong> a patella with only 3 mm<br />

<strong>of</strong> residual bone and the second loosened at 13 years in association<br />

with avascular necrosis <strong>of</strong> the patella.<br />

References<br />

1) Berry DJ, Rand JA. Isolated patellar component revision <strong>of</strong> total knee<br />

arthroplasty. Clin Orthop Rel Res. 1993. 286:110-115<br />

2) Garcia RM, Kraay MJ, Conroy-Smith PA, Goldberg VM. Management <strong>of</strong> the<br />

deficient patella in revision total knee arthroplasty. Clin Orthop Rel Res.<br />

2008. 466:2790-2797<br />

3) Barrack RL, Matzkin E, Ingrham R, Engh GA, Rorabeck CH. Revision knee<br />

arthroplasty with patellar replacement versus bony shell. Clin Orthop Rel<br />

Res. 1998. 356:139-143<br />

4) Garcia RM, Kraay MJ, Conroy-Smith PA, Goldberg VM. Management <strong>of</strong> the<br />

deficient patella in revision total knee arthroplasty. Clin Orthop Rel Res.<br />

2008. 466:2790-2797<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Robert B. Bourne, MD<br />

The Kaplan-Meier survivorship using revision <strong>of</strong> the patellar<br />

component for aseptic revision as the endpoint was 99% at 10<br />

years. If aseptic loosening or possible radiographic loosening were<br />

combined, the Kaplan-Meier survivorship was 92% at 10 years.<br />

All patients demonstrated improved Knee Society pain and function<br />

scores at follow-up. The mean Knee Society score improved from<br />

40 (2-94) preoperatively to 89 (52-100) postoperatively. The mean<br />

preoperative function score was 44 (-10 to 90) and improved to 54<br />

(-10 to 100). Only 2 patients demonstrated a mild (5 mm.<br />

There were 11 fractures noted, two transverse and nine peripheral<br />

with five being associated with avascular necrosis <strong>of</strong> the patella. Both<br />

the transverse fractures required re-operation. Residual patellar bone<br />

thickness less than 6 mm was associated with a greater fracture risk<br />

(p=0.045).<br />

Conclusions<br />

The cemented biconvex patellar component has proven to be a useful<br />

implant when performing a revision <strong>of</strong> a failed patellar component,<br />

particularly when there was less than 10 mm <strong>of</strong> remaining patellar<br />

bone stock. The best outcomes were achieved with a vascular patella<br />

which was six or more millimeters thick. Having the option to use a<br />

thicker revision biconvex patellar button to restore patellar thickness<br />

and extensor mechanism biomechanics has been found to be an<br />

effective strategy.<br />

5) Rorabeck CH, Mehin R, Barrack RL. Patellar options in revision total knee<br />

arthroplasty. Clin Orthop Rel Res. 2003. 416:84-92<br />

6) Maheshwer CB, Mitchell E, Kraay MJ, Goldberg VM. Revision <strong>of</strong> the patella<br />

with deficient bone using a biconvex component. Clin Orthop Rel Res. 2005.<br />

440:126-130<br />

7) Nasser S, Poggie RA, Revision and salvage patellar arthroplasty using a porous<br />

tantalum implant. J Arthroplasty. 2004. 19(5):562-572<br />

8) Hanssen AD. Bone-grafting for severe patellar bone loss during revision knee<br />

arthroplasty. J Bone Joint Surg. 2001. 83A:171-176<br />

9) Erak S, Bourne RB, MacDonald SJ, McCalden RW, Rorabeck CH. The cemented<br />

inset biconvex patella in revision knee arthroplasty. The Knee. 2009. 16:211-<br />

215


138<br />

patellar boNe graFtiNg For Severe patellar boNe loSS<br />

Arlen D. Hanssen, MD<br />

Severe patellar loss, requiring alternative treatment options during<br />

revision TKR, occurs in about 10-15% <strong>of</strong> cases. Typically, bone loss<br />

can be categorized as mild, moderate or severe and is most <strong>of</strong>ten<br />

calculated by thickness measurements <strong>of</strong> remaining patellar bone<br />

stock. One <strong>of</strong> the primary problems when comparing treatment<br />

alternatives is the location <strong>of</strong> bone loss and where patellar thickness<br />

is actually measured as there may be variable amounts <strong>of</strong> central bone<br />

with segmental rim deficiencies or complete loss <strong>of</strong> all cancellous<br />

bone with an intact peripheral rim <strong>of</strong> patellar bone.<br />

In general, when considering measurement <strong>of</strong> remaining central<br />

cancellous bone, 10-15mm is considered to be mild; 6-10 mm<br />

is moderate; and


139<br />

StatiC CemeNt SpaCerS For iNFeCted tkr<br />

Giles R. Scuderi, MD<br />

Infection is a devastating complication following total knee<br />

arthroplasty. The treatment for late chronic infection is a two-stage<br />

procedure with removal <strong>of</strong> the implant, insertion <strong>of</strong> a antibioticimpregnated<br />

cement spacer, IV antibiotics and then re-implantation.<br />

Insall first described this course <strong>of</strong> treatment in 1983 and because<br />

<strong>of</strong> success rates > 90% this has become the standard <strong>of</strong> care in the<br />

United States.<br />

The addition <strong>of</strong> static antibiotic-impregnated cement spacers has<br />

demonstrated better clinical success over two-stage procedures<br />

without the insertion <strong>of</strong> spacers. PMMA serves as a delivery vehicle for<br />

local antibiotics. Antibiotics are eluted from the surface and pores <strong>of</strong><br />

cement, as well as from the micro-cracks within it. The elution <strong>of</strong> the<br />

antibiotic from the cement spacer is dependent upon the antibiotic<br />

dose, the combination <strong>of</strong> antibiotics used and the type <strong>of</strong> cement.<br />

The clinical efficacy <strong>of</strong> antibiotic-impregnated cement spacers relies<br />

on: the elution characteristics <strong>of</strong> the selected antibiotics, the strength<br />

and fatigue life <strong>of</strong> the polymethylmethacrylate cement and the<br />

mixing technique. The antibiotic used must be thermostable during<br />

the exothermic reaction; have the ability to diffuse in water; it should<br />

also be broad spectrum and bactericidal at low concentrations and<br />

carry a low risk <strong>of</strong> allergy or delayed hypersensitivity. Finally the<br />

antibiotic must be available in powder form.<br />

The benefits <strong>of</strong> static cement spacers include: distraction and<br />

preservation <strong>of</strong> the joint space for subsequent re-implantation;<br />

stabilization <strong>of</strong> the limb until re-implantation; and the use <strong>of</strong><br />

large doses <strong>of</strong> antibiotics within the cement. The introduction <strong>of</strong><br />

intramedullary femoral and tibial antibiotic-impregnated cement<br />

REFERENCES<br />

1. Cui Q, Mihalko W, Shields J, et.al: Antibiotic – impregnated cement spacers<br />

for the treatment <strong>of</strong> infection associated with total hip or knee arthroplasty.<br />

JBJS 89A: 871-882, 2007<br />

2. Jacobs C, Christensen CP, Berend ME: Static and mobile antibiotic<br />

impregnated cement spacers for the management <strong>of</strong> prosthetic joint<br />

infection. J AAOS 17(6): 356-368, 2009<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

rods also permits elution <strong>of</strong> the antibiotics within the medullary<br />

canals. Complications <strong>of</strong> static spacers include bone loss, dislocation,<br />

continued pain, decreased mobility and occasionally fracture.<br />

However, most <strong>of</strong> these reported complications are the result <strong>of</strong><br />

improper preparation <strong>of</strong> the static antibiotic-impregnated cement<br />

spacers.<br />

The preferred technique for static antibiotic-impregnated cement<br />

spacers is to place the doughy cement between the femur and tibia<br />

with distraction <strong>of</strong> the joint in such a manner as to avoid invagination<br />

<strong>of</strong> the cement into the cancellous bone. Cement dowels can be<br />

fabricated and inserted into the femoral and tibial canals. The solid<br />

stable construct should extend to the cortical margins <strong>of</strong> the femur<br />

and tibia and an anterior flange should be included between the<br />

femur and patella. The “hockey puck” or “hamburger” spacers<br />

Symposium B: Scuderi-Static Cement Spacers<br />

should be avoided since they are unstable, can easily displace and<br />

result in excess bone loss. At the conclusion <strong>of</strong> the procedure, the<br />

knee is immobilized in either a cast or long leg brace. The advantage<br />

<strong>of</strong> immobilization beyond stabilization is that it allows the inflamed<br />

s<strong>of</strong>t tissues to heal.<br />

While the re-infection rates and clinical results with static spacers<br />

are comparable to those <strong>of</strong> mobile spacers, there is a marginal<br />

advantage to post-op range <strong>of</strong> motion with mobile spacers. Potential<br />

disadvantages <strong>of</strong> mobile spacers include problems with tibio-femoral<br />

instability, patella instability, wound healing, and increased risk <strong>of</strong><br />

cement fracture.<br />

3. Jaeblon T: Polymethylmethacrylate properties and contemporary uses in<br />

orthopaedics. J AAOS 18(5): 297 – 305, 2010<br />

4. Joseph TN, Chen AL, DiCesare PE: Use <strong>of</strong> antibiotic-impregnated cement in<br />

total joint arthroplasty. J AAOS 11(1) 38 – 47, 2003<br />

5. Insall JN, Thompson FM, Brause BD: Two stage re-implantation for the<br />

salvage <strong>of</strong> infected total knee arthroplasty. JBJS 65A: 1087-1098, 1983


I. Introduction<br />

• Periprosthetic infection is a devastating complication for<br />

patient and surgeon alike.<br />

• Twostage reimplantation is the Gold standard for the<br />

management <strong>of</strong> the infected total knee<br />

• Twostage protocol<br />

— Removal <strong>of</strong> infected arthroplasty and all cement<br />

— Staged placement <strong>of</strong> an antibiotic impregnated spacer<br />

with high dose antibiotics<br />

— Six weeks IV antibiotics followed by a drug holiday,<br />

reaspiration, implant if ESR and CRP trending down and<br />

aspirate negative<br />

• Management between stages is controversial<br />

II. Spacer block technique for infected total knee – Booth/Lotke<br />

CORR 1989<br />

• Local antibiotic delivery system<br />

• Improved s<strong>of</strong>t tissue healing<br />

• Prevention <strong>of</strong> s<strong>of</strong>t tissue contracture<br />

• Improved patient comfort between stages<br />

III. Bone loss associated with the use <strong>of</strong> static spacers in infected<br />

total knee arthroplasty – Calton/Fehring et al., CORR, 1997<br />

• Significant bone loss noted in 15 <strong>of</strong> 25 patients<br />

• Solution – Articulating spacer block<br />

1. Temporary molded antibiotic loaded PMMA implant<br />

2. Allows range <strong>of</strong> motion between stages<br />

3. A custom mold is used<br />

4. Patient should be nonweightbearing<br />

5. Motion is held until wound healing is assured<br />

REFERENCES<br />

1. Booth RE, Lotke PA: The results <strong>of</strong> spacer block technique in revision <strong>of</strong><br />

infected TKA. Clin Orthop 248; 5760, 1989.<br />

2. Calton TF, Fehring TK, Griffin WL: Bone loss associated with the use <strong>of</strong> spacer<br />

blocks in infected total knee arthroplasty. Clin Orthop 345; 148154, 1997.<br />

3. Fehring TK, Odum S, Calton TF, Mason JB: Articulating versus static spacers<br />

in revision total knee arthroplasty for sepsis. The Ranawat Award. Clin<br />

Orthop 380; 916, 2000.<br />

140<br />

the CaSe For mobile SpaCerS<br />

Thomas K. Fehring, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

6. Then motion is allowed 3 times a day, no formal physical<br />

therapy<br />

IV. Results<br />

• Articulating versus static spacers in revision total knee<br />

arthroplasty for sepsis – Fehring et al., CORR 380, 2000<br />

— Bone loss in static group. 15 out <strong>of</strong> 25 had tibial femoral<br />

bone loss averaging 612 mm.<br />

— No measurable bone loss noted in the articulating spacer<br />

group<br />

— Reinfection rate<br />

Mobile – 7%<br />

Static – 12%<br />

V. Static vs. mobile spacers<br />

• Reinfection rate similar<br />

• Bone loss decreased in articulating spacer<br />

• Exposure is facilitated in articulating spacer<br />

VI. Functional advantage <strong>of</strong> articulating vs. static spacers in twostage<br />

revision for total knee arthroplasty infection – Freeman/<br />

Fehring et al.,J Arthroplasty 22,2007<br />

• 28 static spacers vs. 48 articulating spacers<br />

— similar eradication rates<br />

— significantly improved functional result <strong>of</strong> articulating<br />

spacers over static spacers – p=.05<br />

VII. Added advantage <strong>of</strong> mobile spacers<br />

1. Patient convenience between stages<br />

2. Ease <strong>of</strong> exposure at the time <strong>of</strong> reimplantation<br />

4. Emerson RH Jr, Muncie M, Tarbox TR, Higgins LL: Comparison <strong>of</strong> a static<br />

with a mobile spacer in total knee infection. Clin Orthop 404; 132138, 2002.<br />

5. Freeman MG, Fehring TK, Odum SM, Fehring K, Griffin WL, Mason JB:<br />

Functional advantage <strong>of</strong> articulating versus static spacers in 2stage revision<br />

for total knee arthroplasty infection. J Arthroplasty Vol 22 (8); 11161121,<br />

2007.


141<br />

CurreNt CoNtroverSieS iN partial<br />

kNee arthroplaSty (p)<br />

Moderator: Adolph V. Lombardi, MD, New Albany, OH<br />

Partial knee arthroplasty has enjoyed a renewed interest in the last decade. Isolated medial, lateral and patell<strong>of</strong>emoral<br />

arthroplasty are all becoming the norm for the treatment <strong>of</strong> monocompartmental disease.<br />

I. The Patell<strong>of</strong>emoral Compartment<br />

a. Patell<strong>of</strong>emoral Arthroplasty: Custom Inlay Technique Offers a Patient Specific Approach<br />

Adolph V. Lombardi, Jr., MD, New Albany, OH<br />

b. Patell<strong>of</strong>emoral Arthroplasty: Onlay Techniques Are More Effective in Treating Complex Patell<strong>of</strong>emoral Arthrosis<br />

Jess H. Lonner, MD, Philadelphia, PA<br />

II. The Lateral Compartment<br />

a. Lateral UKA Is Better than the Medial UKA<br />

William B. Macaulay, MD, New York, NY<br />

b. Tricks <strong>of</strong> the Trade to Improve Results <strong>of</strong> Lateral UKA<br />

Keith R. Berend, MD, New Albany, OH<br />

c. Why Bother with a Partial Knee Arthroplasty When a Total Works Much Better?<br />

Giles R. Scuderi, MD, New York, NY<br />

III. The Medial Compartment<br />

a. Fixed Bearing Inlay Medial UKA Represents the Most Conservative Approach<br />

John A. Repicci MD, Buffalo, NY<br />

b. Fixed Bearing Onlay Is Tried and True<br />

Craig J. Della Valle, MD, Chicago, IL<br />

c. Don’t Worry about Wear with a Mobile Bearing Medial UKA<br />

Michael E. Berend, MD, Mooresville, IN<br />

d. No One Can Do a Better Medial UKA than a Robot<br />

Riyaz H. Jinnah MD, Winston-Salem, NC<br />

e. Custom Medial UKA Optimizes the Result for Each Patient<br />

Wolfgang Fitz, MD, Chestnut Hill, MA<br />

f. The Perfectly Balanced UKA Can Only Be Accomplished with S<strong>of</strong>t Tissue Guided Surgery<br />

Gerard A. Engh, MD, Alexandria, VA<br />

g. The ACL Deficient Knee Can Be Approached with a Combination ACL Reconstruction and Medial UKA<br />

Jason M. Hurst, MD, New Albany, OH<br />

IV. Case Based Discussion<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE


142<br />

patelloFemoral arthroplaSty: CuStom iNlay teChNique<br />

oFFerS a patieNt SpeCiFiC approaCh<br />

Adolph V. Lombardi, Jr., MD, FACS<br />

It has been reported that the incidence <strong>of</strong> isolated patell<strong>of</strong>emoral<br />

arthroplasty in patients older than 55 years presenting with<br />

symptomatic osteoarthritis <strong>of</strong> the knee is 11% in males and 24% in<br />

females. 1 A review <strong>of</strong> the literature on patell<strong>of</strong>emoral arthroplasty<br />

revealsthatapproximately75% <strong>of</strong>thepatientsarefemale. 2 This overall<br />

higher incidence in females is related to patell<strong>of</strong>emoral malalignment<br />

and dysplasia which are more common in females than males. The<br />

important contributing factors to future patell<strong>of</strong>emoral arthrosis are<br />

history <strong>of</strong> adolescent anterior knee pain, trochlear dysplasia, patella<br />

alta or history <strong>of</strong> recurrent patell<strong>of</strong>emoral instability.<br />

The clinical presentation <strong>of</strong> patell<strong>of</strong>emoral arthritis is anterior<br />

knee pain exacerbated by activities such as ascending/descending<br />

stairs, squatting, sitting with the knee flexed, rising from a seated<br />

position and ambulating on uneven terrain. Patients may also<br />

complain <strong>of</strong> grinding and cracking localized to the patell<strong>of</strong>emoral<br />

articulation with range <strong>of</strong> motion. On physical examination<br />

crepitation with range <strong>of</strong> motion or effusion can be noted. There is<br />

generally peripatellar facet tenderness and pain with patell<strong>of</strong>emoral<br />

compression. A positive apprehension sign maybe noted. There may<br />

also be considerable quadriceps atrophy. Symptoms are generally<br />

reproducible with provocative maneuvers such as squatting, stair<br />

stepping or rising from a chair. Patellar tracking should be evaluated<br />

from 90˚ <strong>of</strong> flexion to extension. Malalignment or muscle imbalance<br />

can be detected by the “J” sign, which is visible lateral subluxation <strong>of</strong><br />

the patella as the knee proceeds from flexion into the terminal 20˚ <strong>of</strong><br />

extension. Furthermore, the quadriceps angle should be measured.<br />

A high “Q” angle >20˚ in females and >15˚ in males may require<br />

treatment with an anterior medialization tibial tubercle osteotomy,<br />

known as a Fulkerson osteotomy. With respect to imaging studies,<br />

standing AP and PA flexed views should be evaluated to determine<br />

the degree <strong>of</strong> degenerative disease involving the tibial femoral<br />

articulation. Varus and valgus stress views may also be helpful to<br />

determine if there any tibial femoral arthrosis. Lateral radiographs<br />

are useful for identifying patella alta or patella baja and occasionally<br />

patell<strong>of</strong>emoral osteophytes and joint space narrowing are noted.<br />

Actual radiographs reveal trochlear dysplasia, patellar tilt or<br />

subluxation and the extent <strong>of</strong> patell<strong>of</strong>emoral arthrosis. Axial CT may<br />

have a role in accessing patell<strong>of</strong>emoral tracking. MRI evaluation can<br />

further assess the status <strong>of</strong> the cartilage <strong>of</strong> the entire knee.<br />

The initial treatment should focus on non-operative measures such<br />

as weight loss, physiotherapy focused on quadriceps strengthening,<br />

non-steroidal anti-inflammatory medications and injection therapy<br />

<strong>of</strong> both corticosteroids and viscosupplementation. Included in<br />

the operative armamentarium for patell<strong>of</strong>emoral arthrosis is<br />

arthroscopic debridement, micr<strong>of</strong>racture articulation restoration,<br />

lateral retinacular release, s<strong>of</strong>t tissue re-alignment <strong>of</strong> the extensor<br />

mechanism, anterior medialization tibial tubercle osteotomy,<br />

mosaicplasty/autologous chondrocyte implantation, lateral patella<br />

partial facetectomy, patellectomy, patell<strong>of</strong>emoral arthroplasty and<br />

ultimately total knee arthroplasty.<br />

There is a limited role for the non-arthroplasty options involving<br />

arthroscopy, lateral retinacular release and facetectomy. Biological<br />

articular restoration in patell<strong>of</strong>emoral arthroplasty has had very<br />

compromised results secondary to the inherent hostile force load<br />

environment, distortions <strong>of</strong> joint congruency and limitations <strong>of</strong><br />

healing in an avascular tissue. Patellectomy represents a last resort<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

option in the elderly. It certainly has its limitations in the active<br />

patient population. Anterior medialization tibial tubercle osteotomy<br />

is the most popular osteotomy. It is best for the younger patient with<br />

lateral arthrosis and concomitant instability.<br />

The indications therefore, for patell<strong>of</strong>emoral arthroplasty are<br />

advanced patell<strong>of</strong>emoral osteoarthritis, post-traumatic arthritis,<br />

advanced chondromalacia <strong>of</strong> the patellar or trochlear or both, tibial<br />

femoral Ahlbäck scores ≤1 and severe symptoms affecting daily<br />

activity referable to patell<strong>of</strong>emoral joint degeneration unresponsive<br />

to non-operative treatments. The contraindications to patell<strong>of</strong>emoral<br />

arthroplasty are any evidence <strong>of</strong> tibial femoral arthritis, advanced<br />

chondromalacia or chondrocalcinosis. Systemic inflammatory<br />

arthritis, “Q” angle >20˚ in females and >15˚ in males should be<br />

corrected with anterior medialization tibial tubercle osteotomy prior<br />

to performance <strong>of</strong> patell<strong>of</strong>emoral arthroplasty, complex regional<br />

pain syndrome and finally infection.<br />

When considering patell<strong>of</strong>emoral arthroplasty the surgeon has<br />

a choice between custom or patient specific designs vs <strong>of</strong>f shelf<br />

designs. Within the <strong>of</strong>f shelf designs there are essentially two types;<br />

inlay trochlear design and onlay trochlear designs. While having<br />

the advantage <strong>of</strong> being bone conservative, inlay trochlear designs<br />

were plagued by difficulty to match the variability in trochlear<br />

morphology. Components <strong>of</strong> onlay trochlear designs note the<br />

ability to perform an anterior resection coincident with the anterior<br />

femoral cortex. The preparation <strong>of</strong> the trochlea is perpendicular to<br />

the AP axis or Whiteside’s line and parallel to the transepicondylar<br />

axis. These designs extend proximally and generally are wider than<br />

inlay designs.<br />

The significant disadvantages <strong>of</strong> both the inlay and onlay designs<br />

are their inability to be customized to match the patient, and,<br />

specifically with the onlay designs, more aggressive bone resection.<br />

The advantages <strong>of</strong> custom patell<strong>of</strong>emoral arthroplasty are that<br />

they do not require femoral bone resection. Rapid prototyping<br />

technology based on computer tomography modeling is used<br />

to achieve a custom fit to the patient’s femoral anatomy. Normal<br />

kinematics are achieved by re-establishing the alignment and depth<br />

<strong>of</strong> the trochlear groove. The overall thickness <strong>of</strong> the patell<strong>of</strong>emoral<br />

arthroplasty implant along with the patella component was designed<br />

to re-establish normal anatomy. The distal margin <strong>of</strong> the implant<br />

rests 3-5mm from the apex <strong>of</strong> the femoral intercondylar notch. The<br />

implant has a thickened lateral border to compensate for the usual<br />

lateral bony deficiency <strong>of</strong> the trochlear groove.<br />

The major disadvantage <strong>of</strong> custom patell<strong>of</strong>emoral arthroplasty is<br />

the associated cost including preoperative computer tomography<br />

scan, the implant cost, and the time required for manufacturing <strong>of</strong><br />

the implant. Critics <strong>of</strong> custom patell<strong>of</strong>emoral arthroplasty also note<br />

the difficulty <strong>of</strong> orienting the component parallel with the AP axis<br />

and perpendicular to the transepicondylar axis. However, these can<br />

be addressed at the time <strong>of</strong> preoperative planning. The surgeon is<br />

involved with the preoperative plan and reviews the 3D modeling<br />

generated from the CT scan. At that time, adjustments can be made<br />

to correctly position the component.<br />

The surgical technique for custom patell<strong>of</strong>emoral arthroplasty<br />

involves the procurement <strong>of</strong> a computer tomography scan in<br />

accordance with the requirements <strong>of</strong> the manufacturer <strong>of</strong> the<br />

implant. Therefore, the facility must be pre-certified by the implant


manufacturer. With the utilization <strong>of</strong> rapid prototyping technology a<br />

3D model <strong>of</strong> the distal femur is created for the surgeon to review. It is<br />

at this time that the surgeon can make modifications to the implant<br />

specifically addressing orientation and component placement. The<br />

model is returned to the manufacturer for definitive component<br />

creation. The overall manufacturing time from when the CT scan is<br />

delivered to the manufacturer is approximately four weeks.<br />

An incision is made over the medial third <strong>of</strong> the patella, generally<br />

commencing two finger-breadths proximal to the patella, transversing<br />

patella and extending one finger-breadth<br />

below the distal pole <strong>of</strong> the patella. A standard medial parapatellar<br />

arthrotomy is performing taking care to avoid injury to the medial<br />

meniscus. The patella is displaced laterally. The tibial-femoral<br />

articulation is evaluated to determine if acceptable to proceed with<br />

patell<strong>of</strong>emoral versus total knee arthroplasty. Proper fit <strong>of</strong> the custom<br />

drill guide is achieved by removing articular cartilage. The custom<br />

drill guide is utilized to assess the fit <strong>of</strong> the implant onto the trochlear<br />

groove. The position is then outlined with methylene blue and a<br />

scalpel is used to dissect through then remove the cartilage. Curettes<br />

are helpful to remove the articular cartilage within the outlined area<br />

and expose the subchondral bone. The custom drill guide is now<br />

placed on the exposed bone and appropriate position is achieved.<br />

With the drill guide correctly positionedthree holes are drilled<br />

through the guide with an 8mm stop drill. Small drill holes can be<br />

placed in the subchondral bone <strong>of</strong> the trochlear groove to enhance<br />

cement indigitation. The patella is now prepared in a standard<br />

fashion. The thickness <strong>of</strong> the patella is noted pre-resection and<br />

recreated with the patellar implant. The custom implant and patella<br />

components are now cemented in place and the cement allowed to<br />

cure. The tourniquet is now released, hemostasis is accomplished and<br />

patell<strong>of</strong>emoral tracking is assessed using the no thumbs technique. If<br />

there is any suggestion <strong>of</strong> less than satisfactory tracking <strong>of</strong> the patella<br />

SUGGESTED READING:<br />

1. Ackroyd CE, Newman JH, Evans R, Eldridge JD, Joslin CC: The Avon<br />

patell<strong>of</strong>emoral arthroplasty: Five-year survivorship and functional results. J<br />

Bone Joint Surg Br 2007;89:310-315.<br />

2. Arciero RA, Toomey HE. Patell<strong>of</strong>emoral arthroplasty: A three- to nine-year<br />

follow-up study. Clin Orthop Relat Res 1988;236:60-71.<br />

3. Argenson JN, Guillaume JM, Aubaniac JM: Is there a place for patell<strong>of</strong>emoral<br />

arthroplasty? Clin Orthop Relat Res 1995;321:162-167.<br />

4. Argenson JN, Flecher X, Parratte S, Aubaniac JM. Patell<strong>of</strong>emoral arthroplasty:<br />

An update. Clin Orthop Relat Res 2005;440:50-53.<br />

5. Becher C, Renke A, Heyse TJ, Sch<strong>of</strong>er M, Tibesku CO, Fuchs-Winkelmann S.<br />

[Patell<strong>of</strong>emoral arthroplasty--results <strong>of</strong> a nation-wide survey in Germany and<br />

review <strong>of</strong> the literature]. Z Orthop Unfall. 2008 Nov-Dec;146(6):773-81<br />

6. Blazina ME, Fox JM, Del Pizzo W, Broukhim B, Ivey FM. Patell<strong>of</strong>emoral<br />

replacement. Clin Orthop Relat Res 1979;144:98-102.<br />

7. Butler JE, Shannon R. Patell<strong>of</strong>emoral arthroplasty with a custom-fit femoral<br />

prosthesis. Orthopedics. 2009 Feb;32(2):81.<br />

8. Cartier P, Sanouiller JL, Grelsamer R. Patell<strong>of</strong>emoral arthroplasty. J<br />

Arthroplasty 1990;5:49-55.<br />

9. Cartier P, Sanouiller JL, Khefacha A: Long-term results with the first<br />

patell<strong>of</strong>emoral prosthesis. Clin Orthop Relat Res 2005;436:47-54.<br />

10. Davies AP, Vince AS, Shepstone L, Donell ST, Glasgow MM. The radiologic<br />

prevalence <strong>of</strong> patell<strong>of</strong>emoral osteoarthritis. Clin Orthop Relat Res. 2002<br />

Sep;402:206-12.<br />

11. deWinter WE, Feith R, van Loon CJ. The Richards type II patell<strong>of</strong>emoral<br />

arthroplasty: 26 cases followed for 1-20 years. ActaOrthop Scand<br />

2001;72:487-490.<br />

12. Donell ST, Glasgow MM. Isolated patell<strong>of</strong>emoral osteoarthritis. Knee. 2007<br />

Jun;14(3):169-76.<br />

13. Gupta RR, Zywiel MG, Leadbetter WB, Bonutti P, Mont MA. Scientific<br />

evidence for the use <strong>of</strong> modern patell<strong>of</strong>emoral arthroplasty. Expert Rev Med<br />

Devices 2010 Jan;7(1):51-66.<br />

143<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

a lateral retinacular release is performed. Postoperatively patients are<br />

allowed full weight bearing and physiotherapy commences within<br />

hours <strong>of</strong> the surgical procedure to enhance range <strong>of</strong> motion.<br />

The major pitfalls to be avoided are lack <strong>of</strong> adherence to the<br />

preoperative computer tomography scanning protocol <strong>of</strong> the<br />

manufacturer, lack <strong>of</strong> communication with the manufacturer<br />

regarding any planned osteophyte removal, surgery for inappropriate<br />

indications, aggressive removal <strong>of</strong> femoral trochlear cartilage with a<br />

burr causing unintentional removal <strong>of</strong> the subchondral bone under<br />

the custom patell<strong>of</strong>emoral implant, under-resection <strong>of</strong> the patella<br />

leading to overstuffing <strong>of</strong> the patell<strong>of</strong>emoral articulation, and finally,<br />

failure to correct patellar alignment and tracking intraoperatively.<br />

Sisto and Sarin have reported the longest follow-up on custom<br />

patell<strong>of</strong>emoral arthroplasty <strong>of</strong> the knee. They reported on 22 patients<br />

with 25 knees with a mean duration <strong>of</strong> 11.3 years <strong>of</strong> follow-up (range<br />

7.8-14.9 years). All 25 patell<strong>of</strong>emoral arthroplasties were in place<br />

and all patients reported satisfaction with the arthroplasty. There<br />

were no reports <strong>of</strong> weakness, instability or additional surgery. All<br />

22 patients noted that they would undergo custom patell<strong>of</strong>emoral<br />

arthroplasty again.<br />

In conclusion custom patell<strong>of</strong>emoral arthroplasty <strong>of</strong>fers a<br />

personalized approach to a very difficult clinical situation. It is<br />

well documented that there are a small number <strong>of</strong> patients who<br />

would benefit from patell<strong>of</strong>emoral arthroplasty. By utilizing the<br />

customized technique the surgeon can more appropriately plan<br />

for the procedure preoperatively. This patient specific design and<br />

manufacturing technique ensures accurate and precise anatomic<br />

fit while simultaneously providing proper patell<strong>of</strong>emoral<br />

alignment and medial lateral constraint. The keys to success <strong>of</strong> any<br />

patell<strong>of</strong>emoral arthroplasty custom or <strong>of</strong>f shelf are proper selection<br />

<strong>of</strong> patients and meticulous attention to detail, especially with respect<br />

to patell<strong>of</strong>emoral tracking.<br />

14. Hendrix MR, Ackroyd CE, Lonner JH: Revision patell<strong>of</strong>emoral arthroplasty:<br />

Three- to seven-year follow-up. J Arthroplasty 2008;23:977-983.<br />

15. Kooijman HJ, Driessen AP, van Horn JR: Long-term results <strong>of</strong> patell<strong>of</strong>emoral<br />

arthroplasty: A report <strong>of</strong> 56 arthroplasties with 17 years <strong>of</strong> followup. J Bone<br />

Joint Surg Br 2003;85:836-840.<br />

16. Krajca-Radcliffe JB, Coker TP: Patell<strong>of</strong>emoral arthroplasty: A 2- to 18-year<br />

follow up study. Clin Orthop Relat Res 1996;330:143-151.<br />

17. Lonner JH: Patell<strong>of</strong>emoral arthroplasty. Pros, cons, and design<br />

considerations. Clin Orthop Relat Res 2004; 428:158-165.<br />

18. Lonner JH, Jasko JG, Booth RE Jr: Revision <strong>of</strong> the failed patell<strong>of</strong>emoral<br />

arthroplasty to total knee arthroplasty. J Bone Joint Surg Am 2006;88:2337-<br />

2342.<br />

19. Lonner JH: Patell<strong>of</strong>emoral arthroplasty. J Am Acad Orthop Surg 2007;15:495-<br />

506.<br />

20. Lonner JH, Mehta S, Booth RE Jr: Ipsilateral patell<strong>of</strong>emoral arthroplasty and<br />

autogenous osteochondral femoral condylar transplantation. J Arthroplasty<br />

2007;22:1130-1136.<br />

21. Lonner JH: Patell<strong>of</strong>emoral arthroplasty: The impact <strong>of</strong> design on outcomes.<br />

Orthop Clin North Am 2008;39:347-354.<br />

22. Lonner JH. Patell<strong>of</strong>emoral arthroplasty. Instr Course Lect 2010; 59:67-72.<br />

23. McAlindon TE, Snow S, Cooper C, Dieppe PA. Radiographic patterns <strong>of</strong><br />

osteoarthritis <strong>of</strong> the knee joint in the community: The importance <strong>of</strong> the<br />

patell<strong>of</strong>emoral joint. Ann Rheum Dis 1992;51:844-849.<br />

24. Merchant AC: Early results with a total patell<strong>of</strong>emoral joint replacement<br />

arthroplasty prosthesis. J Arthroplasty 2004;19:829-836.<br />

25. Minkowitz RB, Bosco JA 3rd. Patell<strong>of</strong>emoral arthritis. Bull NYU Hosp Jt Dis.<br />

2009;67(1):30-8. Review.<br />

26. Odumenya M, Costa ML, Parsons N, Achten J, Dhillon M, Krikler SJ.<br />

The Avon patell<strong>of</strong>emoral joint replacement: Five-year results from an<br />

independent centre. J Bone Joint Surg Br. 2010 Jan;92(1):56-60


27. Saleh KJ, Arendt EA, Eldridge J, Fulkerson JP, Minas T, Mulhall KJ.<br />

Symposium. Operative treatment <strong>of</strong> patell<strong>of</strong>emoral arthritis. J Bone Joint<br />

Surg Am. 2005 Mar;87(3):659-671.<br />

28. Sisto DJ, Sarin VK. Custom patell<strong>of</strong>emoral arthroplasty <strong>of</strong> the knee. J Bone<br />

Joint Surg Am 2006;88:1475-1480.<br />

29. Sisto DJ, Sarin VK. Custom patell<strong>of</strong>emoral arthroplasty <strong>of</strong> the knee. Surgical<br />

technique. J Bone Joint Surg Am. 2007 Sep;89 Suppl 2 Pt.2:214-25.<br />

30. Sisto DJ, Sarin VK. Patell<strong>of</strong>emoral arthroplasty with a customized trochlear<br />

prosthesis. Orthop Clin North Am. 2008 Jul;39(3):355-62, vi-vii.<br />

144<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

31. Tauro B, Ackroyd CE, Newman JH, Shah NA: The Lubinus patell<strong>of</strong>emoral<br />

arthroplasty: A five- to ten-year prospective study. J Bone Joint Surg Br<br />

2001;83:696-701.<br />

32. van Jonbergen HP, Poolman RW, van Kampen A. Isolated patell<strong>of</strong>emoral<br />

osteoarthritis. Acta Orthop. 2010 Apr;81(2):199-205.<br />

33. van Jonbergen HP, Werkman DM, Barnaart LF, van Kampen A. Longterm<br />

outcomes <strong>of</strong> patell<strong>of</strong>emoral arthroplasty. J Arthroplasty. 2010<br />

Oct;25(7):1066-71


145<br />

oNlay troChlear CompoNeNt deSigNS iN patelloFemoral<br />

arthroplaSty are moSt eFFeCtive<br />

Jess H. Lonner, MD<br />

I. Indications for PF Arthroplasty<br />

a. Isolated PF OA or posttraumatic PF arthritis<br />

b. Trochlear/patellar dysplasia<br />

c. Failed PT and nonoperative interventions<br />

d. Anterior knee pain (retro- and peri-patellar) with stair<br />

descent, sitting<br />

e. No medial or lateral joint line pain, tenderness or wear<br />

f. No age restrictions<br />

II. Contraindications<br />

a. Inflammatory arthritis or chondrocalcinosis<br />

b. Gr. III-IV tibi<strong>of</strong>emoral chondromalacia<br />

c. Uncorrected patellar maltracking or malalignment (Q angle)<br />

i. Slight tilt, mild subluxation acceptable (if corrected)<br />

ii. Correct high Q angle<br />

d. Significant coronal plane deformities<br />

e. Flexion contracture<br />

f. Limited ROM<br />

III. Clinical results <strong>of</strong> PFA<br />

a. Dependent on:<br />

i. implant design<br />

1. cemented better than cementless<br />

2. onlay trochlear component better than inlay for<br />

patellar tracking<br />

ii. patient selection<br />

1. PF alignment<br />

2. TF alignment (coronal plane)<br />

3. chondromalacia on WB condyles<br />

4. underlying diagnosis (Dysplasia vs. Primary OA vs. PTA)<br />

iii. surgical indications<br />

iv. technical pr<strong>of</strong>iciency<br />

v. component alignment<br />

vi. duration <strong>of</strong> follow-up (tibi<strong>of</strong>emoral arthritis may develop<br />

in approximately 20% at 15 yrs)<br />

b. Major source <strong>of</strong> failures:<br />

i. Patellar instability<br />

1. component malposition<br />

2. extensor mechanism malalignment<br />

3. impact <strong>of</strong> trochlear component geometry<br />

a. more common with inlay style trochlear components<br />

ii. TF degeneration<br />

1. will be primary failure mode with onlay designs<br />

2. more common in primary OA cases<br />

3. less common in PF dysplasia and PTA<br />

4. “bridging” procedure<br />

iii. Loosening rare<br />

1. Combined series > 600 cases<br />

a. Less than 1.5% trochlear loosening (beware <strong>of</strong><br />

cementless implants)<br />

b. Less than 0.5% patellar loosening or wear<br />

IV. Key Terminology<br />

a. Inlay trochlear design<br />

i. Trochlear component inset flush with surrounding<br />

trochlear/condylar cartilage<br />

ii. Rotational alignment parallels trochlear inclination<br />

iii. Highly conservative method <strong>of</strong> trochlear bone preparation<br />

iv. Component typically shorter (ends at proximal cartilage<br />

edge) and narrower than onlay designs<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

v. Poor fit due to variability in trochlear morphology<br />

(unless “customized”)<br />

b. Onlay trochlear design<br />

i. Trochlear preparation perpendicular to Whiteside<br />

(anteroposterior) axis (parallel to TEA)<br />

ii. Anterior resection flush with anterior femoral cortex<br />

iii. Component typically extends more proximal than native<br />

trochlear edge and wider than inlay designs<br />

V. Variation in Trochlear Morphology<br />

a. Lonner, Jasko, Thomas (2008)<br />

i. 100 female and 100 male surgical specimens<br />

ii. Mean lateral trochlear height:<br />

1. Female: 10.47 mm (range: 2.0-19.0 mm)<br />

2. Male: 11.95 mm (range, 6.5-20.5 mm)<br />

iii. Mean medial trochlear height:<br />

1. Female: 6.95 mm (range, 2.0-18.0 mm)<br />

2. Male: 7.71 mm (range, 1.0-18.0 mm)<br />

b. Biedert et al (2010)<br />

i. In a non-dysplastic trochlea the most anterior aspect <strong>of</strong><br />

the lateral trochlear condyle is higher than the anterior<br />

aspect <strong>of</strong> the medial trochlear condyle<br />

c. Kamath, Lonner et al (2010)<br />

i. Trochlear prominence angle (angle from lateral to medial<br />

peaks <strong>of</strong> trochlear articular cartilage relative to AP axis <strong>of</strong><br />

femur) is typically internally rotated (except in cases <strong>of</strong><br />

severe trochlear dysplasia).<br />

d. Shih et al (2004)<br />

i. Anterior condylar angle: 2.7 +/- 6.2˚ (range, -11˚ to 10˚)<br />

VI. Implication <strong>of</strong> Trochlear Morphology on Trochlear<br />

Component Alignment<br />

a. Prominent lateral trochlear flange relative to medial<br />

trochlear flange<br />

i. leads to internal rotation <strong>of</strong> trochlear component with<br />

inlay style trochlear designs<br />

ii. predisposes to patellar maltracking and instability with<br />

inlay style designs<br />

VII. Internal Rotation <strong>of</strong> Femoral Component in Knee<br />

Arthroplasty<br />

a. Berger et al (1998)<br />

i. Femoral component internal rotation relative to the<br />

transepicondylar axis predisposes to patellar instability in<br />

TKA<br />

1. Medializes trochlea<br />

2. Increases the Q-angle<br />

3. Puts tension on lateral retinaculum<br />

b. Lonner (2008, 2010)<br />

i. PFA trochlear component internal rotation predisposes to<br />

patellar maltracking/subluxation<br />

1. Can be resolved with revision to onlay style<br />

component rotated perpendicular to AP axis <strong>of</strong> femur<br />

VIII. Clinical Results Inlay vs. Onlay Trochlear Designs<br />

a. Onlay designs have substantially improved patellar tracking<br />

and reduced the patellar instability common with inlay<br />

designs<br />

b. Inlay Designs<br />

i. Blazina et al (1979)<br />

1. Implant: Richards Types I and II (n=85)


146<br />

2. 81% G-E results (f/u 8-42 mos)<br />

3. High need for subsequent surgeries (n=37) to realign<br />

components or s<strong>of</strong>t tissues and improve patellar<br />

tracking<br />

ii. DeWinter et al (2001)<br />

1. Implant: Richards Type II (n=26)<br />

2. 27% required secondary surgery for PF problems<br />

iii. Tauro (2001)<br />

1. 7.5 yr f/u<br />

2. Implant: Lubinus<br />

3. 32% patellar maltracking (related to design)<br />

iv. Board (2004)<br />

1. 19 mo f/u (range, 2 – 56 mos)<br />

2. Implant: Lubinus<br />

3. 36% patellar cicking/subluxation/locking<br />

v. Lonner (2004)<br />

1. Implant: Lubinus: n=30<br />

2. Patellar maltracking: 17%<br />

vi. Sisto (2006)<br />

1. Custom inlay trochlear component<br />

2. Implant: Kinematch<br />

3. Technique:<br />

a. Trochlear cartilage removed<br />

b. Subchondral bone preserved<br />

4. Implant design<br />

a. Trochlear component anteriorized to enhance<br />

quad function/mechanical advantage<br />

b. Lateral “build-up”<br />

5. 73 mo f/u (range, 32-119 mos)<br />

6. 72% excellent; 28% good<br />

7. Potential problems:<br />

a. Internally rotated<br />

b. Anteriorized<br />

c. Overstuffed<br />

d. No other series have corroborated these results<br />

c. Onlay Designs<br />

i. Lonner (2004)<br />

1. Implant: Avon: n=25<br />

2. 96% G-E results<br />

REFERENCES<br />

1. Blazina ME, Fox JM, Del Pizzo W, Broukhim B, Ivey FM. Patell<strong>of</strong>emoral<br />

replacement. Clin Orthop. 144:98-102, 1979<br />

2. de Winter WE, Feith R, van Loon CJ. The Richards type II patell<strong>of</strong>emoral<br />

arthroplasty: 26 cases followed for 1-20 years. Acta Orthop Scand. 72:487-<br />

490, 2001<br />

3. Tauro B, Ackroyd CE, Newman JH, Shah NA. The Lubinus patell<strong>of</strong>emoral<br />

arthroplasty. A five- to ten-year prospective study. J Bone Joint Surg. 83B:696-<br />

701, 2001<br />

4. Board TN, Mahmood A, Ryan WG, Banks AJ. The Lubinus patell<strong>of</strong>emoral<br />

arthroplasty: A series <strong>of</strong> 17 cases. Arch Orthop Trauma Surg. 124:285-287,<br />

2004<br />

5. Lonner JH: Patell<strong>of</strong>emoral arthroplasty. In Lotke PA, Lonner JH (eds.).<br />

Master Techniques In <strong>Orthopaedic</strong> Surgery: Knee Arthroplasty. 3rd Edition.<br />

Philadelphia. Lippincott Williams and Wilkins. 2009<br />

6. Lonner JH. Patell<strong>of</strong>emoral Arthroplasty. Pros, Cons, and Design<br />

Considerations. Clin Orthop 428:158-165, 2004<br />

7. Ackroyd CE. Development and early results <strong>of</strong> a new patell<strong>of</strong>emoral<br />

arthroplasty. Clin Orthop. 436:7-13, 2005<br />

8. Sisto DJ. Sarin VK. Custom patell<strong>of</strong>emoral arthroplasty <strong>of</strong> the knee. J Bone<br />

Joint Surg. 88A:1475-1480, 2006<br />

9. Lonner JH, Mehta S, Booth RE. Ipsilateral patell<strong>of</strong>emoral arthroplasty and<br />

autogenous osteochondral femoral condylar transplantation. J Arthrop.<br />

22:1130-1136, 2007<br />

10. Lonner JH, Jasko JG, Booth RE. Revision <strong>of</strong> a failed patell<strong>of</strong>emoral<br />

arthroplasty to a total knee arthroplasty. J Bone Joint Surg. 88A:2337-2342,<br />

2006<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

3. Patellar maltracking: 1%; PF crepitus: 4%<br />

ii. Ackroyd (2007)<br />

1. Implant: Avon (n=109)<br />

2. 5.2 yr f/u (range, 5-8 yrs)<br />

3. 95.8% survival rate (revision as endpoint)<br />

4. 80% success<br />

5. Primary failure mode: TF arthritis (28%)<br />

6. Patellar maltracking: 1%<br />

iii. Leadbetter et al (2008)<br />

1. Implant: Avon (n=79)<br />

2. F/U 3 yrs (range, 2-5.5 yrs)<br />

3. Patellar maltracking 1.2 %<br />

iv. Lonner (unpublished)<br />

1. Implant: Gender Solutions PFJ (n=116)<br />

2. F/U 3 mos - 3 yrs<br />

3. Patellar instability:


oth are great, but lateral uka iS better thaN the medial uka!<br />

William Macaulay, MD<br />

The Benefits <strong>of</strong> UKA<br />

• Reduced Invasiveness and Morbidity<br />

• Preservation <strong>of</strong> Bone Stock<br />

• Preservation <strong>of</strong> Cruciates and Proprioception<br />

• Less Blood Loss and Lower Risk for Infection<br />

• Faster Post-Operative Rehabilitation<br />

• More Cost Effective than TKA<br />

Early Studies <strong>of</strong> UKA (when surgical technique and implant<br />

design were inferior)<br />

• Lateral UKA had Better Outcomes than Medial UKA<br />

• Insall et al. (1976): 5 Lateral UKA Patients had HSS Knee Scores<br />

increase from 49 pre-operatively to 86 post-operatively; 19<br />

Medial UKA Patients had Scores increase from 49 to 64.<br />

• Laskin (1978): Average Follow-up Rating <strong>of</strong> 3 Lateral UKA<br />

Patients Greater than that for 34 Medial UKA Patients.<br />

• Insall et al. (1980): At 5-7 years follow-up, “The lateral<br />

replacements [5] did much better than the medial replacements<br />

[17].”<br />

• Scott et al. (1981): 2/12 Lateral UKA Patients required Revision<br />

in setting <strong>of</strong> Pre-Operative Valgus Deformities <strong>of</strong> 30˚ and 15˚.<br />

Medial UKA versus Lateral UKA Today<br />

• Unicompartmental Femorotibial OA affects Medial<br />

Compartment More than Lateral.<br />

• Ratio <strong>of</strong> Medial to Lateral UKA is approximately 10:1.<br />

• Lateral UKAs make up Less than 1% <strong>of</strong> Knee Arthroplasty<br />

Procedures.<br />

• Although Lateral UKA can be Highly Successful Procedure, it is<br />

Rarely Performed.<br />

Outcomes <strong>of</strong> Lateral UKA and Medial UKA<br />

Lateral UKA Series<br />

147<br />

Authors Number<br />

<strong>of</strong> UKAs<br />

Type <strong>of</strong> Implant Mean Followup<br />

(years)<br />

Survivorship<br />

(Number <strong>of</strong><br />

Revisions)<br />

Marmor (1983) 14 Cemented, all poly<br />

tibia<br />

7.4 (2.5-9.83) NA (2)<br />

Gunther et al. (1996) 53 Cemented, metal- 5 (2.5-9.83) 82% at 5 years<br />

backed,mobilebearing (11)<br />

Ohdera et al. (2001) 18 Four different<br />

designs<br />

8.25 (5-15.75) NA (2)<br />

Ashraf et al. (2002) 83 Cemented all poly 9 (2-21) 74% at 15<br />

tibia<br />

years (15)<br />

O’ Rourke et al. (2005) 14 Cemented all poly 24 (17-28) 72% at 25<br />

tibia<br />

years (2)<br />

pennington et al. 29 Cemented, metal- 12.4 100% at 12.4<br />

(2006)<br />

backed (75%); all<br />

poly tibia (25%)<br />

(3.1-15.6) years (0)<br />

Sah et al. (2007) 49 Three different 5.2 (2-14) 100% at 5.4<br />

designs<br />

years (0)<br />

Argenson et al. (2008) 38 Four different 12.6 (3-23) 84% at 16<br />

designs<br />

years (5)<br />

REFERENCES<br />

1. Argenson JN, et al. Modern unicompartmental knee arthroplasty with<br />

cement: a three to ten-year follow-up study. J Bone Joint Surg Am. 2002<br />

Dec;84-A(12):2235-9.<br />

2. Argenson JN, et al. Long-term results with a lateral unicondylar replacement.<br />

Clin Orthop Relat Res. 2008 Nov;466(11):2686-93.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Medial UKA Series<br />

Authors Number<br />

<strong>of</strong> UKAs<br />

Type <strong>of</strong> Implant Mean<br />

Follow-up<br />

(years)<br />

Marmor (1986) 53 Cemented, all poly<br />

tibia<br />

Squire et al. (1999) 48 Cemented, all poly<br />

tibia<br />

Argenson et al. (2002) 145 Cemented, metalbackedfixedbearing<br />

perkins and Gunckle 40 Cemented, metal-<br />

(2002)<br />

backed (60%); all<br />

poly (40%)<br />

Gioe et al. (2003) 474 Nine different<br />

designs<br />

Naudie et al. (2004) 113 Cemented, metalbacked,fixedbearing<br />

Berger et al. (2005) 62 Cemented, metalbacked,fixedbearing<br />

O’Rourke et al. (2005) 122 Cemented all poly<br />

tibia<br />

Eickmann et al. (2006) 411 Twelve different<br />

designs<br />

Survivorship<br />

(Number <strong>of</strong><br />

Revisions)<br />

11 (10-13) 70% at 10<br />

years (20)<br />

18 84% at 22<br />

(15.8-21.8) years (5)<br />

5.5 (3-9.33) 94% at 10<br />

years (5)<br />

6 (3-10) 74% at 10<br />

years (6)<br />

NA 88.6% at 10<br />

yrs (36)<br />

10 (2-14) 86% at 10<br />

years (11)<br />

12 (10-13) 95.7% at 13<br />

years (2)<br />

24 (17-28) 72% at 25<br />

years (17)<br />

9 (0.1-19.3) 80% at 9<br />

years (96)<br />

Conclusions<br />

• Revision Rates for Lateral UKA have Markedly Decreased in<br />

Recent Series.<br />

• Lateral UKA has Comparable Outcomes to Medial UKA.<br />

• Outcomes will Continue to Improve with Innovations in<br />

Implant Design, Surgical Technique, Computer/Robotic<br />

Assistance and Refinement <strong>of</strong> Patient Selection Criteria<br />

3. Ashraf T, et al. Lateral unicompartmental knee replacement survivorship and<br />

clinical experience over 21 years. J Bone Joint Surg Br. 2002 Nov;84(8):1126-<br />

30.<br />

4. Berger RA, et al. Results <strong>of</strong> unicompartmental knee arthroplasty at<br />

a minimum <strong>of</strong> ten years <strong>of</strong> follow-up. J Bone Joint Surg Am. 2005<br />

May;87(5):999-1006.


5. Eickmann TH, et al. Survival <strong>of</strong> medial unicondylar arthroplasties placed by<br />

one surgeon 1984-1998. Clin Orthop Relat Res. 2006 Nov;452:143-9.<br />

6. Gioe TJ, et al. Analysis <strong>of</strong> unicompartmental knee arthroplasty in<br />

a community-based implant registry. Clin Orthop Relat Res. 2003<br />

Nov;(416):111-9.<br />

7. Gunther T, et al. Lateral unicompartmental knee arthroplasty with Oxford<br />

meniscal knee. The Knee. 1996; 3: 33-39.<br />

8. Heyse TJ, et al. Lateral unicompartmental knee arthroplasty: a review. Arch<br />

Orthop Trauma Surg. 2010 Jun 18.<br />

9. Insall J, et al. Unicondylar knee replacement. Clin Orthop Relat Res. 1976<br />

Oct;(120):83-5.<br />

10. Insall J, et al. A five to seven-year follow-up <strong>of</strong> unicondylar arthroplasty. J<br />

Bone Joint Surg Am. 1980 Dec;62(8):1329-37.<br />

11. Laskin RS. Unicompartmental tibi<strong>of</strong>emoral resurfacing arthroplasty. J Bone<br />

Joint Surg Am. 1978 Mar;60(2):182-5.<br />

12. Marmor L. Lateral compartment arthroplasty <strong>of</strong> the knee. Clin Orthop Relat<br />

Res. 1984 Jun;(186):115-21.<br />

13. Marmor L. Unicompartmental arthroplasty <strong>of</strong> the knee with a minimum tenyear<br />

follow-up period. Clin Orthop Relat Res. 1988 Mar;(228):171-7.<br />

148<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

14. Naudie D, et al. Medial unicompartmental knee arthroplasty with the Miller-<br />

Galante prosthesis. J Bone Joint Surg Am. 2004 Sep;86-A(9):1931-5.<br />

15. O’Rourke MR, et al. The John Insall Award: unicompartmental knee<br />

replacement: a minimum twenty-one-year follow-up, end-result study. Clin<br />

Orthop Relat Res. 2005 Nov;440:27-37.<br />

16. Ohdera T, et al. Unicompartmental knee arthroplasty for lateral gonarthrosis:<br />

midterm results. J Arthroplasty. 2001 Feb;16(2):196-200.<br />

17. Pennington DW, et al. Unicompartmental knee arthroplasty in patients sixty<br />

years <strong>of</strong> age or younger. J Bone Joint Surg Am. 2003 Oct;85-A(10):1968-73.<br />

18. Perkins TR, et al. Unicompartmental knee arthroplasty: 3- to 10-year results<br />

in a community hospital setting. J Arthroplasty. 2002 Apr;17(3):293-7.<br />

19. Sah AP, et al. Lateral unicompartmental knee arthroplasty through a medial<br />

approach with an average five-year follow-up. J Bone Joint Surg Am. 2007<br />

Sep;89(9):1948-54.<br />

20. Scott RD, et al. Unicondylar unicompartmental replacement for<br />

osteoarthritis <strong>of</strong> the knee. J Bone Joint Surg Am. 1981 Apr;63(4):536-44.<br />

21. Squire MW, et al. Unicompartmental knee replacement. A minimum 15 year<br />

follow-up study. Clin Orthop Relat Res. 1999 Oct;(367):61-72.


149<br />

triCkS oF the trade to improve reSultS oF lateral uka<br />

Keith R. Berend, MD<br />

Introduction<br />

Isolated unicompartmental arthritis occurs less frequently<br />

than tricompartmental arthritis. In isolated disease, the medial<br />

compartment is affected more commonly than the lateral<br />

compartment. 7 Isolated lateral compartment disease occurs at a<br />

rate <strong>of</strong> 5% to 10%. 11, 12 Medial UKA is performed 10 times more<br />

commonly than lateral, with LUKA representing approximately<br />

1% <strong>of</strong> all arthroplasty procedures. 12 LUKA is also considered more<br />

technically demanding than medial UKA or TKA due to the more<br />

complex kinematic pr<strong>of</strong>ile laterally. 3,4,11,12<br />

Operative Technique<br />

An abbreviated mid-line incision is created from 2cm proximal to the<br />

superior pole <strong>of</strong> the patella, extending to the proximal, lateral aspect<br />

<strong>of</strong> the tibial tubercle. Via this skin incision, a lateral parapatellar<br />

approach is performed with careful dissection <strong>of</strong> the superficial<br />

fascia and preservation <strong>of</strong> the infrapatellar fat pad. Extra-medullary<br />

tibial and femoral alignment guides are used. Instrumentation and<br />

implant technique proceeds according to the implant manufacture’s<br />

technique guides.<br />

A trans-patellar tendon vertical resection <strong>of</strong> the tibia is used to allow<br />

appropriate internal rotation <strong>of</strong> the tibial baseplate and ensure that<br />

the femur articulates with the tibial polyethylene even through<br />

the screw-home mechanism. Balancing the lateral compartment is<br />

different than medial UKA or TKA. Laterally, in the ligamentously<br />

intact knee, the flexion gap is lax in comparison to the extension<br />

gap. This normal disparity in flexion and extension gap balance is<br />

recreated to avoid overcorrection. The surgeon should be familiar<br />

with a lateral approach for TKA in case intra-operative conversion<br />

is needed.<br />

Lateral UKA is a true resurfacing procedure in which the joint line<br />

should be reconstructed to anatomic. This requires resection <strong>of</strong> the<br />

tibial plateau to the level at which the tibial trial can be inserted<br />

in extension, prior to making any bony resections <strong>of</strong> the distal<br />

femur. This is far different that mobile bearing medial UKA. It is<br />

recommended, currently, that a fixed bearing device be used for<br />

lateral UKA due to the high range <strong>of</strong> motion, femoral posterior<br />

subluxation, screwhome mechanism, and significant laxity <strong>of</strong> the<br />

lateral compartment in flexion.<br />

REFERENCES<br />

1. Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson<br />

DT, Agostini S. In vivo determination <strong>of</strong> knee kinematics for subjects<br />

implanted with a unicompartmental arthroplasty. J Arthroplasty. 2002; 17:<br />

1049-1054.<br />

2. Argenson JA, Parratte S, Bertani A, Flecher X, Aubaniac J. Long-term results<br />

with a lateral unicondylar replacement. Clin Orthop Relat Res. 2008; 466;<br />

2686-2693.<br />

3. Ashraf T, Newman JH, Evans RL, Ackroyd CE. Lateral unicompartmental knee<br />

replacement survivorship and clinical experience over 21 years. J Bone Joint<br />

Surg Br. 2002; 84: 1126-1130.<br />

4. Fitz W. Unicompartmental knee arthroplasty with use <strong>of</strong> novel patientspecific<br />

resurfacing implants and personalized jigs. J Bone Joint Surg Am.<br />

2009; 91: 69-76.<br />

5. Gunther T, Murray D, Miller R. Lateral unicompartmental knee arthroplasty<br />

with Oxford meniscal knee. The Knee. 1996; 3: 33-39.<br />

6. Kendrick BJ, Longino D, Pandit H, Svard U, Gill HS, Dodd CA, Murray DW,<br />

Price AJ. Polyethylene wear in Oxford unicompartmental knee replacement: a<br />

retrieval study <strong>of</strong> 47 bearings. J Bone Joint Surg Br. 2010 Mar; 92(3): 367-373.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Clinical Results and Outcomes<br />

Wereportedon109knees(102patients)withminimum1-yearfollowup<br />

(average follow-up 30 months +/- 16.5 months). Post-operatively,<br />

the average KSS improved significantly (p


150<br />

why bother with a partial kNee arthroplaSty wheN a total<br />

workS muCh better?<br />

Giles R. Scuderi, MD<br />

Degenerative arthritis and post-traumatic arthritis in a young active<br />

patient is a therapeutic dilemma. Non-operative management, such as<br />

non-steroidal medication, physiotherapy, and activity modification,<br />

should be exhausted before surgery is contemplated. Surgical<br />

options, as mentioned above, include arthroscopic debridement,<br />

femoral or tibial osteotomy, unicondylar replacement and total knee<br />

replacement (TKR). Few patients are willing to accept the functional<br />

limitations <strong>of</strong> an arthrodesis. Arthroscopic debridement has had<br />

limited success and is not a predictable procedure, especially when<br />

there is limb malalignment or chondrocalcinosis. 10 Proximal tibial<br />

or distal femoral osteotomy may be indicated for the young patient<br />

with limb malaligment and unicompartmental disease, and who<br />

wish to continue in heavy labor or sports. While the early results<br />

are good, the long term results deteriorate with time. 3,14,17,19 Previous<br />

osteotomy may not compromise the outcome <strong>of</strong> a subsequent total<br />

knee replacement, but it does make the conversion to a total knee<br />

replacement technically more demanding. Unicondylar replacement<br />

<strong>of</strong>fers an alternative, as a bone sparing procedure, but <strong>of</strong>ten16,24 degenerative arthritis is not limited to one compartment <strong>of</strong> the knee.<br />

As the indications for total knee replacement expand, the decision<br />

to proceed with this procedure in a young active patient needs to<br />

individualized and consider alternatives as noted above. Total<br />

knee replacement has been shown to be a durable and predictable<br />

procedure in elderly patients, providing relief <strong>of</strong> pain, improving<br />

function and correcting deformity. 2,9,13,15,23Potentiallooseningandthe need for multiple revisions had initially discouraged the widespread<br />

use <strong>of</strong> total knee replacement in young patients with degenerative<br />

arthritis. This concern arose from the poor results in young patients<br />

undergoing total hip replacement. 6,12,20 However, early results with<br />

total knee replacement were encouraging and did not reflect the<br />

experience with total hip replacement. Many <strong>of</strong> the initial studies had<br />

a large proportion <strong>of</strong> patients with rheumatoid arthritis or juvenile<br />

rheumatoid arthritis, since there were no other options available for<br />

these patients. Based on the initial success, the indications were then<br />

expanded to young patients with osteoarthritis.<br />

Stuart and Rand reviewed 44 cemented TKR in patients with<br />

rheumatoid arthritis less than 40 years old. 22 At an average follow-up<br />

<strong>of</strong> 5 years, 86% had an excellent or good result. Dalury et al. reported<br />

on 103 TKR in patients young than 45 years old. 4 The majority <strong>of</strong><br />

patients (87%) had a diagnosis <strong>of</strong> rheumatoid arthritis. The average<br />

follow-up was 7 years. While there were 2 patellar fractures and<br />

one infection, there were no revisions for component loosening.<br />

Boublik et al. reviewed 22 cementless TKR in young patients with<br />

juvenile rheumatoid arthritis.1 At an average follow-up <strong>of</strong> 3.9 years,<br />

the average HSS knee score was 92. Ranawat et al. reported on 90<br />

TKR in patients less than 55 years old with rheumatoid arthritis and<br />

osteoarthritis. 18 At an average follow-up <strong>of</strong> 6 years, the average HSS<br />

score was 87. In a study that reviewed only osteoarthritic knees, Stern<br />

et al. had 55 excellent and 13 good results in patients 55 years old or<br />

younger, at an average follow-up <strong>of</strong> 6 years. 21<br />

These short-term and mid-term results have withstood the test<br />

<strong>of</strong> time, even in more active patients with degenerative or posttraumatic<br />

arthritis. Duffy et al. reported on 74 consecutive TKR in<br />

54 patients who were 55 years old or younger (average age 43 years)<br />

at the time <strong>of</strong> the index procedure. 7 All patients had a minimum<br />

follow-up <strong>of</strong> 10 years with an average <strong>of</strong> 13 years (range 10 – 17<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

years). The preoperative diagnosis was rheumatoid arthritis in 47,<br />

osteoarthritis in 12, post-traumatic arthritis in 6, osteonecrosis<br />

in 3, hemophilia in 2 and one each with pigmented villonodular<br />

synovitis, tuberculosis, SLE, and achondroplasia. All knees had a<br />

cemented condylar prosthesis. The final functional score was 60<br />

(0–100) at latest follow-up. Two knees were revised: one at 3 years<br />

because <strong>of</strong> ligamentous laxity; and one at 13 years because <strong>of</strong> aseptic<br />

loosening <strong>of</strong> the tibial component. At last follow-up, there were no<br />

loose components. These investigators concluded that cemented<br />

TKR in the young patient is a reliable procedure and has excellent<br />

results at thirteen year follow-up and an estimated survivorship <strong>of</strong><br />

99% at 10 years.<br />

Since most long term studies include a larger percentage <strong>of</strong> older<br />

patients with a variety <strong>of</strong> diagnoses, including rheumatoid patients<br />

and those with multiple joint involvement, it is important not to<br />

overly interpretate these results and extrapolate them to the younger<br />

active patients with osteoarthritis. This subgroup <strong>of</strong> patients tends to<br />

be more active and possibly even gainfully employed as a physical<br />

laborer. Their activity requirements are greater and may put higher<br />

demands on the prosthetic surface and fixation. Therefore, it is<br />

necessary to look at a study that specifically evaluates this subset.<br />

Such a study was undertaken by Diduch and co-workers. These<br />

investigators reviewed 108 knees in 84 patients with a diagnosis <strong>of</strong><br />

either osteoarthritis or post-traumatic arthritis, with 58% having<br />

prior knee surgery, and all but one patient had a cemented posterior<br />

stabilized prosthesis. The one remaining patient had a total condylar<br />

prosthesis. One hundred and three unrevised knees were available<br />

for clinical evaluation with an average followup <strong>of</strong> 8 years (range<br />

3–18 years). Thirty six knees were followed for more than 10 years.<br />

The average post-operative HSS knee score was 92, the average Knee<br />

Society knee score was 94 and the functional score was 89. All knees<br />

were rated as either good or excellent. The average Tegner activity<br />

score improved from an average <strong>of</strong> 1.3 pre-operatively to 3.5 postoperatively<br />

(range 1–6). All but two patients improved their level<br />

<strong>of</strong> activity, while 24% had an activity level greater than 5 points,<br />

indicating regular participation in activities such as tennis, skiing,<br />

cycling or strenuous farm or construction work. There were two<br />

revisions for late infection, one for polyethylene wear and one<br />

for flexion instability. In all these cases, the femoral and tibial<br />

components were well fixed. Considering failure as revision <strong>of</strong> either<br />

the femoral or tibial component, the cumulative survivorship was<br />

94% at 18 years. There were an additional three cases which required<br />

revision <strong>of</strong> loose patellar components. These durable results support<br />

treatment <strong>of</strong> the osteoarthritic knee in a young active patient with a<br />

cemented posterior stabilized prosthesis when less invasive measures<br />

have failed.<br />

Despite the good results experienced by several skilled surgeons and<br />

supported by the clinical reports, common sense suggests that total<br />

knee replacement should continue to be considered with caution for<br />

some young patients. Deferment <strong>of</strong> the definitive surgical procedure<br />

may be the best option until the symptoms warrant total knee<br />

replacement. If total knee replacement is performed, these young<br />

patients need to realize that activities that involve high impact loads,<br />

such as running and jumping, should be avoided. Finally, while some<br />

studies have reported good results as long as eighteen years, these are<br />

incidental cases, with specific implant designs, and should not be


construed as a guaranteed norm with all implants in all cases. While<br />

there does not appear to be any evidence <strong>of</strong> catastrophic component<br />

loosening or failure, further long term information needs to be<br />

REFERENCES<br />

1. Boublik M; Tsahakis PJ; Scott RD: Cementless total knee arthroplasty in<br />

juvenile onset rheumatoid arthritis. Clin Orthop 286: 88 – 93, 1993<br />

2. Colizza WA; Insall JN; Scuderi GR: The posterior stabilized total knee<br />

prosthesis. Assessment <strong>of</strong> polyethylene damage and osteolysis after a ten year<br />

minimum follow-up. J Bone Joint Surgery 77A: 1713 – 1720, 1995<br />

3. Coventry MB: Upper tibial osteotomy for gonarthrosis. The evolution <strong>of</strong> the<br />

operation in the last 18 years and long term results. Orthop Clin NA 10: 191<br />

– 210, 1979<br />

4. Dalury DF; Ewald FC; Christie MJ; Scott RD: Total knee arthroplasty in a<br />

group <strong>of</strong> patients less than 45 years <strong>of</strong> age. J Arthroplasty 10: 598 – 602,<br />

1995<br />

5. Diduch DR; Insall JN; Scott WN; Scuderi GR; Font-Rodriguez D: Total Knee<br />

Replacement in young Active Patients. J Bone Joint Surgery 79A: 575 – 582,<br />

1997<br />

6. Dorr LD; Kane TJ; Conaty JP: Long-term results <strong>of</strong> cemented total hip<br />

arthroplasty in patients 45 years old or younger: A 16 year follow-up study. J<br />

Arthroplasty 9: 453 – 456, 1994<br />

7. Duffy GP; Trousdale RT; Stuart MJ: Total Knee Arthroplasty in Patients 55<br />

years Old or Younger. 10 to 17 year results. Clin Orthop 356: 22 – 27, 1998<br />

8. Ewald F, Christie MJ: Results <strong>of</strong> cemented total knee replacements in young<br />

patients. Orthop Trans 11: 442, 1987<br />

9. Ewald FC; Jacobs MA; Miegel RE; et al.: Kinematic total knee replacement. J<br />

Bone Joint Surgery 66A: 1032 – 1040, 1984<br />

10. Harwin S.: Arthroscopic debridement for osteoarthritis <strong>of</strong> the Knee:<br />

Predictors <strong>of</strong> patient satisfaction. Arthroscopy 15: 142 – 146, 1999<br />

11. Hungerford DS; Krackow KA; Kenna RV: Cementless total knee replacement<br />

in patients 50 years old and under. Orthop Clinics NA 20: 131-145, 1989<br />

12. Joshi AB; Porter ML; Trial IA; et al.: Long term results <strong>of</strong> Charnley low friction<br />

arthroplasty in young patients. J Bone Joint Surgery 75B: 616 – 623, 1993<br />

151<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

gathered before universal acceptance <strong>of</strong> total knee replacement in the<br />

treatment <strong>of</strong> osteoarthritis in the young active patient is obtained.<br />

13. Insall JN, Kelly MA: The total condylar prosthesis. Clin Orthop 205: 43 – 48,<br />

1986<br />

14. Insall JN; Joseph DM; Msika C: High tibial osteotomy for varus gonarthrosis.<br />

A long term follow-up study. J Bone Joint Surgery 66A: 1040 – 1048, 1984<br />

15. Insall JN; Lachiewicz PF; Burstein AH: The posterior stabilized condylar<br />

prosthesis. A modification <strong>of</strong> the total condylar design. Two to four year<br />

clinical experience. J Bone Joint Surgery 64A: 1317 – 1323, 1982<br />

16. Katz MM; Hungerford DS; Krackow KA; Lennox DW: Results <strong>of</strong> total knee<br />

arthroplasty after failed proximal tibial osteotomy for osteoarthritis. J Bone<br />

Joint Surgery 69A: 225 – 233, 1987<br />

17. McDermott ACG; Finkelstein JA; Farine I.; et al.: Distal femoral varus<br />

osteotomy for valgus deformity <strong>of</strong> the knee. J Bone Joint Surgery 70A: 110 –<br />

116, 1988<br />

18. Ranawat CS; Padgett DE; Ohashi Y: Total knee arthroplasty for patients<br />

younger than 55 years. Clin Orthop 248: 27 – 33, 1989<br />

19. Ritter MA; Fechtman RA: Proximal tibial osteotomy. A survivorship analysis. J<br />

Arthroplasty 3: 309 – 311, 1988<br />

20. Solomon MI; Dall DM; Learmonth ID, Davenport, JM: Survivorship <strong>of</strong><br />

cemented total hip arthroplasty in patients 50 years <strong>of</strong> age or younger. J<br />

Arthroplasty 7: 347 – 352, 1992.<br />

21. Stern SH; Bowen MK; Insall JN; Scuderi GR: Cemented total knee<br />

arthroplasty for gonarthrosis in patients 55 years old or younger. Clin<br />

Orthop. 260: 124 – 129, 1990<br />

22. Stuart MJ; Rand JA: Total knee arthroplasty in the young adult. Ortho Trans<br />

11: 441 – 442, 1987<br />

23. Vince KG; Insall JN; Kelly MA: The total condylar prosthesis 10- to 12- year<br />

results <strong>of</strong> a cemented knee prosthesis. J Bone Joint Surgery 71B: 793 – 797,<br />

1989<br />

24. Windsor RE; Insall JN; Vince KG: Technical considerations <strong>of</strong> total knee<br />

arthroplasty after proximal tibial osteotomy. J Bone Joint Surgery 70A: 547 –<br />

555, 1988


152<br />

FiXed beariNg iNlay medial uka repreSeNtS the moSt<br />

CoNServative approaCh<br />

John A. Repicci, DDS, MD<br />

Knee Osteoarthritis:<br />

The relationship between pain, disability and disease severity is<br />

complex and not closely related to radiographic findings. Wolfe<br />

and Lane1 found that only 8-15% <strong>of</strong> patients with knee pain and<br />

radiographs revealing complete loss <strong>of</strong> knee joint space will, on initial<br />

exam, accept a total knee replacement (TKR). Medial osteoarthritis is<br />

an extension gap disease.<br />

Varus Malalignment:<br />

Varus is a destructive force. Greater than 2˚ <strong>of</strong> varus provides threefold<br />

greater risk for osteoarthritis progression in the knee.<br />

Accommodation:<br />

Kneeosteoarthritisisahighlysegementalprocessthatispredominately<br />

medial. Patients <strong>of</strong>ten accommodate for a decade or more.<br />

REFERENCES<br />

1. Wolfe F, Lane NE. The longterm outcome <strong>of</strong> osteoarthritis: rates and<br />

predictors <strong>of</strong> joint space narrowing in symptomatic patients with knee<br />

osteoarthritis. J Rheumatol. 2002 Jan;29(1):139-46<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Survival <strong>of</strong> UKA – Norwegian Registry Data, Cemented UKA by<br />

Age at Surgery2:<br />

• Age ≥70 years: 87% 10-year survival<br />

• Age 60-69 years: 85% 10-year survival<br />

• Age ≤ 60 years: 55% 10-year survival<br />

— Highly related to age and activity level.<br />

Minimally Invasive, Bone Conserving:<br />

• Adding bone-sparing, surface enhancement to an out-patient<br />

arthroscopic knee surgical procedure utilizing a minimally<br />

invasive surgical approach through a 3-inch incision is an<br />

appealing concept to many elderly patients.3<br />

• Use <strong>of</strong> a bone-sparing technique allows a wider range <strong>of</strong> surgical<br />

indications and is <strong>of</strong> significant interest to the elderly patient in<br />

order to relieve pain and prevent or delay the need for TKR.<br />

2. Furnes O, Espehaug B, Lie SA, Vollset SE, Engesaeter LB, Havelin LI. Failure<br />

mechanisms after unicompartmental and tricompartmental primary knee<br />

replacement with cement. J Bone Joint Surg Am. 2007 Mar;89(3):519-25<br />

3. Repicci JA, Hartman JF. Minimally invasive unicondylar knee arthroplasty<br />

for the treatment <strong>of</strong> unicompartmental osteoarthritis: an outpatient arthritic<br />

bypass procedure. Orthop Clin North Am. 2004 Apr;35(2):201-16. Review.


153<br />

FiXed beariNg oNlay iS tried aNd true<br />

Craig J. Della Valle, MD<br />

Introduction<br />

Among the many controversies with unicompartmental knee<br />

arthroplasty (UKA) include which design concepts that provide the<br />

simplest, most reproducible surgical techniques combined with<br />

optimal long term results. Specific controversies include:<br />

• Fixed bearing vs. mobile bearing designs<br />

• Onlay vs. inlay designs<br />

• The use <strong>of</strong> a metal backed vs. an all polyethylene tibial<br />

component.<br />

It is my belief that a fixed bearing onlay design with a metal backed<br />

tibial component provides the orthopaedic surgeon with a simple,<br />

reproducible operation with published results that show a low rate<br />

<strong>of</strong> failure.<br />

The Surgical Technique is Straight-forward and familiar<br />

Among the many lessons we have learned as adult reconstructive<br />

surgeons is that for an operation to be successful, surgeons must be<br />

able to perform it easily and reproducibly.<br />

• The surgical technique is familiar to adult reconstructive<br />

surgeons; similar to a TKA<br />

• Intramedullary alignment can be utilized for the distal femoral<br />

cut (like a TKA).<br />

• Extra-medullary alignment for the tibial cut (like a TKA).<br />

• Posterior referencing for femoral sizing and preparation (similar<br />

to some TKA).<br />

While the technique is similar to a TKA, there are several important<br />

differences and tips to optimize outcomes.<br />

• The tibial cut must be conservative (typically removing 2-3mm<br />

<strong>of</strong> bone)<br />

— Deeper cuts (10mm) advocated in the past have lead to<br />

problems if a revision was required and promulgated the<br />

idea that conversion from a UKA to a TKA is difficult.<br />

— Deeper cuts also lead to placement <strong>of</strong> the tibial component<br />

in weaker bone with a higher risk <strong>of</strong> failure.<br />

— Polyethylene wear has NOT been a major source <strong>of</strong> failure<br />

and a thin polyethylene is compatible with excellent long<br />

term survivorship (more on this later).<br />

• The femur must track centrally on the tibia to prevent edge<br />

loading <strong>of</strong> the polyethylene (or you will have problems with<br />

wear).<br />

• The knee should have 2-3mm <strong>of</strong> laxity in both full extension<br />

and 90 degrees <strong>of</strong> flexion. If you make the knee too tight, it will<br />

push it into valgus and you will get lateral compartment degeneration<br />

and worse results!<br />

The Use <strong>of</strong> a Modular Metal Backed Tibial Component is an<br />

Advantage<br />

While the use <strong>of</strong> an all polyethylene tibial component has some<br />

theoretical advantages including decreased cost and the ability to use<br />

a thicker polyethylene for the bearing surface:<br />

REFERENCES<br />

1. Clark M, Campbell DG , Kiss G , et Al. Reintervention after mobile-bearing<br />

Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res.<br />

2010;468:576-80.<br />

2. Song MH , Kim BH , Ahn SJ , et Al. Early complications after minimally<br />

invasive mobile-bearing medial unicompartmental knee arthroplasty. J<br />

Arthroplasty. 2009;24:1281-4.<br />

3. Bonutti PM , Dethmers DA . Contemporary unicompartmental knee<br />

arthroplasty: fixed vs mobile bearing. J Arthroplasty. 2008;23:24-7.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

• Clinical results with an all polyethylene tibial component in<br />

general show a higher rate <strong>of</strong> tibial component loosening.<br />

• The use <strong>of</strong> an all polyethylene tibial component predisposes to<br />

leaving retained cement which is a real cause <strong>of</strong> persistent pain<br />

and the need for re-operation. With a modular component,<br />

retained cement is far easier for the surgeon to visualize and<br />

remove.<br />

• Polyethylene wear has not been a major cause <strong>of</strong> failure with<br />

most successful fixed bearing designs.<br />

There is No Risk <strong>of</strong> Bearing Dislocation<br />

Although mobile bearing designs are associated with excellent<br />

results, a small proportion <strong>of</strong> knees (particularly early in the socalled<br />

“learning curve”) are associated with failure secondary to<br />

bearing dislocation. This also precludes the use <strong>of</strong> a mobile bearing<br />

design with currently available components in the USA.<br />

• Clark et al., CORR 2010; (4) Re-opeations related to mobile<br />

bearing <strong>of</strong> 398 (1%)<br />

• Song et al., J Arthroplasty 2009 (4) bearing dislocations in first<br />

100 cases (4%)<br />

• Whitaker et al., CORR 2010; (1) bearing dislocation <strong>of</strong> 79<br />

mobile UKA (1.3%)<br />

• Gleeson et al., Knee 2004 (3) Bearing dislocations out <strong>of</strong> 47<br />

knees (6.4%)<br />

• FDA trial 2 bearing dislocations <strong>of</strong> 125 knees (1.6%)<br />

The Long Term Results Are Excellent and Wear is Rarely the<br />

Cause <strong>of</strong> Failure<br />

Although one early design was associated with a high failure rate<br />

secondary to wear (the polyethylene was gamma irradiated in air<br />

with a prolonged shelf life), most studies do not show wear to be<br />

a major cause <strong>of</strong> failure. Lower wear is proposed as a theoretical<br />

advantage <strong>of</strong> a mobile bearing design.<br />

Author, Year Patients, FU Survivorship Wear Related<br />

Failures<br />

Foran, 2011<br />

(presented AAOS)<br />

62 UKA at min 15 yrs 93% at 15 yrs 0%<br />

Naudie, 2004 113 UKA at mean<br />

10 yrs<br />

90% at 10-14 years 2.7%<br />

pennington, 2003 46 UKA (65 yo at time<br />

<strong>of</strong> surgery<br />

Reported)<br />

Fixed bearing onlay UKA <strong>of</strong>fers the surgeons a simple and familiar<br />

surgical technique with a low rate <strong>of</strong> failure in multiple series<br />

published from multiple centers at intermediate term follow-up.<br />

4. Gleeson RE , Evans R , Ackroyd CE , Webb J , Newman JH . Fixed or mobile<br />

bearing unicompartmental knee replacement? A comparative cohort study.<br />

Knee. 2004;11:379-84.<br />

5. Berger RA, Meneghini RM, Jacobs JJ et. Al.: Results <strong>of</strong> unicompartmental knee<br />

arthroplasty at a minimum <strong>of</strong> ten years <strong>of</strong> follow-up. J Bone Joint Surg Am,<br />

87(5): 999-1006, 2005.<br />

6. O’Rourke MR, Gardner JJ, Callaghan JJ, et Al. The John Insall Award:<br />

unicompartmental knee replacement: a minimum twenty-one-year followup,<br />

end-result study. Clin Orthop Relat Res, 440: 27-37, 2005.


7. Argenson JN, Chevrol-Benkeddache Y, Aubaniac JM. Modern<br />

unicompartmental knee arthroplasty with cement: a three to ten-year followup<br />

study. J Bone Joint Surg Am, 84-A(12): 2235-9, 2002.<br />

8. Pennington DW, Swienckowski JJ, Lutes WB, Drake GN. Unicompartmental<br />

knee arthroplasty in patients sixty years <strong>of</strong> age or younger. J Bone Joint Surg<br />

Am, 85-A(10): 1968-73, 2003.<br />

154<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

9. Naudie D, Guerin J, Parker DA, Bourne RB, Rorabeck CH. Medial<br />

unicompartmental knee arthroplasty with the Miller-Galante prosthesis. J<br />

Bone Joint Surg Am, 86-A(9):1931-5, 2004.


155<br />

doN’t worry about wear with mobile beariNg partial kNee<br />

arthroplaSty<br />

Michael E. Berend, MD<br />

Introduction<br />

Mobile bearing UKA has been approved<br />

in the US for the past six years with an<br />

educational training requirement from<br />

the FDA. The hope <strong>of</strong> restoration <strong>of</strong> knee<br />

kinematics, decreasing polymer wear<br />

through increased implant conformity,<br />

and lower polyethylene stresses are<br />

appealing with a mobile bearing device<br />

and may improve long-term implant<br />

performance.<br />

Importantly however, mobile bearing<br />

UKA does not improve our indications<br />

and patient selection, nor surgeon performance that are critical<br />

elements <strong>of</strong> UKA clinical success and survivorship. This section <strong>of</strong><br />

the Symposium will discuss indications, outcomes, technical factors,<br />

and laboratory correlations with mobile bearing UKA.<br />

Clinical Results and Survivorship<br />

Excellent results with 98% survival at 6 years are seen with liberal<br />

indications using this mobile bearing partial knee replacement<br />

have been reported by Berend, et al. Longer-term results have been<br />

reported by Price and Svard to be 91% at 16-years and no additional<br />

failures at 20-years (91%). Importantly there have been no reported<br />

revisions due to polyethylene wear in these long term cohorts.<br />

Furthermore, registry data demonstrate that polymer wear with a<br />

mobile bearing UKA is quite rare. The high success and low incidence<br />

<strong>of</strong> perioperative complications make this an ideally suited operation<br />

with nearly no contraindications in patients with anteromedial OA<br />

<strong>of</strong> the knee.<br />

Polyethylene Wear<br />

Poly wear has been a concern in fixed<br />

bearing metal backed implants. Much <strong>of</strong><br />

this limitation however has been better<br />

understood as we have understood the<br />

adverse effects <strong>of</strong> poly oxidation through<br />

increased shelf life and sterilization<br />

methods in the presence <strong>of</strong> oxygen. Poly<br />

wear has been an infrequent indication<br />

for revision <strong>of</strong> mobile bearing implants.<br />

Wear rates on retrieved mobile bearings<br />

has been reported to be 0.03 mm/yr on<br />

penetration testing. Bearing impingment has been shown to increase<br />

poly wear in mobile bearing devices and highlights the importance <strong>of</strong><br />

surgical technique in order to ensure an impingement free kinematic<br />

environment.<br />

Indications<br />

The indications for UKA<br />

have changed significantly<br />

over the last decade in<br />

our practice and may be<br />

changing in the US for<br />

mobile bearing metal<br />

backed implants based<br />

on emerging data. It is<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

interesting to note that the classic “Kozinn and Scott” criteria have no<br />

adverse data on ignoring the assumed contraindications to support<br />

their recommendations. We have retrospectively applied the Kozinn<br />

and Scott criteria to our TKA database and found between 4-6% <strong>of</strong><br />

varus knees would becandidates for UKA. Since that time we have<br />

utilized more physiologic criteria including confirming anteromedial<br />

osteoarthritis <strong>of</strong> the knee with an intact ACL. Our prevalence<br />

<strong>of</strong> UKA has gone from 4-6% in 2004 to 37% in 2010. What has<br />

changed? I believe a better understanding <strong>of</strong> the pathophysiology<br />

<strong>of</strong> “anteromedial OA” that was described by White and Goodfellow<br />

many years ago for medial compartment OA. Berend, KR, et al<br />

presented a summary <strong>of</strong> the indications at the AAOS, OLC, Knee<br />

Course in 2010 entitled, “Indications for Unicompartmental Knee<br />

Arthroplasty: Is there any science?” It is summarized below and<br />

brings an abundance <strong>of</strong> data to the table in this ongoing debate.<br />

Unicompartmental knee arthroplasty (UKA) has seen increasing<br />

interest due to better implant design, minimally invasive techniques,<br />

and improved outcomes. Survivorship with revision <strong>of</strong> any kind <strong>of</strong><br />

Mobile Bearing UKA appears to rival that <strong>of</strong> total knee arthroplasty,<br />

despite more liberal indications than those traditionally used. It is<br />

these expanded indications for UKA that continue to be debated.<br />

Traditional or “Classical” indications preclude the use <strong>of</strong> UKA in<br />

patients younger than 60, heavier than 82kg (or BMI greater than<br />

32), patients with radiographic patell<strong>of</strong>emoral disease, and patients<br />

with pain that is not isolated to the medial side <strong>of</strong> the knee. Although<br />

absolutely no data exists to corroborate these contraindications,<br />

surgeons frequently cite Kozin and Scott (JBJS-Am 1989) when<br />

deciding whom to <strong>of</strong>fer UKA.<br />

The purpose <strong>of</strong> the report by Berend, et al was to examine various<br />

so-called “classical” inclusion and exclusion criteria and determine<br />

how these impact the outcomes and revisions in a consecutive series<br />

<strong>of</strong> UKA implanted for anteromedial osteoarthritis. The study groups<br />

for this report are taken from a consecutive series <strong>of</strong> 1,500 medial,<br />

mobile-bearing UKA performed between July 2004 and January<br />

2010, by 2 surgeons.<br />

Indications: The indication for medial UKA is anteromedial<br />

osteoarthritis (AMOA), a clinical condition originally described by<br />

White et al. (JBJS-Br 1991). AMOA is a distinct disease that in and <strong>of</strong><br />

itself defines the indications for medial UKA. This disease involves<br />

complete bone-on-bone arthrosis medially on a weight bearing<br />

radiograph, functionally intact ACL and MCL, and a correctible<br />

varus deformity. Correctability <strong>of</strong> deformity is examined using a<br />

valgus-stress radiograph in each UKA candidate. Using these criteria,<br />

the indications for UKA can be as high as 35-40% <strong>of</strong> osteoarthritic<br />

knees which has paralleled our practices adoption in New Albany<br />

and Mooresville.<br />

Weight and Age: At up to 72 months follow-up, 31 <strong>of</strong> 1,500 knees<br />

have been revised for a survivorship <strong>of</strong> 97.9%. No difference in<br />

survivorship was noted in patients heavier than 82 kg, heavier<br />

than BMI 32, or younger than 60 years <strong>of</strong> age (p>0.05). We did<br />

note a higher Knee Society score in older, lighter patients (90 vs<br />

88; P=0.001), however the scores averaged good/excellent in both<br />

groups that fell within and outside the classical criteria.<br />

BMI: Further investigation <strong>of</strong> BMI and its effect on survival was<br />

performed looking at our series, and that <strong>of</strong> the Oxford group.


Together, we evaluated 2586 consecutive UKA. Life-tables were<br />

constructed to evaluate the effect <strong>of</strong> BMI on survival. Survival in 764<br />

UKA with BMI 30-35 was 94%, in 310 UKA with BMI 36-40 survival<br />

was 95%, and in 209 knees with BMI >40 survival was 98%. No<br />

statistical difference was seen between any BMI group (P>0.05).<br />

Patell<strong>of</strong>emoral disease: Standardized radiographs from 626 Knees in<br />

which a mobile bearing medial UKA was implanted were reviewed<br />

by an evaluator blinded to patient outcome or revision status. The<br />

evaluator recorded the pre-operative state <strong>of</strong> the patell<strong>of</strong>emoral joint<br />

using<br />

the Altman Classification. The Altman classification grades the<br />

patell<strong>of</strong>emoral joint medially and laterally for sclerosis, osteophytes,<br />

and joint space narrowing with a score <strong>of</strong> 0-4, with 4 representing<br />

severe, erosive bone-on-bone disease. Log-rank and Kaplan-Meier<br />

analysis were used to evaluate survivorship between knees with<br />

significant pre-operative patell<strong>of</strong>emoral disease and those without.<br />

Within this subset <strong>of</strong> 626 knees, there were 17 revisions at up to<br />

6 years (97.2% survival). In only 384 knees (61.3%) was the<br />

patell<strong>of</strong>emoral joint normal or Altman 0-1. Survival in this normal<br />

PFJ cohort was 93.8%. In 242 knees, or 37.8% <strong>of</strong> cases, with preoperative<br />

PFJ disease (Altman 2-4) the predicted survival was 97.9%.<br />

Of these, 92 knees (15%) had significant disease (Altman 3 or<br />

greater) and the survival was 97.0%.<br />

Morbidity and Mortality: With 35-40% <strong>of</strong> varus osteoarthritic knees<br />

meeting these expanded inclusion criteria and pathological diagnosis<br />

<strong>of</strong> AMOA, it is amazing that surgeons still do not utilize UKA in their<br />

practices, or use it sparingly. In the current series, better than 98%<br />

survival at 6 years using AMOA as the indication for UKA is seen.<br />

Perhaps most convincing, however, is the stark difference in<br />

morbidity and mortality associated with UKA when compared to<br />

TKA. We evaluated 1,000 consecutive UKA for 90 day perioperative<br />

morbidity and mortality. There were no deaths (0.0%), one DVT<br />

(0.1%), and one deep infection (0.1%). Five patients required<br />

a transfusion (0.5%) and 7 patients had a cardiac complication<br />

including CHF, arrhythmia, or myocardial infarction (0.7%). Thus<br />

the early morbidity associated with mobile bearing UKA warrants<br />

that this procedure be defined as truly minimally invasive, in<br />

contradistinction from TKA. With such a low rate <strong>of</strong> perioperative<br />

complications, surgeons may be over-treating patients with TKA in<br />

knees with anteromedial OA who meet the expanded indications<br />

for UKA, putting them at undue risk. These liberal indications for<br />

UKA, based on the patho-anatomic condition <strong>of</strong> anteromedial<br />

osetoarthritis, appear to be a safe and accurate measure <strong>of</strong> candidacy<br />

for UKA.<br />

Tibial Implant Design<br />

It appears metal backed implants may be more resistant to implant<br />

loosening most notably in obese patients as Berend, et al reported<br />

that all poly implants had higher failure rates in patients with a<br />

higher BMI. Higher strains in the tibial bone were observed in our<br />

laboratory with<br />

all poly tibial<br />

c o m p o n e n t s.<br />

We also found<br />

that excessive<br />

implant slope<br />

in both the<br />

anterior and<br />

p o s t e r i o r<br />

direction may<br />

p r e d i s p o s e<br />

to implant<br />

s u b s i d e n c e<br />

156<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

with all poly designs. (Aleto) The effects <strong>of</strong> the development <strong>of</strong> MIS<br />

techniques during this study period are as <strong>of</strong> yet unknown.<br />

Tibial Loading under Mobile Bearing UKA<br />

Observing early (< 1 yr) tibial subsidence in series <strong>of</strong> all poly<br />

implants (Aleto) led us to investigate the influence <strong>of</strong> metal backing<br />

on tibial loading throughout knee motion. With in vitro photoelastic<br />

strain quantification methods we directly compared all poly tibial<br />

implants to metal backed tibial<br />

implants. We found higher overall<br />

strains and more localized strain<br />

concentration in the posterior<br />

medial tibia with all poly implants<br />

compared to metal implant designs<br />

(Small) as shown on the lower<br />

image on the right. We hypothesize<br />

that our in vitro observation may at<br />

least partly explain the biomechanics behind tibial subsidence in<br />

high BMI patients with all poly implants.<br />

Bearing Mobility and Tibial Loading<br />

We have also studied the effects <strong>of</strong> bearing mobility (simulating<br />

flexion and extension <strong>of</strong> the knee) in mobile bearing UKA on<br />

proximal tibial loading. The figure below shows the comparison<br />

between mid flexion on the left and full extension on the right. The<br />

increased intensity and localization in the photoelastic color pattern<br />

with the bearing in the anterior aspect <strong>of</strong> the tibial tray (which<br />

simulates knee extension) shows increased loading in the anterior<br />

medial aspect <strong>of</strong> the tibia. This correlates with an area <strong>of</strong>ten noted<br />

to have early pain in the medial tibial metaphysis. I have heard this<br />

comment from many UKA surgeons around the country with various<br />

implant designs. Many believe this to be s<strong>of</strong>t tissue inflammatory<br />

pain about the pes tendons and bursa.<br />

We hypothesize that tibial overload and<br />

remodeling may at least in part be part <strong>of</strong><br />

the pain and remodeling in this area in<br />

response to changes in tibial strains over 6-12<br />

months may correlate with pain resolution.<br />

Supplemental observations <strong>of</strong> increased activity<br />

on postoperative bone scan evaluations may<br />

support this hypothesis.


Risks<br />

Risks unique to mobile bearing UKA<br />

include the adverse risks <strong>of</strong> bearing<br />

impingement and poly wear, bearing<br />

dislocation, interpretation <strong>of</strong> postoperative<br />

tibial radiolucencies, and reported<br />

increased revision rates in registry data.<br />

In order for a medial mobile bearing to<br />

dislocate both medial joint distraction<br />

and bearing spinning must occur<br />

simultaneously. Anatomic bearings have<br />

been designed to prevent 90o <strong>of</strong> bearing rotation on the tibial<br />

tray. The anterior portion <strong>of</strong> the bearing has a 5 mm lip while the<br />

posterior aspect has a 3 mm lip. Bearing dislocation occurs when<br />

REFERENCES<br />

1. Berend KR, Lombardi AV Jr, Adams JB.: Obesity, young age, patell<strong>of</strong>emoral<br />

disease, and anterior knee pain: identifying the unicondylar arthroplasty<br />

patient in the United States. Orthopedics. 2007 May;30(5 Suppl): 19-23.<br />

2. Berend KR, Lombardi AV Jr, Mallory TH, Adams JB, Groseth KL.: Early failure<br />

<strong>of</strong> minimally invasive unicompartmental knee arthroplasty is associated with<br />

obesity. Clin Orthop Relat Res. 2005 Nov; 440: 60-6.<br />

3. Price AJ, Waite JC, Svard U.: Long-term clinical results <strong>of</strong> the medial<br />

Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2005<br />

Jun;(435):171-80.<br />

4. Price AJ, Svard U. A second decade lifetable survival analysis <strong>of</strong> the Oxford<br />

unicompartmental knee arthroplasty. Clin Orthop Relat Res 2010 Aug 13<br />

(epub ahead <strong>of</strong> print).<br />

5. White S, Ludkowski PF, Goodfellow J. Anteromedial O\osteoarthritis <strong>of</strong> the<br />

knee. JBJS 1991, 73Br; 582-586.<br />

6. Kozinn SC, Scott R. Unicondylar Knee Arthroplsty. JBJS 1989, 71Am; 145-<br />

150.<br />

7. Berend KR, Lombardi, Jr. AV, Hurst JM, Morris M, Indications for UKA, Is<br />

there any science, AAOS OLC presentation, Oct 2010.<br />

8. McGovern TF, Ammeen DJ, Collier JP, Currier BH, Engh GA, JBJS-A, 2002<br />

9. Collier MB, Engh CA Jr, Engh GA., JBJS-A, 2004.<br />

10. Small SR, Berend ME, Ritter MA, Buckley CA, Rogge RD. Metal backing<br />

significantly decreases tibial strains in a medial unicompartmental knee<br />

arthroplasty model. J Arthroplasty. 2010 Sep 24.<br />

11. Small SR, Berend ME, Ritter MA, Buckley CA. Bearing mobility affects tibial<br />

strain in mobile-bearing unicompartmental knee arthroplasty. Surg Technol<br />

Int. 2010;19:185-90.<br />

12. Psychoyios V, Crawford RW, O’Connor JJ, Murray DW. Wear <strong>of</strong> congruent<br />

meniscal bearings in unicompartmental knee arthroplasty: a retrieval study<br />

<strong>of</strong> 16 specimens. J Bone Joint Surg Br. 1998 Nov;80(6):976-82.<br />

13. Collier MB, Engh CA Jr, Engh GA. Shelf age <strong>of</strong> the polyethylene tibial<br />

component and outcome <strong>of</strong> unicondylar knee arthroplasty. J Bone Joint Surg<br />

Am. 2004 Apr;86-A(4):763-9.<br />

14. Hamilton WG, Collier MB, Tarabee E, McAuley JP, Engh CA Jr, Engh<br />

GA. Incidence and reasons for reoperation after minimally invasive<br />

unicompartmental knee arthroplasty. J Arthroplasty. 2006 Sep;21(6 Suppl<br />

2):98-107.<br />

157<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

the bearing impinges on bone, cement, and retained osteophytes.<br />

Surgical technique is important to prevent bearing dislocation.<br />

Radiolucencies (RLL) have been reported under cemented metal<br />

backed mobile bearing UKA’s. The clinical significance <strong>of</strong> these<br />

RLL has been investigated and found to not correlate with pain<br />

or poor postoperative outcomes. The importance <strong>of</strong> radiographic<br />

interpretation <strong>of</strong> RLL cannot be overemphasized. In the absence<br />

<strong>of</strong> implant migration a cautious approach to revision should be<br />

employed.<br />

Registry data suggest higher revision rates for UKA than TKA. This<br />

is a complex subject and one must remember that the threshold to<br />

revise a dissatisfactory UKA is much lower than revision a painful<br />

TKA.<br />

15. McGovern TF, Ammeen DJ, Collier JP, Currier BH, Engh GA. Rapid<br />

polyethylene failure <strong>of</strong> unicondylar tibial components sterilized with gamma<br />

irradiation in air and implanted after a long shelf life. J Bone Joint Surg Am.<br />

2002 Jun;84-A(6):901-6.<br />

16. Kendrick BJ, Longino D, Pandit H, Svard U, Gill HS, Dodd CA, Murray DW,<br />

Price AJ. Polyethylene wear in Oxford unicompartmental knee replacement:<br />

a retrieval study <strong>of</strong> 47 bearings. J Bone Joint Surg Br. 2010 Mar;92(3):367-73.<br />

17. Price AJ, Svard U. A second decade lifetable survival analysis <strong>of</strong> the oxford<br />

unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2010 Aug 13.<br />

18. Price AJ, Waite JC, Svard U. Long-term clinical results <strong>of</strong> the medial<br />

Oxford unicompartmental knee arthroplasty. Clin Orthop Relat Res. 2005<br />

Jun;(435):171-80.<br />

19. Svärd UC, Price AJ. Oxford medial unicompartmental knee arthroplasty.<br />

A survival analysis <strong>of</strong> an independent series. J Bone Joint Surg Br. 2001<br />

Mar;83(2):191-4.<br />

20. Ritter MA, Faris PM, Thong AE, Davis KE, Meding JB, Berend ME. Intraoperative<br />

findings in varus osteoarthritis <strong>of</strong> the knee. An analysis <strong>of</strong><br />

pre-operative alignment in potential candidates for unicompartmental<br />

arthroplasty. J Bone Joint Surg Br. 2004 Jan;86(1):43-7.<br />

21. White SH, Ludkowski PF, Goodfellow JW. Anteromedial osteoarthritis <strong>of</strong> the<br />

knee. J Bone Joint Surg Br. 1991 Jul;73(4):582-6.<br />

22. Gulati A, Chau R, Pandit HG, Gray H, Price AJ, Dodd CA, Murray DW. The<br />

incidence <strong>of</strong> physiological radiolucency following Oxford unicompartmental<br />

knee replacement and its relationship to outcome. J Bone Joint Surg Br. 2009<br />

Jul;91(7):896-902.<br />

23. Aleto TJ, Berend ME, Ritter MA, Faris PM, Meneghini RM. Early failure <strong>of</strong><br />

unicompartmental knee arthroplasty leading to revision. J Arthroplasty. 2008<br />

Feb;23(2):159-63.<br />

24. Clarius M, Hauck C, Seeger JB, James A, Murray DW, Aldinger PR. Pulsed<br />

lavage reduces the incidence <strong>of</strong> radiolucent lines under the tibial tray <strong>of</strong><br />

Oxford unicompartmental knee arthroplasty: pulsed lavage versus syringe<br />

lavage. Int Orthop. 2009 Dec;33(6):1585-90. Epub 2009 Feb 14.<br />

25. Pandit H, Jenkins C, Beard DJ, Gallagher J, Price AJ, Dodd CA, Goodfellow<br />

JW, Murray DW. Cementless Oxford unicompartmental knee replacement<br />

shows reduced radiolucency at one year. J Bone Joint Surg Br. 2009<br />

Feb;91(2):185-9.


158<br />

No oNe CaN do a better medial uka thaN a robot<br />

Riyaz H Jinnah MD, FRCS and Ryan Bunch, DO<br />

Robotically assisted unicompartmental knee arthroplasty.<br />

Total Knee Arthroplasty<br />

• an effective treatment for end stage arthritis<br />

• alleviating pain and restoring function<br />

Unicompartmental Knee Replacement -early problems<br />

• Techniques<br />

• Implants<br />

• Materials<br />

Medial-Lateral Malalignment: Axial Malalignment:<br />

Failure at 4 years<br />

Component to component alignment is critical<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Component-Component Malalignment Results in:<br />

• Edge loading<br />

• High contact stresses<br />

• Accelerated polyethylene wear<br />

• Implant loosening<br />

Why Robotics?<br />

• to avoid imbalance and malalignment<br />

Unicompartmental Knee Arthroplasty [UKA]<br />

• renewed interest<br />

• relatively less morbid procedure<br />

• leading to a shorter hospital stay &<br />

• faster rehabilitation<br />

The latest UKA system – a step further<br />

• Robotically assisted<br />

• s<strong>of</strong>tware accurately plan implant size<br />

• optimize position and orientation<br />

• based on preoperative CT scan<br />

• Precise – enhanced longevity<br />

• Minimally invasive – reduced morbidity<br />

Intra-Operative Planning: Trace Points<br />

• At captured poses, the tibial articular surface centroid is mapped<br />

• Tibia ROM is shown as a series <strong>of</strong> dots<br />

• Based on plan, graphs show femoral - tibia (tight) or gaps<br />

(loose)<br />

• Adjust femoral or tibia plan to achieve the desired balance<br />

Modern UKA Systems<br />

• Oxford [Biomet]<br />

• Triathlon , Eius [Stryker],<br />

• Preservation [ Depuy]<br />

• Hiflex Uni [Zimmer]<br />

Improvement in:<br />

• Surgical instrumentation<br />

• Implant designs<br />

• Material properties [Poly]<br />

• Refinement in patient selection<br />

Technique – Implant Planning:<br />

Technique: Bone Preparation:


Technique Bone Preparation and Cementing the Prosthesis<br />

Clinical Outcomes:<br />

Roche et al (2008) - 43 Robotically guided UKA patients<br />

• improved every measured clinical outcome at 3 months<br />

followup (p


160<br />

CuStom medial uka optimizeS the reSult For eaCh patieNt<br />

Wolfgang Fitz, MD<br />

Indication – based on clinical exam:<br />

• ROM >90°<br />

• Correctable deformity


Anatomic Challenges:<br />

161<br />

Figure 7: Medial condyle is curved<br />

and longer than lateral<br />

Figure 8: Off-the-shelf J-curve<br />

compared to individual medial<br />

J-curves<br />

Figure 9: Individual J-curves in combination with engineered<br />

coronal curvature provide contact area similar compared to <strong>of</strong>f-theshelf<br />

implants<br />

Figure 10: Onlay-UKA increase risk <strong>of</strong> PF impingement compared<br />

to tapered designs<br />

BIBLIOGRAPHY<br />

1. Steklov N et al., Unicompartmental knee resurfacing: enlarged tibi<strong>of</strong>emoral<br />

contact area and reduced contact stress using novel patient-derived<br />

geometries. Open Biomed Eng J, 2010. 4: p. 85-92.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

Figure 11: Off-the-shelf UKA cannot cover more than 75% <strong>of</strong><br />

cortical bone<br />

Surgical Technique - Review surgical plan:<br />

Figure 11: Orange marked osteophytes have to be removed<br />

• Remove all cartilage <strong>of</strong>f the femur (inferior <strong>of</strong> sulcus terminalis)<br />

and <strong>of</strong>f the tibia<br />

• Balance knee in 10¡ to 30¡ (balancing chip)<br />

• Attach tibial cutting block<br />

• Place femoral cutting jig, drill pegs and cut posterior condyle<br />

removing planned amount <strong>of</strong> bone<br />

• For bicompartmetnal make additional anterior cut<br />

• Prepare anterior trench and smooth transition to posterior cut<br />

using a 5mm high-speed burr<br />

• Place trial implants and verify component placement and<br />

balancing<br />

• Prepare femur and tibia for cementing<br />

Results:<br />

Isolated medial TF OA Medial TF and PF OA<br />

Radiographic examples from personal experience<br />

Koeck et al [2]:<br />

• 32 individual UKA<br />

• correction from 7¡ varus to 1¡<br />

• preservation <strong>of</strong> pre-op tibial slope<br />

All images reproduced courtesy <strong>of</strong> Wolfgang Fitz, MD.<br />

2. Koeck FX et al., Evaluation <strong>of</strong> implant position and knee alignment after<br />

patient-specific unicompartmental knee arthroplasty. Knee, 2010 Aug 3.<br />

[Epub ahead <strong>of</strong> print].


162<br />

the perFeCtly balaNCed uka CaN oNly be aCCompliShed with<br />

SoFt tiSSue guided Surgery<br />

Gerard A. Engh, MD<br />

Condylar total knee implants have provided excellent pain relief<br />

but limited knee function for over 30 years. Outcome studies1<br />

document lower patient satisfaction and limited activities following<br />

knee arthroplasty when compared to age-matched, non-arthroplasty<br />

individuals. The altered kinematics is documented in gait and video<br />

fluoroscopy studies.2<br />

A conventional knee replacement alters the intimate relationship<br />

between the patient’s hard tissue anatomy and the s<strong>of</strong>t tissue<br />

envelope. Anatomy unique to each patient is modified when we<br />

reconstruct knees with bone cuts performed independent <strong>of</strong> the<br />

patient’s capsular and ligamentous structures. Implant’s and implant<br />

position alter the patient’s unique hard tissue anatomy with a<br />

traditional knee arthroplasty which alters the s<strong>of</strong>t tissue tension that<br />

REFERENCES<br />

1. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB.<br />

Does total knee replacement restore normal knee function? Clin Orthop<br />

2005;431:157-165.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

guides motion and provides stability, proprioception, and strength<br />

to the knee.<br />

Tissue guided surgery enlists the patients capsular and ligamentous<br />

structures to guide bone preparation.3 Instrumentation for bone<br />

milling is placed within the joint cavity on the resected tibial surface<br />

and the knee articulated under a distraction load that tensions the<br />

s<strong>of</strong>t tissues. Tension in the capsular and cruciate ligaments dictates<br />

the precise amount <strong>of</strong> bone and cartilage that is removed. The<br />

unique kinematic relationship between bone and s<strong>of</strong>t tissues is<br />

thereby restored through a full arc <strong>of</strong> motion. The final implants are<br />

resurfacing and replace only the thin layer <strong>of</strong> bone and cartilage that<br />

was removed under the guidance <strong>of</strong> the s<strong>of</strong>t tissue structures.<br />

2. Dennis DA, Komistek RD, Mahfouz MR. In vivo fluoroscopic analysis <strong>of</strong><br />

fixed-bearing total knee replacements. Clin Orthop 2003;410:114-130.<br />

3. Engh GA. Tissue guided surgery in unicompartmental knee arthroplasty<br />

TGS¨. Orthopreneur 2010 Jan/Feb:28-31.


163<br />

the aCl deFiCieNt kNee CaN be approaChed with a<br />

CombiNatioN aCl reCoNStruCtioN aNd medial uka<br />

Jason M. Hurst, MD<br />

Introduction<br />

Deficiency <strong>of</strong> the anterior cruciate ligament (ACL) is a common<br />

finding in end-stage osteoarthritis (OA). Varus osteoarthritis in<br />

ACL-competent knees demonstrates the classic anteromedial<br />

osteoarthritic pattern that has been shown to be successfully treated<br />

with unicompartmental arthroplasty. However, ACL deficient knees<br />

have a unique pattern <strong>of</strong> OA with a more posteromedial location.1<br />

Traditional indications for unicompartmental knee arthroplasty<br />

(UKA) have restricted the procedure to ligamentously normal knees<br />

with bone-on-bone medial compartmental arthrosis.2 Previous<br />

studies have demonstrated that UKA in knees without an intact<br />

anterior cruciate ligament (ACL) have decreased survivorship.3-5<br />

As interest in UKA has increased and significant advantages have<br />

been reported, such as speed <strong>of</strong> recovery and ultimate function,<br />

younger more active patients are presenting with end-stage<br />

arthritis and concomitant ACL insufficiency.6-8 In these patients<br />

with degenerative arthrosis and concomitant instability, cartilage<br />

restoration options are limited and total knee arthroplasty is not ideal<br />

considering the patients young age and usually high activity level.<br />

Therefore, less invasive arthroplasty options have been considered<br />

despite the relative contraindication <strong>of</strong> ACL deficiency. We studied<br />

the indications and surgical technique for arthroscopically assisted<br />

simultaneous UKA-ACL (Berend, Cannone, Hurst, Lombardi),<br />

noting the early outcomes <strong>of</strong> the procedure.<br />

Materials & Methods<br />

Between June 2007 and August 2010 arthroscopically assisted<br />

simultaneous UKA-ACL has been indicated and performed in 17<br />

cases at our institution, representing 1.6% <strong>of</strong> medial UKA during the<br />

study period. Indications for the procedure include ACL-deficiency<br />

and medial joint arthrosis with a correctible deformity on valgus<br />

stress radiograph. Arthroscopic evaluation and confirmation <strong>of</strong><br />

unicompartmental disease is performed, following by arthroscopic<br />

establishment <strong>of</strong> the femoral and tibial tunnels using the socalled<br />

“all inside technique”. The UKA is then performed via a<br />

limited arthrotomy, trial components placed, and the graft passed,<br />

tensioned, and fixated. Final cementation <strong>of</strong> UKA components is<br />

then performed. The post-operative rehabilitation was similar to the<br />

typical UKA rehabilitation with additional focus on proprioception,<br />

balanced hamstring/quadriceps strength, and graft protection<br />

until nine months post-operatively. High impact activities were<br />

REFERENCES<br />

1. Ritter MA, Faris PM, Thong AE, Davis KE, Meding JB, Berend ME. Intraoperative<br />

findings in varus osteoarthritis <strong>of</strong> the knee. An analysis <strong>of</strong><br />

pre-operative alignment in potential candidates for unicompartmental<br />

arthroplasty. J Bone Joint Surg Br. 2004 Jan;86(1):43-7.<br />

2. Kozinn SC, Scott R. Unicondylar knee arthroplasty. J Bone Joint Surg Am.<br />

1989 Jan;71(1):145-50.<br />

3. Deschamps G, Lapeyre B. [Rupture <strong>of</strong> the anterior cruciate ligament:<br />

a frequently unrecognized cause <strong>of</strong> failure <strong>of</strong> unicompartmental knee<br />

prostheses. Apropos <strong>of</strong> a series <strong>of</strong> 79 Lotus prostheses with a follow-up <strong>of</strong><br />

more than 5 years] Rev Chir Orthop Reparatrice Appar Mot. 1987;73(7):544-<br />

51.<br />

4. Goodfellow JW, Kershaw CJ, Benson MK, O’Connor JJ. The Oxford Knee for<br />

unicompartmental osteoarthritis. The first 103 cases. J Bone Joint Surg Br.<br />

1988 Nov;70(5):692-701.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia AR KNEE<br />

discouraged and ACL-dependent sport was limited until 9 months<br />

from surgery.<br />

Results<br />

There have been 2 reoperations in 17 cases: one graft fixation failure<br />

requiring revision ACL and one manipulation. The average age<br />

was 50 years (range: 38-63). In patients with 1-year follow-up the<br />

range <strong>of</strong> motion and Knee Society pain scores averaged 113 and 40<br />

respectively. We found a high success rate in terms <strong>of</strong> pain and range<br />

<strong>of</strong> motion in this young group <strong>of</strong> patients.<br />

Discussion<br />

Younger patients with significant medial arthrosis and concomitant<br />

ACL deficiency present a difficult clinical dilemma – total knee<br />

arthroplasty is not ideal in this young and active group, and cartilage<br />

restoration is typically contraindicated. Even though ACL-deficiency<br />

has been considered a contra-indication to unicompartmental<br />

arthroplasty, a less-invasive arthroplasty option still remains<br />

attractive in this population because <strong>of</strong> the young age at which these<br />

patients present with severe medial disease. The ACL/UKA procedure<br />

may provide implant longevity considering the increase rate <strong>of</strong><br />

implant failure in UKA performed with concomitant ACL deficiency.<br />

ACL/UKA provides more normal kinematics and it is a less invasive<br />

arthroplasty option in comparison to TKA. In addition, ACL/UKA in<br />

younger patients may delay arthritic progression.<br />

When considering a ACL/UKA, it is important to consider the<br />

etiology <strong>of</strong> the ACL deficiency. There are two main types <strong>of</strong> ACL<br />

deficiency. The first is the traumatic ACL deficiency in which medial<br />

OA is secondary to ACL deficiency. In this type, there is a classic<br />

isolated posteromedial pattern and limited contracture <strong>of</strong> the medial<br />

collateral ligament. The ACL/UKA combined procedure is a viable<br />

treatment option in these cases <strong>of</strong> traumatic ACL deficiency because<br />

the varus deformity still remains correctable. On the contrary, the<br />

second type is attrition ACL deficiency in which the ACL ruptures<br />

secondary to the degenerative process. In this type, the arthritic<br />

pattern starts anteromedially and progresses posteriorly as the ACL<br />

fails secondary to the degenerative process. There is <strong>of</strong>ten significant<br />

contracture <strong>of</strong> the medial collateral ligament with attrition ACLdeficiency,<br />

and when the varus deformity is uncorrectable, total knee<br />

arthroplasty is warranted.<br />

5. Swank M, Stulberg SD, Jiganti J, Machairas S. The natural history <strong>of</strong><br />

unicompartmental arthroplasty. An eight-year follow-up study with<br />

survivorship analysis. Clin Orthop Relat Res. 1993 Jan;(286):130-42.<br />

6. Lee GC, Cushner FD, Vigoritta V, Scuderi GR, Insall JN, Scott WN. Evaluation<br />

<strong>of</strong> the anterior cruciate ligament integrity and degenerative arthritic<br />

patterns in patients undergoing total knee arthroplasty. J Arthroplasty. 2005<br />

Jan;20(1):59-65.<br />

7. Pandit H, Van Duren BH, Gallagher JA, Beard DJ, Dodd CA, Gill HS,<br />

Murray DW. Combined anterior cruciate reconstruction and Oxford<br />

unicompartmental knee arthroplasty: in vivo kinematics. Knee. 2008<br />

Mar;15(2):101-6.<br />

8. Pandit H, Beard DJ, Jenkins C, Kimstra Y, Thomas NP, Dodd CA, Murray DW.<br />

Combined anterior cruciate reconstruction and Oxford unicompartmental<br />

knee arthroplasty. J Bone Joint Surg Br. 2006 Jul;88(7):887-92.


164<br />

the laNd oF ligameNtS:<br />

NavigatiNg SpraiNS, StraiNS, aNd<br />

ruptureS about the Foot aNd aNkle (k)<br />

Steven L. Haddad, MD, Moderator<br />

I. Introduction: Ligaments From Birth to Death: Anatomy and Pathophysiology in Health and Injury<br />

Mark Glazebrook, MD, Halifax, NS, Canada<br />

II. The Syndesmosis: Binding the Tibia and Fibula<br />

Robert B. Anderson, MD, Charlotte, NC<br />

III. The Deltoid and Spring Ligaments: Supporting the Medial Column<br />

Steven L. Haddad, MD, Glenview, IL<br />

IV. Back to Basics: The Lateral Collateral Ligaments <strong>of</strong> the Ankle<br />

Thomas O. Clanton, MD, Vail, CO<br />

V. Lisfranc’s Ligament: Preventing Midfoot Collapse<br />

J. Chris Coetzee, MD, Eagan, MN<br />

VI. Case Presentations and Discussion<br />

Steven L. Haddad, MD, Glenview, IL<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE


165<br />

iNtroduCtioN: ligameNtS From birth to death: aNatomy aNd<br />

pathophySiology iN health aNd iNJury<br />

Mark Glazebrook, MSc, PhD, FRCS(C) MD<br />

Ligament Structure<br />

Gross Anatomy – Ligaments <strong>of</strong> the ankle<br />

• Dense bands <strong>of</strong> Connective Tissue that connect bones<br />

— Band or Cable-like structures<br />

— Blend with surrounding connective tissues<br />

— Sometimes indistinguishable<br />

Microscopically:<br />

• Similar to tendons<br />

• Row <strong>of</strong> fibroblast<br />

• “Crimped” Parallel bundles <strong>of</strong> predominately collagen matrix<br />

• Also less predominante:<br />

— Uniform vascularity providing nutrition fibroblasts<br />

— Variety <strong>of</strong> pain fiber (nocioception and proprioception)<br />

Biochemistry[1]:<br />

70% Water<br />

20% Collagen Type I<br />

3-5% Other Collagens<br />

1-2% Elastin<br />

1-2% Fibronectin & Other Glycoproteins<br />

1% Proteoglycans<br />

Bone Attachment: Indirect vs. Direct<br />

• Indirect (most common)<br />

— Superficial layer contiguous with periosteum<br />

— Deep layer anchors to bone via Sharpys fibers<br />

• Direct<br />

— 4 Morphologically distinct zones:<br />

Ligament<br />

Fibrocartilage<br />

Mineralized fibrocartilage<br />

Bone<br />

Biomechanics<br />

• Tensile Properties are expressed in terms <strong>of</strong>:<br />

— Structural properties (Bone Lig Bone complex)<br />

— Mechanical properties (Ligament Alone)<br />

• Load Elongation Curve (Stress Strain) describes ligament<br />

behavior to uniaxial force:<br />

— Toe region-Initial Low stiffness region (low Slope)<br />

— Linear region – Higher stiffness region (higher slope)<br />

— Faliure (with continuity) – individual fiber failure<br />

(decreasing slope)<br />

— Ultimate Load Failure point – rupture (reverse slope)<br />

• Non linear strain stiffening structural response via<br />

— Loss <strong>of</strong> Crimp – straightening <strong>of</strong> the undulation Collagen<br />

Fibrils<br />

— Non Uniform recruitment <strong>of</strong> collagen fibrils<br />

• Time and History Dependant Behavior<br />

— Creep – Time dependant elongation with constant Load<br />

— Stress relation – Time dependant decrease in load with<br />

constant elongation<br />

— Hysteresis – With increasing numbers <strong>of</strong> cycles the stress<br />

strain curve changes<br />

• Factors influencing the properties <strong>of</strong> Ligaments<br />

— Skeletal Maturation<br />

— Biochemistry<br />

— Immobilization<br />

— Age<br />

• Skeletal maturity[2] results in increased:<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

— Stiffness ~2x<br />

— Ultimate Load ~3x<br />

— Energy absorbed at failure ~4x<br />

— Modulus increase (~10%)<br />

• Aging in humans[3] results in decreases in :<br />

— Stiffness<br />

— Ultimate load<br />

• Immobilization [4] results in dramatic decreases in:<br />

— Ultimate Load<br />

— Energy absorbed at failure<br />

Injury to Ligaments<br />

• Clinical Classification:<br />

Grade 1 Mild – No change in length<br />

No laxity on exam but tender<br />

Mild signal changes on MRI no structural changes<br />

Grade 2 Moderate – Change in length<br />

Laxity on exam and tender<br />

Signal and structural changes on MRI with<br />

Grade 3 Severe – Complete disruption<br />

Obvious Laxity on exam and paradoxically less tender<br />

Signal and structural changes on MRI with torn ends visible<br />

and fluid filled gap<br />

Ligament healing<br />

The repair process occurs as a continuum but 3 overlapping phases<br />

occur:<br />

• Phase I – Inflammation (~72 hrs)<br />

— Disruption <strong>of</strong> blood vessels:<br />

– Hematoma with fibrin clot<br />

– Potent vasodilators increase existing capillary<br />

permeability<br />

Histamine<br />

Serotonin<br />

Bradykinins<br />

Prostaglandins<br />

— Transudation <strong>of</strong> fluid and inflammatory cells including<br />

Monocytes and Macrophages that clear necrotic tissue and<br />

stimulate angiogenisis<br />

— Fibroblast proliferation begins and rudimentary scar with<br />

quick synthesis <strong>of</strong> Collagen type III predominating.<br />

• Phase II – Matrix and Cellular proliferation (~6 weeks)<br />

— Fibroblasts, macrophages and mast cells predominate over<br />

other inflammatory cells<br />

— Increasing organization <strong>of</strong> the fibrin clot<br />

— Gap filled with granulation tissue<br />

— Vascular endothelial buds communicate<br />

— Active collagen synthesis (collagen type III replaced by<br />

stronger collagen type I)<br />

— Increases in Glycosaminoglycans<br />

• Phase III – Remodelling and Maturation (up to 12 months)<br />

— Transition from proliferation to remodeling<br />

— Decreased cellularity and vascularity<br />

— Increase density and organization <strong>of</strong> collagen network<br />

Innovations <strong>of</strong> ligament Healing<br />

• Future research into the biology <strong>of</strong> ligament healing will<br />

be designed to help stimulate biologic factors and promote<br />

healing.


• A recent review paper [5] focuses on Platelet-rich plasma (PRP)<br />

as an example <strong>of</strong> a biological stimulant that has been used<br />

clinicallyin humans for its healing properties by increasing<br />

concentrations <strong>of</strong> growth factors and secretory proteins that<br />

will affect healing.<br />

• PRP can potentially enhance healing by the delivery <strong>of</strong> various<br />

growth factors and cytokines from the granules contained in<br />

platelets including:<br />

— transforming growth factor¥(TGF)<br />

— platelet-derived growth factor (PDGF)<br />

— insulin-like growth factor (IGF-I, IGF-II)<br />

— vascular endothelial growth factor (VEGF)<br />

— endothelial cell growth factor. These cytokines play<br />

important<br />

— epidermal growth factor<br />

— fibroblast growth factor (FGF)<br />

• These growth factors and Cytokines play roles in cell<br />

proliferation, chemotaxis, cell differentiation, and angiogenesis<br />

that will ultimately affected the healing process.<br />

• PRP is made from anticoagulated whole blood that is<br />

centrifuged to isolate a plasma with concentrated platelets and<br />

no RBCs or WBCs.<br />

• PRP is then delivered to desired site by clotting or by<br />

combination carrier systems such as a fibrin matrix.<br />

• Current research on the benefits <strong>of</strong> PRP includes:<br />

— Basic Science Studies<br />

— Animal studies<br />

— Case reports<br />

— Rare case controlled studies<br />

REFERENCES<br />

1. Frank, C.B., Ligament injuries: Pathophsiology and Healing, in Athletic<br />

Injuries and Rehabilitation, Z. JE, M. DJ, and Q. WS, Editors. 1996, Saunders:<br />

Philadelphia PA. p. 15.<br />

2. Woo, S.L., E. Young, and K. MK, Fundamental Studies in Knee ligament<br />

mechanics, in Knee Ligaments: Structure, function, injury and repair, A. D<br />

and O’Conner, Editors. 1990, Raven Press: New York. p. 115-134.<br />

3. Woo, S.L., et al., Tensile properties <strong>of</strong> the human femur-anterior cruciate<br />

ligament-tibia complex. The effects <strong>of</strong> specimen age and orientation. Am J<br />

Sports Med, 1991. 19(3): p. 217-25.<br />

166<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

• Conservative treatment using plasma rich in growth factors<br />

(PRGF) for injury to the ligamentous complex <strong>of</strong> the ankle[6]<br />

Retrospective Review (Level IV):<br />

• 11 patients with acute injury to the lateral ligamentous complex<br />

<strong>of</strong> the ankle were treated by plasma rich in growth factors<br />

(PRGF) infiltration.<br />

• Autologous PRGF activated with calcium chloride was used to<br />

infiltrate the injured tissues followed by immobilization <strong>of</strong> the<br />

joint and its subsequent rehabilitation.<br />

Results:<br />

• The average time <strong>of</strong> healing was 5.18 weeks.<br />

• 4 no signs <strong>of</strong> instability at 4 weeks after therapy and could<br />

return to their previous sports activities.<br />

• One patient had lateral ankle instability at 5 weeks and<br />

therefore the therapy continued with prolonged immobilization<br />

and then rehabilitation at a slower pace.<br />

• The average lateral opening <strong>of</strong> the tibiotalar intra-articular space<br />

at 4 or 6 follow-up weeks was 4.73 degrees from pre-op 17.45<br />

degrees<br />

• At 6 weeks after therapy, 90.9% <strong>of</strong> the patients resumed their<br />

full sports activities.<br />

CONCLUSIONS:<br />

• PRP is one <strong>of</strong> the options for treating injuries to the Ankle<br />

ligaments<br />

• Accelerating and improving the healing <strong>of</strong> traumatic lesions and<br />

postoperative conditions.<br />

4. Woo, S.L., et al., Mechanical properties <strong>of</strong> tendons and ligaments. II.<br />

The relationships <strong>of</strong> immobilization and exercise on tissue remodeling.<br />

Biorheology, 1982. 19(3): p. 397-408.<br />

5. Foster, T.E., et al., Platelet-rich plasma: from basic science to clinical<br />

applications. Am J Sports Med, 2009. 37(11): p. 2259-72.<br />

6. Frei, R., et al., [Conservative treatment using plasma rich in growth factors<br />

(PRGF) for injury to the ligamentous complex <strong>of</strong> the ankle]. Acta Chir<br />

Orthop Traumatol Cech, 2008. 75(1): p. 28-33.


167<br />

the SyNdeSmoSiS: biNdiNg the tibia aNd Fibula<br />

I. Anatomy<br />

a. Syndesmosis = fibrous articulation in which opposing<br />

surfaces are united by ligaments<br />

b. Anterior tibi<strong>of</strong>ibular ligament<br />

i. Anterior lateral malleolus to anterolateral tubercle <strong>of</strong> the<br />

distal tibia<br />

ii. Anterior inferior tibi<strong>of</strong>ibular ligament is inferior portion<br />

that can be visualized arthroscopically as it covers the<br />

anterolateral corner <strong>of</strong> the ankle and anterolateral dome<br />

<strong>of</strong> the talus<br />

c. Posterior tibi<strong>of</strong>ibular ligament<br />

i. Superficial portion = obliquely from lateral malleolus to<br />

tibia; runs “upward”<br />

ii. Deep portion = more transverse; very strong; acts as<br />

labrum to posterior talus; aka transverse tibi<strong>of</strong>ibular<br />

ligament<br />

iii. Now accepted that posterior-inferior ligament is most<br />

important restraint to the syndesmotic joint<br />

d. Tibi<strong>of</strong>ibular interosseous membrane/ligament<br />

i. Membrane spans most <strong>of</strong> the length <strong>of</strong> the tib-fib<br />

ii. Ligament is thickening <strong>of</strong> the membrane that lies just<br />

superior to the ATF/PTF ligaments<br />

iii. Acts as a mild restraint to external rotation (compared to<br />

ATF)<br />

II. Incidence <strong>of</strong> syndesmotic injuries<br />

a. Relatively uncommon; 1% <strong>of</strong> ankle sprains reported but<br />

likely much higher in recent years<br />

i. “Low” high ankle sprain<br />

b. Boytim (1991): pr<strong>of</strong>essional football team with 18 in 6 years<br />

c. Hopkinson (1990): 15/3.5 years in West Point cadets<br />

d. NFL Data Base – increasing incidence on certain surfaces?<br />

i. Presented at 2009 AAOS: 30% increased rate <strong>of</strong><br />

“eversion” ankle injuries in NFL players on Field Turf<br />

III. Mechanism <strong>of</strong> injury<br />

a. Mechanism variable and poorly recalled by athlete; different<br />

than classic inversion ankle sprain<br />

b. Generally thought to be external rotation forces<br />

c. Can also occur with dorsiflexion and inversion<br />

d. Occurs more commonly with a fracture<br />

i. Weber C<br />

ii. Lauge-Hansen pronation-external rotation<br />

iii. Lauge-Hansen supination-external rotation<br />

IV. Clinical evaluation<br />

a. Tenderness over the syndesmosis<br />

b. Always assess for deltoid tenderness<br />

c. Proximal fibular tenderness – r/o Maisonneuve fracture<br />

d. Swelling and ecchymosis may be minimal or late in<br />

appearance<br />

e. Calf rise – inability to perform suggestive <strong>of</strong> more severe<br />

injury<br />

f. “Squeeze test”<br />

i. midcalf compression (in absence <strong>of</strong> fracture) produces<br />

pain in the syndesmosis<br />

ii. Hopkinson – highly reliable; 9/10 patients with positive<br />

test later developed interosseous calcification<br />

g. External rotation stress test<br />

i. Sitting: pain reproduced in syndesmosis with foot and<br />

ankle externally rotated while the knee is held flexed at<br />

90 degrees<br />

Robert B. Anderson, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

ii. Standing: single limb stance on affected side and then<br />

rotate body externally - pain reproduced in syndesmosis<br />

V. Radiographic evaluation<br />

a. Plain radiographs (including proximal leg) assessed for bony<br />

injury or gross syndesmotic disruption<br />

i. Frank diastasis without fracture or applied stress is rare<br />

ii. Avulsion fracture at posterior tibial tubercle can<br />

occasionally be seen on lateral view (Boytim)<br />

iii. Mortise and AP views assessed for increased medial clear<br />

space (> 6 mm)<br />

iv. Interosseous calcification <strong>of</strong>ten visible after 6 weeks<br />

b. Stress views<br />

i. Traditional = external rotation and lateral displacement<br />

applied<br />

1. Compare to contralateral uninjured ankle<br />

2. Assess mortise/AP views for increased medial<br />

clear space and lateral view for posterior fibular<br />

displacement<br />

ii. Single limb standing AP may accentuate diastasis (pain<br />

permitting)<br />

iii. Flouroscopic assisted (in <strong>of</strong>fice or training room)<br />

c. MRI<br />

i. Very sensitive for syndesmotic injuries but not predictive<br />

for instability = static test<br />

ii. Hemorrhage/edema with interosseous space – variable<br />

and not prognostic<br />

iii. Anecdotally it seems that posterior t-f lig involvement<br />

correlates with more severe injury and perhaps longer<br />

RTP<br />

1. Edema in FHL muscle<br />

d. Bone scan<br />

i. Found to be sensitive for syndesmotic injury but can not<br />

determine extent/degree like MRI<br />

e. CT<br />

i. Axial cuts important<br />

ii. Comparing bilateral ankles may elicit subtle subluxation<br />

<strong>of</strong> syndesmosis<br />

iii. More useful in chronic situation and when assessing for<br />

associated bony injury/healing or arthritis (Harper, 2001)<br />

VI. Treatment, in general<br />

a. Syndesmotic injury without fracture (or Maisonneuve<br />

fracture)<br />

i. Clinical signs <strong>of</strong> syndesmotic injury without radiographic<br />

findings or stress instability should be treated<br />

nonoperatively<br />

1. WBAT<br />

2. Ankle devices to limit external rotation<br />

3. 15-step single limb hop test to determine when to<br />

return to athletics<br />

a. In general, require about twice the recovery <strong>of</strong> a<br />

classic grade 3 lateral ankle sprain<br />

ii. Those with instability on stress testing but no diastasis<br />

can be managed with NWB cast for 4 weeks then SLWC<br />

for 2-4 weeks with serial radiographs<br />

1. I prefer fixation in elite athlete – improved rehab and<br />

quicker recovery (specifics below)<br />

2. Arthroscopy very helpful in identifying subtle cases<br />

iii. Gross diastasis requires reduction and fixation<br />

iv. Beware <strong>of</strong> plastic deformation <strong>of</strong> the fibula that may


168<br />

necessitate fibular osteotomy (rare)<br />

v. Percutaneous vs. open reduction <strong>of</strong> the syndesmosis<br />

1. Open if anatomic reduction not obvious<br />

a. Beware <strong>of</strong> displaced/shortened Maisonneuve<br />

fracture<br />

b. Malrotation more common that previously<br />

thought (HSS paper ’06)<br />

2. May require medial incision and decompression/<br />

repair <strong>of</strong> deltoid ligament if syndesmotic reduction<br />

not possible<br />

3. Arthroscopic assisted?<br />

With fracture Without fracture<br />

VII. Controversies <strong>of</strong> screw fixation<br />

a. Number <strong>of</strong> screws<br />

i. 1 or 2<br />

ii. With or without plate<br />

b. Number <strong>of</strong> cortices <strong>of</strong> fixation<br />

i. 3 or 4<br />

c. Size <strong>of</strong> screw<br />

i. 3.5, 4.0, or 4.5<br />

ii. One study showed no biomechanical advantage to larger<br />

screw (Thompson, FAI, 2000)<br />

d. Type <strong>of</strong> screw<br />

i. Cortical vs. cancellous<br />

ii. Cannulated vs. solid?<br />

iii. Absorbable<br />

1. No difference in results with 4.5mm PLA vs. stainless<br />

steel screw; with fibular fx and plate fixation<br />

(Thordarson et al, FAI, 2001)<br />

e. Location <strong>of</strong> screw<br />

i. 2.0 cm above ankle joint ideal? (McBryde et al, FAI,<br />

1997)<br />

ii. Syndesmosis is a joint – stay out <strong>of</strong> it!<br />

f. Position <strong>of</strong> ankle during screw insertion<br />

i. Push towards compression with ankle in plantarflexion<br />

(Toretta, JBJS 2001); can not overtighten<br />

g. Screw removal<br />

i. Necessity<br />

1. Needleman/Steihl – rec. due to loss <strong>of</strong> external<br />

rotation<br />

ii. Timing<br />

1. 8, 10, 12 weeks?<br />

2. Best to go longer if purely ligamentous injury<br />

h. Option to screw fixation<br />

i. Suture button<br />

1. Can place one or two; can use thru plate hole<br />

2. No long term studies – conflicting reports<br />

a. Adequate for early rehab?<br />

b. Will it stretch out?<br />

c. Adequate control <strong>of</strong> external rotation forces?<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

VIII. Author’s preferred approach<br />

a. Most importantly, have a low threshold for syndesmotic<br />

fixation<br />

b. Syndesmotic injury without associated distal fibular fracture<br />

i. Nonathlete<br />

1. Two solid 4.5 mm cortical screws or suture button<br />

2. 4 cortices <strong>of</strong> fixation<br />

3. Percutaneous, cannulated if anatomic reduction <strong>of</strong><br />

syndesmosis assured<br />

4. Distal screw or button approximately 2.0-2.5 cm<br />

above joint, aim 20-30 degrees anterior to hit tibia<br />

5. NWB x 8 weeks, then WB in boot<br />

6. Screw removal left to discretion <strong>of</strong> patient<br />

a. Remove in <strong>of</strong>fice (if feasible) after 12 weeks<br />

ii. Athlete (accelerated return to play)<br />

1. Open reduction <strong>of</strong> syndesmosis<br />

2. 4-hole one-third tubular plate; central two<br />

holes filled with a 4.5 mm cortical screw (4<br />

cortices) and a suture button<br />

a. Proximal and distal fibular holes filled<br />

with 3.5 mm cortical screws with 2<br />

cortices <strong>of</strong> fixation<br />

3. NWB x 4-6 weeks, then boot<br />

4. Begin pool rehab when wound sealed – 2<br />

weeks<br />

5. RTP when symptoms/function allow, based<br />

on 15 hop test etc<br />

6. Remove 4.5 mm screws after 12 weeks (or<br />

after season), leaving plate to minimize<br />

stress risers<br />

a. Advantage <strong>of</strong> suture button – no<br />

removal or evidence <strong>of</strong> failure<br />

b. Can fill screw hole with a suture button<br />

device<br />

IX. Prognosis – acute injuries<br />

a. Reports are sketchy and none are prospective – most authors<br />

state good results with or without surgery (at least short<br />

term)<br />

i. Fritschy: 1/10 World Cup skiers had residual pain; all<br />

returned to full athletic activity<br />

b. Anatomic reduction necessary/better? – no studies available<br />

c. High incidence <strong>of</strong> heterotopic ossification but has no<br />

correlation to late symptoms<br />

X. Late symptoms/chronic injuries<br />

a. Recurrent/persistent widening<br />

i. Syndesmotic debridement with joint reduction<br />

1. Screw fixation<br />

a. controversy – is grafting and fusing joint better<br />

than debridement/reduction alone<br />

i. Harper: delayed reduction and screw<br />

stabilization successful in 5/6<br />

2. Hansen textbook (2000): technique <strong>of</strong> using extensor


169<br />

tendons to reconstruct<br />

a. No results available<br />

b. Painful syndesmosis<br />

i. Consider true syndesmotic arthritis vs interosseous<br />

membrane calcification<br />

1. in general, a complete synostosis does not hurt<br />

ii. Attempt injection <strong>of</strong> syndesmosis<br />

1. Fluoroscopic guidance; arthrogram confirmation<br />

a. therapeutic<br />

b. diagnostic<br />

BIBLIOGRAPHY<br />

1. Amendola A: Controversies in diagnosis and management <strong>of</strong> syndesmotic<br />

injuries <strong>of</strong> the ankle. Foot Ankle 1992; 13: 44-50.<br />

2. Boden SD et al: Mechanical considerations for the syndesmotic screw: a<br />

cadaver study. J Bone Joint Surg Am 1990; 71: 1548-1555.<br />

3. Boytim MJ, Fischer DA, Neumann L: Syndesmotic ankle sprains. Am J Sports<br />

Med 1991; 19: 294-298.<br />

4. Gardner MJ et al: Malrotation <strong>of</strong> the tibi<strong>of</strong>ibular syndesmosis in ankle<br />

fractures. FAI 2006; 27: 788-792.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

iii. Debridement vs. fusion<br />

1. If debridement without calcification, consider<br />

arthroscopic method (Tasto) from the ankle joint<br />

a. For Bassett type lesions (lower syndesmotic joint)<br />

2. Open treatment for excision <strong>of</strong> incomplete synostosis<br />

3. Fuse if significant degeneration/incongruity <strong>of</strong><br />

syndesmosis or failed prior reconstruction<br />

5. Harper MC: Delayed reduction and stabilization <strong>of</strong> the tibi<strong>of</strong>ibular<br />

syndesmosis. Foot Ankle Intl 2001; 22: 15-18.<br />

6. Hopkinson WJ et al: Syndesmotic sprains <strong>of</strong> the ankle. Foot Ankle 1990; 10:<br />

325-330.<br />

7. Needleman RL, Skrade DA, Stiehl JB: Effect <strong>of</strong> the syndesmotic screw on<br />

ankle motion. Foot Ankle 1989; 10: 17-24.<br />

8. Toretta P et al: Overtightening <strong>of</strong> the ankle syndesmosis: is it really possible?:<br />

J Bone Joint Surg Am, 2001; 83: 489-492.<br />

9. Wuest TK: Injuries to the distal lower extremity syndesmosis. J Am Acad<br />

Orthop Surg 1997; 5: 172-181.


THE DELTOID<br />

170<br />

the deltoid ligameNt: iS it reCoNStruCtable?<br />

Steven L. Haddad, MD<br />

Introduction<br />

• Deltoid ligament insufficiency has been shown to decrease<br />

tibiotalar contact area and increase peak pressures within the<br />

lateral ankle mortise<br />

— Sectioning <strong>of</strong> the deltoid ligament has been shown to<br />

decrease tibiotalar contact area by 43%.<br />

— This detrimental effect may create an arthritic ankle joint if<br />

left unresolved.<br />

— Reconstructive efforts thus far have been less than<br />

satisfactory<br />

• Pankovich and Shivaram described the deltoid ligament as<br />

having superficial and deep components based on insertion<br />

sites<br />

— The superficial layer originates from the anterior colliculus <strong>of</strong><br />

the medial malleolus and inserts on the navicular, calcaneus<br />

and talus<br />

— The deep layer originates from the intercollicular groove and<br />

posterior colliculus and inserts on the talus<br />

— Boss and Hintermann noted that the most consistent and<br />

strongest bands <strong>of</strong> the deltoid were the tibiocalcaneal and<br />

posterior deep tibiotalar ligaments<br />

• Chronic deltoid ligament insufficiency may be seen in several<br />

disorders including<br />

— trauma and sports injuries<br />

— posterior tibial tendon disorders<br />

— prior triple arthrodesis with valgus malunion<br />

— total ankle arthroplasty with improper component<br />

positioning or pre-existing ligament laxity<br />

– The reconstruction <strong>of</strong> the deltoid ligament in these<br />

settings may be critical to the prevention <strong>of</strong> tibiotalar<br />

arthrosis or failure <strong>of</strong> ankle prostheses from edge loading<br />

and polyethylene wear<br />

Techniques<br />

• Deland (JBJS 2004)<br />

— Non-anatomic repair by weaving peroneus longus through<br />

talus from lateral-to-medial, then through medial malleolus<br />

into anterior distal tibia<br />

— At best, reconstructs only one limb <strong>of</strong> the ligament<br />

– 5 patients had average correction to 3.6 degrees<br />

• Myerson<br />

— Allograft technique using interference screw fixation<br />

– Graft is split into two limbs at the tip <strong>of</strong> the medial<br />

malleolus<br />

– Relies on distal tensioning <strong>of</strong> graft into talus and<br />

calcaneus after securing proximally<br />

~ Concerns about graft shearing, pull out, and creep<br />

• Haddad (FAI, 2010)<br />

— Reconstructed both limbs <strong>of</strong> the deltoid (deep and<br />

superficial) via a whole (non-split) semitendinosis tendon<br />

graft<br />

– Strength <strong>of</strong> repair through endo-button/biceps button<br />

securing graft distally through lateral cortical stability and<br />

without shearing graft<br />

– Tensioned proximally through drill hole in medial<br />

malleolus, anchored with screw and post<br />

~ Results<br />

¤ under low torque, was able to restore eversion and<br />

external rotation stability to the talus, which was<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

statistically similar to the native deltoid ligament<br />

¤ though maximally tension this graft to give the<br />

most secure repair possible, no increased stiffness<br />

in the ankle joint noted<br />

¤ Eversion testing<br />

¤ External Rotation Testing<br />

• Haddad (FAI, 2010): Technique<br />

— Measure diameter <strong>of</strong> semitendinosis graft<br />

– Generally 4 to 5mm<br />

— Drill 6mm to 7mmm hole from tip <strong>of</strong> medial malleolus<br />

directed anteriorly<br />

– Exits at medial anterior cortex<br />

– Measure length <strong>of</strong> tunnel<br />

— Drill 4mm to 5mm hole from medial talus at deep deltoid<br />

footprint (deep to posterior tibial tendon)<br />

– Exits anterior to fibula<br />

– Measure length <strong>of</strong> tunnel<br />

— Drill 4mm to 5mm hole from sustentaculum tali at<br />

superficial deltoid footprint<br />

– Directed inferior and distal (to avoid sinus tarsi) exiting<br />

at lateral wall calcaneus<br />

– Measure length <strong>of</strong> tunnel<br />

— Measure distance between origin and exit points <strong>of</strong><br />

superficial and deep deltoid ligament drill holes<br />

— Sum all measurements<br />

– Add 4 to 5 cm to this sum to account for tendon exiting<br />

tibial tunnel anteriorly<br />

¤ Allows for screw and post fixation<br />

— Prepare tendon graft at appropriate measured length


References:<br />

1. Garrick JG: The frequency <strong>of</strong> injury mechanism <strong>of</strong> injury and epidemiology<br />

<strong>of</strong> ankle sprains. Am J Sports Med 5: 241-242, 1977<br />

2. Baumhauer JF, Alosa DM, Renstroem PA: A prospective study <strong>of</strong> ankle injury<br />

risk factors. Am J Sports Med 23: 557-564, 1995<br />

3. Barbari SG, Brevig K, Egge T. Reconstruction <strong>of</strong> the lateral ligamentous<br />

structures <strong>of</strong> the ankle with a modified Watson-Jones procedure. Foot Ankle.<br />

1987;7:362-368.<br />

4. Hoy GA, Henderson IJ. Results <strong>of</strong> Watson-Jones ankle reconstruction<br />

for instability. The influence <strong>of</strong> articular damage. J Bone Joint Surg Br.<br />

1994;76:610-613.<br />

5. Krips R, Brandsson S, Swensson C, et al. Anatomical reconstruction<br />

and Evans tenodesis <strong>of</strong> the lateral ligaments <strong>of</strong> the ankle. Clinical and<br />

radiological findings after follow-up for 15 to 30 years. J Bone Joint Surg Br.<br />

2002;84:232-236.<br />

6. Gould N, Seligson D, Gassman J. Early and late repair <strong>of</strong> lateral ligament <strong>of</strong><br />

the ankle. Foot Ankle. 1980;1:84-89.<br />

7. Karlsson J, Bergsten T, Lansinger O, et al. Reconstruction <strong>of</strong> the lateral<br />

ligaments <strong>of</strong> the ankle for chronic lateral instability. J Bone Joint Surg Am.<br />

1988;70:581-588.<br />

8. Karlsson J, Eriksson BI, Bergsten T, et al. Comparison <strong>of</strong> two anatomic<br />

reconstructions for chronic lateral instability <strong>of</strong> the ankle joint. Am J Sports<br />

Med. 1997;25:48-53.<br />

9. Sugimoto K, Takakura Y, Kumai T, et al. Reconstruction <strong>of</strong> the lateral ankle<br />

ligaments with bone-patellar tendon graft in patients with chronic ankle<br />

instability: a preliminary report. Am J Sports Med. 2002;30:340-346.<br />

171<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

– Tubularize tendon graft, pre-tension to 20lbs for at least<br />

15 minutes<br />

– Endobutton sutured at each end via Krakow method (#2<br />

Fiberwire) with at least 1cm suture length at each and to<br />

allow passage<br />

— Pass tendon through talus and calcaneal tunnels, flip<br />

endobuttons<br />

– May require small lateral incisions to insure button<br />

opposes lateral cortices<br />

— Pass looped graft through tibial tunnel<br />

— Place 4.5mm drill hole at apex <strong>of</strong> loop<br />

– Generally advance graft at least 5mm to 1cm to increase<br />

tension<br />

— Secure graft proximally with 6.5mm cancellous screw and<br />

large spiked ligament washer<br />

— Graft secure<br />

– May over-sew residual deltoid tissue<br />

Modified Radiographs Property <strong>of</strong> Steven L. Haddad, MD (personal file)<br />

10. Paterson R, Cohen B, Taylor D, et al. Reconstruction <strong>of</strong> the lateral ligaments<br />

<strong>of</strong> the ankle using semi-tendinosis graft. Foot Ankle Int. 2000;21:413-419.<br />

11. Pankovich AM, Shivaram MS. Anatomical basis <strong>of</strong> variability in injuries <strong>of</strong><br />

the medial malleolus and deltoid ligament. Acta Orthop. Scand., 50:217-<br />

223, 1979<br />

12. Boss PA, Hintermann B. Anatomical study <strong>of</strong> the medial ankle ligament<br />

complex. Foot Ankle Int. 2002: 23: 547-553.<br />

13. Earll M, Wayne J, Brodrick C, et al. Contribution <strong>of</strong> the deltoid ligament<br />

to the ankle joint contact characteristics: a cadaver study. Foot Ankle Int.<br />

17:317-324, 1996<br />

14. Close JR: Some applications <strong>of</strong> the functional anatomy <strong>of</strong> the ankle joint. J<br />

Bone Joint Surg., 38A:761-781, 1956<br />

15. Harper MC: Deltoid ligament: an anatomical evaluation <strong>of</strong> the function.<br />

Foot Ankle, 8:19-22, 1987<br />

16. Rasmussen, O.: Stability <strong>of</strong> the ankle joint. Analysis <strong>of</strong> the function and<br />

traumatology <strong>of</strong> the ankle ligaments. Acta Orthop. Scand.,Suppl. 211, 1985<br />

17. Rasmussen, O., Kromann-Andersen, C., Boe, S.: Deltoid ligament. Function<br />

<strong>of</strong> the medial collateral ligamentous apparatus <strong>of</strong> the ankle joint. Acta<br />

Orthop. Scand., 54:36-44, 1983.<br />

18. Greisberg J., Hansen ST,: Ankle replacement: management <strong>of</strong> associated<br />

deformities. Foot Ankle Clin N Am 2002; 7:721-736.<br />

19. Wood PLR, Deakin S,.: Total ankle replacement: The results in 200 ankles. J<br />

Bone Joint Surg 85B:334-341, 2003<br />

20. Deland JT, de Asla, RJ, Segal A.: Reconstruction <strong>of</strong> the chronically failed<br />

deltoid ligament: a new technique. Foot Ankle Int., 25: 795-799, 2004<br />

21. Haddad SL, et.al: : Deltoid Ligament Reconstruction: A Novel Technique with<br />

Biomechanical Analysis . Foot Ankle Int., 31(7): 639-651, 2010.


172<br />

baCk to baSiCS:<br />

the lateral Collateral ligameNtS oF the aNkle<br />

Thomas O. Clanton, MD<br />

I. Epidemiology<br />

A. General<br />

1. Most common time-loss injury in sports<br />

2. 1 per 10,000 person-days<br />

3. 2 million/yr in USA<br />

4. Persistent symptoms n 15-20%<br />

B. Risk factors<br />

1. Age – peak incidence at ages 10-19<br />

2. Sex – males age 15-24, females age 30-99<br />

3. Athletic involvement – accounts for 45-50% (esply<br />

volleyball, basketball, football, soccer, and cheerleading)<br />

4. Race – higher in blacks and whites than Hispanic<br />

C. Contributing factors<br />

1. Obesity – “greater mass moment <strong>of</strong> inertia acting about<br />

the ankle”<br />

2. Skeletal foot morphology – e.g. heel varus, increased foot<br />

width, increased eversion movement, posterior fibular<br />

position<br />

3. Exposure to high risk activities, e.g. sports, military<br />

activity<br />

4. Connective tissue properties, e.g. Achilles contracture<br />

II. Clinical presentation<br />

A. Acute vs. chronic lateral ankle sprain<br />

B. Acute sprain with a history <strong>of</strong> chronic lateral instability<br />

C. Chronic lateral ankle instability<br />

D. Associated lateral ankle pain or other pain<br />

III. Treatment based on presentation<br />

A. Acute lateral ankle sprain – mild to moderate<br />

1. Non-operative treatment with RICE and<br />

a) Supervised early exercise<br />

b) Anti-inflammatory medication or patches<br />

c) Functional treatment with early weight bearing<br />

(1)Lace-up brace<br />

(2)Semi-rigid stirrup brace (most data to support)<br />

(3)Walking boot<br />

(4)Crutches used only as needed for pain control<br />

B. Acute lateral ankle sprain – severe<br />

1. Treatment issues<br />

a) Cost – higher with surgery<br />

b) Complications – rare but more with surgery<br />

c) Reinjuries – more with functional treatment<br />

d) Late arthritis – controversial, ? more with surgery<br />

e) Return to pre-injury status – similar<br />

f) Functional outcome – slightly better with surgery<br />

2. Who would be considered for surgery?<br />

a) Open injury<br />

b) Other clear pathology<br />

(1) Dislocating peroneal tendon(s)<br />

(2)Osteochondral fracture/loose body<br />

(3) Bimalleolar fracture variant<br />

c) Large avulsion fracture or with >2mm displacement<br />

d) High level athlete<br />

C. Acute on chronic lateral ankle sprain<br />

1. Is the ankle mechanically unstable?<br />

2. Has the patient previously sprained the ankle badly?<br />

3. Has the patient previously rehabilitated the ankle<br />

properly?<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

4. Are there signs <strong>of</strong> secondary problems?<br />

a) Peroneal tendon pathology<br />

b) Osteochondral lesion and/or loose body<br />

c) Marginal osteophytes/early arthritis<br />

5. Is this a good time to fix the instability?<br />

D. Chronic lateral ankle instability<br />

1. Confirm mechanical instability – history, physical exam,<br />

imaging<br />

a) Definition - “… laxity <strong>of</strong> a joint due to structural<br />

damage to ligamentous tissues which support the<br />

joint.”<br />

b) i.e., a mechanical problem requiring a mechanical<br />

solution!<br />

2. Rule out other causes <strong>of</strong> instability symptoms<br />

a) Chronic laxity/hyperflexibility<br />

b) Tarsal coalition<br />

c) Neuromuscular disease<br />

d) Peroneal tendon pathology<br />

e) Neurological disorders<br />

f) Functional instability<br />

(1)Definition - “… the occurrence <strong>of</strong> recurrent joint<br />

instability and the sensation <strong>of</strong> joint instability<br />

due to the contributions <strong>of</strong> any neuromuscular<br />

deficits.”<br />

(2)Primarily related to injury to the joint<br />

mechanoreceptors and afferent nerves<br />

(a) Impaired balance<br />

(b)Reduced joint position sense<br />

(c) Slower firing <strong>of</strong> peroneal muscles in response<br />

to inversion stress<br />

(d)Slowed nerve conduction velocity<br />

(e) Impaired cutaneous sensation<br />

(f) Strength deficits<br />

(g) Decreased ankle dorsiflexion<br />

IV. Diagnostic studies<br />

A. Routine x-rays<br />

1. The Ottawa Ankle Rules<br />

a) X-ray for any pain in the malleolar zone and any one<br />

<strong>of</strong> the following:<br />

b) Bone tenderness along the distal 6 cm <strong>of</strong> the posterior<br />

edge <strong>of</strong> the tibia or tip <strong>of</strong> the medial malleolus, OR<br />

c) Bone tenderness along the distal 6 cm <strong>of</strong> the posterior<br />

edge <strong>of</strong> the fibula or tip <strong>of</strong> the lateral malleolus, OR<br />

d) An inability to bear weight both immediately and in<br />

the emergency department for four steps.<br />

B. Stress x-rays<br />

1. Controversial<br />

a) Variability in normal<br />

b) Anesthesia or not<br />

c) Manual or instrumented<br />

d) Side-to-side comparison or just affected side<br />

2. No clear need acutely<br />

3. Chronic instability usefulness<br />

a) Value in documenting what the patient feels<br />

b) Value in before & after images<br />

C. MRI<br />

1. Controversial


173<br />

a) Expensive<br />

b) Doesn’t correlate with instability<br />

2. No clear need acutely<br />

3. Chronic instability<br />

a) Value in documenting what the patient feels<br />

b) Value in before & after images<br />

c) Identifies cartilage, tendon, loose bodies, bone bruise<br />

– useful when patient has pain + instability<br />

V. Surgical techniques for chronic lateral ankle instability<br />

A. Options for surgical treatment<br />

1. Anatomical<br />

a) Brostrom type or Brostrom + Gould<br />

b) Tendon graft with anatomically placed attachments<br />

2. Non-anatomical/tenodesis<br />

a) Watson-Jones<br />

b) Evans<br />

c) Chrisman-Snook<br />

B. Surgical technique<br />

1. Brostrom + Gould modification video<br />

2. Anatomically placed tendon graft video<br />

C. Best patients for tendon graft reconstruction<br />

1. Failed prior reconstruction<br />

2. Inadequate tissue for Brostrom<br />

3. Quality <strong>of</strong> secondary reconstruction judged to be<br />

inadequate<br />

4. Other potential uses:<br />

a) Large athlete<br />

b) Hypermobility<br />

D. Principles <strong>of</strong> Ligament Reconstruction<br />

1. Basics<br />

a) Graft selection<br />

(1)Graft and graft fixation should be stronger than<br />

the ligament being reconstructed<br />

(a) ATFL – 138.9 ± 23.5 N<br />

(b)CFL – 345.7 ± 55.2 N<br />

(2)Tissue Graft Source<br />

(a) Peroneus brevis - ~800 N (1/2PB=400)<br />

(b)Peroneus longus - 1342 ± 135 N<br />

(c) Semitendinosis – 1216 ± 50 N<br />

(d)Gracilis – 838 ± 30 N<br />

(e) Allograft<br />

(i) Ant tib – 1706 N<br />

(ii)Post tib – 1695 N<br />

b) Positioning - anatomical<br />

(1)Key to successful long-term outcome<br />

(2)Avoids<br />

(a) Capturing joint and thereby restricting subtalar<br />

and tibiotalar motion<br />

(b)Stretching out reconstruction over time<br />

c) Fixation – must be strong enough<br />

d) Tensioning – must be tight enough<br />

e) Avoidance <strong>of</strong> stress risers – eliminate bone spurs,<br />

varus, and protect adequately<br />

f) Intensive rehabilitation program - regain strength,<br />

ROM, proprioception, endurance, and functional<br />

ability<br />

2. Incorporation <strong>of</strong> a biologic graft<br />

a) Ligamentization <strong>of</strong> a biologic graft<br />

(1)All intra-articular segments <strong>of</strong> tendon undergo<br />

similar process<br />

(2)Initial phase <strong>of</strong> acellular and avascular necrosis<br />

(~2wks)<br />

(3)Collagen scaffold remains intact and unaffected<br />

(~1mo)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

(4)Cellular repopulation by the host synovial cells<br />

(~3mos)<br />

(5)Revascularization (~3 - 6mos)<br />

(6)Ligament maturation (~6 - 9mos)<br />

3. Fixation Issues in Ligament Reconstruction<br />

a) Bone tunnel, trough, cortical onlay<br />

b) Tendon length necessary<br />

c) Fixation strength<br />

d) Time efficiency<br />

e) Hardware issues<br />

f) Removal?<br />

g) Imaging distortion?<br />

h) Cost?<br />

4. Methods <strong>of</strong> Fixation<br />

a) Suture <strong>of</strong> tendon to itself after passing through drill<br />

tunnel<br />

b) Cortical onlay with suture anchors or staples<br />

c) Endobutton<br />

d) Interference fit screw in bone tunnel<br />

5. Strength <strong>of</strong> Fixation Devices<br />

a) Retrobutton – 927.6 N<br />

b) Bio-Tenodesis Screw – 227.35 N<br />

c) Achilles SutureBridge – 434 N<br />

d) Mini Bio-Suture Tak – 75 N<br />

e) V-Tak – 35.6 N<br />

f) Bioabsorbable Trim-It Screw – 590 ± 297 N<br />

g) MiniLoc – 32.7 N<br />

h) MicroFix Quickanchor – 37.5 N<br />

i) Endobutton CL Ultra for ACL – 1482.9 N<br />

j) Endobutton CL for ACL – 1350 N<br />

k) EZLOC for ACL – 1427 N<br />

l) ToggleLoc for ACL – 1406.8 N<br />

6. Fixation research with tendon grafts<br />

a) Interference fit screw vs metal suture anchor<br />

(1)60 porcine models<br />

(2)Young cadaver tendons harvested along with talus<br />

and fibula bones<br />

(3)Digital flexor<br />

(4) Tibialis anterior<br />

(5) Tibialis posterior<br />

(6)Result – “clear advantage to use <strong>of</strong> an interference<br />

screw related to both load to failure with single<br />

pull and cyclical loading”<br />

b) Tendon-Tunnel Healing<br />

(1)4 wks postop before tendon-tunnel interface<br />

provides most <strong>of</strong> fixation strength & <strong>of</strong>f-loads<br />

the mechanical strength provided by the fixation<br />

device<br />

c) Tendon-Tunnel Healing<br />

(1)20 dogs underwent transplant <strong>of</strong> digital extensor<br />

tendon sacrificed at 2, 4, 8 and 12 weeks to have<br />

biomechanics evaluated<br />

(a) At 2 weeks, maximum strength = ~100 N<br />

(b)At 4 weeks, maximum strength = ~280 N<br />

(c) At 8 weeks, maximum strength = ~ 300 N<br />

(d)At 12 weeks, maximum strength = ~360 N<br />

(e) Serial histology – progressive re-establishment<br />

<strong>of</strong> collagen-fiber continuity between the bone<br />

and the tendon<br />

(f) Failure mode = pull-out <strong>of</strong> tendon from tunnel<br />

in all cases up to 8 wks<br />

d) Recommend protection <strong>of</strong> healing ligament up to 8<br />

wks (for the knee)<br />

7. Advantages <strong>of</strong> interference fit screw fixation


174<br />

a) Bone tunnel can be shorter<br />

b) Less tendon length necessary<br />

c) Aperture fixation<br />

d) Fixation strength more than adequate<br />

e) Time efficiency<br />

f) Hardware issues<br />

(1) Removal unnecessary<br />

(2) No imaging distortion<br />

8. Necessary Instruments and Equipment<br />

a) Mini C-arm<br />

b) Long Keith needles<br />

c) Beath pin (pin with hole to pass suture through bone<br />

d) Various size drill bits or cannulated reamers (4.5-<br />

6mm)<br />

e) Suture passer<br />

9. Principles <strong>of</strong> Interference Screw Fixation<br />

a) Screw composition – all materials can work, avoid<br />

metal just in case there is a need for later MRI<br />

BIBLIOGRAPHY<br />

1. Ahovuo J et al. Diagnostic value <strong>of</strong> stress radiography in lesions <strong>of</strong> the lateral<br />

ligaments <strong>of</strong> the ankle. Acta Radiol 29:711, 1988<br />

2. Attarian DE et al. Biomechanical characteristics <strong>of</strong> human ankle ligaments.<br />

Foot Ankle Int 6:54, 1985<br />

3. Aydogan U et al. Extensor retinaculum augmentation reinforces anterior<br />

tal<strong>of</strong>ibular ligament repair. CORR 442:210, 2006.<br />

4. Bauer JS et al. Magnetic resonance imaging <strong>of</strong> the ankle at 3.0 Tesla and 1.5<br />

Tesla in human cadaver specimens with artificially created lesions <strong>of</strong> cartilage<br />

and ligaments. Investigative Radiol 42:604, 2008<br />

5. Becker HP et al. Stress diagnostics <strong>of</strong> the sprained ankle: evaluation <strong>of</strong> the<br />

anterior drawer test with and without anesthesia. Foot Ankle 14:459, 1993<br />

6. Bridgman SA et al. Population based epidemiology <strong>of</strong> ankle sprains attending<br />

accident and emergency units in the West Midlands <strong>of</strong> England, and a survey<br />

<strong>of</strong> UK practice for severe ankle sprains. Emerg Med J 20:508, 2003<br />

7. Clanton TO, McGarvey WC. Athletic Injuries to the S<strong>of</strong>t Tissues <strong>of</strong> the Foot<br />

and Ankle. In Surgery <strong>of</strong> the Foot and Ankle, edited by Coughlin, Mann, &<br />

Saltzman. 8th edition. Elsevier, Philadelphia, 2010 (online), pp 1425-1564<br />

8. Cox JS, Hewes TF. “Normal” talar tilt angle. CORR 140:37, 1979<br />

9. Coughlin MJ et al. Comprehensive reconstruction <strong>of</strong> the lateral ankle for<br />

chronic instability using a free gracilis graft. Foot Ankle Int 25:231, 2004.<br />

10. Dowling S et al. Accuracy <strong>of</strong> Ottawa Ankle Rules to exclude fractures <strong>of</strong> the<br />

ankle and midfoot in children: a meta-analysis. Acad Emerg Med 16:277,<br />

2009<br />

11. Ferran NA, Maffulli N. Epidemiology <strong>of</strong> sprains <strong>of</strong> the lateral ligament<br />

complex. Foot Ankle Clin 11:659, 2006<br />

12. Frey C et al. A comparison <strong>of</strong> MRI and clinical examination <strong>of</strong> acute lateral<br />

ankle sprains. Foot Ankle Int 17:533, 1996<br />

13. Frost SC, Amendola A. Is stress radiography necessary in the diagnosis <strong>of</strong><br />

acute or chronic ankle instability? Clin J Sport Med 9:40, 1999<br />

14. Gerber JP et al. Persistent disability associated with ankle sprains: a<br />

prospective examination <strong>of</strong> an athletic population. Foot Ankle Int 19:653,<br />

1998.<br />

15. Gulotta LV, Rodeo SA. Biology <strong>of</strong> autograft and allograft healing in anterior<br />

cruciate ligament reconstruction. Clin Sports Med 26:509, 2007<br />

16. Hertel J. Functional instability following lateral ankle sprain. Sports Med<br />

29:361-371, May 2000<br />

17. Hintermann B et al. Arthroscopic findings in patients with chronic ankle<br />

instability. Am J Sports Med 30:402, 2002.<br />

18. Jeys L et al. Bone anchors or interference screws? A biomechanical evaluation<br />

for autograft ankle stabilization. Am J Sports Med, 32: 1651, 2004<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

b) Screw shape – should have rounded threads<br />

c) Diameter <strong>of</strong> tissue graft – measure, usually a<br />

semitendinosis or gracilis are 5-6mm in diameter<br />

d) Diameter <strong>of</strong> bone tunnel – must be size <strong>of</strong> tendon<br />

graft or half millimeter larger, graft should pass easily<br />

e) Diameter <strong>of</strong> implant – within O.5mm <strong>of</strong> tunnel size<br />

f) Length <strong>of</strong> implant – as long as possible and should<br />

get cortico-cancellous bone purchase<br />

10. Postoperative Management<br />

a) 1 week non weight bearing splint<br />

b) 3-5 weeks protected weight bearing<br />

c) Brace / protection for sport activity 6 months<br />

d) Physical therapy with avoidance <strong>of</strong> inversion & forced<br />

plantar flexion<br />

e) Rarely “too tight” with anatomic repair<br />

19. Kannus P, Renstrom P. Treatment for acute tears <strong>of</strong> the lateral ligaments <strong>of</strong><br />

the ankle. Operation, cast, or early controlled mobilization. Current Concept<br />

Review. JBJS 73A:305, 1991<br />

20. Kerfh<strong>of</strong>fs GM et al. Surgical versus conservative treatment for acute injuries <strong>of</strong><br />

the lateral ligament complex <strong>of</strong> the ankle in adults. Cochrane Database Syst<br />

Rev 2:CD000380, 2007<br />

21. Korkala O et al. A prospective study <strong>of</strong> the treatment <strong>of</strong> severe tears <strong>of</strong> the<br />

lateral ligament <strong>of</strong> the ankle. Int Orthop 11:13, 1987<br />

22. Oae K et al. Evaluation <strong>of</strong> anterior tal<strong>of</strong>ibular ligament injury with stress<br />

radiography, ultrasonography and MR imaging. Skeletal Radiol 39:41, 2010<br />

23. Perrich KD et al. Ankle ligaments on MRI: appearance <strong>of</strong> normal and injured<br />

ligaments. Am J Roentgenol 193:687, 2009<br />

24. PihlajamŠki H et al. Surgical versus functional treatment for acute ruptures<br />

<strong>of</strong> the lateral ligament complex <strong>of</strong> the ankle in young men. A randomized<br />

controlled trial. JBJS 92A:2367, Oct 2010<br />

25. Pijnenburg AC et al. Operative and functional treatment <strong>of</strong> rupture <strong>of</strong> the<br />

lateral ligament <strong>of</strong> the ankle. A randomized, prospective trial. JBJS 85B:525,<br />

2003<br />

26. Prisk VR et al. Lateral ligament repair and reconstruction restore neither<br />

contact mechanics <strong>of</strong> the ankle joint nor motion patterns <strong>of</strong> the hindfoot.<br />

JBJS 92A:2375, Oct 2010<br />

27. Rodeo SA et al. Tendon-healing in a bone tunnel. A biomechanical and<br />

histological study in the dog. JBJS 75A:1795, 1993<br />

28. Rubin G, Witten M. The talar-tilt angle and the fibular collateral ligaments: a<br />

method for the determination <strong>of</strong> talar tilt. JBJS 42A:311, 1960<br />

29. Sobor<strong>of</strong>f SH et al. Benefits, risks, and costs <strong>of</strong> alternative approaches to the<br />

evaluation and treatment <strong>of</strong> severe ankle sprain. CORR 183:160, 1984<br />

30. Stiell IG et al. A study to develop clinical decision rules for the use <strong>of</strong><br />

radiography in acute ankle injuries. Ann Emerg Med. 21:384, 1992<br />

31. Stiell IG et al. Implementation <strong>of</strong> the Ottawa ankle rules. JAMA. 271:827,<br />

1994<br />

32. Stiell IG et al. Multicentre trial to introduce the Ottawa ankle rules for use<br />

<strong>of</strong> radiography in acute ankle injuries. Multicentre Ankle Rule Study Group.<br />

BMJ. 311:594, 1995<br />

33. Taga I et al. Articular cartilage lesions in ankles with lateral ligament injury.<br />

An arthroscopic study. Am J Sports Med 21:120, 1993.<br />

34. Waterman BR et al. Epidemiology <strong>of</strong> ankle sprain at the United States<br />

Military <strong>Academy</strong>. Am J Sports Med 38:797, Apr 2010.<br />

35. Waterman BR et al. The epidemiology <strong>of</strong> ankle sprains in the United States.<br />

JBJS 92A:2279, Oct 2010<br />

36. Zacharias I et al. In vivo calibration <strong>of</strong> a femoral fixation device transducer<br />

for measuring anterior cruciate ligament graft tension: a study in an ovine<br />

model. J Biomech Eng, 123:355, 2001


TMT joints Anatomy<br />

• very stable<br />

— Roman arch<br />

— little motion<br />

• injury by high energy forces<br />

— MVA, industrial, sports<br />

Lisfranc / TMT articulation<br />

• 2nd base held by tough ligament<br />

— sectioning studies - cut all but LF<br />

ligament<br />

• can rotate foot around intact LF ligament<br />

175<br />

liSFraNC (tarSometatarSal) iNJurieS<br />

J. Chris Coetzee, MD<br />

Etiology<br />

1) Direct Force<br />

— Force centers on dorsum <strong>of</strong><br />

foot<br />

— Leads to tensile stress on<br />

plantar side<br />

— Intensity and angle <strong>of</strong> force<br />

determine ligament and/or<br />

fracture<br />

2) Indirect Force<br />

— more common<br />

— Bending or twisting force<br />

on foot<br />

Radiographic assessment<br />

• AP view<br />

— Medial border <strong>of</strong> the<br />

2nd MT base and medial<br />

border <strong>of</strong> the middle<br />

Cuneiform form a straight<br />

unbroken line.<br />

— Disruption <strong>of</strong> this line<br />

indicative <strong>of</strong> injury.<br />

— Always compare with normal side in subtle injuries.<br />

• Lateral<br />

— MT never more dorsal than its respective cuneiform.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

• Oblique<br />

— Medial border <strong>of</strong> 4th MT base<br />

and medial border <strong>of</strong> cuboid<br />

form a straight unbroken line.<br />

Broad classification<br />

1) Low energy injuries (Nunley and Vertullo)<br />

— Stage 1: less than 2 mm diastases. No arch collapse<br />

— Stage 2: >2-5 mm diastases. No arch collapse<br />

— Stage 3: >2-5 mm diastases. Medial longitudinal arch<br />

collapse<br />

2) High energy injuries<br />

— Without significant intra-articular fractures<br />

— With significant intra-articular comminution<br />

A) Low Energy injuries<br />

• Stage 1<br />

— can WB, but not return to previous activity<br />

— point tender over TMTJ<br />

— WB x-rays show < 2 mm diastases between 1st and 2nd rays<br />

— no collapse <strong>of</strong> the medial arch.<br />

• Stage 2<br />

— similar findings, but…<br />

– there is >2-5mm diastases<br />

– still no arch collapse on lateral view.<br />

• Stage 3<br />

— >2-5 mm diastases<br />

— longitudinal arch collapse.<br />

How do you determine the stage?<br />

• History<br />

— What type <strong>of</strong> sport? Mechanism <strong>of</strong> injury? Did someone see<br />

it? Could you walk? How much pain?<br />

• Physical Examination<br />

— Swelling<br />

— Pain, tenderness along TMT joint<br />

— Pain with passive abduction and pronation<br />

— Plantar Medial Ecchymosis<br />

• Imaging studies<br />

— Radiographs<br />

– Gap between base <strong>of</strong> 1 and 2 MTs<br />

— Stress Radiographs<br />

Painful; should be done under block/sedation<br />

— CT scan and/or MRI helpful to further define injury in 3D<br />

Management<br />

• Stage 1<br />

— Plantar ligaments intact<br />

— Partial Lisfranc ligament injury<br />

— Lisfranc complex is “stable”<br />

• Return to play (RTP)


— Orthotics – medial arch support is very helpful<br />

— Tape – an alternative or addition to taping<br />

— RTP as tolerated<br />

— Usually anywhere from 1-4 weeks<br />

• Stage 2<br />

— Take a very close look<br />

— Best to do an EAU<br />

— Stable – treat like a stage 1 injury<br />

— Unstable - ORIF<br />

• Return to play<br />

— Stage 2 (stable)<br />

— Orthotics<br />

— Tape<br />

— RTP might be delayed due to pain with push-<strong>of</strong>f. Can be 2-6<br />

weeks<br />

• Stage 3<br />

— 5 mm widening<br />

— Medial arch collapse<br />

Post Operative Care<br />

— After 3 months, use cushioned shoe / molded insert<br />

— Begin PT - Gait training; ROM/BAPS; PREs/strengthening/LE<br />

rehab<br />

• Return to play<br />

— These are severe injuries and it takes a long time to return to<br />

sports<br />

— TTWB for 6 weeks – Short leg cast or Boot<br />

— Progress to FWB in boot for 4-6 weeks<br />

— Start rehab after 9-12 weeks<br />

— Don’t remove screws earlier than 16 weeks if at all<br />

Complications<br />

• Early<br />

— Missed diagnosis<br />

• Late<br />

— Minimal cartilage damage: 80% will have a good/excellent<br />

result<br />

— Obvious cartilage damage:< 25% good results<br />

B) High Energy injuries<br />

Classification<br />

• Hardcastle<br />

LITERATURE<br />

1) Gaines RJ, Wright G, Stewart J. Injury to the tarsometatarsal joint complex<br />

during fixation <strong>of</strong> Lisfranc fracture dislocations: an anatomic study. J Trauma.<br />

Apr 2009;66(4):1125-8<br />

2) Cook KD, Jeffries LC, O’Connor JP, Svach D. Determining the strongest<br />

orientation for “Lisfranc’s screw” in transverse plane tarsometatarsal injuries:<br />

a cadaveric study. J Foot Ankle Surg. Jul-Aug 2009;48(4):427-31.<br />

3) Kaar S, Femino J, Morag Y. Lisfranc joint displacement following sequential<br />

ligament sectioning. J Bone Joint Surg Am. Oct 2007;89(10):2225-32.<br />

176<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

I prefer a broad “classification”<br />

1) Dislocation but also significant intra-articular fractures<br />

2) Dislocation Without significant intra-articular fractures<br />

• Both groups could create controversy<br />

Why?<br />

• Conventional wisdom states that “all do well with an ORIF”<br />

• But – the reality is that there is a fair percentage that develop<br />

chronic disability and osteoarthrosis despite:<br />

— Accurate diagnosis<br />

— Early treatment<br />

— Anatomic reduction<br />

Outcome<br />

• These patients <strong>of</strong>ten need a conversion to an arthrodesis <strong>of</strong> the<br />

tarsometatarsal joints. Most older literature felt an Arthrodesis<br />

was an salvage procedure for:<br />

— Failed open reduction and internal fixation<br />

— Delayed or misdiagnosis<br />

— Severely comminuted intra-articular fracture<br />

Diagnosis<br />

• The same Imaging studies are used, and the diagnosis is usually<br />

much easier due to the severe fracture dislocation<br />

• CT scan<br />

— very helpful to determine the extent <strong>of</strong> intra-articular<br />

comminution<br />

— Severe intra-articular fractures should be an indication for<br />

early fusion<br />

Treatment<br />

• Be objective in decision making.<br />

— Severe instability might not do well with conventional ORIF<br />

— Significant articular cartilage loss will not do well with an<br />

ORIF<br />

• Method <strong>of</strong> Fixation is somewhat personal preference, but also<br />

determined by injury pattern<br />

— Comminuted fractures are better fixed with plates and screws<br />

— Staples are somewhat easier for lateral TMT joints than<br />

screws<br />

Summary<br />

• ORIF is still standard <strong>of</strong> care for most low energy Lisfranc<br />

injuries, but…<br />

— Despite anatomic reduction there could be<br />

– Persistent pain<br />

– Development <strong>of</strong> post-traumatic degenerative<br />

• There are Subsets <strong>of</strong> Lisfranc injuries that are better treated with<br />

primary arthrodesis<br />

— High Energy Ligamentous Lisfranc injuries<br />

— comminuted intra-articular fracture<br />

— Complex fracture/dislocations<br />

4) Hardcastle PH, Reschauer R, Kutscha-Lissberg E, et al. Injuries to the<br />

tarsometatarsal joint. Incidence, classification and treatment. J Bone Joint<br />

Surg Br. 1982;64(3):349-56.<br />

5) Lattermann C, Goldstein JL, Wukich DK, et al. Practical management <strong>of</strong><br />

Lisfranc injuries in athletes. Clin J Sport Med. Jul 2007;17(4):311-5.<br />

6) Curtis MJ, Myerson M, Szura B. Tarsometatarsal joint injuries in the athlete.<br />

Am J Sports Med. Jul-Aug 1993;21(4):497-502.<br />

7) Kadel N, Boenisch M, Teitz C, et al. Stability <strong>of</strong> Lisfranc joints in ballet pointe<br />

position. Foot Ankle Int. May 2005;26(5):394-400.


8) Sherief TI, Mucci B, Greiss M. Lisfranc injury: how frequently does it get<br />

missed? And how can we improve?. Injury. Jul 2007;38(7):856-60.<br />

9) Raikin SM, Elias I, Dheer S, Besser MP, Morrison WB, Zoga AC. Prediction<br />

<strong>of</strong> midfoot instability in the subtle Lisfranc injury. Comparison <strong>of</strong> magnetic<br />

resonance imaging with intraoperative findings. J Bone Joint Surg Am. Apr<br />

2009;91(4):892-9.<br />

10) Nunley JA, Vertullo CJ. Classification, investigation, and management <strong>of</strong><br />

midfoot sprains: Lisfranc injuries in the athlete. Am J Sports Med. Nov-Dec<br />

2002;30(6):871-8.<br />

11) Philbin T, Rosenberg G, Sferra JJ. Complications <strong>of</strong> missed or untreated<br />

Lisfranc injuries. Foot Ankle Clin. Mar 2003;8(1):61-71.<br />

12) Ly TV, Coetzee JC. Treatment <strong>of</strong> primarily ligamentous Lisfranc joint injuries:<br />

primary arthrodesis compared with open reduction and internal fixation. A<br />

prospective, randomized study. J Bone Joint Surg Am. Mar 2006;88(3):514-<br />

20. (Level 1)<br />

13) Alberta FG, Aronow MS, Barrero M, et al. Ligamentous Lisfranc joint injuries:<br />

a biomechanical comparison <strong>of</strong> dorsal plate and transarticular screw fixation.<br />

Foot Ankle Int. Jun 2005;26(6):462-73.<br />

14) Coss HS, Manos RE, Buoncristiani A. Abduction stress and AP weightbearing<br />

radiography <strong>of</strong> purely ligamentous injury in the tarsometatarsal joint. Foot<br />

Ankle Int. Aug 1998;19(8):537-41.<br />

177<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia FOOT & ANKLE<br />

15) Kuo RS, Tejwani NC, Digiovanni CW. Outcome after open reduction and<br />

internal fixation <strong>of</strong> Lisfranc joint injuries. J Bone Joint Surg Am. Nov<br />

2000;82-A(11):1609-18. [Medline] . Subgroup (purely ligamentous Lisfranc<br />

injury) that may be better treated with primary fusion. (level 3)<br />

16) Myerson MS, Fisher RT, Burgess AR. Fracture dislocations <strong>of</strong> the<br />

tarsometatarsal joints: end results correlated with pathology and treatment.<br />

Foot Ankle. Apr 1986;6(5):225-42. [Medline] .<br />

17) Mulier et al (Foot and Ankle International 2002) Compared primary<br />

arthrodesis vs. ORIF for severe Lisfranc injuries. Retrospective, surgeon<br />

randomized study advocating ORIF or partial arthrodesis for severe Lisfranc<br />

injuries. Primary complete arthrodesis (all 5 MT) should be reserved as a<br />

salvage procedure<br />

18) Henning JA, Jones CB, Sietsema DL, Bohay DR, Anderson JG. Open<br />

reduction internal fixation versus primary arthrodesis for lisfranc injuries: a<br />

prospective randomized study. Foot Ankle Int. 2009 Oct;30(10):913-22.<br />

19) Rammelt S, Schneiders W, Schikore H, Holch M, Heineck J, Zwipp H.<br />

Primary open reduction and fixation compared with delayed corrective<br />

arthrodesis in the treatment <strong>of</strong> tarsometatarsal (Lisfranc) fracture<br />

dislocation. J Bone Joint Surg Br. 2008 Nov;90(11):1499-506.<br />

20) Teng AL, Pinzur MS, Lomasney L, Mahoney L, Havey R. Functional outcome<br />

following anatomic restoration <strong>of</strong> tarsal-metatarsal fracture dislocation. Foot<br />

Ankle Int. 2002 Oct;23(10):922-6.


178<br />

CaN platelet-riCh plaSma really<br />

improve CoNNeCtive tiSSue healiNg?<br />

makiNg SeNSe oF it all (C)<br />

Moderator: Steven P. Arnoczky, DVM, East Lansing, MI<br />

A review <strong>of</strong> the basic science behind platelet-rich plasma including how variations in preparation techniques can affect the<br />

final product and what impact this may have on clinical outcomes.<br />

I. Introduction<br />

Steven P. Arnoczky, DVM, East Lansing, MI<br />

II. The ABC’s <strong>of</strong> PRP: What are You Putting into Your Patients and What is it Supposed to do?<br />

Steven P. Arnoczky, DVM, East Lansing, MI<br />

III. Clinical Outcomes Using PRP: Does the Hype Match Reality?<br />

Scott A. Rodeo, MD, New York, NY<br />

VI. Questions<br />

Steven P Arnoczky, DVM, East Lansing, MI and<br />

Scott A. Rodeo, MD, New York, NY<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL


179<br />

the abC’S oF platelet-riCh plaSma (prp): what are you<br />

puttiNg iNto your patieNtS aNd what iS it SuppoSed to do?<br />

Steven P Arnoczky, DVM<br />

Platelet-rich plasma (PRP) has been advocated as a way to introduce<br />

increased concentrations <strong>of</strong> growth factors and other bioactive<br />

molecules to injured tissues in an attempt to optimize the local<br />

healing environment. PRP has been used extensively in dental and<br />

cosmetic surgery for almost 30 years and its safety and efficacy in<br />

these areas is well-established. Recently, PRP has been increasing<br />

utilized in a variety orthopaedic applications in the hopes that the<br />

increased levels <strong>of</strong> autologous bioactive proteins provided by the<br />

concentrated platelets could enhance tissue repair and regeneration.<br />

However, all PRP preparations are not the same. Variations in the<br />

volume <strong>of</strong> whole blood used, platelet recovery efficacy, the final<br />

volume <strong>of</strong> plasma in which the platelets are suspended, as well as<br />

the presence or absence <strong>of</strong> red and/or white blood cells, and the<br />

addition <strong>of</strong> thrombin or calcium chloride to induce fibrin formation,<br />

can all affect the character and potential efficacy <strong>of</strong> the final PRP<br />

product. This lecture will review the basic principles involved in<br />

creating PRP and examine the potential basic science significance <strong>of</strong><br />

the individual blood components contained in the various forms <strong>of</strong><br />

PRP currently used in orthopaedics.<br />

I. Platelet-rich Plasma: What’s in a name?<br />

• Platelet-rich plasma (PRP) has been classially described as<br />

‘a volume <strong>of</strong> plasma that has a platelet count above baseline<br />

[<strong>of</strong> whole blood]’. ( Marx 2001)<br />

• However, cuurent PRP products can vary markedly in:<br />

— the amount <strong>of</strong> blood used and the efficacy <strong>of</strong> platelet<br />

recovery<br />

— the presence or absence <strong>of</strong> white and/or red blood cells<br />

— +/- activation <strong>of</strong> platelets with thrombin<br />

— level <strong>of</strong> fibrin production<br />

• To more precisely delineate these various products based on<br />

their leukocyte and fibrin content the following categoris<br />

have been proposed. (Dohan Ehrenfest 2009)<br />

— pure platelet-rich plasma (P-PRP)<br />

— platelet-leukocyte-rich plasma (P-LRP)<br />

— pure platelet-rich fibrin (P-PRF)<br />

— leulocyte and platelet rich fibrin (L-PRF)<br />

II. Creating Platelet-rich Plasma: The basics<br />

• Fundamentally based on the selective separation <strong>of</strong> liquid<br />

and solid components <strong>of</strong> anticoagulated whole blood<br />

(plasmapheresis) via centrifugation.<br />

• Initial ‘s<strong>of</strong>t spin’ (lower g-force) to separate plasma and<br />

platelets from red and white cells followed by a ‘hard spin’<br />

(higher g-force) <strong>of</strong> the plasma-platelet supernatant to further<br />

concentrate the platelets into platelet-rich plasma (PRP) and<br />

platelet-poor plasma (PPP) components.<br />

• However, even when specific PRP protocols are used, the<br />

platelet concentration <strong>of</strong> the final PRP can not only vary<br />

greatly between techniques but also within a given technique<br />

(Castillo 2010; Leitner 2006; Mazzucco 2009; Weibrich<br />

2005). Therefore, unlike United State Pharmacopeia (USP)<br />

regulated pharmaceuticals in which the precise contents,<br />

concentrations and potency are clearly known, PRP<br />

preparations have no such guarantee.<br />

III. Platelets: Are more really better?<br />

• Platelets are anucleate cells that serve in a variety <strong>of</strong> critical<br />

functions including hemostasis, inflammation, angiogenesis,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

and wound healing. They harbor over 1100 proteins<br />

including growth factors and othr bioactive molecules<br />

involved in tissue repair.<br />

• The final platelet concentration <strong>of</strong> any PRP product is<br />

dependent upon:<br />

— the initial volumne <strong>of</strong> whole blood taken -the platelet<br />

recovery efficiency <strong>of</strong> the technique used -the final<br />

volume <strong>of</strong> plasma utilized to suspend the concentrated<br />

platelets<br />

• While numerous in vitro studies have demonstrated a<br />

dose-response relationship between the chemotactic,<br />

mitogenic, and synthetic stimuli this response is not linear.<br />

Once cell surface receptors for a specific growth factor<br />

are occupied additional concentrations <strong>of</strong> growth factors<br />

provide no additional effect. Some growth factors can exert<br />

an inhibitory effect once a high enough concentration is<br />

reached. (Alberts 1994).<br />

IV. White blood cells: To include or not include<br />

• WBC’s are known to play a key role in the initial phases <strong>of</strong><br />

inflammation.<br />

• WBC’s increase muscle damage. (Tidball 2005)<br />

• WBC’s increase potential for localized pain (Mei-Dan 2010)<br />

• WBC concentration correlates with increase in expression <strong>of</strong><br />

catabolic genes. (McCarrel 2009)<br />

• Role <strong>of</strong> specific WBC (i.e. monocytes vs PMNs) in PRP<br />

preparations still unclear and a positive or negative effect<br />

includingWBC’s in PRP preparations cannot be generalized<br />

to all tissues and all clinical conditions.<br />

• Inclusion <strong>of</strong> WBC’s in PRP preparations may not have any<br />

scientific rationale but rather reflect an inability <strong>of</strong> the<br />

preparation technique to completely eliminate this cellular<br />

component. (Dohan Ehrenfest 2009; Mei-Dan 2010)<br />

V. Exogenous Thrombin: Is activation necessary?<br />

• Circulating platelets have a half-life <strong>of</strong> 7 days and their<br />

cytokine contents remain within their granules until some<br />

event triggers platelet activation and secretion <strong>of</strong> these<br />

factors. (Blair 2009)<br />

• Platelet activation can be initiated by a number <strong>of</strong> methods<br />

such as shear forces caused by fluid flow, contact with a<br />

variety <strong>of</strong> materials inlcuding fibrillar collagen and the<br />

basement membranes <strong>of</strong> cells, and thrombin. (Blair 2009)<br />

• Besides catalyzing the conversion <strong>of</strong> fibrinogen to fibrin,<br />

thrombin also activates platelets causing them to secrete<br />

their contents <strong>of</strong> growth factors.<br />

• Because growth factors have a very short half-life (minutes<br />

to hours) thrombin activation could actually decrese the<br />

availability <strong>of</strong> growth factors when compard to collagen<br />

activation <strong>of</strong> platelets (Harrison 2010).<br />

• A recent study has demonstratd that exogenous thrombin<br />

activation <strong>of</strong> a PRP product actually diminished the efficacy<br />

o fthi mproductnto indice boine formation whne ocmparesd<br />

to non- thromin activated PRP (Han 2009).<br />

VI. Fibrin Precipitation: Is there an advantage?<br />

• Fibrin is nature’s provisional scaffold and its formation<br />

following tossue injury and hemorrhage is a critical initial<br />

step in the wound healing process.


180<br />

• Fibrin also binds growth factors and allows for their gradual<br />

release ove rtime (Visser 2010)<br />

• Some PRP preparations add calcium chloride and/ or<br />

thrombin to precipitate fibrin and create PRP constructs that<br />

range from a gel-like substance to a robust fibrin membrane<br />

(Visser 2010)<br />

• The creation <strong>of</strong> a platelet-rich fibrin construct may allow<br />

for the prolonged availability <strong>of</strong> increased levels <strong>of</strong> growth<br />

factors at the injury site. (Visser 2010; O’Conner 2009)<br />

VII. Summary<br />

It is important to realize that all PRP and PRP-related products are<br />

not the same and variations in content between products, as well as<br />

the potential for variations in consistency within a given product,<br />

REFERENCES:<br />

1. Foster TE et al. (2009) Am J Sports Med 37:2259-2272.<br />

2. Alberts B et al. (1994) Molecular Biology <strong>of</strong> the Cell.<br />

3. Arnoczky SP, Caballero O (2010) J Am Acad Ortho Surg 18:444-445.<br />

4. Blair P, Flaumenhaft R (2009) Blood Reviews 23:177-189.<br />

5. Castillo TN et al. Am J Sports Med (in press)<br />

6. Dohan Ehrenfest DM, et al. (2009) Trends in Biotechnology 27:158-167.<br />

7. Han B et al. (2009) J Bone and Jt Surg Am 91:1459-1770<br />

8. Leitner GC et al. (2006) Vox Sanguinis 91:135-139.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

make global conclusions on the efficacy <strong>of</strong> PRP in augmenting<br />

connective tissue repair extremely difficult. It is also critical to<br />

understand how (or if) the variations in current commercial PRP<br />

preparation techniques affect the clinical outcomes in specific<br />

indications. It is possible that one PRP product may not be useful<br />

in all applications. The true answer will only come from welldesigned,<br />

prospective, randomized, blinded (Level 1) clinical<br />

studies which carefully and comprehensively investigate the<br />

role <strong>of</strong> the various PRP preparations in connective tissue repair.<br />

Once we understand the precise mechanism(s) by which PRP<br />

may enhance tissue healing in various applications, and most<br />

importantly, are able to assure the contents and potency <strong>of</strong> the<br />

final product, platelet-rich plasma could be a useful tool in the<br />

armamentarium <strong>of</strong> the orthopaedic surgeon.<br />

9. Marx RE (2001) Implant Den 10:225-228.<br />

10. Mazzucco L et al. (2009) Vox Sanguinis 97;110-118.<br />

11. McCarrel T, Fortier L (2009) J Orthop Res 27:1033-1042<br />

12. Mei-Dan O et al. (2010) Br J Sports Med 44:618-619.<br />

13. O’Connor SM et al. (2008) Wound Rep Reg 16:749-756.<br />

14. Tidball JG (2005) Am J Physiol Regul Integr Comp Physiol 288:R345-353.<br />

15. Visser LC et al. Vet Surg 39;811-817, 2010.<br />

16. Weibrich G et al. (2005) In J Oral Maxill<strong>of</strong>ac Implants 20:118-123.


181<br />

CliNiCal outComeS uSiNg prp: doeS the hype matCh reality?<br />

Scott A. Rodeo, MD<br />

What is the Rationale for using PRP?<br />

• Cytokines are known to have important and fundamental roles<br />

in connective tissue biology.<br />

• Cytokines affect cell proliferation, matrix synthesis,<br />

angiogenesis, chemotaxis in cells derived from ligament,<br />

tendon, bone, cartilage, meniscus, and muscle.<br />

• Connective tissue healing requires a complex timing and<br />

sequence <strong>of</strong> cytokine expression → thus, single factor therapy<br />

has distinct limitations<br />

• The rationale and attraction <strong>of</strong> PRP is the ability to deliver<br />

numerous cytokines in physiologically-relevant proportions<br />

• Will review basic science and clinical data for bone, tendon,<br />

cartilage, ligament, meniscus, and muscle, focusing on clinical<br />

studies with higher levels <strong>of</strong> evidence<br />

PRP IN TENDON REPAIR<br />

Basic Science<br />

• Basic laboratory studies demonstrate positive effect <strong>of</strong> PRP on<br />

matrix protein gene expression and protein synthesis in tendon<br />

(Mc Carrel et al, 2009)<br />

• Positive effects shown using PRP to treat intrinsic degenerative<br />

tendon lesion (Bosch et al, 2010)<br />

Clinical Studies<br />

• Variable results reported<br />

• De Vos et al, J. <strong>American</strong> Medical Association, 2010<br />

— Double-blind, placebo-controlled trial Chronic Achilles<br />

tendinopathy N=27 each group<br />

— Eccentric exercise + PRP injection or saline injection<br />

— Mean VISA score improved significantly in both groups at 24<br />

weeks<br />

— No difference between groups<br />

• Peerboms et al, Amer.J. Sports Medicine 2010<br />

— Randomized controlled trial PRP (N=51) vs steroid injection<br />

(N=49) Level <strong>of</strong> evidence 1<br />

— Successful score on VAS:<br />

– 24 <strong>of</strong> the 49 patients (49%) in the corticosteroid group<br />

– 37 <strong>of</strong> the 51 patients (73%) in the PRP group<br />

— Significantly different (p


182<br />

muscle strains”<br />

— 18 pro athletes treated with autologous conditioned serum,<br />

compared to 11 historical controls<br />

— Injections given 2 d. after diagnosis and repeated every 2nd<br />

day for a mean total <strong>of</strong> 5.4 injections<br />

— Average time to recovery: 22.3 days (control) versus 16.6 in<br />

ACS group<br />

— MRI at 2 weeks demonstrated superior healing (less edema,<br />

greater resorption) in ACS than control<br />

PRP IN MENISCUS HEALING<br />

Basic Science<br />

• Ishida et al, Tissue Engineering 2007<br />

— Meniscal cells cultured with PRP:<br />

– Increased DNA and ECM synthesis in (p


183<br />

reSearCh For immediate traNSlatioN<br />

to orthopaediC praCtiCe (aaoS/orS ii)<br />

Moderators: Philip C. Noble, PhD, Houston, TX and William J. Maloney, MD, Redwood City, CA<br />

Participants will learn about the latest advances from orthopedic research that every surgeon can use, in both Biology and<br />

Biomaterials.<br />

I. Introduction<br />

Philip C. Noble, PhD, Houston, TX<br />

II. Stem Cells in <strong>Orthopaedic</strong> Surgery<br />

Thomas A. Einhorn, MD, Boston, MA<br />

III. Mechanism <strong>of</strong> Cartilage Degeneration / Strategies for OA Prevention<br />

Joseph A. Buckwalter, MD, Iowa City, IA<br />

IV. Chondroprotective Agents: Fact and Fiction<br />

Constance R. Chu, MD, Pittsburgh, PA<br />

V. Discussion<br />

VI. PRP and Cell-Based Therapies for Cartilage Repair<br />

Scott Rodeo, MD, New York, NY<br />

VII. Emerging Technologies in Cartilage Regeneration<br />

William J. Maloney, MD, Redwood City, CA<br />

VIII. Discussion<br />

IX. Smart Implants for Prevention <strong>of</strong> Deep Infection<br />

Javad Parvizi, MD, Philadelphia, PA<br />

X. New Options in Polymers and Ceramics for Joint Replacement<br />

Philip C. Noble, PhD, Houston, TX<br />

XI. Metal-on-Metal Bearings and Biocompatibility<br />

Joshua J. Jacobs, MD, Chicago, IL<br />

XII. Discussion<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL


184<br />

Stem CellS iN orthopaediC Surgery<br />

Thomas A. Einhorn, MD<br />

I. Definitions<br />

A. Stem Cells – Undifferentiated, unspecified cells that<br />

can renew themselves and also give rise to one or more<br />

specialized cells with specific functions in the body.<br />

B. Cellular Potency<br />

1. Totipotent – able to generate all <strong>of</strong> the cell fates <strong>of</strong> an<br />

animal.<br />

2. Pluripotent – able to generate several <strong>of</strong> the cell fates<br />

<strong>of</strong> an animal. (embryonic stem cells are pluripotent<br />

– they give rise to most but not all tissues during fetal<br />

development and can regenerate tissue after birth and in<br />

adult life).<br />

3. Multipotent – able to generate a limited number <strong>of</strong> cell<br />

fates <strong>of</strong> an animal in closely related family <strong>of</strong> cells (adult<br />

stem cells are multipotent).<br />

II. Stem Cells vs. Progenitor Cells<br />

Stem Cell Progenitor Cell<br />

Self-renewing Non-self renewing<br />

Long-lived Short-lived<br />

Low proliferative capacity High proliferative capacity<br />

Perhaps the best example <strong>of</strong> stem cell renewal is the hematopoietic<br />

system. Because circulating blood cells survive for only a few days<br />

or months, hematopoietic stem cells in the bone marrow must<br />

provide a continuous source <strong>of</strong> progenitors for red cells, platelets,<br />

monocytes, granulocytes, and lymphocytes. Adult muscle cells can<br />

rebuild a muscle and they do so when needed. Progenitor cells are<br />

further along the path <strong>of</strong> cellular differentiation. They are in the<br />

“center” between stem cells and fully differentiated cells.<br />

III. Sources <strong>of</strong> Stem Cells<br />

A. Embryo<br />

B. Umbilical cord<br />

C. Placenta<br />

D. Adult bone marrow<br />

E. Blood<br />

F. Fat<br />

G. Synovial fluid<br />

IV. Culture Expanded Stem Cells vs. the Hematopoietic Niche<br />

Some technologies use allogeneic mesenschymal stem cells that<br />

have been cultured expanded. These cells have already undergone<br />

commitment to a mesenschymal lineage and are expected to<br />

differentiate along a chondro or osteoprogenitor pathway. They must<br />

function outside <strong>of</strong> their normal hematopoietic niche. Although<br />

some surgeons have reported favorable anecdotal results with these<br />

cells, recent evidence suggests that hematopoietic stem cells can<br />

differentiate to osteoblasts through a mesenschymal intermediate.<br />

This plasticity has been demonstrated in response to inflammation<br />

and tissue injury and provides a basis for the concept that stem cells<br />

therapies could include hematopoietic as well as mesenchymal stem<br />

cells as they function in a more physiological manner when provided<br />

in an environment that is similar to their physiological norm.<br />

V. Applications <strong>of</strong> Stem Cells in <strong>Orthopaedic</strong> Conditions<br />

A. Nonunions<br />

1. Hernigou et al. studied 60 patients with non-infected<br />

nonunions who underwent bone marrow aspiration<br />

from both iliac crests. Samples were concentrated on cell<br />

separators and injected. Union was obtained in 53 out <strong>of</strong><br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

60 patients. Positive correlations were observed between<br />

the volume <strong>of</strong> mineralized callus at four months and<br />

the number and concentration <strong>of</strong> colony forming units<br />

in culture. The seven patients who did not unite had<br />

significantly lower numbers <strong>of</strong> colony forming units.<br />

B. Avascular Necrosis <strong>of</strong> the Femoral Head<br />

1. Gangji et al. studied 13 patients with ARCO Stage 1<br />

or 2 avascular necrosis and randomized them to core<br />

decompression (control) or core decompression plus<br />

antologous bone marrow mononuclear cell grafting.<br />

Results showed that after 24 months there was a<br />

significant reduction in pain (p = 0.021) and symptoms<br />

(p = 0.001) by Lequesne and WOMAC respectively in the<br />

bone marrow versus core decompression group. Five<br />

out <strong>of</strong> eight controls and one out <strong>of</strong> eight bone marrow<br />

injected patients progressed to Stage 3 (p = 0.016).<br />

Implantation <strong>of</strong> marrow stem cells was associated with<br />

only minor adverse events. At two years after treatment,<br />

several <strong>of</strong> the bone marrow stem cell injected femoral<br />

heads showed resolution <strong>of</strong> the avascular necrosis.<br />

2. Treatment <strong>of</strong> avascular necrosis <strong>of</strong> the medial femoral<br />

chondyle <strong>of</strong> the knee with bone marrow stem cells.<br />

VI. Future Clinical Applications<br />

A. Autologus bone marrow-derived mesenchymal stem cells vs.<br />

autolgous chondrocyte implantation<br />

1. Nejadnik et al. conducted an observational cohort<br />

study in which 72 lesions in age-matched patients<br />

underwent cartilage repair using chondrocytes (n=36)<br />

or bone marrow stem cells (n=36). Clinical outcomes<br />

were measured before operation and at three, six, nine,<br />

twelve, eighteen and twenty-four months after operation<br />

using the International Cartilage Repair Society Cartilage<br />

Injury Evaluation Package which included questions<br />

from the Short Form Health Survey, International Knee<br />

Documentation Committee, Lysholm Knee Scale, and<br />

Tegner Activity Level Scale. Results showed there was<br />

significant improvement in patients’ quality <strong>of</strong> life and<br />

cartilage repair in both groups. There was no difference<br />

between the bone marrow stem cells and the autologous<br />

chondrocyte implantation groups in terms <strong>of</strong> clinical<br />

outcomes with the exception <strong>of</strong> the Physical Role<br />

Functioning outcome that showed a greater improvement<br />

over time in the bone marrow stem cell group. The<br />

authors concluded that the use <strong>of</strong> bone marrow stem<br />

cells in cartilage repair is as effective as the use <strong>of</strong><br />

chondrocytes and required less knee surgery, reduced<br />

costs, and minimized donor site morbidity.<br />

2. Fortier et al. compared the outcomes <strong>of</strong> treatment<br />

<strong>of</strong> bone marrow stem cells with the outcomes <strong>of</strong><br />

micr<strong>of</strong>racture in the repair <strong>of</strong> full thickness cartilage<br />

defects in horses. Fifteen millimeter diameter full<br />

thickness defects were created in the lateral trochlear<br />

ridge <strong>of</strong> the femur in 12 horses. Bone marrow was<br />

aspirated from the sternum and centrifuged to generate<br />

the bone marrow concentrate which included stem cells.<br />

The defects were treated with bone marrow concentrate<br />

and micr<strong>of</strong>racture or with micr<strong>of</strong>racture alone. All<br />

scoring systems and magnetic resonance imaging data<br />

indicated that delivery <strong>of</strong> the bone marrow stem cells


REFERENCES<br />

185<br />

resulted in increased fill <strong>of</strong> the defects and improved<br />

integration <strong>of</strong> repair tissue into surrounding normal<br />

cartilage. In addition, there was greater Type 2 collagen<br />

content and improved orientation <strong>of</strong> the collagen, as<br />

well as significantly more glycosaminoglycan in the bone<br />

1. Hernigou P, Daltro G, Filippini P, Mukasa MM, Manicom. Percutaneous<br />

implantation <strong>of</strong> autologous bone marrow osteoprogentiro cells as treatment<br />

<strong>of</strong> bone avascular necrosis related to sickle cell disease. Open Orthop J. 2008<br />

Apr 25;2:62-5.<br />

2. Hernigou P, Poignard A, Manicom O, Mathieu G, Rouard H. The use <strong>of</strong><br />

percutaneous autolgoous bone marrow transpaltation in nonunion and<br />

avascular necrosis <strong>of</strong> bone. J Bone Joint Surg Br. 2005 Jul;87(7):896-902.<br />

3. Beaujean F, Hernigou P. Treatment <strong>of</strong> osteonecrosis with autolgous bone<br />

marrow grafting. Clin Orthop Relat Res. 2002 Dec;(405):14-23.<br />

4. Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont<br />

M. Treratment <strong>of</strong> osteonecrosis <strong>of</strong> the femoral head with implantation <strong>of</strong><br />

autolgoous bone-marrow cells. A pilot study. J Bone Joint Surg Am. 2004<br />

Jun;86-A(6):1153-60.<br />

5. Gangji V, Hauzeur JP. Treating osteonecrosis with autolgoous bone marrow<br />

cells. Skeletal Radiol. 2010 Mar;39(3):209-11.<br />

6. Gangji V, Hauzeur JP. Treatment <strong>of</strong> osteonecrosis <strong>of</strong> the femoral head with<br />

implantation <strong>of</strong> autologous bone-marrow cells. Surgical technique. J Bone<br />

Joint Surg Am. 2005 Mar;87 Suppl 1(Pt !):106-12.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

marrow stem cell treated defects than in the micr<strong>of</strong>racture<br />

treated defects. The authors concluded that delivery <strong>of</strong><br />

bone marrow stem cells can result in healing <strong>of</strong> acute<br />

full-thickness cartilage defects that are superior to that<br />

after micr<strong>of</strong>racture alone in this equine model.<br />

7. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone<br />

marrow-dervied mesenschymal stem cells versus autologous chondrocyte<br />

implantation: an observational cohort study. Am J Sports Med. 2010<br />

Jun;38(6):1110-6. Epub 2010 Apr 14.<br />

8. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, Stokol T,<br />

Cheetham J, Nixon AJ. Concentrated bone marrow aspirate improves fullthickness<br />

cartilage repair compared with micr<strong>of</strong>racture in the equine model.<br />

J Bone Joint Surg Am. 2010 Aug 18;92(10):1927-37.<br />

9. Mendez-Ferrer s, Michurina TV, Ferraro F, Mazioom AR, Macarthur BD, Lira<br />

SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS. Mesenchymal and<br />

haematopoietic stem cells form a unique bone marrow niche. Nature. 2010<br />

Aug 12;466(7308):829-34.<br />

10. Wu JY, Scadden DT, Kronenberg HM. Role <strong>of</strong> the osteoblast lineage in the<br />

bone marrow hematopoietic niches. J Bone Miner Res. 2009 May;24(5)759-<br />

64.<br />

11. Sacchetti B, Funari A, Michienzi S, DeCesare S, Piersanti S, Saggio I,<br />

Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P. Self-renewing<br />

osteoprogenitors in bone marrow sinusoids can organize a hematopoietic<br />

microenvironment. Cell. 2007 Oct 19;131(2):324-36.


186<br />

preveNtiNg oSteoarthritiS FollowiNg JoiNt iNJurieS<br />

Joseph A Buckwalter, MD<br />

Excessive mechanical loadings, single or repetitive, cause progressive<br />

degeneration <strong>of</strong> an articular surface and subsequent development<br />

<strong>of</strong> the clinical syndrome <strong>of</strong> post-traumatic osteoarthritis (PTOA).<br />

Joint injuries are common and <strong>of</strong>ten affect young adults: each year<br />

one in 12 people between the ages <strong>of</strong> 18-44 seeks medical attention<br />

for treatment <strong>of</strong> joint injury, and more than 12% <strong>of</strong> all lower limb<br />

osteoarthritis is caused by joint trauma. The onset <strong>of</strong> PTOA may occur<br />

as soon as three months after a severe injury, or decades after much<br />

less severe injuries, or after injuries that leave the joint with residual<br />

instability or incongruity. Despite advances in surgical treatment and<br />

rehabilitation <strong>of</strong> injured joints, the risk <strong>of</strong> PTOA following ligament<br />

tears and intra-articular fractures has not decreased in the last 50<br />

years. Advances in understanding <strong>of</strong> the risk factors and putative<br />

thresholds for mechanical damage to articular cartilage, and <strong>of</strong> the<br />

biologic mediators that cause progressive loss <strong>of</strong> articular cartilage<br />

after injury, will lead to better treatments <strong>of</strong> joint injuries and<br />

improved strategies for restoring damaged joint surfaces.<br />

I. Incidence and Impact <strong>of</strong> PTOA<br />

a. Results <strong>of</strong> current joint injury treatments – 20% to > 70%<br />

risk <strong>of</strong> PTOA<br />

b. Impairment due to PTOA equal to end-stage kidney disease<br />

and heart failure<br />

c. PTOA prevalence > 12% <strong>of</strong> all lower extremity osteoarthritis<br />

II. Mechanical Injury – Risk Factors & Thresholds (What is<br />

excessive mechanical loading?)<br />

a. Acute mechanical damage to cells and matrix<br />

i. Cell death<br />

ii. Rupture <strong>of</strong> matrix macromolecular framework<br />

REFERENCES<br />

1. Anderson DD, Mosqueda T, Thomas T, Hermanson EL, Brown TD, Marsh JL:<br />

Quantifying tibial plafond fracture severity: absorbed energy and fragment<br />

displacement agree with clinical rank ordering. J Orthop Res 26:1046-1052,<br />

2008.<br />

2. Beecher BR, Martin JA, Pedersen DR, Heiner AD, Buckwalter JA: Antioxidants<br />

block cyclic loading induced chondrocyte death. Iowa Orthop J 27:1-8,<br />

2007.<br />

3. Buckwalter JA: Osteoarthritis and articular cartilage use, disuse and abuse:<br />

experimental studies. J Rheumatol (suppl 43) 22:13-15, 1995.<br />

4. Buckwalter JA, Lane NE: Aging, sports and osteoarthritis. Sports Med Arth Rev<br />

4:276-287, 1996.<br />

5. Buckwalter JA, Lane NE, Gordon SL: Exercise as a Cause <strong>of</strong> Osteoarthritis. in<br />

Kuettner KE, Goldberg VM, Editors: Osteoarthritic Disorders, pp. 405-417.<br />

Rosemont IL: <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons, 1995.<br />

6. Buckwalter JA, Mankin HJ: Articular cartilage I. Tissue design and<br />

chondrocyte-matrix interactions. J Bone Joint Surg 79A(4):600-611, 1997.<br />

7. Buckwalter JA, Martin JA, Mankin HJ: Synovial Joint Degeneration and the<br />

Syndrome <strong>of</strong> Osteoarthritis. Instructional Course Lectures 49:481-489, 2000.<br />

8. Buckwalter JA, Martin JA, Olmstead M, Athanasiou KA, Rosenwasser MP,<br />

Mow VC: Osteochondral repair <strong>of</strong> primate knee femoral and patellar<br />

articular surfaces – Implications for preventing post-traumatic osteoarthritis.<br />

Iowa Ortho J 23:66-74, 2003.<br />

9. Buckwalter JA, Brown TD: Joint injury, repair and remodeling: Roles in posttraumatic<br />

osteoarthritis. Clin Ortho Rel Res 423:7-16, 2004.<br />

10. Ding L, McCabe DJ, Stround NJ, Buckwalter JA, Martin JA: A single blunt<br />

impact stimulated activation <strong>of</strong> mitogen activated protein kinases in bovine<br />

chondrocytes. Osteoarthritis Cartilage 16: suppl 4:S83, 2008.<br />

11. Goreham-Voss CM, McKinley TO, Brown TD: A finite element exploration<br />

<strong>of</strong> contact stress near an articular incongruity during unstable motion. J<br />

Biomech 40:3438-3447, 2007.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

b. Acute mechanical stress & osteoarthritis<br />

i. CT measures <strong>of</strong> the energy <strong>of</strong> an acute articular surface<br />

injury & risk <strong>of</strong> osteoarthritis – threshold effect<br />

ii. MRI measures <strong>of</strong> articular surface damage & risk <strong>of</strong><br />

osteoarthritis<br />

c. Cumulative mechanical stress & osteoarthritis – risk factors<br />

i. Incongruity<br />

ii. Instability<br />

iii. Incongruity & Instability<br />

III. The Role <strong>of</strong> Age in Post-Traumatic Osteoarthritis<br />

a. Increased risk <strong>of</strong> PTOA with increasing age – studies <strong>of</strong> intraarticular<br />

fractures and meniscal injuries<br />

b. Decreased chondrogenic capacity <strong>of</strong> chondrocytes and<br />

mesenchymal stem cells<br />

IV. Biologic Mediators <strong>of</strong> Progressive Cartilage Loss After<br />

Mechanical Injury<br />

a. Reactive oxygen species & matrix fragments<br />

i. Stimulation <strong>of</strong> progressive loss <strong>of</strong> cells<br />

ii. Progressive degradation <strong>of</strong> matrix & loss <strong>of</strong> mechanical<br />

properties<br />

b. Inhibition <strong>of</strong> Mediators – prevent progression <strong>of</strong> tissue<br />

damage<br />

V. Prevention <strong>of</strong> PTOA? Better treatments <strong>of</strong> joint injuries<br />

and improved strategies for repairing or restoring articular<br />

surfaces<br />

a. Biological<br />

b. Mechanical<br />

12. Li W, Anderson DD, Goldsworth JK, Marsh JL, Brown TD: Patient-specific<br />

finite element analysis <strong>of</strong> chronic contact stress exposure after intraarticular<br />

fracture <strong>of</strong> the tibial plafond. J Ortho Res 26:1039-1045, 2008.<br />

13. McCabe DJ, Stround NJ, Ramaskrishnan PS, Buckwalter JA, Pedrsen<br />

DR, Martin JA: Intracellular oxidant production by chondrocytes in<br />

osteochondral explants following blunt impact injury. Osteoarthritis<br />

Cartilage 16: suppl 4:S91, 2008.<br />

14. McKinley TO, Rudert MJ, Koos DC, Brown TD: Incongruity versus instability<br />

in the etiology <strong>of</strong> posttraumatic arthritis. Clin Ortho Rel Res 423:44-51,<br />

2004.<br />

15. McKinley TO, Rudert J, Tochigi Y, Pedersen DR, Koos DC, Baer TE, Brown TD:<br />

Incongruity-dependent changes <strong>of</strong> contact stress rates in human cadeveric<br />

ankles. J Ortho Trauma 20:732-738, 2006<br />

16. McKinley TO, Tochigi Y, Rudert MJ, Brown TD: Instability-associated changes<br />

in contact stress and contact stress rates near a step-<strong>of</strong>f incongruity. J Bone<br />

Joint Surg 90:375-383, 2008.<br />

17. Marsh JL, Buckwalter J, Gelberman R, Dirschl, D, Olson S, Brown, TD, Llinias<br />

A: AOA Symposium-Articular Fractures: Does an anatomic reduction really<br />

change the result? J Bone Joint Surg 84A:1259-1271, 2002.<br />

18. Martin JA, Buckwalter JA: The role <strong>of</strong> chondrocyte-matrix interactions in<br />

maintaining and repairing articular cartilage. Biorheology 37:129-140,<br />

2000.<br />

19. Martin JA, Buckwalter JA: The Role <strong>of</strong> Chondrocyte Senescence in the<br />

Pathogenesis <strong>of</strong> Osteoarthritis and in Limiting Cartilage Repair. J Bone Joint<br />

Surg 85A-Supplement 2:106-110, 2003.<br />

20. Martin JA, Klingelhutz AJ, Moussavi-Harmi F, Buckwalter JA: Effects <strong>of</strong><br />

oxidative damage and telmomerase activity on human articular cartilage<br />

chondrocyte senscence. J Gerontology: Biol Sciences 59:B324-36, 2004.<br />

21. Martin JA, Brown T, Heiner A, Buckwalter JA: Post-traumatic Osteoarthritis:<br />

The Role <strong>of</strong> Accelerated Chondrocyte Senescence. Biorheology 41:479-491,<br />

2004.<br />

22. Martin JA, Brown TD, Heiner AD, Buckwalter JA: Chondrocyte senescence,<br />

joint loading and osteoarthritis. Clin Orthop Rel Res 427S: S96-S103, 2004.


23. Martin JA, Buckwalter JA: Post-traumatic osteoarthritis: The role <strong>of</strong> stress<br />

induced chondrocyte damage. Bioreheology 43:517-521, 2006.<br />

24. Moussavi-Harami F, Duwayri Y, Martin JA, Moussavi-Harami F, Buckwalter<br />

JA: Oxygen effects on senescence in chondrocytes and mesenchymal stem<br />

cells: consequences for tissue engineering. Iowa Orthop J 24:15-20, 2004.<br />

187<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

25. Tochigi Y, McCabe DJ, Martin JA, Rudert J, Buckwalter JA, Brown TD: Acute<br />

chondrocyte damage in human ankle intraarticular fracture. Osteoarthritis<br />

Cartilage 16: suppl 4:S99, 2008.


188<br />

ChoNdroproteCtive ageNtS: FaCt aNd FiCtioN<br />

Constance R. Chu, MD<br />

I. Chondroprotective Agent: A substance that protects cartilage<br />

by acting against agents that would damage or destroy<br />

cartilage.<br />

II. Working definition: Substances that:<br />

1) stimulate chondrocyte synthesis <strong>of</strong> matrix components<br />

(collagen and proteoglycans)<br />

2) inhibit cartilage matrix degradation; and<br />

3) stabilize the synovium.<br />

III. Standard Anti-inflammatory Agents<br />

a. Corticosteroids<br />

b. NSAID<br />

Frisbie DD, Kawcak CE , Trotter GW , Powers BE , Walton RM , McIlwraith<br />

CW. Department <strong>of</strong> Clinical Sciences, College <strong>of</strong> Veterinary Medicine and<br />

Biomedical Sciences, Colorado State University, Fort Collins 80523, USA.<br />

Effects <strong>of</strong> triamcinolone acetonide on an in vivo equine osteochondral<br />

fragment exercise model. Equine Vet J. 1997 Sep; 29(5):349-59.<br />

Garvican ER, Vaughan-Thomas A, Redmond C, Gabriel N, Clegg PD.,MMPmediated<br />

collagen breakdown induced by activated protein C in equine<br />

cartilage is reduced by corticosteroids. J Orthop Res. 2010 Mar; 28(3):370-8.<br />

O’Connor JP, Lysz T. Celecoxib, NSAIDs and the skeleton.UMDNJ-New Jersey<br />

Medical School, Newark, New Jersey 07103, USA. oconnojp@umdnj.edu<br />

Drugs Today (Barc). 2008 Sep; 44(9):693-709.<br />

Seshadri V, Coyle CH, Chu CR. Lidocaine potentiates the chondrotoxicity <strong>of</strong><br />

methylprednisolone. Arthroscopy. 2009 Apr;25(4):337-47. Epub 2009 Feb<br />

13.<br />

Alternative treatments for your arthritis pain. Tai chi, fish oil, and capsaicin gel<br />

might be effective, drug-free alternatives to NSAIDs. [No authors listed] Duke<br />

Med Health News. 2009 Sep;15(9):4-5.<br />

IV. Hyaluronic Acid<br />

a. Viscosupplementation is regulated as a device<br />

b. One injection vs. multiple injections<br />

c. Effect <strong>of</strong> molecular weight<br />

d. Mechanisms <strong>of</strong> action?<br />

e. Clinical Results<br />

Ghosh P, Guidolin D., Potential mechanism <strong>of</strong> action <strong>of</strong> intra-articular<br />

hyaluronan therapy in osteoarthritis: are the effects molecular weight<br />

dependent? Semin Arthritis Rheum. 2002 Aug; 32(1):10-37.<br />

Takahashi K, Hashimoto S, Kubo T, Hirasawa Y, Lotz M, Amiel D.,Effect <strong>of</strong><br />

hyaluronan on chondrocyte apoptosis and nitric oxide production in<br />

experimentally induced osteoarthritis. Department <strong>of</strong> <strong>Orthopaedic</strong>s,<br />

University <strong>of</strong> California San Diego, 92093-0630, USA. J Rheumatol. 2000<br />

Jul; 27(7):1713-20.<br />

V. Glucosamine<br />

a. Glucosamine sulfate vs Glucosamine HCl<br />

b. Bioavailability within Joints<br />

c. Mechanisms <strong>of</strong> action?<br />

d. Clinical Results<br />

Laverty S, Sandy JD, Celeste C, Vachon P, Marier JF, Plaas AH. Synovial fluid levels<br />

and serum pharmacokinetics in a large animal model following treatment<br />

with oral glucosamine at clinically relevant doses.FacultŽ de MŽdicine<br />

VŽtŽrinaire, UniversitŽ de MontrŽal, Montreal, Quebec, Canada. Arthritis<br />

Rheum. 2005 Jan; 52(1):181-91.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Persiani S, Rotini R, Trisolino G, Rovati LC, Locatelli M, Paganini D, Antonioli D,<br />

Roda A.,Synovial and plasma glucosamine concentrations in osteoarthritic<br />

patients following oral crystalline glucosamine sulphate at therapeutic dose.<br />

Rotta Research Laboratorium/Rottapharm, Monza, Italy. stefano.persiani@<br />

rottapharm.com. Osteoarthritis Cartilage. 2007 Jul; 15(7):764-72. Epub<br />

2007 Mar 13.<br />

VI. Chondroitin Sulfate<br />

a. Bioavailability within Joints<br />

b. Mechanisms <strong>of</strong> action?<br />

c. Clinical Results<br />

Monfort J, Martel-Pelletier J, Pelletier JP. Chondroitin sulphate for symptomatic<br />

osteoarthritis: critical appraisal <strong>of</strong> meta-analyses.Unitat de Recerca en<br />

Fisiopatologia Ossia i Articular, Institut Municipal d’Investigaci— M dica<br />

(IMIM), Hospital del Mar, Universitat Aut˜noma de Barcelona, Parc de<br />

Recerca Biom dica de Barcelona, Spain. Curr Med Res Opin. 2008 May;<br />

24(5):1303-8. Epub 2008 Apr 15.<br />

Uebelhart D. Clinical review <strong>of</strong> chondroitin sulfate in osteoarthritis. Department<br />

<strong>of</strong> Rheumatology and Institute <strong>of</strong> Physical Medicine, University Hospital<br />

Zurich, Switzerland. daniel.uebelhart@usz.ch Osteoarthritis Cartilage. 2008;<br />

16 Suppl 3:S19-21. Epub 2008 Jul 31.<br />

VII. Emerging Therapies<br />

a. Growth Factors<br />

b. Anti-oxidants<br />

c. Cytokine inhibition<br />

d. Matrix Protection<br />

i. Collagen – “anti” matrix metalloproteinases<br />

ii. Proteoglycan – “anti” aggrecanase<br />

e. Gene Therapy<br />

Brandt KD, Mazzuca SA, Katz BP, Lane KA, Buckwalter KA, Yocum DE, Wolfe<br />

F, Schnitzer TJ, Moreland LW, Manzi S, Bradley JD, Sharma L, Oddis<br />

CV, Hugenberg ST, Heck LW. Effects <strong>of</strong> doxycycline on progression <strong>of</strong><br />

osteoarthritis: results <strong>of</strong> a randomized, placebo-controlled, double-blind<br />

trial. Arthritis Rheum. 2005 Jul; 52(7):2015-25.<br />

Evans CH, Robbins PD, Ghivizzani SC, Wasko MC, Tomaino MM, Kang R,<br />

Muzzonigro TA, Vogt M, Elder EM, Whiteside TL, Watkins SC, Herndon JH.<br />

Gene transfer to human joints: progress toward a gene therapy <strong>of</strong> arthritis.<br />

Department <strong>of</strong> <strong>Orthopaedic</strong> Surgery, University <strong>of</strong> Pittsburgh School <strong>of</strong><br />

Medicine, Pittsburgh, PA 15261, USA.cevans@rics.bwh.harvard.edu Proc<br />

Natl Acad Sci U S A. 2005 Jun 14;102(24):8698-703. Epub 2005 Jun 6.<br />

Malemud CJ. Anticytokine therapy for osteoarthritis: evidence to date.<br />

Department <strong>of</strong> Medicine, Division <strong>of</strong> Rheumatic Diseases, Department <strong>of</strong><br />

Anatomy, Case Western Reserve University, School <strong>of</strong> Medicine & University<br />

Hospitals Case Medical Center, Cleveland, Ohio 44106-5076, USA. cjm4@<br />

cwru.edu Drugs Aging. 2010 Feb 1; 27(2):95-115.<br />

VIII. Diet, Exercise, Weight Management<br />

Roos EM and Dahlberg L. Positive effects <strong>of</strong> moderate exercise on<br />

glycosaminoglycan content in knee cartilage: a four-month, randomized,<br />

controlled trial in patients at risk <strong>of</strong> osteoarthritis. Arthritis Rheum. 2005<br />

Nov; 52(11):3507-14. (Exercise/Chondroprotection)


189<br />

traNSlatioNal reSearCh you CaN uSe:<br />

Cell-baSed approaCheS For Cartilage repair<br />

Scott A. Rodeo, MD<br />

General Points:<br />

• Cell-based approaches hold great promise but there are still<br />

limitations to overcome<br />

• Implanted cells need appropriate signals to drive differentiation<br />

• The inflammatory signals in the post-operative joint likely have<br />

negative effect on biology <strong>of</strong> implanted cells.<br />

• Cells need to do more than just matrix protein gene<br />

expression—also need appropriate post-translational protein<br />

modification, assembly into matrix ultrastructure, etc.<br />

• The composition (specific matrix proteins) are <strong>of</strong>ten made by<br />

the cells but the structure <strong>of</strong> hyaline cartilage is not completely<br />

reformed<br />

• We can learn lessons from fetal development—ideal goal would<br />

be to recapitulate the events that occur during embryogenesis.<br />

Fetal wounds heal without scar formation (“scarless healing”)due<br />

to absence <strong>of</strong> inflammatory response. Could we ultimately<br />

reproduce a similar environment in cartilage repair??<br />

Current and Future Cell-Based Approaches for Cartilage Repair<br />

Autologous chondrocyte implantation (ACI)<br />

• Limitations <strong>of</strong> first generation ACI:<br />

— Requires 2 operations<br />

— Technically demanding to suture periosteum to cartilage<br />

— Cells can de-differentiate in culture<br />

— Graft hypertrophy following implantation<br />

— Incomplete incorporation <strong>of</strong> newly-formed tissue with<br />

adjacent host cartilage<br />

• Newer generation ACI (2nd and 3rd generation):<br />

— Cells suspended and cultured in matrix (hyaluronic acid or<br />

collagen scaffold)<br />

— Technically simpler- material can be applied with fibrin glue<br />

rather than suturing to periosteum<br />

— The matrix material acts as a scaffold to support neo-cartilage<br />

formation<br />

— “Characterized chondrocytes” (Chondroselect)- - this<br />

technique selects a subset <strong>of</strong> cells that express chondrocyte<br />

phenotype in culture.<br />

— These techniques are currently used in Europe but are not yet<br />

FDA approved in the U.S.<br />

• Juvenile chondrocytes (Zimmer De Novo)<br />

Amer. J. Sports Medicine 2010)<br />

(Adkisson et al,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

— There is a dramatic age-related decline in human<br />

chondrocyte chondrogenic potential<br />

— Juvenile tissue has much proliferative capacity<br />

— Minced cartilage derived from juvenile human donors<br />

(allograft)<br />

— The material is suspended in fibrin glue and attached to<br />

lesion site using fibrin glue<br />

Stem Cells<br />

• Tremendous potential for cartilage tissue regeneration<br />

• Further information needed to identify best way to control<br />

differentiation <strong>of</strong> these cells<br />

• Cells can be from various sources:<br />

— Derived from adult tissue (muscle, fat, bone marrow)<br />

— Embryonic stem cells<br />

— Induced pluripotent cells (IPS) have interesting potential<br />

– IPS are formed by re-programming differentiated adult<br />

fibroblasts to express “pluripotency genes” by infection<br />

with transcription factors OCT 3/4, SOX2, KLF4, and<br />

c-MYC (Takahashi and Yamanaka, 2006)<br />

Cytokines<br />

• Cytokines have tremendous potential to affect basic cell biology<br />

• Limitations <strong>of</strong> single factor therapy provides compelling<br />

rationale for use <strong>of</strong> platelet-rich plasma<br />

• FGF-18 is being evaluated as potential cytokine to enhance<br />

cartilage healing<br />

• An important challenge is cytokine delivery to the desired site<br />

Platelet-Rich Plasma<br />

• PRP has potential to affect cartilage biology<br />

• PRP been shown to increase DNA content, as well as<br />

proteogylcan and collagen synthesis in chondrocytes<br />

• Numerous important limitations at this time due to variability<br />

between various commercial PRP systems<br />

• Variability in:<br />

— Platelet recovery<br />

— Growth factor content per platelet<br />

— Inclusion/exclusion <strong>of</strong> WBCs<br />

— Fibrin content<br />

— Timing <strong>of</strong> platelet activation<br />

— Kinetics <strong>of</strong> cytokine release from the PRP


190<br />

SelF-proteCtive Smart orthopediC implaNtS<br />

We are entering an exciting era in orthopedic surgery. Biological<br />

modifications <strong>of</strong> conventional devices to counteract the current<br />

implant associated problems are underway. Self-protective ‘smart’<br />

implants are examples <strong>of</strong> such accomplishments. The modification<br />

<strong>of</strong> the implant surface with a permanent covalent bond and tethering<br />

<strong>of</strong> antibiotics or other bi<strong>of</strong>actors, if proven to be effective, is likely<br />

to transform the practice <strong>of</strong> orthopedic surgery and other medical<br />

specialties. The current strong interest in translational products has<br />

brought experts from both the basic sciences and clinical practice to<br />

exploit the advances in biotechnology in hope <strong>of</strong> further improving<br />

the practice <strong>of</strong> medicine.<br />

SELF-PROTECTIVE SMART IMPLANTS<br />

Current advances in biomaterials and biotechnology have introduced<br />

a new notion <strong>of</strong> implants with ‘smart’ surfaces. These implants are<br />

usually designed to take advantage <strong>of</strong> molecular knowledge and<br />

target specific cellular responses at the cell and molecular level.<br />

Surface coatings and direct surface modifications allow interactions<br />

with cellular membranes and integrins to modulate cell survival,<br />

proliferation, differentiation, and signaling. However, production <strong>of</strong><br />

such surfaces and their introduction into mainstream medicine has<br />

been hampered by the complexity <strong>of</strong> such projects. Advanced surface<br />

modifications involve nanoscale chemistry and biomaterial design.<br />

The synthesis <strong>of</strong> such materials is difficult to control and practically<br />

impossible to reproduce with uniform consistency. To overcome<br />

such problems, innovative synthesis methods were developed that<br />

rely on self-organization and assembly. Such systems are similar to<br />

organizations found in biology as pertinent to quaternary structures<br />

in proteins and self-assembled membranes. Furthermore, due to<br />

the possibly reversible interactions that take place, such complexes<br />

can be further modified to respond to external cues, thus actively<br />

interacting with the immediate environment and being “smart”.<br />

Smart implant technology is superior to surface coatings by<br />

providing a permanent surface integral to the implant. Using such<br />

designs allows for a self protective surface capable <strong>of</strong> detecting and<br />

responding to infecting organisms, possibly over the life <strong>of</strong> the<br />

implant. By applying the direct knowledge <strong>of</strong> peri-prosthetic infection<br />

and the current available treatment strategies, we have developed<br />

an innovative approach that can address some <strong>of</strong> the problems<br />

associated with the use <strong>of</strong> implants such as periprosthetic infection.<br />

In contrast to surface coatings that are susceptible to degradation in<br />

the host environment, a smart implant surface is permanent through<br />

the application <strong>of</strong> nanotechnology and has bactericidal effects,<br />

without modification or loss <strong>of</strong> the antibiotic. Such an implant is<br />

not yet available in clinical practice. In order to make this review<br />

timely and complete, we further describe some <strong>of</strong> our published and<br />

unpublished current work on developing the ideal self-protective<br />

implant To create such bactericidal surfaces, we have utilized<br />

organosilane covalent bonds to tether antibiotics and other bi<strong>of</strong>actors<br />

to the surface <strong>of</strong> the implant The silane chemistry used during this<br />

process is well characterized for various materials. We have further<br />

modified the chemistry to suit pure titanium and currently applying<br />

SELECTED REFERENCES<br />

1. Parvizi J, Wickstrom E, Zeiger AR, Adams CS, Shapiro IM, Purtill JJ, Sharkey<br />

PF, Hozack WJ, Rothman RH, Hickok NJ: Titanium surface with biologic<br />

activity against infection. Clinical <strong>Orthopaedic</strong>s & Related Research.<br />

(429):33-38, 2004.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Javad Parvizi MD, FRCS<br />

similar methods to Ti6Al4V alloys used in orthopaedics. Using this<br />

scheme, a nanoscale antibiotic surface is being engineered, and the<br />

covalent linkage should render the antibiotic stable on the surface,<br />

being able to prevent bacterial colonization without exhaustion,<br />

possibly throughout the life <strong>of</strong> the implant. In addition, the absence<br />

<strong>of</strong> antibiotic elution prevents distant host tissue toxicity or antibiotic<br />

gradients that could lead to resistance. Furthermore, by adapting<br />

the chemistry, specific antibiotics could be tailored to the infectious<br />

organisms or the individual patient to improve treatment times. Such<br />

technology is easy to apply clinically by avoiding additional surgical<br />

steps or techniques during implant placement with no distinction in<br />

approach when compared to currently available implants.<br />

Various other smart implants are currently being considered across<br />

medicine. Biodegradable thermoplastic elastomers designed to adapt<br />

and change shape, wireless sensor-equipped implants for feedback<br />

and monitoring, electroactive polymers capable <strong>of</strong> stimulating<br />

cardiac muscle, bioresponsive materials with selective release <strong>of</strong><br />

molecules when signaled by other molecules are some examples <strong>of</strong><br />

such smart implants currently under research. Several attempts at<br />

producing self-protective surfaces have also been considered however<br />

both the surface or the antimicrobial agents used are not suitable<br />

for orthopaedics. Several <strong>of</strong> those products have been elaborated<br />

primarily for vascular and other surgical applications. Furthermore,<br />

use <strong>of</strong> innovative antimicrobial agents suits industrial purposes<br />

while being problematic in medicine due to required FDA approval<br />

and acceptance. Still, a cross-disciplinary approach to smart selfprotective<br />

implants has the potential to introduce truly remarkable<br />

innovations in medical devices.<br />

KEY ISSUES<br />

• Implant use is rapidly increasing, resulting in escalating<br />

expenditure. Biotechnological innovations are required to<br />

prevent complications <strong>of</strong> implant use and reduce costs.<br />

• Despite aseptic loosening currently being one <strong>of</strong> the most<br />

common complications <strong>of</strong> arthroplasty, recent research suggests<br />

that periprosthetic infection is on the rise and will soon be<br />

the most prevalent complication. Periprosthetic infection is a<br />

challenging problem with high morbidity.<br />

• Understanding the mechanism <strong>of</strong> periprosthetic infection is<br />

critical for the design <strong>of</strong> successful preventive and therapeutic<br />

strategies.<br />

• It is known that the implant surface provides an ideal<br />

environment for bacterial colonization that manages to escape<br />

systemic immune surveillance. Bacterial attachment is the<br />

critical step in formation <strong>of</strong> bi<strong>of</strong>ilm. Eradication <strong>of</strong> organisms<br />

organized into bi<strong>of</strong>ilm by antibiotics is practically impossible<br />

and requires surgical resection <strong>of</strong> the implant.<br />

• No ideal local antibiotic delivery system exists. Antibiotic<br />

impregnated cement and surface coatings, though useful, have<br />

numerous shortcomings.<br />

• Advances in the field <strong>of</strong> nanotechnology have allowed the<br />

design <strong>of</strong> self-protective, stable, and effective implant surfaces.<br />

2. Jose B, Antoci VJr, Zeiger AR, Wickstrom E, Hickok NJ: Vancomycin<br />

covalently bonded to titanium beads kills Staphylococcus aureus. Chemistry<br />

and Biology 12(9):1041-1048. 2005<br />

3. Bauer T, Parvizi J, Kobayashi N, Krebs V. Diagnosis <strong>of</strong> periprosthetic<br />

infection. Journal <strong>of</strong> Bone and Joint Surgery <strong>American</strong> 88[4], 869-882. 2006.<br />

4. Costerton JW, Stewart PS, Greenberg EP: Bacterial bi<strong>of</strong>ilms: a common cause<br />

<strong>of</strong> persistent infections. Science 284(5418):1318-22, 1999


191<br />

New optioNS iN polymerS aNd CeramiCS For<br />

JoiNt replaCemeNt<br />

Philip C Noble, MD<br />

The Clinical Problem<br />

Conventional Polyethylene(UHMWPE) / Metal joints exhibit<br />

problems related to bearing failure, notably<br />

1. Osteolysis secondary to biologically active particulate debris<br />

2. Wearing out <strong>of</strong> the UHMWPE bearing surface through<br />

accelerated wear (typically due to 3rd body particles)<br />

3. Mechanical failure <strong>of</strong> the UHMWPE component (early:<br />

inadequate mechanical properties; late: embrittlement from<br />

oxidation).<br />

Solutions<br />

1. Improved Polymers:<br />

a. Cross-linked UHMWPE<br />

Rationale: Cross-linking <strong>of</strong> polymer chains increases<br />

mechanical properties and wear resistance. Most common<br />

method is to use radiation (5-10MRads). However, radiation<br />

also generates free radicals which can react with dissolved<br />

oxygen and polymer chains causing degradation and<br />

embrittlement.<br />

To avoid embrittlement, cross-linking has been achieved<br />

using the following strategies:<br />

(i) Irradiate without oxygen; store without oxygen until use.<br />

• Benefit: mechanical properties preserved.<br />

• Drawback: Free radicals still present to react with chains<br />

and oxygen dissolved from body fluids in vivo.<br />

• Reality: Wear resistance significantly improved; oxidation<br />

and embrittlement slow in vivo and limited to peripheral<br />

and backside surfaces.<br />

(ii)Eliminate free radicals. This can be achieved using the<br />

following methods:<br />

• Heating above melting point:<br />

Imparts wear and oxidation resistance but degrades<br />

strength and fatigue resistance. Increased incidence <strong>of</strong><br />

mechanical failure.<br />

• Annealing below melting point:<br />

Wear and fracture resistance retained; oxidation resistance<br />

variable,, depending on process.<br />

• Addition <strong>of</strong> chemical compounds (eg. Vitamin E) to<br />

scavenge free radicals<br />

• Has potential to provide wear resistance without loss <strong>of</strong><br />

initial properties<br />

b. Alternative Polymers<br />

i. Polyurethanes<br />

ii. PEEK<br />

2. Ceramic bearing surfaces<br />

Rationale: In most cases <strong>of</strong> catastrophic wear after THA, and in many<br />

failures <strong>of</strong> TKA, third body particles damage the bearing surface <strong>of</strong><br />

the metal component. This causes the wear rate to increase by 2-8<br />

REFERENCES<br />

Polymers in THA/TKA<br />

1. Birman MV, Noble PC, Conditt MA, Li S, Mathis KB. Cracking and<br />

impingement in ultra-high-molecular-weight polyethylene acetabular liners.<br />

J Arthroplasty. 2005; 20(7 Suppl 3): 87-92.<br />

2. Carbone A, Howie DW, McGee M, Field J, Pearcy M, Smith N, Jones E. Aging<br />

performance <strong>of</strong> a compliant layer bearing acetabular prosthesis in an ovine<br />

hip arthroplasty model. J Arthroplasty. 2006; 21: 899–906.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

times, depending on the severity <strong>of</strong> the damage and the loading<br />

conditions.<br />

A strategy to increase the wear resistance <strong>of</strong> the joint is to prevent<br />

or minimize the susceptibility <strong>of</strong> the metal bearing surface to third<br />

body abrasion, either through the use <strong>of</strong> a metallic oxide composite<br />

(e.g. Oxinium) or a ceramic ball (Alumina or Zirconia-reinforced<br />

alumina).<br />

Outcome: Mixed results. In some series run-away wear was greatly<br />

reduced compared to CoCr. In other series- no difference. Mid to<br />

long-term clinical series are awaited on Oxinium in THR. Extensive<br />

damage after dislocation and reduction has been demonstrated.<br />

3. Ceramic on Ceramic Articulations<br />

Rationale: The weak link in the UHMWPE-ceramic couple is the<br />

polymer. However, osteolysis rarely occurs below a threshold burden<br />

<strong>of</strong> wear debris. Therefore, eliminate UHMWPE from the articulation<br />

to avoid excessive wear and osteolysis.<br />

Materials available: Alumina-alumina (ALX-ALX) has a 40-year<br />

history in THA demonstrating extremely low wear rates and the least<br />

biological reactivity <strong>of</strong> any bearing material. Zirconia-reinforced<br />

alumina (ZRA) is 60% stronger than alumina. Currently, only ZRA<br />

balls are FDA approved, though outside the USA, ZRA balls are<br />

approved for implantation with ALX and ZRA liners.<br />

Outcome:<br />

• The wear performance <strong>of</strong> COC bearings in vivo has been<br />

generally good, but this bearing is very sensitive to cup<br />

orientation and rim impingement. Micro-separation<br />

(subluxation <strong>of</strong> 1-3mm) <strong>of</strong> the joint is relatively common<br />

leading to localized areas <strong>of</strong> “stripe wear” and a 10-fold increase<br />

in wear rate. Reports <strong>of</strong> osteolysis are rare.<br />

• Catastrophic failure <strong>of</strong> COC hips is rare, with a prevalence <strong>of</strong><br />

2-8 per 10,000 cases. Intraoperative rim fractures have been<br />

more common, with documented accounts in up to 3% <strong>of</strong><br />

cases.<br />

• Squeaking has been reported as a relatively common<br />

complication <strong>of</strong> some metal backed ceramic cup inserts, with<br />

rates <strong>of</strong> 7-21% with some designs. Whereas squeaking joints<br />

are rare with flush-mounted cups (approx 0.6%), in cups with<br />

an elevated metal rim is 5 times higher, and twice as common<br />

again (7%) when the cup is coupled with one particular stem<br />

design. Thus it appears that most cases <strong>of</strong> squeaking can be<br />

prevented through careful implant selection.<br />

4. Alternative materials<br />

a. Silicon Nitride<br />

b. Diamond compacts and coatings<br />

3. Currier BH, Currier JH, Collier JP, Mayor MB, Scott RD. Shelf life and in vivo<br />

duration. Clin Orthop.1997; 342:111–122.<br />

4. D’Antonio JA, Manley MT, Capello WN, et al. Five-year experience with<br />

Crossfire highly cross-linked polyethylene. Clin Orthop Relat Res. 2005; 441:<br />

143-50.<br />

5. Dorr LD, Wan Z, Shardrar C, Sirianni L, Boutary M, Yun A. Clinical<br />

Performance <strong>of</strong> a Durasul Highly Cross-Linked Polyethylene Acetabular Liner<br />

for Total Hip Arthroplasty at Five Years. J Bone Joint Surg AM. 2005; 87:<br />

1816-1821.


6. Furmanski J, Anderson M, Bal S, Greenwald AS, David Halley D, Penenberg<br />

B, Ries M, Pruitt L. Clinical fracture <strong>of</strong> cross-linked UHMWPE acetabular<br />

liners. Biomaterials. 2009; 30, 5572–5582.<br />

7. Geerdink CH, Grimm B, Vencken W, Heyligers IC, Tonino AJ. Cross-linked<br />

compared with historical polyethylene in THA: An 8- year clinical study. Clin<br />

Orthop Relat Res. 2009; 467(4): 979-84.<br />

8. Leung SB, Egawa H, Stepniewski A, Beykirch S, Engh CA, Engh CA. Incidence<br />

and Volume <strong>of</strong> Pelvic Osteolysis at Early Follow-up with Highly Cross-linked<br />

and Noncross-linked Polyethylene. J Arthroplasty. 2007; 22: 134-140.<br />

9. Masonis JL, Bourne RB, Ries MD, McCalden RW, Salehi A, Kelman<br />

DC. Zirconia femoral head fractures: A clinical and retrieval analysis. J<br />

Arthroplasty. 2004; 19: 898–905.<br />

10. McKellop H, Shen FW, Lu B, Campbell P, Salovey R. Effect <strong>of</strong> Sterilization<br />

Method and Other Modifications on the Wear Resistance <strong>of</strong> Acetabular Cups<br />

Made <strong>of</strong> Ultra-High Molecular Weight Polyethylene: A Hip-Simulator Study.<br />

J Bone Joint Surg. 2000; 82:1708-1725.<br />

11. Oonishi H, Ishimaru H, Kato A. Effect <strong>of</strong> Cross-linkage by Gamma<br />

Irradiation in Heavy Doses to Low Wear Polyethylene in Total Hip<br />

Prostheses. J. Mater. Sci. Mater. Medicine. 1996; 7, 753-763.<br />

12. Orala E, Rowella SL, Muratoglua OK. The effect <strong>of</strong> a-tocopherol on the<br />

oxidation and free radical decay in irradiated UHMWPE. Biomaterials. 2006;<br />

27:5580–5587.<br />

13. Spector BM, Ries MD, Bourne RB, Sauer WS, Long M, Hunter G. Wear<br />

performance <strong>of</strong> ultra-high molecular weight polyethylene on oxidized<br />

zirconium total knee femoral components. J Bone Joint Surg Am. 2001; 83-<br />

A( Suppl 2): 80–86.<br />

14. Sutula LC, Collier JP, Saum KA, et al. Impact <strong>of</strong> sterilization on clinical<br />

performance <strong>of</strong> polyethylene in the hip. Clin Orthop. 1995; 319:28–40.<br />

Ceramic Bearings in THA/TKA<br />

1. Bal BS, Khandkar A, Lakshminarayanan R, Clarke IC, H<strong>of</strong>fman AA, Rahaman<br />

MN. Testing <strong>of</strong> silicon nitride ceramic bearings for total hip arthroplasty. J<br />

Biomed Mat Res. 2008; 87B: 447–454.<br />

192<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

2. Capello W, D’Antonio J, Feinberg J R, Manley M, Naughton M. Ceramic-on-<br />

Ceramic Total Hip Arthroplasty: Update. J Arthroplasty. 2008; 23(7): 39-43.<br />

3. D’Antonio JA, Sutton K. Ceramic Materials as Bearing Surfaces for Total Hip<br />

Arthroplasty. J. Am. Acad. Orthop Surg. 2009; 17(2): 63-68.<br />

4. Ecker T M, Robbins C, van Flandern G, Patch D, Steppacher SD, Bierbaum<br />

B, and Murphy SB. Squeaking in Total Hip Replacement: No Cause for<br />

Concern. ORTHOPEDICS. 2008; 31(9): 875-877.<br />

5. Eickmann T, Manaka M, Clarke I, Gustafson A. Squeaking and neck-socket<br />

impingement in a ceramic total hip arthroplasty. Bioceramics. 2003; 15,<br />

240(2): 849–852.<br />

6. Ha YC, Kim SY, Kim HJ, Yoo JJ, Koo KH. Ceramic liner fracture after<br />

cementless alumina-on-alumina total hip arthroplasty. Clin Orthop Relat<br />

Res. 2007; 458: 106-10.<br />

7. Ha Y, Koo H, Jeong S, Joon Y, Kim Y, Joong K. Ten-year survivorship <strong>of</strong><br />

cemented ceramic-ceramic total hip prosthesis. J Bone Joint Surg Am.2006;<br />

88: 780–787.<br />

8. Hamadouche M, Boutin P, Daussange J, Bolander ME, Sedel L. Alumina-onalumina<br />

total hip arthroplasty: a minimum 18.5-year follow-up study. J Bone<br />

Joint Surg Am. 2002; 84-A(1): 69-77.<br />

9. Hernigou P, Mathieu G, Poignard A, Manicom O, Filippini P, Demoura<br />

A. Oxinium, a new alternative femoral bearing surface option for hip<br />

replacement. Eur J Orthop Surg Traumatol. 2007; 17:243–246.<br />

10. Heros RJ, Willmann G. Ceramic in total hip arthroplasty: history, mechanical<br />

properties, clinical results, and current manufacturing state <strong>of</strong> the art.<br />

Seminars in Arthroplasty. 1998; pp. 114-122. Edited, 114-122.<br />

11. Murali R, Bonar SF, Kirsh G, Walter WK, Walter WL. Osteolysis in Third-<br />

Generation Alumina Ceramic-on-Ceramic Hip Bearings With Severe<br />

Impingement and Titanium Metallosis. J Arthroplasty. 2008.<br />

12. Murphy SB, Ecker TM, Timo M, Tannast M. Two to 9 Year Clinical results <strong>of</strong><br />

Alumina Ceramic-on-Ceramic THA. Clin Orthop Relat Res. 2006; 453: 97-<br />

102.


193<br />

metal oN metal beariNgS aNd bioCompatibility<br />

Joshua J. Jacobs, MD<br />

Histological examination <strong>of</strong> the tissues surrounding secondgeneration<br />

metal-on-metal hip replacement prostheses generally<br />

confirms the primary rational for the reintroduction <strong>of</strong> these bearings.<br />

The number <strong>of</strong> particle-laden histiocytes is greatly diminished<br />

relative to conventional metal-on-polyethylene articulations due to<br />

lower wear rates and the lesser volume <strong>of</strong> wear particles generated<br />

when metal-on-metal bearings function as intended. 1-3 However, as<br />

continuing experience with these devices is gained, unanticipated<br />

local tissue responses in some patients, including immunological/<br />

necrotic reactions, 4-6 and novel degradation products such as<br />

chromium phosphate7,8 have come to light.<br />

It is now recognized that unusual lymphocytic aggregates occur in<br />

the periprosthetic tissues <strong>of</strong> some patients with second-generation<br />

CoCr metal-on-metal hip replacements that are not generally found<br />

in tissues surrounding other articulations. 4,5 These findings have<br />

been in association with pain, joint effusion, aseptic loosening and<br />

osteolysis. 4,5,9 The histological and immunohistochemical appearance<br />

<strong>of</strong> the tissues is dominated by peri-vascular and diffuse infiltrates <strong>of</strong><br />

T and B-lymphocytes, including secondary lymphoid follicles that<br />

are morphologically suggestive <strong>of</strong> a hypersensitivity reaction. These<br />

findings <strong>of</strong> primarily lymphocytic inflammation are in contrast to<br />

tissues surrounding metal-on-polyethylene bearings where a very<br />

large number <strong>of</strong> particle-laden macrophages may be seen, and where<br />

suchlymphocyticaggregatesarerareinpatientswithoutinflammatory<br />

arthritis. While this phenomenon was first observed in the European<br />

patient population where metal-on-metal bearings have had a more<br />

extensive history, 4,5 it has now being reported in patients who have<br />

received contemporary metal-on-metal bearings in North America8 and Asia. 9 The prevalence <strong>of</strong> metal hypersensitivity reactions in the<br />

periprosthetic tissues <strong>of</strong> metal-on-metal bearings is unknown; 4,5 and<br />

a causal relationship between metal hypersensitivity and osteolysis<br />

has been suggested but remains to be established. 10 Released soluble<br />

metal can activate the immune system by forming complexes with<br />

native proteins and are considered to be candidate antigens (or<br />

allergens). Polymeric wear debris (not easily chemically degraded<br />

in vivo) has not been implicated as a major source <strong>of</strong> allergic-type<br />

immune responses. 11-14<br />

Metal hypersensitivity is a well-established phenomenon, where<br />

dermal hypersensitivity to metal affects about 10-15% <strong>of</strong> the<br />

population. 11 Implant hypersensitivity responses are generally<br />

classified as Type IV Delayed Type Hypersensitivity (DTH). Metalantigen<br />

sensitized T-DTH lymphocytes release various cytokines<br />

that result in the accumulation and activation <strong>of</strong> macrophages. The<br />

majority <strong>of</strong> DTH participating cells are macrophages, and only 5%<br />

<strong>of</strong> cells present are lymphocytes. There is crossover between the<br />

cytokine cascades involved in a DTH reaction and in inflammatory<br />

bone loss (osteolysis). 15 This may explain the clinical observations <strong>of</strong><br />

a DTH-like histological response in association with osteolysis in a<br />

subgroup <strong>of</strong> patients who have undergone revision <strong>of</strong> a symptomatic<br />

metal-on-metal bearing hip reconstruction. 4,9,16,17<br />

The incidence <strong>of</strong> metal sensitivity as determined by patch testing<br />

among patients with both well and poorly functioning implants is<br />

roughly twice as high as that <strong>of</strong> the general population, approximately<br />

25%. The average incidence <strong>of</strong> metal sensitivity among patients with<br />

a “failed” implant (in need <strong>of</strong> revision surgery) is approximately 50-<br />

60%. 11 This increased prevalence <strong>of</strong> metal sensitivity among patients<br />

with a failed implant has prompted the speculation that immunologic<br />

reactivity may contribute to implant loosening. However, there is a<br />

lack <strong>of</strong> a clear connection between incidence <strong>of</strong> metal sensitivity<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

and implant residence time, infection, reason for removal, or pain.<br />

At this time, however, it is unclear whether metal sensitivity causes<br />

implant loosening or whether implant loosening results in the<br />

development <strong>of</strong> metal sensitivity. Specific types <strong>of</strong> implants with<br />

greater propensity to release metal in vivo may be more prone to<br />

induce metal sensitivity, e.g. metal-on-metal bearing surfaces. 18<br />

While general patch testing protocols and commercial kits do exist<br />

for a variety <strong>of</strong> commonly antigenic substances, 19 there is mounting<br />

concern about the applicability <strong>of</strong> dermal testing to the study <strong>of</strong><br />

immune responses to orthopedic implants; in particular, there<br />

is a lack <strong>of</strong> knowledge about appropriate antigen presenting cells<br />

and metal challenge agents. 12 In vitro lymphocyte transformation<br />

tests (LTT) testing involves measuring the proliferative response <strong>of</strong><br />

lymphocytes (obtained from peripheral blood) following exposure<br />

with antigen. The use <strong>of</strong> LTT testing has been established as a<br />

method for testing sensitivity in a variety <strong>of</strong> clinical settings. The use<br />

<strong>of</strong> LTT testing for correlating implant performance with related metal<br />

reactivity has been limited. 20-22 However, the few investigations that<br />

have been conducted indicate that metal sensitivity may be more<br />

readily detected by LTT than by dermal patch testing. 20,21,23 If true,<br />

such reports seem to indicate LTT testing may be equally or better<br />

suited for the testing <strong>of</strong> implant related sensitivity than dermal patch<br />

testing.<br />

In addition to the nanometer-size wear particles known to be<br />

generated by metal-on-metal bearings, 24 particles <strong>of</strong> chromium<br />

phosphate corrosion products have been reported in the periprosthetic<br />

tissues <strong>of</strong> failed metal-on-metal arthroplasties <strong>of</strong> several different<br />

designs. 7,8 Chromium phosphate has been previously identified as<br />

a product <strong>of</strong> accelerated corrosion <strong>of</strong> chromium-containing alloys,<br />

notably cobalt-chromium and stainless steel25 and while reported in<br />

association with corroded stainless steel plate and screw junctions<br />

and adjacent to spinal instrumentation, 25 it has been studied most<br />

extensively in connection with corrosion <strong>of</strong> femoral component head<br />

and neck modular junctions. 53 Chromium phosphate particles have<br />

been associated with femoral diaphyseal osteolysis around corroded<br />

modular stainless steel intramedullary nails27 as well as cementless<br />

hip stems. 28 Chromium phosphate particles are capable <strong>of</strong> inducing<br />

the release <strong>of</strong> proinflammatory cytokines from macrophages in<br />

cell culture and bone resorption in organ culture. 29 Huber and<br />

co-workers, 7 also using histological and electron microscopic<br />

identification methods, observed particles <strong>of</strong> chromium phosphate<br />

corrosion product in the periprosthetic tissues <strong>of</strong> patients with a<br />

CoCrMo-alloy metal-on-metal bearing. In a previous study from<br />

our laboratory, particles <strong>of</strong> chromium phosphate were identified in<br />

the joint pseudocapsules <strong>of</strong> 4 <strong>of</strong> 5 metal-on-metal hip replacements<br />

revised for pain or aseptic loosening.8,30<br />

In summary, although the volume <strong>of</strong> wear particles generated<br />

appears quite low in patients with metal-on-metal bearings<br />

unusual local tissue responses, including perivascular lymphocyte<br />

aggregations suggestive <strong>of</strong> a hypersensitivity reaction, can develop<br />

in some patients.4-6 These inflammatory responses occur not only<br />

in the joint pseudocapsule, but also at the bone-implant interfaces4<br />

and have implications for maintaining implant fixation, although a<br />

causal relationship with loosening has not yet been established.10 In<br />

addition, deposits <strong>of</strong> chromium phosphate corrosion products have<br />

been identified in the periprosthetic tissues <strong>of</strong> patients with secondgeneration<br />

metal-on-metal bearings.7,8 However, the toxicological<br />

significance <strong>of</strong> these findings is as yet unknown.


Acknowledgements: Funding for the research described in this review<br />

was provided by NIH/NIAMS, Zimmer, Inc, Wright Medical, Inc., the<br />

REFERENCES<br />

1. Campbell P, Shen F-W, McKellop H. Biologic and tribologic considerations<br />

<strong>of</strong> alternate bearing surfaces. Clin Orthop 2004; 418:98-111.<br />

2. Clarke IC, Donaldson T, Bowsher JG, Nasser S, Takahashi T. Current concepts<br />

<strong>of</strong> metal-on-metal hip resurfacing. Orthop Clin N Am 2005; 36:143-62.<br />

3. Dumbleton JH, Manely MT. Metal-on-metal total hip replacement. What<br />

does the literature say? J Arthroplasty 2005; 20(2):174-88.<br />

4. Willert H-G, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G,<br />

Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with<br />

artificial hip joints. A clinical and histomorphological study. J Bone Joint<br />

Surg 2005; 87-A:28-36.<br />

5. Davies AP, Willert HG, Campbell PA, Learmouth ID, Case CP. An unusual<br />

lymphocytic perivascular infiltration in tissues around contemporary metalon-metal<br />

joint replacements. J Bone Joint Surg 2005; 87-A:18-27.<br />

6. Pandit HP, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons<br />

CL, Ostlere S, Athanasou NA, Gill HS, Murray DW: Pseudotumors associated<br />

with metal-on-metal hip resurfacings. J Bone Joint Surg 2008;90B:847-851.<br />

7. Huber M, Reinisch G, Linter F, Zweymuller K. Histological and electron<br />

microscopic identification and analysis <strong>of</strong> corrosion products in<br />

periprosthetic tissue after total hip replacement. In: Zippel H and Dietrich M,<br />

editors. Bioceramics in joint arthroplasty. 8th BIOLOX Symposium, Berlin,<br />

March 28-29, 2003 <strong>Proceedings</strong>. Darmstadt: Steinkopff Verlag; 2003. p 73-8.<br />

8. Urban RM, Jacobs JJ. Allergic and systemic effects <strong>of</strong> particles. In: Zippel<br />

H and Dietrich M, editors. Bioceramics in joint arthroplasty. 8th BIOLOX<br />

Symposium, Berlin, March 28-29, 2003 <strong>Proceedings</strong>. Darmstadt: Steinkopff<br />

Verlag; 2003. p 97-102.<br />

9. Park Y-S, Moon Y-W, Lim S-J, Yang J-M, Ahn G, Choi Y-L. Early osteolysis<br />

following second-generation metal-on-metal hip replacement. J Bone and<br />

Joint Surg; 87-A:1515-21, 2005.<br />

10. Jacobs, J.J. and Hallab, N.J. Editorial. Loosening and Osteolysis Associated<br />

with Metal-on-Metal Bearings: A Local Effect <strong>of</strong> Metal Hypersensitivity? J<br />

Bone Jt Surg 88A:1171-1172, 2006.<br />

11. Hallab, N., Merritt, K., and Jacobs, J.J.: Metal sensitivity in patients with<br />

orthopaedic implants. J Bone Joint Surg Am 83-A:428, 2001.<br />

12. Hallab, N.J., Jacobs, J.J., Skipor, A., Black, J., Mikecz, K., and Galante, J.O.:<br />

Systemic metal-protein binding associated with total joint replacement<br />

arthroplasty. J Biomed Mater Res 49:353, 2000.<br />

13. Hallab, N.J., Mikecz, K., and Jacobs, J.J.: A triple assay technique for the<br />

evaluation <strong>of</strong> metal-induced, delayed-type hypersensitivity responses in<br />

patients with or receiving total joint arthroplasty. J Biomed Mater Res<br />

53:480, 2000.<br />

14. Hallab, N.J., Mikecz, K., Vermes, C., Skipor,A., and Jacobs,J.J.: Differential<br />

lymphocyte reactivity to serum-derived metal-protein complexes produced<br />

from cobalt-based and titanium-based implant alloy degradation. J.Biomed.<br />

Mater.Res 56:427, 2001.<br />

15. Hallab N.J., Anderson S, Stafford T, Glant T, Jacobs J.J., Hypersensitivity<br />

responses in patients with total hip arthroplasty , Journal <strong>of</strong> <strong>Orthopaedic</strong><br />

Research, 23 (2):384-391, 2005).<br />

16. Korovessis P, Petsinis G, Repanti M, Repantis T. Metallosis after contemporary<br />

metal-on-metal total hip arthroplasty. Five to Nine-Year Follow-Up J Bone<br />

Joint Surg 2006; 88A:1183-1191.<br />

194<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Crown Family Chair <strong>of</strong> <strong>Orthopaedic</strong> Surgery and the Rush Arthritis<br />

and <strong>Orthopaedic</strong>s Institute.<br />

17. Milosev I, Trebse R, Kovac S, Cor A, Pisot V. Survivorship and retrieval<br />

analysis <strong>of</strong> Sikomet metal-on-metal total hip replacements at a mean <strong>of</strong><br />

seven years. J Bone Joint Surg 2006; 88A:1173-1182.<br />

18. Hallab, N.J., Anderson, S., Caicedo, M., Skipor, A.K., Campbell, P. and Jacobs,<br />

J.J. Immune Responses Correlate with Serum-Metal in Metal-on-Metal Hip<br />

Arthroplasty. J Arthrop 19 (Suppl 3):88-93, 2004.<br />

19. Rooker, G.D. and Wilkinson, J.D.: Metal sensitivity in patients undergoing<br />

hip replacement. A prospective study. The Journal <strong>of</strong> Bone and Joint Surgery<br />

62-B:502, 1980.<br />

20. Carando, S., Cannas,M., Rossi,P., and Portigliatti-Barbos,M.: The lymphocytic<br />

transformation test (L.T.T.) in the evaluation <strong>of</strong> intolerance in prosthetic<br />

implants. Ital.J Orthop Traumatol. 11:475, 1985.<br />

21. Granchi, D., Ciapetti,G., Stea,S., Cavedagna,D., Bettini,N., Bianco,T.,<br />

Fontanesi,G., and Pizz<strong>of</strong>errato,A.: Evaluation <strong>of</strong> several immunological<br />

parameters in patients with aseptic loosening <strong>of</strong> hip arthroplasty. Chir<br />

Organi Mov 80:399, 1995.<br />

22. Pizz<strong>of</strong>errato,A., Ciapetti,G., Stea,S., Cenni,E., Arciola,C.R., Granchi,D., and<br />

Savarino,L.: Cell culture methods for testing biocompatibility. Clin Mater<br />

15:173, 1994.<br />

23. Donati, M.E., Savarino,L., Granchi,D., Ciapetti,G., Cervellati,M., Rotini,R.,<br />

and Pizz<strong>of</strong>errato,A.: The effects <strong>of</strong> metal corrosion debris on immune system<br />

cells. Chir Organi Mov 83:387, 1998.<br />

24. Doorn, P.F, Campbell, P.A., Worrall, J., Benya, P.D., McKellop, H.A.: Metal<br />

wear particle characterization from metal on metal total hip replacements:<br />

TEM study <strong>of</strong> periprosthetic tissues and isolated particles. J Biomed Mater<br />

Res 42 (1998) 103-111<br />

25. Urban RM, Jacobs JJ, Gilbert JL, Skipor AK, Hallab NJ, Mikecz K, Glant TT,<br />

Marsh JL, Galante JO. Corrosion products generated from mechanically<br />

assisted crevice corrosion <strong>of</strong> stainless steel orthopaedic implants. In Stainless<br />

steels for medical and surgical applications, STP 1348, pp 262-72, edited<br />

by GL Winters and MJ Nutt, ASTM International, West Conshohocken, PA,<br />

2003.<br />

26. Urban RM, Jacobs JJ, Gilbert JL and Galante JO. Migration <strong>of</strong> corrosion<br />

products from modular hip prostheses. Particle microanalysis and<br />

histopathological findings. J Bone Joint Surg 1994; 76-A:1345-59.<br />

27. Jones DM, Marsh JL, Nepola JV, Jacobs JJ, Skipor AK, Urban RM, Gilbert JL,<br />

Buckwalter JA. Focal osteolysis at the junctions <strong>of</strong> a modular stainless-steel<br />

femoral intramedullary nail. J Bone Joint Surg 2001; 83-A:537-48.<br />

28. Urban RM, Jacobs JJ, Sumner DR, Peters CL, Voss FR, Galante JO. The boneimplant<br />

interface in femoral stems with non-circumferential porous coating:<br />

A study <strong>of</strong> specimens retrieved at autopsy. J Bone and Joint Surg 1996; 78-<br />

A:1068-81.<br />

29. Lee S-H, Brennen FR, Jacobs JJ, Urban RM, Ragasa DR, Glant TT. Human<br />

Monocyte/macrophage response to cobalt-chromium corrosion products<br />

and titanium particles in patients with total joint replacements. J Orthop Res<br />

1997; 15:40-49.<br />

30. Hodge WA, Harman MK, Banks SA, Jacobs JJ, Urban RM, Skipor AK,<br />

Campbell P, Amstutz HC: Early clinical experience with contemporary metalon-metal<br />

total hip arthroplasty: A multicenter collaboration. 68th <strong>Annual</strong><br />

<strong>Meeting</strong> <strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons, San Francisco,<br />

CA, 2001.


195<br />

aaoS quality iNitiativeS,<br />

health Care reForm aNd you (F)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Moderator: Kristy L. Weber, MD, Baltimore, MD<br />

This symposia will outline how AAOS will help lead the movement toward Quality in US Health Care and how this will affect<br />

you as an orthopaedic surgeon.<br />

I. What the AAOS Quality Initiative Means to You<br />

Kristy L. Weber, MD, Baltimore, MD<br />

II. How the <strong>American</strong> Joint Replacement Registry Will Affect Your Practice and Reimbursement<br />

William J. Maloney, MD, Redwood City, CA<br />

III. Current AAOS Quality Initiatives and Introduction <strong>of</strong> Appropriate Use Criteria<br />

Kristy L. Weber, MD, Baltimore, MD<br />

IV. How to Integrate AAOS Practice Guidelines into Your Workflow for Improved Patient Care<br />

Michael J. Goldberg, MD, Seattle, WA<br />

V. Aligning Our Efforts with Employers and Payors to Improve Patient Care<br />

M. Bradford Henley, MD, Seattle, WA<br />

VI. What is on the Horizon – A Purchaser’s Perspective<br />

David Lansky, PhD, San Francisco, CA


196<br />

what the aaoS quality iNitiative meaNS to you<br />

1. How the AAOS Quality efforts align with current US health care<br />

reforms<br />

Examples<br />

2.. How this Affects the Individual <strong>Orthopaedic</strong> Surgeon<br />

Reimbursement<br />

Legal implications<br />

Maintenance <strong>of</strong> certification<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Kristy Weber, MD


197<br />

how the ameriCaN JoiNt replaCemeNt regiStry will aFFeCt<br />

your praCtiCe aNd reimburSemeNt<br />

William J. Maloney, MD<br />

National joint replacement registries have been established in several<br />

countries throughout the world including almost every English<br />

speaking country except the United States. When developed, operated<br />

and reported by orthopaedic surgeons, the data from national joint<br />

replacement registries has been used to improve outcome, identify<br />

poorly performing technology and generate research questions. In<br />

the United States, hip and knee replacement represent the single<br />

biggest expense for CMS. Failure is costly. Between 1997 and 2003,<br />

revision surgery accounted for approximately 19% <strong>of</strong> Medicare<br />

hip replacement expenditures and 8.2% <strong>of</strong> knee replacement<br />

expenditures. The ability <strong>of</strong> a national joint replacement registry<br />

to reduce the revision burden is well documented in the Sweden.<br />

Through the process <strong>of</strong> continuous feedback to hospital centers and<br />

operating surgeons, the revision burden in Sweden has declined over<br />

the past two decades. In 1990, the revision burden for hips in Sweden<br />

was approximately 10% compared to 18% in the United States.<br />

Today, the revision burden for hips in Sweden is 8%. In the United<br />

States, it remains at approximately 18%. Similarly, the cumulative<br />

frequency <strong>of</strong> hip revision in Sweden has steadily declined from 10%<br />

at 11 years for cases done in 1979 to 4% at 11 years for cases done<br />

1989. They attribute this in large part to the Swedish Hip Registry.<br />

The need for a national joint replacement effort in the United States<br />

is obvious and is the impetus for this RFA. There are more than one<br />

million hip and knee replacements performed in the United States<br />

each year, an order <strong>of</strong> magnitude greater than any other country in<br />

world. Demand has increased steadily from 1990 to the present. The<br />

number <strong>of</strong> knee replacements alone is projected to grow by 673% to<br />

3.48 million by the year 2030. Most new hip and knee replacement<br />

systems are introduced to the market via the 510k process. Little if any<br />

effective post-market surveillance occurs. Despite the fact that new<br />

hip and knee systems are designed, manufactured and implanted<br />

with the expectation that they are at least equivalent to existing<br />

products, problems can and do occur. Currently, there is no effective<br />

mechanism to identify poorly performing implant technologies or<br />

techniques. As a result, nationally we are performing a large clinical<br />

trial but neglecting to track outcomes. The outcome is that inferior<br />

technologies and techniques continue to be utilized longer than<br />

necessary and patients suffer.<br />

There is a growing body <strong>of</strong> evidence to suggest that implant registries<br />

that generate real time survivorship curves can serve as a clinical<br />

trip wire for inferior technology. When sufficiently large numbers<br />

<strong>of</strong> procedures are tracked, patient and surgeon factors that impact<br />

outcome tend to evenly distributed across various implant designs.<br />

Implant technology then tends to dominate overall survivorship.<br />

Figure one is a socket survivorship data from a single institution<br />

for patients undergoing primary total hip replacement. Statistical<br />

analysis identifies outliers. Investigation <strong>of</strong> inferior performance<br />

and notification to key stakeholders can lead to correctional activity<br />

minimizing patient exposure enhancing patient safety and reducing<br />

overall costs.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Figure 1: Survival Free <strong>of</strong> Cup Revision for Primary Hips<br />

The Australian Hip and Knee Registry is a relatively recent joint<br />

replacement registry that documents the impact collection <strong>of</strong> the<br />

minimum data set can have on informed decision making. Metal<br />

on metal hip resurfacing was introduced in Australia in 1999.<br />

Analysis <strong>of</strong> the level one data demonstrated that at four years there<br />

was a significant increased risk <strong>of</strong> revision surgery for hip resurfacing<br />

compared to conventional total hip replacement. Further analysis<br />

demonstrated subgroups (elderly and women) that were at very high<br />

risk <strong>of</strong> failure. This information had an immediate impact on patient<br />

selection. Metal on metal hip resurfacing was introduced in the<br />

United States in 2006 through a controversial FDA approval. With<br />

approval came the requirement <strong>of</strong> post-market surveillance. These<br />

studies may be ongoing, but to my knowledge the information is<br />

not being presented to surgeons and patients. Within the past year,<br />

metal-metal hip replacements have been withdrawn from the US<br />

market based in part on data from international registries.<br />

There are many documented examples where national joint<br />

registries have identified poorly performing technology. In Norway,<br />

they have identified inferior results as early as three years following<br />

market introduction. Several uncemented implant designs and two<br />

bone cements have been withdrawn from the market as a result.<br />

The Australian Joint Replacement Registry demonstrated inferior<br />

performance <strong>of</strong> a uni-compartmental knee spacer leading to market<br />

withdrawal. Interesting, that same implant is still sold in the United<br />

States.<br />

Using level one data (minimum data set), implant registries can<br />

also distinguish between poorly performing technologies and<br />

technologies that are technically difficult to perform. The Swedish<br />

Knee Registry provides an excellent example. In this registry, the<br />

eight year survivorship <strong>of</strong> the Oxford UKR in the hands <strong>of</strong> high<br />

volume surgeons exceeded 92% compared to less than 82% with low<br />

volume surgeons. In contrast, the Endo Link UKR likely represented<br />

a technically more straight forward procedure. Overall survivorship<br />

was good and surgical volume has little impact on outcome. Finally,<br />

the PCA UKR during the time period reported documented inferior<br />

technology. This implant had poor survivorship regardless <strong>of</strong> surgical


experience. This data can also be utilized to examine the learning<br />

curve associated with introduction <strong>of</strong> new technology.<br />

To analyze outcomes in more depth, additional data elements are<br />

required. Level one data is the minimum data set and provides the<br />

data elements necessary for a functional registry with the capacity<br />

to perform the types <strong>of</strong> analysis outlined above. To be successful on<br />

a national level, level one data collection has to be an institutional<br />

responsibility and thus have a low burden. Level two data represent<br />

additional elements concerning the patient (eg: co-morbidities),<br />

198<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

the procedure (eg: surgical approach), and the peri-operative care<br />

(eg:DVT Prophylaxis). Level three data are outcome measures that<br />

include patient reported data. Examples would include the WOMAC,<br />

Harris Hip Score and the SF-36. The ability to collect level two and<br />

three data provides a platform for prospective studies and permits a<br />

more detailed analysis for comparative effectiveness studies. Finally<br />

level four data are radiographic images. Collection <strong>of</strong> this data<br />

would allow more detailed analysis <strong>of</strong> implant failures.


199<br />

CurreNt aaoS quality iNitiativeS aNd iNtroduCtioN oF<br />

appropriate uSe Criteria<br />

Kristy Weber, MD<br />

A) Brief overview <strong>of</strong> Current AAOS Quality Efforts<br />

Evidence-based Clinical Practice Guidelines<br />

Technology Overviews<br />

Performance Measures (via PCPI)<br />

<strong>American</strong> Joint Replacement Registry<br />

B) Appropriate Use Criteria: Filling in the Guidelines Evidence<br />

Gap<br />

• Rationale<br />

— Orthopedics is in the spotlight for high volume/high cost<br />

procedures<br />

— High level evidence or sufficiently detailed data <strong>of</strong>ten not<br />

available<br />

— Examples <strong>of</strong> value-based insurance delivery<br />

— Large variations in care/escalation <strong>of</strong> numbers <strong>of</strong> specific<br />

procedures (Dartmouth)<br />

– ?Appropriate vs inappropriate use<br />

– Disparities in care<br />

— Model on <strong>American</strong> College <strong>of</strong> Cardiology AUC/”Culture<br />

<strong>of</strong> Quality”<br />

• Definition<br />

— AUC specify when it is appropriate to perform a<br />

procedure/service Physicians must decide when to use/<br />

not use a procedure despite lack <strong>of</strong> evidence Largely<br />

guideline-based along with clinical scenarios Evaluate<br />

relative risks/benefits <strong>of</strong> a procedure/service for a specific<br />

indication “Reasonable to do”<br />

• Methods<br />

— RAND/UCLA Method with modified Delphi process<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

– Combines best evidence with collective judgment <strong>of</strong><br />

experts to develop a statement re/appropriateness <strong>of</strong><br />

performing a procedure based on patient sx, medical<br />

history, test results<br />

— 3 panels<br />

– Writing Group – develops vignettes/scenarios (need<br />

volunteers)<br />

– Review Group<br />

– Technical Rating Panel (minimize bias)<br />

— Ranking <strong>of</strong> Indications<br />

– 7-9: Appropriate procedure for specific indication<br />

– 4-6: Uncertain/unclear if appropriate for specific<br />

indication<br />

– 1-3: Inappropriate test for specific indication<br />

• Benefits<br />

— Provide clear and public demonstration <strong>of</strong> how ortho<br />

community works for pts<br />

— Give AAOS a stronger voice with payers and healthcare<br />

purchasers<br />

— May result in guaranteed reimbursement and reduced<br />

paperwork for those who practice in accordance with<br />

these criteria<br />

C) What can you do?<br />

• Participate in the development <strong>of</strong> Guidelines<br />

• Participate in AAOS registries<br />

• Participate in the development <strong>of</strong> AUC (multiple opportunities)<br />

• Develop ‘best practices’ in your group/hospital


200<br />

how to iNtegrate aaoS praCtiCe guideliNeS iNto your<br />

workFlow For improved patieNt Care<br />

Michael Goldberg, MD<br />

Answer to the question: “How to integrate AAOS practice guidelines<br />

into your workflow for improved patient care” is: “I don’t know!”<br />

However, finding solutions to the following questions will give us<br />

some answers:<br />

1. Is there evidence that integrating practice guidelines into your<br />

workflow will improve patient care?<br />

2. What’s in it for you?<br />

a. Getting paid<br />

b. Becoming credentialed and/or certified<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

3. How to change <strong>of</strong>fice and hospital culture?<br />

4. How not to slow the flow?<br />

a. Data collection burden<br />

b. Easy to use tools<br />

5. How to distinguish information from data?<br />

6. How will integrating guidelines into your practice answer the<br />

questions: “Are we helping? How do we know? And who else<br />

should know?”


201<br />

aligNiNg our eFFortS with employerS aNd payorS to<br />

improve patieNt Care<br />

Brad Henley, MD, MBA<br />

Quality<br />

• Purchasor/patient interests align<br />

• Little data available<br />

• International data suggests high variability<br />

• US practice driven by technology, marketing, reimbursement vs<br />

outcomes/continuous feedback<br />

• Example: 2008 vs 2010 reimbursement <strong>of</strong> fixation for intertoch/<br />

subtroch fx fixation<br />

— Geographic variation<br />

— CPT codes<br />

PQRI Measures Applicable to Orthopedics<br />

Clinical and Administrative measures<br />

<strong>Orthopaedic</strong> Quality Institute<br />

• Rationale – AAOS is behind in quality arena, lack <strong>of</strong> true<br />

partnership with govt/payors/etc<br />

• <strong>American</strong> College <strong>of</strong> Cardiology (ACC) initiative started in 2002<br />

• Goal: Identify opportunities/barriers to improving quality care<br />

• Format: Brief presentations, panel discussions, roundtables,<br />

case studies, collaboration<br />

• Benefits <strong>of</strong> OQI<br />

— CERT Arthroplasty Clawbacks<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

— CERT Audits – 2009<br />

— Interqual Procedures Criteria<br />

• Summary <strong>of</strong> ACC Medical Directors Institute<br />

• Potential topics for <strong>Orthopaedic</strong> Quality Institute<br />

— Current AAOS Quality efforts<br />

— Relationship between quality and cost effectiveness<br />

— Physician pr<strong>of</strong>iling/tiering<br />

— Reimbursement for Quality<br />

— Public/private reporting <strong>of</strong> Quality<br />

— Topics for orthopaedic guidelines/AUC<br />

— Comparative Effectiveness Research in Orthopedics<br />

• Attendees:<br />

— Medical/administrative leaders from national health plans<br />

— Representatives from nation’s largest employers<br />

— Non-pr<strong>of</strong>it groups that represent large employers<br />

— Government agencies (CMS, AHRQ, etc.)<br />

— AAOS Presidential line, Council Chairs, Key leaders in<br />

Quality movement, Liaisons to national Quality committees<br />

(NQF, PCPI, AQA, etc.)<br />

• Occurs in Washington DC each Fall –focused meeting<br />

• Build the bench <strong>of</strong> liaisons to National Quality organizations<br />

from orthopaedics


202<br />

diSaSter-relieF orthopaediCS:<br />

what you Need to kNow beFore you go (N)<br />

Moderator: Matthew T. Provencher, MD, San Diego, CA<br />

Current world conditions have led to an increasing demand for <strong>Orthopaedic</strong> care in austere environments as a result <strong>of</strong><br />

natural disaster and war. This symposium will instruct surgeons on understanding, preparing for, and successfully providing<br />

care in these challenging conditions.<br />

Faculty: Roman A. Hayda, MD, Providence, RI James R. Ficke, MD, San Antonio, TX Warren R. Kadrmas, MD, Lackland, TX<br />

I. Introduction<br />

II. Preparation and Planning<br />

III. Treatment Challenges<br />

IV. Care and Transport<br />

V. Discussion, Questions and Answers<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL


203<br />

evaluatioN oF hoSt NatioN CapabilitieS<br />

LCOL Benjamin Kam, MD, MC, USAF<br />

During conflict or disaster response, careful assessment must be<br />

accomplished as the medical response is initiated. Often this<br />

assessment is performed simultaneously with deployment <strong>of</strong> medical<br />

assets, because the situation is <strong>of</strong>ten dynamic, and constant strategic<br />

re-assessment must be performed. Host Nation capabilities at each<br />

level, or echelon <strong>of</strong> care, vary greatly and may vary with geography<br />

within the country itself. The International Red Cross handbook on<br />

War Surgery is helpful in this regard. Four examples <strong>of</strong> scenarios are<br />

given that can be generalized to most combat/disaster areas:<br />

1. Safe urban setting<br />

• Urban, developed environment<br />

• Single, isolated event<br />

• Casualty numbers relatively small compared to population<br />

<strong>of</strong> city<br />

• Infrastructure intact: roads, emergency vehicles<br />

• Health infrastructure intact, sophisticated hospitals<br />

• Short evacuation time: route is secure<br />

• Good communications<br />

• Personnel: adequate number and quality <strong>of</strong> trained health staff<br />

• Materials adequate<br />

• Environment good: weather, daytime<br />

• Final destination <strong>of</strong> the wounded is known<br />

2. Unsafe urban setting<br />

• Low-income country: under-developed or destroyed urban<br />

setting<br />

• Continuing danger: street fighting and bombardment in city<br />

• Continuing and unpredictable casualty flow including<br />

massive influx <strong>of</strong> wounded<br />

• Poor infrastructure: potholed roads, debris in streets<br />

• Disrupted health infrastructure: hospitals damaged or looted<br />

• Availability and length <strong>of</strong> evacuation uncertain or unknown<br />

• No or poor communications<br />

• Minimum health personnel available<br />

• Material re-supply uncertain, irregular, or non-existent<br />

• Environment poor: cold, wet, dark<br />

• Final destination <strong>of</strong> the wounded not always obvious<br />

3. Unsafe rural setting<br />

• Low-income country: under-developed rural area neglected<br />

in peacetime<br />

• Constant danger: ongoing combat, landmines<br />

• Continuing and unpredictable casualty flow<br />

• Poor infrastructure: badly maintained or no roads<br />

• Poor health infrastructure: few health posts, even fewer<br />

district hospitals<br />

• Availability and length <strong>of</strong> evacuation uncertain, long and<br />

arduous<br />

• No or poor communications<br />

• Minimum health personnel available<br />

• Material re-supply uncertain, irregular, or non-existent<br />

• Environment poor: extreme cold or heat, rainy season and<br />

dry season<br />

• Final destination <strong>of</strong> the wounded not always obvious<br />

4. Safe but austere setting<br />

• Low-income country<br />

REFERENCE<br />

1. Giannou, C., War Surgery volume 1, International Committee <strong>of</strong> the Red<br />

Cross, ICRC May 2010, Annex 6a., pp. 146-150.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

• Continuing danger: ongoing low-intensity warfare<br />

• Discontinuous casualty flow; includes irregular mass<br />

evacuations<br />

• Poor infrastructure: few good roads and few vehicles<br />

• Minimum <strong>of</strong> health infrastructure: some rural clinics or<br />

health centres, fewer district hospitals<br />

• Evacuation predictable but long and arduous<br />

• Poor to moderate communications<br />

• Minimum to moderate number <strong>of</strong> health personnel<br />

available<br />

• Minimum material re-supply<br />

• Environment harsh<br />

• Final destination <strong>of</strong> the wounded: distant, but known<br />

Key questions for each topic:<br />

1. Geography/logistics:<br />

• Where is the fighting taking place/where is the disaster zone?<br />

• What demarcates safe areas from dangerous areas?<br />

• Military activity, natural disaster or major accident? (Is<br />

health infrastructureintact?)<br />

• Urban or rural setting?<br />

• Industrially-developed or low-income country: recources<br />

available?<br />

• How are the wounded transported from point <strong>of</strong> wounding<br />

to hospital?<br />

— private means<br />

— public transportation<br />

— ambulance service<br />

— military services: air, land, etc.<br />

• Assessment <strong>of</strong> efficiency <strong>of</strong> evacuation system<br />

• Which hospitals receive the wounded?<br />

2. Echelon 1 first aid/buddy care<br />

a. Trained paramedics?<br />

b. Combat medics?<br />

c. Civilian first-responders?<br />

3. Echelon 2 forward medical assets<br />

a. Local medical assets?<br />

i. Capability assessment?<br />

ii. Resupply assessment?<br />

b. Mobile medical/surgical teams?<br />

i. Insertion capability?<br />

ii. Evacuation capability?<br />

4. Echelon 3 hospitals in country<br />

a. Capability assessment<br />

b. Damage assessment<br />

c. Remaining trained staffing<br />

d. Logistics resupply<br />

e. Water and power<br />

5. Echelon 4 hospitals in country or supporting nations<br />

a. Evacuation capability<br />

b. Diplomatic visa<br />

c. Repatriation<br />

6. Echelon 5 hospitals in country or other fully industrialized nation<br />

a. Evacuation capability<br />

b. Diplomatic visa<br />

c. Repatriation


204<br />

eXtremity Care logiStiCal NeedS<br />

LCOL Benjamin Kam, MD, MC, USAF<br />

Logistical needs for extremity care run the gamut from surgical<br />

supplies for extremity trauma, to inpatient musculoskeletal nursing<br />

and therapy, to outpatient clinic supplies and durable medical<br />

equipment (DME), to prostheses. Depending on the situation, level<br />

<strong>of</strong> host-nation/local healthcare available, and transport, the logistical<br />

needs may be minimal (local modern healthcare available), to total<br />

(no local care and full spectrum logistical support needed). These<br />

needs are dynamic, as the balance between supply and demand<br />

changes based on casualty volume and time course from the disaster<br />

or initial event.<br />

Surgical needs<br />

• Adequate anesthesia services<br />

• Adequate sterilization system<br />

• Adequate nursing and surgical technician support<br />

• Supplies for common musculoskeletal operations<br />

— Irrigation and debridement/fasciotomy/escharotomy/<br />

amputation<br />

– Sterile irrigation fluids<br />

– Low pressure irrigation tubing<br />

– Basic orthopaedic instruments set<br />

– Gigli saw<br />

– Tourniquet<br />

– Assortment <strong>of</strong> surgical drains<br />

– Sterile dressings<br />

– Braided and mon<strong>of</strong>ilament sutures<br />

— External fixation <strong>of</strong> long bone fractures<br />

– External fixation instrumentation<br />

– Hand or power drill with Jacobs chuck<br />

– Radiographic imaging<br />

— Percutaneous or internal fixation <strong>of</strong> small bone fractures<br />

– Basic orthopaedic instruments set<br />

– Small fragment set<br />

– K-wire set<br />

– Power drill with chucks/wire drivers<br />

– 20 ga wire<br />

– Radiographic imaging<br />

— Shunting <strong>of</strong> concomitant vascular injury<br />

– Basic surgical instruments set<br />

– Atraumatic vascular clamps<br />

– Vascular loops<br />

– Fogarty catheters<br />

– Shunts <strong>of</strong> various sizes<br />

– Vessel Doppler<br />

Inpatient needs<br />

• Skilled nursing staff<br />

• Skilled physical therapy staff<br />

• Radiologic services<br />

• Laboratory services<br />

• Oxygen delivery<br />

• Sterile supplies<br />

• Walker/crutches/bedside commode<br />

• IV medications to include narcotics and antibiotics<br />

• Overhead trapeze, traction assembly<br />

• Negative pressure dressing therapy<br />

Outpatient needs<br />

• Radiographic services<br />

• Laboratory services<br />

• Orthotic/bracing services<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

• DME products (wheelchair/walker/crutches/cane)<br />

• Casting/splinting capability<br />

— Plaster rolls and splints<br />

— Fiberglass rolls<br />

— Cotton/synthetic webril padding and stockinette<br />

— Ace/elastic bandages<br />

— Cast saw<br />

— Cast spreader<br />

— Tape (various)<br />

• Injectable supplies<br />

— Syringes/needles/alcohol prep/gauze/bandaids<br />

— Local anesthetic (1% lidocaine)<br />

— Corticosteroids<br />

• Prosthetic services<br />

The International Red Cross textbook on War Surgery provides an<br />

excellent guide to assessment <strong>of</strong> local facilities. This should be done<br />

first, in order appropriately plan for what care can be provided at any<br />

given facility and will be needed for sustainment:<br />

General<br />

Name <strong>of</strong> the hospital:<br />

Assessment done by: Date:<br />

Country: Town:<br />

Key questions:<br />

1. Type (MoPH, private, military, missionary, NGO, others):<br />

2. Catchment population:<br />

3. Assistance from others than the authority in charge:<br />

4. Level <strong>of</strong> reference (rural, district, regional):<br />

5. If rural or district hospital, number <strong>of</strong> primary facilities served<br />

(first-aid dispensaries, health centers):<br />

6. Possibilities for further referral:<br />

7. Transport system for patients (in and out):<br />

8. Reputation <strong>of</strong> the hospital (indicate source <strong>of</strong> information):<br />

9. Bed capacity, effective number <strong>of</strong> beds (breakdown by<br />

department):<br />

10. Present bed occupancy:<br />

11. Activities including specialities (surgery, medicine, paediatric,<br />

obstetric, specialized services, etc.):<br />

12.Security (Is the area safe? Is the hospital secured? i.e. clearly<br />

marked, fenced, watchmen present, absence <strong>of</strong> arms inside the<br />

hospital compound?):<br />

13.Endemic diseases and epidemic risk in the region:<br />

MANAGEMENT & ADMINISTRATION<br />

I. General management<br />

1. Set-up (management team/board):<br />

2. How are decisions taken and implemented?<br />

II. Human resources management<br />

1. Who is in charge?<br />

2. Does the staff receive salary/incentives?<br />

3. Total number <strong>of</strong> personnel/breakdown by function (MD,<br />

medical assistants, nurses, students, etc.):<br />

4. Is there a roster system in place in the hospital?<br />

III. Financial management<br />

1. Management <strong>of</strong> finance (Is there a budget? How is the<br />

hospital financed?):<br />

2. Is there any cost participation, “cost-recovery system”? Do<br />

the destitute have access to care?


IV. Statistics<br />

1. Management <strong>of</strong> statistics and reporting:<br />

2. Are statistics available?<br />

3. Is there an annual report?<br />

4. Are there people specifically in charge <strong>of</strong> collecting data?<br />

V. Infrastructure & utilities (general condition <strong>of</strong> ):<br />

1. Wall and ro<strong>of</strong>:<br />

2. Water (running water, wells, safety <strong>of</strong> water supply, etc.):<br />

3. Sanitation (type <strong>of</strong> toilets, etc.):<br />

4. Electricity and/or generator (number <strong>of</strong> hours per day, fuel<br />

supply, etc.):<br />

5. Heating/fans/air-conditioning:<br />

6. Maintenance team (number, composition, etc.). Is there a<br />

maintenance schedule?<br />

7. Is there a functioning workshop?<br />

VI. Waste disposal<br />

1. Waste management systems (including toxics such as X-ray<br />

developer/fixator, etc.):<br />

2. Incinerator (type, condition, etc.):<br />

VII. Non-medical support services<br />

1. Kitchen (staff, nutritionist, origin <strong>of</strong> food, number <strong>of</strong> meals<br />

served per day, special diets, etc.):<br />

2. Laundry (staff, washing by hand, machine, supplies, etc.):<br />

3. Tailor (staff, supplies, etc.): 4. Cleaning and hygiene<br />

(system, staff, supplies, etc.): 5. Morgue (infrastructure,<br />

management, etc.):<br />

MEDICAL SUPPORT SERVICES<br />

I. Pharmacy<br />

1. Pharmacy staff and management:<br />

2. Is there a standard list <strong>of</strong> medicines?<br />

3. Are stock cards used?<br />

4. Where do the drugs and medical equipment come from<br />

(regular supplier, local market, donations, etc.)?<br />

5. Is there a reliable system <strong>of</strong> communication between the<br />

pharmacy and the wards (request forms, delivery forms,<br />

etc.)?<br />

6. Did the pharmacy run out <strong>of</strong> basic drugs last month<br />

(penicillin, antimalaria, paracetamol, ORS)?<br />

7. What are the storage conditions (air-conditioning,<br />

refrigerator, etc.)?<br />

8. Is medical equipment regularly maintained and serviced?<br />

II. Laboratory<br />

1. Laboratory staff and management:<br />

2. Tests available (hematology, chemistry, parasitology,<br />

bacteriology, serology, etc.):<br />

3. Source <strong>of</strong> supplies:<br />

4. Is there a reliable system <strong>of</strong> communication between the<br />

laboratory and the wards (request and results forms)?<br />

5. Quality <strong>of</strong> working relationship between clinical and<br />

laboratory staff:<br />

III. Blood transfusion<br />

1. Staff and management:<br />

2. Policy <strong>of</strong> blood sampling and transfusion: HIV/AIDS policy?<br />

3. Indications for blood transfusion/average number <strong>of</strong><br />

requests:<br />

4. How are the blood units kept? Is there a functioning<br />

refrigerator to store the blood?<br />

5. Testing process and quality control:<br />

IV. Imaging (X-ray & ultrasound)<br />

1. Staff and management:<br />

2. Average number <strong>of</strong> X-rays per day:<br />

205<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

3. Type and quality <strong>of</strong> machine:<br />

4. Are there guidelines for the prescription <strong>of</strong> X-rays?<br />

5. Is more sophisticated imaging equipment available?<br />

V. Other diagnostic services<br />

1. ECG, EEG, etc.:<br />

CLINICAL SERVICES<br />

I. Outpatient department (OPD)<br />

II. Admission/emergency department<br />

1. Number <strong>of</strong> beds:<br />

2. Is there a team on duty 24 hours a day; composition <strong>of</strong> the<br />

team?<br />

3. Is there an on-call system in place?<br />

4. Is there an admission book or regular procedure for<br />

admitting and registering patients?<br />

5. Is there a regular procedure to send patients to the<br />

appropriate wards or to the OT?<br />

6. Number and type <strong>of</strong> emergencies per day:<br />

7. Are basic supplies and equipment available?<br />

III. Operating theatre (OT)<br />

1. Staff and roster:<br />

2. Hygiene <strong>of</strong> the OT:<br />

3. Is there an accurate operation book? If yes, number <strong>of</strong><br />

surgical operations in the last month:<br />

4. What kind <strong>of</strong> surgery is performed?<br />

5. What kind <strong>of</strong> instruments and sets are available (laparotomy,<br />

caesarean section, debridement, skeletal traction sets, etc.)?<br />

6. Number <strong>of</strong> operating rooms, tables:<br />

7. Surgical linen (availability and source <strong>of</strong> provision):<br />

8. Functioning surgical equipment (lamps, suction, diathermy,<br />

oxygen, etc.):<br />

9. Source <strong>of</strong> materials and consumables:<br />

IV. Sterilization<br />

1. Staff and roster:<br />

2. Equipment (autoclaves, dry ovens):<br />

3. Protocols in place?<br />

V. Anesthesia<br />

1. Staff and roster (MD and/or anesthetist nurses):<br />

2. Is a laparotomy performed safely with full muscle relaxation<br />

(including endotracheal intubation) by a trained anesthetist?<br />

Role <strong>of</strong> the OPD (consultation, follow-up <strong>of</strong> patients,<br />

admission, emergency): Are there specialized OPDs? Are<br />

there criteria to admit the patient to the OPD? Is there a<br />

register with data about all patients seen every day? Average<br />

number <strong>of</strong> cases seen every day (medicine, paediatric,<br />

surgery, obstetric, etc.): Personnel in charge (MD, medical<br />

assistants, nurses): Is there a clear roster? Opening days and<br />

hours: Main pathologies:<br />

3. Common anesthesia (gas, ketamine, spinal, local):<br />

4. Type <strong>of</strong> anesthesia machines:<br />

5. Availability <strong>of</strong> other equipment (pulse oximeters, oxygen<br />

supply, etc.):<br />

VI. Nursing care<br />

1. Is there 24-hour nursing supervision in the wards?<br />

2. Are the patient records complete?<br />

3. Is the nursing handover book used properly?<br />

4. Are drugs administered on time?<br />

5. Is a laparotomy performed safely with the patient supervised<br />

(vital signs) for 24 hours post-operatively in a room with<br />

light, and where he or she receives intravenous fluids and<br />

antibiotics?<br />

6. What do dressings look like (clean, smelly, etc.)?


206<br />

7. Are bedsores a problem?<br />

8. Are relatives involved in patient care?<br />

VII. Frequently asked questions<br />

1. Availability <strong>of</strong> mosquito nets for all beds:<br />

2. Is there an admission book or regular procedure for<br />

admitting and registering patients in the ward? If yes,<br />

number <strong>of</strong> admissions to the ward in the last month?<br />

3. Is there a person in the admissions/ER and wards who<br />

controls a system whereby the patients are assessed and then<br />

go to the OT or receive treatment?<br />

4. Are new admissions systematically seen by a senior surgeon/<br />

MD and within what timeframe?<br />

5. Are there regular rounds in the wards and/or regular<br />

meetings to discuss the cases?<br />

6. Are the diagnosis and treatment clearly formulated in the<br />

patients’ files and the treatment copied onto the patientsα<br />

charts?<br />

VIII. Surgical care<br />

1. Main pathologies present in the wards (fractures, burns,<br />

chest, abdomen, etc.):<br />

2. Management <strong>of</strong> the ward/hygiene:<br />

3. Human resources (number, composition, roster):<br />

REFERENCE<br />

1. Giannou, C., War Surgery volume 1, International Committee <strong>of</strong> the May<br />

2010, Annex 6a., pp. 140-α145. Red Cross, ICRC<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

4. Infrastructure and beds:<br />

5. Is a laparotomy performed safely – patients seen a few days<br />

after operation with healing wound and eating normally?<br />

6. Can five or more laparotomies be performed in 24 hours<br />

under good conditions including anesthesia? If not, why?<br />

7. What type <strong>of</strong> orthopaedic treatment is present in the surgical<br />

wards (POP, skeletal traction, external or internal fixation)?<br />

8. What do wounds present in ward look like (clean, dirty,<br />

smelly, pus)?<br />

IX. Physiotherapy unit<br />

1. Are patients walking on crutches in the wards? If not, why?<br />

2. Management <strong>of</strong> physiotherapy department:<br />

3. Human resources:<br />

Conclusion<br />

1. First general impression (cleanliness/hygiene, staff, presence<br />

<strong>of</strong> patients):<br />

2. Main positive findings:<br />

3. Main negative findings:<br />

4. Capacity to cope with mass influx <strong>of</strong> wounded:<br />

5. Emergency/contingency plan:<br />

6. Proposals:<br />

7. Next step:


207<br />

eXtremity vaSCular iNJurieS iN aN auStere eNviroNmeNt:<br />

what you Need to kNow aNd briNg<br />

Major Joanna Branstetter, MD<br />

Define the initial evaluation and demonstrate appropriate evaluation<br />

techniques <strong>of</strong> a patient with an extremity vascular injury<br />

• Initial evaluation should always follow ATLS protocol<br />

• Application <strong>of</strong> a tourniquet above the level <strong>of</strong> injury is<br />

appropriate in patients with active hemorrhage who fail to<br />

respond to direct compression at the wound.<br />

• Once the patient is stabilized, evaluation <strong>of</strong> limb perfusion<br />

should be performed<br />

• Palpate all accessible peripheral pulses<br />

— In the upper limb: Brachial, Radial and Ulnar artery<br />

— In the lower limb: Femoral, Popliteal, Dorsalis Pedis and<br />

Posterior Tibial artery<br />

• If deficits in pulses, exam should progress proximally to identify<br />

site <strong>of</strong> vascular injury<br />

• Identify “Hard” or “S<strong>of</strong>t” Signs <strong>of</strong> vascular injury<br />

— “Hard” Signs <strong>of</strong> vascular injury<br />

– Active pulsatile hemorrhage<br />

– Pulsatile or expanding hematoma<br />

– Palpable/audible bruit<br />

– Signs <strong>of</strong> limb ischemia<br />

– Diminished or absent pulses<br />

— “S<strong>of</strong>t” Signs <strong>of</strong> vascular injury<br />

– Hypotension or shock<br />

– Developing neurologic deficits<br />

– Stable non-pulsatile hematoma<br />

– Proximity <strong>of</strong> wound to major vascular structures<br />

• Presence <strong>of</strong> peripheral pulses does not rule out vascular injury.<br />

[Rose]<br />

• Proceed with arterial pressure index if presence <strong>of</strong> “S<strong>of</strong>t” signs <strong>of</strong><br />

vascular injury<br />

• Arterial pressure index is used to compare arterial pressure in an<br />

injured compared to noninjured limb<br />

• Can be an Ankle:Brachial index (ABI) for lower extremity<br />

trauma or Arm:Arm index (AAI) for upper extremity trauma<br />

• To obtain an arterial pressure index, a blood pressure cuff is<br />

placed about the ankle or arm <strong>of</strong> the injured extremity. The cuff<br />

is inflated and then slowly deflated, and the Doppler probe is<br />

used to determine the systolic pressure in the extremity. The<br />

probe may be placed over the posterior tibial artery or dorsalis<br />

pedis in the lower extremity or the Radial or Ulnar artery in the<br />

upper extremity. The systolic pressure in the injured extremity<br />

is then compared to the systolic pressure <strong>of</strong> an uninjured limb<br />

(arterial pressure index=Doppler systolic arterial pressure in<br />

injured limb/Doppler systolic arterial pressure in uninjured<br />

limb)<br />

• Normal arterial pressure index is >0.9<br />

• In penetrating trauma, arterial pressure index have a reported<br />

sensitivity and specificity <strong>of</strong> 95% and 97% for significant<br />

vascular injury. [Johansen]<br />

• In knee dislocations, arterial pressure index have a reported<br />

sensitivity and specificity <strong>of</strong> 100% and 100% for significant<br />

vascular injury. [Mills]<br />

Understand the indication for vascular stents/shunts/bypass graft and<br />

demonstrate appropriate surgical techniques<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Patient Preperation<br />

• Always prep to allow access for proximal vascular control<br />

— Upper extremity: Subclavian Artery<br />

— Lower extremity: Common Femoral Artery<br />

• Preparation should include access to uninvolved limb in case<br />

vein graft is needed to be harvested<br />

• Systemic heparinization (50-75 units/kg IV) should be initiated<br />

in stable patients with a vascular injury<br />

Exposures<br />

• Longitudinal incisions over named vascular structures allow for<br />

widest exposure<br />

• Curvilinear type incisions made across joints<br />

• In contaminated wounds, adequate debridement is essential<br />

• If ligation <strong>of</strong> a major artery is required, distal embolectomy<br />

should be performed followed by administration <strong>of</strong> heparin to<br />

preserve collateral circulation [Gorman]<br />

Stents<br />

• Currently there is limited role for endovascular procedures in<br />

penetrating extremity trauma<br />

• Endovascular stents may be utilized for blunt trauma or<br />

proximal arterial injury where open surgical exposure is difficult<br />

i.e. Iliac artery<br />

Shunts<br />

• Temporary revascularization can be performed with<br />

intraluminal shunts<br />

• After placement, patency should be confirmed with<br />

intraoperative continuous wave Doppler<br />

• Shunts may remain patent for 24 hours without systemic<br />

heparinization [Dawson]<br />

• Shunts have been reported to maintain limb perfusion up to 48<br />

hours during military operations [Brounts]<br />

Bypass Graft<br />

• Greater Saphenous vein is a common conduit utilized for lower<br />

extremity trauma<br />

• Veins should be harvested from the uninvolved limb and be<br />

reversed to allow directional flow<br />

• Bypass grafting should usually be performed at a Combat<br />

Support Hospital level<br />

• Grafting or repair in a grossly contaminated wound should be<br />

delayed[Fox]<br />

• Prophylactic fasciotomy should be considered after any<br />

revascularization procedure<br />

Describe techniques for performing extremity arteriography in an<br />

austere environment<br />

• Equipment needed: 18 to 20-G butterfly needle, a three-way<br />

stopcock, two 20- to 30-mL syringes, and intravenous contrast.<br />

• One syringe is used for aspiration and flushing with heparinized<br />

saline solution and the second is used to inject full strength<br />

contrast<br />

• Artery is clamped proximal to the injection site<br />

• Injection <strong>of</strong> 15 to 20 mL <strong>of</strong> contrast into the artery proximal to<br />

the suspected injury.<br />

• Fluoroscopy during the injection, if available, or X-ray at the<br />

completion <strong>of</strong> the injection


REFERENCES<br />

1. Rose SC, Moore EE. Trauma angiography: the use <strong>of</strong> clinical findings to<br />

improve patient selection and case preparation. J Trauma. 1988; 28(2):240-<br />

245<br />

2. Johansen K, Lynch K, Paun M, Copass M. Non-invasive vascular tests<br />

reliably exclude occult arterial trauma in injured extremities. J Trauma. 1991;<br />

1(4):515-519<br />

3. Mills WJ, Barei DP, McNair P. The value <strong>of</strong> the ankle-brachial index for<br />

diagnosing arterial injury after knee dislocation: a prospective study. J<br />

Trauma 2004; 56(6):1261-5<br />

4. Gorman JF. Combat arterial trauma. Analysis <strong>of</strong> 106 limb-threatening<br />

injuries. Arch Surg 1969;123:534-579<br />

208<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

5. Blounts lR, Wickel D, Arrington ED, Place RJ, Rush RM. The Use <strong>of</strong> a<br />

Temporary Intraluminal Shunt to Restore Lower Limb Perfusion Over a<br />

4,000 Mile Air Evacuation in a Special Operations Military Setting: A Case<br />

Report. Clin Med Trauma 2008; 1: 5-9<br />

6. Dawson D, Putnam T, Light J. Temporary arterial shunts to maintain limb<br />

perfusion after arterial injury: an animal study. J Trauma 1999; 47: 64-71<br />

7. Fox CJ, Gillespie DL, O’Donnell SD, et al. Contemporary management <strong>of</strong><br />

wartime vascular trauma. J Vasc Surg. 2005;41:638–644.<br />

8. Starnes BW, Beekley AC, Sebesta JA, Andersen CA, Rush RM Jr. Extremity<br />

vascular injuries on the battlefield: tips for surgeons deploying to war. J<br />

Trauma. 2006 Feb; 60(2):432-42.


209<br />

eXtremity FraCtureS iN aN auStere eNviroNmeNt:<br />

what you Need to kNow aNd briNg with you<br />

CPT Jessica D Cross and CPT Daniel R Possley<br />

A majority <strong>of</strong> the wounds sustained by soldiers serving in the<br />

combat zone are to the extremities, largely due to the effectiveness<br />

<strong>of</strong> modern body armor. Similarly, high energy extremity injuries are<br />

seen during natural disasters. For example, 85% <strong>of</strong> injuries sustained<br />

by survivors <strong>of</strong> the recent earthquake in Haiti were orthopaedic in<br />

nature including fractures and amputations. The surgeon caring<br />

for victims <strong>of</strong> war and disaster must be aware <strong>of</strong> the management<br />

challenges <strong>of</strong> extremity fractures in the austere environment.<br />

Extremity fracture care in the austere environment follows many<br />

<strong>of</strong> the principles used in treating these injuries at any US civilian<br />

trauma center. Appropriate wound management followed by fracture<br />

stabilization are the mainstays <strong>of</strong> treatment.<br />

INITIAL ASSESSMENT<br />

• Primary and secondary surveys must come first.<br />

• Extremity Injury First Step: control hemorrhage if bleeding and<br />

restore perfusion if vascularity is disrupted.<br />

• Extremity Injury Exam:<br />

— In an alert patient, perform an exam to assess the injured<br />

compartments, check pulses, and asses the neurological<br />

status.<br />

— In an obtunded patient, examine and palpate the<br />

compartments and check the pulses.<br />

WOUND MANAGEMENT<br />

Basics <strong>of</strong> wound management are essential.<br />

• Early and thorough wound debridement.<br />

— Far forward injury care many not have the capacity to<br />

administer surgical debridement, but early irrigation with<br />

removal <strong>of</strong> gross contamination is likely possible at any level<br />

<strong>of</strong> care.<br />

— Thorough surgical debridement and irrigation should be<br />

performed as soon as possible. (LINK TO SOFT TISSUE<br />

MODULE: DEBRIDEMENT)<br />

– Debris and devitalized tissue should be removed.<br />

– Bone fragments with any s<strong>of</strong>t tissue attachment should<br />

be maintained. Bone fragments that are devitalized<br />

should be debrided with the exception <strong>of</strong> large articular<br />

fragments.<br />

– Preserve viable tissue in order to permit the receiving<br />

surgeons the greatest number <strong>of</strong> definitive care options.<br />

• Administer antibiotics as soon as possible, primarily a broad<br />

spectrum cephalosporin.<br />

• Fracture instability can compromise tenuous s<strong>of</strong>t tissue viability;<br />

therefore, fracture stabilization is part <strong>of</strong> the s<strong>of</strong>t tissue wound<br />

management.<br />

• Fracture stabilization will help protect open wounds from<br />

further s<strong>of</strong>t tissue damage and is crucial in the setting <strong>of</strong> a<br />

vascular repair.<br />

NON SURGICAL FRACTURE MANAGEMENT<br />

ADVANTAGES<br />

• Splints may be the only far forward option for fracture<br />

stabilization.<br />

• Splints afford the receiving surgeons the greatest number <strong>of</strong><br />

surgical options.<br />

• Splinting may be the most appropriate option for low energy<br />

and closed fractures such as wrist, hand, ankle, and foot<br />

fractures.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

PRINCIPLES<br />

• Address open wounds first. Document the status <strong>of</strong> open<br />

wounds that will be covered by splints for continuity <strong>of</strong> care.<br />

Status <strong>of</strong> underlying wounds may be written directly on the<br />

splint.<br />

• If the patient is to be transported, splints must be suitable for<br />

the mode <strong>of</strong> transportation and acceptable within the limits <strong>of</strong><br />

the passenger space.<br />

• Caution should be utilized so that splints are not constrictive or<br />

predispose to compartment syndromes, especially prior to long<br />

evacuations.<br />

• Temporary splints are intended to limit further injury and not<br />

meant to be definitive treatment. Definitive reduction may not<br />

be possible or necessary.<br />

• In general, splints should immobilize the joint above and below<br />

the injury.<br />

UPPER EXTREMITY SPLINTS and CASTS<br />

• Finger and hand injuries may be immobilized with standard<br />

splinting methods.<br />

• Forearm and elbow injuries may best be splinted with a long<br />

arm posterior splint, double sugar tong splint or bivalved long<br />

arm cast.<br />

• Humerus and shoulder fractures are best immobilized using a<br />

Velpeau cast, padding the arm against the chest.<br />

— Velpeau casts require casting material to be wrapped around<br />

the trunk and may not be appropriate for casualties with<br />

chest injuries.<br />

— Always bivalve Velpeau casts which will allow for cast<br />

removal if the wounded develops respiratory compromise.<br />

LOWER EXTREMITY SPLINTS and CASTS<br />

• Tibia and ankle fractures may be splinted. Slab splinting,<br />

however, may not provide adequate stability for transport or<br />

surgical delay if the fracture is highly unstable or the fracture is<br />

surrounded by a tenuous s<strong>of</strong>t tissue envelope.<br />

— Long leg casts provide the most stable immobilization.<br />

— Cast with the knee flexed 20 degrees and place a<br />

supracondylar mold.<br />

— Bivalve the cast.<br />

• Hip and femur fractures can be immobilized with a hip spica<br />

cast.<br />

— Bony prominences must be well padded including the<br />

sacrum and anterior superior iliac spines.<br />

— Spica casts require the abdomen be wrapped in the cast, and<br />

therefore may not be suitable for polytrauma patients with<br />

abdominal trauma.<br />

— Adequate space must be left about the perineum for hygiene.<br />

— Bivalve the cast.<br />

SURGICAL FRACTURE MANAGEMENT<br />

Open fractures should receive a thorough surgical debridement as<br />

soon as possible to decrease the incidence <strong>of</strong> infection. Surgical<br />

management <strong>of</strong> fractures may include internal and external fixation.<br />

Internal fixation, due to logistical constraints and concern for<br />

contamination, is not ideal in the austere environment. Therefore,<br />

the surgeon should be well versed on external fixator placement<br />

about the humerus, forearm, femur and tibia.<br />

ADVANTAGES <strong>of</strong> EXTERNAL FIXATION<br />

• External fixation affords adequate fracture stabilization to


minimize additional s<strong>of</strong>t tissue trauma.<br />

• External fixators allow access to the s<strong>of</strong>t tissue for wound care<br />

and frequent assessments.<br />

• External fixation may be rapidly applied in the setting <strong>of</strong><br />

polytrauma and mass casualties. This is also <strong>of</strong> physiological<br />

benefit, as early fracture stabilization is recommended to<br />

blunt inflammatory mediators associated with fractures in<br />

polytrauma.<br />

• The stability afforded by external fixation is also beneficial for<br />

pain control and ease <strong>of</strong> transport, avoiding the remanipulation<br />

<strong>of</strong> splints or casts during transport and at each higher echelon <strong>of</strong><br />

care.<br />

PRINCIPLES<br />

• External fixation in the austere environment is performed<br />

within the restrictions <strong>of</strong> equipment and fluoroscopy<br />

availability.<br />

• Specific portable external fixation kits, designed for military use,<br />

include the H<strong>of</strong>fman II Sterile Field Kit (Stryker Howmedica<br />

Osteonics, Rutherford, NJ). This kit contains carbon fiber rods,<br />

clamps, and self drilling and self tapping pins that may be<br />

inserted without the need for electrical power drilling.<br />

• Frame stability may be increased by optimizing reduction,<br />

minimizing the bone to bar distance, maximizing space<br />

between pins, and adding additional pins.<br />

• Using the minimum number <strong>of</strong> pins possible to maintain<br />

fracture stabilization will allow the receiving surgeons the most<br />

options. Consider future internal fixation plans when choosing<br />

pin placement.<br />

• External fixation has been shown to be safe in the austere<br />

environment with no major complications (defined as<br />

neurovascular injury, mechanical failure, septic joint, and pin<br />

tract osteomyelitis) identified in a recent review <strong>of</strong> 55 tibial<br />

external fixators.<br />

CRITICAL SKILLS <strong>of</strong> EXTERNAL FIXATION<br />

External fixation may be performed in the austere environment<br />

without the use <strong>of</strong> fluoroscopy. Pin placement is described below.<br />

Ideally, pins should be placed to minimize the impact on future<br />

internal fixation.<br />

Pin placement should be performed as follows:<br />

• Make a small vertical incision at the site <strong>of</strong> the pin placement.<br />

• Spread down to the bone bluntly.<br />

• Load the pin in the drill or manual driver and place the pin into<br />

the incision until the pin meets bone.<br />

• Use the pin tip to feel either side <strong>of</strong> the bone. For example,<br />

lateral pin placement in the femur should be performed though<br />

the mid portion <strong>of</strong> the shaft. “Walk” the pin anteriorly and<br />

posteriorly to feel the edges <strong>of</strong> bone so that the mid portion<br />

may be identified.<br />

• Advance the pin through the near cortex. Stop at the purchase <strong>of</strong><br />

the far cortex without over penetrating.<br />

• Subsequent pin placement on the same bone should be<br />

performed in parallel to allow the pin to bar clamps to engage<br />

both pin elements without difficulty. The clamp may be used as<br />

a guide for placement.<br />

• Avoid pin positioning too close to the fracture site. Pins within<br />

the fracture itself will decrease the external fixator’s ability to<br />

maintain stability <strong>of</strong> the fracture.<br />

• External fixators may be placed to span joints if fractures extend<br />

into the articular surface.<br />

FEMUR<br />

• Half pins may be inserted at any point along the lateral aspect<br />

<strong>of</strong> the femur with a low risk to neurovascular structures. Over<br />

penetrating the medial cortex may put the pr<strong>of</strong>udus femoris<br />

210<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

artery at risk.<br />

• Anterior half pins may be used in the midshaft; however the<br />

posterior cortex must not be violated so not to injure the sciatic<br />

nerve.<br />

• Transfixation pins may be placed distally, however assure<br />

adequate proximal distance from knee joint capsule. Pins<br />

should be placed medially to laterally.<br />

KNEE<br />

• Lateral pins in the distal femur and anteromedial pins in the<br />

proximal tibia may be bridged with additional bar to bar<br />

clamps.<br />

TIBIA<br />

• Half pins should be placed on the anteromedial surface <strong>of</strong> the<br />

bone. This is easily palpable as it is subcutaneous the entire<br />

length <strong>of</strong> the bone.<br />

ANKLE<br />

• The ankle may be incorporated into lower extremity external<br />

fixators by a delta shaped construct or a unilateral construct.<br />

• Transfixation pins may be inserted into the calcaneus from the<br />

medial to lateral position. Ensure the pin start point is posterior<br />

and distal to the medial and lateral planter nerves.<br />

• The proximal shaft <strong>of</strong> the first metatarsal may accept pins<br />

perpendicular to the long axis <strong>of</strong> the metatarsal. Do not enter<br />

the base <strong>of</strong> the metatarsal as this may tether the tibialis anterior<br />

tendon.<br />

HUMERUS<br />

• Lateral half pins are used. Do not over penetrate the medial<br />

cortex proximally so not to damage the neurovascular bundle.<br />

• Anterior half pins may also be used. Proximally, avoid the<br />

palpable deltoid tendon. At mid shaft, do not over penetrate the<br />

posterior cortex so not to damage the radial nerve.<br />

ELBOW<br />

• Half pins or transfixation pins may be placed laterally to<br />

medially. Avoid the anterior neurovascular structures and the<br />

ulnar nerve in the groove posterior and medial to the medial<br />

epicondyle by placing the pins in plane with the epicondyles,<br />

palpable on each side <strong>of</strong> the elbow.<br />

FOREARM<br />

• The ulna is easily palpable and pins may generally be placed<br />

along any border. Typically, lateral entry pins are used, keeping<br />

in mind the ulnar nerve proximally.<br />

• Closed pin placement in the proximal portion <strong>of</strong> the radius is<br />

not recommended because <strong>of</strong> risk to the posterior interosseous<br />

nerve. Radial pins may be placed about the distal portion.<br />

CONSIDERATIONS FOR FRACTURES TREATED IN<br />

HOST NATION CASUALTIES<br />

One particular challenge for those administering medical care in the<br />

host nation environment is the high likelihood <strong>of</strong> treating a host<br />

nation individual to whom unknown follow up care is available.<br />

• While internal fixation is generally not recommended in the<br />

austere environment, certain low energy fractures may warrant<br />

open reductions and internal fixations or closed reductions and<br />

percutaneous pinning for host nation casualties.<br />

• External fixation is also on option if transfer to a higher level<br />

<strong>of</strong> host nation care is possible, or the tempo <strong>of</strong> casualties<br />

and individual treatment facility allow for delayed internal<br />

stabilization.<br />

• Low energy, closed fractures may also be definitely treated with<br />

a splint or cast.<br />

• In the setting <strong>of</strong> a high energy wound with extensive s<strong>of</strong>t<br />

tissue loss, an amputation that may be definitely closed in a


211<br />

short period <strong>of</strong> time must be considered. The unavailability<br />

<strong>of</strong> prolonged and advanced surgical care makes difficult limb<br />

salvages challenging.<br />

REFERENCES<br />

1. Emergency War Surgery, 3rd Edition. Borden Institute, Walter Reed Medical<br />

Center, Washington, DC. 2004.<br />

2. Camuso MR. Far-forward fracture stabilization: external fixation versus<br />

splinting. J Am Acad Orthop Surg 2006; 14: S118-S123.<br />

3. Hoppenfeld S. “Approaches for External Fixation” in Surgical Exposures in<br />

<strong>Orthopaedic</strong>s, 4th Edition. Lippincott Williams and Wilkins. Philadelphia.<br />

2009.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

ACKNOWLEDGEMENTS<br />

The authors acknowledge LTC Joseph Hsu, MD and MAJ Glenn<br />

Kerr, MD for the clinical photographs, video, and many <strong>of</strong> the<br />

radiographs. The authors acknowledge COL Damian Rispoli for the<br />

diagrams.<br />

4. Possley DR, Burns TC, Stinner DJ, Murray CK, Wenke JC, Hsu JR, and Skeletal<br />

Trauma Research Consortium. Temporary external fixation is safe in a<br />

combat environment. J Trauma 2010; 69: S135-S139.<br />

5. Handicap International. “Preliminary findings about persons with injuries –<br />

Haiti Earthquake 12 January 2010.” Published January 29, 2010. http://www.<br />

handicap-international.us/in-the-world/states-<strong>of</strong>-intervention/programs/<br />

haiti/haiti-earthquake-documents. Accessed April 2010.


212<br />

eXtremity SoFt tiSSue Care aNd amputatioNS iN aN auStere<br />

eNviroNmeNt<br />

MAJ Travis Burns, MD<br />

Understand the factors that affect the care options for different<br />

patient groups (Locals, detainees, foreigners/Soldiers and those<br />

with evacuation options)<br />

In the austere setting <strong>of</strong> conflict and disaster, medical pr<strong>of</strong>essionals<br />

may treat patients from several different categories to include: hostnation<br />

locals, foreigners, detainees, and military personnel. Initially,<br />

providers may encounter injured personnel from all groups, and as<br />

the situation matures, casualty care may become organized by injury<br />

type, as well as by nationality or personnel category. Medical rules <strong>of</strong><br />

engagement may be established to create guidelines for patient care<br />

within personnel categories. Priority <strong>of</strong> care for all patients must be<br />

according to medical urgency. 1<br />

Determining a treatment plan for a patient must take into<br />

consideration follow-on care after initial treatment. The availability<br />

<strong>of</strong> evacuation, wound care, specialized surgical care, rehabilitation,<br />

medical supplies, and prosthetics influence treatment decisions and<br />

are likely to differ by patient category. Definitive care <strong>of</strong> host-nation<br />

casualties may be limited by the rules <strong>of</strong> evacuation and availability<br />

<strong>of</strong> specialized care. These limitations may need to be considered<br />

when formulating the treatment plan.<br />

U.S. personnel, and those from other supporting nations, will<br />

likely have access to rapid evacuation and state <strong>of</strong> the art care and<br />

rehabilitation. These patients must be stable for transport and the<br />

immediate surgical care should focus on providing definitive care<br />

surgeons with the most reconstructive options. The orthopedic<br />

surgical care is focused on debridement <strong>of</strong> devitalized s<strong>of</strong>t tissues<br />

and contamination, while retaining viable s<strong>of</strong>t tissue and bone for<br />

future reconstruction.<br />

Casualties that must remain in country for medical treatment and<br />

definitive care and rehabilitation, may require treatment plans that<br />

are tailored to available in-country resources. These patients may need<br />

to be initially stabilized before transfer to local facilities for followon<br />

care. Many <strong>of</strong> these patients may not have access to complex<br />

surgical reconstructions, wound care, rehabilitation, or prosthetics.<br />

Assessment <strong>of</strong> future treatment capabilities will guide treatment<br />

decisions and may influence decisions for limb salvage. For example,<br />

in non-salvageable lower extremity injuries in this group, attempts<br />

should be made to maintain as much limb length as possible. A<br />

transtibial amputation may be more functional for patients with<br />

access to prosthetics; however, a Syme or Chopart amputation is<br />

likely to be more functional for a patient without access to prosthetic<br />

fitting and devices. See figures 3-5. One consideration to maintain<br />

s<strong>of</strong>t tissue length in an open amputation requiring transport may<br />

be skin traction. Stockinette wrap proximal to the open wound can<br />

be used to anchor 6 to 8 lbs <strong>of</strong> skin traction to prevent s<strong>of</strong>t tissue<br />

retraction. The International Committee <strong>of</strong> the Red Cross (ICRC)<br />

has described healing by delayed primary closure with this method<br />

in a refugee population.<br />

DEFINE AND DEMONSTRATE DEBRIDEMENT<br />

Introduction<br />

The term debridement is derived from the French verb “débrider”<br />

and was initially used to denote the action <strong>of</strong> “cutting certain parts<br />

which-like a bridle-constrict or strangulate the organs which they<br />

2, 3 cover.”<br />

The goal <strong>of</strong> surgical debridement is to save lives, preserve function,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

and to remove contaminants and nonviable tissue to reduce risk<br />

<strong>of</strong> infection and associated complications. The large zone <strong>of</strong> injury<br />

associated with high energy wounds is likely to evolve over time and<br />

will likely require serial surgical procedures.4 Viable tissue should be<br />

retained for reconstructive efforts at higher levels <strong>of</strong> care.<br />

Indications<br />

The indications for operative management <strong>of</strong> a wound sustained<br />

in an austere environment include: associated fracture, wound<br />

size greater than 2cm, fascial defects, and penetration <strong>of</strong> pleura,<br />

peritoneum, vascular structures, and joint capsule.<br />

Wound evaluation and skin incision<br />

Wound debridement necessitates extension <strong>of</strong> the wound edges,<br />

exploration and inspection <strong>of</strong> the tissues within the zone <strong>of</strong> injury,<br />

and removal <strong>of</strong> contamination and nonviable tissue. The devitalized<br />

skin edges should be sharply excised. Skin is remarkably resilient and<br />

excision <strong>of</strong> large areas should be avoided except for grossly damaged<br />

or shredded skin. For traumatic skin flaps if the base to length ratio<br />

exceeds more than 1:2 it should be sharply excised. Extension <strong>of</strong><br />

the traumatic wound is usually made in the long axis <strong>of</strong> the limb.<br />

Extensions across flexor creases should be done obliquely to prevent<br />

contractures.<br />

Muscle and subcutaneous tissue evaluation<br />

Damaged subcutaneous tissue and fascia are sharply excised.<br />

Complete fasciotomies should be performed for compartments with<br />

elevated intracompartmental pressure.<br />

Color, consistency, contractility, and capacity to bleed are classic<br />

indicators to determine muscle viability but may be unreliable during<br />

initial evaluation.5 Color is the least reliable sign for muscle viability<br />

as surface tissue may be discolored due to contusion, blood under<br />

the myomesium, or local vasoconstriction. Contraction is assessed<br />

by observing retraction with the pinch <strong>of</strong> a forceps or stimulus with<br />

the electrocautery device. Consistency <strong>of</strong> muscle and the ability to<br />

rebound to its initial shape after grasping with a forceps may be<br />

the most reliable early sign. Capacity to bleed may be difficult to<br />

detect early due to vasospasm. Further objective assessment <strong>of</strong> tissue<br />

viability or adequacy <strong>of</strong> debridement is not currently available.<br />

Sharp dissection is utilized to incrementally remove devitalized<br />

tissue from a wound. Neurovascular structures in continuity are left<br />

intact unless a revascularization procedure is necessary for an arterial<br />

injury. Neurovascular structures should be covered with muscle,<br />

fat, or skin if possible. Tendons should be preserved and covered<br />

with local tissue. Vacuum assisted devices should not be used near<br />

exposed arteries, nerves, or veins. Repeat assessment with serial<br />

surgical debridements is likely to be beneficial in complex wounds.<br />

See figures 1-2.<br />

Appropriately balancing wound debridement to minimize infectious<br />

complications with preservation <strong>of</strong> s<strong>of</strong>t tissue for reconstruction is<br />

a challenge. A more aggressive debridement is likely warranted if<br />

wound evaluation will not be possible for greater than 24 hours. 6<br />

Osseous evaluation<br />

It is necessary to deliver the bone ends in open fractures for adequate<br />

debridement <strong>of</strong> fracture edges and the intramedullary canal. Open<br />

wounds that penetrate the joint capsule require an arthrotomy and


irrigation <strong>of</strong> the intraarticular space. The joint capsule should be<br />

reapproximated if tissue is available for closure. Bone fragments<br />

lacking periosteum or s<strong>of</strong>t tissue attachments are debrided. Major<br />

articular fragments should be retained regardless <strong>of</strong> s<strong>of</strong>t tissue<br />

attachments if the joint is to be salvaged.<br />

Irrigation<br />

After completion <strong>of</strong> the debridement, wounds are irrigated with<br />

warm, low-pressure pulse irrigation or simple low pressure flow<br />

through sterile tubing. The volume and type <strong>of</strong> irrigation has not<br />

been defined by scientific studies, and the volume largely depends<br />

on wound size and contamination. Current recommendations are<br />

for 3L <strong>of</strong> irrigation for grade 1 fractures, 6L for grade II fractures,<br />

and 9L for grade 3 fractures. 7 Antiseptics and antibiotics are not<br />

recommended additives to irrigation solution due to toxicity to host<br />

cells and lack <strong>of</strong> proven benefit. Potable water can be utilized in<br />

austere environments if sterile solutions are unavailable.<br />

Postoperative care<br />

Traumatic open wounds in an austere environment should not<br />

be closed primarily in order to minimize the risk <strong>of</strong> infectious<br />

complications. Sterile dressings or negative pressure wound therapy<br />

devices should be used between procedures and during medical<br />

evacuation. A splint should be applied to all severe extremity s<strong>of</strong>t<br />

tissue wounds for patient comfort and s<strong>of</strong>t tissue rest, and should<br />

immobilize the joint above and below the zone <strong>of</strong> injury. Open<br />

wounds are reevaluated every 24 to 48 hours or after transfer<br />

to the next level <strong>of</strong> care. Determination <strong>of</strong> need for a repeat<br />

surgical debridement is largely subjective but important patient<br />

considerations are evidence <strong>of</strong> persistent contamination, devitalized<br />

tissue, high energy mechanism, and local or systemic signs <strong>of</strong><br />

infection. Management issues to consider include the time until<br />

evacuation, length <strong>of</strong> evacuation, and the volume <strong>of</strong> other operative<br />

cases.<br />

Debridement Surgical Steps<br />

• Administer appropriate IV antibiotics and tetanus prophylaxis<br />

for all penetrating wounds as early as possible<br />

— Cefazolin 1g q8hrs for gram-positive coverage<br />

— Gentamicin 5mg/kg/24hrs for gram-negative coverage<br />

— Penicillin 2,000,000u IV q4hrs for anaerobic/clostridia<br />

coverage<br />

• Sterile preparation <strong>of</strong> the entire limb including prehospital<br />

applied tourniquet as the extent <strong>of</strong> the zone <strong>of</strong> injury is not<br />

always evident<br />

• Once the surgical team is prepared, and anesthesia has proper<br />

vascular access, the field tourniquet is released<br />

• Control active hemorrhage<br />

• Longitudinal extension <strong>of</strong> traumatic wound if necessary to<br />

evaluate s<strong>of</strong>t tissue<br />

• Excise nonviable tissue<br />

— Necrotic skin and subcutaneous tissue<br />

— Muscle that is friable, noncontractile, ischemic, severely<br />

damaged, or grossly contaminated<br />

— Bone that is grossly contaminated or devoid <strong>of</strong> s<strong>of</strong>t tissue<br />

• Identify major arterial injuries and determine limb viability and<br />

need for revascularization procedure<br />

• Identify major nerves and leave in continuity<br />

— Primary repair <strong>of</strong> transected nerves is not performed in<br />

austere environments if definitive care resources are available<br />

to the patient.<br />

• Deliver bone ends on open fractures out <strong>of</strong> traumatic wound<br />

and clean the contents <strong>of</strong> the medullary canal<br />

• Irrigate with low pressure pulsatile lavage or simple flow<br />

through cystoscopy tubing<br />

213<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

• Flaps should not be fashioned for closure<br />

• Leave wound open and apply sterile dressing<br />

• Splint for s<strong>of</strong>t tissue rest and comfort during transport<br />

Describe the indications for and demonstrate the ability to<br />

perform battlefield/austere environment amputations<br />

Amputations performed in an austere environment are performed<br />

in two distinct patient groups. The first is the early amputation<br />

performed for a nonviable limb or a severely injured patient that is<br />

physiologically unable to tolerate limb salvage. The second group<br />

includes the definitive amputation performed on local nationals and<br />

other patients without access to higher levels <strong>of</strong> care.<br />

The goals for initial care <strong>of</strong> the severely injured patient is to preserve<br />

life, prepare the patient for evacuation if available, and leave the<br />

maximum number <strong>of</strong> definitive treatment options. 8<br />

Specific guidelines for indicating an extremity for amputation based<br />

on injury characteristics or physiologic parameters are unavailable.<br />

Extremity injury characteristics that may indicate an early amputation<br />

include: a nonviable limb after debridement <strong>of</strong> devitalized tissue,<br />

an ischemic limb with greater than 6 hours <strong>of</strong> warm ischemia, and<br />

irreparable vascular injury or failed repair with an ischemic limb.<br />

Systemic characteristics that may indicate an early amputation<br />

is a severely injured extremity and rising serum lactate levels. If a<br />

patient has a viable limb and evacuation is available, amputation<br />

indications are more appropriately based on physiologic status than<br />

on predicted ultimate limb functionality.<br />

Austere environment amputations should be performed at the most<br />

distal level possible to retain options for future reconstructive efforts<br />

and to minimize s<strong>of</strong>t tissue retraction. All viable skin, s<strong>of</strong>t tissue, and<br />

osseous length should be preserved during the initial debridement.<br />

Viable s<strong>of</strong>t tissue (muscle and skin) distal to the bone loss may be<br />

used as a rotational flap and may enable the patient to maintain a<br />

more distal level amputation. This is especially important for short<br />

tibial segments where distal s<strong>of</strong>t tissue may be rotated to preserve knee<br />

function. Fractures proximal to the level <strong>of</strong> a planned amputation<br />

need not decide the amputation level and may be initially treated<br />

with external fixation or splint application. The definitive treatment<br />

plan and level <strong>of</strong> amputation may be established after considering<br />

viable bone and s<strong>of</strong>t tissue, availability <strong>of</strong> evacuation and expected<br />

prosthetic availability for the patient. The most commonly utilized<br />

levels <strong>of</strong> amputation are illustrated in figures 3-5.<br />

Description <strong>of</strong> the surgical technique for each available amputation<br />

level is beyond the scope <strong>of</strong> this section. Refer to the links below<br />

for video content and descriptions <strong>of</strong> surgical techniques for various<br />

upper and lower extremity levels. Skin traction is unnecessary in<br />

amputations that will be reevaluated within 24 to 48 hours. However,<br />

longer delays prior to repeat evaluation may warrant skin traction.<br />

Amputations should not be closed initially. A sterile dressing or<br />

negative pressure dressing should be applied with a splint for s<strong>of</strong>t<br />

tissue rest during transport.<br />

Amputation Surgical Technique<br />

• Administer appropriate IV antibiotics and tetanus prophylaxis<br />

as early as possible<br />

— Cefazolin 1g q8hrs for gram-positive coverage<br />

— Gentamicin 5mg/kg/24hrs for gram-negative coverage<br />

— Penicillin 2,000,000u IV q4hrs for anaerobic/clostridia<br />

coverage<br />

• Sterile preparation <strong>of</strong> the entire limb including prehospital<br />

applied tourniquet<br />

• Once the surgical team is prepared and anesthesia has proper<br />

vascular access, the field tourniquet is released<br />

• Control active hemorrhage


• Excise nonviable tissue<br />

— Necrotic skin and subcutaneous tissue<br />

— Muscle that is friable, noncontractile, ischemic, severely<br />

damaged, or grossly contaminated<br />

— Bone that is grossly contaminated or devoid <strong>of</strong> s<strong>of</strong>t tissue<br />

• Bone cuts for a definitive amputation should not be a priority.<br />

If the limb is nonviable a bone cut should be made as distal as<br />

possible while removing the necrotic tissue.<br />

• Identify and ligate major arteries and veins to prevent bleeding<br />

during transport<br />

• Identify and tag the major nerves and evaluate for bleeding<br />

• Irrigate with low pressure pulsatile lavage or low pressure flow<br />

through cystoscopy tubing<br />

USEFUL LINKS:<br />

1. Emergency War Surgery (EWS) handbook: http://www.bordeninstitute.army.<br />

mil/other_pub/ews.html<br />

2. Definitive Amputation Surgical Techniques for Transfemoral, Knee<br />

Disarticulation, Transtibial, Transmetatarsal, and Partial Calcanectomy levels:<br />

http://www.ampsurg.org/html/amplevels.html#<br />

www.ampsurg.org<br />

REFERENCES:<br />

1. Szul A, Davis L, eds. Chapter 34: Care <strong>of</strong> Enemy Prisoners <strong>of</strong> War/Internees.<br />

Washington, DC: Department <strong>of</strong> the Army; 2004.<br />

2. Bowyer G. Debridement <strong>of</strong> extremity war wounds. J Am Acad Orthop Surg<br />

2006;14:S52-6.<br />

214<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

• Flaps should not be fashioned for closure and sutures should<br />

not be used to maintain muscle flap position<br />

• Leave wound open and apply sterile dressing<br />

• A splint should be applied for s<strong>of</strong>t tissue rest, patient comfort,<br />

contracture prevention, and to minimize s<strong>of</strong>t tissue retraction.<br />

Generally the splint should immobilize a joint above and below<br />

the zone <strong>of</strong> injury.<br />

• Skin tissue traction may be placed for any patient that will<br />

require more than 2 to 3 days before evaluation at a higher level<br />

<strong>of</strong> care or for further surgical treatment<br />

3. Rechert F. The historical development <strong>of</strong> the procedure termed debridement.<br />

Bull Johns Hopkins Hosp 1928;42:93-104.<br />

4. Ficke JR, Pollak AN. Extremity War Injuries: Development <strong>of</strong> Clinical<br />

Treatment Principles. The Journal <strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong><br />

Surgeons 2007;15:590-5.<br />

5. Scully R, Artz C, Sako Y. An evaluation <strong>of</strong> the surgeon’s criteria for determing<br />

the viability <strong>of</strong> muscle during debridment. Arch Surg 1956;73:1031-5.<br />

6. Szul A, Davis L, eds. Chapter 22: S<strong>of</strong>t Tissue Injury. Washington, DC:<br />

Department <strong>of</strong> the Army; 2004.<br />

7. Anglen JO. Wound irrigation in musculoskeletal injury. J Am Acad Orthop<br />

Surg 2001;9:219-26.<br />

8. Szul A, Davis L, eds. Chapter 25: Amputations. Washington, DC: Department<br />

<strong>of</strong> the Army; 2004.


215<br />

u boNe deFeCtS: wheN are<br />

orthobiologiCS iNdiCated? (w)<br />

Moderators: Stuart B. Goodman, MD, Redwood City, CA and<br />

A. Seth Greenwald, DPhil Oxon, Cleveland Heights, OH<br />

This symposium reviews the available “Tool Box” <strong>of</strong> bone graft materials and other technologies for repair <strong>of</strong> bone defects in<br />

three common difficult clinical settings.<br />

I. Today’s Biologic Tool Box<br />

a. Autograft Bone<br />

Thomas A. Einhorn, MD, Boston, MA<br />

b. Osteoconductive Scaffolds<br />

Michael J. Yaszemski, MD, Rochester, MN<br />

c. Osteoinductive/Osteopromotive Growth Factors<br />

Scott D. Boden, MD, Atlanta, GA<br />

d. Osteogenic Cells<br />

George F. Muschler, Cleveland, OH<br />

II. Decisions<br />

a. Fractures – Any Stage from Acute Fractures or Non-Unions<br />

Theodore Miclau, MD, San Francisco, CA<br />

J. Tracy Watson, MD, Saint Louis, MO<br />

b. Lumbar Spinal Fusion – ALIF/PLIF or PLF – Single or Multilevel<br />

Isador H. Lieberman, MD, Plano, TX<br />

Harvinder S. Sandu, MD, New York, NY<br />

c. Periprosthetic Defects and Metaphyseal Bone Loss<br />

Allan E. Gross, MD, Toronto, Canada<br />

Wayne Paprosky, MD, Winfield, IL<br />

III. Discussion – Panel with Audience Questions<br />

a. Matching Graft to Biological Need<br />

b. Addressing Differences <strong>of</strong> Opinion<br />

c. Balancing Goals?<br />

i. Rapid Return <strong>of</strong> Function<br />

ii. Avoiding Complications (Infection, Neurovascular Compromise, Hematoma/Seroma, Reoperation)<br />

iii. Limiting Cost?<br />

d. Any Absolute Rules?<br />

i. Never?<br />

ii. Always?<br />

e. Take Home Messages All Speakers<br />

f. Stump the Pr<strong>of</strong>essors<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL


I. Traditional Autogenous Bone Grafting<br />

It is estimated that more than 2.2-million bone grafts are performed<br />

worldwide each year with 450,000 being performed in the United<br />

States. In addition to the treatment <strong>of</strong> orthopaedic injuries and<br />

conditions, a significant number <strong>of</strong> grafts are used in the repair and<br />

reconstruction <strong>of</strong> crani<strong>of</strong>acial bones. The so-called gold standard<br />

for bone grafting remains autogenous bone graft, as it provides the<br />

basic components required to stimulate skeletal repair including<br />

osteoinductive factors, an osteoconductive extracellular matrix,<br />

and osteogenic stem cells present in bone marrow elements.<br />

Osteoinduction refers to the process by which pluripotent<br />

mesenchymal stem cells are recruited from the surrounding host<br />

tissues and differentiate into bone forming osteoprogenitor cells.<br />

This is mediated by graft-derived growth factors such as bone<br />

morphogenetic proteins (BMPs)and other peptide signaling<br />

molecules. Osteoconduction is a process in which the macroscopic<br />

and microscopic architecture <strong>of</strong> the bone, as well as its chemisty<br />

and charge, combine to provide a scaffold to support the ingrowth<br />

<strong>of</strong> blood vessels and the attachment <strong>of</strong> osteoprogenitor cells. This<br />

occurs in an ordered sequence determined by the three dimensional<br />

structure <strong>of</strong> the graft, the local blood supply and biomechanical<br />

factors exerted on the graft and surrounding tissues. Osteogenesis<br />

refers to the process <strong>of</strong> bone formation and is conducted by fully<br />

mature osteoblasts. With regard to bone grafting, an osteogenic<br />

material is one that contains live donor osteoblasts capable <strong>of</strong><br />

producing bone, or osteoprogenitor cells that have the ability to<br />

differentiate into osteoblasts in the host.<br />

Autogenous bone grafting provides consistent results with regard<br />

to healing and integration, however, the morbidities associated<br />

with grafting such as donor site, pain, nerve or arterial injury, and<br />

infection are reported with rates <strong>of</strong> between 8 and 10%.<br />

A. Sources <strong>of</strong> Autogenous Bone<br />

The most common and best described sources <strong>of</strong> autogenous<br />

bone include the pelvis, distal radius, fibula, proximal tibia,<br />

and ribs. In addition, local bone reamings obtained during<br />

intramedullary nailing, local bone obtained from spinous<br />

processes during spinal fusion, and femoral heads obtained<br />

during total hip arthroplasty are also commonly used. Through<br />

the harvesting <strong>of</strong> the patient’s own bone, the potential for<br />

graft versus host reaction is eliminated as is the risk <strong>of</strong> disease<br />

transmission. Based on the type <strong>of</strong> graft needed, either<br />

cancellous or cortical bone can be harvested.<br />

B. Incorporation <strong>of</strong> Autogenous Bone<br />

The sequence <strong>of</strong> events that occur following bone grafting<br />

are similar to those involved in the normal bone repair<br />

process. These include hematoma formation and recruitment<br />

<strong>of</strong> circulating progenitor cells in response to the release <strong>of</strong><br />

proinflammatory and proangiogenic factors. The recruited cells<br />

then begin the process <strong>of</strong> graft incorporation and osteoclasts<br />

begin resorption <strong>of</strong> necrotic graft material. Pluripotential<br />

mesenchymal cells respond to local factors and differentiate<br />

into osteoblasts and produce osteoid. While osteoblasts and<br />

endosteal lining cells on the surface <strong>of</strong> the graft may survive the<br />

transplantation and contribute to the healing, it is likely that the<br />

main contribution <strong>of</strong> the graft is to act as an osteoconductive<br />

substrate. These properties provide the necessary physical and<br />

chemical requirements to support the attachment, spreading,<br />

division and differentiation <strong>of</strong> cells that form bone. The final<br />

stages in the process involve mineralization <strong>of</strong> the osteoid and<br />

216<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

autogeNouS boNe<br />

Thomas A. Einhorn, MD<br />

remodeling <strong>of</strong> the callus. The process <strong>of</strong> remodeling <strong>of</strong> the<br />

callus (composed <strong>of</strong> woven bone) involves the coordinated<br />

activities <strong>of</strong> osteoblastic bone formation and osteoclastic bone<br />

resportion, with woven bone ultimately being replaced by<br />

lamellar bone.<br />

C. Use <strong>of</strong> Autogenous Cancellous Bone Graft<br />

Cancellous bone is an effective graft material for specific clinical<br />

settings, particularly those that do not require immediate<br />

structural support from the graft. Its main function is to act as<br />

a scaffold for the attachment <strong>of</strong> host cells and to provide the<br />

osteoconductive and osteoinductive functions required for the<br />

laying down <strong>of</strong> new bone. Since this type <strong>of</strong> graft is rapidly<br />

incorporated, the remolding process known as “creeping<br />

substitution” is usually completed at one year, by which time<br />

the graft will have been replaced by new bone. While cancellous<br />

bone graft does not provide structural support by itself, it can<br />

be impacted into skeletal sites and in conjunction with internal<br />

fixation devices, support an area <strong>of</strong> bone loss.<br />

D. Use <strong>of</strong> Autologous Cortical Bone Graft<br />

Cortical bone can provide structural support as well as<br />

osteoconductive and osteoinductive properties. Cortical bone<br />

grafts are usually harvested from the ribs, fibula, or crest <strong>of</strong><br />

the ilium and can be transplanted with or without a vascular<br />

pedicle. Non-vascularized grafts are mostly osteoconductive and<br />

possibly provide some osteoinductive properties but possess<br />

little or no osteogenic properties as they contain very few<br />

osteoblasts or osteoprogenitor cells. The diffusion <strong>of</strong> nutrients<br />

is limited by the thickness <strong>of</strong> the cortical matrix and, as such,<br />

the survival <strong>of</strong> transplanted osteocytes is limited. The density <strong>of</strong><br />

the graft also plays a role in the incorporation and remodeling<br />

process. Revascularization <strong>of</strong> the graft is slow as there is<br />

extensive bone substrate for osteoclastic bone resportion.<br />

Remodeling then proceeds as it does for cancellous bone but<br />

can require up to two years for completion.<br />

II. Minimally Invasive Methods<br />

Several minimally invasive methods <strong>of</strong> harvesting autogenous bone<br />

graft have been developed and include core biopsy, suction trap<br />

method and RIA (Reamer Irrigator Aspirator). Studies have been<br />

done to determine the biological potential <strong>of</strong> reaming aspirate. In<br />

one investigation, iliac crest bone reaming debris and irrigation<br />

samples were harvested during intramedullary nailing procedures.<br />

Platelet-rich plasma (PRP) was prepared from blood. The growth<br />

factors in the bony materials (iliac crest or reaming debris) and the<br />

liquid materials [platelet-poor plasma (PPP), platelet-rich plasma,<br />

or reaming irrigation] were compared. Elevated levels <strong>of</strong> fibroblast<br />

growth factor α, platelet derived growth factor, insulin-like growth<br />

factor-1, transforming growth factor-α1 and BMP-2 were measured<br />

in the reaming debris as compared to the iliac crest curettings. VEGF<br />

and FGF-α were significantly lower in the reaming debris than from<br />

iliac crest samples. In comparing PRP and PPP, all detectable growth<br />

factors, except IGF-1, were enhanced. In the reaming irrigation, FGF-α<br />

and FGF-α were higher but VEGF, PDGF, IGF-1, and TGF-α1 and BMP-<br />

2 were lower compared to PRP. BMP-4 was not measurable in any<br />

sample. These data show that bone reaming debris is a rich source<br />

<strong>of</strong> growth factors with a content comparable to that from iliac crest.<br />

The irrigation fluid from the reaming also contains growth factors. In<br />

a more recent study, investigators implanted human bone reamings<br />

using RIA, irrigation fluid (usually discarded as waste), tricalcium<br />

phosphate, and tricalcium phosphate mixed with waste irrigation into


muscle pouches <strong>of</strong> athymic nude mice. Histological analysis showed<br />

that the implants <strong>of</strong> RIA reamings or waste irrigation (with or without<br />

tricalcium phosphate) led to the formation <strong>of</strong> bone. The investigators<br />

suggested that the RIA system may allow for the collection <strong>of</strong> large<br />

volumes <strong>of</strong> autogenous osteoinductive graft material.<br />

Systemic Effects <strong>of</strong> Bone Graft Harvest<br />

Although autogenous bone, allogeneic bone and bone graft<br />

substitutes are generally evaluated as independent materials, it is<br />

worth considering systemic factors associated with the harvesting <strong>of</strong><br />

autogenous bone. Several studies have shown that intramedullary<br />

reaming produces a systemic anabolic skeletal response. In addition,<br />

bleeding is associated with a central stimulation <strong>of</strong> bone marrow<br />

that could also upregulate skeletal metabolism. The act <strong>of</strong> harvesting<br />

autogenous bone may itself produce a host response that could<br />

enhance healing.<br />

III. Questions and Answers:<br />

A. Is autogenous bone truly osteoinductive?<br />

Autogenous bone contains the full complement <strong>of</strong> bone matrix<br />

proteins including those present in the transforming growth<br />

factor beta superfamily and the BMP subfamily. As such, it is<br />

reasonable to assume that some quantities and concentrations<br />

<strong>of</strong> osteoinductive factors exist in autogenous bone. However,<br />

the contribution that those factors make to healing and<br />

regeneration when autogenous bone is used clinically has never<br />

been clearly defined. If one defines osteoinduction as the ability<br />

REFERENCES<br />

1. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site<br />

morbidity. A statistical evaluation. Spine 1995 May 1;20(9):1055-60.<br />

2. Bolander ME. Regulation <strong>of</strong> fracture repair by growth factors. Proc Soc Exp<br />

Biol Med 1992 June;200(2):165-70.<br />

3. Fowler BL, Dall BE, Rowe DE. Complications associated with harvesting<br />

autogenous iliac bone graft. Am J Orthop 1995 December;24(12):895-903.<br />

4. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest<br />

bone graft. Complications and functional assessment. Clin Orthop Relat Res<br />

1997 June;(339):76-81.<br />

5. Lewandrowski KU, Gresser JD, Wise DL, Trantol DJ. Bioresorbable bone<br />

graft substitutes <strong>of</strong> different osteoconductivities: a histologic evaluation <strong>of</strong><br />

osteointegration <strong>of</strong> poly(propylene glycol-co-fumaric acid)-based cement<br />

implants in rats. Biomaterials 2000 April;21(8):757-64.<br />

6. Stevenson S. Biology <strong>of</strong> bone grafts. Orthop Clin North Am 1999<br />

October;30(4):543-52.<br />

7. Tessier P, Kawamoto H, Matthews D et al. Autogenous bone grafts and<br />

bone substitutes--tools and techniques: I. A 20,000-case experience<br />

in maxill<strong>of</strong>acial and crani<strong>of</strong>acial surgery. Plast Reconstr Surg 2005<br />

October;116(5 Suppl):6S-24S.<br />

8. Tessier P, Kawamoto H, Posnick J, Raulo Y, Tulasne JF, Wolfe SA.<br />

Complications <strong>of</strong> harvesting autogenous bone grafts: a group experience <strong>of</strong><br />

20,000 cases. Plast Reconstr Surg 2005 October;116(5 Suppl):72S-3S.<br />

9. Springfield DS. Massive autogenous bone grafts. Orthop Clin North Am<br />

1987 April;18(2):249-56.<br />

10. Urist MR. Osteoinduction in undemineralized bone implants modified by<br />

chemical inhibitors <strong>of</strong> endogenous matrix enzymes. A preliminary report.<br />

Clin Orthop Relat Res 1972 September;87:132-7.<br />

11. Finkemeier CG. Current Concepts Review: Bone-Grafting and Bone-Graft<br />

Substitutes. J Bone Joint Surg 2002 March(84A):454-464.<br />

12. Gray JC, Elves MW. Early osteogenesis in compact bone isografts: a<br />

quantitative study <strong>of</strong> contributions <strong>of</strong> the different graft cells. Calcif Tissue<br />

Int. 1979;29:225-37.<br />

13. Heslop BF, Zeiss IM, Nisbert NW. Studies on the transference <strong>of</strong> bone. I. A<br />

comparison <strong>of</strong> autologous and homologous bone implants with refence<br />

to osteocyte survival, osteogenesis and host reaction. BR J Exp Pathol.<br />

1960;41:269-87.<br />

14. Burwell RG. Studies in the transplantation <strong>of</strong> bone. BII. The fresh composite<br />

homograft autograft <strong>of</strong> cancellous bone. An analysis <strong>of</strong> factors leading to<br />

osteogenesis in marrow transplants and in marrow-containing bone grafts. J<br />

Bone Joint Surg Br. 1964;46:110-40.<br />

217<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

to form bone when an osteoinductive material is implanted<br />

in a non-skeletal site (for example, a muscle pouch), then in<br />

order for autogenous bone to be considered osteoinductive,<br />

it would have to form bone in this manner. To this speaker’s<br />

knowledge, such an observation has never been clearly made.<br />

It is more likely that autogenous bone provides a low level <strong>of</strong><br />

osteoinduction which is insufficient to regenerate bone by itself,<br />

but which functions synergistically with the osteogenic and<br />

osteoconductive properties <strong>of</strong> the grafts.<br />

B. What percentage <strong>of</strong> cells remain viable when autologous bone is<br />

transplanted from one skeletal site to another?<br />

Various reports have suggested that between 3% and 30%<br />

<strong>of</strong> osteocytes and osteoblasts in autogenous bone survive<br />

autogenous transplantation. This speaker has not been able to<br />

locate the evidence to support these claims. At this time, the<br />

viability <strong>of</strong> cells transplanted, and the percentage <strong>of</strong> cells that<br />

survive the transplant are not clearly known.<br />

C. Is autogenous bone truly the “gold standard”?<br />

Determination <strong>of</strong> a reference material is not made by scientific<br />

development but rather by investigator or user choice.<br />

Therefore, if orthopaedic surgeons wish to consider autogenous<br />

bone the “gold standard” against which other graft materials<br />

are compared, then all they need do is agree to do that. At this<br />

time, most clinicians, as well as federal regulatory agencies<br />

accept autogenous bone as the comparator for other materials<br />

developed as bone graft substitutes.<br />

15. Dell PC, Burchardt H, Glowczewskie FP Jr. A roentgenographic,<br />

biomechanical, and histological evaluation <strong>of</strong> vascularized and nonvascularized<br />

segmental fibular canine autografts. J Bone Joint Surg Am.<br />

1985;67-105-12.<br />

16. Doi K, Tominaga S. Sjobata T. Bone grafts with microvascular anastomosis<br />

<strong>of</strong> vascular pedicles: an experimental study in dogs. J Bone Joint Surg Am.<br />

1977;59:806-15.<br />

17. Enneking Wf, Burchardt H, Puhl JJ, Piotrowski G. Physical and biological<br />

aspects <strong>of</strong> repair in dog cortical-bone transplants. J Bone Joint Surg Am.<br />

1975;57:237-52.<br />

18. Ray RD. Vascularization <strong>of</strong> bone grafts and implants. Clin Orthop.<br />

19723;87:43-8.<br />

19. Enneking WF, Mindell ER. Observations on massive retrived human<br />

allografts. J Bone Joint Surg Am. 1992;73:1123-42.<br />

20. Stevenson S. Ehnacement <strong>of</strong> fracture healing with autogenous and allogeneic<br />

bone grafts. Clin Orthop. 1998;344 Suppl:S239-46.<br />

21. Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP,<br />

Wildemann B. Quantitative assessment <strong>of</strong> growth factors in reaming aspirate,<br />

iliac crest, and platelet preparation. Bone 2006;39:1156-1163.<br />

22. Stewart RL, Stannard JP, Volgas DA, Chaudry IH, Duke JN, Alonso JE. Bone<br />

graft and waste irrigation obtained using the Reamer-Irrigator_Aspirator<br />

(RIA) induce bone growth in the rat muscle pouch. Trans. Orthop. Trauma<br />

Assn. 24:121, 2008<br />

23. Bab I, Gazit D, Muhlrad A, Shteyer A: Regenerating bone marrow produces<br />

a potent growth-factor activity to osteogenic cells. Endocrinology 123:345-<br />

352, 1988.<br />

24. Einhorn TA, Simon G, Devlin VJ, et al: The osteogenic response to distant<br />

skeletal injury. J Bone Joint Surg 72A:1374-1378-, 1990.<br />

25. Gazit D, Karmish M, Holzman L, Bab I:Regenerating marrow induces<br />

systemic increase in osteo-and chondrogenesis. Endocrinology 126:2607-<br />

2613, 1990.<br />

26. Ilizarov GA, Chepelenko TA, Izotova SP, Kechetkov YuS: Effect <strong>of</strong> acute blood<br />

loss on stromal regulation <strong>of</strong> hemopoietic stem cells and reparative bone<br />

regeneration. Patol Fiziol Eksp Ter 5:54-58, 1986.<br />

27. Lucas TS, Bab IA, Lian JB, Stein GS, Jazrawi L, Majeska RJ, Attar-Namdar<br />

M, Einhorn TA:Stimulation <strong>of</strong> systemic bone formation induced by<br />

experimental blood loss. Clin Orthop., 340:267-275, 1997.


The material presented at this course has been made available by the AAOS for<br />

educational purposes only. The AAOS disclaims any and all liability for injury,<br />

loss or other damages resulting to any individual attending the course and for all<br />

claims which may arise from the use <strong>of</strong> techniques and strategies demonstrated<br />

therein. The material is not intended to represent the only methods, procedures<br />

or strategies for the situations discussed. Rather, the course is intended to present<br />

an array <strong>of</strong> approaches, views, statements, and opinions which the faculty<br />

believe will be helpful to course participants. Some drugs or medical devices<br />

demonstrated in <strong>Academy</strong> educational programs or materials have not been<br />

cleared by the FDA or have been cleared by the FDA for specific uses only. The<br />

FDA has stated that it is the responsibility <strong>of</strong> the physician to determine the FDA<br />

clearance status <strong>of</strong> each drug or device he or she wishes to use in clinical practice.<br />

Introduction<br />

1. Bone Defect Classification<br />

2. Definitions: Scaffold, Osteoconductive, Osteoinductive,<br />

Osteogenic<br />

3. Natural Scaffolds: Autograft Bone, Allograft Bone, Collagen<br />

4. Synthetic Scaffolds: Polymers, Metals, Ceramics<br />

Bone Defect Classification<br />

1. Contained<br />

2. Non-Contained<br />

3. Segmental<br />

Definitions<br />

1. Scaffold<br />

a. Maintains space<br />

b. Porosity<br />

c. Interconnectivity<br />

2. Osteoconductive<br />

a. Cells attach, migrate, grow, divide<br />

3. Osteoinductive<br />

218<br />

oSteoCoNduCtive SCaFFoldS<br />

Michael J Yaszemski MD PhD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

a. Growth factors<br />

b. Demineralized bone matrix<br />

c. Autogenous bone marrow: Cells and growth factors<br />

4. Osteogenic<br />

a. Cells capable <strong>of</strong> synthesizing osteoid<br />

Natural Scaffolds<br />

1. Autograft Bone<br />

2. Allograft Bone<br />

3. Collagen<br />

Synthetic Scaffolds<br />

1. Polymers<br />

a. Polyesters (e.g. PLGA, PLLA)<br />

b. Polycarbonates<br />

c. Polyanhydrides<br />

d. Injectable, Moldable, Preformed<br />

e. Shape specific<br />

2. Metals<br />

a. Porous Tantalum<br />

b. Porous Titanium<br />

3. Ceramics<br />

a. Hydroxyapatite<br />

b. Tricalcium phosphate<br />

c. Calcium sulfate<br />

Clinical Applications<br />

1. Spine<br />

2. Tumor<br />

3. Trauma<br />

4. Adult and Pediatric Reconstruction


219<br />

oSteoiNduCtive/oSteopromotive growth FaCtorS<br />

Scott D. Boden, MD<br />

1) Introduction<br />

a) ICBG is the “gold standard” for difficult healing situations<br />

i) Osteoconduction- scaffold<br />

ii) Osteogenesis- live cells<br />

iii) Morbidity may be up to 20% <strong>of</strong> patients<br />

b) Osteoinductive bone graft alternatives are experiencing<br />

increasing popularity<br />

i) Osteoinductive means it is capable <strong>of</strong> inducing bone de<br />

novo in ectopic location<br />

ii) Bone graft extenders or enhancers<br />

iii) Bone graft substitutes<br />

iv) Osteopromotive category – helpful when bone is already<br />

forming, but not capable <strong>of</strong> ectopic bone formation from<br />

scratch<br />

2) Peptide Signaling Molecules<br />

These peptide growth factors stimulate the activity <strong>of</strong><br />

osteoprogenitor cells and osteoblasts and may enhance<br />

osteogenesis. They cannot induce bone formation from<br />

undifferentiated cells.<br />

a) Fibroblast Growth Factor (FGF)<br />

i) Expressed during fracture repair<br />

ii) FGF-2 can accelerate fracture repair in NH primates<br />

(baboons)<br />

iii) Phase III clinical trials for tibial fractures underway<br />

b) Vascular Endothelial Growth Factor (VEGF)<br />

i) Ability to induce angiogenesis<br />

ii) Necessary for bone healing, but not sufficient to be<br />

osteoinductive<br />

iii) Can enhance bone healing and can enhance suboptimal<br />

doses <strong>of</strong> BMP<br />

c) Platelet Derived Growth Factor (PDGF)<br />

i) Several different is<strong>of</strong>orms<br />

ii) Not osteoinductive<br />

iii) Helpful for diabetic wound healing<br />

iv) Possibly helpful for diabetic fracture repair<br />

v) Inhibitory for spine fusion when combined with<br />

autograft or DBM<br />

vi) Can inhibit BMP activity in cell cultures<br />

vii) May require optimal concentration and pulsed rather<br />

than constant release<br />

d) Prostaglandin Agonists<br />

i) PGE2 increases bone mass administered systemically or<br />

locally<br />

ii) An agonist to prostaglandin receptor EP2 enhanced<br />

healing <strong>of</strong> canine long bone segmental defects<br />

3) Bone Morphogenetic Proteins<br />

i) Timeline<br />

(1)1965 – Urist – Autoinduction principle (DBM)<br />

(2)1988 -Rosen, Wozney et al cloned BMP cDNAs<br />

(3)2001 - rhBMP-7 (OP-1) approved for spine fusion in<br />

Australia, then Europe, later for long bone nonunions<br />

(4)2002 - rhBMP-2/ACS (InFuse) PMA approved by FDA<br />

for Interbody Spine Fusion<br />

(5)2003 -rhBMP-7 (OP-1) HDE approved by FDA for long<br />

bone nonunion and eventually posterolateral spine<br />

fusion nonunion<br />

(6)2005 -rhBMP-2 (InFuse) PMA approved by FDA for open<br />

tibia fractures<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

(7)2007 -rhBMP-2 (InFuse) PMA approved by FDA for<br />

dental applications<br />

ii) Mechanism <strong>of</strong> Action<br />

(1)BMPs are chemotactic for MSCs<br />

(2)BMP homo/hetero dimers bind to cell surface receptors<br />

(serine threonine kinase) resulting in phosphorylation<br />

<strong>of</strong> Smad 1/5 which binds to Smad4 and translocates into<br />

the nucleus where it can bind to specific DNA sequences<br />

in promoters <strong>of</strong> osteoblastic genes.<br />

(3)Inhibitory Smads can block this process<br />

(4)Smurf1 can result in ubiquitin-mediated proteosomal<br />

degradation <strong>of</strong> Smads<br />

(5) Much crosstalk with other pathways that may affect<br />

cellular responsiveness to BMPs – poorly understood.<br />

(6)Osteoinductive BMPs can induce bone and bone marrow<br />

formation de novo in an ectopic location.<br />

iii) Are all BMPs created equal? NO<br />

(1)Most osteogenic BMPs are BMP-2, BMP-6, BMP-9<br />

(2)Somewhat less osteogenic BMPs are BMP-4, BMP-7<br />

(3) Data based on in vitro effects on pluripotent cells,<br />

immature OB, mature OB as well as in vivo ectopic bone<br />

formation with each BMP delivered by AdV vector in<br />

thigh muscle <strong>of</strong> athymic rat<br />

(4)Different BMPs can have different distant organ effects<br />

(a) rhBMP-7 has positive effects on kidney (was<br />

considered as a potential treatment for acute renal<br />

failure)<br />

(b)rhBMP-6 has been examined for osteoporotic bone<br />

enhancement<br />

4) Summary <strong>of</strong> Outstanding Issues with BMPs<br />

a) Are there differences between BMPs?<br />

b) Will difficult patients (revisions, diabetes, smokers, steroids)<br />

require higher doses <strong>of</strong> BMPs?<br />

c) Are there safety issues (antibodies)? – probably not clinically<br />

relevant<br />

d) Beware <strong>of</strong> Off-Label (Physician-Directed) use – increased<br />

possibility <strong>of</strong> local side effects<br />

e) Local Side Effects with rBMPs?<br />

i) Ectopic Bone (PLIF, TLIF)<br />

ii) Seroma, Edema (ACDF, PLIF, TLIF, PLF)<br />

iii) Transient Local Resorption (ALIF, PLIF, TLIF) near<br />

cancellous bone<br />

iv) Transient Radiculopathy (TLIF, ? PLIF)<br />

v) Can be minimized by avoiding hyperconcentration <strong>of</strong><br />

BMP solution on carrier, switching carriers with unknown<br />

release kinetics, avoiding overstuffing BMP/carrier into<br />

fixed defect/device volumes<br />

f) Carrier plays an important role in success and dose <strong>of</strong> BMP<br />

needed<br />

g) Segmental Defect is tougher than routine fracture.<br />

Posterolateral spine fusion is tougher than interbody fusion<br />

– must validate BMP dose and carrier in specific healing<br />

environment<br />

h) Rhesus monkey is most predictive pre-clinical model <strong>of</strong><br />

clinical behavior <strong>of</strong> BMP+ carrier<br />

i) Less than 100% successful bone induction suggests:<br />

i) Inferior BMP<br />

ii) Inadequate dose<br />

iii) Inadequate carrier


REFERENCES:<br />

1. Wozney JM et al. “Novel regulators <strong>of</strong> bone formation: Molecular clones and<br />

activities” Science (242): 1528 – 1534, 1988<br />

2. Sandhu HS et al. “Histological evaluation <strong>of</strong> the efficacy <strong>of</strong> rhBMP-2<br />

compared with autograft bone in sheep spinal anterior interbody fusion”<br />

Spine, 27 (6): 567 – 575, 2002<br />

3. Boden SD et al. “Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a<br />

titanium interbody threaded cage” J Spinal Disorders, 11 (2): 95 – 101, 1998<br />

4. Boden SD et al. “The use <strong>of</strong> rhBMP-2 in interbody fusion cages. Definitive<br />

evidence <strong>of</strong> osteoinduction in humans: A preliminary report” Spine, 25 (3):<br />

376 – 381, 2000<br />

5. Burkus JK et al. “Anterior interbody fusion using rhBMP-2 with tapered<br />

interbody cages” J Spinal Disorders, 15 (5): 337 – 349, 2002<br />

6. Cunningham BW et al. “Interbody spinal arthrodesis using a mineralized<br />

collagen matrix and threaded fusion cage. A non-human primate study” 46th<br />

<strong>Annual</strong> <strong>Meeting</strong> <strong>of</strong> ORS, pp357, 2000<br />

7. Welch WC et al. “A prospective randomized study <strong>of</strong> interbody fusion: Bone<br />

substitute or autograft” http://www.orquest.com/pdfs/welch.pdf, 2002<br />

8. Akamaru T et al. “Simple carrier matrix modifications can enhance delivery<br />

<strong>of</strong> recombinant human bone morphogenetic protein-2 for posterolateral<br />

spine fusion” Spine 28(5):429-434, 2003<br />

9. Cool SD “Preclinical and clinical evaluation <strong>of</strong> osteogenic protein-1 (BMP-7)<br />

in bony sites” Orthopedics 22(7): 669 – 671, 1999<br />

10. Cunningham BW et al. “Posterolateral spinal arthrodesis using osteogenic<br />

protein-1: An in vivo time-course study using a canine model” 15th <strong>Annual</strong><br />

<strong>Meeting</strong> NASS, p139 – 140, 2000.<br />

11. Cheung KMC et al. “Augmentation <strong>of</strong> intertransverse spinal fusion in<br />

promates using OP-1” ISSLS <strong>Annual</strong> <strong>Meeting</strong>, Paper 7, 1999<br />

12. Hilibrand AS et al. “One year follow-up on patients in a pilot safety and<br />

efficacy study <strong>of</strong> OP-1 (rhBMP-7) in posterolateral lumbar fusion as a<br />

replacement for iliac crest autograft” 70th <strong>Annual</strong> <strong>Meeting</strong> AAOS, Paper 161,<br />

2003<br />

13. Grosse A et al. “Mineralized collagen as a replacement for autogenous bone<br />

in posterolateral lumbar spinal fusion” Eur Spine J , 8 (Suppl 1): S27 – S28,<br />

1999<br />

14. Urist MR et al. “The bone induction principle” Clin Orthop (53): 243 – 283<br />

(1967)<br />

15. Sassard WR et al. “Augmenting local bone with Grafton Demineralized<br />

bone matrix for poaterolateral lumbar spine fusion: avoiding second site<br />

autologous bone harvest” Orthopedics, 23(10): 1059 – 1064, 2000<br />

16. Suh, D.Y. et al. “Delivery <strong>of</strong> recombinant human bone morphogenetic<br />

protein-2 (rhBMP-2) using a compression resistant matrix in posterolateral<br />

spine fusion in the rabbit and non-human primate” Spine, (27): 353-360,<br />

2002.<br />

17. Boden, S.D. et al. “Posterolateral lumbar transverse process spine arthrodesis<br />

with recombinant human bone morphogenetic protein-2/hydroxyapatitetricalcium<br />

phosphate after laminectomy in the nonhuman primate” Spine,<br />

(24): 1179-1185, 1999.<br />

18. Boden, SD et al. “Use <strong>of</strong> recombinant human bone morphogenetic protein-2<br />

to achieve posterolateral lumbar spine fusion in humans: A prospective,<br />

randomized, clinical pilot trial. 2002 Volvo Award in Clinical Studies.” Spine,<br />

(27) 2862-2863, 2002.<br />

19. Tay, BK et al. “Use <strong>of</strong> a collagen hydroxyapatite matrix in spinal fusion. A<br />

rabbit model. Spine, (23): 2276-2281, 1998.<br />

20. Martin, GM et al. “New formulations <strong>of</strong> demineralized bone matrix as a<br />

more effective graft alternative in experimental posterolateral lumbar spine<br />

arthrodesis”, Spine, (24): 637-645, 1999.<br />

220<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

21. Louis-Ugbo, J et al. “Evidence <strong>of</strong> osteoinduction <strong>of</strong> Grafton Matrix in<br />

nonhuman primate spine fusion model.” Spine, (29): 360-366, 2003.<br />

22. Kraiwattanapong C et al. “Comparison <strong>of</strong> HEALOS/Bone Marrow to INFUSE<br />

with a collagen-ceramic sponge bulking agent as graft substitutes for lumbar<br />

spine fusion.” Spine, (30), In Press, 2005<br />

23. Walsh, WR et al. “Spinal fusion using an autologous growth factor gel and a<br />

porous resorbable ceramic.” Eur Spine J. 2004 Jul;13(4):359-66.<br />

24. Hartman, EH et al. ”Ectopic bone formation in rats: the importance <strong>of</strong> the<br />

carrier.” Biomaterials. 2005 May;26(14):1829-35.<br />

25. Weiner and Walker. “Efficacy <strong>of</strong> autologous growth factors in lumbar<br />

intertransverse fusions.” Spine. 2003 Sep 1;28(17):1968-70.<br />

26. Carreon, LY et al. “Platelet gel (AGF) fails to increase fusion rates in<br />

instrumented posterolateral fusions.” Spine. 2005 May 1;30(9):E243-6.<br />

27. Haid, RW Jr et al. ” Posterior lumbar interbody fusion using recombinant<br />

human bone morphogenetic protein type 2 with cylindrical interbody<br />

cages.” Spine J. 2004 Sep-Oct;4(5):527-38<br />

28. Baramki, HG. “The efficacy <strong>of</strong> interconnected porous hydroxyapatite<br />

in achieving posterolateral lumbar fusion in sheep. “Spine. 2000 May<br />

1;25(9):1053-60.<br />

29. Meadows GR et al. “Adjunctive use <strong>of</strong> ultraporous beta-tricalcium phosphate<br />

bone void filler in spinal arthrodesis.” Orthopedics. 2002 May;25(5<br />

Suppl):s579-84.<br />

30. Muschik, M et al. “Beta-tricalcium phosphate as a bone substitute for dorsal<br />

spinal fusion in adolescent idiopathic scoliosis: preliminary results <strong>of</strong> a<br />

prospective clinical study.” Eur Spine J. 2001 Oct;10 Suppl 2:S178-84.<br />

31. Villavicencio AT, et al. “Safety <strong>of</strong> transforaminal lumbar interbody fusion<br />

and intervertebral recombinant human bone morphogenetic protein-2.” J<br />

Neurosurg Spine. 2005 Dec;3(6):436-43.<br />

32. Lanman TH, et al. “Lumbar interbody fusion after treatment with<br />

recombinant human bone morphogenetic protein-2 added to poly(Llactide-co-D,L-lactide)<br />

bioresorbable implants.” Neurosurg Focus. 2004 Mar<br />

15;16(3):E9.<br />

33. Burkus JK, et al. “Use <strong>of</strong> rhBMP-2 in combination with structural cortical<br />

allografts: clinical and radiographic outcomes in anterior lumbar spinal<br />

surgery.” J Bone Joint Surg Am. 2005 Jun;87(6):1205-12.<br />

34. Smucker JD et al. “Increased swelling complications associated with <strong>of</strong>f-label<br />

usage <strong>of</strong> rhBMP-2 in the anterior cervical spine.” Spine 2006: 31:2813-2819.<br />

35. Dimar JR et al. “Clinical outcomes and fusion success at 2 years <strong>of</strong> singlelevel<br />

instrumented posterolateral fusions with recombinant human bone<br />

morphogenetic protein-2/compression resistant matrix versus iliac crest bone<br />

graft. Spine 2006: 31:2534-2539.<br />

36. McClellan JW et al. “Vertebral bone resorption after transforaminal lumbar<br />

interbody fusion with bone morphogenetic protein (rhBMP-2)”. J Spinal<br />

Disord Tech 2006: 19:483-486.<br />

37. Magit DP et al. “Healos/recombinant human growth and differentiation<br />

factor-5 induces posterolateral lumbar fusion in a New Zealand white<br />

rabbite model. Spine 2006 31:2180-2188.<br />

38. Singh K et al. “Use <strong>of</strong> recombinant human bone morphogenetic protein-2<br />

as an adjunct in posterolateral lumbar spine fusion: A prospective CT-scan<br />

analysis at one and two years”. J Spinal Disord Tech 2006: 19:416-423.<br />

39. Kanayama M et al. “A prospective randomized study <strong>of</strong> posterolateral<br />

lumbar fusion using osteogenic protein-1 (OP-1) versus local autograft with<br />

ceramic bone substitute: Emphasis <strong>of</strong> surgical exploration and histologic<br />

assessment.” Spine 2006: 31:1067-1074.<br />

40. Shields LB et al. “Adverse effects associated with high-dose recombinant<br />

human bone morphogenetic protein-w use in anterior cervical spine fusion”.<br />

Spine 2006: 31:542-547.


221<br />

traNSplaNtatioN oF autogeNouS oSteogeNiC CellS<br />

George F. Muschler, MD, Tonya Caralla, Tom Patterson, PhD<br />

1) Only osteogenic connective tissue progenitors and stem cells<br />

make bone (i.e. osteogenic CTPs aka, CTP-Os) [1]<br />

2) CTP-Os cells can be found in the following locations<br />

a. Bone Marrow, periosteum, endosteum, perivascular marrow<br />

i. The concentration is low, but adequate for healing in<br />

most injury settings.<br />

ii. Heterogeneous mixture <strong>of</strong> committed and inducible<br />

osteogenic cells, mixed with other non-osteogenic CTPs<br />

b. Fat, Muscle, Synovium<br />

i. Concentration is higher<br />

ii. Prevalence <strong>of</strong> osteogenic differentiation is lower<br />

3) In some settings the available progenitor population is<br />

deficient<br />

a. Local disease<br />

b. Prior infection and scarring<br />

c. Prior radiation<br />

d. Avascular or hypovascular tissue<br />

e. Surgical debridement<br />

f. Segmental defects<br />

4) Local CTP-O deficiency may be a limiting factor in the<br />

performance <strong>of</strong> all sites and all current graft materials<br />

a. Osteoconductive Materials<br />

b. Osteoinductive materials (e.g. BMP-2, OP-1 (aka BMP-7)<br />

5) Some current graft materials are not biologically suitable as a<br />

cell delivery vehicle[2, 3]<br />

a. Hyperosmolar materials – glycerol, CaSO4<br />

b. Acidic materials – CaSO4<br />

c. Hyperthermic materials – setting cements<br />

6) Bone Marrow Aspiration (BMA) has been the preferred<br />

method for minimally invasive harvest <strong>of</strong> osteogenic cells.<br />

a. Pros<br />

i. Minimal morbidity (local bruising in 0.002%)<br />

ii. Less time consuming than autograft harvest (5-10 min vs<br />

30min)<br />

iii. Less costly than autograft (OR time, complications,<br />

length <strong>of</strong> stay)<br />

iv. Clots by itself<br />

v. Autogenous Marrow used fresh or with minimal<br />

manipulation is regulated as an autogenous tissue.<br />

vi. RBCs from contaminating peripheral blood bring<br />

with them hemoglobin which may serve as an oxygen<br />

reserve or oxygen tension buffer early in wound repair,<br />

particularly after exposure to room air.<br />

vii. Much more available for rapid intraoperative processing<br />

than fat or muscle sources<br />

1. no enzymatic digestion required<br />

b. Cons<br />

i. Not all surgeons are comfortable with aspiration<br />

ii. Osteogenic CTPs are diluted by about 4-fold from native<br />

concentration by peripheral blood<br />

iii. Overall yield <strong>of</strong> CTPs may still be suboptimal (2000 CTP-<br />

Os/cc in avg. healthy adult)<br />

iv. Contains materials that may inhibit bone formation or<br />

compete with CTP-Os<br />

1. RBCs<br />

a. Degrade to create debris in the wound site that<br />

needs to be removed by macrophages, which<br />

i. delays bone formation and remodeling<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

ii. results in inflammation and increased local<br />

metabolic demand contributing to local hypoxia<br />

2. WBCs<br />

a. Respiration <strong>of</strong> vast numbers <strong>of</strong> transplanted non-<br />

CTPs adds to local hypoxia.<br />

b. Contain cells likely to be inhibitory as well as cells<br />

likely to be stimulatory for bone repair<br />

3. Platelets and platelet degranulation products<br />

a. May enhance bone repair or may enhance scar<br />

formation, depending on the setting.<br />

4. Serum Proteins and cytokines – from marrow or<br />

released following aspiration<br />

a. May be stimulatory or inhibitory<br />

7) Marrow processing can be used to increase [CTP-O] back to<br />

native tissue levels and to remove unwanted cells<br />

a. Centrifuge<br />

i. Pros<br />

1. Increases CTP-O concentration by 2-4 fold<br />

(intrinsically limited by physical ability to separate<br />

buffy coat from RBC mass without a larger density<br />

gradient)<br />

2. Removes bulk <strong>of</strong> RBCs<br />

3. Devices regulated as 510K under “minimal<br />

manipulation” guidelines.<br />

ii. Cons<br />

1. Time consuming (~5-15 staff opening and set up time<br />

and 10-30 min intra-operative processing time)<br />

2. Expensive – $400-800 above cost <strong>of</strong> graft matrix<br />

3. Requires a minimum <strong>of</strong> 40ccs to 120ccs <strong>of</strong> marrow<br />

4. Cells leave the sterile field and sometimes the OR<br />

increasing chances for contamination.<br />

5. No large case series and no prospective randomized<br />

studies.<br />

b. Selective retention<br />

i. Pros<br />

1. Increased CTP-O concentration by 2-20 fold<br />

(depending on ratio <strong>of</strong> marrow to matrix volume and<br />

surface area used)<br />

2. Increases prevalence <strong>of</strong> CTP-Os (1.5 – 3 fold using<br />

current materials – porous allograft or CaPO4<br />

ceramics)<br />

a. Removes RBCs AND 60-90% <strong>of</strong> competing non-<br />

CTPs (WBCs that do not attach)<br />

i. Reduces local metabolic demand which should<br />

increase CTP-O survival<br />

3. Cells are processed in the OR on the sterile field,<br />

reducing risk <strong>of</strong> contamination.<br />

4. Attached cells are less likely to become dislodged<br />

from the scaffold after transplantation than<br />

centrifuged marrow secondarily added to a scaffold<br />

5. Devices regulated as 510K under “minimal<br />

manipulation” guidelines.<br />

6. 20,000+ cases performed in US<br />

ii. Con<br />

1. Time consuming (~5-10 min opening and set up time<br />

and 10 min intra-operative processing time)<br />

2. Expensive - $400-800 above cost <strong>of</strong> graft matrix (need<br />

to confirm)<br />

3. No large case series and no prospective randomized<br />

studies.


222<br />

4. Case reports contain mixture <strong>of</strong> SR with other methods<br />

5. Muschler experience (72 non-unions with 6<br />

reoperations >90% success) not publishable due to<br />

COI limitations.<br />

c. Magnetic Separation<br />

i. Pros<br />

1. May increase concentration by 2- 200 fold<br />

2. May increase CTP-O prevalence by 2-200 fold<br />

a. Further reducing local competition and metabolic<br />

demand for oxygen and other substrates.<br />

3. Clinical magnetic separation technologies are well<br />

established in hematology setting.<br />

ii. Cons<br />

1. Time consuming (30 – 240 min <strong>of</strong> intra-operative<br />

processing time)<br />

2. Expensive – $800+ above cost <strong>of</strong> graft matrix<br />

(projected)<br />

3. Minimum number <strong>of</strong> ccs uncertain, since no clinical<br />

products yet<br />

4. Cells leave the sterile field and sometimes the OR<br />

increasing chances for contamination.<br />

5. No large or small animal series to date<br />

6. No clinical experience<br />

7. Devices regulatory status uncertain<br />

8) Conclusion<br />

a. Justification for clinical use <strong>of</strong> bone marrow or marrow<br />

processing<br />

REFERENCES:<br />

1. Muschler, G.F., R.J. Midura, and C. Nakamoto, Practical Modeling Concepts<br />

for Connective Tissue Stem Cell and Progenitor Compartment Kinetics. J<br />

Biomed Biotechnol, 2003. 2003(3): p. 170-193.<br />

2. Muschler, G.F. and J.M. Lane, Spine fusion: principles <strong>of</strong> bone fusion., in The<br />

Spine, H.N. Herkowitz, et al., Editors. 1999, WB Saunders: Philadelphia. p.<br />

15731589.<br />

3. Muschler, G.F., C. Nakamoto, and L.G. Griffith, Engineering Principles <strong>of</strong><br />

Clinical Cell-Based Tissue Engineering. J Bone Joint Surg Am, 2004. 86-A(7):<br />

p. 1541-58.<br />

4. Ma, H.L., T.H. Chen, and S.C. Hung, Development <strong>of</strong> a new method in<br />

promoting fracture healing: multiple cryopreserved bone marrow injections<br />

using a rabbit model. Arch Orthop Trauma Surg, 2004. 124(7): p. 448-54.<br />

5. Djapic, T., et al., Compressed homologous cancellous bone and bone<br />

morphogenetic protein (BMP)-7 or bone marrow accelerate healing <strong>of</strong> longbone<br />

critical defects. Int Orthop, 2003. 27(6): p. 326-30.<br />

6. Muschler, G.F., et al., Spine Fusion Using Cell Matrix Composites Enriched in<br />

Bone Marrow-Derived Cells. Clin Orthop Rel Res, 2003. 407: p. 102-118.<br />

7. Cui, Q., et al., Comparison <strong>of</strong> lumbar spine fusion using mixed and cloned<br />

marrow cells. Spine, 2001. 26(21): p. 2305-10.<br />

8. Curylo, L.J., et al., Augmentation <strong>of</strong> spinal arthrodesis with autologous bone<br />

marrow in a rabbit posterolateral spine fusion model. Spine, 1999. 24(5): p.<br />

434-8; discussion 438-9.<br />

9. Muschler, G.F., et al., Selective Retention <strong>of</strong> Bone Marrow-Derived Cells to<br />

Enhance Spinal Fusion. Clin Orthop, 2005(432): p. 242-251.<br />

10. Brodke, D., et al., Bone grafts prepared with selective cell retention<br />

technology heal canine segmental defects as effectively as autograft. J Orthop<br />

Res, 2006. 24(5): p. 857-66.<br />

11. Klimczak, A., et al., Donor-origin cell engraftment after intraosseous or<br />

intravenous bone marrow transplantation in a rat model. Bone Marrow<br />

Transplant, 2007. 40(4): p. 373-80.<br />

12. Hernigou, P. and F. Beaujean, Treatment <strong>of</strong> osteonecrosis with autologous<br />

bone marrow grafting. Clin Orthop, 2002. 405: p. 14-23.<br />

13. Hernigou, P., et al., Percutaneous autologous bone-marrow grafting for<br />

nonunions. Surgical technique. J Bone Joint Surg Am, 2006. 88 Suppl 1 Pt 2:<br />

p. 322-7.<br />

14. Hernigou, P., et al., Percutaneous autologous bone-marrow grafting for<br />

nonunions. Influence <strong>of</strong> the number and concentration <strong>of</strong> progenitor cells. J<br />

Bone Joint Surg Am, 2005. 87(7): p. 1430-7.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

i. Biological rationale clear, particularly in graft site or<br />

setting in which local CTP-O deficiency is likely.<br />

1. Innumerable preclinical animal studies showing<br />

that addition <strong>of</strong> marrow-derived cells improves graft<br />

performance, even in the absence <strong>of</strong> local tissue<br />

disease or suspected deficiency[4-11].<br />

2. Several preclinical studies showing that bone marrow<br />

processing (centrifuge or selective retention) adds<br />

significantly to the rate and extent <strong>of</strong> bone repair in<br />

bone spine fusion and bone defect settings[6, 9, 12-17].<br />

ii. Low risk<br />

iii. Low burden<br />

iv. High potential impact for selected patients with<br />

challenging clinical settings.<br />

v. Far less cost than use <strong>of</strong> alternative adjuvant to implanted<br />

scaffold (e.g. BMPs) (10 fold lower cost per cc <strong>of</strong> graft)<br />

vi. Clinical Findings<br />

1. No randomized trials<br />

2. Several non-randomized reports suggesting clinical<br />

efficacy[12, 14, 15, 18-28]<br />

3. No evidence that BM-derived cells every compromise<br />

bone repair (as reported for platelet gels in some<br />

settings)<br />

b. Justification for not using marrow or marrow processing<br />

i. Adds cost<br />

ii. No prospective clinical trials to demonstrate clinical<br />

efficacy or cost effectiveness over scaffold alone.<br />

15. Hernigou, P., et al., The use <strong>of</strong> percutaneous autologous bone marrow<br />

transplantation in nonunion and avascular necrosis <strong>of</strong> bone. J Bone Joint<br />

Surg Br, 2005. 87(7): p. 896-902.<br />

16. Muschler, G.F. Clinical Experience with Intra-operative Stem Cell<br />

Concentration and Selection. in Emerging Technologies Sumposium. 2002.<br />

Washington, DC.<br />

17. Takigami, H., et al., Bone formation following OP-1 implantation is<br />

improved by addition <strong>of</strong> autogenous bone marrow cells in a canine femur<br />

defect model. J Orthop Res, 2007. 25(10): p. 1333-42.<br />

18. Ateschrang, A., et al., Fibula and tibia fusion with cancellous allograft<br />

vitalised with autologous bone marrow: first results for infected tibial nonunion.<br />

Arch Orthop Trauma Surg, 2009. 129(1): p. 97-104.<br />

19. Lindsey, R.W., et al., Grafting long bone fractures with demineralized bone<br />

matrix putty enriched with bone marrow: pilot findings. Orthopedics, 2006.<br />

29(10): p. 939-41.<br />

20. Tetreault, P. and H.A. Ouellette, Healing <strong>of</strong> a clavicle fracture nonunion with<br />

bone marrow injection. J Shoulder Elbow Surg, 2007. 16(1): p. e23-4.<br />

21. Faundez, A.A., S. Taylor, and A.J. Kaelin, Instrumented fusion <strong>of</strong><br />

thoracolumbar fracture with type I mineralized collagen matrix combined<br />

with autogenous bone marrow as a bone graft substitute: a four-case report.<br />

Eur Spine J, 2006. 15 Suppl 5: p. 630-5.<br />

22. Goel, A., et al., Percutaneous bone marrow grafting for the treatment <strong>of</strong> tibial<br />

nonunion. Injury, 2005. 36(1): p. 203-6.<br />

23. Wilkins, R.M., B.T. Chimenti, and R.M. Rifkin, Percutaneous treatment <strong>of</strong><br />

long bone nonunions: the use <strong>of</strong> autologous bone marrow and allograft<br />

bone matrix. Orthopedics, 2003. 26(5 Suppl): p. s549-54.<br />

24. Connolly, J.F., et al., Autologous marrow injection as a substitute for<br />

operative grafting <strong>of</strong> tibial nonunions. Clin Orthop, 1991. 266: p. 259-70.<br />

25. Garg, N.K., S. Gaur, and S. Sharma, Percutaneous autogenous bone marrow<br />

grafting in 20 cases <strong>of</strong> ununited fracture. Acta Orthop Scand, 1993. 64(6): p.<br />

671-2.<br />

26. Healey, J.H., et al., Percutaneous bone marrow grafting <strong>of</strong> delayed union and<br />

nonunion in cancer patients. Clin Orthop, 1990. 256: p. 280-5.<br />

27. Lindholm, T.S. and M.R. Urist, A quantitative analysis <strong>of</strong> new bone<br />

formation by induction in compositive grafts <strong>of</strong> bone marrow and bone<br />

matrix. Clin Orthop, 1980(150): p. 288-300.<br />

28. Salama, R. and S.L. Weissman, The clinical use <strong>of</strong> combined xenografts <strong>of</strong><br />

bone and autologous red marrow. A preliminary report. J Bone Joint Surg Br,<br />

1978. 60(1): p. 111-5.


223<br />

FraCtureS – aNy Stage From aCute FraCtureS to NoN-uNioNS<br />

(CaSe preSeNtatioNS)<br />

Theodore Miclau, MD and J. Tracy Watson, MD<br />

There are clearly no well defined indications for use <strong>of</strong> a specific type<br />

<strong>of</strong> bone graft substitute or use <strong>of</strong> inductive factor when dealing with<br />

complex fractures or nonunions. This is especially true when treating<br />

acute bone loss in the setting <strong>of</strong> associated severe s<strong>of</strong>t tissue damage<br />

or infected nonuions. The use <strong>of</strong> all <strong>of</strong> these new resources should<br />

be based on contemporary fracture or nonunion management<br />

principles and guided by current levels <strong>of</strong> evidence for use <strong>of</strong> these<br />

materials.<br />

1) Common biological requirements for bone regeneration<br />

a) Cells: Adult progenitor cells from the marrow, periosteum,<br />

and other sources<br />

b) Blood supply: For the delivery <strong>of</strong> nutrients, oxygen, and<br />

systemic factors required for cell survival<br />

c) Molecules and their receptors: Provides for the induction<br />

<strong>of</strong> cells to proliferate and differentiate into osseous tissue<br />

(osteoinduction)<br />

d) Extracellular matrix: To provide a scaffold for cells<br />

(osteoconduction), and storage site for growth factors<br />

2) Extracellular matrix:<br />

a) Properties for function<br />

i) Space filler (biocompatibility)<br />

ii) Structural properties (mechanical)<br />

iii) Microstructural (biological for cell surface adhesion/<br />

healing)<br />

b) ECM scaffolding characteristics<br />

i) Substrates for bone replacement<br />

ii) Resorption over time<br />

iii) Requires cells for cytokines or potency<br />

iv) Dependent upon defect types or loads<br />

v) Clinical studies frequently compare efficacy <strong>of</strong><br />

osteobiologics to cancellous autograft as gold standard<br />

3) Consideration for specific anatomic locations: Metaphyseal<br />

defects<br />

a) For most metaphyseal defects, it has been shown<br />

experimentally that a simple cancellous void will<br />

reconstitute on its own and heal completely given a sound<br />

biologic environment without the addition <strong>of</strong> any further<br />

grafting material. The danger here is that the subchondral<br />

surface will collapse if this defect does not reconstitute fast<br />

enough to provide subchondral support with the initiation<br />

<strong>of</strong> weight bearing.<br />

i) Conductive substrates: Issues<br />

(1)Ca ceramics. CaSO4 / CaPO4<br />

(a) Incorporation characteristics, specifically rates <strong>of</strong><br />

osteointegration<br />

(b)Ultimate compressive strength (mPa)<br />

(c) Delivery mechanism. Particulate vs. self-setting<br />

“cements”<br />

(d) Incorporation time vs. bone regenerated into<br />

defect<br />

(i) Cellular mediated vs. chemical degradation <strong>of</strong><br />

materials<br />

(ii)Use <strong>of</strong> marrow concentrates to accelerate<br />

incorporation characteristics. “seeding the<br />

graft”<br />

(e) Multiple studies with good Level I and II evidence<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

support use <strong>of</strong> both sulfate and phosphate<br />

materials for contained metaphysical defects.<br />

(i) Demonstrated superiority over autogeous graft<br />

materials.<br />

(2)Mechanical Factors Use <strong>of</strong> conductive substrate<br />

materials in metaphyseal defects augmented with<br />

use <strong>of</strong> locking plates for plateau, distal femoral, and<br />

pilon fractures. One should be aware <strong>of</strong> the relative<br />

compressive strengths <strong>of</strong> these materials. The strength<br />

should match that <strong>of</strong> native cancellous bone. Also,<br />

one should be aware <strong>of</strong> the rate <strong>of</strong> degradation. This is<br />

important when considering timing <strong>of</strong> weight bearing<br />

When the material begins to osteo- integrate, the<br />

compressive strength will also begin to decrease. Thus<br />

weight bearing at this time can result in late articular<br />

collapse.<br />

(a) Minimal evidence currently available for use <strong>of</strong><br />

locking plates in these locations.<br />

(b)No evidence currently available for use <strong>of</strong> these Ca<br />

ceramics for the solitary treatment <strong>of</strong> diaphyseal<br />

defects, either for acute bone loss or in nonunion<br />

situations.<br />

4) Consideration for specific anatomic locations: Diaphyseal<br />

fractures and nonunions<br />

a) Use <strong>of</strong> adjuvant materials in this location depends on<br />

numerous factors<br />

i) Evaluation: Fracture site (the mid-shaft tibia fracture is<br />

usually a biologically “challenged” region)<br />

(1) The appropriate migration <strong>of</strong> cellular components<br />

to the site <strong>of</strong> bone graft or fracture is crucial in<br />

continuing the progression <strong>of</strong> the fracture healing<br />

cascade. Possible delivery <strong>of</strong> these cells to the region<br />

in question may be necessary.<br />

(2)Acute bone loss vs. non-union defect<br />

(3)Condition <strong>of</strong> s<strong>of</strong>t tissues and “zone <strong>of</strong> injury” local<br />

environment<br />

(a) May require angiography / MRI to determine<br />

vascularity/viability <strong>of</strong> host defect. Most graft<br />

failures are as a result <strong>of</strong> inadequate or poor<br />

host nutrition to the local graft region as most<br />

fracture sites and nonunions are <strong>of</strong>ten at the site<br />

<strong>of</strong> thick scar and/or relative avascularity. There is<br />

no substitute for preparing the host recipient bed<br />

appropriately by resecting the avascular tissue<br />

and providing healthy tissue for revascularization<br />

phenomenon and thus success <strong>of</strong> the graft.<br />

(b) Flap/s<strong>of</strong>t tissue coverage, including timing (i.e.<br />

reconstitution <strong>of</strong> inflammatory phase <strong>of</strong> fracture<br />

healing-neovascularization)<br />

(4)Size <strong>of</strong> defect<br />

(a) Minor defect (.< 1 cm bone loss/nonunion gap)<br />

(b)Critical size defects (circumferential bone loss /<br />

nonunion gap >1cm to 4 cm)<br />

(c) Massive defects (> 6 cm).<br />

(5) Infection status<br />

(6)Mechanical stability<br />

ii) Treatment: Acute defect/delayed union/subcritical defect


REFERENCES<br />

224<br />

(without total segmental loss) with internal fixation (i.e.<br />

plate/IM nail)<br />

(1)Graft options<br />

(a) Composite grafts<br />

(i) DBM + Autogenous cellular concentrates, +, -<br />

platelet gels (as carrier)<br />

1. Limited success with centrifuged aspirate<br />

alone (Connelly, Watson)<br />

2. Concentration <strong>of</strong> CFU’s in conjunction<br />

with carrier materials (Hernigou) (Jimenez,<br />

Astrom technique)<br />

iii) Treatment: Acute critical sized defect/nonunion<br />

(segmental loss


16. Muschler GF, Midura MJ. Connective Tissue Progenitors: Practical Concepts<br />

for Clinical Applications. Clin Orthop 2002; 395:66-80.<br />

17. Muschler, GF, Midura RJ, Nakamoto C. Practical modeling concepts for<br />

connective tissue stem cell and progenitor compartment kinetics. J Biomed<br />

Biotechnol. 2003:3(2003)1-20.<br />

18. Hernigou P et al; Percutaneous Autologous Bone-Marrow Grafting for<br />

Nonunions. J. Bone and Joint Surg., 87-A No. 7 July 2005<br />

19. Hernigou P et al; Treatment <strong>of</strong> Osteonecrosis with Autologous Bone Marrow<br />

Grafting. Clin <strong>Orthopaedic</strong>s and Rel Res., 405: 14 – 23, 2002<br />

20. Muschler GF, Nakamoto C, Griffith LG. Engineering principles <strong>of</strong> clinical<br />

cell-based tissue engineering. J Bone Joint Surg Am. 2004 Jul; 86-A (7):1541-<br />

1558.<br />

21. Muschler, GF, Boehm, C, Easley K. Aspiration to obtain osteoblast progenitor<br />

cells from human bone marrow: the influence <strong>of</strong> aspiration volume. J Bone<br />

Joint Surg Am 1997Nov (11):1699-1709<br />

22. Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as<br />

a substitute for operative grafting <strong>of</strong> tibial nonunions. Clin Orthop 1991;<br />

266:259-269.<br />

23. Connolly J, Guse R, Lippiello L, Dehne R. Development <strong>of</strong> an osteogenic<br />

bone-marrow preparation. J. Bone and Joint Surg. 1998; 5:684-690.<br />

24. Tiedeman JJ, Connolly JF, Strates BS, Lippiello L. Treatment <strong>of</strong> nonunion by<br />

percutaneous injection <strong>of</strong> bone marrow and demineralized bone matrix. An<br />

experimental study in dogs. Clin Orthop.1991 Jul ;( 268):294-302.<br />

25. Brude Slater M, et al. Involvement <strong>of</strong> Platelets in Stimulating Osteogenic<br />

Activity J Ortho Research 13:655-663, 1995.<br />

26. Marx RE, Carlson ER, Eichstaaedt RM, et. al, Platelet Rich Plasma; Growth<br />

Factor Enhancement for Bone Grafts. June 1998, J Ortho Research 85(6)<br />

13:655663, 1995.<br />

27. Cierny G, Zorn KL. Segmental tibial defects, comparing conventional and<br />

Ilizarov methodologies. Clin. Orthop. 301: 118-133, 1994.<br />

28. Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J. Management <strong>of</strong><br />

segmental defects by the Ilizarov intercalary bone transport method. Clin<br />

Orthop: 280:136-142, 1992.<br />

29. Gold SM, Wasserman R. Preliminary results <strong>of</strong> tibial bone transports with<br />

pulsed low intensity ultrasound (Exogen). J Orthop Trauma. 19(1):10-6,<br />

2005.<br />

30. Lowenberg DW, Feibel RJ, Louie KW, Eshima I. Combined muscle flap and<br />

Ilizarov reconstruction for bone and s<strong>of</strong>t tissue defects. Clin Orthop. 332:37-<br />

51, 1996.<br />

31. Mahaluxmivala J, Nadarajah R, Allen PW, Hill RA.: Ilizarov external fixator:<br />

acute shortening and lengthening versus bone transport in the management<br />

<strong>of</strong> tibial non-unions. Injury. 36(5):662-668, 2005.<br />

225<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

32. Matsuyama J, Ohnishi I, Kageyama T, Oshida H, Suwabe T, Nakamura K.<br />

Osteogenesis and angiogenesis in regenerating bone during transverse<br />

distraction: quantitative evaluation using a canine model. Clin Orthop. 433:<br />

243-250, 2005.<br />

33. Mekhail AO, Abraham E, Gruber B, Gonzalez M. Bone transport in the<br />

management <strong>of</strong> posttraumatic bone defects in the lower extremity. J Trauma.<br />

56(2):368-378, 2004.<br />

34. Oedekoven G, Jansen D, Raschke M, Claudi BF: The monorail system--bone<br />

segment transport over unreamed interlocking nails. Chirurg. 67(11):1069-<br />

1079, 1996.<br />

35. Song HR, Kale A, Park HB, Koo KH, Chae DJ, Oh CW, Chung DW:<br />

Comparison <strong>of</strong> internal bone transport and vascularized fibula femoral bone<br />

defects. J Orthop Trauma. 17(3):203-211, 2003.<br />

36. Watson JT. Treatment <strong>of</strong> Tibial Fractures with Bone Loss. Techniques in<br />

Orthop. 11(2): 132-143, 1996.<br />

37. Watson JT, Anders, M, Moed BR: Management Strategies for Bone Loss in<br />

Tibial Shaft Fractures. Clin Orthop. 315:138-152, 1995.<br />

38. Rozbruch RS, Weitzman AM, Watson JT, Freudigman P, et.al. Simultaneous<br />

Treatment <strong>of</strong> Tibial Bone and S<strong>of</strong>t –tissue Defects with the Ilizarov Method. J<br />

Ortho Trauma 20(3):197-205, 2006.<br />

39. Watson JT, Distraction Osteogenesis. Journal <strong>of</strong> AAOS Oct; 14(10) 168-74.<br />

2006.<br />

40. Delong, W, Einhorn, T, Koval, K, Watson JT, et.al. Bone Grafts and Bone Graft<br />

Substitutes in <strong>Orthopaedic</strong> Trauma Surgery. A critical analysis. J Bone Joint<br />

Surg Am. 2007 Mar;89(3):649-58. Review.<br />

41. Quigley K, Watson JT, Mudd C, Iliac Crest Aspiration and Injection in the<br />

Treatment <strong>of</strong> Delayed and Nonunion. Paper Presentation. Abstracts <strong>of</strong> the<br />

22nd <strong>Annual</strong> <strong>Meeting</strong> OTA. Phoenix ,AZ. Oct 3-7, 2006.<br />

42. Hernigou P et al; Percutaneous Autologous Bone-Marrow Grafting for<br />

Nonunions. J. Bone and Joint Surg., 87-A No. 7 July 2005<br />

43. Hernigou P et al; Treatment <strong>of</strong> Osteonecrosis with Autologous Bone Marrow<br />

Grafting. Clin <strong>Orthopaedic</strong>s and Rel Res., 405: 14 – 23, 2002<br />

44. Ristiniemi J, Lakovaara M. etal. Staged Method Using Antibiotic Beads and<br />

Subsequent Autografting for Large Traumatic Tibial Bone Loss. Acta Ortho<br />

2007;78(4): 520-527.<br />

45. Viateau V, Guillemin G, et. al. Induction <strong>of</strong> a Barrier Membrane to Facilitate<br />

reconstruction <strong>of</strong> Massive Segmental Diaphyseal bone defects: An Ovine<br />

Model. Veterinary Surgery 35: 445-451. 2006.<br />

46. Viateau V, Guillemin G, et. al. Long –Bone Critical –Size Defects Treated<br />

with Tissue-Engineered Grafts: A Study on Sheep. Journal <strong>of</strong> <strong>Orthopaedic</strong><br />

Research, June : 2007, 741-749.<br />

47. Patterson TE, Kumgai K, et al. Cellular Strategies for Enhancement <strong>of</strong> Fracture<br />

Repair. J Bone Joint Surg Am 90 (Suppl. 1): 111-9, 2008.


226<br />

biologiC SolutioNS poSterolateral (plF) aNd poSterior<br />

lumbar iNtervertebral FuSioN (pliF)<br />

Harvinder S. Sandhu, MD<br />

Biologic challenges, PLIF vs PLF<br />

1. Advantages <strong>of</strong> intervertebral vs posterolateral<br />

a. Broader decorticated fusion bed for PLIF<br />

b. Shorter gap to heal for PLIF<br />

c. Wolff’s law: compression for PLIF vs tension for PLF<br />

d. Better vascular environment for PLIF<br />

2. Disadvantages <strong>of</strong> PLIF<br />

a. Technically more challenging<br />

b. Neurologic risk<br />

Biologic challenges related to pseudarthrosis / revision surgery<br />

1. Posterolateral fusion<br />

a. Compromised fusion bed<br />

i. Vascular<br />

ii. Muscular (osteoprogenitor cells)<br />

iii. Skeletal (bony bed)<br />

b. Shortage <strong>of</strong> autograft<br />

i. Local products <strong>of</strong> decompression<br />

ii. Previously harvested iliac crest<br />

c. Mis-identified pseudarthrosis<br />

2. Intervertebral fusion<br />

a. Implant revision technically challenging<br />

i. Posterior perineural scar<br />

ii. Often requires anterior corpectomy / vertebrectomy<br />

iii. Sagittal correction<br />

b. Associated with failed posterior fixation<br />

Biologic strategies in general<br />

1. Osteoinductive<br />

a. factors<br />

2. Osteoconductive<br />

a. matrices<br />

3. Osteogenic<br />

a. Cells<br />

Biologic strategies in specific<br />

1. Intervertebral<br />

a. Better biologic and mechanical environment allows more<br />

options<br />

b. Role <strong>of</strong> load sharing osteoconductive scaffoldings<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

i. Structural allografts + inductive factors<br />

ii. Structural cages + inductive factors<br />

iii. Resorbable composites + inductive factors<br />

c. Role <strong>of</strong> local bone graft<br />

d. Role <strong>of</strong> iliac crest graft and novel harvesting techniques<br />

e. Clinical data with commonly used solutions<br />

i. Calcium phosphate ceramics<br />

ii.<br />

iii. Demineralized bone matrices<br />

iv. BMPs<br />

1. Efficicacy in clinical trials<br />

2. Anecdotal experience and clinical examples<br />

3. Risks<br />

a. Seroma formation<br />

b. Osteolysis<br />

c. Radiculitis<br />

d. Exuberant bone formation<br />

2. Posterolateral<br />

a. Poorer biologic and mechanical environment, fewer options<br />

i. Most challenging spinal fusion<br />

b. Gold standard remains iliac crest harvested autograft<br />

i. Associated morbidity and failure rate<br />

c. Popularity <strong>of</strong> local bone graft<br />

i. Products <strong>of</strong> decompression<br />

ii. Failure as an isolated solution<br />

iii. Local bone enhancement with osteoinductive factors<br />

d. Role <strong>of</strong> DBMs<br />

i. Limited clinical data, variability in inductivity<br />

e. Role <strong>of</strong> BMPs<br />

i. Most common use <strong>of</strong> BMP-2 in humans in “<strong>of</strong>f-label”<br />

application<br />

ii. Anecdotal experience, clinical data strong<br />

1. Examples <strong>of</strong> clinical outcome<br />

iii. Risks <strong>of</strong> supraphysiologic doses <strong>of</strong> BMP-2<br />

1. Host response, mast cell response<br />

2. Radiculitis<br />

3. Exuberant bone formation<br />

4. Fetal antibody issue<br />

iv. BMP-2 vs BMP-7 (OP-1)


orthobiologiCS oF aNterior lumbar iNterbody FuSioN;<br />

optioNS, role oF dbmS & bmpS, algotithm For deCiSioN makiNg<br />

Isador Lieberman MD MBA FRCSC<br />

A Simple “Bone Setters” Fusion Philosophy<br />

• What are we doing? Fusion<br />

• What do we need? Osteoinduction<br />

Osteoconduction<br />

OsteoGenesis<br />

Vascularized bed &<br />

Mechanical stability<br />

• What do we want to avoid? Pseudoarthrosis<br />

Bone Graft site morbidity<br />

A Simple “Bone Setters” Reconstruction Philosophy<br />

• What are we doing? Filling gaps<br />

• What do we want? Axial support & stability<br />

• What do we need? Biological pillars<br />

• What do we want to avoid? Pseudoarthrosis<br />

Bone Graft site morbidity<br />

Obscured radiographs<br />

Resorption/Subsidence<br />

Grafting Options & Summary <strong>of</strong> Clinical Results<br />

• Autograft<br />

• Allograft<br />

• Femoral Rings<br />

• Cancellous Chips<br />

• Demineralized Bone Matrix<br />

• Bone Morphogenetic Proteins<br />

• Bone Graft Substitutes<br />

• Platelet derived growth factors<br />

• Bone Marrow Aspirate<br />

• Other cages & spacers α(PEEK, Titanium, etc)<br />

Biological Bone Formation “Requirements”<br />

• Osteoconduction (MATRIX) a scaffold to support bone growth<br />

• Osteoinduction (PROTEINS) recruitment and differentiation <strong>of</strong><br />

osteoprogenitor cells to local environment to form bone<br />

• Osteogenesis (CELLS) formation <strong>of</strong> bone by osteoblasts or<br />

osteoblast precursors<br />

Decision Making<br />

Guidelines for the performance <strong>of</strong> fusion procedures; interbody<br />

techniques. Resnick et al, J Neurosurg: Spine 2:692-699<br />

• Insufficient evidence to recommend a treatment standard, most<br />

evidence is poor quality and retrospective<br />

• No class I or II evidence in support <strong>of</strong> ALIF with a better clinical<br />

outcome<br />

• For a single level ALIF addition <strong>of</strong> PLF not recommended<br />

• Improvement in fusion rates is associated with increased risk<br />

Lumbar fusion versus nonsurgical treatment for chronic low back<br />

pain: a multicenter randomized controlled trial from the Swedish<br />

Lumbar Spine Study Group.<br />

Fritzell P, Hagg O, et al. Spine 2001; 26: 2521-2532.<br />

• 294 patients with CLBP with disease at L4-5, L5-S1or both<br />

• randomized into 4 groups<br />

• surgery (N=222) and non-surgery (n=72)<br />

• Non inst PLF, PLF with ped screws, ALIF with ped screws<br />

• 98% follow-up @ 2 years<br />

• statistically significant improvement favoring surgery: (VAS,<br />

Oswestry, Depression)<br />

• Class I, 63% successful clinical outcome with surgery<br />

227<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

• Class III, ped screw and ALIF group had better fusion rate and<br />

higher complication rate<br />

Role <strong>of</strong> BMPs & DBMs<br />

• What works?<br />

• What does not work?<br />

• Importance <strong>of</strong> carriers<br />

DBM’s (Demineralized Bone Matrix)<br />

BMP’s (Bone Morphogenic Protein)<br />

• Osteoinductive/Osteogenic soluble, low molecular-weight<br />

noncollagenous glycoproteins that belong to an expanding TGFsuper<br />

family <strong>of</strong> growth and differentiation factors<br />

• Unlike DBM, pure BMP’s are nonimmunogenic and nonspecies<br />

ß specific<br />

Decision Making<br />

Guidelines for the performance <strong>of</strong> fusion procedures; bone graft<br />

extenders and substitutes. Resnick et al, J Neurosurg: Spine 2:733-<br />

736<br />

• 6 papers with class III or better evidence<br />

• Insufficient evidence to recommend a treatment standard, most<br />

evidence is poor quality and retrospective<br />

• rhBMP-2 is recommended in conjunction with a threaded<br />

titanium cage when performing an ALIF<br />

• Several forms <strong>of</strong> bone graft extenders are recommended when<br />

used in combination with autologous bone<br />

• rhBMP-2 may be used with bone graft extenders as a substitute<br />

for autograft<br />

Anterior lumbar interbody fusion using rhBMP-2 with tapered<br />

interbody cages. Burkus JK, et al. J Spinal Disorder 2002; 15: 337-349<br />

• 279 patients well matched patients with CLBP<br />

• randomized into 2 groups, rhBMP-2 vs Autograft<br />

• 90% follow-up @ 2 years<br />

• Clinical improvement equivalent in both groups<br />

• Higher fusion rate in the rhBMP-2 group (95% vs 89%)<br />

• Class I, supporting use <strong>of</strong> rhBMP-2 vs autograft in a cage<br />

Use <strong>of</strong> rhBMP-2 in ALIF Burkus JK, et al. JBJS 2005 Jun;87(6):1205-<br />

1212 Burkus JK, et al. Spine 2006 Apr, 1;31(7):775-781<br />

• 131 patients well matched patients with CLBP<br />

• Multicenter randomized into 2 groups, rhBMP-2 (n=79) vs<br />

Autograft (n=52) in threaded cortical dowel<br />

• 12 - 24 month follow-up<br />

• Statistically better fusion rate & clinical outcome in rhBMP-2<br />

group<br />

• Class I, supporting use <strong>of</strong> rhBMP-2 vs autograft in a threaded<br />

dowel<br />

Accelerating lumbar fusions using rhBMP-2, Slosar PJ, et al. Spine J,<br />

2007; May-Jun;7(3):301-307<br />

• Prospective cohort ALIF with rhBMP-2 (n=45) vs ALIF alone<br />

(n=30)<br />

• Minimum follow-up = 2 years<br />

• Fusion rate; rhBMP-2 = 100% vs ALIF alone = 89% (statistically<br />

higher)<br />

• Revision rate; rhBMP-2 = 0% vs ALIF alone = 13%<br />

• Class III, rhBMP-2 enhances fusion in ALIF with FRA<br />

Graft resorption with the use <strong>of</strong> BMP: lessons from ALIF with FRA<br />

Pradhan BB, et al. Spine 2006; 1:31(10):E277-284


• Prospective cohort ALIF with rhBMP-2 compared to historical<br />

• Historical control - 27 patients with stand alone FRA<br />

• Study group – 9 patients FRA with rhBMP-2<br />

• Minimum follow-up = 2 years<br />

• Pseudoarthrosis in historical control = 36%,<br />

228<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

• Pseudarthrosis in study group = 56%<br />

• Statistical significance not established because <strong>of</strong> early study<br />

termination<br />

• Class III, rhBMP-2 does not enhance fusion in ALIF with FRA


229<br />

boNe deFeCtS: wheN are orthobiologiCS iNdiCated?<br />

Allan E. Gross and Wayne Paprosky<br />

Introduction<br />

The goals <strong>of</strong> revision arthroplasty <strong>of</strong> the hip are to restore the<br />

anatomy and achieve stable fixation for new acetabular and femoral<br />

components. It is now widely recognized that for the best results, the<br />

articulating hip centre should be established at the correct anatomic<br />

level. Remaining bone stock is the single most important parameter<br />

in determining whether or not that can be achieved. It is important<br />

to restore bone stock thereby creating an environment for stable<br />

fixation for the new components.<br />

The bone defects encountered in revision arthroplasty <strong>of</strong> the hip<br />

can be classified either as contained (cavitary) or uncontained<br />

(segmental). Contained defects on both the acetabular and femoral<br />

sides can be addressed by morsellized bone graft that is compacted<br />

and impacted so that stable fixation can be achieved for new<br />

components. Uncontained defects are more <strong>of</strong> a problem particularly<br />

on the acetabular side where bypass fixation such as distal fixation<br />

on the femoral side is not really an alternative. Most authors agree<br />

that the use <strong>of</strong> morsellized allograft bone for contained defects is<br />

the treatment <strong>of</strong> choice as long as stable fixation <strong>of</strong> the acetabular<br />

component can be achieved and there is a reasonable amount<br />

<strong>of</strong> contact with bleeding host bone for eventual ingrowth and<br />

stabilization <strong>of</strong> the cup. On the femoral side, contained defects can<br />

be addressed with impaction grafting, more popular in the United<br />

Kingdom and Europe, or bypass fixation in the diaphysis <strong>of</strong> the<br />

femur using more extensively coated femoral components which is<br />

more popular in North America.<br />

Segmental defects on the acetabular side have been addressed with<br />

structural allografts for the past 15 to 20 years with some problems<br />

when the graft supports over 50% <strong>of</strong> the new acetabular component.<br />

This symposium will address when and where structural allografts<br />

are still indicated, with acceptable 10 year results, and when and<br />

where alternatives to the structural allografts are now being utilized<br />

with shorter but encouraging results. One <strong>of</strong> these new porous metals<br />

is trabecular metal (tantalum) which has a high porosity similar to<br />

trabecular bone. It also has a high co-efficient friction which provides<br />

excellent initial stability. The porosity provides a very favourable<br />

environment for bone ingrowth and bone graft remodeling. Porous<br />

metal acetabular components are now more commonly used when<br />

there is limited contact with bleeding host bone and porous metal<br />

augments <strong>of</strong> all sizes are being used instead <strong>of</strong> structural allografts<br />

in some situations.<br />

On the femoral side metaphyseal bone loss whether contained or<br />

uncontained is most <strong>of</strong>ten addressed by diaphyseal fixation with<br />

long porous coated implants, modular if necessary. Distal fixation<br />

requires at least 4 to 6 cms or healthy diaphyseal bone and there<br />

are situations where this is very difficult to achieve. In that situation<br />

a choice must be made between a mega prosthesis or a proximal<br />

femoral allograft. The proximal femoral allograft can restore<br />

bone stock for future surgery. The mega prosthesis which is more<br />

appropriate in the tumour population, may require total femoral<br />

replacement if there is not enough diaphyseal bone for distal<br />

fixation either by a porous coat or cement. These mega prostheses<br />

are therefore more appropriate in the tumour population than in the<br />

revision population.<br />

Another biologic that has gained universal acceptance is the cortical<br />

strut allograft which has many indications in revision arthroplasty<br />

<strong>of</strong> the hip. They can be used for non-circumferential diaphyseal<br />

bone defects to stabilize proximal femoral allografts, to bypass stress<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

risers and to serve as a biological plate for stabilizing periprosthetic<br />

fractures.<br />

This symposium will address the present status <strong>of</strong> bone grafts and<br />

porous metals in revision arthroplasty <strong>of</strong> the hip in an attempt to<br />

establish the indications and principles for each.<br />

ACETABULAR REVISION<br />

Contained Defects:<br />

Most acetabular revisions can be managed by conventional cementless<br />

cups as long as contact can be made with enough bleeding host<br />

bone to provide cup stability and ingrowth and eventual biologic<br />

fixation. The amount <strong>of</strong> host bone necessary depends <strong>of</strong> course on<br />

its location. For example, bleeding host bone in the dome or in the<br />

posterior aspect <strong>of</strong> the acetabulum would probably require less than<br />

50% host bone contact but by and large up until now, the 50% rule<br />

has been applied. 1 In these situations morsellized allograft bone has<br />

been used for cavitary defects. The use <strong>of</strong> trabecular metal cups has<br />

challenged the 50% rule and our early results would indicate that<br />

once again depending on the location <strong>of</strong> the bleeding host bone,<br />

that far less than 50% is necessary for eventual fixation <strong>of</strong> the cup.<br />

Once again even with trabecular metal cups, the cavitary defects are<br />

addressed with morsellized host bone. The trabecular metal appears<br />

to provide an excellent environment for graft remodeling. When<br />

however there is a massive contained defect, where contact with any<br />

bleeding host bone is impossible, then morsellized allograft bone<br />

protected by a cage into which a polyethylene cup is cemented is<br />

the time proven option.(Fig. 1) Mid and long term results have been<br />

published on the use <strong>of</strong> the antiprotrusio cage, with an acceptable<br />

success rate but still a failure rate that ranges from 10 to 25% at 5<br />

years. 2 The main cause <strong>of</strong> failure was that conventional cages did<br />

not provide a surface to which bone graft could adhere to after<br />

remodeling took place. This led to late loosening and even flange<br />

breakage <strong>of</strong> the cages. 2 This led to the concept <strong>of</strong> the cup cage3 which<br />

is a combination <strong>of</strong> trabecular metal and a cage. The trabecular metal<br />

cup is inserted onto a bed <strong>of</strong> morsellized allograft bone fixed by 2<br />

or 3 screws, and then protected by a cage while remodeling <strong>of</strong> the<br />

allograft bone takes place and eventual biological fixation <strong>of</strong> the<br />

cup. The cage therefore protects the trabecular metal cup while this<br />

bone graft remodeling takes place, and then the stress is taken <strong>of</strong>f<br />

the cage and onto the trabecular metal cup. The theory is that the<br />

cage therefore won’t loosen or break at 5 to 10 years. The preliminary<br />

results <strong>of</strong> this concept have so far been very encouraging. (Fig. 2)<br />

Uncontained Defects:<br />

Uncontained defects (segmental) on the acetabular side can be<br />

addressed by structural graft or porous metal augments. When the<br />

defect involves less than 50% <strong>of</strong> the acetabulum, the prognosis for<br />

structural grafts is in fact quite good with long term survival rates<br />

<strong>of</strong> 80%. 4 These grafts have also been shown to restore bone stock<br />

for future revision surgery.(Fig. 3) Another option is the trabecular<br />

metal augment which helps to stabilize the cup in the correct<br />

anatomic position, and provides a surface to which host bone can<br />

ingrow. 5 (Fig. 4) These augments probably do not restore bone stock<br />

for future revision surgery, and for that reason the structural graft<br />

that supports less than 50% <strong>of</strong> the cup would be the best option for<br />

the younger higher demand patient that is likely to require another<br />

revision during their lifetime. The results <strong>of</strong> the trabecular metal<br />

augments that support less than 50% <strong>of</strong> the cup thus far have been<br />

very good although early. 5


Uncontained (segmental) defects that involve greater than 50% <strong>of</strong><br />

the acetabulum can be addressed by structural grafts or porous metal<br />

column augments. The structural allograft that replaces greater than<br />

50% <strong>of</strong> the acetabulum has a much more guarded prognosis and<br />

has to be protected by a cage. 6 (Fig. 5) The major column augments<br />

thus far have provided encouraging results but once again these are<br />

very early.(Fig. 6) At the present time in the younger high demand<br />

patient likely to require another revision during their lifetime, a<br />

major structural allograft protected by a cage should be considered,<br />

whereas in the lower demand patient the major column porous<br />

metal augment might be the best option.<br />

REVISION OF THE FEMUR<br />

Contained Defects:<br />

Contained defects <strong>of</strong> the metaphyseal region <strong>of</strong> the femur can be<br />

addressed by impaction grafting, more popular in the United<br />

Kingdom and Europe7 , or distal fixation by using long porous coated<br />

or corrundumized titanium implants. 8 Modular femoral implants<br />

have made this option even more attractive. Distal fixation <strong>of</strong> course<br />

requires 4 to 6 cms <strong>of</strong> diaphyseal bone in order to achieve this. The<br />

results however have been uniformly good. 8 When impaction grafting<br />

is performed, morsellized allograft bone usually deep frozen with the<br />

morsels being less than 5mm in diameter is the biological material<br />

<strong>of</strong> choice. The implant is then cemented onto the reconstituted<br />

femoral tube and the long term results have been excellent. This is a<br />

technique dependent procedure and also utilizes a large amount <strong>of</strong><br />

allograft bone. It is best reserved for centres that use this technique<br />

for a significant number <strong>of</strong> femoral revisions. 7 With the occasional<br />

revision surgeon distal fixation is the safer option.<br />

Uncontained (Segmental) Defects:<br />

Uncontained (segmental) defects <strong>of</strong> less than 5cm in length can<br />

be easily addressed with traditional implant systems which <strong>of</strong>fer<br />

calcar buildup. Uncontained (segmental) defects that extend into<br />

the diaphysis precluding the use <strong>of</strong> distal fixation implants have to<br />

be addressed with proximal femoral allografts or tumour implants<br />

which involve replacement <strong>of</strong> the entire femur and knee. Tumour<br />

implants (mega prostheses) have a higher dislocation rate and do not<br />

provide effective reattachment <strong>of</strong> bone and muscles particularly the<br />

abductors. Tumour prostheses are more appropriate for the tumour<br />

population while the proximal femoral allograft is more appropriate<br />

for the revision population. 9 The long term results <strong>of</strong> proximal<br />

femoral allografts have been excellent, but once again this is very<br />

technique specific and should be performed only in centres where a<br />

significant number <strong>of</strong> revisions are being carried out. 10 (Fig. 7)<br />

Cortical Strut Allografts:<br />

Cortical strut allografts can be deep frozen or freeze dried and<br />

have multiple indications in the revision population. 11 Their use is<br />

universally accepted with excellent results. Cortical strut allografts<br />

should be kept as part <strong>of</strong> an inventory in the freezer in any hospital<br />

that does a significant number <strong>of</strong> revision arthroplasties. They are<br />

particularly effective for non-circumferential segmental defects, for<br />

bypassing stress risers such as in impaction grafting, to stabilize<br />

proximal femoral allografts, and for periprosthetic fractures where<br />

they serve as a biological plate. They are technically easy to use and<br />

do in fact restore bone stock for future revision surgery. Cortical<br />

strut allografts can be hemi-cylinders <strong>of</strong> humerus or tibia, or whole<br />

segments <strong>of</strong> fibula. They are effective in a freeze-dried form which can<br />

be stored on the shelf, or as deep frozen plus or minus irradiation.<br />

(Fig. 8)<br />

REFERENCES:<br />

1. Garcia-Cimbrelo E: Porous coated cementless acetabular cups in revision<br />

surgery. J Arthroplasty 14(4):397-406, 1999.<br />

230<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

2. Goodman S, Saastamoinen H, Shasha N, et al: Complications <strong>of</strong> ilioischial<br />

reconstruction rings in revision total hip arthroplasty. J Arthroplasty 19:436-<br />

446, 2004.<br />

3. Hanssen AD, Lewallen DG: Modular acetabular augments: composite void<br />

fillers. Orthopedics 28:971-972, 2005.<br />

4. Woodgate IG, Saleh KJ, Jaroszynski G, et al: Minor column structural<br />

acetabular allografts in revision hip arthroplasty. Clin Orthop Relat Res<br />

371:75-85, 2000.<br />

5. Paprosky WG, Perona PG, Lawrence JM: Acetabular defect classification<br />

and surgical reconstruction in revision arthroplasty: A 6-year follow-up<br />

evaluation. J Arthroplasty 9:33-44, 1994.<br />

6. Nehme A, Lewallen DG, Hanssen AD: Modular porous metal augments for<br />

treatment <strong>of</strong> severe acetabular bone loss during revision hip arthroplasty.<br />

Clin Orthop Relat Res 429:201-208, 2004.<br />

7. Gross AE, Goodman S: The role <strong>of</strong> cages and rings: when all else fails.<br />

Orthopedics 27:969-970, 2004.<br />

8. Halliday BR, English HW, Timperley AJ, Gie GA, Ling RS. Femoral impaction<br />

grafting with cement in revision total hip replacement: evolution <strong>of</strong> the<br />

technique and results. J Bone Joint Surg Br. 2003;85:809-817.<br />

9. Paprosky WG, Aribindi R. Hip replacement: treatment <strong>of</strong> femoral bone loss<br />

using distal bypass fixation. Instr Course Lect. 2000;49:119-130.<br />

10. Parvizi J, Sim FH. Proximal femoral replacements with megaprostheses. Clin<br />

Orthop Relat Res. 2004;420:169-175.<br />

11. Blackley HR, Davis AM, Hutchison CR, Gross AE. Proximal femoral allografts<br />

for reconstruction <strong>of</strong> bone stock in revision arthroplasty <strong>of</strong> the hip: a nine to<br />

fifteen-year follow-up. J Bone Joint Surg Am. 2001;83:346-354.<br />

12. Gross AE, Blackley H, Wong P, Saleh K, Woodgate I. The role <strong>of</strong> allografts in<br />

revision arthroplasty <strong>of</strong> the hip. Instr Course Lect. 2002;51:103-113.<br />

Figure 1A: Pre-op Figure 1B: Post-op 10 Years<br />

Massive contained defect Revision with morsellized<br />

allograft bone protected by a cage<br />

Figure 2A: Cup Cage Construct Trabecular metal cup protected by a cage<br />

into which poly cup is cemented


Figure 2B: Pre-op Massive contained defect due to osteolysis<br />

Figure 2C: Post-op Reconstruction with morsellized allograft bone and<br />

cup cage<br />

Figure 3: Structural allograft supporting less than 50% <strong>of</strong> cup<br />

Figure 4A: Trabecular metal cup and trabecular metal augment<br />

231<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Figure 4B: Uncemented cup with osteolysis supero lateral to cup<br />

Figure 4C: Post-op reconstruction right hip with trabecular metal cup and<br />

augment<br />

Figure 5A: Uncontained defect with pelvic discontinuity<br />

Figure 5B: Reconstruction with structural allograft protected by a cage


Figure 6A: Large figure <strong>of</strong> trabecular metal augment<br />

Figure 6B: Large uncontained defect and pelvic discontinuity<br />

Figure 6C: Reconstruction with large trabecular metal augment and<br />

trabecular metal cup<br />

232<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia GENERAL<br />

Figure 7: Proximal femoral allograft<br />

Figure 8: Cortical strut allograft


233<br />

operative FiXatioN oF pediatriC<br />

haNd aNd upper eXtremity FraCtureS:<br />

CaSe baSed (d)<br />

Moderator: Scott H. Kozin, MD, Philadelphia, PA<br />

The goal <strong>of</strong> this symposium is to provide current practice recommendations for fixation <strong>of</strong> pediatric upper extremity fractures<br />

and to <strong>of</strong>fer technical pearls to maximize success. Case presentations will be used to highlight many <strong>of</strong> the salient points and<br />

to encourage audience participation<br />

Scott H. Kozin, MD, Philadelphia, PA<br />

Donald S. Bae, MD, Boston, MA<br />

Peter Waters, MD, Boston, MA<br />

I. List pediatric upper extremity fractures that require fixation<br />

II. Recognize fracture patterns <strong>of</strong> the pediatric upper extremity<br />

III. Apply principles <strong>of</strong> fracture fixation to the pediatric upper extremity<br />

IV. Assess fracture reduction via clinical and radiologic criteria<br />

V. Analyze expected outcomes following pediatric upper extremity fractures<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST


234<br />

operative FiXatioN oF pediatriC haNd aNd upper eXtremity<br />

FraCtureS: CaSe baSed SympoSium<br />

HAND FRACTURES<br />

Epidemiology<br />

• Hand fractures common in children and adolescents (Chung,<br />

Feehan)<br />

— Incidence <strong>of</strong> phalangeal fractures in children 0-4 years <strong>of</strong> age<br />

is 207.2 per 100,000<br />

— Incidence <strong>of</strong> phalangeal and metacarpal fractures in children<br />

5-14 years <strong>of</strong> age 100 and 185 per 100,000, respectively<br />

— Highest rate <strong>of</strong> multiple hand fractures in patients 0-4 years<br />

<strong>of</strong> age (29.8%)<br />

— Peak incidence <strong>of</strong> hand fractures in 10-14 year age group<br />

— Proximal phalanx <strong>of</strong> border digits (index and small) most<br />

common<br />

• Bimodal distribution (Bhende, Vadivelu)<br />

— Fingertip injuries, crushing mechanisms, in infants and<br />

toddlers<br />

— Metacarpal and phalangeal fractures, sports-related, in<br />

adolescents<br />

• One third <strong>of</strong> hand fractures are physeal (Hastings, Rajesh,<br />

Worlock)<br />

— Salter-Harris II most common<br />

— Post-traumatic physeal arrest uncommon<br />

• Hastings and Simmons, 1984<br />

— Retrospective analysis <strong>of</strong> 354 pediatric hand fractures<br />

— Majority treated successfully with non-surgical care<br />

— Small percentage <strong>of</strong> fractures ➞ large percentage <strong>of</strong><br />

complications<br />

— High risk fractures<br />

– Displaced articular fractures<br />

– Physeal fractures <strong>of</strong> the distal phalanx<br />

– Phalangeal neck fractures<br />

– Open fracture<br />

— Risk factors associated with fracture malunion, poor results<br />

– Failure to obtain adequate injury radiographs<br />

– False assumptions regarding remodeling potential<br />

– Failure to evaluate clinical deformity<br />

Specific injuries: Hand<br />

• Seymour’s fracture (Al-Qattan, Seymour)<br />

— Displaced physeal fracture <strong>of</strong> distal phalanx with nailbed<br />

laceration<br />

— “Open fracture,” commonly with interposed s<strong>of</strong>t tissue<br />

— Failure <strong>of</strong> recognition ➞ infection, physeal arrest, nail plate<br />

deformity<br />

— Surgical treatment<br />

– nail plate removal<br />

– irrigation and debridement<br />

– open reduction and stabilization <strong>of</strong> physeal fracture<br />

– nailbed repair<br />

• Phalangeal neck fractures (Al-Qattan, Hastings)<br />

— Characteristic “door jamb” injuries <strong>of</strong> childhood<br />

— True lateral radiograph is critical for diagnosis<br />

— Poor remodeling potential<br />

— Non-displaced fractures ➞ cast immobilization, serial<br />

radiographs<br />

— Displaced fractures ➞ closed reduction and pinning<br />

– Reduction maneuver: traction, correction <strong>of</strong> rotation,<br />

flexion<br />

– Cross pin, entering collateral recess and engaging<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

opposite cortex<br />

– Use size- and age-appropriate smooth pins (0.035”)<br />

– Avoid crossing pins at fracture site<br />

– Avoid lateral bands to minimize adhesions, stiffness<br />

– Cast x 3-4 weeks<br />

— Consider osteoclasis in late-presenting cases (Waters)<br />

– Appropriate candidates: fracture line radiographically<br />

visible and tenderness at fracture site<br />

– Percutaneous smooth pin osteoclasis performed radial<br />

and ulnar to extensor mechanism<br />

– If needed, use pin to lever fracture fragment<br />

– Cross pin as above<br />

— Established malunions ➞ subcondylar fossa reconstruction<br />

(Simmons)<br />

– Volar approach to phalangeal neck and IP joint<br />

– Use small rongeurs or burr to perform ostectomy<br />

– Avoid excessive resection to minimize risk <strong>of</strong> iatrogenic<br />

fracture<br />

– Goal: >90 degrees IP flexion<br />

– Avoid corrective osteotomy due to risk <strong>of</strong> ostenecrosis<br />

• Phalangeal shaft fractures<br />

— Check for malrotation<br />

— Closed reduction recommended for malrotation or<br />

angulation >10 degrees<br />

— Closed reduction, percutaneous pinning for unstable or<br />

malaligned fractures<br />

– Pinning techniques similar to adult fractures<br />

– Use small, size-appropriate smooth pins<br />

• Phalangeal physeal fractures<br />

— “Extra octave fracture”<br />

— Closed reduction for malrotation or angulation >10 degrees<br />

— Pin fixation for unstable injuries (rare)<br />

– Size-appropriate smooth pins<br />

– “physeal friendly” fixation<br />

• Unicondylar fractures (Bergeron, Weiss)<br />

— Varying clinical presentations<br />

— Treatment based upon articular congruity and angular/<br />

rotational deformity<br />

— Nondisplaced fractures ➞ cast immobilization, serial<br />

radiographs<br />

— Displaced fractures ➞ closed vs. open reduction and<br />

stabilization with 2 points <strong>of</strong> fixation<br />

– Curvilinear dorsal incision<br />

– Incise between extensor and lateral band<br />

– Open reduction under direct visualization<br />

– Preserve collateral ligament and s<strong>of</strong>t-tissue attachments<br />

to fracture fragment<br />

– Smooth pins vs. screws<br />

– Cast x 3-4 weeks vs. early motion<br />

• Metacarpal head fractures (Prosser, McElfresh)<br />

— Unusual injuries<br />

— ORIF recommended for displaced fractures with articular<br />

incongruity<br />

– Fixation with screws, pins, suture<br />

– Preserve s<strong>of</strong>t-tissue attachments to avoid osteonecrosis<br />

• Metacarpal neck fractures<br />

— Large amount <strong>of</strong> deformity (apex dorsal angulation) can be<br />

accepted in ring and small fingers due to compensatory MCP<br />

and CMC motion


— In general, 10-30 degrees <strong>of</strong> angulation greater than the<br />

corresponding range <strong>of</strong> CMC motion well tolerated<br />

— Remodeling potential<br />

— Non-displaced fractures ➞ cast immobilization<br />

— Unacceptable alignment ➞ closed reduction, cast<br />

immobilization vs. pin fixation<br />

– Brief immobilization with MCP extended efficacious and<br />

safe (H<strong>of</strong>meister, Tavassoli)<br />

– Pin fixation with smooth pins entering collateral recesses<br />

• Metacarpal shaft fractures<br />

— Isolated diaphyseal fractures <strong>of</strong> central rays inherently stable<br />

— Fractures <strong>of</strong> border rays, multiple metacarpals more unstable<br />

— Surgical indications: open fractures, multiple fractures,<br />

unstable fractures with unacceptable alignment<br />

— Treatment options: percutaneous pinning, transmetacarpal<br />

pinning, screw fixation, plate fixation, IM fixation, external<br />

fixation<br />

• Salter-Harris III fractures <strong>of</strong> the thumb proximal phalanx<br />

— Pediatric “gamekeeper’s thumb”<br />

— ORIF for displaced fractures<br />

– Dorsoulnar curvilinear incision<br />

– Identify and protect radial sensory nerve branches<br />

– Incise adductor aponeurosis<br />

– Incise capsule at fracture site, preserving s<strong>of</strong>t-tissue<br />

attachments to displaced fracture fragment<br />

– Fracture reduction under direct visualization<br />

– Fix with parallel smooth pins<br />

~ Pin with fracture reduced<br />

~ Place pins through fracture site first, then retrograde<br />

into reduced fracture fragment<br />

– Sutures to augment fixation<br />

– Cast x 4 weeks<br />

SPECIFIC INJURIES: WRIST<br />

• Scaphoid fractures<br />

— Most commonly fractured carpal bone<br />

— Radiographic evaluation<br />

— Distal pole fractures most common? (Vahvanen)<br />

– Excellent healing potential<br />

– Treatment: cast immobilization x 4-6 weeks<br />

— Waist fractures<br />

– Nondisplaced fractures<br />

~ Long vs. short arm spica cast immobilization (Fabre,<br />

Gellman)<br />

~ Role <strong>of</strong> percutaneous screw fixation? (Adolfsson,<br />

Bond, Dias, McQueen)<br />

– Displaced fractures<br />

• ORIF<br />

– Non-unions (Chloros, Henderson)<br />

~ ORIF with structural or vascularized bone graft<br />

~ Role <strong>of</strong> percutaneous screw fixation? (Jeon)<br />

• Triquetrum fractures<br />

— Dorsal avulsion fractures common ➞ cast or splint<br />

immobilization x 4 weeks<br />

— Displaced body fractures ➞ ORIF<br />

• Hamate fractures<br />

— Hook <strong>of</strong> hamate fractures most common<br />

– CT scans helpful in diagnosis<br />

– Acute treatment: cast immobilization x 4-6 weeks<br />

– Excision vs. ORIF for established symptomatic nonunion<br />

WRIST/FOREARM FRACTURES<br />

I. Wrist fractures<br />

a. Distal radius<br />

i. Common fracture pattern<br />

235<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

ii. Signs and symptoms<br />

1. Point tenderness<br />

2. Ecchymosis<br />

3. MUST examine nerve and tendons<br />

iii. Classification<br />

1. Physeal<br />

2. Greenstick (incomplete)<br />

3. Torus (compression)<br />

4. Complete<br />

iv. Physeal<br />

1. Usually Salter Harris I or II<br />

2. Dorsal displacement<br />

3. Closed reduction<br />

4. X-ray once a week for three week to check for<br />

displacement<br />

5. ORIF if irreducible, usually periosteal flap interposed<br />

v. Greenstick<br />

1. Incomplete fracture<br />

2. Treatment depends upon displacement and<br />

angulation<br />

3. Repeat displacement common<br />

4. Completion <strong>of</strong> fracture??<br />

vi. Torus<br />

1. Compression fracture 2-3 cm proximal to physis<br />

2. MUST have pain-free rotation <strong>of</strong> forearm<br />

a. Pain free α isolated radius fracture<br />

b. Painful α Galeazzi variant<br />

vii.Complete<br />

1. Higher energy fractures<br />

2. Can involve distal radius and ulna<br />

3. Treatment depends upon reducibility <strong>of</strong> fracture<br />

b. Complications<br />

i. Malunion<br />

ii. Growth arrest<br />

1. Avoid forceful and repeat manipulations<br />

2. Follow-up x-rays after initial treatment<br />

3. Treatment<br />

a. Resection <strong>of</strong> bar<br />

b. Delayed lengthening<br />

PEDIATRIC ELBOW FRACTURE/ DISLOCATIONS<br />

I. Pediatric elbow<br />

a. Incidence<br />

i. Peak incidence between 5 and 10 years <strong>of</strong> age<br />

ii. More common boys<br />

iii. Seasonal in summer<br />

b. Anatomy<br />

i. Ossification process<br />

1. Girls earlier than boys<br />

2. Timing <strong>of</strong> appearance<br />

3. Medial epicondyle last to fuse to the metaphysis<br />

ii. Growth plate<br />

1. Classification <strong>of</strong> physeal injuries<br />

a. Salter-Harris I- complete separation<br />

b. Salter-Harris II<br />

i. Metaphyseal fragment<br />

ii. Thurston Holland sign<br />

iii. Most common pattern<br />

c. Salter-Harris III- through epiphysis<br />

d. Salter-Harris IV<br />

i. Vertical split<br />

ii. Growth arrest more common<br />

e. Salter-Harris V- crush injury<br />

2. Status <strong>of</strong> s<strong>of</strong>t tissues also important<br />

iii. Lateral condyle and growth plate


1. Only nonarticular and extracapsular along a small<br />

portion posterior<br />

2. Tenuous blood supply<br />

3. Lateral ossification center extends into lateral portion<br />

<strong>of</strong> trochlea!<br />

iv. X-ray examination<br />

1. Lateral x-ray<br />

a. Anterior humeral line (middle capitellum)<br />

b. Teardrop fossa<br />

c. Fat pads<br />

2. Anteroposterior x-ray<br />

a. Baumann’s angle- physis <strong>of</strong> lateral epicondyle and<br />

long axis <strong>of</strong> humerus<br />

b. Comparison views useful<br />

II. Distal humerus fractures<br />

a. Supracondylar (peak age 5 to 8 years)<br />

i. Extension types (98%)<br />

ii. Types<br />

1. I-nondisplaced (periosteum intact)<br />

2. II- hinged<br />

3. III- completely displaced (most common<br />

posteromedial)<br />

4. IV- unstable anterior and posterior<br />

iii. Treatment<br />

1. Careful assessment<br />

2. Neurovascular status<br />

a. Radial most common<br />

b. Median nerve (AIN)- <strong>of</strong>ten posterolateral<br />

displacement<br />

c. Ulnar nerve<br />

3. No treatment type I<br />

4. Type II closed reduction- must assess rotation<br />

5. Type II CRIF or ORIF if irreducible<br />

a. Must correct sagittal, coronal, and rotational<br />

deformity<br />

b. Traction and medial-lateral correction<br />

c. Elbow flexion for sagittal alignment<br />

d. Rotation difficult to judge, forearm pronation<br />

helpful for posteromedial displacement<br />

e. Pin fixation- size, order, technique<br />

iv. Complications<br />

1. Vascular<br />

a. Most serious complication<br />

b. Must assess vascular status before and after<br />

reduction<br />

c. Partial or complete ischemia can be present<br />

d. Algorithm for treatment remains controversial<br />

e. Ischemia requires reconstruction<br />

2. Malunion- most common cubitus varus<br />

a. Evaluation<br />

b. Treatment<br />

c. Technique<br />

3. Nerve injury- usually resolve spontaneously<br />

v. Flexion types (2%)<br />

1. Less common<br />

2. Ulnar nerve in jeopardy<br />

3. Similar classification<br />

4. Closed reduction more difficult in type III fractures,<br />

<strong>of</strong>ten ORIF required<br />

b. Physeal<br />

i. Lateral condylar physis<br />

1. Can be difficult to diagnose and evaluate<br />

displacement<br />

2. Usually Salter Harris II fractures that pass into<br />

236<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

trochlea and associated with overt elbow instability<br />

(Milch II)<br />

3. Less commonly Salter Harris fractures IV that traverse<br />

epiphysis (Milch I)<br />

4. X-ray can be confusing<br />

a. Metaphyseal flake is a sign <strong>of</strong> displacement<br />

b. May require advanced imaging studies<br />

5. Treatment<br />

a. Nondiplaced immobilization<br />

b. Displaced ORIF- MUST avoid posterior dissection<br />

ii. Medial condylar physis<br />

1. Much less common<br />

2. Fracture line can traverse through the trochlea<br />

notch (more common, Salter Harris II, Milch I) or<br />

capitotrochlear groove (less common, Salter Harris IV,<br />

Milch II)<br />

3. Similar to lateral physeal injuries, diagnosis can be<br />

difficult<br />

c. Apophyseal Injuries<br />

i. Medial epicondylar apophysis<br />

1. Later peak age (11 to 12 years <strong>of</strong> age)<br />

2. Multiple mechanisms <strong>of</strong> injury<br />

a. Direct blow<br />

b. Avulsion (throwing, arm wrestling)<br />

c. Elbow dislocation, can be incarcerated in the joint<br />

3. Classification<br />

a. Undisplaced or minimally displaced (can be<br />

difficult to diagnose)<br />

b. Significantly displaced<br />

4. Treatment<br />

a. Non-operative treatment preferred<br />

b. Surgery<br />

i. Widely displaced<br />

ii. Incarcerated in joint<br />

iii. Ulnar nerve symptoms<br />

ii. Lateral epicondylar apophysis<br />

1. Rare entity<br />

2. Non-operative treatment preferred<br />

III. Dislocations <strong>of</strong> the Joint <strong>of</strong> the Elbow<br />

a. Elbow dislocation<br />

i. Later peak incidence than supracondylar fractures (13-14<br />

years <strong>of</strong> age)<br />

ii. Limited numbers and series<br />

iii. Posterior elbow dislocations<br />

1. Most common direction<br />

2. Must assess neurovascular status prior to reduction<br />

3. Closed reduction usually successful<br />

4. Sedation or general anesthesia preferred<br />

5. Multiple reduction techniques<br />

a. Be aware <strong>of</strong> medial epicondyle!!<br />

b. Be aware <strong>of</strong> associated fractures<br />

c. Be aware potential nerve entrapment (median<br />

nerve most common)<br />

6. Complications<br />

a. Insufficient reduction<br />

b. Recurrent instability (rare)- posterolateral more<br />

recognized over time, associated with lateral<br />

ligament pathology<br />

c. Osteochondral fractures<br />

d. Synostosis<br />

7. Heterotopic ossification<br />

iv. Anterior and divergent dislocations<br />

a. Rare<br />

b. Limited experience


237<br />

b. Dislocation <strong>of</strong> the radial head<br />

i. Pathology<br />

1. Often Monteggia variant, average age 7 years<br />

2. Ulnar bow sign (subtle bow <strong>of</strong> ulna toward with<br />

convexity toward radial head)<br />

3. Differential diagnosis- radial head dislocation<br />

a. Trauma<br />

b. Pain<br />

c. Bilateral<br />

d. Configuration <strong>of</strong> head and capitellum<br />

e. Ulnar variance<br />

4. Treatment<br />

a. Acute- closed reduction with elbow flexed to 120¡<br />

REFERENCES<br />

Hand References<br />

1. Adolfsson L, Lindau T, Arner M. Acutrak screw fixation versus cast<br />

immobilization for undisplaced scaphoid waist fractures. J Hand Surg Br<br />

2001; 26: 192-195.<br />

2. Al-Qattan MM. Extra-articular transverse fratures <strong>of</strong> the base <strong>of</strong> the distal<br />

phalanx (Seymour’s fracture) in children and adults. J Hand Surg Br 2001;<br />

26: 201-206.<br />

3. Al-Qattan MM. Phalangeal neck fractures in children: classification and<br />

outcome in 66 cases. J Hand Surg Br 2001;26: 112-121.<br />

4. Bergeron L, Gagnon I, l’Ecuyer C, Caouette-Laberge L. Treatment outcomes<br />

<strong>of</strong> unstable proximal phalangeal head fractures <strong>of</strong> the finger in children. Ann<br />

Plast Surg 2005; 54: 28-32.<br />

5. Bhende MS, Dandrea LA, Davis HW. Hand injuries in children presenting to<br />

a pediatric emergency department. Ann Emerg Med 1993; 22: 1519-1523.<br />

6. Bond CD, Shin AY, McBride MT, Dao KD. Percutaneous screw fixation or cast<br />

immobilization for nondisplaced scaphoid fractures. J Bone Joint Surg 2001;<br />

83: 483-488.<br />

7. Chloros GD, Themistocleous GS, Wiesler ER, Benetos IS, Efstathopoulos DG,<br />

Soucacos PN. Pediatric scaphoid nonunion. J Hand Surg 2007; 32: 172-176.<br />

8. Chung KC, Spilson SV. The frequency and epidemiology <strong>of</strong> hand and<br />

forearm fractures in the United States. J Hand Surg 2001; 26: 908-915.<br />

9. Dias JJ, Wildin CJ, Bhowal B, Thompson JR. Should acute scaphoid fractures<br />

be fixed? A randomized controlled trial. J Bone Joint Surg Am 2005; 87:<br />

2160-2168.<br />

10. Fabre O, De Boeck H, Haentjens P. Fractures and nonunions <strong>of</strong> the carpal<br />

scaphoid in children. Acta Orthop Belg 2001; 67: 121-125.<br />

11. Feehan LM, Sheps SB. Incidence and demographics <strong>of</strong> hand fractures in<br />

British Columbia, Canada: a population-based study. J Hand Surg 2006; 31:<br />

1068-1074.<br />

12. Gellman H, Caputo RJ, Carter V, Aboulafia A, McKay M. Comparison <strong>of</strong><br />

short and long thumb-spica casts for non-displaced fractures <strong>of</strong> the carpal<br />

scaphoid. J Bone Joint Surg 1989; 71: 354-357.<br />

13. Hastings H, Simmons BP. Hand fractures in children. A statistical analysis.<br />

Clin Orthop Relat Res 1984; 188: 120-130.<br />

14. Henderson B, Letts M. Operative management <strong>of</strong> pediatric scaphoid fracture<br />

nonunion. J Pediatr Orthop 2003; 23: 402-406.<br />

15. H<strong>of</strong>meister EP, Kim J, Shin AY. Comparison <strong>of</strong> 2 methods <strong>of</strong> immobilization<br />

<strong>of</strong> fifth metacarpal neck fractures: a prospective randomized study. J Hand<br />

Surg 2008; 33: 1362-1368.<br />

16. Jeon IH, Kochhar H, Micic ID, Oh SH, Kim SY, Kim PT. Clinical result <strong>of</strong><br />

operative treatment for scaphoid non-union in the skeletally immature:<br />

percutaneous versus open procedure. Hand Surg 2008; 13: 11-16.<br />

17. McElfresh EC, Dobyns JH. Intra-articular metacarpal head fractures. J Hand<br />

Surg 1983; 8: 383-393.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

b. Delayed (> 3 weeks)- open reduction<br />

c. Subluxation <strong>of</strong> the radial head<br />

i. Pulled elbow syndrome (a.k.a. nursemaid’s elbow,<br />

supermarket elbow, temper tantrum elbow)<br />

ii. Average age 2 to 3 years<br />

iii. Pathology- partial tear orbicular ligament, subluxates into<br />

radiocapitellar joint<br />

iv. X-rays usually normal<br />

v. Treatment<br />

1. Supination then flexion<br />

2. Limited to no immobilization<br />

vi. Recurrences 5 to 39%<br />

18. McQueen MM, Gelbke MK, Wakefield A, Will EM, Gaebler C. Percutaneous<br />

screw fixation versus conservative treatment for fractures <strong>of</strong> the waist <strong>of</strong> the<br />

scaphoid: a prospective randomized study. J Bone Joint Surg Br 2008; 90:<br />

66-71.<br />

19. Prosser AJ, Irvine GB. Epiphyseal fracture <strong>of</strong> the metacarpal head . Injury<br />

1988; 19: 34-35.<br />

20. Seymour N. Juxta-epiphyseal fracture <strong>of</strong> the terminal phalanx <strong>of</strong> the finger. J<br />

Bone Joint Surg Br 1966; 48: 347-349.<br />

21. Simmons BP, Peters TT. Subcondylar fossa reconstruction for malunion <strong>of</strong><br />

fractures <strong>of</strong> the proximal phalanx in children. J Hand Surg 1987; 12: 1079-<br />

1082.<br />

22. Tavassoli J, Ruland RT, Hogan CJ, Cannon DL. Three cast techniques for the<br />

treatment <strong>of</strong> extra-articular metacarpal fractures. Comparison <strong>of</strong> short-term<br />

outcomes and final fracture alignments. J Bone Joint Surg 2005; 87: 2196-<br />

2201.<br />

23 Vahvanen V, Westerlund M. Fracture <strong>of</strong>f the carpal scaphoid in children. A<br />

clinical and roentgenological study <strong>of</strong> 108 cases. Acta Orthop Scand 1980;<br />

51: 909-913.<br />

24. Valdivelu R, Dias JJ, Burke FD, Stanton J. Hand injuries in children: a<br />

prospective study. J Pediatr Orthop 2006; 26: 29-35.<br />

25. Weiss AP, Hastings H. Distal unicondlar fractures <strong>of</strong> the proximal phalanx. J<br />

Hand Surg 1993; 18: 594-599.<br />

26. Waters PM, Stewart SL. Surgical treatment <strong>of</strong> nonunion and avascular<br />

necrosis <strong>of</strong> the proximal part <strong>of</strong> the scaphoid in adolescents. J Bone Joint<br />

Surg 2002; 84: 915-920.<br />

27. Waters PM, Taylor BA, Kuo AY. Percutaneous reduction <strong>of</strong> incipient<br />

malunion <strong>of</strong> phalangeal neck fractures in children. J Hand Surg 2004; 29:<br />

707-711.<br />

28. Worlock PH, Stower MJ. The incidence and pattern <strong>of</strong> hand fracturs in<br />

children. J Hand Surg 1986; 11: 198-200.<br />

Elbow References<br />

1. Mehlman CT, Strub WM, Roy DR, Wall EJ, Crawford AH. The effect <strong>of</strong><br />

surgical timing on the perioperative complications <strong>of</strong> supracondylar fractures<br />

in children. J Bone Joint Surg 2001;83A:323-327.<br />

2. Mazda K, Boggione C, Fitoussi F, Pennecot GF. Systematic Pinning <strong>of</strong><br />

Displaced Extension-type Supracondylar Fractures <strong>of</strong> the Humerus in<br />

Children. A Prospective Study <strong>of</strong> 116 Consecutive Patients. J Bone Joint Surg<br />

2001;83-B:888-893.<br />

3. Parikh S N, Wall E J, Foad S, Wiersema B, Nolte B. Displaced Type II<br />

Extension Supracondylar Humerus Fractures Do They All Need Pinning? J<br />

Pediatr Orthop 2004;24:380-384<br />

4. Pirone AM, Graham HK, Krajbich JI. Management <strong>of</strong> displaced extensiontype<br />

supracondylar fractures <strong>of</strong> the humerus in children.


238<br />

diStal radiuS FraCtureS:<br />

CurreNt CoNCeptS aNd evolviNg<br />

teChNologieS (o)<br />

Moderator: John S. Taras, MD, Philadelphia, PA<br />

A comprehensive review <strong>of</strong> distal radius topics including the recently released AAOS clinical guidelines, current and evolving<br />

internal fixation options, the role <strong>of</strong> external fixation options, complex fracture management, and distal radius malunion<br />

considerations.<br />

I. Introduction/Summary <strong>of</strong> Clinical Guidelines/Fixation Options<br />

John S. Taras, MD, Philadelphia, PA<br />

II. Distal Radius Bone Graft Substitutes/Treatment <strong>of</strong> Fragility Fractures<br />

Amy L. Ladd, MD, Palo Alto, CA<br />

III. Current Applications for External Fixation<br />

David J. Slutsky, MD, Torrance CA<br />

IV. Complex Fracture Management<br />

Douglas P. Hanel, MD, Seattle, WA<br />

V. Distal Radius Malunion<br />

David C. Ring, MD, Boston, MA<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST


239<br />

iNtroduCtioN, Summary oF CliNiCal guideliNeS &<br />

FiXatioN optioNS<br />

John S. Taras, MD<br />

Course Summary<br />

Fracture <strong>of</strong> the distal radius is the type <strong>of</strong> fracture most commonly<br />

seen in emergency departments. The understanding <strong>of</strong> the nonsurgical<br />

and surgical care <strong>of</strong> distal radius fractures is evolving with recently<br />

developed methods <strong>of</strong> fixation. It is worthwhile to review some<br />

new methods <strong>of</strong> treatment, the role <strong>of</strong> bone grafting and synthetic<br />

substitutes, and the treatment <strong>of</strong> common complications <strong>of</strong> distal<br />

radius fractures. (AAOS Instr Course Lect 2010;Volume 59, 313-316)<br />

Most important factors determining recovery <strong>of</strong> function:<br />

• Fracture alignment<br />

• Patient’s age<br />

Malalignment and poor outcome are most highly correlated<br />

with:<br />

• Intraarticular incongruity exceeding 2 mm<br />

• Dorsal angulation <strong>of</strong> more than 20° is associated with loss <strong>of</strong><br />

wrist flexion and function<br />

• Radial shortening <strong>of</strong> more than 4 mm is associated with loss <strong>of</strong><br />

forearm rotation<br />

• Radial shortening <strong>of</strong> more than 5 mm is associated with ulnar<br />

wrist pain<br />

Relative risk <strong>of</strong> poor outcome 50% for patients:<br />

• Younger than 65 years who had fracture healing with dorsal<br />

angulation <strong>of</strong> more than 10°<br />

• Radial inclination <strong>of</strong> less than 15°, or<br />

• Radial shortening <strong>of</strong> more than 3 mm<br />

Reasonable treatment goals for an active person include:<br />

• Sustained reduction with less than 1 to 2 mm <strong>of</strong> articular<br />

displacement<br />

• 10° <strong>of</strong> dorsal angulation<br />

• 2 to 3 mm <strong>of</strong> radial shortening<br />

The optimal evidence-based treatment <strong>of</strong> distal radius fractures<br />

has not yet been clearly defined. Methods and techniques<br />

available for maintaining fracture alignment include:<br />

• Cast or splint immobilization<br />

• Percutaneous pinning with casting<br />

• Bridging or nonbridging external fixation<br />

• Internal fixation<br />

Evolution <strong>of</strong> procedures to treat extraarticular distal radius<br />

fractures has looked at factors including:<br />

• Bone quality<br />

• Patient’s ability to tolerate the procedure<br />

• Fracture type<br />

Treatment modalities have evolved from the immobilization as<br />

originally described by Colles to:<br />

• Percutaneous pinning<br />

• Pins and plaster<br />

• External fixation<br />

• Internal fixation<br />

Fractures treated in plaster have a tendency to redisplace with<br />

time.<br />

• Mackenney, McQueen, and Elton<br />

— 60% <strong>of</strong> initially displaced fractures redisplaced to a position<br />

<strong>of</strong> malunion when treated in a cast.<br />

• LaFontaine and colleagues identified risk factors associated with<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

redisplacement <strong>of</strong> distal radius fractures after initial satisfactory<br />

reduction; these factors include:<br />

— Dorsal angulation <strong>of</strong> more than 20 degrees<br />

— Comminution<br />

— Intraarticular involvement<br />

— Associated fracture <strong>of</strong> the distal ulna<br />

— Age greater than 60 years<br />

— When 3 or more risk factors were present the likelihood <strong>of</strong><br />

fracture collapse was high.<br />

• Dias, Wray, and Jones noted that osteoporosis was a factor<br />

leading to a greater progression <strong>of</strong> deformity after cast<br />

treatment.<br />

Percutaneous pinning <strong>of</strong> the reduced fracture<br />

• Good-to-excellent results reported<br />

• Smooth straight wires most common<br />

• Threaded wires occasionally used<br />

• Most techniques complement pinning with cast immobilization<br />

for 4-6 weeks<br />

• Pinning techniques have included:<br />

— 2 pins placed through the radial styloid<br />

— 2 crossed pins<br />

— 3 to 4 intrafocal pins within the fracture site<br />

— Transulnar oblique pinning with a threaded wire,<br />

— 1 radial styloid pin and a second across the distal radioulnar<br />

joint<br />

— Multiple trans-ulnar to radius pins, including the distal<br />

radioulnar joint<br />

Limitations <strong>of</strong> standard pinning techniques include:<br />

• Redisplacement rates <strong>of</strong> 25-33% despite pinning and casting<br />

• Infection when pins are left long outside the skin<br />

• Irritation and skin breakdown when cut beneath the skin<br />

• Tendon rupture when placed in close proximity to extensor<br />

tendons<br />

• Requirement <strong>of</strong> a procedure to remove pins cut beneath the skin<br />

Purpose-designed, cannulated, threaded pin<br />

• Unstable, extra-articular, dorsally displaced distal radius fracture<br />

• Holds fracture fragments securely<br />

• Technique similar to common pinning techniques<br />

• Break-<strong>of</strong>f driver section allows placement entirely within the<br />

distal radius eliminating tendon or skin irritation<br />

• Placed over a guide wire utilizing a small incision to expose the<br />

insertion site<br />

• More secure purchase <strong>of</strong> the fracture fragments compared to<br />

smooth wires<br />

• Allows for early wrist range <strong>of</strong> motion, facilitating recovery <strong>of</strong><br />

function<br />

External Fixation<br />

• Bridges the fracture by distal fixation in the metacarpals<br />

indirectly reducing the fracture through ligamentotaxis, or<br />

• Placing distal fixation directly in the distal fracture fragment<br />

• Bridging external fixation remains a useful fixation option for:<br />

— Initial management <strong>of</strong> open fractures with s<strong>of</strong>t tissue loss<br />

— Temporizing measure in patients with polytrauma<br />

— Distal shear fractures where internal fixation <strong>of</strong> the distal<br />

fragment cannot be achieved.<br />

• Nonbridging external fixation has been used successfully to treat


unstable extra-articular fractures. This technique requires at least<br />

1 cm <strong>of</strong> intact volar cortex for pin purchase.<br />

• McQueen compared bridging and nonbridging external fixation<br />

and found radiological and functional indices better at both<br />

early and late healing phases in the nonbridging group.<br />

Common complications/limitations <strong>of</strong> external fixation<br />

• Injury to the superficial radial nerve<br />

• Pin tract infections.<br />

• Excessive distraction through bridging external fixation causes<br />

stiffness and median nerve dysfunction<br />

• One limitation <strong>of</strong> bridging external fixation relates to the<br />

viscoelastic behavior <strong>of</strong> ligaments. There is a gradual loss <strong>of</strong><br />

the initial distraction force applied through stress relaxation<br />

resulting in some loss <strong>of</strong> initial fracture reduction during the<br />

healing phase.<br />

• pattern: 2 purpose-designed pins inserted from the radial styloid<br />

BIBLIOGRAPHY<br />

1. Abramo A, Kopylov P, Tagil M: Evaluation <strong>of</strong> a treatment protocol in distal<br />

radius fractures: A prospective study in 581 patients using DASH as outcome.<br />

Acta Orthop 2008;79:376-385.<br />

2. Altissimi M, Antenucci R, Fiacca C, Mancini GB: Long-term results <strong>of</strong><br />

conservative treatment <strong>of</strong> fractures <strong>of</strong> the distal radius. Clin Orthop Relat Res<br />

1986;206:202-210.<br />

3. Benoit LA, Freeland AE. Buttress pinning in the unstable distal radius<br />

fracture. A modification <strong>of</strong> Kapandji technique. J Hand Surg 1995;20B:82-96<br />

4. Catalano LW III, Cole RJ, Gelberman RH, Evan<strong>of</strong>f BA, Gilula LA, Borrelli J<br />

Jr: Displaced intra-articular fractures <strong>of</strong> the distal aspect <strong>of</strong> the radius: Longterm<br />

results in young adults after open reduction and internal fixation. J<br />

Bone Joint Surg 1997;79A:1290-1302.<br />

5. Chia B, Catalano LW 3rd, Glickel SZ, Barron OA, Meier K. Percutaneous<br />

pinning <strong>of</strong> distal radius fractures: an anatomic study demonstrating the<br />

proximity <strong>of</strong> K-wires to structures at risk. J Hand Surg 2009:34A(6):1014-<br />

1020.<br />

6. Clancey G. Percutaneous Kirschner-Wire fixation <strong>of</strong> Colles fractures. J Bone<br />

Joint Surg 1984:66A:1008-1014.<br />

7. DePalma A. Comminuted fractures <strong>of</strong> the distal end <strong>of</strong> the radius treated by<br />

ulnar pinning. J Bone Joint Surg. 34A:651-662.<br />

8. Dias JJ, Wray CC, Jones JM: Osteoporosis and Colles’ fractures in the elderly.<br />

J Hand Surg 1987;12B(1):57-59.<br />

9. Epinette JA, Lehut JM, Cavenaile M, et al: Pouteau-Colles fracture:<br />

double-closed ‘basket-like’ pinning according to Kapandji: apropos <strong>of</strong> a<br />

homogeneous series <strong>of</strong> 70 cases. Ann Chir Main 1982;1:71-83.<br />

10. Fernandez DL and Palmer AK. Fractures <strong>of</strong> the distal radius. In:Green D,<br />

Hotchkiss R, Pederson, W, eds. Green’s Operative Hand Surgery (ed4) . New<br />

York, NY: Churchill Livingstone; 1999: 929-985.<br />

11. Fernandez DL and Wolfe SW: Distal radius fractures. In: Green’s Operative<br />

Hand Surgery (ed5). Green DP, Hotchkiss RN, Pederson WC and Wolfe SW<br />

(eds). Pp 645-710.<br />

12. Fernandez DL, Geissler WB: Treatment <strong>of</strong> displaced articular fractures <strong>of</strong> the<br />

radius. J Hand Surg 1991A;16:375-384.<br />

13. Fernandez DL: Should anatomic reduction be pursued in distal radial<br />

fractures? J Hand Surg 2000;25B:523-527.<br />

14. Forward DP, Davis TR, Sithole JS: Do young patients with malunited<br />

fractures <strong>of</strong> the distal radius inevitably develop symptomatic post-traumatic<br />

osteoarthritis? J Bone Joint Surg 2008;90B:629-637.<br />

15. Greating MD, Bishop AT: Intrafocal (Kapandji) pinning <strong>of</strong> unstable fractures<br />

<strong>of</strong> the distal radius. Orthop Clin North Am. 1993;24:301-307.<br />

16. Grewal R, MacDermid JC: The risk <strong>of</strong> adverse outcomes in extra-articular<br />

distal radius fractures is increased with malalignment in patients <strong>of</strong> all ages<br />

but mitigated in older patients. J Hand Surg 2007;32A:962-970.<br />

17. Grewal R, Perey B, Wilmik M, et al: A randomized prospective study on<br />

the treatment <strong>of</strong> intraarticular distal radius fractures: open reduction<br />

and internal fixation with dorsal plating versus mini open reduction,<br />

percutaneous fixation and external fixation. J Hand Surg 2005;30A:764-772.<br />

18. Handoll HH, Madhok R: Surgical interventions for treating distal radius<br />

fractures in adults. Cochrane Database Syst Rev 2003;3:CD003209.<br />

240<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

Open reduction and internal fixation<br />

• Koval noted a recent trend away from percutaneous and external<br />

fixation towards internal fixation.<br />

• Most useful application for fixation <strong>of</strong> displaced intra-articular<br />

fractures but also commonly used for unstable extra-articular<br />

fractures<br />

• Plates can be applied on the volar, dorsal, or radial cortices <strong>of</strong><br />

the radius to maintain fracture reduction.<br />

• Particularly useful for fractures with metaphyseal comminution<br />

are implants that incorporate screws that lock into the plate<br />

thereby enhancing fracture stability.<br />

Limitations <strong>of</strong> internal fixation with plates include<br />

• Tendon rupture from chronic irritation over the plate or screws,<br />

although newer low pr<strong>of</strong>ile plate designs have lessened this risk.<br />

• Care must be taken when applying distal radius plates to ensure<br />

that the screws do not penetrate past the far cortex due to the<br />

risk <strong>of</strong> tendon rupture.<br />

19. Jakob M, Rikli DA, Regazzoni P: Fractures <strong>of</strong> the distal radius treated by<br />

internal fixation and early function. J Bone Joint Surg 82B:340-344, 2000.<br />

20. Kapandji A: Intra-focal pinning <strong>of</strong> fractures <strong>of</strong> the distal end <strong>of</strong> the radius 10<br />

years later. Ann Chir Main 1987;6;57-63.<br />

21. Kapandji A: L’osteosynthese par double enbrochage intrafocal: traitement<br />

fonctionnel des fractures nonarticulaires de l’extrémitié inferieure du radius.<br />

Ann Chir Main. 1976;30;903-908.<br />

22. Kapandji, A. Treatment <strong>of</strong> non-articular distal radius fractures by intrafocal<br />

pinning with arum pins. In: Saffer P, Cooney WP, eds. Fractures <strong>of</strong> the Distal<br />

Radius. Philadelphia: Lippincott Williams & Wilkins; 1995: pp 71-83.<br />

23. Knirk JL, Jupiter JB: Intra-articular fractures <strong>of</strong> the distal end <strong>of</strong> the radius in<br />

young adults. J Bone Joint Surg 1986;68A:647-659.<br />

24. Koval KJ, Harrast JJ, Anglen JO and Weinstein JN. Fractures <strong>of</strong> the distal part<br />

<strong>of</strong> the radius: The evolution <strong>of</strong> practice over time. Where’s the evidence?. J<br />

Bone Joint Surg 2008;90A:18551861.<br />

25. Kreder HJ, Hanel DP, Agel J, et al: Indirect reduction and percutaneous<br />

fixation versus open reduction and internal fixation for displaced intraarticular<br />

fractures <strong>of</strong> the distal radius: A randomized, controlled trial. J Bone<br />

Joint Surg 2005;87B:829-836.<br />

26. Lafontaine MJ, Delince P, Hardy D, et al: Instability <strong>of</strong> fractures <strong>of</strong> the<br />

lower end <strong>of</strong> the radius: apropos <strong>of</strong> a series <strong>of</strong> 167 cases. Acta Orthop Belg<br />

1989;55:203-216.<br />

27. Lenoble E, Dumontier C, Goutallier D, et al. Fracture <strong>of</strong> the distal radius: A<br />

prospective comparison between trans-styloid and Kapandji fixations. J Bone<br />

Joint Surg 1995;77A:562-567.<br />

28. Mackenney PJ, McQueen MM, Elton R: Prediction <strong>of</strong> instability in distal<br />

radius fractures. J Bone Joint Surg 2006;88A(9):1944-1951.<br />

29. McQueen MM: Non-spanning external fixation <strong>of</strong> the distal radius. Hand<br />

Clin 2005;21;375-380.<br />

30. Mortier JP, Kuhlmann JN, Richet C, Baux S. Horizontal cubito-radial pinning<br />

in fractures <strong>of</strong> the distal radius including a postero-internal fragment. Rev<br />

Chir Orthop Reparatrice Appar Mot. 1986; 72:567-572.<br />

31. Porter M, Stockley I: Fractures <strong>of</strong> the distal radius: Intermediate and<br />

end results in relation to radiologic parameter. Clin Orthop Relat Res<br />

1987;220:241-252.<br />

32 Rayhack JM, Langworthy JN, Belsole RJ: Transulnar percutaneous pinning<br />

<strong>of</strong> displaced distal radial fractures: A preliminary report. J Orthop Trauma<br />

1989; 3:107-114.<br />

33. Rikli DA, Regazzoni P: Fractures <strong>of</strong> the distal end <strong>of</strong> the radius treated by<br />

internal fixation and early function: A preliminary report <strong>of</strong> 20 cases. J Bone<br />

Joint Surg 1996;78B:588-592.<br />

34. Ring D, Jupiter JB, Brennwald J, et al: Prospective multicenter trial <strong>of</strong> a plate<br />

for dorsal fixation <strong>of</strong> distal radius fractures. J Hand Surg 1997;22A:777-784.<br />

35. Rozental TD, Beredjiklian PK, Bozentka DJ: Functional outcome and<br />

complications following two types <strong>of</strong> dorsal plating for unstable fractures <strong>of</strong><br />

the distal part <strong>of</strong> the radius. J Bone Joint Surg 2003;85A:1956-1960.<br />

36. Stein H, Katz S. Stabilization <strong>of</strong> comminuted fractures <strong>of</strong> the distal inch <strong>of</strong><br />

the radius: percutaneous pinning. Clin Orthop Rel Research 1975; 108:174-<br />

181.


37. Sun JS, Chang CH, Wu CC, et al: Extra-articular deformity in distal radial<br />

fractures treated by external fixation. Can J Surg 2001;44;289-294.<br />

38. Taras JS, Ladd AL, Kalainov DM, Ruch DS, Ring DC. New concepts in the<br />

treatment <strong>of</strong> distal radius fratures. AAOS Instructional Course Lectures 2010;<br />

59;313-332.<br />

241<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

39. Taras JS, Zambito KL, Abzug JM: T-Pin for distal radius fracture. Tech Hand<br />

Up Extrem Surg 2006;10:2-7.<br />

40. Winemaker MJ, Chinchalkar S, Richards RS, et al: Load relaxation and forces<br />

with activity in H<strong>of</strong>fman external fixators: a clinical study in patients with<br />

Colles’ fractures. J Hand Surg 1998;23A:926-932.


242<br />

diStal radiuS boNe graFt SubStituteS<br />

Amy L. Ladd MD<br />

Key Points - Learning Objectives<br />

Why use them?<br />

• Describe the potential advantages and disadvantages<strong>of</strong> using<br />

graft and graft substitutes for distal radius fractures<br />

Which can I use?<br />

• Identify the major categories <strong>of</strong> grafting alternatives available,<br />

and their potential utility<br />

When to use them?<br />

• Identify patient factors and fracture patterns which are<br />

potentially amenable to adjunctive grafting<br />

What’s on the horizon?<br />

• Identify future directions for graft alternatives<br />

INTRODUCTION<br />

• Popular Mechanics meets Better Homes & Gardens<br />

• Organic Carpentry<br />

• The Business <strong>of</strong> Bone is Big!<br />

Why? –History & Review<br />

• Quest for graft replacement (Table 1)<br />

— Morbidity<br />

— Availability<br />

— (Expense)<br />

TABLE 1 Advantages & disadvantages <strong>of</strong> autologous bone graft<br />

Advantages <strong>of</strong> autograft Disadvantages <strong>of</strong> autograft<br />

Osteoinductive and osteoconductive<br />

Osteogenic<br />

Available in cortical and cancellous<br />

forms<br />

provides structural support<br />

Biocompatable<br />

incorporates into host site<br />

Remodels to become normal bone<br />

problems associated with harvest:<br />

increased operative time,<br />

hospital stay, cost<br />

increased blood loss, post-<br />

operative pain, risk <strong>of</strong> infection,<br />

risk <strong>of</strong> fracture<br />

Avascular bone: potential nidus<br />

for infection<br />

Limited supply<br />

Variable quality<br />

Science and Stoichiometry<br />

• Osteoconduction: scaffolding for new bone<br />

• Osteoinduction; stimulation <strong>of</strong> new bone<br />

• Osteogenesis: cells as engine for new bone formation<br />

Which can I use? --Types <strong>of</strong> Graft<br />

Autograft<br />

• Cortical (conductive)<br />

• Cancellous (inductive)<br />

• Cortico-cancellous (conductive/inductive)<br />

• Bone Marrow Aspirate (inductive/genic?)<br />

Allograft<br />

• Composite<br />

REFERENCES<br />

1. Cassidy C, Jupiter JB, Cohen M, Delli-Santi M, Fennell C, Leinberry C,<br />

Husband J, Ladd A, Seitz WR, Constanz B. Norian SRS cement compared<br />

with conventional fixation in distal radial fractures. A randomized study. J<br />

Bone Joint Surg Am. 2003;85-A(11):2127-2137.<br />

2. De Long WG, Jr., Einhorn TA, Koval K, McKee M, Smith W, Sanders R,<br />

Watson T. Bone grafts and bone graft substitutes in orthopaedic trauma<br />

surgery. A critical analysis. J Bone Joint Surg Am. 2007;89(3):649-658.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

• Demineralized Bone Matrix (DBM)<br />

— Carrier the money and the controversy<br />

Mineral Composites (Allograft, Xenograft, Synthetics)<br />

Xenograft: Collagen<br />

• Minerals (Conductive): Porosity and Resorption are Key<br />

Features<br />

— Solid Blocks, granules, pellets, etc—void filler<br />

– Coralline and bovine hydroxyapatite (HA)<br />

– Calcium sulfate in many formulations<br />

~ Soluble, non-physiologic salt<br />

– Calcium phosphates<br />

~ Beta tricalcium phosphate (§-TCP)<br />

— Injectable Cements—potential weight-bearing<br />

– Calcium sulfate<br />

– Calcium phosphate<br />

• Bioglasses and Polymers (Conductive)<br />

— Silicates<br />

— Biologic bonding<br />

• Factors and Proteins<br />

— Bone Marrow Aspirate<br />

— Plasma Rich Proteins (PRPs)<br />

– “buffy coat”<br />

— Peptides<br />

– inflammation precursors<br />

— Cytokines<br />

– Transforming Growth Factors (TGF-§)<br />

~ Bone Morphogenic Proteins (BMPs)<br />

~ Vascular, Fibrous, Platelet Factors<br />

When to use them? – Indications<br />

• Specific need (potentially) dictates substitute<br />

— Void<br />

— Structure<br />

— Healing<br />

— Fixation<br />

• Marketing and Availability dictate use today<br />

— Absence <strong>of</strong> clinical comparative studies in similar injuries<br />

What’s on the Horizon? Future<br />

• Viral Probes<br />

— Influence cellular (inflammatory) response<br />

• Composite Osteogenic Substances<br />

— Carrier (conductive/inductive, inert) + cells<br />

CONCLUSION<br />

Graft substitutes provide many options<br />

• Beware <strong>of</strong> false claims (caveat emptor!)<br />

Market-driven growth industry<br />

• More than ever, understand principles <strong>of</strong> bone<br />

— Bone composition<br />

— Bone healing<br />

• The surgeon’s toolbox now needs a gardening<br />

3. Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use<br />

<strong>of</strong> a surgical grade calcium sulfate as a bone graft substitute: results <strong>of</strong> a<br />

multicenter trial. Clin Orthop Relat Res. 2001(382):42-50.<br />

4. Ladd AL, Pliam NB. Use <strong>of</strong> bone-graft substitutes in distal radius fractures.<br />

J Am Acad Orthop Surg. 1999;7(5):279-290.<br />

5. McCalden RW, McGeough JA, Court-Brown CM. Age-related changes in the<br />

compressive strength <strong>of</strong> cancellous bone. The relative importance <strong>of</strong> changes<br />

in density and trabecular architecture. J Bone Joint Surg Am. 1997;79(3):421-<br />

427.


6. Peltier LF, Bickel EY, Lillo R, Thein MS. The use <strong>of</strong> plaster <strong>of</strong> paris to fill<br />

defects in bone. Ann Surg. 1957;146(1):61-69.<br />

7. Tsiridis E, Bhalla A, Ali Z, Gurav N, Heliotis M, Deb S, DiSilvio L. Enhancing<br />

the osteoinductive properties <strong>of</strong> hydroxyapatite by the addition <strong>of</strong> human<br />

mesenchymal stem cells, and recombinant human osteogenic protein-1<br />

(BMP-7) in vitro. Injury. 2006;37 Suppl 3:S25-32.<br />

243<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

8. Wolff J: The Law <strong>of</strong> Bone Transformation, 1892. Translated by P Maquet,<br />

New York: Springer-Verlag, 1986<br />

9. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop<br />

Trauma. 1989;3(3):192-195.


244<br />

CurreNt appliCatioNS For eXterNal FiXatioN<br />

David J. Slutsky, MD, FRCS(C)<br />

Bridging external fixation <strong>of</strong> distal radius fractures typically relies<br />

on ligamentotaxis to both obtain and maintain a reduction <strong>of</strong> the<br />

fracture fragments. As longitudinal traction is applied to the carpus,<br />

the tension is transmitted mostly through the radioscaphocapitate<br />

and long radiolunate ligaments to restore the radial length. In<br />

a similar vein, pronation <strong>of</strong> the carpus can indirectly correct the<br />

supination deformity <strong>of</strong> the distal fragment.<br />

Ligamentotaxis has a number <strong>of</strong> short comings when applied<br />

to the treatment <strong>of</strong> displaced intra-articular fractures <strong>of</strong> the distal<br />

radius. Firstly, since ligaments exhibit viscoelastic behavior, there is<br />

a gradual loss <strong>of</strong> the initial distraction force applied to the fracture<br />

site through stress relaxation. The immediate improvement in radial<br />

height, inclination and volar tilt are significantly decreased by the<br />

time <strong>of</strong> fixator removal. Traction does not correct the dorsal tilt <strong>of</strong> the<br />

distal fracture fragment. This is because the stout volar radiocarpal<br />

ligaments are shorter and they pull out to length before the thinner<br />

dorsal radiocarpal ligaments exert any traction. Excessive traction<br />

may actually increase the dorsal tilt.<br />

When there is a sagittal split <strong>of</strong> the medial fragment, traction causes<br />

the volar medial fragment to rotate which <strong>of</strong>ten necessitates an open<br />

reduction. External fixation cannot control radial translation and<br />

cannot therefore be used with an unstable distal radioulnar joint.<br />

Bridging External Fixation: Indications<br />

1. Unstable Extra-articular distal radius fractures.<br />

2. Two-part and selected 3-part intra-articular fractures without<br />

displacement.<br />

3. Combined internal and external fixation.<br />

Contraindications<br />

1. Ulnar translocation due to an unstable distal radioulnar joint.<br />

2. Intra-articular volar shear fractures (Bartons, reverse Bartons).<br />

3. Disrupted volar carpal ligaments / radiocarpal dislocations.<br />

4. Marked metaphyseal comminution.<br />

Complications<br />

Pin site complications include infection, loosening and interference<br />

with extensor tendon gliding. The risk <strong>of</strong> injury to branches <strong>of</strong><br />

the superficial radial nerve mandate open pin site insertion. Bad<br />

outcomes associated with external fixation are <strong>of</strong>ten related to over<br />

distraction. More than 5 mm <strong>of</strong> wrist distraction increases the load<br />

required for the FDS to generate MCP joint flexion for the middle,<br />

ring, and small fingers. For the index finger, however, as much as<br />

2 mm <strong>of</strong> wrist distraction significantly increases the load required<br />

for flexion at the MCP joint. Many cases <strong>of</strong> intrinsic tightness and<br />

finger stiffness that are attributed to reflex sympathetic dystrophy<br />

are a consequence <strong>of</strong> prolonged and excessive traction which can<br />

be prevented by limiting the duration and amount <strong>of</strong> traction and<br />

instituting early dynamic MP flexion splinting even while in the<br />

fixator.<br />

The degree and duration <strong>of</strong> distraction correlates with the amount<br />

<strong>of</strong> subsequent wrist stiffness. Distraction, flexion and locked ulnar<br />

deviation <strong>of</strong> the external fixator encourage pronation contractures.<br />

Distraction also increases the carpal canal pressure which may<br />

predispose to acute carpal tunnel syndrome. Metaphyseal defects<br />

BIBLIOGRAPHY / REFERENCES<br />

1. Agee JM. Distal radius fractures. Multiplanar ligamentotaxis. Hand Clin<br />

1993: 9: 577-85.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

should be grafted to diminish bending loads and to allow fixator<br />

removal after 6-7 weeks which minimizes the fixator related<br />

complications.<br />

Nonbridging External fixation: Indications<br />

Nonbridging external fixation is indicated in any extra-articular<br />

fracture where there is a high risk <strong>of</strong> late collapse or if there is<br />

redisplacement <strong>of</strong> the fracture following an acceptable closed<br />

reduction. It is ideally suited for the treatment <strong>of</strong> 2- and 3-part intraarticular<br />

fractures <strong>of</strong> the distal radius provided there is good bone<br />

density and a stable DRUJ. It’s use following an arthroscopic-aided<br />

reduction and k-wire fixation <strong>of</strong> an intra-articular fracture permits<br />

early protected wrist motion although bridging fixation is warxranted<br />

in the presence <strong>of</strong> marked articular comminution.<br />

Contraindications<br />

Nonbridging external fixation is contraindicated when the distal<br />

fragment is too small for pin placement. At least 1 cm <strong>of</strong> intact volar<br />

cortex is required for pin purchase. This technique is not applicable<br />

to volar displaced or volar shear fractures and in children with open<br />

epiphyses.<br />

Complications<br />

Pin pullout due to fracture <strong>of</strong> the distal fragment can occur if the<br />

distal fragment is too small or osteopenic, or if the reduction is too<br />

vigorous. If this occurs the fixator can be converted to a bridging<br />

construct. An incomplete reduction is also possible, especially with<br />

nascent malunions. Over-reduction <strong>of</strong> the fracture can also occur,<br />

especially when there is volar comminution.<br />

AAOS Guidelines pertaining to External Fixation<br />

RECOMMENDATION 5. Is external fixation superior to casting:<br />

Inconclusive. We are unable to recommend for or against operative<br />

treatment for patients over age 55 with distal radius fractures. There<br />

were three trials that met the inclusion criteria that compared ex<br />

fix to casting and K-wires to casting in age >55 yrs. There were no<br />

significant differences in pain, function, complications or SF-36 at<br />

any time point.<br />

RECOMMENDATION 25. Does the duration <strong>of</strong> distraction affect<br />

the outcomes: Inconclusive. Two level II studies met the inclusion<br />

criteria. No statistically significant association <strong>of</strong> distraction and<br />

non-validated patient outcome score. Downgraded to “inconclusive”<br />

on basis that: The important adverse effect <strong>of</strong> finger stiffness was not<br />

evaluated and that it was unethical to conduct a prospective study to<br />

examine the effect <strong>of</strong> over-distraction.<br />

RECOMMENDATION 28. Does fixing ulnar styloid fractures affect<br />

the outcome:Inconclusive. We are unable to recommend for or<br />

against fixation <strong>of</strong> ulnar styloid fractures associated with distal<br />

radius fractures. There were two studies that met the inclusion<br />

criteria. One study found no difference between treatment<br />

(fixation) and no treatment. The other study identified ulna styloid<br />

fractures after treatment was completed therefore no ulnar styloid<br />

fractures were treated at the time <strong>of</strong> surgery. Although the patients<br />

with ulnar styloid fractures had poorer outcomes, the study did<br />

not address the question <strong>of</strong> whether early operative intervention is<br />

indicated.<br />

2. Wolfe SW, Swigart CR, Grauer J, Slade JF, 3rd, Panjabi MM. Augmented<br />

external fixation <strong>of</strong> distal radius fractures: a biomechanical analysis. J Hand<br />

Surg [Am] 1998: 23: 127-34.


3. McQueen MM. Redisplaced unstable fractures <strong>of</strong> the distal radius. A<br />

randomised, prospective study <strong>of</strong> bridging versus non-bridging external<br />

fixation. J Bone Joint Surg Br 1998: 80: 665-9.<br />

4. Gradl G, Jupiter JB, Gierer P, Mittlmeier T. Fractures <strong>of</strong> the distal radius<br />

treated with a nonbridging external fixation technique using multiplanar<br />

k-wires. J Hand Surg [Am] 2005: 30: 960-8.<br />

245<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

5. Slutsky DJ. Nonbridging External Fixation <strong>of</strong> Intra-articular Distal Radius<br />

Fractures. Hand Clinics: Distal Radius Fractures. Vol 21, No. 3 August 2005,<br />

pp 381-394.<br />

6. AAOS Treatment <strong>of</strong> Distal Radius Fracture Guidelines 2010. http://www.aaos.<br />

org/research/guidelines/DRFguideline.asp


1. BACKGROUND Questions<br />

A. Is there any fracture too difficult to manage with plate<br />

fixation<br />

B. Does every fracture deserve skeletal reconstruction<br />

2. The Premise(s) <strong>of</strong> this lecture<br />

Premise # 1 A Fracture Is A S<strong>of</strong>t Tissue Injury That Involves<br />

Bone<br />

Premise # 2 The Status <strong>of</strong> the S<strong>of</strong>t Tissues Dictate Fx<br />

Management<br />

Premise # 3 The Surgeon Not the Implant Is the Operation<br />

3. Classification<br />

A. Open Injuries Gustillo-Anderson<br />

Type I (Puncture Wounds) and Type II (Tidy Lacerations)<br />

Relatively Low Energy<br />

Minimal S<strong>of</strong>t Tissue Coverage or Contamination Issues.<br />

Results Same as: Closed Fractures<br />

Type III<br />

High Energy “Combined Complex”<br />

A “S<strong>of</strong>t Tissue Injury That Involves Bone”<br />

Urgency <strong>of</strong> Rx Dictated by Viability and Contamination<br />

Results Reflect Debridement then<br />

Vascular> Nerve> Tendon> Coverage> Bone3,24<br />

Type IIIA<br />

After Debridement And Skeletal Stabilization<br />

S<strong>of</strong>t Tissues Close Primarily Or By Delayed Without The<br />

Need For Grafts Or Flaps<br />

Type IIIB and IIIC<br />

Grossly Contaminated<br />

S<strong>of</strong>t Tissue Stripped from Bone<br />

Torn Muscle Bellies<br />

Avulsed Abraded Tendon<br />

Crushed /Avulsed / Transected Nerves<br />

IIIC – Vascular Compromise 3,18<br />

B. Concept <strong>of</strong> Combined Complex Injuries Buchler-Hastings<br />

Injuries Are Not Simply Additive<br />

They Impact Geometrically8<br />

End Results Reflect 24,28<br />

> S<strong>of</strong>t Tissue Debridement And Coverage<br />

>Return <strong>of</strong> Neuro Function<br />

>Critical Joint Function<br />

Elbow > PIP joints<br />

> Shoulder<br />

> Wrist<br />

C. Wrist Fracture Classification<br />

(Open Fx’s are difficult enough keep it simple) –<br />

H.Kleinert, GD Lister<br />

Fernandez/Jupiter15<br />

Bending<br />

Shearing<br />

Radiocarpal Dislocation<br />

Compression<br />

All <strong>of</strong> Which Can Be Combined-Complex<br />

D. A Working “High Energy” Wrist Fracture Classification<br />

a. Not Open but Should Be!<br />

Impending or evolving Compartment Syndrome<br />

Progressive Neuro Defecit<br />

b. Not So Bad If It Weren’t for Everything Else<br />

The poly traumatized patient<br />

c. Open Injuries as defined above<br />

246<br />

CompleX FraCture maNagemeNt<br />

Doug Hanel MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

4. Initial S<strong>of</strong>t Tissue Management<br />

A. Closed<br />

Neuro: Acute Crush Vs Evolving Compression<br />

(compartment syndrome)<br />

B. Open<br />

— Debridement – “The Ability to Keep Contaminated<br />

Tissue from Becoming Septic”—Büchler<br />

— Removal <strong>of</strong> Doubtfully Viable Tissue (Tumor Like<br />

Resection) 17<br />

— Vessels and Nerves are Never Doubtfully Viable<br />

— Dead and Dieing Muscle and Skin<br />

˜<br />

Petri Dish<br />

— Wound Cultures & Gram Stains<br />

— An Unnecessary and Costly Procedure<br />

— Antibiotics<br />

— Type I & II – Your Favorite<br />

– Staph /Strep Coverage<br />

– Cephalosporins (12-24 hours)<br />

— Type III –As Above + Aminoglycosides (for 24 hours after<br />

closure)11-14<br />

5. Skeletal Stabilization<br />

A. Isolated Extremity Injury<br />

Open vs Closed …. No Difference<br />

B. Associated with other Injuries<br />

Will the U.E. be weight bearing?<br />

C. Treatment Goals<br />

Preservation <strong>of</strong> Hand Function >> Restoration <strong>of</strong> Wrist<br />

Motion 10,29<br />

D. Closed / Isolated Injury<br />

I. Reduction per Agee 1<br />

Longitudinal Txn<br />

Palmar Translation <strong>of</strong> Carpus Relative to Forearm<br />

Slight Pronation <strong>of</strong> Hand Relative to Forearm<br />

Slight Ulnar Deviation<br />

II. Treat According To Reduction<br />

Restore Length<br />

Stabilize Volar Ulnar Corner Radius<br />

Restore Palmar Tilt (correct dye punch)<br />

Stabilize Radial Styloid<br />

Address DRUJ after Above<br />

III. Fixation<br />

Pins, Plates, Screws, Wire-forms for Articular Segment<br />

Combined with<br />

Meta -Diaphyseal Plates 3.5mm DC or LCDC Plates<br />

Periarticular Plates Other Plates May Not Be Long<br />

Enough<br />

External Fixators 20<br />

Internal Fixators 4,9<br />

E. Open and Multiple Extremity (Especially Pelvis) Injuries<br />

I. Routine Stabilization Is NOT Stable Enough Force<br />

Transmission <strong>of</strong> Weight Bearing Through Wrist is Greater<br />

Than Any Study Construct (> 40 N)<br />

II. Augmented fixation Small Plates at 60 Offset Angles +<br />

External Fixation 22,25 Articular Reconstruction + Spanning<br />

Plates 9,21,26<br />

III. Ex Fx and Perc K-wire Fixation >>> Stability than K-wires<br />

Alone 30<br />

IV. Ex Fx strength proportional to pin spread and distance<br />

from Bone Strongest “Ex Fx “is a plate sitting on a bone 5,6<br />

F. Technique <strong>of</strong> Spanning Plates


REFERENCES<br />

247<br />

I. Open Technique<br />

Dorsal Exposure<br />

EPL Mobilized<br />

Elevation <strong>of</strong> Dorsal Compartments<br />

Intraarticular Reconstruction<br />

Wires, Bone Graft, Small Plates and Screws<br />

Capsule closure<br />

Spanning Plate<br />

Third Metacarpal to Radius (3.5 LCDC or DC Plate)<br />

II. Limited Open Technique<br />

Reduction Maneuver per Agee<br />

Percutaneous Manipulation<br />

Limited Open Bone Graft<br />

Plate Fixation<br />

2.4 mm AO Mandibular Reconstruction Plate<br />

2.4mm Non Locking -Screw,<br />

2.4mm Locking Screws or<br />

3.2mm Locking Screws<br />

2.7 mm AO Wrist Spanning Plate(SD242.003)<br />

(Stainless Steel)<br />

“Combination Holes”<br />

2.4mm Non Locking (Wrist)<br />

2.7mm Locking (Wrist)<br />

2.7mm Locking (Distal Humerus<br />

Application:<br />

Incisions (3 cm long)<br />

Proximal to the Outcroppers ECRL/ECRB Interval<br />

Distal From Second Metacarpal Base<br />

Tendon Passer and Wire loop (20 gauge) Passed Beneath<br />

Outcroppers In Line With and Between ECRL ECRB<br />

Plate Pulled From Distal to Proximal<br />

Proximal Most and Distal Most Screws Secured<br />

With Non Locking screws<br />

Followed by Locking Screws<br />

Augment Fixation With percutaneous Pins<br />

Through The Plate<br />

III. Periarticular Plate Fixation<br />

Works Well With Combined<br />

Articular, Metaphyseal, Diaphyseal Fxs<br />

Covers Distal 2/3’s <strong>of</strong> Forearm<br />

IV. Address DRUJ VERY important but covered elsewhere<br />

V. Post Op<br />

Splint in Supination if DRUJ has been reconstructed ?<br />

Convert to neutral at 2-3 weeks<br />

Work on Digit ROM, Forearm ROM (esp Supination)<br />

Wrist ROM will follow with time<br />

Allow Weight Bearing Through Elbows<br />

Remove Spanning Plates (in OR) in 12-30+ Weeks)<br />

Expect Full ROM pro/sup, 50-60/50-60 Wrist Ext/Flx<br />

1. Agee, J. M.: External fixation. Technical advances based upon multiplanar<br />

ligamentotaxis. Orthop Clin North Am, 24(2): 265-74, 1993.<br />

2. Arnez, Z. M., and Hanel, D. P.: Free tissue transfer for reconstruction <strong>of</strong><br />

traumatic limb injuries in children. Microsurgery, 12(3): 207-15, 1991.<br />

3. Axelrod, T. S., and Buchler, U.: Severe complex injuries to the upper<br />

extremity: revascularization and replantation. J Hand Surg Am, 16(4): 574-<br />

84, 1991.<br />

4. Becton, J. L.; Colborn, G. L.; and Goodrich, J. A.: Use <strong>of</strong> an internal fixator<br />

device to treat comminuted fractures <strong>of</strong> the distal radius: report <strong>of</strong> a<br />

technique. Am J Orthop, 27(9): 619-23., 1998.<br />

5. Behrens, F.: A primer <strong>of</strong> fixator devices and configurations. Clin Orthop,<br />

(241): 5-14., 1989.<br />

6. Behrens, F.; Johnson, W. D.; Koch, T. W.; and Kovacevic, N.: Bending stiffness<br />

<strong>of</strong> unilateral and bilateral fixator frames. Clin Orthop, (178): 103-10., 1983.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

7. S<strong>of</strong>t Tissue Reconstruction<br />

I. Immediate Tendon Reconstruction<br />

II. Immediate Nerve repair<br />

III. Immediate Vascular Repair<br />

IV. S<strong>of</strong>t Coverage<br />

Arguments (Settings) For Immediate Closure<br />

a. Wound Adequately Debrided Minimal Skin Loss<br />

b. Wound Adequately Debrided Minimal Surgeon Fatigue<br />

Then Complete Closure With<br />

Skin Grafts<br />

> Local Flaps<br />

> Distant Flaps 2,7,16,17,19,23,27<br />

Arguments (Settings) For Delayed Closure 31<br />

a. Wound Viability / Debridement ???<br />

b. Wound Adequately Debrided But Surgeon Fatigued<br />

c. Wound Adequately Debrided But Surgeon doesn’t Know<br />

How to Do Coverage<br />

V. Post Op<br />

Digit ROM, Forearm ROM Dictated by Tendon Repairs<br />

Mobilization is Dictated S<strong>of</strong>t Tissue Coverage<br />

Allow Weight Bearing Through Elbows<br />

When S<strong>of</strong>t Tissues Allow 5 .<br />

5. Summary<br />

Open Fracture: High Energy S<strong>of</strong>t Tissue Injuries Associated With<br />

Broken Bones<br />

Reconstruction is Approached as a Unit<br />

Highest Priority Is Debridement & Compartmental Syndromes<br />

> Progressive Nerve Injuries<br />

> Skeletal Injury<br />

Skeletal Stabilization<br />

Designed to Promote General Rehabilitation <strong>of</strong> the<br />

Multiplied Injured Patient<br />

S<strong>of</strong>t Tissue Reconstruction<br />

Create an environment conducive to healing<br />

Approach open fractures like Dean Smith Coached Basketball<br />

Play hard<br />

(There are short cuts, you may look like your winning in the<br />

first half but you won’t in the second half)<br />

Play together<br />

(Address all the problems or get it to some one who can)<br />

Play smart<br />

(Use what you know…learn from past mistakes…and avoid<br />

being a one trick pony)<br />

7. Buchler, U., and Frey, H. P.: Retrograde posterior interosseous flap. J Hand<br />

Surg [Am], 16(2): 283-92, 1991.<br />

8. Buchler, U., and Hastings, H. n.: Combined Injuries. In Operative Hand<br />

Surgery, pp. 1563-1585. Edited by Green, D. P., 1563-1585, New York,<br />

Edinburgh, London, Melbourne, Tokyo, Churchill Livingstone, 1993.<br />

9. Burke, E. F., and Singer, R. M.: Treatment <strong>of</strong> comminuted distal radius<br />

with the use <strong>of</strong> an internal distraction plate. Techniques in Hand & Upper<br />

Extremity Surgery, 2(4): 248252, 1998.<br />

10. Burkhalter, W. E.; Butler, B.; Metz, W.; and Omer, G.: Experiences with<br />

delayed primary closure <strong>of</strong> war wounds <strong>of</strong> the hand in Viet Nam. J Bone<br />

Joint Surg Am, 50(5): 945-54, 1968.<br />

11. Dellinger, E. P.: Antibiotic prophylaxis in trauma: penetrating abdominal<br />

injuries and open fractures. Rev Infect Dis, 10: S847-57, 1991.<br />

12. Dellinger, E. P. et al.: Duration <strong>of</strong> preventive antibiotic administration for<br />

open extremity fractures. Arch Surg, 123(3): 333-9, 1988.


13. Dellinger, E. P.; Miller, S. D.; Wertz, M. J.; Grypma, M.; Droppert, B.; and<br />

Anderson, P. A.: Risk <strong>of</strong> infection after open fracture <strong>of</strong> the arm or leg. Arch<br />

Surg, 123(11): 1320-7, 1988.<br />

14. Dellinger, E. P.; Wertz, M. J.; Lennard, E. S.; and Oreskovich, M. R.: Efficacy<br />

<strong>of</strong> short-course antibiotic prophylaxis after penetrating intestinal injury. A<br />

prospective randomized trial. Arch Surg, 121(1): 23-30, 1986.<br />

15. Fernandez, D., and Jupiter, J.: Fractures <strong>of</strong> the Distal Radius. A Practical<br />

Approach to Management. Edited, 345, New York, Springer, 1996.<br />

16. Gilbert, A., and Teot, L.: The free scapular flap. Plast Reconstr Surg, 69(4):<br />

601-4, 1982.<br />

17. Godina, M.: Early microsurgical reconstruction <strong>of</strong> complex trauma <strong>of</strong> the<br />

extremities. Plast Reconstr Surg, 78(3): 285-92, 1986.<br />

18. Gustilo, R. B., and Anderson, J. T.: Prevention <strong>of</strong> infection in the treatment<br />

<strong>of</strong> one thousand and twenty-five open fractures <strong>of</strong> long bones: retrospective<br />

and prospective analyses. J Bone Joint Surg Am, 58(4): 453-8, 1976.<br />

19. Hanel, D. P.: Open Wrist Fractures. Problems in Plastic and Reconstructive<br />

Surgery, 2(2): 281-299, 1992.<br />

20. Hanel, D. P.; Jones, M. D.; and Trumble, T. E.: Wrist fractures. Orthop Clin<br />

North Am, 33(1): 35-57, vii., 2002.<br />

21. Hanel, D. P.; Ruhlman, S. D.; Katolik, L. I.; and Allan, C. H.: Complications<br />

associated with distraction plate fixation <strong>of</strong> wrist fractures. Hand Clin, 26(2):<br />

237-43, 2010.<br />

22. Jakob, M.; Rikli, D. A.; and Regazzoni, P.: Fractures <strong>of</strong> the distal radius treated<br />

by internal fixation and early function. A prospective study <strong>of</strong> 73 consecutive<br />

patients. J Bone Joint Surg Br, 82(3): 340-4, 2000.<br />

248<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

23. Lister, G., and Scheker, L.: Emergency free flaps to the upper extremity. J<br />

Hand Surg Am, 13(1): 22-8, 1988.<br />

24. Nyquist, S. R., and Stern, P. J.: Open radiocarpal fracture-dislocations. J Hand<br />

Surg Am, 9(5): 707-10, 1984.<br />

25. Rikli, D. A., and Regazzoni, P.: Fractures <strong>of</strong> the distal end <strong>of</strong> the radius treated<br />

by internal fixation and early function. A preliminary report <strong>of</strong> 20 cases. J<br />

Bone Joint Surg Br, 78(4): 588-92, 1996.<br />

26. Ruch, D. S.; Ginn, T. A.; Yang, C. C.; Smith, B. P.; Rushing, J.; and Hanel, D.<br />

P.: Use <strong>of</strong> a distraction plate for distal radial fractures with metaphyseal and<br />

diaphyseal comminution. J Bone Joint Surg Am, 87(5): 945-54, 2005.<br />

27. Scheker, L. R.; Kleinert, H. E.; and Hanel, D. P.: Lateral arm composite tissue<br />

transfer to ipsilateral hand defects. J Hand Surg Am, 12(5 Pt 1): 665-72,<br />

1987.<br />

28. Scheker, L. R.; Langley, S. J.; Martin, D. L.; and Julliard, K. N.: Primary<br />

extensor tendon reconstruction in dorsal hand defects requiring free flaps. J<br />

Hand Surg Br, 18(5): 568-75, 1993.<br />

29. Tamai, S.: Twenty years’ experience <strong>of</strong> limb replantation--review <strong>of</strong> 293 upper<br />

extremity replants. J Hand Surg Am, 7(6): 549-56, 1982.<br />

30. Wolfe, S. W.; Swigart, C. R.; Grauer, J.; Slade, J. F., 3rd; and Panjabi, M.<br />

M.:Augmented external fixation <strong>of</strong> distal radius fractures: a biomechanical<br />

analysis. J Hand Surg [Am], 23(1): 127-34, 1998.<br />

31. Yaremchuk, M. J.: Acute management <strong>of</strong> severe s<strong>of</strong>t-tissue damage<br />

accompanying open fractures <strong>of</strong> the lower extremity. Clin Plast Surg, 13(4):<br />

621-32, 1986.


249<br />

CompliCatioNS oF diStal radiuS FraCture repair:<br />

maluNioN aNd NoNuNioN<br />

David Ring MD PhD<br />

NONUNION<br />

Pathophysiology – Definition: Very unstable fracture after<br />

allowing mobilization.<br />

Pathophysiology – Incidence: Very uncommon: less than 1% <strong>of</strong><br />

all fractures<br />

Pathophysiology – Mechanism<br />

1. Inadequate immobilization<br />

2. Distraction with external fixation<br />

3. Inadequate internal fixation<br />

Pathophysiology – Classification<br />

1. Extra-articular<br />

a. 5 millimeters or fewer <strong>of</strong> subchondral bone under the lunate<br />

facet (ulnar side <strong>of</strong> the radius)<br />

b. Greater than 5 millimeters <strong>of</strong> bone under the lunate facet<br />

2. Articular<br />

Diagnosis<br />

1. Clinical<br />

a. Pain and sense <strong>of</strong> weakness<br />

b. Unstable wrist<br />

2. Radiographs<br />

a. Persistent fracture line<br />

b. Often scalloping/bone loss <strong>of</strong> the distal (metaphyseal)<br />

fragment<br />

c. Loosening or breakage <strong>of</strong> internal fixation<br />

Management – Treatment Options<br />

1. ORIF and autogenous bone grafting +/- Darrach<br />

2. Wrist arthrodesis<br />

Management - Considerations<br />

1. Articular nonunion<br />

2. Degree <strong>of</strong> malalignment<br />

3. Infirmity and activity level<br />

MALUNION<br />

Pathophysiology - Definition<br />

1. Distal radius malunion is best defined as malalignment<br />

associated with dysfunction.<br />

2. Malalignment does not always result in dysfunction. In<br />

particular, the vast majority <strong>of</strong> older, low demand patients<br />

function very well with deformity (38).<br />

3. Dysfunction can be loss <strong>of</strong> motion, loss <strong>of</strong> strength, or pain (4,<br />

5, 12)<br />

4. Pain can be the most difficult to associate with deformity.<br />

Osteotomy for pain—as with any surgery for pain—isrelatively<br />

unpredictable and should be undertaken with caution. Articular<br />

malalignment, arthrosis, carpalmalalignment, and distal<br />

radioulnar joint malalignment are all potentially painful and<br />

can be variably addressed.<br />

5. The relationship between distal radius malunion and carpal<br />

tunnel syndrome is disputed. Some surgeons claim adirect<br />

causal relationship as well as the ability to improve carpal<br />

tunnel syndrome with osteotomy alone.<br />

Pathophysiology - Incidence<br />

1. Defining the incidence <strong>of</strong> malunion is complex:<br />

a. Radiographic vs. symptomatic<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

b. Radiographic cut<strong>of</strong>f for malunion?<br />

2. MacKenney, McQueen, and Elton(19)<br />

a. Radiographic definition <strong>of</strong> both displacement and<br />

malunion: Dorsal tilt > 10 degrees; Shortening by ulnar<br />

variance > 3 millimeters.<br />

b. According to this definition 744 <strong>of</strong> 1296 displaced fractures<br />

(60%) went on to malunion.<br />

i. It goes without saying that most <strong>of</strong> these radiographic<br />

malunions are acceptable to patients.<br />

ii. Only a small percentage <strong>of</strong> patients with radiographic<br />

malunion are considered for osteotomy.<br />

Pathophysiology – Mechanism<br />

1. Risk factors for fracture instability/loss <strong>of</strong> reduction/malunion.<br />

a. LaFontaine and colleagues.(17)<br />

i. Age over 60 years<br />

ii. Greater than 20 degrees <strong>of</strong> dorsal angulation<br />

iii. Dorsal metaphyseal comminution<br />

iv. Comminution extending to the volar metaphyseal cortex<br />

v. Associated fracture <strong>of</strong> the ulna<br />

vi. Displaced articular fracture<br />

b. MacKenney, McQueen and Elton (19)<br />

i. Predictors <strong>of</strong> loss <strong>of</strong> alignment <strong>of</strong> initially displaced<br />

fractures.<br />

1. Age<br />

2. Metaphyseal comminution<br />

3. Dorsal tilt (late instability only)<br />

4. Ulnar variance<br />

5. Lack <strong>of</strong> functional independence<br />

2. Remanipulation <strong>of</strong> reduced fractures that redisplace in a cast or<br />

splint is not worthwhile (17, 23)<br />

3. Limitations <strong>of</strong> various treatment techniques<br />

a. Percutaneous pins alone may not be sufficient to maintain<br />

alignment when there is substantial metaphyseal<br />

comminution (35).<br />

b. External fixation alone—without ancillary percutaneous pin<br />

fixation <strong>of</strong> the fracture—may not be sufficientto maintain<br />

reduction(1, 22, 32).<br />

c. Non-locked plates may loosen in the osteopenic<br />

metaphyseal bone.(8, 9)<br />

4. Early removal <strong>of</strong> pins or external fixator: Settling <strong>of</strong> the fracture<br />

can be observed after implant removal greater thansix weeks<br />

after injury, particularly when there is substantial metaphyseal<br />

comminution(15).<br />

5. Complacence. Many older patients desire optimal wrist<br />

alignment and function and treatment decisions should notbe<br />

made on chronological age alone(13).<br />

Pathophysiology – Classification<br />

1. Extra-articular elements <strong>of</strong> deformity—either isolated or<br />

combined.<br />

a. Dorsal<br />

b. Volar (33)<br />

c. Radial/ulnar (7)<br />

d. Rotational (28)<br />

2. Articular (21, 30, 34)<br />

a. Subluxation<br />

b. Step


Diagnosis - Overview<br />

1. Loss <strong>of</strong> alignment can be measured on radiographs.<br />

a. Palmar tilt.<br />

i. The term can be confusing because in malunion this<br />

<strong>of</strong>ten becomes dorsal tilt.<br />

ii. Perhaps better generalized to angulation <strong>of</strong> the articular<br />

surface on the lateral view.<br />

iii. Definition: the angle between a line connecting the<br />

dorsal and palmar lips <strong>of</strong> the distal radius articular<br />

surface on the lateral view and a line perpendicular to the<br />

radial shaft.<br />

b. Ulnar inclination.<br />

i. Often called radial inclination, but this is a misnomer<br />

since the articular surface tilts towards the ulnar. Perhaps<br />

best called ulnarward inclination for clarification.<br />

ii. Definition: the angle between a line connecting the<br />

ulnar limit and the radial limit <strong>of</strong> the distal radius<br />

articular surface on the posteroanterior view and a line<br />

perpendicular to the radial shaft.<br />

c. Measures <strong>of</strong> shortening<br />

i. Radial length<br />

1. Definition: the distance between two lines<br />

perpendicular to the radial shaft, one at the corner<br />

<strong>of</strong> the lunate facet the other at the tip <strong>of</strong> the radial<br />

styloid.<br />

2. Drawbacks: reflects loss <strong>of</strong> ulnarward inclination as<br />

well as axial shortening.<br />

ii. Ulnar variance<br />

1. Definition: the distance between two lines<br />

drawn perpendicular to the radial shaft on the<br />

posteroanterior view, one at the level <strong>of</strong> the most<br />

ulnar corner <strong>of</strong> the lunate facet and the other at the<br />

distal limit <strong>of</strong> the ulnar head.<br />

2. Positive ulnar variance means that the ulna is longer<br />

than the radius. Negative means the ulna is shorter.<br />

d. Sources <strong>of</strong> variability in radiographic measurements<br />

i. Variability in the radiographs<br />

ii. Imprecision in the measurement techniques<br />

iii. Selection <strong>of</strong> the points <strong>of</strong> reference<br />

1. Both a dorsal and a volar limit <strong>of</strong> the ulnarmost part<br />

<strong>of</strong> the lunate facet are visible onmost posteroanterior<br />

radiographs. There is no standard way to deal with<br />

this, but weusually select a point midway between the<br />

two.<br />

2. Similarly the choice <strong>of</strong> dorsal and volar lips <strong>of</strong> the<br />

articular surface on the lateral viewmay be different<br />

for the lunate and scaphoid facets.<br />

2. Correlation <strong>of</strong> radiographs with complaints.<br />

a. Ulnar sided wrist pain can improve for a year or more after<br />

fracture <strong>of</strong> the distal radius and patience is warranted.<br />

b. Lack <strong>of</strong> forearm rotation may be related to capsular<br />

contracture or bony malalignment.<br />

c. Pain can be multifactorial and difficult to relate directly to<br />

malalignment.<br />

Diagnosis – Patient History<br />

1. Need to focus the complaints into a goal and determine if that<br />

goal can be achieved.<br />

2. For instance, better flexion or better supination.<br />

3. Pain relief is an achievable goal only when consistent with an<br />

objective, correctable anatomical deformity.<br />

Diagnosis – Physical Examination<br />

1. Motion<br />

a. Wrist flexion and extension, ulnar and radial deviation<br />

250<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

b. Forearm rotation—supination and pronation.<br />

2. Ulnocarpal compression<br />

3. Stability<br />

a. DRUJ instability<br />

b. Scaphoid shift test<br />

c. Midcarpal shuck test<br />

4. Grip strength. Compare to opposite side<br />

Diagnosis - Imaging<br />

1. Standard radiographs: Posteroanterior and lateral views <strong>of</strong> the<br />

wrist.<br />

2. Specific radiographs for joint surface. (2, 16)<br />

a. Lateral radiograph with forearm tilted 20 degrees towards<br />

the collector provides tangential view <strong>of</strong> articular surface.<br />

b. Posteroanterior view with forearm tilted 10 degrees towards<br />

the collector provides tangential view <strong>of</strong> the articular surface.<br />

3. Computed tomography<br />

4. Three-dimensional computed tomography—particularly useful<br />

for articular malunion<br />

Diagnosis – Other Tests<br />

1. Neurophysiological testing (nerve conduction velocity and<br />

electromyography) for any symptoms or signs <strong>of</strong> carpaltunnel<br />

syndrome that may need to be addressed.<br />

Diagnosis – Differential Diagnosis<br />

1. Stiffness--Capsular stiffness/ tendon adhesions<br />

2. Numbness--Idiopathic carpal tunnel syndrome<br />

3. Pain--Another discrete source <strong>of</strong> pain or even idiopathic pain<br />

Management – Treatment Options<br />

1. Exercises.<br />

a. Active assisted exercises to improve motion<br />

b. Static or dynamic splinting for wrist flexion-extension or<br />

forearm rotation<br />

c. Strengthening<br />

2. Capsular release/implant removal<br />

a. Distal radioulnar joint capsular release for loss <strong>of</strong><br />

supination( 14)<br />

b. Dorsal or arthroscopic capsular release<br />

c. Implant removal and tenolysis/capsulolysis<br />

3. Distal radius osteotomy: correction <strong>of</strong> radial alignment.<br />

4. Ulnar osteotomy: improvement <strong>of</strong> wrist alignment by<br />

shortening the uninjured bone.(27, 36)<br />

5. Darrach or Sauve-Kapandji: Salvage for distal radioulnar joint<br />

arthritis or instability. (3, 6)<br />

6. Partial or total wrist arthrodesis for arthrosis/articular injury.(6)<br />

Management - Considerations<br />

1. Enthusiasm for distal radius osteotomy is increased by:<br />

a. Confidence that osteotomy will achieve the patient’s goals<br />

b. Good patient understanding and compliance<br />

c. A balance <strong>of</strong> the risks and benefits <strong>of</strong> intervention in favor <strong>of</strong><br />

the potential benefits<br />

Management – Indications for Surgical Repair<br />

1. Symptomatic ulnocarpal impaction syndrome<br />

2. Dysfunction <strong>of</strong> the distal radioulnar joint (limited forearm<br />

motion, instability, arthrosis)<br />

3. Weak grip or dysfunction from extra-articular deformity<br />

4. Articular incongruity<br />

Management – Contraindications for Surgical Repair<br />

1. Infirm patient<br />

2. Unrealistic expectations/poor understanding/unclear<br />

indications. This is an elective surgery. When in doubt, it<br />

isalways better to do nothing.<br />

3. Infection


4. Very poor hand function (e.g. chronic regional pain syndrome,<br />

Volkman’s)<br />

Management - Complications<br />

1. Nonunion<br />

2. Loss <strong>of</strong> alignment<br />

3. Loss <strong>of</strong> fixation<br />

4. Infection<br />

5. Wound problems<br />

6. Nerve injury<br />

Surgeries<br />

1. Radius osteotomy<br />

a. Dorsal osteotomy (4, 5, 12, 31)<br />

b. Volar osteotomy (11, 20, 29, 33)<br />

c. Radial osteotomy (7)<br />

d. Intra-articular osetotomy (21, 30, 34)<br />

e. Bone graft options:<br />

i. Corticocancellous (31)<br />

ii. Cancellous (31)<br />

iii. Bone graft substitutes (18, 37)<br />

2. Resection <strong>of</strong> the distal ulna<br />

a. Darrach<br />

b. Bower’s/hemiresection<br />

3. Arthrodesis <strong>of</strong> the distal radioulnar joint: Sauve-Kapandji<br />

4. Partial wrist arthrodesis<br />

5. Total wrist arthrodesis<br />

PREFERRED TECHNIQUE: Volar Extra-Articular Distal Radius<br />

Osteotomy for a Dorsally Angulated MalunionInstrumentation/<br />

Setup<br />

1. Tourniquet<br />

2. Image intensifier<br />

3. Kirschner wires<br />

4. Plates and screws<br />

Indications<br />

1. Dorsally displaced, extra-articular fracture<br />

2. Functional deficit clearly related to deformity<br />

3. or, deformity likely to lead to function deficit<br />

Contraindications<br />

1. Medical risks<br />

2. Unrealistic expectations/poor understanding/unclear<br />

indications—elective surgery, always better to do nothing<br />

3. Infection<br />

4. Very poor hand. (e.g. s/p RSD or Volkman’s)<br />

Principles<br />

1. Plan the procedure on radiographs.<br />

2. Execute a dorsal exposure that will minimize the potential for<br />

tendon irritation.<br />

3. Create the osteotomy at the original fracture site when possible.<br />

4. Use cancellous bone graft and angular stable (locked plates).<br />

5. Encourage active functional use and exercises immediately after<br />

the surgery.<br />

Pearls<br />

1. Making a detailed pre-operative plan will improve the efficiency<br />

and efficacy <strong>of</strong> the procedure.<br />

2. Using an extended FCR exposure(24-26) (which takes you<br />

dorsal through a volar exposure) allows release <strong>of</strong> thedorsal<br />

periosteum and z-lengthening <strong>of</strong> the brachioradialis, both <strong>of</strong><br />

which facilitate realignment <strong>of</strong> the radius.<br />

3. The use <strong>of</strong> locked plates and cancellous (non-structural) bone<br />

graft allows the use <strong>of</strong> nonstructural graft.<br />

Pitfalls<br />

1. The reduction can be difficult—even impossible—without the<br />

251<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

releases provided by the extended FCR exposure.<br />

2. Manipulation <strong>of</strong> the distal fragment can be much more difficult<br />

with poor-quality bone. The use <strong>of</strong> one or two distractors in<br />

addition to a lamina spreader are useful for decreasing the<br />

overall force needed<br />

and distributing that force to avoid additional injury to the<br />

bone and loss <strong>of</strong> provisional fixation or alignment.<br />

3. Flexor pollicis longus irritation or rupture. Flexor digitorum<br />

pr<strong>of</strong>undus and be irritated with a prominent plate or screw on<br />

the lunate side.<br />

4. Extensor tendon irritation or rupture from an excessively long<br />

screw.<br />

Rehabilitation<br />

1. Active and active-assisted exercise <strong>of</strong> the fingers and forearm is<br />

encouraged immediately.<br />

2. Finger exercises to reduce swelling and active functional use <strong>of</strong><br />

the limb for light tasks are also encouragedimmediately.<br />

3. The initial plaster splint is exchanged for a plastic removable<br />

splint two weeks after the surgery.<br />

4. The patient gradually weans out <strong>of</strong> the splint between 4 and 6<br />

weeks after surgery and initiates active and active assisted wrist<br />

exercises.<br />

5. Strengthening and forceful use <strong>of</strong> the arm are restricted until<br />

early radiographic union is apparent.<br />

6. Unrestricted use <strong>of</strong> the limb is allowed when solid union is<br />

present.<br />

Outcome<br />

1. Several small papers have established the safety and efficacy <strong>of</strong><br />

volar osteotomy for a dorsally displaced fracture.(11, 20, 29, 33)<br />

Surgical Procedure<br />

1. Plan the desired angular, rotational, and length corrections<br />

based upon pre-operative radiological studies, includingan x-ray<br />

<strong>of</strong> the opposite wrist if uninjured.<br />

2. Exanguinate arm and elevate tourniquet.<br />

3. A volar-radial, flexor carpal radialis (FCR), Henry exposure (10)<br />

is best for extra-articular volar osteotomies.<br />

4. A Longitudinal incision is made over the FCR tendon. The<br />

incision should cross the wrist flexion creases obliquelyif it<br />

crosses them.<br />

5. It is safest to use the FCR tendon sheath to access the deepest<br />

structures, leaving the radial artery undissectedand protected in<br />

the radial s<strong>of</strong>t-tissues.<br />

6. Once the floor <strong>of</strong> the FCR tendon sheath is incised, the fat<br />

overlying the pronator quadratus can be sweptulnarward with a<br />

blunt elevator.<br />

7. The most distal aspect <strong>of</strong> the origin <strong>of</strong> the flexor pollicis longus<br />

is elevated (taking care to cauterize a consistent artery in this<br />

region) and the FPL is swept ulnarward and retracted with a<br />

small Hohman retractor placed around theulnar border <strong>of</strong> the<br />

radius.<br />

8. The radial border <strong>of</strong> the radius is exposed using a blunt elevator<br />

and Hohman retractors.<br />

9. The prontator quadratus is incised on its most radial and distal<br />

limits (L-shaped incision) and elevatedsubperiosteally. Leaving<br />

the periosteum with the muscle can facilitate later repair.<br />

10. If the fracture is not yet completely healed (the so-called nascent<br />

malunion—usually within 4 months <strong>of</strong> injury), theoriginal<br />

fracture line can be recreated by carefully removing fracture<br />

callus and recreating the fracture site. This calluscan be saved<br />

and used as bone graft.<br />

11. If the fracture is solidly healed an attempt can be made to<br />

identify the prior fracture site. If this is uncertain, thesurgeon<br />

can choose a site that creates a big enough distal fragment to


facilitate manipulation and internal fixationwhile trying to<br />

stay distal enough to take advantage <strong>of</strong> the healing capacity <strong>of</strong><br />

metaphyseal bone.<br />

12.An extended FCR exposure is useful for the majority <strong>of</strong> dorsal<br />

malunions treated through a volar approach. Thebrachioradialis<br />

is z-lengthened. The periosteum is elevated from the radial shaft<br />

proximally. After osteotomy theproximal shaft is pronated out<br />

<strong>of</strong> the wound providing access to the dorsal periosteum, which<br />

can be isolated anddivided. The s<strong>of</strong>t tissue releases facilitate<br />

fracture realignment.<br />

References<br />

1. Agee JM. External fixation: technical advances based upon multiplanar<br />

ligamentotaxis. Orthop Clin N Am1993;24:265-274.<br />

2. Boyer MI, Korcek KJ, Gelberman RH, Gilula LA, Ditsios K, Evan<strong>of</strong>f BA.<br />

Anatomic tilt x-rays <strong>of</strong> the distal radius: an ex vivo analysis <strong>of</strong> surgical<br />

fixation. J Hand Surg [Am] 2004;29(1):116-22.<br />

3. Carter PB, Stuart PR. The Sauve-Kapandji procedure for post-traumatic<br />

disorders <strong>of</strong> the distal radio-ulnar joint. JBone Joint Surg Br 2000;82:1013-8.<br />

4. Fernandez DL. Correction <strong>of</strong> posttraumatic wrist deformity in adults<br />

by osteotomy, bone grafting and internalfixation. J Bone Joint Surg<br />

1982;64A:1164-1178.<br />

5. Fernandez DL. Radial osteotomy and Bowers arthroplasty for malunited<br />

fractures <strong>of</strong> the distal end <strong>of</strong> the radius. JBone Joint Surg 1988;70A:1538-<br />

1551.<br />

6. Fernandez DL. Reconstructive procedures for malunion and traumatic<br />

arthritis. Orthop Clin North Am. 1993;24:341-63.<br />

7. Fernandez DL, Capo JT, Gonzalez E. Corrective osteotomy for symptomatic<br />

increased ulnar tilt <strong>of</strong> the distal end <strong>of</strong>the radius. J Hand Surg [Am]<br />

2001;26A:722-32.<br />

8. Fernandez DL, Ring D, Jupiter JB. Surgical management <strong>of</strong> delayed union<br />

and nonunion <strong>of</strong> distal radius fractures.J Hand Surg 2001;26A:201-209.<br />

9. Finsen V, Aasheim T. Initial experience with the Forte plate for dorsally<br />

displaced distal radius fractures. Injury2000;31:445-448.<br />

10. Henry AK. Extensile exposure. 2 ed. Edinburgh: Churchill Livingstone; 1973.<br />

11. Henry M. Immediate mobilisation following corrective osteotomy <strong>of</strong> distal<br />

radius malunions with cancellous graftand volar fixed angle plates. J Hand<br />

Surg [Br] 2006.<br />

12. Jupiter JB, Ring D. A comparison <strong>of</strong> early and late reconstruction <strong>of</strong> the distal<br />

end <strong>of</strong> the radius. J Bone Joint Surg 1996;78A:739-748.<br />

13. Jupiter JB, Ring D, Weitzel PP. Surgical treatment <strong>of</strong> redisplaced fractures <strong>of</strong><br />

the distal radius in patients olderthan 60 years. J Hand Surg 2002;27A:714-<br />

23.<br />

14. Kleinman WB, Graham TJ. The distal radioulnar joint capsule: clinical<br />

anatomy and role in posttraumatic limitation <strong>of</strong> forearm rotation. J Hand<br />

Surg [Am] 1998;23(4):588-99.<br />

15. Knirk JL, Jupiter JB. Intraarticular fractures <strong>of</strong> the distal end <strong>of</strong> the radius in<br />

young adults. J Bone Joint Surg1986;68A:647-659.<br />

16. Kumar D, Breakwell L, Deshmukh SC, Singh BK. Tangential views <strong>of</strong> the<br />

articular surface <strong>of</strong> the distal radius-aid to open reduction and internal<br />

fixation <strong>of</strong> fractures. Injury2001;32(10):783-6.<br />

17. LaFontaine M, Hardy D, Delince PH. Stability assessment <strong>of</strong> distal radius<br />

fractures. Injury 1989;20:208-210.<br />

18. Luchetti R. Corrective osteotomy <strong>of</strong> malunited distal radius fractures using<br />

carbonated hydroxyapatite as analternative to autogenous bone grafting. J<br />

Hand Surg [Am] 2004;29(5):825-34.<br />

19. Mackenney PJ, McQueen MM, Elton R. Prediction <strong>of</strong> instability in distal<br />

radial fractures. J Bone Joint Surg Am2006;88(9):1944-51.<br />

20. Malone KJ, Magnell TD, Freeman DC, Boyer MI, Placzek JD. Surgical<br />

correction <strong>of</strong> dorsally angulated distalradius malunions with fixed angle<br />

volar plating: a case series. J Hand Surg [Am] 2006;31(3):366-72.<br />

252<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia HANd & WRiST<br />

13.A fixed angle volar implant is applied. Provisional Kirschner<br />

wires are applied either through or adjacent to theplate.<br />

14. After final plate fixation and removal <strong>of</strong> provisional fixation,<br />

cancellous graft is applied to the osteotomy site.<br />

15.The tourniquet is deflated and hemostasis ensured.<br />

16.The pronator quadratus is repaired if possible. It can be sutured<br />

to the brachioradialis tendon.<br />

17. The skin is closed.<br />

18.A bulky dressing incorporating a volar plaster wrist splint is<br />

applied.<br />

21. Marx RG, Axelrod TS. Intraarticular osteotomy <strong>of</strong> distal radial malunions.<br />

Clin Orthop Relat Res 1996(327):152-7.<br />

22. McQueen MM. Redisplaced unstable fractures <strong>of</strong> the distal radius: a<br />

randomized, prospective study <strong>of</strong> bridgingversus non-bridging external<br />

fixation. J Bone Joint Surg 1998;80B:665-669.<br />

23. McQueen MM, MacLaren A, Chalmers J. The value <strong>of</strong> remanipulating Colles’<br />

fractures. J Bone Joint Surg1986;68B:2332-233.<br />

24. Orbay JL, Badia A, Indriago IR, Infante A, Khouri RK, Gonzalez E, et al. The<br />

extended flexor carpi radialisapproach: a new perspective for the distal radius<br />

fracture. Tech Hand Up Extrem Surg 2001;5(4):204-11.<br />

25. Orbay JL, Fernandez DL. Volar fixation for dorsally displaced fractures <strong>of</strong> the<br />

distal radius: a preliminary report. J Hand Surg 2002;27:205-215.<br />

26. Orbay JL, Indriago I, Badia A, Khouri RK, Gonzalez E, Fernandez DL.<br />

Corrective osteotomy <strong>of</strong> dorsally maiunited fractures <strong>of</strong> the distal radius via<br />

the extended FCR approach. J Hand Surg [Am] 2003;28A(Suppl 1):2.<br />

27. Oskam J, Kingma J, Klasen HJ. Ulnar-shortening osteotomy after fracture <strong>of</strong><br />

the distal radius. Arch Orthop Trauma Surg 1993;112(4):198-200.<br />

28. Prommersberger KJ, Froehner SC, Schmitt RR, Lanz UB. Rotational deformity<br />

in malunited fractures <strong>of</strong> the distalradius. J Hand Surg [Am] 2004;29(1):110-<br />

5.<br />

29. Prommersberger KJ, Ring D, Del Pino JG, Capomassi M, Slullitel M, Jupiter<br />

JB. Corrective osteotomy for intra-articular malunion <strong>of</strong> the distal part <strong>of</strong> the<br />

radius. Surgical technique. J Bone Joint Surg Am 2006;88 Suppl 1Pt 2:202-11.<br />

30. Ring D, Prommersberger KJ, Gonzalez del Pino J, Capomassi M, Slullitel M,<br />

Jupiter JB. Corrective osteotomy for intra-articular malunion <strong>of</strong> the distal<br />

part <strong>of</strong> the radius. J Bone Joint Surg Am 2005;87(7):1503-9.<br />

31. Ring D, Roberge C, Morgan T, Jupiter JB. Comparison <strong>of</strong> structural and nonstructural<br />

bone graft for correctiveosteotomy <strong>of</strong> distal radius malunion. J<br />

Hand Surg 2002;27A:216-222.<br />

32. Seitz WH, Froimson AI, Leb R, Shapiro JD. Augmented external fixation <strong>of</strong><br />

unstable distal radius fractures. J Hand Surg 1991;16A:1010-1016.<br />

33. Shea K, DL DLF, Jupiter JB, Martin C. Corrective osteotomy for malunited,<br />

volarly displaced fractures <strong>of</strong> the distalend <strong>of</strong> the radius. J Bone Joint Surg<br />

Am 1997;79A:1816-26.<br />

34. Thivaios GC, McKee MD. Sliding osteotomy for deformity correction<br />

following malunion <strong>of</strong> volarly displaced distalradial fractures. J Orthop<br />

Trauma 2003;17(5):326-33.<br />

35. Trumble TE, Wagner W, Hanel DP, Vedder NB, Gilbert M. Intrafocal<br />

(Kapandji) pinning <strong>of</strong> distal radius fractureswith and without external<br />

fixation. J Hand Surg 1998;23:381-394.<br />

36. Wada T, Isogai S, Kanaya K, Tsukahara T, Yamashita T. Simultaneous radial<br />

closing wedge and ulnar shorteningosteotomies for distal radius malunion. J<br />

Hand Surg [Am] 2004;29(2):264-72.<br />

37. Yasuda M, Masada K, Iwakiri K, Takeuchi E. Early corrective osteotomy for a<br />

malunited Colles’ fracture usingvolar approach and calcium phosphate bone<br />

cement: a case report. J Hand Surg [Am] 2004;29(6):1139-42.<br />

38. Young BT, Rayan GM. Outcome following nonoperative treatment <strong>of</strong><br />

displaced distal radius fractures in low-demand patients older than 60 years.<br />

J Hand Surg 2000;25A:19-28.


253<br />

u adult CoNSequeNCeS oF pediatriC<br />

orthopediC CoNditioNS (r)<br />

Moderator: Martin J. Herman, MD, Philadelphia, PA<br />

This symposium provides management strategies for the adult consequences <strong>of</strong> pediatric orthopedic conditions. DDH, SCFE,<br />

scoliosis, spondylolisthesis and extremity trauma and deformity will be included.<br />

I. Introduction<br />

Martin J. Herman, MD, Philadelphia, PA<br />

A. Course Format<br />

1. Literature-derived information<br />

2. Expert opinion<br />

3. Q and A (20 minutes total)<br />

B. Primary Objectives<br />

1. Learn modern pediatric orthopedic care <strong>of</strong> common<br />

disorders and the expected outcomes <strong>of</strong> treatment.<br />

2. Understand best methods <strong>of</strong> patient evaluation for common<br />

adult consequences <strong>of</strong> these disorders.<br />

C. Lecture format overview<br />

1. Review <strong>of</strong> pediatric treatment for specified condition<br />

2. Adult consequences <strong>of</strong> the condition(s)<br />

3. Patient evaluation and treatment<br />

a. Literature-based<br />

b. Expert opinion<br />

II. Hip Disorders<br />

James J. McCarthy, MD, Cincinatti, OH<br />

A. FAI/SCFE/LCPD<br />

1. Consequences<br />

a. Labral injury, premature cartilage wear<br />

b. DJD<br />

2. Treatment<br />

a. Arthroscopy vs Surgical hip dislocation<br />

b. THA<br />

B. DDH<br />

1. Consequences<br />

a. Subluxation (pre-DJD)<br />

b. DJD-THA<br />

2. Treatment<br />

a. PAO and other osteotomies<br />

b. THA<br />

III. Spine Disorders<br />

Todd J. Albert, MD, Philadelphia, PA<br />

A. Idiopathic Scoliosis<br />

1. Consequences<br />

a. Progressive deformity<br />

b. Complications after fusion<br />

2. Surgical indications and options<br />

B. Isthmic Spondylolisthesis<br />

1. Consequences<br />

a. Progressive slippage/pain in untreated cases<br />

b. Pain in treated cases<br />

2. Surgical indications and options<br />

IV. Knee disorders<br />

Mininder S. Kocher, MD, Boston, MA<br />

A. Mensical pathology including prior menisectomy, discoid<br />

meniscus<br />

1. Consequences<br />

a. Pain, repeat tear<br />

b. DJD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

2. Treatment<br />

a. Arthroscopic techniques including meniscal<br />

reconstruction<br />

b. Arthroplasty options<br />

B. ACL injuries<br />

1. Consequences<br />

a. Instability<br />

b. DJD<br />

2. Treatment<br />

a. Non-surgical<br />

b. Surgical indications and options<br />

C. OCD lesions<br />

1. Consequences<br />

a. Pain, loss <strong>of</strong> ROM<br />

b. DJD<br />

2. Treatment options<br />

a. Arthroscopic treatments<br />

b. TKA<br />

V. Lower extremity deformity<br />

Martin J. Herman, MD, Philadelphia, PA<br />

A. Blount disease/genu varum<br />

1. Consequences<br />

a. Knee instability/pain<br />

b. Knee DJD<br />

2. Treatment<br />

a. Non-surgical<br />

b. Osteotomies<br />

c. TKA<br />

B. Leg-length discrepancy<br />

1. Consequences<br />

a. Gait disturbance<br />

b. Pain spine/hip/knee<br />

2. Treatment<br />

a. Shoe lift<br />

b. Limb lengthening/shortening surgery<br />

VI. Upper extremity deformity/trauma<br />

Scott H. Kozin, MD, Philadelphia, PA<br />

A. Cubitus varus from supracondylar fracture<br />

1. Consequences<br />

a. Cosmetic deformity<br />

b. Elbow instability<br />

2. Treatment<br />

a. Patient evaluation/indications for treatment<br />

b. Osteotomies<br />

B. Nonunion lateral condyle fracture<br />

1. Consequences<br />

a. Cubitus valgus/instability<br />

b. Tardy ulnar nerve palsy<br />

2. Treatment<br />

a. Nonunion repair<br />

b. Osteotomies/nerve transposition<br />

C. Outcomes <strong>of</strong> congenital anomalies


A. Impingement<br />

Abnormal anatomy can result in altered biomechanics,<br />

subsequent hip pain and potentially osteoarthrosis <strong>of</strong> the hip.<br />

It has been well established that inadequate bony constraint will<br />

lead to increased stress about the hip, premature hip pain and<br />

arthrosis. It is now becoming recognized that too much coverage<br />

or abnormally directed coverage, as well as inadequate femoral<br />

<strong>of</strong>fset, can lead to hip disorders, and potentially osteoarthrosis,<br />

as well. There are numerous pediatric etiologies for femoral<br />

acetabular impingement syndromes (FAI) about the hip, or this<br />

can be idiopathic.<br />

1. Review <strong>of</strong> Pediatric Treatment for Impingement<br />

a. Etiology<br />

i. FAI-Idiopathic<br />

Can occur as femoral (Cam - type), acetabular<br />

(Pincer-type) or a combination <strong>of</strong> both.<br />

ii. Slipped capital femoral epiphysis (SCFE)<br />

Primarily femoral, but differs from idiopathic FAI<br />

in that the head is reoriented, and therefore the<br />

normal articular cartilage is redirected posteriorly.<br />

iii. Legg-Calve-Perthes<br />

Variable in location and structure, is considered<br />

to be primarily femoral but may have acetabular<br />

changes secondary to remodeling or surgical<br />

intervention. Cartilage changes always occur but<br />

may go unrecognized.<br />

b. Treatment (Childhood)<br />

i. FAI<br />

The indications for treatment are evolving, but<br />

symptomatic idiopathic FAI in adolescents is<br />

becoming more commonly diagnosed and<br />

treated.<br />

ii. SCFE<br />

Treatment algorithms are changing, in an<br />

effort to decrease the complications. Capsular<br />

decompression and open treatments are being<br />

explored in an effort to decrease AVN. Open<br />

reductions (with an open surgical dislocation<br />

technique) are being performed in an effort to<br />

redirect the proximal femur early, before secondary<br />

degenerative changes occur.<br />

iii. Legg-Calve-Perthes (LCP)<br />

Decades <strong>of</strong> clinical research had not codified the<br />

pediatric treatment <strong>of</strong> LCP disease. Classically<br />

surgery is reserved for more involved children with<br />

a bone age <strong>of</strong> over 6 years. The procedure <strong>of</strong> choice<br />

varies by surgeon and institution.<br />

2. Adult Consequences<br />

The final common pathway for all <strong>of</strong> these conditions<br />

is hip osteoarthritis (OA). There are differences in how<br />

these disorders manifest which influences treatment and<br />

outcomes.<br />

a. FAI<br />

May lead to OA, but the impingement itself can cause<br />

pain, functional limitations and disability.<br />

b. SCFE<br />

A combination <strong>of</strong> mechanical issues, including<br />

reorientation <strong>of</strong> the thickest, weight bearing articular<br />

cartilage, impingement <strong>of</strong> the metaphyseal portion <strong>of</strong><br />

254<br />

hip diSorderS<br />

James McCarthy, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

the proximal femur and complications <strong>of</strong> treatment<br />

or the disease, especially avascular necrosis (AVN),<br />

will all play a role in the final clinical outcome.<br />

c. Legg-Calve-Perthes (LCP)<br />

Significant variations in the disease process and<br />

treatment will result in a large diversity <strong>of</strong> outcomes,<br />

but in general appear to be related to the size and<br />

shape <strong>of</strong> the femoral head and how well it conforms<br />

to the acetabulum (congruency). The effects on the<br />

articular cartilage may be from abnormal wear or as a<br />

direct consequence <strong>of</strong> the disease process.<br />

3. Patient Evaluation and Treatment<br />

a. Treatment: literature-based<br />

Treatment options vary and should be based on<br />

careful anatomic and clinical evaluation. Additional<br />

imaging can be helpful, including MR arthrograms<br />

and 3 dimensional CT reconstructions.<br />

i. Arthroscopy<br />

Well-suited for smaller, femoral based idiopathic FAI.<br />

ii. Mini-open<br />

iii. (Open) Surgical hip dislocation<br />

Larger case with more involved rehabilitation<br />

and the need for a trochanteric osteotomy. The<br />

incidence <strong>of</strong> AVN appears to be low and the<br />

technique allows for all aspects <strong>of</strong> FAI to be<br />

addressed and can be combined with other<br />

interventions.<br />

iv. Realignment<br />

May be considered for SCFE or LCP. Some cases <strong>of</strong><br />

significant acetabular retroversion are treated with<br />

a Periacetabular Osteotomy (PAO)<br />

iii. THA<br />

A final common pathway is end stage OA best<br />

treated with arthroplasty. Previous surgery may<br />

make this more difficult.<br />

b. Expert-opinion<br />

B. Developmental Dysplasia <strong>of</strong> the Hip (DDH)<br />

It has long been recognized that insufficient acetabular coverage<br />

will lead to osteoarthrosis (OA). It appears that measurements<br />

<strong>of</strong> subluxation are the most predictive <strong>of</strong> poor long term<br />

outcome. Other factures may play a role and FAI and hip<br />

dysplasia can co- exist. Femoral anteversion does not appear<br />

to be associated with OA. Treatment as a child may complicate<br />

future interventions, or, on rare occasion, supplement bone<br />

stock.<br />

1. Review <strong>of</strong> Pediatric Treatment for DDH<br />

DDH is a spectrum <strong>of</strong> disorders that varies from mild<br />

dysplasia to complete dislocation. Treatment depends<br />

on the age <strong>of</strong> diagnosis, degree <strong>of</strong> subluxation and<br />

bony deformity. The ultimate goal is to have a perfectly<br />

congruent (concentric) hip.<br />

a. Indicators <strong>of</strong> long -term outcome<br />

Measurements <strong>of</strong> hip subluxation and treatment<br />

-induced complications (AVN) appear to be the best<br />

predictors <strong>of</strong> long- term outcomes. A completely<br />

dislocated hip cannot develop OA but <strong>of</strong>ten results in<br />

pain.<br />

b. Consequences <strong>of</strong> treatment<br />

AVN, infection, and failed reduction may all lead to a


255<br />

poor long- term outcome. Acetabular remodeling can<br />

be variable and long- term follow- up is needed.<br />

2. Adult Consequences <strong>of</strong> the Condition<br />

a. Subluxation (pre-OA)<br />

Hip pain can occur in the absence <strong>of</strong> OA. This may<br />

be the result <strong>of</strong> instability, labral pathology, capsular<br />

stress or inflammatory changes.<br />

b. Osteoarthritis<br />

3. Patient Evaluation and Treatment<br />

a. Treatment: literature-based<br />

REFERENCES<br />

1. Abraham E, Gonzalez MH, Pratap S, Amirouche F, Atluri P, Simon P.<br />

Clinical implications <strong>of</strong> anatomical wear characteristics in slipped capital<br />

femoral epiphysis and primary osteoarthritis. J Pediatr Orthop. 2007 Oct-<br />

Nov;27(7):788-95.<br />

2. Boero S, Brunenghi GM, Carbone M, Stella G, Calevo MG. Pinning in<br />

slipped capital femoral epiphysis: long-term follow-up study. J Pediatr<br />

Orthop B. 2003 Nov;12(6):372-9.<br />

3. Carney BT, Weinstein SL, Noble J. Long-term follow-up <strong>of</strong> slipped capital<br />

femoral epiphysis. J Bone Joint Surg Am. 1991 Jun;73(5):667-74.<br />

4. Casaletto JA, Perry DC, Foster A, Bass A, Bruce CE. The height-to-width<br />

index for the assessment <strong>of</strong> femoral head deformity following osteonecrosis<br />

in the treatment <strong>of</strong> developmental dysplasia. J Bone Joint Surg Am. 2009<br />

Dec;91(12):2915-21.<br />

5. Chen RC, Schoenecker PL, Dobbs MB, Luhmann SJ, Szymanski DA, Gordon<br />

JE. Urgent reduction, fixation, and arthrotomy for unstable slipped capital<br />

femoral epiphysis. J Pediatr Orthop. 2009 Oct-Nov;29(7):687-94.<br />

6. Clohisy JC, Barrett SE, Gordon JE, Delgado ED, Schoenecker PL.<br />

Periacetabular osteotomy for the treatment <strong>of</strong> severe acetabular dysplasia. J<br />

Bone Joint Surg Am. 2005 Feb;87(2):254-9.<br />

7. Fraitzl CR, Käfer W, Nelitz M, Reichel H. Radiological evidence <strong>of</strong><br />

femoroacetabular impingement in mild slipped capital femoral epiphysis:<br />

a mean follow-up <strong>of</strong> 14.4 years after pinning in situ. J Bone Joint Surg Br.<br />

2007 Dec;89(12):1592-6.<br />

8. Ganz R, Parvizi J, Beck M, Leunig M, Nštzli H, Siebenrock KA<br />

Femoroacetabular impingement: a cause for osteoarthritis <strong>of</strong> the hip. Clin<br />

Orthop Relat Res. 2003 Dec;(417):112-20.<br />

9. Gent E, Clarke NM. Joint replacement for sequelae <strong>of</strong> childhood hip<br />

disorders. J Pediatr Orthop. 2004 Mar-Apr;24(2):235-40.<br />

10. Hägglund G, Hannson LI, Sandstršm S. Slipped capital femoral epiphysis in<br />

southern Sweden. Long-term results after nailing/pinning. Clin Orthop Relat<br />

Res. 1987 Apr;(217):190-200.<br />

11. Hasegawa Y, Iwata H. Natural history <strong>of</strong> unreduced congenital dislocation <strong>of</strong><br />

the hip in adults. Arch Orthop Trauma Surg. 2000;120(1-2):17-22.<br />

12. Herman MJ, Dormans JP, Davidson RS, Drummond DS, Gregg JR. Screw<br />

fixation <strong>of</strong> Grade III slipped capital femoral epiphysis. Clin Orthop Relat<br />

Res. 1996 Jan;(322):77-85.<br />

13. Kartenbender K, Cordier W, Katthagen BD. Long-term follow-up study after<br />

corrective ImhŠuser osteotomy for severe slipped capital femoral epiphysis. J<br />

Pediatr Orthop. 2000 Nov-Dec;20(6):749-56.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

i. PAO and other osteotomies<br />

Pelvic osteotomies can reorient the acetabulum<br />

and provide reasonable short- to medium<br />

-term results. Potentially, there may be benefit<br />

in providing greater bone stock for total hip<br />

arthroplasty (THA) if this procedure fails.<br />

ii. THA<br />

Surgery can be complicated and typically results<br />

are worse in this active patient population.<br />

b. Expert-opinion<br />

14. Kim HW, Morcuende JA, Dolan LA, Weinstein SL. Acetabular development<br />

in developmental dysplasia <strong>of</strong> the hip complicated by lateral growth<br />

disturbance <strong>of</strong> the capital femoral epiphysis. J Bone Joint Surg Am. 2000<br />

Dec;82-A(12):1692-700.<br />

15. Krych AJ, Howard JL, Trousdale RT, Cabanela ME, Berry DJ. Total hip<br />

arthroplasty with shortening subtrochanteric osteotomy in Crowe type-IV<br />

developmental dysplasia: surgical technique. J Bone Joint Surg Am. 2010<br />

Sep;92 Suppl 1 Pt 2:176-87.<br />

16. Leunig M, Horowitz K, Manner H, Ganz R. In situ pinning with arthroscopic<br />

osteoplasty for mild SCFE: a preliminary technical report. Clin Orthop Relat<br />

Res. 2010 Jun 8. [Epub ahead <strong>of</strong> print].<br />

17. Leunig M, BeaulŽ PE, Ganz R. The concept <strong>of</strong> femoroacetabular<br />

impingement: current status and future perspectives. Clin Orthop Relat Res.<br />

2009 Mar;467(3):616-22. Epub 2008 Dec 10. Review.<br />

18. Matheney T, Kim YJ, Zurakowski D, Matero C, Millis M. Intermediate to<br />

long-term results following the bernese periacetabular osteotomy and<br />

predictors <strong>of</strong> clinical outcome: surgical technique. J Bone Joint Surg 2009<br />

91A:2113-23.<br />

19. Mladenov K, Dora C, Wicart P, Seringe R. Natural history <strong>of</strong> hips with<br />

borderline acetabular index and acetabular dysplasia in infants. J Pediatr<br />

Orthop. 2002 Sep-Oct;22(5):607-12.<br />

20. Ohmori T, Endo H, Mitani S, Minagawa H, Tetsunaga T, Ozaki T.<br />

Radiographic prediction <strong>of</strong> the results <strong>of</strong> long-term treatment with the Pavlik<br />

harness for developmental dislocation <strong>of</strong> the hip. Acta Med Okayama. 2009<br />

Jun;63(3):123-8.<br />

21. Schultz WR, Weinstein JN, Weinstein SL, Smith BG. Prophylactic pinning<br />

<strong>of</strong> the contralateral hip in slipped capital femoral epiphysis : evaluation <strong>of</strong><br />

long-term outcome for the contralateral hip with use <strong>of</strong> ecision analysis. J<br />

Bone Joint Surg Am. 2002 Aug;84-A(8):1305-14.<br />

22. Sink EL, Zaltz I, Heare T, Dayton M. Acetabular cartilage and labral damage<br />

observed during surgical hip dislocation for stable slipped capital femoral<br />

epiphysis. J Pediatr Orthop. 2010 Jan-Feb;30(1):26-30.<br />

Spence G, Hocking R, Wedge JH, Roposch A. Effect <strong>of</strong> innominate and femoral<br />

varus derotation osteotomy on acetabular development in developmental<br />

dysplasia <strong>of</strong> the hip. J Bone Joint Surg Am. 2009 Nov; 91(11):2622-36.<br />

Weinstein SL. Natural history and treatment outcomes <strong>of</strong> childhood hip<br />

disorders. Clin Orthop Relat Res. 1997 Nov;(344):227-42. Review.<br />

Weinstein SL. Natural history <strong>of</strong> congenital hip dislocation (CDH) and hip<br />

dysplasia. Clin Orthop Relat Res. 1987 Dec;(225):62-76. Review.


256<br />

adult CoNSequeNCeS oF SColioSiS aNd SpoNdyloliStheSiS<br />

Todd J. Albert, MD<br />

I. “I had scoliosis as a kid, and now I’m an adult and I’m<br />

having problems”<br />

A. Presenting Symptoms<br />

a. Pulmonary Function Deterioration<br />

i. Generally occurs with larger thoracic curves (>80<br />

degrees) 1<br />

ii. Thoracic curves reaching 50 – 80 degrees at skeletal<br />

maturity tend to progress at a rate <strong>of</strong> about 1 degree/<br />

year 2<br />

iii. Also occurs with lumbar deformity leading to<br />

decompensations that causes abdominal contents<br />

to impinge on lungs thus leading to pulmonary<br />

dysfunction.<br />

b. Back Pain<br />

i. Most common symptom at long-term follow-up<br />

• Present in 40% <strong>of</strong> patients with AIS at age 401<br />

• Incidence does not correlate with magnitude,<br />

• More common in thoracolumbar curves (52%) 1<br />

ii. Most frequently from curve collapse, disk<br />

degeneration, facet degeneration, and/or sagittal<br />

imbalance.<br />

iii. Lumbar curves reaching 30 degrees at skeletal<br />

maturity tend to progress at 0.4 degrees/year2<br />

iv. Most common indication for surgical intervention<br />

(83%) 3<br />

c. Radiculopathy<br />

Rotatory subluxation, segmental collapse, and/or lateral<br />

listhesis in the lumbar spine <strong>of</strong>ten lead to exiting nerve<br />

impingement.<br />

B. Approach to Management<br />

a. Conservative Treatment Options<br />

i. Bracing, extensor/core strengthening (lumbar,<br />

thoracic), injections (epidurals, selective nerve root<br />

blocks).<br />

ii. Patients <strong>of</strong>ten have co-existent spinal stenosis and/or<br />

instability<br />

b. Surgical Indications<br />

i. Deformity progression, debilitating pain following<br />

nonoperative treatment, stenosis requiring<br />

decompression (which will then necessitate a fusion).<br />

ii. Patients are <strong>of</strong>ten elderly with multiple comorbid<br />

conditions. Thus, surgical risks may be significant and<br />

must be discussed.<br />

c. Surgical Options: A/P vs. Posterior-Only Fusion<br />

i. Posterior-only surgery is <strong>of</strong>ten successful in achieving<br />

global alignment correction.<br />

ii. Combined Anterior/Posterior surgery <strong>of</strong>ten required<br />

in the following situations:<br />

thoracic curves > 70 degrees,<br />

lumbar curves > 60 degrees,<br />

lumbar kyphosis > 30 degrees<br />

significant osteoporosis<br />

extension to the sacrum is anticipated<br />

iii. Side-bending radiographs are <strong>of</strong>ten helpful in<br />

determining segmental mobility.<br />

d. Principles <strong>of</strong> Deformity Correction<br />

i. Restoration <strong>of</strong> global coronal and sagittal balance<br />

must always take priority over “fixing” the curve.<br />

ii. A “corrected” curve with plumb line 10 cm anterior to<br />

the lumbosacral disc will do poorly5<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

iii. Caudal vertebra <strong>of</strong> the fusion construct must be<br />

flexible enough to be brought into neutral alignment<br />

and should not be in a kyphotic segment.<br />

C. Outcomes<br />

a. Ali et al., Spine 20035: 28 patients with AIS treated<br />

surgically as adults<br />

• 71% A/P, 29% posterior<br />

• Major preop and postop curve: 65 • 24 degrees<br />

• Relief <strong>of</strong> symptoms in 74%<br />

• 87% satisfied with results <strong>of</strong> surgery<br />

II. “I had an isthmic spondylolysis as a kid, and now I’m adult<br />

and my back hurts”<br />

A. Presenting Symptoms<br />

BACK PAIN<br />

i. It is <strong>of</strong>ten assumed that in adults presenting with<br />

spondylolysis and/or spondylolisthesis and back pain,<br />

the pain must be from the defect or the slip. This is<br />

likely not the case, since we know that the clinical<br />

course <strong>of</strong> children with such abnormalities follows<br />

that <strong>of</strong> the general population 6<br />

ii. Beutler et al., Spine 2003 6 : prospectively followed 30<br />

children with spondylolysis and spondylolisthesis for<br />

45 years<br />

• Patients with a bilateral L5 defect followed a<br />

clinical course similar to the general population<br />

• No correlation between slip progression and<br />

functional scores<br />

iii. Risk factors associated with the development <strong>of</strong><br />

back pain include slippage > 25%, a low lumbar<br />

index, L4 spondylolysis, and early radiographic disc<br />

degeneration 7<br />

B. Approach to Management<br />

a. Conservative Treatment Options<br />

i. The majority <strong>of</strong> adult patients with spondylolysis<br />

and/or spondylolisthesis are asymptomatic.<br />

ii. Should symptoms develop, these patients should<br />

be treated similar to any other patient presenting<br />

with low back pain. This generally included physical<br />

therapy, anti-inflammatories, and reassurance.<br />

iii. MRI is warranted after 4-6 <strong>of</strong> nonoperative treatment<br />

in order to identify neural compression, the<br />

status <strong>of</strong> the intervertebral discs, to rule out more<br />

ominous diagnoses. Discography may be helpful<br />

in determining and/or confirming the responsible<br />

segment(s) in suspected discogenic back pain.<br />

b. Surgical Indications<br />

i. Surgery is generally recommended only after at least<br />

6 weeks <strong>of</strong> nonoperative treatment modalities in<br />

patients that continue to have intolerable back pain<br />

and/or leg pain.<br />

ii. If surgery is to be considered for axial low back<br />

pain, it is imperative that patients understand that<br />

the reported outcomes <strong>of</strong> fusion vs. nonoperative<br />

treatment are mediocre at-best.<br />

iii. Of the 3 published randomized studies comparing<br />

fusion and nonoperative treatment8-10, the only<br />

study that has claimed superiority <strong>of</strong> surgery reported<br />

that only 63% <strong>of</strong> patients reported an improvement<br />

in back pain. 8


References<br />

257<br />

c. Surgical Options<br />

i. Direct pars repair is a popular treatment option for<br />

children, but is not indicated in adults.<br />

ii. Surgical options in the adult include<br />

• Posterolateral fusion (PLF)<br />

• Interbody fusion via ALIF, TLIF, or PLIF<br />

• Combined interbody and posterolateral fusion<br />

iii. PLF is technically easier than concomitant interbody<br />

fusion, but radiographic and clinical success rates<br />

associated with interbody techniques are higher11-16<br />

1. Weinstein SL, Zavala DC, Ponseti IV. Idiopathic scoliosis: long-term followup<br />

and prognosis in untreated patients. JBJS Am 1981 63(5):702-12.<br />

2. Weinstein S, Ponseti I: Curve progression in idiopathic scoliosis: Long-term<br />

follow-up. J Bone Joint Surg Am 1983;65(4):447-55.<br />

3. Ali RM, Boachie-Adjei O, Rawlins BA. Functional and radiographic outcomes<br />

after surgery for adult scoliosis using third-generation instrumentation<br />

techniques. Spine 2003;28:1169-70.<br />

4. Glassman SD, Bridwell K, Dimar JR et al. The impact <strong>of</strong> positive sagittal<br />

balance in adult spinal deformity. Spine 2005;30:2024-9.<br />

5. Ali RM, Boachie-Adjei O, Rawlins BA. Functional and radiographic outcomes<br />

after surgery for adult scoliosis using third-generation instrumentation<br />

techniques. Spine 2003;28:1169-70.<br />

6. Beutler WJ, Fredrickson BE, Murtland A, et al. The natural history <strong>of</strong><br />

spondylolysis and spondylolisthesis: 45-year follow-up evaluation. Spine<br />

2003 28(10):1027-35.<br />

7. Saraste H. Long-term clinical and radiological follow-up <strong>of</strong> spondylolysis<br />

and spondylolisthesis. J Pediatr Orthop 1987;7(6):631-8.<br />

8. Fritzell P, MD, Hagg O, MD, Wessberg P, et al. 2001 Volvo Award winner<br />

in clinical studies: lumbar fusion versus nonsurgical treatment for chronic<br />

low back pain. A multicenter randomized controlled trial from the Swedish<br />

Lumbar Spine Study Group. Spine 2001;26:2521-34.<br />

9. Brox JI, S¿rensen R, Friis A, et al. Randomized clinical trial <strong>of</strong> lumbar<br />

instrumented fusion and cognitive intervention and exercises in patients<br />

with chronic low back pain and disc degeneration. Spine 2003;28:1913-21.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

iv. Patients also requiring decompression tend to have<br />

inferior outcomes with PLF (vs. patients not requiring<br />

decompression), likely related to increased dynamic<br />

instability 17-18<br />

v. There are risks and benefits to every approach, and<br />

the specific procedure <strong>of</strong> choice should take into<br />

account the surgeon’s experience, thje availability and<br />

skill <strong>of</strong> an access surgeon (if an anterior approach is<br />

considered), as well as the patient’s own preferences.<br />

10. Fairbank J, Frost H, Wilson-MacDonald J, et al. Randomised controlled<br />

trial to compare surgical stabilisation <strong>of</strong> the lumbar spine with an intensive<br />

rehabilitation programme for patients with chronic low back pain: the MRC<br />

spine stabilisation trial. BMJ 2005;330:1233.<br />

11. Barrick WT, Sch<strong>of</strong>ferman JA, Reynolds JB, et al. Anterior lumbar fusion<br />

improves discogenic pain at levels <strong>of</strong> prior posterolateral fusion. Spine<br />

2000;25:853–7.<br />

12. L’Heureux EA Jr, Perra JH, Pinto MR, et al. Functional outcome analysis<br />

including preoperative and postoperative SF-36 for surgically treated adult<br />

isthmic spondylolisthesis. Spine 2003;28:1269–74.<br />

13. La Rosa G, Conti A, Cacciola F, et al. Pedicle screw fixation for isthmic<br />

spondylolisthesis: does posterior lumbar interbody fusion improve outcome<br />

over posterolateral fusion? J Neurosurg 2003;99:143–50.<br />

14. Johnsson R, Stromqvist B, Axelsson P, et al. Influence <strong>of</strong> spinal<br />

immobilization on consolidation <strong>of</strong> posterolateral lumbosacral fusion:<br />

a roentgen stereophotogrammetric and radiographic analysis. Spine<br />

1992;17:16–21.<br />

15. Lenke LG, Bridwell KH, Bullis D, et al. Results <strong>of</strong> in situ fusion for isthmic<br />

spondylolisthesis. J Spinal Disord 1992;5:433–42.<br />

16. Vaccaro AR, Ring D, Scuderi G, et al. Predictors <strong>of</strong> outcome in patients with<br />

chronic back pain and low-grade spondylolisthesis. Spine 1997;22:2030–4.<br />

17. Carragee EJ. Single-level posterolateral arthrodesis, with or without posterior<br />

decompression, for the treatment <strong>of</strong> isthmic spondylolisthesis in adults: a<br />

prospective, randomized study. J Bone Joint Surg Am 1997;79:1175–80.<br />

18. de Loubresse CG, Bon T, Deburge A, et al. Posterolateral fusion for radicular<br />

pain in isthmic spondylolisthesis. Clin Orthop 1996;323:194–201.


258<br />

oCd, meNiSCal iNJury aNd aCl tear oF the kNee<br />

I. Osteochondritis Dissecans (OCD)<br />

a. Introduction<br />

i. Acquired, potentially reversible idiopathic lesion<br />

<strong>of</strong> subchondral bone resulting in delamination<br />

and sequestration with or without article cartilage<br />

involvement and instability<br />

ii. Etiology remains controversial<br />

1. Inflammation<br />

2. Repetitive trauma<br />

3. Ischemia<br />

iii. Classification<br />

1. Anatomic location<br />

2. Scintigraphic findings<br />

3. Surgical appearance<br />

4. Chronological age<br />

5. Juvenile vs. Adult depending on physeal maturity<br />

iv. Prevalence<br />

1. 15-30 per 100,000 individuals<br />

2. Male to female ration 2-3:1<br />

3. Bilateral involvement 15-33%<br />

v. Location<br />

1. Posterolateral aspect <strong>of</strong> the medial femoral condyle –<br />

70%<br />

2. Other locations – 30%<br />

a. Lateral condyle<br />

b. Trochlea<br />

c. Patella<br />

b. Presentation<br />

i. Generalized knee pain<br />

ii. Stiffness<br />

iii. Catching<br />

iv. Intermittent swelling<br />

c. Treatment<br />

i. Early, stable lesions<br />

1. Activity restriction - minimum 3 months<br />

2. Protected weight bearing<br />

3. Bracing<br />

4. Physical therapy<br />

5. Anti-inflammatories<br />

ii. Unstable lesions<br />

1. Arthroscopy – drilling and/or fixation<br />

d. Evidence<br />

i. No randomized, controlled trials – surgery vs. nonsurgical<br />

interventions<br />

ii. European, multicenter review<br />

1. Predictors <strong>of</strong> healing<br />

a. Open physes<br />

b. Younger age<br />

c. Smaller sized lesions<br />

d. Optimal lesion location – MFC>PF>LFC<br />

e. Acute lesion<br />

iii. Cahill<br />

1. 50% juvenile lesions heal with non-operative<br />

intervention within 10-18 months if physis open and<br />

patient is compliant<br />

iv. Kocher<br />

1. Excellent functional and radiographic outcomes with<br />

drilling stable juvenile lesions with intact articular<br />

surface<br />

2. High healing rates and good outcomes with internal<br />

Mininder S. Kocher, MD, MPH<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

fixation <strong>of</strong> unstable lesions<br />

e. Adult sequelae<br />

i. Presentation<br />

1. Swelling<br />

2. Stiffness<br />

3. Mechanical symptoms<br />

4. Antalgic gait<br />

5. Joint line/ condylar tenderness<br />

6. Wilson’s sign – pain with internal rotation <strong>of</strong> the tibia<br />

between 90 and 30 degrees<br />

7. Effusion<br />

8. Crepitus with range <strong>of</strong> motion<br />

9. Quadriceps atrophy<br />

ii. Imaging<br />

1. Plain radiographs – characterize and localize the<br />

lesion<br />

2. Bone scan – assess blood flow and osteoblast activity<br />

3. MRI – Identify extent <strong>of</strong> bony edema, estimate lesion<br />

size, evaluate status <strong>of</strong> cartilage and underlying bone,<br />

identify high signal beneath fragment, identify loose<br />

bodies<br />

iii. Interventions<br />

1. Non-operative management rarely successful<br />

2. Early operative management is needed to maintain<br />

articular congruency and integrity <strong>of</strong> the joint<br />

a. Indications<br />

i. Detached or unstable lesions<br />

ii. Failure <strong>of</strong> non-operative management<br />

iii. “Open” lesion – dissection <strong>of</strong> synovial fluid into the<br />

lesion<br />

b. Goals<br />

i. Promote healing <strong>of</strong> the underlying subchondral bony<br />

sequestrum<br />

ii. Maintenance <strong>of</strong> joint congruity<br />

iii. Rigid fixation <strong>of</strong> unstable fragments<br />

iv. Repair <strong>of</strong> osteochondral defects<br />

c. Treatment options<br />

i. Arthroscopic drilling – less success in the adult<br />

population compared to juveniles<br />

ii. Autogenous bone grafting and fixation <strong>of</strong> bony defects<br />

iii. Abrasionplasty<br />

iv. Micr<strong>of</strong>racture<br />

v. Autologous chondrocyte implantation<br />

vi. Osteochondral auto- or allografts<br />

f. Author’s Preferred Management<br />

i. Skeletally immature patients<br />

1. Stable lesions<br />

a. 3 phase non-operative protocol<br />

i. 4-6 weeks knee immobilization with partial weight<br />

bearing<br />

ii. 4-6 weeks weight bearing as tolerated without knee<br />

immobilization<br />

iii. 4-6 weeks rehabilitation emphasizing range <strong>of</strong> motion<br />

and low impact quadriceps and hamstring strengthening<br />

2. Unstable lesions and stable lesions that failed nonoperative<br />

management<br />

a. Arthroscopic drilling and fixation when indicated<br />

II. Anterior Cruciate Ligament (ACL) Injury<br />

a. Introduction


i. Intrasubstance ACL injuries in children and adolescents<br />

are being diagnosed with increased frequency<br />

ii. ACL deficient knees predispose the patient to meniscal<br />

and chondral injuries and early degenerative arthritis<br />

iii. ACL injury reported in 10-65% <strong>of</strong> pediatric knees with<br />

acute traumatic hemarthroses<br />

iv. No definitive evidence that ACL reconstruction forestalls<br />

the progression <strong>of</strong> OA after initial injury<br />

v. Conventional surgical reconstruction risks potential<br />

iatrogenic growth disturbance due to physeal violation<br />

1. Fixation hardware across physis<br />

2. Bone plugs across physis<br />

3. Large (12 mm) tunnels<br />

4. Suturing near the tibial tubercle apophysis<br />

vi. Surgical options for skeletally immature patients<br />

1. Primary repair – poor results<br />

2. Extra-articular tenodesis – poor results<br />

3. Transphyseal reconstruction – good to excellent short<br />

term outcomes<br />

4. Partial transphyseal reconstruction<br />

5. Physeal sparing reconstruction<br />

b. Adult sequelae<br />

i. Presentation<br />

1. Instability / “giving way”<br />

2. Difficulty weight bearing<br />

3. Quad avoidance gait<br />

ii. Imaging<br />

1. Plain radiographs – rule out other abnormalities<br />

a. Segond fracture<br />

2. MRI – evaluate other internal derangements i.e.<br />

meniscal injuries, chondral defects<br />

iii. Interventions<br />

1. Non-operative management<br />

a. Elderly, sedentary individuals willing to avoid high risk<br />

activities<br />

b. Pre-existing advanced knee arthritis or joint sepsis<br />

c. Conservative therapy<br />

i. Bracing<br />

ii. Rehabilitation – quadriceps and hamstring strengthening<br />

and neuromuscular and proprioceptive training<br />

iii. Activity modification<br />

2. Surgical management<br />

a. Goal – restore the functional stability <strong>of</strong> the knee<br />

c. Expert Opinion<br />

i. Skeletally immature - determine bone age with hand/<br />

wrist radiographs<br />

ii. Avoid acute reconstructions during the first 3 weeks after<br />

injury to minimize risk <strong>of</strong> arthr<strong>of</strong>ibrosis<br />

iii. Prescribe pre-operative rehabilitation to regain ROM,<br />

minimize swelling, and maximize strength<br />

iv. Reconstruction technique is based on physiologic and<br />

skeletal age<br />

1. Prepubescent skeletally immature patient – physeal<br />

sparing combined intra/extra-articular reconstruction<br />

with iliotibial band<br />

2. Adolescent with growth remaining (open physes)<br />

– transphyseal reconstruction with hamstring and<br />

metaphyseal fixation<br />

3. Older adolescents with closed physes – adult ACL<br />

reconstruction with interference screw fixation <strong>of</strong><br />

either bone patellar tendon bone or hamstrings<br />

III. Meniscal Injury<br />

a. Introduction<br />

i. Reported incidence in skeletally immature patients<br />

259<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

increasing<br />

ii. Traumatic meniscal injuries in children under age 10<br />

typically occur in the setting <strong>of</strong> discoid menisci<br />

iii. Non-discoid meniscal injuries occur due to twisting<br />

injuries in older children and adolescents<br />

iv. 50% <strong>of</strong> meniscal tears in adolescents involve the<br />

periphery and therefore are more amenable to repair<br />

1. Repair favored over menisectomy to prevent any<br />

progression towards the onset <strong>of</strong> early arthritis<br />

b. Presentation<br />

i. Stanitski et al. – 47% <strong>of</strong> preadolescents (age 7-12) and<br />

45% <strong>of</strong> adolescents (age 13-18) with acute traumatic<br />

hemarthrosis have meniscal tears<br />

1. Medial meniscus more likely in both groups – 70%<br />

and 88% respectively<br />

2. Concurrent ACL tear in 36% <strong>of</strong> adolescent group<br />

ii. Snapping<br />

iii. Inability to fully extend the knee<br />

iv. Lateral knee pain<br />

c. Treatment options<br />

i. Resection<br />

ii. Repair<br />

iii. Allograft transplantation<br />

iv. Saucerization <strong>of</strong> discoid menisci<br />

d. Adult sequelae<br />

i. Presentation<br />

1. Pain<br />

2. Stiffness<br />

3. Locking<br />

4. Swelling<br />

5. Joint line tenderness<br />

a. Best clinical sign <strong>of</strong> a meniscal tear (Weinstabl et<br />

al)<br />

6. Positive McMurray, Steinman, or Apley Compression<br />

tests<br />

ii. Imaging<br />

1. Plain radiographs – need notch views to rule out<br />

other bony pathologies such as OCD and early<br />

degenerative changes as the source <strong>of</strong> knee pain<br />

2. MRI – 80-90% accuracy in detection <strong>of</strong> meniscal tears<br />

(Muellner et al)<br />

a. Child’s posterior horn <strong>of</strong> the medial meniscus has<br />

increased vascularity which can be misinterpreted<br />

as a tear<br />

iii. Interventions<br />

1. Non-operative<br />

a. Reserved for asymptomatic lesions with minimal<br />

effect on activities <strong>of</strong> daily living<br />

2. Surgical intervention<br />

a. Indications<br />

i. Mechanical symptoms<br />

ii. Persistent pain or effusion<br />

b. Options<br />

i. Partial menisectomy-general guidelines for<br />

arthroscopic resection (Metcalf et al)<br />

ii. Meniscal repair<br />

1. Utilized for any peripheral tear in the redred<br />

zone or amenable tears in the red-white<br />

zone<br />

2. Technique options<br />

a. Inside out – vertical mattress are the<br />

gold standard repair<br />

b. Outside in<br />

c. All inside – bioabsorable screws, darts,


260<br />

arrows, anchors<br />

iii. Meniscal allograft<br />

1. “Ideal” indications<br />

a. Near total or total menisectomy and<br />

joint line pain<br />

b. Early chondral changes<br />

c. Normal anatomic alignment<br />

d. Ligamentously stable knee<br />

2. Paucity <strong>of</strong> long term data<br />

e. Expert Opinion<br />

REFERENCES<br />

Osteochondritis Dissecans<br />

1. Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management <strong>of</strong> osteochondritis<br />

dissecans <strong>of</strong> the knee: current concepts review. Am J Sports Med. 2006<br />

Jul;34(7):1181-91.<br />

2. Hefti F, Beguiristain J, Krauspe R, et al. Osteochondritis dissecans: a<br />

multicenter study <strong>of</strong> the European Pediatric Orthopedic Society. J Pediatr<br />

Orthop B. 1999 Oct;8(4):231-45.<br />

3. Cahill BR. Osteochondritis Dissecans <strong>of</strong> the Knee: Treatment <strong>of</strong> Juvenile and<br />

Adult Forms. J Am Acad Orthop Surg. 1995 Jul;3(4):237-47.<br />

4. Kocher MS, Micheli LJ, Yaniv M, Zurakowki D, Ames A, Adrignolo AA.<br />

Functional and radiographic outcome <strong>of</strong> juvenile osteochondritis dissecans<br />

<strong>of</strong> the knee treated with transarticular arthroscopic drilling. Am J Sports Med.<br />

2001 Sep-Oct;29(5):562-6.<br />

5. Kocher MS, Czarnecki JJ, Anderson JS, Micheli LJ. Internal fixation <strong>of</strong> juvenile<br />

osteochondritis dissecans lesions <strong>of</strong> the knee. Am J Sports Med. 2007<br />

May;35(5):712-8.<br />

6. Crawford DC, Safran MR. Osteochondritis dissecans <strong>of</strong> the knee. J Am Acad<br />

Orthop Surg. 2006 Feb;14(2):90-100.<br />

7. Conrad JM, Stanitski CL. Osteochondritis dissecans: Wilson’s sign revisited.<br />

Am J Sports Med. 2003 Sep-Oct;31(5):777-8.<br />

ACL Injury<br />

8. Stanitski CL, Harvell JC, Fu F. Observations on acute knee hemarthrosis in<br />

children and adolescents. J Pediatr Orthop. 1993 Jul-Aug;13(4):506-10.<br />

9. Eiskjaer S, Larsen ST, Schmidt MB. The significance <strong>of</strong> hemarthrosis <strong>of</strong> the<br />

knee in children. Arch Orthop Trauma Surg. 1988;107(2):96-8.<br />

10. Aichroth PM, Patel DV, Zorilla P. The natural history and treatment <strong>of</strong><br />

rupture <strong>of</strong> the anterior cruciate ligament in children and adolescents. A<br />

prospective review. J Bone Joint Surg Br. 2002 Jan;84(1):38-41.<br />

11. Janarv PM, Nystrom A, Werner S, Hirsch G. Anterior cruciate ligament<br />

injuries in skeletally immature patients. J Pediatr Orthop. 1996 Sep-<br />

Oct;16)5):673-7.<br />

12. Aronowitz ER, Ganley TJ, Goode JR, Gregg JR, Meyer JS. Anterior cruciate<br />

ligament reconstruction in adolescents with open physes. Am J Sports Med.<br />

2000 Mar-Apr;28(2):168-75.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

i. Skeletally immature<br />

1. Provide every effort for meniscal repair prior to partial<br />

menisectomy<br />

2. Treat posterior horn tears with inside out repair<br />

3. Treat anterior horn lesions with either open or with<br />

outside in technique<br />

4. Consider allograft transplantation in the presence <strong>of</strong><br />

a near complete menisectomy with early degenerative<br />

changes and normal alignment and ligamentous<br />

stability<br />

13. Guzzanti V, Falciglia F, Stanitski CL. Preoperative evaluation and anterior<br />

cruciate ligament reconstruction technique for skeletally immature patients<br />

in Tanner stages 2 and 3. Am J Sports Med. 2003 Nov-Dec;31(6):941-8.<br />

14. Anderson AF. Transepiphyseal replacement <strong>of</strong> the anterior cruciate ligament<br />

in skeletally immature patients. A preliminary report. J Bone Joint Surg Am.<br />

2003 Jul;85-A(7):1255-63.<br />

15. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment<br />

<strong>of</strong> anterior cruciate ligament injuries, part I. Am J Sports Med. 2005<br />

Oct;33(10):1579-602.<br />

16. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE. Treatment<br />

<strong>of</strong> anterior cruciate ligament injuries, part 2. Am J Sports Med. 2005<br />

Nov;33(11):1751-67.<br />

Meniscal Injury<br />

17. Weinstabl R, Muellner T, Vecsei V, Kainberger F, Kramer M. Economic<br />

considerations for the diagnosis and therapy <strong>of</strong> meniscal lesions: can<br />

magnetic resonance imaging help reduce the expense? World J Surg. 1997<br />

May;21(4):363-8.<br />

18. Muellner T, Weinstabl R, Schabus R, Vecsei V, Kainberger F. The diagnosis <strong>of</strong><br />

meniscal tears in athletes. A comparison <strong>of</strong> clinical and magnetic resonance<br />

imaging investigations. Am J Sports Med. 1997 Jab-Feb;25(1):7-12.<br />

19. Metcalf RW, Burks RT, Metcalf MS, McGinty JB. Arthroscopic menisectomy.<br />

In: McGinty JB, Caspari RB, Jackson RW, Poehling GG, editor. Operative<br />

Arthroscopy. 2 ed. Philadelphia, PA: Lippincott-Raven; 1996. 263-97.<br />

20. Greis PE, Holmstrom MC, Bardana DD, Burks RT. Mensical injury: II.<br />

Management. J Am Acad Orthop Surg. 2002 May-Ju;10(3):177-87.<br />

21. Brown TD, T. DJ. Meniscal injury in the skeletally immature patient.<br />

In: Kocher MS, Micheli LJ, editor. The pediatric and adolescent knee.<br />

Philadelphia, PA: Elsevier; 2006. P. 236-59.<br />

22. Kramer DE, Micheli LJ. Meniscal tears and discoid meniscus in children:<br />

diagnosis and treatment. J Am Acad Orthop Surg. 2009 Nov;17(11):698-707.<br />

23. Lohmander LS, Englund PM, Dahl LL, Ross EM. The long term consequence<br />

<strong>of</strong> anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J<br />

Sports Med. 2007 Oct;35(10):1756-69.


261<br />

leg-leNgth diSCrepaNCy aNd blouNt’S diSeaSe<br />

Martin J. Herman, MD<br />

LEG-LENGTH DISCREPANCY (LLD)<br />

Significant LLD considered greater than 2 cm<br />

• More than half <strong>of</strong> population believed to have some inequality<br />

but only approximately 1/1000 in general population with LLD<br />

> 2 cm<br />

Treatment for children<br />

• < 2 cm requires no treatment<br />

• 2-6 cm treated with contralateral epiphyseodesis or shortening<br />

• > 6 cm treated with lengthening<br />

Ultimate goal <strong>of</strong> any treatment is limb equalization within 1 cm<br />

at skeletal maturity with the least surgery and complications<br />

• Gait deviations cause inefficient energy expenditure<br />

• The patient’s diagnosis and associated conditions may alter<br />

treatment algorithm; for example, a child with hemiplegia may<br />

benefit from a shorter weak leg<br />

Adult consequences <strong>of</strong> significant LLD<br />

Controversial, limited good data to judge long-term effects<br />

• Back Pain<br />

— Back pain is multifactorial and very common.<br />

— Studies exist to support or refute the notion that a significant<br />

LLD causes back pain.<br />

• Scoliosis<br />

— Patients with scoliosis secondary to a significant LLD<br />

typically develop scoliosis with pelvic obliquity and a<br />

lumbar curve with an apex toward the short-leg side.<br />

Standing x-rays with a lift determine curve flexibility.<br />

— Not all patients with LLD have this pattern, suggesting that<br />

some have idiopathic scoliosis and LLD.<br />

• Premature Osteoarthritis <strong>of</strong> the Hip<br />

— Premature OA <strong>of</strong> the lumbar spine, hip, and knee have been<br />

associated with significant LLD.<br />

— Biomechanical analysis shows increased forces across the<br />

hip <strong>of</strong> the long leg. Studies confirm that arthrosis <strong>of</strong> the hip<br />

occurs more commonly in the long leg’s hip compared to<br />

the short leg’s hip.<br />

• Assessment <strong>of</strong> adult with LLD<br />

— Determine chief complaint and the severity <strong>of</strong> pain or<br />

disability.<br />

— Perform complete clinical exam <strong>of</strong> spine and joints <strong>of</strong> lower<br />

limb.<br />

— Use blocks placed under short limb to determine LLD<br />

clinically by leveling pelvis.<br />

— Obtain radiographs <strong>of</strong> joints, scanogram <strong>of</strong> LEs.<br />

• Treatment options<br />

— Trial <strong>of</strong> shoe lift to determine if limb equalization improves<br />

symptoms.<br />

— Trail <strong>of</strong> medical options for OA.<br />

— Surgery is <strong>of</strong>fered for pain, disability from gait deviation<br />

– Limb equalization with shortening or lengthening is<br />

associated with relatively high morbidity and increased<br />

length <strong>of</strong> recovery.<br />

— THA with shortening or lengthening is useful for<br />

equalization for patients with both OA and significant LLD.<br />

— Thorough discussion <strong>of</strong> risks, benefits, and expectations is<br />

mandatory.<br />

BLOUNT’S DISEASE<br />

Proximal medial tibial growth disturbance resulting in varus<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

deformity <strong>of</strong> the lower limb.<br />

• Internal tibial torsion, posteromedial sloping <strong>of</strong> tibial plateau,<br />

varus angulation <strong>of</strong> the distal femur, LLD and lateral knee<br />

ligament laxity are other associated findings.<br />

Classification based on age <strong>of</strong> onset<br />

• Infantile (early-onset) forms are diagnosed after age 2 years<br />

when the disease can be easily distinguished from physiologic<br />

bowing.<br />

• Adolescent Blount’s (late-onset disease) presents in older<br />

child or young teen and is commonly seen in association with<br />

childhood obesity.<br />

Treatment for children and adolescents<br />

• Bracing<br />

— Infantile forms can be managed with long-leg bracing; there<br />

is no role for bracing in late-onset forms.<br />

• Guided-growth techniques<br />

— Infantile and mild adolescent forms may be managed<br />

by hemiepiphyseodesis <strong>of</strong> the lateral proximal tibia with<br />

removeable staples or plates for younger patients or<br />

percutaneous ablation for older children.<br />

• Osteotomy<br />

— Proximal tibia/fibula osteotomy and correction is used for<br />

severe deformities <strong>of</strong> all ages.<br />

— Acute correction with internal fixation or external fixation<br />

and gradual correction with external fixation are all viable<br />

options.<br />

Ultimate goals <strong>of</strong> treatment include restoration <strong>of</strong> a normal<br />

mechanical axis <strong>of</strong> the limb, equalize limb lengths, restore<br />

ligament balance about the knee and level the knee joint<br />

(plateau) relative to the floor.<br />

Adult consequences <strong>of</strong> Blount’s disease<br />

• Several studies <strong>of</strong> adults treated for Blount’s disease as children<br />

show some increase in knee arthrosis and medial meniscus<br />

pathology.<br />

• The association <strong>of</strong> subclinical (untreated) Blount’ s disease<br />

with premature knee OA that necessitates osteotomy or TKA is<br />

unclear.<br />

— Varus malalignment is a known factor in the development<br />

<strong>of</strong> premature OA. However, not all patients with knee varus<br />

develop knee OA (Framingham study).<br />

— Tibial fracture malunion and undiagnosed Blount’s disease<br />

are potential causes <strong>of</strong> varus.<br />

— The multifactorial nature <strong>of</strong> OA makes it impossible<br />

to implicate Blount’s disease, a relatively uncommon<br />

condition, as a major cause <strong>of</strong> knee OA.<br />

Assessment <strong>of</strong> adult with tibial varus or previous diagnosis <strong>of</strong><br />

Blount’s disease<br />

• Observe gait for rotational alignment and lateral knee thrust.<br />

• Assess ROM <strong>of</strong> hip, knee, ankle on affected side. Check knee<br />

ligament stability.<br />

• Scanogram <strong>of</strong> the LEs and standing radiographs <strong>of</strong> both<br />

limbs from hip to ankle permit limb alignment assessment.<br />

Radiographs <strong>of</strong> femur amd tibia allow assessment <strong>of</strong><br />

morphology.<br />

• Knee arthrography is useful to assess joint congruity and<br />

stability.<br />

• MRI permits through analysis <strong>of</strong> quality <strong>of</strong> articular cartilage.


Treatment options<br />

• Knee bracing that unloads medial knee joint or orthotics with<br />

lateral posting may provide some relief for knee pain<br />

• Tibial osteotomy is best for younger adult with mild knee<br />

arthrosis<br />

— Acute correction and internal fixation is best for < 20 degrees<br />

<strong>of</strong> deformity.<br />

REFERENCES<br />

1. Aguilar JA, Paley D, Paley J, et al; Clinical validation <strong>of</strong> the multiplier method<br />

for predicting limb length at maturity (parts I and II). J Pediatr Orthop<br />

25:186-196, 2005.<br />

2. Allen PE, Jenkinson A, Stephens MM, O’Brien T: Abnormalities in the<br />

uninvolved lower limb in children with spastic hemiplegia: the effect <strong>of</strong><br />

actual and functional leg-length discrepancy. J Pediatr Orthop 20:88-92,<br />

2000.<br />

3. Bhave A, Paley D, Herzenberg JE: Improvement in gait parameters after<br />

lengthening for the treatment <strong>of</strong> limb-length discrepancy. J Bone Joint Surg<br />

81A:529-534, 1999.<br />

4. Brand RA, Yack HJ: Effects <strong>of</strong> leg length discrepancies on the forces at the hip<br />

joint. Clin Orthop Relat Res. (333): 172-180,1996.<br />

5. Brouwer GM, van Tol AW, Bergink AP, et al: Association between valgus<br />

and varus alignment and the development and progression <strong>of</strong> radiographic<br />

osteoarthritis <strong>of</strong> the knee. Arthritis Rheum. 56(4):1204-11, 2007.<br />

6. Castaneda P, Urquhart B, Sullivan E, Haynes RJ: Hemiepiphysiodesis for the<br />

correction <strong>of</strong> angular deformity about the knee. J Pediatri Orthop 28(2):188-<br />

91, 2008.<br />

7. Chang A, Hayes K, Dunlop D, et al: Thrust during ambulation and the<br />

progression <strong>of</strong> knee osteoarthritis. Arthritis Rheum. 50(12):3897-903.<br />

8. Chapman ME, Duwelius PJ, Bray TJ, Gordon JE: Closed intramedullary<br />

femoral osteotomy. Shortening and derotation procedures. Clin Ortho<br />

287:245-251, 1993.<br />

9. Defrin R, Ben Benyamin S, Aldubi RD, Pick CG: Conservative correction <strong>of</strong><br />

leg-length discrepancies <strong>of</strong> 10mm or less for the relief <strong>of</strong> chronic low back<br />

pain. Arch Phys Med Rehabil. 86(11):2075-80.<br />

10. Golightly YM, Allen KD, Helmick CG, Renner JB, Jordan JM: Symptoms <strong>of</strong><br />

the knee and hip in individuals with and without limb length inequality.<br />

11. Golightly YM, Tate JJ, Burns CB, Gross MT: Changes in pain and disability<br />

secondary to shoe lift intervention in subjects with limb length inequality<br />

and chronic low back pain: a preliminary report. J Orthop Sports Phys. Ther.<br />

37(7):380-88.<br />

12. Gordon JE, Heidenreich FP, Comprehensive treatment <strong>of</strong> late-onset tibia<br />

vara. J Bone Joint Surg Am. 87(7):1561-70, 2005.<br />

13. Gross RH: Leg length discrepancy: how much is too much? Orthopedics<br />

1:307-310, 1978.<br />

14. Grundy PF, Roberts CJ: Does unequal leg-length cause back pain? A casecontrol<br />

study. Lancet. 4:2 (8397):256-58, 1984.<br />

15. Guichet JM, Spivak JM, Trouilloud P, Grammont PM: Lower limb-length<br />

discrepancy. An epidemiologic study. Clin Orthop 272:235-241, 1991.<br />

262<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

— Gradual correction with external fixation is best for greater<br />

varus or multi- plane deformity correction and lengthening.<br />

• TKA is indicated for severe OA. Some deformity correction<br />

can be achieved with properly planned bone cuts and<br />

implant selection. Staged correction <strong>of</strong> deformity followed by<br />

arthroplasty is necessary only for severe deformity.<br />

16. Hellsing AL: Leg-length inequality. A prospective study <strong>of</strong> young men during<br />

their military service. Ups J Med Sci. 93 (3):245-253, 1988.<br />

17. Hoikka V, Ylikoski M, Tallroth Karch Orthop Trauma Surg. Leg-length<br />

inequality has poor correlation with lumbar scoliosis. A radiological study <strong>of</strong><br />

100 patients with chronic low-back pain. 108(3):173-175, 1989.<br />

18. Hunter DJ, Niu J, Felson DT, Harvey WF, et al: Knee alignment does not<br />

predict incident osteoarthritis: the Framingham osteoarthritis study. Arthritis<br />

Rheum. 56(4):1212-8, 2007.<br />

19. Ingvarsson T, Hagglund G, Ramgren B, Jonsson K, et al: Long-term results<br />

after adolescent Blount’s disease. J Pediatr Orthop B. 6(2):153-6.<br />

20. Ingvarsson T, Hagglund G, Ramgren B, Jonsson K, et al: Long-term results<br />

after infantile Blount’s disease. J Pediatr Orthop B. 7(3)L226-9, 1998.<br />

21. Kaufman KR, Miller LS, Sutherland DH: Gait assymmetry in patients with<br />

limb-length inequality. J Pediatr Orthop 16:173-179, 1996.<br />

22. Milner SA, Davis TR, Muir KR, et al: Long-term outcome after tibial shaft<br />

fracture: is malunion important? J Bone Joint Surg Am 84:971-980, 2002.<br />

23. Papaioannou T, Stokes I, Kenwright J: Scoliosis associated with limb-length<br />

inequality. J Bone Joint Surg 64A:59-62, 1982.<br />

24. Raney EM, Topoleski TA, Yaghoubian R, Guidera KJ, et al: Orthotic treatment<br />

<strong>of</strong> infantile tibia vara. J Pediatr Orthop. 18(5):670-4, 1998.<br />

25. Richards BS, Katz DE, Sim JB: Effectiveness <strong>of</strong> brace treatment in early<br />

infantile Blount’s disease. J Pediatr Orthop. 18(3):374-80, 1998.<br />

26. Sharma L, Song J, Dunlop D, Felson D, et al: Varus and valgus alignment and<br />

incident and progressive knee osteoarthritis. Ann Rheum Dis. 69(11):1940-5,<br />

Epub 2010.<br />

27. Sharma L, Song J, Felson DT, et al: The role <strong>of</strong> knee alignment in disease<br />

progression and functional decline in knee osteoarthritis. JAMA 286:188-<br />

195, 2001.<br />

28. Song KM, Halliday SE, Little DG: The effect <strong>of</strong> limb-length discrepancy on<br />

gait. J Bone Joint Surg 79A:1690-1698, 1997.<br />

29. Soukka A, Alaranta H, Tallroth K, Heliovaara M: Leg-length inequality in<br />

people <strong>of</strong> working age. The association between mild inequality and lowback<br />

pain is questionable. Spine 16:429-431, 1991.<br />

30. Tanamas S, Hanna FS, Cicuttini FM, Wluka AE, et al: Does knee<br />

malalignment increase the risk <strong>of</strong> development and progression <strong>of</strong> knee<br />

osteoarthritis? A systematic review. Arthritis Rheum. 61(4):459-67, 2009.<br />

31. Tjernstrom B, Rehnberg L: Back pain and arthralgia before and after<br />

lengthening. 75 patients questioned after 6 (1-11) years. Acta Orthop Scand<br />

65:328-332, 1994.<br />

32 Wiemann JM 4th, Tryon C, Szalay EA: Physeal stapling versus 8-plate<br />

hemiepiphysiodesis for guided correction <strong>of</strong> angular deformity about the<br />

knee. J Pediatr Orthop 29(5): 481-5, 2009.


263<br />

upper eXtremity FraCtureS aNd CoNgeNital diagNoSeS<br />

Scott H. Kozin, MD<br />

Upper Extremity Deformity/Trauma<br />

A. Cubitus Varus from Supracondylar Fracture<br />

1. Consequences<br />

a. Cosmetic deformity only?<br />

b. Secondary fracture<br />

b. Elbow instability- posterolateral<br />

c. Snapping triceps<br />

d. Lack <strong>of</strong> motion- sagittal alignment<br />

2. Treatment<br />

a. Patient evaluation/indications for treatment<br />

b. Osteotomies<br />

i. Configurations<br />

ii. Techniques<br />

c. Results<br />

REFERENCES<br />

Abe M, Ishizu T, Nagaoka T, et al. Reccurent posterior dislocation <strong>of</strong> the<br />

head <strong>of</strong> the radius in post-trauamtic cubitus varus. J Bone Joint Surg-Br<br />

1995;77B(4):582-5.<br />

Beuerlein MJ, Reid JT, Schemitsch EH, et al. Effect <strong>of</strong> distal humerus varus<br />

deformity on strain in the lateral ulnar collateral ligament and ulnohumeral<br />

joint stability. J Bone Joint Surg 2004;86:2235-42.<br />

Bellemore MC, Barrett IR, Middleton RW, et al. Supracondylar osteotomy<br />

<strong>of</strong> the humerus for correction <strong>of</strong> cubitus varus. J Bone Joint Surg-Br.<br />

1984;66B(4):566-72.<br />

Blount WP. Fractures <strong>of</strong> the lateral condyle <strong>of</strong> the humerus. In Fractures in<br />

Children. Williams and Wilkins. Baltimore. 1954; 43-45.<br />

Cheng JC, Ng BK, Ying SY, Lam PK. A 10-year study <strong>of</strong> the changes in the pattern<br />

and treatment <strong>of</strong> 6,493 fractures. J Pediatr Orthop. 1999;19:344-50.<br />

Dimeglio A. Growth in pediatric orthopaedics. In: Morrissy RT, Weinstein<br />

SL, editors. Lovell and Winter’s pediatric orthopaedics. 6th ed. Vol 1.<br />

Philadelphia: Lippincott Williams and Wilkins; 2005. p 35-65.<br />

French PR. Varus deformity <strong>of</strong> the elbow following supacondylar fractures <strong>of</strong> the<br />

humerus in children. Lancet 1959; ii:439-41.<br />

Hoyer A. Treatment <strong>of</strong> supracondylar fracture <strong>of</strong> the humerus by skeletal traction<br />

in an abduction splint. J Bone Joint Surg Am. 1952;34:623-37.<br />

Jakob R, Fowles JV, Rang M, et al. Observations concerning fractures <strong>of</strong> the lateral<br />

humeral condyle in children. J Bone Joint Surg 1975;57-B:430-6.<br />

Kim HT, Lee JS, and Yoo CI. Management <strong>of</strong> cubitus varus and valgus. J Bone<br />

Joint Surg 2005;87:771-80.<br />

McDonnell DP and Wilson JC. Fractures <strong>of</strong> the lower end <strong>of</strong> the humerus in<br />

children. J Bone Joint Surg 1948;30A:347-58.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

B. Nonunion Lateral Condyle Fracture<br />

1. Initial treatment<br />

a. Fixation<br />

b. Duration<br />

2. Consequences<br />

a. Cubitus valgus/instability<br />

b. Tardy ulnar nerve palsy<br />

c. Fishtail<br />

3. Treatment<br />

a. Cubitus valgus<br />

b. Nonunion repair<br />

c. Osteotomies/nerve transposition<br />

d. Fishtail sequelae<br />

Congenital Conditions- Expert Opinion<br />

Morrissy RT and Wilkins KE. Deformity following distal humeral fracture in<br />

childhood. J Bone Joint Surg 1984;66A(4):557-62.<br />

Omid R, Choi PD and Skaggs DL. Supracondylar humerus fractures in children. J<br />

Bone Joint Surg Am. 2008;90:1121-1132.<br />

O’Driscoll SW, Spinner RJ, McKee MD, et al. Tardy Posterolateral Rotatory<br />

Instability <strong>of</strong> the elbow due to cubitus varus. J Bone Joint Surg 2001;83:1358-<br />

69.<br />

Otsuka NY, Kasser JR. Supracondylar fractures <strong>of</strong> the humerus in children. J Am<br />

Acad Orthop Surg. 1997;5:19-26.<br />

Palmer EE, Niemann KM, Vesely D, Armstrong JH. Supracondylar fracture <strong>of</strong> the<br />

humerus in children. J Bone Joint Surg Am. 1978;60:653-6.<br />

Rutherford A. Fractures <strong>of</strong> the lateral humeral condyle in children. J Bone Joint<br />

Surg 1985;67:851-6.<br />

Spinner RJ, O’Driscoll SW, Davids JR, et al. Cubitus varus associated with<br />

dislocation <strong>of</strong> both the medial portion <strong>of</strong> the triceps and the ulnar nerve. J<br />

Hand Surg 1999;24:718-26.<br />

Takahara, M, Sasaki I, Kimura T, et al. Second fracture <strong>of</strong> the distal humerus after<br />

varus malunion <strong>of</strong> a supracondylar fracture in children. JBone Joint Surg-Br<br />

1998;80B(5):791-7.<br />

Tien YC, Chen JC, Fu YC, et al. Supracondylar dome osteotomy for cubitus<br />

valgus deformity associated with a lateral condylar nonunion in children. J<br />

Bone Joint Surg. 2005;87:1456-63.<br />

Tien YC, Chen JC, Fu YC, et al. Supracondylar dome osteotomy for cubitus<br />

valgus deformity associated with a lateral condylar nonunion in children;<br />

Surgical Technique. J Bone Joint Surg. 2006;88:191-201.<br />

Wilson JN. Fractures <strong>of</strong> the external condyle <strong>of</strong> the humerus in children. British J<br />

Surg. 1955;43:88-94.


264<br />

pediatriC SportS mediCiNe:<br />

a CaSe-baSed update (z)<br />

Moderator: Mininder S. Kocher, MD, Boston, MA<br />

This symposium discusses the pediatric athlete and provides a case-based update on the management <strong>of</strong> controversial injuries<br />

in pediatric sports medicine including juvenile OCD <strong>of</strong> the knee, ACL injuries, and elbow injuries in throwers.<br />

I. Introduction<br />

Moderator: Mininder S. Kocher, MD, Boston, MA<br />

II. Youth Sports: Dramatic Changes, Increased Injuries<br />

Lyle J. Micheli, MD, Boston, MA<br />

III. Lecture: Juvenile OCD <strong>of</strong> the Knee<br />

Theodore J. Ganley, MD, Philadelphia, PA<br />

IV. Cases: Juvenile OCD <strong>of</strong> the Knee<br />

Theodore J. Ganley, MD, Philadelphia, PA<br />

Mininder S. Kocher, MD, Boston, MA<br />

Allen F. Anderson, MD, Nashville, TN<br />

Michael T. Busch, Atlanta, GA<br />

George A. Paletta, Jr., MD, Chesterfield, MO<br />

V. Lecture: Elbow throwing injuries in the Pediatric Athlete<br />

George A. Paletta, Jr., MD, Chesterfield, MO<br />

VI. Cases: Elbow Injuries<br />

George A. Paletta, Jr., MD, Chesterfield, MO<br />

Mininder S. Kocher, MD, Boston, MA<br />

James R. Andrews, MD, Birmingham, AL<br />

Theodore J. Ganley, MD, Philadelphia, PA<br />

Michael T. Busch, Atlanta, GA<br />

VII. Lecture: ACL Injuries in the Skeletally Immature Athlete<br />

Mininder S. Kocher, MD, Boston, MA<br />

VIII. Cases: ACL Injuries<br />

Mininder S. Kocher, MD, Boston, MA<br />

George A. Paletta, Jr., MD, Chesterfield, MO<br />

Allen F. Anderson, MD, Nashville, TN<br />

Theodore J. Ganley, MD, Philadelphia, PA<br />

Michael T. Busch, Atlanta, GA<br />

IX. Conclusions: STOP: A Paradigm for the Prevention <strong>of</strong> Youth Sports Injuries and How You Can Get Involved<br />

James R. Andrews, MD, Birmingham, AL<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS


265<br />

SympoSium z: aCl reCoNStruCtioN iN the Skeletally<br />

immature patieNt<br />

Mininder S. Kocher, MD, MPH<br />

• Hot Area<br />

– Pediatric <strong>Orthopaedic</strong>s<br />

• POSNA<br />

– Sports Medicine<br />

• AOSSM<br />

– General <strong>Orthopaedic</strong>s<br />

• AAOS<br />

– Pediatrics<br />

• AAP<br />

– Medicine<br />

• ACSM<br />

– Athletic Training<br />

• NATA<br />

Controversy: Pediatric ACL Injuries<br />

• Initial Management<br />

– Nonoperative vs Operative<br />

• Operative Management<br />

– Technique<br />

• Nontransphyseal<br />

• Partial Transphyseal<br />

• Transphyseal<br />

– Graft Choice / Fixation<br />

– Age / Skeletal Maturity<br />

• Complications<br />

– Growth Disturbance<br />

• Nonoperative Rx (complete tears):<br />

– Angel & Hall (Arthroscopy 1989)<br />

» 5/7 failure (ACL reconstruction)<br />

– Graf et al (Arthroscopy 1992)<br />

» 7/8 failure (ACL reconstruction, meniscal tears)<br />

– Janarv et al (J Pediatr Orthop 1996)<br />

» 16/23 failure (ACL reconstruction)<br />

– Mizuta et al (JBJS-B 1985)<br />

» 1/18 return to preinjury sport level, 6/18 meniscal tears<br />

– McCarroll et al (AJSM 1988)<br />

» 3/16 return to preinjury sport, 4/16 meniscal tears<br />

– Millett et al (Arthroscopy 2002)<br />

» medial meniscus tears with delay in treatment<br />

– Moksnes H et al (KSSTA 2008)<br />

» 20 children, 50% copers, 10% meniscal tear<br />

• Kocher et al (Am J Sports Med 2002)<br />

– Patients<br />

• Skeletally Immature<br />

• Arthroscopically Documented Partial Tear<br />

– 45 pts, 13.9 yrs old, 6.1 yr F/U<br />

• Exclusion Criteria<br />

– Initial ACL Reconstruction<br />

» Repairable Meniscal Tear<br />

» Grade C or D Lachman Exam<br />

» Grade C or D Pivot-Shift Exam<br />

– Treatment<br />

– Outcome<br />

– 31% (14/45) Subsequent Reconstruction<br />

• Extra-Articular Reconstruction<br />

– McCarroll et al (AJSM 1988)<br />

• 10 pts (skel immature); IT band tenodesis; 26 mo F/U:<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

10/10 laxity, 5/10 instability<br />

• Repair<br />

– Engebretsen et al (Acta Orthop Scand 1988)<br />

• 8 pts (skeletally immature); repair to femur; 3-8 yrs F/U:<br />

8/8 laxity, 5/8 instability<br />

• Physeal-Sparing ACLr<br />

– Brief (Arthroscopy 1991)<br />

• 6 pts (skeletally immature); hamstrings; 3-6yr F/U: 6/6<br />

laxity, 1/6 instability<br />

– Guzzanti et al (AJSM 2003)<br />

• 8 pts (prepubescent); hamstrings, tibial tunnel; 2-7yr F/U:<br />

1.8mm laxity, 0/8 instability<br />

– Anderson et al (JBJS 2003)<br />

• 12 pts (skeletally immature); hamstrings & tunnels; 2-8yr<br />

F/U: 1.5 laxity, 0/12 instability<br />

– Kocher et al (JBJS 2005)<br />

• 44 pts (prepubescent); ITB extra & intra-articular; 2-15 yr<br />

F/U: 4.5% revision, 96 & 97<br />

• Partial Transphyseal ACLr<br />

– Andrews et al (AJSM 1994)<br />

» 8 pts (open physes); s<strong>of</strong>t tissue allografts; tibial physis-<br />

>over the top<br />

» 58 month F/U: 3/8 >3mm laxity, 1/8 poor result, no LLD<br />

– Lo et al (Arthroscopy 1997)<br />

» 5 pts (wide open physes); s<strong>of</strong>t tissue autografts; tibial<br />

physis->over the top<br />

» 7.4 yr F/U: 0/5 >3mm laxity, 1/5 poor result, no LLD<br />

• Transphyseal ACLr<br />

– Lipscomb & Anderson (JBJS-A 1986)<br />

• 24 pts (12-15 yrs old, 11 wide open physes); hamstrings<br />

autografts<br />

• 35 month F/U: 15/24 return to sport, 1.6 mm laxity, 1.3<br />

cm LLD, 2.0 cm LLD<br />

– Matava & Siegel (Am J Knee Surg 1997)<br />

• 8 pts (skel immature, 14.9 yrs old); hamstrings autografts<br />

• 32 month F/U: 8/8 return to sport, 3/8 >3mm laxity, no<br />

LLD<br />

– McCarroll et al (AJSM 1994)<br />

• 47 pts (skeletally immature: 20 initial, 20/27 non-op);<br />

B-PT-B autografts<br />

• 4.2 yr F/U: 90% return to sport, no LLD<br />

– Aronwitz et al (AJSM 2000)<br />

• 19 pts (skeletally immature >14 bone age, Achilles allo<br />

• 2.1 yr F/U; 84% RTS; 97 Lysholm; 1.7mm KT1000<br />

• Problems<br />

– Small Series<br />

– Retrospective<br />

– Growth Remaining<br />

• Chronological Age<br />

– Not Skeletal Age<br />

– Not Physiological Age<br />

• Tanner 4<br />

• Age<br />

– Chronological Age<br />

– Skeletal Age


266<br />

• Greulich & Pyle<br />

– Hand & Wrist<br />

• Pyle & Hoerr<br />

– Knee<br />

– Physiological Age<br />

• Tanner & Whitehouse<br />

– Stage 1: Prepubertal<br />

– Stage 2: Prepubertal<br />

– Stage 3: Pubertal: Young Adolescent<br />

– Stage 4: Pubertal: Older Adolescent<br />

– Stage 5: Skeletally Mature<br />

• Growth Disturbance<br />

– Animal Models<br />

• Guzzanti (JBJS 1994)<br />

– Rabbit, 2mm tunnels, 3/21 Disturbance<br />

• Stadelmeier (AJSM 1995)<br />

– Canine, 5/32” tunnels, No Disturbance<br />

• Edwards (JBJS 2001)<br />

– Canine, 80N, Femoral Valgus<br />

– Clinical Series<br />

• 2 Cases<br />

– Lipscomb (JBJS 1986)<br />

– Koman (JBJS 1999)<br />

Management and Complications <strong>of</strong> Anterior Cruciate Ligament<br />

Injuries in Skeletally Immature Patients: A survey <strong>of</strong> The<br />

Herodicus Society and The ACL Study Group Kocher et al<br />

(Journal <strong>of</strong> Pediatric <strong>Orthopaedic</strong>s, 2002)<br />

– 8 Cases: Distal Femoral Valgus with Bony Bar<br />

• 3: Implants (Interference Screws) across Physis<br />

• 3: Patellar Tendon graft bone block across Physis<br />

• 1: Large (12 mm) Tunnel with Patellar Tendon graft<br />

• 1: Over-the-Top Graft Placement<br />

– 2 Cases: Genu Valgum without Bony Bar<br />

• Lateral Extra-Articular Tenodesis<br />

– 2 Cases: Leg-Length Discrepancy<br />

• 2.5cm shortening (PT bone block across physis)<br />

• 3.0cm overgrowth (6mm hamstrings graft)<br />

– 3 Cases: Recurvatum with Apophyseal Bar<br />

• Hardware across Tibial Tubercle Apophysis<br />

• Recommendations<br />

– Avoid Hardware across Lateral Distal Femoral Physis<br />

– Avoid Hardware across Tibial Tubercle Apophysis<br />

– Avoid Bone Plugs across Physes<br />

• Hamstrings Graft<br />

– Avoid Large Tunnels<br />

– Avoid Extra-Articular Tenodesis<br />

– Minimal Over-the-Top Dissection & Notchplasty<br />

– Consider Physeal Sparing Reconstruction in Prepubescent<br />

Patients<br />

• Prepubescents<br />

• Options<br />

– Nonoperative Treatment<br />

– Transphyseal (Paletta)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

– Epiphyseal (Anderson)<br />

– IT B Physeal Sparing<br />

• Technique<br />

– MacIntosh 2 variation<br />

– Extra/Intra-Articular<br />

• Over-the-Top<br />

• Over-the Front<br />

– Trade-Off<br />

• Nonanatomic vs Physeal-Sparing<br />

• Physeal-Sparing Combined Intra/ Extra- Articular ACLr with IT<br />

Band<br />

• Kocher et al (J Bone Joint Surg, 2005)<br />

– 44 pts (10.3 yrs old (3.6-14.0))<br />

– 5.3 yr follow-up (2.0-15.1)<br />

– 4.5% revision rate (4.7 & 8.3 yrs)<br />

– IKDC: 96.7 + 6.0<br />

– Lysholm: 95.7 + 6.7<br />

– 21.5 cm growth (9.5 – 118.0)<br />

– No growth disturbance<br />

– Video Journal <strong>of</strong> <strong>Orthopaedic</strong>s (3/06)<br />

• Conclusions<br />

• Pediatric Athlete<br />

– “Child is not a little adult.”<br />

– “Child athlete is not a little adult athlete.”<br />

• Recommendations<br />

– Know Patient’s Growth Remaining<br />

– Shared Decision Making<br />

• Risks: Nonoperative Treatment<br />

– Meniscal/ Chondral Injury<br />

• Risks: Operative Treatment<br />

– Growth Disturbance<br />

– Understand Pediatric Knee Anatomy<br />

• Distal Femoral Physis & Over-Top<br />

• Proximal Tibial Apophysis<br />

• Avoid Hardware/ Bone across Physis<br />

– Technique<br />

• Adolescents: Transphyseal Hamstrings<br />

• Prepubescents: Physeal-Sparing<br />

• Prospective Cohort Study<br />

• Multicenter<br />

• Arms<br />

– Nonoperative Treatment<br />

– Transphyseal Reconstruction<br />

– Physeal-Sparing Reconstruction<br />

• Assessment<br />

– Growth Remaining<br />

– Failure Rate<br />

– Growth Disturbance<br />

– Functional Outcome<br />

• Pedi-IKDC<br />

– Modify IKDC for Children & Adolescents<br />

– Validate Pedi-IKDC


267<br />

youth SportS: dramatiC ChaNgeS, iNCreaSed iNJurieS<br />

Lyle J. Micheli, MD<br />

ORGANIZED SPORTS FOR CHILDREN: WORLDWIDE<br />

1. IOC<br />

2. FIFA<br />

3. ACSM<br />

4. AOSSM<br />

ORGANIZED SPORTS CHILDREN: BENEFITS<br />

1. Enjoyment<br />

2. Intro Skills<br />

3. Fitness<br />

4. Psych / Social<br />

ORGANIZED SPORTS FOR CHILDREN: CONCERNS<br />

1. Thermal Stress<br />

2. Psych Stress<br />

3. Injury<br />

SPORTS INJURY: CHILDREN<br />

1. Acute Trauma<br />

2. Overuse / Overtraining<br />

3. Combination<br />

CHILDRENS SPORTS INJURIES: FOCUS<br />

1. OCD<br />

2. ACL<br />

3. Throwing Injuries<br />

4. Concussion<br />

EPIDEMIOLOGY<br />

The study <strong>of</strong> the nature, cause, control and determinants <strong>of</strong><br />

the frequency and distribution <strong>of</strong> disease, injury or death in<br />

populations.<br />

PURPOSES OF EPIDEMIOLOGY: SPORTS INJURY<br />

1. Etiology<br />

2. Control Methods: Game vs Practice, etc.<br />

3. Risk: Age, Gender, Position, etc.<br />

4. Prevention<br />

INJURY SURVEILLANCE SYSTEMS<br />

1. Incidence <strong>of</strong> injury / season / population<br />

2. Relative Risk per Exposure<br />

a. Ideal = Injury Risk / 1000 hr.<br />

3. Temporal Trends<br />

4. EFFECTS OF SAFETY INTERVENTIONS<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS


268<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS


269<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS


270<br />

maNagiNg oSteoChoNdritiS diSSeCaNS oF the kNee<br />

Theodore J. Ganley, MD<br />

OVERVIEW OF GOALS/OBJECTIVES<br />

Understand:<br />

• The Clinical Presentation<br />

• The Decision Making Algorithm<br />

• Surgical Options<br />

Background/Key facts<br />

• Idiopathic etiology<br />

• Disorder <strong>of</strong> the subchondral bone<br />

— Secondarily affects overlying articular cartilage<br />

— Can lead to cartilage separation and fragmentation<br />

• Repetitive microtrauma can contribute to focal ischemia and<br />

alteration <strong>of</strong> growth<br />

• Location:<br />

— Lateral aspect <strong>of</strong> the MFC most common site, up to 75%<br />

— Inferior-central lateral 15-20% / Patellar 5-10% / Trochlea<br />


(Donaldson 2008)<br />

— 20 OCD lesions in 12 skeletally immature patients<br />

— Mean age 12 years, mean follow up 2.7 years<br />

— Lysholm score improved from 72.3 to 95.8<br />

— 19 lesions healed @ 4.4 months on X-ray and 7.6 months<br />

on MRI (Adachi 2009)<br />

• Drilling from the intercondylar bare area<br />

— 16 Knee lesions in 12 patients, failed non-op tx, then<br />

drilling, mean f/u - 16 months<br />

— All lesions healed after drilling / Lysholm score improved<br />

from 70.4 to 97.8<br />

— Average time <strong>of</strong> healing 4 months by X-ray and 7 months on<br />

MRI (Kawasaki 2003)<br />

• Arthroscopic Fixation<br />

— 12 knees w/ stable lesions, 14.8 years, 32.4 months follow up<br />

— Arthroscopic fixation <strong>of</strong> the fragments using polylactide<br />

bioabsorbable pins<br />

— All returned to sport<br />

Treatment <strong>of</strong> Massive / Atypical potentially Unstable lesions<br />

• Epiphyseal Drilling with supplemental grafting<br />

— With or without the use <strong>of</strong> intraoperative 3D CT scanning<br />

(Ganley 2010)<br />

Treatment <strong>of</strong> unstable lesions – partially detached<br />

• Fixation +/- graft<br />

— Metal implant (pin or screw)<br />

— Bio-absorbables<br />

– Pla bioabsorbable pins 20 (Din 2006)<br />

11 patients/Ages 12-16/ 32 mo fu<br />

Union noted on all MRIs<br />

1 case <strong>of</strong> early synovitis<br />

– Pga bioabsorbable pins 21,22 (Weiler 1996)<br />

40% degrade w/in 6 mos<br />

Sheep model<br />

Foreign tissue reaction/lytic lesions<br />

– Bone Sticks 23 (Navarro 2002)<br />

11 patients/ Ages 11-20/ 48 mo mean fu<br />

90.9% Satisfactory, 1 Houghston poor<br />

Synovitis/effusions – arthroscopy<br />

— Lesion integration<br />

— Return to competitive sports<br />

• Bioabsorbable Implants for Unstable Lesions<br />

— 24 patients, mean age 14.4 years , mean follow up 39.6<br />

months<br />

— At 19.2 months, plain films,<br />

– Complete healing in 13 pts/interval healing in 9 pts, no<br />

change in 1 pt<br />

– Loose bodies with no interval healing in 1 patient<br />

— Interval healing was present in 16/17 MRIs<br />

— All 24 patients had good-to-excellent outcomes (Tabaddor<br />

2010)<br />

— Cancellous screws (Herbert) 24 (Makino 2005)<br />

– 14 patients/ Ages 12-35/ 50 mo mean fu / MFC/LFC<br />

– 2nd Look Arthroscopy / MRI/ IKDC<br />

– 14-15 Stable fragment<br />

— Various methods 25 (Kocher 2007)<br />

– 24 patients/ Ages 11-16/ 51 mo mean fu<br />

– 9 fissured, 11 partially attached, 6 detached<br />

– Screws – cancellous and pitch/ absorbable tacks and pins<br />

– 22 <strong>of</strong> 26 healed, (6 <strong>of</strong> 6 detached)<br />

– No differences in location, fixation or lesion grade in<br />

healing<br />

• Osteochondral autograft 26-29<br />

— Techniques<br />

271<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

– 4.5 mm diameter plug at center <strong>of</strong> lesion / Additional<br />

plugs around periphery Graft harvest from femoral<br />

trochlea Stay perpendicular / Check depth / Minimize<br />

impaction on cartilage<br />

— IKDC Scores27-29<br />

– Preop-5 nearly normal / 10 abnormal / 7 severely<br />

abnormal Postop - 6 mo. 17 normal, 2 nearly normal,<br />

1 abnormal, 0 severely abnormal 18 mo. - 18 normal, 2<br />

nearly normal, 0 abnormal, 0 severely abnormal<br />

— Advantages<br />

– Creates vascular access channel Biologic bridge between<br />

cartilage and bone Secures the lesion<br />

• Autogenous Osteochondral Plugs<br />

— 12 patients, mean age 16.0 years, follow-up at 4.5 years<br />

— Hughston Rating Scale -8 excellent, 3 good, and 1 fair<br />

— No complications arising from the donor site area<br />

— T2-MRI – Cancellous bone - Signal change <strong>of</strong> donor site<br />

-high to homogeneous by 1 yr post op (Miura 2007)<br />

• Large osteochondral fragment with a thin wafer <strong>of</strong> bone<br />

— All Arthroscopic Suture Bridge<br />

— Parachute fixation for Large Femoral Osteo-Chondral<br />

fragments (Trivedi, Lawrence, Ganley 2011)<br />

• Loose body/fragment removal<br />

(creates full thickness lesion—see below)<br />

Treatment <strong>of</strong> unstable lesions – detached<br />

• Fixation +/- graft<br />

• Recruitment - Messenchymal Cell Stimulation (Not<br />

micr<strong>of</strong>racture)<br />

— Principally type I collagen with components <strong>of</strong> type II, VI,<br />

and IX (hyaline types)<br />

– Technically simple / Single stage / Arthroscopic / Low<br />

morbidity / Cost effective<br />

– Repair defects primarily with fibrocartilage –<br />

unpredictable durability<br />

— Indications Grade IV possibly grade III lesions / Intact<br />

“shoulders” / Perimeter contained<br />

• Autologous Transplantation vs. Micr<strong>of</strong>racture in Adolescent<br />

patients<br />

— 47 patients, mean age <strong>of</strong> 14.3 years, mean follow-up <strong>of</strong> 4.2<br />

years<br />

– Randomized to either the OATS (25 patients) or MF<br />

(22 patients)<br />

– Grade 3 or 4 MFC Lesions<br />

— At 1 year - Good to Excellent - OATS 92% vs MF 86%<br />

— At 4.2 years - Good to Excellent – OATS vs. MF 63%<br />

(Gaudas 2009)


• Osteochondral Allografts in Adults<br />

— 64 patients – 65 knees, age 28.6 yrs (mean), Follow up 7.7<br />

yrs (mean) 41 MFC lesions, 25 LFC lesions, All type 3 or 4<br />

72% were rated good/excellent, 11% were rated fair, 2% was<br />

rated poor. 15% underwent reoperation (Emmerson 2007)<br />

REFERENCES<br />

1. Twyman, R. S.; Desai, K.and Aichroth, P. M.: Osteochondritis dissecans <strong>of</strong> the<br />

knee. A long-term study. J Bone Joint Surg Br, 73(3): 461-4, 1991.<br />

2. Wilson, J. N.: A diagnostic sign in osteochondritis dissecans <strong>of</strong> the knee. J<br />

Bone Joint Surg Am, 49(3): 477-80, 1967.<br />

3. Cahill, B. R.and Berg, B. C.: 99m-Technetium phosphate compound joint<br />

scintigraphy in the management <strong>of</strong> juvenile osteochondritis dissecans <strong>of</strong> the<br />

femoral condyles. Am J Sports Med, 11(5): 329-35, 1983.<br />

4. De Smet, A. A.; Ilahi, O. A.and Graf, B. K.: Untreated osteochondritis<br />

dissecans <strong>of</strong> the femoral condyles: prediction <strong>of</strong> patient outcome using<br />

radiographic and MR findings. Skeletal Radiol, 26(8): 463-7, 1997.<br />

5. Pill, S. G.; Ganley, T. J.; Milam, R. A.; Lou, J. E.; Meyer, J. S.and Flynn, J.<br />

M.: Role <strong>of</strong> magnetic resonance imaging and clinical criteria in predicting<br />

successful nonoperative treatment <strong>of</strong> osteochondritis dissecans in children. J<br />

Pediatr Orthop, 23(1): 102-8, 2003.<br />

6. O’Connor, M. A.; Palaniappan, M.; Khan, N.and Bruce, C. E.: Osteochondritis<br />

dissecans <strong>of</strong> the knee in children. A comparison <strong>of</strong> MRI and arthroscopic<br />

findings. J Bone Joint Surg Br, 84(2): 258-62, 2002.<br />

7. Vonstein, D. W. N., H. Laor, T. et al.: Juvenile Osteochondritis Dissecans <strong>of</strong><br />

the Knee: Healing Prognosis Based on X-Ray and Gadolinium Enhanced<br />

MRI. Pediatric <strong>Orthopaedic</strong> Society <strong>of</strong> North America: 79, 2003.<br />

8. Cahill, B. R.: Osteochondritis Dissecans <strong>of</strong> the Knee: Treatment <strong>of</strong> Juvenile<br />

and Adult Forms. J Am Acad Orthop Surg, 3(4): 237-247, 1995.<br />

9. Anderson, A. F.; Richards, D. B.; Pagnani, M. J.and Hovis, W. D.: Antegrade<br />

drilling for osteochondritis dissecans <strong>of</strong> the knee. Arthroscopy, 13(3): 319-<br />

24, 1997.<br />

10. Aglietti, P.; Buzzi, R.; Bassi, P. B.and Fioriti, M.: Arthroscopic drilling<br />

in juvenile osteochondritis dissecans <strong>of</strong> the medial femoral condyle.<br />

Arthroscopy, 10(3): 286-91, 1994.<br />

11. Peterson, L.; Minas, T.; Brittberg, M.and Lindahl, A.: Treatment <strong>of</strong><br />

osteochondritis dissecans <strong>of</strong> the knee with autologous chondrocyte<br />

transplantation: results at two to ten years. J Bone Joint Surg Am, 85-A(Suppl<br />

2): 17-24, 2003.<br />

12. King, P. J. Ganley, T.J. Lou, J.E. Gregg, J.R.: Autologous chondrocyte<br />

transplantation for the treatment <strong>of</strong> large defects in the articular cartilage <strong>of</strong><br />

the distal femur in adolescent patients. <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong><br />

Surgeons, 2003.<br />

13. Flynn, J.M. Kocher, M.S. Ganley, T.J. Osteochodritis Dissecans <strong>of</strong> the Knee. J<br />

Pediatr Orthop. 24(4):434-443, 2004.<br />

14. Iobst, C., Kocher, M.S.: Cartilage Injury in the Skeletally Immature Athlete. In<br />

Mirzayan R (ed.): Cartilage Injury in the Athlete. New York: Thieme, in press.<br />

15. Kocher, M.S.; DiCanzio, J.; Zurakowski, D.; Micheli, L.J.: Diagnostic<br />

performance <strong>of</strong> clinical examination and selective magnetic resonance<br />

imaging in the evaluation <strong>of</strong> intra-articular knee disorders in children and<br />

adolescents. Am J Sports Med, 29(3): 292-296, 2001.<br />

272<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

• Autologous Chondrocyte Implantation<br />

— 37 patients , 14 w/ OCD lesions, age 16 (mean) , 4.3 year<br />

follow-up (mean) 23 had a prior cartilage repair procedure<br />

35 patients had single defects 1 patient had an implantation<br />

that failed 32 patients had significant clinical improvements<br />

(Micheli JPO 2006)<br />

Current and Future Directions:<br />

AAOS Guideline on the Diagnosis and Treatment <strong>of</strong><br />

Osteochondritis Dissecans<br />

• Clinical Practice Guidelines Committee <strong>of</strong> the <strong>American</strong><br />

<strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons<br />

• AAOS Guidelines available at www.aaos.org/guidelines<br />

Research for Osteochondritis Dissecans <strong>of</strong> the Knee<br />

Overview <strong>of</strong> Goals/Objectives:<br />

• The Clinical Presentation<br />

• Decision Making Algorithm<br />

• Surgical Option<br />

16. Kocher, M. S., Micheli, L.J.; Yaniv, M.; Zurakowski, D.; Ames, A.; Adrignolo,<br />

A.A.: Functional and Radiographic Outcome <strong>of</strong> Juvenile Osteochondritis<br />

Dissecans <strong>of</strong> the Knee Treated with Transarticular Arthroscopic Drilling. Am J<br />

Sports Med, 29(5): 562-566, 2001.<br />

17. Scioscia, T. N.; Giffin, J. R.; Allen, C. R. et al.: Potential complication <strong>of</strong><br />

bioabsorbable screw fixation for osteochondritis dissecans <strong>of</strong> the knee.<br />

Arthroscopy, 17(2): E7, 2001.<br />

18. Steadman, J.R.; Briggs, K.K.; Rodrigo, J.J.; Kocher, M.S.; Gill; T.J.; Rodkey,<br />

W.G.: Outcomes <strong>of</strong> micr<strong>of</strong>racture for traumatic chondral defects <strong>of</strong> the knee:<br />

Average 11-year follow-up. Arthroscopy, 19(5): 477-484, 2003.<br />

19. Thomson, N. L.: Osteochondritis dissecans and osteochondral fragments<br />

managed by Herbert compression screw fixation. Clin Orthop, (224): 71-8,<br />

1987.<br />

20. Din R, Annear P, Scaddan J. Internal fixation <strong>of</strong> undisplaced lesions <strong>of</strong><br />

osteochondritis dissecans in the knee. J Bone Joint Surg Br. 88(7): 900-4,<br />

2006<br />

21. Weiler A, Helling HJ, Kirch U, et al. Foreign-body reaction and the course<br />

<strong>of</strong> osteolysis after polyglycolide implants for fracture fixation: experimental<br />

study in sheep. J Bone Joint Surg Br. 78(3): 369-76, 1996<br />

22. Wouters DB, Bos RR, van Horn JR, et al. Should in the treatment <strong>of</strong><br />

osteochondritis dissecans biodegradable or metallic fixation devices be used?<br />

A comparative study in goat knees. J Biomed Mater Res B Appl Biomater.<br />

84(1): 154-64, 2008<br />

23. Navarro R, Cohen M, Filho MC, et al. The arthroscopic treatment <strong>of</strong><br />

osteochondritis dissecans <strong>of</strong> the knee with autologous bone sticks.<br />

Arthroscopy. 18(8):840-4, 2002<br />

24. Makino A, Muscolo DL, Puigdevall M, et al. Arthroscopic fixation <strong>of</strong><br />

osteochondritis dissecans <strong>of</strong> the knee: clinical, magnetic resonance imaging,<br />

and arthroscopic follow-up. Am J Sports Med. 33(10):1499-504, 2005<br />

25. Kocher MS, Czarnecki JJ, Andersen JS, et al. Internal fixation <strong>of</strong> juvenile<br />

osteochondritis dissecans lesions <strong>of</strong> the knee. Am J Sports Med. 35(5):712-8,<br />

2007<br />

26. Berlet GC, Mascia A, Miniaci A. Treatment <strong>of</strong> unstable osteochondritis<br />

dissecans lesions <strong>of</strong> the knee using autogenous osteochondral grafts<br />

(mosaicplasty). Arthroscopy. 15(3):312-6, 1999.<br />

27. Yoshizumi Y, Sugita T, Kawamata T, et al. Cylindrical osteochondral graft for<br />

osteochondritis dissecans <strong>of</strong> the knee: a report <strong>of</strong> three cases. Amer J Sports<br />

Med. 30(3):441-5, 2002<br />

28. Kobayashi T, Fujikawa K, Oohashi M. Surgical fixation <strong>of</strong> massive<br />

osteochondritis dissecans lesion using cylindrical osteochondral plugs.<br />

Arthroscopy. 20(9):981-6, 2004<br />

29. Miniaci A, Tytherleigh-Strong G. Fixation <strong>of</strong> unstable osteochondritis<br />

dissecans lesions <strong>of</strong> the knee using arthroscopic autogenous osteochondral<br />

grafting (mosaicplasty). Arthroscopy. 23(8):845-51, 2007


30. Emmerson BC, Gšrtz S, Jamali AA, et al. Fresh osteochondral allografting in<br />

the treatment <strong>of</strong> osteochondritis dissecans <strong>of</strong> the femoral condyle. Amer J<br />

Sports Med. 35(6):907-14, 2007<br />

31. King PJ, Ganley TJ, Lou JE, Gregg JR: Autologous Chondrocyte<br />

Transplantation for the Treatment <strong>of</strong> Large Defects in the Articular<br />

Cartilage <strong>of</strong> the Distal Femur in Adolescent Patients. <strong>American</strong> <strong>Academy</strong> <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgeons <strong>Annual</strong> <strong>Meeting</strong>, February, 2003.<br />

32. Adachi, N., et al. Functional and Radiographic Outcome <strong>of</strong> Stable Juvenile<br />

Osteochondritis Dissecans <strong>of</strong> the Knee Treated With Retroarticular Drilling<br />

Without Bone Grafting. Arthroscopy, 2009. 25, (2), p 145-152<br />

33. Din, R., P. Annear, and J. Scaddan, Internal fixation <strong>of</strong> undisplaced lesions <strong>of</strong><br />

osteochondritis dissecans in the knee. J Bone Joint Surg Br, 2006. 88(7): p.<br />

900-4.<br />

34. Donaldson, L.D. and E.M. Wojtys, Extraarticular drilling for stable<br />

osteochondritis dissecans in the skeletally immature knee. J Pediatr Orthop,<br />

2008. 28(8): p. 831-5.<br />

35. Emmerson, B.C., et al., Fresh osteochondral allografting in the treatment <strong>of</strong><br />

osteochondritis dissecans <strong>of</strong> the femoral condyle. Am J Sports Med, 2007.<br />

35(6): p. 907-14.<br />

273<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

36. Gudas, R., et al., A prospective, randomized clinical study <strong>of</strong> osteochondral<br />

autologous transplantation versus micr<strong>of</strong>racture for the treatment <strong>of</strong><br />

osteochondritis dissecans in the knee joint in children. J Pediatr Orthop,<br />

2009. 29(7): p. 741-8.<br />

37. Kawasaki, K., et al., Drilling from the intercondylar area for treatment <strong>of</strong><br />

osteochondritis dissecans <strong>of</strong> the knee joint. Knee, 2003. 10(3): p. 257-63.<br />

38. Kocher, M.S., et al., Functional and radiographic outcome <strong>of</strong> juvenile<br />

osteochondritis dissecans <strong>of</strong> the knee treated with transarticular arthroscopic<br />

drilling. Am J Sports Med, 2001. 29(5): p. 562-6.<br />

39. Micheli, L.J., et al., Articular cartilage defects <strong>of</strong> the distal femur in children<br />

and adolescents: treatment with autologous chondrocyte implantation. J<br />

Pediatr Orthop, 2006. 26(4): p. 455-60.<br />

40. Miura, K., et al., Results <strong>of</strong> arthroscopic fixation <strong>of</strong> osteochondritis dissecans<br />

lesion <strong>of</strong> the knee with cylindrical autogenous osteochondral plugs. Am J<br />

Sports Med, 2007. 35(2): p. 216-22.<br />

41. Pill, S.G., Ganley TJ., et al., Role <strong>of</strong> magnetic resonance imaging and clinical<br />

criteria in predicting successful nonoperative treatment <strong>of</strong> osteochondritis<br />

dissecans in children. J Pediatr Orthop, 2003. 23(1): p. 102-8.<br />

42. Tabaddor, R.R., et al., Fixation <strong>of</strong> juvenile osteochondritis dissecans lesions<br />

<strong>of</strong> the knee using poly 96L/4D-lactide copolymer bioabsorbable implants. J<br />

Pediatr Orthop, 2010. 30(1): p. 14-20.


274<br />

elbow iNJury iN the youNg throwiNg athlete<br />

George A. Paletta, Jr., MD<br />

Incidence <strong>of</strong> Injuries<br />

• Pr<strong>of</strong>essional Baseball<br />

— 28% <strong>of</strong> injuries involve SHOULDER<br />

— 22% <strong>of</strong> injuries involve ELBOW<br />

— Injury rate increasing<br />

• Youth Baseball<br />

— 50% <strong>of</strong> 9-14 yr olds complain <strong>of</strong> shoulder or elbow pain<br />

— Number <strong>of</strong> severe injuries (ligament tears) is increasing<br />

Comparison <strong>of</strong> Youth and Pr<strong>of</strong>essional Pitchers<br />

• Kinematics — patterns <strong>of</strong> motion<br />

— no differences except elbow flexion angle increases with age<br />

• Kinetics — forces <strong>of</strong> motion<br />

— significant differences at all levels<br />

— elbow and shoulder torques and forces increase with age and<br />

skill<br />

Forces at the Elbow<br />

• Tension/distraction<br />

— MCL<br />

— Medial epicondyle<br />

• Compression<br />

– Radius/capitellum<br />

Common Injury Patterns<br />

• Elbow<br />

— Medial Tension<br />

– “Little Leaguer Elbow”<br />

– Apophyseal Injury<br />

– Tendonitis<br />

– Ligament Injury<br />

— Lateral Compression<br />

– Osteochondritis dissecans<br />

— Posterior Valgus/Extension<br />

– Olecranon<br />

Skeletal Immaturity<br />

• Skeletally Immature<br />

— Open Physes, Unfused Apophyses<br />

– Biomechanically vulnerable<br />

– “Weak Link”<br />

“Little Leaguers Elbow”<br />

• Wastebasket Term<br />

• Encompasses Multiple Conditions<br />

— Medial epicondylar apophysitis/avulsion fractures<br />

— Ulnar collateral ligament sprain<br />

— Osteochondritis <strong>of</strong> the capitellum<br />

— Osteochondrosis <strong>of</strong> the radial head<br />

— Olecranon apophysitis<br />

Medial Apophysitis<br />

• Clinical History<br />

— Common age 10-13<br />

— Gradual onset medial elbow pain<br />

— Pain with activity<br />

— Inability to throw at full speed<br />

— Inability to fully straighten the elbow<br />

• Physical Exam<br />

— Tenderness at medial epicondyle<br />

— +/- mild flexion contracture<br />

— +/- pain on resisted wrist flexion<br />

— +/- pain, NO LAXITY on valgus<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

Radiographs<br />

• Normal?<br />

• Widening<br />

• Fragmentation<br />

• Comparison views!!<br />

— Critical<br />

Additional Imaging<br />

• MRI<br />

— Rarely required<br />

— Used to rule out other pathology<br />

– UCL tear<br />

– Flexor-Pronator tear<br />

• Ultrasonography<br />

— Harada et al, AJR 2006<br />

— Survey study<br />

— 153 Little Leaguers<br />

— Ages 9-12<br />

— Successful detection <strong>of</strong> medial epicondylar fragmentation in<br />

33<br />

— All confirmed by x-ray<br />

Treatment<br />

• Active Rest<br />

— Pinch Hit/DH<br />

• Ice<br />

• NSAIDs<br />

• Physical Therapy?<br />

— Core<br />

— Shoulder<br />

— Address Deficits<br />

• Gradual return to activity when symptom free and exam WNL<br />

• Typical return 6-12 weeks<br />

• Modification <strong>of</strong> throwing to minimize recurrence risk.<br />

Medial Apophyseal Avulsion<br />

• Clinical History<br />

— Acute event<br />

• Single pitch or throw<br />

— Sudden “pop”<br />

— Pain medial elbow<br />

— Acute inability to throw — +/- ulnar nerve symptoms<br />

• Physical Exam<br />

— Swelling, ecchymosis<br />

— Epicondylar tenderness<br />

— Limited ROM<br />

— Pain with wrist flexion<br />

— Pain with valgus stress<br />

— ? Valgus Instability<br />

— ? Ulnar Nerve Sxs<br />

Radiographs<br />

• Usually Diagnostic<br />

• Apophyseal Widening<br />

• Fragmentation<br />

• Displacement<br />

— Inferior/Distal<br />

— Rotational!!<br />

• Stress Views<br />

— Motion at apophysis<br />

• Woods & Tullos Classification<br />

— AJSM 5, 1977


275<br />

— Type 1<br />

– Younger athlete<br />

– Large, displaced fx<br />

— Type 2<br />

– Adolescents<br />

– Small fragment<br />

Treatment<br />

• Guidelines<br />

— Degree <strong>of</strong> Displacement<br />

— Bennett & Tullos<br />

– 3-8 mm displaced<br />

— Ireland & Andrews<br />

– Clin Sports Med 1988<br />

– Accept NO displacement<br />

• Treatment<br />

— Non-displaced<br />

– Short term immob<br />

– Early ROM<br />

— Displaced (> 2 mm)<br />

– Surgical treatment<br />

– Percutaneous screw fixation<br />

– ORIF<br />

Treatment Outcomes<br />

• Osbahr et al, J Shoulder Elbow Surg, 2010<br />

— Level IV, Case Series <strong>of</strong> 8 pts.<br />

— Non-op if 5mm displacement<br />

— All healed, all returned to play<br />

— Ave time to return = 7.6 mos (4-10)<br />

— Risk Factor = non-compliance with USA Baseball Pitching<br />

Recommendations<br />

Late Sequelae<br />

• Malunion<br />

• Medial Epicondylar Prominence<br />

• Persistent Pain<br />

Late Sequelae<br />

• Painful Non-Union<br />

• Ulnar Nerve Sxs<br />

Treatment <strong>of</strong> Late Sequelae<br />

• Gilchrist and McKee, JSES 2002<br />

• Fragment Excision and UCL Repair<br />

— 5 cases <strong>of</strong> non-union<br />

— Average 10.1 yrs after fracture<br />

— Initial treatment non-op in ALL<br />

— Mayo Elbow Performance Score<br />

• 66 pre-op vs. 91 post-op (p


Takahara et al, JBJS 1998<br />

Natural History<br />

• UNPREDICTABLE !!<br />

— no good criteria to predict healing<br />

— IF healing usually by physeal closure<br />

— late sequelae<br />

– loose bodies<br />

– residual capitellar deformity<br />

– degenerative changes<br />

– Radial head enlargement<br />

Treatment Principles<br />

Guided by lesion classification!<br />

Lesion Classification<br />

• Baumgarten et al, AJSM 1998<br />

• Petrie & Bradley, in DeLee/Drez 2003<br />

Non-Surgical Treatment<br />

• Indications<br />

— Intact, stable lesion<br />

— Lesions without collapse<br />

— No mechanical symptoms<br />

Non-Surgical Treatment<br />

• STOP THROWING<br />

• NSAIDs<br />

• early splinting for acute symptoms<br />

• maintain range <strong>of</strong> motion<br />

• periodic radiographic follow-up<br />

• gradual return to activity when asymptomatic<br />

• ? radiographically healed ?<br />

Results <strong>of</strong> Non-Op Rx<br />

Takahara et al, AJSM 1999<br />

• 24 patients, ages 11-16 (ave 13.3 yrs)<br />

• Rx = activity modification 6 months<br />

• F/up = 5.2 yrs ave<br />

Surgical Indications<br />

• Indications<br />

— Type I Lesions which fail conservative Rx<br />

— UNSTABLE LESIONS = Type II, III, IV<br />

Surgical Technique<br />

• Intact Articular Cartilage<br />

— arthroscopic drilling +/- pinning<br />

— “outside in” technique<br />

— fluoroscopic guidance<br />

— arthroscopic visualization<br />

– do not violate articular cartilage<br />

Surgical Options<br />

• Unstable Articular Cart<br />

— In-situ fixation<br />

— must consider how much subchondral bone backing on<br />

lesional tissue<br />

— “How much is enough” -UNKNOWN<br />

— In situ fixation technically demanding<br />

Surgical Technique<br />

• Unsalvageable Loose Fragment<br />

— Reattachment ONLY if acutely detached, ideal match<br />

— Debridement alone<br />

— Debridement + Micr<strong>of</strong>racture<br />

— Mosaicplasty<br />

– Osteochondral autograft<br />

– Synthetic plugs<br />

Bipolar Lesions<br />

276<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

• Limited Options<br />

— Radial head micr<strong>of</strong>racture<br />

— Radial head resection/replacement<br />

Classification, Treatment, and Outcome <strong>of</strong> OCD <strong>of</strong> the Humeral<br />

Capitellum Takahara et al, JBJS 89-A, 2007<br />

• Review <strong>of</strong> 106 cases<br />

• Mean age 15.3 years<br />

• 36 non-op Rx<br />

• 70 operative Rx<br />

— 55 fragment removal<br />

— 12 fragment fixation<br />

— 3 mosaicplasty<br />

• 7.2 years mean f/up<br />

• Prognostic Factors<br />

— Non-op Group<br />

– Open capitellar physis<br />

– Good elbow ROM<br />

– Localized subchondral bone flattening<br />

— Operative Group<br />

– Closed capitellar physis<br />

– Flex contracture > 20o<br />

– Fragmentation on xray<br />

Results <strong>of</strong> Lesion Debridement<br />

Bauer et al, CORR 1992<br />

• 31 patients<br />

• 23 years ave. f/up<br />

• All Rx’d with fragment removal, debridement<br />

• 50%residual symptoms<br />

— pain, loss <strong>of</strong> extension<br />

• 61% with radiographic degenerative changes<br />

• 58% radial head enlargement<br />

Results <strong>of</strong> Lesion Debridement<br />

Ruch et al (Arthroscopy 1998)<br />

• 12 adolescents<br />

• Debridement alone<br />

• 3.2 yrs follow-up<br />

• 92% satisfied<br />

• 100% capitellar remodeling by x-ray<br />

• 42% radial head enlargement<br />

• 42% lateral capsular avulsion fragment<br />

— Poor prognostic sign<br />

— Recently reiterated by Kocher et al<br />

Results <strong>of</strong> Lesion Debridement<br />

Takahara et al (CORR 1999)<br />

• 53 patients<br />

— 14 non-surgical<br />

— 39 surgical<br />

• Ave. 12.6 yrs f/up<br />

• Lesion Factors<br />

— Chronicity<br />

— Size<br />

— Degenerative changes<br />

• Poor Outcome Predictors<br />

— Lesion size<br />

• > 70% capitellum<br />

— Presence <strong>of</strong> DJD on X-ray<br />

• No Outcome Effect<br />

– Lesion chronicity<br />

Results <strong>of</strong> Lesion Drilling<br />

• Jackson et al, Arthroscopy 1989<br />

— review <strong>of</strong> 9 cases in female gymnasts<br />

— arthroscopy, curettage, drilling, removal <strong>of</strong> loose bodies


277<br />

— average follow-up = 2.9 yrs.<br />

— all noted improvement in symptoms<br />

— 1/9 returned to gymnastics (with pain)<br />

Results <strong>of</strong> Marrow Stimulation Technique<br />

Baumgarten et al (AJSM 1998)<br />

— review <strong>of</strong> 17 elbows<br />

— debridement + abrasion chondroplasty<br />

— Min. follow-up = 24 mos.<br />

— Ave. follow-up = 48 mos.<br />

— 7/9 returned to throwing<br />

— 4/5 returned to gymnastics<br />

— 3/3 returned to presurgery activities<br />

— 8/17 capitellar flattening on x-ray<br />

— 2/17 required reoperation<br />

Mosaicplasty Outcomes<br />

• Yamamoto et al<br />

— AJSM 34, 2006<br />

— 18 baseball players<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

— Mean age 13.6 years<br />

— 9 Unstable In Situ<br />

– All subjectively improved<br />

– No objective improvement<br />

– 6/9 returned to baseball<br />

— 9 Displaced Lesions<br />

– All improved subjectively and objectively<br />

– 8/9 returned to baseball<br />

• Iwasaki et al<br />

— AJSM 34, 2006<br />

— 8 baseball pitchers<br />

— Mean f/up = 24 months<br />

— 7/8 pain free<br />

— All grafts incorporated by x-ray and MRI<br />

— 6/8 returned to pitching<br />

Closing Wedge Valgus Humeral Osteotomy<br />

Kiyoshige Y. et al; AJSM 28, 2000<br />

Thank You


278<br />

Stop (SportS trauma aNd overuSe preveNtioN):<br />

a paradigm For the preveNtioN oF youth SportS iNJurieS<br />

aNd how you CaN get iNvolved<br />

James R. Andrews, MD<br />

The Problem<br />

1. 30 million children participate in organized sports. (Source:<br />

Safe Kids USA)<br />

2. Participation in high school athletics is increasing, with more<br />

than 7.3 million high school students participating annually.<br />

(Source: National Federation <strong>of</strong> State High School Associations)<br />

3. High school athletics account for more than 2 million injuries<br />

annually, including:<br />

a. 500,000 doctor visits<br />

b. 30,000 hospitalizations<br />

(Source: Centers for Disease Control and Prevention)<br />

4. Young athletes are specializing in sports (and positions) at an<br />

earlier age, with more than 3.5 million children under age 14<br />

treated annually for sports injuries. (Source: Safe Kids USA)<br />

5. Immature bones, insufficient rest after injury, and poor training<br />

and conditioning contribute to overuse injuries.<br />

6. Overuse injuries account for half <strong>of</strong> all sports injuries in middle<br />

school and high school. (Source: Safe Kids USA)<br />

The Lasting Problem: A child’s history <strong>of</strong> injury is…..<br />

1. A risk factor for future injury during both their youth and<br />

adulthood.<br />

2. A contributor to longαterm degenerative diseases, such as<br />

osteoarthritis.<br />

3. 70% <strong>of</strong> kids participating in sports drop out by the age <strong>of</strong> 13<br />

because <strong>of</strong><br />

a. Adults<br />

b. Coaches<br />

c. Parents<br />

These children lose the benefits <strong>of</strong> exercise, teamwork and<br />

healthy competition!<br />

What is Overuse?<br />

Overuse is considered excessive and repeated use that results in<br />

injury to the bones, muscles or tendons involved in the action.<br />

Why are Injuries on the Rise?<br />

1. Immature bones<br />

2. Insufficient rest after an injury<br />

3. Poor training or conditioning<br />

4. Specialization in just one sport<br />

5. Year-round participation<br />

What Can We Do to Prevent Overuse and Trauma Injuries?<br />

1. Promote injury prevention on multiple levels, including:<br />

a. Learning about the STOP Sports Injuries campaign and<br />

visiting www.STOPSportsInjuries.org for resources<br />

b. Holding ongoing discussions with athletes about the<br />

importance <strong>of</strong> rest<br />

c. Mandating preαseason physicals<br />

d. Requiring warmαup and coolαdown routines<br />

e. Encouraging proper strength training routines<br />

f. Be sure kids drink enough water based on activity and<br />

temperature levels.<br />

g. Educate athletes on proper nutrition for performance.<br />

h. Supervise equipment maintenance.<br />

i. Encourage kids to speak with an athletic trainer, coach or<br />

physician if they are having any pain.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

j. Work with local athletic governing bodies to mandate pitch<br />

counts and limit the number <strong>of</strong> matches or tournaments<br />

played.<br />

k. Encourage participation for fun and limit emphasis on<br />

winning.<br />

l. Discourage early specialization.<br />

m. Treat symptoms <strong>of</strong> problems/injury EARLY.<br />

Proper Technique is Key<br />

1. Provide proper instruction on throwing mechanics.<br />

a. Discourage the teaching <strong>of</strong> curve balls until high school<br />

(after puberty).<br />

b. Ban the radar gun in youth sports.<br />

c. Mandate a threeαmonth “rest period” each year for throwing<br />

athletes.<br />

Organizational Partners for STOP Sports Injuries Campaign<br />

1. Sports Medicine Organizations<br />

a. <strong>American</strong> <strong>Orthopaedic</strong> Society for Sports Medicine<br />

b. National Athletic Trainers’ Association<br />

c. <strong>American</strong> Medical Society for Sports Medicine<br />

d. <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons<br />

e. <strong>American</strong> <strong>Academy</strong> <strong>of</strong> Pediatrics – Sports Section<br />

f. National Strength and Conditioning Association<br />

2. Related Organizations<br />

a. Youth Sports Leagues (Little League)<br />

b. Pr<strong>of</strong>essional Leagues<br />

c. Medical Institutions (Cleveland Clinic)<br />

d. Safe Kids USA<br />

Campaign Focuses on 12 Sports<br />

1. Baseball<br />

2. Swimming<br />

3. Football<br />

4. Basketball<br />

5. Cheerleading<br />

6. Tennis<br />

7. Dancing<br />

8. Gymnastics<br />

9. Soccer<br />

10. Running<br />

11. Volleyball<br />

12.S<strong>of</strong>tball<br />

Educational Content<br />

1. Sports tips (Sportαspecific information)<br />

2. Video Podcasts<br />

3. Specific educational tool kits focused on various audiences<br />

a. Parents<br />

b. Athletes<br />

c. Coaches<br />

d. Healthcare providers<br />

Web Site resources<br />

1. Educational resources<br />

2. Media center<br />

3. Downloadable applications<br />

4. Online survey<br />

5. Quizzes


6. Blogging<br />

7. RSS feeds<br />

8. Social media interaction through Facebook and Twitter<br />

What Does the Future Hold?<br />

1. Better prevention <strong>of</strong> injury<br />

2. Evaluation <strong>of</strong> new, less invasive surgical techniques to treat<br />

injuries<br />

3. Ongoing research to understand the injury risk and how to<br />

prevent it<br />

4. Continued rise in injury rates unless education is increased<br />

279<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pEdiATRiCS<br />

Other Resources<br />

www.STOPSportsInjuries.org<br />

www.orthoinfo.org<br />

www.nata.org<br />

www.sportsmed.org<br />

www.SAFEKids.org<br />

Let’s Work Together to STOP Sports Injuries And Keep Kids in<br />

the Game for Life!


280<br />

hoSpital-baSed employmeNt oF<br />

orthopaediC SurgeoNS: paSSiNg treNd<br />

or New paradigm? (l)<br />

Moderator: Kevin J. Bozic, MD, San Francisco, CA<br />

We will evaluate the factors that favor provider alignment and the pros/cons <strong>of</strong> hospital-based employment from the<br />

physician, hospital, payer, patient, and healthcare system perspectives.<br />

I. Overview<br />

Kevin J. Bozic, MD, San Francisco, CA<br />

II. Current Trends in Hospital Employment <strong>of</strong> Specialists<br />

John Cherf, MD, Chicago, IL<br />

III. A View from the Trenches: Pros and Cons Hospital-Based Employment<br />

Martin W. Roche, MD, Ft. Lauderdale, FL<br />

IV. Am I Ready to be an Employee?<br />

Samuel G. Agnew, MD, Florence, SC<br />

V. The Hospital’s Perspective on Specialist Employment and Alignment<br />

Richard Afable, MD, Newport Beach, CA<br />

VI. Discussions, Questions & Answers<br />

All Faculty<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE


281<br />

hoSpital-baSed employmeNt oF orthopaediC SurgeoNS:<br />

paSSiNg treNd or New paradigm?<br />

Kevin J. Bozic, MD, MBA<br />

1. Overview: Current Trends in Hospital Employment <strong>of</strong><br />

Specialists<br />

a. Early 1990’s hospitals acquire primary care physician<br />

practices<br />

i. Increasing market share by controlling referrals <strong>of</strong><br />

patients enrolled in managed care plans and increasing<br />

negotiating leverage with managed care organizations.<br />

ii. Employment relationships hastily developed, with very<br />

little foresight and planning regarding the goals and<br />

responsibilities <strong>of</strong> each party.<br />

iii. Importance <strong>of</strong> physician leadership, accountability, and<br />

cultural differences between hospitals and physician<br />

practices were grossly underestimated.<br />

iv. Most <strong>of</strong> these relationships resulted in financial losses<br />

and were divested by the end <strong>of</strong> the decade (Reese SM<br />

2010) (Berenson, Ginsburg et al. 2007) (Casalino and<br />

Robinson 2003).<br />

b. Since the mid-late 2000’s, there has been an increasing trend<br />

towards hospital acquisition and employment <strong>of</strong> specialist<br />

physicians.<br />

i. Physician recruiting agencies note that hospitals<br />

are among their fastest growing clients, and now<br />

compromise the largest percentage <strong>of</strong> their physician<br />

recruiting activity.<br />

ii. Specialist physicians, including orthopaedic surgeons,<br />

are among the most common hospital-based physician<br />

recruitments (Merritt Hawkins & Associates (MHA)<br />

2009).<br />

2. Overview: Factors Driving Trends in Hospital Employment <strong>of</strong><br />

Specialists<br />

a. Factors Driving Trends: Hospital Perspective<br />

i. Gain/preserve market share<br />

ii. Eliminate competition<br />

iii. Stabilize medical staff (clinical needs, E.R. call, indigent<br />

care)<br />

iv. ‘Control’ physicians<br />

v. ‘Enterprise development’ (halo effect0<br />

vi. Reduce operating costs through alignment (supply chain)<br />

vii.Rationalize large capital investments (e.g., EHR)<br />

viii. Help implementing Quality Initiatives<br />

ix. Health Reform (ACO’s, bundled payments)<br />

b. Factors driving Trends: Physician perspective<br />

i. Declining pr<strong>of</strong>essional reimbursement<br />

ii. Rising overhead<br />

iii. Increasing regulation (e.g., Stark, anti kick-back)<br />

iv. Uncertainty about the future<br />

v. Off-load financial, regulatory risk<br />

vi. Desire to reduce administrative burden, focus on clinical<br />

care (HR, Payroll, Capital Budgeting, etc)<br />

vii.Lack <strong>of</strong> formal business training<br />

REFERENCES<br />

1. Agnew SA, Henley MB, Nepola J and Bray T (2008). The Business <strong>of</strong><br />

<strong>Orthopaedic</strong> Trauma: cause and effect <strong>of</strong> failure. OTA-AAOS Branded<br />

Symposium, AAOS <strong>Annual</strong> <strong>Meeting</strong>. San Francisco, CA. Developing a<br />

Hospital-Physician Alignment Strategy: Employment Is Not the Only Answer.<br />

Great Boards; 2008.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

viii. Generational, lifestyle factors<br />

c. Other factors driving trend towards hospital employment <strong>of</strong><br />

orthopaedic surgeons<br />

i. Health care policy and reimbursement trends<br />

ii. Vertically integrated delivery networks (Intermountain<br />

Health Care, Geisinger Health System, and the Mayo<br />

Clinic)<br />

3. Potential Benefits <strong>of</strong> Employment Model<br />

a. Improved quality and efficiency <strong>of</strong> care<br />

b. Vertically integrated, coordinated care<br />

c. Seamless transitions between inpatient, outpatient care<br />

d. Shared EHR<br />

e. Alignment <strong>of</strong> incentives => improved financial performance<br />

f. Increased access to quality improving, cost-saving<br />

technologies (e.g, EHR, inventory management)<br />

g. Contracting leverage<br />

h. Supply chain<br />

i. Payers (bundled payments, ACO’s)<br />

j. Ability to treat patients regardless <strong>of</strong> payer mix<br />

k. Shared accountability, responsibility, and rewards<br />

l. Increase patient satisfaction<br />

4. Potential Risks <strong>of</strong> Employment Model<br />

a. Decreased productivity<br />

b. Less efficient site <strong>of</strong> service (increased cost) for certain<br />

services (e.g., imaging, ASC v. HOPS, etc.)<br />

c. Decreased competition<br />

d. Fewer checks and balances<br />

e. Decreased choice for patients<br />

f. Legal exposure to anti kick-back statutes<br />

g. Loss <strong>of</strong> pr<strong>of</strong>essional autonomy<br />

h. Fragmentation <strong>of</strong> the pr<strong>of</strong>ession<br />

i. Impact on pr<strong>of</strong>essional society involvement<br />

5. Keys to Successful Partnership<br />

a. Clear understanding <strong>of</strong> roles, responsibilities<br />

b. Well-defined goals, performance metrics<br />

c. Sustainable, patient-centric value creation<br />

d. Quality, efficiency<br />

e. Legal considerations (commitment <strong>of</strong> resources, dispute<br />

resolution, exit strategy, indemnification)<br />

f. Strong physician leadership (problem solvers)<br />

g. Visionary hospital administrators<br />

h. Integration <strong>of</strong> cultures<br />

i. Mutual trust, respect<br />

6. Questions still remain<br />

a. Sustainability<br />

b. Impact <strong>of</strong> health reform<br />

c. Challenges/Opportunities<br />

d. Important for our leadership, membership to understand<br />

implications, factors necessary for success<br />

2. Berenson, R. A., P. B. Ginsburg and J. H. May (2007). “Hospital-physicians<br />

relations: cooperation, competition, or separation?” Health Aff (Millwood)<br />

26(1): w31-43. Buschmann JR and Bozic KJ (2009). “Hospital-physician<br />

alignment: Passing trend or a new paradigm?” AAOS Now 3:10.<br />

3. Casalino, L. and J. C. Robinson (2003). “Alternative models <strong>of</strong> hospitalphysician<br />

affiliation as the United States moves away from tight managed<br />

care.” Milbank Q 81(2): 331-51, 173-4.


4. Casalino, L. P., E. A. November, R. A. Berenson and H. H. Pham (2008).<br />

“Hospitalphysician relations: two tracks and the decline <strong>of</strong> the voluntary<br />

medical staff model.”<br />

Health Aff (Millwood) 27(5): 1305-14.<br />

5. Eisenberg SA. http://www.physiciansnews.com/2009/02/04/the-boomerangeffecthospital-employment-<strong>of</strong>-physicians-coming-back-around.<br />

Warminster,<br />

PA. Accessed February 14 2009.<br />

6. Health Leaders Magazine. http://www.healthleadersmedia.com/content/<br />

HOM203629/Ties-That-Bind-Developing-HospitalPhysician-Alignment.<br />

html##. Accessed July 2010.<br />

282<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

7. Medical Group Management Association (MGMA). http://www.mgma.com/<br />

press/default.aspx?id=34032. Accessed July 2010.<br />

8. Medical Group Management Association (MGMA). http://www.mgma.com/<br />

WorkArea/DownloadAsset.aspx?id=33964. Accessed July 2010.<br />

9. 2009 Review <strong>of</strong> Physician and CRNA Recruiting Incentives. 2009.<br />

10. Episode-Based Payments: Charting a Course for Health Care Payment<br />

Reform. National Institute for Health Care Reform Policy Analysis; 2010.<br />

11. Physician-Hospital Employment: Gaining Ground, but What’s Beyond the<br />

Bend? Medscape Business <strong>of</strong> Medicine; 2010.


283<br />

hoSpital-baSed employmeNt oF orthopaediC SurgeoNS:<br />

paSSiNg treNd or New paradigm?<br />

John Cherf MD, MPH, MBA<br />

I. <strong>Orthopaedic</strong>s has traditionally been a lucrative specialty and<br />

a key source or revenue for healthcare providers<br />

• Demand forecasting for orthopedic services over the next<br />

ten years suggests moderate inpatient growth and strong<br />

outpatient growth<br />

• There will also be a significant physician shortage that may<br />

double during the next ten years. The demand for orthopedic<br />

surgeons will continue to outpace the supply<br />

II. Centers <strong>of</strong> Medicare and Medicaid Services (CMS) covers<br />

more insured lives than any other payer and is expected to<br />

grow in the future<br />

• In order to help control healthcare costs, CMS is moving<br />

toward value-based purchasing. This is transforming CMS<br />

from a passive payer to an active purchaser <strong>of</strong> high-quality,<br />

efficient care<br />

III. New payment pilots and programs are clearly defined in the<br />

Patient Protection and Affordable Care Act<br />

• A continuum <strong>of</strong> payment models is emerging<br />

• New payment models are a deviation from fee-for-service<br />

and traditional capitation<br />

IV. Commercial and private payers are also taking a role in<br />

shaping programs for their patients in order to reduce costs<br />

and improve quality<br />

• Gatekeeper models<br />

— Achieve cost savings by creating barriers to surgical<br />

consults<br />

— Require authorization and precertification<br />

— Reduce surgery and imaging utilization<br />

REFERENCES<br />

1. <strong>Orthopaedic</strong> Practice and Medical Income in the US 2008. AAOS<br />

Department <strong>of</strong> Research and Scientific Affairs. June2009.<br />

2. Centers for Medicare&Mediciad Servces. 2007.<br />

3. The Health Care Acquisition Report, Fifteenth Edition. Irving Levln<br />

Associates Inc. 2009.<br />

4. Merritt Hawkins & Associates. 2008.<br />

5. Orthoindex Analysis. 2009.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

• Value Designations<br />

— Uniformly elevate the level and quality <strong>of</strong> care<br />

— Achieve cost savings by steering patients to high-quality,<br />

low-cost providers<br />

• Patients may be incentivized to use “high-quality” providers<br />

V. Tighter Hospital-physician alignment improves performance<br />

and value<br />

VI. Macroeconomic trends suggest that physicians have<br />

experienced larger decreases in payment than other<br />

healthcare stakeholders<br />

• The SGR has dramatically impacted physician payment<br />

• Orthopedic surgeons remain a highly compensated provider<br />

and a significant source <strong>of</strong> revenue for hospitals<br />

• A physician cost/benefit analysis suggests that hospital<br />

employment <strong>of</strong> orthopedic surgeons is a reasonable<br />

investment <strong>of</strong> capital<br />

VII. Hospital-physician integration is reemerging<br />

• The dynamics <strong>of</strong> orthopedic surgeons practices are changing<br />

• Provider collaboration can be achieved through a spectrum<br />

<strong>of</strong> options<br />

• More orthopedic surgeons engaging in formal hospital<br />

relationships<br />

• What is the up side and what are the risks?<br />

VIII. There is no “one size fits all”<br />

• Opportunity and Alternatives<br />

• Compensation and Governance<br />

• Regulatory considerations and legal exposure<br />

6. Page L. Physician Shortages impede hospitals’ service linedevelopment.<br />

http://www.beckershospitalreview.com/news-analysis/physician-shortagesimpedehospitals-service-line-development.html.<br />

Accessed May 2010.<br />

7. Medicare Hospital ValueBased Purchasing Plan. Senate Finance Committee<br />

Rountable March 62008Sg2 analysis. 2009.<br />

8. Sg2 Analysis. 2009.<br />

9. The Henry J Kaiser Family Foundation. Health Reform Implementation<br />

Timeline. Accessed September 2010.


284<br />

aN employed phySiCiaN’S perSpeCtive<br />

Martin Roche, MD<br />

Why it Started:<br />

• 1996 significant penetration <strong>of</strong> HMO’s<br />

• MD : Loss <strong>of</strong> “Practice Value “ to sell<br />

• Practice Expenses increasing<br />

• Debt and start up costs for New Surgeons<br />

• Managing an <strong>of</strong>fice and support staff more difficult<br />

• Reimbursements Declined<br />

• Dealing with government regulations were becoming more<br />

onerous and complicated<br />

• Referral Patterns Changed<br />

— physicians affiliated with integrated networks ( panels ) in<br />

order to receive new business and referrals<br />

Top 10 Issues for Doctors in 2010-11-10<br />

Dealing with rising operating costs (that are rising more rapidly than<br />

revenues, 2008, 2009) Managing finances with the uncertainty <strong>of</strong><br />

Medicare reimbursement rates Selecting and implementing a new<br />

electronic health record system Maintaining physician compensation<br />

levels (in an environment <strong>of</strong> declining reimbursement, 2008, 2009)<br />

Recruiting physicians Collecting from self-pay, high-deductible health<br />

plan and/or Health Savings Account patients Negotiating contracts<br />

with payers Managing teamwork and group dynamics among<br />

physicians Modifying your physician compensation methodology<br />

Participating in the Medicare Physician Quality Reporting Initiative<br />

Model <strong>of</strong> Multispeciality Hospital Based Group<br />

Initial Orthopedic Group <strong>of</strong> 10 Surgeons 1996<br />

4 Joint Surgeons / 2 Foot and ankle / 3 sports / 1 general<br />

Hired 4 out <strong>of</strong> training (podiatrist, 2 Physiatrists, 1 joint)<br />

2 independent surgeons joined 2007<br />

5 man local group joined 2008<br />

Benefits:<br />

• Early Risk Reduction<br />

1.) Guaranteed Salary – No start up costs (401K, Medical,<br />

Disability, Life, Malpractice)<br />

2.) Leveraged Insurance Negotiations<br />

3.) Hospital Facility / Technical Fee (Office visit, x-ray,<br />

procedures)<br />

4.) Ortho Director and Management<br />

Billing / Collections / Coding<br />

5.) No “buy in “ to “Partner”<br />

6.) Your Employees are Hospital Employees (HR, salary, etc..)<br />

7.) One Hospital based practice – improved efficiencies with<br />

less FTE’s<br />

8.) In- House Legal team for medical defense, define emerging<br />

legal relationships for Hospital – Surgeon<br />

9.) Hospital In house recruitment team<br />

10.) Improved Communication (Team approach with staff and<br />

Hospital)<br />

Group Multispeciality Benefits:<br />

• Multispecialty Referral Base<br />

• Inter- group referral (subspecialists)<br />

• Leverage with numbers in negotiations<br />

• Equal Shared Ancillaries / Individual Overhead<br />

• Paid ER call, call 1/10 weeks<br />

• Experienced First Call PA/ nurses<br />

• Efficient OR staff, 2 rooms for >6 cases/ Day<br />

• Fully dedicated <strong>Orthopaedic</strong> Floor<br />

Individual Surgeon Contracted with Hospital Employment<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Models<br />

• Salary<br />

• RVU (relative value units)<br />

• Fee for Service<br />

• Concierge / Out <strong>of</strong> Network<br />

Ancillaries<br />

• Joint – Venture ASC<br />

• Physical Therapy (Designated Health Care Service)<br />

• MRI<br />

• DME<br />

• Stark Law Prevail<br />

Purchasing<br />

• Office Equipment (hospital chain discounts )<br />

• DME/ Digital X-ray/ EMR<br />

• Hospital Builds out New Facilities with low rent (FMV)<br />

• Implant Negotiations<br />

— Open access – no technology limitations<br />

— Work collectively to support hospital<br />

— No gain sharing to date<br />

Research:<br />

• In house research capabilities<br />

• Full time research position<br />

• IRB<br />

• Institute Designation allows patient gifts, donations that are<br />

designated for <strong>Orthopaedic</strong> research<br />

• Improved data collection with hospital- <strong>of</strong>fice -PT<br />

Marketing:<br />

• Fully Budgeted Marketing Team<br />

• Website Development<br />

• Educational Seminars<br />

• Close News contacts<br />

Disclosures<br />

• Physician Industrial Relationships<br />

• Any entity that does business with the Hospital<br />

• Surgeon retains all his/ her IP<br />

Potential Negatives <strong>of</strong> an Employment Contract:<br />

• Long term contract with 1 year release<br />

• You have a “boss”<br />

• Heavy Medicare oversight – corporate compliance – coding- etc..<br />

• Local Non-Compete in Contract<br />

• Cannot prevent a “ hire” MD/ Adm etc…<br />

• No Practice to “sell” – Develop Hospital Name vs Individual?<br />

• Non- for –Pr<strong>of</strong>it status adds regulations (FMV etc..)<br />

• Relationship with CEO can change<br />

• Your importance is based on volume and present pr<strong>of</strong>itability<br />

for the hospital “Service Line”<br />

• Minimal pre-tax deductions vs solo (PA)<br />

• No Equity in Individual Practice<br />

• Slow integration <strong>of</strong> EMR – S<strong>of</strong>tware systems for whole medical<br />

grp and hospital<br />

OUTLINE FOR SUCCESS REQUIRES<br />

• Trust and openness from beginning with Administration (Chief<br />

/ Board / <strong>Meeting</strong>s)<br />

• Work as a team regarding strategy to providing superior patient<br />

care “Integrated Care Pathways”<br />

• Educate surgeons on Hospital decisions and constraints while<br />

maintaining personnel autonomy regarding patient care


• Aligned Mission and Philosophy with a Growth Plan<br />

• Develop a multispecialty Orthopedic group - allows expertise,<br />

inter referrals, minimizes competition, hiring decisions<br />

• Joint surgeons need to develop a strong relationship with<br />

hospital to navigate future reimbursement strategies and<br />

technology advancements<br />

REFERENCES<br />

1.) Hospital-physician alignment: Passing trend or a new paradigm? By Jacque<br />

Roche Buschmann and Kevin J. Bozic, MD, MBA<br />

2.) http://www.aaos.org/news/aaosnow/oct09/reimbursement3.asp<br />

3.) http://www.hospitalimpact.org/index.php/leadership/2006/10/11/physician_<br />

employme nt_the_other_capital_e<br />

4.) http://www.mgma.com/press/default.aspx?id=34032<br />

5.) http://www.mgma.com/WorkArea/mgma_downloadasset.aspx?id=33964<br />

285<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Build the foundation to respond to a dynamic healthcare<br />

delivery system<br />

• Bundled Payment to hospital – MD<br />

ACO’s (Accountable Care Organizations)<br />

• Define Clinical Pathways / PQRI / EMR<br />

• Comparative Effectiveness<br />

• Outcome Registries / Pay for Performance<br />

• Pr<strong>of</strong>it Sharing / Stark / Implant Decisions<br />

• Income Options as Reimbursement Decreases<br />

6.) http://www.mgma.com/stark/<br />

7.) http://physicianlaw.foxrothschild.com/2009/08/articles/fraud-andabuse/<br />

hospitalphysician-employment-compensation-may-run-afoul-<strong>of</strong>-stark/<br />

8.) http://www.greatboards.org/newsletter/reprints/GB-2008-Winter-Hospital-<br />

Physician-Alignment-Strategy-reprint.pdf<br />

9.) http://www.healthleadersmedia.com/content/HOM-203629/Ties-That-Bind-<br />

Developing-HospitalPhysician-Alignment.html##


Seek outside help to achieve your intended goal:<br />

Resources:<br />

AAOS Practice Management:<br />

http://www3.aaos.org/member/prac_manag/prac_manage.cfm<br />

http://www3.aaos.org/member/prac_manag/company/<br />

res_intro.cfm<br />

Legal: Fox Rothschild LLP: http://www.foxrothschild.com/<br />

Background:<br />

• How did you arrive at the decision to be an Employed Surgeon;<br />

< 25% <strong>of</strong> all <strong>Orthopaedic</strong> Surgeons are full time employees <strong>of</strong> a<br />

facility or Health System?<br />

— Recruiter Techniques/Tactics<br />

— Right Location<br />

— Right Compensation<br />

• What problem or strategic plan did employing a surgeon fix or<br />

compliment?<br />

— Market acquisition or niche program development?<br />

— Call Panel support?<br />

— Ancillary Revenue Maintenance?<br />

• What strategic component <strong>of</strong> your career plan did being<br />

employed by your Institution accomplish?<br />

— Are these compatible plans/goals?<br />

• What pro forma was produced to justify said position?<br />

— What methodologies for growth in your sector are budgeted<br />

for?<br />

• What contract review process was undertaken?<br />

— Contract attorney?<br />

— Mentor, Fellowship director, Co-worker?<br />

• SWOT Analysis?<br />

• Operational Issues: The Successful Surgeon<br />

• The Contract (PSA) is the tool for ultimate success, in its generic<br />

(template) form it is nothing more than a compensation<br />

formula with a 90, 120, or 180 day out.<br />

Operational Issues: The Successful Surgeon<br />

• Defined Expectations and Deliverables and the accordant<br />

timeline.<br />

• Institutional and Individual performance guarantees<br />

• Operational Authority<br />

• Process improvement authority<br />

• Service Line re-investment formulae<br />

Aligned Interests:<br />

• Sustainable performance-based model capable <strong>of</strong> yearly<br />

improvements in both surgeon lifestyle and Institution<br />

Contribution Margin<br />

• Growth Objectives<br />

— Anatomic<br />

— Geographic markets<br />

Metrics: Transparent and reportable<br />

• New Physician acquisitions<br />

• Cost Containment<br />

• Enterprise Effects<br />

• Satisfaction surveys<br />

BIBLIOGRAPHY<br />

Database Queries:<br />

1. U.S Department <strong>of</strong> Health and Human Services: Agency for Healthcare<br />

Research and Quality: H-CUP.net http://hcupnet.ahrq.gov/. Accessed<br />

September 1, 2010<br />

286<br />

the eFFeCtive employed SurgeoN<br />

Samuel G. Agnew MD FACS<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

The Generational changes that have occurred through evolutional<br />

developments in the personalities <strong>of</strong> our colleagues is real, and has<br />

been a factor driving the Employment sector as Millennials seek<br />

change from the norm as an over-arching belief/quest, combined<br />

with having work restricted training.<br />

Decision-bias: The perception that only 2 options (private or<br />

employed) exist there is a natural shift to the new alternative.<br />

Hospitals and Health Systems by and large do not want to<br />

employ legions <strong>of</strong> physicians; however it has become a bona fide<br />

strategy and the only new <strong>Orthopaedic</strong> strategy.<br />

• Reluctant employer who seeks above all else compliance and<br />

consistency.<br />

Consequences noted from the employed sector:<br />

1. Loss <strong>of</strong> Autonomy<br />

2. Compliance supersedes creativity and ingenuity<br />

3. Service Line development supersedes Career Development<br />

4. Medical Staff societal impacts<br />

The unique culture that is <strong>Orthopaedic</strong> Surgery has not universally<br />

been developed in the employed sector, service lines consisting <strong>of</strong><br />

combined lines: <strong>Orthopaedic</strong>s, General Surgery, and Neurosurgery<br />

are <strong>of</strong>tentimes too disparate culturally given temporal, technological,<br />

and clinical diversities to be universally managed even with Physicianled,<br />

Pr<strong>of</strong>essionally managed ethos.<br />

Effective Employed Surgeons:<br />

I. Design processes that generate mutual Value.<br />

II. Create standardized protocols and pathways that reduce waste<br />

or loss, and streamline processes.<br />

III. Produce annual growth-anatomic and geographic.<br />

IV. Improve performance <strong>of</strong> individual and institution on a regular<br />

(and reportable) basis.<br />

V. Place Institution over Individual needs<br />

VI. Physicians become strategic partner & core customer<br />

VII. Operate under a Performance-based model.<br />

VIII. Undergo some form <strong>of</strong> Best-fit analysis pre-induction.<br />

Alternatives do exist that deliver personal freedom returns, autonomy,<br />

and mutual success, and value: however require a unique personal<br />

skill set on behalf <strong>of</strong> the practitioner that must be either identified or<br />

developed. Being an MD does not = Strong Leadership by decree.<br />

I. Hospital-Within-a-Hospital model<br />

a. Dedicated service executive required<br />

b. Executive Management committee<br />

II. Management Service Organization: MSO<br />

a. Physician management and Leadership opportunity<br />

III. 3rd Party Management:<br />

a. Generally reserved for a comprehensive fracture or Trauma<br />

specific service<br />

Value, Performance and Leadership are the pillars <strong>of</strong> a successful<br />

Hospital-Physician Alliance on any level in any model.<br />

2. <strong>American</strong> College <strong>of</strong> Emergency Physicians Survey: www.acep.org/WorkArea/<br />

downloadasset.aspx?id=8974. Accessed September 1, 2010<br />

3. Institute <strong>of</strong> Medicine Report: http://www.iom.edu/CMS/3809/16107/35007.<br />

aspx. Accessed September 1, 2010


4. <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons. Hospital Employment <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgeons. A Primer for <strong>Orthopaedic</strong> Surgeons. March 2010<br />

http://www3.aaos.org/member/prac_manag/prac_manage_cfm<br />

5. <strong>American</strong> Hospital Association Rapid Response Survey, Telling the Hospital<br />

Story Survey March 2010 http://www.aha.org/aha/research-and-trends/<br />

health-and-hospital-trends/2010.html Accessed September 2, 2010<br />

6. <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons 2008 Member Census<br />

http://www3.aaos.org/research/opus/2008CensusMembers.cfm Accessed<br />

September 1, 2010.<br />

7. United States Department <strong>of</strong> Labor Bureau <strong>of</strong> Labor Statistics, http://www.<br />

bls.gov/oco/ocos074.htm Accessed September 3, 2010 Merritt Hawkins: 2010<br />

Inpatient/Outpatient Revenue Survey. Accessed September 2, 2010<br />

8. http://www.merritthawkins.com/pdf/2010revenuesurvey.pdf<br />

9. Institute <strong>of</strong> Medicine <strong>of</strong> the National Academies, Committee on the Future<br />

<strong>of</strong> Emergency Care in the United States Health System: Hospital-Based<br />

Emergency Care At The Breaking Point. The National Academies Press,<br />

Washington D.C. www.nap.edu http://www.nap.edu/openbook.php?record_<br />

id=11621&page=R1 Accessed September 1, 2011<br />

General References:<br />

10. Covey S: 7 Habits <strong>of</strong> Highly Effective People New York: Simon and Schuster,<br />

1994 (ISBN -684-80203-Nordt JC III: The coming manpower shortage<br />

in Medicine. AAOS Now.February 2009 Issue http://www.aaos.org/news/<br />

aaosnow/feb09/youraaos8.asp Accessed September 1, 2010.<br />

11. Borges NJ, Manuel S, Elam CL, Jones BJ: Comparing Mellenial and<br />

Generation X Medical Students at One Medical School. Academic Medicine,<br />

Vol.81, No. 6, 571-576. 2006<br />

12. Agnew SA, Vallier H: Career and Practice Management Issues in <strong>Orthopaedic</strong><br />

Trauma, <strong>Orthopaedic</strong> Knowledge Update 4, Koval K, section editor, AAOS<br />

publication, September 2010<br />

13. Berenson RA, Ginsburg PB, May JH: Hospital-Physicians Relations:<br />

Cooperation, Competition, or Separation? Health Affairs, 26, no. 1 (2007):<br />

w31-w43 (Published online 5 December 2006) Retrieved January 12, 2007<br />

www.healthaffairs.org http://content.healthaffairs.org/cgi/content/full/26/1/<br />

w31 doi: 10.1377/hlthaff.26.1.w31. Accessed September 1, 2010<br />

14. Budetti, PR., Shortell, SM., Waters, TM., Alexander, JA., Burns, LR., Gillies,<br />

RR., et al.: Physician and health system integration, Health Affairs, Vol. 21,<br />

No.1, 2002, pp. 203–210.<br />

287<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

15. Casalino LP, November EA, Berenson RA, Pham HH Hospital-Physician<br />

Relations: Two Tracks and The Decline Of The Voluntary Medical Staff<br />

Model, Health Affairs, 27, no. 5 (2008): 1305-1314. www.healthaffairs.<br />

org http://content.healthaffairs.org/cgi/content/abstract/27/5/1305 doi:<br />

10.1377/hlthaff.27.5.1305 Accessed January 12, 2010<br />

16. Cortese, D, Smoldt R: Taking Steps Toward Integration<br />

Health Affairs, 26, no. 1 (2007): w68-w71 (Published online 5 December<br />

2006) www.healthaffairs.org<br />

http://content.healthaffairs.org/cgi/content/full/26/1 doi: 10.1377/<br />

hlthaff.26.1.w68 Accessed September 1, 2010<br />

17. Eisenberg SA: The Boomerang Effect: Hospital Employment <strong>of</strong> Physicians<br />

Coming Back Around. , www.physiciansnews.com<br />

http://www.physiciansnews.com/2009/02/04/the-boomerang-effect-hospitalemployment-<strong>of</strong>-physicians-coming-back-around<br />

Accessed September 1, 2010<br />

18. Fabrizio NA, Bohlmann RC: Integrated Delivery Systems: Ensuring Successful<br />

Physician-Hospital Partnerships. Medical Group Management Association<br />

Publication pp. 57-87, 2010.<br />

19. Gillies RR, Zuckerman HS, Burns LR, Shortell SM, Alexander JA, Budetti PP,<br />

Waters TM.: Physician-system relationships: stumbling blocks and promising<br />

practices. Med Care. 2001 Jul;39 (7 Suppl 1):I92-106.<br />

20. Hauser M: “The ups and downs <strong>of</strong> managing employed physicians - Medical<br />

Management: A Pr<strong>of</strong>ession in Transition”. Physician<br />

Executive. FindArticles.com. Retrieved 25 Jan, 2010. http://findarticles.com/p/<br />

articles/mi_m0843/is_n5_v21/ai_16881953/<br />

21. Warren, BJ: Employed Specialists: Is It The Right Service Line Strategy?<br />

Accelero Health Partners White Paper, November 2009,<br />

Retrieved February2010 www.accelerohealth.com/assets/file/Employed_<br />

Specialists11_09(1).pdf<br />

22. White J: Putting a dollar figure on a Doctors worth to a Hospital. Retrieved<br />

Wall Street Journal On-Line April 2010. www.wsj.com http://blogs.wsj.com/<br />

health/2010/03/17/putting-a dollar-figure-on-a-doctors-worth-to-a-hospital/<br />

Accessed September 2, 2010<br />

23. Ziran BR, Barrette-Grischow MK, Marucci K: Economic Value <strong>of</strong> <strong>Orthopaedic</strong><br />

Trauma: The (Second to) Bottom Line J. Orthop<br />

Trauma Vol 22, No 4, 227-233. 2008


288<br />

employed orthopediSt: the Strategy oF laSt reSort<br />

Richard Afable, MD, MPH<br />

1. Challenges for Hospitals and Physicians<br />

• Health Care Reform<br />

• Changing Consumer Expectations<br />

• Demographic Shifts Among Doctors<br />

2. “Know Your Circumstances”<br />

• Critical Elements <strong>of</strong> Personal and Organizational Strategy<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

3. Aligned Incentives (or Not)<br />

• Medical Staff<br />

• Employment<br />

• Other Options: Joint Venture, Co-Managment, Shared<br />

Savings, ACO<br />

4. Hoag Orthopedic Institute: Case Study<br />

5. Conclusion and Recommendations


289<br />

healthCare reForm bill:<br />

paSt, preSeNt aNd Future (S)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Moderator: John J. Callaghan, MD, Iowa City, IA<br />

The health care reform act (The Patient Protection and Affordable Care Act <strong>of</strong> 2010) is now law. The purpose <strong>of</strong> this symposia<br />

is to outline the events leading up to the enactment <strong>of</strong> the law as well as to outline the aspects <strong>of</strong> the health care reform bill<br />

that we believe will affect our AAOS members. Present strategies will be outlined. A perspective concerning the possible<br />

future and implementation <strong>of</strong> the health care reform bill will be addressed. A panel discussion including the leadership <strong>of</strong><br />

the AAOS will then ensue.<br />

Participants: John J. Callaghan, MD, Iowa City, IA, Peter J. Mandell, MD, Burlingame, CA, and Stuart L. Weinstein, MD, Iowa City, IA<br />

Panel: Daniel J. Berry, MD, Rochester, MN, William Martin, III MD, Washington, DC, and John R. Tongue, MD, Tualatin, OR<br />

I. Introduction<br />

John J. Callaghan, MD, Iowa City, IA<br />

II. Health Care Reform: Promise and Reality<br />

Stuart L. Weinstein, MD, Iowa City, IA<br />

III. Health Reform Bill: The AAOS Perspective<br />

Peter J. Mandell, MD, Burlingame, CA<br />

IV. Future Strategy <strong>of</strong> the AAOS for Implementation <strong>of</strong> Health Care Reform<br />

John J. Callaghan, MD, Iowa City, IA<br />

V. Discussion, Questions and Answers<br />

All Faculty


This presentation will include information on the following aspects<br />

<strong>of</strong> Healthcare Reform:<br />

1. Why was healthcare reform a high priority for the Obama<br />

administration<br />

a. Escalating costs <strong>of</strong> healthcare<br />

b. Issues related to Quality<br />

c. Issues related to Access and Coverage<br />

2. History <strong>of</strong> Healthcare reform attempts in US<br />

a. Employer based healthcare system<br />

b. Attempts at reform from Teddy Roosevelt to Obama<br />

290<br />

healthCare reForm SympoSium<br />

Stuart L. Weinstein, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

3. Process <strong>of</strong> passage <strong>of</strong> PPACA<br />

a. Obama election, November 2008, to Passage <strong>of</strong> Healthcare<br />

reform (PPACA) legislation 2010<br />

b. The Process: Congressional choices and compromises<br />

leading to PPACA passage<br />

4. PPACA<br />

a. Outline <strong>of</strong> bill 2010 to 2018<br />

i. What it did<br />

ii. What it didn’t do<br />

b. Implementation phase


291<br />

the aaoS perSpeCtive oN the ppaCa<br />

Peter J Mandell, MD<br />

• AAOS anticipated the health care reform debate and prepared<br />

for it with 3 position statements:<br />

— Existing Government Programs—Medicaid and SCHIP<br />

Reform (3/08)<br />

— Principles <strong>of</strong> Medicare Reform (3/08)<br />

— Principles <strong>of</strong> Health Care Reform (2/09)<br />

• How closely does the PPACA align with AAOS principles on:<br />

— A permanent fix for the Medicare Physician Fee Schedule<br />

Sustainable Growth Rate (SGR) adjustment?<br />

— Meaningful medical liability reform?<br />

— Leveling the antitrust playing field?<br />

— Employee Retirement Income Security Act <strong>of</strong> 1974 (ERISA)<br />

reform?<br />

• How closely does the PPACA align with our patients’ goals to:<br />

— Choose their own orthopaedic surgeon?<br />

— Access high quality and value orthopaedic care?<br />

— Have affordable and portable health insurance?<br />

— End health insurance rescissions?<br />

— Eliminate preexisting condition denials?<br />

— Access physician owned, responsibly run facilities for their<br />

orthopaedic care?<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

• Does the PPACA single out specialists for particular attention<br />

with:<br />

— The Independent Payment Advisory Board?<br />

— Restricting physician owned hospitals?<br />

— Not providing meaningful Medical Liability Reform?<br />

• How are <strong>Orthopaedic</strong> patients and their doctors affected by<br />

the phased rollout <strong>of</strong> the PPACA’s provisions?<br />

— Immediate reforms<br />

– High risk pools<br />

– 80-85% insurance medical loss ratio<br />

– Children’s’ coverage to age 26<br />

– End to lifetime limits on coverage<br />

– Elimination <strong>of</strong> insurance rescissions<br />

— Later reforms<br />

– No preexisting condition exclusions<br />

– State run insurance exchanges<br />

• The Republican alternative:<br />

— High risk pools for preexisting conditions<br />

— Ending junk lawsuits and reducing defensive medicine<br />

— Encouraging insurance purchasing pools for small business<br />

— Allowing purchase <strong>of</strong> insurance across state lines<br />

— Not mandating insurance coverage


292<br />

Future Strategy oF the aaoS For implemeNtatioN oF<br />

health Care reForm<br />

John J. Callaghan, MD<br />

The Patient Protection and Affordable Care Act and the Health Care<br />

and Education Reconciliation Act were signed into law March 2010.<br />

As implementation continues, the AAOS will address both legislative<br />

and regulatory issues which affect our patients and the pr<strong>of</strong>ession.<br />

We will continue to advocate for our patients to receive the best<br />

quality <strong>of</strong> care for their musculoskeletal problems.<br />

Legislative Issues<br />

1) Sustainable Growth Rate (SGR)<br />

• The AAOS has and will continue our work with Members<br />

<strong>of</strong> Congress to permanently repeal and replace the SGR<br />

to ensure our patients maintain access to high quality<br />

orthopaedic care. This will continue to be our top priority.<br />

2) Independent Payment Advisory Board (IPAB)<br />

• IPAB is an independent appointed body tasked with<br />

reducing the growing costs <strong>of</strong> the Medicare program.<br />

As currently constructed, the Board does not have full<br />

authority over all aspects <strong>of</strong> the health care system, but<br />

rather is required to selectively exempt certain providers,<br />

such as hospitals, from its purview. This system incentivizes<br />

the Independent Payment Advisory Board to further cut<br />

Medicare reimbursements in areas under its jurisdiction.<br />

• In addition, the process and structure is fraught with<br />

potential unintended consequences – including preventing<br />

practicing physicians from serving on the Board and<br />

restricting access to important specialty care interventions<br />

and services for Medicare patients.<br />

• The AAOS will continue to strongly oppose the delegation <strong>of</strong><br />

Congressional authority <strong>of</strong> the Medicare system to the IPAB<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

or any other entity and will work with our Congressional<br />

champions to repeal this Board.<br />

3) Physician Owned Hospitals<br />

• The new health care reform law significantly restricts<br />

physician owned hospitals. The AAOS believes that<br />

physician owned hospitals are an important component<br />

<strong>of</strong> our health care delivery system. Physician owners have<br />

greater control over the facility and the quality and efficiency<br />

<strong>of</strong> care which can lead to higher quality patient care.<br />

• The AAOS will continue to work with our allies to repeal the<br />

restrictions on physician owned hospitals.<br />

Regulatory Issues<br />

Much <strong>of</strong> implementation <strong>of</strong> the new health care reform law will<br />

happen through the regulatory process. Some issues to watch for<br />

include:<br />

• New payment models including Accountable Care<br />

Organizations<br />

• Quality and Comparative Effectiveness<br />

• Utilization <strong>of</strong> Physical Therapy and Imaging<br />

• Patient Safety<br />

Your <strong>Academy</strong> will work through the newly established AAOS<br />

Institute <strong>of</strong> Quality to develop clinical guidelines, provide new<br />

technology assessments, and construct appropriate use criteria and<br />

performance measurements which will better define the “value” <strong>of</strong><br />

interventions for our patients. The AAOS will continue to promote<br />

the <strong>American</strong> Joint Registry which is founded along with our<br />

Specialty Society partners.


293<br />

emr: maNdatory CompoNeNtS aNd<br />

eFFiCieNt uSe For the praCtiCiNg<br />

orthopaediC SurgeoN (X)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Moderator: Jack M. Bert, MD, St. Paul, MN<br />

Participants will learn how to incorporate/maximize the efficiency <strong>of</strong> their current EMR and its components (templates,<br />

scanners and voice recognition) and understand basic E&M coding.<br />

I. Introduction: The problem with EMR; Are there any simple solutions?<br />

Jack M. Bert, MD, St. Paul, MN<br />

II. Determining Appropriate Components and Functions <strong>of</strong> an EMR: Is Meaningful Use Worth Obtaining?<br />

Louis F. McIntyre, MD, White Plains, NY<br />

III. Implications <strong>of</strong> Coding and EMR:Can We Make It Work Effectively?<br />

William R. Beach, MD, Richmond, VA<br />

IV. The process <strong>of</strong> EMR Implentation into Private Practice; How It Really Works<br />

Tony Pericle, Glen Allen, VA<br />

V. Discussion, Questions & Answers<br />

All Faculty


294<br />

emr: maNdatory CompoNeNtS aNd eFFiCieNt uSe For the<br />

EM R: Mandatory<br />

EM R: Mandatory<br />

praCtiCiNg orthopaediC SurgeoN<br />

Components and Efficient Use<br />

for the EM Practicing R: Mandatory<br />

Orthopedic<br />

Components Surgeon<br />

and Efficient Use<br />

for the EM Practicing R: Mandatory<br />

Orthopedic<br />

Components Surgeon<br />

and Faculty<br />

Efficient Use<br />

Jack M. Bert, MD<br />

for the Practicing Bil Beach, MD<br />

Orthopedic<br />

Louis McIntyre, MD<br />

Surgeon<br />

Faculty<br />

Jack M. Bert, MD, William R. Beach, MD, Louis F. McIntyre, MD, Tony Pericle<br />

Tony Pericle<br />

Jack M. Bert, MD<br />

Bil Beach, MD<br />

Louis Faculty<br />

McIntyre, MD<br />

Jack Tony M. Pericle<br />

Bert, MD<br />

Bil Beach, MD<br />

Louis McIntyre, MD<br />

Tony Pericle<br />

The problem s with current EM R<br />

system s<br />

The problem s with current EM R<br />

system s<br />

•They They are cumbersome.<br />

•Drop The Drop The dow problem n boxes require s with significant current manual labor<br />

EM R<br />

•3 3 to 4 minutes/patient to enter data means 1.5 to 2<br />

hours <strong>of</strong> data entry for system a 30 patient s<br />

clinic!!!<br />

•They •Hire Hire They scribes are cumbersome.<br />

or med tech to do the work?<br />

•Drop •Have Have Drop dow patient n boxes enter require a l history significant data excluding manual labor<br />

HPI,<br />

Meds, •3 Meds, 3 to 4 pertinent minutes/patient surgical to hx. hxenter<br />

enter . which data must means be<br />

1.5 to 2<br />

individualized/patient?<br />

hours<br />

•They<br />

individualized/patient?<br />

hours <strong>of</strong> data entry for a 30 patient clinic!!!<br />

They are cumbersome.<br />

•Hire Hire scribes or med tech to do the work?<br />

•Drop Drop dow n boxes require significant manual labor<br />

•Have Have patient enter a l history data excluding HPI,<br />

Meds,<br />

•3<br />

Meds,<br />

3 to 4 pertinent minutes/patient surgical to hx. hx<br />

enter . which data must means be<br />

1.5 to 2<br />

individualized/patient?<br />

hours<br />

individualized/patient?<br />

hours <strong>of</strong> data entry for a 30 patient clinic!!!<br />

•Hire Hire scribes or med tech to do the work?<br />

•Have Have patient enter a l history data excluding HPI,<br />

Meds, pertinent surgical hx. hx.<br />

which must be<br />

individualized/patient?<br />

Requirements <strong>of</strong> Efficient EM R’s R<br />

Requirements <strong>of</strong> Efficient EM R’s R<br />

•Must Must use tem plates<br />

•Must Must use patients to enter data<br />

•Must Must have easy data entry<br />

•Must use optical scanning technology<br />

•Must Must use tem plates<br />

•Must Must have<br />

plates<br />

have macros for pre-populated pre populated material<br />

•Must Must use patients to enter data<br />

•Must Must have<br />

data<br />

have complete surgeon compliance<br />

•Must Must have easy data entry<br />

•Must Must use use tem optical tem optical plates<br />

scanning technology<br />

•Must Must use have use have patients macros to for enter pre-populated pre populated data<br />

material<br />

•Must Must have have easy complete easy complete data surgeon entry<br />

compliance<br />

•Must Must use optical scanning technology<br />

•Must Must have macros for pre-populated pre populated material<br />

•Must Must have complete surgeon compliance<br />

Requirements Must use optical scanning <strong>of</strong> technology Efficient EM R’s R<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Components and Efficient Use<br />

for the EM Practicing R: Mandatory<br />

Orthopedic<br />

Components Surgeon<br />

and Efficient Use<br />

for the EM Practicing R: Mandatory<br />

Orthopedic<br />

Components Surgeon<br />

and Efficient Use<br />

efficient” system<br />

for the Practicing workflow Practicing requirements”? Orthopedic<br />

Surgeon<br />

•W What hat are the necessary components?<br />

•How How to satisfy government requirements<br />

•How How to choose an “efficient<br />

•W What hat are the “workflow requirements<br />

•W What hat are the necessary components?<br />

•How How to<br />

components?<br />

to make the tem plates work for you<br />

•How How to satisfy government requirements<br />

•How How to<br />

requirements<br />

to reduce physician “work work time” time<br />

•How How to choose an “efficient efficient” system<br />

•W What hat are are the the<br />

necessary “workflow necessary workflow components?<br />

requirements”?<br />

requirements<br />

•How How to to satisfy make satisfy make the government tem plates requirements<br />

work for you<br />

•How How to to reduce choose reduce choose physician an “efficient efficient” “work work system<br />

time” time<br />

•W What hat are the “workflow workflow requirements”?<br />

requirements<br />

•How How to make the tem plates work for you<br />

•How How to reduce physician “work work time” time<br />

The problem s with current EM R<br />

system s<br />

The problem s with current EM R<br />

system s<br />

•Can Can these problem s be solved to result in an<br />

efficient, The problem simple to use s system with that current requires ;<br />

EM R<br />

PW PW T (patient work system time)<br />

s<br />

•Can decreased Can decreased these problem TET (team s be encounter solved to time) result time) result in an<br />

efficient, simple to use system that requires ;<br />

decreased decreased PET (physician encounter time<br />

PW PW T (patient work time)<br />

•Can Can these problem s be solved to result in an<br />

efficient, decreased decreased simple TET to (team use encounter system that time)<br />

requires ;<br />

<br />

decreased decreased PET (physician encounter time<br />

<br />

PW PW T (patient work time)<br />

decreased decreased TET (team encounter time)<br />

decreased decreased PET (physician encounter time<br />

<br />

<br />

<br />

<br />

Elem ents <strong>of</strong> a functional,<br />

efficient EM R & Meaningful Use<br />

Elem Louis ents McIntyre, <strong>of</strong> a functional,<br />

MD<br />

efficient EM R & Meaningful Use<br />

Elem Chair Louis <strong>of</strong> ents <strong>of</strong> ents AANA’s AANA McIntyre, <strong>of</strong> Health a Health a functional,<br />

Policy<br />

MD<br />

efficient Committee<br />

EM R & Meaningful Use<br />

Member <strong>of</strong> AAOS Coding Committee<br />

Chair Louis <strong>of</strong> AANA’s AANA McIntyre, Health Policy<br />

MD<br />

Consultant Committee Consultant Committee to RUC<br />

Member Chair Member <strong>of</strong> AANA’s AANA <strong>of</strong> AAOS Health Coding Policy<br />

Committee<br />

Consultant Committee<br />

Consultant to RUC<br />

Member <strong>of</strong> AAOS Coding Committee<br />

Consultant to RUC


295<br />

ARRA<br />

“Stimulus Stimulus Bil” Bil<br />

Signed into law 2009<br />

1.1 Bilion for implem entation <strong>of</strong><br />

EM R/HER “HITECH HITECH Act” Act<br />

Final rules MANDATE EM R use by<br />

2015 or face decrease in Medicare<br />

reimbursement<br />

Prom ote<br />

Utilization<br />

Minimize<br />

Workflow<br />

Disruption<br />

Maximize<br />

Physician<br />

Productivity<br />

Surgeon Issues<br />

Unprepared<br />

No Templates<br />

Planned for use <strong>of</strong> “Cruise Cruise Pads” Pads for<br />

data entry<br />

No Vendor Support<br />

No Clue!<br />

Took 18 months to implem ent!<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

EM R Efficient Use<br />

Surgeon User Issues<br />

Old Chart Issues<br />

Support Issues<br />

Hardw are Issues<br />

Prom ote Utilization<br />

PREPARATIO N<br />

Templates/D ata<br />

Entry<br />

Exposure to the<br />

System<br />

Support from<br />

Vendor<br />

Carrots & Sticks<br />

Preparation:Tem Preparation: Tem plates<br />

Make sure your vendor has a library<br />

<strong>of</strong> orthopedic problem tem plates<br />

They need to satisfy the three<br />

components <strong>of</strong> a good record:<br />

Clearly and accurately reflect encounter<br />

Legal document<br />

Satisfy documentation for E and M<br />

coding rules


296<br />

Templates<br />

Vendor library should be easily edited<br />

for surgeon preference/experience<br />

Can use voice recognition etc also<br />

The The easier easier the the data data entry entry , , the the<br />

be be ter ter th th e e surgeon surgeon utilization utilization <strong>of</strong> <strong>of</strong><br />

the the EM EM R! R!<br />

Outline Headings<br />

Subjective Complaints<br />

Objective Findings<br />

Diagnostic Tests<br />

Assessm ent<br />

Plan <strong>of</strong> Treatment<br />

Structure<br />

Legal Attributes<br />

Contain a l pertinent<br />

positive and negative<br />

findings<br />

Document informed<br />

consent and patient<br />

education<br />

Store a l interaction;<br />

hospital, <strong>of</strong>fice, telephone<br />

ca ls, e-mails e mails<br />

Templates<br />

Need to keep them am ount <strong>of</strong> “clicks” to a<br />

minimum to speed data entry<br />

Should have “auto-negative”button to<br />

strike a l entries since most historical and<br />

physical findings are such<br />

Pu l-dow n lists with modifiers increased<br />

accuracy and completeness<br />

Free-text boxes can a low for<br />

individualization <strong>of</strong> any entry<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Attributes <strong>of</strong> the Medical Record<br />

Structure<br />

Must be clear and concise<br />

Form at should be<br />

recognizable and<br />

resemble current paper<br />

methods<br />

W e l organized and easy<br />

to read<br />

Should be comprehensive<br />

and include a l data<br />

Secure<br />

Function<br />

1. Stores information used<br />

to coordinate patient care<br />

2. Provides legal<br />

documentation <strong>of</strong> care<br />

3. Used by Medicare and<br />

third party payers to<br />

determine level <strong>of</strong><br />

reimbursement<br />

Templates<br />

Should have separate screens for<br />

HPI, PM H, ROS, Physical Exam ,<br />

Im aging, diagnosis and treatment<br />

Should be able to toggle through the<br />

screens instantaneously<br />

Each screen should fit inside the<br />

monitor so the data points are always<br />

in the same place. Quickens data<br />

entry by “m otor memory”<br />

Templates<br />

Pre-populated tem plates (i.e. right<br />

ankle sprain) are very efficient<br />

Can be selected and modified quickly<br />

to enhance workflow<br />

Especia ly effective with post-op<br />

visits, injections, telephone ca ls and<br />

common conditions like epicondylitis,<br />

etc.


297<br />

Prom ote Utilization<br />

How How data is entered also matters<br />

Work stations<br />

Tablets<br />

Voice Recognition<br />

Have discussions prior to<br />

implem entation and be flexible<br />

afterward to change. Be wiling to<br />

experiment!<br />

Workflow Disruption<br />

EM R wil change the way you practice<br />

FO FO R R THE THE BETTER BETTER<br />

Need to Accommodate for the EM R<br />

learning curve<br />

Miler et al found doctors worked longer<br />

hours for an average <strong>of</strong> 4 months post<br />

implem entation <strong>of</strong> EM R<br />

“Cham Cham pions” pions worked even more<br />

After 26 months <strong>of</strong> use 11/14 groups were<br />

“tightly tightly integrated” integrated with the EM R<br />

Workflow Disruption<br />

Remember, it’s it s not<br />

just the docs who<br />

are getting used to<br />

the system !<br />

Staff needs time to<br />

assimilate skil with<br />

the EM R also!<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Prom ote Utilization<br />

Be wiling to invest time in choosing,<br />

developing and m odifying<br />

tem plates to make data entry EASY<br />

Maximize adoption <strong>of</strong> the EM R and<br />

physician productivity<br />

Workflow Disruption<br />

We went from double-booking double booking (8<br />

patients/hour) to single booking (4<br />

patients/hour) for one month post<br />

implem entation<br />

Maximize EM R Functionality<br />

Physician “Cham Cham pions” pions <strong>of</strong> EM R must<br />

be able to communicate the<br />

functionality and applications <strong>of</strong> the<br />

EM R to co leagues less versed in<br />

computer technology<br />

Push EM R e-mail, e mail, in-patient in patient<br />

management tools, home and road<br />

utilization


298<br />

A l paper<br />

correspondences<br />

must be scanned<br />

into the EM R<br />

Easy to do with<br />

NEW charts, but<br />

what <strong>of</strong> the old<br />

files?<br />

Chart Issues<br />

Scanning Old Charts<br />

Make sure the old records are<br />

scanned into recognizable folders for<br />

MRI, PT, Op Reports etc for easy<br />

retrieval<br />

The <strong>of</strong>fice note should come up right<br />

in the EM R notes<br />

Vendor Support<br />

Critical for success<br />

Onsite technical personnel for both<br />

docs and and staff for s<strong>of</strong>tware<br />

Onsite technical personnel for<br />

hardware support also<br />

Stay onsite for three weeks with<br />

option <strong>of</strong> coming back<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Scanning Old Charts<br />

Can take considerable am ount <strong>of</strong> time<br />

and manpow er<br />

The more active charts, the more<br />

aggressive the scanning routine<br />

Scan in two week blocks <strong>of</strong> schedule<br />

11,200 charts in six months without<br />

hiring additional em ployees<br />

Getting Rid <strong>of</strong> Paper Charts<br />

Turned Chart<br />

Room into Exam<br />

Room<br />

Eliminate 1 FTE<br />

File Clerk<br />

IT Support<br />

New need for ongoing tech support<br />

Larger groups wil want to have their<br />

ow n in-house in house IT department<br />

Sm a ler groups can hire support<br />

We hired 24-7 24 7 support for<br />

$1600/month and kept that for 10<br />

months


299<br />

Hardware Issues<br />

Hardware glitches are inevitable<br />

Most revolve around the destination<br />

<strong>of</strong> prescriptions to printers<br />

Need to have hardware tech support<br />

there for three weeks post<br />

implem entation<br />

HITECH<br />

Meaningful Use Criteria for EM R<br />

Stage 1 2011 2011<br />

2011 Capture PHI in coded<br />

(structured) format<br />

Track clinical conditions<br />

Coordinate care<br />

Report clinical quality measures and<br />

public health information<br />

Meaningful Use Funds<br />

The Carrot<br />

2011 2012 2013 2014 2015 2016<br />

2011 $18,000 $12,000 $8,000 $4,000 $2,000 $44,000<br />

2012 $18,000 $12,000 $8,000 $4,000 $2,000 $44,000<br />

2013 $15,000 $12,000 $8,000 $4,000 $39,000<br />

2014 $12,000 $8,000 $4,000 $24,000<br />

2015 0!!!<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Summary<br />

Preparation is the key to successful<br />

transition to EM R<br />

A low for workflow adju stment<br />

during the transition period<br />

Ensure adequate s<strong>of</strong>tware and<br />

hardware support for three weeks<br />

post implem entation<br />

Meaningful Use Stages<br />

2011 2012 2013 2014 2015<br />

2011 Stage I Stage I Stage II Stage II Stage III<br />

2012 Stage I Stage I Stage II Stage III<br />

2013 Stage I Stage II Stage III<br />

2014 Stage I Stage III<br />

2015 Stage III<br />

Meaningful Use Funds<br />

The Stick<br />

2015 1%<br />

2016 2%<br />

2017 3%


300<br />

Meaningful Use Criteria<br />

Record Demographics 50%<br />

Record Vital Signs 50% **<br />

Maintain Active Dx List 80%<br />

Medication List 80%<br />

Provide Clinical Summaries<br />

50%<br />

Maintain Active A lergy 80%<br />

Sm oking Status >13 50% **<br />

Provide EHI on demand 50%<br />

who request<br />

E-prescription<br />

prescription 40%<br />

Core Set<br />

Use Physician computerized<br />

order entry (CPO E) 30%<br />

Drug-Drug/D Drug Drug/D rug AAllergy lergy<br />

checks Enable Function<br />

Electronic clinical information<br />

exchange 1 Test<br />

Clinical decision rule support 1<br />

Protect data privacy Test as<br />

per Final Rule 7/2010<br />

Report quality measures to<br />

CM S as per Final Rule<br />

7/2010<br />

Meaningful Use:<br />

How to get there<br />

Vendor Certification and support are<br />

KEY to eligibility for Stimulus Funds<br />

Also need to have Secure Secure Patient Patient<br />

Portal Portal Function Function to communicate<br />

electronica ly with patients<br />

Meaningful Use:<br />

How to get there<br />

Office National<br />

Coordination-<br />

Coordination<br />

Authorized Testing<br />

and Certification<br />

Bodies (O NC-ATB) NC ATB)<br />

1. Certification<br />

Commission for<br />

Health<br />

Information<br />

Technology<br />

(CCHIT)<br />

2. Drummond Group<br />

3. InfoGuard Labs<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Meaningful Use Criteria<br />

Drug Drug Form Form ulary ulary Checks Checks<br />

Enable Enable Function Function<br />

Generate Generate patient patient lists lists by by<br />

condition condition 1 1 list list<br />

Identify Identify patient--specific<br />

patient specific<br />

education education resources resources 10% 10%<br />

Send Send care care reminders reminders to to<br />

patients patients 20% 20% > > 65 65 or or


301<br />

<br />

Meaningful Use:<br />

How to get there<br />

Key is vendor<br />

support<br />

Vendors have been<br />

listed as<br />

“Approved Approved” by<br />

CCHIT<br />

List available<br />

at:http://www.cchit<br />

at: http://www.cchit<br />

.org/products/onc-<br />

atcb<br />

ONC-ATB ONC ATB<br />

Certification is first<br />

step in m eeting<br />

Stage I Criteria for<br />

meaningful use<br />

Meaningful Use<br />

If you’re you re getting an EM R just to get<br />

the Stimulus $$$, Don’t Don t do it!<br />

Get an EM R if it makes business<br />

sense for your practice<br />

Stil great uncertainty regarding a l<br />

the new regulations and mandates<br />

and the requirements, incentives and<br />

penalties may change<br />

CPT<br />

ICD<br />

E&M<br />

RUC<br />

CM S<br />

ASC<br />

IPPS/O PPS<br />

EO B<br />

TERMINOLO GY<br />

NCCI and GSD<br />

CERT – *<br />

RAC – *<br />

ZPIC – *<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Meaningful Use<br />

Have to document 90 days or MU<br />

starting in 2011.<br />

Can apply for Stimulus Funds<br />

($18,000 per doc) as <strong>of</strong> May, 2011.<br />

Wil be difficult to do and require<br />

dedication <strong>of</strong> physician/staff<br />

resources to become compliant<br />

EM R & Coding<br />

Bil Beach, MD<br />

Chair AAOS Health Policy Committee<br />

Member <strong>of</strong> AAOS coding committee<br />

Chair AOSSM health policy committee<br />

Consultant to RUC<br />

AAOS Health System s Committee<br />

TERMINOLO GY<br />

CPT – Common Procedural Terminology<br />

ICD – International Classification <strong>of</strong> Disease<br />

E&M – Evaluation and Management<br />

RUC – Relative Value Update Committee<br />

CM S – Center for Medicare and Medicaid<br />

Services<br />

ASC – Am bulatory Surgery Center<br />

IPPS/O PPS – Inpatient/O utpatient Perspective<br />

Paym ent System<br />

EO B – Explanation <strong>of</strong> Benefits<br />

NCCI– NCCI National Correct Coding Initiative<br />

GSD – Global Services Data Book


302<br />

<br />

<br />

CPT<br />

Common Procedural Term inology –<br />

CPT<br />

Owned by the AM A<br />

The major source <strong>of</strong> revenue for the<br />

AM A ($300 milion/year?)<br />

Maintained by the AM A Editorial Panel<br />

Five –digit digit num erical (alpha-numeric)<br />

(alpha numeric)<br />

system<br />

Represents a l physician services<br />

ACL reconstruction – 29888<br />

Level 3 new patient <strong>of</strong>fice visit – 99201<br />

E&M<br />

Evaluation and Management<br />

Office, hospital, ER and consultation services<br />

5 levels <strong>of</strong> service for outpatient/ER services<br />

3 levels for inpatient services<br />

Consultation services codes have been<br />

eliminated for CM S only and paid on new and<br />

established basis<br />

New patients (99201-05)<br />

(99201 05)<br />

Established patients– patients patient was seen by your<br />

group in the past 3 years (99211-99215)<br />

(99211 99215)<br />

RUC<br />

RUC – Relative Value Update<br />

Committee<br />

Made up <strong>of</strong> representatives <strong>of</strong> a l the major<br />

medical/surgical societies, CM S, insurers<br />

and associated pr<strong>of</strong>essionals<br />

Anyone can apply for a CPT code<br />

The AM A Editorial Panel confirm s a new<br />

code<br />

The RUC determines the value <strong>of</strong> the<br />

procedure based on physician work/time,<br />

intensity, post-op post op care and malpractice risk<br />

<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

<br />

ICD<br />

International Classification <strong>of</strong><br />

Diseases (ICD)<br />

ICD 9 (current for the US) and 10<br />

(m ost other countries)<br />

Description <strong>of</strong> diseases<br />

Insurers require appropriate ICD<br />

codes to accompany CPT codes<br />

(diagnoses must correspond to<br />

surgical procedures)<br />

CM S/Med<br />

Pac/ASC/IPPS/O PPS<br />

CM S = Center for Medicare and Medicaid Services<br />

(M edicare), the world’s world s largest payorfor payor for medical<br />

services<br />

MedPac - Advisory Committee for CM S<br />

Non-elected Non elected and limited physician<br />

representation<br />

ASC = Am bulatory Surgical Center<br />

IPPS = Inpatient Prospective Paym ent System<br />

OPPS = Outpatient Prospective<br />

Paym ent System<br />

90 Global/EOB<br />

90 day global – reimbursement for a surgical<br />

procedure includes a l the <strong>of</strong>fice visits for 90<br />

days (except shoulder manipulation). This<br />

does not include casting, radiologic services<br />

or physical therapy.<br />

EO B – Explanation <strong>of</strong> Benefits. The insurer<br />

provides the beneficiary and the physician<br />

with an accounting <strong>of</strong> charges and paym ents.<br />

It is mandatory that physicians and/or their<br />

staff review these frequently to insure proper<br />

reimbursement.


303<br />

<br />

NCCI/G SC/COPN<br />

NCCI – National Correct Coding<br />

Initiative<br />

CM S’s S s bundling package<br />

Published quarterly<br />

GSD – Global Services Data Book<br />

AAOS bundling package<br />

Published/edited yearly<br />

COPN – Certificate <strong>of</strong> Public Need<br />

Stark Laws – perm its self referrals on<br />

a limited basis (safe harbors)<br />

Legislation Creating “The The Police” Police<br />

Im proper Payments Act <strong>of</strong> 2002<br />

Medicare Modernization Act<br />

Tax Relief and Healthcare Act <strong>of</strong><br />

2006<br />

20 years – no worries until now!!!<br />

Trust me – you should be too!!!<br />

<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Medicare and Payment Reform<br />

The Social Security Act <strong>of</strong> 1965 created<br />

Medicare<br />

2008 Data<br />

44 milion Medicare beneficiaries<br />

Expenditures = $428 bilion = 15% federal<br />

budget<br />

Reducing Medicare waste and detecting<br />

fraud and abuse is one <strong>of</strong> the Sec. <strong>of</strong><br />

Health and Human Services highest<br />

priorities<br />

<br />

Programs<br />

CERT – Comprehensive Error Rate<br />

Testing<br />

RAC – Recovery Audit Contractors<br />

ZPIC – Zone Program Integrity<br />

Contractors<br />

<br />

Payment Error Rate CERT, RAC and ZPIC<br />

CERT<br />

CM S random audit <strong>of</strong> 120,000 bilings<br />

Recovery Audit Contractors (RAC)<br />

CM S<br />

Congressiona ly mandated<br />

Zone Program Integrity Contractors<br />

(ZPIC)<br />

Department <strong>of</strong> Justice (D OJ)<br />

Medicare Administrative Contractors


304<br />

FO CUS <strong>of</strong> CERT/RAC/ZPIC<br />

Review <strong>of</strong> Medicare bilings<br />

<br />

DME and hospital<br />

Physicians E&M<br />

Focused Focused vs. random review with<br />

extrapolation<br />

Penalties/fines Penalties/fines with interest<br />

ZPIC ZPIC – contracts, etc.<br />

Exam ple – RAC Review<br />

Four RAC companies and sub-<br />

contractors – divided the country into<br />

four districts<br />

<br />

<br />

RAC vs. ZPIC<br />

RAC’s RAC – wel defined processes and<br />

requirements, limitations on the<br />

number <strong>of</strong> charts, etc.<br />

ZPIC’s ZPIC – no such restrictions<br />

Identify errors<br />

Select charts <strong>of</strong> specific errors<br />

Extrapolate errors based on the know n<br />

errors, not random ized<br />

Long and difficult appeal process<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Program Purview<br />

A l CM S for fee-for fee for-service service programs,<br />

The expansion schedule can be<br />

view ed at: w ww.cm s.hhs.gov/rac<br />

RACs wil not be able to review claims<br />

paid prior to October 1, 2007<br />

RACs wil be able to look back three<br />

years from the date the claim was paid<br />

ZPIC – no know n limits -DOJ DOJ<br />

<br />

Extrapolation – Sm a l“Selected l Selected”<br />

Samples Applied to Large Volum es<br />

<strong>of</strong> W ork (10/1000)<br />

<br />

MY/O UR GOAL<br />

Be “compliant compliant”<br />

Don’t Dont<br />

wait for RAC’s RAC to complete<br />

the hospital/D ME audits<br />

Start today!<br />

Start Yesterday


305<br />

Know if You are Subm itting Claims<br />

for Im proper Paym ents<br />

Carefu ly conduct an internal<br />

assessment to identify if you are in<br />

compliance with Medicare rules<br />

Identify corrective actions to prom ote<br />

compliance<br />

Appeal when necessary<br />

Learn from past experiences -websites websites<br />

<br />

David Glaser – HC attorney<br />

in MN<br />

E&M are auditable<br />

Significant risks exist for every facet <strong>of</strong> the<br />

review process -potentia potentia ly ilegible<br />

signatures, the internal review process or<br />

untimely signatures.<br />

Consider law yer/client privilege for the review<br />

May stil be lega ly discoverable<br />

Discuss indem nification clause in your new or<br />

existing contract/employee agreem ent<br />

Beware <strong>of</strong> bil subm ission prior to<br />

signature!!<br />

<br />

Coding – Painful but Im portant!<br />

Medicare Fraud – intentional or<br />

unintentional, doesn’t doesn t matter<br />

Based on what you should know , not what<br />

you may know (= at least, what I know )<br />

5 years in prison<br />

$10,000 fine<br />

For every occurrence<br />

Plus interest<br />

Disqualified from participation in Medicare<br />

You cannot abdicate this responsibility<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Review s not audits<br />

Internal Review<br />

Required annua ly by HIPPA (since 2006)<br />

The review results should be shared with the<br />

physicians/providers involved<br />

Documentation <strong>of</strong> provider education required<br />

Are errors:<br />

Under documentation – correct with<br />

addendum s<br />

Over biling<br />

Refund?<br />

Laws exist that mandate repaym ent (felony<br />

<strong>of</strong>fense)<br />

Seek legal advice<br />

<br />

Review Information<br />

Physician “must must” prepare for future<br />

CERT/RAC/ZPIC<br />

E&M coding and compliance are mandatory<br />

for every physician<br />

Fo low a l possible Medicare coding rules<br />

Remember– Remember it is NOT what you know but<br />

what you should know<br />

You must know at least what I know !<br />

Sign every document<br />

Prescription, Order, Note and Test<br />

LEARN E&M CODING!!<br />

E&M Coding – New Approach<br />

DO NOT UNDER-ESTIMATE UNDER ESTIMATE YOUR RISK<br />

The most common and significant loss<br />

<strong>of</strong> practice revenue is <strong>of</strong>fice patient visit<br />

“down down-coding coding” (60% <strong>of</strong> incom e is E&M)<br />

Down-coding Down coding is technica ly as<br />

“fraudulent fraudulent” as up-coding up coding<br />

Avoid RAC/ZPIC RAC/ ZPIC’s<br />

Exam ple – 30 patients per week coded<br />

as E3 instead <strong>of</strong> E4 = $25 = $750/wk X<br />

48 wks/year = $22,500, $22,500, 10 man man group group<br />

= $225,000/year


306<br />

Classification <strong>of</strong> E/M Services<br />

Office and other outpatient<br />

New patient (99201-99205)<br />

(99201 99205)<br />

Established patient (99211-99215)<br />

(99211 99215)<br />

Office consultation (99241-99245)<br />

(99241 99245)<br />

Gone for CM S (only?)<br />

Em ergency department (99281-85)<br />

(99281 85)<br />

Hospital Inpatient Services<br />

Initial hospital care (99221-99223)<br />

(99221 99223)<br />

Subsequent care (99231-99233)<br />

(99231 99233)<br />

Hospital discharge services (99338-99339)<br />

(99338 99339)<br />

<br />

The Key Components/PEARLS<br />

Chief Complaint and History<br />

Physical Exam<br />

Medical Decision Making<br />

Every medical record must have each <strong>of</strong> these<br />

documented or referenced for audit purposes<br />

Reimbursement is based on the Low Lowest est<br />

Level Level <strong>of</strong> service for these required key<br />

components* (3/3 for New Pt, 2/3 for<br />

Established Pt)<br />

<br />

Keeping it Simple – Bu lets and Buckets<br />

Bu lets = identified (docum ented) data points<br />

Data points = information (positive Lachman’s Lachman test<br />

= 1 bu let)<br />

1997 E&M Guidelines describes the num ber <strong>of</strong><br />

documented bu lets required to m eet each level <strong>of</strong><br />

service – defines a level <strong>of</strong> reimbursement<br />

Divide E&M Coding into two “buckets buckets” because<br />

the rules are slightly different (but logical)<br />

New patients<br />

<br />

Established patients<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Four Functions <strong>of</strong> the Medical Record<br />

Convey medical information for medical<br />

care providers<br />

Medico-legal Medico legal record<br />

Documentation <strong>of</strong> the level <strong>of</strong> service<br />

(E&M) (Important for potential audits)<br />

Data co lection/Pay for<br />

Performance/Meaningful User<br />

<br />

My Approach to E&M Coding<br />

Develop/acquire a l the necessary paper<br />

tools to facilitate data co lection and<br />

documentation<br />

Define the expected/anticipated level <strong>of</strong><br />

service (N 3 and E3 or E4)<br />

Understand the variations <strong>of</strong> the<br />

expected level <strong>of</strong> service<br />

Document the E&M service<br />

Code the service<br />

Develop – Define – Document (D ³) ) &<br />

KEEP IT SIMPLE<br />

<br />

<br />

1997 E&M Guidelines – Outlines<br />

the Required Number <strong>of</strong> Bu lets<br />

Confusion = the subsection<br />

requirements are given names<br />

instead <strong>of</strong> num eric bu let mandates<br />

Exam ple – in the physical exam<br />

section there are 4 descriptors for 5<br />

levels <strong>of</strong> service<br />

Focused = 1 bu let<br />

Expanded = 6 bu lets<br />

Detailed = 12 bu lets<br />

Comprehensive = 30 bu lets


307<br />

<br />

<br />

NEW PATIENT<br />

VISIT<br />

Patient Form s<br />

Can be used as the <strong>of</strong>ficial medical<br />

record if:<br />

The form is signed and dated by the<br />

patient<br />

The form is signed and dated by the<br />

physician<br />

Signing the document implies that you<br />

have review ed the information with the<br />

patient and this is the intent <strong>of</strong> CM S<br />

You CANNOT pre-sign pre sign the form or stam p<br />

the form with your signature<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

<br />

KEY COMPONENT<br />

HISTORY<br />

Always Level 5<br />

New Patient History<br />

99201 99202 99203 99204 99205


308<br />

Im portant! portant<br />

The patient provides you with a<br />

level 5 history, every visit. You<br />

provide the form(s) form(s ) at registration<br />

or via the web. New patient or<br />

fo low -up up visit visit form. form.<br />

We have just completed one-third one third<br />

<strong>of</strong> the E/M coding for every <strong>of</strong>fice<br />

visit.<br />

Bubble scan technology<br />

<br />

<br />

Physical Exam<br />

Six body parts by CM S convention<br />

Tw Tw o arms<br />

Tw Tw o legs<br />

Neck Neck<br />

Back/Spine Back/Spine<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Past Medical, Family and Social<br />

History<br />

<br />

<br />

KEY COMPONENT<br />

NEW PATIENT<br />

PHYSICAL EXAM<br />

Level 3<br />

PHYSICAL EXAM<br />

Constitutional evaluation<br />

Vital Vital signs signs (3 <strong>of</strong> <strong>of</strong> 7) 7)<br />

W Wel el developed, wel nourished<br />

Musculoskeletal<br />

Gait Gait and station


309<br />

Orthopedic Exam = TRIM<br />

T – Tenderness<br />

R – Range <strong>of</strong> Motion<br />

I– Instability/Stability<br />

M – Muscle Strength<br />

<br />

Physical Exam Bu lets (N 3 = 12)<br />

Development/nutritional status (W DW N) = 1<br />

Gait and station (nl ( nlgait gait & wbl) wbl)<br />

= 1<br />

Involved and contra-lateral contra lateral comparison<br />

Tenderness to palpation = 2<br />

Range <strong>of</strong> motion = 2<br />

Stability or instability = 2<br />

Muscle strength = 2<br />

Sensation = 2<br />

Pulses = 2<br />

Skin = 2 TOTAL =16<br />

<br />

New Patient Physical Exam<br />

99201 99202 99203 99204 99205<br />

1<br />

body<br />

part<br />

1<br />

body<br />

part<br />

2<br />

body<br />

parts<br />

4<br />

body<br />

parts<br />

4<br />

body<br />

parts<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

<br />

Physical Exam<br />

Neurological/Psychological<br />

Coordination testing<br />

Deep tendon reflexes<br />

Sensation<br />

Mental status<br />

Oriented Oriented to time, place and<br />

person<br />

M M ood and affect<br />

Physical Exam Bu lets -TRIM TRIM<br />

KEY COMPONENT<br />

NEW PATIENT<br />

MEDICAL DECISION MAKING<br />

<br />

Level 3


310<br />

Medical Decision Making<br />

Components<br />

Data and X-ray X ray<br />

Diagnosis and Im pression<br />

Plan and Risk – low risk = ankle<br />

sprain, sprain, moderate moderate risk risk = injection injection<br />

2 <strong>of</strong> 3 sections required – for audit<br />

purposes only<br />

<br />

Level <strong>of</strong> Service<br />

New Patient – 3 <strong>of</strong> 3 key components<br />

and and the the low low est est level level <strong>of</strong> a l 3 determines<br />

determines<br />

the code<br />

<br />

99201 99202 99203 99204 99205<br />

CC/Hx PF EPF DETAIL COMP COMP<br />

PE PF EPF DETAIL COMP COMP<br />

MDM STRFRW D Low LO W MOD HIGH<br />

Key to Increase Revenue<br />

(N 3) can/should equal an established<br />

level 4 (E4) visit<br />

Tw o additional requirements<br />

Data – interpret/read rad. report<br />

Tw o problem s – to satisfy the<br />

diagnosis and impression component<br />

Any prescription medication, injection<br />

or surgery<br />

<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

MDM New Patient<br />

9920<br />

1<br />

99202 99203 99204 99205<br />

ESTABLISHED PATIENTS<br />

<br />

<br />

Hx, Hx,<br />

PE and MDM Audit Strategy<br />

New patient – a l three key<br />

components<br />

Established patient – 2 <strong>of</strong> 3/2 <strong>of</strong> 3<br />

rule<br />

“Pass Pass-on on” the physical exam – we<br />

need only 2 <strong>of</strong> the 3 key<br />

components (from an audit<br />

standpoint!)<br />

“Pass Pass-on on” the data or the diagnosis<br />

portion <strong>of</strong> the MDM


311<br />

<br />

Established EstablishedPatientHistory<br />

PatientHistory<br />

Bu lets<br />

(Copy and Paste)<br />

Orthopods – Be Complete<br />

Problem list – multiple medical<br />

problem s<br />

Rheumatoid/Lupus/Psoriasis<br />

DM, Asthm a, HTN, Heart disease<br />

Any diagnosis which impacts<br />

orthopedic care should be included<br />

in the the MDM MDM diagnosis diagnosis section!!! section!!!<br />

If there are two diagnoses or more<br />

– document!<br />

Level <strong>of</strong> Service<br />

Established Established Pt Pt – 2 <strong>of</strong> <strong>of</strong> 3 key key components<br />

components<br />

and and the the low low est est level level <strong>of</strong> <strong>of</strong> the the 2<br />

determines the code<br />

<br />

99211 99212 99213 99214 99215<br />

CC/Hx N/A PF EPF DETAILED COMP<br />

PE N/A PF EPF DETAILED COMP<br />

MDM N/A STRFRW D LO W MOD HIGH<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Physical Exam – PASS ON THE<br />

AUDIT<br />

99211 9921<br />

2<br />

99213 99214 99215<br />

Established Established Patient Patient MDM MDM<br />

99212 99213 99214 99215<br />

Level <strong>of</strong> Service<br />

New Patient – 3 <strong>of</strong> 3 key components<br />

and and the the low low est est level level <strong>of</strong> a l 3 determines<br />

determines<br />

the code<br />

<br />

99201 99202 99203 99204 99205<br />

CC/Hx PF EPF DETAIL COMP COMP<br />

PE PF EPF DETAIL COMP COMP<br />

MDM STRFRW D Low LO W MOD HIGH


312<br />

Summary<br />

Level 3 New patient visit<br />

History = 5, PE* PE (2 body parts) = 3, MDM<br />

= 3<br />

Level 4 Established patient requires:<br />

Level 4 or higher historyPass history Pass on the PE<br />

Level 4 MDM *Rate limiting key component<br />

<br />

*<br />

Data = 3 points OR 2 Diagnoses<br />

Level 4 Plan/Risk =<br />

Prescription<br />

Injection<br />

Surgery<br />

Constructing the ideal EM R:<br />

An inside look!!<br />

Tony Pericle<br />

S<strong>of</strong>tware Engineer<br />

EM R designer<br />

Discussion and<br />

Questions<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

<br />

KEYS to Success and Safety<br />

Be an educated coder (just like<br />

you are an educated physician<br />

and surgeon)<br />

Work backwards – if you you wrote wrote a<br />

prescription/inject/schedule<br />

surgery document the remainder<br />

<strong>of</strong> the requirements and charge<br />

an E4.<br />

Constructing the ideal EM R:<br />

An inside look!!<br />

Tony Pericle<br />

Management<br />

Data Integrity<br />

Outcomes Data Co lection<br />

A CASE STUDY: Issues with<br />

implem entation into a 10 man group.


A. The Legal Environment<br />

1. Recovery Audit Contractors (RAC’s)<br />

2. Zone Program Integrity Contractors (ZPIC’s)<br />

3. Comprehensive Error Rate Testing (CERT’s)<br />

B. HIPAA – compliance requirement<br />

C. Use/Meaningful Use <strong>of</strong> EMR Does Not Abdicate the Provider<br />

from Correct Coding Responsibility<br />

D. The Ten Most Important Facts a Physician Must Know About<br />

Coding/EMR<br />

1. Penalties for incorrect coding are based on “what you should<br />

know, not what you know.” Medicare fraud is punishable –<br />

5 years in jail and a $10,000 per occurrence<br />

2. Evaluation and Management (E&M) coding is based on:<br />

a. 1995 E&M Guidelines<br />

b. 1997 E&M Guidelines<br />

c. Most EMR’s use the 1997 Guidelines because 97’ uses a<br />

bullet based system that is easily counted/score<br />

3. Templates (paper or electronic) are imperative to accurate/<br />

correct coding<br />

4. Every documented patient encounter must contain or refer<br />

to “3 Key Components”<br />

a. Chief Complaint and History<br />

b. Physical Exam<br />

c. Medical Decision Making<br />

5. Reimbursement is based on the lowest level <strong>of</strong> service for the<br />

“3 Key Components”<br />

6. The vast majority <strong>of</strong> orthopedic new patient visits should be<br />

level 3 (99203) and limited by the physical exam<br />

313<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

emr aNd CodiNg<br />

William R. Beach, MD<br />

a. Level 5 history<br />

b. Level 3 physical exam<br />

c. Level 3 medical decision making<br />

d. Level 3 physical exam requires evaluation <strong>of</strong> 2 body areas<br />

and 12 bullets<br />

7. Established patient visits are routinely either 99213 or<br />

99214. The medical decision making is the determining<br />

factor<br />

a. Level 5 history<br />

b. Physical exam (because <strong>of</strong> the 2/3 rule) –audit pass<br />

c. Normally level 3 (99213) but if the plan is for any <strong>of</strong> the<br />

following the level <strong>of</strong> risk equates to a level 4 (99214) if<br />

the data or diagnosis requirements are met:<br />

1. Prescription<br />

2. Aspiration/injection<br />

3. Surgery<br />

8. Consultation codes have been eliminated by The Center for<br />

Medicare and Medicaid Services (CMS) but are still being<br />

used by many private insurers<br />

9. Carefully review your EMR coder function and determine<br />

if the coding metrics are correct. Create several coding<br />

scenarios and determine your confidence level <strong>of</strong> the internal<br />

coding resource.<br />

10. Continue to be a compliant, educated coder. Using<br />

templates for completeness and appropriate tools (voice<br />

recognition s<strong>of</strong>tware, bubble scans, etc.) to maximize your<br />

efficiency and accuracy.


314<br />

CmS FiNal rule meaNiNgFul uSe<br />

Stage 1 aCtioN plaNNiNg doCumeNt<br />

CORE SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete all 15 core set <strong>of</strong> objectives<br />

MENU SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete 5 objectives out <strong>of</strong> 10<br />

Objective Core/Menu Measure Reporting Requirements Exclusions Action (What needs to be done)<br />

Use CpOE for<br />

medication orders<br />

directly entered<br />

by any licensed<br />

healthcare<br />

pr<strong>of</strong>essional who<br />

can enter orders into<br />

the medical record<br />

per state, local<br />

and pr<strong>of</strong>essional<br />

guidelines<br />

implement drug-drug<br />

and drug-allergy<br />

interaction checks<br />

Generate and<br />

transmit permissible<br />

prescriptions<br />

electronically (eRx)<br />

Record demographics<br />

including; preferred<br />

language, gender,<br />

race, ethnicity, dOB<br />

Core More than 30%<br />

<strong>of</strong> unique patients<br />

with at least one<br />

medication have at<br />

least one medication<br />

order entered using<br />

CpOE.<br />

Core The Ep has enabled<br />

this functionality<br />

for the entire EHR<br />

reporting period<br />

Core More than 40%<br />

<strong>of</strong> all permissible<br />

prescriptions<br />

written by the Ep<br />

are transmitted<br />

electronically<br />

using certified EHR<br />

technology.<br />

Core More than 50% <strong>of</strong><br />

all unique patients<br />

seen by the Ep<br />

have demographics<br />

recorded as<br />

structured data<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator that<br />

have at least one medication order<br />

entered using CpOE.<br />

Denominator: Number <strong>of</strong><br />

unique patients with at least one<br />

medication in their medication<br />

list seen by the Ep during the EHR<br />

reporting period<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Any Ep who<br />

writes fewer<br />

than 100<br />

prescriptions<br />

during the EHR<br />

reporting period.<br />

1. determine if the exclusion applies.<br />

2. Research more applicable state, and local laws regarding<br />

CpOE.<br />

3. Test functionality <strong>of</strong> CpOE feature on your EMR system.<br />

4. Create and implement policies, procedures and protocols<br />

to enable orders to be entered via CpOE.<br />

5. Train all physicians in the practice to use this EMR system<br />

feature.<br />

6. Take steps to ensure that more than 30% <strong>of</strong> unique<br />

patients seen by each Ep have at least one medication<br />

order entered via CpOE during the reporting period.<br />

7. On an ongoing basis, conduct an audit to be certain<br />

medication orders are being entered according to the<br />

protocols.<br />

8. Contract with a pharmacy electronic system, if necessary.<br />

Yes/No Attestation None 1. Test the functionality <strong>of</strong> your EMR system’s drug-drug and<br />

drug-allergy interaction features.<br />

2. implement policies, procedures to enable these checks<br />

are performed for every patient seen during the reporting<br />

period.<br />

3. Train all physicians in the practice to use this program<br />

feature.<br />

4. Take steps to ensure that teach Ep performs these checks.<br />

5. An escalation procedure is required if an Ep chooses to<br />

override interaction notice.<br />

6. On a regular basis, conduct an audit to ensure checks are<br />

being performed for all patients.<br />

Numerator: The number <strong>of</strong><br />

prescriptions in the denominator<br />

generated and transmitted<br />

electronically.<br />

Denominator: The number <strong>of</strong><br />

prescriptions written for drugs<br />

requiring a prescription in order to<br />

be dispensed other than controlled<br />

substances during the EHR<br />

reporting period.<br />

Numerator: The number <strong>of</strong> unique<br />

patients in the denominator<br />

who have all the elements <strong>of</strong><br />

demographics (or a specific<br />

exclusion if the patient declined to<br />

provide one or more elements or if<br />

recording an element is contrary to<br />

state law) recorded as structured<br />

data.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by the Ep<br />

during the EHR reporting period.<br />

Any Ep who<br />

writes fewer<br />

than 100<br />

prescriptions<br />

during the EHR<br />

reporting period.<br />

1. determine if the exclusion applies.<br />

2. Test functionality <strong>of</strong> EMR system’s eRx feature.<br />

3. Establish connections with pharmacy systems.<br />

4. Review HipAA and HiTECH policies related to transmittal<br />

<strong>of</strong> pHi.<br />

5. Consult GetRxConnected (www.getrxconnected.com)<br />

6. implement policies, procedures and protocols to enable<br />

transmission <strong>of</strong> permissible prescriptions electronically.<br />

7. Train all physicians in the practice to use this program<br />

feature.<br />

8. Take steps to ensure that each Ep transmits more than<br />

40% <strong>of</strong> permissible prescriptions electronically.<br />

9. On a regular basis, conduct an audit to ensure lower<br />

threshold will be reached by the end <strong>of</strong> the reporting<br />

period.<br />

None 1. Test the functionality <strong>of</strong> your EMR system to record<br />

demographics as structured data.<br />

2. implement policies, procedures and protocols to enable the<br />

recording <strong>of</strong> demographics in the EMR.<br />

3. Train all physicians and staff to use this feature.<br />

4. Take steps to ensure each Ep records demographics as<br />

structured data for at least 50% <strong>of</strong> their patients.<br />

5. On a regular basis, conduct an audit to ensure<br />

demographics are recorded for at least 50% <strong>of</strong> unique<br />

patients seen during the reporting period.


315<br />

CORE SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete all 15 core set <strong>of</strong> objectives<br />

MENU SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete 5 objectives out <strong>of</strong> 10<br />

Objective Core/Menu Measure Reporting Requirements Exclusions Action (What needs to be done)<br />

Maintain up-to-date<br />

problem list <strong>of</strong> current<br />

and active diagnoses<br />

Maintain an active<br />

medication list<br />

Maintain an active<br />

medication allergy list<br />

Record and chart vital<br />

signs: height, weight,<br />

blood pressure,<br />

calculate and display<br />

BMi, plot and display<br />

growth charts for<br />

children 2‐20 years,<br />

including BMi<br />

Record smoking<br />

status for patients 13<br />

years old or older<br />

Core More than 80% <strong>of</strong><br />

all unique patients<br />

seen by the Ep have<br />

at least one entry<br />

or an indication<br />

that no problems<br />

are known for the<br />

patient recorded as<br />

structured data.<br />

Core More than 80% <strong>of</strong><br />

all unique patients<br />

seen by the Ep have<br />

at least one entry<br />

(or indication that<br />

the patient is not<br />

currently prescribed<br />

any medication)<br />

recorded as<br />

structured data<br />

Core More than 80% <strong>of</strong> all<br />

unique patients seen<br />

by the Ep who have<br />

at least one entry<br />

(or an indication that<br />

the patient has know<br />

known medication<br />

allergies) recorded<br />

as structured data<br />

in their medication<br />

allergy list.<br />

Core More than 50% <strong>of</strong><br />

all unique patients<br />

age 2 and over<br />

seen by the Ep<br />

have height, weight<br />

and blood pressure<br />

are recorded as<br />

structured data<br />

during the HER<br />

reporting period.<br />

Core More than 50% <strong>of</strong><br />

all unique patients<br />

13 years old or<br />

older seen by the<br />

Ep have smoking<br />

status recorded as<br />

structured data<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

have at least one entry or an<br />

indication that no problems are<br />

known for the patient recorded as<br />

structured data in the problem list.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by the Ep<br />

during the EHR reporting period.<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

have a medication( or an indication<br />

that the patient is not currently<br />

prescribed any medication)<br />

recorded as structured data.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by the Ep<br />

during the EHR reporting period.<br />

Numerator: The number <strong>of</strong> unique<br />

patients in the denominator who<br />

have at least one entry (or an<br />

indication that the patient has<br />

no known medication allergies)<br />

recorded as structured data in their<br />

medication allergy list.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by the Ep<br />

during the EHR reporting period.<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

have at least one entry <strong>of</strong> their<br />

height, weight and blood pressure<br />

recorded as structured data.<br />

Denominator: The number <strong>of</strong><br />

unique patients age 2 and over<br />

seen by the Ep during the EHR<br />

reporting period.<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator with<br />

smoking status recorded as<br />

structured data.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by the Ep<br />

during the EHR reporting period.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

None 1. Test the functionality <strong>of</strong> the EMR system to maintain an up<br />

to date diagnosis list as structured data.<br />

2. Ensure the system can document if there are no known<br />

problems.<br />

3. Train all physicians and staff in the practice to use this<br />

feature at every outpatient appointment documentation.<br />

4. Take steps to ensure that each Ep records diagnoses as<br />

structured data for more than 80% <strong>of</strong> unique patients.<br />

5. On a regular basis, conduct an audit to ensure diagnosis<br />

information is recorded for at least 80% <strong>of</strong> unique patients.<br />

None 1. Ensure your EMR system has the capability to record<br />

medications for patients. System must also have the<br />

capability to document if no medications have been<br />

prescribed.<br />

2. implement policies, procedures and protocols to enable<br />

active medications to be entered as structured data.<br />

3. Tran all physicians and staff in the practice to use this<br />

feature at every outpatient visit document review.<br />

4. Take steps to ensure that each Ep records the information<br />

for more than 80% <strong>of</strong> all unique patients.<br />

5. On regular basis during the reporting period, conduct an<br />

audit to ensure this information is recorded for at least<br />

80% <strong>of</strong> unique patients.<br />

None 1. Ensure the practice’s EMR system has the capability to<br />

record medication allergies for patients and to keep the<br />

list up‐to‐date. Ensure the system also can document if no<br />

medication allergies have been identified.<br />

2. implement policies, procedures and protocols to enable<br />

medication allergies to be entered and stored.<br />

3. Train all physicians and staff in the practice to use this<br />

feature at every outpatient visit documentation.<br />

4. Take steps to ensure that Ep records the information for<br />

more than 80% <strong>of</strong> all unique patients.<br />

5. On a regular basis during the reporting period, conduct<br />

an audit to ensure this information is recorded for at least<br />

80% <strong>of</strong> unique patients.<br />

Any Ep who<br />

sees only<br />

patients 2 years<br />

or younger. Any<br />

Ep who believes<br />

that all three<br />

vital signs <strong>of</strong><br />

height, weight<br />

and blood<br />

pressure have<br />

no relevance to<br />

their scope <strong>of</strong><br />

practice may<br />

attest to be<br />

excluded.<br />

Any Ep who<br />

sees no patients<br />

13 years or<br />

older<br />

1. determine if the exclusion applies.<br />

2. implement policies, procedures and protocols to enable<br />

the recording <strong>of</strong> height, weight and blood pressure as<br />

structured data.<br />

3. Train all physicians and staff in the practice to use this<br />

feature at every outpatient appointment document review.<br />

4. Take steps to ensure each Ep records the information for at<br />

least 50% <strong>of</strong> patients seen during the EHR reporting period<br />

who are age 2 and over.<br />

5. On a regular basis during the reporting period, conduct an<br />

audit tonsure this information is in fact recorded for at least<br />

50% <strong>of</strong> unique patients who are age 2 and over.<br />

1. determine if the exception applies: physician sees no<br />

patients 13 years and older.<br />

2. if an exception does not apply, implement policies,<br />

procedures and protocols to enable smoking status to be<br />

recorded as structured data.<br />

3. Take steps to ensure the information is recorded for at<br />

least 50% <strong>of</strong> patients 13 years and older seen during the<br />

reporting period.<br />

4. On a regular basis during the reporting period, conduct an<br />

audit to ensure this information is in fact recorded for at<br />

least 50% <strong>of</strong> unique patients 13 years and older.


316<br />

CORE SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete all 15 core set <strong>of</strong> objectives<br />

MENU SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete 5 objectives out <strong>of</strong> 10<br />

Objective Core/Menu Measure Reporting Requirements Exclusions Action (What needs to be done)<br />

implement one clinical<br />

decision support rule<br />

relevant to specialty<br />

or high clinical priority<br />

along with the ability<br />

to track compliance to<br />

that rule<br />

Report ambulatory<br />

clinical quality<br />

measures to CMS or<br />

the states<br />

provide patients with<br />

an electronic copy <strong>of</strong><br />

their health information<br />

(including diagnostic<br />

test results, problem<br />

list, medication lists,<br />

medication allergies),<br />

upon request<br />

provide clinical<br />

summaries for<br />

patients for each<br />

<strong>of</strong>fice visit<br />

Core implement one<br />

clinical decision<br />

support rule<br />

Core For 2011 provide<br />

aggregate<br />

numerator,<br />

denominator<br />

and exclusions<br />

through attestation<br />

as discussed in<br />

section ii(A)(3) <strong>of</strong><br />

the final rule. For<br />

2012 electronically<br />

submit the clinical<br />

quality measures as<br />

discussed in section<br />

ii(A)(3) <strong>of</strong> the final<br />

rule<br />

Core More than 50% <strong>of</strong><br />

all patients <strong>of</strong> the<br />

Ep who request<br />

an electronic copy<br />

<strong>of</strong> their health<br />

information are<br />

provided it within 3<br />

business days<br />

Core Clinical summaries<br />

provided to patients<br />

for more than 50% <strong>of</strong><br />

all <strong>of</strong>fice visits within<br />

3 business days<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Yes/No Attestation None 1. identify <strong>Orthopaedic</strong> related clinical decision support<br />

rules for both hospital and <strong>of</strong>fice —e.g. Failed Total Joint<br />

Replacement or periprosthetic infection.<br />

2. Take action to treat patient.<br />

3. Audit activities.<br />

4. Follow up with patient and document actions taken as<br />

necessary<br />

An Ep would provide the aggregate<br />

numerator and denominator<br />

through attestation<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

receive a copy <strong>of</strong> their health<br />

information within 3 business days.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by an Ep<br />

for an <strong>of</strong>fice visit during the EHR<br />

reporting period.<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

are provided a clinical summary <strong>of</strong><br />

their visit within 3 business days.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by an Ep<br />

for an <strong>of</strong>fice visit during the EHR<br />

reporting period.<br />

None; Ep can<br />

report “0”<br />

(zero) in the<br />

denominator<br />

Any Ep that has<br />

no requests<br />

from patients<br />

or their agents<br />

for an electronic<br />

copy <strong>of</strong><br />

patient health<br />

information<br />

during the EHR<br />

reporting period.<br />

Any EpS who<br />

have no <strong>of</strong>fice<br />

visits during the<br />

EHR reporting<br />

period.<br />

1. develop reporting programto CMS or your state.<br />

2. Note core measures and potential <strong>Orthopaedic</strong> measures.<br />

3. Audit activities.<br />

4. Follow up with patient and document actions taken as<br />

necessary. For 2012-1. Submit report electronically as<br />

required.<br />

1. determine if the exception applies 2. Test functionality <strong>of</strong><br />

practice’s EHR system to ensure that it can generate an<br />

electronic copy <strong>of</strong> patients’ electronic health records.<br />

3. document request and provision <strong>of</strong> data and information to<br />

the patient during the EHR reporting period.<br />

4. implement policies, procedures and protocols to enable<br />

patients to receive records within 3 business days.<br />

5. Take steps to ensure that requests received from patients<br />

and agents are always processed within 3 business days.<br />

6. On a regular basis during the reporting period, conduct an<br />

audit to ensure that at least 50% <strong>of</strong> patients requesting<br />

copies <strong>of</strong> their electronic information receive the data<br />

within three business days.<br />

1. determine if the exception applies. Tip: develop and<br />

implement an action plan for this measure in case <strong>of</strong>fice<br />

visits start occurring toward the end <strong>of</strong> the period.<br />

2. Test functionality <strong>of</strong> practice’s EHR system to ensure that<br />

it can generate clinical summaries <strong>of</strong> patients’ electronic<br />

health records.<br />

3. determine how many patients have visited the practice<br />

during the reporting period; multiply by 50%.<br />

4. implement policies, procedures and protocols to enable<br />

patients to receive clinical summaries within 3 business<br />

days. Specifically, determine how information will be<br />

delivered to ensure data security.<br />

5. Take steps to ensure that clinical summaries are provided<br />

for at least 50% <strong>of</strong> all patients’ <strong>of</strong>fice visits within three<br />

business days.<br />

6. On a regular basis during the reporting period, conduct<br />

an audit to ensure that clinical summaries are provided to<br />

more than 50% <strong>of</strong> patients within three days <strong>of</strong> their visit.


317<br />

CORE SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete all 15 core set <strong>of</strong> objectives<br />

MENU SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete 5 objectives out <strong>of</strong> 10<br />

Objective Core/Menu Measure Reporting Requirements Exclusions Action (What needs to be done)<br />

Capability to<br />

exchange key clinical<br />

information (for<br />

example, problem<br />

list, medication<br />

list, medication<br />

allergies, diagnostic<br />

test results), among<br />

providers <strong>of</strong> care and<br />

patient authorized<br />

entities electronically<br />

protect electronic<br />

health information<br />

created or maintained<br />

by the certified EHR<br />

technology through<br />

the implementation <strong>of</strong><br />

appropriate technical<br />

capabilities<br />

implement<br />

drug‐formulary checks<br />

incorporate lab test<br />

results as structured<br />

data<br />

Generate lists <strong>of</strong><br />

patients by specific<br />

conditions to use for<br />

quality improvement,<br />

reduction <strong>of</strong><br />

disparities, research<br />

or outreach<br />

Core performed at least<br />

one test <strong>of</strong> certified<br />

EHR technology’s<br />

capacity to<br />

electronically<br />

exchange key clinical<br />

information<br />

Core Conduct or review<br />

a security risk<br />

analysis per 45 CFR<br />

164.308 (a)(1) in the<br />

July 13, 2010 Final<br />

Rule and implement<br />

security updates<br />

as necessary and<br />

correct identified<br />

security deficiencies<br />

as part <strong>of</strong> its risk<br />

management<br />

process<br />

Menu The Ep has enabled<br />

drug‐formulary<br />

functionality and<br />

has access to at<br />

least one internal or<br />

external formulary<br />

for the entire EHR<br />

reporting period<br />

Menu More than 40% <strong>of</strong><br />

all clinical lab tests<br />

results ordered<br />

by the Ep during<br />

the EHR reporting<br />

period whose<br />

results are either in<br />

a positive/negative<br />

or numerical format<br />

are incorporated<br />

in certified EHR<br />

technology as<br />

structured data<br />

Menu Generate at least<br />

one report listing<br />

patients <strong>of</strong> the Ep<br />

with a specific<br />

condition<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Yes/No Attestation None 1. Test the practice’s EHR system’s capability to send key<br />

clinical information to other providers <strong>of</strong> healthcare and<br />

receive information from those providers.<br />

2. Verify that the transmission <strong>of</strong> information complies with<br />

HipAA and other federal and state regulations.<br />

3. Research the status <strong>of</strong> the state’s Health information<br />

Exchange program (see http://www.hhs.gov/recovery/<br />

programs/hitech /factsheet.html).<br />

Yes/No Attestation None 1. develop policies, procedures and protocols to ensure data<br />

security that are consistent with HipAA and HiTECH. See<br />

AAOS Now, November, 2010 issue for a list <strong>of</strong> policies and<br />

more information on data security requirements.<br />

2. Conduct file audits regularly to determine who is<br />

accessing secure patient files. The Act requires that ten<br />

patient files be reviewed annually.<br />

Yes/No Attestation Any Ep who<br />

writes fewer than<br />

100 prescriptions<br />

during the EHR<br />

reporting period.<br />

Numerator: The number <strong>of</strong> label<br />

test results whose results are<br />

expressed in a positive or negative<br />

affirmation or as a number and are<br />

incorporated as structured data.<br />

Denominator: The number <strong>of</strong><br />

label tests ordered during the EHR<br />

reporting period by the Ep whose<br />

results are expressed in a positive<br />

or negative affirmation or as a<br />

number<br />

Any Ep who<br />

orders no lab<br />

tests whose<br />

results are either<br />

in a positive/<br />

negative or<br />

numeric format<br />

during the EHR<br />

reporting period<br />

1. Cross check prescribe ddrug with any formulary.<br />

pharmacy may provide information necessary to<br />

document the information.<br />

2. Consider developing online links to all insurance company<br />

formularies, if available, to expedite cross check.<br />

1. determine if an exception applies. Tip: develop and<br />

implement an action plan for this measure in case lab tests<br />

start to be ordered toward the end <strong>of</strong> the period.<br />

2. Test functionality <strong>of</strong> practice’s EHR system to incorporate<br />

clinical lab tests as structured data.<br />

3. implement, policies, procedures and protocols for<br />

downloading information (including information received<br />

from third parties) into the practice’s EMR system. perform<br />

any needed special programming.<br />

4. Verify that sample data is entered accurately into a sample<br />

record.<br />

5. Take steps to cause lab information ordered by the Ep to be<br />

downloaded into the practice’s EMR system.<br />

6. On a regular basis during the reporting period, conduct<br />

an audit to ensure that at least 40% <strong>of</strong> applicable lab test<br />

results are entered into the EHR as structured data.<br />

7. Train all physicians and staff to use this feature . Evaluate<br />

and put into place systems.<br />

Yes/No Attestation None 1. Ensure the practice’s EHR system has the capability to<br />

generate lists <strong>of</strong> patients seen who have presented with a<br />

specific condition.<br />

2. Generate at least one list during the reporting period.<br />

3. Use the list in connection to improve quality <strong>of</strong> care, to<br />

reduce disparities in care provision or in connection with<br />

outreach activities (such as osteoporosis screening).


318<br />

CORE SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete all 15 core set <strong>of</strong> objectives<br />

MENU SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete 5 objectives out <strong>of</strong> 10<br />

Objective Core/Menu Measure Reporting Requirements Exclusions Action (What needs to be done)<br />

Send reminders to<br />

patients per patient<br />

preference for<br />

preventive/follow‐up<br />

care<br />

provide patients with<br />

timely electronic<br />

access to their health<br />

information (including<br />

lab results, problem<br />

list, medication<br />

allergies) within four<br />

business days <strong>of</strong> the<br />

information being<br />

available to the Ep<br />

Use certified EHR<br />

technology to identify<br />

patient-specific<br />

education resources<br />

and provide those<br />

resources to the<br />

patient if appropriate<br />

The Ep who receives<br />

a patient from<br />

another setting <strong>of</strong><br />

care or provider <strong>of</strong><br />

care or believes<br />

an encounter is<br />

relevant should<br />

perform medication<br />

reconciliation<br />

The Ep who<br />

transitions their<br />

patient to another<br />

setting <strong>of</strong> care or<br />

provider <strong>of</strong> care or<br />

refers their patient to<br />

another provider <strong>of</strong><br />

care should provide<br />

summary <strong>of</strong> care<br />

record for each<br />

transition <strong>of</strong> care or<br />

referral<br />

Menu More than 20% <strong>of</strong><br />

all unique patients<br />

65 years or older<br />

or 5 years old or<br />

younger were sent<br />

an appropriate<br />

reminder during the<br />

EHR reporting period<br />

Menu More than 10% <strong>of</strong><br />

al unique patients<br />

seen by the Ep are<br />

provided timely<br />

(available to the<br />

patient within four<br />

business days <strong>of</strong><br />

being updated<br />

in the certified<br />

EHR technology)<br />

electronic access<br />

to their health<br />

information subject<br />

to the Ep’s discretion<br />

to withhold certain<br />

information<br />

Menu More than 10% <strong>of</strong> all<br />

unique patients seen<br />

by the Ep or admitted<br />

are provided<br />

patient‐specific<br />

education resources<br />

Menu The Ep performs<br />

medication<br />

reconciliation for<br />

more than 50% <strong>of</strong><br />

transitions <strong>of</strong> care in<br />

which the patient is<br />

transitioned into the<br />

care <strong>of</strong> the Ep<br />

Menu The Ep who<br />

transitions or refers<br />

their patient to<br />

another setting <strong>of</strong><br />

care or provider<br />

<strong>of</strong> care provides a<br />

summary <strong>of</strong> care<br />

record for more than<br />

50% <strong>of</strong> transitions <strong>of</strong><br />

care and referrals<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator<br />

who were sent the appropriate<br />

reminders.<br />

Denominator: The number <strong>of</strong><br />

unique patients 65 years old or<br />

older or 5 years old or younger.<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

have timely (available to the<br />

patient within 4 business days <strong>of</strong><br />

being updated in the certified EHR<br />

system ) electronically access to<br />

their health information online.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by the Ep<br />

during the EHR reporting period.<br />

Numerator: The number <strong>of</strong><br />

patients in the denominator who<br />

are provided patient education<br />

specific resources.<br />

Denominator: The number <strong>of</strong><br />

unique patients seen by an Ep<br />

during the EHR reporting period.<br />

Numerator: The number<br />

<strong>of</strong> transitions <strong>of</strong> care in the<br />

denominator where medication<br />

reconciliation was performed.<br />

Denominator: The number <strong>of</strong><br />

transition <strong>of</strong> care during the HER<br />

reporting period for which the<br />

Ep was the receiving party <strong>of</strong> the<br />

transition.<br />

Numerator: The number <strong>of</strong><br />

transitions <strong>of</strong> care and referrals in<br />

the denominator where a summary<br />

<strong>of</strong> care record was provided.<br />

Denominator: The number <strong>of</strong><br />

transition <strong>of</strong> care and referrals<br />

during the HER reporting period for<br />

which the Ep was the transferring<br />

or referring party <strong>of</strong> the transition.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Any Ep who<br />

has no patients<br />

65 years old or<br />

older or 5 years<br />

old or younger<br />

Any Ep that<br />

neither orders<br />

nor creates<br />

any <strong>of</strong> the<br />

information<br />

listed at 45 CFR<br />

170.304 (g) in<br />

the July 13, 2010<br />

Final Rule during<br />

the EHR reporting<br />

period.<br />

1. determine if an exception applies.<br />

2. Test the functionality <strong>of</strong> the practice’s EMR system to<br />

send reminders to patients, according to their preferred<br />

methodology. Alternatives include phone, email and U.S.<br />

mail. practice must comply with security guidelines set<br />

forth by HipAA and HiTECH.<br />

3. determine how many patients within the age ranges will<br />

be seen during the reporting period. Calculate 20% <strong>of</strong> this<br />

number.<br />

4. determine patient preferences for reminders.<br />

5. implement policies, procedures protocols for sending<br />

reminders to patients in these age ranges according to the<br />

expressed preferences.<br />

6. Take steps to ensure that reminders are sent to more than<br />

20% <strong>of</strong> these patients.<br />

7. On a regular basis during the reporting period, conduct an<br />

audit to ensure that reminders are sent out to at least 20%<br />

<strong>of</strong> patients in the stipulated age groups.<br />

1. develop and implement a patient portal that complies with<br />

HipAA and HiTECH data security requirements.<br />

2. Sign up patients to use the portal.<br />

None 1. provide patient education to patients, e.g. patient<br />

instructions noting internet resources (e.g. Your<br />

<strong>Orthopaedic</strong> Connection from AAOS).<br />

2. document action taken in patient record.<br />

Any Ep who<br />

was not the<br />

recipient <strong>of</strong> any<br />

transitions <strong>of</strong><br />

care during the<br />

EHR reporting<br />

period.<br />

Any Ep who<br />

neither transfers<br />

a patient to<br />

another setting<br />

nor transfers<br />

a patient to<br />

another provider<br />

during the EHR<br />

reporting period<br />

1. develop an dimplement procedures to verify accuracy <strong>of</strong><br />

medication list.<br />

2. Train all physicians and staff in the practice to use this<br />

feature.<br />

3. Evaluate and put into place systems.<br />

1. Follow The Joint Commission SBAR (Situation, Background,<br />

Assessement, Recommendation) requirements for patient<br />

transfer. (see AAOS practice Management Center for<br />

information on SBAR).<br />

2. develop policies and procedures.


319<br />

CORE SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete all 15 core set <strong>of</strong> objectives<br />

MENU SET – Eligible Pr<strong>of</strong>essionals (EP) required to complete 5 objectives out <strong>of</strong> 10<br />

Objective Core/Menu Measure Reporting Requirements Exclusions Action (What needs to be done)<br />

Capability to submit<br />

electronic data<br />

to immunization<br />

registries or<br />

immunization<br />

information<br />

Systems and actual<br />

submission in<br />

accordance with<br />

applicable law and<br />

practice<br />

Capability to submit<br />

electronic syndromic<br />

surveillance data<br />

to public health<br />

agencies and<br />

actual submission<br />

in accordance with<br />

applicable law and<br />

practice<br />

Menu performed at least<br />

one test <strong>of</strong> certified<br />

EHR technology’s<br />

capacity to submit<br />

electronic data<br />

to immunization<br />

registries and followup<br />

submission if the<br />

test is successful<br />

(unless none <strong>of</strong><br />

the immunization<br />

registries to which<br />

the Ep submits such<br />

information have the<br />

capacity to receive<br />

the information<br />

electronically)<br />

Menu performed at least<br />

one test <strong>of</strong> certified<br />

EHR technology’s<br />

capacity to provide<br />

electronic syndromic<br />

surveillance data<br />

to public health<br />

agencies and followup<br />

submission if the<br />

test is successful<br />

(unless none <strong>of</strong><br />

the public health<br />

agencies to which an<br />

Ep, eligible hospital<br />

or CAH submits such<br />

information have the<br />

capacity to receive<br />

the information<br />

electronically)<br />

Important note 1:<br />

One <strong>of</strong> the final two publicαhealth related initiatives are required in<br />

the “menu.”<br />

Important note 2:<br />

For the Medicaid incentive, CMS has granted states the ability to<br />

require up to four menu criteria as “core.” EPs should check with<br />

their state to<br />

*** Required “clinical quality” core measures:<br />

1. Hypertension: Blood Pressure Management<br />

2. Tobacco Use Assessment and Cessation Intervention<br />

3. Adult Weight Screening and Follow-up<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Yes/No Attestation Any Ep that has<br />

not given any<br />

immunizations<br />

during the HER<br />

reporting period<br />

Yes/No Attestation Any Ep that<br />

does not collect<br />

any reportable<br />

syndromic<br />

information on<br />

their patients<br />

during the EHR<br />

reporting period<br />

1. Test system to document immunization procedures, e.g.<br />

tetanus for patients with lacerations.<br />

2. Review your state’s laws related to immunization<br />

registeries.<br />

3. identify location <strong>of</strong> state registry, if exists. 4. document<br />

test date.<br />

1. Test system to document capability.<br />

2. document test date.<br />

Alternative core measures:<br />

1. Influenza Immunization for Patients ≥ 50 years old<br />

2. Weight Assessment and Counseling for Children and<br />

Adolescents<br />

3. Childhood Immunization Status


320<br />

meaSuriNg value iN orthopaediCS:<br />

what a CliNiCiaN NeedS to kNow (y)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Moderator: Todd J. Albert, MD, Philadelphia, PA<br />

This symposium will introduce the concept <strong>of</strong> value-driven orthopaedic care, define the components <strong>of</strong> the value equation,<br />

and review the concept <strong>of</strong> comparative effectiveness research.<br />

I. Introduction: Value Based Health Care<br />

Todd J. Albert, MD, Philadelphia, PA<br />

II. Value-based <strong>Orthopaedic</strong> Care: Is This Where We Are Heading and How Do We Get There?<br />

Kevin Bozic, MD, San Francisco, CA<br />

III. The Value Equation: The Use <strong>of</strong> Ulility Measures in Determining Value (SF6D, EQ5D, HUI)<br />

Sigurd H. Berven, MD, San Francisco, CA<br />

IV. Discussion, Questions and Answers<br />

All Faculty<br />

V. Cost Effectiveness Analysis in <strong>Orthopaedic</strong> Surgery<br />

Jeffrey Rihn, MD, Philadelphia, PA<br />

VI. When the Rubber Meets the Road –Operationalizing Outcomes Collection and Its Utilization.<br />

Steven D. Glassman, MD, Louisville, KY<br />

VII. Discussion, Questions and Answers<br />

All Faculty


321<br />

meaSuriNg value iN orthopaediCS – iNtroduCtioN<br />

Todd J Albert, MD<br />

Value Definition Cost / Quality<br />

Cost: Direct /Indirect – Time consuming/difficult Quality – to create<br />

appropriate measures need Health Utility Score. At present work is<br />

done to convert our common measures to Utility scores (ie Oswestry<br />

Disability Index (ODI), Neck Disability Index (NDI). SF-36 and<br />

EQ -5D can be converted. This exercise is crirical to perform cost<br />

effectiveness research and measure one intervention against another.<br />

The concept <strong>of</strong> disease specific measures versus generic health<br />

outcome measures is critical. Disease specific measures more likely<br />

to be sensitive to smaller changes but not generalizable. Generic<br />

measure allow comparisons across diseases but may be incencitive<br />

to the nuances <strong>of</strong> certain specific disease states.<br />

Why do this? Who cares?<br />

The government, large employers, other payors, patients.<br />

Evolving Methodology<br />

1) Othopaedists used to measure healing rate, xrays, range <strong>of</strong><br />

motion etc.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

2) Now we measure those plus patients’ perception <strong>of</strong> health and<br />

well-being (SF-36, EQ 5-D)<br />

3) Because <strong>of</strong> difficulty in measuring all aspects <strong>of</strong> well-being,<br />

hospitals, insurers, and governing bodies have chosen that<br />

which they can measure – process measures – Hospital aquired<br />

infections, length <strong>of</strong> stay, DVT rate, compliance with giving<br />

properative antibiotics.<br />

How do we get there<br />

1) Walk before running<br />

2) Begin collecting<br />

3) Keep it simple<br />

4) Registries<br />

5) Diagnosis Specific /Generic<br />

6) Significant resources are needed (human and capital) to insure<br />

data capture and follow-up. Systems are being created which<br />

may simplify to an extent the process, but a paradigm shift and<br />

committment are necessary to insure success.


322<br />

value baSed health Care: iS thiS where we are headiNg aNd<br />

how do we get there?<br />

Kevin J. Bozic, MD, MBA<br />

1) US Health Care System<br />

a) Concerns regarding U.S. Healthcare System<br />

i) U.S. ranks highest in total health expenditure per capita<br />

but among the lowest in public satisfaction with our<br />

healthcare system. (Institute <strong>of</strong> Health Economics 2007)<br />

ii) The “Quality Chasm” is growing: 45% <strong>of</strong> patients do not<br />

receive care in accordance with best practices. (Institute<br />

<strong>of</strong> Medicine Committee on Health Care in America 2001)<br />

(Institute <strong>of</strong> Medicine Committee on Health Care in<br />

America 2000) (McGlynn, Asch et al. 2003)<br />

iii) Rising costs, variable quality have resulted in increasing<br />

scrutiny <strong>of</strong> providers (Millenson 2000) (Abelson 2008)<br />

iv) National Standards to rank physicians, checklist<br />

2) U.S. Health Care Crisis Multifactorial<br />

a) Inefficient operations<br />

b) Medical error/medicolegal system<br />

c) Moral Hazard<br />

d) Unnecessary care<br />

e) Technology<br />

3) U.S Health Care Policy Strategies<br />

a) Controlling costs by controlling utilization and limiting<br />

access to health care services<br />

b) Imposing reimbursement controls that force high-end<br />

providers to become more efficient<br />

c) Using government money to subsidize the high costs <strong>of</strong><br />

health care for targeted segments <strong>of</strong> the population<br />

4) Defining value in health care and defining measuring<br />

a) Value = Quality/Cost<br />

i) Value in any field must be defined around the customer<br />

(e.g. patient)<br />

b) Value Based Competition<br />

c) Moral Hazard<br />

5) Value Based Purchasing<br />

a) Describes efforts by health care purchasers to use their<br />

purchasing clout to require more transparency and better<br />

value – based on some quality measures <strong>of</strong> quality and costfor<br />

the money they spend on health care<br />

6) Prerequisites for Value Based Health Care (Shaller, S<strong>of</strong>aer et<br />

al. 2003)<br />

a) Consumers convinced quality and efficiency problems are<br />

real and consequential and can be improved<br />

b) Develop risk adjusted measures <strong>of</strong> quality, efficiency<br />

i) Information on quality and efficiency must be relevant to<br />

consumers, to easy to understand and use<br />

c) Purchasers and policymakers ensure that quality and<br />

efficiency reporting is standardized and universal<br />

d) Improved dissemination <strong>of</strong> information<br />

e) Payors reward improvements in quality and efficiency<br />

f) Providers create information and organizational<br />

infrastructure to improve quality and efficiency<br />

7) Defining measuring and reporting value in health care<br />

a) Increasing demand for measuring, reporting quality, cost<br />

i) Questions remain:<br />

(1) Relevance, accuracy, reliability, and actionability <strong>of</strong><br />

quality information<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

(2)Process, efficiency, patient satisfaction, outcome<br />

(3)Who’s perspective<br />

8) End Users <strong>of</strong> Quality/Efficiency Measures<br />

a) Providers: (hospitals, physicians, others): Benchmarking,<br />

quality improvement<br />

b) Patients: Comparison Shopping<br />

c) Payers, Purchasers: Payment incentives (e.g. P4P), benefit<br />

design<br />

9) Do Patients want Quality Info?<br />

10) Accessibility <strong>of</strong> Quality Info?<br />

11) Benefits <strong>of</strong> Quality Measurement/Reporting<br />

a) Potential to improve quality, efficiency<br />

i) Benchmarking<br />

ii) Hawthorne Effect<br />

iii) Low quality providers exit the market (Swedish Registry)<br />

b) Promote value-based competition<br />

i) Help patients, purchasers make informed decisions<br />

c) Encourage payers, purchasers to reward quality/efficiency<br />

d) Increase public trust<br />

i) Increase accountability<br />

12) Arguments against quality measurement/reporting<br />

a) Logistics, expense <strong>of</strong> data collection<br />

b) Misuse <strong>of</strong> invalid or inaccurate information<br />

i) Insufficient risk adjustment, sample size<br />

ii) Time lag<br />

iii) Difficult for consumers to understand, use<br />

iv) Medico-legal considerations<br />

c) Problems with attribution (MA PCI study)<br />

d) Potential for risk-avoidance, deselection <strong>of</strong> vulnerable, risky<br />

patients (NY/PA CABG experience)<br />

e) Top performers can’t treat everyone<br />

13) “Risk Avoidance Creep” (Resnic and Welt 2009)<br />

14) Public (vs. Private) Reporting Adds Value (Hibbard, Stockard<br />

et al. 2005) (Barr, Giannotti et al. 2006)<br />

15) Who will define “quality” in healthcare<br />

16) Comparison Shopping based on cost (Detroit Free Press,<br />

March 11, 2009)<br />

17) Opportunity: Quality and Efficiency Measurement and<br />

Reporting<br />

a) Participate in multi-stakeholder development <strong>of</strong> quality/<br />

efficiency measures, appropriate use criteria, risk adjustment<br />

tools<br />

b) Encourage increased transparency <strong>of</strong> cost, quality<br />

information<br />

c) Embrace competition based on value<br />

18) Comparative Effectiveness<br />

a) “As applied in the health care sector, an analysis <strong>of</strong><br />

comparative effectiveness is simply a rigorous evaluation <strong>of</strong><br />

the impact <strong>of</strong> different options that are available for treating<br />

a given medical condition for a particular set <strong>of</strong> patients.”<br />

(Congressional Budget Office 2007)<br />

b) Disruptive Innovation (Christensen 1997)<br />

c) “Cheaper, simpler, more convenient products or services that


323<br />

start by meeting the needs <strong>of</strong> less-demanding customers”<br />

d) Inferior functionality when compared with existing<br />

technologies<br />

e) Over time, functionality improves, begin to meet the needs<br />

<strong>of</strong> mainstream consumers<br />

f) Improves the “value equation” by lower cost, improving<br />

quality<br />

g) Sustaining Innovation (Christensen 1997)<br />

h) The functionality <strong>of</strong> sustaining innovation nearly always<br />

exceeds what consumers can utilize or are willing to pay for<br />

19) Sustaining Innovations in Health Care<br />

a) Advanced Imaging, computer-assisted surgical navigation<br />

tools, pacemakers, MERCI Clot Retriever<br />

20) Disruptive Innovations in Health Care<br />

a) Physicians assistants, nurse practitioners, shared decision<br />

making tools, clinical care pathways, crew resource<br />

management, patient focused care initiatives<br />

21) Comparative Effectiveness: Opportunities<br />

a) Define ‘comparative effectiveness’ in your field<br />

i) Identify low value technologies/procedures<br />

b) Funding opportunities for clinical, translational health<br />

services research<br />

c) Shape policy decisions around CER:<br />

i) Coverage decisions<br />

REFERENCES<br />

1. Abelson, R. (2008). National Standards to Rank Physicians Planned. New<br />

York Times.<br />

2. Barr, J. K., T. E. Giannotti, S. S<strong>of</strong>aer, C. E. Duquette, W. J. Waters and M. K.<br />

Petrillo (2006). “Using public reports <strong>of</strong> patient satisfaction for hospital<br />

quality improvement.” Health Serv Res 41(3 Pt 1): 663-82.<br />

3. Christensen, C. The Innovator’s Dilemma: When New Technologies Cause<br />

Great Firms to Fail. Boston, MA. Harvard Business School Press; 1997.<br />

4. Congressional Budget Office. Research on the Comparative Effectiveness<br />

<strong>of</strong> Medical Treatments. http://www.cbo.gov/ftpdocs/88xx/doc8891/12-18-<br />

ComparativeEffectiveness.pdf. Accessed October 29 2010.<br />

5. Hibbard, J. H., J. Stockard and M. Tusler (2005). “Hospital performance<br />

reports: impact on quality, market share, and reputation.” Health Aff<br />

(Millwood) 24(4): 1150-60.<br />

6. Institute <strong>of</strong> Health Economics. World in Your Pocket: A Handbook <strong>of</strong><br />

International Health Economic Statistics. Accessed November 7 2008.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

ii) Financial incentives for incorporating CER into practice<br />

iii) Patient education, shared decision making<br />

d) Allow disruptive innovations to emerge<br />

22) Leadership opportunities<br />

23) Future <strong>of</strong> Health Care in the U.S.<br />

a) Incentive Alignment: physicians, hospitals, health plans,<br />

patients<br />

i) Bundled payments<br />

ii) Gainsharing between physicians and hospitals<br />

iii) Accountable care organizations<br />

iv) Conflict <strong>of</strong> interest disclosure and resolution<br />

b) Patient engagement<br />

i) Cost sharing and value-based benefit design<br />

ii) Shared decision making and appropriateness <strong>of</strong> care<br />

c) Improved quality <strong>of</strong> evidence<br />

i) Randomized control trials<br />

ii) Registries<br />

iii) Incentives for reporting outcomes<br />

iv) Patient reported outcomes<br />

v) Data aggregation<br />

d) Transparency/Accountability<br />

i) Public reporting <strong>of</strong> costs, quality<br />

ii) Payment tied to outcomes<br />

iii) Value-based competition<br />

e) Positive sum competition<br />

7. Institute <strong>of</strong> Medicine Committee on Health Care in America (2000). To<br />

Err Is Human: Building a Safer Health System Washington, D.C., National<br />

<strong>Academy</strong> Press.<br />

8. Institute <strong>of</strong> Medicine Committee on Health Care in America. Crossing the<br />

quality chasm: a new health system for the 21st Century.<br />

http://books.nap.edu/openbook.php?isbn=0309072808. Accessed November<br />

3, 2008<br />

9. McGlynn, E. A., S. M. Asch, J. Adams, J. Keesey, J. Hicks, A. DeCrist<strong>of</strong>aro<br />

and E. A. Kerr (2003). “The quality <strong>of</strong> health care delivered to adults in the<br />

United States.” N Engl J Med 348(26): 2635-45.<br />

10. Millenson, M. Demanding Medical Excellence: Doctors and Accountability<br />

in the Information Age University Of Chicago Press; 1 edition (February 15,<br />

2000) 2000;<br />

11. Resnic, F. S. and F. G. Welt (2009). “The public health hazards <strong>of</strong> risk<br />

avoidance associated with public reporting <strong>of</strong> risk-adjusted outcomes in<br />

coronary intervention.” J Am Coll Cardiol 53(10): 825-30.<br />

12. Shaller, D., S. S<strong>of</strong>aer, S. D. Findlay, J. H. Hibbard, D. Lansky and S. Delbanco<br />

(2003). “Consumers and quality-driven health care: a call to action.” Health<br />

Aff (Millwood) 22(2): 95-101.


324<br />

the value equatioN: uSe oF utility meaSureS<br />

iN determiNiNg value<br />

Sigurd Berven, MD<br />

1) Definition <strong>of</strong> Value<br />

a. In a healthcare economy with limited resources, providers<br />

and consumers <strong>of</strong> healthcare services need to be accountable<br />

for the end result <strong>of</strong> care, and the cost <strong>of</strong> care. The value<br />

proposition in healthcare is an analysis <strong>of</strong> the benefits <strong>of</strong><br />

care relative to the direct cost and risk <strong>of</strong> providing the<br />

care. Measurement <strong>of</strong> benefits and costs is challenging,<br />

and a consensus on the measures that encompass the<br />

relevant components <strong>of</strong> the value equation has not been<br />

reached. Traditional outcome measures in orthopaedics<br />

including survival, radiographic outcomes, and diseasespecific<br />

outcome tools do not adequately reflect the patient’s<br />

healthcare experience, or the impact <strong>of</strong> an intervention on<br />

health-related quality <strong>of</strong> life. Similarly, measuring cost <strong>of</strong><br />

care is complex, and may encompass both direct costs <strong>of</strong><br />

treatment and alternative treatments, and indirect costs<br />

including time from work or family role, loss <strong>of</strong> productivity,<br />

and cost <strong>of</strong> caretakers.<br />

b. The right goal for healthcare delivery is superior patient<br />

value. i Patient value is measured at the level <strong>of</strong> specific<br />

medical conditions. Measurement <strong>of</strong> outcomes <strong>of</strong> care needs<br />

to reflect the patient’s long-term healthcare experience, and<br />

the impact <strong>of</strong> one intervention compared with alternatives<br />

on the patients self-assessment <strong>of</strong> health-related quality <strong>of</strong><br />

life.<br />

c. The Value Equation<br />

The value equation in healthcare is an analysis <strong>of</strong> the<br />

benefits <strong>of</strong> care relative to the direct cost and risk <strong>of</strong><br />

providing the care<br />

Value= Fxn(Benefit/Cost)<br />

The value equation may vary depending on the perspective<br />

<strong>of</strong> the stakeholder in the healthcare economy. Hospitals<br />

and facilities providing care may measure outcome and<br />

costs by factors that affect their short-term, single admission<br />

interaction, including length <strong>of</strong> stay, implant utilization,<br />

and complications. Third party payors for healthcare may<br />

focus on a timeframe that is longer that a single admission,<br />

and may include factors in the value equation such as<br />

readmission within 90 days, or cost <strong>of</strong> outpatient care.<br />

Patients, physicians, and society consider value over<br />

a lifetime. The cost <strong>of</strong> a single episode <strong>of</strong> care will be<br />

significantly discounted by the duration <strong>of</strong> the benefit.<br />

Patient preference for different health states over time <strong>of</strong>fer<br />

the most useful measure <strong>of</strong> value <strong>of</strong> healthcare interventions.<br />

2) Measurements <strong>of</strong> Quality and Value<br />

a. Hospitals and payors for healthcare have established<br />

measures <strong>of</strong> quality that may be misinterpreted as measures<br />

<strong>of</strong> outcome or value. Length <strong>of</strong> stay, surgical times,<br />

compliance with antibiotic or thromboembolic prophylaxis,<br />

and perioperative complications are process measures<br />

that may be useful to compare hospital and provider<br />

performance when appropriately matched and stratified.<br />

However, none <strong>of</strong> these process measures are useful in<br />

measuring the patient’s healthcare experience, or the impact<br />

<strong>of</strong> an orthopaedic intervention on long-term health-related<br />

quality <strong>of</strong> life. In fact, a focus on quality and process<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

measures alone may be misleading in the pursuit <strong>of</strong> value in<br />

healthcare, and may provide incentive for counterproductive<br />

care strategies that serve the measurement system rather than<br />

the patient.<br />

b. The priority <strong>of</strong> the patient’s self assessment <strong>of</strong> the impact<br />

<strong>of</strong> healthcare on their long-term health status requires<br />

emphasis, and efforts to substitute process measures for<br />

health status measures need to be avoided in the pursuit <strong>of</strong> a<br />

value-based healthcare system. ii<br />

3) Disease-specific measures <strong>of</strong> Outcome<br />

a. In orthopaedic surgery, patient self-assessment <strong>of</strong> health<br />

status and quality <strong>of</strong> life may include disease-specific<br />

measures, and general health status measures.<br />

i. Disease-specific measures are useful to optimize<br />

responsiveness to change, and psychometric properties.<br />

ii. General health status outcome tools are useful in<br />

providing a measure <strong>of</strong> outcome that may be translatable<br />

across a spectrum <strong>of</strong> medical and surgical conditions.<br />

b. An important limitation <strong>of</strong> many outcome measurement<br />

tools is that the measures are unitless, and changes in health<br />

status to not have a clear threshold for clinical significance,<br />

or value based on tangable measures<br />

i. Defining Minimal Clinically Important Difference<br />

1. MCID is the minimal threshold <strong>of</strong> change that<br />

patients recognize as an improvement or decrement<br />

in health statusiii,iv ii. Substantial Clinically Important Difference<br />

1. SCID describes the amount <strong>of</strong> change that a patient<br />

recognizes as a major improvementv<br />

4) An introduction to Utility scores<br />

a. Health status preference<br />

i. Health-related quality <strong>of</strong> life may be measured and<br />

ranked by a community preference, or societal preference,<br />

for various health state. Generic indices to reflect<br />

preference-based health-related quality <strong>of</strong> life include:<br />

1. EuroQol –Dimension (EQ-5D)<br />

a. Developed using time trade <strong>of</strong>f<br />

2. Short Form 6-D<br />

a. Developed using standard gamble<br />

3. Health Utilities Index<br />

a. Developed using standard gamble<br />

4. Quality <strong>of</strong> Well-being Scale-Self-Administered Form<br />

(QWB-SA)<br />

a. Developed using VAS valuation<br />

b. Preference scoring algorithms were developed using<br />

econometric modelling including time trade-<strong>of</strong>f, visual<br />

analogue score valuation and standard gamble.vi The result<br />

is a health status preference or utility score that has units <strong>of</strong><br />

quality-adjusted life years, or an equivalence to the amount<br />

<strong>of</strong> time in perfect health that a change in health status is<br />

worth.<br />

c. Quality-Adjusted Life Year:<br />

The area under the time utility curve represents the value <strong>of</strong> an<br />

intervention in units <strong>of</strong> Quality-adjusted life years (QALYs)


325<br />

Baseline 3 mos 6mos 1yr 2yrs<br />

5) Crosslinking Disease-specific measures and Utility Scores<br />

a. Disease-specific measures in orthopaedic surgery have the<br />

advantage <strong>of</strong> increased responsiveness to change and better<br />

psychometrics, including floor and ceiling effects, than<br />

general health status measures. Therefore, validated diseasespecific<br />

measures have utility in outcome analysis.<br />

b. A valid translation or cross-linking <strong>of</strong> disease-specific<br />

measures and utility scores may be useful in applying<br />

disease-specific measures.<br />

c. ODI to SF-6D crosslinking: vii<br />

d. NDI to SF-6D crosslinking:<br />

6) Threshold for cost effectiveness in medical and surgical care<br />

a. Measure <strong>of</strong> $/QALY permit a comparison <strong>of</strong> the costeffectiveness<br />

<strong>of</strong> healthcare alternatives that may be useful in<br />

public policy decision-making regarding allocation <strong>of</strong> care<br />

b. Establishing a threshold for cost-effectiveness <strong>of</strong> medical and<br />

surgical interventions requires a consideration <strong>of</strong> a society’s<br />

willingness to pay for healthcare interventions.<br />

c. Thresholds may differ based upon age considerations <strong>of</strong> the<br />

population under care, and upon patient preferences for care.<br />

d. Common <strong>Orthopaedic</strong> conditions have an impact on health<br />

status that is comparable with other common medical<br />

conditions.<br />

REFERENCES<br />

i. Porter ME, Teisberg EO: Redefining Health Care. Creating Value-based<br />

competition on results. Harvard Business School Press, 2006.<br />

ii. Berven S, Smith A, Bozic K, Bradford DS: Pay-for-performance:<br />

considerations in application to the management <strong>of</strong> spinal disorders. Spine<br />

(Phila Pa 1976). 2007 May 15;32(11 Suppl):S33-8.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

7) Threshold for cost effectiveness in new technologies<br />

a. Consideration <strong>of</strong> incremental cost-effectiveness has utility<br />

in assessing the value <strong>of</strong> new technologies. A comparison<br />

<strong>of</strong> the cost and benefit <strong>of</strong> a new technology compared<br />

with an existing technology may define the value <strong>of</strong> a<br />

new technology and an appropriate price point for new<br />

technologies. viii<br />

b. A new technology that is less expensive and <strong>of</strong>fers more<br />

benefit presents a clear cost advantage. A new technology<br />

that is more expensive and <strong>of</strong>fers less benefit is a clear<br />

disadvantage.<br />

c. The slope <strong>of</strong> the cost-benefit curve, or the line <strong>of</strong> costeffective<br />

equipose, is determined by societies willingness to<br />

pay for new technologies<br />

iii. Spratt KF: Patient-level minimal clinically important difference based on<br />

clinical judgment and minimally detectable measurement difference: a<br />

rationale for the SF-36 physical function scale in the SPORT intervertebral<br />

disc herniation cohort. Spine (Phila Pa 1976). 2009 Jul 15;34(16):1722-31.<br />

iv. Hägg O, Fritzell P, Nordwall A; Swedish Lumbar Spine Study Group: The<br />

clinical importance <strong>of</strong> changes in outcome scores after treatment for chronic<br />

low back pain. Eur Spine J. 2003 Feb;12(1):12-20.


v. Glassman SD, Copay AG, Berven SH, Polly DW, Subach BR, Carreon LY:<br />

Defining substantial clinical benefit following lumbar spine arthrodesis. J<br />

Bone Joint Surg Am. 2008 Sep;90(9):1839-47.<br />

vi. Cherepanov D, Palta M, Fryback DG: Underlying dimensions <strong>of</strong> the<br />

five health-related quality-<strong>of</strong>-life measures used in utility assessment:<br />

evidence from the National Health Measurement Study. Med Care. 2010<br />

Aug;48(8):718-25.<br />

326<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

vii. Carreon LY, Glassman SD, McDonough CM, Rampersaud R, Berven S,<br />

Shainline M: Predicting SF-6D utility scores from the Oswestry disability<br />

index and numeric rating scales for back and leg pain. Spine (Phila Pa 1976).<br />

2009 Sep 1;34(19):2085-9.<br />

viii.Bozic KJ, Pierce RG, Herndon JH: Health care technology assessment.<br />

Basic principles and clinical applications. J Bone Joint Surg Am. 2004<br />

Jun;86-A(6):1305-14.


327<br />

CoSt-eFFeCtiveNeSS aNalySiS iN orthopaediC Surgery<br />

Jeffrey A. Rihn, MD<br />

The concept <strong>of</strong> value-based health care takes into consideration both<br />

the quality and cost <strong>of</strong> care measured over time. There are three main<br />

components <strong>of</strong> the value equation: (1) the quality <strong>of</strong> care must be<br />

measured using some type <strong>of</strong> health outcome measure, (2) the cost<br />

<strong>of</strong> care must be measured, and (3) these measurements must be<br />

made over an appropriate time period to capture future events that<br />

will affect the overall value <strong>of</strong> an intervention.<br />

Cost-effectiveness analysis (CEA) is a specific type <strong>of</strong> economic<br />

analysis that estimates the value <strong>of</strong> an intervention. The purpose <strong>of</strong><br />

this analysis is to calculate the ratio between the cost <strong>of</strong> a specific<br />

healthcare intervention (numerator) and the benefit provided by<br />

that intervention as determined by a health outcomes measure<br />

(denominator). A Cost-utility analysis is a specific type <strong>of</strong> costeffectiveness<br />

analysis in which the benefit is expressed as a utility<br />

measure, i.e. a preference based measure <strong>of</strong> health-related quality<br />

scored as a number ranging from 0 (death) to 1(perfect health).<br />

The utility measure can be used to calculate quality adjusted life<br />

years (QALYs). From the policy makers’ and payers’ perspective, the<br />

value <strong>of</strong> specific types <strong>of</strong> orthopaedic interventions should not only<br />

compared to each other within the field <strong>of</strong> spinal care, but should also<br />

be compared to the value <strong>of</strong> interventions for other disease states, for<br />

example the treatment <strong>of</strong> diabetes or coronary artery disease.<br />

A cost-utility analysis, based on a preference-based utility measure,<br />

provides data that allows for this comparison across various<br />

disciplines <strong>of</strong> medicine. It is this type <strong>of</strong> economic analysis that will<br />

be used to guide payers and policy makers when making coverage<br />

decisions. In 1996 the United States Panel on Cost-Effectiveness in<br />

Health and Medicine published consensus-based recommendations<br />

for performing a cost-effectiveness analysis. 15 According to these<br />

recommendations, the four key components <strong>of</strong> a cost-effectiveness<br />

analysis are the following: (1) the use <strong>of</strong> the societal perspective,<br />

(2) appropriate incremental comparisons between treatments, (3)<br />

appropriate discounting <strong>of</strong> both the cost and health effect <strong>of</strong> the<br />

treatment, and (4) the use <strong>of</strong> a community preference-based utility<br />

measure 15 2 . Additionally, the panel recommended the use <strong>of</strong><br />

sensitivity analysis to address uncertainties within the study and<br />

recommended that studies have an appropriate time horizon or<br />

period <strong>of</strong> follow-up, as not to miss incidents that may affect the cost<br />

and/or outcome <strong>of</strong> a particular intervention. 15<br />

Despite the importance <strong>of</strong> the information provided by cost-utility<br />

analyses, there has been a relative paucity <strong>of</strong> these types <strong>of</strong> studies<br />

performed in the area <strong>of</strong> spinal care. A systematic review <strong>of</strong> costutility<br />

analysis in orthopaedic surgery published in 2007 reviewed<br />

all relevant studies published between 1976 and 2003. 1 The<br />

comprehensive review identified 62 articles total, 52 <strong>of</strong> which were<br />

cost-utility analyses with results reported in units <strong>of</strong> cost/QALY. The<br />

other 10 articles were reported in units <strong>of</strong> cost/life year. The number<br />

<strong>of</strong> cost-utility analysis was reported to increase significantly in the<br />

last decade, with 73% <strong>of</strong> the studies having been published after<br />

1998. 1 Only 21% <strong>of</strong> these articles used the societal perspective in the<br />

analysis, i.e. included indirect costs in the analysis. 1<br />

The basics to performing a cost-utility analysis include measuring<br />

outcomes and measuring costs. Although this seems straight forward,<br />

in real clinical practice it is quite the opposite. Measuring outcomes<br />

alone can be difficult logistically and conceptually. Measuring costs<br />

is even more challenging, with wide variations in methodology in<br />

existing studies. There is no true standardized method <strong>of</strong> accurately<br />

determining direct and indirect costs and many <strong>of</strong> the published<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

methods depend largely on estimates and assumptions. Outcome<br />

Measurement in <strong>Orthopaedic</strong> Surgery<br />

Various disease specific and general health measures are currently<br />

used as health related quality <strong>of</strong> life measures in orthopaedic<br />

patients. Process measures are also used by some to characterize the<br />

care that is delivered to patients. It is important to select appropriate<br />

outcome measure(s) when determining quality. The ideal quality<br />

measure should be patient centered, reliable, valid, responsive,<br />

simple to collect and score, comparable across various disease states,<br />

and applicable to cost-effectiveness calculations (e.g. able to be used<br />

to calculate quality adjusted life years). Unfortunately, this ideal<br />

measure does not exist.<br />

It is important to understand what outcome measures to currently<br />

exist and which ones are preferable when determining the value <strong>of</strong><br />

spinal care.<br />

Process-Based Measures<br />

Process-based measures assess various aspects <strong>of</strong> the care delivered<br />

to the patients before, during and after a treatment or intervention.<br />

Examples o f such measures include length <strong>of</strong> hospital stay, length<br />

<strong>of</strong> surgery, estimated blood loss, administration <strong>of</strong> antibiotics,<br />

use <strong>of</strong> DVT prophylaxis, and readmission rates. Process measures<br />

are relatively easy to collect and store in electronic databases and<br />

are free from many <strong>of</strong> the biases that complicate the collection <strong>of</strong><br />

patient-reported health related outcomes. Although these measures<br />

characterize various aspects <strong>of</strong> a patient’s care, they are not “patientcentered”<br />

and may not be reflective <strong>of</strong> the quality <strong>of</strong> care. A patientcentered<br />

outcome measure is one which measures those things that<br />

are most important to the patient, including level <strong>of</strong> pain, function,<br />

return to work, and return to sporting activity. Patients care more<br />

about these outcomes than process measures such as estimated<br />

blood loss during surgery and length <strong>of</strong> hospital stay. This is not<br />

to say that process measures are not useful, they just may not be<br />

the best outcome measures to use in the value equation. Process<br />

measures are, however, readily available to policy makers and payers.<br />

For this reason, if policy makers and payers are not provided with<br />

other patient-centered outcome measures for orthopaedic patients,<br />

they may use process measures to grade performance and potentially<br />

make payment and coverage decisions. It is therefore important for<br />

orthopaedic providers to make efforts to monitor patient outcomes<br />

using patient-centered measures than can then be communicated to<br />

the various stakeholders in health care delivery.<br />

Disease Specific Measures<br />

Disease-specific measures are those health related quality <strong>of</strong> life<br />

measures that are intended to measure outcomes in patients who<br />

are being treatment for a specific disease or who have a problem<br />

in a specific anatomical region. For example, in spinal care, the<br />

Oswetry Disability Index (ODI) is a disease-specific measure<br />

intended to measure how a disorder <strong>of</strong> the lumbar spine affects the<br />

function <strong>of</strong> the patient. Disease-specific measures are, in general,<br />

more responsive than measures <strong>of</strong> general health (e.g. SF-36) when<br />

it comes to detecting differences in the level <strong>of</strong> patient disability<br />

following treatment <strong>of</strong> a specific disorder. They ask questions that<br />

are tailored to a specific condition, as compared to general health<br />

measures, which ask general questions about a patients overall<br />

health and function. Disease specific measures cannot be used to<br />

make comparisons to other disease states and have not typically been<br />

able to be used in the value equation because they cannot be used


directly to calculate QALYs. Numerous disease-specific measures<br />

have, however, recently been successfully converted into a utility<br />

measure that can be used to calculate QALYs. For example, Carreon<br />

et al 7 recently described models for converting the ODI to the SF-6D,<br />

which is a preference-based utility measure that was derived from<br />

the SF-36 and that can be compared to other disease states and can<br />

be used to calculate QALYs. Disease specific measures in other areas<br />

<strong>of</strong> orthopaedic surgery have also been converted to utility measures<br />

for the purpose <strong>of</strong> performing cost-effectiveness research.<br />

General Health Measures<br />

General patient-reported health related outcome measures are not<br />

specific to a certain disease process or area <strong>of</strong> the body but rather<br />

measure the overall health <strong>of</strong> the patient. These measures are<br />

advantageous in that they are comparable across various disease<br />

states and, for the most part, can be used to calculate QALYs and<br />

assess cost effectiveness. They may not, however, be as responsive<br />

as disease-specific measures to changes in patient health status that<br />

occur following a specific intervention.<br />

The most commonly used general health measure is the SF-36,<br />

which was developed from the Medical Outcomes Study and has<br />

undergone extensive analysis and validation. 3,6 The original version<br />

<strong>of</strong> the SF-36 was revised in 1996 to its current version, version 2 (i.e.<br />

SF-36v2). This 36-item questionnaire is a comprehensive measure<br />

<strong>of</strong> physical and mental health. It addresses 8 health domains (i.e.<br />

physical functioning, role-physical, bodily pain, general health,<br />

vitality, social functioning, role-emotional, and mental health) and<br />

provides both physical component summary (PCS) and mental<br />

component summary (MCS) scores. The SF-36 does not, however,<br />

provide a single, overall summary score. The domains <strong>of</strong> physical<br />

pain and bodily function have been used as primary outcome<br />

measures in several studies <strong>of</strong> spinal conditions. The SF-36 has<br />

been validated for use in the general population as well as in<br />

patients undergoing surgical and non-surgical treatment for various<br />

orthopaedic conditions.<br />

Due to concerns <strong>of</strong> test-taker burden (i.e. time and number <strong>of</strong><br />

questions) when filling out forms, a shorter version <strong>of</strong> the SF-36, the<br />

SF-12, was developed which contains a subset <strong>of</strong> 12 questions from<br />

the SF-36 form. 14 Like the SF-36, there are two version <strong>of</strong> the SF-<br />

12. Version 2 (i.e. SF-12v2) is currently used, which reliably allows<br />

for calculation <strong>of</strong> the 8 domain scores as well as the PCS and MCS<br />

scores. With the first version <strong>of</strong> the SF-12, separate domain scores<br />

could not be reliably reported and therefore the results <strong>of</strong> the SF-<br />

12v1 were reported as the PCS and MCS scores. 14 The SF-8 is an<br />

even shorter version <strong>of</strong> the SF-36, which asks a single question for<br />

each <strong>of</strong> the eight health domains. It is intended to be used in studies<br />

involving groups with large sample sizes and/or large population<br />

surveys. It is advantageous in that is it very simple to complete and<br />

provides scores than can be directly compared to scores from either<br />

<strong>of</strong> the other two SF surveys (i.e. SF-36 and SF-12). The SF forms<br />

are available in standard four-week and acute one-week versions.<br />

These differ only in the recall period that is requested <strong>of</strong> the patient<br />

when filling out the questionnaire. The more recent, acute one-week<br />

version is intended to be used in settings that require weekly or biweekly<br />

collection <strong>of</strong> outcomes data.<br />

The main downside to these forms is that they are proprietary and<br />

therefore those who wish to administer and score the forms must<br />

pay licensing fees. These forms are not simple to score and require a<br />

complex algorithm.<br />

Utility Measures<br />

Utility measures are preference-based measures <strong>of</strong> general health<br />

that are derived from economic and decision theory. Using these<br />

328<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

methods, utility weights are assigned to numerous health states,<br />

providing a range <strong>of</strong> utility scores that range from 0, which is<br />

equivalent to death, to 1, which is equivalent to perfect health. Utility<br />

measures are advantageous in that they can be compared across<br />

different disease states and can be used in cost-effectiveness research<br />

through the calculation <strong>of</strong> QALYs. Several utility measurement tools<br />

exist, including the Euroquol-5D (EQ-5D), the Health Utility Index,<br />

and the SF-6D. The EQ-5D is a brief, preference-based measure<br />

<strong>of</strong> general health that was developed by a group <strong>of</strong> European<br />

researchers in the 1980’s. 10 It includes 5 domains <strong>of</strong> health, including<br />

mobility, self-care, daily activities, pain and discomfort, and anxiety<br />

or depression. For each domain there are three possible responses,<br />

ranging from 1 to 3, with 1 representing no problems, 2 representing<br />

some problems, and 3 representing extreme problems. From<br />

this questionnaire, there are a total <strong>of</strong> 243 possible health states.<br />

Although the questionnaire is very simple to complete, scoring <strong>of</strong> the<br />

EQ-5D requires a complicated algorithm. The EQ-5D is proprietary<br />

and users must pay for licensing in order to administer and score<br />

the form. Although the EQ-5D was developed in Europe, United<br />

States population-based preference weights for the EQ-5D have been<br />

developed 10. The simplicity and general nature <strong>of</strong> the EQ5D raises<br />

concerns regarding the responsiveness <strong>of</strong> such a measure to various<br />

interventions for orthopaedic disorders. There is literature, however,<br />

that reports acceptable validity, reliability, and responsiveness <strong>of</strong> the<br />

EQ-5D when used to measure outcomes in orthopaedic patients<br />

treated for a specific problem. 8,11<br />

The SF-6D is a utility measure that was derived from the SF-36. 3,4,5<br />

This utility measure addresses six dimensions <strong>of</strong> health assessed,<br />

include physical functioning, role limitations, social functioning,<br />

pain, mental health and vitality. 5 This measure provides 18,000<br />

possible health states. The utility score generated from this measure<br />

is used in cost-effectiveness analyses. Although the SF-6D and EQ-<br />

5D are both utility measures, differences between the two measures<br />

preclude their interchangeable use and direct comparison. 9,13<br />

Utility measures, the QALY, and cost-effectiveness<br />

The benefit <strong>of</strong> the utility measure is that it can be used to calculate<br />

QALYs. The QALY is a measurement that incorporates both the<br />

quality <strong>of</strong> health as well and the length <strong>of</strong> time (expressed in years)<br />

over which the quality <strong>of</strong> health exists. The QALY is currently the<br />

standard measure used in cost-effectiveness research in several<br />

countries, including the United States and Great Britain, where the<br />

cost-effectiveness <strong>of</strong> a particular intervention is expressed as cost/<br />

QALY gained. In the United States there is no standard willingness<br />

to pay threshold, although values <strong>of</strong> $50,000/QALY gained and<br />

$100,000/QALY gained have been promoted as thresholds, above<br />

which an intervention is not considered cost-effective. In Great<br />

Britain, the National Institute for Health and Clinical Excellence<br />

(NICE) has a willingness to pay threshold that ranges between<br />

£20,000 and £30,000/QALY gained. This threshold is used to make<br />

coverage decisions, i.e. those interventions that have a reported cost/<br />

QALY ratio that is greater than this threshold are not paid for by the<br />

insurer.<br />

The QALY is calculated as the area under the curve when the utility<br />

measure (x axis) is plotted against time (y axis). For example, if a<br />

patient who undergoes a lumbar decompression and fusion for<br />

degenerative spondylolisthesis and stenosis has a .6 increase in the<br />

EQ-5D over the baseline value for a 2year period <strong>of</strong> follow-up. The<br />

QALYs gained are equal to .6 (the utility value for the health state)<br />

x 2 (number <strong>of</strong> years in that health state), or 1.2 (which equals the<br />

time the patient spent in perfect health measured in years). This is<br />

assuming that the .6 point improvement in EQ-5D over baseline is the<br />

same over the 2-year follow-up time period. If there is considerable


variation in the ED-5D at each follow-up time period, calculating the<br />

area under the curve is more complicated.<br />

Cost estimation<br />

Cost represents one half <strong>of</strong> the value equation. Unfortunately, the<br />

measurement <strong>of</strong> cost is just as complicated, if not more complicated<br />

than the measurement <strong>of</strong> quality and there is not a standard<br />

methodology for estimating costs.<br />

Direct Costs<br />

Direct costs refer to those costs that are directly attributed to patient<br />

care. These include the cost <strong>of</strong> outpatient visits, medications, hospital<br />

admissions, diagnostic testing, surgical and anesthesia fees, resource<br />

items (e.g. implant costs, blood products, biologics), and physical<br />

therapy. Although it seems straight forward, the calculation <strong>of</strong> direct<br />

costs is complex. The variation and lack <strong>of</strong> transparency in pricing<br />

and the difficulty in accurate recording <strong>of</strong> delivery <strong>of</strong> these services<br />

(e.g. number <strong>of</strong> injections, physical therapy visits, and imaging study<br />

each patient receives) contributes to this complexity. Costs for all <strong>of</strong><br />

the above mentioned services vary widely depending on geography<br />

and insurance and medical device company contracts. For this reason,<br />

the calculation <strong>of</strong> direct costs typically involves cost estimates and<br />

<strong>of</strong>ten depends on patient recall <strong>of</strong> utilization <strong>of</strong> services. Tosteson<br />

et al 12 published a cost-effectiveness analysis <strong>of</strong> the treatment <strong>of</strong><br />

stenosis and degenerative spondylolisthesis from the Spine Patient<br />

Outcomes Research Trial (SPORT) database. This study depended,<br />

in part, on patient-reported utilization <strong>of</strong> services, meaning that the<br />

patient filled out a form and reported how many outpatient visits,<br />

injections, radiographs, MRIs, and physical therapy visits he/she<br />

had during the study. Unit costs based on the 2004 Medicare rates<br />

were assigned to each type <strong>of</strong> service, and the direct cost <strong>of</strong> these<br />

services was calculated by adding up all <strong>of</strong> these unit costs for each<br />

patient. The other component <strong>of</strong> direct costs in this study was the<br />

surgical cost, which included the hospital charges, as well as the<br />

surgeon and anesthesia fees. The hospital charges were determined<br />

using the diagnosis-related group payment (i.e. 2004 Medicare rates)<br />

for the given procedure and associated complications, if any. The<br />

surgeon fees were based <strong>of</strong>f <strong>of</strong> 2004 Medicare reimbursement rates,<br />

and the anesthesia costs were based on operative time. Although this<br />

method <strong>of</strong> calculation likely provides a reasonable estimate <strong>of</strong> the<br />

direct costs, there are some limitations. It depends largely on patient<br />

recall regarding the services utilizes and estimates charges based on<br />

Medicare payments, which is not applicable in many situations.<br />

Furthermore, these methods <strong>of</strong> calculation are not standard amongst<br />

cost-effectiveness studies, thus making meaningful comparisons<br />

difficult.<br />

Indirect costs<br />

Indirect costs are all <strong>of</strong> those costs that are not attributed to direct<br />

patient care. This largely refers to those costs attributable to loss<br />

REFERENCES<br />

1. Brauer CA, Neumann PJ, Rosen AB. Trends in cost effectiveness analyses in<br />

orthopaedic surgery. Clin Orthop Relat Res 2007;457:42-8.<br />

2. Brauer CA, Rosen AB, Olchanski NV, et al. Cost-utility analyses in<br />

orthopaedic surgery. J Bone Joint Surg Am 2005;87:1253-9.<br />

3. Brazier J, Roberts J, Deverill M. The estimation <strong>of</strong> a preference-based measure<br />

<strong>of</strong> health from the SF-36. J Health Econ 2002;21:271-92.<br />

4. Brazier J, Roberts J, Tsuchiya A, et al. A comparison <strong>of</strong> the EQ-5D and SF-6D<br />

across seven patient groups. Health Econ 2004;13:873-84.<br />

5. Brazier J, Usherwood T, Harper R, et al. Deriving a preference-based single<br />

index from the UK SF-36 Health Survey. J Clin Epidemiol 1998;51:1115-28.<br />

6. Brazier JE, Harper R, Jones NM, et al. Validating the SF-36 health survey<br />

questionnaire: new outcome measure for primary care. BMJ 1992;305:160-4.<br />

329<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

<strong>of</strong> productivity that result from a particular health condition. This<br />

includes not only the time <strong>of</strong>f <strong>of</strong> work for the patient, but also time<br />

that the patient requires an unpaid caregiver. Furthermore, patients<br />

who continue to work despite a certain level <strong>of</strong> disability have<br />

decreased productivity that is very difficult to estimate in a reliable,<br />

reproducible fashion. Indirect costs should not be eliminated from<br />

the value equation, in fact, they can make up a significant proportion<br />

<strong>of</strong> the total cost <strong>of</strong> care.<br />

The most common method <strong>of</strong> indirect cost estimation is the<br />

human capital approach. This approach assumes that the value <strong>of</strong><br />

a person’s productivity is equivalent to his/her wages and benefits.<br />

In this approach, therefore, the calculation <strong>of</strong> indirect costs due to<br />

the loss <strong>of</strong> productivity is determined by multiplying the time <strong>of</strong>f<br />

<strong>of</strong> work by the sum <strong>of</strong> the wages and benefits. The time component<br />

<strong>of</strong> this estimation can be many years for those patients who are<br />

permanently disabled. If a patient never returns to work, a “friction<br />

period” exists, which is defined as the time that it takes an employer<br />

to replace the patient who has gone out on permanent disability.<br />

The “friction period” varies considerably depending on the type<br />

<strong>of</strong> job and training required. The friction cost approach to indirect<br />

cost measurement may be more accurate than the human capital<br />

approach when studying patient populations who are out <strong>of</strong> work<br />

for extended periods <strong>of</strong> time.<br />

The cost-effectiveness study on stenosis and degenerative<br />

spondylolisthesis by Tosteson et al12 includes an estimation <strong>of</strong> indirect<br />

costs using the human capital approach. The authors depended<br />

on patient-reported loss <strong>of</strong> productivity, i.e. lost day from work<br />

or homemaking as well as duration <strong>of</strong> care required by an unpaid<br />

caregiver. This was assesses at each patient follow-up appointment.<br />

The authors estimated indirect costs by multiplying time lost from<br />

work by the patient’s individual wage rate, as reported by the patient<br />

at the time <strong>of</strong> study enrollment. The costs <strong>of</strong> missed time from<br />

homemaking and/or attributed to unpaid care giving were based on<br />

the average wage rate and non-health benefits <strong>of</strong> those greater than<br />

35 years-old. This represents an example <strong>of</strong> indirect cost estimation.<br />

It is important to realize, however, that no standardized method has<br />

been universally adopted for use in cost-utility analyses.<br />

Conclusions<br />

In the age <strong>of</strong> value-based health care, the importance <strong>of</strong> costeffectiveness<br />

analysis in orthopaedic surgery is becoming more<br />

apparent. This review has provided a brief overview <strong>of</strong> the components<br />

<strong>of</strong> a cost-effectiveness analysis. It is important to measure outcomes,<br />

preferably using a measure that is or can be converted to a utility<br />

score, and therefore be used to calculate QALYs. It is also important<br />

to measure cost, however, this can be complicated and is typically an<br />

estimation <strong>of</strong> cost rather than a true calculation <strong>of</strong> cost.<br />

7. Carreon LY, Glassman SD, McDonough CM, et al. Predicting SF-6D utility<br />

scores from the Oswestry disability index and numeric rating scales for back<br />

and leg pain. Spine (Phila Pa 1976) 2009;34:2085-9.<br />

8. Garratt AM, Klaber M<strong>of</strong>fett J, Farrin AJ. Responsiveness <strong>of</strong> generic and<br />

specific measures <strong>of</strong> health outcome in low back pain. Spine 2001;26:71-7;<br />

discussion 7.<br />

9. Petrou S, Hockley C. An investigation into the empirical validity <strong>of</strong> the EQ-<br />

5D and SF-6D based on hypothetical preferences in a general population.<br />

Health Econ 2005;14:1169-89.<br />

10. Shaw JW, Johnson JA, Coons SJ. US valuation <strong>of</strong> the EQ-5D health states:<br />

development and testing <strong>of</strong> the D1 valuation model. Med Care 2005;43:203-<br />

20.<br />

11. Solberg TK, Olsen JA, Ingebrigtsen T, et al. Health-related quality <strong>of</strong> life<br />

assessment by the EuroQol-5D can provide cost-utility data in the field <strong>of</strong><br />

low-back surgery. Eur Spine J 2005;14:1000-7.


12. Tosteson AN, Lurie JD, Tosteson TD, et al. Surgical treatment <strong>of</strong> spinal<br />

stenosis with and without degenerative spondylolisthesis: cost-effectiveness<br />

after 2 years. Ann Intern Med 2008;149:845-53.<br />

13. Walters SJ, Brazier JE. Comparison <strong>of</strong> the minimally important difference<br />

for two health state utility measures: EQ-5D and SF-6D. Qual Life Res<br />

2005;14:1523-32.<br />

330<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

14. Ware J, Jr., Kosinski M, Keller SD. A 12-Item Short-Form Health Survey:<br />

construction <strong>of</strong> scales and preliminary tests <strong>of</strong> reliability and validity. Med<br />

Care 1996;34:220-33.<br />

15. Weinstein MC, Siegel JE, Gold MR, et al. Recommendations <strong>of</strong> the Panel on<br />

Cost-effectiveness in Health and Medicine. JAMA 1996;276:1253-8.


331<br />

meaSuriNg value iN orthopaediCS: operatioNaliziNg<br />

outComeS ColleCtioN aNd itS utilizatioN<br />

Steven D. Glassman, MD<br />

I. Comparative Effectiveness Research<br />

Institute <strong>of</strong> Medicine (IOM) definition: CER is the generation<br />

and synthesis <strong>of</strong> evidence that compares the benefits and<br />

harms <strong>of</strong> alternative methods to prevent, diagnose, treat and<br />

monitor a clinical condition, or to improve the delivery <strong>of</strong><br />

care. The purpose <strong>of</strong> CER is to assist consumers, clinicians,<br />

purchasers, and policy makers to make informed decisions that<br />

will improve health care at both the individual and population<br />

levels.<br />

II. Background<br />

1. IOM: The Learning Healthcare System 2007<br />

2. 2008 Presidential Campaign – Pay for what works.<br />

3. <strong>American</strong> Recovery and Reinvestment Act <strong>of</strong> 2009 (ARRA) –<br />

enacted 2/17/09<br />

• $700 million to Agency for Healthcare Research and<br />

Quality (AHRQ)<br />

• IOM to determine research priorities<br />

• Top Quartile: Registry <strong>of</strong> treatment <strong>of</strong> low back pain.<br />

• Second Quartile: Treatment strategies for neck pain<br />

Exercise and medical treatment for osteoporotic hip and<br />

vertebral fractures<br />

III. Conference on Comparative Effectiveness <strong>of</strong> Treatments for<br />

the Lumbar Spine<br />

1. Pr<strong>of</strong>essional Society Coalition Lumbar Fusion Task Force<br />

(AAOS/NASS/AANS/CNS/SRS)<br />

• AHRQ Grant<br />

• July 1113, 2010 Madison, WI – Multistakeholder<br />

conference<br />

2. Participants<br />

• Surgical Societies – Task Force parent societies, SAS, CSS<br />

• Nonsurgical Societies – AAFP, AAPM, AAPMR, ACP, APS,<br />

APTA, ASA<br />

• Government Representatives – AHRQ, U.S. Dept.<br />

Veteran’s Affairs, NIH<br />

• Payers – CMS, BC/BS, Noridian, Trek<br />

• Epidemiologists/Data Experts SPORT<br />

• Information Technology Experts Exponent<br />

• Quality Advocates – NCQA, NQF, Value Council<br />

3. Agenda<br />

• Five panels examining critical elements for registry<br />

development<br />

• Two panels on specific registry content<br />

• Three panels on rationale and implementation<br />

IV. Conference Panel Highlights<br />

1. Panel #1: Why is this worthwhile?<br />

• Keynote: Jean Slutsky, PA, MSPH, Director, Center for<br />

Outcomes & Evidence Agency for Healthcare Research &<br />

Quality (AHRQ)<br />

— Review <strong>of</strong> AHRQ mandate for evidence development<br />

• Evidence Gaps – Jyme Schafer, MD, Medical Officer,<br />

Coverage and Analysis Centers for Medicare and<br />

Medicaid Services (CMS)<br />

— MedCAC experience<br />

• Administrative Data – Carole Flamm, Executive Medical<br />

Director Blue Cross and Blue Shield Association<br />

— Existing administrative data: a mile wide and an inch<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

deep<br />

2. Panel #2: Who are we treating?<br />

• Simplicity v. Accuracy<br />

• Defining the key data points:<br />

a. Demographics – tie to secondary databases?<br />

b. Comorbidities – are existing indices to complex<br />

(CCMI)<br />

c. Diagnosis greatest deficiency in existing data<br />

collection systems<br />

• Diagnostic Coding System development efforts<br />

Invited Guest Lecture: Hip Registry Experience<br />

Daniel J. Berry, MD,<br />

President, AAOS Chair, Department <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgery, Mayo Clinic<br />

— Need for simplicity and high participation levels<br />

3. Panel #3: How are we keeping track?<br />

• Keynote: Stephen L. Ondra, MD, Senior Policy Advisor<br />

for Health Affairs, Office <strong>of</strong> the Secretary, Department <strong>of</strong><br />

Veterans Affairs VA experience with EMR development<br />

and translation into value<br />

— Incorporation <strong>of</strong> outcomes collection in EMR Need<br />

for decision making prior to EMR system adoption<br />

• Guideline Development Kristy Weber MD, Chair,<br />

Council on Research, AAOS<br />

• Recognition Programs – Elizabeth Kraft, NCQA<br />

• Complicating Issues<br />

— Data security<br />

— Privacy<br />

4. Panel #4: What are we measuring?<br />

• Selecting appropriate outcome measures<br />

a. ODI/SF36 – Are both generic and disease specific<br />

measures needed<br />

b. Health utilities – EQ5D vs. SF6D<br />

c. Medicare specific measures<br />

d. Psychometric measures<br />

• Study Design – Limitations <strong>of</strong> RCT design<br />

• Spine Specific Dataset – Michael Rapp, MD, Director,<br />

Quality Measures Group<br />

Centers for Medicare and Medicaid Services (CMS)<br />

5. Panel #5: How do we make this work?<br />

• Initiatives for participation<br />

a. Charles Branch, MD (ABNS) – tie to pr<strong>of</strong>essional<br />

certification<br />

b. Leanne Larson (Outcomes Sciences) – hospital driven<br />

process<br />

c. Richard Rosenquist, MD (ASA) – patient based<br />

initiatives<br />

d. Ajay Wasan, MD (AAPM) – industry sponsorship/<br />

funding<br />

• Quality measures<br />

— PQRI<br />

— Links to payment<br />

V. Conference Conclusions<br />

1. Time sensitive need for evidence development<br />

2. Registry data likely to play an important role in clinical<br />

guidelines


332<br />

3. Need for simplicity in registry development<br />

4. Balance between “mile wide inch deep” and “inch wide –<br />

mile deep” approaches<br />

REFERENCES<br />

1. Drummond M. Introducing economic and quality <strong>of</strong> life measurements<br />

into clinical studies. Ann Med. 2001 Jul;33(5):3449. Review. PubMed PMID:<br />

11491193.<br />

2. Drummond M, Brixner D, Gold M, Kind P, McGuire A, Nord E; Consensus<br />

Development Group. Toward a consensus on the QALY. Value Health. 2009<br />

Mar;12 Suppl 1:S315. PubMed PMID: 19250129.<br />

3. Johannesson M, Jšnsson B, Karlsson G. Outcome measurement in economic<br />

evaluation. Health Econ. 1996 JulAug;5(4):27996. Review. PubMed PMID:<br />

8880165.<br />

4. Hansson T, Hansson E, Malchau H. Utility <strong>of</strong> spine surgery: a comparison <strong>of</strong><br />

common elective orthopaedic surgical procedures. Spine (Phila Pa 1976).<br />

2008 Dec 1;33(25):281930. PubMed PMID: 19050588.<br />

5. Siegel JE, Torrance GW, Russell LB, Luce BR, Weinstein MC, Gold MR.<br />

Guidelines for pharmacoeconomic studies. Recommendations from<br />

the panel on cost effectiveness in health and medicine. Panel on cost<br />

Effectiveness in Health and Medicine. Pharmacoeconomics. 1997<br />

Feb;11(2):15968. Review. PubMed PMID:10172935.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

5. In the absence <strong>of</strong> data, decision will still be made.<br />

6. Siegel JE, Weinstein MC, Russell LB, Gold MR. Recommendations for<br />

reporting costeffectiveness analyses. Panel on CostEffectiveness in Health<br />

and Medicine. JAMA. 1996 Oct 2330;276(16):133941. Review. PubMed<br />

PMID: 8861994.<br />

7. Weinstein MC, Siegel JE, Gold MR, Kamlet MS, Russell LB. Recommendations<br />

<strong>of</strong> the Panel on Costeffectiveness in Health and Medicine. JAMA. 1996 Oct<br />

16;276(15):12538. Review. PubMed PMID: 8849754.<br />

8. Russell LB, Gold MR, Siegel JE, Daniels N, Weinstein MC. The role <strong>of</strong> costeffectiveness<br />

analysis in health and medicine. Panel on CostEffectiveness in<br />

Health and Medicine. JAMA. 1996 Oct 9;276(14):11727. Review. PubMed<br />

PMID:8827972.<br />

9. Glassman SD, Carreon LY, Djurasovic M, Dimar JR. Johnson JR, Campbell<br />

MJ, Puno RM. Lumbar Fusion Outcomes Stratified By Specific Diagnostic<br />

Indication. Spine J. 2009 JanFeb;9(1):1321. Epub 2008 Sep 19.<br />

10. Glassman SD, Copay A, Berven S, Polly DW, Subach BS, Carreon LY.<br />

Defining substantial clinical benefit following lumbar spine arthrodesis<br />

(Defining Substantial Clinical Benefit in Lumbar Spine Fusion). J Bone Joint<br />

Surg Am. 2008 Sep;90(9):183947


333<br />

the elephaNt iN the liviNg room:<br />

impaCt oF emotioNal health<br />

oN FuNCtioNal outComeS aFter<br />

orthopediC Surgery (aa)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Moderator: David C. Ayers, MD, Worcester, MA<br />

This symposia will review the role <strong>of</strong> emotional health in functional recovery following orthopaedic surgery <strong>of</strong> the lower<br />

extremity and upper extremity and include total joint replacement, upper extremity trauma, and rotator cuff repair. The<br />

clinical management challenges will be discussed with emphasis on potential strategies to identify high risk patients preoperatively<br />

and improve functional outcomes in these challenging patients. Attendees will learn about current intervention<br />

research to assure more uniform functional gain after surgery in the high risk population. Attendees will also learn that<br />

surgeons may not need to improve the patient’s emmotional health but provide a separate post-op pathway to improve<br />

functional outcomes after orthopedic surgery.<br />

I. Outcome Measurement Tools; Indentifying High Risk Patients<br />

David C. Ayers, MD, Worcester, MA<br />

II. Psychosocial Aspect <strong>of</strong> Disabling Musculoskeletal Pain <strong>of</strong> the Upper Extremity<br />

David C. Ring, MD, PhD, Boston, MA<br />

III. Improving Post-Op Patient Function in High Risk Patients<br />

Patricia Franklin, MD, MPH, Worcester, MA<br />

IV. Maximizing Functional Improvement in the High Risk Population After TKR<br />

David C. Ayers MD, Worcester, MA


•outstanding pain relief<br />

the Impact elephaNt <strong>of</strong> Em otional Health iN on the liviNg room: impaCt oF emotioNal in Orthopedic Practice health<br />

Functional Outcomes<br />

•Successful Surgical TKR<br />

oN FuNCtioNal Procedure<br />

nt <strong>of</strong> choice outComeS<br />

334<br />

David C. Ring MD, PhD<br />

Pat Franklin MD, MPH, MBA<br />

The Elephant in the Room :<br />

The Elephant in the Room :<br />

Impact <strong>of</strong> Em otional Health on<br />

Functional Outcomes<br />

David C. Ayers y MD<br />

David C. Ring MD, PhD<br />

Low Em Pat otional Franklin Health MD, MPH, Patients MBA At Risk<br />

For Less Functional Improvem ent<br />

Low Em otional Health Patients At Risk<br />

For Less Functional Improvem ent<br />

•Upper Extremity Surgery<br />

•Lower Extremity Surgery<br />

• Si Spine Surgery S<br />

•Elective Surgery<br />

•Trauma and Fracture Surgery<br />

• MCS: Mental Composite Score<br />

Functional Summary Outcom <strong>of</strong> Emotional es Vary Function with<br />

Em otional Health<br />

SF 36 SUMMARY SCORES<br />

• Trauma/ Fracture Repair<br />

• PCS: Physical Composite Score<br />

• Rotator Cuff Repair<br />

Summary <strong>of</strong> Physical Function<br />

• Sports: ACL Reconstruction<br />

• Total Hip Replacement<br />

• MCS: Mental Composite Score<br />

• Total Knee Replacement<br />

• Hand Summary and Upper <strong>of</strong> Extremity Emotional Function<br />

•Successful Surgical<br />

Procedure<br />

•Sustained Pain Relief<br />

•Improved Physical<br />

Function<br />

SF-36<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

ood/excellent<br />

•Improved Physical ollow-up •precise surgical technique<br />

Function<br />

•a smooth peri-operative course w/o<br />

complication<br />

ORTHOPEDIC OUTCOME STUDIES SHOW :<br />

Im portance Of Em otional Health<br />

•Growing number <strong>of</strong> publications document<br />

that ortho pts with poor emotional health<br />

tating<br />

before surgery are at risk for sub-optimal<br />

David C. Ayers y MD<br />

•Sustained Pain Relief<br />

functional improvement after surgery<br />

David C. Ayers, MD, David C. Ring, MD, PhD, Patricia Franklin, MD, Despite: MPH<br />

ood/excellent<br />

David C. Ring MD, PhD<br />

•Improved Physical ollow-up<br />

•precise surgical technique<br />

Pat Franklin MD, MPH, MBA<br />

Function<br />

•a smooth peri-operative course w/o<br />

complication<br />

ORTHOPEDIC OUTCOME STUDIES SHOW :<br />

•outstanding Im portance pain Of relief Em otional Health<br />

in Orthopedic Practice<br />

•Upper Extremity Surgery<br />

•Lower Extremity Surgery<br />

• Si Spine Surgery S<br />

•Elective Surgery<br />

•Trauma and Fracture Surgery<br />

Low Em otional Health Patients At Risk<br />

For Less Functional Improvem ent<br />

•Upper Extremity Surgery<br />

•Lower Extremity Surgery<br />

• Si Spine Surgery S<br />

•Elective Surgery<br />

•Trauma and Fracture Surgery<br />

SF 36 SUMMARY SCORES<br />

• PCS: Physical Composite Score<br />

Summary <strong>of</strong> Physical Function<br />

• MCS: Mental Composite Score<br />

Summary <strong>of</strong> Emotional Function<br />

SF 36 SUMMARY SCORES<br />

• PCS: Physical Composite Score<br />

Summary <strong>of</strong> Physical Function<br />

Has been reported in:<br />

• Spine Surgery<br />

•General Health Survey<br />

SF-36<br />

•General Health Survey<br />

nt <strong>of</strong> choice<br />

tating<br />

ood/excellent<br />

ollow-up<br />

TKR<br />

•Extensive Use All Types Surgical<br />

Interventions<br />

•8 Domains<br />

•Summary Scores<br />

•Extensive Use All Types Surgical<br />

Interventions<br />

•8 Domains<br />

SF-36<br />

•General Health Survey<br />

•Extensive Use All Types Surgical<br />

Interventions<br />

•8 Domains<br />

•Summary Scores<br />

Disease •Summary Specific Scores Outcome Measures<br />

•WOMAC<br />

• DASH<br />

•OSWESTRY<br />

•NECK DISABILITY INDEX<br />

Disease Specific Outcome Measures<br />

•WOMAC<br />

• DASH<br />

•OSWESTRY<br />

•NECK DISABILITY INDEX<br />

Spine Surgery<br />

“Do Patient Expectations <strong>of</strong> Spinal Surgery<br />

Disease Relate to Specific Functional Outcome?” Outcome Measures<br />

• Pt’s with low pre-op MCS more likely to be<br />

dissatisfied after spine surgery<br />

Yee et al. CORR 2008 May: 466(5) 1154<br />

“Depression •WOMAC Is Associated with Poorer<br />

Ot Outcomes <strong>of</strong>Lumbar fL b SpinalStenosis<br />

S i lSt i<br />

•<br />

Surgery”<br />

DASH<br />

••OSWESTRY Practices should include routine assessment <strong>of</strong><br />

depression before spinal stenosis surgery<br />

•NECK DISABILITY INDEX<br />

Sinikallio et al.Eur Spine J 2007 Jul: 16(7) 905<br />

•Growing number <strong>of</strong> publications document<br />

that ortho pts with poor emotional health<br />

before surgery are at risk for sub-optimal<br />

functional improvement after surgery<br />

Despite:<br />

•precise surgical technique<br />

•a smooth peri-operative course w/o<br />

complication SF-36: 8 Domains<br />

•outstanding •Physical pain relief functioning<br />

•Role- physical<br />

•Bodily pain<br />

•General health<br />

•Vitality<br />

•Role-emotional<br />

•Mental health<br />

SF-36: •Social 8 functioning Domains<br />

•Physical functioning<br />

•Role- physical<br />

•Bodily pain<br />

•General health<br />

•Vitality<br />

•Role-emotional<br />

•Mental health<br />

•Social functioning<br />

SF-36: 8 Domains<br />

•Physical functioning<br />

•Role- physical<br />

•Bodily pain<br />

•General health<br />

•Vitality<br />

•Role-emotional<br />

•Mental health<br />

•Social functioning<br />

Functional Outcome After Ortho Surgery<br />

Varies With Patient Attributes<br />

PHYSICAL<br />

HEALTH<br />

•Medical Co-morbidities<br />

•BMI<br />

•Age<br />

Functional •Gender Outcome After •Poor Ortho Social Support Surgery<br />

Varies With Patient Attributes<br />

PHYSICAL<br />

HEALTH<br />

•Medical Co-morbidities<br />

•BMI<br />

EMOTIONAL<br />

HEALTH<br />

•Anxiety<br />

•Depression<br />

•Poor Coping Skills<br />

EMOTIONAL<br />

HEALTH<br />

•Anxiety<br />

•Depression<br />

•Age<br />

•Poor Coping Skills<br />

Spine Surgery<br />

•Gender<br />

•Poor Social Support<br />

Functional Outcome After Ortho Surgery<br />

Varies With Patient Attributes<br />

“Pre-Surgical Biopsychosocial Factors Predict<br />

Multidimensional Patient Outcome <strong>of</strong> Interbody<br />

Cage Lumbar Fusion”<br />

PHYSICAL<br />

EMOTIONAL<br />

• Pre-surgical HEALTHbiopsychosocial<br />

variables HEALTH predicted<br />

patient outcomes; and provide possible targeted<br />

interventions<br />

•Medical Co-morbidities •Anxiety<br />

•BMI<br />

LaCaille et al. Spine •Depression<br />

J 2005, Jan: 5 (1) 71<br />

•Age<br />

•Poor Coping Skills<br />

•Gender<br />

•Poor Social Support


335<br />

psychological distress, and return to work<br />

correlated with patient satisfaction<br />

O’Toole et al . JBJS(A) 2008 Jun; 90 (6): 1206<br />

Trauma/ Fracture Care<br />

“Determinants <strong>of</strong> Patient Satisfaction<br />

After Severe Lower-Extremity Injuries”<br />

•No pt demographic, treatment, or injury<br />

characteristics correlated with pt<br />

satisfaction<br />

•Only measures <strong>of</strong> physical function,<br />

psychological distress, and return to work<br />

correlated with patient satisfaction<br />

O’Toole et al . JBJS(A) 2008 Jun; 90 (6): 1206<br />

Sports / ACL<br />

“Psychological Impact <strong>of</strong> Returning to Sport<br />

Following ACL Reconstruction Surgery”<br />

Webster et al. Phy Ther Sport 2008 Feb; 9(6): 9<br />

“Health Related QOL in Patients with ACL<br />

Insufficiency Undergoing Arthroscopic<br />

Reconstruction”<br />

Calvisi et al. J Orthop Trauma 2008 Dec; 9(11)<br />

Sports / ACL<br />

“Psychological Impact <strong>of</strong> Returning to Sport<br />

Following ACL Reconstruction Surgery”<br />

•Can improve Webster et patient al. Phy Ther functional<br />

Sport 2008 Feb; 9(6): 9<br />

outcome after surgery in low MCS<br />

pts without treating/curing the<br />

“Health Related QOL in Patients with ACL<br />

Insufficiency depression/anxiety Undergoing Arthroscopic underlying the<br />

Reconstruction”<br />

low MCS<br />

Calvisi et al. J Orthop Trauma 2008 Dec; 9(11)<br />

•Perhaps, by identifying the high risk<br />

patient pre-operatively and placing<br />

them in a different post-op pathway<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

pain relief and patient satisfaction. Appropriate<br />

assessment <strong>of</strong> emotional health may enable a<br />

modification in the way these pts are managed<br />

Rolfson et al. JBJS(B) 2009 Feb; 91 (2): 157<br />

Total Hip Replacem ent<br />

“Predicting Dissatisfaction After THA; a Study <strong>of</strong><br />

850 patients”<br />

• Depression, MCS and symptomatic OA <strong>of</strong> another<br />

joint predicted dissatisfaction after 1 year<br />

Anakwe et al. J Arthroplasty 2010 May 10; S1532<br />

“Variables Determining g Outcome in THR<br />

Surgery”<br />

• Depression/Anxiety scores are strong predictors <strong>of</strong><br />

pain relief and patient satisfaction. Appropriate<br />

assessment <strong>of</strong> emotional health may enable a<br />

modification in the way these pts are managed<br />

Rolfson et al. JBJS(B) 2009 Feb; 91 (2): 157<br />

Em otional Health Influences Patient<br />

Functional Outcomes<br />

• Hand and Upper Extremity Surgery<br />

David Ring MD<br />

• TtlK TotalKnee RReplacementSurgery l tS<br />

David Ayers MD<br />

• NIH RO1 to Improve Function in<br />

High Risk TKR Group<br />

Pat Franklin MD, MPH<br />

Em otional Health Influences Patient<br />

Functional Outcomes<br />

• Hand and Upper Extremity Surgery<br />

David Ring MD<br />

• TtlK TotalKnee RReplacementSurgery l tS<br />

David Ayers MD<br />

• NIH RO1 to Improve Function in<br />

High Risk TKR Group<br />

Pat Franklin MD, MPH<br />

Tashjian et al.<br />

J Shoulder Elbow 2007 Nov; 18(6)<br />

Rotator Cuff Repair<br />

• Patient’s Pre-operative Expectations Predict<br />

The Outcome <strong>of</strong> Rotator Cuff Repair<br />

Henn et al.<br />

JBJS (A) 2007 Sept; 89(9); 1913<br />

• Factors Influencing Patient Satisfaction<br />

After Rotator Cuff Repair<br />

Tashjian et al.<br />

J Shoulder Elbow 2007 Nov; 18(6)<br />

Unifying Concepts:<br />

•Patients at risk for less functional<br />

improvement following surgery can<br />

be identified pre-operatively<br />

•Risk factors include emotional and<br />

physical patient attributes<br />

•Functional improvement <strong>of</strong>ten<br />

related to patient satisfaction<br />

Unifying Concepts:<br />

•Patients at risk for less functional<br />

improvement following surgery can<br />

be identified<br />

David<br />

pre-operatively<br />

C. Ayers, M.D.<br />

The Arthur Pappas Pr<strong>of</strong>essor & Chair<br />

•Risk Department factors <strong>of</strong> include Orthopedics emotional & Rehabilitation and<br />

Director, Musculoskeletal Center <strong>of</strong> Exce lence<br />

physical patient attributes<br />

University <strong>of</strong> Massachusetts Medical School<br />

•Functional Orthopaedist-in-Chief<br />

improvement <strong>of</strong>ten<br />

related UMass to patient Memorial satisfaction<br />

Healthcare System


336<br />

pSyChoSoCial aSpeCtS oF muSCuloSkeletal illNeSS<br />

David Ring, MD PhD<br />

Psychology:<br />

The scientific study <strong>of</strong> mental processes and behavior. A highly<br />

functioning human mind is prone to errors. Magicians fool us<br />

through our strengths, not our weaknesses.<br />

Science:<br />

systematic knowledge <strong>of</strong> the physical or material world gained<br />

through observation and experimentation.<br />

• Science is what humans invented to keep from fooling<br />

themselves or being fooled by others.<br />

Stigma:<br />

A mark <strong>of</strong> disgrace or infamy Psychology is stigmatized as being<br />

about what is wrong with the mind. There is shame associated<br />

with psychology and psychological illness. In social science, Ervin<br />

G<strong>of</strong>fman: “the situation <strong>of</strong> the individual who is disqualified from<br />

full social acceptance”. (1)<br />

• Poor coping skills<br />

• Depression<br />

• Anxiety<br />

• Pain catastrophizing<br />

These are seen as <strong>of</strong>fensive and degrading.<br />

Mind vs. Body:<br />

The strict separation between mental and physical illness in modern<br />

culture is Descartes’ fault. It is a consequence <strong>of</strong> how the mind<br />

functions, reinforced by the stigma associated with the psychological,<br />

behavioral, and sociological aspects <strong>of</strong> illness.<br />

• All illness is both mental and physical and any attempt to separate<br />

them will be fruitless and counterproductive.<br />

Illness vs. Disease:<br />

• Disease: A harmful deviation from the normal structure or<br />

function <strong>of</strong> an organism.<br />

• Illness: The state <strong>of</strong> being unwell.<br />

• Surgeons and their patients instinctually act as if illness is always<br />

due entirely to disease. Find and address the disease and the<br />

illness will resolve. “Find it and fix it”. This is representative<br />

<strong>of</strong> the traditional biomedical model <strong>of</strong> illness. However, the<br />

degree <strong>of</strong> illness does not correlate directly with the disease/<br />

pathophysiology. (2, 3) Illness is a biopsychosocial behavioral<br />

phenomenon.<br />

Impairment vs. Disability:<br />

• Impairment: Objective pathophysiology.<br />

• Disability: The biopsychosocial behavioral condition <strong>of</strong> not<br />

being capable <strong>of</strong> a specific activity.<br />

• The degree <strong>of</strong> disability does not correlate directly with<br />

impairment. (4)<br />

Pain vs. Nociception:<br />

• Nociception: the neural processes <strong>of</strong> encoding and processing<br />

noxious stimuli.<br />

• Pain: the psychological response to nociception.<br />

Eye-openers:<br />

1. Patients in the Netherlands take almost no narcotics after ORIF<br />

ankle fracture and have higher satisfaction with pain-relief than<br />

patients in the United States. (5)<br />

2. Disability correlates more with pain and psychosocial factors<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

than objective impairment for many conditions. (2, 3)<br />

3. Depression produces the greatest decrement in health among<br />

chronic diseases in the world and it exacerbates decreased<br />

health from other medical conditions. (6)<br />

4. Misinterpretation or overinterpretation <strong>of</strong> nociception (called<br />

pain catastrophizing by psychologists) strongly correlates with<br />

disability related to ongoing pain in most anatomical areas. (3)<br />

5. Believing that one is receiving effective treatment is <strong>of</strong>ten as<br />

good as actually receiving treatment, but only in the treatment<br />

<strong>of</strong> pain, nausea, depression and other psychosocial behavioral<br />

aspects <strong>of</strong> illness. (6, 7, 8) In other words, we have the capacity<br />

within ourselves to create health and wellness.<br />

Coping strategy: a behavioral tool that may be used by individuals<br />

to <strong>of</strong>fset or overcome adversity, disadvantage, or disability without<br />

correcting or eliminating the underlying condition.<br />

Ineffective coping strategies (3):<br />

• Drugs<br />

• Violence<br />

• Fear-Avoidance<br />

• Cognitive Errors<br />

— Catastrophizing: “It will only get worse”<br />

— Emotional reasoning: “This is taking too long”<br />

— Should: “I should not feel pain”<br />

— Control fallacies: “If I find the right doctor, they will take my<br />

pain away”<br />

— Overgeneralization: “I hurt myself using that tool. I will<br />

always hurt myself using that tool”<br />

— Black and white thinking: “My life was perfect before. Now<br />

it’s horrible”<br />

Cognitive Behavioral Therapy:<br />

• Distinguish between thoughts and reality<br />

• Increase awareness <strong>of</strong> negative automatic thoughts<br />

• Cognitive restructuring: Learn how to change automatic<br />

thoughts and behaviors<br />

Cognitive Behavioral Therapy is something that all health care<br />

providers can incorporate into their care, but it requires very<br />

good communication skills.<br />

Post-traumatic Stress Disorder:<br />

A severe anxiety disorder after a highly stressful event<br />

Chronic Regional Pain Syndrome:<br />

An illness construct for disproportionate pain. Psychologists<br />

understand it as extremely ineffective coping strategies. Specifically,<br />

strong misinterpretation or overinterpretation <strong>of</strong> nociception (pain<br />

catastrophizing).<br />

Somat<strong>of</strong>orm Disorder:<br />

• Hypochondriasis: Preoccupation with the fear or belief that one<br />

has a serious, undiagnosed disease based on a misinterpretation<br />

<strong>of</strong> benign physical sensations and persisting despite appropriate<br />

reassurance to the contrary<br />

• Somat<strong>of</strong>orm Pain Disorder: Pain disorder associated with<br />

psychological factors and with or without a general medical<br />

condition: Both the psychological factors and the general<br />

medical condition have important roles in the onset, severity,<br />

exacerbation, or maintenance <strong>of</strong> the pain.


REFERENCES<br />

1. G<strong>of</strong>fman E. Stigma: Notes on the management <strong>of</strong> spoiled identity. New York,<br />

NY: Simon and Schuster Inc; 1963.<br />

2. Ring D, Kadzielski J, Fabian L, Zurakowski D, Malhotra LR, Jupiter JB. Selfreported<br />

upper extremity health status correlates with depression. J Bone<br />

Joint Surg Am. 2006 Sep;88(9):1983-8.<br />

3. Vranceanu AM, Barsky A, Ring D. Psychosocial aspects <strong>of</strong> disabling<br />

musculoskeletal pain. J Bone Joint Surg Am. 2009 Aug;91(8):2014-8. Review.<br />

4. Doornberg JN, Ring D, Fabian LM, Malhotra L, Zurakowski D, Jupiter JB.<br />

Pain dominates measurements <strong>of</strong> elbow function and health status. J Bone<br />

Joint Surg Am. 2005 Aug;87(8):1725-31.<br />

5. Lindenhovious AL, Helmerhorts GT, Schnellen AC, Vrahas M, Ring D,<br />

Kloen P. Differences in prescription <strong>of</strong> narcotic pain medication after<br />

operative treatment <strong>of</strong> hip and ankle fractures in the United States and The<br />

Netherlands. J Trauma. 2009 Jul;67(1):160-4.<br />

337<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

6. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression,<br />

chronic diseases, and decrements in health: results from the World Health<br />

Surveys. Lancet. 2007 Sep 8;370(9590):851-8.<br />

7. Hr—bjartsson A, G¿tzsche PC. Is the placebo powerless? An analysis <strong>of</strong><br />

clinical trials comparing placebo with no treatment. N Engl J Med. 2001 May<br />

24;344(21):1594-602.<br />

8. Hr—bjartsson A, G¿tzsche PC. Placebo interventions for all clinical<br />

conditions. Cochrane Database Syst Rev. 2010 Jan 20;(1):CD003974.<br />

9. Fournier JC, DeRubeis RJ, Hollon SD, Dimidjian S, Amsterdam JD, Shelton<br />

RC, Fawcett J. Antidepressant drug effects and depression severity: a patientlevel<br />

meta-analysis. JAMA. 2010 Jan 6;303(1):47-53. Review.


338<br />

patieNt Support to optimize FuNCtioN aFter total kNee<br />

replaCemeNt<br />

Patient support to optimize<br />

function after Total Knee<br />

Patient Replacem support to ent<br />

optimize<br />

function after Total Knee<br />

Patient Replacem support to ent<br />

optimize<br />

Patricia D. Franklin MD MPH<br />

function AAOS after 2011 Total Knee<br />

patricia.franklin@ atricia.franklin@ um assm ed.edu<br />

Replacem ent<br />

Patricia D. Franklin MD MPH<br />

AAOS 2011<br />

patricia.franklin@ atricia.franklin@ um assm ed.edu<br />

Patricia D. Franklin MD MPH<br />

AAOS 2011<br />

patricia.franklin@ atricia.franklin@ um assm ed.edu<br />

Total knee replacem ent<br />

Total knee replacem ent<br />

• Technica ly successful procedure to<br />

relieve pain in advanced knee OA<br />

relieve pain in advanced knee OA<br />

•NIH NIH Consensus Statem ent, 2003<br />

Total knee replacem ent<br />

• Functional Technica Functional ly gain successful varies widely procedure after<br />

to<br />

relieve TKR, relieve TKR, important pain in advanced to patient knee health. OA<br />

•NIH NIH Consensus Statem ent, 2003<br />

• Technica ly successful procedure to<br />

• Functional gain varies widely after<br />

relieve pain in advanced knee OA<br />

TKR, important to patient health.<br />

•NIH NIH Consensus Statem ent, 2003<br />

• Functional gain varies widely after<br />

TKR, important to patient health.<br />

Costs to working adults with OA<br />

Costs to working adults with OA<br />

• Working Working-aged aged adults increasingly choose<br />

TKR; Current = 40% <strong>of</strong> total<br />

• Working aged adults with OA<br />

• Working Working-aged • Limited aged activities adults 23% increasingly <strong>of</strong> the time ( (vs vs choose 9%)<br />

TKR; • Lose Current 8 more = annual 40% workdays <strong>of</strong> total<br />

• Working • Adjusted aged for age, adults gender, with job OA OAcharacteristics,<br />

• Working Working-aged co-morbidities, aged adults total per- increasingly OA employee choose cost:<br />

• Limited activities 23% <strong>of</strong> the time ( (vs vs 9%)<br />

• TKR; Current $1800 in benefits<br />

• Lose 8 more = annual 40% workdays <strong>of</strong> total<br />

• $7454 in lost productivity<br />

• Working • Adjusted • Total= aged over for age, $9000/person/year. adults gender, with job OA OAcharacteristics,<br />

(Muchmore, 2003)<br />

• Limited co-morbidities, activities total 23% per- <strong>of</strong> the OA time employee ( (vs vs 9%) cost:<br />

• • Lose $1800 8 more in benefits annual workdays<br />

• $7454 in lost productivity<br />

• Adjusted for age, gender, job characteristics,<br />

• Total= over $9000/person/year. (Muchmore, 2003)<br />

co-morbidities, total per- OA employee cost:<br />

5<br />

–Recommended Recommended to treat OA<br />

–Supports Supports post-TKR post TKR recovery<br />

Physical Exercise/physical – Benefitsovera Benefitsovera activity lhealthand lhealthand activity<br />

benefits wel-being wel<br />

welbeing health being<br />

–Recommended Recommended to treat OA<br />

50% –Supports Supports <strong>of</strong> TKR post-TKR post patients TKR recovery<br />

have joint pain in<br />

Exercise/physical lum Exercise/physical – Benefitsovera Benefitsovera bar spine, one lhealthand lhealthand activity<br />

or both wel-being wel<br />

welbeing hips, being contra-<br />

lateral –Recommended Recommended knee. to treat Ayers, OA<br />

Franklin Franklin 2010<br />

–Supports Supports post-TKR post TKR recovery<br />

50% <strong>of</strong> TKR patients have joint pain in<br />

lum – Benefitsovera Benefitsovera bar spine, one lhealthand lhealthand or both wel-being wel<br />

welbeing hips, being contra-<br />

lateral knee. Ayers, Franklin 2010<br />

50% <strong>of</strong> TKR patients have joint pain in<br />

lum bar spine, one or both hips, contra-<br />

u The FDA • $1800 has not in cleared benefits the drug and/or medical device for the use 5 described in this presentation (i.e. lateral the drug knee. or medical device is Ayers, being Franklin discussed 2010<br />

for an <strong>of</strong>f label use).<br />

For full information • $7454 in lost refer productivity to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

• Total= over $9000/person/year. (Muchmore, 2003)<br />

Costs to working adults with OA<br />

5<br />

SympoSia pRACTiCE<br />

Patricia Franklin, MD, MPH<br />

3<br />

3<br />

3<br />

Today’s session<br />

Today’s session<br />

1. Rationale for patient support to optimize<br />

function after TKR<br />

-Role <strong>of</strong> Self-efficacy<br />

Today’s 1. Rationale session for patient support to optimize<br />

function after TKR<br />

2. Overview <strong>of</strong> RCT <strong>of</strong> ongoing support<br />

-Role <strong>of</strong> Self-efficacy<br />

1. Rationale<br />

intervention<br />

for<br />

for<br />

patient<br />

TKR patients<br />

support to optimize<br />

function after TKR<br />

2. Overview <strong>of</strong> RCT <strong>of</strong> ongoing support<br />

3. Im -Role plications <strong>of</strong> Self-efficacy for orthopedic practice<br />

intervention for TKR patients<br />

2. Overview <strong>of</strong> RCT <strong>of</strong> ongoing support<br />

3. Im<br />

intervention<br />

plications<br />

for<br />

for<br />

TKR<br />

orthopedic<br />

patients<br />

practice<br />

3. Im plications for orthopedic practice<br />

Osteoarthritis-related disability:<br />

a public health priority<br />

Osteoarthritis-related OA affects 50% <strong>of</strong> all adults > disability:<br />

65 years<br />

>21 million US adults; more women than men.<br />

a public health priority<br />

Osteoarthritis-related OA disability:<br />

OA OA<br />

affects<br />

is is #1 #1 cause cause cause<br />

50%<br />

<strong>of</strong> <strong>of</strong><br />

<strong>of</strong><br />

disability/limited disability/limited<br />

all adults > 65 years<br />

mobility<br />

mobility<br />

1/3 <strong>of</strong> all US adults report disability due to OA<br />

a public >21 million health US adults; priority<br />

more women than men.<br />

<br />

OA OA<br />

OA<br />

affects is<br />

patients<br />

is #1 #1 cause cause<br />

who<br />

50% <strong>of</strong> <strong>of</strong><br />

choose<br />

<strong>of</strong> disability/limited disability/limited<br />

TKR have<br />

all adults > 65 years mobility<br />

mobility<br />

significant functional limitation<br />

>21 1/3 <strong>of</strong> million all US US adults adults; report more disability women due than to men.<br />

OA<br />

Mean pre pre-TKR TKR SF/PCS= 28<br />

> 2 standard deviations below the mean for healthy<br />

adults<br />

1/3 77% <strong>of</strong> unable all functional US to adults walk report >5 limitation<br />

blocks disability due to OA<br />

Mean pre pre-TKR TKR SF/PCS= 28<br />

> 2 standard deviations below the mean for healthy<br />

adults<br />

functional limitation<br />

77% unable to walk >5 blocks<br />

Mean pre pre-TKR TKR SF/PCS= 28<br />

> 2 standard deviations below the mean for healthy<br />

adults<br />

77% unable to walk >5 blocks<br />

OA OA is patients is #1 #1 cause cause who <strong>of</strong> <strong>of</strong>choose disability/limited disability/limited TKR have mobility<br />

mobility<br />

significant functional limitation<br />

OA patients who choose TKR have<br />

significant functional limitation<br />

Physical activity benefits health<br />

Exercise/physical activity<br />

Physical activity benefits health<br />

12/2/201<br />

12/2/201


339<br />

Obese patients inactive after TKR<br />

Franklin, Ayers et al, Subm itted for publication<br />

Exercise and physical activity in the post post-<br />

TKR rehabilitation improve global<br />

function and benefit OA in other joints j<br />

and global health.<br />

How optimize functional gain after TKR?<br />

Self-efficacy<br />

Self-efficacy is a person’s belief in his or her<br />

ability to succeed in a particular situation.<br />

(Bandara, 1995)<br />

Develop self-efficacy<br />

1. Mastery experiences- performing a task<br />

successfully<br />

2. Social modeling- seeing similar person succeed<br />

at a task.<br />

3. Social persuasion- receive positive<br />

encouragement to achieve a goal.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Wide variation in functional gain after TKR<br />

Percennt<br />

15<br />

10<br />

5<br />

0<br />

Distribution <strong>of</strong> Functional Improvement<br />

(12 Month Post Total Knee Replacement Surgery)<br />

QuickTime and a<br />

decompressor<br />

are needed to see this picture.<br />

-20 0 20 40<br />

SF36 PCS Change<br />

Source: Zimmer TKR Registry<br />

Can a l patients further improve functional gain?<br />

Knee OA self-care improves function<br />

Lorig- arthritis self-care programs<br />

(1993, 1999, 2001, 2003)<br />

– Target self-efficacy<br />

– 20% reduction in joint pain pain, improved function<br />

– No significant deterioration between 1-2 year follow-up<br />

– Minority <strong>of</strong> patients use programs<br />

van den Akker-Scheek, 2007<br />

– Self-efficacy at 6 weeks after TKR/THR correlated with<br />

long term physical function.<br />

Keefe, 2002<br />

– Multiple-component support programs reduce pain and<br />

disability in rheumatoid and OA.<br />

Self-efficacy (2)<br />

4. Psychological Responses<br />

Moods, emotional states, physical reactions,<br />

and stress levels can all impact how a<br />

person feels about their abilities (selfefficacy)<br />

in a particular situation.<br />

--Role <strong>of</strong> self-efficacy and emotional health in<br />

post-TKR rehabilitation and functional gain?


340<br />

Exercise self-efficacy and MCS<br />

TKR patients: poorer em otional health (low MCS) associated<br />

w ith poorer self-efficacy (p< 0.009).<br />

Self-efficacy and Depression<br />

TKR patients: greater depression (higher score) associated<br />

w ith poorer self-efficacy. (p< 0.000)<br />

Predictors <strong>of</strong> poor post-TKR function<br />

Target Population<br />

1. Older age (5 year increase)<br />

2. Extreme obesity y( (BMI>40) )<br />

3. Lower pre-TKR PCS (physical function)<br />

4. Lower pre-TKR MCS (emotional health)<br />

5. Fair/poor quadriceps strength<br />

Latent class mixture models, multivariate regression,12 month PCS<br />

2008 Knee Society Ranaw at Aw ard Franklin, Li, Ayers<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Exercise self-efficacy and Anxiety<br />

TKR patients: greater anxiety (higher score) associated w ith<br />

poorer self-efficacy. (p< 0.003)<br />

Joint Joint Action:Optimizing Action: Optimizing patient<br />

function after TKR<br />

NIAM S R01 AR 054479-01; 2008-2011<br />

Franklin, Ayers, Rosal, Li, O atis<br />

Study Model: Patient Role in TKR Functional Outcome<br />

Patient following TKR<br />

Patient Modifiers<br />

Age, Gender, BMI<br />

Physical health<br />

Emotional health<br />

Self-care Support<br />

Behavioral Skills<br />

Attitudes, Knowledge<br />

Slf Self-efficacy ffi<br />

Home Exercise<br />

Physical Activity<br />

Physical Therapy<br />

Exercise Skills<br />

Knowledge<br />

Self<br />

Care<br />

Patient Outcome<br />

Physical Function<br />

Knee Function


341<br />

Telephone support for TKR:<br />

Joint Joint Action Action RCT<br />

• Goal: Goal: 180 UMM HC patients<br />

• 156 enro led to date<br />

77 intervention; 79 usual care<br />

• Stratified M CS, BM I, gender<br />

• Primary outcomes at 6 and 12 months<br />

•Self Self-report report function (SF/PCS; W OM AC)<br />

•Objective Objective Activity (accelerom eter)<br />

•Clinical Clinical function (stair climb; 5 min walk)<br />

Peri-TKR Self-care Program<br />

• 12 sessions to support self self-efficacy; efficacy;<br />

optimize daily exercise and activity.<br />

• Timing: 4 pre-op and 8 post-TKR sessions<br />

• Patient Patient-centered: centered: tailored self self-care care goals based<br />

on patient motivations and needs<br />

• Format: telephone individual counseling plus one<br />

in hospital visit<br />

• Interventionist: health educator; English-<br />

Spanish language<br />

• 100% patient retention to date.<br />

<br />

<br />

<br />

Exercises that you do on your own mak e a difference in your knee recovery.<br />

The exer cises in the UMa ss Total Knee Book will help you begin to restore<br />

mo vement and strength to you r knee.<br />

These exer cises can be performe d twice a day or as man y times as you and<br />

your surgeon and therapist decide.<br />

Try these exercises at home before surgery so you are familiar w ith them. Try<br />

to do them everyd ay at the hosp ita l, th e reha bilitat ion cent er, and home.<br />

Breathe norma lly when doing these exercises. Do not ho ld your bre ath<br />

during an exercise becaus e that can raise your blood pressu re.<br />

As you imp rov eyou r ph ysical therap ist ma y progress th ese exe rcises or teach<br />

you new on es.<br />

<br />

After exer cising, you r knee ma y hu rt mo re. Rest and use ice on you r knee<br />

after exer cise to help the increased soreness go away in 30-60 minut es.<br />

If th e soreness continues you may hav e done too much or performed an<br />

exercise incorrectly.<br />

Discuss an y difficulties with your physical therapist or surgeon.<br />

As you imp rove, your th erap ist may give y ou new exer cises. Be su re to<br />

discuss with your therap ist how to add or su btract exercises from you r da ily<br />

routine.<br />

6/8/2010<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

MD #1<br />

TKR Surgery scheduled<br />

Random assignment<br />

Condition 1 Condition 2<br />

Control Telephone Support<br />

Pre-admit Session<br />

TKR Surgery<br />

Pre-TKR Telephone<br />

SSessions i<br />

MD #2, MD #3<br />

Same process<br />

PT /Exercise Log PT /Exercise Log<br />

PLUS Telephone Sessions<br />

6 and 12 month Functional Status<br />

** 85% <strong>of</strong> eligible patients agreed to participate<br />

Computer-assisted sessions<br />

1. Computer structures each call (mean= 18 minutes)<br />

• Assess progress<br />

• Advise adherence to exercise/activity<br />

• Assist in weekly goal setting and problem solving<br />

• A Arrange next t call ll<br />

2. Educator training<br />

• Motivational interviewing<br />

• Self Self-efficacy efficacy<br />

• Knowledge<br />

• Skills<br />

• Goal Goal-setting setting<br />

• Self Self-monitoring monitoring<br />

3. Patient between sessions: exercise/activity logs<br />

Next steps<br />

Complete data collection: Spring 2011<br />

Data Analysis goal:<br />

• Do patients with telephone support have<br />

greater and more uniform functional gain<br />

at 6 months?<br />

• If so, identify patient sub-groups with<br />

greatest effect.<br />

• If so, do benefits persist at 12 months?


342<br />

Translation to orthopedic practice<br />

1. Trained health educators<br />

Role <strong>of</strong> Self-efficacy; Patient-self-monitoring<br />

2. Standardize intervention s<strong>of</strong>tware<br />

3. Orthopedic <strong>of</strong>fice ability to identify patients<br />

who may benefit (e.g., low MCS)<br />

Future: Tailored TKR rehabilitation?<br />

To patient condition<br />

– Emotional health, BMI, gender<br />

To patient expectations and goals<br />

–Working adults; Recreational activity<br />

Facilitated through enhanced selfefficacy<br />

for daily exercise and activity<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE


ood/excellent<br />

•Improved Physical ollow-up 10.4 Delta PCS<br />

Department <strong>of</strong> <strong>Orthopaedic</strong>s and Rehabilitation<br />

Function<br />

University <strong>of</strong> Massachusetts Medical School<br />

(p 30 points.<br />

• 98% report pain relief following TKR<br />

Summary<br />

• Wide variation exists in the degree <strong>of</strong> individual<br />

• Pre-TKR<br />

functional<br />

PCS<br />

improvement<br />

is normally distributed<br />

at 12 months<br />

and<br />

after<br />

demonstrates primary TKR, poor despite function uniform among pain patients reliefchoosing<br />

TKR Post (mean TKR = Improvement<br />

27)<br />

• The mean PCS improvement is 10.5 points;<br />

• The 12 month post-TKR PCS distribution is bimodal.<br />

comparable to the PORT study.<br />

Summary • The change in pre-to- 12 month post PCS ranges<br />

from neg/0 to >30 points.<br />

• PPost-TKRfunction t TKRf ti suggests t two t patient ti t groups<br />

• 98% report pain relief following TKR<br />

Group 1: significant gain in PCS<br />

Mean gain =21 (SD=7)<br />

Summary<br />

Group 2: limited gain in PCS<br />

• Wide variation exists in the degree <strong>of</strong> individual<br />

functional Mean improvement gain =4.1 (SD=7) at 12 months after<br />

primary TKR, despite uniform pain relief<br />

•Successful Surgical<br />

Procedure<br />

•Sustained Pain Relief<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia pRACTiCE<br />

Percent<br />

Percent<br />

Percent<br />

nt <strong>of</strong> choice<br />

tating<br />

ood/excellent<br />

ollow-up<br />

TKR<br />

•Improved Physical<br />

Function<br />

Varies With Patient Attributes<br />

Franklin PD, Li W, Ayers DC<br />

2008 Knee Society Ranawat Award<br />

CORR, Nov 2008, p 2597-2604<br />

Functional Outcome After TKR<br />

Functional • 31 states and 224 Outcome hospitals After TKR<br />

• 31 states and 224 hospitals<br />

Functional • 41% <strong>of</strong> hospitals Outcome reported < 50 TKR After cases/yearTKR<br />

Varies With Patient Attributes<br />

Franklin PD, Li W, Ayers DC<br />

2008 Knee Society Ranawat Award<br />

CORR, Nov 2008, p 2597-2604<br />

• 8300 Pi Primary TKR<br />

• > 200 surgeons submitted cases<br />

• 30% percent submitted > 20 cases/year<br />

• 78% <strong>of</strong> Distribution all cases were <strong>of</strong> treated Functional by these Improvement surgeons<br />

(12 Month Post Total Knee Replacement Surgery)<br />

• 31 states and 224 hospitals<br />

15<br />

• 41% <strong>of</strong> hospitals reported < 50 TKR cases/year<br />

10<br />

10<br />

0<br />

-20 0 20 40<br />

SF36 PCS Change<br />

Source: Zimmer Distribution TKR Registry <strong>of</strong> Functional Improvement<br />

•Do patients (12 Month with Post Total small Knee Replacement post-TKR Surgery)<br />

15<br />

10<br />

Varies With Patient Attributes<br />

Franklin PD, Li W, Ayers DC<br />

2008 Knee Society Ranawat Award<br />

CORR, Nov 2008, p 2597-2604<br />

5<br />

5<br />

•Is there variation in functional<br />

0<br />

• 8300 Pi Primary TKR<br />

• > 200 surgeons submitted cases<br />

• 30% percent submitted > 20 cases/year<br />

• 78% <strong>of</strong> all cases were treated by these surgeons<br />

0<br />

-20 0 20 40<br />

Distribution <strong>of</strong> SF36 Functional PCS ChangeImprovement<br />

Source: Zimmer (12 TKR Month Registry Post Total Knee Replacement Surgery)<br />

15<br />

5<br />

• 8300 Pi Primary TKR<br />

• > 200 surgeons submitted cases<br />

• 30% percent submitted > 20 cases/year<br />

• 78% <strong>of</strong> all cases were treated by these surgeons<br />

• 41% <strong>of</strong> hospitals reported < 50 TKR cases/year<br />

Question?<br />

functional improvement start with<br />

higher PCS and have less room to<br />

improve?<br />

Or<br />

improvement across pre-TKR PCS?<br />

-20 0 20 40<br />

SF36 PCS Change<br />

Source: Zimmer TKR Registry<br />

SFF12<br />

PCS Change<br />

AYERS, DC et al:<br />

J. <strong>of</strong> Arthroplasty 2001<br />

250 Consecutive Primary TKR<br />

30.8 Mean Preop PCS<br />

41 41.22 Mean Postop PCS<br />

10.4 Primary TKR Delta patients PCS N>8300<br />

(p 70% Caucasian (353 African <strong>American</strong>; 271<br />

Hispanic)<br />

95% diagnosis g knee osteoarthritis<br />

• Pain: (KSS); pre-TKR = 37; post= 80.<br />

• Function:<br />

54% moderate or severe pain at rest<br />

Primary 92% moderate/severe TKR patients pain when N>8300 walking<br />

Zimmer<br />

<br />

NexGen<br />

77% walk<br />

implants<br />

70% Caucasian (353 African <strong>American</strong>; 271<br />

Hispanic)<br />

95% diagnosis g knee osteoarthritis<br />

• Pain: (KSS); pre-TKR = 37; post= 80.<br />

• Function:<br />

54% moderate or severe pain at rest<br />

92% moderate/severe pain when walking<br />

Primary TKR patients N>8300<br />

77% walk 70% Caucasian (353 African <strong>American</strong>; 271<br />

Hispanic)<br />

95% diagnosis g knee osteoarthritis<br />

• Pain: (KSS); pre-TKR = 37; post= 80.<br />

• Function:<br />

Distribution <strong>of</strong> SF36 PCS Score<br />

54% moderate or severe pain at rest<br />

.06<br />

Pre-operative<br />

92% moderate/severe pain when walking<br />

12 month post-operative<br />

77% walk


Change in Knee K Soc. Pain Score<br />

CHANGE in these patients ranges from negative/0 to<br />

plus 30 points<br />

• Higher pre-TKR PCS is associated with smaller<br />

change in PCS at 12 months.<br />

AND<br />

• Patients with poorest function (PCS=20) have wide<br />

variation in functional improvement (0-35 points)<br />

Summary<br />

•Patients with poor emotional health (MCS=50 have clear<br />

improvement (right shift) <strong>of</strong> distribution.<br />

Summary<br />

•Patients with poor emotional health are less<br />

likely to have functional improvement at 12<br />

months.<br />

100<br />

12 Month Postoperative Changes in<br />

SF12 PCS and Knee Society Pain Score<br />

75<br />

•Patients 50 with poor emotional health (MCS=50 have clear<br />

-25<br />

improvement (right shift) <strong>of</strong> distribution.<br />

Change in Knee K Soc. Pain Score<br />

-50<br />

100<br />

75<br />

-30 -20 -10 0 10<br />

Change in SF12 PCS<br />

20 30 40<br />

Source: Zimmer TKR Registry 2000-2005; N=3,118<br />

Summary<br />

•Patients with poor emotional health are less<br />

likely to have functional improvement at 12<br />

months.<br />

12 Month Postoperative Changes in<br />

SF12 PCS and Knee Society Pain Score<br />

•Patients 50 with poor emotional health (MCS=50 have clear<br />

-25<br />

“TKR improvement Patients (right With shift) LOW <strong>of</strong> Pre-op distribution. Em otional<br />

-50<br />

Health -30 (MCS -20 -10 =22 1.164 0.561 0.066 2.263 0.038<br />

Baseline Change PCS in physical -0.745 function 0.040 -0.823 (PCS) -0.666 0.000<br />

Osteoarthritis 2.461 0.771 0.949 3.973 0.001<br />

Knee Society Pain Score -0.017 0.010 -0.037 0.003 0.095<br />

• Poor 10.1 or fair quadriceps Times More Likely If Also Have<br />

One or More Medical Co-morbidities<br />

strength -0.938 0.459 -1.838 -0.039 0.041<br />

Ayers et al<br />

J Arthroplasty 2003<br />

LOW PREOP MCS PATIENTS<br />

•3 Times More Likely to Have Less<br />

Change in physical function (PCS)<br />

• 10.1 Times More Likely If Also Have<br />

One or More Medical Co-morbidities<br />

METHODS:<br />

•3 Times More Likely to Have Less<br />

• 100 non-consecutive TKR patients<br />

Change in physical function (PCS)<br />

•• SF-36, 10.1 Times WOMAC More surveys Likely If completed: Also Have<br />

One 2 or Weeks More Preop Medical Co-morbidities<br />

6Months Postop<br />

•PCS and MCS calculated<br />

Ayers et al<br />

J Arthroplasty 2003<br />

LOW PREOP MCS PATIENTS<br />

Ayers et al<br />

J Arthroplasty 2003<br />

•Telephone psychological assessment<br />

preop<br />

Pain relief,<br />

PCS improved<br />

2,685 85.9 100.00<br />

Total 3,118 100.00<br />

Frequency Percent Cumulative<br />

No pain relief,<br />

no PCS<br />

improvement<br />

34 1.1 1.1<br />

Pain relieved,<br />

no PCS<br />

368 12.0 13.1<br />

improvement<br />

Higher No pain relief, odds <strong>of</strong> less 31 functional 1.0 gain associated 14.1<br />

PCS improved<br />

with:<br />

Pain relief, 2,685 85.9<br />

Lower pre-op MCS<br />

PCS improved<br />

Total Greater 3,118 BMI 100.00<br />

100.00<br />

Each 5 year increase in age<br />

Distribution <strong>of</strong> SF36 PCS Score<br />

more .1 than 2:1 odds <strong>of</strong> poorer functional gain after TKR<br />

MCS=50, 12 month post-operative<br />

Higher odds <strong>of</strong> less functional gain associated<br />

Dennsity<br />

12 Month Change in PCS and KSS Pain Score<br />

.05<br />

.025<br />

0<br />

Non-OA Non OA diagnosis<br />

Poor/fair quadriceps strength<br />

Patients with BMI >40 and poor quadriceps strength had<br />

.05<br />

MCS=50, Pre-operative<br />

20 30 40 50 60<br />

SF36 PCS<br />

Distribution <strong>of</strong> SF36 PCS Score<br />

more .1 than 2:1 odds <strong>of</strong> poorer functional gain after TKR<br />

MCS=50, 12 month post-operative<br />

Higher odds <strong>of</strong> less functional gain associated<br />

Dennsity<br />

with:<br />

.025<br />

0<br />

Lower pre-op MCS<br />

Greater BMI<br />

Each 5 year increase in age<br />

Non-OA Non OA diagnosis<br />

Poor/fair quadriceps strength<br />

Patients with BMI >40 and poor quadriceps strength had<br />

HYPOTHESIS:<br />

Peri-op intervention targeting<br />

low MCS patients might improve<br />

post-op physical outcome<br />

Ayers, Franklin et al<br />

J Arthroplasty 2004<br />

Peri-op intervention RESULTS: targeting<br />

low MCS MCS Distribution patients might 100 Patients improve<br />

MCS 50<br />

Ayers, Franklin et al<br />

68%<br />

J Arthroplasty 2004<br />

PURPOSE:<br />

METHODS:<br />

RESULTS:<br />

•Standard Psych Components<br />

• 100 non-consecutive TKR patients<br />

MCS Distribution 100 Patients<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

344 associated with low MCS TKR<br />

• SF-36, WOMAC surveys completed:<br />

patients<br />

For<br />

are<br />

full<br />

unknown<br />

information refer to page 14. An alphabetical faculty financial 2 Weeks disclosure Preop list can be found starting on page 19.<br />

MCS 50<br />

68%<br />

the First step in development <strong>of</strong> a<br />

•PCS and MCS calculated<br />

Pre-Surgical Intervention SympoSia pRACTiCE<br />

•Telephone psychological assessment<br />

with:<br />

Lower pre-op MCS<br />

Greater BMI<br />

Each 5 year increase in age<br />

Non-OA Non OA diagnosis<br />

Poor/fair quadriceps strength<br />

Patients with BMI >40 and poor quadriceps strength had<br />

more than 2:1 odds <strong>of</strong> poorer functional gain after TKR<br />

HYPOTHESIS:<br />

post-op physical outcome


• MCS50<br />

– BDI= 6.4<br />

345<br />

0<br />

=50<br />

BECK DEPRESSION INVENTORY<br />

• Higher Scores - More<br />

Depression<br />

12<br />

SPIELBERGER TRAIT ANXIETY<br />

• 10-18 -Minimal Depression<br />

Sub-clinical, No need to treat 8<br />

•Significantly higher anxiety score in<br />

6<br />

patients with MCS


346<br />

leSSoNS learNed: how to miNimize<br />

CompliCatioNS iN CommoN aNd<br />

CompleX Shoulder Surgery -<br />

a CaSe-baSed SympoSium (h)<br />

Moderator: William N. Levine, MD, New York, NY<br />

The goals <strong>of</strong> this symposium are to present common and complex shoulder cases that all registrants manage highlighting the<br />

lessons learned from experts to minimize complications.<br />

I. AC Joint Injuries<br />

Christopher S. Ahmad, MD, New York, NY<br />

a. When should we really operate?<br />

b. Anatomic reconstruction – lessons I’ve learned to avoid complications<br />

c. My current rationale for treatment<br />

II. Rotator Cuff Repair in 2011 – Does any <strong>of</strong> this stuff really matter if they are all going to fail anyway?<br />

Ken Yamaguchi, MD, Saint Louis, MO<br />

a. Is it the number <strong>of</strong> rows or the number <strong>of</strong> sutures that really matters?<br />

b. Lessons I’ver learned to avoid complications<br />

c. What do I do for the 50 y.o patient with a massive tear?<br />

d. My current rationale for treatment<br />

III. Choices for Instability Surgery<br />

Evan L. Flatow, MD, New York, NY<br />

a. Paradigm shift – s<strong>of</strong>t tissue vs bone, not “open vs scope”<br />

b. Lessons I’ve learned to avoid complications<br />

c. My current rationale for treatment<br />

IV. Clavicle fractures – Do I really have to fix them all?<br />

Michael D. McKee, MD, Toronto, Canada<br />

a. Where there’s a will there’s a prospective randomized study to answer the question!<br />

b. Plates, nails, and screws – I’ve seen them all fail – lessons learned to avoid complications<br />

c. My current rationale for treatment<br />

V. Case Discussions, Questions, Interactive Session<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW


347<br />

aC JoiNt iNJurieS: wheN Should we operate aNd<br />

whiCh proCedure Should i do?<br />

Christopher S. Ahmad, MD<br />

History<br />

• 1940 - Murray transfixed the AC joint with k-wires<br />

• 1941- Bosworth inserted coracoclavicular (CC) screw<br />

• Other fixation methods – Hook plate, ex-fix<br />

• Muscle transfers<br />

• Ligament transfers<br />

• Ligament reconstructions<br />

• > 60 surgical procedures described to treat AC separations<br />

• No gold standard treatment<br />

Weaver-Dunn<br />

• Weaver JK, Dunn HK. JBJS 1972<br />

• Weinstein et al, AJSM 1995<br />

• Loss <strong>of</strong> Reduction – 24%<br />

• Reasons<br />

— CA lig strength only 20% <strong>of</strong> CC ligaments<br />

— Attachment vector <strong>of</strong> transferred ligaments different than<br />

native CC ligaments<br />

Ligamentous Anatomy and Biomechanics<br />

• CC ligaments provide vertical stability<br />

— Conoid is primary restraint to anterior and superior load<br />

— Trapezoid is primary restraint to posterior load<br />

• AC capsule provides horizontal stability<br />

Mechanism <strong>of</strong> Injury<br />

Direct trauma<br />

• Fall or blow with arm adducted<br />

Classification<br />

Type 1<br />

• AC capsule stretched or partially torn<br />

• Most common<br />

Type 2<br />

• Mild displacement<br />

• AC capsule torn<br />

• CC ligaments intact<br />

Type 3<br />

• Complete tear <strong>of</strong> AC and CC ligaments<br />

• Visible deformity<br />

• CC interspace 25-100% > than unaffected side<br />

Type 4<br />

• Type III with dist clavicle displaced posteriorly through the<br />

trapezius<br />

• Must have axillary view!<br />

Type 5<br />

• Type III with dist clavicle severely displacement superiorly<br />

• Skin tenting<br />

• CC interspace 100-300% > than unaffected side<br />

Type 6<br />

• AC dislocation with clavicle displaced inferiorly<br />

• CC interspace compared to unaffected side<br />

Clinical Findings<br />

• Deformity apparent<br />

• Posterior displacement with adduction<br />

• AC joint tenderness<br />

• Disruption <strong>of</strong> the deltotrapezial fascia<br />

• Pain with cross-body adduction<br />

• Active compression test<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

• Reducibility - stabilizing the clavicle with one hand and placing<br />

an upward force under the ipsilateral elbow with the other<br />

Type III vs IV or V<br />

• based on whether the AC joint dislocation can be reduced<br />

Imaging<br />

• Axillary x-ray to check for posterior displacement<br />

Treatment<br />

• Type I and II - Non-op<br />

• Type III - Controversial<br />

• Type IV, V, VI - Surgical<br />

Surgical Treatment<br />

CC Ligament Reconstruction<br />

• First reported case - Jones, Lemos Schepsis, AJSM 2001<br />

• Mazzocca et al, Op Tech Sp Med 2004 – introduces 2 bundle<br />

reconstruction with screw fixation<br />

Biomechanics <strong>of</strong> CC Ligament Reconstruction<br />

Mazzocca AJSM 2006<br />

• 42 cadavers<br />

• CC ligament recon vs Mod Weaver-Dunn<br />

• Cyclic loading in ant, post, and sup, directions<br />

• CC ligament recon superior to Weaver Dunn<br />

Rational for CC ligament Reconstruction<br />

• Better reproduction <strong>of</strong> anatomy<br />

• Better biomechanics<br />

• Better clinical results<br />

Surgical Technique<br />

Approach<br />

• Beach chair position<br />

• Incision 3-4 cm medial to AC joint<br />

• Divide deltotrapezial fascia<br />

• Elevate from clavicle<br />

• Distal clavicle excision for chronic case<br />

• Clavicle reduced with superior force on humerus<br />

• CC Ligament Reconstruction<br />

Tunnel Creation<br />

• Conoid tunnel<br />

— 45 mm from distal clavicle<br />

— Posterior 1/2<br />

— 6 mm reamer<br />

• Trapezoid tunnel<br />

— 30 mm from distal clavicle<br />

— Center<br />

— 6 mm reamer<br />

Graft Harvest<br />

• Ipsilateral semitendinosus autograft vs allograft<br />

• Tendon stripper<br />

• Native ligament controlled with Fiber-Wire suture<br />

Graft Passing<br />

• Curved clamp around coracoid<br />

• Pass graft and # 5 braided non-aborbable suture<br />

Graft Fixation<br />

• Conoid fixed first<br />

• 5.5mm IF screw<br />

• Augmentation suture and native graft suture through<br />

cannulation <strong>of</strong> screw


• Trapezoid fixed with clavicle reduced - Humerus up, clavicle<br />

down<br />

• Augmentation and native ligament sutures tied<br />

• Remaining graft passed across AC joint<br />

• Fixed in acromion with suture anchors or bone tunnels<br />

Deltotrapezial fascia repaired<br />

Post-Op Radiographs<br />

Rehabilitation<br />

• First 6-8 wks – supportive brace<br />

• Brace removed to groom and supine ROM<br />

• 8 wks - begin upright active ROM<br />

• 12 wks – begin strengthening<br />

— Emphasize scapular stabilizers<br />

• 3-5 mos – aggressive strengthening<br />

• 6 mos – contact sports<br />

Clinical Results<br />

Nicholas et al, AJSM 2007<br />

• Case series; Level <strong>of</strong> evidence, 4.<br />

• 9 pts CC lig recon with cadaver semi-T<br />

• Grade V acromioclavicular separation<br />

• ASES scores 96 ± 5<br />

• Penn Shoulder Scale 97 ± 3<br />

• SST scores 11.6 ± 0 out <strong>of</strong> 12<br />

• Postop radiographs - no loss <strong>of</strong> reduction<br />

Tauber et al AJSM 2009<br />

• Cohort study; Level <strong>of</strong> evidence, 2.<br />

• 24 pts (mean age, 42 years)<br />

• III - V AC separation<br />

• 12 - Modified Weaver-Dunn<br />

• 12 - CC lig recon<br />

• Follow-up 37 months<br />

• ASES and Constant Score sig better in CC recon<br />

• CC distance with stress<br />

• 14.9 ± 6 mm in the Weaver-Dunn group<br />

• 11.8 ± 3 mm in the CC recon<br />

Car<strong>of</strong>ino, Mazzocca, JSES 2010<br />

• 16 pts, 2 lost to follow up<br />

• Ave follow-up 21 months (range, 6-61)<br />

• DCE peformed 2 patients<br />

• ASES improved 52 to 92<br />

• SST improved 7.1to 11.8<br />

• X-ray side to side CC difference - 0.96 mm.<br />

• 3 failures<br />

• 1 persistent pain localized to the AC joint<br />

• 1 chronic infection - requiring removal <strong>of</strong> the allograft anda<br />

lattissimus flap for s<strong>of</strong>t tissue coverage<br />

• 1 loss <strong>of</strong> reduction.<br />

Revision surgery with CC ligament recon<br />

Tauber et al JSES 2007<br />

• Mod Weaever Dunn revised with CC ligament recon<br />

• Autogenous semi-T<br />

• Augmented with cerclage or Bosworth screw<br />

• Ave f/u 50 months<br />

• Constant score improved 61.3 to 76.4<br />

348<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

LaPrade and Hilger, Arthroscopy 2005<br />

• Mod Weaever Dunn revised with CC ligament recon<br />

• 2 patients<br />

• Neither patient had any residual limitations at 37 nor 27-<br />

• months follow-up<br />

Complications<br />

• Loss <strong>of</strong> reduction<br />

• Clavicle fracture<br />

• Coracoid base fracture<br />

• Osteolysis<br />

• Infection<br />

• Stiffness<br />

Turman, Miller Miller, JBJS 2010<br />

• 7 cases CC Lig recon<br />

• 3 complications<br />

• 2 clavicle fx’s<br />

• 1 post wall blowout<br />

Pearls and pitfalls<br />

Maintain reduction<br />

• Deltoid and trapezius repair<br />

• Augment fixation, suture and screw<br />

• Retain distal clavicle<br />

• Postop protection<br />

Avoid fracture<br />

• Adequate spacing <strong>of</strong> bone tunnels 20-25 mm<br />

• Diameter no greater than 6mm<br />

• Avoid wall blowout<br />

• Avoid lateral tunnel closer than 10-15 mm<br />

Distal Clavicle Excision<br />

• Controversial<br />

• ? Improved biomechanics with clavicle retention<br />

• Retention not a clinical problem<br />

— Murray G, Can Med Assoc J 1940<br />

— Bosworth BM, Ann Surg 1948<br />

— Bosworth BM, N Engl J Med, 1949<br />

— Car<strong>of</strong>ino and Mozzocca, JSES 2010<br />

• Retention is a clinical problem<br />

— Park et al, AJSM 1980<br />

— Weinstein et al AJSM 1995<br />

Future Directions<br />

Debardino et al, JSES 2010<br />

• Arthroscopic CC Recon<br />

• Subacromial arthroscopic approach<br />

• Subcoracoid button, clavicle washer, central graft<br />

• 10 cases ACJ separation<br />

• All f/u > 6 months<br />

• All return pre-injury act<br />

• No complications<br />

Summary<br />

• Most ACJ injuries non-op<br />

• Evolution to anatomic repair<br />

• Weaver-Dunn <strong>of</strong> historic interest only?


349<br />

rotator CuFF repair iN 2011 – doeS aNy oF thiS StuFF really<br />

matter iF they are all goiNg to Fail aNyway?<br />

Ken Yamaguchi, MD<br />

COMPLICATIONS<br />

I. General Comments<br />

Shoulder pain is one <strong>of</strong> the leading sources <strong>of</strong> musculoskeletal<br />

disability in the United States. Surgical treatment <strong>of</strong> rotator cuff<br />

disease is among the most common orthopedic procedures<br />

performed. Fortunately, the outcome from surgery is generally<br />

very reliable and complication rates small.<br />

II. Most common pitfalls<br />

a. Surgical indications<br />

b. Failure to address biceps pathology<br />

c. Overly aggressive decompression / acj resection<br />

d. Overly aggressive deltoid retraction / inadequate repair<br />

e. Fluid management<br />

III. Most common complications<br />

a. Persistent pain<br />

b. Loss <strong>of</strong> function<br />

c. Deltoid injury<br />

d. Failure to heal<br />

e. Infection<br />

f. Implant failure<br />

IV. Preoperative Pitfalls<br />

1. Improper diagnosis<br />

i. Cervical myeloradiculopathy<br />

ii. ACJ, biceps, labrum, arthritis<br />

iii. Local neuropathies<br />

2. Weak surgical indications – this may be one <strong>of</strong> the most<br />

important variables to achieving good outcome.<br />

i. Pt age<br />

ii. General health<br />

iii. Stage <strong>of</strong> disease – chronic tear, retraction, atrophy, size <strong>of</strong><br />

defect, etc.<br />

3. Surgical Indications – given all <strong>of</strong> the above considerations<br />

surgical indications can be organized for three groups <strong>of</strong><br />

people based mostly on the above considerations and the<br />

risks <strong>of</strong> non-operative treatment:<br />

A. Group 1 – These are patients who are not at risk <strong>of</strong><br />

obtaining irreversible changes if they are treated nonoperatively.<br />

In other words, non-operative treatment <strong>of</strong><br />

any significant period will not result in an irreversible<br />

risk. These patients do not have a risk <strong>of</strong> acquiring the<br />

chronic changes spoken <strong>of</strong> above.<br />

1. Patients who have an intact rotator cuff<br />

2. Patients with very small partial thickness tears<br />

B. Group 2 – These are patients who have a significant risk<br />

<strong>of</strong> acquiring chronic or irreversible changes with a delay<br />

in surgery. These are patients for whom a “bridge can be<br />

burned” if there is a surgical delay. They include:<br />

1. Patients with small or medium sized tears<br />

2. Acute tears <strong>of</strong> any size<br />

a. these usually are tears that follow a distinct<br />

significant injury and are within a three month<br />

period.<br />

3. Very large painful degenerative partial tears<br />

4. Tears <strong>of</strong> any size where the MRI or imaging study<br />

show that good tendon and muscle quality still exists.<br />

5. Tears in younger patients (less than 60 years old)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

C. Group 3 – These are patients who have already realized<br />

chronic irreversible changes. These are patients for whom<br />

“the bridge has already been burned.” They include:<br />

1. Tears in elderly patients greater than age 70<br />

2. Patients with large or massive rotator cuff tears with<br />

chronic changes<br />

4. Timing <strong>of</strong> Surgery – Discussed bellow with reference to<br />

healing<br />

III. Operative Pitfalls/Complications<br />

1. Patient setup –patient set-up is one <strong>of</strong> the most important<br />

factors which can lead to consistent, good results. Poor<br />

set-up conversely leads to inconsistent and more difficult<br />

surgery. It can not be emphasized enough.<br />

i. Consistent positioning<br />

ii. Precise Portal placement<br />

iii. Careful draping and prep<br />

2. Intra operative considerations<br />

i. First do no harm<br />

1. protect deltoid<br />

2. protect arch<br />

ii. Arthroscopy time/visualization limits<br />

iii. Careful anchor implantation – test strength <strong>of</strong> fixation by<br />

pulling on sutures<br />

iv. Fluid control – use minimum pressure to achieve<br />

visualization. Balance with hypotensive blood pressure<br />

control<br />

v. Retractor control – be aware <strong>of</strong> prolonged and significant<br />

retraction on the deltoid. This is mostly a problem with<br />

miniopen procedures with self-retainers. Sometimes a<br />

full open is less morbid to deltoid.<br />

vi. Careful bicep observation – look at the lateral bicep to<br />

insure structural integrity<br />

vii.Surgical repair strategy<br />

1. Approach – arthroscopic, mini open, or open. Do<br />

what you do best, but complication rates decrease<br />

with arthroscopic procedures.<br />

2. repair construct – controversial, no advantage<br />

conclusively demonstrated with double row<br />

viii. Use <strong>of</strong> pain pumps – Currently not warranted. Limited<br />

benefit demonstrated and serious complications<br />

potential<br />

3. Acromioplasty<br />

i. Inadequate? – at this time, there is no good evidence that<br />

removal <strong>of</strong> normal bone is necessary. Aggressive bone<br />

resection is not warranted. Removal <strong>of</strong> spurs is generally<br />

preferred.<br />

ii. Too aggressive – remember that the acromion is the<br />

deltoid origin. Compromise <strong>of</strong> this bone can have<br />

significant consequences to deltoid function and head<br />

containment.<br />

IV. Post-operative Pitfalls/Complications<br />

1. Activity restrictions – No active motion should be allowed<br />

for 6 weeks and generally return to normal takes a minimum<br />

6 mo.<br />

2. Rehab protocols – Early vs. Delayed motion is controversial.<br />

There appears to be a trend towards more conservative rehab.<br />

In any case, resistive exercises should be avoided before 3 mo


post op<br />

3. Infection – rare but can be devastating to surgical construct.<br />

Usually requires take down <strong>of</strong> repair and debridement /<br />

removal <strong>of</strong> implants. Interestingly, good results can <strong>of</strong>ten be<br />

obtained despite loss <strong>of</strong> the surgical repair.<br />

4. Severe Pain<br />

5. NSAIDs?<br />

6. Repair Healing – The best information is that rotator<br />

cuff healing is far less predictable and occurs and that<br />

failure rates occur at a much higher level than previously<br />

considered. previously considered.<br />

ROTATOR CUFF HEALING<br />

I. General Comments<br />

Reported healing after rotator cuff repair has been variable with<br />

rates as low as 6% and high as 100%. A general consensus is<br />

that healing rates are lower than previously considered and<br />

there remains multiple opportunities for improvement.<br />

In general, improvements in healing <strong>of</strong> rotator cuff repairs may<br />

occur in the following areas:<br />

1) Surgical indications<br />

2) Surgical technique<br />

3) Rehab protocol<br />

4) Miscellaneous perioperative factors ( smoking, NSAIDs)<br />

5) Biologics<br />

II. Surgical Indications<br />

Patient selection probably has the most influence regarding<br />

prognosis for healing after rotator cuff repair. This mostly<br />

based on the fact that biology is more a limiting factor than<br />

mechanical issues. Thus in a biologically poor patient such as<br />

a 80yo patient with a chronic tear, the chances <strong>of</strong> obtaining<br />

healing will be poor regardless <strong>of</strong> the surgical technique<br />

employed. However, in a patient with good biologic potential,<br />

the surgical technique may become the limiting factor – it<br />

becomes more important to have a better construct.<br />

1) Factors which predict good potential for healing<br />

a) Patient age ( less than 60-65 )<br />

b) Small size <strong>of</strong> tear<br />

c) Absence <strong>of</strong> muscle atrophy or fatty infiltration<br />

d) Acute tears ( less than 3 mo )<br />

e) No hx <strong>of</strong> smoking?<br />

2) Factors which predict poor potential for healing<br />

a) Older age<br />

b) Large, chronic tear with muscle changes<br />

c) Co-morbidities (smoking, diabetes, inflammatory<br />

arthropathy, etc)?<br />

3) Surgical Indications – given all <strong>of</strong> the above considerations<br />

surgical indications can be organized for three groups <strong>of</strong><br />

people based mostly on the above considerations and the<br />

risks <strong>of</strong> non-operative treatment:<br />

A. Group 1 – These are patients who are not at risk <strong>of</strong><br />

obtaining irreversible changes if they are treated nonoperatively.<br />

In other words, non-operative treatment <strong>of</strong><br />

any significant period will not result in an irreversible<br />

risk. These patients do not have a risk <strong>of</strong> acquiring the<br />

chronic changes spoken <strong>of</strong> above.<br />

1. Patients who have an intact rotator cuff<br />

2. Patients with very small partial thickness tears<br />

B. Group 2 – These are patients who have a significant risk<br />

<strong>of</strong> acquiring chronic or irreversible changes with a delay<br />

in surgery. These are patients for whom a “bridge can be<br />

burned” if there is a surgical delay. They include:<br />

1. Patients with small or medium sized tears<br />

350<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

2. Acute tears <strong>of</strong> any size<br />

a. these usually are tears that follow a distinct<br />

significant injury and are within a three month<br />

period.<br />

3. Very large painful degenerative partial tears<br />

4. Tears <strong>of</strong> any size where the MRI or imaging study<br />

show that good tendon and muscle quality still exists.<br />

5. Tears in younger patients (less than 60 years old)<br />

C. Group 3 – These are patients who have already realized<br />

chronic irreversible changes. These are patients for whom<br />

“the bridge has already been burned.” They include:<br />

1. Tears in elderly patients greater than age 70<br />

2. Patients with large or massive rotator cuff tears with<br />

chronic changes<br />

4. Timing <strong>of</strong> Surgery – Given the organization <strong>of</strong> non-operative<br />

risks given above, the timing <strong>of</strong> surgery can be dictated by<br />

the risk for acquiring irreversible changes. Thus:<br />

A. Group 1 – Patients for whom non-operative treatment<br />

can be maximized. You should error towards nonoperative<br />

treatment in these patients. A high success rate<br />

with non-operative treatment should be expected.<br />

B. Group 2 – Patients for whom early surgical treatment is<br />

probably warranted. Non-operative treatment in these<br />

patients may expose them to significant risks.<br />

C. Group 3 – Patients for whom non-operative treatment<br />

should again be maximized. There are no significant<br />

problems with prolonged non- operative treatment.<br />

5. Surgical Strategy Based on Patient Pr<strong>of</strong>iles<br />

A. Group 2 – These are patients for whom biology is best<br />

suited to obtain healing after rotator cuff repair. In<br />

this case, it makes sense to provide the best operative<br />

construct possible:<br />

1. Full release <strong>of</strong> contractures<br />

2. Strong mechanical construct such as Mason-Allen<br />

sutures or mattress sutures.<br />

3. Double row fixation<br />

B. Group 3 – These are patients for whom biology is<br />

probably the limiting factor regardless <strong>of</strong> surgical<br />

technique. In this group, the goal may be more modest.<br />

Instead <strong>of</strong> trying to obtain a healed cuff, the goal may<br />

be more reasonable to change a symptomatic to an<br />

asymptomatic cuff tear. In this group <strong>of</strong> patients, from a<br />

surgical standpoint:<br />

1. A double row fixation may not be possible and<br />

probably will not change the chances <strong>of</strong> healing.<br />

2. A conservative approach to surgery should be<br />

considered including:<br />

a. no decompression<br />

b. no detachment <strong>of</strong> the deltoid<br />

6. Summary - From a treatment rationale standpoint, Group 1<br />

patients have a small risk with conservative treatment and<br />

a good chance for success with non-operative methods. If<br />

surgery is performed, a rotator cuff repair is generally not<br />

required. Group 2 – these are patients with a significant<br />

risk by conservative treatment. The patient should generally<br />

proceed towards early surgery and surgical and rehabilitation<br />

methods should be aimed at maximizing the probability<br />

<strong>of</strong> healing <strong>of</strong> the rotator cuff. This includes conservative<br />

rehab and secure broad-based fixation <strong>of</strong> the cuff. Group<br />

3 – these are patients that have a small risk with conservative<br />

treatment and thus, non-operative measures should be<br />

maximized. If an operative treatment is required, then the<br />

risk <strong>of</strong> the procedure should be kept small. A decompression<br />

should not be performed and the deltoid should not be


harmed. Prolonged cases, trying to obtain extra fixation <strong>of</strong><br />

the cuff is probably not warranted, and probably does not<br />

help ultimate healing.<br />

III. Surgical Technique<br />

As noted above, surgical technique can be modified based on<br />

biologic potential to heal. Patients with good potential to heal<br />

may benefit from more elaborate surgical constructs such a<br />

double row repair – although at this time the evidence is not<br />

there. Patients with poor ability to heal may not benefit from<br />

double row – this may explain inconsistencies in the literature.<br />

351<br />

Repair constructs can be divided up into three broad catagories:<br />

a) Single-row repair<br />

b) Single-row but double-row equivalent repair<br />

c) Double-row repair<br />

All <strong>of</strong> the repairs should have the following characteristics<br />

a) Tension-free repair through proper releases<br />

b) Good suture purchase through reasonable tissue<br />

c) Good recognition <strong>of</strong> tear pattern to provide for anatomic<br />

repair<br />

d) Debridement <strong>of</strong> bone to bleeding base<br />

1) Single-row repair<br />

a) Generally the most simple constructs<br />

b) Best achieved with multiple sutures to achieve “seal”<br />

<strong>of</strong> the joint at anatomic neck<br />

2) Double-row repair<br />

a) Provides larger footprint<br />

b) Trans osseous equivalent (suture bridge) perhaps<br />

easiest and most effective construct.<br />

c) Supportive evidence controversial<br />

3) Double-row equivalent<br />

a) Tension band repair<br />

b) Trans osseous repair<br />

REFERENCES<br />

1. Morse K, Davis AD, Afra R, Kaye EK, Schepsis A, Voloshin I: Arthroscopic<br />

versus mini-open rotator cuff repair: a comprehensive review and metaanalysis.<br />

Am J Sports Med. 36(9):1824-8.2008.<br />

2. Szabo I, Boileau P, Walch G: The proximal biceps as a pain generator and<br />

results <strong>of</strong> tenotomy. Sports Med. Arthrosc. 16(3) 180-6: 2008.<br />

3. Krishnan SG, Harkins DC, Schiffern SC, Pennington SD, Burkhead WZ:<br />

Arthroscopic repair <strong>of</strong> full-thickness tears <strong>of</strong> the rotator cuff in patients<br />

younger than 40 years. Arthroscopy. 24(3):324-8.2008.<br />

4. Kircher J, Martinek V, Mittelmeier W: Heterotopic ossification after minimally<br />

invasive rotator cuff repair. Arthroscopy. 23(12): 1359.el-3.2007.<br />

5. Struzik S, Glinkowski W, Gorecki A: Shoulder arthroscopy complications.<br />

Orthop Traumatol Rehabil. 5(4):489-94.2003.<br />

6. Chin PY, Sperling JW, C<strong>of</strong>ield RH, Stuart MJ, Crownhart BS: Complications<br />

<strong>of</strong> shoulder arthroscopy. J <strong>of</strong> Shoulder Elbow Surg. 16(6):697-700. 2007.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

IV. Rehab Protocol<br />

Use <strong>of</strong> conservative rehab protocols have become more popular<br />

as concerns for healing have increased. Many surgeons have<br />

decreased the rate <strong>of</strong> mobilization until healing has had a<br />

chance to take hold. Typical conservative protocols include:<br />

1) No motion for 6 wks<br />

2) Passive for additional 6 wks<br />

3) Active at 12 wks<br />

4) Resistive exercises only after full ROM achieved<br />

At this time there is no evidence in humans that conservative<br />

protocols lead to better healing. Small animal research is<br />

somewhat suggestive.<br />

V. Perioperative Factors<br />

Recent evidence suggests that smoking is a risk factor for<br />

development <strong>of</strong> rotator cuff tears. It is not known whether<br />

smoking affects healing; however, it seems prudent to advise<br />

against smoking. Additionally, the use <strong>of</strong> NSAIDs in the<br />

immediate post operative period may be detrimental.<br />

VI. Biologics<br />

Recently the use <strong>of</strong> commercially available grafts has been<br />

investigated for possible augmentation <strong>of</strong> surgical healing.<br />

Generally, the use <strong>of</strong> these grafts requires open surgery although<br />

very experienced surgeons can do it arthroscopically. A clinical<br />

benefit to the construct has not been demonstrated with at least<br />

one xenograft product.<br />

Use <strong>of</strong> growth factors to enhance bone-tendon healing is a<br />

potentially important strategy which at this time is not available<br />

for general use.<br />

7. Cole BJ, McCarty LP 3rd, Kang RW, Alford W, Lewis PB, Hayden JK:<br />

Arthroscopic rotator cuff repair: prospective functional outcome and repair<br />

integrity at minimum 2-year follow-up. J <strong>of</strong> Shoulder Elbow Surg. 16(5):579-<br />

85.2007.<br />

8. Hsu SL, Ko JY, Chen SH, Wu RW, Clou WY, Wang CJ: Surgical results in<br />

rotator cuff tears with shoulder stiffness. J Formos Med Assoc. 106(6):452-<br />

61.2007.<br />

9. Brislin KJ, Field LD, Savoie FH 3rd: Complications after rotator cuff repair.<br />

Arthroscopy. 23(2):124-8.2007.<br />

10. Gumina S, DiGiorgio G, Bertino A, Della Rocca C, Sardella B, Postacchini<br />

F: Recurrent infection <strong>of</strong> the rotator cuff after open repair: case report. J<br />

Shoulder Elbow Surg. 15(1):122-3.2006.<br />

11. Hata Y, Saitoh S, Murakami N, Kobayashi H, Takaoka K: Atrophy <strong>of</strong> the<br />

deltoid muscle following rotator cuff surgery. J Bone Joint Surg Am.86-A<br />

(7):1414-9.2004.<br />

12. Magee T, Shapiro M, Hewell G, Williams D: Complications <strong>of</strong> rotator cuff<br />

surgery in which bioabsorbable anchors are used. AJR Am Roentgenol.<br />

181(5):1227-31.2003.


• Treatment <strong>of</strong> instability has progressed from non-anatomic<br />

reconstruction procedures complicated by stiffness to more<br />

anatomic reconstructions complicated by recurrence<br />

• Recurrence Can be from:<br />

Wrong diagnosis<br />

Wrong surgery<br />

Technical failure<br />

Post-operative rehab failure<br />

New trauma<br />

A. Establishing Diagnosis:<br />

— Not simply direction <strong>of</strong> instability or whether its MDI,<br />

— Aimed is to identify all contributing pathology i.e. labrum,<br />

bone, capsule<br />

— This will aid in choice <strong>of</strong> treatment<br />

1. History<br />

a. Focus on initial event<br />

b. Patients correct 95% regarding direction1<br />

c. Type <strong>of</strong> instability: subluxation vs. dislocation<br />

d. Need for assisted reduction<br />

e. What has been the progression How it happened, how<br />

<strong>of</strong>ten, what has been done?<br />

f. Progressively less traumatic dislocations can indicate<br />

bone loss<br />

g. Family history <strong>of</strong> laxity<br />

h. Know activities <strong>of</strong> patient (thrower, football lineman etc.)<br />

i. In revision cases, review all op reports, especially EUA<br />

and number <strong>of</strong> anchors used, when and how redislocation<br />

happened<br />

2. Exam<br />

a. Hyperlaxity<br />

1. MCP extension >90<br />

2. Elbow hyperextension<br />

3. Knee hyperextension<br />

4. Thumb to wrist<br />

5. External rotation >85degrees<br />

b. Rotator Interval<br />

1. Sulcus Sign, does it decreased in external rotation?<br />

c. Laxity in IGHL<br />

1. Gagey Sign<br />

d. Apprehension<br />

1. In low range may indicate bone loss<br />

2. Jerk test<br />

e. Rotator cuff exam<br />

1. Particularly if older than 40 yrs and 1st dislocation<br />

2. Subscap failure may be cause for recurrence after open<br />

repair<br />

f. Nerve function<br />

g. Don’t forget scapula kinematics<br />

3. Imaging:<br />

a. X-Ray<br />

1. Indicates but can’t quantify bone loss well<br />

2. Loss <strong>of</strong> sclerotic glenoid margin= sig loss<br />

b. MRI/MRA<br />

1. See s<strong>of</strong>t tissue lesions and bone<br />

2. Sagittal cuts to evaluate glenoid<br />

3. ALPSA, HAGL<br />

4. Patulous capsule<br />

c. CT<br />

1. with 3D recon<br />

352<br />

ChoiCeS iN iNStability Surgery<br />

Evan L. Flatow, MD, New York, NY<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

2. Best demonstrates bone loss on glenoid and head<br />

3. Gerber and Nyffeler method to quantify glenoid bone<br />

defect 2<br />

Gerber et al CORR 2002<br />

If x>r, resistance to dislocation only 70% <strong>of</strong> uninjured joint<br />

B. Management:<br />

1. Choosing surgery: Consider all contributing pathology<br />

a. Open Bankart repair remains the gold standard<br />

Rowe et al 3.5% recurrence rate treating “all comers”<br />

65% had greater than 25% bone loss on glenoid<br />

77% had Hill Sachs lesions 3<br />

Loss <strong>of</strong> motion is minimal and rarely symptomatic<br />

b. Arthroscopic methods improving (4-18% recurrence)<br />

c. Patients expect/request arthroscopic<br />

d. Risk factors for failure <strong>of</strong> arthroscopic s<strong>of</strong>t tissue<br />

stabilizations 4-6<br />

Age20% loss<br />

but little data to define exact percentage 9<br />

1. Itoi et al 21% 10<br />

e. Crest Graft, coracoid transfer, allograft for glenoid<br />

f. Humeral loss rarely needs to be address<br />

g. Critical amount <strong>of</strong> humeral loss not defined and likely<br />

depends upon associated glenoid loss<br />

h. When necessary, options include grafting, remplissage,<br />

resurfacing in older patients<br />

3. Technical Pearls<br />

A. EUA prior to every case to confirm diagnosis, complete<br />

diagnostic scope to r/o associated pathology<br />

B. Arthroscopic Stabilization<br />

1. Take the time to adequately mobilize labral/ALPSA<br />

2. A minimum <strong>of</strong> 3 anchors (maybe 4) required from<br />

3:00–5:30<br />

3. Capsular stretch is always part <strong>of</strong> the pathology<br />

4. Plication should be uniformly incorporated into<br />

Bankart repair, bring inferior to superior<br />

5. Establish a bleeding bed on glenoid face to improve<br />

healing<br />

C. Latarjet<br />

1. Increased popularity with better recognition <strong>of</strong> bony<br />

lesions and reported results (1.2% recurrence)11<br />

2. Triple blocking theory


3. Can be done arthroscopically by a few (less invasive?)<br />

4. Transfer must be placed anterior AND inferior<br />

REFERENCES AND SUGGESTED READINGS<br />

1. Mair SD, Hawkins RJ: Open shoulder instability surgery. complications. Clin<br />

Sports Med 1999;18:719-736.<br />

2. Gerber C, Nyffeler RW: Classification <strong>of</strong> glenohumeral joint instability. Clin<br />

Orthop Relat Res 2002;(400):65-76.<br />

3. Rowe CR, Patel D, Southmayd WW: The bankart procedure: A long-term endresult<br />

study. J Bone Joint Surg Am 1978;60:1-16.<br />

4. Porcellini G, Campi F, Pegreffi F, Castagna A, Paladini P: Predisposing factors<br />

for recurrent shoulder dislocation after arthroscopic treatment. J Bone Joint<br />

Surg Am 2009;91:2537-2542.<br />

5. Voos JE, Livermore RW, Feeley BT, et al: Prospective evaluation <strong>of</strong><br />

arthroscopic bankart repairs for anterior instability. Am J Sports Med<br />

2010;38:302-307.<br />

6. Boileau P, Villalba M, Hery JY, Balg F, Ahrens P, Neyton L: Risk factors for<br />

recurrence <strong>of</strong> shoulder instability after arthroscopic bankart repair. J Bone<br />

Joint Surg Am 2006;88:1755-1763.<br />

353<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

5. No lateral overhang is acceptable<br />

6. Medial placement <strong>of</strong> 1-2mm is well tolerated<br />

7. Balg F, Boileau P: The instability severity index score. A simple pre-operative<br />

score to select patients for arthroscopic or open shoulder stabilisation. J<br />

Bone Joint Surg Br 2007;89:1470-1477.<br />

8. Piasecki DP, Verma NN, Romeo AA, Levine WN, Bach BR,Jr, Provencher MT:<br />

Glenoid bone deficiency in recurrent anterior shoulder instability: Diagnosis<br />

and management. J Am Acad Orthop Surg 2009;17:482-493.<br />

9. Beran MC, Donaldson CT, Bishop JY: Treatment <strong>of</strong> chronic glenoid defects in<br />

the setting <strong>of</strong> recurrent anterior shoulder instability: A systematic review. J<br />

Shoulder Elbow Surg 2010;19:769-780.<br />

10. Itoi E, Lee SB, Berglund LJ, Berge LL, An KN: The effect <strong>of</strong> a glenoid defect on<br />

anteroinferior stability <strong>of</strong> the shoulder after bankart repair: A cadaveric study.<br />

J Bone Joint Surg Am 2000;82:35-46.<br />

11. Allain J, Goutallier D, Glorion C: Long-term results <strong>of</strong> the latarjet procedure<br />

for the treatment <strong>of</strong> anterior instability <strong>of</strong> the shoulder. J Bone Joint Surg Am<br />

1998;80:841-852.


354<br />

ClaviCle FraCtureS: do i really have to FiX them all?<br />

Michael D. McKee<br />

1. Introduction: Clavicle fractures are common injuries<br />

accounting for 2.6% <strong>of</strong> all fractures1 and occur most commonly<br />

in young active individuals2. Middle third (or mid-shaft)<br />

fractures account for approximately 80% <strong>of</strong> all clavicle<br />

fractures1,2, and have traditionally been treated non-operatively,<br />

even when significantly displaced. However, more recent studies<br />

have shown non-union rates <strong>of</strong> up to 21% in displaced midshaft<br />

clavicle fractures and unsatisfactory patient oriented outcomes<br />

in up to 31%.In addition, clavicular malunion has recently<br />

been described by multiple authors as a distinct clinical entity<br />

with characteristic clinical and radiographic features. Possible<br />

explanations for the increased residual disability seen following<br />

the non-operative care <strong>of</strong> these fractures may be changing<br />

injury patterns, increased patient expectations, more complete<br />

follow-up (including patient-oriented outcome measures) and<br />

eliminating children (with their inherently good prognosis<br />

and remodeling potential) from the data analysis. It is clear<br />

that there is a role in selected individuals for primary operative<br />

fixation <strong>of</strong> displaced fractures <strong>of</strong> the shaft <strong>of</strong> the clavicle.<br />

2. Operative indications for displaced fractures <strong>of</strong> the clavicle.<br />

In general patients selected for primary operative fixation<br />

should be young (age 16 to 60 years), healthy and active. Select<br />

indications include:<br />

Fracture-specific<br />

1. Displacement or shortening > 2 centimeters<br />

2. Increasing comminution (> 3 fragments) or segmental<br />

fractures<br />

3. Open or Impending open fractures with s<strong>of</strong>t-tissue<br />

compromise<br />

4. Scapular malposition and winging on initial examination<br />

Associated Injuries<br />

1. Vascular injury requiring repair<br />

2. Progressive neurologic deficit<br />

3. Ipsilateral upper extremity injuries / fractures<br />

4. Multiple ipsilateral upper rib fractures<br />

5. “Floating shoulder”<br />

Patient Factors<br />

1. Polytrauma with requirement for early upper extremity<br />

weight -bearing / arm use<br />

2. Patient motivation for rapid return <strong>of</strong> function (elite sports,<br />

self-employed pr<strong>of</strong>essional, etc.)<br />

3. Surgical Approaches / Fixation<br />

a) Antero-superior plating<br />

Antero-superior plating is the most popular <strong>of</strong> operative<br />

fixation methods for fixation <strong>of</strong> the clavicle. Its advantages<br />

include a familiarity with this approach, the ability to extend<br />

it simply to both the medial and lateral ends <strong>of</strong> the clavicle<br />

and the benefit <strong>of</strong> clear radio-graphic views <strong>of</strong> the clavicle<br />

post-operatively. Disadvantages include the trajectory <strong>of</strong><br />

screw placement (from superior to inferior) that can be<br />

difficult, and inadvertent “plunging” with the drill can<br />

place the underlying lung and neurovascular structures at<br />

risk. Also, the clavicle is fairly narrow in it’s superoinferior<br />

References<br />

1. Neer, C “Fractures <strong>of</strong> the Clavicle” Fractures in Adults, Rockwood and Green<br />

Eds, JB Lippincott, 2nd edition ,p 707-713.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

dimension, and typically the length <strong>of</strong> screws inserted range<br />

from 14-16 mm (female) to 16-18 mm (male). In thin<br />

individuals, hardware prominence can be problematic, and<br />

may lead to hardware removal.<br />

b) Antero-inferior plating<br />

Several groups have published large series on the advantages<br />

<strong>of</strong> anteroinferior plating <strong>of</strong> acute clavicle fractures. Advantages<br />

<strong>of</strong> this technique include an easier screw trajectory with less<br />

likelihood <strong>of</strong> serious injury with inadvertent over-penetration<br />

<strong>of</strong> the drill (although the incidence <strong>of</strong> iatrogenic nerve<br />

injury is very low), and the ability to insert longer screws in<br />

the wider antero-posterior dimension <strong>of</strong> the clavicle, and<br />

decreased hardware prominence. It is also technically easier<br />

to contour a small-fragment compression plate along the<br />

anterior border as opposed to the superior surface: however,<br />

the advent <strong>of</strong> pre-contoured plates has largely negated<br />

this particular advantage. Potential disadvantages <strong>of</strong> this<br />

technique include the lack <strong>of</strong> general familiarity with the<br />

approach, and obscuring the fracture site radiographically.<br />

Biomechanical studies have in general shown that the most<br />

advantageous position for plate placement is the superior<br />

surface. Since the contouring <strong>of</strong> the plate is performed in the<br />

long axis <strong>of</strong> the plate, it is much simpler to contour a straight<br />

compression plate to the anterior, as opposed to the superior<br />

surface. Additionally, it is usually possible to place screws that<br />

are 2-4 millimeters longer in the antero-posterior dimension<br />

<strong>of</strong> the clavicle.<br />

4. Outcomes<br />

A number <strong>of</strong> recent studies <strong>of</strong> completely displaced, mid-shaft<br />

fractures <strong>of</strong> the clavicle reveal nonunion rates between 15%<br />

and 20% 5,6 . These studies were recently summarized in a metaanalysis<br />

that found a nonunion rate <strong>of</strong> 15.1% following nonoperative<br />

care <strong>of</strong> these fractures7 .<br />

Malunion <strong>of</strong> the clavicle is a distinct clinical entity with<br />

characteristic orthopaedic (weakness, easy fatigueability,<br />

scapular winging), neurologic (thoracic outlet syndrome)<br />

and cosmetic (droopy, asymmetric shoulder, difficulty with<br />

backpacks, shoulder straps etc.) symptoms 9-12 . It is associated<br />

with increasing degrees <strong>of</strong> clavicular shortening. While<br />

radiographic malunion is always seen following displaced<br />

clavicular shaft fractures, clinically symptomatic malunion has<br />

an incidence <strong>of</strong> 15-20%. There are multiple, modern studies<br />

that show plate fixation is an extremely effective technique for<br />

treatment <strong>of</strong> clavicular shaft fractures with a low complication<br />

and nonunion rate 14,15 . A meta-analysis described a nonunion<br />

rate with plate fixation <strong>of</strong> 2.2%, which represents an 86% risk<br />

reduction for nonunion compared to the same fracture treated<br />

non-operatively (nonunion rate 15.1%) 7 . Hill et. al. were the<br />

first to use a patient-oriented outcome measure, and found 31%<br />

<strong>of</strong> patients described unsatisfactory outcome after non-operative<br />

care <strong>of</strong> displaced clavicle fractures 6 . This may be explained by<br />

significant residual strength deficits following the conservative<br />

treatment <strong>of</strong> these fractures (strength deficits ranging from 10%<br />

to 35% were found in patients a mean <strong>of</strong> 54 months after nonoperative<br />

care <strong>of</strong> a displaced fracture <strong>of</strong> the clavicular shaft) 16 .<br />

2. Rowe CR. An atlas <strong>of</strong> anatomy and treatment <strong>of</strong> midclavicular fractures. Clin<br />

Orthop Rel Res. 58:29-42, 1968.


3. Hill JM, McGuire MH, Crosby L “Closed treatment <strong>of</strong> displaced middle-third<br />

fractures <strong>of</strong> the clavicle gives poor results” J Bone Joint Surgery(B), 79B,<br />

No.4, 1997; pp 537-541.<br />

4. Robinson CM, Court-Brown CM, McQueen MM, Wakefield AE. Estimating<br />

the risk <strong>of</strong> nonunion following non-operative treatment <strong>of</strong> a clavicle fracture.<br />

J Bone Joint Surg(A) 86A:7, 1359-1365, 2004.<br />

5. Zlowodzki M, Zelle BA, Cole PA, Jeray K, McKee MD. Treatment <strong>of</strong> mid-shaft<br />

clavicle fractures: Systemic review <strong>of</strong> 2144 fractures. J Orthop Trauma. Vol<br />

19:7, 2005, 504-508.<br />

6. Basamania CJ, “Claviculoplasty” J Shoulder Elbow Surg, Vol. 8, No. 5,<br />

1999; p 540. (Abstracts: Seventh International Conference on Surgery <strong>of</strong> the<br />

Shoulder, 1999).<br />

7. Chan KY, Jupiter JB, Leffert RD, Marti R “Clavicle malunion” J Shoulder<br />

Elbow Surg, Vol. 8, No. 4, 1999; pp 287-290.<br />

8. Kuhne JE, “Symptomatic malunions <strong>of</strong> the middle clavicle” J Shoulder<br />

Elbow Surg, Vol. 8, No. 5, 1999; p 539. (Abstracts: Seventh International<br />

Conference on Surgery <strong>of</strong> the Shoulder, 1999).<br />

355<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

9. McKee MD, Wild LM, Schemitsch EH. Midshaft malunions <strong>of</strong> the clavicle. J<br />

Bone Joint Surg, 85A:5, 790-797, 2003.<br />

10. McKee MD, Pedersen EM, Jones C, Stephen DJG, Kreder HJ, Scemitsch EH,<br />

Wild LM, Potter J. Deficits following non-operative treatment <strong>of</strong> displaced,<br />

mid-shaft clavicle fractures. J Bone Joint Surg(A), 2005.<br />

11. Andersen K, Jensen PO, Lauritzen J. The treatment <strong>of</strong> clavicular fractures:<br />

Figure <strong>of</strong> eight bandage versus a simple sling. Acta Orthop Scand.<br />

1987;58:71-74.<br />

12. Potter J, Schemitsch EH, Jones C, Wild LM, McKee MD. Does delay matter?<br />

The restoration <strong>of</strong> objectively measured shoulder strength and patientoriented<br />

outcome in immediate versus delayed reconstruction <strong>of</strong> displaced<br />

mid-shaft fractures <strong>of</strong> the clavicle. Accepted for publication, J Shoulder<br />

Elbow Surg.<br />

13. McKee MD and the Canadian <strong>Orthopaedic</strong> Trauma Society. A multi-centre<br />

randomized controlled trial <strong>of</strong> non-operative versus operative treatment <strong>of</strong><br />

displaced clavicle shaft fractures. J Bone Joint Surg(A), 2007, No.1, 1-11.


356<br />

u hot topiCS aNd CoNtroverSieS iN<br />

primary Shoulder arthroplaSty (m)<br />

Moderator: John W. Sperling, MD, Rochester, MN<br />

In this symposium, faculty members will debate controversies associated with shoulder arthroplasty including navigation,<br />

minimally invasive approaches, reverse arthroplasty, resurfacing, and biologic interposition.<br />

I. The Gold Standard-All Polyethylene Glenoid Component<br />

Edward V. Craig, MD, New York, NY<br />

II. Biologic Replacement-Role <strong>of</strong> Fascial Interposition<br />

Wayne Z. Burkhead, Jr., MD, Dallas, TX<br />

III. Ream and Run? - Glenoidplasty<br />

Frederick A. Matsen, III, MD, Seattle, WA<br />

IV. Faculty Debate<br />

V. The Gold Standard-Stemmed Humeral Components<br />

Michael A. Wirth, MD, San Antonio, TX<br />

VI. Evolving Technology-Surface Replacement<br />

Gerald R. Williams, Jr., MD, Philadelphia, PA<br />

VII. Faculty Debate<br />

VIII. The Gold Standard-Hemiarthroplasty<br />

David M. Dines, MD, Great Neck, NY<br />

IX. Who Needs to Worry about Tuberosity Healing? – Reverse<br />

Francois Sirveaux, PhD, France<br />

X. Faculty Debate<br />

XI. The Gold Standard-Radiographic and Intra-operative Evaluation<br />

Edward V. Fehringer, MD, Omaha, NE<br />

XII. Emerging Technology-Computer-Assisted<br />

T. Bradley Edwards, MD, Houston, TX<br />

XIII. Faculty Debate<br />

XIV. The Gold Standard-Deltopectoral Approach<br />

Evan L. Flatow, MD, New York, NY<br />

XV. New Technique: Mini-incision TSA<br />

Laurent Lafosse, MD, France<br />

XVI. Faculty Debate<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW


357<br />

the gold StaNdard—all polyethyleNe CompoNeNt<br />

Edward V. Craig MD, MPH<br />

I. Little Argument—Hemiarthroplasty (no glenoid component)<br />

• Glenoid” Too Good”—many fractures, early osteonecrosis,<br />

tumor surgery<br />

• Glenoid “Too bad”—non reconstructable bone loss<br />

• Rotator Cuff Insufficiency<br />

-----both for some fractures and cuff insufficiency, Reverse Shoulder<br />

Prosthesis appears to be a viable alternative to a hemiarthroplasty<br />

II. The Evidence Based Approach—<br />

In December <strong>of</strong> 2009, the AAOS approved its Clinical Practice<br />

Guidelines for the treatment <strong>of</strong> glenohumeral osteoarthritis, based<br />

upon a systematic review <strong>of</strong> published studies on the treatment<br />

<strong>of</strong> osteoarthritis in adults.(5) As with other CPG, it showed where<br />

good evidence exists, where evidence is lacking, and identified<br />

topics for future research. In this study 16 recommendations were<br />

addressed, both surgical and non surgical, relating to GH arthritis<br />

treatment in the shoulder. Of these 16 recommendations, 9<br />

were inconclusive and 2 were reached by consensus. Among the<br />

highlights <strong>of</strong> this publication were:<br />

Despite an exhaustive review <strong>of</strong> the literature,there was<br />

insufficient evidence to conclude either in favor <strong>of</strong> or against<br />

efficacy <strong>of</strong> open debridement and non prosthetic and/or<br />

interposition arthroplasty, including osteoarticular allograft,<br />

interpositional s<strong>of</strong>t tissue allograft, and autograft<br />

TSR and hemiarthroplasty are options providing improvement<br />

in pain, global health assessment, function, and quality <strong>of</strong><br />

life scores. Most studies supported use <strong>of</strong> hemiarthroplasty<br />

when performed in naturally concentric glenoids or one<br />

reamed to concentricity. TSR was then compared directly with<br />

hemiarthroplasty<br />

Recommendation is for TSR over hemiarthroplasty, based on<br />

2 level-II studies<br />

a) global health assessment scores and pain relief were<br />

statistically significantly better after TSR<br />

b) 14% <strong>of</strong> patients treated with hemiarthroplasty required<br />

revision to TSR because <strong>of</strong> progressive glenoid arthrosis<br />

and pain, while no TSRs require such<br />

c) function and quality <strong>of</strong> life outcome measures showed<br />

no statistically significant difference between groups<br />

III. Argument Against a Glenoid<br />

• avoid glenoid component problems<br />

In evaluating survival and complication rates in TSR, the<br />

glenoid has generally been felt to be the most vulnerable<br />

<strong>of</strong> the components. Published series have shown a<br />

highly variable incidence <strong>of</strong> radiolucent lines (6-100%,<br />

progressive 0-30%). Despite a measurable incidence<br />

<strong>of</strong> lucent lines, incidence <strong>of</strong> revision surgery for clinical<br />

loosening has generally been felt to be low<br />

A number <strong>of</strong> studies have suggested a lower incidence <strong>of</strong><br />

radiolucent lines using pegged rather than keeled glenoid<br />

components, and all- poly components have been felt to<br />

have lower incidence <strong>of</strong> lucent lines than metal backed<br />

components.<br />

• easier to do<br />

• faster to do TSR 35 minutes longer (4)<br />

• less blood loss 150 cc more blood loss (4)<br />

• • cheaper to do<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

Cost <strong>of</strong> the glenoid component in any system adds<br />

expense.,TSR added $1177 more expense. (4)<br />

• easier to revise hemi<br />

In the absence <strong>of</strong> a glenoid component, the glenoid bone<br />

has been undisturbed, and if necessary, a glenoid can be<br />

added if continued pain makes it necessary<br />

• s<strong>of</strong>t tissue interposition, hemiarthropasty after contouring<br />

the glenoid for concentricity do about as well as TSR<br />

Both “ream and run” and interposition arthroplasty with<br />

allograft, meniscus, and other s<strong>of</strong>t tissue have shown<br />

encouraging results, including a long term study with<br />

allograft.(2,3,6,7,11)<br />

IV. Argument for a Glenoid<br />

• issue is exposure: can be taught<br />

Insertion <strong>of</strong> the glenoid component is the most<br />

technically difficult part <strong>of</strong> the TSR. However, with<br />

increasing access to education regarding surgical<br />

technique, the ability to expose the glenoid is being<br />

taught to an increasing number <strong>of</strong> surgeons<br />

• does not add much time<br />

The addition <strong>of</strong> a glenoid component, particularly<br />

with current reproducible instrumentation, adds<br />

approximately 20-30 minutes to the operation (4)<br />

• hemiarthroplasty results fall <strong>of</strong>f over time<br />

A survivorship study from Mayo Clinic, showed for<br />

hemiarthroplasty 92% at 5 yrs, 83% at 10 yrs, and 73%<br />

at 15 years; while for TSR, survivorship analysis showed<br />

97% at 5 yrs, 97% at 10 yrs, and 84% at 15 years (14)<br />

A group <strong>of</strong> hemiarthroplasties with concentric glenoids<br />

were followed for 7-9 yrs ((Bauer et al, AAOS, 2002) At<br />

the 2-4 year point, 86% were satisfactory. (8) At the 79<br />

year point, this same group had satisfactory results fall <strong>of</strong>f<br />

to 67% <strong>of</strong> group<br />

• significant expense to revise Hemi<br />

In Gartsman study, revision <strong>of</strong> Hemi to TSR averaged<br />

$16,000, while cost <strong>of</strong> each TSR about $1000 more than<br />

hemi (4)<br />

• results: better pain relief and function with TSR<br />

In 2005, Bryant published a meta-analysis<br />

<strong>of</strong> 4 randomized controlled trials comparing<br />

hemiarthroplasty and TSR. Compared with<br />

hemiarthroplasty, TSR showed superiority in both pain<br />

relief and functional outcomes (1)<br />

As noted above in AAOS clinical guidelines, The Lo<br />

study showed that global health assessment scores and<br />

pain relief were significantly better after TSR. (9) This<br />

echoed the Gartsman which also showed a statistically<br />

significantly greater degree <strong>of</strong> pain relief following TSR<br />

(4)<br />

• Sleep better at night<br />

Some patients in the follow up period after both TSR<br />

and hemiarthroplasty will continue to complain <strong>of</strong> pain.<br />

It is <strong>of</strong>ten difficult to elucidate the reasons, which may<br />

include infection, stiffness, incomplete rehabilitation,<br />

rotator cuff tearing, neurogenic pain, etc. It may be<br />

disturbing to the operating surgeon who has left a clearly<br />

diseased glenoid unresurfaced when attempting to define<br />

whether post op pain is do to residual glenoid fossa<br />

arthrosis


358<br />

• revision <strong>of</strong> hemi vs TSR 9:1 A recent review <strong>of</strong> relative<br />

frequency <strong>of</strong> revision <strong>of</strong> hemiarthroplasty vs Total Shoulder<br />

at Mayo Clinic has revealed that for every revision <strong>of</strong> a<br />

painful TSR there are 9 revisions <strong>of</strong> hemiarthroplasty to TSR<br />

• TSR more Cost Effective<br />

In a recently published study Mather et al looked at<br />

the cost effectiveness <strong>of</strong> TSR vs. hemiarthroplasty. (10)<br />

Using as outcome measures average incremental costs,<br />

incremental effectiveness, incremental QALYs, and<br />

net health benefit, hemiarthroplasty showed $1194/<br />

QALY, while that for TSR was $957/QALY. There was<br />

a greater utility for both patient and lower cost for<br />

payer for TSR and thus TSR was the preferred treatment<br />

for osteoarthritis for both patient and payer In fact,<br />

REFERENCES<br />

1. Bryant,D., Litchfield,R, Sandow, M., et al. A comparison <strong>of</strong> pain, strength,<br />

range <strong>of</strong> motion, and functional outcomes after hemiarthroplasty and total<br />

shoulder arthroplasty in patients with osteoarthritis <strong>of</strong> the shoulder. A<br />

Systematic review and meta-analysis. J Bone Joint Surg Am. 2005; 87; 1947-<br />

56<br />

2. Clinton,J., Franta, A.K., Lenters,T.R., et.al. Nonprosthetic glenoid arthroplasty<br />

with humeral hemiarthroplasty and total shoulder arthroplasty yield similar<br />

self-assessed outcomes in the management <strong>of</strong> comparable patients with<br />

glenohumeral arthritis. J Shoulder Elbow Surg. 2007 Sept-Oct; 16(5)534-8<br />

3. Elhassan, B., Ozbaydar, M., Diller, D, et.al. S<strong>of</strong>t tissue resurfacing <strong>of</strong> the<br />

glenoid in the treatment <strong>of</strong> glenohumeral arthritis in active patients less than<br />

fifty years old. J Bone Joint Surg Am. 2009 Feb; 91 (2): 419-24<br />

4. Gartsman, G.M.,Roddey T.S., and Hammerman, S.M. Shoulder Arthroplasty<br />

with or without resurfacing <strong>of</strong> the glenoid in patients who have<br />

osteoarthritis. J Bone Joint Surg Am 2000;82(1): 26-34<br />

5. Izquierdo, R., Voloshin, I., Edwards, S., et.al. Treatment <strong>of</strong> glenohumeral<br />

osteoarthritis. J.Am Acad Orthop Surg, 18 (6) June 2010, 375-83<br />

6. Krishnan,S.G., Reineck, J.R., Nowinski, R.J. Humeral hemiarthroplasty with<br />

biologic resurfacing <strong>of</strong> the glenoid for gllenohumeral arthritis. Surgical<br />

technique. J Bone Joint Surg Am. 2008 Mar; 90 Suppl 2 Pt 1: 9-19<br />

7. Krishnan, S.G., Nowinski, R.J., Harrison, D, et al. Humeral hemiarthroplasty<br />

with biologic resurfacing <strong>of</strong> the glenoid for glenohumeral arthritis. Two to<br />

fifteen year outcomes. J Bone Joint Surg Am. 2007 Apr; 89(4): 727-34<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

authors reported that for every 1000 hemiarthroplasties<br />

performed, there would have been a savings <strong>of</strong><br />

$1,970,000 and 770 QALY had a TSR been performed<br />

instead.<br />

• Newer Designs May Positively<br />

Impact on glenoid longevity While there are not as yet<br />

studies documenting dimininution <strong>of</strong> lucent lines, longer<br />

survivorship, or diminished revision rates with newer<br />

designs <strong>of</strong> glenoid implant, these newer designs have<br />

included implants which have porous metal backing,<br />

permitting bone ingrowth, or hybrid designs which<br />

combine immediate fixation <strong>of</strong> bone cement with porous<br />

metal, permitting bone ingrowth over time. It remains to<br />

be seen whether these newer designs will <strong>of</strong>fer advantages<br />

in clinical effectiveness and implant survival.<br />

8. Levine, W, Djurasovic,M., Glasson,J. et al Hemiarthroplasty for glenohumeral<br />

arthritis: results correlated to degree <strong>of</strong> glenoid wear. J Shoulder Elbow Surg<br />

1997, Vol 6(5) A-1<br />

9. Lo,I.K., Litchfield R.B., Griffin, S et al. Quality <strong>of</strong> life outcome following<br />

hemiarthroplasty or total shoulder arthroplasty in patients with<br />

osteoarthritis: A prospective randomized trial. J Bone Joint Surg Am 2005;<br />

87(10)2178-85<br />

10. Mather,R.C.III, Watters,T.S., Orlando, L.A. et al. Cost –effectiveness analysis<br />

<strong>of</strong> hemiarthroplasty and total shoulder arthroplasty. J Should Elbow Surg,<br />

2010 April;19(3):325-34<br />

11. Matsen, F.A. III, Bicknell, R.T., Lippitt, S.B. Shoulder arthroplasty: the socket<br />

perspective J Shoulder Elbow Surg. 2007, Sept-Oct;16(5 Suppl) S241-7<br />

12. Pfahler, M., Jena, F., Neyton, L, et al. Hemiarthroplasty versus total shoulder<br />

prosthesis: results <strong>of</strong> cemented glenoid components. J Shoulder Elbow Surg:<br />

2006 Mar-Apr;15(2):154-63<br />

13. Radnay, C.S., Setter, K.J., Chambers L., Total Shoulder Replacement compared<br />

with humeral head replacement for the treatment <strong>of</strong> primary glenohumeral<br />

osteoarthritis: A systematic review. J Shoulder Elbow Surg 2007; 16 (4): 396-<br />

402<br />

14. Sperling J, C<strong>of</strong>ield, R, Rowland, . Minimum fifteen year followup <strong>of</strong> Neer<br />

hemiarthroplasty and total shoulder arthroplasty. J Shoulder Elbow Surg.<br />

2004 13(6), 604


I. Disclosures<br />

359<br />

biologiC replaCemeNt – role oF FaSCial iNterpoSitioN<br />

Wayne Z. Burkhead, Jr., MD, William Paterson MD, Sumant G. Krishnan MD<br />

II. History <strong>of</strong> Arthroplasty<br />

III. Shoulder Arthroplasty Options<br />

a. Hemiarthroplasty as an isolated procedure not a good choice<br />

when compared to TSA<br />

b. Total shoulder arthroplasty Pegged vs Keel How to decide<br />

c. Reverse total shoulder arthroplasty? Walch B2 glenoid<br />

IV. Factors in Decision Making<br />

a. Patient age, etiology, bony defects, s<strong>of</strong>t tissue contracture<br />

V. Complications in Total Shoulder Arthroplasty<br />

a. Glenoid loosening can account for 32% <strong>of</strong> complications<br />

VI. Interpositional Arthroplasty <strong>of</strong> the Shoulder<br />

a. Current techniques and applications Represents 5% <strong>of</strong> our<br />

arthroplasty practice<br />

VII. Principles <strong>of</strong> Biologic Resurfacing<br />

a. Create a smooth wettable low coefficient <strong>of</strong> friction bearing<br />

surface to articulate with a Stemmed Humeral Arthroplasty<br />

in patients<br />

VIII. Technique <strong>of</strong> Interposition for Osteoarthritis<br />

a. Deltopectoral approach<br />

b. Management <strong>of</strong> subscap contracture<br />

c. Anatomic humeral hemiarthroplasty<br />

d. Glenoid reaming to subchondral bone only correct version<br />

e. Deep drill holes into scapular body surface<br />

f. Suture <strong>of</strong> s<strong>of</strong>t tissue bearing surface to labrum prp cover the<br />

entire glenoid surface<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

IX. Hemiarthroplasty with Biologic Resurfacing: 5-13 Year<br />

Outcomes<br />

a. Study patient factors and diagnoses<br />

b. Methods<br />

i. Multiple resurfacing materials: anterior capsule,<br />

autogenous fascia lata, allograft Achilles, human acellular<br />

dermal allograft<br />

c. Results<br />

i. Good pain relief<br />

ii. Increase in ROM<br />

iii. Radiographic evaluation<br />

1. No humeral sided complications<br />

2. Glenoid wear stabilizes at 5 years postop<br />

iv. Complications<br />

1. Subscap deficiency associated with anterior capsule<br />

resurfacing<br />

2. Three revisions to TSA<br />

X. Conclusions<br />

a. Total Shoulder Arthroplasty remains the Gold Standard for<br />

the treatment <strong>of</strong> Osteoarthritis<br />

b. In a select group <strong>of</strong> individuals Biologic resurfacing can<br />

provide pain relief similar to TSA without the risk <strong>of</strong> poly<br />

wear particle induced osteolysis has in our opinion a definite<br />

role in the treatment <strong>of</strong> glenohumeral arthritis in the young<br />

patient. Newer graft materials and Biologic enhancements<br />

are encouraging.<br />

c. Informed consent will allow the patient to choose the<br />

best option. If TSA is performed in a young person I prefer<br />

keeled component so that defect has higher chance <strong>of</strong> being<br />

contained at time <strong>of</strong> revision.


360<br />

hemiarthroplaSty with NoN-proSthetiC gleNoid<br />

arthroplaSty- the ream aNd ruN<br />

If the “Gold Standard” is the cemented polyethylene component,<br />

why bother with anything else? Maybe all that glitters is not gold:<br />

(1)Concern about glenoid component failure is rising:<br />

(2)Glenoid component failure is commonest reason for revision <strong>of</strong><br />

TSA<br />

(3) Revision <strong>of</strong> failed glenoid component difficult because <strong>of</strong> bone<br />

loss<br />

(4)Polyethylene not perfect for the shoulder: every retrieval study<br />

shows wear/cold flow.<br />

(5)Reluctance to allow full activity after TSA because <strong>of</strong> concern for<br />

the glenoid.<br />

The ream and run: a technically difficult and imperfect<br />

alternative—not for every surgeon/not for every patient.<br />

• Patient selection is key<br />

— Non-smoker<br />

— Not on major narcotics or steroids<br />

— No socio/economic/legal complexities<br />

— No inflammatory arthritis<br />

— Ready to accept longer period <strong>of</strong> more challenging rehab<br />

— Ready to accept risk <strong>of</strong> need for revision to total shoulder<br />

— Dedicated to success <strong>of</strong> the surgery<br />

• Surgeon selection is key<br />

— Technically excellent/experienced at shoulder arthroplasty<br />

— Dedicated to success <strong>of</strong> each patient, ready for frequent<br />

contact<br />

REFERENCES<br />

1. Mercer, D. M., B. B. Gilmer, et al. “A quantitative method for determining<br />

medial migration <strong>of</strong> the humeral head after shoulder arthroplasty:<br />

Preliminary results in assessing glenoid wear at a minimum <strong>of</strong> two years after<br />

hemiarthroplasty with concentric glenoid reaming.” J Shoulder Elbow Surg.<br />

2010<br />

2. Saltzman, D. M, A. M. Chamberlain, D. M. Mercer, W. J. Warme, A. L.<br />

Bertelsen, F A. Matsen III. “Shoulder hemiarthroplasty with concentric<br />

glenoid reaming in patients 55 years old or less” J Shoulder Elbow Surg. 2010<br />

Frederick Matsen, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

• Details<br />

— Concentric reaming – diameter 2 mm greater than head<br />

— Perfect register<br />

— 150 degrees <strong>of</strong> flexion before discharge and ever after<br />

— No strengthening until range comfortable<br />

The recovery <strong>of</strong> function after ream and run (all data from all<br />

unrevised)<br />

Revisions <strong>of</strong> our 276 cases to date<br />

Revision for subscapularis failure 5<br />

Manipulations for stiffness 3<br />

Surgical release for stiffness 7<br />

Converstion to total shoulder 7<br />

Patients can achieve very high levels <strong>of</strong> function.<br />

3. Saltzman, M. D., D. M. Mercer, et al. “Comparison <strong>of</strong> patients undergoing<br />

primary shoulder arthroplasty before and after the age <strong>of</strong> fifty.” J Bone Joint<br />

Surg Am 92(1): 42-7, 2010<br />

4. Clinton, J., W. J. Warme, J. R. Lynch, S. B. Lippitt, F. A. Matsen. “Shoulder<br />

Hemiarthroplasty with Nonprosthetic Glenoid Arthroplasty. The Ream and<br />

Run.” Techniques in Shoulder & Elbow Surgery 10(1): 43-52, 2009


361<br />

the gold StaNdard – Stemmed humeral CompoNeNtS<br />

Michael A. Wirth, MD<br />

I. Introduction<br />

1) Overall prevalence <strong>of</strong> humeral component loosening is 1%<br />

2) Nearly 7% <strong>of</strong> 414 complications identified from MEDLINE<br />

and OVID databases 1<br />

II. Literature Review<br />

1) Sperling et al 2 reported incomplete radiolucent lines<br />

adjacent to eleven (18%) <strong>of</strong> 62 humeral implants (six were<br />

judged to be “ at risk”). One required revision (Follow-up<br />

average <strong>of</strong> 4.6 years).<br />

2) Matsen et al 3 found radiolucent lines in 77 (61%) <strong>of</strong> 127<br />

shoulders (majority occurred at stem tip)<br />

REFERENCES<br />

1) Kamal I. Bohsali, Michael A. Wirth and Charles A. Rockwood, Jr..<br />

Complications <strong>of</strong> Total Shoulder Arthroplasty. JBJS Am 2006;88:2279-2292<br />

2) Sperling JW, C<strong>of</strong>ield RH, O’Driscoll SW, Torchia ME, Rowland CM.<br />

Radiographic assessment <strong>of</strong> ingrowth total shoulder arthroplasty. J Shoulder<br />

Elbow Surg. 2002;9:507-13.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

3) None demonstrated subsidence or shift in position (Followup<br />

average <strong>of</strong> 3 years).<br />

4) Sanchez–Sotelo et al 4 reported radiolucent lines in 16 <strong>of</strong><br />

43 cemented implants. In contrast to report <strong>of</strong> Matsen ,<br />

prevalence, extent, and thickness <strong>of</strong> radiolucent lines were<br />

higher in association with TSA. (Follow-up average <strong>of</strong> 6.6<br />

years)<br />

III. Conclusion<br />

1) Loosening <strong>of</strong> humeral stemmed components has an overall<br />

prevalence <strong>of</strong> 1%<br />

2) Complete radiolucent lines about humeral components are<br />

rare<br />

3) Survival may be affected by type <strong>of</strong> implants, mode <strong>of</strong><br />

fixation, and biologic response to wear particles<br />

3) Matsen FA 3rd, Iannotti JP, Rockwood CA Jr. Humeral fixation by press-fitting<br />

<strong>of</strong> a tapered metaphyseal stem: a prospective radiographic study. J Bone Joint<br />

Surg. Am. 2003;85:304-8.<br />

4) Sanchez-Sotelo J, O’Driscoll SW, Torchia ME, C<strong>of</strong>ield RH, Rowland CM.<br />

Radiographic assessment <strong>of</strong> cemented humeral components in shoulder<br />

arthroplasty. J Shoulder Elbow Surg. 2001;10:526-31


362<br />

reSurFaCiNg implaNtS iNdiCatioNS, reSultS, aNd<br />

CompliCatioNS<br />

Gerald R. Williams, Jr, MD<br />

I. Introduction<br />

a. Premises<br />

i. It is desirable to do the most anatomic procedure<br />

possible<br />

ii. It is desirable to preserve as much bone and cartilage as<br />

possible<br />

iii. With a diseased glenoid, total shoulder replacement is<br />

preferable to hemiarthroplasty 3,5-7,11,13<br />

iv. Glenoid resurfacing is less desirable in younger patients<br />

b. Humeral resurfacing and replacement are both indicated and<br />

should be individualized based on the application <strong>of</strong> these<br />

premises<br />

II. Humeral Resurfacing<br />

a. The potential for anatomic humeral reconstruction is<br />

greater with resurfacing than replacement and with partial<br />

resurfacing than with complete resurfacing, although all can<br />

be performed nonanatomically. 14<br />

i. Partial resurfacing can maintain the differential in<br />

humeral radius between the superior-inferior arc and the<br />

medial-lateral arc. 8<br />

ii. Complete resurfacing obviates the need to address<br />

humeral head and intra-medullary <strong>of</strong>fset. 4<br />

b. Resurfacing preserves bone for later reconstructive<br />

procedures<br />

i. Replacement<br />

ii. Arthrodesis<br />

c. Partial Humeral resurfacing<br />

i. Indications<br />

1. Relatively normal glenoid<br />

2. Partial destruction <strong>of</strong> humeral articular surface<br />

a. Osteochondral defect<br />

b. Focal Avascular Necrosis<br />

c. Osteoarthritis—mild bone deformity<br />

ii. Contraindications (relative)<br />

1. Complete involvement <strong>of</strong> the humeral head<br />

2. Severe stiffness<br />

3. Glenoid deformity/involvement<br />

iii. Technique<br />

1. Similar to arthroplasty in general.<br />

2. Generally patients have less deformity and less<br />

stiffness, therefore, the cases are generally easier,<br />

shorter, and easier to rehabilitate from.<br />

iv. Results<br />

1. Sparse. No level one or two evidence<br />

2. Case series in Avascular necrosis shows good results<br />

early, no complications. 15<br />

REFERENCES<br />

1. Alund, M.; Hoe-Hansen, C.; Tillander, B.; Heden, B. A.; and Norlin, R.:<br />

Outcome after cup hemiarthroplasty in the rheumatoid shoulder: a<br />

retrospective evaluation <strong>of</strong> 39 patients followed for 2-6 years. Acta Orthop<br />

Scand, 71(2): 180-4, 2000.<br />

2. Bailie, D. S.; Llinas, P. J.; and Ellenbecker, T. S.: Cementless humeral<br />

resurfacing arthroplasty in active patients less than fifty-five years <strong>of</strong> age. J<br />

Bone Joint Surg Am, 90(1): 110-7, 2008.<br />

3. Bishop, J. Y., and Flatow, E. L.: Humeral head replacement versus total<br />

shoulder arthroplasty: clinical outcomes--a review. J Shoulder Elbow Surg,<br />

14(1 Suppl S): 141S-146S, 2005.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

d. Complete resurfacing<br />

i. Indications<br />

1. Relatively normal glenoid—although it is possible<br />

to access glenoid with resurfacing, it is more difficult<br />

than when the head has been removed.<br />

2. Avascular necrosis<br />

3. Osteoarthritis—younger, more active patients<br />

4. Desire to avoid the intra-medullary canal<br />

a. Prior infection<br />

b. Malunion<br />

ii. Contraindications<br />

1. Absent humeral head<br />

a. Complete—fracture sequelae<br />

b. Partial (AVN)--? 75% <strong>of</strong> reamed surface required<br />

2. Poor bone quality (RA, some CTA)<br />

iii. Technique<br />

1. Similar to arthroplasty in general.<br />

2. Tendency to overstuff the joint<br />

a. Oversized head<br />

b. Insufficient reaming with proud placement <strong>of</strong> the<br />

implant.<br />

c. Pain relief slower than replacement<br />

iv. Complications<br />

1. Glenoid erosion 9,16<br />

2. Joint overstuffing<br />

a. Stiffness 2<br />

b. Subscapularis rupture 2<br />

3. Intra-operative fracture 12<br />

4. Loosening (especially rheumatoids with poor bone) 1<br />

III. Does all this matter?<br />

a. No studies comparing resurfacing to replacement head to<br />

head.<br />

b. Outcome studies <strong>of</strong> partial resurfacing sparse. 15<br />

c. Comparison <strong>of</strong> resurfacing with resurfacing with glenoid<br />

component is sparse and currently shows no difference. 10<br />

d. Preservation <strong>of</strong> bone may be a theoretical argument<br />

e. Resurfacing may not be an easier option<br />

One Man’s Approach<br />

Glenoid<br />

Disease<br />

Humeral<br />

Deformity<br />

Age Activity level<br />

partial resurfacing - + -- ++<br />

Complete resurfacing - ++ -- +<br />

Replacement +++ +++ +++ +/-<br />

4. Boileau, P., and Walch, G.: The three-dimensional geometry <strong>of</strong> the proximal<br />

humerus. Implications for surgical technique and prosthetic design. Journal<br />

<strong>of</strong> Bone & Joint Surgery -British Volume, 79(5): 857-65, 1997.<br />

5. C<strong>of</strong>ield, R. H.; Frankle, M. A.; and Zuckerman, J. D.: Humeral head<br />

replacement for glenohumeral arthritis. Semin Arthroplasty, 6(4): 214-21,<br />

1995.<br />

6. Edwards, T. B.; Kadakia, N. R.; Boulahia, A.; Kempf, J. F.; Boileau, P.; Nemoz,<br />

C.; and Walch, G.: A comparison <strong>of</strong> hemiarthroplasty and total shoulder<br />

arthroplasty in the treatment <strong>of</strong> primary glenohumeral osteoarthritis: results<br />

<strong>of</strong> a multicenter study. J Shoulder Elbow Surg, 12(3): 207-13, 2003.


7. Gartsman, G. M.; Roddey, T. S.; and Hammerman, S. M.: Shoulder<br />

arthroplasty with or without resurfacing <strong>of</strong> the glenoid in patients who have<br />

osteoarthritis. J Bone Joint Surg Am, 82(1): 26-34., 2000.<br />

8. Iannotti, J. P.; Gabriel, J. P.; Schneck, S. L.; Evans, B. G.; and Misra, S.: The<br />

normal glenohumeral relationships. An anatomical study <strong>of</strong> one hundred<br />

and forty shoulders. J Bone Joint Surg [Am], 74(4): 491-500, 1992.<br />

9. Lee, K. T.; Bell, S.; and Salmon, J.: Cementless surface replacement<br />

arthroplasty <strong>of</strong> the shoulder with biologic resurfacing <strong>of</strong> the glenoid. J<br />

Shoulder Elbow Surg, 18(6): 915-9, 2009.<br />

10. Levy, O., and Copeland, S. A.: Cementless surface replacement arthroplasty<br />

(Copeland CSRA) for osteoarthritis <strong>of</strong> the shoulder. J Shoulder Elbow Surg,<br />

13(3): 266-71, 2004.<br />

11. Orfaly, R. M.; Rockwood, C. A., Jr.; Esenyel, C. Z.; and Wirth, M. A.:<br />

A prospective functional outcome study <strong>of</strong> shoulder arthroplasty for<br />

osteoarthritis with an intact rotator cuff. J Shoulder Elbow Surg, 12(3):<br />

21421, 2003.<br />

363<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

12. Peidro, L.; Plaza, R.; and Sastre, S.: Perioperative fracture-dislocation <strong>of</strong> the<br />

humeral head during a resurfacing hemiarthroplasty. Int J Shoulder Surg,<br />

2(2): 41-2, 2008.<br />

13. Sperling, J. W.; C<strong>of</strong>ield, R. H.; and Rowland, C. M.: Minimum fifteen-year<br />

follow-up <strong>of</strong> Neer hemiarthroplasty and total shoulder arthroplasty in<br />

patients aged fifty years or younger. J Shoulder Elbow Surg, 13(6): 604-13,<br />

2004.<br />

14. Thomas, S. R.; Sforza, G.; Levy, O.; and Copeland, S. A.: Geometrical analysis<br />

<strong>of</strong> Copeland surface replacement shoulder arthroplasty in relation to normal<br />

anatomy. J Shoulder Elbow Surg, 14(2): 186-92, 2005.<br />

15. Uribe, J. W., and Botto-van Bemden, A.: Partial humeral head resurfacing for<br />

osteonecrosis. J Shoulder Elbow Surg, 18(5): 711-6, 2009.<br />

16. Werner, B. S., and Gohlke, F.: [Cementless humeral head replacement for<br />

dislocation arthropathy <strong>of</strong> the shoulder joint.]. Orthopade, 39(11): 1036-<br />

1043, 2010.


364<br />

hemiarthroplaSty For CompleX FraCture+/- diSloCatioN oF<br />

proXimal humeruS-the gold StaNdard<br />

David Dines MD<br />

Complex Proximal Humeral Fractures<br />

Treatment Algorithms Evolving;<br />

• ORIF – more even in older patients<br />

• HA<br />

• Reverse TSA<br />

Tuberosity Healing Critical for either form <strong>of</strong> Arthroplasty<br />

“Rule <strong>of</strong> 50%” Boileau<br />

• 50% get better<br />

• Tuberosity fail in 50%<br />

• Successful Tuberosity reconstruction key to result<br />

Indications for Arthroplasty;<br />

• Severely comminuted displaced fractures+/- dislocation<br />

• Osteoporotic bone<br />

• Vascular compromise- intraosseous arcuate artery<br />

• Inability to restore and maintain anatomy (ORIF)<br />

• Motivated patient (medical and rehab)<br />

• Pathologic Indications<br />

— 4 part fx/dislocations<br />

— 3 part Fx/dislocations (lesser tuberosity)<br />

— Impression fractures >50% >6 month<br />

To be successful this is what matters most;<br />

• Proper patient indication<br />

• Dedicated Fracture Prosthesis<br />

• Proper Component Positioning and Fixation<br />

• Successful Tuberosity reconstruction<br />

Reported results;<br />

Krishnan et al JSES 2005<br />

• 32 patients (24F 10M 2 died)<br />

• 72 yo (43-93)<br />

• ASES 52 AAE 117 degrees; pain 2.7(10); satisfaction 7.2 (10)<br />

• 81% tuberosity healed<br />

• 14 < 120 degrees older and tuberosity fail<br />

• 18 > 120 degrees younger all tuberosities healed<br />

Kontakis etal, JBJS Br 2008<br />

• Meta-analysis 16 studies/810 HA for Fx<br />

• Ave age 67.7 (22-91)<br />

• 3.7 yr F/U<br />

• Results;<br />

— Constant score 56.6<br />

— FE 106 degrees, ABD 92.4 degrees,<br />

— Cxs<br />

– Tuberosity failure 86/771 (11.15%)<br />

– Infection 0.64%<br />

– Superior migration 6.8%<br />

HA v Reverse TSA<br />

In either procedure tuberosity healing is critical<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

• HA with healed tuberosity reconstruction ◊best results<br />

• HA with failed tuberosity reconstruction ◊worst results<br />

• Revision <strong>of</strong> Failed HA for Fracture most difficult cohort group<br />

Dines, J,<br />

Dines, D, Fealy, S et al JBJS 2007<br />

• HA v Reverse- Sirveaux 2008<br />

— Results in both groups related to tuberosity healing<br />

Healed Constant AAE AER<br />

HA 59 116’ 14’<br />

Reverse<br />

Non-united<br />

59 107’ 11’<br />

HA 41.9 75’ 25’<br />

Reverse 55 116’ 13<br />

• Sirveaux Tech Sh Elb Surg 2008, JSES 2009<br />

— Reverse is an alternative to HA in select elderly patients<br />

— HA and Reverse for Fx both demanding procedures which<br />

depend upon greater tuberosity healing for best result<br />

(ER)- reverse more forgiving in elevation –more high risk<br />

complications<br />

Results depend upon;<br />

• Age<br />

— Less than 70 better than over 70<br />

• Timing <strong>of</strong> surgery<br />

— Acute (


365<br />

reverSe Shoulder arthroplaSty For aCute FraCture : who<br />

NeedS to worry about tuberoSity healiNg ?<br />

Francois Sirveaux, PhD, D Block, F Wein, D Molé<br />

Introduction<br />

The current indications for primary hemiarthroplasty include a<br />

displaced four-part fracture with or without humeral head dislocation<br />

and head splitting or impaction fracture with involvement <strong>of</strong><br />

more than 40% <strong>of</strong> the articular surface1. The incidence <strong>of</strong> these<br />

fractures increased dramatically since 1970, especially in women.<br />

Considering the natural increase in the size <strong>of</strong> elderly population,<br />

one can estimated that the number <strong>of</strong> proximal humeral fracture in<br />

elderly may triple by the year 2030. This means that the potential<br />

indication for shoulder replacement for fracture in elderly may<br />

increase in the future. However, several studies have clearly shown<br />

age to be a negative factor in the results <strong>of</strong> hemiarthroplasty for<br />

fracture. Tuberosities migration remains the main cause <strong>of</strong> failure <strong>of</strong><br />

hemiarthroplasty for fracture in elderly despite recent development<br />

in shoulder prosthesis design for fracture. The failure <strong>of</strong> tuberosity<br />

healing leads to a complete and irreversible loss <strong>of</strong> active elevation.<br />

Influence <strong>of</strong> cuff status in RSA for CTA<br />

It’s now accepted that the reverse shoulder prosthesis allows restoring<br />

active anterior elevation in pseudoparalytic shoulder whatever the<br />

status <strong>of</strong> the cuff. But, as reported previously, the recovery in active<br />

external rotation is influenced by the status <strong>of</strong> the infraspinatus and<br />

teres minor. Preoperative atrophy or fatty infiltration <strong>of</strong> these muscles<br />

causes a loss <strong>of</strong> external rotation. In a multicentric series2, the average<br />

active external rotation, elbow to the side, was <strong>of</strong> 4° when the minor<br />

teres was atrophied or absent, against 15° in average when it was<br />

present or hypertrophic. In abduction position, the active external<br />

rotation was <strong>of</strong> respectively 34° and 52° in average. Moreover, the<br />

status <strong>of</strong> the subscapularis influence the recovery in internal rotation.<br />

In the study <strong>of</strong> Wall and al3, patients with repair <strong>of</strong> the subscapularis<br />

knew greater improvement in the amount <strong>of</strong> internal rotation (from<br />

L5 to L4) than did those without repair (from the sacrum to L5).<br />

Preoperative fatty infiltration <strong>of</strong> the subscapularis muscle on the CT-<br />

Scan had been identified as risk factor for postop instability.<br />

RSA for acute fracture<br />

Modern reverse design has been introduce by Grammont in 90’s.<br />

Grammont himself used this prosthesis for acute fractures and<br />

fracture sequelae early in his experience (22 cases between 1989 and<br />

1993) but the results were not published.<br />

Our preliminary results <strong>of</strong> a prospective study showed that the<br />

patients treated with a reverse prosthesis in the case <strong>of</strong> acute fracture<br />

achieved an average <strong>of</strong> 113° in active elevation compared with 88°<br />

with hemiarthroplasty 4. The overall results were not as good as in<br />

patients treated with a reverse prosthesis for cuff tear arthropathy.<br />

In 2006, Cazeneuve and Crist<strong>of</strong>ari 5 reported their experience <strong>of</strong><br />

23 cases <strong>of</strong> reverse prosthesis for acute fracture. 16 cases had been<br />

reviewed at an average follow-up <strong>of</strong> 86 months. The mean age <strong>of</strong><br />

the patients was 75 years (58-90). The mean Constant score was<br />

60 points and active anterior elevation was over 120 degrees in all<br />

the cases except for the two cases requiring revision. Bufquin et al<br />

6reported the largest series <strong>of</strong> reverse prostheses for fracture (43<br />

cases - 40 included with a mean age <strong>of</strong> 78 years). At a mean followup<br />

<strong>of</strong> 22 months (6 to 58), the average active anterior elevation was<br />

97 degrees. We reviewed a small series <strong>of</strong> 15 cases and compared<br />

with a series <strong>of</strong> elderly patients treated with hemiarthroplasty 7.<br />

The mean results in active anterior elevation were not significantly<br />

different between the two groups but the distribution <strong>of</strong> the results<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

was different. In the reverse group, only one patient had less than 90<br />

degrees <strong>of</strong> active anterior elevation but the active anterior elevation<br />

never exceeded 150 degrees; whereas in the hemiarthroplasty group,<br />

11 percent had more than 150 degrees but 50 percent only achieved<br />

90 degrees or less. Regarding these series, RSA for fracture gives good<br />

and reproducible results in active anterior elevation and functional<br />

improvement compared to hemiarthroplasty in elderly. Tuberosity<br />

fixation around the RSA seemed not affect the recovery in elevation.<br />

Effect <strong>of</strong> tuberosity fixation<br />

At the beginning <strong>of</strong> their experience, many surgeons considered<br />

the RSA for fracture as a salvage procedure and the fixation <strong>of</strong> the<br />

tuberosities was not recommended. But as in CTA, the recovery in<br />

active external rotation cannot be achieved if the infraspinatus and<br />

teres minor are not functional8. That leads to a hornblower sign<br />

and this impairment crucially affected daily life as supported the<br />

study <strong>of</strong> Gallinet et al9. Cazeneuve et al5 noticed that the recovery<br />

<strong>of</strong> active external rotation was better in cases where the tuberosities<br />

had been fixed. Klein el al is the only one reporting recovery in<br />

external rotation while they had removed the tuberosities during the<br />

procedure, but they don’t differentiated active from passive rotation<br />

in the article10. In the series <strong>of</strong> Bufquin et al6, radiographically the<br />

tuberosities were displaced in 53% <strong>of</strong> the cases (13.8% malunion and<br />

38.8% non-union). They reported better recovery in active external<br />

rotation when the greater tuberosity had healed. The principle <strong>of</strong><br />

tuberosities fixation around the reverse prosthesis is similar to the<br />

technique previously described by Boileau11 for hemiarthroplasty.<br />

After reduction, the greater tuberosity is mobilized and temporarily<br />

reduced around the shaft. The remaining sutures are led around the<br />

lesser tuberosity and tightened on the lateral side. This provides a<br />

horizontal assembly, holding the tuberosities around the implant.<br />

The fixation is completed using the sutures threaded through the<br />

shaft and led in a figure-<strong>of</strong>-8 through the tendon/bone junction to<br />

ensure vertical stability. The medialization <strong>of</strong> the proximal humerus<br />

and the resection <strong>of</strong> the supraspinatus reduce rotator cuff tension.<br />

New reverse designed stem has been developed to improve the<br />

healing the tuberosities12.<br />

We reviewed our series <strong>of</strong> 63 cases operated since 2001(mean age 79<br />

years, from 69 to 87). The tuberosities were fixed with this technique<br />

in all the cases. All <strong>of</strong> them were immobilized in a sling for few<br />

days and started early rehabilitation. Four were lost and 11 died. 47<br />

were reviewed with more than 6 months FU in order to evaluate the<br />

healing <strong>of</strong> the tuberosities and the early clinical results. We noticed 3<br />

complications: one acromiale fracture, one traumatic humeral shaft<br />

fracture and one late infection. We did not have any case <strong>of</strong> instability<br />

contrary to series without fixation <strong>of</strong> the tuberosities. Fixation <strong>of</strong> the<br />

tuberosities may restore anterior and posterior reins to limit the risk<br />

<strong>of</strong> postoperative dislocation. At a mean follow up <strong>of</strong> 30 months, the<br />

constant score averaged 55 points, and the average active anterior<br />

elevation was 130 degrees. The greater tuberosity healed in 86 p.cent<br />

<strong>of</strong> the cases, and 98% for the lesser tuberosity. The Constant score<br />

was influenced significantly by the healing <strong>of</strong> the greater tuberosity<br />

: 57 points versus 45 points (p=0.01). The mean active external<br />

rotation was 12.7 degrees when the greater tuberosity healed versus<br />

4 degrees when they were migrated or resorbed. Surprisingly, we<br />

noticed that the recovery in active anterior elevation was improved<br />

as well by healing <strong>of</strong> the tuberosty (124 degrees versus 97 degrees).


In this series, 15 fracture reverse designed prostheses has been used.<br />

In this group the healing <strong>of</strong> the tuberosities was obtained in all the<br />

cases. The mean active anterior elevation ranged 130 degrees and the<br />

mean active external rotation was 20 degrees.<br />

Conclusion<br />

Our experience and the literature confirmed that the reverse<br />

shoulder arthroplasty allows recovery in active elevation whatever<br />

the status <strong>of</strong> the cuff and tuberosities. Indeed, a reversed prosthesis<br />

may be indicated for fracture in case <strong>of</strong> factors <strong>of</strong> poor prognosis<br />

for tuberosity consolidation with hemiarthroplasty, especially in the<br />

REFERENCES<br />

1. Palvanen, M.; Kannus, P.; Niemi, S. et al.: Update in the epidemiology <strong>of</strong><br />

proximal humeral fractures. Clin Orthop Relat Res, 442: 87-92, 2006.<br />

2. Baulot, E.; Valenti, P.; Garaud, P. et al.: Résultats des proth ses inversées. Rev<br />

Chir Orthop, 93(6 (suppl I)): 63-92, 2007.<br />

3. Wall, B.; Nove-Josserand, L.; O’Connor D, P. et al.: Reverse total shoulder<br />

arthroplasty: a review <strong>of</strong> results according to etiology. J Bone Joint Surg Am,<br />

89(7): 1476-85, 2007.<br />

4. Sirveaux, F.; Navez, G.; Favard, L. et al.: Reverse prosthesis for acute proximal<br />

humerus fracture, the multicentric study. In Reverse Shoulder Arthroplasty,<br />

clinical results -complications -revision. Edited by Walch, G.; Boileau, P.; and<br />

Mole, D., Montpellier, Sauramps Medical, 2006.<br />

5. Cazeneuve, J. F., and Crist<strong>of</strong>ari, D. J.: Arthroplastie inversée de Grammont<br />

pour fracture récente de l’humérus proximal chez la personne âgée avec un<br />

recul de 5 ˆ 12 ans. Rev Chir Orthop 92(6): 543-8, 2006.<br />

6. Bufquin, T.; Hersan, A.; Hubert, L. et al.: Reverse shoulder arthroplasty for<br />

the treatment <strong>of</strong> three-and four-part fractures <strong>of</strong> the proximal humerus in the<br />

elderly: a prospective review <strong>of</strong> 43 cases with a short-term follow-up. J Bone<br />

Joint Surg Br, 89(4): 516-20, 2007.<br />

7. Sirveaux, F.; Navez, G.; Roche, O. et al.: Reverse prosthesis for proximal<br />

humerus fracture, technique and results. Techniques Shoulder Elbow Surg,<br />

9(1): 15-22, 2008.<br />

366<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

elderly. Nevertheless, healing <strong>of</strong> the greater tuberosity is mandatory<br />

to recover the active external rotation and that influences the<br />

functional results. Moreover, it may decrease the risk <strong>of</strong> instability. The<br />

tuberosity fixation does not compromise early active mobilization.<br />

A meticulous technique <strong>of</strong> fixation and a dedicated fracture designed<br />

stem can improve the rate <strong>of</strong> tuberosity healing and the overall<br />

clinical results. The reverse prosthesis is a constrained prosthesis<br />

and the current literature raises concerns regarding the durability<br />

<strong>of</strong> the fixation <strong>of</strong> the prosthesis in the long term13. That’s why the<br />

indication for a reverse prosthesis must balance the advantages and<br />

the risks <strong>of</strong> either reverse or hemiarthroplasty.<br />

8. Sirveaux, F.; Mole, D.; and Boileau, P.: The reversed prosthesis. In Complex<br />

and revision problems in shoulder surgery, pp. 497-511. Edited by Warner, J.<br />

J.; Iannotti, J. P.; and Flatow, E., 497511, Philadelphia, Lippincott Williams &<br />

Wilkins, 2006.<br />

9. Gallinet, D.; Clappaz, P.; Garbuio, P. et al.: Fractures complexes trois<br />

ou quatre fragments de l’humérus proximal: hémiararthroplastie ou<br />

arthroplastie inversée? Etude comparative ˆ propos de 40 cas. Rev Chir<br />

Orthop, 95(1): 49-56, 2009.<br />

10. Klein, M.; Juschka, M.; Hinkenjann, B. et al.: Treatment <strong>of</strong> comminuted<br />

fractures <strong>of</strong> the proximal humerus in elderly patients with the delta III<br />

reverse shoulder prosthesis. J Orthop Trauma, 22(10): 698-704, 2008.<br />

11. Boileau, P.; Krishnan, S. G.; Tinsi, L. et al.: Tuberosity malposition and<br />

migration: reasons for poor outcomes after hemiarthroplasty for displaced<br />

fractures <strong>of</strong> the proximal humerus. J Shoulder Elbow Surg, 11(5): 401-12,<br />

2002.<br />

12. Sirveaux, F.; Roche, O.; and Mole, D.: Shoulder arthroplasty for acute<br />

proximal humerus fracture. Orthop Traumatol Surg Res, 96: 683-694, 2010.<br />

13 Guery, J.; Favard, L.; Sirveaux, F. et al.: Reverse total shoulder arthroplasty.<br />

Survivorship analysis <strong>of</strong> eighty replacements followed for five to ten years.<br />

J Bone Joint Surg Am, 88(8): 1742-7, 2006.


367<br />

the gold StaNdard radiographiC aNd<br />

iNtra- operative evaluatioN<br />

Edward V. Fehringer, MD<br />

I. Assumptions<br />

a. TSA<br />

b. All surgeons/prostheses striving for anatomic humeral<br />

reconstruction<br />

c. Many surgeons/prostheses to achieve humeral goals<br />

d. Humerus reconstruction not the f<br />

e. Biconcavities- must be addressedocus<br />

f. All polyethylene glenoids<br />

g. Shoulder navigation, not hip/knee<br />

II. Focus- Glenoid reconstruction<br />

a. Stability<br />

b. ROM<br />

c. Loosening<br />

d. Wear<br />

e. Anatomic?<br />

III. A Balance<br />

a. “Correcting” Version<br />

i. Neutralizing<br />

ii. “Face-planing” or accepting < neutral<br />

iii. Bone graft<br />

iv. How much“medialization” is too much?<br />

1. Affects overall s<strong>of</strong>t tissue balance/<strong>of</strong>fset<br />

2. Affects quality <strong>of</strong> bone onto which one is placing<br />

glenoid<br />

b. S<strong>of</strong>t tissue balancing<br />

i. Posterior subluxation & laxity<br />

ii. Anterior releases<br />

iii. Tension changes w/ reaming, incl. eccentric<br />

iv. Rotator interval &/or posterior capsulorraphy<br />

c. Simplicity/Practicality/Reproducibility<br />

i. Efficacy (works in hands <strong>of</strong> select individuals in a<br />

specificsetting) vs.effectiveness (efficacious procedure<br />

works in hands <strong>of</strong> general medical community).<br />

ii. Less steps/correction=less chance for errors.<br />

d. Cost<br />

i. O.R. time<br />

ii. Prostheses<br />

iii. Outcome improvements w/ increased investment?<br />

iv. Payer amount is only going to decrease<br />

e. Component support<br />

i. Any face cement?<br />

ii. Keel vs. pegged.<br />

iii. How much % bone support is necessary?<br />

f. “Genetic and biomechanical determinants <strong>of</strong> glenoid<br />

version…” Landau JP, Hoenecke HR. JSES 2009.<br />

IV. Radiographic Evaluation<br />

a. Plain x-rays<br />

i. If adequate True AP and axillaryÎmay be enough on most<br />

ii. Inexpensive<br />

b. CT<br />

i. Cost- is it justified w/ improved outcomes?<br />

ii. Is it required for every reconstruction?<br />

iii. If CT:<br />

1. Recognition<strong>of</strong> axial cuts plane<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

2. Should be 3D- better appreciation <strong>of</strong> deficiencies.<br />

3. Better able to plan for bone grafting<br />

c. MRI- Is it necessary for majority <strong>of</strong> shoulder arthritis cases<br />

if no previous surgery & if head reasonably centered on<br />

glenoid?<br />

V. Intra-operative evaluati<br />

a. Gold standard on<br />

b. Recognizing that….many variables affect glenoid access &<br />

reconstruction:<br />

i. scapular position<br />

ii. variable glenoid versions<br />

iii. bed<br />

iv. patient size<br />

v. retractors<br />

vi. reamert<br />

vii.stiffnessype/size<br />

viii. pathology<br />

ix. deltoid size<br />

x. glenoid morphology<br />

xi. component placement sup-inf & ant-post<br />

xii. patulous posterior capsule<br />

xiii. inability to ascertain how much has been reamed and<br />

where<br />

c. Can choose to try to get to “neutral version”….is this<br />

realistic?<br />

d. Vs. evaluation & creation <strong>of</strong> concavity to support component<br />

e. Can assess & adjust reaming<br />

VI. Navigation<br />

a. Most useful if utilizes pre-op CT data<br />

b. Need real time feedback<br />

c. Possible improved component placement<br />

d. Cost<br />

i. O.R. time<br />

ii. Instrumentation<br />

iii. Is it justified by improved outcomes?<br />

e. KeyOverall component position is the only variable<br />

addressed w/navigation.<br />

VII. Conclusions<br />

a. For economical & effective glenohumeral reconstructions:<br />

i. Adequate pre-op true AP & axillary<br />

ii. CT- w/ 2-& 3-D recons w/ recognition <strong>of</strong>axial cut<br />

orientationfor those w/ significant bone deficiency….or if<br />

unsure<br />

iii. MRI- previous cuff repair &/or elevated head position<br />

iv. Consistentpositioning & technique<br />

v. Creating concavity for as much glenoid bone support as<br />

poss.<br />

vi. Accepting


368<br />

emergiNg teChNology: Computer aSSiSted tSa<br />

T. Bradley Edwards, MD<br />

Introduction<br />

Computer-aided navigation techniques have been developed to<br />

improve implant alignment in knee and hip arthroplasty and early<br />

reports have demonstrated their effectiveness.1,2 Like knee and hip<br />

arthroplasty, successful shoulder arthroplasty depends primarily on<br />

technique with incorrect component alignment leading to instability,<br />

loosening, and suboptimal function. During unconstrained shoulder<br />

arthroplasty, a severe biconcave glenoid deformity, for example, can<br />

present significant intraoperative difficulties, even for experienced<br />

shoulder arthroplasty surgeons. Additionally, increasing clinical<br />

experience with the reverse prosthesis emphasizes the importance<br />

<strong>of</strong> glenoid prosthetic positioning in avoiding glenoid complications.<br />

Finally, in fracture cases normally reliable landmarks are <strong>of</strong>ten<br />

displaced. The risk <strong>of</strong> placing the humeral stem at the incorrect<br />

height or version is increased because <strong>of</strong> this lack <strong>of</strong> recognizable<br />

landmarks. Therefore, we believe that computer guided navigation<br />

can play an important role in both unconstrained and reverse<br />

shoulder arthroplasty. Since 2005 we have been using an image free<br />

computer navigation system to assist with shoulder arthroplasty in<br />

many <strong>of</strong> our patients.<br />

Computer Guidance in Correction <strong>of</strong> Glenoid Deformity in<br />

Primary Unconstrained Total Shoulder Arthroplasty<br />

For the glenoid component, computer assisted navigation allows<br />

precise correction <strong>of</strong> pathological glenoid version and inclination<br />

caused by osseous glenoid wear. Without computer assisted<br />

navigation, correction <strong>of</strong> pathological glenoid version and inclination<br />

through reaming is largely dependent on surgeon experience.<br />

Unfortunately, most surgeons performing shoulder arthroplasty<br />

do less than ten cases per year. Of cases <strong>of</strong> primary osteoarthritis,<br />

only 25 to 35% have posterior glenoid wear with biconcave glenoid<br />

morphology. If the average surgeon only performed replacements<br />

for primary osteoarthritis (which is <strong>of</strong> course untrue), then he or<br />

she would encounter less than three <strong>of</strong> these cases per year making<br />

it extremely difficult to gain experience in treating this difficult<br />

situation. The use <strong>of</strong> computer assisted navigation for correction <strong>of</strong><br />

these glenoid deformities eliminates a large portion <strong>of</strong> the learning<br />

curve.<br />

Computer Guidance in Correction <strong>of</strong> Glenoid Deformity in<br />

Primary Reverse Shoulder Arthroplasty<br />

Our early experience suggests that the reverse prosthesis is a<br />

compelling application for computer guided shoulder navigation<br />

technology particularly during glenoid reaming. Chronic superior<br />

migration <strong>of</strong> the humeral head may result in superior erosion <strong>of</strong><br />

the glenoid that should be corrected at the time <strong>of</strong> reverse shoulder<br />

arthroplasty. Additionally, many surgeons regularly implanting the<br />

reverse prosthesis recommend placing the glenoid component with<br />

slight inferior tilt.3,4 This inferior tilt serves three purposes: first, it<br />

increases stability <strong>of</strong> the prosthesis by maximizing deltoid tension<br />

by distalizing the humerus; second, it acts to reduce the incidence <strong>of</strong><br />

scapular notching; and third, it helps avoid inadvertently placing the<br />

glenoid component in a superiorly oriented position which can lead<br />

to early glenoid failure. Computer guidance during glenoid reaming<br />

provides an accurate and reproducible method for correction <strong>of</strong><br />

superior glenoid wear and for establishing appropriate inferior<br />

glenoid tilt in reverse shoulder arthroplasty. This may improve<br />

survivorship by minimizing shear forces across the bone-implant<br />

interface and potentially reducing the incidence <strong>of</strong> scapular notching.<br />

In our hands, reaming <strong>of</strong> the glenoid surface at a specific amount<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

<strong>of</strong> negative inclination is readily accomplished with computer<br />

guidance.<br />

Computer Guidance in Humeral Stem Placement During<br />

Hemiarthroplasty for Fracture<br />

The lack <strong>of</strong> normal anatomical landmarks in fracture cases confounds<br />

proper placement <strong>of</strong> the humeral stem. Placing the humeral stem in<br />

incorrect height and/or version risks tuberosity complications such<br />

as malunion, nonunion, and migration. Using the contralateral<br />

uninjured humerus as a template, computer navigation can be<br />

utilized to place the humeral component in the correct height and<br />

version. Although our experience with this technique is in its infancy,<br />

early results have been promising.<br />

Computer Guided Correction <strong>of</strong> Glenoid Deformity in Total<br />

Shoulder Arthroplasty – Surgical Technique<br />

As per our standard protocol for shoulder arthroplasty, native<br />

glenoid morphology is evaluated using preoperative computed<br />

tomography.5 Based on the native version angle <strong>of</strong> each glenoid,<br />

we determine how much correction is needed during intraoperative<br />

glenoid preparation (Figure 1).<br />

Each patient is operated on in the modified beach chair position. A<br />

standard deltopectoral approach is used to expose the shoulder joint.<br />

Following humeral preparation, a tracking device is attached to the<br />

coracoid process to allow for glenoid navigation. A navigated glenoid<br />

referencing device is used to capture the version and inclination <strong>of</strong><br />

the native glenoid surface. A navigation tracker is attached to the<br />

glenoid reamer. The glenoid is reamed while the navigation system<br />

provides real-time feedback on the change in version and inclination<br />

relative to the native glenoid. Following completion <strong>of</strong> glenoid<br />

reaming, the scapular tracking device is removed and the glenoid<br />

component is implanted using standard techniques.<br />

Figure 1. The preoperative glenoid version is determined using preoperative computed<br />

tomography. in this case the native glenoid version measures 30 degrees <strong>of</strong> retroversion.<br />

We would plan a correction <strong>of</strong> 25 degrees resulting a more nearly normal glenoid<br />

retroversion <strong>of</strong> 5 degrees.


Figure 2. Typical navigational computer screen observed during real time correction <strong>of</strong><br />

glenoid deformity.<br />

Computer Guidance in Humeral Stem<br />

Placement During Hemiarthroplasty for<br />

Fracture – Surgical Technique<br />

The contralateral humeral length from<br />

the top <strong>of</strong> the humeral head to the<br />

transepicondylar axis is measured from a<br />

magnification controlled anterior posterior<br />

radiograph. This length is entered into the<br />

navigational computer. The epicondyles and<br />

the intramedullary axis <strong>of</strong> the humerus are<br />

referenced and entered into the navigational<br />

computer during surgery. This data is used to<br />

control placement <strong>of</strong> the height and version<br />

<strong>of</strong> the humeral stem in real time during<br />

implantation (Figure 3).<br />

Figure 3. Humeral tracker attached to a humeral fracture<br />

stem.<br />

REFERENCES<br />

1. Digioia AM 3rd, Jaramaz B, Plakseychuk AY, et al. Comparison <strong>of</strong> a<br />

mechanical acetabular alignment guide with computer placement <strong>of</strong> the<br />

socket. J Arthroplasty 2002;17:359-364.<br />

2. Haaker RG, Stockheim M, Kamp M, et al. Computer-assisted navigation<br />

increases precision <strong>of</strong> component placement in total knee arthroplasty. Clin<br />

Orthop 2005;433:152.<br />

369<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

Computer Guided Shoulder Arthroplasty – Clinical Results<br />

From August 2005 through September 2006, twenty-seven shoulder<br />

arthroplasties were performed on twenty-seven patients by us<br />

using the navigation system. Twenty-four patients had primary<br />

osteoarthritis, instability arthropathy, or osteonecrosis and were<br />

treated with an unconstrained total shoulder arthroplasty. Three<br />

patients had rotator cuff tear arthropathy and were treated with a<br />

reverse prosthesis. The patients ranged in age from 39 to 85 years at<br />

the time <strong>of</strong> surgery. Body mass index ranged from 18 to 64.<br />

There were no intraoperative or postoperative complications that<br />

could be attributed to use <strong>of</strong> the navigation system. The tracking<br />

devices were safely and securely attached to the proximal humerus<br />

and coracoid process without damage to bony or neurovascular<br />

structures. The tracking devices held secure during each procedure<br />

and did not impede surgical performance or access to the operative<br />

site. The navigation system reported glenoid reaming orientation<br />

relative to the native glenoid (+3.0¼ ± 6.3¼ <strong>of</strong> version; -6.7¼ ±<br />

4.4¼ <strong>of</strong> inclination).<br />

Our experience thus far with computer guided shoulder arthroplasty<br />

demonstrates that the technology is safe and can provide valuable<br />

intraoperative measurements. When the magnitude <strong>of</strong> deformity<br />

is measured on preoperative computed tomographic images, the<br />

navigation system provides real-time feedback for glenoid reamer<br />

angles as they relate to the deformed native glenoid. Additionally,<br />

early results using computer navigation to assist in humeral stem<br />

positioning during fracture cases show promise.<br />

3. Frankle M, Siegal S, Pupello D, et al. The Reverse Shoulder Prosthesis for<br />

glenohumeral arthritis associated with severe rotator cuff deficiency. A<br />

minimum two-year follow-up study <strong>of</strong> sixty patients. J Bone Joint Surg<br />

2005;87-A:1697-1705.<br />

4. Wall B, Williams MD, Walch G, et al. Scapular notching in reverse shoulder<br />

arthroplasty. Presented at the 20th Congress <strong>of</strong> the European Society for<br />

Surgery <strong>of</strong> the Shoulder and the Elbow, 2006, Athens, Greece.<br />

5. Friedman RJ, Hawthorne KB, Genez BM. The use <strong>of</strong> computerized<br />

tomography in the measurement <strong>of</strong> glenoid version. J Bone Joint Surg 1992;<br />

74-A:1032-1037.


370<br />

the deltopeCtoral approaCh For total Shoulder<br />

arthroplaSty<br />

Evan L. Flatow, MD<br />

Optimally Invasive Surgery<br />

• More than 30 years <strong>of</strong> experience with arthroplasty through this<br />

approach<br />

• Extensile, allows easy identification <strong>of</strong> axillary nerve (and<br />

brachial plexus if necessary)<br />

• Greater than 90% good to excellent results long term<br />

• Complications: Glenoid loosening, infection, instability 1<br />

• Subscapularis insufficiency: now well recognized with multiple<br />

solutions 2-4<br />

A. Lesser tuberosity Osteotomy<br />

1. Qureshi et al 25/30 patients had no difficulty with<br />

terminal IR 5<br />

2. Gerber et al 89% <strong>of</strong> 57 shoulders had negative belly<br />

press 4<br />

Figure from Miller at al JSES 2003<br />

B. Tendon to tendon repair with protected rehab<br />

1. 45/45 patients with neg belly press post-op 6<br />

C. Comparisons<br />

1. Scalise et al found only 1/15 and 0/20 patients who<br />

underwent tenotomy or LT osteotomy respectively had<br />

full thickness subscap tears on ultrasound after 1 year 7<br />

• With a lesser tuberosity osteotomy, the deltopectoral approach<br />

is completely muscle and tendon sparing approach.<br />

Mini-Incision Technique Creating New Problems<br />

• Humeral sided problems are rare with traditional TSA8<br />

• 6/17 patients in original description <strong>of</strong> technique had a<br />

humeral cut to high or low9<br />

• Humeral trialing is limited by space, cannot trial stem and head<br />

together<br />

REFERENCES<br />

1. Chin PY, Sperling JW, C<strong>of</strong>ield RH, Schleck C: Complications <strong>of</strong> total shoulder<br />

arthroplasty: Are they fewer or different? J Shoulder Elbow Surg 2006;15:19-<br />

22.<br />

2. Edwards TB, Boulahia A, Kempf JF, Boileau P, Nemoz C, Walch G: The<br />

influence <strong>of</strong> rotator cuff disease on the results <strong>of</strong> shoulder arthroplasty for<br />

primary osteoarthritis: Results <strong>of</strong> a multicenter study. J Bone Joint Surg Am<br />

2002;84-A:2240-2248.<br />

3. Miller SL, Hazrati Y, Klepps S, Chiang A, Flatow EL: Loss <strong>of</strong> subscapularis<br />

function after total shoulder replacement: A seldom recognized problem. J<br />

Shoulder Elbow Surg 2003;12:29-34.<br />

4. Gerber C, Yian EH, Pfirrmann CA, Zumstein MA, Werner CM: Subscapularis<br />

muscle function and structure after total shoulder replacement with lesser<br />

tuberosity osteotomy and repair. J Bone Joint Surg Am 2005;87:1739-1745.<br />

5. Qureshi S, Hsiao A, Klug RA, Lee E, Braman J, Flatow EL: Subscapularis<br />

function after total shoulder replacement: Results with lesser tuberosity<br />

osteotomy. J Shoulder Elbow Surg 2008;17:68-72.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

• Humeral “wrenching” necessary to establish version. Implant is<br />

placed in anteversion and wrenched posteriorly as it is inserted<br />

to avoid contact with the acromion.<br />

Humeral Exposure with Miniincision<br />

From: primary total shoulder<br />

arthroplasty performed entirely<br />

through the rotator interval:<br />

Technique and minimum twoyear<br />

outcomes Lafosse et al<br />

JSES 2009<br />

• The consequences <strong>of</strong> the wrenching technique humeral fixation<br />

are unknown? Is wrench fit the same as press fit?<br />

• Most common reason for failure <strong>of</strong> TSA is glenoid loosening 10<br />

• Life <strong>of</strong> the glenoid dependent upon proper alignment <strong>of</strong> BOTH<br />

components<br />

• Can proper version <strong>of</strong> humeral component be consistently<br />

established with a wrench but not trial?<br />

• Nerve Injury


371<br />

leSS iNvaSive Shoulder arthroplaSty<br />

Laurent Lafosse, MD<br />

Topic: The “Triple S TSA”<br />

SubScapularis Sparing Total Shoulder Arthroplasty<br />

When performed correctly, primary total shoulder arthroplasty<br />

(TSA) provides excellent pain relief and predictable outcomes in the<br />

majority <strong>of</strong> patients. Although complications after subscapularis<br />

tenotomy and takedown in open anterior surgical approaches to the<br />

glenohumeral joint have been well documented, increasing attention<br />

has been recently given to subscapularis dysfunction and failure<br />

postoperatively. With this in mind, the “Triple S,” or SubScapularis<br />

Sparing approach for TSA was developed to minimize the potential<br />

for poor clinical outcomes due to s<strong>of</strong>t-tissue and subscapularis<br />

tendon related complications.<br />

I. TSA works… but how can we improve patient outcomes?<br />

1. Minimize Subscapularis Related Dysfunction:<br />

In 2003, Miller et al. showed subscapularis dysfunction in<br />

67% by lift-<strong>of</strong>f test & in 66% with the belly press test after<br />

subscapularis tenotomy. Others have shown less severe, but<br />

significant dysfunction, after lesser tuberosity osteotomy.<br />

i. Minimize Subscapularis Tendon Failure:<br />

1. Rates as high as 4-14% documented.<br />

2. How many failures go unrecognized?<br />

• High index <strong>of</strong> suspicion is required.<br />

ii. Minimize Subscapularis Fatty Infiltration (FI):<br />

In 2002, Edwards et al. found postoperative FI negatively<br />

influenced clinical outcomes in a large cohort <strong>of</strong> TSAs for<br />

primary OA.<br />

1. Picard et al. found a 50% loss <strong>of</strong> internal rotation<br />

strength and stage II-IV FI in 41% after inverted-L<br />

tenotomy for open stabilization surgery.<br />

2. In 2005, Gerber et al. showed with lesser tuberosity<br />

osteotomy, FI advanced postoperatively by at least 1<br />

stage in 40% and 2 stages in 15% <strong>of</strong> patients.<br />

• Etiology <strong>of</strong> FI not fully understood.<br />

2. ELIMINATE the need for postoperative immobilization:<br />

i. No restrictions on active internal rotation or passive<br />

external rotation.<br />

ii. Questions to be answered:<br />

1. Does this improve patient outcome parameters?<br />

a. Less Subscapularis FI, etc.<br />

2. Does this improve patient satisfaction?<br />

• Initial results are encouraging!<br />

II. Evolution <strong>of</strong> a Concept:<br />

1. Knowledge <strong>of</strong> the rotator interval and experience with the<br />

superior approach for reverse TSA led to the consideration <strong>of</strong><br />

this approach for conventional TSA.<br />

Through experience…<br />

i. Developed better anatomic understanding <strong>of</strong> the rotator<br />

interval and its dimensions.<br />

ii. Developed better exposure <strong>of</strong> the humerus and glenoid<br />

from superior portal.<br />

iii. Concerns and problems encountered:<br />

1. Acromioplasty required.<br />

2. Issues with deltoid insufficiency and diminished<br />

function after takedown.<br />

3. Difficult access and removal <strong>of</strong> inferior humeral<br />

osteophytes.<br />

Thus evolved the current technique for “Triple S TSA.”<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

III. The “Triple S TSA”: A Two Window Technique<br />

Table 1: Summary <strong>of</strong> Steps involved with “Triple S TSA”<br />

Step 1 Anesthesia and patient positioning.<br />

Step 2 Skin incision and initial approach.<br />

Step 3 Creation <strong>of</strong> “inferior window” and inferior osteophyte resection.<br />

Step 4 Opening <strong>of</strong> rotator interval “superior window” & biceps tenodesis.<br />

Step 5 Humeral shaft preparation, head resection, & osteophyte removal.<br />

Step 6 Glenoid preparation, trialing and resurfacing.<br />

Step 7 Final humeral preparation, trialing and insertion.<br />

Step 8 Wound closure.<br />

1. Anesthesia and Patient Positioning:<br />

i. General Anesthetic + Interscalene block/catheter<br />

ii. Standard beach chair position<br />

1. Back support elevated to ~45 degrees.<br />

2. Side rest on operative side removed.<br />

• Facilitates humeral adduction for later humeral<br />

head and canal preparation.<br />

3. Arm draped free (no articulated device).<br />

2. Skin Incision and Initial Approach:<br />

i. Deltopectoral approach<br />

1. Incision ~10cm in length<br />

2. Lateralized 2-3cm from the coracoid.<br />

• Facilitates later glenoid visualization.<br />

3. Interval and cephalic v. are exposed.<br />

4. Deltoid and cephalic vein are retracted laterally.<br />

5. The fascia at the lateral conjoint tendon is divided<br />

exposing the underlying subscapularis tendon.<br />

6. The superior and inferior subscapularis borders are<br />

clearly identified.<br />

3. Creation “Inferior Window” & osteophyte resection:<br />

i. The arm is flexed to ~60deg with ~20 ER to improve<br />

inferior exposure.<br />

ii. The anterior humeral circumflex vessels may be ligated at<br />

the inferior subscapularis border.<br />

iii. The inferior subscapularis is bluntly dissected and<br />

mobilized superiorly to expose the inferior capsule.<br />

iv. A Hohmann retractor is placed inferiorly beneath the<br />

capsule retracting the axillary nerve inferiorly and<br />

medially.<br />

v. Inferior capsulotomy and complete inferior capsular<br />

release are performed on the humeral and glenoid sides.<br />

vi. The Hohmann retractor is then repositioned into the<br />

glenohumeral joint, exposing the inferior osteophytes.<br />

vii. A curved osteotome and rongeurs are used to fully resect<br />

the inferior humeral osteophytes.<br />

• Visualization is improved by humeral flexion &<br />

varying degrees <strong>of</strong> internal/external rotation.<br />

viii. After completion, the distal retractors are removed<br />

and the arm is repositioned in adduction and neutral<br />

rotation.<br />

4. The “Superior Window” and Biceps Tenodesis:<br />

i. The long head biceps tendon is palpated and exposed<br />

in the groove. The bicipital groove is opened and traced<br />

proximally to the rotator interval (RI).<br />

ii. The biceps is tenodesed in the groove using nonabsorbable<br />

suture and the proximal stump is resected.


372<br />

iii. The RI is further exposed and the SGHL and CHL are<br />

identified and resected.<br />

iv. Two small, modified Hohmann retractors are placed in<br />

the interval allowing humeral head exposure superiorly.<br />

1. The first is placed posteriorly and retracts the<br />

supraspinatus tendon.<br />

2. The second is placed anteriorly retracting the<br />

susubscapularis tendon.<br />

• Adequate humeral head exposure should be possible<br />

without excessive traction on either tendon. It is<br />

sometimes necessary to check retractor placement and<br />

reposition them for optimal exposure.<br />

5. Humeral Shaft Preparation, Humeral Head Osteotomy, and<br />

Osteophyte Removal:<br />

i. A sharp awl is used to sound the humeral canal at the<br />

appropriate location with the arm fully adducted.<br />

ii. The humeral shaft is prepared with successive reamers<br />

until cortical friction is encountered.<br />

iii. The appropriate sized reamer is left in place and the<br />

humeral cutting guide is attached to facilitate the correct<br />

inclination and version for the humeral head cut.<br />

• Cut height is determined from the superior articular<br />

margin.<br />

• Version is based on native humeral anatomy, the<br />

bicipital groove, and forearm position.<br />

iv. The guide is secured in place with two smooth pins.<br />

v. The head is resected using the combination <strong>of</strong> an endcutting<br />

saw and osteotomes.<br />

• The cuts are completed with an osteotome to<br />

prevent inadvertent damage to deep structures and<br />

surrounding tendons.<br />

vi. After head resection, remaining osteophytes are palpated<br />

and removed.<br />

• Do not hesitate to return to the inferior window if<br />

needed for osteophyte removal.<br />

6. Glenoid Preparation, Trialing and Resurfacing:<br />

i. The glenoid is exposed using a combination <strong>of</strong> modified,<br />

small Hohmann retractors anteriorly and posteriorly, and<br />

a standard inferior glenoid retractor.<br />

• The humeral head in translated inferiorly without the<br />

need for dislocation, excessive humeral rotation, and/<br />

or tension on the cuff.<br />

ii. After adequate exposure and capsular release, the guide<br />

pin is placed and central glenoid pilot hole is drilled.<br />

iii. The glenoid is reamed in standard fashion depending on<br />

the anatomy encountered.<br />

iv. The guide for the pegged glenoid is then inserted and<br />

drilled with a dedicated drill bit.<br />

• Note: The posterior inferior peg is <strong>of</strong>ten the most<br />

difficult to prepare because <strong>of</strong> s<strong>of</strong>t tissue tension.<br />

v. The glenoid trial is placed and glenoid osteophytes are<br />

removed.<br />

vi. The definitive glenoid implant is then inserted, and the<br />

inferior glenoid retractor is removed.<br />

7. Final Humeral Preparation, Trialing and Insertion:<br />

i. The humeral head is translated superiorly for final<br />

preparation and prosthesis insertion.<br />

ii. The anterior and posterior Hohmann retractors are<br />

repositioned for humeral exposure as needed.<br />

iii. Broach preparation <strong>of</strong> the proximal humerus is carried<br />

out, and this is facilitated by specific straight handled<br />

broaches.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

iv. Prosthetic humeral head height is determined from the<br />

resected humeral head.<br />

v. Prosthetic humeral head diameter is determined from<br />

either direct measurement <strong>of</strong> the resected head or the<br />

humeral head footprint remaining.<br />

vi. The humeral head trial selected can then be placed on a<br />

stemless metaphyseal trial component and inserted for<br />

ROM and stability assessment.<br />

vii.Once the correct size is confirmed, the final prosthesis is<br />

assembled and inserted.<br />

viii. The humeral component must initially be inserted in<br />

anteversion due to s<strong>of</strong>t tissue constraints. The humeral<br />

head is then rotated into correct version under the<br />

supraspinatus tendon.<br />

• Humeral component rotation is achieved with the use<br />

<strong>of</strong> a customized spanner attached at the prosthetic<br />

head/stem junction.<br />

ix. After appropriate version is obtained definitive humeral<br />

impaction is carried out and final ROM and stability are<br />

assessed.<br />

x. The humeral component is then palpated and observed<br />

through the “inferior window” for confirmation <strong>of</strong><br />

appropriate height and placement.<br />

xi. Final observation is performed ensuring no s<strong>of</strong>t tissue<br />

entrapment at the prosthesis/bone interface has occurred.<br />

8. Drain Placement and Wound Closure:<br />

i. The wound is irrigated and a drain is placed in standard<br />

fashion.<br />

ii. The wound is closed in layers with a running,<br />

subcuticular closure <strong>of</strong> the superficial layer.<br />

• The RI is not closed.<br />

IV. Perceived Benefits <strong>of</strong> the “Triple S TSA” Approach<br />

1. Subscapularis sparing:<br />

i. Theoretically minimizes the risk <strong>of</strong> postoperative tendon<br />

failure, fatty infiltration, and instability.<br />

ii. Allows immediate, unrestricted, active participation in<br />

physical therapy.<br />

iii. Early outcomes show comparable component<br />

positioning to traditional techniques, excellent patient<br />

satisfaction, and impressive early return <strong>of</strong> motion.<br />

2. The technique does not require prolonged extremes <strong>of</strong><br />

rotation or dislocation <strong>of</strong> the shoulder joint.<br />

i. Minimizes traction injury to the rotator cuff musculature<br />

and surrounding neurovascular structures.<br />

3. Intact rotator cuff tendon footprints circumferentially<br />

facilitates anatomic version <strong>of</strong> the prosthesis.<br />

4. Novel technique through the deltopectoral interval allows<br />

for the removal <strong>of</strong> inferior osteophytes and preserves deltoid<br />

muscle attachment and function.<br />

5. This approach can be converted to a traditional method <strong>of</strong><br />

subscapularis tenotomy or lesser tuberosity osteotomy at any<br />

time during the procedure.<br />

V. Pitfalls <strong>of</strong> the SubScapularis Sparing Approach:<br />

1. The procedure is more difficult in the setting <strong>of</strong> severe<br />

glenohumeral stiffness and in young, muscular, male<br />

patients.<br />

i. Again, it can be converted to a conventional approach<br />

when needed.<br />

2. The exposure is <strong>of</strong>ten more difficult and timely than<br />

traditional techniques utilizing subscapularis detachment.<br />

3. Risk for inadequate resection <strong>of</strong> periarticular osteophytes.


373<br />

i. The long-term clinical significance is unknown, although<br />

early results have shown no significant difference in<br />

outcome.<br />

4. Potential need for specific modified retractors and<br />

instrumentation to perform the approach.<br />

BIBLIOGRAPHY<br />

1. Gerber C, Pennington S, Yian EH, Pfirrmann CAW, Werner CML, Zumstein<br />

MA. Lesser Tuberosity Osteotomy for Total Shoulder Arthroplasty - Surgical<br />

Technique. J Bone Joint Surg Am. 2006 88-A Sup 1 Pt 2: 170 - 177.<br />

2. Miller, SL, Y Hazrati, S Klepps, A Chiang, and EL. Flatow. “Loss <strong>of</strong><br />

subscapularis function after total shoulder replacement: A seldom recognized<br />

problem.” J Shoulder Elbow Surg 1, no. 1 (January / February 2003): 29 - 34.<br />

3. Gerber C, Yian EH, Pfirrmann CAW, Zumstein MA, Werner CML.<br />

Subscapularis muscle function and structure after total shoulder replacement<br />

with lesser tuberosity osteotomy and repair. J Bone Joinmt Surg Am.<br />

2005;87:1739-1745.<br />

4. Bohsali KI, Wirth MA, Rockwood CA. Complications <strong>of</strong> Total Shoulder<br />

Arthroplasty. J Bone Joint Surg Am. 2006;88:2279-2292.<br />

5. Goutallier D, van Driessche S, Le Mou‘l, Puzzo P, Zilber S.<br />

Transsupraspinatus arthrotomy through an enlarged transacromial approach<br />

for total shoulder replacement. <strong>Orthopaedic</strong>s & Traumatology: Surgery &<br />

Research. 2009;95:145-150.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SHOULdER & ELBOW<br />

5. The axillary nerve is at risk inferiorly if care is not taken<br />

during inferior capsulotomy and capsular release.<br />

6. Inability to use the exposure with resurfacing procedures<br />

where external rotation is limited by the intact subscapularis<br />

tendon.<br />

6. Qureshi S, Hsiao A, Klug RA, Lee E, Braman J, Flatow EL. Subscapularis<br />

function after total shoulder replacement: Results with lesser tuberosity<br />

osteotomy. J Shoulder Elbow Surg. 2008;17: 68-72.<br />

7. Edwards TB, Boulahia A, Kempf JF, Boileau P, Nemoz C, Walsh G. The<br />

influence <strong>of</strong> rotator cuff disease on the results <strong>of</strong> shoulder arthroplasty for<br />

primary osteoarthritis: results <strong>of</strong> a multicentre study. J Bone Joint Surg Am.<br />

2002;84:2240-2248.<br />

8. Lafosse L, Schnaser E, Haag M, Gobezie R. Primary total shoulder<br />

arthroplasty performed entirely thru the rotator interval: Technique and<br />

minimum two-year outcomes. J Shoulder Elbow Surg. 2009;18:864-873.<br />

9. Picard F, Saragaglia D, Montbarbon E, Tourne Y, Thony F, Charbel A.<br />

Anatomo-clinical effect <strong>of</strong> subscapular muscle vertical section in Latarjet<br />

procedure. Revue de chirurgie orthopedique 1998;84:217-23.<br />

10. Scheibel M, Habermeyer P. Subscapularis dysfunction following anterior<br />

surgical approaches to the shoulder. J Shoulder Elbow Surg 2008;17:671-683


374<br />

u CerviCal SpiNe trauma:<br />

CurreNt CoNCeptS (g)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

Moderator: Rick C. Sasso, MD, Indianapolis, IN<br />

Learn the initial assessment, imaging, and clearing <strong>of</strong> cervical trauma; closed reduction techniques and OC trauma including<br />

odontoid and Hangman fractures, subaxial injuries including UID, BID, and burst: and finally difficulty with CervicoThoracic<br />

trauma.<br />

I. Introduction<br />

Rick C. Sasso, MD, Indianapolis, IN<br />

II. Assessment and clearing <strong>of</strong> the cervical spine<br />

Mitchel B. Harris, MD, Boston, MA<br />

III. Occipitocervical injuries including Odontoid fractures<br />

Rick C. Sasso, MD, Indianapolis, IN<br />

IV. Subaxial unjuries including timing <strong>of</strong> closed reduction<br />

Alexander Vaccaro, MD, Philadelphia, PA<br />

V. CervicoThoracic injuries<br />

Jens R. Chapman, MD, Seattle, WA<br />

VI. Case presentations / discussions and debate with audience participation<br />

All Faculty


375<br />

oCCipitoCerviCal iNJurieS iNCludiNg odoNtoid FraCtureS<br />

Rick C. Sasso, MD<br />

Trauma occurring at the OC junction is more frequent due to<br />

successful in-field resuscitation and transport; potentially devastating<br />

due to the high rate <strong>of</strong> missing these injuries during the initial<br />

evaluation because <strong>of</strong> imaging difficulties and causing additional<br />

damage to the brainstem and upper spinal cord; and complex to<br />

stabilize due to the unique anatomy <strong>of</strong> the occiput and atlantoaxial<br />

vertebrae.<br />

Anatomy<br />

The intricate interconnecting array <strong>of</strong> anterior ligaments requires<br />

the occipitocervical junction (occiput, C1, and C2) to be regarded<br />

as a unit. The strong paired alar ligaments attach the tip <strong>of</strong> the<br />

odontoid to the occipital condyles, while the tectorial membrane (a<br />

continuation <strong>of</strong> the posterior longitudinal ligament) connects the<br />

odontoid to the foramen magnum. The transverse atlantal ligament<br />

is a posterior odontoid sling attaching to the lateral masses <strong>of</strong> the<br />

atlas, preventing anterior dislocation <strong>of</strong> C1 on C2.<br />

The C1-C2 articulation is a very unique, flat joint that allows great<br />

rotation. An average range <strong>of</strong> motion <strong>of</strong> 47° is present to each side.<br />

This represents approximately 50% <strong>of</strong> the axial rotation <strong>of</strong> the entire<br />

cervical spine. The internal anatomy <strong>of</strong> the axis is important to the<br />

understanding <strong>of</strong> fracture and internal fixation mechanics. Very<br />

dense, thick trabecular bone is present in the center <strong>of</strong> the tip <strong>of</strong><br />

the dens, and cortical bone at the anterior base <strong>of</strong> the body <strong>of</strong> C2<br />

(where the anterior longitudinal ligament attaches) is uniformly<br />

thick. High-density trabecular bone is also present in the lateral<br />

masses beneath the superior facets. Hypodense bone, however, is<br />

consistently present beneath the odontoid at the upper portion <strong>of</strong><br />

the body <strong>of</strong> C2. Anterior odontoid screws obtain strong fixation at<br />

their entrance site (the anterior-inferior aspect <strong>of</strong> the C2 body) and<br />

exit site (the tip <strong>of</strong> the dens); however the screws traverse very weak<br />

hypodense bone in the body <strong>of</strong> C2.<br />

The quantitative aspects <strong>of</strong> the axis have also been well described.<br />

The most variable dimension is dens angle in the sagittal plane,<br />

which ranges from -2° (leaning slightly anterior) to 42° (leaning<br />

posterior). This may make the assessment <strong>of</strong> fracture reduction<br />

very challenging. There is also considerable variability in all dens<br />

dimensions, which have a poor predictive value for body size in<br />

estimating the size <strong>of</strong> the odontoid. The diameter <strong>of</strong> the odontoid<br />

process in a significant percentage <strong>of</strong> people is less than 6mm, which<br />

is not sufficient to accommodate the passage <strong>of</strong> two 3.5mm screws.<br />

Another structure <strong>of</strong> the axis with significant variability is the<br />

vertebral artery groove. This is in the anterior, inferior surface <strong>of</strong> the<br />

C2 pars interarticularis. Because the C2 body is relatively narrow, the<br />

vertebral artery is more medial than in the subaxial spine. The artery<br />

travels in an almost transverse direction into the transverse foramen<br />

<strong>of</strong> the atlas, crossing immediately in front <strong>of</strong> the C2-C3 facet joint.<br />

Anomalous position <strong>of</strong> the vertebral artery is found on at least one<br />

side in 20% <strong>of</strong> patients. A high riding transverse foramen is <strong>of</strong> great<br />

concern if transarticular C1-C2 screw fixation is considered. Before<br />

this technique <strong>of</strong> atlantoaxial fixation is performed, spiral computed<br />

tomography (CT) scanning with sagittal reconstructions is useful to<br />

look for this vascular anomaly. More recently, safer techniques have<br />

been developed with the advent <strong>of</strong> universal polyaxial-screw/rod<br />

instrumentation which allows segmental fixation into the occiput<br />

(with occipital screws and now possibly occipital condyle screws),<br />

C1 (with lateral mass screws), and C2 (with pedicle and laminar<br />

screws) which significantly decrease risk to the vertebral artery.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

Instrumentation<br />

Instrumentation <strong>of</strong> junctional injuries <strong>of</strong> the cervical spine has<br />

been limited historically by failure to achieve rigid internal fixation<br />

in multiple planes. The evolution <strong>of</strong> these techniques has required<br />

increased insight into the morphology and unique biomechanics <strong>of</strong><br />

the occipitocervical junction. Systems initially based on onlay bone<br />

graft combined with wiring techniques have evolved to include<br />

systems incorporating rigid, longitudinal rods that accommodate<br />

multiplanar screws placed in the lateral masses, pedicles, transarticular<br />

regions, and occipital bone.<br />

Managing traumatic injuries at the OC junction is burdened by the<br />

fact that these are usually very unstable fractures in a region where<br />

an extremely mobile cervical spine transitions into a very rigid<br />

occiput. Because <strong>of</strong> this instability, these junctional injuries have<br />

a high incidence <strong>of</strong> significant and devastating spinal cord injury.<br />

The occipitocervical junction is a challenge to approach from the<br />

front and due to unique anatomy, is difficult to stabilize with<br />

standard anterior instrumentation. The “workhorse” approach for<br />

stabilization <strong>of</strong> these junctional injuries is thus via a posterior route.<br />

Providing a means for stabilizing junctional regions with posterior<br />

instrumentation has traditionally been extremely challenging<br />

because <strong>of</strong> the very unique and diverse anatomy available for<br />

instrumentation at the occipitocervical junction. Advancements in<br />

the technology <strong>of</strong> posterior constructs have provided for an increase<br />

in stability and allowed for surgical treatment <strong>of</strong> more complex<br />

craniocervical pathology. Such techniques have the added benefit <strong>of</strong><br />

less cumbersome postoperative immobilization. Initial onlay fusion<br />

and simple wire techniques required periods <strong>of</strong> traction and longterm<br />

bed rest followed by a halo. Rod and wire constructs were more<br />

stable but continued to have difficulty controlling axial loads due<br />

to the rods pistoning through the sublaminar wires. Hook and rod<br />

constructs were fraught with complications <strong>of</strong> the sublaminar hook<br />

within the cervical spinal canal. Plate and screw constructs were the<br />

first truly stable types <strong>of</strong> fixation but depended on fixed hole-hole<br />

distances in the plate, which made proper insertion <strong>of</strong> the screws<br />

difficult. These devices also failed to have a rigid connection <strong>of</strong> the<br />

screw to the plate. Modern screw-rod devices allow independent<br />

insertion <strong>of</strong> the screw anchors as well as stable connection to the<br />

longitudinal rod.<br />

Occipitocervical Fusion<br />

The occipitocervical junction represents a complex interaction<br />

between the cranium and the upper cervical spine. A significant<br />

amount <strong>of</strong> motion in the sagittal and axial planes occurs in this<br />

region. Instrumentation constructs must resist such forces as well as<br />

the lever arm that is created by the angle <strong>of</strong> the suboccipital bone and<br />

the cervical spine. These systems must also accommodate adjustments<br />

that allow a surgeon to achieve an appropriate occipitocervical<br />

neutral position. Therefore, a system must be flexible with regard<br />

to application, but rigid once it is applied. For the reasons detailed<br />

above, occipitocervical instability secondary to trauma presented a<br />

major challenge to surgeons in the early half <strong>of</strong> the 20th century.<br />

Foerster described one <strong>of</strong> the first techniques <strong>of</strong> occipitocervical<br />

fusion in 1927. Since that time, techniques have included onlay<br />

bone graft with halo immobilization, wire fixation, pin fixation,<br />

hook constructs, metallic loops, rectangles fixed to bone with wires<br />

and screws, and plate/rod constructs with screws. Many <strong>of</strong> the most<br />

recent techniques borrow heavily from initial experiences with rod<br />

and plating systems combined with screws. The ultimate goal <strong>of</strong> all<br />

<strong>of</strong> these systems is to achieve fusion; however, the techniques were


modified to provide ease <strong>of</strong> application and internal rigidity during<br />

the time that fusion is occurring. Onlay bone graft may be performed<br />

with or without wiring. This technique has the advantage <strong>of</strong> being<br />

simple and relying on minimal use <strong>of</strong> internal instrumentation.<br />

High fusion rates have been reported; however, immediate stability<br />

is not the hallmark <strong>of</strong> these techniques. Patients require some form<br />

<strong>of</strong> external immobilization by means <strong>of</strong> tongs, Minerva jacket, or<br />

halo orthosis until a solid fusion is achieved. This may take 12 weeks.<br />

Many bone graft sources have been used, including fibula, tibia, and<br />

iliac crest. In a series <strong>of</strong> nine patients, Hamblen described occiput to<br />

cervical fusion with varying caudal fusion levels and several different<br />

types <strong>of</strong> autograft sources. Wire fixation was used in these techniques<br />

and patients were fitted in Minerva plaster jackets after surgery for 4<br />

to 6 weeks. Following removal <strong>of</strong> the plaster jacket, patients wore a<br />

rigid cervical collar for and additional 3 to 6 months.<br />

Jain et al described a technique in which occipitoaxis posterior wiring<br />

was used for patients with atlantoaxial dislocation. The technique<br />

was based on a “bone bridge” along the posterior margin <strong>of</strong> the<br />

foramen magnum which created an “artificial atlas.” Conventional<br />

fusion with wiring was performed between the artificial atlas and<br />

the C2 lamina using an interposed bone strut graft. The Locksley<br />

technique combined wire-bone and wire-plate constructs to achieve<br />

a stable three-point internal fixation. This technique uses bilateral<br />

rib autograft struts attached to twisted wires in the suboccipital<br />

bone, which have passed through drill holes adjacent to a keyhole<br />

craniectomy. Ribs are secured by sublaminar wires and supplemental<br />

internal fixation is achieved with a T-plate.<br />

An inverted hook technique as described by Faure et al involves the<br />

insertion <strong>of</strong> inverted hooks through a burr hole in the occipital bone<br />

attached to hooks placed in caudal laminae. The laminar hooks<br />

create a “clamp” construct that is attached by contoured rods to the<br />

occipital construct. A similar technique was described by Paquis et<br />

al in which occipital and interlaminar claws are used. Prebent rods<br />

are secured to the spine with hooks that are then tightened and<br />

positioned to create claw constructs.<br />

Sonntag and Dickman have described a rod-wire technique for<br />

occipitocervical fusion in which a contoured 5/32-inch threaded<br />

Steinmann pin is used in a U shape such that the closed end <strong>of</strong> the<br />

U rests against the suboccipital bone. Wires interact with the threads<br />

on the rod to provide some resistance to migration <strong>of</strong> the construct.<br />

Wires are passed below the laminae bilaterally over all segments.<br />

Wires secure the cranium to the U-shaped rod via burr holes. A high<br />

rate <strong>of</strong> fusion with postoperative halo immobilization has been<br />

reported with this technique.<br />

Other rod-wire techniques include the Ohio Medical Instruments<br />

loop with lateral mass linkages, the Hartshill-Ransford loop, customformed<br />

Luque rods, and other combinations.<br />

Pin and wire fixation has been described as a successful method<br />

<strong>of</strong> internal fixation in patients with upper cervical spine instability<br />

secondary to cancer metastasis. This method relies on a pin that<br />

is passed through the external occipital protuberance, the ends <strong>of</strong><br />

which are used as points <strong>of</strong> fixation for the attachment <strong>of</strong> rods or<br />

wires that secure the cervical spine to the occiput.<br />

Screw-plate techniques have been well described in the literature and<br />

have many supporting proponents and systems. Such techniques<br />

include the use <strong>of</strong> AO plates and inverted Y-shaped plates secured to<br />

C1–C2 with transarticular screws and to the suboccipital bone with<br />

paramedian screws. The suboccipital bone has varying thickness,<br />

and screw selection in this region is important to the technique to<br />

avoid injury to cerebellar structures. Modification <strong>of</strong> this technique<br />

may include use <strong>of</strong> lateral mass screws below C1–C2 to include<br />

additional caudal levels in the construct. The “inside-outside”<br />

376<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

technique <strong>of</strong> Pait et al combines lateral mass plating with a bolt<br />

construct in the occiput oriented from the epidural space outward;<br />

this technique does not rely on posterior elements for fixation. Vale<br />

et al have also described a device consisting <strong>of</strong> a plate secured to the<br />

C1–C2 junction with transarticular screws and to the occiput with<br />

bone screws. High rates <strong>of</strong> fusion with long-term excellent functional<br />

results have been reported with many <strong>of</strong> these techniques.<br />

The screw-plate constructs were the first rigid forms <strong>of</strong> occipitocervical<br />

fixation that did not require postoperative halo immobilization.<br />

The fundamental problems <strong>of</strong> posterior cervical plates are:<br />

1. Fixed hole-hole distance with difficulty placing anchors (screws)<br />

along the length <strong>of</strong> the plate when it spans multiple segments;<br />

2. Limited ability to direct screws divergent from the screw holes<br />

especially when screws are placed into different structures (lateral<br />

mass, pedicle, occiput) along the same plate;<br />

3. Nonrigid connections between the screws and longitudinal<br />

member (plate);<br />

4. Lack <strong>of</strong> adequate space for bone graft over the facet joints after<br />

the plate is screwed down onto the dorsal surface <strong>of</strong> the lateral<br />

mass;<br />

5. Inability to capture an anchor that is medial or lateral to the<br />

longitudinal member (the screw has to go through the plate<br />

hole);<br />

6. Requirement <strong>of</strong> removing and replacing the screw if a plate<br />

change occurs;<br />

7. Inability to compress or distract the screws relative to each other<br />

once they have been placed.<br />

The ideal posterior screw-based stabilization device allows the screw<br />

to be driven into the perfect position at the proper trajectory and<br />

then not removed as the longitudinal member is attached. To date,<br />

this can only be accomplished with a rod-based system.<br />

Many screw-rod systems are available for occipitocervical spine<br />

fixation. In general, these systems are used for their flexibility with<br />

regard to correcting/accommodating deformity, their ability to<br />

achieve immediate rigid internal fixation, and their high rates <strong>of</strong><br />

fusion. Rods may be contoured to the multiple points <strong>of</strong> cervical<br />

fixation, including lateral mass screws, screws inserted via the Magerl<br />

transarticular C1–C2 technique, screws inserted into the C2 pedicle,<br />

pars, or laminae, and screws inserted into the lateral masses <strong>of</strong> C1.<br />

The multiplicity <strong>of</strong> techniques for instrumentation <strong>of</strong> C2 result from<br />

the risks associated with transarticular screw placement. Specifically,<br />

C2 laminar screws have been suggested as a safe and effective way<br />

to instrument this segment with little risk to neurologic or vascular<br />

elements.<br />

Systems generally vary with regard to their method <strong>of</strong> fixation to the<br />

occiput. A modified rod that attaches to the cranium via a plate, or<br />

a custom plate attached to the occiput which connects to a rod, are<br />

options. The strength <strong>of</strong> the occipital fixation can be compromised<br />

as plates constrain the ability to place occipital screws along the<br />

midline, which has been shown to be the thickest and strongest<br />

part <strong>of</strong> the occiput. Also, hole spacing <strong>of</strong>ten makes placement <strong>of</strong><br />

cervical screws difficult. Plates designed for midline occipital screw<br />

placement only allow for fixation in one plane with only two or three<br />

screws. These plates are potentially weak in torsion since the points<br />

<strong>of</strong> fixation are parallel to the axis <strong>of</strong> rotation. Many occipital fixation<br />

systems have limitations with regard to prominence in the midline<br />

<strong>of</strong> the occiput, which may contribute to wound healing problems.<br />

New independent occipital plate designs have addressed these issues<br />

by allowing for both midline and lateral screw placement while


maintaining a low pr<strong>of</strong>ile.<br />

The most versatile method <strong>of</strong> occipital screw fixation uses bilateral<br />

contoured rods with medial <strong>of</strong>fset connectors that allow placement<br />

<strong>of</strong> six occipital screws in the thickest and strongest bone along the<br />

midline, while easily connecting to screws in the cervical spine.<br />

Bilateral rods with medial <strong>of</strong>fset connectors allow parasagittal<br />

placement <strong>of</strong> six bicortical screws in the thickest and strongest bone<br />

along the occipital midline. (Figures a, b, c, d, e, f)<br />

The use <strong>of</strong> six occipital screws has been shown to be biomechanically<br />

advantageous. The paramedian orientation may help resist torsion<br />

as all <strong>of</strong> the screws are not parallel to the torsional axis <strong>of</strong> rotation.<br />

Optimal screw placement in the cervical spine is promoted as the<br />

rod contouring accommodates connection to the cervical screws.<br />

Figure a<br />

Figure b<br />

In addition to the many techniques described herein, a C1–occipital<br />

condyle screw technique exists as described by Gonzalez et al. This<br />

technique relies on fluoroscopically guided placement <strong>of</strong> a guidewire<br />

across the O–C1 joint with subsequent placement <strong>of</strong> a screw across<br />

the joint. Correct placement <strong>of</strong> this screw assumes proper entry<br />

377<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

point at the midpoint <strong>of</strong> the posterior aspect <strong>of</strong> the lateral mass<br />

<strong>of</strong> C1 and appropriate direction <strong>of</strong> the guide wire and subsequent<br />

screw approximately 10¡ to 20¡ medial and toward the middle aspect<br />

<strong>of</strong> the occipital condyle from the entry point.<br />

Dvorak et al recently described a case report <strong>of</strong> anterior screw<br />

fixation <strong>of</strong> the axis to the occiput. This technically demanding<br />

technique is suggested as an alternative to posterior techniques<br />

when such techniques are not technically feasible or have already<br />

failed. A biomechanical study <strong>of</strong> this technique was also undertaken<br />

to evaluate the stability <strong>of</strong> this technique in comparison to the more<br />

traditional posterior techniques. They concluded that the anterior<br />

screw fixation technique was as effective as a posterior plate with<br />

transarticular screws in stabilizing between the occiput and C2 in<br />

axial rotation and lateral bending. In extension and flexion, the<br />

anterior screw technique was not as effective as a posterior plate with<br />

transarticular screws in providing stability.<br />

Several biomechanical studies have contributed to the understanding<br />

and evolution <strong>of</strong> fusion techniques in the occipitocervical region <strong>of</strong><br />

the spine. While all techniques have the possibility <strong>of</strong> mechanical<br />

failure in the face <strong>of</strong> pseudarthrosis, most techniques provide timedependent<br />

stability in many planes <strong>of</strong> movement. Methods noted<br />

to be most stable are those that involve screw fixation in shorter<br />

segments. This has been verified in studies in which lateral mass<br />

screws were compared with sublaminar fixation techniques in<br />

patients with rheumatoid arthritis. Another study concluded that<br />

occipitocervical stabilization with C1–C2 transarticular screws or C2<br />

pedicle screws was biomechanically advantageous to stabilization<br />

that is dependent on hook or wire constructs.<br />

As internal fixation techniques have evolved, so too have the<br />

options for bone grafting and fusion techniques. The traditional<br />

corticocancellous onlay graft or rib autograft techniques that were<br />

used with early wire constructs are slowly being replaced with<br />

modified central cancellous autograft techniques combined with<br />

facet grafting in a well-prepared graft bed. Such techniques have<br />

not been thoroughly investigated, likely secondary to the rapid<br />

expansion <strong>of</strong> instrumentation techniques in the recent past.<br />

The rapid evolution <strong>of</strong> instrumentation technologies combined<br />

with advances in imaging techniques have created an environment<br />

in which surgeons have a variety <strong>of</strong> tools to apply to pathology in<br />

the cervical spine. Whatever the chosen technique <strong>of</strong> fusion for<br />

treatment <strong>of</strong> this pathology in junctional regions, the primary goals<br />

are similar: achievement <strong>of</strong> stable internal fixation, accommodation<br />

<strong>of</strong> appropriate graft material, restoration <strong>of</strong> acceptable anatomic<br />

position, and decompression <strong>of</strong> neural elements. Many <strong>of</strong> the<br />

recent technologies in posterior cervical spinal systems allow for<br />

low pr<strong>of</strong>ile, rigid instrumentation <strong>of</strong> complex disease processes.<br />

Such techniques and their modifications require appropriate<br />

training before implementation as they also have the potential for<br />

significant morbidity. Despite a rapid evolution <strong>of</strong> techniques and<br />

instrumentation technologies, it remains incumbent on the physician<br />

to provide the patient with a surgical procedure that balances the<br />

likelihood <strong>of</strong> a favorable outcome with the risk inherent in the<br />

implementation <strong>of</strong> the procedure.<br />

ODONTOID FRACTURE<br />

Epidemiology<br />

Odontoid fractures are a relatively common upper cervical spine<br />

injury, comprising nearly 60% <strong>of</strong> all fractures <strong>of</strong> the axis, and 10-<br />

18% <strong>of</strong> all cervical spine fractures. In the upper cervical spine<br />

there is a proportionally greater space available for the cord than<br />

in the lower cervical spine. Therefore, the incidence <strong>of</strong> neurologic<br />

involvement is relatively low (18-26%). Furthermore, if significant


cord damage occurs, patients are frequently dead on arrival due to<br />

respiratory arrest.<br />

Although odontoid fractures occur in all age groups, the mean age is<br />

approximately 47 years with a bimodal distribution. In the younger<br />

patients, these fractures are usually secondary to high energy trauma;<br />

motor vehicle accidents (MVA) are responsible for the majority <strong>of</strong><br />

the injuries. Concomitant spinal injuries are present in up to 34%,<br />

<strong>of</strong> which 85% occur in the cervical spine with the atlas being most<br />

common.<br />

The second peak in the incidence <strong>of</strong> odontoid fractures is in the<br />

elderly. In fact, they are the most common cervical spine fracture<br />

in patients older than 70 years. These fractures, unlike those in the<br />

younger patients, tend to be the result <strong>of</strong> low energy injuries such<br />

as falls from a standing height. The mechanism <strong>of</strong> injury is <strong>of</strong>ten<br />

hyperextension resulting in posterior displacement <strong>of</strong> the odontoid.<br />

Associated spinal trauma is much less common.<br />

Classification<br />

The classification system <strong>of</strong> Anderson and D’Alonzo has withstood<br />

the test <strong>of</strong> time because it is anatomically simple, reliably predictive<br />

<strong>of</strong> outcome, and able to direct treatment.<br />

Described in 1974, they divided fractures into three types based upon<br />

the anatomic location. Type I is an oblique avulsion fracture from<br />

the tip <strong>of</strong> the odontoid above the transverse ligament, attached to the<br />

alar ligament. This fracture is clinically rare accounting for 1% to 5%<br />

<strong>of</strong> odontoid fractures and may be associated with occipitoatlantal<br />

dislocation. Type II fractures occur through the neck <strong>of</strong> the odontoid.<br />

They are the most common type <strong>of</strong> odontoid fracture (38-80%). Type<br />

III fractures extend into the body <strong>of</strong> C2. They comprise 15% to 40%<br />

<strong>of</strong> all odontoid fractures. Hadley et al. proposed an additional type<br />

IIA subtype, defined as a type II fracture with marked comminution<br />

at the base. For this subtype, they recommended early operative<br />

management, due to inherent instability and failure <strong>of</strong> external<br />

immobilization to maintain alignment.<br />

Treatment<br />

Definitive treatment <strong>of</strong> odontoid fractures is determined by multiple<br />

factors, including fracture type, presence <strong>of</strong> associated injuries,<br />

patient age, and patient co-morbidities. Type I injuries, which have<br />

an intact TAL attached to the remaining odontoid process, are stable.<br />

These may be managed with simple cervical collar immobilization<br />

until comfort and stability are documented. Although this has been<br />

described as a stable odontoid fracture, this avulsion fracture can<br />

be seen in association with occipitoatlantal dislocation and these<br />

patients must be carefully evaluated for this injury.<br />

Type III injuries are generally regarded to heal uneventfully with<br />

nonoperative management due to the large cancellous fracture<br />

surface. If closed reduction can be achieved, immobilization in a<br />

halo vest for 12 weeks is highly successful with a 96% chance <strong>of</strong><br />

union. However, if the fracture is closer to the neck <strong>of</strong> the odontoid<br />

(high and shallow based), the fracture may act like a type II fracture<br />

with an increased incidence <strong>of</strong> nonunion.<br />

The proper management <strong>of</strong> type II fractures remains highly<br />

controversial. These fractures have a poor prognosis treated<br />

nonoperatively with a nonunion rate <strong>of</strong> 35% to 85%. Some studies<br />

suggest this high rate <strong>of</strong> nonunion is secondary to the disruption<br />

<strong>of</strong> the odontoid process vascular supply. Other investigators have<br />

demonstrated adequate blood flow from both above and below the<br />

odontoid process base, leading them to conclude that inadequate<br />

immobilization is the primary cause <strong>of</strong> this problem. Proposed<br />

predictors <strong>of</strong> type II nonunion include the following: initial<br />

displacement greater than 6 mm (with several studies finding it<br />

378<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

to be the most important single factor in determining the success<br />

<strong>of</strong> nonsurgical management), posterior displacement, age over 40<br />

years, delay in diagnosis greater than three weeks, and angulation<br />

greater than 10 degrees. This poor healing rate--even with halo vest<br />

immobilization--has led to significant controversy over treatment<br />

methods.<br />

Because <strong>of</strong> this high nonunion rate, some investigators have<br />

recommended primary internal fixation for selected type II and<br />

shallow type III odontoid fractures (primarily those with significant<br />

initial displacement), and most subtype IIAs. Improved fracture<br />

healing rates with early surgical management in specific patients could<br />

theoretically decrease the uncommon but very real complication <strong>of</strong><br />

late-onset progressive myelopathy secondary to odontoid nonunion.<br />

This can also help avoid significant halo related complications such<br />

as pin site infections, pulmonary compromise, brain abscesses, skin<br />

breakdown, facet joint stiffness, and loss <strong>of</strong> alignment. Additionally,<br />

others have advocated primary surgical treatment over halo<br />

immobilization as a means to significantly decrease in-hospital<br />

mortality and avoid potential adverse affects in elderly patients with<br />

type II fractures. Surgical indications include initial displacement <strong>of</strong><br />

greater than 6 mm, neurologic deficit, patients with polytrauma or<br />

on a ventilator, failure after three months in a halo or the inability to<br />

tolerate a halo. Present surgical options include posterior atlantoaxial<br />

arthrodesis and direct anterior odontoid internal fixation.<br />

Traditional forms <strong>of</strong> atlantoaxial arthrodesis include Gallie<br />

(sublaminar C1 wire and intra-spinous C2) and Brooks (additional<br />

sublaminar wiring <strong>of</strong> C2) type wirings using autogenous iliac<br />

bone graft. Reported fusion rates have been as high as 95%, but<br />

most authors describe the use <strong>of</strong> supplementary postoperative<br />

halo immobilization. The advantage <strong>of</strong> the Brooks technique is<br />

increased rotational stability, but with increased neurologic risk.<br />

Flexible cables have increased the ease <strong>of</strong> sublaminar wire passage<br />

and thus may decrease the rate <strong>of</strong> iatrogenic neurologic deficit from<br />

wire passage, which has been reported as 5%. Wiring techniques rely<br />

upon the integrity <strong>of</strong> the posterior arch <strong>of</strong> the atlas and intraoperative<br />

reduction is sometimes lost during the healing period. Especially<br />

prone to failure are posterior displaced odontoid fractures treated<br />

with a Gallie type technique.<br />

Posterior C1-C2 transarticular screw fixation has been recommended<br />

due to biomechanical advantages over posterior wirings, avoidance<br />

<strong>of</strong> fusion extension to the occiput in the relatively common event <strong>of</strong><br />

concomitant C1 posterior arch insufficiency/fracture, and the ability<br />

to avoid postoperative halo immobilization. In 1987, Magerl and<br />

Seemann described a technique <strong>of</strong> atlantoaxial screw fixation that<br />

involves the placement <strong>of</strong> bilateral transarticular screws through a<br />

posterior approach. Transarticular screws allow stable fixation <strong>of</strong><br />

C1 and C2 in the reduced position even in cases <strong>of</strong> absence <strong>of</strong> the<br />

posterior arch <strong>of</strong> the atlas. Minimal postoperative immobilization is<br />

required even in the presence <strong>of</strong> gross instability. Grob et al. compared<br />

the Gallie, Brooks, Magerl, and Halifax systems in reestablishing<br />

stability to the C1-C2 segment. Although all procedures decreased<br />

motion in the segment, the Gallie technique was least effective in<br />

limiting motion <strong>of</strong> the C1-C2 articulation and allowed significantly<br />

more rotation than the other fixation techniques. The Magerl<br />

transarticular screw technique was most effective in limiting motion.<br />

In other studies, the Magerl technique was more stable in rotation,<br />

shear, and translation.<br />

The increased stability <strong>of</strong> the transarticular C1-C2 screw fixation<br />

demonstrated in biomechanical studies is attributed to the twoscrew<br />

fixation construct, which prevents rotational, lateral, and<br />

sagittal movements <strong>of</strong> C1 on C2. The transarticular screws are 10<br />

fold stiffer in rotation than is C1-C2 conventional wiring. In a series


<strong>of</strong> 161 patients undergoing transarticular screw fixation, no instances<br />

<strong>of</strong> vertebral artery or spinal cord injury occurred, and only 6% <strong>of</strong><br />

the patients had complications from the screws. The pseudarthrosis<br />

rate was less than 1%. This technique requires detailed knowledge <strong>of</strong><br />

the surgical anatomy and is technically demanding. With a superior<br />

biomechanical pr<strong>of</strong>ile, there is an inherent risk <strong>of</strong> neurovascular<br />

injury. Due to vertebral artery anomalies, this technique may not be<br />

possible in up to 20% <strong>of</strong> attempts. In one recent survey, the risk <strong>of</strong><br />

vertebral artery injury with this method was 4%, although the risk <strong>of</strong><br />

subsequent neurologic deficit after vascular injury was only 0.2%.<br />

Although the success rate <strong>of</strong> posterior C1-C2 fusion is very high,<br />

this “success” results in significant loss <strong>of</strong> axial rotation (50%).<br />

Especially in a young person, this may be quite debilitating. The<br />

loss <strong>of</strong> neck motion, as a result <strong>of</strong> these surgical procedures, led to<br />

the development <strong>of</strong> direct methods <strong>of</strong> internal fixation for odontoid<br />

fractures. The rationale for direct anterior fixation is the preservation<br />

<strong>of</strong> C1-C2 rotation while providing rigid internal fixation and<br />

avoiding restrictive bracing and the complications associated with<br />

bone grafting techniques.<br />

Direct anterior osteosynthesis <strong>of</strong> the odontoid fracture with<br />

anterior odontoid screw fixation is an alternative to atlantoaxial<br />

arthrodesis for management <strong>of</strong> odontoid fractures that are at risk<br />

for nonunion which avoids halo immobilization. This technique<br />

has been demonstrated to achieve a high fusion rate similar to<br />

posterior atlantoaxial arthrodesis (92-100%), with a similarly low<br />

complication rate. This high fusion rate has not been found to be<br />

dependent upon the number <strong>of</strong> screws used. A theoretical advantage<br />

<strong>of</strong> this technique over posterior methods is the preservation <strong>of</strong><br />

atlantoaxial motion. Anterior screw stabilization <strong>of</strong> the odontoid<br />

allows preservation <strong>of</strong> axial rotation.<br />

Anatomic reduction <strong>of</strong> the odontoid fracture is imperative before<br />

attempting this technique and inability to achieve reduction is an<br />

absolute contraindication. Relative contraindications to anterior screw<br />

fixation include transverse atlantal ligament disruption, nonunion,<br />

and an oblique fracture in an anteroinferior to posterosuperior<br />

plane which could cause the odontoid fragment to shear anteriorly<br />

at the fracture site during lag compression. This shearing could cause<br />

iatrogenic translation <strong>of</strong> C1 anterior on C2.<br />

Odontoid screw fixation provides a reasonable approach to odontoid<br />

fractures with a concomitant C1 Jefferson burst fracture and especially<br />

in multiple trauma patients, in whom immediate mobilization has<br />

proven beneficial. It can also be used in patients who refuse halo<br />

treatment and in whom fracture reduction can be obtained but not<br />

maintained. Caution should be used in osteopenic patients.<br />

Odontoid screw fixation is a technically demanding procedure that<br />

requires thorough preoperative planning and adequate surgical<br />

training. The entry point is critical at the anterior margin <strong>of</strong> the<br />

inferior endplate. If started more cephalad, the angle <strong>of</strong> inclination<br />

for fracture fixation cannot be achieved and anterior gapping <strong>of</strong> the<br />

fracture is a common result. Also, poor proximal fragment purchase<br />

with subsequent screw cut-out may occur as previously discussed. It<br />

is important to engage the far cortex <strong>of</strong> the odontoid tip to ensure<br />

adequate purchase and it is mandatory to lag the fracture fragments<br />

either through screw design or by creating a gliding hole through the<br />

body fragment. AP and lateral fluoroscopy is essential for constant<br />

monitoring during all stages <strong>of</strong> this procedure.<br />

Overall, the literature has established this technique as an efficacious<br />

treatment <strong>of</strong> odontoid fractures. Complications and their incidence<br />

reported in clinical series as a result <strong>of</strong> direct anterior odontoid<br />

screw fixation include the following: screw malposition, 2%; screw<br />

breakout, 1.5%; neurologic or vascular injury, 0%. The series has<br />

an aggregate fusion rate <strong>of</strong> 94.5%. Controversy, however, does exist<br />

379<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

regarding selection <strong>of</strong> patients, whether or not to use the technique<br />

in nonunions, and whether one or two screws should be applied.<br />

The placement <strong>of</strong> two screws is technically more difficult, <strong>of</strong>ten not<br />

anatomically possible, and <strong>of</strong>fers no biomechanical advantage, as<br />

compared to one-screw fixation. Sasso et al. compared the use <strong>of</strong><br />

one or two screws for stabilization <strong>of</strong> the odontoid. Mechanically<br />

produced type II odontoid fractures were stabilized with either<br />

one or two 3.5 mm screws. After internal fixation, the stability was<br />

restored to one half that <strong>of</strong> the unfractured odontoid. The use <strong>of</strong><br />

two screws did not significantly enhance the stability in testing to<br />

re-failure. Graziano et al. also found no difference between one and<br />

two screws in bending and torsional stiffness <strong>of</strong> the instrumented<br />

odontoid.<br />

Traditionally, the first-line treatment <strong>of</strong> type II odontoid fractures<br />

after prompt closed reduction has been halo-vest immobilization<br />

for 3 months with the knowledge that a significant percentage will<br />

require subsequent surgery for established nonunion. Since the<br />

results <strong>of</strong> delayed posterior C1-C2 fusion is as good as primary<br />

atlantoaxial arthrodesis, this initial non-operative plan has been<br />

reasonable. With increased clinical and basic science literature on<br />

anterior odontoid screw fixation, its role in our traditional treatment<br />

plan is uncertain because it is not a reliable procedure in the setting<br />

<strong>of</strong> a nonunion. Thus, if initial non-operative treatment is chosen and<br />

it fails, then C1-C2 arthrodesis is the only viable surgical option with<br />

concomitant decreased range <strong>of</strong> motion.<br />

HANGMAN’S FRACTURE<br />

Epidemiology<br />

The eponym “hangman’s fracture” was coined by Schneider in<br />

1965, describing traumatic axis injuries which bore a radiographic<br />

resemblance to those produced by judicial hanging. Despite<br />

this similarity, their mechanism <strong>of</strong> injury is different. Traumatic<br />

spondylolisthesis is the second most common fracture <strong>of</strong> the axis,<br />

representing approximately 25% <strong>of</strong> C2 injuries. Because the bilateral<br />

C2 pars interarticularis fractures <strong>of</strong> this injury (the anatomically<br />

“true” C2 pedicle lies more anteriorly) tend to produce an acute<br />

decompression <strong>of</strong> the neural canal, neurologic involvement is seen<br />

in only 6-10% <strong>of</strong> surviving patients.<br />

As with odontoid fractures, associated spinal injuries are seen<br />

in up to 31% <strong>of</strong> hangman’s fractures, <strong>of</strong> which 94% occur in the<br />

upper three cervical vertebrae. The mean patient age with this<br />

injury is approximately 38 years, and the most common cause is<br />

motor vehicle accidents. The majority <strong>of</strong> these injuries are due to<br />

hyperextension-axial compression forces, such as when the face<br />

impacts upon the windshield in an MVA. These biomechanical forces<br />

produce the characteristic fracture patterns due to the fact that the<br />

pars interarticularis is the thinnest portion <strong>of</strong> the axis ring, as well as<br />

the unique transitional anatomy <strong>of</strong> the axis, bridging the upper and<br />

lower cervical spine.<br />

Classification<br />

Several classification schemes <strong>of</strong> traumatic spondylolisthesis <strong>of</strong> the<br />

axis have been proposed. Currently, the most widely used system in<br />

the literature is that <strong>of</strong> Levine and Edwards, a modified version <strong>of</strong><br />

Effendi’s initial classification method. This system is based upon the<br />

amount <strong>of</strong> translation and angulation <strong>of</strong> C2 on C3, as demonstrated<br />

on lateral radiographs. Type I injuries, comprising approximately<br />

70% <strong>of</strong> all traumatic spondylolisthesis <strong>of</strong> the axis, are those with<br />

bilateral fractures through the base <strong>of</strong> the pars interarticularis, but<br />

without angulation and less than 3 mm displacement. The injury<br />

force is not sufficient to damage the C2-C3 intervertebral disc or<br />

longitudinal ligaments, thus retaining translational and angulatory<br />

stability.


Type II injuries (27% <strong>of</strong> total) are those in which there is greater<br />

than 3 mm displacement <strong>of</strong> C2 on C3 and are thought to occur<br />

when the usual hyperextension-axial compression is followed by<br />

a rebound flexion force, as seen in deceleration/acceleration forces<br />

in MVAs. This produces disruption <strong>of</strong> the C2-C3 disk and partial<br />

tearing <strong>of</strong> the posterior longitudinal ligament. Type IIA injuries (5%<br />

<strong>of</strong> total) have minimal translational displacement, but significant<br />

angulation <strong>of</strong> the C2 body. This particular injury pattern is thought<br />

to involve a unique flexion-distraction mechanism <strong>of</strong> injury. This is<br />

<strong>of</strong> importance, as the application <strong>of</strong> traction in this injury subset can<br />

result in an increased deformity and distraction when an attempt is<br />

made to reduce the fracture.<br />

The rare type III injury represents a unilateral or bilateral facet<br />

dislocation at C2-C3 in addition to the bilateral pars fractures. These<br />

have been demonstrated to result from a flexion force that creates<br />

the facet injury and a hyperextension force that produces the typical<br />

neural arch fracture. This pattern is associated with a substantially<br />

higher mortality rate and incidence <strong>of</strong> neurologic injury.<br />

Starr and Eismont have described an atypical hangman’s fracture that<br />

extends into the C2 vertebral body so that a portion <strong>of</strong> the body is<br />

attached to the pedicle and posterior elements. The spinal canal may<br />

be compromised and the incidence <strong>of</strong> spinal cord injury is higher.<br />

Treatment<br />

As noted previously, these fractures have a significant rate <strong>of</strong><br />

associated cervical spinal injuries, which impacts management<br />

decisions. Careful initial evaluation is required to make appropriate<br />

treatment recommendations.<br />

Type I, nondisplaced, hangman’s fractures are stable. Simple cervical<br />

collar immobilization for 8 to 12 weeks is recommended.<br />

Type II injuries have traditionally been treated with traction<br />

reduction, followed by halo vest immobilization for 10-12 weeks.<br />

Excellent outcomes and fusion rates up to 95% have been reported.<br />

The exception to this treatment approach is the type IIA injury,<br />

where initial traction is to be avoided, as discussed previously. In<br />

these instances, some have advocated a controlled reduction under<br />

fluoroscopy to determine the best position to maintain alignment,<br />

followed by halo vest application.<br />

More recently, several reviews have reported the successful treatment<br />

<strong>of</strong> type I and II injuries with cervical collar immobilization for<br />

8-12 weeks. In one study, type II injuries with greater than 6 mm<br />

<strong>of</strong> displacement were treated in halo vests, while those with less<br />

displacement were placed in cervical collar immobilization. All<br />

patients ultimately went on to bony union. Although the majority<br />

<strong>of</strong> displaced fractures healed with some residual malalignment,<br />

this did not affect functional outcomes. Rare treatment failures<br />

attributed to nonunion or painful posttraumatic facet arthropathy<br />

can be managed with an instrumented anterior C2-C3 arthrodesis or<br />

posterior cervical fusion.<br />

The treatment <strong>of</strong> Type III injuries is controversial. Closed reduction<br />

attempts <strong>of</strong> the unilateral or bilateral facet dislocation are unlikely to<br />

be successful and posterior open reduction is usually required. After<br />

reduction is obtained, stability may be maintained with a halo vest, or<br />

a multilevel C1-C3 posterior fusion. To avoid adding the atlantoaxial<br />

joint to the fusion, direct pars repair with lag screws to stabilize the<br />

reduced pars interarticularis fractures can be accomplished with the<br />

screws passing across the pars interarticularis into the C2 pedicles.<br />

These are then connected to C3 lateral mass screws via plates or<br />

rods. This is an elegant but technically demanding technique that<br />

should only be performed by fellowship trained spine surgeons with<br />

extensive experience in complex craniocervical instrumentation.<br />

380<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

C1 and C2 Instrumentation<br />

Historically, fixation into C1 has been limited by the inability<br />

to attach a stable, longitudinal construct to the adjacent motion<br />

segments. Over the past several years, the introduction <strong>of</strong> universal<br />

polyaxial screw/rod instrumentation for the posterior cervical spine<br />

has enabled the surgeon to individually anchor into C1 and C2;<br />

providing stability comparable to transarticular screws; versatility<br />

<strong>of</strong> incorporating the occiput and the subaxial cervical spine easily<br />

into the construct; with safer and less difficult screw insertion. There<br />

has been considerable confusion in the literature regarding screws<br />

placed into the C2 vertebra from a posterior approach, with the<br />

distinction between C2 pedicle screws and C2 pars interarticularis<br />

screws hinging on the anatomic definitions <strong>of</strong> the true pedicle<br />

and pars interarticularis. Additionally, the recent advent <strong>of</strong> the C2<br />

intralaminar screw has been introduced as a safe, alternative option<br />

for purchase into the C2 vertebra. A detailed discussed <strong>of</strong> the current<br />

trends in posterior atlantoaxial fixation follows.<br />

There are many fractures and traumatic cervical injuries that<br />

require posterior C1-C2 fixation. Subluxation <strong>of</strong> the atlantoaxial<br />

joint including: transverse atlantal ligament rupture, fixed and<br />

unstable rotatory subluxation <strong>of</strong> C1-C2, unstable C1 Jefferson<br />

burst fracture, unstable odontoid fractures, and occipitocervical<br />

dislocations are some <strong>of</strong> the more common injuries requiring C1-C2<br />

instrumentation. Historically, fixation into C1 has been limited by<br />

the inability to attach a stable, longitudinal construct to the adjacent<br />

motion segments. Gallie introduced a posterior wiring technique<br />

that was supported by a structural bone graft. Since then, numerous<br />

techniques have been developed including double-looped wiring<br />

and Halifax clamps. These constructs were fraught with failures,<br />

with nonunion rates approaching 15% secondary to the failure<br />

<strong>of</strong> the posterior, structural bone graft. Then, Magerl designed the<br />

transarticular screw to be placed from the C2 pars interarticularis<br />

into the lateral mass <strong>of</strong> C1. He coupled that with posterior wiring<br />

between the spinous processes to provide three-point fixation <strong>of</strong> the<br />

atlantoaxial joint.<br />

Transarticular screw fixation provided a major advantage over<br />

the traditional wire/cable techniques as they are more stable<br />

biomechanically under both shear and rotational forces.<br />

Additionally, postoperative halo immobilization is not required,<br />

and provides extremely high fusion rates without the morbidity <strong>of</strong><br />

halos. Magerl screws, however, do have several disadvantages and<br />

carry the distinction <strong>of</strong> being the most dangerous screw that a spine<br />

surgeon implants. They require surgical acumen and are technically<br />

demanding. The C1-C2 articulation must be perfectly reduced prior<br />

to attempting transarticular screw insertion, and it is impossible<br />

to obtain the steep cranial trajectory in many settings <strong>of</strong> a fixed<br />

cervicothoracic kyphosis. The use <strong>of</strong> biplane fluoroscopy is required<br />

intraoperatively and preoperative parasagittal CT reconstructions are<br />

mandatory to assess for a high-riding vertebral artery groove in C2<br />

which precludes transarticular screw implantation up to 20% <strong>of</strong> the<br />

time.<br />

Over the past several years, the introduction <strong>of</strong> universal polyaxial<br />

screw/rod instrumentation for the posterior cervical spine has enabled<br />

the surgeon to individually anchor into C1 and C2; providing stability<br />

comparable to transarticular screws; versatility <strong>of</strong> incorporating the<br />

occiput and the subaxial cervical spine easily into the construct; with<br />

safer and less difficult screw insertion. Recently, Melcher et al found<br />

that screw-rod systems were equivalent to transarticular screw-wiring<br />

constructs in reducing relative atlantoaxial motion.<br />

The lateral mass <strong>of</strong> C1 is a very strong and safe anchor point for<br />

a screw and may be used to provide additional fixation points in<br />

occipitocervical constructs, thus increasing resistance to construct


failure in the cervical spine without increasing the number <strong>of</strong> cervical<br />

levels fused.<br />

There has been considerable confusion in the literature regarding<br />

screws placed into the C2 vertebra from a posterior approach, with<br />

the distinction between C2 pedicle screws and C2 pars interarticularis<br />

screws hinging on the anatomic definitions <strong>of</strong> the true pedicle<br />

and pars interarticularis. Additionally, the recent advent <strong>of</strong> the C2<br />

intralaminar screw has been introduced as a safe, alternative option<br />

for purchase into the C2 vertebra.<br />

C1 lateral mass screws<br />

The atlantoaxial joint is challenging to stabilize because <strong>of</strong> the unique<br />

characteristics <strong>of</strong> the C1 and C2 vertebrae. The anatomical differences<br />

between C1 and C2 require special strategies as insertion <strong>of</strong> fixation<br />

points into these vertebrae are different from the remainder <strong>of</strong> the<br />

subaxial cervical spine. The lateral mass <strong>of</strong> C1 is not analogous to the<br />

lateral mass <strong>of</strong> the subaxial vertebrae. The most challenging aspect <strong>of</strong><br />

implanting C1 lateral mass screws is the exposure <strong>of</strong> the C1 lateral<br />

mass and C1-C2 joint from a cranial to caudal direction as well as<br />

mobilization <strong>of</strong> the C2 nerve root. Proper exposure <strong>of</strong> the C1 lateral<br />

mass proceeds in a rostral to caudal direction, opposite from the<br />

direction most spine surgeons are comfortable proceeding as during<br />

insertion <strong>of</strong> transarticular C1-C2 screws.<br />

Dissection <strong>of</strong> the posterior arch <strong>of</strong> C1 lateral to 1.5 cm from the<br />

midline is performed with caution because the vertebral artery<br />

runs in a groove on the superior surface <strong>of</strong> the posterior arch. It is<br />

typically protected by a thin rim <strong>of</strong> bone along the superior border<br />

<strong>of</strong> this posterior arch. Dissection <strong>of</strong> the posterior arch is performed<br />

subperiosteally. The venous plexus surrounding the C2 nerve root<br />

is cauterized with a bipolar and mobilized caudally. Subperiosteal<br />

dissection is performed from the inferior aspect <strong>of</strong> the posterior<br />

arch <strong>of</strong> C1, anteriorly down to the lateral mass <strong>of</strong> C1. The medial<br />

wall <strong>of</strong> the lateral mass is identified using a forward angle curette<br />

to identify the medial aspect <strong>of</strong> the mass for screw placement. The<br />

medial aspect <strong>of</strong> the transverse foramen is identified as the lateral<br />

limit for screw placement. The entry point for screw placement is<br />

3-5 mm lateral to the medial wall <strong>of</strong> the lateral mass, at the junction<br />

<strong>of</strong> the lateral mass and inferior aspect <strong>of</strong> the C1 arch. A high speed<br />

drill with a 3 mm round burr is used to remove a small portion <strong>of</strong><br />

the inferior aspect <strong>of</strong> the posterior C1 arch overlying the entry point.<br />

This “groove” is made to create a recess for the screw head. Removing<br />

this lip from the inferior aspect <strong>of</strong> the C1 posterior arch also assists<br />

in accessing the vertical wall which leads to the lateral mass. Failure<br />

to create a groove in the posterior arch makes it extremely difficult to<br />

subperiosteally dissect the venous plexus surrounding the C2 nerve<br />

from a cephalad to caudal direction. An assistant retracts the C2<br />

nerve inferiorly and protects it during drilling and screw placement.<br />

The use <strong>of</strong> a hemostatic agent such as FloSeal is used in conjunction<br />

with a thrombin soaked paddie to aid in safely retracting the nerve<br />

root and to control bleeding. A cervical probe with a diameter equal<br />

to the inner diameter <strong>of</strong> the polyaxial screw is used to forage a path<br />

into the cancellous bone <strong>of</strong> the C1 lateral mass with 10-15 degrees<br />

<strong>of</strong> medial angulation and 10-20 degrees <strong>of</strong> cephalad angulation.<br />

It is imperative to maintain a medial trajectory as to avoid the<br />

vertebral artery that lies lateral; whereas the cephalic tilt is used to<br />

avoid the C1-2 articulation as well it is important to avoid C2 nerve<br />

root impingement. Another option for establishing the screw path<br />

is to use a power drill or hand held drill. The spinal canal is not<br />

at risk because the starting point for this screw on the lateral mass<br />

is near the anterior aspect <strong>of</strong> the canal. Removing the lip <strong>of</strong> bone<br />

from the inferior aspect <strong>of</strong> the posterior arch assists in allowing a<br />

more horizontal trajectory. If this lip remains, it forces a steeper path<br />

through the lateral mass.<br />

381<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

The screw head should sit on the inferior aspect <strong>of</strong> the posterior arch<br />

<strong>of</strong> C1 in the trough created with the burr. On lateral fluoroscopic<br />

imaging the probe is aimed toward the anterior tubercle <strong>of</strong> C1<br />

midway between the superior and inferior facets <strong>of</strong> C1. Secondary<br />

to the strong screw purchase in the lateral mass, we do not routinely<br />

obtain bicortical purchase through the anterior cortex <strong>of</strong> C1. If there<br />

is concern about the sturdiness <strong>of</strong> the screw, then a 2.5mm drill can<br />

perforate the anterior cortex. Care must be taken to avoid the internal<br />

carotid artery as it lies just lateral to the exit point <strong>of</strong> this screw.<br />

C2 Fixation Methods<br />

As previously discussed, fixation into the C2 vertebrae has undergone<br />

a significant evolution over the past several years. Secondary to the<br />

aberrant course <strong>of</strong> the vertebral artery, nearly 23% <strong>of</strong> all patients are<br />

not deemed suitable for transarticular fixation across the C1-2 joint.<br />

If the vertebral artery is injured, there have been reports <strong>of</strong> secondary<br />

medullar infarction, cerebellar infarction and death with aberrant<br />

placement <strong>of</strong> screws.<br />

C2 Pars Interarticularis Screw<br />

The anatomic description for pars and pedicle screws is <strong>of</strong>ten<br />

inconsistently described. The pars interarticularis, by definition, is the<br />

portion <strong>of</strong> the C2 vertebra between the superior and inferior articular<br />

surfaces. A screw placed in this portion <strong>of</strong> C2 has <strong>of</strong>ten been called a<br />

pedicle screw, but is more appropriately termed a “pars” screw as it is<br />

placed in a trajectory similar to that <strong>of</strong> the C1-C2 transarticular screw.<br />

The starting point for the C2 pars screw is 3 - 4 mm cephalad and 3 - 4<br />

mm lateral to the inferomedial aspect <strong>of</strong> the inferior articular surface<br />

<strong>of</strong> C2. The screw follows a steep trajectory, similar to a transarticular<br />

screw trajectory, however the pars screw does not violated the C1-2<br />

facet. An appropriately steep trajectory (40 degrees or more) is<br />

achieved by aligning the shaft <strong>of</strong> the drill or screwdriver with the tip<br />

<strong>of</strong> the T1 spinous process. This trajectory may be achieved by using<br />

percutaneous stab incisions about 2 cm lateral to the T1 spinous<br />

process. The screw trajectory is approximately 10 degrees <strong>of</strong> medial<br />

angulation. Screw length is typically 16 mm, which will stop short<br />

<strong>of</strong> the C1-C2 facet joint. This can be confirmed with sounding the<br />

screw tract or with lateral fluoroscopic evaluation intraoperatively.<br />

This short screw also usually stops short <strong>of</strong> the transverse foramen,<br />

avoiding injury to the vertebral artery. When possible, a larger (4.0<br />

mm) diameter screw is used to achieve increased pullout resistance<br />

since the screw is unicortical.<br />

C2 Pedicle Screws<br />

The C2 pedicle is defined as that portion <strong>of</strong> the C2 vertebra<br />

connecting the dorsal elements with the vertebral body. This area is<br />

very narrow, essentially a window, between the vertebral body and<br />

the pars interarticularis. The trajectory for the C2 pedicle screw is<br />

quite different from that <strong>of</strong> the C2 pars screw, with 30 degrees <strong>of</strong><br />

cephalic angulation and 30 degrees <strong>of</strong> medial angulation. The entry<br />

point for C2 pedicle screw fixation is in the pars interarticularis,<br />

lateral to the superior margin <strong>of</strong> the C2 lamina. This will be about<br />

3 mm superior and 3 mm lateral to the entry point for the C2 pars<br />

screw. One can remove a small amount <strong>of</strong> ligamentum flavum and<br />

palpate the medial aspect <strong>of</strong> the pars. The thick medial wall <strong>of</strong> the<br />

C2 pars will help redirect the screw if necessary and prevent medial<br />

wall breakout. The entry point can be adjusted based on palpation <strong>of</strong><br />

the pars as well as the lateral fluoroscopic view if the probe does not<br />

easily advance. C2 pedicle screws are generally angled with a caudalto-rostral<br />

inclination, so that the tip is aimed towards the ventral<br />

C2 body just below the base <strong>of</strong> the dens. This trajectory (30 degrees<br />

up angle) allows safe purchase through the pedicle into the C2<br />

body providing greater resistance to screw pullout. Additionally, the<br />

trajectory <strong>of</strong> the C2 pedicle screw will be medial to the C2 transverse<br />

foramen, therefore allowing for a safety factor during insertion.


C2 Intralaminar Screws<br />

Because C2 fixation remains technically difficult, recently the C2<br />

intralaminar technique has been described. The C2 pedicle screw<br />

placement remains tenuous as cadaveric studies have demonstrated<br />

an unacceptably high rate <strong>of</strong> violation <strong>of</strong> the foramen transversarium.<br />

For insertion <strong>of</strong> intralaminar screws into C2, the high-speed burr<br />

is used to open a small cortical window at the spinous process/<br />

lamina junction. The right sided burr hole is for placement <strong>of</strong> the<br />

left intralaminar screw. Care must be taken to start the right screw<br />

on the rostral aspect <strong>of</strong> the lamina and caudal on the left lamina<br />

for placement <strong>of</strong> the right laminar screw. This will ensure adequate<br />

cancellous space so the screw will not encroach on one another. Then<br />

with the use <strong>of</strong> a pedicle probe the contralateral lamina is foraged to<br />

a depth <strong>of</strong> 25-30mm. The trajectory is parallel to the dorsal aspect<br />

<strong>of</strong> the lamina with a slight dorsal angulation to ensure that any<br />

variation in the anterior-posterior direction occurs dorsally to avoid<br />

spinal canal violation. Next, a small ball-tipped probe is used to<br />

“sound” the screw path to ensure no violations have occurred and to<br />

verify the length <strong>of</strong> the screw. Finally, a 4.0mm screw is then placed<br />

into the screw path, being careful not to fully seat the head onto<br />

the lamina to allow for proper function <strong>of</strong> the multiaxial nature <strong>of</strong><br />

the screw. The contralateral screw can then be placed, followed by<br />

decortication <strong>of</strong> the lamina on both sides. Rods are then cut to fit and<br />

inserted between C1 and C2, and posterior structural autograft and<br />

cables are used as desired. The rods thus connect the C1 lateral mass<br />

to the ipsilateral C2 screw head (i.e. the contralateral intralaminar<br />

screw).<br />

After choosing the preferred method for the C1-2 fixation, the<br />

arthrodesis can be performed with either sublaminar cable and<br />

structural grafting or interspinous autograft if the laminae <strong>of</strong> C1<br />

and C2 are preserved. Otherwise, lateral arthrodesis is performed by<br />

carefully decorticating the exposed surfaces <strong>of</strong> the C1-C2 joints with<br />

a high-speed drill, and then packing cancellous iliac crest autograft<br />

into these joints. The rod is then positioned and fixed to the C1 and<br />

C2 implants.<br />

Comparison <strong>of</strong> C2 Pars, Pedicle and Intralaminar Screws<br />

The fundamental problems with the C2 pars screw is that it is a very<br />

short screw (14-18 mm) compared to the C2 pedicle screw (30-40<br />

mm), but is fraught with all the potential complications <strong>of</strong> vertebral<br />

artery injury as the C1-C2 transarticular screw. The C2 pedicle screw,<br />

by definition is positioned into the C2 vertebral body and thus is<br />

much longer and biomechanically stronger than the pars screw.<br />

Also, since it angles medially much more than the pars screw, it is<br />

less likely to damage the vertebral artery. The pedicle screw also starts<br />

more cephalad than the pars screw and most times this entry point is<br />

above the vertebral artery as it courses from medial to lateral under<br />

the inferior articular process <strong>of</strong> C2. The ability to begin the screw<br />

more cephalad is an advantage because the higher the screw starts,<br />

the more likely the vertebral artery has already passed underneath<br />

the starting point.<br />

Since the C2 lamina is the largest in the upper cervical spine, the<br />

use <strong>of</strong> crossing intralaminar screws may provide for safer fixation<br />

at this level without concern for the course <strong>of</strong> the vertebral artery<br />

which may be aberrant in up to 23% <strong>of</strong> patients. Additionally, the<br />

space available for the cord (SAC) is largest at the C2 level, allowing<br />

for an additional safety factor in case a ventral laminar violation<br />

occurs. Because the insertion <strong>of</strong> the intralaminar screws is based<br />

on visual and tactile feedback, there is no need for intraoperative<br />

fluoroscopy or image guidance. Several concerns for the intralaminar<br />

technique include the potential for C2-3 facet violation if too long<br />

a screw is used as well as potential difficulty in identifying ventral<br />

canal violation by screw threads via intraoperative or postoperative<br />

382<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

imaging modalities. A recent study compared the biomechanical<br />

characteristics <strong>of</strong> C2 intralaminar and pedicle screws in a destabilized,<br />

odontoidectomy model. They found similar reduction in range <strong>of</strong><br />

motion (ROM) between bilateral C2 pedicle screws, a C2 pedicle<br />

and a C2 intralaminar screw and bilateral C2 intralaminar screws.<br />

Complications <strong>of</strong> Occipito-Cervical Fixation<br />

Complications during stabilization <strong>of</strong> the craniovertebral junction<br />

(CVJ) include those related to: fixation/pseudarthrosis, neurologic<br />

injuries, craniocervical alignment, screw placement and vascular<br />

injuries. Occipitocervical fixation (OCF) is indicated for OC<br />

instability, or atlantoaxial instability where the patient is not a<br />

candidate for atlantoaxial arthrodesis (AAA) or has failed prior C1-<br />

C2 fusion attempt. Though technically demanding, OCF can be<br />

performed safely with an understanding <strong>of</strong> anatomy, biomechanics<br />

and potential complications. Familiarity with different techniques<br />

and implants allow surgeons to adapt to patho-anatomic variability<br />

while giving the patient the best chance to heal.<br />

One potential pitfall <strong>of</strong> OCF is inadequate fixation, potentially<br />

leading to progressive instability, pseudarthrosis and fixation failure.<br />

Originally, OCF was attempted with on-lay grafting, <strong>of</strong>ten with<br />

simple wire techniques through the facets, spinous processes, and/or<br />

sublaminar spaces. These non-rigid constructs maintained a large bed<br />

for fusion, but added little rotational, lateral bending and axial load<br />

stability, and required traction and/or post-operative immobilization<br />

with a Minerva cast or halo. Additionally, addressing more complex<br />

instabilities was difficult and relatively high failure rates <strong>of</strong> surgical<br />

stabilization were seen, as well as significant complications such as<br />

further cranial settling. Atlantoaxial arthrodesis (AAA) with Gallie,<br />

Brooks-Jenkins, or interspinous wiring resulted in 3-80% failure<br />

rates and relatively high pseudarthrosis rates (up to 30% or more).<br />

Wire passage can be difficult, and has been reported to result in<br />

iatrogenic neurologic deficits in 5-7%.Flexible cables may decrease<br />

this rate. Rod and wire constructs improved fixation, but inability<br />

to stabilize axial loads due to pistoning through sublaminar wires<br />

led to failure rates up to 30% and to a biomechanical assessment as<br />

the least stable OCF devices. In contrast, C1-2 transarticular screw<br />

fixation: markedly increases stability (especially rotational) over<br />

wiring constructs (up to 10-fold stiffer), eliminates the need for halo<br />

use postoperatively, and has reported fusion rates <strong>of</strong> up to 100% for<br />

bilateral screws and 95% for unilateral transarticular screws.<br />

Use <strong>of</strong> contemporary modular systems simplify OCF, minimize<br />

fixation failure risk by allowing polyaxial screw placement in optimal<br />

locations, and maintain the ability to easily attach rods with minimal<br />

contouring. Subsequently, the chance <strong>of</strong> obtaining rigid fixation and<br />

using no post-operative halo is significantly enhanced, and these<br />

constructs are strong, decreasing fixation-related morbidities. Plate<br />

and screw fixation is similarly biomechanically strong, providing<br />

90% <strong>of</strong> the stabilizing effect <strong>of</strong> an intact OC junction. However,<br />

optimal plate contour can be difficult and screws must be placed<br />

through predetermined holes—both disadvantages can increase<br />

fixation-related complications, especially in cases <strong>of</strong> bony destruction<br />

or anatomic variability. Additionally, screws are not locked to the<br />

plates, so fixation is dynamic (semi-rigid) and potentially less stable<br />

than newer rigid screw-rod systems.<br />

Complications from screw placement <strong>of</strong>ten relate to injury to deeper<br />

structures (dura, neurological, vascular). Patient anatomy or choice <strong>of</strong><br />

implant can limit the ability to drill, tap or place screws in optimally<br />

safe locations, increasing the risk <strong>of</strong> screw placement complications.<br />

Examples include some contoured plates, a hyperkyphotic (or<br />

obese) upper thoracic spine, or bony destruction <strong>of</strong> the occipital<br />

plate. The confluence (“torcula”) <strong>of</strong> the inner table large venous<br />

sinuses lies behind the EOP, while the transverse venous sinuses are


on the inner skull behind the superior nuchal line. Occipital bone<br />

may be insufficiently thin for fixation, due to local pathology, or<br />

if occipital cortex has been taken down for prior attempted fusion<br />

or decompression. Pre-op CT correlation with external occipital<br />

anatomy should yield safe fixation points and augmentation with<br />

wire/cable fixation may be necessary. Low placement <strong>of</strong> occipital<br />

screws, as may occur if too close to the foramen magnum, can<br />

be difficult due to a steep drill angle, or in patients with kyphotic<br />

thoracic spines (or obesity, short necks). Positioning closer to the<br />

superior nuchal line may help, particularly in cases <strong>of</strong> significant<br />

occiput resection/destruction or a hyperkyphotic thoracic spine. If<br />

required, screws can be placed above the superior nuchal line with<br />

care to avoid the torcula or the transverse venous sinuses. If they are<br />

encountered, bone wax or an absorbable hemostat can be placed,<br />

followed by screw placement. Do not attempt repair, which can be<br />

fraught with complications. If CSF is encountered during drilling,<br />

tapping or screw placement, bone wax can be placed followed<br />

expediently by a screw.<br />

Occipital screw purchase is critical to construct stability. During<br />

placement, the far cortex must be drilled and tapped through the<br />

entire cortex. If not, blunt screw ends and tight thread design can<br />

result in thread/bone stripping in the hard inner cortex, leading to<br />

palpably poor purchase. High speed drilling should occur in 2 mm<br />

incremental increases to ascertain screw length, followed by tapping<br />

at or just slightly longer than that length. Additionally, occipital<br />

screws should be placed last, since their location will dictated by the<br />

spinal implant being used, availability <strong>of</strong> occipital bone, and location<br />

<strong>of</strong> screws placed more caudally. Place the C2 (or transarticular) screw<br />

first, followed by lateral mass C1 screws. Contour the rod (or plate)<br />

early, critically evaluating craniocervical angle and close proximity<br />

<strong>of</strong> caudal screw heads. Incomplete C1-2 reduction increases risk<br />

<strong>of</strong> fixation loss and VA injury for C1-2 transarticular screws, but<br />

staying as dorsal and medial within the C2 isthmus optimizes the<br />

potential for C1-2 joint purchase and minimizes VA injury risk.<br />

Slight medialization <strong>of</strong> C2 pars screws and appropriate ~30-35<br />

degree medial angulation <strong>of</strong> C2 pedicle screws, will minimize VA<br />

risk as well.<br />

Rigid fixation has resulted in lower rates <strong>of</strong> complications related to<br />

inadequate fixation, including halo/cast-associated problems, further<br />

cranial settling/instability, and fixation failure <strong>of</strong>ten associated with<br />

pseudarthrosis. Newer fixation techniques can minimize prior risks<br />

<strong>of</strong> nonrigid wire/rod systems, and focus the fusion/construct only<br />

to unstable segments. Choice <strong>of</strong> fixation/implant is paramount<br />

and must be based on the patients’ anatomy, pathology and bone<br />

quality. Occipital screws are the strongest form <strong>of</strong> fixation, with six<br />

having the highest stiffness in cadaveric studies. Similar fixation is<br />

seen with plate/C1-2 transarticular screw constructs and both can<br />

prevent further cranial settling due to better resistance to axial loads.<br />

Bicortical screws have increased pullout strength and are preferred,<br />

but unicortical screws at the dense external occipital protuberance<br />

(EOP) have similar pullout strengths to that <strong>of</strong> bicortical screws in<br />

other locations. Unicortical fixation is thus strong in the midline at<br />

the EOP and at the medial nuchal line descending below the EOP,<br />

and limits the possibility <strong>of</strong> dural or venous sinus penetration during<br />

drilling, tapping or screw placement. Lateral bicortical fixation adds<br />

significant torsional strength. Graft type is important and iliac crest<br />

autograft remains the gold standard. Structural rib autograft also can<br />

be used to minimize pseudarthrosis rates, and should be anchored<br />

to the construct with cranial and/or other wiring techniques, or even<br />

an occipital screw through the graft. Alternatively, Apfelbaum et al.<br />

have found fusion rates comparable to autograft using structural<br />

bicortical iliac crest allograft well-seated between C1 and C2 when<br />

using C1 lateral mass/C2 pedicle screws or TAS. Despite our best<br />

383<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

attempts, pseudarthrosis rates remain substantially higher in those<br />

over 75 years <strong>of</strong> age. However, in this patient population, it is possible<br />

a stable pseudarthrosis may obviate the need for further surgery and<br />

protect their neurological status.<br />

Neurologic Complications<br />

Neurologic complications include injury to the spinal cord,<br />

hypoglossal nerve, or C1 and C2 nerve roots and positioningrelated<br />

deficits. Pre-operative positioning in reverse trendelenburg<br />

can decrease venous engorgement and may aid in control <strong>of</strong><br />

bleeding. Attention to pre- and post-positioning neurophysiologic<br />

monitoring is essential and signal loss/decreases mandate(s) rapid<br />

correction <strong>of</strong> positioning. The incidence <strong>of</strong> spinal cord injury<br />

during OCF is extremely low, but can occur during standard upper<br />

cervical decompression or via excessive medialization <strong>of</strong> C2 pedicle<br />

screws with an inappropriate starting point. The hypoglossal nerve<br />

innervates the tongue and sits anterior to the C1 cortical ring. C1<br />

lateral mass (or C1-2 transarticular) screws too long can injury the<br />

hypoglossal nerve in this location. C1 or C2 nerve root injury can<br />

occur during exposure <strong>of</strong> optimal screw starting points or during<br />

drilling, tapping or screw placement. To minimize C2 root injury<br />

during lateral mass screw placement, C2 root mobilization is best<br />

achieved with subperiosteal dissection along the posterior inferior<br />

C1 arch/lateral mass. Gentle caudal retraction <strong>of</strong> the C2 root with<br />

its venous leash can expose the C1 lateral mass screw entry point,<br />

at the base <strong>of</strong> the C1 posterior arch and cephalad C1 lateral mass.<br />

If bleeding occurs it is <strong>of</strong>ten dark and can be pr<strong>of</strong>use, but is best<br />

controlled by packing it locally and proceeding with dissection<br />

on the contralateral side. Use <strong>of</strong> partially threaded C1 lateral mass<br />

screws may limit C2 root irritations by screw threads.<br />

Craniocervical Alignment Complications<br />

Sagittal (or coronal) malalignment <strong>of</strong> the OCJ during fusion can lead<br />

to significant complications. Head position should be as close to<br />

neutral as possible. Longer OC constructs placed in extension can be<br />

disabling (for safe ambulation, ADLs). If error occurs it should tend<br />

towards slight occipitocervical flexion without kyphosis, the latter<br />

<strong>of</strong> which can lead to a higher incidence <strong>of</strong> post-operative dysphagia<br />

and dyspnea and decreased oropharynx volumes. Pre-operative<br />

and intra-operative comparison <strong>of</strong> Phillips’ angle and use <strong>of</strong> Halo,<br />

Gardner-Wells tongs or a Mayfield can assist in optimizing neutral<br />

positioning, maintaining reduction, and minimize associated<br />

complications.<br />

Vascular Complications<br />

Injury to the vertebral artery (VA) or internal carotid artery (ICA)<br />

can occur during OCF. Reported rates <strong>of</strong> VA injury during posterior<br />

cervicalspinesurgeriesvarydependingoninstrumentationtechnique,<br />

but range from no injury to 4.1% to 8.2% for C1-C2 transarticular<br />

screws. A 161 patient study <strong>of</strong> transarticular screw placement noted<br />

no VA or spinal cord injuries and 6% screw-related complications.<br />

At a mean <strong>of</strong> 6.5 years this same population demonstrated an 11%<br />

late complication rate requiring revision surgery. One study suggests<br />

risk <strong>of</strong> VA injury is ~2% per transarticular screw, but subsequent<br />

neurologic deficit after VA injury has been reported at 0.2%.<br />

VA injury predominantly occurs during drilling, tapping, or screw<br />

placement, or during dissection. Since pathology commonly alters<br />

local anatomy, safe access to the craniovertebral junction begins<br />

with meticulous dissection <strong>of</strong> safe screw entry points. Dissection<br />

on the C1 posterior ring should not deviate more than 12 mm<br />

lateral from the midline and when cephalad on C1 should stay<br />

within 8mm <strong>of</strong> midline. Decompressive C1 laminectomy should<br />

respect these boundaries. Bony and VA variations, seen in 18-23% <strong>of</strong><br />

patients, also increase risk <strong>of</strong> VA injury during OCF. Normally, the VA


enters the foramen transversarium (FT) at C6 in ~90% <strong>of</strong> patients,<br />

ascending cephalad to reach the more medial C2 FT and coursing<br />

laterally through the C1 FT. During ascent, it crosses anterior to<br />

the C2 pars and C2-C3 joint. In patients with a high-riding VA and<br />

corresponding FT, the C2 pars become significantly narrowed and<br />

limits safe transarticular (or pars) screw placement. In this case, C1<br />

lateral mass screws with C2 pedicle screws may be necessary, but ~9%<br />

<strong>of</strong> patients have anatomy that precludes C2 pedicle screw placement.<br />

Adding to VA injury risk, other anatomic variants around C1-2<br />

include a posterior ponticulus, other VA anomalies, and a bifid C-1<br />

arch. Analysis <strong>of</strong> over 1000 patients using 3-D CT angiography, Hong<br />

et al. found that the prevalence <strong>of</strong> a C1 posterior ponticulus was<br />

15.6%, and the incidences <strong>of</strong> a persistent first intersegmental artery<br />

(PFIA) and fenestrated VA (fVA) were 4.7% and 0.6%, respectively—<br />

combining for a rate <strong>of</strong> 20.9%. A posterior ponticulus may be<br />

mistaken for a broad C1 lamina but if present, placing the screw<br />

too superiorly might cause VA injury. A PFIA courses abnormally<br />

below the C1 arch potentially making C1 lateral mass screws quite<br />

dangerous and a transarticular C1-2 screw preferred. A high index<br />

<strong>of</strong> suspicion for anomalous VA should be raised in patients with an<br />

atretic (or atrophic) FT and/or deep groove on the inner aspect <strong>of</strong><br />

the C1 posterior ring. Pre-operative CT angiography can be critical to<br />

surgical planning and complication prevention. However, as recently<br />

demonstrated by Yeom et al., even in normal VA/bony anatomy,<br />

undetected VA injury can occur, particularly at the medial part <strong>of</strong> the<br />

VA groove just lateral to the C2 pedicle.<br />

As for the ICA, it courses just anterior to the C1lateral mass before<br />

entering the skull base. Currier et al. demonstrated that the ICA passes<br />

only 2-4 mm from the center <strong>of</strong> the C1 lateral mass anterior cortex<br />

anterior in neutral neck rotation. Transarticular C1-2 or C1lateral<br />

mass screws that reach (or go beyond) the anterior cortex <strong>of</strong> the C1<br />

anterior tubercle risk injury to the ICA, but medial screw angulation<br />

appears to decrease this risk.<br />

If injury to the VA has occurred, bright red (possibly pulsatile)<br />

bleeding occurs. Immediate control <strong>of</strong> bleeding can usually be<br />

obtained by placing the screw. However, a critical caveat is preoperative<br />

assessment <strong>of</strong> which VA is dominant, either via vascular<br />

caliber, flow or both. Usually, the left VA is dominant and larger if<br />

asymmetry is present. The posterior inferior cerebellar artery (PICA)<br />

branches from the VA to provide hindbrain blood flow. When<br />

complete occlusion <strong>of</strong> the dominant VA occurs with inadequate<br />

compensation via the contra-lateral VA, ischemia can lead to a lateral<br />

medullary infarction and Wallenberg’s syndrome. Thus, if intraoperative<br />

injury to the dominant VA occurs, every attempt should be<br />

made to safely control bleeding and repair the injury. Post-operative<br />

CT (or MR) angiography is warranted, as is close neurologic<br />

monitoring for stroke and sequelae <strong>of</strong> Wallenberg’s syndrome. In<br />

patients with co-dominant VA’s, unilateral VA injury is usually well<br />

tolerated. As bilateral VA injuries can be fatal, do not attempt screw<br />

placement on the opposite side if VA injury has already occurred.<br />

Technically, less steep upward (or shallow) angulation can injure<br />

384<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

even a normally placed VA, <strong>of</strong>ten early during drilling through C2.<br />

When C1 is not anatomically reduced and is anterior to C2, entry into<br />

the C1 lateral mass <strong>of</strong>ten requires a shallow trajectory, again placing<br />

the VA at risk. When transarticular screw placement is lateral, the<br />

VA is at risk at well, primarily around C1. Slight medial angulation<br />

(2-10 ¼) and steep cephalad angulation may prevent this and safe,<br />

bony purchase is optimized in the most dorsal and medial portion<br />

<strong>of</strong> the C2 isthmus.<br />

The consequences <strong>of</strong> VA injury can manifest days to even years<br />

later. Post-operative manifestations usually indicate complete<br />

vessel occlusion. Later occurring events include thrombotic-related<br />

complications leading to embolic events from a partially occluded VA.<br />

This may relate to a variety <strong>of</strong> sequelae, including pseudoaneurysm,<br />

arteriovenous fistulae, late-onset hemorrhage or thrombosis with<br />

embolic incidents leading to cerebral ischemia, stroke, and even<br />

death.<br />

VA injury management should accomplish three goals, as nicely<br />

reviewed by Peng et al.: 1) control local hemorrhage, 2) prevent<br />

immediate vertebrobasilar ischemia, and 3) avoid cerebral embolic<br />

complications. Anesthesia must maintain perfusion pressure and<br />

fluid status. Gaining local control <strong>of</strong> bleeding may initially require<br />

absorbable hemostats and/or bone wax. Because risk <strong>of</strong> delayed<br />

hemorrhage or fistula formation is too high using packing alone, it<br />

should not be the primary method <strong>of</strong> hemorrhage control. A critical<br />

branch-point exists next, as to whether the injured VA is dominant<br />

or not. When in question, intra-operative angiography should<br />

be considered. The intra-operative assistance <strong>of</strong> an endovascular<br />

specialist can help tremendously in surgical decision making for<br />

repair versus ligation or occlusion, as well as in helping to delineate<br />

VA dominance and remnant collateral posterior circulation. As<br />

pointed out by Peng et al. and others, normal VA angiography<br />

after injury or even following direct repair does not preclude later<br />

pseudoaneurysm formation, even out to several years following<br />

surgery. If not the dominant VA, most agree that screw placement<br />

(e.g. C1-2 transarticular screw) is usually sufficient to control<br />

bleeding. One can also consider embolization or proximal and<br />

distal VA ligation, but ligation-associated morbidities such as<br />

cerebellar infarct, cranial nerve palsies, hemiplegia and even a<br />

mortality rate <strong>of</strong> 12% have been reported. In dominant VA injury,<br />

direct repair should be considered despite the technical demands<br />

<strong>of</strong> exposure/microvascular repair. Repair can minimize immediate<br />

and delayed risks <strong>of</strong> injury and ischemia and may pr<strong>of</strong>oundly affect<br />

patient outcome. Post-operatively, controversy exists as to whether<br />

or not angiography is required. Similar to that proposed by Peng et<br />

al., we suggest immediate post-operative angiography be performed<br />

if declines in the patient’s clinical condition occur or if packing,<br />

bone wax or direct repair <strong>of</strong> the VA injury was performed. Following<br />

cerebral flow assessments, endovascular techniques may assist<br />

in further medical management either via embolization, fistula<br />

occlusion, or stenting.


385<br />

CerviCal SpiNe trauma: SubaXial SpiNe<br />

Alexander R. Vaccaro, MD, PhD<br />

Cervical Dislocations<br />

There are two primary controversial questions. The first is—should<br />

a MRI be obtained prior to performing a closed reduction. And the<br />

second, is it safe to performed a closed reduction in an incomplete<br />

injury.<br />

The use <strong>of</strong> MRI in cervical dislocation is not, in itself, controversial.<br />

It is the timing <strong>of</strong> the MRI that is controversial and has been debated<br />

for many years in many different forums.<br />

The decision to perform a closed reduction has been a question<br />

<strong>of</strong> risk versus benefit. In the intact patient, there is nothing to gain<br />

and everything to lose by doing a closed reduction. There is very<br />

high risk and very little benefit. In this situation, many recommend<br />

obtaining an MRI before closed reduction and certainly before open<br />

reduction.<br />

In the patient with a complete spinal cord injury, there is much to<br />

gain and little to lose by attempting an immediate closed reduction,<br />

and most recommend, for this reason, immediate closed reduction<br />

prior to MRI.<br />

In patients with a radicular deficit, it is similar to the intact<br />

situation, with little to gain and much to lose, and this is somewhat<br />

controversial. But the most controversial <strong>of</strong> the situations in a patient<br />

with an incomplete spinal cord injury. There is moderate risk and<br />

benefit, and this situation has been extensively debated.<br />

Case example. A 34 year old female involved in an MVA. The patient<br />

presented within 2 hours <strong>of</strong> the accident with complaints <strong>of</strong> neck<br />

pain. She was awake and alert, had no drugs or alcohol on board,<br />

and physical exam revealed that she had an incomplete spinal cord<br />

injury. The steroid protocol was initiated. Imaging revealed bilateral<br />

jumped facets at C6-7. The sagittal CT scan confirms the bilateral<br />

jumped facets.<br />

The question is, what is the next step in management? Do you get<br />

a MRI to look for the presence <strong>of</strong> a herniated disk, do you do an<br />

immediate closed reduction using gardner-wells tongs, or do you<br />

take the patient to the OR, administer general anesthesia, and do an<br />

open reduction.<br />

In 1982, Allen and Ferguson looked at 165 cases <strong>of</strong> lower cervical spine<br />

injuries and described a classification system <strong>of</strong> numerous patterns<br />

<strong>of</strong> injury based on the mechanism <strong>of</strong> injury, including compressive<br />

flexion, vertical compression, distractive flexion, compressive<br />

extension, distractive extension, and lateral flexion. They described<br />

four types <strong>of</strong> flexion distraction injuries: Type I is a strain <strong>of</strong> the<br />

facet capsules. Type II is a unilateral facet dislocation, which is <strong>of</strong>ten<br />

associated with approximately 25% <strong>of</strong> anterior subluxation, Type<br />

III is a bilateral facet dislocation, with greater than 50% vertebral<br />

subluxation. And Type IV is a bilateral facet dislocation with 100%<br />

subluxation or spondyloptosis.<br />

The spine trauma study group published a subaxial cervical spine<br />

injury classification system and severity scale that parallels the<br />

thoracolumbar classification system. It is based on the morphology<br />

<strong>of</strong> the injury, the status <strong>of</strong> the discoligamentous complex and the<br />

neurological status <strong>of</strong> the patient. Facet dislocation is <strong>of</strong> the distraction<br />

morphology. In such an injury, the discoligamentous complex is<br />

disrupted, with propagation <strong>of</strong> the ligamentous disruption through<br />

the facet joints posterior and disc space anteriorly.<br />

Why do these injuries get so much attention? They are associated<br />

with a relatively high rate <strong>of</strong> neurological compromise. Unilateral<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

fact dislocation is associated with neurological deficit 92% <strong>of</strong> the<br />

time, with 24% having spinal cord injury. Bilateral facet dislocation<br />

has a higher rate <strong>of</strong> neurological injury, with 50 to 84% having a<br />

spinal cord injury.<br />

The argument for obtaining a MRI prior to attempts at reduction<br />

in cases <strong>of</strong> cervical dislocation has been popularized by Frank<br />

Eismont and is based on a case series that Eismont published in<br />

the journal <strong>of</strong> bone and joint surgery in 1991. The argument is that<br />

cervical dislocation can be associated with disc herniation that, upon<br />

reduction, is pushed into the spinal canal, thus potentially causing<br />

neurological injury.<br />

Eismont’s case series involved 68 patients that were treated surgically<br />

for cervical facet subluxation or dislocation. 6 <strong>of</strong> these 68 patients<br />

were identified as having a herniated disc at the level <strong>of</strong> injury. There<br />

were two cases <strong>of</strong> post reduction neurological worsening. Neither <strong>of</strong><br />

these patients had preoperative MRIs. One patient worsened after<br />

open posterior reduction and fusion. The other patient worsened<br />

after an ACDF. This patient was a complete injury upon presentation,<br />

with postoperative ascension <strong>of</strong> the neurological deficit and eventual<br />

death. The disk in this case was identified by intraoperative ultrasound<br />

following reduction <strong>of</strong> the facets.<br />

The case on which the entire argument <strong>of</strong> Eismont is based is this<br />

one. A 33 year old with C6-7 bilateral facet dislocations who had 4/5<br />

triceps strength, but otherwise was intact. There was a failed attempt<br />

at closed traction reduction with up to 50 pounds <strong>of</strong> weight applied.<br />

The patient then underwent posterior reduction and fusion using<br />

sublaminar wires without obtaining any imaging prior to surgery.<br />

The patient woke up a quadriplegic.<br />

A post operative CT myelogram showed what the authors said was<br />

complete block at the C6 level with anterior compression <strong>of</strong> the spinal<br />

cord. Although this is the image shown in their paper demonstrating<br />

this spinal cord compression. There is question as to whether the<br />

disk or the sublaminar wire actually caused the compression <strong>of</strong> the<br />

cord. The patient was taken back for an ACDF, and the authors noted<br />

the presence <strong>of</strong> a herniated disc at the level <strong>of</strong> injury. From this case<br />

series, level IV evidence, Eismont concluded that any patient with<br />

cervical dislocation should have and MRI before reduction. Every<br />

disc herniation would then be detected, minimizing the risk <strong>of</strong><br />

neurological deterioration at the time <strong>of</strong> reduction.<br />

It is important to understand some <strong>of</strong> the basic science <strong>of</strong> acute<br />

spinal cord injury. It is not only the initial mechanical trauma that<br />

causes injury to the cord, but is also the pathophysiological processes<br />

that ensue in the time period following the initial insult. A lot <strong>of</strong><br />

research has been directed towards stopping, slowing, or reversing<br />

this second hit to the spinal cord. One <strong>of</strong> the questions is whether<br />

early removal the mechanical compression affects this process and<br />

improves neurological outcome.<br />

In the early 1950’s, Tarlov did a series <strong>of</strong> studies to develop a canine<br />

model for spinal cord injury through gradual and acute compression<br />

using a balloon. In 1954, he published a study that evaluated the<br />

effect <strong>of</strong> acute spinal cord compression and the effect <strong>of</strong> the timing<br />

<strong>of</strong> decompression. He found that smaller balloons and earlier<br />

decompression led to greater neurological recovery.<br />

Dimar and others developed a rat model for spinal cord injury.<br />

These authors placed spacers in the rat spinal canal taking up either<br />

20%, 35%, or 50% <strong>of</strong> the canal both in rats with normal spinal cords<br />

and inured spinal cords. These authors found that the prognosis for


neurological recovery is adversely affected by both a higher percentage<br />

<strong>of</strong> canal narrowing and a longer duration <strong>of</strong> canal narrowing after a<br />

spinal cord injury. The tolerance for spinal canal narrowing with a<br />

contused cord appears diminished, indicating that an injured spinal<br />

cord may benefit from early decompression. The longer the spinal<br />

cord compression exists after an incomplete spinal cord injury, the<br />

worse the prognosis for neurological recovery.<br />

In a histological analysis <strong>of</strong> the rats spinal cords, these authors found<br />

that increased time to decompression lead to increased necrosis and<br />

cavitation <strong>of</strong> the spinal cord, again supporting early decompression<br />

in spinal cord injury.<br />

In 1999, Fehlings and Tator did a systematic review <strong>of</strong> the literature,<br />

and concluded that there is significant biological evidence from<br />

animal studies that shows that early decompression improves<br />

neurological outcome following spinal cord injury<br />

Fehlings and Perrin performed two more recent systematic reviews <strong>of</strong><br />

the literature looking at clinical studies. Both <strong>of</strong> these studies showed<br />

that there have been several prospective clinical studies that suggest<br />

that early decompression is safe and may improved neurological<br />

outcome. A meta analysis by La Rosa concluded that early<br />

decompression within 24 hr from injury resulted in better outcomes<br />

than delayed decompression or conservative management. Based<br />

on their systematic reviews <strong>of</strong> the clinical literature, these authors<br />

recommended urgent decompression <strong>of</strong> bilateral facet dislocation<br />

in patients with incomplete injuries or patients with neurological<br />

deterioration.<br />

The benefits <strong>of</strong> immediate traction reduction are that it is relatively<br />

fast, and can be performed within 2 hr, and it can in the majority <strong>of</strong><br />

cases provide adequate decompression <strong>of</strong> the spinal canal.<br />

The question is whether or not immediate traction reduction is<br />

safe. In 1993, Cotler reported on 24 awake patients with cervical<br />

facet dislocation who underwent closed reduction with gardner<br />

wells tongs. Patient’s neurological status was closely monitored. All<br />

patients had successful reduction with weight ranging from 10 o 140<br />

pounds. No patients had any neurological worsening during or after<br />

reduction.<br />

Additional studies by Star, Rizzolo, and Aebi demonstrated the<br />

safety <strong>of</strong> awake closed reduction <strong>of</strong> facet dislocation with the<br />

potential for neuralgic improvement following reduction. In 1999,<br />

Vaccaro published a prospective study that looked at MRI pre and<br />

post reduction <strong>of</strong> cervical facet dislocation. 11 patients underwent<br />

awake, closed reduction 9 <strong>of</strong> whom had successful reduction. Of<br />

these nine patients, 2 patients had mri evidence <strong>of</strong> disc herniation<br />

prereduction, and 5 had disk herniation postreduction. No patients<br />

had neurological worsening. The authors concluded that although<br />

closed reduction may increase disk herniation, it has no negative<br />

effect on neurological status. There are risks associated with<br />

delaying closed reduction and getting a MRI first. First, there is a<br />

delay in reduction and decompression that otherwise could lead<br />

to neurological improvement. Also, there is risk <strong>of</strong> neurological<br />

worsening associated with transport <strong>of</strong> the patient with an unstable<br />

cervical injury. There is also a risk <strong>of</strong> leaving a potentially unstable<br />

patient in the MRI suite, with risk <strong>of</strong> hypotension and hypoxia,<br />

which can have negative effects on the injured cord.<br />

Marshall performed a prospective analysis <strong>of</strong> 283 spinal cord<br />

injury patients. These authors found that 5.4% <strong>of</strong> the patients who<br />

were transported for imaging or change <strong>of</strong> beds had neurological<br />

deterioration.<br />

Numerous studies have documented the negative effects <strong>of</strong><br />

hypotension on the injured spinal cord. Harrop showed that<br />

386<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

sustained hypotension was in part responsible for neurological<br />

deterioration <strong>of</strong> 12 <strong>of</strong> 186 patients with complete injury. Vale showed<br />

that maintaining the mean arterial pressure above 85 mmHg lead to<br />

improved neurological recovery in spinal cord injury patients.<br />

The prerequisites for safely performing a closed awake reduction<br />

include an awake, cooperative patient, and experienced physician,<br />

a dedicated radiology technician, a complete cervical spine series to<br />

rule out additional injuries, and the absence <strong>of</strong> a skull fracture that<br />

could be worsening with significant traction through gardner wells<br />

tongs.<br />

It is important to realize that graphite tongs with titanium pins are<br />

not as strong as the steel tongs and pins, which can hold up to 225<br />

pounds <strong>of</strong> traction. In a cadaveric study, the titanium pins failed at<br />

only 75 pounds and failed from bending <strong>of</strong> the pins. The steel pins<br />

did not fail until 225 pounds, and failed from fracture <strong>of</strong> the skull.<br />

Pin sites should be prepped with betadine solution and numbed<br />

with lidocaine. The pins should be place about 1cm above the<br />

pinnae in line with the external auditory meatus, below the equator<br />

<strong>of</strong> the skull. The pins should be tightened simultaneously until the<br />

button on the one pin pops out about 1mm<br />

You should start with 10lbs <strong>of</strong> traction, serial exams should be<br />

performed during the reduction. Serial radiographs are obtained<br />

at each interval <strong>of</strong> increased weight. A period <strong>of</strong> about 10 minutes<br />

should pass before increasing the weight, which should be increased<br />

in 5-10 pound increments. Counter traction can be used and may be<br />

necessary, especially as the weight increases. The necessary weight<br />

varies, in Cotlers series it varied between 10 and 140 pounds, the<br />

majority requiring more than 50lbs.<br />

To help unlock the facet dislocation, slight flexion can be helpful<br />

during the initial reduction, followed by extension to hold the<br />

reduction. Traction should be stopped if there is any worsening in<br />

the neurological status <strong>of</strong> the patient, if there is not progress towards<br />

reduction despite increase in weight. And if excessive distraction <strong>of</strong><br />

the spinal elements is noted on the x-ray.<br />

Although the timing <strong>of</strong> MRI remains a controversial topic, a MRI<br />

should certainly be obtained in cases <strong>of</strong> failed closed reduction,<br />

patients who cannot be examined during reduction due to the<br />

presence <strong>of</strong> mind altering substances or just an inability to<br />

cooperate, and an MRI should be obtained prior to surgery to<br />

guide operative planning. In regards to surgical treatment, Joon<br />

Lee recently performed a survey study involving 10 cases <strong>of</strong> cervical<br />

facet dislocation distributed to 25 members <strong>of</strong> the spine trauma<br />

study group. The goal <strong>of</strong> the survey was to evaluate the surgeon’s<br />

preference in surgical approach for a variety <strong>of</strong> injury patterns with<br />

and without neurological compromise. This study found relatively<br />

poor agreement among the surgeons, with a kappa value <strong>of</strong>


Cervicothoracic Trauma<br />

Objectives:<br />

1. Evaluation; Diagnosis-radiographic protocol<br />

2. Anatomy; Posterior fixation options<br />

3. Treatment;<br />

a) Stable v unstable<br />

b) Anterior v posterior v combined – ant. Approach options<br />

c) Instrumentation<br />

i. Anterior - supine v lateral<br />

ii. Posterior – cervicothoracic options<br />

OUTLINE:<br />

I. Diagnosis<br />

• Plain lateral x-ray may insufficiently visualize C6-T2<br />

• Missed and delayed diagnosis <strong>of</strong>ten due to inadequate x-rays<br />

<strong>of</strong> the lower cervical spine<br />

• Need visualization <strong>of</strong> the upper endplate <strong>of</strong> T1 and the C7-<br />

T1 facet joint.<br />

• Shoulder “pull-down” views or “swimmer’s” view may<br />

increase visibility <strong>of</strong> this area.<br />

• If inadequate, CT (helical with sagittal and coronal<br />

reformation) is required.<br />

• If spinal cord injury, need MRI.<br />

II. Treatment<br />

• Standard resuscitation-if SCI consider steroids per NASCIS<br />

protocol<br />

• Assess stability from physical exam, x-rays, CT, MRI<br />

• Goals <strong>of</strong> treatment<br />

1. Reduce dislocation and realign spine<br />

2. Protect spinal cord from further damage-stabilize spine<br />

• Closed reduction <strong>of</strong> subluxations and dislocations at the<br />

cervicothoracic junction usually require higher weights and<br />

are less successful than closed reduction technique <strong>of</strong> the<br />

subaxial cervical spine<br />

• Nonoperative treatment <strong>of</strong> unstable fractures<br />

1. Recumbent traction –complications <strong>of</strong> bed rest are many<br />

including PE, skin problems, and pulmonary difficulty<br />

especially in patients with spinal cord injury<br />

2. Halo vest –stability <strong>of</strong> the cervicothoracic junction is<br />

poor. Due to the biomechanical disadvantage <strong>of</strong> the halo<br />

vest in this region <strong>of</strong> the spine, nonoperative treatment<br />

is recommended only for stable fractures in patients<br />

without neurologic deficits.<br />

III. Surgical Options<br />

• Posterior –biomechanical challenge <strong>of</strong> connecting the highly<br />

mobile cervical spine to the anatomically different thoracic<br />

vertebrae.<br />

1. Hook and rod constructs are designed for the<br />

thoracolumbar spine, but hooks and sublaminar wires<br />

carry a significant risk <strong>of</strong> neurologic injury in the cervical<br />

canal.<br />

2. Standard fixation to the cervical spine is the lateral mass,<br />

but this is not an option in the thoracic spine.<br />

a) Magerl v Roy-Camille technique<br />

b) Bicortical v unicortical fixation<br />

3. Screw fixation in the thoracic spine is through the<br />

pedicles or transverse processes.<br />

a) Screws placed lateral to the pedicle usually engage the<br />

base <strong>of</strong> the rib and are quite strong.<br />

387<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

CerviCothoraCiC iNJurieS<br />

Jens R. Chapman, MD<br />

4. The anatomy <strong>of</strong> C7 is different because it is a transitional<br />

vertebra. Important anatomical issues:<br />

a) The lateral mass is smaller than the rest <strong>of</strong> the<br />

subaxial cervical spine, thus lateral mass screws will<br />

be shorter and biomechanically weaker<br />

b) The pedicle is larger than the rest <strong>of</strong> the subaxial<br />

cervical spine and closer to the size <strong>of</strong> upper thoracic<br />

pedicles<br />

c) The foramen transversarium does not usually contain<br />

the vertebral artery, thus pedicle screw placement is<br />

safer. (Beware-5% will harbor the VA)<br />

• Posterolateral<br />

1. Transpedicular<br />

Advantages:<br />

— simple technique<br />

— Less s<strong>of</strong>t tissue and bony dissection than other<br />

Posterlat. approaches<br />

Disadvantages:<br />

— limited ventral exposure<br />

— Not appropriate for multilevel pathology<br />

2. Costotransversectomy<br />

Technique:<br />

— rib <strong>of</strong> interest identified, isolated, divided at its angle,<br />

and disarticulated<br />

— Intercostal neurovascular bundle isolated and<br />

followed to the foramen and thecal sac<br />

— 1 or 2 ribs removed for adequate exposure<br />

— plane developed between the endothoracic fascia and<br />

the parietal pleura<br />

— plane carried lateral to the vertebral body, and the<br />

parietal pleura is retracted ventrally<br />

Disadvantages:<br />

— wound related complications<br />

— Neurovascular bundle sacrifice<br />

— Potential pneumothorax and CSF leak<br />

— Ventral exposure limited to the lateral 2/3 <strong>of</strong> the<br />

vertebral body<br />

— Difficult exposure for multilevel decompressions<br />

3. Lateral Extracavitary<br />

Technique:<br />

— midline hockey-stick incision<br />

— Myocutaneous flap developed superficial to erector<br />

spinae group<br />

— Lateral to medial elevation <strong>of</strong> erector spinae,<br />

beginning at its lateral margin<br />

— Rib resection and lateral thecal sac exposure<br />

— Vertebral body resection<br />

— Anterior reconstruction<br />

— Posterior instrumentation and fusion<br />

Advantages:<br />

— simultaneous ventral and dorsal exposure<br />

— Best access to ventral pathology <strong>of</strong> the posterolateral<br />

procedures<br />

— Disadvantages: extensive s<strong>of</strong>t tissue exposure<br />

— Visualization and decompression <strong>of</strong> canal less<br />

optimal than formal anterior thoracotomy<br />

— Technically demanding<br />

— Neurovascular bundle sacrifice<br />

— Blood loss may be considerable after epidural<br />

decompression


— Less ability to directly distract the anterior column<br />

and adaquately seat the anterior construct as well as<br />

difficulty placing anterior instrumentation<br />

• Anterior –standard approach to the cervical spine usually allows<br />

exposure <strong>of</strong> T2, but placement <strong>of</strong> instrumentation may be<br />

difficult because <strong>of</strong> the clavicle or sternum. Possible injury to<br />

the recurrent laryngeal nerve, thoracic duct, and great vessels.<br />

Lung apex may be problematic.<br />

1. Extensile options include osteotomy <strong>of</strong> the clavicle or<br />

median sternotomy. Allows access as low as T4.<br />

2. Standard lateral thoracotomy with mobilization <strong>of</strong> the<br />

scapulae allows exposure <strong>of</strong> T2, but the vertebral bodies are<br />

388<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

too small for application <strong>of</strong> non-custom anterior thoracic<br />

instrumentation.<br />

a) Transaxillary approach: variant <strong>of</strong> transthoracic approach<br />

Advantages:<br />

— Axillary incision avoids muscle division<br />

— Intrathoracic extrapleural approach via the third rib<br />

bed<br />

— Access to T1-T4<br />

Disadvantages:<br />

— Deep, very limited exposure


389<br />

u SpiNal deFormity:<br />

what every orthopaediC<br />

SurgeoN NeedS to kNow (t)<br />

I. Introduction<br />

Joseph Perra, MD, Minneapolis, MN<br />

II. Assessing Patients with Spinal Deformity<br />

Adam Wollowick, MD, New York, NY<br />

III. Early Onset Scoliosis<br />

Behrooz Akbarnia, MD, La Jolla, CA<br />

IV. Adolescent Idiopathic Scoliosis<br />

Lawrence Lenke, MD, Saint Louis, MO<br />

V. Pediatric Spondylolisthesis<br />

Paul Sponseller, MD, Baltimore, MD<br />

VI. Discussion, Q&A<br />

All faculty<br />

VII. Adult Scoliosis<br />

Frank Schwab, MD, New York, NY<br />

VIII. Sagittal Plane Deformity<br />

Steve Glassman, MD, Louisville, KY<br />

IX. Adult Spondylolisthesis<br />

Joseph Perra, MD, Minneapolis, MN<br />

X. Discussion<br />

All faculty<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

Moderator: Joseph Perra, MD, Minneapolis, MN


390<br />

aSSeSSiNg patieNtS with SpiNal deFormity<br />

Adam L. Wollowick, MD<br />

1. Basic Principles<br />

a. What is Spinal Deformity?<br />

i. Definitions: Scoliosis, Kyphosis, Lordosis,<br />

Spondylolisthesis<br />

b. Comprehensive History:<br />

i. Symptoms, deformity onset, constitutional symptoms,<br />

treatment history, bowel/bladder issues, overall function<br />

ii. Medical History<br />

iii. Family History: spinal deformity, syndromes, familial<br />

disorders<br />

c. Physical Examination:<br />

i. Inspection: Gait, skin, spinal movement, shoulder<br />

asymmetry, pelvic obliquity<br />

1. Heel/Toe Walking, Static and Dynamic Romberg<br />

ii. Motor<br />

iii. Sensory<br />

iv. Reflexes: DTR’s, Babinski, Clonus, Abdominal<br />

v. Special Tests: Adam’s Forward bend, Angle <strong>of</strong> Trunk<br />

Rotation, C7 plumb line<br />

d. Imaging Studies:<br />

i. X-rays<br />

1. Full-length standing radiographs (C/T/L/S Spines +<br />

Pelvis/Hips)<br />

a. Knees straight: assess sagittal balance<br />

b. Coned-down views <strong>of</strong> selected regions<br />

2. Cobb Angle calculation<br />

a. Main Thoracic, Proximal Thoracic,<br />

Thoracolumbar/Lumbar<br />

b. Thoracic Kyphosis, Lumbar Lordosis<br />

3. Supine Left and Right Bending radiographs<br />

4. Push-Prone radiograph, Supine AP radiograph,<br />

Traction radiograph<br />

5. Fulcrum Bending<br />

ii. CT: risk <strong>of</strong> radiation exposure<br />

1. Congenital bony anomalies<br />

2. Pedicle Assessment: ??? Value<br />

3. Myelography: may be more helpful than MRI with<br />

severe deformity<br />

iii. MRI<br />

1. Assessment <strong>of</strong> patients with radiculopathy,<br />

myelopathy, claudication<br />

2. High grade spondy, spondy with radiculopathy<br />

3. Early onset, juvenile, selected AIS<br />

iv. Nuclear<br />

2. Pediatrics<br />

a. History: Symptoms/pain, onset <strong>of</strong> menses, family history<br />

<strong>of</strong> deformity, activity restrictions, development milestones,<br />

intrauterine course, ? rapid progression<br />

i. Age Determination: Chronologic vs. Metabolic<br />

1. Tanner Stages: ? physician comfort (young girls): ask<br />

about early breast development and rapid foot growth<br />

2. Risser: convenient, but approach with skepticism<br />

a. Often appears after peak height velocity<br />

3. Tri-radiate cartilage: closure signals end <strong>of</strong> peak<br />

growth spurt<br />

ii. Growth History:<br />

1. Peak Height Velocity: occurs 6-12 months prior to<br />

onset <strong>of</strong> menses (F) or appearance <strong>of</strong> axillary/facial<br />

hair (M)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

a. Normal Girls: 10 – 14 years; Normal Boys: 12 – 16<br />

years<br />

2. Onset <strong>of</strong> menses: after PHV and does not correlate w/<br />

Risser sign<br />

b. Physical Examination:<br />

i. Inspection: Scapulae, rib/paraspinal prominence,<br />

shoulder, pelvis/waistline<br />

1. Anterior: Breast asymmetry may be first sign <strong>of</strong><br />

deformity<br />

2. Posterior Skin Changes: CafŽ au lait spots, sinuses,<br />

hairy patches, palpable defects, step-<strong>of</strong>f, dimpling<br />

3. Spondylolisthesis: hyperlordosis, step-<strong>of</strong>f, heartshaped<br />

buttocks<br />

ii. Forward Bend Test: Scoliometer: 70 better than 50. More<br />

sensitive and specific: If > 70, need x-rays and/or referral<br />

to spine specialist<br />

iii. Leg length discrepancy, hip pathology, ligamentous laxity<br />

1. Hamstring tightness in setting <strong>of</strong> spondy<br />

iv. Neurologic Exam<br />

1. Complete neurologic assessment<br />

2. Assess for radiculopathy in spondy<br />

a. High-grade spondy: rectal exam<br />

c. Imaging Studies:<br />

i. MRI:<br />

1. Any neurologic abnormality on history or physical<br />

exam (NF)<br />

2. All congenital and Infantile/Juvenile Scoliosis > 200:<br />

(Occiput – Sacrum)<br />

a. Controversial<br />

b. Relationship to physical exam and progression<br />

3. Boys, left thoracic curves ????<br />

d. Special Considerations in Congenital Scoliosis<br />

i. Cardiac Abnormalities (10 – 37%): Echo<br />

ii. Urologic Abnormalities (21 – 34%): Renal Ultrasound<br />

iii. Neural Axis Abnormalities: (20 – 40%): Syrinx, Tethered<br />

Cord, Chiari<br />

iv. Thoracic Insufficiency: ??? Pulmonary Function Tests<br />

v. Syndromes (38 – 55%): VATER, VACTERL, Goldenhar’s<br />

vi. Associated <strong>Orthopaedic</strong> conditions: DDH, C1-C2<br />

instability, Klippel Feil<br />

3. Adults<br />

a. History: Axial pain, radicular pain, claudication<br />

i. Assess for cancer, infection, trauma as cause <strong>of</strong> deformity<br />

ii. More likely to present with pain and/or progressive trunk<br />

imbalance<br />

1. Change in height or posture, waistline, fit <strong>of</strong> clothing:<br />

? progression<br />

2. Most adults with spondylolisthesis are asymptomatic,<br />

but may present with back or leg pain or both<br />

iii. Prior surgical history: pseudoarthrosis, flatback, adjacent<br />

segment, post-laminectomy syndrome<br />

iv. Previous treatments<br />

v. Quality <strong>of</strong> life assessment/ Cosmesis<br />

vi. Comprehensive medical history<br />

1. Shortness <strong>of</strong> breath/respiratory issues<br />

2. Cardiac history<br />

b. Physical Examination:<br />

i. Don’t forget the Hips !


391<br />

1. Asssessment <strong>of</strong> hip/knee contractures and leg length<br />

discrepancy<br />

ii. Thorough neurologic assessment for radiculopathy/<br />

myelopathy<br />

1. Patients usually have normal neurologic exams<br />

iii. Rib-Ilium contact: pain, GI issues<br />

c. Imaging Studies:<br />

i. MRI: Assess for stenosis &/or disc degeneration<br />

REFERENCES:<br />

1. Akbarnia BA. Management themes in early onset scoliosis. J Bone Joint Surg<br />

Am. 2007 Feb;89 Suppl 1:42-54.<br />

2. Ferguson RL. Medical and congenital comorbidities associated with spinal<br />

deformities in the immature spine. J Bone Joint Surg Am. 2007 Feb;89 Suppl<br />

1:34-41.<br />

3. Hu SS, Tribus CB, Diab M, Ghanayem AJ. Spondylolisthesis and<br />

spondylolysis. J Bone Joint Surg Am. 2008 Mar;90(3):656-71<br />

4. Lenke LG, Dobbs MB. Management <strong>of</strong> juvenile idiopathic scoliosis. J Bone<br />

Joint Surg Am. 2007 Feb;89 Suppl 1:55-63<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

ii. Spondylolisthesis: Must visualize the pelvis on x-rays:<br />

Pelvic Incidence, Pelvic Tilt, Sacral Slope<br />

1. Upright AP/ Lateral x-rays<br />

2. Flexion/Extension Views<br />

d. Special Considerations:<br />

i. Cardiac Evaluation<br />

ii. Nutritional Assessment<br />

iii. Bone Density: osteopenia, osteoporosis<br />

5. Lonner, BS. Spinal Deformity in the Clinical Settting. In T.J. Errico, B.S.<br />

Lonner, A. Moulton, Surgical Management <strong>of</strong> Spinal Deformities, pp. 61-70,<br />

Saunders, 2008.<br />

6. O’Brien, MF and Shufflebarger, H. Evaluation <strong>of</strong> the Patient with Scoliosis.<br />

In P.O. Newton, Adolescent Idiopathic Scoliosis, pp. 11-21, AAOS, 2004.<br />

7. O’Brien, MF, Kuklo, TR, et al, editors. Spine Deformity Study Group<br />

Radiographic Measurement Manual. Medtronic S<strong>of</strong>amor Danek USA, Inc.<br />

2005.<br />

8. Sanders JO. Maturity indicators in spinal deformity. J Bone Joint Surg Am.<br />

2007 Feb;89 Suppl 1:14-20.


a) Introduction:<br />

i) Onset <strong>of</strong> scoliosis <strong>of</strong> all etiologies presenting in the first five<br />

years <strong>of</strong> life<br />

ii) Severe cardiopulmonary problems can occur in pts with<br />

untreated progressive curves<br />

iii) Radiographic criteria may assist in some cases <strong>of</strong> IIS to<br />

distinguish between the curves that will progress and those<br />

that will spontaneously resolve. 1<br />

b) Normal spinal and lung growth:<br />

i) Spinal growth is greatest in the first five years <strong>of</strong> life being<br />

approximately 2 cm per year reducing to about 1 cm from 5<br />

to 10 years<br />

ii) Two thirds <strong>of</strong> sitting height is achieved by the age <strong>of</strong> 5.2<br />

iii) Normal development and increase in number and volume<br />

<strong>of</strong> respiratory units occurs in the first 8 year <strong>of</strong> life.<br />

c) Etiology:<br />

i) Idiopathic, congenital, syndromic and neuromuscular.<br />

ii) Natural history and the outcome <strong>of</strong> treatment are different<br />

among these groups 3<br />

iii) Curves with major thoracic deformity before 5 yrs are most<br />

likely to be associated with major pulmonary complications<br />

in addition to their growth abnormalities.<br />

d) Clinical evaluation:<br />

i) Birth history (Breech presentation, prematurity) and<br />

developmental milestones<br />

ii) Physical examination: cutaneous marks, plagiocephaly, chest<br />

wall deformity, shoulder and pelvic imbalance and lower<br />

limb discrepancy.<br />

iii) DDH, inguinal hernia and congenital heart disease are also<br />

quite common.<br />

iv) Neuro exam: gait, muscle tone, reflexes including superficial<br />

abdominal reflexes<br />

e) Radiographic assessment:<br />

i) PA and Lateral standing scoliosis radiographs including the<br />

pelvis.<br />

(1) Reviewed for congenital vertebral and rib anomalies,<br />

curve pattern, rib vertebral angle difference (RVAD),<br />

coronal balance, T1 tilt and linear base line measurements<br />

<strong>of</strong> T1-T12 and T1-S1 distance for future assessment <strong>of</strong><br />

growth and space available for lungs (SAL). 4<br />

(2)Assessment <strong>of</strong> thoracic kyphosis and sagittal balance<br />

ii) Bending /traction films<br />

iii) 3-D CT scan or dynamic MRI <strong>of</strong> the lungs is a substitute for<br />

PFT’s in this group<br />

iv) MRI may also be needed to detect any intraspinal<br />

pathologies. 1<br />

f) Management:<br />

i) Goals: stop curve progression, improve pulmonary function<br />

and correct the deformity while allowing the growth <strong>of</strong> the<br />

spine and chest to continue.<br />

(1) Recognition <strong>of</strong> importance <strong>of</strong> thoracic volume has shifted<br />

focus <strong>of</strong> treatment to maintenance <strong>of</strong> growth <strong>of</strong> thorax<br />

and preservation <strong>of</strong> pulmonary function.<br />

ii) If the curves are non-progressive, observation may be all that<br />

is needed.<br />

iii) Casting still plays a role<br />

iv) Posterior spinal fusion results in a short trunk,<br />

disproportionate body height, possible crankshaft deformity<br />

392<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

early oNSet SColioSiS<br />

Behrooz A. Akbarnia, MD<br />

and adversely affects lung development in young children. 1<br />

g) Operative treatment:<br />

i) Failure <strong>of</strong> the non operative treatment (e.g. non compliance,<br />

skin problem or progressive nature <strong>of</strong> the deformity)<br />

and deterioration <strong>of</strong> pulmonary function are the main<br />

indications for surgical intervention.<br />

(1)The Cobb angle alone is not an indication<br />

(2)Cobb angle > 35˚ in IIS and > 45˚ in JIS, RVAD >20˚ and<br />

phase II rib-vertebral relationship in idiopathic cases are<br />

strong indicators <strong>of</strong> curve progression<br />

(3)Growth compatible implants: Distraction based<br />

including VEPTR and Growing Rods (GR), Guided<br />

growth such as Luque-Trolley and Shilla, and Tension<br />

based including staples and tethers. 5<br />

h) Results <strong>of</strong> Growing Rods Surgery:<br />

i) Klemme et al. 8 reported the outcome <strong>of</strong> Minnesota<br />

experience <strong>of</strong> single-rod distraction based correction <strong>of</strong><br />

scoliosis in 67 children over the course <strong>of</strong> 20 years.<br />

(1)They had a 30 % (67˚ to 47˚) curve correction at final<br />

follow up with the average growth <strong>of</strong> 1 cm/year<br />

ii) Akbarnia et al. in 2005 first reported the clinical outcomes<br />

following dual growing rod surgery. An average <strong>of</strong> 6.6<br />

lengthenings per patient at an interval <strong>of</strong> 7.4 months<br />

achieved with 2 years <strong>of</strong> follow up. Mean curve improved<br />

from 82˚ to 38˚ after initial surgery and 36˚ at last followup<br />

or post final fusion. T1-S1 increased by 1.21 cm/year.<br />

Children with more frequent lengthenings (≤6 months),<br />

have generally better growth rate and Cobb correction<br />

iii) The results <strong>of</strong> a recent comparison <strong>of</strong> dual vs. single rod<br />

constructs by Thompson et al. quite convincingly favor the<br />

dual growing rod technique.<br />

i) VEPTR: (Vertical Expandable Prosthetic Titanium Rib)<br />

i) Progressive deformity in a child with thoracic insufficiency<br />

syndrome EOS with RVAD >20° in phase II in whom the<br />

deformity has progressed despite casting or bracing or in<br />

whom casting or bracing is not practical because <strong>of</strong> medical<br />

co morbidities<br />

ii) All etiologies <strong>of</strong> progressive EOS in which the surgeon<br />

wishes to avoid or minimize direct exposure <strong>of</strong> the spine. 10<br />

j) GR vs. VEPTR:<br />

i) The best candidate for GR procedure is a normally<br />

segmented deformity such as infantile idiopathic scoliosis<br />

not controlled by bracing or casting<br />

ii) Most ideal case for VEPTR is a thoracogenic scoliosis with<br />

multiple fused ribs in association <strong>of</strong> congenital spinal<br />

deformity and TIS<br />

iii) Choice <strong>of</strong> growing rods vs. VEPTR should be based on<br />

the origin <strong>of</strong> the deformity, preference and experience <strong>of</strong><br />

the surgeon, and associated problems such as s<strong>of</strong>t tissue<br />

coverage, previous infection and upper thoracic kyphosis<br />

iv) Contraindications to VEPTR include the absence <strong>of</strong> adequate<br />

ribs to support distraction, inadequate s<strong>of</strong>t-tissue coverage,<br />

and an easier or better way to accomplish the control <strong>of</strong><br />

EOS.<br />

v) Excessive upper thoracic kyphosis is a relatively<br />

contraindication to VEPTR and is better handled with GR.<br />

vi) GR may be continued into the uppermost thoracic or<br />

lower cervical spine for control <strong>of</strong> upper thoracic kyphotic


393<br />

deformity. vii)EOS managed with VEPTR may have some<br />

advantage over that managed with GR at the end <strong>of</strong><br />

treatment at the time <strong>of</strong> definitive fusion. 9,10,12<br />

k) Complications:<br />

i) Complications are common in the treatment <strong>of</strong> EOS by<br />

growth-sparing techniques.<br />

ii) Rrod breakage, loss <strong>of</strong> anchor points, infection, need for<br />

revision or exchange, premature cessation <strong>of</strong> treatment<br />

REFERENCES:<br />

1. Gillingham BL, Fan RA, Akbarnia BA. Early Onset Idiopathic Scoliosis. J Am<br />

Acad Orthop Surg 2006;14:10-112<br />

2. Dimeglio A: Growth <strong>of</strong> the spine before age 5 years. J Pediatr Orthop B<br />

1993;1:102-107<br />

3. Akbarnia BA, Salari P, Thompson GH et al. Outcomes <strong>of</strong> Growing Rod<br />

Techniques in Early Onset Scoliosis: Does the Etiology Matter? Presented<br />

at the 45th annual meeting <strong>of</strong> Scoliosis Research Society, September 21-24,<br />

2010 Kyoto, Japan.<br />

4. Campbell RM, Smith MD, Mayes TC, et al. The characteristics <strong>of</strong> thoracic<br />

insufficiency<br />

syndrome associated with fused ribs and congenital scoliosis. J Bone Joint<br />

Surg Am 2003;85:399–408.<br />

5. Skaggs DL. Classification <strong>of</strong> treatment <strong>of</strong> early onset scoliosis. Presented at<br />

2nd international congress on early onset scoliosis & growing spine (ICEOS).<br />

November 7-8, 2008. Montreal, Quebec.<br />

6. Betz RR, Kim J, D’Andrea LP et al. An innovative technique <strong>of</strong> vertebral body<br />

stapling for the treatment <strong>of</strong> patients with adolescent idiopathic scoliosis: a<br />

feasibility, safety, and utility study. Spine 2003, 28:S255–S265<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

(1)Early aggressive treatment <strong>of</strong> implant-related infection<br />

can <strong>of</strong>ten allow retention <strong>of</strong> the implants and subsequent<br />

continued lengthening.<br />

iii) Surgeon must perform lengthenings in a timely basis, but an<br />

excessive number <strong>of</strong> lengthening procedures may lead to an<br />

increased number <strong>of</strong> complications<br />

iv) Future research is needed to determine optimal interval for<br />

construct lengthening. 12,13<br />

7. McCarthy RE. Chapter 48, Growth guided instrumentation: Shilla Procedure<br />

in Akbarnia BA, Thompson GH, and Yazici M. The Growing Spine. 2010,<br />

Berlin-Heidelberg: Springer-Verlag.<br />

8. Akbarnia BA, Thompson GH, and Yazici M. Editors, The Growing Spine:<br />

Management <strong>of</strong> Spinal Disorders. Springer-Verlag Berlin Heidelberg 2011<br />

9. Akbarnia BA, Breakwell LM, Marks DS et al. Dual growing rod technique<br />

followed three to eleven years until final fusion: The effect <strong>of</strong> frequency <strong>of</strong><br />

lengthening. Spine 2008;33(9):984-990.<br />

10. Campbell RM. Chapter 37, VEPTR Expansion Thoracoplasty in Akbarnia BA,<br />

Thompson GH, and Yazici M. The Growing Spine. 2010, Berlin-Heidelberg:<br />

Springer-Verlag.<br />

11. Sankar WN, Skaggs DL, Yazici, M et al. Lengthening <strong>of</strong> dual growing rods: Is<br />

there a law <strong>of</strong> diminishing returns? Presented at the 44th annual meeting <strong>of</strong><br />

Scoliosis Research Society, September 23-26, 2009 San Antonio, USA.<br />

12. Akbarnia BA, Emans JB. Complications <strong>of</strong> Growth-Sparing surgery in Early-<br />

Onset Scoliosis. Spine, November 2010.<br />

13. Bess S, Akbarnia BA, Thompson GH and et al.: Complications <strong>of</strong> Growing-<br />

Rod Treatment for Early-Onset Scoliosis: Analysis <strong>of</strong> One Hundred and Forty<br />

Patients. J. Bone Joint Surg Am 2010 92(15): 2533-43


I. Diagnosis & “Facts”<br />

a. Common spinal deformities<br />

i. Scoliosis “Diagnosis <strong>of</strong> Exclusion”<br />

ii. Congenital<br />

iii. Neuromuscular<br />

iv. Syndrome associated<br />

b. Idiopathic scoliosis<br />

i. Categories – Chronology<br />

1. Infantile (0-3 years <strong>of</strong> age)<br />

2. Juvenile (3-10 years <strong>of</strong> age)<br />

3. Adolescent (10-18 years <strong>of</strong> age)<br />

4. Adult (>18 years <strong>of</strong> age)<br />

c. Prevalence<br />

i. 2-3% (10-18 years)<br />

ii. 3.6:1 female:male ratio<br />

iii. 1:1 female:male (10˚ curves)<br />

iv. 9:1 female:male (>50˚ curves)<br />

d. Natural History<br />

i. Younger age + Risser sign + Larger Cobb angle + Genetics<br />

= risk <strong>of</strong> progression!<br />

II. Evaluation<br />

a. Radiographic<br />

i. “Typical curve patterns”<br />

1. Rt. thoracic/double thoracic/double major – Rt.<br />

thoracic/Lt. lumbar; Lt. TL/L<br />

ii. Atypical x-ray features – non-idiopathic<br />

1. Lt. thoracic curve – incidence (10-40%) <strong>of</strong> spinal<br />

canal abnormalities (e.g., syrinx)<br />

2. Sharply angulated curves (e.g., neur<strong>of</strong>ibromatosis)<br />

3. Very large curves (>100˚) (e.g., Marfan syndrome)<br />

4. Congenital bony abnormalities (e.g., unilateral bar,<br />

hemivertebra)<br />

iii. MRI needed???<br />

b. Clinical<br />

i. H&P<br />

1. Shoulder height<br />

2. Trunk shift<br />

3. Waistline asymmetry<br />

4. Thoracic (rib)/lumbar prominence<br />

5. Breast asymmetry<br />

III. Classification = Curve type + coronal lumbar modifier +<br />

sagittal thoracic modifier<br />

394<br />

a. Curve types<br />

b. Coronal lumbar modifier = A, B, C<br />

adoleSCeNt idiopathiC SColioSiS<br />

Lawrence G. Lenke, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

c. Sagittal thoracic modifier = -, N, +<br />

IV. Treatment<br />

a. Non-conventional/orthopaedic<br />

b. Observation<br />

i. Most common Tx!<br />

ii. Mild deformity Boys<br />

ii. Spinal fusion


BIBLIOGRAPHY<br />

395<br />

1. PSF w/instrumentation – trend<br />

2. ASF w/instrumentation – trend<br />

3. ASF/PSF w/instrumentation – trend<br />

1. Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis.<br />

Lancet 2008;371:1527-37<br />

2. O’Brien MF, Lenke LG, Bridwell KH, et al. Preoperative spinal canal<br />

investigation in adolescent idiopathic scoliosis curves ≥70˚. Spine<br />

1994;19:1606-10<br />

3. Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis: a new<br />

classification to determine extent <strong>of</strong> spinal arthrodesis. J Bone Joint Surg Am<br />

2001;83:1169-81<br />

4. Vedantam R, Lenke LG, Bridwell KH, et al. A prospective evaluation <strong>of</strong><br />

pulmonary function in patients with adolescent idiopathic scoliosis relative<br />

to the surgical approach used for spinal arthrodesis. Spine 2000;25:82-90<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

4. Endoscopic techniques rare<br />

5. Non-fusion techniques rare<br />

5. Luhmann SJ, Lenke LG, Kim YJ, et al. Thoracic adolescent idiopathic scoliosis<br />

curves between 70 degrees and 100 degrees: is anterior release necessary?<br />

Spine 2005;30:2061-7<br />

6. Cheh G, Lenke LG, Lehman Jr. RA, et al. The reliability <strong>of</strong> preoperative<br />

supine radiographs to predict the amount <strong>of</strong> curve flexibility in adolescent<br />

idiopathic scoliosis. Spine 2007;32:2668-72<br />

7. Lehman Jr. RA, Lenke LG, Keeler KA, et al. Operative treatment <strong>of</strong> adolescent<br />

idiopathic scoliosis with posterior pedicle screw-only constructs: Minimum<br />

three-year follow-up <strong>of</strong> one hundred fourteen cases. Spine 2008;33:1598-<br />

604<br />

8. Sangole AP, Aubin CE, Labelle H, et al. Three-dimensional classification <strong>of</strong><br />

thoracic scoliotic curves. Spine 2009;34:91-9


I. Natural History & Basic Principles<br />

A. Spondylolysis: Frederickson JBJS 1984 (Guthrie Clinic)<br />

• X-Ray 500 newborns<br />

• No -lysis<br />

• 500 children at 6,10,15,18+ years<br />

• Prevalence <strong>of</strong> lysis ~4.4% at 5 yrs, 6% at adulthood<br />

Listhesis in 2/3; max 30%<br />

• + family history in 35-50 %<br />

• Spina bifida occulta in >70%<br />

• Symptoms rare, mild<br />

45 year follow-up: Mean slip 18%; maximum 39%; SF-36 scores<br />

= general No back disability, No neuro deficits. One patient<br />

underwent fusion<br />

B. Natural History <strong>of</strong> Grade III/IV spondylolisthesis<br />

• 20 year follow up <strong>of</strong> 11 pts; Harris & Weinstein 1987<br />

• 36% asymptomatic; 55% mild symptoms;11% severe<br />

symptoms<br />

• 45% had neurologic findings. “All led active lives”<br />

C. Risk Factors for isthmic spondylolysis<br />

• Abnormal pars; + family History; Spina bifida occulta<br />

L5<br />

• Excessive Stress (may cause fx or symptoms)<br />

• Scheuermann; gymnastics; football lineman; athetosis<br />

D. Risk Factors for progressive slip:<br />

• Preadolescent; female; dysplastic; high grade; high slip<br />

angle; conn. tissue disorder<br />

E. Symptoms:<br />

• Most commonly develop in adolescence<br />

Activity-related back pain,worse with extension<br />

• ± Pain in buttocks/proximal thighs<br />

F. Signs<br />

• ± Stiff-legged gait or pelvic waddle<br />

• Limited forward flexion<br />

• Prominent ilia<br />

• ± palpable step-<strong>of</strong>f <strong>of</strong> spinous processes<br />

G. Additional studies<br />

• Bone scan + SPECT (acute vs. chronic)<br />

• CT (my study <strong>of</strong> choice)<br />

• MRI does not reliably show pars defect<br />

II. Treatment-Spondylolysis<br />

A. Brace/cast<br />

• Used for healing or symptom relief<br />

• 2 months typical duration<br />

• Pantaloon brace most effective; least practical<br />

• Radiographic Healing ~ 5%! (McClellan SRS 2009)<br />

B. Surgical repair <strong>of</strong> pars defect<br />

• Indications: persistent symptoms; Age < 25;Slip < 5 mm<br />

• Technique <strong>of</strong> Pars Repair<br />

• Intra-osseous screw<br />

• Wires from T.P. to S.P.<br />

• Pedicle screw-hook construct<br />

• Results <strong>of</strong> Repair<br />

REFERENCES<br />

1. Debnath UK: Clinical Outcome after surgical treatment <strong>of</strong> spondylolysis in<br />

young athletes. JBJS 2003; 85B: 244-9<br />

2. Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural<br />

history <strong>of</strong> spondylolysis and spondylolisthesis.J Bone Joint Surg Am. 1984<br />

Jun;66(5):699-707.<br />

396<br />

pediatriC SpoNdyloliStheSiS<br />

Paul D. Sponseller MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

19/22 pr<strong>of</strong>essional athletes returned to sport<br />

(Debnath UK, 2003)<br />

C. Treatment – Spondylolisthesis<br />

Conservative: The mainstay for grade 0-2 slip<br />

• Activity restriction as needed<br />

No restriction mandatory for asymptomatic grade I-II<br />

• Abdominal & extensor strengthening, hamstring<br />

stretching<br />

• Brace/cast for acute/persistent sx<br />

• Continue periodic follow-up during growth ~every 1-2<br />

yrs<br />

D. Surgical Fusion<br />

• Indication: Slip > 50%, or persistent symptoms with any<br />

defect<br />

• In Situ Fusion<br />

• Still a valid option<br />

• Circumferential fusion slightly better at long term f/u for<br />

severe slips<br />

• Surgical Fusion: Technique<br />

— One-level posterior if < 50%; 2-level if >50%<br />

— In situ is gold standard<br />

— Results proportional to T.P. size<br />

— Instrumentation not mandatory<br />

— Role <strong>of</strong> cast, instrumentation is controversial<br />

E. Reduction <strong>of</strong> slip<br />

• Risk: L5 nerve palsy<br />

• Benefits:<br />

— Deformity improvement<br />

— May decrease one fusion level<br />

F. Surgical Tips<br />

• Expose to transverse processes <strong>of</strong> L5<br />

• Expose ala <strong>of</strong> sacrum<br />

• Avoid midline exposure through bifid levels (be aware <strong>of</strong><br />

laminar integrity)<br />

• Beware small L5 transverse processes<br />

G. Fibular bone graft Anterior or posterior Spondylectomy and<br />

reduction<br />

III. Pitfalls & Controversies<br />

A. Neurologic deficit:<br />

• if detected, obtain CT for graft & screw malposition.<br />

• If none detected, surgeon may elect to decrease the<br />

amount <strong>of</strong> reduction.<br />

B. Adding-on/ junctional kyphotic deformity may develop at<br />

L4-5 more likely if L4 was temporarily instrumented<br />

C. Interbody fusion is controversial. It is more beneficial in<br />

older patients, those with foraminal narrowing and those<br />

with small transverse processes.<br />

D. Other Points<br />

• Appearance improves even after in-situ fusion<br />

— Only 2/17 w. severe slip aware <strong>of</strong> cosmetic difference<br />

• Cauda equina syndrome may occur even after in-situ<br />

fusion (Schoenecker)<br />

• Pseudarthrosis: salvage with ant+post fusion<br />

3. Harris IE Weinstein SL: Long-term follow up <strong>of</strong> severe spondlylolisthesis. J<br />

Bone Joint Surg 1987: 69:960-9.<br />

4. Johnson JR, Kirwan EO. Long-term Results <strong>of</strong> in-situ fusion for severe<br />

spondylolisthesis. J Bone Jt Surg 1983: 65: 43-6<br />

5. McTimoney C, Micheli LJ: Current Management <strong>of</strong> Spondylolysis. Cur Sport<br />

Med Rep 2003 2:


6. Nozawa S Wire repair <strong>of</strong> spondylolysis. Am J Sports Med 2003. 31: 359-64.<br />

7. Beutler WJ: Natural History <strong>of</strong> Spondylolysis and Spondylolisthesis: 45Year<br />

Follow-up. Spine 2003. 15;28(10):1027-35.<br />

8. D’Hemecourt PA: Returning the Athlete to Sports participation with brace.<br />

Orthopedics 2001;25:653-7<br />

397<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

9. Lamberg T, Remes V, Helenius I, Schlenzka D, Seitsalo S, Poussa M:<br />

Uninstrumented in situ fusion for high-grade childhood and adolescent<br />

isthmic spondylolisthesis: long-term outcome. J Bone Joint Surg Am. 2007<br />

89:512-8.


398<br />

adult SColioSiS aNd aSSoCiated SpiNal deFormitieS<br />

Frank Schwab, MD<br />

I. Etiology, Prevalence and Natural History<br />

1. Denovo Degenerative Scoliosis: DDS probably most<br />

common<br />

2. Idiopathic in the Adult: AISA Common<br />

3. Iatrogenic: increasingly common, most complex<br />

4. Overall Prevalence depends upon population studied<br />

a. reportedly range from 6% to over 50% (older adults)<br />

b. for AISA 68% <strong>of</strong> the curves progressed after skeletal<br />

maturity.<br />

5. AISA<br />

a. curves


3. Health and function <strong>of</strong> patients with untreated idiopathic scoliosis ;<br />

Weinstein SL, Spratt KF et al. JAMA 289(5) 2003<br />

4. Weinstein SL and Ponseti IV. Curve progression in idiopathic scoliosis. J<br />

Bone Joint Surg 65-A(4):447-455, 1983.<br />

399<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

5. Bridwell KH, Glassman S, Horton W, Shaffrey C, Schwab F, Zebala LP,<br />

Lenke LG, Hilton JF, Shainline M, Baldus C, Wootten D.: Does treatment<br />

(nonoperative and operative) improve the two-year quality <strong>of</strong> life in patients<br />

with adult symptomatic lumbar scoliosis: a prospective multicenter evidencebased<br />

medicine study. Spine (Phila Pa 1976). 2009 Sep 15;34(20):2171-8.


I. Introduction<br />

1. Historically deformity assessment focused primarily on<br />

coronal plane parameters<br />

a. Curve magnitude.<br />

b. Coronal balance<br />

2. Sagittal plane deformity (Kyphosis) was considered<br />

separately<br />

a. Scheurmann’s Kyphosis<br />

b. Post-traumatic Kyphosis<br />

c. Post-scoliosis Fusion Flatback<br />

II. Correlation between sagittal alignment and symptoms<br />

1. Analysis <strong>of</strong> Spine Deformity Study Group Database<br />

a. 298 patients with adult spinal deformity<br />

b. Radiographic parameters vs. HRQOL measures<br />

2. Moderate Contribution <strong>of</strong> Coronal Imbalance<br />

3. Dominant Impact <strong>of</strong> Sagittal Imbalance<br />

4. Subsequent Studies on Sagittal Balance<br />

REFERENCES:<br />

1. Lowe TG, Line BG: Evidence Based Medicine: Analysis <strong>of</strong> Scheurmann’s<br />

Kyphosis. Spine. 2007 Sep 1;32(19 Suppl):S115-9.<br />

2. Coe JD, Smith JS, Berven S, Arlet V, Donaldson W, Hanson D, Mudiyam R,<br />

Perra J, Owen J, Marks MC, Shaffrey CL: Complications <strong>of</strong> Spinal Fusion for<br />

Scheurmann’s Kyphosis: A report <strong>of</strong> the Scoliosis Research Society Morbidity<br />

and Mortality Committee. Spine. 2010 Jan 1;35(1):99-103.<br />

3. Vaccaro AR, Silber JS: Post-traumatic Spinal Deformity. Spine. 2001 Dec<br />

15;26(24 Suppl):S111-8.<br />

4. Buchowski JM, Kuhns CA, Bridwell KH, Lenke LG: Surgical Management <strong>of</strong><br />

Posttraumatic Thoracolumbar Kyphosis. Spine J. 2008 Jul-Aug;8(4):666-77.<br />

5. Potter BK, Lenke LG, Kuklo TR: Prevention and Management <strong>of</strong> Iatrogenic<br />

Flatback Deformity. J Bone Joint Surg Am. 2004 Aug:86-A(8):1793-808.<br />

400<br />

Sagittal plaNe deFormity<br />

Steven D. Glassman, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

a. Pelvic Parameters<br />

b. Cervical Alignment<br />

III. Clinical Applications<br />

1. Lumbar Spine Pathology<br />

a. Attention to Sagittal Balance in treatment <strong>of</strong> Standard<br />

Lumbar Degenerative Disease<br />

b. Lordosis as a predictor <strong>of</strong> Adjacent Level Disease<br />

c. Management <strong>of</strong> Spondylolisthesis<br />

2. Thoracolumbar Fracture<br />

a. Restore Sagital Plane<br />

b. Internal Bracing<br />

c. Pros/Cons <strong>of</strong> Early Treatment<br />

3. Degenerative Deformity<br />

a. Lumbar Kyphosis and Stenosis<br />

4. Adult Scoliosis<br />

a. Role <strong>of</strong> Osteotomies<br />

b. Fusion to Pelvis<br />

6. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR: Correlation <strong>of</strong><br />

Radiographic Parameters and Clinical Symptoms in Adult Scoliosis. Spine.<br />

2005 Mar 15;30(6):682-8.<br />

7. Glassman S, Bridwell K, Berven S, Horton W, Schwab F: The Impact <strong>of</strong><br />

Positive Sagittal Balance in Adult Spinal Deformity. Spine. 2005 Sep<br />

15;30(18):2024-2029.<br />

8. Schwab F, Lafage V, Patel A, Farcy JP: Sagittal Plane Considerations and the<br />

Pelvis in the Adult Patient. Spine. 2009 34(17):1828-1833.<br />

9. Roussouly P, Nnadi C: Sagittal Plane Deformity: An Overview <strong>of</strong><br />

Interpretation and Management. Eur Spine J. 2010 Jun 22. [Epub ahead <strong>of</strong><br />

print].<br />

10. Bridwell KH: Causes <strong>of</strong> Sagittal Spinal Imbalance and Assessment <strong>of</strong> the<br />

Extent <strong>of</strong> Needed Correction. Instr Course Lect. 2006;55-567-75.<br />

11. Gill JB, Levin A, Burd T, Longley M: Corrective Osteotomies in Spine Surgery.<br />

J Bone Joint Surg Am. 2008 Nov; 90(11):2509-20.


1. Overview<br />

a. Classification<br />

b. Presentation(s)<br />

c. Treatments<br />

2. Classification/Grading<br />

a. Grading<br />

i. Meyerding<br />

ii. Newman<br />

b. Wiltse<br />

i. dysplastic,<br />

ii. isthmic,<br />

iii. degenerative,<br />

iv. traumatic<br />

v. pathologic<br />

c. Marchetti – Bartolozzi<br />

i. Developmental<br />

1. High Dysplasitc<br />

2. Low Dysplastic<br />

ii. Accquired<br />

1. traumatic,<br />

2. post-surgery,<br />

3. pathologic,<br />

4. degenerative<br />

d. Future ? (Labelle)<br />

i. Sagital Pr<strong>of</strong>ile and pelvic parameters<br />

3. Presentation(s)<br />

a. Assymptomatic<br />

b. Back Pain<br />

i. Mechanical<br />

ii. Referred<br />

iii. Stenotic<br />

c. Leg Pain<br />

REFERENCES:<br />

1. Boachie-Adjei, O., T. Do, and B.A. Rawlins, Partial lumbosacral kyphosis<br />

reduction, decompression, and posterior lumbosacral transfixation in highgrade<br />

isthmic spondylolisthesis: clinical and radiographic results in six<br />

patients. Spine, 2002. 27: p. 161-168.<br />

2. Bradford, D., Controversies: instrumented reduction <strong>of</strong> spondylolisthesis<br />

(con). Spine, 1994. 14: p. 1536-1537<br />

3. Fabris, D.A., S. Constantini, and U. Nena, Surgical treatment <strong>of</strong> severe L5-S1<br />

spondylolisthesis in children and adolescents. Spine, 1996. 21: p. 728-733.<br />

4. Frennered, A.K., B.I. Danielson, and A.L. Nachemson, Natural history<br />

<strong>of</strong> symptomatic isthmic low-grade spondylolisthesis in children and<br />

adolescents: a seven-year follow-up study. J Pediatr Orthop, 1991. 11: p. 209-<br />

213.<br />

5. Hammerberg, K. W.: New concepts on the pathogenesis and classification <strong>of</strong><br />

spondylolisthesis. Spine, 30(6 Suppl): S4-11, 2005.<br />

6. Herman, M. J., and Pizzutillo, P. D.: Spondylolysis and spondylolisthesis in<br />

the child and adolescent: a new classification. Clin Orthop Relat Res, (434):<br />

46-54, 2005.<br />

7. Ishikawa, S., S.J. Kumar, and B.C. Torres, Surgical treatment <strong>of</strong> dysplastic<br />

spondylolisthesis: results after in situ fusion. Spine, 1994. 19: p. 1691-1696.<br />

8 Mac-Thiong, J. M., and Labelle, H.: A proposal for a surgical classification<br />

<strong>of</strong> pediatric lumbosacral spondylolisthesis based on current literature. Eur<br />

Spine J, 15(10): 1425-35, 2006<br />

9. Marchetti and Bartolozzi chapter in Bridwell textbook <strong>of</strong> spine 2nd edition<br />

10. Molinari, R.W., et al., Complications with surgical treatment if pediatric<br />

high-grade isthmic dysplastic spondylolisthesis: a comparison <strong>of</strong> 3 surgical<br />

approaches. Spine, 1999. 24(16): p. 1701-1711.<br />

401<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpiNE<br />

adult SpoNdyloliStheSiS<br />

Joseph Perra, MD<br />

i. Radicular<br />

ii. Stenotic<br />

d. Deformity<br />

i. Listhetic<br />

ii. Scoliotic<br />

4. Treatments<br />

a. Do Nothing (educate)<br />

b. Symptomatic<br />

i. Exercise<br />

ii. Therapy<br />

iii. Medication<br />

1. Oral<br />

2. Injection(s)<br />

iv. Surgery<br />

1. Decompression<br />

2. Stabilization<br />

a. Fusion<br />

i. Instrumentation<br />

ii. Posterior, anterior, both<br />

3. Reduction<br />

5. Outcomes<br />

a. SPORT<br />

b. Historical literature<br />

6. Complications<br />

a. Perioperative<br />

i. Neurologic deficit (new)<br />

ii. Implant related<br />

iii. Infection<br />

iv. durotomy<br />

b. Late<br />

i. Adjacent degeneration<br />

ii. Pseudoarthrosis<br />

11. Poussa, M., et al., Surgical treatment <strong>of</strong> severe isthmic spondylolisthesis in<br />

adolescents. Reduction or fusion in situ. Spine, 1993. 18: p. 894-901.<br />

12. Roca, J., et al., One-stage decompression and posterolateral and interbody<br />

fusion for severe spondylolisthesis. An analysis <strong>of</strong> 14 patients. Spine, 1999.<br />

24: p. 709-714.<br />

13. Saraste, H., Long-term clinical and radiological follow-up <strong>of</strong> spondylolysis<br />

and spondylolisthesis. J Pediatr Orthop, 1987. 7: p. 631-638.<br />

14. Scaglietti, O., G. Frontino, and Bartolozzi, Technique <strong>of</strong> anatomical<br />

reduction <strong>of</strong> lumbar spondylolisthesis and its surgical stabilization. Clin<br />

Orthop, 1976. 117: p. 165-175.<br />

15. Seitsalo, S., et al., Severe spondylolisthesis in children and adolescents: longterm<br />

review <strong>of</strong> fusion in situ. J Bone Joint Surg [Br], 1990. 72: p. 259-265.<br />

16. Seitsalo, S.O. and H. Hyvarinen, Progression <strong>of</strong> spondylolisthesis in children<br />

and adolescents: a long-term follow-up <strong>of</strong> 272 patients. Spine, 1991. 16: p.<br />

417-421.<br />

17. Smith, M.D. and H.H. Bohlman, Spondylolisthesis treated by a single stage<br />

operation combining decompression with in situ posterolateral and anterior<br />

fusion: an analysis <strong>of</strong> eleven patients who had long-term follow-up. J Bone<br />

Joint Surg [Am], 1990. 72: p. 415-421.<br />

18. Weinstein,J.N., Lurie, J.D., Tosteson, T.D., Blood,E.A., Birkmeyer, N.,<br />

Herkowitz,H.,<br />

19. Longley,H.M., Lenke, L., Emery,S., Hu,S.S., Surgical Compared with<br />

Nonoperative Treatment for Lumbar Degenerative Spondylolisthesis.<br />

Four-Year Results in the Spine Patient Outcomes Research Trial (SPORT)<br />

Randomized and Observational Cohorts. J Bone Joint Surg Am.<br />

2009;91:1295-1304.<br />

20. Wiltse, L.L., P.H. Newman, and I. Macnab, Classification <strong>of</strong> spondylolysis<br />

and spondylolisthesis. Clin Orthop Relat Res, 1976(117): p. 23-9.


402<br />

CompleX Shoulder pathology<br />

iN the youNg athlete:<br />

a CaSe-baSed SympoSium (a)<br />

Moderator: Matthew T. Provencher, MD, San Diego, CA<br />

Utilizing a case-based presentation format and interactive audience discussions, multiple shoulder cases will be presented<br />

in order to determine optimal workup, treatment, with an extensive discussion <strong>of</strong> potential pearls and pitfalls to avoid<br />

postoperative complications.<br />

I. Introduction and warm-up case<br />

Matthew T. Provencher, MD, San Diego, CA<br />

a. goals <strong>of</strong> the symposium<br />

b. interactive audience participation, live microphones entire course<br />

c. PANEL discussion throughout the course<br />

d. Introduce ARS – when utilized for treatment options and clinical decision making<br />

Brief outline <strong>of</strong> shoulder topics to be presented:<br />

• Instability o Anterior with bone loss case<br />

— Posterior instability, missed diagnosis case<br />

— S<strong>of</strong>t tissue issues, MDI<br />

— Combined bone loss case, failed instability<br />

— Rotator interval treatment with above cases<br />

• Rotator Cuff o Partial thickness cuff tear (PASTA and PAINT lesions)<br />

— Cuff augmentation (patches – dermal, allograft, etc) indications?<br />

— Failed tear in young patient – rehab considerations<br />

• Biceps and SLAP o Biceps pulley case – diagnosis and management<br />

— Failed SLAP repair case<br />

— Internal impingement in thrower – optimal rehab; operative?<br />

— Snapping scapula case – nonoperative vs operative care<br />

• Acromioclavicular Joint o Type 3 separation – acute management<br />

— Type 5 separation – acute management – options?<br />

— Failed AC separation case – wrap up<br />

• Miscellaneous o Postarthroscopic chondrolysis management/prevention<br />

— Os acromiale – diagnosis and management<br />

• Warm up cases: Instability<br />

— Anterior with bone loss case - ARS<br />

— Posterior instability, missed diagnosis case<br />

— S<strong>of</strong>t tissue issues, MDI<br />

— Combined bone loss case, failed instability - ARS<br />

— Rotator interval treatment with above cases - ARS<br />

II. Rotator Cuff – Case Presentations<br />

Richard K. N. Ryu, MD, Santa Barbara, CA<br />

a. Partial thickness cuff tear (PASTA and PAINT lesions) - ARS<br />

b. Cuff augmentation (patches – dermal, allograft, etc) indications?<br />

c. Failed tear in young patient – rehab considerations – ARS<br />

III. Biceps and SLAP<br />

Jeffrey S. Abrams, MD, Princeton, NJ<br />

a. Biceps pulley case – diagnosis and management -ARS<br />

b. Failed SLAP repair case<br />

c. Internal impingement in thrower – optimal rehab; operative? - ARS<br />

d. Snapping scapula case – nonoperative vs operative care<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO


403<br />

IV. Acromioclavicular Joint<br />

John M. Tokish, MD, Peoria, AZ<br />

• Type 3 separation – acute management - ARS<br />

• Type 5 separation – acute management – options?<br />

• Failed AC separation case – wrap up – ARS<br />

• Miscellaneous<br />

— Postarthroscopic chondrolysis management/prevention - ARS<br />

— Os acromiale – diagnosis and management<br />

V. Wrap-up, Final Questions and Answers<br />

Matthew T. Provencher, MD, San Diego, CA<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO


404<br />

CompleX Shoulder pathology iN the youNg athlete:<br />

gleNoid boNe loSS<br />

Matthew T. Provencher, MD CDR MC USN, Rachel Frank, BS<br />

1. Potential Pitfalls in Any Shoulder Instability Repair<br />

• Glenoid bone loss – Lots <strong>of</strong> attention in recent literature<br />

• Significant Hill-Sachs lesion – combined with Glenoid bone<br />

loss may be more important than previously realized<br />

• Revision situation – post thermal cases<br />

• Revision situation with prior capsular insufficiency<br />

• Prior anchor placement<br />

• Error in diagnosis<br />

• Rehabilitation issues and compliance<br />

• Technical errors<br />

— Correct anchor placement<br />

— Proper capsular mobilization (HAGL)<br />

— RI Closure?<br />

— Prior thermal cases?<br />

— Adequate capsular tensioning – 1cm?<br />

— HAGL injuries<br />

• Associated injuries<br />

— SLAP, HAGL, bony deficiencies<br />

— Neurologic injury (winging!)<br />

• Boileau (JBJS 2006) 4 – “Risk factors for recurrence <strong>of</strong><br />

shoulder instability after arthroscopic Bankart repair”<br />

— 91 patients followed prospectively<br />

— 15.3% recurrence (36 months f/u), at 17 months postsurgery<br />

— Recurrence higher in hyperlaxity, bone loss, and number<br />

<strong>of</strong> anchors (4 or more was good prognostic sign)<br />

• Tauber 32 – “Reasons for failure after surgical repair <strong>of</strong><br />

anterior shoulder instability”<br />

— 41 patients followed 49 months<br />

— At revision surgery – 56% with persistent bony defect,<br />

patulous capsule 22%, laterally torn capsule 5% 2 .<br />

Glenoid Bone Loss – Prevalence, Etiology, Classification,<br />

and History<br />

• Burkhart and DeBeer Arthroscopy 2000 5<br />

— 21 <strong>of</strong> 194 patients with “significant” glenoid bone loss<br />

— Defined “Inverted Pear” glenoid<br />

— 61% failure in patients with inverted pear glenoid treated<br />

arthroscopically<br />

• 100 CT scans <strong>of</strong> shoulder instability patients (Sugaya JBJS<br />

2003) 28<br />

— 50% osseous Bankart lesion (1 large – 27%, 27 med –<br />

11%, 22 small – 3%)<br />

• Location <strong>of</strong> glenoid defect – mean at 4:17 o’clock (anteroinferior).<br />

(Saito AJSM 2005) 27<br />

— Parallel to long axis <strong>of</strong> glenoid<br />

— At higher % defects, the line <strong>of</strong> bone loss changes<br />

somewhat to slightly more oblique<br />

• Griffith – AJR 2008 9<br />

— More bone loss in recurrent instability<br />

— 145 patients with CT scan –<br />

– 0-10% bone loss – 51%<br />

– 10-20% bone loss – 37%<br />

– 20-25% bone loss – 6%<br />

– >25% bone loss – 6%<br />

• Glenoid bone loss higher rate <strong>of</strong> failure after stabilization<br />

procedures (Bigliani AJSM 1998) 2<br />

— Amount and type <strong>of</strong> bone loss quantified and classified<br />

into 3 types<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

— 25 patients with glenoid rim lesions were classified<br />

— 22 / 24 shoulder with good stability at 30 months (88%)<br />

— Type I (16 pts); Type II (5 pts); Type IIIA (3 pts); Type<br />

IIIB (1 pt)<br />

Recommendations from their clinical experience:<br />

Type I Avulsion fracture Bone/capsule repair<br />

Type II Medial fragment Capsular Repair<br />

Type IIIA 25% bone loss Coracoid transfer<br />

• Burkhart and DeBeer, Arthroscopy 2000 5<br />

— 194 athletes (101 rugby players) with arthroscopic<br />

Bankart Repair<br />

— 3 metallic suture anchors on average<br />

— 173 without bony defects 4% recurrence<br />

— 10.8% recurrence rate (21 total; 14 redislocations, 7<br />

subluxations)<br />

— 21 with bony defects 67% recurrence<br />

– Contact athletes with bone defect 89% recurrence<br />

— Significant bone defect = “Inverted pear glenoid”<br />

(not precisely measured, but as viewed from the<br />

anterosuperior portal the inferior diameter <strong>of</strong> the glenoid<br />

was smaller than the superior diameter”) 17<br />

CONCLUSION: Patients with significant bone defects, especially<br />

contact athletes are not candidates for arthroscopic repair<br />

— Approximately 11% had significant glenoid bone defects<br />

• Patient History – low threshold for glenoid bone loss<br />

suspicion especially if (Piasecki, Provencher, Romeo et al;<br />

JAAOS 2009):<br />

— Long-term history <strong>of</strong> recurrent shoulder instability<br />

— Multiple dislocations<br />

— Mechanical clunk<br />

— Multiple reductions/Emergency Room reductions<br />

— Progressive ease <strong>of</strong> dislocation and also reduction<br />

— History <strong>of</strong> self reduction (Not MDI)<br />

— Instability symptoms in mid-ranges <strong>of</strong> motion<br />

— Examination with instability in mid-ranges <strong>of</strong> motion; or<br />

palpable clunk<br />

• Consider this Overall approach to a patient with recurrent<br />

instability: When approaching a patient with recurrent<br />

shoulder instability think about “How much bone loss do<br />

they have” in order not to miss it.<br />

— Bone loss is likely the #1 cause <strong>of</strong> failed arthroscopic<br />

instability repair<br />

3. Glenoid Bone Loss - Biomechanics<br />

— Biomechanics: Itoi (JBJS 2000)15<br />

— glenoid defects anteroinferiorly <strong>of</strong> >21% (mean 6.8 mm)<br />

causes persistent instability and limit ER after Bankart<br />

repair.<br />

— However, he demonstrated stability in ABER position due<br />

to competent capsular constraints. ABD&IR allowed to<br />

subluxate.<br />

CONCLUSION: Glenoid Defects >21% (approx 6.8<br />

mm) may cause continued instability and limit ER after<br />

Bankart Repair (especially with capsular repair) Clinical


405<br />

Applicability: What is also inferred from Itoi’s work is that<br />

in up to a 21% bone defect, the capsular restraints will<br />

potentially be enough for stability when adequately repaired<br />

4. Glenoid Bone Loss – Treatment Algorithm<br />

*** Clinical suspicion remains paramount! ****<br />

• Low threshold to obtain advanced imaging to assess for<br />

glenoid bone loss with the following (not all inclusive):<br />

— Prior failed instability procedure<br />

— Multiple prior instability events, multiple subluxations or<br />

dislocations<br />

— Long history, chronic instability (> 6 months?)<br />

— Trivial trauma for first instability event (glenoid<br />

hypoplasia)<br />

— Bilateral history <strong>of</strong> shoulder instability<br />

— Plain film suggestion <strong>of</strong> bony glenoid deficiency<br />

• Best to know ahead <strong>of</strong> time your operative plan, as surgical<br />

technique is based upon the amount <strong>of</strong> glenoid bone loss<br />

6. Glenoid Bone Loss – Treatment Options<br />

• Based upon preoperative or intraoperative determination <strong>of</strong><br />

bone loss<br />

• Key: How to obtain a successful stabilization procedure with<br />

minimal losses <strong>of</strong> motion<br />

• Nonoperative<br />

— Smaller fragments<br />

— Lower demand individuals<br />

— Maquieira (JBJS-Br 2007) found no redislocations<br />

in 14 patients with >5 mm bone fracture treated<br />

nonoperatively<br />

Arthroscopic Repair<br />

• Glenoid bone loss less than 20 to maybe 25%<br />

• Can be successful<br />

• Provencher et al (2007)19– results better with incorporation<br />

<strong>of</strong> bony fragment; 3 types <strong>of</strong> fragments seen in study:<br />

— Attritional loss – no bone fragment<br />

— Attritional loss with some bone fragment<br />

— Bony fragment present that represents the true amount <strong>of</strong><br />

bone loss (no attritional losses)<br />

• Sugaya et al (2006)29, 30 – bony lesion, if repaired with<br />

arthroscopic techniques can heal to more normal/near<br />

anatomic position<br />

— Reconstitutes the bone loss <strong>of</strong> glenoid<br />

— Better if more acute injury<br />

— Less predictable if attritional/erosion loss<br />

Open Repair without Bony Augmentation<br />

• Described for open capsulolabral repair to address bone loss<br />

— Probably similar to arthroscopic repairs, potentially<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

higher success?<br />

— 0/14 recurrences in open repair procedure20<br />

• Open repairs – screw fixation <strong>of</strong> acute fractures31<br />

Bone Augmentation Procedures<br />

• Glenoid bone loss <strong>of</strong> potentially any amount<br />

• Especially in loss >20-25%<br />

• Variety <strong>of</strong> options and techniques<br />

• Arthroscopic bone grafts<br />

— Arthroscopic coracoid transfer<br />

• Open bone grafts<br />

— Coracoid transfer<br />

– Bristow – “tip” <strong>of</strong> coracoid<br />

– Latarjet – larger piece <strong>of</strong> coracoid<br />

– Management <strong>of</strong> the “Latarjet” – can be confusing<br />

– Many “ways” to do a Latarjet<br />

– Subscapularis tendon management<br />

~ Split longitudinal<br />

~ Complete take-down<br />

– Conjoint tendon management<br />

~ Leave on as a “sling”<br />

~ Reattach to remnant coracoid<br />

– Orientation <strong>of</strong> the coracoid<br />

~ Lateral edge (traditional) or inferior edge<br />

(Burkhart) as the glenoid face<br />

~ With INFerior edge as glenoid face:<br />

- More bone to work with – up to 14mm<br />

- Better congruity <strong>of</strong> the glenoid and humerus<br />

(Ghodadra, Romeo, Provencher et al 2009 JBJS<br />

in print)<br />

- “Fits better”<br />

• Iliac crest bone graft<br />

— Large inner table shelf<br />

— Haaker10 (Mil Medicine); Warner33<br />

— Can be utilized for very large defects<br />

• Allograft<br />

— Concerns <strong>of</strong> noncontained graft incorporation in the past<br />

— Femoral head allografts have been shown to heal (1996<br />

data)12<br />

— May be option in future? Have to demonstrate efficacy,<br />

healing, and capsular management<br />

New advancement – Allograft Option Recently Described:<br />

• Fresh osteochondral distal tibia allograft as an alternative to<br />

fresh glenoid<br />

• Prior difficulty obtaining fresh glenoid allograft (contamination<br />

and harvest issues) - Investigated novel application <strong>of</strong> distal<br />

tibia to the glenoid (REF)<br />

— Exceptional fit and near perfect radius <strong>of</strong> curvature to the<br />

humeral head and glenoid (REF)<br />

— Figure:<br />

— Fresh – weight bearing bone; excellent corticocancellous<br />

fixation<br />

— As <strong>of</strong> Sept 2009, have performed 7 cases, most over 10<br />

months out, all with documented healing on CT scan (axial<br />

images) and full return to military duties<br />

— Still “investigational” as prior allograft concerns are evident,<br />

however, this represents new fresh allograft technique to the<br />

glenoid.<br />

• No prior graft processing (radiation, sterilization)<br />

• Excellent weight-αbearing dense tibia bone<br />

• Basic science and clinical evidence that the bone “fits” well<br />

7. Glenoid Bone Loss – Selected Results<br />

• Previously discussed Burkhart and De Beer (Arthroscopy 2000)<br />

— Very high recurrence (67%) with “inverted pear glenoid”


• Sugaya et al. (JBJS 2005)29 – “Arthroscopic osseous Bankart<br />

repair for chronic recurrent traumatic anterior glenohumeral<br />

instability”<br />

— 42 patients followed 34 months with mean loss <strong>of</strong> 24.8%<br />

anterior glenoid.<br />

– All had osseous fragment that was incorporated into the<br />

Bankart Repair (anchors)<br />

– 39/42 G/E result at final f/u – 2 with reinjury<br />

• Provencher, Mologne et al AJSM 200719<br />

— 23 patients (mean age 25 years, San Diego military<br />

population)<br />

— 93% follow-up at mean <strong>of</strong> 37 months<br />

— Mean <strong>of</strong> 25% anterior glenoid bone loss<br />

— All treated with arthroscopic repair (3 to 4 bioabsorbable<br />

anchors)<br />

— 11 patients had “Attritional loss” (no bony Bankart); 10<br />

patients had Bony Bankart<br />

— 3 Failures all in the “attritional” group (2 sublux, 1<br />

dislocated)<br />

– Mean loss ABER = 8 degrees<br />

• Porcellini et al AJSM 200722<br />

— 215 arthroscopic repairs over 6 years<br />

— 31.5% had bony Bankart; operated on early versus late<br />

— Review <strong>of</strong> results showed chronic (61 Rowe score) had less<br />

favorable outcomes than acute (92 Rowe score)<br />

• Rhee et al Int Orthop 200725<br />

— Open Bankart repair those with glenoid bone loss (20 pts)<br />

and those without (20 pts)<br />

— Less favorable scores with larger glenoid bone loss<br />

• Burkhart et al Arthrosc 20076<br />

— 102 patients treated with a Modified Latarjet with glenoid<br />

bone loss<br />

REFERENCES:<br />

1. Auffarth A, Schauer J, Matis N, K<strong>of</strong>ler B, Hitzl W, Resch H. The J-bone graft<br />

for anatomical glenoid reconstruction in recurrent posttraumatic anterior<br />

shoulder dislocation. The <strong>American</strong> journal <strong>of</strong> sports medicine. Apr 1<br />

2008;36(4):638-647.<br />

2. Bigliani LU, Newton PM, Steinmann SP, Connor PM, McLlveen SJ. Glenoid<br />

rim lesions associated with recurrent anterior dislocation <strong>of</strong> the shoulder.<br />

Am J Sports Med. Jan-Feb 1998;26(1):41-45.<br />

3. Boileau P, Bicknell RT, El Fegoun AB, Chuinard C. Arthroscopic Bristow<br />

procedure for anterior instability in shoulders with a stretched or deficient<br />

capsule: the “belt-and-suspenders” operative technique and preliminary<br />

results. Arthroscopy : the journal <strong>of</strong> arthroscopic & related surgery : <strong>of</strong>ficial<br />

publication <strong>of</strong> the Arthroscopy Association <strong>of</strong> North America and the<br />

International Arthroscopy Association. Jun 1 2007;23(6):593-601.<br />

4. Boileau P, Villalba M, Héry JY, Balg F, Ahrens P, Neyton L. Risk factors for<br />

recurrence <strong>of</strong> shoulder instability after arthroscopic Bankart repair. The<br />

Journal <strong>of</strong> bone and joint surgery <strong>American</strong> volume. Aug 1 2006;88(8):1755-<br />

1763.<br />

5. Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their<br />

relationship to failure <strong>of</strong> arthroscopic Bankart repairs: significance <strong>of</strong><br />

the inverted-pear glenoid and the humeral engaging Hill- Sachs lesion.<br />

Arthroscopy. Oct 2000;16(7):677-694.<br />

6. Burkhart SS, De Beer JF, Barth JR, et al. Results <strong>of</strong> modified Latarjet<br />

reconstruction in patients with anteroinferior instability and significant<br />

bone loss. Arthroscopy : the journal <strong>of</strong> arthroscopic & related surgery :<br />

<strong>of</strong>ficial publication <strong>of</strong> the Arthroscopy Association <strong>of</strong> North America and the<br />

International Arthroscopy Association. Oct 1 2007;23(10):1033-1041.<br />

7. Burkhart SS, Debeer JF, Tehrany AM, Parten PM. Quantifying glenoid<br />

bone loss arthroscopically in shoulder instability. Arthroscopy. May-Jun<br />

2002;18(5):488-491.<br />

8. Garth WP, Slappey CE, Ochs CW. Roentgenographic demonstration <strong>of</strong><br />

instability <strong>of</strong> the shoulder: the apical oblique projection. A technical<br />

note. The Journal <strong>of</strong> bone and joint surgery <strong>American</strong> volume. Dec 1<br />

1984;66(9):1450-1453.<br />

406<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

— All had “inverted pear” Glenoid (arthroscopically measured)<br />

- 5 <strong>of</strong> 102 patients àα recurrence (4.9%)<br />

— Boileau et al Arthrosc 20073 - Arthroscopic Bristow<br />

procedure; transfer <strong>of</strong> coracoid with conjoint and a repair<br />

<strong>of</strong> the capsulolabral structures - 8% failures <strong>of</strong> 36 patients<br />

total<br />

— Provencher et al Arthrosc 2008 - Anatomic osteochondral<br />

allograft reconstruction for glenoid bone deficiency<br />

using distal tibia allograft - Basic science work has<br />

demonstrated excellent congruence and similar radius <strong>of</strong><br />

curvature across numerous specimens<br />

• Pagnani et al AJSM 2008<br />

— 103 patients followed after open shoulder instability repair<br />

(mean age 20)<br />

— 84% Hill-Sachs (27% engaging, 57% nonengaging)<br />

— 14% anterior glenoid deficiency (4% with more that 20%<br />

defect)<br />

— Overall recurrence 2%; HIGHER if had a “engaging” Hill-<br />

Sachs<br />

— If large glenoid defect lost 12 degrees motion vs 5 degrees ER<br />

losses<br />

• Khazam AJO 2009<br />

— Open bone block technique with glenoid bone loss<br />

— Excellent outcomes in 15 patients<br />

• Weng AJSM 2009<br />

— Open reconstruction <strong>of</strong> large glenoid erosion with allogeneic<br />

bone graft<br />

— Femoral head allograft and anteroinferior capsular shift<br />

— Followed 4. 5years, 9 patients<br />

— Serial radiographs – all with union at 6 months after surgery<br />

— Overall good results – 1 subluxation and 1 dislocation<br />

(seizure pt) after surgery<br />

9. Griffith JF, Antonio GE, Yung PS, et al. Prevalence, pattern, and spectrum<br />

<strong>of</strong> glenoid bone loss in anterior shoulder dislocation: CT analysis <strong>of</strong> 218<br />

patients. AJR <strong>American</strong> journal <strong>of</strong> roentgenology. May 1 2008;190(5):1247-<br />

1254.<br />

10. Haaker RG, Eickh<strong>of</strong>f U, Klammer HL. Intraarticular autogenous bone<br />

grafting in recurrent shoulder dislocations. Military medicine. Mar 1<br />

1993;158(3):164-169.<br />

11. Huijsmans PE, Haen PS, Kidd M, Dhert WJ, van der Hulst VP, Willems<br />

WJ. Quantification <strong>of</strong> a glenoid defect with three-dimensional computed<br />

tomography and magnetic resonance imaging: a cadaveric study. Journal <strong>of</strong><br />

shoulder and elbow surgery / <strong>American</strong> Shoulder and Elbow Surgeons [et al].<br />

Jan 1 2007;16(6):803-809.<br />

12. Hutchinson JW, Neumann L, Wallace WA. Bone buttress operation for<br />

recurrent anterior shoulder dislocation in epilepsy. The Journal <strong>of</strong> bone and<br />

joint surgery British volume. Nov 1 1995;77(6):928- 932.<br />

13. Huysmans PE, Haen PS, Kidd M, Dhert WJ, Willems JW. The shape <strong>of</strong> the<br />

inferior part <strong>of</strong> the glenoid: a cadaveric study. Journal <strong>of</strong> shoulder and<br />

elbow surgery / <strong>American</strong> Shoulder and Elbow Surgeons [et al]. Jan 1<br />

2006;15(6):759-763.<br />

14. Itoi E, Lee SB, Amrami KK, Wenger DE, An KN. Quantitative assessment <strong>of</strong><br />

classic anteroinferior bony Bankart lesions by radiography and computed<br />

tomography. Am J Sports Med. Jan-Feb 2003;31(1):112-118.<br />

15. Itoi E, Lee SB, Berglund LJ, Berge LL, An KN. The effect <strong>of</strong> a glenoid defect on<br />

anteroinferior stability <strong>of</strong> the shoulder after Bankart repair: a cadaveric study.<br />

J Bone Joint Surg Am. Jan 2000;82(1):35-46.<br />

16. Kralinger F, Aigner F, Longato S, Rieger M, Wambacher M. Is the bare spot<br />

a consistent landmark for shoulder arthroscopy? A study <strong>of</strong> 20 embalmed<br />

glenoids with 3-dimensional computed tomographic reconstruction.<br />

Arthroscopy. Apr 2006;22(4):428-432.<br />

17. Lo IK, Parten PM, Burkhart SS. The inverted pear glenoid: an indicator <strong>of</strong><br />

significant glenoid bone loss. Arthroscopy. Feb 2004;20(2):169-174.<br />

18. Mologne TS, Michio H, Zhao K, An KN, Provencher MT. The Addition <strong>of</strong><br />

Rotator Interval Closure after Arthroscopic Repair <strong>of</strong> either Anterior or<br />

Posterior Shoulder Instability: Impact <strong>of</strong> Glenohumeral Translation and<br />

Range <strong>of</strong> Motion. <strong>American</strong> Journal <strong>of</strong> Sports Medicine. 2008;TBD(In Print).


19. Mologne TS, Provencher MT, Menzel KA, Vachon TA, Dewing CB.<br />

Arthroscopic Stabilization in Patients With an Inverted Pear Glenoid: Results<br />

in Patients With Bone Loss <strong>of</strong> the Anterior Glenoid. Am J Sports Med. Mar<br />

26 2007.<br />

20. Pagnani MJ. Open Capsular Repair Without Bone Block for Recurrent<br />

Anterior Shoulder Instability in Patients With and Without Bony Defects<br />

<strong>of</strong> the Glenoid and/or Humeral Head. The <strong>American</strong> journal <strong>of</strong> sports<br />

medicine. Apr 30 2008.<br />

21. Plausinis D, Bravman JT, Heywood C, Kummer FJ, Kwon YW, Jazrawi LM.<br />

Arthroscopic rotator interval closure: effect <strong>of</strong> sutures on glenohumeral<br />

motion and anterior-posterior translation. Am J Sports Med. Oct<br />

2006;34(10):1656-1661.<br />

22. Porcellini G, Paladini P, Campi F, Paganelli M. Long-term outcome <strong>of</strong> acute<br />

versus chronic bony Bankart lesions managed arthroscopically. The <strong>American</strong><br />

journal <strong>of</strong> sports medicine. Dec 1 2007;35(12):2067-2072.<br />

23. Provencher MT, Detterline AJ, Ghodadra N, et al. Measurement <strong>of</strong> glenoid<br />

bone loss: a comparison <strong>of</strong> measurement error between 45 degrees and 0<br />

degrees bone loss models and with different posterior arthroscopy portal<br />

locations. The <strong>American</strong> journal <strong>of</strong> sports medicine. Jun 1 2008;36(6):1132-<br />

1138.<br />

24. Provencher MT, Mologne TS, Hongo M, Zhao K, Tasto JP, An KN.<br />

Arthroscopic versus open rotator interval closure: biomechanical evaluation<br />

<strong>of</strong> stability and motion. Arthroscopy. Jun 2007;23(6):583- 592.<br />

25. Rhee YG, Lim CT. Glenoid defect associated with anterior shoulder<br />

instability: results <strong>of</strong> open Bankart repair. International orthopaedics. Oct 1<br />

2007;31(5):629-634.<br />

26. Roukos J, Feagin J. Modified axillary roentgenogram: A useful adjunct in<br />

the diagnosis <strong>of</strong> recurrent instability <strong>of</strong> the shoulder. Clin Orthop Relat Res.<br />

1972;82:84-86.<br />

27. Saito H, Itoi E, Sugaya H, Minagawa H, Yamamoto N, Tuoheti Y. Location<br />

<strong>of</strong> the glenoid defect in shoulders with recurrent anterior dislocation. Am J<br />

Sports Med. Jun 2005;33(6):889-893.<br />

28. Sugaya H, Moriishi J, Dohi M, Kon Y, Tsuchiya A. Glenoid rim morphology<br />

in recurrent anterior glenohumeral instability. J Bone Joint Surg Am. May<br />

2003;85-A(5):878-884.<br />

29. Sugaya H, Moriishi J, Kanisawa I, Tsuchiya A. Arthroscopic osseous Bankart<br />

repair for chronic recurrent traumatic anterior glenohumeral instability. J<br />

Bone Joint Surg Am. Aug 2005;87(8):1752- 1760.<br />

30. Sugaya H, Moriishi J, Kanisawa I, Tsuchiya A. Arthroscopic osseous Bankart<br />

repair for chronic recurrent traumatic anterior glenohumeral instability.<br />

Surgical technique. The Journal <strong>of</strong> bone and joint surgery <strong>American</strong> volume.<br />

Sep 1 2006;88 Suppl 1 Pt 2:159-169.<br />

31. Tauber M, Moursy M, Eppel M, Koller H, Resch H. Arthroscopic screw<br />

fixation <strong>of</strong> large anterior glenoid fractures. Knee surgery, sports traumatology,<br />

arthroscopy : <strong>of</strong>ficial journal <strong>of</strong> the ESSKA. Mar 1 2008;16(3):326-332.<br />

32. Tauber M, Resch H, Forstner R, Raffl M, Schauer J. Reasons for failure after<br />

surgical repair <strong>of</strong> anterior shoulder instability. J Shoulder Elbow Surg. May-<br />

Jun 2004;13(3):279-285.<br />

33. Warner JJ, Gill TJ, O’hollerhan JD, Pathare N, Millett PJ. Anatomical glenoid<br />

reconstruction for recurrent anterior glenohumeral instability with glenoid<br />

deficiency using an autogenous tricortical iliac crest bone graft. The <strong>American</strong><br />

journal <strong>of</strong> sports medicine. Feb 1 2006;34(2):205-212.<br />

407<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

34. Yamamoto N, Itoi E, Tuoheti Y, et al. Effect <strong>of</strong> rotator interval closure on<br />

glenohumeral stability and motion: a cadaveric study. J Shoulder Elbow Surg.<br />

Nov-Dec 2006;15(6):750-758.<br />

ADDITIONAL READING AND RESOURCES<br />

1. Piasecki D, Ghodadra N, Bach BR, Romeo AA, Provencher MT. The diagnosis<br />

and management <strong>of</strong> glenoid bone loss in recurrent anterior shoulder<br />

instability. Journal <strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons 2009;<br />

17(8):482-493.<br />

2. Seroyer S, Nho S, Provencher MT, Romeo AA. Four-Quadrant Approach<br />

to Capsulolabral Repair: An Arthroscopic Roadmap to The Glenoid.<br />

Arthroscopy (In Press).<br />

3. Detterline AJ, Provencher MT, Ghodadra N, Bach BR, Verma N, Romeo AA. A<br />

novel measurement <strong>of</strong> anterior glenoid bone loss; correlation measurements<br />

<strong>of</strong> the inverted pear glenoid. Arthroscopy 2009. In print.<br />

4. Grumet R, Ghodadra N, Romeo AA, Bach BR Jr., Provencher MT. Recurrent<br />

shoulder instability with glenoid bone loss. <strong>Orthopaedic</strong> Knowledge Update,<br />

Online 7(9); http://www5.aaos.org/oko/description.cfm?topic=SHO032.<br />

Accessed September 2, 2009.<br />

5. Provencher MT, Ghodadra N, LeClere L, Bach BR, Solomon DJ, Romeo<br />

AA. Anatomical osteochondral glenoid reconstruction for recurrent<br />

glenohumeral instability with glenoid deficiency using a distal tibia allograft.<br />

Arthroscopy 2009;25(4)446-452<br />

6. Kang RW, Frank R, Nho S, Ghodadra N, Verma NN, Romeo AA, Provencher<br />

MT. Complications Associated with Anterior Shoulder Instability Repair.<br />

Arthroscopy 2009; 25(8):909-920.<br />

7. Provencher MT, Detterline AJ, Ghodadra N, Romeo AA, Bach BR, Cole BJ,<br />

Verma N. Measurement <strong>of</strong> glenoid bone loss: A comparison <strong>of</strong> measurement<br />

error between 45° and 0° bone loss models and with different posterior<br />

arthroscopy portal locations. <strong>American</strong> Journal <strong>of</strong> Sports Medicine 2008;<br />

36(6):1132-1138.<br />

8. Schroder DT, Provencher MT, Mologne TS, Cox JS. The modified<br />

Bristow Procedure for anterior shoulder instability: 26-year outcomes<br />

in Naval <strong>Academy</strong> Midshipmen. <strong>American</strong> Journal <strong>of</strong> Sports Medicine<br />

2006;34(5):778-786.<br />

9. Mologne TS, Provencher MT, Menzel KA, Bell SJ. Arthroscopic stabilization <strong>of</strong><br />

patients with glenoid bone deficiency. <strong>American</strong> Journal <strong>of</strong> Sports Medicine<br />

2007;35(8)1276-1283.<br />

10. Provencher MT, Ghodadra N, Romeo AA, Solomon DJ. Characterization<br />

<strong>of</strong> anterior shoulder instability. AAOS <strong>Annual</strong> <strong>Meeting</strong> Multimedia<br />

Presentation, New Orleans, LA, 2010.<br />

11. Ghodadra N, Grumet R, Mologne TS, Bach BR, Romeo AA, Provencher MT.<br />

The diagnosis and management <strong>of</strong> glenoid bone loss. AAOS <strong>Annual</strong> <strong>Meeting</strong><br />

Scientific Exhibit, New Orleans, LA, 2010.<br />

12. Provencher MT. Pearls and pitfall in the surgical treatment <strong>of</strong> recurrent<br />

instability <strong>of</strong> the shoulder – techniques and bailouts. AAOS <strong>Annual</strong> <strong>Meeting</strong><br />

Multimedia Presentation, Las Vegas, NV 2009.<br />

13. Provencher MT, Solomon DJ. The diagnosis, measurement, and treatment<br />

<strong>of</strong> shoulder instability in patients with glenoid bone loss. AAOS <strong>Annual</strong><br />

<strong>Meeting</strong> Multimedia Presentation, Las Vegas, NV 2009.


408<br />

arthroSCopiC treatmeNt oF poSterior iNStability<br />

Jeffrey S. Abrams, MD<br />

Posterior and posteroinferior instability occur when excessive<br />

posterior humeral translation becomes painful and disabling.<br />

Although once thought to be uncommon, it can be found in<br />

athletes and other individuals who participate in repetitive overhead<br />

activities and contact sports. The gold standard <strong>of</strong> treatment should<br />

include correction <strong>of</strong> dynamic and static factors that limit posterior<br />

translation. A particular technique becomes a “gold standard” when<br />

success rates are improved, fewer complications occur, and the<br />

technique is reproducible amongst many treating physicians.<br />

Classifications<br />

a. Subluxation versus dislocation<br />

Dislocation is a relatively uncommon occurrence that is <strong>of</strong>ten<br />

the result <strong>of</strong> seizure due to the 3 E’s: ethanol, epilepsy, and<br />

electricity. The more common patient is a subluxator, i.e., the<br />

humerus translates posterior to the glenoid and then reduces<br />

without assistance.<br />

b. Subluxation classification<br />

• Voluntary:<br />

— Habitual<br />

— Muscular contraction<br />

• Involuntary<br />

— Positional: forward flexion<br />

— Symptoms reproduced with load-and-shift (occult)<br />

c. Onset <strong>of</strong> symptoms<br />

• Traumatic – unidirectional<br />

• Atraumatic/overuse – symptomatic direction MDI,<br />

posteroinferior<br />

Indications for arthroscopic approach<br />

• Recurrent posterior subluxation that remains symptomatic in<br />

spite <strong>of</strong> attempting a nonoperative stabilization program.<br />

• Involuntary: painful symptoms reproduced by<br />

(a) forward flexion, adduction<br />

(b)posterior load-and-shift exam<br />

Contraindications <strong>of</strong> arthroscopic approach<br />

• Voluntary subluxators: Habitual and subluxators due to<br />

muscular contraction should be treated with nonoperative<br />

programs<br />

• Significant bone abnormality, i.e., excessive glenoid retroversion,<br />

should be considered for glenoid osteotomy and open<br />

reconstruction<br />

Role <strong>of</strong> load-and-shift translation tests:<br />

• Awake patients reproduce symptoms<br />

• EUA compare translation to asymptomatic side<br />

• Examination:<br />

— Posterior translation<br />

(a) neutral<br />

(b) flexed, internally rotated to see if restraint improves<br />

— Sulcus in neutral and reevaluate with shoulder in external<br />

rotation<br />

Arthroscopic Posterior Repair: (personal figures)<br />

• Posterior portal (2 cm inferior to angle <strong>of</strong> acromion and spine<br />

<strong>of</strong> scapular).<br />

• Anterior portal between lateral margin <strong>of</strong> acromioclavicular<br />

joint and coracoid.<br />

• Additional posterior portals inferior and lateral for suture<br />

anchors.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

Portals<br />

Complete diagnostic exam from both portals. Visualizing from the<br />

anterior portal, the inferior capsule is probed and roughened with<br />

a shaver. Suture anchors can be placed along the posterior inferior<br />

glenoid rim through an accessory portal. Suture anchors are used<br />

when labrum is detached, inadequate to create capsule plication,<br />

or in cases where the s<strong>of</strong>t tissue can be transferred over an articular<br />

glenoid defect. Sutures can be retrieved through the capsule and<br />

under the labrum to create a pleat. Capsule plication can reduce<br />

inferior and posterior pouches. Suture anchors can be placed in the<br />

humeral head when capsule is avulsed.<br />

Visualizing from posterior portal, anchor repair <strong>of</strong> anterior labrum<br />

or Type II SLAP lesions. In cases where there is no additional labral<br />

pathology and a sulcus sign exists, rotator interval is reduced with<br />

sutures between the middle and superior glenohumeral ligaments.<br />

Labral tear Anchor<br />

Shuttle Repair<br />

Capsule pouch Plication<br />

Postoperative<br />

• Sling for 4-6 weeks<br />

• External rotation, shrugs<br />

• At 4 weeks, supine forward flexion<br />

• At 8 weeks, cuff and scapular strengthening


• At 3 months, advance strengthening<br />

• Noncontact sports, 4 months<br />

• Contact sports, 6 months<br />

Arthroscopic findings (49 patients)<br />

Most patients have enlarged posterior pouches (48), labral tears or<br />

detachments (26), glenoid articular defects (4), posterior capsule tear<br />

or humeral head detachment (2). In addition, coexistent pathology<br />

in the anterior and superior quadrant included SLAP lesions (4),<br />

anterior labral and capsule tears (13), articular partial-thickness<br />

rotator cuff tears (4), and enlarged rotator intervals (common in<br />

MDI).<br />

409<br />

Chondral changes SLAP tear reverse HAGL<br />

Results<br />

1. Abrams, JS (OCNA 2004). In 49 patients (2/3 traumatic) with<br />

2 recurrences (4%); 4 stable, but pain, stiffness after 6 months,<br />

requiring more than 6 months to resolve; 85% return to<br />

athletics; 90% throwing sports; 6 <strong>of</strong> 7 workmen’s compensation<br />

cases; 88% success.<br />

2. Wolf EM, Eakin CL (Arthroscopy 1998). 14 patients<br />

REFERENCES/BIBLIOGRAPHY<br />

1. Abrams JS. Arthroscopic repair <strong>of</strong> posterior instability and reverse humeral<br />

ligament avulsion lesions. Orthop Clin N Am 34:475-483, 2003.<br />

2. Abrams JS. Arthroscopic treatment <strong>of</strong> posterior instability. In Tibone JE,<br />

Savoie FH III, Shaffer BS, eds: Shoulder Arthroscopy, Springer, 2003, pp 97-<br />

103.<br />

3. Antoniou J, Duckworth DT, Harryman DT II. Capsulolabral augmentation<br />

for the management <strong>of</strong> posteroinferior instability <strong>of</strong> the shoulder. J Bone<br />

Joint Surg 82(A):12201230, 2000.<br />

4. Bell RH, Noble JS. An appreciation <strong>of</strong> posterior instability <strong>of</strong> the shoulder.<br />

Clin Sports Med 10:887-900, 1991.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

(9 traumatic, 5 overuse) repaired. All had enlarged pouches, 12<br />

had labral tears, 2 had anterior labral tears. One recurrence; 9 <strong>of</strong><br />

10 returned to sport and 86% success.<br />

3. Kim SH, Ha KI, Park JH, et al (JBJS 2003). 27 patients<br />

(traumatic) repaired with one recurrence. All patients had<br />

enlarged posterior inferior pouches and most with labral tears<br />

or stripping.<br />

Conclusions<br />

Stabilization can predictably be performed in patients with recurrent<br />

posterior subluxation due to loss <strong>of</strong> s<strong>of</strong>t tissue restraint. Multiple<br />

labral and capsular lesions can be discovered arthroscopically<br />

and repaired in addition to managing the enlarged posterior and<br />

inferior pouch. Improved stabilization rates can be attributed to<br />

proper patient selection, arthroscopic recognition, and correction <strong>of</strong><br />

capsular and labral insufficiency that can limit humeral translation.<br />

The new gold standard recognizes and corrects the primary and<br />

secondary lesions.<br />

The gold standard <strong>of</strong> posterior repair:<br />

1. Reduced rate <strong>of</strong> recurrence <strong>of</strong> subluxation<br />

2. Reduced rate <strong>of</strong> complications; i.e., coracoid impingement<br />

3. Direct repair, rather than indirect shift, <strong>of</strong> capsule deformity<br />

4. Recognition and repair <strong>of</strong> coexistent lesions opposite the<br />

posteroinferior lesions (circle concept)<br />

5. Capsular plication <strong>of</strong> the rotator interval when indicated<br />

5. Harryman DT, Sidles JA, Harris SL, et al. Role <strong>of</strong> the rotator interval capsule<br />

in passive motion and stability <strong>of</strong> the shoulder. J Bone Joint Surg (Am)<br />

74:53-66, 1992.<br />

6. Hawkins RJ, Koppert G, Johnson G. Recurrent posterior instability<br />

(subluxation) <strong>of</strong> the shoulder. J Bone Joint Surg (Am) 66:169-174, 1984.<br />

7. Kim SH, Ha KI, Park JH, et al. Arthroscopic posterior labral repair and<br />

capsule shift for traumatic unidirectional recurrent posterior subluxation <strong>of</strong><br />

the shoulder. J Bone Joint Surg (Am) 85(A):1479-1487, 2003.<br />

8. Nobuhara K, Ikeda H. Rotator interval lesion. Clin Orthop 223:44-50, 1987.<br />

9. Weber SC, Caspari RB. A biomechanical evaluation <strong>of</strong> the restraints to<br />

posterior shoulder dislocation. Arthroscopy 5:115-121, 1989.<br />

10. Wolf EM, Eakin CL. Arthroscopic capsule plication for posterior shoulder<br />

instability. Arthroscopy 14:153-163, 1998.


410<br />

deCiSioN-makiNg iN biCepS aNd Slap iNJurieS<br />

Richard K.N. Ryu, MD<br />

I. Anatomy<br />

a. Originates from posterior-superior labrum and supraglenoid<br />

tubercle<br />

b. Intraarticular / extra-synovial<br />

c. Widest at origin and progressively narrows<br />

d. Stability in groove provided by coracohumeral and superior<br />

glenohumeral ligaments primarily; tuberosities and<br />

transverse humeral ligament less important<br />

e. Proximal third with higher degree <strong>of</strong> innervation; substance<br />

P and calcitonin gene-related peptides present (rich<br />

sympathetic sensory network)<br />

f. Angular orientation <strong>of</strong> biceps in relationship to HH<br />

(adaptive) diminishes arm elevation capability; ? increased<br />

risk <strong>of</strong> biceps instability<br />

g. Vascularity arises from the capsule and periosteum, not<br />

from underlying bone; like meniscus, periphery with greater<br />

vascularity. h. Superior attachment <strong>of</strong> the biceps-labrum<br />

complex (BLC) labrum has three variations: (Stoller)<br />

1. Continuous with the articular surface where there is no<br />

cleft<br />

2. Attached medial to glenoid with hyaline cartilage<br />

beneath the free edge (meniscoid)<br />

3. Meniscoid attachment where a large cleft (sulcus) is<br />

present between the labral edge and the underlying<br />

articular cartilage<br />

i. Buford” normal variant where MGHL derives from the<br />

superior labrum with the anterior-superior labrum absent (<br />

occurs in 1.5% )<br />

j. Senescence pattern seen with superior labrum; separation<br />

as well as fraying can be a normal aging pattern without<br />

symptoms<br />

1. Pfahler JSES 2003: Senescence and natural course <strong>of</strong><br />

labral degeneration. Micro and macroscopic analysis <strong>of</strong><br />

NORMAL shoulders stratified by age concept <strong>of</strong> “agedependent”<br />

course <strong>of</strong> the labral attachments. 3 stages :<br />

i. < 10 years old circumferential attachment<br />

ii. 30-50 years old fissuring and recesses appear<br />

iii. >60 years old circumferential tearing, fissuring and<br />

detachment<br />

II. Biceps Function<br />

a. Humeral head depressor ?<br />

i. Larger size in chronic massive cuff tears may reflect<br />

chronic inflammation rather than hypertrophy<br />

ii. EMG does not support humeral head depressor theory;<br />

several studies indicate minimal role <strong>of</strong> biceps in the<br />

throwing shoulder<br />

iii. Position <strong>of</strong> biceps over HH in full external rotation may<br />

contribute to depressor function<br />

b. Shoulder Stabilizer<br />

i. Cadaveric biomechanical studies indicate enhanced<br />

glenohumeral stability with biceps contraction as<br />

resistance to torsional forces improved; resistance to<br />

superior HH migration with biceps activity also noted<br />

ii. EMG data does support; throwers with anterior instability<br />

patterns demonstrate greater EMG biceps activity<br />

iii. Elbow function may dictate contribution <strong>of</strong> biceps to<br />

HH/GH stability<br />

c. Does the biceps play a role in shoulder function? If so, is it<br />

clinically significant? Function or lack there<strong>of</strong> forms basis for<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

treatment alternatives and patient selection<br />

III. Biceps Pathology (non-SLAP)<br />

a. Need to consider “isolated” (less common) or associated<br />

pathology, i.e. RC pathology<br />

b. Etiologies:<br />

i. Impingement phenomenon<br />

ii. Intrinsic tendon degeneration<br />

iii. Instability, traumatic or associated with subscapularis tear<br />

iv. Traumatic<br />

v. Combination<br />

c. Categories:<br />

i. Partial tears (degneration and/or associated with cuff<br />

pathology<br />

ii. Complete ruptures (usually secondary to chronic partial<br />

with progression vs acute trauma)<br />

iii. Synovitis (“lipstick”synovitis per Gross)<br />

iv. “Hourglass” deformity (Boileau) <strong>of</strong> intra-articular<br />

segment ( chronic inflammation leads to thickened<br />

segment which cannot traverse the bicipital groove;<br />

tendon fails to glide as shoulder is rotated; segment<br />

“bunches up” as shoulder taken through ROM; patients<br />

lose terminal 10-20 degrees <strong>of</strong> FF<br />

v. Instability (usually in association with subscapularis<br />

injury; can occur as a result <strong>of</strong> acute trauma<br />

1. Instability can be medial (most common) with injury<br />

to medial sling (and subscapularis ); theoretically<br />

can reduce with internal rotation but clicking and<br />

popping usually not the associated with dislocation<br />

and relocation when medial<br />

2. Instability can be lateral with disruption <strong>of</strong><br />

anterior superior cuff and lateral expansion <strong>of</strong> the<br />

coracohumeral ligament; lateral instability can be<br />

associated with a dislocation-relocation phenomenon<br />

as the arm is externally rotated<br />

vi. Combination with instability and partial tearing<br />

common<br />

IV. SLAP Pathology<br />

a. Classification:<br />

i. Type I: degenerative fraying at the base <strong>of</strong> the anchor<br />

ii. Type II: detachment <strong>of</strong> the superior labrum from the<br />

glenoid/supraglenoid tubercle<br />

iii. Type III: bucket-handle tear <strong>of</strong> the superior labrum<br />

sparing the biceps attachment iv.Type IV: bucket-handle<br />

tear <strong>of</strong> the superior labrum extending in the substance <strong>of</strong><br />

the biceps and possibly into the anchor as well<br />

v. Type V: type II detachment contiguous with a Bankart<br />

lesion anterior and inferior<br />

vi. Type VI: type II detachment with a flap tear <strong>of</strong> the<br />

superior labrum<br />

vii.Type VII: type II detachment with extension along<br />

anterior labrum extending into the middle glenohumeral<br />

ligament<br />

viii. Type VIII: type II detachment contiguous with a<br />

posterior Bankart lesion<br />

ix. Type IX: type II with extension both anterior and<br />

posterior in which circumferential labral detachment is<br />

present<br />

x. Type X: type II detachment with non-contiguous<br />

posterior Bankart


411<br />

1. Characteristics<br />

Types 1-IV are basic types<br />

Types V –X are complex subtypes<br />

Type II most commonly encountered<br />

Type 1 requires no treatment<br />

Type II, III. IV, V associated with instability<br />

b. Associated Pathology: Isolated SLAP lesions are uncommon<br />

i. Snyder 43% associated rotator cuff partial or complete<br />

tear; 15% with instability<br />

ii. Maffet 48% associated rotator cuff pathology; 20%<br />

instability<br />

iii. Pagnani 18% with concomitant rotator cuff surgery<br />

iv. Stetson: <strong>of</strong> 140 patients with confirmed SLAP lesion, only<br />

26 without associated pathology<br />

1. Leads to critical question:<br />

If reported success rate with SLAP repair in<br />

CONJUNCTION with associated pathology, how can<br />

we know that the SLAP lesions was symptomatic in the<br />

first place given the difficulty with physical findings,<br />

imaging confirmation and clinical presentation?<br />

c. Mechanism <strong>of</strong> injury<br />

i. Andrews 1985: traction-type “pulling” injury; biceps<br />

overload<br />

ii. Snyder 1990: compression with arm flexed and abducted<br />

iii. Morgan/Burkhart 2002: “Peel-back” mechanism<br />

iv. Currently no one specific “mechanism <strong>of</strong> injury”;<br />

clearly superior labrum can be injured from a variety <strong>of</strong><br />

forces; certain activities e.g. throwing can be linked to a<br />

particular set <strong>of</strong> forces which create a predictable lesion<br />

V. History and Physical Examination for Biceps (non-SLAP)<br />

a. History is usually compatible with that given by those with<br />

impingement type symptoms although the pain may be<br />

more anterior and radiate into the biceps (possibly the<br />

hand); popping and snapping moving from internal to<br />

external rotation may signify instability<br />

b. Physical findings can overlap as biceps pathology is<br />

commonly encountered in conjunction with rotator cuff<br />

disease<br />

i. Tenderness over bicipital groove (best palpated in 10-20<br />

degrees <strong>of</strong> internal rotation and 8-10 cm distal to tip <strong>of</strong><br />

acromion; assess “ groove “ tenderness with palpation<br />

ii. Yergason or Speed test can be sensitive but not very<br />

specific<br />

iii. Some motion loss, esp internal rotation, may be noted;<br />

loss <strong>of</strong> forward flexion may indicate “hour-glass” type<br />

phenomenon<br />

iv. Differential injections can be helpful. Subacomial<br />

injection should not improve isolated biceps pathology.<br />

Intraarticular injection should improve biceps pain; can<br />

also use CT guided injection into the groove<br />

VI. Diagnostic Testing:<br />

a. Plain films are not very useful in most cases. Avulsion<br />

fragments from the tuberosity may indicate instability.<br />

b. MR arthrogram can be helpful to assess the biceps including<br />

morphology, position and whether contrast flows through<br />

bicipital groove (lack there<strong>of</strong> may suggest chronic synovial<br />

thickening and a diseased tendon)<br />

c. Ultrasound especially useful in determining bieps<br />

dislocation; intra-articular pathology not well identified with<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

this modality<br />

d. Arthroscopic evaluation may be the final assessment when<br />

biceps pathology is suspected, but not confirmed with<br />

noninvasive testing; Imperative that tendon is inspected<br />

thoroughly by pulling biceps into the joint and evaluating<br />

that portion usually hidden within the bicipital groove<br />

VII. History and Physical Examination for SLAP lesions<br />

a. Overlapping symptoms can make diagnosis difficult e.g.<br />

impingement-type symptoms and instability<br />

• Stetson: ISOLATED SLAP<br />

i. Positive impingement sign 52%<br />

ii. Pop/snap 43%<br />

iii. Anterior apprehension 39%<br />

iv. Biceps tension 35%<br />

b. Snyder: Speed test and O’Brien test most helpful in<br />

establishing biceps involvement; also recommends<br />

compression-rotation test ( analogous to McMurray’s)<br />

to trap unstable fragment; No single test or combination<br />

diagnostic <strong>of</strong> a SLAP tear<br />

c. Multiple tests described to diagnose SLAP lesions; overall the<br />

reported tests have low specificity and sensitivity (Kim JBJS,<br />

Oh AJSM 2008)<br />

d. Gobezie, et.al AJSM 2008: Inter and Intraobserver Variability<br />

in Diagnosis and Treatment <strong>of</strong> SLAP Tears<br />

• 73 EXPERT surgeons queried with video clips on diagnosing<br />

and treating SLAP lesions:<br />

i. Substantial variability<br />

ii. Difficulty distinguishing Type I and II<br />

iii. Results:<br />

1. Normal labrum 66.7% correct (D x and Tx both)<br />

2. Type 1 SLAP 60.3% “ “<br />

3. Type II SLAP 51.9% “ “<br />

4. Type III SLAP 23.3% “ “<br />

5. Type IV SLAP 60.3% “ “<br />

VIII. Diagnostic imaging for SLAP lesions:<br />

a. MR primary non-operative means to confirm the diagnosis;<br />

use <strong>of</strong> gadolineum essential<br />

b. Caution regarding normal variants e.g. Buford complex,<br />

sublabral foramen; be aware <strong>of</strong> BLC variants<br />

c. Presence <strong>of</strong> spinoglenoid cyst should raise the possibility <strong>of</strong><br />

a SLAP lesion (analogous to meniscal tear and cyst)<br />

1. Arthroscopy remains the “gold” standard in confirming<br />

the diagnosis Salient arthroscopic features:<br />

i. For obvious lesions e.g. Types II and IV, careful<br />

probing reveals displaced fragment and extent <strong>of</strong><br />

biceps involvement<br />

ii. As traction is applied to biceps tendon, the anchor<br />

pulls away from the superior glenoid; if more than 5<br />

mm displacementॠlikely a legitimate Type II SLAP<br />

lesion<br />

iii. Probing <strong>of</strong> the labrum allows “lifting” <strong>of</strong>f <strong>of</strong> the<br />

superior labrum IN CONJUNCTION with irregular<br />

appearance <strong>of</strong> the underlying hyaline cartilage, +<br />

granulation tissue, significant fissuring and fraying<br />

iv. Dynamic assessment arthroscopy: arm is taken out <strong>of</strong><br />

traction and placed in the ABER position; progressive<br />

external rotation and horizontal extension leads to<br />

“peel-back” <strong>of</strong> the posterior-superior labrum which<br />

can be visualized directly


BICEPS TENDON PATHOLOGY BIBLIOGRAPHY<br />

1. Frost, A., Zafar, M.S., Maffulli, N. Tenotomy Versus Tenodesis in the<br />

Management <strong>of</strong> Pathologic Lesions <strong>of</strong> the Tendon on the Long Head <strong>of</strong> the<br />

Biceps Brachii. Am J Sports Med 2009; 828-833<br />

2. Kelly, AM., Drakos, MC., Fealy, S., et.al. Arthroscopic Release <strong>of</strong> the Long<br />

Head <strong>of</strong> the Biceps Tendon. Am J Sports Med. 2005: 33: 208213<br />

3. LaFosse,L., Reiland, Y., Baier, GP, et.al. Anterior and Posterior Instbaility<br />

<strong>of</strong> the Long Head <strong>of</strong> the Biceps Tendon in Rotator Cuff Tears: A New<br />

Classification Based on Arthroscopic Observations. Arthroscopy 2007; 73-80<br />

4. Francheschi, F., Longo, UG., Ruzzini,L., et.al. No Advantages in Repairing<br />

a Type II Superior Labrum Anterior and Posterior (SLAP) Lesion When<br />

Associated with Rotator Cuff Repair in Patients Over Age 50. Am J Sports<br />

Med 2008; 247-253<br />

5. Mazzocca, AD., Cote, MP., Arciero, CL, et.al. Clinical Outcomes After<br />

Subpectoral Biceps Tenodesis With an Interference Screw. Am J Sports Med<br />

2008; 1922-1929<br />

6. Walch, G., Edwards, B., Boulahia, A., et.al. Arthroscopic Tenotomy <strong>of</strong> the<br />

Long Head <strong>of</strong> the Biceps in the Treatment <strong>of</strong> Rotator Cuff Tears: Clinical and<br />

Radiographic Results <strong>of</strong> 307 cases. J Shoulder Elbow Surg. 2005;14:238-246<br />

7. Alpantaki, K., McLaughlin, D., Karagogoes, D. et.al., Sympathetic and<br />

Sensory Neural Elements in the Tendon <strong>of</strong> the Long Head <strong>of</strong> the Biceps. J<br />

Bone Joint Surg (Am) 2005; 87A:1580-1583<br />

8. Ozalay, M., Akpinar, S., Karaeminogullari, O., et.al. Mechanical Strength <strong>of</strong><br />

Four Different Biceps Tenodesis Techniques. Arthroscopy 2005;21: 992-998<br />

9. Rodosky MW, Harner CD, Fu FH. The role <strong>of</strong> the long head <strong>of</strong> the biceps<br />

muscle and superior glenoid labrum in anterior stability <strong>of</strong> the shoulder. Am<br />

J Sports Med 1994;22:121-130.<br />

10. Dines D; Warren RF, Inglis AE. Surgical treatment <strong>of</strong> lesions <strong>of</strong> the long head<br />

<strong>of</strong> the biceps. Clin Orthop 1982;164:165-171.<br />

11. Warren RF. Lesions <strong>of</strong> the long head <strong>of</strong> the biceps tendon. Instr Course Lect<br />

1985;34:204-209.<br />

12. Gill, TJ, McIrvin E, Mair, SD, et.al. Results <strong>of</strong> Biceps Tenotomy for Treatment<br />

<strong>of</strong> Pathology <strong>of</strong> the Long Head <strong>of</strong> the Biceps Brachii. J Shoulder Elbow Surg<br />

2001:10: 247-249<br />

13. Richards, DP, Burkhart, SS. A Biomechnaical Analysis <strong>of</strong> Two Biceps<br />

Tenodesis Fixation Techniques. Arthroscopy 2005;21: 861866<br />

14. Curtis AS, Snyder SJ. Evaluation and treatment <strong>of</strong> biceps tendon pathology.<br />

Orthop Clin North Am 1993;24:33-43.<br />

15. Warner JJ, McMahon PJ. The role <strong>of</strong> the long head <strong>of</strong> the biceps brachii<br />

in superior stability <strong>of</strong> the glenohumeral joint. J Bone Joint Surg Am<br />

1995;77:366-372.<br />

16. Barber,FA, Byrd, JD, Wolf,EM, et.al.,Current Controversies Point<br />

Counterpoint. How Would You Treat the Partially Torn Biceps Tendon?.<br />

Arthroscopy: 2001;17:636-639<br />

17. Bennett,WF. Subscapularis, medial, and lateral head coracohumeral ligament<br />

insertion anatomy: arthroscopic appearance and incidence <strong>of</strong> “hidden”<br />

rotator interval lesions. Arthroscopy: 2001:17:173-180.<br />

18. Osbahr,DC, Diamond, AB, Speer,KP,.The cosmetic appearance<br />

<strong>of</strong> the biceps muscle after long-head tenotomy versus tenodesis.<br />

Arthroscopy:2002:18:483-487.<br />

19. Itoi E, Motzkin NE, Morrey,BF,et.al. Stabilizing function <strong>of</strong> the long head <strong>of</strong><br />

the biceps in the hanging arm position. J Shoulder Elbow Surg 1994;3:135-<br />

142.<br />

20. Walch,G, Madonia,G, Pozzi,I,et.al. Arthroscopic tenotomy <strong>of</strong> the long head<br />

<strong>of</strong> the biceps in rotator cuff ruptures. In:Gazielly DF, Gleyze,P, Thomas T, eds.<br />

The cuff. Paris:Elsevier, 1997;350-355<br />

21. Jobe,FW, Moynes,DR, Tibone JE, et.al. An EMG analysis <strong>of</strong> the shoulder in<br />

pitching:a second report. Am J Sports Med 1984;12:218-220.<br />

22. Yamaguchi,K, Riew,KD, Glatz,LM,et.al. Biceps activity during<br />

shoulder motion: an electromyographic analysis. Clin Orthop.<br />

1997:336;122-129.<br />

23. Sethi,N, Wright,R, Yamaguchi,K, Disorders <strong>of</strong> the long head <strong>of</strong> the biceps<br />

tendon. J Shoulder Elbow Surg 1999;8:644-654<br />

24. Neviaser,TJ. The role <strong>of</strong> the biceps tendon in the impingement syndrome.<br />

Orthop Clin North Am 1987;18(3):383-386.<br />

25. Gowan,ID, Jobe ,FW, Tibone,JE, et.al. A comparative electromyographic<br />

analysis <strong>of</strong> the shoulder during pitching: Pr<strong>of</strong>essional versus amateur<br />

pitchers. Am J Sports Med 1987;15:586- 590.<br />

26. Walch,G, Nove-Josserand,L, Boileau,P, et.al. Subluxations and dislocations<br />

<strong>of</strong> the tendon <strong>of</strong> the long head <strong>of</strong> the biceps. J Shoulder Elbow Surg<br />

1998;7:100-108.<br />

412<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

27. Pagnani,MJ, Deng,X, Warren,RF,et.al. Effect <strong>of</strong> Lesions <strong>of</strong> the Superior Portion<br />

<strong>of</strong> the Glenoid Labrum on Glenohumeral Translation. J Bone Joint Surg<br />

1995;77A:1003-1010.<br />

28. Berlemann,U., Bayley, I, Tenodesis <strong>of</strong> the long head <strong>of</strong> biceps brachii in the<br />

painful shoulder:Improving results in the long term J Shoulder Elbow Surg<br />

1995:4: 429-435<br />

29. Huffman,GR, Wolf,EM.,Arthroscopic biceps tenotomy: results in patients<br />

with symptomatic degeneration <strong>of</strong> the long head <strong>of</strong> the biceps brachii<br />

tendon. Presented at Arthroscopy Association <strong>of</strong> North America 22nd<br />

<strong>Annual</strong> <strong>Meeting</strong>. April 24-27, 2003 Phoenix, AZ<br />

30. Boileau,P., Ahrens, P.M., Hatzidakis,A.M., Entrapment <strong>of</strong> the long head <strong>of</strong> the<br />

biceps: The hourglass biceps – A cause <strong>of</strong> pain and locking <strong>of</strong> the shoulder. J<br />

Shoulder Elbow Surg 2004,Vol.13; 249-257<br />

31. Lo, I A.K., Burkhart, SS. Arthroscopic Biceps Tenodesis Using a Bioabsorbable<br />

Interference Screw. Arthroscopy 2004; 20: 85-95<br />

32. Verma, NN., Drakos, M., O’Brien, SJ. Arthroscopic Transfer <strong>of</strong> the Long Head<br />

Biceps to the Conjoint Tendon. Arthroscopy 2005; 21: 764<br />

33. Mazzocca, AD, Bicos, J, Santangelo, S., et.al The Biomechanical Evaluation <strong>of</strong><br />

Four Fixation Techniques for Proximal Biceps Tenodesis. Arthroscopy 2005;<br />

21: 296-306<br />

34. Ryu, JHJ, Pedowitz, RA. Rehabilitation <strong>of</strong> the Biceps Tendon Disorders<br />

in Athletes in Clinics in Sports Medicine: Post-Operative Rehabilitation<br />

Controversies in Athletes, Moorman III, C, ed. ,2010; 29: 229-246<br />

35. Sanders, B., Warner, JJP, Pennington, S., et.al, Biceps Tendon Tenodesis:<br />

Success with Proximal Versus Distal Fixation, AAOS <strong>Annual</strong> <strong>Meeting</strong>, San<br />

Diego, Ca. Feb. 14-18, 2007<br />

36. Bradbury, TB, Dunn, WR, Kuhn, JE., Preventing the Popeye Deformity After<br />

Release <strong>of</strong> the Long Head <strong>of</strong> the Biceps Tendon: An Alternative Technique<br />

and Biomechanical Evaluation. Arthroscopy 2008; 24: 1099-1102<br />

SLAP INJURIES BIBLIOGRAPHY<br />

1. Barber, FA, Field, LD, Ryu, RKR, Biceps Tendon and Superior Labrum<br />

Injuries: Decision-Making. J Bone Joint Surg 89: 1844-1855, 2007<br />

2. Kim, TK, Quaele, WS, Cosgarea, AJ, et.al. Clinical Features <strong>of</strong> the Different<br />

Types <strong>of</strong> SLAP Lesions: An Analysis <strong>of</strong> One Hundred and Thirty Nine Cases. J<br />

Bone Joint Surg 85A; 66-71, 2003<br />

3. Pfahler, M, Haraida,S, Schulz, C, et.al. Age-related Changes <strong>of</strong> the Glenoid<br />

Labrum in Normal Shoulders. J Should Elbow Surg 12; 40-52, 2003<br />

4. Ide, J, Maeda, S, Takagi, K. Sports Activity After Arthroscopic Superior Labral<br />

Repair Using Suture Anchors in Overhead-Throwing Athletes. Am J Sports<br />

Med 33;507-514, 2005<br />

5. Powell, SE, Nord, KP, Ryu. RK. The Diagnosis, Classification and Treatment<br />

<strong>of</strong> SLAP Lesions. Op Tech In Sports Medicine Vol 12, 99-110, 2004<br />

6. Snyder,SJ, Karzel,RP,DelPizzo,W, et.al. SLAP Lesions <strong>of</strong> the Shoulder.<br />

Arthroscopy 6:274-279, 1990<br />

7. Andrews, JR,Carson, WG, McLeod, WD. Glenoid Labrum Tears Related to the<br />

Long Head <strong>of</strong> the Biceps. A J Sports Med 13; 337-341, 1985<br />

8. Nord, KD, Ryu, RK. Further Refinement <strong>of</strong> SLAP Classification. E-Poster<br />

AANA <strong>Annual</strong> <strong>Meeting</strong>, Orlando, Fl. April 22-25, 2004<br />

9. O’Brien, SJ, Allen, AA, Coleman, SH et.al. The Trans-Rotator Cuff Approach<br />

to SLAP Lesions: Technical Aspects for Repair and a Clinical Follow-Up <strong>of</strong> 31<br />

Patients at a Minimum <strong>of</strong> 2 Years. Arthroscopy 18;372377, 2002<br />

10. Morgan, CD, Burkhart, SS, Palmieri, M., et.al. Type II SLAP Lesions: Three<br />

Subtypes and Their Relationship to Superior Instability and Rotator Cuff<br />

Tears. Arthroscopy 14;553-565, 1998<br />

11. Snyder, SJ, Banas, MP, Karzel, RP. An Analysis <strong>of</strong> 140 Injuries to the Superior<br />

Glenoid Labrum. J Shoulder Elbow Surg 4; 243-248, 1995<br />

12. Nam, EK, Snyder SJ. The Diagnosis and Treatment <strong>of</strong> Superior Labrum<br />

Anterior Posterior (SLAP) Lesions. Am J Sports Med 31;798-810, 2003<br />

13. Maffet, MW, Gartsman, GM, Moseley, B. Superior Labrum-Biceps Tendon<br />

Complex Lesions <strong>of</strong> the Shoulder Am J Sports Med 23; 93-98, 1995<br />

13. Burkhart, SS, Morgan, CD The Peel-Back Mechanism: It’s Role in Producing<br />

and Extending Posterior Type II SLAP Lesions and Its Effect on SLAP Repair<br />

Rehabilitation. Arthroscopy 14; 637-640, 1998<br />

14. Franchesci, F., Longo, UG, Ruzzini, L., et.al. No Advantages in RepairingA<br />

Type II Superior Labrum Anterior and Posterior (SLAP) Lesion When<br />

Associated with Rotator Cuff Repair in Patients Over Age 50: A Randomized<br />

Controlled Trial<br />

15. Kim, SH, Ha, KI, Ahn, JH, et.al. Results <strong>of</strong> Arthroscopic Treatment <strong>of</strong> Superior<br />

Labral Lesions J Bone Joint Surg 84;981-985, 2002


16. Stetson, WB, Snyder,SJ, Karzel, RP, et.al. Long-Term Clinical Follow-Up <strong>of</strong><br />

Isolated SLAP Lesions <strong>of</strong> the Shoulder. Presented at the 65th <strong>Annual</strong> <strong>Meeting</strong><br />

<strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons, March, 1998<br />

17. Oh, JH., Kim, WS, Gong, Hs. Et.al., The Evaluation <strong>of</strong> Various Physical<br />

Examinations for the Diagnosis <strong>of</strong> Type II Superior Labrum Anterior and<br />

Posterior Lesion Am J Sports Med 36: 353-359, 2008<br />

18. Vangsness, CT, Jorgenson, SS, Watson, T., et.al. The Origin <strong>of</strong> the Long Head<br />

<strong>of</strong> the Biceps From the Scapula and Glenoid Labrum: An Anatomical Study<br />

<strong>of</strong> 100 Shoulders J Bone Joint Surg 76B;951-954, 1994<br />

19. Rodosky, MW, Harner, CD, Fu, FH. The Role <strong>of</strong> the Long Head <strong>of</strong> the Biceps<br />

Muscle and Superior Glenoid Labrum in Anterior Stability <strong>of</strong> the Shoulder.<br />

Am J Sports Med 22; 1121-130, 1994<br />

20. Paxinos, A, Walton, J, Rutten, S, et.al. Arthroscopic Stabilization <strong>of</strong> Superior<br />

Labral (SLAP) Tears With Biodegradeable Tack: Outcomes to 2 Years.<br />

Arthroscopy 22: 627-34, 2006<br />

21. Blaine,TA, Edwards, S, Lee, JA, et.al Improved Outcomes with Non-Operative<br />

Treatment <strong>of</strong> Superior Labral Tears (SLAPS) Presented at 26th AANA <strong>Annual</strong><br />

<strong>Meeting</strong> 2007, San Francisco, Ca<br />

22. Sassmanhausen, G, Sukay M, Mair, SD Broken or Dislodged Poly-L-Lactic<br />

Acid Boioabsorbable Tacks in Patients After SLAP Lesion Surgery Arthroscopy<br />

22: 615-619, 2006<br />

23. Bicknell RT, Parratte,S., Chuinard, D., et.al. Arthroscopic Treatment <strong>of</strong> Type II<br />

SLAP Lesions: Biceps Tenodesis as an Alternative to Re-insertion Presented at<br />

26th AANA <strong>Annual</strong> <strong>Meeting</strong>, San Francisco, Ca. 2007<br />

413<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

24. Gobezie, R., Zurakowski, D., Lavery, K., et.al. Analysis <strong>of</strong> Interobserver and<br />

Intraobserver Variablity in the Diagnosis and Treatment <strong>of</strong> SLAP Tears Using<br />

the Snyder Classification. Am J Sports Med 36:1373-1379, 2008<br />

25. Weber, SC. Surgical Management <strong>of</strong> the Failed SLAP Repair. Presented at<br />

Closed <strong>Meeting</strong> ASES, Santa Barbara, Ca, 2008<br />

26. Katz, LM, Miller, S., Hsu, S., et.al Factors <strong>of</strong> Failure and Outcomes <strong>of</strong> Failed<br />

SLAP Repairs ( submitted manuscript)<br />

27. Coleman, SH, Cohen, DB, Drakos, MC, et.al. Arthroscopic Repair <strong>of</strong> Type II<br />

Superior Labral Anterior Posterior Lesions with and Without Acromioplasty.<br />

Am J Sports Med35: 749-753, 2007<br />

28. Oh, JH, Kim, SH, Oh, CH, et.al. Tecurrence <strong>of</strong> SLAP Lesion Does Not Affect<br />

Outcome After Rotator Cuff Repair. AOSSM Specialty Day, New Orleans, La.,<br />

March 13, 2010<br />

29. Nho, SJ, Frank, RM, Reiff, S., et.al Retrospective Analysis <strong>of</strong> Arthroscopic<br />

Superior Labrum Anterior to Posterior (SLAP) Repair: Prognostic Facotrs<br />

Associated with Failure. AOSSM Specialty Day, New Orleans, La., March 13,<br />

2010<br />

30. Neri, BR, Vollmer, EA, Kvitne, RS Isolated Type II Superior Labral Anterior<br />

Posterior Lesions: Age-related Outcome <strong>of</strong> Arthroscopic Fixation. AJSM 37;<br />

937-942, 2009<br />

31. Alpert, JM, Wuerz, T., O’Donnell, T., et.al. The Effect <strong>of</strong> Age on the Outcomes<br />

<strong>of</strong> Arthroscopic Repair <strong>of</strong> Type II Superior Labrum Anterior Posterior Lesions:<br />

Minimum Two Year Follow-Up. AOSSM Specialty Day, New Orleans, La.,<br />

March 13, 2010


414<br />

aC JoiNt reCoNStruCtioN iN 2011: Five CardiNal queStioNS<br />

For optimal deCiSioN makiNg<br />

LCOL John “JT” Tokish, MD, MC, USAF<br />

Introduction:<br />

Reconstruction <strong>of</strong> the AC joint after separation has undergone<br />

a resurgence in recent years. Biomechanical evaluation has led to<br />

the criticism <strong>of</strong> long standing techniques, and the development <strong>of</strong><br />

new stronger and less invasive ones. In light <strong>of</strong> this data, the reader<br />

may find a review <strong>of</strong> 5 <strong>of</strong> the most debated questions surrounding<br />

reconstruction—and a review <strong>of</strong> the literature for each, helpful in the<br />

decision making process.<br />

1) Should we operate on Grade 3 injuries?<br />

As the AC joint separation has been examined more closely, the<br />

question <strong>of</strong> the grade 3 separation has become more debated.<br />

Proponents state that with early minimally invasive techniques,<br />

the results can be very satisfying. An in-depth review <strong>of</strong> the<br />

literature, including several systematic reviews may shed light on<br />

this question:<br />

Author Jnl/ year Study measure Outcome Conclusions<br />

Ceccarelli 2 JOT 2008 Systematic<br />

review<br />

Tamaoki 12 Chocrane<br />

2008<br />

Systematic<br />

Review<br />

phillips 9 CORR 1998 Systematic<br />

review<br />

1172 patients<br />

Larsen 7 Acta Orthop<br />

Belg 1987<br />

prospective<br />

Cohort<br />

Schlegel 10 AJSM 2001 prospective<br />

Cohort <strong>of</strong><br />

conservative<br />

treated<br />

Tibone 14 AJSM 1992 Retrospective<br />

cohort<br />

pain, subjective<br />

scores, xrays<br />

Combined 3<br />

RCT’s<br />

satisfactory<br />

results: 88% op<br />

vs 87% non op;<br />

deformity op 3%,<br />

non op 37%<br />

persistent<br />

symptoms in 8%<br />

op group vs. 10%<br />

non op group<br />

At 1 yr, 17%<br />

decrease in<br />

bench press, only<br />

affected 20% <strong>of</strong><br />

patients<br />

At 2 years,<br />

no strength<br />

differences<br />

No diffence<br />

in operative<br />

vs. non-op<br />

treatment<br />

No difference at<br />

one year, higher<br />

complication<br />

rate in operative<br />

No diff in<br />

outcomes,<br />

higher infection<br />

in op tx, but less<br />

deformity<br />

No difference<br />

between op/<br />

non-op group<br />

20% failure<br />

rate with nonop<br />

outcome<br />

From these studies, it appears that most patients should be managed<br />

non-operatively with the grade 3 injury, with similar outcomes and<br />

lower complications after non operative treatment. Other factors<br />

such as where an athlete is in his/ her season, hand dominance, and<br />

athletic event may be taken into consideration.<br />

2 If we operate how good do we have to be?<br />

AC joint reconstruction is <strong>of</strong>ten touted as having “more than 60<br />

described operations”, but with arthroscopic advances, there is<br />

no doubt this number is likely to climb significantly. Whenever<br />

one considers adopting a new technique, one should consider<br />

what the normal anatomy and physiology ideal reconstruction<br />

should be. As an Air Force Officer, I am always trying to be as<br />

good as my Navy colleagues. Several studies have evaluated this<br />

question and are included below :<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

Author Source Structure<br />

tested<br />

Harris 6 AJSM 2000 Native<br />

Ligament<br />

Costic AJSM 2004 Native<br />

Ligament<br />

Grutter 5 AJSM 2005 Native<br />

Ligament<br />

Walz 15 AJSM 2008 Native<br />

Ligament<br />

CC lig<br />

load (N)<br />

Stiffness<br />

(N/mm)<br />

Failure Mode<br />

500 103 Midsubstance/<br />

avulsion<br />

560 61 midsubstance<br />

tear<br />

815 88<br />

598 99<br />

Given that there have been more than 60 operative techniques<br />

described for reconstruction <strong>of</strong> the CC ligaments, one should always<br />

consider the normal anatomy as the gold standard. Thus, a relative<br />

gold standard might be to require a novel reconstruction technique<br />

to stand up to a failure load <strong>of</strong> over 500 N and a stiffness <strong>of</strong> 60 N.<br />

3) How do described techniques match up against this gold<br />

standard?<br />

This question really examines how the “gold standard” Weaver<br />

Dunn behaves biomechanically, and compares it to more<br />

modern techniques.<br />

Author Source Structure tested CC lig<br />

load (N)<br />

Harris 6 AJSM 2000 Weaver dunn Recon 145 8<br />

deshmukh 4 AJSM 2004 Weaver dunn recon 177 NR<br />

Grutter 5 AJSM 2005 Weaver dunn recon 483 36<br />

Costic 3 AJSM 2004 SemiT 2 clav holes 1 coracoid<br />

hole<br />

Lee 8 AJSM 2008 SemiT around coracoid-<br />

1clavicle hole tied to self<br />

Grutter 5 AJSM 2005 FCR around coracoid, 2 clav<br />

holes and thru acromion<br />

406 23<br />

523 NR<br />

774 59<br />

Walz 15 AJSM 2008 2 tight ropes for acute recon 982 80<br />

Stiffness<br />

(N/mm)<br />

It is difficult to discern the biomechanical data on cc ligament<br />

reconstruction given the differences in testing techniques, and the<br />

emerging understanding <strong>of</strong> the importance <strong>of</strong> cyclical testing. Even<br />

the study by Grutter, which showed a strength <strong>of</strong> 483 for the Weaver<br />

Dunn procedure, was significantly weaker than the normal ligament<br />

in the same study (815 N). Perhaps the biomechanics were best<br />

summarized as follows:<br />

• The Weaver Dunn is only 1/4 -1/2 as strong as the native cc<br />

ligaments and cannot be recommended without a form <strong>of</strong><br />

augmentation<br />

• Free graft reconstruction can approximate the native ligament<br />

in strength at time zero, but may not approximate the normal<br />

stiffness <strong>of</strong> the ligament 4) What are the clinical results <strong>of</strong><br />

surgical reconstruction? In spite <strong>of</strong> the biomechanical data, the<br />

ultimate litmus test is in the clinical literature. Several well done<br />

studies have evaluated various surgical techniques, including<br />

some preliminary outcomes studies with modern techniques


415<br />

Study JNL/ Year Study details Outcome <strong>of</strong> Import<br />

Weinstein 16 AJSM 1995 augmented weaver<br />

dunn in acute vs.<br />

chronic groups<br />

Bostrom<br />

Windhamre 1<br />

JSES 2010 Weaver dunn + pdS vs.<br />

Wd + hook plate<br />

Tauber 13 AJSM 2009 Wvr dunn vs. Auto Semi<br />

T in chronics<br />

Shin 11 AJSM 2009 Case series single<br />

tunnel semiT, around<br />

coracoid, augmented<br />

with ethibond<br />

Nicholas AJSM 2008 Small retrospective<br />

case series, semiT graft<br />

REFERENCES<br />

clinical result 96% healed<br />

acutely, vs 77% fixed<br />

chronic (3 weeks)<br />

Hook plate hurt worse<br />

with motion, but no diff<br />

in SpAdi, quick dash or<br />

subjective shoulder<br />

Wd: ASES +12 (86) SemiT:<br />

+22 (96), xray: Wd 4mm<br />

vs. ST 1mm > uninjured<br />

side<br />

21 patients, 20 G&E,<br />

constant 85, UCLA 30,<br />

85% maintained reduction<br />

9 patients, ASES 96, no<br />

loss reduction<br />

1. Bostrom Windhamre HA, von Heideken JP, Une-Larsson VE, Ekelund AL.<br />

Surgical treatment <strong>of</strong> chronic acromioclavicular dislocations: a comparative<br />

study <strong>of</strong> Weaver-Dunn augmented with PDS-braid or hook plate. J Shoulder<br />

Elbow Surg. Oct;19(7):1040-1048.<br />

2. Ceccarelli E, Bondi R, Alviti F, Gar<strong>of</strong>alo R, Miulli F, Padua R. Treatment <strong>of</strong><br />

acute grade III acromioclavicular dislocation: a lack <strong>of</strong> evidence. J Orthop<br />

Traumatol. Jun 2008;9(2):105-108.<br />

3. Costic RS, Labriola JE, Rodosky MW, Debski RE. Biomechanical rationale for<br />

development <strong>of</strong> anatomical reconstructions <strong>of</strong> coracoclavicular ligaments<br />

after complete acromioclavicular joint dislocations. Am J Sports Med. Dec<br />

2004;32(8):1929-1936.<br />

4. Deshmukh AV, Wilson DR, Zilberfarb JL, Perlmutter GS. Stability<br />

<strong>of</strong> acromioclavicular joint reconstruction: biomechanical testing <strong>of</strong><br />

various surgical techniques in a cadaveric model. Am J Sports Med. Sep<br />

2004;32(6):1492-1498.<br />

5. Grutter PW, Petersen SA. Anatomical acromioclavicular ligament<br />

reconstruction: a biomechanical comparison <strong>of</strong> reconstructive techniques <strong>of</strong><br />

the acromioclavicular joint. Am J Sports Med. Nov 2005;33(11):1723-1728.<br />

6. Harris RI, Wallace AL, Harper GD, Goldberg JA, Sonnabend DH, Walsh WR.<br />

Structural properties <strong>of</strong> the intact and the reconstructed coracoclavicular<br />

ligament complex. Am J Sports Med. Jan- Feb 2000;28(1):103-108.<br />

7. Larsen E, Hede A. Treatment <strong>of</strong> acute acromioclavicular dislocation. Three<br />

different methods <strong>of</strong> treatment prospectively studied. Acta Orthop Belg.<br />

1987;53(4):480-484.<br />

8. Lee SJ, Keefer EP, McHugh MP, et al. Cyclical loading <strong>of</strong> coracoclavicular<br />

ligament reconstructions: a comparative biomechanical study. Am J Sports<br />

Med. Oct 2008;36(10):1990- 1997.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

From these studies, it appears that SemiT autograft is a promising<br />

reconstructive option. Fixation, arthroscopic options, augmentation,<br />

and autograft vs. allograft remain questions to be studied.<br />

5) Should we resect the distal clavicle or not?<br />

Classic teaching was that a dislocated AC joint could have<br />

significant chondral damage, and that reducing the joint may<br />

lead to AC joint Arthropathy, and therefore, most reconstructive<br />

techniques recommended that it be resected. This was<br />

challenged, however, by Costic et al (JOR 2003) who noted that<br />

resection <strong>of</strong> the AC joint may increase forces on a cc ligament<br />

reconstruction. More recently, however, Kowalsky et al (AJSM<br />

2010) specifically studied the effect <strong>of</strong> resection <strong>of</strong> the distal<br />

clavicle on in situ CC ligament graft forces and found that an in<br />

tact AC joint was only marginally protective <strong>of</strong> a CC ligament<br />

reconstruction, and that peak forces after resection remained far<br />

below the failure loads <strong>of</strong> CC ligament reconstruction.<br />

There is no clinical study that directly compares resection vs.<br />

preservation <strong>of</strong> the distal clavicle in the setting <strong>of</strong> CC ligament<br />

reconstruction.<br />

9. Phillips AM, Smart C, Groom AF. Acromioclavicular dislocation.<br />

Conservative or surgical therapy. Clin Orthop Relat Res. Aug 1998(353):10-<br />

17.<br />

10. Schlegel TF, Burks RT, Marcus RL, Dunn HK. A prospective evaluation <strong>of</strong><br />

untreated acute grade III acromioclavicular separations. Am J Sports Med.<br />

Nov-Dec 2001;29(6):699-703.<br />

11. Shin SJ, Yun YH, Yoo JD. Coracoclavicular ligament reconstruction for<br />

acromioclavicular dislocation using 2 suture anchors and coracoacromial<br />

ligament transfer. Am J Sports Med. Feb 2009;37(2):346-351.<br />

12. Tamaoki MJ, Belloti JC, Lenza M, Matsumoto MH, Gomes Dos Santos<br />

JB, Faloppa F. Surgical versus conservative interventions for treating<br />

acromioclavicular dislocation <strong>of</strong> the shoulder in adults. Cochrane Database<br />

Syst Rev. (8):CD007429.<br />

13. Tauber M, Gordon K, Koller H, Fox M, Resch H. Semitendinosus tendon<br />

graft versus a modified Weaver-Dunn procedure for acromioclavicular joint<br />

reconstruction in chronic cases: a prospective comparative study. Am J Sports<br />

Med. Jan 2009;37(1):181-190.<br />

14. Tibone J, Sellers R, Tonino P. Strength testing after third-degree<br />

acromioclavicular dislocations. Am J Sports Med. May-Jun 1992;20(3):328-<br />

331.<br />

15. Walz L, Salzmann GM, Fabbro T, Eichhorn S, Imh<strong>of</strong>f AB. The anatomic<br />

reconstruction <strong>of</strong> acromioclavicular joint dislocations using 2 TightRope<br />

devices: a biomechanical study. Am J Sports Med. Dec 2008;36(12):2398-<br />

2406.<br />

16. Weinstein DM, McCann PD, McIlveen SJ, Flatow EL, Bigliani LU. Surgical<br />

treatment <strong>of</strong> complete acromioclavicular dislocations. Am J Sports Med.<br />

May-Jun 1995;23(3):324-331.


416<br />

multiple ligameNt iNJured kNeeS:<br />

CaSeS aNd CoNtroverSieS (bb)<br />

Moderator: Mark D. Miller, MD, Charlottesville, VA<br />

Following brief introductory lectures, each speaker will present knee MLI cases from their practice. At strategic intervals, the<br />

speakers will stop, quiz the panel and the audience (via ARS) regarding management. Controversies will including timing,<br />

repair vs reconstruction, rehabilitation, etc.<br />

I. Introduction<br />

Mark D. Miller, MD, Charlottesville, VA<br />

II. ACL-PCL Options<br />

Darren L. Johnson, MD, Lexington, KY<br />

III. LCL/MCL/Corner<br />

Claude T. Moorman III, MD, Durham, NC<br />

IV. MLI Complications<br />

Christopher D. Harner, MD, Pittsburgh, PA<br />

V. Case Presentations<br />

All Faculty<br />

VI. Discussion, Questions and Answers<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO


Anatomy & Biomechanics<br />

• The knee<br />

— Diarthrodial Joint<br />

— Simultaneous rotation and translation<br />

• Ligaments/Static Stabilizers<br />

— Anterior Cruciate Ligament (ACL)<br />

– Tibia => LFC<br />

– 33 mm x 11 mm<br />

– 2200 N (anterior)<br />

– 2 Bundles:<br />

~ AM (tight in flexion)<br />

~ PL (tight in extension)<br />

~ Middle Geniculate A.<br />

— Medial Collateral Ligament (MCL)<br />

– MFC => Tibia<br />

– 4000 N (valgus)<br />

– Superficial<br />

~ Tibial Collateral Lig<br />

– Deep<br />

~ Medial capsular Lig<br />

~ Attachment to meniscus (Coronary Ligaments)<br />

— Posteromedial Corner<br />

– Sartorius<br />

– Superficial MCL, POL, SM<br />

– Deep MCL<br />

— Posterior Cruciate Ligament (PCL)<br />

– MFC => Tibia sulcus<br />

– 38 mm x 13 mm<br />

– 2500 N (posterior)<br />

– 2 Bundles (PAL):<br />

– AL (tight in flexion)<br />

– PM (tight in extension)<br />

– Menisc<strong>of</strong>emoral Ligs:<br />

– Humphry (anterior)<br />

– Wrisberg (posterior)<br />

– Middle Geniculate A.<br />

— Lateral Collateral Ligament (LCL)<br />

– LFC => Fibula<br />

– Cord-Like<br />

– 750 N (varus)<br />

– Tight in Extension<br />

– Capsule’s most distal extent is just posterior to the fibula<br />

— Posterolateral Corner<br />

– Superficial: Biceps, ITT<br />

– Deep: LCL, Popliteus, Poplite<strong>of</strong>ibular lig.<br />

History & Physical Examination<br />

• History<br />

417<br />

Feature Significance<br />

pop/swelling ACL<br />

dashboard pCL<br />

Fall pF Foot pCL<br />

Fall dF Foot patella<br />

Locking Meniscus<br />

pain w/ stairs patella<br />

• Palpation<br />

— Acute vs. Chronic<br />

kNee mil: iNtroduCtioN<br />

Mark D. Miller, MD<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

— Gentlefirm<br />

— Tenderness/localized swelling<br />

– anterior-patella<br />

– posterior-meniscal<br />

— Collateral ligaments: proximal/distal<br />

— Patella: proximal/distal facets<br />

— Tendon: quadriceps/patella<br />

— Posterior Knee<br />

— Range-<strong>of</strong>-Motion: Active/passive<br />

— Ligamentous laxity<br />

– Laxity vs. Instability<br />

– Degree<br />

– Grade I: micro. disruption (


• PCL: Posterior Drawer, “sag,” “ski slope” sign<br />

• PCL & PLC: Posterolateral Drawer<br />

• PLC: 30˚ and 90˚ External Rotation Asymmetry, external<br />

rotation recurvatum<br />

• MCL: Valgus Stress 30˚ and 0˚<br />

• LCL: Varus Stress 30˚ and 0˚<br />

• KT-1000/2000<br />

— Objective Measurement <strong>of</strong> ACL Laxity<br />

— Instrumented Lachman<br />

— Somewhat Examiner Dependent<br />

— >3mm side-to-side difference is Abnormal<br />

— Man-Max vs. 30 lbs.<br />

— Posterior<br />

– PCL measurement<br />

– Classification <strong>of</strong> multiple ligament injured knee<br />

Classification <strong>of</strong> the Multiple Ligament Injured Knee<br />

• Classification basis<br />

— Position <strong>of</strong> the tibia in relation to the femur<br />

— Direction <strong>of</strong> the instability (in knees that spontaneously<br />

reduced)<br />

• Classification<br />

— Anterior<br />

— Posterior<br />

— Lateral<br />

— Medial<br />

— Rotation instability<br />

– Anteromedial<br />

– Anterolateral<br />

– Posteromedial<br />

– Posterolateral<br />

— Probable<br />

• Anterior Knee Dislocation:<br />

— Most common type<br />

— Primary mechanism <strong>of</strong> injury is forced hyperextension <strong>of</strong> the<br />

knee<br />

— Progression <strong>of</strong> injuries: Posterior<br />

capsuleACLPCLInjury to popliteal artery<br />

• Posterior Knee Dislocation:<br />

— Second most common type<br />

— Primary mechanism <strong>of</strong> injury: Motor Vehicle Accident<br />

(dashboard strikes the anterior tibia while the knee is flexed,<br />

this translates the tibia posteriorly on the femur)<br />

— Requires more force than anterior dislocation<br />

— PCL always ruptured<br />

— +/- ACL injury<br />

— Collateral ligament injury possible with varus or valgus stress<br />

— Popliteal Artery may be injured<br />

• Lateral and Medial Knee Dislocations<br />

— Rare<br />

— Mechanism <strong>of</strong> injury: varus/valgus stress while foot is fixed<br />

— Commonly involves disruption <strong>of</strong> both collateral ligaments<br />

and at least one cruciate ligament<br />

— More ligamentous injury that Anterior and Posterior<br />

dislocations<br />

— Often causes Multidirectional<br />

Instability<br />

— Neurologic injury to peroneal nerve<br />

is common<br />

• Probable Dislocation<br />

— Multiple-ligament-injured knees<br />

presenting in reduced position<br />

— Mechanisms<br />

– Spontaneous Reduction<br />

– Subluxation as initial injury<br />

418<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

Initial Management <strong>of</strong> Knee Dislocation<br />

• If dislocatedreduce the knee<br />

• Once reducedcheck the vascular and neurologic status <strong>of</strong> the<br />

extremity<br />

— Pulses present:<br />

– If knee was dislocatedconsider arteriogram to r/o<br />

intimal tear<br />

– If knee was locatedobservation period and MRI<br />

– Pulses absentArteriogram/Vascular consult<br />

~ Vascular repair +/- ligament reconstruction or external<br />

fixator<br />

Definitive Management <strong>of</strong> Knee Dislocation<br />

• Surgical indications:<br />

— Acute<br />

– Vascular injury--#1 priority<br />

– Open fracture/dislocation<br />

– Compartment syndrome<br />

— Timing <strong>of</strong> repair controversial<br />

– Corners, avulsions, Capsular injuries relatively acute<br />

— Post-op rehab<br />

– Brace in extension<br />

– Early ROM<br />

• Knee Arthroscopy<br />

— Confirmatory<br />

— Beware <strong>of</strong> compartment syndrome risk<br />

– Dry scope<br />

– “Egress incision”<br />

• Multi-ligament Repair and Reconstruction<br />

— Graft Choices<br />

— ACL reconstruction<br />

– Tibial tunnel placement<br />

– Femoral tunnel placement<br />

~ “Anatomic”—between bundles<br />

— PCL Injury Treatment<br />

– Bony Avulsion—ORIF<br />

– Isolated PCL<br />

~ Nonoperative<br />

~ Favored by some surgeons if Posterior Drawer<br />

improves with Internal Rotation<br />

~ Quad Rehab<br />

~ Extension Brace for 2-4 wks for Grade III injuries


419<br />

– Late Chondrosis (MFC and Patella)<br />

— Combined Injuries<br />

– Reconstruction<br />

– Arthroscopic (Transtibial)<br />

– Tibial Inlay<br />

– Two-bundle<br />

Anterolateral graft tensioned in 90o and<br />

posteromedial tensioned in 30o <strong>of</strong> flexion<br />

– Post-op: Immobilize in extension, protect vs gravity,<br />

Quad rehabilitation<br />

— MCL Injury<br />

– Primary repair<br />

– Modified Bosworth Technique<br />

— LCL/PLC Injury Treatment<br />

– Partial--Grade I & II Instability with a good end point<br />

~ Nonsurgical Treatment--3 week immobilization in<br />

extension<br />

– Complete Acute<br />

~ Primary repair best<br />

~ Augment with allo/auto graft<br />

– Complete Chronic<br />

~ Reconstruct Popliteus and LCL<br />

– Post-op rehabilitation--Protect vs ER and varus<br />

REFERENCES AND SUGGESTED READING<br />

1. Hoover N.W., Injuries <strong>of</strong> the popliteal artery associated with fractures and<br />

dislocations. Surg Clin North Am, 1961. 41: p. 1099-112.<br />

2. Meyers M.H. and Harvey J.P., Jr., Traumatic dislocation <strong>of</strong> the knee joint. A<br />

study <strong>of</strong> eighteen cases. J Bone Joint Surg Am, 1971. 53(1): p. 16-29.<br />

3. Shields L., Mital M., and Cave E.F., Complete dislocation <strong>of</strong> the knee:<br />

experience at the Massachusetts General Hospital. J Trauma, 1969. 9(3): p.<br />

192-215.<br />

4. Seebacher J.R., Inglis A.E., Marshall J.L., and Warren R.F., The structure <strong>of</strong> the<br />

posterolateral aspect <strong>of</strong> the knee. J Bone Joint Surg Am, 1982. 64(4): p. 536-<br />

41.<br />

5. Hughston J.C., Andrews J.R., Cross M.J., and Moschi A., Classification <strong>of</strong><br />

knee ligament instabilities. Part II. The lateral compartment. J Bone Joint<br />

Surg Am, 1976. 58(2): p. 173-9.<br />

6. Warren L.F. and Marshall J.L., The supporting structures and layers on the<br />

medial side <strong>of</strong> the knee: an anatomical analysis. J Bone Joint Surg Am, 1979.<br />

61(1): p. 56-62.<br />

Our Experiences at UVA<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

Reconstruction Combo # %<br />

ACL+pLC 50 29.6%<br />

ACL+pCL+pLC 33 19.5%<br />

pCL+pLC 32 18.9%<br />

ACL+pCL+MCL 17 10.1%<br />

ACL+MCL 12 7.1%<br />

ACL+pCL 9 5.3%<br />

ACL+pCL+pLC+MCL 9 5.3%<br />

Other* 7 4.1%<br />

Total 169<br />

Other* 7 4.1%<br />

ACL+pLC+MCL 2 1.2%<br />

pCL+pLC+MCL 2 1.2%<br />

pCL+MCL 2 1.2%<br />

pLC+MCL 1 0.6%<br />

7. LaPrade R.F., Gilbert T.J., Bollom T.S., Wentorf F., and Chaljub G., The<br />

magnetic resonance imaging appearance <strong>of</strong> individual structures <strong>of</strong> the<br />

posterolateral knee. A prospective study <strong>of</strong> normal knees and knees with<br />

surgically verified grade III injuries. Am J Sports Med, 2000. 28(2): p. 191-9.<br />

8. Whiddon D.R., Zehms C.T., Miller M.D., Quinby J.S., Montgomery S.L.,<br />

and Sekiya J.K., Double compared with single-bundle open inlay posterior<br />

cruciate ligament reconstruction in a cadaver model. J Bone Joint Surg Am,<br />

2008. 90(9): p. 1820-9.<br />

9. Sisto D.J. and Warren R.F., Complete knee dislocation. A follow-up study <strong>of</strong><br />

operative treatment. Clin Orthop Relat Res, 1985(198): p. 94-101.<br />

10. Halinen J., Lindahl J., Hirvensalo E., and Santavirta S., Operative and<br />

nonoperative treatments <strong>of</strong> medial collateral ligament rupture with early<br />

anterior cruciate ligament reconstruction: a prospective randomized study.<br />

Am J Sports Med, 2006. 34(7): p. 1134-40.<br />

11. Sekiya JK, Whiddon DR, Zehms CT, Miller MD. A clinically relevant<br />

assessment <strong>of</strong> posterior cruciate ligament and posterolateral corner injuries.<br />

Evaluation <strong>of</strong> isolated and combined deficiency. J Bone Joint Surg Am.<br />

2008;90(8):1621-1627.<br />

12. Schenck RC Jr. The dislocated knee. Instr Course Lect. 1994;43:127-136.


420<br />

multiple ligameNt iNJured kNeeS: CaSeS aNd CoNtroverSieS<br />

Darren L. Johnson, MD<br />

High energy combined knee ligament injuries in high school/<br />

collegiate athlete represents a small minority <strong>of</strong> all knee ligament<br />

injuries seen. When they do happen it represents a serious event<br />

both emotionally and physically to the injured athlete. They are<br />

<strong>of</strong>ten career performance altering or even ending depending upon<br />

the severity <strong>of</strong> the event/injury pattern. A high index <strong>of</strong> suspicion<br />

must be taken for high energy mechanisms, i.e. contact football/<br />

soccer/rugby/field hockey or particularly gymnastics.<br />

Treatment principles in the first 48¡ are directed around the<br />

neurovascular status <strong>of</strong> the extremity and close monitoring for the<br />

potential development <strong>of</strong> compartment syndrome.<br />

While plain radiographs are crucial to R/O large fractures,<br />

osteochondral injuries, fibular avulsion fractures <strong>of</strong> the posterolateral<br />

complex, and make sure a concentric reduction is present. High<br />

quality MRI scans to evaluate the ligaments, menisci and articular<br />

cartilage is <strong>of</strong> paramount importance.<br />

Over the last twenty years we have learned, the hard way in some<br />

cases, that true anatomic repair <strong>of</strong> what has been injured <strong>of</strong>fers the<br />

athlete the best chance to return to their sport at the same level <strong>of</strong><br />

performance they had before their injury.<br />

Combined ligament injuries that involve the ACL or PCL with lateral<br />

sided injuries are generally repaired in the first two weeks <strong>of</strong> injury.<br />

The majority <strong>of</strong> the lateral side injury is pulled <strong>of</strong>f/avulsed “en-bloc”<br />

if you will from the proximal fibula/tibia and easily repaired with<br />

anchors in the bone at the level <strong>of</strong> the joint line. Anatomic repair<br />

is crucial to allow for immediate motion and the return <strong>of</strong> normal<br />

kinematics. Augmentation <strong>of</strong> the acute repair using autogenous<br />

or allograft tissue is controversial with lack <strong>of</strong> Level 1 evidence<br />

to support either/or. Often the quality <strong>of</strong> the primary repair will<br />

determine if augmentation is required.<br />

Medial sided injury <strong>of</strong> the MCL are <strong>of</strong>ten femoral based/not avulsed<br />

and do not involve the POL. These usually heal satisfactorily<br />

with conservative treatment then followed by cruciate ligament<br />

reconstruction. Medial sided injuries that are tibial based with<br />

avulsion and retraction with involvement <strong>of</strong> the posterior oblique<br />

ligament/capsule require anatomic repair concurrently with cruciate<br />

ligament reconstruction. This allows for immediate motion and<br />

restoration <strong>of</strong> normal kinematics.<br />

This is a devastating injury to the high school or collegiate athlete. If<br />

one is to return to their sport without a performance drop, anatomic<br />

repair and immediate return is a requirement. It <strong>of</strong>ten requires a year<br />

<strong>of</strong> time before the athlete feels confident in their knee to return at a<br />

high level.<br />

Critical to optimal outcome is anatomic repair/reconstruction <strong>of</strong><br />

all injured structures. It is important that the operative surgeon<br />

fully understands gross/arthroscopic/radiographic landmarks <strong>of</strong> all<br />

ligament structures, particularly the ACL and PCL. The single most<br />

important determinant <strong>of</strong> outcome under control <strong>of</strong> the operating<br />

surgeon while in the operating theatre is anatomic placement <strong>of</strong> the<br />

graft ligament substitutes.<br />

Graft Selection<br />

• Autograft: BPTB, QHS, Quad Tendo<br />

• Allograft: Achilles Tendon, BPTB<br />

• Tissue Quality/Tissue Bank<br />

• Disease Transmission<br />

• “Knee Biology”<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

ACL/PCL Reconstruction<br />

Anatomic ACL: (SB, DB, Matched): (see video)<br />

• Need to know bony/arthroscopic landmarks<br />

• Residents Ridge is superior border <strong>of</strong> ACL at 90¡ Flexion<br />

• Bifurcate Ridge separates the AM and PL Bundle<br />

• Bifurate Ridge is perpendicular to Residents Ridge<br />

Tibial Insertion is entirely in front <strong>of</strong> the tibial spine<br />

• On lateral x-ray no part <strong>of</strong> the tunnel should touch the spine!!<br />

Transtibial vs. Medial Portal ( 2 incisions)<br />

• TT: tibial tunnel too posterior<br />

• Femoral tunnel non-anatomic<br />

• vertical/anterior<br />

Medial Portal allows one to entirely reproduce normal anatomy on<br />

the femoral side independent <strong>of</strong> tibial anatomy.<br />

Pitfalls in Traditional ACL Reconstruction (see pictures)<br />

Femoral insertion sites orientation changes with knee flexion: The<br />

femoral AM and PL insertion sites are horizontally oriented when<br />

the knee is close to 90 degrees <strong>of</strong> flexion, while they are vertically<br />

oriented in knee extension. The important concept is <strong>of</strong>ten neglected<br />

in ACL reconstruction.<br />

The use <strong>of</strong> clock face reference: The knee is a 3 dimensional structure.<br />

The clock concept is easy to use. However, it is inaccurate in describing<br />

the location <strong>of</strong> femoral tunnel placement and lead to non-anatomic<br />

tunnel position.<br />

Inability to observe the femoral insertion site well by using the<br />

anteromedial portal: The anteromedial portal provides a superior<br />

view <strong>of</strong> the lateral wall <strong>of</strong> the notch and the femoral insertion site<br />

<strong>of</strong> ACL than the anterolateral portal, which is sufficient in observing<br />

the tibial insertion site.<br />

Graft impingent: It is concept created by us because <strong>of</strong> non-anatomic<br />

tunnel placement. The native ACL does NOT impinge with notch<br />

and PCL. As long as the tunnels were placed in an anatomic fashion<br />

there will be no impingement. However, if the tunnel is placed nonanatomically<br />

(as indicated by arrow below), impingement may<br />

occur.<br />

PCL Anatomic Placement (see Video)<br />

Bony Avulsion Tibia ORIF<br />

• Single versus DB<br />

• SB in MLI<br />

• Graft selection critical: LOTS OF COLLAGEN<br />

Tunnel Placement versus Inlay<br />

• Must be anatomic!<br />

• Tibia use PTTMM Landmark<br />

• X-ray confirmation <strong>of</strong> drill/pin<br />

• NV bundle is slightly lateral<br />

Femoral Tunnel must be high in notch<br />

• At 90˚ <strong>of</strong> Flexion<br />

• Edge <strong>of</strong> tunnel at Apex <strong>of</strong> notch<br />

Order <strong>of</strong> Tunnel Drilling<br />

• ACL/PCL Femoral Tunnel<br />

— Inside-out via Accessory Portals<br />

• PCL Trans-tibial tunnel<br />

— Finish by Hand<br />

• ACL Tibial Tunnel


Order <strong>of</strong> Graft Passage/Fixation<br />

• PCL Graft First: Fix Femur<br />

• ACL Graft Second: Fix Femur<br />

• PCL Tibial side fix at 90˚ (step-<strong>of</strong>f)<br />

• ACL Graft Fix at 0˚<br />

REFERENCE<br />

1. Wilson TC, Satterfield WH, Johnson DL Medial Collateral Ligament “Tibial”<br />

Injuries: Indication for Acute Repair. <strong>Orthopaedic</strong>s 27(4):389-393, 2004<br />

2. Stevenson, WW, Johnson, DL Management <strong>of</strong> Acute Lateral Side Ligament<br />

Injuries <strong>of</strong> the Knee. <strong>Orthopaedic</strong>s: 29(12):1089-1093, 2006.<br />

421<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

3. Chabbra A, Starman JS, Ferretti M, Vidal AF, Zantop T, Fu FH. Anatomic,<br />

Radiographic, Biomechanical and Kinematic Evaluation <strong>of</strong> the Anterior<br />

Cruciate Ligament and its Two Functional Bundles. J Bone Joint Surg Am<br />

2006;88(Supp 4):2-10.<br />

4. Mario Ferretti, M.D., Max Ekdahl, M.D., Wei Shen, M.D., Ph.D., and<br />

Freddie H. Fu, M.D. Osseous landmark <strong>of</strong> the femoral attachment <strong>of</strong> the<br />

anterior cruciate ligament : an anatomic study. Arthroscopy: The Journal <strong>of</strong><br />

Arthroscopic and Related Surgery, Vol 23(11), Nov. 2007: pp 1218-1225.


422<br />

multiple ligameNt kNee iNJury (mlki) – mCl/pmC aNd lCl/plC<br />

Claude T. Moorman III, MD<br />

Injury Pattern<br />

• ACL/PCL/Posterolateral injury<br />

• ACL/PCL/Medial side injury<br />

Injury Pattern<br />

• ACL/PCL/Posterolateral injury<br />

• ACL/PCL/Medial side injury<br />

MRI<br />

• Very helpful<br />

• Roadmap<br />

• Tissue quality<br />

• Beware sensitivity lateral<br />

side<br />

PLRI<br />

Imaging vs Exam<br />

Trust Your Hands!<br />

Graft Selection<br />

• Autograft vs Allograft<br />

• Ease <strong>of</strong> harvest<br />

• Reliable tissue quality<br />

• No disease transmission<br />

variables<br />

• Moorman<br />

— Auto BTB ACL<br />

— Auto Semitendinosis PLRI<br />

— Allograft Achilles PCL<br />

Surgical Decision Making Principals<br />

• Address all instability Patterns<br />

• Cannot ask a single ligament to<br />

stabilize a multiplanar deformity<br />

Surgical Decision Making Principals<br />

• ACL/PCL reconstruction<br />

• MCL generally addressed if GII/GIII<br />

• MCL <strong>of</strong>ten amenable to repair<br />

• PLRI <strong>of</strong>ten needs augment/reconst.<br />

SURGICAL TECHNIQUE<br />

• Anterior incision<br />

• Autograft tissue harvest<br />

ACL/PCL 1st<br />

• Allograft Achilles graft PCL (Fanelli)<br />

• Patellar Tendon graft ACL<br />

SURGICAL TECHNIQUE<br />

• PCL guide<br />

• 11 mm dia<br />

• “PCL FACET” (Kaseta)<br />

• Posterior PCL footprint<br />

MCL Layer Anatomy<br />

Management <strong>of</strong> MCL<br />

• Low threshold for repair<br />

• Same incision<br />

• O’Brien, Warren 6/17 ACL failures Medial side laxity<br />

MCL Management<br />

• 8/10 repair<br />

• Severe cases consider Achilles allograft vs hamstring auto or allo<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

SURGICAL TECHNIQUE<br />

• Medial Side:<br />

— Dissection to MCL origin- site <strong>of</strong> MRI lesion<br />

— ID <strong>of</strong> superficial / deep MCL fibers<br />

SURGICAL TECHNIQUE<br />

• Proximal MCL tissue peeled <strong>of</strong>f <strong>of</strong> epicondyle<br />

• Placement <strong>of</strong> three Mitek super anchors<br />

• Imbrication <strong>of</strong> deep / superficial fibers<br />

SURGICAL TECHNIQUE<br />

• Plication <strong>of</strong> posterior capsule to posterior aspect <strong>of</strong> capsule<br />

• Closure over drain <strong>of</strong> Medial side and Quad Tendon<br />

Severe Blow-out<br />

• Grade III+<br />

• AMRI<br />

• “Barn-Door” opening<br />

• Add Collagen<br />

• Achilles Allograft<br />

MCL Reconstruction<br />

• Reef posteromedial capsule<br />

• Posterior oblique<br />

ACL/PCL/PLRI<br />

• Central Pivot Management the same<br />

• PLRI<br />

— Repair an option early<br />

— Augmentation<br />

— Reconstruction<br />

• Combined<br />

• Fibular-based<br />

Fibular-Based PLRI Reconstruction<br />

• It’s Easy!<br />

• It makes anatomical/mechanical sense<br />

• It is a practical solution for most orthopaedists<br />

• It works!<br />

Anatomy<br />

• Maynard, O’Donohughe Award 1994<br />

• Poplite<strong>of</strong>ibular ligament<br />

• Femur-fibula<br />

Anatomy<br />

• Steve Bernstein Study<br />

• AOSSM 1997<br />

• LCL/Popliteus Surgically Important Structures<br />

— LCL Varus<br />

— Popliteus ER


Rotational Moment<br />

Fibular-Based Reconstruction<br />

• 10mm more lateral<br />

• Mechanical advantage<br />

• Why God chose this position<br />

Anatomy<br />

Biomechanics<br />

• LCL(7mm area)<br />

• Poplite<strong>of</strong>ibular<br />

Ligament(7mm area)<br />

• Single-strand Semitendinosus<br />

• (7mm each limb)<br />

WHAT DO I DO?<br />

• FIGURE 8 FIBULAR-BASED<br />

• SEMITENDINOSIS<br />

AUTOGRAFT<br />

• ACUTE AND CHRONIC<br />

• INCORPORATE NATIVE<br />

TISSUE<br />

Lateral Incision<br />

Tunnel Convergence<br />

in Combined ACL and<br />

Posterolateral Corner<br />

Reconstruction Shuler,<br />

Jasper, Rauh, Mulligan<br />

and Moorman<br />

Arthroscopy, 22:193-<br />

98, 2006<br />

Safe Zone<br />

Conclusions<br />

Beware <strong>of</strong> Tib/Fib<br />

Instability<br />

• Does not preclude<br />

Fibular-based<br />

resonstruction<br />

• Key is recognition and stabilization<br />

• 6.5mm screw into tibia<br />

• May proceed with PLRI reconstruction<br />

Aftercare<br />

• Controlled Arthr<strong>of</strong>ibrosis<br />

• Locked in Extension 2 wks<br />

• Hinged Knee Brace<br />

REHABILITATION<br />

• Slower progression than ACL<br />

• Crutch use up to 8 wks<br />

• Avoid active FLX<br />

• MUA 20% at 6wks<br />

Questions for the Literature<br />

• Operate?<br />

• Repair vs Reconstruction?<br />

• PLRI?<br />

REFERENCES<br />

1. Barnes CJ, Pietrobon R, Higgins LD. Does the pulse examination in patients<br />

with traumatic knee dislocation predict a surgical arterial injury? A metaanalysis.<br />

Journal <strong>of</strong> Trauma. 2002;53(6):1109-1114.<br />

2. Richter M, Bosch U, Wippermann B, H<strong>of</strong>mann A, Krettek C. Comparison <strong>of</strong><br />

surgical repair or reconstruction <strong>of</strong> the cruciate ligaments versus nonsurgical<br />

treatment in patients with traumatic knee dislocations. The <strong>American</strong> Journal<br />

<strong>of</strong> Sports Medicine. 2002;30:718-727.<br />

423<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

Literature Review<br />

• Richter, et al. AJSM 30:718-27, 2002<br />

• 63pts (49 Repair,14 Reconst.,26 Nonoperative) f/u 8.2 yrs<br />

• Better Scores<br />

— Repair/<br />

reconstruction<br />


6. Dedmond BT, Almekinders LC. Operative versus nonoperative treatment<br />

<strong>of</strong> knee dislocations: a meta-analysis. <strong>American</strong> Journal <strong>of</strong> Knee Surgery.<br />

2001;14(1):33-38.<br />

7. Mariani PP, Santoriello P, Iannone S, Condello V, Adriani E. Comparison <strong>of</strong><br />

surgical treatments for knee dislocation. <strong>American</strong> Journal <strong>of</strong> Knee Surgery.<br />

1999;12(4):214-221.<br />

424<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

8. Chhabra A, Cha PS, Rihn JA, Cole B, Bennett CH, Waltrip RL, Harner CD.<br />

Surgical management <strong>of</strong> knee dislocations. Surgical technique. The Journal<br />

<strong>of</strong> Bone and Joint Surgery. 2005;87 Suppl 1(Pt 1):1-21.


425<br />

CompliCatioNS oF multiligameNtouS kNee iNJurieS:<br />

evaluatioN, maNagemeNt, aNd “pearlS”<br />

Christopher D. Harner, MD, Timothy L. Miller, MD<br />

Overview<br />

I. General Principles <strong>of</strong> Management<br />

II. Complications–Evaluation, Management, and “Pearls”<br />

III. Case Examples<br />

I. General Principles <strong>of</strong> Management<br />

A. Definition–Spectrum <strong>of</strong> Injury<br />

i. Single cruciate injury (ACL or PCL) +/– Collaterals<br />

ii. Bicruciate +/– Collaterals • “Dislocation”<br />

iii. Partial ligamentous injuries (Grade I or II)<br />

B. Injury Classification<br />

i. Timing <strong>of</strong> Injury<br />

— Acute<br />

— Chronic<br />

ii. Anatomical Classification (Grade <strong>of</strong> Injury)<br />

— Cruciates<br />

— Collaterals<br />

— Meniscus<br />

iii. Associated Injuries<br />

— Tendon<br />

— Bone<br />

— Neurovasculature<br />

C. Operative Management<br />

i. Plan out carefully.<br />

ii. Perform cases electively.<br />

iii. Perform in an inpatient setting, and admit patients<br />

overnight.<br />

iv. Perform when rested/ during daylight hours.<br />

v. Delay and/ or stage surgery if necessary.<br />

II. Complications–Evaluation, Management, and “Pearls”<br />

A. Pre-Operative Issues<br />

i. Irreducible Dislocation (This is an “on field” issue in<br />

most cases.)<br />

• Fractures<br />

• S<strong>of</strong>t Tissue Interposition<br />

ii. Vasculature (Artery AND Vein.)<br />

a. Arterial<br />

• Spasm<br />

• Intimal Injury<br />

• Complete Tear<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

b. Venous (DVT)<br />

iii. Nerve (Sensory, Motor, Complete)<br />

B. Pre-Operative Planning<br />

i. History/ Physical Exam (Time dependent!)<br />

• Neurovascular Exam (Including the vein.)<br />

• Swelling/ S<strong>of</strong>t Tissue Envelope/ Skin Quality<br />

• Alignment/ Deformity<br />

• Ligamentous Examination (Usually very limited.)<br />

ii. Associated Injuries<br />

• Patellar Tendon<br />

• MCL<br />

• Joint Capsule<br />

• Meniscus<br />

iii. Imaging<br />

• X-Rays (AP/ Lateral)<br />

• Arteriogram/ CT Angiogram<br />

• Venous Duplex Ultrasound (Initial visit and 1 day<br />

pre-op.)<br />

• MRI<br />

• Intra-Operative Fluoroscopy for EUA and Tunnel<br />

Placement<br />

iv. Operative Plan<br />

• Exam Under Anesthesia<br />

• External Fixation (Usually not necessary.)<br />

• Arthroscopy (Not always possible.)<br />

• S<strong>of</strong>t Tissue Repair<br />

• Ligamentous Reconstruction (May need both repair<br />

and reconstruction.)<br />

• Incision Placement<br />

v. Timing <strong>of</strong> Surgery–(Case dependent.)<br />

• Early Reconstruction (0-14 days)<br />

• Late Reconstruction (> 14 days)<br />

• Staging<br />

vi. Equipment/ Graft Availability<br />

• Autograft<br />

• Allograft<br />

vii.Patient Counseling<br />

• Realistic Expectations<br />

• Functional/ Occupational Requirements<br />

Pre-Operative Pearls:<br />

• Be specific about the diagnosis, including associated injuries.<br />

• Be prepared for any and all complications!


• Reduce knee dislocations on the field if possible to decrease the<br />

risk <strong>of</strong> damage to neurovascular structures and the joint.<br />

• When in doubt regarding vascular status, obtain a CT-angiogram<br />

or arteriogram.<br />

• Obtain a venous duplex Doppler ultrasound to rule out DVT.<br />

• Do not overlook associated fractures and tendon injuries (i.e.<br />

patellar tendon).<br />

• Use an external fixator only when necessary. Most knee<br />

dislocations do not require external fixation.<br />

• Often skin and s<strong>of</strong>t tissue envelope is significantly swollen as<br />

with pilon, ankle, and calcaneus fractures, requiring delayed or<br />

staged surgery.<br />

• Delayed or staged procedures are acceptable in many cases<br />

(collaterals first, cruciates later).<br />

• Certain injury patterns (e.g. posterolateral corner, MCL) should<br />

be treated within 7 to 10 days.<br />

• Exam in the <strong>of</strong>fice is <strong>of</strong>ten very limited. MRI may be deceiving.<br />

• Use EUA in OR as final determining factor for ligamentous<br />

injury. (I <strong>of</strong>ten use fluoroscopy for the EUA, especially for<br />

anterior-posterior laxity.)<br />

C. Intra-Operative Complications<br />

i. Bleeding<br />

ii. Compartment Syndrome<br />

iii. Iatrogenic Neurovascular Injury<br />

iv. Bone Tunnel Fracture/ Tunnel Convergence<br />

Intra-Operative Pearls:<br />

• Careful pre-operative planning is critical.<br />

• Know what structures are to be repaired or reconstructed.<br />

• Use fluoroscopy to perform EUA. Compare injured limb to the<br />

non-injured limb<br />

• There are many partial injuries (e.g. PCL). Do not rely on the<br />

MRI.<br />

• Know the expected approach (Open/ Arthroscopic/ Combined).<br />

• Plan skin incisions around previous incisions and s<strong>of</strong>t tissue<br />

envelope.<br />

• Know different graft options. Your preferred graft may not be<br />

the best option.<br />

• Perform cases in an inpatient setting, and do as the first or only<br />

case <strong>of</strong> the day.<br />

• Minimize use <strong>of</strong> a tourniquet.<br />

• Be aware <strong>of</strong> developing iatrogenic compartment syndrome.<br />

• Use intra-operative fluoroscopy for tunnel placement.<br />

• Expose the Common Peroneal Nerve for all Posterolateral<br />

Corner procedures.<br />

• Decompress the nerve if necessary, and define the extent <strong>of</strong><br />

injury.<br />

D. Post-Operative Complications<br />

i. Wound Breakdown/ Skin Slough<br />

ii. Infection–Cellulitis is common. Be aggressive with suspected<br />

infection.<br />

iii. DVT/ PE–low molecular weight heparin, Aspirin (Always<br />

prophylax postoperatively.)<br />

426<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

iv. Arthr<strong>of</strong>ibrosis (The #1 complication in my practice.)<br />

v. Recurrent Instability<br />

Foot drop (Foot drop splint for 4 weeks to prevent<br />

plantarflexion contracture)<br />

vi. Pain<br />

Post-Operative Pearls:<br />

• Anticipate potential problems and complications, especially<br />

during the first 4 weeks post–operatively.<br />

• Admit patients for the first post-operative night.<br />

• Evaluate patients in follow-up 3 times during the first month<br />

post-op.<br />

• Give appropriate pre-operative and post-operative antibiotics.<br />

• Maintain a high index <strong>of</strong> suspicion for infection during the first<br />

4 weeks post-op.<br />

• Limit range <strong>of</strong> motion in the first 4 weeks post-op. Brace or<br />

splint the lower extremity in full extension.<br />

• Know the patient’s expected level <strong>of</strong> compliance. (Keep the first<br />

4 weeks simple!)<br />

• Have a high index <strong>of</strong> suspicion for DVT. (Check venous<br />

Dopplers post-op.)<br />

• Use prophylactic anticoagulation. Use low molecular weight<br />

heparin in all high risk patients. Aspirin in low risk patients. (I<br />

consider oral contraceptive pills to be a risk factor.)<br />

• Use footdrop splint for patients with peroneal nerve injury.<br />

• Avoid tight, constrictive braces and dressings around the<br />

peroneal nerve.<br />

• Know pre-operative neurovascular status.<br />

• Nerve blocks for post-op pain control are very useful. Always<br />

check neurovascular status before initiation <strong>of</strong> anesthesia.<br />

• Avoid use <strong>of</strong> CPM machines as well as early aggressive<br />

rehabilitation protocols.<br />

III. Case Examples<br />

1) Intra-Operative Vascular Injury<br />

2) Iatrogenic Compartment Syndrome<br />

3) Post-Operative Arthr<strong>of</strong>ibrosis<br />

4) Intra-Operative Mortality<br />

5) Missed Patellar Tendon Rupture with Fixed Posterior<br />

Subluxation<br />

6) Missed Medial Tibial Plateau Fracture<br />

IV. Conclusions<br />

• Multiligamentous knee injuries are relatively uncommon.<br />

• Because <strong>of</strong> the severity <strong>of</strong> this injury and the potential for<br />

devastating complications, it is necessary to understand the<br />

principles <strong>of</strong> evaluation and management.<br />

• Complications may occur in the pre-operative, intra-operative,<br />

and post-operative time frames.<br />

• Evaluation consists <strong>of</strong> a brief history, thorough neurovascular<br />

evaluation, ligamentous examination, and radiographic studies.<br />

• Angiography should be used whenever knee dislocation is<br />

suspected to evaluate for the presence <strong>of</strong> a popliteal artery injury.


• Initial management includes prompt reduction and<br />

stabilization followed by reassessment <strong>of</strong> the neurovascular<br />

status <strong>of</strong> the limb and post-reduction radiographs.<br />

• Emergent surgery is indicated in patients with open dislocation,<br />

compartment syndrome, vascular injury, and irreducible<br />

dislocation.<br />

• Definitive management <strong>of</strong> the knee with multiple ligament<br />

injuries remains a controversial topic.<br />

• Satisfactory results can be achieved with early reconstruction <strong>of</strong><br />

References<br />

1. Almekinders LC, Dedmond BT: Outcomes <strong>of</strong> the operatively treated knee<br />

dislocation. Clin Sports Med 2000;19: 503-518.<br />

2. Almekinders LC, Logan TC: Results following treatment <strong>of</strong> traumatic<br />

dislocations <strong>of</strong> the knee joint. Clin Orthop 1992;284:203-207.<br />

3. Cole BJ, Harner CD: The multiple ligament injured knee. Clin Sports Med<br />

1999;18:241-262.<br />

4. Fanelli GC, Edson CJ, Orcutt DR, HarrisJD, Zijerdi D: Treatment <strong>of</strong> combined<br />

anterior cruciate-posterior cruciate ligament-medial-lateral side knee injuries.<br />

J Knee Surg 2005;18:240-248.<br />

5. Fanelli GC, Harris JD: Surgical treatment <strong>of</strong> acute medial collateral ligament<br />

and posteromedial corner injuries <strong>of</strong> the knee. Medicine and Arthroscopy<br />

Review 2006;14:78-83.<br />

6. Fanelli GC, Orcutt DR, Edson CJ: The multiple-ligament injured knee:<br />

Evaluation, treatment, and results. Arthroscopy 2005;21:471-486.<br />

7. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL-Y:<br />

Quantitative analysis <strong>of</strong> human cruciate ligament insertions. Arthroscopy<br />

1999;15:741-749.<br />

8. Harner CD, Waltrip RL, Bennett CH, Francis KA, Cole B, Irrgang JJ: Surgical<br />

management <strong>of</strong> knee dislocations. J Bone Joint Surg Am 2004;86:262-273.<br />

9. Irrgang JJ, Fitzgerald GK: Rehabilitation <strong>of</strong> the multiple-ligament-injured<br />

knee. Clin Sports Med 2000;19:545-571.<br />

10. Jones RE, Smith EC, Bone GE: Vascular and orthopedic complications <strong>of</strong><br />

knee, J Bone Joint Surg Am 1988;70:88-97.<br />

11. Khanna G, Herrera DA, Wolters BW, Dajani KA, Levy BA: Staged protocol for<br />

high energy knee dislocation: Initial spanning external fixation versus hinged<br />

knee brace. 2008.<br />

12. Levy BA, Dahm DL, Herrera DA, MacDonald PB, Dajani KA, Stuart MJ: Acute<br />

repair <strong>of</strong> posteromedial and posterolateral corners in multiligament knee<br />

injury is not indicated. 2008.<br />

13. Levy, B. et al., Controversies in the Treatment <strong>of</strong> Knee Dislocations and<br />

Multiligant Reconstruction, JAAOS 2009 vol. 17,4: 197-206.<br />

427<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia SpORTS MEd/ARTHRO<br />

both the ACL and PCL using allograft tissue along with allograft<br />

reconstruction <strong>of</strong> complete LCL injuries, repair or allograft<br />

reconstruction <strong>of</strong> injured posterolateral structures, and early<br />

repair <strong>of</strong> complete MCL injuries.<br />

• Although technically challenging, adequate knee stability, ROM,<br />

and knee function can be obtained after anatomic repair or<br />

reconstruction and appropriate postoperative rehabilitation <strong>of</strong><br />

the multiple ligament injured knee.<br />

14. Muller W: The Knee: Form, Function, and Ligament Reconstruction. Berlin,<br />

Germany: Springer-Verlag, 1984, pp 158-202.<br />

15. Owens BD, Neault M, Benson E, Busconi BD: Primary repair <strong>of</strong> knee<br />

dislocations: Results in 25 patients (28 knees) at a mean follow-up <strong>of</strong> four<br />

years.J Orthop Trauma 2007;21:92-96.<br />

16. Palmer I: On the injuries to the ligaments <strong>of</strong> the knee joint: A clinical study.<br />

Acta Chir Scand 1938;53:1-28.<br />

17. Reckling FW, Peltier LF: Acute knee dislocations and their complications. J<br />

Trauma 1969;9:181-191.<br />

18. Richter M, Bosch U, Wippermann B, H<strong>of</strong>mann A, Krettek C: Comparison <strong>of</strong><br />

surgical repair or reconstruction <strong>of</strong> the cruciate ligaments versus nonsurgical<br />

treatment in patients with traumatic knee dislocations.AmJ Sports Med 2002;<br />

30:718-727.<br />

19. Rihn J. et al Acutely Dislocated Knee: Evaluation and Treatment, JAAOS,<br />

2004, 12,5: 334-346.<br />

20. Schenck RC Jr, Hunter RE, Ostrum RF, Perry CR: Knee dislocations. Instr<br />

Course Lect 1999;48:515-522.<br />

21. Thompson KJ, Stannard JP, Robinson JT, Lopez R, McGwin G Jr, Volgas<br />

DA: Stabilization <strong>of</strong> knee dislocations using a hinged external fixator: A<br />

prospective randomized study, in <strong>Proceedings</strong> <strong>of</strong> the 73rd <strong>Annual</strong> <strong>Meeting</strong><br />

<strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons. Rosemont, IL: <strong>American</strong><br />

<strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons, 2006, pp 783–784.<br />

22. Tzurbakis M, Diamantopoulos A, Xenakis T, Georgoulis A: Surgical<br />

treatment <strong>of</strong> multiple knee ligament injuries in 44 patients: 2-8 years followup<br />

results. Knee Surg Sports Traumatol Arthrosc 2006;14:739-749.<br />

23. Varnell RM, Coldwell DM, Sangeorzan BJ, Johansen KH: Arterial injury<br />

complicating knee disruption. Am Surg 1989;55(12):699-704.<br />

24. Wascher DC, Becker JR, Dexter JG, Blevins FT: Reconstruction <strong>of</strong> the anterior<br />

and posterior cruciate ligaments after knee dislocation: Results using freshfrozen<br />

nonirradiated allografts. Am J Sports Med 1999;27:189-196.


428<br />

advaNCeS aNd ChalleNgeS iN<br />

the maNagemeNt oF eXtremity<br />

blaSt iNJurieS (q)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

Moderator: Romney C. Andersen, MD, Stafford, VA<br />

Advances, techniques and challenges in managing complex bone and s<strong>of</strong>t tissue injuries associated with blast injuries, which<br />

are applicable to military and civilian trauma.<br />

I. Advances and Challenges in the Management <strong>of</strong> Extremity Blast Injuries<br />

Romney C. Andersen, MD, Stafford, VA<br />

II. Dealing with Segmental Tissue Loss<br />

David Dromsky, MD, San Marino, CA<br />

a. Muscle/tendon volumetric muscle loss, reconstructing<br />

b. Nerve: grafting, tendon transfers, conduits<br />

c. Bone defects: Transport/distraction osteogenesis, massive grafting, vascularized autograft<br />

III. Follow-up Debate: Segmental Tibial Bone Defects: Bone Transport Versus vs vascularized fibula autograft<br />

Romney C. Andersen, MD, Stafford, VA<br />

James R. Fricke, MD, San Antonio, TX<br />

IV. Questions and Answers<br />

V. Strategies for Preserving / Optimizing Limb Length in Traumatic Amputations<br />

Romney C. Andersen, MD, Stafford, VA<br />

a. Most distal level <strong>of</strong> s<strong>of</strong>t tissue viability<br />

b. Upper v lower extremity priorities<br />

c. Fractures proximal to the level <strong>of</strong> amputation<br />

d. Atypical skin flaps/turn-up plasty/flap coverage<br />

VI. Timing <strong>of</strong> Wound Closure/Coverage in Large Open Wounds<br />

James R. Fricke, MD, San Antonio, TX<br />

a. How do you know when it is safe to cover/close wounds?<br />

b. Surveillance cultures<br />

c. Subjective wound appearance<br />

d. Timing <strong>of</strong> flap coverage: is sooner better, or should it wait for inflammation to decrease<br />

e. Cytokine mapping/future directions<br />

VII. Questions and Answers on Last Two Sections<br />

VIII. Preventing and Dealing with Post-Traumatic Arthr<strong>of</strong>ibrosis <strong>of</strong> the Knee<br />

Romney C. Andersen, MD, Stafford, VA<br />

a. Causes <strong>of</strong> traumatic arthr<strong>of</strong>ibrosis: extra-articular vs intra-articular injury<br />

b. Prevention: physical therapy and ranging joints in OR with multiple trips<br />

c. Management: manipulation vs open management<br />

d. Indications for arthroscopic vs open releases<br />

e. Walter Reed data<br />

IX. Advanced Bracing Strategies in Rehabilitation <strong>of</strong> Blast-Injury Limb Reconstruction<br />

Joseph R. Hsu, MD, San Antonio, TX<br />

a. Innovative bracing options to deal with weakness secondary to volumetric muscle or tendonloss, instability<br />

secondary to loss <strong>of</strong> stabilizing s<strong>of</strong>t tissues or bone deformity<br />

X. Questions on Final Sections and Panel Discussion


429<br />

orthopaediC trauma<br />

mythbuSterS ii (u)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

Moderator: Robert F. Ostrum, MD, Camden, NJ<br />

This symposium explores the myths and controversies surrounding the management <strong>of</strong> orthopaedic trauma patients by<br />

examining the literature and evidence based medicine with case studies to elucidate recommendations for treatment. There is<br />

no need to have participated in Mythbusters I.<br />

I. Intra-artcular Fractures: Just Get Bone Stock<br />

A discussion <strong>of</strong> timing, temporary fixation, incisions and results <strong>of</strong> intra-articular fractures treated with open reduction and<br />

internal fixation.<br />

Robert F. Ostrum, MD, Camden, NJ<br />

II. Calcaneus Fractures: Nonoperative Care is Equal to Operative Treatment<br />

Discusses outcomes <strong>of</strong> nonsurgical and operative management <strong>of</strong> calcaneus fractures with an emphasis on indications<br />

Paul Tornetta, III, MD, Boston, MA<br />

III. Bone Graft Substitutes: It Doesn’t Really Matter What I Use<br />

Is an overview <strong>of</strong> the classes <strong>of</strong> bone graft substitutes with their indications and results<br />

J. Tracy Watson, MD, Saint Louis, MO<br />

IV. Case Presentations with Discussion and Floor Questions<br />

Robert A Probe, MD , Temple, TX<br />

V. Proximal Tibia Fractures: These Should Not be Nailed<br />

A detailed discussion <strong>of</strong> indications, surgical technique, and results <strong>of</strong> intramedullary nailing <strong>of</strong> proximal tibia fractures<br />

Paul Tornetta, III, MD, Boston, MA<br />

VI. Limb Salvage is Better than Amputation<br />

This presentation compares and contrasts the outcomes <strong>of</strong> patients treated by amputation and limb salvage for mangled lower<br />

extremities<br />

Robert A Probe, MD , Temple, TX<br />

VII. Hip Dislocations: Timing <strong>of</strong> Reduction Doesn’t Make Any Difference in Outcome<br />

This is a review <strong>of</strong> the literature and results with respect to the timing <strong>of</strong> reduction <strong>of</strong> hip dislocations<br />

J. Tracy Watson, MD, Saint Louis, MO<br />

VIII. Case Presentations with Discussion and Floor Questions<br />

Robert F. Ostrum, MD, Camden, NJ


INTRA-ARTICULAR FRACTURES<br />

430<br />

iNtra-artiCular FraCtureS; piloN FraCtureS;<br />

CalCaNeuS FraCtureS<br />

Robert F. Ostrum, MD<br />

Myth: Intra-articular Fractures: Just get bone stock<br />

• Is there literature to support the theory that patients with<br />

intra-articular fractures will do poorly even if we operate<br />

appropriately?<br />

Myth: Patients with bad intra-articular fractures will require a<br />

later reconstructive procedure REGARDLESS <strong>of</strong> treatment<br />

• Surgeons try to do minimal operation as they “know” that no<br />

matter what they do the patient will need something else later<br />

on<br />

Myth: Surgical intervention in comminuted intra-articular<br />

fractures has a high complication rate and may leave patient<br />

with no good salvage plan or infection<br />

• Non-operative treatment will lead to equal results to surgical<br />

intervention, with less complications and is therefore a better<br />

option<br />

Tibial Plateau Fractures<br />

I. Reasons why tibial plateau fractures don’t commonly go onto<br />

total knee arthroplasty<br />

a. 70% <strong>of</strong> the total knee joint load passing through the medial<br />

tibi<strong>of</strong>emoral compartment during walking.<br />

b. Lateral tibial plateau has thickest cartilage at 6 mm<br />

c. Meniscus protects cartilage from degeneration<br />

d. Articular reduction may not be as important as restoration<br />

<strong>of</strong> mechanical alignment and knee stability to varus/valgus<br />

stress<br />

e. High energy fractures at 8 year follow-up only 6.5% (2/31)<br />

had severe arthrosis<br />

f. Primary osteoarthritis much more common than posttraumatic<br />

arthritis <strong>of</strong> the knee<br />

g. Severity <strong>of</strong> injury and articular reduction had an effect on<br />

INTRA-ARTICULAR FRACTURES REFERENCES<br />

1. Weigel DP, Marsh JL. High-energy fractures <strong>of</strong> the tibial plateau.<br />

Knee function after longer follow-up. J Bone Joint Surg Am. 2002<br />

Sep;84-A(9):1541-51.<br />

2. Andriacchi TP: Dynamics <strong>of</strong> knee malalignment. Orthop Clin North Am<br />

1994, 25:395-403<br />

3. Huch K, Kuettner KE, Dieppe P.Osteoarthritis in ankle and knee joints.<br />

Semin Arthritis Rheum. 1997 Feb;26(4):667-74.<br />

4. Honkonen SE. Degenerative arthritis after tibial plateau fractures. J Orthop<br />

Trauma. 1995;9(4):273-7.<br />

5. Lansinger O, Bergman B, Korbner l. Tibial Condylar fractures. A twenty year<br />

follow-up. J Bone Joint Surg Am 1986;68:13-9.<br />

6. Volpin G, Dowd GS, Stein H. Degenerative arthritis after intra-articular<br />

fractures <strong>of</strong> the knee. Long-term results. J Bone Joint Surg Br, 1990;72:634-8.<br />

7. Saleh KJ, Sherman P, Katkin P. Total knee arthroplasty after open reduction<br />

and internal fixation <strong>of</strong> fractures <strong>of</strong> the tibial plateau: a minimum five-year<br />

follow-up study. J Bone Joint Surg Am. 2001 Aug;83-A(8):1144-8.<br />

8. Weiss NG, Parvizi J, Trousdale RT, Total knee arthroplasty in patients<br />

with a prior fracture <strong>of</strong> the tibial plateau. J Bone Joint Surg Am. 2003<br />

Feb;85-A(2):218-21.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

function<br />

II. Total knee uncommon after tibial plateau fracture, but high<br />

complication rate<br />

a. Mayo Clinc 1988-1999: 13,821 TKAs performed while 62<br />

were for previous tibial plateau fracture (0.45 %)<br />

b. 26% postoperartive complications, 21% reoperation<br />

PILON FRACTURES<br />

I. Post-traumatic arthritis <strong>of</strong> the ankle develops many years<br />

after injury<br />

a. Mean was 20.9 years<br />

b. Negative correlation between fracture severity and latency <strong>of</strong><br />

OA<br />

c. Shorter latency with complications<br />

d. Open fractures higher incidence <strong>of</strong> OA than closed fractures<br />

e. Is it the articular damage or high complication rate ?<br />

f. Staged protocol for ORIF in severe fractures led to less<br />

arthritis and fewer fusion<br />

II. Post-traumatic arthritis more common than primary<br />

osteoarthritis in ankle<br />

a. knees post-traumatic DJD = 9.8% while in ankle posttraumatic<br />

DJD = 79.5%<br />

b. Rates <strong>of</strong> post pilon ORIF arthrodesis are from 5-30%<br />

CALCANEUS FRACTURES<br />

I. Nihilistic approach for displaced intra-articular calcaneus<br />

fractures does not yield good results<br />

a. non-op patients 1.5x more likely to have pain than op<br />

treated<br />

b. non-op 6x more likely to have fusion<br />

c. single surgeon series <strong>of</strong> over 600 cases, 6% fusions<br />

d. subtalar fusion after ORIF had better result than fusion after<br />

non-op treatment<br />

PILON FRACTURES REFERENCES<br />

1. Horisberger M, Valderrabano V, Hintermann B Posttraumatic ankle<br />

osteoarthritis after ankle-related fractures J Orthop Trauma. 2009<br />

Jan;23(1):60-7.<br />

2. Brown, Thomas D PhD; Johnston, Richard C MD Posttraumatic<br />

Osteoarthritis: A First Estimate <strong>of</strong> Incidence, Prevalence, and Burden <strong>of</strong><br />

Disease Journal <strong>of</strong> <strong>Orthopaedic</strong> Trauma: November/December 2006 -<br />

Volume 20 - Issue 10 - pp 739-744<br />

3. M. Blauth, L. Bastian, C. Krettek Surgical Options for the Treatment <strong>of</strong> Severe<br />

Tibial Pilon Fractures: A Study <strong>of</strong> Three Techniques. Journal <strong>of</strong> <strong>Orthopaedic</strong><br />

Trauma Vol. 15, No. 3, pp. 153–160 © 2001<br />

4. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B Etiology<br />

<strong>of</strong> ankle osteoarthritis. Clin Orthop Relat Res. 2009 Jul;467(7):1800-6.<br />

CALCANEUS FRACTURES REFERENCES<br />

1. Radnay CS, Clare MP, Sanders RW. Subtalar fusion after displaced intraarticular<br />

calcaneal fractures: does initial operative treatment matter? J Bone<br />

Joint Surg Am. 2009 Mar 1;91(3):541-6.<br />

2. Randle JA, Kreder HJ, Stephen D, Williams J, Jaglal S, Hu R. Should calcaneal<br />

fractures be treated surgically? A meta-analysis. Clin Orthop Relat Res. 2000<br />

Aug;(377):217-27.<br />

3. Csizy M, Buckley R, Tough S, et al: Displaced intra-articular calcaneal<br />

fractures: Variables predicting late subtalar fusion. J Orthop Trauma<br />

2003;17:106–112.


431<br />

myth: CalCaNeuS FraCtureS:<br />

NoNoperative Care iS equal to operative treatmeNt<br />

1. Natural history<br />

a. Factors affecting outcome<br />

i. Shortening<br />

ii. Impingement / abutment<br />

iii. Subtalar incongruity<br />

b. Timing <strong>of</strong> recovery<br />

2. Surgical management<br />

a. Risks<br />

i. Infection (factors)<br />

ii. Loss <strong>of</strong> reduction<br />

iii. Late complications<br />

BIBLIOGRAPHY<br />

1. Bajammal, S., Tornetta, P., Sanders, D., & Bhandari, M. (2005). Displaced<br />

intra-articular calcaneal fractures. Journal <strong>of</strong> orthopaedic trauma , 19 (5),<br />

360-4.<br />

2. Buckley, R., Tough, S., McCormack, R., Pate, G., Leighton, R., Petrie, D., et<br />

al. (2002). Operative compared with nonoperative treatment <strong>of</strong> displaced<br />

intra-articular calcaneal fractures: a prospective, randomized, controlled<br />

multicenter trial. The Journal <strong>of</strong> bone and joint surgery <strong>American</strong> volume ,<br />

84-A (10), 1733-44.<br />

3. Csizy, M., Buckley, R., Tough, S., Leighton, R., Smith, J., McCormack, R., et al.<br />

(2003). Displaced intra-articular calcaneal fractures: variables predicting late<br />

subtalar fusion. Journal <strong>of</strong> orthopaedic trauma , 17 (2), 106-12.<br />

4. DeWall, M., Henderson, C., McKinley, T., Phelps, T., Dolan, L., & Marsh,<br />

J. (2010). Percutaneous reduction and fixation <strong>of</strong> displaced intra-articular<br />

calcaneus fractures. Journal <strong>of</strong> orthopaedic trauma , 24 (8), 466-72.<br />

5. Folk, J., Starr, A., & Early, J. (1999). Early wound complications <strong>of</strong> operative<br />

treatment <strong>of</strong> calcaneus fractures: analysis <strong>of</strong> 190 fractures. Journal <strong>of</strong><br />

orthopaedic trauma , 13 (5), 369-72.<br />

6. Gougoulias, N., Khanna, A., McBride, D., & Maffulli, N. (2009). Management<br />

<strong>of</strong> calcaneal fractures: systematic review <strong>of</strong> randomized trials. British medical<br />

bulletin , 92, 153-67.<br />

7. Harvey, E., Grujic, L., Early, J., Benirschke, S., & Sangeorzan, B. (2001).<br />

Morbidity associated with ORIF <strong>of</strong> intra-articular calcaneus fractures using<br />

a lateral approach. Foot & ankle international / <strong>American</strong> <strong>Orthopaedic</strong> Foot<br />

and Ankle Society [and] Swiss Foot and Ankle Society , 22 (11), 868-73.<br />

8. Hedlund, L., Maki, D., & Griffiths, H. (1998). Calcaneal fractures in diabetic<br />

patients. Journal <strong>of</strong> diabetes and its complications , 12 (2), 81-7.<br />

9. Howard, J., Buckley, R., McCormack, R., Pate, G., Leighton, R., Petrie, D.,<br />

et al. (2003). Complications following management <strong>of</strong> displaced intraarticular<br />

calcaneal fractures: a prospective randomized trial comparing open<br />

reduction internal fixation with nonoperative management. Journal <strong>of</strong><br />

orthopaedic trauma , 17 (4), 241-9.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

Paul Tornetta, III, MD<br />

b. Benefits<br />

i. Decreased arthrosis<br />

c. Restored external anatomy<br />

3. Salvage<br />

4. Comparative studies<br />

a. Patient selection<br />

b. Goals<br />

c. Reality<br />

5. Exceptions / New horizons<br />

a. Tongue 2C<br />

b. Perc management<br />

10. Kingwell, S., Buckley, R., & Willis, N. (2004). The association between<br />

subtalar joint motion and outcome satisfaction in patients with displaced<br />

intraarticular calcaneal fractures. Foot & ankle international / <strong>American</strong><br />

<strong>Orthopaedic</strong> Foot and Ankle Society [and] Swiss Foot and Ankle Society , 25<br />

(9), 666-73.<br />

11. Radnay, C., Clare, M., & Sanders, R. (2010). Subtalar fusion after displaced<br />

intra-articular calcaneal fractures: does initial operative treatment matter?<br />

Surgical technique. The Journal <strong>of</strong> bone and joint surgery <strong>American</strong> volume ,<br />

92 Suppl 1 Pt 1, 32-43.<br />

12. Sanders, R. (1992). Intra-articular fractures <strong>of</strong> the calcaneus: present state <strong>of</strong><br />

the art. Journal <strong>of</strong> orthopaedic trauma , 6 (2), 252-65.<br />

13. Sanders, R., Fortin, P., DiPasquale, T., & Walling, A. (1993). Operative<br />

treatment in 120 displaced intraarticular calcaneal fractures. Results using a<br />

prognostic computed tomography scan classification. Clinical orthopaedics<br />

and related research (290), 87-95.<br />

14. Swanson, S., Clare, M., & Sanders, R. (2008). Management <strong>of</strong> intra-articular<br />

fractures <strong>of</strong> the calcaneus. Foot and ankle clinics , 13 (4), 659-78.<br />

15. Thermann, H., Krettek, C., HŸfner, T., Schratt, H., Albrecht, K., & Tscherne,<br />

H. (1998). Management <strong>of</strong> calcaneal fractures in adults. Conservative versus<br />

operative treatment. Clinical orthopaedics and related research (353), 107-<br />

24.<br />

16. Thordarson, D., & Krieger, L. (1996). Operative vs. nonoperative treatment <strong>of</strong><br />

intra-articular fractures <strong>of</strong> the calcaneus: a prospective randomized trial. Foot<br />

& ankle international / <strong>American</strong> <strong>Orthopaedic</strong> Foot and Ankle Society [and]<br />

Swiss Foot and Ankle Society , 17 (1), 2-9.<br />

17. Tornetta, P. (1996). Open reduction and internal fixation <strong>of</strong> the calcaneus<br />

using minifragment plates. Journal <strong>of</strong> orthopaedic trauma , 10 (1), 63-7.<br />

18. Tornetta, P. (2000). Percutaneous treatment <strong>of</strong> calcaneal fractures. Clinical<br />

orthopaedics and related research (375), 91-6.<br />

19. van Tetering, E., & Buckley, R. (2004). Functional outcome (SF-36) <strong>of</strong><br />

patients with displaced calcaneal fractures compared to SF-36 normative<br />

data. Foot & ankle international / <strong>American</strong> <strong>Orthopaedic</strong> Foot and Ankle<br />

Society [and] Swiss Foot and Ankle Society , 25 (10), 733-8.<br />

20. Zwipp, H., Tscherne, H., Thermann, H., & Weber, T. (1993). Osteosynthesis<br />

<strong>of</strong> displaced intraarticular fractures <strong>of</strong> the calcaneus. Results in 123 cases.<br />

Clinical orthopaedics and related research (290), 76-86.


432<br />

myth: boNe graFt SubStituteS:<br />

it doeSN’t really matter what i uSe<br />

J. Tracy Watson, MD<br />

Specific categories <strong>of</strong> agents for specific indications , efficacy based<br />

on available levels <strong>of</strong> evidence.<br />

1) Osteoinductive Bone Substitutes<br />

a) Autologous Bone…considered the GOLD STANDARD…<br />

i) There are few reports that actually provide the evidence<br />

for the clinical efficacy <strong>of</strong> autograft.<br />

b) Allogeneic Bone and Demineralized Bone Matrix<br />

i) No reports that carefully evaluate the osteoinductive<br />

properties <strong>of</strong> allograft bone.<br />

ii) Animal studies have documented DBM’s osteoinductive<br />

effects, there is a paucity <strong>of</strong> clinical information with<br />

similar findings.<br />

(1)Only one prospective controlled study showing<br />

equivalent rates <strong>of</strong> spinal fusion in the same patients<br />

treated with autograft versus a 2:1 ratio composite<br />

DBM(gel)/autograft, suggesting potential use DBM as<br />

a bone-graft extender. Only anecdotal information is<br />

available regarding similar applications in long bone<br />

fractures and nonunions.<br />

(2)Evidence <strong>of</strong> differential potencies <strong>of</strong> DBM<br />

preparations based on the manufacturer and<br />

manufacturing process.<br />

c) Bone Morphogenetic Proteins<br />

i) Urist, Johnson and colleagues first used the protein in<br />

clinical settings. Uncontrolled retrospective series (Level 4<br />

evidence) had encouraging results and stimulated further<br />

investigation in this area.<br />

ii) Two recombinant BMPs have been developed for clinical<br />

use; rhBMP-2 and rhBMP7 Each has been evaluated<br />

in randomized, controlled trials in trauma patients<br />

and these studies provide data that qualify as Level 1<br />

evidence.<br />

(1)Clinical use for diaphyseal open tibia fractures, long<br />

bone nonunion, and spinal fusion.<br />

2) Osteoconductive Bone Graft Substitutes<br />

a) Allograft<br />

i) Level 4 evidence exists for use <strong>of</strong> cortical allograft in<br />

reconstructive and trauma surgery <strong>of</strong> the humerus and<br />

REFERENCES<br />

1. Yue JJ, etal, Blood flow changes to the femoral head after acetabular fracture<br />

or dislocation in the acute injury and perioperative periods. Orthop Trauma.<br />

2001 Mar-Apr;15(3):170-6.<br />

2. Yang RS, etal. Traumatic dislocation <strong>of</strong> the hip.Clin Orthop Relat Res. 1991<br />

Apr;(265):218-27.<br />

3. Dreinhšfer KE,etal. Isolated traumatic dislocation <strong>of</strong> the hip. Long-term<br />

results in 50 patients. Bone Joint Surg Br. 1994 Jan;76(1):6-12.<br />

4. Sapkas G, Effect <strong>of</strong> hip dislocation on the blood supply to the femoral head.<br />

An experimental study in rabbits. Acta Orthop Scand. 1983 Apr;54(2):204-9.<br />

5. Hougaard K, etal. Coxarthrosis following traumatic posterior dislocation <strong>of</strong><br />

the hip. J Bone Joint Surg Am. 1987 Jun;69(5):679-83.<br />

6. Hougaard K, Traumatic posterior dislocation <strong>of</strong> the hip--prognostic factors<br />

influencing the incidence <strong>of</strong> avascular necrosis <strong>of</strong> the femoral head. Arch<br />

Orthop Trauma Surg. 1986;106(1):32-5.<br />

7. Shim SS. Circulatory and vascular changes in the hip following traumatic hip<br />

dislocation. Clin Orthop Relat Res. 1979 May;(140):255-61.<br />

8. Duncan CP, Blood supply <strong>of</strong> the head <strong>of</strong> the femur in traumatic hip<br />

dislocation. Surg GynecolObstet. 1977 Feb;144(2):185-91.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

femur. Further research is needed to determine the ideal<br />

material for encouraging bone formation with these<br />

applications.<br />

ii) Calcium ceramic synthetic substitutes<br />

(1) Bone formation by providing an osteoconductive<br />

matrix for host osteogenic cells to create bone under<br />

the influence <strong>of</strong> host osteoinductive factors, for use in<br />

metaphyseal defects<br />

(2)Recommendations for use<br />

(a) CaPO4: Level B for use as an adjunct to internal <strong>of</strong><br />

external fixation in fractures <strong>of</strong> the tibial plateau,<br />

intertrochanteric hip fractures and calcaneous<br />

fractures. Level A for use in distal radius fractures<br />

(b)CaSO4: Level B for use as a resorbable antibiotic<br />

bead in infected nonunions<br />

(i) Level C for use as an adjunct to internal<br />

fixation in tibial plateau fractures<br />

(ii)Allograft: Level C : no significant published<br />

evidence for use in non spinal skeletal Fractures<br />

(iii) Hydroxyapatite Level A for use in tibial<br />

plateaus as an adjunct to internal fixation<br />

3) Materials With Osteogenic Properties<br />

a) Bone marrow aspirate has a high concentration <strong>of</strong> CTPs. One<br />

milliliter <strong>of</strong> iliac aspirate contains approximately 40 million<br />

nucleated cells 1500 <strong>of</strong> which are CTPs..Clinical use with<br />

concentration and implantation for Fx and nonunions.<br />

i) Human data is limited, only case reports treating a<br />

limited number <strong>of</strong> patients demonstrating successful<br />

treatment in spinal fusion and nonunion patients (Level<br />

4).<br />

b) Use <strong>of</strong> Platelet – Rich Plasma and Related Peripheral Blood<br />

Concentrates<br />

i) Level 1 evidence in the Basic science literature to strongly<br />

support the positive effects and cellular stimulation by<br />

these adjuvants as a mechanism for bone repair.<br />

(1)Published prospective comparative studies are<br />

currently lacking.<br />

(a) Indications for foot and ankle surgery , diabetics,<br />

and smokers. (level 3/4)<br />

9. Sahin V, Traumatic dislocation and fracture-dislocation <strong>of</strong> the hip: a longterm<br />

follow-up study. J Trauma. 2003 Mar;54(3):520-9.<br />

10. Foulk DM, etal, Hip Dislocation: Evaluation and Management. J Am Acad<br />

Orthop Surg 2010;18:199-209.<br />

11. Upadhyay SS, et.al,: The long-term results <strong>of</strong> traumatic posterior dislocation<br />

<strong>of</strong> the hip. J Bone Joint Surg Br 1981;63:548-551.<br />

12. Upadhyay SS, et.al,: An analysis <strong>of</strong> the late effects <strong>of</strong> traumatic posterior<br />

dislocation <strong>of</strong> the hip without fractures. J Bone Joint Surg Br 1983;65:150-<br />

152.<br />

13. Stewart MJ, Milford LW: Fracture dislocation <strong>of</strong> the hip: An end-result study. J<br />

Bone Joint Surg Am 1954;36: 315-342.<br />

14. Brav EA: Traumatic dislocation <strong>of</strong> the hip: Army experience and results over a<br />

twelve-year period. J Bone Joint Surg Am 1962;44:1115-1134.<br />

15. Hougaard K, et.al,: Coxarthrosis following traumatic posterior dislocation <strong>of</strong><br />

the hip. J Bone Joint Surg Am 1987; 69:679-683.<br />

16. Hunter GA: Posterior dislocation and fracture-dislocation <strong>of</strong> the hip: A<br />

review <strong>of</strong> fifty-seven patients. J Bone Joint Surg Br 1969;51:38-44.<br />

17. Stewart MJ, Milford MW. Fracture-dislocation <strong>of</strong> the hip; an end-result study.<br />

J Bone Joint Surg Am. Apr;36(A:2):315-42.1954


18. Muschler GF, Midura MJ. Connective Tissue Progenitors: Practical Concepts<br />

for Clinical Applications. Clin Orthop 2002; 395:66-80.<br />

19. Connolly JF, Guse R, Tiedeman J, Dehne R. Autologous marrow injection as<br />

a substitute for operative grafting <strong>of</strong> tibial nonunions. Clin Orthop 1991;<br />

266:259-269.<br />

20. Connolly JF. Clinical use <strong>of</strong> marrow osteoprogenitor cells to stimulate<br />

osteogenesis. Clin Orthop 1998; 355S:S257-S264.<br />

21. Tiedeman JJ, Connolly JF, Strates BS, Lippiello L. Treatment <strong>of</strong> nonunion by<br />

percutaneous injection <strong>of</strong> bone marrow and demineralized bone matrix. An<br />

experimental study in dogs. Clin Orthop.1991 Jul ;( 268):294-302.<br />

22. Slater M, et al. Involvement <strong>of</strong> Platelets in Stimulating Osteogenic Activity J<br />

Ortho Research 13:655-663, 1995.<br />

23. Delong, W, Einhorn, T, Koval, K, Watson JT, et.al. Bone Grafts and Bone<br />

Graft Substitutes in <strong>Orthopaedic</strong> Trauma Surgery. A critical analysis. J Bone<br />

Joint Surg Am. 2007 Mar;89(3):649-58. Review.<br />

24. Marx RE, Carlson ER, Eichstaaedt RM, et. al, Platelet Rich Plasma; Growth<br />

Factor Enhancement for Bone Grafts. June 1998, J Ortho Research 85(6)<br />

13:655-663, 1995.<br />

25. Bibbo C, Bono C, Lin S. Union Rates Using Autologous Platelet<br />

Concentrates Alone and With Bone Graft in High-Risk Foot and Ankle<br />

Surgery Patients. J. Surg Othop Advances. 14(1): 1722, 2005.<br />

26. Chapman MW, Bucholz R and Cornell C. Treatment <strong>of</strong> acute fractures with<br />

a collagen-calcium phosphate graft material. A randomized clinical trial. J<br />

Bone Joint Surg Am, 79(4): 495-502, 1997.<br />

27. Lobenh<strong>of</strong>fer P, Gerich T, Witte F and Tscherne H. Use <strong>of</strong> an injectable<br />

calcium phosphate bone cement in the treatment <strong>of</strong> tibial plateau fractures:<br />

a prospective study <strong>of</strong> twenty-six cases with twenty-month mean follow-up. J<br />

Orthop Trauma, 16(3): 143-9, 2002.<br />

433<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

28. Bucholz RW, Carlton A and Holmes RE. Hydroxyapatite and tricalcium<br />

phosphate bone graft substitutes. Orthop Clin North Am, 18(2): 323-34,<br />

1987.<br />

29. Kirkpatrick JS, Watson JT, Watters WC et.al. Bone void fillers. J Am Acad<br />

Orthop Surg. 2010 Sep;18(9):576-9<br />

30. Wang JW and Weng LH. Treatment <strong>of</strong> distal femoral nonunion with internal<br />

fixation, cortical allograft struts and autogenous bone-grafting. J Bone Joint<br />

Surg Am, 85-A(3): 436-40, 2003.<br />

31. Govender S, Csimma C, Genant HK et al. Recombinant human bone<br />

morphogenetic protein 2 for treatment <strong>of</strong> open tibial fractures. A prospective,<br />

controlled, randomized study <strong>of</strong> four hundred and fifty patients. J Bone Joint<br />

Surg Am 2002,84:12:2123-2134.<br />

32. Mehta S, Watson J.T. Platelet Rich Concentrate: Basic Science and Clinical<br />

Applications. J Orthop Trauma 22: 6: 432-439. 2008.<br />

33. Johnson EE, Urist MR, Finerman GAM. Bone morphogenetic protein<br />

augmentation grafting <strong>of</strong> resistant femoral non-unions. A preliminary report.<br />

Clin. Orthop., 230:257-265, 1988.<br />

34. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic protein 1 (bone<br />

morphogenetic protein 7) in the treatment <strong>of</strong> tibial nonunions. J Bone Joint<br />

Surg Am 2001;83:S151-158.<br />

35. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR: Osteoinductivity<br />

<strong>of</strong> commercially available demineralized bone matrix. Preparations in a<br />

spine fusion model. J Bone Joint Surg, 86-A:2243-2250, 2004.<br />

36. Tiedeman JJ, Garvin KL, Kile TA, et al. The role <strong>of</strong> a composite, demineralized<br />

bone matrix and bone marrow in the treatment <strong>of</strong> osseous defects.<br />

<strong>Orthopaedic</strong>s 1995;18:12:1153-1158.<br />

37. Urist MR. Bone transplants and implants. In: Urist MR, editor. Fundamental<br />

and clinical bone physiology. Philadelphia: JB Lippincott; 1980. p 331-68.<br />

38. Urist MR. Bone: Formation by autoinduction. Science. 1965;150:893-9.


434<br />

myth: proXimal tibia FraCtureS: Should Not be Nailed<br />

Paul Tornetta, III, MD<br />

1. Problems with proximal fracture nailing<br />

a. Valgus malalignment<br />

b. Anterior angulation<br />

c. Knee pain?<br />

2. Solutions<br />

a. Nailing in relative extension<br />

b. Portal location<br />

c. Blocking screws<br />

BIBLIOGRAPHY<br />

1) Court-Brown CM, Gustilo T, Shaw AD. Knee pain after intramedullary tibial<br />

nailing: It’s incidence, etiology and outcome. J Orthop Trauma 1997; 11(2):<br />

103-105.<br />

2) Keating JF, Orfaly R, O’Brien PJ. Knee pain after tibial nailing. J Orthop<br />

Trauma 1997;11(1): 10-13.<br />

3) Court-Brown CM, Christie J, McQueen MM. Closed intramedullary tibial<br />

nailing. J Bone Joint Surg [Br] 1990; 72-B(4): 605-611.<br />

4) Alho, A, et al. Locked intramedullary nailing for displaced tibial shaft<br />

fractures. J Bone Joint Surg [Am] 1990; 72-B(5): 805-809.<br />

5) Koval KJ, Complications <strong>of</strong> reamed intramedullary nailing <strong>of</strong> the tibia. J<br />

Orthop Trauma 1991; 5(2): 184-189.<br />

6) Court-Brown CM, McQueen MM, Quaba AA, Christie J. Locked<br />

intramedullary nailing <strong>of</strong> open tibia fractures. J Bone Joint Surg [Br] 1991;<br />

73-B(6): 959-964.<br />

7) Haddad FS, et al. The AO undreamed nail: Friend or foe. Injury 1996; 27(4):<br />

261-263.<br />

8) Hooper GJ, Keddell RG, Penny ID. Conservative management or closed<br />

nailing for tibial shaft fractures. J Bone Joint Surg [Br] 1991; 73 (B): 83-85.<br />

9) Blachut PA, et al. Interlocking intramdullary Nailing with and without<br />

reaming for the treatment <strong>of</strong> closed fractures <strong>of</strong> the tibial shaft. A<br />

prospective, randomized study. J Bone Joint Surg [Am] 1997; 79A: 640-646.<br />

10) Bone LB, Johnson KD. Treatment <strong>of</strong> tibial fractures by reaming and<br />

intramedullary nailing. J Bone Joint Surg [Am] 1986; 68A: 877-887.<br />

11) Bhattacharyya T, et al. Knee pain after tibial nailing. Clin Orthop Rel Res<br />

2006; 449: 303-307.<br />

12) Karladani AH, et al. Displaced tibial shaft fractures: A prospective<br />

randomized study <strong>of</strong> closed intramedullary nailing versus cast treatment in<br />

53 patients. Acta Orthop Scand 2000; 71: 160-167.<br />

13) Devitt AT, et al. Patello-femoral contact forces and pressures during<br />

intramedullary tibial nailing. Intern Orthop 1998; 22(2): 92-96.<br />

14) Orfaly R, Keating JF, O’Brien PJ. Knee pain after tibial nailing: Does the entry<br />

point matter? J Bone Joint Surg [Br] 1995; 77-B: 976-977.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

3. Plates<br />

a. Risks<br />

b. Benefits<br />

4. High quality and Comparative studies<br />

5. Recommendations<br />

15) Tiovanen JAK, et al. Anterior knee pain after intramedullary nailing <strong>of</strong><br />

fractures <strong>of</strong> the tibial shaft: A prospective, randomized study comparing two<br />

different nail-insertion techniques. J Bone Joint Surg [Am] 2002; 84: 580-<br />

585.<br />

16) Tornetta P, et al. Intra-articular anatomic risks <strong>of</strong> tibial nailing. J Orthop<br />

Trauma 1999; 13(4): 247-251.<br />

17) Vaisto O, et al. Anterior knee pain and thigh muscle strength after<br />

intramedullary nailing <strong>of</strong> tibial shaft fractures: A report <strong>of</strong> 40 consecutive<br />

cases. J Orthop Trauma 2004; 18(1): 18-23.<br />

18) Dogra AS, Ruiz AL, Marsh DR. Late outcome <strong>of</strong> isolated tibial fractures<br />

treated by intramedullary nailing: The correlation between disease-specific<br />

and generic outcome measures. J Orthop Trauma 2002; 16(4): 245-249.<br />

19) Freedman EL, Johnson EE. Radiographic analysis <strong>of</strong> tibial fracture<br />

malalignment following intramedullary nailing. Clin Orthop 1995; 315: 25-<br />

33.<br />

20) Buehler KC, Green J, Woll TS, et al. A technique for intramedullary nailing <strong>of</strong><br />

proximal third tibial fractures. J Orthop Trauma 1997;11:218-23.<br />

21) Nork SE, Barei DP, Schildhauer TA, et al. Intramedullary Nailing <strong>of</strong> Proximal<br />

Quarter Tibial Fractures. J Orthop Trauma 2006;20(8):523-8.<br />

22) Tornetta P 3rd, Collins E. Semiextended position <strong>of</strong> intramedullary nailing <strong>of</strong><br />

the proximal tibia. Clin Orthop 1996;328:185-9.<br />

23) Krettek C, Stephen C. Schandelmaier P, et al. The use <strong>of</strong> poller screws as<br />

blcokgin screws in stabilizating tibial fractures treated with small diameter<br />

intramedullary nails. J Bone Joint Surg 1999;(81B): 963-8.<br />

24) Ricci WM, O’Boyle M, Borrelli J, et al. Fractures <strong>of</strong> the proximal third <strong>of</strong> the<br />

tibial shaft treated with intramedullary nails and blocking screws. J Orthop<br />

Trauma 2001;15:264-270.<br />

25) Long GJ, Cohen BE, Bosse MJ, et al. Proximal third tibial shaft fractures:<br />

should they be nailed? Clin Orthop. 1995;315:64-74.<br />

26) Gustilo RD, Anderson JT. Prevention <strong>of</strong> infection in the treatment <strong>of</strong> one<br />

thousand and twenty-five open fractures <strong>of</strong> long bones: Retrospective and<br />

prospective analysis. J Bone Joint Surg Am. 1976;58:453-458.<br />

27) Vallier HA, Le TT, Bedi A. Radiographic and clinical comparisons <strong>of</strong> distal<br />

tibia shaft fractures (4 to 11cm proximal to the plafond): Plating versus<br />

intramedullary nailing. J Orthop Trauma. 2008;22:307-311.


435<br />

myth: limb Salvage iS better thaN amputatioN<br />

Robert Probe, MD<br />

I. Reconsideration <strong>of</strong> value <strong>of</strong> limb salvage<br />

A. Caudle & Stern (JBJS 1987)<br />

1. 62 Open Tibial Shaft fractures<br />

2. Seperated IIIB injuries into those with closure before or after<br />

7 days<br />

3. Conclusions:<br />

a. S<strong>of</strong>t Tissue cover should be accomplished within 7 days<br />

<strong>of</strong> injury<br />

b. “Type-IIIC: “Primary amputation should be seriously<br />

considered as a reliable and dependable means <strong>of</strong><br />

restoring function <strong>of</strong> the limb…”<br />

II. Guideline Development<br />

A. Predictive Salvage Index (PSI)<br />

1. Howe, 1987 Annals <strong>of</strong> Surgery<br />

B. Mangled Extremity Score (MESS)<br />

1. Johansen et al 1990<br />

2. Tissue injury, ischemia, shock, age<br />

C. Nerve Injury, Ischemia, S<strong>of</strong>t-Tissue Injury, Skeletal Injury,<br />

Shock, and Age <strong>of</strong> Patient Score (NISSSA)<br />

1. McNamara et al 1994<br />

D. Limb Salvage Index<br />

1. Russel et al 1991 2. 26 limbs requiring revascularization<br />

E. Hannover Fracture Scale (97)<br />

TABLE I Components <strong>of</strong> Lower-Extremity Injury-Severity Scoring Systems<br />

MESS LSI PSI NISSA HFS-97<br />

Age x x<br />

Shock x x<br />

Warm ischemia time x x x x x<br />

Bone injury x x x<br />

Muscle injury x x<br />

Nerve injury x x<br />

deep Vein injury x x x<br />

Skeletal/s<strong>of</strong>t Tissue injury x<br />

Contamination x x x<br />

Time to treatment x<br />

III. Guideline Performance<br />

A. When applied to the LEAP study group:<br />

1. All demonstrated low sensitivity (ability to accurately<br />

predict amputation)<br />

2. Demonstrated good specificity (ability to predict salvage)<br />

3. Show no correlation with functional outcomes <strong>of</strong><br />

salvaged limbs<br />

4. Usefulness lies in the suggestion <strong>of</strong> salvage attempts for<br />

those patients with low scores<br />

IV. Patient Outcomes (Amputation vs Salvage)<br />

A. Outcomes following amputation<br />

1. MacKenzie et al, JBJS-A (2004)<br />

a. 161 patients with traumatic above ankle amputation<br />

b. Principle outcome: Sickness impact pr<strong>of</strong>ile<br />

c. Results:<br />

i. Above and below knee amputations demonstrated<br />

similar Sickness Impact Pr<strong>of</strong>iles.<br />

ii. Both Above and below knee amputees scored<br />

higher than through knee amputees<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

iii. Self-reported walking speeds highest with BKA<br />

B. Retrospective comparason <strong>of</strong> amputation vs salvage<br />

1. Georgiadis et al. JBJS-A (1993)<br />

a. Subjects were open tibial fractures with s<strong>of</strong>t-tissue<br />

loss iv 16 patients with successful limb salvage v 18<br />

patients with traumatic below the knee amputation<br />

b. Limb salvage group<br />

i. More time to achieve full weight bearing<br />

ii. Less willing to work<br />

iii. Higher cost<br />

iv. More likely to consider themselves disabled<br />

v. More difficulty with daily activities<br />

C. LEAP: Bosse et al, NEJM 2002<br />

1. At 2 years, no significant difference in Sickness Impact<br />

Pr<strong>of</strong>ile<br />

a. Amputation 12.6<br />

b. Limb salvage 11.8<br />

2. Predictors <strong>of</strong> poor outcome<br />

a. Major complication<br />

b. Low educational level<br />

c. Non-white race<br />

d. Poverty<br />

e. Uninsured<br />

f. Active litigation<br />

3. Return to work<br />

a. Amputation 53%<br />

b. Limb Salvage 49%<br />

D. Meta-analysis conclusions: Busse et al, JOT 2007<br />

1. Total cost higher for limb salvage (B)<br />

2. Long-term functional outcomes are equivelent<br />

3. 50% self reported disability in both groups<br />

4. Demographic factors have stronger correlation than<br />

treatment Outcome Variables<br />

E. No correlation with initial Injury Severity Scores. Ly et al,<br />

JBJS-A, 2008<br />

F. Surgeon controlled variables<br />

1. Webb et al, JBJS-A (2007)<br />

a. 156 patients, 105 Type III diaphyseal tibial fractures<br />

b. Variables with no effect: timing <strong>of</strong> debridement,<br />

timing <strong>of</strong> cover, timing <strong>of</strong> bone graft<br />

c. Variables with an adverse effect:<br />

i. Definitive treatment with external fixation<br />

d. Patients undergoing external fixation who also had<br />

a muscle flap for wound coverage had more physical<br />

impairment and a worse functional outcome than did<br />

patients who had an amputation.<br />

G. Outcome over time: MacKenzie et al, JBJS 2005<br />

1. SIP scores declined for both the salvage group and the<br />

amputation group after 2 years<br />

2. The absence <strong>of</strong> difference between groups remained at 7<br />

years following injury.<br />

V. Conclusions<br />

A. Given current technologies and social strategies, results are<br />

comparable between amputation and reconstruction<br />

B. Given the poor outcomes for both treatment options,<br />

continued efforts should be given to improved treatment<br />

strategies and technologies<br />

C. Non medical factors should be an integral part <strong>of</strong> future<br />

strategies to optimize functional outcomes


BIBLIOGRAPHY<br />

1. Bosse MJ, Melissa L. McCarthy, Alan L. Jones, Lawrence X. Webb, Stephen H.<br />

Sims,Roy W. Sanders,Ellen J. MacKenzie and the Lower Extremity Assessment<br />

ProjectThe Insensate Foot Following Severe Lower Extremity Trauma: An<br />

Indication for Amputation? J Bone Joint Surg Am. 2005;87:2601-2608.<br />

2. Busse, DC, MSc, Craig L. Jacobs, DC, Marc F. Swiontkowski, MD,Michael<br />

J. Bosse, MD, and Mohit Bhandari, MD. Complex Limb Salvage or<br />

EarlyAmputation for Severe Lower-Limb Injury: A Meta-Analysis <strong>of</strong><br />

Observational Studies JOrthop Trauma _ Volume 21, Number 1, January<br />

2007<br />

3. CaudleRJ and PJ Stern. Severe open fractures <strong>of</strong> the tibia. J Bone Joint Surg<br />

Am. 1987;69:801-807.<br />

4. Georgiadis GM, FF Behrens, MJ Joyce, AS Earle and AL Simmons. Open tibial<br />

fractures with severe s<strong>of</strong>t-tissue loss. Limb salvage compared with below-thekneeamputation.<br />

J Bone Joint Surg Am. 1993;75:1431-1441.<br />

5. Hansen, ST. The type-IIIC tibial fracture. Salvage or amputation; comment. J<br />

Bone Joint Surg Am. 1987;69:799-800.<br />

436<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

6. Lawrence X. Webb, MD, Michael J. Bosse, MD, Renan C. Castillo, MS, Ellen J.<br />

MacKenzie, PhD. Analysis <strong>of</strong> Surgeon-Controlled Variables in the Treatment<br />

<strong>of</strong> Limb-Threatening Type-III Open Tibial Diaphyseal Fractures. J Bone Joint<br />

Surg Am.2007;89:923-8<br />

7. MacKenzie EJ, Michael J. Bosse, Andrew N. Pollak, Lawrence X. Webb, Marc<br />

F. Swiontkowski, James Kellam, Douglas G. Smith, Roy W. Sanders, Alan L.<br />

Jones,F.Adam J. Starr, Mark P. McAndrew, Brendan M. Patterson, Andrew R.<br />

Burgess andRenan C. Castillo, Trauma. Results <strong>of</strong> a Seven-Year Follow-up<br />

Long-Term Persistence<strong>of</strong> Disability Following Severe Lower-Limb J Bone<br />

Joint Surg Am. 2005;87:1801-1809.<br />

8. Patterson, Thomas G. Travison and Melissa L. McCarthy Andrew R. Burgess,<br />

Marc F.Swiontkowski, Roy W. Sanders, Alan L. Jones, Mark P. McAndrew,<br />

Brendan M. Ellen J.MacKenzie, Michael J. Bosse, Renan C. Castillo, Douglas<br />

G. Smith, Lawrence X.Webb, James F. Kellam, Amputation Functional<br />

Outcomes Following Trauma-Related Lower-Extremity. J Bone Joint Surg Am.<br />

2004;86:1636-1645.<br />

9. Swiontkowski, Roy W. Sanders, Alan L. Jones, Mark P. McAndrew, Brendan<br />

M.Patterson, Melissa L. McCarthy, Michael J. Bosse, Ellen J. MacKenzie, James<br />

F.Kellam, Andrew R. Burgess, Lawrence X. Webb. A Prospective Evaluation <strong>of</strong><br />

theClinical Utility <strong>of</strong> the Lower-ExtremityInjury-Severity Scores J Bone Joint<br />

Surg Am. 2001;83:3.


437<br />

myth: hip diSloCatioNS: timiNg oF reduCtioN doeSN’t make<br />

aNy diFFereNCe iN outCome<br />

J. Tracy Watson, MD<br />

Basic Science Evidence: Posterior Hip Dislocations: A Cadaveric<br />

Angiographic Study, Yue, J.J. et.al. JOT: 10 (7), 447-454. 1996.<br />

These extraosseous changes do not consistently result in changes in<br />

the intraosseous blood flow possibly due to collateral circulation.<br />

Relocating the femoral head in a traumatic posterior hip dislocation<br />

may provide earlier blood flow to the femoral head by relieving<br />

tension across the femoral and circumflex vessels.<br />

Blood supply <strong>of</strong> the head <strong>of</strong> the femur in traumatic hip<br />

dislocation. Surg Gynecol Obstet. Duncan CP, et.al Surg Gynecol<br />

Obstet. Feb;144(2):185-91. 1977<br />

Disturbance <strong>of</strong> circulation is most severe and worsens with continued<br />

dislocation to a maximum at 24 hours. Early reduction enhances<br />

early and complete recovery <strong>of</strong> blood supply. Reduction > 12 hours<br />

or longer does not improve the extent <strong>of</strong> the circulatory recovery <strong>of</strong><br />

the femoral head.<br />

Circulatory and vascular changes in the hip following traumatic<br />

hip dislocation, Shim SS. Clin Orthop Relat Res. (140):255-61.<br />

1979.<br />

Compression, traction and spasm <strong>of</strong> intact vessels are reversible by<br />

early reduction. Posttraumatic inflammatory changes, thrombosis,<br />

fibrosis and occlusion may cause AVN. Early reduction restores<br />

anatomy and extra and intraosseous circulation.<br />

Effect <strong>of</strong> hip dislocation on the blood supply to the femoral<br />

head. An experimental study in rabbits. Sapkas G,et.al. Acta<br />

Orthop Scand. 54(2):204-9, 1983<br />

The initially decreased femoral head blood flow progressively<br />

increased, in time from reduction. Traumatic dislocation is rarely be<br />

the 1˚ cause <strong>of</strong> AVN.<br />

Blood flow changes to the femoral head after acetabular fracture<br />

or dislocation in the acute injury and perioperative periods. Yue<br />

J.J, et.al. J Orthop Trauma. 15(3):170-6. 2001.<br />

Mean dislocation time was 9.1 hours in Pts. with low flow SPECT<br />

scan. VS. 4.5 hrs for pts with normal SPECT scans (Sig)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TRAUMA<br />

Clinical Evidence:<br />

Stewart MJ, et.al…AVN 21.2% overall ….Reduced < 3 days..15.5%<br />

AVN, reduced < 21days..40%..AVN.... Osteoarthritis....48%.<br />

Brav et. al…AVN ….Reduction within 12 hrs..22% AVN, Reduction<br />

> 12hrs..52% AVN. Osteoarthritis…..26%.<br />

Hunter GA, …AVN…Reduction ASAP < 24hrs..2% AVN,<br />

Osteoarthritis…26%.<br />

Upadhyay et.el… Reduction within 8-12 hrs…..6% and 8% AVN (2<br />

studies) Osteoarthritis…24%.<br />

Hougaard and Thomsen… AVN …Reduction within 6 hrs..4%<br />

AVN, reduction > 6hrs..58% AVN……. Osteoarthritis….31%.....< 6<br />

hrs..30%, > 6hrs 58%.<br />

Yang RS et.al,….AVN… Reduction < 12 hrs…no difference from<br />

reduction at 12-24 hrs Osteoarthritis....19%.<br />

Dreinh<strong>of</strong>er et.al…AVN,…Reduction within 1 hr or within first 6<br />

hrs..no difference AVN…12%...All posterior…… Osteoarthritis..<br />

Anterior..11%, Posterior..26%.<br />

Sahin V et.al…AVN…Reduction < 12hr…20% AVN, Osteoarthritis<br />

30%, Reduction > 12 hr…..80% AVN, Osteoarthritis 70%<br />

Myth: Hip dislocations: Timing <strong>of</strong> reduction doesn’t make any<br />

difference in outcome……BUSTED!!! With caveats’<br />

Outcomes contingent on the development <strong>of</strong> arthritis and / or AVN.<br />

(time dependent) The long-term prognosis <strong>of</strong> simple hip dislocations<br />

reported excellent / good in 48% to 95%. Anterior dislocations have<br />

a better long-term prognosis than posterior dislocations. Associated<br />

injuries have a negative prognostic effect on the clinical result.<br />

Poorer results in patients with multiple severe injuries. Increased<br />

rates <strong>of</strong> arthritis with increasing length <strong>of</strong> follow-up. Heavy labor<br />

occupations after injury at increased risk for a poor outcome. The<br />

most important prognostic sign not necessarily time to reduction<br />

but direction <strong>of</strong> dislocation and overall severity <strong>of</strong> all injuries and<br />

specifically associated hip pathology.


438<br />

imagiNg iNterpretatioN oF<br />

oNCologiC muSCuloSkeletal<br />

CoNditioNS: uNderStaNd<br />

what you See!! (i)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

Moderator: Carol D. Morris, MD, New York, NY<br />

This Symposium will review the basics <strong>of</strong> image interpretation <strong>of</strong> musculoskeletal tumors and assist the practicing surgeon in<br />

understanding what the x-rays, CT scans, and MRI actually reveal.<br />

OBJECTIVES:<br />

1. Understand how to interpret commonly ordered radiographic studies (x-ray, MRI, CT scan) as they relate to bone<br />

and s<strong>of</strong>t tissue tumors.<br />

2. Understand the imaging appearance <strong>of</strong> common musculoskeletal lesions.<br />

3. Understand what imaging findings require referral to an orthopaedic oncologist.<br />

I. Introduction<br />

Carol D. Morris, MD, New York, NY<br />

II. Basics <strong>of</strong> MRI Interpretation<br />

David Panicek, MD, New York, NY<br />

III. Extremity Bone Tumors<br />

Theodore W. Parsons, MD, Detroit, MI<br />

IV. Extremity S<strong>of</strong>t Tissue Tumors<br />

Carol D. Morris, MD, New York, NY<br />

V. Spine Tumors<br />

Joseph H. Schwab, MD, Boston, MD<br />

VI. Discussion, Questions and Answers<br />

All Faculty


439<br />

imagiNg iN muSCuloSkeletal tumorS:<br />

baSiCS oF mri iNterpretatioN<br />

David M. Panicek, MD<br />

Learning Objectives<br />

• Review factors that affect the MRI appearance <strong>of</strong><br />

musculoskeletal tumors<br />

• Illustrate an approach to characterizing musculoskeletal tumors<br />

at MRI<br />

• Describe some MRI pitfalls<br />

Various extrinsic and intrinsic factors affect the appearance <strong>of</strong><br />

musculoskeletal tumors at MRI.<br />

Extrinsic factors<br />

The most important extrinsic factor affecting the appearance <strong>of</strong> a<br />

tumor is the particular MR pulse sequence selected. A pulse sequence<br />

represents the physical means by which protons in the patient are<br />

interrogated to produce images that emphasize various properties<br />

<strong>of</strong> each <strong>of</strong> the different tissues present. Pulse sequences can be<br />

considered as being loosely analogous to the various stains used by<br />

pathologists; each has a different purpose. The two major classes <strong>of</strong><br />

pulse sequences are spin echo and gradient echo.<br />

T1-weighted spin-echo images are <strong>of</strong>ten described as “anatomy”<br />

images, as they depict normal structures with fine detail. T1weighted<br />

images are critical in demonstrating bone tumors against<br />

a background <strong>of</strong> fatty marrow, distinguishing normal marrow and<br />

tumor, and showing the presence <strong>of</strong> fat or hemorrhage within a<br />

mass. T2-weighted sequences, also referred to as fluid-sensitive<br />

sequences, produce “pathology” images. Fat suppression is essential<br />

with T2-weighted images to distinguish tumor from surrounding<br />

marrow edema and fatty marrow, all <strong>of</strong> which otherwise can show<br />

high signal.<br />

Proton density images, although widely used in imaging <strong>of</strong> trauma<br />

and internal derangement, are <strong>of</strong> limited utility in musculoskeletal<br />

tumor imaging because the signal intensities <strong>of</strong> tumor, edema,<br />

and surrounding normal fatty marrow are <strong>of</strong>ten similar, thereby<br />

decreasing the conspicuity <strong>of</strong> the lesion.<br />

STIR(shorttauinversionrecovery)images,aform<strong>of</strong>spinechoimages,<br />

exhibit uniform fat suppression across the entire image, but are not<br />

recommended for characterization or staging <strong>of</strong> musculoskeletal<br />

tumors. Many lesions appear similarly bright on STIR sequences,<br />

limiting characterization; and the actual extent <strong>of</strong> tumor spread<br />

is <strong>of</strong>ten overestimated due to signal from even minimal amounts<br />

<strong>of</strong> peritumoral edema. STIR sequences are useful, however, in the<br />

presence <strong>of</strong> metallic hardware, as they produce fat-suppressed, fluidsensitive<br />

images that are much less prone to metallic artifacts.<br />

Pre- and post-gadolinium fat-saturated T1-weighted spin-echo<br />

images frequently are helpful in tumor assessment. The presence<br />

<strong>of</strong> enhancement within a lesion indicates that the lesion is not a<br />

cyst, but generally does not distinguish benign from malignant<br />

etiologies. Enhancement may increase the conspicuity <strong>of</strong> a small<br />

tumor recurrence within a background <strong>of</strong> post-treatment changes.<br />

Gradient-echo images can be obtained more quickly than most<br />

spin-echo images, but provide different tissue contrast. In tumor<br />

imaging, gradient-echo images obtained with long echo times (TEs)<br />

are utilized to assess for regions <strong>of</strong> very low signal that appear larger<br />

than on other sequences; this finding, called “blooming,” indicates<br />

the presence <strong>of</strong> metal (such as iron in hemosiderin) and allows the<br />

differential diagnosis to be narrowed considerably. Assessment <strong>of</strong><br />

pigmented villonodular synovitis/giant cell tumor <strong>of</strong> the tendon<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

sheath should include long-TE gradient-echo images. Flow-sensitive<br />

gradient-echo images can be used to assess for narrowing or<br />

thrombosis <strong>of</strong> vessels.<br />

An MR image usually includes a printed series descriptor that names<br />

the particular pulse sequence used (unless this option is turned<br />

<strong>of</strong>f by the person displaying the image). If such a descriptor is not<br />

included in an image, the type <strong>of</strong> spin-echo pulse sequence usually<br />

can be inferred from the combination <strong>of</strong> TR (repetition time), TE<br />

(echo time), and for STIR, TI (inversion time) printed on the image.<br />

Some typical ranges for these parameters at 1.5 Tesla are as follows:<br />

TR (msec) TE (msec) TI (msec)<br />

T1-weighted 400-700 9-15 -<br />

T2-weighted 2000-6000 60-120 -<br />

Proton density 1800-5000 10-30 -<br />

STIR 2000-6000 20-50 140-160<br />

The selection <strong>of</strong> various pulse sequences, imaging planes, gadolinium<br />

contrast, slice thickness, and other scan parameters for a particular<br />

patient constitutes the scan protocol, which is tailored by the<br />

radiologist to optimally answer the questions posed by the referring<br />

physician. The more specific the question(s) posed in the MRI<br />

request, the greater the likelihood <strong>of</strong> receiving the correct answer(s).<br />

Intrinsic factors<br />

The key intrinsic factors that affect the appearance <strong>of</strong> tumors at MRI<br />

are the chemical and tissue compositions <strong>of</strong> the tumor. MRI has<br />

excellent ability to identify various chemicals, such as methemoglobin,<br />

hemosiderin, and water. Similarly, MRI excels in demonstrating the<br />

presence <strong>of</strong> fat (both macroscopic and microscopic), and <strong>of</strong>ten can<br />

demonstrate the presence <strong>of</strong> collagen or myxoid matrix within a<br />

lesion.<br />

Approach to characterizing s<strong>of</strong>t tissue masses at MRI<br />

Characterization <strong>of</strong> s<strong>of</strong>t tissue masses in the musculoskeletal system<br />

as benign or malignant <strong>of</strong>ten will be incorrect if one relies solely<br />

on traditional imaging features such as sharpness <strong>of</strong> the margin,<br />

presence <strong>of</strong> local invasion, large size, and internal homogeneity<br />

<strong>of</strong> the lesion. However, if a s<strong>of</strong>t tissue mass demonstrates certain<br />

characteristic imaging features, a specific diagnosis frequently can be<br />

made (e.g., cyst, ganglion, lipoma, fat necrosis, giant cell tumor <strong>of</strong><br />

tendon sheath, hemangioma, desmoid/fibromatosis, benign nerve<br />

sheath tumor, subacute hematoma, elast<strong>of</strong>ibroma). Lacking such<br />

characteristic imaging features, the possibility <strong>of</strong> malignancy should<br />

not be dismissed.<br />

A specific diagnosis can <strong>of</strong>ten be suggested based on the basis <strong>of</strong><br />

the chemical composition <strong>of</strong> the lesion (e.g., water, hemosiderin,<br />

methemoglobin) and/or its tissue composition (e.g., fat, collagen,<br />

myxoid matrix).<br />

Malignant lesions that are prone to being misinterpreted as benign<br />

include those sarcomas that are predominantly cystic, hemorrhagic,<br />

or myxoid. Extensive cystic change or hemorrhage within a sarcoma<br />

may overshadow the solid tumor elements present. Solid elements<br />

must be carefully sought and viewed as suspicious for cancer until<br />

proven otherwise; gadolinium-enhanced imaging is essential in this<br />

assessment.


Myxoid liposarcoma also may look deceptively cyst-like on standard<br />

T1-weighted and T2-weighted MR images. The presence <strong>of</strong> subtle<br />

fatty streaks within the lesion may be a clue to the correct diagnosis<br />

<strong>of</strong> myxoid liposarcoma. Even more importantly, enhancement<br />

within the lesion — ranging from fine and lacy to intense and<br />

coalescent — is typically evident after intravenous contrast material<br />

administration, and is an invaluable finding to prevent misdiagnosis<br />

<strong>of</strong> myxoid liposarcoma as a ganglion or other cyst.<br />

Another specific type <strong>of</strong> myxoid sarcoma, myx<strong>of</strong>ibrosarcoma, is<br />

increasingly recognized by pathologists as one <strong>of</strong> the most common<br />

fibrous sarcomas <strong>of</strong> the extremities in the elderly. This tumor, even<br />

early on, has an unusual, infiltrative growth pattern along fascial<br />

and vascular planes, resulting in wispy streaks or “tails” <strong>of</strong> edemalike<br />

signal that extend for considerable distances from the primary<br />

sarcoma. These tails represent tumor; due to this atypical growth<br />

pattern, even low-grade myx<strong>of</strong>ibrosarcoma tends to recur relentlessly,<br />

with subsequent recurrences being <strong>of</strong> higher grade.<br />

Approach to characterizing bone tumors at MRI<br />

Radiographs remain critical in the characterization <strong>of</strong> many bone<br />

lesions, and should not be neglected in the initial evaluation.<br />

The first task at MRI is to avoid misinterpreting normal marrow<br />

as tumor. Normal marrow in adults may appear heterogeneous<br />

at MRI, particularly in the pelvis, due to mixing <strong>of</strong> red and yellow<br />

marrow. Fat is present normally in both red and yellow marrow,<br />

being much more abundant in the latter. Features suggesting red<br />

marrow include a feathery appearance on T1-weighted images, and<br />

frequently a relatively symmetrical distribution. Red marrow shows<br />

signal intensity higher than that <strong>of</strong> muscle on T1weighted images.<br />

Bone tumors (primary or metastatic) replace the normal marrow,<br />

and typically show signal similar to that <strong>of</strong> muscle on T1-weighted<br />

images. Most bone tumors show sharply defined boundaries with<br />

normal marrow at MRI; this sharpness should not be misinterpreted<br />

as representing a narrow zone <strong>of</strong> transition, a criterion only applicable<br />

to radiographs.<br />

MRI generally does not depict calcifications unless they are large<br />

or very dense, limiting the utility <strong>of</strong> MRI in characterizing calcified<br />

tumor matrix.<br />

On fat-suppressed T2-weighted images, hyaline cartilage lesions<br />

(enchondroma, low-grade chondrosarcoma) <strong>of</strong>ten can be identified<br />

due to the presence <strong>of</strong> multiple small lobules with very high<br />

signal intensity (due to the high water content <strong>of</strong> hyaline cartilage<br />

lobules).<br />

440<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

Blood-fluid (fluid-fluid) levels have been reported in a wide range<br />

<strong>of</strong> s<strong>of</strong>t tissue and bone tumors, benign and malignant. A bone<br />

lesion composed solely <strong>of</strong> blood-fluid levels is consistent with an<br />

aneurysmal bone cyst. If thick septa or s<strong>of</strong>t tissue nodules are present<br />

as well, other diagnoses must be considered, such as telangiectatic<br />

osteogenic sarcoma, or a secondary aneurysmal bone cyst engrafted<br />

on another bone tumor. Gadolinium-enhanced images are useful<br />

in assessing for s<strong>of</strong>t tissue elements within an otherwise cystic bone<br />

lesion.<br />

The presence <strong>of</strong> flow voids (curvilinear black regions representing<br />

small, high-flow vessels) within a bone lesion at MRI suggests the<br />

lesion is a metastasis from a primary renal cancer.<br />

Lytic bone metastases generally show moderately increased signal<br />

throughout on fat-suppressed T2-weighted images, whereas blastic<br />

lesions <strong>of</strong>ten show such signal only in a peripheral rim (“halo”).<br />

This “halo,” when present, can be particularly helpful in diagnosing<br />

a blastic metastasis, which otherwise generally shows low signal on<br />

all pulse sequences.<br />

The differential diagnosis for benign bone lesions surrounded by<br />

extensive marrow edema includes osteoid osteoma/osteoblastoma,<br />

chondroblastoma, Langerhans cell histiocytosis, and osteomyelitis.<br />

As a general (but not absolute) guideline, the greater the extent<br />

<strong>of</strong> surrounding marrow edema, the more likely the bone lesion is<br />

benign. Marrow edema may be present around malignant bone<br />

tumors, as well, in which case it constitutes the reactive zone <strong>of</strong> the<br />

tumor.<br />

Calcific tendinitis can produce erosions in subjacent bone and an<br />

associated marrow edema pattern. Recognition <strong>of</strong> the overlying<br />

tendinous abnormality will help prevent misinterpretation <strong>of</strong> the<br />

subjacent bony changes as a metastasis.<br />

After chemotherapy and/or radiotherapy, CT and MRI may produce<br />

seemingly incongruous results for a bone tumor: CT may show<br />

persistent lytic and/or blastic changes while MRI shows normal fatty<br />

marrow in the same region. This apparent inconsistency results from<br />

the fact that the two imaging modalities demonstrate fundamentally<br />

different tissues. The CT findings are due to the secondary changes<br />

induced in trabecular and cortical bone <strong>of</strong> the host, whereas the MRI<br />

findings are due to signal from the tumor itself replacing marrow<br />

and from the surrounding marrow. In other words, MRI directly<br />

demonstrates tumor in the marrow, and CT only shows secondary<br />

bony effects <strong>of</strong> the tumor. Those secondary changes at CT may<br />

persist for months or even years despite, after successful therapy,<br />

reconstitution <strong>of</strong> fatty marrow in the region formerly occupied by<br />

the tumor.


The ability to interpret lesions <strong>of</strong> bone utilizing plain radiographs<br />

generally stems from one <strong>of</strong> two approaches:<br />

1. The “Aunt Minnie” approach as espoused by Dr. William<br />

Enneking. This is a general recognition <strong>of</strong> a certain pattern or<br />

appearance on radiographs, and given enough experience or<br />

exposure to large volumes <strong>of</strong> lesions, is generally quite accurate.<br />

(“I know my Aunt Minnie and I recognize her when I see her” is<br />

the analogy).<br />

2. The biologic approach, as refined by Dr. Gwilym Lodwick. This<br />

provides for some understanding <strong>of</strong> the biologic behavior <strong>of</strong><br />

the lesion, and the biologic response <strong>of</strong> the bone. This method<br />

<strong>of</strong> interpretation is not so dependent on experience, but<br />

rather allows for the development <strong>of</strong> a differential diagnosis<br />

based upon an understanding <strong>of</strong> why an image has a certain<br />

appearance.<br />

In reality, a combination <strong>of</strong> the two approaches is ideal, and generally<br />

allows for the establishment <strong>of</strong> a reasonably accurate diagnosis based<br />

upon plain radiographs <strong>of</strong> bone. Clearly the more experienced the<br />

observer, the more comfortable he/she becomes in understanding<br />

and recognizing bone lesions. Several Key points should be kept in<br />

mind:<br />

• Plain Radiographs are the GOLD STANDARD when it comes to<br />

establishing the diagnosis <strong>of</strong> bone lesions. While other imaging<br />

modalities are extremely helpful, and aid in the diagnosis, they<br />

should never supplant good quality, bi-planar radiographs.<br />

• Lodwick Classification (biologic behavior, zone <strong>of</strong> transition)<br />

helps determine the lesional activity and the bone’s response<br />

to the presence <strong>of</strong> the lesion, if any. This classification is<br />

essentially:<br />

— Type I: Geographic Lesion<br />

IA: sclerotic margins<br />

IB: Well defined Margins<br />

IC: Poorly defined margins<br />

— Type II: Moth Eaten Lesion (confluence <strong>of</strong> small lytic areas in<br />

bone)<br />

— Type III: Permeative Lesion (diffuse, tend to preserve outline<br />

<strong>of</strong> the bone but show diffuse destruction)<br />

Generally, the increasing type corresponds with an increasing<br />

aggressiveness <strong>of</strong> the lesion. Type I lesions, particularly when well<br />

marginated, tend to be more indolent in nature. For example, a Nonossifying<br />

Fibroma, a common metaphyseal lesion with a sclerotic<br />

margin, is a great example <strong>of</strong> a type IA lesion. Myeloma, with its<br />

focal destructive confluence, but lacking margination, is a common<br />

example <strong>of</strong> a type II lesion. Classic high grade Osteosarcoma, with<br />

its aggressive and diffuse presentation, is a common example <strong>of</strong> a<br />

type III lesion.<br />

• Dr. Henry Mankin’s “Big Four” can help identify malignant vs.<br />

benign lesions based on four radiographic observations. This is<br />

another example <strong>of</strong> how understanding the biologic activity <strong>of</strong> a<br />

lesion can aid in the diagnosis.<br />

— Size <strong>of</strong> the lesion (big is bad, small is good)<br />

— Cortical destruction (present or not?)<br />

— Presence or absence <strong>of</strong> margination (zone <strong>of</strong> transition).<br />

— Presence or absence <strong>of</strong> a s<strong>of</strong>t tissue mass.<br />

A large lesion with all these characteristics is likely to be aggressive,<br />

whereas a small lesion that lacks most <strong>of</strong> these findings is more<br />

likely benign. Note that there are exceptions! Infection may have<br />

441<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

eXtremity boNe tumorS<br />

Theodore W. Parsons III, MD, FACS<br />

aggressive features (but is ‘benign’), while some metastatic lesions<br />

may look indolent (but are malignant)! Some benign lesions (giant<br />

cell tumor, chondroblastoma, aneurysmal bone cyst) may have<br />

aggressive features!<br />

• Location <strong>of</strong> the lesion helps establish the diagnosis. For<br />

example:<br />

— Chondroblastoma and giant cell tumor typically occur in the<br />

epiphyses or apophyses <strong>of</strong> long bones<br />

— Oste<strong>of</strong>ibrous dysplasia and adamantinoma are classically<br />

tibial lesions<br />

— Nonossifying fibroma is eccentric and cortically based, and<br />

occurs in the metaphysis <strong>of</strong> long bones (typically in the<br />

lower extremity)<br />

— Simple bone cysts are centrally located, <strong>of</strong>ten in the proximal<br />

humerus or femur<br />

• Age <strong>of</strong> the patient is helpful in establishing the diagnosis.<br />

Certain tumors have a predilection for certain age groups. While<br />

there are always exceptions to the rule, this is another useful<br />

tool. For example:<br />

— Simple bone cysts, non-ossifying fibromas,<br />

chondroblastomas, Ewings sarcomas are seen in older<br />

children and teenagers<br />

— Multiple myeloma, chondrosarcoma, metastatic carcinoma<br />

are seen in older adults<br />

• Matrix mineralization within a lesion is a helpful diagnostic<br />

clue:<br />

— Stippled, “popcorn”, or “rings and arcs” calcifications<br />

indicate a chondroid tumor<br />

— Amorphous, “cloudlike” mineralization is typical <strong>of</strong><br />

osteosarcoma or blastic metastases such as prostate<br />

carcinoma<br />

— Fibrous dysplasia typically demonstrates a “ground-glass”<br />

appearance<br />

— Bone infarcts <strong>of</strong>ten reveal a swirling, “smoke up the chimney”<br />

mineralized pattern<br />

After the evaluation <strong>of</strong> plain films, additional imaging studies may<br />

be helpful in clarifying the diagnosis. In general, these include the<br />

following:<br />

• Bone scintigraphy is particularly useful in determining whether<br />

a bone lesion is active or indolent (with a few exceptions).<br />

Slowly growing or inactive lesions typically demonstrate<br />

minimal radiopharmaceutical uptake, whereas active lesions,<br />

both benign and malignant, typically demonstrate intense<br />

radiopharmaceutical uptake. [Remember that the uptake<br />

represents the bone’s response to the presence <strong>of</strong> the lesion!]<br />

— Transition from a previously mild uptake to intense uptake<br />

in a known lesion is generally an ominous sign (malignant<br />

transformation).<br />

— Provides sensitive screening for metastatic disease<br />

– Note that renal cell, myeloma, thyroid carcinoma, may<br />

show little uptake…do not completely rely upon bone<br />

scan in these cases!<br />

— Helpful in identification <strong>of</strong> radiographically occult lesions<br />

— Computed Tomography (CT) is particularly useful at<br />

identification <strong>of</strong> mineral density in subtle lesions, or<br />

identification <strong>of</strong> cortical integrity<br />

— Differentiation <strong>of</strong> chondrogenic (calcifications) from<br />

osteogenic (cloudlike bone formation) lesions<br />

— Visualizing faint calcifications in liposarcomas or synovial


442<br />

sarcomas<br />

— CT is helpful in evaluating axial skeletal lesions (pelvis,<br />

spine) where the bony anatomy is complex<br />

— Remains the modality <strong>of</strong> choice for pelvic/abdominal<br />

adenopathy<br />

— Useful for planning/conducting biopsies <strong>of</strong> lesions or RF<br />

ablation<br />

— For evaluating primary source in metastatic lesions to bone<br />

- CT <strong>of</strong> chest, abdomen, pelvis as screening imaging<br />

— Magnetic Resonance Imaging (MRI) MRI is an excellent<br />

modality for obtaining fine detail in most lesions, and is<br />

an excellent tool in identifying anatomic involvement and<br />

extent <strong>of</strong> lesional boundaries. Here are a few simple keys<br />

useful in this modality:<br />

— T1 weighted images are best for evaluation <strong>of</strong> bone marrow<br />

– Marrow replacement from tumor or infection tends to be<br />

at least as dark as adjacent muscle<br />

— T1 weighted images are typically only bright from the<br />

following:<br />

– Fat, met hemoglobin, gadolinium, proteinaceous fluid,<br />

melanin, and particulate calcium<br />

– Reduced venous flow, surgical packing or hemostatic<br />

agents may also be bright in the post-op MRI on T1<br />

weighted images (generally seen in post-operative<br />

patients)<br />

— T2 weighted images reflect free water, and clearly identify<br />

most tumors, cystic lesions, joint or synovial fluid, and<br />

edema<br />

– Densely fibrous lesions may be low on T1 and T2 images<br />

— Fluid-fluid (layering <strong>of</strong> different density material) levels<br />

are common in aneurysmal bone cyst, telangiectatic<br />

osteosarcoma, and synovial sarcoma.<br />

– Other lesions (simple cyst with bleed, chondroblastoma,<br />

giant cell tumor, even fibrous dysplasia may reveal fluidfluid<br />

levels).<br />

— Gadolinium T1 weighted images reveal hyperemia <strong>of</strong> tissues,<br />

and may “overcall” tissue involvement by tumor.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

– “Rim enhancement” around a lesion is common with<br />

cystic lesions, rarely with centrally necrotic lesions<br />

Gradient Echo images may be used to confirm the presence <strong>of</strong> subtle<br />

calcification or chronic blood products (e.g. pigmented villonodular<br />

synovitis), due to its sensitivity to signal loss from these tissues<br />

(“bloom artifact”)<br />

Putting it all together in the clinical setting: When confronted<br />

with the lesion <strong>of</strong> bone, the diagnosis develops as the result <strong>of</strong> a<br />

confluence <strong>of</strong> information that the surgeon should obtain as part <strong>of</strong><br />

the “work up”. Following this simple pattern, and utilizing the ‘keys’<br />

noted above, typically results in an appropriate differential diagnosis,<br />

which in turn facilitates appropriate care for these patients. Referral<br />

to a musculoskeletal oncologist, in cases <strong>of</strong> suspected primary<br />

malignancy, or in cases <strong>of</strong> uncertainty, is generally a wise choice.<br />

1. Take a careful history from the patient. Pay attention to pain<br />

patterns, constitutional symptoms, family history, rapidity <strong>of</strong><br />

symptom onset, etc.<br />

2. Physical examination <strong>of</strong> the involved area. Remember to look<br />

for regional adenopathy, and look for potential masses in the<br />

paired organs (breast, thyroid, etc)<br />

3. Order appropriate lab studies, including CBC, SPEP/UPEP,<br />

Thyroid function, PSA, UA, chem panel, etc.<br />

4. Obtain appropriate radiographs to analyze the lesion and its<br />

appearance as noted in the discussion above.<br />

5. Consider other supporting studies as indicated: Bone Scan, CT,<br />

MRI, etc. This additional information may be very helpful.<br />

Remember that XR/CT <strong>of</strong> the lungs, or screening CT <strong>of</strong> chest/<br />

abdomen/pelvis may be necessary.<br />

6. Finally, tissue diagnosis may be necessary in the lesion that is<br />

aggressive, or whose diagnosis is not clear on imaging. While<br />

the general orthopaedic surgeon may feel comfortable dealing<br />

with metastatic carcinoma, most other biopsies <strong>of</strong> aggressive<br />

lesions should be done under the direction <strong>of</strong> a musculoskeletal<br />

oncologist.


• Demographics<br />

— Benign s<strong>of</strong>t tissue tumors<br />

– 300 per 100,000<br />

– >60 different types <strong>of</strong> benign masses<br />

— S<strong>of</strong>t tissue sarcomas<br />

– 1.4 per 100,000<br />

ª 8 per 100,00 in persons >80 yo<br />

• Physical Examination is key for generating a differential<br />

diagnosis<br />

Clinical presentation <strong>of</strong> extremity s<strong>of</strong>t tissue masses<br />

Benign Malignant Comments<br />

Pain Rare Rare<br />

Uncommon in the absence <strong>of</strong><br />

nerve or bone invasion<br />

Size 5cm<br />

Location<br />

443<br />

Superficial<br />

(subcutaneous)<br />

Mobility Mobile Fixed<br />

Consistency S<strong>of</strong>t Firm<br />

Growth Stable Enlarging<br />

eXtremity SoFt tiSSue tumorS<br />

Carol D. Morris, MD, MS<br />

deep to fascia 2/3 <strong>of</strong> STS are deep<br />

Synovial sarcoma and clear cell<br />

sarcoma can be notoriously slow<br />

growing<br />

• Imaging modalities<br />

— X-ray<br />

– Useful for looking at mineralization pattern<br />

– Identifies bone involvement<br />

— MRI<br />

– By far the most useful diagnostic tool for s<strong>of</strong>t tissue<br />

masses<br />

– Excellent definition <strong>of</strong> size and boundaries<br />

– Gadolinium helpful for distinguishing cystic vs. solid<br />

masses<br />

ANY HERTEROGENOUS, DEEP, >5CM MASS IS A MALIGNANCY<br />

UNTIL PROVEN OTHERWISE!<br />

— CT scan<br />

– Indicated in patients in whom MRI is incompatible<br />

– Best results with contrast<br />

– Excellent for characterizing mineralization pattern<br />

– i.e. peripheral mineralization as seen in myositis<br />

ossificans<br />

— Ultrasound<br />

– Helpful for distinguishing cystic vs. solid masses<br />

• Common Benign S<strong>of</strong>t Tissue Tumors<br />

— Elast<strong>of</strong>ibroma<br />

– Almost exclusively subscapular in location<br />

— Desmoid<br />

– Iso- to hypo-intense on T1<br />

– Infiltrative pattern, ill-defined borders on MRI<br />

— Myxoma<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

– Homogenous signal which is hypointense on T1 and<br />

bright on T2 <strong>of</strong>ten with associated peritumoral edema<br />

— Lipoma<br />

– Should have the same appearance as subcutaneous fat on<br />

ALL MRI sequences<br />

– No enhancement<br />

— Hemangioma<br />

– Plain x-ray helpful for identifying phleboliths<br />

– MRI with classic serpentine pattern, heterogenous signal<br />

intermixed with fat<br />

— Giant cell tumor <strong>of</strong> tendon sheath<br />

– Hypointense on both T1 and T2 weighted images<br />

– 20% with bone involvement<br />

— Schwannoma<br />

— Neur<strong>of</strong>ibroma<br />

– Tail sign on coronal or sagittal MRI images<br />

– Target sign on axial MRI images<br />

• Common s<strong>of</strong>t tissue malignancies<br />

— Liposarcoma<br />

– Most common STS in late adulthood<br />

– Low grade liposarcomas tend to have remnants <strong>of</strong> typical<br />

fat signal on MRI<br />

– High grade liposarcoma may not have any signal<br />

characteristics c/w fat<br />

— MFH<br />

— Synovial sarcoma<br />

– Vast majority are peri-articular with the knee being the<br />

common site<br />

– Peak age 20-40 yo<br />

– 20% demonstrate calcifications on imaging<br />

— Fibrosarcoma/Myx<strong>of</strong>ibrosarcoma<br />

– Extensive edema-like high signal along fascial planes<br />

— Leiomyosarcoma<br />

— Malignant peripheral nerve sheath tumor<br />

– >50% arise in patients with neur<strong>of</strong>ibromatosis-1<br />

– May see the tail <strong>of</strong> a nerve entering or exiting the mass<br />

— Rhabdomyosarcoma<br />

– Most common STS in children less than 10 yo<br />

— Angiosarcoma<br />

– Can be confused with chronic hematoma<br />

— Epithelioid sarcoma<br />

– Most common STS in the hand<br />

— Extraskeletal osteogenic sarcoma<br />

– Typically presents with mineralization in the s<strong>of</strong>t tissues<br />

– Rare compared to skeletal osteogenic sarcoma<br />

— Ewing’s /PNET<br />

– More common in adults where as bony Ewing’s is more<br />

common in children<br />

— Alveolar s<strong>of</strong>t-part sarcoma<br />

— Others (non-sarcomas)<br />

– Lymphoma<br />

– Melanoma<br />

– Metastatic disease


1. Pseuodotumor Conditions <strong>of</strong> the Vertebrae<br />

Degenerative Conditons <strong>of</strong> the Spine<br />

• Schmorl’s Nodes and other common non-malignant<br />

conditions <strong>of</strong> the spine<br />

Hamartomas and Failures <strong>of</strong> Involution<br />

• Hemangiomas and Notochordal Rests<br />

Paget’s Disease and other metabolic pseudotumors <strong>of</strong> the<br />

vertebrae<br />

REFERENCES<br />

1. Hwang S, Panicek DM. Magnetic resonance imaging <strong>of</strong> bone marrow in<br />

oncology, Part 1. Skeletal Radiol 2007; 36:913-920.<br />

2. Hwang S, Panicek DM. Magnetic resonance imaging <strong>of</strong> bone marrow in<br />

oncology, Part 2. Skeletal Radiol 2007; 36:1017-1027.<br />

3. Hwang S, Panicek DM. Magnetic Resonance Imaging. In: Davies AM,<br />

Sundaram M, James SJ (eds). Imaging <strong>of</strong> Bone Tumors: Techniques and<br />

Applications. Springer-Verlag, 2009, pp 31-52.<br />

4. James SL, Panicek DM, Davies AM. Bone marrow oedema associated with<br />

benign and malignant bone tumours. Eur J Radiol 2008; 67:11-21.<br />

5. James SLJ, Hughes RJ, Ali KE, Saifuddin A. MRI <strong>of</strong> bone marrow oedema<br />

associated with focal bone lesions. Clinical Radiology 2006; 61:1003-1009.<br />

6. May DA, Good RB, Smith DK, Parsons TW. MR imaging <strong>of</strong> musculoskeletal<br />

tumors and tumor mimickers with intravenous gadolinium: experience with<br />

242 patients. Skeletal Radiol 1997; 26:2-15.<br />

7. Moulton JS, Blebea JS, Dunco DM, Braley SE, Bisset GS 3rd, Emery KH. MR<br />

imaging <strong>of</strong> s<strong>of</strong>t-tissue masses: diagnostic efficacy and value <strong>of</strong> distinguishing<br />

between benign and malignant lesions. AJR 1995; 164:1191-1199.<br />

8. O’Donnell P, Saifuddin A. The prevalence and diagnostic significance <strong>of</strong><br />

fluid-fluid levels in focal lesions <strong>of</strong> bone. Skeletal Radiol 2004; 33:330-336.<br />

9. Schweitzer ME, Levine C, Mitchell DG, Gannon FH, Gomella LG. Bull’s-eyes<br />

and halos: useful MR discriminators <strong>of</strong> osseous metastases. Radiology 1993;<br />

188:249-252.<br />

10. Vanel D, Bittoun J, Tardivon A. MRI <strong>of</strong> bone metastases. Eur Radiol 1998; 8:<br />

1345-1351.<br />

11. Parsons TW, Frink SJ, Campbell SE. Musculoskeletal neoplasia: helping the<br />

orthopaedic surgeon establish the diagnosis. Semin Musculoskelet Radiol<br />

2007;11:3-15.<br />

444<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

SympoSia TUMOR<br />

SpiNe<br />

Joseph Schwab, MD<br />

2. Benign Tumors <strong>of</strong> the Vertebrae<br />

Imaging Features unique to the spine<br />

3. Malignant Tumors <strong>of</strong> the Vertebrae<br />

4. Metastatic Tumors <strong>of</strong> the Vertebrae<br />

Metastatic carcinoma<br />

Myeloid malignancies<br />

12. Sanders TG, Parsons TW. Radiographic imaging <strong>of</strong> musculoskeletal neoplasia.<br />

Cancer Control 2001;8:221–231.<br />

13. Parsons TW, Filzen, TW. Evaluation and Staging <strong>of</strong> Musculoskeletal<br />

Neoplasia. Hand Clinics 2004; 20(2): 137-145.<br />

14. Ward WG. <strong>Orthopaedic</strong> oncology for the non-oncologist orthopaedist:<br />

introduction and common errors to avoid. In: Zuckerman JD, editor.<br />

Instructional course lectures, vol. 48. Rosemont: <strong>American</strong> <strong>Academy</strong> <strong>of</strong><br />

<strong>Orthopaedic</strong> Surgeons; 1999: 577-86.<br />

15. Frassica FJ, Weber KL. Evaluation and Staging <strong>of</strong> Benign Bone Tumors. In:<br />

Schwartz HS, editor. <strong>Orthopaedic</strong> Knowledge Update: Musculoskeletal<br />

Tumors 2. Rosemont: <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons; 2007:<br />

75-80.<br />

16. Rougraff BT. Imaging <strong>of</strong> Musculoskeletal Lesions. In: Schwartz HS, editor.<br />

<strong>Orthopaedic</strong> Knowledge Update: Musculoskeletal Tumors 2. Rosemont:<br />

<strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons; 2007: 23-29.<br />

17. Singh K, Singh K, Helms CA, An HS: Musculoskeletal Imaging. In:<br />

Fischgrund JS, editor. <strong>Orthopaedic</strong> Knowledge Update 9. Rosemont:<br />

<strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons; 2008: 89-103.<br />

18. Lodwick GS, et al Determining growth rates <strong>of</strong> focal lesions <strong>of</strong> bone from<br />

radiographs. Radiology 1980;(134): 577<br />

19. Madewell JE, et al Radiologic and pathologic analysis <strong>of</strong> solitary bone<br />

lesions. Radiol Clin North Am 1981;(19): 585<br />

20. Weber KL: Evaluation <strong>of</strong> the Adult Patient with a Destructive Bone Lesion<br />

(40-80+ years). Journal <strong>of</strong> the <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgeons<br />

(JAAOS), 18:169-179, 2010.<br />

21. Weber KL, Peabody T, Frassica FJ, Mott, MP, Parsons TW: Tumors for the<br />

General Orthopaedist: How to Save Your Patients and Practice. Instructional<br />

Course Lecture Series 59:579-91, 2010.


PAPERS<br />

445<br />

adult reconstruction hiP<br />

pApeR No. 031<br />

Hip Resurfacing Arthroplasty in Patients with Varus<br />

Deformity <strong>of</strong> the Femoral Neck-Shaft Angle<br />

Graeme S Carlile, MBChB, MRCS, Tavistock, United Kingdom<br />

Christopher Wakeling, MBChB, MRCS<br />

Mark Norton, MD, Truro, Cornwall, Uk, United Kingdom<br />

Edwin Darren Fern, MBChB, Truro, Cornwall, United Kingdom<br />

Hip resurfacing arthroplasty (HRA) in patients with a varus deformity<br />

<strong>of</strong> the femoral neck-shaft angle (NSA) is associated with poorer<br />

outcomes. Our experience has not reflected this. We examined the<br />

Oxford Hip Scores (OHS), Harris Hip Scores (HHS) and outcomes<br />

<strong>of</strong> patients with varus hips against a normal cohort to ascertain any<br />

significant difference. We identified 179 patients. Measurement <strong>of</strong><br />

the femoral neck-shaft angle was undertaken from antero-posterior<br />

radiographs pre-operatively. The mean NSA was 128.5 degrees (SD<br />

6.3). Patients with a NSA <strong>of</strong> less than 122.2 were deemed varus<br />

and those above 134.8 valgus. These parameters were consistent<br />

with published anatomical studies. The varus cohort consisted <strong>of</strong><br />

23 patients, mean NSA 118.7 (range 113.6-121.5), mean follow up<br />

49 months (range 13-74). Mean OHS and HHS were 16 and 93.5<br />

respectively. Complications included two cases <strong>of</strong> trochanteric nonunion;<br />

no femoral neck fractures, early failures or revisions. Normal<br />

cohort consisted <strong>of</strong> 125 patients, mean NSA 128 degrees, mean<br />

follow up 41 months (range 6-76). The OHS and HSS were 18.8,<br />

88.9 respectively. Complications included five trochanteric nonunions<br />

and one revision due to an acetabular fracture following a<br />

fall. Statistical analysis demonstrated no statistical difference between<br />

the cohorts OHS (p=0.583) or HHS (p=0.139). Our experience in<br />

patients with a varus femoral neck has been positive. Our analysis<br />

has demonstrated no statistical difference in hip scores between the<br />

cohorts. We have not yet experienced any femoral neck fractures,<br />

which we believe is due to the use <strong>of</strong> the Ganz trochanteric flip and<br />

preservation <strong>of</strong> blood supply.<br />

pApeR No. 032<br />

Neck Narrowing In Hip Resurfacing Is Associated With<br />

Wear<br />

George A Grammatopoulos, MRCS, Oxford, United Kingdom<br />

David Langton, Gateshead, United Kingdom<br />

Katrien Backers, PhD, Ghent, Belgium<br />

Hemant G Pandit, FRCS, Oxford, United Kingdom<br />

Adrian Taylor, MD, Oxford, United Kingdom<br />

Sion Glyn-Jones, MA MBBS, Oxford, United Kingdom<br />

Koen Aime DeSmet, MD, Gent, Belgium<br />

David W Murray, MD, Oxford, United Kingdom<br />

Richie H S Gill, MD, Oxford, United Kingdom<br />

Neck narrowing (NN) following Metal-on-Metal-Hip-Resurfacing-<br />

Arthroplasty (MoMHRA) is a recognized phenomenon that has been<br />

reported to exceed 10% in up to 27% <strong>of</strong> cases. It is more prevalent<br />

among females and patients with small components. NN is thought<br />

to occur secondary to a number <strong>of</strong> processes. MoMHRA wear can<br />

be measured in-vivo by measuring metal ions in blood. Our aim<br />

was to establish whether NN is associated with increased wear. A<br />

cohort <strong>of</strong> 214 patients with unilateral MoMHRA (139M:79F) was<br />

studied. All patients had Prosthesis-Junction-Ratio (PJR) measured<br />

postoperatively (PJRpost) and at latest follow up (PJRfollow)<br />

(4.3yrs, SD:1.9). For a subset <strong>of</strong> 53 patients (30M:23F), consecutive<br />

HJR measurements at three intervals (post-op, within first two years<br />

(intermediate) and last follow up) were made. Metal ion levels were<br />

measured at last follow up. Cr levels >5.1ppb and Co levels >4.4ppb<br />

were considered high (Gill et al). For the whole cohort, NN was<br />

3.8% (SD:4.3). Females (4.7%,SD:5.8) had significantly greater NN<br />

than males (2.4%,SD:29) (p=0.001). Patients with high ions had<br />

significantly greater NN than patients with low ions (10%, SD:8.3<br />

vs. 2.3%, SD 2.3) (p10% was seen in 16 hips<br />

(7.5%). The risk ratio <strong>of</strong> high ions if NN >10% was 113 (p10% is associated with high wear. We<br />

recommend that patients with progressive NN after the first two<br />

years and hips with NN >10% should be investigated further.<br />

pApeR No. 033<br />

Retrieval Analysis <strong>of</strong> 240 Metal-on-Metal Hip<br />

Components: Stemmed Versus Resurfacing Hip<br />

Arthroplasty<br />

Alister Hart, FRCS, London, United Kingdom<br />

Ashley Matthies, BSc<br />

Richard Underwood, PhD, London, United Kingdom<br />

Philippa Cann, PhD, London, United Kingdom<br />

Kevin Ilo, London, United Kingdom<br />

Syed Nawaz, MRCS, Stanmore, United Kingdom<br />

John Skinner, FRCS, London, United Kingdom<br />

Martyn Porter, MD, Wigan, United Kingdom<br />

Metal-on-Metal (MOM) hip resurfacing has a higher failure rate<br />

compared to metal-on-polyethylene total hip replacements.<br />

The mechanism <strong>of</strong> failure in many hip resurfacings is clinically<br />

unexplained but is thought to involve high wearing components<br />

and a reaction to metal wear debris. Although stemmed total hip<br />

replacements use the same bearing surface as hip resurfacing, it is<br />

unknown whether they fail by a similar mechanism involving high<br />

wear and the production <strong>of</strong> metal wear debris. An out <strong>of</strong> roundness<br />

machine was used to analyse wear <strong>of</strong> 240 failed current generation<br />

MOM hip components. We compared wear rate between two equally<br />

sized matched groups: Stemmed total hip replacements (n=120) and<br />

hip resurfacings (n=120). All hips included in this study were couples.<br />

The location and depth <strong>of</strong> the wear scar was mapped to investigate<br />

the role <strong>of</strong> edge loading. The groups were matched for gender<br />

and head size. Cup inclination and version angles were measured<br />

from plain radiographs and computer tomography scans and the<br />

effect <strong>of</strong> cup position was investigated. There was no significant<br />

difference in the median linear wear rate between stemmed total hip<br />

replacement and hip resurfacing for both acetabular (p=0.5125) and<br />

femoral (p=0.0695) components. The two groups had comparable<br />

median (resurfacing/stemmed) cup inclination (48/49), head size<br />

(47/48) and gender ratios (2:3 in both groups). Edge loading was<br />

the predominant mechanism <strong>of</strong> wear in both groups but occurred<br />

more <strong>of</strong>ten in hip resurfacing (67%) compared to stemmed total hip<br />

replacement (57%). Neck retention increases the head to neck ratio<br />

in hip resurfacing and therefore the risk <strong>of</strong> impingement. We suggest<br />

this as a possible mechanism leading to edge loading. There was no<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


significant difference in wear rate between two large groups <strong>of</strong> MOM<br />

stemmed total hip replacements and hip resurfacings. This suggests<br />

that the clinical problems associated with high wearing components<br />

are likely to occur in all large diameter MOM hips.<br />

pApeR No. 034<br />

A survey <strong>of</strong> Canadian resurfacing Working Group<br />

Experience: Rates <strong>of</strong> conversion from RSA to THR<br />

James N Powell, MD, Calgary, AB Canada<br />

Paul E Beaule, MD, Ottawa, ON Canada<br />

Emil H Schemitsch, MD, Toronto, ON Canada<br />

Pascal-Andre Vendittoli, MD, Montreal, QC Canada<br />

Robert Barry Bourne, MD, London, ON Canada<br />

John Antoniou, MD, Montreal, QC Canada<br />

Jason Werle, MD, Calgary, AB Canada<br />

Etienne Belzile, MD, Quebec, QC Canada<br />

Frank C Smith, FRCSC, CHB, MB, Hamilton, ON Canada<br />

The purpose <strong>of</strong> the study was to determine the rate <strong>of</strong> conversion<br />

from resurfacing arthroplasty (RSA) to total hip replacement<br />

(THR) in a number <strong>of</strong> Canadian centers performing resurfacings.<br />

Retrospective review was undertaken in 12 Canadian Centers to<br />

determine the rate <strong>of</strong> revision and reason for conversion from RSA<br />

to THR. Averages and cross-tabulation with Chi-squared analysis was<br />

performed on a subset <strong>of</strong> 1,494 cases. A total <strong>of</strong> 2,729 resurfacings<br />

were performed up to December 2008. A total <strong>of</strong> 252 hips had a<br />

minimum <strong>of</strong> five-year follow up. The survivorship <strong>of</strong> this group<br />

was 97.4%. Sixty-eight patients underwent conversion to THR. Four<br />

resurfacing systems were used. Of the 68 where the reason for failure<br />

is reported: 21 were for femoral neck fracture, 25 were for loosening,<br />

12 were for deep infection, three pseudotumors and seven for other<br />

reasons. The cumulative conversion rate is 2.5%. The survivorship is<br />

not significant between genders p=0.46. Surgeon experience proved<br />

to be a significant factor in conversion rates. The revision rate to date<br />

with this new technology suggests that with increasing experience<br />

hip resurfacing arthroplasty remains an acceptable option for the<br />

treatment <strong>of</strong> hip arthritis.<br />

pApeR No. 035<br />

Failure Causes And Modes Of Modern Metal-On-Metal<br />

Hip Resurfacing Implants<br />

Edward Ebramzadeh, PhD, Los Angeles, CA<br />

Patricia A Campbell, PhD, Los Angeles, CA<br />

Zhen Lu, Los Angeles, CA<br />

Karren M Takamura, BA, Los Angeles, CA<br />

Harlan C Amstutz, MD, Los Angeles, CA<br />

Koen Aime DeSmet, MD, Gent, Belgium<br />

Failure modes <strong>of</strong> metal-metal resurfacings have not been adequately<br />

documented; consequently, associated risk factors have not been<br />

established. A total <strong>of</strong> 308 retrievals <strong>of</strong> nine modern metal-metal<br />

designs were included. Service varied between one and 105 months.<br />

Wear was measured using a coordinated measuring machine (CMM).<br />

Metal allergy was diagnosed using tissue histological reaction (aseptic<br />

lymphocytic vasculitis-associated lesions or ALVAL) and clinical<br />

history. Failure was most frequently due to acetabular loosening<br />

(73); femoral loosening (62); neck fracture (61); malpositioning<br />

(30) or others. Femoral wear rate was greater (median 13µm) with<br />

>55 degree cup abduction compared to


equired for a THA. The amount <strong>of</strong> acetabular bone loss or gain was<br />

evaluated based on the manufacturer’s recommended press-fit for<br />

the commonly used HRA cups. A total <strong>of</strong> 180 consecutive patients<br />

undergoing a primary cementless THA had their femoral neck sized<br />

at the time <strong>of</strong> THA as if they were to undergo a HRA. The acetabulum<br />

was then reamed to prepare it for an acetabular component based<br />

on the preoperative templating and the intraoperative findings. The<br />

final reaming and reamer size used was independent <strong>of</strong> the femoral<br />

neck sizing. After preparing the acetabulum, a press-fit porous<br />

coated hemispherical cup was implanted in all cases. Overall, for a<br />

HRA cup that uses a 0 mm press-fit, 71% <strong>of</strong> the hips would have lost<br />

more acetabular bone stock and 15% would have gained bone stock<br />

compared to a conventional THA. For a 1 or 2 mm press-fit cup,<br />

57% hips and 41% <strong>of</strong> the hips would have lost additional acetabular<br />

bone stock while 28% and 44% <strong>of</strong> the hips would have maintained<br />

more bone stock than if they underwent a standard THA respectively.<br />

There were 20 hips that would be considered ideal for HRA - males<br />

under 65 years old with cam impingement and did not require<br />

screws for their cups. In this group, additional acetabular bone loss<br />

between 3-4 mm occurred in 80%, 65% and 65% <strong>of</strong> the hips, while<br />

less bone would have been reamed away in 20%, 20% and 35% <strong>of</strong><br />

the hips with a 0 mm, 1mm and 2 mm press-fit respectively. This<br />

study allows the direct comparison <strong>of</strong> acetabular bone removal in<br />

THA and HRA in the same patients. The results demonstrate that<br />

the degree <strong>of</strong> acetabular bone loss or gain following HRA versus<br />

conventional THA is not identical and depends on the amount <strong>of</strong><br />

press-fit required by the implant design.<br />

pApeR No. 038<br />

uThe Incidence Of Adverse Tissue Reactions In A<br />

Multicentre Study Involving 4226 Hip Resurfacings<br />

David Langton, Gateshead, United Kingdom<br />

Thomas Joyce, PhD<br />

Simon Jameson, Middlesbrough, United Kingdom<br />

Sonali Natu, MD<br />

Maarten Van Orsouw, MD<br />

James Holland, MD, Newcastle, United Kingdom<br />

Koen Aime DeSmet, MD, Gent, Belgium<br />

Antoni Nargol, FRCS, Yarm, United Kingdom<br />

There have recently been a number <strong>of</strong> reports <strong>of</strong> adverse reactions<br />

in the periprosthetic tissues <strong>of</strong> hips resurfaced with MoM bearing<br />

surfaces.We sought to establish the incidence <strong>of</strong> joint failure<br />

secondary to adverse reaction to metal debris (ARMD). Three<br />

implants were used in the study: Design A: Fourth generation device<br />

with low clearance. Design B: Third generation device. Design C:<br />

Fourth generation device with low clearance. Patients in prospective<br />

studies under the care <strong>of</strong> three surgeons at three centers resurfaced<br />

between January 1998 and January 2009 were included. Patients<br />

were assessed at annual clinic visits. Failures secondary to ARMD<br />

were recorded. Serum ion results from failed patients were compared<br />

to those from the asymptomatic cohort (n=881). Retrieved explants<br />

underwent analysis using a coordinate measuring machine. Total<br />

number <strong>of</strong> patients was 4226 (10-142 months). There were 58<br />

failures secondary to ARMD. Median CrCo concentrations in the<br />

failed group were significantly higher than in the control group.<br />

Survival analysis showed a failure rate in Design A patients <strong>of</strong> 9.8%<br />

at five years, compared to 25 degrees), or having an aspherical head (FAI; a angle<br />

>50degrees). Statistical analysis was performed to examine the<br />

association <strong>of</strong> each abnormality with gender. Seventeen percent<br />

<strong>of</strong> the male femora and 47% <strong>of</strong> the female femora were classified<br />

as “normal” (p=0.0077). Almost one half had a posterior slip, 8%<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


were retroverted and 28% displayed a “cam” (FAI) type deformity<br />

<strong>of</strong> the head-neck junction. The relative proportions <strong>of</strong> each form <strong>of</strong><br />

abnormality were statistically indistinguishable between male and<br />

female femora (56% vs 57% for slip, 13% vs 10% retroverted and<br />

31% vs 33% for FAI). This study demonstrates that the morphology<br />

<strong>of</strong> the proximal femur is innately variable. Current criteria defining<br />

the “normal” femur cause the majority <strong>of</strong> bones to be classified as<br />

“abnormal.” The “ideal” femur is much less common in males than<br />

females, and small degrees (2-3 mm) <strong>of</strong> posterior slip are common in<br />

both genders. Caution is advised in evaluating the patient in terms <strong>of</strong><br />

lifestyle, symptoms and functional demands, before recommending<br />

femoral osteochondroplasty for preservation <strong>of</strong> “the hip at risk.”<br />

pApeR No. 041<br />

The Comparison Of Old Patients After Periacetabular<br />

Osteotomy And Younger About Joint Remodeling<br />

Kouichi Kinoshita, MD, Fukuoka, Japan<br />

Masatoshi Naito, MD, Fukuoka, Japan<br />

Yoshinari Nakamura, MD, Fukuoka, Japan<br />

Takahiro Ida, MD, Osaka, Japan<br />

Hirotaka Karashima, MD, Fukuoka-City, Japan<br />

Satoshi Kamada, MD, Fukuoka, Japan<br />

Nobuhiro Kashima, MD, Fukuoka, Japan<br />

Yoshitsugu Tanaka, MD<br />

The purpose <strong>of</strong> this study is to compare a remodeling <strong>of</strong> the<br />

acetabulum and clinical results in patients 46 years <strong>of</strong> age or older<br />

after curved periacetabular osteotomy (CPO) with those in patients<br />

under 46 years <strong>of</strong> age. We investigated 66 patients (78 hips) after<br />

CPO at one institution. The older group consisted <strong>of</strong> 19 patients<br />

(21 hips) who had a mean age at the time <strong>of</strong> surgery <strong>of</strong> 53 years<br />

and a mean duration <strong>of</strong> follow up <strong>of</strong> 5.6 years, and the younger<br />

group consisted <strong>of</strong> 47 patients (57 hips) who had a mean age at the<br />

time <strong>of</strong> surgery <strong>of</strong> 29 years and a mean duration <strong>of</strong> follow up <strong>of</strong> 5.8<br />

years. Clinical follow up was based on the Harris Hip Score (HHS).<br />

Length <strong>of</strong> sourcil and sclerotic zone angle (SZ) were measured on<br />

AP radiographs preoperatively, postoperatively. In the older group,<br />

the mean HHS improved from 75 points preoperatively to 95 points<br />

at the time <strong>of</strong> final follow up (p < 0.01). The mean length <strong>of</strong> sourcil<br />

improved from 26 mm to 33 mm (p < 0.01). The mean SZ improved<br />

from 58° to 74° (p < 0.01). In the younger group, the mean HHS<br />

improved from 79 points to 95 points (p < 0.01). The mean length<br />

<strong>of</strong> sourcil improved from 25 mm to 31 mm (p < 0.01). The mean SZ<br />

improved from 53° to 64° (p < 0.01). Remodeling <strong>of</strong> the acetabular<br />

in elderly patients after CPO was not inferior in comparison with<br />

younger patients.<br />

pApeR No. 042<br />

Adverse Events After Hemiarthroplasty for Hip<br />

Fracture: A National Medicare Sample<br />

Noah Epstein, MD, Stanford, CA<br />

Yun Wang, PhD<br />

Carlos Uquillas, MD, New York, NY<br />

William J Maloney MD, Redwood City, CA<br />

James H Herndon, MD, Boston, MA<br />

James I Huddleston, III MD, Redwood City, CA<br />

Adverse event (AE) reporting has become recognized as an important<br />

method for improving patient safety and monitoring healthcare<br />

quality. The aim <strong>of</strong> this study was to identify the rates <strong>of</strong> AEs,<br />

mortality, length <strong>of</strong> stay (LOS) and readmission among Medicare<br />

beneficiaries in the first 30 days following hemiarthroplasty for a<br />

hip fracture. The Medicare Patient Safety Monitoring System was a<br />

448<br />

national surveillance project created in 2001 under the leadership<br />

<strong>of</strong> the Centers for Medicare & Medicaid Services to determine the<br />

rates <strong>of</strong> specific medical AEs within the hospitalized Medicare<br />

population. Data were collected from medical record abstraction<br />

and claims on 676 patients who underwent hemiarthroplasty for<br />

hip fracture between 2002 and 2004. A total <strong>of</strong> 96 patients (14%)<br />

experienced an AE while hospitalized. The most common AEs were<br />

urine tract infection (7%), pneumonia (4%), major bleeding (3%)<br />

and cardiovascular adverse events (3%). Congestive heart failure was<br />

associated with a significantly increased chance <strong>of</strong> experiencing an<br />

AE while hospitalized (OR=1.75, CI 1.08-2.82, p=0.02). The 30day<br />

post-discharge mortality rate was 5.0%. There was a significant<br />

difference (p=0.02) in the mortality rate between the patients who<br />

experienced an AE (10%) compared to those who did not experience<br />

an AE (4%) during the index hospitalization. Experiencing an AE<br />

increased the chance <strong>of</strong> death during the index hospitalization ><br />

2-fold (p=0.05). The rates <strong>of</strong> AEs are comparable to rates reported<br />

in several hip fracture populations. The rate <strong>of</strong> in-house and 30-day<br />

mortality is also comparable to other studies. However, in patients<br />

who experience an AE, the mortality rate remains high. These data<br />

may provide an opportunity for improvement in patient safety in<br />

this population.<br />

pApeR No. 043<br />

10-Year Outcome <strong>of</strong> PAO with and without Correction<br />

<strong>of</strong> Femoroacetabular Impingement<br />

Christoph Emanuel Albers, MD, Bern, Switzerland<br />

Simon D Steppacher, MD, Bern, Switzerland<br />

Moritz Tannast, Bern, Switzerland<br />

Reinhold Ganz, MD, Guemligen, Switzerland<br />

Klaus Siebenrock, MD, Bern, Switzerland<br />

The surgical technique <strong>of</strong> the Bernese periacetabular osteotomy<br />

(PAO) for treatment <strong>of</strong> developmental dysplasia <strong>of</strong> the hip (DDH) has<br />

changed since the recognition <strong>of</strong> the femoroacetabular impingement<br />

concept. More attention has been paid to the proper reorientation<br />

<strong>of</strong> the acetabular fragment and to a concomitant femoral headneck<br />

osteoplasty to achieve an impingement-free range <strong>of</strong> motion.<br />

The aims <strong>of</strong> this study were to compare (1) the minimum 10-year<br />

survivorship (2) the clinical and radiographic outcome with/without<br />

implementation <strong>of</strong> these modifications and (3) to detect predictive<br />

factors indicating a poor outcome. A retrospective comparative study<br />

between an early series (operated between 1984-1987, 75 hips)<br />

and a current series (1997-2000, 90 hips) <strong>of</strong> PAOs was performed.<br />

The cumulative 10-year survivorship <strong>of</strong> the hip was calculated with<br />

endpoints defined as total hip arthroplasty, poor clinical outcome<br />

or progression <strong>of</strong> osteoarthritis. Cox-regression analyses were<br />

performed to detect predictors for poor outcome. A significantly<br />

increased 10-year survivorship was found for the current series.<br />

There were significantly more hips with progression <strong>of</strong> osteoarthritis<br />

in the early series. A significantly higher accuracy and precision<br />

<strong>of</strong> the reorientation <strong>of</strong> the acetabulum was found for the current<br />

series. Twenty predictors for poor outcome were found including<br />

demographic, preoperative radiographic factors and factors related<br />

to the surgical accuracy. The correct acetabular reorientation to<br />

achieve sufficient but not excessive coverage improves the long-term<br />

results after PAO. The impingement-free range <strong>of</strong> motion should<br />

be assessed intraoperatively by routine arthrotomy. If necessary, an<br />

additional osteochondroplasty should be performed to correct an<br />

aspherical femoral head-neck junction.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


pApeR No. 044<br />

Topographical Cartilage Thickness Variation in Patients<br />

with Femoroacetabular Impingement<br />

Simon D Steppacher, MD, Bern, Switzerland<br />

Christoph Emanuel Albers, MD, Bern, Switzerland<br />

Moritz Tannast, Bern, Switzerland<br />

Klaus Siebenrock, MD, Bern, Switzerland<br />

Femoroacetabular impingement (FAI) is a pathologic condition <strong>of</strong><br />

the hip that leads to osteoarthrosis (OA). The goal <strong>of</strong> the surgical<br />

hip dislocation is to correct the bony malformations to prevent<br />

the progression <strong>of</strong> OA. We investigated the topographical cartilage<br />

thickness variation in patients with FAI and early stage OA using<br />

an ultrasonic probe during surgical hip dislocation. We performed<br />

a prospective case-series <strong>of</strong> 30 patients (33 hips) that underwent<br />

surgical hip dislocation. The mean age at operation was 30.6 (18<br />

- 48) years. Indication for surgery was symptomatic FAI with 3 hips<br />

(9%) with pincer-type, 7 hips (21%) with cam-type, and 23 hips<br />

(70%) with mixed-type <strong>of</strong> FAI. Cartilage thickness was measured<br />

intraoperatively using an A-mode 22 MHz ultrasonic probe at 8<br />

locations on the acetabular cartilage. The thickest acetabular cartilage<br />

was found in the weight bearing zone (range 2.8 - 3.5mm), whereas<br />

the thinnest cartilage was in the posterior acetabular horn (1.0 - 2.2<br />

mm). In all hips, cartilage was thicker in the periphery area compared<br />

to the central area. In the anterior and posterior acetabular horn,<br />

the anterior area, and the superior area (central parts) a significantly<br />

decreased cartilage thickness in pincer-type compared to cam-type<br />

<strong>of</strong> FAI was found (p46 mm<br />

and head defects < than 1 cm (ideal) were compared to 632 nonideal<br />

hips. UCLA, HHS and SF-12 scores were calculated. Changes<br />

in surgical technique were made by hip #300. Two-tailed paired<br />

student t-tests were used to compare parametric data and p-value<br />


14.8) and mean Cr concentrations were 2.07 microg/L (0.51-9.16).<br />

When analyzed by femoral head size, Co and Cr concentrations<br />

were significantly different (p=0.0025 and p


pApeR No. 065<br />

Inflammatory Cytokines are Elevated in Patients with<br />

Adverse Reactions to Metal-on-Metal THA’s<br />

Scott T Ball, MD, San Diego, CA<br />

Robert Scott Meyer, MD, San Diego, CA<br />

Patricia A Campbell, PhD, Los Angeles, CA<br />

William Bugbee, MD, La Jolla, CA<br />

Joshua Hillman, MS<br />

David Boyle, MS, La Jolla, CA<br />

Gary S Firestein, MD<br />

Recently, there has been growing concern about adverse reactions<br />

to metal debris (ARMD) in patients with metal-metal (MM) hip<br />

replacements. To our knowledge, there have been no reports<br />

characterizing the cytokines driving the underlying inflammatory<br />

response. In this case control study, 10 patients were identified<br />

with suspected ARMD from MM implants. At revision, s<strong>of</strong>t tissue<br />

specimens were analyzed histologically for cell types and wear<br />

debris. Peri-articular fluid was obtained and analyzed for cobalt and<br />

chromium levels using inductively coupled plasma dynamic reaction<br />

cell mass spectrometry. This fluid was also pr<strong>of</strong>iled for cytokine<br />

expression by Luminex assay. Two types <strong>of</strong> ‘control’ cases were<br />

collected. Hip synovial fluid from six osteoarthritis (OA) patients<br />

served as a baseline control, and three patients undergoing revision<br />

for osteolysis from polyethylene wear (poly) served as controls for<br />

adverse reaction to other prosthetic material. In the ARMD cases,<br />

cytokine levels were markedly elevated demonstrating a significant<br />

inflammatory response. Notably, levels <strong>of</strong> IL-6, IL-8 and IP-10 were<br />

more than 15 fold higher than in the poly group and were more<br />

than 40 fold higher than OA controls. Additionally, TNF-±, VEGF<br />

and MCP-1 were elevated above control groups. With this number<br />

<strong>of</strong> cases, no correlation was found between Co and Cr levels and<br />

cytokine levels. The findings <strong>of</strong> this study demonstrate an underlying<br />

inflammatory reaction in ARMD cases that is much more intense<br />

than what is observed in poly wear cases. This may help to explain<br />

the s<strong>of</strong>t tissue destruction which is sometimes seen in ARMD cases.<br />

pApeR No. 066<br />

Pathologically Confirmed Metal-on-Metal THA Adverse<br />

Local Tissue Reactions from One Center<br />

Kevin B Fricka, MD, Alexandria, VA<br />

C Anderson Engh Jr, MD, Alexandria, VA<br />

William G Hamilton, MD, Alexandria, VA<br />

Charles A Engh, Sr MD, Alexandria, VA<br />

There has been substantial use <strong>of</strong> metal-on-metal (MOM) bearings<br />

in total hip arthroplasty (THA) over the last decade. There appears<br />

to be a subset <strong>of</strong> patients who develop a local tissue reaction to the<br />

MOM bearing. We report our experience with this complication.<br />

Our institution has performed 1327 MOM THAs since 2001. A<br />

total 13 patients (seven <strong>of</strong> our own, six outside institutions) were<br />

revised secondary to a MOM reaction. All histology was confirmed<br />

by a single independent pathologist with expertise in MOM bearing<br />

surface pathology. Pre-operative lab evaluation and advanced<br />

imaging, gross inspection <strong>of</strong> the wound at the time <strong>of</strong> revision and<br />

histological analysis were available for each case. The average time<br />

to revision was 32 months (13-65). Cup position averaged 48°<br />

abduction (26°-78°) and 14° anteversion (-6°-37°). Advanced<br />

imaging (CT/MRI) was obtained in 11/13 patients. All patients had<br />

elevated cobalt/chromium levels (15.7 mcg/L and 3.64 mcg/L). ESR/<br />

CRP levels were elevated in 10/13 patients. Synovial fluid analysis<br />

showed four patients with no intact cells and metal debris while<br />

eight patients had a median white blood cell count <strong>of</strong> 5,148. All<br />

451<br />

histological specimens were consistent with local tissue MOM<br />

reactions and three patients had pseudotumors. Follow-up from<br />

revision ranged from one to 107 months. Revisions included eight<br />

cup/liner/ball exchanges, two two-stage reimplantations, two liner/<br />

ball exchanges and one resection arthroplasty. Adverse reactions to<br />

MOM bearings appear as a spectrum <strong>of</strong> disease and can be difficult<br />

to differentiate from infection. From our experience, we present an<br />

algorithm for diagnosis and treatment to minimize delay in treating<br />

this potentially devastating complication.<br />

pApeR No. 067<br />

Clinical And Wear Analysis Of 276 Failed Large<br />

Diameter Metal-On-Metal Hip Components<br />

Alister Hart, FRCS, London, United Kingdom<br />

Richard Underwood, PhD, London, United Kingdom<br />

Philippa Cann, PhD, London, United Kingdom<br />

Kevin Ilo, London, United Kingdom<br />

Ashley Matthies, BSc<br />

Justin Peter Cobb, MD, London, United Kingdom<br />

Sarah Muirhead-Allwood FRCS, London, United Kingdom<br />

Martyn Porter, MD, Wigan, United Kingdom<br />

John Skinner, FRCS, London, United Kingdom<br />

The most common clinical category <strong>of</strong> failure <strong>of</strong> current generation<br />

metal-on-metal (MOM) hip arthroplasties is unexplained. There has<br />

been only one large retrieval study (Morlock et al.) which revealed<br />

that cup components (n=32) had high wear rates and high inclination<br />

angles. We build on this by: increased numbers <strong>of</strong> components;<br />

increased clinical variables studied; and the use <strong>of</strong> multivariate<br />

statistical analysis. We aimed to determine which variables were<br />

significant predictors <strong>of</strong> cup and head rates. We studied a consecutive<br />

series <strong>of</strong> 138 head and cup couples <strong>of</strong> explanted MOM hips. Data pre,<br />

intra and post operatively enabled us to categorize cause <strong>of</strong> failure<br />

into infection, loosening, unexplained (non-infected; well fixed,<br />

satisfactory alignment) and other. We also recorded the following:<br />

age, gender, head size, hip type, cup inclination angle, blood cobalt<br />

levels, blood chromium levels, presence <strong>of</strong> edge loading, head wear<br />

rate, cup wear rate. Analysis <strong>of</strong> covariance was used for statistical<br />

analysis. There were 92 females and 46 males. The median cup wear<br />

rate was 4.51 microns/year (interquartile range 0.15 to 20.69). There<br />

was a strong positive relationship between cup and head wear rate<br />

(rs=0.843, p


pApeR No. 068<br />

The Occurrence <strong>of</strong> Edge Loading in Metal on Metal<br />

Hips: Low Clearance is a New Risk Factor<br />

Richard Underwood, PhD, London, United Kingdom<br />

Angelos Zografos, MEng<br />

Ashley Matthies, BSc<br />

Kevin Ilo, London, United Kingdom<br />

Philippa Cann, PhD, London, United Kingdom<br />

Ferdinand Lali, PhD<br />

John Skinner, FRCS, London, United Kingdom<br />

Alister Hart, FRCS, London, United Kingdom<br />

It is generally accepted that risk factors for edge loading acetabular<br />

cups are steep inclination and low cup coverage (articular arc). This<br />

paper describes a study <strong>of</strong> 160 explanted large diameter metal-onmetal<br />

(MoM) (320 components) to establish the size and location<br />

<strong>of</strong> wear scars and the occurrence and causes <strong>of</strong> edge loading. The<br />

wear <strong>of</strong> the explanted head and cups was measured using roundness<br />

machine. Finite element analysis and contact mechanics was used<br />

to calculate the size and position <strong>of</strong> any wear scar; this combined<br />

with information about cup design, clearance and position was used<br />

to examine the factors that effect edge loading. , Edge loading was<br />

found in 67% <strong>of</strong> cups and was associated with a seven times increase<br />

in linear wear rate. A total <strong>of</strong> 49% <strong>of</strong> ‘well positioned’ cups, within<br />

the Lewinnick’s safe zone, were edge loaded. Analysis showed that<br />

when the theoretical contact patch extended over the rim <strong>of</strong> the cup,<br />

the dramatic increase in contact pressure and probable disruption to<br />

the lubrication mechanism leads to increased wear at the rim <strong>of</strong> the<br />

cup. The distance from the edge <strong>of</strong> the contact patch to the rim is<br />

calculated theoretically for all the explanted hips and correlated with<br />

the occurrence <strong>of</strong> edge loading. Low clearance resulted in a larger<br />

contact patch and increased the risk <strong>of</strong> edge loading. For cups with<br />

low inclination angles (three-year revision rate experience, consistent with the 10-year<br />

benchmark). Compared to the three-year NICE entry benchmark, 10<br />

studies showed satisfactory implant survival percentages. Nine used<br />

the BHR implant, the other study used the Cormet 2000 implant.<br />

The quality <strong>of</strong> evidence is low according to the GRADE classification.<br />

Future research has to address the most important failure mode for<br />

HRA trying to explain the large variation in the frequency <strong>of</strong> femoral<br />

neck fractures.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


pApeR No. 071<br />

Large Diameter Modular Metal-on-Metal Total Hips:<br />

Assessing S<strong>of</strong>t Tissue Adverse Events<br />

William P Barrett, MD, Renton, WA<br />

Kirk Kindsfater, MD, Fort Collins, CO<br />

James Lesko, PhD<br />

The performance <strong>of</strong> large mono-block metal-on-metal (MOM)<br />

systems has come under general scrutiny. Failures secondary to s<strong>of</strong>t<br />

tissue reactions, possibly attributable to metal wear debris, have<br />

been reported. Clinical symptoms <strong>of</strong>ten appear within two years<br />

postoperatively and include persistent or recurring pain and s<strong>of</strong>t<br />

tissue reaction. Infection work-up is typically negative. This study<br />

investigated whether similar concerns exist for MOM articulations<br />

in large diameter modular hip systems. Between July 2001 and<br />

February 2008, 1,055 large diameter (minimum 36 mm diameter<br />

heads) modular MOM total hips were implanted in four prospective<br />

studies at 36 centers. The same acetabular system was used in all<br />

cases. A total <strong>of</strong> 720 hips (289 females, 431 males) had minimum<br />

two-year follow-up (mean 3.3 years, range 2-8 years). Mean age was<br />

57. Primary diagnosis was osteoarthritis in 637 (88.5%) cases. Four<br />

cases were revised for pain without evidence <strong>of</strong> infection. One case<br />

revealed metalosis without the typical ALVAL s<strong>of</strong>t tissue reaction.<br />

Two cases showed an ALVAL-type reaction. A fourth case revealed a<br />

pseudotumor and necrotic material typically associated with metal<br />

wear debris. The incidence <strong>of</strong> revision due to s<strong>of</strong>t tissue adverse<br />

events is estimated from these four revisions out <strong>of</strong> 720 cases to be<br />

0.56% (95% C.I. 0.15% to 1.42%). In this series <strong>of</strong> second generation<br />

modular, large head MOM prostheses, the incidence <strong>of</strong> revisions<br />

due to s<strong>of</strong>t tissue adverse events was less than 0.6%. This compares<br />

favorably to published reports on the incidence <strong>of</strong> revisions for s<strong>of</strong>t<br />

tissue adverse events in large mono-block MOM systems.<br />

pApeR No. 072<br />

Practical Guidelines In The Interpretation Of Serum<br />

Versus Whole Blood Metal Ion Concentrations<br />

Jose MH Smolders, MD, Lent, Netherlands<br />

Pepijn Bisseling, MD, Arnhem, Netherlands<br />

Annemiek Hol, MsC, Arnhem, Netherlands<br />

Job L C Van Susante, MD,PHD, Arnhem, Netherlands<br />

There is a clear correlation between a malfunctioning metal-onmetal<br />

joint arthroplasty and increased cobalt and chromium levels<br />

in whole blood and serum. Interpretation <strong>of</strong> these values becomes<br />

increasingly important for clinicians; however, the relation between<br />

both is difficult to understand. Also, practical tools for clinical use<br />

are lacking. From an ongoing trial comparing two metal-bearing hip<br />

implants, chromium and cobalt levels were determined both for<br />

serum and whole blood in 191 and 213 samples, respectively, using<br />

high resolution inductively-coupled plasma mass spectrometry.<br />

The agreement between blood and serum levels was assessed with<br />

normalized scatter plots, mean difference, regression analysis and<br />

the Bland and Altman limits <strong>of</strong> agreement. There was a highly<br />

significant correlation between blood and serum levels for both<br />

cobalt (p=0.936) and chromium (p=0.937). Due to the variability<br />

seen in the Bland and Altman plots between serum and whole<br />

blood concentration, they cannot be used interchangeably. Limits<br />

<strong>of</strong> agreements for cobalt are +71% to -41%, and +6% to -94% for<br />

chromium. Regression analysis provided a formula for conversion<br />

from serum to blood <strong>of</strong> 0.29 + 0.89*serum] for cobalt (ng/mL) and<br />

0.21 +<br />

453<br />

pApeR No. 073<br />

Serum Metal Ion And Ultrasound Assessment Of<br />

Asymptomatic Metal-On-Metal Hip Replacement<br />

Donald S Garbuz, MD, Vancouver, BC Canada<br />

Dan Williams, MRCS, MSc, Truro, United Kingdom<br />

Nelson Victor Greidanus, MD, Vancouver, BC Canada<br />

Bassam A Masri, MD, Vancouver, BC Canada<br />

Clive P Duncan, MD, Vancouver, BC Canada<br />

There is a postulated association between increased serum metal<br />

ions and pseudotumor formation in patients with metal-on-metal<br />

hip replacements. The primary aim <strong>of</strong> this study was to assess the<br />

prevalence <strong>of</strong> pseudotumor in 29 asymptomatic patients with a large<br />

femoral head (LFH) metal-on-metal hip implant. This was compared<br />

to the prevalence <strong>of</strong> pseudotumor in 21 matched asymptomatic<br />

patients with a hip resurfacing (HRA) and 23 matched asymptomatic<br />

patients with a standard metal-on-polyethylene (MOP) total hip.<br />

A secondary objective was to assess possible correlation between<br />

increased serum metal ions and pseudotumor formation. Ultrasound<br />

examination <strong>of</strong> the three groups was performed at a minimum follow<br />

up <strong>of</strong> two years. Serum metal ions were measured in the metal-onmetal<br />

LFH and HRA groups at a minimum <strong>of</strong> two years. There were<br />

eight solid or cystic masses in the LFH group with a mean size <strong>of</strong> 55.7<br />

(8 to 176) cm3. In the HRA group there were three masses with a<br />

mean size <strong>of</strong> 18.7 (6.1 to 25.9) cm3. In the MOP group there was one<br />

solid mass measuring 6.1 cm3. Mean serum cobalt and chromium<br />

ion levels in the LFH group were 6.57 (0 - 58.78) µgL and 4.55 (0<br />

- 50.47) µgL compared to 0.46 (0 - 3.57) µgL and 0.55 (0 - 3.77)<br />

µgL in the HRA group. This study demonstrates a significantly higher<br />

prevalence <strong>of</strong> pseudotumors in patients with large head metal-onmetal<br />

total hips. The higher levels <strong>of</strong> metal ions in this group suggest<br />

that elevated metal ions may lead to pseudotumor formation.<br />

pApeR No. 074<br />

uOutcomes and Pathomechanics <strong>of</strong> Adverse Local<br />

Tissue Reactions (ALTR) in Metal-Metal Bearings<br />

John Vincent Tiberi, MD, Torrance, CA<br />

Fabrizio Billi, PhD, Los Angeles, CA<br />

Michael Kertzner, Calabasas, CA<br />

Mylene A Dela Rosa, Los Angeles, CA<br />

Thomas P Schmalzried, MD, Los Angeles, CA<br />

The benefits <strong>of</strong> metal-metal bearings include low wear, absence<br />

<strong>of</strong> gross material failures (i.e., fracture), favor <strong>of</strong> large diameters<br />

and allow resurfacing. However, metal-metal bearings have been<br />

associated with adverse local tissue reactions (ALTR). The goals <strong>of</strong> the<br />

current study are to identify the prevalence <strong>of</strong> revision surgery in hips<br />

with a >36 mm metal-metal bearing and associated risk factors. A<br />

total <strong>of</strong> 585 hips (501 patients) received metal-on-metal arthroplasty<br />

(469 resurfacing and 116 total hip arthroplasty) from October 2000<br />

through May 2008 by the senior author. A posterior approach was<br />

used in all cases. In total, 451 hips (77%) were in men. Mean age and<br />

BMI were 50.7 (range 14.7-81.9) and 27.25 (range 17.0-44.7). Mean<br />

follow-up was 5.0 years (range 2-11 years). Acetabular component<br />

position was assessed with edge detection s<strong>of</strong>tware. ALTR was defined<br />

as any peri-prosthetic tissue reaction that necessitated revision with<br />

well-fixed components. There were no revisions for instability. There<br />

were no loose stems and no revisions <strong>of</strong> modular sockets. There were<br />

no femoral neck fractures or operations for periprosthetic fracture.<br />

One hip was revised for infection. Nine hips in eight patients required<br />

aseptic revision (1.5%). The Conserve® Plus SR (Wright Medical;<br />

Memphis, TN) was revised in two <strong>of</strong> 232 (0.9%) hips: one for ALTR<br />

(high wear, metallosis) and one for osteonecrosis <strong>of</strong> the femoral head.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


Thirty-one Cormet 2000 SR (Corin; Cirencester, Gloucestershire,<br />

UK) hips and 59 Summit® (DePuy) total hip replacement (THR)<br />

femoral components with the Pinnacle (DePuy) modular acetabular<br />

component had no revisions. The ASR-XL (DePuy; Warsaw, IN) was<br />

revised in three <strong>of</strong> 57 hips (5.3%); one for pseudotumor and two for<br />

failure <strong>of</strong> osseointegration. The ASR (DePuy) surface replacement<br />

was revised in four <strong>of</strong> 205 (2%), two for pseudotumor and two<br />

for failure <strong>of</strong> osseointgration. In all, seven <strong>of</strong> 262 (2.7%) ASR hips<br />

were revised. Four hips (0.7%; three SR, one THA) were revised for<br />

ALTR; all were females and all had 50 mm O.D. sockets. All had<br />

a low lateral opening angle (mean 38.7°, range 31.8°-46.8°) but<br />

increased acetabular anteversion (mean 25.4° v. 16.4°; p=0.05).<br />

CT scan analysis <strong>of</strong> the THR indicated 22° femoral anteversion;<br />

combined anteversion <strong>of</strong> 45°. Retrieval analyses with CMM and SEM<br />

revealed edge wear, consistent with subluxation in extension. Large<br />

diameter bearings have solved the instability issue. The outcomes<br />

<strong>of</strong> both THR and SR were generally good, although the prevalence<br />

<strong>of</strong> revision associated with the ASR acetabular component was<br />

increased. This component is no longer used. The overall occurrence<br />

<strong>of</strong> ALTR necessitating revision was comparatively low. Retrieval<br />

analyses indicate edge wear and subluxation with a mechanical<br />

common denominator: increased (combined) anteversion. Even<br />

with a low lateral opening angle, a combined anteversion <strong>of</strong> >40° is<br />

associated with an increased risk <strong>of</strong> ALTR. On this basis, resurfacing,<br />

female gender and small component size are associated variables.<br />

The primary causal factor is the pathomechanics <strong>of</strong> subluxation in<br />

extension leading to an aberrant wear mechanism.<br />

pApeR No. 075<br />

Metal Ions And Outcome In Resurfacing Hip<br />

Arthroplasty (RHA) Versus Total Hip Arthroplasty (THA)<br />

Job L C Van Susante, MD,PHD, Arnhem, Netherlands<br />

Jose MH Smolders, MD, Lent, Netherlands<br />

Annemiek Hol, MsC, Arnhem, Netherlands<br />

W J Rijnberg, MD, Arnhem, Netherlands<br />

The resurfacing hip arthroplasty (RHA) has gained popularity over<br />

the past 10 years due to the bone preserving nature and increased<br />

stability <strong>of</strong> the implant. A true benefit in clinical parameters over<br />

the regular total hip arthroplasty (THA) has not been proven to date<br />

and concerns arise about local s<strong>of</strong>t-tissue necrosis from increased<br />

metal ion levels (pseudotumors). A randomized trial comparing<br />

RHA with THA on these parameters was initiated. Sixty-seven<br />

patients (


fracture <strong>of</strong> the prosthesis. Six patients had non-mechanical failure<br />

modalities (one septic loosening and three multiple dislocations). A<br />

total <strong>of</strong> 104 patients had a well fixed prosthesis with no dissociation<br />

or fracture <strong>of</strong> the components. The Harris Hip Score mean in the<br />

<strong>of</strong>fice follow up patients is 85.8. Of the patients in the follow up<br />

group, it was found that this prosthesis has a 19.4 percent failure<br />

rate requiring a revision operation. When those pending or lost to<br />

follow up are included and assumed not to have hardware failure,<br />

the failure rate is 11.2 percent. Increasing body mass index and <strong>of</strong>fset<br />

were shown to be significant risk factors for mechanical failures <strong>of</strong><br />

the Alfa II modular hip system. The Alfa II modular stem hip system<br />

demonstrates a high failure rate at short-term follow up.<br />

pApeR No. 183<br />

Revision Total Hip Arthroplasty In Patients 80 Years Or<br />

Older<br />

Anne Lubbeke-Wolff, MD, DSc, Geneva 14, Switzerland<br />

Constantinos Roussos, MD<br />

Werner Koehnlein, MD<br />

Pierre J H<strong>of</strong>fmeyer, MD, Geneve 4, Switzerland<br />

We aimed at evaluating outcomes after revision total hip arthroplasty<br />

(THA) in patients over 80 years and to compare these to outcomes in<br />

patients under 80 years. We reviewed all revisions performed in our<br />

institution from 3/1996 to 12/2008 and compared complications,<br />

mortality, clinical outcomes and satisfaction between the two age<br />

groups. Peri-operative information and complications were collected<br />

prospectively, and clinical outcome data were obtained both pro-<br />

and retrospectively. The Merle d’Aubigné score, Harris Hip score<br />

and patient satisfaction were assessed. A total <strong>of</strong> 325 revisions were<br />

included, 84 (25.8%) in patients >80 and 241 in patients 80 years were more <strong>of</strong>ten revised for periprosthetic fractures<br />

and recurrent dislocation. Mean follow up was 4.3 years. Mortality<br />

(>80 vs. 12 year follow up and complete ascertainment <strong>of</strong> revision and<br />

mortality. We used Medicare claims data to assemble a cohort <strong>of</strong><br />

58,521 patients >65 years old who had primary THR in 1995-96. We<br />

followed this cohort in claims through 2008 and identified patients<br />

who had claims indicating revision THR. We used Cox proportional<br />

455<br />

hazard models to examine the association <strong>of</strong> revision rate with age,<br />

sex, race, Medicaid eligibility (a proxy for low income), diagnosis,<br />

comorbidity, surgeon and hospital THR volume. At surgery the cohort<br />

had mean age 74 ± 6, 64% were female and 56% were operated<br />

upon by surgeons who performed fewer than 12 THRs/year in the<br />

Medicare population. Over 12 to 13 year follow up, 32,680 patients<br />

died and 4,830 had revision THR. Factors independently associated<br />

with rate <strong>of</strong> revision THR included age 65-75 (versus > 75; hazard<br />

ratio (HR) 1.45, 95% CI 1.36, 1.55), male sex (HR 1.23, 95% CI 1.16,<br />

1.30), non-osteoarthritis diagnosis (HR 1.15, 95% CI 1.06, 1.25)<br />

and surgeon THR volume < 12 cases/year (HR 1.22, 95% CI 1.13,<br />

1.33). Medicaid eligibility, comorbidity and hospital volume were<br />

not independently associated with revision rate. These first national,<br />

population-based estimates <strong>of</strong> the rate <strong>of</strong> revision following THR<br />

over 12 years confirm the risk associated with younger age, male<br />

sex and low surgeon volume. As THR is performed increasingly in<br />

younger patients, these findings underscore the need for further<br />

research on revision rates in those < 65.<br />

pApeR No. 185<br />

Bone Graft Substitutes For Gap Healing And Bone<br />

Growth Into Porous Implants<br />

J Dennis Bobyn, PhD, Montreal, QC Canada<br />

Letitia Lim, MD, Montreal, QC Canada<br />

Michael Tanzer, MD, Montreal, QC Canada<br />

Revision surgery is <strong>of</strong>ten complicated by loss <strong>of</strong> bone stock and<br />

bone-implant gaps that reduce stability and the potential for biologic<br />

fixation. The purpose <strong>of</strong> this study was to assess the potential <strong>of</strong><br />

bone graft substitute materials for enhancing the healing <strong>of</strong> boneimplant<br />

gaps and the osseointegration <strong>of</strong> porous metal implants.<br />

Intramedullary implants were fabricated with a 5 mm diameter<br />

central porous titanium rod and 11 mm solid end and central<br />

spacers to create a scenario with a 3 mm gap between host bone<br />

and porous material. The implants were bilaterally inserted into<br />

the proximal metaphyses <strong>of</strong> canine femora and humeri in the same<br />

animal in procedures staged eight weeks apart. At each period <strong>of</strong><br />

four and 12 weeks implant gaps were left empty (n=6) or filled with<br />

demineralized bone matrix (DBM) (n=6), devitalized DBM (n=3) or<br />

a polymer-allograft composite (PAC) material (n=3). Bone formation<br />

within the gap regions and porous implants was quantified using<br />

high resolution microCT scanning and backscattered scanning<br />

electron microscopy. At four weeks, gaps with DBM were already<br />

filled (9.0%±6.7%) with numerous islands <strong>of</strong> new bone. By 12<br />

weeks, gap filling with new bone increased to 22.3%±5.2% (host<br />

bone density = 19.0%±5.0%) and bone trabeculae within the gap<br />

were contiguous with surrounding host bone. The PAC material<br />

started with 20.4% mineralized bone content; at four and 12 weeks<br />

PAC-filled gaps contained 17.2%±2.2% and 23.1%±3.3% bone by<br />

volume, respectively, with evidence <strong>of</strong> incorporation and remodeling<br />

by 12 weeks. In contrast, the empty (5.2%±0.7% at four weeks;<br />

2.6%±1.5% at 12 weeks), devitalized DBM-filled (5.1%±5.9% at<br />

four weeks; 6.1%±3.5% at 12 weeks) showed markedly less new<br />

bone healing. At 12 weeks gap filling with new bone was significantly<br />

greater in gaps filled with DBM and PAC compared to those filled<br />

with devitalized DBM or left empty (p


pApeR No. 186<br />

Risk For Aseptic Revision In Over 25,000 Primary Total<br />

Hips Differs By Gender<br />

Monti Khatod, MD, Santa Monica, CA<br />

Liz Paxton, MA, San Diego, CA<br />

Christopher F Ake, PhD, Corona Del Mar, CA<br />

Robert S Namba, MD, Corona Del Mar, CA<br />

T Ted Funahashi, MD, Irvine, CA<br />

Cunlin Wang, Silver Spring, MD<br />

Art Sedrakyan, PhD, New York, NY<br />

Thomas Gross, MD, PhD<br />

Danica Marinac-Dabic, MD, PhD, Rockville, MD<br />

Gender differences in risk <strong>of</strong> total hip arthroplasty (THA) revision<br />

have not been fully examined. THA patient demographics, implant<br />

characteristics, surgical techniques, surgeon and hospital annual case<br />

volume and outcomes were prospectively recorded in a communitybased<br />

registry (2001-2009). Kaplan Meier survival curves, log rank<br />

tests and Cox regression were applied to assess cumulative implant<br />

survival rates and relative risk <strong>of</strong> THA revision. A total <strong>of</strong> 25,377<br />

primary THA cases were performed. Primary cases were predominantly<br />

female (57.4%), 44.4% under age <strong>of</strong> 65. Osteoarthritis was the<br />

most common diagnosis (90.6%). At five years follow up, overall<br />

cumulative survival was 97.4%: survival for males and females was<br />

97.7% vs. 97.1% (p=0.06). Cox regression revealed the following<br />

risk factors for aseptic revision: diagnosis other than osteoarthritis<br />

(OA) (p=0.007), metal-on-conventional ultra high molecular weight<br />

polyethylene (UHMWPE) surface (p=.006) and femoral head size<br />


pApeR No. 189<br />

Revision Hip Arthroplasty for Instability: Constraint<br />

May Not be The Answer<br />

Aaron Carter, Washington, DC<br />

S M Javad Mortazavi, MD, Wyncote, PA<br />

Mr Eoin C Sheehan, Tullamore, Ireland<br />

James J Purtill, MD, Philadelphia, PA<br />

Matthew Austin, MD, Philadelphia, PA<br />

Peter F Sharkey, MD, Media, PA<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Constrained liners that were used as treatment for instability<br />

following THA were reviewed. The hypothesis <strong>of</strong> this study was that<br />

constrained liners are likely to fail if correctable causes for instability<br />

are not addressed. Results found that failure rate <strong>of</strong> constrained<br />

components are unexpectedly high. Increased rate <strong>of</strong> dislocation<br />

is associated with younger and healthier patients or patients with<br />

previous history <strong>of</strong> revision. Using our prospective institutional<br />

revision database, all hips that had undergone revision THA for<br />

instability and received constrained liners between 2000 and 2007<br />

were identified. Detailed retrospective review <strong>of</strong> the database and<br />

medical records were obtained to extract relevant information. 57<br />

hips in 56 patients received constrained liners. Average follow up<br />

was 5.04 years (range 24-119 months). Failure rate <strong>of</strong> constrained<br />

liners was 29.8% (12 dislocations, 5 acetabular loosening). 25% <strong>of</strong><br />

liners that also had cup revision failed compared to 36% that only<br />

had a liner exchange (p=0.4). In the liner exchange group, there was<br />

no difference in failure rate for cemented compared to uncemented<br />

liners (p=0.8). Younger age (p=.04), lower Charlson index (p=.01),<br />

and history <strong>of</strong> previous revision surgeries (p=.05) were associated<br />

with higher dislocation rate. Constrained liners could be effective<br />

in the treatment <strong>of</strong> instability following THA, however failure rates<br />

are higher than previously expected. When considering constrained<br />

liners the surgeon must consider the limitations <strong>of</strong> these components<br />

especially in a more active patient population. These components<br />

are more likely to fail in younger patients with few comorbidities or<br />

patients with previous revision surgery.<br />

pApeR No. 190<br />

Do Paprosky Type III & IV Femoral Defects Have a<br />

Higher Failure Rate Following Revision THA?<br />

Arthur L Malkani, MD, Louisville, KY<br />

Rasesh R Desai, MD, Cincinnati, OH<br />

Kirby Hitt, MD, Temple, TX<br />

Fredrick Francis Jaffe, MD, New York, NY<br />

Jianhua Shen, Mahwah, NJ<br />

John R Schurman II, MD, Wichita, KS<br />

Purpose <strong>of</strong> this study was to compare results <strong>of</strong> patients with<br />

Paprosky Type I, II femoral defects vs. IIIA, B and IV defects in patients<br />

undergoing revision hip arthroplasty. There were 64 patients in the<br />

group with type I and II defects with an average age <strong>of</strong> 68 years. There<br />

were 52 patients with Paprosky Type IIIA, IIIB and IV defects with<br />

an average age <strong>of</strong> 67 years. The minimum follow up was two years.<br />

Clinical and radiographic analysis were performed and statistics<br />

using chi square and Wilcoxon rank-SUM tests. The same modular<br />

femoral implant with distal fixation was used in all patients. Type<br />

III and IV group had greater pre-op leg length discrepancy, increased<br />

intra-op blood loss and OR time which was statistically significant.<br />

There were no differences in the post op Harris Hip Score between the<br />

groups. There were four intraoperative femoral fractures in the Type<br />

III & IV group (8%), whereas there were zero in Type I & II group,<br />

p


pApeR No. 192<br />

Treatment <strong>of</strong> Pelvic Discontinuity with a Custom<br />

Triflange Acetabular Component<br />

Michael J Taunton, MD, Rochester, MN<br />

Thomas K Fehring, MD, Charlotte, NC<br />

Paul K Edwards, MD, Tampa, FL<br />

Thomas L Bernasek, MD, Tampa, FL<br />

Ginger E Holt, MD, Nashville, TN<br />

Michael J Christie, MD, Nashville, TN<br />

Pelvic discontinuity is an increasingly common complication <strong>of</strong> total<br />

hip arthroplasty. The purpose <strong>of</strong> this review is to report the use <strong>of</strong><br />

custom triflange implants in patients with pelvic discontinuity. This<br />

is a retrospective multi-center cohort study. Inclusion criteria includes<br />

any patient who had a revision total hip arthroplasty (THA) using<br />

a custom triflange acetabular component for pelvic discontinuity<br />

with minimum two year follow up. Demographic data collected<br />

includes: age, gender and body mass index (BMI). Operative reports<br />

and clinical data were reviewed. A radiographic evaluation was<br />

performed to evaluate healing <strong>of</strong> the discontinuity and fixation <strong>of</strong><br />

the implant. Between 1992 and 2008, 77 discontinuities were treated<br />

with a custom triflange component. Eleven were lost to follow up,<br />

leaving 66 for review. There were reoperations in 21 (38%). There<br />

were three failures (4.5%) as defined by revision or resection <strong>of</strong> the<br />

triflange component. One (1.5%) was revised for aseptic loosening.<br />

Upon radiographic review, 38 (57.5%) <strong>of</strong> triflange components<br />

were stable with a healed pelvic discontinuity. This retrospective<br />

multi-center review <strong>of</strong> custom triflange acetabular components<br />

had survival free <strong>of</strong> aseptic loosening in 65/66 hips. Instability<br />

was a common complication, given the subset <strong>of</strong> patients, most <strong>of</strong><br />

which had multiple previous reconstructions prior to revision to<br />

a triflange component. In this difficult group <strong>of</strong> patients, triflange<br />

implants provided predictable fixation and consistent healing <strong>of</strong> the<br />

discontinuity at a cost equivalent to other treatment methods.<br />

pApeR No. 193<br />

Femoral Impaction Grafting Improves Survival Of<br />

Revisions With Extensive Defects And Large Stems<br />

Matthias Dominik Wimmer, MD, Bonn, Germany<br />

Sascha Gravius, MD<br />

Deml Moritz, MD<br />

Rudolf Ascherl, MD, Rochester, MN<br />

Ulrich Noeth, Philadelphia, PA<br />

Nadine Kraska, MD<br />

Dieter Wirtz, MD, Bonn, Germany<br />

We present long-term results <strong>of</strong> a prospective controlled multicenter<br />

study with an uncemented modular titan revision prosthesis with<br />

distal diaphyseal anchorage with or without metaphyseal bone<br />

stock augmentation. A total <strong>of</strong> 243 cementless stem revisions were<br />

performed in matched patients. Seventy patients (28.8%) received a<br />

metaphyseal bone augmentation; 173 other patients (71.2%) without<br />

metaphyseal bone augmentation served as controls. The clinical<br />

outcome was evaluated by the Harris Hip Score (HHS). Additionally<br />

x-rays were evaluated focusing on stability, periprosthetic bone<br />

remodeling, defect regeneration and the presence <strong>of</strong> radiolucent<br />

lines. The follow up period was 4.38 ± 1.79 y (2.10 ± 9.62 y).<br />

Preoperatively no significant differences were found concerning age,<br />

body mass index, score <strong>of</strong> the <strong>American</strong> Society <strong>of</strong> Anaesthesiologists,<br />

femoral bone defects as differentiated by Paprosky I - III and the<br />

HHS (p>0.05). Postoperatively no significant differences concerning<br />

the HHS and the intra- and postoperative complication rate occurred<br />

(p>0.05). A significant reduction <strong>of</strong> the proximal femoral bone<br />

458<br />

atrophy due to femoral stress-shielding (5.71% vs. 17.9%; p17 mm and femoral<br />

bone defects >Paprosky II C. The revision rate after augmentation was<br />

clearly reduced (2.86% vs. 6.36%). X-rays showed increasing axial<br />

subsidence for controls (6.9% vs. 2.9%; p=0.16). The encouraging<br />

results we found accentuate the need for metaphyseal bone defect<br />

augmentation for femoral bone defects larger than Paprosky II C and<br />

stem diameters >17 mm. Subsequently improved bone regeneration<br />

indicates increasing physiological load transmission and minimized<br />

femoral stress-shielding as a requirement for a prolonged prosthesis<br />

lifetime.<br />

pApeR No. 194<br />

Modern Proximally Tapered Uncemented Stems Can be<br />

Safely Used in Dorr Type C Femoral Bone<br />

David F Dalury, MD, Baltimore, MD<br />

Todd Kelley, MD, Cincinnati, OH<br />

Mary Jo Adams, BSN, Towson, MD<br />

Dorr Type C femoral bone is felt to be a difficult morphology for stem<br />

fixation in total hip replacement (THR). Modern proximally tapered<br />

uncemented hip systems have wide variability in terms <strong>of</strong> sizing and<br />

<strong>of</strong>fsets. We report on our experience with the use <strong>of</strong> such a system<br />

in a group <strong>of</strong> Type C bone patients. Between 9/2001 and 5/2004,<br />

we implanted 431 consecutive uncemented tapered stems. Of this<br />

group, 60 femurs were classified as having Type C bone. Average age<br />

<strong>of</strong> the patients in this group was 67 and body mass index was 27.<br />

Patients were followed for an average <strong>of</strong> 6.4 years (range 4-9 years).<br />

Radiographs were reviewed by two experienced radiographers. Harris<br />

Hip Scores (HHS) were calculated. At final follow up, all stems were<br />

clinically stable. All stems were radiographically osseointegrated.<br />

Five <strong>of</strong> the stems showed any subsidence, none more than 3 mm. Of<br />

the 60 femurs, seven were placed into varus and seven into valgus.<br />

No patient complained <strong>of</strong> thigh pain. No femur showed significant<br />

stress shielding. HHS scores at final follow up averaged 92 (range<br />

72 to 100). We could document no problems using this modern<br />

proximally tapered uncemented stem in Type C femoral bone at midterm<br />

follow up. Assuming the surgeon is able to obtain adequate<br />

initial fixation, as evidenced by the minimal subsidence seen in this<br />

group, this type <strong>of</strong> stem provides durable and predictable fixation<br />

despite the morphology <strong>of</strong> the femur.<br />

pApeR No. 195<br />

An Algorithmic Approach to the Unstable Total Hip<br />

Arthroplasty<br />

Glenn Wera, MD, Cleveland, OH<br />

Nicholas Ting, MD, Cleveland, OH<br />

Mario Moric, MS<br />

Wayne Gregory Paprosky, MD, Winfield, IL<br />

Scott M Sporer, MD, Wheaton, IL<br />

Craig J Della Valle, MD, Chicago, IL<br />

Recurrent instability is among the most common reasons for<br />

revision <strong>of</strong> a total hip arthroplasty. Despite the frequency <strong>of</strong> this<br />

complication, there is a paucity <strong>of</strong> information available that<br />

defines the etiologies <strong>of</strong> instability and strategies for treatment.<br />

Seventy-five consecutive patients with recurrent instability <strong>of</strong> the<br />

hip were classified into six types based on the primary etiology <strong>of</strong><br />

instability: Type I malposition <strong>of</strong> the acetabular component, Type II<br />

malposition <strong>of</strong> the femoral component, Type III abductor deficiency,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


Type IV impingement, Type V late wear <strong>of</strong> the polyethylene liner,<br />

or Type VI unknown etiology. Types I and II were treated with<br />

revision <strong>of</strong> the malpositioned component. Types III and VI were<br />

treated with a constrained acetabular liner. Type IVs were revised by<br />

removing sources <strong>of</strong> impingement and the use <strong>of</strong> a large diameter<br />

femoral head. Type Vs were treated with an exchange <strong>of</strong> the worn<br />

polyethylene liner and a large diameter femoral head. The most<br />

common causes <strong>of</strong> instability were abductor insufficiency (36%)<br />

and cup malposition (33%). At a mean <strong>of</strong> 35.3 months (range,<br />

24 to 78 months) 11 patients re-dislocated (14.6%). Nine <strong>of</strong> these<br />

11 failures were patients who were classified as Type III (abductor<br />

insufficiency) or Type VI (unknown etiology), and were treated with<br />

a constrained liner, five <strong>of</strong> which had been cemented into a wellfixed<br />

shell. Patients with abductor insufficiency (Type III) had the<br />

highest risk <strong>of</strong> failure (55%). By addressing the underlying cause <strong>of</strong><br />

instability at revision surgery, our treatment protocol had an 85%<br />

overall rate <strong>of</strong> success. The highest risk <strong>of</strong> failure was in patients with<br />

abductor insufficiency with a revision for other etiologies having a<br />

success rate <strong>of</strong> 93%.<br />

pApeR No. 346<br />

Total Hip Replacement For The Treatment Of Acute<br />

Femoral Neck Fractures<br />

Giles Hugo Stafford, FRCS, Norfolk, United Kingdom<br />

Susan Charman, BSc, London, United Kingdom<br />

Michael J Borr<strong>of</strong>f, Leeds, West Yorkshire, United Kingdom<br />

Claire Newell, BSc<br />

John Keith Tucker, FRCS, Norwich, United Kingdom<br />

In the majority <strong>of</strong> patients who have suffered a sub-capital fractured<br />

neck <strong>of</strong> femur (#NOF), the functional results <strong>of</strong> hemi-arthroplasty<br />

are acceptable as a significant proportion <strong>of</strong> these patients are<br />

medically unfit and/or have a sedentary lifestyle. The results <strong>of</strong> hip<br />

hemi-arthroplasty have however been shown to be not as good<br />

as total hip replacement (THR) in competent, medically fit (ASA<br />

1-2), high demand, active patients. As a result, there is evidence for<br />

increasing use <strong>of</strong> THR for certain patients with displaced sub-capital<br />

#NOF. We identified 1,302 <strong>of</strong> 157,232 Hospital Episode Statistic<br />

(HES) linked patients between April 2003 and November 2008 in<br />

the 6th <strong>Annual</strong> National Joint Registry <strong>of</strong> England and Wales (NJR),<br />

who had been recorded as having total hip replacement for acute<br />

#NOF. Revison rates at five years were analyzed using Kaplan-Meier<br />

and Cox regression methods. Co-morbidity, 30 day mortality and<br />

length <strong>of</strong> stay were also analysed. The mean age was 71 years (29-96<br />

years) and 966 (76%) were female. The overall cumulative revision<br />

rate following total hip replacement for femoral neck fracture was<br />

1.5% (95% CI: 0.9%, 2.4%) at one year and 2.0% (95%CI: 1.3%,<br />

3.1%) at three years and 2.0% (95% CI: 1.3%, 3.1%) at five years.<br />

The mean (95% CI) length <strong>of</strong> stay in hospital was 16 days. Length <strong>of</strong><br />

stay varied significantly by age and physical status (both p


RSA examinations, Harris Hip, UCLA, WOMAC, SF-12 scores were<br />

obtained at 10 days, six months and annually thereafter with the<br />

furthest patients evaluated at five years. The rate <strong>of</strong> subsidence<br />

was highest in the first six months, and thereafter stabilized with<br />

minimal further subsidence. Patients with body mass index (BMI)<br />

< 30 exhibited less mean subsidence compared to those with BMI<br />

>30 at all time points. Mean UCLA, WOMAC, Harris Hip and SF-<br />

12PCS and MCS scores were improved compared to preoperative<br />

scores. Outliers with stem subsidence <strong>of</strong> greater than 1.5 mm had<br />

higher pain scores and lower WOMAC function scores and warrent<br />

careful RSA follow up. Data at six months-median show mean stem<br />

rotation: 0.13 deg., mean stem translation: 0.05; at one year-rotation:<br />

0.13 deg., translation: 0.05 mm; at two years-rotation: 0.07 deg.,<br />

translation: 0.06 mm; at three years-rotation: 0.13 deg., translation:<br />

0.04 mm; at four years-rotation: 0.13 deg., translation: 0.05 mm.<br />

This cementless, tapered stem demonstrates excellent stability<br />

among young THR patients at four years. Subsidence occurs during<br />

the first six months and thereafter is minimal (not measurable), even<br />

in stems that subside the most during the first six months. There is<br />

no measurable rotation <strong>of</strong> the stems. The subsidence <strong>of</strong> this stem is<br />

comparable to or less than that previously reported for cemented<br />

stems with clinically successful long-term follow up.<br />

pApeR No. 349<br />

Prevention Of Dislocation In Revision THA: Randomized<br />

Clinical Trial Of 36/40 mm Versus 32 mm Head<br />

Donald S Garbuz, MD, Vancouver, BC Canada<br />

Bassam A Masri, MD, Vancouver, BC Canada<br />

Clive P Duncan, MD, Vancouver, BC Canada<br />

Nelson Victor Greidanus, MD, Vancouver, BC Canada<br />

Eric R Bohm, MD, Winnipeg, MB Canada<br />

Craig J Della Valle, MD, Chicago, IL<br />

Allan E Gross, MD, FRCSC, Toronto, ON Canada<br />

Dislocation after revision total hip is a common complication.<br />

The purpose <strong>of</strong> this study was to assess whether a large femoral<br />

head (36/40 mm) would result in a decreased dislocation rate<br />

compared to a standard head (32 mm). A randomized clinical<br />

trial was undertaken to assess the effect <strong>of</strong> large femoral heads on<br />

dislocation after revision total hip. Patients undergoing revision<br />

hip arthroplasty at seven centers were randomized to 32 mm head<br />

or 36/40 mm head. Patients were stratified according to surgeon.<br />

Primary endpoint was dislocation. Rates were compared with<br />

Fisher’s exact test. Secondary outcome measures were quality <strong>of</strong> life:<br />

WOMAC, SF-36 and satisfaction. One-hundred eighty-four patients<br />

were randomized; 94 in the 32 mm head group and 90 in the large<br />

head group. Baseline demographics were similar in the two groups.<br />

Patients were followed from two to five years postoperatively. In the<br />

large head group, dislocation rate was 1.1% (1/90) vs. 8.5% (8/94)<br />

for the 32 mm head (p=0.035). In this study there was no difference<br />

in quality <strong>of</strong> life between the two groups. This randomized clinical<br />

trial demonstrates that a large femoral head (36/40 mm) can<br />

significantly reduce dislocation rate in patients undergoing revision<br />

total hip. As a result <strong>of</strong> this study the authors now routinely use large<br />

heads in all revision hip arthroplasty.<br />

460<br />

pApeR No. 350<br />

What Works Best, a Cemented or Cementless Primary<br />

THA? Minimum 17-year Followup <strong>of</strong> a RCT<br />

Krist<strong>of</strong>f Corten, MD, Pellenberg, Belgium<br />

Robert Barry Bourne, MD, London, ON Canada<br />

Kory Charron, London, ON Canada<br />

Keegan Peter Au, MD, Ottawa, ON Canada<br />

Cecil H Rorabeck, MD, London, ON Canada<br />

Total hip arthroplasty (THA) has been associated with high survival<br />

rates, but debate remains concerning the best fixation mode <strong>of</strong> THA.<br />

We conducted a randomized controlled trial (RCT) with 250 patients<br />

with a mean age <strong>of</strong> 64 years between October 1987 and January<br />

1992 to compare the results <strong>of</strong> cementless and cemented fixation.<br />

Patients were evaluated for revision <strong>of</strong> either <strong>of</strong> the components.<br />

One hundred twenty-seven patients had died (51%) and 12 (4.8%)<br />

were lost to follow up. The minimum 17-year follow-up data (mean,<br />

20 years; range, 17-21 years) <strong>of</strong> 52 patients <strong>of</strong> the cementless group<br />

and 41 patients <strong>of</strong> the cemented group were available for evaluation.<br />

Kaplan-Meier survivorship analysis at 20 years revealed lower survival<br />

rates <strong>of</strong> cemented compared with cementless THA. The cementless<br />

tapered stem was associated with a survivorship <strong>of</strong> 99%. Age younger<br />

than 65 years and male gender were predictors <strong>of</strong> revision surgery.<br />

Radiographic comparison showed mild stress shielding around the<br />

cemented (95%) and cementless (88%) stem. More extensive stress<br />

shielding was found around 12% <strong>of</strong> the cementless stems but this<br />

did not lead to an increased prevalence <strong>of</strong> osteolysis. The efficacy<br />

<strong>of</strong> future RCTs can be enhanced by randomizing patients within<br />

specific patient cohorts stratified to age and gender in multicenter<br />

RCTs. Including only younger patients might improve the efficacy <strong>of</strong><br />

a future RCT with smaller sample sizes being required. A minimum<br />

10-year follow-up period should be anticipated, but this can be<br />

expected to be longer if the difference in level <strong>of</strong> quality between the<br />

compared implants is smaller.<br />

pApeR No. 351<br />

Long Term Follow Up <strong>of</strong> a Modular Hydroxyapatite,<br />

Proximally Coated Femoral Stem<br />

Neil R Bergman, MD, Melbourne, VIC Australia<br />

David E Rothem, MD<br />

Ilan S Freedman, MD, North Caulfield, VIC Australia<br />

Hydroxyapatite coatings were added to titanium alloy femoral stems<br />

to increase the rate and extent <strong>of</strong> bone ongrowth onto uncemented<br />

femoral stems in hip arthroplasty. This stem also increased proximal<br />

metaphyseal loading with a tapered design and added a distal<br />

centralizer to increase endosteal contact and decrease thigh pain.<br />

This is the first study to report on the long-term performance <strong>of</strong><br />

this design. Forty-six patients (53 hips) who underwent cementless<br />

primary hip replacement with this hydroxyapatite coated stem<br />

with average 15.4 year follow were investigated. The acetabular<br />

component used was either a dual geometry or a peripherally<br />

enlarged uncemented shell. In all cases, 26 mm femoral heads<br />

were used. Prospectively collected preoperative, post operative and<br />

last visit Harris Hip Scores were analyzed. The status <strong>of</strong> biological<br />

fixation <strong>of</strong> each femoral component was radiologically and clinically<br />

assessed. No patients in this series required femoral stem revision.<br />

Twelve hips (23%) underwent revision <strong>of</strong> the acetabular component;<br />

10 for periacetabular osteolysis or aseptic loosening and two for hip<br />

dislocation. All patients had clinically and radiologically well fixed<br />

femoral stems at last follow up. The average Harris Hip Score had<br />

improved from a mean <strong>of</strong> 43 preoperatively to a mean <strong>of</strong> 86 at most<br />

recent follow up. With femoral revision as the end point, the survival<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


<strong>of</strong> this modular proximal hydroxyapatite coated stem at average 15.4<br />

year follow up was 100%. This study is the longest follow up <strong>of</strong> this<br />

more flexible stem. Hydroxyapatite proximal coating has facilitated<br />

superior outcomes than those reported for earlier generation<br />

implants.<br />

pApeR No. 352<br />

Tapered Uncemented HA Femoral Stems: 15-22 Year<br />

Survivorship<br />

James A D’Antonio, MD, Sewickley, PA<br />

William N Capello, MD, Indianapolis, IN<br />

William L Jaffe, MD, New York, NY<br />

Rudolph Gerbrand Geesink, MD,PhD, Maastricht, Netherlands<br />

Collarless, tapered, titanium alloy stems <strong>of</strong> several designs have had<br />

great success for 10-15 years follow up. They have demonstrated<br />

high survivorship for fixation with low incidence <strong>of</strong> thigh pain.<br />

A multicenter study began in 1988 and four surgeons continue<br />

to follow 178 patients (182 hips) with minimum 15 year and<br />

maximum 22 year follow up (average 17 years). The patients had an<br />

average age <strong>of</strong> 51.8 years and 50% were males. Thirty-three patients<br />

are deceased and 30 withdrew prior to 15 years. Follow up includes<br />

Kaplan-Meyer survivorship, revisions for any reason, complications<br />

and radiographic analysis which included periprosthetic bone<br />

remodeling. Clinically the patients have demonstrated excellent<br />

early restoration <strong>of</strong> function, a 2% incidence <strong>of</strong> thigh pain and an<br />

average Harris Hip Score <strong>of</strong> 90.2 at last follow up. Thirteen stems<br />

(5%) have been revised but only one stem revised for aseptic<br />

loosening (0.4%). The reasons for femoral revision include: deep<br />

joint infection; periprosthetic fracture; and discretionary revision at<br />

the time <strong>of</strong> acetabular revision. For the patients who were deceased<br />

and the 30 who withdrew prior to 15 years, all <strong>of</strong> those patients had<br />

stable stems at last follow up. Radiographic review demonstrates one<br />

stem that is fibrous stable, the remainder are bony stable, 30% have<br />

minimal bony remodeling, 37% have distal cortical hypertrophy<br />

and 33% have cortical hypertrophy combined with cortical porosity.<br />

Our 15-22 year experience with an HA coated tapered titanium alloy<br />

stem has demonstrated excellent clinical scores, low incidence <strong>of</strong><br />

thigh pain and progressive bone remodeling in 70% <strong>of</strong> the patients.<br />

pApeR No. 353<br />

Modified Superior Approach for THA with Percutaneous<br />

Assistance: Technique and Early Results<br />

James Chow, MD, Phoenix, AZ<br />

William B Kurtz, MD, Nashville, TN<br />

Harbinder S Chadha, MD, Chula Vista, CA<br />

Brad L Penenberg, MD, Beverly Hills, CA<br />

Stephen B Murphy, MD, Boston, MA<br />

The supercapsular and percutaneously-assisted approaches to total<br />

hip arthroplasty (THA) each have had over six years <strong>of</strong> clinical success<br />

with published results rivaling those <strong>of</strong> other minimally-invasive<br />

hip approaches. In an effort to streamline these techniques, increase<br />

the ease <strong>of</strong> instruction and decrease necessary tooling, elements <strong>of</strong><br />

both techniques were combined. This paper describes a superiorlybased<br />

minimally-invasive approach in which the interval between<br />

the piriformis and minimus is exploited. A longitudinal incision in<br />

the superior capsule is used to prepare the femur in-situ. Acetabular<br />

preparation is done through this incision and an additional<br />

percutaneous portal. A total <strong>of</strong> 110 (57 female, 53 male) consecutive<br />

THAs (108 primaries and two revisions) done by the same surgeon<br />

were entered into this study. No IV narcotics and no hip precautions<br />

were used. Patients were encouraged to walk one mile/day at seven<br />

461<br />

days. Follow up was two years, with data continuing to be collected.<br />

Average age was 63.82 (SD=12.56); average body mass index was<br />

29.23 (SD=5.94). Harris Hip Scores (HHS) and UCLA data were<br />

obtained at pre-op, six month, 12 month and 24 month intervals.<br />

Radiographic data was recorded and analyzed by a third party for 66<br />

consecutive THAs. Mean operative duration was 80 minutes (range<br />

40-141), mean blood loss was 328 mLs (range 100-900) and mean<br />

incision length was 7.4 cm (range 5-12). Mean hospital stay was<br />

1.7 days. No instability, neurovascular injuries, infections or perioperative<br />

mortalities occurred. Mean HHS were 45.44 (SD=15.49) at<br />

pre-op, 89.93 (SD=10.91) at six months and 87.26 (SD=14.97) at 12<br />

months. Mean UCLA were 3.98 (SD=1.17) at pre-op, 5.52 (SD=1.37)<br />

at six months and 5.67 (SD=0.58) at 12 months. Radiographically,<br />

mean acetabular component inclination was 40.13 degrees (SD=6.30)<br />

with all femoral & acetabular components well-seated. One posttraumatic<br />

posterior dislocation occurred, requiring re-operation to<br />

a hooded liner and primary repair <strong>of</strong> capsule and external rotator<br />

musculature. Early results <strong>of</strong> this modified minimally-invasive<br />

approach demonstrate safety and reliability in the short-term, with<br />

results better or comparable to those reported by studies regarding<br />

other hip approaches. Clinical results are comparable to those<br />

published for both original techniques from which this technique<br />

was derived. Radiographic results are consistent, and are comparable<br />

to those reported with other approaches. Longer term follow up is<br />

necessary, and is currently being collected.<br />

pApeR No. 354<br />

Long-term outcome <strong>of</strong> Infected Hip and Knee<br />

Arthroplasty treated with DAIR<br />

Rajesh Rout, MD, Oxford, United Kingdom<br />

Jonathon Campion, FRCS, Oxford, United Kingdom<br />

James Ferguson, MRCS<br />

William Jackson, FRCS, Oxford, United Kingdom<br />

Andrew J Price, FRCS, Oxford, United Kingdom<br />

Implant related infection is a complex problem associated with<br />

significant morbidity and mortality. This study considers the long<br />

term (10-year follow up) outcome <strong>of</strong> patients undergoing the<br />

Debridement, Antibiotics and Implant Retention (DAIR) procedure.<br />

Fifty-six study patients undergoing DAIR had data prospectively<br />

collected. Two controls per infection case were matched for age,<br />

sex, type and date <strong>of</strong> surgery. Data was collected with regards to<br />

their premorbid state and surviving patients were contacted with<br />

questionnaires (Oxford scores; SF-12). There were 31 total hip and<br />

25 total knee replacements in the DAIR group (matched to 62 and 50<br />

cases respectively). There was no preoperative significant difference<br />

in age, ASA grade or combined Charlson score. Post operatively<br />

there was no significant difference in the mean Oxford hip/knee<br />

scores (36.2 vs 35.0). There was a significant difference (p


pApeR No. 355<br />

A Randomized Clinical Trial <strong>of</strong> an Intra-Articular<br />

Technique Versus Epidural Infusion in THR<br />

Rajesh Malhotra, MS, New Delhi, India<br />

Tushar Gupta, MBBS<br />

Bhavuk Garg, MS Ortho<br />

Anjan Trikha, MD, New Delhi, Delhi India<br />

Vijay Kumar, MD, New Delhi,India, Delhi India<br />

We compared pain relief after total hip arthroplasty (THA) using<br />

periarticular intraoperative injection along with single dose post<br />

operative injection <strong>of</strong> local anesthetic with the well-established<br />

practice <strong>of</strong> epidural infusion. Seventy patients undergoing elective<br />

THA under combined spinal anesthesia were randomly assigned<br />

to receive either (1) continuous epidural infusion (group B) or<br />

(2) infiltration around the hip joint with a mixture <strong>of</strong> 100 ml <strong>of</strong><br />

bupivacaine (2 mg/ml) + 1 ml ketorolac (30 mg/ml) and 0.5 ml<br />

epinephrine (1mg/ml) at the conclusion <strong>of</strong> surgery combined with<br />

one postoperative intraarticular injection <strong>of</strong> 20 ml <strong>of</strong> bupivacaine<br />

0.5% + 1 ml ketorolac (30 mg/ml)+ 0.5 ml epinephrine (1 mg/ml)<br />

through an intraarticular catheter (group A). All patients received<br />

acetoaminophen 1 gm eight hourly for 72 hours and injection<br />

ketoralac 30 mg every six hourly IV (15 mg if >65 yr 30 mg if 7) was treated by injection<br />

fentanyl 20 µg bolus at 10 min. interval till VAS reduced to 4 after 15 min. then injection fentanyl 20 µg bolus was given at<br />

10 min. interval till VAS


age, gender, cost <strong>of</strong> implant, length <strong>of</strong> stay, year <strong>of</strong> index procedure,<br />

diagnosis, revision and revision reason for both groups. Analysis<br />

was done using Wilcoxon rank sum tests, Pearson’s chi-square tests,<br />

Kaplan Meier methods and Cox regression. Overall cumulative<br />

revision rates (CRRs) remain similar between the two groups<br />

(p=0.20). After adjusting for confounders, uncemented implants<br />

did show a reduced risk <strong>of</strong> revision; uncemented implants were 0.55<br />

times as likely to be revised when compared to cemented implants<br />

(p


ecent films and treatment <strong>of</strong> active decay. Upon return to the TJA<br />

practice, the incidence <strong>of</strong> dental pathology was documented. One<br />

hundred consecutive TJA were seen and cleared by a dentist prior to<br />

TJA. Twenty-three (23%) <strong>of</strong> 100 patients were treated for active decay<br />

prior to being cleared for their arthroplasty procedure. Further, 66<br />

total procedures were performed, indicating that the treated patients<br />

had, on average, 2.9 carious teeth per patient. Utilizing this pathway,<br />

no patient developed TJA infection. A routine pathway in the TJA<br />

patient population, that included pre-operative dental clearance,<br />

demonstrated a true incidence <strong>of</strong> dental pathology <strong>of</strong> 23%, and<br />

treated patients had, on average, 2.9 carious teeth per patient. This<br />

information should help dentists and TJA surgeons understand the<br />

pervasiveness and significance <strong>of</strong> dental pathology in the arthroplasty<br />

population.<br />

pApeR No. 467<br />

uA Controlled-Release Antibiotic Delivery Bone Graft<br />

for Use in Revision Joint Replacement<br />

Amanda E Brooks, PhD, Salt Lake City, UT<br />

Bruce G Evans, MD, Salt Lake City, UT<br />

David Grainger, PhD<br />

Paul C Hogrebe, BS<br />

David C Evans, GED<br />

Infection remains a major complication in total joint revision surgery<br />

with rates ranging from 8-15%. Successful solutions to biomaterialassociated<br />

infection best extend beyond bulk material modifications<br />

to integrate locally delivered pharmaceuticals with wound and defect<br />

filler materials appropriate for large bone defects with prominent<br />

avascular spaces. Coating clinically familiar allograft bone tissue<br />

with an application-tailored, antibiotic releasing polymer shell may<br />

be such a solution in certain applications. To address this hypothesis<br />

we have combined clinically familiar components (allograft bone<br />

filler, degradable polycaprolactone (PCL), polyethylene glycol<br />

(PEG), tobramycin) to create a novel medical device. Using a layer<br />

by layer assembly allograft bone was coated with tobramycin-loaded<br />

PEG and PCL (n=6). The ratio and concentration <strong>of</strong> the polymers<br />

were modified to minimize bolus jettison <strong>of</strong> drug and extend the<br />

release <strong>of</strong> tobramycin. Each allograft fragment or micron-sized<br />

particulate was incubated in phosphate buffered saline for six<br />

weeks at 37C. Tobramycin release was assessed via 1) a custom<br />

fluorescence assay and 2) evaluation <strong>of</strong> the minimal inhibitory<br />

concentration. Tobramycin-loaded layers <strong>of</strong> PCL and PEG were able<br />

to control tobramycin release over the clinically relevant six-week<br />

timeframe preferred to treat peri-operative contamination and avoid<br />

infections. Tobramycin remained bioactive effectively killing E.coli<br />

clinical isolates (10^5 CFU). In addition to releasing bactericidal<br />

concentrations <strong>of</strong> tobramycin over four to six weeks, antibioticloaded<br />

allograft bone has beneficial osteoconductive potential,<br />

likely resulting in decreased revision and joint replacement surgical<br />

infections with improved new bone formation.<br />

pApeR No. 468<br />

uCalorimetry Of Synovial Fluid For Rapid Diagnosis Of<br />

Septic Arthritis<br />

Alec Cikes, MD, Lausanne, Switzerland<br />

Olivier Borens, MD, Lausanne, Switzerland<br />

Andrej Trampuz, MD, Lausanne, Switzerland<br />

Synovial fluid (SF) has limited sensitivity (e.g. Gram stain) or are<br />

slow (e.g. cultures). We evaluated the potential <strong>of</strong> SF calorimetry for<br />

rapid diagnosis <strong>of</strong> septic arthritis in native and prosthetic joints by<br />

detection <strong>of</strong> bacterial heat production. We prospectively included<br />

adult patients with acute arthritis, in whom arthrocenthesis was<br />

464<br />

performed. Septic arthritis was diagnosed by positive Gram stain<br />

and/or SF culture. In parallel, 1 ml SF was inoculated in 2 ml TSB<br />

and incubated at 37°C in an isothermal calorimeter (detection limit<br />

0.25 µW). Detection was defined until heat flow reached e10 µW.<br />

Eighty-nine episodes <strong>of</strong> arthritis were included (median age 66.6 y,<br />

range 24-98 y), <strong>of</strong> which eight (9%) were septic and 81 (91%) were<br />

non-septic, including gout (n=15), undifferentiated arthritis (n=14),<br />

pseudogout (n=13), osteoarthritis (n=13), reactive arthritis (n=11)<br />

or other conditions (n=15). The causative organism was detected by<br />

calorimetry in all eight episodes <strong>of</strong> septic arthritis after a mean <strong>of</strong><br />

4.3 h (range, 2.8-7.5 h). Figure shows the heat flow characteristics;<br />

conventional SF cultures required 24-48 h for growth. S. aureus<br />

(n = 3), S. agalactiae (n=2), S. gallolyticus (n=1), viridans group<br />

streptococci (n=1) or no organism (n=1) grew. Calorimetry <strong>of</strong> SF<br />

allowed accurate discrimination between septic and non-septic<br />

arthritis within eight hours. Faster diagnosis <strong>of</strong> septic arthritis might<br />

prompt earlier treatment and improve their outcome.<br />

pApeR No. 469<br />

uEarly Diagnosis Of Infection By Microbial Heat<br />

Production In Sonication Fluid Of Removed Implants<br />

Olivier Borens, MD, Lausanne, Switzerland<br />

Alec Cikes, MD, Lausanne, Switzerland<br />

Julia Steinrucken, MD<br />

Martin Clauss, MD, Liestal, Switzerland<br />

Andrej Trampuz, MD, Lausanne, Switzerland<br />

Establishing the diagnosis <strong>of</strong> implant-associated infections is<br />

<strong>of</strong>ten difficult, because <strong>of</strong> variable clinical presentations and lack<br />

<strong>of</strong> uniform diagnostic criteria. Sonication <strong>of</strong> removed orthopedic<br />

devices was shown to have superior sensitivity and specificity for<br />

infection. We evaluated the value <strong>of</strong> microcalorimetry as a quick and<br />

reliable tool in the diagnosis <strong>of</strong> infection in sonication fluid from<br />

removed implants. Between 10/2009 and 02/2010, we prospectively<br />

included all removed orthopaedic devices at our institution, which<br />

were subjected to sonication. Periprosthetic tissue cultures were<br />

performed as standard procedure. The removed device was sonicated<br />

in Ringer solution (40 kHz, 1 minute) and the resulting fluid was<br />

cultured and centrifuged (3000 x g, 10 minutes). The resulting<br />

pellet was resuspended in 3 ml tryptic soy broth for isothermal<br />

microcalorimetry (sensitivity <strong>of</strong> 0.25 µW). The detection time until<br />

increase <strong>of</strong> 20 µW was calculated. A 48-channel batch calorimeter<br />

was used to measure the heat flow at 37°C controlled at 0.0001°C.<br />

Thirty-two cases were included (19 males, mean age ± SD was 64<br />

± 16 years). Twenty-six cases were arthroplasties (12 hip, 10 knee,<br />

one shoulder and one ankle prostheses, two spacers) and six cases<br />

osteosynthesis material (five screws, one cement-nail). Thirteen<br />

cases (41%) were infected, <strong>of</strong> which 11 (85%) were positive in<br />

periprosthetic tissue cultures and 10 (77%) in sonication culture.<br />

By microcalorimetry, 12 cases (92%) were positive with a mean<br />

detection time <strong>of</strong> 11.4 h (range, 0.2 h-20.9 h). Microcalorimety <strong>of</strong><br />

sonication fluid showed superior sensitivity for the diagnosis <strong>of</strong><br />

infection with detection time <strong>of</strong>


pApeR No. 470<br />

Does Vitamin E Addiction Affect Bacterial Adherence<br />

On UHMWPE?<br />

Alessandro Bistolfi, Torino, Italy<br />

Michele B<strong>of</strong>fano, Tornino, Italy<br />

Pierangiola Bracco, Torino, Italy<br />

Luigi Costa, Pr<strong>of</strong>, Torino, Italy<br />

Giuliana Banche, Torino, Italy<br />

Valeria Allizond, Torino, Italy<br />

Anna Maria Cuffini<br />

Elena Brach Del Prever, Pr<strong>of</strong>, Turin, Italy<br />

Ultra-high molecular weight polyethylene (UHMWPE) is a<br />

fundamental biomaterial for arthroprostheses. Prosthetic infections<br />

are rare but imply invasive and expensive treatments. Various studies<br />

showed that some bacteria are able to produce a bi<strong>of</strong>ilm and to<br />

adhere to the surface, thus obstructing antibiotics and umoral<br />

immunity intervention. We hypothesized a correlation between the<br />

characteristics <strong>of</strong> the surface <strong>of</strong> the UHMWPE and the adhesion. We<br />

compared sperimental cylinders <strong>of</strong> standard GUR 1050 UHMWPE<br />

and vitamin E-added (0,1%) UHMWPE incubated with a bi<strong>of</strong>ilmproducing<br />

bacterial strain (Staphylococcus epidermidis ATCC 35984).<br />

After incubation the cylinders were centrifuged at 12000 rpm for one<br />

minute to release the attached bacteria that were quantified by TSA<br />

plate counts. The experiments were assayed in triplicate and repeated<br />

a minimum <strong>of</strong> three times. A statistical analysis on results (T-Student<br />

test) was conducted. After seven hours <strong>of</strong> incubation, adhesion rates<br />

were similar, with no statistically relevant differences. A significant<br />

(p


pApeR No. 473<br />

Is Smoking a Risk Factor for Complications After<br />

Elective Primary Total Knee/Hip Arthroplasty?<br />

Jasvinder Singh, MD, Vestavia, AL<br />

Thomas Houston, MD<br />

Brent A Ponce, MD, Birmingham, AL<br />

Grady Maddox, MD, Birmingham, AL<br />

Michael J Bishop, Seattle, WA<br />

Joshua Richman, Birmingham, AL<br />

Elizabeth Campagnna, MS<br />

William G Henderson, PhD, Aurora, CO<br />

Mary Hawn, MD, FACS, Birmingham, AL<br />

Smoking has been linked to complications following many surgical<br />

procedures. The effect <strong>of</strong> smoking on veterans’ outcomes after<br />

elective primary total hip and total knee replacement (THR/TKR) has<br />

not been studied. All elective primary THR/TKR surgeries performed<br />

from 2002 to 2008 in the VA and assessed in the National Surgical<br />

Quality Improvement Program, (n=33,294) were studied. Patients<br />

were stratified by pre-operative smoking status into current, prior<br />

and never smoker. Multivariable logistic regression was used to assess<br />

adjusted risk <strong>of</strong> complications and death. Analyses were adjusted for<br />

age, race/ethnicity, ASA class, work relative value unit (RVU) and<br />

year. Surgical site infection (SSI) was additionally adjusted for wound<br />

classification. Current smokers (n=7,984) were younger (58 versus<br />

66 years) while prior smokers (n=6,297) had higher ASA class (ASA<br />

class 3/4, 72% versus 63%) compared to never-smokers (n=19,013)<br />

(p


pApeR No. 476<br />

Does Bridging With Low Molecular Weight Heparin<br />

Actually Lower The Rate Of Pulmonary Embolism?<br />

James Matthew Saucedo, MD, Chicago, IL<br />

Jason Wayne Savage, MD, Chicago, IL<br />

Erik Brian Eller, MD, Evanston, IL<br />

Mahesh Polavarapu, Chicago, IL<br />

S David Stulberg, MD, Chicago, IL<br />

Pulmonary embolism (PE) is a potentially devastating complication<br />

in total joint arthroplasty (TJA). While the standard <strong>of</strong> care dictates<br />

some form <strong>of</strong> chemoprophylaxis, there is currently no clear consensus<br />

on the best pharmacologic protocol. In this study we explore the rate<br />

<strong>of</strong> PE in primary total joint arthroplasty using three post-operative<br />

anti-coagulation protocols. Between April 2008 and December 2009,<br />

there were 2,376 primary total hip and total knee arthroplasties (THA<br />

and TKA) performed at a single institution. The rate <strong>of</strong> documented<br />

PE was obtained from our anti-coagulation dosing service, and the<br />

medical records were reviewed. We collected demographic data and<br />

stratified patients according to anti-coagulation protocols, which<br />

included warfarin alone, warfarin and enoxaparin, and warfarin and<br />

dalteparin. All were on an identical perioperative protocol, including<br />

anesthesia, weight-bearing status and mobilization. The rate <strong>of</strong> PE<br />

among patients undergoing either THA or TKA was 1.18%. The<br />

rates <strong>of</strong> PE among those on the various anti-coagulation protocols<br />

were: warfarin 0.83%, warfarin and enoxaparin 1.35%, warfarin and<br />

dalteparin 1.36%. Mechanical prophylaxis (sequential compression<br />

devices) was used on all patients. Our data series reflects a higher<br />

rate <strong>of</strong> PE among those on a protocol <strong>of</strong> warfarin plus low-molecular<br />

weight heparin (LMWH) as compared with warfarin alone. This is<br />

counter-intuitive, as the practice <strong>of</strong> adding a LMWH bridge to warfarin<br />

is based on the physiologic understanding that there is a brief hypercoagulable<br />

state after initiating warfarin alone. While there are likely<br />

other variables involved, our results call into question the utility <strong>of</strong><br />

adding a LMWH bridge.<br />

pApeR No. 477<br />

uIn vitro Effect Of Rivaroxaban, A New Anti-Coagulant,<br />

Compared To Enoxaparin On Osteoblasts<br />

Gandhi Nathan Solayar, MD, Dublin 9, Ireland<br />

Pauline Walsh, BSc, PhD, Dublin, Ireland<br />

Kevin James Mulhall, MD, Dublin 03, Ireland<br />

Current treatments for the prevention <strong>of</strong> thromboembolism include<br />

heparin and low-molecular weight heparins (LMWHs). A number <strong>of</strong><br />

studies have suggested that long-term administration <strong>of</strong> these drugs<br />

may negatively affect bone and some have associated their use with the<br />

risk <strong>of</strong> developing osteoporosis. Rivaroxaban (Xarelto) is a new antithrombotic<br />

drug for the prevention <strong>of</strong> venous thromboembolism in<br />

adult patients undergoing elective hip and knee replacement surgery.<br />

This study aimed to investigate the possible effects <strong>of</strong> rivaroxaban on<br />

osteoblast proliferation, function and gene expression compared to<br />

enoxaparin, a commonly used LMWH. Human osteoblast cells were<br />

cultured in the presence <strong>of</strong> varying concentrations <strong>of</strong> rivaroxaban<br />

(0.013-13 µg/ml) or enoxaparin (0.1-10 international units/ml).<br />

The MTS assay was used to assess the effect <strong>of</strong> drug treatments on<br />

cell proliferation. Alkaline phosphatase activity and osteocalcin<br />

expression were used to measure osteoblast function. Changes<br />

in mRNA expression <strong>of</strong> the transcription factor, Runx2, and the<br />

osteogenic factor, BMP-2, were measured by real-time polymerase<br />

chain reaction (PCR). Rivaroxaban and enoxaparin treatment did not<br />

adversely affect osteoblast proliferation. However, both drugs caused<br />

a significant reduction in alkaline phosphatase activity (p


pApeR No. 479<br />

Comparative Assessment Of Surgical Management Of<br />

Recurrent Dislocation After Total Hip Arthroplasty<br />

Ehsan Saadat, BS, San Francisco, CA<br />

Glenn Diekmann, MD, Los Angeles, CA<br />

Steven Takemoto, PhD, San Francisco, CA<br />

Michael D Ries, MD, San Francisco, CA<br />

The objective <strong>of</strong> this study was to investigate the relative success <strong>of</strong><br />

interventions used in revision total hip arthroplasty (THA) to treat<br />

recurrent dislocations, and patient characteristics associated with<br />

success or failure <strong>of</strong> surgical intervention. This was a retrospective<br />

study conducted with approval from the Committee for Human<br />

Research at a large tertiary-care medical center. All cases <strong>of</strong><br />

symptomatic recurrent dislocation from 1998 to 2008 requiring<br />

operative intervention under the direction <strong>of</strong> the senior author<br />

were reviewed. Minimum follow up was two years. Rates <strong>of</strong> success<br />

(achievement <strong>of</strong> a stable hip) were calculated using univariate and<br />

multivariate regression analyses. A total <strong>of</strong> 66 patients (69 hips)<br />

were identified. Fifty-one (74%) were successfully managed with<br />

one revision, nine (13%) required two revisions and nine (13%)<br />

required three or more revisions for successful management <strong>of</strong><br />

recurrent dislocations. Success rates for constrained acetabular liner,<br />

large femoral head (diameter >36mm), trochanteric advancement<br />

and correction <strong>of</strong> malposition were 67%, 68%, 87% and 91%<br />

respectively. In multivariate analysis, correction <strong>of</strong> malposition<br />

and trochanteric advancement were most successful, with odds<br />

ratios <strong>of</strong> 8.5 (CI 0.6 to 123.8) and 3.1 (CI 0.7 to 14.3), respectively.<br />

Previous hip infection and obesity were strongly associated with<br />

failure <strong>of</strong> first attempt at surgical management (OR 12.0, p-value<br />

0.007 for infection; OR 3.5, p-value 0.12 for body mass index >30).<br />

Correction <strong>of</strong> malposition and trochanteric advancement are more<br />

successful than constrained acetabular liner or large femoral head in<br />

management <strong>of</strong> recurrent dislocations. Previous hip infection and<br />

obesity are major negative prognostic factors for success <strong>of</strong> revision<br />

THA for dislocation.<br />

pApeR No. 480<br />

Risk Factors for PJI & Postoperative Mortality following<br />

THA in Medicare Patients<br />

Kevin John Bozic, MD, MBA, San Francisco, CA<br />

Edmund Lau, MS, Menlo Park, CA<br />

Kevin Ong, PhD<br />

Steven M Kurtz, PhD, Philadelphia, PA<br />

Harry E Rubash, MD, Boston, MA<br />

Thomas Parker Vail, MD, San Francisco, CA<br />

Daniel J Berry, MD, Rochester, MN<br />

Patient-related risk factors for postprosthetic joint infection (PJI)<br />

and postoperative mortality in elderly total hip arthroplasty (THA)<br />

patients are poorly understood. The purpose <strong>of</strong> this study was to<br />

identify specific co-morbidities associated with increased risk <strong>of</strong><br />

PJI and postoperative mortality in Medicare THA patients. The<br />

Medicare 5% sample was used to calculate the relative risk <strong>of</strong> PJI<br />

and mortality as a function <strong>of</strong> baseline medical co-morbidities in<br />

40,919 primary THA patients between 1998 and 2007. The impact <strong>of</strong><br />

30 co-morbid conditions on PJI and mortality were examined using<br />

Cox regression, controlling for age, sex, race, Census region, public<br />

assistance and all other baseline co-morbidities. Adjusted hazard<br />

ratios were constructed for each condition, and Wald’s X2 statistic<br />

ranked the degree <strong>of</strong> association <strong>of</strong> co-morbid conditions with PJI or<br />

postoperative death. The most significant independent risk factors<br />

for PJI (in order <strong>of</strong> significance, p


edge loading occurs with the hip flexed such as when rising from<br />

a chair. This study compares the wear rates <strong>of</strong> anterosuperior and<br />

posterior edge loading. All alumina bearings revised at one center<br />

were collected over 12 years (1998-2010). A chromatically encoded<br />

confocal measurement machine with a resolution <strong>of</strong> 20 nanometers<br />

was used to measure the sphericity and surface topography <strong>of</strong> the<br />

femoral heads. Each case was analyzed for the type <strong>of</strong> edge loading.<br />

The orientation and location <strong>of</strong> the stripe wear on the head was used<br />

to differentiate between posterior and anterosuperior edge loading.<br />

Fifty-six alumina femoral heads were collected with median time<br />

to revision 2.7 years. Fourty-eight (86%) cases had edge loading<br />

wear comprised <strong>of</strong> 28 (50%) with posterior edge loading, 11 (20%)<br />

with anterosuperior edge loading, six (11%) with both posterior<br />

and anterosuperior edge loading and three (5%) with unknown<br />

orientation. The average volumetric wear rate for anterosuperior<br />

edge loading was 1.5 mm3/yr, and the average volumetric wear rate<br />

for posterior edge loading was 0.7 mm3/yr (p=0.05). Anterosuperior<br />

edge loading has a higher wear rate than posterior edge loading.<br />

Edge loading occurs during different activities, and may be related<br />

to cup position.<br />

pApeR No. 528<br />

Outcome Of Ceramic Bearing Surfaces In Primary<br />

Conventional THA: Analysis Of 40448 Procedures<br />

Richard De Steiger, MD, Victoria, Australia Australia<br />

Stephen Graves, MD, Adelaide, South Austalia Australia<br />

David Davidson, MD, University Of Adelaide, South Australia<br />

Philip Ryan, FAFPHM, Adelaide, SA Australia<br />

Lisa Miller, BSc<br />

Kara Cashman, BSc (HONS), Adelaide, SA Australia<br />

Concerns regarding wear and peri-prosthetic lysis have led to an<br />

increasing use <strong>of</strong> ceramics as a bearing surface in conventional total<br />

hip arthroplasty (THA). This study analyses data on over 40,000<br />

procedures undertaken on patients with a diagnosis <strong>of</strong> osteoarthritis.<br />

The data was obtained from a comprehensive national database<br />

that prospectively recorded these procedures over a 10-year period.<br />

Analyses were undertaken to examine the impact <strong>of</strong> age, gender,<br />

femoral head size and prostheses as well as determining the reasons<br />

for revision. The principal outcome measure was time to first revision<br />

using Kaplan-Meier estimates <strong>of</strong> survivorship. There have been 27,310<br />

ceramic-on-ceramic (CoC) and 13,138 ceramic-on-polyethylene<br />

(CoP) procedures recorded for conventional THA. The cumulative<br />

percent revision at nine years for CoC is 4.0 (3.6-4.4) and for CoP<br />

5.9 (5.0-6.9). There have been 47 revisions for implant breakage, 33<br />

for acetabular components and 14 for femoral heads. This gives a<br />

recorded incidence <strong>of</strong> breakage <strong>of</strong> 1/1,000 which is greater than that<br />

reported in the literature. Satisfactory outcomes can be achieved for<br />

ceramic bearing surfaces in conventional THA which are similar to<br />

metal on polyethylene. There is a slightly increased risk <strong>of</strong> revision<br />

for implant breakage.<br />

pApeR No. 529<br />

Alumina Ceramic Bearings for Total Hip Arthroplasty:<br />

Minimum 10-Year Follow-up<br />

James A D’Antonio, MD, Sewickley, PA<br />

Alumina ceramic bearings are scratch resistant and have superior<br />

lubrication and wear resistance compared to other bearings. In 1996<br />

a prospective, randomized, controlled, multicenter trial comparing<br />

alumina ceramic bearings to metal-on-conventional polyethylene<br />

was initiated. Five surgeons from five centers now continue to follow<br />

278 patients (289 cases) at and beyond 10 years. Three patient<br />

cohorts were randomized: group I had ceramic bearings with a<br />

469<br />

porous titanium cup; group II with a roughened HA cup; group<br />

III, a control metal-on-polyethylene with a porous titanium cup.<br />

There is no difference in the demographics between the patients<br />

who received alumina ceramic bearings and those who received the<br />

metal-on polyethylene controls. Follow up includes Kaplan-Meyer<br />

survivorship, revisions for any reason, radiographic analysis and<br />

complications including squeaking. The clinical performance with<br />

Harris Hip Score was no different for the study groups. Survivorship<br />

revision for any reason at 12 years is 96.8% for the alumina ceramic<br />

cases compared to 91.3% for the control metal-on-polyethylene cases<br />

(p=0.0046). There have been no revisions for aseptic loosening in<br />

any patient cohort. The only ceramic bearing surface failure occurred<br />

at nine years when a peripheral rim fracture fragment led to a liner<br />

revision. Osteolysis was noted in 17.6% <strong>of</strong> the control group and<br />

in none <strong>of</strong> those patients receiving the ceramic bearing. Occasional<br />

squeaking has occurred in two ceramic patients (0.9%). Alumina<br />

ceramic bearings for THA in a young and active patient population<br />

have performed well out to 12 years with a high survivorship and<br />

low rate <strong>of</strong> complications.<br />

pApeR No. 530<br />

Seven to Eleven Year Follow-Up <strong>of</strong> Highly Cross-linked<br />

Polyethylene Liners in Total Hip Arthroplasty<br />

Bryan T Jarrett, Boston, MA<br />

Charles R Bragdon, PhD, Boston, MA<br />

Michael Doerner, BA<br />

Meridith Greene, Boston, MA<br />

Henrik Malchau, MD, Boston, MA<br />

Highly cross-linked polyethylene (HXLPE) has become one <strong>of</strong> the<br />

most widely utilized bearing surfaces for total hip arthroplasty (THA).<br />

This study presents the long-term clinical and wear results <strong>of</strong> HXLPE<br />

at a minimum <strong>of</strong> seven years. We identified 386 primary THAs (363<br />

patients) using HXLPE liners coupled with either 26 mm, 28 mm<br />

or 32 mm femoral heads. Clinical evaluation included the Harris<br />

Hip, WOMAC, EQ-5D, SF-36 and UCLA activity scores. In addition<br />

to plain radiograph assessment, the Martell Hip Analysis Suite was<br />

used to measure head penetration over time which was compared<br />

using a t-test at the longest follow-up time point. We obtained follow<br />

up on 214 patients (230 hips, 217 with survey follow up, 171 with<br />

radiographic follow up) consisting <strong>of</strong> 99 females and 115 males with<br />

an average age at surgery <strong>of</strong> 59 years (28-84). Thirty-four patients<br />

died, 46 were lost to follow up, 45 are pending follow up and 24<br />

patients were revised, none for polyethylene wear or liner fracture.<br />

No osteolysis was found on plain radiographs. Average survey scores<br />

(±stdev) were HHS: 87.19±15.74, WOMAC pain: 1.81±3.28, EQ-5D<br />

HSI: 0.82±0.22, SF-36 physical: 46.37±10.65 and UCLA: 6.13±2.04.<br />

The average femoral head penetration rate <strong>of</strong> HXLPE was significantly<br />

different from that <strong>of</strong> conventional polyethylene (18.3±65 µm/year<br />

versus 113.4±131.3µm/year, p


pApeR No. 531<br />

The In vivo Volumetric Wear Of Highly Cross-Linked<br />

Polyethylene In Total Hip Arthroplasty (THA)<br />

Geraint Emyr Rhys Thomas, MA, MBBS, MRCS, Oxford,<br />

United Kingdom<br />

David J Beard, DPhil, Oxford, United Kingdom<br />

Adrian Taylor, MD, Oxford, United Kingdom<br />

Peter McLardy-Smith, FRCS, Oxford, United Kingdom<br />

Roger Gundle, Oxford, United Kingdom<br />

Barbara Marks, Oxford, United Kingdom<br />

Harinderjit Singh Gill, PHD, Oxford, United Kingdom<br />

David W Murray, MD, Oxford, United Kingdom<br />

Sion Glyn-Jones, MA MBBS, Oxford, United Kingdom<br />

The use <strong>of</strong> highly cross-linked polyethylene (HXLPE) is now<br />

commonplace for total hip arthroplasty (THA). Hip simulator<br />

studies and short-term in vivo measurements suggest that the wear<br />

rate <strong>of</strong> some types <strong>of</strong> HXLPE is significantly less than conventional<br />

ultra high molecular weight polyethylene (UHMWPE). The aim <strong>of</strong><br />

this study was to measure the volumetric wear <strong>of</strong> HXLPE compared<br />

to UHMWPE liners in a prospective, double-blind randomized,<br />

controlled trial using radiostereometric analysis (RSA). Fifty-four<br />

subjects were randomized to receive hip replacements with either<br />

UHMWPE liners or HXLPE liners. All subjects received a cemented<br />

stem and uncemented acetabular component. Clinical outcomes<br />

were assessed and the 3D penetration <strong>of</strong> the head into the socket was<br />

determined for a minimum <strong>of</strong> seven years using RSA. Volumetric<br />

wear rate was calculated, with attention to the direction <strong>of</strong> wear as<br />

well as cup abduction and version. At a minimum <strong>of</strong> seven years<br />

post-operatively, the volumetric wear rate was significantly lower in<br />

the group treated with HXLPE (4.30 mm3/yr SE 3.17 mm3/yr) than<br />

it was in the UHMWPE group (25.75 mm3/yr SE 3.02 mm3/yr) (p <<br />

0.001). The direction <strong>of</strong> wear was supero-lateral in both groups. This<br />

study demonstrates that HXLPE has significantly reduced volumetric<br />

wear in vivo. This may decrease the incidence <strong>of</strong> failure due to aseptic<br />

loosening. It may also allow the use <strong>of</strong> larger, more stable metal on<br />

polyethylene couples.<br />

pApeR No. 532<br />

A Prospective, Randomized Study <strong>of</strong> Crosslinked and<br />

Non-crosslinked Poly for THA at 10-Year Follow-up<br />

C Anderson Engh Jr, MD, Alexandria, VA<br />

Robert Hopper, PhD, Alexandria, VA<br />

Sarah Beykirch, Alexandria, VA<br />

Henry Ho, MSC, Alexandria, VA<br />

Supatra Sritulanondha, Alexandria, VA<br />

Charles A Engh, Sr MD, Alexandria, VA<br />

Crosslinked liners were introduced with the promise that they would<br />

substantially reduce polyethylene wear and therefore osteolysis<br />

and reoperation. In 1999, our institution initiated a prospective<br />

randomized study to compare the outcome <strong>of</strong> total hip arthroplasty<br />

patients with either non-crosslinked (conventional) liners or liners<br />

that had been crosslinked with 5 Mrad <strong>of</strong> gamma-irradiation and<br />

heat treated to eliminate free radicals (crosslinked). This study<br />

reports 10-year outcome, comparing head penetration, osteolysis<br />

and revision rates. Patient enrollment included 114 conventional<br />

liners and 116 crosslinked liners. Mean age at surgery was 62.0 for<br />

the conventional liners and 62.5 for the crosslinked liners (p=0.70).<br />

Implant survivorship was evaluated using the Kaplan-Meier method.<br />

Polyethylene wear was measured with Martell’s Hip Analysis Suite<br />

s<strong>of</strong>tware and osteolysis was evaluated radiographically. There have<br />

470<br />

been five liner exchanges related to wear and osteolysis among the<br />

conventional group and none among the crosslinked group. Using<br />

revision for wear-related complications as an endpoint, survivorship<br />

at 10-years was 93.3±5.8% for conventional and 100% for crosslinked<br />

liners (p=0.03, log rank). The mean linear wear rate was 0.23 mm/<br />

yr for conventional and 0.04 mm/yr for cross-linked (p


three years would show no difference in wear damage than liners<br />

implanted for a shorter period <strong>of</strong> time. The 76 analyzed liners were<br />

obtained from our Institutional Review Board-approved implant<br />

retrieval system. A previously described wear grading protocol was<br />

used, which looked at three areas <strong>of</strong> the liner: articular surface,<br />

backside and rim. For the articular surface, eight damage modes<br />

were graded on a 0 to 3 scale for a maximum damage score <strong>of</strong> 96.<br />

The average articular surface wear grade was 21.5 + 5 (range 11 to<br />

38). Thirty-five liners had screw hole creep and 48 liners had rim<br />

impingement. Incipient rim cracks without fracture were identified<br />

in five XLPE liners. In liners implanted >3 years (nine liners), the<br />

mean wear score was 22.8+6. In those implanted 3 years showed no difference in<br />

surface wear scores compared to those with LOI


atios adjusted for case mix differences (AOR). There were no<br />

significant differences between the two groups for PE (AOR=0.94;<br />

95% CI 0.75-1.17), DVT (AOR=0.84; 0.70-1.03), major bleed<br />

(AOR=0.95; 0.77-1.17) and RTT for infection (AOR=1.06; 0.76-<br />

1.46). There were significantly fewer deaths in the LMWH group<br />

(aspirin 0.65%, LMWH 0.51%, AOR=0.77; 0.61-0.98). In this large,<br />

matched group <strong>of</strong> THR patients, a small but statistically significant<br />

survival benefit was seen at 90 days following surgery when LMWH<br />

was used as thromboprophylaxis. Rates <strong>of</strong> symptomatic venous<br />

thrombo embolism events were not significantly different between<br />

the groups. Residual confounding cannot be fully excluded.<br />

pApeR No. 538<br />

Irrigation and Debridement for Periprosthetic<br />

Infections: Does the Organism Matter?<br />

Thomas K Fehring, MD, Charlotte, NC<br />

Susan Marie Odum, Charlotte, NC<br />

Adolph V Lombardi Jr, MD, New Albany, OH<br />

Mr Benjamin Zmistowski, Philadelphia, PA<br />

Nicholas M Brown, BS, Davenport, IA<br />

Jeffrey TP. Luna, MD, Saugus, MA<br />

Keith Fehring, MD, Richmond, VA<br />

The success <strong>of</strong> open debridement with component retention<br />

(ODCR) varies depending upon host factors, organism virulence<br />

and time to treatment. Historical data reveals a failure rate <strong>of</strong> 68%<br />

increasing to 82% in patients with resistant organisms. Limited series<br />

report improved success if the infecting organism is a Streptococcal<br />

organism. The purpose <strong>of</strong> our study was to determine the failure<br />

rate <strong>of</strong> ODCR in periprosthetic Streptococcus infections versus other<br />

organisms. A multi-center review <strong>of</strong> periprosthetic infections from<br />

1987 to 2008 at four institutions was performed. Selection criteria<br />

included treatment with ODCR for infected primary arthroplasty.<br />

Failure <strong>of</strong> ODCR was defined as the need for any additional<br />

surgery due to infection. A total <strong>of</strong> 211 patients met inclusion<br />

criteria, 42 infected with Streptococcus and 169 infected with other<br />

organisms. At minimum two-year follow up, 106 <strong>of</strong> 211 patients<br />

failed (50%). Twenty-four <strong>of</strong> 42 Streptococcus failed (57%) and<br />

82 <strong>of</strong> 169 other organisms failed (48.5%). This difference was not<br />

significant (p=0.20). Open debridement with component retention<br />

is an attractive low morbidity treatment option for periprosthetic<br />

infection. However, the reported failure rate is high. Anecdotally,<br />

it has been assumed that those infected with streptococcus have a<br />

better prognosis following irrigation and debridement than those<br />

infected with other organisms. The data presented here does not<br />

support ODCR even if the infecting organism is streptococcus.<br />

Caution must be exercised when choosing this surgical approach to<br />

treat periprosthetic infections.<br />

pApeR No. 539<br />

Is The INR Cut<strong>of</strong>f Of 2.0 An Arbitrary Value?<br />

Patricia L Hansen, BS, Middletown, DE<br />

Mr Benjamin Zmistowski, Philadelphia, PA<br />

Camilo Restrepo, MD, Philadelphia, PA<br />

James J Purtill, MD, Philadelphia, PA<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Richard H Rothman, MD, Philadelphia, PA<br />

There is a discrepancy in published data regarding the influence that<br />

anticoagulation has on the prevalence <strong>of</strong> pulmonary embolism (PE)<br />

following joint arthroplasty. Despite recommendations <strong>of</strong> reaching<br />

a post-operative international normalized ratio (INR) level <strong>of</strong> 2-3,<br />

recent studies have shown that aggressive anticoagulation (INR>2)<br />

472<br />

can lead to hematoma formation and the risk <strong>of</strong> subsequent<br />

infection. The hypothesis <strong>of</strong> this study was that administration <strong>of</strong><br />

oral anticoagulants aiming for INR >2 does not provide absolute<br />

protection against PE. Using our institutional database, 629<br />

patients undergoing evaluation for PE (CT, VQ scan or pulmonary<br />

angiography) following orthopedic procedures between 2004 and<br />

2008 were identified. Of these, 173 patients had proven PE and 456<br />

were negative for PE. All patients at our institution receive warfarin for<br />

prophylaxis aiming for an INR level <strong>of</strong> 2.0. There were no significant<br />

differences between mean INR values in patients with or without PE<br />

on the date <strong>of</strong> scan (p=0.63) or the five days prior (p values from<br />

0.13 to 0.99). The percentage <strong>of</strong> patients who had an INR>2.0 with<br />

PE was not different from the percentage <strong>of</strong> patients who had an<br />

INR>2.0 without PE on POD 0-3 (p values from 0.20 to 0.42). In<br />

this study, we did not observe a clinically relevant difference in INR<br />

values <strong>of</strong> patients with and without PE. Additionally, we did not<br />

observe a difference in the proportion <strong>of</strong> patients with an INR>2.0<br />

with and without PE. Given this evidence, INR>2.0 did not appear<br />

to significantly protect against PE in our cohort. Due to the known<br />

risks associated with anticoagulation, the INR cut<strong>of</strong>f <strong>of</strong> 2.0 should<br />

be reconsidered.<br />

pApeR No. 540<br />

uIncreased Complication Rates Following THA And<br />

TKA In Morbidly Obese Patients<br />

Richard J Friedman, MD, Charleston, SC<br />

Susanne Hess, MD<br />

Scott D Berkowitz, MD, Montville, NJ<br />

Martin Homering, PhD, Wuppertal, Germany<br />

The incidence <strong>of</strong> morbid obesity and total joint arthroplasty are<br />

rising, yet it is controversial whether morbid obesity is a risk<br />

factor for increased complications following total hip (THA) and<br />

total knee arthroplasty (TKA). To determine the effects <strong>of</strong> morbid<br />

obesity (body mass index (BMI) >= 40) on the early (up to six to<br />

eight weeks) postoperative complication rate following surgery,<br />

data from the multinational RECORD clinical trial program on<br />

rivaroxaban for the prevention <strong>of</strong> venous thromboembolism (VTE)<br />

in THA and TKA were retrospectively analyzed. A total <strong>of</strong> 12,355<br />

patients (6,870 THA and 5,485 TKA) were reviewed to identify<br />

complication rates in those with a BMI >= 40 (3.6%) compared to<br />

normal weight (BMI < 25, 24.3%), overweight (BMI 25-29, 39.8%)<br />

and obese (BMI 30-39, 32.3%). Explorative analyses compared the<br />

rates <strong>of</strong> adjudicated VTE, bleeding and investigator reported adverse<br />

events by BMI groups. The morbidly obese patients were younger<br />

than the other groups, especially for TKA. Operative times were<br />

similar between all the groups. The overall complication rate was<br />

higher with a BMI >= 40 for both THA and TKA. Specifically, there<br />

were increases in erythema, peripheral edema, bacterial infections,<br />

respiratory disorders, neurologic complications, gastrointestinal<br />

complications and cardiac arrhythmias. These data support a<br />

correlation between morbid obesity and increased complications<br />

following THA and TKA. With this information, surgeons can have<br />

a more informed discussion with their patients about the potential<br />

risk <strong>of</strong> postoperative complications in morbidly obese patients.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


pApeR No. 706<br />

Correlation Between Radiographic Measures <strong>of</strong><br />

Acetabular Morphology with 3D Femoral Head<br />

Coverage<br />

Andrew E Anderson, PhD, Salt Lake City, UT<br />

Benjamin Hansen, MD, Durham, NC<br />

Lucas Anderson, MD, Salt Lake City, UT<br />

Michael D Harris, BS<br />

Christopher L Peters, MD, Salt Lake City, UT<br />

Relationships between radiographic measures <strong>of</strong> acetabular<br />

morphology and 3D coverage <strong>of</strong> the femoral head are unknown. In<br />

this study, radiographic measurements <strong>of</strong> acetabular morphology<br />

were correlated to coverage. Retrospective Institutional Review Board<br />

approved study with 16 retroverted subjects (positive cross-over sign)<br />

and 26 controls (negative cross-over). Radiographic measurements<br />

<strong>of</strong>: posterior wall sign (PWS), posterior wall distance (PWD), lateral<br />

center edge angle (LCEA), acetabular index (AI), extrusion index<br />

(EI), coxa pr<strong>of</strong>unda and acetabular angle (AA) quantified by two<br />

orthopaedic surgeons on an AP radiograph. Three-dimensional<br />

hip models were constructed from CT images to quantify femoral<br />

head coverage. Radiographic measures were averaged between<br />

observers and correlated to total and regional (posterior/anterior)<br />

femoral head coverage (Pearson’s r, or Spearman’s rho). Correlation<br />

assumed strong when r or rho >0.5. Mann-Whitney tests used to<br />

compare 3D femoral head coverage between groups (significant if<br />

p


CTL images and a CT scan were included. Acetabular version<br />

measurements using serial CTL radiographs available from six week<br />

postoperative and annual follow-up intervals were compared to<br />

measurements from pelvic CT scans. Pearson’s regression analysis was<br />

performed to assess correlation between CTL and CT measurements.<br />

Acetabular anteversion measurements by CTL averaged 26.1 degrees<br />

(range: -2 to 48.3º). Anteversion assessed by CT averaged 28.8<br />

degrees (range: -7 to 54º). Pearson’s regression analysis indicated<br />

strong correlation (r- 0.82; p


<strong>of</strong> the fractured components was similar to those that did not fail.<br />

SEM analysis indicated that failures were due to fatigue. Evidence <strong>of</strong><br />

corrosion was common in this retrieval series. Fractured components<br />

were severely corroded, although the failure mechanism was not<br />

a direct result <strong>of</strong> the corrosion. The prevalence and severity <strong>of</strong> the<br />

interfacial corrosion in this series suggests potential release <strong>of</strong><br />

metallic ions or debris into the surrounding joint space.<br />

pApeR No. 712<br />

What Is The Benefit Of Introducing New Hip And Knee<br />

Prostheses?<br />

Stephen Graves, MD, Adelaide, South Austalia<br />

Rajan Anand, MBBS, Adelaide, South Australia<br />

Richard De Steiger, MD, Victoria, Australia<br />

David Davidson, MD, University Of Adelaide, South Australia<br />

Philip Ryan, FAFPHM, Adelaide, SA Australia<br />

Lisa Miller, BSc<br />

Kara Cashman, BSc (HONS), Adelaide, SA Australia<br />

New joint replacement prostheses are being continually introduced<br />

into the market. The underlying purpose is to improve patient<br />

outcomes. This study was undertaken to determine how many new<br />

prostheses were associated with improved patient outcomes. Data<br />

was obtained from a comprehensive national database. Analysis<br />

was undertaken on all hip and knee prostheses introduced into<br />

the market between January 1, 2003 and the December 31, 2007.<br />

Outcome analysis was undertaken only on new prostheses used on<br />

at least 100 occasions. They were compared to the combined result<br />

<strong>of</strong> the three best performing established hip and knee prostheses<br />

that had a minimum follow up <strong>of</strong> five years. The principle outcome<br />

measures were the rate <strong>of</strong> revision per observed component years and<br />

time to first revision using Kaplan-Meier estimates <strong>of</strong> survivorship.<br />

Most prostheses introduced into the market during the study period<br />

were used on less than 100 occasions. Of those that had been used<br />

in a sufficient number <strong>of</strong> procedures, 30% (10 out <strong>of</strong> 33) <strong>of</strong> the hip<br />

replacements and 29% (eight out <strong>of</strong> 28) <strong>of</strong> the knee replacements<br />

had a significantly higher risk <strong>of</strong> revision than the established<br />

prostheses. None <strong>of</strong> the newer prosthesis had a lower risk <strong>of</strong> revision<br />

than the established prostheses. This study indicates that there was<br />

no benefit to the introduction <strong>of</strong> new prostheses into this national<br />

market during the five year study period. Importantly 30% <strong>of</strong> the<br />

new prostheses were associated with a significantly worse outcome<br />

compared to the better established prostheses.<br />

pApeR No. 713<br />

Hip and Knee Osteoarthritis: Shared Decision Making<br />

and Factors Affecting Patient Treatment Choice<br />

Laura Bozzuto, AB, Hanover, NH<br />

Catharine Clay, Hanover, NH<br />

Ivan M Tomek, MD, Lebanon, NH<br />

Stephen R Kantor, MD, Lebanon, NH<br />

Stephen Kearing, MS<br />

Shared decision making enhances patient-centered care by educating<br />

patients about evidence-based treatment options, setting realistic<br />

expectations for outcomes and by eliciting personal values related to<br />

the decision. This prospective observational study sought to identify<br />

factors involved in patient choice about treatments for hip and<br />

knee osteoarthritis. Patients with hip (n=84) or knee osteoarthritis<br />

(n=149) who were deemed candidates for replacement by their<br />

orthopaedic surgeon (1) completed a pre-video questionnaire, (2)<br />

watched a video decision aid (DA) that reviewed treatment options<br />

and (3) completed a follow-up questionnaire. Chart review was used<br />

475<br />

to determine if patients followed through with their choice in the<br />

subsequent three months. Fewer patients were unsure about their<br />

treatment preference after viewing the DA (19% before vs. 13%<br />

after) and understood key facts associated with the decision (Hip:<br />

83%, Knee: 81%). Patients who had decided on treatment before the<br />

DA tended to retain their preferred option (92%). Patients tended<br />

to follow through with their post-DA choice (82% leaning toward<br />

surgery and 92% leaning toward non-surgical) within three months.<br />

Symptom severity, SF-12 PCS, and personal value scores (get pain<br />

relief, avoid surgery) were significant predictors <strong>of</strong> patient choice<br />

and treatment follow through (p d 0.05). After watching the DA,<br />

most patients understood treatment options, benefits and risks, were<br />

clear about their personal values and followed through with their<br />

chosen treatment. Clinical factors and personal patient values were<br />

both associated with treatment follow through. Decision support<br />

programs that elicit these factors may guide patients in making better<br />

quality osteoarthritis treatment decisions.<br />

pApeR No. 714<br />

Patients Feel that <strong>Orthopaedic</strong> Surgeons are<br />

Undercompensated for Total Hip and Knee<br />

Replacement<br />

Jared R H Foran, MD, Golden, CO<br />

Neil P Sheth, MD, Charlotte, NC<br />

Brett Russell Levine, MD, Chicago, IL<br />

Craig J Della Valle, MD, Chicago, IL<br />

Scott M Sporer, MD, Wheaton, IL<br />

Aaron Glen Rosenberg, FACS, MD, Chicago, IL<br />

Joshua J Jacobs, MD, Chicago, IL<br />

Wayne Gregory Paprosky, MD, Winfield, IL<br />

Medical economics and physician reimbursement have become<br />

increasingly crucial issues in the United States over the past decade.<br />

The purpose <strong>of</strong> this study was to evaluate patient perception <strong>of</strong><br />

orthopaedic surgeon reimbursement for total hip (THA) and<br />

knee (TKA) arthroplasty. A total <strong>of</strong> 634 consecutive patients in an<br />

arthroplasty practice were surveyed. Patients were asked what they<br />

believed a surgeon should be paid for performing THA and TKA. The<br />

survey explicitly stated that the patient response should only include<br />

the surgeon’s fee (including the 90-day global period) and NOT the<br />

cost <strong>of</strong> hospitalization, operating room expenses, etc. Patients were<br />

then asked to estimate what Medicare actually reimbursed for each<br />

<strong>of</strong> these procedures. Finally, the survey revealed the true average<br />

national Medicare reimbursement rate for THA ($1,378) and TKA<br />

($1,430), and patients were asked if this was ‘much lower,’ ‘somewhat<br />

lower,’ ‘about right,’ ‘somewhat higher,’ or ‘much higher’ than what<br />

a surgeon should earn. On average, patients thought that surgeons<br />

should receive $18,501 for THA and $16,822 for TKA. Patients<br />

estimated actual Medicare reimbursement to be $11,151 for THA<br />

and $8,902 for TKA. Seventy percent <strong>of</strong> patients stated that Medicare<br />

reimbursement was ‘much lower’ than what it should be, and only<br />

1% felt that it was higher than it should be. Patients perceived the<br />

value <strong>of</strong> THA and TKA to be nearly an order <strong>of</strong> magnitude greater<br />

than current Medicare reimbursement. Many patients commented<br />

that given this discrepancy, surgeons may drop Medicare, which may<br />

decrease access to quality hip and knee replacements.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


pApeR No. 715<br />

A Comprehensive Program can Reduce Hospital<br />

Readmission Rates after Total Joint Arthroplasty<br />

Charles J Jordan, MD, Tenafly, NJ<br />

Ryan F Michels, New York, NY<br />

James D Slover, MD, New York, NY<br />

Joseph A Bosco, III MD, New York, NY<br />

Hospital readmission within 30 days <strong>of</strong> discharge is an important<br />

quality indicator <strong>of</strong> healthcare delivery. However, few studies have<br />

examined the impact <strong>of</strong> a comprehensive program designed to<br />

reduce readmission rates. The purpose <strong>of</strong> this study is to examine<br />

the effect <strong>of</strong> a comprehensive program designed to reduce 30-day<br />

hospital readmission rates after total joint replacement in a large,<br />

academic medical center. In 2007, we initiated a comprehensive<br />

program designed to reduce the rate <strong>of</strong> readmissions <strong>of</strong> patients who<br />

have undergone total hip and total knee arthroplasty. This program<br />

consisted <strong>of</strong> four main components: 1) Institution <strong>of</strong> infrastructure<br />

to enable outpatient workup <strong>of</strong> venous thromboembolism (VTE);<br />

2) System-wide efforts to decrease surgical site infection (SSI) rate;<br />

3) Early follow up with primary care physicians after discharge; 4)<br />

Education efforts to increase physician awareness <strong>of</strong> the financial<br />

and quality-related ramifications <strong>of</strong> readmissions following hip and<br />

knee replacement. We then analyzed our rates <strong>of</strong> readmission for<br />

any reason for patients with total knee and total hip replacements<br />

within 30 days <strong>of</strong> surgery. These rates were calculated for two<br />

years before our initiative was instituted (2005-2006), and for the<br />

three years since the program was initiated (2007-2009). We then<br />

compared these rates to determine if our initiative was successful<br />

in reducing readmission rates. Standard statistical analysis was<br />

performed comparing our readmission rates before and after the<br />

start <strong>of</strong> our initiative. Readmission rates for the two years preceding<br />

our intervention (2005 and 2006) were 3.70 and 3.29 for total hip<br />

replacement (THR) and total knee replacement (TKR) per 100 cases<br />

respectively. In the three years following our intervention these rates<br />

fell to 1.78 and 1.98 for THR and TKR per 100 cases respectively. This<br />

represents a 47.2% reduction <strong>of</strong> readmission for THR and 39.8%<br />

for TKR in our study. Both these results were statistically significant<br />

(p


abstracted from the medical records <strong>of</strong> 1,802 Medicare beneficiaries<br />

who underwent THA from 2002-2007 in the Medicare Patient<br />

Safety Monitoring System. To adjust for patient characteristics and<br />

comorbidities, the hierarchical generalized linear modeling approach<br />

was used to assess the odds <strong>of</strong> a change in the rates <strong>of</strong> LOS and<br />

readmission during the study period. The overall rate <strong>of</strong> readmission<br />

in the 30 days after discharge was 123/1,802 (6.8%). The 10 most<br />

common reasons for readmission were: congestive heart failure<br />

(21%), chronic ischemic heart disease (16%), cardiac dysrhythmias<br />

(11%), osteoarthrosis (10%), pneumonia (9%), general symptoms<br />

(8%), disorders <strong>of</strong> fluid, electrolyte and acid-base balance (7%),<br />

chronic bronchitis (7%), diabetes mellitus (6%) and disorders <strong>of</strong><br />

the urethra and urinary tract (5%). There was no difference in the<br />

rate <strong>of</strong> readmission from 2002-2004 (7.1%) to 2005-2007 (6.3%)<br />

(OR 0.90, 95% CI 0.63-1.30, p=0.58). The overall mean LOS was<br />

4.2 ± 2.2 days. There was a significant reduction in LOS from 2002-<br />

2004 (4.4 ± 2.5 days) to 2005-2007 (3.8 ± 1.7 days) (OR 1.28,<br />

95%CI 1.25-1.31, p


posteR No. p002<br />

Efficacy <strong>of</strong> Mechanical Prophylaxis Against Venous<br />

ThromboEmbolism (VTE) in Major Joints Arthroplasty<br />

Mohammed Atef Diab, MD, Dorchester, United Kingdom<br />

Peter Ward, MD, Dorchester, United Kingdom<br />

Kerry Lim, MBBCh<br />

Ian W Barlow, FRCS, Dorchester, United Kingdom<br />

<strong>Orthopaedic</strong> surgeons are increasingly challenged to find<br />

a prophylaxis regimen that protects patients from venous<br />

thromboembolism (VTE) with minimizing adverse outcome such<br />

as bleeding. The constituents <strong>of</strong> an optimal regimen that prevents<br />

thromboembolic complications after total hip and knee replacement<br />

remain controversial. Today with better pain management, rapid<br />

mobilization <strong>of</strong> patients postoperatively and shorter hospital stays,<br />

some authors questioned whether routine chemoprophylaxis is<br />

necessary, especially because <strong>of</strong> the potential for complications such<br />

as bleeding, prolonged wound drainage and hematomas. The purpose<br />

<strong>of</strong> the present study was to evaluate the efficacy <strong>of</strong> the mechanical<br />

prophylaxis alone against symptomatic VTE following total hip<br />

and knee arthroplasty. This is a retrospective study which involved<br />

1,100 total joint arthroplasty in 970 patients who had undergone<br />

primary and revision total hip and knee arthroplasty between 2004-<br />

2009 in the same institution. All patients, except those who were<br />

already receiving warfarin for cardiovascular problems but including<br />

those who had a known history <strong>of</strong> the so-called classic risk factors<br />

for VTE, were considered for entry into the study. All radiology<br />

requests for each patient checked through PACS (patient’s archived<br />

computerized system). Investigation included venogram, duplex<br />

scan, CT pulmonary angiogram (CTPA) only if within three months<br />

<strong>of</strong> the joint replacement. All patients are treated intraoperatively<br />

and postoperatively with knee level elastic compression stockings,<br />

foot and calf intermittent pneumatic compression sleeves. Regional<br />

anesthesia was used in most patients and all patients were mobilized<br />

from bed within 24 hours after surgery. There were 531 primary total<br />

hip replacement (THR), 37 revision THR, 470 primary total knee<br />

replacement (TKR) and 23 revision TKR. Routine screening for VTE<br />

was not used in this study; only symptomatic VTE was investigated.<br />

The mean age <strong>of</strong> the patients was 69 years. We investigated 109<br />

symptomatic patients out <strong>of</strong> 1,100 joints arthroplasty using duplex<br />

scan in 50, venogram in 28 and CTPA in 31 patients. We only reported<br />

and treated above knee symptomatic DVT and pulmonary embolism<br />

(PE), below knee DVT were not treated or included in this study.<br />

Eight patients (0.76%) developed symptomatic above knee DVT and<br />

10 patients (0.9%) developed symptomatic PE. One patient had fatal<br />

PE (0.09%). Wound hematoma developed in four patients (0.4%).<br />

Only one patient required surgical drainage; the other three treated<br />

conservatively. The present study showed the efficacy <strong>of</strong> mechanical<br />

prophylaxis against symptomatic VTE. Our results <strong>of</strong> 0.7%<br />

symptomatic DVT and 0.9% symptomatic PE compares favorably<br />

with results <strong>of</strong> many studies using pharmacological prophylaxis<br />

like warfarin and low molecular weight heparin. Although some<br />

patients developed wound hematomas, the 0.4% figure is much less<br />

compared with figures (2.5%-5.8% in some studies) recorded with<br />

pharmacological prophylaxis. No patients developed other bleeding<br />

complications. This result should be viewed with the knowledge that<br />

our study included patients with the so-called classic high risk factors<br />

for the development <strong>of</strong> VTE. The lower prevalence <strong>of</strong> symptomatic<br />

VTE complications in our study suggests that mechanical prophylaxis<br />

alone may be sufficient even in high risk groups with the advantage<br />

<strong>of</strong> much less bleeding complications.<br />

478<br />

posteR No. p003<br />

uZoledronic Acid (ZOL) Infusion Reduces Femoral<br />

Bone Loss Following Total Hip Arthroplasty (THA)<br />

David Forrest Scott, MD, Spokane, WA<br />

Jennifer Woltz, Seattle, WA<br />

Christine Loiseau, BS, Spokane, WA<br />

Significant proximal femoral remodeling occurs after total hip<br />

arthroplasty (THA), with regions <strong>of</strong> bone loss and hypertrophy.<br />

Fifty-one patients (mean age, 61.2 yrs; range, 33-84 yrs) participated<br />

in a prospective, blinded, randomized, placebo-controlled study.<br />

Zoledronic acid (ZOL) 5 mg intravenous infusion (n=27) or saline<br />

placebo (n=24) was administered at two weeks and one year after<br />

primary cementless THA. Dual energy X-ray absorptiometry (DXA)<br />

scans <strong>of</strong> the seven femoral region Gruen zones were performed<br />

preoperatively and three to seven days, six weeks, six months, and<br />

one and two years postoperatively. Two-year data were available for<br />

a subset <strong>of</strong> pts (ZOL, n=18; placebo, n=16). A single type <strong>of</strong> implant/<br />

articulation was used for all cases. Harris hip scores were recorded<br />

to assess post-arthroplasty pain and functionality. There were no<br />

statistical differences in age, gender or body mass index between<br />

groups. Bone mineral density (BMD) in Gruen zone 1 decreased<br />

2.8% at two years in the placebo group, but increased 16.8% in<br />

the ZOL group (P


and 202 (range 23-563) days, respectively. Some 6.4% <strong>of</strong> initially<br />

culture-negative patients became MSSA-positive after an average<br />

<strong>of</strong> 253 (range 16-573) days. Two patients (0.37%) became newly<br />

MRSA-positive. Staphylococcus aureus decolonization with intranasal<br />

mupirocin and topical chlorhexidine was effective but not<br />

persistent in a significant proportion <strong>of</strong> patients. A small number <strong>of</strong><br />

previously-uncolonized patients became colonized. Staphylococcus<br />

aureus screening and decolonization protocols must be repeated<br />

prior to any re-admission, regardless <strong>of</strong> prior colonization status.<br />

posteR No. p005<br />

Hip Arthroplasty after Intramedullary Hip Screw<br />

Fixation<br />

Stephen J Incavo, MD, Houston, TX<br />

Jesse Exaltacion, MD, Cebu, Cebu, Philippines<br />

Philip C Noble, PhD, Houston, TX<br />

Vasilios Mathews, MD, Houston, TX<br />

Brian S Parsley, MD, Houston, TX<br />

We are unaware <strong>of</strong> any series <strong>of</strong> hip arthroplasty after intramedullary<br />

fixation <strong>of</strong> intertrochanteric hip fractures. We retrospectively<br />

reviewed our experience with these cases. There were four males<br />

and 12 females with an average age <strong>of</strong> 74 years (range: 53-87 years).<br />

The indications for hip arthroplasty were nonunion with failed<br />

fixation in 10, avascular necrosis in four and progression <strong>of</strong> hip<br />

arthritis in two. Of note, nine <strong>of</strong> 16 patients ultimately developed<br />

a nonunion <strong>of</strong> the greater trochanter after hip arthroplasty. The<br />

greater trochanter was considered a separate fracture fragment in<br />

only five <strong>of</strong> 16 cases. In these five cases, no trochanteric grip plates<br />

were used for postop fixation (three bolts, two heavy sutures) and<br />

none united. Postoperative trochanteric fracture occurred in four<br />

cases. A trochanteric slide osteotomy was performed in four cases<br />

stabilized by cerclage wires or trochanteric grip plates and all <strong>of</strong><br />

these cases progressed to trochanteric union. After intramedullary<br />

nail treatment, the greater trochanter is at risk for fracture due to the<br />

lateral entry site <strong>of</strong> the lag screw or to bone loss <strong>of</strong> the medial greater<br />

trochanter from the large proximal diameter <strong>of</strong> the nail. Careful<br />

handling <strong>of</strong> the trochanter and the use <strong>of</strong> trochanteric grip plate with<br />

or without trochanteric slide osteotomy is recommended.<br />

posteR No. p006<br />

Femoral Neck Fractures Following Hip Resurfacing<br />

Arthroplasty<br />

Gulraj Matharu, BSc, Birmingham, United Kingdom<br />

Mr Matthew Revell, Birmingham, United Kingdom<br />

Paul Pynsent, PhD<br />

Femoral neck fractures are one <strong>of</strong> the main causes <strong>of</strong> failure<br />

following hip resurfacing arthroplasty with a prevalence <strong>of</strong> 1-3%<br />

quoted in the literature. The aim <strong>of</strong> this study was to determine the<br />

prevalence <strong>of</strong> femoral neck fractures and time to fracture in patients<br />

undergoing hip resurfacing arthroplasty at a tertiary referral center,<br />

and to assess the complication rate following revision arthroplasty.<br />

All patients undergoing hip resurfacing arthroplasty at our center<br />

who subsequently underwent revision arthroplasty for a femoral<br />

neck fracture were identified from our database. Case notes were<br />

analyzed and demographic data, details <strong>of</strong> primary and revision<br />

arthroplasty and any complications following revision arthroplasty<br />

were extracted. Between October 1997 and December 2009, 3,435<br />

hip resurfacing arthroplasty procedures were performed. Femoral<br />

neck fractures occurred in 30 patients giving a prevalence <strong>of</strong> 0.87%.<br />

Mean age was 63.0 years, and 50% (n=15) were female. Median time<br />

to fracture was 64 days (range three days to 11.2 years). All fractures<br />

were treated by single stage revision. Postoperative complications<br />

479<br />

were classified as local (superficial wound infection; n=1, 3.3%),<br />

mechanical (aseptic loosening; n=3, 10%) and systemic (pulmonary<br />

embolism; n=1, 3.3%). Two patients underwent further surgery for<br />

aseptic loosening; one had revision <strong>of</strong> the acetabular component<br />

and one had revision <strong>of</strong> the femoral component. Two patients<br />

died during follow up for reasons unrelated to surgery. The largest<br />

published single center series <strong>of</strong> femoral neck fractures following<br />

hip resurfacing arthroplasty known to the authors are presented.<br />

The low prevalence <strong>of</strong> fractures reported in our series highlights the<br />

good results that can be achieved by experienced surgeons routinely<br />

performing resurfacing procedures. However, complication rates<br />

following revision arthroplasty are not negligible and surgeons<br />

should guide patients with this in mind.<br />

posteR No. p007<br />

Morselized Autografting for Acetabular Ro<strong>of</strong> Defects in<br />

THA for DDH with HA-Coated Cementless Cup<br />

Tamon Kabata, MD, Kanazawa, Ishikawa, Japan<br />

Takuya Nakamura, MD, Toyama, Japan<br />

Toru Maeda, MD, Kanazawa, Japan<br />

Kazunori Tanaka, MD<br />

Hironori Yoshida, MD<br />

Yoshitomo Kajino, MD, Kanazawa, Ishikawa, Japan<br />

Kyo-Ichi Ogawa, MD<br />

Shintaro Iwai, MD<br />

Hiroyuki Tsuchiya, MD, Kanazawa, Japan<br />

Reconstruction <strong>of</strong> superolateral acetabular ro<strong>of</strong> defects is a critical<br />

problem in primary total hip arthroplasty (THA) for developmental<br />

dysplasia <strong>of</strong> the hip (DDH). Morselized autografting is an easy<br />

procedure that also facilitates remodeling. However, its risk <strong>of</strong><br />

mechanical failure, long-term clinical results and graft incorporation<br />

to the implants are not known. The purpose <strong>of</strong> this study was to<br />

assess the outcome <strong>of</strong> primary THA with a hydroxyapatite (HA)coated<br />

cementless cup and morselized autograft to augment<br />

acetabular ro<strong>of</strong> defects in patients with DDH. A total <strong>of</strong> 173 hips in<br />

155 DDH patients with moderate to severe acetabular ro<strong>of</strong> defects<br />

reconstructed by morselized autograft with HA-coated cups were<br />

included in this study. Magnitude <strong>of</strong> the defects was evaluated by<br />

socket center-edge angle (Sugano, 1995): 31 hips were between -10<br />

and 0 degrees, 49 hips were between 1 and 10 degrees, and 93 hips<br />

were between 11 and 20 degrees. Mean follow-up duration was 49<br />

months. All cups were stable and obtained bone ingrown fixation<br />

to the host bone even though socket center-edge angle was around<br />

0 degrees. Reorientation <strong>of</strong> the bone trabeculae in the graft was<br />

observed within 12 months in all hips. Radiolucent lines at the graftcup<br />

interval were seen only in nine hips. Cup surfaces appeared to<br />

be osteointegrated to the graft in most cases. HA-coated cups with<br />

morselized autografting showed excellent stability and sufficient<br />

bone stock recovery. Remodeling <strong>of</strong> the graft was speedy, and bone<br />

ongrowth fixation appeared to be obtained at the graft-cup interval.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


posteR No. p008<br />

Porous Tantalum Components in the revision <strong>of</strong> Failed<br />

Acetabular Cups -5 YEAR FU<br />

Ana Isabel Perez Torres, MD, Gijon, Spain<br />

Mariano Fernandez-Fairen, MD, Barcelona, Spain<br />

Antonio Murcia-Mazon, MD, Gijon, Spain<br />

Pr<strong>of</strong>essor Antonio Murcia Asensio, Pruvia-Llanera, Spain<br />

Antonio Merono, MD, Gijon, Spain<br />

Agustin Blanco Pozo, MD, Burgos, Spain<br />

Jorge Ballester, Barcelona, Spain<br />

The primary purpose <strong>of</strong> this study was to analyze the minimum<br />

five-year clinical and radiographic results obtained in a consecutive<br />

series <strong>of</strong> 263 cases <strong>of</strong> failed acetabular components in total hip<br />

arthroplasties revised by means <strong>of</strong> the trabecular metal (TM)<br />

acetabular system. The secondary purpose was to consider these<br />

results in relation to the acetabular bone deficiency present at the<br />

time <strong>of</strong> revision. Between July 2000 and December 2002, 263<br />

consecutive patients across five centers underwent to a revision<br />

surgery <strong>of</strong> a failed acetabular component in which TM acetabular<br />

components were used. Study involved 150 women and 113 men<br />

with a mean <strong>of</strong> 69.5 years. Clinical evaluations were performed using<br />

the Harris hip score (HHS), the WOMAC and UCLA activity scale.<br />

Implant and screw position, polyethylene wear, radiolucent lines,<br />

gaps, and osteolysis were assessed. Preoperatively, acetabular bone<br />

deficiency was categorized using the classification <strong>of</strong> Paprosky et al.<br />

Statistical analysis was performed using nonparametric correlations.<br />

The overall mean follow up was 73.6 months and no patient was lost<br />

to follow up The overall mean follow up was 73.6 months and no<br />

patient was lost to follow up. The preoperative HHS rating improved<br />

from 43.6 ± 11.4, to 82.1 ± 10.7. WOMAC score from 42.9 ± 15.4<br />

to 80 ± 19 at one-year follow up and 78.0 ± 15.8 at the last review.<br />

The median UCLA score was 3 pre-revision, rising to 6 at the last<br />

evaluation. There was no evidence <strong>of</strong> new osteolysis foci. None <strong>of</strong><br />

the patients was re-revised for loosening. There were eight cases <strong>of</strong><br />

hip dislocation (3%). The cumulative prosthesis survival was 99.2%<br />

at five years. No correlation found between the degrees <strong>of</strong> acetabular<br />

bony defect and the magnitude <strong>of</strong> clinical results. In addition, the<br />

use <strong>of</strong> component augments allowed us to minimize the volume <strong>of</strong><br />

morsellized allograft used for defect repair. Continued follow up <strong>of</strong><br />

this cohort will be essential to determine the long-term performance<br />

<strong>of</strong> tantalum in revised acetabular components with tougher definition<br />

criteria <strong>of</strong> migration and loosening. In conclusion, the analysis <strong>of</strong><br />

this consecutive series <strong>of</strong> acetabular revisions with the TM acetabular<br />

component demonstrates promising midterm results similar to<br />

those reported by other authors. We report reproducible results<br />

in obtaining a stable and durable acetabular revision composite<br />

without deterioration through minimum <strong>of</strong> five years.<br />

posteR No. p009<br />

Does a Longer Wait for Surgery Affect Patient<br />

Satisfaction After Total Hip Arthroplasty?<br />

Todd Blumberg, BS, Houston, TX<br />

Adam Brekke, Houston, TX<br />

Uche Osadebe, San Antonio, TX<br />

Gregory William Stocks, MD, Houston, TX<br />

Kenneth B Mathis, MD, Houston, TX<br />

Ryan Nunley, MD, Saint Louis, MO<br />

Philip C Noble, PhD, Houston, TX<br />

Satisfaction after total hip arthroplasty (THA) is thought to be<br />

dependent on several factors, including pre-op diagnosis, ethnicity,<br />

body mass index (BMI), education-level, age and expectations.<br />

480<br />

One factor that has not been explored is whether the duration <strong>of</strong><br />

hip symptoms prior to joint replacement affects satisfaction with<br />

the outcome <strong>of</strong> the procedure. A total <strong>of</strong> 143 primary, unilateral<br />

THA patients (51% male, average age: 63 years) were enrolled in<br />

this study with Institutional Review Board approval. At a minimum<br />

follow up <strong>of</strong> one year (avg: 2.1 yrs), each patient completed a selfadministered<br />

“hip function questionnaire” consisting <strong>of</strong> 124 items<br />

regarding demographics, satisfaction, expectations, symptoms<br />

and functional abilities. To assess the effect <strong>of</strong> delaying operative<br />

treatment, patients were divided into three groups according to the<br />

period from the onset <strong>of</strong> symptoms until THA: (i) 2 yrs). Patient satisfaction did not vary with gender, age,<br />

BMI, diagnosis or ethnicity but was dependent on the length <strong>of</strong> time<br />

between onset <strong>of</strong> hip problems and the joint replacement operation.<br />

At approximately two years post-op, 17% <strong>of</strong> the early surgery group<br />

was dissatisfied with their outcome vs. 8% <strong>of</strong> the 1-2yr group (p=.01)<br />

and 8% <strong>of</strong> the >2yr group (p


width and head/neck ratio, a smaller spherical bearing surface and<br />

reduced neck <strong>of</strong>fset from the medullary canal. Therefore, surgical<br />

treatment limited to localized re-contouring <strong>of</strong> the head/neck<br />

pr<strong>of</strong>ile may fail to address significant components <strong>of</strong> the underlying<br />

abnormality.<br />

posteR No. p011<br />

Optimal Orientation <strong>of</strong> Hip Resurfacing Components<br />

Minimizes Impingement During Functional Activities<br />

Matthew T Thompson, Houston, TX<br />

Steven Schroder, MD, Long Beach, CA<br />

Molly M Usrey, Houston, TX<br />

Philip C Noble, PhD, Houston, TX<br />

The risk <strong>of</strong> edge-loading after hip resurfacing is a function <strong>of</strong> the<br />

positioning <strong>of</strong> the prosthetic components and the kinematic demands<br />

<strong>of</strong> each patient. This study was performed to determine whether the<br />

range <strong>of</strong> motion (ROM) <strong>of</strong> the resurfaced hip can be optimized by<br />

coupling the anteversion <strong>of</strong> the acetabular cup with the anteversion<br />

<strong>of</strong> the proximal femur. Ten patient-specific 3D computer models <strong>of</strong><br />

the normal hip were generated from CT scans. Femoral anteversion<br />

and other morphologic parameters were measured for each patient.<br />

CAD models <strong>of</strong> a standard resurfacing system (3 mm cup) were<br />

virtually implanted in 45 degrees <strong>of</strong> abduction, and 20 degrees <strong>of</strong><br />

anteversion. Hip ROM was measured through virtual simulations <strong>of</strong><br />

six functional activities known to induce impingement. The virtual<br />

maneuvers were repeated with each acetabular component realigned<br />

in 10 and 0 degrees <strong>of</strong> anteversion. Comparisons were made<br />

between total cup+femoral anteversion and minimum acceptable<br />

values <strong>of</strong> hip motion in performing each functional maneuver. The<br />

average femoral anteversion was 11.4°±7.1° (range: 1.0° to 19.3°).<br />

Combined cup and femoral anteversion correlated directly with<br />

flexion (r2=0.50, p


signal changes with histopathology from retrieved tissue. Seventeen<br />

patients undergoing revision THA obtained preoperative MRIs.<br />

Tissue was obtained from specific anatomic sites correlating with<br />

MRI. Histopathology and MRI images were reviewed blinded, by<br />

an experienced pathologist and radiologist, respectively. Patients<br />

were divided into three groups. Group I: control tissue from patients<br />

undergoing exchange to constrained liner within 12 months <strong>of</strong> index<br />

arthroplasty. Group II: osteolysis tissue from patients undergoing<br />

revision THA. Group III: tissue from patients with symptomatic<br />

metal on metal articulations. Histopathology was graded using the<br />

modified Mirra classification. Distinct MRI signal patterns were<br />

observed for each group. Group I exhibited low signal intensity<br />

without discernible debris. Histopathology was in 100% concordance<br />

with absence <strong>of</strong> particulate debris. Group II exhibited two patterns,<br />

one <strong>of</strong> a non-homogenous intermediate signal which was interpreted<br />

as involving polymeric debris (polymethylmethacrylate (PMMA)<br />

and polyethylene) with a concordance <strong>of</strong> 57%. All tissue samples<br />

contained polyethylene debris, however 43% also contained<br />

metal. The second pattern observed was mixed low/intermediate<br />

signal interpreted as involving both metallic and polymeric debris.<br />

Concordance was 86%. Again all samples contained polyethylene,<br />

but 14% did not contain metal. Group III had a distinct signal<br />

pattern described as homogenous high signal interspersed with<br />

fine intermediate signal. The histopathology revealed lymphocytic<br />

infiltrate without microscopic metal debris with 100% concordance.<br />

MRI was able to distinguish between tissue containing particulate<br />

debris and normal periprosthetic tissue without debris.<br />

posteR No. p015<br />

Infected THA: Do We Need Two-Stage Revision in All<br />

Cases?<br />

Horim Choi, MD, Boston, MA<br />

Hany Bedair, MD, Newton, MA<br />

Young-Min Kwon, MD, PhD, Boston, MA<br />

Sandra Bliss Nelson, MD<br />

Andrew A Freiberg, MD, Boston, MA<br />

Henrik Malchau, MD, Boston, MA<br />

This study compares the clinical outcome between patients<br />

receiving the second stage re-implantation <strong>of</strong> a planned two-stage<br />

revision arthroplasty and those in whom articulating spacer was<br />

retained as a long-term treatment for infected total hip arthroplasty<br />

(THA). Forty-three infected THAs were treated with implantation<br />

with an articulating spacer consisting <strong>of</strong> a cemented cup and<br />

cemented femoral stem. Twenty-one hips underwent a second stage<br />

reimplantation (re-implantation group) and 22 hips did not have<br />

a second surgery and retained the spacer (spacer group) as a final<br />

treatment. The mean follow up for the re-implantation and spacer<br />

groups was 65 months (range, 20-109) and 56 months (range, 14-<br />

108), respectively. In the re-implantation group, there were two<br />

subsequent revisions (two/21): one for septic failure <strong>of</strong> spacer and<br />

another for aseptic loosening <strong>of</strong> a re-implanted cementless stem. In<br />

the spacer group, there were three revisions (three/22) <strong>of</strong> the spacer:<br />

two hips had a recurrent infection at 27 and 36 months, and the<br />

third hip showed symptomatic loosening <strong>of</strong> the spacer stem at 74<br />

months follow up. At the latest follow up, average Harris hip score<br />

was 69, 78 points and the UCLA activity score was 3.9, 4.2 points<br />

for the re-implantation and spacer group, respectively. There was<br />

one patient on antibiotic suppression in the re-implantation group,<br />

and four in the spacer group. The results <strong>of</strong> this study suggest that<br />

long-term retention <strong>of</strong> temporary spacer for infected THA may lead<br />

to a successful treatment outcome comparable to that <strong>of</strong> two-stage<br />

revision arthroplasty.<br />

482<br />

posteR No. p016<br />

Preoperative Templating and Intraoperative<br />

Radiograph Comparison for Primary Total Hip<br />

Arthroplasty<br />

Harpal Singh Khanuja, MD, Cockeysville, MD<br />

Robin Nestor Goytia, MD, Bellaire, TX<br />

Maria S Goddard, MD, Winston Salem, NC<br />

Tarun Bhargava, MD, Wichita, KS<br />

Lynne C Jones, PhD, Baltimore, MD<br />

During total hip arthroplasty, intraoperative anatomic landmarks<br />

are compared with preoperative radiograph templating to ensure<br />

appropriate restoration <strong>of</strong> the hip center <strong>of</strong> rotation, <strong>of</strong>fset and<br />

leg length. Postoperative radiographs are used to assess the final<br />

reconstruction. The authors report whether an intraoperative hip<br />

radiograph aids in assessment <strong>of</strong> the reconstruction. Seventy-five<br />

total hip arthroplasties performed between November 2006 and<br />

January 2008, utilizing intraoperative radiographs, were evaluated<br />

prospectively. Cases that used intraoperative fluoroscopy were<br />

excluded. Preoperatively, films were templated using acetate templates.<br />

The intraoperative film was taken with the acetabular component and<br />

femoral trial in place and compared to the templated radiograph. All<br />

aspects <strong>of</strong> the restoration were assessed including acetabular version,<br />

leg length and component size. Subsequent changes were recorded<br />

in the operative report. At three-month follow up, restoration was<br />

re-assessed with a low anterior-posterior pelvis radiograph. In 50<br />

cases (66.67%), unanticipated adjustments were made after review<br />

<strong>of</strong> the intraoperative radiograph. In 12 cases (16%), no changes were<br />

made; in the remaining cases, an anticipated change was made after<br />

radiographic confirmation. In 44 cases (57%) femoral component<br />

size or position was changed primarily for leg length and in 28<br />

cases (37%) adjustments were made to the acetabular component<br />

position. At final follow up, average postoperative acetabular version<br />

and inclination were 13.46 ± 6.10º and 40.74 ± 5.55º, respectively.<br />

Mean postoperative leg length discrepancy was 1.95 ± 4.90 mm.<br />

Intraoperative radiographs provide a valuable tool for evaluating<br />

proper component position, size, and leg length. In over 60% <strong>of</strong><br />

cases, unanticipated changes were made based on this intraoperative<br />

radiograph.<br />

posteR No. p017<br />

High Incidences <strong>of</strong> Bony Abnormality in Impingement<br />

Patient With or Without Acetabular Labral Tear<br />

Yong-chan Ha, Pr<strong>of</strong>, Seoul, Republic <strong>of</strong> Korea<br />

Jae-heon Jeong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Young-Kyun Lee, MD, Seongnam-Si, Republic <strong>of</strong> Korea<br />

Hyung-min Ji, MD, Seongnam, Republic <strong>of</strong> Korea<br />

Kyung-Hoi Koo, MD<br />

Ki-Choul Kim, MD, Pohang City, Gyeongsangnamdo, Republic <strong>of</strong><br />

Korea<br />

Bun-Jung Kang, MD, Pohang, Gyeongsangnamdo, Republic <strong>of</strong><br />

Korea<br />

Tae-young Kim, Pr<strong>of</strong>, Anyang, Republic <strong>of</strong> Korea<br />

Mechanical symptoms in the hip joint are well known to be<br />

related to labral tears and anterior acetabular chondral defects. It<br />

is also well recognized that acetabular labral tears rarely occur in<br />

the absence <strong>of</strong> an osseous abnormality. However, no study has yet<br />

evaluated the prevalences <strong>of</strong> osseous abnormalities in patients with<br />

mechanical symptoms. The purpose <strong>of</strong> this case-control study was to<br />

determine prevalences <strong>of</strong> structural bony abnormalities predisposing<br />

femoroacetabular impingement by comparing patients with and<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


without mechanical symptoms. We performed this comparative<br />

study on 151 patients (151 hips; mean patient age 44.8 years;<br />

range 16-73 years) with mechanical symptoms, who underwent<br />

multi-detector computed tomography (MDCT) arthrography (the<br />

symptomatic group), and 151 age, gender, site (left or right) and<br />

time (at diagnosis) matched control patients who were performed<br />

MDCT due to urete stone (the asymptomatic group). Acetabular<br />

evaluations, which included cranial and central anteversion<br />

measurements and anterior and lateral center edge angles, were<br />

performed in a standardized manner. Femoral parameters evaluated<br />

included alpha angle and neck shaft angles. In addition, we evaluated<br />

the incidences and characteristics <strong>of</strong> structural bone abnormalities<br />

in labral tear group with mechanical symptoms. One hundred and<br />

twenty one hips (80.1%) among the 151 symptomatic hips and<br />

82 hips (54.3%) among the 151 asymptomatic hips had at least<br />

one structural bony abnormality predisposing femoroacetabular<br />

impingement (p


Patients who lived alone were more likely to experience severe pain<br />

(52% vs. 43% THA, 45% vs. 36% TKA, p45) compared with 63 nonobese<br />

patients (BMI 45 (24%), than for patients with BMI


posteR No. p024<br />

Wear and Surface Damage <strong>of</strong> Retrieved Ceramic-on-<br />

Ceramic Acetabular Liners<br />

Jonathan H Lee, MD, New York, NY<br />

Dan Chen, MS, New York, NY<br />

Timothy M Wright, PhD, New York, NY<br />

Douglas E Padgett, MD, New York, NY<br />

Ge<strong>of</strong>frey H Westrich, MD, New York, NY<br />

Ceramic-on-ceramic bearings are associated with negligible wear;<br />

however, concerns exist regarding metal transfer, fracture and<br />

squeaking. We classified amount and type <strong>of</strong> damage <strong>of</strong> retrieved<br />

ceramic-on-ceramic liners. Nine surgeons revised 15 aluminaon-alumina<br />

total hip arthroplasties (THA). Liners were evaluated<br />

for damage and graded: Grade 1 (no markings), Grade 2 (some<br />

metal transfer present, light markings or 1”’); Grade<br />

4 (metal transfer 3 lines >1’”); Grade 5<br />

(metal transfer >20% <strong>of</strong> surface area). Femoral head damage was<br />

graded and compared to its paired acetabular liner. Clinical records<br />

were analyzed to correlate liner damage to body mass index (BMI),<br />

duration <strong>of</strong> implantation, position, femoral head wear, neck taper,<br />

gender and failure mode. Mean patient age was 56.5 years, mean<br />

implant duration 38.7 months, mean BMI 27.6, average abduction<br />

angle 49.4°, mean femoral head wear grade 3.4 and mean acetabular<br />

liner wear grade 2.4. Failure modes were liner breakage, infection,<br />

loss <strong>of</strong> fixation, squeaking, instability and fracture. Wear grade <strong>of</strong><br />

the femoral head was the only characteristic significantly correlated<br />

with wear grade <strong>of</strong> the acetabular shell (R-squared=0.4, F=0.02).<br />

Acetabular wear was seen exclusively along the equator in 73% <strong>of</strong><br />

the liners with the remainder exhibiting equatorial as well as polar<br />

wear. Femoral head wear was predominantly located from the<br />

equator to the superior pole. Retrieved ceramic liners were analyzed<br />

and corelations were assessed between clinical and acetabular wear<br />

grade. Significant correlation was observed between ceramic head<br />

and liner damage.<br />

posteR No. p025 AlteRNAte pApeR<br />

Improved Statistical Analysis <strong>of</strong> Radiographic Wear<br />

Data from Total Hip Replacements<br />

Bryan T Jarrett, Boston, MA<br />

David P Nicholls, PhD<br />

David Zurakowski PhD, Boston, MA<br />

John M Martell, MD, Chicago, IL<br />

Charles R Bragdon, PhD, Boston, MA<br />

Henrik Malchau, MD, Boston, MA<br />

No consensus exists on how to correctly analyze longitudinal<br />

wear data from clinical radiographs. A group <strong>of</strong> 224 patients who<br />

received total hip replacements (THRs) using 26-40 mm head sizes<br />

with minimum seven years follow up were identified (with 69<br />

conventional and 155 cross-linked polyethylene liners). Postoperative<br />

radiographs were analyzed using Martell Hip Analysis Suite resulting<br />

in head penetration values. Based on this data, we compared results<br />

<strong>of</strong> a previously used model (simple linear regression) to a mixed<br />

model regression approach using STATA and SPSS packages. Due to<br />

the longitudinal data, inconsistent and varying lengths <strong>of</strong> follow up,<br />

unequal number <strong>of</strong> radiographs per patient and variable wear across<br />

time and individuals, a mixed model analysis was chosen with fixed<br />

effects (factors affecting wear) and random slope and intercept terms<br />

(accounting for variation across time and individuals). Both models<br />

showed a significant difference in wear rate between conventional<br />

and cross-linked polyethylene (linear regression model: 128.5 µm/<br />

485<br />

year conventional and 7.8 µm/year cross-linked; mixed model: 120.7<br />

µm/year conventional and 10.0 µm/year cross-linked, p


distance ambulated, assistive device used and time to discharge.<br />

Duration <strong>of</strong> surgery was 72.7 ±17.4 minutes in the THA group and<br />

109.9 ± 20.0 minutes in the SRA group (p


and required staged revision and two hematomas that resolved in<br />

the DJD group. There were five patients who required post-operative<br />

transfusions in the ORIF group and none in the DJD group. There<br />

were five dislocations in the ORIF group (two required revision to a<br />

constrained liner) and no dislocations in the OA group. Harris hip<br />

scores at pre-op, six months post-op and latest follow up were (44.8<br />

ORIF vs. 56.8 DJD; p


were discharged by POD#2. Long-term outcomes data demonstrate<br />

similar clinical results between ASI-THA and standard THA when<br />

comparing UCLA activity scores, SF-36 data, visual analogue pain<br />

scale and HHS. Complication rates were similar in both groups. In<br />

this study, minimally invasive ASI-THA demonstrates similar longterm<br />

outcomes, complications and revision rates when compared to<br />

standard THA, while significantly shortening the hospital stay.<br />

posteR No. p034<br />

Diabetes Mellitus, Hemoglobin A1c and the incidence<br />

<strong>of</strong> Total Joint Arthroplasty Infection<br />

Richard Iorio, MD, Burlington, MA<br />

Andrew J Marcantonio, DO, Wellesley, MA<br />

Lawrence Specht, MD, Burlington, MA<br />

Kelly M Williams, PA-C, Burlington, MA<br />

John F Tilzey, MD, Burlington, MA<br />

William L Healy, MD, Burlington, MA<br />

Elevated hemoglobin A1c levels are a marker for blood glucose<br />

control in diabetes mellitus (DM). Patients with DM have a higher<br />

incidence <strong>of</strong> infection after total joint arthroplasty (TJA) than patients<br />

without DM. The purpose <strong>of</strong> this study was to identify if patients<br />

with elevated HbA1c levels have a higher incidence <strong>of</strong> infection after<br />

TJA than patients with well controlled HbA1c levels. From 12/1/04<br />

to 12/21/09, 3,468 patients underwent 4,241 primary or revision<br />

total hip arthroplasty (THA) or total knee arthroplasty (TKA) at one<br />

institution and were followed prospectively with a TJA data base.<br />

Review <strong>of</strong> data base records, morbidity and mortality reports and<br />

charts were conducted to identify patients with diabetes mellitus<br />

and/or infection after TJA. HbA1c levels prior to TJA operation were<br />

examined to evaluate if there was a correlation between control <strong>of</strong><br />

HbA1C and infection after TJA. There were 49 total infections (29<br />

deep, 20 superficial) after TJA: 13 (3.71%) in patients with DM<br />

(n=350) and 36 (0.93%) in patients without DM (n=3891) (p


posteR No. p037<br />

The Value Of Three-Dimensional Computerised<br />

Planning Of THA<br />

Elhadi Sariali, MD, Paris, France<br />

Yves Catonne, MD, Paris, France<br />

Raphael Mauprivez, MD<br />

A high precision <strong>of</strong> three-dimensional (3D) computerized planning<br />

<strong>of</strong> total hip arthroplasty (THA) was recently reported. However,<br />

there is no comparative study analysing the value <strong>of</strong> 3D planning<br />

comparatively to the planning made on X-rays using 2D templates.<br />

A prospective comparative randomized study was carried out<br />

from 2008 to 2009, and included two groups <strong>of</strong> 32 patients who<br />

underwent THA for primary osteoarthritis. One surgeon performed<br />

all the procedures using a direct anterior approach. In one group,<br />

the planning was made on calibrated X-Rays using 2D templates.<br />

In the other group, a 3D planning was performed based on CT-scan<br />

using the Hip-Plan s<strong>of</strong>tware. Post operatively, the final hip anatomy<br />

was analyzed on X-Rays for the 2D group and on CT-scan for the<br />

3D group. In the 3D group, the duration <strong>of</strong> the surgical procedure<br />

was 18% shorter and the bleeding was 34% lower. The prediction<br />

rate <strong>of</strong> the stem and the cup sizes were respectively <strong>of</strong> 100% and<br />

97% in the 3D group. In the 2D group, these rates were 43%. When<br />

combining both components, the prediction rate was 97% in the 3D<br />

group and 16% in the 2D group. The center <strong>of</strong> rotation, the femoral<br />

<strong>of</strong>fset and the length were restored with a twice higher precision in<br />

the 3D group. This higher precision was probably due to the accurate<br />

analysis <strong>of</strong> the hip anatomy; the problems that may be encountered<br />

were detected before surgery. Clinical benefits for the patients were<br />

also proved. This technique is now our gold standard procedure.<br />

posteR No. p038<br />

Computer-Assisted Femoral Offset Correction In Cam-<br />

Type Impingement A Feasibility Study<br />

Timo M Ecker, MD, Berne, Switzerland<br />

Marc Puls, PhD<br />

Simon D Steppacher, MD, Bern, Switzerland<br />

Johannes Dominik Bastian, MD, Bern, Switzerland<br />

Marius Keel, MD, Berne, Switzerland<br />

Klaus Siebenrock, MD, Bern, Switzerland<br />

Moritz Tannast, Bern, Switzerland<br />

Arthroscopic treatment <strong>of</strong> cam-type femoroacetabular impingement<br />

is an emerging trend. Outcome may be compromised by inadequate<br />

resection <strong>of</strong> lesions due to limited overview <strong>of</strong> the surgical site.<br />

Navigation <strong>of</strong> a surgical reaming device might improve accuracy <strong>of</strong><br />

the procedure. Three-dimensional models <strong>of</strong> 18 identical sawbone<br />

femora with a distinct cam impingement and five cadaver hips were<br />

created. For the sawbones, three preoperative plans were constructed<br />

with a novel computerized planning tool. Two orthopaedic surgeons<br />

each performed three osteochondroplasties per plan using a<br />

navigated burr. For each cadaver hip, a single plan and procedure<br />

was performed. In all cases, the reaming process was tracked and<br />

visualized by the navigation application in real time. Postoperatively,<br />

3D models <strong>of</strong> the treated specimens were created. The differences in<br />

three-dimensional alpha angles and <strong>of</strong>fset ratio between the planned<br />

and treated models were measured, as well as the surface distances.<br />

Accuracy and inter- and intraobserver correlation was assessed.<br />

Alpha angle and <strong>of</strong>fset ratio could be accurately transferred from<br />

plan to realtime, as shown by an evenly distributed Bland-Altman<br />

plot. Inter- and intraobserver statistics showed excellent correlation.<br />

Alpha angle accuracy was similar among obervers (p = 0.486) and<br />

the different treatment plans (p = 0.194). Both observers reached<br />

489<br />

the planned <strong>of</strong>fset ratios with similar accuracy (p = 0.2). Planning<br />

and conduction <strong>of</strong> navigated <strong>of</strong>fset correction using a surgical<br />

reaming device is feasible and accurate. Transfer and integration<br />

into arthroscopic procedures might improve results and safety <strong>of</strong><br />

surgery.<br />

posteR No. p039<br />

Prevalence <strong>of</strong> HCV Infection in the Veteran Total Joint<br />

Arthroplasty Population<br />

Nicholas John Giori, MD, Palo Alto, CA<br />

Briana Calore, MD, Cooperstown, NY<br />

Hepatitis C (HCV) infection can damage a surgeon’s health and career.<br />

Many orthopedic residents train at Veterans’ Affairs (VA) hospitals.<br />

We sought to determine the prevalence <strong>of</strong> hepatitis C in veteran total<br />

joint arthroplasty (TJA) patients and the risks <strong>of</strong> contracting HCV<br />

for surgeons performing TJA on veterans. The surgeon’s risk per case<br />

<strong>of</strong> contracting HCV = (HCV prevalence in the patient population) *<br />

(intraoperative sharps injury rate/case) * (HCV transmission rate/<br />

exposure). TJA patients were tested preoperatively for hepatitis C<br />

(antibody and HCV RNA) over 22 consecutive months from 2007<br />

to 2009, and estimated other rates from the literature. A total <strong>of</strong> 381<br />

<strong>of</strong> 408 (93.4%) primary TJA patients were tested. Some 8.4% were<br />

HCV antibody positive. Another 4.5% were viremic during surgery.<br />

Various studies support a sharps injury rate <strong>of</strong> 2.3%. Estimated<br />

HCV transmission from antibody positive patients is 1.8%, while<br />

transmission from viremic patients ranges from 9.9% to 19.8%<br />

depending on viral load. Given the viral loads in our viremic<br />

patients, the mean risk <strong>of</strong> disease transmission from our viremic<br />

patients was 14.2%. HCV antibody prevalence in VA TJA patients is<br />

nearly five times the general population. Nearly one in 20 veterans<br />

undergoing TJA are viremic and infectious with HCV. Using accepted<br />

rates <strong>of</strong> sharps injuries and disease transmission, the estimated rate<br />

<strong>of</strong> HCV transmission per surgeon-year ranges from 0.007 to 0.029. A<br />

career VA surgeon doing 200 cases/year for 30 years has a cumulative<br />

risk <strong>of</strong> 21%-88% <strong>of</strong> contracting HCV. Medications currently in FDA<br />

trials may present an option to treat viremic patients preoperatively<br />

to mitigate these risks.<br />

posteR No. p040<br />

Preoperative Alcohol Misuse is Associated with<br />

Surgical Complications following TJA<br />

Nicholas John Giori, MD, Palo Alto, CA<br />

Alex HS Harris, PhD, MS<br />

The risks <strong>of</strong> preoperative alcohol misuse in total joint arthroplasty<br />

(TJA) patients are unknown, yet alcohol misuse is common and<br />

is associated with increased complication risk following other<br />

procedures. We asked whether TJA patients with alcohol misuse, as<br />

measured by a preoperative standardized alcohol screening score,<br />

were at increased risk <strong>of</strong> postoperative complications. The AUDIT-C<br />

is an alcohol misuse screen given annually to Veterans’ Affairs (VA)<br />

patients, yielding a 0-12 score with higher scores signifying greater<br />

and more frequent alcohol consumption. In a sample <strong>of</strong> 185 male<br />

VA TJA patients from one institution who had AUDIT-C scores<br />

recorded in the 12 months preceding surgery and who reported at<br />

least some alcohol use, we estimated the association between preoperative<br />

AUDIT-C scores and number <strong>of</strong> surgical complications in<br />

age and comorbidity adjusted negative binomial regression analyses.<br />

Of the 185 TJA patients reporting at least some drinking in the past<br />

year (mean age 63), 17% had AUDIT-C scores suggestive <strong>of</strong> alcohol<br />

misuse. AUDIT-C scores were significantly related to number <strong>of</strong><br />

complications in negative binomial regression analysis (exp(beta)<br />

= 1.29, p = 0.035), signifying a 29% increase in the expected mean<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


number <strong>of</strong> complications with every additional AUDIT-C point.<br />

Complications following TJA are exponentially related to alcohol<br />

misuse, as measured by AUDIT-C. The AUDIT-C has three simple<br />

questions that can be incorporated into a preoperative evaluation and<br />

can alert the treatment team to patients with increased postoperative<br />

risk. Preoperative alcohol misuse screening, and preoperative<br />

interventions for heavy drinkers, may be indicated for TJA patients.<br />

posteR No. p041 AlteRNAte pApeR<br />

Outcome <strong>of</strong> Metal on Metal articulation in primary<br />

Conventional THA: Analysis <strong>of</strong> 17,775 procedures<br />

Stephen Graves, MD, Adelaide, South Austalia Australia<br />

Richard De Steiger, MD, Victoria, Australia Australia<br />

David Davidson, MD, University Of Adelaide, South Australia<br />

Australia<br />

Philip Ryan, FAFPHM, Adelaide, SA Australia<br />

Lisa Miller, BSc<br />

Kara Cashman, BSc (HONS), Adelaide, SA Australia<br />

Despite the increasing use <strong>of</strong> metal on metal (MoM) articulations in<br />

conventional total hip arthroplasty (THA), there is little data on the<br />

outcome <strong>of</strong> this approach. This study compares the risk <strong>of</strong> revision<br />

<strong>of</strong> over 17,000 MoM to almost 90,000 metal on polyethylene (MoP)<br />

procedures undertaken on patients with a diagnosis <strong>of</strong> osteoarthritis<br />

(OA). The data was obtained from a comprehensive national<br />

database that prospectively recorded these procedures over a 10-year<br />

period. Analyses examining the impact <strong>of</strong> age, gender, femoral head<br />

size and prosthesis as well as determining the reasons for revision<br />

were undertaken. The principle outcome measure was time to first<br />

revision using Kaplan-Meier estimates <strong>of</strong> survivorship. MoM has a<br />

significantly greater risk <strong>of</strong> revision compared to MoP. This is true<br />

in all age groups including younger patients. This increased rate <strong>of</strong><br />

revision is due to greater rates <strong>of</strong> loosening and metal sensitivity.<br />

At five years metal sensitivity accounts for at least four revisions in<br />

every 1,000 procedures. The risk <strong>of</strong> revision in MoM is increased in<br />

females. Increasing head size increases the risk <strong>of</strong> revision with MoM<br />

which is always greater than MoP <strong>of</strong> equivalent head size with the<br />

exception <strong>of</strong> >28 mm where there was no difference. The outcome<br />

<strong>of</strong> different MoM prostheses varied but the least revised prostheses<br />

were MoP and most individual MoM prostheses had a much higher<br />

rate <strong>of</strong> revision. The use <strong>of</strong> MoM increases the risk <strong>of</strong> revision in<br />

conventional THR. This data suggests there is no benefit to use MoM<br />

in conventional THR particularly if head sizes >28 mm are used.<br />

posteR No. p042<br />

Total Hip Arthroplasty Following Acetabular Fractures<br />

Ahmed Mohammed Abdel-aal, MD, Assiut, Egypt<br />

Yaser Emam Khalifa, Assiut, Egypt<br />

Hatem MA Bakr, MD, Assiut, Egypt<br />

Fractures <strong>of</strong> the acetabulum are complicated by post-traumatic<br />

arthritis in a considerable percentage <strong>of</strong> patients. Arthritis seems<br />

inevitable even in well reduced and fixed fractures, following highimpact<br />

injury and joint damage. Hip arthroplasty requires attention<br />

to restoration <strong>of</strong> the normal acetabular position and managing<br />

bone defects. The indications for total hip arthroplasty (THA)<br />

after acetabular fracture as well as short-term postoperative results<br />

are presented in this study. Forty-two THA were performed after<br />

acetabular fractures during a period <strong>of</strong> seven years. The average age<br />

<strong>of</strong> patients was 53 years (range 28 - 72 years). There were 31 males<br />

and 11 females. The average time from the fracture to the index<br />

operation was 14 months (range 3-52 months). Open reduction/<br />

internal fixation (ORIF) had been performed in 17 patients and<br />

the remaining patients were treated conservatively. Non cemented<br />

490<br />

multiple-holed cups were used in 34 hips and reconstruction with<br />

bone graft, mesh and cemented cups were used in eight hips. The<br />

average postoperative follow up was 3.8 years. The Harris hip score<br />

increased from an average <strong>of</strong> 43 points preoperative to an average <strong>of</strong><br />

89 points at the time <strong>of</strong> the last follow up. Complications included<br />

ectopic ossification (14%), cup migration (7%) and infection<br />

(2%). The five-year survival rate with revision as the end point<br />

was 97%. THA after acetabular fractures is a successful operation.<br />

Complications are higher than after THA for primary osteoarthritis,<br />

particularly cup migration and ectopic ossification.<br />

posteR No. p043<br />

Performance <strong>of</strong> the ASR in Resurfacing and<br />

Conventional Primary THA: Analysis <strong>of</strong> 5563<br />

Procedures<br />

Richard De Steiger, MD, Victoria, Australia Australia<br />

Stephen Graves, MD, Adelaide, South Austalia Australia<br />

David Davidson, MD, University Of Adelaide, South Australia<br />

Philip Ryan, FAFPHM, Adelaide, SA Australia<br />

Lisa Miller, BSc<br />

Kara Cashman, BSc (HONS), Adelaide, SA Australia<br />

The ASR prosthesis is a metal on metal (MoM) articulation that has<br />

been extensively used worldwide for conventional and resurfacing<br />

total hip arthroplasty (THA). It was released with little clinical data<br />

supporting its use. This study reports the outcome <strong>of</strong> over 5,500<br />

procedures using the prosthesis in both primary conventional and<br />

resurfacing THA. Analysis <strong>of</strong> 1,167 ASR resurfacing and 4,406 ASR<br />

conventional large femoral head THA reported to a large national<br />

database over a six-year period. The outcomes were compared to<br />

all other resurfacing and conventional hip procedures. Analysis was<br />

performed on demographics, primary diagnosis, reason for revision<br />

and types <strong>of</strong> revision. The principle outcome measure was the<br />

time to first revision using age and gender adjusted Kaplan-Meier<br />

estimates <strong>of</strong> survivorship. Resurfacing ASR prosthesis had over twice<br />

the risk <strong>of</strong> revision compared to all other resurfacing prostheses<br />

(HR=2.32 (1.84-2.92) p


posteR No. p044<br />

Acetabular Alignment and Primary Arc <strong>of</strong> Motion in<br />

THA for 28mm, 32mm, 36mm and 40mm Femoral<br />

Heads<br />

Yona Kosashvili, MD, Rishon Le Zion, Israel<br />

Dan Omoto, MD, Mississauga, ON Canada<br />

David Backstein, MD, Toronto, ON Canada<br />

Dror Lakstein, MD, Givataim, Israel<br />

Oleg Safir, MD, Toronto, ON Canada<br />

Yaron Bar Ziv, MD, Rishon Lezion, Israel<br />

Allan E Gross, MD, FRCSC, Toronto, ON Canada<br />

Impingement is a main cause for dislocation in total hip arthroplasty<br />

(THA). This study examined the influence <strong>of</strong> acetabular cup<br />

alignment on the primary arc <strong>of</strong> motion (PAOM) for minus (-3.5),<br />

skirtless (+3.5) and skirted (+10.5) neck lengths with 28 mm, 32<br />

mm, 36 mm and 40 mm femoral heads. The resulting PAOM was<br />

evaluated in respect to the recommended post THA range <strong>of</strong> motion<br />

required for activities <strong>of</strong> daily living. THA was performed in a pelvic<br />

saw bone model. The acetabulum was positioned in 30°/45°/60°<br />

abduction and 0°/15°/30° anteversion, respectively. The PAOM was<br />

determined using a digital inclinometer for each <strong>of</strong> the acetabular<br />

positions and 12 femoral heads mentioned above. The PAOM<br />

examination included flexion, extension, internal rotation (IR),<br />

external rotation (ER), abduction, adduction and IR at 90° <strong>of</strong> flexion.<br />

The best PAOM was found in 45° abduction and 15°-30° anteversion<br />

as well as 60° abduction and 0° anteversion. Combinations <strong>of</strong><br />

excessive abduction and anteversion as well as horizontalization and<br />

retroversion resulted in the worst PAOM. Skirtless heads significantly<br />

outperformed skirted (p=0.016) and minus (p=0.05) heads. Only<br />

40 mm heads significantly outperformed the 28 mm and 32 mm<br />

(p=0.001, p=0.005, respectively). Cup alignment is optimal in 45°<br />

<strong>of</strong> abduction and 15°-30° <strong>of</strong> anteversion, since PAOM is largest in<br />

this alignment without the potential downside <strong>of</strong> edge loading and<br />

excessive polyethylene wear. Within the previously defined safe zone<br />

for cup alignment <strong>of</strong> abduction >45° and anteversion >15° as well<br />

as abduction


greater trochanter. After implantation <strong>of</strong> the prosthetic components,<br />

the anterior part <strong>of</strong> the gluteus medius muscle was reattached with<br />

absorbable thread using five or six double stitches at its origin.<br />

Four radiopaque metal markers were attached to each side <strong>of</strong> the<br />

suture. The distance between the two markers was measured on<br />

postoperative radiographs, and failure rate <strong>of</strong> the procedure was<br />

evaluated. Abductor muscle strength was investigated before and<br />

after THA. In three <strong>of</strong> the 20 hips (15%), the attachment <strong>of</strong> the<br />

repaired gluteus medius muscle failed postoperatively. Independent<br />

<strong>of</strong> gluteus medius muscle attachment, the abductor muscle strength<br />

recovered postoperatively. The failure rate <strong>of</strong> repaired gluteus medius<br />

muscle in this study was lower than that in previous reports, and<br />

abductor muscle strength recovered more than 80% <strong>of</strong> the normal<br />

contralateral side postoperatively in one year.<br />

posteR No. p048<br />

uTen Years Follow-Up Of 100 Ceramic On Ceramic<br />

Total Hip Arthroplasty<br />

Christophe J Chevillotte, MD, Lyon, France<br />

Vincent Pibarot, MD, Lyon Cedex 03, France<br />

Jean-Paul Carret, MD, Lyon, France<br />

Jacques Bejui-Hugues, MD, LATINA, LAZIO Italy<br />

Olivier Guyen, MD, Lyon, France<br />

Alumina ceramic on ceramic (COC) is nowadays a common<br />

arthroplasty bearing material because <strong>of</strong> its efficacy in terms <strong>of</strong><br />

wear and osteolysis. However, limited data are available concerning<br />

long-term follow up. The aim <strong>of</strong> this study was to evaluate the<br />

first 100 cementless COC total hip arthroplasty (THA) performed<br />

at our institution with more than 10 years <strong>of</strong> follow up. Clinical<br />

evaluation was performed using Harris hip score. Radiological<br />

evaluation was performed by two surgeons, looking for osteolysis,<br />

implant loosening and heterotopic bone. Four patients were lost to<br />

follow up. Harris Hip score significantly improved at latest follow<br />

up. Radiological analysis showed calcar resorption for 75 patients<br />

and one cup loosening. One patient sustained a revision five years<br />

postoperatively for cup loosening. Seven dislocations (six early, one<br />

late) and two subluxations have been reported. High dislocation rate<br />

can be explained by variable experience <strong>of</strong> the surgeons involved in<br />

an accademic center. Moreover, a 28 mm head diameter was used<br />

as no greater diameter was available at the time <strong>of</strong> the study. Since<br />

the study period, we introduced in our practice the routine use <strong>of</strong> a<br />

navigation system to optimize positioning <strong>of</strong> the implants, and the<br />

use <strong>of</strong> larger head diameters (32 mm and 36 mm) with significantly<br />

improved results on stability. Based on these results, we advocate the<br />

use <strong>of</strong> uncemented hydroxyapatite coated ceramic on ceramic THA<br />

in young and active patients in our current practice.<br />

posteR No. p049<br />

Subject-specific Finite Element Analysis on Stress<br />

Distribution after Periacetabular Osteotomy<br />

Yutaka Inaba, MD, Yokohama, Japan<br />

Naomi Kobayashi, MD, Yokohama, Japan<br />

Hiroyuki Ike, MD, Yokohama Kanagawa, Japan<br />

Hyonmin Choe, MD<br />

Takashi Ishida, MD<br />

Naoyuki Iwamoto, MD, Yokohama, Japan<br />

Youhei Yukizawa, MD<br />

Hiroshi Fujimaki, MD, Yokohama, Japan<br />

Tomoyuki Saito, MD, Yokohama, Japan<br />

Clinical results <strong>of</strong> rotational acetabular osteotomy (RAO) for<br />

dysplastic hip have been reported; however, there are few studies<br />

492<br />

which evaluated change <strong>of</strong> stress distribution in the hip joint after<br />

RAO. Purposes <strong>of</strong> this study were 1) to evaluate stress distribution<br />

in the acetabulum and femoral head before and after RAO, and 2)<br />

to examine radiologic parameters which correlate to improvement<br />

<strong>of</strong> stress maldistribution after RAO. This study series included 17<br />

dysplastic hips <strong>of</strong> 13 patients who underwent RAO. Finite element<br />

(FE) models <strong>of</strong> the pelvis and femur were obtained from pre- and<br />

postoperative CT data using Mechanical Finder (Research Center <strong>of</strong><br />

Computational Mechanics Inc., Tokyo, Japan), s<strong>of</strong>tware that creates<br />

FE models showing individual bone shape and density distribution.<br />

The mechanical properties <strong>of</strong> the bone were determined from CT<br />

density values, using equations proposed by Keyak et al. Lateral<br />

center-edge (CE) angle, acetabular ro<strong>of</strong> angle (ARA), Sharp angle<br />

and acetabular head index (AHI) were measured on pre- and<br />

postoperative X-rays as radiologic parameters. Correlations between<br />

stress and these radiologic parameters were analyzed. Preoperative<br />

stresses in the acetabulum and femoral head were distributed<br />

unequally, and stress distribution was equalized and the peak<br />

stress decreased after RAO. Among radiologic parameters, CE angle<br />

and ARA correlated significantly with reduction <strong>of</strong> stress in the<br />

acetabulum (p


posteR No. p051<br />

Peripheral Blood Stem Cell Transplantation Results in<br />

the Treatment for Osteonecrosis<br />

Young Wook Lim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Yong Sik Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Soon Yong Kwon, MD, Seoul, Republic <strong>of</strong> Korea<br />

Doo Hoon Sun, MD<br />

Yoon Jong Jang, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jae Young Lee, MD<br />

We tried multiple drilling and stem cell transplantation derived<br />

from peripheral blood to treat the early stages <strong>of</strong> osteonecrosis <strong>of</strong><br />

the femoral head and to minimize patient morbidity. We then report<br />

the clinical and radiological results <strong>of</strong> peripheral blood stem cell<br />

transplantation and core decompression. Thirty-eight patients (63<br />

hips) who had undergone surgery were divided in two groups based<br />

upon which treatment they had received: (1) multiple drilling and<br />

stem cell transplantation derived from peripheral blood stem cell<br />

transplantation, and (2) core decompression, curettage and bone<br />

graft. The clinical and radiological results <strong>of</strong> the two groups were<br />

compared. We defined failure as the need for additional surgery, or a<br />

Harris hip score <strong>of</strong> less than 75. After a minimum five-year followup,<br />

in group 1, 80% (four/five) <strong>of</strong> patients with Stage IIa disease, 60%<br />

(six/10) <strong>of</strong> patients with Stage IIb disease and 46.2% (six/13) <strong>of</strong><br />

patients with Stage III disease had no additional surgery. In group<br />

2, 66.7% (6/9) <strong>of</strong> patients with Stage IIa disease, 66.7% (6/9) <strong>of</strong><br />

patients with Stage IIb disease and 60% (three/five) <strong>of</strong> patients<br />

with Stage III disease had no additional surgery. Survival rates <strong>of</strong><br />

patients with Ficat Stages I or II lesions were greater than survival<br />

rates for patients with Stage III lesions. There was no difference <strong>of</strong><br />

survival rate between two groups. We found that there was not a<br />

significant difference between the two groups. The same results were<br />

found between peripheral blood stem cell transplantation and the<br />

conventional method <strong>of</strong> core decompression.<br />

posteR No. p052<br />

Effect <strong>of</strong> Proximal Stem Surface Roughness on Initial<br />

Mechanical Stability<br />

Ichiro Nakahara, Suita, Japan<br />

Shunichi Bandoh, PhD, Suita, Japan<br />

Masaki Takao, MD, Suita, Japan<br />

Takashi Sakai, MD, Suita, Japan<br />

Takashi Nishii, MD, Osaka, Japan<br />

Hideki Yoshikawa, MD, Osaka, Japan<br />

Nobuhiko Sugano, MD, Suita, Japan<br />

The surface roughness <strong>of</strong> stems with a surface coating theoretically<br />

contributes to initial mechanical stability by increasing friction<br />

against the bone. We evaluated the effect <strong>of</strong> differences in surface<br />

roughness due to different surface treatments with the same stem<br />

design on the initial stability. Proximally titanium plasma-sprayed<br />

femoral stems (PS stem) and proximally grit-blasted stems (GB<br />

stem) were compared. The stem design was identical with an<br />

anatomic short tapered shape for proximal fixation. The optimum<br />

size <strong>of</strong> PS stem was implanted in one side <strong>of</strong> 11 pairs <strong>of</strong> human<br />

cadaveric femora and the same size <strong>of</strong> GB stems was implanted in<br />

the other side. The specimens were fixed to the jig <strong>of</strong> a universal<br />

testing machine and vertical load tests were conducted under 1 mm/<br />

minute <strong>of</strong> displacement-controlled conditions until periprosthetic<br />

fracture occurred. The same size <strong>of</strong> PS or GB stem was successfully<br />

implanted in all 11 pairs without fracture. No significant difference<br />

was detected in the distances <strong>of</strong> subsidence until fracture occurred.<br />

The load applied for 1 mm <strong>of</strong> stem subsidence and the load at<br />

493<br />

fracture in the PS stem were significantly larger than those in the GB<br />

stem. The plasma-sprayed surface had a less slippery interface than<br />

the grit-blasted surface. Both femora <strong>of</strong> a pair fractured at the same<br />

level <strong>of</strong> hoop stress, which was induced by the same amount <strong>of</strong> stem<br />

subsidence but at significantly different loads. The scratching effect<br />

against the femoral canal due to the rougher surface <strong>of</strong> the plasmaspray<br />

works advantageously for initial mechanical stability.<br />

posteR No. p053<br />

In Vivo Wear Comparison <strong>of</strong> Longevity and Crossfire in<br />

THA<br />

Ichiro Nakahara, Suita, Japan<br />

Nobuo Nakamura, MD, Osaka, Japan<br />

Hidenobu Miki, MD, Osaka, Japan<br />

Masaki Takao, MD, Suita, Japan<br />

Takashi Sakai, MD, Suita, Japan<br />

Takashi Nishii, MD, Osaka, Japan<br />

Hideki Yoshikawa, MD, Osaka, Japan<br />

Nobuhiko Sugano, MD, Suita, Japan<br />

Wear resistance <strong>of</strong> highly cross-linked polyethylene (HXLPE) has been<br />

demonstrated. However, the influence <strong>of</strong> different manufacturing<br />

process <strong>of</strong> removing free radicals on the clinical head penetration<br />

rate has not been well reported. This study compared in vivo head<br />

penetration between the annealed HXLPE and remelted HXLPE five<br />

years after total hip arthroplasty (THA). The annealed HXLPE was<br />

crossfire treated with 7.5 Mrad gamma irradiation with a subsequent<br />

annealing below the melting temperature and sterilized by 2.5<br />

Mrad gamma irradiation in nitrogen. The other remelted HXLPE<br />

was longevity treated with 10 Mrad electron-beam irradiation with<br />

a subsequent remelting and sterilized by gas plasma. Forty-seven<br />

primary cementless THAs using each <strong>of</strong> HXLPE and a 32 mm cobaltchromium<br />

head were retrospectively reviewed in postoperative<br />

five years. Two-dimensional head penetration was measured using<br />

the Hip Analysis Suite on annual x-rays. There were no significant<br />

differences between the groups in the first year head penetration<br />

(crossfire; 0.33±0.14 mm, longevity; 0.35±0.11 mm) and in the<br />

steady-state wear rate (crossfire; 0.002 mm/y, longevity; -0.003<br />

mm/y). The first year head penetration, which was mainly attributed<br />

by creep, was not different between the groups despite <strong>of</strong> a concern<br />

with the reduced mechanical strength <strong>of</strong> remelting. Although the<br />

process <strong>of</strong> annealing and the gamma irradiated sterilization also had<br />

a concern with oxidative degradation <strong>of</strong> polyethylene by residual free<br />

radicals, no difference in the steady-state wear rate was seen between<br />

the groups. At the mid-term follow-up, no in vivo differences in head<br />

penetration were detected between the annealed HXLPE sockets and<br />

remelted HXLPE sockets.<br />

posteR No. p054<br />

Satisfactory Levels <strong>of</strong> Sporting Activities after<br />

Periacetabular Osteotomy<br />

Nobuhiro Kashima, MD, Fukuoka, Japan<br />

Masatoshi Naito, MD, Fukuoka, Japan<br />

Yoshinari Nakamura, MD, Fukuoka, Japan<br />

Hirotaka Karashima, MD, Fukuoka-City, Japan<br />

Satoshi Kamada, MD, Fukuoka, Japan<br />

Kouichi Kinoshita, MD, Fukuoka, Japan<br />

Yoshitsugu Tanaka, MD<br />

Takahiro Ida, MD, Osaka, Japan<br />

Daisuke Kuroda, MD, Fukuoka City, Japan<br />

The expected level and participation in sporting activities after<br />

periacetabular osteotomy (PAO) have not been well researched. The<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


time <strong>of</strong> life from the teens to the late thirties tends to be a period<br />

<strong>of</strong> high activity in daily life. Therefore, we investigated the sporting<br />

activities after PAO in patients aged under 40 years. Among patients<br />

under 40 years who underwent PAO for osteoarthritis secondary to<br />

dysplasia from 1995 to 2006, we evaluated 47 hips in 43 patients<br />

who were followed up for more than two years. Questionnaires<br />

were used to determine the types <strong>of</strong> sports and competitive levels<br />

that the patients were capable <strong>of</strong> participating in. Clinical outcomes<br />

were evaluated by the Harris hip score. The mean Harris hip score<br />

improved from 80 points preoperatively to 95 points postoperatively.<br />

Before surgery (BS), 35 <strong>of</strong> the 43 patients (81%) participated in sports<br />

such as table tennis (17%), athletic sports (14%), volleyball (11%),<br />

tennis (11%) and basketball (9%). After surgery (AS), 25 <strong>of</strong> the 43<br />

patients (58%) reported that they were able to participate in sports<br />

such as walking (60%) and golf (8%) (BS=81%, AS=58%, p=0.06).<br />

Seven patients were able to return to participating in their primary<br />

sports, including high-impact sports such as baseball and volleyball,<br />

following PAO. After PAO, most patients were able to participate in<br />

recreational sports such as walking and swimming. Patients with<br />

high levels <strong>of</strong> athletic activity preoperatively can expect to return to<br />

their primary sports postoperatively and maintain satisfactory levels<br />

<strong>of</strong> sporting activity.<br />

posteR No. p055<br />

Straight Tapered Stems with Grit-Blasted Diaphyseal<br />

Surface in Cementless Total Hip Arthroplasty<br />

Woo Suk Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Bo-Hyun Hwang, MD<br />

Ju Hyung Yoo, MD, Seoul, Republic <strong>of</strong> Korea<br />

Kwan Kyu Park, MD, Seoulgi-Do, Republic <strong>of</strong> Korea<br />

Ick-Hwan Yang, MD, Pittsburgh, PA<br />

Chang-Dong Han, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tapered femoral stem permits the loading <strong>of</strong> proximal femur<br />

and reduces proximal stress shielding in cementless total hip<br />

arthroplasty (THA). Diaphyseal biologic fixation may induce better<br />

osteointegration and eliminate thigh pain. The objective <strong>of</strong> our<br />

study was to evaluate the five-year outcomes <strong>of</strong> straight cementless<br />

femoral stems having the combination <strong>of</strong> tapered geometry with<br />

a distal grit-blasted surface. Ninety-four cementless primary THAs<br />

were performed using a straight tapered stem with proximal porouscoating<br />

and distal grit-blasted surface. All patients were younger than<br />

65 years <strong>of</strong> age at the time <strong>of</strong> the surgery and were treated with third<br />

generation ceramic-on-ceramic articulation. After a minimum <strong>of</strong> five<br />

years <strong>of</strong> followvup (range, five to seven years), 78 arthroplasties in<br />

72 patients could be reviewed retrospectively. The mean Harris hip<br />

score was 93.5 points at the final follow up. The mean UCLA activitylevel<br />

score was 6.3 points. Two hips (2.6%) had thigh pain that was<br />

unrelated to other problems. All femoral stems were fixed by bone<br />

ingrown radiographically. There were no significant periprosthetic<br />

osteolysis and stem subsidence. Ten hips (12.8%) demonstrated<br />

femoral cortical hypertrophy. Cancellous condensation above the<br />

distal polished tip occurred in 45 (57.7%). Femoral cortical thinness<br />

due to stress shielding was moderate in eight (10.3%) and severe in<br />

five (6.4%). The results <strong>of</strong> straight tapered stems with grit-blasted<br />

diaphyseal surface were encouraging at intermediate follow up.<br />

Further long-term studies are necessary to detect a clinical problem<br />

with regard to stress shielding.<br />

494<br />

posteR No. p056<br />

RCT Comparison <strong>of</strong> Oxinium & CoCr Heads Against<br />

XLPE and Conventional Polyethylene in THR using RSA<br />

Richard W McCalden, MD<br />

Doug Naudie, MD, London, ON Canada<br />

Robert Barry Bourne, MD, London, ON Canada<br />

Steven J MacDonald, MD, London, ON Canada<br />

David W Holdsworth, London, ON Canada<br />

Xunhua Yuan, PHD, London, ON Canada<br />

This study reports on the early clinical performance and wear<br />

(measured with radiostereometric analysis (RSA)) <strong>of</strong> a randomized<br />

controlled trial (RCT) comparing Oxinium (Ox) and CoCr heads<br />

on highly cross-linked polyethylene (XLPE) and conventional<br />

polyethylene (CPE). Forty patients were randomized to receive either<br />

an Ox or CoCr head against either XLPE or CPE (i.e., 10 patients in<br />

each group). All patients had identical total hip replacements (THR)<br />

where tantalum beads were inserted for wear analysis. RSA wear<br />

analysis was performed immediately post-op, at six weeks, three and<br />

six months and then yearly. Patients were followed prospectively<br />

using validated clinical outcome scores (WOMAC, SF-12, Harris Hip<br />

scores) and radiographs. , Total 3D femoral head penetration at two<br />

years for each group was: CoCrXLPE (0.068±0.029 mm); OxXLPE<br />

(0.115±0.038 mm); CoCrCPE (0.187±0.079 mm); and OxCPE<br />

(0.242±0.088 mm). Thus, OxCPE was significantly higher than<br />

OxXLPE and CoCrXLPE but not CoCrCPE (p=0.001, p>0.0001 and<br />

p=0.094, respectively). In other words, head penetration was higher<br />

with CPE compared to XLPE but there was no significant difference<br />

between Ox and CoCr heads. Similarly, regardless <strong>of</strong> head type (i.e.,<br />

combining poly types), there was a significant difference in 3D head<br />

penetration at two years between CPE and XLPE ( CPE 0.213±0.086;<br />

XLPE 0.093±0.041, p>0.0001). The early results <strong>of</strong> this RCT, using<br />

RSA as the wear analysis tool, indicate a significant improvement<br />

in wear with XLPE compared to CPE with no clear advantage to<br />

Oxinium over CoCr. Longer follow up is required to determine<br />

steady-state wear rates (after bedding-in) and allow comparison<br />

between bearing groups.<br />

posteR No. p057<br />

Metal-on-Metal Revisions: A Review <strong>of</strong> Causes,<br />

Outcomes and a High Incidence <strong>of</strong> Early Failure<br />

David W Fabi, MD, San Diego, CA<br />

Brett Russell Levine, MD, Chicago, IL<br />

Scott M Sporer, MD, Wheaton, IL<br />

Wayne Gregory Paprosky, MD, Winfield, IL<br />

Craig J Della Valle, MD, Chicago, IL<br />

Mark A Hartzband, MD, Franklin Lakes, NJ<br />

Gregg R Klein, MD, Paramus, NJ<br />

Harlan B Levine, MD, Tenafly, NJ<br />

Metal-on-metal (MOM) total hip arthroplasty (THA) has become<br />

an increasingly popular option for contemporary alternative bearing<br />

surfaces. However, early failures due to aseptic loosening, metal<br />

hypersensitivity reactions, pseudotumor formation and component<br />

seizing are being realized. The purpose <strong>of</strong> this study is to investigate<br />

the timing, common modes <strong>of</strong> failure and incidence <strong>of</strong> MOM<br />

THA revisions. A retrospective review <strong>of</strong> 77 consecutive patients<br />

who underwent revision <strong>of</strong> a failed MOM THA for any reason was<br />

performed. The average age <strong>of</strong> the patients was 57.61 ± 10.8 years<br />

(range 31-84 years), with 40 being male and 37 being female. Clinical<br />

and radiographic data points were gathered to include: causes <strong>of</strong><br />

failure, patient factors, time to revision and original implants used.<br />

The most common reason for metal-on-metal failure was acetabular<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


loosening with a rate <strong>of</strong> 57.1% (44/77 patients). Other reasons in<br />

descending order were infection (13.0%), metal hypersensitivity<br />

(6.5%), failed resurfacing (6.5%), fracture (5.2%), loose stem<br />

(3.9%), dislodged liner (3.9%), seizing (1.3%), cup malposition<br />

(1.3%) and femoral stem fracture (1.3%). Early failure <strong>of</strong> MOM<br />

THAs was noted, with 62.9% <strong>of</strong> these revisions being performed<br />

within two years <strong>of</strong> the index operation and 81.5% within three years.<br />

Further, 90.9% (70/77) <strong>of</strong> these revisions had been performed over<br />

the short timespan <strong>of</strong> two years. Two pseudotumors were observed<br />

among these patients with additional 25% <strong>of</strong> patients experiencing<br />

significant s<strong>of</strong>t tissue metallosis. Our study demonstrates a relatively<br />

high incidence <strong>of</strong> MOM THA revisions at early follow up. Component<br />

loosening is a common mode <strong>of</strong> failure. Phenomena relatively<br />

unique to MOM bearing such as pseudotumor, metal sensitivity and<br />

metallosis are being observed in a significant percentage <strong>of</strong> MOM<br />

failures. It is imperative for the surgeon to be cognizant <strong>of</strong> the fact<br />

that the proposed advantages <strong>of</strong> MOM THA are not without their<br />

potential detrimental sequelae.<br />

posteR No. p058<br />

Surgical Treatment <strong>of</strong> Femoroacetabular Impingement<br />

in Patients 35 years and Older<br />

John C Clohisy, MD, Saint Louis, MO<br />

Lauren St John, Saint Louis, MO<br />

Geneva Baca, Saint Louis, MO<br />

Joint preservation surgical techniques have been popularized for the<br />

treatment <strong>of</strong> femoroacetabular impingement (FAI), and encouraging<br />

clinical results have been reported for most patients. Nevertheless,<br />

patients older than 35 years with FAI present a treatment-decision<br />

challenge and there is limited published information regarding the<br />

clinical results <strong>of</strong> surgery. The purpose <strong>of</strong> this study was to determine<br />

the clinical outcomes <strong>of</strong> joint preservation surgery for symptomatic<br />

FAI in patients 35 years and older. We performed a retrospective<br />

review <strong>of</strong> 96 hips in 88 patients who underwent surgical treatment<br />

for symptomatic FAI by one surgeon. Surgical approach varied<br />

according to patient and deformity characteristics, and included open<br />

dislocation (11%), all arthroscopic (13%) and arthroscopic with<br />

limited open (76%). Hip function was evaluated with the modified<br />

Harris Hip score. There were 42 females and 46 males. The mean age<br />

was 44 years, body mass index 25.8 kg/m2, and the average follow<br />

up was 23 months (range, 8-68). At the last follow up, the mean<br />

modified HHS for the entire group improved from 60.6 to 76.9<br />

points (p80, 14%<br />

between 70 and 79 and 39%


(p>0.05) regarding overall postoperative arthroplasty infections.<br />

Superficial s<strong>of</strong>t tissue infection developed in nine/616 patients,<br />

zero/278 in group A vs. nine/338 in group B (2.99%) (p


were found for intraobserver reliability (0.99 vs. 0.89 and 0.92).<br />

Classification <strong>of</strong> pelvic tilt using the sacrococcygeal and coccyx had<br />

moderate levels <strong>of</strong> interobserver agreement (kappa 0.40-0.61), and<br />

misclassified 18.6-28.6% <strong>of</strong> radiographs. The SI based measurements<br />

misclassified 2.6-8.6% and had excellent reliability (K 0.83-0.94).<br />

For radiographs classified as having poor visualization, the reliability<br />

<strong>of</strong> measurements based on the sacrococygeal and coccyx decreased<br />

(fair-substantial), while SI measures were not affected (excellent).<br />

All three parameters had excellent agreement for pelvic rotation. The<br />

reliability <strong>of</strong> the inferior SI joint midpoint is superior to that <strong>of</strong> the<br />

sacrococcygeal and coccyx as a marker <strong>of</strong> pelvic tilt.<br />

posteR No. p064<br />

Randomised Controlled Trial Comparing Cemented<br />

Stem Behaviour Following Large MOM and MOP THA<br />

Ajay Malviya, MD, Newcastle Upon Tyne, United Kingdom<br />

Jayasree Ramaskandhan, MSc<br />

Russell Bowman, MSc<br />

Elizabeth Anne Lingard, MD, Newcastle Upon Tyne,<br />

United Kingdom<br />

James Holland, MD, Newcastle, United Kingdom<br />

There is a concern that larger size head may put additional torque on<br />

the stem and lead to increased stress on the cement-implant interface.<br />

This study aims to compare the proven elements <strong>of</strong> conventional<br />

hip replacement (cemented stem fixation) in combination with<br />

large metal on metal (MOM) versus conventional metal on poly<br />

(MOP) bearing surface. One hundred patients were randomized to<br />

receive either a MOP bearing (28 mm head) or MOM bearing (large<br />

head) with a cemented femoral stem. All patients were assessed<br />

pre-operatively and at three months, one year and two years post<br />

operatively. There were 50 patients in each arm <strong>of</strong> the study with<br />

both groups similar in terms <strong>of</strong> age, gender, diagnosis, body mass<br />

index and preoperative scores. Using EBRA s<strong>of</strong>tware femoral stem<br />

subsidence at two years was 1.27 mm for MOM group as compared<br />

to 1.4 mm for MOP group (p=0.73). At two years, significant<br />

(p0.05) was observed between the<br />

two groups in terms <strong>of</strong> all the scores. MOM group scored significantly<br />

higher in overall patient satisfaction (p=0.01) at two years. There was<br />

no detectable difference between the stem behavior using the large<br />

MOM bearing compared to the standard 28 mm MOP bearing as<br />

identified by EBRA up to two years, despite differences in sliding<br />

distances and torques between these bearings.<br />

posteR No. p065<br />

Does Charnley Category Influence Modern Hip Specific<br />

Outcome Measures?<br />

Peter David Henry Wall, MBChB, MRCS, West Midlands,<br />

United Kingdom<br />

Munier Hossain, FRCS, MSc, Manchester, United Kingdom<br />

J Glynne Andrew, MD, Bangor, Gwynedd, United Kingdom<br />

It was recognized over 30 years ago that the functional outcome <strong>of</strong><br />

total hip arthroplasty (THA) was worse for patients with additional<br />

disease affecting walking ability. The Charnley Category (CC) was<br />

developed to separate patients on this basis. Joint specific measures<br />

are designed to be minimally influenced by co-mobidity. We aimed<br />

to establish whether the CC has a measurable effect on modern joint<br />

specific outcome measures such as the Oxford Hip Score (OHS). We<br />

497<br />

reviewed the database <strong>of</strong> a prospective multi-center study carried<br />

out between January 1999 and January 2002 to investigate the<br />

relationship between CC and OHS both preoperatively and after<br />

THA. We recorded the OHS preoperatively and at five years after<br />

surgery. A total <strong>of</strong> 1,113/1,589 were followed up at five years. Preoperative<br />

OHS was significantly worse in CC-B (mean 45.75, 95% CI<br />

44.78- 46.71) and CC-C groups (mean 46.32, 95% CI 45.42-47.21)<br />

compared to the CC-A group (mean 42.9, 95% CI 42.39-43.41). All<br />

groups demonstrated significant improvement in OHS following<br />

surgery (p


posteR No. p067<br />

Assessing Acetabular Component Anteversion: A<br />

Comparison <strong>of</strong> Three Methods<br />

John Vincent Tiberi, MD, Torrance, CA<br />

Nicholas Pulos, BA, Philadelphia, PA<br />

Michael Kertzner, Calabasas, CA<br />

Lauren Wisk, Los Angeles, CA<br />

Mylene A Dela Rosa, Los Angeles, CA<br />

Thomas P Schmalzried, MD, Los Angeles, CA<br />

Anteversion has been linked to range <strong>of</strong> motion and stability,<br />

wear, squeaking <strong>of</strong> ceramics and ion levels with metal-metal. Cup<br />

position has historically been assessed on a true lateral radiograph<br />

using the film edge as a reference. Edge detection s<strong>of</strong>tware, EBRA,<br />

provides a valid method <strong>of</strong> assessment on digital films but is not<br />

available to all practitioners. We hypothesize that the assessment<br />

<strong>of</strong> component position on true lateral radiographs would be more<br />

consistent by using an anatomical measurement reference. We<br />

analyzed 52 hips in 51 patients implanted with the same prostheses<br />

with at least three post-operative radiographs taken at different<br />

times. On a true lateral radiograph, cup position was assessed by<br />

the method <strong>of</strong> Woo and Morrey (a surrogate for anteversion) and a<br />

new method using the ischial tuberosity as an anatomical reference:<br />

the ischiolateral method. Both methods utilize a line parallel to the<br />

face <strong>of</strong> the acetabular component. Woo and Morrey describe the<br />

angle this line makes with the horizontal plane <strong>of</strong> the radiograph<br />

(external reference) and the ischolateral method describes the angle<br />

made with a perpendicular to the long axis <strong>of</strong> the ischium (internal<br />

reference). Anteversion was also measured with the EBRA s<strong>of</strong>tware.<br />

Fifty randomly selected radiographs were re-evaluated by the original<br />

observer at a separate setting and assessed by a second observer.<br />

Inter- and intra-observer reliability for each method were evaluated<br />

by the intra-class correlation coefficient. The ischio-lateral (2.15°)<br />

and EBRA (2.06°) methods had lower mean standard deviations<br />

than the Woo and Morrey method (3.65°, p


developed at our institution specifically aimed at evaluating patterns<br />

and amounts <strong>of</strong> osteolysis. Twenty patients were identified as having<br />

loose cups preoperatively by CT. Intraoperative findings confirmed<br />

this in 18 cases. Twenty-four patients were identified as having fixed<br />

cups preoperatively by CT. Intraoperative findings confirmed this in<br />

23 cases. Sensitivity, specificity, positive predictive value and negative<br />

predictive value <strong>of</strong> CT scan in detecting loose acetabular components<br />

were 94.7%, 92.0%, 90.0% and 95.8% respectively. CT scans can be<br />

<strong>of</strong> great value in assessing osteolysis after hip arthroplasty. We have<br />

found that careful review <strong>of</strong> CT scans can result in high sensitivity<br />

and specificity when diagnosing loose acetabular components when<br />

radiographs cannot confirm this.<br />

posteR No. p070<br />

Hyponatremia Following Hip and Knee Replacement<br />

Surgery- Incidence and Associated Risk Factors<br />

Alexander P Sah, MD, Fremont, CA<br />

Postoperative hyponatremia is a relatively frequent, but commonly<br />

overlooked, perioperative disorder. Symptoms can include nausea,<br />

lethargy, confusion and weakness which can easily be attributed<br />

to perioperative medications or anesthesia effects. However,<br />

hyponatremia can also lead to encephalopathy, cerebral edema and<br />

demyelination with too rapid correction. The purpose <strong>of</strong> this study is<br />

to determine the frequency and associated risk factors <strong>of</strong> developing<br />

hyponatremia after joint replacement. A total <strong>of</strong> 280 consecutive<br />

patients undergoing total hip and knee replacement were followed<br />

perioperatively with daily basic metabolic panels. Lactated ringers<br />

solution was given intraoperatively and followed by normal and<br />

half-normal saline maintenance intravenous fluids. Hyponatremia<br />

was corrected with medical management including fluid restriction,<br />

temporary cessation <strong>of</strong> hydrochlorothiazide if taken, and normal<br />

saline infusion. Hyponatremia occurred in 81/280 (29%) <strong>of</strong><br />

patients. Hyponatremia was mild (130-134) in 70.3%, moderate<br />

(125-129) 22.2%, and severe (less than 125) 7.3%. Nearly all<br />

patients with preoperative hyponatremia, 14/15 (93.3%) developed<br />

postoperative hyponatremia. Patients had higher risk <strong>of</strong> developing<br />

hyponatremia if taking HCTZ or ACE-inhibitors perioperatively<br />

(p


MC3T3-E1 cells attached and proliferated well on these surfaces.<br />

The extracellular matrix was synthesized and mineralized on all<br />

surfaces. Although the number <strong>of</strong> cells attached on the NaTi surface<br />

was less than that <strong>of</strong> the other surfaces initially, they produced better<br />

intercellular connections, extracellular matrix and mineralization.<br />

Cells on the surfaces <strong>of</strong> all implants expressed (++) and u staining<br />

for osteocalcin, osteopontin and bone sialoprotein. Expression<br />

increased with BMP 2 and BMP 7 stimulation. In conclusion, a new<br />

method <strong>of</strong> NaTi coating was customized. MC3T3-E1 cells initially<br />

proliferated slowly on this surface but the number <strong>of</strong> cells caught<br />

up with the other surfaces on day 14. Intercellular connections,<br />

extracellular matrix production and mineralization however were<br />

excellent on NaTi surfaces. Osteocalcin, osteopontin and bone<br />

sialoprotein expressed equally well on all surfaces. Both BMP 2 and<br />

BMP 7 stimulated cells and their protein synthesis. In conclusion,<br />

a new method <strong>of</strong> NaTi coating was customized. MC3T3-E1 cells<br />

initially proliferated slowly on this surface but the number <strong>of</strong><br />

cells caught up with the other surfaces on day 14. Intercellular<br />

connections, extracellular matrix production and mineralization,<br />

however, were excellent on NaTi surfaces. Osteocalcin, osteopontin<br />

and bone sialoprotein expressed equally well on all surfaces. Both<br />

BMP 2 and BMP 7 stimulated cells and their protein synthesis.<br />

posteR No. p073<br />

Revision Hip Arthroplasty for Instability: Constraint<br />

May Not be The Answer<br />

Aaron Carter, Washington, DC<br />

S M Javad Mortazavi, MD, Wyncote, PA<br />

Mr Eoin C Sheehan, Tullamore, Ireland<br />

James J Purtill, MD, Philadelphia, PA<br />

Matthew Austin, MD, Philadelphia, PA<br />

Peter F Sharkey, MD, Media, PA<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Constrained liners that were used as treatment for instability<br />

following total hip arthroplasty (THA) were reviewed. The hypothesis<br />

<strong>of</strong> this study was that constrained liners are likely to fail if correctable<br />

causes for instability are not addressed. Results found that failure<br />

rate <strong>of</strong> constrained components are unexpectedly high. Increased<br />

rate <strong>of</strong> dislocation is associated with younger and healthier patients<br />

or patients with previous history <strong>of</strong> revision. Using our prospective<br />

institutional revision database, all hips that had undergone revision<br />

THA for instability and received constrained liners between 2000 and<br />

2007 were identified. Detailed retrospective review <strong>of</strong> the database<br />

and medical records were obtained to extract relevant information.<br />

Fifty-seven hips in 56 patients received constrained liners. Average<br />

follow up was 5.04 years (range 24-119 months). Failure rate <strong>of</strong><br />

constrained liners was 29.8% (12 dislocations, five acetabular<br />

loosening). A total <strong>of</strong> 25% <strong>of</strong> liners that also had cup revision failed<br />

compared to 36% that only had a liner exchange (p=0.4). In the liner<br />

exchange group, there was no difference in failure rate for cemented<br />

compared to uncemented liners (p=0.8). Younger age (p=.04), lower<br />

Charlson index (p=.01) and history <strong>of</strong> previous revision surgeries<br />

(p=.05) were associated with higher dislocation rate. Constrained<br />

liners could be effective in the treatment <strong>of</strong> instability following<br />

THA, however failure rates are higher than previously expected.<br />

When considering constrained liners the surgeon must consider the<br />

limitations <strong>of</strong> these components especially in a more active patient<br />

population. These components are more likely to fail in younger<br />

patients with few comorbidities or patients with previous revision<br />

surgery.<br />

500<br />

posteR No. p074<br />

uRim Loaded MoM Hip Prostheses: Volumetric Wear is<br />

Increased by Increasing Bearing Diameter<br />

David Langton, Gateshead, United Kingdom<br />

Thomas Joyce, PhD<br />

James Lord, MSc, Newcastle Upon Tyne, United Kingdom<br />

Harry Grigg, BSc, Newcastle Upon Tyne, Tyne and Wear,<br />

United Kingdom<br />

Dominic Meek, MD FRCS<br />

James Holland, MD, Newcastle, United Kingdom<br />

Antoni Nargol, FRCS, Yarm, United Kingdom<br />

Metal on metal (MoM) joints are manufactured to encourage fluid<br />

film lubrication. In theory, larger diameter bearings facilitate fluid<br />

film generation. However we have frequently observed the highest<br />

blood ion levels in patients with larger diameter prostheses. We<br />

analyzed our series <strong>of</strong> explanted paired MoM hip arthroplasty<br />

components using a coordinate measuring machine. From this data,<br />

total volumetric wear was calculated using a validated program.<br />

A complete data set for each retrieved hip was available including<br />

femoral size, UCLA activity score and age. Spearman rank correlation<br />

was used to identify significant relationships between volumetric<br />

wear and the variables listed above. Significant variables were<br />

forwarded for multiple regression analysis (MRA). A non contacting<br />

pr<strong>of</strong>ilometer was used to obtain surface roughness measurements<br />

and lambda ratios were calculated using these values. There were 43<br />

paired components in total (39 revised for adverse reaction to metal<br />

debris, two infections, two avascular necrosis. <strong>Annual</strong> wear rates<br />

ranged from 1.15 to 95.5 mm3. Femoral diameter correlated with<br />

wear (r = 0.579 p


(14%) than in hips that received liner exchange (34%) (p=0.004).<br />

A total <strong>of</strong> 32% <strong>of</strong> hips with history <strong>of</strong> previous revision dislocated<br />

compared to 15% <strong>of</strong> hips that dislocated after primary revision<br />

(p=.05). Unconstrained 28 mm heads had the highest dislocation<br />

rate (44%) compared to larger head sizes (11.8%) (p=.0004).<br />

Multivariate analysis found that the odds <strong>of</strong> failure increased fourfold<br />

if an unconstrained 28 mm head was used (p=.02). Revision to<br />

address instability following THA appears to be effective. However,<br />

there is a relatively high rate <strong>of</strong> failure. Liner exchange rather than<br />

cup revision, history <strong>of</strong> previous revision and using smaller femoral<br />

heads are associated with this higher failure rate. Optimization <strong>of</strong><br />

these factors during surgery can help to decrease the risk <strong>of</strong> failure in<br />

this complex group <strong>of</strong> patients.<br />

posteR No. p076<br />

Early Failure <strong>of</strong> DePuy ASR XL Total Hip Arthroplasty<br />

Garen Steele, MD, Wrightsville Beach, NC<br />

Thomas K Fehring, MD, Charlotte, NC<br />

Susan Marie Odum, Charlotte, NC<br />

Matthew C Nadaud, MD, Knoxville, TN<br />

Large diameter metal on metal articulations in total hip arthroplasty<br />

<strong>of</strong>fer the theoretical advantage <strong>of</strong> better stability and increased range<br />

<strong>of</strong> motion compared to smaller diameter bearings. The ASR XL total<br />

hip arthroplasty system by DePuy <strong>of</strong>fers a large diameter metal head<br />

paired with a metal acetabular cup, which was initially designed for<br />

hip surface replacements. An alarming number <strong>of</strong> early failures have<br />

prompted the need to evaluate clinical and radiographic outcomes<br />

<strong>of</strong> patients with the DePuy ASR XL implant system. The purpose<br />

<strong>of</strong> this study is to evaluate the clinical and radiographic outcomes<br />

<strong>of</strong> patients with the DePuy ASR XL implant system. A prospective<br />

consecutive series <strong>of</strong> 131 patients at two different institutions who<br />

underwent total hip arthroplasty with the DePuy ASR XL system<br />

was evaluated. All surgeries were performed by fellowship trained<br />

arthroplasty surgeons. Patients with a minimum two-year follow<br />

up were included in the study. Failure rates, Harris Hip Scores<br />

and radiographs were evaluated. Of the 131 patients included in<br />

this study, 16 failed at an average <strong>of</strong> only 1.6 yrs (.18-3.4 yrs). Ten<br />

patients were revised for aseptic loosening, three for metallosis, two<br />

for infection and one for periprosthetic fracture. The DePuy ASR XL<br />

with a failure rate <strong>of</strong> 12.2% is the second recently reported one piece<br />

metal-on-metal total hip system with a significant failure rate at early<br />

follow up. This particular class <strong>of</strong> implants has inherent design flaws<br />

that lead to early failure.<br />

posteR No. p077<br />

T2*-mapping in Patients with Femoroacetabular<br />

Impingement at 3.0T MRI: A Feasibility Study<br />

Sebastian Apprich, MD, Bern, Switzerland<br />

Marcel Dudda, MD<br />

Young Jo Kim, MD, Boston, MA<br />

Klaus Siebenrock, MD, Bern, Switzerland<br />

Tallal C Mamisch, MD, Bern, Switzerland<br />

To perform an in vivo evaluation comparing articular cartilage in<br />

patients with symptomatic femoroacetabular impingement (FAI)<br />

and healthy volunteers using T2*-mapping at 3.0 Tesla over time.<br />

Twenty-two patients (mean age: 28.1a) with clinical signs <strong>of</strong> FAI and<br />

Tönnis-grade d1 on anterior-posterior x-ray view and 35 healthy age<br />

matched volunteers were examined at a 3T whole body scanner using<br />

a flexible body coil. Image protocol consisted <strong>of</strong> sagittal and coronal<br />

orientated gradient-multi-echo sequence using six echoes (TR 125,<br />

TE 4.41/8.49/12.57/16.65/20.73/24.81, scan time 4.02 min.) for<br />

quantification T2*-maps, both measured at beginning and end <strong>of</strong><br />

501<br />

the scan (time between: 40 min, respectively). Region <strong>of</strong> interest<br />

analysis was manually performed at three consecutive slices on the<br />

sagittal/coronal view on the acetabular cartilage. Mean T2*-values<br />

were compared using analysis <strong>of</strong> variance. Whereas quantitative<br />

mean T2*-values did not reveal significant differences between<br />

patients and volunteers, neither for sagittal (23.49 ms vs. 23.95 ms;<br />

p 0.644) or coronal images (19.53 ms vs. 19.54 ms; p 0.987), at<br />

the first measurement, a highly significant difference (pd0.004) was<br />

found for both measurements with time after unloading <strong>of</strong> the joint<br />

(sag.: 23.09 ms vs. 26.64 ms; cor.: 19.10 ms vs. 22.67 ms). Over time<br />

we found decreasing mean T2* values (sag -0.41 ms; cor -0.43 ms)<br />

for patients, in contrast to increasing mean T2*-relaxation times<br />

(sag 2.68 ms; cor 3.12 ms) in volunteers (p


variation within the asymptomatic population. The purpose <strong>of</strong> this<br />

study is to report the range <strong>of</strong> alpha (±)-angles in the asymptomatic<br />

population and anticipate the potential ratio-<strong>of</strong>-prevalence <strong>of</strong> FAI risk<br />

within the population. We retrospectively examined 420 randomly<br />

selected patients (840 hips), who underwent a thin-section pelvic<br />

computed tomography at our institution for other medical conditions<br />

from January 2005 to August 2009. The prevalence <strong>of</strong> possible FAI<br />

was assessed by measuring ±-angle <strong>of</strong> each hip on anteroposterior<br />

(AP) pelvic survey images taken during CT scanning. The CT images<br />

were then evaluated to confirm the presence <strong>of</strong> bump on the axial CT<br />

views. Sixty-seven hips were excluded due to inadequate imagings.<br />

All hips were classified according to the Copenhagen Osteoarthritis<br />

Study which was 1) Men: pathological (>83° alpha angle), borderline<br />

(69° to 82° alpha angle) and normal ( 57° alpha angle), borderline (51° to<br />

56° alpha angle) and normal (20 Year Comparison <strong>of</strong> Cemented and Cementless<br />

Femoral Stems In Primary Total Hip Replacement<br />

Robert Barry Bourne, MD, London, ON Canada<br />

Cecil H Rorabeck, MD, London, ON Canada<br />

The purpose <strong>of</strong> this study was to compare the >20 year outcomes<br />

<strong>of</strong> cemented versus cementless femoral stems in primary total hip<br />

replacements (THR). The >20 year survivorships <strong>of</strong> four commonly<br />

used cemented femoral stems (Charnley, Exeter, HD-2, Mallory<br />

Head) were compared to three cementless stems (AML, PCA,<br />

Mallory Head) to determine which mode <strong>of</strong> fixation provided the<br />

best long-term outcomes. At >20 year follow up, cemented femoral<br />

stem survivorships varied between 81% and 97%. Cemented stems<br />

fabricated from stainless steel or a cobalt chrome alloy (Charnley<br />

92 to 95%, Exeter 97%, HD-2 96%) performed better than those<br />

made from a titanium alloy (Mallory Head 81%). At >20 year follow<br />

up, cementless stem survivorship varied from 96% to 99%. Fixation<br />

seemed equally good for extensively porous-coated (AML 98%),<br />

anatomic (PCA 96%) and tapered (Mallory Head 99%) cementless<br />

stems. Acetabular issues such as wear, osteolysis and loosening were<br />

the leading cause <strong>of</strong> revision for both the cemented and cementless<br />

THRs studied. This >20 year comparison <strong>of</strong> several commonly used<br />

primary THR femoral stems has demonstrated that: 1) Cementless<br />

femoral stem fixation is equal if not superior to the best cemented<br />

stem results, 2) Stainless steel and cobalt chrome alloy cemented<br />

stems perform better than those made from a titanium alloy, 3) Both<br />

proximally porous-coated (anatomic and tapered) and extensively<br />

porous-coated cementless stems provide durable fixation, 4) The<br />

bearing couples, not fixation, have been the Achilles heel <strong>of</strong> the<br />

THRs studied.<br />

502<br />

posteR No. p081<br />

Total Joint Replacement in Patients with Rheumatoid<br />

Arthritis in US from 1992-2005<br />

Marc Wilson Hungerford, MD, Baltimore, MD<br />

Amit Jain, BS, Portland, OR<br />

Benjamin Eric Stein, MD, Baltimore, MD<br />

Richard L Skolasky, Jr Pr<strong>of</strong>., Baltimore, MD<br />

Lynne C Jones, PhD, Baltimore, MD<br />

Rheumatoid arthritis (RA) <strong>of</strong>ten progresses to joint degeneration<br />

requiring total joint arthroplasty (TJA). Recently, disease modifying<br />

anti-rheumatic drugs (DMARDs) have been shown to be efficacious in<br />

the treatment <strong>of</strong> RA. The aim <strong>of</strong> this study was to determine whether<br />

the proportion <strong>of</strong> RA patients undergoing primary TJA procedures<br />

<strong>of</strong> the major joints decreased during the period 1992-2005 in the<br />

United States. The Nationwide Inpatient Sample (NIS) collects<br />

data prospectively from a stratified sample <strong>of</strong> 20% <strong>of</strong> community<br />

hospitals in the U.S. Using this database, the total numbers <strong>of</strong> total<br />

joint arthroplasties for knee (TKA), hip (THA), shoulder (TSA) and<br />

elbow (TEA) performed in the U.S. were determined for 1992-2005.<br />

The numbers <strong>of</strong> procedures for patients with rheumatoid arthritis<br />

were also ascertained. Weighted analysis was performed to account<br />

for the stratified sampling used in the NIS to calculate national<br />

estimates and to analyze trends over time. From 1992-2005, there<br />

were 4,164,465 TKA, 2,416,563 THA, 125,810 TSA and 21,816 TEA<br />

performed in the U.S. For RA patients, there were 153,501 (3.7%)<br />

TKA, 77,736 (3.2%) THA, 8,725 (6.9%) TSA and 6,097 (27.9%)<br />

TER. While hospitalizations increased by 92% from 186,813 in<br />

1992 to 358,261 in 2005, the proportion <strong>of</strong> total joint replacement<br />

performed in RA patients decreased: TKA (20.7%; p


<strong>of</strong> peroxides were lower in the seminal plasma than in the blood<br />

plasma <strong>of</strong> these patients. Importantly, the ejaculate volume, the<br />

sperm density, the total sperm count, the pH and the percentage <strong>of</strong><br />

cells with normal morphology were in the range <strong>of</strong> the WHO criteria<br />

for fertile population and also in the range <strong>of</strong> reference patients in<br />

the city <strong>of</strong> measurements. Results were also comparable to what was<br />

observed in a group <strong>of</strong> five control men matched for age. Also, there<br />

were no significant correlations between sperm or blood peroxide<br />

levels and the sperm parameters as well as between sperm or blood<br />

ion levels and the sperm parameters. Results <strong>of</strong> the present study<br />

strongly suggest that the raise <strong>of</strong> Co and Cr had no detrimental effect<br />

on sperm parameters <strong>of</strong> young patients <strong>of</strong> child fathering age with<br />

MoM THA.<br />

posteR No. p083<br />

The Effect <strong>of</strong> Total Hip Arthroplasty (THA) Surgical<br />

Approach on Gait<br />

Daniel Varin, B.Sc.<br />

Mario Lamontagne, Ottawa, ON Canada<br />

Paul E Beaule, MD, Ottawa, ON Canada<br />

The anterior approach to the hip is thought to allow better gait<br />

after total hip arthroplasty since it spares the gluteus medius and<br />

minimus. It was hypothesized that it would result in closer to normal<br />

three-dimensional (3D) kinematics and kinetics. Ten months<br />

after THA, we performed 3D gait analysis on 20 THA patients<br />

that had an anterior approach (ANT), 20 with a lateral approach<br />

(LAT) and 20 healthy matched control participants. A nine-camera<br />

motion analysis system and two force plates were used to obtain<br />

kinematic (from 45 reflective markers on their body) and kinetic<br />

data respectively. Peak joint angles, range <strong>of</strong> motion and moments<br />

were averaged for three trials per participants, then for each group<br />

and were compared using multiple analyses <strong>of</strong> covariance. Both<br />

THA groups had reduced hip extension (ANT: -12º, p=0.007; LAT:<br />

-10º, p


posteR No. p086<br />

Alumina Head/Liner vs. Alumina Head/UHMW<br />

Polyethylene Liner: 5-Year Results <strong>of</strong> a Randomized<br />

Trial<br />

Andrei Manolescu, MD, Edmonton, AB Canada<br />

Lauren Beaupre, PhD, Edmonton, AB Canada<br />

Donald William Cooper Johnston, MD, Edmonton, AB Canada<br />

Kelvin J Russell, MD<br />

James F McMillan, MD, Edmonton, AB Canada<br />

Donald Weber, MD, Edmonton, AB Canada<br />

Thomas H Greidanus, MD, Edmonton, AB Canada<br />

Wynne M Rigal, MD, Edmonton, AB Canada<br />

Primary total hip arthroplasty (THA) has had mixed long-term results<br />

in younger subjects primarily due to wear <strong>of</strong> the polyethylene liner<br />

and loosening <strong>of</strong> femoral component. The primary study purpose<br />

was to compare pain, function and stiffness over the first five years<br />

between subjects younger than 60 years who received either an<br />

alumina liner/alumina femoral head or an ultra high molecular<br />

weight (UHMW) polyethylene liner/alumina head at time <strong>of</strong><br />

primary THA. Secondarily, we compared re-operation rates over five<br />

years between groups. This was a randomized, controlled trial (RCT)<br />

in which subjects less than 60 years <strong>of</strong> age, with non-inflammatory<br />

osteoarthritis (OA) and who were booked for primary THA were<br />

enrolled and randomized preoperatively and re-evaluated one and<br />

five years postoperatively. At each assessment, subjects completed<br />

the WOMAC Osteoarthritis Index (WOMAC); complications and<br />

re-operations were also recorded. Ninety-two young hip patients<br />

were enrolled in the study; the median age was 52.4 (SD 6.8) and<br />

50 (54%) were male. Preoperative WOMAC pain, function and<br />

stiffness scores were similar between groups (p>0.05). Five-year<br />

follow-up data was available for 78 (85%) patients. Both groups<br />

showed substantial improvement in pain, function and stiffness<br />

within one year that was maintained out to five years; there were<br />

no statistically significant difference between groups (p>0.05). Four<br />

subjects required re-operation within five years; no re-operation was<br />

related to liner type. Our RCT found very good five-year functional<br />

recovery and pain relief with no differences seen between groups.<br />

The re-operation rate was low and not related to liner type. Longerterm<br />

follow up is required to determine if liner type affects longterm<br />

survival <strong>of</strong> THA in young patients.<br />

posteR No. p087<br />

Dislocation Rates <strong>of</strong> Total Hip Arthroplasties Inserted<br />

with Large Femoral Heads<br />

Michael Aaron Robinson, MD, Fleming Island, FL<br />

Lindsey Bornstein, New York, NY<br />

Brandon Mennaer, BS, New York, NY<br />

Mathias P G Bostrom, MD, New York, NY<br />

Bryan J Nestor, MD, New York, NY<br />

Douglas E Padgett, MD, New York, NY<br />

Ge<strong>of</strong>frey H Westrich, MD, New York, NY<br />

Improvements in bearing surfaces has allowed us to reduce liner<br />

wear and use the advantages <strong>of</strong> increased size <strong>of</strong> the femoral head<br />

to reduce the prevalence <strong>of</strong> dislocation. The objective <strong>of</strong> this study<br />

is to further explore the relationship between femoral head size and<br />

risk <strong>of</strong> postoperative dislocation. This is a retrospective review <strong>of</strong><br />

all patients who underwent a total hip arthroplasty and received a<br />

32 or 36 mm femoral head between January 2003 and June 2007<br />

by four arthroplasty surgeons. All procedures were performed<br />

through a posterior approach with posterior repair. There was a<br />

504<br />

minimum <strong>of</strong> two years follow up. Data on 589 patients (679 hips)<br />

were available for analysis. Data on diagnosis, age and gender was<br />

collected. A questionnaire was given to all patients to keep track <strong>of</strong><br />

instability and dislocations. Radiographic analysis was done with<br />

post operative x-rays: acetabular vertical height, (medial) acetabular<br />

<strong>of</strong>fset, femoral <strong>of</strong>fset and abduction angle. Analysis comparing<br />

clinical and radiographic data was performed between patients with<br />

and without dislocations. The prevalence <strong>of</strong> dislocation was 1.3%<br />

(9/679). Follow up averaged 3.4 years (range 2-6.6). Analysis showed<br />

that a decrease <strong>of</strong> the combined postoperative <strong>of</strong>fset (lateral <strong>of</strong>fset<br />

+ medial <strong>of</strong>fset measurements) was associated with a statistically<br />

significant increase in the risk for dislocation (p=0.04). There was<br />

an increased incidence <strong>of</strong> dislocation in acetabular cups greater then<br />

58 mm (odds ratio 10.7, p


posteR No. p089<br />

In vivo Oxidation Of Highly Cross-Linked Polyethylene<br />

Bearings<br />

Barbara H Currier, MChE, Hanover, NH<br />

Ashley J Martin<br />

Jennifer Caitlin Huot, Hanover, NH<br />

Douglas Van Citters, PhD, Hanover, NH<br />

Daniel J Berry, MD, Rochester, MN<br />

Highly cross-linked (HXL) ultra high molecular weight polyethylene<br />

(UHMWPE) bearings have carefully prescribed stabilization<br />

protocols (annealing, remelting or addition <strong>of</strong> antioxidants) to<br />

prevent oxidative degradation. Oxidation has been reported in<br />

both annealed and remelted HXL retrievals. The effectiveness <strong>of</strong><br />

the stabilization methods in preventing in vivo oxidation and the<br />

ability to forecast future performance <strong>of</strong> HXL bearings requires<br />

analysis <strong>of</strong> all types <strong>of</strong> HXL retrievals. A total <strong>of</strong> 120 retrieved HXL<br />

UHMWPE bearings (annealed, remelted, antioxidant-stabilized,<br />

in vivo time 0 - 10 years) were evaluated for oxidation by Fouriertransform<br />

infrared spectroscopy, rated for clinical damage, and<br />

selected bearings were analyzed for free radical concentration (FRC)<br />

using EPR spectroscopy. Retrievals <strong>of</strong> annealed HXL bearings and<br />

antioxidant HXL have measurable FRC. Remelted HXL bearings have<br />

no measurable FRC. Fifty percent <strong>of</strong> retrieved HXL bearings exhibit<br />

subsurface articular oxidation in vivo. Subsurface articular oxidation<br />

may change the wear resistance <strong>of</strong> acetabular liners and could lead<br />

to fatigue failure <strong>of</strong> HXL tibial inserts given sufficient time. Careful<br />

monitoring <strong>of</strong> longer term in vivo performance <strong>of</strong> HXL UHMWPE<br />

bearings is critical to assessing these potential concerns.<br />

posteR No. p090<br />

uDoes The Design Of Frequently Used Hip Resurfacing<br />

Components Affect Cement Fixation?<br />

Rudi Bitsch, MD, Heidelberg, Germany<br />

Beate Obermeyer, BSc<br />

Johannes S Rieger, MSc<br />

Sebastian Jaeger, MSc, Heidelberg, Germany<br />

Thomas P Schmalzried, MD, Los Angeles, CA<br />

National joint replacement registry data showed that component<br />

designs have been associated with failures <strong>of</strong> hip resurfacing<br />

arthroplasties. We used a well established experimental setup to<br />

analyze the effects <strong>of</strong> the inner geometry <strong>of</strong> five different femoral<br />

resurfacing components on cement fixation. Highly standardized<br />

open-cell reticulated carbon foam was demonstrated to closely<br />

simulate human femoral heads as prepared for resurfacing.<br />

We used this femoral resurfacing model to obtain real-time<br />

measurements <strong>of</strong> pressure and temperature and measure cement<br />

penetration and distribution as a function <strong>of</strong> the inner geometry<br />

<strong>of</strong> five different femoral hip resurfacing components. Statistical<br />

analyses were performed using the Kruskal-Wallis test, p


emodelling (Moore). Average patient age at acetabular revision was<br />

65 years, while 14 male and 24 female patients were included at an<br />

average follow up time <strong>of</strong> 35 months. The HHS improved from 46<br />

to 81 points. Four patients sustained a dislocation postoperatively<br />

(three closed reductions and one revision). One further acetabular<br />

revision was necessary seven months after implantation, because<br />

<strong>of</strong> loosening <strong>of</strong> the cup. Two further shaft revisions were necessary.<br />

Radiographs: 62% showed at revision defects as graded 2B and 28%<br />

3A by Paprosky. At latest radiographic follow up, all <strong>of</strong> augments<br />

appeared stable without change <strong>of</strong> position and showed signs <strong>of</strong><br />

bony integration. Seventeen (45%) patients showed a superolateral<br />

buttress. Two patients (5%) showed radiolucent lines around the cup.<br />

The overall luxation rate was 11%. Trabecular metal augmentation in<br />

combination with local impaction grafting and an all polyethylen<br />

cup allows for adequate fixation and shows good tendency <strong>of</strong> bone<br />

remodeling three years after implantation.<br />

posteR No. p093<br />

The Effect Of Risedronate On Periprosthetic Bone<br />

Resorption After Total Hip Arthroplasty<br />

Ol<strong>of</strong> Skoldenberg, MD, Danderyd, Sweden<br />

Mats Salemyr, MD, Bromma, Sweden<br />

Henrik Boden, MD, PhD, East Lansing, MI<br />

Torbjorn E Ahl, Dandoeryd, Sweden<br />

Per Y Adolphson, MD, Danderyd, Sweden<br />

The aim <strong>of</strong> this trial was to investigate the effect <strong>of</strong> risedronate given<br />

once weekly on femoral periprosthetic bone resorption after total<br />

hip arthroplasty (THA) in patients with osteoarthritis <strong>of</strong> the hip.<br />

We enrolled 73 patients between 40 and 70 years <strong>of</strong> age scheduled<br />

for THA in a single-center, randomized, double-blind, placebocontrolled<br />

trial. Subjects received either 35 mg <strong>of</strong> risedronate (n=36)<br />

or placebo (n=37) once weekly for six months. The primary end<br />

point was change in bone mineral density (BMD) in femoral Gruen<br />

zones 1 and 7. BMD scans were taken postoperatively and at three,<br />

six, 12 and 24 months. Secondary end points included migration<br />

<strong>of</strong> the stem and clinical outcome. In the placebo group we found a<br />

continuous bone loss in zones 1 and 7 which amounted to 18% at<br />

24 months. Bone loss was less with risedronate during the treatment<br />

period but the difference between the groups was not statistically<br />

significant at 24 months. Patients with a low pre-operative BMD <strong>of</strong><br />

the hip lost significantly more bone during the study. The migration<br />

<strong>of</strong> the stem, the clinical outcome and the frequency <strong>of</strong> adverse events<br />

did not differ between the groups. In patients with osteoarthritis, six<br />

months <strong>of</strong> risedronate treatment orally once weekly is effective in<br />

reducing femoral periprosthetic bone resorption up to 12 months<br />

after THA with a trend towards effect up to 24 months. Future<br />

studies <strong>of</strong> bisphosphonate treatment after THA should focus on<br />

patients who have both osteoarthritis and a low BMD <strong>of</strong> the hip.<br />

(ClinicalTrials.gov number, NCT00772395).<br />

506<br />

posteR No. p094<br />

Minimum 2 Year Outcome & Survivorship <strong>of</strong> the<br />

Birmingham Hip Resurfacing System in the United<br />

States<br />

Ryan Nunley, MD, Saint Louis, MO<br />

Christopher D Nelson, DO, Carroll, IA<br />

C Anderson Engh Jr, MD, Alexandria, VA<br />

John Sargent Rogerson, MD, Madison, WI<br />

Peter J Brooks, MD, Cleveland, OH<br />

Edwin P Su, MD, New York, NY<br />

Robert L Barrack, MD, Saint Louis, MO<br />

Previous data on survivorship <strong>of</strong> the Birmingham Hip Resurfacing<br />

(BHR) system come from the design surgeons and large national<br />

databases outside the United States. The purpose <strong>of</strong> this study was<br />

to determine the survivorship <strong>of</strong> this implant at two to four-year<br />

follow up in the United States. A multicenter, retrospective review <strong>of</strong><br />

1,265 patients treated with a BHR implant at six high volume total<br />

joint centers with established joint registries from June 2006 until<br />

August 2008 was undertaken. Charts were reviewed and patient<br />

demographics, Harris Hip Scores (HHS) and radiographic findings<br />

were recorded. Patients without a two-year follow up clinic visit were<br />

contacted by phone. All patients were asked about complications,<br />

re-operations or failure <strong>of</strong> their implants. There were 1,118 patients<br />

with minimum two-year follow up. Average age was 52.6 years and<br />

74.2% were males. Average HHS improved from 55.7 pre-operatively<br />

to 97.4 (p


Mann-Whitney-Test. The test was two-sided and a p value <strong>of</strong> 0.05<br />

was considered significant. For the trabecular metal-bonecement<br />

interface the mean maximum tensile force was 424.08N (SD=96.81N,<br />

range: 234.40-559.30N) and the tensile strength 14.85N/mm^2<br />

(SD=3.36N/mm^2, range: 8.18-19.39 N/mm^2). For the bonebonecement<br />

interface the mean maximum tensile force was 169.73N<br />

(SD=74.18N, range: 65.40-274.75N) and the tensile strength<br />

6.28N/mm^2 (SD=2.89N/mm^2, range: 2.43-10.19 N/mm^2). The<br />

difference was statistically significant with p


were obtained from each PPS, with the first taken preoperatively to<br />

serve as a control. Cultures were incubated at 36°C for 24-48 hours<br />

in 5% CO2. Plates were examined, colonies were quantitated and<br />

all different colony types were subcultured to blood agar plates<br />

and incubated for 24 hours at 36°C. Isolated pure colonies were<br />

worked up according to the Gram stain results. Isolated S. aureus<br />

was classified as methicillin resistant or susceptible. Cultures were<br />

collected from 61 THA and 41 TKA. Fifty (49.02%) were found<br />

positive for bacterial contamination, 29/61 THA (47.54%) and<br />

21/41 TKA (51.22%). At least eight different species <strong>of</strong> bacteria<br />

were detected, including Coagulase-Negative Staphylococci (78%),<br />

Micrococcus sp. (22%), MSSA (12%), Bacillus sp. (7%) and MRSA<br />

(1%). Company literature indicates an average bacterial filtration<br />

efficiency <strong>of</strong> 99.4%. Therefore, if one challenges the PPS with 103-<br />

105 organisms, the estimated breakthrough <strong>of</strong> escaping organisms<br />

would be approximately 6-600. The patient’s own bacteria becoming<br />

disassociated and relocated, plus bacteria from other sources could<br />

add to the potential bioburden <strong>of</strong> the exterior <strong>of</strong> the PPS. Although<br />

the PPS is effective in isolating the surgeon from the patient large<br />

number appear to be contaminated at the initiation or conclusion<br />

<strong>of</strong> elective primary joint arthroplasty.<br />

posteR No. p099<br />

Femoral Retroversion As A Cause Of Femoroacetabular<br />

Impingement: A Biomechanical Model<br />

Jibanananda Satpathy, MD, Richmond, VA<br />

Jai Jani, MD, Chicago, IL<br />

John R Owen, PE, Richmond, VA<br />

William A Jiranek, MD, Richmond, VA<br />

Jennifer S Wayne, PhD, Chesterfield, VA<br />

Jason Ray Hull, MD, Richmond, VA<br />

Our biomechanical model confirms femoral neck retroversion can be<br />

an important cause <strong>of</strong> pincer type impingement. Femoroacetabular<br />

impingement (FAI) has been associated with osteoarthritis in young<br />

patients. Limited studies have suggested femoral neck retroversion<br />

may be a cause <strong>of</strong> impingement. Our aim was to create a biomechanical<br />

model for FAI based on the concept <strong>of</strong> femoral retroversion, and to<br />

assess the associated pattern <strong>of</strong> impingement and effect on hip joint<br />

contact stresses. Fresh frozen cadaveric pelvi with intact femora and<br />

hip joints (three hips) were thawed at room temperature. Femoral<br />

neck version was measured using axial radiographs. S<strong>of</strong>t tissues were<br />

removed except for the acetabular labrum. Each hip was separately<br />

tested on Instron material testing equipment using custom<br />

mounting fixtures. Fuji films (low-pressure 2.5 to 10 MPa) were used<br />

for pressure measurement. Femoral neck retroversion was simulated<br />

via a subtrochanteric osteotomy. Each hip was loaded to 300<br />

pounds in 90 degrees <strong>of</strong> flexion for combinations with and without<br />

internal rotation and retroversion. Compared to the nonrotated<br />

and nonretroverted state, peak color density increased 15% in the<br />

hip’s posteromedial region with internal rotation alone, 36% with<br />

retroversion alone and 56% with combined internal rotation and<br />

retroversion. Conversion <strong>of</strong> densities to pressures showed 33% <strong>of</strong><br />

peak pressure readings exceeded 10MPa for rotation alone, 40% for<br />

retroversion alone and 67% for combined rotation and retroversion.<br />

We produced a novel cadaveric biomechanical model <strong>of</strong> FAI to assess<br />

the impingement pattern and contact stresses in the hip joint. The<br />

observed pattern <strong>of</strong> increased hip joint contact stresses correlates<br />

with the osteoarthritis pattern seen clinically in pincer type FAI.<br />

508<br />

posteR No. p100<br />

Reconstruction <strong>of</strong> Severe Acetabular Bone Loss<br />

(Paprosky Type-III) using Acetabular Cages<br />

Amit Sharma, MD, New Orleans, LA<br />

Jonathan N Sembrano, MD, Minneapolis, MN<br />

Edward Y Cheng, MD, Minneapolis, MN<br />

Acetabular cage reconstruction in Paprosky type III defects have 90%<br />

and 75% revision-free survival at five and 10 years, respectively. Use<br />

<strong>of</strong> bone graft is associated with better survival. Severe acetabular<br />

defects in total hip arthroplasty (THA) are challenging and treatment<br />

options include jumbo/bilobed/triflanged/custom/trabecular metal<br />

cups, reconstructive cages ± structural allografts and/or metal<br />

augments. We focused solely on the most severe acetabular defects<br />

(Paprosky type III) treated with reconstruction cages and report the<br />

mid to long-term results. Forty-six hips (41 patients) underwent<br />

acetabular reconstruction with a cage for type III (28 IIIa, 18 IIIb)<br />

acetabular defects with mean follow up 6.7 years (range 2-13).<br />

Defining an endpoint as cage revision, the implant survival was<br />

assessed using Kaplan-Meier analysis and independent prognostic<br />

factors were analyzed using multivariate regression. Radiographs<br />

were reviewed for cage loosening and migration. Outcome scores<br />

were obtained at final follow up. Five and 10-year survivorship for<br />

the acetabular cages was 90.0% (95% CI 82-99) and 75% (95% CI<br />

54-97), respectively. Of the 46 cages implanted, six were revised;<br />

aseptic loosening (four), infection (one) and recurrent dislocation<br />

(one). Cage survival was no different between Paprosky type IIIa or<br />

IIIb. The addition <strong>of</strong> morcelized and/or structural bone graft showed<br />

significantly improved survival (p = 0.0004) compared to a cage<br />

alone. At final follow up SF-36 scores were 44.3 (physical) and 58.8<br />

(mental), and WOMAC total score was 68.4. Reconstruction with<br />

an acetabular cage is a viable option with 75% <strong>of</strong> cages remaining<br />

revision-free at 10 years. The use <strong>of</strong> bone graft is recommended<br />

for improved survival <strong>of</strong> the cage in these cases with severe bone<br />

deficiency <strong>of</strong> the acetabulum.<br />

posteR No. p101<br />

Infection In Revision Total Joint Arthroplasty (TJA): The<br />

Role Of Nutrition Screening<br />

Justin Brothers, MD, Danville, PA<br />

Matthew Austin, MD, Philadelphia, PA<br />

Patricia L Hansen, BS, Middletown, DE<br />

Patients undergoing revision total joint arthroplasty should have<br />

their nutrition status evaluated and optimized prior to revision<br />

surgery. Malnourished patients have an increased risk <strong>of</strong> infection.<br />

The relationship between infection and malnutrition has been well<br />

documented. However, there is much debate regarding which labs are<br />

the best indicator <strong>of</strong> malnutrition and at what thresholds. All patients<br />

undergoing revision total joint arthroplasty by the senior author<br />

underwent nutrition screening. We performed a retrospective review<br />

<strong>of</strong> this data for all patients who underwent revision surgery between<br />

April 2006 and December 2009. Preoperative nutrition lab values <strong>of</strong><br />

patients later requiring irrigation and debridement were compared<br />

to those <strong>of</strong> aseptic patients. A total <strong>of</strong> 506 revisions were performed.<br />

Revisions for 58 acute periprosthetic infections and 47 acute traumas<br />

were excluded, leaving 401 patients. Twenty-four (6.0%) developed<br />

infection which required surgical intervention. A total <strong>of</strong> 3.5% <strong>of</strong><br />

patients with a total lymphocyte count (TLC) >1,500 cells/mm3<br />

became infected requiring washout compared to 9.1% with a TLC<br />

<strong>of</strong>


prealbumin and TLC and increased C-reactive protein and erythrocyte<br />

sedimentation rate are associated with an increased rate <strong>of</strong> infection<br />

in revision surgery. For this reason, we believe nutrition screening<br />

in preadmission testing is warranted and steps should be taken to<br />

correct malnourished patients before surgery.<br />

posteR No. p102<br />

The Effect Of Diabetic Control In Total Joint<br />

Arthroplasty Outcomes<br />

Carlos J Lavernia, MD, Coral Gables, FL<br />

Juan S Contreras, Miami, FL<br />

Jose Carlos Alcerro, MD, Miami, FL<br />

Mark Rossi, PhD, Miami, FL<br />

Poor glucose control in diabetic patients undergoing total joint<br />

arthroplasty may play a key role in determining outcomes<br />

postoperatively. Low and high HbA1c values have been associated<br />

with increased mortality and cardiovascular complications in diabetic<br />

patients. Our objective was to study the effects <strong>of</strong> diabetic control<br />

in the outcomes after total joint arthroplasty (TJA). A total <strong>of</strong> 121<br />

consecutive primary TJA were performed in type 2 diabetic patients.<br />

Patients were stratified into quartiles based on their preoperative<br />

HbA1c levels. Patient-oriented outcomes (QWB, SF-36, WOMAC),<br />

complications, length <strong>of</strong> stay (LOS) and hospitals costs were<br />

compared between groups. ANOVA and independent t-test were used<br />

to compare outcomes. At 2.7 years (range: two to five years), there<br />

were no significant differences between quartiles. A trend for worse<br />

scores in the lowest 25% and highest 25% quartiles was identified<br />

for the QWB (LQ25%: 0.627; IQ50%: 0.637; HQ25%: 0.627),<br />

SF-36 role physical (LQ25%: 71; IQ50%: 78; HQ25%: 77), social<br />

functioning (LQ25%: 72; IQ50%: 78; HQ25%: 76), and mental<br />

health component (LQ25%: 55; IQ50%: 57; HQ25%: 55), WOMAC<br />

function (LQ25%: 7; IQ50%: 3; HQ25%: 5) and total (LQ25%: 8;<br />

IQ50%: 4; HQ25%: 7). LOS and hospital costs were higher in both<br />

the lowest 25% and the highest 25% quartiles. After controlling for<br />

all confounders, this inverted U-shaped pattern remained similar.<br />

There was no difference in complications between quartiles. All<br />

perceived outcomes improved significantly two years after surgery.<br />

We found that type 2 diabetic patients with hypoglycemia and<br />

hyperglycemia as measured by preoperative HbA1c levels have a<br />

tendency towards worse outcomes after TJA. Poor glucose control in<br />

diabetic patients undergoing TJA may play a key role in determining<br />

outcomes postoperatively.<br />

posteR No. p103<br />

Modern Ceramic on Ceramic Total Hip Arthroplasty in<br />

Patients Under 50: Minimum 10 Year Follow-up<br />

Jason Hsu, MD, Philadelphia, PA<br />

Stuart D Kinsella, BA, Philadelphia, PA<br />

Christine Kaminski, BA<br />

Jonathan P Garino, MD, Villanova, PA<br />

Gwo-Chin Lee, MD, Philadelphia, PA<br />

Modern ceramic on ceramic total hip arthroplasty in active patients<br />

under the age <strong>of</strong> 50 is durable at minimum 10-year follow up with<br />

low rates <strong>of</strong> complications. Recent reports <strong>of</strong> early failures <strong>of</strong> metal on<br />

metal (MOM) total hip arthroplasty (THA) have introduced doubts<br />

to its ability to be a viable long-term hard-on-hard bearing surface for<br />

THA. Like MOM THA, ceramic on ceramic (COC) THA has excellent<br />

in-vitro wear characteristics, but there is little information about its<br />

long-term track record in vivo. The purpose <strong>of</strong> this study is to evaluate<br />

the long term outcomes <strong>of</strong> COC THA in active patients under age<br />

50. We retrospectively reviewed 110 consecutive COC THAs in 88<br />

509<br />

patients performed by a single surgeon from 1997 to 2000. All THAs<br />

were performed as part <strong>of</strong> investigational device exemption (IDE)<br />

evaluations. There were 54 men and 34 women with an average age<br />

<strong>of</strong> 38.8 years. Of the 110 COC THAs, 51 were performed for avascular<br />

necrosis (AVN) <strong>of</strong> the hip, 46 for osteoarthritis (OA), eight for<br />

developmental dysplasia and five for inflammatory or posttraumatic<br />

arthritis. The patients underwent primary THA using three COC<br />

hip designs: Reflection/Spectron (Smith and Nephew), Encore<br />

Ceramic Hip (Encore) and Transcend/Perfecta (Wright Medical).<br />

All <strong>of</strong> the femoral stem components were cemented designs while<br />

all acetabular components were uncemented cup designs. Clinical<br />

outcomes were evaluated using the Harris Hip score, and serial<br />

radiographs were evaluated for signs <strong>of</strong> component loosening. The<br />

mean follow up was 11.2 years (range, 10.0-13.2 years). One patient<br />

died, and another was lost to follow up. The mean Harris Hip score<br />

was 94.1 (SD 11.6). There were no implants with subsidence or<br />

circumferential radiolucent lines. Five patients had failures <strong>of</strong> their<br />

COC THA (one for head fracture, one for ceramic liner fracture, one<br />

for instability, two for aseptic loosening). Two patients complained<br />

<strong>of</strong> squeaking. At a minimum 10-year follow up, the survivorship<br />

<strong>of</strong> the COC THA was 95.5%. Modern COC THA in active patients<br />

under the age <strong>of</strong> 50 is durable at minimum 10-year follow up with<br />

low rates <strong>of</strong> complications.<br />

posteR No. p104<br />

Risk Factors For Early Mortality Following Modern<br />

Uncemented Total Hip Arthroplasty<br />

S M Javad Mortazavi, MD, Wyncote, PA<br />

Michael C Aynardi, MD, Philadelphia, PA<br />

Christina L. Jacovides, Philadelphia, PA<br />

Orhan Bican, MD, Philadelphia, PA<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Kelley Kirkpatrick, BS<br />

This study confirms some <strong>of</strong> the previously identified factors<br />

associated with mortality (i.e., older age, high morbidity). As the<br />

number <strong>of</strong> total hip arthroplasties (THA) performed worldwide<br />

continues to grow, the identification <strong>of</strong> risk factors for early mortality<br />

and careful preoperative optimization has become increasingly<br />

important. The aim <strong>of</strong> this study was to evaluate the incidence <strong>of</strong><br />

early mortality and identify risk factors for early death following<br />

modern uncemented THA. A retrospective review <strong>of</strong> all THAs<br />

performed at our institution between 2000 and 2006 identified<br />

patients who died within 90 days <strong>of</strong> surgery. These were matched 3:1<br />

to control patients by surgeon and day <strong>of</strong> surgery. Causes <strong>of</strong> death<br />

for case patients were established. Demographics, comorbidities,<br />

postoperative complications, labs and medications were compared<br />

between the two groups. We identified 38 early mortalities, for an<br />

overall mortality rate <strong>of</strong> 0.46%. Cardiac related causes <strong>of</strong> death<br />

were most common (42%), followed by respiratory complications<br />

(16%) and cerebrovascular incidents (8%). Previously identified<br />

risk factors such as older age, higher comorbidity index, lower body<br />

mass index, hyperglycemia, peripheral vascular disease, coronary<br />

artery disease, dementia, anemia and acute renal failure were<br />

confirmed. Newly identified risk factors for early mortality included<br />

postoperative shortness <strong>of</strong> breath, an abnormal preoperative EKG<br />

or echocardiogram, perioperative electrolyte imbalances, increased<br />

postoperative transfusion volume, use <strong>of</strong> general anesthesia and<br />

Medicare insurance. Smoking and postoperative acute myocardial<br />

infarction trended toward significance. This study confirms risk<br />

factors associated with mortality and identifies new significant risk<br />

factors. Future reductions in mortality will be made by addressing<br />

reversible comorbidities prior to elective surgery and by good<br />

preoperative optimization.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


posteR No. p105<br />

The “Abductor Sparing” Anterolateral Approach (G3) in<br />

MIS THA: A Prospective RCT<br />

Nelson Victor Greidanus, MD, Vancouver, BC Canada<br />

Donald S Garbuz, MD, Vancouver, BC Canada<br />

Bassam A Masri, MD, Vancouver, BC Canada<br />

Clive P Duncan, MD, Vancouver, BC Canada<br />

Allan E Gross, MD, FRCSC, Toronto, ON Canada<br />

Michael Tanzer, MD, Montreal, QC Canada<br />

Abdul Aziz, BSc, Vancouver, BC Canada<br />

Samir Chihab, MD, Vancouver, BC Canada<br />

Aslam Anis, PhD, Vancouver, BC Canada<br />

The MIS Anterolateral approach is not superior to alternate MIS<br />

surgical approaches when evaluating outcomes <strong>of</strong> quality <strong>of</strong> life,<br />

complications and health resource utilization. The purpose <strong>of</strong> this<br />

study was to evaluate the clinical effectiveness and outcomes <strong>of</strong> the<br />

‘abductor sparing’ MIS Anterolateral approach (MIS Watson Jones/<br />

G3) in comparison to the MIS Direct Lateral and MIS Posterolateral<br />

approaches in primary total hip arthroplasty. A multicenter,<br />

prospective, randomized controlled trial was designed to evaluate for<br />

the superiority <strong>of</strong> the new MIS Anterolateral approach (MIS Watson<br />

Jones/G3). The sample size calculation was performed for alpha .05,<br />

power .90, to evaluate for effect size 0.5 in WOMAC using repeated<br />

measures analyses with baseline WOMAC as covariate. A total <strong>of</strong><br />

156 patients consented to participate in the trial and patients were<br />

assigned to MIS Anterolateral approach or alternate MIS approach<br />

(MIS Direct Lateral or MIS Posterolateral). Patients were subjected to<br />

standardized anaesthetic and perioperative management protocols<br />

and were evaluated at standardized intervals to evaluate endpoints<br />

<strong>of</strong> early recovery (three months) as well as endpoints <strong>of</strong> 12 and 24<br />

months respectively. The primary outcome <strong>of</strong> interest was WOMAC,<br />

however secondary outcomes included SF-36, as well as parameters<br />

<strong>of</strong> health resource utilization and complications. Univariate and<br />

multivariate analyses were perfomed. Patient groups were found to be<br />

similar at baseline with regards to demographics and baseline quality<br />

<strong>of</strong> life outcomes (p>.05). Multivariate and repeated measures analyses<br />

demonstrated no superiority <strong>of</strong> the MIS Anterolateral approach<br />

on outcomes <strong>of</strong> WOMAC and other quality <strong>of</strong> life measures in<br />

comparison to MIS Direct Lateral and MIS Posterolateral approaches<br />

(p>.05). Healthcare resource utlization was also similar with length<br />

<strong>of</strong> stay, blood transfusion requirements and complications (p>.05).<br />

Our multicenter, prospective, randomized clinical trial demonstrates<br />

that the MIS Anterolateral approach is not superior to alternate<br />

MIS surgical approaches when evaluating outcomes <strong>of</strong> quality<br />

<strong>of</strong> life, complications and health resource utilization. Surgeons<br />

should consider these outcomes, complications and other relevant<br />

advantages and disadvantages <strong>of</strong> select surgical approaches when<br />

deciding on a technique for use in their orthopaedic practice.<br />

posteR No. p106<br />

Intra-operative Computed Radiography(CR) in Total Hip<br />

Arthroplasty(THA) Improves Results<br />

William Seth Bolling, MD, Beverly Hills, CA<br />

Brad L Penenberg, MD, Beverly Hills, CA<br />

Michelle Riley, PA, Beverly Hills, CA<br />

A portable computed radiography device enables the surgeon to<br />

rapidly obtain a high quality pelvis radiograph during total hip<br />

arthroplasty and permits more accurate intra-op adjustments <strong>of</strong><br />

component alignment, leg length and <strong>of</strong>fset. A portable computed<br />

radiography (CR) device makes it possible to rapidly obtain a high<br />

quality AP or PA pelvis radiograph during total hip arthroplasty<br />

510<br />

(THA). When compared to historical controls this technique permits<br />

more accurate intra-operative adjustments <strong>of</strong> component alignment<br />

and fit, leg length and <strong>of</strong>fset. A consecutive retrospective review <strong>of</strong><br />

467 total hips was carried out. A high quality AP or PA pelvis film<br />

was obtained with the patient in the lateral decubitus position during<br />

surgery. This low cost CR unit, including PACS, processes the film<br />

directly in the room within 60 seconds. It also auto-corrects settings,<br />

eliminating repeats for ‘technician error.’ Corrections to stem size,<br />

cup position, screw length and position, leg length and <strong>of</strong>fset were<br />

made based on this intra-op x-ray. Post op film was used for final<br />

assessment. Mean abduction angle was 43° (35-48). Adjustment was<br />

performed in 25% <strong>of</strong> cases. Apposition was within 3 mm 100% <strong>of</strong><br />

the time. Cup was re-seated in three hips. Femoral component was<br />

neutral in 87% and 3-5 degrees <strong>of</strong> varus in 13%. Femoral component<br />

was upsized 55% <strong>of</strong> the time. Leg length discrepancy was less than 5<br />

mm in 100% <strong>of</strong> hips. Offset was within 3 mm <strong>of</strong> the normal side in<br />

264 pts in whom this was measurable. Operative time averaged one<br />

hour and five minutes. The use <strong>of</strong> intra-operative CR <strong>of</strong>fers a costeffective,<br />

user-friendly technique to improve precision <strong>of</strong> component<br />

placement in THA.<br />

posteR No. p107<br />

Overdiagnosis <strong>of</strong> Pulmonary Embolus: How to Avoid a<br />

Potentially Catastrophic Problem?<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Brian Winters, MD, Mount Laurel, NJ<br />

Patrick Curry<br />

Christina L. Jacovides, Philadelphia, PA<br />

Matthew Austin, MD, Philadelphia, PA<br />

James J Purtill, MD, Philadelphia, PA<br />

Mark Solarz, BS, Philadelphia, PA<br />

We have seen a 34% decrease in the incidence <strong>of</strong> orders for MDCT,<br />

59% for V/Q scan and 39% for total investigations (p


posteR No. p108<br />

Endoscopic Illiopsoas Release for Tendon Impingement<br />

after Total Hip Replacement<br />

Ormonde M Mahoney, MD, Athens, GA<br />

Tracy Kinsey, RN, Athens, GA<br />

Endoscopic release <strong>of</strong> the iliopsoas tendon from the lesser trochanter<br />

after total hip replacement effectively relieved symptoms <strong>of</strong> tendonitis<br />

for patients <strong>of</strong> this case series. Iliopsoas tendonitis after total hip<br />

arthroplasty (THA) appears to be a more frequent problem with<br />

acetabular designs for hard on hard bearings and very large femoral<br />

heads. We conducted an Institutional Review Board approved review<br />

<strong>of</strong> a case series <strong>of</strong> 15 patients who underwent endoscopic release<br />

<strong>of</strong> iliopsoas tendonitis to determine whether the floroscopic guided<br />

technique was feasible and efficacious. An automated chart review<br />

was undertaken to identify patients treated for iliopsoas tendonitis<br />

after THA between 6/04 and 6/08. Records were reviewed to asses time<br />

to onset, implants utilized, treatment used and clinical outcomes at<br />

two minimum years post procedure. Between June 2004 and June<br />

2008, 15 patients at our clinic underwent endoscopic iliopsoas<br />

release from one to eight years post total hip replacement. Twelve <strong>of</strong><br />

the patients failed floro or ultrasound guided corticosteroid injection<br />

prior to being <strong>of</strong>fered surgical treatment. Cross table lateral x-rays<br />

revealed overhanging acetabular metal anteriorly in 10 <strong>of</strong> 15 cases.<br />

There was one case where there was no anterior acetabular metal<br />

anterior, but the femoral head was quite large. At a minimum <strong>of</strong><br />

two years after the tendon release there have been no recurrences <strong>of</strong><br />

symptoms or problems with hip flexor weakness. Endoscopic release<br />

<strong>of</strong> the iliopsoas tendon from the lesser trochanter was a viable and<br />

effective treatment for patients with post THA iliopsoas tendonitis<br />

in this case series.<br />

posteR No. p109<br />

Primary THA Comparing Anterolateral Approach versus<br />

Posterolateral Approach with a Capsular Repair<br />

Arthur L Malkani, MD, Louisville, KY<br />

Jacob Lantry, MD, Stony Brook, NY<br />

Lawrence A Schaper, MD, Louisville, KY<br />

Jessica I Curry, MS, Louisville, KY<br />

Matthew Thomas Hummel, MD, Cincinnati, OH<br />

Dale Baker, Louisville, KY<br />

Total hip arthroplasty using a posterior approach with a capsular<br />

repair has a comparable dislocation rate to an anterolateral<br />

approach with a decreased incidence <strong>of</strong> limp. Purpose <strong>of</strong> this study<br />

is to compare short term outcomes <strong>of</strong> primary total hip arthroplasty<br />

(THA) using two different approaches. Study is a retrospective<br />

review <strong>of</strong> two cohorts <strong>of</strong> patients undergoing primary THA, between<br />

1/2001 and 12/2005. Group I consisted <strong>of</strong> 281 consecutive primary<br />

THAs using an anterolateral approach. Group II consisted <strong>of</strong> 327<br />

consecutive THAs performed using a posterior approach modified<br />

with a posterior capsular repair. Cohorts were compared with respect<br />

to pain and function scores, operative data (estimated blood loss<br />

(EBL), operating room (OR) time) and complications. Statistical<br />

analysis was performed using paired t-tests and chi square tests.<br />

Group I had 135 females and 120 males with an average age <strong>of</strong> 63<br />

years and body mass index (BMI) <strong>of</strong> 30. Group II had 167 females<br />

and 127 males with an average age <strong>of</strong> 61 years and BMI <strong>of</strong> 31. No<br />

statistically significant differences in the number <strong>of</strong> complications in<br />

either group with respect to fracture, infection or dislocation. Group<br />

I had an incidence <strong>of</strong> moderate limp and severe limp <strong>of</strong> 9% and 13%<br />

respectively; and the posterior cohort, Group II, had a limp in


single surgeon cohort <strong>of</strong> 130 primary cemented Charnley femoral<br />

components, all well-fixed at minimum 20-year radiographic<br />

follow-up, were classified into one <strong>of</strong> three groups based on gross<br />

radiographic remodeling: distal hypertrophy, endosteal loss, or<br />

normal. Remodeling was analyzed with respect to gender, age at<br />

surgery, BMI, and postoperative activity level. Femoral diameter, and<br />

medial and lateral cortical widths were measured at four defined<br />

points. The distal cortical hypertrophy group had a younger age at<br />

time <strong>of</strong> surgery. There was no significant difference between the three<br />

groups in regards to gender, activity level, or BMI. The distal cortical<br />

hypertrophy group showed a greater increase in medial cortical<br />

thickness and endosteal width at the midstem, implant tip, and 2.5<br />

cm distal to the tip. The endosteal loss group showed a significantly<br />

decreased lateral cortical thickness at the lesser trochanter, midstem,<br />

and distal points. Remodeling characteristics are difficult to predict as<br />

the only demographic variable that correlated with remodeling type<br />

was younger patient age with distal cortical hypertrophy. This study<br />

should provide comparison for other long term studies to determine<br />

whether bone remodeling is different with cementless designs.<br />

posteR No. p562<br />

Kalamchi and MacEwen group I Ischemic Changes<br />

Have Unfavorable Effects on Hip Morphology in DDH<br />

Hakan Omeroglu, MD, Pr<strong>of</strong>, Eskisehir, Turkey<br />

Yucel Tumer, MD, Izmir, Turkey<br />

Ali Bicimoglu, MD, Ankara, Turkey<br />

Haluk Agus, MD, Pr<strong>of</strong>, Izmir, Turkey<br />

Group I ischemic changes retard acetabular development and have<br />

quantitative unfavorable effects on lateral femoral head coverage and<br />

proximal femoral anatomy in DDH. Besides, the healing process is<br />

considerably long.<br />

posteR No. p566<br />

A New Classification And Consistency Analysis In Adult<br />

Developmental Hip Dysplasia<br />

Emre Togrul, MD, Adana, Turkey<br />

Mahir Gulsen, Pr<strong>of</strong>.Dr., Adana, Turkey<br />

Adem Gundogan, MD, Adana, Turkey<br />

Can Gocuk, MD, Adana, Turkey<br />

With this new classification pathologies have been divided into 3<br />

classes based on obturator foramen, asetebulum, the femoral neck<br />

and trochanter minor. This method has established interobserver<br />

and intraobserver consistency thereby confirming the efficacy <strong>of</strong> the<br />

classification<br />

posteR No. p567<br />

Evaluation Of Neurological Complications Of Closed<br />

Wedge High Tibial Valgization Osteotomy Technique<br />

Burak Yalcin, Istanbul, Turkey<br />

Rifat Erginer, MD, Istanbul, Turkey<br />

Feray Savrun, Pr<strong>of</strong>, Istanbul, Turkey<br />

Mehmet Can Unlu, MD, Istanbul, Turkey<br />

Pr<strong>of</strong> Muharrem Babacan, Istanbul, Turkey<br />

We conducted an electrophysiological study to evaluate fibular nerve<br />

lesions <strong>of</strong> closed wedge high tibial valgization osteotomy. We found<br />

that this procedure is safe with no electrophysiological difference<br />

two months after surgery.<br />

512<br />

SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se01<br />

The Immunopathology <strong>of</strong> ALVAL<br />

Patricia A Campbell, PhD, Los Angeles, CA<br />

Piriya Sutthirunjwong, MD, Santa Monica, CA<br />

Scott C Nelson, MD, Redlands, CA<br />

Tim Tan, BS, Los Angeles, CA<br />

Mariam Al-Hamad, BS, Los Angeles, CA<br />

Yael Korin, PhD, Los Angeles, CA<br />

Clara Magyar, PhD, Los Angeles, CA<br />

Elaine Reed, PhD, Los Angeles, CA<br />

‘ALVAL ‘(Aseptic lymphocytic vasculitis associated lesions), was<br />

coined to describe lymphocyte-dominated histological features in<br />

failed metal-on-metal (M-M) hips suspected to have metal allergy.<br />

The term is <strong>of</strong>ten misused as a diagnosis for unexplained pain, or<br />

pain from wear-induced swelling and there is considerable confusion<br />

as to its meaning. To improve the reporting <strong>of</strong> periprosthetic tissue<br />

features around M-M hips, this exhibit will demonstrate and explain<br />

ALVAL, review the pathology <strong>of</strong> high wear and metal allergy. A<br />

virtual microscope with examples <strong>of</strong> how a scoring method and<br />

lymphocyte markers can be used to discriminate metal allergy from<br />

high wear reactions will be featured. A 10-point scoring method<br />

developed by the authors was applied to tissues from 50 M-M hips<br />

revised for pain and suspected metal allergy, acetabular malposition,<br />

or implant loosening. The wear <strong>of</strong> the components was determined<br />

from direct measurements. Immunohistochemical staining for<br />

lymphocytes, macrophages and plasma cells was performed on 9<br />

cases with suspected allergy, 12 cases with high implant wear, and 5<br />

cases with low wear and loosening. The results were quantified using<br />

image analysis. Cases with normal wear but revised for suspected<br />

allergy had higher ALVAL scores compared with those with higher<br />

wear or loosening. The allergy cases typically had more T cells, more<br />

plasma cells and fewer macrophages. Tissue organization and degree<br />

<strong>of</strong> synovial preservation also differed. To improve understanding <strong>of</strong><br />

histology <strong>of</strong> M-M hips, a scoring method for ALVAL was developed.<br />

ALVAL score, and markers for T and B cells helped differentiate<br />

responses associated with high wear from those with suspected<br />

metal allergy.<br />

scieNtific exHibit No. se02<br />

The High Performance Modular Hip: Curse or Comfort?<br />

A Seth Greenwald, DPhil Oxon, Cleveland Heights, OH<br />

J David Blaha, MD, Ann Arbor, MI<br />

Michael Dunbar, MD, PhD, Halifax, NS Canada<br />

Stephen B Murphy, MD, Boston, MA<br />

Joshua J Jacobs, MD, Chicago, IL<br />

Christine S Heim, Cleveland, OH<br />

Modularity in total hip arthroplasty design has received increased<br />

citation in the clinical literature. The cited advantages <strong>of</strong> these systems<br />

include <strong>of</strong>f-the-shelf flexibility for custom proximal and distal<br />

canal filling, restoration <strong>of</strong> <strong>of</strong>fset while accommodating femoral<br />

deformity, limb length inequality and bone loss. However, in-vivo<br />

device breakage has been reported at neck and mid-stem metalmetal<br />

interconnections. This exhibit describes extensive clinical and<br />

laboratory comparisons which highlight features that account for<br />

the failure <strong>of</strong> these devices. A meta-analysis was performed on the<br />

authors’ personal clinical experiences <strong>of</strong> more than 1,500 modular<br />

hip arthroplasties as well as a review <strong>of</strong> the FDA MAUDE database<br />

tracking device mechanical failure leading to revision. The incidence<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


and location <strong>of</strong> fractures were recorded over a timeframe ranging<br />

from 2 to 9 years postoperatively. These fractures were compared to<br />

the structural failure patterns observed through laboratory testing.<br />

The findings within this population suggest that patient habitus,<br />

restoration <strong>of</strong> <strong>of</strong>fset and anatomical device placement are the major<br />

contributors to the 3% population failure rate observed clinically.<br />

Fretting between metallic interconnecting surfaces was identified<br />

as the link between the laboratory and clinical findings. Both neck<br />

and mid-stem femoral modularity have enabled contemporary stem<br />

designs to accommodate situations <strong>of</strong> skeletal pathology encountered<br />

in total hip arthroplasty patients. Their increased prevalence has led<br />

to device structural failure, most <strong>of</strong>ten encountered at metal-metal<br />

interconnections. This extensive database describes their clinical<br />

effectiveness and strongly points to the importance <strong>of</strong> technical<br />

pr<strong>of</strong>iciency and the need for preclinical laboratory evaluation where<br />

device-specific endurance limits are determined.<br />

scieNtific exHibit No. se03<br />

Understanding Why Metal-on-Metal Hip Fail: The<br />

London Implant Retrieval Centre<br />

Alister Hart, FRCS, London, United Kingdom<br />

Richard Underwood, PhD, London, United Kingdom<br />

Philippa Cann, PhD, London, United Kingdom<br />

Barry Sampson, MD, London, United Kingdom<br />

Adam Mitchell, MD, London, United Kingdom<br />

Keshthra Satchithananda, FRCR, London, United Kingdom<br />

Martyn Porter, MD, Wigan, United Kingdom<br />

Justin Peter Cobb, MD, London, United Kingdom<br />

John Skinner, FRCS, London, United Kingdom<br />

The UK and Australian joint registries have shown a high early failure<br />

rate <strong>of</strong> some types <strong>of</strong> metal-on-metal hip resurfacings. It is unknown<br />

whether the mechanism <strong>of</strong> failure will be similar to stemmed<br />

large diameter metal-on-metal hips. It is also uncertain whether<br />

the main limitation in their use is surgeon / component position<br />

related or design / manufacturer related. We will present the findings<br />

<strong>of</strong> our multi-disciplinary research centre set up to increase our<br />

understanding <strong>of</strong> how metal on metal hip / hip resurfacing implants<br />

fail. We prospectively recruited 320 patients with failed MOM hips.<br />

We collected pre, intra and post op data to determine the clinical<br />

category <strong>of</strong> failure (infection, loosening, dislocation, malalignment,<br />

fracture, unexplained). We measured pre-revision blood metal ion<br />

levels using ICP-Mass Spectrometry. Additionally, in a proportion<br />

<strong>of</strong> patients CT was used for component position analysis and MRI<br />

was used for s<strong>of</strong>t tissue analysis. A published wear analysis protocol<br />

was used: a roundness machine was used and recorded more than<br />

1 million points per hip component to an accuracy <strong>of</strong> less than 1<br />

micron. We found no significant difference in wear rates between<br />

manufacturer types. The majority were unexplained clinical failures<br />

(well fixed, not infected and well aligned). Edge loading was present<br />

in approximately two thirds <strong>of</strong> hips. When compared to CT measured<br />

component positions <strong>of</strong> well functioning MOM hips we found no<br />

significant increase in malaligment <strong>of</strong> the failures. Blood metal ions<br />

levels were significantly greater in the failures when compared to<br />

88 patients with well functioning unilateral MOM hips. ALVAL was<br />

found in all types <strong>of</strong> failure. Cup edge loading was the commonest<br />

finding from wear analysis <strong>of</strong> failed MOM hips. In the majority <strong>of</strong><br />

cases this did not arise from high cup inclination angles. At least 50%<br />

<strong>of</strong> failures had metal ion levels greater than 7 parts per billion. Blood<br />

metal ion screening may be more useful than Plain radiographs in<br />

detecting the risk <strong>of</strong> failure <strong>of</strong> MOM hips.<br />

513<br />

scieNtific exHibit No. se04<br />

Total Joint Arthroplasty Aseptic Revision Risk Factors:<br />

Analysis <strong>of</strong> a US Registry with 72,000 Cases<br />

Robert S Namba, MD, Corona Del Mar, CA<br />

Maria Carolina Secorun Inacio, MS, San Diego, CA<br />

Christopher F Ake, PhD, Corona Del Mar, CA<br />

Liz Paxton, MA, San Diego, CA<br />

Monti Khatod, MD, Santa Monica, CA<br />

William Timothy Brox, MD, Fresno, CA<br />

Eric J Yue, MD, Carmichael, CA<br />

Factors affecting outcomes <strong>of</strong> Total Joint Arthroplasty (TJA) in the<br />

United States are poorly understood. Total hip (THA) and knee<br />

(TKA) arthroplasty patient demographics, surgical information,<br />

surgeon and hospital volume, implant characteristics and revision<br />

were recorded in a Total Joint Replacement Registry (2001-2009).<br />

Descriptive, survival, and multivariate analyses are presented.<br />

47429 primary TKA cases were performed. The patients were<br />

predominantly female (63%) with 38%


found on the Medline and EMBASE bibliographic databases that<br />

were related to total hip arthroplasty and all interfaces (including<br />

metal-on-metal, ceramic-on-ceramic, ceramic-on-metal, and metalon-highly-cross-linked<br />

polyethylene). Data regarding the incidence,<br />

recognition, and treatment or pseudotumors was collected for each<br />

study. Additionally, all patients operated on between 2000 and 2008<br />

at a high- volume institution will be reviewed to assess the incidence<br />

<strong>of</strong> pseudotumor in various bearing surfaces. The reported prevalence<br />

<strong>of</strong> hypersensitivity reactions following THA has ranged from less<br />

than 1% to as high as 10%. Based on the current literature, symptoms<br />

may come on within months or even years after surgery with some<br />

patients remaining relatively asymptomatic despite development <strong>of</strong><br />

a pseudotumor. There were 25 studies that reported pseudotumors,<br />

which occurred predominantly in women. The reported treatments,<br />

such as mass excision <strong>of</strong> the pseudotumor or complete revision<br />

with removal <strong>of</strong> components, have mostly resulted in excellent<br />

outcomes. At our institution, there have been two patients who<br />

developed aseptic lymphocytic vasculitis-associated lesions, which<br />

were both associated with metal-on-metal articulations. Both <strong>of</strong><br />

these patients did well following excision revision arthroplasty.<br />

The level <strong>of</strong> evidence <strong>of</strong> the reports assessing metal hypersensitivity<br />

and pseudotumors is low, and there is a need for more prospective,<br />

randomized studies. Although the results <strong>of</strong> our patient cohort<br />

as well as other reports in the literature suggest that these are rare<br />

complications, awareness <strong>of</strong> this potential complication is important<br />

its recognition and treatment. This exhibit will demonstrate the risk<br />

factors, methods for pre-operative patient evaluation, and treatment<br />

for metal hypersensitivity reactions.<br />

scieNtific exHibit No. se06<br />

Inflammatory Pseudotumours Associated with Metalon-Metal<br />

Hip Replacement<br />

Richie H S Gill, MD, Oxford, United Kingdom<br />

Hemant G Pandit, FRCS, Oxford, United Kingdom<br />

George A Grammatopoulos, MRCS, Oxford, United Kingdom<br />

Peter McLardy-Smith, FRCS, Oxford, United Kingdom<br />

Duncan Whitwell, FRCS, Oxford, United Kingdom<br />

Sion Glyn-Jones, MA MBBS, Oxford, United Kingdom<br />

Roger Gundle, Oxford, United Kingdom<br />

NA Athanasou, Oxford, United Kingdom<br />

David W Murray, MD, Oxford, United Kingdom<br />

Inflammatory pseudotumours(IPT) are a serious complication<br />

<strong>of</strong> MoM large diameter hip replacement. This exhibit describes a<br />

programme <strong>of</strong> IPT related research. We have examined the incidence<br />

(revisions for symptomatic IPT over 1,419 cases) and prevalence<br />

(screened 201 random asymptomatic cases), factors linked to<br />

development, clinical diagnosing modalities, histopathology, wear<br />

measurement comparing IPT retrieved components to fracture<br />

cases, in vivo wear mechanisms (motion analysis), in vitro cellular<br />

response to MoM wear debris. Our incidence <strong>of</strong> revision for IPT was<br />

4% overall at 8 years, this was 9% in females; factors significantly<br />

linked were female gender, age under 40, small component size.<br />

The prevalence <strong>of</strong> asymptomatic IPT was 4% overall, nearly 10%<br />

in females; serum metal ion levels were significantly (p


surgical treatment for PJI remain largely unknown. At our institution<br />

a prospective database is in place that collects detailed data on all<br />

patients undergoing joint arthroplasty, particularly those receiving<br />

revision arthroplasty. The database contains data on 1545 patients<br />

who have undergone revision arthroplasty <strong>of</strong> which over 550 patients<br />

have been treated for periprosthetic joint infection. This scientific<br />

exhibit will present the result <strong>of</strong> analysis <strong>of</strong> the prospective database<br />

to identify factors that are associated with failure <strong>of</strong> surgical treatment<br />

for PJI. Based on the findings <strong>of</strong> various studies performed at our<br />

institution and a meta-analysis <strong>of</strong> the available literature pertinent to<br />

surgical treatment <strong>of</strong> PJI, we have designed a surgical algorithm. This<br />

scientific exhibit will present the findings <strong>of</strong> institutional and other<br />

studies. In addition, the effectiveness <strong>of</strong> the surgical algorithm in<br />

minimizing this dreaded complication will be discussed. There were<br />

a number <strong>of</strong> factors that adversely affected the outcome <strong>of</strong> surgical<br />

treatment for PJI regardless <strong>of</strong> the type <strong>of</strong> procedure. Based on this<br />

analysis we introduce a prognostic classification that takes into<br />

account the host type (Cierny-Mader classification), the organism<br />

pr<strong>of</strong>ile, and the type <strong>of</strong> surgical intervention. Patients with a high<br />

number <strong>of</strong> comorbidities infected by resistant organisms face a near<br />

50% failure rate with two-stage exchange arthroplasty. Other factors<br />

found to be significant predictors <strong>of</strong> failure included malnutrition,<br />

anemia, atrial fibrillation, long-term treatment with anticoagulation,<br />

low lymphocyte count, hyperglycemia, and high Charlson index.<br />

This scientific exhibit presents prognostic classification that predicts<br />

the outcome <strong>of</strong> surgery for PJI. This allows the treating surgeon to<br />

present a realistic prognosis for each patient. More importantly,<br />

identification <strong>of</strong> the factors leading to failure preoperatively may<br />

allow for reversal in order to improve outcome.<br />

scieNtific exHibit No. se09<br />

Revision <strong>of</strong> a Ceramic Hip for Fractured Ceramic<br />

Components<br />

Francesco Traina, MD, Bologna, Italy<br />

Enrico Tassinari, MD, Bologna, Italy<br />

Marcello De Fine, MD, Bologna, Italy<br />

Barbara Bordini, MD, Bologna, Italy<br />

Aldo Toni, MD, Bologna, Italy<br />

The main drawback <strong>of</strong> ceramic components is the risk <strong>of</strong> failure. From<br />

1990, we have recorded 40 failures on 8022 primary ceramic hips<br />

(0.5%). Since it is a rare event, a revision <strong>of</strong> a ceramic fracture could<br />

be a difficult procedure.The amount <strong>of</strong> ceramic debris produced in<br />

the failure is a paramount factor for choosing the correct revision<br />

procedure. Due to this, a revision for a fractured ceramic liner is<br />

different from a revision for a fractured ceramic head; a revision<br />

for a post-traumatic failure is different from a revision for recurrent<br />

dislocation. Furthermore, in spite <strong>of</strong> most attempts to removal all<br />

<strong>of</strong> the ceramic debris, complete clearance <strong>of</strong> the articular space is<br />

difficult. With the retention <strong>of</strong> ceramic debris, there is an increase<br />

risk <strong>of</strong> developing significant third body wear <strong>of</strong> polyethylene or<br />

metal. The use <strong>of</strong> another ceramic hip would be the best choice<br />

to resist to abrasive wear. On the other hand, it is well known that<br />

third body particles are also responsible <strong>of</strong> ceramic hip squeaking;<br />

moreover, the abrasion <strong>of</strong> the taper <strong>of</strong> the stem or the cup could<br />

lead to a higher risk <strong>of</strong> a second ceramic failure. The aim <strong>of</strong> this<br />

study was to examine the results <strong>of</strong> revision total hip replacement<br />

performed specifically to treat a fracture <strong>of</strong> a ceramic component,<br />

to identify technical factors that affected the outcomes, to propose<br />

some tips and tricks to perform an easier ceramic revision, and to<br />

draw a guideline for the treatment <strong>of</strong> a ceramic failure.<br />

515<br />

scieNtific exHibit No. se10<br />

Management <strong>of</strong> Hypoxia Following Total Joint<br />

Arthroplasty<br />

Matthew Austin, MD, Philadelphia, PA<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Camilo Restrepo, MD, Philadelphia, PA<br />

James J Purtill, MD, Philadelphia, PA<br />

S M Javad Mortazavi, MD, Wyncote, PA<br />

William B Morrison, MD, Philadelphia, PA<br />

Richard H Rothman, MD, Philadelphia, PA<br />

Hypoxia is a relatively common event following total joint<br />

arthroplasty (TJA). As a result <strong>of</strong> better nursing care and the liberal<br />

use <strong>of</strong> intrathecal opioids in recent years, a strict postoperative<br />

surveillance consisiting <strong>of</strong> frequent pulse oximetry measurements<br />

has been implemeneted. This exhibit will present the findings<br />

<strong>of</strong> numerous single instituional prospective studies aimed at<br />

elucidating the etiology <strong>of</strong> hypoxia following TJA, the mode <strong>of</strong><br />

presentation <strong>of</strong> pulmonary embolus, and identification <strong>of</strong> hypoxic<br />

situations that warrant medical work up. Over the last 5 years we<br />

have implemented a protocol for hypoxia that instructs the residents<br />

and nurse practitioners in systematic approach to work up <strong>of</strong><br />

hypoxic patients. Over the last 5 years, 12,000 joint arthroplasty<br />

has been performed at out institution. Using this protocol we have<br />

been able to avoid overdiagnosis <strong>of</strong> pulmonary embolus and to<br />

7,000 patients undergoing TJA at this institution were followed<br />

prospectively. Patients presenting with hypoxia, being defined<br />

as oxygen saturation < 90% on pulse oximetry, were identified.<br />

Detailed data on these patients were collected. Specific effort was<br />

made to identify presenting symptoms or signs that were indicative<br />

<strong>of</strong> an important clinical even such as PE, and distinguish this from<br />

benign cases. The potential association between the size and location<br />

<strong>of</strong> PE and the mode <strong>of</strong> presentation was also sought. All patients<br />

presenting with hypoxia received medical work up which initially<br />

included examination by an internist, chest x-ray, arterial blood gas<br />

sampling, and ECG. Patients with significant findings on any <strong>of</strong> these<br />

parameters were subjected to further work up that included multidetector<br />

CT scanning. Hypoxia is a relatively common event (24.5%)<br />

following TJA. Over 2/3 <strong>of</strong> patients presenting with hypoxia have a<br />

single episode <strong>of</strong> desaturaturion. Only 1/3 <strong>of</strong> patients present with<br />

a longer desaturation or a greater drop in saturation. Hypoxic events<br />

lasting greater than 5 minutes, or >10% drop on pulse oximetry, or<br />

being refractory to oxygen therapy were commonly associated with a<br />

clinically significant event. Although close monitoring <strong>of</strong> all patients<br />

with hypoxia is warranted, only those with persistent or dramatic<br />

oxygen desaturation may require further investigation. Based on the<br />

findings <strong>of</strong> this study we propose an algorithm for the management<br />

<strong>of</strong> hypoxia following total joint arthroplasty.<br />

scieNtific exHibit No. se11<br />

Gluteus Maximus Transfer for Abductor Deficiency in<br />

Total Hip Arthroplasty<br />

Leo A Whiteside, MD, Saint Louis, MO<br />

Chronic avulsion or inflammatory destruction <strong>of</strong> the abductor<br />

portions <strong>of</strong> the gluteus medius and minimus in association with<br />

total hip arthroplasty causes severe limp and <strong>of</strong>ten pain. This study<br />

describes a reconstruction technique using the gluteus maximus. To<br />

treat abductor deficiency, the anterior half <strong>of</strong> the gluteus maximus<br />

muscle was transferred to the greater trochanter and sutured under<br />

the vastus lateralis. Suturing in abduction and VY repair <strong>of</strong> the<br />

gluteus maximus was done to ensure tight repair. Eleven hips (11<br />

patients) with complete loss <strong>of</strong> abductor attachment had repair and<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


econstruction during total hip arthroplasty or later as a secondary<br />

procedure, and were followed for 10-36 months. Preoperatively<br />

all patients had abductor lurch, positive Trendelenburg sign, and<br />

no abduction <strong>of</strong> the hip against gravity. Postoperatively 10 hips<br />

(10 patients) have strong abduction <strong>of</strong> the hip against gravity, no<br />

abductor lurch, and negative Trendelenburg sign. One hip (1<br />

patient) has weak abduction against gravity, negative Trendelenburg<br />

sign, and slight abductor lurch. Surgical technique is important, but<br />

gluteus maximus transfer can restore abductor function in total hip<br />

arthroplasty with a high success rate.<br />

scieNtific exHibit No. se12<br />

Femoracetabular Impingement in Collegiate Football<br />

Players: Radiographic and Physical Exam Findings<br />

Ashley L Kapron, BS, Salt Lake City, UT<br />

Christopher L Peters, MD, Salt Lake City, UT<br />

Stephen K Aoki, MD, North Salt Lake, UT<br />

Lee Garrit Phillips, MD, Salt Lake City, UT<br />

Mr Robert Toth, Salt Lake City, UT<br />

David Petron, MD, Salt Lake City, UT<br />

Lucas Anderson, MD, Salt Lake City, UT<br />

Andrew E Anderson, PhD, Salt Lake City, UT<br />

Due to increased loading <strong>of</strong> the hip during sport, the prevalence <strong>of</strong><br />

femoroacetabular impingement (FAI) in athletes may be greater than<br />

the normal population. This comprehensive study used radiographic<br />

measures to identify morphologic abnormalities associated with FAI<br />

in an athletic population. Additionally, physical exams commonly<br />

used in the clinical diagnosis <strong>of</strong> FAI were evaluated to quantify<br />

their ability to predict underlying abnormalities in asymptomatic<br />

subjects. Prospective, IRB approved study <strong>of</strong> 67 male collegiate<br />

football players. Both hips (n=134) were evaluated for radiographic<br />

signs <strong>of</strong> pincer and cam femoroacetabular impingement (FAI) on AP<br />

and frog-lateral films. Each subject’s past and present hip condition<br />

was assessed with a questionnaire based on hip outcome score.<br />

Standard clinical exams, including the impingement and FABER<br />

exam, were performed. Maximum hip range <strong>of</strong> motion in flexion<br />

(supine) and internal/external rotation (supine, sitting, and prone)<br />

measured using a goniometer. The correlation between each range<br />

<strong>of</strong> motion and radiographic measure was determined by a randomeffects<br />

linear regression model 90% (120 hips) had at least 1 sign<br />

<strong>of</strong> cam or pincer FAI. Max hip internal rotation in the supine and<br />

prone position was significantly correlated to two measures <strong>of</strong> cam<br />

femoroacetabular impingement (alpha angle and head-neck <strong>of</strong>fset).<br />

Morphologic abnormalities associated with cam/pincer FAI were<br />

common in these athletic males. The prevalence was substantially<br />

higher than previously reported values for normal populations.<br />

Supine and prone internal rotation can predict radiographic findings<br />

<strong>of</strong> cam FAI in athletic males with repeatable radiographic and<br />

physical measures. Screening athletes may identify hips at risk for<br />

the development <strong>of</strong> osteoarthrosis due to FAI.<br />

scieNtific exHibit No. se13<br />

Improving Cup Positioning Using a Mechanical<br />

Navigation Instrument<br />

Stephen B Murphy, MD, Boston, MA<br />

Simon D Steppacher, MD, Bern, Switzerland<br />

Jens Kowal, PhD, Boston, MA<br />

Acetabular component malpositioning is the most common reason<br />

for instability and wear resulting in revision total hip arthroplasty<br />

(THA). The current study aimed to assess a novel mechanical<br />

navigation device which was designed to simply and efficiently<br />

516<br />

indicate appropriate cup orientation during surgery. The accuracy<br />

was compared to a series <strong>of</strong> hip arthroplasties performed using CTbased<br />

computer-assisted cup placement. The study group consisted<br />

<strong>of</strong> 70 THAs performed using the mechanical device. The control<br />

group consisted <strong>of</strong> 146 THAs performed using CT-based computer<br />

navigation. Postoperative cup positioning was measured using a<br />

validated 2D/3D-matching method. An outlier was defined outside<br />

a range <strong>of</strong> ± 10 degrees from the planned inclination or anteversion.<br />

In the study group the mean accuracy for inclination was 1.3 ±<br />

3.4 (-6.6 ‘ 8.2) and 1.0 ± 4.1 (-8.8 ‘ 9.5) for anteversion with no<br />

outliers for either parameter. In the control group the accuracy for<br />

anteversion (3.0 ± 5.8 -11.8 - 19.6]; p=0.6%) and the percentage<br />

<strong>of</strong> outliers (6.8%; p=3.3%) differed significantly. The accuracy for<br />

inclination (3.5 ± 4.1<br />

scieNtific exHibit No. se14<br />

Technical Challenges, Pre-operative Planning and<br />

Outcomes <strong>of</strong> THA in Down Syndrome Patients<br />

Michael G Zywiel, MD, Mississauga, ON Canada<br />

Allan E Gross, MD, FRCSC, Toronto, ON Canada<br />

John J Callaghan, MD, Iowa City, IA<br />

Yona Kosashvili, MD, Rishon Le Zion, Israel<br />

Aaron J Johnson, MD, Baltimore, MD<br />

John C Clohisy, MD, Saint Louis, MO<br />

Michael A Mont, MD, Baltimore, MD<br />

Down’s syndrome is associated with a number <strong>of</strong> musculoskeletal<br />

abnormalities, including ligamentous laxity, hypotonia, and altered<br />

anatomy including hip dysplasia. As the life expectancy <strong>of</strong> patients<br />

with this syndrome continues to increase, a greater number <strong>of</strong><br />

otherwise active patients are presenting with end-stage arthritic<br />

disease <strong>of</strong> the hip. The purpose <strong>of</strong> this scientific exhibit is to review<br />

the technical challenges and pre-operative planning, and assess the<br />

overall survival rates and clinical and radiographic outcomes <strong>of</strong> total<br />

hip arthroplasty in patients with Down’s syndrome. We reviewed<br />

all total hip arthroplasties performed by four subspecialty hip<br />

surgeons and identified twenty-five hips in 20 patients with Down’s<br />

syndrome. These patients had a mean age <strong>of</strong> 35 years (range, 17 to<br />

54 years) and a mean follow-up <strong>of</strong> 105 months (range, 25 to 292<br />

months). Cementless acetabular components with screw fixation<br />

were used in all cases, and cementless femoral components were<br />

used in all but one hip. Constrained liners were implanted in 8 cases<br />

to enhance stability. Clinical outcomes were assessed using Harris<br />

Hip Scoring, and radiographic evaluation for component fixation<br />

and migration was performed. All <strong>of</strong> the operated hips are doing<br />

well at the most recent follow-up. Five hips required revision surgery<br />

following the index procedure. Two femoral components were<br />

revised, one following a peri-prosthetic fracture and the second for<br />

aseptic loosening. Two acetabular components were revised, one<br />

for recurrent dislocation, and the second for acetabular wear and<br />

symptomatic metallosis. Additionally, one patient underwent twostage<br />

revision for infection. The overall survival with loosening as<br />

an endpoint was 84% at final follow-up. The mean Harris Hip score<br />

improved from 42 points (range, 19 to 66 points) pre-operatively, to<br />

83 points (range, 55 to 100 points) at final follow-up. No hips had<br />

evidence <strong>of</strong> loosening on final radiographic evaluation. Total hip<br />

arthroplasty provided good clinical results in patients with Down’s<br />

syndrome at a mean follow-up time approaching 10 years. While<br />

five patients did require revision for various reasons, all were doing<br />

well at final follow-up. While these patients can be more challenging<br />

to treat due to a higher incidence <strong>of</strong> hip dysplasia, joint laxity, and<br />

sometimes difficulty complying with hip precautions, awareness <strong>of</strong><br />

the technical challenges, appropriate pre-operative planning, and<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR Hip


good surgical technique with selective use <strong>of</strong> acetabular constraint<br />

appears to reliably provide patients with excellent pain relief and<br />

improved function.<br />

scieNtific exHibit No. se15<br />

Creation <strong>of</strong> a Comprehensive Hip Preservation Service:<br />

Moving Beyond the Open Versus Scope Debate<br />

Christopher L Peters, MD, Salt Lake City, UT<br />

Jill Erickson, PA, Salt Lake City, UT<br />

Stephen K Aoki, MD, North Salt Lake, UT<br />

The field <strong>of</strong> hip preservation surgery has grown substantially over<br />

the past decade coincident with the recognition that most young<br />

adult hip problems are associated with altered hip morphology.<br />

Although open hip procedures such as surgical dislocation (SD) and<br />

periacetabular osteotomy (PAO) have proven efficacy, arthroscopic<br />

treatment has increasingly become an attractive alternative to open<br />

hip approaches. In an effort to circumvent the ‘either/or’ approach,<br />

our center established a comprehensive service incorporating both<br />

arthroscopic and open hip surgery tailored to specific operative<br />

indications. The hypothesis was that the service would better address<br />

patient demand, define operative indications, and improve clinical<br />

outcome. In 2008 hip arthroscopy was formally incorporated into<br />

the Hip Preservation Service. Indications for operative intervention<br />

included FAI, dysplasia, and prearthritic hip disease. All operative<br />

hip preservation cases were shown at a multidisciplinary indications<br />

conference. Clinical outcome was measured with the HHS, SF-<br />

36, Lower Extremity Function Score (LEFS), Rapid Assessment <strong>of</strong><br />

Physical Activity Score (RAPA) and conversion to THA. The mean<br />

age <strong>of</strong> all patients was 28 years (range 13-59). From 2008-2010, 147<br />

hip arthroscopy and 106 open procedures were performed (59 SD,<br />

47 PAO). The HHS improved from 76 to 91 (p


PAPERS<br />

518<br />

adult reconstruction Knee<br />

pApeR No. 001<br />

Five Year Results Of An RCT Comparing Mobile And<br />

Fixed Bearing Total Knee Replacement<br />

David W Murray, MD, Oxford, United Kingdom<br />

There is conflicting evidence about the merits <strong>of</strong> using mobile<br />

bearings at total knee replacement (TKR), partly because most<br />

randomized controlled trials (RCTs) have not been adequately<br />

powered. A pragmatic multicenter RCT involving 116 surgeons in<br />

34 UK centers was begun in 1999. Within a partial factorial design,<br />

539 patients were randomly allocated to mobile or fixed bearings.<br />

The primary outcome measure was the Oxford Knee Score (OKS);<br />

secondary measures included SF-12, EQ-5D, costs, cost-effectiveness<br />

and need for further surgery. There was no significant difference<br />

between the groups preoperatively. At five years, the mean OKS<br />

was approximately 33 in both groups. There was no significant<br />

difference between trial groups in OKS at five years (-1.21 95% CI<br />

-3.20, 0.96) or any <strong>of</strong> the other outcome measures. There was no<br />

significant difference in the proportion <strong>of</strong> patients with knee-related<br />

re-operations. In this appropriately powered RCT over the first five<br />

years after TKR, functional outcomes and re-operation rates appear<br />

to be the same whether mobile or fixed bearings are used.<br />

pApeR No. 002<br />

Rotating Platform Knees Did Not Result in Better Knee<br />

Flexion, Function, or Durability at 5-Years<br />

Michael Kalisvaart, MD, Rochester, MN<br />

Mark W Pagnano, MD, Rochester, MN<br />

Robert T Trousdale, MD, Rochester, MN<br />

Michael J Stuart, MD, Rochester, MN<br />

Arlen D Hanssen, MD, Rochester, MN<br />

Rotating-platform knee designs are intellectually appealing because<br />

<strong>of</strong> the contention that they can self align and thus accommodate<br />

small mismatches in the rotational position <strong>of</strong> the tibial and<br />

femoral components after total knee arthroplasty (TKA). Others<br />

have suggested a durability advantage with these designs over time.<br />

We carried out a randomized clinical trial to determine if there was<br />

a clinically important difference in function, motion or durability<br />

between rotating platform and fixed-bearing TKA. This prospective<br />

randomized study <strong>of</strong> 240 primary TKA used a single posteriorstabilized<br />

femoral component and included three groups <strong>of</strong> 80<br />

patients: all-polyethylene fixed bearing, a modular metal-backed fixed<br />

bearing and rotating platform. The three groups were dynamically<br />

balanced with a computerized randomization process that accounted<br />

for age, gender, BMI, surgeon and implant and thus there were no<br />

significant differences in the demographic characteristics between<br />

the groups. Patients returned for examination and radiographs<br />

at three months, one year, two years and five years. Function, as<br />

measured by Knee Society scores, at both two years (90, 91 and 91)<br />

and five years (88, 89 and 88) was not significantly different among<br />

the all-polyethylene, modular metal-backed and rotating platform<br />

groups, respectively. Stair climbing scores at two years and five years<br />

(39, 40 and 39) were not significantly different among the three<br />

groups. Range <strong>of</strong> motion at both two years (111°, 111° and 109°)<br />

and five years (110°, 109° and 109°) was not significantly different<br />

among the three groups. There were five revisions: one in the allpolyethylene<br />

group (patella fracture), two in the modular metalbacked<br />

group (aseptic loosening) and two in the rotating platform<br />

group (infection). In this randomized clinical trial, the rotating<br />

platform design did not result in better knee flexion, function or<br />

durability at five years compared with a posterior-stabilized, fixedbearing<br />

knee.<br />

pApeR No. 003<br />

Comparable Clinical Outcomes <strong>of</strong> a Fixed Versus<br />

Mobile Bearing Posteriorly Stabilized TKA<br />

Ormonde M Mahoney, MD, Athens, GA<br />

Tracy Kinsey, RN, Athens, GA<br />

Theresa D’Errico, Mahwah, NJ<br />

Jianhua Shen, Mahwah, NJ<br />

We report the results <strong>of</strong> a multi-center randomized clinical trial (RCT)/<br />

Investigational Device Exemption comparing a mobile bearing (MB)<br />

posterior stabilized cemented total knee arthroplasty (TKA) device<br />

to a fixed bearing (FB) device <strong>of</strong> the same design. With Institutional<br />

Review Board approval, 507 primary TKA <strong>of</strong> 416 patients from 14<br />

U.S. centers were randomized to FB or MB devices from November<br />

2001 to August 2007. WOMAC, SF-12, Knee Society Scores and range<br />

<strong>of</strong> motion were compared at six, 12 and 24 months post-op. Kaplan-<br />

Meier survivorship was compared using the log rank test. Retrieved MB<br />

device components underwent independent laboratory analysis. The<br />

study had >80% power to detect sub-clinical differences <strong>of</strong> outcome<br />

assessment scores. There were no differences (all p>.05) <strong>of</strong> mean<br />

clinical assessment scores or <strong>of</strong> mean score changes from baseline<br />

at any post-operative interval; 95% confidence intervals furthermore<br />

excluded clinically significant differences for most outcomes (i.e.,<br />

clinical outcomes were statistically equivalent). At 2 to 7.5 years<br />

followup, 19/252 MB and 12/255 FB knees had undergone revision<br />

<strong>of</strong> any component. Survival was 94.7% for MB and 89.7% for FB<br />

(p=0.260). Two MB and no FB tibial components were revised for<br />

loosening. There was one case <strong>of</strong> MB insert dislocation. Three <strong>of</strong> 12<br />

retrieved MB inserts demonstrated mild abrasive wear on the articular<br />

surface, and only one on the undersurface. This adequately powered<br />

multicenter RCT revealed no evidence <strong>of</strong> clinically significant benefit<br />

<strong>of</strong> the MB design. Though survivorship was not statistically different,<br />

more revisions were observed in the MB group.<br />

pApeR No. 004<br />

Cemented Rotating Platform Total Knee Replacement:<br />

A Minimum Twenty Year Follow-Up Study<br />

John J Callaghan, MD, Iowa City, IA<br />

Christopher W Wells, BA, Bloomington, IN<br />

Steve S Liu, MD, Iowa City, IA<br />

Devon D Goetz, MD, West Des Moines, IA<br />

Richard C Johnston, MD, Iowa City, IA<br />

The purpose <strong>of</strong> this study was to address the question ‘What is the 20year<br />

durability <strong>of</strong> a mobile-bearing knee replacement and how does<br />

it compare to the durability <strong>of</strong> fixed-bearing knees at this length <strong>of</strong><br />

follow up?’ This study was prospective in design and retrospectively<br />

reviewed. A total <strong>of</strong> 119 consecutive total knee arthroplasties were<br />

performed by a single surgeon in 86 patients and were followed for<br />

a minimum <strong>of</strong> 20 years. Average age <strong>of</strong> the patients was 70 years<br />

(range 37-88). Of this, 34 patients were males and 52 were females.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


At minimum 20-year follow up, 20 patients (26 knees) were known<br />

to be living, 64 patients (91 knees) were deceased, one patient (one<br />

knee) was lost to follow up and one patient (one knee) refused to<br />

participate, although he stated he was never revised. All patients<br />

received a cemented rotating platform mobile-bearing design. The<br />

living patients were evaluated clinically for the need <strong>of</strong> revision<br />

and with the Knee Society Score (KSS), the Hospital for Special<br />

Surgery Score and the WOMAC Score. Radiographs were evaluated<br />

for loosening and osteolysis. No knee had a revision <strong>of</strong> an implant.<br />

Two knees required reoperation for perioprosthetic fracture without<br />

revision <strong>of</strong> the components. One additional knee required a liner<br />

exchange for hematogenous infection. One knee has demonstrated<br />

radiographic loosening <strong>of</strong> the femoral component. Over the 20-year<br />

follow up, six knees have demonstrated osteolysis, two <strong>of</strong> which<br />

were extensive. Clinically, the average KSS were 89 (clinical) and 67<br />

(functional). The average HSS score was 80, and the average scaled<br />

WOMAC score was 19. Considering that gamma irradiated in air<br />

polyethylene was utilized in these cases, the durability <strong>of</strong> this cohort<br />

<strong>of</strong> total knee replacements has been excellent. These results are<br />

comparable or better than other 20-year studies with fixed-bearing<br />

designs.<br />

pApeR No. 005<br />

Prospective Randomized Comparison Of High Flex And<br />

Standard Rotating Platform TKA<br />

William G Hamilton, MD, Alexandria, VA<br />

C Anderson Engh Jr, MD, Alexandria, VA<br />

Supatra Sritulanondha, Alexandria, VA<br />

Most manufacturers have high flex total knee designs available, with<br />

variable reports regarding their ability to improve postoperative<br />

flexion. The goal <strong>of</strong> this study was to determine if the rotating platform<br />

high flex (RP-F) design provides improved flexion compared to the<br />

standard rotating platform (RP) total knee arthroplasty. A total <strong>of</strong> 142<br />

patients were prospectively randomized to receive either a posterior<br />

stabilized RP-F or RP design. All protocols were similar between<br />

groups. Maximum supine active flexion was measured with both a<br />

goniometer and cross table lateral x-ray pre-op, at one month and<br />

12 months post-op. Pre-op and one year Knee Society, Oxford and<br />

satisfaction scores were measured and compared between groups.<br />

Complications were carefully recorded throughout. There were no<br />

differences in the demographics, Knee Society, Oxford or satisfaction<br />

scores at any interval between groups. There was no difference in the<br />

maximum flexion measured with goniometer or x-ray at any interval<br />

between groups (one year clinical flexion RP 123.7 degrees, RP-F 124<br />

degrees; p=.89; one year x-ray flexion RP 117.6 degrees, RP-F 117.6<br />

degrees; p=.998). There was no difference between groups comparing<br />

the improvement in pre-operative to one year postoperative flexion<br />

(RP-F 5.4 degrees, RP 3.3 degrees; p=0.29). There were 10 patients<br />

with post-op patellar crepitus, with a trend towards more in the RP-F<br />

group but not statistically significant with the numbers available<br />

(RP-F 8 patients, RP 2 patients, p=0.097). There was no difference<br />

in range <strong>of</strong> motion or clinical outcomes using a high flex rotating<br />

platform design, with a trend towards a higher incidence <strong>of</strong> patellar<br />

crepitus seen using this design. Due to these results, coupled with<br />

the increased bone resection and higher cost, we no longer routinely<br />

use the RP-F design.<br />

519<br />

pApeR No. 006<br />

Initial Experience <strong>of</strong> the Journey-Deuce<br />

Bicompartmental Knee Prosthesis<br />

Brian Palumbo, MD, Clearwater, FL<br />

Eric Henderson, MD, Tampa, FL<br />

Paul K Edwards, MD, Tampa, FL<br />

Brandon Burris, MD, Tampa, FL<br />

Sergio Gutierrez, PHD, Tampa, FL<br />

Aditya Ancha, BA, Clearwater, FL<br />

Stephen J Raterman, MD, Tampa, FL<br />

We sought to identify the following: (1) Early clinical results<br />

after implantation <strong>of</strong> the Deuce prosthesis and (2) post-operative<br />

assessment <strong>of</strong> radiolucencies. From January 2008 to January 2009,<br />

36 Journey-Deuce bicompartmental knee arthroplasties (BKAs)<br />

were implanted in 32 patients. The mean time to last follow up<br />

was 21 months. All cases were performed at a single institution by<br />

one surgeon. Medical records were reviewed retrospectively and<br />

patients were contacted via telephone and WOMAC, functional-KSS,<br />

pain scale and satisfaction surveys were performed. Independent<br />

radiographic review was performed on all implants to evaluate for<br />

post-operative radiolucencies. Operations were performed on 24<br />

females and 14 males with a mean age <strong>of</strong> 66 years. While 61% <strong>of</strong> tibial<br />

implants demonstrated progressive radiolucencies, no association<br />

with clinical outcome was observed. Bone scans were performed<br />

on eight patients due to persistent knee pain. In all cases isolated<br />

increased radiotracer uptake at the tibial bone-cement interface was<br />

observed. The mean KSS was 65.4. In detail, 31% <strong>of</strong> patients had an<br />

excellent result, 17% had a good result, 14% had a fair result and<br />

39% had a poor result. The mean WOMAC score was 75.8. Only<br />

19% <strong>of</strong> knees were painless. A total <strong>of</strong> 44% <strong>of</strong> patients stated that<br />

they were completely satisfied with their surgery while 25% rated<br />

their satisfaction as partial, and 31% stated that they were unsatisfied<br />

with the procedure. Additionally, 53% stated they would not repeat<br />

the procedure again. Conversion to total knee arthroplasty (TKA) was<br />

performed for persistent pain in five knees (14%) and the mean time<br />

to conversion was 19 months. Intraoperatively, all tibia base plates<br />

were grossly loose and were easily explanted. One patient was found<br />

to have a fractured tibial baseplate intraoperatively. Implantation <strong>of</strong><br />

the Deuce BKA provides unreliable pain relief and functional results.<br />

A survival rate <strong>of</strong> 86% at 21 months is unacceptable in comparison<br />

to reported results <strong>of</strong> TKA. We report one catastrophically failed<br />

device in our series <strong>of</strong> 36 cases.<br />

pApeR No. 007<br />

Fixed Bearing Unicompartmental Knee Arthroplasty at<br />

a Minimum <strong>of</strong> 15 Years<br />

Jared R H Foran, MD, Golden, CO<br />

Nicholas M Brown, BS, Davenport, IA<br />

Richard A Berger, MD, Chicago, IL<br />

Craig J Della Valle, MD, Chicago, IL<br />

Jorge O Galante, MD, Chicago, IL<br />

Unicompartmental knee arthroplasty (UKA) has increased in<br />

popularity with scant evidence <strong>of</strong> continued longevity into the<br />

second decade <strong>of</strong> use. The purpose <strong>of</strong> this paper is to report the 15year<br />

to 20-year results <strong>of</strong> a consecutive series <strong>of</strong> unicompartmental<br />

knee arthroplasties. Sixty-two consecutive cemented, modular, fixedbearing<br />

UKA in 51 patients were studied prospectively. The cohort<br />

consisted <strong>of</strong> 34 females and 17 males with a mean age <strong>of</strong> 68 years<br />

(range, 51 to 84). Patients were deemed candidates for UKA based<br />

on the criteria <strong>of</strong> Kozinn and Scott. One patient was lost to follow<br />

up and 35 patients died leaving 19 knees in 15 patients evaluated<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


at a mean <strong>of</strong> 19 years (range, 15-21 years); all deceased patients had<br />

well-functioning knees at the time <strong>of</strong> death. The mean Hospital for<br />

Special Surgery (HSS) knee score improved from 55 points (range,<br />

30-79) preoperatively, to 78 points (range, 23-100) at latest follow<br />

up (p-value=.003). No knees had radiographic evidence <strong>of</strong> loosening<br />

or osteolysis. Four <strong>of</strong> the 62 knees were converted to total knee<br />

arthroplasties (TKA); three for symptomatic patell<strong>of</strong>emoral arthritis<br />

and one for lateral compartment arthritis. Kaplan-Meier survival<br />

analysis revealed 15-year survivorship <strong>of</strong> 91% with revision for any<br />

reason as an endpoint (95% confidence interval 80% - 96%) and<br />

a projected 20-year survivorship <strong>of</strong> 85% (95% confidence interval<br />

73% - 92%). The 15-year to 20-year survivorship <strong>of</strong> this cohort was<br />

comparable to many reports <strong>of</strong> TKA. These results may not apply<br />

to broadened indications for UKA particularly in a younger patient<br />

population.<br />

pApeR No. 008<br />

Mobile Unicompartmental Knee Arthroplasty:<br />

Prospective Independent Study. Five To 11 Years<br />

Follow-Up<br />

Mr Lukas Lisowski, Amsterdam, Netherlands<br />

Dr Michel Van den Bekerom, Amsterdam, Netherlands<br />

Andrzej Lisowski, MD, Heerlen, Netherlands<br />

The use <strong>of</strong> unicompartmental knee arthroplasty (UKA) in the<br />

treatment <strong>of</strong> medial osteoarthritis <strong>of</strong> the knee has rapidly increased<br />

over the recent years. We report the outcome <strong>of</strong> the first mobile<br />

UKAs with a minimal five-year follow up (FU) years performing a<br />

minimal invasive surgical technique. Between 1999 and 2005, 138<br />

consecutive medial UKAs were implanted by a single surgeon. Nine<br />

patients deceased prior to their five-year assessment. The mean FU<br />

to date was 7.2 years (range 5 to 11.5 years), and the mean age was<br />

69.8 years. Pain, function and radiography were evaluated pre- and<br />

post-operatively and the survival <strong>of</strong> the arthroplasty was analyzed.<br />

The mean Knee Society score at latest FU was 90.9 (57.0-100). The<br />

Oxford Knee score was 38.5 (4-48). Eight knees with persisting pain<br />

complaints were successfully treated by arthroscopic procedures. Six<br />

knees were revised to total knee arthroplasty <strong>of</strong> which three because<br />

<strong>of</strong> failure <strong>of</strong> using strict selection criteria. The eight-year cumulative<br />

survival rate was 95%. Ninety-six knees were available at five years<br />

for fluoroscopic evaluation and radiolucency beneath the tibial<br />

component was found in 21% (N=20:5 complete and 15 partial).<br />

None <strong>of</strong> these patients had pain complaints. This study shows a high<br />

survival rate <strong>of</strong> this mobile UKA. The presence <strong>of</strong> radiolucency had<br />

no influence on functional outcome, survival and pain complaints.<br />

When strict indication criteria are followed, an excellent, and in our<br />

opinion reliable and durable, functional and radiological outcome<br />

can be expected in the medium term.<br />

pApeR No. 009<br />

Long Term Outcome (30 years) Following TKA after<br />

HTO in Young Patients With Varus Deformity<br />

Philippe Hernigou, PhD, Creteil France, France<br />

Alexandre Poignard, MD<br />

Charles Henri Flouzat-Lachaniette, MD<br />

Knee replacement is a satisfactory pain-relieving procedure in<br />

young patients, although survival may be poor. Isolated valgus<br />

osteotomy, with total knee arthroplasty (TKA) at a later stage is one<br />

<strong>of</strong> the solutions for young patients. This two-step strategy would<br />

require either no overcorrection in the previous osteotomy to avoid<br />

jeopardizing later the arthroplasty, and subsequently poor pain relief<br />

unless the TKA has been performed; either overcorrection osteotomy<br />

520<br />

that will improve pain relief to a better extent but will make the knee<br />

replacement hazardous because <strong>of</strong> the proximal tibial deformity.<br />

However, no result with a very long follow up has been reported.<br />

This paper studies the results <strong>of</strong> these two operations with a follow<br />

up <strong>of</strong> more than 30 years after the osteotomy. Total knee arthroplasty<br />

following high tibial osteotomy (HTO) for the treatment <strong>of</strong> arthritis<br />

have specific technical difficulties. The aim <strong>of</strong> this study was to<br />

compare function, quality <strong>of</strong> life (QOL) and survival outcomes<br />

<strong>of</strong> TKA in patients who had a previous HTO (opening or closed<br />

wedge technique) with TKA performed for primary arthritis. All the<br />

patients operated in our institution between 1985 and 1990 for<br />

the first operation (HTO) and between 1992 and 2000 for the TKA<br />

arthroplasty (HTO TKA group) were included in this retrospective<br />

study and compared to a randomly chosen group <strong>of</strong> patients operated<br />

on for primary arthritis (PA group) during the same period. A total<br />

<strong>of</strong> 143 patients (average age 45, range 34-58 at HTO) were included<br />

in the HTO TKA group (70 after opening wedge technique, 73 after<br />

closed wedge) and 150 in the PA group. All implants were the same<br />

and cemented (postero-stabilized arthroplasties). The preoperative<br />

and postoperative deformities were measured on weight-bearing<br />

radiographs <strong>of</strong> the whole limb (hip-knee-ankle angle) before<br />

and after each operation. Knee Society knee and function score<br />

improvement and QOL results for the five categories <strong>of</strong> the Knee<br />

Osteoarthritis Outcome Score were significantly lower in the HTO<br />

group (p


height and posterior slope <strong>of</strong> the proximal tibia were measured<br />

in preoperative and postoperative plain radiographs. Interval<br />

from surgery to weightbearing and radiographic union, range <strong>of</strong><br />

motion and various functional knee scores were done for clinical<br />

assessment. Fibular head height significantly changed in Group<br />

T (11.4 to 3.1mm, p0.05). Lateral closing wedge high<br />

tibial osteotomy with fibular shaft osteotomy showed the minimal<br />

change <strong>of</strong> fibular head height and the possibility <strong>of</strong> larger correction<br />

in varus deformity without any complications including peroneal<br />

nerve palsy, compared with tibi<strong>of</strong>ibular division. LCWO with fibular<br />

shaft osteotomy served a stable, effective and safe procedure in varus<br />

deformed unicompartmental osteoarthritic knees.<br />

pApeR No. 011<br />

The Influence <strong>of</strong> the Prosthesis Design on Outcomes <strong>of</strong><br />

TKA: Minimum 5-Year Follow-up<br />

Sang-Min Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sahnghoon Lee, MD, Pittsburgh, PA<br />

Jak Jang, MD, Seoul, Republic <strong>of</strong> Korea<br />

Joon Kyu Lee, MD<br />

Sang Ho Shim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Myung Chul Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

The purpose <strong>of</strong> this study was to compare the outcomes <strong>of</strong> standard<br />

cruciate-retaining (CR), posterior stabilized (PS) and high-flexion<br />

posterior stabilized (HF-PS) total knee arthroplasties (TKA) at a<br />

minimum five-year follow up. One-hundred-eighty-eight primary<br />

TKAs in 138 patients with three different types <strong>of</strong> prostheses with<br />

similar design evolved by a single company were included in the<br />

study. They were followed up for a mean <strong>of</strong> 7.1 years (range, 5-9.5<br />

years). Forty-eight knees had TKA with a standard CR design, 45<br />

with a standard PS design and 95 with a high-flexion PS design.<br />

Range <strong>of</strong> motion, <strong>American</strong> Knee Society (AKS) Score, Hospital<br />

for Special Surgery (HSS) Score, Western Ontario and McMaster<br />

Universities Osteoarthritis (WOMAC) Index scores and radiographic<br />

outcomes were evaluated. There was no difference in preoperative<br />

demographics, clinical and radiographic data among groups. The<br />

average range <strong>of</strong> motion was 112.5° in CR, 116.5° in PS and 118.7°<br />

in HF-PS knees (p=0.213). There was no significant difference<br />

in clinical outcomes including AKS knee scores (94.2:95.6:93.5,<br />

p=0.358), AKS function scores (87.3:89.8:88.0, p=0.710), HSS scores<br />

(90.7:91.1:89.2, p=0.314) and WOMAC index scores (16.1:14.2:12.2,<br />

p=0.238). Neither tibi<strong>of</strong>emoral angle (5.2:6.0:4.9, p=0.174) nor<br />

patellar tilt angle (0.2:0.1:1.7, p=0.622) showed difference among<br />

groups. Revision rates (2.1%:6.6%:6.3%, p=0.510), as well as aseptic<br />

loosening and complications, were not different. After a minimum<br />

follow up <strong>of</strong> five years, TKAs with three different types <strong>of</strong> prostheses<br />

with similar design resulted in comparable outcomes with regard to<br />

the range <strong>of</strong> motion, clinical and radiographic parameters.<br />

521<br />

pApeR No. 012<br />

Medial-Lateral Stability Post Total Knee Arthroplasty<br />

Affects Function: Results From A Joint Registry<br />

Renyi Benjamin Seah, MBBS, Singapore, Singapore<br />

Ngai-Nung Lo, MD, Singapore, Singapore<br />

Seng-Jin Yeo, FRCS, Singapore, Singapore<br />

Shi-lu Chia, MBBS, Singapore, Singapore<br />

Pak Lin Chin, FRCSEd, Singapore, Singapore<br />

Hwei Chi Chong, Singapore, Singapore<br />

One <strong>of</strong> the prerequisites <strong>of</strong> a successful total knee arthroplasty (TKA)<br />

is stability on varus-valgus stress. Our objective was to analyze the<br />

effect <strong>of</strong> medial-lateral instability on functional outcome and quality<br />

<strong>of</strong> life after TKA. Prospectively collected patient data was obtained<br />

from the Joint Registry <strong>of</strong> a tertiary institution (Singapore General<br />

Hospital) for all TKAs performed between 2004 and March 2008<br />

with a follow up <strong>of</strong> two years. Medial-lateral laxity (Group 1: 10°) was assessed by five independent<br />

researchers. Only Charnley A patients were included. A total <strong>of</strong><br />

1,500 patients undergoing 1,507 arthroplasties (mean age=66.9<br />

years) were assessed and divided into three groups based on mediallateral<br />

laxity. (Groups 1: n=416, Group 2: n=878, Group 3: n=213).<br />

Majority <strong>of</strong> patients were female (80.7%) and had knee flexion<br />

greater than or equal to 90 degrees (96.2%). Knee Society Function<br />

Score (KSS-function), Oxford Knee Score (OKS) and SF-36 quality<br />

<strong>of</strong> life scores were obtained with self-administered questionnaires.<br />

This study reported a significant benefit <strong>of</strong> having a stable knee<br />

(medial-lateral laxity 35kg/m2) scheduled to undergo bariatric surgery, with clinical<br />

and radiographic evidence <strong>of</strong> knee OA, were invited to participate<br />

in this investigation. Western Ontario and McMaster Universities<br />

Osteoarthritis Index (WOMAC) and Knee Injury and Osteoarthritis<br />

Outcome Score (KOOS) surveys were administered preoperatively,<br />

and six and 12 months post-surgery. Patient weights were recorded<br />

at baseline and each follow-up appointment. Statistical analysis was<br />

performed with the Univariate procedure with Students T test, Sign<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


and Signed Rank tests to assess changes from baseline. Patients were<br />

not prescribed exercise programs, medications or injections during<br />

the study. Weight loss at six and 12 months following bariatric<br />

surgery was found to be statistically significant (p < 0.0001). All<br />

variables from both the KOOS and WOMAC surveys at six and 12<br />

months improved to a significantly significant (p < 0.05) degree<br />

relative to baseline. This study demonstrates that isolated weight<br />

loss via bariatric surgery in obese patients with symptomatic,<br />

radiographically confirmed knee osteoarthritis results in significant<br />

improvements in knee pain, stiffness and function. Further study <strong>of</strong><br />

overweight but less obese patients is warranted, as we believe that<br />

earlier weight loss could represent a more economical approach to<br />

non-operative treatment than prescription medications, injections<br />

and surgery for many patients. Recognizing the economic impact<br />

<strong>of</strong> knee arthritis in the United States, even minor reductions in the<br />

number <strong>of</strong> knee arthroplasty procedures would result in significant<br />

cost savings.<br />

pApeR No. 014<br />

Total Knee Arthroplasty In Morbidly Obese Patients<br />

Treated With Bariatric Surgery: A Comparative Study<br />

Erik P Severson, MD, Crosby, MN<br />

James Andrew Browne, MD, Charlottesville, VA<br />

Jasvinder Singh, MD, Vestavia, AL<br />

Robert T Trousdale, MD, Rochester, MN<br />

David G Lewallen, MD, Rochester, MN<br />

The purpose <strong>of</strong> this study was to test the hypothesis that patients<br />

undergoing weight loss surgery prior to total knee arthroplasty<br />

(TKA) will have fewer perioperative complications and have better<br />

functional results when compared to those undergoing TKA while<br />

morbidly obese, and prior to weight loss surgery. A retrospective<br />

review was undertaken using an institutional registry. In an<br />

attempt to identify the timing <strong>of</strong> when bariatric surgery and TKA<br />

is optimized in relation to each other, subjects were divided into<br />

three groups. Group 1 underwent TKA prior to bariatric surgery.<br />

Group 2 underwent TKA < 2 years after bariatric surgery and Group<br />

3 underwent TKA > 2 years after bariatric surgery. There were a total<br />

<strong>of</strong> 125 TKAs with follow up ranging from a minimum <strong>of</strong> 22 months<br />

to 14 years. Group 1 had 39 TKAs, group 2 had 25 TKAs and group<br />

3 had 61 TKAs. The operative time for group 3 was significantly<br />

less than the operative time for group 1 (p = < 0.001) as well as<br />

group 2 (p = 0.022). The overall complication rate among all 125<br />

knees was 15.2% (19/125). Although there was a trend toward a<br />

higher complication rate seen in group 1, it did not meet statistical<br />

significance (p = 0.08). No transfusions were required in group 1<br />

compared to 3/25 in group 2 (p = 0.06) and 6/61 in group 3 (p =<br />

0.08). The overall revision rate was 5.6% (7/125), with no significant<br />

difference between groups. This study analyzed if weight loss surgery<br />

prior to TKA would mitigate the risk to the patient. The findings in<br />

this study suggest that although operative time is less in group 3<br />

and transfusion rates are lower in group 1, the patients experience<br />

similar elevated rates <strong>of</strong> perioperative complications regardless <strong>of</strong><br />

the temporal relationship between weight loss surgery and TKA.<br />

These results compare adversely to prior published outcomes in<br />

non-bariatric patients using the same institutional registry.<br />

522<br />

pApeR No. 015<br />

Does Periarticular Injection Bring Additional Benefits in<br />

Contemporary Pain Control Protocols?<br />

In Jun Koh, MD<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Kil Jae Lee, MD<br />

Kyung-Hag Lee, MD, Seongnam-Si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Byung June Chung, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sae Kwang Kwon, MD, Bucheon-Si, Republic <strong>of</strong> Korea<br />

Eun Seok Seo, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Although the analgesic effects <strong>of</strong> periarticular multimodal<br />

drug injection (PMDI) have been well documented, there is<br />

little information about additional benefits <strong>of</strong> adding PMDI to<br />

contemporary multimodal pain control protocols which have<br />

proved to provide excellent pain relief. These randomized, controlled<br />

trials attempted to determine whether PMDI brings additional pain<br />

relief in patients covered by spinal anesthesia, continuous femoral<br />

nerve block (FNB), IV-PCA and preemptive oral medication. It also<br />

attempted to identify predictors for pain relief effects from patientrelated<br />

factors including demographics (age, gender, height, weight,<br />

BMI) and preoperative status (ROM, <strong>American</strong> Knee Society score,<br />

WOMAC score, SF-36 score). A total <strong>of</strong> 87 patients undergoing TKA<br />

were randomized into two groups: the PMDI group who received<br />

periarticular injection and the No-PMDI group who did not.<br />

All patients administrated preemptive analgesic medication and<br />

received spinal anesthesia, continuous FNB, IV-PCA and Ketopr<strong>of</strong>en<br />

IM injection as acute pain rescuer. There were 45 knees in the<br />

PMDI group and 42 knees in the No-PMDI group. Comparisons<br />

between the two groups were made for pain level (operation night,<br />

postoperative (PO) 1D, 4D, 7D), consumption <strong>of</strong> PCA and acute<br />

pain rescuer, functional recovery (ability to straight leg raise (SLR),<br />

maximal flexion), patient satisfaction, incidences <strong>of</strong> side effects and<br />

complications. Multivariate regression analyses to identify predictors<br />

were conducted. , The pain level was significant lower at operation<br />

night (VAS 2.3 vs. 6.4, p


pApeR No. 121<br />

Pre-Admission Chlorhexidine Cloth Prep Reduces<br />

Surgical Site Infections In Knee Arthroplasty<br />

Michael G Zywiel, MD, Mississauga, ON Canada<br />

Jacqueline A Daley, MLT, Baltimore, MD<br />

Aaron J Johnson, MD, Baltimore, MD<br />

Antonia Woehnl, MD<br />

Michael A Mont, MD, Baltimore, MD<br />

The treatment <strong>of</strong> peri-prosthetic infections <strong>of</strong>ten requires multiple<br />

surgical procedures, imposing a sizeable burden on the patient,<br />

surgeon and hospital. Most surgical infections occur as a result<br />

<strong>of</strong> colonization with the patient’s native flora, and efforts have<br />

been focused on minimizing this source <strong>of</strong> contamination. The<br />

purpose <strong>of</strong> this study was to evaluate the incidence <strong>of</strong> surgical site<br />

infections in knee arthroplasty patients who used a pre-admission<br />

cutaneous surgical preparation protocol, and to compare these<br />

results to a cohort <strong>of</strong> patients who underwent standard in-hospital<br />

skin disinfection only. Participating patients who were scheduled to<br />

undergo knee arthroplasty were given six clorhexidine gluconateimpregnated<br />

cloths, with printed instructions for their use, the<br />

evening before and morning <strong>of</strong> surgery. Compliance with this<br />

protocol was confirmed at the time <strong>of</strong> hospital admission and<br />

entered into the institution’s infection control database. Records for<br />

all hip arthroplasties performed between January 2007 and March<br />

2010 were reviewed to determine the incidence <strong>of</strong> deep incisional<br />

and periprosthetic infections. Overall, the pre-admission protocol<br />

was used in 312 hip arthroplasties. A lower incidence <strong>of</strong> surgical<br />

site infection was found in patients who used the pre-admission<br />

protocol, compared with patients who used the in-hospital protocol<br />

alone. Two surgical site infections occurred in 312 patients (0.6%)<br />

who used the advance protocol, compared with 31 site infections<br />

in 1,336 knee arthroplasties (2.3%) performed in patients who did<br />

not use the pre-admission cutaneous preparation. When combined<br />

with hip arthroplasty patients, there were a total <strong>of</strong> three infections<br />

out <strong>of</strong> 715 patients who complied with the protocol, compared<br />

with 49 infections out <strong>of</strong> 2,938 patients who did not comply with<br />

the protocol (p=0.019). A pre-admission cutaneous chlorhexidine<br />

protocol reduced the incidence <strong>of</strong> surgical site infection compared<br />

with patients who underwent in-hospital skin preparation only.<br />

Further study is warranted to develop and evaluate strategies for<br />

maximizing surgeon and patient compliance with this protocol. This<br />

study confirms prior, underpowered preliminary studies that have<br />

suggested this as an effective method to prevent infection.<br />

pApeR No. 122<br />

Successful Identification <strong>of</strong> Infecting Pathogens in<br />

Culture-Negative Cases <strong>of</strong> PJI<br />

Christina L. Jacovides, Philadelphia, PA<br />

Bahar Adeli, BA, Philadelphia, PA<br />

Kwang Am Jung, MD, Philadelphia, PA<br />

Michael G Ehrlich, MD, Providence, RI<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Diagnosis <strong>of</strong> periprosthetic joint infection (PJI) poses many<br />

challenges, one <strong>of</strong> which is the difficulty <strong>of</strong> isolating the infecting<br />

organism in a proportion <strong>of</strong> patients. In recent years a sophisticated<br />

modality has been introduced. This technology uses a series <strong>of</strong><br />

polymerase chain reactions (PCR) with organism-specific primers<br />

to identify known pathogens and virulence genes. We investigated<br />

its usefulness in identifying infecting organisms in cases <strong>of</strong> known<br />

or suspected PJI. We prospectively collected 45 synovial fluid<br />

specimens from patients undergoing revision total knee or hip<br />

523<br />

arthroplasty. All specimens were analyzed using this technology.<br />

Patients were classified as infected or uninfected based first, on<br />

the surgeon’s impression and, second, on the strict criteria for PJI<br />

that was developed at our institution. Among 45 patients, 16 were<br />

infected and 35 uninfected according to the treating surgeon’s<br />

judgment, while 18 were infected and 27 uninfected using our<br />

diagnostic criteria. We successfully (1) isolated the same pathogen<br />

as conventional culture in all 10 patients with culture positive PJI,<br />

(2) isolated a pathogen in four <strong>of</strong> eight patients with culture negative<br />

PJI and (3) identified the mecA gene for methicillin-resistance<br />

in all four patients with cultures positive for methicillinresistant<br />

organisms as well as in two patients not previously known to be<br />

infected by methicillinresistant organisms. It appears that multiplex<br />

PCR technology is a valuable tool for investigating suspected PJI. It is<br />

able to isolate an organism in patients with culture negative PJI and<br />

can provide additional information regarding the presence <strong>of</strong> the<br />

mecA gene. Since identification <strong>of</strong> an infecting organism allows for<br />

more effective and focused therapeutic strategies, we believe this can<br />

be effectively utilized in patients with culture negative PJI or a high<br />

suspicion for infection.<br />

pApeR No. 123<br />

Serum and Synovial Fluid Tests for Periprosthetic<br />

Infection in Patients with Inflammatory Arthritis<br />

Cara A Cipriano, MD, Chicago, IL<br />

Nicholas M Brown, BS, Davenport, IA<br />

Andrew W Michael, MD, Hummelstown, PA<br />

Mario Moric, MS<br />

Scott M Sporer, MD, Wheaton, IL<br />

Craig J Della Valle, MD, Chicago, IL<br />

Serum erythrocyte sedimentation rate (ESR) and C-reactive protein<br />

(CRP) and synovial fluid white blood cell (WBC) count and<br />

differential are effective in diagnosing periprosthetic joint infection<br />

(PJI); however their utility in patients with inflammatory arthritis<br />

is unknown. The purpose <strong>of</strong> this study is to determine the utility <strong>of</strong><br />

these tests in patients with inflammatory arthritis. A total <strong>of</strong> 1,179<br />

consecutive revision hip and knee arthroplasties were prospectively<br />

evaluated for PJI. Some 308 cases were excluded due to acute postoperative<br />

or hematogenous infection. A total <strong>of</strong> 810 patients had<br />

non-inflammatory and 61 had inflammatory arthritis. Receiver<br />

operating characteristic (ROC) curves were used to establish optimal<br />

ESR, CRP, WBC and % neutrophil values for diagnosis <strong>of</strong> PJI, and<br />

the area under the curve (AUC) was calculated to determine overall<br />

accuracy. The optimal thresholds for predicting PJI were ESR 30 mm/<br />

hr, CRP 17 mg/L, WBC 2,667, and differential 75% neutrophils in<br />

inflammatory arthritis, and ESR 32 mm/hr, CRP 15 mg/L, WBC 4,000,<br />

and 78% neutrophils in non-inflammatory arthritis. The efficacy <strong>of</strong><br />

these tests was similar in both populations; AUC for inflammatory<br />

ESR=85.0%, CRP=85.1%, WBC=93.8%, differential=93.6% and<br />

for non-inflammatory ESR=84.9%, CRP=88.5%, WBC=94.5%,<br />

differential=95%. There was no significant difference between groups<br />

(ESR p=0.861, CRP p=0.549, WBC p=0.8315, differential p=0.7021).<br />

The rate <strong>of</strong> PJI was significantly higher in patients with inflammatory<br />

arthritis (33.3% vs.18.8%) arthritis (p-value=0.013). These results<br />

suggest that the ESR, CRP, synovial fluid WBC count and differential<br />

are useful in diagnosing PJI in patients with inflammatory as well as<br />

non-inflammatory arthritis with similar optimal cut-<strong>of</strong>f values.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


pApeR No. 124<br />

CRP in joints: A Molecular Marker for Periprosthetic<br />

Joint Infection?<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Christina L. Jacovides, Philadelphia, PA<br />

Bahar Adeli, BA, Philadelphia, PA<br />

Kwang Am Jung, MD, Philadelphia, PA<br />

William J Hozack, MD, Philadelphia, PA<br />

The goal <strong>of</strong> our study was to determine whether the accuracy <strong>of</strong> the<br />

serum C-reactive protein (CRP) assay for detection <strong>of</strong> periprosthetic<br />

joint infection (PJI) could be improved by measuring CRP in<br />

synovial fluid rather than in blood serum. Such an assay could<br />

improve the accuracy <strong>of</strong> diagnosis <strong>of</strong> PJI without significant added<br />

cost to hospitals. Synovial fluid specimens were collected from 53<br />

patients undergoing revision total knee arthroplasty. CRP levels were<br />

measured using an individual CRP enzyme-linked immunosorbent<br />

assay (ELISA) (16 samples; eight infected, eight uninfected) and<br />

a multiplex immunoassay platform (53 samples; 17 infected, 36<br />

uninfected). Results from preoperative serum CRP assays conducted<br />

by the hospital laboratory were collected for comparison. Sensitivity,<br />

specificity and receiver operating characteristic (ROC) curve analyses<br />

were performed for each assay, with diagnosis <strong>of</strong> infection based<br />

on institutional criteria. CRP concentrations differed significantly<br />

between infected and uninfected joints in all three assays. The area<br />

under the curve was 0.965 for the individual ELISA, 0.931 for the<br />

multiplex assay and 0.872 for the serum CRP assay. Sensitivity and<br />

specificity were 87.5% and 87.5% for the individual ELISA, 93.3%<br />

and 88.9% for the multiplex assay and 80% and 89.7% for the<br />

serum CRP assay. Measuring CRP in synovial fluid rather than in<br />

serum appears to improve the test’s diagnostic strength, especially<br />

its sensitivity. Although this finding should be confirmed in a larger<br />

cohort, if the serum CRP assay can be adapted for use in synovial<br />

fluid, we believe such an assay holds great promise as a new,<br />

potentially low-cost, diagnostic marker for PJI.<br />

pApeR No. 125<br />

Periprosthetic Joint Infection: Are Patients with<br />

Multiple Prosthetic Joints At Risk?<br />

S. Mehdi Jafari, MD, Tehran, (Islamic Republic <strong>of</strong>) Iran<br />

David Casper, MD, Philadelphia, PA<br />

Mr Benjamin Zmistowski, Philadelphia, PA<br />

Camilo Restrepo, MD, Philadelphia, PA<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Risk <strong>of</strong> PJI at our institution remains below one percent for total joint<br />

arthroplasty. For those patients that do suffer from PJI, <strong>of</strong>ten they<br />

have other prosthesis in place. It is not known if these patients are<br />

at higher risk <strong>of</strong> developing infection in their other prosthetic joint<br />

and more importantly what strategies should be taken regarding<br />

evaluation <strong>of</strong> the other asymptomatic concurrent prosthetic joint.<br />

Using our prospective institutional database, patients with PJI who<br />

had other prosthetic joints in place at the time <strong>of</strong> presentation were<br />

identified. There were 56 patients with a mean age <strong>of</strong> 62.7 (range:<br />

31-89) years. The cohort consisted <strong>of</strong> nine patients with ipsilateral<br />

joints replaced, 37 with multiple knees, 17 with multiple hips and<br />

nine with a contralateral hip and knee. Five patients had three joints<br />

replaced and two had all four joints replaced. Out <strong>of</strong> 56 patients, 11<br />

patients (19.6%) developed infection in multiple joints. Of these<br />

11, eight were multiple knees, two were multiple hips and one was<br />

ipsilateral joint infections. Five <strong>of</strong> these infections were separated<br />

by less than six months (three simultaneously). Four patients were<br />

infected by phenotypically identical organisms. A previously aseptic<br />

524<br />

prosthetic joint has an increased risk for infection when another<br />

prosthetic joint develops infection.<br />

pApeR No. 126<br />

Molecular Markers for Diagnosis <strong>of</strong> Periprosthetic<br />

Joint Infection<br />

Javad Parvizi, MD, Philadelphia, PA<br />

Christina L. Jacovides, Philadelphia, PA<br />

Bahar Adeli, BA, Philadelphia, PA<br />

Kwang Am Jung, MD, Philadelphia, PA<br />

Despite the impressive battery <strong>of</strong> tests available for diagnosing<br />

periprosthetic joint infection (PJI), no gold standard has yet been<br />

identified. The goal <strong>of</strong> our study was to improve the surgeon’s ability<br />

to accurately diagnose PJI. Working from results <strong>of</strong> previous studies<br />

that have observed differential expression <strong>of</strong> inflammatory-response<br />

genes in cases <strong>of</strong> PJI, we extend this work to the protein level by<br />

comparing concentrations <strong>of</strong> inflammatory proteins in synovial<br />

fluid <strong>of</strong> known infected and uninfected arthroplasties. We analyzed<br />

53 synovial fluid samples from patients undergoing revision knee or<br />

hip arthroplasty. Samples were diagnosed as infected (17 samples)<br />

or uninfected (36 samples) based on clinical and laboratory criteria.<br />

Proteomics analysis was conducted to determine concentrations <strong>of</strong><br />

46 inflammatory proteins in each sample. We used receiver operating<br />

characteristic (ROC) curve analysis to identify proteins that could<br />

serve as accurate markers for PJI. Of 46 proteins tested, 16 had an<br />

area under the curve (AUC) greater than 0.80, suggesting strong<br />

diagnostic capabilities. Of these proteins, we further identified 4<br />

(±2- macroglobulin, and interleukins 6, 8, and 1²) which could be<br />

used to diagnose infection with greater than 90% sensitivity and<br />

specificity. Interleukin-6 had the highest combined sensitivity and<br />

specificity at 100% and 97.2% respectively at a threshold <strong>of</strong> 4270 pg/<br />

ml. This prospective study utilizing biomarker immunoassays has<br />

demonstrated promising results for the use <strong>of</strong> molecular markers<br />

in diagnosis <strong>of</strong> PJI. The study identified four agents that could<br />

potentially be used as diagnostic markers for PJI. As part <strong>of</strong> our<br />

ongoing study, we hope to confirm both the diagnostic strength and<br />

thresholds <strong>of</strong> these proteins. Future studies will focus on designing<br />

assays with these proteins in mind in order to produce clinically<br />

useful diagnostic tests for PJI.<br />

pApeR No. 127<br />

Surgical Wound Infections in Total Knee Replacement:<br />

A Comparison <strong>of</strong> Common Definitions<br />

Mohamed Sukeik, MD, London, United Kingdom<br />

Elizabeth Ashby, MRCS, Cambridgeshire, United Kingdom<br />

Paul Sturch, MBBS, Middlesex, United Kingdom<br />

Fares Sami Haddad, FRCS, London, United Kingdom<br />

APR Wilson, MRCP<br />

Wound surveillance has been reported to result in a significant fall<br />

in the incidence <strong>of</strong> wound sepsis in total knee arthroplasty (TKA).<br />

However, there is currently little guidance on the definition <strong>of</strong> surgical<br />

wound infection that is best used for surveillance. The purpose<br />

<strong>of</strong> this study was to assess the agreement between three common<br />

definitions <strong>of</strong> surgical wound infection as a performance indicator<br />

in TKA; (a) the Centers for Disease Control (CDC) 1992 definition,<br />

(b) the Nosocomial Infection National Surveillance Service (NINSS)<br />

modification <strong>of</strong> the CDC definition and (c) the ASEPSIS scoring<br />

method applied to the same series <strong>of</strong> surgical wounds. A prospective<br />

study <strong>of</strong> 500 surgical wounds in patients who underwent knee<br />

arthroplasties between May 2002 and December 2004 from a single<br />

tertiary center were assessed according to the different definitions <strong>of</strong><br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


surgical wound infection. A total <strong>of</strong> 500 wounds were assessed in<br />

482 patients. Mean age <strong>of</strong> patients was 70+/-11 years, 61.6% were<br />

females, duration <strong>of</strong> surgery was 101+/-49 minutes and mean follow<br />

up was 35.2+/-25.7 months. The most commonly isolated species<br />

were Coagulase negative staphylococci (33.3%), Staphylococcus<br />

aureus (25%) and Pseudomonas aeruginosa (16.6%). The mean<br />

percentage <strong>of</strong> wounds classified as infected differed substantially<br />

with different definitions: 5.8% with the CDC definition, 3.6%<br />

with the NINSS version and 2.2% with an ASEPSIS score >20. When<br />

superficial infections (according to CDC category) were included,<br />

5.2% (26) <strong>of</strong> all observed wounds received conflicting diagnoses,<br />

and 1.4% (7) were classified as infected by both ASEPSIS and CDC<br />

definitions. When superficial infections were excluded, the two<br />

definitions estimated about the same overall percentage infection<br />

(2.2% and 2.6% respectively), but there were almost three times as<br />

many conflicting infection diagnoses (n = 14) as concordant ones (n<br />

= 5). Distinctions in surgical wound infection definitions contribute<br />

to notable differences in how infections are classified after TKA. Even<br />

small changes made to the CDC definition, as with the NINSS version,<br />

caused major variation in estimated percentage <strong>of</strong> wound infection.<br />

A single definition used consistently can show changes in wound<br />

infection rates over time at a single center. However, differences in<br />

interpretation prevent comparison between different centers.<br />

pApeR No. 128<br />

Dilute Betadine Lavage Prior to Closure for Preventing<br />

Acute Deep Periprosthetic Joint Infection<br />

Nicholas M Brown, BS, Davenport, IA<br />

Cara A Cipriano, MD, Chicago, IL<br />

Mario Moric, MS<br />

Scott M Sporer, MD, Wheaton, IL<br />

Craig J Della Valle, MD, Chicago, IL<br />

Infection is a devastating complication following total joint<br />

arthroplasty. Prior work has shown that a dilute betadine lavage<br />

prior to wound closure decreases the rate <strong>of</strong> infection following<br />

orthopaedic spine procedures. The purpose <strong>of</strong> this study was to<br />

evaluate the efficacy <strong>of</strong> a dilute betadine lavage in preventing<br />

early deep post-operative infection following total hip (THA) and<br />

knee (TKA) arthroplasty. Dilute (0.35%) betadine lavage for three<br />

minutes prior to wound closure was introduced in June 2008. A total<br />

<strong>of</strong> 1,862 consecutive cases (630 THA and 1,232 TKA) performed<br />

prior to initiation <strong>of</strong> this protocol were compared to 688 consecutive<br />

cases (274 THA and 414 TKA) after, for the occurrence <strong>of</strong> acute<br />

postoperative infections (within the first 90 days post-operatively).<br />

Infections were defined as gross purulence encountered within the<br />

joint at the time <strong>of</strong> surgical exploration or a deep culture positive for<br />

bacterial growth. A chi-squared analysis was performed to compare<br />

the rates <strong>of</strong> infection with and without the use <strong>of</strong> betadine lavage.<br />

Eighteen acute post-operative infections (0.97%) were identified<br />

prior to the use <strong>of</strong> dilute betadine lavage and one (0.15%) since<br />

(p = 0.018). There were no significant differences in the age (63.7<br />

vs. 63.4; p = 0.59), percentage <strong>of</strong> females (66.2% vs. 66.9%; p =<br />

0.74), or primary diagnosis <strong>of</strong> osteoarthritis (89.4% vs. 90.6%; p<br />

= 0.38) between the two groups. These results suggest that dilute<br />

betadine lavage prior to surgical closure may be an inexpensive,<br />

effective means <strong>of</strong> reducing acute post operative infection following<br />

total joint arthroplasty.<br />

525<br />

pApeR No. 129<br />

Staphylococcus Aureus Decolonization Protocol<br />

Decreases Surgical Site Infections<br />

Scott R Hadley, MD, New York, NY<br />

Igor Immerman, MD, New York, NY<br />

Gregory Katz, New York, NY<br />

Faith Skeete, New York, NY<br />

James D Slover, MD, New York, NY<br />

Michael Phillips, MD, New York, NY<br />

Joseph A Bosco, III MD, New York, NY<br />

Patients colonized with methicillin-resistant Staphylococcus<br />

aureus (MRSA) and methicillin-sensitive S aureus (MSSA) are at<br />

an increased risk <strong>of</strong> surgical site infections (SSI). We investigated<br />

the effects <strong>of</strong> implementation <strong>of</strong> an institution wide screening and<br />

decolonization protocol on the rates <strong>of</strong> SSIs in patients undergoing<br />

primary knee and hip arthroplasty from 2007 to 2009. The treatment<br />

group consisted <strong>of</strong> patients seen at pre-admission testing (PAT) prior<br />

to undergoing primary hip or knee arthroplasty. They were screened<br />

for MSSA and MRSA colonization, and provided a five-day course <strong>of</strong><br />

nasal mupirocin and a single pre-operative chlorhexidine shower.<br />

Patients colonized with MRSA received vancomycin peri-operative<br />

prophylaxis. Patients not seen at PAT did not receive decolonization<br />

protocol and constituted a concurrent control group. All patients<br />

were followed one year for post-operative infection; SSIs were<br />

classified using the Centers for Disease Control criteria. Statistical<br />

analysis performed using Fisher’s exact test. Of the 2,058 patients<br />

in this study, 1,644 patients underwent PAT treatment protocol and<br />

414 were in the control group. There were six deep SSIs (1.45%) in<br />

the control group and 21 (1.28%) in the treatment group (p=0.809).<br />

The total hip arthroplasty treatment subgroup had a lower rate<br />

<strong>of</strong> deep SSI (1.19% 9/756) than its control group (2.38% 4/168)<br />

(p=0.27). There were trends towards decreased deep SSIs in the PAT<br />

treatment groups. Due to the low rate <strong>of</strong> infection in primary total<br />

joint surgery this study did not enroll a sufficient number <strong>of</strong> patients<br />

for statistical significance. However, we believe the trend supports<br />

MRSA and MSSA screening and decolonization in primary hip and<br />

knee arthroplasty.<br />

pApeR No. 130<br />

Alignment and BMI, Factors Associated with Total Knee<br />

Replacement Failures<br />

Robert Andrew Malinzak, MD, Mooresville, IN<br />

Kenneth Davis, MS, Indianapolis, IN<br />

Jeffery L Pierson, MD, Carmel, IN<br />

Michael E Berend, MD, Mooresville, IN<br />

John B Meding, MD, Mooresville, IN<br />

Merrill A Ritter, MD, Indianapolis, IN<br />

The purpose <strong>of</strong> this study was to determine the importance <strong>of</strong><br />

tibi<strong>of</strong>emoral alignment and both femoral and tibial component<br />

positions upon failure <strong>of</strong> a total knee replacement and whether the<br />

“correction” <strong>of</strong> one component for another malaligned component<br />

to produce a neutral overall alignment is favorable. To define the<br />

range <strong>of</strong> neutral that is associated with the least amounts <strong>of</strong> failures,<br />

and the effect <strong>of</strong> body mass index (BMI) and alignment on implant<br />

survival. We retrospectively reviewed the pre-operative BMI and<br />

the post operative overall coronal tibi<strong>of</strong>emoral and tibial and<br />

femoral component alignments in 6,070 knees. Cox regression was<br />

performed on failures (excluding infection) with all patient-related<br />

factors including overall alignment, component positions and BMI.<br />

The tibial component position <strong>of</strong> 8° were the primary component angles most likely<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


to be the cause <strong>of</strong> failure (p


pApeR No. 134<br />

Variable Cartilage Depth Prevents Precise<br />

Measurement Of Posterior Condylar Offset On Pre-Op<br />

X-Rays<br />

Henry D Clarke, MD, Phoenix, AZ<br />

Restoration <strong>of</strong> posterior condylar <strong>of</strong>fset (PCO) <strong>of</strong> the femur may play<br />

an important role in determining flexion after total knee arthroplasty<br />

(TKA). Measurements <strong>of</strong> PCO on pre- and post-operative x-rays have<br />

demonstrated that reductions <strong>of</strong> 1 to 5 mm can reduce maximal<br />

flexion by 5 to 10 degrees. However, other reports don’t support these<br />

findings. While true lateral x-rays allow accurate measurement <strong>of</strong> the<br />

post-operative PCO, as the prosthesis can be accurately identified, preoperative<br />

measurement <strong>of</strong> PCO may be inaccurate as the thickness<br />

<strong>of</strong> remaining cartilage on the posterior condyles is not included. This<br />

Institutional Review Board approved, retrospective study included<br />

140 consecutive patients who underwent primary TKA. The medial<br />

and lateral posterior condylar bone cuts were performed in the<br />

usual manner. The resected specimen was sectioned in the sagital<br />

plane and the cartilage thickness was measured at the mid portion<br />

to the nearest millimeter. The mean cartilage thickness was 1.7 mm<br />

(range, 0 to 4 mm) on the medial posterior condyle and 2.0 mm<br />

(range, 0 to 5 mm) on the lateral posterior condyle. The thickness<br />

<strong>of</strong> remaining cartilage on the posterior condyles is between 0 and 5<br />

mm. This variability is not accounted for on pre-operative x-rays and<br />

likely contributes to conflicting reports on the effect <strong>of</strong> changes in<br />

PCO and post-operative flexion; a 2 mm reduction <strong>of</strong> radiographic<br />

PCO may actually represent up to a 7 mm reduction. In future<br />

studies <strong>of</strong> PCO, the remaining cartilage thickness must be measured<br />

intra-operatively and the pre-op radiographic measurement must be<br />

adjusted by this thickness.<br />

pApeR No. 135<br />

Does Cyclical Loading Affect Antibiotic Elution and<br />

Strength <strong>of</strong> Articulating Cement Knee Spacers?<br />

Benedict Rogers, MBBS, Woking, United Kingdom<br />

Fiona Middleton, MRCS<br />

Natalie Shearwood-Porter, Meng<br />

Anne Roques, PhD, Woking, United Kingdom<br />

Neil Bradley, FRCS, Godalming, United Kingdom<br />

Martin Browne, PhD, Southampton, United Kingdom<br />

Two-stage revision surgery for infected total knee replacement is<br />

considered optimal treatment with articulating antibiotic cement<br />

spacers being employed during the first stage to eradicate infection<br />

while maximizing s<strong>of</strong>t tissue function. This study investigates the<br />

effect <strong>of</strong> cyclic loading <strong>of</strong> cement spacers on antibiotic elution.<br />

Femoral and tibial cement spacers containing vancomycin at<br />

constant concentration (1 g per 40 g pack), and tobramycin <strong>of</strong><br />

varying concentration (1.2 to 3.6 g per 40 g pack) were cyclically<br />

loaded (0-45 degrees <strong>of</strong> flexion) against each other in Ringer’s<br />

solution under a maximum compressive load <strong>of</strong> 250N. We also<br />

loaded simulated ambulation on crutches for 35,000 cycles, with<br />

test interruptions simulating rest periods. Triplicate aliquots were<br />

taken and the variation in antibiotic concentration was measured.<br />

Unloaded samples were used as controls for statistical comparison.<br />

Post immersion compression tests were performed at 0 degrees <strong>of</strong><br />

flexion. Tobramycin elution increased proportionately to its cement<br />

concentration and was significantly higher (p


pApeR No. 243<br />

Revision TKA Using Short Cemented Stems: Minimum<br />

10 year Follow Up<br />

Gwo-Chin Lee, MD, Philadelphia, PA<br />

Charles L Nelson, MD, Voorhees, NJ<br />

Paul A Lotke, MD, Gladwyne, PA<br />

There is ongoing controversy about the best way to obtain stable<br />

component fixation during revision total knee arthroplasty (TKA).<br />

The purpose <strong>of</strong> this study is to evaluate the long-term results <strong>of</strong><br />

revision TKA using short cemented stemmed components. Between<br />

1984-1999, 350 consecutive revision TKA were performed by a<br />

single surgeon using short cemented stemmed components. There<br />

were 195 women and 155 men with a mean age <strong>of</strong> 72 years (range<br />

50-88). The cause for revision surgery was aseptic loosening in 211<br />

knees, instability in 25, patella/extensor mechanism problems in<br />

54, infection in 50 and miscellaneous in 10. All failed total knee<br />

replacements (TKR) were revised using a TCIII constrained knee<br />

implant (Depuy, Warsaw IN) with short cemented stem extensions.<br />

The clinical outcomes were evaluated using the Knee Society (KS)<br />

clinical and functional scoring systems and radiographs were<br />

evaluated for radiolucent lines and component loosening. The<br />

minimum follow up was 10 years (range 10-15 years). A total <strong>of</strong> 98<br />

patients died and 32 patients were lost to minimum 10 year follow<br />

up. Five patients in this group had undergone subsequent surgery<br />

following revision TKA (two infection, one fracture, one aseptic<br />

loosening and one instability). The remaining 220 patients had<br />

complete records and were followed for an average <strong>of</strong> 12.5 years<br />

(range 10-16 years). At last follow up, the KS clinical score averaged 84<br />

(range 38-99) and the mean functional score was 50 (10-75). Stable<br />

non-progressive radiolucent lines were present in 36 knees and eight<br />

knees had progressive radiolucent lines. Reoperations occurred in 21<br />

knees (10 infections, two tibial loosening, three femoral loosening,<br />

two instability, two patellar maltracking/clunk and one fracture). At<br />

a mean 12.5 years, the survivorship <strong>of</strong> the revision knee prosthesis<br />

was 90%. Revision TKA using short cemented stemmed components<br />

provided durable results at an average 12.5 year follow up.<br />

pApeR No. 244<br />

Outcome <strong>of</strong> 177 Knees Revised for Osteolysis with<br />

Minimum 5-Year Evaluation<br />

C Anderson Engh Jr, MD, Alexandria, VA<br />

Nancy L Parks, Alexandria, VA<br />

Gerard Anderson Engh, MD, Alexandria, VA<br />

The purpose <strong>of</strong> this study is to describe the five-year outcome <strong>of</strong><br />

total knees revised for osteolysis. A total <strong>of</strong> 177 total knee revisions<br />

were performed for osteolysis as a primary or secondary diagnosis.<br />

The mean age at revision was 68 years, and the mean time in situ<br />

was 7.8 years. Seventy-two knees underwent a complete revision, 57<br />

had only a tibial revision, 46 had an isolated polyethylene exchange<br />

and two were femoral revisions. Rerevisions and complications<br />

were documented along with standard clinical and radiographic<br />

evaluations. A survivorship analysis was done. Statistical analysis<br />

was done to evaluate the influence <strong>of</strong> revision type and osteolysis on<br />

outcome. Twenty-nine patients died with the knee intact and 21 were<br />

lost before five-year follow up. A total <strong>of</strong> 104 cases had minimum<br />

five-year follow up (range 5-17) and had not been rerevised. Twentythree<br />

cases had a subsequent revision. The most common reason<br />

was osteolysis or wear in 11 and loosening in five cases. There were<br />

an additional 12 complications that did not involve the implants.<br />

Five-year survivorship with component re-revision as an endpoint<br />

was 88%. Neither the type <strong>of</strong> index revision (p=0.11), the amount<br />

<strong>of</strong> bone loss (p=0.36) or reason for the initial revision (p=0.07)<br />

528<br />

was a predictor <strong>of</strong> failure. Revisions for wear and osteolysis are<br />

challenging. The most common mode <strong>of</strong> failure is continued wear<br />

and osteolysis followed by component loosening. Improvements in<br />

the design <strong>of</strong> revision total knee systems and development <strong>of</strong> wear<br />

resistant polyethylene have the potential to increase the survivorship<br />

<strong>of</strong> these surgeries.<br />

pApeR No. 245<br />

Clinical Results <strong>of</strong> Hybrid Technique Revision Total<br />

Knee Arthroplasty<br />

Joseph Greene, MD, Louisville, KY<br />

Arthur L Malkani, MD, Louisville, KY<br />

Shaun Reynolds, MD, Louisville, KY<br />

Michael Massini, MD, Ann Arbor, MI<br />

The number <strong>of</strong> revision total knee arthoplasties (TKA) performed in<br />

the United States continues to rise annually. It remains controversial<br />

whether fluted intramedullary stems used in revision TKA should<br />

be cemented or press fit. We believe that uncemented fluted<br />

intramedullary stems have survivorship rates at least comparable, if<br />

not higher, than cemented stems. We retrospectively analyzed 119<br />

patients’ midterm survivorship rate <strong>of</strong> revision total knee arthroplasty<br />

using hybrid stem fixation. Sixty-four men and 55 women were<br />

included with an average age <strong>of</strong> 67 (range, 47-87). Revision was<br />

performed predominantly for aseptic loosening (78) and infections<br />

(28). Average follow up was 62 months (range, 46-80). A total <strong>of</strong><br />

58 tibial <strong>of</strong>fsets and 28 femoral <strong>of</strong>fsets were utilized to optimize<br />

intramedullary stem fixation. Average preoperative Knee Society pain<br />

score improved from 39 to 68 postoperatively (p


in 13, loosening in 10 and wear-osteolysis in four knees. Patients<br />

were followed clinically and radiographically using the Knee Society<br />

score systems. The patients were followed for a mean <strong>of</strong> 3.3 years<br />

(range, 2-5.7 years). The mean Knee Society pain score improved<br />

from 48 points preoperatively to 79 points postoperatively and the<br />

function score improved from 19 points to 47 points. There was one<br />

femoral cone, with a hinged prosthesis, revised for loosening and<br />

one knee, with both femoral and tibial cones, removed for infection<br />

(3.7%). All 24 tibial cones and eight <strong>of</strong> nine femoral cones showed<br />

osseous integration without loosening. One patient had reoperation,<br />

plating for femoral shaft fracture, and one had a wound reclosure<br />

for dehiscence. There was a high chance <strong>of</strong> success (defined as no<br />

re-revision) and a low rate <strong>of</strong> infection in these 27 difficult knee<br />

arthroplasty revisions with severe tibial and femoral bone loss. With<br />

two to five year follow up, these results are promising but longer-term<br />

follow up is required. The authors continue to use this technique for<br />

revision knee arthroplasty with severe bone loss.<br />

pApeR No. 247<br />

Revision Total Knee Replacement with Porous Coated<br />

Metaphyseal Sleeves<br />

Michael R Pagnotto, MD, Rochester, MN<br />

Catherine Julia Fedorka, MD, Philadelphia, PA<br />

Richard Louis McGough, MD, Pittsburgh, PA<br />

Lawrence S Crossett, MD, Pittsburgh, PA<br />

Brian A Klatt, MD, Pittsburgh, PA<br />

Porous coated metaphyseal sleeves are designed to fill bone defects<br />

and facilitate osseointegration. This study evaluated two-year results<br />

<strong>of</strong> porous coated metaphyseal sleeves in total knee revisions (TKR).<br />

A retrospective review was conducted on all patients who had a<br />

press fit tibial and/or femoral metaphyseal sleeve TKR from October<br />

1, 2003 to October 1, 2008. Preoperative bone loss was classified<br />

according to the Anderson <strong>Orthopaedic</strong> Research Institute (AORI)<br />

classification system. Charts were reviewed and patients were<br />

contacted to determine clinical outcome. Postoperative radiographs<br />

were evaluated for implant stability and evidence <strong>of</strong> ingrowth. Fiftyeight<br />

mobile bearing TKR were performed with a press fit metaphyseal<br />

sleeves (57 tibial and 33 femoral). Average age was 67 years (range,<br />

41-90). Indications included 27 infections, 16 loosening, six lysis,<br />

five pain and four for instability. Pre-op AORI classification on the<br />

tibial side was one type 1, 33 type 2a, three type 2b and 21 type 3. On<br />

the femoral side, they were six, nine, 36, and seven respectively. Four<br />

patients were lost to follow up leaving 54 patients and 53 tibial and<br />

32 femoral sleeves. Average follow up was 25 months (range, 5-68).<br />

At final follow up, 80 <strong>of</strong> 85 (94%) sleeves remained (49/53 tibial<br />

and 31/32 femoral) in place. Three sleeves were revised for infection<br />

and two for loosening. All 80 <strong>of</strong> the remaining 80 sleeves showed<br />

radiographic evidence <strong>of</strong> ingrowth. Modular porous coated press fit<br />

metaphyseal sleeves may be used to fill AORI type 2 and 3 defects<br />

and provide for stable ingrowth at two years.<br />

pApeR No. 248<br />

Revision TKA Using Trabecular Metal Spacers -Short<br />

Term Results<br />

Daniel Kend<strong>of</strong>f, MD, Hamburg, Germany<br />

Christian Schmitz, MD<br />

Wolfgang Klauser, MD, Hamburg, Germany<br />

Knee revision surgery is a challenging procedure especially in the<br />

presence <strong>of</strong> bone defects. We report preliminary results <strong>of</strong> revision<br />

procedures where trabecular metal spacers were used to fill the<br />

bony defects in severe revision cases. We retrospectively reviewed<br />

52 patients (average age 69.2 years) clinically using the Hospital<br />

529<br />

for Special Surgery (HSS) score and radiographically at average 34<br />

month after surgery. Bony defects were classified using the Anderson<br />

<strong>Orthopaedic</strong> Research Institute AORI classification (Engh, 1999).<br />

Classification <strong>of</strong> bony defects showed type 2 and 3 defects on the<br />

femoral or tibial side in the majority <strong>of</strong> cases. Reason for revision<br />

was aseptic loosening <strong>of</strong> total knee arthroplasty (TKA) in 51 cases; in<br />

17 cases, trabecular metal (TM) spacers were used both femoral and<br />

tibial side, in 18 cases only on the femoral side and in 17 cases on<br />

the tibial side. In six cases in addition to the TM spacer, impaction<br />

grafting was used using homologous bone grafts. , At latest follow<br />

up (average follow up time 34 months), average range <strong>of</strong> motion<br />

was 0-1-98 degrees for extension/flexion. HSS score increased from<br />

35 to 76 postoperatively. At latest radiographic follow up, all <strong>of</strong> the<br />

spacers appeared stable without change <strong>of</strong> position and showed<br />

signs <strong>of</strong> bony integration. Complications: periprosthetic fracture in<br />

two cases, re-infection <strong>of</strong> a TKA in one septical case, one implant<br />

change to a nail-arthrodesis after TKA, while the TM spacer was<br />

stable and showed complete osseointegration during revision. TM<br />

spacers appear to <strong>of</strong>fer an excellent solution in knee revision surgery<br />

in the presence <strong>of</strong> major bony defects.<br />

pApeR No. 249<br />

Use Of Porous Stepped Metaphyseal Sleeves During<br />

Revision Total Knee Arthroplasty<br />

Rohit Maheshwari, FRCS, Edinburgh, United Kingdom<br />

Issaq Ahmed, MRCS, Edinburgh, United Kingdom<br />

Phil Walmsley, FRCS<br />

Ivan Brenkel, FRCS, Fife, United Kingdom<br />

Revision knee arthroplasty is an increasingly common procedure.<br />

These operations can be challenging with the need to deal with<br />

bone defects, ligament instability and fixation. Current treatment<br />

options for tibial and femoral bone loss in the revision setting<br />

include cement, morselized or structural allograft, metal wedges and<br />

augments and custom or hinge/tumour prosthesis. The aim <strong>of</strong> this<br />

study is to describe the initial results obtained using unique femoral<br />

and tibial metaphyseal sleeves as an alternate treatment for tibial and<br />

femoral bone loss following total knee replacements. Porous stepped<br />

metaphyseal sleeves were implanted during 20 revision total knee<br />

replacements in 11 men and nine women who had an average age<br />

<strong>of</strong> 73.3 years at the time <strong>of</strong> the procedure. The indications included<br />

aseptic loosening in 19 cases and second stage reimplantation in<br />

one case. Bone defects in tibia and femur were classified intra<br />

operatively according to Anderson <strong>Orthopaedic</strong> Research Institute<br />

(AORI) classification. All patients were followed clinically and<br />

radiographically. The average hospital stay was nine days (five to 20<br />

days). There were no periprosthetic fractures or complications related<br />

to the insertion and impaction <strong>of</strong> the sleeves. The patients were<br />

followed for an average <strong>of</strong> 16 months (12 to 26 months). Clinical<br />

examination exhibited good muscle strength and had no evidence<br />

<strong>of</strong> instability to varus/valgus and flexion/extension testing on their<br />

last clinic visit. The average range <strong>of</strong> motion in the knee was 0 to<br />

95 degrees. Radiographs demonstrated reestablishment <strong>of</strong> joint line,<br />

neutral mechanical axis (average five degrees valgus) and signs <strong>of</strong><br />

stable osteointegration. No cases <strong>of</strong> progressive osteolysis, loosening<br />

or subsidence were noted. Unique femoral and tibial stepped<br />

metaphyseal sleeves compensate for cavitary defects, compressively<br />

load the metaphyseal bone avoiding excessive bone resection and<br />

<strong>of</strong>fer biologic fixation leading to implant stability.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


pApeR No. 250<br />

Revision Total Knee Arthroplasty Using Metaphyseal<br />

Sleeves At Short-Term Follow-Up<br />

S. Mehdi Jafari, MD, Tehran, (Islamic Republic <strong>of</strong>) Iran<br />

Catelyn Coyle, BS<br />

Ronald Huang, Philadelphia, PA<br />

Matthew Austin, MD, Philadelphia, PA<br />

Fabio Orozco, MD, Egg Hbr Twp, NJ<br />

Alvin C Ong, MD, Linwood, NJ<br />

Management <strong>of</strong> bone loss during total knee revision (TKR) is<br />

challenging. Metaphyseal sleeves have been introduced recently to<br />

address this issue. This study presents the short-term outcome <strong>of</strong> TKR<br />

in which metaphyseal sleeves were utilized. From September 2006<br />

to present, 268 TKRs have been performed at our institution. A Total<br />

Condylar 3 (TC3) prosthesis or an S-ROM hinge with metaphyseal<br />

sleeve was used in 103 knees with minimum two-year follow up. The<br />

indications for revision were aseptic loosening, 59 (57.2%); taged<br />

reimplantation, 21 (20.5%); instability, 16 (15.5%); periprosthetic<br />

fracture, four (3.9%); and correction <strong>of</strong> malpositioned components,<br />

three (2.9%). Eleven (10.6%) hinged prostheses were used. Using the<br />

Anderson <strong>Orthopaedic</strong> Research Institute (AORI) classification, there<br />

were four (3.9%) type 2A, 96 (93.2%) type 2B and three (2.9%) type<br />

3 tibial defects. There were six (5.8%) type 1, 80 (77.7%) type 2B<br />

and 17 (16.5%) type 3 femoral defects. At average follow up <strong>of</strong> 2.5<br />

years (range, 2-3.7 years), the average Knee Society function and pain<br />

scores significantly improved (p


tibial component. An extensive literature search was performed to<br />

identify studies comparing fixation techniques in a single cruciate<br />

retaining total knee arthroplasty (TKA) design. All aspects <strong>of</strong> the<br />

systematic review were performed independently by two reviewers<br />

according to the Cochrane Handbook. Meta-analysis was performed<br />

with Mantel-Haenszel random effects pooling. There were 154<br />

unique hits. Three <strong>of</strong> these studies including 323 TKA were included.<br />

The revision rate <strong>of</strong> the uncoated tibial component due to aseptic<br />

loosening is 3.65 times higher than the cemented component; or<br />

3.65 95% CI 1.12 to 11.93]. The number needed to treat is 14 in<br />

favor <strong>of</strong> the cemented tibial component for this TKA design.<br />

pApeR No. 254<br />

Minimum 6-year Follow-up In The Use Of Uncemented<br />

Stems In Revision TKR<br />

David F Dalury, MD, Baltimore, MD<br />

Mary Jo Adams, BSN, Towson, MD<br />

Revision total knee replacement (TKR) almost always utilizes a stem<br />

to enhance fixation and <strong>of</strong>f-load stresses at the damaged metaphyseal<br />

interfaces. Stem fixation can be either cemented or pressfit and there<br />

are advantages to both. We report our experience with minimum sixyear<br />

follow up on a series <strong>of</strong> revision TKR treated with uncemented<br />

stems. Forty-four revision TKRs were performed in 43 patients using<br />

uncemented stems for adjuvant fixation. The minimum follow up<br />

was six years (range six to 11 years). No patients were lost to follow<br />

up. Average canal fill on the lateral X-ray was 80% on the femur and<br />

82% on the tibia. There were two revisions for aseptic loosening,<br />

one at seven years and one at 10 years. A halo was seen on 72% <strong>of</strong><br />

femoral stems and 66% <strong>of</strong> tibial stems. Knee Society Scores increased<br />

from an average <strong>of</strong> 44 to 91 at final follow up. Non-septic loosening<br />

in this group was 4.6% (two <strong>of</strong> 43). No patient complained <strong>of</strong><br />

end <strong>of</strong> stem pain. The appeal <strong>of</strong> uncemented stems is their relative<br />

ease <strong>of</strong> insertion and re-revision if needed. The presence <strong>of</strong> ‘halos’<br />

around these stems does not appear to be clinically significant. At<br />

minimum six-year follow up, uncemented stems are an effective way<br />

<strong>of</strong> enhancing fixation in the revision TKR setting.<br />

pApeR No. 255<br />

Success <strong>of</strong> Revision Knee Arthroplasty for Stiffness<br />

Thomas Robert Turgeon, MD, Winnipeg, MB Canada<br />

David Hedden, MD, Winnipeg, MB Canada<br />

Eric R Bohm, MD, Winnipeg, MB Canada<br />

Colin Burnell, MD, Winnipeg, MB Canada<br />

Stiffness following total knee replacement can be a debilitating<br />

complication hampering function and resulting in pain for patients.<br />

Surgeons are <strong>of</strong>ten reluctant to <strong>of</strong>fer revision surgery due to concerns<br />

about the recurrence <strong>of</strong> stiffness. This study reviews the success rate <strong>of</strong><br />

revision knee arthroplasty for stiffness. The outcomes <strong>of</strong> 26 subjects<br />

were retrospectively reviewed following revision with a principal<br />

diagnosis <strong>of</strong> stiffness. Subjects were assessed pre-operatively and then<br />

annually after surgery with the SF-12, Western Ontario and McMaster<br />

Universities Osteoarthritis Index (WOMAC) and Knee Society Score<br />

(KSS) including range <strong>of</strong> motion. The mean pre-operative flexion arc<br />

was 69° and increased to 91° (p=0.002) at a mean <strong>of</strong> 2.2 years. Mean<br />

KSS pain scores improved from 10 to 34 (p


a commodity. Patients who choose to regionalize are less likely to<br />

experience a post-operative surgical infection or complication than<br />

those who do not even after adjustment for hospital volume.<br />

pApeR No. 288<br />

Histologic Evidence <strong>of</strong> Mechanoreceptor Retention in<br />

Posterior Cruciate Retaining TKA<br />

William Michael Mihalko, MD, PhD, Memphis, TN<br />

Aaron Creek, Memphis, TN<br />

Michelle Mary, Memphis, TN<br />

John Leicester Williams, PhD, Memphis, TN<br />

David E Komatsu, PhD, Stony Brook, NY<br />

The presence <strong>of</strong> mechanoceptors in the cruciate ligaments <strong>of</strong> the<br />

knee has been long-reported. But to our knowledge, no one has<br />

looked at posterior cruciate ligaments that have been retrieved<br />

from well-performing, cruciate-retaining total knee arthroplasty<br />

(TKA) specimens. In this study we look at the qualitative evidence<br />

<strong>of</strong> retained mechanoreceptors in the human posterior cruciate<br />

ligament (PCL) from patients that have had total knee arthoplasty<br />

with retention <strong>of</strong> the PCL. Six cruciate retaining TKA specimens<br />

were identified from a retrieval program and six PCLs were obtained<br />

during TKA from osteoarthritis (OA) patients after consent. The<br />

whole en bloc PCL specimens were harvested for the study. These<br />

specimens were then sectioned to a thickness <strong>of</strong> 8 microns and<br />

mounted on lysine-coated microscope slides. The sections were then<br />

subjected to immunohistochemistry with neur<strong>of</strong>ilament protein<br />

(NFP), and S-100 protein. These were used to label the central axon,<br />

the periaxonic Schwann-related cells and the perineurial-related<br />

cells <strong>of</strong> the proprioceptors. The quantity <strong>of</strong> mechanoreceptors<br />

were then compared between the two groups. Five out <strong>of</strong> six <strong>of</strong> the<br />

PCLs in this series were intact. From the implant lot numbers and<br />

identified manufacturers the shortest functioning time <strong>of</strong> an implant<br />

in the series was estimated at 10 years. All five PCL specimens<br />

revealed evidence <strong>of</strong> positive stained elements with both S100<br />

protein and NFP immunohistochemical staining. Morphologically,<br />

these elements appear to correspond to pacini and lamellar types<br />

<strong>of</strong> mechanoreceptors. No difference in number or location <strong>of</strong><br />

mechanoreceptors in the OA group was found. Controversy over<br />

the retention <strong>of</strong> the PCL in primary TKA has continued for years.<br />

This study is the first to show that when the PCL is retained that it<br />

can maintain mechanoreceptors with innervations that may aid in<br />

function after a TKA.<br />

pApeR No. 289<br />

The Synovial Fluid Adiponectin-Leptin Ratio Predicts<br />

Pain With Knee Osteoarthritis<br />

Rajiv Gandhi, MD, Toronto, ON Canada<br />

Mark Takahashi, MD, Toronto, ON Canada<br />

Holly Smith, BSc<br />

Randy Rizek, MD, Toronto, ON Canada<br />

Nizar Mahomed, MD, Toronto, ON Canada<br />

Obesity is well known to be a risk factor for the incidence and<br />

progression <strong>of</strong> prevalent osteoarthritis (OA). There is increasing<br />

evidence that visceral and sub-cutaneous truncal white adipose<br />

tissue (WAT) is an active endocrine organ that secretes cytokines<br />

and adipokines. We asked what is the relationship between these<br />

hormones and patient-reported knee OA pain. We collected<br />

demographic data, Short Form McGill Pain scores, WOMAC pain<br />

scores and synovial fluid (SF) samples from 60 consecutive patients<br />

with severe knee OA at the time <strong>of</strong> joint replacement surgery. SF<br />

samples were analyzed for leptin and adiponectin using specific<br />

532<br />

ELISA. Non-parametric correlations and linear regression modeling<br />

were used to identify the relationship between the adipokines and<br />

pain levels. The correlations between the individual adipokines and<br />

the pain scales were low to moderate and consistently less than that for<br />

the corresponding adiponectin/leptin (A/L) ratio. Linear regression<br />

modeling showed that the A/L ratio was a significant predictor <strong>of</strong> a<br />

greater level <strong>of</strong> pain on the MPQ-SF(p=0.03) but not the WOMAC<br />

pain scale(p=0.77). In conclusion, a greater A/L ratio predicted lower<br />

knee OA pain as measured by the MPQ-SF, but not on the WOMAC<br />

pain scale. This finding was above that <strong>of</strong> the individual adipokine<br />

levels alone. Some authors have suggested that leptin may have a<br />

proinflammatory role while adiponectin an anti-inflammatory role<br />

in synovial joint diseases. Further work to elucidate these pathways<br />

may present a target for novel therapeutics in knee OA.<br />

pApeR No. 290<br />

Steroid Modulation On Cytokine Release And<br />

Desmosine Level In Bilateral Total Knee Replacement<br />

Thomas P Sculco, MD, New York, NY<br />

Kethy Jules-Elysee, MD<br />

SE Wilfred, BA<br />

Stavros G Memtsoudis, MD, PhD, New York, NY<br />

David Kim, MD<br />

Michael Urban, MD, New York, NY<br />

Jacques YaDeau, MD, New York, NY<br />

Alexander Stewart McLawhorn, MD, MBA, New York, NY<br />

IL6 is a marker <strong>of</strong> inflammation in both sepsis and surgery. In<br />

the orthopedic patient population, higher levels have been linked<br />

to acute respiratory distress syndrome, postoperative confusion,<br />

depression and fever. Furthermore, IL6 is one <strong>of</strong> the major cytokines<br />

released in all patients undergoing joint replacement surgery. We<br />

had found a statistically significant decrease in IL6 in bilateral total<br />

knee replacement patients (BTKR) receiving two doses <strong>of</strong> 100 mg<br />

hydrocortisone eight hours apart. However, by 24 hours, IL6 levels<br />

were equal in both placebo and study group. In this study, we looked<br />

to see whether giving three doses to patients undergoing BTKR<br />

would maintain lower levels <strong>of</strong> IL6 at 24 hours and affect outcome.<br />

In addition, we also looked to see an effect on levels <strong>of</strong> desmosine<br />

(found to be a marker <strong>of</strong> lung injury in patients undergoing BTKR).<br />

This study was a double blind randomized placebo controlled<br />

study powered in order to detect at least a 25% decrease in IL6 from<br />

baseline. Hydrocortisone (100 mg) or placebo was given at three<br />

doses, each eight hours apart to the study group and placebo group<br />

respectively. Urine for desmosine levels were obtained on day zero,<br />

one and three postoperatively. Blood for cytokines were drawn at<br />

baseline, six hours, 10 hours, 24 hours and 48 hours postoperatively.<br />

After Institutional Review Board approval, a total <strong>of</strong> 28 patients (13<br />

study, 15 control) were enrolled. Both groups had similar baseline<br />

characteristics. Average age was 65. IL6 increased in both groups, but<br />

was statistically higher in the control group at all time points. Peak<br />

IL6 levels at 24 hours were four times higher in the control group.<br />

Pain scores measured as visual analog scores (VAS) were significantly<br />

lower in the study group as was the incidence <strong>of</strong> fever (p=0.03).<br />

Range <strong>of</strong> motion at the knee was statistically higher in the study<br />

group (p=0.04). Urine desmosine levels doubled by 24 hours in<br />

the control group, but remained unchanged in the study group. No<br />

infection was noted three months postoperatively. Hydrocortisone<br />

(100 mg) given over three doses, each eight hours apart, was effective<br />

at decreasing and maintaining a lower degree <strong>of</strong> inflammation as<br />

measured by IL6. It decreased incidence <strong>of</strong> fever, lowered VAS scores<br />

and improved range <strong>of</strong> motion. The lower values <strong>of</strong> desmosine in the<br />

study group suggest that this may also be protective <strong>of</strong> lung injury.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


pApeR No. 291<br />

Benefits <strong>of</strong> Prolonged Postoperative COX-2 Inhibitor<br />

Administration on TKA Recovery<br />

Michael E Berend, MD, Mooresville, IN<br />

Paul Diesfeld, PA-C, Saint Louis, MO<br />

Angela LeMarr, RN, Saint Louis, MO<br />

Mary E Reedy, RN, Saint Louis, MO<br />

Perioperative use <strong>of</strong> selective COX-2 inhibitors has demonstrated<br />

decreased in hospital narcotic requirements and improved knee<br />

motion following primary total knee arthroplasty (TKA). The<br />

purpose <strong>of</strong> this study was to determine what benefits resulted from<br />

an additional six weeks <strong>of</strong> COX-2 inhibitor treatment. A doubleblind,<br />

placebo-controlled study enrolled 107 TKA patients who met<br />

Institutional Review Board inclusion criteria. All patients received<br />

celecoxib preoperatively and during hospitalization. At hospital<br />

discharge, patients were randomized to receive celecoxib or placebo<br />

for six weeks. Narcotic use, knee flexion, Knee Society Score (KSS),<br />

Oxford Knee Score (OKS) and SF-12 scores were determined<br />

preoperatively and at three, six, 12 and 24 weeks and one year postop.<br />

Visual analog scores (VAS) documented pain at rest, at night and<br />

with activities at each time point. Statistical analyses <strong>of</strong> longitudinal<br />

data were performed using mixed model repeated measures analysis<br />

<strong>of</strong> variance (ANOVA). Total narcotic count was less in the celecoxib<br />

group compared with the placebo group, 76 ± 55 vs. 138 ± 117<br />

respectively, p=0.003. VAS improved more for the celecoxib group<br />

at rest (p=0.01), at night (p=0.02) and with activities (p=0.04).<br />

Through 12 weeks, the celecoxib group had improved KSS knee<br />

scores (p=0.0005), KSS function scores (p=0.03), OKS (p=0.02) and<br />

SF-12 physical composite scores (p=0.005). Improvement in knee<br />

flexion with celecoxib was greater at each time point through one<br />

year, p=0.04. This prospective double-blind study demonstrated that<br />

a COX-2 selective inhibitor for six weeks after TKA led to a more rapid<br />

and less painful recovery. Celecoxib patients required less narcotics<br />

than placebo controlled patients. Despite taking nearly twice the<br />

narcotic, placebo patients still had more pain at rest, at night, and<br />

with activities. Patients taking celecoxib had improved knee function<br />

through three months as measured by the KSS, OKS and SF-12 PCS.<br />

Improvement in knee flexion remained greater through one year <strong>of</strong><br />

follow up.<br />

pApeR No. 292<br />

Total Knee Replacement Implant Classification Using<br />

Neural Networks<br />

Mohamed Mahfouz, PhD, Knoxville, TN<br />

Nicholas Battaglia, BS, Knoxville, TN<br />

Emam Abdel Fatah, Knoxville, TN<br />

Sumesh M Zingde, Knoxville, TN<br />

Richard D Komistek, PhD, Knoxville, TN<br />

Cruciate retaining (CR) and bi-cruciate/posterior stabilizing<br />

(BCS/PS) are two commonly used contradicting philosophies in<br />

TKA design. The CR knee intends to promote greater anatomical<br />

function and motion; whereas the PS and BCS knees use a<br />

cam-post system aimed at mechanically ‘guiding’ normal knee<br />

kinematics. The objective <strong>of</strong> this paper was to investigate whether<br />

PS and CR knees exhibit different kinematic behavior. Feed-forward<br />

backpropagation neural networks were employed to identify knee<br />

implant types from full extension to maximum flexion kinematics.<br />

Three-dimensional kinematic data was collected for 1,200 subjects<br />

(PS, PCR and BCS) performing a deep knee bend maneuver under<br />

fluoroscopic surveillance. Kinematic data was captured for medial/<br />

lateral anteroposterior translation (MAP/LAP); medial/lateral<br />

533<br />

superoinferior translation (MSI/LSI); lift-<strong>of</strong>f; axial tibi<strong>of</strong>emoral<br />

rotation; and three-dimensional relative transformations <strong>of</strong> the<br />

implant components. The data was classified utilizing a feed-forward<br />

backpropagation neural network. The results showed that a neural<br />

network can reach a maximum training and testing classification<br />

rate <strong>of</strong> 93.0% and 91.5%, respectively. Furthermore, it was found<br />

that the neural network could classify the system using only the<br />

medial anteroposterior translation with a maximum training and<br />

testing classification rate <strong>of</strong> 84.1% and 81.7%, respectively. This<br />

study showed that neural networks can be utilized to classify knee<br />

implants by their in vivo kinematics with a relatively high success<br />

rate. Furthermore, these findings showed that MAP translation is one<br />

<strong>of</strong> the most discriminating features <strong>of</strong> the system, which is consistent<br />

with previous research. Furthermore, the three different design<br />

philosophies exhibited distinct kinematic patterns which were each<br />

significantly different than those reported previously for normal<br />

knees. It is clear that even through considerable effort put forth by<br />

industry and academia to improve implant kinematics, an optimal<br />

design that mimics normal knee motion does not yet exist.<br />

pApeR No. 293<br />

Bone Ingrowth in Retrieved Porous Tantalum Tibial<br />

Trays<br />

Josa Hanzlik, MS<br />

Judd Day, PhD, Philadelphia, PA<br />

Daniel MacDonald, Philadelphia, PA<br />

Gregg R Klein, MD, Paramus, NJ<br />

Mark A Hartzband, MD, Franklin Lakes, NJ<br />

Harlan B Levine, MD, Tenafly, NJ<br />

Steven M Kurtz, PhD, Philadelphia, PA<br />

Porous tantalum has recently been introduced to encourage bone<br />

growth in total joint arthroplasty. The goal <strong>of</strong> this study was to<br />

characterize the extent <strong>of</strong> bone growth in retrieved porous tantalum<br />

tibial components. Seventeen porous tantalum tibial trays were<br />

retrieved. The average age <strong>of</strong> the patient was 58.4±8.9 years. The<br />

average implantation time was 1.5±1 years (0.5 to 3.1 years). Porous<br />

tantalum tibial trays were revised for: instability (52.9%), infection<br />

(17.7%), femoral loosening (11.8%), malalignment (5.9%), pain<br />

(5.9%) and arthr<strong>of</strong>ibrosis (5.9%). All were implanted at least 0.5<br />

years, allowing sufficient time for bone ingrowth. The extent <strong>of</strong> gross<br />

bone coverage was determined using a point counting technique.<br />

Bone ingrowth was observed on an average <strong>of</strong> 60±15% (Range:<br />

29-83%) <strong>of</strong> the total area. No correlation was observed between<br />

implantation time and bone ingrowth. Generally, ingrowth was<br />

more prevalent in the central region <strong>of</strong> the implant than the posterior<br />

region <strong>of</strong> the condyles. Porous tantalum tibial trays displayed bone<br />

ingrowth that covered approximately 60% <strong>of</strong> the backside surface,<br />

comparing favorably to other reported materials. These findings<br />

are likely underestimated due to damage to the bone-implant<br />

interface during removal. It is noteworthy that none <strong>of</strong> the implants<br />

were revised for tibial loosening. The outlook for porous tantalum<br />

remains encouraging in light <strong>of</strong> this study’s results; however, further<br />

studies are warranted to further characterize the depth and extent <strong>of</strong><br />

bone ingrowth.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


pApeR No. 294<br />

An Economic Algorithm for Evaluation <strong>of</strong> the Painful<br />

Total Knee Arthroplasty<br />

Gabriel Levi, MD, Chicago, IL<br />

Giles R Scuderi, MD, New York, NY<br />

The excellent results <strong>of</strong> total knee arthroplasty (TKA) have been<br />

well documented in the literature. However, as the number <strong>of</strong> TKAs<br />

increases, so is the number <strong>of</strong> patients that present with failed TKA.<br />

The diagnostic work-up for painful TKA does create an economic<br />

burden and a cost analysis is useful in controlling the expenses<br />

associated with evaluating this increasingly expensive problem. A<br />

cost analysis was performed on a previously published diagnostic<br />

algorithm for the painful TKA. A literature search was performed<br />

for the statistical values for accuracy, specificity, sensitivity, positive<br />

predictive value and negative predictive value <strong>of</strong> each diagnostic<br />

study in the algorithm. Based on these values and the Medicare fee<br />

schedule for each diagnostic study, the cost-effectiveness and valueadded<br />

proposition <strong>of</strong> each diagnostic study were determined. A<br />

statistical analysis <strong>of</strong> the economic model was performed and each<br />

diagnostic study was weighted for its economic and clinical value.<br />

The most cost effective diagnostic modalities are: history and physical<br />

examination, knee radiographs, blood tests (CBC with differential,<br />

ESR and CRP) and knee aspiration. Nuclear imaging, CT scan and<br />

MRI, while providing supportive information are economically<br />

burdensome and should be considered in specific situations where<br />

the mechanism <strong>of</strong> failure is elusive or when the study will have<br />

an impact on the reconstructive procedure. In most situations, the<br />

evaluation for a painful TKA can be accomplished with a history<br />

and physical examination, knee radiographs, blood tests and knee<br />

aspiration. The cost effectiveness <strong>of</strong> additional imaging studies<br />

should be considered in this current healthcare environment.<br />

pApeR No. 295<br />

In vivo Function <strong>of</strong> Posterior Cruciate Ligament before<br />

and after Cruciate-Retaining TKA<br />

Kartik Varadarajan, MS, Boston, MA<br />

Bing Yue, Shanghai, China<br />

Harry E Rubash, MD, Boston, MA<br />

Guoan Li, PhD, Boston, MA<br />

Although the posterior cruciate ligament (PCL) is thought to play<br />

a major role in cruciate-retaining total knee arthroplasty (CR-<br />

TKA), little information is available regarding its in vivo function.<br />

Therefore, the goal <strong>of</strong> this study was to investigate the in vivo<br />

function <strong>of</strong> the PCL before and after TKA, during weight-bearing<br />

knee flexion. Eleven osteoarthritis (OA) patients and 22 normal<br />

control subjects were recruited. MRI scans were used to create 3D<br />

knee models, including the anterolateral (AL) and posteromedial<br />

(PM) PCL bundles insertions. The bone models were matched to<br />

dual-plane fluoroscopic images acquired, before and after surgery.<br />

The elongation <strong>of</strong> the PCL bundles relative to their length at full<br />

knee extension, and their axial plane orientations were measured.<br />

Beyond 75° flexion, the PCL elongation was greater (p


knee score mean was 86 at last follow up. Twenty out <strong>of</strong> 152 UKA<br />

(13%) had been revised. One knee was revised for progression <strong>of</strong><br />

pigmented villonodular synovitis (PVNS). Thirteen knees failed with<br />

tibial components subsidence/loosening, which commonly began<br />

as progressive cystic degeneration beneath the tibial component.<br />

Six knees were revised elsewhere. Five-year survivorship was 97%;<br />

survivorship at 10 years was 78%. At mean 9.5 year follow up,<br />

this UKA demonstrated 78% survivorship. The dominant mode<br />

<strong>of</strong> failure was subsidence/loosening <strong>of</strong> the all-polyethylene fixedbearing<br />

tibial component, with a troubling number <strong>of</strong> this failure<br />

mode occurring between seven and 10 years. We will continue to<br />

follow this cohort closely. The principles <strong>of</strong> small incision, minimal<br />

quadriceps dissection, local injection and early mobilization have<br />

been incorporated into all current UKA patients.<br />

pApeR No. 298<br />

Custom Guides for Primary Total Knee Arthroplasty<br />

Adolph V Lombardi Jr, MD, New Albany, OH<br />

Keith R Berend, MD, New Albany, OH<br />

Roger H Emerson, Jr MD, Dallas, TX<br />

Michael D Skeels, DO, New York, NY<br />

Joanne B Adams, BFA, CMI, New Albany, OH<br />

Bethany C Gulick, RT<br />

Efforts to enhance technique in primary total knee arthroplasty<br />

(TKA) while avoiding negative aspects <strong>of</strong> navigation have fueled<br />

development <strong>of</strong> patient-specific guides generated from MRI or<br />

CT. We review our experience to date with TKA performed using<br />

patient-specific guides and compare the accuracy to standard<br />

technique via both radiographic and cadaveric studies. Two<br />

surgeons performed bilateral TKA on nine cadavers, using standard<br />

instrumentation on one side and custom guides contralaterally.<br />

TKA were evaluated postoperatively with CT for accuracy <strong>of</strong><br />

femoral and tibial resection and femoral rotation. To date, 316<br />

patients (364 knees) have undergone primary TKA at one center<br />

using patient-specific guides. From this series, 91 custom-guided<br />

TKA were matched to 91 contemporaneous TKA performed with<br />

standard instrumentation. Postoperative standard AP radiographs<br />

were evaluated via calibrated picture archiving and communication<br />

system (PACS) by independent observer for femorotibial, femoral<br />

component and tibial component alignment. Long alignment<br />

radiographs were evaluated for 71 custom-guided TKA. Outliers<br />

were defined as >3° from goal. Accuracy for standard versus customguided<br />

cadaveric TKA femoral alignment averaged 2.1°±1.8° versus<br />

1.5°±1.4°, for rotation averaged 1.6°±1.1° versus 1.0°±0.6° and<br />

for tibial alignment averaged 1.3°±0.8° versus 1.5°±0.7°, which<br />

are not significantly different with numbers available. There were<br />

four outliers overall in the standard group versus one using customguides<br />

(NS). In the radiographic comparison, femorotibial, femoral<br />

component and tibial component alignment were all significantly<br />

more accurate using custom guides. Furthermore, there were more<br />

outliers in the standard group (6.6%; 18/273) than the customguided<br />

group (1.5%; 4/273; p=0.002). Review <strong>of</strong> long alignment<br />

series revealed restoration <strong>of</strong> mechanical axis to within 3° in all<br />

cases. Disposable patient-specific custom guides improve accuracy<br />

<strong>of</strong> alignment and component rotation in primary TKA. They provide<br />

ease and speed <strong>of</strong> use, efficiency in implant sizing and inventory,<br />

without cumbersome equipment or violation <strong>of</strong> the intramedullary<br />

canal, and are compatible with minimally invasive techniques.<br />

535<br />

pApeR No. 299<br />

Inappropriate Use <strong>of</strong> Magnetic Resonance Imaging <strong>of</strong><br />

the Knee by Referring Physicians<br />

Harpal Singh Khanuja, MD, Cockeysville, MD<br />

Maria S Goddard, MD, Winston Salem, NC<br />

Simon Mears, MD, Baltimore, MD<br />

Lynne C Jones, PhD, Baltimore, MD<br />

Currently, healthcare accounts for 15% <strong>of</strong> the gross domestic<br />

product in the United States. Identifying areas <strong>of</strong> reducing healthcare<br />

expenditures is essential. Patients with knee pain referred to<br />

orthopedists may already have magnetic resonance imaging (MRI)<br />

studies ordered by their primary provider. The purpose <strong>of</strong> this<br />

study was to investigate the appropriateness <strong>of</strong> knee MRI studies<br />

ordered by referring physicians. This prospective study evaluated<br />

108 consecutive patients (27 men, 80 women and one unrecorded)<br />

with a new onset <strong>of</strong> knee pain presenting to the <strong>Orthopaedic</strong> Clinic,<br />

between February and April 2009. Questionnaires were completed<br />

by the orthopaedic surgeon at the time <strong>of</strong> each encounter. Questions<br />

included whether patients presented with MRI studies, if there was<br />

a need for additional imaging and whether an MRI was necessary<br />

to obtain a diagnosis. Sixty-six patients (61%) were referred by their<br />

primary care physicians, 25 patients (23%) by other physicians,<br />

10 patients (9%) were self-referred. The referring physician was<br />

unknown for seven patients. Thirty-three patients (31%) presented<br />

with MRIs studies, 18 (55%) <strong>of</strong> which were considered unnecessary,<br />

as the diagnosis was possible with history, physical examination<br />

and radiographs alone. Two <strong>of</strong> six MRI studies ordered by referring<br />

orthopeic physicians were not necessary. Of the 75 patients (69%)<br />

who presented without an MRI study, only four required further<br />

MRI evaluation. The most common final diagnosis for this cohort<br />

was osteoarthritis in 41 patients (38%), followed by patell<strong>of</strong>emoral<br />

syndrome in 14 patients (13%) and meniscal tears in eight patients<br />

(7%). Although MRIs are useful in many diagnoses <strong>of</strong> knee<br />

pathology, they are an expensive screening tool. In this cohort, MRI<br />

was only warranted in 20% <strong>of</strong> cases, and 55% <strong>of</strong> MRIs ordered by<br />

referring physicians were unnecessary. It is important that clinicians<br />

be educated on the indications for MRI, and universal standards be<br />

developed.<br />

pApeR No. 300<br />

Do Current High Flexion Posterior Stabilized TKA<br />

Designs Increase Knee Flexion? - A Meta Analysis<br />

Takanobu Sumino, MD, Boston, MA<br />

Harry E Rubash, MD, Boston, MA<br />

Kartik Varadarajan, MS, Boston, MA<br />

Young-Min Kwon, MD, PhD, Boston, MA<br />

Guoan Li, PhD, Boston, MA<br />

It remains debatable whether the design changes in current highflexion<br />

(H-F) total knee arthroplasty (TKA) facilitate increased<br />

postoperative knee flexion, with conflicting results being reported<br />

by individual studies. Therefore, the goal <strong>of</strong> this work was to utilize<br />

a meta-analysis approach to integrate available published data from<br />

various studies into a common framework. In particular we examined<br />

whether current posterior stabilized (PS) H-F TKA designs provide<br />

increased range <strong>of</strong> knee motion. We conducted a systematic review<br />

<strong>of</strong> literature published between 1966 and 2010 through Medline and<br />

EMBASE. The inclusion criteria were: primary TKA study, follow up<br />

duration greater than one year, use <strong>of</strong> PS type prosthesis and reporting<br />

<strong>of</strong> maximal pre- and postoperative knee flexions along with standard<br />

deviations. We estimated the weighted mean differences between<br />

preoperative and postoperative flexions via random effect modeling.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


Eighteen articles were reviewed. These articles included a total <strong>of</strong><br />

2,622 knees; 2,104 knees in the conventional group (seven prostheses<br />

designs) and 518 knees in the H-F group (two prostheses designs).<br />

The overall mean differences postoperative flexion was found to be<br />

4.70° higher than the preoperative flexion in the conventional group<br />

(p 74 mm). Investigators remained blinded throughout the<br />

study period. We compared the categorized VAS scores to patients’<br />

KS and FS at an endpoint <strong>of</strong> two-year postoperatively. Thirty-two<br />

(66.7%) patients graded the painful stimulus as mild, 11 (22.9%)<br />

as moderate and five (10.1%) as severe. Patients with severe VAS had<br />

significantly (p=0.04) worse KS compared to patients with mild and<br />

moderate VAS (55±20.5 versus 81.5±11.1 and 84.8±13, respectively).<br />

Similarly, patients with severe VAS had significantly (p=0.027) worse<br />

FS compared to patients with mild and moderate VAS (34±20.7<br />

versus 75.2.5±17.3 and 77±17.4, respectively). Four (80%) <strong>of</strong> the<br />

patients with the severe VAS had poor KS and all five patients with<br />

severe VAS had poor FS. Patients who rate the sphingomanometric<br />

painful stimulus as severe on VAS are expected to have substantially<br />

lower KS and FS.<br />

pApeR No. 407<br />

Lower Prevalence <strong>of</strong> Anterior Knee Pain in Total Knee<br />

Arthroplasty with Circumpatellar Electrocautery<br />

Hans Peter W Van Jonbergen, MD, Deventer, Netherlands<br />

Vanessa AB Scholtes, PhD, Amsterdam, Netherlands<br />

Albert van Kampen, MD, Nijmegen, Netherlands<br />

Rudolf W Poolman, MD,PhD, Aerdenhout, Netherlands<br />

Anterior knee pain is reported to occur in 4-49% <strong>of</strong> patients<br />

following primary total knee arthroplasty (TKA). Although 56% <strong>of</strong><br />

orthopedic surgeons employ circumpatellar electrocautery in TKA,<br />

the effect <strong>of</strong> this practice on the prevalence <strong>of</strong> anterior knee pain<br />

536<br />

remains unresolved. The purpose <strong>of</strong> the study was to determine<br />

the prevalence <strong>of</strong> anterior knee pain after TKA without patellar<br />

resurfacing using circumpatellar electrocautery compared to no<br />

circumpatellar electrocautery. In 2008, a prospective, outcome<br />

assessor and patient blinded, randomized clinical trial was initiated.<br />

Three-hundred patients with primary osteoarthritis <strong>of</strong> the knee<br />

underwent posterior stabilized TKA without patellar resurfacing. After<br />

cementing the femoral and tibial components, randomization was<br />

performed with 150 knees additionally treated with circumpatellar<br />

electrocautery (experimental procedure), and 150 knees with no<br />

additional electrocautery (control procedure). At one-year follow up,<br />

the prevalence <strong>of</strong> anterior knee pain was assessed using the Clinical<br />

Anterior Knee Pain Rating system. After exclusion <strong>of</strong> patients who<br />

had contralateral TKA within the study period, clinical follow up <strong>of</strong><br />

one year was available for 262 knees, 131 knees with circumpatellar<br />

electrocautery and 131 knees without. The overall prevalence <strong>of</strong><br />

anterior knee pain at one-year follow up was 26% (95% CI: 20% to<br />

31%), with 19% (95% CI: 12% to 26%) in the intervention group,<br />

and 32% (95% CI: 24% to 40%) in the control group (p = 0.02).<br />

In patients with primary knee osteoarthritis having TKA without<br />

patellar resurfacing, the use <strong>of</strong> circumpatellar electrocautery resulted<br />

in a lower prevalence <strong>of</strong> anterior knee pain at one-year follow up<br />

compared to no circumpatellar electrocautery.<br />

pApeR No. 408<br />

Gap Balancing Technique Improves Outcome in Total<br />

Knee Arthroplasty, Compared to Measured Resection<br />

Hee-Nee Pang, MBBS, MRCS<br />

Seng-Jin Yeo, FRCS, Singapore, Singapore<br />

Shi-lu Chia, MBBS, Singapore, Singapore<br />

Pak Lin Chin, FRCSEd, Singapore, Singapore<br />

Ngai-Nung Lo, MD, Singapore, Singapore<br />

S<strong>of</strong>t tissue balance in total knee arthroplasty (TKA) is accomplished<br />

by one <strong>of</strong> two methods, measured resection or gap balancing<br />

technique. The objective <strong>of</strong> this study was to compare the functional<br />

outcome <strong>of</strong> measured resection technique and computer assisted<br />

gap balancing technique in TKA. We randomized 140 consecutive<br />

patients undergoing TKA into two groups. The measured resection<br />

technique was performed in the control group and the gap balancing<br />

technique in the study group. Outcome assessment was made at six<br />

months and two years postoperatively by documenting the range<br />

<strong>of</strong> motion, the presence <strong>of</strong> flexion contractures, hyperextension,<br />

clinical laxity, postoperative radiological films, Knee Society Score,<br />

Oxford Knee Questionaire and SF-36 questionaire. Both patients<br />

and reviewers were blinded as to the study group. At two years, there<br />

were significantly more patients (five patients, 7%) in the control<br />

group with flexion contractures <strong>of</strong> more than 5 degrees (p=0.05).<br />

One patient (1%) in the control group and none in the study group<br />

had postoperative hyperextension more than 10 degrees. At six<br />

months follow up, the study group demonstrated better outcomes in<br />

function score (p=0.040) and total Oxford score (p=0.031). At twoyear<br />

review, the study group had better outcome in the total Oxford<br />

score (0.030). The gap balancing technique was able to achieve more<br />

precise s<strong>of</strong>t tissue balance with better knee scores in TKA, compared<br />

to the measured resection technique in this randomized controlled<br />

trial.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


pApeR No. 409<br />

An RCT Comparing Fixed to Mobile Bearing TKA: Any<br />

Difference in Post Operative Gait and Motion?<br />

Eric R Bohm, MD, Winnipeg, MB Canada<br />

Kevin Deluzio, MSC, Kingston, ON Canada<br />

Barbara Shay, PhD<br />

John F Rudan, MD, Kingston, ON Canada<br />

It is not clear what benefit mobile bearing total knee arthroplasty<br />

(TKA) designs have on functional outcomes following surgery.<br />

We undertook a blinded, randomized, controlled trial to examine<br />

differences in gait and motion using a single TKA system that could<br />

accommodate either fixed or mobile bearing design. One hundred<br />

and nine (109) patients (114 knees) were enrolled - 57 females and<br />

52 males, with an average age <strong>of</strong> 64.7 years. A total <strong>of</strong> 53 knees were<br />

randomized to fixed bearing design, with the remaining 61 allocated<br />

to the mobile bearing group. Patients underwent pre- and one-year<br />

post-operative gait and motion assessment. Parameters examined<br />

included kinetic/kinematic knee joint analysis and spatiotemporal<br />

parameters <strong>of</strong> gait. Composite WOMAC, Knee Society Scores (KSS)<br />

and SF-36 PCS scores improved significantly in both groups following<br />

surgery; however no differences in these scores were detected<br />

between the groups. Similarly, gait analysis revealed improvements<br />

in gait speed, knee adduction moment and knee flexion moment in<br />

both groups; however, no differences could be detected between the<br />

groups. While mobile bearing designs may <strong>of</strong>fer some theoretical<br />

benefits over fixed bearing designs, we were unable to confirm any<br />

functional difference use with specific gait and motion analysis.<br />

pApeR No. 410<br />

Total Joint Replacement in Patients Requiring<br />

Perioperative Cardioprotective Clopidogrel Bisulfate<br />

James V Bono, MD, Boston, MA<br />

Claire E Robbins, PT, DPT, MS, GCS, Franklin, MA<br />

Carl T Talmo, MD, Boston, MA<br />

Mehran Aghazadeh, MD, Boston, MA<br />

Many patients requiring chronic Clopidogrel Bisulfate following<br />

cardiac stent placement are also candidates for total joint arthroplasty<br />

(TJR). There is concern among surgeons that these patients are at risk<br />

for bleeding and hematoma following TJR, and the issue remains<br />

controversial in the orthopedic community. The objective <strong>of</strong> this study<br />

was to identify and report on complications from use <strong>of</strong> Clopidogrel<br />

in the perioperative period following TJR. We retrospectively<br />

reviewed 738 prescription orders in 429 patients with a history <strong>of</strong><br />

Clopidogrel use, identifying 127 patients who underwent TJR with<br />

use <strong>of</strong> Clopidogrel Bisulfate in the immediate pre- and postoperative<br />

period in addition to routine thromboembolic priophylaxis. A<br />

detailed review <strong>of</strong> the medical records was performed to identify the<br />

incidence <strong>of</strong> complications or adverse events. Of the 127 TJR, 75 were<br />

total knee arthroplasty (TKA) and nine had a postoperative suction<br />

drain. There were two cases <strong>of</strong> hematoma requiring reoperation, one<br />

in a TKA at postoperative day 16 and one in a total hip arthroplasty<br />

on postoperative day 30. These results support the safety <strong>of</strong> TJR<br />

in patients requiring Clopidogrel Bisulfate for cardio-protection<br />

following stent placement with a small increase in risk <strong>of</strong> bleeding<br />

and hematoma formation.<br />

537<br />

pApeR No. 411<br />

20 Year Survival <strong>of</strong> Cruciate Retaining Total Knee<br />

Arthroplasty in Patients with Rheumatoid Arthritis<br />

Matthew D Miller, MD, Los Gatos, CA<br />

Nicholas M Brown, BS, Davenport, IA<br />

Craig J Della Valle, MD, Chicago, IL<br />

Aaron Glen Rosenberg, FACS, MD, Chicago, IL<br />

Jorge O Galante, MD, Chicago, IL<br />

Controversy in the literature persists regarding posterior cruciate<br />

ligament (PCL)-retaining total knee arthroplasty (TKA) in patients<br />

with rheumatoid arthritis, with some studies demonstrating late<br />

posterior instability leading to revision. The purpose <strong>of</strong> this study is<br />

to report 20-year results <strong>of</strong> a cruciate retaining TKA in patients with<br />

rheumatoid arthritis. Seventy-two PCL-retaining TKA’s in fifty-one<br />

consecutive patients with rheumatoid arthritis were prospectively<br />

studied. All procedures were performed with the Miller-Galante I<br />

prosthesis (cemented and cementless). Thirty-five patients (fortyeight<br />

knees) died before the twenty year follow-up, and two patients<br />

(two knees) were lost to follow-up, leaving fifteen patients with<br />

twenty-two knees for review. Patients were evaluated clinically<br />

and radiographically at a mean <strong>of</strong> twenty-two years (range, twenty<br />

to twenty-five years). Three knees in two patients were clinically<br />

unstable (4.2%), two <strong>of</strong> which required revision at 16 and 21 years<br />

follow up. The major indications for revision in this group included<br />

patell<strong>of</strong>emoral failures related to metal backed patellar design (8),<br />

periprosthetic fracture (4), and infection (4). The mean HSS knee<br />

score improved from 39 (+/-14.8) to 82 (+/-12) at last follow up<br />

for all knees (p


pApeR No. 414<br />

Clinical Results <strong>of</strong> PCL-Retaining TKA were inferior to<br />

PCL-Substituting TKA after Tibial Osteotomy<br />

Yukio Akasaki, MD, PhD, Fukuoka, Japan<br />

Shuichi Matsuda, MD, Fukuoka, Japan<br />

Ken Okazaki, MD, Fukuoka, Japan<br />

Yasutaka Tashiro, MD, PhD<br />

Shingo Fukagawa, MD, Fukuoka, Japan<br />

Hiroaki Mitsuyasu, MD<br />

Yukihide Iwamoto, MD, Fukuoka, Japan<br />

This study evaluated clinical results <strong>of</strong> total knee arthroplasty<br />

(TKA) after failed total knee arthroplasty. Total knee arthroplasty<br />

was performed in 20 knees after high tibial osteotomy. The mean<br />

age at surgery was 71.6 years (56-82) and the mean duration after<br />

osteotomy was 10.4 years (3-23). Eight knees were replaced with the<br />

Kirschner Performance posterior cruciate ligament (PCL)-retaining<br />

knee system and 12 knees were replaced with the NexGen PCLsubstituting<br />

knee system. The mean follow-up period was 8.0 years<br />

(4-11), and the mean preoperative Knee Society score was 66.1<br />

points and the postoperative score was 88.1 points. No loosening <strong>of</strong><br />

the implant was identified and no revision surgery was performed.<br />

The knee score <strong>of</strong> the PCL-retaining knee was 81.9 points, and was<br />

significantly lower than that <strong>of</strong> PCL-substituting knee (92.2 points).<br />

The posterior stability <strong>of</strong> the PCL-retaining knee was measured at 75<br />

degrees by KT-2000, and the posterior displacement was increased<br />

from 5.2 mm to 12.1 mm during postoperative period. Clinical and<br />

radiographic results were satisfactory in the knees with TKA after<br />

failed high tibial osteoromy. However, clinical results <strong>of</strong> the PCLretaining<br />

knees were inferior to that <strong>of</strong> the PCL-substituting knees<br />

due to increased instability. The results <strong>of</strong> this study suggest that<br />

PCL-substituting knees are recommended for knees after high tibial<br />

osteotomy.<br />

pApeR No. 415<br />

ACL Reconstruction And Unicompartmental Knee<br />

Replacement: 8 Year Survivorship<br />

Hemant G Pandit, FRCS, Oxford, United Kingdom<br />

Cathy Jenkins, MSc, Oxford, United Kingdom<br />

Barbara Marks, Oxford, United Kingdom<br />

Richie H S Gill, MD, Oxford, United Kingdom<br />

David J Beard, DPhil, Oxford, United Kingdom<br />

William Jackson, FRCS, Oxford, United Kingdom<br />

Andrew J Price, FRCS, Oxford, United Kingdom<br />

Christopher A F Dodd, FRCS, Oxford, United Kingdom<br />

David W Murray, MD, Oxford, United Kingdom<br />

The options for treatment <strong>of</strong> the young active patient with<br />

unicompartmental symptomatic osteoarthritis (OA) and preexisting<br />

anterior cruciate ligament (ACL) deficiency are limited. This<br />

study presents a series <strong>of</strong> 51 patients with ACL reconstruction and<br />

Oxford unicompartmental knee arthroplasty (UKA) (ACLR group)<br />

performed over past nine years (mean follow up four years). The<br />

mean age was 51 years (range: 36 to 65). This consecutive series <strong>of</strong><br />

patients was matched with a group <strong>of</strong> patients with intact ACL and<br />

who had undergone medial Oxford unicondylar knee replacement<br />

(UKR) for osteoarthritis (ACLI group). A sub-set <strong>of</strong> patients (n=10)<br />

from each group and a group <strong>of</strong> normal knees underwent in vivo<br />

kinematic analysis. At last follow up, the mean outcome scores for<br />

the ACLR and ACLI groups were: Oxford Knee Score 41 (32-48)<br />

and 40 (31-48), objective Knee Society Scores 92 (80-100) and<br />

89 (80-100), and functional Knee Society Scores 90 and 90 (85-<br />

538<br />

100) respectively. Three patients in the ACLR group (one each for<br />

infection, bearing dislocation and progression <strong>of</strong> OA) and two in<br />

the ACLI group needed revision. The survival at eight years was 90%.<br />

No patients in either group had radiological evidence <strong>of</strong> component<br />

loosening. Kinematics in the ACLI and ACLR group were similar to<br />

that <strong>of</strong> the normal knee. This study has demonstrated that combined<br />

ACL reconstruction and Oxford UKA provide good medium-term<br />

clinical, radiological and kinematic results. The mobile bearing used<br />

in the Oxford knee minimizes wear and our radiographic study has<br />

seen no suggestions <strong>of</strong> loosening.<br />

pApeR No. 416<br />

All Polyethylene Tibial Component in Young, Active<br />

Patients: Minimum 10 Years Followup<br />

Morteza Meftah, MD, New York, NY<br />

Amar S Ranawat, MD, New York, NY<br />

Chitranjan S Ranawat, MD, New York, NY<br />

We previously reported mid-term results <strong>of</strong> all polyethylene tibial<br />

components for total knee replacement (TKR) in younger, active<br />

patients. This is a follow-up report <strong>of</strong> the same group <strong>of</strong> patients<br />

with special reference to survivorship and activity level. Between<br />

November 1992 to June 2000, 53 patients younger than 60 years old<br />

(74 knees) that underwent cemented all-poly tibial component were<br />

included. All patients were followed prospectively using clinical and<br />

radiographic criteria as defined by the Knee Society. At minimum 10<br />

years follow up, five patients were deceased, four were lost to follow<br />

up and two refused to participate in the study, leaving 42 patients<br />

(59 knees) for final analysis. Good to excellent results were achieved<br />

in 96% <strong>of</strong> patients. Kaplan-Meier survivorship at 10 years for revision<br />

due to mechanical reasons and for all failures was 100% and 97%<br />

respectively (one case <strong>of</strong> infection and one revision for fracture). There<br />

were no cases <strong>of</strong> malalignment, aseptic loosening, excessive wear or<br />

osteolysis. The mean WOMAC score was 31 ± 14, Knee Society Scores<br />

improved from an average <strong>of</strong> 48 to 97. Sixty-two percent <strong>of</strong> patients<br />

were participating in sport activities such as running, gym exercises<br />

and playing tennis or golf. Anterior knee pain was present in 9%<br />

<strong>of</strong> cases. The incidence <strong>of</strong> noise and asymptomatic crepitation was<br />

14%. There was no case <strong>of</strong> painful crepitation requiring scar excision.<br />

Long-term follow up <strong>of</strong> all-poly TKR demonstrates excellent clinical<br />

and radiographic results in younger, active patients, as 62% continue<br />

to participate in sport activities.<br />

pApeR No. 417<br />

Recurvatum Deformity Following Primary Total Knee<br />

Replacement: What Is Acceptable ?<br />

Mashfiqul Arafin Siddiqui, MBBS, MRCS, Singapore, Singapore<br />

Sivaiah Potla, MD<br />

Hwei Chi Chong, Singapore, Singapore<br />

Shi-lu Chia, MBBS, Singapore, Singapore<br />

Pak Lin Chin, FRCSEd, Singapore, Singapore<br />

Keng Jin Darren Tay, FRCS<br />

Ngai-Nung Lo, MD, Singapore, Singapore<br />

Seng-Jin Yeo, FRCS, Singapore, Singapore<br />

The aim <strong>of</strong> the study was to assess knee function and quality <strong>of</strong><br />

life in patients with recurvatum at two years after primary total<br />

knee replacement (TKR). Data was obtained from our hospital<br />

joint registry from 2004 to 2008. This is a prospective study with<br />

a minimum follow up <strong>of</strong> two years. We assessed patients degree <strong>of</strong><br />

recurvatum, Oxford knee scores (OKS), Knee Society scores (KSS)<br />

and SF 36 quality <strong>of</strong> life (QOL). We performed 5,400 TKRs <strong>of</strong> which<br />

1,952 (73.2%) patients had zero degree extension (grade 0) and<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


715 patients (13.2%) were recurvatum. We classified recurvatum<br />

into grade 1(1-5 degrees ), grade 2 (6-10 degrees) and grade 3 (> 10<br />

degrees ). A total <strong>of</strong> 504 patients, 191 patients and 20 patients were<br />

grades 1, 2 and 3 respectively. Patients with grade 1 had worse knee<br />

score compared to grade 0 (p0.05). Moreover, there was no significant difference with the<br />

proportion <strong>of</strong> recovered patients at each follow-up period between<br />

the two groups (p>0.05). Although there was theoretical advantage<br />

with patellar non-eversion in TKA, we found no significant difference<br />

between the two groups throughout follow-up periods in terms <strong>of</strong><br />

numeric data <strong>of</strong> quadriceps force and power. Therefore, the choice<br />

<strong>of</strong> patellar eversion in TKA would not result in inferior influences<br />

on quadriceps recovery and it would rather provide better surgical<br />

field and easier operation than patellar non-eversion in midvastus<br />

approach.<br />

pApeR No. 419<br />

The Outcome <strong>of</strong> Fixed and Mobile-bearing<br />

Unicompartmental Arthroplasty at a Minimum Fifteenyear<br />

Jean-Noel A Argenson, MD, Marseille, France<br />

Jean-Manuel Aubaniac, MD, Marseille, France<br />

Sebastian Parratte, MD, Marseille, France<br />

There is still controversy whether there is a clinical difference<br />

between fixed or mobile bearing unicomparmental knee arthoplasty<br />

(UKA). The objective <strong>of</strong> this study was to compare the clinical and<br />

radiological long-term outcome and the survivorship <strong>of</strong> fixed and<br />

539<br />

mobile metal-backed cemented UKA. The study included 156 knees<br />

in 147 patients operated on by the same surgeon following the same<br />

selection protocol between 1989 and 1992. Seventy-nine knees<br />

received a fixed-bearing UKA (FB group) and 77 patients a mobilebearing<br />

UKA (MB group). Mean age <strong>of</strong> the patients (63 years old),<br />

gender and body mass index (BMI) were comparable in the two<br />

groups. At a minimum <strong>of</strong> 15-year follow up, the mean Knee Society<br />

function and knee scores were respectively 82 and 88 points in the<br />

FB group and 81 and 89 points in MB group (NS). Radiographically,<br />

the number <strong>of</strong> radiolucencies was statistically higher in the MB group<br />

(69% vs 24%, p


pApeR No. 586<br />

Readmission and Length <strong>of</strong> Stay After TKA in a<br />

National Medicare Sample 2002-2007<br />

James I Huddleston, III MD, Redwood City, CA<br />

Yun Wang, PhD<br />

James H Herndon, MD, Boston, MA<br />

William J Maloney MD, Redwood City, CA<br />

Evaluation <strong>of</strong> hospital readmissions after total knee arthroplasty<br />

(TKA) may provide an opportunity for improved patient safety<br />

and cost reduction. The purpose <strong>of</strong> this study was to investigate<br />

the rates and reasons for readmission after TKA from 2002-2007.<br />

We hypothesized that a reduction in length <strong>of</strong> hospital stay (LOS)<br />

would lead to an increase in the rate <strong>of</strong> readmission. Data were<br />

abstracted from the medical records <strong>of</strong> 4,057 Medicare beneficiaries<br />

who underwent TKA from 2002-2007 in the Medicare Patient<br />

Safety Monitoring System. To adjust for patient characteristics and<br />

comorbidities, the hierarchical generalized linear modeling approach<br />

was used to assess the odds <strong>of</strong> a change in the rates <strong>of</strong> LOS and<br />

readmission during the study period. The overall rate <strong>of</strong> readmission<br />

in the 30 days after discharge was 228/4,057 (5.6%). The 10 most<br />

common reasons for readmission were: congestive heart failure<br />

(21%), chronic ischemic heart disease (14%), cardiac dysrhythmias<br />

(13%), pneumonia (11%), osteoarthrosis (9%), general symptoms<br />

(7%), acute myocardial infarction (7%), care involving other<br />

specified rehabilitation procedure (6%), diabetes mellitus (6%) and<br />

disorders <strong>of</strong> fluid, electrolyte, and acid-base balance (6%). There was<br />

no difference in the rate <strong>of</strong> readmission from 2002-2004 (5.5%) to<br />

2005-2007 (5.8%) (OR 1.08, 95% CI 0.88-1.32, p=0.46). The overall<br />

mean LOS was 3.9 ± 1.9 days. There was a significant reduction in<br />

LOS from 2002-2004 (4.1 ± 2.0 days) to 2005-2007 (3.8 ± 1.7 days)<br />

(OR 1.27, 95% CI 1.25-1.29, p


performed MDCT scans on 48 consecutive THA/TKA patients on<br />

the first postoperative day. Patients underwent routine postoperative<br />

care and data were collected regarding the development <strong>of</strong> symptoms<br />

such as tachycardia, fever, chest pain or shortness <strong>of</strong> breath. All CT<br />

scans were kept blinded until completion <strong>of</strong> study recruitment and<br />

then read by two independent chest radiologists for findings <strong>of</strong><br />

acute PE. Our cohort included 27 TKA patients and 21 THA patients.<br />

None <strong>of</strong> the 48 patients had any symptoms <strong>of</strong> PE. Among the TKR<br />

patients, 11 (41%) <strong>of</strong> the CT scans were read as positive for an acute<br />

PE compared with 1 (5%) <strong>of</strong> the THR patients (p=0.004). All <strong>of</strong> the<br />

patients diagnosed with an asymptomatic PE were discharged from<br />

hospital without developing any clinical symptoms suggestive <strong>of</strong><br />

venous thrombosis. One TKA patient, who had a negative CT scan<br />

on the first postoperative day, was diagnosed with symptomatic<br />

PE the following day. The majority <strong>of</strong> the asymptomatic embolic<br />

burden found in our study was in the segmental and sub-segmental<br />

arteries <strong>of</strong> the lung. Our study demonstrates a high rate <strong>of</strong> abnormal<br />

MDCT early following lower extremity arthroplasty, the clinical<br />

significance <strong>of</strong> which may be benign. This finding is also important<br />

in the interpretation <strong>of</strong> MDCT obtained after a clinical suspicion <strong>of</strong><br />

PE in these patients.<br />

pApeR No. 590<br />

A Modified V-Y Turn Down Flap To Repair The Ruptured<br />

Quadriceps Tendon After Total Knee Arthroplasty<br />

Shao-Min Shi, MD, Milwaukee, WI<br />

James T Ninomiya, MD, Milwaukee, WI<br />

Rupture <strong>of</strong> the quadriceps tendon is a serious complication after<br />

total knee arthroplasty but has received little attention. We describe<br />

a modified technique and evaluate the results after repair <strong>of</strong> this<br />

problem. Between 2005 and 2009, 11 patients who had quadriceps<br />

tendon rupture after total knee arthroplasty were operated on<br />

in our institution. Patients were treated by a V-Y turn down flap<br />

reconstruction. We modified this method by harvesting full thickness<br />

<strong>of</strong> the quadriceps tendon as a flap, releasing vastus medialis and<br />

lateralis muscles distally and then suturing both muscles together to<br />

reinforce the tendon without wires. Average follow-up period was 24<br />

months (range 12-54 months) in this group. Patients were evaluated<br />

by the mean knee score. Nine patients who were judged had excellent<br />

results and two had good results. The mean knee score generated<br />

from the questionnaire and clinic evaluation was 90 (range 75-100).<br />

After surgery, all <strong>of</strong> the patients had been able to ambulate and<br />

satisfied with their surgical results. The range <strong>of</strong> motion was 0-120<br />

degrees; only two patients had a measurable extensor lag <strong>of</strong> 5 degrees<br />

in the repaired limb. No rerupture occurred. The modified technique<br />

provides an effective and reliable option for reconstruction <strong>of</strong> the<br />

ruptured quadriceps tendon after total knee arthroplasty.<br />

pApeR No. 591<br />

Risk Factors For Postoperative Complications In Total<br />

Knee Arthroplasty; 5-Year Case Series<br />

Kosei Kawakami, MD, Tokyo, Japan<br />

Katsunori Ikari, MD, Tokyo, Japan<br />

Takuji Iwamoto, MD<br />

Asami Tokita, MD<br />

Koichiro Yano, MD<br />

Yu Sakuma, MD<br />

Ryo Hirosima, MD<br />

Shigeki Momohara, Tokyo, Japan<br />

The purpose <strong>of</strong> the present study was to determine the risk factors for<br />

acute surgical site infection (SSI) and for developing postoperative<br />

541<br />

deep vein thrombosis (DVT) after undergoing total knee arthroplasty<br />

(TKA). A retrospective study was carried out in 392 consecutive<br />

patients undergoing TKA during a five-year period from January 2005<br />

to December 2009 (mean age 63 years, 350 females, 340 rheumatoid<br />

arthritis). Diagnosis <strong>of</strong> acute SSI was based on the 1999 Centers<br />

for Disease Control and Prevention (CDC) recommendations.<br />

Multivariate logistic regression analysis was performed to analyze<br />

the risk factors for acute SSI and postoperative DVT (dependent<br />

variables: gender, age, body mass index, rheumatoid arthritis, the<br />

presence <strong>of</strong> diabetes mellitus, cigarette smoking, past history <strong>of</strong> DVT,<br />

revision surgery, operative time, preoperative CRP level, preoperative<br />

D-dimer level and the use <strong>of</strong> non-steroidal anti-inflammatory drugs,<br />

anti-platelet agents, prednisone, immunosuppressive DMARDs and<br />

biological agents). Of all the patients, 5.9% (23/392) developed<br />

superficial SSI requiring the use <strong>of</strong> antibiotics and 1.0% (4/392)<br />

developed deep SSI, which necessitated surgical treatment by<br />

removal <strong>of</strong> the artificial joint prosthesis. Multivariate logistic<br />

regression analysis showed that operative time (P=0.003) and the<br />

use <strong>of</strong> biological agents (P=0.0004) were the risks for acute SSI after<br />

TKA. One hundred and twenty cases (30.6%) were DVT positive.<br />

Multivariate logistic regression analysis showed that operative time<br />

(P=0.03), the use <strong>of</strong> biological agents (P=0.003), age (P=0.01), the<br />

presence <strong>of</strong> diabetes mellitus (P=0.03) were the risks for DVT after<br />

TKA. Operative time and the use <strong>of</strong> biological agents were the risks<br />

for acute SSI and DVT after TKA. Higher age and the presence <strong>of</strong><br />

diabetes mellitus were the risks for DVT after TKA.<br />

pApeR No. 592<br />

Aseptic tibial loosening in the Oxford Knee : Incidence,<br />

Diagnosis & Management<br />

Hemant G Pandit, FRCS, Oxford, United Kingdom<br />

Benjamin JL Kendrick, MRCS<br />

Nicholas J Bottomley, MRCS, Oxford, United Kingdom<br />

Simon Abram, BA, Oxford, United Kingdom<br />

Richie H S Gill, MD, Oxford, United Kingdom<br />

William Jackson, FRCS, Oxford, United Kingdom<br />

Andrew J Price, FRCS, Oxford, United Kingdom<br />

Christopher A F Dodd, FRCS, Oxford, United Kingdom<br />

David W Murray, MD, Oxford, United Kingdom<br />

Incidence <strong>of</strong> tibial loosening in the Oxford unicompartmental knee<br />

arthroplasty (UKA) has not been previously reported. Diagnosis<br />

can be difficult and the causes are poorly understood. All patients<br />

undergoing a phase 3 medial Oxford UKA in a single institution<br />

between 1998 and 2010 were prospectively followed. Patients<br />

are assessed at regular intervals and undergo fluoroscopy assisted<br />

radiographs. These help in proper comparison between subsequent<br />

x-rays. Patients needing further revision arthroplasty with intraoperative<br />

confirmation <strong>of</strong> aseptic tibial loosening had their medical<br />

notes and radiographs reviewed. Assessment included component<br />

sizing, cement thickness and evidence <strong>of</strong> excessive saw cuts on postop<br />

radiographs. Thickness and distribution <strong>of</strong> any radiolucency was<br />

assessed on the final radiograph before revision. A total <strong>of</strong> 2,200<br />

patients were included in the study. Nine patients had proven tibial<br />

loosening at revision. Post-operative radiographs confirmed correct<br />

sizing with all components seated on the posterior cortex. No tibial<br />

component was undersized medially and the maximal overhang was<br />

3 mm. Seven patients had evidence <strong>of</strong> significant overcutting <strong>of</strong> the<br />

vertical saw cut. Four patients had evidence <strong>of</strong> minimal overcutting <strong>of</strong><br />

the horizontal saw cut. In all cases, complete radiolucencies beneath<br />

all tibial components with a depth greater than 2 mm in all regions<br />

were noticed. The incidence <strong>of</strong> proven aseptic tibial loosening in<br />

the Oxford UKA is 0.004%. A potential cause <strong>of</strong> an increased risk<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


<strong>of</strong> tibial loosening is an overly deep saw cut when performing the<br />

initial vertical cut. Fluoroscopy aligned radiographs are an essential<br />

tool in diagnosing tibial loosening.<br />

pApeR No. 593<br />

Safety <strong>of</strong> Simultaneous Bilateral Total Knee<br />

Arthroplasty (B-TKA) Versus Staged Bilateral TKA<br />

(S-TKA)<br />

John Patrick Meehan, MD, Sacramento, CA<br />

Richard H White, MD, Sacramento, CA<br />

Beate Danielson, PhD<br />

Sunny H Kim, PhD, Sacramento, CA<br />

Dan Tancredi, PhD, Sacramento, CA<br />

Amir A Jamali, MD, Sacramento, CA<br />

The literature remains equivocal as to the saftey <strong>of</strong> performing bilateral<br />

total knee arthroplasty (B-TKA) versus staged bilateral total knee<br />

arthroplasty (S-TKA), with most studies being retrospective single<br />

surgeon or single institution case series. Most studies also contain<br />

bias not adjusted for in their analysis, and compare B-TKA with<br />

unilateral TKA (U-TKA). The objectives <strong>of</strong> this study are to compare<br />

the observed and standardized risk <strong>of</strong> specific adverse outcomes in<br />

patients undergoing B-TKA versus S-TKA, using a statistical model<br />

which eliminates the surgeon and patient bias. Utilizing the California<br />

Patient Discharge Database (PDD), we performed a retrospective<br />

comparison <strong>of</strong> adverse outcomes in patients who underwent B-TKA<br />

and and patients in whom the first <strong>of</strong> two sequential or staged TKA<br />

operations (S-TKA1 and S-TKA2) took place between 1997 and<br />

2006. Categorical data was analyzed using chi-quare testing. For<br />

each specific complication, logistic regression models were generated<br />

that compared the risk after B-TKA and S-TKA-1 and S-TKA2. These<br />

models were used to calculate a standardized expected number <strong>of</strong><br />

complications that would occur if UTKA, B-TKA and S-TKA were<br />

performed on a standardized population (age, race, sex, hospital,<br />

etc.) and clinical characteristics (obesity, diabetes, hypertension),<br />

allowing a direct comparison which adjusted for these risk factors.<br />

The risk-adjusted odds <strong>of</strong> M.I., OR=1.6; 95% CI:1.2-2.2, a composite<br />

<strong>of</strong> coronary artery disease variable, OR=1.7; 95% CI:1.2-2.2,<br />

pulmonary embolism, OR=1.4; 95% CI:1.1-1.8, and peri-operative<br />

cardiac complications, OR=1.3; 95% CI:1.1-1.6, was significantly<br />

higher for B-TKA than S-TKA. For infection and mechanical failure,<br />

the risk adjusted odds were significantly lower for B-TKA, OR=0.6,<br />

95% CI:0.5-0.7, and OR=0.62, 95% CI:0.5-0.8 compared to S-TKA.<br />

Simultaneous B-TKA has a 50-60% higher risk-adjusted odds <strong>of</strong><br />

dying, myocardial infarction or pulmonary embolism compared to<br />

S -TKA. Simultaneous B-TKA has a 48% lower incidence <strong>of</strong> major<br />

joint infection, and a 26% lower incidence <strong>of</strong> mechanical failure<br />

compared to S-TKA. Surgeons should consider performing B-TKA in<br />

persons with symptomatic bilateral knee osteoarthritis and low risk<br />

for underlying cardiovascular disease.<br />

pApeR No. 594<br />

Long Term Migration Is Different In Cemented, HA-<br />

Coated And Uncoated Total Knee Arthroplasty (TKA)<br />

Bart G Pijls, MD<br />

Edward R Valstar<br />

Bart L Kaptein, PhD<br />

Marta Fiocco, PhD<br />

Rob G H H Nelissen, MD, Leiden, Netherlands<br />

Failed or suboptimal fixation may lead to continuous migration,<br />

subsequent loosening and eventually revision. The aim <strong>of</strong> the present<br />

study is to evaluate the effect <strong>of</strong> three fixation types on long-term<br />

542<br />

migration <strong>of</strong> tibial components in total knee arthroplasty (TKA).<br />

Sixty-eight knees were randomized to HA-coated, uncoated and<br />

cemented components. All knees have been prospectively followed<br />

for an average <strong>of</strong> 7.6 years (range three months to 16 years) by<br />

radiostereometric analysis (RSA) to evaluate migration. During RSA,<br />

analyses observers were blinded for the non-coating and HA-coating,<br />

but were not blinded for the use <strong>of</strong> cement. A linear mixed effects<br />

model has been used to take into account the repeated measurement<br />

design <strong>of</strong> the study and to correct for confounders. A total <strong>of</strong> 759<br />

RSA analyses compose the present study. The median migration,<br />

expressed in maximal total point motion (MTPM) at 10 years is 1.74<br />

mm for non-coated group, 0.88 mm for the HA-coated group and<br />

0.59 mm for the cemented group; p < 0.001. The median subsidence<br />

at 10 years is 0.30 mm for the non-coated group, 0.03 mm for the<br />

HA-coated group and 0.04 mm for the cemented group; p = 0.005.<br />

The uncoated tibial components show significantly more migration<br />

than HA-coated and the cemented tibial components. HA-coating<br />

significantly reduces the amount <strong>of</strong> migration in uncemented tibial<br />

components. This beneficial effect <strong>of</strong> HA is still present at 10-year<br />

follow up. Some 86% <strong>of</strong> the migration occurs in the first postoperative<br />

year emphasizing the early predictive properties <strong>of</strong> RSA.<br />

pApeR No. 595<br />

The Increased Use <strong>of</strong> Operating Room Time in Obese<br />

Patients During Primary Total Knee Arthroplasty<br />

Ge<strong>of</strong>frey H Westrich, MD, New York, NY<br />

Naomi Gadinsky, Research Coor., New York, NY<br />

Jacob B Manuel, MD, Austin, TX<br />

Stephen Lyman, PhD, New York, NY<br />

Obesity is associated with a variety <strong>of</strong> health problems including<br />

increased need for total knee arthroplasty (TKA) and complications<br />

related to surgery. However, the relationships between body mass<br />

index (BMI) and standard intraoperative time measurements recorded<br />

during primary TKA are unknown. We retrospectively reviewed 454<br />

consecutive primary posterior stabilized TKAs implanted by one<br />

surgeon at our institution from 2005-2009. Patients were grouped<br />

by World Health Organization BMI class: Normal Weight 18.5-25,<br />

Overweight 25-30, Obese Class I 30-35, Obese Class II 35-40, Obese<br />

Class III >40. Five standard intraoperative time measurements (total<br />

room time, anesthesia induction time, tourniquet time, closing<br />

time, surgery time) were compared across BMI groups. Operative<br />

times by BMI category were analyzed using one way ANOVA with<br />

a post hoc least squares difference test if the overall ANOVA model<br />

was statistically significant (p


pApeR No. 596<br />

Early Failure <strong>of</strong> Posterior Stabilized High Flexion Knee<br />

Prosthesis with Unique Femoral Cam Design<br />

Woon-hwa Jung, MD, Masan, Gyeongsangnam-do, Republic <strong>of</strong><br />

Korea<br />

Jae-heon Jeong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Hyung-min Ji, MD, Seongnam, Republic <strong>of</strong> Korea<br />

Yong-chan Ha, Pr<strong>of</strong>, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Ho Joong Jung, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Young-Kyun Lee, MD, Seongnam-Si, Republic <strong>of</strong> Korea<br />

Bun-Jung Kang, MD, Pohang, Gyeongsangnamdo, Republic <strong>of</strong><br />

Korea<br />

Kyung-Hoi Koo, MD<br />

Several designs <strong>of</strong> posterior stabilized high flexion knee prostheses<br />

have been introduced to improve the range <strong>of</strong> knee motion; few<br />

have reported early loosening <strong>of</strong> the prosthesis. We experienced<br />

early failure including dislocation and femoral component<br />

loosening in the posterior stabilized total knee arthroplasty (TKA)<br />

with anterodistally positioned femoral cam design. The purpose<br />

<strong>of</strong> this study was to compare two different designs <strong>of</strong> the posterior<br />

stabilized high flexion knee prostheses. From May 2007 to July<br />

2008, 212 knees (159 patients) underwent posterior stabilized TKA<br />

with anterodistally positioned femoral cam design (Group I) and<br />

209 knees (168 patients) underwent posterior stabilized TKA with<br />

posteroproximally positioned femoral cam design (Group II). All<br />

patients were then evaluated on average 24 months postoperatively.<br />

The patients were assessed clinically and radiographically using the<br />

knee-rating systems <strong>of</strong> the Knee Society. Postoperative complications<br />

were also evaluated in both groups. There were early failures in 18<br />

knees (8.4%) <strong>of</strong> group I during the follow-up period. Dislocations<br />

in 11 knees (5.1%) and loosening <strong>of</strong> femoral component in seven<br />

knees (3.3%) occurred during normal daily activities from 12 to<br />

31 months (mean, 22.6 months) postoperatively. However, there<br />

was neither dislocation nor loosening <strong>of</strong> group II (p=0.001). Age<br />

(p=0.868), gender (p=0.124), preoperative conditions (p=0.678)<br />

and diagnosis (p=0.832) were not different between two groups. A<br />

high rate <strong>of</strong> early failure in the group I was observed during shortterm<br />

follow up. Although several factors are related to early failure<br />

after posterior stabilized TKA, we consider that early failures seem<br />

to be due to a difference in femoral component design, especially in<br />

terms <strong>of</strong> position <strong>of</strong> femoral cam.<br />

pApeR No. 597<br />

Complications <strong>of</strong> Indwelling Femoral Nerve Catheters<br />

Following TKA: Cause for Concern?<br />

Justin M LaReau, MD, Hinsdale, IL<br />

James V Bono, MD, Boston, MA<br />

Carl T Talmo, MD, Boston, MA<br />

Claire E Robbins, PT, DPT, MS, GCS, Franklin, MA<br />

Multimodal analgesia is currently the standard <strong>of</strong> care in the<br />

perioperative period for total knee arthroplasty (TKA). Regional<br />

anesthesia with continuous indwelling femoral nerve catheters<br />

reduces postoperative pain and facilitates motion. The objective <strong>of</strong><br />

this study was to identify and report on complications <strong>of</strong> femoral<br />

nerve catheters at one high-volume orthopedic specialty hospital.<br />

The in-hospital complications database was reviewed for all adverse<br />

events related to the use <strong>of</strong> indwelling femoral nerve catheters over a<br />

one-year period including 2000 cases <strong>of</strong> TKA. A detailed retrospective<br />

review was performed to identify risk factors for complications from<br />

femoral nerve catheters. We identify commonality <strong>of</strong> risk among<br />

the cases and steps to improve patient care. Six complications<br />

543<br />

were identified for a rate <strong>of</strong> 0.3%. Serious complications included<br />

compartment syndrome, vascular injury, a loss <strong>of</strong> a catheter tip within<br />

a patient and three postoperative falls. Clinical errors included:<br />

failure to monitor a patient placed in a continuous passive motion<br />

machine on post-operative day one and a wrong-side femoral nerve<br />

block placement. Although the complication rate <strong>of</strong> femoral nerve<br />

catheter use appears low, the incidence <strong>of</strong> serious complications was<br />

cause for concern. Using this data, awareness <strong>of</strong> the potential risks <strong>of</strong><br />

femoral nerve catheter use in the perioperative period was increased<br />

at our institution and changes in the perioperative pain protocol were<br />

implemented to improve patient safety with subsequent reduction<br />

in postoperative catheter associated complications.<br />

pApeR No. 598<br />

Radiological Analysis <strong>of</strong> Failed Revision Total Knee<br />

Arthroplasty with Cementless Stems<br />

Saurabh Khakharia, MD, Moultrie, GA<br />

Giles R Scuderi, MD, New York, NY<br />

Restoring bone loss is a challenge in revision total knee arthroplasty<br />

(TKA). Routine use <strong>of</strong> stem extensions enhances fixation; however,<br />

inadequate stem fixation and inability to restore bone loss can<br />

lead to early failure. This study conducted a radiological analysis <strong>of</strong><br />

failed revision TKA with cementless femoral stems. A retrospective<br />

review <strong>of</strong> 102 revision TKA was performed. Of 102 revision knees,<br />

eight knees were re-revision TKA for procedures performed at<br />

outside institutions and 93 knees had revision for failed primary<br />

TKA. Radiological analysis <strong>of</strong> the eight failed re-revision knees was<br />

performed. The method <strong>of</strong> femoral fixation and management <strong>of</strong><br />

bone loss at the index revision TKA was analyzed. The reason for<br />

failure was aseptic in seven knees and septic in one knee. Five out<br />

<strong>of</strong> eight (62%) revision knees with cementless stem were observed<br />

to fail in varus on the femoral side as on anterior/posterior (AP)<br />

radiographs. Of the five failed revision knees, four knees had<br />

Anderson <strong>Orthopaedic</strong> Research Institute (AORI) Grade F2B bone<br />

loss and one knee had AORI Grade 3 bone loss. Bone loss at the index<br />

revision was managed with metaphyseal cement and the cementless<br />

femoral stems were undersized and no canal filling. At the time <strong>of</strong> rerevision,<br />

modular femoral augmentation was utilized to restore the<br />

metaphyseal bone in all cases and the femoral stems were cemented<br />

in seven knees and press-fit cementless diaphyseal engaging stem<br />

in one knee. Appropriate femoral augmentation should be used in<br />

patients with AORI Grade 2 and 3 bone loss to restore the distal<br />

femoral metaphysic and support the femoral component. Failure to<br />

augment the metaphyseal bone loss and secure diaphyseal fixation<br />

will lead to implant failure and subsidence into varus. Cemented<br />

stems can provide durable fixation and should be employed in<br />

patients with severe metaphyseal bone loss.<br />

pApeR No. 599<br />

Symptomatic Patellar Osteonecrosis Following Socalled<br />

Minimally Invasive Knee Arthroplasty<br />

John T Dearborn, MD, Fremont, CA<br />

Patellar osteonecrosis is an uncommon complication but currently<br />

has no solution. Avoiding intraoperative patellar eversion protects<br />

patellar perfusion but whether that practice reduces the incidence <strong>of</strong><br />

osteonecrosis is unknown. We reviewed the incidence <strong>of</strong> symptomatic<br />

patellar osteonecrosis in a consecutive series <strong>of</strong> 3,615 primary knee<br />

replacements performed by the same surgeon from 1998 to 2009.<br />

A standard medial arthrotomy with patellar eversion was used until<br />

February 2004 (571 knees), and thereafter a limited arthrotomy with<br />

lateral displacement <strong>of</strong> the patella was used in all patients. A total <strong>of</strong><br />

3,044 knees in the non-everted group met the six-month minimum<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


follow up. Symptomatic osteonecrosis occurred in 25 knees (0.69%)<br />

in 22 patients overall. All presented within six months with anterior<br />

knee pain in combination with patellar sclerosis with eventual<br />

patellar fracture and/or fragmentation. The incidence was similar in<br />

the everted (0.88%) and non-everted groups (0.66%). Only three<br />

knees with patellar necrosis had lateral retinacular releases. Five<br />

patients required secondary surgical procedures (three tantalum<br />

augmentation patellar components, one patellar allograft and<br />

one internal fixation) with an 80% failure rate. Of the 18 patients<br />

interviewed two years after the index arthroplasty, only 12 were<br />

satisfied with the outcome <strong>of</strong> the original procedure and would go<br />

through with it again. Symptomatic patellar osteonecrosis is an usual<br />

but significant complication. It occurs in the absence <strong>of</strong> lateral release,<br />

and at the same rate with and without patellar eversion. Surgical<br />

intervention has a high failure rate. When it occurs, osteonecrosis<br />

greatly affects patient satisfaction.<br />

pApeR No. 600<br />

Predictors <strong>of</strong> Early Adverse Outcomes in Geriatric<br />

Patients After Total Knee and Hip Arthroplasty<br />

Carlos A Higuera, MD, Lakewood, OH<br />

Karim Ahmed Elsharkawy, MD, Lakewood, OH<br />

Alison K Klika, MS, Cleveland, OH<br />

Wael K Barsoum, MD, Bay Village, OH<br />

POSTERS<br />

posteR No. p111<br />

Distal Femoral Fresh Osteochondral Allografts: Follow<br />

Up At A Mean Of 22 Years<br />

Guy Raz, MD, Toronto, ON, Canada<br />

Oleg Safir, MD, Toronto, ON Canada<br />

David Backstein, MD, Toronto, ON Canada<br />

Allan E Gross, MD, FRCSC, Toronto, ON Canada<br />

Paul T H Lee, MD, Leicester, United Kingdom<br />

Oren Ben Lulu, MD, Toronto, ON Canada<br />

Farid Guirguis, MD, Thornhill, ON Canada<br />

A knee osteochondral defect in young active patients represents<br />

a challenge to the orthopedic surgeon. Earlier studies on fresh<br />

osteochondral allograft transplantation have shown this tissue to<br />

be immunologically privileged, and consist <strong>of</strong> hyaline cartilage with<br />

surviving chondrocytes up to 25 years post implantation. Our study<br />

examines the long term outcome <strong>of</strong> the use <strong>of</strong> fresh allografts for posttraumatic<br />

and osteochondritis dissecans defects in the distal femur.<br />

Since 1978 until 1995 we enrolled 63 patients in a prospective study<br />

<strong>of</strong> fresh osteochondral allografts. Five international patients which<br />

were lost to follow up were excluded. Indications for the procedure<br />

were: patients younger than 50 years <strong>of</strong> age having post-traumatic, or<br />

osteochondritis dissecans unipolar defect larger than three centimeter<br />

in diameter and one centimeter in depth. Fifty-eight patients age 11<br />

- 48 (mean 28) were followed for 15 - 32 years (mean 21.8 years).<br />

Thirteen <strong>of</strong> the 58 grafts had required further surgery, with three<br />

having graft removal and 10 converted to total knee arthroplasty.<br />

Three patients died during the study due to unrelated causes and<br />

are included in the survivorship curve. Kaplan-Meier survivorship<br />

analysis showed: 91%, 84%, 69% and 59% graft survival at 10,<br />

15, 20 and 25 years, respectively. Patients with surviving grafts had<br />

good function, with a mean modified Hospital for Special Surgery<br />

544<br />

score <strong>of</strong> an average 86 at 20 years or more following the allograft<br />

transplantation surgery. Late osteoarthritic degeneration as was<br />

seen on radiographs was associated with lower Hospital for Special<br />

Surgery scores representing patients with poorer clinical outcome.<br />

The authors confirm the value <strong>of</strong> fresh osteochondral allograft<br />

as a long-term solution for articular defect in the knees <strong>of</strong> young<br />

patients. We recommend the use <strong>of</strong> fresh osteochondral allograft for<br />

treatment <strong>of</strong> large osteochondral defects in the distal femur <strong>of</strong> young<br />

and active patients.<br />

posteR No. p112<br />

Improved Outcomes After High Flexion TKA-<br />

A Randomised Control Trial With 5 Year Follow Up<br />

Chusheng Seng, MBBS, MRCS<br />

James Wee, MBBS, MRCS (Edin)<br />

Seng-Jin Yeo, FRCS, Singapore<br />

Ngai-Nung Lo, MD, Singapore<br />

Sri Subanesh, MBBS<br />

Hwei Chi Chong, Singapore<br />

Pak Lin Chin, FRCSEd, Singapore<br />

Shi-lu Chia, MBBS, Singapore<br />

A five-year follow up in a prospective double blinded randomized<br />

control trial comparing the improved clinical outcomes between the<br />

high flexion knee arthroplasty group and the conventional group.<br />

Seventy-six patients were enrolled. Forty-one patients underwent the<br />

high flexion total knee arthroplasty (TKA) and 35 underwent the<br />

conventional TKA. We compare the flexion range, Knee Society scores<br />

(KSS), Oxford knee scores (OKS) and SF-36 scores between the two<br />

groups pre-operatively through to the five-year follow up. , Consistent<br />

and sustainable increase in flexion angle for the high flexion group<br />

throughout the five-year follow up (128 vs. 117 degrees), which is<br />

statistically higher than the conventional group. Statistical difference<br />

in the physical functioning (63 vs. 53), general health (79 vs. 62) and<br />

vitality scores (74 vs. 62) <strong>of</strong> SF-36 between the two groups at the fiveyear<br />

follow up, with the high flexion group showing better scores.<br />

No differences between the KSS and OKS between the two groups.<br />

High-flexion implants are capable <strong>of</strong> producing a sustainable and<br />

consistently higher knee flexion angle post-TKA when compared to<br />

conventional implants. This has resulted in better outcomes in the<br />

physical function, general health and vitality components <strong>of</strong> the SF-<br />

36, which we feel would be beneficial to a select group <strong>of</strong> patients<br />

who require higher degrees <strong>of</strong> knee flexion in their daily activities<br />

and would thus appreciate the gains in physical function that the<br />

high-flexion implant delivers. Therefore, we propose that careful<br />

history-taking and patient selection should be performed preoperatively<br />

to identify patients who would benefit the most from<br />

high-flexion implants.<br />

posteR No. p113<br />

Complications Of An Unicompartmental Knee<br />

Arthroplasty: A 10-Years Prospective Independent<br />

Study<br />

Mr Lukas Lisowski, Amsterdam, Netherlands<br />

Dr Michel Van den Bekerom, Amsterdam, Netherlands<br />

Andrzej Lisowski, MD, Heerlen, Netherlands<br />

The interest in unicompartmental knee arthroplasty (UKA) for medial<br />

osteoarthritis using a minimally invasive surgical technique (MIS)<br />

increased rapidly over the last 10 years. The use <strong>of</strong> this procedure<br />

is still controversial regarding recent reports <strong>of</strong> high failure rates.<br />

Aim <strong>of</strong> this study was to analyze the cause <strong>of</strong> complications and<br />

the rate <strong>of</strong> revision during the first 10 years <strong>of</strong> experience. Between<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


1999 and 2009, 276 consecutive medial UKAs were implanted by a<br />

single surgeon. The mean follow up (FU) was 54 months and mean<br />

age was 70 years (range 49-91). One year postoperatively 17 patients<br />

(7.3%) experienced moderate or severe pain. Of these patients with<br />

a UKA in place only two patients (0.7%) had moderate pain at final<br />

FU. Eleven patients underwent an arthroscopic procedure for pain<br />

related to intra-articular causes. Revisions occurred in nine patients:<br />

three knee were revised due to pain complaints with failure <strong>of</strong> proper<br />

selection criteria, three because <strong>of</strong> dislocation <strong>of</strong> the meniscal insert,<br />

two due to progression <strong>of</strong> lateral compartment osteoarthritis and one<br />

because <strong>of</strong> cobalt allergy. The majority <strong>of</strong> revisions occurred due to<br />

failure <strong>of</strong> using proper selection criteria (1.1%) or by technical errors<br />

(0.7%). Pain complaints have been recognized and successfully<br />

treated by means <strong>of</strong> arthroscopic surgery in 2.9% <strong>of</strong> the knees. We<br />

recommend this procedure as a well-established treatment option <strong>of</strong><br />

unicompartmental osteoarthritis <strong>of</strong> the knee joint if strict indication<br />

criteria are followed, proper surgical technique is used and careful<br />

follow-up <strong>of</strong> the patients is established.<br />

posteR No. p114<br />

Revision After Total Knee Arthroplasty And<br />

Unicompartmental Knee Arthroplasty In Medicare<br />

Population<br />

Brian M Curtin, MD, Charlotte, NC<br />

Arthur L Malkani, MD, Louisville, KY<br />

Joseph Greene, MD, Louisville, KY<br />

Steven M Kurtz, PhD, Philadelphia, PA<br />

Edmund Lau, MS, Menlo Park, CA<br />

Kevin Ong, PhD<br />

The relative risk <strong>of</strong> revision and associated risk factors following<br />

total or unicondylar knee arthroplasty (TKA or UKA) in the Medicare<br />

population were compared. We hypothesized that Medicare patients<br />

undergoing UKA would have a significantly higher revision rate within<br />

the first five years. The Medicare 5% national sample database was<br />

used to identify TKA (CPT 27447) and UKA (CPT 27446) patients<br />

between 2001-2007. Kaplan-Meier survivorship was determined<br />

with revision as an endpoint. Multivariate Cox regression was<br />

used to compare the revision risk for TKA and UKA, adjusting for<br />

demographics, comorbidities (Charlson index in 12 months prior<br />

to index surgery), socio-economic status (Medicare buy-in status)<br />

and Census region. A total <strong>of</strong> 61,767 TKA and 2,848 UKA patients<br />

were identified. UKA patients were at increased risk for revision at<br />

two years (adjusted odds ratio <strong>of</strong> 2.32; p


high tibial osteotomy (overall revision rate 6.9%). In group B, 34<br />

patients required patello-femoral replacement, or UKR or TKR and<br />

17 patients required osteotomy (overall revision rate 31.1%). This<br />

difference was significant (p < 0.01). At latest follow up, the mean<br />

MCS was significantly higher in Group A (72.5 versus 51.8, p < 0.01).<br />

Patients with early radiographic <strong>of</strong> evidence <strong>of</strong> OA are unlikely to<br />

gain maximum benefit from ACI. The results suggest that ACI does<br />

not prevent patients from progressing in their arthritic process and<br />

hence requiring joint replacement.<br />

posteR No. p117<br />

Short Term Results Of Low Contact Stress Mobile<br />

Bearing Unicompartmental Patell<strong>of</strong>emoral Arthroplasty<br />

Buchi R B Arumilli, MRCS, Manchester, United Kingdom<br />

Philip Hirst, MD, Wilmslow, United Kingdom<br />

Aaron Ng, MD, Manchester, United Kingdom<br />

David J Ellis, FRCS<br />

The cemented mobile bearing metal backed low contact stress<br />

patell<strong>of</strong>emoral arthroplasty (LCS PFA) is a newer design allowing<br />

patella to articulate with the trochlear component as well as the<br />

femoral component in total knee replacement (TKR). Twenty-one<br />

patients who underwent 24 (three bilateral) unicompartmental PFA<br />

for isolated patell<strong>of</strong>emoral osteoarthritis were included. Average age<br />

was 51 (40-58) years. The Oxford knee score was used to assess the<br />

results. At the latest follow-up <strong>of</strong> 2.7 (0.5 to 4) years, nine patients<br />

showed excellent improvement in their knee scores, five patients<br />

showed fair improvement and seven patients very little. There were<br />

nine revisions in seven patients either due to mechanical problems<br />

or due to persistent symptoms. We had three patients with early<br />

mechanical complications who underwent revision. The revision<br />

rate at two years was 33%. The revision rate for cemented mobile<br />

bearing LCS PFA seems to be very high and the issue is mainly with<br />

the patellar component (at the metal polyethylene interface). The<br />

Australian <strong>Orthopaedic</strong> joint registry report 2008 showed a higher<br />

revision rate for the same implant at 5%. We strongly advocate<br />

PFAs to be analyzed separately in all the National Joint Registries to<br />

highlight any persistent issues with new PFAs early.<br />

posteR No. p118<br />

Articulating Spacer with Autoclaved Femoral<br />

Component for Infected TKA: Minimum 6 Year Follow<br />

Up<br />

John Anthony Anderson, MD, New York, NY<br />

Lazaros A Poultsides, MD, New York, NY<br />

Danilo Bruni, MD<br />

Mathias P G Bostrom, MD, New York, NY<br />

Thomas P Sculco, MD, New York, NY<br />

This study analyzed 17 patients (17 knees) with chronic deep total<br />

knee arthroplasty (TKA) infection in order to assess the long-term<br />

effectiveness <strong>of</strong> an articulating spacer in eradicating infection and<br />

also allowing the patient to mobilize. Very few studies have long-term<br />

results on this important technique. During 1997-2004, all patients<br />

underwent two-stage articulating spacer surgery, whereby the original<br />

femoral component was removed, autoclaved and then replaced.<br />

The tibial component was removed, and a new polyethylene tibial<br />

component was utilized. Antibiotic methylmethacrylate composite<br />

was used with these prosthetic spacers. The cement composite was<br />

almost completely hardened before putting the components against<br />

bone, to allow for easy subsequent removal. The second-stage<br />

procedure occurred at a mean interval <strong>of</strong> 11 weeks (range: four to<br />

39 weeks) after insertion <strong>of</strong> the spacer. The majority <strong>of</strong> prostheses at<br />

546<br />

reimplantation were constrained implants. Immediate mobilization<br />

was encouraged between stages and after reimplantation. Patients<br />

were assessed at a minimum <strong>of</strong> six years (mean 94 months; range: 73-<br />

144 months) post reimplantation, and modified Hospital for Special<br />

Surgery (HSS) knee scores were calculated. Two patients (12%)<br />

with diabetes had refractory re-infection, both more than two years<br />

after the re-implantation procedure. One, a woman with multipleresistant<br />

organisms, subsequently required external fixation, fusion,<br />

then amputation. The other, a 320-pound diabetic man required<br />

two further explantations and re-implantations using this method.<br />

Average range <strong>of</strong> motion for those with no re-infection just prior to<br />

re-implantation was 4 degrees to 110 degrees, and 3 degrees to 112<br />

degrees at latest follow up. HSS scores for those with no re-infection<br />

averaged 80 points (Range: 60-100) at latest follow up. A two-stage<br />

re-implantation technique that utilizes an articulating spacer for<br />

infected TKA results in effective treatment <strong>of</strong> infection and excellent<br />

range <strong>of</strong> knee motion between stages, and at long-term follow up.<br />

posteR No. p119<br />

Chronic Antibiotic Suppression Reduces the<br />

Recurrence Rate <strong>of</strong> Periprosthetic Knee Infections<br />

Antonia Chen, MD, Pittsburgh, PA<br />

Brian A Klatt, MD, Pittsburgh, PA<br />

Claudia Ramirez, BS<br />

Matthew Tetreault, BA<br />

Nalini Rao, MD, Pittsburgh, PA<br />

Periprosthetic joint infection (PJI) is the most common cause<br />

<strong>of</strong> revision in total knee arthroplasty (TKA) and usually requires<br />

two-stage reimplantation with six weeks <strong>of</strong> antibiotics prior to<br />

reimplantation. This study examines factors that may reduce recurrent<br />

PJIs in TKA. Twenty-nine patients (16M/13F) were treated by twostage<br />

revision for PJI between 2006 and 2008 at a single institution.<br />

Infection was documented from clinical presentation, positive<br />

aspirates or positive intraoperative tissue cultures. There were a total<br />

<strong>of</strong> 29 TKA PJIs (19R/10L) with nine recurrences at two-plus year<br />

follow up. Of the nine recurrences, two had MSSA, one had MRSA,<br />

one had MRSA and GBS, one had MSSA and streptococcus viridans,<br />

two had coagulase negative staphylococcus, one had klebsiella and<br />

one had pseudomonas aeruginosa. Antibiotic therapy was managed<br />

by a single musculoskeletal infectious disease specialist. Long-term<br />

suppression was defined as antibiotic treatment greater than six<br />

weeks after reimplantation. Continuous variables were analyzed<br />

by the Mann-Whitney U Test and nominal variables were analyzed<br />

by Fisher’s Exact Test. The recurrence rate for periprosthetic knee<br />

infections was 31.0%. There was significant association between<br />

long-term antibiotic suppression and recurrences (p


posteR No. p120<br />

UKA after Spontaneous Osteonecrosis <strong>of</strong> the Knee at<br />

11 years Follow-up<br />

Thomas Jan Heyse, MD, Marburg, Germany<br />

Ahmed Khefacha, Paris, France<br />

Pr<strong>of</strong>essor Susanne Fuchs-Winkelmann, Marburg, Germany<br />

Philippe Edmond Cartier, MD, Neuilly Sur Seine, France<br />

Safety and efficacy <strong>of</strong> unicompartmental knee arthroplasty (UKA)<br />

in osteoarthritis has been shown in large patient series. It has been a<br />

matter <strong>of</strong> discussion whether or not spontaneous osteonecrosis <strong>of</strong> the<br />

knee (SONK) can successfully be treated with UKA. A retrospective<br />

approach included 52 cases <strong>of</strong> UKA for SONK <strong>of</strong> the femoral<br />

condyles. Four implants were revised (7.7%), and seven patients<br />

had died. Four patients (7.7%) were lost to follow up. Patients with<br />

the implant still in place underwent clinical examination including<br />

clinical scores (KSS and WOMAC) and radiographs. Satisfaction <strong>of</strong><br />

patients was recorded in four categories. Average follow up was 10.9<br />

± 4.8 (4 - 25) years. Average age at operation was 66.6 ± 9.7 years.<br />

Two knees were mobilized within three weeks after the operation<br />

due to stiffness. The KSS score increased from a preoperative 85 ±<br />

30 to 173 ± 27 (p < 0.0001) at latest follow up. WOMAC was 7.7 ±<br />

11.4 at latest follow up. Most patients were satisfied (21.6%) or very<br />

satisfied (75.7%) with the outcome <strong>of</strong> this surgical procedure. One<br />

patient was dissatisfied (2.7%). This study shows that spontaneous<br />

osteonecrosis <strong>of</strong> the knee (SONK) can successfully be treated with<br />

UKA with a good mid- to long-term follow up.<br />

posteR No. p121<br />

UKA in the Middle-Aged<br />

Thomas Jan Heyse, MD, Marburg, Germany<br />

Ahmed Khefacha, Paris, France<br />

Philippe Edmond Cartier, MD, Neuilly Sur Seine, France<br />

Unicompartimental knee arthroplasty (UKA) is known to be a<br />

viable procedure allowing preservation <strong>of</strong> the intact compartments<br />

delivering excellent long-term follow up. Revisions to total knee<br />

arthroplasty (TKA) are considered to be easy and can usually be<br />

done with primary implants, which makes UKA especially attractive<br />

to the younger and active patient. The purpose <strong>of</strong> this study was<br />

to report the outcome in patients younger than 60 years. From all<br />

UKA implanted between 1993 and 2005, 251 patients


postoperative (‘P) were analyzed. Oversizing was observed on the tibia<br />

(MLT=1.18±2.9, APTL=3.08±3.1) and the femur (MLANT=2.5±4.7,<br />

APM=1.1±2.6). Undersizing on the tibia (APTM=-1.58±2.4) and on<br />

the femur (APL=-0.81±3.2, MLDIST=-1.24±4.4. MLPOST=-2.93±4.2<br />

and MLPC=-1.68±4). A strong correlation was found between<br />

oversizing and ‘P in all dimensions excepted APTM and APM.<br />

Thresholds (T) were defined above which, ‘P was significantly<br />

lower (T, ‘P if inferior to T/ ‘P if superior to T, p-value). APL: 1 mm,<br />

35.1±20/23.9±16, 0.0083. MLANT: 0 mm, 39.2±20/29.7±18, 0.029.<br />

MLPOST: 1.5 mm, 33.2±19.7/22.8±15.4, 0.041. MLT: 2.5 mm,<br />

34.8±18.8/26.7±19.9, 0.034. APTL: 4 mm, 35.2±19.5/27.4±18.9,<br />

0.036. For two ML dimensions on the femur, the limit was an<br />

undersized component: MLDIST: -4.5 mm, 42.9±21/29.4±18, 0.006.<br />

MLPC: -4 mm, 38.2±19.4/29.9±19.2, 0.045. Surgeons are <strong>of</strong>ten<br />

unable to avoid oversizing in every dimension and slight overhangs<br />

can compromise the result.<br />

posteR No. p124<br />

High Flexion Knees Are We Getting What We Are Paying<br />

For?<br />

Clifford W Colwell Jr, MD, La Jolla, CA<br />

Kenny Mai, MD, Hanford, CA<br />

Christopher Verioti, DO, Flint, MI<br />

Kace A Ezzet, MD, San Diego, CA<br />

Steven Copp, MD, La Jolla, CA<br />

Range <strong>of</strong> motion (ROM) following total knee arthroplasty (TKA)<br />

remains one <strong>of</strong> the most important factors in patient satisfaction<br />

following this surgical procedure. Because <strong>of</strong> relatively poor<br />

improvement in this measure with early design, newer high flexion<br />

designs by multiple manufacturers have been marketed. The purpose<br />

<strong>of</strong> our study was to compare ROM <strong>of</strong> the newer designs with previous<br />

designs. Clinical measurement with goniometer and radiographic<br />

measurement were obtained by three independent orthopedists.<br />

Gravity-assisted ROM, where patients maximally bend their own<br />

knees and active-assist ROM, where patients’ knees are bent by the<br />

surgeon maximally until stopped by anterior knee discomfort or<br />

inhibited by posterior s<strong>of</strong>t tissue impingement were recorded and<br />

compared with the measurement from lateral radiographs obtained<br />

with knees in the same two positions. One hundred and eight<br />

patients (144 knees) were included in the study, with a mean gravityassisted<br />

ROM preoperatively <strong>of</strong> 110 degrees and postoperatively <strong>of</strong><br />

113 degrees clinically and 112 degrees radiographically. Postoperative<br />

active-assist ROM were 117 degrees clinically and 121 degrees<br />

radiographically. Preoperative Knee Society function and score were<br />

52 and 55, respectively, and improved to 78 and 90, respectively,<br />

after surgery. Measurements obtained by three examiners were highly<br />

correlated, especially when radiographs were used for measurement.<br />

Three <strong>of</strong> the five prostheses were designed with high-flexion features;<br />

however, no difference in ROM was found between the previous<br />

designs and the high flexion designs. Although the newer designs<br />

allow for greater flexion, the actual flexion falls far short <strong>of</strong> the claim<br />

<strong>of</strong> the manufacturers. In addition, the ROM reported can depend<br />

significantly on the method <strong>of</strong> measurement used. Preoperative<br />

ROM remains the common denominator <strong>of</strong> postoperative ROM in<br />

all designs.<br />

548<br />

posteR No. p125<br />

The Effect <strong>of</strong> Intra-articular Injection <strong>of</strong> Tranexamic<br />

Acid after Total Knee Arthroplasty<br />

Takashi Azuma, MD, Sakai City Osaka Pref, Japan<br />

Yoshinori Kadoya, MD, Sakai, Japan<br />

Kim Mitsunari, MD, Takarazuka City, Japan<br />

Yoshio Tokuhara, MD<br />

Kunio Takaoka, MD, Ikeda-City Osaka, Japan<br />

The blood conservation method after total knee arthroplasty (TKA)<br />

is controversial. The aim <strong>of</strong> this study was to evaluate the usefulness<br />

intra-articular injection <strong>of</strong> tranexamic acid without closed-suction<br />

drainage in comparison to re-infusion auto-transfusion system. A<br />

total <strong>of</strong> 160 patients (mean age = 74.2 years, 139 female, 21 male; 154<br />

osteoarthritis (OA), six rheumatoid arthritis (RA)) who underwent<br />

primary TKA were investigated. Eighty patients were treated with<br />

a re-infusion auto-transfusion system (Group I) and remaining<br />

80 patients received an intra-articular injection <strong>of</strong> tranexamic acid<br />

without closed-suction drainage (Group II). The postoperative<br />

hemoglobin and hematocrit values, range <strong>of</strong> motion (ROM),<br />

circumferentia <strong>of</strong> the thigh and calf; visual analog score (VAS) and<br />

functional recovery were compared. The postoperative hemoglobin<br />

and hematocrit values at one week were significantly higher in Group<br />

II. No significant differences were noted for ROM, circumferentia<br />

and incidence <strong>of</strong> wound complications. VAS score at rest was same<br />

between the groups but that during walking was significantly higher<br />

in Group II. As for the functional recovery (time for straight-leg raises,<br />

T-cane gait or stair-climbing), the patients in Group II had tendency<br />

to have slower recovery. Intraarticular injection <strong>of</strong> tranexamic acid<br />

without closed-suction drainage was shown to be effective and at least<br />

comparable in conserving blood and maintaining hemoglobin and<br />

hematocrit values when compared to re-infusion auto-transfusion<br />

system. This method has other advantages such as patient comfort,<br />

early mobilization and cost. These merits, however, should carefully<br />

be weighed against increased swelling, walking pain and slightly<br />

slower functional recovery.<br />

posteR No. p126<br />

Revision Total Knee Arthroplasty in Patient Less than<br />

55 Years <strong>of</strong> Age<br />

John C Clohisy, MD, Saint Louis, MO<br />

Selena Eunice, MSPH, Saint Louis, MO<br />

Robert L Barrack, MD, Saint Louis, MO<br />

William J Maloney MD, Redwood City, CA<br />

James A Keeney, MD, St Louis, MO<br />

Total knee arthroplasty (TKA) revision is a relatively uncommon<br />

procedure in patients less than 55 years <strong>of</strong> age, and there is minimal<br />

literature regarding clinical outcomes in this patient population.<br />

The purpose <strong>of</strong> this study was to determine the early clinical<br />

outcomes, radiographic fixation and complications/failures <strong>of</strong> TKA<br />

revision in patients less than 55 years <strong>of</strong> age. Our institutional adult<br />

reconstruction database with 600 revision TKAs was queried to<br />

identify patients less than 55 years <strong>of</strong> age who underwent revision<br />

TKA. Forty-nine knees (8.2% <strong>of</strong> all revisions) were identified and<br />

analyzed retrospectively at an average 4.7 year follow up (range,<br />

2-9.4). Average age was 42 years (range, 42-55). Seventeen were males<br />

(18 knees) and 28 females (31 knees). All TKAs were performed with<br />

metaphyseal cementation and cementless stems. Knee function was<br />

determined with the Knee Society score and standard radiographic<br />

analysis was performed. The average Knee Society score improved<br />

by 35.2 points (p


average 9.5 degrees (p=0.04). Six complications (12% <strong>of</strong> cases) were<br />

identified and included two dislocations, three manipulations and<br />

one deep infection. Two <strong>of</strong> these required surgery. All implants were<br />

well-fixed at the most recent follow-up visit and no implants were<br />

revised for loosening. Revision TKA in patients


analysis included age, co-morbidities (diabetes mellitus (DM),<br />

hypertension, hypercholesterolemia) smoking, previous history<br />

<strong>of</strong> stroke, antiplatelet medication, nature <strong>of</strong> surgery (computerassisted<br />

orthopaedic surgery vs. convention, primary vs. revision,<br />

unilateral vs. bilateral) and obesity. To compare incidence, vascular<br />

bypass surgeries <strong>of</strong> CS, NS, GS, URO department were compared.<br />

Six out <strong>of</strong> 1,214 (0.49%) patients suffered from stroke after TKA. All<br />

patients underwent primary TKA and all were female. Their mean<br />

age was 70.8 years. Three cases were bilateral TKA. Detection-andcare<br />

duration was mean 2.5 days. Most <strong>of</strong> them initially showed<br />

motor weakness or dysarthria. Four <strong>of</strong> them had diabetes mellitus,<br />

two had previous cerebrovascular accident and three were detected<br />

arteriovenous shunt (cardiac or peripheral) after stroke evaluation.<br />

DM, old age (more than 75), anti-platelet medication history,<br />

smoking, hypercholesterolemia were considered as high risk factors<br />

(OR= 58.2,22.4,37.1,52.8,32.5). Femoral or intracranial artery<br />

bypass surgeries had similar incidence <strong>of</strong> stroke (0.70, 0.51%).<br />

Incidence <strong>of</strong> stroke after TKA was 0.49% & similar to that <strong>of</strong> femoral<br />

or intracranial surgery. DM, old age, anti-platelet medication Hx,<br />

smoking and hypercholesterolemia were considered as high risk.<br />

posteR No. p131<br />

Cell Count And Differential Of Aspirated Joint Fluid In<br />

Diagnosis Of Prosthetic Joint Infection<br />

Jiri Gallo, MD, Olomouc, Czech Republic<br />

Jana Zapletalova, PhD<br />

Ivana Cechova, MD, Olomouc, Czech Republic<br />

Milan Kolar, MD, PhD, Olomouc, Czech Republic<br />

There is no single reliable test to confirm the diagnosis <strong>of</strong> prosthetic<br />

joint infection (PJI). Several studies have demonstrated that cell<br />

count <strong>of</strong> aspirated joint fluid (AJF) may be a reliable tool in the<br />

preoperative diagnosis <strong>of</strong> PJI. To determine whether AJF analysis<br />

is a valuable tool in the preoperative detection <strong>of</strong> PJI in total joint<br />

arthroplasties, we conducted a prospective study. Patients were<br />

diagnosed with PJI if they met previously published criteria. Receiver<br />

operating characteristic curves were constructed for single and<br />

combined diagnostic data. The cut<strong>of</strong>f values <strong>of</strong> the leukocyte count,<br />

neutrophil and lymphocyte percentages for optimal balance between<br />

true and false positivity rates in the diagnosis <strong>of</strong> PJI were determined.<br />

We investigated the AJF in 43 patients with PJI and 77 controls.<br />

The median leukocyte count (20,500 compared with 500 cells/ml)<br />

and neutrophil percentage (87% versus 36%) were significantly (p<br />

2,150 leukocytes/ml,<br />

>69.5% and


2007. HTO was almost exclusively used for patients younger than 65<br />

years. The rate <strong>of</strong> conversion to knee arthroplasty was similar to what<br />

has been seen for unicompartmental knee arthroplasty.<br />

posteR No. p134<br />

Comparison <strong>of</strong> Osteoarthritis after ACL Reconstruction:<br />

Patellar versus Hamstring Autograft<br />

Eun Kyoo Song, MD, Hwasungun, 160 Ilsimri, Hwasuneup,<br />

Republic <strong>of</strong> Korea<br />

Jong-Keun Seon, MD, Hwasun, Jeollanamdo, Republic <strong>of</strong> Korea<br />

Ju-Kwon Park, MD<br />

Mun Su Jeong, MD, Jeonnam, Hwasungun, Republic <strong>of</strong> Korea<br />

Mr Woo Bin Jung, Gwangju, Republic <strong>of</strong> Korea<br />

Kyung-Do Kang, MD<br />

We compared the incidence and risk factors for osteoarthritis (OA),<br />

after a minimum nine-year follow-up <strong>of</strong> anterior cruciate ligament<br />

(ACL) reconstruction, between using patellar tendon autograft<br />

and hamstring autograft. Fifty-three cases <strong>of</strong> ACL reconstruction<br />

using a patellar tendon and 40 cases using a hamstring tendon<br />

were evaluated with a minimum nine-year follow up. Radiographic<br />

evaluation, clinical outcome and laxity testing and the instrumented<br />

laxity testing were examined in relation to the development <strong>of</strong><br />

osteoarthritis. Osteoarthritis was detected in 24 patients (45.3%) in<br />

the BPTB group and in 14 patients (35.0%) in the HT group. Among<br />

the various factors, an accompanying meniscal injury (BPTB group<br />

odds ratio (OR): 9.917; p12 months (the<br />

BPTB group OR: 3.273; p=0.037; the HT group OR: 5.625; p=0.021)<br />

and a patient’s age at reconstruction <strong>of</strong> >25 years (the BPTB group<br />

OR: 6.218; p=0.003; the HT group OR: 4.278; p=0.048) were all<br />

found to be significant independent predictors <strong>of</strong> osteoarthritis.<br />

However, no statistically significant correlations were found between<br />

the development <strong>of</strong> osteoarthritis and the clinical outcome or the<br />

radiographic stability in both groups. The overall incidence <strong>of</strong><br />

osteoarthritis after ACL reconstruction using patellar and hamstring<br />

autografts was 41%. The frequency <strong>of</strong> OA was high for patients with<br />

accompanying meniscal injury, for patients with a protracted time<br />

from injury to reconstruction over 12 months and for patients who<br />

were more than 25 years old at reconstruction.<br />

posteR No. p135<br />

Comparison <strong>of</strong> the Treatment <strong>of</strong> Infected Total Knee<br />

Arthroplasty: Static vs. Mobile Cement Spacer<br />

Eun Kyoo Song, MD, Hwasungun, 160 Ilsimri, Hwasuneup,<br />

Republic <strong>of</strong> Korea<br />

Jong-Keun Seon, MD, Hwasun, Jeollanamdo, Republic <strong>of</strong> Korea<br />

Ju-Kwon Park, MD<br />

Mun Su Jeong, MD, Jeonnam, Hwasungun, Republic <strong>of</strong> Korea<br />

Mr Woo Bin Jung, Gwangju, Republic <strong>of</strong> Korea<br />

Kyung-Do Kang, MD<br />

This study was undertaken to compare the clinical results <strong>of</strong> two-stage<br />

revision total knee arthroplasty (TKA) between static and mobile<br />

cement spacer in infected TKA. From July 2000 to February 2007,<br />

36 infected TKAs were treated with two-stage reimplantation using<br />

antibiotic-impregnated cement spacers (AICS) and followed up at<br />

least more than two years. Static spacers were used in 20 knees and<br />

mobile spacers in 16 knees. Range <strong>of</strong> motion (ROM), Hospital for<br />

Special Surgery (HSS) score and was evaluated prior to second stage<br />

revision TKA. Range <strong>of</strong> motion (ROM), HSS, Knee Society score (KSS)<br />

were evaluated at last follow up. In static group, 17 (85%) knees<br />

were revised successfully (one amputation, two fusion). In mobile<br />

551<br />

group, 15 (94%) knees were revised successfully (one fusion). These<br />

reinfection rates were not significantly different (p=0.698). Prior to<br />

second stage revision, in static group, ROM was 9.0° (0 to 20) and<br />

HSS score was 48.2 (31 to 52). In mobile group, ROM was 92.0° (65<br />

to 140) and HSS score was 57.2 (46 to 71) (p


posteR No. p137<br />

Renal Function After Antibiotic-impregnated Spacer<br />

Placement for Infected Total Knee Arthroplasty<br />

John Koethe, ND, Nashville, TN<br />

Ginger E Holt, MD, Nashville, TN<br />

Cathy Jenkins, MA<br />

Sydney Hester, MD<br />

Bryan Shepherd, PhD<br />

Patty Wright, MD<br />

Geraldine Miller, MD<br />

Andrew A Shinar, MD, Nashville, TN<br />

The use <strong>of</strong> an antibiotic-impregnated cement spacer during the<br />

revision <strong>of</strong> an infected total knee arthroplasty (TKA) is associated with<br />

impaired renal function in case reports, but data on the incidence<br />

<strong>of</strong> acute kidney injury (AKI) following spacer placement is limited.<br />

We reviewed cases <strong>of</strong> antibiotic-impregnated spacers placed between<br />

January 1998 and November 2009 at our institution. AKI was defined<br />

as a >50% rise in serum creatinine from baseline to a level >1.4 mg/<br />

dL within 90 days <strong>of</strong> the procedure. Logistic regression was used to<br />

assess associations between AKI and covariates. Eighty-five subjects<br />

met inclusion criteria; median age was 63 and median baseline<br />

creatinine was 0.91 mg/dL. Spacers contained aminoglycosides<br />

(93%), vancomycin (82%) and other antibiotics (6%), and all<br />

subjects received concomitant intravenous antibiotics (vancomycin<br />

and/or a beta-lactam n=82] or an aminoglycoside alone<br />

posteR No. p138<br />

Etology <strong>of</strong> OA Based on Meniscus and Implications to<br />

Treatment<br />

Peter S Walker, PhD, New York, NY<br />

Sally Arno, MSc, New York, NY<br />

Sherry Liang, BS<br />

Gokce Yildirim, MSc<br />

Jonathan Samuels, MD<br />

Svetlana Krasnokutsky, MD<br />

Clinical evidence shows that injuries to the anterior cruciate ligament<br />

(ACL) or meniscus can lead to osteoarthritis (OA). Our hypothesis<br />

is that if the radial stiffness <strong>of</strong> the meniscus becomes reduced, the<br />

contact stresses on the cartilage will increase to cause progressive<br />

wear and OA. 3-D models <strong>of</strong> the femoral and tibial cartilage layers<br />

were constructed from 48 MRI scans <strong>of</strong> a patient cohort with OA<br />

at various stages, and from eight normal knees. The layers were<br />

divided into functional areas, and the thicknesses and volumes<br />

computed. Clinical and radiographic data were obtained. From the<br />

color-coded thickness maps, the central band <strong>of</strong> the distal femur,<br />

normally the thickest cartilage, steadily reduced until complete wearthrough.<br />

On the tibia, wear occurred on the cartilage not covered<br />

by the meniscus, then extended medially as wear progressed.<br />

Regression plots <strong>of</strong> (femoral distal medial volume)/(femoral distal<br />

lateral volume) versus (tibial medial volume)/(tibial lateral volume)<br />

showed parallel wear. Other plots showed predominance <strong>of</strong> central<br />

band wear, and low wear on the posterior femur. There was some<br />

correlation <strong>of</strong> wear with the Kellgren-Lawrence, but no correlation<br />

with Womac or SF36. Tibial wear at the medial side correlated with<br />

medial femoral subluxation. The wear patterns were consistent with<br />

weight-bearing in the central region not covered by the meniscus,<br />

implying the meniscus was ineffective in spreading the loads over<br />

a wide area. As deformity progressed, the femur subluxed medially,<br />

further stretching and extruding the meniscus. The wear patterns<br />

could be treated by early intervention components in many cases.<br />

552<br />

posteR No. p139<br />

Magnetic Resonance Imaging Evaluation <strong>of</strong> Rotational<br />

Alignment in Painful Total Knee Arthroplasty<br />

Akira Murakami, MD, Boston, MA<br />

Thomas Hash, MD, Raleigh, NC<br />

Matthew Hepinstall, MD, New York, NY<br />

Stephen Lyman, PhD, New York, NY<br />

Bryan J Nestor, MD, New York, NY<br />

Hollis Potter, MD, New York, NY<br />

The purpose <strong>of</strong> this study was to demonstrate the utility <strong>of</strong> magnetic<br />

resonance imaging (MRI) in evaluation <strong>of</strong> rotational alignment in<br />

patients with painful total knee arthroplasty (TKA), unexplained<br />

by routine radiographs. Fifty patients were evaluated for painful<br />

TKA with MRI. These patients were compared to 16 asymptomatic<br />

controls. Two radiologists measured femoral and tibial component<br />

rotation, as well as a comparison <strong>of</strong> tibial to femoral component<br />

rotation. Inter-rater reliability was evaluated using one-way random<br />

intraclass correlation coefficient (ICC). Significant differences<br />

between measures between cases and controls were evaluated using<br />

an independent samples t-test. There was very high interobserver<br />

agreement for measurements <strong>of</strong> femoral component rotation (ICC<br />

= 0.811 for anatomic total elbow arthroplasty (TEA) and 0.696 for<br />

surgical TEA). Increased internal rotation <strong>of</strong> the femoral component<br />

was observed in painful TKAs relative to the controls. Mean surgical<br />

TEA angle in painful TKAs (Observer #1: 0.3º, SD 2.8; Observer #2:<br />

0.7º, SD 3.3) and in controls (Observer #1: -1.6º, SD 3.3; Observer<br />

#2: -2.0º, SD 3.7). This difference was statistically significant<br />

(


clinical infection was 15.5 months before resection. Thirty-seven<br />

patients underwent delayed reimplantion following antibiotic<br />

therapy and 21 patients with poor operative risks remained with the<br />

semi-permanent spacer for a mean <strong>of</strong> 11.4 months. A total <strong>of</strong> 81.1%<br />

were free from recurrent infection for a mean <strong>of</strong> 29.4 months. A<br />

total <strong>of</strong> 18.9% had a reinfection which required open debridement.<br />

Average flexion was 95.9° (range, 40-130°) with four patients<br />

having extensor lags averaging 27.5°. Twenty-one patients with poor<br />

operative risks remained with the semi-permanent spacer for a mean<br />

<strong>of</strong> 11.4 months. During the spacer phase, all patients had pain free<br />

ambulation with the stability <strong>of</strong> a fusion without bone loss or loss<br />

<strong>of</strong> limb length. Debridement after resection <strong>of</strong> a chronically infected<br />

TKA <strong>of</strong>ten leaves large bony and s<strong>of</strong>t tissue deficiencies rendering<br />

conventional static and mobile spacers unsuitable due to instability.<br />

Incorporating an intramedullary rod in a hockey puck spacer block<br />

provides pain free, independent ambulation before reimplantation.<br />

This technique provides 1) stability and function simulating a fusion,<br />

2) eliminates use <strong>of</strong> braces, 3) avoids loss <strong>of</strong> limb length, 4) rod<br />

does not increase reinfection rates, 5) large surface area and higher<br />

elution <strong>of</strong> antibiotics, 6) stability for wound coverage procedures<br />

like flaps, 7) can be semi-permanent in select cases where medical<br />

complications delay reimplantation.<br />

posteR No. p141<br />

Total Knee Design Based On Anatomic Medial Stability<br />

Peter S Walker, PhD, New York, NY<br />

Yonah Heller, BS<br />

Luis Vasquez, MS<br />

Gokce Yildirim, MSc<br />

MRI and fluoroscopic studies <strong>of</strong> knee specimens and test subjects<br />

have determined that for a full flexion range, the medial anterior/<br />

posterior (AP) displacement is small, while the lateral femoral<br />

condyle is mobile and moves posterior in high flexion. This medial<br />

stability-lateral mobility concept is proposed as a rational approach<br />

to total knee arthroplasty (TKA) design for restoring normal knee<br />

mechanics and a natural feel to the patient. A test machine was<br />

constructed which applied a sequence <strong>of</strong> forces and moments to knee<br />

models, from which motion paths were measured. The mechanics <strong>of</strong><br />

normal knee specimens was determined and expressed as neutral<br />

path <strong>of</strong> motion and laxity about the neutral path. Reconstructions<br />

using 3-D CAD s<strong>of</strong>tware determined the motion patterns. Anatomic<br />

knees showed small medial femoral AP displacements and small AP<br />

laxities about the neutral path. The lateral side displaced posteriorly<br />

with flexion and showed large laxities. Standard CR and PS designs<br />

did not reproduce this differential medial-lateral behavior, and also<br />

showed paradoxical motion. The cam-post reduced AP and rotary<br />

laxities below normal values. The guided motion design reproduced<br />

anatomic mechanics more closely, with AP stability and lateral<br />

mobility. However, the cam-post still limited the laxities at higher<br />

flexion. In the quest for a TKA which feels like a normal knee,<br />

restoring anatomic mechanics may be key. This study showed how<br />

guided motion design features could help achieve this goal, and<br />

provided methods for design and pre-clinical evaluation. However,<br />

including a cam-post was not optimal to fully restore anatomic<br />

mechanics.<br />

553<br />

posteR No. p142<br />

Efficacy <strong>of</strong> Multimodal Perioperative Analgesia<br />

Protocol with Periarticular Drug Injection in TKA<br />

David F Dalury, MD, Baltimore, MD<br />

Todd Kelley, MD, Cincinnati, OH<br />

Mary Jo Adams, BSN, Towson, MD<br />

Pain control is necessary for a successful postoperative rehabilitation<br />

and outcome following a total knee arthroplasty. The purpose<br />

<strong>of</strong> the study is to investigate the early postoperative pain control<br />

and rehabilitation course for patients receiving an intraoperative<br />

periarticular injection <strong>of</strong> medications consisting <strong>of</strong> an a2-adrenergic<br />

agonist (clonidine), a nonsteroidal anti-inflammatory (ketorolac),<br />

a long acting local anesthetic (ropivacaine) and epinephrine, to<br />

provide analgesia following total knee arthroplasty (TKA). Forty-eight<br />

patients who underwent TKA were randomized in a double blinded<br />

controlled study to receive one <strong>of</strong> four different intraoperative<br />

periarticular injections. Group A contained ropivacaine, epinephrine,<br />

ketorolac and clonidine. Group B contained contained ropivacaine,<br />

epinephrine and ketorolac. Group C contained ropivacaine,<br />

epinephrine and clonidine. The control Group D contained<br />

ropivacaine and epinephrine. All patients received a spinal anesthetic<br />

and preoperative celecoxib and oxycodone SR. Visual analog pain<br />

scores (VAS) and nursing pain assessments were recorded every four<br />

hours for 48 hours. Additional narcotic use and any side effects were<br />

documented. Knee range <strong>of</strong> motion, pain scores and ambulation<br />

distance were recorded for each physical therapy session. , Group A<br />

had significantly improved postoperative range <strong>of</strong> motion on days<br />

one and two over Group D (p


then maximal flexion and extension under gravity were measured for<br />

each knee using a navigation system. Average maximal flexions were<br />

134.3° in standard cruciate retaining knee, 136.2° in high-flexion<br />

knee and 136.4° in gender specific knee. All knees did not show any<br />

significant intergroup differences in intra-operative maximal flexion<br />

as well as extension between two groups (p>0.05). High-flexion and<br />

gender specific designs in cruciate retaining total knee arthroplasty<br />

showed a subtle increase in intra-operative range <strong>of</strong> motion without<br />

any significant differences compared with a standard design.<br />

posteR No. p144<br />

Long-term Results and Survivorship Analysis <strong>of</strong><br />

Implants in Revision Total Knee Arthroplasty<br />

Dae Kyung Bae, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sang Jun Song, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Jung Ho Kang, MD, Seoul, Republic <strong>of</strong> Korea<br />

The purpose <strong>of</strong> this study is to evaluate the long-term clinical and<br />

radiological results, investigate the long-term survival rate <strong>of</strong> implants<br />

after revision total knee arthroplasty (TKA) and analyze the factors<br />

that contribute to the survival rate <strong>of</strong> implants. From December 1982<br />

to March 2007, 232 revision TKAs were performed in 195 patients.<br />

The mean follow-up period was 8.1 years (range, 2.0-18.5 years).<br />

For clinical assessment, the Knee Society clinical rating system was<br />

used, and survivorship analysis was done according to the life-table<br />

method. In order to evaluate factors influencing survival rate, the<br />

Mantel-Cox log rank test was used with variables including patient<br />

age, cause <strong>of</strong> revision, cementation technique and use <strong>of</strong> bulk<br />

allograft. The mean Knee Society knee and function score improved<br />

from 39.1 and 33.2 preoperatively to 86.9 and 74.0 at last follow<br />

up. The five, eight, 10 and 13-year survival rates were 97.1%, 92.1%,<br />

88.2% and 81.4%, respectively. The survival rate was lower in the<br />

patients younger than 65 years (p=0.007). There was no significant<br />

difference in survival rate according to cause <strong>of</strong> revision, cementation<br />

technique and use <strong>of</strong> bulk allograft. Clinical results and long-term<br />

survivorship <strong>of</strong> revision TKA were satisfactory. Overall survivorship<br />

decreased over time and annual failure rate markedly increased 10<br />

years after revision TKA. More frequent follow-up visits after the 10year<br />

period are needed to better detect complications.<br />

posteR No. p145<br />

Role <strong>of</strong> Cartilage-Specific MRI in Pre-Operative<br />

Assessment <strong>of</strong> Patients Proceeding to UKR<br />

Vineet Batta, MD, Ascot, United Kingdom<br />

Shahid Mehmood, MRCS, Banbury, United Kingdom<br />

Ashish Gulati, MS, DNB, Oxford, United Kingdom<br />

Hemant G Pandit, FRCS, Oxford, United Kingdom<br />

Nicholas J Bottomley, MRCS, Oxford, United Kingdom<br />

William Jackson, FRCS, Oxford, United Kingdom<br />

David W Murray, MD, Oxford, United Kingdom<br />

Andrew J Price, FRCS, Oxford, United Kingdom<br />

Establishing a full-thickness cartilage in the lateral compartment and<br />

functionally intact anterior cruciate ligament (ACL) is vital before<br />

proceeding with unicondylar knee replacement (UKR). The aim <strong>of</strong><br />

this study is to assess whether MRI is a useful adjunct in predicting<br />

suitability for UKR, as compared to standard and stress radiographs.<br />

We identified 50 patients with a knee found suitable for UKR based<br />

on their standard and stress radiographs. These patients underwent<br />

an additional cartilage-specific MRI scan to identify the status <strong>of</strong><br />

ACL and the lateral compartment. The final decision regarding the<br />

suitability for UKR was based on the intra-operative observation. The<br />

mean age <strong>of</strong> patients was 65.1 years (49-79). Review <strong>of</strong> MRIs showed<br />

554<br />

that in 44 (88%), the MRI scan agreed with the X-ray findings.<br />

These patients all underwent UKR after suitability was confirmed<br />

intra-operatively. In six (12%) patients, the MRI scan was able to<br />

demonstrate significant lateral compartment arthritis in five patients<br />

and ACL damage in another. These findings were confirmed by direct<br />

observation at the time <strong>of</strong> surgery and a total knee replacement (TKR)<br />

was performed. Stress radiographs, if used alone, may not detect a<br />

proportion <strong>of</strong> knees with full-thickness cartilage loss in the lateral<br />

compartment. Despite doubts suggested in previous literature, our<br />

study suggests that cartilage-specific MRI can be a useful adjunct in<br />

the determining the status <strong>of</strong> the lateral compartment and ACL prior<br />

to UKR. It may be particularly useful for the younger population<br />

with osteoarthritis who would consent for UKR but not TKR.<br />

posteR No. p146<br />

Risk Of Spinout In3800 Rotating Platform Knees At<br />

Minimum Of 5-Years<br />

David F Dalury, MD, Baltimore, MD<br />

Wayne M Goldstein, MD, Morton Grove, IL<br />

Thomas K Fehring, MD, Charlotte, NC<br />

Douglas A Dennis, MD, Denver, CO<br />

Susan Marie Odum, Charlotte, NC<br />

Mary Jo Adams, BSN, Towson, MD<br />

Rotating platform technology for total knee replacement has<br />

been available for 30-plus years. While there are many theoretical<br />

advantages to these implants, a persistent fear has been the risk<br />

<strong>of</strong> ‘spinout’ or bearing dislocation. We reviewed a large series <strong>of</strong><br />

consecutive rotating platform patients at multiple centers to evaluate<br />

this problem. A total <strong>of</strong> 2,289 patients (3,151 knees) at four different<br />

centers were treated with an identical rotating platform total knee<br />

replacement system. This consecutive group was prospectively<br />

followed. The average age <strong>of</strong> the group was 64 (range 19 to 88).<br />

The group was 60% female. Preoperative deformity and range<br />

<strong>of</strong> motion (ROM), postoperative alignment and ROM and Knee<br />

Society Scores were prospectively recorded. A total <strong>of</strong> three knees in<br />

three patients out <strong>of</strong> 3,151 knees sustained a bearing spinout at an<br />

average four-year follow up. One <strong>of</strong> these patients (who dislocated<br />

at four weeks following a fall) was successfully treated with closed<br />

reduction and bracing. The other two patients (who dislocated at<br />

three and four months respectively) were treated with conversion<br />

to a posterior stabilized fixed bearing design. For the group overall,<br />

the average postoperative ROM was 2 to 120 degrees and the average<br />

postoperative alignment was 3.1 degrees <strong>of</strong> valgus. Postoperative<br />

knee score improved from 42 to 90. With appropriate surgical<br />

technique, the risk <strong>of</strong> bearing spinout is very low in this large series<br />

at minimum five-year follow up. Surgeons should feel confident that<br />

this is a rare complication <strong>of</strong> using this rotating platform device.<br />

posteR No. p147<br />

Novel Protocol For Outpatient Management Of Warfarin<br />

Prophylaxis Following Total Joint Arthroplasty<br />

Thomas L Bernasek, MD, Tampa, FL<br />

Ted William Parcel, DO, Denver, NC<br />

Kenneth A Gustke, MD, Temple Terrace, FL<br />

Steven Thomas Lyons, MD, Tampa, FL<br />

Tammy King, Tampa, FL<br />

Katheryne Downes, MPH, Tampa, FL<br />

Carlos J Lavernia, MD, Coral Gables, FL<br />

The study evaluates a formula-based Warfarin dosing protocol for<br />

total joint patients. This retrospective study evaluates postoperative<br />

patients on a Warfarin protocol for deep vein thrombosis (DVT)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


prophylaxis attempting to maintain international normalized ratio<br />

(INR) between 1.9 and 3.0. A total <strong>of</strong> 494 post-operative patient flow<br />

sheets were evaluated from date <strong>of</strong> discharge through completion <strong>of</strong><br />

Warfarin therapy. Exclusions included patients monitored by primary<br />

physicians or cardiologists, those discharged to nursing facilities<br />

(n=68), patients with insufficient data (n=16) and noncompliant<br />

patients (n=63). A total <strong>of</strong> 282 patients were available for analysis.<br />

During a minimum <strong>of</strong> a 21-day course <strong>of</strong> therapy, 50% <strong>of</strong> patients<br />

fell within target range and 40% <strong>of</strong> patients fell within + 0.3 <strong>of</strong><br />

the therapeutic range. Eight patients (3%) were re-admitted to the<br />

hospital, two for pulmonary embolism and six for unknown cause.<br />

Three patients (1%) received a Vitamin K injection for elevated<br />

INR values. Eleven patients (4%) required physician adjustment to<br />

dosage. This formula maintained INR values + 0.3 units in 90% <strong>of</strong><br />

patients. A total <strong>of</strong> 4% <strong>of</strong> patients required manual adjustment <strong>of</strong><br />

their Warfarin dose.<br />

posteR No. p148<br />

Use Of An All-Poly Tibial Component In Obese Patients<br />

Does Not Affect Survivorship 7 Years<br />

David F Dalury, MD, Baltimore, MD<br />

Kimberly K Tucker, MD, Oro Valley, AZ<br />

Mary Jo Adams, BSN, Towson, MD<br />

In the United States, the number <strong>of</strong> obese patients has increased<br />

markedly over the last four decades and this trend continues. Metal<br />

backed total knee replacement (TKR) has been shown to be an<br />

effective treatment modality for osteoarthritis <strong>of</strong> the knee in obese<br />

patients. The purpose <strong>of</strong> this study is to review our experience with<br />

use <strong>of</strong> an all-poly tibia in obese patients. Between 1996 and 2002,<br />

378 all-polyethylene tibial components were placed in 273 patients.<br />

Of these, 125 all-poly tibias in 90 patients had a body mass index<br />

>30 and were thus characterized as being obese. Average age <strong>of</strong> the<br />

cohort was 76 years (range 61-90). All TKRs were crutiate-retaining,<br />

tricompartmental knees. Patients were followed for a minimum<br />

seven years (average 10.3 years). Of the original 90 patients and<br />

125 knees, 24 patients (33 knees) were deceased and 13 patients<br />

(17 knees) were lost to follow up. Final study group was 53 patients<br />

and 75 knees. Patients were evaluated using the Knee Society Scoring<br />

System (KSS) and serial radiographs were evaluated. At a minimum<br />

seven-year follow up (range 7-14 years), KSSs had improved from<br />

46.4 to 93.2. Radiograhic analysis revealed radiolucencies in 25%<br />

<strong>of</strong> knees. All radiolucencies were


posteR No. p151<br />

Wear Rate in a Series <strong>of</strong> 60 Rotating Platform Knee<br />

Bearings<br />

John H Currier, MS, Hanover, NH<br />

John P Collier, DE, Hanover, NH<br />

Michael B Mayor, MD, Hanover, NH<br />

Barbara H Currier, MChE, Hanover, NH<br />

Jennifer Caitlin Huot, Hanover, NH<br />

Douglas Van Citters, PhD, Hanover, NH<br />

Rotating platform (RP) knees aim to address the problems <strong>of</strong><br />

loosening and rotational mal-alignment, but a potential disadvantage<br />

is the addition <strong>of</strong> the large backside articular surface. Measurement<br />

<strong>of</strong> retrieved components provides insight into the wear rate <strong>of</strong> this<br />

RP design. A series <strong>of</strong> 60 retrieved RP knee bearings were analyzed<br />

for damage and measured (through-thickness) for total wear. Average<br />

in vivo duration was 31 months (range 0.4 to 105). A total <strong>of</strong> 23%<br />

(14/60) were curved articular design; 77% (46/60) were stabilized<br />

articular design. Linear wear ranged from -0.04 to 0.25 mm (mean<br />

0.07), and increased with time in vivo (Spearman’s rho = 0.716,<br />

p 0.05 mm/yr). The dual, linear<br />

motion articulations <strong>of</strong> the RP design resulted in a low wear rate and<br />

associated debris generation.<br />

posteR No. p152<br />

Patellar Thickness and Range Of Motion in Primary<br />

Total Knee<br />

Carlos J Lavernia, MD, Coral Gables, FL<br />

Jose Carlos Alcerro, MD, Miami, FL<br />

Juan S Contreras, Miami, FL<br />

Mark Rossi, PhD, Miami, FL<br />

Overstuffing <strong>of</strong> the joint after total knee arthroplasty (TKA) is thought<br />

to be a cause <strong>of</strong> limited flexion. Our objective was to study the effects<br />

<strong>of</strong> patellar thickness on postoperative range <strong>of</strong> motion (ROM) and<br />

patient satisfaction. Two hundred patients undergoing primary<br />

TKA were studied. Patellar thickness was measured intraoperatively<br />

before and after patellar resection. Patients were divided according<br />

to postoperative total patellar thickness. Each patient was assessed<br />

preoperatively and at minimum two year’s mark for passive and<br />

active ROM. Difference in knee active flexion (KAF), knee passive<br />

flexion (KPF), knee active extension (KAE) and knee passive<br />

extension (KPE) were assessed using ANOVA. A Pearson product<br />

moment was also calculated to assess the relationship between levels<br />

<strong>of</strong> preoperative patellar thickness with the four ROM assessments.<br />

Independent t-tests were used to assess for differences in the KAF<br />

and KPF. There was no significant difference between groups based<br />

on preoperative patellar thickness for each <strong>of</strong> the ROM assessments<br />

(p range: 0.22 to 0.41). Results were similar at follow up for all<br />

postoperative patellar thickness (p range: 0.47 to 0.69). Patellar<br />

thickness was poorly correlated to ROM preoperatively (range: 0.001<br />

to 0.11) and postoperatively (range: 0.07 to 0.09). Postoperative KAF<br />

and KPF along with postoperative patellar thickness did not differ<br />

among those individuals who had 110° <strong>of</strong> KPF before the<br />

procedure. Maintaining a patellar resection between ±3.5 mm <strong>of</strong> its<br />

initial patellar thickness provides satisfactory results and does not<br />

556<br />

affect postoperative range <strong>of</strong> motion after primary total knee.<br />

posteR No. p153<br />

Knee Arthroplasty Rehabilitation: Comparing<br />

Conventional Therapy to a Music Rehabilitation Video<br />

David A Fisher, MD, Indianapolis, IN<br />

Edward J Hellman, MD, Indianapolis, IN<br />

Sanford S Kunkel, MD, Indianapolis, IN<br />

Joseph C Randolph, MD, Indianapolis, IN<br />

Rising costs and limited access to services has led to the search for<br />

equally effective alternative treatments, including post-operative knee<br />

rehabilitation. We conducted a prospective, randomized controlled<br />

trial to see if patients who used a music exercise video following their<br />

knee surgery would demonstrate equivalent outcomes, satisfaction<br />

and decreased costs compared to conventional physical therapy.<br />

We randomized 100 patients undergoing total knee (58) and unicompartmental<br />

arthroplasty (42) into a video group or control<br />

group. The video group used a music exercise video following their<br />

surgery. The control group followed conventional in-home or outpatient<br />

physical therapy. Knee Society scores were determined at preop,<br />

six-week and six-month intervals, along with patient satisfaction<br />

ratings. The scorekeepers were blinded as to treatment group.<br />

Physical therapy costs were extrapolated. Six-month Knee scores<br />

were 90.9 (+/-8.7) and 92.1 (+/-9.1) for the control and video groups<br />

respectively (p=.5841). Improvement from pre op knee scores were<br />

+38.7 (+/-13.6) and +38.1 (+/-15.1)(p=.2442) respectively, and were<br />

statistically equivalent within 0.5 standard deviation (p=.0459).<br />

Function score was 82.1 (+/-16.7) and 77.4 (+/-19.3) at six months<br />

(p=.3778) respectively. Overall patient satisfaction was 4.7 (+/-0.5)<br />

and 4.7 (+/-0.5) and were statistically equivalent within 0.5 points<br />

(p


A control activity dataset was collected on 25 healthy subjects. , The<br />

knee monitoring system successfully provided monitoring data that<br />

delineated progress in ROM and compliance with the rehabilitation<br />

program to varying degrees. Patients tolerated the device throughout<br />

all collection sessions. A relationship between compliance and<br />

progress was evident based on the completion <strong>of</strong> the prescribed<br />

rehabilitation protocol. As expected, ROM and knee excursion<br />

events increased with time postop. Knee activity and ROM at day 10<br />

was positively related to maximal ROM at the final time point. Given<br />

expected increases in TKA procedures, development <strong>of</strong> an efficient<br />

and efficacious method to monitor patient progress and compliance<br />

during the postoperative period is critically needed. Our study<br />

demonstrates the feasibility <strong>of</strong> monitoring patient activity, progress<br />

with ROM and compliance with the postoperative rehabilitation<br />

program after TKA.<br />

posteR No. p155<br />

Return to Theatre following Lower Limb Arthroplasty<br />

Before and After the Introduction <strong>of</strong> Rivaroxaban<br />

Cyrus D. Jensen, MB BS, MRCS, New Castle Upon Tyne,<br />

United Kingdom<br />

Andrew Steval, MB BS<br />

Paul Francis Partington, MD, Newcastle Upon Tyne,<br />

United Kingdom<br />

Mike R Reed, MBBS MD, Northumberland, United Kingdom<br />

Scott Muller, MBBS MD, FRCS, Northumberland,<br />

United Kingdom<br />

Rivaroxaban has been recommended for routine use as a<br />

thromboprophylactic agent in patients undergoing lower limb<br />

arthroplasty. Trials supporting its use have not fully evaluated the<br />

risks <strong>of</strong> wound complications caused by rivaroxaban. This study <strong>of</strong><br />

1,048 total hip/knee replacements observes the return to theater<br />

(RTT) rates and infection rates before and after the change from a low<br />

molecular weight heparin (tinzaparin) to rivaroxaban as the chemical<br />

thromboprophylactic agent <strong>of</strong> choice in lower limb arthroplasty<br />

patients. During a 13-month period, 489 consecutive lower limb<br />

arthroplasty patients received post-operative tinzaparin. The next 559<br />

consecutive patients received rivaroxaban as thromboprophylaxis<br />

against venous thromboembolism (VTE.) Nine <strong>of</strong> the 489 patients in<br />

the control (tinzaparin) group (1.8%, 95% CI 0.9-3.5%) returned to<br />

theater with wound complications within 30 days post-operatively,<br />

compared with 22 out <strong>of</strong> 559 patients in the rivaroxaban group<br />

(3.94%, 95% CI 2.6-5.9%.). This increase was statistically significant<br />

(p


the 90-days showed significantly lower in Group 1 than in Group 2<br />

(p = 0.001). The most common side effect with regional anesthesia is<br />

hypotension which might lead to impairment <strong>of</strong> coronary perfusion<br />

and result in myocardial ischemia. Prolonged supine on bed for<br />

six hours to prevent postdural puncture headache and hematoma<br />

might cause formation <strong>of</strong> thrombus. The attacks <strong>of</strong> hypotension or<br />

formation <strong>of</strong> thrombus after SA might inflict the risk factors <strong>of</strong> CHD.<br />

Patients underwent TKA had potentially increased risks <strong>of</strong> CHD in<br />

SA compared with GA.<br />

posteR No. p158<br />

MRI Findings <strong>of</strong> Osteonecrosis <strong>of</strong> the Knee: Differences<br />

<strong>of</strong> Steroid-Induced and Idiopathic ON<br />

Koh Shimizu, MD, Chiba, Japan<br />

Sara Shimizu, MD, Chiba, Japan<br />

Masatsugu Yamagata, MD, Ichihara, Japan<br />

Junichi Iwasaki, MD, Ichihara City, Chiba, Japan<br />

An universally accepted cause <strong>of</strong> idiopathic necrosis has yet to be<br />

established. Fracture has been suggested to be the cause <strong>of</strong> idiopathic<br />

necrosis from pathological findings; however, these studies did<br />

not include MRI findings. We aim to investigate the cause <strong>of</strong><br />

osteonecrosis (ON) by detailed MRI analysis and to evaluate the<br />

difference between steroid-induced and idiopathic necrosis. MRI<br />

and X-ray analyses were performed in 301 knees <strong>of</strong> 185 patients (250<br />

steroid-induced ON knees, 51 idiopathic ON knees). Average age was<br />

39 years in steroid-induced and 71 years in idiopathic ON. Bilateral<br />

ON were observed in 114 <strong>of</strong> 136 patients with steroid-induced and<br />

in two <strong>of</strong> 49 patients with idiopathic ON. In steroid-induced cases,<br />

multiple necroses were common (132/136 patients) and most <strong>of</strong><br />

the lesions demonstrated a “band pattern” and necroses occurred<br />

most frequently in the lateral femoral condyle, 79%; followed by the<br />

femoral diaphysis, 53%; medial femoral condyle, 46%. In idiopathic<br />

cases, multiple necroses were rare (three/49 cases) and most <strong>of</strong> the<br />

lesions demonstrated a “diffuse pattern” and necroses occurred<br />

most frequently in the medial condyle, 98%, but the shape <strong>of</strong> which<br />

was very similar to steroid-induced ON. In idiopathic ON, fracture<br />

was not evident in MRI findings. Steroid-induced ON is thought to<br />

be caused by obliteration <strong>of</strong> terminal vessels <strong>of</strong> the bone marrow.<br />

Idiopathic ON is thought to develop from mechanical stress applied<br />

to an ischemic environment; moreover, no evidence <strong>of</strong> fracture was<br />

evident on MRI.<br />

posteR No. p159<br />

Early MRSA-infected TKA can be Treated with<br />

Successful Clinical Results Comparable to non-MRSA<br />

Ab-Rahman Shaifuzain, MBBS, Kota Bharu, KELANT Malaysia<br />

Ngai-Nung Lo, MD, Singapore, Singapore<br />

AS M Mashfiqul, FRCS<br />

Shi-lu Chia, MBBS, Singapore, Singapore<br />

Pak Lin Chin, FRCSEd, Singapore, Singapore<br />

Seng-Jin Yeo, FRCS, Singapore, Singapore<br />

Moi-Lin Lingg, MBBS<br />

Methicillin-resistant Staphylococcus aureus (MRSA) is becoming an<br />

increasingly common pathogen following joint prosthesis surgery.<br />

Previous studies show poorer outcomes following MRSA infection<br />

<strong>of</strong> joint replacement. We compared treatment outcomes <strong>of</strong> early<br />

MRSA infections (0.05). Overall<br />

successful surgical outcome <strong>of</strong> MRSA group was 92% and the non-<br />

MRSA group 77% (p>0.05). There was no significant difference in<br />

the KSS and SF-36 scores when compared between the two groups <strong>of</strong><br />

successfully treated TKAs (p>0.05). Results suggest that early MRSAinfected<br />

TKA patients respond poorer to debridement and prosthesis<br />

retention. Staged reimplantation may be a better primary treatment<br />

option. Ultimately, successful surgical and functional outcomes are<br />

comparable to that <strong>of</strong> non-MRSA infected TKA patients.<br />

posteR No. p160<br />

The Demographic Influence On Oxford Knee Scoring:<br />

Fact Or Fiction?<br />

Ali Ghoz, MB BCH MRCS MRCS(Ed), Leeds, West Yorkshire,<br />

United Kingdom<br />

Bassel El-Osta, MB BCh, London, United Kingdom<br />

Christopher Mark Andrews, Mr, North Yorkshire,<br />

United Kingdom<br />

The Oxford Knee Score (OKS) is a validated scoring system. Studies<br />

have suggested that the score is influenced by demographic differences<br />

between patients. The aim <strong>of</strong> this study was to further assess this<br />

using a large number <strong>of</strong> patients. Preoperative, three months and<br />

one, two, five and 10 years postoperative OKS were collected from<br />

1,636 patients from six distinct demographic locations undergoing<br />

total knee replacement (TKR) over 12 years under the care <strong>of</strong> seven<br />

consultants. The scores were analyzed to test whether age, postcode,<br />

sex, time or consultant had any significant effects on the outcome.<br />

No significant difference in outcome was found between the six<br />

locations. This was also the case when different consultants were<br />

compared. In this study, female patients had higher scores at both<br />

three and 12 months (significance p=0.011 and 0.044 respectively).<br />

Age <strong>of</strong> patient was also found to be <strong>of</strong> borderline significance when<br />

determining the post-operative scores. There was minimal change<br />

in the OKS over time. This large patient sample study shows that<br />

the Oxford Knee Score in post-operative patients is not as heavily<br />

influenced by demography as previously suggested. The results show<br />

that patients who are older and/or male will have better outcomes<br />

from TKR. Individual surgeons do not significantly affect the outcome<br />

although some surgeons may have better results when age <strong>of</strong> patient<br />

is taken into account. Finally, post code, life style and time have no<br />

significant influence on the outcome.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


posteR No. p161<br />

Incidence, Predictors And Effects Of Postoperative<br />

Flexion Contracture In TKA For Asian Patients<br />

In Jun Koh, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Kil Jae Lee, MD<br />

Kyung-Hag Lee, MD, Seongnam-Si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Byung June Chung, MD, Seoul, Republic <strong>of</strong> Korea<br />

Hyung Joon Cho, MD, Seongnam, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Eun Seok Seo, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Postoperative flexion contracture (FC) can compromise the functions<br />

<strong>of</strong> a replaced knee and be the cause <strong>of</strong> residual anterior knee pain<br />

after total knee arthroplasty (TKA). In our practice for Korean<br />

patients who typically present with severe FC and yet maintained<br />

maximum flexion, it is frequent to have much larger flexion gap than<br />

extension gap despite rigorous s<strong>of</strong>t tissue balancing and additional<br />

distal femur resection. In theory, a PE insert to fit the flexion gap in<br />

a knee with a larger flexion gap may lead to postoperative FC and<br />

one to fit the extension gap may lead to postoperative FC. Therefore,<br />

surgeons <strong>of</strong>ten face a challenging scenario between the risk for<br />

residual FC and the risk for flexion instability when selecting a PE<br />

insert for a knee with a larger flexion gap than extension gap. To<br />

provide helpful clues for the challenging scenarios, we attempted to<br />

determine the incidence and predictors for postoperative FC and to<br />

explore how detrimental the occurrence <strong>of</strong> FC is to the functions <strong>of</strong><br />

a replaced knee. A retrospective review <strong>of</strong> 911 TKAs for osteoarthritic<br />

patients was carried out to identify the knees with a postoperative<br />

FC (5° or greater). To determine the predictors for the occurrence <strong>of</strong><br />

postoperative FC, multivariate regression analyses were done for the<br />

demographic factors (gender, age, body mass index), preoperative<br />

status (motion arc, AKS scores, PF scores, WOMAC, SF-36) and<br />

surgical factors (difference in extension and flexion gaps, whether<br />

posterior cruciate ligament retained or substituted, implant type -<br />

fixed bearing vs. mobile bearing, whether unilateral or bilateral<br />

procedures, postoperative coronal limb alignment, degree <strong>of</strong><br />

posterior slope <strong>of</strong> tibial component). Clinical outcomes were<br />

compared between the knees without and with FC. Of the 911 knees,<br />

there were 26 knees (2.9%) with five or more <strong>of</strong> FC (5° in eight, 10°<br />

in 15 and 15° in three). Mulitivariate regression analyses found that<br />

preoperative FC (odds raio=1.38 per 5° increase) and anterior knee<br />

pain (odds ratio=1.85 per one point decrease) were the predictors for<br />

the occurrence <strong>of</strong> postoperative FC. Compared to the knees with no<br />

postoperative FC, the knees with postoperative FC had less maximum<br />

flexion (125 vs. 133, p = 0.009), poorer AKS knee score (91 vs. 95,<br />

p


temperature to a peak corresponding to the level <strong>of</strong> ESR at the range<br />

<strong>of</strong> 2.5- 4.5°C. At 26-week follow up, both groups still had a mean<br />

<strong>of</strong> 1.0°C elevated temperature; however, there were significantly<br />

similarly improved KS clinical score (p


posteR No. p167<br />

Navigation Does Not Improve Radiographic Sagittal<br />

Alignment <strong>of</strong> a Femoral Component in TKA<br />

Byung June Chung, MD, Seoul, Republic <strong>of</strong> Korea<br />

Yong-Bum Park, MD, Seoul, Republic <strong>of</strong> Korea<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Hyung Joon Cho, MD, Seongnam, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Eun Seok Seo, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

In Jun Koh, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Kil Jae Lee, MD<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Despite well-known improvement in coronal alignment <strong>of</strong> the<br />

femoral component, variable results have been published on<br />

the sagittal alignment <strong>of</strong> the femoral component after total<br />

knee arthroplasty (TKA). During computer-assisted TKA, sagittal<br />

alignment <strong>of</strong> a femoral component is established by mechanical axis<br />

identified by navigation system, but radiographic sagittal alignment<br />

is measured with reference to anatomical axes <strong>of</strong> the distal femur.<br />

We asked whether the application <strong>of</strong> navigation technology could<br />

improve radiographic alignment <strong>of</strong> the femoral component in<br />

the sagittal plane. In 196 knees undergoing TKA (navigated=97,<br />

conventional=99), femoral component flexion angles with reference<br />

to two anatomical references were measured on lateral radiographs.<br />

Anatomical data <strong>of</strong> patients including deviation between anatomical<br />

and mechanical axis, femoral bowing and femoral length were<br />

measured in preoperative radiographs. Univariate and multivariate<br />

regression analyses were carried out to identify the influencing factors<br />

on the sagittal alignment <strong>of</strong> the femoral component. No difference<br />

was found in radiographic sagittal alignment <strong>of</strong> femoral component<br />

in navigation and conventional group, having wide ranges <strong>of</strong> data<br />

in both groups. Deviation between anatomical and mechanical axis<br />

and femoral bowing were strongly associated with sagittal alignment<br />

<strong>of</strong> femoral component in navigation TKA. This study demonstrates<br />

that image-free navigation does not improve radiographic sagittal<br />

alignment with reference to anatomical references. We also found<br />

that deviations between mechanical axis and anatomical references<br />

<strong>of</strong> the femur inherently cause the variability <strong>of</strong> femoral component<br />

position in postoperative radiographic evaluation. Future studies are<br />

warranted to elucidate the clinical implications <strong>of</strong> the lack <strong>of</strong> sagittal<br />

alignment improvement in navigated TKAs.<br />

posteR No. p168<br />

Anterior Border Of The Tibia Can Be Used As Reference<br />

For Extramedullary Alignment Guide In TKA<br />

Shuichi Matsuda, MD, Fukuoka, Japan<br />

Shingo Fukagawa, MD, Fukuoka, Japan<br />

Hiroaki Mitsuyasu, MD<br />

Ken Okazaki, MD, Fukuoka, Japan<br />

Yasutaka Tashiro, MD, PhD<br />

Yukihide Iwamoto, MD, Fukuoka, Japan<br />

Anterior border <strong>of</strong> the tibia has been used reference for installing<br />

an extramedullary guide in total knee arthroplasty (TKA). However,<br />

it has not been fully evaluated about appropriate references on the<br />

anterior border <strong>of</strong> the tibia for accurate positioning <strong>of</strong> the guide. A<br />

total <strong>of</strong> 101 osteoarthritic knees in 85 patients with varus deformities<br />

were included for this study. Computed tomographic images <strong>of</strong><br />

561<br />

the entire tibia were obtained prior to TKA. Measurements were<br />

performed using three-dimensional imaging s<strong>of</strong>tware. We identified<br />

six anatomical landmarks: the medial border, medial one-third <strong>of</strong><br />

the patellar tendon attachment, and the most anterior points <strong>of</strong> the<br />

tibia at the level <strong>of</strong> the proximal one-fourth, proximal one-third,<br />

distal one-third and distal one-fourth. The relationship between the<br />

lines connecting the two <strong>of</strong> these points and the mechanical axis was<br />

evaluated in the coronal plane. The mean angles between each <strong>of</strong><br />

the eight determined axes and the mechanical axis varied from 3.2°<br />

varus to 2.1° valgus. The line connecting the medial one-third <strong>of</strong> the<br />

patellar tendon attachment and the distal one-fourth <strong>of</strong> the anterior<br />

border was highly consistent and almost parallel to the mechanical<br />

axis (0.0 ± 0.7°). The line connecting medial third <strong>of</strong> the patellar<br />

tendon attachment and the distal one-fourth <strong>of</strong> the anterior border<br />

<strong>of</strong> the tibia was almost parallel to the mechanical axis. This axis can<br />

be a candidate for reference <strong>of</strong> extramedullary guide in total knee<br />

arthroplasty.<br />

posteR No. p169<br />

Do We Know What Makes a Good Total Knee?<br />

Gwo-Chin Lee, MD, Philadelphia, PA<br />

Paul A Lotke, MD, Gladwyne, PA<br />

Surgeons generally agree on what they want to achieve when doing<br />

a total knee arthroplasty (TKA). However, we do not know which<br />

goals are correct, important or irrelevant. We asked if a surgeon can<br />

accurately predict success <strong>of</strong> a TKA at the time <strong>of</strong> surgery. We reviewed<br />

1,100 consecutive primary TKAs performed by a single surgeon. The<br />

surgeon intra-operatively recorded his impression <strong>of</strong> the quality <strong>of</strong><br />

surgical success and the degree <strong>of</strong> difficulty on 1-10 point scales. At<br />

an average <strong>of</strong> 48 months (24-60) these scores were correlated to the<br />

clinical outcomes with the Knee Society (KS) clinical and functional<br />

scores. There were 142 patients with success scores <strong>of</strong> less than<br />

eight points. Of these, 15 were analyzed separately because there<br />

scores were less than 6.5 and all associated with clear and obvious<br />

deficiencies which would affect outcomes. There was no difference<br />

in the final clinical outcomes, nor degree <strong>of</strong> difficulty scores, between<br />

the 954 patients with more than, and the 127 patients with less<br />

than eight points on the intra-operative success scores. The mean<br />

KS clinical and functional scores for these 127 patients were 90<br />

(50-98) and 89 (40-95) respectively (p=0.62, p=0.47). There was a<br />

difference, however, in the clinical outcomes in the 15 patients with<br />

intra-operative success scores less than 6.5 points (mean KS clinical<br />

88 (65-90) (p=0.04) and functional 67 (30-80)(p


the symptoms associated is unclear. In a prospective pilot study, we<br />

hypothesized that significant weight loss via bariatric surgery will<br />

provide a beneficial clinical effect to patients with knee pain in the<br />

setting <strong>of</strong> osteoarthritis. Ten morbidly obese patients with knee pain<br />

and radiographic osteoarthritis were evaluated prior to undergoing<br />

gastric bypass surgery and were followed for one year after surgery.<br />

Visual analogue scale (VAS) pain scores, International Knee<br />

Documentation Committee (IKDC) scores and Western Ontario<br />

and McMaster University Osteoarthritis Index (WOMAC) and Short<br />

Form (SF-12) questionnaires were compared preoperatively and<br />

at one year postoperatively. The patients in our study, on average,<br />

lost 51 pounds at one year postoperatively following gastric bypass<br />

surgery. VAS scores improved from 4.7 preoperatively to 3.8 at one<br />

year postoperatively. WOMAC physical function and pain subscores<br />

both improved from 9.4 and 37 to 6.8 and 29.8, respectively.<br />

The average SF-12 score improved from -18.7 to -0.3 at one year<br />

postoperatively. The average IKDC score did not improve following<br />

surgery, decreasing from 49 to 43.7. With surgery-assisted weight<br />

loss, patients may experience improvement in knee pain. However,<br />

there appears to be irreparable damage from being morbidly obese<br />

that may limit improvement in knee pain despite significant weight<br />

loss.<br />

posteR No. p171<br />

Blood Loss Reduction In Total Knee Arthroplasty:<br />

Tranexamic Acid vs Mechanical Flexion Technique<br />

Dr Pierluigi Antinolfi, Perugia, PG Italy<br />

Bernardo Innocenti, PhD, Leuven, Belgium<br />

Auro Caraffa, MD, Sarnan, IT Italy<br />

Giuliano Cerulli, MD, Perugia, Italy<br />

Total knee arthroplasty (TKA) may be associated with considerable<br />

postoperative blood loss and several techniques are commonly<br />

applied to reduce its volume. A prospective comparative randomized<br />

study was performed comparing the reduction in blood loss between<br />

a control group (no treatment) and a group <strong>of</strong> patients following<br />

either a local administration <strong>of</strong> tranexamic acid or a mechanical<br />

post-operative knee flexion. A second objective was to evaluate the<br />

impact <strong>of</strong> the techniques on the transfusion needs in patients. Only<br />

primary TKA patients were considered in this study; the same TKA<br />

was implanted in all the patients. Exclusion criteria were: tranexamic<br />

acid allergy, the use <strong>of</strong> pharmacological anticoagulant therapy,<br />

previous knee surgery and renal failure. For each patient the following<br />

parameters were investigated: the blood loss volume, the hemoglobin<br />

and hematocrit concentrations and the blood transfusion needs.<br />

The results show that the administration <strong>of</strong> systemic tranexamic<br />

acid reduces both the blood loss (with 40.5%) and the transfusion<br />

needs (with 57%) significantly (p0.05). Moreover,<br />

this treatment did not reduce the transfusion needs compared to<br />

the control group. Incidence <strong>of</strong> complications was not influenced<br />

by any <strong>of</strong> the treatments. The use <strong>of</strong> tranexamic acid, compared<br />

to mechanical knee flexion, significantly reduces blood loss and<br />

transfusion needs, without wound complications or symptomatic<br />

deep vein thrombosis (DVT).<br />

562<br />

posteR No. p172<br />

Revision Knee Arthroplasty Using Morselized Bone<br />

Graft With Cementless Stemmed Prostheses<br />

Sammy A Hanna, MRCS, London, United Kingdom<br />

William Aston, FRCS, London, United Kingdom<br />

Nicholas De Roeck, FRCS<br />

David Powles, MD, FRCS<br />

Dealing with bone loss in revision knee arthroplasty is a challenging<br />

problem despite the array <strong>of</strong> reconstructive options available to<br />

surgeons to address this. The aim <strong>of</strong> this study was to analyze the<br />

results <strong>of</strong> using morselized loosely-packed cancellous bone graft in<br />

combination with stemmed cementless total knee components in a<br />

group <strong>of</strong> patients with a failed primary knee replacement associated<br />

with moderate to severe bone loss. We identified and retrospectively<br />

reviewed 56 patients (56 knees), who had undergone revision knee<br />

surgery at our institution between 1999 and 2006. All had a failed<br />

primary total knee replacement with an Anderson <strong>Orthopaedic</strong><br />

Research Institute (AORI) grade (F1/2/3, T1/2/3) bone loss. Postoperative<br />

plain radiographs were assessed for the presence <strong>of</strong> nonprogressive<br />

radiolucencies, progressive radiolucencies, component<br />

migration and graft incorporation. Functional outcome was carried<br />

out pre and post-operatively using the Oxford Knee Score (OKS)<br />

system. There were 26 males and 30 females with a mean age <strong>of</strong> 68.3<br />

years at the time <strong>of</strong> operation. The mean follow up was 6.7 years<br />

(three to 10). The mean Oxford knee score significantly improved<br />

from 21.4 (36%) pre-operatively to 40.8 (68%) post-operatively<br />

(p


adiographs were reviewed for signs <strong>of</strong> loosening. All patients were<br />

followed for a minimum <strong>of</strong> two years. The mean follow up was 4.8<br />

years. At last follow up, the mean Oxford knee score was 34.2 (19-<br />

48). Seven knees (23%) in six patients required revision: three knees<br />

for infection (10%), two knees for aseptic loosening (7%), one knee<br />

for patellar instability (3%) and one knee for periprosthetic fracture<br />

(3%). The five-year survivorship for patients with TKA under age<br />

40 was 77%. Our results show increased complications and failure<br />

rate after total knee arthroplasty in this patient population. Implant<br />

survivorship in this series is lower compared to previously published<br />

series for primary total knee arthroplasty under the age <strong>of</strong> 55. Patients<br />

undergoing total knee arthroplasty under the age <strong>of</strong> 40 should be<br />

cautioned <strong>of</strong> the higher risk <strong>of</strong> failure and complications.<br />

posteR No. p174<br />

The Pharmacokinetics Of Cefazolin Bone Concentration<br />

In TKA After Tourniquet Inflation<br />

Koji Yamada, MD, Tokyo, Japan<br />

Fumiaki Tokimura, MD, Tokyo, Japan<br />

Hiroshi Okazaki, MD, Topkyo, Japan<br />

Toshikazu Tsuboi, MD, Tokyo, Japan<br />

Yasuo Oohori, MD, Tokyo, Japan<br />

Toru Iga, MD<br />

Sakae Tanaka, MD, PhD, Tokyo, Japan<br />

Hiroyuki Oka, MD<br />

Ko Matsudaira, MD, PhD<br />

Little is known about the effect <strong>of</strong> air tourniquet in antibiotic<br />

bone concentrations. The aim <strong>of</strong> this study was to investigate the<br />

pharmacokinetics <strong>of</strong> cefazolin bone concentration in total knee<br />

arthroplasty (TKA) after tourniquet inflation. Consecutive patients<br />

who had symptoms for the indication <strong>of</strong> primary TKA were<br />

screened for the study eligibility. Two grams <strong>of</strong> cefazolin was given<br />

intravenously before the incision. Two bone samples were collected<br />

from all subjects. Cancellous bone from posterior femoral condyle<br />

(PFC) and tibial plateau (TP) were obtained. All samples were<br />

taken before the tourniquet deflation. Those who had possibility<br />

<strong>of</strong> abnormal bone concentration, and who were given extra dose<br />

before the samples taken, were excluded. Samples were transported<br />

and assayed at the same laboratory. A total <strong>of</strong> 27 patients were<br />

enrolled. The mean bone concentration was 17.8±12.0 mg/g in PFC<br />

and 16.1±11.0 mg/g in TP, with no significant difference (P=0.71<br />

by Wilcoxon test). No apparent trend toward time dependency<br />

was observed when the results in two regions were combined<br />

(Y=16.6584+0.00498X, R2


posteR No. p177<br />

Microarray Analysis Of The Fat Pad In Knee OA And The<br />

Relationship With The Metabolic Syndrome<br />

Rajiv Gandhi, MD, Toronto, ON Canada<br />

Mark Takahashi, MD, Toronto, ON Canada<br />

Carl Virtanen<br />

J Rod Davey, MD, Toronto, ON Canada<br />

Khalid Syed, MD, Toronto, ON Canada<br />

Nizar Mahomed, MD, Toronto, ON Canada<br />

The role <strong>of</strong> the infra-patellar fat pad (IFP) in the knee joint<br />

inflammatory process <strong>of</strong> osteoarthritis (OA) is not well understood.<br />

The primary objective <strong>of</strong> this study was to examine the difference<br />

in gene expression patterns between diseased and control IFP<br />

samples. Twenty-nine disease IFPs and five control samples were<br />

harvested at the time <strong>of</strong> knee surgery. Total RNA was then extracted,<br />

labeled and hybridized to Illumina whole genome expression arrays<br />

(Human HT-12 v3 expression beadchip). Arrays were scanned and<br />

intensity <strong>of</strong> hybridization quantified. Arrays were checked for quality<br />

based on metrics in R/Bionconductor and subsequently imported<br />

into Genespring for further analysis. Individual probes displaying<br />

consistently low quality or signal intensity across all samples were<br />

removed from further study. Unsupervised analysis <strong>of</strong> all remaining<br />

probes and all samples using both principal components analysis or<br />

two-way hierarchical clustering showed groupings based on tissue<br />

source and disease. Deeper statistical analysis enabled us to find sets<br />

<strong>of</strong> genes that displayed differences between the two fat types. The 29<br />

IFPs demonstrated an elevation in the expression <strong>of</strong> adipokines such<br />

as adiponectin and leptin. Further, a statistically significant increased<br />

expression was seen for genes <strong>of</strong> adipogenesis that have relations<br />

to metabolic syndrome, such as peroxisome proliferator-activated<br />

receptor-³ ( PPAR-³), diacylglycerol acyltransferase 2 (DGAT2),<br />

cluster <strong>of</strong> differentiation (CD 36) and thyroid hormone responsive<br />

spot (THRSP) in the diseased fat pads as compared to the controls.<br />

Interestingly, a subset <strong>of</strong> five patients in the OA group appeared to<br />

consistently be more similar in gene expression to normal tissue.<br />

In conclusion, microarray analysis showed that the IFP from knees<br />

with OA demonstrate an increased expression <strong>of</strong> proinflammatory<br />

genes as compared to control samples, which may contribute to<br />

the disease process. In particular, we found an increased expression<br />

<strong>of</strong> the PPAR-³ gene in the disease IFP and this may represent a<br />

novel therapeutic target in OA. Interestingly, many <strong>of</strong> the genes<br />

upregulated in the disease IFP have relationships to the components<br />

<strong>of</strong> the metabolic syndrome and may suggest a metabolic pathway<br />

connecting these chronic diseases. Future work should be directed<br />

towards understanding the potential relationship between metabolic<br />

diseases such as diabetes, insulin sensitizing medications and joint<br />

inflammation in OA.<br />

posteR No. p178<br />

Comparison <strong>of</strong> Kinematics & Outcome after Posterior<br />

Stabilized and Ultracongruent Mobile Bearing TKA<br />

Sang-Min Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sahnghoon Lee, MD, Pittsburgh, PA<br />

Jak Jang, MD, Seoul, Republic <strong>of</strong> Korea<br />

Joon Kyu Lee, MD<br />

Sang Ho Shim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Myung Chul Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Recently highly conforming ultracongruent total knee arthroplasty<br />

(TKA) has been reintroduced with improved wear characteristics<br />

and lower complications. The purpose <strong>of</strong> the study was to assess<br />

564<br />

kinematics and clinical outcome <strong>of</strong> posterior stabilized (PS)<br />

and ultracongruent (UC) rotating-platform mobile bearing TKA.<br />

Ninety patients with primary osteoarthritis <strong>of</strong> the knee were<br />

randomized to undergo computer assisted TKA with PS (n=45) or<br />

UC (n=45) prostheses and were followed up for a minimum two<br />

years. The passive kinematic evaluation was performed before and<br />

after implantation with a navigation system. Three parameters <strong>of</strong><br />

tibi<strong>of</strong>emoral relationship (anterior/posterior translation, varus/<br />

valgus alignment and rotation) were recorded from 0° to 130° <strong>of</strong><br />

flexion. The patients were clinically and radiographically evaluated<br />

at final follow up. Paradoxical anterior translation <strong>of</strong> the femur was<br />

observed from 0° to 70° <strong>of</strong> flexion in PS (8.6 mm) and 0° to 85°<br />

in UC knees (10.2 mm, p=0.125). The distance <strong>of</strong> femoral roll-back<br />

was 6.6 mm and 6.5 mm, but never reached the starting point.<br />

Paradoxical internal rotation <strong>of</strong> the femur was found from 0° to 60°<br />

<strong>of</strong> flexion in PS (9.5°) and 0° to 46° in UC knees (6.0°, p=0.019).<br />

UC knees showed more external rotation <strong>of</strong> the femur during flexion<br />

from 0° to 130° (7.8:12.7, p=0.048). There was no significant<br />

difference in the maximal flexion (121.5°:121.9°, p=0.934), AKS<br />

knee scores (89.6:92.9, p=0.274), AKS function scores (75.0:82.0,<br />

p=0.234) and WOMAC index scores (20.7:15.9, p=0.135). There<br />

was no progressive radiolucent line or loosening in all knees. UC<br />

TKA showed similar anteroposterior translation and more femoral<br />

external rotation <strong>of</strong> earlier onset when compared to PS TKA. There<br />

was no difference in clinical outcome between two designs. UC TKA<br />

showed comparable kinematic and clinical results to PS TKA.<br />

posteR No. p179<br />

Partial Release <strong>of</strong> the PCL and its Kinematic Changes<br />

During Cruciate Retaining TKA<br />

William Michael Mihalko, MD, PhD, Memphis, TN<br />

John Medige, PhD, Buffalo, NY<br />

Deepthi Rachala, MS<br />

Thomas Duquin, MD, Buffalo, NY<br />

Debate continues as to whether total knee arthroplasty (TKA)<br />

kinematics is better with a posterior cruciate ligament (PCL)<br />

substituting (PS) or retaining (CR) design. This study looked at<br />

the kinematics <strong>of</strong> the knee with varying levels <strong>of</strong> PCL release <strong>of</strong>f <strong>of</strong><br />

the tibia to better understand what happens if the PCL undergoes<br />

iatrogenic partial release during TKA surgery and whether this roll<br />

back can be tracked utilizing a computer navigation system. Six<br />

fresh frozen cadaveric specimens were utilized and had the midshaft<br />

<strong>of</strong> the femur mounted in a testing jig. The anatomical registration<br />

was undertaken for utilization <strong>of</strong> an infrared tracking system. The<br />

anterior and posterior origin and insertion <strong>of</strong> the PCL was digitized<br />

and then the knee flexed through a quadriceps driven open chain<br />

mechanism with 45N <strong>of</strong> static hamstring load. The kinematic pr<strong>of</strong>ile<br />

was recorded for the intact, anterior cruciate ligament deficient knee<br />

as well as after release <strong>of</strong> the anterior one third, anterior two thirds<br />

and complete release <strong>of</strong> the PCL for comparison. Results showed<br />

that with progressive release <strong>of</strong> the PCL that the anterior points <strong>of</strong><br />

the PCL origin and insertion increased to a maximum with complete<br />

release. This was not found to be statistically significant until two<br />

thirds and complete release <strong>of</strong> the PCL had occurred (p=0.03 and<br />


posteR No. p180<br />

Bacterial Contamination <strong>of</strong> Surgical Scrubs; A<br />

Nosocomial Infection Risk?<br />

Chad A Krueger, MD, Fort Sam Houston, TX<br />

Clint Murray, MD, Fort Sam Houston, TX<br />

Katrin Mende, PhD<br />

Charles H Guymon, MA, Fort Sam Houston, TX<br />

Tad L Gerlinger, MD, San Antonio, TX<br />

The bacterial load within an operating room can contribute to perioperative<br />

infections. Our goal was to determine the bacterial burden<br />

and milieu <strong>of</strong> post-call scrubs. Thirty pairs <strong>of</strong> scrubs were swabbed<br />

in 10 locations (right and left axilla, inside and outside break<br />

pocket, crotch, pant line, inside and outside pant pocket, left and<br />

right thigh) on a per call basis. Samples were obtained prior to scrub<br />

wear and after 24 hours <strong>of</strong> continuous wear during call. All swabs<br />

were screened for aerobic gram-positive and gram-negative bacteria<br />

using standard microbiologic techniques. Bacteria underwent<br />

antimicrobial resistance testing and genetic relatedness by pulsedfield<br />

gel electrophoresis. A total <strong>of</strong> 41% (123 locations) <strong>of</strong> pre-call<br />

scrub samples were contaminated in comparison to 89% (268) <strong>of</strong><br />

post-call scrubs samples (p


two million cycles, all 12 polyethylene components were weighed<br />

and analyzed. The results showed no statistical difference between the<br />

6 and 8 mm components. A separate analysis comparing specifically<br />

6 vs. 8 mm lateral and 6 vs. 8 mm medial also revealed no statistical<br />

differences. There were no significant differences between the 6 and<br />

8 mm polyethylene components at two million cycles with respect<br />

to wear. This theoretically allows the surgeon to resect less bone at<br />

the index procedure thereby preserving more <strong>of</strong> the patients host<br />

bone. It was also appreciated that with the thinner components,<br />

the peripheral rim <strong>of</strong> the polyethylene contained the least amount<br />

<strong>of</strong> material. Following this study, it is recommended to repeat the<br />

study with the tibial component in several degrees <strong>of</strong> mal-rotation to<br />

assess the integrity <strong>of</strong> this rim with respect to mechanical strength.<br />

posteR No. p183 AlteRNAte pApeR<br />

Does Pre-Coating Total Knee Tibial Implants Affect The<br />

Risk Of Aseptic Revision?<br />

Stefano Alec Bini, MD, San Francisco, CA<br />

Yuexin Chen, BS, San Francisco, CA<br />

Monti Khatod, MD, Santa Monica, CA<br />

Liz Paxton, MA, San Diego, CA<br />

Pre-coating has been marketed as advantageous to long-term<br />

survivorship <strong>of</strong> cemented total knee implants. We hypothesize<br />

that pre-coating the tibia <strong>of</strong>fers no clinical advantage in short-term<br />

survivorship. Using a community based arthroplasty registry, we<br />

assessed the early, non infection related revision rates <strong>of</strong> two tibial<br />

tray components that are identical except that one is pre-coated<br />

(PC) and one is not pre-coated (NPC). In a Cox regression model<br />

we adjusted for diagnosis, age, gender, BMI, ASA score and femoral<br />

coupling design (high flex vs. standard and cruciate retaining vs.<br />

substituting). Between 2001 and 2009, 13,810 PC and 2,705 NPC<br />

tibial trays were implanted. At three-year follow up, cumulative<br />

survival <strong>of</strong> NPC tibias was higher than PC (99.5 vs. 98.7%, p


(within 40 days), acute hematogenous infections and chronic<br />

infections with 65, 42, and 33 joints in each subgroup, respectively.<br />

The average follow up was 36.6 months. Treatment failure was defined<br />

as the need for any subsequent surgical intervention for infection.<br />

Successful I&D was performed in 66 (47.1%) <strong>of</strong> the 140 joints.<br />

Successful treatment occurred in 47.7% (31/65), 59.5% (25/42)<br />

and 30.3% (10/33) for acute postoperative, acute hematogenous<br />

and chronic infections respectively. Multivariate analysis provided<br />

both chronic PJI and methicillin-resistant organisms as predictors <strong>of</strong><br />

failure (p=0.012 and p=0.017). No difference in success is observed<br />

between acute hematogenous and acute postoperative infections<br />

treated with I&D. Further, acute infections treated with I&D had a<br />

near two-fold likelihood <strong>of</strong> success compared to chronic infections.<br />

However, the success rate <strong>of</strong> this treatment is low regardless <strong>of</strong> timing<br />

and should be saved for a select group <strong>of</strong> healthy patients with a<br />

sensitive organism.<br />

posteR No. p187<br />

A Novel In Vivo Technique To Measure Patella Tracking<br />

Following Total Knee Replacement<br />

Andrew P Monk, MRCS, Oxford, United Kingdom<br />

David R Simpson, PhD, Oxford, United Kingdom<br />

Minsi Chen, PhD, Oxford, United Kingdom<br />

Stephen J Mellon, PhD<br />

Max Gibbons, FRCS, Oxford, United Kingdom<br />

David J Beard, DPhil, Oxford, United Kingdom<br />

Harinderjit Singh Gill, PHD, Oxford, United Kingdom<br />

David W Murray, MD, Oxford, United Kingdom<br />

Total knee replacement (TKR) is the standard treatment for endstage<br />

osteoarthritis when conservative measures have failed. Previous<br />

attempts to study coronal plane patell<strong>of</strong>emoral kinematics have<br />

suffered from the patella being obscured by the components and/or<br />

metal artifact. The aim <strong>of</strong> this study was to assess whether there was<br />

any significant difference in the patell<strong>of</strong>emoral kinematics between<br />

normal and replaced knees using ultrasound in combination with<br />

a motion capture laboratory. Thirty patients were recruited into<br />

two groups; normal healthy volunteers (normal), and TKR patients<br />

with and without the patella resurfaced (TKR). A 12-camera motion<br />

capture system was used to capture images <strong>of</strong> markers mounted on<br />

subjects’ legs and an ultrasound probe, providing coordinates for the<br />

patella and bony landmarks on tibial and femoral segments, during<br />

a squat exercise. At each flexion angle, patell<strong>of</strong>emoral kinematics<br />

were described relative to both the femur and tibia in six degrees <strong>of</strong><br />

freedom. The accuracy <strong>of</strong> the motion capture system is +/-0.29 mm.<br />

The accuracy <strong>of</strong> this technique registering the ultrasound images<br />

within the motion capture system is 2.54 mm. Early data shows<br />

medio-lateral movement <strong>of</strong> the patella between 0 and 90 degrees<br />

relative to the tibia was 6.09 mm for the normal group, and 1.12<br />

mm for the TKR group. The two groups showed different tracking<br />

patterns. Patella tendon angles: 11.4 degrees (normals), 4.1 degrees<br />

(TKR). Patella flexion angle: 8.56 degrees (normals), 6.97 degrees<br />

(TKR). Patella tilt: 9.8 degrees (normals), 3.53 degrees (TKR). Patella<br />

spin: 13.4 degrees (normals), 5.64 (TKR). We present a new, accurate,<br />

reliable in vivo technique for measuring six degrees <strong>of</strong> freedom<br />

patell<strong>of</strong>emoral kinematics. Our data suggest that many aspects <strong>of</strong><br />

patell<strong>of</strong>emoral kinematics are absent following TKR whether or not<br />

the patella is resurfaced.<br />

567<br />

posteR No. p188<br />

mRNA? Xpression Analysis Of Bcl2, Bax And Bcl2l12<br />

Apoptotic Genes In Osteoarthritis<br />

Georgios I Karaliotas, MD, MSc, Athens, Greece<br />

Konstantinos Mavridis, BSc<br />

Andreas Scorilas, Pr<strong>of</strong><br />

George Babis, MD, Athens, Greece<br />

Since osteoarthritis is primarily characterized by articular cartilage<br />

degeneration and chondrocyte loss, many studies have focused on<br />

the suggestion that cell death plays a pivotal role during disease<br />

progression. Although the role <strong>of</strong> apoptosis in cartilage pathobiology<br />

has not yet been fully clarified, the apoptotic BCL2 gene family<br />

is thought to be involved in the development <strong>of</strong> degenerative<br />

osteoarthritis. The purpose <strong>of</strong> the present study was the analysis<br />

<strong>of</strong> the mRNA expression pattern <strong>of</strong> classical members <strong>of</strong> the BCL2<br />

family, as well as <strong>of</strong> the recently cloned BCL2L12 in osteoarthritic<br />

cartilage. Eighty-five cartilage tissue samples were collected from<br />

patients undergoing reconstructive orthopaedic procedures.<br />

Utilizable total RNA was isolated from 28 samples and cDNA was<br />

produced via reverse transcription. The expression analysis <strong>of</strong> the<br />

apoptotic genes under study was conducted employing quantitative<br />

real-time PCR. The apoptosis-related genes BCL2, BAX and BCL2L12<br />

were found to be expressed, at the mRNA level, in cartilage tissue.<br />

The expression analysis revealed certain differences in the mRNA<br />

levels <strong>of</strong> BCL2, BAX and BCL2L12 between osteoarthritic (n=23)<br />

and non-osteoarthritic (n=5) cartilage specimens. More specifically,<br />

in osteoarthritic samples both the mRNA levels <strong>of</strong> the pro-apoptotic<br />

gene BAX and the novel gene BCL2L12 were elevated, whereas the<br />

ones <strong>of</strong> the anti-apoptotic gene BCL2 were downregulated compared<br />

to the non-osteoarthritic cartilage. Our preliminary results seem to<br />

implicate apoptosis further in the pathogenesis <strong>of</strong> osteoarthritis,<br />

through molecular mechanisms that include the aberrant expression<br />

<strong>of</strong> BCL2 gene family. Additional exploration <strong>of</strong> this procedure<br />

could reveal novel prognostic biomarkers and potential targets for<br />

therapeutic interventions in early stages <strong>of</strong> cartilage degeneration.<br />

posteR No. p189<br />

Can Patient Self-Reporting Accurately Capture<br />

Complication Rates Following Total Knee Arthroplasty?<br />

Craig Dushey, MD, New York, NY<br />

Lindsey Bornstein, New York, NY<br />

Michael M Alexiades, MD, Manhattan, NY<br />

Ge<strong>of</strong>frey H Westrich, MD, New York, NY<br />

Inherent problems exist in calculating post-operative complication<br />

rates from single center registries (presentation at other hospitals) or<br />

from administrative ICD-9 coded databases (inaccurate recording by<br />

non-physician administrators). We examined the ability <strong>of</strong> patient<br />

self-reporting to overcome these limitations and accurately convey<br />

the rates <strong>of</strong> complications following total knee arthroplasty (TKA).<br />

Data from 3,278 patients from a prospective total joint registry was<br />

used to investigate the rates <strong>of</strong> complications in the first six months<br />

following primary TKA between May 2007 and February 2009. All<br />

patients reporting deep venous thrombosis (DVT), pulmonary<br />

embolism (PE) or major bleeding were identified through a mailin<br />

survey. Complications were verified by review <strong>of</strong> imaging records<br />

and direct communication with patients by a surgeon. Complication<br />

rates were then calculated and concordance between patient selfreport<br />

and surgeon assessment for each complication was measured.<br />

Surgeon verified rates <strong>of</strong> DVT, PE, and major bleeding were 1.52%,<br />

0.49% and 0.25% respectively. When compared to the complication<br />

rates as reported by patients, concordance was 86.2% for DVT,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


84.2% for PE and 32% for major bleeding. A total <strong>of</strong> 54.5% <strong>of</strong><br />

complications were diagnosed and treated at the original operative<br />

hospital and 45.5% were diagnosed and treated at other institutions.<br />

Self-reported complications following TKA should be verified for<br />

accuracy by direct patient communication. Patient self-reporting<br />

was most accurate for determining the rate <strong>of</strong> DVT and PE and not<br />

as accurate for major post-operative bleeding. Our registry has the<br />

potential to overcome the limitations inherent in other methods <strong>of</strong><br />

complication rate determinations for select complications.<br />

posteR No. p190<br />

Clinical Results <strong>of</strong> Total Knee Arthroplasty in Patients<br />

with Skeletal Dysplasia<br />

Raymond H Kim, MD, Denver, CO<br />

Douglas A Dennis, MD, Denver, CO<br />

Giles R Scuderi, MD, New York, NY<br />

Jeffrey D Kim, BS<br />

David F Dalury, MD, Baltimore, MD<br />

Patients with skeletal dysplasia have multiple skeletal abnormalities<br />

which can also affect the knee. The purpose <strong>of</strong> this study was to evaluate<br />

the clinical results <strong>of</strong> total knee arthroplasty (TKA) in a series <strong>of</strong><br />

patients with five forms <strong>of</strong> skeletal dysplasia: pseudoachondroplasia,<br />

achondroplasia, multiple hereditary exostosis, spondyloepiphyseal<br />

dysplasia and osteogenesis imperfecta. Twenty-three total knee<br />

arthroplasties were performed on 14 patients between 1986 and<br />

2008. Preoperative diagnoses included pseudoachondroplasia in<br />

four patients (seven knees), achondroplasia in three patients (five<br />

knees), multiple hereditary exostosis in three patients (five knees),<br />

spondyloepipshyseal dysplasia in two patients (four knees) and<br />

osteogenesis in two patients (two knees). Clinical notes, operative<br />

records and radiographic data were reviewed. Minimum follow<br />

up was two years (average, 6.7 years; range, 2-24 years). At average<br />

follow-up <strong>of</strong> 6.7 years, no implants were radiographically loose.<br />

Average Knee Society Scores improved from 34.7 (range 10 to 60)<br />

to 83.5 (range 40 to 90) and Knee Society function scores improved<br />

from 49.8 (range 20 to 60) to 92.6 (range 60 to 100). Average flexion<br />

contractures improved from 4.3° (range 0 to 26°) to 2.0° (range 0<br />

to 10°) and flexion itself improved from 98.3° (range 45 to 130°)<br />

to 99.1° (range 80 to 120°). To our knowledge, this is the largest<br />

series reviewing clinical outcomes <strong>of</strong> total knee arthroplasty in<br />

skeletal dysplasia patients. Despite limited improvements in range<br />

<strong>of</strong> motion, total knee arthroplasty in patients with skeletal dysplasia<br />

can provide substantial pain and improved function.<br />

posteR No. p191<br />

Evaluation <strong>of</strong> TKA Performed With and Without<br />

Computer Navigation: A Bilateral TKA Study<br />

Derek R Johnson, MD, Parker, CO<br />

Douglas A Dennis, MD, Denver, CO<br />

Kirk Kindsfater, MD, Fort Collins, CO<br />

Raymond H Kim, MD, Denver, CO<br />

Obtaining accurate anatomic and mechanical alignment in total<br />

knee arthroplasty (TKA) is correlated with improved long-term<br />

results. Whether computer-assisted total knee arthroplasty (CAS-<br />

TKA) more reliably produces a neutral mechanical and anatomic<br />

alignment and improves functional outcomes over traditional<br />

total knee arthroplasty (T-TKA) remains debatable. This report<br />

evaluates the results <strong>of</strong> CAS-TKA vs. T-TKA in a series <strong>of</strong> patients who<br />

underwent bilateral TKA performed at the same surgical operation.<br />

Sequential bilateral TKA were performed on 54 patients utilizing<br />

CAS-TKA in one knee and T-TKA in the contralateral knee by two<br />

568<br />

fellowship-trained surgeons. A review and statistical analysis <strong>of</strong><br />

prospectively collected data was performed after a mean follow<br />

up <strong>of</strong> 2.6 years. There were no differences between CAS-TKA and<br />

T-TKA with regard to Knee Society Score (KSS) (p=0.30), range <strong>of</strong><br />

motion (ROM) (p=0.66), mean anatomic alignment (5.67º vs.<br />

5.21º, p=0.11), femoral component angle (5.48º vs. 5.33º, p=0.55),<br />

tibial component angle (89.90º vs. 89.66º, p=0.30) or mechanical<br />

axis (0.20º vs. 0.12º, p=0.80). There were significantly fewer<br />

alignment outliers in the CAS-TKA group with respect to anatomic<br />

alignment (3.7% vs. 17.0%, p=0.02), tibial component angle (0%<br />

vs. 7.5%, p=0.04), and mechanical axis alignment (6.1% vs. 20.4%,<br />

p=0.04). At early follow-up duration, there were no differences with<br />

regards to KSS, ROM or mean alignment between the two groups<br />

performed by high-volume, fellowship-trained total joint specialists.<br />

Use <strong>of</strong> computer navigation resulted in fewer outliers with regards<br />

to alignment. Long-term follow up will be required to assess the<br />

significance <strong>of</strong> these alignment variants.<br />

posteR No. p192<br />

Comparison Of The Tibi<strong>of</strong>emoral Rotational Alignment<br />

After Mobile Bearing And Fixed Bearing TKA<br />

Sahnghoon Lee, MD, Pittsburgh, PA<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Dongwook Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jak Jang, MD, Seoul, Republic <strong>of</strong> Korea<br />

Joon Kyu Lee, MD<br />

Sang-Min Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sang Ho Shim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Myung Chul Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

No anatomical landmark could be used as a reliable reference<br />

for the rotational alignment <strong>of</strong> the proximal tibia. The anatomic<br />

landmark for anteroposterior (AP) axis <strong>of</strong> the proximal tibia and its<br />

variability was investigated to evaluate whether a certain landmark<br />

could be used as a reference axis for proximal tibia after rotating<br />

platform mobile bearing (RP-MB) and fixed bearing (FB) total knee<br />

arthroplasties (TKAs). Eighty primary osteoarthritic knees were<br />

randomized to undergo RP-MB (Group A, n=40) or FB (Group B,<br />

n=40) TKAs and followed up for 37 and 36 months, respectively.<br />

The anteroposterior axes were defined for the distal femur, proximal<br />

tibia, ankle and each TKA component and their angles from the<br />

distal femoral AP axis were measured on reconstructed CT scans.<br />

Clinical and radiographic outcomes were evaluated at final follow<br />

up. The rotational position <strong>of</strong> the proximal tibia changed after RP-<br />

MB TKA (p=0.014) while it did not after FB TKA (p=0.133). The<br />

mean postoperative alignment <strong>of</strong> the tibia was different between<br />

the two groups (Group A: Group B = -2.9: -0.14, p=0.01) and its<br />

variability was significantly greater in group A (P


posteR No. p193<br />

Computer Assisted Total Knee Arthroplasty For<br />

Significant Tibial Deformities<br />

Ritesh Shah, MD, Chicago, IL<br />

Lalit Puri, MD, Glenview, IL<br />

Gregory Strohmeyer, MD, Albuquerque, NM<br />

The success <strong>of</strong> a primary total knee arthroplasty (TKA) is partly<br />

dependent on mechanical axis restoration and s<strong>of</strong>t tissue balancing.<br />

In the presence <strong>of</strong> proximal tibial bony deficiencies, restoring proper<br />

implant and extremity alignment remains a significant challenge.<br />

Quantification <strong>of</strong> tibial plateau deformities has been performed by<br />

radiographic templating and manual intra-operative measurement.<br />

Alternatively, computer assisted total knee replacement (CAS TKR)<br />

may allow tibial plateau deformities to be quantified prior to<br />

performing tibial osteotomies. In this prospective study, we describe<br />

the use <strong>of</strong> computer navigation to quantify the amount <strong>of</strong> bone loss<br />

on the medial or lateral tibial plateau and assess the need for and use<br />

<strong>of</strong> metallic tibial augmentation. A total <strong>of</strong> 439 consecutive primary<br />

CAS TKR were performed by one surgeon. Navigation instruments<br />

quantified the tibial deformities by inputting the lowest point on<br />

the deformed tibial plateau and the mid-point on the non-deformed<br />

tibial plateau. Inclusion criteria were patients undergoing CAS<br />

TKR in whom the measured difference between the medial tibial<br />

plateau and lateral tibial plateau exceeded 13 mm and the tibial<br />

deformity involved greater than one-third <strong>of</strong> the tibial plateau. All<br />

tibial deformities greater than 13 mm utilized tibial augmentation.<br />

We noted the navigated measured bony defect size, size <strong>of</strong> tibial<br />

wedges, prostheses used and polyethylene size. Radiographs were<br />

reviewed to measure the joint line restoration and final mechanical<br />

limb alignment. Twelve knees (2.7%) had tibial deformities greater<br />

than 13 millimeters and required tibial plateau metallic wedge<br />

augmentation. The mean measured tibial plateau discrepancy<br />

was 18 mm; six knees required a 5 mm tibial wedge and six knees<br />

required a 10 mm tibial wedge. The mean polyethylene size used<br />

was 11 mm. Mean overall post-operative mechanical alignment was<br />

0.08 degrees <strong>of</strong> valgus. Mean joint line restoration was 2.8 mm. CAS<br />

TKR is helpful in accurately measuring severe tibial deformities,<br />

predicting tibial augment thickness and restoring the mechanical<br />

alignment and joint line.<br />

posteR No. p194<br />

Inflammatory Response <strong>of</strong> Human Articular<br />

Chondrocytes to Wear Debris<br />

Lige Kaplan, MD, Royal Oak, MI<br />

Carly Gratopp<br />

Erin Ann Baker, MS, Royal Oak, MI<br />

Kevin Baker, MS, Royal Oak, MI<br />

Unicompartmental knee arthroplasty (UKA) systems are commonly<br />

revised due to progression <strong>of</strong> arthritis characterized by cartilage<br />

degeneration. Retrieval studies have revealed significant mechanical<br />

damage to UKA components capable <strong>of</strong> generating particulare<br />

debris. The goal <strong>of</strong> this study is to investigate the potential role <strong>of</strong><br />

implant wear in the biologic destruction <strong>of</strong> cartilage through in<br />

vitro analyses. Normal human articular chondrocytes (nHAC) from<br />

the knee were cultured on top <strong>of</strong> cross-linked ultra high molecular<br />

weight polyethylene (UHMWPE), cobalt-chromium-molybdenum<br />

(CoCrMo) or Ti6Al4V particles (0.1 or 1.0 mg/mL) in 24-well culture<br />

plates. Cell morphology was monitored at 24-hour intervals by phase<br />

contrast microscopy. Production <strong>of</strong> TNF-a, IL-1b, IL-10 was assayed<br />

by ELISA at one, three, five and seven days. Viability was compared<br />

between the materials and doses after seven days by mean transit<br />

569<br />

time assay. After 24 hours <strong>of</strong> culture, cells entered a phagocytotic<br />

phase with active uptake <strong>of</strong> particles within cell membranes. Cell<br />

detachment was apparent in CoCrMo and UHMWPE-treated wells.<br />

Expression <strong>of</strong> inflammatory cytokines was dose, time and materialdependent.<br />

IL-10 was expressed at the highest levels, followed by<br />

IL-1b and TNF-alpha. Cell viability was both material and dose<br />

dependent, with the largest reductions in viability coming from<br />

CoCrMo-treated wells (73.6%), followed by UHMWPE (43.7%)<br />

and Ti6Al4V (4.4%). Material and dose-dependent changes in cell<br />

morphology, cytokine expression and cell viability suggests that<br />

wear debris may have the potential to induce degenerative changes<br />

in cartilage adjacent to UKA components.<br />

posteR No. p195<br />

The Financial Impact Of Our Innovative Joint<br />

Replacement Program In Our Regional Medical Center<br />

Jon R Cook, PT, Cottonwood, AZ<br />

Jack W Wylie, MD, Cottonwood, AZ<br />

Paul Prefontaine, PT<br />

A product line pr<strong>of</strong>itability analysis (PLPA) which is generated<br />

from the Medicare cost report is a method used to evaluate the<br />

financial solvency <strong>of</strong> hospital joint replacement programs (JRP).<br />

However, cost reports include a large amount <strong>of</strong> indirect cost<br />

which can overestimate the cost <strong>of</strong> treating this population. This<br />

discrepancy may underestimate the financial contribution JRPs<br />

make to their institutions. We compared PLPA to direct cost and<br />

total reimbursement for JRP cases in our regional medical center.<br />

Fifty-three cases over a period <strong>of</strong> 10 months were randomly selected<br />

for analysis <strong>of</strong> the direct cost <strong>of</strong> performing their joint replacement<br />

surgery. This included an itemized tracking <strong>of</strong> cost including preop<br />

education, surgical procedure including implant, social services,<br />

nursing, lab, radiology, rehab, pharmacy and dietary, among others.<br />

We then compared our findings to the total reimbursement and<br />

the PLPA for the same cohort. The average cost was $8,759 and<br />

the average reimbursement was $18,485 giving average revenue <strong>of</strong><br />

$9,727 per case. The PLPA calculated an average cost <strong>of</strong> $18,141 and<br />

$18,509 average reimbursement leading to $369 average revenue<br />

per case. Due to a large indirect cost which is greater than the direct<br />

cost, the PLPA calculated a significantly higher cost per case, which<br />

led to lower revenue. Such an underestimation <strong>of</strong> revenue can<br />

lead institutions to make adverse decisions on a JRP’s solvency or<br />

program development. Since indirect costs are constant, a decision<br />

to eliminate a JRP based solely on PLPA solvency would only further<br />

indebt the hospital.<br />

posteR No. p196<br />

Accuracy Of Implant Placement Using Customized<br />

Patient Instrumentation<br />

Hideki Mizuuchi, MD, La Jolla, CA<br />

Shantanu Patil, MD, La Jolla, CA<br />

Darryl D D’Lima, MD, La Jolla, CA<br />

William Bugbee, MD, La Jolla, CA<br />

Alignment and positioning <strong>of</strong> implants is important in total<br />

knee arthroplasty (TKA). Customized patient instrumentation<br />

(CPI) is an innovation that combines preoperative planning with<br />

customized cutting jigs. We compared the postoperative implant<br />

alignment <strong>of</strong> patients undergoing surgery with CPI to standard<br />

TKA instrumentation. Twenty-five consecutive TKA using CPI were<br />

analyzed. Preoperative CT scans <strong>of</strong> the patients’ lower extremity<br />

were segmented using MIMICS. Limb alignment and mechanical<br />

axes were computed. Based on the preoperative planning protocol,<br />

virtual implantation <strong>of</strong> implant CAD models was done using Rhino.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


Postoperative coronal and sagittal view radiographs were obtained.<br />

Using 3D-image-matching s<strong>of</strong>tware, relative positions <strong>of</strong> the femoral<br />

and tibial implant were obtained from radiographs. Lowest contact<br />

point between femur and tibial inserts was calculated, imported<br />

into Rhino and compared to virtual surgical placement. Twentyfive<br />

TKAs implanted using standard instrumentation were analyzed.<br />

For CPI, difference in alignment from the preoperative plan was<br />

calculated. For the standard TKA group, targeted alignment was 90°<br />

in both planes for the femur and 90° coronal for the tibia. In the<br />

CPI group, mean absolute difference between planned and actual<br />

femoral placement was 0.7° (SD 0.5) in the coronal plane and 1.2°<br />

(SD 0.9) in the sagittal plane. For the traditional instrumentation<br />

group, difference from ideal placement for the femur was 1.5° (SD<br />

1.6) in the coronal and 2.3° (SD 1.3) in the sagittal plane. This<br />

was statistically significant at P< 0.001. In the CPI group, mean<br />

difference for the tibia was 0.9° (SD 0.6) in the coronal plane, as<br />

compared to 1.8° (SD 1.6) in the standard instrumentation group.<br />

(NS) CPI achieved accurate implant positioning that was superior to<br />

traditional total knee instrumentation.<br />

posteR No. p197<br />

Patell<strong>of</strong>emoral Kinematics for Obese, Overweight and<br />

Normal Weight TKA Subjects<br />

Matthew Anderle, Parker, CO<br />

Sumesh M Zingde, Knoxville, TN<br />

Richard D Komistek, PhD, Knoxville, TN<br />

John P Mueller, PhD, Knoxville, TN<br />

Duarte Y Ho, BS<br />

Douglas A Dennis, MD, Denver, CO<br />

The objective <strong>of</strong> this study was to compare in vivo 2D patell<strong>of</strong>emoral<br />

kinematics in total knee arthroplasty (TKA) subjects by body mass<br />

index (BMI). A total <strong>of</strong> 266 TKA subjects were analyzed using<br />

fluoroscopy and a 2D measurement s<strong>of</strong>tware package to determine<br />

patell<strong>of</strong>emoral angle (PA) relative to the femur and the normalized<br />

patell<strong>of</strong>emoral contact position (PC) from the distal end <strong>of</strong> the<br />

patella during a deep knee bend from full extension to maximum<br />

flexion. Each subject was classified as obese, overweight or normal<br />

weight using a standard BMI scale. Implant type analysis was also<br />

conducted on the mobile bearing, fixed bearing, posterior stabilized,<br />

bi-cruciate stabilized, cruciate retaining, anterior cruciate retaining<br />

and medial pivot groups. From full extension to maximum flexion<br />

the obese (n=82), overweight (n=123) and normal weight (n=61)<br />

groups averaged 74.0º, 75.3º and 80.4º <strong>of</strong> patell<strong>of</strong>emoral rotation.<br />

The obese group’s PA was significantly higher at full extension than<br />

normal weight group (3.2º vs 1.1º, p=0.0344). A similar trend was<br />

seen in every implant type group analyzed. From full extension<br />

to maximum flexion, the obese, overweight and normal weight<br />

groups experienced 0.34, 0.34 and 0.32 times patella length <strong>of</strong> PC<br />

translation. When analyzed by implant type, only the mobile bearing<br />

group showed a significant difference (normal weight compared to<br />

overweight at 60º, p=0.0409) at any contact point increment. All<br />

other implant type groups were similar at each increment, across<br />

the three BMI categories, within the same implant group. It can be<br />

concluded that BMI does play a factor in patell<strong>of</strong>emoral kinematics,<br />

particularly in patell<strong>of</strong>emoral angle.<br />

570<br />

posteR No. p198<br />

Patient and Surgical Factors Associated with Primary<br />

TKA Outcomes in the United States<br />

Robert S Namba, MD, Corona Del Mar, CA<br />

Maria Carolina Secorun Inacio, MS, San Diego, CA<br />

Liz Paxton, MA, San Diego, CA<br />

Christopher F Ake, PhD, Corona Del Mar, CA<br />

Monti Khatod, MD, Santa Monica, CA<br />

Eric J Yue, MD, Carmichael, CA<br />

Factors associated with total knee arthroplasty (TKA) outcomes are<br />

unclear. TKA patient demographics, surgical information, surgeon<br />

and hospital volume, implant characteristics and subsequent revision<br />

procedures were recorded in a total joint replacement registry (TJRR).<br />

Descriptive, survival and multivariate analyses are presented. A total<br />

<strong>of</strong> 47,429 primary TKA cases were performed between 2001 and<br />

2009. The patients were predominantly female (63%) with 38%


in 70.5% (12/17) GN compared to 78.3% (58/74) <strong>of</strong> MSGP and<br />

63.2% (48/72) <strong>of</strong> MRGP. These results indicate that PJI due to GN is<br />

a complex complication to treat with limited success. It appears that<br />

debridement and prosthesis retention has a high failure rate in all<br />

PJI especially those caused by GN organisms. Two-stage revision was<br />

more successful in MSGP than GN, while MRGP provides the most<br />

problematic PJI.<br />

posteR No. p200 AlteRNAte pApeR<br />

Patients with TKA still wish for further improvements<br />

in important issues<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Kenny Won Jae Lee, MD, Saskatoon, SK Canada<br />

Yeon Gwi Kang, MD, Seongnam-Si, Gyeonggi-Do, Republic <strong>of</strong><br />

Korea<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Jae Ho Yoo, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

In Jun Koh, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Kil Jae Lee, MD<br />

Kyung-Hag Lee, MD, Seongnam-Si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Total knee arthroplasty (TKA) has been well documented to be an<br />

excellent treatment option for patients with advanced knee diseases,<br />

but a substantial proportion <strong>of</strong> patients are not fully satisfied with<br />

treatment outcomes after TKA, which indicates that contemporary<br />

TKA needs to be improved in various areas. The authors formulated<br />

nine issues that they considered to be important from the perspective<br />

<strong>of</strong> patients after TKA and attempted to determine how much patients<br />

after TKA are satisfied with the nine issues and to explore what<br />

patients wish for further improvements with regard to the nine<br />

issues. In addition, they also sought to indentify factors influencing<br />

patient wishes including the extent <strong>of</strong> patient satisfaction with the<br />

nine issues. A total <strong>of</strong> 210 consecutive patients who returned for<br />

TKA follow up were given a self-administered questionnaire to<br />

assess the levels <strong>of</strong> satisfaction and wishes in the nine issues. Sociodemographic<br />

data and various knee scores were obtained as well.<br />

Extents <strong>of</strong> patient satisfaction and wishes for further improvements<br />

with regard to the nine issues were evaluated using a 0-10 visual<br />

analog scale. Correlation analyses were performed to determine<br />

whether socio-demographic factors, functional outcomes by the<br />

clinical outcome scales and the extent <strong>of</strong> satisfaction are associated<br />

with patient wishes for further improvements in the nine issues. The<br />

highest patient satisfaction was with the occurrence <strong>of</strong> perioperative<br />

complications, followed by pain relief, expected implant longevity,<br />

restoration <strong>of</strong> routine daily activities, incision cosmetic, ability to<br />

perform recreational sports activities, hospital fee, postoperative<br />

pain management and ability for high flexion activities. Notable<br />

proportions (greater than 20%) <strong>of</strong> patients expressed a low level<br />

(VAS 0-3) <strong>of</strong> satisfaction with ability <strong>of</strong> high flexion activities (55%),<br />

postoperative pain management (40%), incision cosmetic (33%),<br />

ability to perform recreational sports activity (28%), hospital fee<br />

(24%) and restoration <strong>of</strong> routine daily activities (21%). Patients<br />

expressed high levels (higher than VAS 8) <strong>of</strong> wishes for further<br />

improvements in most <strong>of</strong> the nine issues, and the top three issues<br />

were restoration <strong>of</strong> daily activities, pain relief and ability for high<br />

flexion activities. Levels <strong>of</strong> patient satisfaction with the nine issues<br />

were not associated with patient wishes for further improvements,<br />

and a few sociodemographic factors including younger age and high<br />

household income were found to be associated with higher wishes.<br />

571<br />

This study demonstrates that notable proportions <strong>of</strong> patients are not<br />

fully satisfied with the nine important issues and wish for further<br />

improvements, particularly for restoration <strong>of</strong> daily activities, pain<br />

relief and ability for high flexion activities. Patients with a certain<br />

sociodemographic features, such as younger age and high household<br />

income, wish for further improvement more than those without the<br />

features.<br />

posteR No. p201<br />

Robotic Arm Guidance to Improve Lateral<br />

Unicompartmental Accuracy and Outcomes<br />

Martin William Roche, MD, Fort Lauderdale, FL<br />

Lateral unicompartmental knee arthroplasty (UKA) utilizing<br />

mechanical instrumentation makes it difficult to routinely allow<br />

the surgeon to achieve optimized lateral joint kinematics. Results<br />

are influenced by the surgical approach, and knowledge <strong>of</strong> the<br />

differing anatomic and biomechanical properties <strong>of</strong> the lateral<br />

compartment. The patient with lateral compartment disease is more<br />

commonly female, and may present with s<strong>of</strong>t tissue laxity, femoral<br />

hypoplasia and joint line obliquity. An intelligent cutting tool to<br />

allow optimized surgical outcomes was introduced, to determine<br />

the ability to achieve the desired pre-op plan, with the ability to<br />

adjust intra-op through a minimally invasive approach. Ten patients<br />

with various lateral compartment arthritic pathologies underwent<br />

a lateral UKA utilizing a computer assisted robotic arm technology<br />

through a minimally invasive lateral approach. The surgery was<br />

performed with CT based imaged navigation. The bony preparation,<br />

implant to implant articulation, joint gap balancing and mechanical<br />

axis were defined intra-op based on the patient’s specific kinematics.<br />

The surgeon assisted robotic preparation <strong>of</strong> the defined surgical<br />

parameters were performed under haptic guidance. All 10 patients<br />

were female, and underwent successful lateral UKA surgery with this<br />

novel technology. The mechanical axis was corrected an average <strong>of</strong><br />

three degrees. The post-op weight bearing x-rays when compared to<br />

pre-op showed less than 1 mm change in the medial joint space. The<br />

average bony resection on the tibia was 3 mm and average posterior<br />

slope was six degrees. At six weeks, all patients had improved their<br />

range <strong>of</strong> motion by an average <strong>of</strong> five degrees and walked unassisted.<br />

The use <strong>of</strong> a haptically enabled robotic arm, utilizing virtual implant<br />

placement, accurate alignment and s<strong>of</strong>t tissue balance through a<br />

direct lateral approach, allows bony resection and implant placement<br />

to be done through a minimal incision with precision and safety.<br />

posteR No. p202<br />

Wide Variability in Tibial Tubercle Location:<br />

Implications for Aligning the Tibia in TKA<br />

Stephen M Howell, MD, Sacramento, CA<br />

Justin Chen, BS, Sacramento, CA<br />

Maury L Hull, PhD, Davis, CA<br />

Understanding the relationship between the tibial tubercle and its<br />

medial-lateral location on the tibia in the varus and valgus knee<br />

is important for aligning the internal-external rotation <strong>of</strong> the tibia<br />

on the tibial component and avoiding a poor functional outcome<br />

in total knee arthroplasty. The purpose <strong>of</strong> this study was to test the<br />

hypotheses that 1) the variability <strong>of</strong> the medial-lateral location <strong>of</strong><br />

the tibial tubercle is wide enough to cause a clinically important<br />

error in rotational alignment <strong>of</strong> the tibia, 2) the variability <strong>of</strong> the<br />

location is not different in the varus and valgus knee, and 3) the<br />

medial border and the medial one-third <strong>of</strong> the tibial tubercle do<br />

not align with the anterior-posterior axis <strong>of</strong> the kinematically<br />

aligned tibial component. The study was performed in 115 knees<br />

in 111 consecutive subjects treated with total knee arthroplasty for<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


end-stage osteoarthritis. The medial-lateral location <strong>of</strong> the medial<br />

border <strong>of</strong> the tibial tubercle from the medial tibia was measured<br />

from a magnetic resonance image (MRI) <strong>of</strong> the knee obtained in<br />

a kinematic projection where the image plane is perpendicular to<br />

the flexion-extension axis. The perpendicular distances between<br />

the medial border and the medial one-third <strong>of</strong> the tibial tubercle<br />

and the anterior-posterior axis at the center <strong>of</strong> the tibial component<br />

were measured from a three-dimensional model <strong>of</strong> the knee with<br />

the femoral and tibial components kinematically aligned. The<br />

medial border <strong>of</strong> the tibial tubercle varied 32 to 47 mm from the<br />

medial tibia. The location <strong>of</strong> the tibial tubercle was not different in<br />

the varus and valgus knee (p = 0.5872). The medial border <strong>of</strong> the<br />

tibial tubercle averaged -3 mm medial and did not align with the<br />

anterior-posterior axis <strong>of</strong> the tibial component (p


or more components had to be cemented based on intraoperative<br />

assessment <strong>of</strong> bone quality and other reasons, and in seven patients,<br />

constrained components had to be used instead; these two groups<br />

were excluded from the study. The subvastus approach was used in<br />

each knee, followed by routine rehabilitation and weight-bearing<br />

with an assistive device for four weeks after surgery. Radiographs and<br />

clinical assessment were performed at 6.5 years (range five to seven<br />

years). Seventeen femoral components had been revised for lack <strong>of</strong><br />

bone ingrowth, one patella was revised for loosening after trauma<br />

and two knees had been resected for late deep sepsis. Two tibial<br />

components had subsided into 3 degrees <strong>of</strong> varus when compared to<br />

their position immediately after surgery; neither one had migrated<br />

further. Three additional tibial components were revised to address<br />

late medial instability after multiple falls. Fourteen patellae showed<br />

bony disintegration that was asymptomatic; in each case the<br />

prosthetic component was stable, with an intact extensor mechanism.<br />

Clinical outcome scores improved significantly over preoperative<br />

measurements. Excluding cases <strong>of</strong> sepsis, the revision rate in this<br />

series was 5%. Unlike other reports <strong>of</strong> cementless primary knees,<br />

most premature failures were related to the femoral component<br />

which failed to ingrow in 17 cases, rather than failures <strong>of</strong> cementless<br />

tibial fixation. Tibial and patella components, both <strong>of</strong> which had a<br />

porous tantalum metal porous surface, achieved excellent fixation in<br />

the present series. These data suggest that improvements in femoral<br />

component design, possibly in the type <strong>of</strong> porous surface, could<br />

improve the outcomes <strong>of</strong> cementless fixation <strong>of</strong> primary total knees<br />

<strong>of</strong> the design used in the present series.<br />

posteR No. oRs2<br />

Gender Differences in Human Knee Function During<br />

Maneuvers Associated with Non-Contact ACL Injury<br />

Daniel L. Miranda, Providence, RI<br />

Michelle M.Gosselin, Providence, RI<br />

Elizabeth L.Brainerd, Providence, RI<br />

Joseph J.Crisco, Providence, RI<br />

Braden C.Fleming, Providence, RI<br />

The purpose <strong>of</strong> this study was to investigate the gender differences<br />

in human knee function during maneuvers associated with noncontact<br />

ACL injury. This study involved designing and evaluating<br />

an experimental setup capable <strong>of</strong> collecting externally marked leg<br />

kinematic and ground reaction force (GRF) data while imaging<br />

the knee using high-speed biplanar fluoroscopy during a jump-cut<br />

maneuver. All procedures were approved by the IRB. After obtaining<br />

informed consent, 10 healthy volunteers, 5 males (age: 25.8±4.2<br />

years) and 5 females (age: 24.6±2.3 years) wearing athletic wear<br />

were outfitted with 23 retro-reflective surface markers on a single leg.<br />

The jump-cut maneuver performed during data collection was based<br />

on an activity designed to mimic maneuvers associated with noncontact<br />

ACL injury. Marker tracking was performed for 10 jump-cut<br />

trials at 250Hz using a 4-camera Qualisys Oqus system. GRF data was<br />

collected at 5,000Hz using a Kistler force plate. Biplanar fluoroscopy<br />

data was time-synchronized and collected at 250Hz during 3 <strong>of</strong> the<br />

trials.We found significant differences among males and females in<br />

both GRF at the impact transient and change in knee flexion angle<br />

from contact to max flexion. No significant differences among<br />

males and females were observed for knee flexion angle at contact.<br />

The observed gender differences in knee flexion angle suggest that<br />

women land and cut with less knee bend. This is supported by the<br />

larger GRF at the impact transient observed in female subjects. It<br />

is our hope that the synchronously recorded biplanar fluoroscopy<br />

data, once processed and analyzed, will increase our accuracy and<br />

ability to measure sub-millimeter knee bone translations at impact.<br />

573<br />

SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se17<br />

Revision <strong>of</strong> Re-infected Total Knee Arthroplasty after<br />

Previously Failed Revision for Infection<br />

Tariq Ali Nayfeh, MD, Ellicott City, MD<br />

Leo A. Whiteside, MD, Saint Louis, MO<br />

Revision <strong>of</strong> failed revision total knee arthroplasty is challenging,<br />

especially in cases with infection. When knees fail multiple times<br />

due to infection, amputation <strong>of</strong>ten is the only alternative. This study<br />

reviews a consecutive series <strong>of</strong> these cases treated with an aggressive<br />

regimen. Eighteen patients presented with reinfection after previously<br />

failed revision for infection. The time from the original total knee<br />

arthroplasty until reinfection was 49±23 months. The infecting<br />

organism was methicillin-resistant Staphylococcus aureus (11 knees,<br />

11 patients), methicillin-resistant Staphylococcus epidermidis (2<br />

knees, 2 patients), methicillin-sensitive Staphylococcus aureus (2<br />

knees, 2 patients), and mixed Streptococcus faecalis and Escherichia<br />

coli (3 knees, 3 patients). Twelve knees received thorough debridement<br />

and one-stage cementless reimplantation and 6 knees had similar<br />

debridement and insertion <strong>of</strong> a cement spacer with final revision<br />

later. All knees then had six weeks <strong>of</strong> direct intraarticular infusion <strong>of</strong><br />

vancomycin via Hickman catheter. Two knees failed. One reinfected<br />

knee was amputated, and one was redebrided, revised, and retreated<br />

with intraarticular antibiotic infusion. Revision <strong>of</strong> reinfected total<br />

knee arthroplasty after previous revision for infection can be treated<br />

successfully in most cases with thorough debridement, revision in<br />

one or two stages, and intraarticular antibiotics.<br />

scieNtific exHibit No. se18<br />

Revisiting UKA: with a 35-Years Experience, Medial and<br />

Lateral UKA Are Two Different Operations<br />

Philippe Hernigou, PhD, Creteil France, France<br />

Alexandre Poignard, MD, France<br />

Charles Henri Flouzat-Lachaniette, MD, France<br />

Between 1975 and 2010, 1235 uni compartmental knee replacements<br />

have been performed in our hospital. 857 knees were medial uni<br />

compartmental knee replacements and 378 knees were lateral uni<br />

compartmental knee replacements. Of these1235 knees, 255 knees<br />

were available for a follow-up <strong>of</strong> more than 20 years. These 1235<br />

knees were subjected to long leg views to assess the mechanical axis<br />

and HKA ankle (Hip knee Ankle angle). The aim <strong>of</strong> this exhibit is to<br />

describe the evolution <strong>of</strong> the technique during the last 35 years; to<br />

report and explain our failures in the first period (between 1975 and<br />

1985); to describe the actual technique with modern fixed bearing<br />

implants, and tricks to avoid over correction or under correction; to<br />

report our experience with assisted computer navigation; to describe<br />

the analysis <strong>of</strong> the pre-operative radiographs to select patients for this<br />

surgery; to discuss the relative indications <strong>of</strong> osteotomy, UKA and<br />

TKA; to explain why medial and lateral UKA should be considered<br />

as two different operations. The femorotibial angle measured as<br />

the hip knee ankle angle was divided into seven axial alignment<br />

parameters: The femoral condylar femoral shaft angle ; The femoral<br />

condylar tibial plateau angle; The tibial plateau tibial shaft angle;<br />

The femoral shaft horizontal angle; The tibia shaft horizontal angle;<br />

The femoral condylar horizontal angle ;The tibial plateau horizontal.<br />

In lateral arthroplasties , before and after the operations, the<br />

femorotibial angle correlated with the tibial shaft horizontal angle<br />

(R=0.77; p


In postoperative lateral arthroplasties, the more valgus the knee<br />

the more the tibial shaft shifted toward the valgus direction, which<br />

was not true for the femoral shaft. In medial arthroplasties the<br />

postoperative femorotibial angle is influenced by the axial alignment<br />

<strong>of</strong> the femur and the tibia toward horizontal. The postoperative<br />

femoral shaft horizontal angle tends to be constant regardless <strong>of</strong> the<br />

degree <strong>of</strong> correction in lateral arthroplasties, suggesting that in the<br />

postoperative valgus knees the shift <strong>of</strong> the femoral shaft toward the<br />

valgus direction was limited. The authors assumed that this was to<br />

prevent the knee from knocking against the other leg. The authors<br />

recommend relying both on the preoperative femoral and tibial axial<br />

alignment parameters to determine the amount <strong>of</strong> correction and the<br />

position <strong>of</strong> the implants in medial arthroplasties and only on the<br />

tibial axial alignment parameter in lateral arthroplaties. The slope<br />

<strong>of</strong> the distal femoral articular surface should also be considered in<br />

a different manner when preoperative planning medial and lateral<br />

arthroplasties. This study evaluated also the creep and true wear in<br />

retrieved implants: All the polyethylene components were retrieved<br />

from 11 to 244 months after their implantation. The retrieved<br />

implants were placed in a coordinate measuring machine. Using this<br />

system, a three dimensional scaled image was used to calculate the<br />

total penetration <strong>of</strong> the femoral implant in relation with true wear<br />

and creep. To separate plastic deformation from true wear, the volume<br />

<strong>of</strong> true wear was calculated by wheighing the tibial components and<br />

comparing the results with non implanted components. Difference<br />

between the penetration determined by the coordinate machine<br />

and penetration determined by wheighing was considered to be in<br />

relation with creep. Total linear penetration rates ranged from 0.2<br />

to 2.6 mm/year (mean 0.19 mm/year) and was significantly less in<br />

lateral (mean 0.14 mm/year) than in medial implants (mean 0.25<br />

mm/year). Linear penetration rates in relation with wear ranged<br />

from 0.1 to 1.4 mm/year (mean 0.13 mm/year), and penetration<br />

in relation with creep ranged from 0.1 to 1.9 mm/year (mean 0.12<br />

mm/year). Creep was less important in knees with metalback as<br />

compared with full PE implants. We found that an increase <strong>of</strong> the<br />

postoperative deformity was in relation (p = 0.03) with an increase<br />

<strong>of</strong> creep and an increase <strong>of</strong> true wear for medial implants. But an<br />

increase <strong>of</strong> the postoperative deformity was not in relation (p =<br />

0.34) with an increase <strong>of</strong> creep or an increase <strong>of</strong> true wear for lateral<br />

implants. The postoperative deformity had a high influence on the<br />

penetration rate <strong>of</strong> the femoral condyle in the polyethylene <strong>of</strong> medial<br />

unicompartmental fixed bearing tibial implants. This phenomenon<br />

was not observed for the lateral fixed bearing implants and wear was<br />

significantly (p= 0.01) less in lateral than in medial implants. This<br />

phenomenon may be in relation with different kinematics in the two<br />

compartments. Indications for uni compartmental knee replacement<br />

include uni compartmental disease (either medial or lateral), no<br />

evidence <strong>of</strong> substantial patella femoral arthritis, and an intact,<br />

functioning anterior cruciate ligament. In our series the radiographic<br />

changes in the patello femoral joint were considered relevant only<br />

if they produced clinical symptoms. Alignment in excessive varus in<br />

medial uni compartmental knee replacements resulted in accelerated<br />

wear and tibial component subsidence. Moreover in our view if<br />

the knee required significant s<strong>of</strong>t tissue release a uni compartment<br />

knee replacement may be an inappropriate procedure. Lateral uni<br />

compartmental arthroplasty is much less common than medial uni<br />

compartmental knee replacement. The slope <strong>of</strong> the lateral tibial<br />

plateau is lesser than the medial tibial plateau and hence the wear<br />

pattern is posterior as opposed to antero medial in case <strong>of</strong> medial<br />

compartment. Lateral compartment replacements should hence be<br />

placed with tibial resection made with less posterior slope. Care<br />

should be taken to prevent alteration <strong>of</strong> alignment while performing<br />

lateral uni compartmental knee replacements. Majority <strong>of</strong> the<br />

revisions in our experience were in lateral compartment disease, due to<br />

574<br />

accelerated degeneration in the uninvolved compartment, secondary<br />

to alterations in the alignment. The maintenance <strong>of</strong> alignment in uni<br />

compartmental knee replacement is <strong>of</strong> paramount importance in<br />

preventing progression <strong>of</strong> osteoarthritis in the normal compartment<br />

and wear in the prosthesis. Appropriate alignment can be reproduced<br />

in majority (99%) <strong>of</strong> the medial uni compartmental knees with<br />

adequate care before and during surgery. Lateral uni compartmental<br />

knee replacement require more care partly because they are rarely<br />

performed and in our experience more likely to result in an altered<br />

alignment. Only 4% <strong>of</strong> the knees with unacceptable altered alignment<br />

required conversion to TKA during the last 10 years.<br />

scieNtific exHibit No. se19<br />

Treatment Algorithm for Osteonecrosis <strong>of</strong> the Knee<br />

Michael A Mont, MD, Baltimore, MD<br />

Michael G Zywiel, MD, Mississauga, ON Canada<br />

Aaron J Johnson, MD, Baltimore, MD<br />

Antonia Woehnl, MD, Baltimore, MD<br />

Peter M Bonutti, MD, Effingham, IL<br />

David R Marker, Baltimore, MD<br />

Ronald Emilio Delanois, MD, Baltimore, MD<br />

Osteonecrosis <strong>of</strong> the knee is a devastating disease that <strong>of</strong>ten<br />

progresses to joint destruction and may require knee arthroplasty.<br />

Three separate disease entities <strong>of</strong> the knee have been described:<br />

spontaneous, secondary, and post-arthroscopic osteonecrosis. A<br />

wide range <strong>of</strong> treatment modalities have been reported, including<br />

observation, medication, core decompression, arthroscopic<br />

debridement, chondroplasty, osteotomy, and total knee arthroplasty.<br />

The purpose <strong>of</strong> this exhibit was to describe and assess the efficacy<br />

<strong>of</strong> a multiple modality treatment algorithm for osteonecrosis <strong>of</strong><br />

the knee. Between February 2000 and June 2007, 40 patients (64<br />

knees) were surgically treated at our institution for osteonecrosis <strong>of</strong><br />

the knee. All patients were followed for a minimum <strong>of</strong> two years.<br />

Treatment was based on the classification <strong>of</strong> disease as determined<br />

by radiographs, magnetic resonance imaging and clinical symptoms.<br />

The following algorithm was used: 1) no symptoms - observation;<br />

2) associated pain and loss <strong>of</strong> function ‘ arthroscopy and/or core<br />

decompression (repeated if necessary); 3) associated mechanical<br />

symptoms (catching) or internal derangement (cartilage tear, flap, or<br />

free bodies) - arthroscopy with or without chondroplasty (repeated<br />

if necessary); 4) joint destruction - unicompartmental or total knee<br />

arthroplasty as indicated by the size and location <strong>of</strong> the articular<br />

defect. Forty patients (64 knees) underwent less than one year <strong>of</strong><br />

observation before requiring surgical intervention due to progression<br />

<strong>of</strong> pain. Using the treatment algorithm, 26 knees were initially treated<br />

with core decompression alone, 16 with arthroscopy alone, 14 with<br />

arthroscopy plus core decompression, and eight with total knee<br />

arthroplasty. Core decompression alone or core decompression plus<br />

arthroscopy were successful in preventing disease progression in 86%<br />

<strong>of</strong> patients. Six patients progressed despite multiple interventions<br />

and required unicompartmental or total knee arthroplasty. Patients<br />

who underwent knee arthroplasty had substantial improvements in<br />

their knee pain and function scores at final follow-up. These results<br />

support the use <strong>of</strong> the algorithm for treating osteonecrosis <strong>of</strong> the<br />

knee. Core decompression may be an effective treatment for early<br />

stage osteonecrosis, while arthroscopy with or without chondroplasty<br />

may improve the outcomes <strong>of</strong> knees that have meniscal or cartilage<br />

tears. Knee arthroplasty is an effective treatment for knees that have<br />

progressed to joint destruction. This exhibit will demonstrate the<br />

complete treatment algorithm, will present published reports that<br />

address various aspects <strong>of</strong> the algorithm, will provide outcomes<br />

from two centers that have used the algorithm, and will demonstrate<br />

each treatment method with pictures and videos.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


scieNtific exHibit No. se20<br />

Customizing the TKA: Surgical Technique or Implant<br />

Design?<br />

Dr Jason J Davis, Clawson, MI<br />

James V Bono, MD, Boston, MA<br />

Recent trends in implant design have taken individual differences<br />

in knee anatomy to justify implant modification. Unique female<br />

knee morphology led to gender-specific prostheses which opened<br />

the door for a patient-specific ideology. Basic surgical strategies to<br />

customize the fit <strong>of</strong> the standard implant still remain paramount.<br />

The female knee movement leading up to the current era <strong>of</strong><br />

implants is reviewed. Surgical pearls have been collected from over<br />

20 arthroplasty surgeons at one orthopaedic specialty hospital who<br />

consistently perform over 2400 TKA’s per year. Roughly 60% <strong>of</strong> the<br />

TKA patient population is female. Selected pearls for customization<br />

are presented. It is essential to understand your implant, then your<br />

gap tendencies, based on cruciate design. Reproduction <strong>of</strong> sagittal<br />

balance is mastered by your understanding <strong>of</strong> anterior and posterior<br />

referencing instrumentation. Efforts to downsize the femur to avoid<br />

overhang are then featured. Using a gap balancing method to control<br />

your femoral rotation will balance your knee in the coronal plane<br />

with minimal s<strong>of</strong>t tissue manipulation. Finally, methods to restore<br />

proper tibial rotation and patell<strong>of</strong>emoral tracking are explored. In<br />

the current era <strong>of</strong> economic constraint, surgeons are becoming more<br />

responsible for the financial responsibility <strong>of</strong> their surgical workflow.<br />

Implant selection will not replace the need for meticulous surgical<br />

skill. The concept <strong>of</strong> ‘customizing’ total knee arthroplasty may have<br />

more to do with anatomic technique than with implant design. By<br />

utilizing some <strong>of</strong> the principles outlined here, surgeons can take<br />

steps to ensure proper sizing and balance <strong>of</strong> the individual TKA.<br />

scieNtific exHibit No. se21<br />

TKA after HTO (A 30-years Experience): How to Plan<br />

and Resolve the Problems?<br />

Charles Henri Flouzat-Lachaniette, MD<br />

Philippe Hernigou, PhD, Creteil France, France<br />

Alexandre Poignard, MD, France<br />

Knee replacement is a satisfactory pain relieving procedure in young<br />

patients, although survival may be poor. Isolated valgus osteotomy,<br />

with TKA at a later stage is one <strong>of</strong> the solutions for young patients<br />

with virus deformity. This two-step strategy would require either<br />

no overcorrection in the previous osteotomy to avoid jeopardizing<br />

later the arthroplasty, and subsequently poor pain relief unless<br />

the TKA has been performed; either overcorrection osteotomy that<br />

will improve pain relief to a better extent but will make the knee<br />

replacement hazardous because <strong>of</strong> the proximal tibial deformity.<br />

Total knee arthroplasty (TKA) following high tibial osteotomy (HTO)<br />

for the treatment <strong>of</strong> arthritis have specific technical difficulties. This<br />

paper studies the technical problems during surgery, the way to plan<br />

these problems, the safety <strong>of</strong> a posterior- stabilized knee in this<br />

situation, and the results <strong>of</strong> these two operations with a follow up<br />

<strong>of</strong> more than 30 years after the osteotomy.The aim <strong>of</strong> this study was<br />

to compare function, quality <strong>of</strong> life (QOL) and survival outcomes<br />

<strong>of</strong> TKA in 359 patients who had a previous HTO (opening or<br />

closed wedge technique) with TKA performed for primary arthritis.<br />

All the patients operated in our institution between 1985 and<br />

1995 for the first operation (HTO) and between 1992 and 2000<br />

for the TKA arthroplasty (HTO TKA group) were included in this<br />

retrospective study and compared to a randomly chosen group <strong>of</strong><br />

100 patients operated on for primary arthritis (PA group) during the<br />

same period. All implants were the same and cemented (posteriorstabilized<br />

arthroplasties). The advantages and results <strong>of</strong> TKA after<br />

575<br />

opening wedge osteotomy (234 knees) were compared to TKA<br />

following closed wedge osteotomy (125 knees).The preoperative<br />

and postoperative deformities were measured on weight-bearing<br />

radiographs <strong>of</strong> the whole limb (hip-knee-ankle angle) before and<br />

after each operation. Complications and technical difficulties during<br />

total knee arthroplasty (TKA) following high tibial osteotomy were:<br />

Location <strong>of</strong> the skin incision, difficulty with operative exposure,<br />

patella eversion, and abnormal patellar tracking. Above all, proximal<br />

tibia deformity due to the previous osteotomy was commonly<br />

observed in high tibial osteotomy, and tibial component alignment<br />

during subsequent TKA was difficult to achieve. Tibial plateau <strong>of</strong>fset<br />

from the shaft and valgus deformity <strong>of</strong> the proximal tibia were<br />

common after high tibial osteotomy. In TKA following failed high<br />

tibial osteotomy, the postoperative mechanical axis never intersects<br />

the center <strong>of</strong> the tibial component because <strong>of</strong> the deformed proximal<br />

tibia, particularly when the tibia has been resected perpendicular<br />

to the tibial shaft axis. Therefore, the authors advocate resection <strong>of</strong><br />

the tibia referencing the predicted postoperative mechanical axis<br />

instead <strong>of</strong> the tibial shaft axis, especially in TKA following failed high<br />

tibial osteotomy. Advantages and inconvenients <strong>of</strong> intramedullary,<br />

extramedullary guidess, and computer assisted navigation for<br />

the tibial component are explained.KS knee and function score<br />

improvement and QOL results for the five categories <strong>of</strong> the Knee<br />

Osteoarthritis Outcome Score were significantly lower in the HTO<br />

group (p


lateral translation <strong>of</strong> the epiphysis. This situation is the opposite<br />

to that normally observed in an arthritic genu varum. This creates<br />

further difficulty during knee joint arthroplasty secondary to tibial<br />

osteotomy, and in our series, we found this defect to be severe in 32<br />

cases. Therefore, after a tibial osteotomy, regardless <strong>of</strong> the technique<br />

previously used, the thickness <strong>of</strong> bone resected from the lateral<br />

region <strong>of</strong> the tibia must be very small to reestablish the anatomical<br />

position <strong>of</strong> the lateral articular line. This precaution helps to reduce<br />

the possibility <strong>of</strong> instability or the use <strong>of</strong> excessively thick tibial<br />

inserts, which might in turn lead to an increase in the rate <strong>of</strong> patella<br />

infera. So, when planning a joint arthroplasty secondary to proximal<br />

tibial osteotomy, variations <strong>of</strong> the tibial anatomy necessarily related<br />

to the previous operation should be taken into account. However,<br />

our results confirmed the clinical impression that “no bridges are<br />

burned” by performing a high tibial osteotomy, despite significant<br />

lower functional, and QOL results. This two-step strategy (isolated<br />

valgus osteotomy, with posterior-stabilized TKA at a later stage)<br />

allowed obtaining good results with 94% survivorship 30 years after<br />

the first operation (HTO) and 15 years after the arthroplasty<br />

scieNtific exHibit No. se22<br />

Overview <strong>of</strong> New Technologies in Total Knee<br />

Arthroplasty: Current Options and Future Directions<br />

Peter M Bonutti, MD, Effingham, IL<br />

Michael G Zywiel, MD, Mississauga, ON Canada<br />

Aaron J Johnson, MD, Baltimore, MD<br />

Antonia Woehnl, MD, Baltimore, MD<br />

Ronald Emilio Delanois, MD, Baltimore, MD<br />

Michael A Mont, MD, Baltimore, MD<br />

Uma Maduekwe, MD, Chicago, IL<br />

Qais Naziri, MD, Baltimore, MD<br />

Numerous technologies have been developed and utilized in an<br />

attempt to improve the outcomes <strong>of</strong> knee arthroplasties, or to<br />

address particularly challenging cases. Some have been associated<br />

with successful results, while others have not shown any benefits over<br />

previously-established technologies. The purpose <strong>of</strong> this exhibit will<br />

be to discuss some emerging technologies, including the rationale<br />

and the evidence for or against each one. A comprehensive search <strong>of</strong><br />

the literature was performed using the Medline database to find peerreviewed<br />

reports on emerging technologies in total knee arthroplasty.<br />

Innovative approaches to knee arthroplasty were reviewed, including<br />

minimally-invasive approaches, new prosthetic and tool designs,<br />

as well as anterior cruciate ligament sparing approaches. Also<br />

reviewed were the use <strong>of</strong> computer assissted navigation in total knee<br />

arthroplasty, the intra-operative use <strong>of</strong> robotics to ensure precise and<br />

accurate bone cuts, and the use <strong>of</strong> cutom-designed bone guides and<br />

prostheses based upon magnetic resonance images <strong>of</strong> the knee. Our<br />

institution and others have successfully utilized minimally invasive<br />

surgical approaches, computer-assissted navigation, and customdesigned<br />

cutting guides. All <strong>of</strong> these novel surgical approaches will be<br />

described and demonstrated in-depth with regard to current results,<br />

potential advantages and pitfalls. For the use <strong>of</strong> computer-assisted<br />

navigation, recent innovations in the technology, current outcomes<br />

compared with non-navigated arthroplasties, cost-benefit analyses,<br />

and recommendation regarding the use <strong>of</strong> navigation for high- and<br />

low-volume surgeons will be featured. The use <strong>of</strong> robotics to guide<br />

the cuts during unicompartmental and total knee arthroplasty will<br />

be discussed, as well as the potential benefits, the current results,<br />

and future applications. Finally, the use <strong>of</strong> custom-designed bone<br />

guides and custom prostheses developed from magnetic resonance<br />

imaging templates will be discussed with respect to potential<br />

advantages and disadvantages, cost-benefit analysis, and current<br />

576<br />

results including patient-subjective evaluation, function, range <strong>of</strong><br />

motion, and kinematics. New knee technologies might provide<br />

potential improvements in outcomes <strong>of</strong> total knee arthroplasty. This<br />

exhibit will demonstrate the advantages, disadvantages, indications,<br />

and contraindications <strong>of</strong> all <strong>of</strong> the new technologies described<br />

previously, based upon the evidence in the published literature as<br />

well as the data from our institutions. Videos, diagrams, and models<br />

will be utilized to demonstrate each technology. In addition, we will<br />

assess possible modifications, improvements, and advances, and<br />

how they might affect total knee arthroplasty in the future.<br />

scieNtific exHibit No. se23<br />

Three-dimensional Morphology <strong>of</strong> the Knee, an Ethnic<br />

Study<br />

Mohamed Mahfouz, PhD, Knoxville, TN<br />

Giles R Scuderi, MD, New York, NY<br />

Emam Abdel Fatah, Knoxville, TN<br />

Lower limb morphology differences have always received attention in<br />

orthopaedics in relation to implant design. In this study, the intrinsic<br />

shape differences <strong>of</strong> the knee joint between differing populations<br />

were analyzed by a novel automatic feature detection algorithm.<br />

A set <strong>of</strong> automated measurements were defined based on highly<br />

morphometric variant regions, which then allowed for a statistical<br />

framework when analyzing different populations’ knee joints. Onethousand<br />

adult knee CT scans were captured (80 African <strong>American</strong><br />

AA]; 80 East Asian EA]; 840 Caucasian). Three-dimensional surface<br />

models were created for each bone and were added to 3D statistical<br />

bone atlases. Statistical shape analysis was conducted with a process<br />

combining principal components analysis and multiple discriminate<br />

analysis. A set <strong>of</strong> measurements were conducted on both the femur<br />

and tibia including the AP and ML dimensions, radii <strong>of</strong> curvature <strong>of</strong><br />

lateral and medial condyles and AP condylar angle.<br />

scieNtific exHibit No. se24<br />

Clinical Validation <strong>of</strong> a Non-Invasive System Dedicated<br />

to Quantify Pivot-Shift<br />

Stefano Zaffagnini, MD, Bologna, Italy<br />

Nicola Lopomo, MSc, PhD, Bologna, Italy<br />

Cecilia Signorelli, MS, Bologna, Italy<br />

Giovanni Giordano, MD, Cesena, Italy<br />

Simone Bignozzi, Bologna, Italy<br />

Giulio Marcheggiani Muccioli, MD, Bologna, Italy<br />

Tommaso Bonanzinga, MD, Bologna, Italy<br />

Maurilio Marcacci, MD, Bologna, Italy<br />

Pivot-Shift (PS) test is becoming the benchmark in knee instability<br />

assessment Kocher 2009], the main problem in its use is the<br />

impossibility <strong>of</strong> clearly quantifying test outcome. This study aimed<br />

to clinically validate a non-invasive system able to quantitatively<br />

evaluate this dynamic instability highlighted by PS test. PS tests were<br />

analysed on 50 consecutive patients, that shown a generic problem<br />

to the knee, in out-patients’ clinic, 3 times both on left and right<br />

limb. The surgeon, who performed the study, was blinded to the<br />

medical history before the execution <strong>of</strong> the test. An 3D-accelerationsensor<br />

was skin-fixed, by an apposite strap, nearness <strong>of</strong> the joint. We<br />

estimated the maximum (MAX) and the minimum (min) value <strong>of</strong><br />

the acceleration, their difference (Diff) and a derivate value index<br />

<strong>of</strong> the smoothness <strong>of</strong> the test itself (in physics called “jerk”). The PS<br />

recognition was automatically performed. Student t-test (P = 0.05)<br />

was used to explore the statistical differences between limbs (healthy<br />

and injured). Pathologic limbs, confirmed by the tester, compared<br />

to the healthy limb, revealed a lower min value <strong>of</strong> acceleration<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


(8.23±0.51m/s2 vs 8.56±0.34m/s2, p=0.0097 ), a higher jerk<br />

(24.68±12.30m/s3 vs13.57±6.28 m/s3, p=0.0001) and a higher diff<br />

(4.06±1.12m/s2 vs 2.890.93± m/s2, p=0.0004).<br />

scieNtific exHibit No. se25<br />

HTO Versus UKA: A Review <strong>of</strong> the Literature<br />

Federico Dettoni, MD, Torino, Italy<br />

Davide E Bonasia, MD, Torino, Italy<br />

Filippo Castoldi, MD, Torino, Italy<br />

Matteo Bruzzone, MD, Torino, Italy<br />

Davide Blonna, MD, Torino, Italy<br />

Gianluca Collo, MD, Torino, Italy<br />

Roberto Rossi, MD, Torino, Italy<br />

This review examined the literature regarding High Tibial Osteotomy<br />

(HTO) and Unicompartmental Knee Arthroplasty (UKA), focusing<br />

on indications for the two treatments, survivorship and functional<br />

outcomes <strong>of</strong> the two procedures, as well as revision to Total Knee<br />

Arthroplasty (TKA) after failed HTO or UKA. We searched the<br />

Literature for studies dealing with indications, outcomes and<br />

complications for HTO and UKA. Particularly papers comparing<br />

HTO and UKA were critically analysed. HTO and UKA share the<br />

same indications in selected cases <strong>of</strong> medial unicompartmental<br />

knee arthrosis. These include patients: 1) 55 to 65 years old; 2)<br />

moderately active; 3) non-obese; 4) with mild varus malalignment;<br />

5) no joint instability; 6) good range <strong>of</strong> motion; and 7) moderate<br />

unicompartmental arthrosis. Few studies comparing the outcomes<br />

<strong>of</strong> HTO and UKA are present in the literature. These studies show<br />

slightly better results for UKA, in terms <strong>of</strong> survivorship and functional<br />

outcome. Nevertheless, the differences are not remarkable, the study<br />

methods are not homogeneous and most <strong>of</strong> the papers report about<br />

closing wedge HTO. For these reasons, no definitive conclusion can<br />

be drawn. Total Knee Arthroplasty represents the revision option<br />

for both treatments and yields satisfactory functional outcomes and<br />

survivorship. Whether a TKA performed after a failed HTO or UKA<br />

perform worse than primary TKA is still controversial. With correct<br />

indications, both HTO and UKA produce durable and predictable<br />

outcomes in the treatment <strong>of</strong> medial unicompartmental arthrosis <strong>of</strong><br />

the knee. There is no evidence <strong>of</strong> superior results <strong>of</strong> one treatment<br />

over the other.<br />

scieNtific exHibit No. se26<br />

Change in the Position <strong>of</strong> the Popliteal Artery with Knee<br />

Flexion After Total Knee Arthroplasty<br />

Mitsuhiro Takeda, MD, Gyoda, Saitama, Japan<br />

Yoshinori Ishii, MD, Gyoda Saitama, Japan<br />

Noguchi Hideo, MD, Gyoda-Shi, Japan<br />

In the preoperative knee, 90° flexion allows the popliteal artery (PA)<br />

to move safely backward from the tibia. However, the behavior <strong>of</strong><br />

the PA during flexion <strong>of</strong> the prosthetic knee is poorly understood.<br />

we evaluated the position <strong>of</strong> the PA in flexed knees that received<br />

either PCL-retaining (PCLR) or PCL-sacrificing prostheses (PCLS).<br />

Twenty-two patients (44 knees) received PCLR in one knee and PCLS<br />

in the other. The average follow up was 61 months. Twenty-two agematched<br />

knees served as controls. Noninvasive color-flow duplex<br />

scanning was used to determine the distance ‘X’ between the PA and<br />

the posterior margin <strong>of</strong> the tibia. This distance was measured with<br />

the knee in 0, 30, 45, 60, and 90° flexion. The mean distance X was<br />

8.2, 7.9, 7.8, 7.4, and 7.4 mm in PCLR knees and 8.5, 8.3, 8.3, 7.9,<br />

and 7.7 mm in PCLS knees, respectively. No significant differences<br />

were found among the angles in each group or between the groups<br />

at each angle. In control knees, the mean distance X was 4.9, 5.2,<br />

6.0, 6.2, and 7.8 mm, respectively; X at 90° flexion was significantly<br />

577<br />

greater than X at 45°. In contrast to the control group, the PA did not<br />

move posteriorly with flexion in either type <strong>of</strong> prosthetic knee. Thus,<br />

90° flexion may not be the safest position for PCLR or PCLS surgery.<br />

Using color-flow duplex scanning to preoperatively evaluate flexioninduced<br />

changes in position <strong>of</strong> the PA could help determine the<br />

optimal flexion angle to use during surgery to prevent PA injuries.<br />

scieNtific exHibit No. se27<br />

Correcting Varus/Flexion Deformity during Total Knee<br />

Arthroplasty: The Inside-Out Technique<br />

Morteza Meftah, MD, New York, NY<br />

Yossef C Blum, MD, New York, NY<br />

Amar S Ranawat, MD, New York, NY<br />

Chitranjan S Ranawat, MD, New York, NY<br />

Traditional method <strong>of</strong> correcting a fixed flexion/varus deformity was<br />

described in 1979, which required detachment <strong>of</strong> the posteromedial<br />

capsule from the tibia and semimembranosus tendon, partial or<br />

complete. The tight superficial medial collateral ligament (SMCL)<br />

was released subperiosteally. To address the risks <strong>of</strong> over release,<br />

hematoma formation and elevation <strong>of</strong> joint line, the Inside-Out<br />

technique was evolved. Our hypothesis is that this technique<br />

effectively corrects varus and flexion contracture while reducing these<br />

complications. This method requires femoral and tibial resection<br />

at 90 degree <strong>of</strong> the mechanical axis, and creation <strong>of</strong> a balanced<br />

rectangular extension gap. This is achieved by transverse capsulotomy<br />

<strong>of</strong> the posteromedial capsule at the level <strong>of</strong> the tibial resection in<br />

full extension. The semimembranosus insertion is not released. The<br />

tight SMCL is pie-crusted and with serial manipulations a balanced<br />

extension gap is achieved. The flexion balance gap is achieved by<br />

the ‘parallel to tibial cut technique’ <strong>of</strong> posterior condyles.Forty-five<br />

patients with severe biplanar deformity, with varus > 15 degrees<br />

and flexion contracture > 10 degrees underwent TKR with Inside-<br />

Out technique. The mean age was 73.3 years. Results were assessed<br />

according to WOMAC and Knee Society Scores. The mean Knee<br />

Society Score and WOMAC were 95 and 29 respectively. The mean<br />

coronal plane alignment was 5.5 degrees. There were no cases <strong>of</strong><br />

instability or residual flexion contracture. The Inside-Out technique<br />

is very effective in correcting biplanar deformity without over or<br />

under release, hematoma or elevation <strong>of</strong> joint line.<br />

scieNtific exHibit No. se28<br />

Preclinical Computational Models Can Predict<br />

UHMWPE Damage Patterns in TKA<br />

Edward Morra, MSME, Cleveland, OH<br />

A Seth Greenwald, DPhil Oxon, Cleveland Heights, OH<br />

Patient habitus, design and materials, as well as technical pr<strong>of</strong>iciency<br />

represent a triad <strong>of</strong> factors which influence the material damage<br />

patterns observed following TKA. Laboratory simulator wear testing<br />

is generally criticized because <strong>of</strong> poor clinical correlation. This<br />

exhibit describes a computational modeling experience dating back<br />

fifteen years for both fixed and mobile TKA systems where predicted<br />

UHMWPE damage patterns have correlated with clinical outcomes.<br />

The finite element (FE) model simulates the loading environments<br />

that occur in the knee during activities <strong>of</strong> daily living. The use <strong>of</strong> reverse<br />

engineered component geometries generated from three dimensional<br />

laser scans <strong>of</strong> sterilized implantable quality components allows<br />

detection <strong>of</strong> poor fit between manufactured component articulations.<br />

The articulations <strong>of</strong> the femoral component on the polymer tibial<br />

insert plateau produces surface and subsurface stress results that<br />

are associated with abrasive wear, delamination and fracture <strong>of</strong><br />

the insert. The results are compared with an overlay <strong>of</strong> wear scar<br />

patterns realized from clinical component retrievals for specific knee<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


systems. Both expected and unusual FE model predictions <strong>of</strong> stress<br />

were validated by retrieval evidence, demonstrating the robustness<br />

<strong>of</strong> the method. Validated computational modeling has proven to be<br />

a correlative methodology, predictive <strong>of</strong> material damage patterns<br />

observed in clinical retrievals. The database encompasses more than<br />

forty five contemporarily used fixed and mobile bearing knee systems.<br />

Its effectiveness is appreciated as a surrogate to costly physical testing<br />

for the prediction <strong>of</strong> in-vivo material damage patterns seen in knee<br />

arthroplasty.<br />

scieNtific exHibit No. se29<br />

Investigation <strong>of</strong> Three-Dimensional In Vitro Knee<br />

Kinematics Using a Custom In Vitro Model<br />

J David Blaha, MD, Ann Arbor, MI<br />

David Kent DeBoer, MD, Nashville, TN<br />

C Lowry Barnes, MD, Little Rock, AR<br />

Paul M Stemniski, MS, Arlington, TN<br />

Sarah L Lancianese, PhD, Ann Arbor, MI<br />

Richard Obert, MS, Arlington, TN<br />

Michael E Carroll, Arlington, TN<br />

A custom machine to test knee functional kinematics (open and closed<br />

chain) has been developed incorporating the entire extremity (hip to<br />

ankle). The scientific exhibit will present the device and kinematic<br />

pr<strong>of</strong>iles <strong>of</strong> knees during open chain and closed-chain squat exercise<br />

in untouched, ACL deficient and total knee arthroplasty conditions.<br />

Lower limbs with radio-opaque markers were CT scanned, converted<br />

to CAD models and analyzed using a motion analysis system. 3D<br />

kinematics are determined as virtual animations, contact points, and<br />

rotation pr<strong>of</strong>iles through 0 115° for intact, ACL deficient and TKA (CS<br />

and PS). The model reveals kinematic differences in closed but not<br />

open-chain motion with increased AP motion in ACL deficient state<br />

but return toward normal with TKA. Because the model compares<br />

the same knee in multiple conditions variability is reduced and this<br />

combination <strong>of</strong> open and closed-chain models provides a suitable<br />

test to determine the effectiveness <strong>of</strong> an implant design (e.g., CS/PS)<br />

in restoring kinematics to closer approximate the normal knee. In<br />

the scientific exhibit, this data as well as knee kinematics determined<br />

from additional TKA designs, increased weight, internal and external<br />

foot rotation, and deep squat, will be presented with multimedia<br />

graphics in the form <strong>of</strong> 3D animations, contact point analysis, and<br />

kinematic pr<strong>of</strong>iles.<br />

578<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits AR KNee


SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se30<br />

Tissue Reactions to Prosthetic Metal Wear Debris:<br />

Studies <strong>of</strong> Osteolysis, Pseudotumor and ALVAL<br />

Mark W Kovacik, Akron, OH<br />

Thomas F Bear, MD, Cuyahoga Falls, OH<br />

Richard A Mostardi, PhD, Akron, OH<br />

Ivan A Gradisar Jr, MD, Trappe, MD<br />

Rex D Ramsier, PhD, Akron, OH<br />

James M Jamison, PhD, Akron, OH<br />

Edward T Bender, PhD, Akron, OH<br />

Deborah R Neal, BS, Akron, OH<br />

A Seth Greenwald, DPhil Oxon, Cleveland Heights, OH<br />

The deleterious tissue responses (i.e., osteolysis, pseudotumors,<br />

ALVAL) associated with micro-metallic wear debris released by joint<br />

replacement components <strong>of</strong> metal/polyethylene or metal-on-metal<br />

prostheses are still not fully understood and are under most recent<br />

scrutiny. This exhibit presents clinical and laboratory experiences<br />

that address the possible role that metal implant and wear debris<br />

surface chemistry may contribute in these adverse responses. A metaanalysis<br />

was performed and included: 1) review <strong>of</strong> clinical joint<br />

replacement cases; 2) metallurgical studies, using energy dispersive<br />

spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) to<br />

determine surface chemistry <strong>of</strong> micro-metal wear debris particles<br />

harvested in-vivo; and 3) nuclear transcription factor (NFkB) and<br />

cytokine/chemokine expression <strong>of</strong> synovial fibroblasts following<br />

prosthetic micro-metal particulate exposure. Heightened cellular upregulation<br />

<strong>of</strong> NFkB and downstream inflammatory factor expression<br />

differs with differing elemental surface chemistries <strong>of</strong> micro-metal<br />

particles; a more deleterious cellular response occurs in the presence<br />

<strong>of</strong> metal particles having increased surface cobalt content. Increased<br />

transcriptional expression <strong>of</strong> inflammatory proteins and cellular<br />

necrosis in the presence <strong>of</strong> micro-metal particles has long been related<br />

to bone resorption. Since it is only the surfaces <strong>of</strong> the prosthetic<br />

materials to which the cellular milieu may interact, elevated cobalt<br />

levels at these surfaces may be directly responsible for triggering<br />

the osteolytic and ALVAL responses commonly seen in tissues<br />

surrounding the implants. This exhibit describes the consequences<br />

<strong>of</strong> elemental surface segregation caused by various manufacturing<br />

and sterilization processes used for prosthetic implants as well as<br />

their associated osteolytic and ALVAL potentials.<br />

579<br />

basic research<br />

scieNtific exHibit No. se31<br />

The Science <strong>of</strong> Rotator Cuff Repairs: Translating Basic<br />

Science into Clinical Recommendations<br />

Sandeep Mannava, Winston Salem, IL<br />

Christopher Tuohy, MD, Winston-Salem, NC<br />

Thorsten M Seyler, MD, Winston-Salem, NC<br />

Joel Stitzel, PhD, Winston Salem, NC<br />

Solomon Hayon, BS, Winston Salem, NC<br />

Patrick W Whitlock, MD, Winston Salem, NC<br />

Thomas L Smith, PhD, Winston-Salem, NC<br />

Katherine R Saul, PhD, Winston Salem, NC<br />

Rotator cuff tears are a common cause <strong>of</strong> upper-extremity disability,<br />

particularly in elderly patients over 50 years <strong>of</strong> age. For chronic,<br />

full-thickness, rotator cuff tears, repair surgery can be technically<br />

challenging due to large gap distances and increased stiffness <strong>of</strong><br />

the muscle-tendon unit. In contrast, acute rotator cuff tears are<br />

associated with lower repair tensions, less fibro-fatty infiltration <strong>of</strong><br />

the muscle, and better functional outcomes. This scientific exhibit<br />

demonstrates how animal models can be used to understand rotator<br />

cuff muscle function in the acute and chronic tear setting and how<br />

these results can be translated into clinical recommendations using<br />

computational modeling. In vivo muscle function, electromyography<br />

(EMG), and passive muscle-tendon unit properties were studied<br />

before and after supraspinatus tenotomy in a rodent rotator cuff<br />

injury model (acute vs chronic; NIA rodent colony: old vs young).<br />

Chemical denervation (botulinum neurotoxin A, BoNT-A) and Fungs<br />

QLV model were used to assess neural contributions to in vivo stressrelaxation<br />

biomechanical properties. Then, a series <strong>of</strong> simulation<br />

experiments were conducted using a validated computational<br />

human musculoskeletal shoulder model to assess both passive and<br />

active tension <strong>of</strong> rotator cuff repairs based on surgical positioning. In<br />

vivo muscle function was impaired at the tensions required to repair<br />

a chronically torn rotator cuff (45% reduction from maximal twitch<br />

amplitude, p


epair, post-operative healing, and rehabilitation. Thus, changing<br />

patient instructions on post-operative arm positioning and ranges<br />

<strong>of</strong> motion will reduce repair site tension. Current research efforts<br />

in our laboratory are focused on reducing repair tension by using<br />

tissue-engineered constructs to bridge the large distances formed<br />

after chronic tears.<br />

scieNtific exHibit No. se32<br />

Sex in Your <strong>Orthopaedic</strong> Practice - AAOS Women’s<br />

Health Issues Advisory Board<br />

Julie A Switzer, MD, Saint Paul, MN<br />

Sheila Marie Algan, MD, Oklahoma City, OK<br />

Elizabeth A Arendt, MD, Minneapolis, MN<br />

This exhibit provides information for the practicing orthopedist<br />

regarding epidemiology <strong>of</strong> common musculoskeletal conditions<br />

and how male and female patients may present differently. Studies<br />

have shown that training can enhance women’s balance and<br />

decrease falls - in athletics and in older age; this exhibit will also<br />

focus on the importance <strong>of</strong> training and rehabilitation and the effect<br />

on improving and enhancing balance. This exhibit will explore the<br />

biological and social differences in presentation between male and<br />

female patients for various common musculoskeletal conditions. Sex<br />

differences will be examined in three areas <strong>of</strong> orthopaedic interest<br />

and common disorders, diseases, and injuries will be addressed:<br />

CMC arthritis Shoulder instability Frozen shoulder Hip Dysplasia<br />

Femero-acetabular implingement Hip Arthritis An interactive display<br />

on balance exercises and on rehabilitation programs for athletes and<br />

elders will also be a part <strong>of</strong> the exhibit.<br />

580<br />

scieNtific exHibit No. se33<br />

Current Hot Topics in <strong>Orthopaedic</strong> Research -<br />

<strong>Orthopaedic</strong> Research Society<br />

Daniel A Grande, PhD, Manhasset, NY<br />

Clark T Hung, PhD, New York, NY<br />

James L Cook, DVM, PhD, Columbia, MO<br />

Fred R T Nelson, MD, Detroit, MI<br />

Darryl D D’Lima, MD, La Jolla, CA<br />

Robin Poole, Lancaster, ON Canada<br />

Hubert T Kim, MD, San Francisco, CA<br />

Joseph A Buckwalter, MD, Iowa City, IA<br />

Dawn M Elliott, PhD, Philadelphia, PA<br />

Nadeem O Chahine, PhD, Manhasset, NY<br />

Thomas W Bauer, MD, PhD, Cleveland, OH<br />

Jason Calhoun, MD, Columbus, OH<br />

Louis J. Soslowsky, PhD, Philadelphia, PA<br />

Stavros Thomopoulos, PhD, St. Louis, MO<br />

<strong>Orthopaedic</strong> research continues to progress rapidly as new<br />

methodologies become available. Members <strong>of</strong> the <strong>Orthopaedic</strong><br />

Research Society conduct investigations on a wide range <strong>of</strong> topics<br />

aiming to obtain knowledge and understanding <strong>of</strong> the etiology <strong>of</strong><br />

musculoskeletal diseases and to improve diagnosis and treatment<br />

<strong>of</strong> such conditions. Current orthopaedic research involves the<br />

most updated research strategies and methodologies and is carried<br />

out at multiple levels <strong>of</strong> experimentation, including cell biology,<br />

biochemistry, molecular biology, biomaterials, biomechanics,<br />

and advanced imaging. Exciting and most promising areas <strong>of</strong><br />

research activity include studies <strong>of</strong> the bone tendon interface<br />

biology and repair in health, disease and injury; the mechanisms<br />

<strong>of</strong> musculoskeletal pain; new knowledge <strong>of</strong> cartilage injury and<br />

prevention; studies focusing on the concept <strong>of</strong> the joint as an organ;<br />

tissue engineering using stem cells focusing on the development<br />

<strong>of</strong> scaffolds and delivery <strong>of</strong> cytokines or growth factors; and new<br />

understanding <strong>of</strong> intervertebral disc biology.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits bAsic ReseARcH


PAPERS<br />

pApeR No. 046<br />

Treatment <strong>of</strong> The Stress Positive SE4 Ankle Fracture:<br />

Incidence <strong>of</strong> Syndesmotic Injury Decision Making<br />

Paul Tornetta III, MD, Boston, MA<br />

Thomas W Axelrad, MD, New York, NY<br />

William R Creevy, MD, MBA, Boston, MA<br />

It has been demonstrated that only one-third <strong>of</strong> patients with an<br />

isolated SE pattern fibula fracture who present with an aligned<br />

mortise have instability on stress examination. The purpose <strong>of</strong> this<br />

study is to report on a large series <strong>of</strong> stress (+) isolated SE type fibula<br />

fractures, as regards the ability to gain anatomic union, and to report<br />

the rate <strong>of</strong> syndesmotic instability in the operative cases. We treated<br />

99 patients (aged 19-76, avg 43) with stress (+) isolated SE type<br />

fibula fractures to union. The medial clear space was measured on<br />

the presentation, stress and final united radiographs. The decision<br />

for surgical or nonsurgical management was made by the patient and<br />

surgeon after a discussion. Syndesmotic instability for the operative<br />

cases was defined as medial widening and talar subluxation on an<br />

intraoperative stress film after fibular fixation. Of 99 cases, 43 were<br />

treated in a cast and 56 were treated operatively. Some 24 (43%)<br />

<strong>of</strong> the operative cases demonstrated intraoperative syndesmotic<br />

instability. The presentation medial clear space (MCS) measurements<br />

were not different for any group, however the stress radiograph<br />

MCS was statistically different for all groups (p


was used to estimate unadjusted (univariate) and adjusted relative<br />

rates (multiple regression) for fasciotomy based on injury factors<br />

(zone, injury severity score, arrival time), patient age, gender and<br />

race, hospital trauma level. Analyses were done using the GLIMMIX<br />

procedure in SAS 9.2. A total <strong>of</strong> 18,676 patients in the databank<br />

were identified as sustaining an isolated foot injury in zones 1-4.<br />

Of these, only 364 (1.95%) <strong>of</strong> patients underwent fasciotomies <strong>of</strong><br />

the foot for presumed FCS. For the entire cohort, 79% between 18-<br />

64 years old; 71% were caucasion and 68% were male. Fasciotomy<br />

rates were 84.3% and 79.0% for 18-64 year olds who did vs. did not<br />

receive a fasciotomy (p


three study groups. The mean reaction time was increased for the<br />

SLC and CAM groups as compared with reaction time in the control<br />

group. The mean braking time was increased in the CAM and LFA<br />

groups as compared with braking time in the control group. Total<br />

brake-response time while wearing immobilization or utilizing a<br />

left-foot driving adapter is significantly increased, or worsened, as<br />

compared with the response time while wearing normal footwear.<br />

This information may prove valuable to physicians when counseling<br />

patients on safe return to driving.<br />

pApeR No. 053<br />

Reliability and Validity <strong>of</strong> 5 Lower Extremity Outcome<br />

Measures in Ankle Arthroplasty and Arthrodesis<br />

Ellie Pinsker, Toronto, ON Canada<br />

Timothy Rudolf Daniels, MD, Toronto, ON Canada<br />

Taucha Inrig, RN, Toronto, ON Canada<br />

Kelly Warmington, Toronto, ON Canada<br />

Dorcas Beaton, OT, Toronto, ON Canada<br />

A number <strong>of</strong> outcome measures have been used to assess hindfoot<br />

surgical interventions, but they vary in content and have not been<br />

directly compared. Some have not been psychometrically validated<br />

in this patient population. This study will directly compare<br />

measurement properties <strong>of</strong> five self-report lower extremity measures,<br />

and evaluate their reliability and validity in light <strong>of</strong> patient preferences.<br />

A cross-sectional survey <strong>of</strong> pre- and post-operative ankle arthrodesis<br />

and arthroplasty patients (n=142). Patients completed the patientreported<br />

section <strong>of</strong> AOFAS, FFI, LEFS, SMFA and WOMAC on two<br />

occasions. The survey also included SF-12, EQ-5D and measures <strong>of</strong><br />

instrument preference, satisfaction, and current status. Scores were<br />

in the mid-range <strong>of</strong> the scales. Internal consistency was high for all<br />

scales and subscales - 0.83-0.96; ICC (2,1) 0.81-0.96). Correlations<br />

between scales ranged from 0.50 (WOMAC Stiffness subscale and<br />

FFI Activity Limitations subscale) to 0.96 (FFI Disability and FFI<br />

Overall). Higher correlations occurred between subscales from the<br />

same instrument and similar subscales from different instruments.<br />

Construct validity showed moderate-high correlations to NRSs<br />

<strong>of</strong> pain, stiffness and daily activity. Highest correlations (>= 0.75)<br />

occurred in pain NRS and WOMAC Pain/FFI/AOFAS; stiffness NRS<br />

and WOMAC Stiffness/WOMAC Physical Function; daily activity<br />

NRS and all instruments except WOMAC Stiffness/FFI Pain/SMFA<br />

Emotional Status. Direct comparison <strong>of</strong> measures revealed similarity<br />

between scales in terms <strong>of</strong> construct validity and internal consistency.<br />

Patient preferences endorsed these scales as useful, but insufficient<br />

in telling their full story. Foot specific instruments <strong>of</strong>fered no clear<br />

advantage over lower extremity instruments in terms <strong>of</strong> validity and<br />

reliability in this patient population.<br />

pApeR No. 054<br />

uFluoroscopic Examination <strong>of</strong> a Meniscal Bearing<br />

Ankle Replacement to Assess Meniscal Motion<br />

Gerard Martin Bourke, FRACS, Melbourne, VIC Australia<br />

Meniscal bearing ankle replacements are designed to reduce contact<br />

stresses at the bone prosthesis interface by moving in all planes. This<br />

study attempts to define whether there is a difference in motion<br />

weight bearing compared to non weight bearing using video<br />

fluoroscopy. A total <strong>of</strong> 39 total ankle replacements in 38 patients<br />

were examined using a fluoroscopic mini C arm. All patients were at<br />

least six months following surgery and sub talar fusions were present<br />

in some cases. Examination consisted <strong>of</strong> a seated non weight bearing<br />

and standing weight bearing fluoroscan taking the ankle through<br />

a full range <strong>of</strong> motion. A lateral video scan was then examined to<br />

determine the movement <strong>of</strong> the meniscal bearing using the metal<br />

583<br />

markers within the polyethylene. In no case was antero posterior<br />

motion <strong>of</strong> the meniscal bearing seen, either weight bearing or non<br />

weight bearing. Coronal motion <strong>of</strong> the tibia on the talus was seen in<br />

weight bearing especially if there was an ipsilateral sub talar fusion.<br />

The meniscus in a meniscal bearing ankle arthroplasty becomes fixed<br />

to the tibial component soon after surgery. All motion therefore<br />

occurs at the talar polyethylene interface which is designed primarily<br />

for antero posterior movement and not rotation, translation or<br />

coronal plane motion. This has implications regarding prosthetic<br />

design especially as coronal movement is seen at the tibio-talar<br />

interface in weight bearing. If a prosthesis has no scope for coronal<br />

motion then increased stress will be placed on the polyethylene and<br />

bone prosthesis interface. This may lead to premature polyethylene<br />

wear or loosening.<br />

pApeR No. 055<br />

10 to 14 Years Survivorship <strong>of</strong> a Current 3-Component<br />

Total Ankle Prosthesis<br />

Samuel Brunner, MD, Liestal, Switzerland<br />

Markus Knupp, MD, Liestal, Switzerland<br />

Lukas Zwicky, MSc<br />

Beat Hintermann, MD, Liestal, Switzerland<br />

Despite numerous encouraging reports on outcome <strong>of</strong> total ankle<br />

replacement (TAR) at short- to mid-term, little is known about<br />

long-term survivorship. The goal <strong>of</strong> this study was to determine the<br />

survival at long-term <strong>of</strong> a current three-component ankle prosthesis<br />

in a controlled series <strong>of</strong> patients operated by a single independent (no<br />

conceptor) surgeon. Between 1996 and 2000, 72 patients (77 ankles)<br />

underwent TAR using a three-component, single hydroxyapatite<br />

coated ankle prosthesis. In all, 13 patients (14 ankles) were lost (12<br />

patients 13 ankles] died, one patient 1 ankle] moved overseas). All<br />

patients were clinically and radiologically assessed after 11.8 (10.1-<br />

14.2) years, and survivorship analysis was calculated. Revision <strong>of</strong> a<br />

metallic implant or conversion into ankle arthrodesis was taken as<br />

the endpoint.<br />

pApeR No. 056<br />

Correction <strong>of</strong> Moderate and Severe Coronal Plane<br />

Deformity with the STAR Prosthesis<br />

Sudheer C Reddy, MD, Boyds, MD<br />

Roger A Mann, MD, Oakland, CA<br />

Jeffrey Adam Mann, MD, Oakland, CA<br />

Devin R Mangold, BS, Walnut Creek, CA<br />

Prior studies demonstrated a correlation between the degree <strong>of</strong><br />

preoperative coronal plane deformity and ankle replacement failure.<br />

Patients with moderate (10-20 degrees) and severe (>20 degrees)<br />

deformity who underwent replacement utilizing the Scandinavian<br />

Total Ankle Replacement (STAR) prosthesis from 2000-2009 were<br />

evaluated. A total <strong>of</strong> 130 consecutive patients (133 ankles) were<br />

identified. Of those, 44 patients (45 ankles) had at least 10 degrees <strong>of</strong><br />

preoperative coronal plane deformity on weight-bearing radiographs.<br />

There were 29 males and 15 females. Average age was 66 years.<br />

Average follow up was 38 months (range 3-98). None were lost to<br />

follow up. Patients were evaluated pre-operatively and on initial and<br />

final post-operative examination. Nineteen ankles had 20 degrees or<br />

greater <strong>of</strong> deformity (eight varus, 11 valgus). Twenty-six had between<br />

10 and 20 degrees <strong>of</strong> deformity (11 valgus, 15 varus). There were<br />

28 incongruent and 17 congruent joints. Average talar pre-operative<br />

deformity was 17.9 degrees (range 10-29), while average initial postoperative<br />

deformity was 3.5 degrees (range 0-12). Average final postoperative<br />

deformity was 4.7 degrees (range 0-14). Pre-operative and<br />

final correction <strong>of</strong> deformity was statistically significant (p


was accomplished solely by s<strong>of</strong>t-tissue procedures’ deltoid release or<br />

lateral ligament reconstruction. Twelve patients underwent deltoid<br />

ligament release. One underwent a lateral ligament reconstruction.<br />

No significant difference was noted between initial and final<br />

post-operative correction. Recurrence, defined as a change <strong>of</strong> > 4<br />

degrees in coronal alignment compared to the initial post-operative<br />

radiographs, occurred in only five patients (11%), one <strong>of</strong> whom<br />

had severe deformity. Correction <strong>of</strong> moderate/severe coronal plane<br />

deformity with the STAR prosthesis is achievable with s<strong>of</strong>t-tissue<br />

balancing procedures with favorable results.<br />

pApeR No. 057<br />

Correlation <strong>of</strong> Component Position with Gait and<br />

Clinical Outcomes After Total Ankle Arthroplasty<br />

Samuel Bruce Adams, Jr MD, Towson, MD<br />

Nicholas Adam Viens, MD, Durham, NC<br />

James Keith DeOrio, MD, Durham, NC<br />

Mark E Easley, MD, Durham, NC<br />

James Albert Nunley II, MD, Durham, NC<br />

Robin M Queen, PhD, Durham, NC<br />

The importance <strong>of</strong> component alignment in hip and knee<br />

arthroplasty has been exhaustively studied. However, the optimal<br />

position <strong>of</strong> the tibial and talar components in total ankle arthroplasty<br />

(TAA) is unknown. The purpose <strong>of</strong> this study was to correlate<br />

several radiographic measurements, describing the location <strong>of</strong> these<br />

components, with gait mechanics and clinical outcome scores.<br />

Forty patients who underwent unilateral TAA without concomitant<br />

procedures were included. Preoperative and one-year postoperative<br />

gait analysis and clinical outcomes assessments (VAS for pain,<br />

AOFAS, SMFA, FADI) were performed. Coronal tibial implant angle,<br />

sagittal tibial implant angle, anterior talar translation, coronal talar<br />

implant angle, sagittal talar implant angle and the horizontal and<br />

vertical center <strong>of</strong> talar implant rotation in relation to the radiographic<br />

vertex <strong>of</strong> the lateral process <strong>of</strong> the talus were obtained from oneyear<br />

postoperative radiographs. Spatial-temporal gait variables<br />

and clinical outcome scores were correlated with the radiographic<br />

measurements using Pearson Correlations (p


pApeR No. 060<br />

Complications and Reoperations following Total Ankle<br />

Arthroplasty: Review <strong>of</strong> 70 cases<br />

John G Anderson, MD, Grand Rapids, MI<br />

Rohan Ashok Habbu, MS, MBBS, St Paul, MN<br />

Michelle A. Padley, Grand Rapids, MI<br />

Donald R Bohay, MD, Grand Rapids, MI<br />

Total ankle arthroplasty (TAA) has a steep learning curve and<br />

incidence <strong>of</strong> complications and failures still remains substantial.<br />

The objective <strong>of</strong> the present study was to assess the complication<br />

and reoperation rates following TAA with second generation<br />

prosthesis. The study also evaluated the predictors <strong>of</strong> complications<br />

and described the reoperations following failures or complications.<br />

It also assessed the survivorship <strong>of</strong> the implant. Between 2000 and<br />

2006, there were 90 TAA <strong>of</strong> which 67 patients (70 ankles) satisfied<br />

the criteria for the study (primary TAA and at least three years <strong>of</strong><br />

followup). Ankles which failed earlier than the required three years<br />

were included in the analysis. These 67 patients were followed for<br />

mean 55 (range, 36 to 108) months. Mean age at surgery was 59<br />

(range, 28 to 84) years. Indications for TAA included post-traumatic<br />

arthritis (47/67), degenerative arthritis (10/67), rheumatoid arthritis<br />

(6/67) and others (4/67). Serial radiographs were assessed for loss<br />

<strong>of</strong> alignment and radiolucencies. Complications, reoperations<br />

and failures were noted. Survivorship was assessed with Kaplan-<br />

Meier survival curve. Intraoperative complications included five<br />

fibular fractures and three medial malleolar fractures, <strong>of</strong> which<br />

seven required stabilization. Seven out <strong>of</strong> these eight patients<br />

with an intraoperative fracture were early half (first 30 TAA) <strong>of</strong> the<br />

group (p


pApeR No. 093<br />

uTalar Osteochondral Lesions Repair By Arthroscopic<br />

ACI. 5y Clinical and MRI T2-Mapping Evaluation<br />

Sandro Giannini, MD, Bologna, Bologna Italy<br />

Milva Battaglia, MD, Bologna, BO Italy<br />

Roberto Buda, Bologna, Italy<br />

Francesco Di Caprio, MD, Bologna, Italy<br />

Deianira Luciani, MD, Bologna, Bologna Italy<br />

Marco Cavallo, MD, Bologna, Italy<br />

Alberto Ruffilli, MD, Bologna, Bologna Italy<br />

Francesca Vannini, MD, Bologna, BO Italy<br />

Ideal treatment <strong>of</strong> osteochondral lesions <strong>of</strong> the talus (OLT) is still<br />

controversial. The aim <strong>of</strong> this study is to review the five years follow<br />

up clinical and MRI results <strong>of</strong> arthroscopic autologous chondrocytes<br />

implantation (ACI) in the treatment <strong>of</strong> OLT. From 2001 to 2004,<br />

46 patients age 31.4±7.6 years affected by OLT received arthroscopic<br />

autologous chondrocytes implantation. Lesion size was 1.6±0.9 cm2.<br />

All patients were evaluated clinically (<strong>American</strong> <strong>Orthopaedic</strong> Foot<br />

and Ankle Society), radiographically and by MRI (Mocart score) preoperatively<br />

and up to a mean follow up <strong>of</strong> 63.2±14.5 months. MRI<br />

T2 mapping evaluation was performed in 20 patients. Pre-operative<br />

score was 57.2±14.3. At 12 months, it was 86.8±13.4 (p < 0.0005),<br />

while at final follow-up it was 92.7±11.4 (p


S1 with that <strong>of</strong> S2. From 1991 to 2000, 104 ankles in 94 patients<br />

were treated with the S1 method. The average follow up period was<br />

4.6 years. The average age at surgery was 26.7 years old. From 2001 to<br />

2008, 73 ankles in 66 patients were treated with the S2 method. The<br />

average follow up period was 2.1 years. The average age at surgery<br />

was 25.5 years old. The average AOFAS Score improved from 65<br />

to 95 in S1, and improved from 60 to 98 at the latest follow up.<br />

The average talar tilt improved from 13.5±5.6 to 5.2±3.2 degrees<br />

in S1, and improved from 12.9±5.1 to 5.4±2.8 degrees in S2. There<br />

was no significant statistical difference between two series. Both<br />

reconstruction methods for lateral ankle ligaments preserved good<br />

range <strong>of</strong> motion and provided sufficient stability. Anatomical graft<br />

placement should be most important surgical focus.<br />

pApeR No. 097<br />

A Hybrid Anatomic Lateral Ankle Reconstruction in<br />

Athletes: ATFL Autograft with Plication <strong>of</strong> the CFL<br />

Christopher D Murawski, New York, NY<br />

John G Kennedy, MD, New York, NY<br />

The lateral ankle sprain is the single most common sports injury<br />

worldwide. Surgical strategies for addressing lateral instability<br />

include anatomic reconstruction and checkrein procedures.<br />

Concerns over inadequate reparative tissue, scarring and over<br />

tightening <strong>of</strong> the subtalar joint have prompted the introduction <strong>of</strong><br />

a hybrid reconstruction. Using a peroneal tendon autograft fixed<br />

to the isometric points <strong>of</strong> the anterior tal<strong>of</strong>ibular ligament (ATFL)<br />

and plicating rather than substituting the calcane<strong>of</strong>ibular ligament<br />

(CFL) provide the benefits <strong>of</strong> both techniques while reducing<br />

the drawbacks <strong>of</strong> both. The current study hypothesis is that the<br />

hybrid reconstruction will provide excellent functional recovery<br />

with few complications. Between January 2006 and June 2009, 57<br />

patients underwent a hybrid lateral ankle ligament reconstruction<br />

technique. Each patient included in the present study failed a threemonth<br />

conservative triple-phase therapy program. All patients were<br />

followed for a minimum <strong>of</strong> one year after surgery and were treated in<br />

identical fashion. Surgery included substituting the native ATFL with<br />

a 4 cm split peroneus longus autograft in addition to a vest-overpants<br />

plication <strong>of</strong> the CFL. All patients had pre- and post-operative<br />

Foot and Ankle Outcome Scores (FAOS) and Short Form-36v2<br />

scores. Pre- and post-operative MRIs were compared to detect ankle<br />

and subtalar arthrosis. A total <strong>of</strong> 93% <strong>of</strong> patients were satisfied with<br />

the procedure and would recommend it to a friend. FAOS scores<br />

increased significantly pre- to post-operatively from 58 to 89 points<br />

(p < .05). SF-36v2 scores also increased significantly from 67 points<br />

pre-operatively to age adjusted normal levels (p < .05). Two <strong>of</strong> 57<br />

patients had pre-operative grade II cartilage loss in the posterior facet<br />

<strong>of</strong> the subtalar joint. In one case, this had advanced to grade III at<br />

two years follow up. Two additional patients had grade I changes<br />

in the subtalar joint at two years and one patient demonstrated<br />

grade II changes in the ankle joint at one-year follow-up. All patients<br />

reported competing at some level <strong>of</strong> athletic sport prior to surgery.<br />

Five <strong>of</strong> 57 patients did not return to pre-operative sporting levels.<br />

All five patients had mechanical stability but all had functional<br />

instability. The incidence <strong>of</strong> functional instability was 22% overall<br />

and persistence <strong>of</strong> functional instability was a predictor <strong>of</strong> failure<br />

to return to sports. Complications included a painful hypertrophic<br />

peroneal tendon, two cases <strong>of</strong> superficial peroneal nerve neurapraxia<br />

and a post-operative sinus tarsi syndrome. Traditional anatomic<br />

reconstructions <strong>of</strong> the lateral ligament complex have demonstrated<br />

good outcomes. Nevertheless, significant scarring and overtightening<br />

<strong>of</strong> the ankle joint can occur. Checkrein procedures have<br />

also produced concerns with over tightening <strong>of</strong> the ankle and<br />

subtalar joints. The hybrid procedure described herein uses the most<br />

587<br />

advantageous concepts from both procedures while reducing the<br />

risk <strong>of</strong> these drawbacks. The current study has demonstrated that<br />

mechanical stability is restored without compromising joint forces.<br />

Functional stability training is critical to facilitate a full return to<br />

sports.<br />

pApeR No. 098<br />

Factors Influencing Union After Arthroscopic Ankle<br />

Arthrodesis<br />

Ichiro Yoshimura, MD, Fukuoka, Japan<br />

Masatoshi Naito, MD, Fukuoka, Japan<br />

Kazuki Kanazawa, MD<br />

Takahiro Ida, MD, Osaka, Japan<br />

Tomohiro Nomura, MD<br />

Tomonobu Hagio, MD<br />

Arthroscopic ankle arthrodesis is an established technique for<br />

select patient populations. This study aimed to investigate factors<br />

influencing ankle union. We reviewed 35 patients (16 male, 21 female;<br />

mean age at operation 63.0 years, range 40 to 81) who underwent<br />

37 arthroscopic ankle arthrodesis operations for osteoarthritis<br />

(n=33), and rheumatoid arthritis, avascular necrosis, drop foot and<br />

hemophiliac arthritis (one each). The fixation methods were three<br />

cross transmalleolar screws (6.0 mm cannulated cancellous screws)<br />

in 12 (ML3), two cross screws in four (ML2), three trans-medial<br />

malleolar parallel screws in 15 (M3) and two trans-medial malleolar<br />

parallel screws in six (M2). Arthroscopic ankle arthrodesis produced<br />

radiographic fusion in 36 <strong>of</strong> the 37 ankles (97.3%). The average time<br />

to fusion was 74±9 days in ML3, 92±11 days in ML2, 64±7 days in<br />

M3 and 80±6 days in M2. The AOFAS score was 81.3±7.6 in ML3,<br />

83.5±8.7 in ML2, 86.7±6.8 in M3 and 83.3± 8.0 in M2. The average<br />

time to fusion was 66±4 days for a correction angle 10 degrees, measured on anteroposterior<br />

ankle radiographs (p=0.08). In obese patients, time to ankle fusion<br />

was significantly longer (BMI>25; 92±8 days, BMI


one recurrence (3%), which was treated with repeat excision. An<br />

additional patient was re-operated for failure to excise the coalition<br />

completely. Eleven patients (28%) underwent a subsequent surgery<br />

to correct the alignment <strong>of</strong> the foot. To the best our knowledge, none<br />

<strong>of</strong> the patients excluded due to short follow up had repeat surgery<br />

or recurrence. A symptomatic talocalcaneal coalition can be treated<br />

with excision and fat graft interposition and achieve good-excellent<br />

results in 85% <strong>of</strong> patients. Patients should be counseled that a subset<br />

may require further surgery to correct malalignment.<br />

pApeR No. 100<br />

Naviculocunieform Fusion: Outcomes and Predictors <strong>of</strong><br />

Nonunion<br />

Scott Nemec, DO, Petoskey, MI<br />

Rohan Ashok Habbu, MS, MBBS, St Paul, MN<br />

Donald R Bohay, MD, Grand Rapids, MI<br />

John G Anderson, MD, Grand Rapids, MI<br />

Naviculocunieform joint (NC) fusion forms a vital adjunct in<br />

midfoot reconstruction. Few studies have focused on outcomes<br />

following this procedure. The aim <strong>of</strong> the study was to evaluate the<br />

outcomes <strong>of</strong> NC fusion and determine predictors for NC nonunion.<br />

Seventy four patients (78 feet) with naviculocunieform fusion with<br />

mean followup <strong>of</strong> 49 (range, 24 to 84) months were included in this<br />

retrospective study. Eight <strong>of</strong> the 78 feet had isolated NC fusion while<br />

the rest had additional procedures. The indications for NC fusion<br />

included primary arthritis in 61 feet, posttraumatic arthritis in 11<br />

feet, Charcot arthropathy in four feet and rheumatoid arthritis in two<br />

feet. The most common symptom in all feet was pain. There were 12<br />

men and 62 women (four bilateral cases). The mean age at surgery<br />

was 61 (range, 35 to 80) years. The mean body mass was index (BMI)<br />

was 32. Outcomes were assessed with help <strong>of</strong> pain scores (on a scale<br />

<strong>of</strong> one to 10), modified AOFAS midfoot score (subjective evaluation<br />

only, maximum score <strong>of</strong> 85) and patient satisfaction. Sixty two<br />

(83%) out <strong>of</strong> 74 patients were satisfied with the final result. Pain<br />

score improved from a preoperative mean <strong>of</strong> 6.8 to postoperative<br />

mean <strong>of</strong> 2.9 (p


statistically significant (p = 0.318). Of the patients with allograft,<br />

three <strong>of</strong> those with a nonunion had the allograft bone mixed with<br />

an iliac crest aspirate (3/28, 10.7%), while two did not (2/30, 6.7%).<br />

This difference was also not statistically significant (p = 0.583). The<br />

average graft size in patients with union was 7.51 mm. In those<br />

patients who had a nonunion, the average size was 8.86 mm. This<br />

difference was statistically significant (p = 0.008). Nonunion was a<br />

relatively uncommon occurrence in these patients as a whole; the<br />

allograft patients had a trend towards a higher risk <strong>of</strong> nonunion, but<br />

this trend was not significant. The requirement <strong>of</strong> a more aggressive<br />

deformity correction does appear to be a risk factor for nonunion.<br />

pApeR No. 103<br />

3-D Computer Image Modeling in the Determination <strong>of</strong><br />

at-Risk Structures for Calcaneal Osteotomies<br />

Erin M Prewitt, MD, Akron, OH<br />

David B Kay, MD, Akron, OH<br />

Timothy Marks, BS<br />

Michael Askew, Akron, OH<br />

Leann Speering, Akron, OH<br />

Improvements in radiographic computer imaging have provided<br />

means to obtain 3-D anatomical visualizations <strong>of</strong> anatomy,<br />

pathology and orthopaedic injuries. The OsiriX s<strong>of</strong>tware program is<br />

a free DICOM viewer that allows patient-specific surgical planning<br />

and post-surgical evaluation. This s<strong>of</strong>tware has been applied to<br />

many fields <strong>of</strong> medicine but has not been studied in orthopaedics.<br />

The purpose <strong>of</strong> this study is to evaluate the accuracy <strong>of</strong> the OsiriX<br />

s<strong>of</strong>tware for application to foot and ankle surgery. The accuracy <strong>of</strong> the<br />

OsiriX s<strong>of</strong>tware was evaluated by two separate methods. First, a 3-D<br />

model was created with radiopaque objects and measurements were<br />

taken with calipers. These measurements were then compared with<br />

those derived from an OsiriX virtual 3-D model. Second, to apply<br />

the OsiriX s<strong>of</strong>tware to the clinical setting, 3-D virtual models were<br />

created from CT scans <strong>of</strong> two cadaver feet. The medial displacement<br />

and Evan’s calcaneal osteotomies were performed on the cadaver and<br />

virtual 3-D feet. Measurements were obtained between the medial<br />

at-risk structures and the medial calcaneal cortex at the osteotomy<br />

sites for both the cadaver specimens and the virtual images. The<br />

mean difference between the physical measurements vs. OsiriX<br />

measurements for the inanimate model was -0.047 + 0.68 mm. The<br />

mean difference between the physical and OsiriX measurements in<br />

the cadaver specimens was 0.124 + 0.934 mm. We have shown that<br />

the measurements obtained through the OsiriX program are reliable<br />

and can be used in the clinical or research setting. Virtual surgery<br />

and computer imaging opens new possibilities for developing<br />

novel surgical procedures, better understanding <strong>of</strong> the 3-D nature <strong>of</strong><br />

anatomy, evaluation <strong>of</strong> surgical corrections and individualization <strong>of</strong><br />

patient care. Ease <strong>of</strong> use and accessibility make the OsiriX s<strong>of</strong>tware a<br />

valuable tool for orthopaedic surgeons.<br />

589<br />

pApeR No. 104<br />

The Treatment <strong>of</strong> Achilles Tendinopathy with Tendon<br />

Debridement and Flexor Hallucis Longus Transfer<br />

Frances Faro, MD, Denver, CO<br />

Gregory P Guyton, MD, Baltimore, MD<br />

Brent G Parks, MSC, Baltimore, MD<br />

Lew C Schon, MD, Baltimore, MD<br />

Mayu Toner, BS<br />

Anand Mahesh Vora, MD, Lake Forest, IL<br />

Gary Aghazarian, BS, Baltimore, MD<br />

Jennifer Shores, RN, Baltimore, MD<br />

Degeneration <strong>of</strong> the Achilles tendon is a common cause <strong>of</strong> heel<br />

pain. Surgical debridement <strong>of</strong> the dysfunctional tendon substance is<br />

a common treatment. Augmentation <strong>of</strong> the debrided Achilles with<br />

a flexor hallucis longus (FHL) tendon transfer has been recently<br />

described. The purpose <strong>of</strong> this study was to prospectively evaluate<br />

the outcomes <strong>of</strong> this surgery over a minimum <strong>of</strong> two years. This<br />

study was an Institutional Review Board-approved prospective study<br />

<strong>of</strong> 48 patients who underwent Achilles debridement and flexor<br />

hallucis longus (FHL) tendon transfer for Achilles tendinopathy.<br />

Preoperatively, they were clinically evaluated to determine hallux<br />

and ankle range <strong>of</strong> motion, and the ability to do a single leg heel rise<br />

(SLHR). Patients also completed the SF-36, AOFAS Hindfoot and<br />

Visual Analog Scale (VAS) surveys. Evaluations were repeated at the<br />

three, six, 12 and 24 month postoperative timepoints. Forty-eight<br />

patients were included in the study. Patients averaged 54±10 years<br />

old and had an average BMI <strong>of</strong> 33.8±6.8. Prior to surgery, 63% were<br />

unable to do an SLHR. At the two-year time point, passive hallux and<br />

ankle range <strong>of</strong> motion were not significantly different. One hundred<br />

percent <strong>of</strong> patients assessed were able to do an SLHR; additionally,<br />

there was no significant difference between the operative and<br />

nonoperative leg calf circumference. The VAS overall pain intensity<br />

had decreased from 6.7±2.3 to 0.8±2.0 and the VAS overall pain with<br />

activity had decreased from 7.9±1.8 to 1.8±2.0. The SF-36 physical<br />

(34±8 to 49±9) and mental (49±12 to 54±9) scores increased as did<br />

the AOFAS hindfoot score (54±15 to 92±15). Debridement <strong>of</strong> the<br />

Achilles tendon with FHL transfer provides reliable outcomes with<br />

improved pain and function at the two-year timepoint following<br />

surgery.<br />

pApeR No. 105<br />

Early Weight Bearing and Accelerated Rehabilitation<br />

Program after Achilles tendon repair<br />

Justin M Weatherall, MD, New York, NY<br />

Nirmal C Tejwani, MD, New York, NY<br />

The purpose <strong>of</strong> this study is to compare the outcomes <strong>of</strong> early<br />

functional weight bearing after a minimally invasive or standard<br />

approach for surgical repair <strong>of</strong> Achilles tendon. We conducted a<br />

retrospective review <strong>of</strong> 45 consecutive patients with follow up <strong>of</strong> at<br />

least six months who underwent repair <strong>of</strong> an acute closed Achilles<br />

tendon rupture. The first group, consisting <strong>of</strong> 22 patients (Group<br />

A), was treated with a minimally invasive posterolateral approach.<br />

The second group, consisting <strong>of</strong> 23 patients (Group B), was treated<br />

with a standard posteromedial approach. At two weeks post op,<br />

the patients were allowed to weight bear as tolerated in a CAM<br />

boot with a 20 degree heel wedge. At six weeks the CAM boot was<br />

discontinued and the patient was placed in a regular shoe with a heel<br />

lift. We examined the rate <strong>of</strong> re-rupture, sural nerve injury, wound<br />

complication, post-op ROM (range <strong>of</strong> motion) at six weeks and three<br />

months, and calf strength at three to six months. There were zero reruptures<br />

in both groups. In Group A, only one (4.5%) developed a<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits foot & ANKle


superficial wound infection, which resolved with oral antibiotics by<br />

three months. Three <strong>of</strong> 22 (14%) patients developed a sural nerve<br />

palsy, and two <strong>of</strong> the three palsies resolved by three months with one<br />

still present at six months. At six months, all patients had strength<br />

<strong>of</strong> 4/5 to 5/5. The average incision length was 2.5 cm. In Group B,<br />

two patients (8.6%) developed a superficial wound infection and<br />

three (13%) developed a superficial wound dehiscence; all resolved<br />

with either oral antibiotics or local wound care by eight months.<br />

At three months, all patients except one had strength <strong>of</strong> 4/5 to 5/5.<br />

The average length <strong>of</strong> the incision was 7.2 cm. Early functional<br />

weight bearing after a minimally invasive posterolateral or standard<br />

posteromedial approach is an effective and safe method for treating<br />

acute ruptures <strong>of</strong> the Achilles tendon.<br />

pApeR No. 496<br />

uEffect <strong>of</strong> PDGF-Coated Suture Repair on Achilles<br />

Tendon Healing in a Rat Model<br />

Joshua Dines, MD, Great Neck, NY<br />

Stephen H Cummings, MD, New Hyde Park, NY<br />

Pasquale Razzano, MS, Manhasset, NY<br />

Nadeen Chahine, PhD<br />

Daniel A Grande, PhD, Manhasset, NY<br />

Sutures coated with platelet derived growth factor (PDGF) were<br />

employed in an Achilles tendon repair model. PDGF has been shown<br />

to play a role in tendon healing through increased chemotaxis and<br />

proliferation <strong>of</strong> fibroblasts. The aim <strong>of</strong> this study was to compare the<br />

quality <strong>of</strong> tendon repair at four weeks post treatment with varying<br />

concentrations <strong>of</strong> PDGF-coated sutures against uncoated suture<br />

repairs. We hypothesized that an increasing dosage <strong>of</strong> PDGF would<br />

result in improved tendon healing histologically and biomechanically.<br />

A 4-0 vicryl suture was coated with varying concentrations <strong>of</strong> PDGF<br />

(0.3, 1.0 and 10.0 mg/ml) using a dip-coating process previously<br />

described. Four groups <strong>of</strong> sutures were employed in this study. The<br />

control group was made up <strong>of</strong> suture impregnated with acetate,<br />

the carrier molecule used with PDGF coated groups. Rat Achilles<br />

tendons were transected and repaired primarily. Tendons were<br />

repaired with one <strong>of</strong> the four suture types. Tendons were harvested at<br />

four weeks postop and sent for biomechanical analysis (n=8/Group)<br />

or histological analysis (n=4/Group). Histology sections from each<br />

specimen stained with H&E slides were then imaged and analyzed<br />

by two blinded observers. Samples were scored using the Soslowsky<br />

scale for collagen organization and angiogenesis. Uniaxial tensile<br />

biomechanical analysis was performed on each specimen providing<br />

load and extension data. The raw data was analyzed for the Young’s<br />

modulus, ultimate tensile strength and elastic toughness <strong>of</strong> each<br />

specimen. The biomechanical results demonstrated a significant<br />

difference in ultimate tensile stress between control (1.0 ± 0.2<br />

MPa) and high dose PDGF groups (1.9 ± 0.5 MPa and 2.1 ± 0.5<br />

MPa). Tensile Young’s modulus was significantly higher in PDGF 10<br />

group (7.22, SD 3.79) than all the other groups. This demonstrated<br />

a positive dose response and improved strength with PDGF coated<br />

sutures. The histological analysis demonstrated no significant<br />

differences in collagen score or angiogenesis between control and<br />

PDGF groups. This data demonstrate that PDGF coated suture<br />

improves material properties <strong>of</strong> repaired tendons in a positive, dosedependent<br />

fashion. Ultimate tensile stress improved in a dose-related<br />

fashion in tendons repaired with PDGF impregnated suture. Though<br />

there were no significant histological differences, the biomechanical<br />

data provides promise that growth factor coated sutures can improve<br />

and/or accelerate healing time in Achilles tendon repairs.<br />

590<br />

pApeR No. 497<br />

Biomechanical Study Of Flexor Digitorum Longus<br />

Tendon Transfer For Tibialis Posterior Insufficiency<br />

Mahesh Pimple, FRCS<br />

Ziad Harb, MRCS<br />

Aroon Baskaradas, MRCS, Frimley, United Kingdom<br />

Matthew C Solan, FRCS, Godalming Surrey, United Kingdom<br />

Tibialis posterior insufficiency is a common cause <strong>of</strong> acquired flat<br />

foot deformity in adults. Tibialis posterior is the main invertor <strong>of</strong> the<br />

hindfoot. It also acts as a primary dynamic stabilizer <strong>of</strong> the medial<br />

longitudinal arch by locking the midfoot and preventing abnormal<br />

forefoot abduction. Its dysfunction therefore leads to excessive<br />

hindoot foot eversion and forefoot abduction causing a planovalgus<br />

deformity. Flexor digitorum longus transfer is commonly used for<br />

balancing deforming forces in correctible flat foot deformity; usually<br />

in conjuction with a bony procedure. This study aims to find out<br />

how flexor digitorum longus (FDL) transfer compares to the tibialis<br />

posterior in producing inversion and abduction <strong>of</strong> the foot. Eight<br />

cadaveric legs were used. The tibia had been sectioned below the level<br />

<strong>of</strong> the tibial tuberosity. All s<strong>of</strong>t tissue attachments were preserved. A<br />

vertical hole was drilled in the navicular bone from dorsal to plantar.<br />

FDL tendon was sectioned at the knot <strong>of</strong> Henry and passed plantar<br />

to dorsal through the tunnel and sutured to itself. The proximal<br />

musculotendinous junctions <strong>of</strong> the tibialis posterior tendon and<br />

FDL were exposed. Sutures were used to obtain secure fix in the<br />

tendinous portion and passed through the center <strong>of</strong> the muscle belly<br />

to maintain the line <strong>of</strong> pull <strong>of</strong> the muscles. The sutures were passed<br />

over a pulley system to accept load. The tibia was clamped securely<br />

in a jig so that the leg was lying horizontal with the sole facing the<br />

cameras and the proximal cross-section facing the pulleys. The ankle<br />

and subtalar joints were taken through full range <strong>of</strong> movements to<br />

relieve any stiffness and the tendons were cyclically loaded a few<br />

times to relieve the crimp in the tissues. Reflective markers were<br />

placed on the heel, head <strong>of</strong> first metatarsal and fifth metatarsal. Two<br />

motion capture cameras were used to track the movements <strong>of</strong> these<br />

three markers. A load cell was used to measure the adductor force<br />

generated over the head <strong>of</strong> the first metatarsal. The tendon excusion<br />

was noted by measuring movement <strong>of</strong> a marker on the tendon<br />

as compared to a fixed point. The native tibialis posterior tendon<br />

was loaded first. Readings were taken at load 0Newtons(N), 10N,<br />

20N, 30N and finally 0N again after removal <strong>of</strong> load. Force over<br />

the first metatarsal head was also measured at these loads using a<br />

load cell. The transferred FDL was now loaded in similar manner<br />

and measurements taken. The specimen or the jig was not handled<br />

in between these two sets <strong>of</strong> measurements for the two tendons.<br />

Statistical testing by paired t-test showed no difference between<br />

the tibialis posterior and FDL transfer with respect to the range <strong>of</strong><br />

inversion, adduction force developed over the medial aspect <strong>of</strong> the<br />

first metatarsal and the tendon excursion. One <strong>of</strong> the fundamental<br />

principles <strong>of</strong> tendon transfer is that the tendon chosen as a donor<br />

must be strong enough to perform its new function in its altered<br />

position. A few studies have questioned the rationale <strong>of</strong> FDL transfer<br />

for tibialis posterior insufficiency. FDL is not considered as strong<br />

as tibialis posterior. In addition, its non-anatomical attachment<br />

over the inferior surface <strong>of</strong> navicular bone may further weaken its<br />

inversion action. However, our cadaveric study shows that FDL<br />

transfer is as effective as tibialis posterior in inverting the heel and<br />

adducting the forefoot. Clinically, a muscle will lose one grade <strong>of</strong><br />

strength following transfer and a combined bony procedure such as<br />

a medial displacement calcaneal osteotomy could compensate by<br />

increasing the biomechanical advantage. In conclusion, our study<br />

shows that FDL transfer is effective in generating inversion and<br />

forefoot adduction similar to the native tibialis posterior tendon.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits foot & ANKle


pApeR No. 498<br />

Plantar Pressure Analysis in Forefoot After Different<br />

Amount <strong>of</strong> Lateral Column Lengthening<br />

Irvin Oh, MD, Hornell, NY<br />

Benjamin R Williams, New York, NY<br />

Daniel Choi, MS, New York, NY<br />

Carl W Imhauser, PhD, New York, NY<br />

Scott Ellis, MD, New York, NY<br />

Jonathan T Deland, MD, New York, NY<br />

Although lateral column lengthening <strong>of</strong> the calcaneus <strong>of</strong>fers powerful<br />

correction <strong>of</strong> talonavicular subluxation in flatfoot deformity,<br />

increased postoperative plantar lateral pressures have been reported.<br />

The aim <strong>of</strong> this study was to investigate whether even small changes<br />

in correction (2 mm) affect lateral forefoot plantar pressures. Our<br />

hypothesis was that increasing lateral column lengthening by 2 mm<br />

would significantly increase lateral plantar pressures. Ten cadaveric<br />

feet were axially loaded using 6 degrees <strong>of</strong> freedom robot. Each<br />

specimen was tested with all s<strong>of</strong>t tissues intact, after creating a<br />

flatfoot, and after 6, 8 and 10 mm <strong>of</strong> lateral column lengthening. For<br />

each condition, kinematic plantar pressure data were obtained with<br />

an axial force <strong>of</strong> 400N and pull through the Achilles <strong>of</strong> 311N. The<br />

flatfoot condition increased the medial/lateral ratio <strong>of</strong> mean average<br />

pressure (p


or gross inspection. Negative controls were classified as grade 0,<br />

and were defined as patients with a VAS <strong>of</strong> 0. Patients with none or<br />

mild synovitis/chondrosis were classified as grade 1. Patients with<br />

moderate/severe synovitis/chondrosis, osteochondritis dissecans,<br />

anterior impingement syndromes or loose body were classified<br />

as grade 2. Positive controls undergoing total ankle arthroplasty<br />

(TAA) were graded as 3. There were 36 patients, 21 males and 15<br />

females (mean age 45, range 18-76) and a mean pre-procedure VAS<br />

<strong>of</strong> 4.7. There were four positive, and 11 negative controls. Of the<br />

21 undergoing arthroscopy, six were grade 1 and 15 grade 2. The<br />

grade <strong>of</strong> intra-articular pathology was significantly related to age,<br />

preoperative VAS, FAC, IL-6, and MCP-1 (p < 0.05). FAC and MCP-1<br />

were significant predictors <strong>of</strong> pathology (p < 0.05). The mean values<br />

<strong>of</strong> the inflammatory marker MCP-1 in pg/ml were 49.8 (±8.0) for<br />

minimal pathology and 133.9 (±33.0) significant pathology. The<br />

mean values <strong>of</strong> FAC in optical density at 450 nm were 2.83 (±1.16)<br />

for minimal pathology and 9.62 (±2.23) for significant pathology.<br />

There are differences in FAC and MCP-1 with increasing grades<br />

<strong>of</strong> severity <strong>of</strong> intraarticular pathology. This may play a role in<br />

determining necessity <strong>of</strong> arthroscopy in equivocal candidates.<br />

pApeR No. 502<br />

uRandomized, Double-Blind Placebo-controlled Study<br />

<strong>of</strong> Hyaluronan Treatment <strong>of</strong> Ankle Osteoarthritis<br />

Henry DeGroot, MD, Newton Center, MA<br />

S<strong>of</strong>ia Uzunishvili, MD<br />

Robert Weir, MD<br />

Bruna Gomes, BS<br />

Treatment options for arthritis <strong>of</strong> the ankle are more limited than<br />

those for arthritis in the knee and hip. Surgical options include<br />

arthrodesis and arthroplasty, which are reserved for very advanced and<br />

severe cases. The safety and efficacy <strong>of</strong> hyaluronan (HA) injection for<br />

knee arthritis has been demonstrated in numerous well-controlled<br />

studies. In the USA, the FDA has not yet approved HA for use in the<br />

ankle. This study compares the therapeutic effect <strong>of</strong> a single intraarticular<br />

hyaluronan injection with a single intra-articular normal<br />

saline injection (placebo) for osteoarthritis <strong>of</strong> the ankle. This study<br />

is a randomized, prospective, double-blind (blinded observer),<br />

saline solution-controlled, parallel experimental design. Our power<br />

analysis showed that with an estimated population effect size <strong>of</strong> 0.4,<br />

a probability <strong>of</strong> alpha error (significance) <strong>of</strong> 0.05 and a required<br />

power (1-beta) <strong>of</strong> 0.95, the total required sample size would be 57 to<br />

62 patients with ankle osteoarthritis (Kellgren and Lawrence grade<br />

1 or more) were randomized to two groups. A single intra-articular<br />

hyaluronan injection or saline injection was given to each patient.<br />

The primary outcomes measure was the <strong>American</strong> <strong>Orthopaedic</strong> Foot<br />

and Ankle Society (AOFAS) score. Secondary outcome measures were<br />

ankle osteoarthritis score (AOS), patient reported pain (VAS) and<br />

quality <strong>of</strong> life (SF-12). Outcomes data were gathered at six weeks after<br />

the injection. Data were analyzed using the SPSS s<strong>of</strong>tware package.<br />

Seventy-six patients were screened, <strong>of</strong> which 62 met study criteria<br />

and were enrolled. Seven patients withdrew for various reasons,<br />

leaving 55 patients who completed the entire study process. Analysis<br />

<strong>of</strong> the data indicated that two groups were similar at baseline across<br />

all measures. No adverse effects were observed in either group. A<br />

mild positive treatment effect was observed, based on the AOFAS<br />

scores. In the hyaluronan injection group, AOFAS scores increased at<br />

six weeks compared to baseline by approximately 7% (p


warranted PSB as anesthesia for foot and ankle surgery between<br />

January and May 2009 was conducted. The time for an orthopaedic<br />

surgeon to administer the block, visual analog score (VAS) at postanesthesia<br />

care unit (PACU) discharge and block duration were<br />

evaluated. These values were compared to historical controls where<br />

an anesthesiologist administered the nerve blocks. Fifty patients had<br />

PSB performed by an orthopaedic surgeon utilizing ESLGA. For this<br />

cohort, the average time to administer the block, VAS in PACU and<br />

average block duration were: 3.8±1.2 min., 1.4±2.1 and 15.8±7.1<br />

hours, respectively. These are compared to 10.6±4.6 min., 0.9±1.3<br />

and 18.2±7.3 hours in the 14 patient control group that had their<br />

PSB performed by an anesthesiologist utilizing APUG. The only<br />

parameter with statistical significance between the two groups was<br />

time to administer the block (p


institution. These results were originally published showing 90%<br />

success rates and only 3% requiring surgical excision at a mean follow<br />

up <strong>of</strong> 10.5 months. The authors concluded that alcohol injection<br />

was comparable to results for surgical excision. The purpose <strong>of</strong> our<br />

study was to reveiw this group <strong>of</strong> patients at an average <strong>of</strong> five years<br />

follow up. We were able to review 45 <strong>of</strong> this original cohort with an<br />

average <strong>of</strong> five-year follow-up (range 33-73 months). The modified<br />

Johnson score and visual analogue scales were used to assess the<br />

patients and compare these results to five-year results available in<br />

the literature for surgical management. Our results indicated that by<br />

five years, 36% had undergone surgical treatment and another 16%<br />

had return <strong>of</strong> symptoms. Only 29% remained symptom free. Results<br />

at five years showed statistically significant differences (P=0.0001)<br />

compared to surgical management with 67.8% complete resolution<br />

<strong>of</strong> symptoms with surgery and 33% in the alcohol injection group.<br />

Injection with alcohol sclerosant for MN has been marketed as a<br />

definitive management option, comparable to surgical excision.<br />

Our investigation illustrated that although short-term results are<br />

encouraging; alcohol injection does not <strong>of</strong>fer permanent resolution <strong>of</strong><br />

symptoms for most patients and can be associated with considerable<br />

morbidity. Our investigation provides the only long-term data for<br />

alcohol injection treatment <strong>of</strong> MN.<br />

pApeR No. 508<br />

Treatment <strong>of</strong> Advanced Hallux Rigidus with<br />

Cheilectomy and Poximal Phalangeal Osteotomy<br />

Martin J O’Malley, MD, New York, NY<br />

Harpreet Singh Basran, MD, Crystal Lake, IL<br />

Yang Gu, BS<br />

Jonathan T Deland, MD, New York, NY<br />

Hallux rigidus refers to the degenerative arthritis <strong>of</strong> the first<br />

metatarsophalangeal (MTP) joint. As the process proceeds, the<br />

proliferic bony response results in increased bulk as well as a<br />

creation <strong>of</strong> a dorsal ridge that impinges the dorsilflexion <strong>of</strong> the<br />

proximal phalanx. Historically, advanced hallux rigidus (Coughlin<br />

Grade III and IV) has been treated with arthrodesis <strong>of</strong> the MTP joint.<br />

The purpose <strong>of</strong> this study is to review patient outcomes following<br />

cheilectomy and proximal phalangeal osteotomy for advanced hallux<br />

rigidus. The operative notes for all patients treated with cheilectomy<br />

and proximal phalangeal osteotomy for hallux rigidus between<br />

2000 and 2007 (319 patients) were reviewed and a subgroup <strong>of</strong> 93<br />

patients (103 feet) were identified who had advanced hallux rigidus<br />

as manifested by greater than two-thirds loss <strong>of</strong> articular cartilage on<br />

the metatarsal head. The outcome was the need for further surgery<br />

(i.e., arthrodesis), patient satisfaction as well as comparison <strong>of</strong> pre<br />

and postoperative AOFAS (<strong>American</strong> <strong>Orthopaedic</strong> Foot and Ankle<br />

Society) scores and ranges <strong>of</strong> motion. Review <strong>of</strong> operative notes<br />

showed a total <strong>of</strong> 93 patients (103 feet) had advanced intraoperative<br />

findings <strong>of</strong> greater than two-thirds loss <strong>of</strong> articular cartilage, with<br />

an average <strong>of</strong> 75% loss <strong>of</strong> articular cartilage. Thirty-nine feet were<br />

Coughlin radiographic Grade III and 64 feet were Grade 4. Results<br />

showed that there was a significant increase in postoperative range<br />

<strong>of</strong> motion, with average increase <strong>of</strong> 26.2 degrees from preoperative<br />

average <strong>of</strong> 34.5 degrees to 60.7 degrees postoperative (p


to 20.1°±3.6 (p


score. After AAD the number <strong>of</strong> patients participating in sports<br />

decreased. However, this change was not statistically significant.<br />

posteR No. p209<br />

Bisphosphonates, Graft Augmentation and Rigid<br />

Arthrodesis for the collapsed Charcot Midfoot<br />

Joe Wagener, MD, Liestal, Switzerland<br />

Markus Knupp, MD, Liestal, Switzerland<br />

Alexej Barg, MD<br />

Beat Hintermann, MD, Liestal, Switzerland<br />

In midfoot neuroarthropathy (Charcot), surgical reconstruction <strong>of</strong><br />

the arch with internal fixation is plagued with a high failure rate<br />

due to weakening <strong>of</strong> bone, bone loss and implant failures. We thus<br />

established a treatment concept that included 1) bisphosponate<br />

medication to normalize the bone metabolism, 2) allograft<br />

augmentation to compensate for bone loss and 3) intramedullary<br />

screw fixation to respond best to load forces to the arch. The goal is<br />

to report on the preliminary results after a minimal follow up <strong>of</strong> two<br />

years. A series <strong>of</strong> 16 consecutive Charcot neuroarthropathic feet (15<br />

patients; females, six; males, nine; age, 45 - 77 years]) with breakdown<br />

<strong>of</strong> the arch and imminent risk for ulceration were treated with<br />

these modalities. After five to 10 days, full contact cast was applied<br />

and weight-bearing was allowed as tolerated until union was achieved<br />

radiographically. After a mean follow-up <strong>of</strong> 33.6± 8.5 months, 14 <strong>of</strong><br />

16 feet (87.5%) were stable with no recurrence <strong>of</strong> Charcot process.<br />

Of these, union was achieved after 4.3 (2.7-8.0) months in 13 feet.<br />

In one foot, extension <strong>of</strong> the arthrodesis to tibiotalar fusion was<br />

needed due to progression, and healing was thereafter uneventful.<br />

In the remaining two feet (12.5%), infection occurred that needed<br />

hardware removal before complete bone healing occurred (one<br />

patient), and below knee amputation was performed (one patient)<br />

respectively.<br />

posteR No. p210 AlteRNAte pApeR<br />

The Role Of Talar Cheilectomy In Ankle Arthrosis<br />

Sarah Hanslow, MD, Gorokan, NSW Australia<br />

Patricia Kramer, PhD, Seattle, WA<br />

Stephen K Benirschke, MD, Seattle, WA<br />

Sigvard T Hansen Jr, MD, Seattle, WA<br />

Ankle arthrosis is a debilitating condition with limited treatment<br />

options in the younger subset <strong>of</strong> patients. Ankle arthrodesis leads to<br />

degeneration <strong>of</strong> adjacent joints, particularly the subtalar joint and<br />

ankle arthroplasty is not indicated in the younger active patient.<br />

We postulate that ankle cheilectomy provides adequate pain relief<br />

to defer other definitive surgical management. A retrospective chart<br />

review was conducted <strong>of</strong> all open ankle cheilectomies performed<br />

by two surgeons between 2003 and 2009. Data collected included<br />

demographic, aetiology, pain relief, change in range <strong>of</strong> movement,<br />

complications and further surgery required. Variable parameters<br />

were assessed at six weeks, six months and one year. The chart<br />

review identified 84 patients. Four were excluded due to inadequate<br />

availability <strong>of</strong> data. Of the remaining patients, 36 had >one year <strong>of</strong><br />

follow up. The average age <strong>of</strong> these patients was 45.6 (20-67) years,<br />

and 58% <strong>of</strong> patients were male. Of these patients with >one year<br />

follow up, 56% had pain relief not requiring further intervention that<br />

continued on average for at least 2.5 years. The range <strong>of</strong> movement<br />

increased by an average <strong>of</strong> 10 degrees. The surgical complication<br />

rate was 6% (two patients), one patient developed a deep vein<br />

thrombosis and subsequent pulmonary embolism while a second<br />

patient developed a sural nerve neuropraxia, which resolved. Ankle<br />

cheilectomy is a procedure without significant complications, which<br />

provides pain relief and increases range <strong>of</strong> movement in younger<br />

596<br />

patients with ankle arthrosis. The procedure may be repeated if the<br />

anterior talar osteophytes recur and has the benefit <strong>of</strong> not interfering<br />

with future surgical management in the form <strong>of</strong> arthroplasty or<br />

arthrodesis.<br />

posteR No. p211<br />

Biomechanical Comparison Of 4 Achilles Tendon<br />

Repairs: In vitro Study In Bovine Achilles Tendons<br />

Cristian Ortiz, MD, Santiago, Chile<br />

Pablo Mococain, MD<br />

Felipe Reinares, MD<br />

Julian Alonso, MS, RM, Chile<br />

Gonzalo Labarca, MS<br />

Sergio Arellano, MS, RM, Chile<br />

Andres Keller, MD, Santiago, Chile<br />

Emilio Wagner, MD, Santiago, Chile<br />

Operative treatment for acute Achilles tendon ruptures is generally<br />

recommended. Minimally invasive procedures have been designed<br />

in order to decrease s<strong>of</strong>t tissue complications. Any repair should be<br />

able to withstand early postoperative motion. Our objective was<br />

to evaluate the strength <strong>of</strong> a mini open repair with and without<br />

modifications in bovine Achilles tendons. Twenty fresh bovine<br />

Achilles tendon were incised 4 cm proximal to the calcaneal insertion,<br />

then were randomly repaired using either a mini open technique<br />

(Dresden technique), modified oblique Dresden technique<br />

(Oblique technique), modified triple strand Dresden technique<br />

(Triple technique) and Krackow repair (Krackow). All tendons<br />

were repaired using a number 2 polyblend suture. Each tendon was<br />

loaded to failure. Force at 5 mm gap formation, peak load to failure<br />

and the failure mechanism were registered. Gapping resistance was<br />

significantly greater for the triple repair (246.1 N to initial gapping)<br />

versus the Dresden (180 N, p=0.012) and the Krackow repair (101 N,<br />

p


scale and Sefton grading system. The measurement <strong>of</strong> talar tilt angle<br />

and anterior talar translation was performed through anterior and<br />

varus stress radiographs. At the last follow up, the Karlsson scale had<br />

improved significantly from preoperative average 45.4 points to 90.5<br />

points in single anchor group, from 46.2 points to 91.3 points in<br />

double anchor group. There were eight excellent, 10 good and two<br />

fair results according to the Sefton grading system in single anchor<br />

group, and nine excellent, eight good, three fair results in double<br />

anchor group. Therefore, 18 cases (90%) in single anchor group and<br />

17 cases (85%) in double anchor group achieved satisfactory results.<br />

Talar tilt angle had improved significantly from preoperative average<br />

15.7° to 6.1° in single anchor group, from 16.8° to 4.2° in double<br />

anchor group. There was significant difference in postoperative<br />

talar tilt angle between single and double anchor group. Significant<br />

differences in clinical and functional outcomes were not found<br />

between single and double suture anchor technique. On stress<br />

radiographs for evaluation <strong>of</strong> mechanical stability, modified-<br />

Brostrom procedure using double anchor showed less talar tilt angle<br />

than single anchor technique.<br />

posteR No. p213<br />

Cost-Effectiveness Of Plate Fixation For Unstable But<br />

Undisplaced Lateral Malleolus Fractures<br />

Gerard Slobogean, MD, MPH, Vancouver, BC Canada<br />

David Sanders, MD, London, ON Canada<br />

We sought to determine the parameters when open reduction<br />

and internal fixation (ORIF) might be considered a cost-effective<br />

treatment compared to casting for unstable but undisplaced isolated<br />

lateral malleolus fractures. A single payer governmental perspective<br />

was used to create a decision tree modeling the results <strong>of</strong> a multicentre<br />

trial comparing ORIF versus nonoperative treatment for isolated<br />

fibular fractures. Utilities were obtained from the subjects’ Short-<br />

Form-6D scores and used to calculated Quality Adjusted Life Years<br />

(QALYs). Probabilities for each strategy were taken from the one-year<br />

trial endpoint. Costs were obtained from the Ontario case costing<br />

initiative. Sensitivity analysis was performed for all model variables<br />

to determine when ORIF is a cost-effective treatment. Nonoperative<br />

management was the preferred treatment during the one-year timehorizon.<br />

The nonoperative treatment strategy had an average cost <strong>of</strong><br />

$2,128±$1,984 for an average gain <strong>of</strong> 0.72±0.00 QALYs. ORIF had an<br />

average cost <strong>of</strong> $6,343 ±$893 for an average gain <strong>of</strong> 0.74±0.02 QALYs.<br />

The incremental cost effectiveness ratio for the ORIF treatment was<br />

$216,106/QALY. ORIF becomes the preferred treatment at extreme<br />

values for its costs (0.80).<br />

From a single payer governmental perspective, short-term followup<br />

does not support the cost-effectiveness <strong>of</strong> ORIF for unstable<br />

undisplaced isolated fibular fractures. Long-term follow-up and<br />

additional modeling from a societal perspective remain necessary.<br />

posteR No. p214 AlteRNAte pApeR<br />

Postoperative Pain Following Surgical Treatment <strong>of</strong><br />

Ankle Fractures: A Prospective Study<br />

Ariel Williams, MD, Baltimore, MD<br />

Kenneth Hunt, MD, Redwood City, CA<br />

Rosanna Duester, PA-C<br />

Loretta Chou, MD, Redwood City, CA<br />

Fixation <strong>of</strong> fractures has been reported to have a substantial incidence<br />

<strong>of</strong> post-operative pain. Patients frequently require large amounts <strong>of</strong><br />

narcotics and are at risk for long-term use <strong>of</strong> pain medications. Few<br />

prospective studies in the literature investigate patient expectations<br />

with regard to postoperative pain. We prospectively evaluated 46<br />

patients undergoing open reduction internal fixation <strong>of</strong> ankle<br />

597<br />

fractures regarding their pain experience. Two Short-Form McGill Pain<br />

Questionnaires (SF-MPQ) were administered preoperatively, one for<br />

current pain and the other for anticipated postoperative pain. The<br />

SF-MPQ was repeated at three days and six weeks post-operatively.<br />

There were significant correlations between preoperative VAS and<br />

anticipated VAS and between anticipated VAS and actual VAS at<br />

three days and six weeks. There was a weak but significant correlation<br />

between anticipated Total Pain Rating Index (TPRI) and actual TPRI<br />

at three days. Pain was significantly higher for trimalleolar fractures at<br />

three days and six weeks compared to other fracture types. Fractures<br />

involving injuries to the syndesmosis had significantly higher pain<br />

rating on a VAS at three days. Pain control after open repair <strong>of</strong><br />

ankle fractures can be problematic. Appropriately managing patient<br />

expectations and medication use during this period is critical. We<br />

found that preoperative pain and anticipated pain were predictive<br />

<strong>of</strong> pain at three days and six weeks postoperatively. Further study<br />

is needed to determine whether these data apply to other foot and<br />

ankle procedures.<br />

posteR No. p215<br />

Immediate Weight-Bearing After Complete Achilles<br />

Detachment/Repair for Calcific Tendinosis<br />

Santiago A. Lozano Calderon, MD, Mount Kisco, NY<br />

Robert Li, BS, Flushing, NY<br />

James R McWilliam, MD, Harrison, NY<br />

Early mobilization and weight bearing following surgical repair for<br />

calcific insertional Achilles tendinosis (CIAT) is safe and provides<br />

satisfactory results. Under an Institutional Review Board approved<br />

study and after informed consent, 68 patients undergoing surgical<br />

treatment for CIAT after failed conservative for three months, were<br />

enrolled in this investigation. Postoperatively, patients were placed<br />

in a short leg cast and allowed to bear weight for two weeks, followed<br />

by six weeks in a below knee ankle brace where they performed<br />

gentle resistance exercises. Physical therapy was then started eight<br />

weeks postoperatively. Patients were evaluated functionally at two<br />

and eight weeks and six, 12 and 24 months after surgery using the<br />

<strong>American</strong> <strong>Orthopaedic</strong> Foot and Ankle Society (AOFAS) score. Early<br />

mobilization and weight bearing following surgery for insertional<br />

achilles tendinosis yielded 85% good to excellent results at the latest<br />

follow up, with only six wound complications and one partial tendon<br />

rupture (8% complication rate). Early weight bearing and range<br />

<strong>of</strong> motion after surgical repair for CIAT proportionate satisfactory<br />

results at two years as per the AOFAS score and does not increase<br />

wound complication or tendon rupture rates.<br />

posteR No. p216 AlteRNAte pApeR<br />

uA Phase 3 Trial <strong>of</strong> EXPAREL , an Extended Release<br />

Bupivacaine Local Analgesic, in Bunionectomy<br />

Erol Onel, MD, Parsippany, NJ<br />

Stephen Daniels, DO<br />

Michael Golf, DPM, Austin, TX<br />

Gary Patou, MD<br />

This FDA-approved, Phase 3 clinical trial compared EXPAREL(TM),<br />

an experimental extended release liposomal bupivacaine-based<br />

analgesic, to placebo for the prevention <strong>of</strong> pain after bunionectomy<br />

procedures. After obtaining Institutional Review Board approval,<br />

193 consenting patients undergoing bunionectomy were randomly<br />

assigned to receive either a single injection <strong>of</strong> placebo (n=96) or<br />

120 mg EXPAREL (n=97) administered via wound infiltration at<br />

the conclusion <strong>of</strong> the surgical procedure. The severity <strong>of</strong> pain was<br />

assessed after surgery at specified predetermined time points using a<br />

numeric rating scale (NRS) at rest for pain with 0 = no pain and 10 =<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits foot & ANKle


worst possible pain. The NRS scores were used to calculate the area<br />

under the curve (AUC) from immediately post op (time 0) through<br />

multiple postoperative time points. Other endpoints included<br />

number <strong>of</strong> patients requiring no parenteral opioid analgesic (rescue)<br />

medications, number <strong>of</strong> patients who were pain free (NRS=


grafting procedures for lesions over 1 cm. There are currently no<br />

biomechanical data supporting this size threshold. Our purpose was<br />

to determine the effect <strong>of</strong> OLT defect size on stress concentration,<br />

rim stress and location <strong>of</strong> peak stress. We created progressively<br />

larger medial OLTs (6 mm, 8 mm, 10 mm, 12 mm) in eight<br />

fresh frozen cadaveric lower extremities. With a calibrated digital<br />

electronic pressure sensor in the tibiotalar joint, an axial load <strong>of</strong><br />

700 N was applied and pressure recorded in neutral and 15 degrees<br />

plantarflexion with each defect size. Average and peak stresses, rim<br />

stress and location <strong>of</strong> peak stress were determined. The distance<br />

between peak stress and the defect rim was significantly decreased<br />

with increasing defect size. Total tibiotalar contact area was<br />

significantly decreased with increasing defect size and with ankle<br />

plantarflexion. While peak joint stress and peak rim stress were not<br />

affected by defect size or plantarflexion, average stress and average<br />

rim stress were significantly increased by plantarflexion. There was<br />

no significant difference in peak stress or rim stress with increasing<br />

OLT diameter. However, reduction in contact area and shift in the<br />

location <strong>of</strong> peak stress with increasing defect size may contribute<br />

to articular cartilage degeneration in patients with OLTs. There does<br />

not appear to be a threshold defect size, but rather a linear effect on<br />

joint stresses.<br />

posteR No. p220<br />

Surgical Treatment Of Neglected Idiopathic Clubfoot<br />

After Walking Age In Developing Countries<br />

Cesare Faldini, MD, Bologna, Italy<br />

Francesco Traina, MD, Bologna, Italy<br />

Stavroula Pagkrati, MD, Bologna, Italy<br />

Matteo Nanni, MD, Bologna, BO Italy<br />

Danilo Leonetti, MD, Bologna, BO Italy<br />

Francesco Acri, MD, Bologna, BO Italy<br />

Maria Teresa Miscione, MD, Bologna, BO Italy<br />

Dunia Francesconi, MD, Bologna, BO Italy<br />

Sandro Giannini, MD, Bologna, Bologna Italy<br />

Several conservative or minimally invasive surgical techniques have<br />

been described to correct idiopathic clubfoot diagnosed at birth.<br />

However, surgical treatment <strong>of</strong> neglected clubfoot is a challenge if<br />

the deformity is observed after walking age without any previous<br />

treatment. The aim <strong>of</strong> this study is to review a series <strong>of</strong> 24 walking<br />

patients with neglected congenital idiopathic equinovarus clubfoot<br />

surgically treated by combined posteromedial release and cuboid<br />

osteotomy. Forty neglected congenital idiopatic equinovarus clubfeet<br />

in 24 children (age range three to seven years, mean four years) were<br />

observed. Skeletal maturity, grade and stiffness <strong>of</strong> the deformity were<br />

carefully assessed. Surgical procedure consisted in posteromedial<br />

release combined with cuboid wedge osteotomy in order to shorten<br />

the lateral column <strong>of</strong> the foot. Postoperative treatment consisted<br />

<strong>of</strong> plastercast for six weeks then talovalgus splints during night,<br />

insoles and physiotherapy up to the end <strong>of</strong> growing age. Patients<br />

were evaluated at an average follow up <strong>of</strong> five years (range three to<br />

eight years). Four feet with delayed healing <strong>of</strong> the skin were dressed<br />

until healing. Excellent correction was achieved in 18 feet, good in<br />

14, fair in eight and poor in none. Further surgery was performed in<br />

three feet to complete the correction <strong>of</strong> residual varus deformity. The<br />

treatment <strong>of</strong> never previously treated neglected congenital clubfoot<br />

is a demanding surgery after walking age. Posteromedial release<br />

combined with cuboid osteotomy allowed to obtain satisfactory<br />

correction <strong>of</strong> neglected congenital idiopathic equinovarus clubfoot<br />

with low rate <strong>of</strong> complications.<br />

599<br />

posteR No. p221<br />

The Ponseti Technique Heel Cord TenotomyDoes Local<br />

or General Anesthesia Provide the Best Outcome?<br />

Eric Edmonds, MD, San Diego, CA<br />

Tracey Bastrom, MA, San Diego, CA<br />

Scott J Mubarak, MD, San Diego, CA<br />

Charles Douglas Wallace, MD, San Diego, CA<br />

The current study compared the outcomes between percutaneous<br />

tendo Achilles lengthening performed under local (LTAL) versus<br />

general (GTAL) anesthesia in the treatment <strong>of</strong> idiopathic clubfoot<br />

utilizing the Ponseti method. A retrospective review was performed<br />

<strong>of</strong> all infants treated for clubfoot between 2003 and 2008 at our<br />

institution by a single surgeon who prefers LTAL and by other<br />

surgeons who prefer GTAL. Exclusion criteria included: nonidiopathic<br />

clubfeet, non-Ponseti technique or no TAL after Ponseti<br />

casting. Details related to their clubfoot severity, casting, follow<br />

up and treatment course and progression were recorded. The data<br />

was analyzed using Chi-squared and ANOVA. One-hundred-thirty<br />

infants met inclusion criteria: 111 LTAL and 19 GTAL. There was no<br />

statistical difference between LTAL and GTAL, respectively, for the<br />

mean age at first cast (30.2 vs 30.1 days), follow-up duration (22.1 vs<br />

21.5 months), the percent <strong>of</strong> good correction at TAL (80% vs 74%)<br />

and the number <strong>of</strong> relapses (27% vs 10.5%). No statistical difference<br />

was noted between the total cost <strong>of</strong> treatment: LTAL $6,803 ($859-<br />

$40,114) versus GTAL $4,755 ($1,138-$10,621). The LTAL group<br />

had more severe clubfeet than those treated with GTAL (p=0.03).<br />

Furthermore, the number <strong>of</strong> pre-TAL casts applied differed between<br />

the LTAL (4.7) and GTAL (5.4) which likely represents delay <strong>of</strong><br />

GTAL due to OR scheduling (p=0.012). Our results yielded excellent<br />

outcomes in 89.5% <strong>of</strong> the GTAL group and 73% <strong>of</strong> the LTAL group<br />

with an overall mean cost <strong>of</strong> treatment difference <strong>of</strong> $2,048 more in<br />

the LTAL group.<br />

posteR No. p222<br />

Nerve Structures at Risk during Tibialis Anterior<br />

Tendon Transfer<br />

John E Herzenberg, MD, Baltimore, MD<br />

Christ<strong>of</strong> Radler, MD<br />

Monique C Gourdine-Shaw, DPM, Columbia, MD<br />

Tibialis anterior tendon transfer (TATT) is a common procedure for<br />

clubfoot. It includes passage <strong>of</strong> needles/sutures from the dorsum<br />

<strong>of</strong> the foot through the plantar surface. Neurovascular damage<br />

is possible. We conducted a cadaveric study to determine how to<br />

minimize this risk. Tibialis anterior tendon transfer (TATT) was<br />

performed on the lateral cuneiform in 12 cadaveric feet (three feet<br />

per group). Tendon was passed through a lateral cuneiform drill<br />

hole using sutures through the plantar aspect <strong>of</strong> the foot. Drill<br />

holes were created perpendicular to dorsal cuneiform (Group A),<br />

perpendicular to plantar surface (Group B), tilted 15° in frontal and<br />

sagittal planes (Group C) and aimed at the geometric middle <strong>of</strong> the<br />

foot (Group D). Sutures were pulled through drill holes using Keith<br />

needles. Distance between nerves and drill hole was measured. Keith<br />

needles were passed 20 times per foot; damage to nerve structures<br />

was noted. Group A: Drill hole was 1.7 mm from medial plantar<br />

nerve. Average distance to bifurcation was 5 mm. Group B: Hole<br />

was 0.3 mm from lateral plantar nerve with 25.3 mm to bifurcation.<br />

Group C: Hole was 1.7 mm from lateral plantar nerve bifurcation.<br />

Group D: Hole was 7.7 mm from medial plantar nerve and 4.3 mm<br />

from lateral plantar nerve. Needles pierced nerve structures in group<br />

A (12 instances), group B (20 instances), group C (six instances) and<br />

group D (one instance). To prevent neurovascular damage, the drill<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits foot & ANKle


should be aimed at the middle <strong>of</strong> the foot. Blunted Keith needles<br />

might prevent damage to nerves.<br />

posteR No. p223<br />

Alternative Distal Lower Extremity Amputations in<br />

Patients with Diabetic Foot Ulcers<br />

Matthew L Brown, Rochester, NY<br />

Judith F Baumhauer, MD, MPH, Rochester, NY<br />

Amar Patel, MD, Overland Park, KS<br />

Wan Tang, PhD<br />

Below-knee amputations (BKA) are performed for recalcitrant or<br />

infected ulcers <strong>of</strong> the midfoot, hindfoot or ankle. This procedure<br />

results in decreased ambulatory status due to increased energy and<br />

oxygen demands. Partial foot amputations have less energy and<br />

oxygen demands and theoretically suggest improved functional<br />

outcome. The purpose was to examine mortality, index amputation<br />

failure rates and functional outcome in patients treated with partial<br />

foot amputations compared to BKA. Retrospective chart review<br />

identified transmetatarsal, Chopart, partial or total calcanectomy<br />

amputations for osteomyelitis or non-healing ulcers in diabetics. BKA<br />

was used for comparison. Patient demographics, co-morbidities, ASA<br />

and HbA1C were obtained. Primary outcomes were death and time<br />

to a more proximal amputation. Mortality rates based on survival<br />

analysis methods were calculated for each cohort at one, three and<br />

five years. Living patients were contacted to assess functional status<br />

using a validated instrument. BKA: 18 patients, eight deaths (44%),<br />

.45 five-year mortality rate, one proximal reamputation, 2.8/6.0 mean<br />

ambulatory score (MAS). Transmetatarsal: 21 patients, seven deaths<br />

(33%), .30 five-year mortality rate, two proximal reamputations,<br />

4.3/6.0 MAS. Chopart: 11 patients, five deaths (45%), .36 five-year<br />

mortality rate, six proximal reamputations, 4.3/6.0 MAS. Partial<br />

Calcanectomy: 17 patients, 10 deaths (59%), .69 five-year mortality<br />

rate, seven proximal reamputations, 4.3/6.0 MAS. Total Calcanectomy:<br />

16 patients, 11 deaths (69%), .59 five-year mortality rate, five<br />

proximal reamputations, 3.3/6.0 MAS. BKA is associated with high<br />

morbidity and mortality, which suggests investigating the advantage<br />

<strong>of</strong> partial foot amputations. In regards to mortality rates, only<br />

transmetatarsal amputations at one and three years were statistically<br />

lower. Partial foot amputations at the other levels examined failed to<br />

show statistically improved survival. Transmetatarsal and Chopart’s<br />

amputations had the longest durability, with mean time to failure<br />

exceeding two years, suggesting that these amputation levels may<br />

provide some ambulatory advantage over the other amputations by<br />

providing an end bearing limb.<br />

posteR No. p224<br />

Evaluation <strong>of</strong> Patient Outcomes Following Mini<br />

Fragment Fixation <strong>of</strong> Talar Neck Fractures<br />

Mary A Herzog, MD, Grand Rapids, MI<br />

Clifford B Jones, MD, Grand Rapids, MI<br />

Debra Sietsema, PhD, Grand Rapids, MI<br />

James R Ringler, MD, Grand Rapids, MI<br />

Talar neck fractures are uncommon and result from high energy<br />

mechanisms. The purpose <strong>of</strong> this study was to evaluate the outcomes<br />

<strong>of</strong> talar neck fractures treated with mini fragment fixation. Over a<br />

five-year period from March 2002 through June 2007, 83 talar neck<br />

fractures in 79 skeletally mature patients were treated with mini<br />

fragment fixation at a level one trauma center and retrospectively<br />

identified. Outcomes included pain at final assessment, ankle<br />

motion, return to previous activity and complications. Demographic<br />

data, fracture type, instrumentation used and radiographic arthrosis<br />

were recorded. Gender was near equal distribution (38 males, 48.1%<br />

600<br />

and 41 females, 51.9%) with more right talus injuries (44, 53%) than<br />

left (39, 47%). Average age was 35 years (range 18-77). Hawkin’s<br />

classification was: II (39, 47%), III (30, 36%) and IV (14, 17%).<br />

Open injuries were 15 (18.1%). Isolated injuries were 15 (18.1%)<br />

and 68 had associated injuries (81.9%). Hardware complications<br />

were two migration, 10 broken and eight irritating. Radiographic<br />

ankle arthritis was 31 (38.4%) and subtalar arthritis was 38 (46.3%).<br />

Complications <strong>of</strong> avascular necrosis (AVN) 20 (24%), nonunion one<br />

(2%) and hardware loosening two (3.9%) were noted. Secondary<br />

surgeries were 18 (22%) with BKA one, TAA one and hardware<br />

removal 16. Pain was noted to be: none 19 (23%) and mild (1-<br />

3/10) pain 63 (76%). Pain is related to subtalar arthrosis (r=0.525,<br />

p


educing forefoot pain, but the literature reports complications. An<br />

alternative, the oblique sliding proximal to distal osteotomy (PD)<br />

assures that the metatarsal head would slide superiorly, reducing<br />

plantar pressure. The purpose <strong>of</strong> this study is to characterize the<br />

relationship between the amount <strong>of</strong> second metatarsal shortening,<br />

osteotomy type, and plantar pressure. We performed six DP and<br />

six PD second metatarsal osteotomies on twelve paired cadaveric<br />

feet. The second metatarsals were shortened by 0mm, 2mm, 4mm,<br />

and 6mm. Dynamic in vitro robotic gait simulation was based<br />

on in vivo gait data and performed at 50% body weight and one<br />

sixth physiologic velocity. Three trials were obtained for metatarsal<br />

length. Regression lines for peak pressure (PP) and pressure time<br />

integral (PTI) and metatarsal shortening were calculated with linear<br />

mixed effects models. Second metatarsal PP and PTI were negatively<br />

correlated with metatarsal shortening (p


POSTERS<br />

posteR No. p557<br />

National Association <strong>of</strong> <strong>Orthopaedic</strong> Technologists<br />

(NAOT)<br />

Cynthia Henderson, OTC, CO, Oklahoma City, OK<br />

Sean B Conkle, OTC, Bethlehem, PA<br />

Nicole T Williams, OTC, Greeley, CO<br />

Robyn Masseth, OTC, Indianapolis, IN<br />

Established in 1982, the NATIONAL ASSOCIATION OF<br />

ORTHOPAEDIC TECHNOLOGISTS (NAOT) is dedicated to the<br />

pursuit <strong>of</strong> excellence through the continued educational development<br />

<strong>of</strong> orthopaedic allied health care pr<strong>of</strong>essionals who specialize in<br />

casting, splinting and bracing.<br />

posteR No. p558<br />

<strong>American</strong> Society <strong>of</strong> <strong>Orthopaedic</strong> Physician’s<br />

Assistants (ASOPA)<br />

Jason S Mazza, OPA-C, Trinity, FL<br />

Frank E Greaves, OPA-C, OTC, Houston, TX<br />

Gail Sue Keating, OPA, Indianapolis, IN<br />

ASOPA is an organization for physician extenders who specialize in<br />

orthopaedic Board-certified surgery. ASOPA members are usually<br />

employed by a Board-certified orthopaedic surgeon or by an<br />

orthopaedic facility. The organization’s primary purpose is to enhance<br />

the quality <strong>of</strong> patient care by providing pr<strong>of</strong>essional development<br />

to orthopaedic physician’s assistants through continuing education,<br />

certification, networking, publications and meeting with peers and<br />

other allied health pr<strong>of</strong>essionals.<br />

posteR No. p559<br />

The <strong>American</strong> Fracture Association (AFA)<br />

Diana Deane Carr, MD, Sebring, FL<br />

Judy L Wright, MD, Bloomington, IL<br />

Alfonso E Pino, MD, Dublin, TX<br />

Jose G Ramon, MD, Edwardsville, IL<br />

The <strong>American</strong> Fracture Association was founded in 1938 to improve<br />

fracture care. We are particularly interested in practical solutions for<br />

the difficult cases seen by community orthopedists. We also have<br />

many international learning opportunities via our international<br />

members and our membership in SLAOT (Society <strong>of</strong> Latin <strong>American</strong><br />

Orthopedic Societies).<br />

602<br />

General<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits GeNeRAl


PAPERS<br />

pApeR No. 271<br />

The Use <strong>of</strong> Sodium Hyaluronate in Treatment <strong>of</strong> First<br />

Carpal Metacarpal Joint Arthritis<br />

Germaine R Fritz, DO, Milford, MI<br />

John Toth, DO, Scottsdale, AZ<br />

Danny C Holland, DO, Oak Park, CA<br />

The purpose <strong>of</strong> this study was to determine the safety and effectiveness<br />

<strong>of</strong> an intraarticular injection <strong>of</strong> sodium hyaluronate compared with<br />

administration <strong>of</strong> a physiological saline control for the relief <strong>of</strong><br />

pain associated with arthritis <strong>of</strong> the first carpal metacarpal (CMC)<br />

joint. This study was a prospective, single-center, randomized,<br />

placebo controlled, double-blind study approved by the Food and<br />

Drug Administration. Patients were randomized to receive 5 mg <strong>of</strong><br />

sodium hyaluronate or placebo <strong>of</strong> normal saline in the same volume<br />

(0.5 ml) per each injection, one week apart for three weeks, into<br />

the first carpal metacarpal joint. After the last injection, patients<br />

returned for follow up at months one, three, six and 12. Outcome<br />

measurements include pain relief, safety, grip strength, key pinch,<br />

pulp pinch, adduction, palmar abduction, joint crepitus, DASH and<br />

x-rays. Statistical analysis was performed using Fisher’s exact, paired<br />

and two sample t-tests. Twenty-seven patients were enrolled in the<br />

study, 20 (74%) patients completed the study. Eight (30%) were<br />

male, 19 (70%) were female. Mean age at enrollment was 57 years<br />

(range 42 to 72 years). Thirteen patients received the hyaluronate<br />

and 14 patients received the placebo. Three adverse events were<br />

related to the study which was pain in the extremity. Self-evaluation<br />

<strong>of</strong> pain was slightly better in the hyaluronate group at six and 12<br />

months though differences were not statistically significant. DASH<br />

was slightly better at one and three months in the hyaluronate group<br />

though differences were not statistically significant. Pain at rest was<br />

similar in both groups, while pain with activity improved in both<br />

placebo and hyaluronate groups. Range <strong>of</strong> motion <strong>of</strong> the thumb,<br />

including adduction and palmar abduction, changed slightly over<br />

the year with placebo and hyaluronate but the differences were not<br />

statistically significant. Grip strength, key pinch and pulp pinch<br />

were similar over the year without statistical differences. There was<br />

improvement in crepitus in both groups. Patients reported similar<br />

results in global improvement in both groups. The majority <strong>of</strong><br />

patients reported good or very good tolerance <strong>of</strong> the treatment in<br />

both groups. X-ray classification was reported at Stage III or IV in<br />

a majority <strong>of</strong> both groups before and after the treatment. The use<br />

<strong>of</strong> hyaluronate joint fluid therapy in first CMC joint arthritis is safe<br />

but failed to produce evidence <strong>of</strong> a clinically statistical benefit over<br />

placebo.<br />

pApeR No. 272<br />

A US-Guided Injection Targeting the EPB <strong>of</strong> de<br />

Quervains Disease With Septation is Very Effective<br />

Kensuke Kume, ME, Hiroshima, Japan<br />

Kanzo Amano, MD<br />

Susumu Yamada, MD, Hiroshima, Japan<br />

Hiroyuki Ohta, PhD, Hiroshima, Japan<br />

Intrasheath steroid injection is one <strong>of</strong> the best therapeutic approaches<br />

to de Quervain’s disease (dQD). Although sometimes (from 15%<br />

603<br />

hand and Wrist<br />

to 20%), this is not so for efficacy. Failure is probably due to the<br />

presence <strong>of</strong> septation <strong>of</strong> the first compartment. We hypothesize that<br />

US-guided injection targeting the external fixation bridging (EFB)<br />

may be effective for dQD with septation. Twenty-eight wrists were<br />

included and all patients were confirmed dQD with septation <strong>of</strong> first<br />

compartment. All patients were candidates for surgery. They were<br />

randomized to single intrasheath injection <strong>of</strong> either US-guided or<br />

conventional technique. Baseline assessments and questionnaires<br />

one month after injection related to subjective symptoms (wrist<br />

pain by 100 mm visual analog scale (VAS)), number <strong>of</strong> surgeries and<br />

adverse events possibly related to treatment. The primary endpoint<br />

was a reduction in wrist pain from baseline to one month, analyzed<br />

using a Mann-Whitney U test and repeated measures analysis. At one<br />

month, a significant reduction in pain was observed in both groups,<br />

while VAS pain for US group was a significant decrease. Baseline<br />

VAS pain for US group was mean 80.3 (SD 19.6) mm, one month<br />

after injection 25.6 (15.1) mm (p


normalized to the contralateral leg. Statistical significance was<br />

evaluated using ANOVA testing. At 12 weeks, the average normalized<br />

maximum isometric tetanic force at evaluation was 52.0 +/- 2.9%<br />

for Group A, 34.1 +/- 4.2% for Group B and 51.3 +/- 3.3% for Group<br />

C. There was no statistical difference between Groups A and C, but<br />

there was statistical difference when Group A was compared to B and<br />

Group C compared to B. The average normalized compound muscle<br />

action potential was 104.8 +/- 8.1% for Group A, 86.1 +/- 4.9%<br />

for Group B and 90.9 +/- 4.3% for Group C.(p>0.05). The average<br />

normalized tibialis anterior muscle weight was 52.0 +/- 2.0% for<br />

Group A, 47.5 +/- 1.6% for Group B and 51.9 +/- 3.0% for Group<br />

C.(p>0.05). Matched diameter acellular nerve allograft demonstrated<br />

equal functional recovery at 12 weeks when compared to the control<br />

group, and superior functional recovery to the cabled sural nerve<br />

autograft. These results suggest that acellular nerve allografts may<br />

be the best option for small nerve defects, but large defect sizes and<br />

longer recovery time periods should be investigated.<br />

pApeR No. 274<br />

Unusual Causes Of Carpal Tunnel Syndrome -<br />

Space Occupying Lesions<br />

Tuoh Wu, MD, Yonghe City, Taiwan<br />

Chun-Ho Chen, MD, Taipei, Taiwan<br />

Jui-Sheng Sun, MD, Taipei City, Taiwan<br />

Pei-yu Chen, MD, Taipei, Taiwan<br />

Yi-Chen Li, MD, Taipei, Taiwan<br />

Chien-Feng Fang, MD<br />

Hsiang-Yao Huang, MD, Taipei, Taiwan<br />

Chung-Chien Lee, MD<br />

Carpal tunnel syndrome (CTS) caused by space occupying lesion was<br />

a rare condition and more complicated than idiopathic CTS. From<br />

January 1999 to December 2008, 764 cases received surgery under<br />

the diagnosis <strong>of</strong> CTS. In these, 25 patients who underwent operation<br />

for CTS caused by space occupying lesions were studied. CTS was<br />

diagnosed by clinical examinations and electrodiagnostic studies.<br />

The average age was 57.28 years (range: 26 to 94 years old). In the<br />

patients with local swelling or palpable mass, ultrasonography or<br />

magnetic resonance imaging (MRI) were taken. All the patients were<br />

treated by conventional open release <strong>of</strong> transverse carpal ligament<br />

and removal <strong>of</strong> the lesions. The pathological reports included<br />

Tophaceous gout in 10 cases, tenosynovitis in seven cases and<br />

tumors in eight cases. All the patients have CTS caused by gout were<br />

male. For the patients with tumor, there were median nerve neuroma<br />

in two cases, ganglion cyst in two cases, lipoma in three cases and<br />

fibroma <strong>of</strong> tendon sheath in one case. The neurological symptoms<br />

subsided after operation in all cases. In the patients with gout, one<br />

had wound infection and another one had recurrence. Carpal tunnel<br />

syndrome caused by space occupying lesion was a rare condition<br />

and more complicated than idiopathic CTS. Misdiagnosis may lead<br />

to inadequate treatment and the symptoms may remain.<br />

pApeR No. 275<br />

Thumb Metacarpophalangeal Joint Capsulodesis as an<br />

Adjunct to Basal Joint Arthroplasty<br />

Dima Raskolnikov, BS, New York, NY<br />

Neil White, MD, FRCSC, Edinburgh, United Kingdom<br />

Ioannis Zouzias, MD, New York, NY<br />

Eric F Swart, MD, New York, NY<br />

Melvin Paul Rosenwasser, MD, New York, NY<br />

Patients with advanced basal joint arthritis may suffer from<br />

a characteristic hyperextension deformity <strong>of</strong> their thumb<br />

604<br />

metacarpophalangeal (MCP) joints. The purpose <strong>of</strong> this study is to<br />

provide long-term follow-up on a group <strong>of</strong> patients who were treated<br />

with a novel technique <strong>of</strong> thumb MCP joint capsulodesis as an<br />

adjunct to basal joint arthroplasty. We retrospectively evaluated 14<br />

patients who had received basal joint interposition arthroplasty with<br />

concomitant MCP capsulodesis. Objective evaluation included thumb<br />

range <strong>of</strong> motion, grip strength and key pinch strength. Subjective<br />

evaluation included patient-based scores on the Disabilities <strong>of</strong> the<br />

Arm, Shoulder and Hand (DASH) questionnaire, visual analog scale<br />

(VAS) pain scores and a study-specific questionnaire. At an average<br />

<strong>of</strong> 5.43 years after surgery (range, 2.2 to 11.5 years), average MCP<br />

hyperextension was 15.0°, with all but three patients hyperextending<br />

to less than 20°. Thirteen <strong>of</strong> 14 patients were able to oppose their<br />

thumbs against the distal end <strong>of</strong> the fifth metacarpal. Average<br />

grip and pinch strength were 23.4 kg and 3.5 kg, respectively. The<br />

average DASH score was 10.3. Patients reported minimal pain and<br />

were all satisfied with the procedure. No complications or revision<br />

procedures were reported. Basal joint arthroplasty combined with<br />

the described volar plate step-cut technique for thumb MCP joint<br />

capsulodesis provides excellent long-term results for patients with<br />

basal joint arthritis and severe MCP hyperextension, although<br />

precise indications for the procedure remain poorly defined. This<br />

new procedure is safe and has a low complication pr<strong>of</strong>ile.<br />

pApeR No. 276<br />

Do Intercarpal Ligament Injuries Predict Outcome After<br />

Distal Radius Fractures?<br />

Peter Tang, MD, New York, NY<br />

Anthony Ding, MD, San Francisco, CA<br />

Eric F Swart, MD, New York, NY<br />

Despite improvements in operative fixation <strong>of</strong> distal radius fractures,<br />

outcomes remain variable and difficult to predict. The advent <strong>of</strong><br />

wrist arthroscopy as a diagnostic modality has demonstrated that<br />

intercarpal ligament injuries in patients with distal radius fractures<br />

are more common than were initially suspected. To date, no studies<br />

have evaluated the relationship between ligament injuries and long<br />

term patient-based outcomes. Twenty-seven patients with distal<br />

radius fractures were enrolled in this prospective prognostic study.<br />

At the time <strong>of</strong> initial fracture surgery, patients were arthroscopically<br />

evaluated for injuries to the scapholunate interosseous ligament<br />

(SLIL), triangular fibrocartilaginous cartilage complex (TFCC)<br />

or to the articular cartilage. One year after surgery, patients were<br />

assessed using the Disabilities <strong>of</strong> the Arm, Shoulder, and Hand<br />

(DASH) questionnaire, pain visual analog scale (VAS), as well as<br />

using objective physical exam parameters including range <strong>of</strong> motion<br />

and grip strength. A multivariate linear regression model was then<br />

constructed to evaluate the effect <strong>of</strong> these ligament injuries on the<br />

DASH, pain, range <strong>of</strong> motion and grip strength. A total <strong>of</strong> 47% <strong>of</strong><br />

patients had SLIL injuries, 53% had TFCC injuries and 40% had<br />

injuries to the articular cartilage. Controlling for AO fracture type,<br />

none <strong>of</strong> these injury factors were significant predictors <strong>of</strong> DASH<br />

scores at one year. None <strong>of</strong> them correlated with VAS scores or<br />

physical exam parameters as well. Intercarpal ligament injuries and<br />

cartilage damage are common in patients with distal radius fractures,<br />

although they do not predict outcome at one year.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


pApeR No. 277<br />

Thumb Deformity In Patients With Rheumatoid<br />

Arthritis, A Five-Year Follow-Up<br />

Shogo Toyama, Kyoto, Japan<br />

Daisaku Tokunaga, MD, Kyoto, Japan<br />

Tatsuya Hojo<br />

Hiroyoshi Fujiwara, MD, Kyoto, Japan<br />

Ryo Oda, MD, Kawaramachi-Hirokoji<br />

Kiamigyo-ku, Kyoto, Japan<br />

Hiroaki Kobashi, Kyoto, Japan<br />

Kan Imai, MD<br />

Hisashi Okumura, MD, Kyoto City, Japan<br />

Toshikazu Kubo, MD, Kyoto, Japan<br />

The hands and fingers are affected at high incidence rate in patients<br />

with rheumatoid arthritis (RA). Deformity <strong>of</strong> thumb occurs in high<br />

incidence, resulting in functional deficiency <strong>of</strong> hand function. We<br />

studied the frequency, functional deficiency and a successive changes<br />

regarding various types <strong>of</strong> thumb deformities in RA. We assessed 67<br />

patients, 134 hands <strong>of</strong> RA with deformity <strong>of</strong> fingers functionally in<br />

our institution in 2004 and 2009. The average age at the baseline<br />

was 62 (35-79) years old and the duration <strong>of</strong> the disease averaged 19<br />

(4-41) years. Fifty patients were able to follow up, five hands <strong>of</strong> five<br />

patients that had surgical procedures were excluded from the study.<br />

Thus, 95 hands <strong>of</strong> 50 subjects were studied. The average age was 60.9<br />

(39-79) years old and the duration <strong>of</strong> the disease at the baseline<br />

averaged 17.9 (4-41) years. Disease activity <strong>of</strong> the rheumatoid<br />

arthritis was categorized using DAS score, showing low disease<br />

activity in 21 cases, moderate in 18 cases and high in six cases. The<br />

classifications <strong>of</strong> thumb deformities were carefully determined using<br />

classification by Stein. Hand evaluations were made using the total<br />

opposition test <strong>of</strong> the modified Kapandji index (MKI), scores <strong>of</strong><br />

activities <strong>of</strong> daily living (ADL) by Japanese Society for Surgery <strong>of</strong> the<br />

Hand (JSSH) and the joint space narrowing score on plain X-rays<br />

<strong>of</strong> the hand. One finger after desis <strong>of</strong> IPJ <strong>of</strong> the thumb before the<br />

time <strong>of</strong> baseline was excluded. Deformities <strong>of</strong> thumb at the baseline<br />

were type I: 50.0%, type II: 6.4%, type III: 2.1, type IV: 3.2%, type V:<br />

0%, type VI: 8.5%, type MP: 6.4% and type CM: 9.6%. Deformities<br />

<strong>of</strong> thumb at five-year follow up were type I: 46.8%, type II: 8.5%,<br />

type III: 4.2%, type IV: 4.2%, type V: 0%, type VI: 8.5%, type MP:<br />

8.5% and type CM: 8.5%. The total opposition test <strong>of</strong> MKI (10pt<br />

maximum) was 5.8 pt at the baseline and worsened significantly<br />

(p


median nerve neurectomy appears a useful adjunct to STP with ulnar<br />

motor branch neurectomy and wrist fusion in the prevention <strong>of</strong> an<br />

intrinsic TIP deformity in the non-functional hand.<br />

pApeR No. 280<br />

Operative Treatment for Painful Osteoarthritis <strong>of</strong> the<br />

DIP Joint<br />

Osami Suzuki, MD, Hiroshima, Japan<br />

Toru Sunagawa, Hiroshima, Japan<br />

Yuko Nakashima, MD<br />

Rikuo Shinomiya, MD, Hiroshima-Shi, Japan<br />

Mitsuo Ochi, MD, PhD, Hiroshima, Japan<br />

Arthrodesis <strong>of</strong> the distal interphalangeal (DIP) joint can be a reliable<br />

method to treat painful osteoarthritis. However, it’s considered<br />

that complete loss <strong>of</strong> DIP motion may limit activity <strong>of</strong> daily living<br />

(ADL). We performed the combination <strong>of</strong> osteophytectomy and<br />

synovectomy <strong>of</strong> the joint from 1995 for alleviating pain while<br />

preserving motion <strong>of</strong> the joint. The purpose <strong>of</strong> this study is to<br />

report the clinical outcome <strong>of</strong> this procedure. Fifty-two joints <strong>of</strong> 37<br />

patients (33 women and four men, mean age 54 years) with painful<br />

osteoarthritis <strong>of</strong> the finger DIP joints and the thumb interphalangeal<br />

(IP) joints were enrolled in this study. Forty-five joints were treated by<br />

the combination while seven were treated by arthrodesis. We assessed<br />

the clinical outcome subjectively and objectively at an average <strong>of</strong> 3.2<br />

years after surgery. In cases <strong>of</strong> arthrodesis, there were no complaints<br />

about pain and appearance <strong>of</strong> DIP joints, however most <strong>of</strong> patients<br />

felt some functional disability when they used the involved hand.<br />

Meanwhile, preoperative pain completely disappeared in 70% <strong>of</strong><br />

joints by the combination, and only one case needed arthrodesis<br />

because <strong>of</strong> persisting pain. Extension lag by this procedure averaged<br />

11 degrees and the range <strong>of</strong> motion <strong>of</strong> the joint was 34 degrees on an<br />

average. About 70% <strong>of</strong> DIP joints recovered satisfying appearance and<br />

function. The combination <strong>of</strong> osteophytectomy and synovectomy<br />

has more advantage for improving the ADL than arthrodesis. This<br />

procedure can be one <strong>of</strong> the effective treatments for the painful<br />

osteoarthritis <strong>of</strong> DIP joint.<br />

pApeR No. 281<br />

Early Outcomes Of Saddle Pyrolytic Carbon<br />

Hemiarthroplasty For Trapeziometacarpal Arthritis<br />

Saurabh Odak, MBBS, MRCS<br />

Ann Birch, MD, Wigan, United Kingdom<br />

Krishna Swamy, MBBS, FRCS<br />

Ian A Trail, MD, Lancs, United Kingdom<br />

Trapeziometacarpal (TMC) joint arthritis is a frequently encountered<br />

painful and disabling condition predominantly affecting females.<br />

Arthroplasty <strong>of</strong> the trapeziometacarpal joint is a well described<br />

surgical treatment. We present our early results with a minimum <strong>of</strong><br />

one-year follow up <strong>of</strong> carbon hemiarthroplasty performed for the<br />

treatment <strong>of</strong> TMC joint arthritis in our center. Twenty-two thumbs<br />

in 22 patients (18 females, four males) with a mean age <strong>of</strong> 53<br />

years (range 47-76 years) were assessed. Indications for the surgery<br />

were primary osteoarthritis in 20, rheumatoid arthritis in one and<br />

seronegative inflammatory arthritis in one patient. A total <strong>of</strong> 19<br />

patients were available for follow up. The mean follow-up period<br />

was 59.73 months (range 12-91 months). There was a significant<br />

improvement noted in pain scores post-operatively (p value = 0.05).<br />

However no such improvement was noted in range <strong>of</strong> movements,<br />

grip strength, apposition (key holding) strength and tripod strength.<br />

Radiologically the implant was noted to be subluxed in four patients;<br />

however none <strong>of</strong> them were symptomatic. Five patients (26%) needed<br />

606<br />

a revision procedure at a mean <strong>of</strong> six months (range 2-11 months).<br />

Of these, three had persistent symptoms, one developed Complex<br />

Regional Pain Syndrome (CRPS) and in one patient the implant<br />

was noted to be persistently unstable after sustaining traumatic<br />

dislocation. Pyrolytic carbon has a certain role for the treatment <strong>of</strong><br />

TMC joint arthritis. The high revision rate noted in our series could<br />

be accountable to the pre-operative patient selection and surgical<br />

technique. We did not encounter any implant associated problems.<br />

Majority <strong>of</strong> the patients in the non-revised group were satisfied with<br />

this procedure. A further long-term follow-up study would be more<br />

conclusive.<br />

pApeR No. 282<br />

Neglected Bennett’s Fracture Dislocation in Manual<br />

Laborers Managed by K-wires and Tension Bands<br />

Mostafa Mahmoud, MD, Cairo, Egypt<br />

Sherif El Shafie, MB BCh, Cairo, Egypt<br />

During open procedures <strong>of</strong> resection arthroplasty and arthrodesis <strong>of</strong><br />

the thumb, it was observed that most <strong>of</strong> the metacarpo-phalangeal<br />

articular surface is intact. It was also noted that a degree <strong>of</strong> weakness<br />

and a limited range <strong>of</strong> motion were reported with such procedures<br />

respectively. This case series evaluates the results <strong>of</strong> open reduction<br />

and internal fixation using K-wires and tension bands with<br />

neglected Bennett’s fracture dislocation, as an alternative to resection<br />

arthroplasty and arthrodesis that result in a degree <strong>of</strong> weakness and a<br />

limited range <strong>of</strong> motion respectively. Ten patients with more than 12<br />

weeks duration, average 16 weeks, Bennett’s fracture dislocation were<br />

evaluated for their range <strong>of</strong> motion, pain, grip strength and pinch<br />

strength. Arthrosis and subluxution were evaluated by radiographs<br />

and CT. All patients were males with an average age <strong>of</strong> 30.2 years<br />

(range 20-44). Through a radial approach, fixation was performed<br />

using K-wires and tension band after undoing the fracture. Excess<br />

callus was used as an insitu graft for the metaphyseal defect. Mean<br />

follow up period was 16 months (12-36). Union was achieved in all<br />

10 patients and nine patients returned to their previous occupation.<br />

Visual analog score improved from 6 to 2. Palmar abduction<br />

improved from 15° to 40°, and radial abduction improved from<br />

22° to 39° (25°-47°). At final follow up, radiographs showed<br />

marginal osteophyte formation in two patients. Neglected Bennett’s<br />

fracture dislocation can be effectively managed by open reduction<br />

and internal fixation using K-wires and tension band, without<br />

compromise in strength or range <strong>of</strong> motion.<br />

pApeR No. 283<br />

Results Of Palmaris Longus Interposition Tendon<br />

Grafting For Neglected Extensor Tendon Injuries<br />

Prakash Kotwal, MS<br />

Bhavuk Garg, MS Ortho<br />

Neglected extensor tendon injuries are difficult to treat. The purpose<br />

<strong>of</strong> our study is to evaluate the clinical and functional outcome <strong>of</strong><br />

palmaris longus interposition tendon grafting for neglected extensor<br />

tendon injuries. Between Jan. 2004 to Dec. 2008, 56 neglected<br />

extensor tendon injuries (12 in zone 5, 26 in zone 6, 18 in zone<br />

7) were reconstructed using autogenous palmaris longus tendon as<br />

a free interposition graft. The mean duration since injury was 4.1<br />

months. In each case, the evaluation was based on both subjective<br />

and objective criteria, including the range <strong>of</strong> MCP joint flexion<br />

after surgery, the extension lag at the Metacarpo-phalangeal joint<br />

before and after surgery, and the ability <strong>of</strong> the patient to work. The<br />

average <strong>of</strong> follow-up was 14.1 months (range, 12 to 32 months).<br />

The average range <strong>of</strong> metacarpophalangeal (MCP) joint flexion after<br />

reconstruction was 68 degrees. The extension lag at the metacarpo-<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


phalangeal joint significantly improved from a preoperative mean <strong>of</strong><br />

36 degrees (range, 25 degrees - 60 degrees) to a postoperative mean<br />

<strong>of</strong> 14 degrees (range, 0 degrees - 25 degrees). Subjectively all patients<br />

were satisfied with the clinical results, and achieved a return to their<br />

level <strong>of</strong> ability before tendon rupture. One patient sustained rupture<br />

<strong>of</strong> graft and was re-reconstructed using opposite side palmaris<br />

longus interposition graft. Extensor tendon reconstruction using<br />

autogenous palmaris longus tendon as a free interposition graft<br />

is a viable and effective option to treat neglected extensor tendon<br />

injuries with good clinical functional result.<br />

pApeR No. 284<br />

The Under-Recognition <strong>of</strong> Radiocarpal Dislocations<br />

Asif Ilyas, MD, Wayne, PA<br />

Chris Williamson, MD, Philadelphia, PA<br />

Chaitanya S Mudgal, MD, Boston, MA<br />

Radiocarpal dislocations are uncommon injuries and their incidence<br />

<strong>of</strong>ten quoted to be approximately 0.2% <strong>of</strong> all wrist injuries. The<br />

diagnosis <strong>of</strong> a radiocarpal dislocation can be difficult to make and it<br />

is <strong>of</strong>ten missed. Accurate diagnosis is needed for proper treatment.<br />

We hypothesized that (1) the incidence <strong>of</strong> radiocarpal dislocations is<br />

higher than previously reported, and (2) that an accurate diagnosis is<br />

not always made. Radiographs were reviewed <strong>of</strong> all patients presenting<br />

to an academic trauma center with a diagnosis <strong>of</strong> a distal radius<br />

fracture or wrist dislocation over a five-year period. A radiocarpal<br />

dislocation was defined as a dislocation or subluxation <strong>of</strong> the entire<br />

carpus <strong>of</strong> the hand relative to the distal radius. The injury could be<br />

entirely s<strong>of</strong>t tissue or be associated with a marginal rim or styloid<br />

fracture. Radiology reports were reviewed for all cases for accuracy<br />

<strong>of</strong> identification. In addition, patient demographics and risk factors<br />

were also assessed. Over the study period, radiocarpal dislocations<br />

represented 2.7% <strong>of</strong> all wrist fractures and dislocations. The average<br />

patient age was 34.5 years and 92% were male. All were the result<br />

<strong>of</strong> high energy injuries. An associated fracture was identified in 10<br />

cases while two were strictly s<strong>of</strong>t tissue injuries. A dorsal-directed<br />

dislocation was identified in 83% <strong>of</strong> cases. The dislocation was<br />

accurately diagnosed in 58% <strong>of</strong> cases by radiology report. We found<br />

radiocarpal dislocations to be much more common than expected.<br />

They are most <strong>of</strong>ten dorsally directed and associated with a fracture.<br />

Greater vigilance is needed to avoid misdiagnosis. These injuries<br />

occur most <strong>of</strong>ten in young males and are usually the result <strong>of</strong> high<br />

energy injuries.<br />

pApeR No. 285<br />

Immobilization in Supination Following Surgical<br />

Treatment <strong>of</strong> Galeazzi Fractures: Is it Necessary?<br />

Min Jung Park, MD, MSc, Philadelphia, PA<br />

Nick D Pappas, III MD, Philadelphia, PA<br />

David J Bozentka, MD, Philadelphia, PA<br />

The goal <strong>of</strong> this study was to investigate whether immobilization in<br />

supination is necessary to prevent recurrent distal radio-ulnar joint<br />

(DRUJ) instability in patients with Galeazzi fracture-dislocations<br />

whose DRUJ stabilizes immediately following operative fixation<br />

<strong>of</strong> the radius. We performed a retrospective chart review <strong>of</strong> 13<br />

consecutive patients who were immobilized in either supination<br />

or a neutral position following surgical treatment <strong>of</strong> a Galeazzi<br />

fracture-dislocation in which the DRUJ was noted to be stable<br />

immediately after fixation <strong>of</strong> the radius. Group I consisted <strong>of</strong> seven<br />

patients who were immobilized in supination for a period <strong>of</strong> four<br />

weeks, while Group II, six patients immobilized in neutral for two<br />

weeks. Patients were followed for an average <strong>of</strong> 18 weeks postoperatively.<br />

No significant difference was noted between the two<br />

607<br />

groups with respect to age, medical co-morbidities, hand dominance<br />

or worker’s compensation status. None <strong>of</strong> the patients in either<br />

group demonstrated DRUJ instability during the follow up period<br />

or required additional surgeries. At final follow up, patients in the<br />

two groups had comparable forearm pronation and supination<br />

(p = 0.93). This study demonstrates that there is no clear benefit<br />

from immobilizing patients in supination for Galeazzi fracturedislocations<br />

who demonstrate a stable DRUJ following operative<br />

fixation <strong>of</strong> the radius. Limited immobilization for two weeks in<br />

neutral does not appear to predispose these patients to post-op<br />

DRUJ instability.<br />

pApeR No. 331<br />

Radiographic Outcomes <strong>of</strong> Volar Locked Plating for<br />

Distal Radius Fractures<br />

Megan Mignemi, MD, Nashville, TN<br />

Ian R Byram, MD, Nashville, TN<br />

Carmen Wolfe, BA<br />

Elizabeth A Koehler, MS<br />

John J Block, MD, Nashville, TN<br />

Martin I Jordanov, MD, Nashville, TN<br />

Donald H Lee, MD, Nashville, TN<br />

Volar locked plating (VLP) has become the standard <strong>of</strong> care for<br />

many types <strong>of</strong> distal radius fractures. The purpose <strong>of</strong> this study is to<br />

assess the ability <strong>of</strong> VLP to restore normal radiographic parameters<br />

for articular step-<strong>of</strong>f, volar tilt, radial inclination, ulnar variance<br />

and radial height. A retrospective review was performed <strong>of</strong> 186<br />

consecutive patients who underwent VLP with a single plate for distal<br />

radius fractures over a three-year period by three senior surgeons.<br />

Anteroposterior and lateral radiographs from the time <strong>of</strong> injury,<br />

post-reduction, initial post-operative follow up and minimum sixweek<br />

post-operative follow up were independently reviewed by two<br />

musculoskeletal radiologists and a senior orthopaedic resident.<br />

Measurements for volar tilt, radial inclination, ulnar variance and<br />

radial height were recorded, and each fracture was classified according<br />

to the AO and Frykman systems. Articular step-<strong>of</strong>f was categorized as<br />

either greater than or equal to 2 mm or less than 2 mm. Logistic<br />

regression was used to determine the association between return to<br />

historical anatomic norms and fracture type, age, gender and preoperative<br />

measurements. Articular congruence <strong>of</strong> less than 2 mm<br />

was observed in 91.9% <strong>of</strong> patients after VLP. Normal volar tilt (11.0°<br />

+/- 4.6°) was restored in 45.9% <strong>of</strong> patients with an average <strong>of</strong> 6.7°.<br />

Normal radial inclination (22.0° +/- 2.5°) was achieved in 43.8% <strong>of</strong><br />

patients, with an average <strong>of</strong> 21.2°. Normal ulnar variance (0.7mm<br />

+/- 1.5mm) was achieved in 53.0% <strong>of</strong> patients, with an average <strong>of</strong><br />

0.4 mm. Normal radial height (14.0mm +/- 1.0mm) was restored<br />

in 14.1% <strong>of</strong> patients, with an average <strong>of</strong> 10.8 mm. Correction <strong>of</strong><br />

ulnar variance was significantly associated with fracture type<br />

according to Frykman classification (p=0.021), and restoration <strong>of</strong><br />

volar tilt was significantly associated with fracture type according to<br />

AO classification (p=0.019). VLP for distal radius fractures corrects<br />

articular step-<strong>of</strong>f to less than 2 mm but is less likely to restore normal<br />

radiographic measurements for volar tilit, radial inclination, ulnar<br />

variance and radial height.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


pApeR No. 332<br />

Supination, Pain, and Strength are Important<br />

Determinants <strong>of</strong> Disability After Distal Radius Fracture<br />

Eric F Swart, MD, New York, NY<br />

Aldo Riesgo, BS<br />

Kate W Nellans, MD, New York, NY<br />

Dima Raskolnikov, BS, New York, NY<br />

Melvin Paul Rosenwasser, MD, New York, NY<br />

Patients suffering from distal radius fractures <strong>of</strong>ten have variable<br />

outcomes, despite near-anatomic restoration <strong>of</strong> classically assessed<br />

radiographic parameters (volar tilt, ulnar variance, radial inclination).<br />

In these patients, the relationship between radiographic outcomes,<br />

objective exam-based parameters and patient-perceived disability<br />

remains unclear. Our group maintains a prospective observational<br />

registry <strong>of</strong> patients undergoing operative fixation <strong>of</strong> distal radius<br />

fractures. Radiographic assessment is performed and physical exam<br />

parameters measured at each visit, and patient-based outcomes are<br />

quantified with the Disabilities <strong>of</strong> the Arm, Shoulder, and Hand<br />

(DASH) questionnaire and pain visual analogue scale (VAS). A<br />

multi-variate linear regression model was constructed to evaluate<br />

the association <strong>of</strong> range <strong>of</strong> motion, grip strength and VAS score to<br />

the DASH score. Data from 190 patients at 611 total clinic visits were<br />

analyzed. Pain (p < .001), grip strength (p < .001) and supination (p<br />

< 0.01) were all significant predictors <strong>of</strong> the DASH, controlling for all<br />

other predictors. These three variables alone predict 56% <strong>of</strong> the DASH<br />

score. Flexion/extension, radial/ulnar deviation and pronation had<br />

no significant correlation to DASH scores. In addition, time since<br />

surgery was also not a significant predictor <strong>of</strong> DASH score. Pain,<br />

strength and supination are important determinants <strong>of</strong> patient-rated<br />

outcomes after distal radius fractures. Restoration <strong>of</strong> supination<br />

depends specifically on the anatomy <strong>of</strong> the distal radial-ulnar joint<br />

(DRUJ), a factor not encompassed in the classical radiographic<br />

parameters assessed after distal radius fractures. Future assessments<br />

<strong>of</strong> outcomes after distal radius fracture may benefit from a system<br />

that takes DRUJ anatomy into account.<br />

pApeR No. 333<br />

The Influence <strong>of</strong> Anatomic Reduction At One Year<br />

Following Intra-Articular Distal Radius Fractures<br />

Marc Joseph Richard, MD, Durham, NC<br />

David Simms Ruch, MD, Durham, NC<br />

Priyesh Patel, MD, Elgin, IL<br />

Periklis Papapetropoulos, MD, Pittsburgh, PA<br />

Robert J Med<strong>of</strong>f, MD, Kailua, HI<br />

Fraser J Leversedge, MD, Durham, NC<br />

Anatomic reduction and stabilization <strong>of</strong> the volar lunate facet<br />

fragment <strong>of</strong> multifragmentary intra-articular fractures <strong>of</strong> the distal<br />

radius is critical to achieve satisfactory functional and radiographic<br />

outcomes. We prospectively acquired data on 157 patients with AO<br />

type C3 distal radius fractures. All patients were treated with either<br />

external fixation or internal fixation using either a dorsal plate or<br />

a fixed angle volar plate. Patient data was collected at three, six<br />

and 12 months post surgical intervention including radiographic<br />

evaluation, range <strong>of</strong> motion, grip strength, Gartland and Werley<br />

scores and the DASH outcome score. Each clinical follow up included<br />

standard postero-anterior, lateral and inclined lateral radiographs.<br />

The radiographs were evaluated for the tear drop angle, volar tilt,<br />

radiolunate angle, carpal translation, articular step-<strong>of</strong>f and articular<br />

gap. The palmar lunate facet was determined to be displaced if: 1)<br />

the posteroanterior radiograph demonstrated >2 mm <strong>of</strong> depression<br />

<strong>of</strong> the lunate facet relative to the radial styloid fragment, and relative<br />

608<br />

to a line parallel to the head <strong>of</strong> the ulna combined with 2) evidence<br />

<strong>of</strong> depression <strong>of</strong> the volar lip <strong>of</strong> the distal radius on the lateral and<br />

the inclined lateral view. Based on these radiographic parameters,<br />

two groups were designated with group I being patients with<br />

significant residual articular depression <strong>of</strong> the palmar lunate facet<br />

(>2 mm) and group II consisting <strong>of</strong> patients with less than 2 mm<br />

<strong>of</strong> articular depression. Group I contained 41 patients and Group<br />

II consisted <strong>of</strong> 116 patients. Descriptive statistics for all continuous<br />

variables were computed. For these variables, the significance <strong>of</strong> the<br />

difference in medians for Group I and Group II was assessed using<br />

the Wilcoxon rank sum test. Patients without displacement had a<br />

significantly higher median value <strong>of</strong> extension (65) than those with<br />

residual displacement (45) (p=0.002). Median supination for those<br />

without displacement (78) was significantly higher than for those<br />

with displacement (67) (p=0.004). Gartland and Werley scores for<br />

those with displacement were significantly higher than for those<br />

without displacement. Reduction <strong>of</strong> the palmar lunate facet correlates<br />

with improved clinical outcomes both at the radiocarpal joint and<br />

at the distal radial-ulnar joint, and impacts functional outcome as<br />

noted by improved Gartland and Werley scores at one year. While<br />

previous studies have reported the implications <strong>of</strong> the significance<br />

<strong>of</strong> the lunate facet <strong>of</strong> the distal radius, no published studies correlate<br />

the significance <strong>of</strong> the palmar lunate facet reduction to clinical and<br />

functional outcomes.<br />

pApeR No. 334<br />

Early Versus Late Motion Following Volar Plating <strong>of</strong><br />

Distal Radius Fractures<br />

David G Dennison, MD, Rochester, MN<br />

Char Blanchard, Rochester, MN<br />

Bassem T Elhassan, MD, Rochester, MN<br />

Alexander Yong Shik Shin, MD, Rochester, MN<br />

Distal radius fractures are very common and the trend in fixation has<br />

included the use <strong>of</strong> locked volar plating. The amount <strong>of</strong> splinting<br />

that is required after surgery and the effect that splinting has upon<br />

the outcome <strong>of</strong> the wrist is not clear. Our aim was to compare the<br />

outcome (strength, motion and outcome scores) <strong>of</strong> patients treated<br />

with an early versus late motion protocol after volar plating. Thirtythree<br />

adult patients with distal radius fractures were prospectively<br />

and randomly enrolled into an early versus late motion study which<br />

included volar plating <strong>of</strong> a distal radius fracture. Early motion was<br />

defined as initiation <strong>of</strong> an active and passive motion protocol by 14<br />

days after surgery and delayed motion was initiated at five weeks.<br />

Fractures were defined as intra-articular and extra-articular, and<br />

those with, and without, ulnar styloid fracture. Volar plating was<br />

completed through an FCR approach in all cases. Outcome measures<br />

(Disabilities <strong>of</strong> the Arm, Shoulder and Hand - DASH/Patient Rated<br />

Wrist Evaluation - PRWE), motion (flexion-extension, radial-ulnar<br />

deviation, pronation-supination) and strength (appositional and<br />

oppositional pinch and grip) were measured through one year. Wrist<br />

motion and DASH and PRWE scores were all significantly different at<br />

six weeks (p


pApeR No. 335<br />

Bone Cement Augmentation After Volar Locking Plate<br />

For Distal Radius Fractures Of Elderly Patients<br />

Jae Kwang Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Young Do Koh, MD, PhD, Yangcheongu, Seoul, Republic <strong>of</strong> Korea<br />

Seung Yup Lee, MD<br />

Jeong Suh Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

The purpose <strong>of</strong> this randomized study was to determine whether<br />

calcium phosphate bone cement (CPC) augmentation has any<br />

benefit over volar locking plate fixation alone in elderly (> 65 years)<br />

patients with an unstable distal radius fracture (DRF). Forth-eight<br />

patients (50 DRFs) were recruited for this study. Mean patient age<br />

was 73 years (range, 65 to 89). Surgical procedures were randomized<br />

between volar locking plate fixation alone (Group 1) and volar<br />

locking plate fixation with CPC injection (Group 2). The patients<br />

were assessed clinically at three and 12 months postoperatively.<br />

Clinical assessments included grip strength, wrist range <strong>of</strong> motion,<br />

wrist pain, modified Mayo wrist scores and disabilities <strong>of</strong> arm,<br />

shoulder and hand scores. Radiographic evaluations were performed<br />

immediately after surgery and one-year follow up visits, and degrees<br />

<strong>of</strong> radiographic reduction were assessed by measuring radial<br />

inclination, volar angulation and ulnar variance. The volar locking<br />

plate fixation (Group 1) and the volar locking plate fixation plus<br />

CPC (Group 2) groups were comparable with regard to age, gender,<br />

fracture type, injury mechanism and bone mineral density. No<br />

significant differences were observed between the groups in terms<br />

<strong>of</strong> clinical outcomes at three or 12-month follow ups. Furthermore,<br />

no significant inter-group differences were observed in terms <strong>of</strong><br />

radiographic outcomes immediately after surgery or at one-year<br />

follow-up visits. Furthermore, no complication-related differences<br />

were observed. The calcium phosphate bone cement augmentation<br />

<strong>of</strong> metaphyseal defects after volar locking plate fixation was found<br />

to <strong>of</strong>fer no benefit over volar locking plate fixation alone, even in<br />

elderly patients with an unstable distal radius fracture.<br />

pApeR No. 336<br />

Correction <strong>of</strong> Malunited Distal Radial Fractures Using<br />

Volar Locked Plates Without Bone Grafting<br />

Mostafa Mahmoud, MD, Cairo, Egypt<br />

Sherif El Shafie, MB BCh, Cairo, Egypt<br />

Study the effectiveness <strong>of</strong> the use <strong>of</strong> volar locked plates in the<br />

correction <strong>of</strong> malunited fractures <strong>of</strong> the distal radius without the<br />

use <strong>of</strong> bone grafting, to achieve proper reduction, alignment and<br />

stability <strong>of</strong> the wrist joint. The study was performed on 30 wrists<br />

in 26 patients with dorsal malunited distal radius treated with fixed<br />

angle volar locked plate without bone grafting. Their mean age was<br />

35 years. Mean duration since fracture was 10 months. Twenty-two<br />

wrists in 19 patients were available for follow up with a mean follow<br />

up duration <strong>of</strong> 18 months. Union occurred in all patients. Mean<br />

radial inclination was restored from 2° to 18°. Mean radial height<br />

was restored from -4 mm to -1 mm. Dorsal tilt improved from 32°<br />

to 5°. Mean preoperative DASH score improved from 35 to 10, VAS<br />

improved from five to two, and grip strength from 75% to 90%. One<br />

patient suffered from transient median nerve neuritis that resolved<br />

within three months, one patient suffered from reflex sympathetic<br />

dystrophy which was resolved by aggressive physiotherapy and<br />

residual ulnar side wrist pain requiring ulnar shortening was<br />

encountered in two patients. Fixation with a volar locked plate is an<br />

effective method for the management <strong>of</strong> malunited fractures <strong>of</strong> the<br />

distal radius and bone grafting is not needed.<br />

609<br />

pApeR No. 337<br />

Distal Scaphoid Resection for Arthritis Secondary to<br />

Scaphoid Nonunion: A Twenty Year Experience<br />

Matthew M Malerich, MD, Bakersfield, CA<br />

Louis W Catalano III, MD, New York, NY<br />

The results <strong>of</strong> distal scaphoid resection arthroplasty for the treatment<br />

<strong>of</strong> degenerative arthritis secondary to scaphoid nonunion were<br />

presented at the 1995 <strong>American</strong> Society for Surgery <strong>of</strong> the Hand<br />

meeting. At that time, the average follow up was 49 months and the<br />

audience requested follow up data. The objective <strong>of</strong> this study was to<br />

demonstrate that satisfactory results would be maintained at longer<br />

follow up. Eighteen <strong>of</strong> the original 19 patients were re-reviewed at<br />

follow up between 11-21 years with a mean <strong>of</strong> 15 years. Repeat followup<br />

examinations and radiographs were performed on all patients at<br />

follow up. Of the 18 patients, 17 remain satisfied with the procedure.<br />

Range <strong>of</strong> motion was maintained at the same degree compared to<br />

the 1995 study. The flexion-extension arc was 90 degrees; radialulnar<br />

deviation arc was 39 degrees. Grip strength decreased 20%<br />

but did so symmetrically. No change in the radiolunate joint angle<br />

or revised carpal height ratio was documented. Approximately onethird<br />

<strong>of</strong> patients did have some degree <strong>of</strong> capitolunate joint space<br />

narrowing that was new and asymptomatic. Radiolunate and residual<br />

radial scaphoid joints did not develop arthrosis. One patient from<br />

the study underwent a proximal row carpectomy. Long-term results<br />

are good. A total <strong>of</strong> 94% <strong>of</strong> patients remained satisfied. Some 30%<br />

<strong>of</strong> patients developed capitolunate joint space narrowing that was<br />

asymptomatic. No further wrist collapse occurred. No additional<br />

joints developed arthritis.<br />

pApeR No. 338<br />

Percutaneous Fixation <strong>of</strong> Scaphoid Nonunion Without<br />

Using Bone Graft<br />

Mostafa Mahmoud, MD, Cairo, Egypt<br />

Sherif El Shafie, MB BCh, Cairo, Egypt<br />

Scaphoid nonunions with extensive bone resorption at the nonunion<br />

site were traditionally indicated for open bone grafting and internal<br />

fixation. We study the feasibility <strong>of</strong> isolated percutaneous fixation<br />

<strong>of</strong> the scaphoid without bone grafting in a series <strong>of</strong> established<br />

nondisplaced nonunions with substantial gaps. A consecutive<br />

series <strong>of</strong> 30 patients, 28 males and two females with nondisplaced<br />

established nonunion <strong>of</strong> the scaphoid and extensive resorption were<br />

treated by rigid fixation alone without bone grafting with a headless<br />

cannulated screw inserted by a volar percutaneous technique. Union<br />

was achieved in all patients at an average <strong>of</strong> 11.7 weeks as evidenced<br />

radiologically. Patients were followed up for an average <strong>of</strong> 24 months<br />

and at final follow up clinical evaluation revealed less pain on wrist<br />

motion and the mean visual analogue score improved from 4 to 1.<br />

Mayo Modified Wrist score was poor in 16, fair in 12 and good in<br />

two patients; this improved to 26 excellent and four good. Selected<br />

nondisplaced scaphoid nonunions with extensive resorption and<br />

gapping <strong>of</strong> 2 mm or more possess the biological ability, but lack the<br />

mechanical stability, for bone healing to proceed without the need<br />

for bone graft, which can be achieved percutaneously.<br />

pApeR No. 339<br />

Bicolumnar Fusion for Scaphoid Nonunion Advanced<br />

Collapse Without Bone Graft<br />

Mostafa Mahmoud, MD, Cairo, Egypt<br />

Sherif El Shafie, MB BCh, Cairo, Egypt<br />

Various modalities have been previously used in the management <strong>of</strong><br />

scaphoid nonunion advanced collapse (SNAC) to provide pain relief<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


yet preserving wrist function. Based on the carpal biomechanical<br />

concepts, the motion between the capitate and the hamate is negligible<br />

and the motion between the lunate and the triquetrium does not<br />

occur when the midcarpal movements are blocked, we assumed that<br />

fusing the capitohamate and the lunotriquetral joints unnecessary.<br />

We study the effectiveness <strong>of</strong> fusing only the joints as a salvage<br />

procedure for SNAC wrists. The procedure was performed on seven<br />

patients, six males and one female with an average age <strong>of</strong> 36 years<br />

(range 30-56) and an average duration <strong>of</strong> symptoms 15 years (range<br />

5-20). Capitolunate and triquetrohamate joints were fused using<br />

screws without the use <strong>of</strong> bone grafts. Below elbow cast was applied<br />

for eight-12 weeks post-operatively Union occurred in all cases,<br />

average visual analogue score improved from 4 to 1, postoperative<br />

Mayo wrist score was excellent in five and good in two patients. Six<br />

patients returned to their previous occupations. Bicolumnar fusion<br />

without fusing the capitolunate and the triquetrohamate joint is an<br />

effective salvage operation <strong>of</strong> SNAC wrist providing pain relief and<br />

preservation <strong>of</strong> wrist function.<br />

pApeR No. 340<br />

Staged Reduction Of Neglected Transscaphoid<br />

Perilunate Dislocation: A Report Of 16 Cases<br />

Prakash Kotwal, MS<br />

Bhavuk Garg, MS Ortho<br />

Transscaphoid perilunate dislocation is a rare injury and therefore it<br />

is easily missed at the initial treatment. Once ignored, an alternative<br />

treatment such as proximal row carpectomy is indicated, but<br />

surgical outcome is not as good as that <strong>of</strong> an early reduction. Also<br />

late reduction (>3 months) is not possible and needs extensive<br />

dissection. We present an alternative technique <strong>of</strong> staged reduction<br />

with better outcome. Sixteen cases (14 males and two females)<br />

with neglected transscaphoid perilunate dislocation (>3 month<br />

old) were treated with staged reduction. In first stage an external<br />

fixator was applied across the wrist and distraction was done at 1<br />

mm/day. Second surgery was done through dorsal approach and we<br />

were able to reduce all the fractures and dislocations. Herbert screws<br />

and K wires were used for fixation. The mean duration between two<br />

surgeries was 2.4 weeks (range two to four weeks). Thirteen cases<br />

had excellent results, one had fair result. Two patients developed<br />

reflex sympathetic dystrophy and had poor results. Staged reduction<br />

should be considered for neglected transscaphoid perilunate<br />

dislocations. If properly executed, a good functional pain free range<br />

<strong>of</strong> motion is the usual outcome.<br />

pApeR No. 341<br />

Percutaneous transtrapezial approach to scaphoid<br />

fractures does not lead to ST degeneration<br />

Roger P van Riet, MD, Wilrijk, Belgium<br />

Ghislain Geurts, MD<br />

Geert Meermans, MD, Berchem, Belgium<br />

Frederik Verstreken, MD, Deurne, Belgium<br />

Biomechanical studies have shown that a long, centrally placed<br />

screw is favorable in scaphoid fracture fixation. A volar percutaneous<br />

transtrapezial approach was developed to facilitate central screw<br />

placement. The purpose <strong>of</strong> this study was to evaluate radiographic<br />

changes at the scaphotrapezial (ST) joint at long term follow up in<br />

patients where this approach was used. Results were graded with<br />

the visual analogue scale (VAS) and modified Mayo wrist score.<br />

Radiographs <strong>of</strong> both hands, comprising an anteroposterior, lateral,<br />

and 45 degrees pronated oblique view were obtained. Degenerative<br />

changes at the ST joint were staged according to the modified Eaton<br />

& Glickel classification. Thirty-four patients with an average age <strong>of</strong> 34<br />

610<br />

years were followed at a mean <strong>of</strong> 6.1 years (four to nine). Union was<br />

obtained in all at an average time <strong>of</strong> 6.4 weeks (six to 10). There were<br />

no significant differences in VAS score and range <strong>of</strong> motion, between<br />

the operated and nonoperated side (p>0.05). The mean Mayo wrist<br />

score was 93 (80-100). Three patients showed stage 2 osteoarthritis<br />

<strong>of</strong> the ST-joint. In two <strong>of</strong> these, stage 2 osteoarthritis was found in<br />

both the injured and uninjured side. One patient had asymptomatic<br />

stage 2 osteoarthritic changes at the injured side. The advantages <strong>of</strong><br />

the volar percutaneous transtrapezial approach include central screw<br />

placement, without the need for manipulation <strong>of</strong> the wrist. From<br />

the present study it can be concluded that the volar percutaneous<br />

transtrapezial approach to fix scaphoid fractures does not lead to<br />

significant radiographic degenerative changes in the ST joint, at a<br />

follow up <strong>of</strong> more than six years.<br />

pApeR No. 342<br />

Traumatic Ulnar Translocation <strong>of</strong> the Carpus: Early<br />

Diagnosis and Treatment<br />

John C Berschback, MD, Chicago, IL<br />

David Mark Kalainov, MD, Chicago, IL<br />

Sohail Husain, MD, Salem, NH<br />

Thomas A Wiedrich, MD, Chicago, IL<br />

Mark S Cohen, MD, Chicago, IL<br />

Daniel J Nagle, MD, Chicago, IL<br />

Ulnar translocation <strong>of</strong> the carpus occurs when the entire carpus<br />

translates medially along the distal radius. The injury is rare;<br />

consequently, the diagnosis may be unintentionally missed or<br />

delayed. We present 11 cases <strong>of</strong> posttraumatic ulnar translocation<br />

<strong>of</strong> the carpus and review our results following early recognition and<br />

treatment. Eleven cases (10 patients) <strong>of</strong> traumatic ulnar translocation<br />

<strong>of</strong> the carpus were identified: seven were ligamentous injuries alone<br />

and four were ligamentous injuries in association with fractures.<br />

Treatment included wrist immobilization (one), ligament repair<br />

(five), fracture fixation alone or in combination with ligament repair<br />

(three), radioscapholunate fusion (one) and diagnostic arthroscopy<br />

(one). Six patients were examined at a mean <strong>of</strong> 5.5 years after injury.<br />

Information for four others was obtained from medical records at<br />

a mean <strong>of</strong> 11 months following injury. Intercarpal alignment and<br />

post traumatic arthritis were assessed using established radiographic<br />

criteria. Eight <strong>of</strong> 10 patients described intermittent wrist pain and all<br />

patients demonstrated loss <strong>of</strong> normal wrist flexion and/or extension<br />

at final assessment. A 3 mm scapholunate gap was measured<br />

in two cases, and ulnar translocation <strong>of</strong> the carpus was evident<br />

in all patients. Degenerative arthritis involving the radiocarpal<br />

articulation developed in 45% <strong>of</strong> injured wrists. Posttraumatic ulnar<br />

translocation <strong>of</strong> the carpus can result from ligamentous injury alone<br />

or in association with fracture. Restricted wrist motion is expected,<br />

intermittent wrist pain may persist and degenerative arthritis <strong>of</strong> the<br />

radiocarpal interval may develop. Early ligament or fracture repair<br />

does not assure restoration <strong>of</strong> normal radiocarpal alignment.<br />

pApeR No. 343<br />

Long Term Outcomes Of Ulnar Head Prosthetic<br />

Replacement<br />

Sanjeev Kakar, MD, Rochester, MN<br />

Russell P Swann, MD, Rochester, MN<br />

Kevin I Perry, MD, Rochester, MN<br />

Alexander Yong Shik Shin, MD, Rochester, MN<br />

Steven L Moran, MD, Rochester, MN<br />

Hypothesis: Ulnar head endoprostheses restore stability and<br />

functionality to the upper limb after degenerative joint disease<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


or resection arthroplasty <strong>of</strong> the distal radioulnar joint (DRUJ). A<br />

retrospective review was conducted analyzing the outcome <strong>of</strong> all<br />

ulnar head prosthesis implanted within our institution over a 10-year<br />

period. All patients presented complaining <strong>of</strong> pain and functional<br />

disability due to instability or arthrosis <strong>of</strong> the DRUJ. Standardized<br />

preoperative and postoperative assessments included a patient rated<br />

pain score, forearm range <strong>of</strong> motion, grip strength and Mayo wrist<br />

score. Preoperative and postoperative radiographs were examined to<br />

determine whether implant survival was associated with patient pre<br />

and postoperative characteristics. Sixty-nine patients were followed<br />

for a median <strong>of</strong> 49 months (range: 16 to 126 months). Eighty-nine<br />

percent <strong>of</strong> prosthesis were uncemented. Pain scores decreased by a<br />

mean <strong>of</strong> 2.2 (± 1.8) points, and Mayo wrist scores improved a mean<br />

<strong>of</strong> 26 (±13) points after surgery. Mean grip strength improved by 2 (±<br />

11) Kg from preoperative measurements. There were no statistically<br />

significant differences with respect to pre and postoperative wrist<br />

and forearm range <strong>of</strong> motion. Kaplan-Meier analysis demonstrated<br />

81% survival at six years. Distal ulna arthroplasty restored stability<br />

and function to patients with DRUJ impingement or arthrosis.<br />

Thirty-two percent <strong>of</strong> patients, however, required additional surgical<br />

procedures after primary ulnar endoprosthesis placement.<br />

pApeR No. 344<br />

Scaphoid Hemi-Resection & Arthrodesis <strong>of</strong> the Radio-<br />

Carpal Joint for Isolated Radio-Carpal Arthritis<br />

William H Seitz Jr, MD, Cleveland, OH<br />

Recessed arthrodesis <strong>of</strong> the radiocarpal joint with distal scaphoid<br />

hemiresection can reduce pain and provide functional motion<br />

through the mid carpal joint. Twenty-four patients with radiocarpal<br />

arthritis (eight patients following failed treatment <strong>of</strong> complex distal<br />

radius fractures, eight patients with scapholunate advanced collapse,<br />

four patients with scaphoid nonunion with advanced collapse<br />

and four patients following failure <strong>of</strong> treatment for transcaphoid<br />

perilunate fracture dislocation) were treated with a procedure<br />

to recess the lunate and proximal pole <strong>of</strong> scaphoid into the<br />

metaphyseal bone <strong>of</strong> the distal radius, resection <strong>of</strong> the distal. Onehalf<br />

<strong>of</strong> the scaphoid was also performed to allow enhanced motion<br />

<strong>of</strong> the capitate head within the mid carpal joint as a ‘universal joint.’<br />

Fixation <strong>of</strong> the lunate and proximal scaphoid was achieved through<br />

flexibile tension plates. Controlled early active motion was begun<br />

one week after surgery (patients have been followed for an average<br />

<strong>of</strong> 3.8 years, range two to five years). All 24 patients developed a<br />

stable union at the arthrodesis site. None had hardware problems<br />

and there were no infections. Range <strong>of</strong> motion increased from an<br />

average preoperative total arc <strong>of</strong> flexion-extension <strong>of</strong> 32° to a total<br />

arc <strong>of</strong> flexion extension <strong>of</strong> 68° (range 42° to 110°). Pain ratings<br />

on a visual analog scale decreased from an average <strong>of</strong> 8.7 to 1.2.<br />

Twenty-two <strong>of</strong> 24 patients demonstrated a significant increased<br />

ability in their activities <strong>of</strong> daily living. Of the 10 patients who had<br />

been gainfully employed prior to surgery, nine had returned to<br />

work at their regular job. Patients who participated in recreational<br />

activities and had been prevented from doing so prior to surgery<br />

(tennis, golf, fishing, bowling) were able to resume their recreational<br />

athletic activities. One patient had persistent stiffness and was not<br />

pleased with his limited motion but had significant pain relief. One<br />

patient developed mid carpal arthritis and was converted to a total<br />

wrist arthroplasty. Radiographic analysis has shown deterioration <strong>of</strong><br />

the mid carpal articular surfaces in only this one patient. Scaphoid<br />

hemiresection and limited arthrodesis <strong>of</strong> the radio-carpal joint is a<br />

viable motion sparing procedure for isolated radiocarpal arthritis.<br />

Although there are limitations in the total degree <strong>of</strong> movement, the<br />

motion which persists is functional, pain relief has been substantial<br />

and the short term (two to five year) follow up suggests minimal<br />

611<br />

deterioration. This procedure is technically straight forward and<br />

appears to be a viable alternative to total wrist arthrodesis when<br />

the mid carpal joint is reasonably spared. Revision to total wrist<br />

arthroplasty remains a viable salvageable procedure. The key to<br />

enhanced motion through the mid carpal joint is resection <strong>of</strong> the<br />

distal one-half <strong>of</strong> the scaphoid.<br />

pApeR No. 345<br />

Modified Sauve-Kapandji Procedure for Rheumatoid<br />

Wrist: Results <strong>of</strong> Follow up for More Than 5 Years<br />

Akira Kawabata, MD, Osaka, Japan<br />

Hideki Tsuboi, MD<br />

Takeshi Egi, MD, Nishinomiya, Japan<br />

Kenrin Shi, MD, Osaka, Japan<br />

Satoru Fujita, MD, Takarazuka, Japan<br />

Hideo Hashimoto, MD<br />

Eiji Takeuchi, MD, Osaka, Japan<br />

Susumu Saito, MD, Toyonaka, Japan<br />

Kazuhiro Masada, MD, Osaka, Japan<br />

We report the results after more than five years <strong>of</strong> follow up<br />

<strong>of</strong> rheumatoid arthritis patients with distal radioulnar joint<br />

abnormalities who underwent the modified Sauvé-Kapandji<br />

procedure. This procedure involves resecting the distal part <strong>of</strong> the<br />

ulna, rotating the resected portion by 90° and inserting it into<br />

the distal part <strong>of</strong> the radius. We followed 27 patients (32 wrists;<br />

mean age at operation, 59.7 years) for more than five years (mean<br />

follow-up period, 92 months). We assessed the pain, grip strength<br />

and range <strong>of</strong> wrist motion. The carpal height ratio (CHR), carpal<br />

translation index (CTI) and palmar carpal subluxation ratio (PCSR)<br />

were calculated from the radiographs. The wrist pain had reduced in<br />

all cases. The mean range <strong>of</strong> wrist motion was as follows: extension,<br />

flexion, pronation and supination <strong>of</strong> 39°, 37°, 78° and 67° at<br />

preoperative stage and 40°, 23°, 86° and 85° at final follow up,<br />

respectively. The average grip strengths at preoperative stage and final<br />

follow up were 95 mmHg and 87 mmHg, respectively. Preoperative<br />

radiography showed that CHR, CTI and PCSR were 0.45, 0.32 and<br />

0.23, respectively; at the final follow up, they were 0.44, 0.34 and<br />

0.25, respectively. Statistically, pronation and supination increased<br />

significantly, while wrist flexion decreased. Other parameters were<br />

not significantly different. We have previously reported that this<br />

procedure ensured pain reduction, improvement in forearm rotation<br />

and prevention <strong>of</strong> ulnar translation <strong>of</strong> the carpal bones after a mean<br />

postoperative follow up <strong>of</strong> 48 months. These improvements were<br />

maintained even five years after surgery.<br />

pApeR No. 556<br />

Biomechanical Evidence For Immediate Mobilization <strong>of</strong><br />

the Brachioradialis After Tendon Transfer<br />

Jan Friden, MD, PhD, Goteborg, Sweden<br />

Richard L Lieber, PhD, La Jolla, CA<br />

Matthew Charles Shillito, MD, San Diego, CA<br />

Samuel R Ward, PhD, La Jolla, CA<br />

Brachioradialis (BR)-to-flexor pollicis longus (FPL) tendon transfer is<br />

<strong>of</strong>ten used to restore key pinch after cervical spinal cord injury. Current<br />

postoperative recommendations include elbow immobilization in a<br />

flexed position to protect the BR-FPL anastomosis. The purpose <strong>of</strong><br />

this study was to measure the BR-FPL tendon tension across a range<br />

<strong>of</strong> wrist and elbow joint angles to determine its acute vulnerability<br />

to joint motion. BR-to-FPL tendon transfers were performed on<br />

fresh frozen cadaveric arms (n=8) and the BR-FPL tendon was<br />

instrumented with a buckle transducer. Arms were ranged over four<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


wrist angles from 45° <strong>of</strong> flexion to 45° <strong>of</strong> extension and eight elbow<br />

angles from 90° <strong>of</strong> flexion to full extension, measuring tension in<br />

the BR-FPL anastomosis at each angle. Subsequently, the BR-FPL<br />

tendon constructs were elongated to failure. Over the normal wrist<br />

and elbow range <strong>of</strong> motion, BR-FPL tendon tension was under 20 N.<br />

Two-way ANOVA with repeated measures revealed a significant effect<br />

<strong>of</strong> wrist joint angle (p


examined, 13 patients had normal thumb ROM, average pinch<br />

strength was 7 lbs for the affected hand and 9 lbs for the unaffected<br />

contralateral hand. Average key grip was 9 lbs for the affected hand<br />

and 11 lbs for the unaffected contralateral hand. X-rays showed<br />

inflammatory changes in the proximal metacarpal in eight <strong>of</strong> 14<br />

patients. A total <strong>of</strong> 27.7% <strong>of</strong> Artelon implants placed needed to be<br />

removed due to local tissue reaction and pain; those patients who<br />

did not develop a reaction to Artelon had good outcome. Patients<br />

who reacted to Artelon did so relatively early with an average time<br />

<strong>of</strong> 12 weeks. X-rays demonstrated significant amount <strong>of</strong> reaction in<br />

the proximal metacarpal joint most likely as a consequence <strong>of</strong> the<br />

reaction caused by the Artelon implant.<br />

pApeR No. 560<br />

uErythropoietin Enhances Functional Recovery After<br />

Peripheral Nerve Repair: Our Experience<br />

Bhavuk Garg, MS Ortho<br />

Prakash Kotwal, MS<br />

Erythropoietin (EPO) is a naturally occurring hormone with<br />

multiple effects on a number <strong>of</strong> different cell types. Recent data<br />

have suggested neuroprotective and perhaps even neurotrophic<br />

roles for erythropoietin. We evaluated the role <strong>of</strong> erythropoietin<br />

after peripheral nerve repair. Fourteen patients, who underwent<br />

primary peripheral nerve repair (March 2009-May2009), were given<br />

erythropoietin 4000 I.U. subcutaneously twice a week for 12 weeks.<br />

Ulnar nerve repair was done in four patients at the level <strong>of</strong> elbow; at<br />

the level <strong>of</strong> wrist in five cases. Median nerve was repaired at the level<br />

<strong>of</strong> wrist in four cases and two cases underwent digital nerve repair.<br />

All cases were followed up for one year. Twelve out <strong>of</strong> 14 cases had<br />

excellent outcome and got complete recovery. Two cases had partial<br />

motor and sensory recovery. The average time to recovery in elbow<br />

lesions was 9.2 months: 6.4 months in wrist lesions. It was also seen<br />

that progression <strong>of</strong> Tinel sign as well as recovery was faster following<br />

use <strong>of</strong> erythropoietin. No adverse effect related to erythropoeitin was<br />

seen. Our results demonstrated that EPO is able to enhance nerve<br />

regeneration and promote functional recovery after peripheral nerve<br />

repair<br />

pApeR No. 561<br />

Prevalence <strong>of</strong> CTS, Wrist Arthritis and Rhizarthritis in<br />

Paraplegic Patients Compared to Controls<br />

Michael Akbar, MD, Heidelberg, Germany<br />

Sepehr Doustdar, MD<br />

Thomas Bruckner, Dipl.Math.<br />

Carl Hans Fuersenberg, MD<br />

Marc-Andre Weber, MD, Heidelberg, Germany<br />

Martin Jung, MD<br />

Musculoskeletal injuries <strong>of</strong> the hand in paraplegic patients can result<br />

from overuse and/or incorrect use <strong>of</strong> wheelchairs. With improved<br />

long-term survival <strong>of</strong> these patients who exclusively depend on their<br />

upper extremities for weight-bearing activities such as transfers and<br />

wheelchair propulsion, they are particularly susceptible for hand<br />

pathologies. The purpose <strong>of</strong> this study was to compare the functional<br />

and structural changes in weight-bearing hand <strong>of</strong> paraplegic patients<br />

who are wheelchair dependent for more than 30 years with ablebodied<br />

volunteers. This was a case-control-study with 56 (112 hands)<br />

patients who had been paraplegic and wheelchair dependent for a<br />

mean <strong>of</strong> 34.7 years. These patients were matched for gender, age,<br />

occupation and hobbies to a group <strong>of</strong> 56 (112 hands) able-bodied<br />

volunteers. The mean age for the paraplegic patients was 53.4 years<br />

and 52.1 years for the matched volunteers. The handedness was<br />

distributed equally in both groups. Hands from both groups were<br />

613<br />

evaluated using MRI. All films were analyzed by two board-certified<br />

radiologists who were blinded to the study. Prospectively collected<br />

outcome measures included a standardized clinical examination<br />

protocol, the DASH-Score and visual analog scale (VAS) pain scores.<br />

The hand function according to the DASH Score was significantly<br />

worse in paraplegic patients compared to able-bodied volunteers<br />

(p


pApeR No. 563<br />

Prospective Comparison <strong>of</strong> Post-Operative Outcomes:<br />

Two-Incision Versus Open Carpal Tunnel Release<br />

Tiffany Castillo, Atherton, CA<br />

Jeffrey Yao, MD, Redwood Shores, CA<br />

Patients who undergo two-incision carpal tunnel release (CTR) with<br />

preservation <strong>of</strong> subcutaneous nerves seem to experience less severe<br />

short-term post-operative symptoms and quicker recovery <strong>of</strong> strength<br />

and sensation compared to patients who undergo traditional open<br />

CTR. Twenty-eight patients were randomized to undergo twoincision<br />

or open CTR by a single surgeon. The sample size was set to<br />

ensure a power <strong>of</strong> 80% to detect a 15% difference in mean Brigham<br />

and Women’s Carpal Tunnel Questionnaire (BWCTQ) function or<br />

symptom scores. Pre-operatively, patients completed a Disabilities<br />

<strong>of</strong> the Arm, Shoulder and Hand (DASH) Questionnaire, BWCTQ,<br />

grip and pinch strength measurements and Semmes-Weinstein<br />

mon<strong>of</strong>ilament sensory testing. Questionnaires and measurements,<br />

along with scar tenderness and pillar pain evaluations were repeated<br />

two weeks, six weeks and six-plus-months post-operatively. Twentyeight<br />

patients (16 open, 12 two-incision) completed the study.<br />

There was no significant difference in demographics or pre-operative<br />

measurements between groups. All patients reported improved postoperative<br />

carpal tunnel symptoms and hand function. There was no<br />

significant difference between groups in two weeks, six weeks and sixplus-months<br />

post-operative DASH or BWCTQ scores, scar tenderness<br />

or pillar pain. There was a trend toward a greater increase in grip<br />

strength in the open CTR group (p=0.30) and a greater increase in<br />

pinch strength in the two-incision CTR group (p=0.10). Patients who<br />

undergo two-incision CTR demonstrate similar but not improved<br />

post-operative recovery and improvement in grip and pinch strength<br />

compared to those who undergo traditional open CTR. Thus either<br />

technique may be <strong>of</strong>fered as an efficacious treatment for carpal<br />

tunnel syndrome.<br />

pApeR No. 564<br />

Biophysical Stimulation Induce Demyelination: An In-<br />

Vitro Study <strong>of</strong> Chronic Compressive Neuropathy<br />

Michael Y Lin, MD, Irvine, CA<br />

Laura Frieboes, PhD<br />

Maryam Forootan, BS<br />

Winnie Palispis, BS<br />

Ranjan Gupta, MD, Orange, CA<br />

Entrapment neuropathy occurs when the peripheral nerve is<br />

chronically subjected to mechanical forces. Increasing evidence<br />

implicates the extracellular matrix (ECM) as transducers <strong>of</strong><br />

biophysical stimuli, relaying signals through bridging proteins to<br />

activate intracellular signal cascades. Integrins, as heterodimeric<br />

transmembrane molecules that bind the ECM, are attractive<br />

candidates to mediate changes in the ECM in response to chronic<br />

nerve compression (CNC). To better understand the pathophysiology<br />

<strong>of</strong> entrapment neuropathies, we sought to define the involved<br />

molecular events. We designed a bioreactor to study the role <strong>of</strong><br />

pressure, hypoxia and ischemia on myelinating neuronal/Schwann<br />

cell co-cultures. Hydrostatic pressure, dissolved oxygen and glucose<br />

were manipulated independently and maintained constantly.<br />

Demyelination was assayed via immunolabeling <strong>of</strong> myelin basic<br />

protein, whereas Schwann cell proliferation and apoptosis were<br />

respectively assessed with BrdU and TUNEL labeling. Additionally,<br />

the activation <strong>of</strong> integrin signal cascades was assayed via Western<br />

Blots <strong>of</strong> the total and phosphorylated levels <strong>of</strong> Paxillin FAK Pyk2<br />

and Src. Mechanical loading <strong>of</strong> neural tissue induces Schwann<br />

614<br />

cell proliferation without cytotoxicity. However, hydrostatic<br />

pressure, ischemia and glucose deprivation independently caused<br />

demyelination. Furthermore, the affects <strong>of</strong> the individual stimuli were<br />

additive and in combinations incrementally destabilized myelin.<br />

Biophysical stimuli also down-regulated Paxillin phosphorylation at<br />

Tyr31 and transiently upregulated Src phosphorylation. Preliminary<br />

studies implicate FAK and PYK2 as upstream molecular signals<br />

because silencing both FAK and PYK2 reversed Src activation, as does<br />

functional inhibition <strong>of</strong> integrin receptors with blocking antibodies.<br />

Myelin is exquisitely sensitive to biophysical stimuli, and the<br />

resulting demyelination is associated with the activation <strong>of</strong> integrin<br />

signaling cascades. Our results argue for a role <strong>of</strong> ECM as sensors <strong>of</strong><br />

CNC-induced environmental cues. By better defining the molecular<br />

pathways involved with the pathogenesis <strong>of</strong> entrapment neuropathy,<br />

we move closer to developing novel therapeutic adjuncts to improve<br />

patient recovery.<br />

pApeR No. 565<br />

Surgical Interventions to Reduce Neuroma Formation<br />

in a Rat Model<br />

Steve K Lee, MD, New York, NY<br />

Daniel Alfonso, MD, New York, NY<br />

Eric Eisemon, MD, Brooklyn, NY<br />

Edward Lin, MD, New York, NY<br />

Jack Choueka, MD, Lawrence, NY<br />

Nader Paksima, DO, New York, NY<br />

Neuroma formation may be a source <strong>of</strong> disabling pain. We hypothesize<br />

that burying nerve ends in muscle is more effective than other<br />

methods in decreasing neuroma formation with less inflammation,<br />

and decreased inflammatory markers. To our knowledge there is no<br />

direct comparison <strong>of</strong> commonly used methods utilizing an animal<br />

model. Twenty-five rats underwent resection <strong>of</strong> one centimeter <strong>of</strong><br />

the sciatic nerve. The rats were divided equally into five groups<br />

with different interventions at the proximal nerve end: 1) in situ,<br />

2) burying the nerve end in muscle, 3) cauterization, 4) ligation<br />

and 5) a collagen nerve tube. After eight weeks, the diameter <strong>of</strong> the<br />

proximal nerve end was measured. The specimens were stained with<br />

hematoxylin and eosin (H&E) and assigned to one <strong>of</strong> five grades<br />

<strong>of</strong> inflammation. The immunohistochemical specimens were<br />

compared for relative quantities <strong>of</strong> p-ERK, and TGF beta. The average<br />

diameter <strong>of</strong> nerve ends buried in muscle was significantly smaller<br />

compared to the diameter <strong>of</strong> nerve ends treated by ligation or with<br />

a closed collagen tube. Burying nerve ends in muscle showed less<br />

inflammation in histological staining. Larger neuromas with more<br />

inflammation showed greater intensity <strong>of</strong> staining for p-ERK and<br />

TGF beta. Neuroma formation may be decreased by burying nerve<br />

ends in muscle as compared to cauterization, ligation, or placing a<br />

collagen nerve cap. When muscle is not available, cauterization is<br />

preferable to ligation or a closed collagen nerve cap. p-ERK and TGF<br />

beta do appear to be part <strong>of</strong> the cascade for neuroma formation and<br />

may be useful markers or points <strong>of</strong> intervention for future studies.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


pApeR No. 566<br />

Contribution <strong>of</strong> Flexor Pollicis Longus (FPL) to Pinch<br />

Strength- An In-Vivo Study<br />

Tom Goetz, MD, Vancouver, BC Canada<br />

Anthony Costa, MD, Vancouver, BC Canada<br />

Satyam Rajnikant Patel, MD, Vancouver, BC Canada<br />

Gerard Slobogean, MD, MPH, Vancouver, BC Canada<br />

Andrew Travlos, MD<br />

Kishore Mulpuri, MD, Vancouver, BC Canada<br />

Pinch strength has been shown to be an important predictor <strong>of</strong> the<br />

ability to grip objects and perform functional hand-related tasks.<br />

The flexor pollicis longus (FPL) muscle plays an essential role in<br />

directing thumb tip force and contributes a proportion <strong>of</strong> overall<br />

pinch strength. The relative contribution <strong>of</strong> FPL to pinch strength<br />

is unknown however. The purpose <strong>of</strong> this study was to estimate<br />

the contribution <strong>of</strong> FPL to pinch strength in-vivo using an or<br />

electromyographic (EMG) guided, selective motor blockade, testretest<br />

protocol. Eleven healthy volunteers were recruited to participate<br />

in this study. Baseline pinch strength was recorded for all participants<br />

using three different pinch techniques: key pinch, three-point chuck<br />

grasp, and tip pinch. EMG-guided selective lidocaine blockade<br />

<strong>of</strong> the FPL muscle was carried out and post-block pinch strength<br />

measurements recorded. All three types <strong>of</strong> pinch strength showed<br />

a significant difference between pre and post block measurements<br />

(p


patients treated for scaphoid nonunion using a non-vascularized<br />

bone graft from the dorsal and distal aspect <strong>of</strong> the radius (group<br />

I), relative to 46 patients treated by means <strong>of</strong> a conventional nonvascularized<br />

bone graft from the iliac crest (group II). All nonunions<br />

were stabilized with single Herbert screw. Bone fusion was achieved<br />

in 87.1% <strong>of</strong> group I and 86.5% <strong>of</strong> group II patients. Functional<br />

results were good to excellent in 76.0% <strong>of</strong> the patients in group I and<br />

72.5% in group II. The average grip power, as well as wrist flexion<br />

and extension, were similar in both groups. However, the donor site<br />

morbidity was much higher in group II (four cases <strong>of</strong> hematoma, six<br />

cases <strong>of</strong> chronic pain and one anterior superior iliac spine avulsion<br />

fracture). No complication was seen in group I. We conclude that<br />

nonvascularized distal radius bone grafting yields similar union rate<br />

as well as functional outcome as compared to iliac crest bone graft<br />

with no donor site morbidity.<br />

pApeR No. 570<br />

Arthroscopic Wafer Resection for Ulnar Impaction<br />

Syndrome: Prediction <strong>of</strong> Outcomes<br />

Morteza Meftah, MD, New York, NY<br />

Eric Keefer, MD, New York, NY<br />

Georgia Panagopoulos, PhD<br />

Syngil Steven Yang, MD, New York, NY<br />

Ulnar impaction syndrome (UIS) is a degenerative condition<br />

characterized by pain, swelling and limitation <strong>of</strong> range <strong>of</strong> motion<br />

related to excessive load bearing across the ulnocarpal joint. Our<br />

objective was to evaluate the results <strong>of</strong> arthroscopic wafer resection for<br />

ulnar impaction at our institution and identify preoperative factors<br />

that could predict outcomes. Between 1998 to 2005, 26 patients<br />

were diagnosed with ulnar impaction syndrome and underwent<br />

arthroscopic wafer resection. The diagnosis <strong>of</strong> UIS was made based<br />

on magnetic resonance imaging (MRI) findings <strong>of</strong> positive variance<br />

or signs <strong>of</strong> impaction such as sclerosis or cystic changes in distal<br />

ulna or proximal lunate. Spearman’s rho correlation coefficient was<br />

calculated between variables (age, previous history <strong>of</strong> fracture, MRI<br />

signs and ulnar variance) and outcomes (post-op strength, pain<br />

relief). None <strong>of</strong> the patients had ulnar negative variance. All patients<br />

with a history <strong>of</strong> previous radius fracture (five patients, 19%) were<br />

ulnar positive. Twenty-two out <strong>of</strong> 26 patients (84.6%) had either<br />

good or excellent pain relief. We found significant correlation<br />

between MRI findings <strong>of</strong> cystic changes, edema or sclerosis and postop<br />

pain relief. Previous fractures were correlated with presence <strong>of</strong><br />

ulnar variance and negatively correlated with MRI signs. Patients<br />

who had pre-operative MRI scan findings <strong>of</strong> ulnar impaction had<br />

significantly better results with arthroscopic wafer procedure in<br />

terms <strong>of</strong> pain relief.<br />

POSTERS<br />

posteR No. p226 AlteRNAte pApeR<br />

Lateral Tilt Wrist Radiograph: A Technique to Position<br />

the Wrist<br />

Krist<strong>of</strong>er S Matullo, MD, Ambler, PA<br />

David G Dennison, MD, Rochester, MN<br />

Lateral tilt radiographs are useful following volar locked plate<br />

fixation <strong>of</strong> distal radius fractures to assess the radiocarpal joint, the<br />

subchondral bone congruity and the volar tilt. The purpose <strong>of</strong> our<br />

study was to define the reliability <strong>of</strong> our positioning method using<br />

the patient’s opposite hand to position the injured wrist. Twenty-<br />

616<br />

four wrists (24 patients) were retrospectively identified that all had<br />

a distal radius fracture treated with locked volar plating as well as a<br />

post-operative lateral tilt radiograph. The lateral tilt wrist radiograph<br />

was obtained by positioning the injured wrist at a height determined<br />

by the contralateral hand being placed under the ulnar wrist crease.<br />

Radiographs were blindly reviewed by two reviewers (authors)<br />

to determine if the radiocarpal joint and subchondral bone were<br />

visualized and if any screws appeared to cross the radiocarpal<br />

joint. Fifteen normal volunteers were also placed into this lateral<br />

tilt position to measure the inclined forearm angle. Twenty-three<br />

patients (96%) had radiographs with acceptable visualization <strong>of</strong><br />

the subchondral bone. The concordance <strong>of</strong> the subchondral bone<br />

visualization was 100% (95% CI 85.5-100%). The mean angle with<br />

lateral tilt positioning was 18° from horizontal (range 15°-23°; SD<br />

2.4°). The lateral tilt view, using the contralateral hand to position<br />

the wrist, produced radiographs with reliable visualization <strong>of</strong> the<br />

distal radius subchondral bone in 96% <strong>of</strong> our cases. Visualization<br />

<strong>of</strong> the subchondral bone in the region <strong>of</strong> the radial aspect <strong>of</strong> the<br />

scpahoid fossa requires more tilt than achieved with this technique.<br />

posteR No. p227<br />

Investigation Of Trabecular Morphology Using Micro-<br />

CT In Trapeziometacarpal Arthritis<br />

Arthur T Lee, MD, New York, NY<br />

Ariel Williams, MD, Baltimore, MD<br />

Derek P Lindsey, MS, Palo Alto, CA<br />

Robert Cheng, MS<br />

Amy L Ladd, MD, Palo Alto, CA<br />

The pathologic mechanism <strong>of</strong> trapeziometacarpal (TMC) joint<br />

arthritis, and the most common sites <strong>of</strong> wear within the joint<br />

remain controversial (1-5). Current literature supports significant<br />

bony remodeling primarily in the arthritic trapezium rather than the<br />

metacarpal (6-9). Bone remodels under stress according to Wolff’s<br />

law. Analysis <strong>of</strong> trapezial trabecular morphology provides preliminary<br />

correlation <strong>of</strong> architecture and load transmission, potentially<br />

reflecting pathomechanics <strong>of</strong> osteoarthritis in the TMC joint. With<br />

Institutional Review Board approval, 13 normal cadaveric trapeziae<br />

and 16 Eaton stage III-IV trapeziae were harvested for comparison.<br />

Specimens were scanned with micro-CT imaging. Utilizing s<strong>of</strong>tware,<br />

each specimen was divided into four quadrants: volar ulnar, volar<br />

radial, dorsal radial and dorsal ulnar. Trabecular bone morphologic<br />

parameters were measured including bone volume ratio, three<br />

dimensional connectivity, trabecular number and trabecular<br />

thickness. The osteoarthritic and normal specimen quadrant<br />

measurements were compared by analysis <strong>of</strong> variance with post hoc<br />

Bonferroni/Dunn correction. There was no significant difference in<br />

trabecular morphologic parameters between the osteoarthritic and<br />

normal specimens (p=0.44). However, when collectively comparing<br />

the volar ulnar quadrant <strong>of</strong> osteoarthritis and normal specimens,<br />

they displayed 28% and 35% higher bone volume fraction,<br />

trabecular number and connectivity than the dorsoradial and volar<br />

radial quadrants (p


quadrant is a feature <strong>of</strong> functional activity in both normal and<br />

osteoarthritic subjects, providing further biomechanical information<br />

about this complex joint.<br />

posteR No. p228<br />

Flouroscopic Evaluation <strong>of</strong> DRUJ Screw Penetration<br />

after Distal Radius Fixation: A Cadaveric Study<br />

Asif Ilyas, MD, Wayne, PA<br />

Nathan Daniel Bodin, MD, Philadelphia, PA<br />

Inadvertent screw violation <strong>of</strong> the distal radioulnar joint (DRUJ) is<br />

a potential complication <strong>of</strong> distal radius fixation. The semi-circular<br />

anatomy <strong>of</strong> the sigmoid notch makes radiographic visualization<br />

difficult. The purpose <strong>of</strong> this study was to (1) evaluate surgeons’<br />

ability to accurately identify intra-articular placement <strong>of</strong> screws in<br />

the DRUJ, and (2) to evaluate the efficacy <strong>of</strong> two new radiographic<br />

views in identifying intra-articular screw placement. Three implants:<br />

a volar plate, a radial plate and an intramedullary nail were placed in<br />

cadaveric wrists. The length <strong>of</strong> screw closest to the DRUJ was placed<br />

at three lengths relative to the articular surface <strong>of</strong> the sigmoid notch:<br />

extra-articular, 2 mm intra-articular.<br />

Three views were taken <strong>of</strong> each implant at each screw length including<br />

posteroanterior and two new oblique views: 20° over-pronated and<br />

20° over-supinated views. All images were randomly presented to<br />

hand surgeons, general orthopaedists and orthopaedic residents to<br />

assess their ability to determine screw position. Overall accuracy <strong>of</strong><br />

identifying screw position was 73% among all raters (n=18). Greatest<br />

accuracy was achieved on the 20° over-pronated oblique view, but<br />

the posteroanterior view provided the greatest accuracy between all<br />

implants and raters (p


posteR No. p232<br />

Giant Cell Tumor <strong>of</strong> Tendon Sheath: Whom to Give<br />

Postoperative Radiotherapy<br />

Bhavuk Garg, MS Ortho<br />

Prakash Kotwal, MS<br />

Giant cell tumor <strong>of</strong> the tendon sheath is a solitary benign s<strong>of</strong>t tissue<br />

tumor <strong>of</strong> the limb. We present our prospective experience <strong>of</strong> 106 cases,<br />

over a period <strong>of</strong> 22 years, to assess the effectiveness <strong>of</strong> prophylactic<br />

radiotherapy in postoperative period. We also present a classification<br />

system to help in selecting patients for postoperative radiotherapy.<br />

Between 1986 and 2008, we treated 106 patients with giant cell<br />

tumor <strong>of</strong> the tendon sheath <strong>of</strong> the hand. There were 77 females<br />

and 29 males with a mean age <strong>of</strong> 31.2 years. All patients presented<br />

with gradually progressive swelling. Pain was present in three cases.<br />

All patients were investigated preoperatively with plain X-rays. MRI<br />

was done in 36 cases. A preoperative diagnosis <strong>of</strong> giant cell tumor<br />

<strong>of</strong> the tendon sheath was made in 98 patients preoperatively. Eight<br />

patients were diagnosed on histo- pathological examination. We<br />

developed a classification system to identify the patients for risk <strong>of</strong><br />

recurrence and consequently selection <strong>of</strong> patients for postoperative<br />

radiotherapy. Group 1(a) and 2(a) were identified as low risk groups<br />

and comprised <strong>of</strong> 56 patients. None <strong>of</strong> the patients in this group<br />

received postoperative radiotherapy and no patient had recurrence<br />

among them. All other patients (50 patients) were considered to be<br />

high risk and given postoperative radiotherapy. Among them, four<br />

had recurrence. A total recurrence rate <strong>of</strong> 3.7% was found in our<br />

study, which is favorably comparable to reported incidences <strong>of</strong> 25-<br />

45%. In our series, we gave radiotherapy only to high risk patients<br />

and had a recurrence rate <strong>of</strong> only 3.7%. Even in the high risk group<br />

alone to whom postoperative radiotherapy was given, recurrence rate<br />

was 8%. This indicates the role <strong>of</strong> radiotherapy as well as importance<br />

<strong>of</strong> our classification system to identify the patients for high risk <strong>of</strong><br />

recurrence.<br />

posteR No. p233<br />

Hybrid and Volar Locking Plate Fixation in Normal and<br />

Osteoporotic Distal Radius Models<br />

Derek Amanatullah, MD, Sacramento, CA<br />

Shima Sokol, MD, Mineola, NY<br />

Shane Curtiss, Sacramento, CA<br />

Robert Morris Szabo, MD, MPH, Sacramento, CA<br />

Information is lacking to direct the specific application <strong>of</strong> hybrid<br />

fixation to the distal radius. The purpose <strong>of</strong> this study is to determine<br />

if a hybrid plate construct is stronger by allowing compression to<br />

bone than a standard locking plate construct in a distal radius<br />

fracture model. Twenty-eight normal, osteoporotic and over drilled<br />

osteoporotic left distal radius sawbones were divided into paired<br />

groups <strong>of</strong> 14. Within each group, the sawbones were plated with<br />

either a volar locking plate using all locking screws or a hybrid<br />

construct. A 1 cm dorsal wedge osteotomy was created with the apex<br />

2 cm from the volar surface <strong>of</strong> the lunate facet. Axial compression<br />

was delivered at 1 N/s over three cycles from 20 N to 100 N to<br />

establish stiffness. Each sample was failed at 1 mm/s until 5 mm <strong>of</strong><br />

permanent deformation occurred. Our results show no difference<br />

in construct stiffness and load at failure between the all-locking<br />

and hybrid constructs in the normal, osteoporotic, or overdrilled<br />

osteoporotic models (p > 0.05, power = 0.8). All specimens failed<br />

at the osteotomy site with loss <strong>of</strong> height. Hybrid constructs provide<br />

similar stiffness and stability compared to all-locked constructs in<br />

the fixation <strong>of</strong> a comminuted distal radius fracture model. This<br />

was true regardless <strong>of</strong> bone quality and with as few as three locking<br />

screws inserted in the distal fragment.<br />

618<br />

posteR No. p234<br />

Factors Associated Pillar Pain After Limited-Open<br />

Carpal Tunnel Release<br />

Jae Kwang Kim, MD, Seoul, no, Republic <strong>of</strong> Korea<br />

Young Do Koh, MD, PhD, Yangcheongu, Seoul, Republic <strong>of</strong> Korea<br />

Seung Yup Lee, MD<br />

Jeong Suh Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

This prospective study was performed to investigate the association<br />

between the intensity <strong>of</strong> pillar pain and (1) patient satisfaction after<br />

open carpal tunnel release (CTR), (2) psychological distress and<br />

(3) patient-assessed outcome. Eighty-three idiopathic carpal tunnel<br />

syndrome patients (102 hands) treated by open CTR were enrolled in<br />

this study. All patients completed the Brigham and Women’s (Boston)<br />

carpal tunnel questionnaire (BCTQ) preoperatively. We also accessed<br />

level <strong>of</strong> depression using the Center for the Epidemiological Study<br />

<strong>of</strong> Depression (CES-D), and pain anxiety using the Pain Anxiety<br />

Symptoms Scale (PASS) preoperatively. In addition, three months<br />

after surgery, patients were asked to provide a 10-point Likert scale<br />

for patient satisfaction and pillar pain, to complete the BCTQ a<br />

second time and to undergo grip strength testing. Mean BCTQ-S<br />

score decreased from 2.7 ± 1.2 preop to 1.7 ± 0.9 at three months<br />

postop (p


posteR No. p236 AlteRNAte pApeR<br />

High Fusion Rates and Patient Satisfaction after Four<br />

Corner Fusion with Mid to Long Term Results<br />

Julia A Kenniston, MD, Foxboro, MA<br />

David J Bozentka, MD, Philadelphia, PA<br />

Scaphoid excision and four corner fusion (4CF) has been an accepted<br />

motion preserving salvage procedure for mid-carpal degenerative<br />

changes, with the majority <strong>of</strong> indications as scapholunate advanced<br />

collapse (SLAC) or scaphoid nonunion advanced collapse (SNAC)<br />

wrists. This fusion was originally described with the use <strong>of</strong> Kirschner<br />

wires (K-wires) and has expanded to the use <strong>of</strong> staples, headless<br />

screws and circular fusion plates without long-term results from the<br />

traditional methods <strong>of</strong> K-wire fixation. The purpose <strong>of</strong> the current<br />

study is to evaluate our experience with 4CF using K-wire fixation<br />

and determine the mid to long-term outcome from this procedure<br />

and to assess radiographic fusion and effect <strong>of</strong> lunate alignment.<br />

We retrospectively reviewed a consecutive cohort <strong>of</strong> patients who<br />

underwent scaphoid excision and four corner fusion with K-wire<br />

fixation between 1999 and 2009. There were a total <strong>of</strong> 22 procedures<br />

in 21 patients performed over this time period by the senior author<br />

with eight patients lost to follow up leaving 14 wrists available<br />

for evaluation. The mean follow-up time was 63 months with a<br />

maximum <strong>of</strong> 134 months (range, 15-134). Median and mean Quick<br />

Disabilities <strong>of</strong> the Arm, Shoulder and Hand (QDASH) scores were<br />

10.3 and 17.9 respectively and the median and mean Mayo wrist<br />

scores were 65 and 59.6. Thirteen <strong>of</strong> the 14 cases were satisfied with<br />

the procedure and all 14 reported they would repeat the surgery,<br />

including the one patient who stated he was unsatisfied with the<br />

surgery as he developed a complete non-union with radiocarpal<br />

arthrosis. All other patients developed a union at the capitolunate<br />

interval. Interestingly, complete radiographic fusion <strong>of</strong> the four<br />

corners was only evident in 53.8% <strong>of</strong> patients, and 38.5% <strong>of</strong> patients<br />

lacked fusion in the lunotriquetral interval. Despite this, there was<br />

no effect on patient satisfaction, DASH, Mayo wrist scores, arc <strong>of</strong><br />

motion or grip strength. Radiographic analysis also revealed lunate<br />

position to be within 15 degrees <strong>of</strong> neutral in all patients. There was<br />

no bearing on the total arc <strong>of</strong> motion regardless <strong>of</strong> lunate position.<br />

Scaphoid excision and four corner fusion using K-wire fixation<br />

has reliable mid to long term results with high patient satisfaction<br />

rates. There were high capitolunate fusion rates with good results<br />

regardless <strong>of</strong> lunotriquetral interval fusion or lunate position within<br />

15 degrees <strong>of</strong> neutral. Scaphoid excision and 4CF is a reasonable<br />

option for patients with midcarpal degenerative changes.<br />

posteR No. p237<br />

Bioactive Sutures for Tendon Repair: Efficacy <strong>of</strong><br />

Delivering Stem Cells in-vivo<br />

Jeffrey Yao, MD, Redwood Shores, CA<br />

Tatiana Korotkova<br />

Don Young Park, MD, Mountain View, CA<br />

Varun Kashyap Gajendran, MD, Redwood City, CA<br />

R Lane Smith, PhD, Stanford, CA<br />

Rat bone-marrow derived mesenchymal stem cells (MSCs) may<br />

successfully adhere to suture material and be successfully delivered<br />

into acellularized tendon in vitro. However, it is currently unclear<br />

if these cells survive implantation into live animals, are targeted by<br />

the host immune system and whether these cells may repopulate<br />

the acellular zone seen around a tendon repair site in vivo. Rat<br />

bone marrow derived MSCs were isolated and labeled with PKH26<br />

fluorescent dye to distinguish between implanted and host cells.<br />

Polyester sutures were seeded with MSC and cultured for three days.<br />

619<br />

Open transection <strong>of</strong> Sprague-Dawley rat hind tendons and subsequent<br />

repair with MSC-implanted suture was performed in six animals, with<br />

six control (standard suture repair) animals. Cast immobilization<br />

<strong>of</strong> the rat hind limbs prevented loading <strong>of</strong> the repairs. The repaired<br />

hind tendons were harvested and sectioned at seven and 14 days. The<br />

specimens were evaluated for any host inflammatory response and<br />

implanted cell viability was evaluated with fluorescent microscopy.<br />

Rat hind tendons repaired with PKH26-labeled MSC demonstrated<br />

detectable MSC lineage utilizing fluorescent microscopy (whereas<br />

the controls did not), and no significant inflammatory response was<br />

stimulated. Thus, implanted MSC were successfully delivered to the<br />

tendon repair site and survived the acute phase <strong>of</strong> inflammation and<br />

healing. MSCs will adhere on to suture and survive the implantation<br />

process into a live rat hindpaw tendon in vivo. Implanted MSCs<br />

survive the acute phase <strong>of</strong> healing at the tendon repair site and<br />

appear immunoprivileged. These cells may biologically augment<br />

current tendon repair.<br />

posteR No. p238 AlteRNAte pApeR<br />

DIPJ Arthrodesis Using Axial Screw With Variable<br />

Thread Pitch (Mini Acutrak)<br />

Sujith Konan, MRCS, London, United Kingdom<br />

Aditi Das, MBBS<br />

Emma Taylor, MD, London, United Kingdom<br />

Elliott Sorene, FRCS, Middlesex, United Kingdom<br />

Distal interphalangeal joint (DIPJ) or thumb interphalangeal joint<br />

arthrodesis is a recognised treatment for restoring joint stability and<br />

hand function in patients with osteoarthritis. The aim <strong>of</strong> this study<br />

was to review the clinical outcome and complications in patients<br />

who underwent DIPJ fusion using an axial screw with variable<br />

thread pitch; the Mini-Acutrak screw (Acumed, LLC, Hillsboro,<br />

OR, USA). Twenty-eight cases (24 patients) <strong>of</strong> DIPJ arthrodesis was<br />

performed using the axial Mini-Acutrak screw as day surgery under<br />

general anaesthesia. The indication for arthrodesis was osteoarthritis<br />

in 21 cases and trauma in seven cases. Patients were followed up<br />

until radiological union was confirmed and desired functional result<br />

was achieved. Patient satisfaction, the Quick Disability <strong>of</strong> the Arm,<br />

Shoulder and Hand (quick-DASH) score and radiographs at final<br />

follow up were assessed at final follow up. All patients tolerated<br />

the procedure well. Excellent results were achieved in 24 patients<br />

(86%) with good to excellent patient reported satisfaction and quick<br />

DASH score <strong>of</strong> 0 for symptom score, work and performance module.<br />

Radiological union was confirmed in all these cases at three-month<br />

follow up. Four complications were noted. One case <strong>of</strong> distal bone<br />

fracture and one case <strong>of</strong> screw migration were treated conservatively<br />

and did not affect the final outcome. One patient had screw cutout<br />

and required revision to k-wire. One patient required screw removal<br />

for infection at four weeks but progressed to union with conservative<br />

management. The use <strong>of</strong> axial mini-acutrak screw for DIPJ arthrodesis<br />

is associated with excellent clinical and functional results and less<br />

morbidity compared to the use <strong>of</strong> k-wires.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


posteR No. p239<br />

Immunomodulation Of Mesenchymal Stem Cells In<br />

Composite Tissue Allotransplantation<br />

Ryosuke Ikeguchi, MD, Kobe, Japan<br />

Ryosuke Kakinoki, MD, Kyoto, Japan<br />

Hiroto Mitsui, MD<br />

Moritoshi Furu, MD, PhD, Kouka-Shi Shiga, Japan<br />

Tomoki Aoyama, MD, PhD, Kobe, Japan<br />

Keiichi Kawanabe, Kobe, Japan<br />

Junya Toguchida, MD, PhD<br />

Takashi Nakamura, MD, Kyoto, Japan<br />

Hand transplantations have revolutionized the reconstruction field<br />

for patients with hand defects. However, immunosuppressants are<br />

essential for maintaining human hand transplant survival despite<br />

lethal side effects such as infections, drug toxicity and malignancies.<br />

Recent studies indicate that mesenchymal stem cells (MSCs) have<br />

some immunomodulatory properties to suppress T cell mediate<br />

responses that cause graft rejection. The purpose <strong>of</strong> this study<br />

is to evaluate the effect <strong>of</strong> intravenous donor MSC infusion for<br />

immunomodulation in the rat composite tissue allotransplantation<br />

model. Orthotopic rat hind limb transplantation was performed<br />

using donor Wister rats and recipient Lewis rats. The recipient rats<br />

were randomly divided into two experimental groups: in group<br />

FK, 0.2 mg/kg/day intramuscular tacrolimus were administered to<br />

recipient rats for seven consecutive days (days 0’6); in group MSC,<br />

recipient rats were injected intravenously with 2×106 donor MSCs<br />

on day six with 0.2 mg/kg/day tacrolimus administered for seven<br />

days. Graft survival was assessed by daily inspection and histological<br />

study. Recipients’ immunological reactions were evaluated by serum<br />

ELISA, RNA assays and mixed lymhocyte reactivity assays. The graft<br />

survival <strong>of</strong> group MSC was significantly prolonged in comparison<br />

with that <strong>of</strong> group FK. Cytokine expression analysis <strong>of</strong> grafted<br />

limbs showed that MSC treatment significantly decreased proinflammatory<br />

cytokine expression. An in vitro mixed lymphocyte<br />

reaction showed MSCs inhibiting T cell proliferation. MSCs induce<br />

T cell hyporesponsiveness and prolong graft survival in the rat<br />

composite allotransplantation model. MSCs demonstrate some<br />

immuno-modulatory properties that can be accomplished without<br />

the need for significant recipient immunosuppression.<br />

posteR No. p240<br />

Collagenase Clostridium Histolyticum Therapy for<br />

Dupuytrens Contracture in Europe, Australia and US<br />

Nebojsa V Skrepnik, MD, Tucson, AZ<br />

Philip Waller, MD, Houston, TX<br />

Harvey Kushner, PhD<br />

Dat Nguyen, PharmD<br />

Two studies in the U.S. and Europe/Australia investigated the<br />

efficacy/safety <strong>of</strong> injectable collagenase clostridium histolyticum<br />

(CCH) in patients with Dupuytren’s contracture. These prospective,<br />

nine-month, open-label studies used identical protocols. Patients<br />

with Dupuytren’s contracture and a fixed-flexion contracture (20°-<br />

80° for PIP joints; 20°-100° for MP joints) were selected. Five total<br />

injections were allotted per patient. At the investigator’s discretion,<br />

affected joints could receive £3 CCH injections (0.58 mg) per cord,<br />

with manipulation done the following day, and a 30-day follow up.<br />

Clinical success was defined as a reduction in contracture to 0°-5°<br />

<strong>of</strong> normal extension, 30 days after the last injection. A total <strong>of</strong> 201<br />

patients with 188 MP, 104 PIP joints at 14 U.S. sites (JOINT I), and<br />

386 patients with 345 MP, 244 PIP joints at 20 European/Australian<br />

sites (JOINT II) received CCH. Clinical success was achieved in<br />

620<br />

67.0% <strong>of</strong> MP and 26.9% <strong>of</strong> PIP joints from JOINT I, and 70.8%<br />

<strong>of</strong> MP and 41.0% <strong>of</strong> PIP joints from JOINT II. In both studies, the<br />

average number <strong>of</strong> injections per cord was 1.4. The mean percentage<br />

decrease in degree <strong>of</strong> joint contracture from baseline to 30 days after<br />

last injection was 66.8% in JOINT I, and 75.4% in JOINT II. Mean<br />

increase in range <strong>of</strong> motion was 28.3° ± 20.2º in JOINT I and 26.7°<br />

± 16.9º in JOINT II. Two patients had SAEs, but no tendon ruptures<br />

or systemic reactions were noted. CCH is a nonsurgical treatment<br />

option for Dupuytren’s contracture that is highly effective and well<br />

tolerated.<br />

posteR No. oRs4<br />

Four Corner Fusion and Proximal Row Carpectomy:<br />

Comparison <strong>of</strong> Wrist Motion and Tendon Forces<br />

Daniel DeBottis, Syracuse, NY<br />

Frederick W. Werner, Syracuse, NY<br />

Levi G. Sutton, Syracuse, NY<br />

Brian Harley, Syracuse, NY<br />

Controversy exists whether a proximal row carpectomy (PRC) is a<br />

better procedure than scaphoid excision with 4-corner fusion (4CF)<br />

for preserving motion in the painful posttraumatic arthritic wrist. Six<br />

fresh-frozen cadaver forearms were tested for range <strong>of</strong> motion in the<br />

intact wrist, followed by 4CF and then PRC. Wrists were positioned<br />

statically and then moved dynamically through 4 ranges <strong>of</strong> motion<br />

using a wrist joint motion simulator while physiological forces were<br />

applied to the 5 wrist flexor/extensor tendon groups.Wrist motion<br />

statistically decreased following both the 4CF and the PRC. Wrist<br />

flexion decreased on average 13.1° after 4CF and 11.8° after PRC,<br />

while extension decreased on average 19.6° after 4CF and 11.8° after<br />

PRC. During flexion-extension, circumduction and dart throw, the<br />

average ECU force was statistically greater after 4CF compared to<br />

after PRC. The peak ECU force had a trend to be smaller with the<br />

PRC compared to intact wrist. During wrist circumduction, the peak<br />

ECRB forces were less after the PRC compared to intact while the<br />

FCU forces were greater. The measured passive wrist range <strong>of</strong> motion<br />

decreased after both 4-corner fusion and PRC, which is consistent<br />

with the clinical situation. Larger peak tendon forces were required<br />

to achieve identical wrist motions with the 4-corner fusion when<br />

compared to the intact wrist. Smaller forces were observed for<br />

the PRC. This may help explain why PRC may allow early clinical<br />

improvement and ease <strong>of</strong> motion.<br />

SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se36<br />

Magnetic Resonance Imaging <strong>of</strong> the Hand and Wrist:<br />

Techniques and Spectrum <strong>of</strong> Disease<br />

Ashvin Kumar Dewan, MD, Baltimore, MD<br />

A Jay Khanna, MD, Baltimore, MD<br />

Abhinav Bobby Chhabra, MD, Keswick, VA<br />

Mark W Anderson, MD, Charlottesville, VA<br />

Lance Michael Brunton, MD, Gibsonia, PA<br />

Magnetic resonance imaging (MRI) can image pathologic processes<br />

<strong>of</strong> the hand and wrist. MRI allows for high-resolution evaluation<br />

<strong>of</strong> osseous structures and s<strong>of</strong>t tissue structures including ligaments,<br />

tendons, nerves, and muscles. Multiple imaging techniques and<br />

pulse sequences exist for evaluation. The purpose <strong>of</strong> this scientific<br />

exhibit is to educate and update orthopaedic surgeons on current<br />

MRI techniques and illustrate the spectrum <strong>of</strong> hand and wrist<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


disease detectable by MRI. Medline was searched using keywords<br />

MRI and hand or wristfor studies less than 5 years old evaluating<br />

MRI techniques. These papers, the authorsexperience, and textbooks<br />

reviewing hand and wrist MRI provided the information to prepare<br />

this exhibit. This exhibit describes the essentials and applications<br />

<strong>of</strong> the following techniques: 1. Conventional, non-Gadolinium<br />

enhanced MRI 2. Gadolinium enhanced MRI 3. Magnetic resonance<br />

arthrography 4. Magnetic resonance angiography The classic MRI<br />

appearances <strong>of</strong> the following are demonstrated: 1. Occult Fractures<br />

; 2. TFCC Injury ; 3. Interosseous Ligament Injury; 4. Extrinsic<br />

Carpal Ligament Injury; 5. Thumb UCL Injury; 6. Tendon Injuries;<br />

7. Ulnar Impaction Syndrome; 8. Tendon Disorders; 9. Carpal<br />

Instability; 10. Infectious Conditions; 11. Kienbocks Disease; 12.<br />

Preiser’s Disease ; 13. Post-traumatic Scaphoid Osteonecrosis; 14.<br />

Rheumatoid Arthritis; 15. Compression Neuropathies; 16. S<strong>of</strong>t<br />

Tissue Masses. MRI is a valuable, non-invasive method <strong>of</strong> evaluating<br />

the hand and wrist. This exhibit will make the orthopaedic surgeon<br />

aware <strong>of</strong> various MRI techniques available and allow him or her to<br />

recognize the MR appearance <strong>of</strong> the most commonly seen hand and<br />

wrist pathologies.<br />

scieNtific exHibit No. se37<br />

Treatment <strong>of</strong> Symptomatic Neuromas <strong>of</strong> the Dorsal<br />

Radial Sensory Nerve using a Nerve Conduit -<br />

<strong>American</strong> Association <strong>of</strong> Hand Surgery<br />

Joshua Matthew Abzug, MD, Woodbury, NJ<br />

Sergio Rodriguez, MD, Buenos Aires, Argentina<br />

John S Taras, MD, Philadelphia, PA<br />

A Lee Osterman, MD, King Of Prussia, PA<br />

Established symptomatic neuromas <strong>of</strong> the dorsal radial sensory<br />

nerve are difficult problems for which no ideal treatment exists.<br />

Procedures have includes efforts to inhibit axonal outgrowth such<br />

as synthetic containment and efforts to protect the neuroma from<br />

noxious stimulation such as ablation and implantation. This paper<br />

studied the role <strong>of</strong> neurolysis and wrapping <strong>of</strong> the neuroma in a<br />

resorbable collagen conduit. 21 patients, 7B,14B with an average age<br />

<strong>of</strong> 33 years (20-52) met the entry criteria: intractable DRSN pain ;<br />

failure <strong>of</strong> time , desensitization, and neuroleptic medication; positive<br />

electrical studies or a surgically documented DRSN injury. All had<br />

DRSN neurolysis and wrapping <strong>of</strong> the neuroma segment with a<br />

NeuraGen® Nerve Guide. Results were evaluated clinically, by visual<br />

analog scale, and by DASH questionnaire. The dominant hand was<br />

involved in 52%. 11 patients had previous surgery to the radial wrist<br />

including 4 direct injuries and repair to the DRSN; 7 cases <strong>of</strong> indirect<br />

injury including Dequervain’s release, CMC arthroplasty, lipoma<br />

resection, ORIF distal radius fracture, and dog bite. The 10 closed<br />

injuries related to crush injury, percutaneous needles, radial fracture,<br />

and casting . 17/21 has preop electrical studies. All had preop pain<br />

management including desensitization and neuroleptics, 17/21 had<br />

lidocaine, 12/21 had steroid injection. 2 patients were on narcotic<br />

medication .The median time from original injury to surgery was 8<br />

months (4-37).The condition was work related in 5 and litigation<br />

active in 4.’Mean FU was 2.8 years ( 1.2-4.5). No patient was lost<br />

to FU. 90% (19/21) were improved and 95% would repeat the<br />

surgery. In 19/ 21 hypersensitivity was improved and patients were<br />

postoperatively able to tolerate watchbands, bracelets and sleeves.<br />

Pre and postop 2PD and Semmes mon<strong>of</strong>ilament measurements<br />

were variable and not significantly different but all sensory maps<br />

identified the DRSN distribution and tended to improve. Subjectively<br />

preop numbness decreased in 66%.’Preop TInels decreased from<br />

100% to 38%. Visual analog scales(0-10) improved both at rest and<br />

in activity: rest 5’0.7; activity 7’1.8. Dash improved 71+/-22 to 29+/-<br />

621<br />

18. Wrist ROM Improved in flexIon, radial and ulnar deviation. Grip<br />

strength improved 61% ‘ 92%. Key and Tip pinch showed similar<br />

data: 55%’84%, 62%’88%. Work return : 6 not working rtw usual<br />

job; 2 not working rtw modified; 1 modified rtw regular job; 7<br />

working stayed working; 5 not working outside home. 4 high level<br />

athletes were able to return to their sport In summary, neurolysis and<br />

wrapping with a resorbable collagen tube is effective in significantly<br />

improving the symptomatic neuroma <strong>of</strong> the DRSN. It is simple to<br />

perform, avoids ablation <strong>of</strong> the nerve and the harvesting <strong>of</strong> other<br />

tissues. One drawback is the expense <strong>of</strong> the conduit.’<br />

scieNtific exHibit No. se38<br />

Distal Radius Osteoarticular Allografts Reconstruction:<br />

Surgical Technique and Results<br />

Luis Alberto Aponte-Tinao, MD, Buenos Aires, Argentina<br />

Lucas Eduardo Ritacco, MD, Buenos Aires, Argentina<br />

German Luis Farfalli, MD, Buenos Aires, Argentina<br />

Miguel Angel Ayerza, MD, Buenos Aires, Argentina<br />

Domingo Luis Muscolo, MD, Buenos Aires, Argentina<br />

The purpose <strong>of</strong> this study was to describe the technical details<br />

and results <strong>of</strong> distal radius osteoarticular allografts after tumor<br />

resections. Distal radius osteoarticular allografts in 14 patients<br />

were retrospectively reviewed and followed for a mean <strong>of</strong> 6 years.<br />

There were 11 female and 3 males and the diagnoses included<br />

giant cell tumor (11) and osteosarcoma (3). Complications and<br />

range <strong>of</strong> motion were recorded and patients were evaluated with<br />

the Musculoskeletal Tumor Society scoring system. Details <strong>of</strong><br />

surgical technique included: 1) accurate allograft selection; 2)<br />

tumor resection; 3) allograft preparation; 4) rigid internal fixation;<br />

5) careful s<strong>of</strong>t-tissue reconstruction <strong>of</strong> the joint. Key points for<br />

successful fixation are allograft selection, absolute stability and<br />

satisfactory s<strong>of</strong>t-tissue reconstruction at the time <strong>of</strong> surgery that<br />

allows aggressive rehabilitation. One allograft needed to be removed<br />

due to a deep infection. From the remaining 13 patients, one patient<br />

developed a nonunion that was treated with autologous bone graft.<br />

At final follow up, the average arc <strong>of</strong> motion <strong>of</strong> all thirteen patients,<br />

was 110° (average flexion 57° and average extension 54°) with<br />

average pronation <strong>of</strong> 69° and average supination <strong>of</strong> 52°. Average<br />

MSTS functional score was 26 points with a range between 23 and<br />

30. Neither fracture nor resorption <strong>of</strong> the allograft was recorded.<br />

The reconstruction <strong>of</strong> distal radius after tumor resections, preserving<br />

wrist stability and function is limited. Distal radius osteoarticular<br />

allografts is a reliable alternative and showed an acceptable range <strong>of</strong><br />

motion with a good MSTS functional score.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits HANd & WRist


PAPERS<br />

pApeR No. 166<br />

The Treatment <strong>of</strong> Pediatric Tibial Shaft Fractures with<br />

an Extended Cast and Early Weight-bearing<br />

Mauricio Silva, MD, Playa Vista, CA<br />

Michael Eagan, MD, Playa Vista, CA<br />

Melissa Wong, Montebello, CA<br />

Daniel Dichter, BA<br />

Edward Ebramzadeh, PhD, Los Angeles, CA<br />

Lewis Evan Zionts, MD, Pacific Palisades, CA<br />

There is no general agreement as to how best to immobilize tibial<br />

shaft fractures in children. We randomized 81 children, aged four<br />

to 14 years, who had closed tibial shaft fractures, into two groups.<br />

Group I patients (n=40) received a long-leg cast (LLC) with the knee<br />

flexed 60° and were asked not to bear weight. Group II patients<br />

(n=41) received a LLC with the knee flexed 10° degrees and were<br />

asked to bear weight as tolerated. All patients were switched to short<br />

leg walking casts at four weeks. Patients were followed at one, four,<br />

six, 12, and 24 weeks post-injury. We compared time to healing,<br />

overall alignment, shortening and physical disability as determined<br />

by the Activities Scale for Kids - Performance (ASK-P) questionnaire.<br />

At 12 weeks, all fractures had healed. The two groups did not differ<br />

in coronal alignment (1.6° vs. 0.54° <strong>of</strong> varus, p=0.12), sagittal<br />

alignment (0.7° vs. 0.3° <strong>of</strong> recurvatum, p=0.11) or shortening<br />

(0.08 vs. 0.55 mm, p=0.1). The ASK-P showed that both groups had<br />

overall improvement in physical functioning over time. However, at<br />

six weeks, Group II had better overall scores (65.2 vs 72.9 points,<br />

p=0.03), better standing skills (49.7 vs. 60.4 points, p=0.01) and<br />

tended to show better locomotion (64.8 vs. 69.5 points, p=0.17).<br />

Initial immobilization <strong>of</strong> a tibial shaft fracture in either flexion<br />

or extension <strong>of</strong> the knee resulted in no difference in radiographic<br />

outcome. Those patients immobilized in extension enjoyed better<br />

early function than those immobilized in flexion.<br />

pApeR No. 167<br />

The Kickstand Technique to Promote Elevation and<br />

Wound Care <strong>of</strong> Pediatric Lower Extremity Injuries<br />

Jeffrey R Sawyer, MD, Germantown, TN<br />

Derek Michael Kelly, MD, Memphis, TN<br />

James H Beaty, MD, Memphis, TN<br />

S Terry Canale, MD, Germantown, TN<br />

William C Warner Jr, MD, Germantown, TN<br />

External fixation is a common form <strong>of</strong> treatment <strong>of</strong> pediatric lower<br />

extremity fractures, especially high-energy fractures with signifiant<br />

s<strong>of</strong>t tissue injury. The use <strong>of</strong> a kickstand attachment to an external<br />

fixator ensures elevation and provides access for the monitoring<br />

and care <strong>of</strong> s<strong>of</strong>t tissues. A two-year Institutional Review Boardapproved<br />

retorospective review <strong>of</strong> children treated with a kickstand<br />

attachment to a previously applied external fixator was performed.<br />

Patient charts were reviewed for demographic information, fracture<br />

types, associated injuries and surgical procedures. Skin pressure<br />

complications were rated using the National Pressure Ulcer Advisory<br />

Panel Classification. The kickstand was used eight times on seven<br />

patients who sustained high energy trauma. There were seven males<br />

and one female (mean age 11.8 years). All kickstands were placed<br />

622<br />

Pediatrics<br />

at the time <strong>of</strong> the initial procedure using standard external fixation<br />

equipment already present in the operating room (mean weight .45<br />

kg) and none required further modification. There were four open<br />

tibia fractures and three closed tibia fractures. Four <strong>of</strong> eight patients<br />

had multiple fractures and one patient had a leg compartment<br />

syndrome. The mean number <strong>of</strong> secondary procedures was two<br />

(range 1-11). One patient who underwent bone transport had a<br />

second kickstand placed at the time <strong>of</strong> his bone transport procedure.<br />

No patients had other skin pressure modalities used and no patients<br />

at final follow up had any complications related to skin pressure or<br />

the kickstand itself. The use <strong>of</strong> external fixation in the treatment <strong>of</strong><br />

high-energy trauma in children is well established and allows for<br />

management <strong>of</strong> s<strong>of</strong>t tissue injuries and neurovascular monitoring.<br />

The efficacy <strong>of</strong> a kickstand modification has been described in adult<br />

patients but not previously in children. This light-weight, easy to<br />

apply kickstand was successful in allowing management <strong>of</strong> s<strong>of</strong>t<br />

tissue injuries and preventing skin pressure complications. It also<br />

eliminated the need for splint and cast changes which can be painful<br />

and anxiety provoking, especially in children.<br />

pApeR No. 168<br />

Compartment Syndrome in Pediatric Tibial Shaft<br />

Fractures: Incidence and Multivariate Risk Factors<br />

Ben Shore, MD, Boston, MA<br />

Michael P Glotzbecker, MD, Waban, MA<br />

David Zurakowski PhD, Boston, MA<br />

Travis H Matheney, MD, Boston, MA<br />

Pediatric tibial shaft fractures (TSF) account for 15% <strong>of</strong> long bone<br />

fractures in children. Compartment syndrome (CS) is difficult to<br />

diagnose in children, <strong>of</strong>ten leading to disastrous outcomes. This<br />

study investigated the incidence <strong>of</strong> CS in TSF and its associated<br />

risk factors. This study involved a detailed five-year retrospective<br />

chart review <strong>of</strong> TSF treated at a major pediatric hospital. CS was<br />

diagnosed clinically or by intra-compartment pressure. Multivariate<br />

logistic regression analysis tested age, gender, mechanism <strong>of</strong> injury,<br />

time to surgery, fracture type and treatment intervention as possible<br />

risk factors for CS. There were 216 TSF in 212 children (160 males,<br />

52 females; mean age 13.6 years, range 8-18 years). A total <strong>of</strong> 132<br />

(61%) fractures were treated with closed reduction and casting, 36<br />

with external fixation, 21 with flexible intramedullary nails and 27<br />

with locked intramedullary nails. There were 23 cases <strong>of</strong> CS (10.6%).<br />

Multivariate predictors <strong>of</strong> CS included age 14 years and older (21/96<br />

= 22%, p < 0.001) and motor vehicle accident (MVA) (12/57 = 21%,<br />

p = 0.002). Incidence <strong>of</strong> CS was 44% among patients 14 and older<br />

who sustained MVA (11 <strong>of</strong> 25). Gender, AO fracture type, time to<br />

surgery and surgical fixation were not predictive <strong>of</strong> CS. This is the<br />

first large study to report the incidence <strong>of</strong> CS from TSF. The incidence<br />

<strong>of</strong> 10.6% is higher than previously reported and much higher in<br />

patients 14 years <strong>of</strong> age and older and involved in an MVA. Surgeons<br />

should be especially aware and suspicious <strong>of</strong> CS in children with<br />

these risk factors.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


pApeR No. 169<br />

Significant Rate <strong>of</strong> Misuse <strong>of</strong> the Hare Traction Splint<br />

in Pediatric Trauma<br />

Margot C Daugherty, MSN, MEd, RN, EMT-P, Cincinnati, OH<br />

Charles T Mehlman, DO, MPH, Cincinnati, OH<br />

Tom E Lemaster, MSN, MEd, RN, EMT-P<br />

Heather N Evans, BA<br />

Richard Falcone Jr, MD, MPH<br />

This study assessed the rate <strong>of</strong> misapplication <strong>of</strong> the Hare traction<br />

device among children evaluated at a pediatric trauma center. All<br />

patients three to 16 years old who presented to our pediatric Level<br />

I trauma center with a femur fracture between 2001 and 2007 were<br />

included. X-rays were reviewed by a multidisciplinary team for<br />

proper placement <strong>of</strong> the device according to application instructions.<br />

A total <strong>of</strong> 114 (25%) arrived with a Hare traction splint in place. The<br />

average age was 10.4 ± 3.5 years with a median injury severity score<br />

(ISS) <strong>of</strong> 9 (range <strong>of</strong> 4 - 42). Sixty-one percent (n=71) <strong>of</strong> the 116 Hare<br />

traction splints were applied incorrectly. Of the misplaced splints,<br />

56 had one identified placement problem and 15 had two or more<br />

problems. The rate <strong>of</strong> incorrect splint application was highest among<br />

children three to nine years old (72% vs. 54%, p=0.04) and among<br />

those with ISS>15 (69% vs. 60%, p=0.52). In pediatrics, the Hare<br />

traction splint is rarely utilized and <strong>of</strong>ten misplaced and should be<br />

replaced with simpler methods <strong>of</strong> immobilization.<br />

pApeR No. 170<br />

Skin Complications and Costs in Children Treated with<br />

Hip Spica Casts for Femur Fractures<br />

Rachel L DiFazio, MS, RN, cPNP, Beverly, MA<br />

Judith Anne Vessey, PhD<br />

David Zurakowski PhD, Boston, MA<br />

Michael Timothy Hresko, MD, Boston, MA<br />

Travis H Matheney, MD, Boston, MA<br />

Spica cast immobilization remains the treatment <strong>of</strong> choice for femur<br />

fractures in children aged six months to six years. The incidence<br />

<strong>of</strong> skin complications and their associated charges have not been<br />

well described. This study’s purposes were to: 1) determine the<br />

rate <strong>of</strong> skin complications in children treated with spica casts for<br />

femur fractures, 2) identify predictors and 3) calculate the charges<br />

associated with skin complications. Health records for all patients<br />

treated with immediate spica casting for a femur fracture at a major<br />

tertiary care children’s hospital from 2003-2009 were reviewed and<br />

relevant data were abstracted. Descriptive statistics and univariate and<br />

multiple logistic regression analyses were used to compare children<br />

with and without skin complications and to identify predictors <strong>of</strong><br />

skin complications. Overall charges for skin complications leading<br />

to a cast change and early bi-valving and lining were calculated. Of<br />

the 300 spica cast applications in 297 patients, 77 subjects (28%)<br />

had skin complications. Twenty-four (31%) <strong>of</strong> these 77 patients<br />

underwent a cast change in the operating room, 34 (44%) required<br />

early bi-valving and lining and 19 (25%) required cast trimming<br />

and skin care. Predictors <strong>of</strong> skin complications included; child<br />

abuse as mechanism <strong>of</strong> injury, younger age and cast time > 40 days.<br />

Gender, weight, fracture location and total number <strong>of</strong> clinic visits<br />

were not statistically significant predictors <strong>of</strong> skin complications.<br />

The median charge for patients that required cast changes for skin<br />

complications was $12,719 ($8,632-$53,768), while the median<br />

charge for bi-valving and lining was $416.51 ($403.32-$449.00).<br />

Spica cast treatment is associated with numerous skin complications<br />

and additional charges. Victims <strong>of</strong> child abuse may benefit from<br />

additional clinical oversight. Future research needs to investigate<br />

623<br />

patient education and casting interventions that reduce skin<br />

complications.<br />

pApeR No. 171<br />

Overgrowth After Femoral Shaft Fractures In Infants<br />

Treated With A Pavlik Harness<br />

William L Hennrikus Jr, MD, Hershey, PA<br />

John Mahajan, BS<br />

Fractures <strong>of</strong> the femur in children age two to 12 years heal with an<br />

expected overgrowth response. However, in infants, age less than<br />

one, the overgrowth response is variable and some authors have<br />

suggested that overgrowth does not occur. The purpose <strong>of</strong> this paper<br />

is to determine if overgrowth occurs when treating femur fractures<br />

in infants using a Pavlik harness. The charts and radiographs <strong>of</strong> 30<br />

patients age less than one year old treated with a Pavlik harness for<br />

a femoral shaft fracture were reviewed. Seven patients were lost to<br />

follow up or had less than 18 months follow up and were excluded<br />

from the study. For the remaining 23 patients, a teleoroentgenogram<br />

-- one film with a single exposure for the entire lower limbs to<br />

measure limb lengths -- was performed 18 or more months after<br />

the injury. In addition each patient was examined for range <strong>of</strong><br />

motion, rotation, gait and thigh circumference. Fifteen boys and<br />

eight girls were studied. Fourteen right femurs and nine left femurs<br />

were fractured. The average age at injury was five months (range<br />

1d-11 months). The average time in the Pavlik was 26 days (range<br />

14 to 44 days). Twelve <strong>of</strong> 23 patients underwent a nucleic acid test<br />

evaluation. The average radiographic shortening at injury was 7 mm<br />

(range 1-18mm). Ten fractures were transverse and 13 were oblique.<br />

The average final radiographic femoral length was 2 mm longer on<br />

the injured leg (range 5 mm short to 5 mm long). Fourteen <strong>of</strong> 23<br />

fractures demonstrated overgrowth averaging 5 mm (range 1 to 18<br />

mm). Range <strong>of</strong> knee and hip motion was equal in all patients. Gait<br />

was symmetrical for age in all patients. Minor -- less than 10 degree<br />

-- changes in hip rotation were noted in two patients. Overgrowth<br />

following femur fractures in infants occurred in the majority <strong>of</strong><br />

cases. Overgrowth does reliably occur in infants with up to 2 cm<br />

shortening. Pavlik harness treatment <strong>of</strong> femur fractures in 23 children<br />

less than one year <strong>of</strong> age resulted in no case <strong>of</strong> significant leg length<br />

inequality, gait change or rotational issues.<br />

pApeR No. 172<br />

What Is The Morbidity Rate Of Supracondylar Elbow<br />

Fractures In Children?<br />

Sumeet Garg, MD, Denver, CO<br />

Amanda Lindsley Weller, MD, Dallas, TX<br />

Nicholas D Fletcher, MD, Atlanta, GA<br />

Michael Soon Kwon, MD, Dallas, TX<br />

Annalise Noelle Larson, MD, Saint Paul, MN<br />

Jonathan R Schiller, MD, Providence, RI<br />

Christine Ann Ho, MD, Dallas, TX<br />

Lawson A B Copley, MD, Dallas, TX<br />

Established morbidity rates for supracondylar elbow fractures in<br />

children are based on either small cohorts <strong>of</strong> patients and/or data<br />

collected over a prolonged period <strong>of</strong> time. Our purpose was to<br />

retrospectively review the morbidity and demographics <strong>of</strong> type 3<br />

extension and flexion type supracondylar fracture at a high volume<br />

pediatric trauma center over a four-year period. The patient cohort<br />

was identified retrospectively through the use <strong>of</strong> CPT code 24538 in<br />

the billing database from 2004-2007. Emergency, operative, inpatient<br />

and outpatient records were reviewed to determine morbidity at<br />

presentation as well as operative and post-operative complications<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


and their resolution. Over four years, 1,298 patients had an<br />

operatively treated supracondylar elbow fracture. Some 67% (873)<br />

had type 3 fractures, 31% (399) had type 2 fractures and 2% (25) had<br />

flexion type fractures. Children with type 2 fractures were excluded<br />

from morbidity and complication analysis. Age at injury averaged<br />

5.9 years (SD 2.6 years) with a nearly even gender distribution (54%<br />

male, 46% female). There was no palpable pulse in 4.2% (54) <strong>of</strong><br />

patients at presentation. Only 15 patients had open injuries (1.1%)<br />

and 18 developed either superficial or deep infection (1.4%). Nerve<br />

palsy occurred in 5.5% (72) with a mean time to resolution <strong>of</strong> 52<br />

days. Children with absent pulse at presentation had a significantly<br />

higher rate <strong>of</strong> nerve injury than those who had a palpable pulse<br />

(32% vs 7%). There was no difference in time to resolution between<br />

those with palsy identified pre or post-operatively. Time to surgery<br />

averaged 16 hours from injury; longer time to surgery was not<br />

associated with an increased morbidity rate. As age increased, the<br />

rate <strong>of</strong> nerve injury and need for therapy due to stiffness increased.<br />

Type 3 and flexion type supracondylar elbow fractures have a higher<br />

rate <strong>of</strong> morbidity than has previously been described. This study<br />

establishes benchmark morbidity and complication rates based on a<br />

high volume practice over a four-year period <strong>of</strong> time.<br />

pApeR No. 173<br />

Type 2 Supracondylar Fractures: Does Time to Surgery<br />

Matter?<br />

Annalise Noelle Larson, MD, Saint Paul, MN<br />

Amanda Lindsley Weller, MD, Dallas, TX<br />

Sumeet Garg, MD, Denver, CO<br />

Nicholas D Fletcher, MD, Atlanta, GA<br />

Michael Soon Kwon, MD, Dallas, TX<br />

Jonathan R Schiller, MD, Providence, RI<br />

Christine Ann Ho, MD, Dallas, TX<br />

Due to changing referral patterns, increasing numbers <strong>of</strong> pediatric<br />

supracondylar humerus fractures are treated at tertiary centers. To<br />

expedite patient flow, Type 2 fractures are sometimes pinned in<br />

a delayed fashion or in an outpatient setting. We hypothesized<br />

that delay in surgical treatment <strong>of</strong> Gartland Type 2 supracondylar<br />

humerus fractures would not affect the generally excellent outcome<br />

following closed reduction and percutaneous pinning. We performed<br />

a retrospective review <strong>of</strong> a consecutive series <strong>of</strong> 1,298 supracondylar<br />

fractures treated operatively at a tertiary referral center over four<br />

years. Thirty one percent (399 fractures) were Gartland Type 2<br />

fractures. Mean patient age in the Type 2 group was five years (range<br />

1 to 15). Some 46% were pinned within 24 hours, 24% pinned from<br />

one to five days and 26% pinned five days or more after the injury.<br />

A total <strong>of</strong> 4% <strong>of</strong> patients sustained a complication, but there was<br />

no association with complication and time to surgery. There were<br />

no compartment syndromes, vascular injuries or permanent nerve<br />

injuries. Six patients had open fractures (1.5%). Three patients<br />

sustained nerve injuries, and all underwent surgery within 24 hours<br />

<strong>of</strong> injury. One patient developed an ulnar motor and sensory nerve<br />

palsy after fixation with crossed K-wires. This resolved by seven weeks<br />

postoperatively. Two patients presented with an anterior interosseous<br />

nerve palsy - one resolved one week after surgery, the other by eight<br />

weeks postoperatively. Six patients (1.5%) were referred to physical<br />

therapy for persistent elbow stiffness. Satisfactory outcomes are<br />

possible even with delayed treatment <strong>of</strong> Type 2 supracondylar<br />

humerus fractures. Further prospective work is necessary to see if<br />

operative time or techniques differ or if there are subtle functional<br />

benefits with emergent treatment <strong>of</strong> Type 2 supracondylar humerus<br />

fractures.<br />

624<br />

pApeR No. 174<br />

Torsional Strength Of Pin Configuration In<br />

Supracondylar Fractures: Does Pin Diameter Matter?<br />

Anupam Pradhan, MD, Hershey, PA<br />

William L Hennrikus Jr, MD, Hershey, PA<br />

Gregory S Lewis, PhD<br />

April D Armstrong, MD, Hershey, PA<br />

Closed reduction and percutaneous pin fixation is the current<br />

treatment technique <strong>of</strong> choice for displaced supracondylar fractures<br />

<strong>of</strong> the distal humerus in children. Previous biomechanical studies<br />

have demonstrated that the maximum stability for fracture fixation is<br />

provided by crossed pins placed from the medial and lateral condyles.<br />

However, to our knowledge, none <strong>of</strong> the previous biomechanical<br />

studies were standardized for pin diameter. The purpose <strong>of</strong> this paper<br />

is to determine if pin diameter affects the torsional strength <strong>of</strong> the<br />

supracondylar fracture treated by closed reduction and percutaneous<br />

pinning. Pediatric sawbone humeri were used. Each sawbone<br />

humerus was osteotomized transversely at the mid- olecranon fossa<br />

level with a 2 mm ossillating saw to simulate a Gartland type III<br />

fracture. The osteotomy was then reduced and stabilized with pins<br />

using a hand held power wire driver. Four pin configurations were<br />

compared: two lateral, three lateral, one lateral and one medial,<br />

and two lateral and one medial pins. Bi-cortical fixation <strong>of</strong> both<br />

fragments was achieved with each pin. Lateral pins were placed in<br />

divergent fashion. Crossed pins were separated by more than 2 mm<br />

at the osteotomy site. Next, an axial torsion machine was utilized<br />

to test the torsional strength <strong>of</strong> each construct. The fixed specimens<br />

were subjected to a torsional load producing internal rotation <strong>of</strong><br />

the distal fragment. Rotation in degrees and the corresponding<br />

torque were measured. We applied a torsional rotation <strong>of</strong> 1 dec/sec<br />

for a total <strong>of</strong> 30 degrees <strong>of</strong> rotation. The stability provided by 1.25<br />

mm and 1.6 mm smooth pins were compared. Torque required to<br />

produce 15 degrees rotation and 25 degrees rotation was significantly<br />

greater using larger diameter pins in all models tested. For example;<br />

for the two lateral pin model, the torque required to produce 15<br />

degrees rotation was .27 for the small pins and .39 for the large pins<br />

(31% greater torque). Similarly: two lateral pin model/25 degrees<br />

torque: small pins - .36 vs. large pins - .54 (33%). Three lateral pin<br />

model/15 degrees torque: small pins - .46 vs. large pins - .61 (26%).<br />

Three lateral pin model/25 degrees torque: small pins - .70 vs. large<br />

pins - .85 (17%). One lateral and one medial pin model/15 degrees<br />

torque: small pins - .61 vs. large pins - .83 (26%). One lateral pin and<br />

one medial pin model/25 degrees torque: small pins - 1.03 vs. large<br />

pins - 1.28 (20%). Two lateral and one medial pin model/15 degrees<br />

torque: small pins - .91 vs. large pins - 1.48 (39%). Two lateral and<br />

one medial pin model/25 degrees torque: small pins - 1.02 vs. large<br />

pins - 1.53 (33%). Best pin model stability at 15 and 25 degrees<br />

torque for both small and large pins demonstrated that two lateral<br />

and one medial pin were most stable, followed by one lateral and<br />

one medial pin, three lateral pins, and lastly two lateral pins. To our<br />

knowledge, this is the first biomechanical study examining the effect<br />

<strong>of</strong> pin diameter on supracondylar fracture stability. Size does matter.<br />

In a synthetic pediatric humerus model <strong>of</strong> supracondylar humerus<br />

fractures, larger diameter pins (1.6 mm) provided significantly<br />

increased stability compared to small diameter pins (1.25 mm) in<br />

all four pin configurations tested.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


pApeR No. 175<br />

The Location <strong>of</strong> the Medial Humeral Epicondyle in<br />

Children Based <strong>of</strong>f Common Radiographic Landmarks<br />

Joshua Klatt, MD, Salt Lake City, UT<br />

Stephen K Aoki, MD, North Salt Lake, UT<br />

Treatment <strong>of</strong> displaced medial humeral epicondyle fractures in<br />

children is somewhat controversial. The degree <strong>of</strong> displacement<br />

suffers from significant intra-observer variability. In this anatomic<br />

descriptive study, we describe the location <strong>of</strong> the medial epicondyle<br />

in relation to common radiographic landmarks <strong>of</strong> the elbow.<br />

We reviewed elbow radiographs <strong>of</strong> children aged four to 15 with<br />

proximal radial and/or ulna fractures. A total <strong>of</strong> 171 adequate studies<br />

were identified and studied. On the anteroposterior radiograph, a<br />

line was drawn down the center <strong>of</strong> the humeral shaft with a second<br />

line drawn perpendicular to this at the level <strong>of</strong> the inferior margin<br />

<strong>of</strong> the olecranon fossa. The tangential distance was determined from<br />

the center <strong>of</strong> the medial epicondyle apophysis to the olecranon fossa<br />

line. On the lateral radiograph, a line was drawn down the posterior<br />

cortex <strong>of</strong> the humerus. The tangential distance was determined<br />

from the center <strong>of</strong> the medial epicondyle apophysis to the posterior<br />

cortical line. Some 54% were female and 44% were male. There<br />

were at least 10 patients in every age group from four to 15. On<br />

the anteroposterior radiographs, the average location <strong>of</strong> the center<br />

<strong>of</strong> the medial epicondyle was 0.5 mm inferior to the olecranon<br />

line (standard deviation: 2.0 mm). On the lateral radiographs, the<br />

average location <strong>of</strong> the center <strong>of</strong> the medial epicondyle was 1.2 mm<br />

anterior to the posterior humeral line (standard deviation: 1.2 mm).<br />

The anatomic location <strong>of</strong> the medial epicondyle can be determined<br />

using common radiographic landmarks. This may be helpful in<br />

assessing fracture displacement in medial epicondyle fractures in<br />

children.<br />

pApeR No. 176<br />

Prospective Longitudinal Evaluation <strong>of</strong> Elbow Motion<br />

Following Pediatric Lateral Condyle Fractures<br />

Nicholas Bernthal, MD, Venice, CA<br />

Christopher Max Hoshino, MD, Torrance, CA<br />

Daniel Dichter, BA<br />

Melissa Wong, Montebello, CA<br />

Mauricio Silva, MD, Playa Vista, CA<br />

A prospective, longitudinal evaluation <strong>of</strong> range <strong>of</strong> motion was<br />

performed in a large population <strong>of</strong> children undergoing treatment<br />

for a lateral condyle fracture (LCF). A total <strong>of</strong> 141 LCFs, with mean<br />

age <strong>of</strong> 5.2 years (0.2-14.9) and mean follow up <strong>of</strong> 29 weeks (7-116),<br />

were evaluated. Based on the amount <strong>of</strong> displacement, patients<br />

were treated with casting, percutaneous pinning or open reduction<br />

and pinning. Relative arc <strong>of</strong> motion (RAM) was calculated as a<br />

percentage <strong>of</strong> motion <strong>of</strong> the normal, contralateral elbow. At the time<br />

<strong>of</strong> cast removal, the mean RAM was 44%, reaching 84% by week<br />

12. RAM reached 87%, 90%, 93% and 97% by weeks 18, 24, 36<br />

and 48, respectively. LCF treated without surgery had significantly<br />

lower RAM from the time <strong>of</strong> cast removal (7%, p=0.005) and up to<br />

18 weeks after the injury (11%, p


pApeR No. 178<br />

Pelvic Fractures In Children: A Modification Of A Pre-<br />

Existing Classification<br />

Ben Shore, MD, Boston, MA<br />

Catherine Bevan, MD, Melbourne, VIC Australia<br />

Cameron Palmer, MD<br />

Michael Johnson, MD, North Melbourne, VIC Australia<br />

Ian P Torode, MD, Parkville, VIC Australia<br />

The Torode classification system for pediatric pelvic fractures (PPF)<br />

was published in 1985, based on plain film interpretation alone.<br />

Today CT scanning has become common in the evaluation <strong>of</strong> PPF.<br />

The purpose <strong>of</strong> this study was to investigate whether this classification<br />

is predictive <strong>of</strong> outcomes, morbidity and or mortality. PPF were<br />

recorded on a prospectively identified hospital registry <strong>of</strong> all trauma<br />

admissions. The X-rays and CT scans were reviewed and classified.<br />

Correlation was made with age, gender, mechanism, associated<br />

injuries, intensive care unit (ICU) stay, operations and discharge<br />

outcome. Blood product usage was obtained from a haematology<br />

database. A total <strong>of</strong> 124 patients were identified with PPF, comprising<br />

0.79% <strong>of</strong> trauma admissions between July 2000 and June 2008.<br />

Radiology was available for 115 patients (58 males, and 57 females):<br />

grade I = 5, grade II = 16, grade IIIA = 43, grade IIIB = 39, grade<br />

IV =12 patients. Six patients died; with an overall mortality <strong>of</strong> 5%<br />

(two patients from each <strong>of</strong> the groups IIIA (5%), IIIB (5%) and IV<br />

(16%), Cochran-Armitage trend test p=0.004). Blood product usage<br />

increased with Torode grade: I = 0%, II = 25%, IIIA = 16%, IIIB =<br />

41%, IV = 58%, p=0.02. Median ICU stay increased across the grades:<br />

I =0, II =1.0, IIIA = 2.4, IIIB = 3.3, IV = 6.9 days. The modified Torode<br />

classification is predictive for significant morbidity and death in the<br />

setting <strong>of</strong> multi-trauma. CT scanning helps identify posterior pelvis<br />

fractures which are predictive <strong>of</strong> increased blood product use and<br />

increased ICU requirement.<br />

pApeR No. 179<br />

The Surgeon Learning Curve for Type III Supracondylar<br />

Humerus Fractures in Children<br />

Raymond Liu, MD, Cleveland Heights, OH<br />

Joanna Helena Roocr<strong>of</strong>t, MA<br />

Tracey Bastrom, MA, San Diego, CA<br />

Burt Yaszay, MD, San Diego, CA<br />

Supracondylar fractures are the most common pediatric elbow<br />

fractures, and have been increasingly referred to regional pediatric<br />

orthopaedic trauma centers. We reviewed all supracondylar fractures<br />

operatively treated by pediatric orthopaedic fellows from 2003-<br />

2009. Flexion type and open fractures were excluded. Presence <strong>of</strong><br />

backup attending, surgery time and fluoroscopy time were recorded.<br />

Type II fractures were used solely to track the number <strong>of</strong> cases for<br />

each fellow. Non-ideal radiographic results on type III fractures were<br />

defined by: Baumann angle outside the range <strong>of</strong> 64°-81° and/or<br />

an anterior humeral line not intersecting the capitellum. Staff cases<br />

from 2005-2007 served as a control. Twenty-one fellows surgically<br />

treated 479 total fractures (23 per fellow), with 213 type III. There<br />

were no significant changes in surgery or fluoroscopy time between<br />

the four academic quarters. Staff supervision was highest the first<br />

quarter (39%) and decreased to a baseline by the second quarter<br />

(12%). This correlated with an increase in non-ideal radiographic<br />

results between cases 7 and 15, from 21% to 33%, after which the rate<br />

decreased. There were four compartment syndromes, one infection,<br />

one postoperative ulnar nerve palsy and no malunions requiring<br />

osteotomy, with no significant differences between fellows and staff.<br />

Fellows became essentially independent by the second academic<br />

626<br />

quarter. A notable increase in suboptimal results began at case 7 and<br />

reversed at case 15, with no difference in true complications. Overall,<br />

we define a relatively short learning curve for pediatric orthopaedic<br />

fellows treating type III supracondylar humerus fractures.<br />

pApeR No. 180<br />

Fractures at Pediatric Implants: A 15-year Review<br />

Paul D Sponseller, MD, Baltimore, MD<br />

Gurkan Erkula, MD, Baltimore, MD<br />

Arabella I Leet, MD, Baltimore, MD<br />

Michael Craig Ain, MD, Owings Mills, MD<br />

Amit Jain, BS, Portland, OR<br />

Implants are routinely used to treat fractures and to stabilize<br />

osteotomies in children. Their role as stress risers is <strong>of</strong>ten a concern,<br />

especially after years <strong>of</strong> growth. Implant related fractures (IRF) are<br />

mentioned briefly in literature. We report a comprehensive survey <strong>of</strong><br />

their incidence and characteristics at our institution. A retrospective<br />

analysis <strong>of</strong> records and images in a pediatric population from<br />

1995 and 2009 was carried out. We tabulated all implants inserted<br />

at each skeletal location and identified IRF cases and risk factors.<br />

Demographics, type <strong>of</strong> implant and the location <strong>of</strong> the fracture were<br />

recorded. During the study period, 7,584 implants were inserted<br />

and 1,844 implants were removed. There were 25 cases <strong>of</strong> IRF in 22<br />

patients. Mean age at fracture was 11.8±4 years, with average 2.8±2.6<br />

years between insertion and fracture. Patient diagnoses leading<br />

to original surgery were cerebral palsy in nine, syndromes in five,<br />

fracture in four, hip dysplasia in two and spina bifida and slipped<br />

capital femoral epiphysis in one patient each. Overall IRF risk was<br />

3.3 per 1,000 implants with 0.56 per 1000 implants at the arm,<br />

forearm and hand; 8.9 per 1,000 implants at the femur and hip; and<br />

0.95 per 1,000 implants at the leg, ankle and foot. Fractures were 15<br />

times more likely to occur at the hip and femur compared to other<br />

locations combined (p


hooks plowed intra-operatively resulting in bone damage. The<br />

average time to loss <strong>of</strong> fixation was 19 months for both implants.<br />

There were no complications involving neurologic or vascular injury<br />

directly related to a hook or screw. Pedicle screws in growing rods<br />

have significantly less complications than hooks (p


in the tethered group (54.9±7.7µm, 11.1±2.1µm) vs. controls<br />

(85.7±16.3µm, 16.5±1.9µm) respectively (p


pApeR No. 398<br />

Significant Differences among Patients in Lenke Curve<br />

Types<br />

Paul D Sponseller, MD, Baltimore, MD<br />

The use <strong>of</strong> Lenke curve types (for surgical planning, research and<br />

perhaps future genetic study) raises an important question: do Lenke<br />

types distribute in a homogeneous way, or are there significant<br />

differences in gender, age, frequency, magnitude at surgery, etc? We<br />

studied nearly 2000 surgical patients to answer this. Parameters <strong>of</strong><br />

1,912 adolescent idiopathic scoliosis (AIS) patients 75°); most smaller curves were LT 1 & 5. The<br />

largest mean curve was Type 4 (78o)*, followed by 3 (63°), 2 (60°),<br />

6 (59°), 1 (52°)* and 5(46°)* (* comparisons p75°, 14.6 for curves 50-<br />

75°, and 15.2 for curves


pApeR No. 401<br />

The Role <strong>of</strong> Preoperative Cardiac Screening Studies in<br />

Adolescent Idiopathic Scoliosis Surgery<br />

Roger F Widmann, MD, New York, NY<br />

Lisa Ipp, MD<br />

Patrick Flynn, MD<br />

John S Blanco, MD, New York, NY<br />

Oheneba Boachie-Adjei, MD, New York, NY<br />

Jeanine Kozich, MD, New York, NY<br />

Daniel William Green, MD, New York, NY<br />

Roger F Widmann, MD, New York, NY<br />

Prevalence <strong>of</strong> asymptomatic cardiac disease in adolescents with<br />

adolescent idiopathic scoliosis (AIS) has never been reported.<br />

We have documented significant cardiac findings in a cohort <strong>of</strong><br />

asymptomatic patients with AIS. Retrospective chart review <strong>of</strong> all presurgical<br />

AIS patients from 2000-2007 was completed. Demographic<br />

information including age at surgery, sex, curve magnitude, fusion<br />

type, instrumentation and surgical course were compiled. Patients<br />

with neuromuscular scoliosis or known/suspected cardiac disease<br />

were excluded. Records <strong>of</strong> the pre-surgical screening 12 lead EKG,<br />

two dimensional (2D); Doppler and M-mode echocardiograms were<br />

analyzed. Charts <strong>of</strong> 215 patients with AIS who were indicated for<br />

surgery were reviewed. Three patients were excluded because the<br />

studies were not ordered. All patients were examined by a general<br />

pediatrician at the time <strong>of</strong> the pre-surgical clearance visit and had<br />

normal cardiac examinations. Of the 212 subjects (age 12-18), 154<br />

(73%) were female and 58 (27%) were male. A total <strong>of</strong> 141 (67%) <strong>of</strong><br />

these patients had normal EKGs and echocardiography findings. In<br />

32 (15%) subjects with EKG abnormalities, 28 (88%) had ‘normal<br />

variant readings,’ as outlined by the <strong>American</strong> Hospital Association<br />

statement on screening EKGs in attention-deficit hyperactivity<br />

disorder (ADHD) patients (Vetter, et. al) and four subjects’ EKGs<br />

met LVH by voltage criteria. However, echocardiograms were within<br />

normal limits in these patients. Significant echocardiogram findings<br />

(table 1) revealed two subjects with atrial septal defects (that delayed<br />

spine surgery) and seven (3.3%) subjects with aortic root and/or<br />

valve abnormalities. Pre-surgical population abnormalities ranged<br />

from mild to severe, and in two cases, affected the surgical timing.<br />

In the adolescent patient with severe scoliosis indicated for surgery,<br />

novel findings <strong>of</strong> aortic abnormalities were identified in 3.3% <strong>of</strong> our<br />

patient population (7/212). Interestingly, the incidence <strong>of</strong> mitral<br />

valve prolapse in our study was only 4.7% which is lower than<br />

described in prior studies, (14%-26%, Dhuper and Hirschfield) and<br />

closer to the rate in the general population <strong>of</strong> 3.2% (Dhuper). In a<br />

study which examined the prevalence <strong>of</strong> heart disease in randomly<br />

selected healthy adolescents with previously unknown cardiac disease<br />

(Steinberger, et. al), the authors found a rate <strong>of</strong> 3.6% (13/357) <strong>of</strong><br />

cardiac anomalies. Interestingly, none <strong>of</strong> these patients were found<br />

to have aortic root or valve abnormalities. The aortic root and valve<br />

abnormalities appear to be unique findings in patients with severe<br />

AIS, and likely point to a long suspected collagen vascular component<br />

in this disease. Echocardiograms may be indicated in patients with<br />

AIS. Further studies will need to clarify the relationship between AIS<br />

and occult cardiac disease.<br />

630<br />

pApeR No. 402<br />

Intraoperative versus Postoperative Radiographs<br />

Following Instrumentation for Idiopathic Scoliosis<br />

Sanjeev Sabharwal, MD, Chatham, NJ<br />

Alexios Apazidis, MD, Patchogue, NY<br />

Caixia Zhao, MD<br />

Heidi Hullinger, MD, New York, NY<br />

Michael Vives, MD, Newark, NJ<br />

While intraoperative radiographs following surgical correction <strong>of</strong><br />

adolescent idiopathic scoliosis are <strong>of</strong>ten performed, the validity <strong>of</strong><br />

such imaging has not been well documented. The purpose <strong>of</strong> our<br />

study was to compare the frontal plane correction as measured on<br />

intraoperative supine radiographs following posterior segmental<br />

instrumentation with similar measurements made using postoperative<br />

full-length standing radiographs. Additionally, we sought to<br />

evaluate whether the type and extent <strong>of</strong> spinal instrumentation<br />

affected the magnitude <strong>of</strong> discrepancy between the intraoperative<br />

and postoperative radiographs. Frontal plane Cobb angles <strong>of</strong> all<br />

thoracic and thoracolumbar/lumbar curves were measured on the<br />

intraoperative supine (IO), initial postoperative (IPO) and final<br />

postoperative (FPO) standing radiographs. A total <strong>of</strong> 74 patients with<br />

adolescent idiopathic scoliosis underwent surgical correction with<br />

posterior segmental instrumentation using either all pedicle screw<br />

(21 patients) or hybrid constructs (53 patients). The main thoracic<br />

curve was instrumented in all patients, proximal thoracic curve in<br />

61 and thoracolumbar/lumbar curve in 20 patients. The mean Cobb<br />

angle was 57° preoperatively, 17° (IO), 18° (IPO) and 20° (FPO)<br />

for the main thoracic, 27° preoperatively, 14° (IO), 15° (IPO) and<br />

16° (FPO) for proximal thoracic and 42° preoperatively, 12° (IO),<br />

14° (IPO) and 14° (FPO) for thoracolumbar/lumbar curves. There<br />

was a strong correlation between the IO and IPO measurements for<br />

the proximal thoracic, main thoracic and thoracolumbar/lumbar<br />

curves (r=0.73, 0.83 and 0.84, respectively, p12 years. Associated injuries were classified as<br />

abdominal trauma, thoracic trauma, closed head injury, other spinal<br />

fracture, appendicular skeletal fracture or neurologic injury. Of<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


special interest was the frequency <strong>of</strong> noncontiguous spinal fractures.<br />

Overall, 80% had associated injuries; 46% had multiple spinal<br />

fractures, 36% <strong>of</strong> which were at noncontiguous levels. Children aged<br />

0-3 years had the highest number <strong>of</strong> associated injuries (87%), as<br />

well as the most frequent orthopaedic injuries (33%) and neurologic<br />

injuries (29%). Older children (four-12 years and >12 years) had<br />

similar numbers <strong>of</strong> associated injuries (77%), but juveniles (4-<br />

12 years) had fewer orthopaedic injuries (5% vs 24%). Spinal<br />

fractures in children, especially those aged 0-3 years, frequently are<br />

indications <strong>of</strong> associated injuries. Nearly half <strong>of</strong> pediatric spinal<br />

fracture patients have additional spinal fractures, over a third <strong>of</strong><br />

which are noncontiguous. Imaging studies should include the entire<br />

spinal column to avoid missing these fractures.<br />

pApeR No. 404<br />

Age-Related Patterns <strong>of</strong> Spine Injury in Children<br />

Involved in All Terrain Vehicle (ATV) Accidents<br />

Jeffrey R Sawyer, MD, Germantown, TN<br />

Michael J Beebe, MD, Salt Lake City, UT<br />

Norfleet Buckner Thompson, MD, Memphis, TN<br />

Aaron Creek, Memphis, TN<br />

Matthew G. Yantis, MD<br />

Derek Michael Kelly, MD, Memphis, TN<br />

William C Warner Jr, MD, Germantown, TN<br />

All-terrain vehicle (ATV) accidents are a significant source <strong>of</strong><br />

morbidity for children and their use continues to increase. The<br />

purpose <strong>of</strong> this study is to characterize ATV-related spine injuries in<br />

children and adolescents. An Institutional Review Board-approved<br />

retrospective review <strong>of</strong> ATV-related spine injuries over a five-year<br />

period at two pediatric trauma centers was performed. Records were<br />

evaluated for demographic factors, spine/associated injuries, surgical<br />

procedures and hospital charges. Patients were divided into age<br />

groups (16 yrs). There were 52 spine injuries in 29 patients<br />

(1.8/pt) with a mean age <strong>of</strong> 15.8 years (range 6-18 yrs). There were<br />

14 females (48%) and 15 males (52%). Multiple spine injuries were<br />

common: 45% <strong>of</strong> patients had >1 spine injury (range 1-5). There<br />

were seven cervical (14%), 22 thoracic (42%), 16 lumbar (31%) and<br />

seven sacral fractures (14%). Compression/burst fractures were the<br />

most common fracture type (31%). There was one mortality (3%).<br />

Six patients (21%) had closed head, six (21%) had intrabdominal<br />

and three (10%) had thoracic injuries. Nine (31%) had one, six<br />

(21%) had two and one patient (3%) had three major associated<br />

injuries. Older children had a lower pediatric trauma score (p=.004)<br />

and were more likely to have a thoracic spine fracture (p=0.012).<br />

Lumbar spine fractures (p


internal foot progression angle was the most frequent kinematic<br />

abnormality seen in follow up in 63% <strong>of</strong> patients, although 62% <strong>of</strong><br />

feet had improvement in the degree <strong>of</strong> intoeing. Kinetic data showed<br />

increased ankle power and moment post-operatively which was<br />

significantly greater in the split transfers compared to full. There was<br />

a 6% occurrence <strong>of</strong> new onset footdrop post-operatively, all in the<br />

full transfer group. Pre-operative pedobarographs had the greatest<br />

peak pressures in the lateral mid- and forefoot while post-operative<br />

peak pressures were shifted to the hindfoot and more medially along<br />

the foot, indicating correction <strong>of</strong> forefoot supination. After anterior<br />

tibialis tendon transfer, normal sagittal ankle motion was seen in<br />

31% <strong>of</strong> feet. Patients after transfer did have increased mean ankle<br />

power and moment and increased medial pressures in the fore-,<br />

mid- and hindfoot.<br />

pApeR No. 422<br />

Reliability Of The Dimeglio Classification For Clubfoot<br />

Armando Torres-Gomez, MD, Mexico City, DF Mexico<br />

Nelson Cassis, MD, Mexico City, DF Mexico<br />

Gilberto Rios, MD<br />

Ricardo Velutini, MD<br />

Juan-Carlos Falcon, MD, MSc<br />

Dimeglio’s classification for clubfoot has become the most widely<br />

used system for grading this deformity. We sought to report the<br />

reliability <strong>of</strong> the Dimeglio system for congenital clubfoot in terms<br />

<strong>of</strong> intraclass correlation coefficients (ICCs) considering three raters<br />

during the process and the homogeneity <strong>of</strong> the scale in terms <strong>of</strong><br />

Cronbach’s alpha. We designed a prolective observational study,<br />

with randomly selected patients and three fixed raters (observers)<br />

to assess the reliability and homogeneity <strong>of</strong> Dimeglio’s classification<br />

for clubfoot. From March 31 2009 to June 31 2010, we evaluated 144<br />

feet (subjects) with clubfoot deformity. A special collection sheet<br />

was designed for this study; it included diagrams <strong>of</strong> the Dimeglio<br />

classification with guides to scores, closed responses and coding <strong>of</strong><br />

each observer to permit a blind analysis. Sample size was calculated<br />

using Bonnet’s formula; based upon obtained reliabilities, the<br />

number <strong>of</strong> raters (three), the desired width <strong>of</strong> the confidence interval<br />

(w = 0.08) and statistical significance (Z-alpha = 1.96) for a twotailed<br />

alpha level <strong>of</strong> 0.05. A sample <strong>of</strong> 130 subjects was obtained.<br />

Sampling was achieved with stratified randomization to obtain a<br />

platykurtic distribution <strong>of</strong> scores (k = -0.38). Each observation was<br />

codified for analysis purposes. Statistical analysis: we used a two-way<br />

random effects Analysis <strong>of</strong> Variance (ANOVA) mixed effects model;<br />

mean squares were used to calculate the intraclass correlation<br />

coefficients ICC2 (C,1) for consistency and ICC2 (C,2) for agreement.<br />

We calculated all the possible split-half reliabilities <strong>of</strong> the scale<br />

(internal consistency and homogeneity) in terms <strong>of</strong> Cronbach’s<br />

alpha, for all the observations and for each observer. The intraclass<br />

correlation coefficients (95% CI) for consistency ICC2 (C,1) was<br />

0.8554 (0.8087 to 0.9022, p=0.013) corresponding to the intra-rater<br />

reliability. The ICC (A,1) was 0.8521 (0.8049 to 0.8993, p=0.098),<br />

equivalent to the inter-rater reliability. Observations without a data<br />

collection sheet, where raters did not have an immediate reference to<br />

the classification, yielded a lower reliability <strong>of</strong> ICC2 (C,1) = 0.7872<br />

and ICC (A,1) = 0.5424. Cronbach’s alpha resulted in 0.8149, which<br />

denoted homogeneity <strong>of</strong> Dimeglio’s classification. Dimeglio’s<br />

classification is reliable. We recommend incorporating a collection<br />

sheet into medical files to increase reliability. The classification <strong>of</strong><br />

Dimeglio, the most cited classification system for clubfoot, has<br />

excellent reliability and an ability <strong>of</strong> 85.54% to differentiate the<br />

deformities <strong>of</strong> clubfeet.<br />

632<br />

pApeR No. 423<br />

A Comparison <strong>of</strong> Children with Clubfoot Who<br />

Underwent Surgical or Ponseti Treatment<br />

John E Herzenberg, MD, Baltimore, MD<br />

Julie Coplan, DScPT<br />

Chris Church, PT<br />

Dijana Poljak<br />

John D Henley, PhD<br />

Roland Starr, MS, Baltimore, MD<br />

Mohan Belthur, MD, Houston, TX<br />

Ahmed Mohamed Thabet, MD, Benha, Egypt<br />

Freeman Miller, MD, Wilmington, DE<br />

No long-term clubfoot studies have compared surgery versus<br />

Ponseti method using gait analysis, pedobarographs and outcome<br />

instruments. Two groups underwent clubfoot treatment (minimum<br />

five-year follow up) and were evaluated retrospectively: posteromedial<br />

release (PMR) surgery group (n=26, feet=43, ages 5-11 years) and<br />

Ponseti group (n=22, feet=35, ages 5-10 years). Ponseti group had an<br />

average <strong>of</strong> 5.0 casts (range, 3-8 casts); 18 <strong>of</strong> 22 patients underwent<br />

Achilles tenotomy. Five feet in Ponseti group relapsed and required<br />

additional casting. Three required surgery (two anterior tibialis tendon<br />

transfers, one Achilles lengthening). Physical exam measurements,<br />

pedobarographs, gait analysis and outcome measurements were<br />

obtained. Results were compared with published values for normal<br />

feet. Operative group had reduction in dorsiflexion (-0.6±8.6°;<br />

p


patients by CPT code having foot arthrodesis or osteotomy. Eightytwo<br />

patients met the inclusion criteria. Patients were classified into<br />

three groups, GA, PNB/NS and PNB/US, with analysis <strong>of</strong> variance<br />

and Z-tests being used to compare means and proportions between<br />

groups. There was no statistical difference in the body weight and<br />

type <strong>of</strong> procedure performed in the GA (N=22), PNB/NS (N=39)<br />

and PNB/US (N=21) groups. The PNB/US group had the lowest<br />

verbal analog pain scores for the first six hours (p = .049), the<br />

highest proportion <strong>of</strong> patients who were pain free for eight and 12<br />

hours (p


pApeR No. 428<br />

Limb Reconstruction or Amputation for Severe Fibular<br />

Deficiency: A Two-Center Comparison<br />

Dror Paley, MD, West Palm Beach, FL<br />

John G Birch, MD, Dallas, TX<br />

Stacy C Specht, MPA, Baltimore, MD<br />

Anne Morton, PhD<br />

Shan G Ward, PhD<br />

Kirsten Tulchin, MS<br />

Roland Starr, MS, Baltimore, MD<br />

Don R Cummings, CP LP, Dallas, TX<br />

Terry-Elinor R Reid, Riverdale, MD<br />

Children with severe fibular deficiency may undergo amputation or<br />

limb reconstruction. Twenty children who underwent amputation<br />

at one center were compared with 22 children who underwent limb<br />

reconstruction at a second center. Average evaluation age was nine<br />

years (range, five to 15 years) and included psychosocial status,<br />

quality <strong>of</strong> life (QOL) characteristics and patient/parent satisfaction<br />

surveys and gait analysis with timed 25-yard dash. Parents <strong>of</strong> males<br />

who underwent amputation perceived a lower QOL for their child<br />

(p38ºC,<br />

hematocrit 12,000/ml and C-reactive<br />

protein >13mg/L. The probability <strong>of</strong> MRSA osteomyelitis is directly<br />

proportional to the number <strong>of</strong> multivariate predictors: 92% for all<br />

four predictors, 45% for three, 10% for two, 1% for one and 0.1%<br />

for zero predictors (chi-square = 76.63, p


pApeR No. 431<br />

Pathologic Fractures In Children With Staphylococcus<br />

Aureus Osteomyelitis<br />

Jacob Weinberg, MD, Houston, TX<br />

Mohan Belthur, MD, Houston, TX<br />

Alejandro Verdugo, MD, Mexico City, DF Mexico<br />

Sherri B Birchansky, MD, Pearland, TX<br />

Edward O Mason, PhD<br />

Kristina G Hulten, PhD, Houston, TX<br />

Sheldon L Kaplan, MD<br />

William A Phillips, MD, Houston, TX<br />

E O’Brian Smith, PhD<br />

Osteomyelitis is a common musculoskeletal infection in children that<br />

can weaken the normal structure <strong>of</strong> the affected bone, placing it at<br />

risk for a pathological fracture. We studied risk factors for pathologic<br />

fractures in children with Staphylococcus aureus (S. aureus)<br />

osteomyelitis. Seventeen children who developed a pathologic<br />

fracture secondary to osteomyelitis between 2001 and 2009 were<br />

identified at a tertiary care pediatric hospital. A retrospective<br />

review and analysis <strong>of</strong> the clinical records, imaging studies, and<br />

microbiology was performed. These patients were compared to 49<br />

children with S. aureus osteomyelitis without fractures matched for<br />

age, site <strong>of</strong> infection, sex and antibiotic susceptibility. Pulsotypes<br />

were determined by pulsed field gel electrophoresis and polymerase<br />

chain reaction (PCR) detected the genes encoding for Panton-<br />

Valentine leukocidin (PVL). Statistical analysis (SPSS 18) was used<br />

to assess risk factors associated with fracture occurrence. Patients<br />

in the fracture group presented with osteomyelitis at an average <strong>of</strong><br />

eight years <strong>of</strong> age (range two-17 years). Fifteen <strong>of</strong> 17 patients with<br />

pathological fractures had methicillin-resistant S. aureus (MRSA),<br />

and two had methicillin-susceptible S. aureus (MSSA) isolates. The<br />

control group had a similar ratio <strong>of</strong> these organisms. The mean time<br />

to fracture from disease onset was 72 days (range 20-150 days). The<br />

most common sites <strong>of</strong> fracture were the femur (n=9) and fibula<br />

(n=3). At hospital admission, temperature, inflammatory markers<br />

(WBC, ESR, CRP), BMI and days to presentation were similar in both<br />

groups. The length <strong>of</strong> hospitalization, number <strong>of</strong> surgical procedures,<br />

duration <strong>of</strong> antibiotics (oral, IV, and combined) and total number<br />

<strong>of</strong> complications were statistically different between the fracture<br />

and the control groups. Baseline MRI studies demonstrated a<br />

significantly higher incidence <strong>of</strong> subperiosteal abscess with relatively<br />

larger abscess circumference in the fracture patients. A sharper zone<br />

<strong>of</strong> abnormal marrow enhancement was also more common in<br />

these patients. The USA300-0114 pulsotype was more commonly<br />

associated with fracture microbiology, as compared to other<br />

USA300 variants or non-USA300 pulsotypes. S. aureus osteomyelitis<br />

is a serious infection that may predispose children to pathologic<br />

fractures. Children who undergo prolonged initial hospitalizations<br />

and multiple surgical procedures are at increased risk for fracture, as<br />

are patients with USA300-0114 pulsotype; in addition, MRI shows<br />

relatively larger subperiosteal abscess circumference and sharper<br />

zone <strong>of</strong> abnormal marrow enhancement pattern. Protected weightbearing<br />

is recommended in these children.<br />

635<br />

pApeR No. 432<br />

Musculoskeletal Infection in Patients Under 24 Months<br />

<strong>of</strong> Age<br />

Joseph T Lanzi, Jr MD, Waipahu, HI<br />

Robert Lane Wimberly, MD, Dallas, TX<br />

Lawson A B Copley, MD, Dallas, TX<br />

David A Podeszwa, MD, Dallas, TX<br />

Christine Ann Ho, MD, Dallas, TX<br />

Philip L Wilson, MD, Dallas, TX<br />

Richard H Browne, PhD, Dallas, TX<br />

We are aware <strong>of</strong> no significant orthopaedic literature specifically<br />

studying musculoskeletal infection in patients younger than 24<br />

months <strong>of</strong> age. Recently, an increase in the hospital volume and<br />

orthopaedic management <strong>of</strong> infection has been published. We<br />

assume an increased severity <strong>of</strong> illness in younger patients. Our<br />

hypothesis is the younger musculoskeletal infection patient will<br />

have increased laboratory markers, a broader spectrum <strong>of</strong> infectious<br />

organisms and prolonged hospital stays compared to an older<br />

cohort. We performed a retrospective chart review <strong>of</strong> 297 pediatric<br />

patients with musculoskeletal infections over two years at a single<br />

institution. Patients were divided into two groups based upon age<br />

at presentation: Group A patients were 0-24 months <strong>of</strong> age and<br />

Group B patients were 24 months-18 years <strong>of</strong> age at admission.<br />

We further divided Group A by six-month intervals to assess for<br />

differences in the youngest <strong>of</strong> patients. Parameters reviewed include<br />

admission white blood cell count (WBC), C-reactive protein (CRP),<br />

sedimentation rate (ESR), length <strong>of</strong> stay (LOS), culture results<br />

and antibiotic course. Statistical analysis was performed between<br />

the groups. Eighty-two patients comprised Group A and Group B<br />

numbered 215. Overall, the admission WBC counts for Group A<br />

and Group B were 14.48 and 11.76 (p=.0005) and the CRP values<br />

were 5.54 and 7.37 (p=.035), respectively. Some 37.8% <strong>of</strong> Group A<br />

patients were culture positive with a variety <strong>of</strong> organisms including<br />

methacillin resistant Staphylococcus aureus. When examining<br />

Group A in six month intervals, the youngest cohorts, 0-6 months<br />

<strong>of</strong> age, were culture positive in 67% and trended to the longest<br />

hospital stay <strong>of</strong> 10.8 days. We have found, through analysis <strong>of</strong> a large<br />

pediatric patient population, significant differences in admission<br />

inflammatory markers for children under 24 months <strong>of</strong> age. Further<br />

evaluation <strong>of</strong> the youngest patients confirmed a variety <strong>of</strong> isolated<br />

organisms and prolonged hospitalizations.<br />

pApeR No. 433<br />

Diagnosis and management <strong>of</strong> Dysplasia Epiphysealis<br />

Hemimelica<br />

Jennifer Kreshak, MD, Bologna, Emilia-Romagna Italy<br />

Nicola Fabbri, MD, Bologna, Italy<br />

Mark C Gebhardt, MD<br />

Marco Alberghini, MD, Bologna Emilia-Romagna, Italy<br />

Daniel Vanel, MD<br />

Onorfio Donzelli, MD<br />

Mario Mercuri, MD, Bologna, Italy<br />

Dysplasia epiphysealis hemimelica (Trevor’s disease) is a rare<br />

skeletal developmental disorder characterized by asymmetric<br />

osteocartilaginous overgrowth <strong>of</strong> one or more epiphyses, most<br />

commonly affecting the lower extremity. Retrospective study <strong>of</strong><br />

41 patients seen at one institution between 1964-2009 with a<br />

histologic diagnosis <strong>of</strong> dysplasia epiphysealis hemimelica. Clinicoradiographic<br />

features were reviewed with updated follow up and<br />

functional results. There were 33 males and eight females; 39<br />

diagnosed before age 20, with a peak in the first decade. All patients<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


had symptoms, most consisting <strong>of</strong> deformity and/or functional<br />

limitation with little or no pain. Ankle and knee were the most<br />

frequent locations, with disease most commonly occurring in the<br />

medial aspect <strong>of</strong> the joint (35). Thirty-seven had involvement <strong>of</strong><br />

the lower extremity, four the upper extremity, one both; only two<br />

patients had bilateral findings. Multiple epiphyseal involvement<br />

was present in 13 patients. Excision and/or epiphyseal reshaping <strong>of</strong><br />

the joint were performed in all patients, with selective periarticular<br />

osteotomy at a later age in six. Multiple surgeries were performed in<br />

eight patients with one post-operative complication (supracondylar<br />

femur fracture). At last follow up, 95% <strong>of</strong> the patients were without<br />

major limitation or pain. Dysplasia epiphysealis hemimelica is a<br />

rare and poorly understood condition, more common in boys with<br />

medial involvement <strong>of</strong> a lower extremity joint and early onset <strong>of</strong><br />

symptoms. Absence <strong>of</strong> severe pain, despite residual stiffness, seems<br />

to play a role in patients’ acceptance <strong>of</strong> limitation. Close monitoring<br />

and surgical management were successful in preventing severe<br />

functional limitations in this retrospective study.<br />

pApeR No. 434<br />

Growth Plate Flow and Metabolism Screening Using<br />

MR: A New Application for Specialized MR Sequences<br />

Juan Manuel Shiguetomi-Medina, Aarhus C, Denmark<br />

Hans Stodkilde-Jorgenson, MD, DMSci<br />

Ole Rahbek, MD, Aarhus, Denmark<br />

Bjarne Moller-Madsen, MD, MSCI, Aarhus, Denmark<br />

Magnetic resonance imaging (MRI) can be used for studies <strong>of</strong> joint<br />

cartilage as well as bone growth plates. A number <strong>of</strong> MR derived<br />

parameters present aspects <strong>of</strong> viability and growth patterns: the<br />

apparent diffusion constant (ADC) is dependent on intracellular<br />

as well as extracellular water movements and as such related to cell<br />

viability and cell apoptosis. The ADC provides early signs <strong>of</strong> ischemic<br />

lesions; diffusion tensor images provide information on structure <strong>of</strong><br />

the tissue and finally measurements <strong>of</strong> water concentration identify<br />

the areas with highest osteoblast activity. Normal pig tibiae were<br />

studied. Tomography, MR T1 and T2 sequences were performed and<br />

compared. Apparent diffusion coefficient and surface tension images<br />

were also performed and analyzed. Finally, methylmethacrylate<br />

embedding histology was performed using hematoxylin-eosin,<br />

toluidine blue and safranin stains. MR ADC and surface tension<br />

images are able to provide an overview <strong>of</strong> the cell metabolism<br />

measuring the movement and freedom <strong>of</strong> the water in the different<br />

tissues. These measurements can be interpretated as flow and<br />

metabolism respectively. Bony structures seen in high resolution MR<br />

images resemble those seen in histological sections. A number <strong>of</strong><br />

MR derived sequences can be applied to cartilage-like tissue such<br />

as growth plate. These sequences provide images that correspond to<br />

flow and cell-metabolism. MR imaging provides enough evidence<br />

and information about the structure and behavior <strong>of</strong> the growth<br />

plate to propose a standardized protocol for MRI ADC and tension<br />

surface images. This should provide more information about growth<br />

disturbance causes and characteristics.<br />

pApeR No. 435<br />

<strong>Orthopaedic</strong> Surgeons are Less Likely to See Children<br />

Now Than 10 Years Ago, Regardless <strong>of</strong> Insurance<br />

Coleen S Sabatini, MD, San Francisco, CA<br />

Kira F Skaggs<br />

David Lee Skaggs, MD, Los Angeles, CA<br />

The purpose <strong>of</strong> this study is to assess availability <strong>of</strong> timely orthopaedic<br />

care to children in California. Ten years earlier an identical study<br />

in the same location found timely access to orthopaedic care was<br />

636<br />

available in 100% <strong>of</strong> <strong>of</strong>fices polled to a child with private insurance<br />

versus 2% <strong>of</strong> <strong>of</strong>fices to a child with Medicaid. 1] Fifty orthopedic<br />

<strong>of</strong>fices were randomly contacted by phone to request an appointment<br />

for a fictitious 10-year old with an arm fracture. Each <strong>of</strong>fice was<br />

contacted twice with an identical scenario, once with the <strong>of</strong>fice<br />

told that the child had private insurance and once with Medicaid.<br />

Access to appointments based on insurance status was compared,<br />

as well as to access rates 10 years earlier. Of the 50 <strong>of</strong>fices randomly<br />

selected, we were able to successfully reach 45. An appointment<br />

with an orthopaedist was <strong>of</strong>fered within seven days to a child with<br />

private insurance by 42% (19/45) <strong>of</strong> the <strong>of</strong>fices and 2% (1/45) <strong>of</strong><br />

<strong>of</strong>fices to a child with Medicaid (p


on 3T machine at baseline and one-year follow up. We analyzed on<br />

MR-images, the femoral morphology and epiphyseal changes related<br />

to age, status <strong>of</strong> the epiphyseal scar and location on the femur. We<br />

assessed on seven radial positions around the femoral neck, rotating<br />

from anterior to posterior, (1) head-radius, (2) neck-radius, (3) tiltangle,<br />

(4) epiphyseal-extension and the (5) alpha angle. Looking at<br />

the influence <strong>of</strong> age, we saw that as we expected, head and neck radius<br />

increase was highly significant (p


to the retained hardware. Retained pediatric hardware at the time <strong>of</strong><br />

THA was associated with increased operative time, intra-operative<br />

fractures and hospital stays. Retained hardware was directly related<br />

to two <strong>of</strong> the four intraoperative fractures. Consideration should<br />

be given to removing hardware as a child to avoid the increased<br />

complexity <strong>of</strong> potential future surgery.<br />

pApeR No. 546<br />

Outcome <strong>of</strong> Legg-Calve-Perthes Disease Patients With<br />

Onset Before Six Years Of Age<br />

Junichi Nakamura, MD, Chiba, Japan<br />

Shunji Kishida, MD, Chiba, Japan<br />

Yoshitada Harada, MD, Yachiyo-City, Japan<br />

Koya Kamikawa, MD, Chiba, Japan<br />

Seiji Ohtori, Chiba, Japan<br />

Kazuhisa Takahashi, MD, Chiba City, Japan<br />

Munenori Takeshita, MD, Chiba City, Japan<br />

Tomonori Shigemura, MD, Chiba City, Japan<br />

Makoto Takazawa, MD, Chiba City, Japan<br />

The prognosis <strong>of</strong> Legg-Calve-Perthes disease (LCPD) in young patients<br />

had been accepted as favorable. The purpose <strong>of</strong> this study was to<br />

clarify the outcome <strong>of</strong> LCPD patients with onset before six years <strong>of</strong><br />

age. From 1989 to 2007, <strong>of</strong> 332 LCPD patients, 71 patients were before<br />

six years at onset. We excluded four hips which were affected after six<br />

years <strong>of</strong> age in bilateral LCPD and nine hips <strong>of</strong> which epiphyisis had<br />

not been completely repaired. Then we retrospectively studied the<br />

remaining 74 hips in 62 LCPD patients with Image J 1.41v (National<br />

Institutes <strong>of</strong> Health, USA) and with SPSS 16.0. Mean age at onset<br />

was 4.0 years. Waldenström classification at presentation was initial<br />

stage in 51 hips, fragmentation stage in 21 hips and healing stage in<br />

two hips. Lateral pillar classification was group A in 11 hips, group B<br />

in 11 hips, group B/C in 13 hips and group C in 39 hips. Treatment<br />

methods were restriction <strong>of</strong> activity alone in 30 hips, a few weeks <strong>of</strong><br />

hospitalized traction in 26 hips, A-cast in 12 hips, brace in 26 hips<br />

and operation in 10 hips. Modified Stulberg classification was class I<br />

in 16 hips, II in 9 hips, IIIa in 20 hips, IIIb in 21 hips and IV in eight<br />

hips at the mean age <strong>of</strong> 13.2 year. Correlation among following three<br />

measurements was noted (p=0.001); % sphericity (mean 72.6%),<br />

AHI (mean 73.2%), and ATD (mean 14.9 mm). Poor outcome was<br />

observed even in patients before six years <strong>of</strong> age with large necrotic<br />

area and subluxation.<br />

pApeR No. 547<br />

Validity and Reliability <strong>of</strong> Measuring Femoral<br />

Anteversion and Neck-Shaft Angle in Cerebral Palsy<br />

Chin Youb Chung, MD,PhD, Seoul, Republic <strong>of</strong> Korea<br />

Park Moon Seok, MD, Sungnam, Republic <strong>of</strong> Korea<br />

Lee Kyoung Min, MD<br />

Kwon Dae Gyu, MD<br />

In Ho Choi, MD, Seoul, Republic <strong>of</strong> Korea<br />

Proximal femoral deformity is a common problem in patients with<br />

cerebral palsy, which <strong>of</strong>ten needs surgical correction. The aim <strong>of</strong> the<br />

study was to determine the validity and reliability <strong>of</strong> the methods<br />

commonly used to measure the proximal femoral geometry in<br />

patients with cerebral palsy. Thirty-six consecutive patients (mean<br />

age 11 years, range from six to 20 years) with cerebral palsy were<br />

included. The validity and the interobserver reliability using three<br />

orthopaedic surgeons were evaluated for the physical examination<br />

determined by comparing the results <strong>of</strong> a trochanteric prominence<br />

angle test (TPAT), hip internal rotation (IR) and hip external rotation<br />

(ER) in the prone position with the femoral anteversion measured<br />

638<br />

on 2D CT. The validity, and the intra- and interobserver reliability<br />

were assessed by comparing the neck shaft angle on the hip<br />

internal rotation radiograph with that measured on the multiplanar<br />

reformatted CT image. TPAT showed excellent concurrent validity<br />

(r=0.862, p


pApeR No. 549<br />

uOutcomes <strong>of</strong> Minimally Invasive Multilevel Surgery<br />

for Children with Cerebral Palsy<br />

David A Yngve, MD, Galveston, TX<br />

Dana Wild, PT, PhD<br />

Raj Harry Shani, MD, Houston, TX<br />

Kelly D Carmichael, MD, Galveston, TX<br />

Christine P Baker, PT, EdD, Galveston, TX<br />

We describe minimally invasive lengthening <strong>of</strong> the gastrocnemius,<br />

hamstrings and hip adductors with 2-3 mm incisions and the use <strong>of</strong><br />

ethanol block <strong>of</strong> the obturator nerve, using the selective percutaneous<br />

my<strong>of</strong>ascial lengthening (SPML) procedure. The objective was to<br />

determine the short-term outcomes in terms <strong>of</strong> knee and ankle<br />

motion and the short-term and medium-term outcomes in terms<br />

<strong>of</strong> function. Twenty-seven ambulatory children with cerebral palsy,<br />

Gross Motor Functional Classification System II (56%), III (19%), IV<br />

(26%), mean age 8.7 years (range, four to eighteen years) at the time<br />

<strong>of</strong> surgery, had preoperative and postoperative videos, mean followup<br />

<strong>of</strong> 7.5 months. Function was determined by the Functional<br />

Mobility Scale preoperatively and at mean follow ups <strong>of</strong> 7.5 and<br />

35 months. The mean preoperative maximum knee extension in<br />

stance decreased 12.3°, from 21.9° to 9.6° (p


70 consecutive adolescent (16 years <strong>of</strong> age and under) patients who<br />

underwent hip arthroscopy were retrospectively analyzed. Subjective<br />

data included modified Harris hip score (MHHS), and patient<br />

satisfaction with outcome (10=very satisfied, 1=very unsatisfied).<br />

Average age at time <strong>of</strong> surgery was 15 years (range 13-16), 31% were<br />

males and 69% were females. CAM impingement was found in 10%<br />

<strong>of</strong> patients, pincer type in 15% and mixed-type in 75%. LT were seen<br />

in all patients, and 83% <strong>of</strong> these were repaired; the remaining were<br />

debrided. Limited femoral osteoplasty was done in 56 patients and<br />

rim trimming was performed in 55 patients. The average follow up<br />

was three years (range, 2-5 years). Average preoperative MHHS was<br />

60 (range, 31-85), and it improved to an average <strong>of</strong> 93 (range, 68-<br />

100). The median patient satisfaction was 10 (range, 5-10). After<br />

the index procedure, eight patients needed revision arthroscopy. All<br />

revisions were females. Median satisfaction with outcome following<br />

revision was 9 (range 7 to 10). Arthroscopic treatment <strong>of</strong> FAI and<br />

LT in the adolescent population is a safe procedure with excellent<br />

clinical outcomes. Females had a higher revision rate but were<br />

satisfied after revisions.<br />

pApeR No. 553<br />

Quality <strong>of</strong> Life in Patients with Fibular Hemimelia:<br />

Lengthening and Amputation<br />

Armando Torres-Gomez, MD, Mexico City, DF Mexico<br />

L Alberto Harfush-Nasser, MD, Mexico City, DF Mexico<br />

Nelson Cassis, MD, Mexico City, DF Mexico<br />

Alex Betech, MD, Naucalpan, MEX Mexico<br />

Fibular hemimelia represents a challenge for the orthopaedic<br />

surgeon; several treatments are available. Treatment is aimed at<br />

restoring the function <strong>of</strong> the extremity and improving the quality <strong>of</strong><br />

life (QoL) <strong>of</strong> these patients. Management for mild cases includes shoe<br />

lifts; limb lengthening and alignment procedures, epiphysiodesis or<br />

shortening <strong>of</strong> the contralateral leg. In more severe cases, there are<br />

two main therapeutic modalities: early amputation with prosthetic<br />

fitting, or limb lengthening and reconstruction. Which treatment is<br />

the best or the right one has been a debate between different authors<br />

and institutions, and continues to be in discussion. The purpose<br />

<strong>of</strong> our study was to assess the outcome <strong>of</strong> two different treatment<br />

methods for fibular hemimelia: lengthening and amputation,<br />

in terms <strong>of</strong> quality <strong>of</strong> life assessed by the Short Form-36 (SF-36)<br />

questionnaire. We present a cohort based, prolective study, with<br />

patients with fibular hemimelia treated at our institution in a 10year<br />

period, between January 1995 and December 2005. From 552<br />

patients with longitudinal deficiency <strong>of</strong> the lower limbs, 91 patients<br />

had the diagnosis <strong>of</strong> fibular hemimelia. These patients were divided<br />

into two groups: A) treated by tibial lengthening (30 patients) and<br />

B) treated by amputation and prosthetic fitting (61 patients). Two<br />

patients from group A and nine from group B were excluded due to<br />

incomplete medical records or follow up. Ten patients from group<br />

A and 28 from group B did not respond the questionnaire and were<br />

thus, eliminated. The study was performed with 42 patients, 18 from<br />

group A (mean age = 16.01 SD = 2.89); and 24 from group B (mean<br />

age = 11.09 SD = 4.47). The SF-36 questionnaire (to assess quality<br />

<strong>of</strong> life), was applied on our study group. A non-parametric test, the<br />

two tailed Mann-Whitney U test was used to assess differences in<br />

SF-36 scores between groups (level <strong>of</strong> significance set at 0.05). In<br />

terms <strong>of</strong> SF-36 scores, group A patients reported a median <strong>of</strong> 100<br />

(90.55 to 100), while group B patients reported a median <strong>of</strong> 89.44<br />

(63.61 to 98.88). This difference in medians between the two groups<br />

differed significantly (Mann-Whitney U = 21.00, n1 = 18, n2 = 24, p<br />

= 0.0000) Our study demonstrated that children treated with either<br />

lengthening or amputation for fibular hemimelia, both reported a<br />

good quality <strong>of</strong> life. However patients who were amputated scored<br />

640<br />

lower than those that were lengthened. Both treatment groups are<br />

different; the decision <strong>of</strong> whether to lengthen or to amputate a<br />

patient is based upon functionality <strong>of</strong> the foot.<br />

pApeR No. 554<br />

Bone Marrow Edema Patterns <strong>of</strong> the Knee in<br />

Symptomatic Pediatric Patients<br />

Sommer Hammoud, MD, New York, NY<br />

Christopher Kepler, MD, Philadelphia, PA<br />

Hollis Potter, MD, New York, NY<br />

Daniel William Green, MD, New York, NY<br />

Symptomatic pediatric patients referred for magnetic resonance<br />

imaging (MRI) commonly present with traumatic bone marrow<br />

edema patterns. This observational study has grouped these into six<br />

mechanistic patterns: hyper-extension; anterior tibial translation;<br />

patellar dislocation; varus or valgus load; direct contusion; and<br />

extensor mechanism overload. MRI referrals <strong>of</strong> symptomatic patients<br />

aged three-18 were captured. A total <strong>of</strong> 314 MRIs performed with a<br />

standard protocol at one institution were reviewed. Images and reports<br />

were reviewed and traumatic bone marrow edema patterns were<br />

analyzed. A traumatic bone marrow edema pattern was identified in<br />

95/314 studies. Patients with closed physes as well as bone marrow<br />

edema secondary to osteochondral lesion and discernable fracture<br />

line were excluded. Bone marrow edema patterns were grouped into<br />

one <strong>of</strong> six patterns in the remaining 60 patients. The average age was<br />

12.2 years. The most frequent pattern was patellar dislocation (n=19)<br />

followed by extensor mechanism overload (n=16) and anterior<br />

tibial translation (n=9). Bone marrow edema signal intensity on fatsuppressed<br />

sequences was classified as severe in 92% <strong>of</strong> cases. Bone<br />

marrow edema patterns are found in symptomatic pediatric patients<br />

with relatively high frequency. We speculate that the high strength<br />

<strong>of</strong> pediatric knee ligaments and tendons relative to epiphyseal bone<br />

contributes to the high rate <strong>of</strong> bone marrow edema patterns seen<br />

on MRI in the symptomatic pediatric patient. We propose that the<br />

majority <strong>of</strong> bone marrow edema patterns follow six specific patterns<br />

which can help the clinician recognize the mechanism <strong>of</strong> injury and<br />

thus, associated pathology.<br />

pApeR No. 555<br />

Rebound after Removal <strong>of</strong> Guided Growth Screw-Plate<br />

Devices<br />

Louise Reid Boyce Nichols, MD, Lutherville Timonium, MD<br />

John E Herzenberg, MD, Baltimore, MD<br />

Guided growth with the screw-plate system has become increasingly<br />

popular in young patients. When used in young patients, the screwplate<br />

device must be removed before skeletal maturity. We analyzed<br />

cases in which rebound deformities occurred after removal <strong>of</strong> screwplate<br />

devices. We reviewed cases <strong>of</strong> hemiepiphysiodesis about the<br />

knee performed at a single institution between 2005 and 2009.<br />

Measurements were obtained from preoperative and 10-month<br />

post-removal radiographs. Rebound was considered to be a change<br />

<strong>of</strong> greater than 3 degrees in the lateral distal femoral angle or medial<br />

proximal tibial angle after screw-plate removal. Thirty-one screwplates<br />

(23 patients) were inserted: 17 in medial distal femora and 14<br />

in medial proximal tibiae. Etiologies included 16 congenital cases<br />

and 15 developmental cases. Diagnoses included congenital femoral<br />

deficiency (three), fibular hemimelia (seven), both congenital<br />

femoral deficiency and fibular hemimelia (four), Marfan syndrome<br />

(one), chromosomal deletion (one), poliomyelitis (one), and<br />

idiopathic angulation (six). Eighteen (58%) <strong>of</strong> 31 cases experienced<br />

rebound. All 10 cases <strong>of</strong> congenital distal femoral valgus rebounded<br />

(p=.006). Two (40%) <strong>of</strong> five congenital proximal tibiae rebounded.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


In the developmental cases, three (43%) <strong>of</strong> seven femora and three<br />

(38%) <strong>of</strong> eight tibiae rebounded. Average age at removal was 10.6<br />

years (range, 6.1’13.9 years). Relapse after screw plate removal is a<br />

significant problem, particularly in the valgus femur. Risk factors for<br />

relapse may include younger age, congenital etiology and insertion<br />

<strong>of</strong> femoral plates.<br />

POSTERS<br />

posteR No. p241<br />

Evaluation <strong>of</strong> Proposed Selection Criteria for Psoas<br />

Lengthening in Individuals with Cerebral Palsy<br />

Walter Huu Truong, MD, Toronto, ON Canada<br />

Tom F Novacheck, MD, Saint Paul, MN<br />

Adam Rozumalski, MS<br />

Cammie Beattie, PT, Toronto, ON Canada<br />

Michael H Schwartz, PhD, Minneapolis, MN<br />

No selection criteria have been agreed upon for psoas lengthening<br />

surgery. A retrospective, case controlled study was performed on<br />

children with cerebral palsy (CP) who underwent a single event<br />

multi-level surgery (SEMLS) and met two-out-<strong>of</strong> three <strong>of</strong> the<br />

following proposed selection criteria after gait analysis: 1) maximum<br />

hip extension no greater than 8° <strong>of</strong> flexion, 2) maximum pelvic tilt<br />

greater than 24°, and 3) pelvic tilt range <strong>of</strong> motion greater than 8°.<br />

One group had a psoas lengthening surgery as part <strong>of</strong> their SEMLS<br />

(psoas group) and one group did not (control group). The Gait<br />

Deviation Index (GDI), Pelvis and Hip Deviation Index (PHiDI) and<br />

Gross Motor Function Classification System (GMFCS) levels were<br />

compared. A total <strong>of</strong> 87 sides met two-out-<strong>of</strong>-three <strong>of</strong> the proposed<br />

selection criteria; 32 in the psoas group and 55 in the control group.<br />

Both groups showed improvement in function after SEMLS. There<br />

was a significantly greater improvement in GDI for the psoas group<br />

in patients with GMFCS levels 3 and 4 (+12.9 versus +7.7, p=0.02).<br />

Odds ratio for poor outcomes in PHiDI for the control group,<br />

compared to the psoas group, was 5.1 (95% CI 1.37 - 18.95), which<br />

was significant. Patients that met the proposed selection criteria<br />

did functionally better if psoas surgery was included as part <strong>of</strong> their<br />

SEMLS, especially if they were classified as GMFCS levels 3 and 4. The<br />

risk <strong>of</strong> no improvement in hip function after SEMLS was significantly<br />

greater if the parameters were met and psoas lengthening was not<br />

performed.<br />

posteR No. p242<br />

MRI Analysis Of Normal And Dysplastic Glenohumeral<br />

Morphology In Children With Birth Palsy<br />

Michael L Pearl, MD, Los Angeles, CA<br />

Eric K Lee, MD<br />

Paul Didomenico, MD<br />

Lauren Peng, MD<br />

Spencer Woolwine, CS, Glendale, CA<br />

Brachial plexus birth palsy (BPBP) frequently results in severe<br />

glenohumeral deformity. Several classification systems exist,<br />

measurement <strong>of</strong> version and PHHA are common. Reliability data<br />

are lacking. The purpose <strong>of</strong> this study was to compare normal and<br />

abnormal MRI findings in BPBP and evaluate the inter-observer<br />

reliability <strong>of</strong> commonly used measures. Twenty-one bilateral MRI<br />

scans <strong>of</strong> children with internal rotation contractures (mean age 3.8,<br />

ER -13°) were evaluated by four independent reviewers trained in<br />

a protocol specific for slice selection and placement <strong>of</strong> reference<br />

641<br />

axes. Reviewers measured version, PHHA and assigned classification<br />

to two established systems: System A, (five categories) and System<br />

B, (seven categories). Inter-observer reliability was evaluated with<br />

intraclass (ICC)/Pearson correlations and percent agreement. System<br />

A was further analyzed after simplification to three categories. Mean<br />

retroversion and PHHA was 5.7° and 48.3%, respectively for the<br />

normal shoulder; 28.2° and 26.9% for the involved. Intraclass<br />

correlation coefficient (ICC) for version ranged from 0.49 to 0.91,<br />

pair-wise Pearson correlations from 0.36 to 0.79. ICC for PHHA<br />

similarly ranged from 0.45 to 0.90. For classification systems A and<br />

B, there was 81% and 67%, respectively. Reducing classification A<br />

to three categories increased agreement (90%). Reviewers were<br />

inconsistent in image slice selection for all but three/42 sequences.<br />

Despite rigorous instructions for making measurements, interobserver<br />

variability challenges the reliability <strong>of</strong> reported values<br />

without further diligence to methodology. Numerical measures<br />

falsely convey precision in clinical situations that may be better<br />

represented by descriptive classification.<br />

posteR No. p243 AlteRNAte pApeR<br />

Osteogenesis Imperfecta Bone: Correlation <strong>of</strong><br />

Histologic Structure With Radiographic Appearance<br />

Frederic Shapiro, MD, Boston, MA<br />

Kathleen Maguire, BA<br />

Evelyn Flynn, MA<br />

The strength <strong>of</strong> osteogenesis imperfecta (OI) bone depends on<br />

its histologic structure but radiographic appearance is currently<br />

used for clinical guidelines. This study correlates these parameters.<br />

Femoral and tibial cortical bone (41 samples) was assessed from<br />

17 OI patients type II, 4 and type III (osteotomy), 13]. Histologic<br />

grading: i) cortical compaction 75%]; ii) lamellar<br />

pattern [discontinuous, continuous]; and iii) percentage woven and<br />

lamellar bone [Grade 1: all woven; Grade 2: woven and lamellar-<br />

-2a woven > lamellar, 2b woven = lamellar, 2c woven < lamellar;<br />

Grade 3: all lamellar--3a partially compacted, 3b fully compacted].<br />

Radiographic grading: i) cortical thickness: thin, thick; ii) long bone<br />

shape: bowed, straight. Histology: Compaction: 75%--22%. Lamellar pattern: all discontinuous.<br />

Percentage woven and lamellar bone: Grade 1--18%, Grade 2--82%<br />

(2a 10%, 2b 18%, 2c 54%), Grade 3--0%. Radiology: Cortices: thick<br />

58 %, thin 42%. Shape: bowed 84%, straight 16%. Correlations: All<br />

lamellar bone was discontinuous (short segments at random angles<br />

to adjacent segments). Cortical compaction: 75%,<br />

thick, usually straight. Percentage woven and lamellar: Grades 1,<br />

2a and 2b--thin cortices; Grade 2c--thick cortices; Grades 1, 2a-bowed;<br />

Grade 2b--bowed or straight; Grade 2c--straight. Type III OI<br />

cortical bone has woven and lamellar tissue with lamellae always<br />

discontinuous. Bone tissue compaction >75% and lamellar > woven<br />

bone accumulations correlate with thicker cortices and straighter<br />

bones. Histologic structure <strong>of</strong> OI bone is an important parameter in<br />

relation to radiographic deformation.<br />

posteR No. p244<br />

An Accelerated Ponseti Method vs. The Standard<br />

Ponseti Method<br />

Paul Richard Harnett, MB, ChB, London, United Kingdom<br />

Jim Harrison, MBBS<br />

Robert Freeman, MBBS, Oswestry, United Kingdom<br />

Sometimes patients are forced to travel long distances to have their<br />

CTEV (congenital talipes equinovarus) treated with the standard<br />

proven Ponseti method. In some cases the journey may take days.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


In addition, keeping a plaster clean and dry for one week can be<br />

challenging and may result in loss <strong>of</strong> position. We hypothesized<br />

that a two-day interval would be equally effective as weekly plaster<br />

changes. We conducted a prospective randomized controlled trial<br />

comparing the standard Ponseti casting method with an accelerated<br />

method for the treatment <strong>of</strong> idiopathic CTEV. The standard weekly<br />

plaster changes method was accelerated to three times per week. We<br />

treated a total <strong>of</strong> 40 consecutive patients (61 feet). The initial median<br />

Pirani score was 5.5 (95%CI 4.5-6.0) in the accelerated group and<br />

5.0 (95%CI 4.0 - 5.0) in the control group. The scores decreased by<br />

an average 4.5 in the accelerated group and 4.0 in the control group.<br />

There was no significant difference in the final Pirani score between<br />

the two groups (Chi squared p-value = 0.308). The median number<br />

<strong>of</strong> treatment days in plaster was 16 in the accelerated group and 42<br />

in the control group (P


treated 479 total fractures (23 per fellow), with 213 type III. There<br />

were no significant changes in surgery or fluoroscopy time between<br />

the four academic quarters. Staff supervision was highest the first<br />

quarter (39%) and decreased to a baseline by the second quarter<br />

(12%). This correlated with an increase in non-ideal radiographic<br />

results between cases seven and 15, from 21% to 33%, after which<br />

the rate decreased. There were four compartment syndromes, one<br />

infection, one postoperative ulnar nerve palsy and no malunions<br />

requiring osteotomy, with no significant differences between fellows<br />

and staff. Fellows became essentially independent by the second<br />

academic quarter. A notable increase in suboptimal results began<br />

at case #7 and reversed at case #15, with no difference in true<br />

complications. Overall, we define a relatively short learning curve<br />

for pediatric orthopaedic fellows treating type III supracondylar<br />

humerus fractures.<br />

posteR No. p248<br />

All-Epiphyseal ACL Reconstruction Improves Knee<br />

Stability: An In Vitro Study<br />

Matthew Stonestreet, MD, Akron, OH<br />

Kerwyn Jones, MD, Akron, OH<br />

Marcus Kirkpatrick, MD<br />

Kushal Shah, BS<br />

Caroline Frampton, BS<br />

Melanie Morscher, Akron, OH<br />

John J Elias, PHD, Akron, OH<br />

An all-epiphyseal approach to anterior cruciate ligament (ACL)<br />

reconstruction in pediatric patients is performed to restore knee<br />

stability without disturbing the physis. The influence <strong>of</strong> allepiphyseal<br />

ACL reconstruction on knee stability was evaluated<br />

in vitro. Ten cadaver knees were tested with the ACL cut and with<br />

an all-epiphyseal ACL reconstruction. The knees were placed on a<br />

testing frame and loaded with quadriceps (600 N) and hamstrings<br />

(200 N) loading at 0°, 15°, 30° and 45° <strong>of</strong> flexion. An anatomical<br />

coordinate system was set on the femur, and a sensor was fixed to<br />

the tibia to characterize tibi<strong>of</strong>emoral kinematics. Thin (0.1 mm)<br />

dynamic pressure sensors were inserted under the menisci and fixed<br />

to the tibia to characterize the center <strong>of</strong> force on the tibia. Paired<br />

t-tests were used to compare all data between the reconstructed<br />

and cut conditions at all angles. Reconstruction shifted the center<br />

<strong>of</strong> force anteriorly on the tibia. On the medial plateau, the anterior<br />

shift was approximately 3 mm, which was significant at all angles.<br />

On the lateral plateau, the anterior shift was approximately 2 mm<br />

from 15° to 45°, with the changes being significant for these flexion<br />

angles. Reconstruction significantly translated the tibia posteriorly at<br />

all angles and significantly reoriented the tibia into varus at 30° and<br />

45°. The reconstruction significantly shifted the tibia laterally and<br />

rotated the tibia externally for some conditions. The all-epiphyseal<br />

ACL reconstruction improves knee stability. Reconstruction primarily<br />

pulled the tibia posteriorly and also reversed other kinematic changes<br />

associated with ACL injury.<br />

643<br />

posteR No. p249<br />

The Effects <strong>of</strong> Hypothyroidism on the Proximal Femoral<br />

Physis in Miniature Swine<br />

Jason C Tank, MD, Akron, OH<br />

Robin Jacquet, Akron, OH<br />

Elizabeth Lowder, Akron, OH<br />

Dylan Childs, MD, Akron, OH<br />

William J Landis, Akron, OH<br />

Todd F Ritzman, MD, Akron, OH<br />

Walter Horne, DVM<br />

Melanie Morscher, Akron, OH<br />

Dennis S Weiner, MD, Akron, OH<br />

Hypothyroidism has been associated with slipped capital femoral<br />

epiphysis (SCFE). Studies <strong>of</strong> hypothyroidism at a cellular level<br />

are limited, but the condition and its potential tissue effects in<br />

miniature swine could serve as a model for human comparison.<br />

This work intended to establish a defined hypothyroid state in<br />

immature miniature swine and evaluate specific molecular, cellular<br />

and extracellular responses <strong>of</strong> their growth plates to the hypothyroid<br />

condition. Two male, 10-week-old Sinclair miniature swine were<br />

given 6-propyl-2-thiouracil (PTU) in their water and two other like<br />

animals (controls) were provided water without PTU. Animal blood<br />

levels <strong>of</strong> thyroid stimulating hormone (TSH), triiodothyronine<br />

(T3) and thyroxin (T4) were monitored weekly. After 15 weeks,<br />

proximal femoral physes were harvested for histology, laser capture<br />

microdissection and quantitative reverse transcription-polymerase<br />

chain reaction analysis. Compared to controls, swine provided PTU<br />

had increased TSH and decreased T3 and T4 levels, features consistent<br />

with a hypothyroid state. Compared to controls, hypothyroid swine<br />

exhibited structurally altered physes and had statistically significant<br />

decreased gene expression levels <strong>of</strong> aggrecan (p < 0.05) and type X<br />

collagen (p < 0.1), trends toward decreased expression <strong>of</strong> type II<br />

collagen and SOX9 and no change in matrix metalloprotease-13<br />

expression. This is the first model establishing hypothyroidism<br />

in miniature swine. On control comparison, hypothyroid swine<br />

physes changed in the molecular and biochemical character <strong>of</strong><br />

their proteoglycans and collagens in addition to their cellular and<br />

extracellular matrix architecture. These differences may provide<br />

insight into human growth plate disorders such as SCFE.<br />

posteR No. p250<br />

Is Radiographic Evaluation Necessary in Children With<br />

a Clinical Diagnosis <strong>of</strong> Sever Disease?<br />

Derek Michael Kelly, MD, Memphis, TN<br />

James Nick Rachel, MD, Memphis, TN<br />

John Barton Williams, BA<br />

Jeffrey R Sawyer, MD, Germantown, TN<br />

William C Warner Jr, MD, Germantown, TN<br />

Sever disease is usually diagnosed clinically, and radiographic<br />

evaluation considered unnecessary. To evaluate the need for<br />

radiographic evaluation with a clinical diagnosis <strong>of</strong> calcaneal<br />

apophysitis, we determined the frequency <strong>of</strong> abnormal radiographic<br />

findings in children with this clinical diagnosis. Clinical records<br />

and radiographs <strong>of</strong> children between the ages <strong>of</strong> four and 17 years<br />

with a chief complaint <strong>of</strong> heel pain were reviewed. Patients with an<br />

insidious onset <strong>of</strong> heel pain were included; those with acute trauma<br />

and a diagnosis <strong>of</strong> Achilles tendinitis were excluded. Radiographs<br />

were reviewed by three orthopaedists (blinded to the clinical<br />

diagnosis) to determine if any radiographic abnormalities were<br />

present. Review identified 98 patients (134 feet) with a mean age<br />

<strong>of</strong> 10.8 years. Positive radiographic findings (lateral radiographs)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


were identified in five patients (five feet): three calcaneal unicameral<br />

bone cysts (UBC), one distal tibial nonossifying fibroma and two<br />

calcaneal stress fractures (one patient had both a calcaneal UBC and<br />

a stress fracture in the same foot). The rate <strong>of</strong> abnormal radiographic<br />

findings in the 96 patients was 5.1% (3.75% in the 133 feet). The<br />

abnormal radiographic findings seen in 5.1% <strong>of</strong> children usually<br />

led to more aggressive treatment including close radiographic<br />

follow up or immobilization. Despite concern about exposure to<br />

ionizing radiation and the cost <strong>of</strong> medical imaging, routine lateral<br />

radiographs appear to be justified for screening <strong>of</strong> pediatric patients<br />

with heel pain. If a diagnosis <strong>of</strong> calcaneal apophysitis is made<br />

without obtaining radiographs, a lesion requiring more aggressive<br />

treatment could be missed.<br />

posteR No. p251<br />

Acetabular Retroversion in Slipped Capital Femoral<br />

Epiphysis<br />

Harish Sadanand Hosalkar, MD, San Diego, CA<br />

Luis Moraleda, MD, Madrid, Spain<br />

Robert Hyun Cho, MD, Los Angeles, CA<br />

Moritz Tannast, Bern, Switzerland<br />

Kai Ziebarth, Bern, Switzerland<br />

Klaus Siebenrock, MD, Bern, Switzerland<br />

Dennis R Wenger, MD, San Diego, CA<br />

The true etiology <strong>of</strong> slipped capital femoral epiphysis (SCFE) remains<br />

an enigma. Previous reports have mainly focused on abnormalities<br />

<strong>of</strong> the proximal femur. Our purpose was to identify any variations on<br />

the acetabular side, particularly related to version and orientation.<br />

We retrospectively reviewed radiographs <strong>of</strong> a 100 consecutive<br />

children with SCFE. Retroversion on plain radiographs was defined<br />

based on the cross-over sign and/or the presence <strong>of</strong> ischial-spine<br />

sign. All radiographs were also measured using validated Hip2Norm<br />

s<strong>of</strong>tware. There were 115 slips (85 unilateral and 15 bilateral). Of<br />

these 115 slips, there were 24 acute slips, 15 acute-on-chronic, and<br />

74 chronic and two were unclassified. There was a positive crossover<br />

sign in all the involved hips and 99% <strong>of</strong> the non-involved hips<br />

(p=0.24). The mean retroversion-index was 34.61% for the involved<br />

hips and 30.76% for the uninvolved hips (p=0.037). There was a<br />

positive posterior wall sign in 93 (80.1%) involved hips and 71<br />

(83.5%) in the un-involved hips (p=0.63). We noted acetabular<br />

retroversion in all patients with SCFE on the involved side. These<br />

findings were consistent on the other side as well and 15% did have<br />

sequential slip. At this point we can only hypothesize whether this<br />

is a primary anatomical variation or a secondary phenomenon. The<br />

relative over-coverage in anterosuperior zone can certainly potentiate<br />

the shear forces on the capital femoral epiphysis with axial loading.<br />

Additionally the positive posterior wall sign significantly noted<br />

in our series is now established to be a factor for progression <strong>of</strong><br />

osteoarthritis. These are purely morphological findings and will<br />

need prospective evaluations and additional data to support the<br />

correlation as well as implications from a treatment perspective.<br />

644<br />

posteR No. p252 AlteRNAte pApeR<br />

Complications <strong>of</strong> Hip Arthroscopy in Children and<br />

Adolescents<br />

Mininder S Kocher, MD, MPH, Boston, MA<br />

Benedict U Nwachukwu, Boston, MA<br />

Eric D McFeely, BA<br />

Adam Nasreddine, BS, Boston, MA<br />

James A Krcik, MD, Orland Park, IL<br />

Dr Jeremy S Frank, Hollywood, FL<br />

Hip arthroscopy has become an established procedure for certain hip<br />

disorders. Complications <strong>of</strong> hip arthroscopy have been characterized<br />

in adult populations, but complications in children and adolescents<br />

have not been well described. The purpose <strong>of</strong> this study was to<br />

characterize complications <strong>of</strong> hip arthroscopy in children and<br />

adolescents. The study design was a retrospective review <strong>of</strong> 218 hip<br />

arthroscopies in 175 patients 18 years old and younger over a nineyear<br />

period by a single surgeon at a tertiary-care children’s hospital.<br />

Patient demographics, indications for surgery and complications<br />

after surgery were recorded. Indications for surgery included: isolated<br />

labral tear (n=131), labral tear with concomitant hip disorder (n=37),<br />

Perthes disease (n=10), hip dysplasia (n=5), juvenile rheumatoid<br />

arthritis (n=3), loose bodies (n=3), osteochondral fracture (n=3),<br />

synovitis (n=2), avascular necrosis (n=1), chondral lesion (n=1),<br />

iliopsoas tendinitis (n=1) and slipped capital femoral epiphysis<br />

(n=1). The overall complication rate in the study population was<br />

1.8%. Complications <strong>of</strong> arthroscopy included: transient pudendal<br />

nerve palsy (n=2), instrument breakage (n=1) and suture abscess<br />

(n=1). No cases <strong>of</strong> proximal femoral epiphyseal separation,<br />

osteonecrosis or growth disturbance were noted. Hip arthroscopy in<br />

children and adolescents appears to be a safe procedure with a low<br />

complication rate similar to adults.<br />

posteR No. p253<br />

A Nearly Radiation-free Approach to the Treatment <strong>of</strong><br />

Developmental Dislocations <strong>of</strong> the Hip<br />

Meghan N Imrie, MD, Menlo Park, CA<br />

Stephanie Pun, MD, Stanford, CA<br />

Lawrence A Rinsky, MD, Palo Alto, CA<br />

James G Gamble, MD, PhD, Palo Alto, CA<br />

John D MacKenzie, MD, San Francisco, CA<br />

Awareness <strong>of</strong> exposure to ionizing radiation to both patients and<br />

surgeons during the course <strong>of</strong> orthopaedic treatment has been<br />

increasingly recognized. In the case <strong>of</strong> developmental dislocations<br />

<strong>of</strong> the hip (DDH), patients are subjected to radiation preoperatively,<br />

as part <strong>of</strong> diagnosis (pre-operative pelvic radiographs);<br />

intra-operatively (during hip arthrogram); immediately postoperatively<br />

(pelvic radiograph in spica cast versus three-dimensional<br />

confirmatory imaging, <strong>of</strong>ten CT scan); and in follow up (scheduled<br />

pelvic radiographs). We sought to reduce patient exposure during<br />

DDH treatment, focusing specifically on the intra-operative and<br />

immediate post-operative periods. Our hypothesis is that patients<br />

with developmental hip dislocations undergoing closed or open<br />

reduction without femoral or pelvic osteotomy can be comparably<br />

treated with radiation-minimizing techniques as with standard<br />

techniques. This was a retrospective review <strong>of</strong> all patients with hip<br />

dislocations treated with the ‘nearly radiation-free’ approach at<br />

our institution. To minimize intra-operative radiation, the minifluoroscan<br />

was used in place <strong>of</strong> a standard image intensifier to<br />

perform the hip arthrogram. To minimize radiation post-operatively<br />

while still confirming concentric reduction with three-dimensional<br />

imaging, all hips were imaged with a new technique <strong>of</strong> a non-<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


sedate rapid sequence MRI within 24 hours <strong>of</strong> the closed or open<br />

reduction. Twelve patients with 12 dislocated hips were identified<br />

over an eight-month period. Average age at time <strong>of</strong> surgery was<br />

nine months (range three to 18 months). Four hips required open<br />

reduction with ligamentum teres transfer; eight hips were closed<br />

reduced. All hip arthrograms were done with a mini-fluoroscan<br />

and all were considered diagnostic. Post-operatively, rapid sequence<br />

MRIs were performed within 24 hours to confirm maintenance and<br />

quality <strong>of</strong> reduction in the spica cast. No patient required sedation or<br />

anesthetic; all MRIs were diagnostic and no scan had to be repeated.<br />

The average image acquisition time was 13 minutes, 29 seconds and<br />

all hips were located. Minimizing exposure to ionizing radiation to<br />

patients, but also surgeons and staff, is important wherever possible.<br />

By using a mini-fluoroscan for hip arthrogram, radiation exposure is<br />

cut by a reported 90%; confirming reduction post-operatively with a<br />

rapid sequence MRI rather than the frequently-used CT scan exposes<br />

the patient to no radiation. Neither technique compromises the<br />

quality <strong>of</strong> hip evaluation.<br />

posteR No. p254<br />

Intercondylar Notch Dimensions & Growth Patterns in<br />

Young Pediatric Patients<br />

Sommer Hammoud, MD, New York, NY<br />

Christopher Kepler, MD, Philadelphia, PA<br />

Hollis Potter, MD, New York, NY<br />

Daniel William Green, MD, New York, NY<br />

A narrow intercondylar notch has been implicated as a predisposing<br />

factor in anterior cruciate ligament injuries. Notch dimensions in<br />

young pediatric subjects have not been well characterized, which is<br />

the purpose <strong>of</strong> this observational study. A pediatric MRI database<br />

<strong>of</strong> 314 studies performed at our institution excluded patients with<br />

prior surgery or acute fracture. MRI measurements <strong>of</strong> femoral width,<br />

notch and anterior notch width were performed as per Anderson et<br />

al. A total <strong>of</strong> 132 MRIs were performed on patients 12 years <strong>of</strong> age or<br />

younger. Femoral width increased until age 14 (r=0.41, p


posteR No. p257<br />

Remodeling Potential <strong>of</strong> Pediatric Completely<br />

Displaced Clavicle Shaft Fractures<br />

Charles T Mehlman, DO, MPH, Cincinnati, OH<br />

Doug Matey, DO, Tulsa, OK<br />

Completely displaced clavicle shaft fractures are considered to heal<br />

and remodel readily in children. The purpose <strong>of</strong> our study was to<br />

conduct a retrospective cohort study to better quantify healing and<br />

remodeling in terms <strong>of</strong> clavicle length and width (i.e., the bump)<br />

with a minimum <strong>of</strong> two years radiographic follow up. Radiographs<br />

<strong>of</strong> completely displaced clavicle shaft fractures were retrospectively<br />

reviewed at our institution between 2001 and 2006. Cases were<br />

excluded due to inadequate follow up or history <strong>of</strong> pathologic<br />

fracture. Fisher’s Exact test was used for data analysis and relative<br />

risks along with 95% confidence intervals are reported. Of the 419<br />

cases identified, 41 were found to meet inclusion criteria with an<br />

average age <strong>of</strong> 6.85 years (30 males, 11 females). More than half <strong>of</strong><br />

the cohort were double shaft diameter).<br />

This translated to a 13 times higher risk (95% CI = 1.84, 99.10) <strong>of</strong><br />

clavicle shortening and a seven times higher risk (95% CI = 0.95,<br />

62.63) <strong>of</strong> permanent bump in children ³10 years <strong>of</strong> age. Children<br />

³10 years <strong>of</strong> age do not reliably remodel their clavicle shaft fractures<br />

as compared to younger children. Although adult clavicle fractures<br />

have received abundant attention in recent years, additional research<br />

should be conducted in pediatrics.<br />

posteR No. p258<br />

Limb Lengthening with a Submuscular Locking Plate<br />

Chang-Wug Oh, MD, Daegu, Republic <strong>of</strong> Korea<br />

Hae Ryong Song, MD, Seoul, Republic <strong>of</strong> Korea<br />

Hyun-Joo Lee, MD<br />

Byung Chul Park, MD, Daegu, Republic <strong>of</strong> Korea<br />

Lengthening over an intramedullary nail (IM) is a common technique<br />

to remove external fixators earlier. However, IM nails are difficult<br />

to use when bone has a narrow canal diameter or is deformed, or<br />

in the presence <strong>of</strong> joint contracture or an open physis in children.<br />

Thus, due to these restrictions and dangerous complications, there is<br />

a demand for a new technique. Ten patients (mean age, 18.5 years),<br />

who were difficult for lengthening over nail technique, underwent<br />

leg lengthening with a submuscular plate. After fixing a locking<br />

plate submuscularly on the proximal segment, an external fixator<br />

was fixed to lengthen the bone after corticotomy. Lengthening was<br />

performed at 1 mm/day. On reaching the target length, three or<br />

four screws were fixed on the distal segment with the removal <strong>of</strong><br />

the external fixator. All patients achieved preoperative target length<br />

(mean, 4.0 cm). Mean duration <strong>of</strong> external fixation was 61.6 days.<br />

Mean external fixation index was 15.1 days/cm, which was less than<br />

one-third <strong>of</strong> the mean healing index. Complications were minor<br />

(eight problems, one obstacle), with 0.9 <strong>of</strong> complication rate. All<br />

patients achieved a satisfactory outcome without restriction <strong>of</strong><br />

adjacent joints. Lengthening with a submuscular locking plate may<br />

successfully permit early fixator removal with fewer complications. It<br />

may be a useful alternative in children or when nailing is difficult.<br />

646<br />

posteR No. p259<br />

Cost Effectiveness <strong>of</strong> the Ponseti Method vs Postero-<br />

Medial Release for the Treatment <strong>of</strong> Clubfoot<br />

Armando Torres-Gomez, MD, Mexico City, DF Mexico<br />

Nelson Cassis, MD, Mexico City, DF Mexico<br />

Jacobo Saleme, MD<br />

Fernando Carlos, MSc, Mexico, DF Mexico<br />

Mauricio Disilvo, MD, FACS<br />

Clubfoot is one <strong>of</strong> the most frequent congenital musculoskeletal<br />

malformations. Diverse treatments have been used, from simple<br />

serial castings to complex s<strong>of</strong>t tissue releases. At the present time,<br />

both the Ponseti technique and the surgical release or posteromedial<br />

release (PMR) are commonly used for the treatment <strong>of</strong><br />

clubfoot deformity. We sought to find out which one <strong>of</strong> these two<br />

treatment options for clubfoot is more cost-efficient in terms <strong>of</strong> cost<br />

per corrected foot. We hypothesized that the Ponseti method is costeffective.<br />

A cost-effectiveness analysis was performed using clinical<br />

and economic assumptions. Considering those values, deterministic<br />

and probabilistic models were built, the cost-effectiveness ratio was<br />

calculated. The incremental cost-effectiveness ratio was computed.<br />

The present analysis is performed from the institution’s perspective.<br />

The temporal horizon for both costs and benefits was considered <strong>of</strong><br />

one year. The effects are measured in terms <strong>of</strong> corrected feet. Two<br />

analyses <strong>of</strong> sensitivity are presented: 1. A deterministic approach.<br />

In this case a one-way sensitivity analysis was performed. 2. A<br />

probabilistic technique was also applied. A Monte Carlo simulation<br />

was performed with 1,000 samples. A cost-effectiveness analysis<br />

is presented with the information obtained. We observed that the<br />

Ponseti method is most cost-effective than the PMR in terms <strong>of</strong><br />

cost per foot corrected. In the first model, there is an incremental<br />

cost <strong>of</strong> $1,465.74 USD per corrected foot; while in the second, the<br />

incremental cost is $985.48 USD per corrected foot. The incremental<br />

cost-effectiveness ratio per effect unit is: $-7.63 USD per corrected<br />

foot. Sensitivity Analysis: deterministic model. In all settings, the<br />

PMR is a dominated intervention. Probabilistic model. The costeffectiveness<br />

analysis resulted from this strategy demonstrates<br />

that the PMR is a dominated intervention. We concluded that the<br />

Ponseti method for the treatment <strong>of</strong> clubfoot is cost-effective when<br />

in comparison to the postero-medial release. The PMR is a clearly<br />

dominated strategy, even under the sensitivity analysis.<br />

posteR No. p260<br />

Use Of The O-Arm Intraoperative Computerized<br />

Tomography Scanner In Pediatric Spinal Surgery<br />

Patrick O’Toole, MD, Dublin 16, Ireland<br />

Sachin Kulkarni, MD<br />

Lauren Tomlinson, BA<br />

John P Dormans, MD, Philadelphia, PA<br />

The use <strong>of</strong> pedicle screws in the treatment <strong>of</strong> spinal deformity has<br />

increased. Insertion <strong>of</strong> pedicle screws is not without potential risks<br />

especially in the thoracic spine. The intraoperative computerized<br />

tomography scanner, or O-arm, allows better visualization to<br />

facilitate better screw placement. We retrospectively reviewed data on<br />

all patients, who utilized the O-arm, that underwent posterior spinal<br />

surgery using thoracic and lumbar pedicle screws. Patients either<br />

had screws placed freehand with screw placement checked using the<br />

O-arm once all the screws were inserted (non-real time group), or<br />

those who were scanned using the O-arm in real time as the screws<br />

were placed (real time group). A total <strong>of</strong> 54 patients were included in<br />

this study. The average age was 14.24 years, with a range <strong>of</strong> 4.5 to 21.9<br />

years. Adolescent idiopathic scoliosis was the underlying diagnosis in<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pediAtRics


the majority <strong>of</strong> patients (70.4%). There were 12 patients in the nonreal<br />

time group and 42 patients in the real time group. The final total<br />

number <strong>of</strong> pedicle screws placed in both groups was 882, with an<br />

average <strong>of</strong> 16.3 screws per patient. Significantly less screws required<br />

replacement in the real time group compared to the non-real time<br />

group, (p value


PAPERS<br />

648<br />

Practice ManaGeMent/non-clinical<br />

pApeR No. 106<br />

Paying Surgeons Less Has Cost More: A 10 Year<br />

Review Of Knee Arthroplasty<br />

Peter Derman, BS, Philadelphia, PA<br />

Joseph Bernstein, MD, Haverford, PA<br />

The Balanced Budget Act <strong>of</strong> 1997 mandated reductions in physician<br />

reimbursement. Yet because total spending is not governed<br />

exclusively by the per-case reimbursement (but also ancillary costs<br />

and the amount <strong>of</strong> work performed), increases in work volume<br />

can negate any potential savings to be produced by lowering fees.<br />

To assess this effect, a review <strong>of</strong> costs and spending for total knee<br />

replacement was undertaken. An annual data set comprising the size<br />

<strong>of</strong> the Medicare population, the number <strong>of</strong> orthopedic surgeons, the<br />

Medicare per-case reimbursement to doctor and hospital and the<br />

number <strong>of</strong> knee replacements performed was compiled from public<br />

sources for the decade spanning 1996-2005. Inflation-adjusted<br />

physician reimbursement decreased 41%, from $2,847 to $1,685.<br />

Nonetheless, spending on physician fees increased, as annual output<br />

grew from 253,841 to 498,169. This corresponded to an increase in<br />

the rate <strong>of</strong> knee replacements from 17.9 per surgeon annually to 30.6;<br />

and an increase in the number <strong>of</strong> knee replacements per thousand<br />

Medicare beneficiaries from 7.6 annually to 13.9. Considering<br />

hospital payments alone, the growth in surgical volume generated<br />

more than $5 billion <strong>of</strong> excess spending. The stated goals <strong>of</strong> the<br />

Balanced Budget Act may have been undermined by the physician fee<br />

cuts enshrined by the act, as surgeons have apparently compensated<br />

for lower fees by working more. If constraining total spending is the<br />

desired goal, the Centers for Medicare & Medicaid Services might<br />

consider increasing the per-case surgical reimbursement, or, more<br />

radically, abandoning fee-for-service payments altogether.<br />

pApeR No. 107<br />

Patient Education And Early Intensive Physiotherapy<br />

Decreases Hospital Stay After Primary THA<br />

Sujith Konan, MRCS, London, United Kingdom<br />

Fares Sami Haddad, FRCS, London, United Kingdom<br />

The aim <strong>of</strong> our study was to determine the role <strong>of</strong> patient education<br />

regarding hospital stay and intensive early physiotherapy on<br />

length <strong>of</strong> hospital stay after total hip arthroplasty (THA) in an<br />

elderly population. Patients undergoing elective primary THA at<br />

our tertiary referral hip reconstruction unit were counseled preoperatively<br />

regarding early hospital discharge (within three to four<br />

days). Intensive physiotherapy was initiated on the day after surgery,<br />

focusing on safe mobilization at home with two crutches and ability<br />

to ascend and descend stairs. Routine outpatient physiotherapy was<br />

provided for all patients at discharge. Fifty patients from this study<br />

group were compared to 50 patients (control) undergoing elective<br />

primary THA prior to introduction <strong>of</strong> this accelerated hospital<br />

discharge program. The average hospital stay decreased to 3.5 days<br />

(range two to four days) in the study group from six days (three<br />

to eight days) in the control group. There was no difference in the<br />

type <strong>of</strong> anaesthetic, ASA grade, age or sex distribution <strong>of</strong> patients in<br />

the two groups. At six-week follow up, no difference was noted in<br />

patient satisfaction between the study and control groups. Patient<br />

education had led to better satisfaction with decreased hospital<br />

stay in the study group. No difference was noted in immediate and<br />

early complications in the two groups. Under comparable clinical<br />

circumstances, implementation <strong>of</strong> patient education regarding<br />

the advantages <strong>of</strong> early mobilization and decreased hospital stay<br />

along with accelerated and focused physiotherapy decreases average<br />

hospital stay elective primary THA.<br />

pApeR No. 108<br />

A Surgical Waste Audit <strong>of</strong> Total Knee Arthroplasties<br />

Nathan Stall, BSc, London, ON Canada<br />

Jennifer Bondy, BSc, Toronto, ON Canada<br />

Yoan Kagoma, BS, London, ON Canada<br />

Doug Naudie, MD, London, ON Canada<br />

Operating rooms (ORs) contribute substantially to healthcare waste<br />

at high costs to the environment and hospital spending. ORs are<br />

estimated to generate 20-33% <strong>of</strong> hospital waste, and prosthetics and<br />

implants represent 17% <strong>of</strong> our institution’s ecological footprint.<br />

In order to investigate waste production associated with total knee<br />

arthroplasties (TKAs), we performed a surgical waste audit. A waste<br />

audit is a quantitative and qualitative assessment tool used to<br />

evaluate waste management. We conducted a waste audit <strong>of</strong> five TKAs<br />

in February 2010. Waste was categorized into six streams: regular<br />

solid waste, recyclable plastics, biohazard waste, linens, sharps and<br />

blue sterile wrap. Volume and weight <strong>of</strong> each stream was quantified.<br />

Canadian Joint Replacement Registry data (2007-2008) was used to<br />

estimate annual weight and volume totals <strong>of</strong> waste from all TKAs<br />

performed in Canada excluding Quebec. The average surgical waste<br />

per TKA was 29.4 pounds, <strong>of</strong> which 19.0 pounds (64.5%) was<br />

normal solid waste, 5.6 pounds (19.2%) was biohazard waste, 3.6<br />

pounds (12.1%) was blue sterile wrap, 0.6 pounds (2.2%) were<br />

recyclables and 0.6 pounds (2.0%) were sharps. Plastic wrappers,<br />

disposable surgical linens and personal protective equipment<br />

contributed considerably to total waste. Non-recyclable waste from<br />

all 38,922 TKRs performed in Canada in 2007-2008 was estimated<br />

at 560.1 tons by weight and 1.1 million cubic feet by volume. TKAs<br />

produce substantial amounts <strong>of</strong> surgical waste. The emergence <strong>of</strong><br />

environmentally-friendly surgical products and waste management<br />

strategies may allow ORs to reduce the negative impacts <strong>of</strong> waste<br />

production without compromising patient care.<br />

pApeR No. 109<br />

Correlation <strong>of</strong> Patient’s Expectations with Constant<br />

Score and SF-36<br />

Sara Martinez-Martos<br />

Carlos Torrens, MD, Castelldefels, Spain<br />

Victoriano Marlet, Sant Boi, Spain<br />

Lautaro Candioti, MD, El Prat De Llobregat, Spain<br />

Joan Miquel<br />

Eva Correa<br />

Enrique Caceres, Pr<strong>of</strong>, Barcelona, Spain<br />

Constant scale and the quality <strong>of</strong> life questionnaire SF-36 are<br />

objective measures <strong>of</strong> patient assessment widely used in the<br />

evaluation <strong>of</strong> shoulder pathology. The patient’s subjective assessment<br />

and the expectations that he would expect following conservative or<br />

surgical treatment is an important fact to consider. The aim <strong>of</strong> this<br />

study is to analyze the correlation between patient expectations with<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pRActice


the functionality <strong>of</strong> the shoulder, by the Constant functional scale<br />

and the quality <strong>of</strong> life questionnaire SF-36. From September 2008<br />

until December 2008, we included 258 patients consecutively that<br />

attended our outpatient pathology in the shoulder unit, with a mean<br />

age <strong>of</strong> 47.38 years. They were evaluated by Constant functional scale,<br />

the quality <strong>of</strong> life scale SF-36 and the expectations questionnaire <strong>of</strong><br />

New York Special Surgery expectations form. Patients were classified<br />

according to their age, gender, employment status, educational level,<br />

affected extremity, previous surgery and diagnosis at the time <strong>of</strong><br />

the consultation (184 had rotator cuff pathology, 29 glenohumeral<br />

arthrosis, 18 old fractures, 15 instability in their shoulder and 12<br />

mixed pathology). The expectations <strong>of</strong> the patient were classified<br />

into four groups according the pain, function, strength and<br />

activities <strong>of</strong> daily living (ADL). We analyzed the correlation between<br />

expectations with the quality <strong>of</strong> life scale SF-36 and the functional<br />

scale <strong>of</strong> Constant by the Spearman correlation coefficient. Mean<br />

Constant score <strong>of</strong> the series is 61,58. Poor correlation was found<br />

between patient´s expectations with the Constant score and SF-36<br />

values. Pain, function, strength and DLA expectations poorly correlate<br />

with total Constant score (0,205, 0,160, -0,023, 0,070), with U.S.<br />

standard physical component (0,073, 0,102, 0,078, 0,167) and with<br />

U.S. standard mental component (-0,074, -0,162, -0,088, -0,081).<br />

Elderly people have greater expectations even when their Constant<br />

score is high (0.242), while young patients have more expectations<br />

when their Constant score is low. When comparing diagnosis, the<br />

patients with old fractures have higher negative correlation between<br />

Constant score and the physical component <strong>of</strong> SF-36 with patient´s<br />

expectations (-0.321, -0.360) meaning that for low Constant score<br />

values patients have more expections. Patient’s expectations in pain,<br />

function, ADL and strength are poorly correlated with the functional<br />

evaluation <strong>of</strong> their shoulder deficits and their perception <strong>of</strong> quality<br />

<strong>of</strong> life. Patients with bad objective function or pain do not expect<br />

more than patients with good objective shoulder function. Older<br />

patients, even if their Constant score is high, have more expectations<br />

than younger people.<br />

pApeR No. 110<br />

Costs and Cost Management Strategies for Hip and<br />

Knee Replacement Implants<br />

Kevin John Bozic, MD, MBA, San Francisco, CA<br />

Alexis Pozen<br />

Samuel Tseng, Berkeley, CA<br />

James Robinson, PhD, Berkeley, CA<br />

Hospitals are pursuing various strategies to gain greater alignment<br />

with physicians and better purchasing relationships with device<br />

manufacturers. The purpose <strong>of</strong> this study was to quantify the patient,<br />

hospital and market characteristics associated with variation in implant<br />

and total procedure costs, and assess the effectiveness <strong>of</strong> hospital<br />

strategies for implant cost containment. Clinical, demographic and<br />

economic data were collected on 10,280 unilateral primary total<br />

knee replacement (TKR) patients and 5,096 unilateral primary total<br />

hip replacement (THR) patients at 61 hospitals in 2008. Device costs<br />

and total procedure cost per case were determined, and multivariate<br />

statistical analyses were used to evaluate the independent effects <strong>of</strong><br />

implant vendor concentration, annual procedure volume, hospital<br />

size, teaching status, hospital market structure and population size<br />

in the local market on implant costs and total procedure costs.<br />

Average implant costs per case ranged from $3,380 to $10,744 for<br />

TKR procedures and from $3,828 to $10,640 for THR procedures.<br />

Higher volume hospitals experienced lower implant costs per case,<br />

but concentration <strong>of</strong> purchases among a small number <strong>of</strong> implant<br />

vendors was associated with higher implant costs per case for both<br />

TKR and THR procedures (both p


to nearest non-LVH street distance were calculated. For patients who<br />

did not have a non-LVH located closer than the hospital <strong>of</strong> service,<br />

the median, 75th, 90th, 95th percentile and maximum distances to<br />

the nearest non-LVH were calculated. During 2001, 3,214 hospitals<br />

provided 183,800 TKR to Medicare patients nationally. While 43% <strong>of</strong><br />

these hospitals were LVH; only 9.8% <strong>of</strong> all TKR surgeries performed<br />

were provided at the LVHs. Among the states with highest number<br />

<strong>of</strong> Medicare TKR procedures, California had the highest proportion<br />

<strong>of</strong> LVHs (57%) and the highest proportion <strong>of</strong> procedures performed<br />

at LVHs (19.8%). However, if access were restricted to non-LVH,<br />

95% <strong>of</strong> the LVH patients served in populous states would not need<br />

to commute more than 60 miles to the nearest non-LVH. However,<br />

up to 10-25% patients in less densely populated states would be<br />

required to travel greater than 100 miles to the nearest non-LVH.<br />

Greater number <strong>of</strong> TKR procedures and smaller proportion <strong>of</strong> rural<br />

population were both associated with lower proportion <strong>of</strong> TKRs<br />

being performed at LVHs (p < 0.0001). For most patients, restricting<br />

access to non-LVH would not result in unmanageable travel<br />

distances. However, travel distances in less densely populated states<br />

could exceed 100 miles. This burden might dissuade patients from<br />

considering TKR. Restricting access to a highly effective procedure<br />

(even if outcomes are slightly poorer at LVH) may not be optimal<br />

policy. Policies considering restricting access to LHVs ought to<br />

consider the disproportionate impact on certain regions and consider<br />

waivers for these areas.<br />

pApeR No. 113<br />

Readmission After <strong>Orthopaedic</strong> Surgery: Causes and<br />

Accuracy <strong>of</strong> Administrative Data<br />

Richard A McCormack, MD, New York, NY<br />

Ryan F Michels, New York, NY<br />

Nicholas Ramos, BA<br />

Lorraine Hutzler, BA<br />

James D Slover, MD, New York, NY<br />

Joseph A Bosco, III MD, New York, NY<br />

The rate <strong>of</strong> unplanned 30-day readmissions to the hospital after<br />

discharge is considered a barometer <strong>of</strong> quality <strong>of</strong> care. While the<br />

readmission rate can be calculated using administrative data, the<br />

accuracy <strong>of</strong> this data is variable and defining which readmissions<br />

are unplanned and preventable is <strong>of</strong>ten difficult. The purpose<br />

<strong>of</strong> this study is to review readmissions to a single hospital and<br />

to understand the causes for readmission. Using the hospital’s<br />

administrative database <strong>of</strong> patient records from 2007 to 2009, all<br />

patients who were readmitted to the hospital within 30 days <strong>of</strong> a<br />

previous hospitalization were identified. Readmissions were broadly<br />

categorized as planned (a staged or rescheduled procedure or a direct<br />

transfer) or unplanned. Unplanned readmissions were defined as<br />

either surgical or nonsurgical complications (medical conditions not<br />

directly related to the procedure). A total <strong>of</strong> 490 readmissions were<br />

identified, <strong>of</strong> which 144 (29.4%) were planned (64 rescheduled<br />

procedures, 67 staged procedures and 13 direct transfers). A total<br />

<strong>of</strong> 346 readmissions (70.6%) were unplanned, with the majority<br />

<strong>of</strong> unplanned readmissions (199, 57.5%) resulting from infection.<br />

Nonsurgical complications accounted for 63 readmissions (11.6%<br />

<strong>of</strong> all readmissions and 18.2% <strong>of</strong> all unplanned readmissions),<br />

with the majority from systemic (17 patients, 27.0% <strong>of</strong> nonsurgical<br />

complications) and gastrointestinal (13 patients, 20.6% <strong>of</strong> nonsurgical<br />

complications) conditions. Nineteen patients were readmitted for<br />

uncontrolled pain and 16 patients for a revision. The average length<br />

<strong>of</strong> stay <strong>of</strong> the readmission was 8.0 days (5.2 days for planned and<br />

9.1 days unplanned). Planned readmissions must be eliminated<br />

when using administrative data to calculate preventable readmission<br />

rates after surgery. The majority <strong>of</strong> unplanned readmissions were<br />

650<br />

due to complications; including surgical site infections and venous<br />

thromboembolism. The high number <strong>of</strong> nonsurgical complications<br />

highlights the importance <strong>of</strong> monitoring the patient closely once they<br />

have been discharged. It is clear that reducing readmissions requires<br />

a reduction in postoperative complications and close monitoring <strong>of</strong><br />

the patient upon discharge.<br />

pApeR No. 114<br />

Economic Simulation <strong>of</strong> Rigid Locked Nails vs.<br />

Titanium Elastic Nails for Pediatric Femur Fracture<br />

Suneel B Bhat, MPhil, Philadelphia, PA<br />

Matthew Robert Garner, MD, New York, NY<br />

Jack M Flynn, MD, Philadelphia, PA<br />

David Andrew Spiegel, MD, Philadelphia, PA<br />

Both rigid locked nails (RLN) and titanium elastic nails (TENs) are<br />

utilized for femur fractures in older children and adolescents. This<br />

study compares the charges associated with RLNs versus TENs with<br />

either routine implant removal or removal only when symptomatic.<br />

We retrospectively reviewed femur fractures treated with either RLNs<br />

or TENs between 2000 and 2007. A unique stochastic decision tree<br />

model based on probabilities derived from our data was developed<br />

and a modified Monte Carlo simulation conducted with identical<br />

theoretical populations aged 10 to 14 modeled from 2007 Census<br />

data. Individually simulated patients accrued age-stratified incidence<br />

<strong>of</strong> femur fracture, charges for nail placement, removal, and any<br />

other associated surgical charges, and the simulation outputs were<br />

statistically analyzed. Average charges per 100,000 patient years<br />

were $547,035 (95% CI $506,489 to $587,580) for routinely<br />

removed TENs, $520,636 (95% CI $480,957 to $560,315) for TENs<br />

removed only symptomatically, and $429,032 (95% CI $391,908<br />

to $466,155) for RLNs. Analysis <strong>of</strong> variance <strong>of</strong> all three groups and<br />

t-test between each <strong>of</strong> the mean per case charges were significant at<br />

p


y non-operative fracture care. We then specifically analyzed the<br />

most common fractures we managed non-operatively and recorded<br />

the number <strong>of</strong> visits for each fracture type to our clinic within the<br />

90 day global period. Multiply injured patients and those from<br />

outside our catchment area who sought follow up care at another<br />

facility were excluded. A comparison was made between collections<br />

from closed treatment codes (using local Medicare reimbursement<br />

rates for CPT codes) and potential reimbursement lost due to visits<br />

during the 90 day global period. A subsequent visit code 99213 was<br />

used as the value <strong>of</strong> visits in the post-operative period potentially<br />

lost during to the 90 day global period. A total <strong>of</strong> 19,815 RVUs<br />

were generated by the trauma service during the 2008 fiscal year.<br />

Non-operative (closed) fracture care generated 2,725 (14%) <strong>of</strong><br />

total RVUs. An analysis <strong>of</strong> the non-operative fracture cases revealed<br />

that pubic ramus, proximal humerus, distal radius, clavicle, lateral<br />

malleolus, proximal tibia and humeral shaft fractures accounted for<br />

more than 50% (1,410) <strong>of</strong> RVUs generated. We believe these are also<br />

fractures that need to be followed most closely in the post-fracture<br />

period. The average amount <strong>of</strong> reimbursement from closed fracture<br />

care less potential lost revenue from non-billable subsequent visits is<br />

summarized in the last column. Closed fracture care is an important<br />

part <strong>of</strong> an orthopaedic trauma practice. There are financial concerns<br />

that closed treatment <strong>of</strong> fractures may not be the most economically<br />

advantageous practice due to the 90 day global period. We found<br />

that in the most common fractures we treat which require close<br />

follow up, it is still financially beneficial to bill for closed fracture<br />

care initially and thus forfeiting all potential collections in the 90<br />

day global period.<br />

pApeR No. 116<br />

Turnover Time In Arthroscopic Shoulder Surgery:<br />

A Reduction Of 18% By Three Simple Strategies<br />

Pr<strong>of</strong> George A C Murrell, MD, Kogarah, NSW Australia<br />

Quinton Yang<br />

The aim <strong>of</strong> the study was to determine if three strategies: parallel<br />

anesthetic induction, improving first case start times and dedicating<br />

porters to surgical theaters could reduce turnover times. A prospective<br />

interventional clinical study <strong>of</strong> operating room processes was<br />

conducted over a 10-week observation period, then a two-week<br />

education period, followed by a 10-week intervention period in a<br />

day surgery facility during arthroscopic shoulder surgery. Three<br />

intervention strategies were used: (1) parallel anesthetic induction,<br />

defined as performing the anesthetic induction on the next patient<br />

during the intra-operative period <strong>of</strong> the currently anesthetized<br />

patient, (2) a dedicated porter system, where the porter remained<br />

with the same theater for the entire turnover period and (3) starting<br />

the first case within 10 minutes <strong>of</strong> scheduled start time. The major<br />

outcome was turnover time the time between end <strong>of</strong> skin closure<br />

<strong>of</strong> the first patient to knife to skin <strong>of</strong> the next patient in the same<br />

theater. Minor outcomes included porter time (wheel out to wheel<br />

in), first case start times and cost savings. Intervention <strong>of</strong> the three<br />

strategies reduced turnover time by nine minutes (18%), from 51 ±<br />

10 mins (mean ± SD) to 42 ± 9 mins. Porter times were reduced by six<br />

minutes (27%). First case start times improved by 12 minutes. Total<br />

time savings per day was 61 minutes. The reduction in turnover time<br />

and improvements in first case start times resulted in a minimum net<br />

financial benefit <strong>of</strong> $430 per day to the day surgery facility. Parallel<br />

anesthetic induction, improving first case start times and dedicating<br />

porters to theaters significantly decreased turnover time.<br />

651<br />

pApeR No. 117<br />

The Effects <strong>of</strong> Health Insurance Status on the Rate <strong>of</strong><br />

Upper Extremity Elective Surgery<br />

Tim James McGlaston, BS, Boston, MA<br />

Kenneth Robert Gundle, MD, Seattle, WA<br />

Arun J Ramappa, MD<br />

Health insurance status is associated with access to medical<br />

care as well as health outcomes. The purpose <strong>of</strong> this study was<br />

to determine effect <strong>of</strong> health insurance status on rate <strong>of</strong> upper<br />

extremity elective surgery. Over a 3.75 year period, 7,577 patients<br />

diagnosed with upper extremity injuries were identified at a single<br />

institution. Their demographics, insurance status and plan <strong>of</strong> care<br />

were reviewed. Insurance categories included private insurance,<br />

workers’ compensation, military-related (TriCare), Medicare,<br />

Medicaid (MassHealth), government-subsidized health care plan<br />

(Commonwealth Care), Free Care (Health Safety Net) and self-pay.<br />

After adjusting for age, gender and diagnosis, the proportion <strong>of</strong><br />

patients who underwent elective surgery was calculated for each type<br />

<strong>of</strong> insurance. Of patients with private insurance, 21% underwent<br />

elective upper extremity surgery. The adjusted rate <strong>of</strong> surgery (AROS)<br />

for workers compensation and patients with military-related<br />

insurance was significantly higher (35%, p=0.001; and 35%, p


pApeR No. 119<br />

The Prevalence <strong>of</strong> Defensive <strong>Orthopaedic</strong> Imaging: A<br />

Prospective Practice Audit in Pennsylvania<br />

Robert Andrew Miller, BS, Philadelphia, PA<br />

Norma Rendon, Philadelphia, PA<br />

Jack M Flynn, MD, Philadelphia, PA<br />

Defensive medicine is ubiquitous, but poorly understood. There<br />

has only been one previously published study <strong>of</strong> defensive<br />

practices among orthopaedic surgeons. Our study was designed<br />

to prospectively capture and analyze the current rate and cost <strong>of</strong><br />

defensive imaging among orthopaedists in a single state. Members<br />

<strong>of</strong> the Pennsylvania <strong>Orthopaedic</strong> Society were asked to voluntarily<br />

and anonymously record a consecutive series <strong>of</strong> patient imaging<br />

decisions (in any setting: clinic, ED, inpatient). Each orthopaedist<br />

was asked to record their demographic information and the modality,<br />

region and indication for each order. Demographics were analyzed<br />

using Chi-squared test for independence and costs were analyzed<br />

using economic models. Defensive imaging composed 324 <strong>of</strong><br />

1,642 (19.7%) orders recorded by 56 orthopaedists. MRI composed<br />

161 (49.7%) <strong>of</strong> defensive orders. By modality: 128/1,119 (11.4%)<br />

radiographs, 161/425 (37.9%) MRIs, 13/40 (33.0%) CT scans, 13/23<br />

(56.5%) bone scans and 9/17 (52.9%) ultrasounds were ordered for<br />

defensive reasons. Defensive imaging was responsible for $93,422<br />

<strong>of</strong> $267,166 (35.0%) <strong>of</strong> total imaging charges, based on Medicare<br />

dollars. Defensive MRIs were responsible for $80,532, or 86.2% <strong>of</strong><br />

defensive costs and 30.1% <strong>of</strong> total costs. A lawsuit within the last<br />

five years and practice over 15 years predicted an increased incidence<br />

<strong>of</strong> defensive orders (p


treatment recommendations requires the inclusion <strong>of</strong> patient choice<br />

and opinion as central components <strong>of</strong> the process. The vast majority<br />

<strong>of</strong> respondents in our study do not feel that the quality <strong>of</strong> their care<br />

will be diminished due to industry funding <strong>of</strong> educational events or<br />

for surgeon tuition and/or travel expenses. Disclosure is important<br />

to people.<br />

pApeR No. 453<br />

Level <strong>of</strong> Evidence <strong>of</strong> Presentations at <strong>American</strong><br />

<strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgery <strong>Annual</strong> <strong>Meeting</strong>s<br />

Pramod Babu Voleti, MD, Philadelphia, PA<br />

Derek J Donegan, MD, Philadelphia, PA<br />

Gwo-Chin Lee, MD, Philadelphia, PA<br />

The <strong>American</strong> <strong>Academy</strong> <strong>of</strong> <strong>Orthopaedic</strong> Surgery (AAOS) <strong>Annual</strong><br />

<strong>Meeting</strong> is a major international forum for scientific exchange and<br />

education. The AAOS Program Committee works continuously to<br />

improve the scientific quality <strong>of</strong> material presented at this meeting<br />

each year. One measure <strong>of</strong> quality is the level <strong>of</strong> evidence on which<br />

each study is based. The purpose <strong>of</strong> this study is to evaluate the level <strong>of</strong><br />

evidence <strong>of</strong> papers and posters presented at the 2004, 2007 and 2010<br />

AAOS <strong>Annual</strong> <strong>Meeting</strong>s. Abstracts obtained from the AAOS <strong>Annual</strong><br />

<strong>Meeting</strong> <strong>Proceedings</strong> from 2004 (290 papers and 466 posters),<br />

2007 (525 papers and 541 posters) and 2010 (720 papers and 569<br />

posters) were analyzed by three reviewers. The level <strong>of</strong> evidence <strong>of</strong><br />

each presentation was determined based on the evaluation system<br />

adopted by the AAOS. The results were subdivided according to<br />

orthopaedic subspecialty and type <strong>of</strong> presentation (paper vs. poster).<br />

With each successive year, there was a substantial increase in the<br />

percentage <strong>of</strong> Level I studies (2.9% in 2004, 5.1% in 2007, 7.2% in<br />

2010), Level II studies (18% in 2004, 23% in 2007, 29% in 2010)<br />

and Level III studies (26% in 2004, 29% in 2007, 33% in 2010), with<br />

a concomitant decrease in the percentage <strong>of</strong> Level IV studies (54%<br />

in 2004, 43% in 2007, 31% in 2010). These trends were consistent<br />

across all orthopaedic subspecialties and in both the paper and poster<br />

subgroups. In 2010, Level I studies comprised 8.8% <strong>of</strong> papers and<br />

5.2% <strong>of</strong> posters and Level II studies comprised 31% <strong>of</strong> papers and<br />

26% <strong>of</strong> posters. Among subspecialty categories in 2010, Hand and<br />

Wrist had the largest percentage <strong>of</strong> Level I studies (9.7%) and Foot<br />

and Ankle had the smallest percentage <strong>of</strong> Level I studies (4.5%). The<br />

level <strong>of</strong> evidence <strong>of</strong> studies presented at the AAOS <strong>Annual</strong> <strong>Meeting</strong> is<br />

steadily increasing - a mark <strong>of</strong> continual improvement in the quality<br />

<strong>of</strong> the scientific program.<br />

pApeR No. 454<br />

Testing for the Presence <strong>of</strong> Positive-Outcome Bias in<br />

Peer Review: A Randomized Controlled Trial<br />

Seth S Leopold, MD, Seattle, WA<br />

Gwendolyn Beth Emerson, MD, Minneapolis, MN<br />

Winston J Warme, MD, Bellevue, WA<br />

Fredric M Wolf, PhD, Seattle, WA<br />

James D Heckman, MD, Manchester, VT<br />

Richard A Brand, MD, Philadelphia, PA<br />

If positive-outcome bias (POB) exists, it threatens the integrity <strong>of</strong><br />

evidence-based medicine. We sought to determine whether POB is<br />

present during peer review by testing whether peer reviewers would<br />

1) recommend publication <strong>of</strong> a ‘positive’ version <strong>of</strong> a fabricated<br />

manuscript over an otherwise-identical ‘no-difference’ version; 2)<br />

identify more purposefully placed errors in the no-difference version;<br />

and 3) rate the methods section in the positive version more highly<br />

than the identical methods section in the no-difference version.<br />

Two versions <strong>of</strong> a well-designed randomized controlled trial that<br />

653<br />

differed only in the direction <strong>of</strong> the finding <strong>of</strong> the principal study<br />

endpoint were submitted for peer review to The Journal <strong>of</strong> Bone<br />

& Joint Surgery <strong>American</strong> and Clinical <strong>Orthopaedic</strong>s and Related<br />

Research; 238 reviewers were randomly allocated to review either<br />

a positive or a no-difference version <strong>of</strong> the manuscript. Reviewers<br />

were more likely to recommend the positive version <strong>of</strong> the test<br />

manuscript for publication than the no-difference version (97.3%<br />

vs. 80%; p = 0.005). Reviewers detected more errors in the nodifference<br />

manuscript than in the positive version (0.85 vs. 0.41; p<br />

< 0.001). Reviewers awarded higher methods scores to the positive<br />

manuscript than to the no-difference manuscript (8.24 vs. 7.14; p<br />

= 0.005), even though the methods sections in the two manuscript<br />

versions were identical. POB was present during peer review. A<br />

fabricated manuscript with a positive outcome was more likely to be<br />

recommended for publication than was an otherwise-identical nodifference<br />

manuscript. POB can result in inappropriate inflation <strong>of</strong><br />

apparent treatment effects when the literature is subjected to metaanalysis.<br />

pApeR No. 455<br />

Utility <strong>of</strong> AAOS OITE Scores in Predicting ABOS Part I<br />

Outcomes<br />

David Swanson, PhD<br />

Kathleen Holtzman, BA, BS<br />

Deniz Bucak, BS, Philadelphia, PA<br />

Amy Sawhill, BA<br />

Carol Morrison, PhD<br />

Shepard R Hurwitz, MD, Chapel Hill, NC<br />

G Paul De Rosa, MD, Chapel Hill, NC<br />

John Lawrence Marsh, MD, Iowa City, IA<br />

This collaborative study investigated the utility <strong>of</strong> scores on the AAOS<br />

<strong>Orthopaedic</strong> In-Training Exam (OITE) for identification <strong>of</strong> residents<br />

at risk for failing ABOS Part I. Scores <strong>of</strong> the 3,132 examinees taking<br />

ABOS Part I for the first time between 2002 and 2006 were matched<br />

against AAOS records from the 1997 to 2006 OITE administrations;<br />

at least one OITE score was located for 92% <strong>of</strong> ABOS examinees. After<br />

normalizing OITE percentile ranks to place scores from different<br />

administrations on roughly the same scale, descriptive statistics for<br />

and correlations between ABOS and OITE performance in each year<br />

<strong>of</strong> training were computed, and regression analyses were conducted<br />

to predict Part I scores and pass/fail results from OITE performance.<br />

Mean OITE scores increased significantly as residents progressed<br />

through training, as did correlations between OITE and Part I scores,<br />

reaching a maximum <strong>of</strong> 0.53 in the 3rd and 4th years in training.<br />

Logistic regression results indicated that residents with OITE scores<br />

in the bottom decile during the 2nd, 3rd or 4th year in training were<br />

five-15 times more likely to fail Part I than those scoring in the top<br />

half <strong>of</strong> the OITE score distribution in the same training year. OITE<br />

scores are good predictors <strong>of</strong> ABOS Part I outcomes, particularly in<br />

later years <strong>of</strong> residency training, and OITE performance can be used<br />

effectively by program directors for identification <strong>of</strong> residents at risk<br />

for failing Part I.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pRActice


pApeR No. 456<br />

Introduction <strong>of</strong> Multimedia on ABOS Part I: A Controlled<br />

Trial <strong>of</strong> the Impact on Item Characteristics<br />

Kathleen Holtzman, BA, BS<br />

Randall Evan Marcus, MD, Cleveland, OH<br />

Harry N Herkowitz, MD, Royal Oak, MI<br />

Regis J O’Keefe, MD, Rochester, NY<br />

David Swanson, PhD<br />

Jean D’Angelo, BA<br />

Carol Morrison, PhD<br />

Shepard R Hurwitz, MD, Chapel Hill, NC<br />

With the phase-in <strong>of</strong> computer-based administration <strong>of</strong> ABOS Part<br />

I in 2009, three new multimedia item formats were introduced.<br />

Interspersed with scored test material on the 2009 ABOS Part I exam,<br />

12 video-based arthroscopy items, 23 video-based physical exam<br />

items and six CT/MR items in two formats were compared with<br />

unscored content-matched controls, and responses were analyzed<br />

for 718 first-time examinees. Results from use <strong>of</strong> the formats on<br />

the July 2010 Part I exam will also be presented. Compared with<br />

content-matched text controls, video-based arthroscopy items were<br />

slightly easier (mean % correct), more discriminating (mean itemtotal<br />

correlation) and required an average <strong>of</strong> 26 more seconds for<br />

examinee responses. Relative to text controls, video-based physical<br />

finding items were slightly more difficult, less discriminating and<br />

required 23 more seconds for responses. Compared with matched<br />

single-slice controls, multi-slice and stacked CT/MR items were<br />

similar in item difficulty (% correct), more discriminating and<br />

required 50 more seconds for responses. Examinee responses to<br />

end-<strong>of</strong>-test survey items indicated that they preferred more authentic<br />

presentation <strong>of</strong> clinical findings, though there were some difficulties<br />

with the user interface for CT/MR formats. Review <strong>of</strong> study results by<br />

ABOS led to approval <strong>of</strong> two multimedia formats for scored use on<br />

Part I because <strong>of</strong> the increased authenticity with which they assess<br />

important skills in orthopaedic practice.<br />

pApeR No. 457<br />

On-Line Case Simulation: The Ability To Screen,<br />

Identify And Initially Manage Inflammatory Arthritis<br />

Veronica Marie Rita Wadey, MD, Toronto, ON Canada<br />

Heather McDonald-Blumer, MD, Toronto, ON Canada<br />

Alfred Cividino, MD, Hamilton, ON Canada<br />

David Levy, MD<br />

Jean Wessel, PhD<br />

Dr Deborah Kopansky-Giles, Toronto, ON Canada<br />

Jody McIlroy, PhD<br />

Douglas Archibald, PhD(c), Toronto, ON Canada<br />

The ability to screen, identify and initially manage patients with<br />

inflammatory arthritis was identified as a priority item at the<br />

2005 National Summit on Standards for Arthritis Prevention and<br />

Care. The purpose <strong>of</strong> this project was to complete the content and<br />

its accompanying assessment tools proposed for an interactive<br />

technology-learning resource pertaining to inflammatory arthritis.<br />

Subject matter experts were recommended by their pr<strong>of</strong>essional<br />

associations to develop content for the gait, arms, legs and spine<br />

(GALs) screening for arthritis and a Sore Hands, Sore Feet (SHSF)<br />

case simulation. Evaluation templates were developed. A storyboard<br />

with instructional designs for an interactive educational experience<br />

and assessment tool was completed and a technology template was<br />

constructed. Eighty Canadian healthcare providers were invited to<br />

review this on-line content. Each participant was provided access to<br />

654<br />

the MSK Health website learning modules. Pre/post test measures<br />

were used. Sixty-two percent (49/80) <strong>of</strong> the invitees participated in<br />

the study. There was a statistically significant increase in scores from<br />

the pre-test for GALS (M = 49%, SD = .23) to the post-test scores<br />

(M=79%, SD = .20), p


completed the survey. Some 49% (292) had never used a reference<br />

manager. Of the 299 using a reference manager, 87% (257) used<br />

Endnote, 12% (37) RefWorks and 4% (13) RefMan. The perceived<br />

difficulty in following journal guidelines among experienced users<br />

was significantly less (p


practice location and setting and their intended work output (e.g.<br />

years in practice and days <strong>of</strong> work per week). Generational and<br />

gender differences were also examined. An online, self-administered<br />

survey was emailed to U.S. PGY3+ residents querying them about<br />

their fellowship specialty choice and their intended career plans.<br />

The survey was tested in a pilot study <strong>of</strong> 20 orthopedic trainees and<br />

modified accordingly. A power analysis was performed, determining<br />

that 335 respondents were needed to achieve a 95% confidence level<br />

for p


There were 16 male and 49 female patients, with an average age <strong>of</strong><br />

80.3 (between 57 and 95) years old. Osteosynthesis was performed<br />

in 37 patients, and 28 patients underwent bipolar hemiarthroplasty.<br />

A liaison clinical pathway played the role <strong>of</strong> a progress report during<br />

hospitalization and a referral request consisting <strong>of</strong> the following<br />

patient information: (1) general and preoperative information; (2)<br />

general condition on discharge; (3) walking and basic movements.<br />

The Functional Independence Measure (FIM) scores at admission and<br />

discharge and the admission periods for the treatment in convalescent<br />

stage (in our hospital) were examined. After introduction <strong>of</strong> a liaison<br />

clinical pathway, the FIM score was 78.7±30.2 points at the admission<br />

to our hospital and 93.8 ±29.5 points at discharge, with a significant<br />

improvement (p


posteR No. p265<br />

<strong>Orthopaedic</strong> Surgery Delivery in Rural <strong>American</strong><br />

Hospitals: A survey <strong>of</strong> rural hospital administrators<br />

Derek Weichel, MD, Tampa, FL<br />

Many rural <strong>American</strong> residents prefer to receive their medical care<br />

locally. There is a lack <strong>of</strong> information on how rural hospitals provide<br />

orthopaedic care to their communities. The purpose <strong>of</strong> this study was<br />

to determine how orthopaedic surgical services are provided in rural<br />

America. All hospitals in Florida, Montana, Nebraska, West Virginia<br />

and Arizona that were located in zip codes that met the criteria<br />

for being a rural town according to the rural urban commuting<br />

area codes were included. A survey covering many different topics<br />

including community and hospital demographics, orthopaedic<br />

surgical staffing and the types <strong>of</strong> orthopaedic surgical services<br />

<strong>of</strong>fered was sent to the hospital administrators. A total <strong>of</strong> 145 <strong>of</strong><br />

223 rural hospitals completed the survey. Thirty percent had at least<br />

one full time orthopaedic surgeon. Some 25% did not provide any<br />

orthopaedic surgical services. A total <strong>of</strong> 18% had an orthopaedic<br />

surgeon on call for the emergency room (ER) every night. Sixty-five<br />

percent never had an orthopaedic surgeon on ER call. A total <strong>of</strong> 33%<br />

stated that they were currently recruiting an orthopaedic surgeon.<br />

Some 52% stated that it is more difficult to recruit an orthopedic<br />

surgeon when compared to a general surgeon and only 4% felt it<br />

was easier to recruit an orthopaedic surgeon. A total <strong>of</strong> 71% <strong>of</strong> the<br />

administrators stated that there is a need for additional orthopaedic<br />

surgical services in their community. Some 77% <strong>of</strong> the hospitals<br />

do perform both inpatient and outpatient surgeries and 75% have<br />

anesthesia available 24 hours per day. For those hospitals that do not<br />

have a full time orthopaedic surgeon, members <strong>of</strong> those communities<br />

must travel an average <strong>of</strong> 55 miles for emergency orthopaedic surgical<br />

care. There are many rural <strong>American</strong> communities that have limited<br />

or no access to orthopaedic surgical services. While many <strong>of</strong> the<br />

rural hospital administrators feel that there is a need for additional<br />

orthopaedic surgical services in their communities, it is difficult to<br />

recruit orthopaedic surgeons to these rural areas.<br />

posteR No. p266<br />

Variations in Acute Care Length <strong>of</strong> Stay After<br />

Orthopedic Surgery<br />

Nelson Fong SooHoo, MD, Los Angeles, CA<br />

John D Fitzgerald, MD, PhD, MPH<br />

Haoling H Weng, MD<br />

Susan L Ettner, PhD<br />

The purpose <strong>of</strong> this study is to report variations in the length <strong>of</strong> stay<br />

following acute hospitalization for orthopaedic surgical procedures.<br />

The effect <strong>of</strong> changes in Medicare reimbursement policies on the<br />

length <strong>of</strong> stay is analyzed. The length <strong>of</strong> stay following surgical<br />

fixation for hip fractures, elective total hip replacement and elective<br />

total knee replacement was analyzed using time series analysis <strong>of</strong><br />

a 100% sample <strong>of</strong> Medicare patients undergoing these procedures<br />

in the years 1996 through 2001. Variations in the month-tomonth<br />

length <strong>of</strong> stay are analyzed at the county, state and Censusregion<br />

levels. Length <strong>of</strong> stay following hip fractures and total joint<br />

replacement was trending downward in all regions examined until<br />

the implementation <strong>of</strong> the Medicare Short Stay Transfer Policy in<br />

1998 created disincentives to early discharge. There was limited<br />

regional variation in the length <strong>of</strong> stay with the exception <strong>of</strong> longer<br />

times seen in New York state. The exemption <strong>of</strong> New York from the<br />

Medicare Prospective Payment System until 1997, as well as a lower<br />

rate <strong>of</strong> managed care penetration, contributed to the longer length<br />

<strong>of</strong> stay in New York compared to other states. Medicare payment<br />

polices have had significant impacts on trends in the length <strong>of</strong> stay<br />

658<br />

following surgical treatment <strong>of</strong> hip fractures and elective total joint<br />

replacement.<br />

posteR No. p267<br />

Clinical And Biochemical Characteristics After Intra-<br />

Articular Injection Of Osteoarthritis<br />

Masaki Shimizu, MD, Maebashi, Gunma, Japan<br />

Hiroshi Higuchi, MD, Maebashi-Shi, Japan<br />

Kenji Takagishi, Pr<strong>of</strong>, Maebashi, Japan<br />

Tetsuya Shinozaki, Maebashi-shi, Japan<br />

Tsutomu Kobayashi, MD, Gunma, Japan<br />

Kazuhika Hatayama, MD<br />

Intra-articular injections <strong>of</strong> sodium hyaluronate (Na-HA) and<br />

corticosteroid (CS) are used for the treatment <strong>of</strong> osteoarthritis, and<br />

the clinical usefulness has been reported. Some studies have discussed<br />

the effectiveness <strong>of</strong> injection therapy in terms <strong>of</strong> the clinical results,<br />

but no cohort studies have performed evaluations <strong>of</strong> effectiveness<br />

based on changes in joint biomarkers. This prospective randomized<br />

study compared the efficacy <strong>of</strong> Na-HA and CS injections based on<br />

clinical scores and levels <strong>of</strong> biochemical markers for osteoarthritis.<br />

A total <strong>of</strong> 51 patients with knee osteoarthritis received intra-articular<br />

injections <strong>of</strong> either Na-HA or CS and were followed for six months<br />

after treatment. Pain and inflammatory scores were evaluated at the<br />

baseline, at five weeks and at six months. We also measured joint<br />

fluid levels <strong>of</strong> hyaluronan (HA), chondroitin 6-sulfate, chondroitin<br />

4-sulfate, matrix metalloproteinase (MMP)-9 and tissue inhibitor <strong>of</strong><br />

MMP-1 at the baseline and at five weeks. In both groups, injection<br />

therapy significantly improved pain/inflammation scores with time<br />

(P


also analyzed. Seventeen cases were recognized as SSI (2.1%); nine<br />

cases were superficial and eight cases were deep infections. Steroids<br />

administration showed a statistically significant risk <strong>of</strong> SSI; on the<br />

other hand, methotrexate administration was a negative risk factor<br />

<strong>of</strong> SSI. The dose <strong>of</strong> oral steroids at the time <strong>of</strong> surgery clearly showed<br />

a positive dose-dependent correlation with the rate <strong>of</strong> SSI. After<br />

introducing the strict guideline <strong>of</strong> CDC, reported incidences <strong>of</strong> SSI<br />

became higher (approximately 2%). In those reports, more than<br />

half the cases <strong>of</strong> SSI occurred in superficial lesions. The results <strong>of</strong><br />

current study were similar to recent reports. As for risk factors, the<br />

administration <strong>of</strong> steroids was a risk <strong>of</strong> SSI; in contrast, administration<br />

<strong>of</strong> MTX was a negative risk factor <strong>of</strong> SSI.<br />

posteR No. p269 AlteRNAte pApeR<br />

<strong>Orthopaedic</strong> Call Coverage at Level II Centers<br />

Robert H Blotter, MD, Marquette, MI<br />

Robert Winn<br />

Jody McCollum, MPAS<br />

Several studies have looked at trends <strong>of</strong> orthopaedic call availability<br />

since the Emergency Medical Treatment and Active Labor Act<br />

(EMTALA) in 2003 and found it a problem, some even calling it a<br />

crisis. No one has looked exclusively at level II trauma centers, which<br />

may be at increased risk because <strong>of</strong> their exposure to complex patients<br />

without the benefit <strong>of</strong> resident manpower. A 15-question survey was<br />

mailed to the nursing director at all 127 level II trauma centers in<br />

September 2009. Sixty-three surveys were returned for a response<br />

rate <strong>of</strong> 49.6%. Statistical analysis was performed by determination<br />

<strong>of</strong> the correlation coefficient and comparison by t-test. The average<br />

years accredited, as a trauma center was 10.3 years. A total <strong>of</strong> 82%<br />

<strong>of</strong> the centers transferred less than 5% <strong>of</strong> their cases. The average<br />

number taking call was 7.75 and 72.6% were compensated for call<br />

monetarily. Trauma call coverage was significantly more difficult<br />

today than five years previously (p


asis to all people working with orthopaedic patients, including<br />

the physicians, and all team members are expected to provide work<br />

plans for making improvements based on these reports.<br />

posteR No. p272<br />

Clinical Pathway Can Improve Quality <strong>of</strong> Care in<br />

Patients Undergoing TKA<br />

Kyung-Hag Lee, MD, Seongnam-Si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

In Jun Koh, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Kil Jae Lee, MD<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Eun Seok Seo, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Byung June Chung, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jae Ho Yoo, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Clinical pathways are management plans that display goals for<br />

patients and provide the sequence and timing <strong>of</strong> actions necessary<br />

to achieve these goals with optimal efficiency. We aimed to evaluate<br />

the effectiveness <strong>of</strong> a clinical pathway for patients who underwent<br />

total knee arthroplasty (TKA). We performed retrospective<br />

comparisons between 50 unilateral TKA patients who were<br />

managed on a clinical pathway in 2008 (clinical pathway group)<br />

and 50 patients who underwent the same procedure in 2007 prior<br />

to the pathway’s implementation (control group). The major<br />

comparative outcomes included length <strong>of</strong> hospital stay, total costs,<br />

readmission rates and postoperative complications. In addition, we<br />

conducted a questionnaire survey <strong>of</strong> 17 residents and 21 nurses for<br />

advantages and disadvantages, and overall satisfaction <strong>of</strong> the TKA<br />

clinical pathway using a 10-point visual analog scale. The clinical<br />

pathway group had significantly shorter length <strong>of</strong> hospital stay (p<br />


posteR No. p275<br />

Developing a New Pre-Clinical Orthopedic Curriculum:<br />

Being an Agent <strong>of</strong> Change<br />

Charles S Day, MD, MBA, Boston, MA<br />

Yangyang Yu, BA<br />

Albert C Yeh, Cambridge, MA<br />

Ronald Arky, MD, Boston, MA<br />

Ms Lori Newman<br />

David Roberts, MD<br />

The inadequacy <strong>of</strong> orthopedic education at medical schools has been<br />

well documented in literature. This study describes the framework <strong>of</strong><br />

a systematic approach to instituting curricular change and developing<br />

an orthopedic curriculum at a medical school. At a single academic<br />

medical school, a new orthopedic curriculum was instituted in a<br />

seven-step process, based on John P. Kotter’s stepwise approach to<br />

successfully leading and implementing change. The eight distinct steps<br />

included: identifying the existing orthopedic curriculum, assessing<br />

the existing orthopedic curriculum, identifying key supporting<br />

educators, initiating reform, lobbying for course additions, designing<br />

course content, leading faculty development and evaluating the<br />

implemented changes. In 2005, 40 hours <strong>of</strong> orthopedic education<br />

were identified, which was 25 hours below the national average<br />

in preclinical curricula. Students were then surveyed to assess the<br />

current curriculum, which revealed a significant deficiency in basic<br />

musculoskeletal knowledge. These results were presented to medical<br />

educators and, in response, a musculoskeletal task force was created<br />

to develop four-year education objectives. Ten course directors were<br />

contacted to lobby for the addition <strong>of</strong> time dedicated to orthopedic<br />

education to the pre-clinical curriculum. After successful addition<br />

<strong>of</strong> time into three courses, courses were designed according<br />

to the previously developed education objectives. Orthopedic<br />

faculty members were then recruited from affiliated hospitals and<br />

underwent faculty training. To evaluate the changes, the first class <strong>of</strong><br />

students to undergo the new curriculum was surveyed with the same<br />

survey materials. Curriculum integration involves demonstrating a<br />

need for change, proposing feasible innovation, garnering internal<br />

and external support, developing appropriate human resources and<br />

providing ongoing evaluation.<br />

SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se41<br />

FDA Today: Latest Regulatory Perspectives Regarding<br />

Metal-on-Metal Joint Replacement<br />

Michael C Owens, Silver Spring, MD<br />

Elizabeth Frank, MS, Rockville, MD<br />

Deepa Gavini, MS, Silver Spring, MD<br />

John Bowsher, PhD, Silver Spring, MD<br />

Ron Kaczmarek, MD, Gaithersburg, MD<br />

Barbara Buch, MD, Silver Spring, MD<br />

Metal-on-metal (MOM) hip joint replacements have seen almost<br />

five decades <strong>of</strong> clinical use worldwide. However, recent reports <strong>of</strong><br />

adverse event data on MOM total joint replacements from multiple<br />

countries have led to growing concerns. These growing concerns lead<br />

to an increased regulatory scrutiny because <strong>of</strong> FDAs responsibility to<br />

promote and protect the public health. The purpose <strong>of</strong> our scientific<br />

exhibit is to provide updates on the latest regulatory perspectives<br />

regarding MOM joint replacement, from pre-market to post-market<br />

activities. From a pre-market perspective, the exhibit will address<br />

661<br />

current practices regarding how a clinical study should be designed<br />

and conducted to collect adequate data to support a marketing<br />

application. Current clinical trial design considerations will be<br />

covered, with a special focus on joint replacement devices with a<br />

MOM articulation. In addition, the applicability <strong>of</strong> these clinical<br />

trial design considerations and MOM technology for cervical and<br />

lumbar total disc replacements will also be discussed. From a postmarket<br />

perspective, the exhibit will outline current adverse event<br />

reporting trends for MOM joint replacement devices. Our exhibit<br />

will also discuss what type <strong>of</strong> information is important to capture<br />

on an adverse event report. Finally, the exhibit will outline postapproval<br />

study design considerations, with a special focus on devices<br />

with MOM articulations. n/a<br />

scieNtific exHibit No. se42<br />

The Patient Protection and Affordable Care Act: Impact<br />

on You and Your Patients<br />

Richard C Mather, III MD, Durham, NC<br />

Carolyn Hettrich, MD, MPH, Nashville, TN<br />

Samir Mehta, MD, Philadelphia, PA<br />

Bruce D Browner, MD, Farmington, CT<br />

President Obama ushered in a new era <strong>of</strong> U.S. health care by signing<br />

the Patient Protection and Affordable Care Act (PPACA). This 2400+<br />

page document brings significant changes to orthopaedic surgeons<br />

and our patients. However, understanding how we will be affected<br />

is challenging given the breadth and complexity <strong>of</strong> the bill. In this<br />

scientific presentation, we aim to summarize the legislation to<br />

its most impactful points and discuss legislative action since the<br />

bill’s passage. After analyzing this health care reform package, we<br />

summarize the relevant provisions likely to affect the practice <strong>of</strong><br />

orthopaedic surgeons. We organize this by three distinct sections:<br />

how the bill affects orthopaedic surgeons, patients, and legislative<br />

action since the bill’s passage. We will provide a post-exhibit quiz<br />

and an website for review. Pertinent facets <strong>of</strong> the legislation include<br />

the Independent Payment Advisory Board and increased use <strong>of</strong><br />

comparative effectiveness research. We explain how insurance<br />

coverage will be expanded to cover all <strong>American</strong>s and outline the<br />

quality initiatives created by the bill. We provide political updates<br />

since the bill’s passage, including reform <strong>of</strong> the sustained growth<br />

rate and discuss efforts to repeal or revise portions <strong>of</strong> the bill. The<br />

PPACA is a difficult to understand piece <strong>of</strong> legislation with broad<br />

and significant effects. In this scientific presentation, we summarize<br />

the bill’s most impactful points for orthopaedic surgeons and their<br />

patients and review legislative action since the bill’s passage.<br />

scieNtific exHibit No. se43<br />

Evidence-Based Practice Committee (EBPC) Scientific<br />

Exhibit<br />

William Timothy Brox, MD, Fresno, CA<br />

Evidence-Based <strong>Orthopaedic</strong> Practice is an essential component <strong>of</strong><br />

contemporary patient care. Evidence has always been part <strong>of</strong> decision<br />

making and recommendations to patients, it now has even greater<br />

importance with the advent <strong>of</strong> quality evaluation, payer financial<br />

decisions, and regulatory oversight. The purpose <strong>of</strong> this exhibit is<br />

to:a)’Summarize the principles <strong>of</strong> evidence-based medicine, b)’To<br />

provide an overview <strong>of</strong> the AAOS activities in evidence-based<br />

medicine, and c)’To present recently approved evidence-based<br />

guidelines.Evidence-based practice is the balance and integration<br />

<strong>of</strong> three key components: a)’The best available research evidence,<br />

b)’Clinical expertise, and c)’Patient value preferences. Identifying<br />

and summarizing the best available research evidence is a major task<br />

including formulating answerable questions, appropriately gathering<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pRActice


the evidence, appraising the evidence, implementing the evidence,<br />

and evaluating the process. This task is performed by a variety <strong>of</strong><br />

organizations, and the AAOS is providing key leadership in this<br />

process on musculoskeletal topics. The AAOS is actively involved in<br />

Evidence-Based <strong>Orthopaedic</strong> Practice through the Evidence ‘Based<br />

Medicine Committee, the Guidelines and Technology Assessment<br />

Oversight Committee, the Council on Quality Assessment, and<br />

Technology (CORQAT) and the AAOS Department <strong>of</strong> Research<br />

and Scientific Affairs. AAOS develops evidence-based guidelines,<br />

technology overviews, and educational programs on evidence-based<br />

medicine topics. These committees also provide information on<br />

evidence-based medicine for other activities including testimony<br />

and advocacy before government agencies, payer groups, and<br />

the public.Four recently approved Guidelines are featured in this<br />

exhibit including:a)’Treatment <strong>of</strong> Glenohumeral Joint Arthritis, b)’<br />

Treatment <strong>of</strong> Distal Radius Fractures, and c)’ Diagnosis and Treatment<br />

<strong>of</strong> Achilles Tendon Rupture. d)’ The Diagnosis <strong>of</strong> Periprosthetic<br />

Joint Infections <strong>of</strong> the hip and knee Integration <strong>of</strong> the principles <strong>of</strong><br />

evidenced based medicine is critical to optimize patient care and for<br />

long term survival in orthopaedic practice.<br />

scieNtific exHibit No. se44<br />

Integration <strong>of</strong> Lean Manufacturing Principles Optimizes<br />

TJR Perioperative Efficiency and LOS<br />

Vivek Mohan, MD, Newport Beach, CA<br />

T Ted Funahashi, MD, Irvine, CA<br />

Robert S Namba, MD, Corona Del Mar, CA<br />

Dhiren S Sheth, MD, Irvine, CA<br />

Hamid Sabet, Raynham, MA<br />

Fixed resources demand increased operational efficiency to<br />

provide high quality <strong>of</strong> care for the projected increase <strong>of</strong> total joint<br />

replacement (TJR) patients. The incorporation <strong>of</strong> ‘lean’ manufacturing<br />

practices in the Operating Room (OR) and on the <strong>Orthopaedic</strong> floor<br />

may lead to efficient patient care. A surgeon initiated consortium<br />

<strong>of</strong> health care providers utilized ‘lean’ re-engineering principles<br />

to optimize management <strong>of</strong> TJR patients . Simulation exercises<br />

identified improvement opportunities and created a collaborative<br />

environment for change management across the continuum <strong>of</strong><br />

inpatient care. OR workflows and inpatient carepaths incorporated<br />

JCAHO standards and ensured SCIP compliance. Total cycle time<br />

from conceptual development to implementation was 6 mths for<br />

the OR efficiency and 4 mths for the LOS carepath. Perioperative<br />

efficiency protocols yielded average turn-around-times (TATs) <strong>of</strong><br />

16 minutes at 6 months post-implementation, which represents<br />

approximately 40% reduction from pre-implementation. Surgeons<br />

and support staff expressed high levels <strong>of</strong> satisfaction with operating<br />

room workflows, quality <strong>of</strong> care, and team-building factors. Since<br />

adoption, average LOS for the inpatient carepath was 2.4 days, with<br />

an associated skilled nursing facility (SNF) utilization <strong>of</strong> 16%. This<br />

represents a 29% reduction from pre-implementation LOS (3.4<br />

days) and yielded a higher proportion <strong>of</strong> patients going home (84%)<br />

Integrating ‘lean’ manufacturing principles optimized perioperative<br />

TATs (16 mins) and increased staff satisfaction. Implementing a timebased<br />

carepath consistently reduced LOS for primary TJR patients<br />

to 2.4 days (29% reduction). An associated 50% reduction in SNF<br />

utilization was concomitantly seen. The ‘Lean’ concepts utilized<br />

were: parallel processing, waste elimination, protocol creation, and<br />

standardization.<br />

662<br />

scieNtific exHibit No. se45<br />

Modifiable Risk Factors in <strong>Orthopaedic</strong> Infections -<br />

AAOS Patient Safety Committee<br />

Bobbi A Farber, MD, Columbus, GA<br />

Richard Parker Evans, MD, Little Rock, AR<br />

Laura J Prokuski, MD, Scottsdale, AZ<br />

Paul M Huddleston, MD, Rochester, MN<br />

Calin Stefan Moucha, MD, New York, NY<br />

This Scientific Exhibit will review the current state <strong>of</strong> infection in<br />

orthopaedic surgery in relation to modifiable risk factors emphasizing<br />

topics such as the post operative management <strong>of</strong> glucose in diabetes<br />

patients, preoperative control <strong>of</strong> remote infections, treatment<br />

<strong>of</strong> patients with poor oral hygiene, treatment <strong>of</strong> urinary tract<br />

infections, and malnutrition. It will also review the effects <strong>of</strong> obesity,<br />

smoking and HIV on infection rates. A critical examination <strong>of</strong><br />

preoperative infection control and prevention will review methods<br />

<strong>of</strong> identification <strong>of</strong> modifiable risk factors in the preoperative<br />

period as well as treatment prior to surgical intervention. Further,<br />

postoperative management <strong>of</strong> glucose, management <strong>of</strong> malnutrition<br />

preoperative and postoperative, and management to decrease<br />

risks <strong>of</strong> infection to patients with HIV, obesity, and Rheumatoid<br />

Arthritis will be addressed. The exhibit will emphasis Patient Safety<br />

Committee links to Antibiotic Prophylaxis for Bacteremia in Patients<br />

with Joint Replacement, SSI prevention, Society <strong>of</strong> Thoracic Surgeons<br />

guide to postoperative glucose control, Body Mass Index calculation,<br />

and malnutrition calculations. The audience will appreciate current<br />

trends <strong>of</strong> updated knowledge <strong>of</strong> this subject area. The importance<br />

<strong>of</strong> current and future mechanisms for SSI reporting and feedback<br />

surveillance <strong>of</strong> increasing rates <strong>of</strong> antimicrobial resistant organisms<br />

will be reviewed and emphasized.<br />

scieNtific exHibit No. se46<br />

SOPs: Pr<strong>of</strong>essional Relationships and Musculoskeletal<br />

Services - AAOS Committee on Pr<strong>of</strong>essionalism<br />

Murray J Goodman, MD, Salem, MA<br />

David E Attarian, MD, Durham, NC<br />

Richard A Brown, MD, La Jolla, CA<br />

Dale R Butler, MD, Grass Valley, CA<br />

Thomas W Currey, MD, Chattanooga, TN<br />

William John Hopkinson, MD, Maywood, IL<br />

Tamara Lynn Martin, MD, Boston, MA<br />

Vincent J Silvaggio, MD, Pittsburgh, PA<br />

Richard E Strain Jr, MD, Davie, FL<br />

The Committee on Pr<strong>of</strong>essionalism (COP) is charged with<br />

educating the AAOS Fellowship about the minimum Standards <strong>of</strong><br />

Pr<strong>of</strong>essionalism expected <strong>of</strong> all Fellows. There are six SOPs. The<br />

COP also reviews all formal complaints (Grievances) filed by one<br />

Fellow against another and forms a Hearing Panel to evaluate the<br />

charges and make disciplinary recommendations to the AAOS<br />

Board <strong>of</strong> Directors. The exhibit will focus on minimum standards<br />

concerning the provision <strong>of</strong> musculoskeletal services to patients as<br />

well as relationships among healthcare pr<strong>of</strong>essionals. Using posters<br />

and video, the exhibit will cite the SOPs and provide examples <strong>of</strong><br />

appropriate and inappropriate behavior. Recent revisions enacted<br />

to the Expert Witness SOP will also be cited. The exhibit will also<br />

summarize the Pr<strong>of</strong>essional Compliance Program by illustrating<br />

the formal grievance process and recapping the Pr<strong>of</strong>essional<br />

Compliance actions taken to date by the AAOS Board <strong>of</strong> Directors.<br />

Current statistics for AAOS Grievances will be presented as well.<br />

Through the use <strong>of</strong> this exhibit, AAOS Fellows will be informed and<br />

updated about the Pr<strong>of</strong>essional Compliance Program and the AAOS<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pRActice


Standards <strong>of</strong> Pr<strong>of</strong>essionalism.<br />

scieNtific exHibit No. se47<br />

Liability Associated with Never Events - AAOS Medical<br />

Liability Committee<br />

Douglas W Lundy, MD, Marietta, GA<br />

Thomas B Fleeter, MD, Reston, VA<br />

Andrew David Markiewitz, MD, Cincinnati, OH<br />

Dale R Butler, MD, Grass Valley, CA<br />

Theodore J Clarke, MD, Denver, CO<br />

Elliott H Leitman, MD, Wilmington, DE<br />

Subramanyan Jayasankar, MD, Weston, MA<br />

Stuart L Weinstein, MD, Iowa City, IA<br />

David Seligson, MD, Louisville, KY<br />

In 2002, the National Quality Forum derived a list <strong>of</strong> Serious<br />

Reportable Events that has been renamed ‘Never Events’. These events<br />

include complications that the Centers for Medicare and Medicaid<br />

Services believes should not happen during hospitalizations, and<br />

they will no longer reimburse facilities for the additional costs<br />

associated with care arising from these events. “Never events’ include<br />

such conditions as wrong-site surgery, stage III or IV pressure ulcers,<br />

retained foreign bodies after surgery, falls in the hospital, and most<br />

recently, deep vein thrombosis or pulmonary emboli after total joint<br />

arthroplasty. <strong>Orthopaedic</strong> surgeons are at significant medicolegal<br />

risk when a ‘never-event’ occurs to one <strong>of</strong> their patients while under<br />

the surgeon’s care. The AAOS and the Joint Commission have<br />

already instituted methods to avoid wrong site-surgery and extensive<br />

efforts have been undertaken to eliminate retained foreign bodies<br />

and reduce post-operative pulmonary embolism. The AAOS Medical<br />

Liability Committee reviews the ‘never events ‘that are most likely to<br />

be encountered by the orthopaedic surgeon, methods to avoid these<br />

events, and strategies to employ when one <strong>of</strong> these conditions occurs<br />

to our patients.<br />

scieNtific exHibit No. se48<br />

Viewing Care Delivery Through the Eyes <strong>of</strong> Patients<br />

and Families Using Reality TV and Shadowing<br />

Anthony M DiGioia III, MD, Pittsburgh, PA<br />

Timothy J Levison, MS, Pittsburgh, PA<br />

Viewing all care through the eyes <strong>of</strong> patients and families improves<br />

safety, quality and efficiencies following total joint replacement<br />

surgery as well as deliver exceptional care experiences. This study<br />

demonstrates the utilization <strong>of</strong> various observation tools, from<br />

high-tech digital video recording to low-tech patient and family<br />

shadowing, to capture real-time care experiences and reports on the<br />

resulting innovative care delivery, quality and safety improvements.<br />

These observations are the first steps to transform care experiences as<br />

well as define not only the flow <strong>of</strong> care from the patients’ perspective<br />

but also identify critical Touchpoints between patients and Care<br />

Givers. Using these observation tools enabled us to continuously<br />

monitor care experiences, clinical outcomes and care delivery over<br />

the patients entire length <strong>of</strong> stay. Results highlighted the number <strong>of</strong><br />

various Care Giver interactions, frequency <strong>of</strong> contacts and duration<br />

<strong>of</strong> each interaction, along with staff flow efficiencies and patients’<br />

family involvement in care delivery. Data analysis for the 2.6 day<br />

average length <strong>of</strong> stay showed the average patient interacted with 28<br />

unique Care Givers during 183 total contacts, while spending 91%<br />

<strong>of</strong> the time in their room with 15% <strong>of</strong> that time receiving direct<br />

bedside care. These observation techniques demonstrated the extent<br />

<strong>of</strong> valuable data available when care experiences are viewed through<br />

the eyes <strong>of</strong> patients and their families. Using these observation tools,<br />

663<br />

combined with the PFCC Methodology, we were able to identify<br />

areas <strong>of</strong> process improvement through the full cycle <strong>of</strong> care that<br />

enabled rapid and sustainable results.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits pRActice


PAPERS<br />

pApeR No. 616<br />

Computer-Animations Improve Measurement <strong>of</strong><br />

Function in Patients With Hip or Knee Osteoarthritis<br />

Vanessa AB Scholtes, PhD, Amsterdam, Netherlands<br />

Rudolf W Poolman, MD,PhD, Aerdenhout, Netherlands<br />

Caroline Terwee, PhD<br />

Charlotte Coopmans, MSc<br />

Wilfred Peter, PT, Postbus 58271 Amsterdam, Netherlands<br />

Roorda Leo, MD, PhD<br />

Jaap Harlaar, PhD<br />

Henrica CW De Vet, Pr<strong>of</strong>, PhD<br />

Functional limitations <strong>of</strong> patients with hip or knee osteoarthritis<br />

(OA) can be measured by self-report questionnaires or performancebased<br />

tests. Both methods have advantages and disadvantages.<br />

Questionnaires are influenced by factors like pain, fatigue and patients’<br />

interpretation <strong>of</strong> the questions. Performance-based tests require<br />

personal contact and are time-consuming and a burden for patients.<br />

We aimed to develop a new computer-animated questionnaire. The<br />

computer-animation questionnaire was developed in cooperation<br />

with a specialized company, based on movement analyses <strong>of</strong> a<br />

person performing seven different daily activities. Different videos<br />

<strong>of</strong> each activity were made with two to five levels <strong>of</strong> difficulty. For<br />

each activity, patients choose the video that best indicated their way<br />

<strong>of</strong> activity performance. We compared this new questionnaire with a<br />

validated paper questionnaire (WOMAC) and validated performance<br />

tests (walking, timed-up-and-go, timed-stair-test). Outcomes <strong>of</strong><br />

33 patients with hip or knee OA were correlated on each form <strong>of</strong><br />

measurement. The computer-animation questionnaire showed a<br />

higher correlation with the performance tests than the WOMAC<br />

questionnaire (0.75 vs. 0.49). Patients were enthusiastic about this<br />

new measurement instrument. Almost all patients preferred it over<br />

paper questionnaires and performance-based tests. The computeranimation<br />

questionnaire might be a good alternative instrument to<br />

measure functional limitations <strong>of</strong> patients with hip or knee OA. This<br />

method can easily be used in other patient populations as well and<br />

can be administered by the Internet.<br />

pApeR No. 617<br />

Preoperative Narcotic Medication Has Minimal<br />

Postoperative Effect in Total Joint Arthroplasty (TJA)<br />

Brian A Klatt, MD, Pittsburgh, PA<br />

Antonia Chen, MD, Pittsburgh, PA<br />

James Shen, MD<br />

Melissa Stewart, BS<br />

The role <strong>of</strong> preoperative narcotic medication use in recovery after<br />

primary total joint arthroplasty (TJA) has not been well studied.<br />

This study investigates the effects <strong>of</strong> preoperative narcotics on<br />

postoperative recovery. A prospective case series <strong>of</strong> 128 consecutive<br />

patients and 136 TJAs from 2008 to 2009 was examined. The study<br />

population had three preoperative narcotic medication categories: 95<br />

TJAs took no narcotics preoperatively (average age 63.4 yrs; 43M/52F;<br />

36 hips/59 knees; 49R/46L); 35 TJAs took short acting narcotics<br />

(average age 61.2 years, 7M/28F, 20 hips/15 knees, 18R/17L); and six<br />

TJAs received long acting narcotics (average age 63.1 years, 5M/1F,<br />

664<br />

rehabilitation<br />

two hips/four knees, 1R/5L). Short acting narcotics included drugs<br />

with half-lives less than four hours taken on a four to six hour dosing<br />

schedule. Long acting narcotics included medications with half-lives<br />

longer than four hours and were dosed on a 12+ hour schedule. Pain<br />

levels were determined by the 0-10 visual analog scale. Length <strong>of</strong><br />

stay (LOS) was determined by operative start time until the time <strong>of</strong><br />

discharge. Early physical therapy was defined as treatment on the day<br />

<strong>of</strong> surgery (POD 0). Continuous variables were analyzed by one-way<br />

ANOVA and categorical variables were analyzed by chi-squared tests.<br />

In the immediate post-operative period, pain scores were significantly<br />

different in patients who were on preoperative narcotics compared to<br />

those who were not taking narcotic medication (p=0.03, no narcotics<br />

4.5±1.6, short acting 5.3±1.9, long acting 5.5±1.4). However, there<br />

were no differences between length <strong>of</strong> stay (p=0.29, no narcotics<br />

3.4 days±1.7, short acting 3.4±1.5, long acting 4.5±2.1) or early<br />

rehabilitation (p=0.96, no narcotics POD 0 17.9%, short acting<br />

POD 0 20%, long acting 16.7%). Patients who receive preoperative<br />

narcotic medication have more pain postoperatively, but this does<br />

not affect length <strong>of</strong> stay or postoperative rehabilitation.<br />

pApeR No. 618<br />

Physical Therapy on Day <strong>of</strong> Total Joint Arthroplasty<br />

(TJA) Surgery Reduces Length <strong>of</strong> Hospital Stay<br />

Antonia Chen, MD, Pittsburgh, PA<br />

Brian A Klatt, MD, Pittsburgh, PA<br />

Melissa Stewart, BS<br />

Alma Heyl, CCRC<br />

Studies demonstrate decreased length <strong>of</strong> stay (LOS) with multiple<br />

changes to perioperative care after total joint arthroplasty (TJA).<br />

These multimodality protocols involve changes to pre-operative<br />

education, analgesia and physical therapy (PT). The isolated effect <strong>of</strong><br />

instituting PT on the day <strong>of</strong> surgery (POD 0) has not been studied.<br />

Our study compared the LOS between patients who received PT on<br />

POD 0 and patients who received PT on post-operative day one. A<br />

prospective cohort study was performed on 128 consecutive patients<br />

(53 males, 75 females, average age <strong>of</strong> 62.3) who underwent 136<br />

primary TJAs (58 hips, 78 knees) from September 2008 to September<br />

2009. There were 68 right and 68 left procedures. Patient selection<br />

for POD 0 rehabilitation was random and was dependent on timing<br />

and staff availability. On POD 0, 60 remained in bed, 51 were out<br />

<strong>of</strong> bed to a chair with nursing and 25 received PT. Of the 25 joints<br />

that received PT, 22 ambulated in the hall and three moved to a<br />

chair. A total <strong>of</strong> 24% hip and 14% knee arthroplasties received POD<br />

0 PT. The initial PT session was recorded for activity performed. The<br />

LOS was determined by the operative start time until the time <strong>of</strong><br />

discharge, after all patients met standardized discharge criteria. LOS<br />

differed between those receiving PT on POD 0 (2.8±0.8 days) versus<br />

patients receiving PT on POD 1 (3.7±1.8 days) (p=0.02). Those who<br />

were out <strong>of</strong> bed to chair with PT on POD 0 stayed 2.9±0.6 days,<br />

and those who ambulated with PT stayed 2.8±0.8 days. Patients that<br />

remained in bed on POD 0 stayed an average <strong>of</strong> 3.9±1.8 days, and<br />

patients who were out <strong>of</strong> bed to a chair with nursing staff stayed<br />

3.6±1.7 days. All patients who received PT on POD 0 got out <strong>of</strong> bed,<br />

while none <strong>of</strong> the remaining patients ambulated on POD 0. There<br />

was no difference in physical therapy treatment based on body mass<br />

index, nausea/vomiting, vital signs or pain levels. Physical therapy<br />

intervention on POD 0 shortened hospital LOS, regardless <strong>of</strong> the<br />

intervention performed.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits ReHAbilitAtioN


pApeR No. 619<br />

Iliopsoas Muscle Atrophy Pre and Post THA -MRI<br />

Analysis <strong>of</strong> 500 Cases<br />

Koh Shimizu, MD, Chiba, Japan<br />

Sara Shimizu, MD, Chiba, Japan<br />

Masatsugu Yamagata, MD, Ichihara, Japan<br />

Junichi Iwasaki, MD, Ichihara City, Chiba, Japan<br />

Muscle atrophy <strong>of</strong> the iliopsoas in patients with hip osteoarthritis<br />

has not been noticed clinically, although it is a very important and<br />

strong muscle which flexes the hip joint and supports the lumbar<br />

spine and pelvis. Also, it has not been evaluated enough how the<br />

atrophic muscles will recover after total hip arthroplasty (THA).<br />

This study was performed to determine the incidence and severity <strong>of</strong><br />

muscle atrophy <strong>of</strong> the iliopsoas muscle, compared with that <strong>of</strong> the<br />

gluteus medius muscle, before and after THA. Preoperative MRI <strong>of</strong><br />

500 THA patients with severe osteoarthritis <strong>of</strong> the unilateral hip was<br />

used for evaluation <strong>of</strong> the psoas, iliacus and gluteus medius muscles.<br />

A total <strong>of</strong> 207 <strong>of</strong> the 500 patients were followed by MRI more than<br />

three years after THA, and recovery <strong>of</strong> the muscles were investigated.<br />

T1 weighted images in coronal and transverse sections were analyzed<br />

by SIGNA. Transverse diameters in coronal sections and the area in<br />

transverse sections <strong>of</strong> bilateral muscles were measured to calculate<br />

the percentage <strong>of</strong> muscle atrophy. Preoperatively, average decrease<br />

ratio <strong>of</strong> the transverse diameter in coronal sections was 31% in the<br />

psoas, 30% in the iliacus and 23% in the gluteus medius muscle.<br />

Preoperative decrease ratio <strong>of</strong> area in transverse sections was 51% in<br />

the psoas, 42% in the iliacus and 35% in the gluteus medius muscle.<br />

After THA, average decrease ratio <strong>of</strong> the area was 45% in the psoas,<br />

39% in the iliacus and 31% one year postoperatively and 34% in<br />

the psoas, 35% in the iliacus and 25% three years postoperatively.<br />

This MRI study revealed greater muscle atrophy in the iliopsoas<br />

as compared to the gluteus medius muscle in patients with hip<br />

osteoarthritis preoperatively. Recovery <strong>of</strong> the atrophic muscles was<br />

not sufficient even after THA, although the decrease ratio improved<br />

slightly. The lack <strong>of</strong> improvement may be speculated to be the result<br />

<strong>of</strong> inactivity during the preoperative painful OA years, and the lack<br />

<strong>of</strong> activity even after successful THA. Post THA rehabilitation should<br />

include hip flexion exercises in order to build the iliopsoas muscle<br />

and hip abduction exercises in order to build the gluteus medius<br />

muscle.<br />

pApeR No. 620<br />

Development and Validation <strong>of</strong> a Discriminating<br />

Functional Hip Score<br />

Sujith Konan, MRCS, London, United Kingdom<br />

Jenni Tahmassebi, MSc, Great Missenden, Bucks,<br />

United Kingdom<br />

Fares Sami Haddad, FRCS, London, United Kingdom<br />

The aim <strong>of</strong> this study was to validate a user friendly discriminating<br />

functional hip scoring system developed in our unit for use in<br />

younger, ‘high demand’ patients undergoing hip arthroplasty surgery.<br />

The commonly used hip outcome scores have a ceiling effect and<br />

discriminate poorly at the highest functional levels. The functional<br />

hip score uses a series <strong>of</strong> five tasks, which are graded on a hierarchical<br />

unweighted scale. We studied a cohort <strong>of</strong> 38 subjects without any hip<br />

symptoms and 72 patients undergoing total hip arthroplasty (THA)<br />

for osteoarthritis <strong>of</strong> the hip. Pre-procedure and post-procedure<br />

scores were collected in the latter cohort <strong>of</strong> patients. Short form-<br />

36 (SF-36) and the Western Ontario and McMaster Universities<br />

Osteoarthritis Index (WOMAC) scores were used to validate our<br />

functional scoring system. A statistically significant improvement<br />

665<br />

following total hip arthroplasty was demonstrated by the functional<br />

hip score (p


in 17 patients having a THA revision. The impact <strong>of</strong> Co2+ on human<br />

neutrophils killing against two strains <strong>of</strong> Staphylococus epidermidis<br />

was determined by counting surviving bacteria. The effect <strong>of</strong> Co2+<br />

on superoxide production by neutrophils was measured with a<br />

cytochrome c reduction assay. To test whether Co2+ blocks Hv1<br />

activity, we measured neutrophils intracellular alkalinization<br />

following an acute acid load. The effect <strong>of</strong> Co2+ on Hv1 proton<br />

currents from activated neutrophils was determined by patch clamp<br />

recordings. The mean Co2+ concentration in periprosthetic tissues<br />

was 71 µM (3-410 µM). Micromolar concentrations <strong>of</strong> Co2+ (1-<br />

10 and 100 µM) inhibit proton currents, impair the extrusion <strong>of</strong><br />

cytosolic acid and decrease superoxide production in neutrophils.<br />

As a result, Co2+ reduces the ability <strong>of</strong> neutrophils to kill two strains<br />

<strong>of</strong> Staphylococcus epidermidis. At micromolar concentrations in<br />

peri prosthetic tissues, Co2+ inhibits proton channels and might<br />

therefore promote bacterial infections in patients with MM THA.<br />

pApeR No. 623<br />

Atorvastatin is Beneficial for Muscle Reinnervation<br />

After a Complete Sciatic Nerve Section in Rats<br />

Dominique Rouleau, MD, Montreal, QC Canada<br />

Jonah Hebert-Davies, MD, Montreal, QC Canada<br />

Frederic C Cloutier, MD, Montreal, QC Canada<br />

Pierre H Beaumont, MD, Montreal, QC Canada<br />

Eric Beaumont, PhD, Montreal, QC Canada<br />

Nerve regeneration and functional recovery are <strong>of</strong>ten incomplete<br />

after peripheral neurotmetic lesion. The aim <strong>of</strong> this study was to<br />

determine if the systemic administration <strong>of</strong> atorvastatin is effective in<br />

promoting functional muscle reinnervation. Female Sprague-Dawley<br />

rats were used in this study. A complete right sciatic nerve section<br />

using scissors was done. End-to-end microsuture repair (0-180°)<br />

was performed in every nerve and fibrin glue was added. Two groups<br />

were studied: 1) sutures (S) + fibrin glue (F) only; 2) S+F+Atorvastatin<br />

administration for fourteen (14) days. The left uninjured hindlimb<br />

was used for the 3) control group. Five months later, the sciatic nerve<br />

and the gastrocnemius muscle were dissected to perform in vivo<br />

electrophysiological measurements. Sixteen (16) rats were used in<br />

this study. Electromyographic activity (EMG) and muscle force were<br />

measured following the nerve stimulation proximal to the lesion site<br />

and compared between groups. The group with suture and fibrin<br />

glue alone 1) (0,77mV; 28,56g) was significantly lower compared<br />

to the atorvastatin group 2) (2.91mV; 85.1g) and the control group<br />

3) (3,29mV; 77,14g). Five months after a neurotmetic lesion, the<br />

recovery is incomplete when using suture and fibrin glue only.<br />

Furthermore, the systemic administration <strong>of</strong> atorvastatin for fourteen<br />

(14) days post lesion is beneficial in reestablishing the muscle force<br />

and the EMG at the uninjured level.<br />

pApeR No. 624<br />

Safety and Efficacy <strong>of</strong> Repeat Treatment with Single<br />

dose Hylan G-F 20 in OA <strong>of</strong> the knee<br />

Raghu Raman, MRCS, Normanton, West Yorkshire,<br />

United Kingdom<br />

Ge<strong>of</strong>frey V Johnson, FRCS, Hull, United Kingdom<br />

Nicky Day<br />

Arup Dutta, FRCS<br />

Hemant Sharma, MRCS,MS, Hessle, United Kingdom<br />

Christopher Shaw, FRCS<br />

Pain and symptom relief from viscosupplementation is variable<br />

ranging from three-12 months necessitating a repeat course <strong>of</strong><br />

treatment. There is a paucity <strong>of</strong> clinical evidence addressing the<br />

666<br />

efficacy and safety <strong>of</strong> repeat courses <strong>of</strong> this treatment. The aim<br />

<strong>of</strong> this study was to assess the safety and efficacy <strong>of</strong> repeat intraarticular<br />

injections <strong>of</strong> single dose hylan GF-20 (Synvisc, 6 ml) in the<br />

treatment <strong>of</strong> osteoarthritis (OA) <strong>of</strong> the knee. In this independent<br />

study, patients who had previous viscosupplementation treatment<br />

to the knee were <strong>of</strong>fered repeat treatment after a minimum <strong>of</strong> six<br />

months after the initial course. The inclusion criteria were pain<br />

score <strong>of</strong> >6 on a VAS (0-10) in the target knee and one course <strong>of</strong><br />

previous viscosupplementation (single (6 ml) or multi dose hylan<br />

G-F 20 (3x2 ml) treatment. As an extension <strong>of</strong> our previous study,<br />

we identified 195 consecutive patients, who were prospectively<br />

reviewed by blinded independent assessors at pre injection, one<br />

week, six weeks, and three, six and 12 months after repeat treatment<br />

with single dose hylan G-F 20 (6 ml). The primary outcome variable<br />

was knee pain on VAS at six months. Functional outcome was<br />

assessed using WOMAC, Oxford knee score and EuroQol EQ-5D.<br />

All adverse events (AE), including injection and treatment related<br />

AE in the target knee were recorded at one week and six weeks after<br />

treatment. Mean follow up was 12 months. A total <strong>of</strong> 103 patients<br />

received single dose (6 ml) at initial treatment and the rest had multi<br />

dose (3x2 ml) hylan G-F 20. The mean time from primary course<br />

<strong>of</strong> treatment was 46.1 months (44.2 - multiple dose hylan G-F 20<br />

group, 47.3 - single dose hylan G-F 20 group). Knee pain on VAS<br />

improved from 6.9 to 3.8 at six months (p=0.02) and to 4.9, p>0.05<br />

at 12 months. Significant improvements from the baseline in the<br />

WOMAC pain and function subscales and Oxford knee scores at<br />

three, six and 12 months were recorded. Sub group analysis showed<br />

no statistically significant difference between patients with previous<br />

single or multi dose treatments. Overall adverse events were recorded<br />

in 13% (14% in initial course). Treatment and/or injection related<br />

minor AE in the target knee were observed in 3.8% (3.1% in the<br />

single - single dose group and 3.9% in the multiple - single dose<br />

group). Previous treatment regime did not influence the incidence<br />

<strong>of</strong> AE in the patients. None <strong>of</strong> the patients had serious AE. There<br />

is a significant reduction <strong>of</strong> pain and improvement in function<br />

following treatment <strong>of</strong> symptomatic OA <strong>of</strong> the knee with repeat<br />

injections <strong>of</strong> singe dose hylan G-F 20. The magnitude <strong>of</strong> pain relief<br />

and the longevity <strong>of</strong> symptom control were comparable with the<br />

results from the first course <strong>of</strong> treatment. Repeat injections <strong>of</strong> singe<br />

dose hylan G-F 20 are well tolerated as shown by the low rate <strong>of</strong> AE.<br />

From this study, it appears that repeat injections <strong>of</strong> single dose hylan<br />

G-F 20 can be both safely and effectively administered in patients<br />

with symptomatic OA <strong>of</strong> the knee.<br />

pApeR No. 625<br />

Hip Findings in Elite Female Soccer Athletes Differ by<br />

Level <strong>of</strong> Experience<br />

Robert H Brophy, MD, Saint Louis, MO<br />

Devyani Hunt, MD, St Louis, MO<br />

Tedd Yemm, PT<br />

Kathryn Fong, BS<br />

Monica Rho, MD, Chicago, IL<br />

Heidi Prather, DO, Saint Louis, MO<br />

Elite female soccer athletes are at risk for hip related disorders.<br />

Little is known about baseline physical examination findings in this<br />

population. The purpose <strong>of</strong> this study was to test the hypothesis<br />

that passive hip range <strong>of</strong> motion (ROM) and strength differ by level<br />

<strong>of</strong> experience in these athletes. Female athletes from an elite youth<br />

soccer club, a college and a pr<strong>of</strong>essional team were evaluated prior to<br />

their competitive seasons. Passive hip ROM and abduction strength<br />

was measured on each athlete. Data were compared for the grade/<br />

middle school, high school, college and pr<strong>of</strong>essional players. A total<br />

<strong>of</strong> 172 athletes (62 grade/middle school, 54 high school, 20 college<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits ReHAbilitAtioN


and 36 pr<strong>of</strong>essional) with a mean age <strong>of</strong> 17 years (range 10-30)<br />

participated. Pr<strong>of</strong>essional players had reduced flexion for both hips<br />

(p


pApeR No. 629<br />

Immunological Response to Bolus vs Multiple<br />

Injections <strong>of</strong> Synvisc in a Murine Biocompatibility<br />

Model<br />

Syed Sami, MD, Canton, MI<br />

Nancy M Jackson, Southfield, MI<br />

Amanda Esquivel, PhD, Warren, MI<br />

Dr Jeffrey Flynn, Southfield, MI<br />

Weiping Ren, MD<br />

David C Markel, MD, Southfield, MI<br />

Although local reactivity to Synvisc has been studied, no study has<br />

been done which compares the reactivity <strong>of</strong> Synvisc in single vs.<br />

multiple injections using both systemic and local parameters. Thus,<br />

the objective <strong>of</strong> our study was to use the murine biocompatibility<br />

model to study the inflammatory response to Synvisc after various<br />

treatment protocols. Air pouches were established subcutaneously<br />

in the dorsum <strong>of</strong> 50 BALB/c mice. Ten mice were randomly placed<br />

into each group, and the pouches were injected with: phosphatebuffered<br />

saline (PBS, negative control), 5 mg ultra-high molecular<br />

weight polyethylene particles (to simulate synthetic joint wear debris,<br />

positive control), 0.5 ml Synvisc (one injection/week for three weeks,<br />

harvested 14 days after last injection), and 1.5 ml Synvisc bolus<br />

(harvested either 14 or 28 days after last injection). At the time <strong>of</strong><br />

sacrifice, sera and air pouch tissues were collected. Serum antibody<br />

titers to Synvisc were determined by enzyme-linked immunosorbent<br />

assay. Inflammatory gene expression <strong>of</strong> air pouch tissue was<br />

quantified by polymerase chain reaction. Inflammation was also<br />

evaluated by histological analysis <strong>of</strong> wall thickness and cellularity<br />

in several locations on the H&E-stained pouch. Inflammation was<br />

observed with all Synvisc treatments, as pouch wall thickness and<br />

cellular density were increased, relative to PBS (P


posteR No. p277<br />

Effectiveness <strong>of</strong> a Laterally Wedged Insole for<br />

Dysplastic Hips<br />

Akira Maeyama, MD, Fukuoka, Japan<br />

Masatoshi Naito, MD, Fukuoka, Japan<br />

Takahiko Kiyama, MD, Fukuoka, Japan<br />

Yoshinari Nakamura, MD, Fukuoka, Japan<br />

Hirotaka Karashima, MD, Fukuoka-City, Japan<br />

Satoshi Kamada, MD, Fukuoka, Japan<br />

Effective conservative treatments for adult dysplastic hips have not<br />

been reported in detail, while various surgical treatments have been<br />

performed. The purpose <strong>of</strong> this study was to assess the effects <strong>of</strong> a<br />

laterally wedged insole, which is used as a conservative treatment for<br />

dysplastic hips. Sixty-three outpatients (91 hips) with hip arthritis<br />

secondary to dysplasia and normal knee joints were randomly<br />

allocated into a laterally wedged insole group (44 hips; Group I) and<br />

a neutrally wedged insole group (47 hips; Group II). Both groups<br />

were matched for age, sex, obesity index, disease duration, X-ray<br />

grade, pain and radiographic findings. Pain was evaluated using the<br />

visual analog scale (VAS) before application <strong>of</strong> the insole (baseline<br />

data) and after eight weeks <strong>of</strong> insole application for both groups. The<br />

effects <strong>of</strong> both types <strong>of</strong> insoles on hip instability were investigated by<br />

triaxial accelerometry. Data acquired by accelerometry while walking<br />

were used to analyze hip instability. After eight weeks <strong>of</strong> insole<br />

application, the VAS scores were significantly improved in group I<br />

compared with the baseline data (p


management <strong>of</strong> TKR. The purpose <strong>of</strong> this study was to examine<br />

outpatient physical therapy (PT) utilization in patients undergoing<br />

primary TKR surgery. PT records from patients participating in the<br />

Joint Action clinical trial were included in the study. Records from<br />

patients who attended outpatient PT, completed their course <strong>of</strong><br />

care and their study six-month assessment were eligible for review.<br />

Records from 65 patients who underwent primary TKR were eligible<br />

for review. Forty-four records were reviewed from 18 facilities.<br />

Twenty-one records were not reviewed because the facilities did not<br />

respond to requests for the records. Frequency and duration <strong>of</strong> PT<br />

and total number <strong>of</strong> visits were recorded using a previously reported<br />

survey (Describing Variability <strong>of</strong> Physical Therapy Practice Following<br />

Total Knee Replacement in Montgomery County, Pennsylvania).<br />

“Usual care” was operationally defined as more than 50%<br />

agreement. “Consensus” was operationally defined as more than<br />

85% agreement. No agreement existed on initiation <strong>of</strong> outpatient PT<br />

(one to >seven weeks postoperatively). Average number <strong>of</strong> visits was<br />

15 (SD 6.4). No agreement existed on total number <strong>of</strong> visits (five to<br />

34) or on when to discontinue PT (16 weeks postoperatively).<br />

No agreement exists in outpatient PT utilization. Patients still have<br />

functional limitations one year after TKR. Research is needed to<br />

determine if variability in post-operative rehabilitation utilization<br />

contributes to patient outcomes.<br />

posteR No. p281<br />

Measurement <strong>of</strong> Leg Motion Complexity for<br />

Quantification <strong>of</strong> Gait Impairment in Knee OA<br />

Yuki Tochigi, MD,PhD, Iowa City, IA<br />

Neil Segal, MD, Iowa City, IA<br />

Tanawat Vaseenon, Meung, Chaing-Mai, Thailand<br />

Thomas D Brown, PH D, Iowa City, IA<br />

A concept called the ‘loss <strong>of</strong> complexity’ hypothesis regards decreased<br />

complexity in biological systems as a characteristic <strong>of</strong> pathologic<br />

conditions. This concept is consistent with the clinical observation<br />

that patients with a lower-limb joint disorder exhibit monotonic<br />

leg motion patterns to protect the symptomatic site from loading<br />

(i.e., limp). This study aimed to test if measurement <strong>of</strong> complexity<br />

in leg motion patterns during walking would allow identifying gait<br />

impairment associated with lower limb disorder. The hypothesis<br />

was that subjects with symptomatic knee osteoarthritis (OA)<br />

would walk with more monotonic (i.e., less complex) leg motion<br />

patterns compared to age-matched asymptomatic control subjects.<br />

Elderly volunteers (range: 60-79 years), including 51 subjects with<br />

symptomatic knee OA and 17 asymptomatic control subjects, were<br />

recruited with Institutional Review Board approval. Leg motions<br />

during long-distance corridor walking were measured using a lightweight<br />

wireless tri-axial accelerometer device, attached bilaterally<br />

just above each ankle. The collected 3-D acceleration time-series data<br />

were analyzed using a chaotic non-linear measure “sample entropy<br />

(SampEn),” which quantified the complexity (stride-to-stride<br />

variability) <strong>of</strong> time-series data. Complexity <strong>of</strong> leg motion pattern<br />

was significantly lower in the OA subjects (p


<strong>of</strong> families would treat a second child born with clubfoot deformity.<br />

Parent education seems to be important for a successful outcome.<br />

Internet influence parent decisions in treatment. Parents report<br />

routine and discipline as crucial in children compliance with the<br />

abduction brace. Parents report a generally positive impression on<br />

Ponseti treatment for their children and reinforce their necessity <strong>of</strong><br />

sharing responsibility for good outcomes.<br />

posteR No. p284<br />

uNovel Biodegradable Regenerative Type Neural<br />

Interface with Regenerated Peripheral Nerve Fibers<br />

Xia<strong>of</strong>eng Jia, MD, PhD, Baltimore, MD<br />

Dan Lewitus, MS<br />

Jacob Vogelstein, PhD<br />

Gehua Zhen, MD, Baltimore, MD<br />

Young-Seok Choi, PhD, Baltimore, MD<br />

Joachim Kohn PhD, Piscataway, NJ<br />

The two main factors limiting the functionality <strong>of</strong> prosthetic upper<br />

limbs are the lack <strong>of</strong> a high-bandwidth information channel<br />

conveying the user’s movement intent and the lack <strong>of</strong> a high-resolution<br />

sensory feedback pathway from the artificial limb. Next-generation<br />

neuroprosthetic limbs will require a reliable long-term neural<br />

interface to residual nerves in the peripheral nervous system (PNS).<br />

We have developed novel biocompatible materials and a fabrication<br />

technique to create high site-count microelectrodes for stimulating<br />

and recording from regenerated peripheral nerves. Our electrodes are<br />

based on a biodegradable tyrosine-derived polycarbonate polymer<br />

system with suitable degradation and erosion properties and a<br />

fabrication technique for deployment <strong>of</strong> the polymer in a porous,<br />

degradable, regenerative, multi-luminal, multi-electrode conduit.<br />

The in vitro properties <strong>of</strong> the polymer and the electrode were tuned<br />

to retain mechanical strength for over 24 days and to completely<br />

degrade and erode within 220 days. The fabrication technique<br />

resulted in a muti-luminal conduit with at least 10 functioning<br />

electrodes maintaining impedance <strong>of</strong> recording sites in the singledigit<br />

kOhm values. Additionally, an in vivo study showed that neural<br />

signals could be recorded from these devices starting at four-weeks<br />

post-implantation and that signal strength increased over time. Our<br />

biodegradable regenerative-type neural interface is a good candidate<br />

for chronic high fidelity recording electrodes for integration in<br />

regenerated peripheral nerves. This work was sponsored by the Johns<br />

Hopkins University Applied Physics Laboratory under the Defense<br />

Advanced Research Projects Agency 2009 Revolutionizing Prosthetics<br />

program; contract N66001-06-C-8005. The views, opinions, and/<br />

or findings contained in this article/presentation are those <strong>of</strong> the<br />

author/presenter and should not be interpreted as representing the<br />

<strong>of</strong>ficial views or policies, either expressed or implied, <strong>of</strong> the Defense<br />

Advanced Research Projects Agency or the Department <strong>of</strong> Defense.<br />

Distribution Statement A (Approved for Public Release, Distribution<br />

Unlimited).<br />

671<br />

posteR No. p285<br />

Influence <strong>of</strong> Psychological Distress on Function and<br />

Pain After Hip and Knee Replacement Surgery<br />

Thoralf R Liebs, Kiel, Germany<br />

Wolfgang Herzberg, Wedel, Germany<br />

Martin Russlies, MD, L¿beck, Germany<br />

Wolfgang Ruther, MD, Hamburg, Germany<br />

Joerg Haasters, MD, Kappeln, Germany<br />

Joachim Hassenpflug, MD, Kiel, Germany<br />

It has been discussed that psychological distress may have a role<br />

on pain and function after hip or knee replacement surgery. It<br />

was the aim <strong>of</strong> this study to evaluate the independent influence <strong>of</strong><br />

preoperative psychological distress on function and pain after hip<br />

or knee replacement surgery. This analysis is based on prospectively<br />

collected data from three multicenter randomized controlled trials<br />

evaluating different rehabilitation measures after hip or knee<br />

replacement surgery. A total <strong>of</strong> 1,198 patients (494 with knee and<br />

704 with hip replacement surgery) were included in the analysis. We<br />

have used the preoperative scale “’mental health” <strong>of</strong> the SF-36 to<br />

determine its association with postoperative function and pain, as<br />

measured by the WOMAC (Western Ontario McMasters Universities<br />

Arthritis Index), at three, six, 12 and 24 postoperative months. We<br />

adjusted for several covariates. Preoperative ‘mental health’ <strong>of</strong> the<br />

SF-36 was statistically significantly associated with postoperative<br />

function and pain. The parameter estimate <strong>of</strong> the mental health score<br />

on postoperative function ranged between 0.179 and 0.264 after hip<br />

arthroplasty and between 0.162 and 0.278 after knee arthroplasty,<br />

indicating that for each point increase in the mental health index,<br />

WOMAC function changed by e.g., 0.179 points. Regarding<br />

postoperative pain, the parameter estimates ranged between 0.138<br />

and 0.169 after hip arthroplasty and between 0.148 and 0.193 after<br />

knee arthroplasty. Patients with preoperative psychological distress<br />

demonstrated statistically significant associations with increased<br />

postoperative pain and poorer physical function, after both knee<br />

and hip replacement surgery.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits ReHAbilitAtioN


PAPERS<br />

pApeR No. 076<br />

Lesser Tuberosity Osteotomy vs. Subscapularis<br />

Tenotomy In Shoulder Arthroplasty: A Multicentre RCT<br />

Peter Lapner, MD, Ottawa, ON Canada<br />

Kimberly Bell, BA, Ottawa, ON Canada<br />

George S. Athwal, MD, London, ON Canada<br />

Controversy exists regarding the optimal technique <strong>of</strong> subscapularis<br />

mobilization during shoulder arthroplasty. The purpose <strong>of</strong> this<br />

multicenter randomized double-blind study was to compare the<br />

functional outcomes and healing rates <strong>of</strong> the lesser tuberosity<br />

osteotomy (LTO) to the subscapularis tenotomy (ST). Patients<br />

undergoing shoulder arthroplasty were randomized to receive either<br />

a LTO or ST. The primary outcome was to compare subscapularis<br />

strength, as measured by an electronic hand-held dynamometer at<br />

12 months. Secondary outcomes included range <strong>of</strong> motion, Western<br />

Ontario Osteoarthritis <strong>of</strong> the Shoulder, Constant and <strong>American</strong><br />

Shoulder and Elbow Surgeons scores. A sample size calculation<br />

determined that 80 patients provided 80% power with a 50% effect<br />

size to detect a significant difference between groups. Baseline<br />

demographic data did not differ between groups including age<br />

(p=0.69), sex (p=0.77), affected side (p=0.59) and arthroplasty type<br />

(hemiarthroplasty or total, p=0.77). Strength comparison between<br />

groups revealed no statistical differences at any time interval<br />

(p=0.744, baseline, p=0.449, three months, p=0.203, six months, 12<br />

months, p=0.45). Statistically significant improvements occurred in<br />

both groups from baseline to 12 month time points in all clinical<br />

outcome scores (p


clinical and radiological outcomes. Full radiographic and clinical<br />

follow up greater than five years was available for 518 total shoulder<br />

arthroplasties performed for primary osteoarthritis in 10 surgical<br />

centers. Secondary cuff failure was diagnosed radiographically by<br />

moderate or severe superior subluxation. At average 104 months<br />

(60-219), the rate <strong>of</strong> secondary cuff failure was 17% and was<br />

significantly correlated with preoperative fatty infiltration <strong>of</strong> the<br />

supraspinatus (p


were taken for subsidence in each arthroplasty. RSA analysis showed<br />

median total humeral component subsidence at six months to be<br />

0.07±0.07 mm (-0.46-0.67 mm). When compared to six months,<br />

subsidence increase at 12 months was -0.01±0.04 mm (-0.20-0.41<br />

mm] and subsidence increase at two years was 0.03±0.10 mm<br />

(-0.59-0.65 mm). There was no significant change in the median<br />

humeral subsidence between six months, one year or two years.<br />

The early results from our study indicate that uncemented humeral<br />

components are stable and experience little subsidence within the<br />

first two years after implantation. To our knowledge, this study is the<br />

first quantitative analysis <strong>of</strong> humeral component stability. Longerterm<br />

follow up will be necessary to understand the longer-term<br />

stability <strong>of</strong> these components.<br />

pApeR No. 083<br />

Regionalization <strong>of</strong> Elective Total Shoulder Arthroplasty<br />

Stephen Lyman, PhD, New York, NY<br />

Huong Do, MS, New York, NY<br />

Robert G Marx, MD, New York, NY<br />

Patients at higher volume centers have improved outcomes after total<br />

shoulder arthroplasty (TSA) and many other surgical procedures,<br />

leading some policy experts to call for regional centers <strong>of</strong> excellence.<br />

This study aims to evaluate the frequency <strong>of</strong> regionalization <strong>of</strong><br />

TSA, which patients regionalize and what effect regionalization<br />

has on patient outcomes. Patients who underwent a TSA in 13<br />

U.S. states between 1990 and 2006 were identified using statewide<br />

hospitalization databases. We identified patients who stayed in their<br />

local hospital service area (HSA) or who left to have surgery at a higher<br />

volume hospital than available locally. In-hospital complications<br />

were identified and a logistic regression model was used to identify<br />

the effect <strong>of</strong> regionalization on the risk <strong>of</strong> these complications. A<br />

total <strong>of</strong> 40,937 patients (56% female; mean age 68) underwent TSA.<br />

Of these, 54% left their local HSA and 36% went to a higher volume<br />

hospital. Patients who regionalized were more likely to be younger<br />

(p


value (SSV) was 77%. All patients were satisfied with the outcome<br />

following surgery. Radiographic tuberosity healing was observed in<br />

all but one case where there was partial lysis.<br />

pApeR No. 086<br />

The Relationship Between Scapular Notching And<br />

Reverse Shoulder Arthroplasty Prosthesis Design<br />

Marc S Kowalsky, MD, Hartsdale, NY<br />

Derek S Shia, MD, Portland, OR<br />

Leesa M Galatz, MD, Saint Louis, MO<br />

Jay D Keener, MD, Saint Louis, MO<br />

Inferior scapular notching is a known radiographic complication<br />

<strong>of</strong> reverse shoulder arthroplasty (RSA). The purpose <strong>of</strong> this study is<br />

to determine the impact <strong>of</strong> prosthesis design on the incidence and<br />

severity <strong>of</strong> notching. Eighty-eight patients (mean age 72.2 years) who<br />

underwent reverse shoulder arthroplasty with a minimum <strong>of</strong> oneyear<br />

follow-up (mean 30 months) were retrospectively reviewed.<br />

Patients were grouped based on prosthesis design: Prosthesis 1<br />

(46%), Prosthesis 2 with standard liner (Prosthesis 2 STD, 35%) and<br />

Prosthesis 2 with retentive liner (Prosthesis 2 RET, 19%). Notching<br />

on final radiographs was graded using the Sirveaux and a novel<br />

classification system. The presence <strong>of</strong> heterotopic ossification was<br />

also noted. The incidence <strong>of</strong> notching was significantly higher with<br />

Prosthesis 1 (92%) compared to Prosthesis 2 STD (58%) and RET<br />

(71%) (p < 0.05). Using both grading systems, the incidence <strong>of</strong> highgrade<br />

notching and the average grade were significantly higher with<br />

Prosthesis 1 compared to Prosthesis 2 STD and RET (p < 0.05). Using<br />

the novel grading system, there was a higher incidence <strong>of</strong> notching<br />

involving the baseplate with Prosthesis 1 (68%) compared to<br />

Prosthesis 2 (33%) (p < 0.05). While overall there was no significant<br />

difference in heterotopic ossification between the two prostheses,<br />

Prosthesis 2 RET demonstrated the highest incidence (94%) (p <<br />

0.05). A higher incidence and severity <strong>of</strong> notching were observed<br />

with Prosthesis 1. This may be due to the higher inclination angle <strong>of</strong><br />

this prosthesis. In addition to surgical technique, attention should<br />

be paid to prosthesis design in mitigating risk <strong>of</strong> scapular notching.<br />

pApeR No. 087<br />

Reverse Shoulder Arthroplasty for Instability After<br />

Anatomic Arthroplasty<br />

Matthew P Abdel, MD, Rochester, MN<br />

Steven J Hattrup, MD, Phoenix, AZ<br />

John William Sperling, MD, MBA, Rochester, MN<br />

Robert H C<strong>of</strong>ield, MD, Rochester, MN<br />

Cole Robert Kre<strong>of</strong>sky, BS<br />

Joaquin Sanchez-Sotelo, MD, Rochester, MN<br />

Instability after shoulder arthroplasty is difficult to correct. Reverse<br />

shoulder arthroplasty represents an attractive option. However, the<br />

results <strong>of</strong> such procedures are largely unknown. The purpose <strong>of</strong><br />

this study was to determine the results <strong>of</strong> revision <strong>of</strong> the unstable<br />

anatomic shoulder arthroplasty to a reverse prosthesis. Between 2004<br />

and 2007, 33 unstable anatomic shoulder arthroplasties were revised<br />

to a reverse design. Outcomes evaluated included visual analog<br />

scores (VAS) for pain, range <strong>of</strong> motion, Neer rating and shoulder<br />

stability. The mean age was 71 years, with 58% <strong>of</strong> the patients being<br />

female. The average follow up was 26 months. The average time<br />

from the index arthroplasty to revision was 26 months (range, 4-164<br />

months). Pain scores improved significantly (preoperative VAS 7.2 ±<br />

1.6; most recent VAS 2.2 ± 1.9; p = 0.001). There was a statistically<br />

significant increase in active forward elevation from 40.2º ± 27.3º to<br />

97.0º ± 36.2º (p = 0.001). There was no difference in internal (p =<br />

675<br />

0.93) or external (p = 0.40) rotation. At last follow up, 31 shoulders<br />

(94%) were deemed stable. The remaining two patients experienced<br />

dislocations, one at 2.5 weeks postoperatively and the other at<br />

three months postoperatively. According to the Neer rating system,<br />

there were 13 excellent, 10 satisfactory and 10 unsatisfactory results.<br />

Revision <strong>of</strong> an unstable shoulder arthroplasty to reverse prosthesis is<br />

associated with a high rate <strong>of</strong> postoperative stability, improved pain<br />

relief and gains in active elevation. Overall results are excellent or<br />

satisfactory in approximately 70% <strong>of</strong> the patients.<br />

pApeR No. 088<br />

Survivorship Of The Reverse Shoulder Arthroplasties<br />

(RSA) With A Minimum Follow Up Of 10 Years<br />

Luc Favard, MD, Tours, France<br />

Ghassan Alami, MD, Montreal, QC Canada<br />

Allan Young, PhD, Woollahra, NSW Australia<br />

Daniel Mole, MD, Nancy Cedex, France<br />

Francois Sirveaux, PhD, Nancy, France<br />

Pascal Boileau,MD, Nice, France<br />

Gilles Walch, MD, Lyon, France<br />

The goal <strong>of</strong> this study was to analyze the survivorship <strong>of</strong> reverse<br />

shoulder arthroplasties (RSA) with a minimum 10 years follow<br />

up. Between 1992 and 1999, 145 RSAs have been implanted<br />

in 138 patients. It was a mulicentric study. Initial etiologies were<br />

gathered as follows: group A (92 cases) cuff tear arthropaties (CTA),<br />

osteoarthritis (OA) with at least two involved cuff tendons and<br />

massive cuff tear (MCT) with pseudoparalysis; group B (39 cases)<br />

failed hemiarthroplasties (HA), failed total shoulder arthroplasties<br />

(TSA) and fracture sequelae; and group C (14 cases) varied. Survival<br />

curves were established with the Kaplan-Meier technique. Two<br />

endpoints were retained: implant revision defined by glenoid<br />

or humeral replacement or removal, or conversion to HA; a poor<br />

clinical outcome defined by an absolute Constant score <strong>of</strong> less than<br />

30. At the time <strong>of</strong> review, 47 patients had died with their prosthesis<br />

in place and 30 were lost to follow up. There were 12 revisions,<br />

six for infections, three for glenoid loosening, one for dislocation,<br />

one for glenoid dissociation (by unscrewing) and one for humeral<br />

loosening. The survival curve to prosthetic removal showed an<br />

overall survivorship <strong>of</strong> 92% at 10 years. Segmentation according to<br />

etiology showed a 97% survivorship for group A and 88% for group<br />

B. This difference was not significant. No patients <strong>of</strong> group C had<br />

a minimum follow up <strong>of</strong> 10 years because they died or were lost<br />

to follow up. The survival curve to a Constant score <strong>of</strong> less than 30<br />

showed an overall survivorship <strong>of</strong> 90% at 10 years. Segmentation<br />

according to etiology showed a significant difference at 10 years in<br />

favor <strong>of</strong> group A (92%) compared to group B (86%) with a break<br />

<strong>of</strong> the curve after nine years for group B. Our results show that the<br />

overall survivorship <strong>of</strong> the reverse shoulder prosthesis to removal is<br />

good even 10 years after implantation, in particular if it had been<br />

implanted for CTA, OA or MCT. However, functional results did<br />

deteriorate progressively after nine years, especially if it had been<br />

implanted for revision (HA or TSA). Therefore, extreme caution<br />

must be observed in relation to the indications for reverse shoulder<br />

arthroplasty, especially in younger patients.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


pApeR No. 089<br />

Reverse Shoulder Arthroplasty: Review <strong>of</strong><br />

Complications According to Surgical Indication<br />

Richard J Hawkins, MD, Greenville, SC<br />

Jason C Clark, MD, Moline, IL<br />

Frederick Suh Song, MD, Princeton, NJ<br />

Enthusiasm for the use <strong>of</strong> reverse shoulder arthroplasty in the<br />

treatment <strong>of</strong> cuff tear arthropathy, failed hemiarthroplasty,<br />

irreparable cuff tears, failed total shoulder arthroplasty and proximal<br />

humerus fractures has continued to grow despite the concerns about<br />

high complication rates. The goal <strong>of</strong> this study was to look at the<br />

complication rate in relation to the indication for reverse shoulder<br />

arthroplasty. A total <strong>of</strong> 137 reverse shoulder arthroplasties performed<br />

for various indications including primary cuff tear arthropathy (44<br />

shoulders), failed prior rotator cuff repair (35 shoulders), acute<br />

proximal humerus fractures (21 shoulders), proximal humerus<br />

fracture malunion and nonunion (nine shoulders) and major<br />

revision arthroplasty (19 failed hemiarthroplasty, seven failed total<br />

shoulder arthroplasty) were reviewed for complications. Overall, the<br />

complication rate was 20%. Complication rate varied depending<br />

on the pathology: primary cuff tear arthropathy (14%), prior failed<br />

rotator cuff repair (20%), acute proximal humerus fracture (19%),<br />

proximal humerus malunion or nonunion (22%) and major revision<br />

arthroplasty (27%). This study showed an overall complication rate<br />

<strong>of</strong> 20% for reverse shoulder arthroplasty. A number <strong>of</strong> these shoulders<br />

with complications (59%) required further surgical management.<br />

Reverse shoulder arthroplasty for primary cuff tear arthropathy had<br />

a complication rate <strong>of</strong> 14%. Rates almost twice that high should be<br />

anticipated by the surgeon and relayed to the patient prior to surgery<br />

for indications such as failed prior rotator cuff repair, acute fractures,<br />

fracture malunion and nonunion and major revision arthroplasty.<br />

pApeR No. 090<br />

Reverse Shoulder Arthroplasty for the Treatment <strong>of</strong><br />

Acute Proximal Humerus and Glenoid Fractures<br />

Yousef Shishani, MD, Cleveland, OH<br />

Christopher McCrum, BS<br />

John Paul Wanner, BS<br />

Christopher J Lenarz, MD, Beachwood, OH<br />

Robert J Nowinski, DO, Columbus, OH<br />

Thomas Bradley Edwards, MD, Houston, TX<br />

Reuben Gobezie, MD, Cleveland, OH<br />

Historically, three- and four-part fractures <strong>of</strong> the proximal humerus in<br />

elderly patients have been difficult to treat. Several surgical methods<br />

have been described for these fractures including hemiarthroplasty,<br />

total shoulder arthroplasty, fixed-angle locking plates and reverse<br />

shoulder arthroplasty. Little literature exists on reporting the<br />

outcomes for reverse arthroplasty in the treatment <strong>of</strong> these fractures.<br />

This study evaluates the clinical outcomes <strong>of</strong> elderly patients with<br />

acute three- and four-part proximal humerus fractures using a<br />

reverse total shoulder replacement. A multi-center retrospective<br />

study <strong>of</strong> 39 patients who were treated for acute three- and fourpart<br />

proximal humerus (n=35) and/or glenoid (n=4) fractures was<br />

performed. The average age <strong>of</strong> these patients was 75 years (range 54-<br />

94 yrs) and the mean follow up was 19 months. Three <strong>of</strong> the patients<br />

had previous rotator cuff repair (RCR) surgery and had the reverse<br />

arthroplasty at a mean <strong>of</strong> 60.75 months (S.D. ± 80.2, range 11-180)<br />

after their RCR. Outcome measures used to evaluate these patients<br />

included preoperative and postoperative <strong>American</strong> Shoulder and<br />

Elbow Surgeons Score (ASES), range <strong>of</strong> motion, visual analog scale<br />

(VAS) for pain and complications. The patients showed a significant<br />

676<br />

improvement in ASES scores from 24.5 points preoperatively (S.D.<br />

±21.8, range 0-68) to 69.2 points postoperatively (S.D. ±14.0,<br />

range 32-98)(p


week in steroid groups (IS, TS) compared to no steroid groups (IN,<br />

TN)(p


compared to two patients in group 2. In MRI assessment, none<br />

developed retears in group 1 and two patients had retears in group<br />

2. Arthroscopic repair <strong>of</strong> articular-sided partial-thickness rotator<br />

cuff tears provided satisfactory functional improvements and pain<br />

relief regardless <strong>of</strong> repair techniques. However, transtendon repair<br />

techniques had advantages in preservation <strong>of</strong> the intact portion <strong>of</strong><br />

the rotator cuff despite slow postoperative recovery.<br />

pApeR No. 156<br />

Effect <strong>of</strong> Dihydrotestosterone on Cultured Human<br />

Tenocytes from Intact Supraspinatus Tendon<br />

Laura Ruzzini, MD, Rome, rome Italy<br />

Umile Guiseppe Longo, MD, Rome, Italy<br />

Francesco Franceschi, MD, Rome, Lazio Italy<br />

Pr<strong>of</strong>essor Nicola Maffulli, London, United Kingdom<br />

Vincenzo Denaro, MD, Rome, Italy<br />

The role <strong>of</strong> hormones in the pathogenesis <strong>of</strong> tendinopathy is not well<br />

recognized, even though the use <strong>of</strong> anabolic steroids is correlated with<br />

a higher incidence <strong>of</strong> spontaneous tendon ruptures. The aim <strong>of</strong> this<br />

study was to investigate the effects <strong>of</strong> dihydrotestosterone (DHT) on<br />

human tenocyte cultures from the intact supraspinatus tendon <strong>of</strong> male<br />

subjects. Cultured human tenocytes were seeded into culture plates<br />

at a density <strong>of</strong> 5 × 104 cells per well and incubated for 24 hours. 10-9<br />

M to 10-7 M DHT or Dulbecco’s Modified Eagle’s Medium (DMEM)<br />

only (control) was added to the culture plate wells. Cell morphology<br />

assessment and cell proliferation tests were performed 48 hours, 72<br />

hours and 96 hours after DHT treatment. DH T-treated tenocytes<br />

showed an increased proliferation rate at DHT concentration higher<br />

than 10-8 M. Differences in cell numbers between control and DHTtreated<br />

cells were statistically significant (p < 0.05) after 48 hours<br />

and 72 hours <strong>of</strong> treatment with DHT concentrations <strong>of</strong> 10-8 M<br />

and 10-7 M. The tenocytes treated with DHT (10-8 M and 10-7 M)<br />

became more flattened and polygonal compared to control cells that<br />

maintained their fibroblast-like appearance during the experiment at<br />

each observation time. In conclusion, in vitro, progressive increasing<br />

concentration <strong>of</strong> DHT at doses greater than 10-8 M had direct effects<br />

on male human tenocytes, increasing cell number after 48 hours and<br />

72 hours <strong>of</strong> treatment, and leading to a dedifferentiated phenotype<br />

after 48 hours <strong>of</strong> treatment. This effect can be important during<br />

tendon-healing and repair, when active proliferation is required.<br />

pApeR No. 157<br />

Symptoms <strong>of</strong> Pain Do Not Correlate with Rotator Cuff<br />

Tear Severity<br />

Warren Dunn, MD, MPH, Nashville, TN<br />

Laura Ruzzini, MD, Rome, rome Italy<br />

Angel An, MS, Nashville, TN<br />

Dr Michael S Khazzam, Milwaukee, WI<br />

For many orthopaedic disorders, symptoms correlate with disease<br />

severity (e.g. osteoarthritis). Many people have asymptomatic<br />

rotator cuff tears. Additionally, patients may be satisfied with their<br />

results following failure <strong>of</strong> cuff tear surgery. The purpose <strong>of</strong> this<br />

study was to determine if pain is related to the severity <strong>of</strong> rotator cuff<br />

disease. A prospective multi-center cohort study design examined<br />

the effectiveness <strong>of</strong> physical therapy in subjects with full-thickness<br />

rotator cuff tears seen on MRI. Baseline data was used to examine<br />

the relationship between severity <strong>of</strong> cuff disease and pain. Severity<br />

was measured by tear size, retraction, superior head migration and<br />

fatty atrophy. Pain was measured on the 10 cm visual analog score<br />

(VAS) item in the patient reported ASES. A linear multiple regression<br />

model was fit using the continuous VAS score as the dependent<br />

678<br />

variable. Tear severity and patient factors were the independent<br />

variables. The cohort is 48% female with a median age <strong>of</strong> 61. The<br />

dominant shoulder was involved in 69% <strong>of</strong> the cohort. The median<br />

baseline VAS was 4.4. Subjects with symptoms 0.25). Severity <strong>of</strong> cuff<br />

pathology as measured by size, retraction and fatty atrophy is not<br />

associated with pain. Factors associated with pain are comorbidities,<br />

education and race.<br />

pApeR No. 158<br />

Arthroscopic Partial Rotator Cuff for Management <strong>of</strong><br />

Massive Rotator Cuff Tears: Long-term Follow-up<br />

Stephen C Weber, MD, Sacramento, CA<br />

Surgical options for the patient with a massive rotator cuff tear<br />

remain limited. Tendon transfers <strong>of</strong>fer significant perioperative<br />

morbidity, and procedures such as interval tendon slides have raised<br />

concerns about the vascularity <strong>of</strong> the remaining tendon, with a<br />

recent study showing only 25% <strong>of</strong> patients with interval slides had<br />

solid healing on MRI follow up. Xenograft and allograft patches<br />

have shown significant complications and mixed results. Burkhart<br />

(1994) and others pioneered the concept <strong>of</strong> partial rotator cuff<br />

repairs as an arthroscopic-assisted procedure, with good preliminary<br />

results. The procedure, however, is difficult, especially to access the<br />

infraspinatus and subscapularis from a deltoid split. Presented here<br />

is the first report <strong>of</strong> all-arthroscopic partial rotator cuff repair in the<br />

treatment <strong>of</strong> massive, unrepairable rotator cuff tears. Eighty patients<br />

with large or massive rotator cuff tears were evaluated. All patients<br />

were Thomazeau class 2 to 3 for atrophy, and Goutallier class 2 to<br />

4 for fatty infiltration. All patients had primary closure attempted;<br />

interval slides or other heroic techniques were avoided. If solid<br />

closure without tension could not be obtained by primary repair,<br />

but a portion <strong>of</strong> the cuff could be solidly reapproximated, partial<br />

rotator cuff repair with acromioplasty, preserving the coracoacromial<br />

ligament, was performed. All patients were reexamined, with UCLA,<br />

SST and ASES scores obtained, and follow up radiographs and MRI<br />

scans were obtained and compared to preoperative studies. Sixty<br />

five patients had repair <strong>of</strong> the infraspinatus only, with 15 patients<br />

combined infraspinatus and subscapularis. Follow up was a minimal<br />

24 months (average 40.7 months). Good or excellent results were<br />

obtained in 88% <strong>of</strong> cases based on UCLA scores, with SST scores<br />

averaging 10.11 and ASES scores 86.2. No complications occurred,<br />

specifically no hardware issues, infections or neurologic injuries. All<br />

procedures were performed successfully as an outpatient procedure.<br />

Pain scores showed the most significant decrease, with functional<br />

scores based on ASES and Constant scores showed less improvement.<br />

External rotation strength improved 1.2 grades. No patient developed<br />

anterosuperior instability, and no patients developed cuff tear<br />

arthropathy. Radiographs at final follow up showed no evidence <strong>of</strong><br />

vertical migration. MRI scanning showed no progression <strong>of</strong> atrophy<br />

and interval healing <strong>of</strong> the repaired segment in 68%. Good results<br />

can be obtained with arthroscopic partial rotator cuff repair for large<br />

and massive rotator cuff tears. Arthroscopic exposure <strong>of</strong> the rotator<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


cuff is much simpler that with mini-open technique, and direct<br />

suturing <strong>of</strong> the available tendons is possible without damaging the<br />

deltoid. While not approaching the results <strong>of</strong> complete arthroscopic<br />

repair, this technique represents a reasonable, low-morbidity salvage<br />

option for the patient with a rotator cuff tear that is not primarily<br />

repairable.<br />

pApeR No. 159<br />

The Effects <strong>of</strong> Mesenchymal Stem Cells on Rotator Cuff<br />

Muscle In a Chronic Injury Model in Sheep<br />

Struan H Coleman, MD, New York, NY<br />

John R Ehteshami, MD, New York, NY<br />

John D Kisiday, PhD, Fort Collins, CO<br />

Russell F Warren, MD, New York, NY<br />

A Simon Turner, DVM, Fort Collins, CO<br />

We use a chronic rotator cuff injury and repair model in sheep<br />

to test the hypothesis that the injection <strong>of</strong> stem cells directly into<br />

muscle at the time <strong>of</strong> surgical repair will improve muscle function<br />

and decrease fat content. Twenty-four adult female sheep were used.<br />

Infraspinatus muscle specimens were analyzed for fat content. The<br />

force generated with stimulation was recorded intra-operatively.<br />

The tendon was wrapped in a dura substitute and then repaired six<br />

weeks after release. The muscle was injected at the time <strong>of</strong> surgical<br />

repair with cell medium (eight), marrow derived stem cells (eight)<br />

and muscle derived stem cells (eight). Animals were sacrificed after<br />

three months and tested. At the initial surgery, the muscle generated<br />

an average load <strong>of</strong> 37.68 lbs. After six weeks <strong>of</strong> detachment, the<br />

average load was 18.66 lbs., a 50.5% decrease. Three months after<br />

repair and injection, the average loads increased by 14% (control),<br />

29% (muscle MSC) and 40% (marrow MSC), (p


pApeR No. 162<br />

Effect <strong>of</strong> Acromioplasty in Arthroscopic Repair <strong>of</strong> Small<br />

to Medium Sized Rotator Cuff Tears<br />

Sang-Jin Shin, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jaedoo Yoo, Pr<strong>of</strong>, Seoul, Republic <strong>of</strong> Korea<br />

Nam Hoon Do, MD<br />

Yeo-Hon Yun, MD, Seoul, Republic <strong>of</strong> Korea<br />

Ki Young Chang, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

The effectiveness <strong>of</strong> subacromial decompression is still on debate<br />

although subacromial decompression is routinely performed<br />

in rotator cuff repair. This study prospectively assessed the role<br />

<strong>of</strong> acromioplasty in arthroscopic repair <strong>of</strong> small to medium<br />

sized rotator cuff tears. Forty-one consecutive patients with<br />

small to medium sized rotator cuff tears received arthroscopic<br />

subacromial decompression with rotator cuff repair (group 1) and<br />

43 consecutive patients received arthroscopic rotator cuff repair<br />

without acromioplasty (group 2). Postoperative pain was measured<br />

by visual analogue scale and functional outcomes were evaluated<br />

using Constant and UCLA scores. Tendon healing was evaluated by<br />

MRI at six months after operation. Average follow up period was<br />

28 months. Postoperative visual analogue pain score was higher in<br />

group 1 in immediate postoperative period, however, there were no<br />

significant differences between the two groups at final follow up.<br />

Constant scores in both groups improved significantly at final follow<br />

up (from 53 to 89 in group 1 and 47 to 85 in group 2). In group 1,<br />

36 patients revealed good or excellent results in UCLA score and 38<br />

patients in group 2. Rotator cuff retear rate was 10% in group 1 and<br />

13% in group 2. Three patients in group 1 and one patient in group<br />

2 developed postoperative adhesive capsulitis. No correlations were<br />

found between clinical outcomes and acromioplasty Arthroscopic<br />

repair <strong>of</strong> small to medium sized rotator cuff tears provided improved<br />

functional outcomes and pain relieves regardless <strong>of</strong> acromioplasty.<br />

Acromioplasty did not affect clinical outcomes in rotator cuff<br />

repair.<br />

pApeR No. 163<br />

uDevelopment <strong>of</strong> Nanostructured Scaffolds as<br />

Therapeutic Replacement Options for Rotator Cuff<br />

Disease<br />

Erica Taylor, MD, Charlottesville, VA<br />

Lakshmi Sreedharan Nair, PhD<br />

Syam Prasad Nukavarapu, PhD, Farmington, CT<br />

Cato T Laurencin, MD, PhD, Farmington, CT<br />

Current rotator cuff repair modalities yield less than optimal results,<br />

making achievement <strong>of</strong> alternative treatment options desirable.<br />

Tissue-engineering is an emerging therapeutic approach to mimic<br />

the micro-architecture and biomechanics <strong>of</strong> a normal rotator cuff,<br />

while supporting new tissue growth. The objective <strong>of</strong> this study was<br />

to explore the evolution <strong>of</strong> nanostructured scaffolds and develop an<br />

innovative tissue-engineered polymeric device to support healing <strong>of</strong> a<br />

torn rotator cuff and enhance regenerative repair. An electrospinning<br />

method was adopted to fabricate a bioresorbable poly(85 lactic<br />

acid-co-15 glycolic acid) (PLAGA) nan<strong>of</strong>iber scaffold for rotator cuff<br />

augmentation. Scaffolds were seeded with rabbit patellar tendon<br />

cells and in vitro material properties were characterized, including<br />

matrix architecture, tenocyte proliferation and biomechanical<br />

strength. An original in vivo rat rotator cuff model was developed<br />

for interval biomechanical evaluations following augmentation<br />

<strong>of</strong> a supraspinatus repair with the scaffold. Fabrication <strong>of</strong> an<br />

optimized nan<strong>of</strong>iber PLAGA polymeric matrix was accomplished.<br />

In vitro cell assays demonstrated the scaffold’s ability to support<br />

680<br />

significant proliferation, persistent viability and formation <strong>of</strong> a<br />

biomechanically strong cellular network. A rodent rotator cuff<br />

repair model was created, with histological inspection confirming<br />

a time-dependent degradation <strong>of</strong> the bioresorbable scaffold as<br />

the supraspinatus repair increased significantly in biomechanical<br />

strength. The proposed nanostructured scaffold has shown promise<br />

as a potential replacement option for a torn rotator cuff. Optimized<br />

in vitro material characteristics and successful in vivo biological<br />

performance for tendon regeneration have been demonstrated.<br />

The results <strong>of</strong> this project will advance development <strong>of</strong> an ideal<br />

rotator cuff augmentation graft with properties suitable for tendon<br />

replacement technology.<br />

pApeR No. 164<br />

Complications After Arthroscopic Revision Rotator Cuff<br />

Repair - A Multi Center Study<br />

Nata Parnes, MD, Carthage, NY<br />

Michael DeFranco, MD, New York, NY<br />

Jessica Wells, Cambridge, MA<br />

Laurence D Higgins, MD, Boston, MA<br />

Jon J P Warner, MD, Boston, MA<br />

The rate <strong>of</strong> satisfactory results after primary arthroscopic rotator<br />

cuff repair has been reported to be greater than 90%. However the<br />

complication rate <strong>of</strong> patients undergoing this procedure is 10.6%.<br />

The results <strong>of</strong> arthroscopic revision rotator cuff repair (ARRCR) have<br />

generally been inferior to those <strong>of</strong> primary repair. The purpose <strong>of</strong> this<br />

multicenter retrospective study was to determine the complication<br />

rate <strong>of</strong> ARRCR. Ninety-four patients were identified who underwent<br />

ARRCR performed by the two senior authors. The mean age was 52<br />

years (range 44-72). Sixty-four patients underwent one revision rotator<br />

cuff repair (RCR), 23 patients underwent two revisions and seven<br />

patients underwent three or more revisions. We documented tear<br />

size, number <strong>of</strong> tendons involved and type <strong>of</strong> additional procedures<br />

performed. Nineteen patients (20.21%) developed a complication<br />

after ARRCR (12 males, seven females, mean age was 53) within 90<br />

days postoperatively. These complications include: failure to heal in<br />

nine patients (9.57%), stiffness in seven patients (7.44%), infection<br />

in two patients (2.1%) and nerve injury in one patient (1%). A<br />

direct correlation was found between the complication rate and the<br />

number <strong>of</strong> revision surgeries: 14% after one revision; 17.4% after two<br />

revisions; 33% after three revisions; 50% after four or more revisions.<br />

The complication rate after arthroscopic revision rotator cuff repair is<br />

about twice the published rate for primary rotator cuff repair. There<br />

is a direct correlation between the complication rate and the revision<br />

number. The most common complication was recognized as failure<br />

to heal and that was related to poor tissue quality.<br />

pApeR No. 165<br />

uFunctional Outcome <strong>of</strong> Reverse Shoulder<br />

Arthroplasty versus Hemiarthroplasty in Cuff Tear<br />

Arthropathy<br />

Simon Young, MD, Auckland, New Zealand<br />

Peter Poon, MD, Auckland, New Zealand<br />

Cuff tear arthropathy remains a challenging problem to the<br />

shoulder arthroplasty surgeon. Poor results <strong>of</strong> conventional total<br />

shoulder arthroplasty in cuff deficient shoulders have meant<br />

hemiarthroplasty has been the traditional preferred option. Recently<br />

reverse total shoulder arthroplasty (RSA) has gained popularity<br />

due to a clinical perception <strong>of</strong> an improved functional outcome.<br />

This is despite a lack <strong>of</strong> comparative data particularly in relation to<br />

modern hemiarthroplasty prostheses. The aim <strong>of</strong> this study was to<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


compare the functional results <strong>of</strong> hemiarthroplasty versus RSA in the<br />

management <strong>of</strong> cuff tear arthropathy. Patients were identified from<br />

the New Zealand National Joint Registry and matched for age, sex<br />

and <strong>American</strong> Society <strong>of</strong> Anesthesiologists (ASA) scores. Functional<br />

outcome was assessed using the Oxford shoulder score (OSS)<br />

collected prospectively at six months and five years post surgery,<br />

together with mortality and revision rates. The OSS is a validated<br />

outcome score known to correlate well with the Constant score.<br />

One-hundred-two primary shoulder hemiarthroplasties performed<br />

for cuff tear arthropathy were matched against 102 RSAs performed<br />

for the same diagnosis. There were 51 males and 51 females in<br />

each group, with a mean age <strong>of</strong> 71.6 in the hemiarthroplasty<br />

group and 72.6 in the RSA group. Mean ASA score was 2.2 in both<br />

groups. Twenty-eight hemiarthroplasty and 30 RSA patients had<br />

undergone previous s<strong>of</strong>t tissue procedures. Patients were followed<br />

for a minimum <strong>of</strong> two years (range 2-10). The median OSS was 31<br />

in the hemiarthroplasty group and 39 in the RSA group (p


0-10)(p=.00004). Preoperative ASES score improved from 19.6 (S.D.<br />

±15.8, range 0-53) to 41.5 (S.D. ± 7.8, range 30-53) postoperatively<br />

(p


at an implant price below $14,875, RSA is cost-effective relative to<br />

HHR. Using currently available cost and outcome data, RSA could be<br />

a cost-effective alternative to HA for rotator CTA over a wide range<br />

<strong>of</strong> patient ages. The cost-effectiveness <strong>of</strong> RSA is dependent on the<br />

health utility gained from the operation and the utility lost due to<br />

complications from the operation, and further head-to-head studies<br />

evaluating the clinical and quality-<strong>of</strong>-life outcomes <strong>of</strong> these two<br />

treatments are warranted.<br />

pApeR No. 367<br />

Midterm Results <strong>of</strong> Biologic Resurfacing <strong>of</strong> the Glenoid<br />

in Young Patients with Glenohumeral Arthritis<br />

Eric J. Strauss, MD, New York, NY<br />

Michael Salata, MD, Cleveland, OH<br />

Kevin C McGill, MPH, Chicago, IL<br />

Gregory P Nicholson, MD, Chicago, IL<br />

Brian J Cole, MD, Chicago, IL<br />

Nikhil N Verma, MD, Chicago, IL<br />

Anthony A Romeo, MD, Chicago, IL<br />

The purpose <strong>of</strong> this study is to evaluate the clinical outcomes <strong>of</strong><br />

biological interposition arthroplasty <strong>of</strong> the glenohumeral joint using<br />

either a lateral meniscus allograft (LMA) or a human acellular dermal<br />

tissue matrix (HADTM) in combination with hemiarthroplasty or<br />

humeral head resurfacing. Forty-five consecutive patients with a<br />

mean age <strong>of</strong> 42.2 years (range 18.1-60.2 years) underwent either<br />

hemiarthroplasty (38 cases) or humeral head resurfacing (seven<br />

cases) combined with biologic resurfacing <strong>of</strong> the glenoid. Preoperative<br />

diagnoses included symptomatic glenohumeral arthrosis<br />

(31 patients), capsulorrhaphy arthropathy (two patients), avascular<br />

necrosis (one patient) and chondrolysis (one patient). There were<br />

30 males and 11 females with the dominant extremity involved<br />

in 24 patients (58.5%). LMA was used in 31 cases and HADTM<br />

interposition was used in 10 cases. At a mean follow up <strong>of</strong> 2.8 years,<br />

41 patients (91.1%) were available for evaluation. The overall clinical<br />

failure rate was 51.2% (21 <strong>of</strong> 41 patients). Failure was defined as<br />

actual or recommended conversion to TSA, revision surgery for graft<br />

removal, patient reported disabling pain/loss <strong>of</strong> function and/or<br />

post-operative ASES score <strong>of</strong> < 50. The LMA cohort had a failure rate<br />

<strong>of</strong> 45.2% with a mean time to failure <strong>of</strong> 3.4 years. Those treated with<br />

a HADTM had a failure rate <strong>of</strong> 70.0% with a mean time to failure<br />

<strong>of</strong> 2.2 years. Nine patients (22%) failed treatment within two years<br />

<strong>of</strong> the procedure. None <strong>of</strong> the treatment failures were attributed<br />

to problems associated with the humeral head implant. Biologic<br />

resurfacing <strong>of</strong> the glenoid with LMA or HADTM in combination<br />

with hemiarthroplasty or humeral head resurfacing results in a high<br />

rate <strong>of</strong> clinical failure at midterm follow up. Our results suggest<br />

that biologic resurfacing <strong>of</strong> the glenoid may have a minimal and<br />

as yet undefined role in the management <strong>of</strong> glenohumeral arthritis<br />

in the young active patient over more traditional methods <strong>of</strong><br />

hemiarthroplasty or total shoulder arthroplasty.<br />

pApeR No. 368<br />

Effects <strong>of</strong> Tilt and Glenosphere Eccentricity on<br />

Baseplate Forces in a Reverse Shoulder Model<br />

Sergio Gutierrez, PHD, Tampa, FL<br />

Mark A Frankle, MD, Temple Terrace, FL<br />

The purpose <strong>of</strong> this study was to determine: 1) the relative forces<br />

at the baseplate-bone interface in glenospheres with centers <strong>of</strong><br />

rotation located concentrically and eccentrically to the center <strong>of</strong><br />

the baseplate-bone attachment and 2) if forces at the baseplatebone<br />

interface can be optimized (<strong>of</strong>f-center loading minimized)<br />

683<br />

by altering tilt <strong>of</strong> the baseplate. A validated computer model was<br />

used to compare concentric glenospheres with neutral <strong>of</strong>fset to<br />

eccentrically <strong>of</strong>fset glenospheres (6 mm inferior or 6 mm lateral)<br />

in three baseplate tilts: 15° inferior, neutral or 15° superior. A<br />

baseplate, simulated bone, screws and humeral component were<br />

modeled, and forces underneath the baseplate were calculated<br />

from the superior and inferior portions <strong>of</strong> the baseplate as the arm<br />

was abducted through 90° <strong>of</strong> glenohumeral motion. Center <strong>of</strong><br />

rotation <strong>of</strong>fset affects the uniformity <strong>of</strong> forces across the baseplatebone<br />

interface. For lateral and concentric glenospheres, inferior<br />

tilt provides the most even distribution <strong>of</strong> forces (mean difference<br />

in force between superior and inferior portion <strong>of</strong> baseplate: 11.3<br />

N, and 24.7 N respectively) and superior tilt provides the most<br />

uneven distribution <strong>of</strong> forces (109.3 N and 78.7 N, respectively).<br />

For inferior eccentric glenospheres, inferior tilt provides the most<br />

uneven distribution <strong>of</strong> forces (58.7 N) and neutral tilt provides the<br />

most even distribution <strong>of</strong> forces (27.7 N). Although inferior tilting<br />

<strong>of</strong> the baseplate is recommended for concentric and laterally <strong>of</strong>fset<br />

glenospheres, this same recommendation may be detrimental to<br />

inferiorly <strong>of</strong>fset glenospheres and warrants further investigation.<br />

pApeR No. 369<br />

Glenoid Morphology Rather Than Version Predicts<br />

Humeral Subluxation<br />

Lisa Tibor, MD, Mammoth Lakes, CA<br />

Heinz R Hoenecke Jr, MD, San Diego, CA<br />

Brennen L Lucas, MD, La Jolla, CA<br />

Darryl D D’Lima, MD, La Jolla, CA<br />

Glenoid retroversion is thought to play an important role in stability<br />

both before and after arthroplasty in the arthritic shoulder. Thus,<br />

many authors recommend glenoid reaming intraoperatively to correct<br />

retroversion and improve stability. Genetic analysis has revealed that<br />

glenoid vault and scapular development are controlled by different<br />

genes and environmental factors, resulting in diverse glenoid<br />

morphologies. We therefore analyzed the relative contribution <strong>of</strong><br />

glenoid morphology and version to humeral head position. A total<br />

<strong>of</strong> 121 shoulder CT scans obtained preoperatively for shoulder<br />

arthroplasty were measured by two orthopaedic shoulder fellows.<br />

Humeral subluxation and glenoid version were measured on the<br />

axial image at the middle <strong>of</strong> each glenoid. Glenoid morphology was<br />

characterized as biconcave, worn, displaced, dysplastic, angled or<br />

neutral. The strength <strong>of</strong> the correlation between humeral subluxation,<br />

glenoid version and glenoid morphology was analyzed. Glenoid<br />

version did not correlate with humeral subluxation (R2=0.02). The<br />

distribution <strong>of</strong> glenoid morphology was: angled (13), biconcave<br />

(32), displaced (15), dysplastic (one), neutral (two), worn (58). The<br />

highest frequency <strong>of</strong> posterior subluxation was noted in biconcave<br />

glenoids. Shoulders with other glenoid morphologies were more<br />

likely to have anterior or central positioning <strong>of</strong> the humerus. The<br />

mean subluxation ratio for biconcave glenoids was 0.56 and was<br />

significantly different from all other morphologies (p


pApeR No. 370<br />

uSodium Hyaluronate (SUPARTZ?) for the Treatment <strong>of</strong><br />

Glenohumeral Osteoarthritis<br />

Young W Kwon, MD, PhD, New York, NY<br />

David L Gilliam, MD, Little Rock, AR<br />

Gerald Eisenberg, MD<br />

Joseph D Zuckerman, MD, New York, NY<br />

Non operative treatments for glenohumeral osteoarthritis (GH-<br />

OA) are limited and associated with unpredictable outcomes.<br />

Sodium hyaluronate (HA) is an intra-articular (IA) viscosupplement<br />

therapy that has been effective in treating osteoarthritis <strong>of</strong> the knee.<br />

Therefore, we sought to evaluate the safety and the efficacy <strong>of</strong> HA in<br />

the treatment <strong>of</strong> GH-OA. A double blind, randomized, phosphate<br />

buffered saline (PBS) controlled multicenter trial enrolled 300<br />

patients with GH-OA. Both groups (150 HA, 150 PBS) received three<br />

weekly IA injections, and were evaluated over 26 weeks. Primary and<br />

secondary outcome measurements were visual analog scale (VAS)<br />

for pain, and the percentage <strong>of</strong> OMERACT-OARSI high responders.<br />

In the HA and PBS Intent To Treat patients, there was a mean<br />

improvement from baseline in VAS scores <strong>of</strong> 19.88 mm and 16.29<br />

mm at week 26, respectively, after treatment. Between groups, the<br />

least squares mean difference was 2.84 mm in favor <strong>of</strong> the HA group.<br />

Similarly, the percentage <strong>of</strong> OMERACT-OARSI high responders in<br />

the HA group was higher (40.8% vs. 34.9%). However, neither <strong>of</strong><br />

these differences was statistically significant (p=0.1121 and 0.0690,<br />

respectively). In a subset <strong>of</strong> patients without concomitant shoulder<br />

pathologies, the differences <strong>of</strong> VAS and OMERACT-OARSI high<br />

responder rates between groups were 4.0 mm and 8.37%, respectively.<br />

These differences reached statistical significance. However, due to<br />

the number <strong>of</strong> protocol deviations, strict interpretation <strong>of</strong> these<br />

results was not possible. Safety analyses showed comparable rates <strong>of</strong><br />

adverse events between groups, and neither group reported serious<br />

or unanticipated treatment related adverse events. No statistically<br />

significant differences in efficacy or safety were found between HA<br />

and PBS treated patients with GH-OA. Although a subset <strong>of</strong> HA<br />

patients did show signs <strong>of</strong> efficacy, no definitive conclusions could<br />

be drawn due to confounding factors.<br />

pApeR No. 371<br />

Arthroscopic Treatment <strong>of</strong> Early Gleno-Humeral Arthritis<br />

Giuseppe Porcellini, MD, Cattolica, RN Italy<br />

Fabrizio Campi, MD, Cattolica, RN Italy<br />

Chandra Sekhar Bodanki, MS, Cattolica RN, Italy<br />

Eugenio Cesari, MD, Cattolica, RN Italy<br />

Paolo Paladini, MD, Cattolica, RN Italy<br />

Several surgical options are available to manage primary shoulder<br />

arthritis, including arthroscopic joint debridement and arthroscopic<br />

resurfacing using graft or engineered membranes. Aim <strong>of</strong> this study<br />

is to highlight differences between these surgical approaches at two<br />

years <strong>of</strong> follow up. Twenty-four consecutive patients affected by<br />

early gleno-humeral arthritis were enrolled for the study. Group A<br />

(control group, 13 patients, 45.8%) were treated with debridement,<br />

capsular release and micr<strong>of</strong>racture, Group B (11 patients, 54.2%)<br />

with the same procedure adding interposition <strong>of</strong> hyaluronic acid<br />

engineered membrane. All the patients has a pre-operative imaging<br />

study with X-ray and MRI and were evaluated by SST and Constant<br />

score. Inclusion criteria were: arthritis at Samilson stage I or II, loss<br />

<strong>of</strong> forward elevation less than 40 degrees and <strong>of</strong> external rotation<br />

less than 30 degrees. Cartilaginous defects were classified as focal,<br />

total and mono-polar or bi-polar. Follow up examination were done<br />

at three, six, 12 and 24 months from surgery (mean 31 months).<br />

X-rays were taken at two years <strong>of</strong> follow up. Twenty-one patients<br />

684<br />

(87.5%) had good outcomes. Three patients (12.5%) had poor<br />

outcomes related to progression <strong>of</strong> arthritis. Range <strong>of</strong> motion (ROM)<br />

recovery, Constant pain sub-score and SST were always higher in<br />

patients <strong>of</strong> B group (p


the positive effect <strong>of</strong> injection on pain but great controversy exists<br />

as to the accuracy <strong>of</strong> injection by palpation and the importance<br />

<strong>of</strong> accuracy with regard to pain and function. We used a blinded,<br />

longitudinal observational design <strong>of</strong> effectiveness in an effort to<br />

determine the accuracy <strong>of</strong> intraarticular injections and the effect<br />

<strong>of</strong> that accuracy on pain and functional outcomes in patients with<br />

various shoulder pathologies. Of the 103 blinded injections, 54<br />

injections were identified by fluoroscopy as ‘in’ the capsule, whereas<br />

49 were identified as ‘outside’ the capsule, an accuracy rate <strong>of</strong> 52.4%.<br />

In the four-week follow up, regardless <strong>of</strong> group assignment or accuracy<br />

<strong>of</strong> the injection, patients improved significantly (p


<strong>of</strong> three-part fractures and 0% (zero/five) <strong>of</strong> two-part fractures.<br />

Similarly, radiographic PTA (including AVN) was observed in 37%<br />

(10/27) <strong>of</strong> fractures. PTA was observed in 60% (six/10) <strong>of</strong> four-part<br />

fractures, 33% (four/12) <strong>of</strong> three-part fractures and 0% (zero/five)<br />

<strong>of</strong> two-part fractures. Mean ASES score at the latest follow-up was 82<br />

for all patients (77 for patients with AVN and 84 for patients without<br />

AVN). Intermediate follow up <strong>of</strong> patients with percutaneously treated<br />

proximal humerus fractures demonstrates an increased incidence <strong>of</strong><br />

AVN and PTA over time, with some cases presenting as late as eight<br />

years postoperatively. This increased incidence over time suggests<br />

longer-term follow up may be necessary for patients treated with this<br />

technique. Despite the development <strong>of</strong> AVN over time, there did not<br />

appear to be a significant degradation <strong>of</strong> subjective outcomes.<br />

pApeR No. 602<br />

Shoulder Arthroplasty for Proximal Humeral Non-unions<br />

Thomas Duquin, MD, Buffalo, NY<br />

Justin Jacobson, MD, Missoula, MT<br />

John William Sperling, MD, MBA, Rochester, MN<br />

Joaquin Sanchez-Sotelo, MD, Rochester, MN<br />

Robert H C<strong>of</strong>ield, MD, Rochester, MN<br />

Shoulder arthroplasty is <strong>of</strong>ten used as a salvage operation for<br />

proximal humeral fracture non-unions, with frequent unsatisfactory<br />

functional results. The goal <strong>of</strong> this study is to assess the outcome<br />

<strong>of</strong> shoulder arthroplasty for proximal humeral non-unions at our<br />

institution. From 1976 to 2007, 85 patients underwent shoulder<br />

arthroplasty for proximal humeral non-union. Those with less than<br />

two-year follow up were excluded, leaving 63 patients. There were 46<br />

females and 17 males with a mean follow up <strong>of</strong> nine years. The initial<br />

fracture pattern was two-part in 35 patients (56%), three-part in 17<br />

(27%) and four-part in 11 (17%). Hemiarthroplasty was performed<br />

in 51 (81%) and total shoulder arthroplasty in the remaining 12<br />

(19%). Average active elevation and external rotation improved from<br />

46 and 26 to 104 and 50 degrees at final follow up (p=0.0001). VAS<br />

pain scores improved from 8 to 4 at final follow up (p=0.0001), and<br />

there were 10 (17%) excellent, 18 (30%) satisfactory and 32 (53%)<br />

unsatisfactory results using the modified Neer score. No differences<br />

were found between the hemi and total arthroplasty groups.<br />

Complications occurred in 24 (39%) patients with 10 re-operations<br />

including five revisions. Kaplan-Meier survivorship analysis for<br />

revision was 97% (94.3,100) at one year and 93% (88.0,99.2) at five,<br />

10 and 20 years. Shoulder arthroplasty for proximal humeral fracture<br />

non-unions results in modest improvement in pain and function<br />

with unsatisfactory results in greater than half <strong>of</strong> patients. Difficulty<br />

in obtaining anatomic positioning <strong>of</strong> components and tuberosity<br />

healing in arthroplasty for proximal humeral non-unions results in<br />

compromised outcomes.<br />

pApeR No. 603<br />

Intercellular Adhesion Molecule-1 Is Increased in the<br />

Frozen Shoulder and Down-regulated by Steroid<br />

Yang-Soo Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jung Man Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Ji-Hoon Ok, MD, Seoul, Republic <strong>of</strong> Korea<br />

Yun-Kyoung Lee<br />

The object <strong>of</strong> this study was to evaluate the expression <strong>of</strong> ICAM-1<br />

in the frozen shoulder and the effect <strong>of</strong> steroid on its expression.<br />

Twenty-six glenohumeral joint capsule tissues (17 frozen shoulders,<br />

nine controls) were obtained intraoperatively and evaluated ICAM-<br />

1 expression using oligo-array technique, real-time RT-PCR and<br />

immunohistochemical staining. The expression <strong>of</strong> ICAM-1 in the<br />

joint fluid was determined using western blotting and the expression<br />

686<br />

in the blood serum was determined using ELISA. The capsule cells<br />

from the patients with frozen shoulders and controls were cultured<br />

and treated with steroids. ICAM-1 expression was evaluated in<br />

cultured capsular cells following one day and three days after steroid<br />

treatment using real-time RT-PCR. The expression <strong>of</strong> ICAM-1 was<br />

significantly increased in glenohumeral joint capsule <strong>of</strong> frozen<br />

shoulder (1.72) than controls (0.69) and also significantly increased<br />

in joint fluid <strong>of</strong> frozen shoulder (1.70) than control (0.48) (p


pApeR No. 605<br />

Efficacy Of Different Corticosteroid Injection Site For<br />

The Treatment Of Adhesive Capsulitis<br />

Sang-Jin Shin, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jaedoo Yoo, Pr<strong>of</strong>, Seoul, Republic <strong>of</strong> Korea<br />

Nam Hoon Do, MD<br />

This study prospectively compared the clinical outcomes in patients<br />

who had idiopathic adhesive capsulitis treated with a single<br />

corticosteroid injection in three different locations <strong>of</strong> the shoulder.<br />

One hundred and fifty patients with limited shoulder motion under<br />

120° forward flexion, 30° external rotation and internal rotation<br />

below L3 level were randomly assigned to four groups based on<br />

corticosteroid injection location; group 1, intraarticular combined<br />

with subacromial injection; group 2, intraarticular injection; group<br />

3, subacromial injection; and group 4, medication only. A single<br />

injection <strong>of</strong> corticosteroid was done under ultrasound guidance. Pain<br />

relief was measured by visual analogue scale and functional outcomes<br />

were evaluated using ASES score. Patients with corticosteroid<br />

injections showed faster pain relief than medication group up to<br />

six months after injection (p


(p


the community radiologists (p


pApeR No. 615<br />

Bristow-Latarjet Repair versus Bankart. A 17-year<br />

follow-up <strong>of</strong> 185 Shoulders<br />

Lennart Hovelius, MD, Gavle, Sweden<br />

Ola Vikerfors, MD, Vasteras, Sweden<br />

Bjorn Sandstrom, MD, Gavle, Sweden<br />

Anders Ol<strong>of</strong>sson, MD<br />

Olle Svensson, MD, Umea, Sweden<br />

Hans Rahme, MD, Uppsala State, Sweden<br />

During 1988-1995, 88 consecutive shoulders had a Bankart repair<br />

(B) and 97 consecutive shoulders a Bristow-Latarjet repair (B-L) in<br />

two different Swedish hospitals. Mean age at surgery was 27.8 years<br />

for the B-L group and 27.4 years for the Bankart. In 2008- 2009,<br />

all shoulders had a follow up by letter/telephone. The patients<br />

answered a questionnaire and completed the WOSI (Western Ontario<br />

Shoulder Index), DASH (Disability Arm Shoulder Hand) and SSV<br />

(Simple Shoulder Value). All patients had a follow up after 13-22<br />

years (mean 17). , In the B-L group, one shoulder and in the B group,<br />

five had revision surgery due to recurrence (P=0.08). Thirteen/97 <strong>of</strong><br />

B-L shoulders had redislocation/subluxation after index operation<br />

compared to 25/87 in the B group (P=0.017). Ninety-four/96<br />

Bristow shoulders were very satisfied/satisfied compared to 71/80 in<br />

the B series (P=0.01). Mean WOSI score was 88 for B-L shoulders<br />

and 79 for B shoulders (P=0.002). B-L shoulders also scored better<br />

with respect to DASH (P=0.002) and SSV (0.007). Patients had 11o<br />

loss <strong>of</strong> outward rotation with the arm at the side after B-L repair<br />

compared to 19o after Bankart (P=0.012). Ten/88 shoulders with<br />

original Bankart with tunnels though the glenoid rim had less<br />

redislocation(s)/subluxation(s) than shoulders done with anchors<br />

(P=0.048). Shoulders with Bristow-Latarjet repair had better results<br />

than Bankart repairs done with anchors with respect to postoperative<br />

stability and subjective evaluation. Shoulders with original Bankart<br />

repair were more stable than repairs done with anchors.<br />

pApeR No. 676<br />

Radiation Therapy for Heterotopic Ossification<br />

Prophylaxis Acutely After Elbow Trauma<br />

Nady Hamid, MD, St Louis, MO<br />

Nomaan Ashraf, MD, New York, NY<br />

Michael J Bosse, MD, Charlotte, NC<br />

Patrick Michael Connor, MD, Charlotte, NC<br />

James F Kellam, MD, Charlotte, NC<br />

Stephen H Sims, MD, Charlotte, NC<br />

Douglass E Stull, MD, Lawrence, KS<br />

Kyle James Jeray, MD, Greenville, SC<br />

Robert Hymes, MD, Falls Church, VA<br />

Heterotopic ossification (HO) around the elbow can result in pain,<br />

loss <strong>of</strong> motion and impaired function. We hypothesized that a single<br />

dose <strong>of</strong> radiation therapy (RT) could be safely administered acutely<br />

after elbow trauma, would decrease the number <strong>of</strong> elbows that would<br />

require surgical excision <strong>of</strong> HO and potentially improve clinical<br />

results. A prospective, randomized study was conducted at three<br />

medical centers. Patients with intra-articular distal humerus fractures<br />

or fracture dislocation <strong>of</strong> the elbow with proximal radius and/or<br />

ulna fractures were enrolled. Patients were randomized to either<br />

receive single-dose radiation therapy <strong>of</strong> 700 centigray immediately<br />

postoperatively (within 72 hours) or nothing (control group) for HO<br />

prophylaxis. Clinical and radiographic assessment was performed at<br />

six weeks, three months and six months postoperatively. All adverse<br />

events and complications were documented prospectively. This study<br />

was terminated prior to completion due to unacceptably high adverse<br />

690<br />

events reported in the treatment group. Data was available on 45 <strong>of</strong><br />

the 48 patients enrolled in this study. When investigating the rate<br />

<strong>of</strong> complications, there was a significant difference in the frequency<br />

<strong>of</strong> nonunions between the two groups. Of the nine nonunions in<br />

this series, eight were in the treatment group. The nonunion rate in<br />

the treatment group was 38% (eight/21). This showed a significant<br />

difference compared to the control group which had a 4% (one <strong>of</strong><br />

24) nonunion rate (p=0.0072). There were no significant differences<br />

between the groups with regard to incidence <strong>of</strong> HO, post-operative<br />

range <strong>of</strong> motion or Mayo Elbow Performance Score noted at the time<br />

<strong>of</strong> study termination. This study demonstrated that post-operative<br />

single-dose radiation therapy for HO prophylaxis may play a role in<br />

increasing the rate <strong>of</strong> fracture and olecranon osteotomy nonunion<br />

when used acutely after elbow trauma. Clinical efficacy <strong>of</strong> RT could<br />

not be determined based on the sample size. Further research<br />

is needed to determine the role <strong>of</strong> limited field radiation for HO<br />

prophylaxis after elbow trauma.<br />

pApeR No. 677<br />

MRI Appearance Of Distal Biceps Tendon Repair And<br />

Comparison With Functional Outcome<br />

Christopher C Schmidt, MD, Pittsburgh, PA<br />

Veronica A Diaz, MD, Stuart, FL<br />

David M Weir, BS, Pittsburgh, PA<br />

Carmen Latona, MD, Pittsburgh, PA<br />

Mark C Miller, PHD, Pittsburgh, PA<br />

The purpose <strong>of</strong> this study was to determine whether MRI appearance<br />

<strong>of</strong> a repaired distal biceps tendon correlated with functional outcome.<br />

Nineteen patients with distal biceps repairs to cortical bone using<br />

an endobutton underwent MRI <strong>of</strong> the involved elbow an average<br />

<strong>of</strong> 4.1 years after repair. A musculoskeletal radiologist and upper<br />

extremity fellow characterized each MRI independently with respect<br />

to integrity, tendon heterogeneity and heterotopic bone. Seventeen<br />

patients underwent isometric supination strength testing at three<br />

forearm positions, and 19 patients completed disabilities <strong>of</strong> the arm,<br />

shoulder, and hand (DASH) and visual analog scale (VAS) scores.<br />

All repairs healed to cortical bone. There was wide variability in the<br />

appearance <strong>of</strong> the repaired tendon. MRI characterization showed<br />

substantial inter-observer reliability for repair integrity (kappa, k =<br />

1.0), tendon heterogeneity (k = 0.79) and presence <strong>of</strong> heterotopic<br />

bone (k =0.89). The greatest strength deficit occurred with the<br />

forearm in 60° <strong>of</strong> supination (average 67% <strong>of</strong> uninjured side p


pApeR No. 678<br />

1 vs. 2 Incision Technique for the Repair <strong>of</strong> Distal<br />

Biceps Tendon Ruptures: A RCT<br />

Ruby Grewal, MD, London, ON Canada<br />

George S. Athwal, MD, London, ON Canada<br />

Joy C MacDermid, PhD, London, ON Canada<br />

Ken Faber, MD, London, ON Canada<br />

Darren Sean Drosdowech, MD, FRCSC, London, ON Canada<br />

Graham J W King, MD, London, ON Canada<br />

This study evaluated the functional and clinical outcomes <strong>of</strong> the<br />

single vs. double incision technique for distal biceps tendon repair.<br />

Patients with acute distal biceps ruptures (n=90) were randomized<br />

to receive either a single (S) incision (n=48) repair using suture<br />

anchors or a double (D) incision repair (n=42) using trans-osseous<br />

drill holes. Patients were followed at three, six, 12 and 24 months<br />

following surgery. The primary outcome was the <strong>American</strong> Shoulder<br />

and Elbow Surgeon’s (ASES) elbow score. Secondary outcomes<br />

included complication rates and Disabilities <strong>of</strong> the Arm Shoulder<br />

and Hand (DASH) score. Generalized linear modeling was used<br />

to assess differences in outcome measures between groups over<br />

time. Continuous variables were assessed with a student’s t-test<br />

and categorical variables with a Chi-square test. All patients were<br />

male, there were no significant differences between mean ages (S:<br />

45.3 years, D: 44.9 years), percentage <strong>of</strong> dominant hands affected<br />

(S: 69%, D: 62%) or workers compensation cases (S: 33%, D: 23%)<br />

between groups. There were no differences in overall mean outcomes<br />

between the two groups over time ASES pain: 10.5 (p=0.9), ASES<br />

function: 28.8 (p=0.5), DASH: 16.7 (p = 0.9)]. Comparison <strong>of</strong> final<br />

isometric strength regained at two years (expressed as a percentage<br />

<strong>of</strong> the unaffected arm) revealed that there were no overall differences<br />

in final extension (S: 104%, D: 106%, p = 0.6), pronation (S: 99%,<br />

D: 103%, p = 0.6) or supination (S: 98%, D: 92%, p = 0.4) between<br />

groups. A marginal advantage in mean isometric flexion strength<br />

regained was seen with the double incision technique (D: 104%<br />

vs. S: 94%, p= 0.01). The single incision technique resulted in a<br />

higher overall complication rate, primarily due to a high number<br />

<strong>of</strong> early transient neurapraxias (S: 19/48, D: 3/42, p


pApeR No. 681<br />

Ulnar Collateral Ligament Injuries <strong>of</strong> the Elbow in<br />

Pr<strong>of</strong>essional Football Quarterbacks<br />

Christopher Dodson, MD, Philadelphia, PA<br />

Nicholas R Slenker, MD, Philadelphia, PA<br />

Steven Brad Cohen, MD, Media, PA<br />

Michael G Ciccotti, MD, Philadelphia, PA<br />

Peter F DeLuca, MD, Philadelphia, PA<br />

Background: Ulnar collateral ligament (UCL) injuries <strong>of</strong> the elbow<br />

can cause significant pain and disability in the overhead thrower.<br />

Most studies in the literature have focused on baseball players and<br />

demonstrated that surgical reconstruction is the most reliable way to<br />

allow these athletes to return to their previous level <strong>of</strong> performance.<br />

Little is known about whether or not surgical reconstruction is<br />

necessary for other types <strong>of</strong> elite throwing athletes. We hypothesize<br />

that pr<strong>of</strong>essional football quarterbacks with UCL injuries <strong>of</strong> the elbow<br />

can return to competitive play after nonoperative management. The<br />

NFL Injury Surveillance System (NFLISS) was reviewed for any UCL<br />

injuries <strong>of</strong> the elbow in quarterbacks from 1994 to 2008 including<br />

the type and mechanism <strong>of</strong> injury, player demographics, method <strong>of</strong><br />

treatment and time to return to play. A total <strong>of</strong> 10 cases <strong>of</strong> UCL injuries<br />

in quarterbacks were identified starting in 1994. Nine cases were<br />

treated nonoperatively, and the mean return to play was 26.4 days.<br />

UCL injuries <strong>of</strong> the elbow are uncommon injuries in pr<strong>of</strong>essional<br />

quarterbacks. This group <strong>of</strong> overhead athletes can be successfully<br />

treated nonoperatively, in contrast to baseball players, who more<br />

commonly need surgical reconstruction to return to competitive<br />

play. The difference between the two groups <strong>of</strong> overhead athletes is<br />

most likely secondary to biomechanics and demand.<br />

pApeR No. 682<br />

Inflammation Is Present In Early Human Tendinopathy<br />

Neal L Millar, MD, South Lanarkshire, United Kingdom<br />

Axel Hueber, MD<br />

James H Reilly, PhD<br />

Umberto Giuseppe Fazzi, FRCS, Glasgow, United Kingdom<br />

Pr<strong>of</strong> George A C Murrell, MD, Kogarah, NSW Australia<br />

Pr<strong>of</strong>essor Iain B McInnes<br />

The cellular mechanisms <strong>of</strong> tendinopathy remain unclear particularly<br />

with respect to the role <strong>of</strong> inflammation in early disease. We have<br />

previously identified increased levels <strong>of</strong> inflammatory cytokines in<br />

an early human model <strong>of</strong> tendinopathy and sought to extend these<br />

studies to the cellular analysis <strong>of</strong> tissue. The purpose <strong>of</strong> this study<br />

was to characterize inflammatory cell subtypes in early human<br />

tendinopathy. We explored the phenotype and quantification<br />

<strong>of</strong> inflammatory cells in torn and control tendon samples. Torn<br />

supraspinatus tendon and matched intact subscapularis tendon<br />

samples were collected from 20 patients undergoing arthroscopic<br />

shoulder surgery. Control samples <strong>of</strong> subscapularis tendon were<br />

collected from 10 patients undergoing arthroscopic stabilization<br />

surgery. Tendon biopsies were evaluated immunohistochemically<br />

by quantifying the presence <strong>of</strong> macrophages (CD68 and CD206), T<br />

cells (CD3), mast cells (Mast cell tryptase) and vascular endothelium<br />

(CD34). Subscapularis tendon biopsies obtained from patients<br />

with torn supraspinatus tendon exhibited significantly greater<br />

macrophage, mast cell and T cell expression compared to either<br />

torn supraspinatus samples or control subscapularis derived tissue<br />

(p


0.14°±7.08° in extension and 0.50°±6.89° in flexion for the expert<br />

surgeon, -3.6°±8.9° in extension and -4.2°±8.13° in flexion for<br />

the experienced PA, -3.88°±10.62° in extension and 0.32°± 9.05°<br />

in flexion for the fellow and -12.63° ± 18.67° in extension and<br />

-4.82°±16.6° in flexion for the study coordinator with no clinical<br />

experience in the elbow. Goniometric measurements taken from<br />

photographs are accurate and reliable for measuring the active<br />

range <strong>of</strong> motion <strong>of</strong> the elbow if used by someone experienced with<br />

elbow contractures. This finding is important because it validates<br />

an objective measure <strong>of</strong> patient outcome without requiring the<br />

patient to travel back to a tertiary care center, where most contracture<br />

surgeries are done.<br />

pApeR No. 685<br />

A Retrospective Analysis <strong>of</strong> Radial Head Replacement<br />

with a Bipolar Radial Head System<br />

Mark Zunkiewicz, MD, Troy, OH<br />

Jill Clemente, MS, Pittsburgh, PA<br />

Mark C Miller, PHD, Pittsburgh, PA<br />

Robert R Gray, MD, Chicago, IL<br />

Mark S Cohen, MD, Chicago, IL<br />

Mark E Baratz, MD, Pittsburgh, PA<br />

This study was designed to evaluate the early results <strong>of</strong> a bipolar<br />

radial head prosthesis with a smooth, unfixed, telescoping stem.<br />

We hypothesized that this implant design would effectively restore<br />

stability to elbows with a comminuted radial head fracture and<br />

valgus instability. Thirty-seven patients sustaining a comminuted,<br />

unreconstructable radial head fracture underwent resection <strong>of</strong> the<br />

radial head followed by replacement arthroplasty with a bipolar<br />

implant. At final follow up, we obtained the Mayo Elbow Score<br />

(MES), VAS, DASH, and bilateral multiplanar range <strong>of</strong> motion<br />

measurements for each patient. Radiographs <strong>of</strong> bilateral wrists and<br />

elbows were obtained to compare medial and lateral ulnohumeral<br />

joint space and proximal radial migration in the operative versus<br />

the non-operative extremity. Change in stem angulation from postop<br />

radiographs to final follow-up radiographs was noted. If present,<br />

lucency about the stem, arthritic change at the radiocapitellar joint<br />

and heterotopic ossification was recorded. Twenty-nine patients (30<br />

implants) were available for final follow up at an average <strong>of</strong> 34.0<br />

(24-48) months. The average MES, VAS and DASH were 92.1, 1.4<br />

and 13.8 respectively. Range <strong>of</strong> motion analysis revealed statistically<br />

but not clinically significant differences between operative and<br />

nonoperative sides for flexion/extension and pronation/supination.<br />

Measurement <strong>of</strong> medial and lateral ulnohumeral spaces revealed<br />

re-establishment <strong>of</strong> a congruent elbow joint with our treatment.<br />

In most cases, there was little appreciable arthritic change at the<br />

radio-capitellar joint and minimal migration <strong>of</strong> the implant in the<br />

proximal radial shaft. Our analysis demonstrates that a bipolar radial<br />

head prosthesis with a smooth stem and telescoping neck effectively<br />

restores stability to elbows with a comminuted radial head fracture<br />

and valgus instability. To date, this is the largest reported outcome<br />

analysis <strong>of</strong> bipolar radial head replacement in the literature.<br />

pApeR No. 686<br />

Arthroscopic Ulnohumeral Arthroplasty Versus Simple<br />

Debridement For Elbow Arthritis<br />

Bryan C Fagan, MD, Tupelo, MS<br />

Larry D Field, MD, Jackson, MS<br />

Felix H Savoie, III MD, New Orleans, LA<br />

Primary arthritis <strong>of</strong> the elbow is an uncommon entity that can cause<br />

disabling pain and functional limitations. The therapeutic arsenal<br />

693<br />

for the treatment <strong>of</strong> primary arthritis <strong>of</strong> the elbow in young, active<br />

patients is somewhat limited. Arthroscopic debridement both<br />

with and without concurrent ulnohumeral arthroplasty have been<br />

shown to be effective. A retrospective chart review <strong>of</strong> 35 patients<br />

who underwent elbow arthroscopy for primary osteoarthritis <strong>of</strong><br />

the elbow was completed. Twenty patients underwent arthroscopy<br />

with debridement alone; 15 patients underwent arthroscopy with<br />

debridement and ulnohumeral arthroplasty. Preoperative motion,<br />

pain and Mayo Elbow Performance Index scores for both groups<br />

were compared. For those undergoing arthroscopic debridement<br />

only, the average follow up was 37 months (range, 8 to 57 months).<br />

Preoperatively, mean flexion was 115° (range, 100-130) and mean<br />

extension loss was 26° (range, 7°-70°). Postoperatively, mean<br />

flexion was 129°(range, 110°-145°) and mean extension loss was 8°<br />

(range, 0° - 25°). The total arc <strong>of</strong> motion averaged 89° preoperatively<br />

and 121° postoperatively. Mayo Elbow Performance Index scores<br />

improved from an average <strong>of</strong> 57 preoperatively to 90 postoperatively.<br />

The mean subjective pain level improved from 6.6 preoperatively to<br />

1.4 postoperatively. For those undergoing arthroscopic debridement<br />

with combined ulnohumeral arthroplasty, the average follow up was<br />

34 months (range, 10-60 months). Preoperatively, the mean flexion<br />

was 102° (range, 90°-130°) and mean extension loss was 31°(range,<br />

10°-50°). Postoperatively, mean flexion was 128° (range, 110°-<br />

145°) and mean extension loss was 6° (range, 0°-25°). The total<br />

arc <strong>of</strong> motion averaged 71° preoperatively and 122° postoperatively.<br />

Mayo Elbow Performance Index scores improved from an average <strong>of</strong><br />

55 preoperatively to 83 postoperatively. The mean subjective pain<br />

level improved from 6.6 preoperatively to 2.7 postoperatively. When<br />

comparing the two techniques, a statistically significant difference<br />

was found for the average arc <strong>of</strong> motion improvement. Those patients<br />

undergoing ulnohumeral arthroplasty had an average change <strong>of</strong> 53°<br />

compared to 28° for those undergoing debridement only (p=0.033).<br />

The change in Mayo Elbow Performance Index scores and subjective<br />

pain level were not found to be statistically significant. Based on these<br />

results, ulnohumeral arthroplasty may provide greater improvement<br />

in postoperative arc <strong>of</strong> motion. Both techniques improved patients<br />

to a functional range <strong>of</strong> motion; however, ulnohumeral arthroplasty<br />

may provide better results in patients with more restricted motion.<br />

pApeR No. 687<br />

Stress Shielding Around Radial Head Prostheses<br />

Cholawish Chanlalit, MD, Bangkok, Thailand<br />

James S Fitzsimmons, BSc, Rochester, MN<br />

David R Shukla, MB, B Ch, Rochester, MN<br />

Shawn W O’Driscoll, MD, Rochester, MN<br />

Stress shielding is known to occur around rigidly fixed implants.<br />

Nothing is reported concerning radial head prostheses. Charts and<br />

radiographs <strong>of</strong> 86 radial head prostheses inserted or removed by<br />

the senior author between 1999 and 2009 were reviewed. Exclusion<br />

criteria included infection, loosening, or followup


The seven with circumferential exposure <strong>of</strong> the stem (stage IIb)<br />

averaged 3 mm (1-10) <strong>of</strong> exposed stem. Importantly, stress shielding<br />

never extended to the bicipital tuberosity. Stress shielding around<br />

radial head prostheses is common. Though not severe enough to<br />

cause implant failure, these findings merit consideration <strong>of</strong> partially<br />

coated implants.<br />

pApeR No. 688<br />

The Long-Term Effect Of Corticosteroid In The<br />

Acromioclavicular Joint: A Prospective Study<br />

Roger P van Riet, MD, Wilrijk, Belgium<br />

Tom Goehre, MD, Berlin, Germany<br />

Simon Bell, MD, Brighton, VIC Australia<br />

Corticosteroids are routinely used in the treatment <strong>of</strong> a symptomatic<br />

acromioclavicular (AC) joint. Diagnostic injection with anaesthetic<br />

has been described as the gold standard in the detection <strong>of</strong> AC<br />

pathology. The anesthetic effect and therefore the location <strong>of</strong> the<br />

steroids, is monitored by repeating clinical tests, positive prior to the<br />

injection. Despite the widespread use <strong>of</strong> steroids, the effect <strong>of</strong> such<br />

an infiltration is poorly documented. In this prospective review <strong>of</strong><br />

patients, we studied the long-term effects <strong>of</strong> an intra articular injection<br />

<strong>of</strong> local anaesthetic and steroid into the AC joint. Fifty-eight patients<br />

with isolated AC joint symptoms were included in this prospective<br />

study. All patients were examined using a standard protocol. A<br />

corticosteroid and local anaesthetic injection was administered into<br />

the AC joint space. All tests were repeated following the injection.<br />

Patients were examined at one month after the injection and at final<br />

follow up. ASES and UCLA shoulder scores were calculated. One<br />

month following the injection, symptoms had satisfactorily resolved<br />

in 16 patients (28%). Apart from one patient who had a temporary<br />

increase in pain, no other patients had any adverse reaction. Final<br />

follow up <strong>of</strong> these patients was performed at an average <strong>of</strong> 42 months<br />

(40-44). One patient had arthroscopic surgery for recurrence <strong>of</strong> the<br />

symptoms. Four <strong>of</strong> the remaining 15 patients reported occasional<br />

mild pain. Average ASES score was 94 points (70-100). The average<br />

UCLA score was 34 (28-35). All patients had a UCLA satisfaction<br />

score <strong>of</strong> 5 out <strong>of</strong> 5. From the present study it can be concluded that<br />

an injection <strong>of</strong> corticosteroid in the AC joint is <strong>of</strong> benefit in the short<br />

term, in just under a third <strong>of</strong> patients. Almost all patients with a<br />

good response however, avoid a surgical procedure in the longer<br />

term. Since the injection is cheap and with a low complication rate,<br />

it would seem reasonable to <strong>of</strong>fer a cortisone injection to patients<br />

presenting with AC related symptoms.<br />

pApeR No. 689<br />

Biomechanical Comparison <strong>of</strong> an Intramedullary and<br />

Extramedullary Free-Tissue Graft AC Reconstruction<br />

Pooya Javidan, MD, Dearborn, MI<br />

Rishi Garg, MD, Arcadia, CA<br />

Gregory J Adamson, MD, Pasadena, CA<br />

Thay Q Lee, PhD, Long Beach, CA<br />

Several different surgical techniques have been described to address<br />

the coracoclavicular (CC) ligaments in acromioclavicular (AC) joint<br />

injuries. However, very few techniques focus on reconstructing the<br />

AC ligaments despite its importance in providing stability. The<br />

purpose <strong>of</strong> our study was to compare the biomechanical properties<br />

<strong>of</strong> two free-tissue graft techniques that reconstruct both the AC and<br />

CC ligaments in cadaveric shoulders, one with extramedullary AC<br />

reconstruction and the other with intramedullary AC reconstruction.<br />

We hypothesized that the intramedullary AC reconstruction will<br />

provide greater anteroposterior translational stability and improved<br />

load to failure characteristics than the extramedullary technique.<br />

694<br />

Six matched cadaveric shoulders underwent translational testing at<br />

10N and 15N in the anteroposterior and superoinferior directions<br />

under acromioclavicular joint compression loads <strong>of</strong> 10N, 20N<br />

and 30N. After the AC and CC ligaments were transected, one <strong>of</strong><br />

the specimens was randomly assigned the intramedullary freetissue<br />

graft reconstruction while its matched pair received the<br />

extramedullary graft reconstruction. Both reconstructed specimens<br />

then underwent repeat translational testing as well as load to<br />

failure testing via superior clavicle distraction at a rate <strong>of</strong> 50 mm/<br />

min. Intramedullary reconstruction provided significantly greater<br />

translational stability in the anteroposterior direction than the<br />

extramedullary technique in all loading conditions except at 10 N<br />

<strong>of</strong> translation with 30 N <strong>of</strong> compression. There were no significant<br />

differences in translational stability in the superoinferior direction for<br />

any loading condition. The intramedullary reconstructed specimens<br />

demonstrated improved load to failure characteristics, however only<br />

ultimate load to failure and energy absorbed to clinical failure was<br />

significant. Intramedullary reconstruction <strong>of</strong> the AC joint provides<br />

greater stability in the anteroposterior direction and improved load<br />

to failure characteristics than the extramedullary technique.<br />

pApeR No. 690<br />

Activities after Total Elbow Arthroplasty<br />

Jonathan D Barlow, MD, Rochester, MN<br />

Shawn W O’Driscoll, MD, Rochester, MN<br />

Bernard F Morrey, MD, San Antonio, TX<br />

Scott P Steinmann, MD, Rochester, MN<br />

Joaquin Sanchez-Sotelo, MD, Rochester, MN<br />

There is limited information about activities performed by patients<br />

after total elbow arthroplasty. Knowledge <strong>of</strong> these activities may help<br />

understand the true functional gains obtained after replacement. All<br />

patients who underwent a primary or revision total elbow arthroplasty<br />

at a single institution during 2006 and 2007 were contacted by<br />

our Research Survey Center and queried regarding performance <strong>of</strong><br />

multiple activities. The UCLA score and Mayo Elbow Performance<br />

Score (MEPS) was also assessed. One hundred and twelve surveys<br />

were analyzed. There were 29 males and 83 females with a mean<br />

age <strong>of</strong> 65 years. Sixty-four were primary and 48 were revision elbow<br />

arthroplasties. The mean MEPS was 77.4 points (range, 15 to 100<br />

points). The mean UCLA activity score was 4.7 points (range, 1 to<br />

10 points). High demand activities were performed by 45 patients<br />

(40%), and moderate demand activities were performed by an<br />

additional 60 patients (54%). The most common moderate demand<br />

activities were carrying groceries and gardening. The most common<br />

high demand activities were shoveling snow and shoveling dirt.<br />

Higher MEPS, higher UCLA and male gender were predictive <strong>of</strong> higher<br />

demand activities (p


POSTERS<br />

posteR No. p286<br />

Radial Nerve Palsy Following Humeral Revision In Total<br />

Elbow Arthroplasty<br />

Thomas Throckmorton, MD, Germantown, TN<br />

Peter Constantine Zarkadas, MD, North Vancouver, BC Canada<br />

Joaquin Sanchez-Sotelo, MD, Rochester, MN<br />

Bernard F Morrey, MD, San Antonio, TX<br />

Revision for failed total elbow arthroplasty is increasingly common.<br />

The radial nerve is at risk during humeral component revision.<br />

The purpose <strong>of</strong> this study was to define the incidence <strong>of</strong> treatment<br />

and outcome <strong>of</strong> radial nerve palsy following humeral implant<br />

revision. The Total Joint Database at our institution was searched<br />

for all humeral component revisions between 1988 and 2007. The<br />

search was then refined to identify patients with radial nerve palsies<br />

discovered following this procedure. Several variables, including the<br />

use <strong>of</strong> power and/or ultrasound instruments, formal radial nerve<br />

exposure and the use <strong>of</strong> electrodiagnostic testing were analyzed.<br />

Seven out <strong>of</strong> 258 (2.7%) humeral component revisions, with an<br />

average follow up <strong>of</strong> 84 months (range 24 to 233), were complicated<br />

by radial nerve palsy. Only three out <strong>of</strong> seven patients ultimately<br />

regained function. No nerve recovery occurred in three out <strong>of</strong> four<br />

patients where power instruments were used for cement removal,<br />

and in the one patient where ultrasound technology was employed.<br />

However, two <strong>of</strong> the three patients who underwent formal exposure<br />

<strong>of</strong> the radial nerve at the time <strong>of</strong> revision had return <strong>of</strong> function.<br />

Six patients had electrodiagnostic studies data obtained at least six<br />

weeks after the revision procedure, which was predictive <strong>of</strong> ultimate<br />

nerve status in five (83%) patients. Five out <strong>of</strong> seven (71%) patients<br />

were subjectively improved overall from the joint replacement at<br />

final follow up. Radial nerve palsy is an uncommon complication<br />

following humeral revision in total elbow arthroplasty but is not<br />

necessarily associated with full recovery. In patients who develop<br />

this complication, and where power instruments or ultrasound<br />

technology were used for cement removal, return <strong>of</strong> function is less<br />

likely. Electrodiagnostic testing is predictive <strong>of</strong> ultimate neurological<br />

outcome. If injury occurs after formal exposure and protection <strong>of</strong><br />

the radial nerve, recovery is possible. We therefore conclude that<br />

palpation and presumption <strong>of</strong> radial nerve security is inadequate<br />

in this setting. We recommend formal exposure, visualization<br />

and protection <strong>of</strong> the radial nerve during humeral component<br />

revision. Patient satisfaction remains relatively high despite this<br />

complication.<br />

posteR No. p287 AlteRNAte pApeR<br />

uReverse Shoulder Prosthesis for Acute 4-Part<br />

Fracture: Reliable Tuberosity Healing<br />

Jonathan Chad Levy, MD, Fort Lauderdale, FL<br />

Results <strong>of</strong> hemiarthroplasty for complex four-part proximal humerus<br />

fractures in the elderly have been unreliable. While patients <strong>of</strong>ten<br />

achieve pain relief, return <strong>of</strong> above shoulder level function can be<br />

challenging, as tuberosity nonunion, malunion and/or resorption is<br />

quite common. The reverse shoulder replacement has been advocated<br />

as a reliable <strong>of</strong>f-label alternative for these patients. Preliminary<br />

studies have suggested that tuberosity healing is critical for achieving<br />

external rotation strength following reverse shoulder arthroplasty.<br />

From May 2008 to March 2009, eight patients over the age <strong>of</strong> 75<br />

presented with complex four-part fractures <strong>of</strong> the proximal humerus.<br />

Five patients sustained four-part fracture dislocations and three<br />

patients sustained four-part fractures without dislocation. All were<br />

695<br />

treated with a reverse shoulder replacement with tuberosity repair<br />

using a wedged horseshoe graft taken from the excised humeral head.<br />

Humeral lengthening was minimized to prevent excessive tension<br />

on the tuberosity repair. Average age was 86 (range 78-91), with six<br />

females and two males. Average follow up was 10 months (10-15<br />

months). Average active forward elevation was 114 (range 80-150)<br />

and active external rotation was 18 (range 0-30). Manual muscle<br />

strength was five/five in seven patients with tuberosity healing, and<br />

four/five with tuberosity non-union. VAS pain scores averaged 0.6<br />

(range 0-2), VAS function averaged 8.5 (range 7-10), ASES pain<br />

47.1 (range 45-50) and ASES function 40 (range 31-50). Subjective<br />

satisfaction was excellent for five patients, satisfactory for one<br />

patient, and good for two patients. Radiographic analysis revealed<br />

a tuberosity union rate <strong>of</strong> 87% (seven/eight patients). There were<br />

no cases <strong>of</strong> inferior scapular notching. The patient with tuberosity<br />

non-union subsequently sustained a mid-acromion fracture which<br />

healed without clinical consequence. One patient developed nonbridging<br />

hetertopic bone formation. Reverse shoulder arthroplasty<br />

is a reliable <strong>of</strong>f-label treatment alternative for elderly patients (over<br />

age 75) with complex four-part fractures and fracture-dislocations.<br />

Tuberosity healing is reliable in these patients utilizing a wedge<br />

horeshoe graft.<br />

posteR No. p288<br />

Fully Uncemented Polyethylene Glenoid: Preliminary<br />

Results<br />

Francis De Neve, Med Student<br />

Lieven De Wilde, Gent, Belgium<br />

Carl J Basamania, MD, Shoreline, WA<br />

Cemented glenoid still is the golden standard in total shoulder<br />

arthroplasty. Because initial research showed significantly stronger<br />

pull-out with an uncemented fluted peg than a fully cemented keel<br />

glenoid in a canine model, an uncemented anchor peg glenoid was<br />

implanted in patients. The purpose <strong>of</strong> this study is to investigate<br />

whether our short-term results in uncemented anchor peg glenoid<br />

implants are clinically and radiologically comparable to previous<br />

publications. We studied 35 consecutive patients, with one drop<br />

out, with a minimum follow up <strong>of</strong> 17 months. We evaluated our<br />

patients with the Constant Murley score, the Western Ontario<br />

Osteoarthritis <strong>of</strong> the Shoulder index and the SF-12 score. Finally, a<br />

follow-up study <strong>of</strong> the glenoid with a CT-scan was also performed<br />

to evaluate the bone ingrowth <strong>of</strong> the anchor peg glenoid. Clinical:<br />

The mean absolute Constant Score was 72 (pain: 12.3; activities<br />

<strong>of</strong> daily living: 17.5; range <strong>of</strong> movement: 34.2; power: 8.2). The<br />

WOOS score was 388/1,900, where a minimal score reflects good<br />

functioning. Radiological: One or more bony flange(s) in the anchor<br />

were identified in 25 cases, in six cases no loosening signs around the<br />

pegs, glenoid or anchor were seen and in three cases loosening was<br />

seen around the central anchor, in one <strong>of</strong> these three cases loosening<br />

was seen around the pegs. The clinical and radiological evaluation <strong>of</strong><br />

the uncemented anchor peg glenoid is promising, with results that<br />

are clinically comparable to a classical cemented pegged glenoid.<br />

posteR No. p289<br />

Characteristic Retear <strong>of</strong> Arthroscopic Double Row<br />

Suture Anchor (DR) Method for Rotator Cuff Tear<br />

Kenji Hayashida, MD, Osaka, Japan<br />

Makoto Tanaka, MD, Osaka, Japan<br />

Kota Koizumi, MD, Osaka, Japan<br />

To elucidate characteristic retear pattern <strong>of</strong> double row (DR) method<br />

and its incidence. The 47 patients with complete rotator cuff tears,<br />

who were treated with DR method under arthroscopy and assessed<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


epair condition by MRI after about 12 months <strong>of</strong> operation, were<br />

included in the present study. The average age at operation was 65<br />

years old (42-82). The average follow-up period was 26 months (24-<br />

32 months). A retear was found in 13 shoulders and the pattern <strong>of</strong><br />

retear was classified into four groups, as follows: the partial retear<br />

<strong>of</strong> deep layer, the partial retear <strong>of</strong> superficial layer at medial anchor,<br />

the complete retear at medial anchor with a well preserved tendon<br />

foot print and the complete retear from foot print. The partial retear<br />

<strong>of</strong> superficial layer and the complete retear at medial anchor were<br />

characteristic in DR method and the incidence was seven <strong>of</strong> 13 retear<br />

cases and seven <strong>of</strong> all 47 patients in the present study. A partial retear<br />

<strong>of</strong> superficial layer and a complete retear at medial anchor with a<br />

well repaired tendon on foot print could be the characteristic tear<br />

<strong>of</strong> double row suture anchor method. These characteristic retear<br />

patterns occupied 54% <strong>of</strong> retear cases (seven <strong>of</strong> 13) and the incidence<br />

was 15% <strong>of</strong> all patients (seven <strong>of</strong> 47).<br />

posteR No. p290<br />

Distal Humeral Hemiarthroplasty Short Term Results<br />

Justin Jacobson, MD, Missoula, MT<br />

Scott P Steinmann, MD, Rochester, MN<br />

Despite historical reports <strong>of</strong> distal humeral hemiarthroplasty (DHH)<br />

for fracture, there is little in the current literature regarding modern<br />

implants and distal humeral replacement in young patients. The<br />

goal <strong>of</strong> this study was to determine the short-term outcomes <strong>of</strong> distal<br />

humeral hemiarthroplasty. Between 1975 and 2009, 13 elbows (13<br />

patients) underwent distal humeral hemiarthroplasty and were<br />

followed for a mean <strong>of</strong> 2.95 years. The mean age at the time <strong>of</strong><br />

surgery was 54 years. The indications for surgery were post-traumatic<br />

(12), and advanced rheumatoid arthritis with contracture (one).<br />

Clinical outcome was graded using the Mayo Elbow Performance<br />

Score (MEPS). Radiographs were graded for implant loosening,<br />

radial head and olecranon wear. DHH resulted in statistically<br />

significant improvements in pain, extension (mean improvement,<br />

33.2 degrees), flexion (mean improvement, 28 degrees) and total<br />

arc <strong>of</strong> motion (from 46 to 206 degrees, p=0.001). The intraoperative<br />

arc <strong>of</strong> motion was greater than that at final evaluation, but this was<br />

not significant (from 121.7 to 106 degrees, p>0.05). The mean final<br />

MEPS was 72.7 points, with two excellent, four good, three fair and<br />

two poor results. Radiographs showed implant loosening (three),<br />

anterior radial head wear (four), radiocapitellar degeneration (one)<br />

and moderate olecranon wear (one). Complications included deep<br />

infection (one), stitch abscess (one), contracture (three), heterotopic<br />

ossification (two) and delayed medial column fracture (one). There<br />

were two revisions. DHH for traumatic sequelae <strong>of</strong>fers a reasonable<br />

short term result, with significant improvements in motion, pain<br />

relief and function.<br />

posteR No. p291<br />

Measurement Of The Glenoid Track In Vivo, Investigated<br />

By The 3D Motion Analysis Using Open MRI<br />

Yasushi Omori, MD, Suita, Japan<br />

Nobuyuki Yamamoto, MD, Sendai, Miyagi, Japan<br />

Hayato Koishi, Osaka, Japan<br />

Makoto Tanaka, MD, Osaka, Japan<br />

Kazuma Futai, MD, Suita, Osaka, Japan<br />

Akira Goto, MD, PhD, Rochester, MN<br />

Kazuomi Sugamoto, MD, Osaka, Japan<br />

Eiji Itoi, MD, Sendai, Japan<br />

Engaging Hill-Sachs lesion is one factor thought to be related to<br />

recurrent anterior glenohumeral instability. To our knowledge, no<br />

anatomic or biomechanical studies to date have clarified which<br />

696<br />

size <strong>of</strong> Hill-Sachs lesion is critical. Recently, we proposed a new<br />

concept, ‘glenoid track,’ to evaluate risk <strong>of</strong> engagement with glenoid<br />

in a cadaveric study. The purpose <strong>of</strong> this study was to investigate the<br />

glenoid track in vivo using a non-invasive motion analysis system<br />

developed in our laboratory. We examined 16 right shoulders <strong>of</strong><br />

16 healthy volunteers, mean age <strong>of</strong> 26 years with wide gantry MRI.<br />

MRI was taken in seven static supine positions with the arm from<br />

0° to maximum abduction keeping maximum external rotation<br />

and horizontal extension. Using our motion analysis system, threedimensional<br />

models <strong>of</strong> scapula and humerus were created from the<br />

MRI data. Then, the movement was calculated by the voxel-based<br />

registration <strong>of</strong> each model, and motion <strong>of</strong> glenoid on the humeral<br />

head was analyzed. The images clearly demonstrated that the glenoid<br />

shifted from infero-medial to supero-lateral portion <strong>of</strong> the humeral<br />

head in live shoulders the same way as observed in the cadaveric<br />

shoulders. The distance from the foot print to the medial margin<br />

<strong>of</strong> the glenoid track was 19.9 mm ± 3.7 mm (mean ± SD), which<br />

was equivalent to 83% ± 10% <strong>of</strong> the glenoid width. We confirmed<br />

the existence and the size <strong>of</strong> the glenoid track in vivo. We believe<br />

that this new concept can be used to evaluate the risk <strong>of</strong> Hill-Sachs<br />

lesion.<br />

posteR No. p292<br />

Significant Neuroanatomic Changes Resulting From<br />

The Latarjet Procedure<br />

Michael T Freehill, MD, Palo Alto, CA<br />

Umasuthan Srikumaran, MD, Braintree, MA<br />

Kristin Archer, PhD, Nashville, TN<br />

Edward G McFarland, MD, Lutherville, MD<br />

Steve A Petersen, MD, Lutherville, MD<br />

Latarjet procedures for glenoid deficiency resulting in glenohumeral<br />

joint instability has gained an increase in popularity. Our hypothesis<br />

was the Latarjet results in significant alterations in anatomic<br />

relationships <strong>of</strong> neurovascular structures in the shoulder. Four<br />

cadaveric forequarters (eight shoulders) were utilized for the study.<br />

Pre and post-Latarjet measurements were made by two investigators<br />

utilizing EKG calipers and digital ruler in two arm positions: (1) 0°<br />

abduction (Abd) and neutral rotation and (2) 30° Abd and 30°<br />

external rotation (ER). Measurements were made from the midanterior<br />

glenoid rim to musculocutaneous nerve (MCN), axillary<br />

nerve (AXN) and axillary artery (AXA) along both medial-lateral<br />

(x) and superior-inferior (y) axis. A glenoid defect was created and<br />

Latarjet procedure was performed. The dissection was photographed<br />

to further assess relationship changes between structures before<br />

and after the Latarjet. Statistical analysis was performed using<br />

standardized statistical s<strong>of</strong>tware. Statistical significance was set at<br />

pd0.05. Intra-rater reliability for each tester was above 0.80 except<br />

for one measurement (0.73). After the Latarjet procedure, significant<br />

changes in location <strong>of</strong> the MCN were found along the (y-axis) in both<br />

the neutral and 30°Abd/30°ER positions, (pd0.02). The change in<br />

location <strong>of</strong> both MCN and AXN after the Latarjet consistently resulted<br />

in the MCN lying directly on top <strong>of</strong> the AXN. The observations in the<br />

neuroanatomic relationships <strong>of</strong> the musculocutaneous and axillary<br />

nerves following a Latarjet procedure provide essential information<br />

in the event <strong>of</strong> future revision surgery.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


posteR No. p293<br />

Radiocapitellar Pressure Differences in Bipolar versus<br />

Monopolar Radial Heads<br />

Prasad J Sawardeker, MD, Miami, FL<br />

Check C Kam, MD, Miami, FL<br />

Winston Elliott, Miami, FL<br />

Jeffrey Dean Martins, Miami, FL<br />

Loren L Latta, PhD, Plantation, FL<br />

Elizabeth A Ouellette, MD, North Miami Beach, FL<br />

There has been considerable recent interest in bipolar radial head<br />

components however very few studies have been done to compare<br />

it to traditional monopolar radial head implants. We examined<br />

the effects <strong>of</strong> implant design on radiocapitellar joint pressures.<br />

Eight fresh-frozen, cadaveric arms were utilized. Radial heads were<br />

resected and a bipolar, metal radial head prosthesis was implanted.<br />

Appropriately sized implants were used to restore axial length <strong>of</strong> the<br />

native radial head. Arms were cyclically loaded with the forearm in<br />

neutral. Radiocapitellar forces were measured using pressure sensors.<br />

Then, a metal washer was inserted in situ to convert the bipolar radial<br />

head into a rigid monopolar device and testing was repeated. Bipolar<br />

radial heads produced radiocapitellar pressures (0.36 N/mm2) that<br />

were significantly lower than the rigid, monopolar implant (0.68 N/<br />

mm2) (p


infection in one. Reoperations were performed in three shoulders;<br />

resection for deep infection in one, open reduction internal fixation<br />

for a distal fracture in one and bone grafting with internal fixation<br />

for allograft resorption in one. Pain ratings (on a scale <strong>of</strong> 1 to 5)<br />

decreased from a mean <strong>of</strong> 4.5 preoperatively to 2.4 postoperatively.<br />

The mean active elevation increased from 81 degrees preoperatively<br />

to 110 degrees postoperatively; the mean external rotation increased<br />

from 28 degrees to 47 degrees. Excellent or satisfactory results were<br />

achieved in 22 <strong>of</strong> 38 shoulders according to the modified Neer<br />

rating system. Radiolucent lines were identified in six cases, but no<br />

components met criteria to be considered radiographically “at risk” for<br />

clinical loosening. Intermediate or long stem humeral components<br />

are useful in obtaining a secure distal fit in cases involving diaphyseal<br />

fracture, significant bone loss or in patients with a large humeral<br />

canal. Caution should be taken to avoid intraoperative fractures<br />

distally. Outcomes are <strong>of</strong>ten determined by proximal s<strong>of</strong>t tissue<br />

integrity and not affected by long stem placement. Neither clinical<br />

nor radiographic follow up show these components to be at high<br />

risk for loosening.<br />

posteR No. p297<br />

The Long-Term Outcome <strong>of</strong> Total Elbow Arthroplasty in<br />

Juvenile Rheumatoid Arthritis<br />

Justin Jacobson, MD, Missoula, MT<br />

Thomas Duquin, MD, Buffalo, NY<br />

Bernard F Morrey, MD, San Antonio, TX<br />

Joaquin Sanchez-Sotelo, MD, Rochester, MN<br />

Total elbow arthroplasty (TEA) is commonly considered for endstage<br />

juvenile rheumatoid arthritis (JRA). Little is known regarding<br />

its long-term outcome, which could be affected adversely by the<br />

musculoskeletal pathology in this young population. The goal <strong>of</strong> this<br />

study was to determine the long-term outcome <strong>of</strong> TEA in JRA elbows.<br />

Between 1983-2005, 29 elbows (24 patients) underwent TEA for JRA<br />

using a linked-semiconstrained implant and followed for a mean<br />

<strong>of</strong> nine years. Clinical outcome was graded using the Mayo Elbow<br />

Performance Score (MEPS). Survivorship analyses were performed<br />

using the Kaplan-Meier method. The results were compared with a<br />

series <strong>of</strong> TEA in adult-onset rheumatoid arthritis (RA). , TEA resulted<br />

in statistically significant improvements in pain, extension (15<br />

degrees), flexion (17 degrees) and total arc <strong>of</strong> motion (from 65 to<br />

99 degrees), (p=0.001). The intraoperative arc <strong>of</strong> motion was greater<br />

than at final evaluation (from 121 to 99 degrees, p=0.001). Fourteen<br />

elbows (48%) were noted to have small bone size, requiring implant<br />

modification in four cases. Complications included revision surgery<br />

(six) and superficial infection (one).The mean final MEPS (84+/-<br />

11) was not significantly different that in RA patients (87+/-14),<br />

(p=0.22). With the numbers available there were no statistically<br />

significant differences in implant survival between JRA and RA at<br />

one year (100% vs 99.6%), five years (96.2% vs 95.6%) and 10 years<br />

(78.2% vs 91.7%). TEA in JRA is associated with a reasonable longterm<br />

survival and a high rate <strong>of</strong> satisfactory functional results that<br />

are similar to RA.<br />

posteR No. p298<br />

Anconeus Interposition for Proximal Radioulnar<br />

Synostosis<br />

David Gay, MD, Palm Coast, FL<br />

Aaron Daluiski, MD, New York, NY<br />

Sophia Paul, BA<br />

Robert N Hotchkiss, MD, Riverside, CT<br />

Proximal radioulnar synostosis is a rare debilitating condition<br />

that <strong>of</strong>ten results in an individual having difficulties performing<br />

698<br />

tasks <strong>of</strong> daily living. There have been limited reports <strong>of</strong> successful<br />

treatment <strong>of</strong> this condition. Since 1997, we have been addressing<br />

this condition by posterior excision <strong>of</strong> the synostosis and anconeus<br />

interposition. In this study we present the results <strong>of</strong> this treatment.<br />

Sixteen adult patients who had undergone a proximal radioulnar<br />

synostosis resection and anconeus interposition were identified,<br />

and their records were reviewed. All patients had a minimum follow<br />

up <strong>of</strong> 12 months, and the average follow up was 46 months. Ten<br />

patients’ synostosis resulted from a fracture or dislocation <strong>of</strong> the<br />

elbow, and six were related to a previous distal biceps repair. There<br />

was not a significant difference between the fracture/dislocation<br />

patients and the biceps repair group with respect to age (p=0.61)<br />

or follow-up duration (p=0.76). The fracture/dislocation group had<br />

undergone a significantly higher number <strong>of</strong> surgeries (p=0.046).<br />

All patients had an increase in their pronation-supination arc and<br />

no patient had a loss <strong>of</strong> motion in the flexion-extension plane.<br />

The mean preoperative pronation-supination arc <strong>of</strong> 12 +/- 26<br />

degrees increased to 138 +/- 49 degrees (p


0.51, 0.39 and 0.6, respectively. Certain biomarkers predominate<br />

in osteoarthritic shoulders when compared to non-OA shoulders;<br />

mainly Connexin 43, ADAMTS5, Col I, Cox-2, Chondroitin, TIMP-<br />

3 and iNOS biomarkers. Of these, Connexin 43 had the greatest<br />

fold increase in expression in OA shoulders compared to non-OA<br />

shoulders, and was found to be significantly correlated to these other<br />

biomarkers. This novel study will provide the basis to determine<br />

potentiators and inhibitors <strong>of</strong> shoulder arthritis.<br />

posteR No. p300<br />

Causative Factors and Outcome in 17 Patients with<br />

Glenohumeral Chondrolysis<br />

Samer S Hasan, MD, PhD, Cincinnati, OH<br />

Cassie M Fleckenstein, Cincinnati, OH<br />

Glenohumeral chondrolysis is a devastating condition characterized<br />

by the rapid dissolution <strong>of</strong> glenohumeral cartilage and resultant<br />

joint destruction. Excessive intra-articular use <strong>of</strong> thermal heat,<br />

suture anchors that are prominent or loose and the use <strong>of</strong> an intraarticular<br />

pain pump (IAPP) delivering local anesthetics have all<br />

been implicated as causative factors. The objective <strong>of</strong> this study is<br />

to report on the presentation, clinical findings and treatment <strong>of</strong><br />

glenohumeral chondrolysis. Between November 2007 and February<br />

2010, 29 patients presented with glenohumeral chondrolysis related<br />

to one or more <strong>of</strong> the causative factors noted above. Seventeen<br />

patients have been followed since their initial presentation, with the<br />

remainder presenting for evaluation only, at the suggestion <strong>of</strong> their<br />

attorneys. Seven <strong>of</strong> 17 patients were male and mean age at the time<br />

<strong>of</strong> their index surgery was 28.6 (range 15-55) years. Two patients<br />

developed chondrolysis as a result <strong>of</strong> prominent suture anchors<br />

and 15 as a result <strong>of</strong> an IAPP delivering bupivacaine. Two patients<br />

underwent placement <strong>of</strong> an IAPP following a closed manipulation<br />

for adhesive capsulitis and 13 underwent IAPP placement following<br />

arthroscopic labrum repair or capsular plication using one to seven<br />

suture anchors. Onset <strong>of</strong> symptoms related to chondrolysis, such as<br />

increased pain, stiffness and crepitation, occurred at a mean eight<br />

months (range 1-32 months) following the index procedure. Twelve<br />

patients underwent one or more additional arthroscopic procedures,<br />

typically for debridement and chondroplasty, and in some cases,<br />

capsular release. A loose suture anchor was found in one joint at<br />

arthroscopy, which was removed. Eleven patients had radiographs<br />

documenting joint space obliteration at most recent follow up or at<br />

the time <strong>of</strong> prosthetic shoulder arthroplasty. At most recent follow<br />

up, seven patients had undergone three total shoulder replacements<br />

and four humeral head resurfacing procedures. Four other patients<br />

were contemplating prosthetic shoulder arthroplasty. For those<br />

undergoing shoulder replacement, range <strong>of</strong> motion recovered<br />

modestly so that active forward elevation improved from 111° to<br />

137° (p


orthopaedic surgeons independently reviewed the subjects’ one-year<br />

postoperative radiographs on two occasions at least six weeks apart,<br />

to obtain intrarater and interrater data. The severity <strong>of</strong> radiographic<br />

notching was graded according to the classification <strong>of</strong> Nerot. The two<br />

groups were also compared with regards to their outcome measures<br />

(Constant and ASES) and range <strong>of</strong> motion. Minimum one-year<br />

postoperative radiographs and follow-up data were available on<br />

42/52 subjects (81%). Follow-up time did not differ between groups<br />

(p=0.723). One subject had died and nine subjects were lost to follow<br />

up. Twenty patients were in the inferior tilt group and 22 patients<br />

were in the control group. The raters demonstrated good intrarater<br />

(intraclass correlation coefficients = 0.88 and 0.97, respectively) and<br />

interrater (intraclass correlation coefficient = 0.94) agreement. Fifteen<br />

<strong>of</strong> 20 patients (75%) in the inferior tilt group and 19 <strong>of</strong> 22 patients<br />

(86%) in the control group had notching scores <strong>of</strong> one or greater. Ten<br />

<strong>of</strong> 20 patients (50%) in the inferior tilt group and 11 <strong>of</strong> 22 patients<br />

(50%) in the control group had notching scores <strong>of</strong> two or greater. The<br />

groups did not differ significantly on the notch ratings when averaged<br />

across raters (p=0.936) nor did they differ significantly for any single<br />

scoring occasion <strong>of</strong> any rater. The improvement in outcome measures<br />

and range <strong>of</strong> motion were not significantly different between groups;<br />

all measures improved significantly over time (p


significant improvement <strong>of</strong> their clinical signs and symptoms, they<br />

had an inferior outcome.<br />

posteR No. p306 AlteRNAte pApeR<br />

Heterotopic Ossification After Elbow Fractures and<br />

Fracture-Dislocations <strong>of</strong> the Radius and Ulna<br />

Antonio Maria Foruria de Diego, MD, PhD, Madrid, Spain<br />

Salvador Augustin, MD, Madrid, Spain<br />

Bernard F Morrey, MD, San Antonio, TX<br />

Joaquin Sanchez-Sotelo, MD, Rochester, MN<br />

The goal <strong>of</strong> our study was to determine the incidence, risk factors,<br />

location, severity and functional implications <strong>of</strong> heterotopic<br />

ossification (HO) after surgical treatment <strong>of</strong> elbow fractures and<br />

fracture-dislocations <strong>of</strong> the proximal radius and ulna. From 2004<br />

to 2008, 134 elbow fracture or fracture-dislocations involving the<br />

proximal radius or ulna were treated surgically at a single institution.<br />

The records and radiographs obtained before surgery, immediately<br />

after surgery, three months after surgery and at most recent follow<br />

up were reviewed to determine the incidence <strong>of</strong> HO and analyze<br />

its location morphology and associated clinical features. There<br />

was radiographic evidence <strong>of</strong> HO in 51 elbows (38%). Ligament<br />

involvement usually developed in combination with HO in other<br />

locations. The most common locations were the olecranon fossatriceps<br />

tendon and the proximal radius. HO was categorized as<br />

immature granular in 22 elbows, mature discrete HO in 20 elbows,<br />

mature extensive in six elbows and bone bridging in three elbows.<br />

Risk factors for the development <strong>of</strong> HO included male gender, severe<br />

chest trauma, dislocation, open injury and associated distal humerus<br />

fracture. Surgical removal <strong>of</strong> HO was performed in 15 elbows. HO<br />

is identified in approximately 40% <strong>of</strong> the fractures and fracturedislocations<br />

<strong>of</strong> the proximal radius and/or ulna treated surgically.<br />

It may lead to additional surgery for functional limitations in 30%.<br />

Male gender and a higher energy injury may increase the risk <strong>of</strong> this<br />

complication.<br />

posteR No. p307<br />

Biplane X-ray Analysis Of In-Vivo Shoulder Function<br />

After Rotator Cuff Repair: Two-Year Results<br />

Vasilios Moutzouros, MD, Novi, MI<br />

Michael Bey, PhD, Detroit, MI<br />

Terrence R Lock, MD, Ypsilanti, MI<br />

Patricia A Kolowich, MD, Detroit, MI<br />

Rotator cuff treatment is implicitly designed to restore normal<br />

glenohumeral joint (GHJ) function, but the extent to which surgery<br />

restores GHJ function is unknown. The objective <strong>of</strong> this study was to<br />

compare in-vivo GHJ mechanics and shoulder strength between the<br />

repaired (REP) and contralateral (CONTRA) shoulders <strong>of</strong> rotator cuff<br />

repair patients, and dominant shoulder <strong>of</strong> control (CTL) subjects.<br />

Using dynamic, biplane x-ray analysis, we measured in-vivo GHJ<br />

contact patterns during abduction from rotator cuff repair patients<br />

(n=22, tested two years post surgery) and asymptomatic volunteers<br />

(n=33). Isometric shoulder strength was measured during elevation<br />

(ELEV), abduction (ABD), internal rotation (IR) and external<br />

rotation (ER) and clinical outcomes were assessed with the Western<br />

Ontario Rotator Cuff (WORC) index. Overall joint position was<br />

different between shoulders, with the humerus <strong>of</strong> the REP shoulders<br />

located more superiorly on the glenoid than both the CONTRA and<br />

CTL shoulders (p


shoulder group had a greater percent improvement. Both pre- and<br />

post-operatively, isometric shoulder strength decreased as the degree<br />

<strong>of</strong> flexion increased, which is different from a normal shoulder<br />

where torque remains steady as range <strong>of</strong> motion increases. While<br />

patients undergoing anatomical shoulder arthroplasty were stronger<br />

than reverse shoulder arthroplasty patients both pre- and postoperatively,<br />

both groups experienced similar amounts <strong>of</strong> strength<br />

gains following surgery.<br />

posteR No. p310 AlteRNAte pApeR<br />

Cost Analysis <strong>of</strong> Failed Shoulder Stabilization<br />

Jonathan Godin, BA, Fenton, MI<br />

Jack Gerard Skendzel, MD, Ann Arbor, MI<br />

Jon K Sekiya, MD, Ann Arbor, MI<br />

The purpose <strong>of</strong> this study was to determine the cost <strong>of</strong> failed<br />

shoulder stabilization and subsequent surgery needed to definitively<br />

stabilize these patients. Given the burden <strong>of</strong> disease, combined with<br />

the increasing focus on cost- and comparative-effectiveness research,<br />

there is a need for more information to guide resource allocation<br />

decisions within this area <strong>of</strong> orthopedics. We retrospectively reviewed<br />

the medical records and billing information <strong>of</strong> 19 consecutive<br />

patients treated at our institution for recurrent shoulder instability<br />

during a 36-month period. Using the billing records for each<br />

case, a cost-minimization analysis was conducted from a societal<br />

perspective. The actual costs <strong>of</strong> index stabilization and revision<br />

stabilization procedures for our cohort <strong>of</strong> 19 patients amounted to<br />

$1,437,833. The costs <strong>of</strong> revision surgeries conducted for this cohort<br />

by a single surgeon at our institution amounted to $527,870. The<br />

hypothetical costs <strong>of</strong> primary arthroscopic stabilization and open<br />

stabilization for a similar cohort <strong>of</strong> 19 patients leading to permanent<br />

repair equal $417,383 and $618,175, respectively. The incremental<br />

difference between actual costs and hypothetical costs <strong>of</strong> primary OA<br />

allograft stabilization for patients with bony defects is $278,394. For<br />

patients with bony defects, an open repair with failure rate <strong>of</strong> 44.9%,<br />

or an arthroscopic repair with failure rate <strong>of</strong> 62.8%, is cost neutral to<br />

a primary open repair with OA allograft. In addition, an open repair<br />

with failure rate <strong>of</strong> 14.6%, or an arthroscopic repair with failure rate<br />

<strong>of</strong> 42.3%, is cost neutral to a primary Latarjet repair. Failed shoulder<br />

stabilization bears high costs to society, even without considering<br />

the psychological costs to patients. We must identify and refine<br />

diagnostic and prognostic factors to better determine the appropriate<br />

treatment modality for patients with shoulder instability.<br />

posteR No. p311<br />

Muscle Recruitment Patterns During Arm Elevation<br />

With A Reverse Total Shoulder Replacement (rTSA)<br />

Young W Kwon, MD, PhD, New York, NY<br />

Jangwhon Yoon, PhD, PT, New York, NY<br />

Vivek Pinto, Astoria, NY<br />

Page Dunning, Tampa, FL<br />

Mark A Frankle, MD, Temple Terrace, FL<br />

Ali Sheikhzadeh, MD, New York, NY<br />

In patients with rotator cuff arthropathy, reverse total shoulder<br />

arthropathy (rTSA) has been used to improve pain and restore<br />

function. This clinical success is believed to be due to the anatomic<br />

changes in the rTSA construct that provides mechanical advantage for<br />

the deltoid muscles. This theoretical change, however, has not been<br />

confirmed and little information is available regarding the muscle<br />

recruitment pattern in rTSA shoulders. Seven healthy subjects and<br />

seven patients with rTSA were recruited. All rTSA patients received<br />

the implant as the primary arthroplasty at least six months prior to<br />

testing, were able to elevate the arm to at least 120 degrees and had<br />

702<br />

an average ASES score <strong>of</strong> 90.1 +/- 9.4. During elevation along the<br />

scapular plane with zero, two and four pounds <strong>of</strong> handheld weight,<br />

muscle recruitment pattern and shoulder kinematics were analyzed<br />

using magnetic motion capture device and surface electromyography.<br />

In comparison to healthy subjects, increased recruitment was noted<br />

in the anterior deltoid, middle deltoid and trapezius muscles <strong>of</strong> the<br />

rTSA shoulders (p


posteR No. p313<br />

Diagnostic Performance And Reliability Of Ultrasound<br />

For Fatty Degeneration Of Rotator Cuff Muscles<br />

Lindley B Wall, MD, Saint Louis, MO<br />

Hyun Min Kim, MD, Columbia, MO<br />

Leesa M Galatz, MD, Saint Louis, MO<br />

Karen Steger-May, MD, Saint Louis, MO<br />

Nirvikar Dahiya, MD, St Louis, MO<br />

Sharlene A Teefey, MD, Saint Louis, MO<br />

William D Middleton, MD, Saint Louis, MO<br />

Daniel Wessell, MD, PhD<br />

Ken Yamaguchi, MD, Saint Louis, MO<br />

Fatty degeneration <strong>of</strong> the rotator cuff muscles is a negative prognostic<br />

factor in rotator cuff repair surgery. We investigated diagnostic<br />

performance and reliability <strong>of</strong> ultrasonography in identifying and<br />

grading fatty degeneration <strong>of</strong> the rotator cuff muscles using MRI as<br />

the reference standard. Eighty patients were prospectively enrolled<br />

and underwent both MRI and ultrasonography <strong>of</strong> the shoulder. The<br />

supraspinatus, infraspinatus and teres minor muscles were graded<br />

in MRI for fatty degeneration by four independent raters using<br />

the Goutallier system. Ultrasonography <strong>of</strong> the three muscles was<br />

performed and graded by radiologists in real time with a three-point<br />

scale. The percent agreement (i.e., accuracy), sensitivity and specificity<br />

<strong>of</strong> ultrasound were determined. Agreement between the ultrasound<br />

and MRI grades and inter-observer reliability <strong>of</strong> the two modalities<br />

was determined. The percent agreement <strong>of</strong> ultrasound was 92.5%<br />

for the supraspinatus and infraspinatus, and 87.5% for teres minor.<br />

Sensitivity was 84.6%, 95.6% and 87.5%, respectively. Specificity<br />

was 96.3%, 91.2% and 87.5%, respectively. Agreement between the<br />

MRI and ultrasound was substantial for the supraspinatus (0.63)<br />

and infraspinatus (0.67) and moderate for teres minor (0.56). Interobserver<br />

reliability <strong>of</strong> MRI was substantial for the supraspinatus<br />

(0.76) and infraspinatus (0.77) and moderate for teres minor<br />

(0.66). For ultrasound, the inter-observer reliability was excellent the<br />

supraspinatus (0.82) and infraspinatus (0.91) and substantial for<br />

teres minor (0.75). Ultrasonography has a comparable diagnostic<br />

performance to MRI for fatty degeneration <strong>of</strong> the rotator cuff muscles<br />

and can be used as a reliable and economical diagnostic modality in<br />

rotator cuff muscle pathologies.<br />

posteR No. p314<br />

Multicenter Review Of Infected Shoulder Prosthesis.<br />

Where Do We Stand?<br />

Alec Cikes, MD, Lausanne, Switzerland<br />

Luk Verhelst, MD, Gent, Belgium<br />

Jose A Stuyck, Pellenberg, Belgium<br />

Carlo Romano, MD, Milano, MI Italy<br />

Olivier Borens, MD, Lausanne, Switzerland<br />

Despite a large number <strong>of</strong> reports describing the management <strong>of</strong><br />

infected hip and knees arthroplasties, little information is available<br />

on how to deal with infected shoulder arthroplasties. Our goal<br />

is to present pooled results from three European centers in order<br />

to propose guidelines for treatment algorithms and evaluate the<br />

outcome after infection. Between 1999 and 2009, 33 patients were<br />

diagnosed with an infected shoulder prosthesis in three different<br />

European orthopaedic departments. This retrospective study<br />

includes 19 women and 14 men with a mean age <strong>of</strong> 61.2 years (43-<br />

78 years). Indications for prosthetic shoulder replacement were:<br />

degenerative arthritis in 11 patients, post-traumatic arthritis in 18<br />

patients, rheumatologic in one and tumor in three. We found 23<br />

hemi, six reverse, three standard total implants, as well as one tumor<br />

703<br />

implant. Infection was considered early in six patients, delayed in<br />

15 patients and late in 12. All <strong>of</strong> the patients underwent surgical<br />

revisions. In six patients surgical debridement was performed (with<br />

replacement <strong>of</strong> the mobile parts in three). Resection arthroplasties<br />

were performed in three patients. In 24 patients a cemented spacer<br />

was implanted. Cultures from samples taken during surgery showed<br />

Staphyloccocal infection in 24 samples. Ten infected shoulder joints<br />

showed more than 1 germ. Eight patients had negative cultures<br />

although they showed clinical signs <strong>of</strong> infection. We found six<br />

patients with a propionibacterium acnes infection. After surgery,<br />

all the patients where treated with adapted antibiotics for a long<br />

duration <strong>of</strong> time. In the spacer group, 10 patients were managed with<br />

reimplantation <strong>of</strong> a RTSA, one with a standard TSA and four with a<br />

hemi-arthroplasty. For nine patients, a permanent cemented spacer<br />

was used. Eradication <strong>of</strong> the infection was achieved in 32 out <strong>of</strong> 33<br />

patients (97%). One patient with a mixed MRSA/pseudomonas<br />

infection had persistent infection after two repeated debridements.<br />

There were four dislocations <strong>of</strong> spacers or prosthesis. Two fractures<br />

around the implanted stem were found. Function was generally poor<br />

and the Constant shoulder score went from 24 preoperatively to 33<br />

points postoperatively at follow up. General satisfaction was good to<br />

excellent in 26 patients (78%). Seven patients were not satisfied or<br />

disappointed. Functional results after infected shoulder arthroplasty<br />

revisions are generally poor, although general satisfaction is good<br />

to excellent in about two-thirds <strong>of</strong> the patients. Propionibacterium<br />

acnes is present in 18% <strong>of</strong> infections and should be actively<br />

assessed. Newer and more sensitive diagnostic tools like sonication,<br />

calorimetry and maldit<strong>of</strong> should helpful in decreasing the number <strong>of</strong><br />

false negative microbial samples. As opposed to cemented spacers in<br />

hips and knee, shoulder spacers can be left in place for long periods<br />

<strong>of</strong> time, and even be used as a definitive implant.<br />

posteR No. p315<br />

Open and Arthroscopic Supra- and Infraspinatus<br />

Repairs are Equivalent<br />

Christian Gerber, MD, Zurich, Switzerland<br />

Atul Sukthankar, MD, Volketswil Zurich, Switzerland<br />

Patrick Oliver Zingg, MD, Zurich, Switzerland<br />

Christian Pfirrmann, MD, Zurich, Switzerland<br />

Marco Zanetti, MD<br />

Bernhard Jost, MD, Zurich, Switzerland<br />

It is unknown whether arthroscopic repair <strong>of</strong> supra- and infraspinatus<br />

repairs can be carried out with the same structural and clinical results<br />

as open repairs. Forty-one patients with FT SS and/or IS tears without<br />

prior surgery were randomized to arthroscopic (single row) or open<br />

(transosseous) tendon repair. Physical examination, Constant<br />

scoring (CS) and MR-arthrography were performed preoperatively<br />

and at final follow up in all patients. There were 21 open and 20<br />

arthroscopic repairs. At two years, the respective mean gains were 42<br />

and 42 points in subjective shoulder value, 22 and 21% in relative<br />

CS, four and seven (out <strong>of</strong> 15) in pain points, 15 and 14 degrees <strong>of</strong><br />

active elevation and 2.5 and 1.5 kg in abduction strength. There was<br />

one FT retear and three partial retears in each group. Fatty infiltration<br />

increased in SS and IS insignificantly in both groups. Two patients<br />

in the open and one in the arthroscopic group had to be revised. In<br />

this prospective randomized trial, the clinical AND structural results<br />

<strong>of</strong> arthroscopic repair <strong>of</strong> one to two tendon tears were not inferior to<br />

those <strong>of</strong> open repair.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


posteR No. p316<br />

Elbow Ulnar Collateral Ligament Reconstruction Using<br />

Hamstring Allograft in Young Throwing Athletes<br />

James A Hurt, III MD, New Orleans, LA<br />

Jeffrey Jon-Michael Yaste, MD, Asheboro, NC<br />

Felix H Savoie, III MD, New Orleans, LA<br />

Larry D Field, MD, Jackson, MS<br />

Currently, several graft options have been described for reconstruction<br />

<strong>of</strong> the ulnar collateral ligament (UCL) <strong>of</strong> the elbow. Palmaris longus,<br />

gracilis, plantaris, extensor toe grafts and even achilles tendon<br />

autografts have been well documented. To our knowledge, no clinical<br />

study exists reporting outcomes using allograft. Hamstring allografts<br />

provide a robust graft without donor site morbidity such as pain,<br />

scarring and potential neurovascular injury. The purpose <strong>of</strong> this study<br />

was to evaluate our series <strong>of</strong> consecutive UCL reconstructions using<br />

hamstring allograft in young (


posteR No. p319<br />

Effectiveness <strong>of</strong> Physical Therapy in Treating<br />

Atraumatic Full Thickness Rotator Cuff Tears<br />

John E Kuhn, MD, Nashville, TN<br />

Warren Dunn, MD, MPH, Nashville, TN<br />

The purpose <strong>of</strong> this study is to assess the effectiveness <strong>of</strong> a nonoperative<br />

physical therapy program in treating atraumatic full<br />

thickness rotator cuff tears using a multi-center prospective cohort<br />

design. All patients with atraumatic full thickness tears and no<br />

other pathology were <strong>of</strong>fered an opportunity to enroll in the study.<br />

Subjects completed a questionnaire collecting data on demographics,<br />

symptom characteristics, co-morbidities and patient related outcomes<br />

(SF-12, ASES, WORC, SANE score, Marks Activity Scale). Physicians<br />

recorded physical examination and imaging data. Patients began a<br />

a systematic review-based physical therapy program and returned at<br />

six and 12 weeks. At those visits patients could chose one <strong>of</strong> three<br />

outcomes: 1) cured (no formal follow up scheduled), 2) improved<br />

(continue therapy with scheduled reassessment in six weeks) or 3)<br />

no better (arthroscopic rotator cuff repair scheduled). Patients were<br />

contacted by telephone at one and two years to determine if they<br />

had undergone surgery since their last visit. A Wilcoxon signed rank<br />

test with continuity correction was used to compare initial, six week<br />

and 12 week outcome scores. As <strong>of</strong> May 1, 2010, 396 patients were<br />

enrolled. Significant improvement at six and 12 weeks was seen for<br />

the ASES, WORC, SANE scores. Patients who decided to have surgery<br />

generally did so in the first six weeks <strong>of</strong> treatment. Overall, patients<br />

elected to undergo surgery less than 10% <strong>of</strong> the time. Non-operative<br />

treatment using this physical therapy protocol is effective for treating<br />

atraumatic full thickness rotator cuff tears in >90% <strong>of</strong> patients.<br />

posteR No. p320<br />

Anatomical Evaluation <strong>of</strong> a Flip-button Type Device for<br />

Distal Biceps Tendon Repairs<br />

Douglas D Duncan, MD, Winchester, VA<br />

Gerard F Lancaster, MD, Grosse Pointe Park, MI<br />

Jefferey E Michaelson, MD, Novi, MI<br />

David C Markel, MD, Southfield, MI<br />

Stephen E Lemos, MD, PhD, Warren, MI<br />

The purpose <strong>of</strong> this study is to evaluate the proximity <strong>of</strong> a flip-button<br />

type device to the posterior interosseous nerve (PIN) during a oneincision<br />

technique repair <strong>of</strong> the distal biceps tendon using human<br />

cadaveric models. Ten cadaver elbows from six cadaver specimens<br />

were used. The biceps tendon was identified with an anterior<br />

incision, traced to its insertion and then transected at the insertion<br />

to represent a rupture. With the forearm supinated, a Beath pin was<br />

drilled at a 0° angle perpendicular to the table starting at the radial<br />

tuberosity. A dorsal incision was used to identify the PIN. The bicep<br />

tendon was repaired with the flip-button device, ensuring the device<br />

lay in line with the radial shaft. The closest point from the device to<br />

the PIN was then measured using digital calipers. The Beath pin was<br />

then drilled aimed 20° directly proximal toward the radiocapitellar<br />

joint (RCJ); then re-drilled at 30° aimed distal. Measurements were<br />

taken as described above. The data from each group were compared<br />

using students paired t-test. The average distance from the device to<br />

the PIN with the straight posterior insertion was 8.94 mm, 11.86 mm<br />

with 20° proximal and 0.55 mm with 30° distal angles. The average<br />

difference was -3 mm between the straight insertion and 20° proximal<br />

groups. The average distance was 8.4 mm between the straight and<br />

30° distal insertions. The distance between the flip-button and the<br />

PIN was significantly greater when inserting the device posterior 20°<br />

toward the RCJ than when utilizing the straight insertion technique<br />

705<br />

(p=0.0061). The difference was more statistically significant between<br />

the straight and distal insertions with a p


the fascial sling. Extra-fascial accessory innervation <strong>of</strong> teres minor<br />

begins on average 30 mm (range, 15-48 mm) medial to the muscle’s<br />

lateral insertion. Preliminary results <strong>of</strong> surgical decompression<br />

<strong>of</strong> the primary nerve to teres minor are encouraging. Two percent<br />

<strong>of</strong> 2,031 consecutive shoulder ultrasounds showed isolated teres<br />

minor atrophy. Compression <strong>of</strong> the primary nerve to teres minor<br />

may be exacerbated in patients with a separate fascial compartment<br />

surrounding the muscle. A fascial sling is the potential site <strong>of</strong> greatest<br />

compression and tethering <strong>of</strong> this nerve. Additional lateral extrafacial<br />

nerves to teres minor may be spared in cases <strong>of</strong> compression <strong>of</strong><br />

the primary nerve. Teres minor syndrome, a previously unrecognized<br />

clinical entity, is described.<br />

posteR No. p323<br />

Comparison <strong>of</strong> the Accuracy <strong>of</strong> 2-D and 3-D Imaging<br />

and Modeling <strong>of</strong> Radial Head Fractures<br />

David C Ring, MD, Boston, MA<br />

Thierry Guitton, MSc, Amsterdam, Netherlands<br />

Kim M Brouwer, MSC, Boston, MA<br />

Chaitanya S Mudgal, MD, Boston, MA<br />

This investigation tests the hypothesis that classification and<br />

characterization <strong>of</strong> fractures <strong>of</strong> the radial head is more accurate with<br />

3D than 2D computed tomography images and radiographs, using<br />

a prospective study design with intraoperative inspection as the<br />

reference standard. Treating surgeons and first assistants completed a<br />

questionnaire assigning a type according to the Broberg and Morrey<br />

modification <strong>of</strong> Mason’s classification, evaluating important fracture<br />

characteristics, and selecting preferred management four times:<br />

Initially based upon radiographs and 2D images alone, a second<br />

time based on radiographs, 2D and 3D-CT images, a third time on<br />

radiographs, 2D, 3D-CT and 3D physical models, and a final time<br />

after surgery based on intra-operative visualization <strong>of</strong> the fracture.<br />

The agreement between surgeon and first assistant as well as the<br />

sensitivity and specificity were calculated for 2D-CT and radiographs,<br />

3D-CT, and 3D physical models as compared to the intraoperative<br />

direct observation. The addition <strong>of</strong> 3D-CT reconstructions and 3D<br />

models to standard radiographs and 2D-CT scans improved the<br />

reliability <strong>of</strong> fracture classification according to the Broberg and<br />

Morrey modification <strong>of</strong> the Mason classification (kappa values,<br />

2DCT = 0.23, 3DCT = 0.26 and 3D model = 0.37; all p


and internal rotation were also similar between the two groups.<br />

Repairing or not repairing the subscapularis during reverse shoulder<br />

arthroplasty using the reverse shoulder prosthesis has no significant<br />

effect on complication or dislocation rate. Visual analog pain scale<br />

scores and gains in range <strong>of</strong> motion were also similar between the<br />

two groups.<br />

posteR No. p326<br />

Biomechanical Comparison <strong>of</strong> Three Rotator Cuff<br />

Repair Constructs after Healing in an Animal Model<br />

Akash Gupta, BA<br />

Ryan Quigley, BS, Irvine, CA<br />

Joo Han Oh, MD, Seongnam, Gyeonggi-do, Republic <strong>of</strong> Korea<br />

Kyung-Chil Chung, MD, Irvine, CA<br />

Michelle H McGarry, MD, Long Beach, CA<br />

Ranjan Gupta, MD, Orange, CA<br />

James E Tibone, MD, Los Angeles, CA<br />

Thay Q Lee, PhD, Long Beach, CA<br />

Recent studies investigating rotator cuff repairs have shown that the<br />

double row (DR) and transosseous equivalent (TOE) techniques<br />

provide improved contact area and pressure between the rotator cuff<br />

tendon and footprint and improved biomechanical characteristics<br />

compared to single row (SR). The purpose <strong>of</strong> this study was to<br />

biomechanically compare the healing characteristics <strong>of</strong> SR, DR and<br />

TOE techniques using a chronic and retracted rabbit subscapularis<br />

rotator cuff tear model. We hypothesized that repair with TOE and<br />

DR will show improved biomechanical properties over SR after<br />

healing. Twenty-one New Zealand white rabbits were used for three<br />

repair groups: SR, DR and TOE. A two-stage surgical procedure<br />

was performed. The left subscapularis tendon was first transected<br />

and was allowed to retract to simulate a chronic rotator cuff tear.<br />

Following six weeks, rotator cuff tendon repair was then performed<br />

using either the SR, DR or TOE technique using microanchors.<br />

During both surgical procedures, the contralateral shoulder was<br />

used as a sham control. Rabbits were then permitted 12 weeks <strong>of</strong><br />

healing, and then euthanized. Repaired and control humeri with<br />

attached subscapularis were then used to quantify biomechanical<br />

characteristics. Analysis <strong>of</strong> variance was used to compare groups<br />

with significance set at p


to type IIB and 57% to type IIC according to Morgan. The overall<br />

prevalence <strong>of</strong> pulley lesions was just under 3%. Type I biceps pulley<br />

lesions classified according to Habermeyer were present in 44%,<br />

type II in 34%, type III in 13% und type IV in 9%. Isolated SLAP<br />

without pulley lesions were present in 157 cases (86%), isolated<br />

pulley without SLAP lesions in 62 cases (71%), a coincident presence<br />

was evaluated in 25 cases (10%, p=0.003). A total <strong>of</strong> 65% <strong>of</strong> isolated<br />

biceps pulley lesions and 34% <strong>of</strong> isolated SLAP lesions were<br />

associated with preoperative shoulder-trauma. The typical trauma<br />

mechanism for both lesions was the fall on the arm. Some 32% <strong>of</strong><br />

pulley lesion occured during fall on the flexed and internal rotated<br />

arm, while 13% <strong>of</strong> SLAP lesions occured during fall on the abducted<br />

and external rotated arm. A positive correlation <strong>of</strong> SLAP lesions and<br />

anterior shoulder instability (p=0.001) but a negative correlation<br />

<strong>of</strong> pulley lesions and shoulder instability (p=0.004) was seen. An<br />

association <strong>of</strong> glenohumeral chondral lesions with SLAP lesions<br />

(p0.05). There is no difference in biomechanical properties<br />

<strong>of</strong> biceps tenodesis with regard to screw length or diameter at both<br />

proximal and distal tenodesis locations. The results may serve as a<br />

guide to the orthopaedic surgeon performing proximal BT in selecting<br />

appropriate interference screw. When possible, we recommend using<br />

the smallest screw size available to minimize risk <strong>of</strong> stress fracture at<br />

tenodesis site.<br />

posteR No. p330<br />

Chronic AC Dislocation: Arthroscopic Treatment With<br />

CC Ligament Autograft And Double-Button Fixation<br />

Yannick Roussanne, MD, Montpellier, France<br />

Olivier Gastaud, MD, Nice, France<br />

Nicholas Brassart, Cagnes Sur Mer, France<br />

Pascal Boileau,MD, Nice, France<br />

The purpose <strong>of</strong> this study was to evaluate the clinical and radiographic<br />

results after arthroscopic transfer <strong>of</strong> the coraco-acromial ligament<br />

(CAL) with an attached acromial osseous fragment into the clavicle<br />

for severe (Rockwood types III-V) acromio-clavicular dislocation<br />

(ACD). Twenty-two patients presenting with symptomatic and severe<br />

(Rockwood types III-V) ACD were treated with an all-arthroscopic<br />

reconstruction <strong>of</strong> their coraco-clavicular ligaments. The surgical<br />

technique consisted <strong>of</strong> transferring the acromio-clavicular ligament<br />

into a cavity burred into the distal clavicle, along with an attached<br />

osseous fragment cut from the anterior acromion (bone-tendonbone<br />

graft, Weaver-Dunn-Chuinard technique). A four-strand,<br />

non-absorbable suture, mounted on two titanium buttons (the<br />

‘double-button’) was used to retain the coraco-clavicular reduction<br />

and protect the transferred graft during its healing. The patients were<br />

followed prospectively with radiographs and CT scans, with a mean<br />

follow up <strong>of</strong> 19 months (9-36). Among these patients, six presented<br />

with a recurrent ACD after having been initially treated with an open<br />

coraco-clavicular pinning. One patient had a superficial infection<br />

that went on to heal with no sequelae. The mean Constant score<br />

was 86 points (65-100) at last follow up. All patients returned to<br />

work within six months <strong>of</strong> surgery and were very satisfied with the<br />

cosmetic result as well as with the resolution <strong>of</strong> their symptoms<br />

(pain, arm fatiguability and paresthesias). All patients also returned<br />

to their previous athletic activities, including contact and overhead<br />

sports. The arthroscopic transfer <strong>of</strong> the CAL is a reliable technique<br />

for the treatment <strong>of</strong> ACD <strong>of</strong> Rockwood types III-V. This technique<br />

even allows the successful revision <strong>of</strong> failed open acromio-clavicular<br />

stabilizations. Arthroscopy has a clear advantage in treating a<br />

pathology in which cosmetic concerns are among the reasons for<br />

which patients seek treatment. Transferring an osseous fragment<br />

along with the CAL allows the achievement <strong>of</strong> bone-to-bone<br />

healing.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


posteR No. p331<br />

Natural History Of Untreated Rotator Cuff Tear:<br />

Radiological And Clinical Study<br />

Alessandro Ciompi, MD, Roma, RM Italy<br />

Angelo De Carli, MD, Rome, Italy<br />

Antonio Vadala, MD, Rome, Italy<br />

Carlo Iorio, MD<br />

Andrea Ferretti, Rome, Italy<br />

The natural history <strong>of</strong> rotator cuff tears is not widely known.<br />

The aim <strong>of</strong> this study is to analyze the clinical and radiological<br />

evolution <strong>of</strong> conservative treatment <strong>of</strong> rotator cuff tears. Thirtyeight<br />

patients conservatively treated after a diagnosis <strong>of</strong> rotator cuff<br />

tear documented by MRI (T0-MRI) were enrolled in this study. At<br />

T0 there were 19 full-thickness tears (group C), 12 partial-articular<br />

(group A) and seven partial-bursal (group B) cuff tears. All patients<br />

underwent a new MRI (T1), clinical examination and scoring scales<br />

at follow up. The mean follow up was 62 months. Classifying all<br />

patients depending on the T0-MRI diagnosis (group A, B or C), we<br />

found a significant trend toward a complete tear in six cases (85.7%)<br />

(p


posteR No. p334<br />

Pitfalls <strong>of</strong> Overstuffing in Radial Head Arthroplasty, A<br />

Cadaveric Study<br />

Prasad J Sawardeker, MD, Miami, FL<br />

Check C Kam, MD, Miami, FL<br />

Winston Elliott, Miami, FL<br />

Edward L Milne, Miami Beach, FL<br />

Loren L Latta, PhD, Plantation, FL<br />

Elizabeth A Ouellette, MD, North Miami Beach, FL<br />

Successful results following radial head arthroplasty can be<br />

significantly impaired if the implant is incorrectly sized. We examine<br />

the effects <strong>of</strong> alteration <strong>of</strong> axial length <strong>of</strong> the radial head prosthesis<br />

and force conveyed at the radiocapitellar joint. Seven fresh-frozen<br />

cadaveric arms were utilized. Radial heads were resected and a<br />

monopolar, metal radial head prosthesis was implanted. Adjustments<br />

<strong>of</strong> radial head length were made in 2 mm increments to create an<br />

understuffed (-2), neutral (0) and overstuffed (+2, +4) effect. Forearms<br />

were cyclically loaded with the forearm in neutral, in 60 degrees <strong>of</strong><br />

pronation, and in 60 degrees <strong>of</strong> supination. Radiocapitellar forces<br />

were measured using Tekscan sensors with radial head length set at<br />

-2 mm, 0, +2 mm and +4 mm and comparisons were made with the<br />

neutral (0) radial head. Radiocapitellar forces with the forearm in<br />

neutral in arms that were understuffed (-2), neutral (0), overstuffed<br />

(+2, +4) were 24.07 +/- 9.65N, 30.21 +/- 9.63N, 37.45 +/- 13.09N,<br />

46.47 +/- 9.25N. There was a stepwise increase in force transmitted<br />

with progressive radial head lengthening. Radiocapitellar forces<br />

were essentially 1.5 times greater with radial head overstuffing (+4)<br />

compared to neutral (0). Radiocapitellar forces were significantly<br />

elevated in forearms that were pronated in comparison to forearms<br />

in neutral and in supination for each adjusted radial head length.<br />

Replicating axial length <strong>of</strong> native radial heads plays a critical role in<br />

restoring native radiocapitellar forces and may effectively reduce wear,<br />

early arthritis and implant loosening after radial head arthroplasty.<br />

posteR No. p335<br />

Interfragmentary Suture Fixation for Displaced Acute<br />

Type II Distal Clavilce Fractures<br />

Xavier A Duralde, MD, Atlanta, GA<br />

Scott Pennington, MD, Atlanta, GA<br />

Douglas H Murray, MD, Atlanta, GA<br />

Open reduction/internal fixation (ORIF) <strong>of</strong> Type II distal clavicle<br />

fractures remains a challenge because <strong>of</strong> distal comminution and the<br />

significant deforming forces created by the weight <strong>of</strong> the shoulder<br />

girdle. Current fixation options struggle with distal fixation and<br />

<strong>of</strong>ten require violation <strong>of</strong> the acromioclavicular (AC) joint or the<br />

subacromial space. We hypothesize that a suture technique utilizing<br />

coracoclavicular fixation to neutralize the deforming force <strong>of</strong> the<br />

shoulder girdle along with interfragmentary suture fixation leads to a<br />

high degree <strong>of</strong> fracture union. We retrospectively reviewed the results<br />

<strong>of</strong> 19 consecutive patients who presented to our clinic between<br />

1998 and 2010 with displaced acute type II distal clavicle fractures<br />

treated with suture technique. Patient age ranged between 24 and<br />

76 (mean 44.5), with 14 men and five women. Eleven <strong>of</strong> 19 patients<br />

had comminution <strong>of</strong> the distal fragment. All patients were treated<br />

with a uniform surgical technique, consisting <strong>of</strong> circumferential<br />

coracoclavicular fixation and interfragmentary suture fixation <strong>of</strong><br />

the distal fracture fragment(s). All patients were kept in a sling<br />

for six weeks, followed by protected active range <strong>of</strong> motion. Mean<br />

time between injury and surgery was 9.8 days (3 -21) and mean<br />

radiographic and clinical follow up was 259 days. All patients went<br />

on to bony union. There were no cases <strong>of</strong> significant loss <strong>of</strong> reduction<br />

710<br />

or malunion. No patients developed significant stiffness or loss <strong>of</strong><br />

function. There were no complications requiring reoperation and<br />

no patients developed acromioclavicular arthrosis or impingement.<br />

Suture fixation for ORIF <strong>of</strong> Type II distal clavicle fractures is a safe<br />

and effective technique that obtains secure reduction and fixation<br />

with reliable results. It obviates the need for hardware removal and<br />

avoids violation and injury to the AC joint and subacromial space.<br />

posteR No. p336<br />

The Influence <strong>of</strong> Arm and Shoulder Position on The<br />

Belly-Press, Lift-Off and Bear-Hug Tests<br />

Andrew T Pennock, MD, San Diego, CA<br />

W Wesley Pennington, MS<br />

Michael Torry, PHD, Normal, IL<br />

Michael Decker, Vail, CO<br />

Suketu B Vaishnav, MD, San Francisco, CA<br />

Matthew T Provencher, MD, San Diego, CA<br />

Peter J Millett, MD, MSc, Vail, CO<br />

Thomas R Hackett, MD, Vail, CO<br />

Testing the integrity <strong>of</strong> the subscapularis includes the belly-press,<br />

lift-<strong>of</strong>f and bear-hug evaluations. While these tests have been widely<br />

applied to clinical practice, there is considerable variation in the arm<br />

positioning within each clinical exam. The purpose <strong>of</strong> this study<br />

was to determine the ideal arm and shoulder positions for isolating<br />

the subscapularis muscle while performing each examination.<br />

The activity <strong>of</strong> seven muscles (upper and lower subscapularis,<br />

suprapsinatus, latissimus dorsi, teres major, triceps, pectoralis major)<br />

was monitored in 20 healthy subjects. EMG data was collected and<br />

compared across each exam at varying arm positions: bear-hug (ideal<br />

position, 10° superior, 10° inferior to the shoulder line), belly-press<br />

(ideal position, maximum external rotation and maximal internal<br />

rotation) and lift-<strong>of</strong>f (ideal position, 5° superior, 5° inferior to the<br />

midlumbar spine). Regardless <strong>of</strong> arm and shoulder position, the<br />

upper and lower subscapularis muscle activities were significantly<br />

greater than all other muscles while performing each exam (p


(HHA) and partial resurfacing arthroplasty (PRA). Seven cadaveric<br />

upper extremities were tested on an active shoulder simulator.<br />

The protocol involved testing the intact specimen, Bankart lesion<br />

and repair and two Hill-Sachs (H-S) lesions (30%,45%) with the<br />

remplissage, HHA and PRA. Survivability <strong>of</strong> the construct (extension<br />

to engagement) and range-<strong>of</strong>-motion (ROM) were measured. All<br />

unrepaired H-S lesions engaged during abduction and external<br />

rotation. No remplissage or HHA specimens engaged. With PRA,<br />

three <strong>of</strong> seven and five <strong>of</strong> seven specimens partially engaged in<br />

30% and 45% H-S lesions, respectively. In adduction, the 30%<br />

H-S remplissage significantly reduced mean ROM 19.7°±8.3°<br />

(p=0.017), while the HAA and PRA did not (p=1.0). The 45% H-S<br />

remplissage reduced ROM a mean <strong>of</strong> 22.3°±14.0 (p=0.12) without<br />

significance, while the HHA (p=0.58) and PRA (p=1.0) did not. In<br />

abduction, the 30% H-S remplissage (p=0.25), HHA (p=0.5) and<br />

PRA (p=1.0) demonstrated no significant reduction in ROM. The<br />

45%H-S remplissage reduced motion without significance a mean<br />

<strong>of</strong> 27.6°±20.9° (p=0.28) and the HHA significantly reduced ROM a<br />

mean <strong>of</strong> 14.0°±4.7° (p=0.004). The PRA demonstrated no significant<br />

reduction in ROM (p=1.0). The remplissage, HHA and PRA all<br />

enhanced shoulder stability. In the PRA group, partial engagement<br />

into the remaining bone defect was identified. The remplissage and<br />

HHA consistently eliminated engagement, however, the remplissage<br />

did so at the expense <strong>of</strong> motion.<br />

posteR No. p338<br />

Contralateral Elbow Radiographs can Reliably<br />

Diagnose Radial Head Implant Over-Lengthening<br />

George S. Athwal, MD, London, ON Canada<br />

Dominique Rouleau, MD, Montreal, QC Canada<br />

Joy C MacDermid, PhD, London, ON Canada<br />

Graham J W King, MD, London, ON Canada<br />

Radial head implant over-lengthening, a common cause <strong>of</strong> capitellar<br />

wear and clinical failure, is difficult to diagnose using radiographs <strong>of</strong><br />

the injured elbow. The purpose <strong>of</strong> this study was to determine if a novel<br />

measurement technique based on contralateral elbow radiographs<br />

could be used to accurately estimate the magnitude <strong>of</strong> radial head<br />

implant over-lengthening. Part I <strong>of</strong> this study examined the sideto-side<br />

consistency <strong>of</strong> this radiographic measurement technique.<br />

Part II <strong>of</strong> this study validated the technique using a simulated overlengthening<br />

cadaveric model. Part I: A side-to-side comparison <strong>of</strong> the<br />

radiographic measurement technique was performed in 50 patients<br />

(100 radiographs). Part II: Radial head prostheses <strong>of</strong> varying lengths<br />

(0, +2 mm, +4 mm, +6 mm, +8 mm) were implanted in four paired<br />

cadaveric specimens. Radiographs were obtained and measurements<br />

were performed by two examiners blinded to implant size to<br />

determine if contralateral radiographs can provide a valid estimate<br />

<strong>of</strong> the magnitude <strong>of</strong> implant over-lengthening. Intra and inter-rater<br />

reliability was determined. No significant side-to-side differences<br />

(p0.90).<br />

The inter-rater agreement between two separate surgeons was also<br />

excellent, with the 95% lower confidence interval exceeding 0.90<br />

in all cases. A novel measurement technique based on contralateral<br />

elbow radiographs can be used to reliably calculate the magnitude <strong>of</strong><br />

radial head implant over-lengthening.<br />

711<br />

posteR No. p339<br />

Scapular Notching In The Primary Reverse Total<br />

Shoulder Arthroplasty<br />

Adam Warren, MD, San Francisco, CA<br />

James D Kelly, II MD, San Francisco, CA<br />

Reverse total shoulder arthroplasty using the Grammont style <strong>of</strong><br />

prosthesis is associated with the development <strong>of</strong> scapular notching.<br />

Caudal positioning is purported to reduce the incidence <strong>of</strong> notching.<br />

We developed and published a technique, the 12 mm rule, to assist<br />

in maximal caudal placement <strong>of</strong> the glenoid component. The<br />

purpose <strong>of</strong> this retrospective study is to evaluate the incidence <strong>of</strong><br />

radiographic notching among patients undergoing this surgery with<br />

this technique. Forty-five consecutive Grammont style shoulder<br />

glenoid components were placed in a maximally inferior position<br />

using the 12 mm rule. The surgery was performed by a single<br />

surgeon (JK) at a single institution. Notching was evaluated by plain<br />

radiographs. They were obtained postoperatively at week one, six,<br />

12, 26, 52 and then yearly thereafter. Patients with minimum twoyear<br />

follow up were selected for this analysis. Twenty-six <strong>of</strong> 45 (58%)<br />

shoulders developed scapular notching. Eleven <strong>of</strong> 26 were grade I,<br />

eight <strong>of</strong> 26 were grade II and seven <strong>of</strong> 26 were grade III. All patients<br />

showed improved function by Constant and ASES score. There was<br />

no difference between the patients with and without notching.<br />

Maximal inferior placement <strong>of</strong> the glenoid component utilizing the<br />

12 mm rule does not prevent scapular notching. However, use <strong>of</strong><br />

this technique has no observable adverse consequences and results<br />

in reproducible good and excellent results. Notching rates using this<br />

technique are similar to previously published studies. The presence<br />

<strong>of</strong> notching in a patient with a caudally placed glenosphere has no<br />

observable negative predictive value.<br />

posteR No. p340<br />

Distraction Arthoplasty <strong>of</strong> the elbow in younger<br />

patients with Rheumatoid Arthritis<br />

Kimberly Carney Young, MD, Ithaca, NY<br />

Robert N Hotchkiss, MD, Riverside, CT<br />

Disabling elbow arthritis in the young active rheumatoid patient<br />

presents a surgical challenge due to high functional demand with<br />

implant TER demonstrating high rates <strong>of</strong> catastrophic failure. Using<br />

disease-modifying antirheumatic drug (DMARD) medications,<br />

fewer joints are <strong>of</strong>ten afflicted. Because the adjacent joints are more<br />

functional, use and weight (lifting) restrictions recommended<br />

with implant TER are less likely to be followed. This leads <strong>of</strong>ten to<br />

implant failure with loosening, osteolysis and extremely challenging<br />

revision surgery. This study reports the outcome <strong>of</strong> interposition<br />

arthroplasty <strong>of</strong> the rheumatoid elbow <strong>of</strong>fered as an alternative in<br />

this select group <strong>of</strong> patients. Between 1994-2009, 14 patients (15<br />

elbows) with rheumatoid arthritis (RA), average age <strong>of</strong> 46 years (30-<br />

64) were treated with complete synovectomy, interposition using<br />

Achilles tendon allograft and hinged fixation. The medial cruciate<br />

ligament and lateral ulnar collateral ligament were protected during<br />

surgery. Pain (VAS), ROM and DASH scores were recorded, before<br />

and after surgery. Patients were not restricted from any particular<br />

activity or lifting weight limit. No patients were lost to follow up;<br />

with a mean follow up <strong>of</strong> 5.0 years (one-16). No patient required or<br />

requested conversion to TER. All patients reported relief from pain,<br />

average pre-op pain (scale 0-10) was 6.0 at rest and 8.0 with activity<br />

and post operatively decreased to 0 at rest and 0.5 with activity. The<br />

average total range <strong>of</strong> motion improved from 70 degrees pre-op to<br />

105 degrees post-op. DASH score improved from 44.2 (25-63.5)<br />

pre-op to 13.9 (0.8-43.4) post-op. No patients had a worse DASH<br />

score. Post operative radiographs did not show bony resorption or<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


loss <strong>of</strong> joint space. No patient reported or demonstrated instability.<br />

There were three complications: hematoma (one), pin track<br />

infection (two). Interposition arthroplasty in selected patients with<br />

rheumatoid arthritis may <strong>of</strong>fer durable, reliable pain relief and<br />

improved functional use. This cohort <strong>of</strong> patients was able to return<br />

to many activities not generally recommended after implant TER.<br />

The option for conversion to primary TER is still available at a later<br />

time, if needed.<br />

posteR No. p341<br />

A Predictive Model <strong>of</strong> Shoulder Instability After a First-<br />

Time Anterior Shoulder Dislocation<br />

Richard C Mather, III MD, Durham, NC<br />

Lori A. Orlando, MD<br />

Drew Henderson, MSIV, Durham, NC<br />

J. Todd R. Lawrence, MD, Wynnewood, PA<br />

Dean C Taylor, COL, MD, Durham, NC<br />

Management <strong>of</strong> a first-time anterior shoulder dislocation (FTASD)<br />

involves important clinical and policy decisions. Predictive disease<br />

modeling can improve the quality <strong>of</strong> information disseminated in<br />

treatment discussions. In this paper, we describe a general purpose,<br />

publicly available model and illustrate its potential as a tool for<br />

management <strong>of</strong> a FTASD. A Markov decision model <strong>of</strong> the natural<br />

history <strong>of</strong> a FTASD was constructed. Outcome probabilities and<br />

effectiveness were derived from the literature or estimated by expert<br />

opinion where necessary. Outcomes were the Western Ontario<br />

Shoulder Instability index (WOSI) and the probability <strong>of</strong> a patient<br />

experiencing recurrent instability, undergoing surgical stabilization<br />

and having a stable shoulder at 10 years. The model was both<br />

internally and externally validated. Specific outcomes were examined<br />

for specific cases. The model was effectively externally validated<br />

against two studies, a Swedish prospective cohort <strong>of</strong> Hovelius et al<br />

and Botonni et al.’s military cohort. It can produce detailed outcome<br />

predictions for individuals; for example, an 18-year-old man has a<br />

77% risk <strong>of</strong> dislocation in year one and a 32% chance <strong>of</strong> having a<br />

stable shoulder in 10 years. Detailed and specific information about<br />

prognosis is critical in the management <strong>of</strong> a FTASD. Disease modeling<br />

lends itself well to these needs and allows improved shared decisionmaking.<br />

Our model was externally validated and can predict specific<br />

outcomes. As a publically available resource, it will allow physicians<br />

to accurately predict the expected outcome <strong>of</strong> a procedure based on<br />

patient demographics and their own surgical success rates.<br />

posteR No. p342<br />

Cell Viability in Human Rotator Cuff Explants<br />

Richard C Mather, III MD, Durham, NC<br />

Connor Raymond LaRose, MD, Durham, NC<br />

Farshid Guilak, PhD, Durham, NC<br />

Claude T Moorman III, MD, Durham, NC<br />

Alison P Toth, MD, Durham, NC<br />

Human rotator cuff tendon can have poor healing potential after<br />

surgical repair, but the cell viability <strong>of</strong> rotator cuff tendons has<br />

not been determined. We aimed to characterize the cell viability<br />

<strong>of</strong> rotator cuff tendons and their pathologic states. We performed<br />

a live-dead assay (Invitrogen Molecular Probes) using a confocal<br />

laser scanning microscope on 20 human rotator cuff explants (two<br />

normal). We recorded age, sex and body mass index in addition to<br />

the following tear characteristics: size, full or partial thickness, tissue<br />

quality, retraction, location and presence <strong>of</strong> other pathology. Five<br />

locations were examined: the medial, lateral, anterior and posterior<br />

edges and the midsubstance. Cell viability was assessed as minimal,<br />

moderate and maximum live cells. No difference in cell viability was<br />

712<br />

observed between the different tear types. Areas <strong>of</strong> cell death were<br />

observed in all tendons. High cell viability was seen in both full<br />

thickness and partial tears. The medial edge <strong>of</strong> the tendons showed<br />

demonstrated minimal increase in tenocyte viability compared to<br />

the lateral edge. The normal control tendons showed the largest<br />

numbers <strong>of</strong> live cells. This study describes a novel evaluation <strong>of</strong><br />

human rotator cuff tendon. We found consistent cell death in all<br />

tendons, with acute and chronic tears both exhibiting areas <strong>of</strong> high<br />

cell death and viability. Debridement <strong>of</strong> 3-5 mm <strong>of</strong> tendon from<br />

the lateral edge does not consistently increase the number <strong>of</strong> live<br />

tenocytes at the repair. Diminished cell viability may explain the<br />

overall poor healing rates <strong>of</strong> rotator cuff tears, but cannot explain<br />

differences between tear types.<br />

posteR No. p343<br />

Functional Outcome <strong>of</strong> Radial Head Fractures Managed<br />

with Open Reduction and Internal Fixation<br />

Jeffrey Pike, MD, Vancouver, BC Canada<br />

Ruby Grewal, MD, London, ON Canada<br />

George S. Athwal, MD, London, ON Canada<br />

Ken Faber, MD, London, ON Canada<br />

Graham J W King, MD, London, ON Canada<br />

Limited information is available regarding the functional outcomes<br />

<strong>of</strong> radial head fractures managed with open reduction and internal<br />

fixation (ORIF). Fifty-two patients, with a mean age <strong>of</strong> 44±12 years,<br />

who were treated with radial head ORIF were evaluated at a mean <strong>of</strong><br />

4.4±2.4 years. Thirty were isolated radial head fractures (Group A),<br />

13 (Group B) were associated with a complex fracture-dislocation<br />

(terrible triad variants), and five (Group C) were associated with a<br />

proximal ulnar fracture (Monteggia/trans-olecranon variants). Fourtyfour<br />

were partial articular fractures and eight were complete articular<br />

fractures. Outcomes were assessed with physical and radiographic<br />

examination, and validated self-reported questionnaires. The<br />

average PREE score (Patient Rated Elbow Evaluation) for Groups<br />

A, B and C were 7.6±13.1, 12.3±13.4 and 10±8.5, respectively. The<br />

average MEPI (Mayo Elbow Performance Score) for Groups A, B and<br />

C were 89±13, 85±11 and 91±8, respectively. For Groups A, B and C<br />

respectively, the prevalence <strong>of</strong> radiographic radiocapitellar arthritis<br />

was 30%, 46% and 20%. The average flexion/extension arc for<br />

Groups A, B and C were seven to 132°, six to 134° and 10 to 132°<br />

respectively. Secondary surgery was performed in 17% <strong>of</strong> cases, most<br />

commonly for decreased motion. Three comminuted fractures failed<br />

ORIF and required conversion to radial head arthroplasty. Patients<br />

with radial head fractures, including those associated with complex<br />

fracture-dislocations, can achieve excellent functional outcomes with<br />

low self reported pain and disability when treated with ORIF, despite<br />

radiographic evidence <strong>of</strong> mild post-traumatic arthritis.<br />

posteR No. p344<br />

Hemiarthroplasty (HHR) For Fracture-Dislocation Of<br />

The Proximal Humerus Yields Poor Results<br />

Mike Greiwe, MD, Edgewood, KY<br />

Elizabeth Cody, BS, New York, NY<br />

Comron Saifi, BS, New York, NY<br />

Christopher S Ahmad, MD, New York, NY<br />

Louis U Bigliani, MD, New York, NY<br />

William N Levine, MD, New York, NY<br />

Hemiarthroplasty (HHR) for the management <strong>of</strong> four-part fractures<br />

is reliable for pain relief and patient satisfaction, but post-operative<br />

motion remains unpredictable. The purpose <strong>of</strong> this study was to<br />

investigate what effect concurrent dislocation has on post-operative<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


outcomes following HHR for four-part proximal humerus fracturedislocations.<br />

From January 2001 through January 2009, all patients<br />

who received HHR for the acute treatment <strong>of</strong> Neer four-part proximal<br />

humeral fracture-dislocations were retrospectively reviewed. Twelve<br />

<strong>of</strong> 14 patients were available for clinical follow up at an average<br />

<strong>of</strong> 35 months (range 12-61). Clinical outcomes (ASES, SST and a<br />

self-assessment ROM evaluation) and post-op radiographs were<br />

used for evaluation. Clinical: There was a 25% incidence <strong>of</strong> nerve<br />

injury. A bimodal distribution <strong>of</strong> range <strong>of</strong> motion was identified in<br />

the fracture-dislocation group. Seven patients had >130° <strong>of</strong> forward<br />

elevation (FE) (average 158°±15°). Five patients had poor FE


SCIENTIFIC EXHBITS<br />

scieNtific exHibit No. se49<br />

Rotator Cuff Tear Arthropathy: Evaluation, Diagnosis<br />

and Treatment<br />

Denis Nam, MD, New York, NY<br />

Travis G Maak, MD, New York, NY<br />

Bradley Raphael, MD, Santa Monica, CA<br />

Christopher Kepler, MD, Philadelphia, PA<br />

Russell F Warren, MD, New York, NY<br />

A common cause <strong>of</strong> shoulder arthritis is cuff tear arthropathy (CTA).<br />

Rotator cuff pathology can alter the biomechanical properties <strong>of</strong> the<br />

glenohumeral joint resulting in uneven wear. Nevertheless, only a<br />

small percentage <strong>of</strong> these patients will develop a massive tear causing<br />

enough destabilization to develop CTA. Many hypotheses have been<br />

postulated, but the etiology has been an area <strong>of</strong> speculation. Despite<br />

detailed understanding <strong>of</strong> the underlying pathology, controversy<br />

exists regarding the treatment protocol for these patients. Total<br />

shoulder arthroplasty (TSA) or hemiarthroplasty have reliable<br />

improvement in pain levels, function, and patient satisfaction.<br />

However, a high rate <strong>of</strong> glenoid loosening after TSA in these patients<br />

remains a concern. This concern has stimulated a recent trend toward<br />

exploring reverse or constrained total shoulder arthroplasty in these<br />

patients. This exhibit reviews the clinical and diagnostic approach<br />

to patients with CTA. A literature review describes the extent <strong>of</strong><br />

the problem as well as controversies regarding a patient with CTA.<br />

History, physical examination, anatomic considerations, imaging,<br />

classification systems, and treatment options are outlined. Surgical<br />

techniques and indications are discussed with an emphasis on<br />

relevant biomechanical advantages and risks related to conventional<br />

and reverse TSA in the setting <strong>of</strong> CTA. An algorithmic approach<br />

based on the patient’s medical condition, functional goals, deltoid<br />

musculature, cuff and CA arch integrity is provided. Intraoperative<br />

photographs and diagrammatic representations assist in clearly<br />

delineating treatment options based on specific clinical scenarios.<br />

This approach aids in the selection <strong>of</strong> an appropriate technique<br />

aimed at improving patient outcome.<br />

scieNtific exHibit No. se50<br />

Arthroscopic Management <strong>of</strong> Lateral Epicondylitis:<br />

Technique and Outcomes<br />

Duretti Fufa, MD, New York, NY<br />

Haydee C. Brown, MD, New York, NY<br />

Sommer Hammoud, MD, New York, NY<br />

Alison Kitay, MD, New York, NY<br />

Moira Margaret McCarthy, MD, New York, NY<br />

Lauren Elizabeth Lamont, MD, New York, NY<br />

Alexia Hernandez-Soria, MD, New York, NY<br />

John Dougald MacGillivray, MD, New York, NY<br />

Robert N Hotchkiss, MD, Riverside, CT<br />

Lateral epicondylitis, or tennis elbow, is a common diagnosis<br />

treated by internists, general orthopaedists as well as hand, sports<br />

medicine and shoulder/elbow specialists. It is reported to affect<br />

1-3% <strong>of</strong> adults annually. While in most cases, the process is selflimiting<br />

and can be treated with conservative measures, in a subset<br />

<strong>of</strong> cases, it will be recurrent and/or recalcitrant and require surgical<br />

intervention. Traditionally, an open debridement is performed<br />

in this case. Recently, with increasing use <strong>of</strong> and indications for<br />

elbow arthroscopy, arthroscopic debridement has emerged as<br />

an alternative to open debridement. This scientific exhibit will<br />

714<br />

focus on indications for and techniques involved in arthroscopic<br />

management <strong>of</strong> lateral epicondylitis. We will specifically focus on:<br />

(1) the anatomic considerations <strong>of</strong> the extensor carpi radialis brevis<br />

(ECRB) origin and maintenance <strong>of</strong> elbow stability, (2) arthroscopic<br />

techniques employed by the lead authors <strong>of</strong> the exhibit (R.S.H and<br />

J.D.M) and (3) evidence both from the literature and our institutions<br />

experience comparing open and arthroscopic management <strong>of</strong> lateral<br />

epicondylitis. Surgical techniques will be demonstrated through<br />

intraoperative photographs and video and correlated with diagrams<br />

<strong>of</strong> pertinent anatomy. Common complications <strong>of</strong> arthroscopic<br />

treatment as well as surgical pearls for avoiding these complications<br />

will also be discussed. The literature suggests that the results <strong>of</strong><br />

arthroscopic debridement are comparable to open debridement. The<br />

evidence is mixed, however, and few studies directly comparing open<br />

and arthroscopic management exist. We will systematically review<br />

and summarize the available literature as well as the experience at our<br />

institution. In particular, we will focus on rates <strong>of</strong> complication, early<br />

relief <strong>of</strong> symptoms, return to work and recurrence. The goal <strong>of</strong> this<br />

scientific exhibit is to review the role <strong>of</strong> arthroscopic management <strong>of</strong><br />

lateral epicondylitis. In doing so, we will describe and demonstrate<br />

surgical techniques for this procedure and provide a review <strong>of</strong> the<br />

current literature to support its use.<br />

scieNtific exHibit No. se51<br />

Can We Improve the Reliability <strong>of</strong> the Constant-Murley<br />

Score?<br />

Davide Blonna, MD, Torino, Italy<br />

Michele Scelsi, MD, Torino, Italy<br />

Alessandra Tellini, MD, Alpignano-Turin, Italy<br />

Filippo Castoldi, MD, Torino, Italy<br />

Enrico Bellato, MD, Torino, Italy<br />

Eleonora Marini, MD, Torino, Italy<br />

Filippo Castoldi, MD, Torino, Italy<br />

The Constant-Murley (CS), ASES and Oxford scores are widely used<br />

tools for outcomes evaluation in shoulder surgery. Several studies<br />

investigated their reliability. However the reliability is usually express<br />

in coefficients not easy to interpret and tested in healthy volunteers.<br />

The first aim <strong>of</strong> this scientific exhibit is to show the real reliability<br />

<strong>of</strong> the three scores testing the reliability in patients with shoulder<br />

disfunctions . The second aim is to test the hypothesis that the<br />

reliability <strong>of</strong> the CS can be improved when the score is administered<br />

using a severe protocol (Standardized Constant-Murley score, S-CS).<br />

Using a video we will also show how to improve the reliability <strong>of</strong> the<br />

Constant Score. The scores were administered by two orthopaedic<br />

surgeons, with different level <strong>of</strong> expertes in using the CS, to fiftyfive<br />

patients. The same patients were evaluated one to four weeks<br />

later by the same two observers. The data were elaborated using the<br />

Bland and Altman method. After the evaluation <strong>of</strong> the errors the<br />

S-CS score was formulated and than tested. The CS showed the worst<br />

intra rater (error: 4±21points) and inter rater reliability (error: 4±24<br />

points), compare to the Oxford and ASES scores that were more<br />

stable overtime. The use <strong>of</strong> the S-CS showed a better inter-rater and<br />

intra-rater reliability compared to the CS. The use <strong>of</strong> high quality<br />

scores is mandatory in the era <strong>of</strong> the evidence based medicine. The<br />

S-CS showed benefits compared to the CS, ASES and Oxford score.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


scieNtific exHibit No. se52<br />

Salvage <strong>of</strong> Failed Shoulder Instability with<br />

Osteochondral Allografts<br />

Jack Gerard Skendzel, MD, Ann Arbor, MI<br />

Jon K Sekiya, MD, Ann Arbor, MI<br />

Recurrent shoulder instability can be due to multiple factors,<br />

including technical errors, failure to recognize associated injuries,<br />

glenoid bone loss and Hill-Sachs lesions. Numerous surgical<br />

techniques for the treatment <strong>of</strong> failed shoulder stabilizations have<br />

been described, however, in certain patients a sizeable glenoid<br />

or humeral head osteochondral defect exists that requires novel<br />

reconstruction methods. Non-anatomic procedures are associated<br />

with significant risks, including advanced arthritis, persistent<br />

instability, and difficult revision surgery. This exhibit reviews<br />

the biomechanics, clinical outcomes, and surgical technique<br />

<strong>of</strong> osteochondral allograft reconstruction for failed shoulder<br />

stabilizations due to large humeral head and glenoid osteochondral<br />

defects. We will review the pathoanatomy <strong>of</strong> these osteochondral<br />

defects in failed shoulder surgery. The indications for osteochondral<br />

allograft use are discussed, including a “critical limit” <strong>of</strong> glenoid<br />

and humeral head bone loss. The current literature and our own<br />

case-series reporting clinical outcomes <strong>of</strong> osteochondral allografts<br />

will be reviewed. The surgical technique will be detailed with video<br />

illustration highlighting important steps including pre-operative<br />

planning and defect evaluation with CT scans. In addition, the<br />

surgical approach with exposure <strong>of</strong> the defect and the fashioning <strong>of</strong><br />

an appropriate osteochondral graft for implantation will be shown.<br />

Patients with recurrent instability and significant glenoid or humeral<br />

head bone loss may not be adequately treated by standard surgical<br />

techniques, possibly leading to further bone loss and lengthening <strong>of</strong><br />

capsular structures. We believe the benefits <strong>of</strong> osteochondral allograft<br />

reconstruction are its ability to re-create normal shoulder anatomy<br />

and lessen the risk <strong>of</strong> recurrent instability through restoration <strong>of</strong><br />

normal biomechanical function.<br />

scieNtific exHibit No. se53<br />

The Human Gun: Management <strong>of</strong> the Biceps from Stem<br />

to Stern<br />

Paul Shupe, MD, San Diego, CA<br />

Lucas McDonald, MD, San Diego, CA<br />

Christopher B Dewing, MD, San Diego, CA<br />

Matthew T Provencher, MD, San Diego, CA<br />

Injury to the biceps muscle-tendon unit encompasses a variety <strong>of</strong><br />

pathology from the shoulder to the elbow coinciding with the origin<br />

and insertion <strong>of</strong> this muscle. From the low demand weekend warrior<br />

to the high demand laborer/competitive athlete, biceps injuries<br />

occur in a large and diverse group <strong>of</strong> patients. As such, there are a<br />

variety <strong>of</strong> important disorders <strong>of</strong> the biceps that must be recognized<br />

and evaluated in order to optimize patient care. The purposes <strong>of</strong><br />

this scientific exhibit are to identify injuries <strong>of</strong> the biceps from stem<br />

to stern from the shoulder to the elbow, review patient history and<br />

common presenting complaints, the physical examination, describe<br />

associated conditions, and outline treatment options. This exhibit<br />

will review the spectrum <strong>of</strong> injury to the biceps from proximal to<br />

distal, starting first with the shoulder to include: SLAP tears, long<br />

head biceps tendonopathy, biceps tendon instability or rupture,<br />

and concluding at the elbow with partial and distal biceps tendon<br />

ruptures. Through the use <strong>of</strong> audiovisual aids, including video, we<br />

will present the characteristic findings on history, physical, and<br />

imaging <strong>of</strong> a patient with biceps pathology. Using MRI studies,<br />

arthroscopic images, and cadaveric photographs, we will review<br />

normal and abnormal biceps anatomy. After a review <strong>of</strong> our own<br />

715<br />

clinical data and a systematic review <strong>of</strong> the current literature, we will<br />

discuss a logical approach to comprehensive management <strong>of</strong> these<br />

patients with appropriate images and video (biceps tenotomy, open<br />

subpectoral biceps tenodesis, SLAP debridement, SLAP repair, distal<br />

biceps tendon repair). We will also outline the pearls and pitfalls<br />

associated with these techniques, including postoperative pain,<br />

stiffness, and neurovascular compromise. The expected outcomes for<br />

patients with biceps pathology have been promising. These results<br />

nonetheless indicate the selection <strong>of</strong> the ideal intervention for each<br />

patient must be individualized to meet their functional need.<br />

scieNtific exHibit No. se54<br />

Surgical Approach for Elbow Hemiarthroplasty:<br />

Advantges and Limits<br />

Enrico Guerra, MD, Bologna, Italy<br />

Roberto Rotini, MD, Bologna, Italy<br />

Enrico Guerra, MD, Bologna, Italy<br />

Alessandro Marinelli, MD, Casalecchio Di Reno, Italy<br />

Graziano Bettelli, MD, Bologna, Italy<br />

Marco Nigrisoli, MD, Bologna, Italy<br />

Distal humerus fractures are increasingly frequent in patients older<br />

than sixty. Open reduction and internal fixation is always the first<br />

treatment option, but it must have sufficient stability to allow<br />

early range <strong>of</strong> motion. Even if Total Elbow Arthroplasty (TEA) is<br />

a well accepted indication in elderly patients with comminuted<br />

intrarticular fractures, the complications mostly in the ulnar<br />

component <strong>of</strong> the implant are not uncommon (loosening,<br />

periprosthetic fracture, infection). Distal Humeral Hemiarthroplasty<br />

(DHH) is a new treatment option for unreconstructable combined<br />

capitellar and lateral trochlear fractures, with or without medial<br />

trochlear involvement. Even if the existing follow-up <strong>of</strong> is too short<br />

to confirm real advantages compared to TEA, the Distal Humeral<br />

Hemiarthroplasty should have expanded indications, including<br />

also adults patients, and should show lower complications, as<br />

infection and loosening. DHH requires specific prosthetic design,<br />

both medial and lateral columns intact or reconstructed, intact or<br />

stable reconstructed radial head and coronoid process and intact<br />

or reparable MCL and LCL. The correct approach can make the<br />

difference between success or failure Four emblematic case <strong>of</strong> distal<br />

humerus fracture, chosen for different surgery approach: Triceps<br />

on, TRAP, Olecranon Osteotomy, and Triceps Splitting.The approch<br />

was choosen depending on the tipe <strong>of</strong> the fracture. There were all<br />

man with the dominant upper limb affected. Each patient has been<br />

followed for at least 2 ys (min 2, max 3,5). Mepi score, exstension/<br />

flexion strenth and elbow stability has been measured at different<br />

time after surgery. All patiens had Mepi score 95 at the end. Triceps<br />

on and Olecranon osteotomy had faster and more complete recovery<br />

<strong>of</strong> extension strenth compared to the other limb. Triceps on had a<br />

mild elbow unstability at follow up DHH is a performing procedure.<br />

To decide the correct orientation and length <strong>of</strong> the implant the<br />

surgeon needs broad exposure, but on the other side has to respect<br />

or rebuild collateral ligament validity. Nowadays four approach are<br />

described for DHH: Triceps on: no triceps deficiency but extremely<br />

aggressive on collateral ligament with minor intraoperative vision<br />

TRAP (Triceps Reflecting Anconeus Pedicle): sovra/intercondilar<br />

fractures violates bony lateral and/or medial column, by the fracture<br />

rime the implant is possible and this approach allow internal fixation<br />

at the end, respecting ligament attached to the fractured condoles.<br />

Olecranon Osteotomy: great vision respecting ligament and triceps<br />

insertion but technically demanding and concerning for possible<br />

olecranon non-union Triceps Splitting: A little less aggressive on<br />

triceps insertion than trap approach, but let an easier and more<br />

functional ligament reconstruction. The Authors report a complete<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


leterature rewiew and their experience with all <strong>of</strong> these differente<br />

approaches considering advantages and disadvantages found out<br />

during surgery. They propose an algorithm to help the surgeon to<br />

choose the correct approach in this difficult procedure<br />

scieNtific exHibit No. se55<br />

Massive Rotator Cuff Tears: An Algorithmic Approach<br />

To Treatment<br />

Shane Nho, MD, Chicago, IL<br />

Demetris Delos, MD, New York, NY<br />

Travis G Maak, MD, New York, NY<br />

Michael B Cross, MD, New York, NY<br />

Russell F Warren, MD, New York, NY<br />

Massive rotator cuff tears pose a significant clinical challenge and<br />

are associated with less predictable results as well as poorer clinical<br />

outcomes compared to smaller rotator cuff tears. In order to optimize<br />

outcomes, a thorough comprehension <strong>of</strong> these types <strong>of</strong> tears and their<br />

diagnosis is necessary, along with an understanding <strong>of</strong> the advanced<br />

surgical techniques <strong>of</strong>ten required to treat them. This exhibit will<br />

review the characteristic changes in biology and biomechanics<br />

associated with massive rotator cuff tears and demonstrate an<br />

appropriate patient evaluation. Determining whether a tear is<br />

repairable is critical and will be emphasized. Tears that are repairable<br />

will <strong>of</strong>ten require advanced s<strong>of</strong>t-tissue releases and fixation methods,<br />

including double-row and transosseous-equivalent suture bridges.<br />

Irreparable tears may be addressed with palliative surgical treatment,<br />

salvage treatment utilizing tendon transfers, or shoulder arthroplasty,<br />

including Cuff Tear Arthropathy (CTA) prosthesis for joints that are<br />

diseased or reverse total shoulder replacement.Diagrams and figures<br />

demonstrating the various surgical techniques as well as shoulder<br />

arthroplasty models will be available. An algorithm for treatment<br />

will be presented. This exhibit will introduce the viewer to an<br />

algorithmic approach for diagnosing and categorizing massive cuff<br />

tears, as well as the various treatment modalities available which will<br />

enhance understanding <strong>of</strong> a complex topic. Massive rotator cuff tears<br />

are a significant clinical challenge but outcomes may be improved<br />

with enhanced understanding and appropriate treatment.<br />

716<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits sHouldeR & elboW


PAPERS<br />

pApeR No. 016<br />

Efficacy <strong>of</strong> Multi-Level ACDF Versus ACCF for Multi-<br />

Level Cervical Spondylotic Myelopathy<br />

Kwang-Bok Lee, MD, Jeonju, Chonbuk, Republic <strong>of</strong> Korea<br />

Kyung Jin Song, MD, Jeonju, Jeonbuk, Republic <strong>of</strong> Korea<br />

Cyrus Emil Taghavi, MD, Sacramento, CA<br />

Ji-Hoon Song, MD, Suncheon-Si, Jorye Dong, Republic <strong>of</strong> Korea<br />

Hoon Park, MD<br />

The optimal surgical option for multilevel cervical spondylotic<br />

myelopathy (CSM) remains controversial. In addition, few<br />

comparative studies have been conducted on anterior cervical<br />

discectomy and fusion (ACDF) and corpectomy and fusion (ACCF)<br />

for multilevel CSM. The purpose <strong>of</strong> this study is to evaluate the<br />

efficacy <strong>of</strong> ACDF versus ACCF for multilevel CSM. A total <strong>of</strong> 40<br />

patients who underwent multilevel ACDF or ACCF suffering from<br />

CSM into two groups; Group A (n=25) underwent ACDF; Group B<br />

(n=15) underwent ACCF. Clinical outcomes (Japanese Orthopedic<br />

Association (JOA) score, visual analogue score (VAS)), perioperative<br />

parameters (hospital stays, blood loss, operation times), radiological<br />

parameters (fusion rate, segmental height, cervical lordosis) and<br />

complications were compared. There was no significant difference<br />

between group A and B in JOA score and VAS. There are significant<br />

differences between groups in hospital stay (p=0.031), blood<br />

loss (p=0.001) and operation time (p=0.024). Both group A<br />

and B showed a significant increase in the cervical lordosis after<br />

operation and reached satisfactory fusion rates (88.0% and 93.3%,<br />

respectively). There is no significant difference in the incidence <strong>of</strong><br />

complications between groups. Both multilevel ACDF and ACCF<br />

provide good clinical results and a similar fusion rate for CSM.<br />

However, multilevel ACDF results in better radiologic parameters,<br />

shorter hospital stays, smaller blood loss and a shorter operation<br />

time than ACCF. Therefore, multilevel discectomy and fusion will<br />

become a good alternative for corpectomy and fusion in patients<br />

with multilevel CSM.<br />

pApeR No. 017<br />

Do Stand-Alone Spacers with Integrated Screws<br />

Provide Stability in Multi-level Cervical Arthrodesis?<br />

Haines Paik, MD, Fairfax, VA<br />

Mario J Cardoso, MD, Chicago, IL<br />

Anton E Dmitriev, Washington, DC<br />

Ronald Arthur Lehman, MD, Potomac, MD<br />

Rachel E Gaume, BS<br />

Divya Ambati, A, Fairfax, VA<br />

Michael Rosner, MD, Washington, DC<br />

Postoperative complications after anterior cervical fusions have<br />

been attributed to anterior cervical plate pr<strong>of</strong>iles and necessary wide<br />

operative exposure for insertion. Consequently, low-pr<strong>of</strong>ile standalone<br />

interbody spacers with integrated screws have been developed.<br />

While they have demonstrated similar biomechanical stability to the<br />

anterior plate in single-level fusions, their role as stand-alone devices<br />

in multilevel reconstructions has not yet been established. Thirteen<br />

human cadaveric cervical spines (C2-T1) were non-destructively<br />

tested with a custom six-degree-<strong>of</strong>-freedom spine simulator under<br />

717<br />

sPine<br />

axial rotation (AR), flexion-extension (FE) and lateral bending<br />

(LB) loading. After intact analysis, eight single-levels (C4-5 & C6-<br />

7) from four specimens were instrumented and tested with: 1)<br />

anterior cervical plate (ACP) and 2) stand-alone spacer (SAS). Nine<br />

specimens were tested with: 1) C5-7 SAS, 2) C5-7 ACP, 3) C4-7 ACP,<br />

4) C4-7 ACP & posterior fixation, 5) C4-7 SAS and 6) C4-7 SAS &<br />

posterior fixation. Full range <strong>of</strong> motion (ROM) data was obtained<br />

and analyzed by loading modality utilizing mean comparisons with<br />

repeated measures analysis <strong>of</strong> variance. Paired t-tests were used for<br />

post-hoc analysis with Sidak’s correction for multiple comparisons.<br />

No significant difference in ROM was noted between ACP and SAS<br />

for single-level fixation (p>0.05). However, the ACP as compared to<br />

the SAS did provide superior stability. Compared to intact, the ACP<br />

significantly decreased ROM for both two and three level anterior<br />

constructs (p0.05). The ACP considerably reduced ROM<br />

as compared to the SAS for both two and three-level constructs<br />

(p


vocal cord paresis which resolved after six months. Notably, we had<br />

no significant surgical complications in the posterior group. Our<br />

study showed that patients with multilevel disease treated with<br />

laminoplasty do well and compare favorably with patients with<br />

only single or dual level disease treated with an anterior approach.<br />

Notably posterior surgery was associated with shorter operating<br />

time, better improvement <strong>of</strong> JOA score at six months and a tendency<br />

towards lesser complications. As such, we believe that careful patient<br />

selection for either the anterior or posterior approach based on the<br />

pathology <strong>of</strong> the myelopathy and radiological findings will result in<br />

comparable improved clinical outcomes post-operatively.<br />

pApeR No. 019<br />

Neurological Complications Of Laminoplasty For<br />

Ossification Of The Posterior Longitudinal Ligament<br />

Atsushi Seichi, MD, Shimotsuke, Japan<br />

Atsushi Kimura, MD, Shimotsuke, Japan<br />

Hirokazu Inoue, MD<br />

Yuichi Hoshino, MD, Shimotsuke, Japan<br />

Perioperative neurological complication rates <strong>of</strong> laminoplasty for<br />

cervical ossification <strong>of</strong> the posterior longitudinal ligament (OPLL)<br />

have not been well described. The purpose <strong>of</strong> this retrospective<br />

multi-institutional study was to clarify the incidence <strong>of</strong> neurological<br />

deficits after cervical laminoplasty for OPLL. Subjects comprised<br />

consecutive 581 patients at 27 institutions between 2005 and<br />

2008. Postoperative neurological complications within two weeks<br />

after laminoplasty were analyzed in detail. C2-7 Cobb angle and<br />

occupying rate <strong>of</strong> OPLL were investigated. Open-door laminoplasty<br />

was conducted in 237 patients, double-door laminoplasty in 311 and<br />

other types <strong>of</strong> laminoplasty in 33. Deterioration <strong>of</strong> lower-extremity<br />

function occurred after laminoplasty in 18 patients (3.1%). Causes<br />

<strong>of</strong> deterioration were epidural hematoma in three patients, spinal<br />

cord herniation through injured dura mater in one, incomplete<br />

laminoplasty due to vertebral artery injury while making a trough<br />

in one and unidentified in 13. Prevalence <strong>of</strong> unsatisfactory recovery<br />

not reaching preoperative level by six-month follow-up was 7/581<br />

(1.2%). Mean occupying rate <strong>of</strong> OPLL for patients with deteriorated<br />

lower-extremity function was 51.2±13.6%, significantly higher than<br />

the 42.3±13.0% for patients without deterioration (95% confidence<br />

interval <strong>of</strong> the difference, 3.0-15.0%). No significant difference in<br />

C2/7 lordotic angle was seen between groups. As a whole, the greater<br />

the occupying rate <strong>of</strong> OPLL, the higher the risk <strong>of</strong> postoperative<br />

neurological sequelae. Although most neurological deterioration can<br />

be expected to recover to some extent, the frequency <strong>of</strong> short-term<br />

neurological complications was higher than the authors expected.<br />

pApeR No. 020<br />

Prognostic Factors for Neurologic Improvement in<br />

Cervical Spondylotic Myelopathy<br />

Christopher George Furey, MD, Cleveland, OH<br />

Sanford E Emery, MD, MBA, Morgantown, WV<br />

Kasra Ahmadinia, MD, Cleveland, OH<br />

Jung U Yoo, MD, Portland, OR<br />

Henry H Bohlman, MD, Cleveland, OH<br />

It is generally agreed that cervical spondylotic myelopathy is best<br />

treated with surgery. It is less clear which factors are associated with<br />

post-operative neurologic improvement. The goal <strong>of</strong> this study was<br />

to evaluate multiple clinical and radiographic variables and their<br />

relationship with the neurologic improvement following surgical<br />

management <strong>of</strong> cervical spondylotic myelopathy. A consecutive<br />

series <strong>of</strong> 120 patients (77 males and 43 females) with multilevel<br />

718<br />

cervical spondylotic myelopathy who underwent surgery over a<br />

seven-year period (1999-2005) were evaluated. Nurick scores were<br />

obtained pre- and post-operatively. Neurologic improvement was<br />

defined as a drop in Nurick score. Variables were evaluated using<br />

Logistic Regression Analysis. The Nurick score improved from a preoperative<br />

mean <strong>of</strong> 3.6 to a post-operative mean <strong>of</strong> 2.8. A total <strong>of</strong> 91<br />

patients (76%) improved at least one Nurick grade, 19 (16%) were<br />

unchanged and 10 (8%) worsened one grade. Factors significantly<br />

different in those patients with neurologic improvement included:<br />

age < 65 years at the time <strong>of</strong> surgery, Nurick grade 3 or less preoperatively,<br />

duration <strong>of</strong> symptoms less than 12 months, absence <strong>of</strong><br />

diabetes or cardiac disease which had required surgical intervention<br />

and no history <strong>of</strong> smoking. Radiographic features significantly<br />

different in those patients with neurologic improvement included<br />

the absence <strong>of</strong> signal change on T2 weighted image and cord<br />

flattening to less that 40% <strong>of</strong> normal anterior-posterior diameter.<br />

Among the factors not significantly different included the type <strong>of</strong><br />

surgical procedure performed, the occurrence <strong>of</strong> a perioperative<br />

complication or the need for additional surgery. The severity and<br />

duration <strong>of</strong> myelopathy can be predictive <strong>of</strong> the extent <strong>of</strong> neurologic<br />

improvement following surgery for cervical spondylotic myelopathy.<br />

While surgery should be <strong>of</strong>fered to most, if not all patients, those<br />

with more advanced myelopathy at the time <strong>of</strong> presentation (Nurick<br />

Grade 4 or 5) and those with symptoms present for greater than a<br />

year may be less likely to improve neurologically.<br />

pApeR No. 021<br />

High Resolution Diffusion Tensor Imaging in Cervical<br />

Spondylotic Myelopathy<br />

Alpesh Ashwin Patel, MD, Salt Lake City, UT<br />

Michael David Daubs, MD, Salt Lake City, UT<br />

Darrel S Brodke, MD, Salt Lake City, UT<br />

Seong Eun Kim, PhD, Salt Lake City, UT<br />

Eun Kee Jeong, PhD<br />

Conventional magnetic resonance (MR) imaging, while <strong>of</strong>fering<br />

anatomic information <strong>of</strong> the spine, provides little insight into the<br />

integrity <strong>of</strong> the spinal cord in patients with cervical spondylotic<br />

myelopathy (CSM). Diffusion tensor imaging (DTI), an imaging<br />

modality utilized in other central nervous system disorders, may<br />

provide further insight into the integrity <strong>of</strong> white matter tracts<br />

within the cervical spinal cord. To date, DTI <strong>of</strong> the cervical cord has<br />

been limited by low spatial resolutions. The purpose <strong>of</strong> this study<br />

is to investigate the feasibility and validity <strong>of</strong> high resolution DTI<br />

in the setting <strong>of</strong> CSM. Thirty patients were prospectively identified.<br />

Fourteen control patients and 16 patients with CSM were included.<br />

The diagnosis <strong>of</strong> CSM was based upon symptoms, physical<br />

examination and diagnostic imaging confirming cervical spinal cord<br />

compression. Subjects with CSM were classified according to both<br />

the Nurick and modified Japanese Orthopedic Association (mJOA)<br />

scales. Canal diameter and evidence <strong>of</strong> T2-weighted spinal cord<br />

signal at each disc space between C2-3 and C7-T1 were recorded.<br />

A novel DTI sequence (2D ss-IMIV) was performed on a 3T MRI<br />

system. DTI measurements, blinded to the results from conventional<br />

MRI, included fractional anisotropy (FA), trace and radial and axial<br />

diffusivity (»). The average age <strong>of</strong> the control patients was 42 years<br />

compared to 57.4 (37-73) among study patients. The average Nurick<br />

grade was 2.9 (2-4) and the average mJOA score was 11.8 (6-15).<br />

On average, canal stenosis was present over 3.5 levels (2-5) with<br />

canal diameter measuring 7.6 mm (5.2-9.9) in areas <strong>of</strong> spinal cord<br />

compression and 13.2 mm (10-15) in areas without compression.<br />

Compared with controls, FA values (0.489 vs. 0.591), trace values<br />

(1.69 vs. 1.96), axial diffusivity » (0.906 vs. 1.16) and axial/radial<br />

» ratio (2.33 vs. 3.07) were decreased. This was found in patients<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


with or without T2 spinal cord signal change (Figure 1,2). DTI<br />

measurements suggest a loss <strong>of</strong> normal, longitudinal white matter<br />

integrity (decrease FA and » ratio, increased radial diffusivity) in<br />

CSM. This was identified not only in areas with T2-weighted spinal<br />

cord signal change but also in myelopathic patients with normal<br />

spinal cord signal on conventional MRI. High-resolution DTI may<br />

provide greater diagnostic information about the integrity <strong>of</strong> the<br />

cervical spinal cord compared with conventional MRI in the setting<br />

<strong>of</strong> CSM.<br />

pApeR No. 022<br />

Differentiating C8 Radiculopathy From Ulnar<br />

Neuropathy: How Knowledgeable Are Spine Surgeons?<br />

K Daniel Riew, MD, Saint Louis, MO<br />

Lukas P. Zebala, MD, Saint Louis, MO<br />

Jacob M Buchowski, MD, Saint Louis, MO<br />

Dong-Ho Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Many spine surgeons have a difficult time differentiating C8<br />

radiculopathy (C8R) from ulnar neuropathy (UN). Most only test<br />

grip strength and don’t know which intrinsic hand muscles are C8-<br />

T1 innervated. We tested spine surgeons regarding C8R versus UN.<br />

A total <strong>of</strong> 24 experienced cervical spine surgeons completed the<br />

following questionnaire. 1. Cutting the ulnar nerve at the elbow<br />

results in numbness <strong>of</strong>: A) ulnar forearm, small+ring fingers B) Only<br />

ulnar forearm C) Only small+ring fingers 2. Which <strong>of</strong> the following<br />

are weak with C8R without UN: flexor digiti minimi brevis, flexor<br />

pollicis brevis, abductor digiti minimi, abductor pollicis brevis,<br />

adductor pollicis, opponens digiti minimi, opponens pollicis, medial<br />

lumbricals, lateral lumbricals, dorsal interossei, palmar interossei.<br />

Only 15/24 (58%) surgeons correctly answered #1 (C). None <strong>of</strong> the<br />

24 correctly identified all four C8-T1 innervated muscles without<br />

naming additional muscles. One named all four, but also named six<br />

others incorrectly. One identified two muscles; another, two correct<br />

and one incorrect.<br />

pApeR No. 023<br />

Mortality in Elderly Patients following Operative and<br />

Non-Operative Management <strong>of</strong> Odontoid Fractures<br />

Barrett Ivory Woods, MD, Pittsburgh, PA<br />

Justin Hohl, MD, Pittsburgh, PA<br />

Robert Hartman, MS<br />

Brett Braly, MD, Pittsburgh, PA<br />

Ishaq Syed, MD, Winston Salem, NC<br />

William F Donaldson III, MD, Pittsburgh, PA<br />

James Kang, MD, Pittsburgh, PA<br />

Joon Yung Lee, MD, Pittsburgh, PA<br />

Odontoid fractures account for approximately 20% <strong>of</strong> all cervical<br />

spine fractures and represent the most common cervical spine<br />

fracture in patients over 70. Despite the frequency, there is little<br />

published literature regarding mortality and clinical outcome <strong>of</strong><br />

odontoid fractures in the elderly. The purpose <strong>of</strong> this study was to<br />

analyze the mortality <strong>of</strong> elderly patients following operative and<br />

non-operative management <strong>of</strong> odontoid fractures. We performed a<br />

retrospective review <strong>of</strong> all odontoid fractures in patients 75 years <strong>of</strong><br />

age or older at our institution over the past 15 years. Comorbidities<br />

were stratified using the Charlson comorbidity index. Mortality<br />

was determined at one and five years. A total <strong>of</strong> 96 patients were<br />

identified <strong>of</strong> which 75 met inclusion criteria. The average age <strong>of</strong> the<br />

patients who survive operative management (77.9) was significantly<br />

different from those who died (83.1) (p= .004). The average age<br />

between those who survived (83) and died (85) following non-<br />

719<br />

operative management was not significantly different (p=0.22).<br />

The average Charlson comorbidity score for those operated on<br />

(2.37) was not significantly different from the non-operative group<br />

(2.46), (p=0.45). However the patients that survived surgery had a<br />

significantly lower Charlson score (1.53) than those that died (3.22)<br />

after surgery (p=0.05). There was no significant difference in Charlson<br />

scores between patients who lived and died following non-operative<br />

management (p=0.175). Concomitant injury was present in 66%<br />

<strong>of</strong> patients who died following surgery and 53.5% <strong>of</strong> the patients<br />

that died after non-operative treatment (p=0.47). There was no<br />

significant difference in one (p=0.42) or five (p=0.21) year mortality<br />

between the operative and non operative cohorts. Patients treated<br />

operatively lived significantly longer after injury (29.8 months) than<br />

those treated non-operatively (8.6 months) (p=0.04). Respiratory<br />

failure accounted for the most common cause <strong>of</strong> death in both the<br />

non-operative (46%) and operative (33%) cohorts. There was not<br />

a significant difference in overall mortality between patients who<br />

received operative or non-operative treatment at one or five years.<br />

However the operative group did appear to live significantly longer<br />

after injury than the non-operative group. Prospective randomized<br />

studies are needed to validate these conclusions.<br />

pApeR No. 024<br />

Spinal Cord Injury Associated with Type II Odontoid<br />

Fractures: A Retrospective Cohort Analysis<br />

Amar Arun Patel, BS, Philadelphia, PA<br />

Harvey Smith, MD, Bellaire, TX<br />

Kristen E Radcliff, MD, Margate City, NJ<br />

Todd J Albert, MD, Philadelphia, PA<br />

James Harrop, MD<br />

D Greg Anderson, MD, Moorestown, NJ<br />

Alan S Hilibrand, MD, Philadelphia, PA<br />

Jeffrey Rihn, MD, Philadelphia, PA<br />

Alexander Vaccaro, MD, PhD, Gladwyne, PA<br />

Neurologic deficits associated with type II odontoid fractures are<br />

extremely rare and thought to portend a poor prognosis. This study<br />

is a retrospective analysis <strong>of</strong> acute type II odontoid fractures with<br />

neurologic deficit presenting to a regional spinal cord injury referral<br />

center. A prospectively collected database was reviewed for acute<br />

type II odontoid fractures with a presenting neurologic deficit from<br />

June 1985 to July 2008. Demographic information including age,<br />

length <strong>of</strong> stay, date <strong>of</strong> death, mechanism <strong>of</strong> injury, displacement,<br />

comorbidities, associated injuries, ASIA grade, treatment and<br />

complications was collected. Results <strong>of</strong> this study were compared<br />

to data from a previously published cohort <strong>of</strong> 188 neurologically<br />

intact patients presenting to the same institution during the same<br />

time interval. Twenty patients were identified with an acute type<br />

II odontoid fracture with neurological deficit. The incidence <strong>of</strong><br />

neurological deficits among all type II odontoid fractures was 9.6%.<br />

Patients with deficits presented with younger mean age (p


pApeR No. 025<br />

Utility <strong>of</strong> Advanced Imaging in Diagnosing Cervical<br />

Arterial Injury after Blunt Trauma in Children<br />

Stephen R Tolhurst, MD, Ann Arbor, MI<br />

Kelly L Vanderhave, MD, Ann Arbor, MI<br />

Michelle S Caird, MD, Ann Arbor, MI<br />

Frances A Farley, MD, Ann Arbor, MI<br />

The incidence <strong>of</strong> cervical vascular injury (CVI) following blunt<br />

cervical trauma in children and adolescents is low, but the potential<br />

for harm with missed injury is high. Screening for CVI has increased<br />

with recent advances in noninvasive angiography including<br />

computed tomographic angiography (CTA) and magnetic resonance<br />

angiography (MRA). We evaluate the utility <strong>of</strong> screening for CVI<br />

in children and adolescents with cervical spine trauma. Clinical<br />

and radiographic records <strong>of</strong> consecutive patients ages 4-18 years<br />

with blunt cervical spine trauma from 1998-2008 were reviewed.<br />

Patient demographics, cervical spine injury pattern, neurological<br />

findings and treatment were recorded. A total <strong>of</strong> 62 patients with<br />

blunt cervical spine trauma were identified. Due to injury pattern<br />

(high velocity injuries, subaxial fracture/dislocations and fractures<br />

into the foramina transversaria), 19 patients underwent noninvasive<br />

angiography to evaluate for CVI. There were 12 males and<br />

seven females with a mean age <strong>of</strong> 13.5 years. The most common<br />

mechanism <strong>of</strong> injury was MVC (n=11). Six patients underwent MRA,<br />

11 CTA and two had both studies. Seven patients had a CVI. Two<br />

patients had ipsilateral hemiparesis, and four had complete SCI.<br />

Five <strong>of</strong> seven patients had changes made in their treatment based<br />

on findings consistent with CVI, one treated with heparin and four<br />

treated with aspirin. Anticoagulation was contraindicated in the<br />

remaining two patients. No delayed-onset ischemic neurological<br />

events occurred. After blunt cervical spine trauma, certain fracture<br />

patterns increase the risk <strong>of</strong> CVI. CVI is common, with a minimum<br />

incidence <strong>of</strong> 7/62 or >10% <strong>of</strong> pediatric patients with blunt cervical<br />

spine injury. More than one third <strong>of</strong> patients studied with high risk<br />

criteria had injury. Advanced imaging with noninvasive angiography<br />

(CTA/MRA) should be strongly considered in pediatric patients with<br />

cervical spine trauma. The presence <strong>of</strong> CVI <strong>of</strong>ten prompts a change<br />

in management.<br />

pApeR No. 026<br />

uRoutine Use <strong>of</strong> Posterior Arch Screws for C1 Fixation:<br />

Feasibility and Related Complications<br />

Jin-Sup Yeom, MD, PhD, Sungnam, Gyungki-do, Republic <strong>of</strong><br />

Korea<br />

Won Noh, MD<br />

Ngoc Quyen Nguyen, MD, Hanoi, Hai Ba Trung Viet Nam<br />

Dinesh Kafle, MD<br />

Kun-woo Park, MD, Seongam-si, Gyeonggi-do, Republic <strong>of</strong> Korea<br />

Bong-Soon Chang, MD, Seoul, Republic <strong>of</strong> Korea<br />

Choon-Ki Lee, Seoul, Republic <strong>of</strong> Korea<br />

K Daniel Riew, MD, Saint Louis, MO<br />

Whenever feasible, C1 posterior arch screws have advantages over<br />

lateral mass screws, including improved fixation, decreased C2 root<br />

irritation and venous bleeding. We evaluated the feasibility <strong>of</strong>, and<br />

complications related to, posterior C1 arch screws. In this singlesurgeon<br />

study, 82 C1 arch screws were attempted in 42 consecutive<br />

patients (18 men, 24 women). Prospective database, clinical records,<br />

questionnaires regarding occipital neuralgia and post-operative<br />

intravenous CT-angiography were analyzed by uninvolved surgeons.<br />

The height <strong>of</strong> 50 posterior arches was smaller than 4 mm on<br />

preoperative CT angiography. Posterior arch screws could be inserted<br />

720<br />

in all cases, including nine with poticuli posticus and seven with<br />

persistent first intersegmental arteries. There were no vertebral artery<br />

injuries during surgery or on postoperative CT-angiography. The<br />

posterior arch was perforated cranially by five, caudally by 28 and<br />

craniocaudally by 13 screws. Among the 16 patients with preoperative<br />

occipital neuralgia, nine had complete resolution and seven had<br />

alleviation <strong>of</strong> the pain at the last follow up. Among 26 patients<br />

without preoperative occipital neuralgia, seven developed new<br />

neuralgia and four had persistent pain (VAS 1 to 4) at the last follow<br />

up. Routine use <strong>of</strong> C1 posterior arch screw was feasible even in those<br />

with small posterior arch height, ponticulus posticus and persistent<br />

first intersegmental artery. Vertebral artery injury was preventable by<br />

mobilization before screw insertion. Cortical perforation was <strong>of</strong>ten<br />

inevitable. Occipital neuralgia was not infrequent, but its cause was<br />

not clear.<br />

pApeR No. 027<br />

Anatomy <strong>of</strong> Lamina in the Subaxial Cervical Spine with<br />

the Special Reference to Translaminar Screws: CT and<br />

Cadaveric Analysis with Screw Simulation<br />

Woojin Cho, MD, Charlottesville, VA<br />

Jason T Le, BS<br />

Adam L. Shimer, MD, Charlottesville, VA<br />

Brian C Werner, MD, Charlottesville, VA<br />

Michael Iwanik, PhD<br />

John A Glaser, MD, Charleston, SC<br />

Francis H Shen, MD, Charlottesville, VA<br />

Translaminar screws were initially developed for C2 fixation. Since<br />

then, their usage has expanded to include the subaxial cervical spine,<br />

and thoracic and lumbar spine. To our knowledge, special anatomy for<br />

inserting translaminar screws in the subaxial cervical spine have not<br />

been studied. A total <strong>of</strong> 18 cadaveric spines were harvested from C3<br />

to C7 and 1 mm CT scans and 3D reconstructions obtained. Bilateral<br />

translaminar screw entry points and trajectories were simulated at<br />

each level from C3 to C7. Constructs were selected to achieve maximal<br />

bony purchase with one screw, designated the primary screw. The<br />

contralateral screw, designated the secondary screw, was selected to<br />

achieve the optimal allowable diameter possible while avoiding a<br />

simulated cortical breach, which was not always necessarily the best<br />

purchase diameter. Initial screw diameters selected were 3.5 mm;<br />

however, in the event that a narrower portion was encountered, then<br />

a 3.0 mm diameter screw was utilized instead. The crossing area <strong>of</strong><br />

both screws were calculated geometrically. Maximal thickness <strong>of</strong><br />

the lamina was considered in determining the diameter <strong>of</strong> screws.<br />

Whenever possible 3.5 mm screws were selected in both lamina<br />

(3.5/3.5 mm); however if a 3.5 mm screw was utilized as the primary<br />

screw, but the permissible range (P) for the secondary screw was less<br />

than 3.5 mm, then a hybrid construct was utilized (3.5/3.0 mm). In<br />

cases where P was less than 3 mm, then both screws were studied at<br />

3 mm (3.0/3.0 mm). Screw diameters that optimized trajectory and<br />

bony purchase, while remaining within the permissible range, were<br />

analyzed, tabulated and recorded. On CT, along the trajectory <strong>of</strong> the<br />

screws, the image was cut and measured in terms <strong>of</strong> screw length,<br />

the narrowest portion <strong>of</strong> the lamina, vertical angle and horizontal<br />

angle in both primary and secondary screws. On the individually<br />

separated cervical spine segments in cadavers (11 out <strong>of</strong> 18), we<br />

performed caliper measurements on the same portions which were<br />

measured on CT. It could not be exactly the same portions, however,<br />

due to the three dimensional characteristics <strong>of</strong> the specimens. For<br />

C3, only one specimen allowed two screws (3/3 mm), while the<br />

remaining specimens permitted a unilateral primary screw (3.5 or 3<br />

mm) only. For C4, 50% <strong>of</strong> specimens allowed two screws (3.5/3 mm<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


or 3/3 mm), but the rest allowed only a unilateral primary screw(3.5<br />

or 3 mm). For C5, 43% allowed two screws (3.5/3.5 mm, 3.5/3 mm,<br />

or 3/3 mm). For C6, 88% <strong>of</strong> specimens allowed two screws (3.5/3.5<br />

mm, 3.5/3 mm or 3/3 mm). For C7, all levels allowed two screw<br />

(3.5/3.5 mm, 3.5/3 mm, 4/4 mm, 4/3 mm, 4.5/3 mm, 4.5/3.5 mm<br />

or 4/3.5 mm). On CT, the average lengths <strong>of</strong> the 1° and the 2° screws<br />

are 26.14 mm and 24.01 mm respectively. The average vertical and<br />

horizontal angles were 22.26° and 40.66° in 1° screw, and 3.45°<br />

and 45.59° for the 2° screw. On cadavers, the average lengths <strong>of</strong><br />

the 1° and the 2° screws are 22.58 mm, 23.44 mm respectively. The<br />

average vertical and horizontal angles were 23.67° and 54.44° in<br />

1° screw, and 2.28° and 54.89° for the 2° screw. This is a report <strong>of</strong><br />

the anatomy <strong>of</strong> the lamina in the subaxial cervical spine with the<br />

special reference to translaminar screws. It was analyzed with CT<br />

and cadaveric spines along with simulated screw trajectories. Further<br />

study is obviously needed for the feasibility <strong>of</strong> translaminar screw<br />

insertion in the actual subaxial cervical spine.<br />

pApeR No. 028<br />

Distraction In The Occipito-Cervical Spine In Patients<br />

With Dissociative Injuries<br />

Peleg Ben-Galim, Houston, TX<br />

Rani Lador, MD, Tel-Aviv, Israel<br />

Niv Dreiangel, MD, Tel Aviv, Israel<br />

Charles A Reitman, MD, Houston, TX<br />

John Hipp, PhD, Houston, TX<br />

Prior literature reviews have concluded that although evidence exists<br />

that currentcervical spine immobilization techniques can reduce<br />

head motion in healthy volunteers, there is no evidence that these<br />

techniques can limit motion or maintain normal alignment within<br />

the occipito-cervical region in the presence <strong>of</strong> severed issociative<br />

injuries. It is also known that secondary injuries are relatively common<br />

in patients with dissociative injuries. However, evidence in support<br />

<strong>of</strong> potential intervention strategies to minimize secondary injuries is<br />

limited. The purpose <strong>of</strong> this study was to better understand potential<br />

mechanisms for distraction in the occipito-cervical region in blunt<br />

trauma patients as documented in multiple clinical case series. This<br />

is an analysis <strong>of</strong> a small case series from a large level-I trauma center<br />

<strong>of</strong> patients with occipito-cervical dissociative injuries. Quantitative<br />

measurement <strong>of</strong> the gaps between the occiput and C1 or between C1<br />

and C2 were assessed using FDA recommended QMA s<strong>of</strong>tware. Review<br />

<strong>of</strong> the available literature on occipito-cervical dissociative injuries to<br />

identify possible mechanisms for the abnormal gaps described in<br />

many studies between the occiput and C1 or between C1 and C2 are<br />

presented. Twenty-nine peer-reviewed publications were identified<br />

where abnormal intersegmental separation was shown or described<br />

in patients with occipito-cervical dissociative injuries. In all patients<br />

from the current case series, abnormal distraction was measured from<br />

images taken during patient management. An association between<br />

in-line stabilization or application <strong>of</strong> a rigid cervical collar and<br />

exacerbated abnormal distraction between segments <strong>of</strong> the unstable<br />

upper cervical spine were identified. Numerous clinical studies have<br />

shown or report abnormal separation between the occiput and C1 or<br />

between C1 and C2 in patients with dissociative injuries, although<br />

explanations for the distraction were rarely provided. Observations<br />

from a small case series suggest that cervical stabilization procedures<br />

including in-line stabilization and application <strong>of</strong> a collar should<br />

be further investigated to achieve the goal <strong>of</strong> protecting against<br />

secondary injuries in patients with severe occipito-cervical injuries.<br />

721<br />

pApeR No. 029<br />

Biomechanical Analysis <strong>of</strong> Rod Material and Diameter<br />

for Cervicothoracic Ankylosing Spondylitis<br />

Justin Scheer, San Francisco, CA<br />

Jessica Anne Tang, BS<br />

Vedat Deviren, MD, San Francisco, CA<br />

Jenni M Buckley, PhD<br />

Murat Pekmezci, MD, San Francisco, CA<br />

Robert Trigg McClellan, MD, San Francisco, CA<br />

Christopher Ames, MD, San Francisco, CA<br />

Ankylosing spondylitis frequently results in spinal sagittal plane<br />

deformity. A combination <strong>of</strong> osteotomy and spinal fixation is used<br />

to treat severe cases to restore spinal balance and horizontal gaze.<br />

The specific model <strong>of</strong> instrumented opening wedge osteotomy<br />

(OWO) in aut<strong>of</strong>used ankylosing spondylitis has not been studied<br />

biomechanically. The goal <strong>of</strong> this study is to characterize the<br />

structural stiffness <strong>of</strong> the effects <strong>of</strong> posterior spinal rod diameter<br />

and material type across the cervicothoracic junction in spines with<br />

ankylosing spondylitis. Ten human spines (C3-T6) each underwent<br />

an OWO at C7-T1. To simulate the anterior auto-fusion and long<br />

lever arms characteristic <strong>of</strong> ankylosing spondylitis, anterior cervical<br />

plates were placed from C4-C7 and T1-T3 using fixed angle screws.<br />

Lateral mass screws were inserted bilaterally from C4-C6 and pedicle<br />

screws from T1-T3. Three different posterior spinal fusion rods were<br />

tested for each specimen: 3.2 mm Titanium (Ti), 3.5 mm Ti and 3.5<br />

mm cobalt-chrome (CoCr). Non-destructive pure moment flexion/<br />

extension (FE), lateral bending (LB) and axial rotation (AR) tests<br />

were conducted to 3.0 Nm in each anatomical direction. 3D motion<br />

tracking was used to measure the primary range-<strong>of</strong>-motion (ROM)<br />

across the osteotomy site (C7-T1). The 3.5 mm Ti and 3.5 mm CoCr<br />

rods were significantly stiffer in FE compared to the 3.2 mm Ti rod<br />

(25.2%±16.4% and 48.1%±15.3%, respectively, p


in addition to a subfascial drain in obese patients. In 2008, we<br />

additionally began placing 500 mg <strong>of</strong> vancomycin powder into<br />

the wound prior to closure. We analyzed the infection rates <strong>of</strong><br />

three groups: Group C (control patients prior to 8/2004), Group<br />

AD (alcohol foam and drain) and Group VAD (vancomycin). We<br />

retrospectively, independently reviewed all posterior cervical spine<br />

surgeries (n=972) performed by one surgeon from 1995-2010,<br />

including foramenotomies, laminectomies, laminoplasties, fusions<br />

and/or osteotomies. There were 483 patients in Group C, 330 in<br />

AD and 159 in VAD. Group C (n=483) had nine postoperative<br />

deep infections (1.86%). Higher infection rates were found in<br />

smokers (p=0.005), rheumatoids (p=0.027), obese BMI>30kg/m2<br />

(p=0.005), instrumented fusions (p=0.014), revisions (p=0.002) and<br />

>4 vertebral levels (p=0.017) but not diabetes (p=0.2). Group AD<br />

had 1/330 infections, significantly decreased versus C (p=0.0419).<br />

VAD had 0/159 infections, trending towards a decrease compared<br />

to Group C (p=0.07). Combining new measures since August 2004<br />

(Groups AD/VAD to C) resulted in a substantial infection decline<br />

(p=0.009). No complications were associated with vancomycin<br />

powder administration. In the present study, the addition <strong>of</strong> intrawound<br />

vancomycin powder to a pre-prep with alcohol foam and<br />

multiple drains in obese patients decreased the infection rate to<br />

0/159 posterior cervical spine surgeries. We recommend the routine<br />

use <strong>of</strong> our protocol for all posterior cervical operations. Such<br />

techniques may become even more important as Medicare refuses<br />

reimbursement for nosocomial infections.<br />

pApeR No. 256<br />

Does a Multilevel Laminectomy with a Single Level PLF<br />

Increase the Risk <strong>of</strong> Adjacent Segment Disease<br />

Brian J Neuman, MD, Philadelphia, PA<br />

David T Anderson, MD, Philadelphia, PA<br />

Kristen E Radcliff, MD, Margate City, NJ<br />

Alexander Vaccaro, MD, PhD, Gladwyne, PA<br />

Todd J Albert, MD, Philadelphia, PA<br />

Alan S Hilibrand, MD, Philadelphia, PA<br />

Little is known about the longer-term stability <strong>of</strong> a multilevel<br />

laminectomy adjacent to a single-level fusion. The purpose <strong>of</strong> this<br />

study was to evaluate whether a multi-level decompression in the<br />

setting <strong>of</strong> a single level fusion would increase a patient’s risk <strong>of</strong><br />

developing adjacent segment disease (ASD). A retrospective chart<br />

review <strong>of</strong> 183 consecutive patients who underwent a single-level<br />

posterior lumbar fusion (PLF) for spondylolithesis with stenosis was<br />

performed. A total <strong>of</strong> 142 patients had a minimum <strong>of</strong> 24-month<br />

follow up, averaging 54 months. Fifty-eight patients had a PLF with<br />

additional levels decompressed above the fusion, and 84 patients<br />

underwent a single level laminectomy and PLF. The incidence <strong>of</strong> ASD<br />

and reoperation rate was calculated, and a Fisher’s exact test was used<br />

to compare each subgroup. ASD was defined as the development <strong>of</strong><br />

new radiculopathy or claudication referable to a motion segment<br />

adjacent to the lumbar arthrodesis with symptom duration greater<br />

than six weeks. A total <strong>of</strong> 22.4% (N=13/58) <strong>of</strong> patients who had<br />

a PLF with multilevel laminectomy developed ASD with a 5.2%<br />

(N=3/58) reoperation rate. Among patients who had a PLF with<br />

a laminectomy only at the fusion level, the incidence <strong>of</strong> ASD was<br />

14.3% (N=12/84) and the reoperation rate was 7.1% (N=6/84).<br />

There was neither a significantly higher incidence <strong>of</strong> ASD (p=0.26)<br />

or reoperation rate (p=0.74) between the multilevel laminectomy<br />

and single level laminectomy groups. Concomitant decompression<br />

<strong>of</strong> additional levels above a single level PLF did not significantly<br />

increase the risk <strong>of</strong> ASD or additional surgery compared to single<br />

level laminectomy and PLF.<br />

722<br />

pApeR No. 257<br />

Does the Facet Joint Violation by Transpedicular Screw<br />

Cause Adjacent Segment Degeneration?<br />

Hyoung Yeon Seo, MD, Gwangju, Republic <strong>of</strong> Korea<br />

Jae Yoon Chung, MD, Gwangju, Republic <strong>of</strong> Korea<br />

Kyung-Do Kang, MD<br />

Gi Heon Park, MD<br />

The facet joint violation by transpedicular screw is a possible<br />

risk factor for adjacent segment degeneration (ASD) in patients<br />

undergoing lumbar fusion. We randomized 75 patients undergoing<br />

lumbar fusion into two groups. The ASD group was 35 patients who<br />

received lumbar fusion in the superior segment because <strong>of</strong> ASD<br />

after one or two segment fusions <strong>of</strong> the lower lumbar spines. The<br />

average interval between the first surgery and the superior segment<br />

surgery was 8.3 years. The control group was 40 randomly selected<br />

patients, who received lumbar fusion and had no complications for<br />

the average <strong>of</strong> seven years. We reviewed the CT scan where non-fused<br />

facet joints and proximal screws were both shown. No points were<br />

given when the screw clearly avoided the facet joint, one point was<br />

given when the screw head was either in contact with the facet joint<br />

or when the screw was suspected to have invaded the facet joint and<br />

two points were given when the screw had clearly invaded the facet<br />

joint. We evaluated both left and right sides and gave a total sum<br />

<strong>of</strong> the points. The demographics known to increase the risk <strong>of</strong> ASD<br />

were similar between the two groups. The average degree <strong>of</strong> facet<br />

joint invasion at the superior adjacent segment after transpedicular<br />

instrumentation was 1.8 for the ASD group. This was higher than<br />

the control group whose average was 1.1. The difference between the<br />

two groups was significant (p


and abnormal motion or mobile spondylolisthesis at any lumbar<br />

level (kappa


at last follow up, their lordosis at L4/5 at last follow up still was<br />

significantly different from their lordosis at L4/5 before surgery.<br />

Lumbar lordosis did not significantly change. Mean JOA score was<br />

13.4 before surgery and 24.5 at the last follow up; mean recovery<br />

ratio was 71.2%. Adjacent segment degeneration occurred in 40.5%<br />

<strong>of</strong> patients, almost all <strong>of</strong> which occurred in the cranial adjacent<br />

segment. Three patients (8.1%) required reoperation due to adjacent<br />

segment degeneration, at 76 months, on average, after their initial<br />

surgery. After PLIF at L4/5, 40.5% <strong>of</strong> subjects developed adjacent<br />

segment degeneration, and 8.1% required reoperation for it.<br />

pApeR No. 262<br />

Infection Rate with the Use <strong>of</strong> Antibiotics for 24 hours<br />

versus the Duration <strong>of</strong> a Drain<br />

Richelle C Takemoto, MD, New York, NY<br />

Justin J Park, MD, New York, NY<br />

Pedro Ricart H<strong>of</strong>fiz, MD, New York, NY<br />

Jeffrey Andrew Goldstein, MD, New York, NY<br />

Jeffrey M Spivak, MD, New York, NY<br />

Yong H Kim, MD, New York, NY<br />

John A Bendo, MD, New York, NY<br />

Thomas J Errico, MD, New York, NY<br />

Baron Lonner, MD, New York, NY<br />

There are no studies in the body <strong>of</strong> literature which have looked<br />

at the utilization <strong>of</strong> antibiotics for 24 hours when a drain is in<br />

place versus continuing the antibiotics for the entire duration that<br />

the drain is in place. Most <strong>of</strong> the literature has evaluated joint<br />

arthroplasty patients in terms <strong>of</strong> the use <strong>of</strong> drains and the duration<br />

<strong>of</strong> antibiotics. No study has evaluated these two variables together.<br />

A total <strong>of</strong> 199 patients who underwent multilevel thoracolumbar<br />

spine surgery requiring a post-operative drain were enrolled and<br />

randomized into two groups: one group receiving 24 hours <strong>of</strong><br />

perioperative antibiotics and one group receiving antibiotics for<br />

the duration that the drain was in place. Data collected included<br />

demographics, medical co-morbidities, type <strong>of</strong> spine surgery and<br />

surgical site infection. Six/110 (5.4%) in the 24 hours <strong>of</strong> antibiotic<br />

group developed a surgical site infection while 13/89 (14.6%) in the<br />

antibiotic for the duration <strong>of</strong> the drain were found to have a surgical<br />

site infection. The differences between each group were significant<br />

(p=0.029). There were no significant differences between the groups<br />

with respect to demographics, surgical time, type <strong>of</strong> surgery, drain<br />

output or length <strong>of</strong> stay. Continuing peri-operative antibiotics for<br />

the entire duration a drain is in place after spine surgery does not<br />

decrease the rate <strong>of</strong> surgical site infections.<br />

pApeR No. 263<br />

Obesity And Surgical Outcomes For Lumbar Spinal<br />

Canal Stenosis<br />

Toshihiko Sakakibara, MD<br />

Zhuo Wang, MD, Tsu, Japan<br />

Koji Akeda, MD, PhD, Tsu, Japan<br />

Akihiro Sudo, Pr<strong>of</strong>., Tsu, Japan<br />

Yuichi Kasai, MD, Mie Prefecture, Japan<br />

The purpose <strong>of</strong> this study is to determine the influence <strong>of</strong> body<br />

mass index (BMI) on outcomes <strong>of</strong> surgery for lumbar spinal canal<br />

stenosis. The subjects comprised 413 patients who had underwent<br />

posterolateral fusion in a single intervertebral disc space with spinal<br />

instrumentation using a pedicle screw and rod system. Obesity levels<br />

were classified into three groups according to BMI: > or = 35, severely<br />

obese group (n=41); 25 to


controversy remains as to whether this correlates with outcome after<br />

DLSS. Retrospective study <strong>of</strong> 36 patients, average age 74 years, who<br />

underwent DLSS under an orthopaedic spinal surgeon. The dural<br />

cross-sectional area (DCSA) was measured at the most stenotic disc<br />

level on MRI using digital imaging s<strong>of</strong>tware. Patients completed the<br />

Swiss Spinal Stenosis (SSS) score via telephone at a minimum <strong>of</strong> one<br />

year follow up. This simple, reproducible, internally consistent, valid<br />

and responsive outcome measure includes symptom severity, physical<br />

function and postoperative satisfaction scales, which are expressed as<br />

a score out <strong>of</strong> 100. Eight patients had mild/moderate stenosis (DCSA<br />

> 75 mm2), 28 patients had severe stenosis (DCSAd 75 mm2); 34<br />

patients (94%) reported an improvement in symptom severity (pain<br />

and neuroischaemic) with an average improvement <strong>of</strong> 19/100 (SSS).<br />

Thirty-five patients (97%) reported an improvement in pain with an<br />

average improvement <strong>of</strong> 29/100. Thirty patients (83%) reported an<br />

improvement in physical function with an average improvement <strong>of</strong><br />

19/100. Thirty-three patients (92%) were very satisfied, two patients<br />

were somewhat satisfied, one patient was somewhat dissatisfied.<br />

There was no statistically significant correlation (p


pApeR No. 268<br />

Is SubjectiveOutcome better and persistent with<br />

Microendoscopic Discectomy than Open Discectomy?<br />

Bhavuk Garg, MS Ortho<br />

Arvind Jayaswal, MS<br />

In the current prospective, randomized study, the subjective<br />

outcome <strong>of</strong> open discectomy procedure was compared with those<br />

<strong>of</strong> microendoscopic discectomy (MED) at various intervals <strong>of</strong> time.<br />

One hundred and twelve patients who had objective evidence <strong>of</strong> a<br />

single level, central or paracentral herniation <strong>of</strong> a lumbar disc caudal<br />

to the first lumbar vertebra were randomized into two groups; Group<br />

1 (55 patients) was managed with microendoscopic discectomy,<br />

and Group 2 (57 patients), with open (fenestration/ laminotomy)<br />

discectomy. Analysis <strong>of</strong> the outcomes <strong>of</strong> both procedures was based<br />

on the patient’s self-evaluation before and after the operation through<br />

Oswestry scoring, and the patient’s ability to return to a functional<br />

status. The patients were followed at one week, six weeks, six months<br />

and for a minimum <strong>of</strong> one year postoperatively and the results were<br />

statistically analyzed. On the basis <strong>of</strong> the patient’s preoperative and<br />

postoperative self-evaluation and the patient’s ability to return to<br />

work or to normal activity, 53 patients (96 percent) in Group 1 and<br />

54 patients (95 percent) in Group 2 were considered to have had a<br />

satisfactory outcome. The overall satisfaction score was statistically<br />

significantly higher after the endoscopic microdiscectomies than<br />

after the laminotomies and discectomies in immediate postoperative<br />

period (one and six weeks) as assessed through Oswestry scoring<br />

and became statistically insignificant at six months and one year.<br />

The data from this randomized, prospective study suggest that better<br />

subjective outcome with MED is more significant in first six weeks<br />

and become insignificant at six months and one year.<br />

pApeR No. 269<br />

Microsurgical Lumbar Laminoplasty: Bilateral Lumbar<br />

Microdecompression via Unilateral Laminotomy<br />

Amit Sharma, MD, New Orleans, LA<br />

Christopher Kepler, MD, Philadelphia, PA<br />

Joon-Hyung Kim, BS<br />

Russel C Huang, MD, New York, NY<br />

Laminectomy is the standard procedure for lumbar spinal canal<br />

decompression. Microsurgical lumbar laminoplasty (MLL) is<br />

a less disruptive technique for bilateral lumbar decompression<br />

via a unilateral laminotomy. During MLL, the spinous process,<br />

supra-spinous ligaments, contralateral paraspinal muscles and the<br />

majority <strong>of</strong> the lamina are preserved. The technique is intended to<br />

maximally preserve spinal stability while performing a complete<br />

decompression <strong>of</strong> the spinal canal and subarticular lateral recess.<br />

Ninety-seven patients underwent bilateral decompression <strong>of</strong> lumbar<br />

stenosis at 172 levels; L1-2 three, L2-3 26, L3-4 52, L4-5 72, L5-S1<br />

19 levels. All patients had symptomatic lumbar spinal canal stenosis<br />

and had failed conservative treatment. A unilateral laminotomy<br />

was used to decompress the central canal, ipsilateral and contralateral<br />

subarticular recess under microscope magnification. Perioperative<br />

data and complications were recorded. Spine outcome<br />

measures were recorded pre-operatively and at subsequent followups.<br />

Twelve patients had associated degenerative scoliosis, 43 had<br />

listhesis, four had adjacent level degeneration next to the previously<br />

instrumented fusion levels and 45 had associated disc herniation<br />

requiring microdiscectomy. There were 56 males and 41 females.<br />

Mean follow up was 6.0±4.6 months (6 weeks-17 months). The<br />

values for pre-operative and post-operative outcome scores are<br />

given in Table 1. Mean estimated blood loss was 182±131 cc. A<br />

total <strong>of</strong> 85% <strong>of</strong> patients had resolution <strong>of</strong> the leg pain, and 38%<br />

726<br />

<strong>of</strong> patients had improvement in back pain. Eighteen patients had<br />

simultaneous non-instrumented fusion and 13 had instrumented<br />

fusion. There were six dural tears, one post-operative epidural<br />

hematoma requiring surgical evacuation, two post-operative deep<br />

infections and three recurrent disc herniations requiring further<br />

decompression. MLL is a viable option for lumbar decompression,<br />

especially in patients with degenerative scoliosis and listhesis. The<br />

procedure is technically demanding, however, the complication rate<br />

is acceptably low. Posterior osseo-musculo-ligamentous structures<br />

are preserved relative to laminectomy.<br />

pApeR No. 270<br />

Epidural Steroid Injections Affect The Outcome Of<br />

Lumbar Disk Herniation. A SPORT Subgroup Analysis<br />

Kristen E Radcliff, MD, Margate City, NJ<br />

Alan S Hilibrand, MD, Philadelphia, PA<br />

Jeffrey Rihn, MD, Philadelphia, PA<br />

Wenyan Zhao, PhD, Hanover, NH<br />

Jon D Lurie, MD, Lebanon, NH<br />

Alexander Vaccaro, MD, PhD, Gladwyne, PA<br />

Tor Tosteson, ScD<br />

James N Weinstein, DO, MS, Lebanon, NH<br />

Todd J Albert, MD, Philadelphia, PA<br />

The purpose <strong>of</strong> this study was to determine whether epidural<br />

steroid injections (ESI) affect the outcome <strong>of</strong> treatment <strong>of</strong> lumbar<br />

disc herniation. The study population included patients enrolled in<br />

SPORT for treatment <strong>of</strong> lumbar disk herniation who received ESIs<br />

(non-ESI) compared to patients who did not receive ESIs (non-<br />

ESI) pre-enrollment or during treatment. There were 423 non-ESI<br />

patients and 769 ESI patients. At baseline, the patients who were<br />

treated with ESIs had an increased incidence <strong>of</strong> depression (14% vs.<br />

8%, p=0.002) and a lower percentage <strong>of</strong> patients with symptoms<br />

less than six months (76% vs. 82%, p=0.024). The ESI patient<br />

group had lower baseline SF36 BP, SF36 PF, SF36 MCS. There was<br />

an average 5.8 minute increased operative time in the ESI group<br />

(79 vs. 73.2, p=0.038). After adjustment for baseline differences,<br />

there was significantly less improvement in the surgically treated<br />

ESI patients compared to non-ESI patients in SF36 BP (48.2 vs.<br />

43.3, p


pApeR No. 436<br />

Assessment <strong>of</strong> Factors Predictive Of Post-Operative<br />

Infection in 941 Spinal Deformity Patients<br />

Baron Lonner, MD, New York, NY<br />

Kushagra Verma, MD, Philadelphia, PA<br />

Laura E Dean, Philadelphia, PA<br />

David Vecchione, MD, Miami, FL<br />

Antonio D C Valdevit, Hoboken, NJ<br />

Kathryn E Kean, BA<br />

Post-operative infection occurs following spinal surgery in 1 to<br />

15% <strong>of</strong> cases varying with patient factors and type <strong>of</strong> procedure<br />

performed. This study aimed to identify patient and surgery related<br />

factors associated with increased risk <strong>of</strong> infection from a single<br />

surgeon database. This was a retrospective review <strong>of</strong> 941 patient<br />

records from a single-surgeon database <strong>of</strong> deformity patients treated<br />

from 2000-07. Demographic (age, gender, body mass index (BMI),<br />

comorbidities), surgical (prior surgery, approach, type and number<br />

<strong>of</strong> procedures, etc.), radiographic and peri-operative complications<br />

were assessed. Infection was classified as deep, superficial or possible.<br />

Deep infection always required operative irrigation and debridement,<br />

while superficial infection was treated non-operatively. Patients<br />

restarted on antibiotics for wound drainage without fever, positive<br />

culture or abnormal laboratory values were categorized as a possible<br />

infection. There were 13 deep (1.4%) and 17 superficial infections<br />

(1.8%). Patients were treated with an anterior (n=193), posterior<br />

(n=590) or combined (n=140) approach with the following<br />

procedures: spinal fusion (n=873), growth rod distraction (n=23),<br />

revision (n=145), vertebral column resection (n=32) and osteotomy<br />

(n=162). Predictors <strong>of</strong> infection were: age, BMI, number <strong>of</strong> levels,<br />

Lenke 3-4, osteotomy and number <strong>of</strong> comorbidities (p


pApeR No. 439<br />

uRelating Current to Distance in the Detection <strong>of</strong><br />

Motor Nerves<br />

Stephen Bartol, MD, Detroit, MI<br />

Christopher D Wybo, MS, Royal Oak, MI<br />

The efficacy <strong>of</strong> stimulated electromyography (EMG) for locating nerves<br />

is based on the inferred relationship between the electrical signals<br />

and the distance from the stimulus source to the nerve. Detection <strong>of</strong><br />

EMG signals may vary however, with electrode placement, electrical<br />

contact and tissue conductivity and the source to nerve distance<br />

cannot be quantified. Mechanomyography (MMG) measures the<br />

mechanical response <strong>of</strong> muscle to stimulus and is not subject to<br />

variations in electrical signal conduction or signal detection. The<br />

purpose <strong>of</strong> this study was to quantify the acceleration <strong>of</strong> muscle<br />

contraction (MMG signal) in response to electrical stimulus and to<br />

determine its relationship to the distance from the stimulus source to<br />

the motor nerve. Custom mechanomyography accelerometer sensors<br />

were placed over the lower limbs <strong>of</strong> three anaesthetized sheep. The<br />

lumbar plexus was exposed by a direct lateral approach and a gauge<br />

used to fix the distance from a nerve to the stimulator probe. Three<br />

nerves were studied at eight distances: 0-6 mm and 10 mm. A 100 µs<br />

square-wave pulse was applied to each nerve at 2 Hz for 5 seconds<br />

using constant current. Current levels <strong>of</strong> 1-6 mA in 0.5 mA increments<br />

were studied and tests repeated three times in each animal for a total<br />

<strong>of</strong> 7,920 stimulation scenarios. MMG sensor signal was plotted as a<br />

function <strong>of</strong> stimulus current amplitude showing a direct relationship<br />

(R2 = 0.9747; range: 0.9169 - 0.9971). MMG signal was then plotted<br />

as a function <strong>of</strong> distance with resulting curves describing an inverse<br />

relationship between sensor signal and distance at each current level<br />

(R2 = 0.9965; range: 0.9518 to 0.9839). Our findings describe the<br />

relationship between MMG signals, the level <strong>of</strong> stimulation current<br />

and the distance from the stimulation source to the nerve. MMG<br />

signal responses vary directly with both stimulus amplitude and<br />

the distance from the stimulus probe to the nerve. With a known<br />

stimulus amplitude, the distance to the nerve can be inferred based<br />

on the measured MMG sensor signal response. MMG sensors using<br />

accelerometer technology are a sensitive indicator <strong>of</strong> distance to a<br />

nerve when the level <strong>of</strong> stimulating current is known. MMG is a<br />

reliable alternative to EMG based systems for locating, mapping and<br />

avoiding nerves in minimally invasive surgery and in other surgical<br />

procedures where the nerve cannot be directly visualized.<br />

pApeR No. 440<br />

Complication Rate in Spinal Cord Injury Patients After<br />

Scoliosis Correction Using Pedicle Screws<br />

Joseph John King, III MD, Philadelphia, PA<br />

Steven W Hwang, MD, Jamaica Plain, MA<br />

Anthony Fine, BS<br />

Christopher E Swanson, MD, Philadelphia, PA<br />

Roald Jon Llado, MD, Philadelphia, PA<br />

Jason Nydick, DO, TAMPA, FL<br />

Gbolabo Olabiyi Sokunbi, MD, Philadelphia, PA<br />

Patrick John Cahill, MD, Philadelphia, PA<br />

Amer Samdani, MD<br />

Few studies highlight the outcomes and complications <strong>of</strong> patients<br />

with spinal cord injury (SCI) patients undergoing posterior spinal<br />

fusion (PSF) to correct scoliosis. In most series, SCI patients make up<br />

a small percentage <strong>of</strong> patients and their outcomes are combined with<br />

other etiologies <strong>of</strong> neuromuscular scoliosis. This study evaluates the<br />

complications <strong>of</strong> spinal deformity surgery in patients with SCI using<br />

pedicle screws. A retrospective review was performed at a single<br />

728<br />

institution identifying all SCI patients that underwent PSF with<br />

primarily pedicle screw fixation for scoliosis between 2002-2009.<br />

Medical records were reviewed for demographic, operative and<br />

clinical information. Complications were as follows: intraoperative<br />

complications (new neurologic injury and dural tear), minor medical<br />

complications (decubitus ulcers and cardiovascular/respiratory<br />

complications), major medical complications (sepsis, ARDS and<br />

any medical complication necessitating a procedure), minor surgical<br />

complications (superficial wound complication and asymptomatic<br />

hardware failure) and major surgical complications (pseudoarthrosis,<br />

deep wound complication and progressive/ new deformity). Twentyeight<br />

patients (19 male, nine female) were identified with an average<br />

age at SCI <strong>of</strong> 7.9 years with 43% <strong>of</strong> injuries involving a motor vehicle<br />

accident. Average age at surgery was 15.4 years (range 10-20 years)<br />

with an average <strong>of</strong> 16 levels fused (range 6-18). Eighty-nine percent<br />

underwent a fusion to the pelvis and 7% were two-stage surgeries.<br />

Average surgical time was 520 minutes (335-735 minutes). Average<br />

estimated blood loss was 2813 mL (range 1-10L). Mean preoperative<br />

Cobb angle was 54 degrees, with the most recent Cobb angle being<br />

18 degrees for a 70% correction. Mean follow-up was 2.4 years<br />

(range six months to 5.9 years). Overall, 46% <strong>of</strong> patients experienced<br />

a perioperative complication (19 complications in 13 patients).<br />

Intraoperative complication rate was 11% (three complications<br />

in three patients) which included dural tear in two patients (7%)<br />

and optic nerve injury in one. No new spinal neurologic changes<br />

occurred. Five patients (18%) had minor medical complications.<br />

Four patients (14%) had major medical complications with the<br />

most common being a new pressure ulcer (two patients). Minor<br />

surgical complication rate was 14% (four patients) with the most<br />

common being superficial wound complications (three patients).<br />

Major surgical complication rate was 18% (six complications in<br />

five patients) with deep wound infection being the most common<br />

(four patients, 14%). Five major operations relating to the PSF were<br />

performed on four patients (14%). Correction <strong>of</strong> scoliotic deformity<br />

by PSF in spinal cord injury patients carries a high complication rate.<br />

However, the majority <strong>of</strong> complications are easily managed and do<br />

not require prolonged treatment. Patients and surgeons should be<br />

aware <strong>of</strong> these potential complications so a risk benefit analysis can<br />

be performed prior to surgical intervention.<br />

pApeR No. 441<br />

Upper fusion level in Adult Spinal Deformity:<br />

Effectiveness <strong>of</strong> Classification in guiding treatment<br />

Frank J Schwab, MD, New York, NY<br />

Jean-Pierre C Farcy, MD, New York, NY<br />

Virginia Lafage, New York, NY<br />

Ashish Patel, MD, Brooklyn, NY<br />

Steven D Glassman, MD, Louisville, KY<br />

Keith H Bridwell, MD, Saint Louis, MO<br />

Adult spinal deformity (ASD) is complex due to the range <strong>of</strong><br />

deformity patterns and clinical presentation. The ASD Classification<br />

(Schwab, et al.) permits a relevant description <strong>of</strong> patients based upon<br />

health related quality <strong>of</strong> life measures, but outcomes based upon<br />

fusion level (upper instrumented vertebra: UIV) by classification<br />

has not been reported. The purpose was to determine if the ASD<br />

Classification is effective in guiding selection <strong>of</strong> the UIV. This is a<br />

retrospective review <strong>of</strong> a multicenter ASD prospective database. The<br />

study included 1,071 patients, 166 male and 903 female, (mean<br />

age 59.6yo, SD=12) with minimum one-year follow up. Inclusion<br />

criteria were long fusion with lower instrumented level <strong>of</strong> L5 or S1<br />

and UIV <strong>of</strong> L1 or above. Patients were classified according to: ASD<br />

Classification, UIV and outcomes measures. An analysis <strong>of</strong> variance<br />

was applied to detect differences between groups based upon<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


outcomes changes for the following UIV groups: T1-3, T4-6, T9-11,<br />

T12-L1. Distribution by UIV was: T1-3 n=206, T4-6 n=242, T9-11<br />

n=466, T12-L1 n=157. No significant difference was noted in terms<br />

<strong>of</strong> global balance or lumbar lordosis modifiers across UIV groups. By<br />

SF-12, SRS pain and SRS activity scores, the T1-3 UIV demonstrated<br />

the least improvement. By SRS mental score, T12-L1 UIV had greater<br />

improvement than T1-3 and T9-11 groups. For patients with marked<br />

sagittal malalignment, T4-6 UIV showed greater improvement than<br />

other UIV groups. The T9-11 UIV group never outperformed all other<br />

UIV groups for any <strong>of</strong> the classification categories. In this large multicenter<br />

prospective study, the application <strong>of</strong> the ASD Classification<br />

demonstrates significant differences in health-related quality <strong>of</strong> life<br />

outcomes by proximal fusion level for long fusions. These findings<br />

lay an important foundation for the development <strong>of</strong> treatment<br />

algorithms for surgical planning.<br />

pApeR No. 442<br />

Optimal Lowest Instrumented Vertebra for Thoracic<br />

Adolescent Idiopathic Scoliosis<br />

Yongjung J Kim, MD, New York, NY<br />

Lawrence G Lenke, MD, Saint Louis, MO<br />

Keith H Bridwell, MD, Saint Louis, MO<br />

Oheneba Boachie-Adjei, MD, New York, NY<br />

Jean-Luc Clement, MD, Nice, France<br />

Samuel Kang-Wook Cho, MD, Palisades Park, NJ<br />

Charla R Fischer, MD, New York, NY<br />

The purpose <strong>of</strong> this study is to determine the optimal lowest<br />

instrumented vertebra (LIV) without adding on or distal junctional<br />

kyphosis following posterior segmental spinal instrumented fusion<br />

(PSSIF) <strong>of</strong> thoracic adolescent idiopathic scoliosis (AIS) with lowest<br />

instrumented vertebra at L2 or above. A radiographic assessment <strong>of</strong><br />

521 thoracic major AIS patients (average 14.7 years) who underwent<br />

PSSIF with a minimum two-year follow up (average 4.1 years, range<br />

2-16.7 years) was performed. Adding-on (AO) was defined as the<br />

distance from the center <strong>of</strong> the lowest instrumented vertebra to the<br />

center sacral vertical line >3 cm or coronal disc angle below the lowest<br />

instrumented vertebra >10 degree and distal junctional kyphosis<br />

(DJK) was defined as sagittal disc angle below lowest instrumented<br />

vertebra > 10 degree at the ultimate follow up. The prevalence <strong>of</strong><br />

AO or DJK at the ultimate follow up was 14% (72/521). Stable LIV<br />

(center sacral line (CSL) between medial walls <strong>of</strong> the LIV pedicles)<br />

had 9% (27/285), Stable-1 LIV (between Stable +1 and +3) 15%<br />

(28/192) and Stable-2 LIV (No touch <strong>of</strong> LIV by CSL) 19% (17/44,<br />

p=0.000). Open triradiate cartilage had 43% (6/14 vs. closed one<br />

13%, p=0.001). Neutral LIV had 11% (42/376), Neutral-1 (one<br />

vertebra proximal to NV) 15% (8/55) and Neutral-2 (at least two<br />

verteba proximal to NV) 24% (22/90, p=0.000). The prevalence <strong>of</strong><br />

AO or PJK at the ultimate follow up following posterior segmental<br />

spinal instrumented fusion <strong>of</strong> AIS with lowest instrumented vertebra<br />

at L2 or above was 14%. Open triradiate cartilage, less touching <strong>of</strong><br />

LIV by CSL and more proximal to NV were identified as risk factors.<br />

729<br />

pApeR No. 443<br />

The Biomechanical Consequences <strong>of</strong> Rod Reduction on<br />

Pedicle Screws: Should it be Avoided?<br />

Haines Paik, MD, Fairfax, VA<br />

Anton E Dmitriev, Washington, DC<br />

Ronald Arthur Lehman, MD, Potomac, MD<br />

Rachel E Gaume, BS<br />

Divya Ambati, A, Fairfax, VA<br />

Rod contouring is frequently required to allow for appropriate<br />

alignment <strong>of</strong> pedicle screw-rod constructs. When residual mismatch<br />

is still present, a rod persuasion device is <strong>of</strong>ten utilized to achieve<br />

further rod reduction. Despite its popularity and widespread use,<br />

the biomechanical consequences <strong>of</strong> this technique have not been<br />

evaluated. Fifteen three-level, human cadaveric thoracic specimens<br />

were prepared and DEXA scanned. Osteoporotic (n=6) and normal<br />

(n=9) specimens were instrumented with 5.0 mm diameter pedicle<br />

screws with variable lengths (35-45 mm). Titanium 5.0 mm rods<br />

were contoured and secured to the pedicle screws at the proximal<br />

and distal levels. For the middle segment, the rod on the right side<br />

was intentionally contoured to create a 5 mm residual gap between<br />

the inner bushing <strong>of</strong> the pedicle screw and the rod (Figure 1). A<br />

rod persuasion device was then utilized to engage the set screw. The<br />

left side served as control with perfect screw/rod alignment. After<br />

30 minutes, constructs were disassembled and vertebrae individually<br />

potted. The implants were pulled in-line with the screw axis with<br />

peak POS measured in Newtons (N). For the proximal and distal<br />

segments, pedicle screws on the right side were taken out and reinserted<br />

through the same trajectory to simulate screw depth<br />

adjustment as an alternative to rod reduction. Pedicle screws reduced<br />

to the rod generated a 48% lower mean POS (495±379N) relative to<br />

the controls (954±237N) (p=0.00). Nearly half (n=7) <strong>of</strong> the pedicle<br />

screws had failed during the reduction attempt with visible pull-out<br />

<strong>of</strong> the screw. Following reduction, decreased POS was observed in<br />

both normal (p=0.02) and osteoporotic bone (p


specimens received a C7 osteotomy, seven with OWO and seven with<br />

PSO. All 14 specimens also were tested with Ti 3.5 mm and 4.5 mm<br />

spinal rods. Non-destructive pure moment flexion/extension (FE),<br />

lateral bending (LB) and axial rotation (AR) tests were conducted<br />

to 4.5 Nm. 3D motion tracking was used to monitor primary range<strong>of</strong>-motion<br />

across the entire fixation site (C4-T3) and the osteotomy<br />

(C6-T1). Independent <strong>of</strong> osteotomy type, the 4.5 mm rods exhibited<br />

a significant increase in stiffness compared to the 3.5 mm rods in<br />

all bending modes (p


fusion levels utilizing the PA and lateral radiographs. They were then<br />

shown the corresponding bend films and asked to again select fusion<br />

levels. The responses were evaluated to quantify changes in the<br />

decision making for fusion level selection. Average change in fusion<br />

level was 20% <strong>of</strong> cases (range: 6% to 40%). In eight, the change<br />

was to selective fusion compared with two that became non-selective<br />

fusions. Most adjustments were at the lowest instrumented vertebra<br />

(LIV) compared to upper instrumented vertebra (UIV), 51 vs. 12. A<br />

total <strong>of</strong> 40% <strong>of</strong> LIV changes were between L3 and L4. Bend films<br />

resulted in fewer fusion levels in 80% <strong>of</strong> cases, saving on average 1.4<br />

levels. Bending films for operative AIS patients with moderate curves<br />

appear to influence decision making in one <strong>of</strong> five cases. Depending<br />

on experience and undefined individual criteria for fusion level<br />

selection, this study suggests radiation exposure may be minimized<br />

by eliminating one <strong>of</strong> the bends and only keeping the appropriate<br />

bend for determining the caudal fusion level when in doubt.<br />

pApeR No. 448<br />

A Genome Wide Association Study Identifies IL17RC as<br />

an Adolescent Idiopathic Scoliosis Locus<br />

John P Dormans, MD, Philadelphia, PA<br />

Struan F Grant, PhD<br />

Norma Rendon, Philadelphia, PA<br />

Haitao Zhang, PhD, Hatfield, MD<br />

Frank D Mentch, MS<br />

Cecilia E Kim, BA<br />

Rosetta M Chiavacci, BSN, Philadelphia, PA<br />

Hakon Hakonarson, MD, PhD<br />

There is strong evidence for a genetic component to idiopathic<br />

scoliosis. Classical candidate gene studies have only achieved limited<br />

success in identifying genetic determinants <strong>of</strong> idiopathic scoliosis.<br />

Genome wide association studies (GWAS) have been revolutionizing<br />

the field <strong>of</strong> complex disease in the last five years, revealing multiple<br />

novel loci underpinning common disorders, including diabetes,<br />

asthma and autism. To date, no GWAS has been reported for<br />

scoliosis. We therefore elected to perform a GWAS <strong>of</strong> adolescent<br />

idiopathic scoliosis (AIS) on subjects recruited from the Department<br />

<strong>of</strong> Orthopedic Surgery at the Children’s Hospital <strong>of</strong> Philadelphia.<br />

We genotyped ~550,000 single nucleotide polymorphisms (SNPs)<br />

with the Illumina Human Hap550 Genotyping BeadChip on our<br />

study population <strong>of</strong> 137 adolescent idiopathic scoliosis cases <strong>of</strong><br />

European ancestry and 2,126 controls. Following adjustment for<br />

local ancestry, four SNPs on chromosome 3p25.3 reached the strict<br />

threshold for genome wide statistical significance. The top signal at<br />

this locus, rs708567, is a common missense mutation (S111L) within<br />

the “interleukin 17 receptor C” (IL17RC) gene (P=1.18x10-9). The<br />

risk associated allele C confers an odds ratio <strong>of</strong> 2.28 i.e. more than<br />

doubles the risk <strong>of</strong> presenting with AIS. A GWAS has identified an<br />

IL17RC missense mutation (S111L) as an AIS locus. Efforts are now<br />

underway to replicate this association further, test it for association<br />

in additional sub-forms <strong>of</strong> idiopathic scoliosis and to test its<br />

functional role in the pathogenesis <strong>of</strong> the trait. This finding presents<br />

the potential opportunity for diagnostic applications and for novel<br />

therapeutic intervention for AIS.<br />

731<br />

pApeR No. 449<br />

Posterior Only Vertebral Column Resection vs. Anterior/<br />

Posterior Vertebrectomy in Spinal Deformity<br />

Joshua Pahys, MD, Philadelphia, PA<br />

Lawrence G Lenke, MD, Saint Louis, MO<br />

Keith H Bridwell, MD, Saint Louis, MO<br />

Samuel Kang-Wook Cho, MD, Palisades Park, NJ<br />

Lukas P. Zebala, MD, Saint Louis, MO<br />

Matthew M Kang, MD<br />

Woojin Cho, MD, Charlottesville, VA<br />

Linda A Koester<br />

Posterior only vertebral column resection (VCR) is an alternative to<br />

combined anterior/posterior vertebrectomy (A/P-V) for the treatment<br />

<strong>of</strong> severe spinal deformity. We examined a matched cohort <strong>of</strong><br />

patients with severe scoliosis and/or kyphosis, with a minimum two<br />

year follow up, treated by posterior only VCR vs. A/P-V. The surgical<br />

databases <strong>of</strong> two spine surgeons at one institution from 1994-<br />

2007 were reviewed. Patients were matched based on age at surgery<br />

(within 10 years), diagnosis, curve pattern, vertebra(e) resected<br />

(within one), levels fused (within five) and minimum two year<br />

follow up. A total <strong>of</strong> 34 VCR patients were identified that matched<br />

to 34 A/P-V patients. Comparing VCR vs. A/P-V groups: mean age at<br />

surgery: 22.3yrs/23.0yrs (p=0.89); vertebrae resected: 1.6/1.6; levels<br />

fused: 11.6/10.4 (p=0.27); average preop coronal Cobb: 71.9°/65.3°<br />

(p=0.52); average preop sagittal Cobb: 95.5°/75.7° (p=0.026). Final<br />

coronal Cobb correction for VCR vs. A/P-V groups were similar:<br />

(p=0.8), while VCR final sagittal Cobb correction was superior:<br />

53.0% vs. 40.0% (p=0.017). Total estimated blood loss was lower<br />

on average in the VCR group, 1,237 mL vs. 1,435 mL, although not<br />

statistically significant (p=0.5). The VCR group had a significantly<br />

shorter total operating room time: 534 min vs. 662 min (p=0.004)<br />

and total length <strong>of</strong> stay 9.9 vs. 21.0 days (p=0.004). Complications<br />

for VCR vs. A/P-V groups included: wound infections 2.9% vs. 8.8%<br />

(p=0.31); subsequent revision surgery, 2.9% vs. 8.8% (p=0.31); and<br />

transient motor deficits, 2.9% vs. 5.9% (p=0.49), respectively. There<br />

were no permanent neurologic deficits for VCR, and one permanent<br />

foot drop for A/P-V (p=0.5). Total SRS scores improved from preop<br />

to final follow up for VCR, (p=0.007), compared to A/P-V, (p=0.07).<br />

As compared to an A/P vertebrectomy for severe spinal deformity, a<br />

posterior VCR demonstrated shorter operative time and hospital stay,<br />

as well as improved sagittal correction and SRS scores at a minimum<br />

two year follow up.<br />

pApeR No. 450<br />

Is Thoracolumbar Scoliosis Associated With<br />

Obstructive Lung Disease?<br />

Viral Jain, MD, Cincinnati, OH<br />

Gary L McPhail, MD<br />

Robert E. Wood, MD<br />

R Paul Boesch, MD, Cincinnati, OH<br />

Steven Agabegi, MD, Cincinnati, OH<br />

Eric Wall, MD, Cincinnati, OH<br />

Alvin Howell Crawford, MD, Cincinnati, OH<br />

It is well known that restrictive lung disease can be associated<br />

with severe scoliosis. This study identifies that obstructive lung<br />

disease (OLD), in which a patient cannot exhale gas quickly from<br />

the airways, is commonly associated with scoliosis. We queried<br />

a pulmonary database for children with scoliosis who underwent<br />

pulmonary function testing (PFT) from 2005-2009. Patients with<br />

congenital, idiopathic or syndromic thoracolumbar scoliosis with a<br />

Cobb angle <strong>of</strong> > 40 degrees were included. Patients with other causes<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


<strong>of</strong> OLD such as asthma and cystic fibrosis were excluded. OLD was<br />

defined per the <strong>American</strong> Thoracic Society criteria with FEV1/FVC<br />

ratio below the 95% confidence interval as compared to standard<br />

reference values. The reference population was used as a control group<br />

and neuromuscular scoliosis patients were used as a case-control<br />

group. A total <strong>of</strong> 222 scoliosis patients met inclusion criteria. The<br />

median Cobb angle was 50 degrees (range 40-146). The prevalence<br />

<strong>of</strong> obstructive lung disease in scoliosis patients was 37.2% (83/222).<br />

The odds ratios for OLD in cases versus the reference population<br />

was 23.3 and versus case-controls was 11.3. There is a statistically<br />

significant difference when comparing cases (83/222 cases have<br />

OLD) vs. control reference population (250/10,000 pts with OLD);<br />

the odds ratio is 23.3 with a 95% CI (confidence interval) <strong>of</strong> 17.2612<br />

to 31.4186. One-third <strong>of</strong> scoliosis patients with thoracolumbar<br />

scoliosis and a Cobb angle <strong>of</strong> > 40 degrees have obstructive lung<br />

disease. It is possible that scoliosis, particularly compression <strong>of</strong> a<br />

mainstem bronchus by a thoracic spinal deformity, may be a cause<br />

<strong>of</strong> this obstruction.<br />

pApeR No. 661<br />

urhBMP-2 versus Iliac Crest Bone Graft in Upper<br />

Thoracic to Sacrum Fusion in Adult Spinal Deformity<br />

Lukas P. Zebala, MD, Saint Louis, MO<br />

Jacob M Buchowski, MD, Saint Louis, MO<br />

Keith H Bridwell, MD, Saint Louis, MO<br />

Matthew M Kang, MD<br />

Joshua Pahys, MD, Philadelphia, PA<br />

Woojin Cho, MD, Charlottesville, VA<br />

Christine Baldus, MD, Saint Louis, MO<br />

A prior study showed bone morphogenetic protein (BMP) to have<br />

similar outcomes and pseudarthrosis to iliac crest bone graft (ICBG)<br />

in thoracic (30% at T2-T5) to sacrum fusion. This study reports<br />

outcomes <strong>of</strong> BMP versus ICBG in upper thoracic (T2-T5) to sacrum<br />

fusion in primary adult spinal surgery. Inclusion criteria for BMP<br />

group was minimum 5 mg BMP and 1.7 fixation points/level.<br />

Nineteen consecutive BMP (2003-2007) and 16 consecutive ICBG<br />

(no BMP) patients (1995-2002) with surgery at one hospital are<br />

included. Average follow-up was 2.7 years (range, 2-3.9 yrs) in BMP<br />

and 7.6 years (range, 3.5-11.5 yrs) in ICBG groups. Pseudarthrosis<br />

was diagnosed as rod breakage, screw loosening or implant pullout.<br />

Groups were similar at preop in gender (all F), smokers, body mass<br />

index (26 vs. 26, p=0.9) and major curve Cobb (MCC, 59° vs. 61°,<br />

p=0.8). BMP group was older than ICBG (62 vs. 52 yrs, p=0.001)<br />

group. Sixteen ICBG patients had more anterior fusions (average<br />

six levels) than 19 BMP patients (average one level, p


hBMP-7 was associated with a smaller inflammatory volume than<br />

rhBMP-2 was at each dose, the only statistically significant difference<br />

was seen in the 20 µg treatment group. In the 20 µg treatment group,<br />

rhBMP-7 was found to be associated with a significantly smaller<br />

granuloma mass and inflammatory zone area. Both rhBMP-2 and<br />

-7 trigger dose-dependent inflammatory reactions. Compared<br />

to rhBMP-2, rhBMP-7 is associated with smaller inflammatory<br />

volumes; however, this difference was only significant in the highestdose<br />

treatment group (20 µg).<br />

pApeR No. 664<br />

Effect <strong>of</strong> Platelet-rich Plasma-Serum on the<br />

Intervertebral Disc Degeneration: A Preclinical Study<br />

Koji Akeda, MD, PhD, Tsu, Japan<br />

Shuji Obata, MD<br />

Koichi Masuda, MD, La Jolla, CA<br />

Ryo Morimoto, MD<br />

Yumiko Asanuma, MD, PhD, Tsu, Japan<br />

Yuichi Kasai, MD, Mie Prefecture, Japan<br />

Akihiro Sudo, Pr<strong>of</strong>., Tsu, Japan<br />

Platelet-rich plasma (PRP) has been clinically used as an autologous<br />

source <strong>of</strong> growth factors for tissue regeneration. The purpose <strong>of</strong> this<br />

study was to determine the effects <strong>of</strong> the serum isolated from PRP<br />

(PRP-serum) on the progression <strong>of</strong> disc degeneration in the rabbit<br />

anular needle puncture model. Twelve New Zealand white rabbits<br />

received an anular puncture in two noncontiguous discs to induce<br />

disc degeneration. Fresh blood was drawn to isolate autologous<br />

PRP. PRP and PPP (platelet-poor plasma) were prepared using two<br />

centrifugation techniques. After clot formation by adding autologous<br />

serum, the PRP- and PPP-serum was isolated from the clotted<br />

PRP and PPP by centrifugation. Four weeks after the surgery, PBS,<br />

PPP- or PRP-serum was injected into the punctured discs. Lateral<br />

X-rays <strong>of</strong> the lumbar spine were taken every two weeks. MRI (T2quantification)<br />

and histological analyses were performed 12 weeks<br />

after the initial puncture. The anular puncture induced a consistent<br />

disc narrowing within four weeks. PRP-serum induced a statistically<br />

significant restoration <strong>of</strong> disc height (PRP vs. PPP and PBS, p


integrity or ASIA score. There were 32 patients with >20 degrees<br />

kyphosis and 14 patients with or < 20° kyphosis, there was no difference in PLC<br />

integrity or ASIA score. The results <strong>of</strong> this study indicate that 50%<br />

LOVBH or kyphosis >20° are not predictive <strong>of</strong> ligamentous injury in<br />

thoracolumbar burst fractures and are therefore <strong>of</strong> little importance<br />

in clinical decision making. The posterior ligamentous complex<br />

and neural elements should be directly assessed with MRI if there is<br />

clinical concern.<br />

pApeR No. 667<br />

Robotic Guided Vertebral Cement Augmentation:<br />

A Major Radiation Reduction Tool<br />

Yair Barzilay, MD, Jerusalem, Israel<br />

Joshua Schroeder, MD<br />

Amir Hasharoni, MD, Tel-Aviv, Israel<br />

Meir Liebergall, MD, Jerusalem, Israel<br />

Leon Kaplan, MD, Jerusalem, Israel<br />

The risk <strong>of</strong> radiation induced cancer among orthopedic and spine<br />

surgeons is up to five times the risk <strong>of</strong> the general population.<br />

The risk <strong>of</strong> developing breast cancer is three fold higher in female<br />

orthopedic surgeons. According to the literature, one level vertebral<br />

augmentation is associated with a minimum <strong>of</strong> 180 seconds <strong>of</strong><br />

radiation exposure in free hand technique and a minimum <strong>of</strong> 90<br />

seconds with navigation systems. This study reports the radiation<br />

measurements in robotic-assisted vertebral augmentation. Fortysix<br />

vertebral augmentations (one to five levels) were performed<br />

in 27 patients. Average age was 67 (29-92), 21 females and six<br />

males. Twenty <strong>of</strong> the fractures were osteoporotic, seven pathologic.<br />

Augmentation (Jamshidi) needles insertion to the vertebrae was<br />

robotically guided. Pulsed fluoroscopy monitored every 0.25 cc<br />

<strong>of</strong> cement injected. In multiple level augmentation, two surgeons<br />

injected cement into adjacent vertebrae with simulations fluoroscopy<br />

control. Data collection included procedure, robotic and radiation<br />

time measurements. Mean procedure time was 119 minutes (49-<br />

350). Robotic guidance required 37 minutes on average (10-93).<br />

Mean total radiation time per level (required for registration, needle<br />

insertion and augmentation) was 46.1 seconds (patient’s exposure);<br />

while mean needle positioning and augmentation related radiation<br />

time per level was 37.8 seconds (operating room (OR) staff<br />

exposure). Robotic guided vertebral augmentation, the use <strong>of</strong> pulsed<br />

fluoroscopy and simultaneous cementation <strong>of</strong> two vertebrae by two<br />

surgeons reduces the radiation exposure <strong>of</strong> patients, surgeons and<br />

OR staff by 60% compared to reports in the literature.<br />

pApeR No. 668<br />

Percutaneous Short Segment Spinal Instrumentation in<br />

One-Level Unstable Burst Fractures<br />

K Samer F Shamieh, MD, Shreveport, LA<br />

Patrick Allen Massey, MD, Shreveport, LA<br />

Gabriel James Hommel, MD, Columbus, GA<br />

Debi P Mukherjee, Sc.D, Shreveport, LA<br />

Richard Evan McCall, MD, Shreveport, LA<br />

Minimally invasive spine surgery with short-segment instrumentation<br />

has recently been advocated for the treatment <strong>of</strong> traumatic one-level<br />

unstable thoracolumbar burst fractures. A retrospective three-month<br />

evaluation <strong>of</strong> patients treated with percutaneous instrumentation<br />

without fusion was done. From 2008-2009, 18 consecutive patients<br />

were treated with short segment (one level cephalad and one level<br />

caudad) percutaneous polyaxial pedicle screws without fusion. All<br />

patients sustaining traumatic one-level thoracolumbar unstable<br />

734<br />

burst fractures without neurologic injury were included in the study<br />

following the criteria <strong>of</strong> thoracolumbar injury classification score.<br />

Radiographic outcomes were assessed on the basis <strong>of</strong> change in<br />

angulation and change in vertebral body height after three months.<br />

There was no significant difference in vertebral height (mm) between<br />

the injury measurements and the immediate post-surgical CT<br />

measurements (21.4±6.0 vs. 22.8 ± 4.7, p = 0.05). However, vertebral<br />

heights after three months (30.9 ± 5.2) were significantly different<br />

between the post injury (21.4 ± 6.0) and post op values (22.8 ± 4,7).<br />

No statistically significant difference in radiographic outcomes was<br />

noted between the injury kyphotic angulation (9.7±6.9 vs. 8.5±5.0<br />

p = 0.54) and vertebral body height loss (71.9± 16.9 vs. 74.0± 14.3<br />

p = 0.69) when compared to three months postoperatively. Short<br />

segment fixation in unstable one-level thoracolumbar fractures<br />

corrected vertebral body height immediately after surgery. However,<br />

the three-month data showed that this construct was unable to<br />

maintain sagittal balance (vertebral height). It appeared that the<br />

constructs failed at the polyaxial screw-saddle interface as evidenced<br />

by the unaltered position <strong>of</strong> the screw in bone.<br />

pApeR No. 669<br />

The Effect <strong>of</strong> Pedicle Screw Countersinking on Pull-Out<br />

Resistance in the Thoracic Spine<br />

Haines Paik, MD, Fairfax, VA<br />

Anton E Dmitriev, Washington, DC<br />

Ronald Arthur Lehman, MD, Potomac, MD<br />

Rachel E Gaume, BS<br />

Divya Ambati, A, Fairfax, VA<br />

Daniel Kang, MD, Chevy Chase, MD<br />

The biomechanical fixation strength afforded by pedicle screws has<br />

been strongly correlated with bone mineral density (BMD). It has<br />

been postulated in the osteoporotic spine, that countersinking, or<br />

‘hubbing,’ the head <strong>of</strong> the pedicle screw against the dorsal cortex<br />

provides a load-sharing effect thereby limiting cephalocaudad<br />

toggling and improving the pull-out resistance <strong>of</strong> the pedicle screw.<br />

Twenty-two human cadaveric thoracic vertebrae were acquired and<br />

DEXA scanned. Osteoporotic (n=16) and normal (n=6) specimens<br />

were instrumented with a 5.0 x 35 mm pedicle screw on one side in a<br />

standard fashion. In the contralateral pedicle 5.0 x 30 mm screw was<br />

inserted with countersinking <strong>of</strong> the screw into the dorsal lamina. A<br />

difference in screw length was utilized to achieve equivalent depth/<br />

chordlength. Following 2,000 cycles <strong>of</strong> cephalocaudad toggling<br />

screws were pulled out with the tensile force oriented in-line with<br />

the midline <strong>of</strong> the spine and peak POS measured in newtons (N).<br />

‘Hubbed’ screws resulted in significantly lower POS (290.5±142.4<br />

N) compared to standard pedicle screws (511.5±242.8N)(p=0.00).<br />

This finding was evident in both normal and osteoporotic vertebrae<br />

based on independent subgroup post hoc analyses (p


pApeR No. 670<br />

uThe Effects <strong>of</strong> Cement Augmentation Technique and<br />

Volume on Pedicle Screw Fixation in Osteopenic Bone<br />

Todd Joseph Lansford, MD, Kansas City, KS<br />

Terence McIff, PhD, Kansas City, KS<br />

Douglas C Burton, MD, Kansas City, KS<br />

Cement augmentation <strong>of</strong> pedicle screws improves fixation in<br />

osteopenic spines. To avoid complications <strong>of</strong> cement extravasation<br />

during open pedicle injection and the difficulty <strong>of</strong> extracting<br />

fenestrated screws, a novel fenestrated tap (NFT) was created, which<br />

leaves a threaded cement track upon removal. This cemented tract<br />

allows the insertion <strong>of</strong> a standard pedicle screw into the augmented<br />

vertebral body. The NFT was fabricated by drilling fenestrations in the<br />

distal one-third <strong>of</strong> standard pedicle screws. Vertebral augmentation<br />

involved placement <strong>of</strong> the NFT and injection <strong>of</strong> either 2 ml or 3 ml<br />

<strong>of</strong> polymethylmethacrylate bone cement (PMMA). Prior to cement<br />

hardening, the NFT was removed and replaced with a standard<br />

pedicle screw. On the contralateral side, open injection technique<br />

was utilized. The screws in 21 osteopenic lumbar vertebral bodies<br />

were subjected to cephalocaudal toggling. The torque required<br />

for the removal <strong>of</strong> screws was completed on an additional eight.<br />

Visualization <strong>of</strong> cement extravastion into the pedicle was noted.<br />

There was a significant 51% greater resistance to toggle (p


pApeR No. 673<br />

Hedgehog Signaling and BMP2-induced Osteogenic<br />

Differentiation In Vitro and Spine Fusion In Vivo<br />

Jared Johnson, MD, Los Angeles, CA<br />

Jeong-hyun Yoo, MD, PhD, Koyang, Kyunggi, Republic <strong>of</strong> Korea<br />

Vicente Meliton, MS<br />

Woo Kim, PhD<br />

Jeffrey C Wang, MD, Santa Monica, CA<br />

Renata Pereira, PhD<br />

Theodore J Hahn, MD<br />

Farhad Parhami, PhD<br />

We examined the effect <strong>of</strong> cyclopamine (Cyc), a specific Hedgehog<br />

(Hh) signaling inhibitor, on BMP2-induced osteogenic differentiation<br />

<strong>of</strong> bone marrow stromal cells (MSC) in vitro, and BMP2-mediated<br />

bone formation and spinal fusion in rats in vivo. M2-10B4 MSC cells<br />

were treated with control vehicle or 50 ng/mL BMP2 with or without<br />

2 ¼M cyclopamine. Twenty-six Lewis rats were divided into four<br />

groups and underwent posterolateral intertransverse process spinal<br />

fusion with implantation <strong>of</strong> a collagen sponge carrier containing<br />

control vehicle, 5¼g BMP2, 5¼g BMP2 + 2 mg Cyc or Cyc alone. Bone<br />

formation and fusion was assessed by radiograph, manual palpation<br />

<strong>of</strong> excised spines, Micro CT and histology. Cyc significantly inhibited<br />

BMP2-induced mRNA expression <strong>of</strong> the osteogenic differentiation<br />

markers osterix, alkaline phosphatase (ALP) and bone sialoprotein,<br />

as well as ALP activity, suggesting a role for basal Hh signaling in<br />

BMP2-induced osteogenic differentiation <strong>of</strong> MSC. In vivo, no fusions<br />

or new bone formation were found in control or Cyc treated rats. All<br />

specimens from BMP2 treated rats demonstrated complete fusion<br />

with robust bone formation. Bone formation in rats that received<br />

BMP2+Cyc, although greater than that seen in control or Cyc treated<br />

animals, was significantly inhibited when compared to BMP2<br />

treated rats, with none <strong>of</strong> the specimens showing complete fusion.<br />

Hh and BMP signaling are important for osteoblast generation and<br />

bone formation. However, the role <strong>of</strong> basal Hh signaling in BMPinduced<br />

osteogenic differentiation has not been defined. These<br />

findings suggest an important role <strong>of</strong> Hh signaling in BMP2-induced<br />

osteogenesis in vitro and in vivo.<br />

pApeR No. 674<br />

uOsteogenic Differentiation In vitro And Spinal Fusion<br />

In vivo Induced By Novel Oxysterol Molecules<br />

Jared Johnson, MD, Los Angeles, CA<br />

Vicente Meliton, MS<br />

Jeffrey C Wang, MD, Santa Monica, CA<br />

Michael Jung, PhD<br />

Sotirios Tetradis, PhD, DDS<br />

Theodore J Hahn, MD<br />

Francine Farouz, PhD<br />

Scott Thies, PhD<br />

Farhad Parhami, PhD<br />

Here we report on the synthesis and characterization <strong>of</strong> two novel<br />

oxysterol molecules, Oxy34 and Oxy49, which induce osteogenic<br />

differentiation <strong>of</strong> bone marrow stromal cells (MSC) in vitro and<br />

induce bone formation and spine fusion in vivo. M2-10B4 (M2)<br />

MSC were treated in vitro with 0.1-5 uM <strong>of</strong> Oxy34 or Oxy49. In<br />

vivo 60 Lewis rats were divided into six groups and underwent<br />

posterolateral intertransverse spinal fusion at L4-5 with bilateral<br />

implantation <strong>of</strong> a collagen sponge carrier containing: 1) control<br />

vehicle, 2) 5 ug rhBMP2, 3) 0.2 mg Oxy34, 4) 2 mg Oxy34, 5) 20<br />

mg 0xy34 or 6) 20 mg Oxy49. At four, six and eight weeks, bone<br />

736<br />

formation was assessed by plain radiographs. Definitive fusion in all<br />

specimens was then determined at nine weeks by manual palpation<br />

and MicroCT <strong>of</strong> the excised spines. In vitro treatment induced the<br />

mRNA expression <strong>of</strong> early and late osteogenic differentiation markers<br />

and robust mineralization. In vivo, manual assessment and micro<br />

CT showed fusion in 0/10 Group 1, 10/10 Group 2 (eight bilateral/<br />

two unilateral), 0/10 Group 3, five/10 Group 4 (three bilateral/<br />

two unilateral), 10/10 Group 5 (eight bilateral/two unilateral) and<br />

10/10 Group 6 (eight bilateral/two unilateral). Bone morphogenetic<br />

proteins (BMPs) although effective in promoting osseous growth and<br />

spinal fusion, have limitations in their use because <strong>of</strong> higher costs<br />

and possible adverse effects, including ectopic bone formation and<br />

inflammatory reaction, particularly in the cervical spine. Oxy34 and<br />

Oxy49 are potent novel osteoinductive molecules that may provide a<br />

new alternative for clinical stimulation <strong>of</strong> bone formation.<br />

pApeR No. 675<br />

uNanostructured TCP In Rabbit Posterolateral Fusion<br />

Compared To Commercial Osteobiologics<br />

William R Walsh, PhD, Randwick, NSW Australia<br />

Florence Degroot, PhD<br />

Nicky Bertollo, PhD, Randwick, NSW Australia<br />

Frank Vizesi, PhD<br />

Nicholas J Hancock, FRCS<br />

Joost De Bruijn, PhD<br />

Erik M Erbe, PhD, San Diego, CA<br />

Nanostructured osteobiologics attract higher levels <strong>of</strong> proteins<br />

from the body and present a new option for high performance<br />

bone grafting without the need for cells or proteins to be added<br />

ex-vivo. The rabbit posterolateral fusion model is an accepted<br />

tool for assessing graft performance and was to compare several<br />

commercially available products with a novel osteobiologic. Sixty<br />

New Zealand white rabbits were assigned to six groups following<br />

ethical approval for single level fusion in an established model. The<br />

test groups were autograft, empty, BMP2, bioactive TCP, silicated HA<br />

and a novel nanostructured tricalcium phosphate (TCP) combined<br />

with a biodissolvable polymer carrier. MicroCT, mechanical testing<br />

and histology were performed at 12 weeks. Protein adsorption was<br />

conducted in vitro. Radiographic review revealed 85% fusion for<br />

autograft, 0% for empty and 100% for BMP2. Fusion was difficult<br />

to assess by plain radiographs in calcium phosphates due to nonresorbed<br />

graft material while micro CT demonstrated new bone in<br />

the nanostructured TCP, bioactive TCP and silicated HA groups. The<br />

nanostructured TCP was mechanically superior (P


pApeR No. 736<br />

Lessons Learned After 9 Years Clinical Experience With<br />

Three Different Nucleus Replacement Devices<br />

Luiz Pimenta, MD, Sao Paulo, SP Brazil<br />

Leonardo Oliveira, MD, Sao Paulo, SP Brazil<br />

Luis Marchi, MS, Sao Paulo, SP Brazil<br />

Etevaldo Coutinho, MD, Sao Paulo, SP Brazil<br />

The nucleus replacement devices have been developed for treating<br />

moderate forms <strong>of</strong> degenerative disc disease, trying to fill the gap<br />

between discectomy and fusion. The surgical goals are pain relief,<br />

maintenance <strong>of</strong> the disc height and flexibility at the index and adjacent<br />

levels. Prospective, non randomized, single center clinical study with<br />

125 patients presenting moderate forms <strong>of</strong> degenerative disc disease.<br />

Radiographic (anterior/posterior, lateral and dynamic) and clinical<br />

outcomes were collected preoperatively, one week and one, three,<br />

six, nine and annually through nine years postoperatively. The VAS<br />

and ODI questionnaires were used to assess pain and functional<br />

outcomes. Eighty patients had PDN disc prosthesis, 26 patients with<br />

PNR (Trans1) and 19 patients using the NUBAC (Pioneer) device.<br />

The surgical techniques for each device were performed following<br />

the prosthesis indications. After nine years follow up, the global<br />

retrieval incidence was 48.8% (61/125). From these patients, 15<br />

(57.7% <strong>of</strong> the specific device) had PNR failures, eight (42.1% <strong>of</strong><br />

the specific device) experienced NUBAC retrievals and 38 (47.5% <strong>of</strong><br />

the specific device) had PDN flaws. The failures included significant<br />

loosening <strong>of</strong> the disc height at the operated level, displacement,<br />

silicon inside de canal and migration. All patients underwent fusion<br />

as a retrieval surgery. The retrieval rate in our series is very high. It<br />

shows that the end-plate reaction in a long period <strong>of</strong> time happens,<br />

resulting in important subsidence and mechanic back pain. The<br />

device expulsion was another cause <strong>of</strong> pain and second surgery, as<br />

shown in the literature.<br />

pApeR No. 737<br />

Cervical Disc Replacement: Five Year Follow-Up From<br />

The U. S. Prospective Randomized Bryan Trial<br />

Rick C Sasso, MD, Indianapolis, IN<br />

Paul A Anderson, MD, Madison, WI<br />

John G Heller, MD, Atlanta, GA<br />

K Daniel Riew, MD, Saint Louis, MO<br />

The published two-year results <strong>of</strong> the pivotal FDA investigational<br />

device exemption trial <strong>of</strong> cervical arthroplasty compared to anterior<br />

cervical discectomy with fusion (ACDF) for treating single-level<br />

degenerative cervical disc disease revealed a statistically superior<br />

overall success rate in the arthroplasty group. The purpose <strong>of</strong> this<br />

study is to evaluate the currently available data at half <strong>of</strong> a decade to<br />

determine their consistency over time and to assess complications<br />

and revision surgeries. A total <strong>of</strong> 463 patients were enrolled in a<br />

prospective, randomized, controlled, multi-center study with a 1:1<br />

randomization scheme; 242 in the arthroplasty group and 221 in<br />

the control group. No statistical differences were seen between the<br />

groups for demographics and preoperative measures. As <strong>of</strong> May 28,<br />

2010, five-year follow-up data were available for 193/242 (79.8%)<br />

<strong>of</strong> the arthroplasty patients and 159/221 (71.9%) <strong>of</strong> the control<br />

patients. The study’s primary outcome measure, overall success, as<br />

well as secondary functional outcome measures (NDI, SF-36, arm<br />

and neck pain scores), were collected at pre-defined time points out<br />

to 60 months postoperatively. At 60 months postoperatively: overall<br />

success rate: 160/193 (82.9%) for the arthroplasty group, 119/159<br />

(74.8%) for the control group, p=0.043;NDI score: 15.9 arthroplasty,<br />

19.1 control, p=0.020; neck pain score: 23.8 arthroplasty, 28.8<br />

737<br />

control, p=0.031 (change from preop: -51.3 arthroplasty, -45.2<br />

control, p=0.031); and SF-36 PCS: 47.3 arthroplasty, 44.0 control,<br />

p=0.006 (change from preop: 14.4 arthroplasty, 11.8 control,<br />

p=0.006); cumulatively up to 60 months: second surgery at index<br />

level: 11 (4.5%) arthroplasty, 11 (5.0%) control; possibly related<br />

AEs: nine (3.7%) arthroplasty, 14 (6.3%) control; possibly devicerelated<br />

and serious (grade 3 or 4) adverse events (AE): four (1.7%)<br />

arthroplasty, nine (4.1%) control. Based on currently available data,<br />

excellent results continue out to five years postoperatively in both<br />

the arthroplasty and ACDF groups. Continued statistically significant<br />

differences are present for overall success that favor the arthroplasty<br />

cohort at 60 months, as was seen at 24 months postoperatively. The<br />

NDI, SF-36 PCS and neck pain scores also showed improvement<br />

in the arthroplasty group that was statistically significant at 60<br />

months compared to the control group. Second surgery and adverse<br />

events were very low in both groups with no statistically significant<br />

differences between groups at half a decade postoperatively.<br />

pApeR No. 738<br />

Retrieval Analysis <strong>of</strong> ProDisc? Cervical Total Disc<br />

Replacements<br />

Sean Lefloch, BS, New York, NY<br />

Dan Chen, MS, New York, NY<br />

Kai Zhang<br />

Stelios A Koutsoumbelis, MD, New York City, NY<br />

Celeste Abjornson, PhD, New York, NY<br />

Frank P Cammisa Jr, MD, New York, NY<br />

Timothy M Wright, PhD, New York, NY<br />

The goal <strong>of</strong> this study was to examine components retrieved from<br />

patients who had undergone cervical total disc replacement (TDR)<br />

and who subsequently required revision surgery that included<br />

removal <strong>of</strong> the implant components. The objectives were to identify<br />

wear patterns on the metallic inlays and polyethylene (PE) bearing<br />

surfaces and to examine the plasma sprayed endplate surfaces for<br />

evidence <strong>of</strong> bony fixation. ProDisc-C® TDRs from revision surgeries<br />

were received from outside institutions. The retrieval collection<br />

includes 19 ProDisc-C® TDRs. PE and metallic components were<br />

examined using light stereo-microscopy. The devices were retrieved<br />

because <strong>of</strong> trauma, infection or continued pain; not associated with<br />

component malfunction. PE wear patterns tended to be asymmetrical,<br />

with machine marks visible at the periphery. Mild scratching was<br />

evident on 11 <strong>of</strong> 19 implants. Mild backside wear was observed<br />

on five <strong>of</strong> eight implants. Evidence <strong>of</strong> impingement on metallic<br />

endplates, PE inlays or both was observed in 16 cases. Wear on the<br />

modular interfaces between the PE insert and the metal backing was<br />

mild, indicative <strong>of</strong> micromotion. Bony on growth was appreciated<br />

on 85% on the superior endplates and 65% <strong>of</strong> the inferior endplates.<br />

Impingement and PE wear was seen on a significant number <strong>of</strong><br />

the retrieved components. As more retrieved implants become<br />

available, correlations between wear and impingement findings and<br />

demographic and radiographic data will be explored. Fixation in<br />

these implants did not appear to be a problem. Future work includes<br />

quantifying deviations from CAD models and determining extent <strong>of</strong><br />

backside polyethylene wear.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


pApeR No. 739<br />

Biologic Effect <strong>of</strong> Metallic Wear Debris on<br />

Chondrocytes Harvested from the Annulus Fibrosus<br />

Edward Ratcliffe Anderson, III MD, San Antonio, TX<br />

Garrick Wayne Cason, MD, Ooltewah, TN<br />

Kevin Baker, MS, Royal Oak, MI<br />

Carly Gratopp<br />

Harry N Herkowitz, MD, Royal Oak, MI<br />

The influence <strong>of</strong> metallic wear debris, similar to that shed by spine<br />

instrumentation in vivo, on intervertebral disc chondrocytes is<br />

currently unknown. An in vitro study characterizing the effect<br />

<strong>of</strong> metallic debris on human annulus fibrosus chondrocytes is<br />

presented. Annulus fibrosus tissue, collected from interbody fusion<br />

procedures, was minced and incubated in defined minimum<br />

essential medium (DMEM) and collagenase. Cells were separated<br />

from the tissue and cultured on top <strong>of</strong> 316L, CoCrMo or Ti6Al4V<br />

particles in 24-well culture plates. Cell morphology was monitored<br />

at 24 hour intervals. Production <strong>of</strong> TNF-a, IL-1b, IL-6 and IL-8<br />

and caspase-3 was assayed by ELISA. Viability was compared after<br />

seven days by MTT assay. After 24 hours <strong>of</strong> culture, cells entered<br />

a phagocytotic phase with active uptake <strong>of</strong> particles within cell<br />

membranes. Chondrocytes exposed to 316L stainless steel became<br />

more spherical in shape, while CoCrMo- and Ti6Al4V-treated cells<br />

maintained an elongated fibrochondrocytic appearance. Expression<br />

<strong>of</strong> inflammatory cytokines and apoptosis markers was dose, time and<br />

material-dependent. The MTT assay performed at seven days showed<br />

that 316L particles reduced viability the most, followed by CoCrMo<br />

and Ti6Al4V at each dose. As previously demonstrated, phagocytosis<br />

<strong>of</strong> metal particles leads to expression <strong>of</strong> proinflammatory cytokines,<br />

which may perpetuate local inflammatory and degenerative changes.<br />

Observed changes in cell morphology, pro-inflammatory cytokine<br />

expression and cell viability suggests that metallic wear debris may<br />

have the potential to induce degenerative changes in adjacent disc<br />

tissue.<br />

pApeR No. 740<br />

Biological Activities Of PEK Particles In Epidural Space<br />

Korush Kabir, MD, Bonn, Germany<br />

Jens Schwiesau<br />

Christoph Burger, MD, Bonn, Germany<br />

Robert Pflugmacher, MD, Bonn, Germany<br />

Thomas Grupp, MD<br />

Dieter Wirtz, MD, Bonn, Germany<br />

Total disc arthroplasty (TDA) is designed to preserve motion. The<br />

clinical significance <strong>of</strong> wear debris was reported in total disc arthroplasty.<br />

Our goal was to evaluate the biological response <strong>of</strong> polyetherketone<br />

(PEK) wear debris in epidural space. Thirty-six female rabbits were<br />

randomly allocated to three groups: PEK, UHMWPE-particles and<br />

sham. The particles were implanted into the epidural space <strong>of</strong> the<br />

cervical region by percutaneous technique (fluoroscopic guidance).<br />

Neurobehavioral observations were conducted at pretreatment, on<br />

day one-14 postinjection, then weekly. Cervical spine tissue sections<br />

were examined for histopathological inflammation in response to<br />

the particles after three and six months. Except two in PEK group,<br />

none <strong>of</strong> the animals showed any neurological or musculo-skeletal<br />

abnormality. The neurological deficits presented immediately after<br />

injection and did not progress. There was no evidence <strong>of</strong> systemic<br />

toxicity. Histopathological examination revealed that polarizing,<br />

crystalline wear debris was seen in the vertebral canal <strong>of</strong> examined test<br />

injection sites surrounded by inflammatory cells. The inflammation<br />

and angiogenesis was limited to the epidural space around the<br />

738<br />

particles. There was no evidence <strong>of</strong> osteolysis and changes <strong>of</strong> the<br />

dura mater. In conclusion, we have established a percutaneous<br />

technique to implant wear debris in the cervical epidural space in a<br />

rabbit model to simulate the biological consequences <strong>of</strong> debris after<br />

TDA. PEK and UHMWPE show similar histopathological changes<br />

in the cervical epidural space. The inflammation was limited to the<br />

epidural space around the particles. We propose that PEK could be<br />

an alternative bearing material in total disc arthroplasty.<br />

pApeR No. 741<br />

Cost-Effectiveness <strong>of</strong> Cervical Disc Replacement<br />

Sheeraz Qureshi, MD, New York, NY<br />

Steven McAnany, MD, New York, NY<br />

Andrew C Hecht, MD, New York, NY<br />

In recent years, there has been increased interest in the use <strong>of</strong><br />

cervical disc replacement (CDR) as an alternative to anterior cervical<br />

discectomy and fusion (ACDF). While ACDF is a proven intervention<br />

for patients with myelopathy and radiculopathy, there are inherent<br />

limitations specific to the procedure. CDR was designed to preserve<br />

motion, avoid the limitations <strong>of</strong> fusion and theoretically allow for a<br />

quicker return to activity. A number <strong>of</strong> recent systematic reviews and<br />

randomized controlled trials have been published demonstrating<br />

positive clinical results for CDR but there are no studies demonstrating<br />

which strategy is more cost-effective. The purpose <strong>of</strong> this study<br />

was to evaluate the cost effectiveness <strong>of</strong> CDR and ACDF using the<br />

power <strong>of</strong> decision analysis. Additionally, we aimed to identify the<br />

most critical factors affecting both cost and effectiveness and define<br />

thresholds for durability and function to focus and guide future<br />

research. A surgical decision model was created for the treatment<br />

<strong>of</strong> single-level cervical disc disease with associated radiculopathy.<br />

The literature was reviewed to identify possible outcomes and their<br />

likelihood following CDR and ACDF. Health state utility factors<br />

were determined from the literature and assigned to each possible<br />

outcome and effectiveness was expressed in units <strong>of</strong> quality-adjusted<br />

life years (QALY). Using ICD-9 procedure code and data from the<br />

Nationwide Inpatient Sample (NIS), median cost <strong>of</strong> hospitalization<br />

was obtained by multiplying hospital charges by the hospital specific<br />

cost-to-charge ratio. Gross physician costs were determined from<br />

the mean Medicare reimbursement for each CPT code. Uncertainty<br />

in both the cost and effectiveness numbers were assessed using<br />

sensitivity analysis. In the reference case, the model assumed a 20year<br />

duration <strong>of</strong> the CDR prosthesis. Although both ACDF and<br />

CDR were found to be cost-effective at all time points (based on<br />

willingness to pay $50,000/QALY), CDR resulted in higher average<br />

QALYs gained at a lower cost to society if both strategies survived<br />

for 20 years ($3,103/QALY for CDR versus $4,435/QALY for ACDF).<br />

Sensitivity analysis determined that CDR needed to survive at least<br />

13.99 years in order to be considered a more cost-effective strategy<br />

than ACDF. Sensitivity analysis also demonstrated that CDR must<br />

provide a utility state <strong>of</strong> at least 0.838 in order to be cost-effective.<br />

Both cervical disc replacement and anterior cervical discectomy<br />

and fusion were shown in this reference case to be cost-effective<br />

procedures. Given the results found in the sensitivity analysis,<br />

cervical disc replacement must remain functional for at least 14<br />

years in order to establish greater cost-effectiveness as compared to<br />

anterior cervical discectomy and fusion. Since the current literature<br />

has not yet demonstrated with certainty the actual durability and<br />

long-term functionality <strong>of</strong> CDR, future long-term studies will be<br />

required to validate this analysis.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


pApeR No. 742<br />

Effect <strong>of</strong> Methylprednisolone Infusion on the<br />

Expression <strong>of</strong> CNTF in a Rat Spinal Cord Injury Model<br />

Daniel J Del Gaizo, MD, Chicago, IL<br />

Ronald D Graff, PhD, Chapel Hill, NC<br />

Sameer Mathur, MD, Cary, NC<br />

Ciliary neurotrophic factor (CNTF) is known to have both<br />

neuroprotective and regenerative qualities. The expression and<br />

concentration <strong>of</strong> CNTF has been shown to increase in the spinal cord<br />

after an acute spinal cord injury (SCI). Although controversial, many<br />

emergency centers continue to administer the National Acute Spinal<br />

Cord Injury Study (NASCIS) high dose IV methylprednisolone (MP)<br />

bolus/infusion to patients presenting within eight hours <strong>of</strong> an acute<br />

SCI. This study was designed to evaluate the effect <strong>of</strong> the NASCIS MP<br />

infusion protocol on the expression <strong>of</strong> the neuroprotective cytokine,<br />

CNTF. Thirty Long Evans rats were subjected to a standardized SCI.<br />

The animals were randomized to receive either the rat dose equivalent<br />

(RDE) <strong>of</strong> the NASCIS MP infusion protocol or an equivalent volume<br />

<strong>of</strong> normal saline (NS). Three animals in each group were sacrificed<br />

at six, 12, 24, 48 and 72 hours post SCI. An additional three<br />

animals were sacrificed immediately after injury to serve as baseline<br />

control. RT-PCR was used to quantify the expression <strong>of</strong> CNTF in the<br />

injured spinal cord <strong>of</strong> each animal at sacrifice. CNTF expression was<br />

significantly decreased in the animals that received IV MP at both<br />

12 (p.0006) and 24 (p.0008) hours post injury when compared to<br />

animals that received an equivalent volume <strong>of</strong> IV NS. The NASCIS<br />

MP protocol inhibited the expression <strong>of</strong> CNTF. By inhibiting the post<br />

injury increased expression <strong>of</strong> the neuroprotective cytokine CNTF,<br />

the NASCIS MP protocol may have a detrimental effect in patients<br />

with acute spinal cord injury.<br />

pApeR No. 743<br />

Effects <strong>of</strong> Epidural Steroid Injections on Blood Glucose<br />

Levels in Patients with Diabetes Mellitus<br />

Jesse L Even, MD, Nashville, TN<br />

Kirk A McCullough, MD, Nashville, TN<br />

Yanna Song, PhD<br />

Clinton J Devin, MD, Nashville, TN<br />

Epidural steroid injections (ESI) are commonly used in the<br />

treatment <strong>of</strong> multiple spinal disorders. Corticosteroid injections<br />

have been evaluated in the total joints and hand literature showing<br />

systemic effects to diabetics. There has not been a clinical study to<br />

evaluate if ESI cause systemic effects in diabetics. Diabetic patients<br />

who were scheduled for an ESI were given an opportunity to enroll<br />

in our Institutional Review Board approved study. We collected the<br />

patient’s most recent hemoglobin A1c (hA1c) and then asked them<br />

to track their blood glucose numbers at least twice per day for two<br />

weeks prior to and after their ESI. We noted a statistically significant<br />

increase in blood glucose levels in diabetic patients (N=30) after<br />

epidural steroid injection. The mean blood glucose level prior to ESI<br />

injection was 157.97 ± 45.71 and after ESI it was 304.00 ± 112.63.<br />

This represents an average 146.03 ± 88.5 increase in blood glucose<br />

levels after injection, which was significantly higher than 0 (p=0.0001,<br />

Wilcoxon singed-rank test). Using a nonlinear mixed effect model<br />

the estimated half life <strong>of</strong> this increase was 1.54 days (95% CI 0.86,<br />

7.37), meaning that the patients were back within their normal<br />

standard deviation mean glucose levels within two days <strong>of</strong> injection.<br />

The Spearman correlation when evaluating the association between<br />

pre injection hA1c levels and maximum blood glucose change was<br />

0.174 (p=0.502) indicating there is no correlation between pre<br />

injection hA1c levels and systemic response to ESI. Epidural steroid<br />

739<br />

injections were noted to cause a significant increase in the blood<br />

glucose levels in diabetics. There was no correlation between pre<br />

injection diabetic control, represented by hA1c levels, and post<br />

injection response. Diabetics who are candidates for ESI should<br />

be counseled that a blood glucose increase may be apparent post<br />

intervention but effects should not last longer than approximately<br />

two days.<br />

pApeR No. 744<br />

Can Ketamine Prevent Post-Op Pain In Opiate-<br />

Dependent Patients - A Plaebo-Controlled Blind PRC<br />

Study<br />

Dilip K Sengupta, MD, Hanover, NH<br />

Randy W L<strong>of</strong>tus, MD<br />

William A Abdu, MD, Lebanon, NH<br />

Ketamine has been shown to be useful in the reduction <strong>of</strong> acute<br />

postoperative pain and analgesic consumption. Little is known<br />

regarding its efficacy in opiate-dependent patients with a history<br />

<strong>of</strong> chronic pain. We hypothesized that ketamine would reduce<br />

postoperative opiate consumption and improve surgical outcomes in<br />

this patient population. This was a randomized, prospective, doubleblinded<br />

and placebo controlled trial involving opiate-dependent<br />

patients with a history <strong>of</strong> chronic back pain scheduled to undergo<br />

major lumbar SPINE surgery. A total <strong>of</strong> 102 patients were enrolled<br />

over a two-year period (February 2007 to April 2009). Patients in<br />

the treatment group were administered 0.5 mg/kg <strong>of</strong> intravenous<br />

ketamine prior to the surgical incision followed by an infusion at<br />

10 mcg/kg/min started prior to incision and terminated at wound<br />

closure. Patients in the placebo group received saline <strong>of</strong> equivalent<br />

volume. The anesthetic was controlled in both groups, and patients<br />

were followed for 48 hours post-operatively and seen again at the<br />

first post-surgical visit. The primary outcomes were pain intensity<br />

as measured by morphine consumption and average reported visual<br />

analog scales in the acute postoperative period (up to 48 hours)<br />

and at the first post-surgical visit (six weeks). Secondary outcomes<br />

included hemodynamic changes, duration <strong>of</strong> post-anesthesia care<br />

unit and hospital stay and differences in adjunctive and conservative<br />

treatments at six weeks as compared to preoperative patient<br />

reports. Total morphine consumption (morphine equivalents) was<br />

significantly reduced in the treatment group at 24 and 48 hours and<br />

at six weeks. The average reported pain intensity as indicated by the<br />

visual analog scale was significantly reduced in the post-anesthesia<br />

care unit and at six weeks but was no different in the first 48 hours.<br />

There were no differences in known ketamine or opiate-related sideeffects<br />

between groups. Intraoperative use <strong>of</strong> preventative, low-dose<br />

racemic ketamine reduces opiate consumption and reduces pain<br />

intensity both in the acute postoperative period and at six weeks after<br />

surgery in opiate-dependent patients undergoing painful surgery.<br />

This benefit is without an apparent increase in side effects.<br />

pApeR No. 745<br />

Surgical Treatment Of Aneurysmal Bone Cysts Of The<br />

Spine<br />

Addisu Mesfin, MD, Baltimore, MD<br />

Edward F McCarthy Jr, MD, Baltimore, MD<br />

Khaled M- Kebaish, MD, Baltimore, MD<br />

Aneurysmal bone cysts (ABC) are rare, benign, highly vascular<br />

pseudotumors <strong>of</strong> unknown etiology. The objective <strong>of</strong> this study is<br />

to report our experience with the surgical management <strong>of</strong> ABCs <strong>of</strong><br />

the spine in pediatric and adult patients. A retrospective review <strong>of</strong><br />

patients diagnosed with ABCs <strong>of</strong> the spine (excluding the sacrum)<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


at our institution was performed. From 1995-2006, 17 patients were<br />

identified; 14 <strong>of</strong> the 17 patients underwent surgical management at<br />

our institution. Three <strong>of</strong> the 17 patients were managed at outside<br />

institutions. From the 14 patients managed at our institution, nine<br />

had greater than two-year follow up. The location <strong>of</strong> the ABCs,<br />

recurrence rates, presenting symptoms, treatment and complications<br />

were documented for these nine patients. The cervical spine, at 56%,<br />

was the most common location with 22% in the lumbar and 22% in<br />

the thoracic spines. Mean age <strong>of</strong> presentation was 17.2 (five-32). The<br />

average follow up was 49.6 month (24-88). All patients underwent<br />

either resection and combined anterior and posterior spinal<br />

fusion (67%) or resection and posterior spinal fusion (33%). Two<br />

recurrences within three months were noted. Pain was the presenting<br />

symptom in 100% <strong>of</strong> cases. Four complications were noted. ABCs<br />

<strong>of</strong> the spine can be successfully treated with surgical resection and<br />

in this study, no recurrence was noted in 78% <strong>of</strong> patients after a<br />

minimum <strong>of</strong> two-year follow up. Most <strong>of</strong> the patients developed<br />

symptoms before age 18 and all presented with pain. The cervical<br />

spine was the most frequently involved site.<br />

pApeR No. 746<br />

MRI Is a Reliable, Accurate, and Safe Alternative to CT<br />

Scan for Evaluation <strong>of</strong> Pedicle Morphology<br />

Adam Laurance Wollowick, MD, New York, NY<br />

Beverly Thornhill, MD<br />

Terry David Amaral, MD, Bronx, NY<br />

Etan Sugarman, MS, Bronx, NY<br />

Vishal Sarwahi, MD, Bronx, NY<br />

Understanding pedicle morphology is important for the safe<br />

placement <strong>of</strong> pedicle screws. Currently, the gold standard modality<br />

to assess pedicle morphology is CT scan. However, CT scans carry<br />

an increased risk <strong>of</strong> radiation exposure. We have evaluated MRI as a<br />

potential alternative to CT scan for assessing the bony architecture<br />

<strong>of</strong> pedicles. A total <strong>of</strong> 765 pedicles in 24 spinal deformity patients<br />

were reviewed independently by a bone radiologist and a spine<br />

surgeon. Pedicle morphology was classified as: Type A (normal<br />

pedicle): >4mm cancellous channel, Type B: 2-4 mm channel, Type<br />

C: cortical channel, and Type D:


lytic spondylolisthesis, lumbar fusion for degenerative disc disease<br />

exclusion criteria, revision surgery, development <strong>of</strong> postoperative<br />

complications, diagnosis <strong>of</strong> deformity/trauma/infection/tumor. The<br />

patient data was also collected from the review <strong>of</strong> medical records.<br />

The preoperative, six week, six month and one year postoperative<br />

ODI/NDI scores were used for analysis apart from the preoperative<br />

SF-36 PCS and MCS scores. The last available assessment was<br />

determined and used for subsequent analysis to maximize the<br />

number <strong>of</strong> patients in each group. The total number <strong>of</strong> patients<br />

included 404 patients (ACDF 89, DDD 43, HNP 91, Spondy 140,<br />

Stenosis 41) who satisfied the inclusion criteria. Normative data<br />

for baseline and final ODI/NDI scores are presented. While the<br />

preoperative diagnosis and the ODI/NDI score is an indicator <strong>of</strong><br />

postoperative outcome, a specific threshold value does not seem to<br />

exist for any <strong>of</strong> the conditions which would predict SCB. Greater<br />

baseline ODI, greater age at surgery and lower ODI is associated with<br />

greater improvement in final ODI whereas smoking and worker’s<br />

compensation status adversely affects final scores.<br />

pApeR No. 749<br />

The Impact <strong>of</strong> Spinal Disorders on Health-related<br />

Quality <strong>of</strong> Life<br />

Anthony De Giacomo, MD, Hacienda Heights, CA<br />

Sheri Rocha, BS<br />

Serena S Hu, MD, San Francisco, CA<br />

Vedat Deviren, MD, San Francisco, CA<br />

Steven Takemoto, PhD, San Francisco, CA<br />

Shane Burch, MD, San Anselmo, CA<br />

Sigurd H Berven, MD, San Francisco, CA<br />

Spinal conditions have a significant and measurable impact on<br />

health-related quality <strong>of</strong> life. The relative impact <strong>of</strong> common spinal<br />

disorders on health status remains unknown. The purpose <strong>of</strong> this<br />

study is to quantify the effect <strong>of</strong> different spinal diagnoses on health<br />

status. Prospective, observational study <strong>of</strong> consecutive adolescent<br />

and adult preoperative patients from a single institution. Predictor<br />

variables were diagnosis, comorbidities, age and gender. Outcome<br />

variables were SF-36 physical and mental composite scores. Data<br />

analysis used multivariate linear regression to determine the<br />

association between diagnosis and health status, controlling for age,<br />

gender and comorbidities. A total <strong>of</strong> 933 patients had 14 different<br />

spinal diagnosis: lumbar spondylolisthesis (n=119), cervical stenosis<br />

(n=89), cervical degenerative disc disease (DDD) (n=89), lumbar<br />

stenosis (n=120), lumbar DDD (n=84), lumbar disc herniation<br />

(n=95), adult scoliosis (n=155), adolescent scoliosis (n=10),<br />

thoracic kyphosis (n=43), flatback deformity (n=26), pseudarthrosis<br />

(n=80), compression fracture (n=22), tumor (n=23) and infection/<br />

osteomyelitis (n=eight). Multivariate linear regression, demonstrated<br />

that adolescent scoliosis, thoracic kyphosis and cervical DDD were<br />

associated with significantly higher physical component scores<br />

(PCS). Flatback deformity, lumbar stenosis and lumbar DDD were<br />

significantly associated with lower PCS scores. Flatback deformity<br />

and adolescent scoliosis were significantly associated with higher<br />

mental component scores (MCS), where as thoracic kyphosis was<br />

associated with a lower MCS score. Spinal disorders have a significant<br />

impact on patient quality <strong>of</strong> life. There are significant differences<br />

in the impact <strong>of</strong> specific disorders on physical and mental health<br />

status. Preoperative spine patients present with health status that is<br />

more severely compromised than many other common medical and<br />

surgical conditions.<br />

741<br />

pApeR No. 750<br />

Cost-Utility Analyses in Spinal Care: A Systematic<br />

Review<br />

Jeffrey Rihn, MD, Philadelphia, PA<br />

Sean Wilkinson, BA<br />

Kristen E Radcliff, MD, Margate City, NJ<br />

Alexander Vaccaro, MD, PhD, Gladwyne, PA<br />

D Greg Anderson, MD, Moorestown, NJ<br />

Alan S Hilibrand, MD, Philadelphia, PA<br />

Todd J Albert, MD, Philadelphia, PA<br />

The purpose <strong>of</strong> this study was to systematically review the existing<br />

literature on the cost-utility <strong>of</strong> various aspects <strong>of</strong> spinal care. We<br />

searched the Tufts Medicinal Center Cost-Utility Analysis (CUA)<br />

registry from 1976 to 2008 for CUA articles related to spinal care.<br />

Data from the CUA registry were analyzed. Each article was reviewed<br />

in detail. The cost-utility ratios in each article were identified, with<br />

costs expressed in 2008 U.S. dollars. Twenty-six cost-utility studies<br />

on spinal care were identified. There was wide variation among the<br />

studies in methodological practices. There were 15 operative, nine<br />

nonoperative and two imaging studies. Study subjects included:<br />

lumbar spine (n=21), cervical spine (n=3), scoliosis (n=1), lumbar<br />

and cervical spine (n=1). Nineteen <strong>of</strong> the studies were based on<br />

clinical data from prospective randomized studies, five on decision<br />

models and two on prospective observational data. Of the lumbar<br />

studies, 13 addressed low back pain, six disc herniation, two lumbar<br />

stenosis/degenerative spondylolisthesis and one imaging. Of the<br />

cervical studies, two addressed the surgical treatment <strong>of</strong> degenerative<br />

disease, one nonoperative treatment for neck pain and one imaging.<br />

Forty-nine cost-utility ratios were reported in the 26 articles.<br />

Fifteen/49 (30.6%) <strong>of</strong> the ratios were cost saving, 22/49 (44.9%)<br />

were less than $100,000/QALY gained and 12/49 (24.5%) were<br />

greater than $100,000/QALY gained. The average quality grade <strong>of</strong> the<br />

papers on a seven-point Likert scale was 4.5, with a range <strong>of</strong> 2 to 6.5.<br />

Only four/26 (15.4%) <strong>of</strong> the studies contained the four key criteria<br />

<strong>of</strong> cost-effectiveness research recommended by the U.S. Panel on<br />

Cost-Effectiveness in Health and Medicine. Twenty-six CUA studies<br />

and 49 cost-utility ratios have been published on various aspects <strong>of</strong><br />

spinal care over the last 30 years. Certain aspects <strong>of</strong> spinal care have<br />

been shown to be cost-effective. Further efforts, however, are needed<br />

to better define the value <strong>of</strong> many aspects <strong>of</strong> spinal care.<br />

POSTERS<br />

posteR No. p346<br />

Fibronectin and Aggrecan Complex Predicts Functional<br />

Outcome after Lumbar ESI<br />

Gaetano J Scuderi, MD, Redwood City, CA<br />

S Raymond Golish, MD, PHD, Ridgefield, WA<br />

Lewis Hanna, PhD, Jupiter, FL<br />

Robert Bowser, PhD, Redwood City, CA<br />

Pasquale X Montesano, MD, Roseville, CA<br />

Eugene Carragee, MD, Redwood City, CA<br />

There is a need for biomarkers predicting response to epidural<br />

steroid injection (ESI) for patients with herniated nucleus pulposus<br />

(HNP). We have previously investigated molecular markers <strong>of</strong><br />

disc degeneration. We attempted to determine if a novel complex<br />

<strong>of</strong> fibronectin and aggrecan predicts clinical response to ESI for<br />

the indication <strong>of</strong> radiculopathy from lumbar HNP. This study<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


was a single center, prospective, consecutive case series <strong>of</strong> patients<br />

undergoing epidural lavage prior to treatment <strong>of</strong> radiculopathy due<br />

to lumbar disc herniation. This study included 26 patients with<br />

radiculopathic pain and MRI positive for HNP who elected epidural<br />

steroid injection. Epidural lavage was performed immediately prior<br />

to injection. The lavage fluid was assayed for the fibronectin-aggrecan<br />

complex using a heterogeneous enzyme-linked immunosorbent<br />

sandwich assay (ELISA). The results were compared with the interval<br />

improvement in the physical component score <strong>of</strong> the SF-36 after<br />

injection compared with baseline. The mean improvement from<br />

baseline PCS in patients with the fibronectin-aggrecan complex<br />

was 22.9 (standard deviation 12.4) and without the complex was<br />

0.64 (standard deviation 3.97; p


level fusions and 19 two-level fusions. Seven cortical breaches were<br />

identified for a rate <strong>of</strong> 2.52%. Seven patients had involvement <strong>of</strong> the<br />

superior level facet for an incidence <strong>of</strong> 11.48%. One patient required<br />

revision for a malpositioned pedicle screw. This study revealed a low<br />

rate <strong>of</strong> superior segment facet violation and cortical violation after<br />

minimally invasive TLIF. This rate <strong>of</strong> superior level facet involvement<br />

is significantly lower than previously reported after open procedures,<br />

between 24% and 32%. This rate also demonstrated a significant<br />

learning curve with significantly higher rate in the surgeon’s initial<br />

experience. The rate <strong>of</strong> cortical violation is similar to previous reports<br />

in the literature with a low revision rate.<br />

posteR No. p350<br />

S<strong>of</strong>t Tissue Damages In Adult Patients With Cervical<br />

Spinal Cord Injury Without Major Bony Injury<br />

Takashi Maeda, Iizuka, Japan<br />

Takayoshi Ueta, Iizuka, Japan<br />

Eiji Mori, MD<br />

Itaru Yugue, MD, Iizuka Fukuoka, Japan<br />

Osamu Kawano, MD<br />

Tsuneaki Takao, MD<br />

Hiroaki Sakai, MD<br />

Keiichiro Shiba, MD, Iizuka, Japan<br />

No evidence has been shown as to whether the extraneural s<strong>of</strong>t<br />

tissue damages in patients with cervical spinal cord injury (SCI)<br />

without major bony injury are associated with cervical segmental<br />

instability and clinical prognosis. The purpose <strong>of</strong> this study is to<br />

evaluate s<strong>of</strong>t tissue damages detected on MRI, as well as segmental<br />

instability judged by flexion-extension radiographs <strong>of</strong> those patients<br />

with SCI who had no or little bony injury. We also evaluated if these<br />

s<strong>of</strong>t tissue damages relate to clinical prognosis. Eighty-eight patients<br />

who admitted to our hospital within two days after trauma were<br />

included in this study. Flexion-extension radiographs were taken<br />

under the supervision <strong>of</strong> spine surgeon. Area <strong>of</strong> prevertebral edema<br />

detected on MRI was measured using imageJ s<strong>of</strong>tware. Forty-two<br />

patients showed instability at the injured segment judged according<br />

to the criteria <strong>of</strong> White and Panjabi. On MRI, ALL disruption and<br />

disc injury were apparent in 44 and 37 patients respectively. Various<br />

degrees <strong>of</strong> prevertebral edema were demonstrated in 76 patients.<br />

There was a significant relationship between segmental instability<br />

and MRI findings <strong>of</strong> the s<strong>of</strong>t tissue damages. Interestingly, ASIA<br />

motor score was significantly associated with both segmental<br />

instability and MRI findings, but not with cervical canal diameter.<br />

A considerable proportion <strong>of</strong> the patients with cervical SCI without<br />

obvious bony injury were shown to have various s<strong>of</strong>t tissue damages<br />

and cervical segmental instability at the early stages <strong>of</strong> the injury.<br />

Clinical prognosis greatly depended on these s<strong>of</strong>t tissue damages<br />

rather than pre-existent cervical canal stenosis.<br />

posteR No. p351<br />

The Pathway Of Vertebral Metastases Extending To The<br />

Adjacent Vertebral Body: A Histologic Study<br />

Takeshi Sasagawa, MD, Kanazawa, Japan<br />

Norio Kawahara, MD, Kananzawa, Japan<br />

Hideki Murakami, MD, Kanazawa, Japan<br />

Satoru Demura, MD<br />

Katsuhito Yoshioka, MD<br />

Katsuro Tomita, MD, Kanazawa, Japan<br />

Hiroyuki Tsuchiya, MD, Kanazawa, Japan<br />

Each vertebra can be regarded as a compartment surrounded by<br />

several anatomically characterized barriers. However, in some<br />

743<br />

cases the tumor extends outside the barriers. The pathway <strong>of</strong><br />

the vertical extension to the adjacent vertebrae is unclear. The<br />

vertical extension <strong>of</strong> a metastatic spinal tumor is important in the<br />

preoperative decision making <strong>of</strong> the cranio-caudal surgical margin.<br />

The objective was to investigate the pathway <strong>of</strong> the vertical extension<br />

<strong>of</strong> metastatic vertebral tumors. We examined 20 en bloc resected<br />

metastatic vertebral bodies where the tumors had extended outside<br />

the vertebral body. 5^8 sagittal sections including the pedicle, the<br />

lateral part <strong>of</strong> the posterior longitudinal ligament (PLL) and the<br />

central part <strong>of</strong> the PLL were prepared from each resected specimen.<br />

The sections were stained with haematoxylin-eosin and elastica<br />

van Gieson. Histologic examination focused on the pathways <strong>of</strong><br />

the tumor vertical extension at each barrier tissues and the degree<br />

<strong>of</strong> tumor extension along each pathway. The vertical extension <strong>of</strong> a<br />

tumor was observed at the anterior longitudinal ligament (ALL) in<br />

six cases, at the central part <strong>of</strong> the PLL in 14 cases, at the lateral part<br />

<strong>of</strong> the PLL in 20 cases, at the cartilaginous endplate in three cases, at<br />

the periosteum on the lateral side <strong>of</strong> vertebral body in seven cases.<br />

The tumor had extended the farthest at the lateral part <strong>of</strong> PLL in 18<br />

cases, at lateral side <strong>of</strong> the vertebral body in one case and through<br />

the disc in one case. Metastatic vertebral tumors most commonly<br />

extend vertically between the lateral part <strong>of</strong> the PLL and the posterior<br />

aspect <strong>of</strong> the disc.<br />

posteR No. p352 AlteRNAte pApeR<br />

Hernia Recurrence After Discectomy. Incidence And<br />

Risc Factors<br />

Sara Martinez-Martos<br />

Maite Ubierna, Montcada, Barcelona, Spain<br />

Enrique Caceres, Pr<strong>of</strong>, Barcelona, Spain<br />

Ana Garcia De Frutos, MD<br />

Guillem Salo, MD, Barcelona., Spain<br />

Antonia Matamalas, MD<br />

Risk factors for hernia recurrence are not clear. There is controversy<br />

in the surgical treatment <strong>of</strong> hernia recurrence. The aim <strong>of</strong> our work<br />

is to study the incidence <strong>of</strong> herniation recurrence after discectomy at<br />

one level, and identify risk factors for its occurrence. Retrospective<br />

review <strong>of</strong> 239 patients diagnosed with herniated disc that underwent<br />

for surgery after failure <strong>of</strong> the conservative treatment during at<br />

least six weeks. It was assessed preoperatively age, level and type<br />

<strong>of</strong> hernia, Modic changes on MRI, the degree <strong>of</strong> degeneration<br />

according to Pfirrmann’s classification, job physical activity and<br />

sport. The Oswestry Disability Index (ODI), physical activity, work<br />

and sports was also measured postoperatively. Hernia recurrence<br />

was considered the recurrence <strong>of</strong> symptoms after a minimum <strong>of</strong><br />

six months free interval and associated with an image consistent<br />

with disc herniation in MRI performed with gadolinium. We<br />

collected complete information on 201 patients. A total <strong>of</strong> 60.2%<br />

were male. The median age was 42.9 years (19-76). The level <strong>of</strong><br />

involvement is L5-S1 in 61.8% and in L4-L5 <strong>of</strong> 31.2%. Monitoring<br />

is between 12 months and seven years. In any case the MRI signal<br />

corresponding was a healthy disc (Pfirrmann). A total <strong>of</strong> 52.7% <strong>of</strong><br />

patients continued treatment with epidural injection before surgery.<br />

The mean Oswestry index is 12.7 (0-96). Males have a lower rate<br />

resulted in Oswestry index, and non-working population has the<br />

worst results (p = 0.00). Some 19.3% (35) were diagnosed with<br />

symptomatic hernia recurrence and confirmed by MRI at the same<br />

level. Seven <strong>of</strong> them improved with conservative treatment or<br />

epidural infiltration. Twenty-eight required surgery (11 arthrodesis,<br />

13 discectomies and four sequestrectomies). No statistical differences<br />

observed between type <strong>of</strong> treatment with the ODI. No correlation<br />

between hernia recurrence and gender, type and level <strong>of</strong> the hernia,<br />

disc degeneration, type <strong>of</strong> surgery and sports activities. We observed<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


that younger patients (


posteR No. p356<br />

Does the Rotation <strong>of</strong> the Spinal Cord Predict<br />

Postoperative C5 Nerve Palsies?<br />

Michelle Aubin, MD, Worcester, MA<br />

Mark Eskander, MD, Worcester, MA<br />

Chris Balinger, MD, Worcester, MA<br />

Jeffrey K Lange, MD, Worcester, MA<br />

Nicholas Lewing, BS<br />

Caitlin Howard, AB, New Orleans, LA<br />

Patrick J Connolly, MD, Worcester, MA<br />

Jason C Eck, DO, Worcester, MA<br />

Louis George Jenis, MD, Newton, MA<br />

C5 nerve palsy is a common complication <strong>of</strong> cervical spine surgery.<br />

This study evaluates if spinal cord rotation seen on MRI is a predictor<br />

for the development <strong>of</strong> postoperative C5 nerve palsy. Retrospective<br />

review <strong>of</strong> 177 patients degenerative disorders <strong>of</strong> the cervical spine with<br />

preoperative MRIs who underwent anterior cervical decompression<br />

and fusion (ACDF) at C4-5 or C5-6. MRI measurements included<br />

area for the cord (AC), space available for cord (SAC) and rotation<br />

<strong>of</strong> the cord (RC) relative to the vertebral body. Measurements were<br />

taken at the site <strong>of</strong> surgical decompression. Medical records were<br />

reviewed for postoperative C5 palsy, defined as manual muscle<br />

testing <strong>of</strong> three or less. Linear regression analysis was used to<br />

evaluate correlations <strong>of</strong> these MRI measurements with postoperative<br />

C5 nerve palsy. A total <strong>of</strong> 50% female, mean age 49.8 years and 6.8%<br />

incidence <strong>of</strong> postoperative C5 nerve palsy. AC, SAC and RC means<br />

and standard deviations are 1.5 +/-0.4 cm2, 9.6 +/-1.8 mm, and 2.8<br />

+/-3.0° respectively. Pearson’s correlations showed that AC (r =-0.11<br />

(p=0.18)) and SAC (r=-0.13 (p=1)) did not correlate with C5 palsy.<br />

Cord rotation showed statistically significant correlation with the<br />

development <strong>of</strong> postoperative C5 nerve palsy (r=0.81 (p4 mm cancellous channel, Type B: 2-4 mm<br />

cancellous channel, Type C: >2 mm cortical channel and Type<br />

D:


demonstrated predictable healing rates and reoperations. The goal <strong>of</strong><br />

this study was to compare and evaluate the number <strong>of</strong> complications<br />

requiring reoperation in elderly versus younger patients. During a<br />

seven-year period <strong>of</strong> time (2002-2009), all patients undergoing<br />

instrumented lumbar posterolateral fusion consenting to utilizing<br />

<strong>of</strong> rhBMP-2 (INFUSE) were retrospectively evaluated as a quality<br />

analysis within a large orthopaedic surgery private practice. Patient<br />

demographics, body mass index, comorbidities, number <strong>of</strong> levels,<br />

associated interbody fusion and types <strong>of</strong> bone void filler (BVF) were<br />

analyzed. The age <strong>of</strong> patients were subdivided into 65 yo (elderly). A total <strong>of</strong> 1,269 consecutive patients were<br />

evaluated with 42% males and 58% females. Average age was 59 yo<br />

with 779 (61.4%) 65. Number <strong>of</strong> levels fused<br />

was: one (478, 38%), two (525, 41%), three, (182, 14%), four (64,<br />

5%), five (13, 1%) and six (7, 0.6%). No difference in levels fused<br />

was noted. Complications requiring reoperation was: acute seroma<br />

formation with neural compromise requiring decompression 29<br />

(22/779, 2.8% 65), delayed reossification <strong>of</strong><br />

foraminotomy requiring decompression seven (5/779, 0.6% 65), infection requiring debridement 47 (35/779,<br />

4.1% 65), and redo instrumented fusion for<br />

symptomatic nonunion 33 (19/779, 2.4% 65).<br />

No statistical differences were noted within the two groups except<br />

more medical comorbidities in the elderly group (p


<strong>of</strong> cervical trauma with concern for arterial injury. Thirty-six (22.64%)<br />

were found to have an injury following arterial imaging. There was<br />

a statistically significant correlation with displaced cervical injuries<br />

(p


y expanded I-VEP and maintained by effective bony fusion inside<br />

and outside <strong>of</strong> the I-VEP. Also, the preservation <strong>of</strong> the end plate<br />

diminished the risk <strong>of</strong> subsidence <strong>of</strong> the I-VEP into the adjacent<br />

segments. I-VEP seems reliable and safe in the treatment <strong>of</strong> patients<br />

with symptomatic OVF.<br />

posteR No. p366<br />

Surgical Outcome <strong>of</strong> Drop Foot Caused by Degenerative<br />

Lumbar Disorders<br />

Yoshihiro Takamori, Fukuoka, Japan<br />

Jun Arimizu, Jonan-Ku, Japan<br />

Teruaki Izaki, MD, Fukuoka, Japan<br />

Masatoshi Naito, MD, Fukuoka, Japan<br />

Takahiko Kiyama, MD, Fukuoka, Japan<br />

We conducted a retrospective study on the surgical outcome in<br />

patients with drop foot due to degenerative lumbar disorders, and<br />

assessed the factors influencing surgical outcome. There were 467<br />

patients who underwent lumbar spine surgery for degenerative<br />

lumbar disorders, 26 <strong>of</strong> whom (5.6%) presented with drop foot.<br />

The mean age at surgery was 60.3 years, and mean follow-up period<br />

was 24.9 months. The manual muscle test can be used to determine<br />

the muscular strength <strong>of</strong> the tibialis anterior. Drop foot is then<br />

defined as a score below three out <strong>of</strong> five. The mean duration <strong>of</strong><br />

drop foot symptoms before surgery was 29.5 days. The correlated<br />

factors studied were age at surgery, preoperative grade <strong>of</strong> muscle<br />

strength, diabetes mellitus, grade <strong>of</strong> leg pain and duration <strong>of</strong> palsy<br />

before surgery. Of the patients, 61.5% recovered from drop foot after<br />

surgery. Postoperative muscle recovery in patients with lumbar disc<br />

herniation was significantly superior to that in patients with lumbar<br />

spinal stenosis. Significant factors that determine surgical outcome<br />

are age at surgery, diabetes mellitus and preoperative grade <strong>of</strong> leg<br />

pain (P


implant’s inherent stability and the minimal disruption <strong>of</strong> stabilizing<br />

ligaments associated with LTIF, this technique may allow more<br />

aggressive restoration <strong>of</strong> indirect foraminal decompression. Patients<br />

were eligible for inclusion if they had underwent LTIF with or<br />

without posterior instrumentation and had both preoperative and<br />

postoperative CT scan at our institution with multiplanar images.<br />

From preoperative and postoperative CT scans, we measured disc<br />

heights, neural foraminal area between adjacent level pedicles,<br />

cage position measured from the anterior and posterior border <strong>of</strong><br />

the adjacent inferior vertebral body. Preoperative and postoperative<br />

Oswestry Disability Index (ODI) and Short Form-12 (SF-12)<br />

scores for included patients were recorded. ODI and SF-12 scores<br />

were matched with the foraminal areas from the most severely<br />

affected side or an average <strong>of</strong> the two foraminal areas if both sides<br />

were equally affected. Average foraminal area increases averaged<br />

36.2 mm2 which represents 35% <strong>of</strong> preoperative area (p


myelography-assisted group require additional decompression<br />

due to residual filling defects. Significant improvement was noted<br />

in the myelography-assisted group with lower score (six vs. 10, p =<br />

0.049) and more improvement (44% vs. 22%, p = 0.005) in ODI.<br />

This group also had significantly higher JOA scores (27.5 vs. 24, p =<br />

0.043) with a higher improvement rate (73.2% vs. 92.8%, p = 0.013).<br />

Higher ratios in ‘significant improvement’ (100% vs. 80%) for ODI<br />

and ‘success’ (100% vs. 95%) and ‘good to excellent results’ (95%<br />

vs. 75%) for JOA scores were also noted in the myelography-assisted<br />

group. This novel protocol provided a practical method for precise<br />

localization <strong>of</strong> stenosis and verification <strong>of</strong> adequate decompression;<br />

hence improved the treatment result <strong>of</strong> MEDL.<br />

posteR No. p373<br />

Coronal and Sagittal Plane Alignment after XLIF in the<br />

treatment <strong>of</strong> Degenerative Scoliosis<br />

Luiz Pimenta, MD, Sao Paulo, SP Brazil<br />

Leonardo Oliveira, MD, Sao Paulo, SP Brazil<br />

Luis Marchi, MS, Sao Paulo, SP Brazil<br />

Etevaldo Coutinho, MD, Sao Paulo, SP Brazil<br />

The traditional treatments to degenerative scoliosis consist in open<br />

surgeries, with high incidence <strong>of</strong> morbidity. Here we present a lateral<br />

retroperitoneal minimally invasive approach for the treatment <strong>of</strong><br />

adult scoliosis. Symptomatic adult scoliosis deformity presents as a<br />

difficult problem to solve. Traditional treatments include anterior and<br />

posterior open approaches. A prospective, non-randomized, single<br />

center clinical trial with 60 patients, mean age 66.95 (50-87 years),<br />

that underwent extreme lateral interbody fusion (XLIF) procedure<br />

to treat degenerative scoliosis. Lateral, anterior/posterior, flexionextension<br />

X-rays, neurological examination and clinical outcome<br />

assessments using Oswestry and VAS scores were performed at the<br />

preoperative, one, six week, three, six, 12, 24, 36, 48 and 60 months<br />

postoperative intervals. The extreme lateral approach was done<br />

through the retroperitoneal space and through psoas muscle avoiding<br />

vascular lesions. A partial discectomy was done and the end-plate<br />

cleaned preserving anterior longitudinal ligament (ALL), keeping the<br />

spine more stable than the traditional anterior surgery. The operated<br />

levels ranged from four to seven levels, including T10-T11 to L4-L5.<br />

The procedures were performed without complication in an average<br />

121 minutes and with less than 50 cc blood loss. Ten patients had<br />

four levels <strong>of</strong> fusion; two patients had five levels and two patients<br />

with seven levels <strong>of</strong> arthrodesis. VAS pain scores improved from an<br />

average 8.33 at pre-op to 3.47 at five years, standard deviation 1.49<br />

and 1.34 respectively. Oswestry scores improved from an average<br />

51.2 at pre-op to 29.52 at five years with standard deviation <strong>of</strong> 13.42<br />

and 13.47 respectively. Coronal and sagittal alignments improved<br />

from average Cobb angles <strong>of</strong> 16.4 degrees at pre-op and 7.5 degrees<br />

at five years, and average lordosis angles <strong>of</strong> 17.1 degrees at pre-op<br />

to 34.2 degrees at five years. Using the XLIF approach we were able<br />

to treat long thoracolumbar deformities in a minimally invasive<br />

way targeting the pain improvement after surgery without the risks<br />

and morbidity associated with big corrections. Our intent was pain<br />

improvement and stabilization. We found reasonable coronal and<br />

sagittal correction in addition to successful clinical improvements in<br />

pain and function in long thoracolumbar reconstructions.<br />

750<br />

posteR No. p374<br />

uPosterior Cervical and Cervicothoracic Fusions with<br />

rhBMP-2: Complications and Fusion Rates<br />

Jacob M Buchowski, MD, Saint Louis, MO<br />

Ian G Dorward, MD<br />

Ge<strong>of</strong>frey Stoker, BS<br />

Woojin Cho, MD, Charlottesville, VA<br />

Lukas P. Zebala, MD, Saint Louis, MO<br />

K Daniel Riew, MD, Saint Louis, MO<br />

RhBMP-2 has been shown to increase fusion rates in the lumbar<br />

spine, but little is known regarding its efficacy and associated<br />

complications in posterior cervical fusions. We independently<br />

evaluated 57 consecutive patients with minimum two-year follow up<br />

who underwent posterior cervical, occipitocervical or cervicothoracic<br />

instrumented fusion augmented with rhBMP-2. Fusion was<br />

determined by bony bridging on CT scans, absence <strong>of</strong> lucency<br />

around instrumentation and/or absence <strong>of</strong> motion on flexion/<br />

extension films. Fifty-seven patients with mean age 56.7 ± 13.2 years<br />

and mean follow up <strong>of</strong> 37.7 ± 20.6 months were analyzed. A total<br />

<strong>of</strong> 84.2% had undergone previous cervical surgery and 42.1% had<br />

a preexisting nonunion. Fusions spanned 5.63 ± 2.66 levels; 19%<br />

involved the occiput, while 63% crossed the cervicothoracic junction.<br />

Mean rhBMP-2 dose was 21.1 ± 8.7 mg. Compression-resistant<br />

matrix was used in 44% <strong>of</strong> cases, iliac crest in 30%, and allograft in<br />

67%. Six patients (10.5%) experienced nonunion; only two required<br />

reoperation. In all cases <strong>of</strong> nonunion, the instrumentation crossed<br />

the occipitocervical or cervicothoracic junction. However, no factors<br />

were statistically associated with nonunion. Fourteen patients<br />

(24.6%) suffered complications, with seven patients requiring<br />

additional surgery. Three patients had superficial infections and<br />

one had a deep infection requiring irrigation and debridement.<br />

Visual Analog Scale (VAS) scores improved from 6.8 ± 1.8 to 3.9<br />

± 3.1 (P


Additionally, the footprint <strong>of</strong> the lateral TDR device capitalizes on<br />

the biomechanical support <strong>of</strong> the ring apophysis. Prospective, non<br />

randomized clinical trial to evaluate the safety and effective <strong>of</strong> the<br />

lateral total disc replacement implanted by the XLIF approach.<br />

Patients included 16 males and 20 females, average age 43 years (24-<br />

60). A TDR device designed for implantation through a true lateral,<br />

retroperitoneal, transpsoas approach (XLIF) was implanted in 36<br />

patients with discography-confirmed 1- or 2-level degenerative disc<br />

disease (DDD). Clinical and radiographic outcomes assessments<br />

were prospectively collected. Surgeries included 14 1-level, three<br />

2-level and 19 hybrid TDR/ALIF cases. The surgery was performed<br />

through a 4 cm lateral incision in an average <strong>of</strong> 134 minutes (90-300)<br />

and with an average 58 cc blood loss (30-150). There was no intra-op<br />

or post-op complications. Postoperative x-rays showed good device<br />

placement, with restoration <strong>of</strong> disc height, foraminal volume and<br />

sagittal balance. All patients were up and walking within 12 hours <strong>of</strong><br />

surgery. VAS pain scores improved from an average <strong>of</strong> 9.3 at pre-op<br />

to 2.27 after three years. Oswestry Disability Index improved from<br />

an average <strong>of</strong> 57 at pre-op to 16.5 after three years. Mid-term results<br />

<strong>of</strong> a laterally placed TDR device demonstrate maintenance <strong>of</strong> pain<br />

relief and functional improvement. The benefits <strong>of</strong> this technique<br />

-- minimal morbidity, avoiding mobilization <strong>of</strong> the great vessels,<br />

preserving the anterior longitudinal ligament, biomechanically stable<br />

orientation and broader revision options -- suggest a promising new<br />

direction for TDR procedures.<br />

posteR No. p376<br />

Facet Joint Biomechanics At The Treated And Adjacent<br />

Levels After Total Disc Replacement<br />

Vikas Vanarsi Patel, MD, Denver, CO<br />

Sergiu O Botolin, MD, Denver, CO<br />

Christian Puttlitz, PhD, Fort Collins, CO<br />

Todd H Baldini, Denver, CO<br />

Anthony Petrella, PhD<br />

Evalina L Burger, MD, Aurora, CO<br />

Celeste Abjornson, PhD, New York, NY<br />

Total disc replacement (TDR) provides an alternative to fusion that<br />

is designed to preserve motion at the treated level and restore disc<br />

height. However, the effects <strong>of</strong> TDR on spine biomechanics at the<br />

treated and adjacent levels are not fully understood. Seven freshfrozen<br />

human cadaveric lumbar spines were potted at T12 and L5<br />

and installed in a six-DOF displacement-controlled testing system.<br />

Displacements <strong>of</strong> 15° flexion/extension, 10° right/left bending and<br />

10° right/left axial rotation were applied. Contact pressure, peak<br />

contact pressure, force, peak force and contact area for each facet<br />

joint were recorded at L2-L3 and L3-L4 both before and after TDR at<br />

L3-L4. The data were analyzed with ANOVAs/t-tests. Axial rotation<br />

had the most impact on all measures in intact spines. During lateral<br />

bending and axial rotation, TDR resulted in a significant increase<br />

in facet forces at the level <strong>of</strong> treatment and a decrease in contact<br />

pressure, peak contact pressure and peak force at the level superior<br />

to the TDR. With flexion/extension, there was a decrease in peak<br />

contact pressure and peak contact force at the superior level. Our<br />

study demonstrates that rotation is the most demanding motion for<br />

the spine. We also found an increase in facet forces at the treated<br />

level after TDR. In general, our findings suggest there is an increase<br />

in loading <strong>of</strong> the facet joints at the level <strong>of</strong> disc implantation and an<br />

overall unloading effect at the level above.<br />

751<br />

posteR No. p377<br />

uBiomechanical Evaluation <strong>of</strong> a Standalone Lumbar<br />

Interbody Cage with Integrated Screws<br />

Martin B Kornblum, MD, Livonia, MI<br />

Frank M Phillips, MD, Chicago, IL<br />

Alexander W Turner, PhD, San Diego, CA<br />

Michael Zatushevsky, MD<br />

Bryan Cornwall, PhD, San Diego, CA<br />

Anterior lumbar interbody fusion (ALIF) devices with integrated<br />

fixation provide the opportunity to increase fusion construct stability,<br />

potentially allowing for standalone use. In this cadaveric study, the<br />

biomechanical stability <strong>of</strong> a standalone device was evaluated against<br />

more traditional ALIF constructs using a multi-directional flexibility<br />

protocol. Eight fresh-frozen lumbar spines were thawed, dissected<br />

and potted at L2 and the sacrum (average age 56 years, range 34 to<br />

63; all male). Specimens were tested in moment control at ±7.5 Nm<br />

in flexion-extension, lateral bending and axial rotation. Conditions<br />

tested were: intact, cage at L4-5 (0 screws); cage (0 screws) + anterior<br />

plate; cage (0 screws) + bilateral pedicle screws; cage (three screws);<br />

cage (three screws) + spinous process plate; and cage (four screws).<br />

Range <strong>of</strong> motion (ROM) at L4-5 was measured optoelectronically.<br />

The standalone cage with supplemental integrated screw fixation<br />

was significantly more rigid than the cage alone (p 0.05), although there<br />

was a small trend towards more motion in flexion-extension and<br />

axial rotation with three screws. The cage with screws (three or four)<br />

was not significantly different (p >0.05) from the cage (0 screws) and<br />

anterior plate or the cage (three screw) and spinous process plate<br />

in lateral bending or axial rotation. The cage with three screws and<br />

spinous process plate provided the most rigid construct in flexionextension.<br />

Bilateral pedicle screws were most rigid in lateral bending<br />

and axial rotation. The standalone cage with integrated screws<br />

showed improved stability over a standalone cage without screws,<br />

and comparable stability to traditional ALIF constructs, particularly<br />

in lateral bending and axial rotation. Clinical evaluation will further<br />

support the efficacy <strong>of</strong> this device for this application.<br />

posteR No. p378<br />

Kyphoplasty And Vertebroplasty: Trends In Use In<br />

Ambulatory And Inpatient Settings<br />

Vadim Goz, BA, New York, NY<br />

Steven Koehler, New York, NY<br />

Natalia Egorova, PhD, MPH<br />

Sheeraz Qureshi, MD, New York, NY<br />

Andrew C Hecht, MD, New York, NY<br />

Vertebral compression fractures (VCFs) are a substantial health<br />

concern. Kyphoplasty (KP) and vertebroplasty (VP) are vertebral<br />

augmentation procedures (VAPs) used to treat VCFs. The purpose<br />

<strong>of</strong> this study was to compare VP and KP patient demographics and<br />

evaluate inpatient and outpatient utilization trends. Hospitalizations<br />

for VP and KP were identified from California, New York and Florida<br />

inpatient and ambulatory discharge databases from 2005-2008.<br />

ICD-9 diagnosis codes for pathologic, dorsal and lumbar fracture<br />

<strong>of</strong> vertebrae were cross-referenced with ICD-9 procedure codes and<br />

CPT procedure codes to select the population. Patients under 40<br />

years <strong>of</strong> age, or those that had both procedures were excluded. The<br />

final population contained 61,851 VAPs (35,805 KPs and 26,046<br />

VPs). KP showed increased inpatient and outpatient utilization.<br />

VP utilization remained at a low level <strong>of</strong> six/100,000 capita. KP<br />

patients had more comorbidities than VP patients. In Florida in<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


2008, radiologists performed the majority <strong>of</strong> VPs (52.3%) and<br />

orthopaedists performed the most KPs (35.45%). Post-operative<br />

complication rates were significantly different; 0.79% <strong>of</strong> KPs had<br />

cardiac complications versus 0.57% <strong>of</strong> VPs (p = 0.0073). Respiratory<br />

complications occurred in 0.83% <strong>of</strong> KPs and 0.49% <strong>of</strong> VPs (p


heterotopic bone in the canal or neural foramen (20). Early surgery<br />

prior to six weeks preop was complicated by excessive bleeding. This<br />

was less evident after three months post op. All patients operated<br />

after six months showed evidence <strong>of</strong> bone formation in the canal.<br />

Average follow up was 22 months (range 12-50). Most patients<br />

had immediate relief <strong>of</strong> symptoms but it did not persist in several<br />

patients. Six patients required more than one surgery for reformation<br />

<strong>of</strong> bone in the canal. The <strong>of</strong>f label use <strong>of</strong> rhBMP-2 in PLIF and TLIF<br />

surgery may lead to heterotopic bone, cage migration and extensive<br />

scarring. Revision surgery is complex but may lead to resolution <strong>of</strong><br />

symptoms in these individuals.<br />

posteR No. p382<br />

Selective Thoracic Fusion in Lenke 1C Curves:<br />

Prevalence and Criteria<br />

Charles H Crawford, III MD, Louisville, KY<br />

Lawrence G Lenke, MD, Saint Louis, MO<br />

Daniel J Sucato, MD, Dallas, TX<br />

B Stephens Richards III, MD, Dallas, TX<br />

John B Emans, MD, Boston, MA<br />

Michael G Vitale, MD, New York, NY<br />

Mark A Erickson, MD, Aurora, CO<br />

James O Sanders, MD, Rochester, NY<br />

Keith H Bridwell, MD, Saint Louis, MO<br />

Classification systems for adolescent idiopathic scoliosis (AIS)<br />

have been developed to help surgeons identify curve types and<br />

select appropriate fusion levels. Selective thoracic fusion has been<br />

advocated for the so-called ‘false double major’ curve (Lenke 1C,<br />

King II). Despite this recommendation, many surgeons continue to<br />

perform non-selective fusions for this curve type. It is unknown to<br />

what extent these classification systems and other factors influence<br />

the surgeon’s selection <strong>of</strong> fusion levels. A prospective multicenter<br />

database included 264 patients with surgically treated 1C curves.<br />

Patients were divided into two groups: selective thoracic fusion group<br />

(ST) included patients with the lowest instrumented vertebra (LIV)<br />

at or cephalad to L1, and nonselective group (NS) included patients<br />

with the LIV at or caudal to L3. Preoperative radiographic, clinical<br />

(scoliometer) and SAQ/SRS questionnaire data were analyzed and<br />

compared between the groups. Only 138/264 (49%) underwent an<br />

ST fusion. Gender ratio (90% vs. 86% female), average age (14.7 vs.<br />

14.8 years) and preop main thoracic (MT) Cobb angles (56.0º±9.9<br />

vs. 55.3º±11.4) were not significantly different between groups (ST<br />

vs NS). However, the average thoracolumbar/lumbar (TL/L) preop<br />

Cobb angle was significantly smaller in the ST group (42.1º±8.6 vs.<br />

47.0º±9.0; p


caused by mainstem airway compression from the spine. This study<br />

has important implications for surgical approaches to patients with<br />

scoliosis and obstructive lung disease.<br />

posteR No. p385<br />

Defensive Medicine The Impact <strong>of</strong> Preventable Spinal<br />

Imaging<br />

Mark F Kurd, MD, Gladwyne, PA<br />

Alan S Hilibrand, MD, Philadelphia, PA<br />

James D McDermott, BA, Philadelphia, PA<br />

Jeffrey Rihn, MD, Philadelphia, PA<br />

Ravi Kumar Ponnappan, MD, Linwood, NJ<br />

D Greg Anderson, MD, Moorestown, NJ<br />

Alexander Vaccaro, MD, PhD, Gladwyne, PA<br />

Todd J Albert, MD, Philadelphia, PA<br />

The Government Accountability Office reported that Medicare<br />

spending from 2000 to 2006 for imaging services increased from<br />

$6.89 to $14.11 billion. Despite the interest <strong>of</strong> policy makers in this<br />

issue, there is little medical literature evaluating the appropriateness<br />

<strong>of</strong> medical imaging utilization. This study was designed to assess<br />

the prevalence and predictors <strong>of</strong> unnecessary spinal imaging. At the<br />

time <strong>of</strong> abstract submission, 75 consecutive patients presenting for<br />

initial consultation to a spine surgeon completed a self-administered<br />

questionnaire. Data collected included demographic information,<br />

relevant medical and surgical history and information on previous<br />

spinal studies. After a history and physical exam, the attending spine<br />

surgeon determined whether each spinal study the patient had<br />

undergone was necessary and what effect the study had in making<br />

the diagnosis and treatment plan. Twenty-eight percent <strong>of</strong> patients<br />

surveyed were found to have at least one unnecessary imaging study.<br />

Twenty percent <strong>of</strong> patients with an unnecessary study had multiple<br />

unnecessary studies. The only significant predictor <strong>of</strong> unnecessary<br />

studies was a history <strong>of</strong> spine surgery (p=0.016). Age, sex, income,<br />

education, health insurance, duration <strong>of</strong> symptoms, number <strong>of</strong><br />

doctor visits, location <strong>of</strong> pathology and prescribing physician were<br />

not predictive <strong>of</strong> having an unnecessary study. Greater than one in<br />

four patients presenting to a spine surgeon undergo preventable<br />

medical imaging. This exposes patients to unnecessary risk and<br />

the healthcare system to millions <strong>of</strong> dollars <strong>of</strong> wasteful spending.<br />

Revisiting <strong>of</strong> imaging guidelines for patients presenting to medical<br />

care for back pain may be warranted.<br />

posteR No. p386<br />

Two-Year Post-Op Follow-Up On A Less Invasive Far<br />

Lateral Approach In Advanced Adult Spine Deformity<br />

Gregory M Mundis, MD, La Jolla, CA<br />

Behrooz A Akbarnia, MD, La Jolla, CA<br />

Pooria Salari, MD<br />

Ramin Bagheri, MD, La Jolla, CA<br />

Anterior reconstruction <strong>of</strong> the spine in adult deformity is a widely<br />

accepted approach to improve fusion rate and achieve coronal<br />

and sagittal deformity correction. We present our experience using<br />

the less invasive far lateral interbody fusion (LIF) to achieve these<br />

goals. This was a retrospective review <strong>of</strong> adult deformity patients<br />

undergoing LIF. Of 58 patients, 16 met the inclusion criteria: Cobb<br />

>30°, initial surgery for scoliosis and minimum two-year follow<br />

up with complete data. Exclusion criteria included add-on disease<br />

and primary diagnosis other than scoliosis. Clinical, radiographic<br />

and outcomes data were analyzed. There were 15 females and one<br />

male. Average age was 56 (23-84) years, seven were idiopathic and<br />

nine were degenerative scoliosis. Average comorbidites were 2.6<br />

754<br />

per patient. Main curve improved from 47° to 19° (p


lack <strong>of</strong> significant differences in satellite rod orientation suggests<br />

that positioning <strong>of</strong> the satellite rods is not an important factor to<br />

consider in strengthening the revision.<br />

posteR No. p388<br />

Defining Two Components <strong>of</strong> Shoulder Imbalance:<br />

Clavicle Tilt and Trapezial Prominence<br />

Peter O Newton, MD, San Diego, CA<br />

Takashi Ono, MD<br />

Tracey Bastrom, MA, San Diego, CA<br />

The current study sought to identify two features <strong>of</strong> shoulder<br />

asymmetry (clavicle tilt and trapezial prominence) and how they<br />

relate to different underlying radiographic parameters. A total <strong>of</strong> 113<br />

pre-operative patients with right main thoracic Lenke 1 and 2 AIS<br />

curves were investigated to evaluate the correlations between clinical<br />

and radiographic findings <strong>of</strong> shoulder imbalance. The following<br />

parameters were defined and evaluated from pre-op clinical<br />

photographs: clavicle angle (tilt), trapezial angle, ratio <strong>of</strong> left to right<br />

trapezial area. These were correlated with radiographic measures <strong>of</strong><br />

T1 tilt, first rib angle, curve magnitude, coronal balance and thoracic<br />

apical deviation. There were 82 Lenke 1 and 31 Lenke 2 curves with<br />

an average thoracic Cobb <strong>of</strong> 52.1 degrees. The clinical clavicle angle<br />

had a modest correlation with proximal thoracic curve size, T1 tilt,<br />

coronal balance and thoracic apical deviation (r value, 0.43, 0.42,<br />

0.41 and 0.41, respectively). In contrast, medial shoulder trapezial<br />

prominence correlated well with the radiographic measures <strong>of</strong> T1 tilt<br />

and the 1st rib angle (trap angle: 0.70 and 0.68; trap area ratio: 0.58<br />

and 0.60, respectively). Our analysis suggests there are two distinct<br />

regions (lateral and medial) <strong>of</strong> shoulder height asymmetry. Medial<br />

differences, reflected in trapezial prominence, relate principally<br />

to deformity created by upward tilted proximal ribs, and thus T1<br />

tilt. Lateral differences in shoulder symmetry correlate weakly with<br />

radiographic measures <strong>of</strong> spinal deformity. This suggests correction<br />

<strong>of</strong> the trapezial prominence by leveling T1 may be more predictable<br />

compared to leveling clavicle tilt following corrective scoliosis<br />

surgery.<br />

posteR No. p389<br />

In Vivo Kinematics between Pre-operative and Postoperative<br />

Fusion <strong>of</strong> the Lumbar Spine<br />

Christopher Carr, Knoxville, TN<br />

Joseph S Cheng, MD, MS, Nashville, TN<br />

Adrija Sharma, Knoxville, TN<br />

Richard D Komistek, PhD, Knoxville, TN<br />

Mohamed Mahfouz, PhD, Knoxville, TN<br />

Joseph W Mitchell, Knoxville, TN<br />

Chris Little, Knoxville, TN<br />

Fusion <strong>of</strong> the spine decreases overall motion and is thought to<br />

induce more stress at adjacent levels, leading to the development<br />

<strong>of</strong> further problems and additional surgeries. The objective <strong>of</strong> this<br />

study is to analyze the in-vivo motions <strong>of</strong> the vertebrae in the fused<br />

spine at pre-operative and post-operative stages to understand the<br />

effects <strong>of</strong> fusion on adjacent levels. Six subjects undergoing fusion<br />

were evaluated using fluoroscopic surveillance while performing<br />

flexion/extension <strong>of</strong> the lumbar spine. Three <strong>of</strong> the subjects required<br />

fusion at L4-L5 and three subjects were required fusion at L5-S1.<br />

In-vivo, 3D kinematics at each vertebral level were recovered using<br />

a previously described 3D-to-2D image registration technique and<br />

comparative changes were analyzed for each subject. On average,<br />

pre-operative and post-operative in-plane rotations achieved by<br />

subjects fused at L4-L5 were 30.8° and 23.1°, respectively, while<br />

755<br />

subjects having a fusion at L5-S1 averaged 28.9° <strong>of</strong> rotation about<br />

the FE axis pre-operatively and 27.9° post-operatively. All subjects<br />

experienced a substantial increase in rotation at one <strong>of</strong> the superior<br />

levels following fusion. Out-<strong>of</strong>-plane rotations tended to decrease<br />

following fusion for the L5-S1 group, but the L4-L5 group revealed<br />

sporadic out-<strong>of</strong>-plane rotational magnitudes. Single level fusion<br />

increases overall stiffness <strong>of</strong> the lumbar spine and results in increased<br />

motion at adjacent levels, yet unfortunately, the effect on specific<br />

adjacent levels is not clear. Abnormal motion patterns appear to<br />

remain dominant with decreased magnitudes at pathological and<br />

fused levels, possibly leading to degeneration at levels where the<br />

abnormal kinematics are occurring.<br />

posteR No. p390<br />

Advanced Healing <strong>of</strong> the Intervertebral Disc using<br />

Anabolic Growth Factors and a Catabolic Inhibitor<br />

Matthew Alan Pifer, MD, Royal Oak, MI<br />

Leonard K Kibuule, MD, Southlake, TX<br />

Tristan Maerz, BS<br />

Kevin Baker, MS, Royal Oak, MI<br />

Diane Studzinski, Royal Oak, MI<br />

Harry N Herkowitz, MD, Royal Oak, MI<br />

High reherniation rates following discectomy are thought to be<br />

associated with poor healing. Tissue engineering techniques can<br />

augment the healing <strong>of</strong> the intervertebral disc by supplying a blend<br />

<strong>of</strong> regenerative cytokines. Normal human articular chondrocytes<br />

(nHAC) were treated with the following combinations <strong>of</strong><br />

transforming growth factor-²3 (TGF- ²3), bone morphogenetic<br />

protein-4 (BMP-4) and tissue inhibitor <strong>of</strong> matrix metalloproteinase-2<br />

(TIMP-2): 1) TGF- ²3; 2) BMP-4; 3) TIMP-2; 4) TGF- ²3 + BMP-4; 5)<br />

TGF- ²3 + TIMP-2; 6) BMP-4 + TIMP-2; 7) TGF- ²3 + BMP-4 + TIMP-<br />

2. Gene expression <strong>of</strong> Collagen1a1, Collagen2a1, Collagen10a1,<br />

and Aggrecan, and glycosaminoglycan (GAG) concentrations were<br />

assessed at 24 hrs, 72 hrs and seven days. Immunocytochemistry<br />

staining was performed at 72 hrs. TGF-²3 (1), TGF-²3 + BMP-4 (4),<br />

TGF-²3 + TIMP-2 (5) and TGF-²3 + BMP-4 + TIMP-2 (7) significantly<br />

upregulated Collagen1a1, Collagen2a1, and Collagen10a1. BMP-<br />

4 (2) and BMP-4 + TIMP-2 (6) upregulated Aggrecan expression.<br />

Treatment with TGF-²3 + BMP-4 (4) and TGF-²3 + BMP-4 + TIMP-2<br />

(7) showed markedly high GAG content compared to the control.<br />

Immunocytochemistry staining showed increased fluorescent signal<br />

from cells treated with TGF-²3 (1) and TGF-²3 + BMP-4 + TIMP-2 (7).<br />

The use <strong>of</strong> anabolic growth factors and a catabolic inhibitor molecule<br />

proved efficacious in upregulating extracellular matrix markers.<br />

Healing an intervertebral disc could be accomplished by the delivery<br />

<strong>of</strong> both anabolic growth factors and catabolic inhibitors. Articular<br />

chondrocytes have been previously used as an intervertebral disclike<br />

cell and future investigations will include the use <strong>of</strong> annulus<br />

fibrosus and nucleus pulposus cells.<br />

posteR No. p391<br />

Functional Assessment <strong>of</strong> Human Fetal Neural Stem<br />

Cells Following Spinal Cord Injury in Rats<br />

Robert E Mayle, MD, San Jose, CA<br />

Ivan Cheng, MD, Redwood City, CA<br />

R Lane Smith, PhD, Stanford, CA<br />

Christopher Cox, MD, Stanford, CA<br />

Ian Corcoran-Schwartz, Palo Alto, CA<br />

Injury to the spinal cord is devastating, resulting in functional<br />

deficits that leave patients with significant impairments. The injured<br />

adult mammalian central nervous system does not support readily<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


apparent re-growth <strong>of</strong> damaged axons. Four groups were identified<br />

for this study: two experimental and two control. A moderate spinal<br />

cord contusion at the T10 level was incurred. Experimental subjects<br />

received a subdural injection <strong>of</strong> human neural stem cells (hNSCs)<br />

adjacent to the site <strong>of</strong> injury, or an intrathecal injection <strong>of</strong> hNSCs<br />

through a separate laminotomy made in the mid-lumbar spine,<br />

distal to the site <strong>of</strong> injury. Control subjects received an injection <strong>of</strong><br />

control media alone. Functional assessment was measured using<br />

the BBB Locomotor Rating Score following injury and then weekly<br />

for six weeks. Compared to controls, subjects that received hNSCs<br />

have improved functional recovery. The ability to achieve similar<br />

significant functional recovery through an intra-thecal injection <strong>of</strong><br />

hNSCs distal to the site <strong>of</strong> spinal cord injury (SCI) may considerably<br />

affect clinical treatment <strong>of</strong> SCI. Proper usage <strong>of</strong> stem cell therapy<br />

shows early promise in the improvement <strong>of</strong> functional recovery<br />

following spinal cord injury.<br />

posteR No. p392<br />

Prevalence and Outcomes <strong>of</strong> Coronal Decompensation<br />

in Multilevel Spinal Fusion for Adult Deformity<br />

Joshua Pahys, MD, Philadelphia, PA<br />

Keith H Bridwell, MD, Saint Louis, MO<br />

Lawrence G Lenke, MD, Saint Louis, MO<br />

Lukas P. Zebala, MD, Saint Louis, MO<br />

Samuel Kang-Wook Cho, MD, Palisades Park, NJ<br />

Matthew M Kang, MD<br />

Woojin Cho, MD, Charlottesville, VA<br />

Christine Baldus, MD, Saint Louis, MO<br />

We report the prevalence and outcomes <strong>of</strong> coronal decompensation<br />

in a consecutive series <strong>of</strong> multilevel spinal fusions for adult<br />

scoliosis. A consecutive series <strong>of</strong> 148 patients with adult idiopathic/<br />

degenerative scoliosis who underwent a multilevel primary posterior<br />

spinal fusion (>5 levels fused) at a single institution from 2002-2007<br />

with minimum two-year follow up were reviewed. There were 133<br />

females/15 males; mean age at surgery 48.2 years. Posterior fusion<br />

alone was performed in 66 patients (44.6%), while 82 patients<br />

(55.4%) had a combined posterior/anterior fusion. Five patients<br />

(3.7%) had coronal imbalance (CI) <strong>of</strong> >4 cm from the C7 plumb to<br />

the center sacral vertical line (CSVL) at two months postop. All CI<br />

patients had double major curve patterns, increased lumbar flexibility<br />

on bending and no preop CI. Compared to the coronally balanced<br />

(CB) patients, CI patients had longer posterior fusions (14.0 vs. 10.0<br />

levels, p=0.014), presence <strong>of</strong> pre/postop pelvic obliquity (p=0.027,<br />

p=0.02, respectively) and similar preop coronal balance (p=0.46).<br />

All CI patients were fused to L4 or below compared to 25.9% <strong>of</strong><br />

CB patients (p=0.33). CI patients had a larger coronal imbalance<br />

at initial followup (p


mean operative time and ICU stay. Chi-square analysis demonstrated<br />

that the complication group exhibited a higher percentage <strong>of</strong><br />

staging procedures (46% vs. 37%, p=0.011), a higher percentage <strong>of</strong><br />

anterior/posterior approach (56% vs. 32%, p=0.011) and a greater<br />

prevalence <strong>of</strong> postoperative anemia (16.7% vs. 6.4%, p=0.04).<br />

We report an incidence <strong>of</strong> 7.6% in major complications among<br />

953 consecutive patients. Improved understanding <strong>of</strong> risk pr<strong>of</strong>iles<br />

and procedure-related parameters may assist in pre-operative riskbenefit<br />

surgical discussions and pre-emptive approaches to reduce<br />

major complications. Patients should be counseled that a major<br />

complication is more likely to occur in revision, staged and anterior/<br />

posterior surgery.<br />

posteR No. p395<br />

Diagnosis and Treatment <strong>of</strong> Craniocervical Dissociation<br />

in 48 Consecutive Survivors<br />

Abilio Antunes Reis, MD, Glen Allen, VA<br />

Richard Jackson Bransford, MD, Seattle, WA<br />

Tom Penoyer, MD<br />

Jens R Chapman, MD, Seattle, WA<br />

Carlo Bellabarba, MD, Seattle, WA<br />

Craniocervical dissociation (CCD) is an uncommon and frequently<br />

fatal injury with few reports in the literature <strong>of</strong> survivors. Advances<br />

in automobile safety and improved emergency medical services<br />

have resulted in increased survival. Timely diagnosis and treatment<br />

are imperative for optimal outcome. Regrettably, the presence <strong>of</strong><br />

multiple life threatening injuries, low clinical suspicion, and lack <strong>of</strong><br />

familiarity with the upper cervical radiographic anatomy frequently<br />

lead to missed or delayed diagnosis. This paper represents the largest<br />

series <strong>of</strong> surgically treated CCD survivors. The goal <strong>of</strong> this study is<br />

to determine if any improvements have been made in the timely<br />

diagnosis <strong>of</strong> CCD while performing a complete patient evaluation.<br />

Following Institutional Review Board approval, a search <strong>of</strong> the<br />

Harborview Medical Center (HMC) trauma registry was conducted<br />

for all surgically treated CCD patients between 1996 and 2008.<br />

Forty-eight consecutive cases were identified. A retrospective review<br />

<strong>of</strong> the radiological and clinical results with emphasis on timing <strong>of</strong><br />

diagnosis, modality used for diagnosis, clinical effect <strong>of</strong> delayed<br />

diagnosis, potential clinical or imaging warning signs and response<br />

to treatment was performed. Thirty-one patients treated from 2003<br />

to 2008 were compared to 17 patients that were treated from 1996<br />

to 2002 and reported previously. All patients sustained high-energy<br />

injuries and were evaluated according to standard ATLS protocols.<br />

Once CCD was identified or suspected, provisional stabilization<br />

was applied and MRI evaluation performed. Definitive surgical<br />

management with rigid posterior instrumentation and fusion<br />

was performed as soon as physiologically possible. Craniocervical<br />

dissociation was identified on initial cervical spine imaging in 26<br />

patients (84%). The remaining five patients (16%) were diagnosed<br />

by cervical spine MRI. Twenty-three patients (74.2%) were diagnosed<br />

within 24 hours <strong>of</strong> presentation, seven (22.6%) were diagnosed<br />

between 24 and 48 hours and one (3.2%) experienced a delay <strong>of</strong><br />

greater than 48 hours (table 1). In comparison, four (24%) <strong>of</strong> the<br />

previously treated 17 patients were diagnosed on initial cervical<br />

spine imaging. Four patients (24%) were diagnosed within 24<br />

hours <strong>of</strong> presentation, nine (52%) were diagnosed between 24<br />

and 48 hours, and four (24%) experienced a delay <strong>of</strong> greater than<br />

48 hours. There were no cases <strong>of</strong> craniocervical pseudarthrosis or<br />

hardware failure during a mean nine-month follow-up period. Four<br />

patients expired during their hospital course. The mean <strong>American</strong><br />

Spinal Injury Association (ASIA) motor score <strong>of</strong> 47 improved to<br />

60, and the number <strong>of</strong> patients with useful motor function (ASIA<br />

Grade D or E) increased from eight (26%) preoperatively to 17<br />

757<br />

(55%) postoperatively. Improvements have been made in the time<br />

to diagnosis <strong>of</strong> CCD in recent years. Increased awareness and the<br />

routine use <strong>of</strong> CT scan as part <strong>of</strong> the initial advanced trauma life<br />

support evaluation account for this progress. Expedited diagnosis<br />

has decreased preoperative neurological deterioration. However,<br />

differences in length <strong>of</strong> follow up between the two groups preclude<br />

conclusions about its effect on long-term neurological outcome.<br />

posteR No. p396<br />

Pedicle Subtraction Osteotomy for Cervicothoracic<br />

Kyphosis: Technique and Report <strong>of</strong> 10 Cases<br />

Vedat Deviren, MD, San Francisco, CA<br />

Justin Scheer, San Francisco, CA<br />

Christopher Ames, MD, San Francisco, CA<br />

Historically, the Smith-Peterson osteotomy has been used to<br />

restore cervical spinal sagittal balance. Cervicothoracic (CT) pedicle<br />

subtraction osteotomy (PSO) <strong>of</strong>fers more controlled closure and<br />

greater biomechanical stability but is infrequently reported in<br />

literature. The study details the CT PSO technique with 10 cases and<br />

correlates clinical kyphosis (chin brow vertical angle (CBVA)) with<br />

radiographic measurements. Ten patients underwent PSO (nine at<br />

C7, one at T1) for severe cervical kyphotic deformities. Pre- and postop<br />

sagittal plane radiographic (n=10) and CBVA (n=7) measurements<br />

were made. Patient outcomes were assessed using Neck Disability<br />

Index (NDI), SF36 and Visual Analogue Pain Scale (VAS). Technique:<br />

Facet release and C6-C7 and C7-T1 facetectomy were performed. The<br />

C7 and C8 nerve roots were identified and traced out the foramen.<br />

The osteomtomy was carried lateral and the C7 pedicle isolated. The<br />

C7 vertebral body (VB) lateral wall was resected with a Penfield 1<br />

retractor and visualized to the anterior VB margin. The C7 pedicle was<br />

skeletonized and removed with a Lempert-Leksell. Sequential lumbar<br />

taps were used to decancellate the C7 VB; osteotomes and downpushing<br />

curettes were used to create a 30 deg wedge. The C7 lateral<br />

wall, then the medial column, was removed. The Mayfield was used<br />

to lift the head (after loosening) and close the osteotomy. Results are<br />

averages (n=10): age - 72yrs, estimated blood loss - 1,110 cc, surgical<br />

time - 4.3 hrs, hospital stay - 9.9 days, follow-up time - 5 mo, preop<br />

cervical sagittal imbalance - 8.0±1.4 cm, immediate post-op - 3.5±1.8<br />

cm, overall correction - 4.5±1.5 cm (43.6%), PSO correction - 18.8<br />

deg, CBVA correction - 38 deg. There was no correlation between<br />

pre-op C2-T1 radiographic kyphosis and pre-op CBVA (R squared =<br />

0.0021). There was a large correlation with PSO correction angle and<br />

post-op CBVA (R squared = 0.36). NDI decreased significantly (51.1<br />

to 38.6, p=0.03), and VAS (7.6 to 3.4, p=0.0083). PCS increased by<br />

18.4% (30.2 to 35.8) with no neurological complications. CT PSO<br />

is safe and effective for managing CT kyphotic deformity. It yields<br />

excellent correction <strong>of</strong> cervical kyphosis and CBVA with controlled<br />

closure and improvement in HRQOL scores even at early time points.<br />

Currently, the authors prefer PSO at the CT level for treatment <strong>of</strong><br />

chin-on-chest deformity.<br />

posteR No. p397<br />

Inferior Vena Cava Filters Prevent Emboli in High-Risk<br />

Patients Undergoing Major Spinal Surgery<br />

Justin Dazley, MD, Stony Brook, NY<br />

Reese Wain, MD<br />

Ryan Vellinga, BS, Hauppauge, NY<br />

Benjamin Cohen, MD, Garden City, NY<br />

Marc A Agulnick, MD, Franklin Square, NY<br />

This study was undertaken to demonstrate the efficacy <strong>of</strong> prophylactic<br />

inferior vena cava (IVC) filters in preventing potentially fatal venous<br />

thromboembolic event (VTE) in high-risk patients undergoing major<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


spinal surgery. All patients undergoing major spinal surgery, with IVC<br />

filters placed for VTE prophylaxis from 2006 to 2009, were reviewed.<br />

Patients with two or more risk factors for VTE were included and<br />

reviewed for perioperative VTE, as well as complications related to use<br />

<strong>of</strong> the IVC filter. Cavograms obtained at the time <strong>of</strong> attempted filter<br />

retrieval identified intercepted emboli, inferring the prevention <strong>of</strong> a<br />

pulmonary embolism (PE). The incidence <strong>of</strong> intercepted emboli, as<br />

well as PE, in our series was compared with rates <strong>of</strong> PE documented<br />

in the literature for similar high-risk populations undergoing similar<br />

procedures. Approximately 17% <strong>of</strong> patients reviewed had thrombus<br />

present at attempted filter retrieval. An additional 17% <strong>of</strong> IVC filters<br />

were unable to be retrieved as they had shifted position within the<br />

inferior vena cava. No patients experienced symptomatic PE. One<br />

patient developed a DVT requiring pharmacologic treatment. One<br />

patient with a retained filter developed a lower extremity phlebitis<br />

requiring treatment. There were no other complications related to<br />

IVC filter use. This series shows that IVC filters are safe, as well as<br />

efficacious in preventing VTEs in patients undergoing spinal surgery.<br />

The observed rate <strong>of</strong> PE is consistent with the rate <strong>of</strong> PE in similar<br />

populations documented in the literature; however, our study<br />

demonstrates objectively that IVC filters prevent embolic events in<br />

this patient population. Emboli intercepted by filters more accurately<br />

estimate PEs prevented, and may prove to be a standard for future<br />

efforts to assess the efficacy <strong>of</strong> these devices, as their role in spine<br />

surgery continues to be defined.<br />

posteR No. p398<br />

Lateral Lumbar Fusion (LLIF) Vs. Standard Fusion<br />

Approaches: Analysis Of Segmental Lordosis Change<br />

Jonathan N Sembrano, MD, Minneapolis, MN<br />

Ryan David Horazdovsky, MD, Minneapolis, MN<br />

Amit Sharma, MD, New Orleans, LA<br />

Edward Rainier G Santos, MD, Minneapolis, MN<br />

Bieta Azmoudeh, BS, Minneapolis, MN<br />

David W Polly Jr, MD, Minneapolis, MN<br />

Potential advantages <strong>of</strong> minimally-invasive lateral lumbar interbody<br />

fusion (LLIF) include reduced morbidity and blood loss, decreased<br />

post-op pain and faster recovery. Improvement in sagittal alignment<br />

is considered an important goal in lumbar fusion. There are no<br />

studies comparing restoration <strong>of</strong> sagittal parameters utilizing the<br />

LLIF approach versus standard approaches. This is a comparative<br />

x-ray analysis <strong>of</strong> four lumbar fusion approaches. In a two-year period,<br />

245 levels in 167 patients were fused: LLIF (43 patients; 63 levels);<br />

anterior lumbar interbody fusion (ALIF) (41 patients; 67 levels);<br />

transforaminal lumbar interbody fusion (TLIF) (56 patients; 74<br />

levels); and posterior spinal fusion (PSF) (30 patients; 41 levels). The<br />

following parameters were measured on pre- and post-op standing<br />

radiographs: segmental lordosis; overall lumbar lordosis (L1-S1);<br />

anterior and posterior disk heights. Comparison <strong>of</strong> measurement<br />

changes between groups were performed using student’s t-test.<br />

All interbody procedures produced significantly greater lordosis<br />

change compared to posterior fusion alone (ALIF p=0.007; TLIF<br />

p=0.019; LLIF p=0.03). The three interbody approaches were not<br />

significantly different (ALIF vs. TLIF p=0.15; ALIF vs. LLIF p=0.28;<br />

TLIF vs. LLIF p=0.80). Only ALIF showed significant improvement<br />

in overall lumbar lordosis (p=0.0017). LLIF anterior disk height<br />

increase is intermediate between ALIF and TLIF. LLIF posterior disk<br />

height increase is similar to ALIF and superior to TLIF and PSF. LLIF<br />

provides similar segmental sagittal contour change compared to<br />

other interbody fusion approaches (ALIF and TLIF), and significantly<br />

greater compared to posterior fusion alone. Overall lumbar lordosis<br />

remains unchanged after LLIF. Posterior disk height increase is<br />

significant and may provide basis for indirect decompression.<br />

758<br />

posteR No. p399<br />

uAnalysis <strong>of</strong> Pedicle Screw Design for Cement<br />

Augmentation in Osteoporotic Vertebrae<br />

Theodore J Choma, MD, Columbia, MO<br />

Ferris Pfeiffer, PhD<br />

Surgeons are increasingly considering pedicle screw instrumentation<br />

in osteoporotic patients for a variety <strong>of</strong> spinal conditions. The<br />

optimal screw design and cement characteristics are as yet unknown<br />

when cement augmentation is considered. Fifty human osteoporotic<br />

(with average bone mineral density 0.581 g/cm3) cadaveric<br />

thoracolumbar vertebrae were instrumented with pedicle screws<br />

from a single vendor. Screw geometry varied by being solid-core or<br />

cannulated with multiple side fenestrations over the distal one-third<br />

<strong>of</strong> the screw. Two different (one being more viscous than the other)<br />

commercially available polymethylmethacrylate (PMMA) cements<br />

were tested for augmentation. Pullout testing was performed on<br />

all screws. Extraction torque was tested on 24 additional vertebrae.<br />

Non-augmented screws had the lowest mean force to failure (159<br />

N). Solid core screws augmented with PMMA prior to insertion<br />

demonstrated 525 N failure force. PMMA injected though distally<br />

fenestrated screws produced 690 N failure force. Peak insertion<br />

torque for all screws averaged 6.99 in-lb. Extraction torque for nonaugmented<br />

screws was not significantly different, but was higher<br />

(10.33 in-lbs for solid core and 15.61 in-lbs for distally fenestrated,<br />

p


levels were C2-3 and C3-4. Twenty-seven percent <strong>of</strong> patients had >1<br />

congenital fusion level. In the KFS population, the surgical level was:<br />

1-level cephalad to the congenital fusion (17%), 1-level caudal to the<br />

congenital fusion (66%), in between two congenitally-fused areas<br />

(17%). The KFS group had a tendency <strong>of</strong> more myeloradiculopathy,<br />

and the control group had a tendency towards more radiculopathy.<br />

However, both tendencies were not significantly different. MRIs <strong>of</strong> 10<br />

KFS and 22 control group were available. There was no difference in<br />

the area <strong>of</strong> both spinal cord and canal <strong>of</strong> the operative levels. There<br />

were no differences between KFS and well-matched control group<br />

in terms <strong>of</strong> age <strong>of</strong> onset, presentation, revision rate, complication<br />

rates, surgical outcomes and cross sectional spinal cord and canal<br />

dimensions.<br />

posteR No. p401<br />

Outcomes And Complications Of Pedicle Subtraction<br />

Osteotomy For Sagittal And/Or Coronal Deformity<br />

George N Jada, Kingston, ON Canada<br />

Ahmed Salem Mohamed, MD, Baltimore, MD<br />

Philip R Neubauer, MD, White Hall, MD<br />

Richard L Skolasky, Jr Pr<strong>of</strong>., Baltimore, MD<br />

Khaled M- Kebaish, MD, Baltimore, MD<br />

Pedicle subtraction osteotomy (PSO) is a widely used procedure<br />

in surgeries <strong>of</strong> spinal deformity. However, there is limited research<br />

into the outcomes and complications associated with PSO in older<br />

populations. This a retrospective study <strong>of</strong> 63 consecutive patients<br />

who underwent PSO for the treatment <strong>of</strong> sagittal and/or coronal<br />

deformities. All patients included were older than 40 years. All patients<br />

completed a minimum 24 months <strong>of</strong> follow up. Complications were<br />

classified as major or minor. Radiographic and functional outcome<br />

data (SRS-22, ODI) were collected prospectively. The average patient<br />

age was 58.3 (42-78), with 41 females and 22 males. Preoperative<br />

diagnoses included 33 patients (52.38%) with sagittal imbalance,<br />

three patients (4.76%) with coronal deformity and 27 patients<br />

(42.86%) with both sagittal and coronal imbalance. There was total<br />

<strong>of</strong> 87 PSO surgeries in 63 patients, 71 were lumbar, 12 thoracic, two<br />

cervical and two sacral. There was improvement in all SRS-22 domains<br />

from preoperative to final follow up, with the most improvement<br />

in the lumbar/sacral PSO patients. There was no mortalities, eight<br />

neurological complications, none were permanent, two infection,<br />

one deep and one superficial. There was one pseudoarthrosis at<br />

an osteotomy level. Overall 28.57% <strong>of</strong> patients experienced major<br />

complications and 57.14% had minor complications. Increased age<br />

was correlated with increased complications (r=0.85). There was a<br />

correlation between the occurrence <strong>of</strong> complications and the degree<br />

<strong>of</strong> preoperative sagittal deformity (r=0.39). Furthermore, a greater<br />

correction in the sagittal deformity was associated with greater risk<br />

<strong>of</strong> complications (r=0.23). Pedicle subtraction osteotomy is now<br />

widely used for the correction <strong>of</strong> sagittal and/or coronal deformities.<br />

It is a technically challenging procedure which has an increased risk<br />

<strong>of</strong> complications in older patients. Nevertheless, patients showed<br />

significant improvement in functional outcomes in spite <strong>of</strong> these<br />

complication. The significance <strong>of</strong> this study is that although older<br />

patients may be at an increased risk <strong>of</strong> perioperative complications<br />

following pedicle subtraction osteotomy for deformity correction,<br />

their functional outcome is substantially improved.<br />

759<br />

posteR No. p402 AlteRNAte pApeR<br />

Complication Rates Utilizing rhBMP-2 for Instrumented<br />

Lumbar Posterolateral Fusions<br />

Clifford B Jones, MD, Grand Rapids, MI<br />

Martin H<strong>of</strong>fman, MD, Grand Rapids, MI<br />

Debra Sietsema, PhD, Grand Rapids, MI<br />

rhBMP-2 (INFUSE) has been utilized <strong>of</strong>f label for instrumented<br />

lumbar posterolateral fusions for many years. Many series have<br />

demonstrated predictable healing rates and reoperations. The<br />

goal <strong>of</strong> this study was to evaluate the number <strong>of</strong> complications<br />

requiring reoperation for symptomatic failed fusion and hyper<br />

responsive neural compressions. During a seven-year period <strong>of</strong><br />

time (2002-2009), all patients undergoing instrumented lumbar<br />

posterolateral fusion consenting to utilizing <strong>of</strong> rhBMP-2 (INFUSE)<br />

were retrospectively evaluated as a quality analysis within a large<br />

orthopaedic surgery private practice. Patient demographics, body<br />

mass index (BMI), comorbidities, number <strong>of</strong> levels and types<br />

<strong>of</strong> bone void filler (BVF) were analyzed. Complications were<br />

determined to be reoperation secondary to failed symptomatic<br />

fusion, hyper reaction resulting in compressive fluid collections,<br />

hyper formation <strong>of</strong> bone resulting in neural compression and<br />

infections. A total <strong>of</strong> 1,269 consecutive patients were evaluated with<br />

42% males and 58% females. Average age was 59 yo and BMI was<br />

30. Number <strong>of</strong> levels fused was: one (478, 38%), two (525, 41%),<br />

three (182, 14%), four (64, 5%), five (13, 1%) and six (7, 0.6%).<br />

Complications requiring reoperation were 78/1269 (6%): Seroma<br />

with acute neural compression 29 (2.3%), excess bone formation<br />

with delayed neural compression seven (0.5%), infection requiring<br />

debridement 10 (0.8%) and symptomatic nonunion requiring redo<br />

fusion and instrumentation 33 (2.6%). Seroma formation was not<br />

associated with interbody fusion or prior rhBMP exposure and was<br />

associated with acute exacerbation <strong>of</strong> radicular pain and transient<br />

neural involvement <strong>of</strong> varying degrees. Bone reformation at the<br />

laminectomy and foraminotomy sites occurred in a delayed fashion<br />

associated with a solid union, progressive worsening <strong>of</strong> radicular<br />

pain, and were successfully treated with repeat neural compression<br />

only. Nonunion was not related to smoking, number <strong>of</strong> levels fused<br />

or age. All nonunions were successfully treated with redo surgical<br />

instrumentation and rhBMP application. Neural compression<br />

acutely with fluid or delayed with osseous formations and nonunions<br />

associated with rhBMP2 require further evaluation.<br />

posteR No. p403<br />

Quality <strong>of</strong> Life among Lumbar Fusion and Joint<br />

Arthoplasty Patients in the Elderly Population<br />

Ian Cowgill, MS<br />

Zachary Allen Child, MD, Albuquerque, NM<br />

Jean Hanson, RN, PhD, Albuquerque, NM<br />

Meghan A Erdman, MS<br />

Scott Traver Lovald, PhD, MBA, Philadelphia, PA<br />

Paul S Robinson, Albuquerque, NM<br />

Beverly E Diamond, DSW<br />

Clinical outcomes from operative treatment <strong>of</strong> lumbar spinal<br />

disorders in the elderly are not well documented. The object <strong>of</strong> this<br />

study was to determine if quality <strong>of</strong> life <strong>of</strong> elderly lumbar spinal surgery<br />

(LSS) patients is different from those <strong>of</strong> total knee (TKA) and hip<br />

arthroplasty (THA), which are considered the standard benchmarks<br />

for operative restoration <strong>of</strong> quality <strong>of</strong> life. Preoperative and twoyear<br />

postoperative SF-36 Physical (PCS) and Mental Component<br />

Scores (MCS) from 20 centers were compared for TKA (N=49), THA<br />

(n=46) and LSS (n=105)(decompression/fusion) patients age 65 yrs<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


and older. The two-year scores were analyzed in a series <strong>of</strong> univariate<br />

models and in a multivariate ANCOVA. The ANCOVA controlled for<br />

preoperative scores and included age, gender, BMI and comorbidity.<br />

For PCS, the LSS group improved less and remained significantly<br />

lower (38.6 ±10.3; p


pr<strong>of</strong>essionals. and sponsor spine conferences for patients.<br />

posteR No. p560<br />

Simvastatin Improves Spinal Fusion In Rats<br />

Bora Bostan, MD, Tokat, Turkey<br />

Taner Gunes, MD, Tokat, Turkey<br />

Murat Asci, MD, Tokat, Turkey<br />

Cengiz Sen, Tokat, Turkey<br />

Mehmet Halidun Kelestemur, Assc Pr<strong>of</strong>, Kayseri-Talas, Turkey<br />

Mehmet Erdem, MD, Tokat, Turkey<br />

Resit Dogan Koseoglu, MD, Tokat, Turkey<br />

Unal Erkorkmaz, PhD, Tokat, Turkey<br />

Aim <strong>of</strong> the Study: Statins stimulate bone formation by inducing the<br />

expression <strong>of</strong> BMP-2 (Bone morphogenetic proteins). In the present<br />

study, we investigated the effects <strong>of</strong> orally administered simvastatin<br />

on spinal fusion in rats. Methods: Twenty rats were randomized into<br />

two groups as spinal fusion group (SF) (n=10) or a spinal fusion and<br />

oral simvastatin administered group (SFS) (n=10). Simvastatin was<br />

administered orally 120 mg/kg/day in the SFS group. A spinal fusion<br />

model was performed between L4-L6 representing two levels in each<br />

rats, and at the end <strong>of</strong> 12 weeks, the rats were killed. Results: Manual<br />

palpation revealed two moderate fusions in the SF group, whereas<br />

the treatment group revealed no signs <strong>of</strong> pseudoarthrosis. An average<br />

three-point bending force causing failure <strong>of</strong> fusion revealed results<br />

<strong>of</strong> 148.80±39.403 Newtons and 123.80±28.479 Newtons in SFS and<br />

SF groups, respectively (p>0.05). Histological examination revealed<br />

better fusion grades in the SFS group with a mean <strong>of</strong> 9.30 ±0.949 than<br />

with the SF group with an average grade <strong>of</strong> 6.80 ±2.044 (p=0.003).<br />

Radiographic examination revealed grade C fusion in two levels and<br />

grade A fusion in 18 levels in the SF group whereas grade C fusion<br />

in one level and grade A fusions in 19 levels were detected in the<br />

SFS group. Conclusion: Our results suggest that if bioavailability <strong>of</strong><br />

simvastatin in bone can be adjusted by lowering its clearance in the<br />

liver, it can be used as an adjunct to spinal fusion procedures in an<br />

elderly population with high cholesterol levels.<br />

SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se56<br />

Mortality Risk for Operated and Non-Operated<br />

Vertebral Fracture Patients in the Medicare Population<br />

Avram A Edidin, PhD, Portola Valley, CA<br />

Kevin Ong, PhD, Philadelphia, PA<br />

Edmund Lau, MS, Menlo Park, CA<br />

Steven M Kurtz, PhD, Philadelphia, PA<br />

Sigurd H Berven, MD, San Francisco, CA<br />

Mortality risk has been shown to increase following the onset <strong>of</strong><br />

vertebral compression fractures (VCFs). However, the difference in<br />

survival for VCF patients following non-operative and operative<br />

(kyphoplasty or vertebroplasty) treatments has not been examined.<br />

Operated and non-operated VCF patients were identified from the<br />

100% Medicare national sample in 2005 to 2008 and followed for<br />

up to 4 years. Patients with previously diagnosed pathological and<br />

traumatic VCFs in the prior year were excluded. Overall survival<br />

was estimated by the Kaplan-Meier method, and the differences<br />

in mortality rates (operated vs. non-operated; vertebroplasty vs.<br />

kyphoplasty) were assessed by Cox regression (adjusted for patient<br />

demographics and comorbidities, e.g., arterial disease, chronic<br />

obstructive pulmonary disease, cancer, diabetes, hip fracture,<br />

761<br />

hypertension, ischemic heart disease, heart conduction disorders,<br />

pneumonia, pulmonary heart disease, stroke, and wrist fracture).<br />

182,946 patients that underwent vertebroplasty or kyphoplasty<br />

had a higher survival rate <strong>of</strong> 57.3% at 48 months following VCF<br />

diagnosis compared to 50.4% for the 676,032 non-operated patients.<br />

Vertebroplasty or kyphoplasty patients were 32% less likely to die<br />

than non-operated VCF patients (adjusted OR=0.68; p


Newtons for 2600 cycles at a rate <strong>of</strong> 1 Hertz. Continuous load and<br />

deformation data were acquired at 100 cycle intervals. For each<br />

screw design, a non-linear exponential fit <strong>of</strong> the screw deflection<br />

versus cycle number was conducted. The resulting parameters <strong>of</strong><br />

Plateau (stabilization point) and rate <strong>of</strong> deflection increase (decay)<br />

were extracted and averaged. An analysis <strong>of</strong> variance with a posthoc<br />

Tukey comparison was utilized to infer statistical differences<br />

in performance between designs. The non-linear exponential fit<br />

resulted in R-squared values in excess <strong>of</strong> 0.9 . Both deflection rate<br />

(decay) and Plateau were found to be good indicators <strong>of</strong> screw<br />

performance by displaying statistically significant differences among<br />

the designs. Both deflection rate (decay) and Plateau were found to<br />

differ depending on the particular design <strong>of</strong> the screw. The fitting <strong>of</strong><br />

dynamic toggle data resulted in non-linear R-squared values close<br />

to unity, indicating that using this methodology to evaluate screw<br />

performance is reproducible. These parameters may be used to aid in<br />

the performance evaluation <strong>of</strong> future screw designs.<br />

scieNtific exHibit No. se59<br />

The Role <strong>of</strong> Sagittale Balance and Spinopelvic<br />

Parameters in Spine Deformity<br />

Michael Akbar, MD, Heidelberg, Germany<br />

Markus Eichler, MD, Heidelberg, Germany<br />

Cornelia Putz, MD, Heidelberg, Germany<br />

Bernd Wiedenh<strong>of</strong>er, MD, Heidelberg, Germany<br />

One <strong>of</strong> the most critical relationships in the human spine that sets<br />

parameters for the sagittal balance is the lumbosacral pelvis. Recent<br />

studies report that the sagittal plane balance is mediated by the<br />

following independent factors: sacral slope, pelvic tilt (or pelvis<br />

retroversion used to maintain an upright posture in the setting<br />

<strong>of</strong> spinal deformity), pelvic incidence (morphologic parameter<br />

directly linked to sagittal morphotypes), and lumbar lordosis. The<br />

purpose <strong>of</strong> this exhibit is to present our over 10-year experience<br />

with treating spinal deformity taking the sagittal pr<strong>of</strong>ile and the<br />

spinopelvic parameter into account and underline the meaning and<br />

consequences <strong>of</strong> the sagittal pr<strong>of</strong>ile for the spine. Between January<br />

2000 and December 2009, more than 5000 patients were treated<br />

with a spondylodesis <strong>of</strong> the spine. The patients had congenital,<br />

traumatic and degenerative spinal disorders. About 1500 patients<br />

were included in this study. The authors reviewed the clinical<br />

records and radiographs <strong>of</strong> all patients included in the study. The<br />

postoperative outcome (VAS, HQOL and ODI) was correlated with<br />

the sagittal pr<strong>of</strong>ile and the spinopelvic parameter. From 2000 to<br />

2009, 1500 patients were treated with a spondylodesis for different<br />

types <strong>of</strong> spinal disorders. The postoperative results in the different<br />

spinal disorder groups show that the sagittal pr<strong>of</strong>ile and the pelvic<br />

tilt (PT) play a significant role and have a significant influence on<br />

outcome and function. In patients with severe spinal deformity<br />

(neurogenic hyperkyphosis) the extent <strong>of</strong> restoration <strong>of</strong> the sagittal<br />

pr<strong>of</strong>ile correlated with postoperative complications like failure<br />

<strong>of</strong> instrumentation (rode breakage and rode penetration). It has<br />

become evident that good clinical outcome in the treatment <strong>of</strong><br />

spinal deformity requires proper alignment. Pelvis parameters<br />

play an essential role not only in terms <strong>of</strong> spine morphotypes but<br />

also in regulating standing balance and postoperative alignment.<br />

Thus, optimal treatment <strong>of</strong> a patient with spinal deformity requires<br />

integration <strong>of</strong> the pelvis in the preoperative evaluation and treatment<br />

plan.This scientific exhibit will report our over 10-year experience<br />

with different spinal disorders, review treatment principles, and<br />

emphasize the role <strong>of</strong> the sagittal balance for postoperative outcome,<br />

function and failure <strong>of</strong> instrumentation.<br />

762<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spiNe


PAPERS<br />

763<br />

sPorts Medicine and arthroscoPY<br />

pApeR No. 196<br />

Prospective Randomized Trial ACI vs Mosaicplasty in<br />

the Adult Knee. 10 Year Results<br />

Leela C Biant, FRSCEd, Edinburgh, United Kingdom<br />

Sridhar Vijayan, BSC, MBBS<br />

George Bentley, CHM FRCS, Oxford, United Kingdom<br />

Autologous chondrocyte implantation (ACI) and mosaicplasty<br />

(MP) are two methods <strong>of</strong> repair <strong>of</strong> symptomatic articular cartilage<br />

defects in the adult knee. This study represents the only longterm<br />

comparative clinical trial <strong>of</strong> the two methods. A prospective,<br />

randomized comparison study <strong>of</strong> ACI versus MP in 100 patients<br />

with a symptomatic articular cartilage lesions <strong>of</strong> the knee. Pain and<br />

function were assessed for minimum 10 years using the modified<br />

Cincinnati score, Bentley Stanmore Functional rating system and<br />

visual analogue scores. ‘Failure’ was determined by pain, a poor<br />

outcome score and arthroscopic evidence <strong>of</strong> graft disintegration.<br />

Patients had a mean age at index operation <strong>of</strong> 31. There was a long<br />

mean pre-op duration <strong>of</strong> symptoms <strong>of</strong> seven years, and an average<br />

<strong>of</strong> 1.5 operations (excluding arthroscopy) had been performed on<br />

the defect prior to the cartilage repair surgery. The aetiology <strong>of</strong> the<br />

articular cartilage defects was mainly trauma. Five patients were<br />

lost to follow up. Twenty-three <strong>of</strong> the 42 MP patients and 10/58<br />

ACI patients failed (p


in the knee. Fifty-three patients were treated with hyaluronan-based<br />

MACT product. Patient characteristics at baseline were as follows<br />

(mean±standard deviation): 22 female, 31 male, age 32±12 years,<br />

body mass index (BMI) 24.5±3.8 kg/m2 and defect size 4.4±1.9<br />

cm2. Fifty patients had single defects and three had multiple defects<br />

(41 medial femoral condyle, six lateral femoral condyle, two patella,<br />

one tibia). Primary inclusion criteria (stable ligaments, regular<br />

knee alignment (±3°), singular defect within otherwise healthy<br />

adjacent cartilage, age


pApeR No. 203<br />

Long-Term Assessment Of Cartilage Repair After<br />

Micr<strong>of</strong>racture Therapy Using Morphological Mr<br />

Imaging<br />

Arvind Gabriel Von Keudell, MD, Boston, MA<br />

Joerg Atzwanger, MD, Brooklyn, NY<br />

Rosemarie Forstner, MD, Salzburg, Austria<br />

Herbert Resch, MD, Salzburg, Austria<br />

Thomas H<strong>of</strong>felner, MD, Salzburg, Austria<br />

Michael Mayer, MD, Salzburg, Austria<br />

Recent literature revealed good short-term results after<br />

micr<strong>of</strong>racturing (MFX) <strong>of</strong> isolated focal cartilage defects in the knee.<br />

Study purpose was a long-term evaluation <strong>of</strong> patients who received<br />

MFX through a multimodal approach, correlating clinical scores<br />

and morphological pre- and postoperative MRI. Between 2000 and<br />

2007, 158 patients were treated with MFX for focal femoral or tibial<br />

defects at our department. Patients with instabilities, secondary<br />

surgical intervention, patell<strong>of</strong>emoral lesions, plica mediopatellaris<br />

or more than one cartilage defect site and age >55 were excluded.<br />

Fifteen patients were included. Minimum post-operative follow<br />

up (FU) was 18 months (18-78 m). Mean age at surgery was 45<br />

years (27- 54), mean FU-interval 48±2 months (18-78 m). Male to<br />

female ratio was 9:6. For clinical assessment the Knee Injury and<br />

Osteoarthritis Outcome (KOOS) and Lysholm scores were used,<br />

radiological evaluation was performed with X-ray and 3T-MRI.<br />

Clinical knee function was rated good to excellent in one patient,<br />

fair in two and poor in 10 patients. Two <strong>of</strong> 15 patients received full<br />

knee replacement due to insufficient cartilage repair through MFX<br />

during FU period. Evaluation <strong>of</strong> pre- and postoperative MRI showed<br />

good cartilage repair tissue in one (7.7%), moderate repair in two<br />

(15.4%) and poor fill in 10 patients (76.9%). In these 10 patients,<br />

defect size increased. Average defect size preoperatively was 187<br />

mm2 (12-800 mm2) and postoperatively 294 mm2 (40- 800 mm2).<br />

The KOOS pain averaged 60 (39-94), KOOS symptoms 60.6 (21-<br />

100), KOOS ADL 69 (21-91), KOOS Sports 35.7 (5-60) and KOOS<br />

QUL 37.2 (6-81). The average Lysholm score was 73.9 (58-94). Ten<br />

patients showed a varus leg axis deviation (Ø 5.9°), three had a<br />

neutral alignment. The alignment correlated positively with KOOS<br />

and especially with the Lysholm score. Our study demonstrated that<br />

MFX as a treatment option for cartilage defect in the knee did not<br />

show the anticipated clinical and radiological long-term results. In<br />

12/15 patients the cartilage defect size had increased after MFX, in<br />

two/15 indicating full-knee replacement. Especially those with a<br />

leg malalignment > 6 degrees were more prone to suffer from an<br />

increase in defect size. In our cohort the clinical scores correlated<br />

with the radiological findings.<br />

pApeR No. 204<br />

T1rho MRI Can Detect Early Cartilage Changes in<br />

Knees <strong>of</strong> Asymptomatic Collegiate Female Athletes<br />

Sebastian Charles Peers, MD, Royal Oak, MI<br />

David Keyes, MD<br />

Anil Shetty, PhD, Royal Oak, MI<br />

David Marcantonio, MD<br />

Erin Ann Baker, MS, Royal Oak, MI<br />

Kevin Baker, MS, Royal Oak, MI<br />

Dr Yang Xia, Rochester, MI<br />

Joseph Guettler, MD, Bingham Farms, MI<br />

The purpose <strong>of</strong> this study was to determine if young impact athletes<br />

were pre-disposed to knee arthritis later on in life, and whether<br />

765<br />

T1rho MRI could pick up very early pathologic cartilage changes.<br />

Ten impact (basketball players) and 10 non-impact (swimmers)<br />

female collegiate athletes, all participating within the season <strong>of</strong> their<br />

respective athletic schedule, underwent MRI. Sagittal condylar cuts<br />

and axial patell<strong>of</strong>emoral cuts were obtained. Gross examination<br />

<strong>of</strong> MRIs was performed. Frequency charts, representing pathologic<br />

cartilage matrix changes, were also created from parametric maps<br />

to determine the distribution <strong>of</strong> T1rho relaxation times within the<br />

three knee compartments. A comparison <strong>of</strong> the depth-dependent<br />

changes was also performed. Findings were compared between the<br />

impact and nonimpact groups. Gross examination <strong>of</strong> MRIs showed<br />

damage to the patell<strong>of</strong>emoral cartilage <strong>of</strong> four impact athletes,<br />

while no gross structural changes were appreciated in the nonimpact<br />

group. T1rho relaxation times in the patell<strong>of</strong>emoral and<br />

lateral compartments were not significantly different between the<br />

two groups. However, there were statistically significant changes in<br />

the medial compartment <strong>of</strong> the impact group. Depth-dependent<br />

differences between the two groups were also observed. T1rho MRI<br />

can be utilized to detect early degenerative changes in the articular<br />

cartilage <strong>of</strong> otherwise asymptomatic young impact athletes. These<br />

findings may have significant implications relating to the potential<br />

risk for arthritis in this group, and future modifications in lowerimpact<br />

training and practice regimens may be necessary.<br />

pApeR No. 205<br />

uUse <strong>of</strong> a Biphasic Scaffold for the Treatment <strong>of</strong><br />

Isolated Osteochondral Defects <strong>of</strong> the Knee<br />

Frank Petrigliano, MD, Los Angeles, CA<br />

Hsiu Su, MD<br />

Li Foong Foo, MD<br />

Ian Solsky, BS<br />

Thomas L Wickiewicz, MD, New York, NY<br />

Scott Alan Rodeo, MD, New York, NY<br />

Russell F Warren, MD, New York, NY<br />

Hollis Potter, MD, New York, NY<br />

Riley Joseph Williams, MD, New York, NY<br />

The purpose <strong>of</strong> this study was to report the subjective outcomes <strong>of</strong><br />

patients treated with a biphasic scaffold for isolated osteochondral<br />

defects <strong>of</strong> the knee and describe the morphology and incorporation<br />

<strong>of</strong> the scaffold using cartilage-sensitive MRI. Thirty patients (31<br />

knees) underwent biphasic scaffold implantation. The follow up<br />

interval to subjective evaluation was 32.8 months (range: 24-48)<br />

and MRI was 20.8 months (range: 12-40). Subjective outcomes were<br />

assessed using the Activity <strong>of</strong> Daily Living score (ADL), Marx Activity<br />

Scale and International Knee Documentation Committee (IKDC)<br />

Patient Subjective Knee Evaluation. Implants were evaluated for<br />

cartilage signal, interface morphology, displacement, hypertrophy,<br />

subchondral edema, bony overgrowth, percentage fill and degree <strong>of</strong><br />

incorporation. ANOVA and linear regression analysis were performed<br />

with Bonferroni correction; p


MRI appearance, clinical outcome did not correlate with implant<br />

morphology.<br />

pApeR No. 206<br />

Characterization <strong>of</strong> the Bond Formed Between Native<br />

and Engineered Cartilage and Subchondral Bone<br />

Tamara Pylawka, MD, Hershey, PA<br />

J Spence Reid, MD, Hershey, PA<br />

Henry J Donahue, PhD, Hershey, PA<br />

Gregory S Lewis, PhD<br />

Sprague Hazard, MD<br />

Timothy Shane Johnson, MD<br />

Current articular cartilage repair techniques partially rely on the<br />

integration <strong>of</strong> cartilage to bone with scar tissue. Thus the bond<br />

formed between native cartilage and subchondral bone as well<br />

as engineered cartilage and subchondral bone is important in<br />

determining the usefulness <strong>of</strong> cartilage engineering as a potential<br />

therapeutic technique. However, limited information regarding this<br />

subject exists. Our goal was to characterize the bond formed between<br />

native cartilage and subchondral bone as well as engineered cartilage<br />

and subchondral bone using histology, immunohistochemistry and<br />

biomechanical testing. Chondrocytes were isolated from different<br />

porcine anatomic sources (articular, auricular and costal), suspended<br />

in fibrin gel polymer (80x106 chondrocytes/mL) and sandwiched<br />

between discs <strong>of</strong> articular cartilage and subchondral bone. A drop<br />

<strong>of</strong> this suspension was placed between a disk <strong>of</strong> articular cartilage<br />

and subchondral bone forming 40 tri-layer constructs for each<br />

chondrocyte type (40 articular, 40 auricular and 40 costal), resulting<br />

in 120 experimental constructs. These tri-layer constructs were then<br />

implanted in athymic mice for six and 12 weeks, then subjected<br />

to gross analysis, biomechanical testing, standard histological<br />

evaluation and immunohistochemical (Type II collagen) testing.<br />

Control groups consisted <strong>of</strong> fibrin glue only with no cells added.<br />

The ultimate stress and failure energy was significantly more at<br />

12 weeks compared to six weeks for each cell type. Each cell type<br />

had a significantly higher ultimate stress and failure energy when<br />

compared to their respective control groups but not when compared<br />

to each other. Using immunohistochemistry, we demonstrated that<br />

sample constructs taken from each group expressed type II collagen<br />

suggesting not only chondrocyte viability but preserved synthetic<br />

function. Safranin-O revealed the presence <strong>of</strong> glycosaminoglycans<br />

in the newly formed tissue. Alternative anatomical chondrocyte<br />

sources (auricular or costal) are biomechanically similar during axial<br />

tension to failure compared to articular chondrocytes and may be<br />

viable repair tissue sources.<br />

pApeR No. 207<br />

Co-Cultures Of Adult-Juvenile Chondrocytes Compared<br />

With Adult-Juvenile Chondral Fragments<br />

Davide E Bonasia, MD, Torino, Italy Italy<br />

James A Martin, PhD<br />

Antongiulio Marmotti, MD, Torino, TO Italy<br />

Richard Amendola, Post Grad, Torino, Italy<br />

Roberto Rossi, MD, Torino, Italy<br />

Annunziato Amendola, MD, Iowa City, IA<br />

The goal <strong>of</strong> this study is to evaluate in vitro the chondrogenesis <strong>of</strong><br />

adult/juvenile co-cultures <strong>of</strong> both chondrocytes (part 1) and minced<br />

cartilage fragments (part 2). Cartilage sources consisted <strong>of</strong> three<br />

adult and three juvenile donors. In part 1, per each donor, juvenile<br />

cells were mixed with adult ones in five different proportions: 100,<br />

50, 25, 12.5 and 0% <strong>of</strong> adult with, respectively, 0, 50, 75, 87.5,<br />

766<br />

100% <strong>of</strong> juvenile chondrocytes. At six weeks, proteoglycan assay,<br />

lactate assay, safranin-O, anti-collagen II, anti-link-protein immun<strong>of</strong>luorescence<br />

staining and Bern scoring <strong>of</strong> the neo-cartilage were<br />

performed. In part 2, cartilage fragments were manually minced (


pApeR No. 209<br />

Supraphysiological Temperatures Are Necessary for<br />

Bupivacaine Chondrotoxicity<br />

Nelson Mead, BS, New Orleans, LA<br />

Jessica Ryu, BA<br />

Sen Liu, MD<br />

Dongxia Ge, MD, MS<br />

Felix H Savoie, III MD, New Orleans, LA<br />

Zongbing You, MD, New Orleans, LA<br />

Justin Lucas, BS<br />

Recent studies have implicated bupivacaine as the primary etiology<br />

<strong>of</strong> chondroysis <strong>of</strong> the shoulder. We believe the etiology to be<br />

multifactorial, and have designed a study to evaluate the effect <strong>of</strong><br />

exposure to various temperatures encountered in arthroscopic<br />

surgery to determine whether there is an additive effect. Initially, we<br />

incubated bovine articular chondrocytes in either 20°C, 37°C, 40°C,<br />

42°C, 45°C, 47°C or 50°C for 15, 30 or 60 minutes to determine<br />

the effect <strong>of</strong> temperature on chondrocyte viability. We then cultured<br />

a separate population <strong>of</strong> cells and divided them into experimental<br />

groups that were incubated in either 37°C, 45°C or 50°C for either<br />

30 or 60 minutes. These experimental groups were subsequently<br />

treated with either 0.5% bupivacaine or saline for 60 minutes.<br />

Using flow cytometry, we were able to determine the percentages<br />

<strong>of</strong> live/dead cells and necrotic/apoptotic cells. Bovine articular<br />

chondrocytes exhibited significantly more cell death at temperatures<br />

exceeding 45°C, regardless <strong>of</strong> the time <strong>of</strong> exposure (p


otational stability. However, no consensus has been reached on the<br />

advantages <strong>of</strong> this technique over the single bundle technique. We<br />

hypothesized that double bundle ACL reconstruction can provide<br />

better clinical outcome than single bundle reconstruction. Fiftysix<br />

patients with ACL injury in one knee were recruited with 27<br />

allocated to the double bundle ACL reconstruction group and 29<br />

to the single bundle ACL reconstruction group. Clinical outcomes<br />

including Lysholm knee and Tegner activity scores were similar in<br />

the two groups at three-year follow up (p>0.5). Furthermore, stability<br />

results <strong>of</strong> Lachman test, pivot shift test and radiological findings<br />

at three-year follow up failed to reveal any significant inter-group<br />

differences (p>0.05). Notchplasty rate was different between two<br />

groups: double bundle (25.9%) and single bundle group (58.6%)<br />

(p


laxity was measured before and after reconstruction at 0°, 30°,<br />

60°, and 90°. 3D CT was checked postoperatively to evaluate the<br />

tunnel position. Both steps <strong>of</strong> surgical treatment (SB and DB)<br />

significantly reduced anteroposterior (AP) translation and rotation<br />

postoperatively. However, total rotation was significantly smaller<br />

in DB group at 60° postoperatively (p=.045) and the amount <strong>of</strong><br />

postoperative decrease in rotation was also greater in DB group at<br />

30° (p=.033). O’clock position and high-low position was different<br />

among SB, DB anteromedial (DB AM) and DB posterolateral (DB<br />

PL) femoral tunnels (SB vs PL, p=.012; AM vs PL, p=.003), whereas<br />

the deep-shallow position was not different. In regard to the<br />

relationship between the tunnel position and stability, posteriorly<br />

placed PL tibial tunnel and deep SB and AM femoral tunnel was<br />

correlated with postoperative increase in rotation. Clinical outcome,<br />

including manual stability, KT-1000, Tegner activity score, Lysholm<br />

and IKDC score, was not different between the two groups. Double<br />

bundle ACL reconstruction showed similar anteroposterior laxity<br />

but superior rotational stability to single bundle ACL reconstruction<br />

measured by navigation. Tunnel positions had some correlation<br />

with the laxity, indicating fine tuning in tunnel placement may be<br />

needed to improve the stability, but overall clinical outcome was not<br />

different between groups, which should be further elucidated.<br />

pApeR No. 321<br />

Delayed Bone Tunnel Communication In The Femur<br />

After Anatomical Double Bundle ACL Reconstruction<br />

Masayuki Inoue, MD, Sapporo, Japan<br />

Norimichi Shimamoto, MD, Sappro, Japan<br />

Tsuyoshi Asano, MD, Sapporo, Japan<br />

Masatake Matsuoka, MD, Sapporo, Japan<br />

Shin Onodera, MD, Hokkaido Sapporo, Japan<br />

Kazunori Yasuda, MD, Sapporo, Japan<br />

After anatomical double bundle anterior cruciate ligament (ACL)<br />

reconstruction, there are some cases that did not exhibit tunnel<br />

communication just after surgery and yet exhibit it at one year<br />

after surgery. Tunnel communication will cause huge bone loss,<br />

which will be a serious problem at revision ACL surgery. The aim<br />

<strong>of</strong> this study is to clarify risk factors that may cause delayed tunnel<br />

communication in the femur. One hundred and ten patients (62<br />

male, 48 female, mean age 27) who underwent anatomical double<br />

bundle ACL reconstruction were evaluated. At one week and at one<br />

year after surgery, all patients received multi planner reconstructed<br />

CT that enabled detailed evaluation <strong>of</strong> bone tunnels at any direction.<br />

We evaluated the width <strong>of</strong> the septum between two tunnels, the<br />

position <strong>of</strong> the tunnel outlet and the angle <strong>of</strong> the tunnels. We also<br />

investigated the age and gender <strong>of</strong> the patients. Seventeen knees<br />

exhibited delayed tunnel communication. The incidence <strong>of</strong> delayed<br />

communication was significantly higher in cases whose septum was<br />

less than 2 mm-thick at surgery (P


(p=0.10). Contralateral ACL rupture occurred in significantly more<br />

PT patients (26%) than HT patients (12%) (p=0.03). Significant<br />

differences have developed at 15 years after surgery which were not<br />

seen at earlier reviews. Compared to the HT Group, the PT group<br />

had significantly worse outcomes with respect to radiological<br />

osteoarthritis, range <strong>of</strong> motion and functional tests but no significant<br />

difference in laxity was identified. There was a high incidence <strong>of</strong><br />

ACL injury after reconstruction, to both the reconstructed and the<br />

contralateral knee.<br />

pApeR No. 324<br />

Current Trends in ACL Reconstruction Among<br />

Pr<strong>of</strong>essional Team Physicians<br />

Rajeev Pandarinath, MD, Washington, DC<br />

Michael G Ciccotti, MD, Philadelphia, PA<br />

Peter F DeLuca, MD, Philadelphia, PA<br />

Robert W Frederick, MD, Villanova, PA<br />

Anterior cruciate ligament (ACL) reconstruction is one <strong>of</strong> the most<br />

commonly performed sports medicine procedures. There is wide<br />

variation among surgeons in every aspect <strong>of</strong> the procedure. Although<br />

autograft patellar tendon is historically considered the ‘gold standard’<br />

graft for ACL reconstruction, there are many graft choices available.<br />

In addition, there are a number <strong>of</strong> options for tunnel placement<br />

and drilling technique, fixation choices and final tensioning <strong>of</strong> the<br />

graft. The purpose <strong>of</strong> this study was to poll surgeons responsible for<br />

treating pr<strong>of</strong>essional athletes to determine what options are most<br />

commonly used, and if there are any trends in treatment for this<br />

highly functioning population. An online survey was distributed<br />

to orthopedic surgeon members <strong>of</strong> pr<strong>of</strong>essional team physician<br />

organizations for Major League Baseball, the National Football<br />

League, the National Hockey League and the National Basketball<br />

Association. Forty-seven physicians responded to the survey,<br />

representing 46% <strong>of</strong> all teams polled (122). Responses were collected<br />

and tabulated. Patellar tendon autograft was the most common<br />

graft used (66%). If allografts were used, non-irradiated grafts were<br />

strongly preferred (75%). Metal (38%) and bio-composite (28%)<br />

interference screws were most commonly used in the femoral tunnel.<br />

In the tibial tunnel, metal interference screws (40%) were the most<br />

commonly used, followed by bio-composite screws (17%). Onehalf<br />

<strong>of</strong> physicians preferred a femoral starting point <strong>of</strong> 10 o’clock/2<br />

o’clock depending on the laterality <strong>of</strong> the knee. Transtibial femoral<br />

tunnel drilling was more common than using the anteromedial<br />

portal. Ligaments were tensioned at 15 degrees <strong>of</strong> flexion on average,<br />

with full extension as the most common position for tensioning.<br />

Some 90% <strong>of</strong> surgeons preferred a single bundle technique. A total<br />

<strong>of</strong> 75% <strong>of</strong> surgeons routinely used a tourniquet for at least part <strong>of</strong><br />

the reconstruction, with 50% leaving the tourniquet inflated for<br />

the entire case. There are a number <strong>of</strong> widely accepted methods for<br />

ACL reconstruction, many <strong>of</strong> which are used in high-level athletes.<br />

Patellar tendon autografts are most commonly used, typically with<br />

metal or bio-composite fixation. There are a number <strong>of</strong> preferred<br />

starting points for the femoral tunnel, with 10 o’clock being the most<br />

common. The single bundle technique continues to be used by the<br />

overwhelming majority <strong>of</strong> pr<strong>of</strong>essional team physicians.<br />

770<br />

pApeR No. 325<br />

Performance after ACL Reconstruction in Womens<br />

National Basketball Association Athletes<br />

Kelly Scott, BA, New York, NY<br />

Surena Namdari, MD, MSc, Philadelphia, PA<br />

Andrew Hill Milby, MD, Philadelphia, PA<br />

Keith D Baldwin, MD, Philadelphia, PA<br />

Gwo-Chin Lee, MD, Philadelphia, PA<br />

Anterior cruciate ligament (ACL) tears are more common in female<br />

compared to male athletes. Performance outcomes and attrition rates<br />

associated with this injury/surgery in Women’s National Basketball<br />

Association (WNBA) athletes are unclear. The purpose <strong>of</strong> this study<br />

was to compare athletes who underwent ACL reconstruction with<br />

preinjury and with matched controls to determine differences<br />

in performance. A retrospective review <strong>of</strong> 18 WNBA players who<br />

underwent ACL reconstruction between 1998 and 2008 was<br />

conducted. Performance data for two seasons preceding and<br />

following the index surgery were collected. Data were obtained from<br />

36 matched controls. Within-group and between-group comparisons<br />

were performed to assess significance <strong>of</strong> changes in athletic<br />

performance between the pre- and post-index seasons, and the odds<br />

ratio <strong>of</strong> return to play following surgery. Twenty-two percent (4 <strong>of</strong><br />

18) <strong>of</strong> WNBA athletes who underwent ACL reconstruction never<br />

returned to play in the WNBA. Within-group comparisons revealed<br />

that shooting percentage (p=0.04) and steals per 40 minutes <strong>of</strong><br />

play (p=0.03) were reduced postoperatively. No other performance<br />

variables were significantly different in absolute terms or per 40<br />

minutes <strong>of</strong> play. Changes in these performance variables from the<br />

pre-index to post-index seasons were not significantly different from<br />

those <strong>of</strong> the control group. Cases had lower odds <strong>of</strong> remaining in<br />

the WNBA after the index year when compared to controls (OR 0.7,<br />

p=0.72). After ACL reconstruction, 22% <strong>of</strong> athletes did not return<br />

to a sanctioned game. For those returning, performance decreased<br />

in several categories, although the changes were not statistically<br />

significant relative to the comparison group.<br />

pApeR No. 326<br />

The Evaluation Of Donorsite After ACL Reconstruction<br />

With Use Of Quadriceps Tendon Autograft<br />

Myung Chul Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Jak Jang, MD, Seoul, Republic <strong>of</strong> Korea<br />

Joon Kyu Lee, MD<br />

Sang-Min Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sang Ho Shim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Sahnghoon Lee, MD, Pittsburgh, PA<br />

We evaluated donorsite after anterior cruciate ligament (ACL)<br />

reconstruction with use <strong>of</strong> quadriceps tendon-bone autograft by<br />

means <strong>of</strong> questionnaire, dynamometer and electromyography. Three<br />

hundred and eighteen ACL reconstructions with use <strong>of</strong> quadriceps<br />

tendon-bone autograft were included in the study and the mean<br />

follow up period was 48 months (range, 24 to 131 months).<br />

Donorsite evaluation included physical exam, questionnaire about<br />

anterior knee pain, quadriceps and hamstring muscle strengths by<br />

Cybex II isokinetic testing, electromyographic study and radiographic<br />

measurment <strong>of</strong> patellar position. Side-to-side difference by KT-<br />

1000 arthrometry was less than 5 mm in 90.5% and pivot shift<br />

was grade 0 in 76%. Only 6% <strong>of</strong> patients complained <strong>of</strong> more<br />

than minimal kneecap symptom during normal daily activities,<br />

but 50% complained <strong>of</strong> more than moderate anterior knee pain<br />

during long period sitting and kneeling. Donorsite tenderness was<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


absent in 92%. Insall-salvati ratio and congruence angle did not<br />

change postoperatively. Extension peak torque <strong>of</strong> quadriceps muscle<br />

at 180Ú/s measured by cybex was 80% <strong>of</strong> contralateral side at two<br />

years after surgery. Nerve conduction study showed the improvement<br />

<strong>of</strong> compound muscle action potential at six months and one year,<br />

which were well correlated with the recovery <strong>of</strong> quadriceps muscle<br />

strengths. Donorsite morbidity was minimal after ACL reconstruction<br />

using quadriceps tendon-bone autograft: mild or little anterior knee<br />

pain; minimal tenderness; recovery <strong>of</strong> quadriceps muscle strengths;<br />

and electromyographic evidence well correlated with the muscle<br />

strengths. Quadriceps tendon is considered a reliable graft alternative<br />

in ACL surgery.<br />

pApeR No. 327<br />

ACL Reconstruction Does Not Restore Load Sharing<br />

Between Menisci and Articular Cartilage<br />

Craig S Mauro, MD, Pittsburgh, PA<br />

Carl W Imhauser, PhD, New York, NY<br />

Antonia Zaferiou, BE<br />

Thomas L Wickiewicz, MD, New York, NY<br />

Alterations in joint contact mechanics may contribute to osteoarthritis<br />

after anterior cruciate ligament (ACL) tear and reconstruction.<br />

The purpose <strong>of</strong> this study was to determine the effect <strong>of</strong> ACL tear<br />

and reconstruction on load sharing between menisci and articular<br />

cartilage. Nine cadaveric knees were loaded using a robot in intact,<br />

ACL-deficient and single-bundle ACL-reconstructed states under a<br />

134 N anterior force (AF) at 30° and a combined 8 N-m/4 N-m<br />

valgus/internal rotation load (VI) at 5°, 15°, 30°. After determining<br />

knee kinematics, a pressure measurement sensor (Tekscan) was<br />

sutured beneath the menisci. Kinematics were replayed with the<br />

menisci in three conditions (intact, lateral meniscectomy, medial<br />

meniscectomy) and the contact force across the compartments was<br />

measured. Load sharing across the compartments was the ratio <strong>of</strong> in<br />

situ force with each meniscal perturbation to the in situ force with<br />

the menisci intact. With ACL deficiency, load sharing in the meniscus<br />

increased by 175% in the medial compartment with AF, and in the<br />

lateral compartment with VI between 24% and 46%. With ACL<br />

reconstruction, load sharing in the medial meniscus was similar to<br />

the intact knee with AF, but load sharing in the lateral meniscus with<br />

VI at 5° was lower than the intact knee by 41%. Under anterior loads,<br />

the medial meniscus bears proportionately more load with ACL<br />

deficiency, while load sharing is restored in the medial compartment<br />

with ACL reconstruction. Under rotational loads, the lateral meniscus<br />

bears proportionately more load with ACL deficiency; however, the<br />

lateral articular surface bears proportionately more load following<br />

ACL reconstruction.<br />

pApeR No. 328<br />

Semitendinosus Tendon Regeneration After Acl<br />

Reconstruction: Can We Use It Once More?<br />

Vladan Stevanovic, MD, Belgrade, Serbia<br />

Agnica Petkovic, MD<br />

The surprising observation has been made, supported by clinical<br />

and MRI findings, that the semitendinosus tendon can regenerate<br />

after being harvested in its whole length and thickness for anterior<br />

cruciate ligament (ACL) reconstruction. Is it biologicaly and<br />

functionaly adequate to use it once more? Two groups <strong>of</strong> randomized<br />

patients (150) followed two years after harvesting semitendinosus<br />

or semitendinosus and gracilis tendons in ACL reconstruction.<br />

Clinical, ultrasound and MRI examination, interventional biopsies<br />

and hystological and imunnohystochemical tests were done after<br />

patient’s approval. Surgical exploration was done in three patients<br />

771<br />

for macroscopic verification. A total <strong>of</strong> 70% showed regeneration <strong>of</strong><br />

their semitendinosus tendons. The neotendons all inserted below<br />

the knee joint where they had fused with the gracilis tendon and<br />

above the joint when the gracillis was harvested too. The isokinetic<br />

strength <strong>of</strong> the hamstrings and quadriceps was not significantly<br />

lower in the operated leg than in the nonoperated leg. After biopsy<br />

macroscopically, histologically and immunohistochemically the<br />

regenerated tendons closely resembled normal ones with focal scarlike<br />

areas. In one patient regenerated tendon was used for medial<br />

patell<strong>of</strong>emoral ligament reconstruction. The semitendinosus muscle<br />

can recover and the tendon has a great potential to regenerate after<br />

its removal. Our data showed that those tendons can even be used<br />

again for autograft ligaments reconstruction.<br />

pApeR No. 329<br />

Pain Management with Local Multimodal Drug<br />

Injection for Patients Undergoing ACL Reconstruction<br />

In Jun Koh, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Kil Jae Lee, MD<br />

Jae Ho Yoo, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Kyung-Hag Lee, MD, Seongnam-Si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Byung June Chung, MD, Seoul, Republic <strong>of</strong> Korea<br />

Hyung Joon Cho, MD, Seongnam, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

This study aimed to determine the efficacy and safety <strong>of</strong> multimodal<br />

drug injection for pain control after anterior cruciate ligament (ACL)<br />

reconstruction using bone patellar tendon bone (BPTB) graft. A<br />

hundred patients were randomly assigned to five study groups (20<br />

patients in each group): Group 1: No injection; Group 2: Intraarticular<br />

(IA) injection <strong>of</strong> ropivacaine alone; Group 3: IA injection<br />

<strong>of</strong> multimodal drug cocktail; Group 4: Extra-articular (EA) injection<br />

<strong>of</strong> multimodal drug cocktail; Group 5: IA and EA injection <strong>of</strong><br />

multimodal drug cocktail. Multimodal drug cocktail consists <strong>of</strong> 150<br />

mg <strong>of</strong> ropivacaine, 5 mg <strong>of</strong> morphine, 30 mg <strong>of</strong> ketorolac, 200 mg<br />

<strong>of</strong> epinephrine, and 375 mg cefuroxime. EA injection was performed<br />

at infrapatellar fat pad, graft harvest sites, arthroscopic portal sites,<br />

periosteum around the tibial tunnel and incision sites. Comparisons<br />

among five groups were performed in terms <strong>of</strong> pain levels at<br />

operation night, postoperative one day (PO 1D), 2D and 14D,<br />

pain levels with reference to preoperative expectation (PO 1D, 2D<br />

and 14D), patient satisfaction for the pain management (PO 14D)<br />

and incidences <strong>of</strong> side effects. The IA, and IA and EA multimodal<br />

drug injection groups (group 4 and 5) had significantly less pain at<br />

operating night than other three groups (p < 0.001). The overall pain<br />

levels among the groups 1, 2 and 3, and between groups 4 and 5 had<br />

no significant differences. The patients in groups 4 and 5 were more<br />

likely to experience same or less pain than preoperative expectation<br />

on PO 1D (p=0.050). However, the levels <strong>of</strong> patient satisfaction<br />

evaluated on PO 14D were not significantly different among<br />

groups. There were no patients reporting multimodal drug-related<br />

side effects. This study demonstrates that the multimodal cocktail<br />

injection, particularly EA injection, is an effective and safe method<br />

for reducing early postoperative pain after BPTB ACL reconstruction.<br />

In particular, this method would be valuable for outpatient-based<br />

ACL reconstruction.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


pApeR No. 330<br />

Effective Use <strong>of</strong> MRI in the Evaluation <strong>of</strong> Knee Pain: An<br />

Evidence Based Algorithm<br />

Eric D Fornari, MD, Boston, MA<br />

Elizabeth G Matzkin, MD, Newton, MA<br />

Jason C Saillant, MD, Boston, MA<br />

Isi Obadan, MD, Framingham, MA<br />

Rafael Cavalcanti, BS, Boston, MA<br />

Knee pain is one <strong>of</strong> the most common complaints <strong>of</strong> patients<br />

presenting to both primary care and orthopedic physicians. Despite<br />

its prevalence, many clinicians continue to have trouble evaluating<br />

knee pain. The purpose <strong>of</strong> this study was to determine clinical<br />

findings that can be used in an algorithm to determine which<br />

patients require an MRI for further evaluation <strong>of</strong> their knee pain.<br />

A retrospective review was performed <strong>of</strong> all knee MRIs ordered at<br />

Tufts Medical Center between October 2006 and October 2008.<br />

Inclusion criteria were patients >18 years old as well as evaluation<br />

by a member <strong>of</strong> the adult orthopedic department. Subjects who<br />

needed an MRI (297) differed significantly from those who did not<br />

(179) with respect to five independent predictors: duration <strong>of</strong> knee<br />

pain, joint laxity, joint line tenderness, joint effusion and extent <strong>of</strong><br />

radiographic degenerative findings. Multivariate analysis determined<br />

a very strong relationship between an increasing number <strong>of</strong> predictors<br />

and the proportion <strong>of</strong> subjects who needed an MRI. The predicted<br />

probability <strong>of</strong> needing an MRI is 25% for one predictor, 43% for<br />

two, 56% for three, 72% for four and 95% if all five are present. Also,<br />

orthopedic physicians had significantly more appropriately ordered<br />

MRIs than their primary care counterparts. Our study derived an<br />

evidence-based algorithm using five clinical predictors (duration<br />

<strong>of</strong> symptoms, effusion, laxity, joint line tenderness and degree <strong>of</strong><br />

radiographic degenerative change) to determine the need for MRI<br />

in the evaluation <strong>of</strong> knee pain. Furthermore, standard radiographs,<br />

ideally including weight-bearing views, should routinely be obtained<br />

prior to considering more invasive and costly imaging modalities.<br />

pApeR No. 481<br />

Outcome <strong>of</strong> Anatomic Transphyseal ACL<br />

Reconstruction in Tanner Stage 1 & 2 Patients with<br />

Open Physes<br />

Leo A Pinczewski, FRACS, Wollstonecraft, NSW Australia<br />

Justin Phillip Roe, MD, Sydney, New South Wales Australia<br />

Alison Kok, Sydney, NSW Australia<br />

Dr Lucy J Salmon, Sydney, NSW Australia<br />

Duncan Ferguson, MD, Auckland, New Zealand<br />

Catherine Hui, MD, Calgary, AB Canada<br />

Anterior cruciate ligament (ACL) injuries are being seen with<br />

increasing frequency in children. The aim <strong>of</strong> this study was to<br />

determine the outcome <strong>of</strong> anatomic transphyseal ACL reconstruction<br />

in tanner stage 1 and 2 patients with open growth plates at a<br />

minimum <strong>of</strong> two years after surgery. Between 2007-2008, 16<br />

prepubescent skeletally immature patients underwent anatomic<br />

transphyseal ACL reconstruction using s<strong>of</strong>t tissue grafts. All patients<br />

were tanner stage 1 and 2 and all had open growth plates. Outcomes<br />

were assessed at a minimum <strong>of</strong> two years after surgery and included:<br />

limb alignment, limb length, instrumented testing with KT-1000<br />

and International Knee Documentation Committee (IKDC) score.<br />

Mean age at the time <strong>of</strong> surgery was 12 years (8-14). Graft choices<br />

included: living-related donor hamstring tendon allograft (n=14),<br />

hamstring tendon autograft (n=1) and fresh frozen allograft (n=1).<br />

Mean IKDC subjective score was 96 (84-100). Ninety-three percent<br />

<strong>of</strong> patients had


ACL origin to the popliteal insertion and to the lateral epicondyle.<br />

Distances were then calculated for both the lengths <strong>of</strong> these tunnels<br />

and the shortest distance from the physis to these tunnels. Statistical<br />

analysis was then performed to compare these distances across the<br />

age groups and between sexes. 3D MRI physeal reconstruction was<br />

then employed to confirm that the chosen anatomic landmarks<br />

spared the physes after femoral tunnel placement. Male and female<br />

femoral tunnel distances from the ACL origin to the popliteus<br />

insertion (tunnel A) and the tunnel length from the ACL origin to<br />

the lateral epicondyle (tunnel B), significantly differed across all age<br />

groups (p


was done with the aim <strong>of</strong> assessing the amount <strong>of</strong> femoral and<br />

tibial enlargement. Femoral tunnel diameter increased from 9.05+/-<br />

0.09 mm to 9.35+/-0.13 mm in group A, and from 9.03+/-0.12<br />

mm to 9.37+/-0.4 mm in group B (p:0.47). Tibial tunnel diameter<br />

increased from 9.06+/-0.31 mm to 10.3+/-0.81 mm in group A, and<br />

from 9.03+/-0.12 mm to 9.14+/-0.4 mm in group B (p:0.14). No<br />

significant differences were detected in either the femoral or tibial<br />

side between the two groups. In all patients <strong>of</strong> group A except for<br />

one, a significant presence <strong>of</strong> calcification inside both the femoral<br />

and tibial tunnels was observed. The use <strong>of</strong> the nanohydroxyapatite<br />

bone graft substitute does not seem to be efficient in preventing<br />

significant tunnel enlargement. Even though its use could still<br />

promote bone-graft integration, it has no effect on the amount <strong>of</strong><br />

tunnel enlargement.<br />

pApeR No. 487<br />

Platelet-Rich Plasma: Does It Help Reducing Tunnel<br />

Widening After Acl Reconstruction? A Ct Study<br />

Antonio Vadala, MD, Rome, Italy<br />

Raffaele Iorio, MD, Rome, Italy<br />

Ludovico Caperna, MD, Rome, Italy<br />

Daniele Paravani, MD<br />

Matteo Ferretti, MD, Rome, RM Italy<br />

Angelo De Carli, MD, Rome, Italy<br />

Andrea Ferretti, Rome, Italy<br />

In the last years, growth-factors have been used to improve the rapidity<br />

<strong>of</strong> the tendon-to-bone healing process in anterior cruciate ligament<br />

(ACL) reconstruction with hamstrings. The aim <strong>of</strong> the study was to<br />

evaluate the efficacy <strong>of</strong> platelet-rich plasma (PRP) on the tunnel<br />

walls and assess their role in reducing the bone tunnel phenomenon.<br />

Twenty consecutive male patients operated for ACL reconstruction,<br />

in which a 9 mm tunnel was performed on femoral and tibial sides,<br />

were enrolled in this prospective study. They were randomly assigned<br />

to group A (10 patients, PRP group) and group B (10 patients, control<br />

group). All patients were clinically and radiologically followed up<br />

at a mean <strong>of</strong> 12 months. CT evaluation was done with the aim <strong>of</strong><br />

assessing the amount <strong>of</strong> femoral and tibial enlargement. Femoral<br />

tunnel diameter increased from 9.03+/-0.12 mm to 9.8+/-0.3 mm<br />

in group A, and from 9.06+/-0.07 mm to 9.38+/-0.5 mm in group B<br />

(p>0.05). Tibial tunnel diameter increased from 9.04+/-0.23 mm to<br />

10.9+/-0.21 mm in group A, and from 9.08+/-0.07 mm to 10.14+/-<br />

0.4 mm in group B (p>0.05). No clinical differences were detected<br />

among the two groups. The use <strong>of</strong> PRP does not seem to be efficient<br />

in preventing significant tunnel enlargement. Even though its use<br />

may be useful in promoting bone-graft integration, it does not seem<br />

to be effective in reducing the tunnel enlargement phenomenon.<br />

pApeR No. 488<br />

PCL Reconstruction Combined With Anatomical<br />

Reconstruction Of Posterolateral Corner Insufficiency<br />

Dr Duck-Hyun Choi, Seoul, Republic <strong>of</strong> Korea<br />

Sung-Jae Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Yong-Min Chun, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Sung-Hwan Kim, MD, Seoul, Republic <strong>of</strong> Korea<br />

Byoung-Yoon Hwang, MD<br />

There is a paucity <strong>of</strong> clinical studies comparing single- and doublebundle<br />

posterior cruciate ligament (PCL) reconstruction combined<br />

with a posterolateral corner reconstruction. The purpose is to compare<br />

the clinical outcomes <strong>of</strong> single- and double-bundle transtibial<br />

PCL reconstruction combined with anatomical reconstruction <strong>of</strong><br />

posterolateral corner insufficiency. The study population consisted<br />

774<br />

<strong>of</strong> 42 patients, and for whom a minimum <strong>of</strong> two years <strong>of</strong> follow-up<br />

data were available. We compared clinical outcomes <strong>of</strong> two surgical<br />

techniques: a single-bundle technique (23 patients, single-bundle<br />

group) or a double-bundle technique (19 patients, double-bundle<br />

group), each combined with reconstruction <strong>of</strong> the lateral collateral<br />

ligament and popliteus tendon for posterolateral corner insufficiency.<br />

There was no difference between the single- and double-bundle<br />

groups in the mean side-to-side difference <strong>of</strong> posterior translation<br />

measured with Telos stress radiography (4.2 ± 1.7 vs. 3.9 ± 1.6 mm),<br />

and rates greater than 5 mm were 22% in single-bundle group and<br />

21% in double-bundle group. Regarding the posterolateral rotatory<br />

laxity, there were no differences between the two groups in the<br />

mean side-to-side difference in the dial test (5.3° ± 2.7° vs. 5.1°<br />

± 2.4° at 30°; 6.7° ± 2.7° vs. 6.7° ± 2.4° at 90°), or in varus stress<br />

radiography(1.2 ± 1.2 mm vs. 1.3 ± 1.4 mm). The Lysholm knee<br />

scores were 85.7 ± 7.6 in the single-bundle group and 87.7 ± 7.3<br />

in the double-bundle group. There was no difference between the<br />

groups in International Knee Documentation Committee knee score.<br />

The rates <strong>of</strong> abnormal and severely abnormal categories in IKDC<br />

were 30% in single-bundle group and 26% in double-bundle group.<br />

Double-bundle PCL reconstruction combined with posterolateral<br />

corner reconstruction does not appear to have advantages over singlebundle<br />

PCL reconstruction combined with posterolateral corner<br />

reconstruction with respect to the clinical outcomes or posterior<br />

knee stability.<br />

pApeR No. 489<br />

Comparison Of Three Posterior Cruciate Ligament<br />

Reconstruction Techniques<br />

Young-Bok Jung, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Sang Hak Lee, MD, Seoul, Republic <strong>of</strong> Korea<br />

Ho Joong Jung, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Siti Tahir, Kuala Lumpur, Malaysia<br />

Posterior cruciate ligament (PCL) injuries have the potential for<br />

intrinsic healing and several magnetic resonance imaging studies have<br />

reported that the PCL healed with continuity but also with residual<br />

laxity. Identification <strong>of</strong> concomitant injuries <strong>of</strong> the posterolateral<br />

corner (PLC) is important to optimize surgical and clinical outcomes.<br />

PCL injuries have many varieties <strong>of</strong> the PCL remnant depending on<br />

the situation. The purpose <strong>of</strong> this study was to compare the clinical<br />

results at a two-year follow up with three techniques: (1) the remnant<br />

PCL-augmenting procedure with transtibial tunnel technique in the<br />

acute or subacute stage, 2) tensioning <strong>of</strong> remnant PCL using modified<br />

tibial inlay technique with single bundle reconstruction in chronic<br />

stage and 3) PCL double bundle reconstruction. The records <strong>of</strong> 89<br />

patients who had primary PCL reconstruction with posterolateal<br />

corner sling (modified Larson technique) between April 2004 and<br />

March 2008 were analyzed retrospectively. Thirty-four patients were<br />

treated with PCL remnant preserving augmenting anterolatral bundle<br />

(ALB) reconstruction using transtibial tunnel technique in acute and<br />

subacute stage <strong>of</strong> the injury (group 1); 40 patients were treated with<br />

remnant tensioning and ALB reconstruction with modified inlay<br />

technique in chronic stage (group 2); and 15 patients were treated<br />

with double bundle reconstruction using modified inlay technique<br />

(group 3). An Achilles tendon allograft was used in PCL double<br />

bundle reconstruction and an autogenous hamstring tendon were<br />

used in the other two groups. PLC reconstruction was performed<br />

with autogenous hamstring tendon through fibular head tunnel in<br />

all patients. Double bundle reconstruction was done if there was no<br />

remnant PCL or very weak PCL remnant by MRI and arthroscopic<br />

finding in subacute or chronic stage. Each patient was evaluated<br />

on the basis <strong>of</strong> the International Knee Documentation Committee<br />

(IKDC) and the Orthopadische Arbeitsgruppe Knie (OAK) scores,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


the mean side-to-side difference in tibial translation as measured on<br />

Telos stress radiographs and a maximal manual displacement test<br />

with a KT-1000 arthrometer. The mean side-to-side differences in<br />

posterior tibial translation were reduced from G1, 10.1± 2.5 mm;<br />

G2, 10.6 ± 2.4 mm; G3, 12.8 ± 3.2 mm preoperatively to G1, 2.3<br />

± 1.4 mm; G2, 2.3 ±1.5 mm; G3, 4.0 ± 2.5 mm at last follow up<br />

on the stress radiographs (p=0.022). The final IKDC score was in<br />

G1, A in 21 (62%), B in nine (27%), C in three (9%) and D in one<br />

(3%); in G2, A in 16 (40%), B in 21 (53%), C in three (7%); in<br />

G3, A in three (20%), B in nine (60%), C in two (13%), D in one<br />

(7%). The average OAK score improved from 71.7 ± 9.2 to 85.0 ±<br />

6.7 in G1, from 65.8 ± 10.4 to 87.8 ± 7.6 in G2, from 71.3 ± 12.7<br />

to 83.0 ± 5.8 in G3. Posterior instability recurred more than 10 mm<br />

compared to contralateral side one case each in G1 and G3. Excellent<br />

posterior stability and good clinical results were achieved with the<br />

anterolateral band reconsuction preserving injured remnant PCL in<br />

acute and subacute and remnant PCL tensioning in chronic stage.<br />

Double bundle reconstruction group did not have the same result as<br />

remnant tensioning or remnant well preserving group. PCL remnant<br />

requires posterior stability to get good clinical results.<br />

pApeR No. 490<br />

High Prevalence <strong>of</strong> Abnormal MR Findings <strong>of</strong> LCL and<br />

Popliteus Tendon in the Knees Without Instability<br />

Chong Bum Chang, MD, Seongnamsi, Gyunggido, Republic <strong>of</strong><br />

Korea<br />

Ja-Young Choi, Seoul, Republic <strong>of</strong> Korea<br />

In Jun Koh, MD, Sungnam-Si, Gyenggi-do, Republic <strong>of</strong> Korea<br />

Kil Jae Lee, MD<br />

Jae Ho Yoo, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Byung June Chung, MD, Seoul, Republic <strong>of</strong> Korea<br />

Kyung-Hag Lee, MD, Seongnam-Si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Sang Cheol Seong, MD, Seoul, Republic <strong>of</strong> Korea<br />

Tae Kyun Kim, MD, Seongnam-si, Gyeonggi-do, Republic <strong>of</strong><br />

Korea<br />

Because <strong>of</strong> well known difficulty in diagnosis <strong>of</strong> chronic posterolateral<br />

corner (PLC) injury <strong>of</strong> the knee, MRI has received attention as a useful<br />

diagnostic tool for PLC injury. However, in our practice, abnormal<br />

MR findings <strong>of</strong> the PLC structures, particularly abnormal signal<br />

intensity and abnormal thickening <strong>of</strong> the lateral collateral ligament<br />

(LCL) and the popliteus tendon (PT), were frequently found in the<br />

patients without knee instability. We aimed to determine prevalence<br />

<strong>of</strong> alterations in the signals and thicknesses <strong>of</strong> the LCL and the PT on<br />

the MRI in the subjects without clinical evidence <strong>of</strong> knee instability,<br />

and to analyze the factors associated with the abnormal MR findings.<br />

MRI in 120 subjects (79 men, 41 women; mean age, 36.8 years;<br />

range, 14-62 years) who had not any kind <strong>of</strong> knee instability were<br />

evaluated to assess the LCL and the PT in terms <strong>of</strong> signal alteration<br />

and thickness. Demographics, Kellgren-Lawrence OA grading and<br />

mechanical alignment <strong>of</strong> the knee were assessed to determine the<br />

factors associated with the abnormal MR findings <strong>of</strong> the LCL and the<br />

PT. The signal alterations <strong>of</strong> the LCL and the PT were found in 33.3%<br />

and 28.9%, respectively, while the abnormal thickening <strong>of</strong> the LCL<br />

and the PT were found in 32.5% and 7.6%, respectively. In the logistic<br />

regression analyses, degrees <strong>of</strong> varus alignment (mean = varus 1.5°)<br />

was found to be the only predictor for the LCL signal alteration (OR<br />

= 0.81, 95% CI = 0.66 - 0.98) and abnormal thickening (OR = 0.73,<br />

95% CI = 0.59 - 0.90). Among the factors evaluated, any factors were<br />

not associated with the alterations <strong>of</strong> the PT. Even in the subjects<br />

without knee instability, signal alteration and abnormal thickening<br />

<strong>of</strong> the LCL and/or the PT on the MRI are frequently found. The<br />

775<br />

mechanical alignment <strong>of</strong> the knee in the coronal plane was found to<br />

be the predictor <strong>of</strong> the alterations <strong>of</strong> the LCL. Our findings should be<br />

considered when the results <strong>of</strong> MR features <strong>of</strong> the LCL and the PT are<br />

being considered for the diagnosis <strong>of</strong> the chronic PLC injury.<br />

pApeR No. 491<br />

Accuracy <strong>of</strong> Magnetic Resonance Imaging <strong>of</strong> the Knee<br />

in the Community Setting<br />

H Jolene Clark, Salt Lake City, UT<br />

William A Grana, MD, MPH, Tucson, AZ<br />

Gregory Thomas Evangelista, MD, Scottsdale, AZ<br />

Robert E Hunter, MD, Salida, CO<br />

Magnetic resonance imaging (MRI) is routinely used as a diagnostic<br />

modality for knee problems. The purpose <strong>of</strong> this study was to<br />

determine the accuracy, sensitivity and specificity <strong>of</strong> MRI in the<br />

evaluation <strong>of</strong> meniscal pathology compared to clinical evaluation<br />

when the MRI facility and the radiologist are not preselected. A<br />

retrospective study <strong>of</strong> 288 arthroscopies <strong>of</strong> the knee were compared<br />

to evaluate accuracy <strong>of</strong> diagnosis <strong>of</strong> medial or lateral meniscal<br />

pathology by MRI study without controlling selection <strong>of</strong> MRI facility<br />

or training <strong>of</strong> the interpreting radiologist as occurs in a community<br />

orthopaedic practice, and the clinical evaluation by an orthopaedic<br />

surgeon. Patients were divided into three groups: those who had an<br />

MRI performed and interpreted at a single institution (SI = academic<br />

center with two fellowship trained musculoskeletal radiologists),<br />

those who had an MRI performed and interpreted at a community<br />

facility (CF = variable group <strong>of</strong> institutions and radiologists in the<br />

community) and those who had no MRI but only a clinical evaluation<br />

(CE) by one <strong>of</strong> two senior orthopaedic surgeons. The sensitivity,<br />

specificity and accuracy <strong>of</strong> the diagnosis <strong>of</strong> medial meniscal<br />

pathology (MM) at a single institution (SI) were 90%, 59%, 76%,<br />

respectively; in the community (CF) for the same measurements<br />

were 73%, 68%, 70%, respectively; and by an orthopedic surgeon’s<br />

clinical evaluation (CE) were 93%, 55%, 73%, respectively. For<br />

lateral meniscal pathology (LM) the results were: SI 75%, 76%, 81%;<br />

CF 60%, 88%, 79%; and CE 45%, 90%, 79%. Sensitivity for MM<br />

was greater than for LM but specificity <strong>of</strong> diagnosis was better for LM<br />

by both MRI and CE. While not statistically significant, SI tended<br />

toward increased sensitivity in the diagnosis <strong>of</strong> MM and LM but<br />

show less specificity than the CF. The total number <strong>of</strong> false-positive<br />

diagnoses that resulted in surgery (i.e. no intra-articular pathology)<br />

was four/288 (1.39%) patients. The overall accuracy for MM by MRI<br />

was 73% vs. 73% for CE. The overall accuracy for MRI for LM was<br />

78% vs. 79% for CE. Routine MRI may not be more beneficial or<br />

helpful than clinical evaluation when there is no preselection <strong>of</strong> MRI<br />

facility and interpreting radiologist.<br />

pApeR No. 492<br />

Repair and Failure Rates <strong>of</strong> Injured Menisci Amongst<br />

Patients Undergoing ACL Reconstruction<br />

Daniel K Williams, MD, Indianapolis, IN<br />

T Ted Funahashi, MD, Irvine, CA<br />

Gregory B Maletis, MD, Baldwin Park, CA<br />

Brent R Davis, MD, Irvine, CA<br />

Yuexin Chen, BS, San Francisco, CA<br />

Rick P Csintalan, MD, Irvine, CA<br />

Stefan Fornalski, MD, San Clemente, CA<br />

Recent studies have shown meniscus repair rates with concomitant<br />

anterior cruciate ligament (ACL) reconstruction to be between 15%<br />

and 20%. Success rates <strong>of</strong> meniscus repair in conjunction with<br />

anterior cruciate ligament reconstruction have been reported to be<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


greater than 90%. We hypothesize that when compared to published<br />

averages, a higher rate <strong>of</strong> meniscus repair in patients undergoing<br />

anterior cruciate ligament reconstruction will lead to a higher rate<br />

<strong>of</strong> repair failure. All patients who had a meniscus tear undergoing<br />

an anterior cruciate ligament reconstruction were evaluated from a<br />

large community based anterior cruciate ligament registry. Patients<br />

were evaluated from one <strong>of</strong> three separate sites participating in the<br />

registry. All patients had at least two-year follow up. Initial meniscal<br />

repairs and reoperations <strong>of</strong> failed repairs were reviewed via operative<br />

reports. There were a total <strong>of</strong> 650 meniscus tears in 500 patients<br />

undergoing anterior cruciate ligament reconstruction. Two hundred<br />

and twenty eight meniscus repairs were performed for a repair rate<br />

<strong>of</strong> 35.1%. After a minimum <strong>of</strong> two-year follow up, 23 menisci<br />

were reported as having failed (needing a repeat arthroscopy for<br />

meniscal symptoms). The overall failure rate <strong>of</strong> the meniscus repairs<br />

was 10.1%. Meniscus repair, when performed in conjunction with<br />

anterior cruciate ligament reconstruction, has a high rate <strong>of</strong> success.<br />

A higher rate <strong>of</strong> meniscal repair does not appear to increase the need<br />

for reoperation <strong>of</strong> the repaired meniscus.<br />

pApeR No. 493<br />

Cost Effectiveness Analysis <strong>of</strong> the Diagnosis <strong>of</strong><br />

Meniscus Tears<br />

Richard C Mather, III MD, Durham, NC<br />

Dustin Hambright, BA<br />

Michael P Bolognesi, MD, Durham, NC<br />

William E Garrett, Jr MD, Durham, NC<br />

Lori A. Orlando, MD<br />

Tally E Lassiter Jr, MD, Oneonta, NY<br />

In the adult presenting with knee pain, a meniscus tear is a common<br />

diagnosis, and knee arthroscopy is the most performed orthopaedic<br />

procedure in the U.S. Diagnostic imaging represents the fastest<br />

growing segment <strong>of</strong> costs in the health system and identifying cost<br />

effective diagnostic strategies is critical to achieve efficient healthcare<br />

delivery. In this study, we investigated the cost effectiveness <strong>of</strong><br />

diagnostic approaches to meniscus tears <strong>of</strong> the knee. A simple<br />

decision model reflecting the diagnostic algorithm faced by clinicians<br />

was constructed for a cost-utility analysis evaluating the value <strong>of</strong> the<br />

addition <strong>of</strong> MRI to history and physical exam (H&P) for traumatic<br />

or degenerative tears presenting to either a primary care or sports<br />

medicine clinic. Outcome probabilities and effectiveness were derived<br />

from the literature or estimated by expert opinion where necessary.<br />

Costs were estimated from the societal perspective. Strategies were<br />

compared using the incremental cost effectiveness ratio (ICER).<br />

History and physical exam alone are widely preferred for suspected<br />

degenerative meniscus tears with ICERs for the other strategies<br />

ranging from $140,000-$600,000+, well above the willingness to<br />

pay <strong>of</strong> $50,000/quality-adjusted life year (QALY). For traumatic tears<br />

in the primary care clinic, the MRI to confirm a positive diagnosis<br />

was preferred with an ICER <strong>of</strong> $40,565/QALY. MRI for all patients<br />

was not preferred in any reasonable clinical scenario. H&P is the<br />

preferred strategy for the suspected degenerative meniscus tear for<br />

all practitioners. MRI to confirm a positive is preferred for traumatic<br />

tears. Consideration should be given to implementing alternative<br />

diagnostic strategies.<br />

pApeR No. 494<br />

Meniscal Allograft Transplantation- 10 Year Follow-up<br />

Thomas R Carter, MD, Phoenix, AZ<br />

Michael Rabago, PA, Phoenix, AZ<br />

While meniscal allografts can benefit symptomatic patients, longterm<br />

studies are lacking with the durability and protective abilities<br />

776<br />

questioned. The purpose <strong>of</strong> this study is to evaluate results <strong>of</strong><br />

patients 10 years after receiving meniscal allografts. Forty-one <strong>of</strong><br />

our initial 47 (87%) meniscal allograft recipients for symptomatic<br />

knees were available for prospective study. The average age at<br />

implantation was 34.8 years (range 19-50yrs). The outerbridge<br />

grade <strong>of</strong> chondromalacia at implantation: I-2, II-20, III-19. Eight<br />

grafts were isolated with concurrent ACL-28; osteotomy-three; ACL/<br />

osteotomy-one; and MCL-one. The clinical outcomes were recorded<br />

at two and 10 years, including degree <strong>of</strong> symptoms, satisfaction, graft<br />

survivorship and plain radiographs. Forty <strong>of</strong> the 41 (97%) patients<br />

noted improvement in symptoms at two years, with 33 (80%) at<br />

10 years. All but two stated they would undergo the procedure<br />

again. Seven patients required partial meniscectomies, with four<br />

beyond seven years, for a 10-year graft survivorship <strong>of</strong> 83%. Thirtyfour<br />

patients had plain X-rays available for pre-op, two years and<br />

10 years comparison. At two years, two showed mild progression <strong>of</strong><br />

arthritis. At 10 years, 14 had no change, 15 mild and five moderate<br />

to advanced progression. Meniscal allografts are able to provide<br />

subjective improvement at long-term follow up. Graft durability has<br />

been a concern, but our study showed over 80% graft survivorship<br />

at 10 years. The ability to delay the progression <strong>of</strong> arthritis is still<br />

<strong>of</strong> question and needs further study, but the grafts are not able to<br />

uniformly prevent arthritis.<br />

pApeR No. 495<br />

Prospective Evaluation <strong>of</strong> Meniscal Allograft<br />

Transplantation Procedure: Minimum 7 Year Follow-Up<br />

Brian J Cole, MD, Chicago, IL<br />

Erika L Daley, BS<br />

Sarvottam Bajaj, BE, Chicago, IL<br />

James Kercher, MD, Atlanta, GA<br />

Eric J. Strauss, MD, New York, NY<br />

Paul B Lewis, MD, Chicago, IL<br />

Nikhil N Verma, MD, Chicago, IL<br />

Meniscal transplantation is an accepted method <strong>of</strong> treatment for<br />

meniscal deficient patients. Although mid-term results have been<br />

promising, there is limited long-term clinical follow-up data. The<br />

purpose <strong>of</strong> this study is to report post operative outcomes <strong>of</strong> meniscal<br />

allograft transplantation at a minimum <strong>of</strong> seven year follow up.<br />

Clinical results from 20 patients (mean age 32.2) who underwent<br />

meniscal transplantation (10 medial and 10 lateral) were evaluated<br />

at a mean follow up <strong>of</strong> 8.23 years. Post-operatively, patients were<br />

assessed using the International Knee Documentation Committee<br />

(IKDC), Tegner-Lysholm, Knee Injury and Osteoarthritis Outcome<br />

Score (KOOS) and San Francisco-12 (SF-12). The mean IKDC score<br />

improved from 46.84 to 60.95 (p


pApeR No. 571<br />

Treatment Of Shoulder Impingement Syndrome:<br />

Subacromial Injection Of Ketorlac Versus<br />

Triamcinolone<br />

Kyong Su Min, MD, Tacoma, WA<br />

Edward D Arrington, MD<br />

Paul M Ryan, MD, Lakewood, WA<br />

Subacromial impingement syndrome is commonly treated with<br />

corticosteroid injections; however, corticosteroids have been associated<br />

with tendon rupture, subcutaneous atrophy and articular cartilage<br />

changes. There has been evidence to support that NSAID injections<br />

are effective in treating impingement. This study hypothesizes that<br />

an injection <strong>of</strong> ketorlac is as effective as triamcinolone in treating<br />

subacromial impingement syndrome. Patients diagnosed with<br />

subacromial impingement syndrome that met the inclusion and<br />

exclusion criteria were included in this double-blinded randomized<br />

controlled clinical trial. The Steroid syringe contained 6 cc <strong>of</strong> 1%<br />

lidocaine with epinephrine and 40 mg triamcinolone; and the<br />

NSAID syringe contained 6 cc <strong>of</strong> 1% lidocaine with epinephrine and<br />

60 mg ketorlac. After a single injection, the patients were evaluated<br />

and instructed to follow up in four weeks. The mean improvement<br />

in the UCLA Shoulder Assessment Score was 7.15 for the NSAID<br />

group and 2.13 for the Steroid group (p-value: 0.03). The NSAID<br />

group showed an increase in forward flexion strength (NSAID: 0.26,<br />

Steroid: -0.07; p-value: 0.04) and patient satisfaction (NSAID: 2.94,<br />

Steroid; p-value: 0.03). In this study, a single injection <strong>of</strong> ketorlac is<br />

more effective than triamcinolone in the treatment <strong>of</strong> subacromial<br />

impingement. Arguably, the relief provided by both ketorlac and<br />

triamcinolone is a function <strong>of</strong> their anti-inflammatory action. By<br />

decreasing pain, the patient is able to strengthen the rotator cuff, and<br />

thereby increase the subacromial space. We believe that ketorlac is an<br />

effective alternative to triamcinolone because it appears to increase<br />

shoulder function and does not risk the potential side-effects <strong>of</strong><br />

corticosteroids.<br />

pApeR No. 572<br />

Predictors Of Pain And Function In Symptomatic,<br />

Atraumatic Full-Thickness Rotator Cuff Tears<br />

Grant L Jones, MD, Columbus, OH<br />

Joshua Harris, MD, Columbus, OH<br />

Angela D Pedroza, MPH<br />

The prevalence <strong>of</strong> full-thickness rotator cuff tears increases with<br />

age. Many patients are asymptomatic. Thus, not all <strong>of</strong> these patients<br />

require surgical repair. It is unclear which factors definitively<br />

contribute to patients’ pain and function. The purpose <strong>of</strong> this study<br />

was to determine what non-modifiable and non-surgically modifiable<br />

factors contribute to pain and function with symptomatic, atraumatic<br />

full-thickness rotator cuff tears. A prospective, non-randomized<br />

cohort study reporting time-zero data <strong>of</strong> patients enrolled in a nonoperative<br />

treatment program for symptomatic, atraumatic rotator<br />

cuff tears by the Multi-center <strong>Orthopaedic</strong> Outcomes Network<br />

(MOON) shoulder group. Based on ASES (<strong>American</strong> Shoulder and<br />

Elbow Surgeons) scores and WORC (Western Ontario Rotator Cuff)<br />

indices, several variables were analyzed. A total <strong>of</strong> 389 subjects were<br />

enrolled. The following variables significantly affected the WORC<br />

and ASES scores: Sex (females had higher score; p=.001), education<br />

level (higher education, higher score; p


pApeR No. 574<br />

Post-Operative Goals After Shoulder Surgery: Is Pain<br />

Relief or Strength More Important to Patients?<br />

Brian J Cole, MD, Chicago, IL<br />

James Kercher, MD, Atlanta, GA<br />

Sarvottam Bajaj, BE, Chicago, IL<br />

Erika L Daley, BS<br />

Billy Keith Parsley, MD, Kingsport, TN<br />

Anthony A Romeo, MD, Chicago, IL<br />

Nikhil N Verma, MD, Chicago, IL<br />

Stephen S Burkhart, MD, San Antonio, TX<br />

Scoring systems currently used to evaluate the shoulder (ASES,<br />

SPADI, UCLA and Constant scores) place substantial weight on<br />

pain relief and range <strong>of</strong> motion. It is our hypothesis that the relative<br />

value <strong>of</strong> strength may not be weighted appropriately in these surveys<br />

and thus may not accurately represent a patient’s post-operative<br />

expectations. Our purpose was to determine the relative importance<br />

<strong>of</strong> improvements in strength relative to pain relief in patients<br />

undergoing shoulder surgery. Patients with suspected shoulder<br />

pathology pre-operatively completed a newly devised questionnaire<br />

to determine how they would rate the importance <strong>of</strong> post-operative<br />

improvements in strength versus pain relief. Baseline data was<br />

obtained related to current pain and weakness, as well as hand<br />

dominance, occupation, level <strong>of</strong> sports participation, gender and<br />

age. Post-operative expectations were surveyed by asking whether<br />

they would prefer a strong shoulder with mild pain, or a weak<br />

shoulder with no pain. A total <strong>of</strong> 128 patients with suspected rotator<br />

cuff pathology were analyzed for this study. Overall, 84% <strong>of</strong> patients<br />

preferred a strong shoulder with mild pain, and only 16% preferred a<br />

weak shoulder with no pain. Sub-group analysis reported all groups<br />

favoring a strong shoulder with mild to moderate pain. Historically,<br />

post-operative pain relief has been a primary indicator for rotator<br />

cuff surgery. However, the majority <strong>of</strong> patients indicated that they<br />

prefer a strong shoulder following surgery even with some persistent<br />

pain. The results <strong>of</strong> this survey reflect that patient preferences for<br />

improvement in strength may not be adequately emphasized preoperatively<br />

or when using contemporary outcome measures.<br />

pApeR No. 575<br />

Which Repair For Partial Thichness Rotator Cuff Tears?<br />

Francesco Franceschi, MD, Rome, Lazio Italy<br />

Rocco Papalia, MD, Rome, Italy<br />

Angelo Del Buono, MD<br />

Alessio Palumbo, MD, Roma, Italy<br />

Sebastiano Vasta, MS<br />

Pr<strong>of</strong>essor Nicola Maffulli, London, United Kingdom<br />

Vincenzo Denaro, MD, Rome, Italy<br />

The incidence <strong>of</strong> partial thickness rotator cuff tears (PTRCTs) is<br />

unclear because <strong>of</strong> its difficult diagnosis, while its definition and<br />

classification are well established. The surgical treatment focuses on<br />

partial thickness tendon rupture itself that is approached with repair<br />

in arthroscopic surgery. There is no agreement on which surgical<br />

treatment must be chosen. However several studies reported good<br />

results using both trans-tendon technique and lesion completing<br />

and subacromial repair. Sixty patients with a partial thickness rotator<br />

cuff tear (detected by arthro-MRI and confirmed by intra-operative<br />

measurement using cuff- meter device) underwent arthroscopic<br />

repair with suture anchors. They were divided into two groups <strong>of</strong><br />

30 patients according to repair technique: trans-tendon technique<br />

(group 1) or lesion completing and subacromial repair (group 2).<br />

Results were evaluated by use <strong>of</strong> the UCLA score, shoulder and<br />

778<br />

hand (DASH) and normalized Constant score and muscle strength<br />

measurement. On analyzing the outcomes at a one-year follow up,<br />

we considered the following independent variables: baseline scores;<br />

age; gender; dominance; location; preoperative thickness <strong>of</strong> rotator<br />

cuff tear; treatment <strong>of</strong> biceps tendon. Univariate and multivariate<br />

statistical analyses were performed to determine which variables<br />

were independently associated with the outcome. Significance was<br />

set at P < .05. Of the patients, six (10%) were lost to follow up.<br />

Comparison between groups did not show significant differences for<br />

each variable considered. Overall, according to the results, the mean<br />

DASH scores, UCLA scores and SF-36 scores improved significantly<br />

in both groups postoperatively, with no significant difference<br />

between the groups. Muscle strength was 13.6 ± 5.7 lb. in group 1<br />

and 13.2 ± 7.0 lb. in group 2. Univariate and multivariate analysis<br />

showed that only age, gender and baseline strength significantly and<br />

independently influenced the outcome. Differences between groups<br />

1 and 2 were not significant. At short-term follow up, arthroscopic<br />

partial thickness <strong>of</strong> rotator cuff repair with trans-tendon technique<br />

showed no significant difference in clinical outcome compared with<br />

lesion completing and subacromial repair.<br />

pApeR No. 576<br />

Complications Associated With The Use Of<br />

Bioabsorbable Implants About The Shoulder<br />

Daniel D Buss, MD, Edina, MN<br />

Leroy Pearce McCarty, III MD, Edina, MN<br />

Michael Q Freehill, MD, Edina, MN<br />

Literature describes sterile bony abscess formation, as well as<br />

occurrence <strong>of</strong> glenohumeral synovitis and chondrolysis, in<br />

association with poly-L-lactic acid (PLLA) implants. Previous reports<br />

have included small cohorts and described intra-articular use <strong>of</strong><br />

such implants. We report a large series <strong>of</strong> patients with a biologically<br />

mediated reaction following utilization <strong>of</strong> PLLA implants to address<br />

intra-articular or rotator cuff pathology. After Institutional Review<br />

Board approval, 47 patients were retrospectively identified from<br />

the research database. Inclusion criteria involved a pathology<br />

report showing polarizing material and giant cell reaction and/or<br />

the presence <strong>of</strong> macroscopic, extra-osseous anchor material. All<br />

index procedures were performed by outside institutions. Mean<br />

age at index procedure was 34 years (range 16-62). Mean period<br />

between index and debridement procedures was 47 months. Eleven<br />

(23%) required more than one revision surgery. Index procedures<br />

included intra-articular stabilization procedures (n=29) and rotator<br />

cuff repairs (n=18). Average number <strong>of</strong> anchors used for labral<br />

stabilizations was 2.8 and 2 for rotator cuff repair. Osteolytic<br />

changes were apparent per plain films and/or MRI. Pathology from<br />

all cases revealed a synovitic process in the glenohumeral and/or<br />

subacromial space. Polarizing material was present on pathology<br />

for 34 (72%) cases. Twenty-two (47%) had macroscopic material<br />

present. Grade three or four chondral damage was present in 26<br />

(55%) patients. A recurrent rotator cuff tear occurred in all patients<br />

whose index procedure included a rotator cuff repair. PLLA implants<br />

can generate biologically mediated adverse reactions in some<br />

patients, as evidenced by development <strong>of</strong> reactive synovitic changes<br />

with chondral damage or recurrent rotator cuff pathology.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


pApeR No. 577<br />

The Effect <strong>of</strong> Platelet-Rich Fibrin Matrix on Rotator Cuff<br />

Tendon Healing<br />

Demetris Delos, MD, New York, NY<br />

Scott Alan Rodeo, MD, New York, NY<br />

Riley Joseph Williams, MD, New York, NY<br />

Ronald S Adler, MD, PhD, New York, NY<br />

Andrew D Pearle, MD, Rye, NY<br />

Russell F Warren, MD, New York, NY<br />

Platelet-rich fibrin matrix (PRFM) is an autologous fibrin matrix that<br />

allows for sustained release <strong>of</strong> cytokines from platelets. The purpose<br />

<strong>of</strong> this study was to evaluate the effect <strong>of</strong> PRFM on rotator cuff tendon<br />

healing. A prospective trial <strong>of</strong> 67 patients randomized to receive<br />

PRFM (36 patients) or no implant (31 patients) during arthroscopic<br />

rotator cuff repair was performed with minimum one-year follow<br />

up. The primary outcome was ultrasound evaluation <strong>of</strong> tendon<br />

healing at six and 12 weeks. Secondary outcomes included ASES<br />

and L’Insalata scores as well as strength testing. Statistical analysis<br />

was performed with p=0.05. Overall, there were no differences in<br />

tendon-to-bone healing between the two groups. Repairs were intact<br />

in 24/36 (67%) in the PRFM group and 25/31(81%) in the control<br />

group. There were no significant differences in healing by ultrasound<br />

at six and 12 weeks, including no differences in vascularity at the<br />

peribursal, peritendinous and musculotendinous regions <strong>of</strong> the<br />

tendon. No differences in ASES, L’Insalata and strength outcomes<br />

were noted between the groups. Platelet-rich fibrin matrix applied<br />

to the tendon-bone interface during rotator cuff repair had no<br />

effect on tendon healing and tendon vascularity, strength or clinical<br />

outcome. These results may be due to variability in platelet recovery,<br />

platelet activation and kinetics <strong>of</strong> cytokine release from the PRFM. A<br />

weakness <strong>of</strong> this study is the absence <strong>of</strong> PRFM platelet concentration<br />

and the relatively small number <strong>of</strong> patients studied. Further study is<br />

required to evaluate the role <strong>of</strong> PRFM in rotator cuff repair.<br />

pApeR No. 578<br />

Platelet-Rich Plasma Augmentation For Arthroscopic<br />

Rotator Cuff Repair<br />

Roberto Castracini, MD, Rome, Italy<br />

Umile Guiseppe Longo, MD, Rome, Italy<br />

Massimo De Benedetto, MD<br />

Nicola Panfoli, MD<br />

Piergiorgio Pirani, MD, Mombaraccio, PU Italy<br />

Raul Zini, MD, Pesaro, Italy<br />

Pr<strong>of</strong>essor Nicola Maffulli, London, United Kingdom<br />

Vincenzo Denaro, MD, Rome, Italy<br />

The rotator cuff has limited ability to heal back to its insertion on the<br />

humerus following repair. Growth factors augmentation has been<br />

proposed to be able to enhance healing in such procedure. The aim<br />

<strong>of</strong> this randomized controlled trial is to assess the efficacy and safety<br />

<strong>of</strong> the addition <strong>of</strong> growth factor augmentation during rotator cuff<br />

repair. Eighty-eight patients with a rotator cuff tear were randomly<br />

assigned by a computer-generated sequence to receive arthroscopic<br />

rotator cuff repair without (n=45) or with (n=43) augmentation<br />

with platelet-rich plama (PRP). The primary endpoint was the<br />

difference in change from baseline to 16 months in the Constant<br />

score between the two groups. The secondary endpoint was the<br />

integrity <strong>of</strong> the repaired rotator cuff, as evaluated by MRI. Analysis<br />

was on an intention to treat basis. All the patients completed follow<br />

up at 16 months. There was no statistically significant difference in<br />

total Constant score when comparing arthroscopic rotator cuff repair<br />

with or without PRP. There was no statistically significant difference<br />

779<br />

in MRI tendon score when comparing arthroscopic rotator cuff<br />

repair with or without PRP. Our study does not support the use <strong>of</strong><br />

autologous PRP for augmentation <strong>of</strong> a rotator cuff repair to improve<br />

the healing <strong>of</strong> rotator cuff tears<br />

pApeR No. 579<br />

The Effect Of Mechanical Load On Tendon-To-Bone<br />

Healing<br />

Carolyn Hettrich, MD, MPH, Nashville, TN<br />

Selom Gasinu<br />

Patrick Birmingham, MD, Wauwatosa, WI<br />

Brandon S Beamer, MD, Boston, MA<br />

Mark Stasiak, New York, NY<br />

Alice JS Fox, MSc, New York, NY<br />

Xiang-Hua Deng, MD, New York, NY<br />

Scott Alan Rodeo, MD, New York, NY<br />

Joint motion is commonly prescribed following tendon repair<br />

surgeries such as rotator cuff repairs; however, the ideal rehabilitation<br />

program to optimize tendon-to-bone healing is unknown. We<br />

hypothesized that delayed loading would result in a mechanically<br />

stronger and better organized tendon-to-bone interface compared to<br />

immobilized and immediately loaded animals. A total <strong>of</strong> 278 Sprague<br />

Dawley rats underwent unilateral patellar tendon detachment and<br />

repair followed by placement <strong>of</strong> a custom designed external fixator.<br />

Rats were assigned to: 1. immobilization, 2. immediate postoperative<br />

loading or 3. delayed onset loading (4- or 10-day delay). Tendon<br />

loading was controlled using a specially designed motorized device<br />

to apply 3 Newtons (low load) or 6 Newtons (high load) <strong>of</strong> axial<br />

tensile load to the healing bone-tendon complex at 0.17 Hz for<br />

50 cycles per day. Rats were sacrificed at four, 10, 21, or 28 days<br />

post-operatively for histomorphometric, immunohistochemical,<br />

radiographic, molecular and biomechanical analyses. Immobilized<br />

animals had significantly better mechanical properties than the<br />

immediate and delayed loading groups (p


(SST) and visual analog scale for pain (VAS), subjective shoulder<br />

value (SSV) Short Form 12 (SF12). The two groups were compared<br />

using chi-square and t-tests. The mean age in the SLAP/RCR group<br />

was 49 years compared to 59 in the RCR group (p


pApeR No. 584<br />

Does the Remplissage Procedure Decrease Shoulder<br />

Range <strong>of</strong> Motion? An In-vitro Biomechanical Study<br />

Ilia Elkinson, MD, Wellington South, New Zealand<br />

James A Johnson, PhD, London, ON Canada<br />

Josh W Giles, BESc, London, ON Canada<br />

Ken Faber, MD, London, ON Canada<br />

Harm-Willem Boons, MD, Nijmegen, Netherlands<br />

Louis Ferreira, MSc, London, ON Canada<br />

George S. Athwal, MD, London, ON Canada<br />

Remplissage may be performed as an adjunct to Bankart repair to<br />

address an engaging Hill-Sachs (HS) defect. It has been reported<br />

that the Remplissage procedure may restrict range <strong>of</strong> motion. The<br />

purpose <strong>of</strong> this biomechanical study was to examine the effects <strong>of</strong> the<br />

Remplissage procedure on shoulder motion and stability. Cadaveric<br />

forequarters (n=7) were mounted on a custom biomechanical testing<br />

apparatus which applied simulated loads independently to the rotator<br />

cuff muscles and the anterior, middle and posterior deltoid. The<br />

testing conditions included: intact shoulder, Bankart lesion, Bankart<br />

repair, two HS defects (15%,30%) with and without Remplissage.<br />

Joint motion and translation were recorded with an optical tracking<br />

system. Outcomes measured were internal/external glenohumeral<br />

rotation (IE-ROM) in adduction and 90° combined abduction and<br />

stability <strong>of</strong> the construct (joint stiffness and translation). In 15%<br />

HS defects, the Remplissage did not significantly reduce IE-ROM in<br />

adduction (14.4°±9.6°p=0.1]) or abduction (5.1°±12.4°<br />

pApeR No. 585<br />

A Biomechanical Comparison and Three Single and<br />

Two Double loaded anchors for Bankart Repair<br />

Stephen A Hoover, Jr MD, Chapel Hill, NC<br />

Paul Weinhold, PhD, Chapel Hill, NC<br />

Robert Alexander Creighton, MD, Chapel Hill, NC<br />

Jeffrey T Spang, MD, Chapel Hill, NC<br />

Authors have reported post-operative glenoid fracture through suture<br />

anchor drill holes after shoulder instability surgery. Manufacturers<br />

have now produced double-loaded suture anchors. The use <strong>of</strong><br />

double-loaded suture anchors may allow equivalent biomechanical<br />

results when compared to single-loaded anchors while limiting the<br />

number <strong>of</strong> glenoid drill holes in arthroscopic instability surgery. Nine<br />

matched pair cadaveric shoulders had a surgically created Bankart<br />

lesion repaired with either two double-loaded or three single-loaded<br />

suture anchors. Each 21 mm lesion was created using a standardized<br />

template. Three single-loaded anchors were placed at the proximal,<br />

middle and distal margins <strong>of</strong> the lesion while two double-loaded<br />

anchors were placed 7 mm and 14 mm from the ends <strong>of</strong> the lesion.<br />

Constructs were mounted on a servohydraulic testing machine using<br />

a cryoclamp. A differential variable reluctance transducer was used to<br />

record labrum displacement. The construct was then preconditioned<br />

at 10 N for 10 cycles (1 Hz), and then pulled to failure. Measured<br />

outcomes included utimate tensile load (UTL), labrum displacement<br />

at failure, load at 2 mm <strong>of</strong> displacement, energy at failure, energy at<br />

2 mm <strong>of</strong> displacement and stiffness <strong>of</strong> repair. The double-loaded<br />

suture anchors had a higher UTL (944N to 783N, p


pApeR No. 633<br />

Mid-Term Results Of Surgical Repair Of Proximal<br />

Hamstring Tendon Tears<br />

Sujith Konan, MRCS, London, United Kingdom<br />

Fares Sami Haddad, FRCS, London, United Kingdom<br />

The purpose <strong>of</strong> this study was to investigate the outcome <strong>of</strong> surgical<br />

repair <strong>of</strong> proximal hamstring tendon tears at mid-term follow up.<br />

Forty-six patients were treated with surgical repair and intensive<br />

physiotherapy program after complete tears <strong>of</strong> the proximal<br />

hamstring tendon. The average time between injury and surgical<br />

referral was two weeks (one day to three weeks). MRI was used to<br />

confirm the tear and plan surgical repair in all cases. Primary repair<br />

using suture anchors to approximate the torn tendon to the ischial<br />

tuberosity was undertaken in all cases. Intensive physiotherapy was<br />

commenced in all cases with gradual increase in knee flexion based<br />

on the severity <strong>of</strong> the tear and the surgeon’s assessment <strong>of</strong> the surgical<br />

repair at the time <strong>of</strong> surgery. Patient satisfaction and return to sports<br />

were used as measures <strong>of</strong> outcome. The average hospital stay was<br />

one day. Apart from local numbness around the scars, there were<br />

no post-operative complications noted in this group. High patient<br />

satisfaction was noted in all patients at final follow up (one year)<br />

which was also noted at four years. The average time to return to<br />

sports was six months (five months to nine months). No re-tears<br />

were noted in any patients. In cases where dynamometer isokinetic<br />

muscle testing was undertaken, comparable results for operated<br />

and non-operated contra lateral sides were noted after six months.<br />

At mid-term follow up, early surgical repair and physiotherapy has<br />

been noted to be associated with a good outcome and enables an<br />

early return to sports after complete tear <strong>of</strong> the proximal hamstring<br />

tendons.<br />

pApeR No. 634<br />

Poor Correlation Between Pain And Radiographic<br />

Findings In FAI<br />

Morteza Meftah, MD, New York, NY<br />

Anil Ranawat, MD, New York, NY<br />

Ben Schulz, MD<br />

Sebastian F Baumbach, MD, Wien, Austria<br />

Reinhold Ganz, MD, Guemligen, Switzerland<br />

Michael Leunig, MD, Zurich, Switzerland<br />

The primary diagnosis <strong>of</strong> femoroacetabular impingement (FAI) is<br />

based on clinical symptoms, physical exam findings and radiographic<br />

abnormalities. Our objective was to determine if patient derived pain<br />

score correlates to radiographic findings and which radiographic<br />

finding was most predictive <strong>of</strong> symptomatic FAI patients. One<br />

hundred prospective patients with unilateral FAI symptoms based<br />

on clinical and radiographic findings were included in this study. All<br />

patients filled out a WOMAC pain questionnaire. Two independent<br />

blinded surgeons assessed antero-posterior and lateral radiographs for<br />

33 radiographic parameters <strong>of</strong> FAI. Correlations between pain scores<br />

and radiographic findings were calculated. A matched radiographic<br />

analysis was performed comparing symptomatic versus asymptomatic<br />

hips as well as males versus females. Weak positive correlations<br />

were identified between increasing pain scores with radiographic<br />

findings <strong>of</strong> posterior wall dysplasia, presence <strong>of</strong> a shallow socket<br />

and a more lateral acetabular fossa relative to the Ilioischial Line. A<br />

symptomatic hip had a lower neck shaft angle, greater distance from<br />

ilioischial line to acetabular fossa and larger distance from cross<br />

over sign to superolateral point <strong>of</strong> the acetabulum when compared<br />

to the asymptomatic hip in the same patient. Symptomatic hips in<br />

males had more joint space narrowing, femoral osteophytes, higher<br />

782<br />

alpha angles and larger, more incongruent femoral heads. Females<br />

had more medial acetabular fossa relative to the ilioischial line and<br />

smaller femoral head extrusion index. There is no single strong<br />

radiographic predictor <strong>of</strong> symptoms in FAI.<br />

pApeR No. 635<br />

Hip Range <strong>of</strong> Motion is correlated to Radiographic<br />

Findings <strong>of</strong> FAI in Collegiate Football Players<br />

Ashley L Kapron, BS, Salt Lake City, UT<br />

Andrew E Anderson, PhD, Salt Lake City, UT<br />

Stephen K Aoki, MD, North Salt Lake, UT<br />

Lee Garrit Phillips, MD, Salt Lake City, UT<br />

Mr Robert Toth, Salt Lake City, UT<br />

David Petron, MD<br />

Christopher L Peters, MD, Salt Lake City, UT<br />

Physical exams are commonly used to evaluate patients with<br />

femoroacetabular impingement (FAI). It is unknown if exams can<br />

detect FAI in asymptomatic subjects. Prospective, Institutional<br />

Review Board approved study <strong>of</strong> 65 male collegiate football players.<br />

Both hips (n=130) were evaluated by two orthopaedic surgeons for<br />

radiographic signs <strong>of</strong> FAI. The alpha angle (AA) and head neck <strong>of</strong>fset<br />

(HNO) were measured on frog-lateral films. Center edge angle,<br />

acetabular angle, cross-over ratio, and anteroposterior alpha angle<br />

were measured on anteroposterior films. Maximum hip range <strong>of</strong><br />

motion in flexion (supine) and internal/external rotation (supine,<br />

sitting and prone) were measured using a goniometer. Forty-nine<br />

players went to one <strong>of</strong> two stations, staffed by two clinicians (one<br />

examined, one measured). Sixteen players went to both stations<br />

(repeatability). For all combinations <strong>of</strong> observers, correlation between<br />

each range <strong>of</strong> motion and radiographic measure was determined<br />

by a random-effects linear regression model (significance p


measured using CT and MRI. The average alpha angle measured<br />

using the MRI was 60.12 and with the CT was 65.71. No significant<br />

difference was noted between the two sets <strong>of</strong> measurements using<br />

the t-test (p =0.4). Comparison <strong>of</strong> alpha angles measured on CT vs.<br />

MRI showed a high intra class correlation coefficient <strong>of</strong> 0.82. MRI<br />

showed cartilage lesions over the CAM lesion and labral tears in all<br />

cases. MRI scans can reliably predict alpha angle as a measure <strong>of</strong><br />

CAM type FAI. They provide useful information about cartilage and<br />

labral pathology. The higher average alpha angles noted on CT scans<br />

may suggest greater accuracy and this may particularly be useful in<br />

the presence <strong>of</strong> severe pathology or for post procedure evaluation.<br />

pApeR No. 637<br />

Comparison <strong>of</strong> Radiographs and CT Imaging in<br />

detecting Femoral Head-neck Junction Malformations<br />

Jeffrey Nepple, MD, Shrewsbury, MO<br />

John M Martell, MD, Chicago, IL<br />

Harish Sadanand Hosalkar, MD, San Diego, CA<br />

Young Jo Kim, MD, Boston, MA<br />

David A Podeszwa, MD, Dallas, TX<br />

Ernest L Sink, MD, Aurora, CO<br />

Daniel J Sucato, MD, Dallas, TX<br />

Ira Zaltz, MD, Royal Oak, MI<br />

John C Clohisy, MD, Saint Louis, MO<br />

Three-dimensional imaging (CT and MRI) is the gold standard<br />

for detection <strong>of</strong> femoral head-neck junction malformations in<br />

femoroacetabular impingement (FAI), yet plain radiographs are<br />

used to screen for FAI. The purpose <strong>of</strong> this study was to compare<br />

the utility <strong>of</strong> plain radiographs with CT scanning in the detection<br />

<strong>of</strong> femoral head-neck malformations. We performed a retrospective<br />

review <strong>of</strong> 41 consecutive surgical patients with preoperative CT scans<br />

and plain radiographs (anterior/posterior (AP), 45 degree Dunn,<br />

frog lateral, cross-table lateral). Twenty-eight were female, 13 male<br />

and diagnoses included cam FAI (56.1%), combined cam-pincer<br />

FAI (36.6%), DDH (4.9%) and normal structural anatomy (2.4%).<br />

Radial CT reformations <strong>of</strong> the head-neck junction were generated<br />

at the 12, 1, 2, and 3 o’clock positions spanning the superior to<br />

anterior neck. Alpha angles were measured with a computer-assisted<br />

program. Alpha angle thresholds <strong>of</strong> 50 and 63 degrees were utilized as<br />

markers <strong>of</strong> any or severe deformity, respectively. The maximum alpha<br />

angle on plain radiographs was greater than that <strong>of</strong> CT reformats in<br />

61.0% <strong>of</strong> cases. The complete radiographic series was 85.7-90.0%<br />

sensitive to detecting deformity on CT. Exclusion <strong>of</strong> the crosstable<br />

lateral did not affect the sensitivity (85.7-87.7%). The Dunn view<br />

was most sensitive (71.4-80.0%). The frog lateral showed the best<br />

specificity (90.9-100%). Plain radiographs detect deformity seen on<br />

CT scan, and in some cases may overestimate the alpha angle. The<br />

combination <strong>of</strong> an AP pelvis, 45 degree Dunn and frog lateral has<br />

excellent sensitivity in detecting head-neck malformations.<br />

pApeR No. 638<br />

Radiologic Predictors <strong>of</strong> THR following Arthroscopy for<br />

Femoroactabular Impingement<br />

John Carlisle, MD, Overland Park, KS<br />

Marc J Philippon, MD, Vail, CO<br />

Bruno Goncalves Schroder Souza, MD, Juiz De Fora, MG Brazil<br />

Karen K Briggs, MPH, Vail, CO<br />

Some studies stress the importance <strong>of</strong> standardizing plain radiographs<br />

to identify femoroacetabular impingement (FAI). Current literature<br />

has little data regarding use <strong>of</strong> radiographs to predict patient<br />

outcomes following hip arthroscopy. This study looks at the impact<br />

783<br />

<strong>of</strong> common osteoarthritis (OA) radiographic features and patient<br />

outcomes following FAI surgery. This study was Institutional Review<br />

Board approved. A total <strong>of</strong> 115 preoperative anterior/posteriorpelvis<br />

radiographs were retrospectively reviewed from patients<br />

having undergone hip arthroscopy for labral tears, secondary to<br />

FAI. Minimum three-year postoperative outcome data was used.<br />

Radiographic data points collected included Kellgren-Lawrence<br />

OA score and Tonnis OA classification. Radiographic assessment <strong>of</strong><br />

sclerosis, cyst formation and osteophyte presence was performed at:<br />

lateral acetabular margin, acetbular fossa, infermedial acetabular<br />

floor, lateral femoral head-neck junction, superior weightbearing<br />

aspect <strong>of</strong> the femoral head, medial aspect <strong>of</strong> femoral head and<br />

inferior aspect <strong>of</strong> femoral head. Radiographs were reviewed by a<br />

single surgeon. Another surgeon reviewed a subset <strong>of</strong> radiographs for<br />

interobserver reliability. A total <strong>of</strong> 29/115 patients progressed to total<br />

hip arthroplasty (THA). Pearson-Chi Square testing found factors<br />

that positively correlated with higher THA rates, including acetabular<br />

sclerosis (p=0.001), osteophyte formation at lateral femur head-neck<br />

junction (p=.011), inferomedial acetabular floor (p=.009), acetabular<br />

fossa(p=.012). Maximal Kellgren-Lawrence (p=.006) and Tonnis<br />

scores (p=.002) correlated with an increased THA risk. Contrarily,<br />

sclerosis <strong>of</strong> femoral weightbearing surface (p=.31), lateral acetabular<br />

rim osteophytes (p=.107) and femoral or acetabular side cysts did<br />

not correlate with increased THA risk. Preoperative radiographs<br />

are an effective prognostic tool in patients undergoing arthroscopy<br />

for FAI. Specifically, presence <strong>of</strong> significant joint space narrowing,<br />

acetabuar sclerosis or medial acetabular osteophyte formation (fossa<br />

or floor) were suggestive <strong>of</strong> future THA.<br />

pApeR No. 639<br />

Vascular Safe Zones in Hip Arthroscopy<br />

Frank McCormick, MD, Needham, MA<br />

Conor P Kleweno, MD, Cambridge, MA<br />

Young Jo Kim, MD, Boston, MA<br />

Scott David Martin, MD, Boston, MA<br />

Hip arthroscopy is growing in incidence and utility due to advances in<br />

technique, improved technology and increased demand. Identifying<br />

vascular safe zones using anatomic and intra-capsular landmarks<br />

provides a valuable intra-operative guide to reduce risk <strong>of</strong> damage<br />

to the femoral head blood supply during femoral neck osteoplasty<br />

and psoas tendon release. We analyzed 76 consecutive contrast<br />

enhanced magnetic resonance scans obtained for patients with in an<br />

Institutional Review Board approved study. High resolution threedimensional<br />

scans were reconstructed to visualize the vasculature.<br />

We traced the medial femoral circumflex artery (MFCA) course from<br />

the anterior thigh to the femoral head. Specific attention was paid<br />

to its proximity to the psoas tendon at the site <strong>of</strong> release and the<br />

associated retinacular vessels in relation to femoral neck course. MRI<br />

imaging revealed that the MFCA inserts on the posterior-superior<br />

femoral neck, just posterior to the lateral synovial fold, from 10:30<br />

to 12:00 o’clock position, then diverges medially via two to five<br />

retinacular vessels on the posterior superior femoral head-neck<br />

junction from 10:30 to 12:00 o’clock position (mean 11:15 +/- 1.8<br />

standard deviation), before diving into subcondral bone an average<br />

<strong>of</strong> 5.0 mm lateral to the osteochondral junction. We observed an<br />

average MFCA location <strong>of</strong> 15 mm (SD 0.37mm) medial to the<br />

medial cortex <strong>of</strong> the femoral neck at a mean 50% distance (SD 8%)<br />

between the lesser trochanter and inferior femoral head/acetabular<br />

junction. Based on our data, we define the following safe zones:<br />

Femoral Neck Safe Zone is on the anterior half <strong>of</strong> the femoral neck;<br />

Psoas Tendon Release Safe Zone is proximal or distal to the middle<br />

third <strong>of</strong> the medial hip capsule.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


pApeR No. 640<br />

The “Pop” Sign <strong>of</strong> the Hip: Association with<br />

Arthroscopic Intra-Articular Findings<br />

Benjamin Domb, MD, Chicago, IL<br />

Craig Joseph McAsey, MD, Maywood, IL<br />

Itamar Botser, Chicago, IL<br />

Thomas Waddell Smith, Westmont, IL<br />

J W Thomas Byrd, MD, Nashville, TN<br />

The authors noted that with application <strong>of</strong> traction to the hip under<br />

anesthesia, some hip joints initially remain reduced, and then<br />

demonstrate a sudden release <strong>of</strong> the femoral head from the suction<br />

seal <strong>of</strong> the acetabulum. This was termed the ‘pop’ sign. The authors<br />

hypothesize that the presence <strong>of</strong> the pop sign reflects an intact suction<br />

seal, while its absence indicates a disruption <strong>of</strong> the suction seal,<br />

possibly associated with labral tear. The purpose <strong>of</strong> this study is to<br />

examine the association between an absent pop sign and arthroscopic<br />

intra-articular findings. A total <strong>of</strong> 239 consecutive hip arthroscopies<br />

were prospectively evaluated. Exclusion criteria were hips with<br />

arthritis, loose bodies or dysplasia. Intraoperative arthroscopic<br />

findings were documented, including location and pattern <strong>of</strong> labral<br />

tear, grade and size <strong>of</strong> chondral damage and ligamentum teres<br />

tear. Findings were statistically compared to the prescence or absence<br />

<strong>of</strong> pop sign. The pop sign was positive for 69 hips, and negative for<br />

153 hips. All patients included in the study had labral tears. Larger<br />

tears were more likely to have an absent pop sign (P


epair group (p


pApeR No. 647<br />

Operative Treatment Of Recalcitrant Patellar<br />

Tendinopathy: Minimum 2-Year Follow-Up<br />

Sanaz Hariri, MD, Menlo Park, CA<br />

Edgar Savidge, PT, DPT, OCS<br />

Kaitlin M Carroll, BS<br />

Michael M Reinold, PT, Boston, MA<br />

James E Zachazewski, PT, Foxborough, MA<br />

Thomas James Gill, MD, Boston, MA<br />

Patellar tendinopathy presents as anterior knee pain, particularly in<br />

the jumping athlete. Operative treatment may be considered for the<br />

few who continue to have symptoms despite a one-year minimum<br />

<strong>of</strong> conservative treatment. We propose that a technique combining<br />

arthroscopic (debridement <strong>of</strong> the inferior patellar pole and lysis<br />

<strong>of</strong> adhesions) and open (tenotomy, patella tendon debridement,<br />

tendon fenestration and inferior patellar pole micr<strong>of</strong>racture)<br />

procedures will relieve the pain and allow these patients to return<br />

to their pre-injury activity level. We describe a surgical technique to<br />

address chronic patellar tendinopathy and report minimum twoyear<br />

follow up <strong>of</strong> patients who have had this surgery performed by a<br />

single surgeon. The patients completed a survey detailing their pre-<br />

and post-operative symptoms and activities. Over a period <strong>of</strong> 8.6<br />

years, the senior surgeon performed 63 consecutive cases <strong>of</strong> primary<br />

patellar tendon debridements in 59 patients without previous knee<br />

surgeries. Thirteen patients (13 knees) were lost to follow up. There<br />

was a 79% follow-up rate. The average age at surgery was 31 (SD 12,<br />

range 14-64). The average follow up was 42 months (SD 18, range<br />

23-92 months). Post-operatively, visual analog pain scores decreased<br />

by an average <strong>of</strong> five points (SD 3, range +1 to -10, p


pApeR No. 650<br />

Risk <strong>of</strong> Acute Compartment Syndrome in Tibia<br />

Fractures Sustained During Athletic Competition<br />

Tyler Conway Wind, MD, Charleston, SC<br />

Stuart M Saunders, MD, Winston-Salem, NC<br />

William R Barfield, PhD, Charleston, SC<br />

James F Mooney III, MD, Charleston, SC<br />

Langdon A Hartsock, MD, Charleston, SC<br />

Acute compartment syndrome (ACS) is a potentially devastating<br />

complication <strong>of</strong> tibia fractures. Generally high energy mechanisms<br />

are thought to lead to an increased risk <strong>of</strong> compartment syndrome.<br />

However, we recently noted several patients who developed<br />

compartment syndrome after low energy mechanisms during athletic<br />

competition. Based upon this observation, we hypothesized that<br />

tibia fractures resulting from athletic competition have an increased<br />

risk <strong>of</strong> compartment syndrome. A retrospective review <strong>of</strong> 626<br />

consecutive tibia fractures treated by our department between July<br />

2006 and June 2009 was performed. We recorded the mechanism<br />

<strong>of</strong> fracture and whether or not ACS developed. Soccer and football<br />

injuries were analyzed as specific groups. Chi square testing was<br />

used to analyze our results. Thirty-four patients (5.4%) developed<br />

ACS, which is consistent with published literature. Nine patients<br />

sustained an injury while playing soccer (1.4% <strong>of</strong> patients) while 11<br />

patients (1.7%) were injured playing football. Five <strong>of</strong> the nine soccer<br />

players (55%; p


pApeR No. 653<br />

Retention <strong>of</strong> Biomotor Skills Learned from a Haptic<br />

Arthroscopic Knee Simulator<br />

Kostas Economopoulos, MD, Tempe, AZ<br />

Alexander C McLaren, MD, Phoenix, AZ<br />

Ryan McLemore, PhD, Phoenix, AZ<br />

Traditional methods <strong>of</strong> surgical training have relied upon<br />

apprenticeship and judgment by skilled experts to determine when<br />

a trainee is skilled enough to begin more independent learning.<br />

Recent advances in virtual reality and haptics have enabled the<br />

construction <strong>of</strong> virtual surgical simulators in which residents can<br />

obtain basic surgical skills before advancing to patient care. With<br />

the development <strong>of</strong> these new tools, new metrics are necessary to<br />

measure and document performance. Studies have shown that<br />

virtual reality (VR) simulators can differentiate the skill level between<br />

novice and experienced arthroscopists. However, the most reliable<br />

metrics for determining mastery <strong>of</strong> specific skills or tasks in VR<br />

simulators have not been defined. While long-term skills tracking is<br />

likely to require significant simulation and development <strong>of</strong> metrics<br />

for various arthroscopy tasks, a key question to be answered is how<br />

long residents retain biomotor skills learned from a simple VR task.<br />

The purpose <strong>of</strong> this study was to determine the short-term retention<br />

<strong>of</strong> biomotor skills a resident gains by training on a VR simulator. We<br />

hypothesized that biomotor skills learned from a VR knee simulator<br />

would be retained over a six-week period. A cohort study <strong>of</strong> seven<br />

orthopaedic residents at a single residency program was performed.<br />

All participants were either first, second or third year residents in<br />

the program. Using a virtual reality knee simulator, each resident<br />

was tested on probing the medial meniscus <strong>of</strong> the right knee. The<br />

medial compartment was broken up into three zones consisting <strong>of</strong><br />

the posterior horn, medial body and anterior horn. Tasks in each<br />

zone consisted <strong>of</strong> visualizing the proper zone, placing the probe<br />

in the correct field <strong>of</strong> vision, probing the superior aspect <strong>of</strong> the<br />

meniscus and finally pulling on the undersurface <strong>of</strong> the meniscus in<br />

the appropriate zone. Each zone was timed and all cartilage injuries<br />

were documented. Participants underwent pretesting using the VR<br />

knee simulator to obtain a baseline <strong>of</strong> their arthroscopic biomotor<br />

skills. After pretesting, subjects underwent technical skills training<br />

using the right knee medial compartment training module <strong>of</strong> the<br />

VR knee simulator. Participants were allowed unlimited training<br />

until they were able to obtain 100% on the timed training module.<br />

Following training, participants were retested minutes after, two<br />

weeks after and six weeks after training. Subjects were not allowed<br />

to use the knee simulator outside <strong>of</strong> the experimental protocol<br />

during the six week period. All participants were able to complete<br />

the four tasks in all three zones each time they were tested. The<br />

average time to complete all four tasks dropped below the pretest<br />

time at all post tests in all three zones. In the posterior horn zone,<br />

the average time to complete the tasks dropped from a pretest time<br />

<strong>of</strong> 81.7 seconds (SD ±37.3) to an average <strong>of</strong> 20.1 seconds (SD ±7.3)<br />

post training. The middle body times dropped from a pretest average<br />

value <strong>of</strong> 34.1 seconds (SD ± 19.6) to 15.5 seconds (SD ± 7.7) after<br />

training. Anterior horn zone times dropped from 30.6 seconds (SD<br />

± 16.3) pretest to 13.1 seconds (SD ± 5.4). Likewise, the number<br />

<strong>of</strong> cartilage injuries decreased below the pretest number for all<br />

zones following simulator training. Posterior zone injuries dropped<br />

from a pretest value <strong>of</strong> 9.7 to an average <strong>of</strong> 2.4 injuries following<br />

simulator training. Following training, middle body cartilage<br />

injuries dropped from an average <strong>of</strong> three injuries at pretest to 1.1.<br />

In the anterior zone, cartilage injuries decreased from an average <strong>of</strong><br />

two to 0.4 at pretest and following training respectively. Residents<br />

showed markedly decreased time to complete the experimental<br />

tasks following simulator training. Residents also showed markedly<br />

788<br />

decreased incidence <strong>of</strong> cartilage injury after they completed training.<br />

These results indicate that residents retain motor skills learned in<br />

virtual arthroscopy, and suggest that both time and cartilage injury<br />

may be reasonable metrics to investigate further as response variables<br />

in more complicated surgical tasks.<br />

pApeR No. 654<br />

uArthroscopic Technique Using a Percutaneous Device<br />

vs Open Surgery for Displaced Patella Fractures<br />

Daniel Pizarro Luna, MSc, MD, Mexico, DF Mexico<br />

Juan Carlos De La Fuente, MD, Mexico City, DF Mexico<br />

There is a high rate (25%) <strong>of</strong> complications in the surgical treatment<br />

<strong>of</strong> patella fractures. Our objective was to compare the percutaneous<br />

patellar osteosynthesis system (PPOS) technique with arthroscopic<br />

view versus open surgery for patella fractures. This is a randomized<br />

controlled trial at a referral orthopedic and trauma center involving<br />

16 patients with displaced patellar fractures. Intervention:<br />

stabilization and fixation <strong>of</strong> patellar fractures with PPOS arthroscopy<br />

view or open surgery. Main outcome measurements: knee flexion<br />

and extension angles, pain, surgical time and assessment <strong>of</strong> knee<br />

function based on the Knee Society Clinical Rating Scale (KSCRS).<br />

Comparison <strong>of</strong> PPOS and open surgery groups respectively at four<br />

weeks showed the following: pain, 4.2 ± 1.3 vs. 7.2 ± 2.4, p


two post-procedure through routine MRIs to assess progression <strong>of</strong><br />

OA. Athroscopy, MR and OCT images were compared. The results<br />

show OCT’s arthroscopic capabilities in humans and demonstrate its<br />

ability to determine abnormalities earlier than MRI and arthroscopy.<br />

In vivo arthroscopic OCT imaging <strong>of</strong> the human joint represents a<br />

new potentially powerful method for identifying early OA. Results<br />

<strong>of</strong> the year three MRIs <strong>of</strong> this study will be critical in assessing the<br />

clinical course <strong>of</strong> abnormalities detected by OCT.<br />

pApeR No. 656<br />

Do Patients With Medial Pathology Of The Knee Always<br />

Have Medial Knee Pain?<br />

Jane Campbell, Galway, . Ireland<br />

Paraic A Murray, MD, Galway City, Ireland<br />

Pain is the primary motivation for patients to seek medial advice.<br />

It has been noted in clinical practice that patients with medial<br />

pathology alone do not always present with medial knee pain.<br />

This study endeavored to ascertain the association between medial<br />

pathology and medial knee pain. This was a single centered study<br />

<strong>of</strong> prospective cohort design. From a possible 856 patients awaiting<br />

arthroscopy, 215 were identified as meeting the inclusion criteria and<br />

were invited to participate in the study. Patients with traumatic knee<br />

injuries were excluded; 213 patients consented to be included. The<br />

participating subjects located area <strong>of</strong> their symptoms on a diagram<br />

showing the four aspects <strong>of</strong> the knee. The primary outcome measure<br />

was findings at arthroscopy, which was recorded on the International<br />

Knee Documentation Form (IDKC). Medial pathology included<br />

medial meniscal tears, articular lesions <strong>of</strong> the medial femoral<br />

condyle or the medial tibila plateau or an inflamed infero-medial<br />

plica. Statistical analysis was carried out using the Statistical Package<br />

for Social Sciences. A total <strong>of</strong> 193 (135 males, 58 females) subjects<br />

completed the study. Fifty-five subjects had pathology located on<br />

the medial compartment <strong>of</strong> the knee only. Of these 85% (47) had<br />

medial pain, however only 27% (15 cases) had medial pain alone.<br />

Five cases had lateral pain only, one case had posterior pain only and<br />

the remaining (44 cases) had a combination <strong>of</strong> pains. Some 14.5%<br />

(eight) had no medial pain what-so-ever. Pearson’s Chi Square<br />

test for association found no significant association between the<br />

presence <strong>of</strong> medial knee pain and isolated medial knee pathology.<br />

There is a certain assumption that pain location is directly related<br />

to underlying pathology. However we found through this study that<br />

this is not always the case.<br />

pApeR No. 657<br />

Outcomes Of Arthroscopic Meniscectomy Are Best<br />

Predicted By Osteoarthritis Grade<br />

Faisal Mirza, MD, FRCSC, San Francisco, CA<br />

Benjamin Warren Halligan, MD, Fremont, CA<br />

Barbara Elspas, MPH<br />

Knee arthroscopy and meniscectomy is commonly done in patients<br />

with varying degrees <strong>of</strong> osteoarthritis (OA). We asked whether<br />

symptom duration, arthritis grade or tear type could predict oneyear<br />

outcomes. Sixty-seven subjects with a mean age <strong>of</strong> 51 years<br />

scheduled for knee arthroscopy for meniscal tears were enrolled<br />

from May 2005 to January 2009. Forty-five subjects were available<br />

for final review. History <strong>of</strong> acute injury within 12 months <strong>of</strong><br />

presentation, preoperative Kellgren-Lawrence arthritis grade and<br />

preoperative MRI appearance <strong>of</strong> meniscus tear (degenerative or not)<br />

was recorded for each patient. Baseline preoperative and one-year<br />

postoperative WOMET and WOMAC scores were used to evaluate<br />

surgical outcomes with paired t-test and regression analysis. WOMET<br />

and WOMAC scores improved significantly in the entire cohort<br />

789<br />

at one year (p


three-fold increase in risk compared to under 30 minutes (p


evaluation <strong>of</strong> rotational instability is vital for assessing and improving<br />

current ACL reconstruction procedures which already solved anterior<br />

instability. The acceleration <strong>of</strong> the instability measured by triaxial<br />

accelerometer could provide quantitative parameters to evaluate the<br />

magnitude <strong>of</strong> the instability. The present study demonstrated that<br />

DB reconstruction can restore rotational instability better than SB in<br />

terms <strong>of</strong> the rotational instability.<br />

posteR No. p408<br />

uComparison <strong>of</strong> Pyrocarbon to Co-Cr for<br />

Hemiarthroplasty:Effect <strong>of</strong> Biomaterial on Opposing<br />

Cartilage<br />

Stephen D Cook, PhD, Metairie, LA<br />

Deryk G Jones, MD, New Orleans, LA<br />

Samantha L Salkeld, MSE, Metairie, LA<br />

Laura P Patron, MS, Metairie, LA<br />

Peter Strzepa, MSME, Austin, TX<br />

Resurfacing an osteoarthritic joint is the treatment strategy for<br />

patients for which biologic options are not viable. The articular<br />

cartilage opposing a metallic hemi-arthroplasty implant becomes<br />

damaged and eventually succumbs to the altered surface mechanics<br />

and wear properties <strong>of</strong> the prosthetic device. Pyrocarbon has been<br />

shown to significantly improve survival <strong>of</strong> acetabular cartilage as<br />

compared to cobalt-chromium (Co-Cr) and other biomaterials in a<br />

canine hip endoprosthesis model. The purpose <strong>of</strong> this study was to<br />

evaluate in vivo changes in the tibia articular cartilage and meniscus<br />

to a pyrocarbon implant placed in the medial femoral condyle as<br />

compared to an identical Co-Cr alloy implant. A 6 mm diameter<br />

pyrocarbon and Co-Cr articulating implants were placed bilaterally<br />

in the medial condyles <strong>of</strong> nine dogs. Groups <strong>of</strong> three animals were<br />

sacrificed at 12, 24 and 52 weeks postoperative. Radiographic, gross<br />

and histologic analyses (modified Kirker-Head scale and modified<br />

ICRS-Histological Visual Scale) were performed. In addition to<br />

cartilage adjacent to the implants, both the medial and lateral<br />

menisco-tibial tissues were evaluated. Cartilage damage observed<br />

with Co-Cr at 12 and 24 weeks were not observed or observed to a<br />

lesser degree with pyrocarbon at 52 weeks. At all time periods, mean<br />

scores for pyrocarbon were superior to Co-Cr (p


examination, nonarthritic hip score (NAHS), Western Ontario and<br />

McMasters Universities (WOMAC) score and radiographs to assess the<br />

alpha-angle. Postoperative evaluation included pain score assessment<br />

with a visual analog scale and satisfaction assessment. At follow up,<br />

the mean NAHS rose from 49.2 to 71.2 and the WOMAC increased<br />

from 67.2 to 72.8. Alpha angles were reduced from 75 to 51.3<br />

degrees. Presence <strong>of</strong> internal rotation impingement sign decreased<br />

from 97% to 47%. Patient satisfaction was 80%. Two patients<br />

required a repeat bursectomy or hip arthroscopy. Twelve patients<br />

progressed to arthroplasty. Arthroscopic femoral neck resection in<br />

patients with cam-type FAI results in improved clinical outcomes,<br />

decreased physical symptoms and a high patient satisfaction at a<br />

mean follow up <strong>of</strong> 32 months. A reduced alpha angle is maintained,<br />

providing adequate <strong>of</strong>fset <strong>of</strong> the head-neck ratio. Patients who failed<br />

hip arthroscopy and progressed to arthroplasty were older and<br />

tended to have more arthritis on preoperative radiographs and lower<br />

clinical scores.<br />

posteR No. p412<br />

Incidence <strong>of</strong> Bony Abnormalities in Patients With and<br />

Without Acetabular Labral Tears<br />

Jason Archibald, MD, Baltimore, MD<br />

James S Keene, MD, Madison, WI<br />

Erica Knavel, BS<br />

Donna G Blankenbaker, MD, Madison, WI<br />

Arthur A DeSmet, MD, Madison, WI<br />

Prior studies have found that 79-85% <strong>of</strong> people with labral tears<br />

have bony abnormalities <strong>of</strong> the hip joint. However, there have been<br />

no studies that have compared the incidence <strong>of</strong> boney abnormalities<br />

in a matched group <strong>of</strong> patients without labral tears. Conventional<br />

radiographs <strong>of</strong> 50 patients who did not have acetablular labral tears<br />

(NLT patients) on magnetic resonance arthrograms <strong>of</strong> their hip<br />

performed at our institution were compared with those <strong>of</strong> a matchedgroup<br />

<strong>of</strong> 50 patients who had labral tears (LT patients) documented<br />

at hip arthroscopy by the senior author. The anteroposterior<br />

and lateral radiographs <strong>of</strong> these 100 patients were examined for<br />

abnormal findings defined as: Tonnis angle ³15°; center-edge angle<br />

(CEA) 0.05). The incidence <strong>of</strong> each type <strong>of</strong> bony abnormality in the<br />

NLT and LT patients was: Tonnis angle 6.7% vs. 6.0%; CEA 3% vs.<br />

8%; retroversion 12% vs. 14.6%; cross-over sign 13% vs. 14%; neckshaft<br />

angle 10% vs. 18%; head-neck <strong>of</strong>fset 7% vs. 42%; and alpha<br />

angle 13.4% vs. 34%, respectively. The only significant differences<br />

between the groups (p


36 (p=0.0259 for PHI and p=0.0036 for MHI) scores compared with<br />

PMM group at minimum 10-year follow up. Radiographic evaluation<br />

showed a significantly lower medial joint line height (p=0.0002)<br />

and side-to-side difference (p=0.0003) narrowing in MCMI group<br />

respect to PMM group at final follow up. Improvements in pain<br />

relief, activity level, objective IKDC score and joint-line preservation<br />

are detectable with the use <strong>of</strong> MCMI at a minimum 10-year follow<br />

up. This data support the use <strong>of</strong> meniscal scaffold to treat irreparable<br />

partial meniscal lesions.<br />

posteR No. p415<br />

Arthroscopic Rotator Cuff Repairs: Functional and<br />

Radiographic Results at 5 Years<br />

Lawrence Gulotta, MD, New York, NY<br />

Shane Nho, MD, Chicago, IL<br />

Christopher Dodson, MD, Philadelphia, PA<br />

David W Altchek, MD, New York, NY<br />

John Dougald MacGillivray, MD, New York, NY<br />

The purpose <strong>of</strong> the present study is to report the preliminary data<br />

<strong>of</strong> patients undergoing arthroscopic rotator cuff repair at five years.<br />

A total <strong>of</strong> 193 patients underwent all-arthroscopic rotator cuff<br />

repairs. Patients were evaluated pre-operatively, and one, two and<br />

five years post-operatively for physical examination, manual muscle<br />

testing, ASES questionnaires and ultrasonography. Outcomes were<br />

compared between timepoints using a paired student’s t-test with<br />

a significance set at pfour<br />

weeks) <strong>of</strong> the ACL has the same functional outcome as early (


posteR No. p418<br />

Prospective Comparative Study on ACL Reconstruction<br />

using the Double and Single bundle Techniques<br />

Jong-Keun Seon, MD, Hwasun, Jeollanamdo, Republic <strong>of</strong> Korea<br />

Eun Kyoo Song, MD, Hwasungun, 160 Ilsimri, Hwasuneup,<br />

Republic <strong>of</strong> Korea<br />

Kyung-Do Kang, MD<br />

Mun Su Jeong, MD, Jeonnam, Hwasungun, Republic <strong>of</strong> Korea<br />

Ju-Kwon Park, MD<br />

Mr Woo Bin Jung, Gwangju, Republic <strong>of</strong> Korea<br />

Double bundle anterior cruciate ligament (ACL) reconstruction<br />

is aimed to reproduce the normal ACL anatomy and improve<br />

knee joint rotational stability. However, no consensus has been<br />

reached on the advantages <strong>of</strong> this technique over the single bundle<br />

technique. We hypothesized that double bundle ACL reconstruction<br />

can provide better intraoperative stability and clinical outcome than<br />

single bundle reconstruction. Forty patients with ACL injury in one<br />

knee were recruited with 20 allocated to the double bundle ACL<br />

reconstruction group and 20 to the single bundle ACL reconstruction<br />

group. Intraoperative stabilities at 30° <strong>of</strong> knee flexion were compared<br />

between the two groups using a navigation system. Clinical<br />

outcomes including Lysholm knee scores, Tegner activity scores,<br />

Lachman and pivot shift test results and radiographic stabilities were<br />

also compared between the two groups after a minimum <strong>of</strong> twoyear<br />

follow up. Intraoperative anterior and rotational stabilities after<br />

ACL reconstruction in the double bundle group were significantly<br />

better than those in single bundle group (p=0.020 and p0.5). Furthermore, stability<br />

results <strong>of</strong> Lachman test, pivot shift test and radiological findings<br />

at two-year follow up failed to reveal any significant inter-group<br />

differences (p>0.05). Although double bundle ACL reconstruction<br />

produces better intraoperative stabilities than single bundle ACL<br />

reconstruction, the two modalities were found to be similar in terms<br />

<strong>of</strong> clinical outcomes and postoperative stabilities after a minimum<br />

<strong>of</strong> two-year follow up.<br />

posteR No. p419<br />

Intra-Articular Bupivacaine Is Superior To Portal<br />

Bupivacaine For Analgesia After Hip Arthroscopy<br />

Joseph Baker, MD, Cork, Ireland Ireland<br />

Ciara Megan McGuire, MD, Dublin, Ireland<br />

Daniel Byrne, PhD, Santry Demsne, Dublin, Ireland<br />

Kim Hunter, FRCA<br />

Nick Eustace, FRCA<br />

Kevin James Mulhall, MD, Dublin, Ireland<br />

Although hip arthroscopy is increasingly used, the optimal analgesic<br />

management following hip arthroscopy is yet to be determined.<br />

Furthermore, concern exists over the use <strong>of</strong> intra-articular local<br />

anaesthetic following arthroscopic procedures. We aimed to<br />

compare the efficacy <strong>of</strong> intra-articular adminstration with peri-portal<br />

infiltration <strong>of</strong> bupivacaine following hip arthroscopy. We performed<br />

a randomized, double-blinded trial comparing intra-articular<br />

administration <strong>of</strong> bupivacaine with peri-portal infiltration <strong>of</strong><br />

bupivacaine. All patients received a standardized general anaesthetic<br />

and post-operative oral analgesic regime. At the completion <strong>of</strong><br />

surgery, patients were randomized to receive bupivacaine (0.25%, 10<br />

ml) by either the intra-articular or peri-portal route. Post-operative<br />

morphine requirements and visual analogue scale (VAS) pain scores<br />

794<br />

were assessed as primary outcome measures. Student’s t-tests and<br />

ANOVA were used to assess for differences. Fifty-nine patients<br />

completed the trial (M35:F24). There was no gender difference<br />

between the groups. Patients receiving intra-articular bupivacaine<br />

(n=31) required less intravenous morphine for rescue analgesia after<br />

surgery (mean 0.3 mg vs. 2.5 mg, p=0.007). At one and two hours<br />

post-surgery, the mean VAS pain scores were similar, however at six<br />

hours the mean was significantly lower in the intra-articular group<br />

(1.3 vs. 2.2, p=0.031). No patients represented after surgery due to<br />

pain control problems. Intra-articular bupivacaine provided superior<br />

analgesic control following hip arthroscopy. Fewer morphine<br />

requirements can results in lower incidence <strong>of</strong> post-operative nausea<br />

and vomiting. This may allow earlier, more effective rehabilitation<br />

following surgery.<br />

posteR No. p420<br />

The Validation <strong>of</strong> a Functional Assessment Tool for the<br />

Upper Extremity in the Youth Overhead Athlete<br />

Guillem Gonzalez-Lomas, MD, Newark, NJ<br />

Reza Jazayeri, MD, Woodland Hills, CA<br />

Francis G Alberta, MD, Glen Rock, NJ<br />

Karen J Mohr, PT, Los Angeles, CA<br />

Lewis A Yocum, MD, Los Angeles, CA<br />

Neal S ElAttrache, MD, Los Angeles, CA<br />

Frank W Jobe, MD, Los Angeles, CA<br />

Current shoulder and elbow scoring systems may not be sensitive<br />

to subtle changes in performance in overhead athletes. Recently, a<br />

functional assessment instrument has been devised to specifically<br />

evaluate the performance and function <strong>of</strong> adult overhead athletes.<br />

No similar validated upper extremity tools exist for the youth<br />

overhead throwing population. A total <strong>of</strong> 153 competitive overhead<br />

youth athletes (age 11-18) completed the questionnaire as well as<br />

two established upper extremity questionnaires (the DASH and<br />

the DASH Sports Module). The athletes were asked to complete all<br />

questionnaires at a second time point separated by at least six weeks.<br />

The athletes were self-assigned into injury categories: (I) playing<br />

without pain; (II) playing with pain; (III) not playing due to pain.<br />

The novel score, the DASH and the DASH Sports Module were then<br />

evaluated for reliability, validity and responsiveness. Reliability was<br />

measured by testing both internal reliability (Cronbach coefficient<br />

±) and test-retest correlation (Pearson correlation coefficient (r) and<br />

root mean square (RMS) difference). Validity was tested by correlating<br />

the median KJOC score with arm status, using the non-parametric<br />

Kruskal-Wallis test to compute p values. Responsiveness testing was<br />

performed by comparing scores before and after an intervention or<br />

before and after an injury. Of the 153 athletes, 136 were healthy<br />

and 17 were injured. The new score showed high correlation with<br />

the DASH score and DASH Sports Module (DSM). The new score<br />

correctly stratified overhead athletes by injury category (p


posteR No. p421<br />

Intercondylar Notch Size And Non-Contact ACL Injuries<br />

At The United States Naval <strong>Academy</strong><br />

Korboi N Evans, MD, Bethesda, MD<br />

John-Paul H Rue, MD, Annapolis, MD<br />

Jeffrey R Giuliani, MD, Kensington, MD<br />

David E Gwinn, MD, Crownsville, MD<br />

John H Wilckens, MD, Annapolis, MD<br />

Several potential risk factors for anterior cruciate ligament (ACL)<br />

injuries have been proposed. The goal <strong>of</strong> this study is to document<br />

the incidence <strong>of</strong> ACL injuries at the United States Naval <strong>Academy</strong><br />

and to evaluate pre-injury radiographic measurements (notch width)<br />

and body mass index (BMI) as possible risk factors for these injuries.<br />

An Institutional Review Board (IRB)-approved, retrospective review<br />

<strong>of</strong> a database from an existing IRB-approved study was performed.<br />

The database contained measurements from prospectively obtained<br />

standard AP/lateral knee radiographs, as well as baseline height,<br />

weight, age, sex and documented ACL injury for two consecutive<br />

incoming classes at the United States Naval <strong>Academy</strong> in 1999<br />

and 2000 and followed prospectively for four years. Radiographic<br />

measurements including notch width, femoral notch width index<br />

(notch width divided by condyle width), eminence width index and<br />

the notch width/eminence width ratios were calculated for both<br />

the injured and uninjured subjects utilizing standard radiographic<br />

measurements. Inclusion criteria for the retrospective review included<br />

having initial radiographic measurements, height and weight, no<br />

previous ACL injury and documentation <strong>of</strong> subsequent injury or<br />

lack <strong>of</strong> injury during the four years <strong>of</strong> observation. Exclusion criteria<br />

included missing any <strong>of</strong> the inclusion criteria. A total <strong>of</strong> 1,687<br />

study participants met the inclusion criteria and were observed<br />

for four years. The overall incidence <strong>of</strong> ACL injury was 2.9% (12<br />

female, 37 male). The average BMI for the ACL injured group was<br />

25.6 kg/m2 compared to 24.4 kg/m2 overall. While an association<br />

<strong>of</strong> ACL injury with a femoral notchwidth <strong>of</strong>


posteR No. p424<br />

Increasing Suture Number Increases Repair Strength<br />

In A Rotator Cuff Repair Model<br />

Patrick Jost, MD, New York, NY<br />

Mahmoud Michael Khair, MD, New York, NY<br />

Dan Chen, MS, New York, NY<br />

Anne Mary Kelly, MD, Uniondale, NY<br />

Timothy M Wright, PhD, New York, NY<br />

Scott Alan Rodeo, MD, New York, NY<br />

Increasing the number <strong>of</strong> sutures crossing the repair site <strong>of</strong> a finger<br />

flexor tendon leads to higher failure loads, less gap formation and<br />

better outcomes. Whether the same is true for rotator cuff repairs<br />

has not been proven. We hypothesize that increasing the number<br />

<strong>of</strong> sutures in a sheep rotator cuff model decreases gap formation<br />

under cyclic loading. Sheep infraspinatus tendons were repaired<br />

with two, four or six mattress sutures (N = 6, 7 and 5). Two 5.5<br />

mm metal corkscrew suture anchors were used in all specimens with<br />

one, two or three sutures per anchor. Specimens were pretensioned<br />

at 10N for 60 seconds and then cyclically loaded for 200 cycles from<br />

10N to 180N at 0.2 Hz. Failure was defined as gap formation <strong>of</strong> 10<br />

mm or greater. Student’s t test was used to determine differences<br />

between each group. An ANOVA test was used to compare the three<br />

experimental groups. The average gap formation for the tendons<br />

repaired with two, four and six sutures were 5.42 mm, 3.53 mm and<br />

1.34 mm, respectively. The six-suture repair showed significantly less<br />

gap formation than the four-suture repair (p=0.040) and the twosuture<br />

repair (p=0.050). Comparing all groups showed that as suture<br />

number increased, gap formation decreased (p=0.059). Increasing<br />

the number <strong>of</strong> sutures crossing a sheep rotator cuff tendon repair<br />

decreases gap formation under cyclic loading, ultimately providing<br />

a stronger repair.<br />

posteR No. p425<br />

A Comparison between Clinical Results <strong>of</strong> Selective<br />

Bundle And Double Bundle ACL Reconstruction<br />

Young-Jin Seo, Pr<strong>of</strong>, Seoul, Republic <strong>of</strong> Korea<br />

Yonsik Yoo, Chuncheon, Gangwon-Do, Republic <strong>of</strong> Korea<br />

The purpose <strong>of</strong> this study was to compare the two-years followup<br />

clinical results <strong>of</strong> anatomical double bundle anterior cruciate<br />

ligament (ACL) reconstruction with a selective reconstruction<br />

<strong>of</strong> either anteomedial (AM) or posterolateral (PL) bundle while<br />

keeping the relatively healthy ACL bundle left. We followed up 50<br />

patients for minimum two years after their ACL reconstruction, <strong>of</strong><br />

which 12 were double bundle ACL reconstructions (group A) and 25<br />

were AM bundle reconstructions (group B) and 13 were PL bundle<br />

reconstructions (group C). We compared those three groups with<br />

patient’s subjective feeling <strong>of</strong> instability, Lysholm score, radiological<br />

stress view, Lachmann test and pivot shift test. At the last follow up,<br />

the mean side-to-side instrumented laxity was 2.08 ± 1.67 mm in<br />

group A, 2.20 ± 1.41 mm in group B, 2.00 ± 1.41 mm in group C,<br />

which improved significantly after surgery. The Lysholm knee score<br />

improved significantly improved from 52 ± 7.64 to 83.4 ± 8.46 in<br />

group A, from 57 ± 15.04 to 83.2 ± 9.60 in group B, from 62±15.22 to<br />

87.5 ± 7.32 in group C. There was no statistically significant difference<br />

between three groups. Both double bundle ACL reconstruction and<br />

selective bundle ACL reconstruction showed improved joint stability<br />

and Lysholm scores postoperatively. If properly indicated, selective<br />

bundle ACL reconstruction can be a treatment option for patients<br />

with partial ACL injuries.<br />

796<br />

posteR No. p426<br />

Intra-Bursal Versus Inter-Scalene Post-Operative Pain<br />

Control For Arthroscopic Shoulder Surgery<br />

Rajesh Magattil, MRCS, Lexington, KY<br />

Darren Patten<br />

Srinath Kamineni, MD, Lexington, KY<br />

Post-operative pain following arthroscopic shoulder surgery can<br />

impair final functional outcome, since good quality rehabilitation<br />

is dependent on good pain control. Various methods <strong>of</strong> analgesia<br />

have been described, and we routinely used inter-scalene analgesia.<br />

We hypothesized that inter-scalene analgesia provided better pain<br />

control than intra-bursal analgesia. We prospectively collected data<br />

over a consecutive two-year period, with the first year patients (n=65)<br />

all having inter-scalene and the second year patients (n=79) having<br />

intra-bursal catheters. The interscalene 16F catheters were placed<br />

with the patient anaesthetised and an electrical Touhy needle. The<br />

intra-bursal 16F catheters were placed at the end <strong>of</strong> the arthroscopic<br />

shoulder operation, under direct vision, exiting from the posterior<br />

portal. Pain parameters collected were pain scores, visual analogue<br />

scales, analgesia usage and whether or not the patients were<br />

comfortably able to go home the same day as surgery. Pain and<br />

visual analogue scores showed no statistical differences between<br />

the two groups. Analgesia usage was greater in the inter-scalene<br />

group than the intra-bursal group, but was not statistically different.<br />

Thirty-two/65 (49%) <strong>of</strong> patients with inter-scalene catheters and<br />

75/79 (95%) <strong>of</strong> patients with intra-bursal catheters were able to<br />

comfortably go home on the day <strong>of</strong> surgery, 28/33 (84%) <strong>of</strong> the<br />

inter-scalene patients were hospitalized due to post-operative pain<br />

or anxiety regarding arm paralysis (n=12 pain and n=16 anxiety)<br />

and five/33 (15%) due to anaesthetic or medical problems. Two/<br />

four (50%) <strong>of</strong> hospitalized intra-bursal patients had post-anaesthetic<br />

complications, and two/four (50%) had pre-operative medical<br />

problems. Inter-scalene analgesia is widely published as the most<br />

effective route for post-shoulder surgery pain control. Our data does<br />

not support this view, and intra-bursal analgesia administration was<br />

found to be more effective at returning a comfortable patient home<br />

on the day <strong>of</strong> surgery. Our practice now routinely utilizes intra-bursal<br />

catheters for post-operative bolus analgesia.<br />

posteR No. p427<br />

Glenoid Bone Loss and Clinical Application <strong>of</strong> the<br />

Dominic T Gomez-Leonardelli, MD, Coronado, CA<br />

Paul D Metzger, MD, San Diego, CA<br />

Brian Barlow, MD, San Diego, CA<br />

William Joseph Peace, MD, Alexandria, VA<br />

Matthew T Provencher, MD, San Diego, CA<br />

Daniel Jordan Solomon, MD, Novato, CA<br />

The optimal treatment <strong>of</strong> Hill-Sachs injuries is difficult to determine<br />

and is potentiated by the finding that a Hill-Sachs injury becomes<br />

more important in the setting <strong>of</strong> glenoid bone loss. The “glenoid<br />

track” concept was developed to biomechanically quantify the effects<br />

<strong>of</strong> a combined glenoid and humeral head bony defect on stability,<br />

and is thought to be important to determine if a Hill-Sachs lesion<br />

is at high risk <strong>of</strong> engaging the glenoid, thus changing potential<br />

treatment options. However, this concept has yet to be clinically<br />

verified in regards to existing Hill-Sachs classification systems and<br />

clinical findings. The purposes <strong>of</strong> this study were to correlate the<br />

amount <strong>of</strong> glenoid bone loss with the extent <strong>of</strong> Hill-Sachs injury and<br />

clinically verify the “glenoid track” concept. In addition, we sought<br />

to investigate correlation among multiple Hill-Sachs grading scores<br />

with demographic variables such as time <strong>of</strong> instability and number<br />

<strong>of</strong> dislocations/instability events, and determine the mean value <strong>of</strong><br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


Hill-Sachs size across multiple scoring systems. A total <strong>of</strong> 205 patients<br />

treated for recurrent shoulder instability over a two-year period were<br />

reviewed. Of these shoulders, 173 (80.8%) had an adequate MRI/<br />

MRA for evaluation. Therefore a total <strong>of</strong> 140 (80.9%) patients had<br />

Hill-Sachs lesions and were included in the final radiographic analysis<br />

and grading <strong>of</strong> lesions with a mean age <strong>of</strong> 27.6 (SD 6.9), mean length<br />

<strong>of</strong> instability 43.4 months (SD 58.7) and a mean <strong>of</strong> 7.2 dislocations<br />

(SD 16.9). Hill-Sachs lesions were quantified radiographically<br />

based on Rowe Grade, the Flatlow percentage <strong>of</strong> articular cartilage<br />

involved, the Francheschi Grade, the Richards and Hall degrees <strong>of</strong><br />

lesion involvement on axial cuts and the percentage <strong>of</strong> articular<br />

cartilage involvement on sagittal oblique images. The “glenoid<br />

track” was measured and if the size <strong>of</strong> the humeral head lesion and<br />

glenoid bone loss was large enough (84% relative to each other),<br />

then the humeral head was said to be outside the “glenoid track”<br />

and at high risk for engaging and this number (percent) <strong>of</strong> patients<br />

recorded. Three independent examiners investigated all radiographic<br />

and demographic parameters. The mean Rowe length was 19.1 (SD<br />

3.2) mm and depth was 5.1 mm (SD 2.0); mean Richards arc was<br />

7.1 degrees (SD 4.2); mean Francheschi score was 1.9 (SD 0.8); and<br />

mean glenoid bone loss was 7.6%. A total <strong>of</strong> 22 (15.7%) patients<br />

were determined to be outside the “glenoid track” and at higher risk<br />

<strong>of</strong> humeral-glenoid engagement. From regression analysis, patient<br />

age and number <strong>of</strong> dislocations were jointly predictive <strong>of</strong> being<br />

outside the “glenoid track” (p=0.015), number <strong>of</strong> dislocations was<br />

predictive <strong>of</strong> glenoid bone loss (p=0.01) and number <strong>of</strong> dislocations<br />

predictive <strong>of</strong> percentage articular cartilage involvement on saggital<br />

oblique MRI (P=0.015). More dislocations also correlated with<br />

larger Hill-Sachs lesions as well as larger extent <strong>of</strong> combined glenoid<br />

and humeral bone loss. The “glenoid track” concept is a potentially<br />

useful clinical tool to determine risk <strong>of</strong> engaging lesion in the setting<br />

<strong>of</strong> combined Hill-Sachs injury and glenoid bone loss. Patient age<br />

and number <strong>of</strong> dislocation/subluxation events is predictive <strong>of</strong> the<br />

presence <strong>of</strong> lesions outside <strong>of</strong> the “glenoid track” and may guide<br />

clinical work-up and treatment algorithms for patients experiencing<br />

recurrent anterior shoulder instability.<br />

posteR No. p428<br />

Intra-Articular Hyaluronic Acid Durolane ® Versus<br />

Bupivacaine Following Knee Arthroscopy<br />

Gandhi Nathan Solayar, MD, Dublin 9, Ireland Ireland<br />

Gandhi Nathan Solayar, MD, Dublin 9, Ireland Ireland<br />

Joseph Baker, MD, Cork, Ireland Ireland<br />

Daniel Byrne, PhD, Santry Demsne, Dublin Ireland<br />

Raymond Moran, FRCS, Dublin 9, Ireland<br />

Kevin James Mulhall, MD, Dublin 03, Ireland<br />

Intra-articular local anaesthetic (LA) is commonly administered<br />

following knee arthroscopy for the purpose <strong>of</strong> pain relief. However,<br />

recent reports have suggested that LA agents may be harmful to<br />

articular cartilage. Durolane®, a stabilized hyaluronic acid (HA), is<br />

licensed for intra-articular viscosupplementation as a treatment for<br />

the symptoms <strong>of</strong> osteoarthritis. In this study we aimed to compare<br />

the analgesic effects <strong>of</strong> Bupivacaine and Durolane® administered<br />

intra-articularly immediately post knee arthroscopy. We randomized<br />

98 patients to receive either 10 ml <strong>of</strong> Bupivacaine (0.5%) or 10 ml <strong>of</strong><br />

Durolane® via intra-articular injection immediately following knee<br />

arthroscopy. They were prospectively followed pre-operatively, at one<br />

day, one week, two weeks and six weeks post-surgery. Both patients<br />

and observers were blinded to the treatment group. Statistical<br />

analysis <strong>of</strong> visual analogue scores (VAS) at rest and weight bearing,<br />

as well as Western Ontario/MacMaster index scores for function were<br />

performed. A sub-group analysis based on arthroscopic osteoarthitic<br />

scores, meniscal debridement and the presence <strong>of</strong> osteochondral<br />

797<br />

defects were also conducted. The mean VAS improvement at rest<br />

was 1.06 in the Bupivacaine group and 0.75 in the Durolane® group<br />

(p=0.263). The mean VAS improvement on weight bearing was 2.29<br />

in the Bupivacaine group and 2.27 in the Durolane® group (p=0.962).<br />

Functional WOMAC scores improved by 15.21 in the Bupivacaine<br />

group and 15.73 in the Durolane® group (p=0.846). The various<br />

sub-group analyses revealed no statistically significant differences<br />

in VAS and functional WOMAC scores for both Bupivacaine and<br />

Durolane® groups. Intra-articular injection <strong>of</strong> the stabilized HA<br />

Durolane® was as effective as Bupivacaine in providing analgesia<br />

following knee arthroscopy performed for a number <strong>of</strong> conditions.<br />

HA injection can be considered as an alternative analgesic agent to<br />

LA following knee arthroscopy if the operating surgeon is concerned<br />

about the potential chondrotoxic effect <strong>of</strong> LA.<br />

posteR No. p429<br />

A Meta-Analysis Comparison <strong>of</strong> Single Row vs. Double<br />

Row Arthroscopic Rotator Cuff Repair<br />

M. Russell Giveans, PhD, Minneapolis, MN<br />

Shahin Sheibani-Rad, MD, Flint, MI<br />

Arthroscopic rotator cuff repairs are increasing in frequency.<br />

Although clinical results from arthroscopic repair have been<br />

encouraging, recurrent tears continues to be a feared complication<br />

from the procedure. To date, there is no general consensus as to<br />

which method is a better technique in terms <strong>of</strong> clinical outcomes. The<br />

purpose <strong>of</strong> this meta-analysis was to compare the arthroscopic single<br />

row and double row configurations in terms <strong>of</strong> clinical outcomes<br />

between the two techniques with respect to 1) Constant scores, 2)<br />

UCLA scores and 3) <strong>American</strong> Shoulder and Elbow Surgeons scores<br />

(ASES). We performed a thorough search <strong>of</strong> the Medline, Ovid,<br />

EMBASE, Cochrane Library databases and PubMed for Englishlanguage<br />

articles published from January 1990 to November 2009.<br />

A manual reference check <strong>of</strong> all accepted papers and recent reviews<br />

was performed to supplement the electronic searches and to identify<br />

any additional potentially relevant studies. We also performed an<br />

online search, as well as a manual search <strong>of</strong> the <strong>American</strong> <strong>Academy</strong><br />

<strong>of</strong> <strong>Orthopaedic</strong> Surgeons (AAOS) abstracts from 2007-2009 annual<br />

meetings. Studies had to meet the inclusion criteria set forth by the<br />

authors. In order to determine if there was a difference in the effect<br />

size <strong>of</strong> pre-to-post change for single row compared to double row,<br />

Cohen’s D statistics, as a measure <strong>of</strong> effect size, were calculated for<br />

both groups. To further enhance our understanding <strong>of</strong> the differences<br />

found between these two groups across publications, weighted<br />

means and standard deviations were then calculated based upon<br />

reported sample size. Of the total 182 articles reviewed for eligibility,<br />

nine studies met the inclusion. There was a single level I study,<br />

two level II studies, two level III studies and four level IV studies.<br />

Across all studies that assessed clinical outcomes, there were a total<br />

<strong>of</strong> 740 patients (418 males, 322 females). The mean age was 52.6<br />

years (19-87). The mean follow-up time was 30.9 months (12-60).<br />

The indication for surgery was a failure <strong>of</strong> conservative treatment<br />

for three to four months in patients with a chronic tear, and more<br />

immediate repair for patients with an acute tear. The most common<br />

tear pattern was crescent type lesions, followed by U-shaped lesions.<br />

In those studies that included data on tear size, there were 61<br />

patients with a tear 1.45). This measure <strong>of</strong> effect<br />

size between single row and double row was found to be statistically<br />

similar (p>.05) for Constant-Murley and UCLA. However, for ASES,<br />

we found a significantly greater effect size for the double row group<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


as compared to the single row group (p = .027). When looking at<br />

the weighted change in score from pre-op to post-op, we found<br />

no difference in the UCLA score. For the ASES score, we found<br />

the change in double row patients (52.6) to be statistically greater<br />

than the change in single row patients (45.8)(p


posteR No. p433<br />

Outcomes <strong>of</strong> Meniscus Repair At a Minimum Five Year<br />

Follow-up: A Meta-analysis<br />

Jeffrey Nepple, MD, Shrewsbury, MO<br />

Rick W Wright, MD, Saint Louis, MO<br />

Numerous studies have documented the short-term outcomes <strong>of</strong><br />

various techniques for meniscal repair, but few have reported longterm<br />

outcomes. Late failure <strong>of</strong> meniscal repair up to five years has<br />

been reported. We performed a meta-analysis to better define the rates<br />

<strong>of</strong> meniscal repair failure at a minimum five years postoperatively<br />

in the literature. We performed a systematic review <strong>of</strong> the literature<br />

to identify studies with a minimum follow up <strong>of</strong> five years after<br />

meniscal repair. Twelve studies (13 groups) met the inclusion<br />

criteria, including five using open, three inside-out, one outside-in,<br />

two all-inside (meniscal arrow) and one mixed inside-out/all-inside<br />

(meniscal arrow) repair techniques. The primary outcome measure<br />

was clinical failure or reoperation for symptomatic meniscal repair<br />

failure. Subgroup analysis including medial/lateral, ACL status and<br />

acute/chronic meniscal tears were performed. The overall pooled<br />

failure rate for the population was 23.3% (120/514). Pooled failure<br />

rates were 22.2% (28/126) with open, 22.4% (34/152) with insideout,<br />

23.9% (21/88) with outside-in and 25.0% with (37/148) allinside<br />

(meniscal arrow) repair techniques. The failure rate <strong>of</strong> medial<br />

meniscal repair was 24.6% and lateral meniscal repair was 21.8%.<br />

The failure rate <strong>of</strong> meniscal repair in the setting <strong>of</strong> an intact ACL<br />

was 23.6%, compared to 27.8% with ACL reconstruction. Rates <strong>of</strong><br />

failure <strong>of</strong> meniscal repair after five years are 22.2-25.0% irrespective<br />

<strong>of</strong> the technique <strong>of</strong> meniscal repair. Rates <strong>of</strong> failure were similar<br />

between medial/lateral meniscal tears and ACL status. More longterm<br />

studies are needed to define the ultimate outcome <strong>of</strong> meniscal<br />

repair, specifically with modern all-inside techniques.<br />

posteR No. p434<br />

Incidence <strong>of</strong> Elbow Dislocations in the United States<br />

Population<br />

Jason W Stoneback, MD, Aurora, CO<br />

Joshua Bengtson Sykes, MD, Memphis, TN<br />

George S. Athwal, MD, London, ON Canada<br />

Brett D Owens, MD, West Point, NY<br />

Jennifer Moriatis Wolf, MD, Farmington, CT<br />

There is minimal information regarding the epidemiology <strong>of</strong> simple<br />

elbow dislocations. The purpose <strong>of</strong> this study is to report the estimated<br />

incidence <strong>of</strong> elbow dislocations in the United States, utilizing the<br />

National Electronic Injury Surveillance System Database (NEISS).<br />

The NEISS database includes 100 hospitals representing random<br />

sampling <strong>of</strong> all patients presenting to U.S. emergency departments.<br />

The database was queried for elbow dislocation events. NEISS data<br />

for 2002 to 2006 was used for raw and weighted injury counts.<br />

Incidence rates with 95% confidence intervals (CI) were calculated<br />

by age group and gender, using U.S. census data. A total <strong>of</strong> 1,068<br />

elbow dislocations were identified, representing a weighted estimate<br />

<strong>of</strong> 36,751 acute dislocations nationwide. A calculated incidence <strong>of</strong><br />

5.21 dislocations per 100,000 person-years (95% CI, 5.20-5.22) was<br />

noted. The highest incidence <strong>of</strong> elbow dislocations occurred in those<br />

aged 10-19 years (6.87 per 100,000, 95% CI, 6.86-6.88, 39%). The<br />

incidence rate ratio comparing dislocations in males to females was<br />

1.02 (5.26/100,000 in males, 5.16/100,000 in females). In patients<br />

10 years or older, 464 injuries (43.4% <strong>of</strong> total dislocations) were<br />

sustained in sports. Males dislocated elbows in football, wrestling<br />

and basketball. Females sustained elbow dislocations most<br />

frequently in gymnastics and skating. The estimated incidence <strong>of</strong><br />

799<br />

elbow dislocations in the U.S. population is 5.21 per 100,000 person<br />

years, using a national database. Adolescent males are at highest risk<br />

for dislocation. Nearly half <strong>of</strong> acute elbow dislocations occurred in<br />

sports, with males at highest risk with football, and females at risk<br />

with gymnastics and skating.<br />

posteR No. p435<br />

Characterization <strong>of</strong> <strong>Orthopaedic</strong> Surgeries Upon<br />

Completion <strong>of</strong> a Combat Deployment<br />

Gens Pierce Goodman, DO, El Paso, TX<br />

Jason R Dutton, DO, El Paso, TX<br />

Andrew Schoenfeld, MD, Canutillo, TX<br />

Brett D Owens, MD, West Point, NY<br />

Philip J Belmont, Jr MD, El Paso, TX<br />

Analysis <strong>of</strong> the orthopaedic surgery consultations and surgical<br />

procedures required by soldiers upon return from a combat<br />

deployment has not been previously performed. A descriptive<br />

epidemiologic study characterizing the number and type <strong>of</strong><br />

orthopaedic surgical consultations and orthopedic procedures<br />

required by soldiers in a U.S. Army Brigade Combat Team returning<br />

from a combat deployment to Operation Iraqi Freedom was<br />

performed. A centralized casualty database and the military electronic<br />

medical records system were used. Factors analyzed included age,<br />

sex, military rank, distribution <strong>of</strong> wounds and mechanism <strong>of</strong><br />

injury. A total <strong>of</strong> 4,122 soldiers deployed with the Brigade Combat<br />

Team were under investigation. In total, 4,087 soldiers survived,<br />

and 3,787 soldiers endured the duration <strong>of</strong> the 15-month combat<br />

deployment. Upon completion <strong>of</strong> the deployment, 710 orthopaedic<br />

surgical consultations were evaluated. Among these consultations,<br />

166 (23.4%) required surgical procedures. Senior enlisted soldiers<br />

accounted for 40% <strong>of</strong> the population at risk, yet accounted for 54%<br />

<strong>of</strong> the total surgeries. Males (153/3525), when compared to females<br />

(13/323), had no difference in the risk <strong>of</strong> requiring surgery. The most<br />

common surgical procedures performed included: knee arthroscopy<br />

(27), shoulder stabilization (19), superior labrum anterior-posterior<br />

lesion (13), anterior cruciate ligament reconstruction (12) and<br />

lateral ankle stabilization (six). Combat operations <strong>of</strong>ten result in<br />

devastating musculoskeletal injuries, many <strong>of</strong> which require medical<br />

evacuation from theater. However, many soldiers with injuries<br />

which can be evaluated and treated in an ambulatory setting while<br />

deployed, in order to conserve the fighting strength, <strong>of</strong>ten times<br />

require surgical intervention upon completion <strong>of</strong> the deployment.<br />

posteR No. p436 AlteRNAte pApeR<br />

A Comparison <strong>of</strong> Glenoid Bone Loss Measurement<br />

Techniques: Axial CT vs 3D CT Sagittal Reconstruction<br />

Andrew S Bernhardson, MD, San Diego, CA<br />

James R Bailey, MD, San Diego, CA<br />

Matthew T Provencher, MD, San Diego, CA<br />

The stabilizing structures <strong>of</strong> the glenohumeral joint include static<br />

and dynamic elements. Loss <strong>of</strong> a main static stabilizer, glenoid<br />

bone, can have a pr<strong>of</strong>ound effect on stability. The imaging study <strong>of</strong><br />

choice to evaluate glenoid bone loss is a CT. Previously axial CTs<br />

have been used to determine the amount <strong>of</strong> bone loss. Recently 3D<br />

reconstructions <strong>of</strong> the glenoid with humeral head subtraction allow<br />

creation <strong>of</strong> an enface view <strong>of</strong> the glenoid. The purposes <strong>of</strong> this study<br />

were to measure both axial CT and 3D sagittal CT reconstruction<br />

images with known bone loss at time <strong>of</strong> surgery to determine the<br />

most reliable and accurate means <strong>of</strong> calculating bone loss. Over a<br />

two-year period, a total <strong>of</strong> 106 patients with existing preoperative<br />

shoulder CTs with both axial images and a 3D sagittal reconstruction<br />

were used. Bone loss was determined by measuring three selected<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


axial images for glenoid AP distance below the coracoid process<br />

and determining what percentage <strong>of</strong> the assumed glenoid was lost<br />

on each image. The 3D sagittal images were measured by placing a<br />

circle over the lower two-thirds <strong>of</strong> the glenoid approximating the<br />

unaffected native glenoid and any bony segment absent from the<br />

circle was measured as bone loss. The average bone loss at time <strong>of</strong><br />

axial CT was 19.4%. The bone loss measured in the same group<br />

<strong>of</strong> patients using 3D CT sagittal reconstruction was 12.02%. This<br />

patient group underwent shoulder arthroscopy and was found to<br />

have an average glenoid bone loss <strong>of</strong> 10.3%. Glenoid bone loss is an<br />

important factor affecting post-operative stability. There is a need to<br />

assess the amount <strong>of</strong> glenoid bone present in patients undergoing<br />

shoulder arthroscopy for stabilization. Knowledge preoperatively<br />

<strong>of</strong> increased bone loss can aid in surgical planning and the best<br />

method for determining glenoid bone loss is a 3D CT with sagittal<br />

reconstructions.<br />

posteR No. p437<br />

Validation Of A Prognostic Classification System For<br />

Acetabular Cartilage Lesions<br />

Sujith Konan, MRCS, London, United Kingdom<br />

Faizal Rayan, MBBS,MRCS,DORTHO, Kettering,<br />

United Kingdom<br />

Geert Meermans, MD, Berchem, Belgium<br />

Johan Witt, MD, London, United Kingdom<br />

Fares Sami Haddad, FRCS, London, United Kingdom<br />

In recent years, there has been a significant advancement in our<br />

understanding <strong>of</strong> femoro-acetabular impingement and associated<br />

labral and chondral pathology. Surgeons worldwide have<br />

demonstrated the successful treatment <strong>of</strong> these lesions via arthroscopic<br />

and open techniques. The aim <strong>of</strong> this study is to validate a simple and<br />

reproducible classification system for acetabular chondral lesions.<br />

In our classification system, the acetabulum is first divided into six<br />

zones as described by Ilizalithurri VM et al Arthroscopy 24(5) 534-<br />

539]. The cartilage is then graded as 0 to 4 as follows: Grade 0 -<br />

normal articular cartilage lesions; Grade 1 s<strong>of</strong>tening or wave sign;<br />

Grade 2 - cleavage lesion; Grade 3 - delamination and Grade 4 -<br />

exposed bone. The site <strong>of</strong> the lesion is further typed as A, B or C based<br />

on whether the lesion is one-third distance from acetabular rim to<br />

cotyloid fossa, one-third to two-thirds distance from acetabular rim<br />

to cotyloid fossa and >two-thirds distance from acetabular rim to<br />

cotyloid fossa. For validating the classification system, six surgeons<br />

reviewed 14 hip arthroscopy video clips. All surgeons were provided<br />

with written explanation <strong>of</strong> our classification system. Each surgeon<br />

then individually graded the cartilage lesion. A single observer then<br />

compared results for observer variability using kappa statistics.<br />

posteR No. p438<br />

Influence <strong>of</strong> Laceration and Interference Screw<br />

Fixation on Tensile Strength <strong>of</strong> S<strong>of</strong>t-Tissue Grafts<br />

Robert Javier Villarreal, MD, Providence, RI<br />

Wendell M Rogan Heard, MD, Providence, RI<br />

David Paller, MS<br />

Keith Oster Monchik, MD, Providence, RI<br />

Steve Brian Behrens, MD, Providence, RI<br />

Alison M Biercevicz, BS, Houston, TX<br />

Paul Fadale, MD, Providence, RI<br />

Innovations in interference screw design for s<strong>of</strong>t-tissue anterior<br />

cruciate ligament (ACL) reconstruction have resulted in<br />

bioabsorbable screws capable <strong>of</strong> providing fixation strength similar<br />

to that <strong>of</strong> metal screws without the previously reported problem <strong>of</strong><br />

800<br />

screw breakage. Previous research has reported significant differences<br />

in graft laceration and pullout load between metallic screws and first<br />

generation biocomposite screws. Currently, comparative assessment<br />

<strong>of</strong> graft integrity with current generation biocomposite screws has<br />

not been performed. The objective <strong>of</strong> this study was to evaluate the<br />

influence <strong>of</strong> graft laceration from screw insertion on mechanical<br />

properties <strong>of</strong> the graft. A total <strong>of</strong> 24 bovine knees (12 matched pairs)<br />

were used to create tibial bone discs 35 mm in length. A 7.5 mm<br />

extraction drill created a bone tunnel in each sample. Samples were<br />

then serially dilated to 9 mm in preparation for a 9 mm porcine<br />

tendon graft instrumented with one <strong>of</strong> four commercially available<br />

10x35 mm biocomposite screws--BCP/PLDLA (biphasic calcium<br />

phosphate/poly-DL-lactic acid), ²-TCP/PLGA (beta-tricalcium<br />

phosphate/poly(lactic-co-glycolic acid) and two screws made <strong>of</strong><br />

HA/PLLA (hydroxyapatite/poly-L-lactic acid) - each with a different<br />

thread design. Samples were tensile loaded to failure at 200 mm/<br />

min. A one factor ANOVA was used to test for statistical significance.<br />

No graft showed macroscopic evidence <strong>of</strong> laceration following screw<br />

insertion and there were no statistically significant differences for yield<br />

load (p=0.41), maximum load (p=0.35) or stiffness (p=0.68) among<br />

the different screw types. The results suggest that all biocomposite<br />

screws tested are acceptable for ACL reconstruction with respect to<br />

their potential for causing damage to the s<strong>of</strong>t tissue graft.<br />

posteR No. p439<br />

Stress Fractures in High School Athletes<br />

Andrew D Goodwillie, MD, New Brunswick, NJ<br />

Eric Nussbaum, ATC, Freehold, NJ<br />

Charles J Gatt, Jr MD, New Brunswick, NJ<br />

This study reports the epidemiology <strong>of</strong> stress fractures in the<br />

adolescent athlete. This surveillance highlighted the frequent<br />

occurrence <strong>of</strong> this injury and the gender differences that exist. Between<br />

September 2007 and December 2010, stress fractures in adolescent<br />

athletes were prospectively submitted to an online database by local<br />

high-school athletic trainers. For every radiographically confirmed<br />

stress fracture, each athletic trainer was instructed to complete a<br />

standardized online form that detailed each athlete’s demographics,<br />

fracture pattern, clinical presentation, sport, level <strong>of</strong> participation,<br />

training intensity and various dietary habits. The database created<br />

is reported and analyzed in this study. A total <strong>of</strong> 230 stress fractures<br />

were reported in 189 athletes (74 males; 115 females) from 57 high<br />

schools. The tibia (48%) was the most frequently involved bone,<br />

followed by the metatarsal (19%), fibula (10%), spine (6%), pelvis<br />

(4%), hindfoot (4%) and femur (4%). Varsity athletes sustained the<br />

majority <strong>of</strong> the fractures (53%) within this study. The most common<br />

sports that caused fractures in males were track (26%), football<br />

(23%) and cross-country (19%), and in females track (28%) and<br />

cross country (23%). Male athletes sustained fractures at an older<br />

age (15.97 yrs vs. 15.46 yrs, P=0.004), higher grade (10.56 vs. 10.14,<br />

P=0.001), and at a higher body-mass index (BMI) (22.4 vs. 20.8,<br />

P


posteR No. p440 AlteRNAte pApeR<br />

Surgical Hip Dislocation for FAI in Athletes Younger<br />

Than 21 Years <strong>of</strong> Age<br />

Michele R D’Apuzzo, MD, Rochester, MN<br />

Robert T Trousdale, MD, Rochester, MN<br />

Rafael Jose Sierra, MD, Rochester, MN<br />

We report the treatment <strong>of</strong> femoroacetabular impingement (FAI)<br />

through a surgical hip dislocation in athletes younger than 21 years<br />

<strong>of</strong> age. Seventeen athletes (19 hips) diagnosed with FAI were treated<br />

through a surgical dislocation between 2003 and 2007. Eleven males<br />

and six females composed with an average age <strong>of</strong> 18 years were<br />

included. An athlete was defined as a patient who played team or<br />

individual based sports more than three times a week for more than<br />

one hour a day. Intraoperative findings were classified according to<br />

the Beck classification <strong>of</strong> labral pathology and the Outerbridge grade<br />

classification <strong>of</strong> cartilage damage. Time to pain relief and return<br />

to sports were documented. The average time from surgery was 35<br />

months (range 15-66 months). The average length <strong>of</strong> follow up was<br />

15 months (range 1-35 months). Labral pathology was identified<br />

in all except two hips. The Outerbridge classification was 0 in four<br />

hips, 1 in two hips, 2 in eight hips and 3 in five hips, respectively.<br />

Fourteen hips had severe or constant pain while five had intermittent<br />

pain preoperatively. Fifteen hips were pain free at last follow up and<br />

the average time to a pain-free hip was three weeks. There were no<br />

intraoperative or postoperative complications. Hardware was removed<br />

in 30%. Some 95% <strong>of</strong> patients returned to previous athletic activities<br />

at an average time <strong>of</strong> 21 weeks. Four <strong>of</strong> 19 hips had limitations in<br />

athletic activities secondary to pain. Surgical hip dislocation is a<br />

safe operative intervention in young patients with FAI. The surgical<br />

procedure is clearly more invasive than hip arthroscopy but in this<br />

young patient population with significant hip damage, rehabilitation<br />

does not seem to defer dramatically with that reported by arthroscopic<br />

techniques. Return to previous athletic activities is high.<br />

posteR No. p441<br />

5-Year Follow-Up <strong>of</strong> Surgical Hip Dislocation for the<br />

Treatment <strong>of</strong> Femoroacetabular Impingement<br />

Simon D Steppacher, MD, Bern, Switzerland<br />

Moritz Tannast, Bern, Switzerland<br />

Carmen Huemmer, MD<br />

Klaus Siebenrock, MD, Bern, Switzerland<br />

Femoroacetabular impingement (FAI) leads to hip pain and<br />

osteoarthrosis. The gold standard <strong>of</strong> treatment is the surgical hip<br />

dislocation with labrum reattachment performed since 2001. We<br />

investigated the five-year outcome <strong>of</strong> this procedure and calculated<br />

predective factors for poor outcome. We retrospectively evaluated 97<br />

hips (75 patients) that underwent surgical dislocation at a mean age<br />

<strong>of</strong> 32 ± 8.3 (range, 15-50) years. The average follow up was 6.0 ± 0.6<br />

(5.0-7.1) years. Preoperatively, the mean Merle d’Aubigné (MDA)<br />

score was 15.3 ± 1.4 (8-18) and the mean Tönnis osteoarthosis (OA)<br />

score was 0.22 ± 0.46 (0-2). Failure was defined as conversion to<br />

a total hip arthroplasty (THA), a MdA score <strong>of</strong> less than 15 and a<br />

progression <strong>of</strong> OA at follow up. The cumulative survivorship at five<br />

years was 93.8% (95% confidence interval, 89.0-98.6%). At follow<br />

up, the MDA score was significantly increased to 17.2 ± 1.2 (12-18)<br />

(p=0.02) and the Tönnis score did not significantly increase to 0.29<br />

± 0.55 (0-2) (p=0.56). Failures (15 hips, 15%) included seven hips<br />

(7%) that converted to a THA, seven hips (7%) with progression <strong>of</strong><br />

OA and one hip (1%) with a MDA score <strong>of</strong> less than 15 at follow up.<br />

Surgical hip dislocation has the potential to prevent the progression<br />

<strong>of</strong> osteoarthrosis and to decrease hip pain in patients with FAI.<br />

801<br />

posteR No. p442<br />

Outcomes Of Arthroscopic Bankart Repair With Suture<br />

Anchors In Contact Versus Non-Contact Athletes<br />

Dr Massimo Petrera, Toronto, ON Canada<br />

Matthew Tsuji, MD, Toronto, ON Canada<br />

John Theodoropoulos, MD, North York, ON Canada<br />

Open repair <strong>of</strong> Bankart lesions has been considered the gold<br />

standard for the treatment <strong>of</strong> anterior instability in contact athletes.<br />

The purpose <strong>of</strong> this study was to evaluate the outcomes <strong>of</strong> the<br />

arthroscopic shoulder stabilization with suture anchors in contact<br />

versus non-contact athletes. A search in senior author’s database<br />

was performed; 125 patients were identified, 38 (19 contact athletes<br />

and 19 non-contact) were evaluated at minimum 24 months follow<br />

up. All patients underwent arthroscopic labral repair with suture<br />

anchors. Recurrence rate and functional outcomes according to<br />

ASES score, WOSI and SF-12 were evaluated. Statistical analysis was<br />

performed using chi-square and t-student test with 95% confidence<br />

interval (CI), significance level set at P


(71%) could ambulate and participate in activities. Although 71%<br />

<strong>of</strong> patients did not wear an AFO, only 29% <strong>of</strong> patients did not limp.<br />

The donor deficits included weak toe flexion (29%) and reduced<br />

calf circumference (57%). Generally, 57% <strong>of</strong> patients were satisfied<br />

and 71% would recommend surgery. Nerve transfers for foot drop<br />

give inconsistent results. Although 36% <strong>of</strong> patients achieved M3+<br />

recovery, the remaining patients regained minimal motion and<br />

risked the morbidity <strong>of</strong> the procedure.<br />

posteR No. p444<br />

Clonal Populations <strong>of</strong> Human Embryonic Stem Cells<br />

have Increased Potential for Cartilage Repair<br />

Tsaiwei Olee, PhD<br />

Nicholas Glembotski, BS<br />

Hal Sternberg, PhD<br />

Michael West, PhD<br />

Darryl D D’Lima, MD, La Jolla, CA<br />

Human embryonic stem cells (hESC) are an attractive renewable<br />

resource for cell based regenerative medicine. Unfortunately, during<br />

culture and expansion, hESC differentiate into heterogeneous cell<br />

types and are not as chondrogenic as primary human chondrocytes.<br />

We tested the hypothesis that select clonal progenitor cells have<br />

greater potential for cartilage repair. A library <strong>of</strong> over 140 distinct<br />

clones was generated by differentiating hESC under different<br />

culture conditions after confirming their homogeneity. Clones were<br />

ranked by gene expression levels <strong>of</strong> type II collagen and aggrecan.<br />

Chondrogenecity in the highest ranking clones was tested by<br />

staining for glycosaminoglycan and type II collagen in standard<br />

pellet culture. The potential for repair was assessed by placing<br />

clonal cell pellets in surgically created cartilage defects in human<br />

cartilage explants for one month. hESC, primary human articular<br />

chondrocytes (hAC) and adult adipose derived stem cells (hASC)<br />

were used for comparison. Gene expression levels and matrix stains<br />

in selected clonal cell lines were higher than in heterogeneous hESC<br />

and ASC, and approached levels seen in hAC. In cartilage explants,<br />

the repair tissue resembled articular cartilage and was well integrated<br />

with surrounding host tissue. Currently available human embryonic<br />

cell lines are heterogeneous but can contain distinct subpopulations<br />

that have variable chondrogenic potential. By using stable and easy<br />

to expand clonal progenitor cell lines we have improved upon the<br />

quality <strong>of</strong> the chondrogenic repair relative to using the heterogeneous<br />

population. This approach broadens the use <strong>of</strong> defined embryonic<br />

cell types for cartilage repair and tissue engineering.<br />

posteR No. p445 AlteRNAte pApeR<br />

The Intraosseous and Extraosseous Vascular Anatomy<br />

<strong>of</strong> the Fifth Metatarsal<br />

Kathleen E McKeon, MD, Saint Louis, MO<br />

Sandra E Klein, MD, Chesterfield, MO<br />

Jeffrey Einer Johnson, MD, Chesterfield, MO<br />

Jeremy J McCormick, MD, Chesterfield, MO<br />

Stress fractures <strong>of</strong> the fifth metatarsal are <strong>of</strong>ten refractory to conservative<br />

management, in part due to the pattern <strong>of</strong> intraosseous vascularity.<br />

Previous articles have described a nutrient artery that penetrates the<br />

cortex distal to the tuberosity and supplies the diaphysis <strong>of</strong> the fifth<br />

metatarsal, but these studies have not described the origin <strong>of</strong> this<br />

nutrient artery. The major arteries <strong>of</strong> the distal limb <strong>of</strong> seven fresh<br />

adult human cadavers were injected with India ink and Ward’s blue<br />

latex. The extraosseous blood supply was examined after chemical<br />

debridement with sodium hypochlorite. The intraosseous blood<br />

supply <strong>of</strong> the fifth metatarsal was elucidated in three specimens with<br />

802<br />

a modified Spalteholz technique. As previously described, the fifth<br />

metatarsal receives multiple branches from both dorsal and plantar<br />

metatarsal arteries to form a dense periosteal plexus throughout.<br />

The central portion <strong>of</strong> the diaphyseal column is supplied by a<br />

nutrient artery arising from the fourth plantar metatarsal artery<br />

and penetrating the cortex from the medial surface. These findings<br />

support the previous descriptions <strong>of</strong> a nutrient artery which supplies<br />

the diaphysis <strong>of</strong> the fifth metatarsal, and determine that it arises<br />

from the fourth plantar metatarsal artery. The nutrient artery should<br />

be carefully preserved during surgical approaches to the forefoot.<br />

This study is ongoing, with 40 additional specimens under review.<br />

The blood supply to the diaphysis <strong>of</strong> the fifth metatarsal arises from<br />

a nutrient artery given <strong>of</strong>f by the fourth plantar metatarsal artery.<br />

posteR No. p446<br />

Immediate Strength <strong>of</strong> Ulnar Fixation in Two Ulnar<br />

Collateral Ligament Reconstruction Techniques<br />

Atiba Jackson, MD, W Burlington, IA<br />

Jason P Dieterle, DO, Stillwater, MN<br />

Tristan Maerz, BS<br />

Kevin Baker, MS, Royal Oak, MI<br />

Denise Koueiter<br />

Christopher Andrecovich, BS, Royal Oak, MI<br />

Kyle Anderson, MD, Birmingham, MI<br />

Ulnar collateral ligament (UCL) rupture used to be a career-ending<br />

injury. To date, numerous techniques have been developed to<br />

mimic the strength and isometricity <strong>of</strong> the native ligament to allow<br />

for the prompt return to activity. The objective <strong>of</strong> this study was to<br />

develop an ulnar fixation testing protocol and assess the strength<br />

and stiffness <strong>of</strong> the ulnar fixation <strong>of</strong> two UCL reconstructions. Six<br />

matched pairs <strong>of</strong> cadaveric human upper extremities were dissected<br />

to isolate the site <strong>of</strong> ulnar fixation utilized during ulnar collateral<br />

ligament reconstruction. An ulnar fixation testing protocol was<br />

developed and used to test the ultimate strength <strong>of</strong> the ulnar fixation<br />

<strong>of</strong> six specimens reconstructed using the traditional bone tunnel<br />

technique and six specimens reconstructed using a cortical button<br />

and interference screw modality called the tension slide technique.<br />

The bone tunnel technique showed a statistically significantly higher<br />

ultimate strength in torsional torque (mean 17.90 N”m, P=0.009)<br />

and stiffness (mean 27.67 N”m/rad, P=0.002) compared to the<br />

tension slide technique (strength: mean 8.95 N”m, stiffness: 11.67<br />

N”m/rad). Statistics were performed using the Mann-Whitney Rank<br />

Sum Test. The success <strong>of</strong> a UCL reconstruction depends on several<br />

factors including immediate strength. The ulnar fixation <strong>of</strong> the<br />

bone tunnel technique presents a stronger modality compared to<br />

the tension slide technique. Higher immediate strength allows for<br />

the earlier return to activity. Assessing the cyclic loading response<br />

and/or in vivo healing may further elucidate the efficacy <strong>of</strong> these<br />

constructs.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


posteR No. p447<br />

Patellar Tendon Bone Autograft In Acl Surgery: Do The<br />

Bone Plugs Heal Within The Tunnels? A Ct Study<br />

Raffaele Iorio, MD, Rome, Italy<br />

Antonio Vadala, MD, Rome, Italy<br />

Jacopo Conteduca, MD, ROME, RM Italy<br />

Andrea Redler, MD<br />

Luigi Valeo, MD<br />

Giuseppe Argento, MD<br />

Fabio Conteduca, MD, Roma, Italy<br />

Andrea Ferretti, Rome, Italy<br />

Anterior cruciate ligament (ACL)-reconstruction using bone-patellar<br />

tendon-bone autograft (BPTB) is one <strong>of</strong> the most common surgical<br />

techniques. The main advantage <strong>of</strong> this technique is the reported<br />

earlier integration <strong>of</strong> the bone plugs in the bone tunnels. The aim <strong>of</strong><br />

the study is to evaluate the incorporation grade <strong>of</strong> bone-graft inside<br />

the tibial bone tunnel. In this prospective study, we evaluated 16<br />

consecutive patients undergoing ACL reconstruction with BPTB by<br />

using CT scan images. The radiological evaluation was performed<br />

10 months postoperatively. Images from each completed scan<br />

were analyzed for percentage <strong>of</strong> incorporation <strong>of</strong> the bone graft by<br />

a blinded expert radiologist. Results were classified in four stages.<br />

Grade III: complete incorporation <strong>of</strong> the bone plug; grade II: >50%<br />

<strong>of</strong> incorporation; grade I: 40) treated with arthroscopic suture bridge rotator cuff<br />

repair following a full-thickness, fully reducible rotator cuff tear were<br />

imaged using ultrasonography and evaluated by subjective functional<br />

testing and quantitative strength testing with a dynamometer. To<br />

date, one-year follow up results show a mean active flexion <strong>of</strong> 161.6<br />

degrees, mean active external rotation <strong>of</strong> 79.6 degrees, mean active<br />

internal rotation <strong>of</strong> 54 degrees, and a mean pain score <strong>of</strong> 0.16 versus<br />

pre-operative active flexion <strong>of</strong> 147.5 degrees, active external rotation<br />

<strong>of</strong> 65 degrees, active internal rotation <strong>of</strong> 50 degrees and a pain score<br />

<strong>of</strong> 3.75. One-year mean scaption strength is 36.07 N, mean external<br />

rotation strength is 51.08 N and mean internal rotation strength<br />

is 72.61 N. None <strong>of</strong> the patients exhibited a tear at the repair site.<br />

Results to date indicate an increase in motion, a decrease in pain<br />

803<br />

and sound strength following suture bridge rotator cuff repair. By<br />

creating a strong, anatomic construct, arthroscopic suture bridge<br />

rotator cuff repair is a clinically successful technique with a low<br />

incidence <strong>of</strong> retearing.<br />

posteR No. p449<br />

Design and Evaluation <strong>of</strong> a Novel Fiber-Reinforced<br />

Synthetic Meniscal Replacement<br />

Saadiq F El-Amin, III MD, Springfield, IL<br />

Natalie Kelly, Ithaca, NY<br />

Julianne Holloway, BS<br />

Yan Ma, PhD<br />

Anthony Lowman, PhD<br />

Giuseppe Palmese, PhD<br />

Suzanne A Maher, PhD, Manhattan, NY<br />

Russell F Warren, MD, New York, NY<br />

Surgical options for the treatment <strong>of</strong> damaged menisci are limited.<br />

We have developed a fiber-reinforced synthetic meniscal substitute<br />

consisting <strong>of</strong> drawn ultra-high molecular weight polyethylene<br />

embedded in a polyvinyl-alcohol hydrogel matrix. Our objective<br />

was to assess the ability <strong>of</strong> the substitute to distribute loads across<br />

the knee during gait as a function <strong>of</strong> fiber content; our goal was<br />

to match the performance <strong>of</strong> an allograft. Meniscal substitutes<br />

were manufactured using resin transfer molding at 10% and 30%<br />

wt polyethylene; resulting in tensile moduli <strong>of</strong> 90 MPa and 250<br />

MPa, respectively. Four human cadaveric knees were subjected to<br />

physiological gait loads on a knee joint simulator. Medial tibial<br />

plateau contact pressures were dynamically recorded for: (i) intact,<br />

(ii) meniscectomized, (iii) meniscus re-implanted to simulate a<br />

‘pseudo-allograft’, (iv) 10%wt substitute and (v) 30% wt substitute<br />

implanted knees. The generalized estimating equations method was<br />

used to compare peak contact pressure magnitude and contact area<br />

for each condition. Meniscectomy led to significantly higher contact<br />

pressures compared to all other conditions. Allograft or substitute<br />

implantation did not restore contact mechanics to that <strong>of</strong> the intact<br />

knee. Contact mechanics were not significantly affected by substitute<br />

fiber content. The contact mechanics <strong>of</strong> the substitute implanted<br />

knees, regardless <strong>of</strong> fiber content, matched that <strong>of</strong> the pseudoallograft<br />

implanted knees. All groups evaluted failed to restore<br />

normal joint contact pressure and area compared to the intact knee.<br />

The geometry and mode <strong>of</strong> fixation <strong>of</strong> the substitutes are now being<br />

modified so that their contact mechanics more closely mimics that<br />

<strong>of</strong> the intact knee.<br />

posteR No. p450<br />

uGait Analysis In Anterior Cruciate Ligament Injury<br />

Using A Novel Device<br />

Mhd Alsawaf, MD, Taylor, MI<br />

Cynthia A Bir, Detroit, MI<br />

David McKeon Prior, MD, Kalamazoo, MI<br />

Lawrence G Morawa, MD, Dearborn, MI<br />

Kelli Crawford, PA-C, Dearborn, MI<br />

Several studies have been performed to evaluate gait in patients with<br />

anterior cruciate ligament (ACL) injury compared to normal subjects.<br />

Typically these studies use traditional motion analysis laboratories.<br />

A novel marker-less, camera-less motion capture has recently been<br />

validated. This biomechanics assessment system uses an array <strong>of</strong> 13<br />

sensors containing accelerometers, gyroscopes and magnetometers.<br />

Its use in the clinical setting is presented. Test subjects were divided<br />

into a normal control group (n=10) and ACL-deficient group (n=10).<br />

ACL injury was confirmed by history, physical examination and<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


imaging studies. Objective measurements <strong>of</strong> sagittal plane motion<br />

were determined using a knee laxity testing device for both groups.<br />

Gait analysis was performed during walking (20 feet), step up and<br />

step down activities. Data was extracted from the sensors to provide<br />

flexion-extension and percentage <strong>of</strong> body weight bearing at the<br />

knee joint. The data reveal an average <strong>of</strong> 68 + 8.8 degrees <strong>of</strong> flexionextension<br />

in the control population during walking with an average<br />

difference between the right and left knees <strong>of</strong> 3.1 degrees. Data from<br />

the patient population demonstrated 69 + 4.3 degrees <strong>of</strong> flexionextension<br />

in the unhealthy limb and 75 + 3.1 degrees in the contralateral<br />

side resulting in an average statistical difference <strong>of</strong> 6.3 degrees.<br />

The biomechanics assessment system demonstrated that the step up<br />

and step down task for the ACL subjects resulted in the healthy leg<br />

consistently bearing over 100% <strong>of</strong> the body weight regardless <strong>of</strong> the<br />

initiating leg. This novel assessment <strong>of</strong> biomechanics system can<br />

provide valuable information in the clinical setting.<br />

posteR No. p451<br />

uRepair Of Cartilage Defects With Human<br />

Mesenchymal Stem Cells And Hydrogel In Rabbits<br />

Chul Won Ha, MD, Seoul, Republic <strong>of</strong> Korea<br />

Choong-Hee Lee, MD<br />

Sang-Eun Nha, MD<br />

This study investigated the cartilage regeneration effects <strong>of</strong> human<br />

umbilical cord blood derived mesenchymal stem cells (hUCB-<br />

MSCs) plus sodium hyaluronate using an articular cartilage defect<br />

model in rabbits. Full-thickness chondral defects, 3 mm wide × 3<br />

mm deep, were created in the trochlear groove <strong>of</strong> the right femur<br />

in 53 healthy New Zealand White (NZW) rabbits. The control<br />

group had only a chondral defect in the trochlear groove and four<br />

study groups administered directly into the defect (0.2 ml/cm2).<br />

The MSCs concentration ranged between 0.1 and 1.5 x 107 cells/<br />

mL were applied. At four, eight and 16 weeks after surgery, cartilage<br />

repair was evaluated macroscopically and histologically using a<br />

semiquantitative grading scale. The mean scores <strong>of</strong> the gross and<br />

histological evaluation grade in the experimental groups were<br />

significantly superior to those in the control group at eight and 16<br />

weeks (P


posteR No. p454<br />

Hip Arthroscopy for Legg-Calve-Perthes Disease:<br />

Minimum Two-Year Follow-up<br />

Carl R Freeman, MD, Erie, PA<br />

Kay S Jones, RN, Nashville, TN<br />

J W Thomas Byrd, MD, Nashville, TN<br />

Legg-Calve-Perthes disease is a common childhood disorder that<br />

leads to painful sequelae in adulthood with few options other<br />

than arthroplasty. The purpose <strong>of</strong> this study is to report the results<br />

<strong>of</strong> arthroscopy in this population. All patients undergoing hip<br />

arthroscopy are prospectively assessed with a modified Harris hip<br />

score at three, six, 12, 24, 60, 120 and 180 months. A cohort <strong>of</strong><br />

20 consecutive patients (21 hips) were identified with Legg-Calve-<br />

Perthes disease that had undergone arthroscopy with at least twoyear<br />

follow up and represent the substance <strong>of</strong> this report. There was<br />

100% follow up at an average <strong>of</strong> 56 months (range 24-180 months).<br />

The average age was 26 years (range 7-58) with 13 males and seven<br />

females. Findings during arthroscopy included 16 labral tears, 15<br />

hypertrophic or torn ligamentum teres, seven femoral and six<br />

acetabular chondral lesions, five loose bodies, three osteochondral<br />

defects and one cam lesion. The average improvement was 25.3 points<br />

(preop 56.7; postop 82). All patients were improved, although this<br />

improvement was negligible in two patients who underwent repeat<br />

arthroscopy. There were no complications. This is the largest reported<br />

series <strong>of</strong> arthroscopy for Legg-Calve-Perthes disease and reflects that<br />

it does have a role in the management <strong>of</strong> painful sequelae. Successful<br />

outcomes can <strong>of</strong>ten be expected with minimal morbidity. Reduced<br />

symptoms and improved quality <strong>of</strong> life are reasonable expectations,<br />

although this data does not suggest that it alters the natural history<br />

<strong>of</strong> the disease process.<br />

posteR No. p455<br />

Biomechanical Comparison <strong>of</strong> Secondary Tibial<br />

Fixation in Anterior Cruciate Ligament Reconstruction<br />

James Patrick Leonard, MD, Skokie, IL<br />

Alex Romero, MD, Santa Monica, CA<br />

Mark R Hutchinson, MD, Chicago, IL<br />

Farid Amirouche, MD, Chicago, IL<br />

Tibial fixation remains the weak link in anterior cruciate ligament<br />

(ACL) reconstruction. Our study evaluates suture anchors compared<br />

to suture post screws as means <strong>of</strong> secondary fixation, providing a<br />

‘back-up’ point should the primary means <strong>of</strong> fixation fail. Ten<br />

cadaveric tibias were randomly assigned into two groups: either<br />

secondary fixation with a suture anchor device or suture post<br />

screw. Each group utilized a cadaveric hamstring tendon graft with<br />

interference screw fixation to the tibia. A testing machine was used<br />

to quantify the amount <strong>of</strong> force to failure <strong>of</strong> the tibial fixation. The<br />

suture post screw group failed at significantly higher force <strong>of</strong> 563.0N<br />

compared with 263.8N for the suture anchor group (p


lesion, length <strong>of</strong> follow-up and associated surgeries on the result was<br />

found. No differences were found between the results obtained with<br />

different surgeries except a slight tendency <strong>of</strong> better improvement in<br />

the result following autologous chondrocyte implantation (p


a minimum two year follow-up. This systematic review will outline<br />

the results in the current literature on graft failure rate, activity level<br />

and functional assessment, as well as posterior knee laxity.<br />

scieNtific exHibit No. se65<br />

Treatment <strong>of</strong> Posteromedial Corner Injuries: Indications<br />

and Complete Review <strong>of</strong> Results<br />

Roberto Rossi, MD, Torino, Italy<br />

Davide E Bonasia, MD, Torino, Italy<br />

Matteo Bruzzone, MD, Torino, Italy<br />

Federico Dettoni, MD, Torino, Italy<br />

Antongiulio Marmotti, MD, Torino, Italy<br />

Davide Blonna, MD, Torino, Italy<br />

Filippo Castoldi, MD, Torino, Italy<br />

There are different surgical techniques for treating posteromedial<br />

corner knee injuries. We have reviewed the literature on the anatomy<br />

<strong>of</strong> the poster medial peripheral ligamentous structures <strong>of</strong> the knee<br />

and their surgical techniques and results. This exhibit will present<br />

a complete review <strong>of</strong> posteromedial corner reconstruction and<br />

repair techniques and their outcomes. We evaluated both repair and<br />

reconstruction techniques to certify the outcomes. Detailed technical<br />

steps will be presented in an interactive format for the most commonly<br />

encountered scenarios. The objective <strong>of</strong> this scientific exhibit is to<br />

present a review <strong>of</strong> current posteromedial corner reconstruction and<br />

repair techniques and provide a thorough review <strong>of</strong> their published<br />

outcomes. With the information presented, participants will be able<br />

to critically assess their own surgical technique, in order to improve<br />

the care <strong>of</strong> their own patients. The information would serve as the<br />

basis for future biomechanical studies to investigate the contribution<br />

<strong>of</strong> the posteromedial structures to joint stability.<br />

scieNtific exHibit No. se66<br />

Peripheral Nerve Blocks in the Perioperative Pain<br />

Management <strong>of</strong> <strong>Orthopaedic</strong> Patients<br />

Benjamin Eric Stein, MD, Baltimore, MD<br />

Umasuthan Srikumaran, MD, Braintree, MA<br />

John H Wilckens, MD, Annapolis, MD<br />

Michael T Freehill, MD, Palo Alto, CA<br />

The increasing use <strong>of</strong> peripheral nerve blocks (PNBs) in orthopaedic<br />

surgery has paralleled the rise <strong>of</strong> procedures performed in the<br />

ambulatory surgery setting. PNBs are now commonly used to<br />

provide effective perioperative pain management. An understanding<br />

<strong>of</strong> the indications, risks, and patient benefits associated with PNBs<br />

is important for the practicing orthopaedic surgeon. The purpose<br />

<strong>of</strong> this exhibit is to provide a concise and pertinent review <strong>of</strong> the<br />

use <strong>of</strong> peripheral nerve blocks (PNBs) in various orthopaedic<br />

procedures with specific focus on indications, complications, and<br />

patient outcome measures. A review <strong>of</strong> the literature and reference<br />

textbooks on commonly performed PNB procedures in orthopaedic<br />

surgery. The authors focused on the most commonly used PNBs<br />

in both upper and lower extremity surgery. The use <strong>of</strong> PNBs in<br />

orthopaedic surgery is fast becoming a mainstay <strong>of</strong> perioperative<br />

pain management strategy. The goal <strong>of</strong> this exhibit is to advance the<br />

orthopaedic surgeons working knowledge <strong>of</strong> these procedures in<br />

order to facilitate the decision making process regarding their use.<br />

807<br />

scieNtific exHibit No. se67<br />

The Meniscal Tear in the Varus Knee: A<br />

Multidisciplinary Approach<br />

Michael B Cross, MD, New York, NY<br />

Travis G Maak, MD, New York, NY<br />

Denis Nam, MD, New York, NY<br />

Christopher John Dy, MD, New York, NY<br />

Anil Ranawat, MD, New York, NY<br />

Andrew D Pearle, MD, Rye, NY<br />

Keith R Reinhardt, MD, New York, NY<br />

Demetris Delos, MD, New York, NY<br />

A meniscal tear is a common clinical problem encountered by<br />

orthopaedic surgeons. However, the diagnosis and appropriate<br />

management <strong>of</strong> a meniscal tear in a patient with varus alignment<br />

is complex, and <strong>of</strong>ten under appreciated. We will first describe the<br />

common etiologies for meniscal tears, and present the likelihood <strong>of</strong><br />

progression and incidence based the etiology. We will then describe<br />

the classification <strong>of</strong> the varus knee (i.e. single, double, triple varus),<br />

and the anatomic structures injured with each. Meniscal tears can<br />

occur in isolation but <strong>of</strong>ten present with a myriad <strong>of</strong> other articular<br />

derangements such as chondral defects, knee degeneration, bone<br />

attrition, tibial subluxation, and insufficiency <strong>of</strong> the ACL or PCL.<br />

Understanding the contribution <strong>of</strong> meniscal pathology to pain and<br />

dysfunction in the setting <strong>of</strong> concomitant internal derangement is<br />

challenging and will be presented algorithmically. The diagnostic<br />

workup in a patient with a varus knee and meniscal tear, including<br />

radiographs, standing alignment xrays, MRI, bone scan and gait<br />

analysis, will be clearly presented. The management <strong>of</strong> meniscal<br />

tears in the varus knee requires a multidisciplinary approach, and<br />

is dependent on multiple factors including the patient’s age. We<br />

will provide an evidence based algorithm <strong>of</strong> management options<br />

depending on the clinical situation. Treatment options include<br />

NSAIDs, bracing, orthotics, injections, meniscal repair, partial<br />

meniscectomy, meniscal transplant, cartilage resurfacing, osteotomy,<br />

unicompartmental knee arthroplasty, and total knee arthroplasty. We<br />

will provide orthopaedic surgeons a simplified algorithm, based on<br />

results in the literature, for appropriately managing meniscal tears in<br />

patients with varus alignment.<br />

scieNtific exHibit No. se68<br />

Ulnar Collateral Ligament Reconstruction in Throwing<br />

Athletes: A Review <strong>of</strong> Current Concepts<br />

Krist<strong>of</strong>er Jones, MD, New York, NY<br />

Daryl C Osbahr, MD, Birmingham, AL<br />

Mark Schrumpf, MD, New York, NY<br />

Joshua Dines, MD, Great Neck, NY<br />

David W Altchek, MD, New York, NY<br />

Repetitive overloading from throwing can cause ulnar collateral<br />

ligament (UCL) insufficiency resulting in disabling elbow pain.<br />

Until Jobe described a novel technique to reconstruct the UCL, these<br />

injuries were, in many cases, career-ending. Since that time, various<br />

modifications to the surgical technique have resulted in return to<br />

play in up to 90% <strong>of</strong> throwing athletes. Despite the reported clinical<br />

success with UCL reconstruction, postoperative complications have<br />

been shown in up to 10% <strong>of</strong> patients, and subgroups exist with less<br />

impressive outcomes, including high school athletes, patients with<br />

a history <strong>of</strong> prior elbow surgery and concomitant flexor-pronator<br />

injuries. The intent <strong>of</strong> this exhibit is to: 1) Review relevant elbow<br />

anatomy, biomechanics and pathophysiology 2) Evaluate preoperative<br />

prognostic factors influencing outcome 3) Discuss surgical<br />

techniques with supplemental video, intra-operative photographs,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


and diagrammatic visual aids 4) Present clinical outcomes based<br />

on patient and technique specific factors 5) Outline complications<br />

relating to operative and post-operative variables 6) Describe a novel<br />

athlete-specific treatment algorithm. UCL reconstruction typically<br />

results in successful return to sport; yet several questions still exist<br />

relating to optimal surgical technique, potential co-morbidities,<br />

athlete-specific treatment factors, and longevity <strong>of</strong> return to play.<br />

This exhibit will provide important data to assist surgeons managing<br />

throwing athletes with UCL pathology through patient counseling,<br />

surgical technique considerations, athlete-specific treatment<br />

algorithms, and future research considerations to further improve<br />

outcomes.<br />

scieNtific exHibit No. se69<br />

Allograft Salvage Procedure in Multiple ACL Revision<br />

Surgery<br />

Roberto Buda, Bologna, Italy<br />

Francesco DiCaprio, Bologna, Italy<br />

Alberto Ruffilli, MD, Bologna, Italy<br />

Alberto Ferruzzi, MD, Bologna, Italy<br />

Cesare Faldini, MD, Bologna, Italy<br />

Sandro Giannini, MD, Bologna, Italy<br />

Multiple ACL revisions represent an extremely demanding surgery,<br />

due to the presence <strong>of</strong> enlarged or malpositioned tunnels, hardware,<br />

injuries to the secondary stabilizers and difficulties in retrieving<br />

autologous tendons. An anatomical ACL reconstruction is not always<br />

possible. We analyzed the results in a series <strong>of</strong> patients operated<br />

with over the top reconstruction (OTTR) and lateral extra-articular<br />

plasty to the Gerdys tubercle (LP) using Achilles (AT) or tibialis<br />

posterior tendon (TPT) allografts. From 2002 to 2008, twentyfour<br />

male athletes with a mean age <strong>of</strong> 30.8 years were operated.<br />

20 <strong>of</strong> the patients had two, while four patients had three previous<br />

reconstructions. IKDC score and KT evaluation were used at a mean<br />

3.3 years follow-up (27 years). The mean IKDC subjective score at<br />

follow-up was 81.3. The IKDC objective score rated A or B in 84%<br />

<strong>of</strong> the patients. Of the 20 good results, 17 patients resumed sport<br />

activity at the pre-injury level. KT side-to-side difference averaged<br />

3.5 mm in the TPT, versus 3.2 mm in the AT group. No significant<br />

differences were noted between the AT and TPT group. Multiple ACL<br />

revision surgery is a salvage procedure, with average good results,<br />

but not equivalent to primary ACL reconstruction. Patients should<br />

be advised that a return to sports may not be feasible. OTTR+LP is an<br />

established technique that permits to overcome difficult anatomical<br />

situations, with cortical fixation providing good immediate stability<br />

and avoiding tunnel fixation and bone grafting. Long tendon grafts<br />

as AT and TPT are needed.<br />

scieNtific exHibit No. se70<br />

Complications in Medial Patell<strong>of</strong>emoral Ligament<br />

(MPFL) Reconstruction<br />

Miho Jean Tanaka, MD, Baltimore, MD<br />

Andrew J Cosgarea, MD, Lutherville, MD<br />

Benjamin Eric Stein, MD, Baltimore, MD<br />

Jack T Andrish, MD, Cleveland, OH<br />

John P Fulkerson, MD, Farmington, CT<br />

The role <strong>of</strong> medial patell<strong>of</strong>emoral ligament (MPFL) reconstruction<br />

in reestablishing the stability <strong>of</strong> the patell<strong>of</strong>emoral joint has been<br />

increasingly reported in recent years. While the long term outcomes<br />

<strong>of</strong> these new procedures are still unavailable, in this scientific<br />

exhibit, we review the literature and highlight the common technical<br />

errors and the potential complications that result from MPFL<br />

808<br />

reconstructions. The purpose <strong>of</strong> this exhibit is to review the multiple<br />

factors that are crucial for successful MPFL reconstruction, including<br />

patient selection, technique, tunnel placement, graft isometry and<br />

determining the need for concurrent realignment procedures. The<br />

reported causes <strong>of</strong> failure in the literature will be reviewed, as will<br />

the biomechanical rationale that should be used in guiding surgical<br />

management. The principles <strong>of</strong> surgical management include a<br />

thorough understanding <strong>of</strong> proper patient selection, as well as the<br />

interaction between the roles <strong>of</strong> the bony and s<strong>of</strong>t tissue restraints<br />

<strong>of</strong> the patella. Tunnel positioning is extremely crucial in recreating<br />

the appropriate patell<strong>of</strong>emoral alignment. Creating a logical<br />

treatment algorithm based on pathoantomy can elucidate the<br />

need for concurrent distal realignment surgeries. These guidelines<br />

can help avoid the majority <strong>of</strong> reported complications, including<br />

patell<strong>of</strong>emoral arthrosis, graft impingement, and graft failure.<br />

Patellar fractures, overtightening and recurrence have been reported<br />

as well. MPFL reconstructions are becoming more popular in the<br />

armamentarium <strong>of</strong> the sports surgeon. This exhibit emphasizes the<br />

potential pitfalls, alternatives and complications in this increasingly<br />

popular procedure.<br />

scieNtific exHibit No. se71<br />

Allograft in Sports Medicine: Growing Applications,<br />

Surgical Indications and Clinical Outcomes<br />

Alexander Weber, MD, Ann Arbor, MI<br />

Demetris Delos, MD, New York, NY<br />

Scott Alan Rodeo, MD, New York, NY<br />

Allograft tissue is used for a growing number <strong>of</strong> applications in the<br />

treatment <strong>of</strong> ligament, tendon, meniscus and cartilage injuries not<br />

only in the knee but increasingly in the shoulder, elbow, hip and<br />

ankle. The purpose <strong>of</strong> this exhibit is to provide a comprehensive<br />

review <strong>of</strong> traditional applications <strong>of</strong> allograft tissue as well as to<br />

introduce innovative applications within sports medicine. The first<br />

objective will include a literature review discussing the indications<br />

and clinical outcome data for common applications <strong>of</strong> allograft<br />

tissue including ACL reconstruction, cartilage repair and meniscal<br />

transplantation. The emphasis <strong>of</strong> this section will be on patient<br />

selection and allograft clinical performance compared to alternative<br />

treatment options. The discussion <strong>of</strong> the second objective, innovative<br />

applications <strong>of</strong> allograft tissue, will focus on patient selection, surgical<br />

technique and clinical outcome data when available. In addition,<br />

we will also review our institutional experiences with novel allograft<br />

options for various tendon and ligament repairs/reconstructions,<br />

shoulder instability and the treatment <strong>of</strong> Hill-Sachs defects. As<br />

an educational example this section will contain a case report in<br />

which the senior author performed bilateral shoulder stabilizations<br />

augmented with Achilles allograft. As the use <strong>of</strong> allograft tissue in<br />

sports medicine becomes increasingly prevalent this exhibit will<br />

provide timely data on current indications and clinical outcomes for<br />

commonly used allograft tissue. Furthermore, by presenting some <strong>of</strong><br />

the more novel applications we intend to provide educational value<br />

to the membership as they make decisions regarding allograft tissue<br />

usage in their clinical practice.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


scieNtific exHibit No. se72<br />

Practical Guide to Anatomic Single- and Double-<br />

Bundle Anterior Cruciate Ligament Reconstruction<br />

Carola F Van Eck, MD, Pittsburgh, PA<br />

Bryson Lesniak, MD, Miami, FL<br />

Verena M Schreiber, MD, Pittsburgh, PA<br />

C Niek Van Dijk, MD, Abcoude, Netherlands<br />

Freddie H Fu, MD, Pittsburgh, PA<br />

Anatomy is the foundation <strong>of</strong> orthopedic surgery and the advancing<br />

knowledge <strong>of</strong> the anterior cruciate ligament (ACL) anatomy has led<br />

to the development <strong>of</strong> improved modern reconstruction techniques<br />

that approach the anatomy <strong>of</strong> the native ACL. We aimed to develop<br />

a guidline to anatomic ACL reconstruction. Current literature<br />

on the anatomy <strong>of</strong> the ACL and its reconstruction techniques, as<br />

well as surgical experience was used to develop an extended and<br />

detailed guideline to perform anatomic ACL reconstruction. A<br />

video demonstration following a flowchart pattern was created.<br />

This audiovisual material educates the surgeon on the anatomic<br />

ACL reconstruction technique. Principles, pearls, pitfalls and<br />

relevant literature <strong>of</strong> this complex surgery are discussed in a concise,<br />

interactive fashion. Multiple surgical options including singlebundle<br />

and double-bundle reconstruction are being discussed using<br />

high quality pictures and videos. While there is still much to learn<br />

about anatomic ACL reconstruction methods, we believe this is a<br />

helpful exhibit for surgeons. We continue to modify the guideline as<br />

more information about the anatomy <strong>of</strong> the ACL, and how to more<br />

closely reproduce it becomes available.<br />

scieNtific exHibit No. se73<br />

Platelet Rich Plasma: Applications in Sports Medicine<br />

Demetris Delos, MD, New York, NY<br />

Alexander Weber, MD, Ann Arbor, MI<br />

Scott Alan Rodeo, MD, New York, NY<br />

Platelet rich plasma (PRP) is an autologous blood product that<br />

can be injected locally to treat musculoskeletal injuries. Since its<br />

introduction to the orthopaedic community it has enjoyed increasing<br />

popularity. However, clinical data is limited and clear indications<br />

for sports medicine purposes are yet to be defined. This exhibit will<br />

introduce the reader to PRP, its preparation, the rationale behind<br />

its use, contemporary results, and its potential clinical applicability<br />

in sports medicine. We will review the historical antecedents to<br />

PRP that led to its development, the biologic underpinnings <strong>of</strong> the<br />

therapy, and current and historical data so as to assist the reader<br />

into better understanding the rationale for PRP use and its effects.<br />

Current sports medicine applications for PRP will be reviewed,<br />

including tendinopathy, acute tendon and ligament injuries, muscle<br />

injuries, and surgical repair augmentation (i.e. rotator cuff repair<br />

augmentation, meniscus repair augmentation). The exhibit will<br />

utilize images <strong>of</strong> PRP being prepared as well as images <strong>of</strong> repairs<br />

augmented with PRP. We will review the current level <strong>of</strong> evidence<br />

for PRP use in various joints/tissues and present the results to the<br />

reader in the form <strong>of</strong> diagrams and tables. Expert recommendations<br />

for PRP use will be presented as well. Platelet-rich plasma (PRP)<br />

is being increasingly used to treat musculoskeletal injuries despite<br />

limited evidence and clear indications. This exhibit will introduce<br />

the reader to the most up-to-date science behind PRP in order to<br />

allow for educated decisions regarding its use.<br />

809<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits spoRts med/ARtHRo


PAPERS<br />

pApeR No. 136<br />

uRecombinant Human Bone Morphogenetic Protein-2<br />

(rhBMP-2) and Its Effect on Murine Sciatic Nerve<br />

David Stephen Margolis, MD, Tucson, AZ<br />

Eileen Wan-Ying Wu, MD, Richmond, VA<br />

Lisa Marie Truchan, MD, Tucson, AZ<br />

With the proven efficacy <strong>of</strong> bone morphogenetic protein (BMP)<br />

to treat open tibia fractures and promote spine fusion, there has<br />

been an increase in its <strong>of</strong>f-label use. Recent studies have shown that<br />

BMPs play a role in nerve development and regeneration. Little is<br />

known about changes that result when BMP is used in the vicinity <strong>of</strong><br />

peripheral nerves. The purpose <strong>of</strong> this study is to characterize changes<br />

that occur in peripheral nerves following exposure to recombinant<br />

human bone morphogenetic protein-2 (rhBMP-2). rhBMP-2 on an<br />

absorbable collagen sponge carrier was implanted directly on the<br />

sciatic nerves <strong>of</strong> male adult Wistar rats. The contralateral control<br />

nerve was surgically exposed, but no BMP was implanted. One<br />

and three weeks following surgery the nerves were harvested and<br />

stained using hematolyxin and eosin, Sevier-Munger and toluidine<br />

blue. Qualitative histological analysis was performed to evaluate<br />

inflammatory and structural changes. BMP induced ectopic bone<br />

formation in muscle tissue in all animals after three weeks, but did<br />

not cause bone formation within the nerve. Axonal swelling and<br />

splitting <strong>of</strong> the myelin sheath were observed in experimental and<br />

control nerves in 70% <strong>of</strong> the mice at one week. Axonal swelling was<br />

still present at three weeks, but only one animal showed splitting<br />

<strong>of</strong> the myelin sheath at three weeks. Axonal dropout was observed<br />

in three <strong>of</strong> the 20 nerves (15%) treated with BMP, with one nerve<br />

showing axonal dropout at one week, and two nerves demonstrating<br />

axonal dropout at three weeks. rhBMP-2 may adversely affect the<br />

axons <strong>of</strong> peripheral nerves by causing axonal dropout. Axonal<br />

swelling and splitting <strong>of</strong> the myelin sheath may be a result <strong>of</strong> surgical<br />

manipulation as this was observed in control and experimental<br />

nerves. The ectopic bone formed by placement <strong>of</strong> BMP is located<br />

in muscle tissues and does not form within the peripheral nerve.<br />

Although there was ectopic bone present in all animals by three<br />

weeks, axonal dropout may be a direct effect <strong>of</strong> rhBMP-2, as it was<br />

observed prior to ectopic bone formation.<br />

pApeR No. 137<br />

uBone Healing Of rhBMP-7 Is Enhanced By<br />

Combination With BMP Binding Peptide In A Femur<br />

Defect Model<br />

Jen-Chung Liao, MD, Kweishian, Taoyuan, Taiwan<br />

Shiau-Tzu Tzeng, MD, Taipei, Taiwan<br />

Kwang-Bok Lee, MD, Jeonju, Chonbuk, Republic <strong>of</strong> Korea<br />

Gun Keorochana, MD, Bangkok, Thailand<br />

Jared Johnson, MD, Los Angeles, CA<br />

Jeffrey C Wang, MD, Santa Monica, CA<br />

RhBMP-7 is available commercially and approved by the United<br />

States Food and Drug Administration (FDA) for clinical use in<br />

human long bone defects. However, a large dose <strong>of</strong> rhBMP-7 (3.5<br />

mg) is required to overcome a long bone nonunion, which means<br />

the cost is still very high in clinical use. Furthermore, local adverse<br />

810<br />

trauMa<br />

effect such as unwanted ectopic bone formation has been reported.<br />

BMP binding peptide (BBP) can be extracted from bone matrix<br />

protein. We tested our hypothesis that BBP can enhance bone healing<br />

<strong>of</strong> rhBMP-7 and that BBP can reduce doage <strong>of</strong> rhBMP-7 required to<br />

achieve a successful union. We employed a rat femoral defect model<br />

to test the effect <strong>of</strong> BBP on rhBMP-7 induced bone healing. Two<br />

doses <strong>of</strong> BBP (500 ug and 100 ug) were tested with various amounts<br />

<strong>of</strong> rhBMP-7 (2 ug and 5 ug) and the results were compared with the<br />

positive control group (10 ug rhBMP-7). Bone healing was evaluated<br />

by radiology, manual palpation, microcomputed tomography and<br />

histology. A 10 ug rhBMP-7 acquired a consistent 100% bone union<br />

rate and a matured bone marrow formation in histology. When 1,000<br />

ug BBP is combined with 2 ug rhBMP-7 or 5 ug rhBMP-7, significant<br />

differences are seen in radiographic scores, manual palpation and<br />

bone volume when compared to 2 ug rhBMP-7 or 5 ug rhBMP-7<br />

alone. The combination administration <strong>of</strong> 1,000 ug BBP and 5 ug<br />

rhBMP-7 also achieved 100% fusion rate, induced a larger amount <strong>of</strong><br />

bone formation and yielded similar maturity <strong>of</strong> bone marrow when<br />

compared with 10 ug rhBMP-7 group. BBP is an 18.5 kD fragment<br />

<strong>of</strong> the bone matrix peptide. This peptide contains a cystatin-like<br />

domain which has an affinity to TGF-B and BMPs because its cystatin<br />

domain contains a region similar to the TGF-B receptor II homology<br />

1 domain. This study demonstrated that BBP can enhance the bone<br />

healing <strong>of</strong> rhBMP-7. Improved containment <strong>of</strong> the graft material<br />

imparted by the addition <strong>of</strong> BBP may result in lesser amounts <strong>of</strong><br />

rhBMP-7 needed to achieve union in the clinical setting.<br />

pApeR No. 138<br />

Bone Morphogenetic Proteins: Comparison <strong>of</strong><br />

Osteogenic, Angiogenic, and Migratory Potentials<br />

Jessica Dale Cross, MD, Fort Sam Houston, TX<br />

Christopher Rathbone, PhD<br />

Joseph C Wenke, PhD, San Antonio, TX<br />

Bone morphogenetic proteins (BMP) other than those clinically<br />

available may be osteogenic or important for other processes in fracture<br />

healing. The purpose <strong>of</strong> this study is to evaluate six different BMPs’<br />

effects on proliferation, osteogenesis, angiogenesis and migration<br />

in vitro. Adipose derived stem cells, C2C12 mouse myoblasts and<br />

C3H10T1/2 cells were cultured with recombinant human BMPs 2, 4,<br />

5, 6, 7 or 9 at five doses between 10 ng/ml and 500 ng/ml. Cells were<br />

lysed at day 3 and day 7 for alkaline phosphatase assay. Human bone<br />

marrow-derived stem cells were cultured with the BMPs and the cell<br />

culture supernatants were collected. We assayed vascular endothelial<br />

growth factor (VEGF) to test for angiogenesis, stromal derived<br />

growth factor-1 (SDF-1) for migration, basic fibroblast growth factor<br />

(b-FGF)for early osteogenesis and osteocalcin for late osteogenesis.<br />

BMP9 resulted in the highest alkaline phosphatase levels in C2C12<br />

cells and adipose stem cells at mid and high range doses. BMP6 was<br />

effective at the highest dose. BMP4 up regulated VEGF expression.<br />

BMP5 increased SDF-1 expression. BMP2 increased b-FGF expression,<br />

while the other BMPs down regulated it. BMP4 and 9 resulted in<br />

high osteocalcin expression, while BMP2 did not affect this late<br />

osteogenic marker. There was no difference in proliferation. BMP9<br />

and 6 were the most osteogenic. BMP4 is important for angiogenesis<br />

and BMP5 is important for promoting migration. BMP2 is important<br />

early in osteogenesis while the other BMPs tested may be a negative<br />

regulator <strong>of</strong> early osteogenic differentiation.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


pApeR No. 139<br />

Sorted Mesenchymal Stem Cells and Platelet Rich<br />

Plasma Augmentation for Distal Tibial Fractures<br />

Meir Liebergall, MD, Jerusalem, Israel<br />

Zulma Gazit, PhD<br />

Joshua Schroeder, MD<br />

Yoram Zilberman, PhD<br />

Shaul Beyth, MD, Jerusalem, Israel<br />

Amal Khoury, MD, Jerusalem, Israel<br />

Yoram A Weil, Jerusalem, Israel<br />

Anat Daskal, MSc, Jerusalem, Israel<br />

Rami Mosheiff, MD, Jerusalem, Israel<br />

Distal tibia fractures have a high rate <strong>of</strong> nonunion. A protocol for<br />

the use <strong>of</strong> rapidly isolated mesenchymal stem cells (MSC) has been<br />

developed that may expedite fracture healing. The purpose <strong>of</strong> this<br />

study was to evaluate the safety and efficacy <strong>of</strong> early minimally<br />

invasive intervention in the treatment <strong>of</strong> these fractures. A total <strong>of</strong> 24<br />

consecutive patients underwent surgery for extra-articular distal tibia<br />

fractures. After surgery, an informed consent was signed and patients<br />

were randomized for routine follow up or early intervention. No<br />

differences were found between the two groups at baseline. In the<br />

intervention group, about one month after fixation, 50 ml <strong>of</strong> bone<br />

marrow from the iliac crest and 100 ml <strong>of</strong> blood were collected. MSCs<br />

were positively selected with magnetic CD105+ antibodies, using<br />

the CliniMACS. Blood was centrifuged for platelet reach plasma<br />

(PRP). Mix <strong>of</strong> MSC, PRP and demineralized bone matrix (DBM) was<br />

injected into the fracture site. Fracture healing was concluded based<br />

on clinical and radiographic parameters. Samples <strong>of</strong> the composite<br />

graft were also implanted subcutaneously in immunodeficient<br />

mice as a biological control. No complications occurred during the<br />

secondary intervention. Average time to union was 71 days in the<br />

intervention group and 130 days in the control group (P


fractures demonstrated significantly higher torsional stiffness versus<br />

controls (EPC=30.3±5.0 Nmm/deg, Control=0.9±0.1 Nmm/deg; p<br />

value = 0.000). When biomechanically compared to contralateral<br />

intact limbs, the EPC treated limbs had similar torsional stiffness<br />

(p=0.996), but significantly lower torsional strength (p=0.000) and<br />

smaller angle <strong>of</strong> twist (p=0.002). These results suggest that local EPC<br />

therapy significantly enhances fracture healing in an animal model.<br />

The biomechanical results show that control animals develop a<br />

mechanically unstable non-union. In contrast, EPC therapy results<br />

in fracture healing that restores the biomechanical properties <strong>of</strong> the<br />

fractured bone closer to that <strong>of</strong> the intact bone.<br />

pApeR No. 142<br />

uEffect Of Teriparatide On Bone Regenerate After<br />

Distraction Osteogenesis<br />

Masood Umer, MD, Karachi, SINDH Pakistan<br />

Tashfeen Ahmad, MD, Karachi, Pakistan<br />

Sadia Habib, MSc<br />

Rasham Rehman, MSc<br />

The parathormone analogue teriparatide (PTH 1-34) has been<br />

used clinically to increase bone mass and reduce fracture risk in<br />

osteoporosis; there is increasing evidence that it may promote<br />

fracture healing. Our objective was to determine the effect <strong>of</strong><br />

teriparatide on new bone formation in a rat model <strong>of</strong> distraction<br />

osteogenesis. Twelve male Sprague-Dawley rats (weight ~250 gm)<br />

were allocated to two treatment groups, teriparatide and saline, both<br />

given subcutaneously for three weeks. Femoral distraction was done<br />

at a rate <strong>of</strong> 0.4 mm/day for three weeks, followed by a further four<br />

weeks for consolidation. New bone formation was assessed using<br />

X-ray, DEXA and histology. Xray: In the control group there was no<br />

new bone formation in two <strong>of</strong> the six rats, while in the teriparatide<br />

group all rats showed new bone formation. Scoring according to<br />

modified Lane and Sandhu system confirmed higher score in the<br />

teriparatide group. DEXA: The area (size) <strong>of</strong> new bone formed<br />

adjacent to the margins <strong>of</strong> the osteotomy site as well as the total<br />

bone mineral content <strong>of</strong> that new bone was significantly higher<br />

(p


in the adult patient exposed to blunt trauma can suffer fissuring<br />

<strong>of</strong> the articular cartilage with progressive breakdown <strong>of</strong> the joint<br />

surface leading to irreversible arthritis. We have mimicked trauma<br />

to articular cartilage in a porcine experimental model to contrast<br />

the biochemical effects in adult and juvenile specimens in the hope<br />

that techniques may be developed to potentiate cartilage healing.<br />

Twenty-four samples <strong>of</strong> adult and juvenile porcine cartilage were<br />

exposed to trauma or were kept as controls. Following a period<br />

<strong>of</strong> incubation, Type II Collagen and Sox9 mRNA expression were<br />

measured using real time RT-PCR and Western blot. Juvenile articular<br />

cartilage synthesises large amounts <strong>of</strong> Type II Collagen mRNA and<br />

protein compared to adult cartilage. Following trauma, synthesis <strong>of</strong><br />

Type II Collagen and Sox 9 increased in juvenile cartilage, but not in<br />

adult cartilage. The stability <strong>of</strong> mRNA also improved. Human adult<br />

cartilage has poor healing potential following trauma. Isolation <strong>of</strong><br />

the factors in juvenile cartilage which potentiate Sox9 and Type II<br />

Collagen production may permit techniques to be adapted for the<br />

minimally invasive stimulation <strong>of</strong> cartilage healing in adult human<br />

patients.<br />

pApeR No. 146<br />

The Mitochondrial Contribution to Chondrocyte<br />

Apoptosis Following Mechanical Injury<br />

Eric A Eisner, MD, La Jolla, CA<br />

Joseph Borrelli, Jr MD, Dallas, TX<br />

Richard Hotchkiss, MD, Saint Louis, MO<br />

Chris Davis, BS<br />

Scott McClure, BS<br />

John Shelton, BS, Dallas, TX<br />

The mechanism by which chondrocytes undergo apoptosis in response<br />

to mechanical injury is unclear. This study sought to elucidate the<br />

role that the mitochondria (intrinsic pathway) play in chondrocyte<br />

apoptosis following mechanical injury. Using a previously validated<br />

xiphoid process injury model, the xiphoid process <strong>of</strong> eight week<br />

old wild type B6 mice (n=12) and Bim/Bid double knockout mice<br />

(n=13) were injured. Three well-described, independent means <strong>of</strong><br />

assessing apoptosis (H&E, TUNEL, activated caspase-3) were used to<br />

analyze all cartilage specimens at 48 hours post-operatively. Detailed<br />

analysis <strong>of</strong> the injured B6 mice specimens demonstrated numerous<br />

chondrocytes undergoing apoptosis, while the injured knockout mice<br />

specimens contained considerably fewer apoptotic chondrocytes.<br />

H&E stained injured B6 specimens contained numerous cells with<br />

classic morphologic features <strong>of</strong> apoptosis. In contrast, the knockout<br />

mice specimens contained few cells with these characteristics.<br />

TUNEL was used to quantify the amount <strong>of</strong> chondrocyte apoptosis<br />

in each <strong>of</strong> the specimens. The B6 uninjured specimens were found to<br />

have 2.4% apoptotic cells, while the injured specimens had 13.7%<br />

apoptotic cells. The uninjured knockout mice specimens were found<br />

to have 1.7% apoptotic cells, while the injured knockout specimens<br />

had 6.3% apoptotic cells. The activated caspase-3 analysis confirmed<br />

that the majority <strong>of</strong> dying cells were indeed undergoing apoptosis, as<br />

evidenced by activation <strong>of</strong> caspase-3. Overall, the injured knockout<br />

mice specimens had a statistically significant 54% decrease (p=0.027)<br />

in chondrocyte apoptosis compared to injured B6 specimens. There<br />

was no statistically significant difference in apoptosis rate between<br />

the uninjured B6 and knockout specimens. Reduction <strong>of</strong> the<br />

mitochondrial contribution to apoptosis by elimination <strong>of</strong> Bim and<br />

Bid activity significantly reduced apoptosis at 48 hours post-injury.<br />

Based upon these findings, it appears that the intrinsic pathway<br />

is the primary mechanism for chondrocyte apoptosis following<br />

mechanical injury.<br />

813<br />

pApeR No. 147<br />

Cell Death Following Blunt Trauma In An Experimental<br />

Model Of Intra-Articular Fracture<br />

Justin K Greisberg, MD, New York, NY<br />

Eric F Swart, MD, New York, NY<br />

Ge<strong>of</strong>frey Konopka, MPH<br />

Thomas R Gardner, MCE, New York, NY<br />

Sean Kelly<br />

Post-traumatic arthritis remains a problem after high energy intraarticular<br />

fractures. Previous studies have identified chondrocyte<br />

death in humans and animal models following blunt trauma.<br />

None <strong>of</strong> the described animal models combine fracture shearing<br />

with rapid compression that is part <strong>of</strong> a high energy articular injury<br />

in humans. In this study, we describe the first true in vivo animal<br />

articular fracture model and propose that cell death will increase<br />

over time following fracture, and that caspase activity will increase<br />

as well. A drop tower applied rapid compression to the patellae <strong>of</strong><br />

mature rats to create an intra-articular distal femur fracture. Animals<br />

were sacrificed at one hour, 24 hours and 72 hours after injury.<br />

A live-dead assay was performed with confocal microscopy. The<br />

prevalence <strong>of</strong> apoptosis was assessed with TUNEL assay and caspase<br />

immun<strong>of</strong>luorescent staining. Consistent distal femur fractures were<br />

created in the animals. Live-dead and TUNEL assays found cell death<br />

increased over time, and was most prevalent adjacent to the fracture<br />

and in more superficial levels <strong>of</strong> cartilage. The prevalence <strong>of</strong> activated<br />

caspase increased over time as well. Both impact and shearing forces<br />

appear to increase cell death. The increase in caspase activity and<br />

TUNEL staining suggests programmed cell death (apoptosis) may<br />

play a role in chondrocyte loss following trauma. Future research will<br />

better characterize the role <strong>of</strong> apoptosis; if cell death following blunt<br />

trauma is preventable, then treatments can be devised to block cell<br />

death and work toward the prevention <strong>of</strong> post-traumatic arthritis.<br />

pApeR No. 148<br />

Release Of Growth Factors In PRP Activated With<br />

Thrombin<br />

Joaquin Carrasco, PhD, Valencia, Spain<br />

Daniel Lluch Bonete, MD, Valencia, Spain<br />

Francisco Gomar, MD, Valencia, Spain<br />

The development <strong>of</strong> platelet-rich plasma (PRP) has generated great<br />

expectations in bone surgery. PRP is designed to release growth factors<br />

from autologous manner. We extracted from sheep peripheral blood<br />

in tubes <strong>of</strong> 4 ml with 0.32 ml <strong>of</strong> CDA (Citra). We prepared PRP<br />

in 1800, 2000 and 2200 rpm for 10’, and a second centrifugation<br />

at 3500 rpm for 8’ to concentrate platelets. The samples were used<br />

for platelet count, and for activation with 1000 units <strong>of</strong> thrombin<br />

(Sigma) and 10% CaCl2 per ml. Aliquots were taken from the gel<br />

on the 10’, 60’ and 180’ after activation and frozen at - 70 C, for<br />

determination <strong>of</strong> PDGF and TGF b1 by ELISA (R & D system). We<br />

determined the release <strong>of</strong> platelet-derived growth factor (PDGF) and<br />

transforming growth factor b1 (TGF) in time. After activation, PDGF<br />

increases <strong>of</strong> up to 1.7 times, and TGF b1 increases eight times. PDGF<br />

was released 93.88% in 10’. TGF b1 was released only 65% in 10 ‘. A<br />

linear relationship between platelets/ growth factors released were<br />

obtained (r2 = 0.885). The PDGF is released mainly in 10 minutes.<br />

The release <strong>of</strong> TGF b1 is slower and continuing the first three hours<br />

after application.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


pApeR No. 149<br />

Expression Of VEGF Gene Is<strong>of</strong>orms In A Rat Segmental<br />

Bone Defect Model Treated With EPCs<br />

Emil H Schemitsch, MD, Toronto, ON Canada<br />

Ru Li, MD, Toronto, ON Canada<br />

Erion Qamirani, MD, Toronto, ON Canada<br />

Kivanc Israel Atesok, MD, Toronto, ON Canada<br />

Xiaomei Wang, PhD<br />

Angiogenesis and osteogenesis are essential for bone growth,<br />

fracture repair and bone remodeling. Vascular endothelial growth<br />

factor (VEGF) has an important role in bone repair by promoting<br />

angiogenesis and osteogenesis. In our previous study, endothelial<br />

progenitor cells (EPCs) promoted bone healing in a rat segmental<br />

bone defect as confirmed by radiological, histological and microCT<br />

evaluations; EPC treatment <strong>of</strong> fractures resulted in a significantly<br />

higher strength by biomechanical examination. In addition, cellbased<br />

VEGF gene transfer has been effective in the treatment <strong>of</strong><br />

segmental bone defects in a rabbit model. Purpose <strong>of</strong> this study:<br />

Evaluation <strong>of</strong> VEGF gene expression after EPC local therapy for a rat<br />

segmental bone defect. Rat bone marrow-derived EPCs were isolated<br />

from the rat bone marrow by the Ficoll-paque gradient centrifuge<br />

technique. The EPCs were cultured for seven to 10 days in endothelial<br />

cell growth medium with supplements (EGM-2-MV-SingleQuots,<br />

Clonetics) and collected for treatment <strong>of</strong> the rat segmental bone<br />

defect. EPCs were identified by immunocytochemistry staining with<br />

primary antibodies for CD34, CD133, FLK-1 and vWF. A total <strong>of</strong><br />

56 rats were studied. A 5 mm segmental bone defect was created in<br />

the middle one third <strong>of</strong> each femur followed by mini plate fixation.<br />

The treatment group received 1x106 EPCs locally at the bone defect<br />

and control animals received saline only. Seven control and seven<br />

EPC treated rats were included in each group at one, two, three<br />

and 10 weeks. Animals were sacrificed at the end <strong>of</strong> the treatment<br />

period, and specimens from the fracture gap area were collected<br />

and immediately frozen. Rat VEGF mRNA was measured by reverse<br />

transcriptase-polymerase chain reaction (RT-PCR) and quantified.<br />

All measurements were performed in triplicate. Cultured EPCs at<br />

one week showed positive staining for CD34, CD133, Flk-1 and<br />

vWf markers. The EPC group had a greater VEGF expression than the<br />

control group at week one, two and three but not at week 10. Three<br />

VEGF is<strong>of</strong>orms were detected in this rat model: VEGF120, VEGF164<br />

and VEGF188. VEGF120 and VEGF164 levels peaked at two weeks,<br />

while VEGF188 levels peaked at three weeks. All three VEGF is<strong>of</strong>orm<br />

levels were low at 10 weeks. EPC-based therapy for a segmental bone<br />

defect results in increased VEGF expression during the early period <strong>of</strong><br />

fracture repair. In addition, the specific VEGF is<strong>of</strong>orm may be a key<br />

regulator <strong>of</strong> the bone healing process. These findings demonstrate<br />

that EPCs promote fracture healing by increasing VEGF levels and<br />

thus stimulating angiogenesis, a process that is essential for early<br />

callus formation and bone regeneration.<br />

pApeR No. 150<br />

PINP Expression During Femoral Fracture Healing In<br />

Mice<br />

Travis Burgers, PhD, Grand Rapids, MI<br />

Marlon O Coulibaly, MD, Bochum, Germany<br />

James Mason, Grand Rapids, MI<br />

Debra Sietsema, PhD, Grand Rapids, MI<br />

Bart Williams, PhD<br />

Clifford B Jones, MD, Grand Rapids, MI<br />

Femoral shaft (FS) fractures are common, and an incidence <strong>of</strong> 1-25%<br />

makes FS non-unions (FSNUs) a frequent clinical problem. To date,<br />

814<br />

no early and reliable detection measures for fracture healing or the<br />

timely diagnosis <strong>of</strong> FSNUs are available. In this study, the feasibility<br />

<strong>of</strong> procollagen type I amino-terminal propeptide (PINP) was<br />

examined as a bone formation marker for FS fracture healing. We<br />

hypothesized that PINP expression increases as callus size increases<br />

during fracture healing in mice. A closed mid-diaphyseal femoral<br />

fracture was induced in C57Bl/6 mice after retrograde insertion <strong>of</strong><br />

a 25G intramedullary pin under sterile conditions; a non-fracture<br />

group served as a control. Blood draws for serum PINP measurement<br />

and radiographic image analysis were performed at days seven, 11,<br />

17 and 23 post-fracture. MANOVA analyses and student’s t-tests<br />

were used to determine statistical significance at p


pApeR No. 212<br />

Complication Risk following Treatment <strong>of</strong> Acetabular<br />

Fractures in the Medicare Population<br />

Arthur L Malkani, MD, Louisville, KY<br />

Craig S Roberts, MD, Louisville, KY<br />

David Seligson, MD, Louisville, KY<br />

Steven M Kurtz, PhD, Philadelphia, PA<br />

Edmund Lau, MS, Menlo Park, CA<br />

Kevin Ong, PhD<br />

The purpose <strong>of</strong> this study was to determine the incidence <strong>of</strong> and<br />

evaluate risk factors for complications and mortality following<br />

closed and open treatment <strong>of</strong> acetabular fractures in the Medicare<br />

population. A 5% national sample <strong>of</strong> Medicare records from 1998 to<br />

2007 was reviewed for the treatment <strong>of</strong> acetabular fractures, 35 ICD-<br />

9-CM complication codes and six CPT reoperation codes, in order<br />

to assess complications within 90 days and within one year. There<br />

were a total <strong>of</strong> 1,286 fractures treated closed and 359 with open<br />

reduction/internal fixation (ORIF) reviewed (99 post wall, 111 one<br />

column, 149 complex). Multivariate Cox regression was performed<br />

to compare complication rates and risk factors. The incidence <strong>of</strong><br />

acetabular fractures in the Medicare population has increased by 29%<br />

since 1998. The ORIF group had higher incidence <strong>of</strong> complications:<br />

cardiac 7% vs 4.7%, p


from the femoral head are directed toward the posterior aspect <strong>of</strong><br />

the acetabulum. At 40% <strong>of</strong> the sit-to-stand cycle, maximum hip<br />

flexion angle <strong>of</strong> 98.9° is seen with femoral head force application<br />

posteriorly at an area one third the size and with three times the<br />

pressure <strong>of</strong> single leg stance. The purpose <strong>of</strong> this study was to<br />

compare joint stability during single leg stance (SLS) relative to sitto-stand<br />

(STS) maneuver using a posterior wall acetabular fracture<br />

model. Seven side-randomized fresh frozen cadaveric hemi-pelvic<br />

specimens with proximal femurs were dissected <strong>of</strong> all s<strong>of</strong>t tissues<br />

except for the acetabular labrum. Posterior wall acetabular fractures<br />

were created in 5 mm increments. The percent <strong>of</strong> resected posterior<br />

wall was calculated using the distance from cotyloid fossa (PWR) and<br />

the resected posterior wall area (PWRa). A 1,200 N load was applied<br />

to the acetabulum simulating the STS manuver (15° abduction, 90°<br />

flexion) and SLS (15° abduction, 0° flexion). The average distance<br />

from the ro<strong>of</strong> needed to dislocate the hip was 5.2 mm ± 5 mm<br />

in the SLS position and 15.5 mm ± 2.7 mm in the STS position<br />

(p=0.001). The average PWR causing hip dislocation was 48%±19%<br />

in STS and 85%±14% in SLS (p=0.008). The average PWRa needed<br />

to dislocate the hip was also significantly less (p=0.005) for the STS<br />

group (45.4%±14.4%) than the SLS group (82.4%±12.8%). The hip<br />

joint is significantly more unstable in sit-to-stand maneuver than<br />

in single leg stance in simulated posterior wall acetabular fractures.<br />

Patients with posterior wall fractures affecting more than 45.4% <strong>of</strong><br />

the articular surface area, or that are within 15 mm from the dome<br />

<strong>of</strong> the acetabulum may be susceptible to instability during activities<br />

<strong>of</strong> daily living.<br />

pApeR No. 216<br />

Reliability <strong>of</strong> Computed Tomography Assessment <strong>of</strong><br />

Hip Stability in Posterior Wall Acetabular Fracture<br />

Jeffrey Maurice Reagan, MD, Saint Louis, MO<br />

Berton R Moed, MD, Saint Louis, MO<br />

Exam under anesthesia (EUA) is considered the gold standard for<br />

diagnosis <strong>of</strong> dynamic hip stability status. However, computed<br />

tomography (CT) assessment <strong>of</strong> fracture fragment size and position<br />

may be able to identify clinically unstable hips that require operative<br />

fixation. The purpose <strong>of</strong> this study is to determine if there is sufficient<br />

observer consistency in this CT assessment for prediction <strong>of</strong> hip<br />

stability status in posterior wall acetabular fractures. CT scans <strong>of</strong> 10<br />

patients with posterior wall acetabular fractures were evaluated for<br />

stability with a previously described subtraction method. CT scans<br />

were reviewed twice with a one month washout period by three<br />

junior orthopaedic residents (year two), three senior residents (year<br />

five) and three traumatologists who perform acetabular fixation.<br />

Stability predictions were compared to EUA status and intraclass<br />

correlation coefficients were calculated. Intra- and interobserver<br />

reliability were both excellent (> 0.80) regardless <strong>of</strong> experience level.<br />

Eliminating the indeterminate predictions, sensitivity was calculated<br />

at 88% and specificity was 98% after comparison with EUA. However,<br />

inappropriate nonoperative treatment would have occurred in 8%<br />

<strong>of</strong> cases. By additionally eliminating certain fracture variables from<br />

consideration (such as nondisplaced fracture lines and fractures in a<br />

posterior superior location), sensitivity and specificity increased to<br />

100% with no potential treatment errors. This method for assessing<br />

hip stability is reliable and reproducible. However, as a diagnostic<br />

tool, it should not be used to evaluate fractures in a posterior<br />

superior location or those having any additional nondisplaced<br />

fracture lines. Patients with measurements in the indeterminate<br />

range (20%-50%) or those having confounding variables (e.g., a<br />

posterior superior location, additional nondisplaced fracture lines or<br />

marginal impaction) are candidates for dynamic stress fluoroscopy<br />

under anesthesia.<br />

816<br />

pApeR No. 217<br />

Propensity for Hip Dislocation is Higher During Sit-to-<br />

Stand Maneuvers Than Gait in a Cadaver Model<br />

Erik McDonald, Santa Cruz, CA<br />

Meir Tibi Marmor, MD, Foster City, CA<br />

Jenni M Buckley, PhD<br />

Amir Matityahu, MD, San Francisco, CA<br />

Current clinical guidelines for surgical intervention <strong>of</strong> acetabular<br />

fractures are limited in that they only reflect acetabular loading<br />

patterns during gait or standing. A report by the National Center for<br />

Health Statistics has revealed that in 2005, 39.9% <strong>of</strong> adults spent<br />

most <strong>of</strong> their time sitting as the usual daily activity. The vectors<br />

<strong>of</strong> the forces projected from the femoral head to the acetabulum<br />

when moving from sitting to standing (STS) or standing to sitting<br />

are markedly different than during standing, single leg stance (SLS)<br />

or walking activities. Seven side randomized fresh frozen cadaveric<br />

hemi-pelvic specimens with proximal femurs were dissected <strong>of</strong> all<br />

s<strong>of</strong>t tissues except for the acetabular labrum. Transverse acetabular<br />

fractures were created in 5 mm increments from distal to proximal.<br />

The ro<strong>of</strong> arc angle and reduction <strong>of</strong> articular surface area were<br />

measured. A 1,200 N load was applied to the acetabulum simulating<br />

most demanding load during the sit-to-stand motion (15° abduction,<br />

90° flexion) and single leg stance (15° abduction, 0° flexion). The<br />

average ro<strong>of</strong> arc angle (RAA) needed to dislocate in the SLS position<br />

was 71.9° in the iliac oblique (IO), 46.1° in the anterior-posterior<br />

(AP) and 25.2° in the obturator oblique (OO) X-ray. The average<br />

RAA needed to dislocate in the STS position was 101.4° IO, 90.9°<br />

AP and 67.3° OO X-ray views. There was a significant difference in<br />

the RAAs between the SLS and STS in all Roentgenograms (p


failure in the reduced (r = 0.76, p=0.04), but not in the unreduced<br />

specimens (r = -0.09). This data taken together reveals that more<br />

frictional stability can be generated by lag screw compression in a<br />

reduced SI joint than in an unreduced joint.<br />

pApeR No. 219<br />

Economic Analysis <strong>of</strong> Surgical Pelvic and Acetabular<br />

Fracture Treatment at a Level 1 Trauma Center<br />

Jesse T Torbert, MD, Baltimore, MD<br />

Keith D Baldwin, MD, Philadelphia, PA<br />

Michael Mercincavage, BS, MAd, CPHQ<br />

Samir Mehta, MD, Philadelphia, PA<br />

Surgical treatment <strong>of</strong> pelvic/acetabular fractures may be financially<br />

beneficial to a health system. However, hospital charges and collections<br />

likely surpass those <strong>of</strong> the orthopaedic trauma surgeon responsible<br />

for managing the injury. A retrospective review was performed <strong>of</strong> all<br />

operatively managed pelvic and acetabular injuries over two years in<br />

a health system that did not provide this service previously. Hospital<br />

contribution margin (CM) and pr<strong>of</strong>it were calculated. Factors<br />

impacting CM and pr<strong>of</strong>it were analyzed. Metrics were compared to<br />

other surgical services within the health system. Hospital charges and<br />

collections were compared to the orthopaedic surgeon’s charges and<br />

collections. Sixty-five patients were included. The average hospital<br />

CM for surgical pelvic/acetabular patients was +$18,188/patient,<br />

greater than the majority <strong>of</strong> surgical services. However, calculated<br />

hospital pr<strong>of</strong>it was -$14,279/patient. The length <strong>of</strong> stay and indirect<br />

costs were highest in the pelvic/acetabular surgical patients, which<br />

negatively affected calculated pr<strong>of</strong>it. Shorter length <strong>of</strong> stay and<br />

worker’s compensation insurance significantly increased hospital<br />

pr<strong>of</strong>its, while higher diagnosis related group (DRG) and Medicare<br />

severity diagnosis related groups (MSDRG) weights (measures <strong>of</strong><br />

patient illness/injury severity) significantly increased CM. Hospital<br />

charges/collections far outweighed orthopaedic surgeon pr<strong>of</strong>essional<br />

fee charges/collections (50 fold and 30 fold, respectively). Surgically<br />

managing pelvic/acetabular injuries can have a pr<strong>of</strong>ound impact<br />

on CM for a hospital. The hospital collections for the treatment <strong>of</strong><br />

these patients are in excess <strong>of</strong> the direct costs by $18,188/patient;<br />

therefore the hospital does benefit significantly. Indirect costs, which<br />

the surgeon has no control over and are somewhat arbitrarily set, are<br />

high in this population. Hospital charges/collections far outweigh<br />

the surgeon’s. When advocating for the necessary resources to treat<br />

pelvic/acetabular fractures, surgeons should be aware <strong>of</strong> the hospital’s<br />

financial position.<br />

pApeR No. 220<br />

Monitoring Transcranial Electric Motor Evoked<br />

Potentials during Acetabular/Pelvic Fracture Surgery<br />

Manny D Porat, MD, Philadelphia, PA<br />

Nitin Goyal, MD, Philadelphia, PA<br />

Alvin C Ong, MD, Linwood, NJ<br />

Fabio Orozco, MD, Egg Hbr Twp, NJ<br />

Daniel M Schwartz, PhD, Philadelphia, PA<br />

Anthony K Sestokas, MD, Springfield, PA<br />

Pelvic and acetabular fractures can be devastating injuries, <strong>of</strong>ten<br />

complicated by neurologic dysfunction. Although studies have<br />

reported on the application <strong>of</strong> neuromonitoring with somatosensory<br />

evoked potentials (SSEPS) or electromyography (EMG) to reduce<br />

iatrogenic nerve injury, both neuromonitoring modalities have met<br />

with mixed success. We report on the use <strong>of</strong> transcranial electric motor<br />

evoked potential (tceMEP) monitoring for improved detection <strong>of</strong><br />

impending sciatic nerve injury during pelvic and acetabular fracture<br />

817<br />

surgery. Multimodality neuromonitoring (tceMEP, SSEP, EMG) was<br />

performed on 54 patients who underwent open reduction/internal<br />

fixation (ORIF) for acetabular or pelvic fractures between 2003<br />

and 2010. tceMEP amplitude loss >65% served as the surgical alert<br />

criterion for evolving neural injury. Of 53 patients monitored, five<br />

(9.4%) awoke with new onset neurologic deficit. The criterion for<br />

significant tceMEP amplitude loss was exceeded in four <strong>of</strong> these five<br />

patients, with no evidence <strong>of</strong> substantial improvement following<br />

surgical intervention and through closing. One patient, whose<br />

baseline tceMEP amplitudes were small and labile due to anesthetic<br />

depth, did not show a significant change, but emerged with a new<br />

deficit. Sensitivity for tceMEP detection <strong>of</strong> developing sciatic nerve<br />

injury, therefore, was 80%. Because <strong>of</strong> the low or questionable<br />

sensitivity <strong>of</strong> SSEP and EMG monitoring during ORIF for nerve<br />

injury detection, neither has enjoyed widespread acceptance. This<br />

preliminary investigation suggests that tceMEP monitoring, unlike<br />

its SSEP and EMG counterparts, is uniquely sensitive for identifying<br />

emerging sciatic nerve injury, and prompts the surgeon to institute<br />

rapid rescue intervention which either reverses or limits any adverse<br />

effects.<br />

pApeR No. 221<br />

Does Body Mass Index Affect Hemorrhage In High-<br />

Energy Pelvic And Acetabular Fractures?<br />

Brent J Morris, MD, Nashville, TN<br />

Justin E Richards, MD, Nashville, TN<br />

Oscar Guillamondegui, MD, MPH, Nashville, TN<br />

Kyle Sweeney, BS<br />

Marc A Tressler, DO, Hendersonville, TN<br />

William Obremskey, MD, Nashville, TN<br />

Philip James Kregor, MD, Nashville, TN<br />

We evaluated the “Cushion Effect” <strong>of</strong> obesity, through body mass<br />

index (BMI), on pelvic and acetabular fractures and the relationship<br />

to peritraumatic hemorrhage. Retrospective review <strong>of</strong> radiographic,<br />

demographic and initial 24-hour transfusion data on 244 consecutive<br />

isolated pelvic and/or acetabular fractures. No patients were treated<br />

operatively in the first 24 hours and had no other Apache Index Score<br />

> 2. Thus, the majority <strong>of</strong> blood loss was due to pelvic or acetabular<br />

injury. BMI was described as normal:


hemorrhage in isolated pelvic trauma, even for fracture patterns “less<br />

likely to bleed.”<br />

pApeR No. 222<br />

Radiographic Determinants <strong>of</strong> Early Failure in Posterior<br />

Wall Acetabular Fractures<br />

Swapnil B Shah, MD, Oakland, CA<br />

Robert V O’Toole, MD, Baltimore, MD<br />

Theodore T Manson, MD, Bel Air, MD<br />

Jason Warren Nascone, MD, Baltimore, MD<br />

Marcus F Sciadini, MD, Baltimore, MD<br />

This study was designed to investigate which factors play a significant<br />

role in clinical failure <strong>of</strong> operatively treated posterior wall acetabular<br />

fractures. Our hypothesis was that the patient’s native anatomy<br />

(including acetabular version) and the actual fracture pattern are<br />

predictive <strong>of</strong> clinical outcome. Forty-five patients at a level I trauma<br />

center who received open reduction internal fixation <strong>of</strong> a posterior<br />

wall acetabular fracture from 2004 to 2009 and had at least a oneyear<br />

follow up were retrospectively examined. Their charts, axial<br />

computed tomography scans and plain films were reviewed. The<br />

following 18 variables were recorded: age, history <strong>of</strong> dislocation,<br />

marginal impaction, comminution, femoral head injury, incarcerated<br />

fragments, involvement <strong>of</strong> the subchondral arc, proximal to distal<br />

fracture extension, use <strong>of</strong> laterally placed spring plates, transverse<br />

plane acetabular anteversion, anterior acetabular sector angle<br />

(AASA), posterior acetabular sector angles (PASA) at both the level<br />

<strong>of</strong> the fovea and the level <strong>of</strong> greatest wall involvement, the percent<br />

change in PASA due to the fracture at both the level <strong>of</strong> the fovea<br />

and level <strong>of</strong> greatest wall involvement and size <strong>of</strong> fracture measured<br />

by the Calkins, Keith and Moed methods. Failure <strong>of</strong> treatment<br />

(n=18) was defined as the patient receiving a total hip arthroplasty<br />

(n=5) or developing post-traumatic arthritis that was clinically<br />

determined to need a total joint (n=13). Comparisons were made<br />

using Fisher’s exact and student’s t-tests. Fracture extension into the<br />

subchondral arc was the only variable predictive <strong>of</strong> clinical failure<br />

(67% in failures vs. 26% in non-failures p=0.01). Acetabular version<br />

and all other parameters were not predictive <strong>of</strong> failure. Involvement<br />

<strong>of</strong> the subchondral arc appears to be the most important predictor<br />

<strong>of</strong> failure <strong>of</strong> operative treatment <strong>of</strong> posterior wall fractures. Native<br />

anatomy, fracture size and the presence <strong>of</strong> marginal impaction did<br />

not play a significant role in predicting failure.<br />

pApeR No. 223<br />

Clinical Aspects And Outcomes Of Straddle Pelvic<br />

Fractures<br />

Nikolaos K Kanakaris, MD, Leeds, United Kingdom<br />

Fragiskos Xypnitos, MD, Epsom/Uk, United Kingdom<br />

John Charopoulos, MD, Leeds, United Kingdom<br />

Peter Giannoudis, MD, Leeds, United Kingdom<br />

The straddle fractures represent a distinct anatomical pattern <strong>of</strong> pelvic<br />

trauma. Their specific clinical characteristics, associated trauma and<br />

clinical outcome remain mostly underreported and ambiguous.<br />

Over a three-year period, straddle fractures were identified from a<br />

prospective database <strong>of</strong> a tertiary-referral-hospital. For all cases,<br />

excluding children < 16 years and pathologic-fractures, demographic<br />

characteristics, associated trauma, ISS-05, transfusion requirements,<br />

surgical procedures, post-operative course, complications and<br />

clinical outcome were recorded over a median follow up <strong>of</strong> 19<br />

months (12-36). All fractures were classified by the two senior<br />

authors separately. Out <strong>of</strong> 280 pelvic fractures, 31 (11%) straddle<br />

fractures were identified. The median age was 38 years (17-88)<br />

818<br />

and male/female ratio 1.38. Half <strong>of</strong> them were classified as lateralcompression<br />

(51.6%), 19.4% as anteroposterior-compression<br />

and 29% combined mechanism <strong>of</strong> injury. Nine cases had an<br />

intraarticular extension. Median injury severity score was 21 (9-57),<br />

while 71% had a serious (AIS>2) associated thoracic injury, 48.4%<br />

- head-injury, 38.7% - abdominal-injury, 51.6% - lower-extremityfracture<br />

and 38.7% - significant urogenital injuries. Six underwent<br />

acute embolization, and the mean transfusion rates over the initial<br />

72 hours were 7.5 units - cRBC, 2.3 units - FFP, 0.5 units - PLTs. All<br />

cases were treated operatively; either with open reduction/internal<br />

fixation (ORIF) (14 cases), closed reduction and percutaneous screw<br />

fixation (10 cases), while an external fixator was used in 21 cases. The<br />

median length-<strong>of</strong>-stay was 21 days (1-106). The mortality rate was<br />

6.5%. Eight superficial infections (pin sites <strong>of</strong> the external fixators),<br />

two deep sepsis <strong>of</strong> pfannestiel wounds, as well as one asymptomatic<br />

non-union <strong>of</strong> an inferior pubic rami were recorded. Five cases<br />

underwent further surgery for late urogenital repair and four cases<br />

have chronic incontinence and sexual dysfunction symptoms.<br />

Straddle fractures represent a severe type <strong>of</strong> pelvic trauma. They are<br />

associated with severe mostly thoracic, head and extremity trauma<br />

as well as severe urogenital complications. These injuries suggest<br />

pelvic ring haemodynamic and mechanical instability that requires<br />

surgical stabilization in the acute and delayed reconstructive setting.<br />

They are easily identifiable at the initial radiological investigations<br />

and should alert the clinician for multidisciplinary assessment and<br />

early referral.<br />

pApeR No. 224<br />

Nonoperative Immediate Weightbearing <strong>of</strong> Minimally<br />

Displaced Lateral Compression Sacral Fractures<br />

Paul Tornetta III, MD, Boston, MA<br />

Gillian Soles, MD, Medford, MA<br />

John Lien, MD, Ann Arbor, MI<br />

The purpose <strong>of</strong> this study is to compare the initial and follow up<br />

radiographs <strong>of</strong> patients with minimally (


pApeR No. 225<br />

Are Conventional Inlet and Outlet Radiographs<br />

Obsolete in Evaluation <strong>of</strong> Pelvis Fractures?<br />

Murat Pekmezci, MD, San Francisco, CA<br />

Utku Kandemir, MD, San Francisco, CA<br />

Saam Morshed, MD, San Francisco, CA<br />

The new generation multi-detector computed tomography (CT)<br />

scanners allow generation <strong>of</strong> virtual x-rays from the data acquired to<br />

evaluate the pelvic fractures. Special s<strong>of</strong>tware allows the technicians<br />

to obtain the appropriate orientation that is required for adequate<br />

inlet and outlet views, which would eliminate repeat trips to the<br />

radiography suite to acquire adequate x-rays. The purpose <strong>of</strong> this<br />

study is to compare the quality virtual x-rays and conventional x-rays<br />

that are used in evaluating pelvis fractures. A retrospective database<br />

review was performed to identify patients who were operated on with<br />

a diagnosis <strong>of</strong> pelvis fracture identified. The inclusion criteria were<br />

unstable pelvic fracture, age >18, complete set <strong>of</strong> antero-posterior<br />

(AP) pelvis, inlet and outlet x-rays and multi-detector pelvis CT scan.<br />

Virtual AP pelvis, inlet and outlet views are generated from the CT<br />

data. Two fellowship trained orthopedic trauma surgeons reviewed<br />

the virtual and conventional studies separately in association with CT<br />

scans and graded the quality <strong>of</strong> the studies on a custom developed<br />

questionnaire. Each fracture was classified separately based on<br />

Orthopedic Trauma Association classification. Twenty patients<br />

were eligible for the study. The AP pelvis view quality was similar<br />

for both conventional and virtual images except for the tilt <strong>of</strong> the<br />

pelvis. The inlet and outlet views quality was better in all domains<br />

in the virtual x-ray group when compared to the conventional x-rays.<br />

The percentage <strong>of</strong> adequate inlet and outlet views were higher in the<br />

virtual x-ray group when compared to the conventional x-ray group.<br />

The intraobserver agreement was fair to good with Orthopedic<br />

Trauma Association classification (kappa: 0.24 and 0.43) whereas<br />

interobserver agreement was poor (kappa:0.17). The results show<br />

that the virtual inlet and outlet views consistently provided higher<br />

rates <strong>of</strong> adequate x-rays when compared to the conventional x-rays.<br />

Replacement <strong>of</strong> the conventional views with the virtual inlet and<br />

outlet views would decrease the radiation exposure to the patient,<br />

overall cost and prevent repeat x-rays in order to achieve adequate<br />

views.<br />

pApeR No. 301<br />

Improving Results in Treatment <strong>of</strong> Intertrochanteric Hip<br />

Fractures<br />

Harris S Yett, MD, Weston, MA<br />

Treatment <strong>of</strong> intertrochanteric hip fractures has been associated in all<br />

published series with high rates <strong>of</strong> complications. This series <strong>of</strong> 315<br />

consecutive patients treated by a single surgeon in a single hospital<br />

had a low rate <strong>of</strong> complications. Key surgical measures included<br />

attainment <strong>of</strong> anatomic or near-anatomic reduction, selection <strong>of</strong><br />

<strong>of</strong>ten under-appreciated but critically important external rotation to<br />

achieve proper reduction in certain sub-classes <strong>of</strong> fracture, reduction<br />

and fixation <strong>of</strong> the detached lesser trochanter when possible and<br />

appropriate uasage <strong>of</strong> the sliding hip screw (which was used exclusively<br />

in this series). Complication rates were low: one hardware failure, no<br />

non-unions, no infections and two re-operations (one for hardware<br />

failure and one wash-out <strong>of</strong> a sterile hematoma). Comparing the<br />

rate <strong>of</strong> treatment failure or re-operation in this series (0.64%) to<br />

eight other reviewed series having similar demographics with more<br />

than 200 patients published over the past 21 years (failures or reoperations<br />

rates <strong>of</strong> 2.6% to 9.4%), there is a significant difference in<br />

outcome (p


pApeR No. 303<br />

Functional Outcomes in Cardiovascular Patients<br />

Undergoing Surgical Hip Fracture Repair (FOCUS)<br />

David Sanders, MD, London, ON Canada<br />

Jeffrey L Carson, MD, New Brunswick, NJ<br />

Michael L Terrin, MD, MPH<br />

William B Macaulay, MD, New York, NY<br />

Courtland G Lewis, MD, Hartford, CT<br />

Kevin A Hildebrand, MD, Calgary, AB Canada<br />

Lauren Beaupre, PhD, Edmonton, AB Canada<br />

Jay Magaziner, MD, Baltimore, MD<br />

Functional outcomes in cardiovascular patients undergoing surgical<br />

hip fracture repair (FOCUS) is a randomized controlled trial<br />

designed to determine whether higher blood transfusion thresholds<br />

improve functional recovery and reduce mortality and morbidity<br />

after hip fracture repair. A total <strong>of</strong> 2,016 patients 50 years <strong>of</strong> age or<br />

older, who underwent surgery for hip fracture had a history <strong>of</strong> risk<br />

factors for cardiovascular disease, and had postoperative anemia<br />

(Hgb less than 10 g/dL) were randomized from 47 centers. Patients<br />

were allocated to a transfusion threshold <strong>of</strong> 10 g/dL, or to receive<br />

transfusion when anemia symptoms occurred or Hgb level was less<br />

than 8 g/dL. In-hospital mortality, cardiac events, complications<br />

and length <strong>of</strong> stay were compared between the groups. Functional<br />

outcome, defined as the ability to walk across a room unaided, was<br />

compared at 30 and 60 days. The mean age <strong>of</strong> study subjects was 81.8<br />

± 8.8 years, and 75.7% were female. The 1,007 patients in the liberal<br />

group were transfused a total <strong>of</strong> 1,866 units <strong>of</strong> blood for an average<br />

hemoglobin <strong>of</strong> 9.2 g/dL, while the 1,009 patients in the restrictive<br />

group received a total <strong>of</strong> 652 units for an average hemoglobin <strong>of</strong><br />

7.9 g/dL. Composite outcomes did not differ between the groups.<br />

In the 10 g/dL group, 34.7% were dead or unable to walk without<br />

human assistance and for the symptomatic group 35.2% (p=0.80).<br />

The symptomatic approach to transfusion greatly reduced blood<br />

demands with no discernible effect on mortality or function.<br />

pApeR No. 304<br />

Primary Determinants <strong>of</strong> Intra-operative Radiation<br />

Exposure during Proximal Femur Fracture Fixation<br />

Edward Rodriguez, MD, Medfield, MA<br />

Michael Baratz, MD, Brookline, MA<br />

Yue-Yung Hu, MD<br />

Aron Chacko<br />

Paul Appleton, MD, Cohasset, MA<br />

We aimed to evaluate intra-operative radiation use during surgical<br />

fixation <strong>of</strong> proximal femur fractures and to determine the primary<br />

determinants <strong>of</strong> total dose used. We hypothesized that body mass<br />

index (BMI), severity and location <strong>of</strong> the fracture, technique/implant<br />

used, patient positioning, time <strong>of</strong> day and skill <strong>of</strong> the operative staff<br />

were independent determinants <strong>of</strong> intra-operative radiation use.<br />

Total fluoroscopy time, peak kilovoltage (KVP), mili-ampere (mAmp)<br />

and cumulative dose (mrad-cm2) were recorded prospectively for<br />

84 patients with proximal femur fractures undergoing repair with<br />

either a cephalomedullary nail (63), a compression hip screw device<br />

(11) or percutaneous fixation with cannulated screws (10) by two<br />

trauma fellowship trained surgeons at our institution. Fluoroscopy<br />

was performed by hospital employed radiation technicians using a<br />

GE OEC C-arm. Patient records were then retrospectively reviewed<br />

to determine, for each case: fracture location and type (based on<br />

<strong>Orthopaedic</strong> Trauma Association (OTA) classification), laterality, age,<br />

BMI, surgical position, presence <strong>of</strong> resident assistants and level <strong>of</strong> their<br />

training, implant used, time <strong>of</strong> surgery (day vs. night) and treating<br />

820<br />

surgeon. Univariate and multivariate analyses were performed using<br />

the Wilcoxon and ANOVA tests and linear regression to determine<br />

which <strong>of</strong> these factors were significant determinants <strong>of</strong> total radiation<br />

exposure. Mean radiation doses for each case type are tabulated. After<br />

adjusting for other covariates, an increase <strong>of</strong> 47.9 +/- 12.1 mrad-cm2<br />

was seen per each point increase in BMI across all cases (p = .0004).<br />

Intertrochanteric fractures repaired with a short cephalomedullary<br />

nail used 493.5 +/- 195.1 more mrad-cms than those repaired with<br />

a compression screw system (p=.01). Within the cephalomedullary<br />

nail group, surgeries done in the lateral position used 899.8 +/-<br />

202.4 mrad-cm2 more than those done supine (p < 0.0001), and<br />

subtrochanteric fractures used 770.1 +/- 225.1 mrad-cm2 more than<br />

intertrochanteric and femoral neck fractures (p=0.0012). Surgeries<br />

done after 6 pm used an average <strong>of</strong> 871.4 +/- 302.4 more mrad-cm2<br />

than surgeries done during normal daytime hours (p = 0.0056).<br />

One surgeon used an average <strong>of</strong> 529.5 +/- 159.4 mrad-cm2 more<br />

than the other (p = 0.0016). No significant differences were seen in<br />

regards to patient sex, age, severity <strong>of</strong> fracture (OTA type), laterality<br />

or level <strong>of</strong> training <strong>of</strong> resident(s) assisting in the case. The amount<br />

<strong>of</strong> intra-operative radiation exposure used in surgical fixation <strong>of</strong><br />

proximal femur fractures is primarily determined by BMI, patient<br />

position, surgical technique used, timing <strong>of</strong> surgery and individual<br />

surgeon performing the case. Surprisingly, OTA fracture type and the<br />

level <strong>of</strong> training <strong>of</strong> assisting residents do not seem to be significant<br />

determinants <strong>of</strong> total radiation used.<br />

pApeR No. 305<br />

Neck Reconstruction (AIIMS Box Technique): An<br />

Answer To Large Femoral Neck Defects<br />

Bhavuk Garg, MS Ortho<br />

BN V Upendra, MS<br />

Arvind Jayaswal, MS<br />

Large femoral neck defects pose a great challenge for orthopedic<br />

surgeons and are frequently associated with neglected femoral neck<br />

fractures, post infective sequale and failed implants around femoral<br />

neck. We present our technique (AIIMS Box Technique) <strong>of</strong> neck<br />

reconstruction aiming to preserve the natural femoral head and<br />

restoring the function <strong>of</strong> hip in cases <strong>of</strong> large femoral neck defects.<br />

A total number <strong>of</strong> 52 patients (age range 20 to 56 years with an<br />

average <strong>of</strong> 38 years) with large femoral neck defects were treated<br />

from January 1990 to May 1997 and were followed for a minimum<br />

<strong>of</strong> 10 years (range 10 to 17 years). Neck defect was converted into a<br />

box using osteal flaps (base from greater trochanter, anterior wall<br />

from head, quadratus femoris muscle pedicle graft posteriorly).<br />

This box was filled with cancellous bone autograft along with three<br />

cancellous screw fixation. Union occurred in all patients in a mean<br />

time <strong>of</strong> 16 weeks (range 12-20 weeks). One patient in our series had<br />

avascular necrosis (AVN) <strong>of</strong> femoral head. Eighteen out <strong>of</strong> 52 results<br />

were classified as excellent, 28 good and six fair. No patient had poor<br />

result. Good functional mobility including squatting was seen in all<br />

but two patients. Complications included coxa vara in two patients<br />

and hardware problems in four patients. Our study shows that large<br />

femoral neck defects can be managed successfully with preservation<br />

<strong>of</strong> vascularity <strong>of</strong> femoral head. This procedure can be considered an<br />

alternative to excisional or replacement arthroplasty, particularly in<br />

young adults.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


pApeR No. 306<br />

A Biomechanical Analysis <strong>of</strong> Cephalomedullary Nail<br />

Lag Screw Position in the Femoral Head<br />

Paul Robert Kuzyk, MD, FRCSC, MSc, Toronto, ON Canada<br />

Rad Zdero, PhD<br />

Suraj Shah, BSc, Toronto, ON Canada<br />

Michael Olsen, Toronto, ON Canada<br />

James P Waddell, MD, Toronto, ON Canada<br />

Emil H Schemitsch, MD, Toronto, ON Canada<br />

Minimizing tip-apex distance (TAD) has been shown to reduce<br />

clinical failure <strong>of</strong> extramedullary sliding hip screws used to<br />

fix peritrochanteric fractures. The purpose <strong>of</strong> this study was<br />

to determine if such a relationship exists for the position <strong>of</strong> a<br />

cephalomedullary nail lag screw in the femoral head. Unstable fourpart<br />

peritrochanteric fractures were created in 30 synthetic femurs<br />

and repaired with Long Gamma 3 Nails using one <strong>of</strong> five lag screw<br />

positions: 1) superior, 2) inferior, 3) anterior, 4) posterior, 5) central.<br />

Radiographic measurements including TAD and calcar referenced<br />

tip-apex distance (CalTAD) were calculated from anteroposterior<br />

and lateral radiographs. Specimens were tested for axial, lateral and<br />

torsional stiffness, and then loaded to failure in the axial position.<br />

ANOVA was used to compare means <strong>of</strong> the five treatment groups.<br />

Linear regression analysis was used to compare stiffness and loadto-failure<br />

(dependant variables) with radiographic measurements<br />

(independent variables). The inferior lag screw position had<br />

significantly greater mean axial stiffness than superior (p


pApeR No. 309<br />

The Natural History <strong>of</strong> Atypical Femoral Insufficiency<br />

Fractures (AFIFs) Multicenter Study-<br />

Kwang Woo Nam, MD, Jeju, Jeju, Republic <strong>of</strong> Korea<br />

Kyung-Jae Lee, MD, Daegu, Republic <strong>of</strong> Korea<br />

Seok-hyun Kweon, Pr<strong>of</strong>, Iksan, Jeonbuk, Republic <strong>of</strong> Korea<br />

Dr Je Hyun Yoo, Anyang, Republic <strong>of</strong> Korea<br />

Hee Joong Kim, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Jeong Joon Yoo, MD, SEOUL, Republic <strong>of</strong> Korea<br />

Kee Hyung Rhyu, MD, Seoul, Seoul, Republic <strong>of</strong> Korea<br />

Kwang Jun Oh, MD, Seoul, Republic <strong>of</strong> Korea<br />

Seung Beom Han, MD, Seoul, Republic <strong>of</strong> Korea<br />

Several recent papers have reported atypical femoral insufficiency<br />

fractures (AFIFs) in long-term users <strong>of</strong> bisphosphonate. However, the<br />

contemporary literature listed limitations such as small number <strong>of</strong><br />

cases, vague definition <strong>of</strong> AFIFs, lack <strong>of</strong> incomplete fracture and lack<br />

<strong>of</strong> bilaterality or multiplicity. We intended to look into the clinical<br />

course <strong>of</strong> AFIFs by increase <strong>of</strong> sample size through multicenter study<br />

and also investigated the fate <strong>of</strong> the untreated incomplete AFIFs. We<br />

gathered patient data from the geriatric hip fracture groups at each<br />

institution. We focused on radiographycally documented AFIFs.<br />

The inclusion criteria were no trauma history, the subtrochanetric<br />

or diaphyseal fracture <strong>of</strong> femur and characteristic radiologic features<br />

compatible with AFIFs. The characteristic radiologic features were<br />

as follows: simple and transverse, unicortical beak and cortical<br />

thickening in case <strong>of</strong> complete AFIFs; cortical thickening with or<br />

without micr<strong>of</strong>racture lines confirmed by bone scan, CT or MRI.<br />

We classified the direction <strong>of</strong> cortical thickening into two types:<br />

intramedullary and outer cortical. Fifty cases <strong>of</strong> 30 female patients<br />

were included (subtrochanteric fractures 26 and diaphyseal fractures<br />

24). Incomplete AFIFs were 38 cases and complete AFIFs were 12<br />

cases at the initial presentation. All but three patients had been<br />

taking bisphosphonates for mean <strong>of</strong> 4.2 years. Age, multiplicity,<br />

the direction <strong>of</strong> cortical thickening, bisphosphonate use and lower<br />

bone mineral density (BMD) were significantly different between<br />

subtrochanteric and diaphyseal AFIFs. Thirty-two incomplete AFIFs<br />

except six cases <strong>of</strong> prophylactic stabilization were followed up<br />

without surgery. Fourteen <strong>of</strong> 32 incomplete AFIFs progressed to<br />

complete and displaced fractures with mean interval <strong>of</strong> 8.4 months.<br />

Duration <strong>of</strong> bisphosphonate medication and cortical thickening to<br />

outer cortex were significant predictors for fracture progression in the<br />

Cox analysis adjusted for other variables. Incomplete atypical femoral<br />

insufficiency fractures can be carefully observed without prophylactic<br />

surgery. However, if the longer duration <strong>of</strong> bisphosphonate use<br />

(especially >5 years) and the cortical thickening on outer cortex<br />

exist, it is better to perform prophylactic stabilization.<br />

pApeR No. 310<br />

Surgical Approach Does Not Affect Union <strong>of</strong><br />

Supracondylar Femur Fractures Treated with Plate<br />

Fixation<br />

Jonathan Michael Gross, MD, Rochester, NY<br />

Fernando Serna, MD, Rochester, NY<br />

Kyle Lybrand, BS<br />

Xing Qiu, PhD, Rochester, NY<br />

Catherine A Humphrey, MD, Rochester, NY<br />

John T Gorczyca, MD, Rochester, NY<br />

Although there have been several series demonstrating the efficacy<br />

<strong>of</strong> open and sub-muscular surgical techniques in the treatment <strong>of</strong><br />

supracondylar femur fractures, there are few series that compare<br />

822<br />

open versus limited open approaches. The purpose <strong>of</strong> this study<br />

was to determine whether a limited incision sub-muscular surgical<br />

approach provided an advantage to fracture healing over a traditional<br />

open vastus elevating approach. We retrospectively reviewed 99<br />

supracondylar femur fractures (OTA /AO classification 33A and 33C)<br />

in 95 patients, who had complete demographic and radiographic<br />

data, and who were treated by an orthopedic traumatologist with<br />

plate fixation from January 1, 2001 through January 1, 2009. The<br />

primary outcome was the need for a second surgery to achieve<br />

fracture union. Secondary outcomes were age <strong>of</strong> the patient at the<br />

time <strong>of</strong> fracture, diabetes, smoking, open versus closed fractures,<br />

plate length, proximal screw number and density and open versus<br />

sub-muscular surgical approach. Of the 99 fractures, 51 utilized a submuscular<br />

approach and 48 an open approach. There were 22 (22%)<br />

fractures that required a second surgery to achieve union; 12 with<br />

an open approach and 10 with a sub-muscular approach. Analysis<br />

with a Fisher’s Exact test demonstrated that only open fractures (p =<br />

0.034), diabetes (p = 0.013) and a plate length <strong>of</strong> less than 10 screw<br />

holes (p = 0.011) were associated with a second surgery. The odds<br />

ratios for these three factors were respectively 2.912, 0.116 and 9.052.<br />

The p value for open versus sub-muscular approach was 1. In this<br />

study, when performed by an orthopedic trauma specialist, limited<br />

incision sub-muscular plating did not provide an advantage over<br />

traditional open vastus elevating approach for healing distal femur<br />

fractures. Surgical approach should not compromise adequacy <strong>of</strong><br />

reduction and fixation. This study raises questions about the clinical<br />

significance <strong>of</strong> minimally invasive surgery to achieve fracture union.<br />

pApeR No. 311<br />

Distal Locking in Femoral Nailing <strong>of</strong> 52 Patients<br />

without X-ray Guidance- A Multi-Center Study<br />

Arturo C Canete, MD, Quezon City, Metro Manila, Philippines<br />

Godfredo V Dungca III, MD<br />

Regidor B Deleon III, MD<br />

Daniel V Dungca, MD<br />

Jereme B Atupan, MD, Metro Manila, Philippines<br />

Joaquin C Pandanan, MD<br />

Wilfredo B Pacheco, MD, Quezon City, Philippines<br />

Abigail Trinidad Jao, BS, MEM-BME<br />

Distal locking <strong>of</strong> femoral nail continues to be a challenge due to<br />

problems in accuracy and radiation exposure. This study was<br />

conducted to determine effectiveness <strong>of</strong> a new distal locking<br />

technique without x-ray guidance. This is a prospective series <strong>of</strong> 52<br />

patients, indicated for femoral locked nailing. Distal locking was<br />

performed with the use <strong>of</strong> an automated device which was inserted<br />

into the nail canal, and deploys a flexible nitinol cable drill through<br />

the lateral screw holes. Upon switching the device on, drilling <strong>of</strong> a<br />

pilot hole at the lateral femoral cortex is initiated. Using the pilot hole<br />

as reference, drilling back through the nail and medial cortex were<br />

accomplished without x-ray guidance. Drill-back technique evolved<br />

as it was being optimized. Confirmation <strong>of</strong> screw insertion was done<br />

by a probing technique, and double-checking with x-ray. Assessment<br />

<strong>of</strong> success rate and average time for locking and monitoring for<br />

adverse events were conducted. Out <strong>of</strong> the 52 patients, 50 were<br />

successfully locked using the device. Successful locking was achieved<br />

in 96% on first attempt, and 100% on the second. Average time<br />

for complete distal locking was 14 minutes. Two cases were locked<br />

using other methods due to technical problems, which were rectified<br />

sucessfully. No device related adverse events were encountered. Use<br />

<strong>of</strong> this innovative device was 96% effective on first attempt and 100%<br />

on the second. This device is easy to use, saves time, is relatively safe<br />

and minimizes radiation exposure to surgical team and patient.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


pApeR No. 312<br />

Location <strong>of</strong> Gunshot Wound Femur Fracture Predicts<br />

Arterial Injury<br />

Ida Leah Gitajn, MD, Boston, MA<br />

Paul William Perdue, Jr MD, Brooklyn, NY<br />

John McCall Hardcastle, V MD, New York, NY<br />

Robert V O’Toole, MD, Baltimore, MD<br />

Gunshot wound fracture is a unique category <strong>of</strong> gunshot wound<br />

injuries which may have a special relationship to arterial injury. The<br />

purpose <strong>of</strong> the present study was to evaluate whether location <strong>of</strong><br />

gunshot wound femur fracture predicts arterial injury. This would<br />

provide a clinician with an easy-to-obtain clinical feature that can<br />

be used to drive management. We hypothesized that fracture in the<br />

distal portion <strong>of</strong> the femur is likely to be a marker for arterial injury<br />

since the femoral artery is tethered to the femur at the adductor<br />

hiatus or Hunter’s canal. The records <strong>of</strong> 96 patients with gunshot<br />

wound femur fractures who were evaluated at a level-I trauma center<br />

were reviewed. Outcome measure consisted <strong>of</strong> presence or absence<br />

<strong>of</strong> arterial injury. Stored plain films were used to measure length <strong>of</strong><br />

femur and distance to proximal and distal fracture lines. Location <strong>of</strong><br />

proximal and/or distal fracture lines in the distal third <strong>of</strong> the femur<br />

was associated with presence <strong>of</strong> arterial injury (p < 0.05). Odds ratio<br />

for presence <strong>of</strong> arterial injury when proximal fracture line was in<br />

the distal third <strong>of</strong> the femur is 5.21 (95% CI from 1.49 to 18.19, p<br />


Sixty-six patients, 59 females and seven males with an average age <strong>of</strong><br />

78 (66-100) years had no history <strong>of</strong> bisphosphonate therapy. Eleven<br />

patients (14% <strong>of</strong> remaining cohort), 10 females and one male with<br />

an average age <strong>of</strong> 75.5 (67-94) years, had received bisphosphonate<br />

therapy for greater than two years prior to admission. All 11 patients<br />

in the bisphosphonate group had sustained a low energy fall from<br />

a standing height or less. In the non-bisphosphonate group, 63<br />

patients had a mechanism <strong>of</strong> fall from standing and three patients<br />

had a mechanism <strong>of</strong> motor vehicle accident. In nine <strong>of</strong> the 11 (82%)<br />

patients in the bisphosphonate group, the radiographs resembled<br />

the previously described transverse shaft fractures that have been<br />

observed in patients on chronic bisphosphonate therapy. From<br />

2000-2005, only three/36 (8%) <strong>of</strong> femoral shaft fractures occurred<br />

in patients on chronic bisphosphonate therapy. From 2006-<br />

2009, eight/41 (19.5%) patients sustained a transverse femoral<br />

shaft fracture while on bisphosphonate therapy, demonstrating a<br />

substantial increase in the incidence <strong>of</strong> this injury pattern in patients<br />

taking bisphosphonates. Although bisphosphonate therapy has<br />

been shown to decrease the incidence <strong>of</strong> lumbar and femoral neck<br />

fractures, our series corroborates the worrisome evidence found<br />

by other authors that bisphosphonate use is associated with lowenergy,<br />

transverse fractures <strong>of</strong> the femoral shaft. Moreover, our data<br />

demonstrate a trend in the increased incidence <strong>of</strong> these fractures.<br />

In a patient population at risk for low energy fractures, prolonged<br />

pharmacologic therapy with biphosphontates may place these<br />

patients at an additional risk for fractures <strong>of</strong> the diaphyseal femur.<br />

pApeR No. 376<br />

Reamer Irrigator Aspirator System: Early Experience<br />

Nikolaos K Kanakaris, MD, Leeds, United Kingdom<br />

Suribabu Gudipati, MBBS, MRCS, Wakefield, United Kingdom<br />

Dan Morell, MBBS, BS, Leeds, United Kingdom<br />

Peter Giannoudis, MD, Leeds, United Kingdom<br />

The indications <strong>of</strong> the reamer irrigator aspirator (RIA) system include<br />

acute cases (minimization <strong>of</strong> second hit), osteomyelitis (debridement<br />

<strong>of</strong> intramedullary canal), autologous grafting (harvesting <strong>of</strong><br />

morselized autograft), oncology (intramedullary canal lesion biopsy<br />

and prophylactic nailing). Since January 2008, data from the cohort<br />

<strong>of</strong> patients where the RIA system was used in a single center were<br />

prospectively collected. Epidemiological, in-hospital, post-discharge<br />

follow-up data and intraoperative direct medical costs were included<br />

in this series stratified as to its four basic indications. RIA was used<br />

in 64 patients in 71 different occasions (mean age 53 years, (19-<br />

80)). These included 10 polytrauma patients with thoracic and/or<br />

neurosurgical associated injuries, 11 pathological fractures/ pending<br />

fractures, 20 osteomyelitis for debridement and 23 for harvesting <strong>of</strong><br />

autologous graft (atrophic and/or recalcitrant nonunions). At those<br />

where the by-products <strong>of</strong> reaming were collected, for diagnostic or<br />

grafting purposes, the mean volume was 60 ml (40-90 ml). One<br />

intraoperative complication was recorded (dismantling <strong>of</strong> the reamer<br />

head from the RIA tube assembly attributed to user’s error). In the<br />

limited follow-up period <strong>of</strong> this series no fractures, hematomas,<br />

compartment syndrome, heterotopic ossification, postoperative<br />

pain or limitation <strong>of</strong> patients’ mobility associated to the RIA<br />

technique were recorded. The mean direct medical cost <strong>of</strong> its use<br />

was £355 (312-740). The RIA system was proven versatile, with short<br />

learning curve, and highly effective especially for the cases <strong>of</strong> bone<br />

harvesting and intramedullary debridement (septic and oncology<br />

cases). Further evidence from prospective randomized clinical trials<br />

is anticipated to elicit its safety and efficacy to the impressing variety<br />

<strong>of</strong> its indications.<br />

824<br />

pApeR No. 377<br />

Complications Associated with the use <strong>of</strong> the Reamer-<br />

Irrigator-Aspirator Device<br />

Amer J Mirza, MD, Portland, OR<br />

Jayme Hiratzka, MD, Beaverton, OR<br />

Darin M Friess, MD, Portland, OR<br />

Tahnee Groat, MPH<br />

Thomas J Ellis, MD, Columbus, OH<br />

The Reamer-Irrigator-Aspirator (RIA) is a novel femoral canal<br />

reaming device currently indicated for use for harvesting autologous<br />

bone graft, management <strong>of</strong> femoral or tibial osteomyelitis and as an<br />

alternative to traditional non-irrigated reaming for canal preparation<br />

in intramedullary nail placement procedures for femoral shaft<br />

fractures. The purpose <strong>of</strong> this study was to evaluate operative time,<br />

blood loss and adverse events with the early use <strong>of</strong> the RIA device. A<br />

retrospective review <strong>of</strong> patients undergoing a RIA procedure at one<br />

Level 1 trauma center between January 2004 and December 2009<br />

was performed. Patient records were reviewed for operative time,<br />

reamer size, estimated blood loss, equipment failure, iatrogenic<br />

cortical perforation <strong>of</strong> the femoral shaft and medical complications<br />

in the immediate postoperative period. Operative times and blood<br />

loss were compared in femoral nailing procedures between patients<br />

in which a RIA device was used versus traditional pressure sensitive<br />

sentinel reamers. Unpaired t-tests were calculated with a level <strong>of</strong><br />

significance P


pApeR No. 378<br />

Comparison <strong>of</strong> Five Protocols for Contaminated Bone<br />

Grafts in Regards to Sterility and Cell Viability<br />

Jennifer M Bauer, Cleveland Heights, OH<br />

Raymond Liu, MD, Cleveland Heights, OH<br />

Thomas J Kean, PhD<br />

James E Dennis, PhD<br />

William J Petersilge, MD, Cleveland, OH<br />

Allison Gilmore, MD, Shaker Heights, OH<br />

On occasion, a bone graft or fracture fragment can drop on the<br />

operating room (OR) floor and become contaminated. In cases<br />

where retention <strong>of</strong> the contaminated graft is desired, an optimal<br />

protocol balancing sterility and cell viability has not been<br />

established. Discarded bone samples were taken from 20 total<br />

knee arthroplasty operations and uniformly contaminated using<br />

a bacterial broth grown from the OR floor. Each set underwent<br />

five different decontamination procedures: autoclave; mechanical<br />

agitation and serial washes <strong>of</strong> normal saline; 2% chlorhexidine<br />

gluconate; and 10% povidone-iodine both left wet and allowed to<br />

dry for 10 minutes. Positive and negative controls were utilized. Ten<br />

sets were then cultured to determine sterility, and 10 underwent<br />

live/dead trypan blue staining to determine cell viability. Autoclave,<br />

chlorhexidine gluconate and dry povidone-iodine sterilized all<br />

samples; wet povidone-iodine sterilized four <strong>of</strong> 10 (40%); and<br />

saline sterilized none. While all decontamination methods reduced<br />

cell count to some degree, autoclave and chlorhexidine gluconate<br />

left no viable cells. Dried povidone-iodine sterilization maintained<br />

significantly less live cells than controls (21%, p


crest bone graft procedure if needed were used to evaluate the long<br />

term morbidity <strong>of</strong> the bone graft harvest. Thirty (20 men and 10<br />

women, avg. age 46 (29-65)) were evaluated at average follow up<br />

<strong>of</strong> seven years after ICBG for nonunions (24) or fusions (six). There<br />

were no postoperative wound complications. Four (13%) <strong>of</strong> the 30<br />

patients reported pain lasting more than two weeks after the harvest.<br />

Their average VAS was 7.5 (range, 6 to 8) during that time. However,<br />

no patient had any pain at final followup (VAS = 0 for all patients).<br />

Three <strong>of</strong> the four patients who had pain for more than two weeks<br />

after graft harvest expressed that they would not elect to have another<br />

bone graft and would seek alternative graft sources. All other patients<br />

would consent to another bone graft if recommended. Three patients<br />

(10%) reported some scar numbness, but none complained <strong>of</strong> thigh<br />

numbness (LFCN). Twenty-eight patients (93.3%) were satisfied<br />

with the cosmetic result. No patient had any limitations in activity<br />

related to the harvest site. Anterior inner table iliac graft harvesting<br />

resulted in minimal morbidity and no pain or functional limitations<br />

at an average <strong>of</strong> seven years after the index procedure.<br />

pApeR No. 382<br />

The Critical Sized Defect in the Tibia: Is it Critical?<br />

Results from the SPRINT Trial<br />

David Sanders, MD, London, ON Canada<br />

Marc F Swiontkowski, MD, Minneapolis, MN<br />

There is no clear definition <strong>of</strong> a critical sized defect <strong>of</strong> the tibia. We<br />

defined it as a fracture gap at least 1 cm in length and involving<br />

over 50% <strong>of</strong> the cortical diameter. We explored if the presence <strong>of</strong><br />

a ‘critical-sized defect’ predicted reoperation, and which other<br />

factors predict reoperation in patients with the critical defect. The<br />

patient based outcomes <strong>of</strong> these patients were compared to patients<br />

without a critical defect. Patients enrolled in the SPRINT trial with<br />

a critical sized defect were evaluated for secondary interventions to<br />

gain union. Other factors predicting the need for reoperation were<br />

studied. We also compared the patients with critical sized defects<br />

to the larger cohort <strong>of</strong> patients without a defect with respect to<br />

demographics, injury mechanism, fracture characteristics and<br />

patient-based outcome. Tibial diaphyseal defects <strong>of</strong> greater than<br />

or equal to 1 cm and >50% cortical circumference healed without<br />

additional surgery in 47% <strong>of</strong> cases. Fewer reoperations were required<br />

in patients treated with a reamed nail (p=0.04). The mean <strong>of</strong> the<br />

SF-36 physical component summary in patients with a critical sized<br />

defect was poorer than the overall cohort (p=0.02, difference = 5.2,<br />

95% confidence interval 0.8 to 9.6). This definition <strong>of</strong> a critical sized<br />

defect is not ‘critical’ in terms <strong>of</strong> predicting reoperation, as 47 %<br />

<strong>of</strong> cases healed without additional intervention. However, patients<br />

with these bone defects had a higher rate <strong>of</strong> reoperation and worse<br />

patient based outcomes compared to the overall cohort <strong>of</strong> tibial<br />

fracture patients. Further investigation is recommended.<br />

pApeR No. 383<br />

Do Surgeon and Center Volumes Impact the Outcomes<br />

<strong>of</strong> Closed Tibia Fractures?<br />

Marc F Swiontkowski, MD, Minneapolis, MN<br />

Our hypothesis was that closed tibia fractures treated with<br />

intramedullary nails are impacted by surgeon and center volumes.<br />

Data from 813 patients with closed tibia fractures were obtained<br />

from the SPRINT study. Using multiple regression, we examined the<br />

effect <strong>of</strong> center and surgeon volume (categorized as high, moderate<br />

or low), and geographic differences by country (Canada, USA and<br />

the Netherlands) on health-related quality-<strong>of</strong>-life at one year and the<br />

revision surgery to gain union. Our measures <strong>of</strong> quality-<strong>of</strong>-life were<br />

the Short-Form 36 Health Survey Questionnaire (SF-36 PCS) and the<br />

826<br />

Short Musculoskeletal Function Assessment (SMFA). Patients treated<br />

by moderate volume surgeons had a reduced risk <strong>of</strong> re-operation<br />

versus patients treated by low volume surgeons (odds ratio =0.54,<br />

95% CI = 0.33 to 0.89, p=0.02). No effects <strong>of</strong> surgeon volume were<br />

seen for the other outcomes. Patients treated at moderate volume<br />

centers had poorer quality <strong>of</strong> life at one year than patients treated at<br />

low volume centers, based on the SMFA Bother score (difference =<br />

7.33, 95% CI = 2.65 to 12.01). This effect was not seen with the other<br />

outcomes. Patients with isolated fractures have better quality-<strong>of</strong>-life<br />

at one year, based on all three measures, p


were included in this prospectively designed observational study.<br />

A short musculoskeletal functional assessment (SMFA) evaluation<br />

was given at three months and six months and a musculoskeletal<br />

functional assessment (MFA) was administered at 12 months and<br />

then every 12 months thereafter. Range <strong>of</strong> motion and a pain score<br />

were obtained at every <strong>of</strong>fice visit. AOFAS and ACFAS scores were<br />

obtained at every visit beginning at 12 weeks. The Bother Index and<br />

all other subscales <strong>of</strong> the SMFA, and the ACFAS and AOFAS scores<br />

showed gradual improvement to 52 weeks, but then hit a plateau.<br />

The range <strong>of</strong> motion improved to 12 months, but then began to<br />

decline between 12 months and 36 months. Minimum pain reported<br />

improved out to 36 months, but maximum pain improved only to<br />

12 months and then remained steady. Most <strong>of</strong> the improvement<br />

in range <strong>of</strong> motion, pain and in subjective scores occurs within the<br />

first 12 months after surgery. By 36 months, some patients begin to<br />

decline in function. This information can be used to help patient<br />

and employers predict return to premorbid employment.<br />

pApeR No. 386<br />

A Surgical Procedure For Fracture Healing With<br />

Superior S<strong>of</strong>t Tissue Preservation<br />

Koji Watanabe, kanazawa, Japan<br />

Hidenori Matsubara, MD, Kanazawa, Japan<br />

Kei Takato, MD<br />

Munetomo Takata, MD, Kanazawa, Japan<br />

Nomura Issei, MD<br />

Hiroyuki Tsuchiya, MD, Kanazawa, Japan<br />

The Taylor Spatial Frame (TSF) is a modern multiplanar external<br />

fixator that combines ease <strong>of</strong> application and computer accuracy<br />

for fracture reduction. Fractures can be reduced during surgery and<br />

postoperatively using the TSF method, and it represents a novel and<br />

revolutionary concept for fracture treatment. Use <strong>of</strong> TSF results in<br />

superior preservation <strong>of</strong> the s<strong>of</strong>t tissue surrounding the fracture site<br />

compared to other surgical procedures. This study was conducted to<br />

retrospectively determine the efficacy and complications associated<br />

with TSF in fracture treatment. Thirty-one patients with femoral and<br />

tibial fractures were included. The mean age was 48.3 years. Ten<br />

fractures were closed, four were Gustilo Type I, four were Type II<br />

and 13 were Type III. According to the AO/OTA fracture classification<br />

<strong>of</strong> fracture patterns, 15 fractures were type A, nine were type B and<br />

seven were type C. Statistical analysis was performed using ANOVA.<br />

All fractures except one united over a mean <strong>of</strong> 25.6 weeks (range, 8.4-<br />

59.6 weeks). Concerning s<strong>of</strong>t tissue damage, patients with Gustilo<br />

type III fractures experienced statistically prolonged fracture healing<br />

(p


outcome variable was surgical site infection as defined by Centers<br />

for Disease Control criteria and assessed prospectively by blinded<br />

research personnel. Bivariate and multiple logistic regression<br />

analyses <strong>of</strong> the database were performed to determine whether the<br />

NNISS and SENIC scores have any predictive value for infection<br />

and to identify factors that correlate with infection. The injury and<br />

treatment characteristics were used to identify risk factors for surgical<br />

site infection. We found that there is little correlation between the<br />

surgical infection scores used in general surgery (NNISS, SENIC or a<br />

combination score) and infection rate (odds ratios ranged between<br />

1.2 and 1.6, with p>0.3 for all). The relative odds <strong>of</strong> infection among<br />

patients with AO C3 or Sanders 4 fractures compared to injuries<br />

with lower fracture classifications was 7.2 (95% CI : 2.0 to 26.6,<br />

p=0.003). Increased operative time was also a risk factor, with an<br />

increased odds <strong>of</strong> infection <strong>of</strong> 17% per 30 minutes <strong>of</strong> additional<br />

operative time (95% CI : 1% to 38%, p=0.05). A score assigning two<br />

points for C3 or Sanders 4, and one point for surgical time > 200<br />

minutes predicted 2.3 times increased odds <strong>of</strong> infection per point<br />

in the score (95% CI : 1.4 to 3.8, p=0.001). The NNISS and SENIC<br />

scores were not useful in assessing risk <strong>of</strong> infection after operative<br />

treatment <strong>of</strong> calcaneus, plateau and pilon fractures. We propose a<br />

new score that incorporates fracture classification and operative time<br />

as risk factors for infection. Further studies are needed to validate<br />

this scoring system.<br />

pApeR No. 389<br />

Radiographic Outcomes Of Ring External Fixation For<br />

Malunion And Nonunion<br />

John Strudwick Lewis, Jr MD, Durham, NC<br />

Tyler Steven Watters, MD, Durham, NC<br />

Robert Kamiel Lark, MD, Durham, NC<br />

Robert D Fitch, MD, Durham, NC<br />

Ring external fixation devices such as the Ilizarov External Fixator<br />

(IEF) and Taylor Spatial Frame (TSF) allow powerful correction<br />

<strong>of</strong> limb deformity in a less invasive manner. This study analyzed<br />

the radiographic outcomes <strong>of</strong> ring external fixation for deformity<br />

correction in the setting <strong>of</strong> mal/nonunions, with secondary<br />

emphasis comparing efficacy <strong>of</strong> the TSF to the IEF. A retrospective<br />

review was performed for 54 patients treated with ring external<br />

fixation for malunion/nonunion by a single surgeon over a 10-year<br />

period. Patient demographics, preoperative radiographic measures<br />

in the coronal and sagittal plane and limb length discrepancies<br />

were recorded. Primary outcome measures included time to union,<br />

radiographic correction <strong>of</strong> deformity and leg length discrepancy<br />

and complications from treatment. Fifty patients (93%) achieved<br />

radiographic union with two patients requiring further fixation and<br />

two patients electing to undergo amputation. The pre-operative<br />

coronal plane deformity averaged 13 degrees (range 0-41) while<br />

the sagittal plane deformity averaged 11 degrees (range 0-49). At<br />

the time <strong>of</strong> frame removal, the average coronal plane correction<br />

was within 3 degrees <strong>of</strong> anatomic (p


pApeR No. 692<br />

uPRCT <strong>of</strong> Subacromial Injections Following Proximal<br />

Humeral Fractures<br />

Amgad Ihab Nakhla, MSc, FRCS, London, United Kingdom<br />

Marie-Clare Johnson, GDP, MMACP<br />

Andrew Forester, FRCS, London, United Kingdom<br />

Patients suffer prolonged stiffness and pain following proximal<br />

humeral fractures. Our prospective randomized controlled trial<br />

(PRCT) shows that a subacromial injection <strong>of</strong> local anesthetic and<br />

triamcinolone three weeks post injury accelerates rehabilitation and<br />

improves shoulder range <strong>of</strong> motion. We randomized 36 patients with<br />

conservatively treated proximal humeral fractures to one <strong>of</strong> three<br />

groups. Group A received local anesthetic and triamcinolone, group<br />

B received local anesthetic only and group C received saline. Both<br />

the patient and physiotherapist assessing them were blinded to the<br />

nature <strong>of</strong> the injection. All patients were followed up at one month<br />

and six months following the injection. They were all given the same<br />

exercises by the physiotherapist. All patients were examined for<br />

range <strong>of</strong> motion and impingement, scored on Oxford shoulder score<br />

and recorded on visual analogue scale at every occasion. Patients in<br />

Group A and B had immediate increase <strong>of</strong> 40 degrees <strong>of</strong> abduction on<br />

average compared to 15 degrees improvement in Group C. Groups<br />

A and B had higher Oxford shoulder scores at one month following<br />

injections compared to Group C. Group A had longer lasting effects<br />

than Group C at the final six months review. This double blinded<br />

PRCT show that subacromial injection <strong>of</strong> triamcinolone and local<br />

anesthetic three weeks following proximal humeral fractures is an<br />

effective treatment option to speed recovery and increase range <strong>of</strong><br />

motion.<br />

pApeR No. 693<br />

Small Fragment Fixation <strong>of</strong> Humeral Shaft Fractures<br />

Lisa K Cannada, MD, Clayton, MO<br />

Courtney Fahnhorst, BA<br />

J Tracy Watson, MD, Saint Louis, MO<br />

There are several patients whose bone is too small for 4.5 mm plate.<br />

The purpose <strong>of</strong> our study is to report the clinical results <strong>of</strong> 3.5 mm<br />

plates for humeral shaft fractures. Patients who were treated a 3.5<br />

mm plate were included in the study. The average patient age was 38<br />

(range 18-83). The average injury severity score (ISS) was 14 (range:<br />

5-34). There were 16 patients with <strong>Orthopaedic</strong> Trauma Association<br />

(OTA) 12-A, 13 with 12-B and six with 12-C fracture types. Thirtythree<br />

patients healed at an average <strong>of</strong> 3.9 months after surgery. Two<br />

patients required revision plating with bone grafting for non-union<br />

and healed. Thirty <strong>of</strong> 35 patients healed with callus formation. There<br />

were 13 (37%) <strong>of</strong> patients whose humerus fractures were stabilized<br />

to facilitate poly trauma mobilization. All patients were allowed full<br />

weight bearing on their extremity after surgery. The average follow<br />

up was seven months. Genetic and ethnic differences exist which<br />

may limit traditional techniques <strong>of</strong> humeral shaft fixation secondary<br />

to anatomic mismatch <strong>of</strong> the plate to bone diameter. In our study,<br />

there were no hardware failures in patients treated with 3.5 mm<br />

plates when cortical apposition was achieved to support the fixation<br />

montage. Secondary bone healing with callous occurred in 80%<br />

<strong>of</strong> the cases. In spite <strong>of</strong> immediate weight bearing allowed in our<br />

patients, the stiffness in our constructs was significant enough to<br />

permit fracture healing. This study supports a 3.5 mm plate may be<br />

used for humeral shaft fractures and immediately loaded when this<br />

is appropriate for the patient’s anatomy.<br />

829<br />

pApeR No. 694<br />

Are Two Plates Necessary for Fractures <strong>of</strong> the Distal<br />

Humerus?<br />

Jeffrey Dean Watson, MD, Tampa, FL<br />

Edward H Becker, III MD, Parkville, MD<br />

Hyunchul Kim, MS, College Park, MD<br />

Michael Shor<strong>of</strong>sky, BS, Baltimore, MD<br />

Daniel M Lerman, MD, New York, NY<br />

Robert V O’Toole, MD, Baltimore, MD<br />

W Andrew Eglseder, MD, Baltimore, MD<br />

Anand M Murthi, MD, Baltimore, MD<br />

The purpose <strong>of</strong> this study is to compare the biomechanical stability<br />

<strong>of</strong> a standard precontoured two-plate locked construct to a single<br />

custom designed laterally placed locked plate for extra-articular<br />

supracondylar distal humerus fractures. Extra-articular supracondylar<br />

humerus fractures were created on matched pairs <strong>of</strong> non-osteoporotic<br />

cadaveric humerii. Specimens were plated with either a custom single<br />

locked plate placed posterolaterally or two precontoured locked<br />

plates placed orthogonally. Both constructs were instrumented in a<br />

hybrid manner with a combination <strong>of</strong> locked and unlocked screws.<br />

Each sample underwent cyclic loading in flexion and varus to failure.<br />

Average cycles to failure, force to failure, displacement and mechanical<br />

stiffness were compared. The single plate construct demonstrated a<br />

stiffness <strong>of</strong> 1072 N compared to 722 N for the two-plate construct<br />

(p=0.06). Average cycles to failure for the single plate construct were<br />

3,586, while the two-plate construct failed at an average <strong>of</strong> 2,771<br />

cycles (p=0.42). Force to failure averaged 428 N for the single plate<br />

and 380 N for the two-plate construct (0.56). All constructs failed<br />

through the plate-bone interface without failure <strong>of</strong> the hardware. A<br />

single plate custom designed specifically for fractures <strong>of</strong> the distal<br />

humerus is biomechanically equivalent with two precontoured<br />

plates also designed for the distal humerus. This is the first study<br />

to demonstrate a single plate as equivalent to a two-plate construct.<br />

This may be clinically significant because the single plate technique<br />

potentially reduces surgical time and exposure to the posterior and<br />

medial aspects <strong>of</strong> the elbow. Decreased exposure, especially to the<br />

medial elbow, may reduce iatrogenic injury.<br />

pApeR No. 695<br />

Incidence And Risk Factors Of Heterotopic Ossification<br />

Following Major Elbow Trauma<br />

Keith C Douglas, MD, Nashville, TN<br />

Lisa K Cannada, MD, Clayton, MO<br />

Stella Lee, BA<br />

Daniel Brian Dean, MD, Saint Louis, MO<br />

Kristin Archer, PhD, Nashville, TN<br />

William Obremskey, MD, Nashville, TN<br />

Heterotopic ossification (HO) is a complication <strong>of</strong> major elbow<br />

trauma with poorly defined incidence and risk factors. A total <strong>of</strong> 156<br />

patients who underwent operative intervention for a distal humerus<br />

fracture or an elbow fracture dislocation and had at least three<br />

months <strong>of</strong> follow up were retrospectively reviewed. The risk factors<br />

for radiographic HO and for surgical excision <strong>of</strong> HO were evaluated<br />

using separate multiple variable logistic regression analyses. Brooker<br />

class 3 or 4 HO occurred following 18/125 (14%) distal humerus<br />

fractures, 15/69 (22%) <strong>Orthopaedic</strong> Trauma Association (OTA)<br />

type C distal humerus fractures and 11/31 (35%) ulnohumeral<br />

fracture dislocations. Surgical excision <strong>of</strong> HO was performed after<br />

12/125 (10%) distal humerus fractures, 10/69 (14%) OTA type C<br />

distal humerus fractures and 8/31 (26%) ulnohumeral fracture<br />

dislocations. Severe elbow injury (OTA type C distal humerus fracture<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


or ulnohumeral fracture dislocation, p


pApeR No. 699<br />

Internal vs External Fixation <strong>of</strong> Distal Radius Fractures:<br />

A prospective randomized controlled trial<br />

Ruby Grewal, MD, London, ON Canada<br />

Joy C MacDermid, PhD, London, ON Canada<br />

Graham J W King, MD, London, ON Canada<br />

Ken Faber, MD, London, ON Canada<br />

Few randomized trials have evaluated whether internal fixation <strong>of</strong>fers<br />

superior outcomes to external fixation in the treatment <strong>of</strong> distal<br />

radius fractures (DRF). The purpose <strong>of</strong> this pragmatic randomized<br />

controlled trial (RCT) was to compare functional outcomes seen<br />

with open reduction/internal fixation (ORIF) to closed reduction,<br />

percutaneous pinning and external fixation (ExFix) in the treatment<br />

<strong>of</strong> DRF. Fifty-two patients with DRF failing closed reduction and<br />

casting were randomized to ORIF (n=26) or ExFix (n=26). For<br />

pragmatic reasons, the choice <strong>of</strong> internal fixation was left to the<br />

surgeon’s discretion early recruitment: dorsal plates (n=8), later<br />

recruitment: volar locked plates (n=18)]. Outcomes were measured<br />

at six weeks, three, six and 12 months and included: the Patient<br />

Rated Wrist Evaluation (PRWE), range <strong>of</strong> motion and grip strength.<br />

Generalized linear modeling using repeated measures was used to<br />

identify differences in outcome scores between fixation types over<br />

time. Other continuous variables were analyzed using the student’s<br />

t-test. The groups were equal with respect to age, gender, number<br />

with dominant hand injured and workers compensation claims.<br />

Generalized linear modeling using repeated measures indicated that<br />

there were significant differences for fixation and time in PRWE scores<br />

(Figure 1). The overall mean advantage for ORIF on PRWE scores<br />

was 9.95 (p=0.04) (Figure 1). However the ExFix group had a higher<br />

mean baseline PRWE score, indicating that despite randomization,<br />

this group may have had a more severe initial injury. Although this<br />

study was not designed to differentiate between fixation method,<br />

a subgroup comparison identified significantly better PRWE scores<br />

with volar plates compared to both external fixation (p=0.01) and<br />

dorsal plating (p = 0.04) (Figure 2). There were no significant<br />

differences for any measured impairment between the two groups.<br />

However, we did observe a trend towards greater grip strength<br />

(p=0.05), wrist extension (p=0.06) and supination (p=0.09) in the<br />

ORIF group at three months, and greater supination (p=0.07) and<br />

radial deviation (p=0.09) at one year. Of note, these differences were<br />

<strong>of</strong> little clinical significance (i.e.


pApeR No. 702<br />

uReducing Construct Stiffness can Improve Fracture<br />

Healing With Locked Plating Constructs<br />

Michael Bottlang, PhD, Portland, OR<br />

John Lawrence Marsh, MD, Iowa City, IA<br />

Trevor Lujan, PhD, Portland, OR<br />

Josef Doornink, MS<br />

Daniel C Fitzpatrick, MD, Eugene, OR<br />

Peter Augat, PhD, Murnau, Germany<br />

Brigitte von Rechenberg, MD, Zurich, Switzerland<br />

Steven Michael Madey, MD, Portland, OR<br />

Locked bridge plating relies on secondary bone healing, which<br />

requires interfragmentary motion for callus stimulation. This<br />

study evaluated whether locked plating (LP) permits sufficient<br />

interfragmentary motion to promote fracture healing. It furthermore<br />

evaluated if healing can be improved with a modified locked plating<br />

approach termed far cortical locking (FCL) that promotes controlled<br />

interfragmentary motion. Using an established ovine fracture<br />

healing model, a 3 mm tibial osteotomy was stabilized with LP or<br />

FCL constructs in 12 sheep. FCL constructs were designed to provide<br />

84% lower stiffness than LP constructs and permitted nearly parallel<br />

gap motion. Fracture healing was monitored on weekly radiographs.<br />

After sacrifice at week nine, healed tibiae were analyzed by computed<br />

tomography, mechanical testing in torsion and histology. At week<br />

nine, the FCL group had a 36% greater callus volume (p=0.03) and<br />

a 44% higher bone mineral content (BMC, p=0.013) than the LP<br />

group. Callus in LP specimens was asymmetric, having 49% less<br />

BMC at the near cortex adjacent to the plate than at the far cortex<br />

(p=0.003). Callus in FCL specimens was symmetric (p=0.91). FCL<br />

specimens healed to be 54% stronger (p=0.023) and sustained 156%<br />

greater energy to failure (p


A) and 100 Burgess combat-related transtibial amputations (group<br />

B). The primary outcome measure was the need for re-operation<br />

following definitive closure. At a mean follow up <strong>of</strong> two years (range,<br />

9-48 months), there was a 53% overall re-operation rate. The overall<br />

complications were neuroma excision (18%), myodesis failure<br />

(4%), heterotopic ossification excision (15%) and scar revision<br />

(7%). A significantly higher rate <strong>of</strong> overall complications (p>0.008)<br />

was noted in the bone bridge group. Additionally, there were an<br />

increased number <strong>of</strong> non-infectious complications in the bone<br />

bridge group (p=0.02). A positive selection bias was also noted for<br />

performing bone bridge amputations late (p = 0.0002) and outside<br />

the zone <strong>of</strong> injury (p


trauma patients. Our hypothesis was that clavicle fractures are<br />

associated with a high rate <strong>of</strong> death in geriatric patients sustaining<br />

high energy trauma. Patients injured from high energy trauma<br />

(motor vehicle collisions, falls from height, no low energy falls) with<br />

at least one orthopaedic injury were identified from a prospectively<br />

collected database at a level I trauma center between January 2004<br />

and July 2009. Our study group was patients age 65 years or greater<br />

(n=611) with at least one orthopaedic injury and the control group<br />

was those younger than 65 years (n=6564). All patients with and<br />

without clavicle fractures were identified. Our primary outcome was<br />

in-patient mortality recorded in a prospective database. Analysis<br />

was performed using Fisher’s Exact test and Student T test. The<br />

mortality rate for geriatric patients with clavicle fractures after high<br />

energy trauma was 23% (23/101), which was roughly double the<br />

rate observed in geriatric patients without clavicle fractures (12%,<br />

63/510, p= 0.02). The death rate in young patients with clavicle<br />

fractures (6.9%, 54/776) is also higher than those without clavicle<br />

fractures (4.6%, 266/5788, p=0.006), although as would be expected,<br />

these death rates are lower than the geriatric group (p


Three patients had positive blood cultures AFTER their orthopaedic<br />

intervention, which demonstrates the systemic complications,<br />

associated with these critically ill patients. The ISS was a poor<br />

predictor <strong>of</strong> deep infection as many patients with minimal injuries<br />

developed respiratory complications leading to a prolonged TICU<br />

stay and positive blood cultures. These patients may be under greater<br />

stress, negative nitrogen balance and poor nutrition making them<br />

more susceptible to nosocomial infection. It appears safe to operate<br />

on multiply injured patients with positive blood cultures when the<br />

‘window <strong>of</strong> opportunity’ and clinical parameters are optimal. This,<br />

however, may not prevent subsequent postoperative sepsis and deep<br />

wound infection.<br />

pApeR No. 726<br />

IVC Filter Placement in <strong>Orthopaedic</strong> Trauma Patients:<br />

Clinical Judgement or Clinical Guidelines?<br />

Andre Nicolas Gay, MD, Philadelphia, PA<br />

Keith D Baldwin, MD, Philadelphia, PA<br />

Surena Namdari, MD, MSc, Philadelphia, PA<br />

Samir Mehta, MD, Philadelphia, PA<br />

Indications for inferior vena cava (IVC) filter placement in<br />

polytrauma patients are debated and <strong>of</strong>ten performed via clinical<br />

management guidelines (CMG). The goals <strong>of</strong> our study were to<br />

determine how <strong>of</strong>ten CMG were followed versus how <strong>of</strong>ten clinical<br />

judgement (CJ) was used, to determine the effectiveness <strong>of</strong> each<br />

method, and to define factors leading to filter placement outside<br />

<strong>of</strong> CMG. A retrospective review <strong>of</strong> our institution’s trauma database<br />

<strong>of</strong> blunt orthopaedic trauma patients admitted from 1997 to 2007<br />

was performed. CMG dictates very high risk patients receive IVC<br />

filters. CMG IVC filter patients were compared to CJ IVC filters and<br />

control subjects. Data were analyzed by univariate and multivariate<br />

statistics. The overall prevalence <strong>of</strong> thromboembolic disease in<br />

4,279 blunt trauma patients was 6.8%. A total <strong>of</strong> 603 received IVC<br />

filters. Some 47.5% <strong>of</strong> patients had IVC filters placed via CMG versus<br />

52.5% by CJ. The prevalence <strong>of</strong> thromboembolism in CMG patients<br />

was 28.6%, compared to 52.4% in CJ patients. The sensitivity <strong>of</strong><br />

CMG for patients at risk was 25.2%, and the specificity was 95.4%,<br />

compared to 68.3% and 96.5% for CJ. Older age (p


provides the first detailed report <strong>of</strong> musculoskeletal combat casualty<br />

wound incidence rates for a large combat-deployed manuever unit.<br />

The complex orthopaedic injury patterns found in this investigation,<br />

including the high incidence <strong>of</strong> major amputation and fractures, have<br />

important implications for the future, as the burden <strong>of</strong> ongoing care<br />

for combat injured soldiers must be borne by the federal government,<br />

military treatment facilities and the Veterans’ Administration.<br />

pApeR No. 729<br />

Does a Single Incision Fasciotomy Result in Adequate<br />

Decompression <strong>of</strong> the Deep Posterior Compartment<br />

Max Robert Berdichevsky, MD, Brooklyn, NY<br />

Ashish Patel, MD, Brooklyn, NY<br />

Hebah El-Gendi, MS<br />

Ariel Goldman, MD, Roslyn Heights, NY<br />

The parafibular single-incision fasciotomy technique has several<br />

potential advantages over the ‘conventional’ dual-incision technique:<br />

decreased iatrogenic trauma, skin bridge avoidance and reductions<br />

in wound complications. However, the deep posterior compartment<br />

is difficult to decompress using the single-incision approach. This<br />

study aims to evaluate (1) if the single incision technique can<br />

adequately decompress the deep posterior compartment and<br />

(2) the impact <strong>of</strong> incision length on decompression. Ten paired,<br />

intact cadaveric lower limbs were available. Three pairs (n=6) were<br />

infused with saline to create a compartment syndrome model for<br />

the deep posterior compartment. Decay analysis showed steadystate<br />

pressures five minutes after discontinuation <strong>of</strong> saline infusion;<br />

identifying the appropriate time window for fasciotomy testing.<br />

The remaining seven pairs (n=14) were infused and subsequently<br />

fasciotomies were performed: Group 1 received 14 cm incisions and<br />

Group 2 received 20 cm incisions. Paired student t-test was used<br />

to analyze differences in compartment decompression between<br />

incision lengths. Compartmental pressures measured a mean 43.6<br />

mmHg prior to incisions. No difference in compartment pressures<br />

(decay curve), prior to incisions, was observed between groups<br />

(p=0.54). Immediate post incision pressure measured 12.9 mmHg<br />

for both groups. No difference in immediate post-incision pressure<br />

was observed between groups (p=0.59). Mean compartment<br />

pressures reduced from 12.9 mmHg to 2.8 mmHg over the next<br />

five minutes. The parafibular single-incision fasciotomy technique<br />

adequately decompressed the deep posterior compartment. The 14<br />

cm fasciotomy incision performed as well as the 20 cm incision. In<br />

cases <strong>of</strong> extensive s<strong>of</strong>t tissue compromise, the limited single-incision<br />

fasciotomy technique may be used for adequate lower extremity<br />

compartment decompression.<br />

pApeR No. 730<br />

Resuscitation in Polytrauma Open Fractures Impacts<br />

Infection Rates More Than the Timing <strong>of</strong> Operative<br />

Debridement<br />

Johnny M Gibbs, MD, Bedford, TX<br />

Robert N Reddix, Jr MD, Fort Worth, TX<br />

Daniel Ziegler, MD, Ft Worth, TX<br />

Terry E Rives, PhD<br />

Our study was designed to evaluate the timing <strong>of</strong> operative<br />

debridement with consideration <strong>of</strong> patient resuscitation status<br />

in polytrauma. Our first hypothesis was that early operative<br />

management does not independently decrease the risk <strong>of</strong><br />

postoperative wound infections in this patient population. Our<br />

second hypothesis was that under-resuscitation <strong>of</strong> the polytrauma<br />

patient during perioperative surgical debridement may increase the<br />

836<br />

risk <strong>of</strong> postoperative wound infections in open fractures, regardless<br />

<strong>of</strong> operative timing. Utilizing our institutions trauma registry, we<br />

identified trauma activations from January 11, 2005 thru December<br />

16, 2007 with a documented open fracture that required operative<br />

irrigation and debridement. We retrospectively reviewed the patient<br />

medical records to identify Gustilo-Anderson open fracture grade,<br />

fracture type and location, timing <strong>of</strong> initial operative intervention,<br />

and perioperative resuscitation markers. Specifically, we targeted<br />

initial and perioperative vital signs including blood pressure and<br />

heart rate, perioperative base deficit and pH and intraoperative urine<br />

output as resuscitation markers. In addition we collected data on<br />

polytrauma severity with use <strong>of</strong> the injury severity score (ISS) and<br />

intensive care unit admission as criteria. Our outcome <strong>of</strong> interest<br />

was the development <strong>of</strong> a postoperative wound infection <strong>of</strong> any<br />

type. Statistical analysis was performed on timing <strong>of</strong> surgery and<br />

infection rate with a level <strong>of</strong> significance set at p


morbidities to the affected limb and whole body. To our knowledge<br />

this is the largest and most comprehensive study <strong>of</strong> multiligamentous<br />

knee injuries to date. We identified 102 patients (106 knees) with<br />

multiligamentous knee injuries and/or knee dislocations by ICD-<br />

9 diagnoses within a large regional trauma referral center from<br />

2000-2008. Ligamentous injury patterns were verified by MRI<br />

and confirmed by a single fellowship-trained sports medicine<br />

orthopaedic surgeon. Isolated ACL/MCL injuries were excluded. Data<br />

were obtained from the medical record using a predefined protocol<br />

to include trauma and orthopaedic examinations, radiographic<br />

findings and ancillary studies. All vascular injuries, nerve injuries,<br />

associated fracture patterns and whole body morbidities were noted.<br />

The mean age was 27 years; 74% were male. Thirty-one percent <strong>of</strong><br />

patients were dislocated on arrival. Four patients (4%) had bilateral<br />

multiligamentous knee injuries. Motorcycle collision (29%), motor<br />

vehicle accident (23%), pedestrians struck by a motor vehicle (23%)<br />

and sports injuries (8%) were the most common mechanisms <strong>of</strong><br />

injury. Injury patterns included ACL/PCL/PLC (43%), ACL/PCL/MCL<br />

(17%), ACL/PLC (17%), PCL/PLC (7%), ACL/PCL/PLC/MCL (5%)<br />

and ACL/PCL (5%). Twenty-six percent <strong>of</strong> patients had ipsilateral<br />

tibial plateau fractures and 19% suffered ipsilateral femoral fractures.<br />

Arterial injury (21%), peroneal nerve injury (26%) and compartment<br />

syndrome (16%) were common injuries to the affected limb. Severe<br />

closed head injury was present in 9%, symptomatic pulmonary<br />

embolism in 5% intra-abdominal injury in 15% and 2% expired. In<br />

our trauma center, nearly half <strong>of</strong> all multiligamentous knee injuries<br />

involved the ACL/PCL/PLC and 26% had associated ipsilateral tibial<br />

plateau fractures. Peroneal nerve injury (26%) was more common<br />

than previously reported in the literature (5-20%), while vascular<br />

injury was similar to prior studies. We found a substantial incidence<br />

<strong>of</strong> associated morbidities to the whole body. These results prove that<br />

concomitant injuries are common among patients presenting with<br />

multiligamentous knee injuries.<br />

pApeR No. 732<br />

The Fate <strong>of</strong> Patients With a SurprisePositive Culture<br />

After Nonunion Surgery<br />

Paul Tornetta III, MD, Boston, MA<br />

Dana Olszewski, MD, Boston, MA<br />

Clifford B Jones, MD, Grand Rapids, MI<br />

Martin H<strong>of</strong>fman, MD, Grand Rapids, MI<br />

Debra Sietsema, PhD, Grand Rapids, MI<br />

Charlton Stucken, MD, Boston, MA<br />

William R Creevy, MD, MBA, Boston, MA<br />

William M Ricci, MD, St Louis, MO<br />

Michael J Gardner, MD, Saint Louis, MO<br />

The purpose <strong>of</strong> this study is to review a series <strong>of</strong> patients who had a<br />

‘surprise’ positive culture result (unexpected at the time <strong>of</strong> nonunion<br />

surgery) from definitive surgery for nonunion with regards to<br />

postoperative treatment and ultimate result. All patients treated for<br />

nonunion at three level one trauma centers who were considered<br />

at risk for indolent infection and had cultures taken at the time <strong>of</strong><br />

definitive nonunion surgery were evaluated for organism, antibiotic<br />

regimen and result. Of 666 consecutive nonunions, 456 (68%)<br />

had cultures sent at the time <strong>of</strong> definitive surgical management<br />

for a history <strong>of</strong> prior surgery or open fracture. Ninety-four (21%)<br />

had a ‘surprise’ positive culture. The definitive procedures were<br />

intramedullary (IM) nail (45), open reduction/internal fixation<br />

(ORIF) (42), ex fix (one) and bone graft alone (six). Forty-five<br />

(52%) <strong>of</strong> the patients who had internal stabilization also had local<br />

augmentation with graft and/or bmp. Coag Neg Staph (45), MRSA<br />

(12) and MSSA (seven) were the most common bacteria isolated.<br />

837<br />

Seven had multiple organisms. Infectious disease consultants were<br />

involved in all cases. Eight cultures were considered probable<br />

contaminants and no additional antibiotics were given. The other<br />

86 patients were treated with six to eight weeks <strong>of</strong> culture specific<br />

antibiotics (77) or with a slightly shorter duration (nine). Five <strong>of</strong><br />

the eight patients with presumed contaminants healed, three have<br />

a persistent nonunion, <strong>of</strong> which two are infected and one was<br />

amputated. Of the 86 treated with antibiotics, 79 (92%) healed,<br />

five (6%) developed a recurrent nonunion and two (2%) became<br />

grossly infected. Ultimately 12 (15%) <strong>of</strong> the 79 who healed had<br />

their hardware removed after union. In patients with a history <strong>of</strong><br />

prior surgery or open fracture, we found that 21% had positive<br />

intraoperative cultures from the definitive nonunion surgery. All but<br />

those felt to be contaminants were treated with antibiotics, leading<br />

to a post-reconstruction infection rate <strong>of</strong> 2.2%, all with the same<br />

organisms cultured at the definitive procedure. The use <strong>of</strong> culture<br />

specific antibiotics seems justified based on the overall low rate <strong>of</strong><br />

infection in this complex patient population.<br />

pApeR No. 733<br />

Negative Pressure Wound Therapy Reduces the<br />

Effectiveness <strong>of</strong> Antibiotic Beads<br />

Daniel J Stinner, MD, San Antonio, TX<br />

Joseph R Hsu, MD, San Antonio, TX<br />

Joseph C Wenke, PhD, San Antonio, TX<br />

Negative pressure wound therapy (NPWT) is commonly used as<br />

an effective wound management technique. Adjunctive treatments,<br />

to include the addition <strong>of</strong> local antibiotics, <strong>of</strong>fer an attractive<br />

alternative to NPWT alone, but there is concern that the antibiotics<br />

will be removed from the wound milieu. This study evaluates the<br />

ability <strong>of</strong> antibiotic-impregnated polymethylmethacrylate (PMMA)<br />

beads used in conjunction with NPWT to minimize infection in<br />

contaminated wounds compared to the standard antibiotic bead<br />

pouch. A complex musculoskeletal wound was created on the<br />

hindlimb <strong>of</strong> 20 goats and contaminated with S. aureus (lux) bacteria.<br />

The bacteria are genetically engineered to emit photons, allowing for<br />

quantification with a photon-counting camera system. The wounds<br />

were débrided and irrigated six hours after inoculation. Goats were<br />

assigned to two different treatment groups: a control group using an<br />

antibiotic bead pouch and an experimental group using NPWT in<br />

conjunction with antibiotic beads. The wounds were evaluated 48<br />

hours after contamination and the bacteria within the wounds were<br />

quantified. NPWT effluent levels <strong>of</strong> antibiotic were measured at six,<br />

12, 24, 36 and 42 hours after treatment was initiated. The bacterial<br />

load was significantly minimized in wounds treated with the<br />

antibiotic bead pouch when compared to treatment with NPWT and<br />

antibiotic beads (p


pApeR No. 734<br />

Lidocaine Analgesia for Removal <strong>of</strong> Wound VACs: A<br />

Randomized Double Blinded Placebo Controlled Trial<br />

Thomas Christensen, MD, Salt Lake City, UT<br />

Troy Thorum, RN<br />

Erik Kubiak, MD, Salt Lake City, UT<br />

Vacuum assisted closure (VAC) is a wound management technique<br />

utilized frequently within orthopaedics. While facilitating closure<br />

<strong>of</strong> many types <strong>of</strong> orthopaedic related wounds, its frequent bedside<br />

removal can be a source <strong>of</strong> great pain for patients. The purpose<br />

<strong>of</strong> this investigation is to evaluate the pain relief achieved from<br />

topical lidocaine application during VAC removal. We prospectively<br />

randomized patients, aged 18 and older, who required at least two<br />

VAC changes for any type <strong>of</strong> extremity wound, excluding diabetic and<br />

neoplastic wounds. In a double-blinded fashion, topical lidocaine<br />

(1%) was compared to normal saline (0.9% NaCl) when injected<br />

into the VAC sponge to reduce VAC-removal pain. The crossover<br />

intervention technique, whereby each patient received two VAC<br />

changes, once each with lidocaine and saline, served to control for all<br />

possible patient characteristics. Randomization determined whether<br />

lidocaine or saline was given first or second. Patients were evaluated<br />

for pain scores, narcotic requirement and wound characteristics. , A<br />

total <strong>of</strong> 11 patients (all males; mean age, 38 years) were enrolled for<br />

a total <strong>of</strong> 21 VAC changes (mean wound size 133 cm2). Controlling<br />

for pre-VAC change pain, the lidocaine intervention was associated<br />

with 2.4 points less on the 0-10 visual analog scale (VAS) for<br />

pain (p-value


posteR No. p457<br />

The Impact <strong>of</strong> Morbid obesity on Acetabular Fracture<br />

Waleed Fouad Mourad, MD, New York, NY<br />

Satya Pakianathan, MD, PhD<br />

Zhen Zhang, MS<br />

Rania Ayman Shourbaji<br />

Walid Waked, MD<br />

Srinivasan Vijayakumar, MD<br />

Mathew Graves, MD<br />

George V Russell Jr, MD, Jackson, MS<br />

To compare the incidence <strong>of</strong> heterotopic ossification (HO) between<br />

patients with body mass index (BMI) /=40 after operative treatment <strong>of</strong> traumatic acetabular<br />

fractures (TAF) that are followed by radiation therapy (RT). This<br />

is a single institution retrospective chart review <strong>of</strong> medical records<br />

and radiographs <strong>of</strong> 419 patients. All patients with well-documented<br />

BMI measurements underwent open reduction and internal fixation<br />

(ORIF) followed by RT ± indomethacin. All patients received single<br />

fraction <strong>of</strong> 700 cGy to mid-plane using 6-18 MV photons with<br />

fields that included the s<strong>of</strong>t tissues around the proximal femur and<br />

acetabulum without bone shielding. All RT were given postoperatively<br />

within 72 hours. The patients were divided into two groups based on<br />

their BMI: Group (A) patients with BMI /=40. All patients were assessed post-operatively at fixed<br />

time intervals. HO was assessed during scheduled follow up with<br />

standard X-ray (AP/PA & Judet views). BMI was used as a surrogate<br />

measure <strong>of</strong> morbid obesity to test its ability to predict the risk <strong>of</strong> HO<br />

formation despite RT. The incidence <strong>of</strong> HO among all patients was<br />

21.2% (89/419) while among those in group A with BMI /=40 (21<strong>of</strong> 45) patients developed HO (46.7%).<br />

The difference between the rates <strong>of</strong> HO in the two groups was 29%.<br />

Chi-square test and multivariate logistic regression analysis on HO<br />

versus morbid obesity status, adjusting for other factors (i.e. age,<br />

gender, race and indomethacin) confirm the positive and direct<br />

association between HO formation and morbid obesity status,<br />

p


fractures.<br />

posteR No. p460<br />

Outcome Assessment in <strong>Orthopaedic</strong> Trials: Is it Good<br />

Enough?<br />

Nicole Simunovic, Hamilton, ON Canada<br />

Sheila Sprague, Hamilton, ON Canada<br />

Gordon Guyatt, MD, Hamilton, ON Canada<br />

PJ Devereaux, MD,MSc, Hamilton, ON Canada<br />

Stephen Walter, PhD, Hmailton, ON Canada<br />

Emil H Schemitsch, MD, Toronto, ON Canada<br />

Mohit Bhandari, MD, Hamilton, ON Canada<br />

The approaches used to limit bias in outcome assessment in<br />

orthopaedic trials remain unclear. We aimed to assess the reporting and<br />

process <strong>of</strong> outcomes assessment practices in the current orthopaedic<br />

trauma literature. We searched eight high-impact-factor medical and<br />

orthopaedic journals manually and using the MEDLINE electronic<br />

database for reports <strong>of</strong> randomized controlled trials published from<br />

2005 to 2008 pertaining to the surgical treatment <strong>of</strong> trauma-related<br />

injuries. Two reviewers independently determined study eligibility<br />

and extracted relevant data from included trials. Of the 7,910 citations<br />

identified during our search, 47 randomized controlled trials, which<br />

included a total <strong>of</strong> 4,706 patients, met our inclusion criteria. Of 47<br />

studies, 39 (83%) provided a statement to describe some process<br />

<strong>of</strong> outcome assessment and 29 (74%) reported using an unblinded<br />

individual as the outcome adjudicator. Four studies (10%) reported<br />

using a second assessor to verify outcome measurements, and three<br />

studies (8%) reported the use <strong>of</strong> an adjudication committee to reach<br />

endpoint decisions via consensus. No included study provided a<br />

rationale for the use <strong>of</strong> their chosen approach to adjudication. The<br />

most commonly adjudicated outcomes included fracture healing<br />

(15 studies), reoperation rate (six studies) and general clinical<br />

assessment <strong>of</strong> post-operative complications and limb function (30<br />

studies), mainly by orthopaedic surgeons. Blinding <strong>of</strong> outcome<br />

assessors was not performed or unclear in 38 studies (81%). Despite<br />

the importance <strong>of</strong> the outcome assessment process in orthopedic<br />

trauma trials, key aspects <strong>of</strong> outcome assessment are insufficiently<br />

reported.<br />

posteR No. p461<br />

uShockwave On Bone Healing And Systemic Nitric<br />

Oxide (NO), TGF-?1, VEGF and BMP-2 in Non-Unions<br />

Ching-Jen Wang, MD, Kaohsiung, Taiwan<br />

Jih-Yang Ko, MD, Niao Sung Hsiang, Taiwan<br />

Kuender D Yang, MD, Kaohsiung Hsien, Taiwan<br />

Feng-Sheng Wang, PhD<br />

This study investigated the effects <strong>of</strong> extracorporeal shockwave<br />

treatment (ESWT) on bone healing and the systemic concentrations<br />

<strong>of</strong> nitric oxide (NO), TGF-b1, VEGF and BMP-2 in long bone nonunions.<br />

Forty-two patients with 42 established non-unions <strong>of</strong> femur<br />

and tibia were enrolled in this study. Each long bone non-union was<br />

treated with 6,000 impulses <strong>of</strong> shockwave at 28 kV (= 0.62 mJ/mm2<br />

energy flux density) in a single session. Ten milliliters <strong>of</strong> peripheral<br />

blood were obtained for measurements <strong>of</strong> serum NO level and<br />

osteogenic growth factors including TGF-b1, VEGF and BMP-2; serum<br />

levels <strong>of</strong> calcium, alkaline phosphatase, calcitonin and parathyroid<br />

hormone before treatment and at one day, one, three and six months<br />

after treatment. The evaluations for bone healing included clinical<br />

assessments and serial radiographic examinations. At six months,<br />

bony union was radiographically confirmed in 78.6%, and persistent<br />

non-union in 21.4%. The serum NO level, TGF-b1, VEGF and BMP-2<br />

840<br />

were significantly elevated at one month after ESWT. Patients with<br />

successful bony union after ESWT showed significantly higher serum<br />

NO level, TGF-b1, VEGF and BMP-2 at one month after treatment as<br />

compared to patients with persistent non-union. ESWT is effective<br />

in the treatment <strong>of</strong> long bone non-union. Shockwave-promoted<br />

bone healing was associated with significant increases in serum<br />

NO level and osteogenic growth factors. The elevations <strong>of</strong> systemic<br />

concentration <strong>of</strong> NO level and the osteogenic factors may reflect a<br />

local stimulation <strong>of</strong> shockwave in bone healing in long bone nonunions.<br />

posteR No. p462<br />

Bacteria on External Fixators, Which Prep is Best?<br />

Daniel J Stinner, MD, San Antonio, TX<br />

Michael John Beltran, MD, San Antonio, TX<br />

Brendan David Masini, MD, Schertz, TX<br />

Joseph R Hsu, MD, San Antonio, TX<br />

Joseph C Wenke, PhD, San Antonio, TX<br />

There are no established guidelines for the surgical prep <strong>of</strong> an<br />

external fixator in the operative field. This study investigates the<br />

effectiveness <strong>of</strong> different prep solutions and methods <strong>of</strong> application.<br />

We hypothesized that there would be a similar reduction in bacteria<br />

counts regardless <strong>of</strong> prep solution or method <strong>of</strong> application. Forty<br />

external fixator constructs, consisting <strong>of</strong> a rod, pin and pin to bar<br />

clamp, were immersed in a broth <strong>of</strong> S. aureus (lux) for 12 hours.<br />

Constructs were then randomized into four treatment groups:<br />

chlorhexadine gluconate (CHG) (4%) scrub, CHG (4%) spray,<br />

betadine (BD) (10%) scrub and BD (10%) spray. Each construct<br />

was imaged with a specialized photon capturing camera system<br />

yielding the quantitative and spatial distribution <strong>of</strong> bacteria both<br />

before and after the prep. Each pin to bar clamp was loosened and<br />

moved two centimeters down the construct, simulating an external<br />

fixator adjustment and reimaged. Spatial distribution <strong>of</strong> bacteria and<br />

total bacteria counts were compared. There was a similar reduction<br />

in bacteria following surgical prep when comparing all four groups<br />

independently (p=0.19), method <strong>of</strong> application (spray vs. scrub,<br />

p=0.27) and different solutions (CHG vs. BD, p=0.41). Although<br />

bacteria were evident in newly exposed areas following external fixator<br />

adjustment, most notably within the loosened pin to bar clamp,<br />

it did not result in an increase in bacteria counts (all four groups,<br />

p=0.11; spray vs. scrub, p=0.18; CHG vs BD, p=0.99). Although there<br />

was no increase in bacteria counts following the simulated external<br />

fixator adjustment, it did expose additional bacteria previously<br />

unseen. While there was no difference in surgical prep solution or<br />

method <strong>of</strong> application, consideration must be given to performing<br />

an additional surgical prep <strong>of</strong> the newly exposed surface following<br />

loosening <strong>of</strong> each individual ex-fix component as this may further<br />

minimize potential bacteria exposure.<br />

posteR No. p463<br />

The Influence <strong>of</strong> Hemorrhagic Anemia on Fracture<br />

Healing<br />

Thomas F Varecka, MD, Minneapolis, MN<br />

Lindsay Wiesner, BS<br />

Severe trauma frequently results in blood volume depletion. Little<br />

literature exists about how anemia affects bone healing. Anemia,<br />

and resultant transfusion thresholds, have recently been redefined as<br />

Hemoglobin (Hgb)


1997-2007. Patients were reviewed for development <strong>of</strong> anemia<br />

(Hgb d10 gm% vs 8 gm%), need for and quantity <strong>of</strong> transfusions,<br />

fracture healing. In total, 627 patients with 700 fractures were<br />

analyzed; 107 additional patients were excluded. Statistically<br />

significant reductions in healing were noted at both definitions <strong>of</strong><br />

anemia. Tibial healing was most pr<strong>of</strong>oundly influenced: non-union<br />

rates <strong>of</strong> 30.6% at Hgb


should be considered when trying to prevent future fractures and<br />

calculating overall costs associated a particular surgical procedure.<br />

posteR No. p467<br />

Age Matters: A Comparison Of Distal Radius Fractures<br />

In Young Adult And Elderly Patient Populations<br />

Joshua C Fox, MD, Dallas, TX<br />

Adam Jennings Starr, MD, Dallas, TX<br />

Rahul Banerjee, MD, FACS, Dallas, TX<br />

Adam Z Neustein, BS, Dallas, TX<br />

Acute fractures <strong>of</strong> the distal radius are among the most common<br />

bony injuries treated by orthopaedic surgeons. The purpose <strong>of</strong> this<br />

study was to compare and contrast the patterns <strong>of</strong> distal radius<br />

fractures seen at a level I trauma center in two populations, young<br />

adults and the elderly. Utilizing the trauma registry, all distal radius<br />

fractures treated at our level I trauma center between January 1,<br />

2006 and January 1, 2008 were identified and reviewed. Of these<br />

patients, two groups were selected based on age. The groups were<br />

young adults (ages 18-35 years) and the elderly (age >59 years).<br />

Over this two-year period, 131 young adults (132 wrists) and 67<br />

elderly (69 wrists) were treated at our institution for distal radius<br />

fractures. Electronic medical records from emergency department<br />

visits and digital radiographs <strong>of</strong> injury films were examined to<br />

determine demographic information and mechanism <strong>of</strong> injury and<br />

to classify fracture patterns according to the AO-OTA classification<br />

system. The patients in the young adult group were more likely to<br />

have been injured by a high-energy mechanism (50% vs. 18.8%).<br />

In contrast, most patients in the elderly group were injured in a fall<br />

from standing. The rate <strong>of</strong> open fractures was higher in the young<br />

adult group (5.3% vs. 1.4%) and the fractures in this group were<br />

more likely to have a more severe AO-OTA classification (45.1%<br />

vs. 21.7% AO-OTA type C). The proportion <strong>of</strong> female patients was<br />

3.4 times higher in the elderly group (86.6% vs. 25.2%). Our data<br />

provides demographic and epidemiological information for distal<br />

radius fractures seen at a level I trauma center in two specific patient<br />

cohorts. Younger patients tend to have high energy injuries, such as<br />

motor vehicle collisions, and the injury pattern more commonly<br />

involves the articular surface. In the elderly population, fractures are<br />

usually the result <strong>of</strong> low-energy falls and the resulting fractures are<br />

more commonly extra-articular. In the younger population men are<br />

more commonly affected than women, while in the elderly, women<br />

sustain this injury with higher frequency. This is important when<br />

analyzing the multitude <strong>of</strong> articles relating to treatment <strong>of</strong> distal<br />

radius fractures. Elderly patients and young adults have different<br />

injuries and different mechanisms that all fall into the discussion<br />

<strong>of</strong> distal radius fracture, and these groups should not be grouped<br />

together in analysis <strong>of</strong> treatments and results.<br />

posteR No. p468<br />

Inter- and Intraobserver Reliability <strong>of</strong> Hip Stability after<br />

Posterior Wall Acetabular Fracture<br />

Adrian Thomas Davis, MD, Saint Louis, MO<br />

Berton R Moed, MD, Saint Louis, MO<br />

Hip stability status after posterior wall acetabular fracture involving<br />

20% to 50% <strong>of</strong> the posterior wall is difficult to determine. However,<br />

noted experts have pr<strong>of</strong>essed that hip stability can be accurately<br />

determined by careful review <strong>of</strong> good quality anterior/posterior<br />

and oblique plain radiographs and a CT scan. The purpose <strong>of</strong> this<br />

study was to evaluate the interobserver and intraobserver reliability<br />

and accuracy <strong>of</strong> fellowship-trained orthopaedic traumatologists in<br />

determining hip stability in these fractures. Plain radiographs and<br />

axial CT images <strong>of</strong> 15 fractures involving 20% to 50% <strong>of</strong> the posterior<br />

842<br />

wall were reviewed by four expert, fellowship-trained orthopaedic<br />

traumatologists specializing in acetabular fractures. A determination<br />

<strong>of</strong> hip stability status was made for each fracture at two time points<br />

based on these images along with any history <strong>of</strong> dislocation <strong>of</strong> the<br />

hip at the time <strong>of</strong> injury. These determinations were compared to<br />

the findings <strong>of</strong> examination under anesthesia (EUA), which served<br />

as the gold standard. Although intraobserver reliability was good<br />

(0.65), interobserver reliability was poor (0.12). In addition, percent<br />

correct was only 53.3% for the initial reading and only 51.7% for<br />

the second. For the initial reading, sensitivity and specificity were<br />

100% and 12.5%, respectively. For the second reading, the sensitivity<br />

and specificity were 57.1% and 46.9%, respectively. <strong>Orthopaedic</strong><br />

traumatologists expert in acetabular fracture care cannot adequately<br />

determine hip stability status for fractures involving 20% to 50% <strong>of</strong><br />

the posterior wall using plain radiographs and CT. EUA is vital in<br />

determining hip stability status for these fractures.<br />

posteR No. p469<br />

Open Distal Radius Fractures: Implications <strong>of</strong> Time to<br />

Debridement and Fixation Type<br />

John Kurylo, MD, Boston, MA<br />

Thomas W Axelrad, MD, New York, NY<br />

Paul Tornetta III, MD, Boston, MA<br />

Andrew Jawa, MD, Boston, MA<br />

There is a scarcity <strong>of</strong> literature regarding complications and methods<br />

<strong>of</strong> treatment <strong>of</strong> open distal radius fractures. The purpose <strong>of</strong> this<br />

study is tw<strong>of</strong>old: to compare patterns <strong>of</strong> open and closed injuries;<br />

and to evaluate the effect <strong>of</strong> delayed debridement and the choice <strong>of</strong><br />

initial fixation on the rates <strong>of</strong> infection, malunion and nonunion.<br />

Forty consecutive patients with 41 open distal radius fractures were<br />

identified from a prospectively collected database. Nine patients<br />

without adequate follow up were excluded. Among the 32 injuries,<br />

10 had early (6<br />

hours). Twenty fractures were treated with external fixation (Group<br />

1), seven with plating (Group 2) and five with planned conversion<br />

from external fixation to plating (Group 3). There were 19 Guistillo<br />

and Anderson grade 1, 11 grade 2, and two grade 3A injuries. Each<br />

open fracture was matched with three closed-fracture controls. Each<br />

fracture was assessed for displacement, dorsal comminution and<br />

associated ulna fractures. Open fractures were more likely to be<br />

displaced (p


through an institutional fracture database. Patient demographic data,<br />

comorbidities, mechanism <strong>of</strong> injury, associated injuries, fracture<br />

type, treatment and mortality information were assessed. Data was<br />

analyzed with SPSS 17.0 statistics s<strong>of</strong>tware. From a prospectively<br />

collected fracture database, there were 1,123 acetabular fractures<br />

treated between 2004 and 2009. There were 156 patients (14%)<br />

aged 65 years or older. In these senior patients, 70% had either an<br />

associated both-column or anterior column/posterior hemitransverse<br />

(AC/PHT) fracture pattern. Not surprisingly, 82% <strong>of</strong> the patients<br />

had significant medical comorbidities. Fifty-seven patients (36.5%)<br />

underwent open reduction and internal fixation using standard<br />

reduction techniques and surgical implants. Skilled nursing facilities<br />

were utilized after their initial hospitalization in 77% <strong>of</strong> patients.<br />

Fifty-one patients (33%) died within one year, and 75% <strong>of</strong> those<br />

were dead within 90 days <strong>of</strong> their acetabular fracture. Of the 51 that<br />

died during the study period, 84% had non-operative treatment. For<br />

those patients treated with traction alone, there was a 79% one-year<br />

mortality and a nearly 50% mortality rate at 90 days. Of the 105<br />

surviving patients, 91% underwent operative treatment. Acetabular<br />

fractures in senior patients occur uncommonly, but when they do<br />

occur there is a very high incidence <strong>of</strong> associated both column and<br />

AC/PHT fracture patterns. Routine fixation constructs and implants<br />

can be used effectively. The 90-day and one-year mortality rates are<br />

surprisingly high, especially in those senior patients treated without<br />

surgery.<br />

posteR No. p471<br />

Treatment <strong>of</strong> Proximal Femur Fractures using an<br />

Extended-Short Nail<br />

Russel C Wright, BS, Burbank, CA<br />

Stephan Vahe Yacoubian, MD, Burbank, CA<br />

Raymond B Raven III, MD, Burbank, CA<br />

Yuri Falkinstein, MD, Burbank, CA<br />

Shahan V Yacoubian, MD, Burbank, CA<br />

This study was performed to evaluate the effectiveness <strong>of</strong> extendedshort<br />

(ES) nails for the treatment <strong>of</strong> intertrochanteric (IT) fractures.<br />

ES nails are long cephalomedullary nails which can be locked at the<br />

same distance as the distal locking hole <strong>of</strong> a short intramedullary<br />

(IM) nail. This study retrospectively reports on the two-year patient<br />

outcome <strong>of</strong> the first 150 consecutive patients undergoing IT fracture<br />

fixation with ES nails. In total, 150 consecutive patients presenting<br />

with IT fractures were admitted through the emergency department <strong>of</strong><br />

a single community hospital, consented for surgery and subsequently<br />

followed for two years. The operative technique for the ES nail<br />

system consists <strong>of</strong> operative closed reduction with use <strong>of</strong> a fracture<br />

table and follows standard trochanteric-entry cephalomedullary<br />

nailing methods with canal reaming. Locking screws were targeted<br />

and inserted at the mid-femur at the nail’s ES hole. Before the twoyear<br />

postoperative examination, 38 (25.3%) patients had died and<br />

19 (12.7%) patients were lost to follow up for various reasons.<br />

Among the 93 patients available at two years, 54 (58.1%) had<br />

returned to their prefracture patient activity score. There were two<br />

postoperative periprosthetic fractures, two wound infections and<br />

three postoperative hematomas. No nonunions, implant failures,<br />

cutouts or fixation failures occurred. The hybrid design <strong>of</strong> the ES nail<br />

combines the mechanical characteristics <strong>of</strong> long IM nails with the<br />

surgical ease <strong>of</strong> use <strong>of</strong>fered with short IM nails. This unique nail type<br />

obviates the freehand technique for targeting distal locking screws,<br />

leading to reduced operative time and radiation exposure. The ease<br />

<strong>of</strong> use, low rate <strong>of</strong> complication, high rate <strong>of</strong> union and favorable<br />

rate <strong>of</strong> return to prefracture patient activity level suggests this nail<br />

type to be a viable option in the management <strong>of</strong> hip fractures.<br />

843<br />

posteR No. p472 AlteRNAte pApeR<br />

Infection Following External Fixation in Tibial Plateau<br />

Fractures: Is Pin SitePlate Overlap a Cause<br />

Catherine N Laible, MD, New York, NY<br />

Emily Earl-Royal, BA<br />

Roy Davidovitch, MD, New York, NY<br />

Kenneth A Egol, MD, New York, NY<br />

Michael Walsh, PhD, New York, NY<br />

It is common practice to place external fixator pins away from the<br />

field <strong>of</strong> future internal fixation in the setting <strong>of</strong> temporary external<br />

fixation. This practice is driven by the theory that pin site colonization<br />

is a potential source <strong>of</strong> infection at the time <strong>of</strong> definitive fixation. To<br />

our knowledge, no prior published study has looked at this potential<br />

association. The purpose <strong>of</strong> this study was to determine whether or<br />

not overlap between temporary external fixator pins and definitive<br />

plate fixation correlates with infection in high energy tibial plateau<br />

fractures. We performed a retrospective clinical review <strong>of</strong> an existing<br />

database <strong>of</strong> patients who received immediate placement <strong>of</strong> knee<br />

spanning external fixation followed by delayed internal fixation<br />

for high-energy tibial plateau fractures treated at our institution<br />

between 2000 and 2008. Seventy-nine patients with unilateral tibial<br />

plateau fractures formed the basis <strong>of</strong> this report. The mean age <strong>of</strong><br />

the cohort was 47 years. Sixty patients (76%) were men and 19<br />

(24%) were women. There were 62 (79%) Schatzker VI fractures,<br />

15 (19%) Schatzker V fractures, one (1%) Schatzker IV fracture, and<br />

one (1%) Schatzker II fracture. There were 17 (21%) open fractures<br />

and 62 (79%) closed fractures. Of the 79 fractures treated, six (7.6%)<br />

developed deep infections requiring serial irrigation and debridement<br />

procedures and intravenous antibiotics. Radiographs were reviewed<br />

to assess for the presence <strong>of</strong> overlap between the temporary external<br />

fixator pins and the definitive plate. Fisher exact and t-test analyses<br />

were performed to compare those patients who had overlap and<br />

those who did not, and were used to determine whether this was<br />

a factor in the development <strong>of</strong> a post-operative infection. Six knees<br />

in six patients developed deep infections requiring serial irrigation<br />

and debridement procedures and intravenous antibiotics. Of these<br />

six infections, three were in patients with closed fractures and three<br />

in patients with open fractures. Two <strong>of</strong> these six infections followed<br />

definitive plate fixation that overlapped the external fixator pin<br />

sites, with an average <strong>of</strong> 4.2 cm <strong>of</strong> overlap. In the four patients who<br />

developed an infection and had no overlap, the average distance<br />

between the tip <strong>of</strong> the plate to the first external fixator pin was 6.3<br />

cm. There was no correlation seen between infection and distance<br />

from pin to plate, pin-plate overlap distance, time in external fixator,<br />

open fracture, classification <strong>of</strong> fracture, sex <strong>of</strong> the patient, age <strong>of</strong><br />

the patient or healing status <strong>of</strong> fracture. Fears <strong>of</strong> definitive fracture<br />

fixation site contamination from external fixator pins do not appear<br />

to be clinically grounded. When needed we recommend the use<br />

<strong>of</strong> a temporary external fixation construct with pin placement that<br />

provides for the best reduction and stability <strong>of</strong> the fracture, regardless<br />

<strong>of</strong> plans for future surgery.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


posteR No. p473<br />

Articular Exposure with the Swashbuckler Versus a<br />

Mini-Swashbuckler Approach<br />

Michael John Beltran, MD, San Antonio, TX<br />

James Alan Blair, MD, San Antonio, TX<br />

Jeannie Huh, MD, San Antonio, TX<br />

Jess McKarns Kirby, MD, Davidson, NC<br />

Joseph R Hsu, MD, San Antonio, TX<br />

We aim to quantify the articular exposure obtained with a<br />

Swashbuckler approach to the distal femur and compare this to a<br />

“Mini-Swashbuckler” approach. Forty surgical approaches in 20<br />

fresh-frozen hemipelvis specimens were performed using a Miniswashbuckler<br />

approach followed by a traditional Swashbuckler.<br />

Key anatomic landmarks, including the posterior femoral condyles,<br />

intercondylar notch and medial articular margin, were either<br />

directly visualized or palpated with a tonsil clamp. Calibrated digital<br />

photographs were taken from the surgeon’s viewing perspective<br />

after each approach. The digital images were then analyzed using<br />

a computer s<strong>of</strong>tware program, ImageJ (NIH, Bethesda, MD), to<br />

calculate the articular surface square area exposed. The Miniswashbuckler<br />

exposed 87% <strong>of</strong> the articular surface compared to the<br />

Swashbuckler approach(29.48 cm2 vs. 34.03 cm2, p


(460 out <strong>of</strong> 7,349), and with osteonecrosis was 11.1% (41 out <strong>of</strong><br />

369). In all cases, callus and granulation tissue were histologically<br />

observed along the fracture line. A SIF was diagnosed histologically<br />

in 6.5% <strong>of</strong> the surgically removed femoral heads.<br />

posteR No. p477<br />

Bag <strong>of</strong> Bones Treatment <strong>of</strong> Comminuted Distal<br />

Humerus Fractures: Is It Relevant in 2011?<br />

Peter S Vezeridis, MD, Boston, MA<br />

Chaitanya S Mudgal, MD, Boston, MA<br />

Alexander Michael Vezeridis, BA, Boston, MA<br />

James T Monica, MD, Chestnut Hill, MA<br />

Significantly comminuted distal humerus fractures present a<br />

challenging therapeutic dilemma. Non-operative treatment - the<br />

bag <strong>of</strong> bones approach - was first described over 70 years ago. We<br />

tested the hypothesis that non-operative treatment <strong>of</strong> comminuted<br />

distal humerus fractures results in acceptable functional outcome,<br />

particularly in patients with multiple comorbidities. Patients treated<br />

with initial definitive non-operative management for a comminuted<br />

distal humerus fracture between 2007 and 2010 were reviewed.<br />

Demographic data, mechanistic data and functional outcomes<br />

were analyzed. Patients with 12 months or greater follow up were<br />

administered outcomes instruments. Five patients (three males, two<br />

females) were treated with the bag <strong>of</strong> bones approach, with brief<br />

immobilization and early range <strong>of</strong> motion. Average age was 73 years.<br />

All injuries occurred after fall from standing. Medical comorbidities<br />

included atrial fibrillation on coumadin, diabetes mellitus,<br />

osteoporosis and morbid obesity. Two patients had previous surgery<br />

on the ipsilateral extremity. One patient was hospitalized for<br />

septic shock shortly after injury. At six months post-injury, average<br />

flexion was 127.5°, extension was -30°, supination was 82.5° and<br />

pronation was 86°. One patient developed heterotopic ossification<br />

but elbow range <strong>of</strong> motion remained functional. No patients<br />

required pain medications at latest follow up. For three patients at<br />

average 20.7 months follow up, average Mayo Elbow Performance<br />

Score was 95/100 (100 optimal), Oxford Elbow Score was 45.7/48<br />

(48 optimal) and QuickDASH Score was 7.5/100 (0 optimal). Nonoperative<br />

treatment for comminuted intra-articular distal humerus<br />

fractures results in acceptable functional outcome in elderly patients<br />

with multiple comorbidities. This treatment continues to be relevant<br />

in 2011 and should be considered for patients with higher surgical<br />

risk.<br />

posteR No. p478<br />

uThe Effect <strong>of</strong> a Single Dose <strong>of</strong> Ketorolac on<br />

Heterotopic Ossification in a Rat Model<br />

Laurence Kempton, MD, Charlotte, NC<br />

Kevin Baker, MS, Royal Oak, MI<br />

Carola Pechey, Detroit, MI<br />

Elisabeth Michels<br />

James John Verner, MD, Beverly Hills, MI<br />

The purpose <strong>of</strong> this study was to determine whether a single dose<br />

<strong>of</strong> ketorolac inhibits heterotopic ossification (HO). Our hypothesis<br />

was that a local dose <strong>of</strong> ketorolac would inhibit HO greater than a<br />

systemic dose, which would inhibit HO greater than a saline control.<br />

Demineralized bone matrix was implanted into gluteal pouches<br />

in 31 Sprague Dawley rats. Ten rats were injected with saline both<br />

locally and intraperitoneally (control). Eleven rats were injected with<br />

saline locally and ketorolac intraperitoneally (systemic’ group). Ten<br />

rats were injected with ketorolac locally and saline intraperitoneally<br />

(local group). Half the rats were sacrificed at four weeks and the rest at<br />

845<br />

eight weeks. The implants were recovered, and their ash weights were<br />

measured in order to determine the extent <strong>of</strong> mineralization. Mean<br />

percent-mineralization at the four-week time point was 20.04% in<br />

the control group, 27.89% in the systemic group and 29.40% in the<br />

local group. Mean percent-mineralization at the eight-week time<br />

point was 42.69% in the control group, 45.25% in the systemic<br />

group and 43.14% in the local group. Statistical analysis at each time<br />

point revealed no significant differences between groups. Neither<br />

local nor systemic administration <strong>of</strong> a single dose <strong>of</strong> ketorolac had a<br />

noticeable effect on HO formation at the four and eight-week time<br />

points. This suggests that fracture healing may not be inhibited by<br />

a single perioperative dose <strong>of</strong> ketorolac. Also, a single injection <strong>of</strong><br />

ketorolac is not likely adequate for HO prophylaxis.<br />

posteR No. p479<br />

A Cost Utility Analysis Of Hemiarthroplasty And<br />

Internal Fixation In Femoral Neck Fractures<br />

Gudrun Waaler, MSc<br />

Eline Aas, PhD, Oslo, Norway<br />

Hemiarthroplasty is the most common treatment <strong>of</strong> displaced<br />

femoral neck fractures in the elderly. We preformed a cost utility<br />

analysis to assess the cost effectiveness <strong>of</strong> hemiarthroplasty compared<br />

to internal fixation. In total, 222 patients above 60 years <strong>of</strong> age<br />

were randomized to internal fixation with two parallel screws or a<br />

bipolar cemented hemiarthroplasty. Mainly due to cognitive failure<br />

or death, 56 patients failed to complete the EQ-5D questionnaire at<br />

any follow up, hence 166 patients, 124 women (75%), mean age 82<br />

years were available for analysis. Quality <strong>of</strong> life was assessed with the<br />

EQ-5D at four, 12 and 24 months, and used to calculate patients’<br />

quality adjusted life-years (QALYs) during the two-year period.<br />

Resource use in hospital, rehabilitation, community-based care and<br />

nursing home was identified, quantified and valued. The cost for the<br />

initial hospital stay was lower for the internal fixation group, but due<br />

to reoperations (45 vs. nine; p


fluoroscopic guide without bone graft. Seventeen <strong>of</strong> the 18 fractures<br />

from the TN group and all fractures from the SP group went on to<br />

union. Time to union was similar in both groups. There was no<br />

complication except one deep infection and resulted nonunion after<br />

TN. All patients showed excellent clinical results <strong>of</strong> Flynn’s criteria.<br />

The average operative time was 104 minutes for SP and 94.7 minutes<br />

for TN (P = 0.095). The average fluoroscopy time was 87% greater<br />

for the SP group (109 seconds) than for the GT group (58 seconds)<br />

(P


posteR No. p483<br />

Dynamization <strong>of</strong> the Taylor Spatial Frame<br />

Christopher August Iobst, MD, Key Biscayne, FL<br />

Anthony Khoury, BS<br />

Zach Ingwer, BS<br />

Edward L Milne, Miami Beach, FL<br />

David N Kaimrajh, Miami, FL<br />

Loren L Latta, PhD, Plantation, FL<br />

There have not been any attempts to study dynamization <strong>of</strong> the<br />

Taylor Spatial Frame. A modifed shoulder bolt with 2 mm extra<br />

length was created as a method <strong>of</strong> dynamizing the Taylor Spatial<br />

Frame. The objective <strong>of</strong> this study was to define what type <strong>of</strong> motions<br />

occur with sequential unlocking <strong>of</strong> struts, and to see if the use <strong>of</strong><br />

a modified shoulder bolt applied to the ring can control the shear<br />

motions while allowing the desired axial motion at the fracture/<br />

osteotomy site. Dynamized Ilizarov threaded rods were used as a<br />

control. Five sawbones tibias had Taylor Spatial Frames applied and<br />

a 5 cm gap was created just below the tibial tubrical. Axial load was<br />

applied from 20 N tension to -200 N compression aligned to the<br />

position <strong>of</strong> the predicted resultant force at heal strike. Six degrees<br />

<strong>of</strong> freedom <strong>of</strong> motion between the proximal and distal fragments<br />

was measured with a Selspot system for loading with all struts<br />

tight, then for progressive unlocking <strong>of</strong> each strut, followed by the<br />

application <strong>of</strong> a modified shoulder bolt at each struts connection<br />

to the proximal ring which can allow sliding <strong>of</strong> up to 2 mm and<br />

finally the application <strong>of</strong> Ilizarov rods locked to the rings. Coronal<br />

and sagittal shear motions were combined by vector summation to<br />

create a total shear motion at the gap. Shear translations were 1.3 ±<br />

1.1 mm for locked struts, 13.7 ± 12.1 mm with one strut unlocked,<br />

1.7 ± 0.9 mm with the modified shoulder bolts and 0.7 ± 0.2 mm<br />

for the Ilizarov posts. The vertical translations were 1.1 ± 0.3 mm for<br />

locked struts, 15.5 ± 4.3 mm for one strut unlocked, 3.15 ± 0.9 mm<br />

for the modified shoulder bolts and 0.23 ± 0.06 mm for the Ilizarov<br />

rods. The 2 mm dynamization shoulder bolts were able to increase<br />

the axial motion <strong>of</strong> the Taylor Spatial Frame by approximately 2<br />

mm which was a statistically significant degree while also reducing<br />

the shear movement. Other techniques for dynamizing the Taylor<br />

Spatial Frame, such as loosening struts, should be avoided due to the<br />

large amounts <strong>of</strong> shear that occur at the fracture/osteotomy site.<br />

posteR No. p484<br />

Correlated Biomechanical and Histological Changes in<br />

a Remodelable Bone/Polymer Biocomposite Implant<br />

Moussa Hamadouche, MD PhD, Paris, France<br />

Christophe Nich, MD, Paris, France<br />

Dr Bertrand David, Châtenay-Malabry Cedex, France<br />

Karim Oudina, MS<br />

Valentin Myrtille, MS<br />

Herve Petite, PhD<br />

The aim <strong>of</strong> this study was to correlate the histological and mechanical<br />

properties over time in a remodelable bone graft substitute in a<br />

rabbit defect model. A biocomposite <strong>of</strong> bioresorbable polymer and<br />

mineralized cortical allograft bone fibers was implanted during<br />

its moldable phase in 6 x 4.5 mm defects, in the distal femurs <strong>of</strong><br />

New Zealand white rabbits. Animals were sacrificed immediately<br />

after implantation, and at eight, 16 and 24 weeks. Specimens<br />

dedicated to compressive testing were loaded and UCS calculated.<br />

Other specimens were embedded in polymethylmethacrylate for<br />

non-decalcified histology. Cross-sections were prepared to 120 mm<br />

thickness allowing for histomorphometric measurement <strong>of</strong> bone<br />

tissue in the defect. The biocomposite graft progressively remodeled<br />

847<br />

into newly formed bone from the periphery towards the center <strong>of</strong><br />

the defect. Histomorphometric analysis revealed that bone fraction<br />

increased from 27.7% (representing bone <strong>of</strong> the composite)<br />

immediately after implantation to 36.7% at eight weeks and 74.5%<br />

at 16 weeks (significant, p


and epidemiology <strong>of</strong> patients with orthopaedics injuries transferred<br />

to a Level-I trauma center. Prospective data was supplemented<br />

through chart review on all patients transferred to a Level-I trauma<br />

center with orthopaedic injuries (N=546) from January 1, 2007 to<br />

December 31, 2007. The accepting orthopaedic trauma surgeon<br />

evaluated the appropriateness <strong>of</strong> transfer by visual analog scale (VAS).<br />

In addition to VAS scores, demographics and appropriateness were<br />

collected on each patient transferred to the trauma center requiring<br />

orthopaedic trauma service involvement. The authors considered<br />

16.5% <strong>of</strong> the cohort inappropriate transfers, 49.3% appropriate and<br />

the remaining 34.2% were designated as intermediate. The transfers<br />

came from an emergency department physician in 81% <strong>of</strong> cases, an<br />

orthopaedic surgeon in 14% <strong>of</strong> cases, and 5% via general surgeon<br />

or internist. One hundred forty-eight cases transferred primarily<br />

due to orthopaedic injuries had an available orthopaedic surgeon<br />

on call at the original institution. Sixty percent were transferred due<br />

to orthopaedic injury complexity, but only 39% <strong>of</strong> the 148 were<br />

evaluated by an actual orthopaedic surgeon prior to transfer. Lack<br />

<strong>of</strong> orthopaedic coverage at the referring hospital accounted for 27%<br />

<strong>of</strong> transfers. A total <strong>of</strong> 16.5% <strong>of</strong> transfers were deemed completely<br />

inappropriate by the accepting orthopaedic traumatologist. Most<br />

transfers, both appropriate and inappropriate, were attributed to<br />

either complete lack <strong>of</strong> orthopaedic coverage or a lack <strong>of</strong> expertise<br />

at the referring center.<br />

posteR No. p488<br />

Divergent Trends between Typical and Atypical Hip<br />

Fractures in the US Elderly, 1996-2007<br />

Timothy Bhattacharyya, MD, Bethesda, MD<br />

Zhong Wang, PhD<br />

Increasing numbers <strong>of</strong> atypical hip fractures have been reported. Large<br />

studies have argued that the subtrochanteric fractures are quite rare.<br />

The true trend in incidence is unknown. To compare trends between<br />

atypical and typical hip fractures between men and women 65 years<br />

or older, we conducted cross-sectional studies from 1996 to 2007 on<br />

619,044 hospitalizations in the Nationwide Inpatient Sample with a<br />

primary surgical procedure and a primary diagnosis <strong>of</strong> either a typical<br />

closed hip fracture in femoral neck and intertrochanteric regions or<br />

an atypical closed fracture in the subtrochanteric region. National<br />

estimates and sex-specific, age-adjusted rates <strong>of</strong> hip fractures were<br />

measured. Between 1996 and 2007, the annual national estimate<br />

for typical hip fractures decreased 12.8% from 263,623 to 229,942.<br />

Among women, age-adjusted rates <strong>of</strong> typical hip fractures decreased<br />

by 31.6% (from 1,020.5 to 697, four fractures per 100,000) and<br />

among men, by 20.5% (from 424.9 to 337.6 fractures per 100,000).<br />

In contrast, national estimates for atypical hip fractures increased<br />

31.2% from 8,273 to 10,853. Joinpoint regression analysis indicated<br />

that trends in age-adjusted rates for atypical hip fractures remained<br />

unchanged among men (p=0.34), but increased 20.4% among<br />

women from 28.4 (95% confidence interval CI], 27.7-29.1) in 1999<br />

to 34.2 (96% CI, 33.4-34.9) fractures per 100,000 in 2007. The<br />

annual percentage increase was 2.1% (95% CI, 1.3-2.8, p


clean orthopaedic surgery with the frequency <strong>of</strong> contamination<br />

tending to increase towards the end <strong>of</strong> the operations.<br />

posteR No. p491<br />

Treatment <strong>of</strong> Nonunion <strong>of</strong> Femoral Neck Fracture by<br />

Valgus Osteotomy in 33 Cases<br />

Masoud Norouzi, Tehran, (Islamic Republic <strong>of</strong>) Iran<br />

Dr Mohammad Nasir Naderi, Tehran, (Islamic Republic <strong>of</strong>) Iran<br />

In spite <strong>of</strong> advances in treatment, femoral neck fractures are<br />

complicated fractures with a relatively high incidence <strong>of</strong> nonunion.<br />

Between 1990 and 2004, 33 patients with nonunion <strong>of</strong> femoral neck<br />

fractures were treated by valgus osteotomy in our department. The<br />

mean age <strong>of</strong> patients at the time <strong>of</strong> operation was 38 years (range<br />

from 16 to 60 years). Reasons for non-union were implant failure in<br />

21 and osteomalacia in two patients. The remaining 10 patients were<br />

treated non-operatively. Average neck-shaft angle was 109 (78-125)<br />

degree and the average shortening <strong>of</strong> the involved limb was 2.5 (0.5-<br />

4.5) centimeters. After subtrochantric valgus osteotomy, fracture<br />

healing occurred in 32 <strong>of</strong> 33 patients. The average time for healing<br />

was five months (range three to eight months). Pain and limitation<br />

<strong>of</strong> motion improved remarkably and the majority <strong>of</strong> patients did<br />

not need to use crutches. Post-operatively neck-shaft angle was 140<br />

(125-160) degrees and shortening reduced to an average <strong>of</strong> one<br />

centimeter. Partial avascular necrosis <strong>of</strong> the femoral head developed<br />

in five patients after six to 12 months. Valgus osteotomy <strong>of</strong> the femur<br />

is a suitable procedure for treatment <strong>of</strong> femoral neck nonunion in<br />

young patients, easy to perform with relatively good results.<br />

posteR No. p492<br />

Influences <strong>of</strong> Rotation on Neck-Shaft Angle<br />

Measurements in the Varus Malreduced Proximal<br />

Femur<br />

Meir Tibi Marmor, MD, Foster City, CA<br />

Robert Trigg McClellan, MD, San Francisco, CA<br />

Amir Matityahu, MD, San Francisco, CA<br />

Varus and shortening are the most common malreductions seen<br />

in proximal femoral fractures, and may lead to poor functional<br />

outcome. It is assumed that in order to quantify the neck-shaft<br />

angle (NSA) <strong>of</strong> the femur, x-ray measurements have to be performed<br />

with the leg internally rotated to compensate for proximal femoral<br />

external rotation and version. Since in most <strong>of</strong> the our patients, we<br />

cannot verify the rotation <strong>of</strong> the leg when x-rays were taken, the<br />

purpose <strong>of</strong> this study was to define the utility <strong>of</strong> in situ neck-shaft<br />

angle measurements on the anterior posterior (AP) x-ray. First, CT<br />

scans <strong>of</strong> 20 patients (40 hips) undergoing abdominal CT scans were<br />

assessed for the in-situ rotation <strong>of</strong> the femoral neck relative to the<br />

scanner bed. Then, NSA <strong>of</strong> three saw-bones with intertrochanteric<br />

osteotomies were measured after they were subjected to anatomic<br />

reduction (AR), varus malreduction <strong>of</strong> 20° (VM), and shortening<br />

malreduction <strong>of</strong> 10 mm (SM). The proximal femurs were then<br />

rotated in 5° intervals from 45° <strong>of</strong> internal rotation (IR) to 50°<br />

<strong>of</strong> external rotation (ER) and x-rays performed. Two independent<br />

trauma trained orthopaedic surgeons measured the femoral NSA<br />

using well-established techniques. The rotation <strong>of</strong> the neck <strong>of</strong><br />

the femur relative to the CT scanner bed in the 40 hips averaged<br />

23.4±9.9° <strong>of</strong> external rotation. The measured NSA was 128° for the<br />

AR femur, 107.5° for the VM femur and 127.5° for the SM femur.<br />

NSA measurements varied less than 5° with less than 30° <strong>of</strong> rotation<br />

in the proximal femur but drastically increased with continued ER or<br />

IR for all groups. At 50° <strong>of</strong> ER, the average NSA was 137.5° for the AR<br />

femur, 115.5° for the VM femur and 139.5° for the SM femur. At 40°<br />

<strong>of</strong> IR, the average NSA was 143.5° for the AR femur, 116.0° for the<br />

849<br />

VM femur and 134.5° for the SM femur. The measured NSAs, when<br />

the femur is rotated, were correlated to the angles predicted from the<br />

following formula: NSA= 90 + tan-1vertical height/(<strong>of</strong>fset*cos(beam<br />

angle))].<br />

posteR No. p493<br />

The Preoperative Diagnosis <strong>of</strong> Infection in Nonunions<br />

Paul Tornetta III, MD, Boston, MA<br />

Charlton Stucken, MD, Boston, MA<br />

Dana Olszewski, MD, Boston, MA<br />

William R Creevy, MD, MBA, Boston, MA<br />

The purpose <strong>of</strong> this study is to report on the utility <strong>of</strong> a standardized<br />

protocol to rule out infection in high risk nonunion patients,<br />

and to evaluate the efficacy <strong>of</strong> each component <strong>of</strong> the protocol. A<br />

protocol <strong>of</strong> preoperative tests (WBC, CRP, ESR), a combined white<br />

cell/sulfur colloid scan and intraoperative gm stain and biopsy<br />

were performed in high risk nonunion patients. Infection was<br />

diagnosed based on positive intra-operative cultures, a finding <strong>of</strong><br />

gross infection or infection in the immediate postoperative period.<br />

Ninety-three patients with 95 nonunions and available records for<br />

the above protocol were surgically treated for nonunion. Thirty <strong>of</strong><br />

the 95 nonunions were ultimately diagnosed as being infected. The<br />

utility <strong>of</strong> the protocol components are seen below: Test - Sensitivity<br />

Specificity -PPV-NPV White Cell Scan - 19%, 92%, 50%, 72% ESR<br />

>30; 58%, 80%, 58%, 80% CRP >1.0; 61%, 75%, 54%, 75% WBC<br />

>11,000; 22%, 89%, 50%, 70% Path WBC >3; HPF 40%, 81%,<br />

40%, 81%. Using a combination <strong>of</strong> the risk factors (elevated WBC,<br />

ESR, CRP and (+) scan), the PPV for 0, 1, 2 and 3 risk factors being<br />

positive were 22%, 36%, 57% and 83% respectively. Eliminating the<br />

more expensive nuclear scan, leaving only WBC, ESR and WBC, the<br />

PPV for 0, 1, 2 and 3 risk factors were 25%, 27%, 58% and 100%.<br />

In the face <strong>of</strong> prior surgery or history <strong>of</strong> open fracture, quiescent<br />

infection is common. None <strong>of</strong> the tests that we performed on this<br />

difficult population <strong>of</strong> patients was independently accurate We<br />

recommend simple blood tests and intra-operative WBC/HPF for<br />

the pre- and intra- operative workup <strong>of</strong> quiescent infection in high<br />

risk nonunions.<br />

posteR No. p494<br />

The Effect <strong>of</strong> Locking Plugs on the Strength <strong>of</strong> a<br />

Locking Plate Construct in an Osteoporotic Model<br />

Brad Matthew Picha, MD, Dayton, OH<br />

Michael J Prayson, MD, Dayton, OH<br />

Tarun Goswami, DSc<br />

Locking plates are becoming increasingly more popular as tools <strong>of</strong><br />

fixation in fracture care. When a plate spans a region <strong>of</strong> comminution<br />

this creates an area <strong>of</strong> increased stress. This area may be predisposed<br />

to early failure. Filling these holes with locking plugs may help to<br />

reduce the point stress and thereby help to decrease plate failure. The<br />

purpose <strong>of</strong> this study was to examine the biomechanical strength <strong>of</strong><br />

a 10-hole LCP plate in an osteoporotic bone model with and without<br />

locking plugs inserted at the fracture site. The plates were tested<br />

under torsion and axial load using a 2 centimeter osteotomy gap.<br />

Each group was subdivided with the experimental group containing<br />

locking plugs at the osteotomy site while same number <strong>of</strong> constructs<br />

in the control group did not. For the axial group, the specimens<br />

were initially placed through 30,000 cycles at a load <strong>of</strong> -50N to<br />

-350N. After cyclic testing the specimens were loaded to failure. For<br />

the torsion testing, specimens were initially placed through 30,000<br />

cycles at a load <strong>of</strong> -3 Nm to +3 Nm with a frequency <strong>of</strong> 2 Hz. The load<br />

to failure was then attained. There were no statistically significant<br />

differences observed in either the axial load group or the torsional<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


load group for displacement, load to failure and stiffness. There were<br />

however, meaningful trends evident in displacement and stiffness<br />

measurements. This biomechanical study failed to demonstrate<br />

statistically significant biomechanical improvements. Meaningful<br />

trends were evident which support further investigation.<br />

posteR No. p495<br />

uThe Effect <strong>of</strong> a Removable Venous Filter during<br />

Medullary Canal Pressurization: A Canine Study<br />

Joseph M Caldwell, II MD, Akron, OH<br />

William Lanzinger, MD<br />

Mark C Leeson, MD, FACS, Akron, OH<br />

Dennis Wright, MD, FACS<br />

Kimberly Stakleff, PhD, Akron, OH<br />

The rate <strong>of</strong> acute respiratory distress syndrome (ARDS) is higher in<br />

trauma patients with acutely treated femoral shaft fractures with<br />

reamed intramedullary (IM) nailing (Pape et al). This is thought to<br />

be due to the liberation <strong>of</strong> bone marrow fat particles during reaming,<br />

which then travel to the lung and cause damage to the parenchyma.<br />

The purpose <strong>of</strong> this study is to 1) demonstrate the ability <strong>of</strong> a clinically<br />

applicable and retrievable venous filter to capture such particles and<br />

2) how such a device affects lung function after reamed IM nailing. A<br />

total <strong>of</strong> 12 canine test subjects were used, four control and eight test<br />

subjects. The subjects were anesthetized and a Swan-Ganz catheter,<br />

arterial line and the removable venous filter were introduced. The<br />

femoral and tibial canals were then reamed and an IM nail was<br />

placed in each. Various pulmonary and cardiac effects were then<br />

measured and recorded at timed intervals up to 60 minutes after the<br />

procedure. The filter and a lung sample were retrieved for analysis.<br />

On gross inspection, the retrieved filters did indeed capture bone<br />

marrow debris that was liberated. There was a statistically significant<br />

difference (p=0.0476) in the change in pH at 60 minutes after IM<br />

nailing (control = -0.052, experimental = -0.013). Also, a significant<br />

difference was noted in the change in serum bicarbonate (meq/dl)<br />

between the two groups. The control group had a change <strong>of</strong> -3 and<br />

-1.8 at 10 and 60 minutes, respectively. The experimental group had<br />

a change <strong>of</strong> +0.6 and +1.2 at those intervals (p=0.0238, 0.0167 at<br />

10 and 60 minutes, respectively). The oxygen saturation levels were<br />

lower in the control group at the 10 and 15 minute intervals. In this<br />

canine model, the filters did capture and allow retrieval <strong>of</strong> embolic<br />

debris from reamed IM nailing <strong>of</strong> lower extremity long bones and<br />

had a protective effect on pulmonary function after the procedure.<br />

We propose that the multiply injured patient at risk for pulmonary<br />

complications and ARDS with long bone fractures could benefit<br />

from such filters prior to intramedullary fixation.<br />

posteR No. p496<br />

The Effect <strong>of</strong> Femoral Lateral Locked Plate Position in<br />

the Setting <strong>of</strong> a Well-Fixed Proximal Stem<br />

Dan Kemper, MD, Salt Lake City, UT<br />

Daniel Scott Horwitz, MD, Salt Lake City, UT<br />

Erik Kubiak, MD, Salt Lake City, UT<br />

Thomas F Higgins, MD, Salt Lake City, UT<br />

Andrew E Anderson, PhD, Salt Lake City, UT<br />

Lateral locking plates are used to treat periprosthetic femur fractures<br />

distal to a well-fixed stem. There is concern for a potential stress riser<br />

as the gap decreases between the proximal plate and distal stem, but<br />

the relationship between the plate and stem with regards to length<br />

is unknown. This study analyzed the effect <strong>of</strong> construct length on<br />

cortical strain between a femoral lateral locking plate and a well-fixed<br />

cemented stem in a fall loading model. Eight composite femurs with<br />

850<br />

cemented stems were instrumented with progressively increasing<br />

lengths <strong>of</strong> fixation. Cortical surface strains in the inter-prosthetic<br />

region were measured using uniaxial strain gauges. Femurs were<br />

loaded to simulate a fall from height. Load to failure was performed<br />

in three different groups (four specimens per group): 8 cm gap<br />

between implants, 2 cm gap and overlapped using a four-point<br />

bending model. Paired T-tests, corrected for multiple comparisons,<br />

compared changes in strains, load to failure and stiffness between<br />

groups (significance=p0.34). Inter-prosthetic cortical strain was reduced and<br />

loads to failure greatly increased by overlapping a well-fixed proximal<br />

femoral stem with a lateral locking plate. We recommend bypassing<br />

the proximal stem and overlapping implants whenever possible.<br />

posteR No. p497<br />

Pain, Function And Complications After Operations<br />

With A Sliding Hip Screw Or A Nail - A RCT<br />

Kjell Matre, MD, Bergen, Norway<br />

Jonas Meling Fevang, MD, Bergen, Norway<br />

Leif Ivar Havelin, MD, Bergen, Norway<br />

Tarjei Vinje, MD<br />

Jan-Erik Gjertsen, MD, PhD<br />

Birgitte Espehaug, PhD, Bergen, Norway<br />

Ove Nord Furnes, MD, Bergen, Norway<br />

Nailing <strong>of</strong> trochanteric fractures is increasing worldwide. This trend,<br />

however, is not supported by documentation <strong>of</strong> better clinical results<br />

compared to the sliding hip screw (SHS). Therefore, in the present<br />

study, we compared one recently launched nail with the SHS. In this<br />

prospective, randomized multicenter study with 697 patients, we<br />

compared one new nail with the SHS regarding postoperative pain,<br />

functional mobility and complications. Patients older than 60 years<br />

with trochanteric and subtrochanteric fractures were included in five<br />

hospitals. Day five, and three and 12 months postoperatively, pain<br />

was measured using a Visual Analogue Scale (VAS) and the Timed Up<br />

and Go test (TUG-test) was performed to evaluate functional mobility.<br />

A total <strong>of</strong> 328 patients were evaluated at day five postoperatively. At<br />

mobilization, patients treated with the nail had less pain compared<br />

to the SHS (VAS 47 vs. 53). There was no difference in pain at rest or<br />

in early functional mobility. The length <strong>of</strong> postoperative hospital stay<br />

was also similar for the two groups (8.5 and 8.4 days respectively).<br />

At three (457 patients) and 12 months (374 patients) there was no<br />

difference in pain or TUG-test performance. At discharge, three and<br />

12 months, the overall reoperation rate for the groups was similar. In<br />

this prospective randomized trial we found less pain at mobilization<br />

for patients operated with a nail at day five postoperatively compared<br />

to the SHS. No difference in pain or function was evident at later<br />

follow ups. There was no difference in reoperation rates between the<br />

groups.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


posteR No. p498<br />

Fate <strong>of</strong> Combat Nerve Injury<br />

Michael John Beltran, MD, San Antonio, TX<br />

Travis C Burns, MD, Tarrytown, NY<br />

Tobin Eckel, MD, Silver Spring, MD<br />

Benjamin Potter, MD, Washington, DC<br />

Joseph C Wenke, PhD, San Antonio, TX<br />

Joseph R Hsu, MD, San Antonio, TX<br />

Determine whether multiple projectile penetrating injury (MPPI)<br />

is associated with poorer rates <strong>of</strong> motor and sensory improvement<br />

compared to single projectile projectile injury (SPPI) in combatrelated<br />

Type III open tibia fractures. Retrospective study at three<br />

U.S. military medical centers between March 2003 and September<br />

2007 to identify service members who sustained a type III open tibia<br />

fracture with a peripheral nerve injury. Thirty-two patients with 43<br />

peripheral nerve injuries met inclusion criteria and were available<br />

for follow up at an average <strong>of</strong> 20 months. There was no difference in<br />

improvement based on mechanism <strong>of</strong> injury. At an average follow<br />

up <strong>of</strong> 20 months, 89% <strong>of</strong> motor nerve injuries were functional,<br />

while sensory nerve injuries had function in 93% <strong>of</strong> patients. Fifty<br />

and 27% <strong>of</strong> motor and sensory injuries demonstrated improvement,<br />

respectively (p=0.043). With the numbers available there was no<br />

difference in motor or sensory improvement based on mechanism<br />

<strong>of</strong> injury, fracture severity or location, s<strong>of</strong>t tissue injury or specific<br />

nerve injured. In the subset <strong>of</strong> patients with an initially impaired<br />

sensory exam, full improvement was related to fracture severity<br />

and location (p


mice showed greater inflammatory gene expression <strong>of</strong> IL-1 and<br />

TNF-a in the synovial tissue, including a 720-fold increase in IL-1b<br />

expression and 13-fold increase in TNF-a, and significantly higher<br />

levels <strong>of</strong> IL-1b in the serum (p=0.002) following articular fracture<br />

compared to MRL/MpJ mice. C57BL/6 mice showed higher levels<br />

<strong>of</strong> cytokines in the synovial fluid <strong>of</strong> fractured limbs and markedly<br />

increased numbers <strong>of</strong> activated macrophages in synovial tissue<br />

beginning three days post-fracture compared to MRL/MpJ mice.<br />

Control C57BL/6 mice exhibit significantly increased intra-articular<br />

and systemic inflammation following articular fracture compared to<br />

MRL/MpJ mice. The MRL/MpJ mice reduced inflammatory response<br />

after injury may protect them from the development <strong>of</strong> PTA.<br />

posteR No. p502<br />

Acute Compartment Syndrome <strong>of</strong> the Thigh in Combat<br />

Casualties<br />

Brendan David Masini, MD, Schertz, TX<br />

Amber E Ritenour, MD<br />

Adam Wesley Racusin, MD, Round Rock, TX<br />

Joseph C Wenke, PhD, San Antonio, TX<br />

Tad L Gerlinger, MD, San Antonio, TX<br />

Joseph R Hsu, MD, San Antonio, TX<br />

Acute compartment syndrome (ACS) <strong>of</strong> the thigh is a rare clinical<br />

entity and blast injury mechanisms may put soldiers at specific risk.<br />

The spectrum <strong>of</strong> this disease and functional outcome in combat<br />

casualties has not been reported. We hypothesize that mortality,<br />

functional outcome and fasciotomy morbidity are similar to civilian<br />

reports and related to injury severity score (ISS). A chart review<br />

at Landstuhl Regional Medical Center, Germany was performed<br />

for casualties who underwent fasciotomies for ACS in Iraq or<br />

Afghanistan between January 2005 and August 2006. Those who<br />

had fasciotomies for ACS <strong>of</strong> the thigh were evaluated for wounding<br />

patterns and clinical characteristics. Outcomes evaluation was by SF-<br />

36, Short Musculoskeletal Function Assessment questionnaire and a<br />

fasciotomy specific symptom questionnaire. Thirty patients (9% <strong>of</strong><br />

all ACS) had 40 fasciotomies <strong>of</strong> the thigh. A total <strong>of</strong> 87% <strong>of</strong> casualties<br />

were by blast mechanism. Overall mortality was 23%. Average ISS was<br />

22 (1-75). Some 27.5% <strong>of</strong> thighs had femur fractures with average<br />

ISS 20 and 0% mortality. Twelve had >40% total body surface area<br />

burns with average ISS 34 and mortality <strong>of</strong> 58%. Eleven patients<br />

with 15 injured thighs treated with fasciotomy were evaluated for<br />

outcome at avg. 36 months from injury. SFMA scores demonstrated<br />

and average disability index <strong>of</strong> 38.6 ± 5.4 (11-62) and an average<br />

bother index <strong>of</strong> 32 ± 4.3 (6-45). The average SF-36 scores physical<br />

summary 38.4±2.5 (28-51) and mental summary 44.9±5.4 (16-66).<br />

Fasciotomy symptoms reported in order <strong>of</strong> frequency were sensation<br />

changes, dry skin, tethering, edema, discoloration, pruritis, fascial<br />

herniations and symptomatic heterotopic ossification. A total <strong>of</strong> 18%<br />

had surgical site infections. Eight incisions were closed primarily,<br />

six with skin graft and one by secondary intention. There were four<br />

amputations in three patients. Soldiers exposed to blast trauma are<br />

an at-risk population for thigh ACS. Mortality was 47% in patients<br />

with ISS>25 and 0% for ISS


flexion contracture (p=0.001) and female gender (p=0.002) were<br />

both independent predictors <strong>of</strong> worse DASH scores (p=0.016).<br />

Poorer Oxford Elbow scores (p=0.002) and overall satisfaction<br />

ratings (p=0.005) were predicted by reduced flexion-extension arc<br />

<strong>of</strong> movement. Patients report good long-term functional outcomes<br />

after simple dislocations <strong>of</strong> the elbow. These are not entirely benign<br />

injuries. There is a high rate <strong>of</strong> residual pain and stiffness. Functional<br />

instability is less common and does not <strong>of</strong>ten limit activities.<br />

posteR No. p505<br />

The Effect Of Operative Time On Surgical Site Infection<br />

In Tibial Plateau Fractures<br />

Matthew Colman, MD, Pittsburgh, PA<br />

Adam Wright, MD, Pittsburgh, PA<br />

James J Irrgang, PhD, Pittsburgh, PA<br />

Hans-Christoph Pape, MD, Aachen, Germany<br />

Gary S Gruen, MD, Pittsburgh, PA<br />

Peter Siska, MD, Pittsburgh, PA<br />

Ivan Seth Tarkin, MD, Pittsburgh, PA<br />

This study was undertaken to determine whether operative time<br />

during plate osteosynthesis <strong>of</strong> proximal tibia fractures in trauma<br />

patients has an effect on the incidence <strong>of</strong> postoperative surgical site<br />

infection. We performed a retrospective analysis <strong>of</strong> 318 consecutive<br />

unicondylar and bicondylar tibial plateau fractures treated with open<br />

plate osteosynthesis at our institution’s level I trauma center during<br />

a recent five-year period. Exclusion criteria included fractures treated<br />

with external fixation, percutaneous fixation or those fractures where<br />

multiple procedures were performed as part <strong>of</strong> the operative time.<br />

We recorded operative times, fracture pattern and open fracture<br />

grades. A group with postoperative infection as defined by the need<br />

for a subsequent debridement procedure was compared to a group<br />

which did not become infected. Student’s t-test and multivariate<br />

logistic regression analysis were performed to determine statistical<br />

significance. A total <strong>of</strong> 318 tibial plateau fractures (158 unicondylar,<br />

160 bicondylar) were analyzed. We found an overall postoperative<br />

surgical site infection rate <strong>of</strong> 7.9% (unicondylar vs. bicondylar 5.7%<br />

vs. 10.0%, p=0.15). The mean operative time in the infection group<br />

was 2.8 hours vs. 2.2 hours in the non-infected group (p=0.001).<br />

In addition, multivariate logistic regression analysis identified<br />

longer operative time as an independent predictor <strong>of</strong> surgical site<br />

infection (OR 1.8, 95% CI 1.2 to 2.8, p=0.005). Closed fractures<br />

were independently protective against surgical site infection (OR 0.1,<br />

95% CI 0.05 to 0.4, p


posteR No. p508<br />

Hip Impingement - it’s Not Just About OA, Abnormal<br />

Morphology Increases Acetabular Fracture Risk<br />

David J Hak, MD, Denver, CO<br />

Edwin Darren Fern, MBChB, Truro, Cornwall, United Kingdom<br />

Mark Norton, MD, Truro, Cornwall, Uk, United Kingdom<br />

Jules Arthur Dumais, MD, Lubbock, TX<br />

Gavin Bartlett, MBBS, Truro, United Kingdom<br />

Abnormal bony morphology in patients with hip impingement is<br />

characterized by contact between the femoral head neck junction and<br />

acetabular rim. We hypothesized this increased bony constraint may<br />

predispose to acetabular fracture in high energy trauma. We studied<br />

100 patients sustaining acetabular fractures and compared them to<br />

100 similar patients sustaining lateral compression pelvic fractures<br />

following high energy trauma. CT scans and post-op x-rays were<br />

analyzed with the following measurements: center edge angle (CEA),<br />

sourcil angle and alpha angle <strong>of</strong> the femur. Standard criteria were<br />

used to define acetabular dysplasia, cam and pincer impingement.<br />

Statistical analysis was performed using SPSS. A significantly<br />

higher percentage <strong>of</strong> patients in the acetabular fracture group had<br />

x-ray evidence <strong>of</strong> hip impingement (71 vs. 18, p


data when known were similar to prior reports (28 ineffective, 52<br />

effective, 79 unknown). Ineffectiveness was associated with failure to<br />

stop the distal pulse commonly, failure to control hemorrhage and<br />

device breakage rarely. Prehospital effectiveness (76%) was less than<br />

emergency department (ED) effectiveness (86%) indicating that ED<br />

devices may be more effective than prehospital devices. The EMT<br />

was the only emergency department (ED) device in the trial, and it<br />

was the most effective tourniquet probably because <strong>of</strong> its pneumatic<br />

design and great width. However, even when ED personnel used<br />

prehospital devices such as the CAT and SOFTT, users could adjust<br />

the devices or put them side-by-side in use to improve effectiveness<br />

greater than prehospital users which indicated that more user<br />

knowledge was associated positively with higher effectiveness. The<br />

effectiveness <strong>of</strong> single devices was 82% but increased to 92% when<br />

two or more tourniquets were used side-by-side which underscores<br />

the importance <strong>of</strong> width particularly when one realizes that side-byside<br />

use is only done when hemorrhage control has failed with one<br />

device. First aid device wear and tear seems important to best care<br />

but they are rarely analyzed. Compelled to fix the most preventable<br />

cause <strong>of</strong> death on the battlefield, limb exsanguination, the U.S. Army<br />

Institute <strong>of</strong> Surgical Research formed a program to develop emergency<br />

tourniquets and solved the problem. How tourniquets work, i.e., high<br />

trans-mural arterial pressure gradient, is not how they work best, as<br />

the intra-neural gradient has to be low to be safe. Thus, a moderate<br />

pressure gradient over a safe width seems best. The scientific key is<br />

a tissue pressure gradient below a threshold that injures nerves, e.g.,<br />

500 mmHg. The pressure in or under the tourniquet is not the key to<br />

optimal use. The key is the pressure in tissues about the arteries, and<br />

the nerve is the tissue most vulnerable to pressure gradients. These<br />

facts indicate that a refinement <strong>of</strong> tourniquet training and doctrine is<br />

due, and new device designs should incorporate these new findings<br />

in order to improve on the performance <strong>of</strong> current tourniquets and<br />

techniques. The data show that there is an uncommon need for onehanded<br />

tourniquet application, and even if every applier <strong>of</strong> the 16<br />

casualties with bilateral upper extremity tourniquets did use only<br />

one hand, the potential survival benefit is clinically small, infrequent<br />

and currently statistically insignificant. Obviously one-handed<br />

application is more important in those few cases in the field at the<br />

point <strong>of</strong> injury during self-application when one upper extremity<br />

is injured, but one-handed application is less important in aid<br />

stations, ambulances or EDs. The current work reinforces a growing<br />

body <strong>of</strong> knowledge indicating that tourniquet width and design<br />

are associated with safety and effectiveness. Using a comprehensive<br />

approach, the emergency tourniquet program worked with many<br />

organizations successfully to change first aid in combat.<br />

posteR No. p511 AlteRNAte pApeR<br />

Mortality in Female War Veterans <strong>of</strong> Operation<br />

Enduring Freedom and Operation Iraqi Freedom<br />

Jessica Dale Cross, MD, Fort Sam Houston, TX<br />

Anthony E Johnson, MD, Fort Sam Houston, TX<br />

Joseph C Wenke, PhD, San Antonio, TX<br />

Michael J Bosse, MD, Charlotte, NC<br />

James R Ficke, MD, San Antonio, TX<br />

The care <strong>of</strong> female war veterans as a distinct population has not<br />

received much attention in the literature despite the dramatic<br />

increase in females serving in Operations Enduring (OEF) and Iraqi<br />

Freedom (OIF). The purpose <strong>of</strong> this study is to determine whether<br />

the casualty rates for females serving in OEF and OIF differ from<br />

their male counterparts. We calculated the percentage <strong>of</strong> all deaths<br />

by gender for OIF and OEF from the Defense Manpower Statistics<br />

<strong>of</strong> casualties between October 2001 and October 2009. We searched<br />

the Joint Theatre Trauma Registry for female casualties <strong>of</strong> this time<br />

855<br />

period and described their injury characteristics. Female veterans<br />

comprised 1.89% <strong>of</strong> all casualties, 1.99% <strong>of</strong> all casualties in OIF, and<br />

1.13% <strong>of</strong> all casualties in OEF. In OIF, the percent death for women<br />

was 14.47% versus 12.04% for men (P


females with a mean age <strong>of</strong> 44.1 (19-65) and body mass index<br />

(BMI) <strong>of</strong> 26.2 (18-41). Five (22.7%) patients had an associated<br />

femoral shaft fracture. Mechanism <strong>of</strong> injury was low-energy falls<br />

(12/22, 54.5%) and high-energy injuries (10/22, 45.5%). AO/OTA<br />

fracture classification included nine/22 (40.9%) B2 and 13 (59.1%)<br />

B3 fracture pattern. Primary fracture treatment consisted <strong>of</strong> 17/22<br />

(77.3%) ORIF and five/22 (22.7%) CRIF and secondary surgery for<br />

FNNU was 10 intertrochanteric osteotomies and eight arthroplasties.<br />

Complications included leg length shortening (17/22, 77.3%),<br />

secondary OA (9, 40.9%), heterotopic ossification (eight Brooker I,<br />

three Brooker II), AVN (7/22, 31.8%) and infection (1/22, 4.5%).<br />

Functional status was Daily 32.5, Emotional 32.0, Arm-Hand 11.3,<br />

Mobility 36.6, Dysfunction 28.5, Bother 25.6, Physical Component<br />

Summary (PCS) 31.0, and Mental Component Summary 56.8. Pain<br />

requiring medication was present in 14 cases (63.4%). Mobility<br />

assistive devices were utilized in four patients and 14 patients were<br />

limping. Specialized shoe wear was needed by five/22 (22.7%).<br />

Return to work status was 14/22 (63.6%) full return, six (27.3%)<br />

with restrictions and two (9.1%) did not return to previous level <strong>of</strong><br />

activity. FNNU functional status was significantly reduced compared<br />

to normative values (Dysfunction t=3.715, Bother t=2.411, PCS<br />

t=7.112) with significance at p0.05).<br />

Ulnar diaphyseal fracture pattern and injury severity did not predict<br />

healing and outcome. However, non-operative treatment <strong>of</strong> displaced<br />

fractures were at high risk for complications.<br />

posteR No. p516<br />

Operative Fixation vs. Reconstruction with THA for<br />

Acetabular Fractures in the Elderly Population<br />

Dr Michael J Weaver, Boston, MA<br />

Micah Miller, BS<br />

R M Smith, MD, Boston, MA<br />

Mark S Vrahas, MD, Boston, MA<br />

The purpose <strong>of</strong> this study is to compare the short-term outcomes <strong>of</strong><br />

open reduction and internal fixation (ORIF) and acute reconstruction<br />

with total hip arthroplasty (THA) in the management <strong>of</strong> acetabular<br />

fractures in patients over 65 years old. We reviewed a consecutive<br />

series <strong>of</strong> patients <strong>of</strong> 65 years or older treated over a seven-year<br />

period at our institution with either ORIF or reconstruction with a<br />

THA for an acute acetabular fracture. Patients were interviewed and<br />

radiographs were examined. Validated outcome scores including the<br />

Harris Hip Score and SF36 were collected. Seventy-three patients<br />

were included in the study, 33 treated with ORIF and 40 treated with<br />

THA. Mean follow up was 21 months. The mean age in the ORIF<br />

group was 73 (65-88) while the mean age in the THA group was 79<br />

(68-89). One-year mortality was similar between those treated with<br />

ORIF (15%) and THA (23%, p=0.43). There was a trend towards a<br />

higher rate <strong>of</strong> reoperation in the ORIF group (30%) compared to<br />

the THA group (15%, p=0.12). Seven (21%) <strong>of</strong> the patients treated<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


initially with ORIF went on to develop post-traumatic arthritis and<br />

underwent eventual THA. There was a trend towards improved<br />

Harris hip scores in those treated with THA (mean 82) compared to<br />

ORIF (63, p=0.06). There was a significantly better SF36 bodily pain<br />

scores in the THA group (mean 48) compared to the ORIF group<br />

(39, p=0.04). There was also a trend towards improved physical<br />

summary scores in the THA group (mean 43) compared to the ORIF<br />

group (35, p=0.15). ORIF and reconstruction with THA are options<br />

in the treatment <strong>of</strong> acute fractures <strong>of</strong> the acetabulum in the elderly<br />

population. THA appears to compare favorably to ORIF, with a<br />

similar rate <strong>of</strong> complication, but with improved pain scores. There<br />

is a significant rate <strong>of</strong> conversion <strong>of</strong> ORIF to THA. Both treatments<br />

are associated with high rates <strong>of</strong> morbidity and mortality in this<br />

population.<br />

posteR No. p517<br />

The Effect Of Room Entry On Contamination Of<br />

Yankaeur Suction Catheter Tips On Continous Suction<br />

Matthew L Klima, DO, Moreno Valley, CA<br />

Gregory S Tennant, DO, Newport Coast, CA<br />

Room entry can provide a source <strong>of</strong> potentially contaminated<br />

room air into the operating room environment. This source can<br />

be eliminated by reducing the number <strong>of</strong> entries, or by changing<br />

the catheter tip before a known interval <strong>of</strong> exposure. A total <strong>of</strong> 42<br />

Yankaeur catheter tips were hooked up to continous suction <strong>of</strong><br />

operating room air using sterile technique. At the time internal <strong>of</strong><br />

zero, two, four, six and 12 hours, the catheter tips were harvested and<br />

sent for aerobic culture. The tips were divided into three groups based<br />

<strong>of</strong>f <strong>of</strong> the number <strong>of</strong> room entries (low, medium and high number<br />

<strong>of</strong> room entries). A total <strong>of</strong> three tips per interval were harvested.<br />

The tips were swabbed on blood agar and monitored for 72 hours<br />

for growth. Low room entries was defined as less than 15 entries<br />

per hour, medium was 15-30 entries per hour (with one external<br />

door opening) and high was greater than 30 entries per hour (with<br />

four external door openings). A total <strong>of</strong> 42 tips were cultured, three<br />

tips per time interval. The catheter tips were categorically negative<br />

for culture after 72 hours. The negative culture tips all reveal that<br />

continous room suction <strong>of</strong> up to 12 hours will not provide a source<br />

<strong>of</strong> contamination for that tip. Even at the highest levels <strong>of</strong> air<br />

contamination (greater than 30 room entries per hour to include<br />

four openings <strong>of</strong> the external door), the suction tips failed to grow<br />

any organism. Room entry alone as an independent variable is not<br />

responsible for contamination <strong>of</strong> a suction tip, and switching <strong>of</strong> the<br />

suction tip during a case where there an increased number <strong>of</strong> room<br />

entries is not warranted by this study.<br />

posteR No. p518 AlteRNAte pApeR<br />

Outcomes Of Arthroscopic Release After Proximal<br />

Humerus Fixation<br />

Okechukwu A Anakwenze, MD, Philadelphia, PA<br />

Vamsi Kancherla, MD<br />

G Russell Huffman, MD, Philadelphia, PA<br />

Pre-contoured locked plating <strong>of</strong> proximal humerus fracture<br />

is commonly used in treating proximal humerus fractures.<br />

Biomechanically, the treatment allows early mobilization.<br />

However, post-traumatic stiffness and functional disability remains<br />

problematic. Forty-three patients were treated with plating <strong>of</strong> humerus<br />

fractures by a single surgeon over a three-year period. Surgical and<br />

demographic factors associated with post-fixation adhesive capsulitis<br />

were assessed. When indicated, patients underwent a circumferential<br />

arthroscopic capsular release. Pre and post release function, range<br />

<strong>of</strong> motion and functional outcome were assessed. Nine patients<br />

857<br />

underwent an arthroscopic shoulder release after fixation with a<br />

locked, pre-contoured plate with a mean follow up <strong>of</strong> 35 months (11-<br />

59) after surgical release. The mean patient age was 56 (24-79). The<br />

mean time from fixation to contracture release was 257 days (100-<br />

602). Mean patient follow up from date <strong>of</strong> fracture to final follow<br />

up was 34.9 months (11-59), with an average follow <strong>of</strong> 32 months<br />

(five-55) after capsular release. The predominant factor associated<br />

with need for contracture release was female gender (seven <strong>of</strong> nine<br />

patients). There were no cases <strong>of</strong> avascular necrosis and one case <strong>of</strong><br />

varus malreduction in the entire cohort. Prior to arthroscopic release,<br />

mean forward elevation (FE), abduction and external rotation (ER)<br />

was 111°, 78° and 32° respectively. At final follow up, after CR, mean<br />

FE, abduction and ER increased by 43° (P


inferior iliac pelvic external fixator to create groups 4-6. Eighteen<br />

instrumented pelvic models (n=3 per group) were tested with right<br />

ilium fixed to simulate a physiologic single-leg stance. Torque and<br />

axial load were applied to center <strong>of</strong> S1 superior endplate with no<br />

other external constraints on its 3D motion. Five cycles <strong>of</strong> ± 10<br />

Nm torque was initially applied then sequentially increased by ± 5<br />

Nm until permanent deformation was detected (by an <strong>of</strong>fset <strong>of</strong> 5<br />

degrees at zero torque at end <strong>of</strong> a cycle). Five cycles <strong>of</strong> axial load<br />

from 15 to 50 N compression was next applied then sequentially<br />

max compression was increased 50N until permanent deformation<br />

was detected (by an <strong>of</strong>fset <strong>of</strong> 2 mm when a cycle returned to 15 N).<br />

This was followed by axial loading to catastrophic failure. 3D relative<br />

motion across the sacral and rami fractures and <strong>of</strong> screws relative<br />

to bone was measured with an optical tracking system. Construct<br />

torsional and axial flexibility coefficients were determined during<br />

the fifth cycle <strong>of</strong> loading. Student T (two tail, unequal variance) was<br />

used to determine significance, P


Research Society (ORS) bring together the nation’s top civilian and<br />

military orthopaedic trauma surgeons and researchers for a two-day<br />

symposium AAOS lobbies for orthopaedic research dollars as well.<br />

The first program, OETRP, issues grants for peer-reviewed intramural<br />

and extramural orthopaedic trauma research. The purpose <strong>of</strong> OETRP<br />

is to complement and broaden the research in orthopaedic trauma.<br />

The second program, PRORP, was established to quickly develop<br />

focused basic and clinical research through direct grants to research<br />

institutions. The goal is to help military surgeons address the leading<br />

burden <strong>of</strong> injury and loss <strong>of</strong> fitness for military duty by finding new<br />

limb-sparing techniques. The results have been the country’s leading<br />

medical symposium (EWI) on the issues facing wounded warriors,<br />

and two groundbreaking federally-funded research programs<br />

(OETRP and PRORP) that will provide data on how to address the<br />

leading burden <strong>of</strong> injury. The projects <strong>of</strong> the Extremity War Injuries<br />

Project Team represent some <strong>of</strong> AAOS’ greatest contributions to our<br />

fighting men and women, and the doctors who treat them.<br />

scieNtific exHibit No. se75<br />

Plaster: Our <strong>Orthopaedic</strong> Heritage<br />

Kathleen A McHale, MD, Alexandria, VA<br />

Martha K Lenhart, MD, Silver Spring, MD<br />

Marlene DeMaio, MD, Portsmouth, VA<br />

Casting is a dying art in adult orthopaedics as modern internal<br />

and external fixation replace external immobilization. Proper<br />

casting technique is paramount. While synthetic casting has some<br />

advantages over plaster, the plaster bandage is the time honored<br />

material in orthopaedics. This exhibit outlines the history, the<br />

chemistry, the advantages and disadvantages, and indications<br />

<strong>of</strong> casting. The differences in immobilization materials and<br />

technique will be demonstrated on the video . Modern materials<br />

and applications <strong>of</strong> plaster, i.e., amputation stump wrapping will<br />

be presented. History. Casting and splinting are ancient. Modern<br />

development was spurred by management <strong>of</strong> war wounds.<br />

(deChuliac, Pare) Calcium sulfate (plaster <strong>of</strong> Paris) was introduced<br />

in 1798. Mathijsen devised plaster bandages (splints) in 1852. By<br />

1927, crinoline rolls dipped in plaster treated with binding agents<br />

facilitated application. Synthetic casting (45% polyurethane resin,<br />

55% fiberglass) was introduced in the 1970s. Chemistry. Casting<br />

materials create an exothermic reaction while curing after dipping.<br />

Plaster: (CaSO4)2 + 3H2O ---> 2(CaS04.2H20) + HEAT Fiberglass:<br />

Prepolymer + H20 ---> 02 + polyurethane polymer + HEAT Burns<br />

are associated with water temperatures > 24 deg Celsius, ply (layers)<br />

> 8, and inadequate ventilation. Maximum water temperature must<br />

be less with fiberglass. Advantages. Plaster: tucks, use larger rolls;<br />

requires less tension than fiberglass; no gloves; absorbs fluids; can<br />

peel <strong>of</strong>f (does not require saw). Fiberglass: cleaner, water resistant.<br />

Disadvantages. Plaster: poor in humidity. Fiberglass: poor storage in<br />

heat. The chemistry and physical properties <strong>of</strong> the casting materials<br />

drive the indications and application techniques as shown on the<br />

video. Early wrapping and shrinking <strong>of</strong> amputation stumps is ideal<br />

with plaster usage. Understanding <strong>of</strong> casting materials is important,<br />

especially with staged management and prevention <strong>of</strong> burns.<br />

859<br />

scieNtific exHibit No. se76<br />

Atypical Femur Fracture and Its Association with Long-<br />

Term Oral Term Oral Bisphosphonate Use<br />

Richard M Dell, MD, Cypress, CA<br />

Denise Greene, RNP, Cypress, CA<br />

T Ted Funahashi, MD, Irvine, CA<br />

Eric Eisemon, MD, Brooklyn, NY<br />

David Laurence Boardman, MD, Clackamas, OR<br />

Joan C Lo, MD, Oakland, CA<br />

Annette L Adams, PhD, Pasadena, CA<br />

It is important to properly diagnosis and treat atypical femoral<br />

subtrochanteric and shaft fractures to ensure the best outcomes.<br />

A retrospective analysis <strong>of</strong> all femoral subtrochanteric and shaft<br />

fractures was carried out in a large california Health Maintenance<br />

Organization.. Charts and imaging studies were reviewed on all<br />

patients 45 years and older with the ICD9 codes for a femoral<br />

fracture between 1/1/2007 and 12/31/2009 to identify cases <strong>of</strong> with<br />

radiographic findings <strong>of</strong> an atypical femur fractures 102 patients<br />

(99 women, 3 men) had the characteristic radiographic findings.<br />

61% <strong>of</strong> the fractures occurred in the shaft region and 39% in the<br />

subtrochanteric region. 25% <strong>of</strong> the patients had either a complete<br />

fracture or stress fractures on the contralateral femur. The average age<br />

was 72 years old (range 45 to 92). Prodromal pain was reported by<br />

70% <strong>of</strong> the patients. Five patients had not taken a bisphosphonate<br />

and 97 patients were on oral bisphosphonates with an average<br />

duration <strong>of</strong> use <strong>of</strong> 5.5 years. There appears to be an associate between<br />

atypical femur fractures and long term oral bisphosphonate use in a<br />

small percentage <strong>of</strong> patients.<br />

scieNtific exHibit No. se77<br />

Do the Outcomes Justify Changes in Treatment<br />

Patterns Following Hip Fractures?<br />

Arthur L Malkani, MD, Louisville, KY<br />

Colin Carroll, BS, Louisville, KY<br />

Craig S Roberts, MD, Louisville, KY<br />

David Seligson, MD, Louisville, KY<br />

Edmund Lau, MS, Menlo Park, CA<br />

Judd Day, PhD, Philadelphia, PA<br />

Steven M Kurtz, PhD, Philadelphia, PA<br />

Kevin Ong, PhD, Philadelphia, PA<br />

This study evaluated temporal trends in treatmentpatterns for hip<br />

fractures and compared post-operative complication andmortality<br />

risks. Intracapsular and Intertrochanteric hip fractures were<br />

identified from Medicare claims data (1998-2007) 5% sample<br />

usingICD-9-CM diagnosis; ORIF, hemiarthroplasty, and THA<br />

patients were included. Dislocation, DVT, infection, mechanical<br />

complications, PE,and cardiac complications were computed<br />

up to 90 days and mortality,mal-union/non-union, conversion<br />

to arthroplasty, and re-operation for up to 1 year. Cox regression<br />

compared complications between treatments, adjusting for patient<br />

demographics. : Intracapsular fx: 40,852 patients (33.7% ORIF,<br />

59.2%hemiarthroplasty, 7.0% THA) were identified. From 1998-<br />

2007, there was a 22% decline in incidence <strong>of</strong> intracapsular hip<br />

fx’s. Hemiarthroplasty increased compared with ORIF. Compared<br />

with ORIF patients, adjusted risks for hemiarthroplasty patients<br />

were higher for dislocation (+98%)and infection (+53%) at 90<br />

days. One-year mortality rates for ORIF,hemiarthroplasty, and THA<br />

patients were 26.1%, 27.7%, and 14.4%. Intertrochanteric fx: 9,157<br />

IM nail and 27,687 plate fixation procedures for intertrochanteric<br />

fx’s were identified; IM nail use increased from 3.3% to 63.1%.<br />

IM nail patients had higher adjusted risk <strong>of</strong> PE at 90 days (+39%;<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


p=0.003) and mortality at 1 year (+9%;p5 mm in 4 patients. The Hybrid<br />

External fixator was removed at an average <strong>of</strong> 17.5 weeks. Full<br />

weight bearing was achieved at a mean <strong>of</strong> 7.8 weeks. There were no<br />

intraoperative injuries to nerves or major vessels. Using the outcome<br />

scale <strong>of</strong> Ovadia and Beals, good-excellent results were achieved in<br />

67% (n=36) subjectively and 77% (n=41) objectively. Two poor<br />

results occurred in patients with a varus malunion. External fixation<br />

is a satisfactory method <strong>of</strong> treatment for fractures <strong>of</strong> the distal tibia<br />

and is associated with fewer complications than internal fixation,<br />

because it limits the amount <strong>of</strong> s<strong>of</strong>t tissue.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tRAumA


PAPERS<br />

861<br />

tuMor and Metabolic disease<br />

pApeR No. 226<br />

uEvaluation <strong>of</strong> Fracture Complications With<br />

Denosumab (RANKL Inhibitor) in Postmenopausal<br />

Osteoporosis<br />

Joseph M Lane, MD, New York, NY<br />

Mohit Bhandari, MD, Hamilton, ON Canada<br />

Ethel Siris, MD, New York, NY<br />

Steven Cummings, MD<br />

Pei-Ran Ho, MD, Thousand Oaks, CA<br />

Andrea Wang<br />

Cesar Libanati, MD<br />

Silvano Adami, MD, New York, NY<br />

Complications associated with fractures can negatively influence<br />

a patient’s prognosis. In FREEDOM, denosumab, an antibody to<br />

RANKL, significantly reduced the risk <strong>of</strong> new vertebral, hip and<br />

nonvertebral fractures (Cummings NEJM 2009;361:756). In this<br />

prespecified analysis, we evaluated complications associated with<br />

nonvertebral fractures, including those related to fracture healing,<br />

in denosumab-treated patients. FREEDOM was a three year,<br />

double-blind trial in 7,868 postmenopausal women with low bone<br />

mineral density randomized to six monthly denosumab 60 mg<br />

or placebo. Nonvertebral fractures were radiologically confirmed.<br />

Complications associated with the fracture/surgical management<br />

or fracture healing were reported by the investigator on case report<br />

forms. Healing was ‘delayed’ if not completed within six months.<br />

In total, 667 patients (364 placebo, 303 denosumab) reported 851<br />

nonvertebral fractures. The most common fracture locations were<br />

the radius (26%), humerus (11%) and foot (9%). Significantly fewer<br />

denosumab patients suffered complications associated with fracture/<br />

surgical management vs. placebo patients (five vs. 20, respectively,<br />

relative risk reduction: 70%, p=0.0093). This finding was consistent,<br />

regardless <strong>of</strong> whether a patient had surgery for the fracture, (surgery:<br />

3/65 5%] denosumab vs. 12/100<br />

pApeR No. 227<br />

Impact <strong>of</strong> Zoledronic Acid on severe vertebral<br />

fractures: Results from HORIZON-Pivotal Fracture Trial<br />

Rosanna Lisa Wustrack, MD, San Francisco, CA<br />

Ego Seeman, Pr<strong>of</strong>, Heidelberg, Australia<br />

Christina Bucci-Rechtweg, MD<br />

Lisa Palermo, PhD<br />

Dennis Black, San Francisco, CA<br />

Vertebral fractures are the most common osteoporotic fractures with<br />

an annual incidence <strong>of</strong> 750,000. Once-yearly infusion <strong>of</strong> zoledronic<br />

acid (ZOL) 5 mg has been shown to decrease the risk <strong>of</strong> vertebral, hip<br />

and other osteoporotic fractures, as well as mortality following hip<br />

fractures. We assessed the effects <strong>of</strong> ZOL on severe vertebral fractures<br />

during a three-year period. HORIZON-pivotal fracture trial (PFT) is<br />

a large, international placebo-controlled trial in postmenopausal<br />

osteoporotic women, comparing once-yearly ZOL (n=3,077) to<br />

placebo (PBO) (n=3,045). This analysis included women who had<br />

lateral radiographs at baseline, 12, 24 and 36 months. Fracture<br />

severity was graded by semi-quantitative (SQ) analysis on a scale<br />

from 0 (normal) to 3 (severe). The endpoints were maximum SQ<br />

grade change in a single incident fracture and an index <strong>of</strong> overall<br />

severity calculated by summing all SQ grade changes in an individual<br />

over three years <strong>of</strong> the trial. The number <strong>of</strong> new severe fractures and<br />

sums SQ change were compared between the ZOL and PBO group.<br />

Treatment with ZOL reduced the number <strong>of</strong> patients with one or<br />

more severe vertebral fractures by 67% (3.4% in PBO vs. 1.1% in<br />

ZOL, p


pApeR No. 229<br />

uEfficacy <strong>of</strong> Zoledronic Acid in the Treatment <strong>of</strong><br />

Benign Osteolytic Bone Lesions<br />

Sudhir Garg, MD, Chandigarh, India<br />

Purnima Aggarwal, MD, Chandigarh, India<br />

Anshul Goel, MBBS<br />

Rohit Jindal, MD<br />

Fibrous dysplasia, unicameral bone cyst, allograft bone chips (ABC),<br />

giant cell tumors (GCT), etc. are <strong>of</strong>ten extensive. Surgical procedures<br />

such as curettage and bone grafting are associated with low cure rate<br />

and high recurrence rate. The aim <strong>of</strong> this study was to find out the<br />

efficacy <strong>of</strong> zoledronic acid as a therapeutic or as an adjuvant agent in<br />

the treatment <strong>of</strong> these extensive benign osteolytic tumours or tumor<br />

like conditions. Thirty-one patients (19 female, 12 male) from eight<br />

years to 42 years, were treated with intravenous zoledronic acid.<br />

In 17 patients (fibrous dysplasia - 10, nonossifying fibroma - four,<br />

unicameral bone cysts - three), zoledronic acid alone was used as a<br />

therapeutic agent. In 14 patients (ABC - three, GCT - 11), it was used<br />

as an adjuvant agent after curettage. Four patients presented with<br />

pathological fracture. In all patients, 4 mg zoledronic acid was given<br />

at two monthly intervals. Maximum <strong>of</strong> six injections were given<br />

in eight patients. Patients were evaluated using visual analog pain<br />

scale and x-rays. At last follow up (six-40 months), in 15 patients<br />

treated with zoledronic acid alone, there was thickening <strong>of</strong> cortices<br />

and reduction in the size <strong>of</strong> the lesions. Pain score decreased from<br />

an average <strong>of</strong> eight to two or lower. All four fractures healed. In two<br />

patients, both with fibrous dysplasia, there was progression in size<br />

<strong>of</strong> the lesion. In all 14 patients, where it was used as an adjuvant<br />

to surgery, there was also early thickening <strong>of</strong> bone cortices. There<br />

was no local recurrence in this group. There was no adverse reaction<br />

to the drug in any <strong>of</strong> the patients. Benign osteolytic lesions such as<br />

fibrous dysplasis, ABC and GCT require extensive surgical procedures<br />

and copious amount <strong>of</strong> bone graft. Still they have a high rate <strong>of</strong><br />

recurrence. Zoledronic acid is a third generation bisphosphonate.<br />

It is 100 times more potent than pamidronate as an anti-osteolytic<br />

agent. Our study suggests that zoledronic acid not only helps to<br />

stabilize these lesions but also resulted in pronounced healing in<br />

the majority (>90%) <strong>of</strong> patients. If obviates the need for surgery. It<br />

also reduced recurrence rate in aggressive benign bone tumors such<br />

as ABC or GCT when used as an adjuvant treatment.<br />

pApeR No. 230<br />

Comparison <strong>of</strong> Ultrasound Fusion and Computed<br />

Tomography Guided Biopsy in Musculoskeletal<br />

Neoplasia<br />

Jad Khalil, MD, Birmingham, MI<br />

Michael P Mott, MD, Detroit, MI<br />

Marnix Van Holsbeeck, MD, Detroit, MI<br />

Trevor Banka, MD, Farmington, MI<br />

Theodore W Parsons, MD, FACS, Detroit, MI<br />

Fusion <strong>of</strong> ultrasonic imaging to diagnostic magnetic resonance<br />

imaging (MRI) or computed tomography (CT) allows for as accurate<br />

<strong>of</strong> needle placement as traditional CT-guided biopsy without the<br />

need for repeated CT or MRI scans. Additionally, scheduling ease<br />

and patient comfort /satisfaction are improved as time-consuming<br />

diagnostic imaging studies are not repeated. Sixty consecutive<br />

patients undergoing biopsies for the diagnosis <strong>of</strong> musculoskeletal<br />

masses diagnosed by CT/MRI were randomized into two groups.<br />

From these diagnostic imaging studies, the most desirable area for<br />

biopsy was identified. Group 1 underwent biopsies via ultrasound<br />

(US) fusion where the CT or MRI images were integrated into an<br />

862<br />

ultrasound framework to direct accurate needle placement using<br />

ultrasound. Group 2 patients underwent conventional CT-guided<br />

biopsies with CT scan <strong>of</strong> the region <strong>of</strong> interest repeated at the time<br />

<strong>of</strong> the biopsy. Accuracy <strong>of</strong> the histologic specimen, complication<br />

rates and patient satisfaction were determined. Biopsies obtained<br />

by US fusion technology provided diagnostic accuracy equal to that<br />

<strong>of</strong> the control CT-guided procedures. The complication rates were<br />

minimal and similar in the two groups. Patients in the US fusion<br />

group expressed higher satisfaction and lower discomfort with the<br />

procedure. US fusion technology provides a means to obtain high<br />

yield, quality musculoskeletal biopsies with an accuracy equal to<br />

that <strong>of</strong> traditional CT-guided biopsies. Performing the procedure in<br />

an US suite allowed for ease <strong>of</strong> scheduling and resulted in higher<br />

patient satisfaction.<br />

pApeR No. 231<br />

Ability to Obtain Molecular Genetics from Percutaneous<br />

Biopsy <strong>of</strong> Extremity Sarcomas<br />

David M King, MD, Pewaukee, WI<br />

Donald A Hackbarth Jr, MD, Milwaukee, WI<br />

Guillermo Carrera, MD, Milwaukee, WI<br />

Keith E Baynes, MD, Milwaukee, WI<br />

Vladimir Osipov, MD<br />

Percutaneous biopsy has been shown to be accurate and reliable with<br />

low morbidity in the diagnosis <strong>of</strong> extremity sarcomas. Molecular<br />

genetics continues to evolve as a diagnostic tool for sarcoma.<br />

As new sarcoma therapies become available and as molecular<br />

genetics advances the science <strong>of</strong> sarcoma, precise diagnosis will<br />

become even more important. We asked the question <strong>of</strong> whether<br />

percutaneous biopsy techniques allow the same opportunity for<br />

molecular genetic analysis for extremity sarcoma as open biopsy.<br />

We retrospectively identified all patients who presented to our<br />

institution with undiagnosed extremity sarcomas from 2002<br />

until March <strong>of</strong> 2010. Biopsy type was identified (open, tru-cut<br />

percutaneous by the musculoskeletal oncologist vs. image-guided<br />

percutaneous by musculoskeletal radiology). Attempts and results<br />

<strong>of</strong> molecular genetic data were documented and compared between<br />

the three techniques. Patients with osteosarcoma or chondrosarcoma<br />

diagnoses were excluded as no attempt was made to obtain molecular<br />

genetic information in those patients. A total <strong>of</strong> 119 patients were<br />

eligible for the study. Forty-three patients underwent image-guided<br />

percutaneous biopsies by the radiologists, 48 had tru-cut biopsies<br />

performed by the musculoskeletal oncologists and 28 open biopsies<br />

were performed. The decision to pursue molecular genetic data was<br />

at the discretion <strong>of</strong> the pathologist. Fourteen out <strong>of</strong> 48 tru-cut, 14 out<br />

<strong>of</strong> 28 open and 12 out <strong>of</strong> 43 image-guided percutaneous specimens<br />

were sent for genetic analysis. Eleven out <strong>of</strong> 12 (92%) image-guided,<br />

13 <strong>of</strong> 14 (93%) open and seven <strong>of</strong> 14 (50%) tru-cut biopsies yielded<br />

genetic information. Open and image-guided percutaneous biopsy<br />

techniques reliably allowed for the acquisition <strong>of</strong> molecular genetic<br />

information <strong>of</strong> extremity sarcomas. Tru-cut biopsy was less reliable.<br />

The ability <strong>of</strong> image-guided techniques to obtain molecular genetic<br />

data may be due to improved sampling <strong>of</strong> viable areas <strong>of</strong> the tumor.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


pApeR No. 232<br />

A High Serum Levels Of VEGF Predict Poor Prognosis<br />

For Patients With Osteosarcoma<br />

Mitsunori Kaya, MD, Sapporo, Japan<br />

Takuro Wada, MD,PhD, Sapporo, Japan<br />

Satoshi Nagoya, MD, Sapporo, Japan<br />

Tomotsu Soma, MD<br />

Mikito Sasaki, MD, Sapporo, Japan<br />

Masanobu Kano, MD<br />

Makoto Emori, MD<br />

Toshihiko Yamashita, MD, Sapporo, Japan<br />

Vascular endothelial growth factor (VEGF) is an important mediator<br />

<strong>of</strong> tumor angiogenesis. A high serum VEGF level has been shown to<br />

predict poor survival in several cancers, but its prognositic value in<br />

osteosarcoma is still under investigation. We conducted a prospective<br />

study to evaluate the prognostic significance <strong>of</strong> pretreatment<br />

serum VEGF levels on survival <strong>of</strong> patients with osteosarcoma.<br />

Pretreatment serum VEGF levels were measured by an enzymelinked<br />

immunosorbent assay in 15 patients with osteosarcoma. The<br />

patients were divided into two groups (high and low VEGF) and<br />

the incidence <strong>of</strong> remote metastasis and overall survival rate were<br />

compared between the two groups. Serum VEGF levels were compared<br />

between groups categorized by various clinicopathologic features<br />

including gender, age, sensitivity to preoperative chemotherapy,<br />

tumor size and the serum VEGF level at diagnosis using the Mann-<br />

Whitney test. The curve for overall survival was drawn according to<br />

the Kaplan-Meier method and differences were analyzed by applying<br />

the log-rank test. The median serum VEGF level was 1069.4 pg/ml<br />

(range: 156.2-5,700pg/ml). No significant relationship was observed<br />

between the serum VEGF levels and sex, age, tumor size or the<br />

response to preoperative chemotherapy. Patients with serum VEGF<br />

>1,000pg/ml had significantly worse survival than those with serum<br />

VEGF


while CTRA alone recommended surgery in 40% (n=33) <strong>of</strong> lesions.<br />

The results suggest that more than 25% <strong>of</strong> the clinical treatment<br />

recommendations would potentially be altered by use <strong>of</strong> CTRA.<br />

Treatment plans were similar in cases where there was either marked<br />

bony destruction or minimal bone involvement.<br />

pApeR No. 235<br />

Dendritic Cell Immunotherapy Is Feasible For Patients<br />

With Malignant Bone And S<strong>of</strong>t Tissue Tumors<br />

Hideji Nishida, MD, Kanazawa City, Japan<br />

Toshiharu Shirai, MD, Kanazawa, Japan<br />

Katsuhiro Hayashi, MD, Kanazawa, Japan<br />

Akihiko Takeuchi, MD, Kanazawa, Japan<br />

Hidenori Matsubara, MD, Kanazawa, Japan<br />

Yoshikazu Tanzawa, MD, Kanazawa, Japan<br />

Shinji Miwa, MD<br />

Hiroyuki Tsuchiya, MD, Kanazawa, Japan<br />

This study was undertaken to evaluate the safety and feasibility <strong>of</strong><br />

autologous tumor lysate-dendritic cell (DCs) immunotherapy for<br />

patients with malignant bone and s<strong>of</strong>t tissue tumors who failed<br />

other standard treatments. Nineteen patients were enrolled and<br />

immunized with DCs. Patient tumors comprised 14 bone tumors<br />

(osteosarcoma nine], chondrosarcoma one], fibrosarcoma<br />

pApeR No. 236<br />

Malignant Sarcoma <strong>of</strong> the Pelvic Bones<br />

Muhammad Umar Jawad, MD, Palo Alto, CA<br />

Abdul Ahad Haleem, MD, Overland Park, KS<br />

Sean P Scully, MD, PhD, Hubert, NC<br />

Treatment <strong>of</strong> malignant sarcomas <strong>of</strong> the pelvis poses a challenge<br />

for local disease control and oncologic outcome. Many reports have<br />

described the dismal outcomes. Most studies are retrospective series<br />

coming out <strong>of</strong> single centers, thus biased towards patient selection<br />

and are <strong>of</strong> limited statistical power. We have utilized the Surveillance,<br />

Epidemiology and End Results (SEER) database to analyze 1,185<br />

pelvic sarcoma cases from 1987-2006. Kaplan Meier and Cox<br />

regression have been used to analyze the significance <strong>of</strong> prognostic<br />

factors. The analysis was repeated for different histopathological<br />

subtypes to determine specific prognostic factors in each case.<br />

Incidence <strong>of</strong> pelvic sarcoma in 2006 was 89 per 100,000 persons<br />

and it has significantly increased since 1973 (ptwo-fold induction <strong>of</strong> key OB markers. Wnt pathway activation or<br />

osteogenic medium induced a marked increase in the OPG/RANKL<br />

ratio and loss <strong>of</strong> GCTSC OC-inducing activity. Conversely, treatment<br />

with BMP-2 resulted in a decreased OPG/RANKL ratio, and<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


enhanced OC formation in monocyte co-cultures. Surprisingly, the<br />

induction <strong>of</strong> OB differentiation by BMP or Wnt pathway activation<br />

produced differential effects on OC-inducing activity. This effect<br />

may be attributed to the differential effects <strong>of</strong> the Wnt and BMP<br />

pathways on OPG/RANKL production. The ability to manipulate the<br />

osteoclastogenic phenotype <strong>of</strong> GCTSC provides a novel approach<br />

for treatment and insight into the mechanisms by which OB lineage<br />

cells regulate osteoclastogenesis.<br />

pApeR No. 239<br />

Melanoma Metastatic To Bone<br />

Matthew Colman, MD, Pittsburgh, PA<br />

John M Kirkwood, MD, Pittsburgh, PA<br />

Mark A Goodman, MD, Pittsburgh, PA<br />

Alma Heyl, CCRC<br />

Richard Louis McGough, MD, Pittsburgh, PA<br />

Melanoma metastatic to bone is rare and carries a dismal prognosis<br />

with survival in the four to six month range. Although the literature<br />

suggests that resection <strong>of</strong> isolated visceral metastatic disease improves<br />

survival, the role <strong>of</strong> resection and reconstruction <strong>of</strong> isolated osseous<br />

metastases is unclear. We present the largest series <strong>of</strong> melanoma<br />

metastatic to bone, reporting on survival and treatment outcomes.<br />

We conducted a retrospective review <strong>of</strong> 2,442 consecutive cases <strong>of</strong><br />

melanoma presenting to our tertiary cancer center over the past<br />

12 years. We identified 130 cases with pathologically confirmed<br />

bony disease. Patient demographics, stage, treatment pr<strong>of</strong>iles and<br />

mortality were recorded. We used Kaplan-Meier curves and nonparametrric<br />

tests to evaluate statistical significance. Median time<br />

from diagnosis <strong>of</strong> primary melanoma to bony metastases was<br />

72 months. After this diagnosis, overall median survival was 5.4<br />

months. A total <strong>of</strong> 43% <strong>of</strong> skeletal metastases were axial, 21%<br />

appendicular and 36% both. Some 25% presented with a fracture,<br />

two-thirds <strong>of</strong> which were compression fractures <strong>of</strong> the spine, with no<br />

difference in survival. A total <strong>of</strong> 62% <strong>of</strong> patients were treated nonoperatively<br />

with median survival <strong>of</strong> 5.0 months. Of those treated<br />

surgically, 64% received a debulking or stabilization operation, with<br />

median survival <strong>of</strong> 5.3 months. Some 36% received a wide resection<br />

and reconstruction with a contamination rate <strong>of</strong> 37% and median<br />

survival <strong>of</strong> 12.5 months. Log-rank Kaplan Meier survival analysis<br />

confirmed the overall survival benefit to wide resection (p=0.045).<br />

Medical co-morbidities and the use <strong>of</strong> adjuvant chemotherapy or<br />

radiotherapy had no effect on overall survival. Poor prognosticators<br />

for overall survival included axial spine involvement, concomitant<br />

liver or lung disease and absence <strong>of</strong> chemotherapy given for the<br />

initial high-risk primary melanoma. Melanoma metastatic to bone<br />

is a rare, devastating clinical entity. While stabilization <strong>of</strong> impending<br />

or unstable spine and long bone fractures is indicated and palliative<br />

debulking procedures may be considered, they are unlikely to<br />

improve survival. Bony disease which can be resected to dramatically<br />

reduce or eliminate known disease burden may provide hope for<br />

improved survival.<br />

865<br />

pApeR No. 240<br />

Teleangiectatic osteosarcoma: a review <strong>of</strong> 87 cases<br />

Pr<strong>of</strong> Pietro Ruggieri, Bologna, BO Italy<br />

Andrea Angelini, MD, Bologna BO, Italy<br />

Eric Henderson, MD, Tampa, FL<br />

Giovanni Guerra, MD<br />

Gabriele Drago, MD<br />

G Douglas Letson, MD, Tampa, FL<br />

Mario Mercuri, MD, Bologna, Italy<br />

Telangiectatic osteosarcoma (TOS) is a rare subtype <strong>of</strong> osteosarcoma.<br />

We review our experience to characterize its prevalence, treatment,<br />

relapse and survivorship at long term follow up. Eighty-seven<br />

patients aged from four to 60 years (mean 20 years) were treated<br />

from 1985 to 2008. Lesions affected the femur (38), humerus (20),<br />

tibia (19), fibula (four), pelvis (three), foot (two) and radius (one).<br />

Eight patients had metastatic disease at diagnosis. Seventy-eight<br />

patients were treated with neoadjuvant chemotherapy with three<br />

or more drugs according to different protocols; nine had surgery<br />

as first treatment. Limb salvage surgery was performed in 71 cases,<br />

amputation in 14 and rotationplasty in one. One patient died<br />

before surgery. Prognostic factors were evaluated with Kaplan-Meier<br />

analysis. At a mean follow up <strong>of</strong> eight years, overall survival was<br />

81%, 65% and 65% at two, five and 10 years respectively. Fifty-two<br />

patients were disease-free, three were alive with disease, 29 died with<br />

disease and three died <strong>of</strong> other causes. Thirteen local recurrences<br />

were observed. Twenty-three patients developed lung (20) or bone<br />

(three) metastases. Pathologic fracture did not significantly influence<br />

survivorship. Prognostic influence <strong>of</strong> age <strong>of</strong> the patients was evaluated<br />

at three different cut-<strong>of</strong>f (15, 20 and 25 years-old): younger patients<br />

had better survivorship, without statistical significance. Metastatic<br />

disease significantly influenced survivorship (p


Three patients refused participation in the long-term follow-up study.<br />

Mean MSTS score was 79 (range 64-88). SF-36 score was obtained in<br />

20 patients (age > 16); male patients showed a trend toward greater<br />

activity and vitality. Compared to age-group norms, rotationplasty<br />

scores were lower for physical activity level (p


pApeR No. 515<br />

Impact <strong>of</strong> Close Surgical Margin on Local Recurrence<br />

and Survival in Osteosarcoma<br />

Richard D Lackman, MD, Philadelphia, PA<br />

Xin Li, MD, Jinan, China<br />

Vincent Michael Moretti, MD, Chicago, IL<br />

Adedayo O Ashana, BA, Philadelphia, PA<br />

For s<strong>of</strong>t tissue sarcoma patients, several authors have suggested that<br />

a close surgical margin is associated with poor outcomes. However,<br />

there is a dearth <strong>of</strong> similar studies in osteosarcoma patients with<br />

neoadjuvant chemotherapy. This study investigates the impact<br />

<strong>of</strong> close surgical margin on local recurrence (LR) and overall<br />

survival (OS). We reviewed all cases <strong>of</strong> osteosarcoma treated at our<br />

institution. Forty-seven patients (28 males and 19 females) met<br />

inclusion criteria. Median age was 22 years (range 12-76). Fortry<br />

were MSTS stage 2B and seven were 3B. Pathologic types included<br />

38 osteoblastic and nine others. Tumor locations included 26<br />

distal femur, five proximal tibia, five pelvises, two humerus, two<br />

proximal femur, two distal tibia, two fibula, one total femur, one<br />

rib and one radius. Forty-one patients were treated with resection<br />

and six underwent amputation. Positive surgical margin was defined<br />

as tumor present at surgical margin. Close margin was defined as<br />

tumor present less than 5 mm from the surgical margin. Negative<br />

margin was defined as no tumor present within 5 mm <strong>of</strong> the surgical<br />

margin. All patients received preop chemotherapy and 42 patients<br />

underwent postop chemotherapy. Median follow up was 61 months<br />

(range 10-133). As <strong>of</strong> last follow up, 22 patients had died and seven<br />

had LR. Twenty-nine patients had negative margins, six had positive<br />

margins and 12 had close margins. In univariate analysis, positive<br />

margin had a greater risk <strong>of</strong> LR than negative margin (p=0.009).<br />

Although close to statistical significance, patients with positive<br />

margins had more LR than those with close margins (p=0.058).<br />

There was no difference in LR between close and negative margins<br />

(p=0.972). In multivariate analysis, only positive margin increased<br />

the risk <strong>of</strong> LR (P=0.017). In univariate analysis <strong>of</strong> marginal status<br />

to OS, there was no statistical difference between the three groups.<br />

Similarly, multivariate analysis showed no correlation <strong>of</strong> marginal<br />

status to OS. Compared with negative margins, close margins did<br />

not lead to increased LR. Similarly, there was no difference in OS<br />

between these two groups. These data suggest that close margins, as<br />

defined in our study, may be just as acceptable as negative margins<br />

in terms <strong>of</strong> patient outcomes. More patients and longer follow up<br />

are necessary to further evaluate the impact <strong>of</strong> margin status on local<br />

control and survival in osteosarcoma.<br />

pApeR No. 516<br />

Local Recurrence and Survival in Stage III Sarcomas<br />

without Resection <strong>of</strong> the Core Biopsy Tract<br />

Odion Binitie, MD, Tampa, FL<br />

Shawn Tejiram, bsC<br />

Eric Henderson, MD, Tampa, FL<br />

G Douglas Letson, MD, Tampa, FL<br />

David Cheong, MD, Tampa, FL<br />

Core needle biopsies <strong>of</strong> sarcomas have been shown to be a safe and<br />

effective diagnostic tool, however the efficacy <strong>of</strong> resecting the biopsy<br />

tract in the setting <strong>of</strong> adjuvant therapy has not been evaluated. Fortyone<br />

adult patients with deep, larger than 5 cm, high grade s<strong>of</strong>t tissue<br />

sarcomas <strong>of</strong> the upper or lower extremity treated at one institution<br />

were retrospectively reviewed. All the patients underwent a core<br />

needle biopsy. Resection was performed with wide margins. The<br />

biopsy tract was not resected during the definitive surgery. Patients<br />

867<br />

received neo-adjuvant and or adjuvant treatment with chemotherapy,<br />

external beam radiation, brachytherapy or participated in a vaccine<br />

trial. Surgical outcomes, local recurrence and survival were reviewed.<br />

Median follow-up was 42 months (range 7-117). Five-year survival<br />

was 61%, three-year survival 73.3%. Local recurrence rate was<br />

9.75%. Thirty-seven patients received either preoperative and/or<br />

postoperative radiation; three (8.1%) <strong>of</strong> these had a local recurrence.<br />

Nine patients (21.9%) had microscopic positive margins at resection.<br />

Eleven patients (26.8%) developed metastasis after diagnosis, three<br />

presented with metastasis. Median duration from diagnosis to<br />

metastasis was six months. Logistic regression demonstrated positive<br />

margins to have a significant effect on five-year survival rates. This<br />

study demonstrates no increase in local recurrence rates or reduction<br />

in survival, compared to published results, when resection <strong>of</strong> the core<br />

biopsy tract was not performed. It shows that in patients with stage<br />

III s<strong>of</strong>t tissue sarcomas who received adjuvant therapies in addition<br />

to surgical resection, there was no adverse effect from excluding the<br />

biopsy tract from the definitive surgical resection.<br />

pApeR No. 517<br />

Quantitative Margin vs. Local Recurrence for Extremity<br />

Bone Sarcomas<br />

David M King, MD, Pewaukee, WI<br />

Donald A Hackbarth Jr, MD, Milwaukee, WI<br />

Andrew Kirkpatrick, BS, Wauwatosa, WI<br />

The optimal s<strong>of</strong>t tissue and bone quantitative resection margin<br />

for extremity bone sarcomas is unclear in the literature. We<br />

retrospectively reviewed our widely resected bone tumor patients to<br />

determine whether resection quantitative margin had a significant<br />

impact on local control. A retrospective chart review identified<br />

patients who had primary wide resections for extremity or pelvic<br />

bone sarcomas at our institution from 2001-2008. Spine tumors,<br />

Grade I chondrosarcomas, resections <strong>of</strong> metastatic disease sites<br />

and primary amputations were excluded. The closest quantitative<br />

resection margin was determined from the pathology reports and<br />

categorized as positive, 5 mm. Potential<br />

confounders were evaluated including chemotherapy, development<br />

<strong>of</strong> metastatic disease, tumor necrosis, biopsy location and type<br />

and follow-up information. Minimum follow up was 24 months.<br />

Eight local recurrences were noted in the 66 patients with negative<br />

resection margins (12%). Six <strong>of</strong> 22 (27%) <strong>of</strong> patients with 5 mm<br />

margins recurred. Local recurrence in the osteosarcoma and Ewing’s<br />

sarcoma patients presented in conjunction with the development <strong>of</strong><br />

metastatic disease. Mean follow up was 48 months. Close


cell lines. The effects on apoptosis in OS cells were analyzed via flow<br />

cytometry, Western Blots and IHC staining. To analyze osteogenic<br />

differentiation in both MSCs and OS cell lines, we performed assays<br />

for the early marker alkaline phosphatase (ALP), the late markers<br />

osteocalcin (OCN), osteopontin (OPN) and alizarin red. In OS cells,<br />

IGFBP5 induced the expression <strong>of</strong> the late apoptotic marker, cleaved<br />

caspase 3. It also induced both early apoptotic markers stained with<br />

annexin and propidium iodide by more than three-fold. IGFBP5<br />

increased the number <strong>of</strong> cells arresting in the G1 phase <strong>of</strong> the cell<br />

cycle (p-value


disease, eight cases <strong>of</strong> limb deformity, six cases <strong>of</strong> fracture and three<br />

cases <strong>of</strong> osteomyelitis. The types <strong>of</strong> the implants were 27 spinal<br />

instrumentations, 18 plates for osteosynthesis, 16 tumor prostheses<br />

and external fixation pin, seven hip prostheses and two nail/<br />

cannulated screw. Iodine-supported implants were used to prevent<br />

infection for 54 patients under immunosuppressive condition and<br />

to treat active infection for 32 patients. White blood cell (WBC) and<br />

C-reactive protein (CRP) were measured pre- and post-operatively in<br />

all patients. To confirm whether iodine from the implant influenced<br />

the body, thyroid hormone levels in the blood were examined.<br />

Both examinations were conducted sequentially for one year. After<br />

the operation, radiological evaluations were performed regularly.<br />

Infection was perfectly prevented in all 54 cases. Furthermore,<br />

infection was cured in all other 32 cases. Among patients with active<br />

infection, one showed late hematogenous infection two years after<br />

revision surgery and one was suspected iodine allergy. In all cases,<br />

there were no signs <strong>of</strong> infection at the time <strong>of</strong> final follow up. WBC<br />

and CRP levels were returned to normal within four weeks after<br />

surgery. Abnormalities <strong>of</strong> thyroid gland function were not detected.<br />

Loosening <strong>of</strong> the implants was not shown in any patient. There were<br />

two patients with mechanical implant failure, which were recovered<br />

by re-implantation. Excellent bone ingrowth and ongrowth were<br />

found around hip and tumor prostheses. No problems were detected<br />

even when iodine-supported titanium was implanted at infectious<br />

lesion as the infection was subsided due to the antibacterial activity<br />

<strong>of</strong> the implant. Moreover, iodine-supported implants may prevent<br />

infections post-operatively for compromised hosts. There were no<br />

cytotoxicity and adverse effects detected. This iodine coating can be<br />

applied for all titanium implants and is very effective for preventing<br />

and treating infection related to orthopedic surgery.<br />

pApeR No. 522<br />

Intra-operative Navigation for Minimally Invasive<br />

Resection <strong>of</strong> Periarticular and Pelvic Tumors<br />

Nicholas Paul Webber, MD, Milwaukee, WI<br />

R Lor Randall, MD, Salt Lake City, UT<br />

Karl Wu, MD, Taipei, Taiwan<br />

Kevin Jones, MD, Salt Lake City, UT<br />

Russell A Ward, MD, Temple, TX<br />

Approaching symptomatic benign, metastatic and some low grade<br />

primary malignant tumors is <strong>of</strong>ten a difficult undertaking due to their<br />

typically precarious locations. The treatment with regard to surgical<br />

approach and preservation <strong>of</strong> functional peritumoral anatomy is a<br />

formidable opponent when biopsying and treating these tumors.<br />

We present a series <strong>of</strong> cases where intraoperative ‘stealth navigation’<br />

was used to successfully treat five patients with periarticular tumors<br />

located in precarious anatomic locations. All <strong>of</strong> the patients in this<br />

case series with the peri-articular tumors had an excellent postoperative<br />

Musculoskeletal Tumor Society Functional Score (range<br />

26- 29) after surgery. There were no surgical related complications.<br />

One <strong>of</strong> the five patients had tumor recurrence months after first<br />

operation and was treated successfully with repeated operation<br />

without complications noted. The use <strong>of</strong> paired point imaging with<br />

image fusion (intraoperative computed tomography scanning with<br />

navigation synched to the image) has made approaching tumors<br />

through a minimally invasive and astoundingly accurate technique<br />

a reality. The advantages <strong>of</strong> these minimally invasive techniques are<br />

many, especially with regard to tumors that would otherwise require<br />

extensive dissection, s<strong>of</strong>t tissue stripping, joint dislocation and insult<br />

to periarticular blood supply.<br />

869<br />

pApeR No. 523<br />

Unplanned Excision <strong>of</strong> S<strong>of</strong>t Tissue Sarcomas What is<br />

the Effect on Patient Outcome?<br />

Peter Ferguson, MD, Toronto, ON Canada<br />

Anthony M Griffin, MSC, Toronto, ON Canada<br />

Jay Wunder, MD, Toronto, ON Canada<br />

Patients are <strong>of</strong>ten referred to tertiary care centers after unplanned<br />

excision <strong>of</strong> s<strong>of</strong>t tissue sarcomas. In situations where the tumor is<br />

small and superficial, the situation can <strong>of</strong>ten easily be salvaged by reexcision<br />

<strong>of</strong> the tumor bed. However, if the original tumor is large, deep<br />

to fascia or directly adjacent to bone or neurovascular structures, the<br />

salvage procedure <strong>of</strong>ten becomes more complex. The purpose <strong>of</strong> this<br />

study is to evaluate the effect <strong>of</strong> unplanned excision <strong>of</strong> high-risk s<strong>of</strong>t<br />

tissue sarcomas on patient outcome. We reviewed our prospectively<br />

collected sarcoma database from the years 1989 to 2006. Patients<br />

who underwent definitive resection <strong>of</strong> a s<strong>of</strong>t tissue sarcoma at our<br />

center were included. The primary categories were patients who had<br />

and had not undergone initial unplanned resection <strong>of</strong> their tumor<br />

prior to referral for definitive management at our center. Patients<br />

who had tumors that were less than 5 cm in diameter, superficial<br />

to fascia and not overlying bone or neurovascular structures were<br />

excluded. A total <strong>of</strong> 1,034 patients met inclusion criteria. Of these,<br />

385 (37%) patients had undergone a prior unplanned excision prior<br />

to referral, while 649 (63%) patients underwent definitive resection<br />

at our center without prior unplanned excision. There was a higher<br />

percentage <strong>of</strong> high grade (61% vs. 50%) and deep tumors (88% vs.<br />

65%) in the unplanned excision group, and the mean tumor diameter<br />

was also smaller in the unplanned excision group (5.9 cm) than the<br />

control group (10.6 cm). There was no difference between the groups<br />

in terms <strong>of</strong> rate <strong>of</strong> amputation, necessity for flaps for coverage and<br />

local recurrence-free survival. Complications were more common in<br />

the control group (34%) than the unplanned excision group (20%,<br />

p


extremity STS. Lymphoedema severity (Stern 1964) has been<br />

prospectively collected from our s<strong>of</strong>t tissue sarcoma population. The<br />

patient’s demographics, tumor characteristics, surgical procedures,<br />

radiotherapy dosage, complications and functional outcomes (MSTS<br />

1987, TESS) were also prospectively collected. Lymphoedema severity<br />

and functional outcomes were recorded at the same time, with<br />

an average follow-up interval <strong>of</strong> 35 months (range 12-60). Charts<br />

were also retrospectively abstracted for body mass index (BMI) and<br />

medical comorbidities. There were 289 evaluable STS patients (158<br />

males). Mean age was 53 (range 16-88). Mean BMI was 27.4 (range:<br />

15.8-52.1). A total <strong>of</strong> 209 had lower extremity tumors and 80, upper<br />

extremity. Mean tumor size was 8.1 cm (range 1.0-35.6 cm). Seventysix<br />

had no adjuvant radiation, 180 had 50 Gy and 32 received 66 Gy.<br />

The incidence <strong>of</strong> lymphoedema was found to be 28.8% (206 none, 58<br />

mild, 22 moderate, three severe, zero very severe). Mean MSTS score<br />

was 32 (range: 11-35) and TESS, 89.4 (range: 32.4-100). Radiation<br />

dose was significantly correlated with tumor size >5 cm (p=0.0001)<br />

and TESS score (p=0.001), but not MSTS score (p=0.090). For analysis,<br />

we grouped cases with lymphoedema grades 0-1 and 2-3. Univariate<br />

analysis found significant correlations between the severity <strong>of</strong><br />

lymphoedema and tumor size >5 cm (p=0.011), deep location (no<br />

patient with a superficial tumor had severe lymphoedema, p=0.001)<br />

and radiation dosage 50 vs 66 Gy (p=0.010), but not between upper<br />

vs. lower extremity (p=0.092). We found no significant association<br />

between the incidence <strong>of</strong> lymphoedema and hypertension (p=0.36)<br />

or smoking (p=0.63). A logistic regression analysis identified tumor<br />

size (odds ratio 3; 95% confidence interval: 1.2-7.6) and radiation<br />

dosage (odds ratio 5.7; 95% confidence interval: 1.8-17.9) as the two<br />

factors which predicted lymphoedema. Nine percent <strong>of</strong> STS patients<br />

in our cohort developed severe (Stern grade 2) post-treatment<br />

lymphoedema. Tumor size >5 cm was associated with an increased<br />

occurrence <strong>of</strong> lymphoedema but not tumor location. Radiation dose<br />

was associated with severity <strong>of</strong> lymphoedema and appeared to be<br />

one <strong>of</strong> the few variables on which clinicians can have influence.<br />

Otherwise, high-risk patients could be targeted for prophylactic<br />

intervention and/or prospective trials.<br />

pApeR No. 525<br />

DVT Prophylaxis with Dalteparin for Malignant Tumor<br />

Resection<br />

Patrick P Lin, MD, Houston, TX<br />

Hyun-Guy Kang, MD, Goyang-Si, Gyeonggi-Do, Republic <strong>of</strong><br />

Korea<br />

Robert L Satcher Jr, MD, Houston, TX<br />

Bryan Scott Moon, MD, Houston, TX<br />

Valerae O Lewis, MD, Houston, TX<br />

The efficacy <strong>of</strong> low molecular weight heparins for prophylaxis against<br />

venous thromboembolic events has been well-established. Their<br />

use in patients undergoing major tumor resections <strong>of</strong> the limbs has<br />

been limited by concerns for the possiblity <strong>of</strong> increased bleeding and<br />

wound complications. The goal <strong>of</strong> the present study is to determine<br />

the efficacy and safety <strong>of</strong> dalteparin in patients undergoing excision<br />

<strong>of</strong> moderate to large sized (5-20 cm) tumors <strong>of</strong> the lower extremities.<br />

A prospective study was performed <strong>of</strong> 25 patients with primary<br />

sarcomas and 25 patients with metastatic disease. All patients<br />

underwent limb-sparing surgery and excision <strong>of</strong> tumors, which<br />

were 5-20 cm in size and located in the lower extremities. Patients<br />

were screened with bilateral doppler ultrasound before surgery and<br />

prior to discharge home at 5-14 days after surgery. Dalteparin was<br />

administered at a dose <strong>of</strong> 5,000 units subcutaneously daily starting<br />

12-24 hours after surgery. A case-controlled cohort <strong>of</strong> patients who<br />

did not receive chemoprophylaxis was chosen from historical data to<br />

compare surgical complications. Patients were matched for disease,<br />

870<br />

site, tumor size and surgical operation. Of the 50 patients who<br />

completed the study, one patient (2%) developed a post-operative<br />

deep venous thrombosis (DVT). No patient developed a symptomatic<br />

pulmonary embolism and no patient died <strong>of</strong> pulmonary embolism<br />

within three months <strong>of</strong> surgery. The rate <strong>of</strong> surgical complications,<br />

including hematoma formation, seroma, deep infection, dehiscence<br />

and bleeding were not significantly different between the study<br />

group and the case controlled cohort. The rate <strong>of</strong> DVT in patients<br />

treated with dalteparin compared favorably with published historical<br />

controls, which have shown a rate <strong>of</strong> 14% in patients treated with<br />

mechanical prophylaxis. We did not detect a significant increase in<br />

surgical complications. The maximal size <strong>of</strong> tumors in this study,<br />

however, was 20 cm, and no pelvic resections were included. The<br />

optimal use <strong>of</strong> dalteparin in these very large resections is still not<br />

well defined. The results <strong>of</strong> this preliminary study suggest that<br />

dalteparin is safe and efficacious as prophylaxis against DVT in<br />

patients undergoing moderate to large sized tumor resection.<br />

POSTERS<br />

posteR No. p521<br />

Clinical Benefits <strong>of</strong> Supplementing Radiotherapy with<br />

Chemotherapy in S<strong>of</strong>t Tissue Sarcoma (STS)<br />

Richard D Lackman, MD, Philadelphia, PA<br />

Vincent Michael Moretti, MD, Chicago, IL<br />

Adedayo O Ashana, BA, Philadelphia, PA<br />

Michael Delacruz, MD<br />

Vasthi Wilson, MD<br />

The management <strong>of</strong> s<strong>of</strong>t tissue sarcomas (STS) remains controversial.<br />

Radiotherapy (XRT) or chemotherapy is <strong>of</strong>ten utilized preoperatively,<br />

but the clinical benefits <strong>of</strong> these modalities remain unclear.<br />

Information regarding the combined utilization <strong>of</strong> both radiotherapy<br />

and chemotherapy prior to surgery is especially limited. This<br />

study investigates whether supplementing preoperative XRT with<br />

neoadjuvant chemotherapy provides any clinical benefit to patients<br />

with STS. We searched our database for patients with pathologically<br />

confirmed STS treated with both preoperative XRT and surgical<br />

resection since 1998. Complete medical records and a follow up<br />

<strong>of</strong> greater than 12 months, or until patient death, were required<br />

for study inclusion. Outcome measures included overall survival<br />

(OS), disease free survival (DFS), amount <strong>of</strong> tumor shrinkage after<br />

radiotherapy and amount <strong>of</strong> histologic tumor necrosis at the time<br />

<strong>of</strong> surgery. OS was defined as the time from patient presentation<br />

until death or end <strong>of</strong> follow up. DFS was defined as the time from<br />

definitive surgery until development <strong>of</strong> local tumor recurrence/<br />

metastatic disease or end <strong>of</strong> follow up. Survival analyses were<br />

performed with Kaplan-Meier and group comparisons were made<br />

using Student’s t-tests. Forty patients were included in this study.<br />

Mean follow up was 34.1 months. Twenty-nine patients had received<br />

preoperative XRT and 11 patients had received both preoperative<br />

XRT and neoadjuvant chemotherapy. The group receiving both<br />

XRT and chemotherapy had a two-year OS <strong>of</strong> 90%, which was not<br />

significantly different from the two-year OS <strong>of</strong> 92% for radiotherapy<br />

alone (p = 0.33). The group receiving both XRT and chemotherapy<br />

had a two-year DFS <strong>of</strong> 80%, which was not significantly different<br />

from the two-year DFS <strong>of</strong> 71% for radiotherapy alone (p = 0.94).<br />

The amount <strong>of</strong> tumor shrinkage in the group receiving both XRT<br />

and chemotherapy (mean, 37.4%) was significantly greater than<br />

the amount <strong>of</strong> shrinkage in the group receiving XRT alone (mean,<br />

-33.0%) (p=0.01). No significant difference was noted in the amount<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


<strong>of</strong> histologic tumor necrosis between the two groups (means <strong>of</strong><br />

62% vs. 49%) (p=0.36). Supplementing preoperative XRT with<br />

neoadjuvant chemotherapy provides no survival benefits to patients<br />

with STS, but the combination leads to significantly smaller tumors<br />

than XRT alone. This finding may be utilized by multi-specialty teams<br />

to shrink large sarcomas that would otherwise be unresectable.<br />

posteR No. p522<br />

Monobutyrin - A Novel Factor Linking Fat Gain and<br />

Bone Loss<br />

Rachel W Li, MD, PhD, Canberra, ACT Australia<br />

Paul N Smith, MD, Deakin West, ACT Australia<br />

Monobutyrin secreted from adipocyte inhibited osteoblasts (OB).<br />

This indicates an existence <strong>of</strong> bone-fat interaction and a potential<br />

therapeutic target for reducing osteoporotic fracture risk. Human<br />

primary OBs derived from eight healthy and eight osteoporotic<br />

patients were cultured with monobutyrin. Cell proliferation, alkaline<br />

phosphatase (ALP), mineralization and confocal microscopy assays<br />

were used for functional assessments <strong>of</strong> OBs. Quantitative RT-PCR<br />

and flow cytometry were used for osteogenic gene pr<strong>of</strong>iling, cytokine<br />

production and phosphorylation <strong>of</strong> histone H3. Monobutyrin<br />

significantly inhibited OB cell proliferation (p


at a major oncologic referral center who had undergone either<br />

internal or external hemipelvectomy for tumor between June 2002<br />

and December 2007. Nineteen patients previously treated operatively<br />

with either a Type II periacetabular internal (INT, n=5), external (EXT,<br />

n=14) hemipelvectomy, or hip disarticulation (combined with EXT<br />

group) were evaluated using the Toronto Extremity Salvage Score<br />

(TESS), MSTS and SF-36. There were 16 (84%) males and 3 (16%)<br />

females with a mean age at operation <strong>of</strong> 48.7 ± 16.6 (range from 18<br />

to 69). Follow up was 30.7 ± 19.1 (range five to 70 months). Overall<br />

mean MSTS was 41.2 (range from 6.7 to 83.3), and TESS was 56.6<br />

(range 31.8 to 88). SF-36 physical function results were lower than<br />

the general population. Mental health condition was comparable<br />

to the normal population. The three measurements, TESS, MSTS<br />

and PF subscale <strong>of</strong> the SF-36, were all positively correlated. There<br />

were no significant influences <strong>of</strong> post-surgery time on MSTS, TESS<br />

or PF. However, the age <strong>of</strong> the patient at operation has a negative<br />

correlation with the physical function. The younger the patients, the<br />

higher the TESS and PF scores. Hemipelvectomies (either internal or<br />

external) have pr<strong>of</strong>ound impact on patient lives as illustrated by low<br />

TESS, SF-36 and MSTS scores. TESS, MSTS and PF were all positively<br />

correlated indicating that the patient and physician tabulated scores<br />

correlate with one another in our study. The age <strong>of</strong> the patient at<br />

operation had a negative correlation with the physical function in<br />

that the younger the patients, the higher the TESS and PF scores. The<br />

time out from surgery did not affect scores.<br />

posteR No. p526<br />

Aseptic Loosening Rates In Distal Femoral<br />

Endoprostheses: Does Surgical Technique Matter?<br />

Patrick F Bergin, MD, Indianapolis, IN<br />

Jenna B Noveau, BS<br />

Robert Mikael Henshaw, MD, Washington, DC<br />

James S Jelinek, MD<br />

Distal femoral replacement provides immediate functionality in<br />

limb salvage procedures. However, long-term results have been<br />

plagued by high rates <strong>of</strong> aseptic loosening with only resection length<br />

<strong>of</strong> the distal femur being predictive <strong>of</strong> failure. We propose a large<br />

stem, line-to-line reaming method <strong>of</strong> cemented stems to reduce<br />

the incidence <strong>of</strong> aseptic loosening. All distal femoral replacements<br />

performed at one institution were evaluated including revisions. The<br />

age, gender, oncologic diagnosis, length <strong>of</strong> follow up, chemotherapy<br />

and radiation treatments, and radiographic parameters were<br />

recorded. Patients with at least five-year follow up, no infection<br />

history and no radiation therapy were placed into a separate cohort.<br />

Two Kaplan-Meier survival curves were created. The first used any<br />

cause <strong>of</strong> stem removal as the endpoint for failure. The second<br />

specifically used aseptic loosening as the endpoint. Radiographs were<br />

reviewed to calculate the femoral resection percentage, stem size and<br />

ratio <strong>of</strong> diaphyseal to stem diameter. They were also reviewed in a<br />

blinded fashion by a musculoskeletal radiologist to assess for early<br />

signs <strong>of</strong> aseptic loosening. The Student’s t-test was used to assess for<br />

significant differences in the selected cohort between clinically stable<br />

patients and those patients revised for aseptic loosening. Bivariate<br />

analysis was performed for the entire patient population to look<br />

for risk factors predictive <strong>of</strong> loosening. Multiple logistic regression<br />

analysis was performed to find independent risk factors that lead to<br />

loosening. A total <strong>of</strong> 104 stems in 93 patients were evaluated with an<br />

average follow up <strong>of</strong> 5.5 years. Overall implant survival using Kaplan-<br />

Meier curves was 73.3% at 10 years but fell to 46.1% at 20-year follow<br />

up. Survival using aseptic loosening as the failure mode was 94.6% at<br />

10 and 15 years and 86.5% at 20-year follow up. Thirty-four patients<br />

with an average follow up <strong>of</strong> 12.5 years were placed into a separate<br />

cohort as described. Comparing patients with stable versus loose<br />

872<br />

implants in this cohort showed significant differences in stem size<br />

and bone/stem size ratio. There was no statistical difference between<br />

the resection percentages in this cohort. Using bivariate analysis <strong>of</strong><br />

the entire patient population, similarly only stem size and bone/<br />

stem ratio influenced survival. Resection percentage approached<br />

significance, but in multivariate analysis, only the bone/stem ratio<br />

was found to be an independent risk factor for aseptic failure. Aseptic<br />

loosening rates in cemented distal femoral replacement vary greatly<br />

among cohorts. Resection <strong>of</strong> more than 40% <strong>of</strong> the distal femur has<br />

previously been shown to predict loosening <strong>of</strong> the prosthesis. We<br />

present evidence that using a large stem with full canal fill and a<br />

small cement mantle is the most protective factor against failure.<br />

This surgical technique compared with a smaller stem technique can<br />

reduce historical loosening rates and shows less than 15% loosening<br />

at 20-year follow up. In this cohort, cemented endoprostheses with<br />

large canal-filling stems provides excellent stability in limb salvage<br />

reconstructions.<br />

posteR No. p527<br />

Low-Energy Femur Fractures And Alendronate<br />

Aimee Perreira, MD, Honolulu, HI<br />

Kevin P Christensen, MD, Honolulu, HI<br />

Cori Hirai, BS, Honolulu, HI<br />

There is growing concern and circumstantial evidence for an<br />

association between low-energy femoral diaphysis fractures and longterm<br />

bisphosphonate use. The aims <strong>of</strong> this study are to: 1) review all<br />

low-energy femoral shaft fractures treated at our institution over the<br />

past three years, and 2) identify patient factors associated with this<br />

fracture pattern. This is a retrospective review <strong>of</strong> low-energy femoral<br />

shaft fractures presenting to our institution from January 1, 2006 to<br />

December 31, 2009, who were treated by the orthopaedic trauma<br />

service. Exclusion criteria includes age less than 50 years old and<br />

all pathologic, periprosthetic, pertrochanteric or distal 1/3 femur<br />

fractures. Pertrochanteric fractures that were excluded were used as a<br />

control for comparison. Fractures with lateral cortical thickening, a<br />

transverse pattern and a medial spike were grouped as ‘classic fracture<br />

pattern.’ Data collected includes subject demographics, medical<br />

history and available laboratory values. Fracture characteristics were<br />

described, and involvement <strong>of</strong> the contralateral side was noted. A<br />

total <strong>of</strong> 114 fractures were identified, 73 <strong>of</strong> which were excluded.<br />

Twenty-seven <strong>of</strong> these were pertrochanteric fractures and were used<br />

as a control. Fifty-two fractures in 41 subjects met inclusion criteria.<br />

Thirty-five subjects demonstrated classic findings compared to zero<br />

in the control. There was no difference in sex, body mass index or<br />

ethnicity between the two groups (p >0.05). Secondary causes <strong>of</strong><br />

osteoporosis were present in 59% <strong>of</strong> subjects. Those with classic<br />

findings were younger than the control (69.7 versus 80.2 years, p<br />


Future prospective studies are needed to identify other risk factors<br />

associated with this unique fracture pattern, evaluate the safety <strong>of</strong><br />

long-term bisphosphonate therapy and determine a method <strong>of</strong><br />

radiographic screening for the population at risk.<br />

posteR No. p528<br />

Diversity Of Angiogenesis Among Malignant Bone<br />

Tumors<br />

Tadahiko Kubo, MD, PhD, Hiroshima, Japan<br />

Shoji Shimose, MD, PhD, Hiroshima, Japan<br />

Toshihiro Matsuo, MD, PhD, Hiroshima, Japan<br />

Mitsuo Ochi, MD, PhD, Hiroshima, Japan<br />

Jun Fujimori, MD<br />

Several reports demonstrated that angiogenesis assessed by microvessel<br />

density (MVD) correlated with patient prognosis in a variety<br />

<strong>of</strong> cancers, whereas the data regarding the relevance <strong>of</strong> angiogenesis<br />

and prognosis in malignant bone tumors are scant and controversial.<br />

The aim <strong>of</strong> this study is to examine MVD in malignant bone tumors<br />

to clarify the role <strong>of</strong> angiogenesis in prognosis and therapeutic<br />

strategies. We reviewed 63 patients with non-metastatic malignant<br />

bone tumors, including osteosarcoma, chondrosarcoma and Ewing’s<br />

sarcoma, treated between 1980 and 2007. Biopsy or pretherapeutic<br />

surgical specimens were stained with anti-CD34 antibody. MVD was<br />

calculated according to the Weidner’s method. The median follow-up<br />

period was six years four months. The median values <strong>of</strong> MVD were<br />

40.9, 7.8 and 43.0 in osteosarcoma, chondrosarcoma and Ewing’s<br />

sarcoma, respectively. In osteosarcoma, high MVD, AJCC stage IIA,<br />

good histological response to chemotherapy correlated significantly<br />

with better disease-free survival (P


posteR No. p531<br />

Effects Of Metabolic Acidosis On Fracture Healing: An<br />

Experimental Study<br />

Eduardo Nilo Novais, MD, Boston, MA<br />

Ana Christina Simoes-Silva, MD, PhD<br />

Marco Antonio Percope-Andrade, MD, Belo Horizonte, Brazil<br />

Regina Pereira, MD, PhD<br />

Guilherme Soares, MD<br />

There is substantial evidence that acidosis exerts pr<strong>of</strong>ound adverse<br />

effects on bone metabolism. Studies in vitro and in vivo have shown<br />

that metabolic acidosis (MA) increases bone resorption and reduces<br />

bone formation as it suppresses osteoblastic activity and stimulates<br />

osteoclastic activity. MA is a usual feature present in metabolic bone<br />

diseases associated with renal disorders. Children with chronic<br />

renal diseases <strong>of</strong>ten present with widened and irregular epiphysealmetaphyseal<br />

junctions and angular deformities <strong>of</strong> the lower limbs.<br />

Management <strong>of</strong> long bone deformities and fractures associated<br />

with these situations may be troublesome. The purpose <strong>of</strong> this<br />

study is to evaluate the impact <strong>of</strong> MA on fracture healing in rats.<br />

We investigated the effects <strong>of</strong> MA on fracture healing in acidotic rats<br />

(AC) and in non-acidotic (C) controls. Chronic MA was induced by<br />

ingestion <strong>of</strong> ammonium chloride added to tap water as the unique<br />

source <strong>of</strong> liquid for the animals. After two weeks <strong>of</strong> acid-load (AC)<br />

or tap water (C) ingestion, a fracture <strong>of</strong> the right tibia was produced.<br />

Four weeks later, fracture healing was evaluated by radiological and<br />

histological standard parameters. Blood pH, sodium, potassium,<br />

chloride, calcium and phosphate were measured in both groups<br />

throughout the study Rats <strong>of</strong> the AC group were in a state <strong>of</strong> evident<br />

metabolic acidosis when the fracture was performed. However, at<br />

the end <strong>of</strong> the experimental period (day 42), they presented normal<br />

blood pH and bicarbonate levels. Fracture healing in AC animals was<br />

significantly altered as compared to C group both by radiographic<br />

and histological evaluation. Serum phosphate was significant lower<br />

in AC rats in the end <strong>of</strong> the study. This study showed a higher<br />

frequency <strong>of</strong> delayed fracture healing and nonunion in the presence<br />

<strong>of</strong> MA and emphasized the important role <strong>of</strong> bone buffering in<br />

acid base homeostasis. To our knowledge this is the first study that<br />

demonstrates in vivo effects <strong>of</strong> sustained metabolic acidosis on the<br />

fracture healing process.<br />

posteR No. p532<br />

Perioperative and Late Infections in Osteosarcomas<br />

Treated with Endoprosthetic Reconstruction<br />

Richard D Lackman, MD, Philadelphia, PA<br />

Xin Li, MD, Jinan, China<br />

Vincent Michael Moretti, MD, Chicago, IL<br />

Adedayo O Ashana, BA, Philadelphia, PA<br />

Over the past few decades, there has been an improvement in survival<br />

outcomes in patients with osteosarcoma and a corresponding increase<br />

in the percentage <strong>of</strong> limb-sparing surgeries done in this population.<br />

With increased long-term survival, the incidence <strong>of</strong> infection has<br />

become more important in the treatment <strong>of</strong> these patients. The<br />

goal <strong>of</strong> this study is to assess the rate <strong>of</strong> infection in osteosarcoma<br />

patients treated with resection and prosthetic reconstruction. We<br />

retrospectively reviewed all cases <strong>of</strong> osteosarcoma treated with limb<br />

salvage surgery involving primary endoprosthetic reconstruction<br />

at our institution. Peri-operative infection was defined as infection<br />

within two months <strong>of</strong> surgery and any infection after two months<br />

was categorized as late. Sixty-seven patients (40 males and 27<br />

females) met inclusion criteria. Mean age was 33 years (range 10-<br />

78). Tumor locations included distal femur (39 patients), proximal<br />

874<br />

tibia (14), proximal femur (eight), proximal humerus (three),<br />

total humerus (two) and proximal radius (one). Fifty-nine patients<br />

had chemotherapy. Four patients had radiotherapy. All patients<br />

were given intra-operative intravenous antibiotics (first-generation<br />

cephalosporin), continued for three days postoperatively and<br />

then given orally for five days. Allergic patients were instead given<br />

intravenous vancomycin followed by clindamycin. Mean follow up<br />

was five years (range 1-9). Total infection rate was 6.0%. Only one<br />

patient (1.5%) had peri-operative infection. This occurred in a 78<br />

year old female following proximal tibial replacement with total<br />

knee arthoplasty, gatrocnemius flap and skin graft. Three patients<br />

(4.5%) had late infections. One occurred in a 22 year-old female, 52<br />

months after distal femur replacement with total knee arthroplasty.<br />

Another occurred in a 12 year-old male, nine months after distal<br />

femur replacement with total knee arthroplasty. The third late<br />

infection occurred in a 68 year-old male, 14 months after proximal<br />

tibia replacement with total knee arthroplasty. Three (75%) <strong>of</strong><br />

the four total infections resolved with surgical debridement and<br />

antibiotics. The reported incidence <strong>of</strong> infection following sarcoma<br />

resection and endoprosthetic reconstruction varies greatly in the<br />

literature. Some authors report total infection rates as high as<br />

20% but ours was significantly lower at 6.0%. Our peri-operative<br />

infection rate was especially remarkable at only 1.5%, which may<br />

be due to our antibiotic regimen being longer than that generally<br />

recommended for routine total joint replacement. This series also<br />

exhibited a high rate <strong>of</strong> eradication <strong>of</strong> peri-prosthetic infection with<br />

surgical debridement and antibiotics, suggesting it may be a variable<br />

alternative for treating this complication in the osteosarcoma<br />

population.<br />

posteR No. p533<br />

Validity <strong>of</strong> an Automatic Measure Protocol for Allograft<br />

Selection in a 3-D Virtual Bone Bank System<br />

Luis Alberto Aponte-Tinao, MD, Buenos Aires, Argentina<br />

Lucas Eduardo Ritacco, MD, Buenos Aires, Argentina<br />

German Luis Farfalli, MD, Buenos Aires, Argentina<br />

Miguel Angel Ayerza, MD, Buenos Aires, Argentina<br />

Domingo Luis Muscolo, MD, Buenos Aires, Argentina<br />

Christ<strong>of</strong> Seiler, PhD<br />

Mauricio Reyes, PhD<br />

Lutz P Nolte, PhD, Bern, Switzerland<br />

Ostearticular allograft is one <strong>of</strong> the possible treatments in wide<br />

surgical resections with large defects. In the context <strong>of</strong> bone<br />

databanks, performing best allograft selection is <strong>of</strong> great relevance.<br />

Current approaches are time consuming hindering these points in<br />

practice. We report a validation study <strong>of</strong> a s<strong>of</strong>tware able to perform<br />

automatic bone measurements used to automatically assess the<br />

distal femur sizes across a databank, from six pre-defined anatomical<br />

landmarks. Featuring a fast and accurate, yet easy to employ, method<br />

for bone allograft selection. A total <strong>of</strong> 170 distal femur surfaces<br />

were reconstructed from CT data and measured manually using a<br />

measure protocol taking into account the transepicondyle distance<br />

(A), anterior-posterior distance in medial condyle (B) and lateral<br />

condyle (C). Intra and inter-observer studies were conducted and<br />

regarded as ground truth measurements. The same bone surfaces<br />

were then measured using an automatic s<strong>of</strong>tware. Manual and<br />

automatic measures were compared using, a statistic description<br />

(means, maximal and minimal differences), intraclass correlation<br />

coefficient and illustrated with Bland and Altman graphics. A single<br />

operator was tested for intraobserver repeatability while using<br />

the above-mentioned A-B-C protocol twice on the bone surfaces,<br />

obtaining an intraclass correlation coefficient <strong>of</strong> 0.99 for all measures.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


Interobserver consistency <strong>of</strong> two separate observers was quantified<br />

as well for the same cohort, leading to an intraclass correlation<br />

coefficient <strong>of</strong> 0.99 for A measure, and <strong>of</strong> 0.98 for B and C measures.<br />

For the automatic measurements, the correlation coefficients between<br />

observer one and automatic method, were <strong>of</strong> 0.99 for A measure<br />

and 0.96 for B and C measures. The average time needed to perform<br />

the measurements was <strong>of</strong> 16 hours for both manual measurements,<br />

and <strong>of</strong> three minutes for the automatic method. The proposed<br />

methodology is presented as a key element towards effective and fast<br />

allograft selection, advancing the state <strong>of</strong> the art over current timeconsuming<br />

and labor-intensive solutions. The results demonstrate<br />

the high reliability and, most importantly, high repeatability <strong>of</strong> the<br />

proposed approach, which suggests an improvement <strong>of</strong> the available<br />

material in the databank, considerable speed-up on the planning<br />

and ultimately better surgery outcomes.<br />

posteR No. p534<br />

The Effect <strong>of</strong> Osteoporosis Screening and Treatment on<br />

the Rate <strong>of</strong> Proximal Humerus Fracture<br />

Anshuman Singh, MD, San Diego, CA<br />

Richard M Dell, MD, Cypress, CA<br />

T Ted Funahashi, MD, Irvine, CA<br />

Annette L Adams, PhD, Pasadena, CA<br />

Ronald Anthony Navarro, MD, Rolling Hills, CA<br />

Osteoporosis is a quantitative loss in bone mineral density which<br />

causes fragility fractures <strong>of</strong> the spine and long bones. As the<br />

population ages, this represents an increasing burden on our society<br />

in terms <strong>of</strong> patient morbidity, lost productivity and expense to the<br />

healthcare system. The reduction in hip fracture cost and morbidity<br />

by osteoporosis screening and treatment has been well documented;<br />

we lack data regarding the effect <strong>of</strong> such programs on proximal<br />

humerus fracture. Beginning in 2002, a comprehensive screening and<br />

treatment program was initiated with the goal <strong>of</strong> screening all high<br />

risk individuals with dual x-ray absorptiometry scan and treating<br />

individuals with prior fragility fracture or T-score <strong>of</strong> 2.5 or worse<br />

with bisphosphonates. Institutional Review Board approval was<br />

obtained for a multicenter retrospective review <strong>of</strong> shoulder fractures<br />

in all patients aged 60 years old and older between 2002 and 2007.<br />

Fracture cases were screened using a comprehensive longitudinal<br />

electronic administrative database serving over three million<br />

individuals, identified by ICD-9 codes. Accuracy <strong>of</strong> this coding was<br />

regularly confirmed. The database includes fracture data, patient<br />

demographics, age, co-morbidities and history <strong>of</strong> previous fracture.<br />

A total <strong>of</strong> 15.5% <strong>of</strong> the study group was 60+ years old (N=525,758),<br />

which approximates the U.S. population. In terms <strong>of</strong> demographic<br />

risk factors for proximal humerus fracture, females have a hazard<br />

ratio <strong>of</strong> 3.1, diabetics 1.5 and Caucasians 2.0 (all p


crystal violet staining and results demonstrated a consistent increase<br />

in OS proliferation induced by LPAAT-B. LPAAT-B over-expression<br />

promoted OS migration as demonstrated by complete wound<br />

closure at 36 hours. In the orthotopic animal model <strong>of</strong> OS, LPAAT-B<br />

over-expression was shown to significantly increase OS growth<br />

(p


posteR No. p540<br />

Radiological Evaluation <strong>of</strong> the Hip Joint Following<br />

Endoprosthetic Replacement <strong>of</strong> the Proximal Femur<br />

Michael Drexler, MD, Tel Aviv, Israel<br />

Eyal Amar, MD, Tel Aviv, Israel<br />

Shlomo Dadia, MD<br />

Isaac Meller, MD, Tel Aviv, Israel<br />

Jacob Bickels, MD, Rehovot, Israel<br />

Endoprosthetic replacement <strong>of</strong> the proximal femur involves removal<br />

<strong>of</strong> large amounts <strong>of</strong> bone and surrounding s<strong>of</strong>t-tissues and is<br />

associated with a considerable load on the remaining acetabulum.<br />

We radiologically evaluated the changes occurring around the affected<br />

hip joint. Follow-up imaging studies <strong>of</strong> 41 consecutive patients<br />

who underwent either proximal or total femur endoprosthetic<br />

replacement and in which an acetabular cup has not been placed<br />

were retrospectively reviewed. The radiological evaluation included<br />

the extents <strong>of</strong> acetabular protrusion, degenerative changes <strong>of</strong> the<br />

acetabulum and heteroptopic bone formation around the prosthetic<br />

hip joint. The mean follow-up period was 76.8 months (range one<br />

to 190 months). Protrusion <strong>of</strong> the prosthetic head was documented<br />

in 14.6% (six patients), degenerative acetabular changes in 9.7%<br />

(four patients), and grade 1 heterotrophic bone formation in 24.4%<br />

(10 patients). The degenerative articular changes and heterotopic<br />

bone formation were not associated with clinical symptoms.<br />

Radiological evidence <strong>of</strong> protrusion, degeneration and heterotopic<br />

bone formation occur in the minority <strong>of</strong> the patients who undergo<br />

endoprosthetic replacement <strong>of</strong> their proximal femur. The extent <strong>of</strong><br />

these changes and the lack <strong>of</strong> clinical symptoms do not justify the<br />

routine placement <strong>of</strong> an acetabular cup in these cases.<br />

posteR No. p541<br />

Surgery And Malignant Change Around The Shoulder In<br />

Hereditary Multiple Exostoses<br />

Nicholas D Clement, MRCS Ed, Edinburgh, United Kingdom<br />

Cho Ng, MBBS, Edinburgh, United Kingdom<br />

Daniel Porter, MD, Edinburgh, United Kingdom<br />

Patients with hereditary multiple exostoses (HME) in association<br />

with palpable shoulder exostoses are more severely affect by their<br />

disease. We describe the epidemiology and risk <strong>of</strong> surgery around<br />

the shoulder in HME. A total <strong>of</strong> 172 patients were identified from<br />

a prospective database <strong>of</strong> 78 families with HME. Demographic<br />

details, deformity and functional scores, standing height, number<br />

<strong>of</strong> exostoses, site, genotype (EXT1 & EXT2), surgical excision and<br />

malignant change were recorded. Non-parametric tests were used<br />

to compare patients with shoulder exostoses (clavicle, scapular,<br />

humerus) to those without. There were 5,361 palpable exostoses,<br />

<strong>of</strong> which 14% were <strong>of</strong> the shoulder and were present in 145<br />

(84.3%) patients. There was a younger mean age (26.8 years verses<br />

37.9 years) and a male predominance in those individuals with<br />

shoulder exostoses (p=0.0005). Patients with shoulder exostoses<br />

had significantly worse disease (p


pr<strong>of</strong>ile and additionally a lifestyle-questionnaire. Referring to the<br />

age and gender matched Z-score we found six cases <strong>of</strong> osteopenia<br />

(six/17) and five <strong>of</strong> osteoporosis (five/17) in Ewing’s sarcoma in<br />

the lumbal spine and four times osteopenia (four/18) and one time<br />

osteoporosis (one/18) in osteosarcoma. In the femur seven Ewing’s<br />

sarcoma patients were dropping below osteopenic (seven/17) and<br />

three below osteoporotic levels (three/17) while six osteosarcoma<br />

patients presented with osteopenia (six/18) and seven osteoporosis<br />

(seven/18). BMD (bone mineral density)-reduction occurred in both<br />

types <strong>of</strong> tumor, independent <strong>of</strong> chemotherapeutic scheme, sex and<br />

tumour localization which reveals the importance <strong>of</strong> prophylactic<br />

screening and osteoprotective medication also in childhood cancer.<br />

posteR No. p544<br />

Adamantinoma <strong>of</strong> Bone<br />

Eduardo Nilo Novais, MD, Boston, MA<br />

Franklin H Sim, MD, Rochester, MN<br />

Peter S Rose, MD, Rochester, MN<br />

Carrie Inwards, MD, Rochester, MN<br />

Armita Bahrami, MD, Rochester, MN<br />

Doris Wenger, MD, Rochester, MN<br />

Mathew Most, MD, Sutton, MA<br />

German Luis Farfalli, MD, Buenos Aires, Argentina<br />

Adamantinoma (AD) <strong>of</strong> the long bones is a rare, low-grade, malignant,<br />

slow-growing primary bone tumor with a strong predilection for the<br />

midshaft <strong>of</strong> the tibia, with or without involvement <strong>of</strong> the ipsilateral<br />

fibula. The purpose <strong>of</strong> this study is to define the clinical presentation,<br />

diagnostic and therapeutic options, prognosis for local recurrence,<br />

metastasis and survival in patients with adamantinoma. Forty-two<br />

consecutive patients with an adamantinoma were evaluated. Thirtyfive<br />

patients had an AD <strong>of</strong> the tibia (five <strong>of</strong> which also involved the<br />

fibula). Othe locations <strong>of</strong> the tumor were: femur (two), ulna (two),<br />

fibula (two), radius (one) and humerus (one). Thirty-four patients<br />

were treated initially with a limb sparring surgery and eight with an<br />

amputation. Most common presentation was pain and swelling. The<br />

mean age at presentation was 13 years (range 7-79). With a mean<br />

follow up <strong>of</strong> 13 years, the overall survival <strong>of</strong> the entire series was<br />

78.6%. Eight (19%) patients had recurrent local disease, nine (21%)<br />

developed lung and lymph node metastasis. Nine patients died <strong>of</strong><br />

their disease and the majority <strong>of</strong> them were initially treated with<br />

an amputation (p=0.04). No statistical differences were observed in<br />

others risk factors for recurrent or metastatic disease. Adamantinoma<br />

<strong>of</strong> bone is a malignant lesion with metastatic potential. As adjuvant<br />

radiation and chemotherapy have not been effective in the treatment<br />

<strong>of</strong> AD, surgical management is necessary with the goal <strong>of</strong> clear<br />

margins. Historically amputation has been one option for the<br />

treatment <strong>of</strong> AD. However, in our series amputation did not improve<br />

the survival rate and we currently recommend wide en bloc resection<br />

with wide margins and reconstruction. All patients require long-term<br />

follow up for surveillance <strong>of</strong> local recurrence or distance metastasis.<br />

posteR No. p545<br />

Does the Addition <strong>of</strong> Zoledronic Acid to Bone Cement<br />

Reduce Local Progression <strong>of</strong> Bone Metastases?<br />

Jeffrey TP. Luna, MD, Saugus, MA<br />

Niraj Kalore, MD, Birmingham, AL<br />

Yang Zhang, MS, Minneapolis, MN<br />

Edward Y Cheng, MD, Minneapolis, MN<br />

Zoledronic acid (ZA) reduces osteoclast activity and has antineoplastic<br />

effects. We studied whether or not packing with ZA<br />

impregnated bone cement (ZA+PMMA) after curettage <strong>of</strong> metastatic<br />

878<br />

bone cancer would lower local tumor progression. Seventy-three<br />

consecutive patients who underwent intralesional excision <strong>of</strong> an<br />

extremity bone metastasis were included in a case-control study.<br />

Group A (n=38), the tumor cavity was packed with ZA+PMMA;<br />

group B (n=35), PMMA alone was used. Time to local progression<br />

(TLP) was compared between groups A and B. Confounding factors<br />

such as gender, primary cancer histology, surgical site, pathologic<br />

fracture, visceral metastases, internal fixation, radiation therapy<br />

and chemotherapy, presence <strong>of</strong> multiple bone metastases and<br />

concomitant use <strong>of</strong> intravenous ZA were analyzed. Although<br />

univariate analysis did not show significance between the two groups,<br />

regression analysis revealed that the independent factors related to<br />

reduced TLP were ZA+PMMA (p=0.0024), use <strong>of</strong> internal fixation<br />

(p=0.0066) and presence <strong>of</strong> multiple bone metastases (p=0.0360).<br />

Final proportional hazard modeling based on backwards selection<br />

and likelihood ratio testing showed that for patients with multiple<br />

bone metastases, the chance <strong>of</strong> having local progression with local<br />

use <strong>of</strong> PMMA alone on their surgical site was 9.9 times greater when<br />

compared to those treated with ZA+PMMA (hazard ratio = 9.914<br />

with 95% CI: 1.128-87.125). The addition <strong>of</strong> zoledronic acid to bone<br />

cement for packing bone defects after excision <strong>of</strong> metastatic bone<br />

disease is associated with reduced time to local tumor progression.<br />

posteR No. p561<br />

Effect Of Mitomycin C On Postoperative Adhesion<br />

Surgery: An Experimental Study In Rats<br />

Baris Kocaoglu, MD, Istanbul, Turkey<br />

Ismail Agir, MD, Istanbul, Turkey<br />

Ufuk Nalbantoglu, MD, Istanbul, Turkey<br />

Mustafa Karahan, MD, Istanbul, Turkey<br />

Metin Turkmen, Pr<strong>of</strong>, Istanbul, Turkey<br />

The purpose <strong>of</strong> this study was to investigate the effect <strong>of</strong> Mitomycin-C<br />

on reduction <strong>of</strong> peritendinous fibrotic adhesion formation after<br />

tendon repair. Achilles tendons <strong>of</strong> twenty Wistar-Albino rats were<br />

cut and repaired with modified Kessler technique. In Group I, an<br />

injection <strong>of</strong> Mitomycin-C was placed between the tendon and skin<br />

<strong>of</strong> the right leg. In group 2, an identical volume <strong>of</strong> sterile normal<br />

saline was injected in the left side in a similar fashion. All rats<br />

received weekly both Mitomycin-C and saline for 4 weeks starting<br />

from the day <strong>of</strong> operation. Animals were sacrificed at postoperative<br />

day 30. The peritendinous fibrous tissue formation, inflammatory<br />

reaction and tendon healing were evaluated. Tensile strength <strong>of</strong> the<br />

repaired tendons was also measured biomechanically. Microscopic<br />

determination <strong>of</strong> adhesion formation and inflammation were less<br />

in Group I. There was also no significant difference in the tensile<br />

load required to rupture the repaired tendon between groups I and<br />

2. Our study showed that Mitomycin-C may provide a simple and<br />

inexpensive means <strong>of</strong> preventing postoperative adhesions.<br />

posteR No. p564<br />

The Effect Of Pentoxyfillin At The Healing Of Segmental<br />

Bone Defects And Angiogenesis<br />

Gokhan Cakmak, Asst. Pr<strong>of</strong>., Antalya, Turkey<br />

Ismail Cengiz Tuncay, MD, Ankara, Turkey<br />

Ali Engin Ulusal, MD, Balikesir, Turkey<br />

Handan Ozdemir, Assoc Pr<strong>of</strong>, Ankara, Turkey<br />

The effect <strong>of</strong> pentoxyfillin at the healing <strong>of</strong> segmental bone defects<br />

and angiogenesis.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


posteR No. p565<br />

The Local Treatment Of S<strong>of</strong>t Tissue Sarcomas<br />

Requiring Bone Resection<br />

Murat Hiz, MD, Istanbul, Turkey<br />

Sinan Ustundag, MD, Istanbul, Turkey<br />

Mehmet Can Unlu, MD, Istanbul, Turkey<br />

Fatih Ozyer, MD, Van, Turkey<br />

Yuksel Tenekecioglu, MD, Istanbul, Turkey<br />

Sergulen Dervisoglu, Pr<strong>of</strong>, Istanbul, Turkey<br />

Bone resection and reconstruction is included in the surgical local<br />

tumour control <strong>of</strong> 25 large s<strong>of</strong>t tissue sarcomas adjacent to bone<br />

or bony invasion that received neoadjuvant chemotherapy and<br />

irradiation after throuogh imaging.<br />

posteR No. bos1<br />

Gladden Society - The Pathophysiology <strong>of</strong> Health Care<br />

Disparities<br />

Raymond O Pierce Jr, MD, Indianapolis, IN<br />

Several Muscloskeletal Disparties have been found to have a common<br />

pathway, due to ethnic differences in the function and reactions<br />

<strong>of</strong> endothelial cell. Literature review dealing with Endothelial<br />

dysfuctions found in certain ethnic groups which results in<br />

differences in incidence, burden <strong>of</strong> disease and outcomes <strong>of</strong> known<br />

musculoskeletal Disparities. Endothelial dysfunction was found to be<br />

one <strong>of</strong> the primary etiological factors in the incidence and outcomes<br />

in Strokes and Low Birth Weight Babies, and is also involved in the<br />

non healing <strong>of</strong> diabetics ulcers and the aggressive nature <strong>of</strong> some<br />

Prostate Cancers. A common pathway has been demonstrated in<br />

some Musculoskeletal Disparites which is validated by cell culture<br />

studies showing biological differences in certain Ethnic groups.<br />

posteR No. oRs7<br />

Role <strong>of</strong> GLI2 in Growth <strong>of</strong> Human Osteosarcoma<br />

Takao Setoguchi, Kagoshima, Japan<br />

Hiroko Nagao, Kagoshima, Japan<br />

Masataka Hirotsu, Kagoshima, Japan<br />

Yukihiro Matsunoshita, Kagoshima, Japan<br />

Naoya Kawabata, Kagoshima, Japan<br />

Takuya Yamamoto, Kagoshima, Japan<br />

Setsuro Komiya, Kagoshima, Japan<br />

Hedgehog pathway is critical for many processes during embryonic<br />

development. Recent studies have demonstrated constitutive<br />

activation <strong>of</strong> Hedgehog pathway in various types <strong>of</strong> malignancies.<br />

To explore the involvement <strong>of</strong> aberrant Hedgehog pathway in the<br />

pathogenesis <strong>of</strong> osteosarcoma, we investigated the expression and<br />

activation <strong>of</strong> Hedgehog pathway in osteosarcoma and examined<br />

the effect <strong>of</strong> GLI2 inhibition. In addition, we examined the effect<br />

<strong>of</strong> forced expression <strong>of</strong> constitutive-active GLI2. We performed<br />

real-time PCR using osteosarcoma cell lines and osteosarcoma<br />

biopsy specimens. We evaluate the effect <strong>of</strong> GLI2 inhibition or overexpression<br />

by MTT assay, colony formation assay, cell cycle analysis,<br />

and xenografts models. Real time PCR showed over-expression <strong>of</strong><br />

Hedgehog pathway molecules in osteosarcoma. Knock down <strong>of</strong><br />

GLI2 by RNAi prevents osteosarcoma growth by cell cycle regulation<br />

in vitro. Forced expression <strong>of</strong> constitutive active GLI2 promote<br />

mesenchymal stem cell growth by cell cycle regulation. Xenograft<br />

models demonstrated significant inhibition <strong>of</strong> tumor growth by<br />

GLI2 knockdown by shRNA. Kaplan-Meier analysis showed that GLI2<br />

knockdown conferred a significant survival benefit. These findings<br />

suggest that inhibition <strong>of</strong> GLI2 prevents osteosarcoma growth in<br />

879<br />

vitro and in vivo.We previously reported that inhibition <strong>of</strong> SMO, a<br />

Hedgehog receptor, prevents osteosarcoma growth in vitro and in<br />

vivo (Hirotsu M.et al. Molecular Cancer 2010). Our new findings<br />

confirm that the Hedgehog pathway is functionally activated in<br />

osteosarcoma. Our findings suggest that inactivation <strong>of</strong> GLI2 may be<br />

an attractive target for the treatment <strong>of</strong> patients with osteosarcoma.<br />

SCIENTIFIC EXHIBITS<br />

scieNtific exHibit No. se81<br />

Current Concepts in the Treatment <strong>of</strong> Fatty Tumors <strong>of</strong><br />

S<strong>of</strong>t Tissue - Musculoskeletal Tumor Society<br />

Michael P Mott, MD, Detroit, MI<br />

Theodore W Parsons, MD, FACS, Detroit, MI<br />

Carol D Morris, MD, New York, NY<br />

G Douglas Letson, MD, Tampa, FL<br />

Valerae O Lewis, MD, Houston, TX<br />

H Thomas Temple, MD, Miami, FL<br />

J David Pitcher, Jr MD, Miami, FL<br />

Fatty Tumors <strong>of</strong> s<strong>of</strong>t tissue comprise more than half <strong>of</strong> all s<strong>of</strong>t tissue<br />

tumors. The wide variety <strong>of</strong> lesions within this subgroup can present<br />

a confusing picture to the practicing surgeon, and an understanding<br />

<strong>of</strong> appropriate treatment options can help avoid complications in<br />

patient management. This exhibit represents the experience <strong>of</strong> seven<br />

seasoned musculoskeletal tumor surgeons in 5 institutions across<br />

North America. It reflects the collective experience <strong>of</strong> many hundreds<br />

<strong>of</strong> cases <strong>of</strong> fatty tumors <strong>of</strong> s<strong>of</strong>t tissue. The presentation, evaluation,<br />

and treatment options <strong>of</strong> the various common fatty lesions will be<br />

presented in a manner that will aid the practicing orthopaedic surgeon<br />

to more effectively treat patients afflicted with these s<strong>of</strong>t tissue masses.<br />

It will present the imaging and clinical characteristics <strong>of</strong> these lesions<br />

along with available treatment options. Several example cases will<br />

be presented for illustrative purposes. The exhibit will conclude with<br />

a summary <strong>of</strong> current recommendations for care based upon the<br />

considerable collective experience <strong>of</strong> the authors. Specific histologydriven<br />

treatment regimens for fatty tumors <strong>of</strong> s<strong>of</strong>t tissue can result<br />

in favorable outcomes for patients that suffer from these common<br />

lesions. Fatty lesions <strong>of</strong> s<strong>of</strong>t tissue range from benign lipoma and<br />

its variants, to atypical lipomatous tumors, to well-differentiated<br />

liposarcomas, to high grade liposarcomas. Appropriate treatment<br />

requires the recognition, evaluation, and eventual treatment <strong>of</strong> these<br />

common lesions depending upon histology, size, and location. An<br />

appropriate algorithm for evaluation and treatment <strong>of</strong> these tumors<br />

is presented to aid the practicing orthopaedic surgeon in caring for<br />

these patients.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


scieNtific exHibit No. se82<br />

Gender Disparities in the Diagnosis and Treatment <strong>of</strong><br />

Osteoporosis<br />

Lauren Elizabeth Lamont, MD, New York, NY<br />

Joseph M Lane, MD, New York, NY<br />

Aasis Unnanuntana, MD, New York, NY<br />

Moira Margaret McCarthy, MD, New York, NY<br />

Christopher John Dy, MD, New York, NY<br />

Haydee C. Brown, MD, New York, NY<br />

Duretti Fufa, MD, New York, NY<br />

Alison Kitay, MD, New York, NY<br />

Osteoporosis in aging females and males remains an underrecognized<br />

and under-treated disease, resulting in significant<br />

morbidity and mortality. Despite the prevalence <strong>of</strong> osteoporosis<br />

across both genders, females are more likely than males to be<br />

diagnosed and treated. Consequently, at presentation, men have<br />

reached an advanced stage <strong>of</strong> osteoporosis. Moreover, there is an<br />

increased 1 year mortality in males (37.1%) compared with females<br />

(26.4%) in patients who present with hip fracture. There are distinct<br />

gender factors related to the pathophysiology and treatment <strong>of</strong><br />

osteoporosis that influence clinical outcomes. Sex-specific differences<br />

in bone biology and morphology may affect the pathophysiology<br />

<strong>of</strong> osteoporosis and the choice <strong>of</strong> implant used in fracture fixation.<br />

Additionally, estrogen metabolism may play a key role in both<br />

fracture prevention and healing. Current screening guidelines differ<br />

between males and females and may influence the severity at which<br />

osteoporosis is recognized. This exhibit will highlight the gender<br />

disparity in the diagnosis, treatment and outcomes <strong>of</strong> osteoporosis.<br />

We will present data from a prospective descriptive study <strong>of</strong> patients<br />

presenting with hip fracture at our institution. Data at time <strong>of</strong> hip<br />

fracture includes prior screening for osteoporosis, prior fracture, prior<br />

and current treatment. We will also discuss and display radiographic<br />

examples <strong>of</strong> surgical techniques for osteoporotic fracture fixation as<br />

well as biologics for augmentation <strong>of</strong> bone healing. This information<br />

is essential to propagate in the orthopaedic community given the<br />

delayed presentation <strong>of</strong> men with osteoporosis.<br />

scieNtific exHibit No. se83<br />

Leading Technology for In Vivo Fluorescent Sarcoma<br />

Imaging<br />

Katsuhiro Hayashi, MD, Kanazawa, Japan<br />

Norio Yamamoto, MD, Kanazawa Ishikawa, Japan<br />

Toshiharu Shirai, MD, Kanazawa, Japan<br />

Hideji Nishida, MD, Kanazawa City, Japan<br />

Akihiko Takeuchi, MD, Kanazawa, Japan<br />

Hiroaki Kimura, MD, Kanazawa, Japan<br />

Robert M H<strong>of</strong>fman, PhD, San Diego, CA<br />

Hiroyuki Tsuchiya, MD, Kanazawa, Japan<br />

Naturally fluorescent proteins have revolutionized biology by<br />

enabling what was formerly invisible to be seen clearly. The green<br />

fluorescent protein (GFP) gene is frequently used as a reporter <strong>of</strong><br />

expression and a biosensor in living animals. However, in orthopedic<br />

research, fluorescent proteins have only been used in a limited fashion.<br />

We have developed fluorescent real-time imaging for sarcoma cells<br />

by means <strong>of</strong> multi-color fluorescent cell lines and transgenic mice.<br />

Sarcoma cells were labeled with GFP or red fluorescent protein (RFP).<br />

Color-coded cells were transplanted into bone, s<strong>of</strong>t tissue, spinal<br />

cord or blood vessels and their dynamics were observed in live mice.<br />

Transgenic mice were also used as the host in which GFP was driven<br />

by a stem cell marker nestin. Nascent blood vessels expressed GFP in<br />

880<br />

this model and tumor angiogenesis was imaged after transplantation<br />

<strong>of</strong> RFP sarcoma cells. Fluorescence imaging readily distinguished<br />

the color-coded cell lines and their differential ability to survive at<br />

the primary sites as well as metastasizing in live mice. Imaging <strong>of</strong><br />

sarcoma cell trafficking in vessels revealed critical steps <strong>of</strong> metastasis.<br />

In transgenic mice, nascent blood vessels in the growing tumors were<br />

visualized and doxorubicin significantly decreased the mean nascent<br />

blood vessel density in the tumors. Lung metastasis was observed<br />

directly under fluorescent light. Real time in vivo imaging <strong>of</strong> sarcoma<br />

cells enabled visualization <strong>of</strong> their dynamics, including cell mobility,<br />

invasion, metastasis and angiogenesis. This technique will contribute<br />

not only to tumor biology but also to whole orthopedic research.<br />

scieNtific exHibit No. se84<br />

Defining Personalized Medicine in <strong>Orthopaedic</strong>s -<br />

AAOS <strong>Orthopaedic</strong> Device Forum<br />

William Michael Mihalko, MD, PhD, Memphis, TN<br />

Barbara D Boyan, PhD, Atlanta, GA<br />

Michael E Trice, MD, Baltimore, MD<br />

Michael J Yaszemski, MD, PhD, Rochester, MN<br />

A Seth Greenwald, DPhil Oxon, Cleveland Heights, OH<br />

Jack E Lemons, PhD, Birmingham, AL<br />

Personalized medicine uses a patient’s unique genetics, anatomy,<br />

or medical history to predetermine the most appropriate treatment<br />

modality. This exhibit discusses the issues within orthopaedic surgery<br />

where the future <strong>of</strong> personalized medicine has the best chance to<br />

create the highest impact on patient outcomes. The <strong>Orthopaedic</strong><br />

Device Forum present personalized medicine opportunities in<br />

orthopaedics to educate the Fellowship on its potential for their<br />

patients. Areas <strong>of</strong> genomics, clinical and surgical examples are<br />

featured in multiple subspecialty areas <strong>of</strong> orthopaedic surgery. To<br />

date, there are few peer-reviewed publications in orthopaedic surgery<br />

which document discerned advantages <strong>of</strong> personalized medicine<br />

opportunities. An algorithm has been developed which defines both<br />

the pros and cons <strong>of</strong> this newly faceted aspect <strong>of</strong> musculoskeletal<br />

care. With the advent <strong>of</strong> new and improved technology, the face<br />

<strong>of</strong> orthopaedic surgery will continue to change. In the field <strong>of</strong><br />

oncology the personalized medicine approach has involved genetic<br />

markers and directed immune therapy but now the possibility <strong>of</strong><br />

directing patient’s own stem cell therapy or approaching surgical<br />

parameters in a unique patient function approach are all possible.<br />

Examples <strong>of</strong> personalized medicine in arthroplasty include demand<br />

matching, custom designed implants, advances in patient-specific<br />

cutting blocks and computer assisted techniques to customize the<br />

surgical parameters utilized to implant the components. This exhibit<br />

introduces the promise <strong>of</strong> this field and its impact in orthopaedic<br />

surgery.<br />

scieNtific exHibit No. se85<br />

Combined Technique for Correction <strong>of</strong> Lower Extremity<br />

Deformities Caused by Metabolic Bone Diseases<br />

Pr<strong>of</strong> Mehmet Kocaoglu, Istanbul, Turkey<br />

Levant Eralp, Istanbul, Turkey<br />

Fikri Erkal Bilen, MD, Istanbul, Turkey<br />

Halil I Balci, MD, Istanbul, Turkey<br />

We are presenting the results <strong>of</strong> the fixator assisted nailing and<br />

lengthening over nail for the treatment <strong>of</strong> lower extremity deformities<br />

caused by metabolic bone diseases. Between 2001 and 2009, 43<br />

lower extremity segments (27 femora and 16 tibiae) <strong>of</strong> 18 (5 male,<br />

13 female) patients with diagnosis <strong>of</strong> 16 hypophosphatemic rickets<br />

and two renal osteodystrophy, a mean age <strong>of</strong> 25.6 years (range,<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


14-57) were acutely corrected, and the segment was stabilized by<br />

intramedullary locked nail. Three segments with shortening were<br />

subsequently lengthened by distraction osteogenesis. The mean<br />

follow-up time was 70 months (range, 28-130). In varus knees, the<br />

mechanical axis deviation (MAD) improved by an average <strong>of</strong> 57 mm,<br />

the lateral distal femoral angle (LDFA) improved by an average <strong>of</strong> 19<br />

degrees, and the medial proximal tibial angle (MPTA) improved by<br />

an average <strong>of</strong> 10 degrees postoperatively. In valgus knees, the MAD<br />

improved by an average <strong>of</strong> 48 mm, the LDFA improved by an average<br />

<strong>of</strong> 15.6 degrees, and the MPTA improved by an average <strong>of</strong> 10 degrees<br />

postoperatively. The mean external fixation time was 78.9 days, and<br />

for the lengthened segments the mean external fixation index was<br />

14.34 days/cm and the average bone healing index was 38.32 days/<br />

cm. This combined technique provided good patient comfort, early<br />

mobilization and weight bearing due to the strong fixation provided<br />

by the locked IM nail. The usage <strong>of</strong> the intramedullary nail also<br />

prevented the recurrence <strong>of</strong> the deformity and refracture in the midterm<br />

follow-up period.<br />

881<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

PaPers, Posters & scientific exhibits tumoR


MEC01<br />

A Modified Approach to Bernese Periacetabular<br />

Osteotomy Maintaining Rectus-Femoris Tendon<br />

Insertion<br />

Joaquin Lara, MD, Santiago, Chile<br />

Luis Emilio Moya, MD, Santiago, Chile<br />

Juanjose Valderrama, MD, Santiago, Chile<br />

Javier Besomi, MD, Santiago, Chile<br />

Dante Parodi, MD, Santiago, Chile<br />

Pablo Villavicencio, Medical Student, Santiago, Chile<br />

Bernese periacetabular osteotomy (PAO) is the gold standard in<br />

the treatment <strong>of</strong> hip dysplasia. We present a modification <strong>of</strong> the<br />

Bernese PAO designed to improve and accelerate postoperative<br />

rehabilitation. The original technique, published by Ganz, et al<br />

in 1988, described a complete detachment <strong>of</strong> the rectus femoris<br />

tendon and tensor fascialata muscle, which had to be reattached<br />

at the end <strong>of</strong> the surgery. With this procedure, the patient had to<br />

refrain from active movement for six weeks. Our technique uses a<br />

shorter anterior approach with no detachment <strong>of</strong> the rectus femoris<br />

tendon, and the abductor musculature remains in its anatomical<br />

position. This modification allows the patient to begin active<br />

movement the first day after surgery, preserves the strength to walk,<br />

and shortens the limping period. The scar is also shorter and more<br />

aesthetically pleasing, which may be important to women patients.<br />

Our video shows how the osteotomy can be performed successfully<br />

using the shorter approach and the s<strong>of</strong>t-tissue mobile-window<br />

concept, including a complete depiction <strong>of</strong> the modified technique,<br />

its advantages, and the accelerated rehabilitation program. The<br />

video also provides a detailed description <strong>of</strong> the original Bernese<br />

PAO technique, surgical indications and contraindications for the<br />

procedure, and a radiological study. Our modification <strong>of</strong> the Bernese<br />

PAO provides a successful osteotomy with adequate reorientation <strong>of</strong><br />

the acetabulum and coverage <strong>of</strong> the femoral head in young patients<br />

with hip dysplasia. Rehabilitation time is shortened, and patients are<br />

able to begin active exercises soon after surgery.<br />

MEC02<br />

Medial Plantar Release in Nonreducible Congenital<br />

Equinovarus Foot<br />

Cesare Faldini, MD, Bologna, Italy<br />

Francesco Acri, MD, Bologna, Italy<br />

Stavroula Pagkrati, MD, Bologna, Italy<br />

Maria Teresa Miscione, MD, Bologna, Italy<br />

Francesco Traina, MD, Bologna, Italy<br />

Sandro Giannini, MD, Bologna, Italy<br />

Idiopathic congenital clubfoot, also called equinovarus deformity<br />

or talipes equinovarus, is a difficult deformity to treat. Treatment <strong>of</strong><br />

clubfoot begins at birth, with manipulation <strong>of</strong> the foot increasing<br />

gradually, depending on the stiffness <strong>of</strong> the deformity. Some feet are<br />

very rigid, and manipulation produces little evident change. Such feet<br />

are usually small and stubby. After manipulation, the patient receives<br />

a plaster cast and frame. If the clubfoot is not treated by the time<br />

the child reaches walking age, he/she will be able to stand only on<br />

the lateral aspect <strong>of</strong> the foot. Weight bearing on a club foot worsens<br />

the varus and supination deformities, which causes instability<br />

and makes walking painful. Some patients may require surgery if<br />

conservative treatment fails or the child reaches walking age without<br />

treatment. Our video shows the step-by-step surgical treatment <strong>of</strong><br />

a nonreducible idiopathic equinovarus deformity in a child treated<br />

between 2 and 6 years <strong>of</strong> age with medial plantar release. The surgical<br />

procedure consisted <strong>of</strong> lengthening the medial tendons <strong>of</strong> the foot,<br />

882<br />

performing a capsulotomy <strong>of</strong> the talo-navicular joint, repositioning<br />

the navicular bone on the talar head, and performing capsulotomy<br />

<strong>of</strong> the naviculo-cuneiform joints to reduce the varus deformity.<br />

Lastly, we lengthened the Achilles tendon. Medial plantar release is<br />

a recognized surgical technique in the treatment <strong>of</strong> clubfoot, but its<br />

indication should be reserved for children who have already reached<br />

walking age who have a nonreducible deformity or those for whom<br />

conservative treatment has failed. Other patients should continue to<br />

receive conservative treatment over a long period.<br />

MEC03<br />

Scapulothoracic Fusion: Indications, Technique and<br />

Outcome<br />

Jon J. P. Warner, MD, Boston, MA<br />

Jessica Wells, BA, Cambridge, MA<br />

Danny Goel, MD, Vancouver, Canada<br />

James Romanowski, MD, Columbus, OH<br />

Ifedayo Kuye, BA, Boston, MA<br />

Laurence D. Higgins, MD, Boston, MA<br />

In this video, we describe the clinical and technical aspects <strong>of</strong><br />

patients undergoing scapulothoracic fusions. The video begins with<br />

the clinical findings observed in patients with scapular winging<br />

who have failed conservative treatment and are not candidates<br />

for tendon transfer. We demonstrate multiple etiologies, including<br />

fascioscapulohumeral dystrophy and combined nerve palsy and<br />

clavicular insufficiency. Next, we give a detailed account <strong>of</strong> the<br />

surgical technique and dissection. Key components include patient<br />

positioning, surgical landmarks, incisions, muscular dissection,<br />

bony preparation, and hardware placement. We provide additional<br />

material to assess for potential intraoperative complications,<br />

including evaluation <strong>of</strong> pleural injury. The video concludes with<br />

a description <strong>of</strong> postoperative rehabilitation and a review <strong>of</strong> the<br />

outcomes <strong>of</strong> all patients who underwent scapulothoracic fusions<br />

from 2004-2010.<br />

MEC04<br />

Pediatric Anterior Cruciate Ligament Reconstruction<br />

Davide E. Bonasia, MD, Torino, Italy<br />

Roberto Rossi, MD, Torino, Italy<br />

Brian R. Wolf, MD, Iowa City, IA<br />

Annunziato Amendola, MD, Iowa City, IA<br />

Our video begins with a brief introduction outlining the<br />

controversies, possible treatments, complications, clinical<br />

examination, and imaging <strong>of</strong> anterior cruciate ligament (ACL)<br />

rupture in pediatric patients. We then describe the most commonly<br />

used techniques for pediatric ACL reconstruction, which include:<br />

physeal-sparing techniques, partial transphyseal techniques, and<br />

complete transphyseal techniques. Next the video gives a step-bystep<br />

description <strong>of</strong> pediatric ACL reconstruction using a partial<br />

transphyseal technique with proximal over-the-top positioning <strong>of</strong><br />

the semitendinosus autograft. The 10-step surgical procedure we<br />

describe includes: 1) set-up and examination under anesthesia;<br />

2) graft harvesting; 3) graft preparation; 4) arthroscopic knee<br />

balance; 5) proximal approach to the lateral femur; 6) over-thetop<br />

positioning; 7) tibial-tunnel drilling; 8) proximal fixation <strong>of</strong><br />

the graft; 9) distal fixation <strong>of</strong> the graft and final examination <strong>of</strong> the<br />

knee; and 10) postoperative management. Finally, we report the<br />

outcomes <strong>of</strong> conservative and surgical treatments, highlighting the<br />

level <strong>of</strong> evidence <strong>of</strong> the available studies, the controversies regarding<br />

the indications, and the technical errors commonly correlated with<br />

growth disturbance.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


MEC05<br />

Anterior Hip Arthroplasty Approach Utilizing Operative<br />

Fracture Table and Fluoroscopy<br />

Nicholas A. Abidi, MD, Capitola, CA<br />

This video outlines patient positioning and the surgical technique<br />

used in the anterior supine intermuscular (ASI) surgical approach to<br />

primary total hip arthroplasty (THA). The video focuses on setting<br />

up the patient and positioning him/her on the fracture table. It also<br />

demonstrates the use <strong>of</strong> fluoroscopy for component postioning and<br />

illustrates how the design <strong>of</strong> the fracture table can assist in accurate<br />

placement during ASI primary THA.<br />

MEC06<br />

Northern or Superior PATH Approach for Hip<br />

Arthroplasty<br />

Patrick A. Meere, MD, New York, NY<br />

Sean Thompson, MD, New York, NY<br />

Carlos M. Alvarado, MD, New York, NY<br />

We describe the northern or superior percutaneous acetabular total<br />

hip (PATH)® approach for hip arthroplasty. The technique involves<br />

piriformis tendon release-only exposure with in-situ femoral<br />

preparation and percutaneous acetabular preparation. We position<br />

the patient in a lateral decubitus position. The incision is over the<br />

course <strong>of</strong> the piriformis with the leg flexed at 45°. Next, we divide<br />

the gluteus maximus bluntly proximal to the trochanteric bursa<br />

and release the piriformis. The interval between the piriformis and<br />

gluteus minimus is exploited to allow for an L superior capsulotomy.<br />

This method preserves the external rotators and the anterior and<br />

posterior capsule. Blunt retractors protect the neck while a slot<br />

is prepared in the superior femoral head. This allows for in-situ<br />

reaming and broaching on the femoral side, in a manner similar<br />

to a nail preparation. The thigh-foot angle sets the anteversion,<br />

and the depth <strong>of</strong> broaching relies on the greater trochanter. We<br />

perform the osteotomy after optimized broaching from the top.<br />

No dislocation is necessary. We then prepare the acetabulum using<br />

the PATH® method. This preserves all external rotators. Reduction<br />

uses modular neck components. Intraoperative radiographs confirm<br />

that accuracy is satisfactory. The closure involves the piriformis,<br />

superior capsule, gluteus maximus fascia, and superficial layers. This<br />

technique minimizes the risk associated with dislocation ie, femoral<br />

neurovascular compression and spiral fracture. The preservation <strong>of</strong><br />

the external rotators minimizes the risk <strong>of</strong> dislocation and allows<br />

for an anticipated faster recovery. The technique is easily extensible<br />

to a regular posterior approach and therefore very safe in case <strong>of</strong><br />

technical difficulties.<br />

MEC07<br />

Partial Thickness Tears <strong>of</strong> the Gluteus Medius:<br />

Technique for Trans-Tendinous Endoscopic Repair<br />

Benjamin Domb, MD, Chicago, IL<br />

Itamar Botser, MD, Chicago, IL<br />

Rima Nasser, MD, Chicago, IL<br />

Tears in the gluteus medius and minimus tendons have recently<br />

emerged as important causes <strong>of</strong> recalcitrant greater-trochanter pain<br />

syndrome. The purpose <strong>of</strong> this study was to review the anatomy,<br />

pathology, and existing repair techniques <strong>of</strong> the gluteus medius<br />

and to describe the rationale and surgical steps for endoscopic<br />

trans-tendinous repair. Advances in endoscopic surgery <strong>of</strong> the hip<br />

have created opportunities to better evaluate and treat pathology<br />

in the peritrochanteric compartment. We review the literature on<br />

trochanteric pain syndrome and gluteus medius tendon injuries and<br />

883<br />

analyze existing techniques for endoscopic and open gluteus tendon<br />

repair. We also explore potential challenges in the restoration <strong>of</strong><br />

abductor function. Partial thickness undersurface tears <strong>of</strong> the gluteus<br />

medius are common pathological entities. Although these tears are<br />

otherwise analogous to partial thickness tears <strong>of</strong> the rotator cuff, the<br />

lack <strong>of</strong> arthroscopic access to the deep side <strong>of</strong> the gluteus medius<br />

tendon represents a unique technical challenge. We describe a<br />

novel endoscopic trans-tendinous repair technique to address the<br />

difficulty in visualizing —and therefore recognizing and repairing —<br />

undersurface tears <strong>of</strong> the gluteus medius.<br />

MEC08<br />

Revision Arthroplasty with Use <strong>of</strong> a Total Femoral<br />

Replacement<br />

Calin Stefan Moucha, MD, New York, NY<br />

James C. Wittig, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

Richard A. Greendyk, BS, New York, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

The number <strong>of</strong> patients who require revision surgery for a failed<br />

total hip arthroplasty is increasing at a rapid rate. While multiple<br />

reconstructive options are available in the majority <strong>of</strong> cases, on<br />

rare occasions the femoral bone stock is so deficient that standard<br />

revision implants cannot be securely fixed in the remaining bone.<br />

This program demonstrates a surgical technique that utilizes a total<br />

femoral replacement prosthesis for revision arthroplasty <strong>of</strong> a highly<br />

deficient femur. The patient, who is young and morbidly obese, has<br />

previously undergone a total knee replacement and 18 surgeries<br />

on his femur. After an extensive, negative-infection workup, a total<br />

femoral replacement procedure was selected for this patient. The<br />

video shows the extensile exposure, the resection <strong>of</strong> the femur, the<br />

removal <strong>of</strong> a stemmed, well-fixed tibial arthroplasty component, and<br />

reconstruction using the total femoral prosthesis. Highlights include<br />

protection <strong>of</strong> the neurovascular structures and the appropriate<br />

implant positioning for ultimate stability and functionality. The<br />

authors suggest that the implant and surgical technique shown<br />

in this case are valuable additions to the orthopaedic surgeon’s<br />

armamentarium for treating patients with these difficult revisions.<br />

MEC09<br />

Revision <strong>of</strong> the Femoral Component in Total Hip<br />

Arthroplasty<br />

Leo A. Whiteside, MD, Saint Louis, MO<br />

After failure <strong>of</strong> either a cemented or noncemented total hip<br />

replacement, femoral bone stock almost always is denuded <strong>of</strong><br />

cancellous bone, and the proximal cortical structure is insufficient<br />

to achieve secure axial and torsional load-bearing. To achieve the<br />

best fixation, the bone in the metaphysis and the diaphysis <strong>of</strong><br />

the femur must be firmly engaged with the femoral component.<br />

Torsional loading is the most important cause <strong>of</strong> loosening <strong>of</strong><br />

the femoral component after revision total hip replacement, and<br />

therefore it is the most important issue to address in fixation. Axial<br />

load bearing is equally important, but achieving axial fixation is a<br />

much simpler biomechanical and surgical problem to solve. Initial<br />

rigid torsional load-bearing capacity up to 25 Nm <strong>of</strong> torsional load<br />

is a prerequisite for an implant to achieve a high degree <strong>of</strong> success.<br />

In a revision situation, this can be achieved only by an implant that<br />

develops mechanical interlock with the diaphyseal cortical bone.<br />

A long tapered rectangular or fluted stem is the simplest geometric<br />

component to fit in the proximal femur, and such a component<br />

satisfies the criteria for adequate axial and torsional load-bearing<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


capacity as well. This video uses surgical footage and illustrations<br />

to describe my preferred surgical technique to reconstruct the femur<br />

in revision total hip arthroplasty. The clinical results <strong>of</strong> 45 hips with<br />

major femoral bone loss showed that 1 hip failed due to loosening,<br />

and 3 hips had mild thigh pain at 3 years after surgery.<br />

MEC10<br />

Cup Revision Through the Direct Anterior Approach<br />

Michael M. Nogler, MD, Oberperfuss, Austria<br />

William J. Hozack, MD, Philadelphia, PA,<br />

Helga Fritsch, MD, Innsbruck, Austria<br />

Eckart Mayr, MD, Philadelphia, PA<br />

Martin Krismer, MD, Innsbruck, Austria<br />

The direct anterior approach (DAA), which exploits the interval<br />

between tensor fasciae latae and sartorius, has become a widely used<br />

approach for primary total hip arthroplasty (THA). As with any other<br />

approach to the hip, it is not limited to primary arthroplasty but can<br />

also be used for revision arthroplasty <strong>of</strong> the acteabular component.<br />

We have developed concepts for revision procedures using DAA in<br />

patients with failed primary THA. Our method does not require use<br />

<strong>of</strong> a special traction table. In this narrated video, we demonstrate<br />

how a cup revision can be performed successfully through a DAA.<br />

The video uses sequences filmed intraoperatively, as well as extensive<br />

cadaver preparation to demonstrate revision following a prior DAA<br />

and revision following prior non-DAA approaches. The video also<br />

demonstrates cup exposure and possible extensions, cup removal,<br />

and cup reconstruction with and without cement. To clarify specific<br />

information, the video uses labeled overlays.<br />

MEC11<br />

Stem Revision Through the Direct Anterior Approach<br />

Michael M. Nogler, MD, Oberperfuss, Austria<br />

William J. Hozack, MD, Philadelphia, PA<br />

Helga Fritsch, MD, Innsbruck, Austria<br />

Eckart Mayr, MD, Philadelphia, PA<br />

Martin Krismer, MD, Innsbruck, Austria<br />

The direct anterior approach (DAA), which exploits the interval<br />

between tensor fasciae latae and sartorius, has become a widely used<br />

approach for primary total hip arthroplasty (THA). Since access to<br />

the cup is quite direct, it is obvious that this approach can be used<br />

for cup revision, but it can also be used for endo-femoral revisions<br />

<strong>of</strong> the femoral component, and it can extend to reach the diaphysis<br />

for more complex trans-femoral procedures. We have developed<br />

concepts for revision procedures in patients with failed THA that<br />

employ the DAA but do not require the use <strong>of</strong> a special traction table.<br />

In this narrated video, we demonstrate the revision <strong>of</strong> the femoral<br />

component. The technique emphasizes the extension <strong>of</strong> the approach<br />

in order to reach areas distal to the lesser trochanter and expose the<br />

diaphysis <strong>of</strong> the femur. The video contains intraoperative footage<br />

and includes extensive cadaver preparation to demonstrate exposure<br />

<strong>of</strong> the proximal femur, endo-femoral retrieval <strong>of</strong> the component,<br />

endo-femoral reconstruction with noncemented systems, and end<strong>of</strong>emoral<br />

reconstruction with bone-impaction grafting. The video also<br />

covers anatomic considerations and extensions and includes labeled<br />

overlays to demonstrate specific information.<br />

884<br />

MEC12<br />

Understanding Acetabular-Component Positioning<br />

Justin Dazley, MD, Stony Brook, NY<br />

James D. Capozzi, MD, Garden City, NY<br />

Ryan M.Vellinga, BS, Hauppauge, NY<br />

The purpose <strong>of</strong> our video is to aid in the interpretation <strong>of</strong><br />

postoperative radiographs in total hip arthroplasty (THA), especially<br />

with regard to acetabular-component positioning. The video reviews<br />

several common scenarios <strong>of</strong> intraoperative incorrect patient<br />

positioning during THA. Using a simulation with a human model,<br />

the video shows a patient who is appropriately positioned, a patient<br />

falling forward, a patient falling backward, and a vertically placed<br />

acetabular component. A pelvic-bone model demonstrates the<br />

underlying bony anatomy for each scenario. Radio-opaque markers<br />

placed on the bone model help correlate the described situation<br />

with the corresponding radiograph. A pelvic-bone model with an<br />

acetabular component in place shows the effects <strong>of</strong> intraoperative<br />

positioning on the acetabular component. The video also discusses<br />

how to interpret radiographic findings in the various scenarios.<br />

MEC13<br />

Anatomy, Function, and Surgical Access to the Iliotibial<br />

Band in Total Knee Arthroplasty<br />

Leo A. Whiteside, MD, Saint Louis, MO<br />

Marcel Roy, PhD, Saint Louis, MO<br />

When the iliotibial band (ITB) causes deformity in the valgus knee,<br />

it must be released or elongated during total knee arthroplasty (TKA)<br />

to establish normal stability. We created this video to delineate the<br />

attachments <strong>of</strong> the ITB about the knee, to determine the function<br />

<strong>of</strong> its parts in flexion and extension, and to establish a safe release<br />

<strong>of</strong> the ITB in the valgus knee. The dissection <strong>of</strong> 20 human cadaver<br />

knees established that the ITB has a broad anterior attachment to the<br />

quadriceps, patella, and patellar tendon. The central portion attaches<br />

to Gerdy’s tubercle on the tibia. The posterior portion attaches to<br />

the biceps femoris and fibular head. The posterior portion <strong>of</strong> the<br />

ITB tightens in extension. The anterior portion tightens in flexion<br />

and holds the central portion anteriorly, giving the ITB some lateral<br />

stabilizing effect in flexion. The posterior portion <strong>of</strong> the ITB closely<br />

overlies the lateral collateral ligament (LCL). In flexion, the posterior<br />

portion <strong>of</strong> the ITB slackens but remains close to the LCL. Release<br />

<strong>of</strong> the posterior ITB from inside would damage the LCL and the<br />

popliteus tendon. Complete release <strong>of</strong> the ITB can be done outside<br />

the joint without damaging the lateral ligaments. Selective posterior<br />

release also can be done from outside, leaving the anterior portion<br />

intact and the underlying ligaments undisturbed. Our findings<br />

suggest that complete ITB release cannot be done safely from inside<br />

the knee joint and is best done from outside. Partial ITB release may<br />

also be done from outside the knee joint.<br />

MEC14<br />

Computer-Assisted Open-Wedge High Tibial Osteotomy<br />

Silvio Giannetti, MD, Rome, Italy<br />

Raffaele Iorio, MD, Rome, Italy<br />

Antonio Vadalà, MD, Rome, Italy<br />

Fabio Conteduca, MD, Rome, Italy<br />

Andrea Ferretti, MD, Rome, Italy<br />

Open-wedge high tibial osteotomy is an established technique<br />

for the treatment <strong>of</strong> symptomatic varus malaligned knees. In this<br />

surgical video, we describe the use <strong>of</strong> a navigation-system device in<br />

a patient undergoing surgery for medial knee compartment arthritis.<br />

We show the surgical planning <strong>of</strong> the operation, and then we describe<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


in details the use <strong>of</strong> the s<strong>of</strong>tware and its intraoperative reliability. At<br />

the end <strong>of</strong> the video, we show radiographic varus angle correction. In<br />

conclusion, we recommend the use <strong>of</strong> this type <strong>of</strong> navigation system<br />

because it is easy to use and very reliable for the correction <strong>of</strong> both<br />

the final mechanical axis and the tibial slope.<br />

MEC15<br />

Direct Intra-articular Antibiotic Infusion for Treatment<br />

<strong>of</strong> Methicillin-Resistant Staphylococcus Aureus in<br />

Total Knee Arthroplasty<br />

Leo A. Whiteside, MD, Saint Louis, MO<br />

Michael Peppers, PharmD, Saint Louis, MO<br />

Marcel Roy, PhD, Saint Louis, MO<br />

Tariq Ali Nayfeh, MD, Ellicott City, MD<br />

Resistant organisms are difficult to eradicate in infected total knee<br />

arthroplasty. This video evaluates the effectiveness <strong>of</strong> single-stage<br />

revision and direct antibiotic infusion for this condition. We treated<br />

18 knees (18 patients) with methicillin-resistant Staphylococcus<br />

aureus between January 2001 and January 2007 with a one-stage<br />

revision protocol that included débridement, noncemented revision<br />

<strong>of</strong> total knee components, and intra-articular infusion <strong>of</strong> 500 mg<br />

vancomycin via Hickman catheter once or twice daily for 6 weeks. We<br />

used no intravenous antibiotics after the first 24 hours. We monitored<br />

serum vancomycin levels to maintain levels between 3 and 10 µg/<br />

mL. The mean serum vancomycin peak concentration was 6 ± 2 µg/<br />

mL and the mean serum vancomycin trough concentration was 3<br />

± 1 µg/mL at 2 weeks postoperatively. We measured knee synovial<br />

fluid peak and trough vancomycin levels in two knees. Synovial fluid<br />

peak concentrations were 10,233 µg/mL and 20,167 µg/mL and<br />

trough concentrations were 724 µg/mL and 543µg/mL, respectively.<br />

Minimum followup was 27 months (range, 27 to 75 months).<br />

Mean followup was 62 months, (range, 27 to 96 months). At 2-year<br />

followup, mean Knee Society score was 83 ± 9. No radiographic<br />

evidence <strong>of</strong> implant migration has occurred. One knee reinfected<br />

with methicillin-resistant S aureus and required reoperation at 5<br />

months. We found a necrotic bone segment, debrided and revised<br />

the knee, and readministered the antibiotic infusion protocol. The<br />

knee remained free <strong>of</strong> infection at 42 months postoperatively. We<br />

conclude one-stage revision and 6-week intra-articular vancomycin<br />

administration safely and effectively treats methicillin-resistant S<br />

aureus-infected total knee arthroplasty.<br />

MEC16<br />

Surgical Exposure and Bone Reconstruction in<br />

Revision Total Knee Arthroplasty<br />

Leo A. Whiteside, MD, Saint Louis, MO<br />

This video illustrates my technique for surgical exposure and<br />

reconstruction <strong>of</strong> failed total knee arthroplasty. Reconstitution <strong>of</strong><br />

bone stock is a primary concern at revision surgery. Fixation <strong>of</strong>ten<br />

is difficult because the cancellous bone has been depleted, so<br />

it is tempting to cement the implant to diaphyseal cortical bone.<br />

However, revision with cement ultimately destroys more bone stock.<br />

Rather, techniques that use a noncemented porous-coated stem<br />

to engage the isthmus, and then bone graft to fill the defects, can<br />

provide adequate fixation as well as the opportunity to reconstruct<br />

the bone stock around the knee. Seating the implant on the patient’s<br />

own bone stock controls axial migration, and the stem prevents the<br />

implant from tilting into the defect. Screw-and-peg fixation can add<br />

stability to the construct, thereby allowing the cavitary deficiencies<br />

to be filled with morselized bone. This bone grafting technique<br />

promotes rapid healing and reconstitution <strong>of</strong> bone stock without<br />

the technical difficulty and late collapse associated with massive<br />

885<br />

allograft replacement. Since 1984, I have tried to fix the implants<br />

to the patient’s remaining bone structure using osteointegration<br />

techniques and to graft the remaining cavitary defects with non-weight<br />

bearing allograft. Initially, I thought that noncemented fixation <strong>of</strong><br />

the components would be tenuous and that repeat revision would<br />

be necessary to achieve durable fixation with the improved bone<br />

stock. However, I have found that repeated revision due to failure<br />

<strong>of</strong> fixation has not been necessary because the construct has been<br />

reliably durable.<br />

MEC17<br />

Patellar Fracture Fixation Utilizing Minimal Hardware<br />

E. Barry McDonough, MD, Morgantown, WV<br />

Patellar fractures are uncommon injuries occurring most <strong>of</strong>ten as the<br />

result <strong>of</strong> direct blows to the anterior aspect <strong>of</strong> the knee. Traditional<br />

methods <strong>of</strong> fixation include tension-band wiring with heavy<br />

gauge wire. While this technique provides stable fixation, there are<br />

complications associated with this method. Hardware prominence<br />

can cause s<strong>of</strong>t-tissue issues, and some studies have reported wire<br />

breakage or migration, either <strong>of</strong> which can lead to problems.<br />

This video provides a new technique to minimize complications<br />

associated with traditional wire fixation.<br />

MEC18<br />

Robotic Arm Guidance to Improve Lateral<br />

Unicompartmental Knee Arthroplasty Accuracy<br />

Martin William Roche, MD, Fort Lauderdale, FL<br />

John H. Velyvis, MD, Saint Helena, CA<br />

Lateral unicompartmental knee replacements account for approximately<br />

10% <strong>of</strong> the unicompartmental procedures performed today.<br />

Good results depend on patient selection, implant design, and<br />

surgical technique. The surgical approach and the orthopaedic<br />

surgeon’s familiarity with the anatomy and biomechanics <strong>of</strong> the<br />

lateral joint also affect whether the surgery achieves optimized lateral<br />

joint kinematics. Patients with lateral compartment disease are <strong>of</strong>ten<br />

women presenting with s<strong>of</strong>t-tissue laxity, femoral hypoplasia, and<br />

joint-line obliquity. There are a number <strong>of</strong> technical difficulties<br />

associated with treatment in these patients. The laxity presents a<br />

risk <strong>of</strong> overcorrecting the mechanical axis during surgery. Another<br />

problem is that the use <strong>of</strong> mechanical instrumentation <strong>of</strong>ten makes<br />

it difficult to place the desired tibial-implant cut. To compensate<br />

for the screw-home mechanism, internal rotation <strong>of</strong> the tibial<br />

component is required to allow central tracking on the femoral<br />

component from extension into deep flexion. In comparison to the<br />

medial side, the tibial cut should be smaller and the slope less steep.<br />

The femoral cuts are more difficult because patellar impingement<br />

with knee flexion can affect the mechanical jigs. To optimize implant<br />

articulation, the femoral component usually requires more nearly<br />

vertical positioning that is lateral on the femoral condyle. Our video<br />

shows how the use <strong>of</strong> robotic-arm-assisted lateral unicompartmental<br />

knee arthroplasty aids in virtual implant positioning, intraoperative<br />

achievement <strong>of</strong> the desired mechanical alignment, and optimized<br />

s<strong>of</strong>t-tissue balancing. Through a direct lateral approach, the 6°<br />

<strong>of</strong> freedom in the robotic arm make it possible to achieve boney<br />

resection and implant placement through a minimal incision with<br />

precision and safety.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


MEC19<br />

Unicompartmental Knee Replacement: Surgical<br />

Technique<br />

Leo A. Whiteside, MD, Saint Louis, MO<br />

This video incorporates surgical footage and a detailed explanation <strong>of</strong><br />

the surgical technique that I use when performing unicompartmental<br />

knee replacement. To ensure optimal clinical results, the video<br />

describes principles <strong>of</strong> instrument alignment, bone preparation, and<br />

component alignment. It also presents outcomes <strong>of</strong> 89 knees in a<br />

12-year period. None have failed because <strong>of</strong> loosening or anterior<br />

cruciate ligament instability. One failed due to osteoarthritis in the<br />

lateral compartment, and three that failed because <strong>of</strong> polyethylene<br />

wear underwent revision.<br />

MEC20<br />

Interactive Functional Anatomy <strong>of</strong> the Foot and Ankle<br />

Phinit Phisitkul, MD, Iowa City, IA<br />

Tanawat Vaseenon, Iowa City, IA<br />

Gladys Chan, MD, Salt Lake City, UT<br />

John E. Femino, MD, Iowa City, IA<br />

Annunziato Amendola, MD, Iowa City, IA<br />

The foot and ankle are sophisticated structures that are subject<br />

to high impact, even during normal activities. Not surprisingly,<br />

both acute and chronic overuse injuries are common and <strong>of</strong>ten<br />

disabling. Successful treatment <strong>of</strong> foot and ankle injuries requires<br />

precise knowledge <strong>of</strong> the functional anatomy <strong>of</strong> the lower limb.<br />

Our interactive video demonstrates important clinically correlated<br />

anatomy <strong>of</strong> the foot and ankle. The demonstration and discussion<br />

topics include: Achilles tendinopathies, peroneal tendons, lateral<br />

ankle ligaments, subtalar joint impingement, subtalar ligamentous<br />

structures, ankle syndesmosis, the deltoid ligament, and the Lisfranc<br />

joint.<br />

MEC21<br />

Guidelines for Surgical Treatment <strong>of</strong> Hallux Rigidus<br />

Sandro Giannini, MD, Bologna, Italy<br />

Cesare Faldini, MD, Bologna, Italy<br />

Gianluca Grandi, MD, Bologna, Italy<br />

Danilo Leonetti, MD, Bologna, Italy<br />

Matteo Nanni, MD, Bologna, Italy<br />

Francesco Acri, MD, Bologna, Italy<br />

The treatment <strong>of</strong> hallux rigidus — a painful limitation <strong>of</strong> dorsiflexion<br />

<strong>of</strong> the first metatarsophalangeal joint —remains a controversial topic<br />

in orthopaedic surgery. In the past, most authors have recommended<br />

resection arthroplasty <strong>of</strong> the first metatarsophalangeal joint, but<br />

more recently, others have presented good results with cheilectomy,<br />

various types <strong>of</strong> osteotomies and arthrodeses, or bioreabsorbable<br />

implants. This video presents our recently published guidelines<br />

for surgical treatment <strong>of</strong> hallux rigidus, based on our review <strong>of</strong><br />

111 consecutive feet that underwent surgery. The video shows<br />

step-by-step clinical and radiographic evaluation, classification,<br />

an algorithm for treatment, and various surgical techniques. We<br />

used labeling factors to classify feet for treatment. Feet with hallux<br />

rigidus without arthritis underwent plantar release; feet with grade<br />

1 hallux rigidus underwent distal decompressive osteotomies; feet<br />

with grade 2 hallux rigidus underwent cheilectomy; feet with grade 3<br />

hallux rigidus underwent arthrodesis or resection arthroplasty using<br />

bioreabsorbable implants. We allowed immediate weight bearing<br />

with talus shoes for 4 weeks. We examined the feet clinically and<br />

radiographically for an average follow-up <strong>of</strong> 6 years. The mean<br />

clinical preoperative AOFAS score was 42+14; at follow-up, it was<br />

886<br />

81+9. The mean preoperative metatarsophalangeal range <strong>of</strong> motion<br />

was 27+17°; at follow-up, it was 75+8°. Surgical treatment <strong>of</strong> hallux<br />

rigidus depends on its pathoanatomy, and optimal results hinge on<br />

the precise evaluation <strong>of</strong> labeling factors.<br />

MEC22<br />

Treatment <strong>of</strong> Flexible Flatfoot in Children: Joint-<br />

Preserving Surgery with Subtalar Arthroereisis in<br />

Conjunction with S<strong>of</strong>t Tissue Procedures<br />

Antongiulio Marmotti, MD, Torino, Italy<br />

Filippo Castoldi, MD, Torino, Italy<br />

Roberto Rossi, MD, Torino, Italy<br />

Margherita Germano, MD, Torino, Italy<br />

Alessandra Tellini, MD, Alpignano-Turin, Italy<br />

Gianluca Collo, MD, Torino, Italy<br />

Mattia Cravino, MD, Torino, Italy<br />

Alessia Tron, MD, Torino, Italy<br />

Rainero Del Din, MD, Perosa Argentina, Italy<br />

Flexible flatfoot in children is one <strong>of</strong> the most common disorders in<br />

pediatric orthopaedic practice. The patient should undergo careful<br />

evaluation to ascertain the extent <strong>of</strong> flexibility. A radiograph is<br />

unnecessary if the flexible flatfoot is asymptomatic. Such patients do<br />

not require treatment, but they should undergo clinical monitoring<br />

for changes in status. In a small percentage <strong>of</strong> patients (less than<br />

10%), symptoms will develop in middle-to-late childhood (from<br />

8 to 9 years old). Symptoms are <strong>of</strong>ten related to sports activities,<br />

and they may present as foot and lower-limb fatigue, pain in the<br />

hindfoot and in the medial midfoot, or both. When conservative<br />

measures fail to relieve the pain in symptomatic children, jointpreserving<br />

deformity-correcting surgery is indicated. The goal <strong>of</strong><br />

surgical treatment is to correct heel valgus and pronation <strong>of</strong> the<br />

subtalar joint; laxity in the talonavicular joint and the medial<br />

column; posterior tibial tendon weakening; and a too-short Achilles<br />

tendon, if present. Corrective treatment includes extra-articular<br />

subtalar arthroereisis in conjunction with s<strong>of</strong>t-tissue procedures,<br />

such as spring ligament plication (medial plication); posterior<br />

tibial tendon tensioning repair; and percutaneous Achilles tendon<br />

lengthening, if needed. After corrective surgery to reduce heel valgus<br />

and medial laxity, patients typically have a painless return to sports<br />

activities. Our video shows the various steps <strong>of</strong> this treatment for<br />

pediatric flexible flatfoot, both as performed by a senior surgeon and<br />

as demonstrated on a cadaveric model.<br />

MEC23<br />

Scaphoidectomy and Four-Corner Fusion<br />

Robert M. Orfaly, MD, Portland, OR<br />

Scaphoidectomy and four-corner fusion is a widely accepted treatment<br />

<strong>of</strong> scapholunate advanced collapse (SLAC) and scaphoid nonunion<br />

advanced collapse (SNAC) in wrists. With the introduction <strong>of</strong> circular<br />

plates in 1999, the expectation was that they would effectively bind<br />

the carpal bones together until solid fusion could be achieved.<br />

However, early reports suggested higher complication rates including<br />

nonunion, dorsal hardware impingement, and screw breakage or<br />

back-out. More recent studies have demonstrated superior results<br />

with few complications. This video demonstrates several technical<br />

steps that are necessary to achieve consistent success with circular<br />

plates. Proper seating <strong>of</strong> the plate is important. To avoid hardware<br />

prominence, the surgeon should seat the plate entirely below the<br />

dorsal cortices. Even with relatively generous reaming, deep seating<br />

requires removal <strong>of</strong> only a small percentage <strong>of</strong> the surface area<br />

between the carpal bones. Another advantage <strong>of</strong> deep seating the<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


plate is that it facilitates proper screw placement. With superficial<br />

plate placement, the surgeon can only achieve adequate screw<br />

fixation by using a horizontal trajectory, which may shift the bone<br />

away from the center and increase the gap at the fusion site. Deep<br />

seating permits vertical screw orientation and excellent fixation. The<br />

bone will draw toward the center <strong>of</strong> the plate, thus decreasing the<br />

gap at the fusion site. Other details that will promote a successful<br />

outcome include: taking care to preserve congruent bony surfaces,<br />

performing complete decortication <strong>of</strong> the volar and dorsal portions<br />

<strong>of</strong> the articular surfaces, and undertaking external compression <strong>of</strong><br />

the bone during provisional fixation. Following these dictates can<br />

lead to a stable construct with excellent potential for solid fusion.<br />

MEC24<br />

All-epiphyseal Anterior Cruciate Ligament<br />

Reconstruction in Skeletally Immature Patients<br />

Theodore J. Ganley, MD, Philadelphia, PA<br />

Neeraj M. Patel, MBS, Philadelphia, PA<br />

Stephanie R. Cody, BS, Philadelphia, PA<br />

J. Todd R. Lawrence, MD, Wynnewood, PA<br />

Prompt treatment <strong>of</strong> anterior cruciate ligament (ACL) injuries<br />

in skeletally immature patients can minimize the risk <strong>of</strong> future<br />

chondral and meniscal damage. However, the presence <strong>of</strong> the<br />

open physis in this patient population presents a unique surgical<br />

challenge. A number <strong>of</strong> modified techniques have recently emerged<br />

as potential options for ACL repair in prepubescent patients. We<br />

describe, to our knowledge, the only reported ACL reconstruction<br />

technique that keeps the graft and fixation entirely in the epiphysis<br />

while placing the graft within the native ACL footprint. The<br />

technique is as follows: The surgeon creates standard anteromedial<br />

and anterolateral arthroscopic portals and then places a guide wire<br />

in the distal femoral epiphysis, parallel to the physis, to the center<br />

<strong>of</strong> the femoral attachment point <strong>of</strong> the ACL. The next step is to drill<br />

a tunnel in the epiphysis <strong>of</strong> the lateral femoral condyle. Using a<br />

retrograde drill, the surgeon then drills a tibial tunnel from insideout<br />

to 3 mm from the tibial physis. Intraoperative CT scanning with<br />

three-dimensional reconstruction will confirm the precise location<br />

<strong>of</strong> the femoral and tibial tunnels, after which the surgeon can pull an<br />

autologous quadrupled hamstring graft through the femoral tunnel<br />

and into the tibial tunnel. Fixation <strong>of</strong> the graft is achieved with a<br />

retrograde interference screw in the tibia and an interference screw<br />

in the femur. Although the procedure requires long-term follow-up,<br />

we have found excellent results in our patients that have undergone<br />

all-epiphyseal ACL repair. This method provides a novel technique<br />

that avoids fixation, drill holes, or tensioning <strong>of</strong> the graft across the<br />

physis and thus minimizes the risk <strong>of</strong> growth disturbance.<br />

MEC25<br />

Transepiphyseal, Physeal Sparing Anterior Cruciate<br />

Ligament Reconstruction<br />

Allen F. Anderson, MD, Nashville, TN<br />

Controversy surrounds treatment <strong>of</strong> anterior cruciate ligament<br />

tears in children and adolescents. In this video, I briefly discuss the<br />

rationale for treating high risks prepubescent patients with a relatively<br />

anatomic transepiphyseal physeal-sparing ACL reconstruction. I also<br />

demonstrate the procedure and give the results <strong>of</strong> patients treated<br />

with the technique.<br />

887<br />

MEC26<br />

Congenital Hip Dislocation: Open Reduction Through a<br />

Medial Approach With Video Assistance<br />

Antonello Montanaro, MD, Rome, Italy<br />

Turturro Francesco MD, Rome, Italy<br />

Luca Labianca, MD, Rome, Italy<br />

Vincenzo Di Sanzo, MD, Rome, Italy<br />

Silvio Giannetti, MD, Rome, Italy<br />

Andrea Ferretti, Rome, Italy<br />

Ludl<strong>of</strong>f introduced the medial approach for the open reduction<br />

<strong>of</strong> congenital dislocation <strong>of</strong> the hip in 1908. Open reduction is<br />

the treatment <strong>of</strong> choice when closed reduction has failed. Studies<br />

suggest that the medial approach is best suited for children between<br />

the ages <strong>of</strong> 7 months and 18 months because there is a higher risk<br />

<strong>of</strong> avascular necrosis in infants younger than 7 months. The surgeon<br />

may undertake the medial approach either anteromedially or<br />

posteromedially, depending on the choice <strong>of</strong> path to the adductor<br />

brevis. There are three well-known surgical techniques for the medial<br />

approach: the Weinstein approach (an anteromedial approach), the<br />

Ludl<strong>of</strong>f approach (an anteromedial approach), and the Ferguson<br />

approach (a posteromedial approach). The Ferguson posteromedial<br />

approach has several advantages, which include minimal dissection<br />

and blood loss; a direct approach to common obstacles to reduction,<br />

such as the psoas tendon, capsular constriction, and the transverse<br />

acetabular ligament. However, there are also surgical disadvantages,<br />

which include a poor view <strong>of</strong> the acetabulum because <strong>of</strong> the<br />

narrow surgical field. Also, the Ferguson approach does not permit<br />

capsulorraphy, which is required in older patients. We prefer the<br />

Ludl<strong>of</strong>f approach with video assistance to improve the view <strong>of</strong> the<br />

acetabulum and help us evaluate how the various structures can<br />

affect the final results.<br />

MEC27<br />

Femoral Head Re-Orientation in SCFE Through a<br />

Surgical Hip Dislocation<br />

Reinhold Ganz, MD, Guemligen, Switzerland<br />

Alessandro Massè, MD, Torino, Italy<br />

Alessandro Aprato, MD, Orbassano, Italy<br />

Luigino Turchetto, MD, Musile Di Piave, Italy<br />

Guido Grappiolo, MD, Pietra Ligure, SV, Italy<br />

Antonio Campacci, MD, Arbizzano, Italy<br />

Since the senior author reported that it is safe to surgically dislocate<br />

adult hips to deal with impingement problems without the risk<br />

<strong>of</strong> avascular necrosis, surgeons have expressed interest in open<br />

treatment <strong>of</strong> severe slipped capital femoral epiphysis using this<br />

surgical approach to anatomically realign the slip. The additional<br />

technique <strong>of</strong> the extended retinacular flap permits the performance<br />

<strong>of</strong> an open subcapital reorientation <strong>of</strong> the epiphysis. Advantages <strong>of</strong><br />

this technique are the possibility <strong>of</strong> restoring the correct hip anatomy<br />

through an open procedure, the ability to perform an acetabular<br />

condroplasty at the same time, and the opportunity to perform a<br />

trochanteric advancement to avoid pelvic-trochanteric impingement.<br />

The disadvantages <strong>of</strong> this procedure are that it is demanding surgery<br />

with the risk <strong>of</strong> avascular necrosis <strong>of</strong> the head when not executed<br />

carefully and exactly following the original description.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


MEC28<br />

Physical Examination <strong>of</strong> the Elbow: A Cadaver Insight<br />

to Better Understand How the Tests Work<br />

Davide Blonna, MD, Torino, Italy<br />

Filippo Castoldi, MD, Torino, Italy<br />

Michele Scelsi, MD, Torino, Italy<br />

Alessandra Tellini, MD, Alpignano-Turin, Italy<br />

Andrea Ferro, MD, Rivoli, Italy<br />

The physical examination <strong>of</strong> the elbow remains an unsolved problem<br />

for many orthopaedic surgeons. We believe the reason for this can<br />

be found in a lack <strong>of</strong> familiarity with the elbow’s anatomy as well as<br />

the relative rarity <strong>of</strong> elbow diseases. The aim <strong>of</strong> this video is to show<br />

another way to look at the physical examination <strong>of</strong> the elbow through<br />

a dynamic view <strong>of</strong> the anatomic structures involved in the tests. In<br />

this video, we demonstrate how to correctly perform tests for medial<br />

instability, subluxating medial triceps, distal biceps tendon rupture,<br />

posterolateral instability, and posterolateral and anterolateral plica.<br />

Most <strong>of</strong> the tests use a cadaver specimen and drafts. The video also<br />

contains a simulation with a healthy volunteer, with emphasis on<br />

avoiding false positive and false negative results.<br />

MEC29<br />

Latissimus Dorsi and Teres Major Transfers for<br />

External Rotation With Reverse Shoulder Arthroplasty<br />

Geraldo Motta, MD, Rio De Janeiro, Brazil<br />

Marcus Vinicius Galvao Amaral, MD, Rio De Janeiro, Brazil<br />

Marcio Theo Cohen, MD, Rio de Janeiro, Brazil<br />

Martim Teixiera Monteiro, MD, Rio de Janeiro, Brazil<br />

Bruno Lobo Brandão, MD, Rio de Janeiro, Brazil<br />

Rickson Moraes, MD, Rio De Janeiro, Brazil<br />

Massive rotator cuff tears or muscles infiltrated by fat cause a patient<br />

to lose the ability to lift the affected arm and rotate the shoulder,<br />

move the hand away from the body, or place the hand to the mouth<br />

or head. To place the hand to the mouth or head, a person must have<br />

external rotation with forward flexion. Reverse shoulder arthroplasty<br />

restores active forward flexion, but it does not enhance external<br />

rotation. Boileau et al described a modification <strong>of</strong> the L’Episcopo<br />

procedure that transfers both the latissimus dorsi and teres major<br />

behind the posterior humerus and restores active external rotation.<br />

In our video, we show this procedure combined with the reverse<br />

shoulder arthroplasty performed through a single deltopectoral<br />

approach. We followed all ten patients with cuff-tear arthropathy<br />

both clinically and radiographically for a minimum <strong>of</strong> 12 months.<br />

The mean increase in active elevation was 1000, and in active<br />

external rotation, it was 300. The Constant score improved from 18<br />

to 64. After surgery, all patients were able to lift their hands to their<br />

mouths. A neurologic complication occurred in one patient who<br />

developed a transient radial palsy. Our results show that latissimus<br />

dorsi and teres major transfer with concomitant reverse shoulder<br />

arthroplasty can be done through a single deltopectoral approach,<br />

which will effectively restore active external rotation and forward<br />

flexion in cuff-tear arthritis.<br />

MEC30<br />

Reverse Shoulder Arthroplasty Through Two Surgical<br />

Approaches<br />

Alicia Karin Harrison, MD, Minneapolis, MN<br />

Evan L. Flatow, MD, New York, NY<br />

Reverse shoulder arthroplasty represents a treatment option to<br />

decrease pain and improve function for patients who previously<br />

888<br />

had few treatment options available. Reverse shoulder arthroplasty<br />

is evolving as the indications and contraindications continue to be<br />

re-evaluated. This procedure can be performed through two different<br />

surgical approaches: the superior approach and the deltopectoral<br />

approach. Each approach has advantages and disadvantages, so<br />

the details <strong>of</strong> a patient’s individual case should determine which<br />

approach is best for each patient. In this video, we explore the<br />

indications and contraindications for each approach, demonstrating<br />

the variables specific to each surgical technique.<br />

MEC31<br />

Salvage Technique for Failed Reverse Total Shoulder<br />

Arthroplasty: The Yoke Technique<br />

Eric D. Bava, MD, Dallas, TX<br />

Sumant G. Krishnan, MD, Dallas, TX<br />

Phillip W.Bennion, MD, Phoenix, AZ<br />

Wayne Z.Burkhead, Jr, MD, Dallas, TX<br />

Failure <strong>of</strong> a reverse total shoulder arthroplasty presents an extremely<br />

difficult problem for even the most experienced surgeon. This video<br />

introduces a novel technique for salvage <strong>of</strong> a failed reverse total<br />

shoulder arthroplasty. A clinical case demonstrates revision <strong>of</strong> the<br />

failed reverse shoulder prosthesis to a hemiarthroplasty using the<br />

yoke technique in a patient with a failed glenosphere baseplate and<br />

inadequate glenoid bone stock to support a prosthetic component.<br />

This technique uses an Achilles tendon allograft to resurface the<br />

remaining glenoid bone and stabilize the proximal humerus. The<br />

allograft provides a smooth surface for the hemiarthroplasty to<br />

articulate, and it recreates the capsuloligamentous structures <strong>of</strong> the<br />

shoulder, which prevents anterosuperior escape.<br />

MEC32<br />

Pectoralis Major Tendon Ruptures<br />

Peter J. Millett, MD, MSc, Vail, CO<br />

Carl Wierks, MD, Holland, MI<br />

Our video reviews pectoralis major ruptures and demonstrates a<br />

technique for repair with suture anchors. Ruptures <strong>of</strong> the pectoralis<br />

major tendon can occur from a violent abduction, external rotation<br />

movement <strong>of</strong> the arm, or a strong eccentric contraction <strong>of</strong> the muscle.<br />

Body builders and people who engage in contact sports typically<br />

suffer these tear injuries. The sternal head is more commonly torn<br />

than the clavicular head. We recommend surgical repair in young,<br />

active patients. Operative treatment results in superior outcomes<br />

when compared to nonoperative treatment, even in patients with<br />

chronic tears. Suture-anchor restoration <strong>of</strong> the torn tendon to its<br />

native insertion site can provide excellent results. However, the<br />

surgeon must recognize that frequently the sternal head is retracted<br />

deep to the intact clavicular head. This instructional video depicts the<br />

relevant surgical anatomy and demonstrates a technique for repair.<br />

MEC33<br />

Total Shoulder Arthroplasty<br />

Peter J. Millett, MD, MSc, Vail, CO<br />

Suketu B. Vaishnav, MD, San Francisco, CA<br />

Glenohumeral osteoarthritis can cause severe pain and loss <strong>of</strong><br />

function in patients with advanced disease. Surgery may be the best<br />

option to alleviate pain and restore function when nonoperative<br />

measures fail. Total shoulder arthroplasty (TSA) is the most effective<br />

method for treating advanced glenohumeral osteoarthritis, though<br />

the technique is a challenging one that requires skill to perform well.<br />

Highlights <strong>of</strong> this video include a lesser tuberosity osteotomy for<br />

glenohumeral joint exposure, with subsequent repair using a novel<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


technique in which we use cerclage to position fixation sutures<br />

around the stem <strong>of</strong> the implant and lesser tuberosity bone fragment.<br />

This provides strong, stable fixation with bone-to-bone healing. We<br />

show a free-hand cutting technique for the humeral osteotomy and<br />

demonstrate the cut along the anatomic neck, along with relevant<br />

landmarks. We also describe a “double hammock” inferior capsular<br />

release that improves glenoid exposure and helps to restore motion<br />

postoperatively. Also, by preserving the mid-portion <strong>of</strong> the inferior<br />

glenohumeral ligament, the double hammock release <strong>of</strong>fers protection<br />

for the axillary nerve inferiorly. We achieve glenoid resurfacing<br />

by using a hybrid glenoid component that combines the advantages<br />

<strong>of</strong> both the peg and keel components in one device. The video also<br />

demonstrates a careful cement-pressurization technique used in<br />

our procedure. We accomplish anatomic humeral reconstruction<br />

by using a modern fourth-generation-adaptable implant, which<br />

intraoperatively accommodates to anatomic variations in the<br />

proximal humerus. Once we reconstruct the proximal humerus<br />

anatomically through adjustments to the inclination angle, version,<br />

and head <strong>of</strong>fset on the prosthesis, the correct glenohumeral center <strong>of</strong><br />

rotation and appropriate rotator-cuff function is restored. Lastly, we<br />

demonstrate excision and tenodesis <strong>of</strong> the long head <strong>of</strong> the biceps<br />

tendon. When performed successfully, TSA has excellent durability,<br />

and it can result in complete pain relief and restoration <strong>of</strong> normal<br />

function.<br />

MEC34<br />

Comprehensive Operative Management <strong>of</strong> Midshaft<br />

Clavicle Fractures: Plate and Intramedullary Fixation<br />

Peter J. Millett, MD, MSc, Vail, CO<br />

Hinrich J.D. Heuer, MS, Luebeck, Germany<br />

Suketu B. Vaishnav, MD, San Francisco, CA<br />

Clavicle fractures are common, and they affect the diaphysis in<br />

approximately 80% <strong>of</strong> cases. Classic teaching based on studies<br />

by Neer and Rowe shows that midshaft fractures heal well when<br />

treated without surgery. However, treatment options have lately<br />

become controversial. Hill et al were among the first to show higher<br />

nonunion rates with nonoperative treatment, and subsequent<br />

studies suggested that operative fixation may result in better clinical<br />

outcomes. In recent years, several studies demonstrated better<br />

results with operative treatment, especially for displaced fractures.<br />

This video summarizes the current thinking on midshaft clavicle<br />

fractures with a focus on the mechanism <strong>of</strong> injury, classification,<br />

indications for surgery, and complications <strong>of</strong> surgery. Additionally,<br />

the video describes the advantages <strong>of</strong> the most frequently used<br />

methods for surgical treatment and gives our recommendations for<br />

postoperative care and rehabilitation. The video also demonstrates<br />

the two most common surgical fixation techniques: plate fixation<br />

and intramedullary fixation. Superior plate fixation has become<br />

popular with the advent <strong>of</strong> anatomically preshaped plates that<br />

have the highest load-to-failure rate. Intramedullary fixation is the<br />

other alternative fixation method. While not as popular as plating,<br />

intramedullary fixation has distinct advantages, which we also<br />

highlight in this video. We have included many surgical pearls and<br />

pitfalls for these two procedures, which should help the novice<br />

and the experienced traumatologist, shoulder specialist, or general<br />

orthopaedic surgeon in the management <strong>of</strong> midshaft clavicle<br />

fractures. We hope these pearls will translate into more successful<br />

surgical practice and better postoperative outcomes.<br />

889<br />

MEC35<br />

Posterior Shoulder Instability<br />

Adam Blair Yanke, MD, Chicago, IL<br />

Ge<strong>of</strong>frey Van Thiel, MD, Chicago, IL<br />

Lance E. LeClere, MD, San Diego, CA<br />

Daniel Jordan Solomon, MD, Novato, CA<br />

Matthew T. Provencher, MD, San Diego, CA<br />

Posterior shoulder instability is an increasingly recognized aspect<br />

<strong>of</strong> shoulder pathology. It is typically present in younger patients<br />

who participate in sporting activities with their arms flexed in front<br />

<strong>of</strong> their bodies. Specific physical tests for posterior instability will<br />

result in accurate diagnoses. After ruling out bony pathology with<br />

radiographs and CT scan, one can complete an MRI or MRA to<br />

elucidate the s<strong>of</strong>t- tissue pathology. If the patient and physician agree<br />

to operative management, this population can be successfully treated<br />

by arthroscopic stabilization. The technique involves identifying<br />

the tear type, preparing the tear for repair, and repairing the tear.<br />

After repair, a strict postoperative rehabilitation program ensues.<br />

The senior author has reported 88% improvement and increased<br />

return to sport function with arthroscopic stabilization <strong>of</strong> posterior<br />

shoulder instability.<br />

MEC36<br />

Ultrasound-Guided Placement <strong>of</strong> a Localization Wire<br />

for Arthroscopic Treatment <strong>of</strong> Calcific Tendonitis<br />

Matthew J. Kelly, MD, Camp Hill, PA<br />

Patrick H. Lam, Sydney, Kogarah, NSW, Australia<br />

Lisa Briggs, Sonographer, Maroubra, NSW, Australia<br />

Brett M. Andres, MD, Portland, OR<br />

Ali Razif, MD, Camp Hill, PA<br />

George A. C. Murrell, MD, Kogarah, NSW, Australia<br />

Surgical decompression <strong>of</strong> calcific tendonitis <strong>of</strong> the shoulder can be<br />

difficult because identification <strong>of</strong> the lesion is problematic, as the<br />

lesion is usually within the supraspinatus and cannot be directly<br />

visualized. We demonstrate a technique to identify and mark the<br />

calcific lesion using portable 2-D ultrasound-guided placement<br />

<strong>of</strong> a breast-biopsy localization wire, followed by arthroscopic<br />

decompression <strong>of</strong> the calcific lesion. After identifying the calcific<br />

lesion with portable ultrasound, we advance the introducer needle<br />

<strong>of</strong> the breast-lesion localization wire into the calcific lesion. The<br />

localization wire, with two barbs at its tip, advances through<br />

the introducer needle into the lesion where the barbs secure it.<br />

Following diagnostic arthroscopy, we place the arthroscope into the<br />

subacromial space. We identify the localization wire and follow it to<br />

the calcific lesion. We debride the lesion with an arthroscopic shaver,<br />

removing as much calcific material as possible. We then examine<br />

the supraspinatus tendon. If a significant defect is present, we repair<br />

it. Analysis <strong>of</strong> 13 shoulders (7 male shoulders, 6 female, average<br />

age 48.8 years) 6 months after surgery showed there was subjective<br />

improvement (determined from a questionnaire) and objective<br />

improvement (determined by examination <strong>of</strong> range <strong>of</strong> motion and<br />

strength). Five <strong>of</strong> eight shoulders re-examined by ultrasound had no<br />

residual calcific lesions, and all eight rotator cuffs were intact. We<br />

describe a technique <strong>of</strong> ultrasound-guided arthroscopic removal <strong>of</strong><br />

calcific tendonitis lesions <strong>of</strong> the supraspinatus. Our early-term results<br />

show subjective and objective improvement in pain and function.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


MEC37<br />

Arthroscopic Management <strong>of</strong> Os Acromiale<br />

Robert J. Meislin, MD, New York, NY<br />

Michael Patrick Hahn, MD, Stockton, CA<br />

Symptomatic os acromiale is a clinical entity whose surgical<br />

management has traditionally been through open approaches, with<br />

varying levels <strong>of</strong> deltoid reflection <strong>of</strong>f the acromial. We present our<br />

arthroscopic technique <strong>of</strong> internal fixation <strong>of</strong> os acromiale using<br />

partially threaded cannulated screws.<br />

MEC38<br />

Unilateral Transforaminal Posterior Lumbar Interbody<br />

Fusion<br />

Cesare Faldini, MD, Bologna, Italy<br />

Matteo Nanni, MD, Bologna, Italy<br />

Mohammadreza Chehrassan, MD, Bologna, Italy<br />

Luca Boriani MD, Bologna, Italy<br />

Alberto Di Martino, MD, Rome, Italy<br />

Sandro Giannini, MD, Bologna, Italy<br />

Unilateral transforaminal posterior lumbar interbody fusion is a<br />

surgical technique in which the surgeon achieves anterior-column<br />

support through a unilateral posterolateral approach and posteriorcolumn<br />

stabilization with pedicle screw fixation. Interbody fusion is<br />

indicated for anterior-column deficiency with chronic pain related<br />

to severe spinal stenosis, degenerative scoliosis, spondylolisthesis,<br />

and severe instability. These conditions require decompression <strong>of</strong><br />

stenotic segments and elimination <strong>of</strong> motion, which are achieved by<br />

a solid arthrodesis that includes restoration <strong>of</strong> segmental lordosis.<br />

Interbody fusion techniques associated with posterior-column<br />

stabilization can restore normal sagittal contour while indirectly<br />

decompressing the neur<strong>of</strong>oramen. Depending on the pathoanatomy<br />

<strong>of</strong> the disorder <strong>of</strong> the lumbar spine, the surgeon should precisely plan<br />

the number <strong>of</strong> vertebrae to be fused, and for each level, the need for<br />

posterolateral fusion, interbody fusion, or both. Our video shows<br />

this unilateral transforaminal posterior interbody fusion surgical<br />

technique in a 62-year-old patient, suffering from chronic back pain<br />

associated with intractable radiculopathy <strong>of</strong> L3 right root. Following<br />

clinical and radiographic findings (X-ray, CT scan), we performed L2<br />

through L4 posterolateral arthrodesis associated with decompression<br />

and unilateral transforaminal interbody fusion at right L3-L4 space.<br />

Together with a precise technique, the key to successful outcomes<br />

for degenerative disorders <strong>of</strong> the lumbar spine is patient selection. A<br />

precise evaluation <strong>of</strong> clinical symptoms (radiculopathies, low-back<br />

pain) and strict correlation with imaging is crucial to choosing the<br />

extent <strong>of</strong> posterior stabilization and position and the number <strong>of</strong><br />

transforaminal lumbar interbody fusions.<br />

MEC39<br />

Office-Based Ultrasonography <strong>of</strong> the Shoulder: A Howto<br />

Guide for the <strong>Orthopaedic</strong> Surgeon<br />

Dave Angelillo, MD, Westbury, NY<br />

Michael S. Day, MPhil, New York, NY<br />

Laith M. Jazrawi, MD, New York, NY<br />

Leon Rybak, MD, New York, NY<br />

Ultrasound is an imaging modality that uses sound frequencies in<br />

the range <strong>of</strong> 3 to 25 MHz emitted and received by an ultrasound<br />

transducer or probe to produce an image based on the composition<br />

<strong>of</strong> tissue with differential acoustic properties. Clinicians frequently<br />

use ultrasound to aid diagnosis in a variety <strong>of</strong> settings because <strong>of</strong> its<br />

versatility, availability, noninvasiveness, and relatively modest cost.<br />

890<br />

The modality enjoys high patient acceptance and a lack <strong>of</strong> medical<br />

contraindications. Ultrasound has gained increased popularity<br />

in orthopaedic surgery in recent years. However, musculoskeletal<br />

ultrasound techniques are not part <strong>of</strong> the training programs <strong>of</strong> most<br />

practicing orthopaedic surgeons. The purpose <strong>of</strong> this video is to<br />

introduce the basic concepts <strong>of</strong> shoulder ultrasonography for the<br />

orthopaedic surgeon wishing to incorporate this imaging modality<br />

into the <strong>of</strong>fice setting.<br />

MEC40<br />

Proximal Biceps Tenodesis: Surgical Options and<br />

Techniques<br />

Brett H. Young, MD, New York, NY<br />

Laith M. Jazrawi, MD, New York, NY<br />

Michael S. Day, MPhil, New York, NY<br />

Young W. Kwon, MD, PhD, New York, NY<br />

Andrew S. Rokito, MD, New York, NY<br />

Shoulder pain <strong>of</strong>ten arises in the long head <strong>of</strong> the biceps. Pathology<br />

<strong>of</strong> the biceps tendon includes isolated tendinitis or tendinosis, tears<br />

<strong>of</strong> the superior labrum from anterior to posterior (SLAP tears),<br />

subluxation, and fraying. There is almost always concomitant<br />

pathology. The two most common techniques for surgical<br />

management are biceps tenotomy and biceps tenodesis. Our video<br />

demonstrates detailed surgical techniques for subpectoral biceps<br />

tenodesis and arthroscopic percutaneous s<strong>of</strong>t-tissue tenodesis. We<br />

also give an overview <strong>of</strong> the techniques for all arthroscopic tenodeses<br />

that use an interference screw. We provide step-by-step instructions,<br />

the results from our series, and a review <strong>of</strong> the literature.<br />

MEC41<br />

Minimally Invasive Hamstring Harvest Through a<br />

Posterior Incision<br />

Patrick A. Smith, MD, Columbia, MO<br />

The minimally invasive hamstring harvest is a clear-cut method<br />

<strong>of</strong> tendon identification and release that can be accomplished<br />

through a small posterior incision with minimal s<strong>of</strong>t-tissue trauma.<br />

The hamstring harvest is done without any real change in position<br />

from the standard anterior cruciate ligament reconstruction. The<br />

surgeon maintains the knee in a flexed position with the hip rotated<br />

externally. The tendons are palpated in the area <strong>of</strong> the posteromedial<br />

knee crease and a 2 cm oblique incision is made just medial<br />

to the anatomic midline. The semitendinosus and gracilis tendons<br />

are superficial at this level and are easy to recognize after simple<br />

dissection <strong>of</strong> the fascia. Fascial attachments are also easy to see at this<br />

level. Their release decreases the chances <strong>of</strong> untimely subtraction. This<br />

technique is perfect for autograft harvest for the all-inside anterior<br />

cruciate ligament technique. Results are uniformly consistent, and<br />

the technique is less invasive than standard open techniques.<br />

MEC42<br />

Quadriceps Tendon Autograft for Anatomic Anterior<br />

Cruciate Ligament Reconstruction<br />

Freddie H. Fu, MD, Pittsburgh, PA<br />

Volker Musahl, MD, Pittsburgh, PA<br />

Carola F. Van Eck, MD, Pittsburgh, PA<br />

Corey A. Gilbert, MD, Odenton, MD<br />

There are many published clinical studies on techniques and<br />

outcomes <strong>of</strong> single- and double-bundle anterior cruciate ligament<br />

(ACL) reconstruction. <strong>Orthopaedic</strong> surgeons have used different<br />

graft tissues, including allografts and autografts, with good results.<br />

In this video, we outline the use <strong>of</strong> autograft quadriceps tendon as<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


an alternative graft choice for anatomic single- and double-bundle<br />

ACL reconstruction, and we discuss the application <strong>of</strong> an anatomic<br />

ACL reconstruction concept. The quadriceps tendon is longer and<br />

thicker than the patellar tendon, and it attaches to the patella on a<br />

wider base. The ultimate load is similar to that <strong>of</strong> the patellar tendon.<br />

Clinical studies have reported that the quadriceps tendon has less<br />

donor site morbidity and produces less anterior knee pain compared<br />

with patellar tendon autograft. The combination <strong>of</strong> the large size<br />

and decreased donor side morbidity makes the quadriceps tendon a<br />

valuable alternative for anatomic double-bundle ACL reconstruction.<br />

The surgical technique for double-bundle reconstruction consists <strong>of</strong><br />

one oval-shaped femoral tunnel and two round tibial tunnels. The<br />

surgeon places bone block on the femoral side and fixes it with an<br />

endobutton. The two s<strong>of</strong>t-tissue ends are placed on the tibial side and<br />

fixed with biointerference screws. For single-bundle reconstruction,<br />

the quadriceps graft can be used with or without a bone block.<br />

MEC43<br />

Medial Patell<strong>of</strong>emoral Ligament Reconstruction for<br />

Recurrent Lateral Patellar Instability<br />

Tal S. David, MD, San Diego, CA<br />

Jesse Abeler, ATC, OTC, Highlands Ranch, CO<br />

The medial patell<strong>of</strong>emoral ligament (MPFL) has increasingly<br />

become recognized as the most important passive stabilizer against<br />

lateral patellar displacement in early knee flexion. Injury to this<br />

structure is common after a single lateral patellar dislocation, and<br />

it is the principal lesion following this type <strong>of</strong> injury. Due to the<br />

inconsistent healing capacity <strong>of</strong> the MPFL, recurrent lateral patellar<br />

instability following dislocation is not uncommon. In these cases,<br />

MPFL reconstruction may be advisable. This video reviews the<br />

clinical presentation and physical exam findings <strong>of</strong> patients with<br />

recurrent patellar instability. The video also defines the indications,<br />

contraindications, surgical technique, rehabilitation protocol, and<br />

outcomes <strong>of</strong> MPFL reconstruction.<br />

MEC44<br />

Intra-articular Arthroscopic Recession <strong>of</strong> the Iliopsoas<br />

Tendon: Medial Protection Technique<br />

Allston J. Stubbs, IV MD, Winston-Salem, NC<br />

Hip pain <strong>of</strong>ten accompanies iliopsoas pathology such as tendonitis/<br />

bursitis, contracture, and mechanical snapping. Pathologic iliopsoas<br />

conditions can occur with both native hip disease and hip arthroplasty.<br />

In the setting <strong>of</strong> chronic iliopsoas pathology, surgical management<br />

may be an option to alleviate symptoms and reduce mechanical<br />

stress across the lumbar spine, proximal femur, and anterosuperior<br />

acetabular rim. Surgical techniques are available to release or recess<br />

the iliopsoas muscle tendon unit at various anatomic locations.<br />

Traditionally, these approaches, both open and arthroscopic, have<br />

focused on release <strong>of</strong> the iliopsoas tendon from its insertion on the<br />

lesser trochanter. A more recent approach involves an arthroscopic<br />

release <strong>of</strong> the iliopsoas at the level <strong>of</strong> the hip joint, a release that<br />

is more proximal than the traditional one. Arthroscopic release at<br />

the level <strong>of</strong> the hip joint is technically demanding, and it poses a<br />

theoretical risk <strong>of</strong> iatrogenic injury to the femoral neurovascular<br />

structures, which is a significant complication. The two primary<br />

modes <strong>of</strong> intra-articular arthroscopic iliopsoas release or recession<br />

involve tenotomy either from the peripheral compartment or from<br />

the central compartment. One such central- compartment technique<br />

is the medial protection technique, which protects the femoral<br />

neurovascular structures from iatrogenic injury. This video details<br />

the medial protection technique with a two-portal hip arthroscopy<br />

method. We present a complete surgical case and a discussion <strong>of</strong> the<br />

891<br />

technical pearls and pitfalls.<br />

MEC45<br />

Hip Arthroscopy for Trauma: Arthroscopic<br />

Osteosynthesis <strong>of</strong> Femoral Head Fractures<br />

Dean K. Matsuda, MD, Los Angeles, CA<br />

This video presents a new application for hip arthroscopy, which was<br />

once thought to be limited to diagnostic use and foreign/loose body<br />

removal. The video demonstrates the arthroscopic reduction and<br />

internal fixation <strong>of</strong> displaced femoral-head fractures in two trauma<br />

patients, one with an isolated supra-foveal osteochondral fracture<br />

and another with a more common fracture-dislocation. The video<br />

describes the rationale for the procedure, preoperative planning, and<br />

contingency plans. There is intraoperative footage <strong>of</strong> key steps in the<br />

arthroscopic osteosynthesis <strong>of</strong> these fractures, an introduction to a<br />

“chopstick” maneuver for arthroscopic reduction, and a discussion<br />

<strong>of</strong> a “clamshell” osteochondral fracture requiring arthroscopic<br />

manipulation prior to osteosynthesis. To enrich the learning<br />

experience, the video also includes material on postoperative care<br />

and rehabilitation, results <strong>of</strong> 1- and 2-year clinical outcomes, and<br />

relevant comparative imaging studies.<br />

MEC46<br />

Chondrosarcoma <strong>of</strong> the Proximal Femur: Limb-Sparing<br />

Resection and Prosthetic Reconstruction<br />

James C. Wittig, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

The proximal femur is a common site for primary sarcomas and<br />

is the site <strong>of</strong> involvement for ~13% <strong>of</strong> all chondrosarcomas. This<br />

video details a limb-sparing radical resection <strong>of</strong> the proximal femur<br />

performed for a large chondrosarcoma, followed by reconstruction<br />

with a modular, segmental, proximal-femur tumor prosthesis. The<br />

chondrosarcoma infiltrated the head and greater trochanter <strong>of</strong> the<br />

femur, as well as the proximal shaft. Additionally, it demonstrated<br />

cortical breakthrough with a moderately sized extraosseous s<strong>of</strong>t<br />

tissue component. We describe the surgical procedure in detail<br />

with strong emphasis on dissection and mobilization <strong>of</strong> the sciatic<br />

nerve. We further emphasize multiple muscle rotations, which are<br />

used to allow optimal function and to cover the prosthesis with s<strong>of</strong>t<br />

tissue to minimize complications. Limb-sparing radical resection<br />

<strong>of</strong> the proximal femur followed by reconstruction with a modular<br />

segmental proximal femur tumor prosthesis and multiple muscle<br />

transfers is a safe and reliable method for treating tumors in this<br />

location.<br />

MEC47<br />

Intermuscular Liposarcoma <strong>of</strong> the Posterior Thigh:<br />

Radical Resection and Sciatic Nerve Preservation<br />

James C. Wittig, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Benjamin A.Lerner, AB, Fairfield, CT<br />

Richard A.Greendyk, BS, New York, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

This video demonstrates radical resection <strong>of</strong> an intermuscular<br />

myxoid liposarcoma <strong>of</strong> the posterior thigh in a 39-year-old patient.<br />

The tumor was compressing and displacing the sciatic nerve. The<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


preoperative MRI strongly suggested that the tumor was arising<br />

from the patient’s biceps femoris muscle. Intraoperative exploration,<br />

however, showed that the tumor was actually growing from an<br />

intermuscular location, displacing the biceps femoris muscle<br />

medially. The surgical procedure included radical resection <strong>of</strong> the<br />

intermuscular tumor as well as the use <strong>of</strong> multiple muscle rotation<br />

flaps for s<strong>of</strong>t-tissue closure. We used these flaps to close the defect and<br />

provide adequate s<strong>of</strong>t tissue coverage for the sciatic nerve in order to<br />

minimize postoperative wound complications. The video strongly<br />

emphasizes sciatic nerve dissection, mobilization, and preservation<br />

prior to tumor removal. This reconstruction technique is a safe and<br />

reliable method for treatment <strong>of</strong> s<strong>of</strong>t-tissue tumors in this location.<br />

MEC48<br />

Intra-articular Proximal Humerus Resection and<br />

Prosthetic Reconstruction for a Pathologic Fracture<br />

James C. Wittig, MD, New York, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

Brett Hayden, BA, Clifton Park, NY<br />

Our video presents a patient with a pathologic fracture <strong>of</strong> his right<br />

proximal humerus due to metastatic renal-cell carcinoma. The<br />

imaging studies demonstrated a pathologic fracture <strong>of</strong> the proximal<br />

humerus with a large s<strong>of</strong>t tissue component. We performed an intraarticular<br />

resection <strong>of</strong> the right proximal humerus and used a modular,<br />

segmental, proximal-humerus tumor prosthesis for reconstruction.<br />

To stabilize the prosthesis, we used both static and dynamic<br />

methods. To provide multidirectional stability, we reconstructed<br />

the glenohumeral ligaments with a GORE-TEX® aortic graft. We<br />

performed multiple muscle transfers and rotational flaps for dynamic<br />

stabilization as well as to power the shoulder girdle and cover the<br />

entire prosthesis with s<strong>of</strong>t tissue. The goal <strong>of</strong> the reconstruction<br />

was to provide a pain-free and stable shoulder girdle for optimal<br />

hand and elbow function without compromising rotation. In our<br />

video, we particularly emphasize that a meticulous dissection <strong>of</strong><br />

the brachial plexus and axillary blood vessels is necessary for a safe<br />

and reliable resection. This patient has been pain-free and has had<br />

normal elbow and hand function. There have been no dislocations,<br />

and the shoulder has remained stable.<br />

MEC49<br />

Limb-Sparing Total Scapula and Proximal Humerus<br />

(Tikh<strong>of</strong>f-Linberg) Resection and Reconstruction<br />

James C. Wittig, MD, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

Andrew M. Silverman, BS, New York, NY<br />

Martin M. Malawer, MD, Mclean, VA<br />

In this video, we detail the case <strong>of</strong> a 60-year-old man who presented<br />

with a fungating squamous cell carcinoma involving his shoulder<br />

girdle. The patient lost an extensive amount <strong>of</strong> s<strong>of</strong>t tissue overlying<br />

the scapula, clavicle, and proximal humerus. These bony structures<br />

were grossly involved by the tumor in several locations. The patient<br />

underwent a radical resection <strong>of</strong> the left scapula and the proximal<br />

humerus including the deltoid, rotator cuff muscles, and portions <strong>of</strong><br />

the trapezius and the clavicle in lieu <strong>of</strong> a forequarter amputation. We<br />

used a modular proximal-humerus tumor prosthesis to act as a spacer<br />

and to permit stabilization <strong>of</strong> the extremity to optimize hand and<br />

elbow function. We stabilized the prosthesis to the second rib and<br />

892<br />

clavicle. We also performed multiple muscle transfers and rotational<br />

flaps to restore elbow function, stabilize the prosthesis, and cover<br />

it with s<strong>of</strong>t tissues. All margins were free <strong>of</strong> neoplasm. The video<br />

discusses the importance <strong>of</strong> a meticulous dissection <strong>of</strong> the brachial<br />

plexus and axillary blood vessels to achieve a safe and reliable<br />

resection. In this patient, we used static and dynamic methods <strong>of</strong><br />

s<strong>of</strong>t tissue reconstruction to stabilize the prosthesis and cover it with<br />

s<strong>of</strong>t tissue to optimize function and minimize complications. This<br />

patient has a stable shoulder girdle and can use his hand and elbow.<br />

He has minimal discomfort.<br />

MEC50<br />

Osteosarcoma <strong>of</strong> the Distal Femur: Radical Resection<br />

and Reconstruction with a Distal Femur Tumor<br />

Prosthesis<br />

James C. Wittig, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

Martin M. Malawer, MD, Mclean, VA<br />

The distal femur is a common site <strong>of</strong> primary and metastatic bone<br />

tumors. The traditional treatment for tumors <strong>of</strong> the distal femur has<br />

been high above-knee amputation. Today, with earlier diagnosis and<br />

induction chemotherapy, limb-sparing resection and reconstruction<br />

with endoprosthetic replacement has proven to be an effective<br />

treatment. The prosthesis has an excellent long-term survival rate,<br />

good reliability, low complication rates, and minimal problems<br />

with breakage or dysfunction. This video describes limb-sparing<br />

resection <strong>of</strong> an osteosarcoma involving the distal femur and knee<br />

joint. A modular segmental distal-femur tumor prosthesis is used to<br />

reconstruct the knee joint. The video emphasizes the importance <strong>of</strong><br />

meticulous neurovascular dissection and preservation and multiple<br />

muscle transfers to optimize function and minimize complications.<br />

Distal femur endoprosthetic reconstruction is a safe and reliable<br />

technique <strong>of</strong> functional limb sparing that provides good function<br />

and local tumor control.<br />

MEC51<br />

Primary Malignant Fibrous Histiocytoma <strong>of</strong> the<br />

Proximal Tibia: Limb-Sparing Resection with a<br />

Prosthesis and S<strong>of</strong>t Tissue Reconstruction<br />

James C. Wittig, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

Martin M. Malawer, MD, Mclean, VA<br />

Our video reports on a patient who underwent limb-sparing resection<br />

<strong>of</strong> the proximal tibia for a primary malignant fibrous<br />

histiocytoma <strong>of</strong> bone. We used a modular, segmental proximal-tibia<br />

endoprosthesis to reconstruct the bony defect and knee joint. This<br />

video details an extensile anteromedial parapatellar approach to<br />

the proximal tibia and knee joint, with emphasis on neurovascular<br />

dissection to enable a safe and reliable resection. To optimize knee<br />

function, we also reconstructed the extensor mechanism <strong>of</strong> the knee<br />

following bony reconstruction with the prosthesis. We created a<br />

medial gastrocnemius muscle flap and rotated it anteriorly over the<br />

prosthesis to achieve adequate coverage and to optimize function<br />

and minimize complications. Proximal tibia and knee joint resection<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


followed by reconstruction with a modular, segmental, proximal-tibia<br />

endoprosthesis is a safe and reliable method for limb preservation in<br />

patients with high-grade tumors <strong>of</strong> the proximal tibia.<br />

MEC52<br />

Radical Resection <strong>of</strong> the Distal Humerus and<br />

Reconstruction with a Distal Humerus Tumor<br />

Prosthesis<br />

James C. Wittig, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Brett Hayden, BA, Clifton Park, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

Benjamin A.Lerner, AB, Fairfield, CT<br />

The distal humerus is a relatively rare site for developing a tumor.<br />

Limb-sparing resection and reconstruction is challenging due to the<br />

close proximity <strong>of</strong> several critical neurovascular structures as well<br />

as the paucity <strong>of</strong> surrounding s<strong>of</strong>t tissues. We describe an anterior<br />

approach for resecting tumors involving the distal humerus and<br />

reconstruction with an endoprosthetic replacement. We use a modular,<br />

segmental, distal-humeral replacement with a hinged elbow joint for<br />

reconstruction. In our video, we emphasize meticulous dissection <strong>of</strong><br />

the brachial artery and veins and ulnar, musculocutaneous, lateral<br />

antebrachial cutaneous, median, and radial nerves to enable a safe<br />

and reliable resection. We believe the anterior approach is optimal<br />

to obtain excellent exposure for dissection and mobilization <strong>of</strong> these<br />

neurovascular structures. We perform multiple muscle transfers,<br />

including a flexorplasty, to optimize function and completely cover<br />

the endoprosthesis with s<strong>of</strong>t tissue to minimize complications. Limbsparing<br />

resection for tumors involving the distal humerus through<br />

an anterior approach, followed by reconstruction with a modular<br />

distal-humerus tumor prosthesis and multiple muscle transfers is a<br />

safe and reliable method for treating tumors in this location.<br />

MEC53<br />

Radical Sacrectomy and Reconstruction for a High-<br />

Grade Primary Sarcoma <strong>of</strong> the Sacrum<br />

James C. Wittig, MD, New York, NY<br />

Sheeraz Qureshi, MD, New York, NY<br />

Camilo E. Villalobos, MD, New York, NY<br />

Benjamin A. Lerner, AB, Fairfield, CT<br />

Brett Hayden, BA, Clifton Park, NY<br />

Richard A. Greendyk, BS, New York, NY<br />

Andrew M. Silverman, BS, New York, NY<br />

This video details a radical sacrectomy and reconstruction for a<br />

high-grade primary sarcoma. Sarcomas <strong>of</strong> the sacrum are extremely<br />

rare. Resection <strong>of</strong> sacral tumors is risky because it entails resection<br />

<strong>of</strong> multiple sacral-nerve roots. These surgeries <strong>of</strong>ten have multiple<br />

postoperative complications. Our patient, a 43-year-old woman,<br />

presented with a tumor arising from the right side <strong>of</strong> her sacrum. The<br />

tumor had a large s<strong>of</strong>t-tissue component, which extended anteriorly<br />

into the retroperitoneum as well as the piriformis muscle, which it<br />

entirely replaced. The tumor also extended through the sciatic notch<br />

into the upper buttock compartment, compressing the sciatic nerve<br />

in this location. We undertook resection and reconstruction through<br />

three approaches. We used a lateral approach to identify, dissect, and<br />

mobilize the sciatic nerve. We then employed an anterior approach<br />

to expose the anterior aspect <strong>of</strong> the sacrum from the level <strong>of</strong> L5 to<br />

S4. In this approach, we mobilized and protected the rectum and<br />

neurovascular structures, osteotomized the sacrum, and performed<br />

a right nephrectomy because <strong>of</strong> chronic hydronephrosis. After<br />

allowing the patient to recover for 96 hours, we approached the<br />

893<br />

sacrum posteriorly. In this approach, we placed fixation in order<br />

to create an ilio-lumbar fusion. We dissected the sacral-nerve roots<br />

that could be salvaged and mobilized them away from the tumor.<br />

We then removed the sacrum with the tumor en bloc. All margins<br />

were free <strong>of</strong> disease. To cover the sacral defect, we reconstructed the<br />

sacrum with bilateral paraspinous muscle flaps and bilateral gluteus<br />

maximus muscle flaps.<br />

u The FDA has not cleared the drug and/or medical device for the use described in this presentation (i.e. the drug or medical device is being discussed for an <strong>of</strong>f label use).<br />

For full information refer to page 14. An alphabetical faculty financial disclosure list can be found starting on page 19.<br />

MultiMedia education 2011


NAME AAOS EVENT NAME AAOS EVENT<br />

Aarabi, Shahram ..................................Paper 503<br />

Aas, Eline ...................................... Poster P479<br />

Abbaspour, Aziz ..................................Paper 143<br />

Abdel Fatah, Emam. ...........Paper 292, Scientific Exhibit SE23<br />

Abdel-aal, Ahmed Mohammed .................... Poster P042<br />

Abdel, Matthew P .................................Paper 087<br />

Abdu, William A ..................................Paper 744<br />

Abeler, Jesse .....................Multimedia Education MEC43<br />

Abella, Linda .....................................Paper 471<br />

Aberle, Nicholas S. ................................Paper 241<br />

Abidi, Nicholas A ................Multimedia Education MEC05<br />

Abjornson, Celeste .....................Paper 738, Poster P376<br />

Aboulafia, Albert J. ................................Paper 234<br />

Abram, Simon....................................Paper 592<br />

Abrams, Jeffrey S .................................Symposia A<br />

Abzug, Joshua Matthew ..................Scientific Exhibit SE37<br />

Acri, Francesco. ..........Multimedia Education MEC02, MEC21,<br />

Poster P220<br />

Adami, Silvano ...................................Paper 226<br />

Adams, Annette L ............Poster P534, Scientific Exhibit SE76<br />

Adams, Joanne B ...................... Paper 298, Poster P203,<br />

Scientific Exhibit SE07<br />

Adams, Mary Jo .........Paper 194, 254, Poster P142, P146, P148<br />

Adams, Samuel Bruce ..................... Paper 048, 057, 058<br />

Adamson, Gregory J ...............................Paper 689<br />

Adeeb, Samer. ....................................Paper 691<br />

Adeli, Bahar ..........Paper 122, 124, 126, Scientific Exhibit SE08<br />

Adili, Anthony. .................................Poster BOS2<br />

Adler, Ronald S ...................................Paper 577<br />

Adolphson, Per Y ............................... Poster P093<br />

Adwar, Sean .................................... Poster P023<br />

Afable, Richard ..................................Symposia L<br />

Agabegi, Steven ........................Paper 450, Poster P384<br />

Agar, Gabriel .....................................Paper 406<br />

Agarwal, Animesh .........Paper 211, 212, 213, 214, 215, 216, 217,<br />

218, 219, 220, 221, 222, 223, 224, 225<br />

Aggarwal, Ajay .................................. Poster P205<br />

Aggarwal, Purnima ................................Paper 229<br />

Aghazadeh, Mehran ............................... Paper 410<br />

Aghazarian, Gary. .................................Paper 104<br />

Agir, Ismail .....................................Poster P561<br />

Agnew, Samuel G ................................Symposia L<br />

Agochukwu, Uzondu Francis ........................Paper 504<br />

Agrawal, Meenakshi ...............................Paper 426<br />

Agulnick, Marc A. ............................... Poster P397<br />

Agus, Haluk .................................... Poster P562<br />

Ahl, Torbjorn E ................................. Poster P093<br />

Ahlmann, Elke R ..................................Paper 228<br />

Ahmad, Christopher S ...Paper 366, 607, Poster P344, Symposia H<br />

Ahmad, Tashfeen. .................................Paper 142<br />

Ahmadinia, Kasra .................................Paper 020<br />

Ahmed, Issaq. ................................Paper 249, 612<br />

Ahn, Christine. ................................. Poster P270<br />

Ain, Michael Craig ............Paper 180, Scientific Exhibit SE40<br />

Akasaki, Yukio. ...................................Paper 414<br />

Akbar, Michael .... Paper 561, Poster P405, Scientific Exhibit SE59<br />

Akbarnia, Behrooz A. .........Paper 391, 392, Poster P255, P386,<br />

Symposia T<br />

Ake, Christopher F ................Paper 080, 186, Poster P198,<br />

Scientific Exhibit SE04<br />

Akeda, Koji ..................................Paper 263, 664<br />

Akelina, Yelena ...................................Paper 273<br />

894<br />

Akelman, Edward .......Paper 556, 557, 558, 559, 560, 561, 562,<br />

563, 564, 565, 566, 567, 568, 569, 570<br />

Al-Hamad, Mariam. .....................Scientific Exhibit SE01<br />

Alami, Ghassan ...................................Paper 088<br />

Alberghini, Marco .................................Paper 433<br />

Albers, Christoph Emanuel .....................Paper 043, 044<br />

Albert, Todd J. ...................Paper 024, 256, 270, 666, 750,<br />

Poster P361, P385, Symposia R, Y<br />

Alberta, Francis G ............................... Poster P420<br />

Alcerro, Jose Carlos. ..........Paper 717, Poster P026, P102, P152<br />

Alden, Kris John ................................ Poster P140<br />

Aleto, Thomas J. ................................ Poster P205<br />

Alexander, Peter G. ................................ Paper 210<br />

Alexiades, Michael M .......................Poster P018, P189<br />

Alfonso, Daniel ...................................Paper 565<br />

Algan, Sheila Marie. .....................Scientific Exhibit SE32<br />

Alizadehkhaiyat, Omid. ...........................Poster P321<br />

Allan, D Gordon ..................................Paper 062<br />

Allgier, Allison. ...................................Paper 628<br />

Allison, Daniel C. .................................Paper 228<br />

Allizond, Valeria ..................................Paper 470<br />

Almeida, Luiz Henrique .......................... Poster P295<br />

Almqvist, Fredrik. ............................... Poster P165<br />

Alonso, Julian ...................................Poster P211<br />

Alosh, Hasson .........................Paper 627, Poster P308<br />

Alsawaf, Mhd. .................................. Poster P450<br />

Alshryda, Sattar ...................................Paper 536<br />

Alsop, Helen ................................... Poster P176<br />

Altchek, David W ............Poster P415, Scientific Exhibit SE68<br />

Althausen, Peter L .......Paper 376, 377, 378, 379, 380, 381, 382,<br />

383, 384, 385, 386, 387, 388, 389, 390<br />

Alvarado, Carlos M ...............Multimedia Education MEC06<br />

Alzolibani, Abdullatif ............................ Poster P264<br />

Amanatullah, Derek ............................. Poster P233<br />

Amano, Kanzo. ...................................Paper 272<br />

Amar, Eyal ..................................... Poster P540<br />

Amaral, Marcus Vinicius Galvao ....Multimedia Education MEC29<br />

Amaral, Terry David ....................Paper 746, Poster P358<br />

Ambati, Divya ............................Paper 017, 443, 669<br />

Amendola, Annunziato ..........Multimedia Education MEC04,<br />

MEC20, Paper 092, 207, 651<br />

Amendola, Luca ........................Scientific Exhibit SE57<br />

Amendola, Richard ................................Paper 207<br />

Ames, Christopher ........... Paper 029, 444, Poster P387, P396<br />

Ames, S Elizabeth .................................Paper 258<br />

Amin, Osama Ahmed. ........................... Poster P264<br />

Amirouche, Farid. ............................... Poster P455<br />

Amstutz, Harlan C ............................Paper 035, 045<br />

An, Angel ........................................Paper 157<br />

Garcia De Frutos, Ana. ........................... Poster P352<br />

Anakwe, Raymond E ............................. Poster P504<br />

Anakwenze, Okechukwu A. ........................Poster P518<br />

Anand, Ashish ...................................Poster P416<br />

Anand, Rajan. ....................................Paper 712<br />

Ancha, Aditya ....................................Paper 006<br />

Anderle, Matthew ............................... Poster P197<br />

Andersen, Romney C ...................Paper 705, Symposia Q<br />

Anderson, Allen F . . . . . Multimedia Education MEC25, Symposia Z<br />

Anderson, Andrew E ...............Paper 635, 706, Poster P496,<br />

Scientific Exhibit SE12<br />

Anderson, D Greg ............. Paper 024, 666, 750, Poster P385<br />

Anderson, David T ................................Paper 256<br />

Anderson, Donald D ....................Scientific Exhibit SE79<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Anderson, Edward Ratcliffe ..............Paper 739, Poster P363<br />

Anderson, John Anthony ..........................Poster P118<br />

Anderson, John G .............................Paper 060, 100<br />

Anderson, Kyle ............................Poster P446, P448<br />

Anderson, Lucas ..............Paper 706, Scientific Exhibit SE12<br />

Anderson, Mark W ......................Scientific Exhibit SE36<br />

Anderson, Megan E. ...............................Paper 234<br />

Anderson, Paul A .................................Paper 737<br />

Anderson, Robert B. ................Paper 050, 505, Symposia K<br />

Andrecovich, Christopher ........................ Poster P446<br />

Andres, Brett M ..................Multimedia Education MEC36<br />

Andrew, J Glynne ............................... Poster P065<br />

Andrews, Christopher Mark ....................... Poster P160<br />

Andrews, James R ................................Symposia Z<br />

Andrish, Jack T .........................Scientific Exhibit SE70<br />

Angelillo, David .................Multimedia Education MEC39<br />

Angelini, Andrea .......................Paper 240, Poster P539<br />

Anis, Aslam .....................................Poster P105<br />

Ansari, Aneel .....................................Paper 709<br />

Antinolfi, Pierluigi ...............................Poster P171<br />

Antonellis, Anne ..................................Paper 704<br />

Antoniou, John ........................Paper 034, Poster P082<br />

Aoki, Chie ..................................... Poster P068<br />

Aoki, Stephen K. .....Paper 175, 635, Scientific Exhibit SE12, SE15<br />

Aoyama, Tomoki. ............................... Poster P239<br />

Apazidis, Alexios ..................................Paper 402<br />

Aponte-Tinao, Luis Alberto ..............Paper 513, Poster P533,<br />

Scientific Exhibit SE38<br />

Appleton, Paul ...............Paper 115, 304, Poster P218, P509<br />

Apprich, Sebastian .............................. Poster P077<br />

Aprato, Alessandro ...............Multimedia Education MEC27<br />

Archer, Kristin .........................Paper 695, Poster P292<br />

Archibald, Douglas ................................Paper 457<br />

Archibald, Jason .................................Poster P412<br />

Arden, Nigel ................................... Poster P327<br />

Arellano, Sergio. .................................Poster P211<br />

Arendt, Elizabeth A. .....................Scientific Exhibit SE32<br />

Argenson, Jean-Noel A .............................Paper 419<br />

Argento, Giuseppe .....................Paper 486, Poster P447<br />

Ariizumi, Takashi ............................... Poster P523<br />

Arimizu, Jun ................................... Poster P366<br />

Arky, Ronald ................................... Poster P275<br />

Armitage, Bryan M ................................Paper 307<br />

Armstrong, April D ................................Paper 174<br />

Armstrong, Douglas G ........................... Poster P482<br />

Arno, Sally ..................................... Poster P138<br />

Arnoczky, Steven P .............................. Symposia C<br />

Arrington, Edward D. ..............................Paper 571<br />

Arumilli, Buchi R B ...............................Poster P117<br />

Asano, Tsuyoshi ..................................Paper 321<br />

Asanuma, Yumiko. ................................Paper 664<br />

Ascherl, Rudolf ...................................Paper 193<br />

Asci, Murat. .................................... Poster P560<br />

Ashana, Adedayo O. .......................Paper 514, 515, 519,<br />

Poster P521, P530, P532<br />

Ashby, Elizabeth ..................................Paper 127<br />

Ashraf, Nomaan ..................................Paper 676<br />

Ashton, Fiona ....................................Paper 612<br />

Asik, Mehmet ..........................Scientific Exhibit SE35<br />

Askew, Michael ...................................Paper 103<br />

Asopa, Vipin .....................................Paper 145<br />

Aspros, Dimitrios .................................Paper 265<br />

Assal, Mathieu. ...................................Paper 091<br />

895<br />

Aston, William ................................. Poster P172<br />

Atalar, Ata Can. .........................Scientific Exhibit SE35<br />

Atanda, Alfred .................................. Poster P246<br />

Atay, Ozgur Ahmet .............................. Poster P569<br />

Atay, Tolga ..................................... Poster P568<br />

Atesok, Kivanc Israel ...........................Paper 141, 149<br />

Athanasou, NA .........................Scientific Exhibit SE06<br />

Athwal, George S. ........................Paper 076, 584, 678,<br />

Poster P337, P338, P343, P434<br />

Atlaf, Farhaan ....................................Paper 462<br />

Attarian, David E. .......................Scientific Exhibit SE46<br />

Atupan, Jereme B. ................................. Paper 311<br />

Atzwanger, Joerg ..................................Paper 203<br />

Au, Keegan Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 350<br />

Aubaniac, Jean-Manuel. ............................Paper 419<br />

Aubin, Michelle. .......Paper 348, Poster P035, P353, P356, P357<br />

Auerbach, Joshua D ............................. Poster P400<br />

Augat, Peter ......................................Paper 702<br />

Augustin, Salvador .............................. Poster P306<br />

Austin, Luke. ....................................Poster P317<br />

Austin, Matthew .............Paper 189, 250, Poster P073, P075,<br />

P101, P107, Scientific Exhibit SE10<br />

Axelrad, Thomas W. ....................Paper 046, Poster P469<br />

Ayers, David Christopher ..........Paper 348, Poster P035, P280,<br />

Symposia AA<br />

Ayerza, Miguel Angel ...................Paper 513, Poster P533,<br />

Scientific Exhibit SE38<br />

Aynardi, Michael C ...............................Poster P104<br />

Aziz, Abdul .....................................Poster P105<br />

Azmoudeh, Bieta. ............................... Poster P398<br />

Azuma, Takashi ................................. Poster P125<br />

Babacan, Muharrem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P567<br />

Babis, George. .................................. Poster P188<br />

Baca, Geneva ................................... Poster P058<br />

Bach, Bernard R. ..................................Paper 606<br />

Backers, Katrien. ..................................Paper 032<br />

Backstein, David .........Paper 251, 406, Poster P044, P062, P111<br />

Backus, Sherry I ...................................Paper 558<br />

Badalamente, Marie ...............................Paper 568<br />

Badarudeen, Sameer ...............................Paper 459<br />

Bae, Dae Kyung ........................Paper 418, Poster P144<br />

Bae, Donald S ..................................Symposia D<br />

Bae, Hyun W .................................Paper 662, 672<br />

Bae, Ki-Cheor. ...................................Poster P318<br />

Bae, Won ...................................... Poster P393<br />

Baer, David G ...................................Poster P510<br />

Bagheri, Ramin ................................. Poster P386<br />

Bahrami, Armita ................................ Poster P544<br />

Bailey, James R ................................. Poster P436<br />

Baird, Glen Olsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 427<br />

Bajaj, Sarvottam .................Paper 160, 200, 208, 495, 574<br />

Baker, Alex ..................................... Poster P542<br />

Baker, Charlie ....................................Paper 701<br />

Baker, Christine P .................................Paper 549<br />

Baker, Dale. .....................................Poster P109<br />

Baker, Erin Ann ........Paper 204, Poster P194, P345, P363, P448<br />

Baker, Joseph ..............................Poster P419, P428<br />

Baker, Kevin. ................Paper 204, 739, Poster P194, P345,<br />

P363, P390, P446, P448, P478<br />

Bakr, Hatem MA ................................ Poster P042<br />

Bal, B Sonny ................................... Poster P205<br />

Balaguer, Eric. ....................................Paper 559<br />

Balci, Halil I. ..................... Scientific Exhibit SE35, SE85<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Baldini, Todd H. ................................ Poster P376<br />

Baldus, Christine. ......................Paper 661, Poster P392<br />

Baldwin, Keith D. ............Paper 219, 279, 325, 613, 627, 726,<br />

Poster P308<br />

Balfour, George Walter ...Paper 271, 272, 273, 274, 275, 276, 277,<br />

278, 279, 280, 281, 282, 283, 284, 285<br />

Balinger, Chris. ................................. Poster P356<br />

Ball, Scott T ......................................Paper 065<br />

Ballester, Jorge .................................. Poster P008<br />

Banche, Giuliana. .................................Paper 470<br />

Banci, Lorenzo ................................. Poster P409<br />

Bandiera, Stefano .......................Scientific Exhibit SE57<br />

Bandoh, Shunichi ............................... Poster P052<br />

Banerjee, Rahul ................................. Poster P467<br />

Bangert, Yannic ................................. Poster P092<br />

Banka, Trevor. ....................................Paper 230<br />

Banta, Charles J .........Paper 736, 737, 738, 739, 740, 741, 742,<br />

743, 744, 745, 746, 747, 748, 749, 750<br />

Bar Ziv, Yaron .........................Paper 406, Poster P044<br />

Baratz, Mark E ....................................Paper 685<br />

Baratz, Michael ...................................Paper 304<br />

Barfield, William R ................................Paper 650<br />

Barg, Alexej .......................Paper 059, 651, Poster P209<br />

Barlow, Brian ................................... Poster P427<br />

Barlow, Ian W .................................. Poster P002<br />

Barlow, Jonathan D. ...............................Paper 690<br />

Barnes, C Lowry ........................Scientific Exhibit SE29<br />

Barnett, Clint D. .......................Paper 061, Poster P229<br />

Barnett, Steven L .................................Poster P021<br />

Barnwell, Jonathan C ..............................Paper 567<br />

Barrack, Robert L. ................. Poster P027, Paper 420, 708,<br />

Poster P088, P094, P126, Symposia E, V<br />

Barrett, William P .................................Paper 071<br />

Barrington, John W. ...........................Paper 297, 466<br />

Barrington, Thomas ...............................Paper 466<br />

Barsoum, Wael K. ..................Paper 111, 600, Poster P096<br />

Bartelt, Robert Boyd ............................. Poster P097<br />

Bartlett, Craig Scott ......Paper 691, 692, 693, 694, 695, 696, 697,<br />

698, 699, 700, 701, 702, 703, 704, 705<br />

Bartlett, Gavin .................................. Poster P508<br />

Bartley, Carrie ....................................Paper 447<br />

Bartol, Stephen ...................................Paper 439<br />

Barzilay, Yair .....................................Paper 667<br />

Basamania, Carl J ............................... Poster P288<br />

Basiglini, Luca ....................................Paper 486<br />

Baskaradas, Aroon. ................................Paper 497<br />

Basran, Harpreet Singh. ............................Paper 508<br />

Bastian, Johannes Dominik ....................... Poster P038<br />

Bastrom, Tracey. .....................Paper 179, 394, 447, 671,<br />

Poster P221, P247, P388<br />

Batta, Vineet ................................... Poster P145<br />

Battaglia, Milva ...................................Paper 093<br />

Battaglia, Nicholas ................................Paper 292<br />

Bauer, Andrea S ...................................Paper 696<br />

Bauer, Jennifer M. .................................Paper 378<br />

Bauer, Thomas W .......................Scientific Exhibit SE33<br />

Baumbach, Sebastian F. ............................Paper 634<br />

Baumhauer, Judith F. ............................ Poster P223<br />

Bava, Eric D .....................Multimedia Education MEC31<br />

Baydar, Metin Lutfi .............................. Poster P568<br />

Baykal, Barbaros Yakup .......................... Poster P568<br />

Baynes, Keith E ...................................Paper 231<br />

Bayramoglu, Alp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P569<br />

896<br />

Beach, William R. ................................Symposia X<br />

Beall, Doug ......................................Paper 672<br />

Beals, Timothy C..................................Paper 651<br />

Beamer, Brandon S ................................Paper 579<br />

Bear, Thomas F .........................Scientific Exhibit SE30<br />

Beard, David J .....................Paper 415, 531, Poster P187<br />

Beaton, Dorcas ...................................Paper 053<br />

Beattie, Cammie .................................Poster P241<br />

Beaty, James H. ...................................Paper 167<br />

Beauchamp, Christopher Paul .......................Paper 133<br />

Beaule, Paul E .....Paper 034, 359, Poster P083, Symposia J, ORSI<br />

Beaumont, Eric ...................................Paper 623<br />

Beaumont, Pierre H ...............................Paper 623<br />

Beaupre, Lauren ...................Paper 303, 691, Poster P086<br />

Becker, Edward H .........................Paper 694, 700, 731<br />

Bedair, Hany ....................................Poster P015<br />

Bedi, Asheesh ................Paper 644, Scientific Exhibit SE63<br />

Beebe, Michael J ..................................Paper 404<br />

Begum, Farhana ..................................Paper 691<br />

Behrens, Steve Brian ....................Paper 581, Poster P438<br />

Beitcher, Bob ................................. Symposia 152<br />

Bejui-Hugues, Jacques. ........................... Poster P048<br />

Belkora, Jeff ......................................Paper 458<br />

Bell, John-Erik ....................................Paper 366<br />

Bell, Kimberly ................................Paper 076, 154<br />

Bell, Rebecca ................................... Poster P329<br />

Bell, Simon ......................................Paper 688<br />

Bellabarba, Carlo ............................... Poster P395<br />

Bellato, Enrico. .........................Scientific Exhibit SE51<br />

Bellemans, Johan ..........................Poster P422, P430<br />

Belmont, Philip J. ......................Paper 728, Poster P435<br />

Belthur, Mohan ...............................Paper 423, 431<br />

Beltran, Michael John ..................Poster P462, P473, P498<br />

Belzile, Etienne ...................................Paper 034<br />

Ben Lulu, Oren ..................................Poster P111<br />

Ben-Galim, Peleg. .........................Paper 028, 260, 721<br />

Bender, Edward T .......................Scientific Exhibit SE30<br />

Bendo, John A ....................................Paper 262<br />

Benedict, Shaike ..................................Paper 406<br />

Benirschke, Stephen K ............................Poster P210<br />

Benjamin, James B .............................. Poster P127<br />

Benke, Michael T. ............................... Poster P347<br />

Benner, Rodney W. .............................. Poster P149<br />

Bennion, Phillip W ...............Multimedia Education MEC31<br />

Bentley, George ........................Paper 196, Poster P116<br />

Berdichevsky, Max Robert. ..........................Paper 729<br />

Beredjiklian, Pedro K ..............................Paper 562<br />

Berend, Keith R ......Paper 061, 298, 406, 407, 408, 409, 410, 411,<br />

413, 414, 415, 416, 417, 418, 419, 420,<br />

Poster P203, P204, Scientific Exhibit SE07,<br />

Symposia E, P<br />

Berend, Michael E .......Paper 130, 286, 287, 288, 289, 290, 291,<br />

292, 293, 294, 295, 296, 297, 298,<br />

299, 300, 413, Symposia B, P<br />

Berger, Richard A. ......................Paper 007, Poster P164<br />

Bergin, Patrick F ................................ Poster P526<br />

Bergman, Neil R ..................................Paper 351<br />

Beris, Alexandros. ............................... Poster P060<br />

Berkowitz, Scott D. ................................Paper 540<br />

Berlet, Gregory Charles. .......................... Poster P225<br />

Berlin, Orjan K ...................................Paper 704<br />

Bernard, Matthew S. ............................. Poster P149<br />

Bernasek, Thomas L ....................Paper 192, Poster P147<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Bernat, Nicholas ..................................Paper 314<br />

Bernhardson, Andrew S .......................... Poster P436<br />

Bernstein, Joseph .................................Paper 106<br />

Bernthal, Nicholas ................................Paper 176<br />

Berry, Daniel J ............Paper 480, Poster P089, Symposia E, S<br />

Berschback, John C ................................Paper 342<br />

Bert, Jack M .....................................Symposia X<br />

Bertelsen, Alexander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P294<br />

Bertollo, Nicky ...................................Paper 675<br />

Bertumen, J ......................................Paper 735<br />

Berven, Sigurd H ... Paper 749, Scientific Exhibit SE56, Symposia Y<br />

Besomi, Javier ...................Multimedia Education MEC01<br />

Betech, Alex ......................................Paper 553<br />

Bettelli, Graziano .......................Scientific Exhibit SE54<br />

Betz, Brad W .....................................Paper 541<br />

Betz, Randal R ...................................Poster P371<br />

Bevan, Catherine. .................................Paper 178<br />

Bey, Michael ....................................Poster P307<br />

Beykirch, Sarah ...................................Paper 532<br />

Beyth, Shaul. .....................................Paper 139<br />

Bezwada, Hari ..........Paper 121, 122, 123, 124, 125, 126, 127,<br />

128, 129, 130, 131, 132, 133, 134, 135<br />

Bhadra, Arup K ...................................Paper 632<br />

Bhandari, Mohit .....................Paper 226, 387, 464, 630,<br />

Poster BOS2, P460, P519<br />

Bhargava, Tarun. .................................Poster P016<br />

Bhat, Suneel B ............................Paper 114, 118, 482<br />

Bhatia, Nitin N ...................................Paper 233<br />

Bhatia, Sanjeev ...................................Paper 606<br />

Bhattacharyya, Timothy .......................... Poster P488<br />

Biant, Leela C ....................................Paper 196<br />

Bican, Orhan ....................................Poster P104<br />

Bicimoglu, Ali .................................. Poster P562<br />

Bickels, Jacob. .................................. Poster P540<br />

Biercevicz, Alison M ............................. Poster P438<br />

Bigliani, Louis U .......................Paper 607, Poster P344<br />

Bignozzi, Simone .......................Scientific Exhibit SE24<br />

Bilen, Fikri Erkal ........................Scientific Exhibit SE85<br />

Billi, Fabrizio. ....................................Paper 074<br />

Bilotta, Victor Joseph ..............................Paper 356<br />

Binette, Francois ................................ Poster P393<br />

Bini, Stefano Alec ............................... Poster P183<br />

Binitie, Odion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 516<br />

Bir, Cynthia A .................................. Poster P450<br />

Birch, Ann .......................................Paper 281<br />

Birch, John G. ....................................Paper 428<br />

Birchansky, Sherri B ...............................Paper 431<br />

Birjandinejad, Ali ............................... Poster P459<br />

Birmingham, Patrick. ..............................Paper 579<br />

Bishop, Allen T ........................Paper 051, Poster P443<br />

Bishop, Michael J .................................Paper 473<br />

Bisseling, Pepijn ..................................Paper 072<br />

Bistolfi, Alessandro ................................Paper 470<br />

Bitsch, Rudi ...............................Poster P090, P095<br />

Black, Dennis ....................................Paper 227<br />

Black, James Clinton. ..............................Paper 483<br />

Black, Kevin P ....................................Paper 013<br />

Blackbourne, Lorne H. ............................Poster P510<br />

Blaha, J David .................... Scientific Exhibit SE02, SE29<br />

Blaine, Theodore A ......Paper 676, 677, 678, 679, 680, 681, 682,<br />

683, 684, 685, 686, 687, 688, 689, 690<br />

Blair, James Alan ................................ Poster P473<br />

Blair, Jamie L ................................... Poster P184<br />

897<br />

Blake, Kim ..................................... Poster P274<br />

Blalock, Ryan. ....................................Paper 626<br />

Blanchard, Char ..............................Paper 334, 334<br />

Blanco Pozo, Agustin ............................ Poster P008<br />

Blanco, John S. ...................................Paper 401<br />

Blankenbaker, Donna G ...........................Poster P412<br />

Blatt, Theodore ............................... Symposia 152<br />

Block, John J .....................................Paper 331<br />

Blonna, Davide ........Multimedia Education MEC28, Paper 684,<br />

Scientific Exhibit SE25, SE51, SE65<br />

Blotter, Robert H ...........................Poster P269, P269<br />

Blum, Yossef C .........................Scientific Exhibit SE27<br />

Bluman, Eric Michael ..............................Paper 504<br />

Blumberg, Todd. ................................ Poster P009<br />

Blumenfeld, Thomas J ...Paper 061, 062, 063, 064, 065, 066, 067,<br />

068, 069, 070, 071, 072, 073, 074, 075<br />

Boachie-Adjei, Oheneba. ............Paper 401, 442, Poster P348<br />

Boardman, David Laurence ...............Scientific Exhibit SE76<br />

Bobyn, J Dennis ..................................Paper 185<br />

Bodanki, Chandra Sekhar ..........................Paper 371<br />

Boden, Henrik. ................................. Poster P093<br />

Boden, Scott D .................................Symposia W<br />

Bodette, Teresa. ................................. Poster P033<br />

Bodin, Nathan Daniel ........................... Poster P228<br />

Boesch, R Paul. ........................Paper 450, Poster P384<br />

Boese, Christoph. ............................... Poster P132<br />

Boettner, Friedrich. .............................. Poster P084<br />

B<strong>of</strong>fano, Michele. .................................Paper 470<br />

Boghosian, Ghassan ............................. Poster P182<br />

Bohay, Donald R Paper 060, 091, 092, 093, 094, 095, 096, 097, 098,<br />

099, 100, 100, 101, 102, 103, 104, 105<br />

Bohlman, Henry H ............................Paper 020, 665<br />

Bohm, Eric R . . . . . . . . . . . . . . . . . . . . . . . . Paper 252, 255, 349, 409<br />

Bohne, Walther Hartmuth ..........................Paper 499<br />

Boileau, Pascal. .......Paper 084, 085, 088, 361, 362, Poster P330<br />

Bojan, Alicja ...................................Poster BOS2<br />

Bolling, William Seth .............................Poster P106<br />

Bolognesi, Michael P ..........................Paper 246, 493<br />

Bonanzinga, Tommaso. .......Poster P414, Scientific Exhibit SE24<br />

Bonar, Fiona ....................................Poster P301<br />

Bonasia, Davide E ......Multimedia Education MEC04, Paper 207,<br />

Scientific Exhibit SE25, SE65<br />

Bond, Jeffrey R. ................................. Poster P097<br />

Bondy, Jennifer ...................................Paper 108<br />

Bonete, Daniel Lluch ..............................Paper 148<br />

Bonnevialle, Nicolas ...........................Paper 361, 362<br />

Bonnin, Michel ................................. Poster P123<br />

Bono, Christopher M ............................ Poster P355<br />

Bono, James V ............ Paper 410, 597, Scientific Exhibit SE20<br />

Bonutti, Peter M .................. Scientific Exhibit SE19, SE22<br />

Boohaker, Hikel Alfred ............................. Paper 611<br />

Boons, Harm-Willem ...................Paper 584, Poster P337<br />

Booth, Robert E. .................................Symposia B<br />

Bordini, Barbara ........................Scientific Exhibit SE09<br />

Borens, Olivier ....................Paper 468, 469, Poster P314<br />

Boriani, Luca Multimedia Education MEC38, Scientific Exhibit SE57<br />

Boriani, Stefano. ........................Scientific Exhibit SE57<br />

Bornstein, Lindsey ...............Poster P018, P020, P087, P189<br />

Borrelli, Joseph ...................................Paper 146<br />

Borr<strong>of</strong>f, Michael J ......................Paper 346, Poster P022<br />

Bos, Ellis ........................................Paper 070<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Bosco, Joseph A. .........Paper 113, 129, 616, 617, 618, 619, 620,<br />

621, 622, 623, 624, 625, 626, 627,<br />

628, 629, 630, 715, Poster P004<br />

Bosio, Santiago ...................................Paper 400<br />

Bosscher, Frederiek .............................. Poster P156<br />

Bosse, Michael J. ...................Paper 380, 676, Poster P511<br />

Bostan, Bora ................................... Poster P560<br />

Bostrom, Mathias P G. ...Paper 466, 467, 468, 469, 470, 471, 472,<br />

473, 474, 475, 476, 478, 479, 480,<br />

Poster P087, P118<br />

Botolin, Sergiu O ............................... Poster P376<br />

Botser, Itamar .....Multimedia Education MEC07, Paper 640, 645<br />

Botte, Michael J ...................................Paper 278<br />

Bottlang, Michael .................................Paper 702<br />

Bottomley, Nicholas J ...................Paper 592, Poster P145<br />

Boublik, Martin. ................................ Poster P332<br />

Bouliane, Martin ..................................Paper 691<br />

Boulton, Christina B. ............................ Poster P509<br />

Bourke, Gerard Martin .............................Paper 054<br />

Bourne, Robert Barry. ..............Paper 034, 350, Poster P056,<br />

P080, P127, Symposia B<br />

Bowen, Thomas R .................................Paper 716<br />

Bowers, Lyndsay N ......................Scientific Exhibit SE23<br />

Bowman, Russell. ............................... Poster P064<br />

Bowser, Robert. ................................. Poster P346<br />

Bowsher, John ..........................Scientific Exhibit SE41<br />

Boyan, Barbara D .......................Scientific Exhibit SE84<br />

Boyce Nichols, Louise Reid .........................Paper 555<br />

Boyle, David .....................................Paper 065<br />

Bozentka, David J ......................Paper 285, Poster P236<br />

Bozic, Kevin John ... Paper 110, 451, 452, 453, 454, 455, 456, 457,<br />

458, 458, 459, 460, 461, 462, 463, 464, 465,<br />

480, Scientific Exhibit SE16, Symposia L, Y<br />

Bozzuto, Laura ...................................Paper 713<br />

Bracco, Pierangiola ................................Paper 470<br />

Brach Del Prever, Elena. ............................Paper 470<br />

Bradley, Gary W. ........Paper 586, 587, 588, 589, 590, 591, 592,<br />

593, 594, 595, 596, 597, 598, 599, 600<br />

Bradley, Neil .....................................Paper 135<br />

Bragdon, Charles R ...................Paper 082, 348, 530, 704,<br />

Poster P025, P035<br />

Braley, Brett .................................... Poster P362<br />

Braly, Brett .......................................Paper 023<br />

Brand, Jefferson C ......................Paper 120, Poster P274<br />

Brand, Richard A..................................Paper 454<br />

Brandao, Bruno Lobo .............Multimedia Education MEC29<br />

Branemark, Rickard ...............................Paper 704<br />

Bransford, Richard Jackson ....................... Poster P395<br />

Brassart, Nicholas ......................Paper 085, Poster P330<br />

Brekke, Adam .............................Poster P009, P127<br />

Brenkel, Ivan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 249<br />

Brennan, Kindyle L .............................. Poster P466<br />

Brennan, Michael L. ............................. Poster P466<br />

Brezinski, Mark ...................................Paper 655<br />

Brickwede, Hans-Peter ........................... Poster P273<br />

Bridwell, Keith H. ................Paper 441, 442, 446, 449, 661,<br />

Poster P382, P392<br />

Briggs, Karen K ...............................Paper 552, 638<br />

Briggs, Lisa. .....................Multimedia Education MEC36<br />

Briggs, Tim. .....................................Poster P116<br />

Brink, Ole .....................................Poster BOS2<br />

Brix, Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 199<br />

Brodke, Darrel S ..................................Paper 021<br />

898<br />

Brody, Gordon A ........Paper 271, 272, 273, 274, 275, 276, 277,<br />

278, 279, 280, 281, 282, 283, 284, 285<br />

Brooks, Amanda E. ................................Paper 467<br />

Brooks, Peter J .................................. Poster P094<br />

Brophy, Robert H .............................Paper 625, 626<br />

Brothers, Justin ..................................Poster P101<br />

Brouwer, Kim M ................................ Poster P323<br />

Brown, Haydee C. .............Paper 642, Scientific Exhibit SE34,<br />

SE50, SE64, SE82<br />

Brown, Kate ......................................Paper 379<br />

Brown, Kate V ....................................Paper 379<br />

Brown, Matthew L. .............................. Poster P223<br />

Brown, Nicholas M .......Paper 007, 123, 128, 132, 187, 411, 538,<br />

Poster P164, P186<br />

Brown, Richard A .......................Scientific Exhibit SE46<br />

Brown, Thomas D. ..........Poster P281, Scientific Exhibit SE79,<br />

Symposia ORSI<br />

Browne, James Andrew. .................Paper 014, Poster P136<br />

Browne, Martin ...................................Paper 135<br />

Browne, Richard H ................................Paper 432<br />

Browner, Bruce D .......................Scientific Exhibit SE42<br />

Brox, William Timothy. ............ Scientific Exhibit SE04, SE43<br />

Bruckner, Thomas .................................Paper 561<br />

Bruni, Danilo ...................................Poster P118<br />

Brunner, Samuel ..................................Paper 055<br />

Brunton, Lance Michael . . . . . . . . . . . . . . . . . .Scientific Exhibit SE36<br />

Bruzzone, Matteo ................. Scientific Exhibit SE25, SE65<br />

Bucak, Deniz .....................................Paper 455<br />

Bucci-Rechtweg, Christina ..........................Paper 227<br />

Buch, Barbara ..........................Scientific Exhibit SE41<br />

Buchowski, Jacob M ................Paper 022, 661, Poster P374<br />

Buckley, Jenni M . . . . . . . . . . .Paper 029, 215, 217, 444, Poster P387<br />

Buckley, Richard E. ................................Paper 724<br />

Buckwalter, Joseph A. .....Scientific Exhibit SE33, Symposia ORSII<br />

Buda, Roberto ...........Paper 093, Scientific Exhibit SE61, SE69<br />

Bueno, Rogerio Serpone .......................... Poster P295<br />

Bugbee, William ..............Paper 065, 197, 202, Poster P196,<br />

Scientific Exhibit SE60<br />

Bullough, Peter G ............................... Poster P476<br />

Buly, Robert L .................................. Poster P409<br />

Bunn, Janice Y ....................................Paper 258<br />

Burch, Shane ......................Paper 266, 749, Poster P404<br />

Burger, Christoph .................................Paper 740<br />

Burger, Evalina L ................................ Poster P376<br />

Burgers, Travis ....................................Paper 150<br />

Burke, Mary F ....................................Paper 080<br />

Burkhart, Stephen S ...............................Paper 574<br />

Burkhead, Wayne Z. ............. Multimedia Education MEC31,<br />

Symposia M<br />

Burnell, Colin ................................Paper 252, 255<br />

Burns, Travis C. ................................. Poster P498<br />

Burris, Brandon ...................................Paper 006<br />

Burton, Douglas C .....................Paper 670, Poster P394<br />

Burton, Lucas J ...................................Paper 241<br />

Busch, Michael T.................................Symposia Z<br />

Buscio, Tiziana ................................... Paper 510<br />

Buss, Daniel D. ...................................Paper 576<br />

Butler, Dale R .................... Scientific Exhibit SE46, SE47<br />

Byram, Ian R .....................................Paper 331<br />

Byrd, J W Thomas ......................Paper 640, Poster P454<br />

Byrne, Daniel. .............................Poster P419, P428<br />

Byun, Young Soo. ............................... Poster P480<br />

Caborn, David N. ............................... Poster P423<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Caceres, Enrique .......................Paper 109, Poster P352<br />

Cahill, Patrick John. .....Paper 391, 392, 393, 394, 395, 396, 397,<br />

398, 399, 400, 401, 402, 403, 404, 405, 440<br />

Caird, Michelle S. .................................Paper 025<br />

Cakmak, Gokhan ............................... Poster P564<br />

Calabro, Teresa ................................. Poster P539<br />

Calbucci, Lucia ..................................Poster P012<br />

Caldwell, Joseph M. ............................. Poster P495<br />

Calhoun, Jason H . . . . . . . . . . . . . . . . . . . . . . .Scientific Exhibit SE33<br />

Callaci, John .....................................Paper 140<br />

Callaghan, John J ..................... Paper 004, Poster P062,<br />

Scientific Exhibit SE14, Symposia S<br />

Callewaert, Barbara. ............................. Poster P422<br />

Calore, Briana .................................. Poster P039<br />

Camacho-Galindo, Javier ...........................Paper 360<br />

Cammisa, Frank P. .................Paper 738, 747, Poster P369<br />

Camp, John ......................................Paper 505<br />

Campacci, Antonio ...............Multimedia Education MEC27<br />

Campagnna, Elizabeth .............................Paper 473<br />

Campbell, Jane ...................................Paper 656<br />

Campbell, Joel. ...................................Paper 208<br />

Campbell, Patricia A .......Paper 035, 065, Scientific Exhibit SE01<br />

Campi, Fabrizio ..................................Paper 371<br />

Campion, Jonathon ...............................Paper 354<br />

Canale, S Terry. ...................................Paper 167<br />

Candioti, Lautaro .................................Paper 109<br />

Canesin Dal Molin, Eugenio ...................... Poster P282<br />

Canete, Arturo C .................................. Paper 311<br />

Cann, Philippa .......Paper 033, 067, 068, Scientific Exhibit SE03<br />

Cannada, Lisa K ......................... Paper 380, 693, 695<br />

Capello, William N. ...............................Paper 352<br />

Caperna, Ludovico ................................Paper 487<br />

Capo, Jason ......................................Paper 505<br />

Capozzi, James D ................Multimedia Education MEC12<br />

Caraffa, Auro ....................................Poster P171<br />

Cardoso, Mario J ..................................Paper 017<br />

Carey, Jason P ....................................Paper 691<br />

Carillon, Yannick ............................... Poster P123<br />

Carlile, Graeme S .................................Paper 031<br />

Carlisle, John. ....................................Paper 638<br />

Carlos, Fernando. ............................... Poster P259<br />

Carluzzo, Fulvio ........................Scientific Exhibit SE80<br />

Carmichael, Kelly D ...............................Paper 549<br />

Carney Young, Kimberly. ......................... Poster P340<br />

Caroom, Cyrus Theodore. ........................ Poster P229<br />

Carpenter, James E ...............................Poster P312<br />

Carr, Andrew J .................................. Poster P327<br />

Carr, Christopher ............................... Poster P389<br />

Carr, Diana Deane .............................. Poster P559<br />

Carr, John Austin. .................................Paper 550<br />

Carragee, Eugene. ............................... Poster P346<br />

Carrasco, Joaquin .................................Paper 148<br />

Carrera, Guillermo ................................Paper 231<br />

Carret, Jean-Paul ................................ Poster P048<br />

Carrington, Richard ..............................Poster P116<br />

Carrino, John Anthony. .......................... Poster P383<br />

Carroll, Colin ..........................Scientific Exhibit SE77<br />

Carroll, Kaitlin M .............................Paper 580, 647<br />

Carroll, Michael E .......................Scientific Exhibit SE29<br />

Carson, Jeffrey L ..................................Paper 303<br />

Carson, William ................................ Poster P520<br />

Carter, Aaron ....................Paper 189, Poster P073, P075,<br />

Scientific Exhibit SE08<br />

899<br />

Carter, Thomas R. .................................Paper 494<br />

Cartier, Philippe Edmond ...................Poster P120, P121<br />

Cartner, Jacob ................................Paper 701, 703<br />

Carulli, Christian ................................Poster P061<br />

Caruso, Salvatore .......................Scientific Exhibit SE80<br />

Casagrande, Danielle ............................ Poster P299<br />

Casey, William J ..................................Paper 133<br />

Cashman, Kara ...............Paper 528, 712, Poster P041, P043<br />

Caskey, Paul M ...............................Paper 427, 437<br />

Cason, Garrick Wayne ..................Paper 739, Poster P363<br />

Casper, David .........................Paper 125, Poster P078<br />

Cassas, Kyle ......................................Paper 373<br />

Cassinelli, Ezequiel H. .............................Paper 665<br />

Cassis, Nelson .....................Paper 422, 553, Poster P259<br />

Castillo, Renan C ........................ Paper 388, 698, 735<br />

Castillo, Tiffany. ..................................Paper 563<br />

Castoldi, Filippo .........Multimedia Education MEC22, MEC28,<br />

Scientific Exhibit SE25, SE51, SE51, SE65<br />

Castracini, Roberto ................................Paper 578<br />

Catalano, Louis W. ................................Paper 337<br />

Catonne, Yves .............................Poster P036, P037<br />

Catton, Charles ...................................Paper 524<br />

Cavalcanti, Rafael .................................Paper 330<br />

Cavallo, Marco ............... Paper 093, Scientific Exhibit SE61<br />

Cavanagh, Peter. ................................ Poster P154<br />

Cechova, Ivana ..................................Poster P131<br />

Cerulli, Giuliano .................................Poster P171<br />

Cesari, Eugenio ...................................Paper 371<br />

Cetin, Gokben Nesrin. ........................... Poster P568<br />

Cevolani, Luca. ................................... Paper 510<br />

Chacko, Aron ................Paper 115, 304, Poster P218, P509<br />

Chadha, Harbinder S ..............................Paper 353<br />

Chafik, Dara ................................... Poster P322<br />

Chahine, Nadeen .............Paper 496, Scientific Exhibit SE33<br />

Chamberlain, Aaron Mark ........................ Poster P294<br />

Chambers, Hank G ................................Paper 550<br />

Chambers, Lauchlan. ..............................Paper 039<br />

Chan, Gilbert. ....................................Paper 484<br />

Chan, Gladys. ......... Multimedia Education MEC20, Paper 651<br />

Chan, Keith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P411<br />

Chandra, Rajesh ..................................Paper 426<br />

Chang, Bong-Soon ................................Paper 026<br />

Chang, Chong Bum ......................Paper 015, 329, 490,<br />

Poster P161, P167, P200, P272<br />

Chang, Edward ..................................Poster P317<br />

Chang, Ki Young ..............................Paper 155, 162<br />

Chanlalit, Cholawish ..............................Paper 687<br />

Chapman, Jens R. .................... Poster P395, Symposia G<br />

Chaput, Christopher D. .......................... Poster P466<br />

Charkin, Susan ............................... Symposia 152<br />

Charman, Susan ...................Paper 346, 537, Poster P022<br />

Charopoulos, John ................................Paper 223<br />

Charron, Kory ....................................Paper 350<br />

Chehrassan, Moahmmadreza ......Multimedia Education MEC38<br />

Chen, Albert C. ................................. Poster P393<br />

Chen, Antonia. .................... Paper 617, 618, Poster P119<br />

Chen, Chun-Ho ..............................Paper 274, 500<br />

Chen, Dan .......................Paper 738, Poster P024, P424<br />

Chen, Justin. ................................... Poster P202<br />

Chen, Lan ..................................... Poster P303<br />

Chen, Minsi. ................................... Poster P187<br />

Chen, Pei-yu .................................Paper 274, 500<br />

Chen, Po Quang ................................ Poster P365<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Chen, Yuexin ..........................Paper 492, Poster P183<br />

Cheng, Edward Y. .................Paper 234, Poster P100, P545<br />

Cheng, Ivan .....................................Poster P391<br />

Cheng, Joseph S ................................ Poster P389<br />

Cheng, Robert .................................. Poster P227<br />

Cheong, David ...................................Paper 516<br />

Cherf, John .....................................Symposia L<br />

Cheung, Sunny ...................................Paper 573<br />

Chevillotte, Christophe J ......................... Poster P048<br />

Chhabra, Abhinav Bobby. ................Scientific Exhibit SE36<br />

Chia, Shi-lu ..............Paper 012, 408, 417, Poster P112, P159<br />

Chiarello, Eugenio ................................ Paper 510<br />

Chiari, Catharina .............................Paper 199, 347<br />

Chiavacci, Rosetta M. ..............................Paper 448<br />

Chihab, Samir ...................................Poster P105<br />

Child, Zachary Allen. ............................ Poster P403<br />

Childs, Dylan .............................Poster P249, P256<br />

Chin, Matthew S ..................................Paper 541<br />

Chin, Pak Lin. ............Paper 012, 408, 417, Poster P112, P159<br />

Chinchilli, Vernon ................................Paper 013<br />

Chiu, Vanessa ....................................Paper 458<br />

Cho, Byung Ki ...................................Poster P212<br />

Cho, Chul-Hyun .......................Paper 374, Poster P318<br />

Cho, Hyung Joon .................Paper 329, Poster P161, P167<br />

Cho, Kye-Youl ....................................Paper 418<br />

Cho, Robert Hyun. ...............................Poster P251<br />

Cho, Samuel Kang-Wook ..............Paper 030, 442, 446, 449,<br />

Poster P392<br />

Cho, Woojin ........................Paper 027, 446, 449, 661,<br />

Poster P374, P392, P400<br />

Choe, Hyonmin ...........................Poster P049, P068<br />

Choi, Daniel .....................................Paper 498<br />

Choi, Duck-Hyun .................................Paper 488<br />

Choi, Euisung ...................................Poster P212<br />

Choi, Horim ....................................Poster P015<br />

Choi, In Ho ..................................Paper 095, 547<br />

Choi, Ja-Young ...................................Paper 490<br />

Choi, Leera .....................................Poster P021<br />

Choi, Young-Seok ............................... Poster P284<br />

Choma, Theodore J. ............................. Poster P399<br />

Chong, Hwei Chi .................. Paper 012, 417, Poster P112<br />

Chou, Loretta ............................. Poster P214, P219<br />

Choueka, Jack ....................................Paper 565<br />

Chow, James .....................................Paper 353<br />

Chow, Roxanne ...................................Paper 691<br />

Christensen, Kevin P. ............................ Poster P527<br />

Christensen, Thomas ..........................Paper 734, 734<br />

Christie, Michael J. ................................Paper 192<br />

Christ<strong>of</strong>ilopoulos, Laurent-Panayiotis. ................Paper 622<br />

Chu, Constance R ............................Symposia ORSII<br />

Chubinskaya, Susanna G ...........................Paper 208<br />

Chun, Yong-Min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 488<br />

Chung, Byung June. .Paper 015, 329, 490, Poster P161, P167, P272<br />

Chung, Chin Youb ............................Paper 095, 547<br />

Chung, Dae-Huk. .................................Paper 583<br />

Chung, Jae Yoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 257<br />

Chung, Kyung-Chil. ............................. Poster P326<br />

Chung, Seok Won .................................Paper 153<br />

Church, Chris ....................................Paper 423<br />

Chutkan, Norman Barrington ..........Paper 436, 437, 438, 439,<br />

440, 441, 442, 443, 444, 445,<br />

446, 447, 448, 449, 450<br />

Ciccotti, Michael G ............................Paper 324, 681<br />

900<br />

Cikes, Alec ........................Paper 468, 469, Poster P314<br />

Ciompi, Alessandro ..............................Poster P331<br />

Cipriano, Cara A ......................... Paper 123, 128, 132<br />

Citak, Musa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P156<br />

Cividino, Alfred. ..................................Paper 457<br />

Civinini, Roberto ................................Poster P061<br />

Claes, Steven AJ ................................. Poster P422<br />

Clanton, Thomas O ......... Paper 646, 647, 648, 649, 650, 651,<br />

652, 653, 654, 655, 656, 657,<br />

658, 659, 660, Symposia K<br />

Clark, Heather Jolene ..............................Paper 491<br />

Clark, Jason C .........................Paper 089, Poster P325<br />

Clarke, Henry D ..............................Paper 133, 134<br />

Clarke, Theodore J. ......................Scientific Exhibit SE47<br />

Clauss, Martin ....................................Paper 469<br />

Clavert, Philippe ..................................Paper 085<br />

Clay, Catharine ...................................Paper 713<br />

Clement, Jean-Luc. ................................Paper 442<br />

Clement, Nicholas D .......................Poster P541, P542<br />

Clemente, Jill. ....................................Paper 685<br />

Clohisy, John C ..............Paper 637, 708, Poster P027, P058,<br />

P059, P062, P063, P088, P126,<br />

Scientific Exhibit SE14, Symposia J<br />

Cloutier, Frederic C. ...............................Paper 623<br />

Cobb, Andrew ................................Paper 709, 709<br />

Cobb, Justin Peter ..Paper 067, Poster P176, Scientific Exhibit SE03<br />

Cody, Elizabeth ........................Paper 607, Poster P344<br />

Cody, Stephanie .................Multimedia Education MEC24<br />

Coe, Marcus P ....................................Paper 366<br />

Coetzee, J Chris ..................................Symposia K<br />

C<strong>of</strong>ield, Robert H ......... Paper 078, 087, 364, 602, Poster P296<br />

Cohen, Benjamin ............................... Poster P397<br />

Cohen, Bruce E ...................................Paper 505<br />

Cohen, Marcio Theo..............Multimedia Education MEC29<br />

Cohen, Mark S. ...............................Paper 342, 685<br />

Cohen, Steven Brad. ...............................Paper 681<br />

Colaco, Henry B ..................................Paper 265<br />

Colangeli, Marco. ................................. Paper 511<br />

Colantonio, Fabio. ......................Scientific Exhibit SE80<br />

Cole, Ashley. ....................................Poster P481<br />

Cole, Brian J. ............Paper 160, 200, 208, 367, 495, 574, 609<br />

Cole, Peter A .....................................Paper 307<br />

Coleman, Jill .....................................Paper 471<br />

Coleman, Struan H. ...........................Paper 159, 643<br />

Collier, John P. .................... Paper 296, 711, Poster P151<br />

Collo, Gianluca. ................Multimedia Education MEC22,<br />

Scientific Exhibit SE25<br />

Colman, Matthew ......................Paper 239, Poster P505<br />

Colwell, Clifford W. ......... Paper 286, 287, 288, 289, 290, 291,<br />

292, 293, 294, 295, 296, 297, 298,<br />

299, 300, Poster P124, P150<br />

Comfort, Thomas Krebs ............................Paper 358<br />

Conditt, Michael A ....................Poster P010, P032, P156<br />

Conkle, Sean B ................................. Poster P557<br />

Conner, Chad Stephen ............................Poster P411<br />

Connolly, Patrick J ....................Poster P353, P356, P357<br />

Connor, Patrick Michael. ...........................Paper 676<br />

Conteduca, Fabio ...............Multimedia Education MEC14,<br />

Paper 486, Poster P447<br />

Conteduca, Jacopo .....................Paper 486, Poster P447<br />

Contreras, Juan S. ............Paper 717, Poster P026, P102, P152<br />

Contreras, Richard ................................Paper 608<br />

Conway, Janet Donohue. .................Scientific Exhibit SE39<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Cook, Chad ......................................Paper 373<br />

Cook, James L ..........................Scientific Exhibit SE33<br />

COOK, Jon R. .................................. Poster P195<br />

Cook, Stephen D. ............................... Poster P408<br />

Cook, Todd .................................... Poster P458<br />

Cooke, Nicholas ..................................Paper 069<br />

Coombs, Richard RH ..............................Paper 145<br />

Cooper, Ross ................................... Poster P448<br />

Coopmans, Charlotte ..............................Paper 616<br />

Coplan, Julie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 423<br />

Copley, Lawson A B ...........................Paper 172, 432<br />

Copp, Steven ................................... Poster P124<br />

Corcoran-Schwartz, Ian ...........................Poster P391<br />

Cordill, Ronda. ...................................Paper 437<br />

Cornwall, Bryan ................................ Poster P377<br />

Correa, Adrian J. ..................................Paper 228<br />

Correa, Eva ......................................Paper 109<br />

Correia, Rickson Guedes De Moraes. Multimedia Education MEC29<br />

Corten, Krist<strong>of</strong>f ...................................Paper 350<br />

Cortez, Doug ................................... Poster P485<br />

Cosgarea, Andrew J ......................Scientific Exhibit SE70<br />

Costa, Anthony ...................................Paper 566<br />

Costa, Christopher R ....................Scientific Exhibit SE05<br />

Costa, Luigi ......................................Paper 470<br />

Costouros, John George ............................Paper 080<br />

Coulibaly, Marlon Osman . . . . . . . . . . . . . . . Paper 047, Poster P513<br />

Coulibaly, Marlon O. ...................Paper 150, Poster P515<br />

Court-Brown, Charles M ......................... Poster P504<br />

Coutinho, Etevaldo. .........Paper 736, Poster P373, P375, P379<br />

Cowgill, Ian.................................... Poster P403<br />

Cox, Christopher. ................................Poster P391<br />

Coyle, Catelyn ....................................Paper 250<br />

Coyne, Ellen ................................... Poster P368<br />

Craig, Edward V. ................................Symposia M<br />

Craig, Matthew ...................................Paper 315<br />

Cravino, Mattia ..................Multimedia Education MEC22<br />

Crawford, Alvin Howell .................Paper 450, Poster P384<br />

Crawford, Charles H. ............................ Poster P382<br />

Crawford, Kelli ................................. Poster P450<br />

Crawford, Lindsay Michele. .........................Paper 421<br />

Crawford, Scott Nicholas ...........................Paper 177<br />

Creek, Aaron ............................ Paper 288, 403, 404<br />

Creevy, William R . . . . . . . . . . . . . . . . . .Paper 046, 732, Poster P493<br />

Creighton, Robert Alexander ........................Paper 585<br />

Crichlow, Renn J ................................ Poster P487<br />

Crist, Brett D ..........................Paper 302, Poster P520<br />

Crosby, Lynn A .........Paper 151, 152, 153, 154, 155, 156, 157,<br />

158, 159, 160, 161, 162, 163, 164, 165<br />

Cross, Jessica Dale. ...........Paper 138, Poster P185, P507, P511<br />

Cross, Michael B ...........................Poster P156, P162,<br />

Scientific Exhibit SE55, SE63, SE67<br />

Cross, William Wood ............................ Poster P470<br />

Crossett, Lawrence S ...............................Paper 247<br />

Cruz, Aristides I. ..................................Paper 548<br />

Csintalan, Rick P ..................................Paper 492<br />

Cuffini, Anna Maria ...............................Paper 470<br />

Cumberland, William. ...Paper 181, 182, 183, 184, 185, 186, 187,<br />

188, 189, 190, 191, 192, 193, 194, 195<br />

Cummings, Don R ................................Paper 428<br />

Cummings, Stephen H .............................Paper 496<br />

Cummings, Steven ................................Paper 226<br />

Currey, Thomas W ......................Scientific Exhibit SE46<br />

Currier, Barbara H. ................Paper 296, Poster P089, P151<br />

901<br />

Currier, John H .................... Paper 296, 711, Poster P151<br />

Curry, Jessica I ...................................Poster P109<br />

Curry, Patrick. ............................. Poster P107, P361<br />

Curtin, Brian M ..................................Poster P114<br />

Curtiss, Shane .................................. Poster P233<br />

Cushner, Fred D ........ Paper 001, 002, 003, 004, 005, 006, 007,<br />

008, 009, 010, 011, 012, 013, 014, 015<br />

Cuttica, Daniel J ................................ Poster P225<br />

D’Alleyrand, Jean-Claude ...........................Paper 735<br />

D’Angelo, Jean. ...................................Paper 456<br />

D’Antonio, James A. ...........................Paper 352, 529<br />

D’Apuzzo, Michele R ............................ Poster P440<br />

D’ERRICO, THERESA ..............................Paper 003<br />

D’Lima, Darryl D ...........Paper 369, Poster P150, P196, P444,<br />

Scientific Exhibit SE33<br />

D’Orazio, Luca ...................................Paper 198<br />

Dabis, Hossam ...................................Paper 709<br />

Dadia, Shlomo ................................. Poster P540<br />

Dae Gyu, Kwon ...............................Paper 095, 547<br />

Dahiya, Nirvikar .................................Poster P313<br />

Dahl, Annette W .......................Paper 242, Poster P133<br />

Dahm, Diane Lynn ..Paper 481, 482, 483, 484, 485, 485, 486, 487,<br />

488, 489, 490, 491, 492, 493, 494, 495, 660<br />

Dai, Joseph Michael ............................. Poster P349<br />

Daigl Cattaneo, Monica ............................Paper 724<br />

Daikos, George ................................. Poster P060<br />

Daines, Michael T ............................... Poster P327<br />

Dal Molin, Danilo Canesin ....................... Poster P282<br />

Dal Molin, Eden ................................ Poster P282<br />

Dale, Paul A. ..........................Paper 120, Poster P274<br />

Daley, Erika L. .......................Paper 160, 200, 495, 574<br />

Daley, Jacqueline A ................................Paper 121<br />

Daluiski, Aaron ................................. Poster P298<br />

Dalury, David F ....Paper 194, 254, Poster P142, P146, P148, P190<br />

Damron, Timothy A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 234<br />

Dancy, Lindsay ...................................Paper 735<br />

Choi, Daniel ................................... Poster P069<br />

Daniels, Stephen .................................Poster P216<br />

Daniels, Timothy Rudolf ...........................Paper 053<br />

Danielson, Beate ..................................Paper 593<br />

Daou, Samira ....................................Paper 622<br />

Das, Aditi ...................................... Poster P238<br />

Daskal, Anat .....................................Paper 139<br />

Daubs, Michael David .............................Paper 021<br />

Daugherty, Margot C. ..............................Paper 169<br />

Davey, J Rod. ..........................Paper 589, Poster P177<br />

David, Bertrand. ................................ Poster P484<br />

David, Tal S .....................Multimedia Education MEC43<br />

Davidovic, Nadav .................................Paper 406<br />

Davidovitch, Roy. ......................Paper 372, Poster P472<br />

Davidson, David ..............Paper 528, 712, Poster P041, P043<br />

Davis, Adrian Thomas ........................... Poster P468<br />

Davis, Brent R ....................................Paper 492<br />

Davis, Brian .................................... Poster P154<br />

Davis, Charles M ................................ Poster P085<br />

Davis, Chris ......................................Paper 146<br />

Davis, Jason J. ..........................Scientific Exhibit SE20<br />

Davis, Kenneth ........................Paper 130, Poster P370<br />

Davis, Rebecca. ...................................Paper 424<br />

Davis, William Hodges. ............................Paper 505<br />

Dawkins, Ross ....................................Paper 403<br />

Day, Charles S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P270, P275<br />

Day, Judd ....................Paper 293, Scientific Exhibit SE77<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Day, Michael S. .......... Multimedia Education MEC39, MEC40<br />

Day, Nicky .......................................Paper 624<br />

Dazley, Justin. ........Multimedia Education MEC12, Poster P397<br />

De Benedetto, Massimo ............................Paper 578<br />

De Bruijn, Joost. ..................................Paper 675<br />

De Carli, Angelo .......................Paper 487, Poster P331<br />

De Fine, Marcello .......................Scientific Exhibit SE09<br />

De Giacomo, Anthony .............................Paper 749<br />

De La Fuente, Juan Carlos ..........................Paper 654<br />

De La Rocha, Adriana ..............................Paper 544<br />

De Neve, Francis ................................ Poster P288<br />

De Roeck, Nicholas. ............................. Poster P172<br />

De Steiger, Richard ............Paper 528, 712, Poster P041, P043<br />

De Vet, Henrica CW ...............................Paper 616<br />

De Wilde, Lieven. ............................... Poster P288<br />

De Young, Allison .............................Paper 197, 202<br />

Dean, Daniel Brian ................................Paper 695<br />

Dean, Laura E ....................................Paper 436<br />

Dearborn, John T .................................Paper 599<br />

Debi, Ronen .....................................Paper 406<br />

DeBoer, David Kent .....................Scientific Exhibit SE29<br />

Decker, Michael. ................................ Poster P336<br />

DeFranco, Michael ................................Paper 164<br />

Degroot, Florence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 675<br />

DeGroot, Henry ..................................Paper 502<br />

Dehoux, Emile ...................................Paper 697<br />

Del Buono, Angelo ................................Paper 575<br />

Del Din, Rainero .................Multimedia Education MEC22<br />

Del Gaizo, Daniel J ................................Paper 742<br />

Dela Rosa, Mylene A. ...................Paper 074, Poster P067<br />

Dela Torre, Katrina ................................Paper 644<br />

Delacruz, Michael ...................... Paper 519, Poster P521<br />

Delamarter, Rick B ................................Paper 662<br />

Deland, Jonathan T. .......................Paper 102, 498, 508<br />

Delaney, Kevin ...................................Paper 559<br />

Delanois, Ronald Emilio .........................Poster P181,<br />

Scientific Exhibit SE05, SE19, SE22<br />

Deleon, Regidor B. ................................ Paper 311<br />

Dell, Richard M. .............Poster P534, Scientific Exhibit SE76<br />

Della Rocca, Gregory John ......................Paper 302, 464<br />

Della Valle, Craig J ......Paper 007, 123, 128, 132, 187, 195, 349,<br />

411, 714, Poster P057, P186, Symposia E, P<br />

Delos, Demetris. ..............Paper 577, Scientific Exhibit SE55,<br />

SE63, SE67, SE71, SE73<br />

DeLuca, Peter A ...................................Paper 548<br />

DeLuca, Peter F ...............................Paper 324, 681<br />

Deluzio, Kevin. ...................................Paper 409<br />

DeMaio, Marlene .......................Scientific Exhibit SE75<br />

Demaurex, Nicolas ................................Paper 622<br />

Demetracopoulos, Constantine. ...........Scientific Exhibit SE34<br />

Demiryurek, Deniz .............................. Poster P569<br />

Demura, Satoru. ....................... Paper 261, Poster P351<br />

Denaro, Vincenzo ........................ Paper 156, 575, 578<br />

Deng, Xiang-Hua. .................................Paper 579<br />

Dennis, Douglas A ...............Poster P146, P190, P191, P197<br />

Dennis, James E ..................................Paper 378<br />

Dennison, David G. ....................Paper 334, Poster P226<br />

Dent, Ricardo E ...................................Paper 387<br />

DeOrio, James Keith ...................... Paper 048, 057, 058<br />

Derman, Peter ....................................Paper 106<br />

DeRosa, G Paul ...................................Paper 455<br />

Dervisoglu, Sergulen. ............................ Poster P565<br />

Desai, Rasesh R ...................................Paper 190<br />

902<br />

Desloovere, Kaat ................................ Poster P422<br />

DeSmet, Arthur A ................................Poster P412<br />

DeSmet, Koen Aime .......................Paper 032, 035, 038<br />

Dettoni, Federico ................. Scientific Exhibit SE25, SE65<br />

Devereaux, PJ. .................................. Poster P460<br />

Devin, Clinton J .......................Paper 743, Poster P362<br />

Deviren, Vedat. ..........Paper 029, 444, 749, Poster P387, P396<br />

Dewan, Ashvin Kumar ...................Scientific Exhibit SE36<br />

Dewing, Christopher B. ..................Scientific Exhibit SE53<br />

Di Caprio, Francesco ..............................Paper 093<br />

Di Martino, Alberto ..............Multimedia Education MEC38<br />

Di Martino, Alessandro ............................Paper 198<br />

Di Matteo, Berardo ................................Paper 198<br />

Dipaola, Christian ............................Paper 451, 452<br />

Di Sanzo, Vincenzo. ..............Multimedia Education MEC26<br />

Di Sette, Priscilla ..................................Paper 486<br />

Diab, Mohammed Atef. .......................... Poster P002<br />

Diamond, Beverly E ............................. Poster P403<br />

Diaz, Veronica A ..................................Paper 677<br />

DiCaprio, Francesco .....................Scientific Exhibit SE69<br />

DiCesare, Paul E ........ Paper 031, 032, 033, 034, 035, 036, 037,<br />

038, 039, 040, 041, 042, 043, 044, 045<br />

Dichter, Daniel ...............................Paper 166, 176<br />

Dickson, Kyle F ...................................Paper 213<br />

Didomenico, Paul. .............................. Poster P242<br />

Diekmann, Glenn .................................Paper 479<br />

Diesfeld, Paul ....................................Paper 291<br />

Dieterle, Jason P ................................ Poster P446<br />

DiFazio, Rachel L .................................Paper 170<br />

DiGioia, Anthony M. ....................Scientific Exhibit SE48<br />

DiGiovanni, Benedict F ...........................Poster P207<br />

DiGiovanni, Christopher W. ........................Paper 049<br />

Dikmen, Goksel ........................Scientific Exhibit SE35<br />

Dillon, Erica .....................................Paper 573<br />

Dines, David M .................................Symposia M<br />

Dines, Joshua ................Paper 496, Scientific Exhibit SE68<br />

Ding, Anthony. ...................................Paper 276<br />

DiPaola, John ............Paper 106, 107, 108, 109, 110, 111, 112,<br />

113, 114, 115, 116, 116, 117, 118, 119, 120<br />

Dirusso, Jessice M ............................... Poster P280<br />

Disilvo, Mauricio ............................... Poster P259<br />

Dmitriev, Anton E .........................Paper 017, 443, 669<br />

Do, Huong. ..............Paper 083, 287, 658, 659, Poster P020<br />

Do, Nam Hoon. .....................Paper 155, 162, 604, 605<br />

Doan, Josh. ...........................Paper 394, Poster P364<br />

Dodd, Christopher A F .........................Paper 415, 592<br />

Dodson, Christopher ...................Paper 681, Poster P415<br />

Doerner, Michael .................................Paper 530<br />

Domayer, Stephan. ................................Paper 199<br />

Domb, Benjamin ..Multimedia Education MEC07, Paper 640, 645<br />

Donahue, Henry J .................................Paper 206<br />

Donaldson, William F .............................Paper 023<br />

Donegan, Derek J .................................Paper 453<br />

Donegan, Ryan P. ............................... Poster P332<br />

Donzelli, Onorfio .................................Paper 433<br />

Doornink, Josef. ..................................Paper 702<br />

Dopirak, Ryan M. ..............................Symposia 151<br />

Doral, Mahmut Nedim. .......................... Poster P569<br />

Dormans, John P. ......................Paper 448, Poster P260<br />

Dorotka, Ronald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 199<br />

Dorr, Lawrence D ............................... Poster P032<br />

Dorward, Ian G ................................. Poster P374<br />

Dosanjh, Sonia ...................................Paper 464<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Douglas, Keith C ..................................Paper 695<br />

Doustdar, Sepehr. .................................Paper 561<br />

Dowd, Thomas Charles ............................Paper 052<br />

Downes, Katheryne. ............................. Poster P147<br />

Downie, Brian ...................................Poster P312<br />

Doyle, Mike S .........................Paper 120, Poster P274<br />

Doyle, Shevaun Mackie ............................Paper 405<br />

Drago, Gabriele. .......................Paper 240, Poster P539<br />

Dragoo, Jason L. ..................................Paper 631<br />

Dreese, James C. ....Paper 196, 197, 198, 199, 200, 201, 202, 203,<br />

204, 205, 206, 207, 208, 209, 210, 731<br />

Dreiangel, Niv ................................Paper 028, 721<br />

Drew, Brian ......................................Paper 630<br />

Drew, Jacob M ....................Paper 348, Poster P035, P357<br />

Drexler, Michael ................................ Poster P540<br />

Dromsky, David M ..............................Symposia Q<br />

Drosdowech, Darren Sean ..........................Paper 678<br />

Dudda, Marcel. ................................. Poster P077<br />

Dudley, Thomas Edward ................Paper 120, Poster P274<br />

Duester, Rosanna ................................Poster P214<br />

Dumais, Jules Arthur ............................ Poster P508<br />

Dunbar, Michael ........................Scientific Exhibit SE02<br />

Duncan, Clive P ...................Paper 073, 349, Poster P105<br />

Duncan, Douglas D ............................. Poster P320<br />

Dungca, Daniel V ................................. Paper 311<br />

Dungca, Godfredo V. .............................. Paper 311<br />

Dunn, Warren . . . . . . . . . . . . . . . . . . . . . . . . . Paper 157, Poster P319<br />

Dunning, Page. ..................................Poster P311<br />

Duquin, Thomas. ............ Paper 078, 602, Poster P179, P297<br />

Duralde, Xavier A ............................... Poster P335<br />

Dushey, Craig .................................. Poster P189<br />

Dutta, Arup ......................................Paper 624<br />

Dutton, Jason R. ................................ Poster P435<br />

Dvorak, Marcel F. .............................Paper 451, 452<br />

Dy, Christopher John .............. Scientific Exhibit SE67, SE82<br />

Dyer, George S. ...................................Paper 696<br />

Eagan, Michael ...................................Paper 166<br />

Earl-Royal, Emily. ............................... Poster P472<br />

Easley, Mark E ........................... Paper 048, 057, 058<br />

Ebrahimpour, Prouskeh .......................... Poster P020<br />

Ebramzadeh, Edward ..........................Paper 035, 166<br />

Eck, Jason C. .........................Poster P353, P356, P357<br />

Mayr, Eckart. .............Multimedia Education MEC10, MEC11<br />

Eckel, Tobin. ................................... Poster P498<br />

Ecker, Timo M .................................. Poster P038<br />

Economopoulos, Kostas. ...........................Paper 653<br />

Edidin, Avram A ........................Scientific Exhibit SE56<br />

Edmonds, Eric ...................................Poster P221<br />

Edwards, Christopher ..............................Paper 013<br />

Edwards, Paul K. ..............................Paper 006, 192<br />

Edwards, Thomas Bradley ....Paper 090, Poster P302, Symposia M<br />

Efe, Turgay ..................................... Poster P132<br />

Egi, Takeshi ......................................Paper 345<br />

Eglseder, W Andrew ...........................Paper 694, 698<br />

Egol, Kenneth A. ...................Paper 144, 372, Poster P472<br />

Egorova, Natalia ................................ Poster P378<br />

Ehrlich, Michael G ................................Paper 122<br />

Ehteshami, John R ................................Paper 159<br />

Eichler, Markus .........................Scientific Exhibit SE59<br />

Einhorn, Thomas A. .......................Symposia ORSII, W<br />

Eisemon, Eric. ................Paper 565, Scientific Exhibit SE76<br />

Eisenberg, Gerald .................................Paper 370<br />

Eisner, Eric A .....................................Paper 146<br />

903<br />

Ejnisman, Leandro ................................Paper 552<br />

Ekholm, Carl ...................................Poster BOS2<br />

Ekkernkamp, Axel ............................... Poster P273<br />

El Chemaly, Antoun ...............................Paper 622<br />

El Miligui, Yasser H. ........................Poster P360, P380<br />

El Shafie, Sherif ......................Paper 282, 336, 338, 339<br />

El-Amin, Saadiq F ............................... Poster P449<br />

El-Gendi, Hebah ..................................Paper 729<br />

El-Osta, Bassel .................................. Poster P160<br />

El-Sharkawi, Mohammad Mohammad. ........Poster P360, P380<br />

ElAttrache, Neal S ............................... Poster P420<br />

Elfatori, Salah ....................................Paper 359<br />

Elhassan, Bassem T .....................Paper 334, Poster P465<br />

Elias, John J .................................... Poster P248<br />

Elkinson, Ilia ..........................Paper 584, Poster P337<br />

Eller, Erik Brian ...................................Paper 476<br />

Elliott, Dawn M. ........................Scientific Exhibit SE33<br />

Elliott, Winston. ...........................Poster P293, P334<br />

Ellis, Andrew R ..................................Poster P010<br />

Ellis, David J ....................................Poster P117<br />

Ellis, Scott ...................Paper 498, Scientific Exhibit SE34<br />

Ellis, Thomas J. ...................................Paper 377<br />

Ellison, Brad .....................................Paper 420<br />

Elsharkawy, Karim Ahmed ..........................Paper 600<br />

Elspas, Barbara ...................................Paper 657<br />

Emans, John B. ....................Paper 396, 671, Poster P382<br />

Emerson, Gwendolyn Beth .........................Paper 454<br />

Emerson, Roger H .............................Paper 297, 298<br />

Emery, Sanford E. .................................Paper 020<br />

Emori, Makoto ...................................Paper 232<br />

Encalada, Ivan .................................... Paper 610<br />

Endo, Naoto ..............................Poster P261, P523<br />

Endres, Terrence J .................Paper 047, Poster P513, P515<br />

Engh, C Anderson. ........Paper 005, 066, 244, 532, Poster P094<br />

Engh, Charles A. ..............................Paper 066, 532<br />

Engh, Gerard Anderson ...............Paper 244, Symposia B, P<br />

Entezari, Vahid ...................................Paper 234<br />

Epie, Ge<strong>of</strong>frey ....................................Paper 709<br />

Epstein, David M. ............................... Poster P004<br />

Epstein, Noah ....................................Paper 042<br />

Eralp, Levent ...........................Scientific Exhibit SE85<br />

Erbe, Erik M. .....................................Paper 675<br />

Ercakmak, Burcu ................................ Poster P569<br />

Erdem, Mehmet ................................ Poster P560<br />

Erdman, Meghan A.............................. Poster P403<br />

Erginer, Rifat ................................... Poster P567<br />

Erickson, Jill ...... Paper 061, Poster P030, Scientific Exhibit SE15<br />

Erickson, Mark A. ............................... Poster P382<br />

Erkorkmaz, Unal. ............................... Poster P560<br />

Erkula, Gurkan ........................Paper 180, Poster P383<br />

Errico, Thomas J ..................................Paper 262<br />

Eskander, Mark ........Paper 348, Poster P035, P353, P356, P357<br />

Espehaug, Birgitte ..........................Poster P497, P500<br />

Esposito, Christina Ilona ................Paper 527, Poster P045<br />

Esquivel, Amanda .................................Paper 629<br />

Essner, Aaron. .............................Poster P181, P182<br />

Ethington, Arthur ................................Poster P481<br />

Ettner, Susan L. ................................. Poster P266<br />

Eunice, Selena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P126<br />

Eustace, Nick ....................................Poster P419<br />

Evangelista, Gregory Thomas. .......................Paper 491<br />

Evans, Bruce G. ...................................Paper 467<br />

Evans, Christopher H .............................Poster P431<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Evans, Heather N .................................Paper 169<br />

Evans, Korboi N .................................Poster P421<br />

Evans, Richard Parker ....................Scientific Exhibit SE45<br />

Evans, David C ...................................Paper 467<br />

Even, Jesse L. ..........................Paper 743, Poster P362<br />

Exaltacion, Jesse ................................ Poster P005<br />

Ezzet, Kace A ................................... Poster P124<br />

Fabbri, Nicola ................................Paper 433, 511<br />

Faber, Ken ..............Paper 584, 678, 699, Poster P337, P343<br />

Fabi, David W .................................. Poster P057<br />

Fabing, Meredith. .................................Paper 077<br />

Fabricant, Peter David. .............................Paper 405<br />

Fadale, Paul .................................... Poster P438<br />

Fagan, Bryan C ...................................Paper 686<br />

Falcon, Juan-Carlos. ...............................Paper 422<br />

Falcone, Richard ..................................Paper 169<br />

Faldini, Cesare. ..........Multimedia Education MEC02, MEC21,<br />

MEC38, Paper 510, Poster P220,<br />

Scientific Exhibit SE57, SE69<br />

Falkinstein, Yuri .................................Poster P471<br />

Fang, Chien-Feng .............................Paper 274, 500<br />

Farber, Bobbi A .........................Scientific Exhibit SE45<br />

Farber, Daniel C ........Paper 496, 497, 498, 499, 500, 501, 502,<br />

503, 504, 505, 506, 507, 508, 509, 510<br />

Farcetta, Mariana Custodio ....................... Poster P283<br />

Farcy, Jean-Pierre C ................................Paper 441<br />

Farfalli, German Luis .............Paper 513, Poster P533, P544,<br />

Scientific Exhibit SE38<br />

Farid, Yasser .................................... Poster P140<br />

Faris, Philip M ....................................Paper 413<br />

Farjoodi, Payam .............Poster P278, Scientific Exhibit SE62<br />

Farley, Frances A ..................................Paper 025<br />

Farng, Eugene ................................Paper 039, 719<br />

Fahnhorst, Courtney. ..............................Paper 693<br />

Farnsworth, Christine L ................... Paper 393, 394, 543<br />

Faro, Frances .....................................Paper 104<br />

Farouz, Francine ..................................Paper 674<br />

Farshad, Mazda ...................................Paper 151<br />

Favard, Luc. ..............................Paper 079, 085, 088<br />

Fayad, Tony Elias. .................................Paper 636<br />

Fazzi, Umberto Giuseppe. ..........................Paper 682<br />

Fedenko, Alexander N .............................Paper 228<br />

Fedorka, Catherine Julia............Paper 247, Poster P186, P199<br />

Feeley, Brian T ................................Paper 161, 573<br />

Fehring, Keith ....................................Paper 538<br />

Fehring, Thomas K ......Paper 192, 538, Poster P076, P085, P146,<br />

Symposia B, E<br />

Fehringer, Edward V .............................Symposia M<br />

Femino, John E ........Multimedia Education MEC20, Paper 092<br />

Ferguson, Duncan. ................................Paper 481<br />

Ferguson, James ..................................Paper 354<br />

Ferguson, Peter ...............................Paper 523, 524<br />

Ferkel, Richard D. .................................Paper 094<br />

Fern, Edwin Darren. ....................Paper 031, Poster P508<br />

Fernandez-Fairen, Mariano ....................... Poster P008<br />

Ferreira, Joel. ....................................Poster P514<br />

Ferreira, Louis .........................Paper 584, Poster P337<br />

Ferretti, Andrea ..........Multimedia Education MEC14, MEC26,<br />

Paper 486, 487, Poster P331, P447<br />

Ferretti, Matteo ...................................Paper 487<br />

Ferro, Andrea. ...................Multimedia Education MEC28<br />

Ferruzzi, Alberto ........................Scientific Exhibit SE69<br />

Fevang, Jonas Meling .......................Poster P497, P500<br />

904<br />

Ficke, James R ............Paper 052, Poster P511, Symposia N, Q<br />

Field, Larry D. .........................Paper 686, Poster P316<br />

Filardo, Giuseppe .........Paper 198, 208, Scientific Exhibit SE61<br />

Fine, Anthony ....................................Paper 440<br />

Fine, Kenneth M .................................. Paper 210<br />

Finn, Henry A .................................. Poster P140<br />

Fiocco, Marta. ....................................Paper 594<br />

Firestein, Gary S ..................................Paper 065<br />

Fischer, Charla R ..................................Paper 442<br />

Fisher, Anthony Colin. ............................Poster P321<br />

Fisher, Charles G ..............................Paper 451, 452<br />

Fisher, David A ................................. Poster P153<br />

Fisher, Steven. ................................ Symposia 152<br />

Fisk, Erica. .......................................Paper 727<br />

Fitch, Robert D ...................................Paper 389<br />

Fitz, Wolfgang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Symposia P<br />

Fitzgerald, John D......................Paper 112, Poster P266<br />

Fitzpatrick, Daniel C. ..............................Paper 702<br />

Fitzsimmons, James S..............................Paper 687<br />

Flatow, Evan L ..................Multimedia Education MEC30,<br />

Paper 601, Symposia H, M<br />

Fleck, Erin E. ................................... Poster P166<br />

Fleckenstein, Cassie M ........................... Poster P300<br />

Fleeter, Thomas B .......................Scientific Exhibit SE47<br />

Fletcher, Nicholas D ...........................Paper 172, 173<br />

Flint, Kathy J.. .................................. Poster P370<br />

Flouzat-Lachaniette, Charles Henri .............. Paper 009, 191,<br />

Scientific Exhibit SE18, SE21<br />

Flynn, Evelyn. .................................. Poster P243<br />

Flynn, Jeffrey .....................................Paper 629<br />

Flynn, Jack M. ................Paper 114, 119, Poster P255, P371<br />

Flynn, Patrick. ....................................Paper 401<br />

Foad, Susan ......................................Paper 628<br />

Fong, Kathryn ....................................Paper 625<br />

Foo, Li Foong. ....................................Paper 205<br />

Foran, Jared R H ...............Paper 007, 187, 714, Poster P164<br />

Ford, Kevin Ray ...................................Paper 649<br />

Forester, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 692<br />

Fornalski, Stefan ..................................Paper 492<br />

Fornari, Eric D. ...................................Paper 330<br />

Fornfeist, Douglas S ............................. Poster P229<br />

Forootan, Maryam ............................Paper 557, 564<br />

Forsberg, Jonathan Agner ...........................Paper 705<br />

Forstner, Rosemarie. ...............................Paper 203<br />

Foruria de Diego, Antonio Maria. .................. Poster P306<br />

Fowler, John R ................................Paper 315, 613<br />

Fox, Alice JS ......................................Paper 579<br />

Fox, Joshua C. .................................. Poster P467<br />

Fragomen, Austin Thomas ..........................Paper 313<br />

Fraitzl, Christian R .............................. Poster P028<br />

Frampton, Caroline ............................. Poster P248<br />

Franceschi, Francesco ..........................Paper 156, 575<br />

Francesconi, Dunia .............................. Poster P220<br />

Frank, Elizabeth L .......................Scientific Exhibit SE41<br />

Frank, Jeremy S ................................. Poster P252<br />

Frank, Rachel. .................................. Poster P329<br />

Frankle, Mark A ............. Paper 361, 362, 363, 364, 365, 365,<br />

366, 367, 368, 368, 369, 370, 371,<br />

372, 373, 374, 375, Poster P309, P311<br />

Franklin, Patricia. ................... Poster P280, Symposia AA<br />

Frederick, Robert W. ...............................Paper 324<br />

Freedman, Brett. .................................Poster P481<br />

Freedman, Ilan S ..................................Paper 351<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Freehill, Michael Q ...................Paper 576, Symposia 152<br />

Freehill, Michael T ..... Poster P292, Scientific Exhibit SE62, SE66<br />

Freeman, Carl R. ................................ Poster P454<br />

Freeman, Heather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Poster P410<br />

Freeman, Robert ................................ Poster P244<br />

Freeman, Theresa ............................... Poster P078<br />

Freiberg, Andrew A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Poster P015<br />

Freitag, Per. .....................................Poster P271<br />

Fricka, Kevin B. ...................................Paper 066<br />

Friden, Jan .......................................Paper 556<br />

Frieboes, Laura ...............................Paper 557, 564<br />

Friedlaender, Gary E .....Paper 226, 227, 228, 229, 230, 231, 232,<br />

233, 234, 235, 236, 237, 238, 239, 240<br />

Friedman, Daniel .................................Paper 524<br />

Friedman, Richard J ...............................Paper 540<br />

Friel, Nicole A ....................................Paper 208<br />

Friend, Jennifer K .................................Paper 048<br />

Friess, Darin M ...................................Paper 377<br />

Frihagen, Frede ............................Poster P479, P535<br />

Fritsch, Helga. ............Multimedia Education MEC10, MEC11<br />

Fritz, Germaine R .................................Paper 271<br />

Froelich, John Marshal ............................Poster P271<br />

Frostick, Simon ..................................Poster P321<br />

Fu, Freddie H. ...........Multimedia Education MEC41, MEC42,<br />

Poster P407, Scientific Exhibit SE72<br />

Fuchs-Winkelmann, Susanne. ................Poster P120, P132<br />

Fuersenberg, Carl Hans .................Paper 561, Poster P405<br />

Fufa, Duretti ...........Scientific Exhibit SE34, SE50, SE64, SE82<br />

Fuji, Takeshi. .....................................Paper 707<br />

Fujimaki, Hiroshi ............................... Poster P049<br />

Fujimori, Jun ..............................Poster P524, P528<br />

Fujita, Satoru .....................................Paper 345<br />

Fujiwara, Hiroyoshi ...............................Paper 277<br />

Fukagawa, Shingo ......................Paper 414, Poster P168<br />

Fulkerson, John P .......................Scientific Exhibit SE70<br />

Funahashi, T Ted..........Paper 080, 186, 492, 621, Poster P534,<br />

Scientific Exhibit SE44, SE76<br />

Funovics, Philipp Theodor ..........................Paper 520<br />

Furey, Christopher George ......................Paper 020, 665<br />

Furman, Bridgette D ..............................Poster P501<br />

Furnes, Ove Nord ..........................Poster P497, P500<br />

Furu, Moritoshi ................................. Poster P239<br />

Futai, Kazuma ...................................Poster P291<br />

Daggy, Joanne ....................................Paper 727<br />

Gabriel, Keith Robert .............................Poster P271<br />

Gad, Bishoy V .................................... Paper 111<br />

Gadinsky, Naomi .................................Paper 595<br />

Gajendran, Varun Kashyap. ....................... Poster P237<br />

Galante, Jorge O ..............................Paper 007, 411<br />

Galatz, Leesa M ...............Paper 086, 601, Poster P313, P322<br />

Gallagher, Kieran R ...............................Poster P116<br />

Gallo, Jiri .......................................Poster P131<br />

Galoian, Karina ...................................Paper 512<br />

Galoyan, Armen ..................................Paper 512<br />

Gamble, James G. ............................... Poster P253<br />

Gandhi, Rajiv. .....................Paper 289, 589, Poster P177<br />

Ganley, Theodore J ..............Multimedia Education MEC24,<br />

Paper 482, Symposia Z<br />

Gantsoudes, George D .............................Paper 099<br />

Ganz, Reinhold ....Multimedia Education MEC27, Paper 043, 634<br />

Garabekyan, Tigran. ...............................Paper 445<br />

Garbis, Nickolas G ................................Paper 609<br />

Garbuz, Donald S ..................Paper 073, 349, Poster P105<br />

905<br />

Garcia, Grant .................................Paper 613, 613<br />

Garcia, Ryan .....................................Paper 665<br />

Gardner, Michael J ................................Paper 732<br />

Gardner, Thomas R ............................Paper 147, 273<br />

Garg, Bhavuk. ......Paper 268, 283, 305, 340, 355, 474, 560, 569,<br />

710, 720, Poster P232, P235, P305, P489<br />

Garg, Rishi .......................................Paper 689<br />

Garg, Rohit ......................................Paper 558<br />

Garg, Sudhir .....................................Paper 229<br />

Garg, Sumeet .................................Paper 172, 173<br />

Garino, Jonathan P .........................Poster P103, P122<br />

Garner, Matthew Robert ............................Paper 114<br />

Garras, David N. ..................................Paper 562<br />

Garrett, William E .................................Paper 493<br />

Garvin, Kevin L ............. Paper 121, 122, 123, 124, 125, 126,<br />

127, 128, 129, 130, 131, 132, 133,<br />

134, 135, 241, Symposia B<br />

Gasbarrini, Alessandro ...................Scientific Exhibit SE57<br />

Gasinu, Selom. ...................................Paper 579<br />

Gastaud, Olivier ................................ Poster P330<br />

Gatt, Charles J .................................. Poster P439<br />

Gaume, Rachel E ..........................Paper 017, 443, 669<br />

Gausden, Elizabeth. ...............................Paper 747<br />

Gavini, Deepa ..........................Scientific Exhibit SE41<br />

Gay, Andre Nicolas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 726<br />

Gay, David ..................................... Poster P298<br />

Gazit, Zulma .....................................Paper 139<br />

Ge, Dongxia. .....................................Paper 209<br />

Gebhardt, Mark C .........................Paper 234, 433, 511<br />

Gee, Albert Ooguen ............................. Poster P122<br />

Geerts, William H .................................Paper 589<br />

Geesink, Rudolph Gerbrand ........................Paper 352<br />

Gehrke, Thorsten. ............................... Poster P092<br />

Gehrmann, Robin Michael. .........................Paper 375<br />

Genuario, James ................................ Poster P332<br />

George, Michael S .......Paper 571, 572, 573, 574, 575, 576, 577,<br />

578, 579, 580, 581, 582, 583, 584, 585<br />

Gerber, Christian. ...................... Paper 151, Poster P315<br />

Gerlinger, Tad L ............................Poster P180, P502<br />

Germano, Margherita .............Multimedia Education MEC22<br />

Geurts, Ghislain ..................................Paper 341<br />

Ghate, Raju S ................................... Poster P175<br />

Ghayem Hassankhani, Ebrahim ................... Poster P459<br />

Ghermandi, Riccardo ....................Scientific Exhibit SE57<br />

Ghodadra, Neil S .................................Paper 606<br />

Ghomrawi, Hassan ................................Paper 658<br />

Ghoz, Ali ...................................... Poster P160<br />

Giakas, Giannis ...................................Paper 318<br />

Giannetti, Silvio ......... Multimedia Education MEC14, MEC26<br />

Giannini, Sandro ........Multimedia Education MEC02, MEC21,<br />

MEC38, Paper 093, 510, Poster P012, P220,<br />

Scientific Exhibit SE57, SE61, SE69<br />

Giannoudis, Peter ..............Paper 211, 223, 376, Poster P499<br />

Gibbons, Christopher T ............................Paper 722<br />

Gibbons, Max .................................. Poster P187<br />

Gibbs, Johnny M. .................................Paper 730<br />

Gibson, Anthony. ............................... Poster P404<br />

Gie, Graham Allan ...............................Poster P110<br />

Gilbert, Corey A ..........Multimedia Education MEC41, MEC42<br />

Giles, Josh W ..........................Paper 584, Poster P337<br />

Gill, Harinderjit Singh ..................Paper 531, Poster P187<br />

Gill, Richie H S .......Paper 032, 415, 592, Scientific Exhibit SE06<br />

Gill, Thomas James. ...........................Paper 580, 647<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Gilliam, David L ..................................Paper 370<br />

Gilmore, Allison ..................................Paper 378<br />

Gilula, Louis A. ...................................Paper 672<br />

Gioe, Terence J. ......Paper 406, 407, 408, 409, 410, 411, 413, 414,<br />

415, 416, 417, 418, 419, 420, 588, Symposia E<br />

Giordano, Giovanni ..........Poster P414, Scientific Exhibit SE24<br />

Giori, Nicholas John. ..............Paper 657, Poster P039, P040<br />

Girardi, Federico Pablo. .................Paper 747, Poster P369<br />

Gitajn, Ida Leah. ..................................Paper 312<br />

Giuffre, Jennifer L ......................Paper 051, Poster P443<br />

Giuliani, Jeffrey R ................................Poster P421<br />

Giveans, M. Russell .....................Paper 646, Poster P429<br />

Gjertsen, Jan-Erik ..........................Poster P497, P500<br />

Glaser, David L ..........Paper 076, 077, 078, 079, 080, 081, 082,<br />

083, 084, 085, 086, 087, 088, 089, 090<br />

Glaser, Diana A ......Paper 393, 394, 543, 551, Poster P245, P364<br />

Glaser, John A ....................................Paper 027<br />

Glassman, David Michael ..........................Paper 438<br />

Glassman, Steven D .................. Paper 441, Symposia T, Y<br />

Glazebrook, Mark ......................Paper 503, Symposia K<br />

Glembotski, Nicholas. ........................... Poster P444<br />

Glos, David ......................................Paper 429<br />

Glotzbecker, Michael P. ............................Paper 168<br />

Glyn-Jones, Sion ..........Paper 032, 531, Scientific Exhibit SE06<br />

Gobezie, Reuben ......................... Paper 082, 090, 363<br />

Gocuk, Can .................................... Poster P566<br />

Goddard, Maria S ......................Paper 299, Poster P016<br />

Godin, Jonathan .................................Poster P310<br />

Goehre, Tom .....................................Paper 688<br />

Goel, Anshul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 229<br />

Goel, Danny ....................Multimedia Education MEC03<br />

Goetz, Devon D ..................................Paper 004<br />

Goetz, Thomas ...................................Paper 566<br />

Gohlke, Frank ....................................Paper 079<br />

Goldberg, Michael J ..............................Symposia F<br />

Goldman, Ariel ...................................Paper 729<br />

Goldring, Steven R ................................Paper 238<br />

Goldstein, Jeffrey Andrew. ......Paper 262, Scientific Exhibit SE58<br />

Goldstein, Wayne M ............................. Poster P146<br />

Goldwyn, Elan Michael ............................Paper 698<br />

Goletz, Ty Henry ..........Paper 106, 107, 108, 109, 110, 111, 112,<br />

113, 114, 115, 116, 116, 117, 118, 119, 120<br />

Golf, Michael. ...................................Poster P216<br />

Golish, S Raymond .....................Paper 501, Poster P346<br />

Gomar, Francisco .................................Paper 148<br />

Gomes, Bruna ....................................Paper 502<br />

Gomes, Joao Ellera ................................Paper 509<br />

Gomez-Leonardelli, Dominic T. ................... Poster P427<br />

Gonzalez Della Valle, Alejandro M ...................Paper 535<br />

Gonzalez, Bernal. .................................Paper 360<br />

Gonzalez Ugalde, Humberto ........................Paper 360<br />

Gonzalez-Lomas, Guillem ........................ Poster P420<br />

Gonzalez-Thompson, Miguel ....................... Paper 610<br />

Gonzalez, Ruben. ............................... Poster P423<br />

Gooch, Hubert Lee ......Paper 256, 257, 258, 259, 260, 261, 262,<br />

263, 264, 265, 266, 267, 268, 269, 270<br />

Goodman, Gens Pierce. .................Paper 728, Poster P435<br />

Goodman, Mark A ................................Paper 239<br />

Goodman, Murray J .....................Scientific Exhibit SE46<br />

Goodman, Stuart Barry. ..........................Symposia W<br />

Goodwillie, Andrew D ......................Poster P439, P439<br />

Gorab, Robert S ..................................Poster P021<br />

Gorczyca, John T .................................. Paper 310<br />

906<br />

Gordon, Wade T ................................Symposia Q<br />

Gortz, Simon. ................................Paper 197, 202<br />

Goswami, Tarun ................................ Poster P494<br />

Goto, Akira .....................................Poster P291<br />

Goto, Hideyuki ...................................Paper 319<br />

Gotze, Christian ................................ Poster P084<br />

Goubau, Yannick. ............................... Poster P430<br />

Goulding, Krista .................................Poster P519<br />

Gourdine-Shaw, Monique C ...................... Poster P222<br />

Goyal, Amrit .....................................Paper 426<br />

Goyal, Nitin. .....................................Paper 220<br />

Goytia, Robin Nestor .............................Poster P016<br />

Goz, Vadim .................................... Poster P378<br />

Grabowski, Gregory ...............................Paper 258<br />

Gradisar, Ivan A. ........................Scientific Exhibit SE30<br />

Graff, Ronald D. ..................................Paper 742<br />

Grainger, David ...................................Paper 467<br />

Grammatopoulos, George A ....Paper 032, Scientific Exhibit SE06<br />

Grana, William A .................................Paper 491<br />

Grande, Daniel A .............Paper 496, Scientific Exhibit SE33<br />

Grandi, Gian Luca. ...............Multimedia Education MEC21<br />

Grant, Struan F ...................................Paper 448<br />

Grappiolo, Guido ................Multimedia Education MEC27<br />

Gratopp, Carly. ...................Paper 739, Poster P194, P363<br />

Graves, Mathew. ...........................Poster P456, P457<br />

Graves, Stephen. ..............Paper 528, 712, Poster P041, P043<br />

Gravius, Sascha ...................................Paper 193<br />

Gray, Robert R ....................................Paper 685<br />

Gray, Tinker .....................................Poster P410<br />

Greaves, Frank E ................................ Poster P558<br />

Green, Andrew ...................................Paper 581<br />

Green, Daniel William . . . . . . . . . .Paper 401, 405, 554, Poster P254<br />

Green, Stuart A .........................Scientific Exhibit SE39<br />

Greenbaum, Jordan N ............................Poster P018<br />

Greendyk, Richard A. ............Multimedia Education MEC08,<br />

MEC47, MEC53<br />

Greene, Denise .........................Scientific Exhibit SE76<br />

Greene, Joseph ........................Paper 245, Poster P114<br />

Greene, Meridith. ............. Paper 082, 348, 530, Poster P035<br />

Greenwald, A Seth. ...........Scientific Exhibit SE02, SE08, SE16,<br />

SE28, SE30, SE60, SE84, Symposia W<br />

Gregg, Paul J .....................................Paper 537<br />

Greidanus, Nelson Victor ............Paper 073, 349, Poster P105<br />

Greidanus, Thomas H. ........................... Poster P086<br />

Greisberg, Justin K ...... Paper 046, 047, 048, 049, 050, 051, 052,<br />

053, 054, 055, 056, 057, 058, 059, 060, 147<br />

Greiwe, Mike ......................Paper 366, 607, Poster P344<br />

Grewal, Ruby ......................Paper 678, 699, Poster P343<br />

Griesser, Michael. ............................... Poster P525<br />

Griffin, Anthony M ................................Paper 523<br />

Grigg, Harry. ................................... Poster P074<br />

Grimm, Nathan L ................................Poster P417<br />

Grimshaw, Charles Simpson ....................Paper 214, 380<br />

Groat, Tahnee ....................................Paper 377<br />

Grogan, Thomas J ............................. Symposia 152<br />

Gross, Allan E .....Paper 251, 349, Poster P044, P062, P105, P111,<br />

Scientific Exhibit SE14, Symposia W<br />

Gross, Jonathan Michael ........................... Paper 310<br />

Gross, Thomas. ...................................Paper 186<br />

Grossman, Joshua D. ............................ Poster P358<br />

Gruebl, Alexander .................................Paper 347<br />

Gruen, Gary S .................................. Poster P505<br />

Grumet, Robert C .................................Paper 208<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Grupp, Thomas ...................................Paper 740<br />

Gruson, Konrad Izumi .............................Paper 601<br />

Gryzlo, Stephen. ..................................Paper 680<br />

Gu, Yang ........................................Paper 508<br />

Guanche, Carlos .................................Poster P411<br />

Guda, Teja .......................................Paper 379<br />

Gudipati, Suribabu ................................Paper 376<br />

Guelcher, Scott ...................................Paper 379<br />

Guerra, Enrico .................... Scientific Exhibit SE54, SE54<br />

Guerra, Giovanni .................................Paper 240<br />

Guerrero, Marcos ............................... Poster P453<br />

Guettler, Joseph. ..................................Paper 204<br />

Guevara, Benjamin G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 403<br />

Guilak, Farshid ............................Poster P342, P501<br />

Guillamondegui, Oscar ............................Paper 221<br />

Guirguis, Farid. ..................................Poster P111<br />

Guitton, Thierry ................................ Poster P323<br />

Gulati, Ashish .................................. Poster P145<br />

Gulick, Bethany C .................................Paper 298<br />

Gulotta, Lawrence ................................Poster P415<br />

Gulsen, Mahir .................................. Poster P566<br />

Gundle, Kenneth Robert. ................Paper 117, Poster P263<br />

Gundle, Roger ................ Paper 531, Scientific Exhibit SE06<br />

Gundogan, Adem ............................... Poster P566<br />

Gunes, Taner ................................... Poster P560<br />

Gupta, Akash. .................................. Poster P326<br />

Gupta, Ranjan .....................Paper 557, 564, Poster P326<br />

Gupta, Rishi R ....................................Paper 388<br />

Gupta, Tushar ....................................Paper 355<br />

Gupta, Vikas .....................................Paper 426<br />

Gurdezi, Sabahat. .................................Paper 507<br />

Gurske de Perio, Jennifer ...........................Paper 131<br />

Gustke, Kenneth A .............................. Poster P147<br />

Gutierrez, Sergio ..............................Paper 006, 368<br />

Guyatt, Gordon................................. Poster P460<br />

Guyen, Olivier. ................................. Poster P048<br />

Guymon, Charles H ............................. Poster P180<br />

Guyton, Gregory P ................................Paper 104<br />

Gwinn, David E. .................................Poster P421<br />

Ha, Chul Won ...................................Poster P451<br />

Ha, Eun-Young ........................Paper 374, Poster P318<br />

Ha, Yong-chan. ....................Paper 472, 596, Poster P017<br />

Haasters, Joerg. ................................. Poster P285<br />

Habbu, Rohan Ashok ..........................Paper 060, 100<br />

Habermeyer, Dr Peter ............................ Poster P328<br />

Habib, Sadia .....................................Paper 142<br />

Hackbarth, Donald A ..........................Paper 231, 517<br />

Hackett, Thomas R .............................. Poster P336<br />

Haddad, Fares Sami ..............Paper 107, 127, 536, 620, 633,<br />

636, 641, Poster P437<br />

Haddad, Steven L ...Paper 046, 047, 048, 049, 050, 051, 052, 053,<br />

054, 055, 056, 057, 058, 059, 060, Symposia K<br />

Hadley, Scott R ........................Paper 129, Poster P004<br />

Hafez, Moustafa Ismail. ............................Paper 145<br />

Hagio, Tomonobu ................................Paper 098<br />

Hahn, Michael P .................Multimedia Education MEC37<br />

Hahn, Theodore J .............................Paper 673, 674<br />

Hak, David J ................................... Poster P508<br />

Hakimiyan, Arnavaz ...............................Paper 208<br />

Hakki, Sam ......................................Paper 356<br />

Hakki, Sema ................................... Poster P072<br />

Hakonarson, Hakon ...............................Paper 448<br />

Halanski, Matthew ................................Paper 541<br />

907<br />

Haleem, Abdul Ahad ..............................Paper 236<br />

Halliburton, Carolina. .............................Paper 400<br />

Halligan, Benjamin Warren .........................Paper 657<br />

Halstead, Mark ...................................Paper 626<br />

Hamadouche, Moussa ........................... Poster P484<br />

Hambright, Dustin ................................Paper 493<br />

Hamid, Nady. ....................................Paper 676<br />

Hamilton, William G ..........................Paper 005, 066<br />

Hammond, Kyle E ................................Paper 483<br />

Hammoud, Sommer. ..............Paper 554, 642, Poster P254,<br />

Scientific Exhibit SE34, SE50, SE64<br />

Han, Chang-Dong. .............................. Poster P055<br />

Han, Seung Beom .................................Paper 309<br />

Hancock, Nicholas J ...............................Paper 675<br />

Hanel, Douglas P ...............................Symposia O<br />

Hanna, Lewis. .........................Paper 501, Poster P346<br />

Hanna, Sammy A ......................Paper 462, Poster P172<br />

Hansen, Benjamin ................................Paper 706<br />

Hansen, Patricia L ..................Paper 357, 539, Poster P101<br />

Hansen, Sigvard T ................................Poster P210<br />

Hanslow, Sarah ..................................Poster P210<br />

Hanson, Beate ....................................Paper 724<br />

Hanson, Jean. .................................. Poster P403<br />

Hanssen, Arlen D .......Paper 002, 133, Poster P136, Symposia B<br />

Hanzlik, Josa .....................................Paper 293<br />

Hara, Toshiaki ....................................Paper 707<br />

Harada, Yoshitada. .....................Paper 546, Poster P279<br />

Harb, Ziad .......................................Paper 497<br />

Hardcastle, John McCall. ...........................Paper 312<br />

Harfush-Nasser, L Alberto ..........................Paper 553<br />

Harigane, Kengo ................................ Poster P268<br />

Hariri, Sanaz .................................Paper 463, 647<br />

Harisboure, Alain .................................Paper 697<br />

Harlaar, Jaap .....................................Paper 616<br />

Harmsen, William. ................................Paper 364<br />

Harner, Christopher D .......................... Symposia BB<br />

Harnett, Paul Richard ............................ Poster P244<br />

Harris, Alex HS ................................. Poster P040<br />

Harris, Joshua ....................................Paper 572<br />

Harris, Michael D .................................Paper 706<br />

Harris, Mitchel B ..................... Poster P355, Symposia G<br />

Harris, Steven M ...............................Symposia 151<br />

Harrison, Alicia Karin ... Multimedia Education MEC30, Paper 601<br />

Harrison, Jim. .................................. Poster P244<br />

Harrop, James ................................Paper 024, 666<br />

Hart, Alister ..........Paper 033, 067, 068, Scientific Exhibit SE03<br />

Hart, Deborah .................................. Poster P327<br />

Hart, Nathan .....................................Paper 582<br />

Hart, Robert A .................................. Poster P394<br />

Harter, Gary Dean. ................................Paper 716<br />

Hartman, Robert ..................................Paper 023<br />

Hartsell, Zane ....................................Paper 703<br />

Hartsock, Langdon A ..............................Paper 650<br />

Hartzband, Mark A .....................Paper 293, Poster P057<br />

Haruhiko, Satonaka ...............................Paper 652<br />

Harvey-Kelly, Katherine F ......................... Poster P499<br />

Hasan, Samer S ................................. Poster P300<br />

Hasan, Saqib ....................Multimedia Education MEC39<br />

Hasanzadeh, Zabeolla .............................Paper 143<br />

Hash, Thomas .................................. Poster P139<br />

Hasharoni, Amir ..................................Paper 667<br />

Hashim, Zaid. .................................. Poster P503<br />

Hashimoto, Hideo ................................Paper 345<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Hashimoto, Tomoyuki .............................Paper 259<br />

Hashimoto, Yusuke. ..............................Poster P115<br />

Hassenpflug, Joachim. ........................... Poster P285<br />

Hatano, Hiroshi ................................ Poster P523<br />

Hatayama, Kazuhika. ............................ Poster P267<br />

Hatten, H Paul ...................................Paper 672<br />

Hattrup, Steven J ..................................Paper 087<br />

Havelin, Leif Ivar. ..........................Poster P497, P500<br />

Hawasli, Ammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 030<br />

Hawkes, David ..................................Poster P321<br />

Hawkins, Richard J .................Paper 089, 373, Poster P325<br />

Hawkinson, Nicola .............................. Poster P394<br />

Hawn, Mary. .....................................Paper 473<br />

Hayashi, Hiroyuki. ................................Paper 261<br />

Hayashi, Katsuhiro ................ Paper 235, 521, Poster P537,<br />

Scientific Exhibit SE83<br />

Hayashida, Kenji ................................ Poster P289<br />

Hayda, Roman A ................................Symposia N<br />

Hayden, Brett. ....Multimedia Education MEC08, MEC46, MEC47,<br />

MEC48, MEC49, MEC50, MEC51, MEC52, MEC53<br />

Haydon, Rex ..........................Paper 518, Poster P536<br />

Hayon, Solomon. .......................Scientific Exhibit SE31<br />

Hays, Peyton ..........................Paper 348, Poster P035<br />

Hazard, Sprague ..................................Paper 206<br />

Hazlerigg, Alexandra. ..............................Paper 709<br />

He, Tong-Chuan .......................Paper 518, Poster P536<br />

Healey, John H ...................................Paper 238<br />

Healy, William L ................Poster P034, P085, Symposia B<br />

Heard, Wendell M Rogan ......................... Poster P438<br />

Hecht, Andrew C. ......................Paper 741, Poster P378<br />

Heckman, James D ................................Paper 454<br />

Heckman, Kimberly ...............................Paper 748<br />

Hedden, David ...............................Paper 252, 255<br />

Hegedus, Eric. ....................................Paper 373<br />

Hegmann, Jo Ellen .............................. Poster P556<br />

Heim, Christine S .......................Scientific Exhibit SE02<br />

Helfet, David Leonard .............................Paper 724<br />

Heller, John G ....................................Paper 737<br />

Heller, Yonah. ...................................Poster P141<br />

Hellman, Edward J .............................. Poster P153<br />

Hellman, Michael ............................... Poster P079<br />

Helmy, Hany F ...................................Paper 062<br />

Hemery, Xavier ...................................Paper 697<br />

Hemmer, Stefan ................................ Poster P405<br />

Henderson, Cynthia ............................. Poster P557<br />

Henderson, Drew ......................Paper 246, Poster P341<br />

Henderson, Eric. ..................... Paper 006, 240, 516, 520<br />

Henderson, William G .............................Paper 473<br />

Henley, John D ...................................Paper 423<br />

Henley, M Bradford ..............................Symposia F<br />

Henn, R Frank ....................................Paper 580<br />

Hennrikus, William L ...............Paper 171, 174, Poster P482<br />

Henshaw, Robert Mikael. ......................... Poster P526<br />

Hepinstall, Matthew ............................. Poster P139<br />

Hebert-Davies, Jonah ..............................Paper 623<br />

Herkowitz, Harry N .......... Paper 456, 739, Poster P363, P390<br />

Herman, Martin Joseph ...........Paper 391, 392, 393, 394, 395,<br />

396, 397, 398, 399, 400, 401,<br />

402, 403, 404, 405, Symposia R<br />

Hernandez-Soria, Alexia. ........... Scientific Exhibit SE50, SE64<br />

Herndon, James H ........................Paper 042, 586, 718<br />

Hernigou, Philippe ...Paper 009, 191, Scientific Exhibit SE18, SE21<br />

908<br />

Herrick, Richard T.......Paper 331, 332, 333, 334, 335, 336, 337,<br />

338, 339, 340, 341, 342, 343, 344, 345<br />

Herzberg, Wolfgang ............................. Poster P285<br />

Herzenberg, John E. ................Paper 423, 555, Poster P222<br />

Herzog, Mary A ................................. Poster P224<br />

Hess, Susanne ....................................Paper 540<br />

Hester, Sydney. ................................. Poster P137<br />

Hetsroni, Iftach ...................................Paper 659<br />

Hettrich, Carolyn .............Paper 579, Scientific Exhibit SE42<br />

Heuer, Hinrich JD ................Multimedia Education MEC34<br />

Heumann, Peter ................................ Poster P273<br />

Hewett, Timothy E ................................Paper 649<br />

Heybeli, Nurettin ............................... Poster P568<br />

Heyl, Alma. ..................................Paper 239, 618<br />

Heyse, Thomas Jan ....................Poster P120, P121, P132<br />

Heyworth, Benton E ...............................Paper 405<br />

Hideo, Noguchi. ........................Scientific Exhibit SE26<br />

Higgins, Laurence D ....Multimedia Education MEC03, Paper 164<br />

Higgins, Thomas F .............................. Poster P496<br />

Higuchi, Hiroshi ................................ Poster P267<br />

Higuera, Carlos A ......................Paper 600, Poster P096<br />

Hildebrand, Kevin A ...............................Paper 303<br />

Hilibrand, Alan S ................Paper 024, 256, 270, 666, 750,<br />

Poster P361, P385<br />

Hillman, Joshua ..................................Paper 065<br />

Hillstrom, Howard ................................Paper 558<br />

Himes, Ryan .....................................Paper 140<br />

Hintermann, Beat ..................Paper 055, 059, Poster P209<br />

Hipp, John. ..............................Paper 028, 260, 721<br />

Hirai, Cori ..................................... Poster P527<br />

Hirakawa, Kazuo. ............................... Poster P046<br />

Hiratzka, Jayme. ..................................Paper 377<br />

Hirosima, Ryo ....................................Paper 591<br />

Hirst, Philip. ....................................Poster P117<br />

Hitt, Kirby .......................................Paper 190<br />

Hiz, Murat ..................................... Poster P565<br />

Hjerstedt, Karen ..................................Paper 471<br />

Ho, Christine Ann. ....................... Paper 172, 173, 432<br />

Ho, Duarte Y ................................... Poster P197<br />

Ho, Henry .......................................Paper 532<br />

Ho, Jessica Mayan .................................Paper 260<br />

Ho, Pei-Ran ......................................Paper 226<br />

Hoang, Bang H ...................................Paper 233<br />

Hoekstra, H J .....................................Paper 070<br />

Hoenecke, Heinz R ................................Paper 369<br />

H<strong>of</strong>felner, Thomas ................................Paper 203<br />

H<strong>of</strong>fman, Martin. .................Paper 732, Poster P359, P402<br />

H<strong>of</strong>fman, Robert M. ..........Poster P537, Scientific Exhibit SE83<br />

H<strong>of</strong>fmeyer, Pierre J ........................Paper 091, 183, 622<br />

H<strong>of</strong>mann, Aaron Adam ...........................Symposia B<br />

H<strong>of</strong>staetter, Jochen G ............................ Poster P208<br />

Hogrebe, Paul C ..................................Paper 467<br />

Hohl, Justin ...........................Paper 023, Poster P362<br />

Hojo, Tatsuya. ....................................Paper 277<br />

Hokama, Jorge ...................................Paper 400<br />

Hol, Annemiek ...............................Paper 072, 075<br />

Holdsworth, David W. ........................... Poster P056<br />

Holland, Danny C ................................Paper 271<br />

Holland, James ...................Paper 038, Poster P064, P074<br />

Holloway, Julianne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P449<br />

Holmes, Laurens ................................ Poster P246<br />

Holt, Ginger E .........................Paper 192, Poster P137<br />

Holtzman, Kathleen ...........................Paper 455, 456<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Holzer, Nicolas ...................................Paper 091<br />

Homering, Martin. ................................Paper 540<br />

Hommel, Gabriel James. ...........................Paper 668<br />

Honsawek, Sittisak .............................. Poster P163<br />

Hooper, Gary John ......Paper 346, 347, 348, 349, 350, 351, 352,<br />

353, 354, 355, 356, 357, 358, 359, 360<br />

Hoover, M ..................................... Poster P280<br />

Hoover, Stephen A ................................Paper 585<br />

Hopkinson, William John ................Scientific Exhibit SE46<br />

Hopper, Robert ...................................Paper 532<br />

Hoque, Martha ..................................Poster P012<br />

Horazdovsky, Ryan David ........................ Poster P398<br />

Hori, Kazuichiro ..................................Paper 652<br />

Horibe, Shuji .....................................Paper 201<br />

Horinouchi, Yutaka ............................. Poster P354<br />

Horne, Walter .................................. Poster P249<br />

Horneff, John G ................................ Poster P464<br />

Hornicek, Francis J ................................Paper 520<br />

Horodyski, MaryBeth ............................ Poster P368<br />

Horwitz, Daniel Scott ............................ Poster P496<br />

Hosalkar, Harish Sadanand ................Paper 543, 551, 637,<br />

Poster P063, P245, P251<br />

Hoshino, Christopher Max .........................Paper 176<br />

Hoshino, Yuichi .......................Paper 019, Poster P407<br />

Hossain, Munier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P065<br />

Hotchkiss, Richard ................................Paper 146<br />

Hotchkiss, Robert N ....Poster P298, P340, Scientific Exhibit SE50<br />

Hotta, Tetsuo. .................................. Poster P523<br />

Houman, Justin. ..................................Paper 662<br />

Houston, Thomas .................................Paper 473<br />

Hovelius, Lennart .................................Paper 615<br />

Howard, Caitlin ................................ Poster P356<br />

Howell, Stephen M .....................Paper 420, Poster P202<br />

Hozack, William J ........ Multimedia Education MEC10, MEC11,<br />

Paper 124, Symposia E<br />

Hresko, Michael Timothy. ..........................Paper 170<br />

Hsieh, Adam H ...................................Paper 700<br />

Hsieh, Jui-Yang ............................Poster P157, P365<br />

Hsu, Jason ................................Poster P103, P173<br />

Hsu, Joseph R ......... Paper 052, 733, Poster P304, P462, P473,<br />

P498, P502, P507, Symposia Q<br />

Hsu, Patricia A. ................................. Poster P324<br />

Hsu, Wellington .........Paper 016, 017, 018, 019, 020, 021, 022,<br />

023, 024, 025, 026, 027, 028, 029, 030<br />

Hu, Serena S .....................................Paper 749<br />

Hu, Yue-Yung ....................................Paper 304<br />

Huang, Hsiang-Yao ............................Paper 274, 500<br />

Huang, Ronald ...................................Paper 250<br />

Huang, Russel C .......................Paper 269, Poster P369<br />

Huddleston, James I .......................Paper 042, 586, 718<br />

Huddleston, Paul M .....................Scientific Exhibit SE45<br />

Hueber, Axel .....................................Paper 682<br />

Huebner, Janet L .................................Poster P501<br />

Huemmer, Carmen. ..............................Poster P441<br />

Huffman, G Russell. ..............................Poster P518<br />

Hughes, Alexander P. ..............................Paper 747<br />

Huh, Jeannie ..............................Poster P304, P473<br />

Hui, Catherine. ...................................Paper 481<br />

Hui, Emily .......................................Paper 388<br />

Huk, Olga ..................................... Poster P082<br />

Hull, Jason Ray ................................. Poster P099<br />

Hull, Maury L .................................. Poster P202<br />

Hullinger, Heidi ..................................Paper 402<br />

909<br />

Hulten, Kristina G. ................................Paper 431<br />

Hummel, Matthew Thomas ........................Poster P109<br />

Humphrey, Catherine A ............................ Paper 310<br />

Hung, Clark T ..........................Scientific Exhibit SE33<br />

Hungerford, Marc Wilson .........................Poster P081<br />

Hunt, Devyani. ...................................Paper 625<br />

Hunt, Kenneth. ...............Paper 050, 505, Poster P214, P219<br />

Hunter, Kim. ....................................Poster P419<br />

Hunter, Robert E ..................................Paper 491<br />

Huon, Tomy S ....................................Paper 080<br />

Huot, Jennifer Caitlin ..............Paper 711, Poster P089, P151<br />

Hurley, Patrick E .......................Paper 120, Poster P274<br />

Hurst, Jason Michael. ..................Poster P204, Symposia P<br />

Hurst, Lawrence C. ................................Paper 568<br />

Hurst, Simon A ................................. Poster P176<br />

Hurt, James A ...................................Poster P316<br />

Hurwitz, Shepard R. ..............Paper 455, 456, Symposia 151<br />

Husain, Sohail. ...............................Paper 342, 342<br />

Hussain, Nasir. .................................Poster BOS2<br />

Hutchinson, Mark R ............................. Poster P455<br />

Hutt, Jonathan R..................................Paper 709<br />

Hutzler, Lorraine. .................................Paper 113<br />

Hwang, Bo-Hyun ............................... Poster P055<br />

Hwang, Byoung-Yoon. .............................Paper 488<br />

Hwang, Steven W .................................Paper 440<br />

Hymes, Robert. ...................................Paper 676<br />

Ichinose, Tsuyoshi. .............................. Poster P333<br />

Ida, Takahiro .................Paper 041, 098, Poster P047, P054<br />

Idusuyi, Osaretin B ...............................Poster P271<br />

Iga, Toru. .................................Poster P174, P490<br />

Iguchi, Hirotaka ..................................Paper 319<br />

Iida, Takahiro ...................................Poster P115<br />

Ikari, Katsunori ...................................Paper 591<br />

Ikawa, Tessyu. ...................................Poster P115<br />

Ike, Hiroyuki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P049, P068<br />

Ikebuchi, Mitsuhiko ..............................Poster P115<br />

Ikeguchi, Ryosuke ............................... Poster P239<br />

Ikemoto, Roberto ............................... Poster P295<br />

Ilizaliturri Sanchez, Victor Manuel ...................Paper 360<br />

Ilo, Kevin ............................... Paper 033, 067, 068<br />

Ilyas, Asif .........................Paper 284, 679, Poster P228<br />

Imai, Kan ........................................Paper 277<br />

Imhauser, Carl W .............................Paper 327, 498<br />

Immerman, Igor .......................Paper 129, Poster P004<br />

Imrie, Meghan N. ............................... Poster P253<br />

Inaba, Yutaka. .............................Poster P049, P068<br />

Inacio, Maria Carolina Secorun ...............Poster P198, P413,<br />

Scientific Exhibit SE04<br />

Incavo, Stephen J. ............................... Poster P005<br />

Ingwer, Zach ................................... Poster P483<br />

Innes, Alan. .................................... Poster P262<br />

Innocenti, Bernardo ..............................Poster P171<br />

Innocenti, Massimo ..............................Poster P061<br />

Inoue, Hirokazu ..................................Paper 019<br />

Inoue, Masayuki ..................................Paper 321<br />

Inoue, Shinichi ................................. Poster P354<br />

Inrig, Taucha .....................................Paper 053<br />

Inwards, Carrie ................................. Poster P544<br />

Iobst, Christopher August ........................ Poster P483<br />

Iorio, Carlo .....................................Poster P331<br />

Iorio, Raffaele ..................Multimedia Education MEC14,<br />

Paper 486, 487, Poster P447<br />

Iorio, Richard .............................Poster P034, P085<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Iosifidis, Michael. .................................Paper 318<br />

Ipp, Lisa .........................................Paper 401<br />

Irrgang, James J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P505<br />

Ishida, Takashi. ............................Poster P049, P068<br />

Ishii, Katsushi .................................. Poster P268<br />

Ishii, Yoshinori .........................Scientific Exhibit SE26<br />

Israelite, Craig L. ................................ Poster P122<br />

Issei, Nomura ....................................Paper 386<br />

Itoi, Eiji ........................................Poster P291<br />

Iwai, Shintaro .................................. Poster P007<br />

Iwaki, Hiroyoshi .................................Poster P115<br />

Iwamoto, Naoyuki .........................Poster P049, P068<br />

Iwamoto, Takuji ..................................Paper 591<br />

Iwamoto, Yukihide ......Paper 308, 414, Poster P150, P168, P476<br />

Iwanik, Michael. ..................................Paper 027<br />

Iwasaki, Junichi. .......................Paper 619, Poster P158<br />

Iwinski, Henry J. ..............................Paper 424, 445<br />

Izaki, Teruaki ................................... Poster P366<br />

Izuka, Byron H ...................................Paper 177<br />

Jackson, Atiba .................................. Poster P446<br />

Jackson, Mark P. ..................................Paper 526<br />

Jackson, Nancy M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 629<br />

Jackson, William ...............Paper 354, 415, 592, Poster P145<br />

Jacobs, Craig .....................................Paper 630<br />

Jacobs, Joshua J ...............Paper 714, Scientific Exhibit SE02,<br />

Symposia ORSII<br />

Jacobs, Michael A .................................Paper 062<br />

Jacobson, Justin. ............. Paper 078, 602, Poster P290, P297<br />

Jac<strong>of</strong>sky, David Joseph .............................Paper 218<br />

Jac<strong>of</strong>sky, Marc C ..............................Paper 132, 218<br />

Jacovides, Christina L.. .....Paper 122, 124, 126, Poster P104, P107<br />

Jacquet, Robin .............................Poster P249, P256<br />

Jada, George N ..................................Poster P401<br />

Jaeger, Sebastian ...........................Poster P090, P095<br />

Jafari, S. Mehdi ..............Paper 125, 250, Poster P184, P464,<br />

Scientific Exhibit SE08<br />

Jaffe, Fredrick Francis ..............................Paper 190<br />

Jaffe, William L ...................................Paper 352<br />

Jain, Amit. ............................Paper 180, Poster P081<br />

Jain, Viral .............................Paper 450, Poster P384<br />

Jaiswal, Parag Kumar .............................Poster P116<br />

Jamali, Amir A. ...................................Paper 593<br />

Jameel, Omar ....................................Paper 397<br />

James, Philip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Poster P071<br />

Jelinek, James S ................................. Poster P526<br />

James, Stephen E. .................................Paper 265<br />

Jameson, Simon ...................Paper 038, 537, Poster P071<br />

Jamieson, Miranda .............................. Poster P032<br />

Jamison, James M .......................Scientific Exhibit SE30<br />

Janey, Jim. .......................................Paper 630<br />

Jang, Jak ........ Paper 010, 011, 320, 322, 326, Poster P178, P192<br />

Jang, Sung-Won. ..................................Paper 063<br />

Jang, Yoon Jong. .................................Poster P051<br />

Jani, Jai. ....................................... Poster P099<br />

Jao, Abigail Trinidad. .............................. Paper 311<br />

Jarrett, Bryan T. ........................Paper 530, Poster P025<br />

Jarrett, Claudius ................................ Poster P170<br />

Javidan, Pooya. ...................................Paper 689<br />

Jawa, Andrew. .................................. Poster P469<br />

Jawad, Muhammad Umar ..........................Paper 236<br />

Jayasankar, Subramanyan. ................Scientific Exhibit SE47<br />

Jayaswal, Arvind ..............................Paper 268, 305<br />

Jazayeri, Reza. .................................. Poster P420<br />

910<br />

Jazrawi, Laith M ......... Multimedia Education MEC39, MEC40<br />

Jeans, Kelly. ......................................Paper 421<br />

Jaberi, Mehrad M .................................Paper 478<br />

Jenis, Louis George . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P356<br />

Jenkins, Cathy .................................. Poster P137<br />

Jenkins, Cathy ....................................Paper 415<br />

Jenkins, Matthew V ................................ Paper 210<br />

Jenkins, Paul John. .............................. Poster P504<br />

Jensen, Cyrus D. .......................Paper 722, Poster P155<br />

Jensen, Kelly ................................... Poster P482<br />

Jeong, Eun Kee ...................................Paper 021<br />

Jeong, Jae-heon ....................Paper 472, 596, Poster P017<br />

Jeong, Mun Su. ............Poster P130, P134, P135, P143, P418<br />

Jeray, Kyle James ..................................Paper 676<br />

Ji, Hyung-min .....................Paper 472, 596, Poster P017<br />

Jia, Xia<strong>of</strong>eng ................................... Poster P284<br />

Jiang, Ching Chuan ............................. Poster P157<br />

Jindal, Rohit .....................................Paper 229<br />

Jinnah, Riyaz H ..................................Symposia P<br />

Jiranek, William A. .............................. Poster P099<br />

Jo, Sungkweon. ...................................Paper 316<br />

Jobe, Frank W .................................. Poster P420<br />

Jobin, Charles M ................................ Poster P303<br />

Joensson, Anders. ...............................Poster BOS2<br />

Joglekar, Siddharth B ..............................Paper 748<br />

Johnson, Aaron J. ................ Paper 121, Poster P062, P181,<br />

Scientific Exhibit SE05, SE14, SE19, SE22<br />

Johnson, Anthony E .........................Poster P185, P511<br />

Johnson, Darren L. ............................. Symposia BB<br />

Johnson, Derek R ................................Poster P191<br />

Johnson, Ge<strong>of</strong>frey V ...............................Paper 624<br />

Johnson, James A ......................Paper 584, Poster P337<br />

Johnson, Jared. .......................... Paper 137, 673, 674<br />

Johnson, Jeffrey Einer ...................Paper 101, Poster P445<br />

Johnson, Marie-Clare ..............................Paper 692<br />

Johnson, Mia. ....................................Paper 646<br />

Johnson, Michael .................................Paper 178<br />

Johnson, Timothy Shane ...........................Paper 206<br />

Johnston, Casey D ................................Paper 646<br />

Johnston, Charles Eugene ..........................Paper 391<br />

Johnston, Donald William Cooper ................. Poster P086<br />

Johnston, Richard C ...............................Paper 004<br />

Johnston, Katherine ............................. Poster P280<br />

Jones, Carroll Payne ...............................Paper 505<br />

Jones, Clifford B .........................Paper 047, 150, 732,<br />

Poster P224, P359, P402, P513, P515<br />

Jones, Deryk G. ................................. Poster P408<br />

Jones, Grant L ....................................Paper 572<br />

Jones, Kay S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P454<br />

Jones, Kerwyn ......Paper 166, 167, 168, 169, 170, 171, 172, 173,<br />

174, 175, 176, 177, 178, 179, 180, Poster P248<br />

Jones, Kevin. .....................................Paper 522<br />

Jones, Krist<strong>of</strong>er .........................Scientific Exhibit SE68<br />

Jones, Lynne C. ...................Paper 299, Poster P016, P081<br />

Joo, Jong-Hwan. ..................................Paper 181<br />

Yoo, Yonsik .................................... Poster P425<br />

Jordan, Charles J .............. Paper 715, Scientific Exhibit SE78<br />

Jordanov, Martin I. ................................Paper 331<br />

Jorgensen, Anton Yang .............................Paper 437<br />

Joshi, Rohan .....................................Paper 366<br />

Jost, Bernhard ...................................Poster P315<br />

Jost, Patrick .................................... Poster P424<br />

Joyce, Thomas .....................Paper 038, 069, Poster P074<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Ju, Kevin L .......................................Paper 430<br />

Jules-Elysee, Kethy. ................................Paper 290<br />

Jung, Ho Joong ...............................Paper 489, 596<br />

Jung, Kwang Am ...............Paper 122, 124, 126, Poster P079<br />

Jung, Martin. .....................................Paper 561<br />

Jung, Michael. ....................................Paper 674<br />

Jung, Woo Bin .............Poster P130, P134, P135, P143, P418<br />

Jung, Woon-hwa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 596<br />

Jung, Young-Bok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 489<br />

Jungkind, Donald ............................... Poster P098<br />

Kabata, Tamon ................................. Poster P007<br />

Kabir, Korush. ....................................Paper 740<br />

Kaczmarek, Ron. ........................Scientific Exhibit SE41<br />

Kadoya, Yoshinori. .............................. Poster P125<br />

Kadrmas, Warren R ..............................Symposia N<br />

Kaeding, Christopher C .. Paper 646, 647, 648, 649, 650, 651, 652,<br />

653, 654, 655, 656, 657, 658, 659, 660<br />

Kaehr, David M ................................. Poster P487<br />

Kafle, Dinesh .....................................Paper 026<br />

Kagoma, Yoan ....................................Paper 108<br />

Kaider, Alexandra .................................Paper 347<br />

Kaimrajh, David N .............................. Poster P483<br />

Kajino, Yoshitomo .............................. Poster P007<br />

Kakar, Sanjeev ....................................Paper 343<br />

Kakihana, Masataka ...............................Paper 096<br />

Kakinoki, Ryosuke. .............................. Poster P239<br />

Kalainov, David Mark ..............................Paper 342<br />

Kalisvaart, Michael ................................Paper 002<br />

Kalore, Niraj ................................... Poster P545<br />

Kam, Check C .............................Poster P293, P334<br />

Kamada, Satoshi ............ Paper 041, Poster P047, P054, P277<br />

Kamath, Atul F ................................. Poster P122<br />

Kamikawa, Koya .......................Paper 546, Poster P279<br />

Kamineni, Srinath. .............................. Poster P426<br />

Kaminski, Christine ..............................Poster P103<br />

Kanakaris, Nikolaos K. ..........Paper 211, 223, 376, Poster P499<br />

Kanayama, Masahiro ..............................Paper 259<br />

Kanazawa, Kazuki .................................Paper 098<br />

Kancherla, Vamsi. ................................Poster P518<br />

Kandemir, Utku. ..................................Paper 225<br />

Kane, Patrick .....................................Paper 357<br />

Kaneko, Takeshi ................................ Poster P046<br />

Kaneko, Tetsuya. ................................ Poster P333<br />

Kaneko, Tomonori ................................Paper 096<br />

Kang, Bun-Jung ....................Paper 472, 596, Poster P017<br />

Kang, Daniel .....................................Paper 669<br />

Kang, Hyun-Guy ..................................Paper 525<br />

Kang, James ......................................Paper 023<br />

Kang, Jung Ho .................................. Poster P144<br />

Kang, Kyung-Do . .Paper 257, Poster P130, P134, P135, P143, P418<br />

Kang, Matthew M ......... Paper 030, 446, 449, 661, Poster P392<br />

Kang, Richard W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P452<br />

Kang, Yeon Gwi. ................................ Poster P200<br />

Kanim, Linda E A .................................Paper 662<br />

Kanj, Wajdi ......................................Paper 482<br />

Kano, Masanobu. .................................Paper 232<br />

Kantor, Stephen R .................................Paper 713<br />

Kaper, Bertrand Paul .....Paper 451, 452, 453, 454, 455, 456, 457,<br />

458, 459, 460, 461, 462, 463, 464, 465<br />

Kaplan, Leon .....................................Paper 667<br />

Kaplan, Lige. ................................... Poster P194<br />

Kaplan, Sheldon L. ................................Paper 431<br />

Kappe, Thomas ................................. Poster P028<br />

911<br />

Kapron, Ashley L. .............Paper 635, Scientific Exhibit SE12<br />

Kaptein, Bart L. ...................................Paper 594<br />

Karahan, Mustafa ................................Poster P561<br />

Karaliotas, Georgios I ............................ Poster P188<br />

Karas, Spero G ..........Paper 676, 677, 678, 679, 680, 681, 682,<br />

683, 684, 685, 686, 687, 688, 689, 690<br />

Karashima, Hirotaka. ........ Paper 041, Poster P047, P054, P277<br />

Karbach, Lauren E .................................Paper 260<br />

Kardosh, Rami. ...................................Paper 406<br />

Karlen, Judson W .................................Paper 314<br />

Karol, Lori A .....................................Paper 421<br />

Karrholm, Johan Nils ..............................Paper 704<br />

Kasai, Yuichi .................................Paper 263, 664<br />

Kashima, Nobuhiro ...............Paper 041, Poster P047, P054<br />

Kasinova, Monika ............................... Poster P280<br />

Kasraeian, Sina ...................................Paper 228<br />

Kato, Satoshi .....................................Paper 261<br />

Kato, Yuki ..................................... Poster P407<br />

Katonis, Pavlos ................................. Poster P367<br />

Katz, Gregory. .........................Paper 129, Poster P004<br />

Katz, Jeffrey N ................................Paper 184, 286<br />

Kaufman, Annette .................................Paper 503<br />

Kawabata, Akira. ..................................Paper 345<br />

Kawahara, Norio ....................... Paper 261, Poster P351<br />

Kawakami, Kosei ..................................Paper 591<br />

Kawanabe, Keiichi. .............................. Poster P239<br />

Kawano, Osamu ................................ Poster P350<br />

Kawashima, Hiroyuki ............................ Poster P523<br />

Kay, David B .....................................Paper 103<br />

Kaya, Mitsunori ...................................Paper 232<br />

Kean, Kathryn E. ..................................Paper 436<br />

Kean, Thomas J ...................................Paper 378<br />

Kearing, Stephen ..................................Paper 713<br />

Kearney, Sean Patrick ..............................Paper 427<br />

Kearns, Kenneth ................................ Poster P098<br />

Keating, E Michael ......Paper 241, 242, 243, 244, 245, 246, 247,<br />

248, 249, 250, 251, 252, 253, 254, 255, 413<br />

Keating, Gail Sue. ............................... Poster P558<br />

Kebaish, Khaled M-. ....................Paper 745, Poster P401<br />

Keck, Johannes ...................................Paper 542<br />

Keefer, Eric .......................................Paper 570<br />

Keel, Marius. ................................... Poster P038<br />

Keeling, John Joseph. ..............................Paper 705<br />

Keenan, Mary Ann E .......... Paper 279, 627, Poster P276, P308<br />

Keene, James S. ..................................Poster P412<br />

Keener, Jay D ......................Paper 086, 601, Poster P322<br />

Keeney, James A. ..................Paper 708, Poster P088, P126<br />

Kelem, Rose ......................................Paper 471<br />

Kelestemur, Mehmet Halidun ..................... Poster P560<br />

Kellam, James F. ..................................Paper 676<br />

Keller, Andres ...................................Poster P211<br />

Keller, Julie M ....................................Paper 723<br />

Kellett, Catherine .................................Paper 461<br />

Kelley, Todd ...........................Paper 194, Poster P142<br />

Kelly-Pettersson, Paula ............................Poster P512<br />

Kelly, Anne Mary. ............................... Poster P424<br />

Kelly, Bryan T. ..................... Paper 642, 644, Symposia J<br />

Kelly, Derek Michael ........... Paper 167, 403, 404, Poster P250<br />

Kelly, James D .................................. Poster P339<br />

Kelly, John D .....................................Paper 613<br />

Kelly, Matthew J .................Multimedia Education MEC36<br />

Kelly, Michael .................................. Poster P033<br />

Kelly, Michael A. .................................Symposia B<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Kelly, Natalie ..........................Paper 534, Poster P449<br />

Kelly, Sean .......................................Paper 147<br />

Kemp, Graham ..................................Poster P321<br />

Kemper, Dan ................................... Poster P496<br />

Kempton, Laurence. ............................. Poster P478<br />

Kend<strong>of</strong>f, Daniel. .......................Paper 248, Poster P092<br />

Kendrick, Benjamin JL .............................Paper 592<br />

Kenji, Oguro ................................... Poster P432<br />

Kennedy, John G ..................................Paper 097<br />

Kennedy, William R ...............................Paper 062<br />

Kenniston, Julia Anne. ........................... Poster P236<br />

Kenter, Keith ............Paper 076, 077, 078, 079, 080, 081, 082,<br />

083, 084, 085, 086, 087, 088, 089, 090<br />

Kenyu, Iwasaki ...................................Paper 308<br />

Keorochana, Gun .................................Paper 137<br />

Kephart, Curtis J .................................. Paper 210<br />

Kepler, Christopher. ..........Paper 269, 554, Poster P254, P369,<br />

Scientific Exhibit SE49<br />

Kercher, James ........................... Paper 200, 495, 574<br />

Kern, Brian Scott ..................................Paper 094<br />

Kertzner, Michael ......................Paper 074, Poster P067<br />

Keyes, David .....................................Paper 204<br />

Khair, Mahmoud Michael ........................ Poster P424<br />

Khakharia, Saurabh ...............................Paper 598<br />

Khalifa, Yaser Emam ............................. Poster P042<br />

Khalil, Jad .......................................Paper 230<br />

Khan, Bushra. ....................................Paper 471<br />

Khan, Shah Alam .................................Paper 237<br />

Khanna, A Jay .................... Scientific Exhibit SE36, SE62<br />

Khanna, Monica ..................................Paper 589<br />

Khanuja, Harpal Singh ..................Paper 299, Poster P016<br />

Khatod, Monti. ..................Paper 186, Poster P183, P198,<br />

Scientific Exhibit SE04<br />

Khatri, Dharmesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 720<br />

Khazzam, Michael S ....................Paper 157, Poster P520<br />

Khefacha, Ahmed ..........................Poster P120, P121<br />

Khodadadi, Akbar. ................................Paper 143<br />

Khoury, Amal ....................................Paper 139<br />

Khoury, Anthony. ............................... Poster P483<br />

Kibuule, Leonard K .............................. Poster P390<br />

Kienle, Karl-Philipp. ...............................Paper 542<br />

Kijek, Theresa ...................................Poster P312<br />

Kilic, Ayhan ......................................Paper 273<br />

Killeen, Kathleen. .................................Paper 358<br />

Kim, Cecilia E ....................................Paper 448<br />

Kim, David ......................................Paper 290<br />

Kim, Dong-Soo ..................................Poster P212<br />

Kim, Dongwook ................................ Poster P192<br />

Kim, Hee Joong. ..................................Paper 309<br />

Kim, Hubert T ................ Paper 161, Scientific Exhibit SE33<br />

Kim, Hye Ran ....................................Paper 153<br />

Kim, Hyeon Joo. ..................................Paper 631<br />

Kim, Hyun Min. ...........................Poster P313, P322<br />

Kim, Hyunchul ...............................Paper 694, 700<br />

Kim, Jae Kwang ...................Paper 335, Poster P230, P234<br />

Kim, Jaehon M ................................. Poster P206<br />

Kim, Jeffrey D .................................. Poster P190<br />

Kim, Jeong Suh ...................Paper 335, Poster P230, P234<br />

Kim, Joon Yub. ...................................Paper 153<br />

Kim, Joon-Hyung .................................Paper 269<br />

Kim, Jun Shik .........................Paper 181, Poster P001<br />

Kim, Jung Man ...............................Paper 152, 603<br />

Kim, Kang-Il .....................................Paper 418<br />

912<br />

Kim, Ki-Choul .........................Paper 472, Poster P017<br />

Kim, Paul D. ................................... Poster P303<br />

Kim, Paul R .................................... Poster P475<br />

Kim, Raymond H ..........................Poster P190, P191<br />

Kim, Sae Hoon ...................................Paper 153<br />

Kim, Seong Eun. ..................................Paper 021<br />

Kim, Seung-Ho ...................................Paper 583<br />

Kim, Stephen. ....................................Paper 534<br />

Kim, Sung-Hwan. .................................Paper 488<br />

Kim, Sung-Jae ....................................Paper 488<br />

Kim, Sun-Mi .....................................Paper 153<br />

Kim, Sunny H ....................................Paper 593<br />

Kim, Tae Kyun ...........................Paper 015, 329, 490,<br />

Poster P161, P167, P200, P272<br />

Kim, Tae-young ........................Paper 472, Poster P017<br />

Kim, Woo. .......................................Paper 673<br />

Kim, Yang-Soo. .......................... Paper 152, 153, 603<br />

Kim, Yong Sik ...................................Poster P051<br />

Kim, Yong-Min ..................................Poster P212<br />

Kim, Yong H .....................................Paper 262<br />

Kim, Yongjung J ..................................Paper 442<br />

Kim, Young-Hoo .......................Paper 181, Poster P001<br />

Kim, Young Jo ..........Paper 637, 639, Poster P059, P063, P077,<br />

Symposia J, ORSI<br />

Kimura, Atsushi. ..................................Paper 019<br />

Kimura, Hiroaki .............Poster P537, Scientific Exhibit SE83<br />

Kindsfater, Kirk ........................ Paper 071, Poster P191<br />

King, Akilah B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P348<br />

King, David M ................................Paper 231, 517<br />

King, Graham J W ............ Paper 678, 699, Poster P338, P343<br />

King, Joseph John .............................Paper 440, 519<br />

King, Tammy ................................... Poster P147<br />

Kinoshita, Kouichi ................Paper 041, Poster P047, P054<br />

Kinsella, Stuart D ..........................Poster P103, P173<br />

Kinsey, Tracy ......................Paper 003, 587, Poster P108<br />

Kiran, Amit .................................... Poster P327<br />

Singisetti, Kiran ...................................Paper 064<br />

Kirby, Jess McKarns .........................Poster P304, P473<br />

Kircher, Joern. .................................. Poster P328<br />

Kirkpatrick, Andrew ...............................Paper 517<br />

Kirk, Kevin L .....................................Paper 052<br />

Kirkpatrick, Kelley. ...............................Poster P104<br />

Kirkpatrick, Marcus. ............................. Poster P248<br />

Kirkwood, John M ................................Paper 239<br />

Kirmanj, Faraj ....................................Paper 356<br />

Kishida, Shunji ........................Paper 546, Poster P279<br />

Kisiday, John D ...................................Paper 159<br />

Kissenberth, Michael John ..........................Paper 373<br />

Kitay, Alison. ...........Scientific Exhibit SE34, SE50, SE64, SE82<br />

Kivirahk, Diana L .................................Paper 278<br />

Kiyama, Takahiko ..........................Poster P277, P366<br />

Klatt, Brian A ..............Paper 247, 617, 618, 618, Poster P119<br />

Klatt, Joshua .....................................Paper 175<br />

Klauser, Wolfgang .................................Paper 248<br />

Kleiber, Brian D. .................................. Paper 101<br />

Klein, Gregg R . . . . . . . . . . . . . . . . . . . . . . . . . Paper 293, Poster P057<br />

Klein, Sandra E ........................Paper 101, Poster P445<br />

Kleweno, Conor P. ................................Paper 639<br />

Klika, Alison K. ....................Paper 111, 600, Poster P096<br />

Klima, Matthew L ................................Poster P517<br />

Knavel, Erica ....................................Poster P412<br />

Knox, Jeffrey B. ................................. Poster P349<br />

Knupp, Markus ....................Paper 055, 059, Poster P209<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Ko, Jih-Yang. ....................................Poster P461<br />

Kobashi, Hiroaki. .................................Paper 277<br />

Kobayashi, Masaaki ...............................Paper 319<br />

Kobayashi, Naomi .........................Poster P049, P068<br />

Kobayashi, Tsutomu ........................Poster P267, P333<br />

Koc, Nursen. ................................... Poster P072<br />

Kocak, Tugrul. .................................. Poster P028<br />

Kocaoglu, Baris ..................................Poster P561<br />

Kocaoglu, Mehmet ......................Scientific Exhibit SE85<br />

Kocher, Mininder S ........Symposia R, Z, Paper 430, Poster P252<br />

Kodikal, Gautam. ................................Poster P416<br />

Koehler, Elizabeth A ...............................Paper 331<br />

Koehler, Steven ................................. Poster P378<br />

Koehnlein, Werner ................................Paper 183<br />

Koester, Linda A ..................................Paper 449<br />

Koethe, John ................................... Poster P137<br />

Koguchi, Atsushi ................................ Poster P432<br />

Koh, In Jun .............................Paper 015, 329, 490,<br />

Poster P161, P167, P200, P272<br />

Koh, Kyoung-Hwan ...............................Paper 683<br />

Koh, Young Do ...................Paper 335, Poster P230, P234<br />

Kohn, Joachim ................................. Poster P284<br />

Koike, Tatsuya ....................................Paper 506<br />

Koishi, Hayato. ..................................Poster P291<br />

Koizumi, Kota .................................. Poster P289<br />

Kok, Alison ..................................Paper 323, 481<br />

Kolb, Alexander. ..................................Paper 347<br />

Kolessar, David J ..................................Paper 716<br />

Kolowich, Patricia A ..............................Poster P307<br />

Komatsu, David E .................................Paper 288<br />

Komistek, Richard D. ..............Paper 292, Poster P197, P389<br />

Kon, Elizaveta ................ Paper 198, Scientific Exhibit SE61<br />

Konan, Sujith. ...................Paper 107, 620, 633, 636, 641,<br />

Poster P238, P437<br />

Konopka, Ge<strong>of</strong>frey ............................Paper 147, 273<br />

Koo, Kyung-Hoi .......................Paper 596, Poster P017<br />

Koo, Kyung Hoe ..................................Paper 472<br />

Kopansky-Giles, Deborah. ..........................Paper 457<br />

Koptan, Wael MT. ..........................Poster P360, P380<br />

Korin, Yael .............................Scientific Exhibit SE01<br />

Korkusuz, Feza ................................. Poster P072<br />

Korkusuz, Petek. ................................ Poster P072<br />

Kornblum, Martin B ............................. Poster P377<br />

Korotkova, Tatiana .............................. Poster P237<br />

Kosashvili, Yona .............Paper 251, 406, Poster P044, P062,<br />

Scientific Exhibit SE14<br />

Kose, Nusret. ................................... Poster P563<br />

Koseoglu, Resit Dogan ........................... Poster P560<br />

Kotilingam, Dhanasekaran. .........................Paper 213<br />

Kotwal, Prakash. .....................Paper 283, 340, 560, 569,<br />

Poster P232, P235, P305<br />

Kotwal, Suhel .................................. Poster P140<br />

Kotzamelos, Dimitrios .............................Paper 318<br />

Koueiter, Denise ................................ Poster P446<br />

Koutsoumbelis, Stelios A .......................Paper 738, 747<br />

Kovachevich, Rudy ................................Paper 133<br />

Kovacik, Mark W ........................Scientific Exhibit SE30<br />

Kowal, Jens ............................Scientific Exhibit SE13<br />

Kowalsky, Marc S. .................................Paper 086<br />

Koyonos, Loukas ................................ Poster P186<br />

Kolar, Milan. ....................................Poster P131<br />

Kozich, Jeanine ...................................Paper 401<br />

Kozin, Scott H ................................Symposia D, R<br />

913<br />

Kraay, Matthew J ........Paper 241, 242, 243, 244, 245, 246, 247,<br />

248, 249, 250, 251, 252, 253, 254, 255<br />

Krag, Martin Hans. ................................Paper 258<br />

Kragh, John F. ...................................Poster P510<br />

Kramer, Patricia. .................................Poster P210<br />

Kraska, Nadine ...................................Paper 193<br />

Krasnokutsky, Svetlana ........................... Poster P138<br />

Kraszewski, Andrew ...............................Paper 558<br />

Kraus, Virginia Byers ..............................Poster P501<br />

Krcik, James A .................................. Poster P252<br />

Krebs, Viktor Erik ..........................Poster P096, P154<br />

Kregor, Philip James ...............................Paper 221<br />

Kre<strong>of</strong>sky, Cole Robert ..............................Paper 087<br />

Kreshak, Jennifer ..............................Paper 433, 511<br />

Krieg, James C .................................. Poster P470<br />

Krishnan, Sumant G ..............Multimedia Education MEC31<br />

Krishnaney, Ajit A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 267<br />

Krismer, Martin ...........Multimedia Education MEC10, MEC11<br />

Krueger, Chad A ...........................Poster P180, P304<br />

Kruse, Lisa M ................................... Poster P322<br />

Krych, Aaron J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 660<br />

Krywicki, William J ................................Paper 716<br />

Kubiak, Erik. .....................Paper 734, Poster P030, P496<br />

Kubo, Tadahiko. ...........................Poster P524, P528<br />

Kubo, Toshikazu ..................................Paper 277<br />

Kuhl, Mitchell D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P487<br />

Kuhn, John E ....................................Poster P319<br />

Kuklis, Matt .................................... Poster P154<br />

Kulkarni, Abhaya V ................................Paper 630<br />

Kulkarni, Sachin ................................ Poster P260<br />

Kumar, Ashok ....................................Paper 237<br />

Kumar, Vijay ..............Paper 355, 474, 710, 720, Poster P489<br />

Kume, Kensuke ...................................Paper 272<br />

Kunkel, Sanford S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P153<br />

Kurata, Tsutomu ................................ Poster P432<br />

Kurd, Mark F ................................... Poster P385<br />

Kurdziel, Michael ............................... Poster P345<br />

Kuroda, Daisuke ...........................Poster P047, P054<br />

Kurtz, Anton .....................................Paper 258<br />

Kurtz, Steven M ............... Paper 212, 293, 480, Poster P114,<br />

Scientific Exhibit SE16, SE56, SE77<br />

Kurtz, William B ..................................Paper 353<br />

Kurylo, John ................................... Poster P469<br />

Kushner, Harvey ................................ Poster P240<br />

Kuye, Ifedayo ....................Multimedia Education MEC03<br />

Kuzyk, Paul Robert ................................Paper 306<br />

Kwak, Steve ......................................Paper 094<br />

Kweon, Seok-hyun ................................Paper 309<br />

Kwon, John Y ...................................Poster P218<br />

Kwon, Michael Soon. ..........................Paper 172, 173<br />

Kwon, Sae Kwang .................................Paper 015<br />

Kwon, Soon Yong ................................Poster P051<br />

Kwon, Young-Min ......................Paper 300, Poster P015<br />

Kwon, Young W. ................Multimedia Education MEC40,<br />

Paper 370, Poster P311<br />

Kyoung Min, Lee ..............................Paper 095, 547<br />

Labarca, Gonzalo ................................Poster P211<br />

Labianca, Luca. ..................Multimedia Education MEC26<br />

Labib, Sameh A ................................. Poster P170<br />

Lachiewicz, Paul F. ...................Paper 246, Symposia E, V<br />

Lackie, Debra. ...................................Poster P481<br />

Lackman, Richard D ..Paper 514, 515, 519, Poster P521, P530, P532<br />

Ladd, Amy L ........................Poster P227, Symposia O<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Lador, Rani ..................................Paper 028, 721<br />

Lafage, Virginia ........................Paper 441, Poster P394<br />

Laflamme, George Yves. .......................... Poster P475<br />

Lafosse, Laurent. ................................Symposia M<br />

Lage, Daniel. ................................... Poster P270<br />

Laible, Catherine N. ............................. Poster P472<br />

Lakstein, Dror .........................Paper 251, Poster P044<br />

Lali, Ferdinand ...................................Paper 068<br />

Lam, Patrick H. ..................Multimedia Education MEC36<br />

Lamont, Lauren Elizabeth ..........Scientific Exhibit SE34, SE50,<br />

SE64, SE82<br />

Lamontagne, Mario. ............................. Poster P083<br />

Lancaster, Gerard F .............................. Poster P320<br />

Lancianese, Sarah L. .....................Scientific Exhibit SE29<br />

Landgraeber, Stefan. ............................. Poster P066<br />

Landis, William J. ..........................Poster P249, P256<br />

Landon, Glenn C .........Paper 706, 707, 708, 709, 710, 711, 712,<br />

713, 714, 715, 716, 717, 718, 719, 720<br />

Lane, Joseph M ...........Paper 226, 313, Scientific Exhibit SE82<br />

Lange, Jeffrey K ............................Poster P353, P356<br />

Langfitt, Maxwell K ................................Paper 380<br />

Langton, David ...... Paper 032, 038, 064, 069, Poster P071, P074<br />

Lansford, Todd Joseph .............................Paper 670<br />

Lansky, David ...................................Symposia F<br />

Lantry, Jacob ....................................Poster P109<br />

Lanzi, Joseph T ...................................Paper 432<br />

Lanzinger, William .............................. Poster P495<br />

Lapinsky, Anthony S ............................. Poster P353<br />

Lapner, Peter .................................Paper 076, 154<br />

LaPorte, Dawn. ................................. Poster P278<br />

LaPrade, Robert F .......Paper 196, 197, 198, 199, 200, 201, 202,<br />

203, 204, 205, 206, 207, 208, 209, 210<br />

Lara, Joaquin ....................Multimedia Education MEC01<br />

LaReau, Justin M ..................................Paper 597<br />

Lark, Robert Kamiel ....................Paper 389, Poster P245<br />

LaRose, Connor Raymond ........................ Poster P342<br />

Larson, Annalise Noelle . . . . . . . . . . . . . . . Paper 172, 173, 544, 545<br />

Larson, Christopher .....................Paper 646, Symposia J<br />

Lassiter, Tally E ...................................Paper 493<br />

Latona, Carmen. ..................................Paper 677<br />

Latta, Loren L. ........................Poster P293, P334, P483<br />

Latteier, Michael J .......................Scientific Exhibit SE07<br />

Lau, Edmund. .....................Paper 212, 480, Poster P114,<br />

Scientific Exhibit SE56, SE77<br />

Lauing, Kristen ...................................Paper 140<br />

Laurencin, Cato T .................................Paper 163<br />

Lavernia, Carlos J .................Paper 717, Poster P026, P102,<br />

P147, P152, Symposia E<br />

Lawhorn, Keith W .......Paper 631, 632, 633, 634, 635, 636, 637,<br />

638, 639, 640, 641, 642, 643, 644, 645<br />

Lawrence, J. Todd R. .............Multimedia Education MEC24,<br />

Paper 482, Poster P341<br />

Lawson, Bryan K ..................................Paper 696<br />

Le Duff, Michel Jean ...............................Paper 045<br />

Le, Jason T .......................................Paper 027<br />

Leaver, Ryan W ..................................Poster P417<br />

Lebl, Darren R .................................. Poster P355<br />

LeBrun, Christopher T .............................Paper 698<br />

LeClere, Lance E .................Multimedia Education MEC35<br />

Leduc, Stephane ................................ Poster P475<br />

Lee, Arthur T ..............................Poster P219, P227<br />

Lee, Choon-Ki ....................................Paper 026<br />

Lee, Choong-Hee. ................................Poster P451<br />

914<br />

Lee, Chung-Chien .................................Paper 274<br />

Lee, Donald H ....................................Paper 331<br />

Lee, Dong-Ho .....................Paper 022, 030, Poster P400<br />

Lee, Elaine ..................................... Poster P393<br />

Lee, Eric K ..................................... Poster P242<br />

Lee, Gwo-Chin Paper 243, 325, 453, Poster P103, P122, P169, P173<br />

Lee, Gye Wang ....................................Paper 475<br />

Lee, Ho Hyung ................................. Poster P096<br />

Lee, Hyun-Il. .....................................Paper 063<br />

Lee, Hyun-Joo .............................Poster P258, P480<br />

Lee, Hyung-joon .................................Poster P212<br />

Lee, Jae Young ...................................Poster P051<br />

Lee, Joe. .........................................Paper 233<br />

Lee, Jonathan H. ...........................Poster P024, P084<br />

Lee, Joon Kyu. ... Paper 010, 011, 320, 322, 326, Poster P178, P192<br />

Lee, Joon Yung. ........................Paper 023, Poster P362<br />

Lee, Kenny Won Jae. ............................. Poster P200<br />

Lee, Keun Bae .................................. Poster P029<br />

Lee, Ki Seok ......................................Paper 550<br />

Lee, Kil Jae ....Paper 015, 329, 490, Poster P161, P167, P200, P272<br />

Lee, Kwang-Bok. ..........................Paper 016, 137, 663<br />

Lee, Kyung-Hag .....Paper 015, 329, 490, Poster P161, P200, P272<br />

Lee, Kyung-Jae .....................Paper 309, 374, Poster P318<br />

Lee, Lorrin SK ....................................Paper 177<br />

Lee, Myung Chul. Paper 010, 011, 320, 322, 326, Poster P178, P192<br />

Lee, Paul T H ....................................Poster P111<br />

Lee, Sahnghoon. . Paper 010, 011, 320, 322, 326, Poster P178, P192<br />

Lee, Sang Hak ....................................Paper 489<br />

Lee, Sang-Min ... Paper 010, 011, 320, 322, 326, Poster P178, P192<br />

Lee, Seung Yup ...................Paper 335, Poster P230, P234<br />

Lee, Stella. .......................................Paper 695<br />

Lee, Steve K ...........................Paper 565, Poster P324<br />

Lee, Sung-Yoon ..................................Poster P318<br />

Lee, Thay Q ...........................Paper 689, Poster P326<br />

Lee, Tong Joo .....................................Paper 475<br />

Lee, Woo Suk. .................................. Poster P055<br />

Lee, Young-Kyun ......... Paper 374, 472, 596, Poster P017, P318<br />

Lee, Yun-Kyoung ..............................Paper 152, 603<br />

Leeson, Mark C ................................. Poster P495<br />

Leet, Arabella I. ...............Paper 180, Scientific Exhibit SE40<br />

Lefloch, Sean .....................................Paper 738<br />

Lehman, Ronald Arthur ....................Paper 017, 443, 669<br />

Leighton, Ross K ........Paper 061, 062, 063, 064, 065, 066, 067,<br />

068, 069, 070, 071, 072, 073, 074, 075,<br />

376, 377, 378, 379, 380, 381, 382, 383,<br />

384, 385, 386, 387, 388, 389, 390<br />

Leinberry, Charles F ...............................Paper 562<br />

Leiter, Jeff. .......................................Paper 154<br />

Leithner, Andreas ............................... Poster P543<br />

Leitman, Elliott H .......................Scientific Exhibit SE47<br />

LeMarr, Angela ...................................Paper 291<br />

Lemaster, Tom E ..................................Paper 169<br />

Lemma, Mesfin A ............................... Poster P278<br />

Lemons, Jack E .........................Scientific Exhibit SE84<br />

Lemos, Stephen E ............................... Poster P320<br />

Lenarz, Christopher J ..........................Paper 082, 090<br />

Lenhart, Martha K .......................Scientific Exhibit SE75<br />

Lenh<strong>of</strong>f, Mark ....................................Paper 558<br />

Lenke, Lawrence G ...............Paper 396, 442, 446, 449, 671,<br />

Poster P382, P392, Symposia T<br />

Leo, Roorda ......................................Paper 616<br />

Leonard, James Patrick ........................... Poster P455<br />

Leonards, James .................................. Paper 111<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Leonetti, Danilo ......Multimedia Education MEC21, Poster P220<br />

Leopold, Seth S ...................................Paper 454<br />

Lerman, Daniel M. ................................Paper 694<br />

Lerner, Benjamin A. ......Multimedia Education MEC08, MEC46,<br />

MEC47, MEC48, MEC49, MEC50,<br />

MEC51, MEC52, MEC53<br />

Lertwanich, Pisit .......................Paper 552, Poster P407<br />

Lesko, James .....................................Paper 071<br />

Lesniak, Bryson .........................Scientific Exhibit SE72<br />

Letson, G Douglas. ....Paper 240, 516, 520, Scientific Exhibit SE81<br />

Leunig, Michael. ........................Paper 634, Symposia J<br />

Levack, Brian .....................................Paper 462<br />

Leversedge, Fraser J ......Paper 331, 332, 333, 333, 334, 335, 336,<br />

337, 338, 339, 340, 341, 342, 343, 344, 345<br />

Levi, Gabriel .....................................Paper 294<br />

Levin, Paul. ........Paper 136, 137, 138, 139, 140, 141, 142, 143,<br />

144, 145, 146, 147, 147, 148, 149, 150<br />

Levine, Brett Russell ................Paper 187, 714, Poster P057<br />

Levine, David S ...................................Paper 102<br />

Levine, Harlan B .......................Paper 293, Poster P057<br />

Levine, William N .......Paper 366, 607, Poster P344, Symposia H<br />

Levison, Timothy J ......................Scientific Exhibit SE48<br />

Levitz, Seth .................................... Poster P324<br />

Levy, Bruce A ............ Paper 051, 316, 317, 318, 319, 320, 321,<br />

322, 323, 324, 325, 326, 327, 328, 329,<br />

330, 485, 660, Poster P097, P443<br />

Levy, David ......................................Paper 457<br />

Levy, Jonathan Chad. .......................Poster P287, P287<br />

Lewallen, David G. ...................Paper 014, Symposia E, V<br />

Lewing, Nicholas. ............................... Poster P356<br />

Lewis, Courtland G ................................Paper 303<br />

Lewis, Gregory S ..............................Paper 174, 206<br />

Lewis, John Strudwick ..................Paper 389, Poster P501<br />

Lewis, Paul B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 495<br />

Lewis, Valerae O .............. Paper 525, Scientific Exhibit SE81<br />

Lewitus, Dan ................................... Poster P284<br />

Li, Bing. .........................................Paper 379<br />

Li, Guoan. ...................................Paper 295, 300<br />

Li, Rachel W. ................................... Poster P522<br />

Li, Robert .......................................Poster P215<br />

Li, Ru .......................................Paper 141, 149<br />

Li, Xin. ...........................Paper 514, 515, Poster P532<br />

Li, Yi-Chen. ..................................Paper 274, 500<br />

Li, Zhongyu John .................................Paper 567<br />

Liang, Sherry ................................... Poster P138<br />

Liao, Jen-Chung ..................................Paper 137<br />

Libanati, Cesar. ...................................Paper 226<br />

Lichtenberg, Sven ............................... Poster P328<br />

Lieber, Richard L ..............................Paper 550, 556<br />

Liebergall, Meir ...............................Paper 139, 667<br />

Lieberman, Isador H. .................. Paper 267, Symposia W<br />

Lieberman, Jay R ............Paper 039, Poster P088, Symposia E<br />

Lieberman, Jeremy A. ............................ Poster P404<br />

Liebs, Thoralf R ................................. Poster P285<br />

Lien, John .......................................Paper 224<br />

Light, Terry R ...........Paper 556, 557, 558, 559, 560, 561, 562,<br />

563, 564, 565, 566, 567, 568, 569, 570<br />

Lillmars, Steven A .................................Paper 716<br />

Lim, Byung-Ho ...................................Paper 063<br />

Lim, Kerry ..................................... Poster P002<br />

Lim, Letitia ......................................Paper 185<br />

Lim, Moojoon ....................................Paper 317<br />

Lim, Seung-Jae. ...................................Paper 063<br />

915<br />

Lim, Tae Kang ....................................Paper 683<br />

Lim, Young Wook ................................Poster P051<br />

Lin, Edward ..................................Paper 144, 565<br />

Lin, Hui-Wen. .................................. Poster P157<br />

Lin, Michael Y ................................Paper 557, 564<br />

Lin, Patrick P .....................................Paper 525<br />

Lindbom, Daniel. ................................Poster P512<br />

Lindsey, Derek P ..................Paper 582, Poster P219, P227<br />

Line, Breton G .................................. Poster P394<br />

Lingard, Elizabeth Anne .......................... Poster P064<br />

Lingg, Moi-Lin. ................................. Poster P159<br />

Link, Thomas. ....................................Paper 573<br />

Linklater, James. ..................................Paper 323<br />

Linovitz, Raymond J ...............................Paper 672<br />

Lippert, William ..................................Paper 628<br />

Lisowski, Andrzej ......................Paper 008, Poster P113<br />

Lisowski, Lukas ........................Paper 008, Poster P113<br />

Litchfield, Robert B .............................. Poster P337<br />

Little, Chris .................................... Poster P389<br />

Little, Kevin James. ................................Paper 429<br />

Liu, Bin .........................................Paper 655<br />

Liu, Chuan-ju ....................................Paper 144<br />

Liu, Fang ...................................... Poster P206<br />

Liu, Raymond .....................Paper 179, 378, Poster P247<br />

Liu, Sen .........................................Paper 209<br />

Liu, Shing-Hwa ................................. Poster P529<br />

Liu, Steve S. ......................................Paper 004<br />

Liu, Wanjun. ................................... Poster P206<br />

Liu, Xuhui .......................................Paper 161<br />

Liublinska, Victoria. ............................. Poster P023<br />

Llado, Roald Jon ..................................Paper 440<br />

Lo, Joan C .............................Scientific Exhibit SE76<br />

Lo, Ngai-Nung. ...........Paper 012, 408, 417, Poster P112, P159<br />

Lock, Terrence R .................................Poster P307<br />

L<strong>of</strong>tus, Randy W ..................................Paper 744<br />

Logishetty, Rajani .................................Paper 069<br />

Lohmander, Stefan .............................. Poster P133<br />

Loiseau, Christine ............................... Poster P003<br />

Lombardi, Adolph V......Paper 061, 298, 538, Poster P203, P204,<br />

Scientific Exhibit SE07, Symposia B, P<br />

Longo, Umile Guiseppe ........................Paper 156, 578<br />

Lonner, Baron .....................Paper 262, 436, Poster P371<br />

Lonner, Jess H ........................Poster P127, Symposia P<br />

Lopomo, Nicola .............Poster P414, Scientific Exhibit SE24<br />

Lord, James .................................... Poster P074<br />

Lorich, Dean G ...................................Paper 724<br />

Losina, Elena .................................Paper 184, 286<br />

Lotke, Paul A . . . . . . . . . . . . . . . . . . . . .Paper 243, Poster P122, P169<br />

Lovald, Scott Traver. ............................. Poster P403<br />

Lowder, Elizabeth ............................... Poster P249<br />

Lowman, Anthony .............................. Poster P449<br />

Lozano Calderon, Santiago A. . . . . . . . . . . . . . . . . Poster P215, P217<br />

Lu, Zhen. ........................................Paper 035<br />

Lubbeke-Wolff, Anne ..........................Paper 091, 183<br />

Lucas, Brennen L ..................................Paper 369<br />

Lucas, Justin. .....................................Paper 209<br />

Luciani, Deianira. .............................Paper 093, 510<br />

Luhmann, Scott J. .................................Paper 446<br />

Lujan, Trevor .....................................Paper 702<br />

Luna, Daniel Pizarro. ..............................Paper 654<br />

Luna, Jeffrey TP.. .......................Paper 538, Poster P545<br />

Lundy, Douglas W. ......................Scientific Exhibit SE47<br />

Lurie, Jon D ...........................Paper 270, Poster P361<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Luther, Gaurav Aman ..............................Paper 518<br />

Luu, Hue H ...........................Paper 518, Poster P536<br />

Lybrand, Kyle. .................................... Paper 310<br />

Lyman, Stephen ......Paper 083, 287, 595, 658, 659, Poster P139<br />

Lynch, Scott A ....................................Paper 013<br />

Lyon, Russ ..................................... Poster P404<br />

Lyons, Steven Thomas ........................... Poster P147<br />

Ma, ChunBong Benjamin. ..........................Paper 573<br />

Ma, Yan ..........................Paper 535, 658, Poster P449<br />

Maak, Travis G. .........Scientific Exhibit SE49, SE55, SE63, SE67<br />

Macaulay, William B ....................Paper 303, Symposia P<br />

Maccagnan, Elena ................................Poster P012<br />

MacDermid, Joy C. .................Paper 678, 699, Poster P338<br />

MacDonald, Daniel ...............................Paper 293<br />

Macdonald, David ...............................Poster P110<br />

MacDonald, Peter Benjamin ........................Paper 154<br />

MacDonald, Steven J. ..................Poster P056, Symposia B<br />

MacGillivray, John Dougald. ...Poster P415, Scientific Exhibit SE50<br />

Machen, Michael Shaun .......................... Poster P406<br />

Mackay, Nicola ...................................Paper 461<br />

MacKenzie, John D .............................. Poster P253<br />

Maddox, Grady ...................................Paper 473<br />

Madey, Steven Michael .............................Paper 702<br />

Maduekwe, Uma ........................Scientific Exhibit SE22<br />

Maeda, Takeshi ................................. Poster P350<br />

Maeda, Toru. ................................... Poster P007<br />

Maenza, Ruben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 400<br />

Maerz, Tristan ........................Poster P390, P446, P448<br />

Maeyama, Akira. ...........................Poster P277, P407<br />

Maffulli, Nicola. ......................... Paper 156, 575, 578<br />

Magattil, Rajesh. ................................ Poster P426<br />

Magaziner, Jay ....................................Paper 303<br />

Magosch, Petra ................................. Poster P328<br />

Maguire, Kathleen ............................... Poster P243<br />

Magyar, Clara. ..........................Scientific Exhibit SE01<br />

Mahajan, John. ...................................Paper 171<br />

Mahboubian, Shahab ..............................Paper 313<br />

Maher, Suzanne A ............................... Poster P449<br />

Maheshwari, Rohit ................................Paper 249<br />

Mahfouz, Mohamed. .................. Paper 292, Poster P389,<br />

Scientific Exhibit SE23<br />

Mahmoud, Mostafa ..................Paper 282, 336, 338, 339<br />

Mahomed, Nizar. ..................Paper 289, 589, Poster P177<br />

Mahoney, Ormonde M. ..Paper 003, 587, Poster P108, Symposia B<br />

Mai, Kenny .................................... Poster P124<br />

Majewski, Martin ................................Poster P431<br />

Makowski, Anna Lena. .............................Paper 559<br />

Malawer, Martin M ..............Multimedia Education MEC49,<br />

MEC50, MEC51<br />

Malchau, Henrik ............ Paper 082, 184, 348, 530, 533, 704,<br />

Poster P015, P025, P035<br />

Malerich, Matthew M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 337<br />

Maletis, Gregory B. .....................Paper 492, Poster P413<br />

Maley, Margaret M .............................Symposia 150<br />

Malhotra, Rajesh ...........Paper 355, 474, 710, 720, Poster P489<br />

Malinzak, Robert Andrew. ......................Paper 130, 413<br />

Malkani, Arthur L .......Paper 190, 212, 245, 586, 587, 588, 589,<br />

590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, Poster P109,<br />

P114, Scientific Exhibit SE77<br />

Maloney, William J ............Paper 042, 586, 718, Poster P126,<br />

Symposia F, ORSII<br />

Malvitz, Thomas A ...... Paper 001, 002, 003, 004, 005, 006, 007,<br />

008, 009, 010, 011, 012, 013, 014, 015<br />

916<br />

Malviya, Ajay .............................. Poster P064, P071<br />

Mamisch, Tallal C ........Paper 542, Poster P077, Symposia ORSI<br />

Mandell, Peter J. .................................Symposia S<br />

Manfrini, Marco .................................. Paper 511<br />

Mangold, Devin R. ................................Paper 056<br />

Mann, Gideon. ...................................Paper 659<br />

Mann, Jeffrey Adam ...............................Paper 056<br />

Mann, Roger A. ...................................Paper 056<br />

Mannava, Sandeep ......................Scientific Exhibit SE31<br />

Manning, David W .............................. Poster P166<br />

Manolescu, Andrei .............................. Poster P086<br />

Manson, Theodore T. ..................... Paper 222, 698, 735<br />

Manuel, Jacob B .......................Paper 595, Poster P014<br />

Manzano, Givenchy ...............................Paper 161<br />

Maples, Dayle L. ..................................Paper 541<br />

Maran, Nidu .....................................Paper 018<br />

Marburger, Robert .................................Paper 725<br />

Marcacci, Maurilio .....................Paper 198, Poster P414,<br />

Scientific Exhibit SE24, SE61<br />

Marcantonio, Andrew J. .......................... Poster P034<br />

Marcantonio, David ...............................Paper 204<br />

March, Gerard ....................................Paper 359<br />

Marcheggiani Muccioli, Giulio ....................Poster P414,<br />

Scientific Exhibit SE24<br />

Marchi, Luis. ...............Paper 736, Poster P373, P375, P379<br />

Marcus, Randall Evan ..............................Paper 456<br />

Mardones, Rodrigo M. ........................... Poster P453<br />

Marecek, Ge<strong>of</strong>frey ..........................Poster P069, P175<br />

Margolis, David Stephen ...........................Paper 136<br />

Marinac-Dabic, Danica. ............................Paper 186<br />

Marinelli, Alessandro ....................Scientific Exhibit SE54<br />

Marini, Eleonora ........................Scientific Exhibit SE51<br />

Marion, Chad ....................................Paper 607<br />

Mariscalco, Michael W .............................Paper 267<br />

Markel, David C .......................Paper 629, Poster P320<br />

Marker, David R ........................Scientific Exhibit SE19<br />

Markiewitz, Andrew David. ...............Scientific Exhibit SE47<br />

Marks, Barbara ...............................Paper 415, 531<br />

Marks, Michelle. .................................Poster P371<br />

Marks, Timothy ...................................Paper 103<br />

Marlet, Victoriano .................................Paper 109<br />

Marmor, Meir Tibi. .................Paper 215, 217, Poster P492<br />

Marmotti, Antongiulio ...........Multimedia Education MEC22,<br />

Paper 207, Scientific Exhibit SE65<br />

Marsh, John Lawrence .....Paper 455, 702, Scientific Exhibit SE79<br />

Martell, John M. ............Paper 637, Poster P025, P059, P063<br />

Martin, Ashley J. ................................ Poster P089<br />

Martin, James A. ..................................Paper 207<br />

Martin, Sadie .....................................Paper 278<br />

Martin, Scott David. ...........................Paper 639, 655<br />

Martin, Tamara Lynn ....................Scientific Exhibit SE46<br />

Martin, William. .................................Symposia S<br />

Martinez-Martos, Sara. ..................Paper 109, Poster P352<br />

Martini, Rodrigo Klafke ............................Paper 509<br />

Martins, Jeffrey Dean ............................ Poster P293<br />

Maruo, Keishi .................................. Poster P354<br />

Marvin, Julianne ................................ Poster P357<br />

Marwah, Simran ................................ Poster P503<br />

Marx, Robert G . . Paper 083, 287, 658, 659, Scientific Exhibit SE64<br />

Mary, Michelle. ...................................Paper 288<br />

Masada, Kazuhiro .................................Paper 345<br />

Mashfiqul, AS M ................................ Poster P159<br />

Masini, Brendan David. .....................Poster P462, P502<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Mason, Edward O .................................Paper 431<br />

Mason, James ....................................Paper 150<br />

Mason, James ....................................Paper 536<br />

Masri, Bassam A ...................Paper 073, 349, Poster P105<br />

Masse, Alessandro ................Multimedia Education MEC27<br />

Masseth, Robyn. ................................ Poster P557<br />

Massey, Patrick Allen. ..............................Paper 668<br />

Massini, Michael ..................................Paper 245<br />

Masuda, Koichi ........................Paper 664, Poster P393<br />

Matamalas, Antonia ............................. Poster P352<br />

Matassi, Fabrizio .................................Poster P061<br />

Matey, Doug ................................... Poster P257<br />

Matharu, Gulraj. ...................Paper 036, 188, Poster P006<br />

Matheney, Travis H ............................Paper 168, 170<br />

Mather, Richard C ................Paper 493, Poster P341, P342,<br />

Scientific Exhibit SE42<br />

Mathews, Vasilios ............................... Poster P005<br />

Mathis, Kenneth B. .............................. Poster P009<br />

Mathur, Sameer...................................Paper 742<br />

Matityahu, Amir ...................Paper 215, 217, Poster P492<br />

Matre, Kjell ...............................Poster P497, P500<br />

Matsen, Frederick A. ..................Poster P294, Symposia M<br />

Matsubara, Hidenori. ..........................Paper 235, 386<br />

Matsuda, Dean K. ...............Multimedia Education MEC45,<br />

Paper 631, 632, 633, 634, 635, 636, 637,<br />

638, 639, 640, 641, 642, 643, 644, 645<br />

Matsuda, Shuichi .................Paper 414, Poster P150, P168<br />

Matsudaira, Ko ............................Poster P174, P490<br />

Matsuo, Toshihiro. .........................Poster P524, P528<br />

Matsuoka, Masatake ...............................Paper 321<br />

Matsushita, Takashi. ............................. Poster P432<br />

Matthies, Ashley ......................... Paper 033, 067, 068<br />

Matullo, Krist<strong>of</strong>er S. ............................. Poster P226<br />

Matzkin, Elizabeth G ..............................Paper 330<br />

Mauprivez, Raphael ............................. Poster P037<br />

Mauro, Craig S ...................................Paper 327<br />

Mavridis, Konstantinos. .......................... Poster P188<br />

Mavrogenis, Andreas. ............................ Poster P539<br />

May, Megan ......................................Paper 484<br />

Mayer, Mark. ................................... Poster P448<br />

Mayer, Michael ...................................Paper 203<br />

Mayerson, Joel. ...Paper 511, 512, 513, 514, 515, 516, 517, 518, 519,<br />

520, 521, 522, 523, 524, 525, Poster P525<br />

Mayle, Robert E ..................................Poster P391<br />

Mayman, David Jacob ........................... Poster P162<br />

Mayor, Michael B .................. Paper 296, 711, Poster P151<br />

Mazza, Jason S. ................................. Poster P558<br />

McAdams, Timothy R ..............................Paper 582<br />

McAnany, Steven ..................................Paper 741<br />

McAndrew, Mark Philip ...........................Poster P271<br />

McAsey, Craig Joseph ..............................Paper 640<br />

McCalden, Richard W. ........................... Poster P056<br />

McCall, Richard Evan ..............................Paper 668<br />

McCarthy, Edward F ...............................Paper 745<br />

McCarthy, James J ............Scientific Exhibit SE39, Symposia R<br />

McCarthy, Joseph C ...........................Paper 040, 463<br />

McCarthy, Moira Margaret ..........Scientific Exhibit SE34, SE50,<br />

SE64, SE82<br />

McCarthy, Richard E ............................. Poster P255<br />

McCarty, Leroy Pearce. .............................Paper 576<br />

McClellan, Robert Trigg ....... Paper 029, 444, Poster P387, P492<br />

McClung, Anna ...................................Paper 399<br />

McCLURE, Scott ..................................Paper 146<br />

917<br />

McCollom, Vance .................................Paper 672<br />

McCollum, Jody ................................ Poster P269<br />

McCormack, Richard A. ............................Paper 113<br />

McCormick, Frank ................................Paper 639<br />

McCormick, Jeremy J ...................Paper 101, Poster P445<br />

McCrum, Christopher. .........................Paper 090, 363<br />

McCullough, Kirk A ....................Paper 743, Poster P362<br />

McDonald-Blumer, Heather. ........................Paper 457<br />

McDonald, Erik. ..............................Paper 215, 217<br />

McDonald, Lucas .......................Scientific Exhibit SE53<br />

McDonough, E Barry .............Multimedia Education MEC17<br />

McFarland, Edward G ............................ Poster P292<br />

McFeely, Eric D ................................. Poster P252<br />

McGarry, Michelle H. ............................ Poster P326<br />

McGill, Kevin C. ......................... Paper 160, 367, 609<br />

McGinnis, Mark ................................ Poster P423<br />

McGlaston, Tim James ..................Paper 117, Poster P263<br />

McGough, Richard Louis .......................Paper 239, 247<br />

McGrail, Linda ...................................Paper 716<br />

McGuire, Ciara Megan ............................Poster P419<br />

McHale, Kathleen A .....................Scientific Exhibit SE75<br />

McIff, Terence ....................................Paper 670<br />

McIlroy, Jody .....................................Paper 457<br />

McInnes, Iain B ...................................Paper 682<br />

McIntyre, Louis F. ................................Symposia X<br />

McKee, Michael D ...............................Symposia H<br />

McKeon, Kathleen E ............................. Poster P445<br />

McLardy-Smith, Peter .......... Paper 531, Scientific Exhibit SE06<br />

McLaren, Alexander C. .............................Paper 653<br />

McLawhorn, Alexander Stewart ......................Paper 290<br />

McLemore, Ryan ..................................Paper 653<br />

McMillan, James F. .............................. Poster P086<br />

McNally, Thomas A. .....Paper 736, 737, 738, 739, 740, 741, 742,<br />

743, 744, 745, 746, 747, 748, 749, 750<br />

McPhail, Gary L. .......................Paper 450, Poster P384<br />

McPherson, Edward J ..............Paper 061, Poster P013, P128<br />

McPherson, Laura ..........................Poster P013, P128<br />

McQueen, Margaret M ........................... Poster P504<br />

McRae, Sheila ....................................Paper 154<br />

McDermott, James D ............................ Poster P385<br />

McSweeney, Sean .................................Paper 589<br />

McWilliam, James R ........................ Poster P215, P217<br />

Mead, Nelson ....................................Paper 209<br />

Mears, Simon ....................................Paper 299<br />

Medige, John ................................... Poster P179<br />

Meding, John B .....Paper 130, 413, 526, 527, 528, 529, 530, 531,<br />

532, 533, 534, 535, 536, 537, 538, 539, 540<br />

Med<strong>of</strong>f, Robert J ..................................Paper 333<br />

Medvecky, Michael .............................. Poster P304<br />

Meehan, John Patrick ..............................Paper 593<br />

Meek, Dominic ................................. Poster P074<br />

Meere, Patrick A. .................Multimedia Education MEC06<br />

Meermans, Geert. ......................Paper 341, Poster P437<br />

Meftah, Morteza ......Paper 416, 570, 634, Scientific Exhibit SE27<br />

Mehbod, Amir A ..................................Paper 748<br />

Mehle, Susan Clay. ............................Paper 358, 588<br />

Mehlman, Charles T ................Paper 169, 628, Poster P257<br />

Mehmood, Shahid .............................. Poster P145<br />

Mehr, David R ....................................Paper 302<br />

Mehta, Samir ............Paper 219, 627, 726, Poster P308, P464,<br />

Scientific Exhibit SE42<br />

Meislin, Robert J .................Multimedia Education MEC37<br />

Melis, Barbara ................................Paper 361, 362<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Meliton, Vicente ..............................Paper 673, 674<br />

Meller, Isaac. ................................... Poster P540<br />

Mellon, Stephen J ............................... Poster P187<br />

Memtsoudis, Stavros G. ........................Paper 290, 535<br />

Mende, Katrin .................................. Poster P180<br />

Menendez, Lawrence R. ............................Paper 228<br />

Mennaer, Brandon .............................. Poster P087<br />

Mentch, Frank D ..................................Paper 448<br />

Mercer, Deana .................................. Poster P294<br />

Mercincavage, Michael .............................Paper 219<br />

Mercuri, Mario ............Paper 240, 433, 511, 520, Poster P539<br />

Mereddy, Praveen .................................Paper 064<br />

Merono, Antonio ............................... Poster P008<br />

Mesfin, Addisu ...................Paper 745, Poster P278, P383<br />

Meskey, Thomas ..................................Paper 735<br />

Mesko, J Wesley. ........Paper 181, 182, 183, 184, 185, 186, 187,<br />

188, 189, 190, 191, 192, 193, 194, 195<br />

Messina, Adam ...................................Paper 701<br />

Metkar, Umesh ................................. Poster P355<br />

Metzger, Paul D. ................................ Poster P427<br />

Meyer, Dominik Christoph .........................Paper 151<br />

Meyer, Robert Scott ................................Paper 065<br />

Meyer, Susan .....................................Paper 632<br />

Meyers, Kathleen. .................................Paper 499<br />

Micera, Giovanni. ................................Poster P012<br />

Michael, Andrew W ...........................Paper 123, 182<br />

Michaelson, Jefferey E. ........................... Poster P320<br />

Michaelsson, Karl .................................Paper 264<br />

Michaud, Linda J. .................................Paper 628<br />

Micheli, Lyle J ...................................Symposia Z<br />

Michels, Elisabeth ............................... Poster P478<br />

Michels, Ryan F ...............................Paper 113, 715<br />

Miclau, Theodore ...Paper 136, 137, 138, 139, 140, 141, 142, 143,<br />

144, 145, 146, 147, 148, 149, 150, Symposia W<br />

Middeldorp, Saskia ................................Paper 253<br />

Middleton, Fiona .................................Paper 135<br />

Middleton, Scott ................................ Poster P504<br />

Middleton, William D ............................Poster P313<br />

Mignemi, Megan. .................................Paper 331<br />

Mihalko, William Michael .....Paper 131, 288, Poster P149, P179,<br />

Scientific Exhibit SE84<br />

Miki, Hidenobu ................................ Poster P053<br />

Milbrandt, Joseph C ...............................Paper 062<br />

Milbrandt, Todd A. ............................Paper 424, 445<br />

Milby, Andrew Hill ................................Paper 325<br />

Millar, Neal L. ....................................Paper 682<br />

Moller-Madsen, Bjarne .............................Paper 434<br />

Miller, Bruce S ...................................Poster P312<br />

Miller, Daniel James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 397<br />

Miller, Freeman ...................................Paper 423<br />

Miller, Geraldine ................................ Poster P137<br />

Miller, Lisa ...................Paper 528, 712, Poster P041, P043<br />

Miller, Mark C ................................Paper 677, 685<br />

Miller, Mark D. ................................ Symposia BB<br />

Miller, Matthew D. ................................ Paper 411<br />

Miller, Micah ....................................Poster P516<br />

Miller, Robert Andrew. .............................Paper 119<br />

Miller, Stuart D .........Paper 496, 497, 498, 499, 500, 501, 502,<br />

503, 504, 505, 506, 507, 508, 509, 510<br />

Millett, Peter J ..................Multimedia Education MEC32,<br />

MEC33, MEC34, Poster P336<br />

Millis, Michael B ...........................Poster P059, P063<br />

Milne, Edward L ...........................Poster P334, P483<br />

918<br />

Min, Byung Woo .................................Poster P318<br />

Min, Kyong Su. ...................................Paper 571<br />

Minoda, Yukihide ................................Poster P115<br />

Miquel, Joan .....................................Paper 109<br />

Mirza, Amer J. .........................Paper 377, Poster P464<br />

Mirza, Faisal .....................................Paper 657<br />

Miscione, Maria Teresa Multimedia Education MEC02, Poster P220<br />

Mitchell, Adam .........................Scientific Exhibit SE03<br />

Mitchell, Joseph W .............................. Poster P389<br />

Mitsugi, Naoto ................................. Poster P268<br />

Mitsui, Hiroto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P239<br />

Mitsunari, Kim ................................. Poster P125<br />

Mitsuyasu, Hiroaki .....................Paper 414, Poster P168<br />

Miwa, Shinji .....................................Paper 235<br />

Miyao, Masunao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Poster P261<br />

Mizuuchi, Hideki ..........................Poster P150, P196<br />

Mochida, Yuichi ................................ Poster P268<br />

Mococain, Pablo .................................Poster P211<br />

Moed, Berton R ....................Paper 214, 216, Poster P468<br />

Mohamed, Ahmed Salem. .........................Poster P401<br />

Mohamed, Saqr. ................................ Poster P264<br />

Mohan, Vivek ................ Paper 621, Scientific Exhibit SE44<br />

Mohr, Karen J .................................. Poster P420<br />

Moineau, Gregory .............................Paper 084, 085<br />

Mole, Daniel .....................................Paper 088<br />

Molinari, Massimo ...............................Poster P414<br />

Molli, Ryan ............................Scientific Exhibit SE07<br />

Molloy, Anne. ....................................Paper 471<br />

Molloy, Robert M ............................... Poster P182<br />

Momohara, Shigeki ...............................Paper 591<br />

Monchik, Keith Oster ............................ Poster P438<br />

Monica, James T ................................ Poster P477<br />

Monk, Andrew P ................................ Poster P187<br />

Mont, Michael A ................. Paper 121, Poster P062, P181,<br />

Scientific Exhibit SE05, SE14, SE19, SE22<br />

Montanaro, Antonello ............Multimedia Education MEC26<br />

Montao, Aldo Campusano. ....................... Poster P453<br />

Monteiro, Martim Teixiera .........Multimedia Education MEC29<br />

Montesano, Pasquale X .......................... Poster P346<br />

Moon Seok, Park. .............................Paper 095, 547<br />

Moon, Bryan Scott ....Paper 511, 512, 513, 514, 515, 516, 517, 518,<br />

519, 520, 521, 522, 523, 524, 525, 525<br />

Moon, Kyoung Ho ................................Paper 475<br />

Moon, Young-Wan ................................Paper 063<br />

Mooney, James F ..................................Paper 650<br />

Moor, Molly. ................................... Poster P245<br />

Moore, Andrew M ................................Poster P207<br />

Moore, Drew Douglas. ........................... Poster P345<br />

Moorman, Claude T . . . . . . . . . . . . . . . . . Poster P342, Symposia BB<br />

Moraga, Claudio ..............................Paper 081, 363<br />

Moraleda, Luis. ..................................Poster P251<br />

Moran, Raymond ............................... Poster P428<br />

Moran, Steven L ..................................Paper 343<br />

Morawa, Lawrence G ............................ Poster P450<br />

Morell, Dan ..................................Paper 211, 376<br />

Moretti, Vincent Michael ...................Paper 514, 515, 519,<br />

Poster P521, P530, P532<br />

Morgan, Joseph A .............................Paper 485, 660<br />

Mori, Eiji ...................................... Poster P350<br />

Moric, Mario ............................ Paper 123, 128, 195<br />

Morimoto, Ryo ...................................Paper 664<br />

Morita, Tetsuro ................................. Poster P523<br />

Moritz, Deml. ....................................Paper 193<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Moriyama, Tokuhide ............................ Poster P354<br />

Moroni, Antonio. ................................Poster P012<br />

Morra, Edward. .........................Scientific Exhibit SE28<br />

Morrey, Bernard F . . . . . . . . . . . Paper 690, Poster P286, P297, P306<br />

Morris, Brent J ....................................Paper 221<br />

Morris, Carol D .............. Scientific Exhibit SE81, Symposia I<br />

Morris, Michael James ......................Poster P203, P204<br />

Morrison, Carol. ..............................Paper 455, 456<br />

Morrison, William B .....................Scientific Exhibit SE10<br />

Morscher, Melanie. ....................Poster P248, P249, P256<br />

Morshed, Saam ...................................Paper 225<br />

Mortazavi, S M Javad ....Paper 189, 357, Poster P073, P075, P104,<br />

Scientific Exhibit SE10<br />

Morton, Anne ....................................Paper 428<br />

Mosca, Vincent Stephen ..Paper 421, 422, 423, 424, 425, 426, 427,<br />

428, 429, 430, 431, 432, 433, 434, 435<br />

Mosheiff, Rami ...................................Paper 139<br />

Mosher, Timothy J. ................................Paper 013<br />

Most, Mathew .................................. Poster P544<br />

Mostardi, Richard A .....................Scientific Exhibit SE30<br />

Motley, John .....................................Paper 626<br />

Mott, Michael P. .............. Paper 230, Scientific Exhibit SE81<br />

Motta, Geraldo ..................Multimedia Education MEC29<br />

Moucha, Calin Stefan ............Multimedia Education MEC08,<br />

Scientific Exhibit SE45<br />

Mounir-Soliman, Loran ............................ Paper 111<br />

Mourad, Waleed Fouad .....................Poster P456, P457<br />

Mouttet, Alexandre .............................. Poster P036<br />

Moutzouros, Vasilios .............................Poster P307<br />

Mowinckel, Petter ............................... Poster P535<br />

Moya, Luis Emilio. ...............Multimedia Education MEC01<br />

Moylan, Kyle C ...................................Paper 302<br />

Mroz, Thomas Edward .............................Paper 267<br />

Mubarak, Scott J .......................Paper 099, Poster P221<br />

Mudgal, Chaitanya S. ..............Paper 284, Poster P323, P477<br />

Mueller, John P ................................. Poster P197<br />

Muirhead-Allwood, Sarah ...............Paper 067, Poster P091<br />

Mukherjee, Debi P ................................Paper 668<br />

Mulhall, Kevin James ..............Paper 477, Poster P419, P428<br />

Muller, Scott ..........................Paper 722, Poster P155<br />

Mullis, Brian .....................................Paper 727<br />

Mulpuri, Kishore. .................................Paper 566<br />

Mundis, Gregory M. ...............Paper 392, Poster P386, P394<br />

Murachovsky, Joel ............................... Poster P295<br />

Murakami, Akira ................................ Poster P139<br />

Murakami, Hideki. ..................... Paper 261, Poster P351<br />

Muratoglu, Orhun K...............................Paper 533<br />

Murawski, Christopher D. ..........................Paper 097<br />

Murcia Asensio, Antonio ......................... Poster P008<br />

Murcia-Mazon, Antonio. ......................... Poster P008<br />

Murphy, James. ...................................Paper 665<br />

Murphy, Stephen B .......Paper 353, Scientific Exhibit SE02, SE13<br />

Murray, Clint ................................... Poster P180<br />

Murray, David W. ................Paper 001, 032, 415, 531, 592,<br />

Poster P145, P187, Scientific Exhibit SE06<br />

Murray, Douglas H .............................. Poster P335<br />

Murray, Michael R. ................................Paper 680<br />

Murray, Paraic A ..................................Paper 656<br />

Murray, Trevor G ................................ Poster P096<br />

Murrell, George A C .............Multimedia Education MEC36,<br />

Paper 116, 682, Poster P301<br />

Murthi, Anand M ......................Paper 694, Poster P299<br />

Murty, A N .......................................Paper 722<br />

919<br />

Musahl, Volker ...........Multimedia Education MEC41, MEC42<br />

Musapatika, Dana Lynn .......................... Poster P487<br />

Muschler, George F ..............................Symposia W<br />

Muscolo, Domingo Luis. ................Paper 513, Poster P533,<br />

Scientific Exhibit SE38<br />

Musib, Mrinal ...................................Poster P019<br />

Myer, Gregory Donald .............................Paper 649<br />

Myerson, Andy ...................................Paper 278<br />

Myrtille, Valentin. ............................... Poster P484<br />

Myung, Karen ................................Paper 391, 438<br />

Nabb, Colin. ................................... Poster P400<br />

Nadaud, Matthew C ............................. Poster P076<br />

Naderi, Mohammad Nasir .........................Poster P491<br />

Nagaya, Yuko. ....................................Paper 319<br />

Nagle, Daniel J ...................................Paper 342<br />

Nagoya, Satoshi. ..................................Paper 232<br />

Nair, Lakshmi Sreedharan ..........................Paper 163<br />

Naito, Masatoshi. ..Paper 041, 098, Poster P047, P054, P277, P366<br />

Nakahara, Ichiro ......................Poster P050, P052, P053<br />

Nakamura, Hiroaki. ....................Paper 506, Poster P115<br />

Nakamura, Junichi .....................Paper 546, Poster P279<br />

Nakamura, Nobuo .............................. Poster P053<br />

Nakamura, Takashi .............................. Poster P239<br />

Nakamura, Takuya .............................. Poster P007<br />

Nakamura, Yoshinari ........ Paper 041, Poster P047, P054, P277<br />

Nakashima, Yuko .................................Paper 280<br />

Nakata, Katsuya. ..................................Paper 707<br />

Nakhla, Amgad Ihab. ..............................Paper 692<br />

Nalbantoglu, Ufuk ...............................Poster P561<br />

Nam, Denis ........... Poster P162, Scientific Exhibit SE49, SE67<br />

Nam, Kwang Woo.................................Paper 309<br />

Namba, Robert S. ................. Paper 186, 621, Poster P198,<br />

Scientific Exhibit SE04, SE44<br />

Namdari, Surena. ........Paper 325, 627, 726, Poster P276, P308<br />

Nandipati, Chaitanya ..............................Paper 393<br />

Nanni, Matteo ...........Multimedia Education MEC21, MEC38,<br />

Poster P220, Scientific Exhibit SE57, SE61<br />

Nargol, Antoni ................Paper 038, 064, 069, Poster P074<br />

Nascone, Jason Warren. ........................Paper 222, 698<br />

Nasreddine, Adam .............................. Poster P252<br />

Nasser, Rima ....................Multimedia Education MEC07<br />

Natu, Sonali. .................................Paper 038, 069<br />

Naudie, Doug .........................Paper 108, Poster P056<br />

Nauth, Aaron. ....................................Paper 141<br />

Navarro, Ronald Anthony ...............Paper 080, Poster P534<br />

Nawaz, Syed ..........................Paper 033, Poster P116<br />

Nayfeh, Tariq Ali ................Multimedia Education MEC15,<br />

Scientific Exhibit SE17<br />

Nayyar, Samir ...................Multimedia Education MEC39<br />

Nazarian, Ara. ....................................Paper 234<br />

Naziri, Qais ............................Scientific Exhibit SE22<br />

Neal, Deborah R ........................Scientific Exhibit SE30<br />

Nehrer, Stefan ....................................Paper 199<br />

Neil, Michael John .............................. Poster P129<br />

Neiss, Geraldine ..................................Paper 396<br />

Nelissen, Rob G H H ..........................Paper 253, 594<br />

Nellans, Kate W. ..................................Paper 332<br />

Nelson, Andrea ........................Paper 120, Poster P274<br />

Nelson, Charles L ......................Paper 243, Poster P122<br />

Nelson, Christopher D ........................... Poster P094<br />

Nelson, Eric W. ........................Paper 120, Poster P274<br />

Nelson, Fred R T ........................Scientific Exhibit SE33<br />

Nelson, Sandra Bliss ..............................Poster P015<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Nelson, Scott C .........................Scientific Exhibit SE01<br />

Nemec, Scott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 100<br />

Nepple, Jeffrey. .............Paper 637, Poster P059, P063, P433<br />

Nestor, Bryan J. .......................Poster P014, P087, P139<br />

Neubauer, Philip R ...............................Poster P401<br />

Neuman, Brian J ..................................Paper 256<br />

Neustein, Adam Z ............................... Poster P467<br />

Neven, Enrico .................................. Poster P422<br />

Newell, Claire .........................Paper 346, Poster P022<br />

Newh<strong>of</strong>f, Drew K .................................Paper 092<br />

Newman, Lori .................................. Poster P275<br />

Newton, Peter O . . . . . . . . . . . . . . . . .Paper 393, 394, 396, 447, 671,<br />

Poster P364, P371, P388<br />

Neyton, Lionel ...............................Paper 361, 362<br />

Ng, Aaron ......................................Poster P117<br />

Ng, Cho ........................................Poster P541<br />

Ng, Vincent .................................... Poster P203<br />

Ngcelwane, Mthunzi. .....Paper 016, 017, 018, 019, 020, 021, 022,<br />

023, 024, 025, 026, 027, 028, 029, 030<br />

Ngo, Trung. ......................................Paper 630<br />

Nguyen, Dat ................................... Poster P240<br />

Nguyen, Ngoc Quyen ..............................Paper 026<br />

Nha, Sang-Eun ..................................Poster P451<br />

Nho, Shane .................Poster P415, Scientific Exhibit SE55<br />

Nho, Yoon-Mi .........................Paper 374, Poster P318<br />

Nich, Christophe. ............................... Poster P484<br />

Nicholls, Alexander S ............................ Poster P327<br />

Nicholls, David P ............................... Poster P025<br />

Nicholson, Gregory P ...............Paper 160, 367, Poster P452<br />

Nickisch, Florian ..................................Paper 651<br />

Nieuwenhuijse, Marc J .............................Paper 253<br />

Nigrisoli, Marco ........................Scientific Exhibit SE54<br />

Nikolaou, Vassilios .............................. Poster P082<br />

Ninomiya, James T ................................Paper 590<br />

Nirenstein, Lana ................................ Poster P358<br />

Nishida, Hideji ................... Paper 235, 521, Poster P537,<br />

Scientific Exhibit SE83<br />

Nishii, Takashi. .......................Poster P050, P052, P053<br />

Nistri, Lorenzo ..................................Poster P061<br />

Nitri, Marco.....................................Poster P414<br />

Noble, Philip C .............Paper 040, Poster P005, P009, P010,<br />

P011, P127, Symposia ORSII<br />

Noeth, Ulrich ....................................Paper 193<br />

Nogler, Michael M ........Multimedia Education MEC10, MEC11<br />

Nogueira, Monica Paschoal . . . . . . . . . . . . . . . . . . . . . . . Poster P283<br />

Noh, Won .......................................Paper 026<br />

Nohutcu, Rahime ............................... Poster P072<br />

Nolan, Elizabeth M. ....................Paper 077, Poster P345<br />

Nolte, Lutz P ................................... Poster P533<br />

Nomura, Tomohiro ...............................Paper 098<br />

Noonan, Vanessa. .............................Paper 451, 452<br />

Nork, Sean E ................................... Poster P470<br />

Norouzi, Masoud ................................Poster P491<br />

Northam, Casey ..................................Paper 567<br />

Norton, Mark .........................Paper 031, Poster P508<br />

Novacheck, Tom F. ...............................Poster P241<br />

Novais, Eduardo Nilo .......................Poster P531, P544<br />

Noveau, Jenna B ................................ Poster P526<br />

Novic<strong>of</strong>f, Wendy .................................Poster P271<br />

Nowinski, Robert J ............................Paper 090, 363<br />

Nozaki, Masahiro .................................Paper 319<br />

Nti, Akosua A ....................................Paper 184<br />

Nuber, Gordon W .................................Paper 680<br />

920<br />

Nukavarapu, Syam Prasad ..........................Paper 163<br />

Nunley, James Albert ..................... Paper 048, 057, 058<br />

Nunley, Ryan ......Paper 420, 708, Poster P009, P027, P088, P094<br />

Nunn, Thomas ....................Paper 393, 394, Poster P364<br />

Nuss, Katja MR ...................................Paper 151<br />

Nussbaum, Eric ................................. Poster P439<br />

Nwachukwu, Benedict U ......................... Poster P252<br />

Nydick, Jason. ....................................Paper 440<br />

O’Brien, Joseph R ............................... Poster P347<br />

O’Connor, Daniel P ............................. Poster P302<br />

O’Connor, Mary I ......................Paper 463, Poster P085<br />

O’Donnell, Thomas FX. ............................Paper 580<br />

O’Donnell, Turlough ............................ Poster P129<br />

O’Driscoll, Shawn W ..................... Paper 684, 687, 690<br />

O’Keefe, Regis J ...................................Paper 456<br />

O’Malley, Martin J. ............................Paper 102, 508<br />

O’Shea, Kieran. ...............................Paper 084, 085<br />

O’Sullivan, Brian. .................................Paper 524<br />

O’Toole, Patrick. ................................ Poster P260<br />

O’Toole, Robert V ....Paper 222, 312, 388, 694, 698, 700, 723, 735<br />

Oag, Hannah CL ................................ Poster P327<br />

Oatis, Carol A .................................. Poster P280<br />

Obadan, Isi ......................................Paper 330<br />

Obata, Shuji .....................................Paper 664<br />

Obermayer-Pietsch, Barbara. ...................... Poster P543<br />

Obermeyer, Beate ..........................Poster P090, P095<br />

Obermeyer, Thomas S. .............................Paper 140<br />

Obert, Richard. .........................Scientific Exhibit SE29<br />

Obremskey, William.......................Paper 221, 380, 695<br />

Ochi, Mitsuo .....................Paper 280, Poster P524, P528<br />

Oda, Masafumi ...................................Paper 707<br />

Oda, Ryo ........................................Paper 277<br />

Odak, Saurabh ...................................Paper 281<br />

Odum, Susan Marie ...............Paper 538, Poster P076, P146<br />

Offley, Sarah ................................... Poster P368<br />

Ogawa, Kyo-Ichi ................................ Poster P007<br />

Ogawa, Masato ...................................Paper 096<br />

Ogose, Akira ................................... Poster P523<br />

Oh, Chang-Wug ...........................Poster P258, P480<br />

Oh, Chung Hee. ..................................Paper 153<br />

Oh, Irvin ........................................Paper 498<br />

Oh, Joo Han ..........................Paper 153, Poster P326<br />

Oh, Kwang Jun ...................................Paper 309<br />

Oha, Fumihiro ...................................Paper 259<br />

Ohl, Xavier. ......................................Paper 697<br />

Ohori, Yasuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P490<br />

Ohta, Hiroyuki ...................................Paper 272<br />

Ohtori, Seiji. ..........................Paper 546, Poster P279<br />

Ok, Ji-Hoon. .................................Paper 152, 603<br />

Oka, Hiroyuki .............................Poster P174, P490<br />

Okada, Fumiaki. ................................ Poster P354<br />

Okano, Tadashi ...................................Paper 506<br />

Okazaki, Hiroshi. ..........................Poster P174, P490<br />

Okazaki, Ken ..........................Paper 414, Poster P168<br />

Okumura, Hisashi. ................................Paper 277<br />

Olee, Tsaiwei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P444<br />

Oliveira, Daniel. ..................................Paper 356<br />

Oliveira, Leonardo ..........Paper 736, Poster P373, P375, P379<br />

Ol<strong>of</strong>sson, Anders. .................................Paper 615<br />

Olsen, Michael ...................................Paper 306<br />

Olson, Steven A. .................................Poster P501<br />

Olszewski, Dana . . . . . . . . . . . . . . . . . . . . . . . Paper 732, Poster P493<br />

Olysav, David J ..................................Poster P271<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Omeroglu, Hakan ............................... Poster P562<br />

Omilanowski, Ted M ............................ Poster P154<br />

Omori, Yasushi ..................................Poster P291<br />

Omoto, Dan ................................... Poster P044<br />

Onder, Ercument. ............................... Poster P072<br />

Onel, Erol ......................................Poster P216<br />

Ong, Alvin C ................. Paper 220, 250, 478, Poster P184<br />

Ong, Crispin C ...................................Paper 372<br />

Ong, Kevin. .......................Paper 212, 480, Poster P114,<br />

Scientific Exhibit SE16, SE56, SE77<br />

Ono, Takashi ................................... Poster P388<br />

Onodera, Shin. ...................................Paper 321<br />

Onyedika, Ikechukwu. ........................... Poster P280<br />

Oohori, Yasuo .................................. Poster P174<br />

Oral, Ebru .......................................Paper 533<br />

Orchowski, Joseph R. ............................ Poster P349<br />

Ordes, Debbie .................................. Poster P556<br />

Orfaly, Robert M ................Multimedia Education MEC23,<br />

Paper 691, 692, 693, 694, 695, 696, 697,<br />

698, 699, 700, 701, 702, 703, 704, 705<br />

Orlando, Lori A. .......................Paper 493, Poster P341<br />

Orozco, Fabio ................ Paper 220, 250, 478, Poster P184<br />

Orr, Justin D .....................................Paper 052<br />

Ortiz, Cristian ...................................Poster P211<br />

Osadebe, Uche ................................. Poster P009<br />

Osawa, Toshihisa ............................... Poster P333<br />

Osbahr, Daryl C ........................Scientific Exhibit SE68<br />

Osei, Daniel. .....................................Paper 405<br />

Osipov, Vladimir. .................................Paper 231<br />

Osterman, A Lee ........................Scientific Exhibit SE37<br />

Ostrum, Robert F. ......................Paper 725, Symposia U<br />

Osuch, Daniel .........................Paper 348, Poster P035<br />

Otani, Masafumi. .................................Paper 319<br />

Otsuka, Takanobu. ................................Paper 319<br />

Oudina, Karim ................................. Poster P484<br />

Ouellette, Elizabeth A. .............Paper 559, Poster P293, P334<br />

Ounpuu, Sylvia ...................................Paper 548<br />

Owen, John R .................................. Poster P099<br />

Owens, Brett D .............Paper 728, Poster P406, P434, P435<br />

Owens, Christopher J ............................ Poster P296<br />

Owens, Lesa. ....................................Poster P481<br />

Owens, Michael C. ......................Scientific Exhibit SE41<br />

Ozdemir, H. Mustafa ............................ Poster P569<br />

Ozdemir, Handan ............................... Poster P564<br />

Ozeki, Satoru. ....................................Paper 096<br />

Ozsoy, Mehmet Hakan ........................... Poster P569<br />

Ozturk, Abdullah ............................... Poster P072<br />

Ozturk, Adnan. ................................. Poster P072<br />

Ozyer, Fatih .................................... Poster P565<br />

Paccola, Cleber A Jansen ...........................Paper 724<br />

Pacelli, Lorenzo. ..................................Paper 278<br />

Pacheco, Wilfredo B ............................... Paper 311<br />

Pacicca, Donna M .......Paper 541, 542, 543, 544, 545, 546, 547,<br />

548, 549, 550, 551, 552, 553, 554, 555<br />

Padgett, Douglas E ......Paper 466, 467, 468, 469, 470, 471, 472,<br />

473, 474, 475, 476, 478, 479, 480, 642,<br />

Poster P014, P024, P087, Symposia V<br />

Padley, Michelle A. ................................Paper 060<br />

Pagkrati, Stavroula ....Multimedia Education MEC02, Poster P220<br />

Pagnani, Michael J ...... Paper 601, 602, 603, 604, 605, 606, 607,<br />

608, 609, 610, 611, 612, 613, 614, 615<br />

Pagnano, Mark W ...........Paper 002, Poster P032, Symposia B<br />

Pagnotto, Michael R ...............................Paper 247<br />

921<br />

Pahys, Jenny R ....................................Paper 030<br />

Pahys, Joshua. ............ Paper 030, 446, 449, 661, Poster P392<br />

Paik, Haines. .............................Paper 017, 443, 669<br />

Pakianathan, Satya .........................Poster P456, P457<br />

Paksima, Nader ...................................Paper 565<br />

Pala, Elisa. ............................Paper 520, Poster P539<br />

Paladini, Paolo ...................................Paper 371<br />

Palermo, Lisa. ....................................Paper 227<br />

Paletta, George A. ................................Symposia Z<br />

Paley, Dror. ......................................Paper 428<br />

Palispis, Winnie. ..............................Paper 557, 564<br />

Paller, David ..........................Paper 581, Poster P438<br />

Palmer, Cameron .................................Paper 178<br />

Palmese, Giuseppe .............................. Poster P449<br />

Palumbo, Alessio .................................Paper 575<br />

Palumbo, Brian ...................................Paper 006<br />

Panagopoulos, Georgia. ............................Paper 570<br />

Pandanan, Joaquin C .............................. Paper 311<br />

Pandarinath, Rajeev ...............................Paper 324<br />

Pandit, Hemant G. ............Paper 032, 415, 592, Poster P145,<br />

Scientific Exhibit SE06<br />

Pandya, Nirav Kiritkumar. ..........................Paper 551<br />

Panfoli, Nicola ...................................Paper 578<br />

Pang, Hee-Nee. ...................................Paper 408<br />

Panicek, David ..................................Symposia I<br />

Pankovich, Arsen M .....................Scientific Exhibit SE78<br />

Panteliadis, Pavlos ...............................Poster P110<br />

Pao, Jwo-Luen .................................. Poster P372<br />

Papalia, Rocco ....................................Paper 575<br />

Papapetropoulos, Periklis. ..........................Paper 333<br />

Pape, Guido. .....................................Paper 079<br />

Pape, Hans-Christoph. ............Paper 721, 722, 723, 724, 725,<br />

726, 727, 728, 729, 730, 731, 732,<br />

733, 734, 735, Poster P505<br />

Pappas, Nick D ...............................Paper 279, 285<br />

Paprosky, Wayne Gregory. .................Paper 187, 195, 714,<br />

Poster P057, Symposia W<br />

Paravani, Daniele .................................Paper 487<br />

Parcel, Ted William .............................. Poster P147<br />

Parhami, Farhad ..............................Paper 673, 674<br />

Parikh, Shital. ................................Paper 425, 484<br />

Park, Byung Chul ..........................Poster P258, P480<br />

Park, Daniel K .................................. Poster P164<br />

Park, Don Young. ............................... Poster P237<br />

Park, Gi Heon ....................................Paper 257<br />

Park, Hoon ......................................Paper 016<br />

Park, Jae-Hyun ...................................Paper 583<br />

Park, Jangwon ....................................Paper 181<br />

Park, Jeong Min. ..................................Paper 317<br />

Park, Ju-Kwon .............Poster P130, P134, P135, P143, P418<br />

Park, Justin J .....................................Paper 262<br />

Park, Kun-woo. ...................................Paper 026<br />

Park, Kwan Kyu ................................. Poster P055<br />

Park, Kyoung Jin .................................Poster P212<br />

Park, Kyung Soon ............................... Poster P029<br />

Park, Min Jung. ...............................Paper 285, 613<br />

Park, Sang Eun ...................................Paper 317<br />

Park, Yong-Bum. ................................ Poster P167<br />

Park, Youn Soo ...................................Paper 063<br />

Parks, Brent G ....................................Paper 104<br />

Parks, Michael Lloyd. ..............................Paper 534<br />

Parks, Nancy L. ...................................Paper 244<br />

Parmar, Raviinder .................................Paper 478<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Parnes, Nata. .....................................Paper 164<br />

Parodi, Dante ...................Multimedia Education MEC01<br />

Parratte, Sebastian. ................................Paper 419<br />

Parsley, Billy Keith. ................................Paper 574<br />

Parsley, Brian S ........................Paper 463, Poster P005<br />

Parsons, Bradford .................................Paper 601<br />

Parsons, Theodore W ..........Paper 230, Scientific Exhibit SE81,<br />

Symposia I<br />

Partington, Paul Francis ............Paper 722, Poster P071, P155<br />

Parvizi, Javad .......Paper 122, 124, 125, 126, 189, 357, 478, 539,<br />

Poster P073, P075, P078, P079, P098, P104, P107,<br />

P184, P186, P199, P464, Scientific Exhibit SE08,<br />

SE10, Symposia E, ORSII, V<br />

Paryavi, Ebrahim. .................................Paper 388<br />

Pasku, Dritan. .................................. Poster P367<br />

Pasquier, Gilles ................................. Poster P036<br />

Patel, Alpesh Ashwin ..............................Paper 021<br />

Patel, Amar .................................... Poster P223<br />

Patel, Amar Arun. .................................Paper 024<br />

Rajendra, Patel’Anay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P069<br />

Patel, Ashish .................................Paper 441, 729<br />

Patel, Jay J ......................................Poster P021<br />

Patel, Neeraj ....................Multimedia Education MEC24<br />

Patel, Priyesh .....................................Paper 333<br />

Patel, Satyam Rajnikant ............................Paper 566<br />

Patel, Shelain. ....................................Paper 265<br />

Patel, Vikas Vanarsi .............................. Poster P376<br />

Patella, Silvio. ....................................Paper 198<br />

Patil, Shantanu ................................. Poster P196<br />

Patou, Gary .....................................Poster P216<br />

Patron, Laura P ................................. Poster P408<br />

Patten, Darren .................................. Poster P426<br />

Patzer, Thilo. ................................... Poster P328<br />

Paul, Sophia ................................... Poster P298<br />

Pavlou, George ..................................Poster P110<br />

Pawelek, Jeff. ..........................Paper 392, Poster P255<br />

Paxton, Liz. .....................Paper 186, Poster P183, P198,<br />

Scientific Exhibit SE04<br />

Peace, William Joseph. ........................... Poster P427<br />

Pearl, Michael L. ................................ Poster P242<br />

Pearle, Andrew D ................Paper 577, Poster P156, P162,<br />

Scientific Exhibit SE67<br />

Pechey, Carola .................................. Poster P478<br />

Pedroza, Angela D. ................................Paper 572<br />

Peers, Sebastian Charles ............................Paper 204<br />

Pekmezci, Murat . . . . . . . . . . . . . . Paper 029, 225, 444, Poster P387<br />

Pelet, Syephane ...................................Paper 384<br />

Penenberg, Brad L ......................Paper 353, Poster P106<br />

Peng, Lauren ................................... Poster P242<br />

Penn-Barwell, Jowan G. .......................... Poster P485<br />

Pennington, Scott ............................... Poster P335<br />

Pennington, W Wesley ........................... Poster P336<br />

Pennock, Andrew T. ........................Poster P336, P336<br />

Penoyer, Tom. .................................. Poster P395<br />

Pensy, Raymond A. ................................Paper 698<br />

Peppers, Michael .................Multimedia Education MEC15<br />

Percope-Andrade, Marco Antonio ...................Poster P531<br />

Perdue, Paul William ..............................Paper 312<br />

Pereira, Regina. ..................................Poster P531<br />

Pereira, Renata. ...................................Paper 673<br />

Pereira, Tatiana Soares ........................... Poster P283<br />

Pereles, Daniel. ...................................Paper 648<br />

Pericle, Tony ....................................Symposia X<br />

922<br />

Perino, Georgio. .................................Poster P014<br />

Perra, Joseph H ..................................Symposia T<br />

Perreira, Aimee ................................. Poster P527<br />

Perrien, Daniel ...................................Paper 379<br />

Perry, Kevin I .....................................Paper 343<br />

Peter, Wilfred. ....................................Paper 616<br />

Peters, Christopher L. .... Paper 061, 346, 347, 348, 349, 350, 351,<br />

352, 353, 354, 355, 356, 357, 358,<br />

359, 360, 635, 706, Poster P030,<br />

Scientific Exhibit SE12, SE15, Symposia B<br />

Petersen, Steve A ................................ Poster P292<br />

Petersilge, William J ...............................Paper 378<br />

Petit, Alain ..................................... Poster P082<br />

Petite, Herve ................................... Poster P484<br />

Petkovic, Agnica ..................................Paper 328<br />

Petrella, Anthony ............................... Poster P376<br />

Petrera, Massimo. ............................... Poster P442<br />

Petrigliano, Frank .................................Paper 205<br />

Petrisor, Brad ......................Paper 387, 630, Poster P519<br />

Petron, David ................Paper 635, Scientific Exhibit SE12<br />

Petty, Damon H. .................................. Paper 611<br />

Petty, Emily .................................... Poster P245<br />

Pfeiffer, Ferris. .............................Poster P399, P520<br />

Pfirrmann, Christian. .............................Poster P315<br />

Pflugmacher, Robert ...............................Paper 740<br />

Philbin, Terrence ................................ Poster P225<br />

Philippon, Marc J .............................Paper 552, 638<br />

Phillips, Frank M. ............................... Poster P377<br />

Phillips, Lee Garrit ............Paper 635, Scientific Exhibit SE12<br />

Phillips, Michael .......................Paper 129, Poster P004<br />

Phillips, William A ................................Paper 431<br />

Phisitkul, Phinit .......Multimedia Education MEC20, Paper 092<br />

Pibarot, Vincent ................................ Poster P048<br />

Picha, Brad Matthew. ............................ Poster P494<br />

Pierce, Raymond O ..............................Poster BOS1<br />

Pierson, Jeffery L ..................................Paper 130<br />

Pifer, Matthew Alan ............................. Poster P390<br />

Pijls, Bart G ..................................Paper 253, 594<br />

Pike, Jeffrey .................................... Poster P343<br />

Pimenta, Luiz ..............Paper 736, Poster P373, P375, P379<br />

Pimple, Mahesh ..................................Paper 497<br />

Pinczewski, Leo A .............................Paper 323, 481<br />

Pinney, Stephen J ................................Poster P207<br />

Pino, Alfonso E ................................. Poster P559<br />

Pinsker, Ellie .....................................Paper 053<br />

Pinsky, Jonathan ..................................Paper 471<br />

Pinto, Vivek .....................................Poster P311<br />

Pirani, Piergiorgio .................................Paper 578<br />

Pirker-Fruhauf, Ulrike M ......................... Poster P543<br />

Pitcher, J David .........................Scientific Exhibit SE81<br />

Pizzutillo, Peter D .......Paper 541, 542, 543, 544, 545, 546, 547,<br />

548, 549, 550, 551, 552, 553, 554, 555<br />

Plancher, Kevin D . . . . . . . Paper 481, 482, 483, 484, 485, 486, 487,<br />

488, 489, 490, 491, 492, 493, 494, 495<br />

Plaskos, Christopher. ............................ Poster P162<br />

Ploumis, Avraam L .............................. Poster P060<br />

Podeszwa, David A .................Paper 432, 637, Poster P059<br />

Poignard, Alexandre .......................... Paper 009, 191,<br />

Scientific Exhibit SE18, SE21<br />

Polavarapu, Mahesh ...............................Paper 476<br />

Polishchuk, Daniil ................................Paper 375<br />

Poljak, Dijana ....................................Paper 423<br />

Pollak, Andrew N .......................Scientific Exhibit SE74<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Polly, David W. ................................. Poster P398<br />

Ponce, Brent A ....................................Paper 473<br />

Ponnappan, Ravi Kumar. ......................... Poster P385<br />

Poole, Robin ...........................Scientific Exhibit SE33<br />

Poolman, Rudolf W ............Paper 070, 407, 616, Poster P519<br />

Poon, Peter ......................................Paper 165<br />

Porat, Manny D. ..................................Paper 220<br />

Porcellini, Giuseppe ...............................Paper 371<br />

Porter, Daniel .............................Poster P541, P542<br />

Porter, Martyn . . . . . . . . . . . . Paper 033, 067, Scientific Exhibit SE03<br />

Potla, Sivaiah. ....................................Paper 417<br />

Potter, Benjamin Kyle ...................Paper 705, Poster P498<br />

Potter, Hollis ...........Paper 205, 554, Poster P014, P139, P254<br />

Poultsides, Lazaros A ...................Paper 535, Poster P118<br />

Powell, James N ..................................Paper 034<br />

Powles, David .................................. Poster P172<br />

Pozen, Alexis ..................................... Paper 110<br />

Pradhan, Anupam. ................................Paper 174<br />

Prata Nascimento, Luis Gustavo ................... Poster P295<br />

Prather, Heidi ....................................Paper 625<br />

Prayson, Michael J. .............................. Poster P494<br />

Prefontaine, Paul. ............................... Poster P195<br />

Prevezas, Nikolaos ................................ Paper 211<br />

Prewitt, Erin M ...................................Paper 103<br />

Price, Andrew J ................Paper 354, 415, 592, Poster P145<br />

Prifti, Dritan .....................................Paper 062<br />

Prior, David McKeon ............................ Poster P450<br />

Pritsch, Tamir .................................. Poster P465<br />

Probe, Robert A .................................Symposia U<br />

Prokuski, Laura J ........................Scientific Exhibit SE45<br />

Provencher, Matthew T ...........Multimedia Education MEC35,<br />

Paper 606, Poster P329, P336, P427, P436,<br />

Scientific Exhibit SE53, Symposia A, N<br />

Puigdevall, Miguel ................................Paper 400<br />

Pulos, Nicholas ................................. Poster P067<br />

Puls, Marc ..................................... Poster P038<br />

Pun, Stephanie ................................. Poster P253<br />

Pupello, Derek ........................Paper 365, Poster P309<br />

Purdue, Ed ............................Paper 238, Poster P014<br />

Puri, Lalit ..................Paper 460, Poster P069, P175, P193<br />

Puri, Rajeev D ....................................Paper 182<br />

Purtill, James J. .........Paper 189, 539, Poster P073, P075, P107,<br />

P186, P199, Scientific Exhibit SE10<br />

Putti, Amit B ................................... Poster P262<br />

Puttlitz, Christian ............................... Poster P376<br />

Putz, Cornelia . . . . . . . . . . . . . . . . . . . . . . . . . .Scientific Exhibit SE59<br />

Pylawka, Tamara ..............................Paper 013, 206<br />

Pynsent, Paul. .....................Paper 036, 188, Poster P006<br />

Qamirani, Erion ..................................Paper 149<br />

Qanirani, Erion ...................................Paper 141<br />

Queen, Robin M ......................... Paper 048, 057, 058<br />

Qiu, Xing ........................................ Paper 310<br />

Quigley, Ryan .................................. Poster P326<br />

Qureshi, Sheeraz ................Multimedia Education MEC53,<br />

Paper 665, 741, Poster P378<br />

Rabago, Michael ..................................Paper 494<br />

Rabenhorst, Brien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 544<br />

Rachala, Deepthi................................ Poster P179<br />

Rachel, James Nick .............................. Poster P250<br />

Racusin, Adam Wesley ........................... Poster P502<br />

Radcliff, Kristen E ..... Paper 024, 256, 270, 666, 750, Poster P361<br />

Radler, Christ<strong>of</strong> ................................. Poster P222<br />

Ragone, Vincenza ............................... Poster P409<br />

923<br />

Rahbek, Ole. .....................................Paper 434<br />

Rahimi, Mohammad ............................ Poster P459<br />

Rahman, Luthfur. ................................Poster P091<br />

Rahme, Hans .....................................Paper 615<br />

Rajaratnam, Sam ..................................Paper 526<br />

Rajdl, Eduardo. ................................. Poster P453<br />

Raju, PPJ ........................................Paper 064<br />

Rakhra, Kawan. .............................. Symposia ORSI<br />

Raman, Raghu .........................Paper 624, Poster P503<br />

Ramappa, Arun J .......................Paper 117, Poster P263<br />

Ramaskandhan, Jayasree ......................... Poster P064<br />

Rambani, Rohit ................................. Poster P503<br />

Ramesh, Palanisamy ...............................Paper 507<br />

Ramirez, Claudia. ................................Poster P119<br />

Ramon, Jose G. ................................. Poster P559<br />

Ramos, Nicholas ..................................Paper 113<br />

Ramsier, Rex D .........................Scientific Exhibit SE30<br />

Rana, Sumit Hamendra .......................... Poster P393<br />

Ranawat, Amar S .............. Paper 416, Scientific Exhibit SE27<br />

Ranawat, Anil ................Paper 634, Scientific Exhibit SE67<br />

Ranawat, Chitranjan S .........Paper 416, Scientific Exhibit SE27,<br />

Symposia B, V<br />

Randall, R Lor ....................................Paper 522<br />

Randelli, Filippo ................................ Poster P409<br />

Randolph, Joseph C ............................. Poster P153<br />

Rao, Nalini. .....................................Poster P119<br />

Raphael, Bradley ........................Scientific Exhibit SE49<br />

Raschke, Michael. ............................... Poster P506<br />

Rashidifard, Christopher H .........................Paper 655<br />

Raskolnikov, Dima ............................Paper 275, 332<br />

Rasquinha, Vijay J ................................Poster P019<br />

Rastegar, Farbod ................................ Poster P536<br />

Rastogi, Shishir ...................................Paper 237<br />

Raterman, Stephen J ...............................Paper 006<br />

Rathbone, Christopher ..................Paper 138, Poster P507<br />

Rathjen, Karl E. ...................................Paper 421<br />

Ravazzolo, Giovanni. .............................Poster P414<br />

Raven, Raymond B ...............................Poster P471<br />

Ravi, Krishna Cidambi ........................... Poster P364<br />

Raviraj, Adala. ...................................Poster P416<br />

Rayan, Faizal ................................... Poster P437<br />

Raz, Guy. .......................................Poster P111<br />

Razaei, Yadollah ..................................Paper 143<br />

Razif, Ali. .......................Multimedia Education MEC36<br />

Razzano, Pasquale. ................................Paper 496<br />

Reagan, Jeffrey Maurice. ............................Paper 216<br />

Realyvasquez, John ................................Paper 519<br />

Realyvasquez, Juan A ............................ Poster P530<br />

Rechtine, Glenn R ............................... Poster P368<br />

Reddix, Robert N. ......................Paper 730, Poster P458<br />

Reddy, Sudheer C .................................Paper 056<br />

Redler, Andrea .................................. Poster P447<br />

Reed, Elaine. ...........................Scientific Exhibit SE01<br />

Reed, Mike R .................Paper 537, 722, Poster P071, P155<br />

Reedy, Mary E ....................................Paper 291<br />

Rees, Harold Wharton .............................Paper 133<br />

Regalbuto, Ricky ..................................Paper 273<br />

Rehman, Rasham .................................Paper 142<br />

Reichel, Heiko .................................. Poster P028<br />

Reid, J Spence ....................................Paper 206<br />

Reid, Terry-Elinor R. ...............................Paper 428<br />

Reilly, James H. ...................................Paper 682<br />

Reinares, Felipe ..................................Poster P211<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

, Poster P257<br />

Reinhardt, Keith R. ................ Scientific Exhibit SE64, SE67<br />

Reinhart, Donnie M ...............................Paper 541<br />

Reinold, Michael M. ...............................Paper 647<br />

Reis, Abilio Antunes ............................. Poster P395<br />

Riesgo, Aldo. .....................................Paper 332<br />

Reisman, William ................................Poster P481<br />

Reitman, Charles A ................................Paper 028<br />

Ren, Weiping .....................................Paper 629<br />

Rendon, Norma ..........................Paper 118, 119, 448<br />

Repicci, John A ..................................Symposia P<br />

Resch, Herbert ....................................Paper 203<br />

Restrepo, Camilo. ........Paper 125, 357, 539, Poster P078, P079,<br />

Scientific Exhibit SE08, SE10<br />

Rettig, Arthur C ...................................Paper 632<br />

Reveal, Gregory T ............................... Poster P487<br />

Revell, Matthew. ...................Paper 036, 188, Poster P006<br />

Reyes, Mauricio ................................. Poster P533<br />

Reynolds, Sarah. .................................Poster P413<br />

Reynolds, Shaun ..................................Paper 245<br />

Rhee, Peter C .....................................Paper 364<br />

Rho, Monica .....................................Paper 625<br />

Rhyu, Kee Hyung .................................Paper 309<br />

Ricart H<strong>of</strong>fiz, Pedro. ...............................Paper 262<br />

Ricci, William M ..........................Paper 701, 703, 732<br />

Richard, Marc Joseph ..............................Paper 333<br />

Richards, B Stephens. ............................ Poster P382<br />

Richards, Justin E .............................Paper 221, 380<br />

Richardson-Frazzitta, Meagan ..................... Poster P345<br />

Richman, Joshua. .................................Paper 473<br />

Rieger, Johannes S. .........................Poster P090, P095<br />

Ries, Michael D ...................................Paper 479<br />

Riew, K Daniel. ......Paper 022, 026, 030, 737, Poster P374, P400<br />

Rigal, Wynne M. ................................ Poster P086<br />

Rihn, Jeffrey. ........................Paper 024, 270, 666, 750,<br />

Poster P361, P385, Symposia Y<br />

Rijnberg, W J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 075<br />

Riley, Clayton H ................................ Poster P302<br />

Riley, Michelle. ..................................Poster P106<br />

Ring, David C ...............Poster P231, P323, Symposia AA, O<br />

Ringler, James R .............Paper 047, Poster P224, P513, P515<br />

Rinsky, Lawrence A .............................. Poster P253<br />

Rios, Gilberto ....................................Paper 422<br />

Ritacco, Lucas Eduardo. .......Poster P533, Scientific Exhibit SE38<br />

Ritenour, Amber E. .............................. Poster P502<br />

Ritter, Merrill A ...............................Paper 130, 413<br />

Ritzman, Todd F ................................ Poster P249<br />

Rives, Terry E . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 730, Poster P458<br />

Rizek, Randy .....................................Paper 289<br />

Robbins, Claire E. .............................Paper 410, 597<br />

Roberge, David ...................................Paper 524<br />

Roberts, Craig S ..............Paper 212, 721, 722, 723, 724, 725,<br />

726, 727, 728, 729, 730, 731, 732, 733,<br />

734, 735, Scientific Exhibit SE77<br />

Roberts, David. ................................. Poster P275<br />

Roberts, Matthew .................................Paper 102<br />

Roberts, Timothy. .................................Paper 535<br />

Robertsson, Otto. ......................Paper 242, Poster P133<br />

Robinson, James .................................. Paper 110<br />

Robinson, Michael ................................Paper 612<br />

Robinson, Michael Aaron. ........................ Poster P087<br />

Robinson, Paul S. ............................... Poster P403<br />

Robinson, Yohan. .................................Paper 264<br />

924<br />

Rocha, Sheri. .................................Paper 266, 749<br />

Roche, Martin William . . . . . . . . . . . Multimedia Education MEC18,<br />

Poster P201, Symposia L<br />

Rodeo, Scott Alan .............Paper 205, 577, 579, Poster P424,<br />

Scientific Exhibit SE71, SE73, Symposia C, ORSII<br />

Rodine, Robert. ...................................Paper 630<br />

Rodriguez, Carlos M ....................Paper 717, Poster P026<br />

Rodriguez, Edward ............Paper 115, 304, Poster P218, P509<br />

Korduba-Rodriguez, Laryssa. .................Poster P181, P182<br />

Rodriguez, Sergio .......................Scientific Exhibit SE37<br />

Roe, Justin Phillip .............................Paper 323, 481<br />

Roebuck, Margaret M .............................Poster P321<br />

Rogal, Michael J. ...............................Symposia 151<br />

Rogers, Ann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 013<br />

Rogers, Benedict ..................................Paper 135<br />

Rogerson, John Sargent. .......................... Poster P094<br />

Rojpornpradit, Thana ............................ Poster P163<br />

Rokito, Andrew S ................Multimedia Education MEC40<br />

Romano, Carlo ..................................Poster P314<br />

Romanowski, J R .................Multimedia Education MEC03<br />

Romantini, Matteo .............................. Poster P539<br />

Romeo, Anthony A ....Paper 160, 367, 574, 606, 609, Poster P329<br />

Romero, Alex. .................................. Poster P455<br />

Roocr<strong>of</strong>t, Joanna Helena ............Paper 099, 179, Poster P247<br />

Roques, Anne .....................Paper 135, 527, Poster P045<br />

Rorabeck, Cecil H ......................Paper 350, Poster P080<br />

Rose, David .................................... Poster P324<br />

Rose, Peter S. ................................... Poster P544<br />

Rosenberg, Aaron Glen. ..............Paper 411, 714, Symposia B<br />

Rosenwasser, Melvin Paul. ...........Paper 275, 332, Poster P303<br />

Rosner, Michael. ..................................Paper 017<br />

Ross, F Patrick ....................................Paper 238<br />

Rossi, Mark ...............................Poster P102, P152<br />

Rossi, Roberto ...........Multimedia Education MEC04, MEC22,<br />

Paper 207, Scientific Exhibit SE25, SE65<br />

Roth, Alan .......................................Paper 648<br />

Rothem, David E. .................................Paper 351<br />

Rothman, Richard H. ...................Paper 539, Poster P078,<br />

Scientific Exhibit SE10<br />

Rotini, Roberto .........................Scientific Exhibit SE54<br />

Rouleau, Dominique ...................Paper 623, Poster P338<br />

Rounds, Tracy ....................................Paper 120<br />

Roussanne, Yannick ....................Paper 084, Poster P330<br />

Roussos, Constantinos .............................Paper 183<br />

Rout, Rajesh. .....................................Paper 354<br />

Routt, Milton L ................................. Poster P470<br />

Roy, Louis ..................................... Poster P475<br />

Roy, Marcel ............. Multimedia Education MEC13, MEC15<br />

Roye, David Price .................................Paper 397<br />

Rozbruch, S Robert ................................Paper 313<br />

Rozumalski, Adam ...............................Poster P241<br />

Rubash, Harry E ......................... Paper 295, 300, 480<br />

Rubery, Paul T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P368<br />

Rubin, Todd A ....................................Paper 666<br />

Ruch, David Simms ...............................Paper 333<br />

Rudan, John F ....................................Paper 409<br />

Rue, John-Paul H. ................................Poster P421<br />

Ruffilli, Alberto ..........Paper 093, Scientific Exhibit SE61, SE69<br />

Ruggieri, Pietro ....................Paper 240, 520, Poster P539<br />

Ruh, Erin ...................................... Poster P027<br />

Ruiz Suarez, Michell ............................... Paper 610<br />

Rush, Jeremy K ...................................Paper 052<br />

Russell, George V. ..........................Poster P456, P457<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Russell, Kelvin J. ................................ Poster P086<br />

Russell, Thomas A. ................................Paper 701<br />

Russlies, Martin ................................. Poster P285<br />

Ruther, Wolfgang. ............................... Poster P285<br />

Ruzzini, Laura ................................Paper 156, 157<br />

Ryan, Paul M .....................................Paper 571<br />

Ryan, Philip..................Paper 528, 712, Poster P041, P043<br />

Rybak, Leon. ....................Multimedia Education MEC39<br />

Ryu, Jessica ......................................Paper 209<br />

Ryu, Richard K N. ................................Symposia A<br />

Saadat, Ehsan ....................................Paper 479<br />

Sabatini, Coleen S. ................................Paper 435<br />

Sabet, Hamid. ................ Paper 621, Scientific Exhibit SE44<br />

Sabharwal, Sanjeev ................................Paper 402<br />

Sacks, Janice T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P556<br />

Sacks, Stanley E ................................. Poster P556<br />

Saddiki, Rachid ...................................Paper 697<br />

Saeki, Kazuhiko. ................................ Poster P407<br />

Safir, Oleg ....................... Paper 251, Poster P044, P111<br />

Sah, Alexander P .................................Poster P070<br />

Sah, Robert .................................... Poster P393<br />

Saha, Subrata. ...................................Poster P019<br />

Sahin, Hacer ................................... Poster P506<br />

Saifi, Comron .................................. Poster P344<br />

Saillant, Jason C ..................................Paper 330<br />

Saito, Susumu ....................................Paper 345<br />

Saito, Tomoyuki ......................Poster P049, P068, P268<br />

Saiz, Paul ..............Paper 661, 662, 663, 664, 665, 666, 667,<br />

668, 669, 670, 671, 672, 673, 674, 675<br />

Sakai, Hiroaki .................................. Poster P350<br />

Sakai, Takashi ........................Poster P050, P052, P053<br />

Sakakibara, Toshihiko. .............................Paper 263<br />

Sakdinakiattikoon, Manoon ...................... Poster P163<br />

Saklatvala, Jeremy .................................Paper 145<br />

Sakuma, Yu ......................................Paper 591<br />

Salari, Nima. ...........................Scientific Exhibit SE62<br />

Salari, Pooria ..........................Paper 392, Poster P386<br />

Salata, Michael ............... Paper 200, 367, 609, Poster P452<br />

Saleh, Khaled J ..................................Poster P271<br />

Saleme, Jacobo ................................. Poster P259<br />

Salemyr, Mats .................................. Poster P093<br />

Salkeld, Samantha L ............................. Poster P408<br />

Salmon, Lucy J. ...............................Paper 323, 481<br />

Salo, Guillem. .................................. Poster P352<br />

Salonen, David ...................................Paper 589<br />

Saltzman, Charles L ...............................Paper 651<br />

Saltzman, Matthew .....................Paper 680, Poster P294<br />

Salvati, Eduardo Agustin ...........................Paper 535<br />

Salvo, Davide. ....................................Paper 091<br />

Sama, Andrew A .......................Paper 747, Poster P369<br />

Samdani, Amer ...................................Paper 440<br />

Samejima, Yashuito ............................. Poster P432<br />

Sami, Syed .......................................Paper 629<br />

Sammarco, Vincent James .....Paper 091, 092, 093, 094, 095, 096,<br />

097, 098, 099, 100, 101, 102, 103, 104, 105<br />

Sampson, Barry .........................Scientific Exhibit SE03<br />

Samuels, Jonathan .............................. Poster P138<br />

San Giovanni, Thomas P ...........................Paper 501<br />

Sanchez-Sotelo, Joaquin. ...Paper 078, 087, 602, 690, Poster P286,<br />

P297, P306<br />

Sanden, Bengt ....................................Paper 264<br />

Sanders, David ....................Paper 303, 382, Poster P213<br />

Sanders, James O. ............................... Poster P382<br />

925<br />

Sandhu, Harvinder S. ............................Symposia W<br />

Sandstrom, Bjorn .................................Paper 615<br />

Sanhudo, Jose A ..................................Paper 509<br />

Santos, Edward Rainier G ......................... Poster P398<br />

Sariali, Elhadi .............................Poster P036, P037<br />

Sarwahi, Vishal ........................Paper 746, Poster P358<br />

Sasagawa, Takeshi ................................Poster P351<br />

Sasahara, Jun ................................... Poster P432<br />

Sasaki, Mikito ....................................Paper 232<br />

Sasso, Rick C ..........................Paper 737, Symposia G<br />

Sassoon, Adam ...................................Paper 364<br />

Satcher, Robert L ..................................Paper 525<br />

Satchithananda, Keshthra. ................Scientific Exhibit SE03<br />

Sato, Yukata. ....................................Poster P261<br />

Satonaka, Haruhiko ...............................Paper 652<br />

Satpathy, Jibanananda ........................... Poster P099<br />

Saucedo, James Matthew .......................Paper 460, 476<br />

Saul, Katherine R. .......................Scientific Exhibit SE31<br />

Saunders, Stuart M ................................Paper 650<br />

Savage, Jason Wayne ...............................Paper 476<br />

Savidge, Edgar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 647<br />

Savoie, Felix H .....................Paper 209, 686, Poster P316<br />

Savrun, Feray ................................... Poster P567<br />

Sawardeker, Prasad J ........................Poster P293, P334<br />

Sawhill, Amy .....................................Paper 455<br />

Sawyer, Jeffrey R .............. Paper 167, 403, 404, Poster P250<br />

Sayeed, Siraj A ...................................Poster P181<br />

Scelsi, Michele. .................Multimedia Education MEC28,<br />

Scientific Exhibit SE51<br />

Schaffer, Jonathan L ............................. Poster P154<br />

Schaper, Lawrence A ..............................Poster P109<br />

Scharfstein, Daniel ................................Paper 388<br />

Scharschmidt, Thomas J .......................... Poster P525<br />

Schaufele, Michael ................................Paper 672<br />

Scheer, Justin ................ Paper 029, 444, Poster P387, P396<br />

Schemitsch, Emil H ..........Paper 034, 070, 141, 149, 301, 302,<br />

303, 304, 305, 306, 306, 307, 308, 309,<br />

310, 311, 312, 313, 314, 315, 464,<br />

Poster BOS2, P460, P519<br />

Scher, David M ...................................Paper 405<br />

Scherl, Susan A .........Paper 166, 167, 168, 169, 170, 171, 172,<br />

173, 174, 175, 176, 177, 178, 179, 180<br />

Schiller, Jonathan R. ...........................Paper 172, 173<br />

Schleck, Cathy D ..................................Paper 364<br />

Schlegel, Theodore F. ............................ Poster P332<br />

Schmalzried, Thomas P ............Paper 074, Poster P067, P090<br />

Schmidt, Christopher C ............................Paper 677<br />

Schmitt, Jan O. ................................. Poster P132<br />

Schmitz, Christian ................................Paper 248<br />

Schneckener, Charlotte-Dorothe . . . . . . . . . . . . . . . . . . . . . Paper 347<br />

Schneider, Robert ......................Paper 405, Poster P476<br />

Schoenfeld, Andrew ....................Paper 728, Poster P435<br />

Sch<strong>of</strong>er, Markus. ................................ Poster P132<br />

Scholtes, Vanessa A ............................Paper 407, 616<br />

Schon, Lew C. ....................................Paper 104<br />

Schoones, Jan W ..................................Paper 253<br />

Schreiber, Verena M .....................Scientific Exhibit SE72<br />

Schroder, Steven ..................................Paper 040<br />

Schroder, Steven ............................Poster P010, P011<br />

Schroeder, Joshua .............................Paper 139, 667<br />

Schroer, William C ................................Paper 291<br />

Schroerlucke, Samuel Ray. ..........................Paper 392<br />

Schrumpf, Mark ........................Scientific Exhibit SE68<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Schuh, Reinhard ................................ Poster P208<br />

Schulte, Caitlin ..................................Poster P371<br />

Schulz, Ben ......................................Paper 634<br />

Schurman, John R. ................................Paper 190<br />

Schwab, Frank J .........Paper 397, 441, Poster P394, Symposia T<br />

Schwab, Joseph Hasbrouck ........................Symposia I<br />

Schwantes, Bernd ............................... Poster P092<br />

Schwartz, Daniel M. ...............................Paper 220<br />

Schwartz, Jeffrey M .......Paper 316, 317, 318, 319, 320, 321, 322,<br />

323, 324, 325, 326, 327, 328, 329, 330<br />

Schwartz, Michael H ..............................Poster P241<br />

Schwarz, Dana M .................................Paper 241<br />

Schwarzkopf, Ran ............................... Poster P023<br />

Schwiesau, Jens ...................................Paper 740<br />

Sciadini, Marcus F........................ Paper 222, 698, 723<br />

Scolaro, John Alan .............................. Poster P464<br />

Scoon, Joanna ....................................Paper 643<br />

Scorilas, Andreas ................................ Poster P188<br />

Scott, David Forrest. ............................. Poster P003<br />

Scott, Kelly. ......................................Paper 325<br />

Scott, W Norman ............................... Poster P127<br />

Scuderi, Gaetano J. .....................Paper 501, Poster P346<br />

Scuderi, Giles R ..............Paper 294, 598, Poster P127, P190,<br />

Scientific Exhibit SE23, Symposia B, P<br />

Sculco, Thomas P ......................Paper 290, Poster P118<br />

Scully, Sean P. ....................................Paper 236<br />

Seah, Renyi Benjamin. .............................Paper 012<br />

Sedrakyan, Art ....................................Paper 186<br />

Seeger, Joern Bengt .............................. Poster P095<br />

Seeman, Ego .....................................Paper 227<br />

Sees, Julieanne P ..................................Paper 725<br />

Segal, Lee S ......................................Paper 314<br />

Segal, Neil ......................................Poster P281<br />

Segalman, Keith A. .............................. Poster P324<br />

Sehn, Jennifer .................................. Poster P400<br />

Seichi, Atsushi ....................................Paper 019<br />

Seiler, Christ<strong>of</strong>. ................................. Poster P533<br />

Seitz, William H ..................................Paper 344<br />

Sekiya, Jon K ................Poster P310, Scientific Exhibit SE52<br />

Seligson, David ..........Paper 212, Scientific Exhibit SE47, SE77<br />

Soles, Gillian .....................................Paper 224<br />

Sembrano, Jonathan N. .....................Poster P100, P398<br />

Sen, Cengiz .................................... Poster P560<br />

Seng, Chusheng. ....................... Paper 018, Poster P112<br />

Sengupta, Dilip K .................................Paper 744<br />

Seo, Eun Seok ...............Paper 015, Poster P161, P167, P272<br />

Seo, Hyoung Yeon. ................................Paper 257<br />

Seo, Young-Jin .................................. Poster P425<br />

Seok, Chang-Woo .................................Paper 583<br />

Seon, Jong-Keun ......Poster P029, P130, P134, P135, P143, P418<br />

Seong, Sang Cheol ...Paper 010, 011, 015, 320, 322, 326, 329, 490,<br />

Poster P161, P167, P178, P192, P200, P272<br />

Serna, Fernando .................................. Paper 310<br />

Sestokas, Anthony K ...............................Paper 220<br />

Sethi, Anil ......................................Poster P381<br />

Severson, Erik P. ..................................Paper 014<br />

Sewell, Mathew ...................................Paper 462<br />

Sexton, Shaun Alan. ...............................Paper 526<br />

Seyler, Thorsten M. ......................Scientific Exhibit SE31<br />

Shah, Kushal ................................... Poster P248<br />

Shah, Nirav .................................... Poster P088<br />

Shah, Ritesh. ................................... Poster P193<br />

Shah, Suken A .....................Paper 396, 671, Poster P371<br />

926<br />

Shah, Suraj. ......................................Paper 306<br />

Shah, Swapnil B ..................................Paper 222<br />

Shaifuzain, Ab-Rahman .......................... Poster P159<br />

Sham, Jonathan. ..................................Paper 519<br />

Shamieh, K Samer F ...............................Paper 668<br />

Shani, Raj Harry ..................................Paper 549<br />

Shapiro, Frederic ................................ Poster P243<br />

Sharkey, Peter F ..........................Paper 189, 357, 478,<br />

Poster P073, P075, P186, P199<br />

Sharma, Adrija. ................................. Poster P389<br />

Sharma, Amit .............. Paper 269, Poster P100, P369, P398<br />

Sharma, Hemant. ......................Paper 624, Poster P503<br />

Sharma, Vinod Kumar .............................Paper 426<br />

Sharrock, Nigel E. .................................Paper 535<br />

Shaw, Christopher. ................................Paper 624<br />

Shawen, Scott ....................................Paper 705<br />

Shay, Barbara. ....................................Paper 409<br />

Shea, Kevin G ...................................Poster P417<br />

Shearwood-Porter, Natalie ..........................Paper 135<br />

Sheehan, Eoin C ............ Paper 189, Poster P073, P075, P199<br />

Sheibani-Rad, Shahin ............................ Poster P429<br />

Sheikhzadeh, Ali .................................Poster P311<br />

Shelbourne, K Donald ............................Poster P410<br />

Shelton, John. ....................................Paper 146<br />

Shen, Francis H ...................................Paper 027<br />

Shen, James ......................................Paper 617<br />

Shen, Jianhua ................................Paper 003, 190<br />

Shepherd, Bryan ................................ Poster P137<br />

Sheppard, Zachary R. ..............................Paper 429<br />

Sherman, Seth .................................. Poster P162<br />

Sheth, Dhiren S ............... Paper 621, Scientific Exhibit SE44<br />

Sheth, Neil P .....................................Paper 714<br />

Shetty, Anil ......................................Paper 204<br />

Shi, Kenrin. ......................................Paper 345<br />

Shi, Shao-Min ....................................Paper 590<br />

Shia, Derek S .....................................Paper 086<br />

Shiba, Keiichiro. ................................ Poster P350<br />

Shibusawa, Kazuyuki ............................ Poster P333<br />

Shigemura, Tomonori. ..................Paper 546, Poster P279<br />

Shigenobu, Keiichi ................................Paper 259<br />

Shiguetomi-Medina, Juan Manuel. ...................Paper 434<br />

Shillito, Matthew Charles. ..........................Paper 556<br />

Shim, Sang Ho .................. Paper 010, 011, 320, 322, 326,<br />

Poster P178, P192<br />

Shim, Shang Mi. ..................................Paper 153<br />

Shimamoto, Norimichi ............................Paper 321<br />

Shimer, Adam L. ..................................Paper 027<br />

Shimizu, Koh. .........................Paper 619, Poster P158<br />

Shimizu, Masaki ................................ Poster P267<br />

Shimizu, Sara .........................Paper 619, Poster P158<br />

Shimizu, Tohru ................................. Poster P538<br />

Shimose, Shoji. ............................Poster P524, P528<br />

Shin, Alexander Yong Shik .......Paper 051, 334, 343, Poster P443<br />

Shin, Jin Hyup. ...................................Paper 583<br />

Shin, Sang-Jin ...................Paper 155, 162, 316, 604, 605<br />

Shin, Sangmin Ryan ...............................Paper 381<br />

Shinar, Andrew A ............................... Poster P137<br />

Shinjiro, Takata ...................................Paper 143<br />

Shinomiya, Rikuo .................................Paper 280<br />

Shinozaki, Tetsuya .............................. Poster P267<br />

Shirai, Toshiharu. ............Paper 235, 521, Poster P537, P538,<br />

Scientific Exhibit SE83<br />

Shishani, Yousef ......................... Paper 082, 090, 363<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Shitara, Hitoshi ................................. Poster P333<br />

Shon, Hyun-Chul ................................Poster P212<br />

Shore, Ben ...................................Paper 168, 178<br />

Shores, Jennifer ...................................Paper 104<br />

Shor<strong>of</strong>sky, Michael ............................Paper 694, 700<br />

Shortt, Michael D.. .............................. Poster P406<br />

Shourbaji, Rania Ayman. ....................Poster P456, P457<br />

Shrader, Michael Wade .........................Paper 218, 314<br />

Shufflebarger, Harry L. ..............Paper 396, 671, Poster P371<br />

Shukla, David R. ..................................Paper 687<br />

Shuler, Michael S. ................................Poster P481<br />

Shupe, Paul ............................Scientific Exhibit SE53<br />

Siddiqui, Mashfiqul Arafin. .........................Paper 417<br />

Sides, Brenda .....................................Paper 446<br />

Sidhwa, Feroze ...................................Paper 503<br />

Siebenrock, Klaus ........................Paper 043, 044, 542,<br />

Poster P038, P077, P251, P441<br />

Siegel, Judith .....................................Paper 218<br />

Sierra, Rafael Jose ..........................Poster P097, P440<br />

Sietsema, Debra .........................Paper 047, 150, 732,<br />

Poster P224, P359, P402, P513, P515<br />

Signorelli, Cecilia .......................Scientific Exhibit SE24<br />

Sijbesma, Thea ...................................Paper 070<br />

Silva, Mauricio. ...............................Paper 166, 176<br />

Silvaggio, Vincent J ......................Scientific Exhibit SE46<br />

Silverman, Andrew M ............Multimedia Education MEC46,<br />

MEC47, MEC48, MEC49, MEC50,<br />

MEC51, MEC52, MEC53<br />

Silvis, Matthew ...................................Paper 013<br />

Sim, Franklin H. ................................ Poster P544<br />

Simoes-Silva, Ana Christina ........................Poster P531<br />

Simpson, David R ............................... Poster P187<br />

Sims, Stephen H ..................................Paper 676<br />

Simunovic, Nicole. .........................Poster P460, P474<br />

Sinapi, Fabrizio ..................................Poster P012<br />

Singh, Anshuman ............................... Poster P534<br />

Singh, Jagwant. ................................. Poster P503<br />

Singh, Jasvinder. ..............................Paper 014, 473<br />

Sink, Ernest L. ....................Paper 637, Poster P059, P063<br />

Siris, Ethel .......................................Paper 226<br />

Sirugo, Fabio ...........................Scientific Exhibit SE80<br />

Sirveaux, Francois ......................Paper 088, Symposia M<br />

Siska, Peter. .................................... Poster P505<br />

Skaggs, David Lee .........................Paper 391, 435, 438<br />

Skaggs, Kira F. ....................................Paper 435<br />

Skeels, Michael D .................................Paper 298<br />

Skeete, Faith. ..........................Paper 129, Poster P004<br />

Skendzel, Jack Gerard .........Poster P310, Scientific Exhibit SE52<br />

Skinner, John. ................Paper 033, 067, 068, Poster P116,<br />

Scientific Exhibit SE03<br />

Skolasky, Richard L ......................... Poster P081, P401<br />

Skoldenberg, Ol<strong>of</strong>. .........................Poster P093, P512<br />

Skrepnik, Nebojsa V ............................. Poster P240<br />

Slabaugh, Mark A ............................... Poster P329<br />

Slenker, Nicholas R ................................Paper 681<br />

Slikker, William. .................................Poster P219<br />

Slobogean, Gerard .....................Paper 566, Poster P213<br />

Slough, Jennifer. ................................ Poster P482<br />

Slover, James D ...........Paper 113, 129, 715, Poster P004, P023<br />

Slutsky, David Joseph ............................Symposia O<br />

Smit, Milton J ....................................Paper 182<br />

Smith, E O’Brian ..................................Paper 431<br />

Smith, Frank C ...................................Paper 034<br />

927<br />

Smith, Harvey ....................................Paper 024<br />

Smith, Holly .....................................Paper 289<br />

Smith, Julie Macaulay. .............................Paper 461<br />

Smith, Karen ..........................Paper 037, Poster P031<br />

Smith, Lucas .....................................Paper 550<br />

Smith, Paul N .................................. Poster P522<br />

Smith, R Lane .............................Poster P237, P391<br />

Smith, R M. .....................................Poster P516<br />

Smith, Thomas L. ............. Paper 567, Scientific Exhibit SE31<br />

Smith, Thomas Waddell ........................Paper 640, 645<br />

Smith, Wade Russell ...............................Paper 716<br />

Smolders, Jose MH ............................Paper 072, 075<br />

Smolinski, Patrick J. ............................. Poster P407<br />

Smucker, Joseph Douglas ......... Paper 436, 437, 438, 439, 440,<br />

441, 442, 443, 444, 445, 446,<br />

447, 448, 449, 450<br />

Snearly, Christine ............................... Poster P149<br />

Sneller, Michael A .......................Scientific Exhibit SE07<br />

Snyder, Benjamin Matthew .........................Paper 366<br />

Snyder, Brian .....................................Paper 234<br />

Soares, Guilherme. ...............................Poster P531<br />

Sodl, Jeffrey F. ....................................Paper 608<br />

Soileau, Elizabeth S. ...............................Paper 246<br />

Sokol, Shima ................................... Poster P233<br />

Sokunbi, Gbolabo Olabiyi. .........................Paper 440<br />

Solan, Matthew C .................................Paper 497<br />

Solarz, Mark ....................................Poster P107<br />

Solayar, Gandhi Nathan ............Paper 477, Poster P428, P428<br />

Solomon, Daniel Jordan .........Multimedia Education MEC35,<br />

Poster P427<br />

Solsky, Ian .......................................Paper 205<br />

Soma, Tomotsu ...................................Paper 232<br />

Song, Eun Kyoo. ......Poster P029, P130, P134, P135, P143, P418<br />

Song, Frederick Suh ....................Paper 089, Poster P325<br />

Song, Hae Ryong. ............................... Poster P258<br />

Song, Ji-Hoon ....................................Paper 016<br />

Song, Kyung Jin. ..............................Paper 016, 663<br />

Song, Sang Jun ................................. Poster P144<br />

Song, Yanna. .....................Paper 743, Poster P362, P367<br />

SooHoo, Nelson Fong ..........Paper 039, 112, 719, Poster P266<br />

Sorene, Elliott .................................. Poster P238<br />

Soroceanu, Alexandra..............................Paper 503<br />

Soslowsky, Louis J .......................Scientific Exhibit SE33<br />

Souder, Christopher D ........................... Poster P466<br />

Souza, Bruno Goncalves Schroder. ...................Paper 638<br />

Spandidos, Demetrios ........................... Poster P367<br />

Spang, Jeffrey T ...................................Paper 585<br />

Spangehl, Mark J ..................................Paper 133<br />

Specht, Lawrence. ............................... Poster P034<br />

Specht, Stacy C ...................................Paper 428<br />

Spector, Tim D. ................................. Poster P327<br />

Speering, Leann. ..................................Paper 103<br />

Sperling, John William ........Paper 078, 087, 151, 152, 153, 154,<br />

155, 156, 157, 158, 159, 160, 161, 162,<br />

163, 164, 165, 364, 602, Poster P296,<br />

Symposia M<br />

Spiegel, David Andrew .............................Paper 114<br />

Spinner, Robert Jay .....................Paper 051, Poster P443<br />

Spitzer, Andrew I. .................................Paper 459<br />

Spivak, Jeffrey M ..................................Paper 262<br />

Sponseller, Paul D. ....Paper 180, 395, 396, 398, 671, Poster P383,<br />

Scientific Exhibit SE40, Symposia T<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Sporer, Scott M ................. Paper 123, 128, 132, 182, 187,<br />

195, 471, 714, Poster P057<br />

Sprague, Sheila ..........Paper 387, 464, 465, Poster BOS2, P460<br />

Sprowson, Andy ..................................Paper 722<br />

Spyropoulos, Giannis ..............................Paper 318<br />

Sridhar, Michael S ............................... Poster P170<br />

Srikumaran, Umasuthan .........................Poster P292,<br />

Scientific Exhibit SE40, SE66<br />

Srinath, Arjun ....................................Paper 424<br />

Sritulanondha, Supatra. ........................Paper 005, 532<br />

St John, Lauren ................................. Poster P058<br />

St Pierre, Patrick ........Paper 571, 572, 573, 574, 575, 576, 577,<br />

578, 579, 580, 581, 582, 583, 584, 585<br />

Stabile, Cara Marie ................................Paper 655<br />

Staddon, Arthur P ............................... Poster P530<br />

Stafford, Giles Hugo ....................Paper 346, Poster P022<br />

Stakleff, Kimberly ............................... Poster P495<br />

Stall, Alec C ......................................Paper 388<br />

Stall, Nathan .....................................Paper 108<br />

Stange, Richard ................................. Poster P506<br />

Stannard, James P .............................Paper 385, 390<br />

Stans, Anthony A. .................................Paper 545<br />

Starman, James ...................................Paper 380<br />

Starr, Adam Jennings. ............................ Poster P467<br />

Starr, Roland .................................Paper 423, 428<br />

Stasiak, Mark .....................................Paper 579<br />

Steele, Garen ................................... Poster P076<br />

Steensma, Matthew. ...............................Paper 238<br />

Steger-May, Karen ..........................Poster P088, P313<br />

Stein, Benjamin Eric . . . . .Poster P081, Scientific Exhibit SE66, SE70<br />

Steinbach, Lynne S ................................Paper 573<br />

Steinmann, Scott P .....................Paper 690, Poster P290<br />

Steinmetz, Michael P ..............................Paper 267<br />

Steinrucken, Julia .................................Paper 469<br />

Stelzeneder, David ................................Paper 199<br />

Stemniski, Paul M .......................Scientific Exhibit SE29<br />

Stengel, Dirk ................................... Poster P273<br />

Steppacher, Simon D .........Paper 043, 044, Poster P038, P441,<br />

Scientific Exhibit SE13<br />

Sternberg, Hal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P444<br />

Steval, Andrew. ................................. Poster P155<br />

Stevanovic, Vladan ................................Paper 328<br />

Stewart, Melissa. ..............................Paper 617, 618<br />

Stewart, Rena .................................Paper 385, 390<br />

Stimac, Jeffrey ...................................Poster P010<br />

Stinner, Daniel J .......................Paper 733, Poster P462<br />

Stitzel, Joel. ............................Scientific Exhibit SE31<br />

Stocks, Gregory William ..................... Poster P009, P010<br />

Stodkilde-Jorgenson, Hans. .........................Paper 434<br />

Stoecklein, Holbrook ..............................Paper 558<br />

Stoker, Ge<strong>of</strong>frey. ................................ Poster P374<br />

Stone, Austin V ...................................Paper 429<br />

Stoneback, Jason W ............................. Poster P434<br />

Stonestreet, Matthew ............................ Poster P248<br />

Stover, Michael David. .............................Paper 140<br />

Strain, Richard E ........................Scientific Exhibit SE46<br />

Strauss, Eric ............................. Paper 367, 495, 609<br />

Streubel, Philipp Nicolas ...........................Paper 732<br />

Stringer, Keith ....................................Paper 429<br />

Strohmeyer, Gregory ............................. Poster P193<br />

Strose, Eric ..................................... Poster P295<br />

Strzepa, Peter. .................................. Poster P408<br />

928<br />

Stuart, Michael J .....Paper 002, 485, 616, 617, 618, 619, 620, 621,<br />

622, 623, 624, 625, 626, 627, 628, 629, 630, 660<br />

Stubbs, Allston J .................Multimedia Education MEC44<br />

Stucken, Charlton ......................Paper 732, Poster P493<br />

Studzinski, Diane ............................... Poster P390<br />

Stulberg, Bernard N ...............................Paper 062<br />

Stulberg, S David. ......................Paper 476, Poster P069<br />

Stull, Douglass E ..................................Paper 676<br />

Sturch, Paul ......................................Paper 127<br />

Stuyck, Jose A ...................................Poster P314<br />

Su, Brian W ......................................Paper 666<br />

Su, Edwin P ........Paper 031, 032, 033, 034, 035, 036, 037, 038,<br />

039, 040, 041, 042, 043, 044, 045, Poster P094<br />

Su, Hsiu .........................................Paper 205<br />

Subanesh, Sri. ...................................Poster P112<br />

Sucato, Daniel J. .................Paper 396, 399, 544, 637, 671,<br />

Poster P059, P063, P382<br />

Sudo, Akihiro ........................... Paper 263, 652, 664<br />

Suero, Eduardo M ......................Paper 499, Poster P156<br />

Sugamoto, Kazuomi .................... Paper 707, Poster P291<br />

Sugano, Nobuhiko ....................Poster P050, P052, P053<br />

Sugarman, Etan........................Paper 746, Poster P358<br />

Sugi, Michelle T. ..................................Paper 372<br />

Sugioka, Yuko ....................................Paper 506<br />

Sugita, Takashi. ................................. Poster P524<br />

Suk, Michael .....................................Paper 724<br />

Sukeik, Mohamed. ............................Paper 127, 536<br />

Sukthankar, Atul .................................Poster P315<br />

Sumino, Takanobu ................................Paper 300<br />

Sun, Doo Hoon. .................................Poster P051<br />

Sun, Jui-Sheng. ...................................Paper 274<br />

Sunagawa, Toru ...................................Paper 280<br />

Sunberg, Martin ..................................Paper 242<br />

Sutter, Grant ................................... Poster P324<br />

Sutthirunjwong, Piriya ...................Scientific Exhibit SE01<br />

Suzuki, Kou ......................................Paper 096<br />

Suzuki, Osami. ...................................Paper 280<br />

Svensson, Olle. ...................................Paper 615<br />

Swaims, Chad .................................. Poster P406<br />

Swamy, Krishna. ..................................Paper 281<br />

Swann, Russell P ..................................Paper 343<br />

Swanson, Christopher E ............................Paper 440<br />

Swanson, David ..............................Paper 455, 456<br />

Swart, Eric F ..............Paper 147, 275, 276, 332, Poster P303<br />

Sweeney, Kyle ....................................Paper 221<br />

Sweet, Fred A .....................................Paper 030<br />

Swiontkowski, Marc F. ..............Paper 382, 383, Poster P474<br />

Switzer, Julie A. .........................Scientific Exhibit SE32<br />

Syed, Ishaq. ......................................Paper 023<br />

Syed, Khalid. ..........................Paper 589, Poster P177<br />

Sykes, Joshua Bengtson. .....................Poster P149, P434<br />

Szabo, Robert Morris ............................ Poster P233<br />

Szuszczewicz, Edward. ........................... Poster P033<br />

Taborek, Alex. .................................. Poster P393<br />

Tachibana, Toshiya .............................. Poster P354<br />

Tada, Masahiro ...................................Paper 506<br />

Taghavi, Cyrus Emil ...........................Paper 016, 663<br />

Tahernia, Amir David ..............................Paper 672<br />

Tahir, Siti ........................................Paper 489<br />

Tahmassebi, Jenni .................................Paper 620<br />

Tajika, Tsuyoshi. ................................ Poster P333<br />

Takagishi, Kenji ............................Poster P267, P333<br />

Takahashi, Mark .......................Paper 289, Poster P177<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Takahashi, Kazuhisa ....................Paper 546, Poster P279<br />

Takamori, Yoshihiro ............................. Poster P366<br />

Takamura, Karren M ...........................Paper 035, 045<br />

Takao, Masaki ........................Poster P050, P052, P053<br />

Takao, Tsuneaki. ................................ Poster P350<br />

Takaoka, Kunio ................................. Poster P125<br />

Takata, Munetomo ................................Paper 386<br />

Takato, Kei .......................................Paper 386<br />

Takazawa, Makoto. .....................Paper 546, Poster P279<br />

Takeda, Hideaki. ................................ Poster P432<br />

Takeda, Mitsuhiro .......................Scientific Exhibit SE26<br />

Takemae, Takashi ................................Poster P261<br />

Takemoto, Richelle C ..............................Paper 262<br />

Takemoto, Steven .............................Paper 479, 749<br />

Takeshita, Munenori ....................Paper 546, Poster P279<br />

Takeuchi, Akihiko .........Paper 235, 521, Scientific Exhibit SE83<br />

Takeuchi, Eiji .....................................Paper 345<br />

Taki, Naoya .................................... Poster P268<br />

Talmo, Carl T. ................................Paper 410, 597<br />

Talwalkar, Vishwas R. ..........................Paper 424, 445<br />

Tampere, Thomas ............................... Poster P165<br />

Tan, Eric ...............................Scientific Exhibit SE40<br />

Tan, Seang Beng ..................................Paper 018<br />

Tan, Tim. ..............................Scientific Exhibit SE01<br />

Tan, Virak. ...................................Paper 375, 375<br />

Tanaka, Kazunori ............................... Poster P007<br />

Tanaka, Makoto. ...........................Poster P289, P291<br />

Tanaka, Miho Jean ......................Scientific Exhibit SE70<br />

Tanaka, Sakae .............................Poster P174, P490<br />

Tanaka, Yoshinari .................................Paper 201<br />

Tanaka, Yoshitsugu . . . . . . . . . . . . . . . .Paper 041, Poster P047, P054<br />

Tanavalee, Aree ................................. Poster P163<br />

Tancredi, Dan ....................................Paper 593<br />

Tang, Jessica Anne. .................Paper 029, 444, Poster P387<br />

Tang, Peter ...................................Paper 273, 276<br />

Tang, Wan ..................................... Poster P223<br />

Tank, Jason C. .............................Poster P249, P256<br />

Tannast, Moritz ..... Paper 043, 044, 551, Poster P038, P251, P441<br />

Tanzawa, Yoshikazu ...............................Paper 235<br />

Tanzer, Michael ...............Paper 037, 185, Poster P031, P105<br />

Taras, John S ............... Scientific Exhibit SE37, Symposia O<br />

Tarkin, Ivan Seth ................................ Poster P505<br />

Tashiro, Yasutaka. ......................Paper 414, Poster P168<br />

Tassinari, Enrico ........................Scientific Exhibit SE09<br />

Tatman, Penny. ...............................Paper 358, 588<br />

Taunton, Michael J ................................Paper 192<br />

Tawada, Kaneaki ..................................Paper 319<br />

Tay, Keng Jin Darren ...............................Paper 417<br />

Taylor, Adrian ................................Paper 032, 531<br />

Taylor, Dean C. ..................................Poster P341<br />

Taylor, Emma .................................. Poster P238<br />

Taylor, Erica ......................................Paper 163<br />

Taylor, Samuel Arthur ....................Scientific Exhibit SE63<br />

Teefey, Sharlene A ................................Poster P313<br />

Tejiram, Shawn ...................................Paper 516<br />

Tejwani, Nirmal C. ................................Paper 105<br />

Tellini, Alessandra. .......Multimedia Education MEC22, MEC28,<br />

Scientific Exhibit SE51<br />

Temple, H Thomas .............Paper 512, Scientific Exhibit SE81<br />

Tenekecioglu, Yuksel. ............................ Poster P565<br />

Tennant, Gregory S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Poster P517<br />

Terek, Richard M ..................................Paper 234<br />

Terrin, Michael L ..................................Paper 303<br />

929<br />

Terry, Michael A. ..................................Paper 680<br />

Terwee, Caroline ..................................Paper 616<br />

Tetradis, Sotirios ..................................Paper 674<br />

Tetreault, Matthew ...............................Poster P119<br />

Thabet, Ahmed Mohamed ..........................Paper 423<br />

Thakur, Nikhil Anand. .............................Paper 049<br />

Tham, Seng Choe .................................Paper 573<br />

Thang, Christine K ................................Paper 662<br />

Theodoropoulos, John ........................... Poster P442<br />

Theriault, Benoit ..................................Paper 384<br />

Thies, Scott ......................................Paper 674<br />

Thomas, Dimitri M ................................Paper 728<br />

Thomas, Geraint Emyr Rhys. ........................Paper 531<br />

Thomas, Thad ..........................Scientific Exhibit SE79<br />

Thomopoulos, Steve .....................Scientific Exhibit SE33<br />

Thompson, Darby. ................................Paper 648<br />

Thompson, George H ............................ Poster P255<br />

Thompson, Matthew ............................ Poster P032<br />

Thompson, Matthew T ............. Paper 040, Poster P010, P011<br />

Thompson, Norfleet Buckner. ...................Paper 403, 404<br />

Thompson, Sean ......Multimedia Education MEC06, Poster P023<br />

Thornhill, Beverly ......................Paper 746, Poster P358<br />

Thornhill, Thomas S ...............................Paper 286<br />

Thorum, Troy ....................................Paper 734<br />

Throckmorton, Thomas .......................... Poster P286<br />

Tiberi, John Vincent ....................Paper 074, Poster P067<br />

Tibone, James E. ................................ Poster P326<br />

Tibor, Lisa .......................................Paper 369<br />

Tilzey, John F. .................................. Poster P034<br />

Timmesfeld, Nina ............................... Poster P132<br />

Timperley, John. .................................Poster P110<br />

Timucin, Muharrem ............................. Poster P072<br />

Ting, Nicholas ....................................Paper 195<br />

Tintle, Scott M ....................................Paper 705<br />

Tis, John E .............................Scientific Exhibit SE40<br />

Tjoumakaris, Fotios Paul ...........................Paper 613<br />

Tobola, Allison ...................................Paper 373<br />

Tochigi, Yuki ..........................Paper 092, Poster P281<br />

Todd, Dane ......................................Paper 483<br />

Todd, Michael S. ................................ Poster P406<br />

Togawa, Daisuke ..................................Paper 259<br />

Togrul, Emre ................................... Poster P566<br />

Toguchida, Junya. ............................... Poster P239<br />

Tokimura, Fumiaki .........................Poster P174, P490<br />

Tokish, John Michael .............................Symposia A<br />

Tokita, Asami. ....................................Paper 591<br />

Tokuhara, Yoshio ............................... Poster P125<br />

Tokunaga, Daisaku ................................Paper 277<br />

Tolhurst, Stephen R. ...............................Paper 025<br />

Tolo, Vernon T. ...................................Paper 438<br />

Tome, Yasunori ................................. Poster P537<br />

Tomek, Ivan M ...................................Paper 713<br />

Tomita, Katsuro. .................................Poster P351<br />

Tomlinson, Lauren .........................Poster P255, P260<br />

Tompkins, Bryan J. ............................Paper 427, 437<br />

Toner, Mayu. .....................................Paper 104<br />

Tongue, John R ..................................Symposia S<br />

Toni, Aldo .............................Scientific Exhibit SE09<br />

Torbert, Jesse T. ...................................Paper 219<br />

Tornetta, Paul ...........Paper 046, 218, 224, 381, 701, 703, 732,<br />

Poster P469, P493, P514, Symposia U<br />

Torode, Ian P .....................................Paper 178<br />

Torrance, David ...................................Paper 630<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Torrens, Carlos ...................................Paper 109<br />

Torres-Gomez, Armando ............Paper 422, 553, Poster P259<br />

Torres, Ana Isabel Perez .......................... Poster P008<br />

Torry, Michael .................................. Poster P336<br />

Tosteson, Anna ...................................Paper 366<br />

Tosteson, Tor .....................................Paper 270<br />

Toth, Alison P .................................. Poster P342<br />

Toth, John .......................................Paper 271<br />

Toth, Robert. .................Paper 635, Scientific Exhibit SE12<br />

Totsch, Martin .................................. Poster P066<br />

Tow, Benjamin Phak Boon ..........................Paper 018<br />

Toyama, Shogo ...................................Paper 277<br />

Trail, Ian A .......................................Paper 281<br />

Traina, Francesco. ....Multimedia Education MEC02, Poster P220,<br />

Scientific Exhibit SE09<br />

Trammell, Terry Ralph ........................... Poster P370<br />

Trampuz, Andrej ..............................Paper 468, 469<br />

Transfeldt, Ensor E ................................Paper 748<br />

Trappey, George Joseph .......................... Poster P302<br />

Travlos, Andrew. ..................................Paper 566<br />

Tressler, Marc A ...................................Paper 221<br />

Trice, Michael E ................... Scientific Exhibit SE60, SE84<br />

Trikha, Anjan. ....................................Paper 355<br />

Trnka, Hans Joerg ............................... Poster P208<br />

Trojani, Christophe. ...............................Paper 361<br />

Tron, Alessia ....................Multimedia Education MEC22<br />

Trousdale, Robert T ................ Paper 002, 014, Poster P032,<br />

P097, P440, Symposia B<br />

Truchan, Lisa Marie. ...............................Paper 136<br />

Truong, Walter Huu ..............................Poster P241<br />

Truumees, Eeric .........Paper 256, 257, 258, 259, 260, 261, 262,<br />

263, 264, 265, 266, 267, 268, 269, 270<br />

Tsarouhas, Alexandros ..................Paper 318, Poster P367<br />

Tseng, Samuel .................................... Paper 110<br />

Tsiridis, Elefterios ................................Poster P110<br />

Tsuboi, Hideki. ...................................Paper 345<br />

Tsuboi, Toshikazu ..........................Poster P174, P490<br />

Tsuchiya, Hiroyuki ........Paper 235, 261, 386, 521, Poster P007,<br />

P351, P537, P538, Scientific Exhibit SE83<br />

Tsuji, Koji. ..................................... Poster P046<br />

Tsuji, Matthew. ................................. Poster P442<br />

Tsujii, Masaya ....................................Paper 652<br />

Tuan, Rocky S .................................... Paper 210<br />

Tuccar, Eray .................................... Poster P569<br />

Tucker, John Keith. .....................Paper 346, Poster P022<br />

Tucker, Kimberly K .............................. Poster P148<br />

Tuke, Mike ............................Paper 527, Poster P045<br />

Tulchin, Kirsten. ..............................Paper 421, 428<br />

Tulloch, Chris ....................................Paper 069<br />

Tumer, Yucel ................................... Poster P562<br />

Tuncay, Ismail Cengiz. ........................... Poster P564<br />

Tuohy, Christopher ......................Scientific Exhibit SE31<br />

Turchetto, Luigino. ...............Multimedia Education MEC27<br />

Turcotte, Robert Emile .............................Paper 524<br />

Turgeon, Alexis ...................................Paper 384<br />

Turgeon, Thomas Robert .......................Paper 252, 255<br />

Turkmen, Metin .................................Poster P561<br />

Turner, A Simon ..................................Paper 159<br />

Turner, Alexander W ........................Poster P347, P377<br />

Turner, Joseph ..........................Scientific Exhibit SE58<br />

Turturro, Francesco ...............Multimedia Education MEC26<br />

Twigg, Stacy L .................................. Poster P452<br />

Twyman, Roy. ....................................Paper 709<br />

930<br />

Tyler, Wakenda ...................................Paper 238<br />

Tzeng, Shiau-Tzu. .................................Paper 137<br />

Ubierna, Maite ................................. Poster P352<br />

Uchida, Atsumasa .................................Paper 652<br />

Uemura, Kazushi. .................................Paper 652<br />

Uemura, Takeshi ..................................Paper 652<br />

Ueta, Takayoshi ................................. Poster P350<br />

Ulusal, Ali Engin ................................ Poster P564<br />

Umer, Masood. ...................................Paper 142<br />

Umlas, Marc Evan .......Paper 526, 527, 528, 529, 530, 531, 532,<br />

533, 534, 535, 536, 537, 538, 539, 540<br />

Underwood, Richard .....................Paper 033, 067, 068,<br />

Scientific Exhibit SE03<br />

Unlu, Mehmet Can. ........................Poster P565, P567<br />

Unnanuntana, Aasis .....................Scientific Exhibit SE82<br />

Unruh, Kenneth P. ................................Paper 380<br />

Upasani, Vidyadhar V ..............................Paper 394<br />

Upendra, BN V ...................................Paper 305<br />

Uquillas, Carlos. ..................................Paper 042<br />

Urban, Michael ...................................Paper 290<br />

Urch, Scott E ....................................Poster P410<br />

Usrey, Molly M .............................Poster P010, P011<br />

Ustundag, Sinan ................................ Poster P565<br />

Uzunishvili, S<strong>of</strong>ia .................................Paper 502<br />

Vaccaro, Alexander ...............Paper 024, 256, 270, 666, 750,<br />

Poster P361, P385, Symposia G<br />

Vadala, Antonio. ................Multimedia Education MEC14,<br />

Paper 486, 487, Poster P331, P447<br />

Vaidya, Rahul. ...................................Poster P381<br />

Vail, Thomas Parker ..............Paper 246, 480, Symposia B, E<br />

Vaishnav, Suketu B .......Multimedia Education MEC33, MEC34,<br />

Poster P336<br />

Vakis, Antonis .................................. Poster P367<br />

Valderrama, Juanjose .............Multimedia Education MEC01<br />

Valdevit, Antonio D C. .........Paper 436, Scientific Exhibit SE58<br />

Valeo, Luigi .................................... Poster P447<br />

Valero Gonzalez, Fernando ......................... Paper 610<br />

Valstar, Edward R. .............................Paper 253, 594<br />

Van Citters, Douglas . . . . . . . . . . . Paper 296, 711, Poster P089, P151<br />

Van den Bekerom, Michel ...............Paper 008, Poster P113<br />

Van der Bracht, Hans ............................ Poster P430<br />

Van Der Linde, Just A ..............................Paper 614<br />

Van Der Maas, Jaap .............................. Poster P165<br />

Van Der Meulen, Jan. ..............................Paper 537<br />

van der Weegen, Walter A P C .......................Paper 070<br />

Van Dijk, C Niek ........................Scientific Exhibit SE72<br />

Van Eck, Carola F ........Multimedia Education MEC41, MEC42,<br />

Scientific Exhibit SE72<br />

Van Holsbeeck, Marnix. ............................Paper 230<br />

Van Jonbergen, Hans Peter W .......................Paper 407<br />

van Kampen, Albert ...............................Paper 407<br />

Van Orsouw, Maarten ..............................Paper 038<br />

van Riet, Roger P ..............................Paper 341, 688<br />

Van Susante, Job L C ...........................Paper 072, 075<br />

Van Thiel, Ge<strong>of</strong>frey ..............Multimedia Education MEC35,<br />

Paper 606, Poster P329<br />

Vance, Michael. ...................................Paper 337<br />

Vanderhave, Kelly L. ...............................Paper 025<br />

Vanel, Daniel. ....................................Paper 433<br />

Vannini, Francesca ........ Paper 093, 510, Scientific Exhibit SE61<br />

Varadarajan, Kartik ............................Paper 295, 300<br />

Varecka, Thomas F .............................. Poster P463<br />

Varin, Daniel ................................... Poster P083<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Varley, Eric S. .................................Paper 394, 543<br />

Varsalona, Roberto ......................Scientific Exhibit SE80<br />

Varvarousis, Dimitrios N. ......................... Poster P060<br />

Vaseenon, Tanawat ..............Multimedia Education MEC20,<br />

Paper 092, Poster P281<br />

Vasquez, Luis ....................................Poster P141<br />

Vasta, Sebastiano. .................................Paper 575<br />

Vaughn, Jeffrey M .................................Paper 314<br />

Vaz, Carlos. .................................... Poster P282<br />

Vecchione, David. .................................Paper 436<br />

Vellinga, Ryan ........Multimedia Education MEC12, Poster P397<br />

Velutini, Ricardo ..................................Paper 422<br />

Velyvis, John H ..................Multimedia Education MEC18<br />

Vendittoli, Pascal-Andre ............................Paper 034<br />

Verdonk, MD, Phd, Peter ......................... Poster P165<br />

Verdonk, Rene .................................. Poster P165<br />

Verdugo, Alejandro ................................Paper 431<br />

Verhelst, Luk ..............................Poster P314, P430<br />

Verioti, Christopher ............................. Poster P124<br />

Verma, Kushagra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 436<br />

Verma, Nikhil N ..Paper 160, 200, 367, 495, 574, 609, Poster P329<br />

Verner, James John .............................. Poster P478<br />

Verstreken, Frederik. ...............................Paper 341<br />

Vessey, Judith Anne. ...............................Paper 170<br />

Vezeridis, Alexander Michael . . . . . . . . . . . . . . . . . . . . . . Poster P477<br />

Vezeridis, Peter S ................................ Poster P477<br />

Viens, Nicholas Adam. .........................Paper 057, 058<br />

Vieth, Volker ................................... Poster P506<br />

Vijayakumar, Srinivasan .....................Poster P456, P457<br />

Vijayan, Sridhar. ..................................Paper 196<br />

Vikerfors, Ola ....................................Paper 615<br />

Villalobos, Camilo E. .....Multimedia Education MEC08, MEC46,<br />

MEC47, MEC48, MEC49, MEC50, MEC51, MEC52, MEC53<br />

Villano, Marco. ..................................Poster P061<br />

Villarreal, Robert Javier. .......................... Poster P438<br />

Villavicencio, Pablo ..............Multimedia Education MEC01<br />

Villegas, Diego. ................................. Poster P453<br />

Vinje, Tarjei ...............................Poster P497, P500<br />

Virani, Nazeem ................................. Poster P309<br />

Virtanen, Carl .................................. Poster P177<br />

Vitale, Michael G. ...Paper 397, 421, 422, 423, 424, 425, 426, 427,<br />

428, 429, 430, 431, 432, 433, 434, 435, Poster P382<br />

Vives, Michael ......Paper 402, 661, 662, 663, 664, 665, 666, 667,<br />

668, 669, 670, 671, 672, 673, 674, 675<br />

Vizesi, Frank .....................................Paper 675<br />

Vogelstein, Jacob ................................ Poster P284<br />

Voleti, Pramod Babu. ..............................Paper 453<br />

Volgas, David A ...............................Paper 385, 390<br />

Volpato, Gian Paolo ............................. Poster P453<br />

Von Keudell, Arvind Gabriel ........................Paper 203<br />

von Rechenberg, Brigitte. ...........................Paper 702<br />

Vora, Anand Mahesh. ..............................Paper 104<br />

Vosseller, James Turner .............................Paper 102<br />

Vrahas, Mark S. ............................Poster P206, P516<br />

Vranceanu, Ana-Maria ............................Poster P231<br />

Waaler, Gudrun................................. Poster P479<br />

Wada, Takuro. ....................................Paper 232<br />

Waddell, James P. .................................Paper 306<br />

Wade, Charles ...................................Poster P510<br />

Wadey, Veronica Marie Rita .........................Paper 457<br />

Wagener, Joe ................................... Poster P209<br />

Wagner, Emilio ..................................Poster P211<br />

Wagner, Eric R .........................Paper 518, Poster P166<br />

931<br />

Wain, Reese .................................... Poster P397<br />

Waked, Walid .............................Poster P456, P457<br />

Wakeling, Christopher .............................Paper 031<br />

Wakitani, Shigeyuki ...............................Paper 506<br />

Walch, Gilles . . . . . . . . . . . . . . . . . . . . Paper 079, 081, 088, 362, 363<br />

Walker, Janet .................................Paper 424, 445<br />

Walker, John J.. ................................. Poster P406<br />

Walker, Matthew H ................................Paper 365<br />

Walker, Peter S. ............................Poster P138, P141<br />

Wall, Eric .................... Paper 429, 450, 484, Poster P384<br />

Wall, Lindley B ..................................Poster P313<br />

Wall, Peter David Henry .......................... Poster P065<br />

Wallace, Charles Douglas ..........................Poster P221<br />

Waller, Philip. .................................. Poster P240<br />

Walloe, Anders ................................. Poster P535<br />

Walmsley, Phil. ...................................Paper 249<br />

Walsh, Michael ................................. Poster P472<br />

Walsh, Pauline. ...................................Paper 477<br />

Walsh, William R ..................Paper 527, 675, Poster P045<br />

Walter, Stephen ................................. Poster P460<br />

Walter, William K ..................Paper 526, 527, Poster P045<br />

Walter, William Lindsay . . . . . . . . . . . . .Paper 526, 527, Poster P045<br />

Walters, Thomas J ................................Poster P510<br />

Wang, Andrea ....................................Paper 226<br />

Wang, Chen-Chie .................................Paper 500<br />

Wang, Ching-Jen .................................Poster P461<br />

Wang, Chung-Li ..................................Paper 500<br />

Wang, Cunlin ....................................Paper 186<br />

Wang, Feng-Sheng. ...............................Poster P461<br />

Wang, Jaw-Lin .................................. Poster P372<br />

Wang, Jeffrey C ......................Paper 137, 663, 673, 674<br />

Wang, Joon Ho ................................. Poster P407<br />

Wang, Lingjun ....................................Paper 228<br />

Wang, Lushun ....................................Paper 018<br />

Wang, Ting-Ming. .................................Paper 500<br />

Wang, Vincent .................................. Poster P329<br />

Wang, Xiaomei ...................................Paper 149<br />

Wang, Yun ...............................Paper 042, 586, 718<br />

Wang, Zhenhai ................................. Poster P206<br />

Wang, Zhong ................................... Poster P488<br />

Wang, Zhuo. .....................................Paper 263<br />

Wanner, John Paul ....................... Paper 082, 090, 363<br />

Wannomae, Keith K ...............................Paper 533<br />

Ward, Peter .................................... Poster P002<br />

Ward, Russell A ...................................Paper 522<br />

Ward, Samuel R. ..................................Paper 556<br />

Ward, Shan G ....................................Paper 428<br />

Warme, Winston J ......................Paper 454, Poster P294<br />

Warmington, Kelly ................................Paper 053<br />

Warner, Cory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 241<br />

Warner, Jon J P ....Multimedia Education MEC03, Paper 164, 363<br />

Warner, William C ............ Paper 167, 403, 404, Poster P250<br />

Warren, Adam .................................. Poster P339<br />

Warren, Russell F. .............Paper 159, 205, 577, Poster P449,<br />

Scientific Exhibit SE49, SE55, SE63<br />

Wasserman, Scott M ...............................Paper 387<br />

Watanabe, Kenichi ...............................Poster P115<br />

Watanabe, Koji ...............................Paper 386, 521<br />

Watanabe, Nobuyuki ..............................Paper 319<br />

Waterman, Brian ................................ Poster P406<br />

Waters, Peter M .................................Symposia D<br />

Watson, J Tracy .....................Paper 693, Symposia U, W<br />

Watson, Jeffrey Dean ......................Paper 694, 700, 731<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Watters, Tyler Steven ...........................Paper 246, 389<br />

Wayne, Jennifer S ............................... Poster P099<br />

Weatherall, Justin M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 105<br />

Weaver, DeWayne Lynn ............................Paper 727<br />

Weaver, Michael J ................................Poster P516<br />

Webber, Nicholas Paul .............................Paper 522<br />

Weber, Alexander ..................Scientific Exhibit SE71, SE73<br />

Weber, Donald ................................. Poster P086<br />

Weber, Kristy L. ..................................Symposia F<br />

Weber, Marc-Andre ................................Paper 561<br />

Weber, Robert .................................. Poster P229<br />

Weber, Stephen C .......Paper 158, 601, 602, 603, 604, 605, 606,<br />

607, 608, 609, 610, 611, 612, 613, 614, 615<br />

Wee, James. .....................................Poster P112<br />

Weesner, Marshall .................................Paper 425<br />

Wegman, Brian ................................. Poster P205<br />

Wegner, Alexander .............................. Poster P084<br />

Weichel, Derek ................................. Poster P265<br />

Weigel, Dennis P.......................Paper 120, Poster P274<br />

Weil, Yoram A ....................................Paper 139<br />

Weiland, Andrew J ......................Scientific Exhibit SE63<br />

Weinberg, Jacob ..................................Paper 431<br />

Weiner, Bradley K .................................Paper 260<br />

Weiner, Dennis S. ..........................Poster P249, P256<br />

Weinhold, Paul ...................................Paper 585<br />

Weinstein, James N. ....................Paper 270, Poster P361<br />

Weinstein, Stuart L ...........Scientific Exhibit SE47, Symposia S<br />

Weir, David M ....................................Paper 677<br />

Weir, Robert. .....................................Paper 502<br />

Weiss, Michael. ............................... Symposia 152<br />

Weisstein, Jason Scott ....Paper 226, 227, 228, 229, 230, 231, 232,<br />

233, 234, 235, 236, 237, 238, 239, 240<br />

Welge, Jeffrey A ...................................Paper 425<br />

Weller, Amanda Lindsley .......................Paper 172, 173<br />

Wells, Christopher W ..............................Paper 004<br />

Wells, Jessica ..........Multimedia Education MEC03, Paper 164<br />

Wells, Lawrence. ..................................Paper 118<br />

Weng, Haoling H ............................... Poster P266<br />

Wenger, Dennis R ......................Paper 543, Poster P251<br />

Wenger, Doris .................................. Poster P544<br />

Wenke, Joseph C .... Paper 138, 379, 733, 733, Poster P462, P485,<br />

P498, P502, P507, P511<br />

Wera, Glenn. .....................................Paper 195<br />

Werkema, Judi. ...................................Paper 471<br />

Werle, Jason. .....................................Paper 034<br />

Werlen, Stefan ....................................Paper 542<br />

Werner, Brian C ...................................Paper 027<br />

Wessel, Jean ......................................Paper 457<br />

Wessell, Daniel ..................................Poster P313<br />

West, Michael .................................. Poster P444<br />

Westrich, Ge<strong>of</strong>frey H. ............. Paper 595, Poster P018, P020,<br />

P024, P087, P189<br />

White, Gregory R. .................................Paper 314<br />

White, Neil ......................................Paper 275<br />

White, Richard E ..........Paper 706, 707, 708, 709, 710, 711, 712,<br />

713, 714, 715, 716, 717, 718, 719, 720<br />

White, Richard H. .................................Paper 593<br />

White, Tom ......................................Paper 507<br />

Whiteside, Leo A .........Multimedia Education MEC09, MEC13,<br />

MEC15, MEC16, MEC19,<br />

Scientific Exhibit SE11, SE17<br />

Whitesides, Thomas E. ............................Poster P481<br />

Whitlock, Patrick W .....................Scientific Exhibit SE31<br />

932<br />

Whitwell, Duncan. ......................Scientific Exhibit SE06<br />

Whyne, Cari. .....................................Paper 141<br />

Wiater, J Michael .......................Paper 077, Poster P345<br />

Wich, Michael .................................. Poster P273<br />

Wickiewicz, Thomas L .........................Paper 205, 327<br />

Widmaier, James C ................................Paper 716<br />

Widmann, Roger F ........................Paper 401, 401, 405<br />

Wiebelhaus, John .................................Paper 241<br />

Wiedenhoefer, Bernd ............................ Poster P405<br />

Wiedenh<strong>of</strong>er, Bernd .....................Scientific Exhibit SE59<br />

Wiedrich, Thomas A ...............................Paper 342<br />

Wierks, Carl .....................Multimedia Education MEC32<br />

Wieskoetter, Britta. .............................. Poster P506<br />

Wiesner, Lindsay ................................ Poster P463<br />

Wijdicks, Coen A. .................................Paper 307<br />

Wilckens, John H .......Poster P421, Scientific Exhibit SE62, SE66<br />

Wild, Dana ......................................Paper 549<br />

Wilfred, SE. ......................................Paper 290<br />

Willems, W Jaap ..................................Paper 614<br />

Williams, Ariel. ............................Poster P214, P227<br />

Williams, Bart ....................................Paper 150<br />

Williams, Benjamin R. .............................Paper 498<br />

Williams, Dan ....................................Paper 073<br />

Williams, Daniel K ................................Paper 492<br />

Williams, Frank ............................... Symposia 152<br />

Williams, Gerald R ..........Paper 601, Poster P317, Symposia M<br />

Williams, John Barton ........................... Poster P250<br />

Williams, John Leicester ............................Paper 288<br />

Williams, Johnathan. ............................ Poster P466<br />

Williams, Kelly M ............................... Poster P034<br />

Williams, Nicole T .............................. Poster P557<br />

Williams, Riley Joseph ....... Paper 205, 361, 362, 363, 364, 365,<br />

366, 367, 368, 369, 370, 371,<br />

372, 373, 374, 375, 577<br />

Wilkinson, Sean ..................................Paper 750<br />

Williamson, Chris. ................................Paper 284<br />

Willis, Matthew Parker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 365<br />

Wilson, APR. .....................................Paper 127<br />

Wilson, Philip L ..................................Paper 432<br />

Wilson, Vasthi ......................... Paper 519, Poster P521<br />

Wimberly, Robert Lane .............................Paper 432<br />

Wimmer, Matthias Dominik ........................Paper 193<br />

Wind, Tyler Conway ...............................Paper 650<br />

Windhager, Reinhard ..............................Paper 520<br />

Winn, Robert ................................... Poster P269<br />

Winter, Robert B ..................................Paper 748<br />

Winters, Brian ...................................Poster P107<br />

Wirth, Michael A................................Symposia M<br />

Wirtz, Dieter .................................Paper 193, 740<br />

Wisk, Lauren ................................... Poster P067<br />

Witt, Johan .................................... Poster P437<br />

Wittig, James C ..........Multimedia Education MEC08, MEC46,<br />

MEC47, MEC48, MEC49, MEC50,<br />

MEC51, MEC52, MEC53<br />

Woehnl, Antonia. ...Paper 121, Scientific Exhibit SE05, SE19, SE22<br />

Wolf, Brian R ....................Multimedia Education MEC04<br />

Wolf, Fredric M ...................................Paper 454<br />

Wolf, Jennifer Moriatis ........................... Poster P434<br />

Wolfe, Carmen ...................................Paper 331<br />

Wolfe, Scott W. ...................................Paper 558<br />

Wolff, Aviva ......................................Paper 558<br />

Wolinsky, Philip R. .......Paper 301, 302, 303, 304, 305, 306, 307,<br />

308, 309, 310, 311, 312, 313, 314, 315<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Wollowick, Adam Laurance ...Paper 746, Poster P358, Symposia T<br />

Woltz, Jennifer. ................................. Poster P003<br />

Won, Man Hee ...................................Paper 475<br />

Wong, Melissa ................................Paper 166, 176<br />

Wood, Robert E. .......................Paper 450, Poster P384<br />

Woodcock, Jessica .................................Paper 545<br />

Woods, Barrett Ivory ...............................Paper 023<br />

Woodward, Chase. ................................Paper 680<br />

Woolwine, Spencer .............................. Poster P242<br />

Worden, Alicia. ...............................Paper 141, 679<br />

Wright, Adam .................................. Poster P505<br />

Wright, Dennis ................................. Poster P495<br />

Wright, Elizabeth A. ...............................Paper 184<br />

Wright, John .....................................Paper 286<br />

Wright, Judy L .................................. Poster P559<br />

Wright, Patty ................................... Poster P137<br />

Wright, Rick W ................................. Poster P433<br />

Wright, Russel C .................................Poster P471<br />

Wright, Timothy M ........... Paper 534, 738, Poster P024, P424<br />

Wu, Chung-Ding. ..........................Poster P157, P365<br />

Wu, Eileen Wan-Ying ..............................Paper 136<br />

Wu, Karl .....................................Paper 522, 522<br />

Wu, Tuoh. .......................................Paper 274<br />

Wunder, Jay ..................................Paper 523, 524<br />

Wustrack, Rosanna Lisa ........................Paper 227, 266<br />

Wyatt, Ronald W B ...............................Poster P413<br />

Wybo, Christopher D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 439<br />

Wylie, Jack W. .................................. Poster P195<br />

Xerogeanes, John W ...............................Paper 483<br />

Xia, Yang ........................................Paper 204<br />

Xu, Yinghua. ....................................Poster P301<br />

Xypnitos, Fragiskos ................................Paper 223<br />

Yacob, Alem. ....................................Poster P312<br />

Yacoubian, Shahan V .............................Poster P471<br />

Yacoubian, Stephan Vahe ..........................Poster P471<br />

YaDeau, Jacques ..................................Paper 290<br />

Yagi, Mitsuru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P348<br />

Yalcin, Burak ................................... Poster P567<br />

Yamada, Katsuhisa ................................Paper 259<br />

Yamada, Koji ..............................Poster P174, P490<br />

Yamada, Susumu. .................................Paper 272<br />

Yamagata, Masatsugu ...................Paper 619, Poster P158<br />

Yamaguchi, Ken. ................Poster P313, P322, Symposia H<br />

Yamaguchi, Tamonori. ........................... Poster P393<br />

Yamako, Go. .....................................Paper 707<br />

Yamamoto, Atsushi. ............................. Poster P333<br />

Yamamoto, Nobuyuki ............................Poster P291<br />

Yamamoto, Norio ............Poster P537, Scientific Exhibit SE83<br />

Yamamoto, Takuaki ....................Paper 308, Poster P476<br />

Yamamura, Mitsuyoshi. ............................Paper 707<br />

Yamashita, Takayuki ...............................Paper 267<br />

Yamashita, Toshihiko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 232<br />

Yamauchi, Kensuke. ............................. Poster P537<br />

Yan, Alan Yong ................................. Poster P278<br />

Yang, Ick-Hwan ................................. Poster P055<br />

Yang, Kuender D .................................Poster P461<br />

Yang, Quinton. ...................................Paper 116<br />

Yang, Rong-Sen ................................. Poster P529<br />

Yang, Syngil Steven ................................Paper 570<br />

Yanke, Adam Blair. ...............Multimedia Education MEC35<br />

Yano, Koichiro. ...................................Paper 591<br />

Yantis, Matthew G. ................................Paper 404<br />

Yao, Jeffrey. ...........................Paper 563, Poster P237<br />

933<br />

Yaste, Jeffrey Jon-Michael ..........................Poster P316<br />

Yasuda, Kazunori. .................................Paper 321<br />

Yasui, Natsuo. ....................................Paper 143<br />

Yasunaga, Yuji . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P524<br />

Yaszay, Burt ..................Paper 179, 447, Poster P247, P371<br />

Yaszemski, Michael J. ........Scientific Exhibit SE84, Symposia W<br />

Yates, Adolph J ................................Symposia 151<br />

Yeh, Albert C ................................... Poster P275<br />

Yemm, Tedd. .....................................Paper 625<br />

Yeo, Seng-Jin .............Paper 012, 408, 417, Poster P112, P159<br />

Yeom, Jin-Sup ....................................Paper 026<br />

Yett, Harris S .....................................Paper 301<br />

Yeung, Eric .......................................Paper 526<br />

Yew, Andy .......................................Paper 018<br />

Yian, Edward .................................Paper 080, 608<br />

Yildirim, Gokce ............................Poster P138, P141<br />

Yngve, David A ...................................Paper 549<br />

Yocum, Lewis A ................................. Poster P420<br />

Yonetani, Yasukazu ................................Paper 201<br />

Yonick, David ....................................Paper 140<br />

Yoo, Jae Ho ................. Paper 329, 490, Poster P200, P272<br />

Yoo, Jae-Chul. ....................................Paper 683<br />

Yoo, Jaedoo . . . . . . . . . . . . . . . . . . . . . Paper 155, 162, 316, 604, 605<br />

Yoo, Je Hyun .....................................Paper 309<br />

Yoo, Jeong-hyun ..................................Paper 673<br />

Yoo, Jeong Joon. ..................................Paper 309<br />

Yoo, Ju Hyung .................................. Poster P055<br />

Yoo, Jung U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 020<br />

Yoon, Jangwhon .................................Poster P311<br />

Yoon, Taek Rim ................................. Poster P029<br />

Yorgova, Petya ....................................Paper 396<br />

York, Sally ............................Paper 463, Poster P085<br />

Yoshida, Hironori ............................... Poster P007<br />

Yoshida, Taku ...................................Poster P115<br />

Yoshikawa, Hideki ...........Paper 707, Poster P050, P052, P053<br />

Yoshimura, Ichiro .................................Paper 098<br />

Yoshioka, Katsuhito ..............................Poster P351<br />

Yoshiya, Shinichi. ............................... Poster P354<br />

You, Zongbing. ...................................Paper 209<br />

Young, Allan .............................Paper 079, 081, 088<br />

Young, Brett H. ..................Multimedia Education MEC40<br />

Young, Simon ....................................Paper 165<br />

Yu, Warren D ................................... Poster P347<br />

Yu, Yangyang ................................... Poster P275<br />

Yuan, Brandon J ................................ Poster P097<br />

Yuan, Xunhua .................................. Poster P056<br />

Yue, Bing ........................................Paper 295<br />

Yue, Eric J. ..................Poster P198, Scientific Exhibit SE04<br />

Yue, Wai Mun ....................................Paper 018<br />

Yugue, Itaru .................................... Poster P350<br />

Yukizawa, Youhei ..........................Poster P049, P068<br />

Yun, Yeo-Hon ................................Paper 155, 162<br />

Yurgin, Nicole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 387<br />

Zachazewski, James E ..............................Paper 647<br />

Zadnik Newell, Mary ..............................Paper 388<br />

Zadzilka, Jayson D ................................Paper 062<br />

Zaferiou, Antonia .................................Paper 327<br />

Zaffagnini, Stefano ...........Poster P414, Scientific Exhibit SE24<br />

Zaltz, Ira. ................... Paper 637, 644, Poster P059, P063<br />

Zanetti, Marco ...................................Poster P315<br />

Zapletalova, Jana. ................................Poster P131<br />

Zarkadas, Peter Constantine. ...................... Poster P286<br />

Zarrabian, Mohammad ............................Paper 251<br />

author IndEx


NAME AAOS EVENT NAME AAOS EVENT<br />

Zatushevsky, Michael ............................ Poster P377<br />

Zavala, John Alexander. ............................Paper 373<br />

Zdero, Rad .......................................Paper 306<br />

Zebala, Lukas P.. .................Paper 022, 030, 446, 449, 661,<br />

Poster P374, P392<br />

Zehetgruber, Harald ...............................Paper 347<br />

Zeidman, Seth .................................. Poster P368<br />

Zeitler, Evan. ....................................Poster P501<br />

Zell, Jason .......................................Paper 233<br />

Zellers Fortuna, Kristine .......................... Poster P482<br />

Zen, Yo. ....................................... Poster P538<br />

Zeni, Amer. .................................... Poster P487<br />

Zhang, Haitao ....................................Paper 448<br />

Zhang, Hongbin ..............................Paper 451, 452<br />

Zhang, Kai .......................................Paper 738<br />

Zhang, Yang. ................................... Poster P545<br />

Zhang, Zhen ..............................Poster P456, P457<br />

Zhao, Caixia .....................................Paper 402<br />

Zhao, Li .........................................Paper 662<br />

Zhao, Qianqian. ..................................Paper 727<br />

Zhao, Wen ..................................... Poster P206<br />

Zhao, Wenyan .........................Paper 270, Poster P361<br />

Zhen, Gehua ................................... Poster P284<br />

Zheng, Kathy .....................................Paper 655<br />

Zhu, Jinjun ..................................Paper 420, 708<br />

Zicat, Bernard A. ...................Paper 526, 527, Poster P045<br />

934<br />

Ziebarth, Kai .......................... Paper 551, Poster P251<br />

Ziegler, Daniel. ...................................Paper 730<br />

Zilberman, Yoram. ................................Paper 139<br />

Zingde, Sumesh M .....................Paper 292, Poster P197<br />

Zingg, Patrick Oliver ..............................Poster P315<br />

Zingmond, David .............................Paper 039, 719<br />

Zini, Raul ........................................Paper 578<br />

Ziogas, Argyrios. ..................................Paper 233<br />

Zionts, Lewis Evan ................................Paper 166<br />

Ziran, Bruce ..............Paper 211, 212, 213, 214, 215, 216, 217,<br />

218, 219, 220, 221, 222, 223, 224, 225<br />

Zlowodzki, Michael Pawel . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 307<br />

Zmistowski, Benjamin .....Paper 125, 357, 538, 539, Poster P186,<br />

P199, P317, Scientific Exhibit SE08<br />

Zmitzkowski, Benjamin ............................Paper 601<br />

Zografos, Angelos .................................Paper 068<br />

Zonno, Alan .....................................Paper 581<br />

Zouzias, Ioannis ..................................Paper 275<br />

Zuckerman, Joseph D ..........................Paper 370, 372<br />

Zukor, David . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poster P082<br />

Zunkiewicz, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Paper 685<br />

Zupko, Karen. ................................ Symposia 152<br />

Zurakowski, David .............Paper 168, 170, 430, Poster P025<br />

Zwicky, Lukas ....................................Paper 055<br />

Zywiel, Michael G ......................Paper 121, Poster P062,<br />

Scientific Exhibit SE05, SE14, SE19, SE22<br />

author IndEx


KEYWORD AAOS EVENT KEYWORD AAOS EVENT<br />

AC Joint / Bankart Repair / Slap. ........Papers 160, 609, 611, 612,<br />

614, 615, 688, 689,<br />

Posters P328, P330, P335, P341<br />

ACL Deficient ......................Papers 321, 324, 327, 482,<br />

Posters P406, P407, P418, P421,<br />

P422, P425, P435, P450,<br />

Scientific Exhibits SE65, SE67, SE69<br />

ACL Graft Selection / Placement Fixation.........Papers 318, 319,<br />

320, 321, 322, 323, 324, 326, 327, 328,<br />

481, 483, 485, Posters P407, P416,<br />

P418, P430, P432, P438, P447, P455,<br />

Scientific Exhibits SE72<br />

ACL Outcomes .........Papers 316, 317, 318, 320, 321, 322, 323,<br />

324, 325, 326, 328, 329, 481, 482, 485,<br />

486, 649, Posters P406, P407, P410,<br />

P416, P418, P422, P425, P438, P447,<br />

Scientific Exhibits SE65, SE69, SE71<br />

Allograft/Vascular Fibular Grafts ........Papers 513, Posters P533,<br />

Scientific Exhibits SE38<br />

Anatomy / Biomechanics .....Papers 010, 131, 134, 250, 288, 298,<br />

409, Posters P115, P123, P138, P141,<br />

P150, P162, P168, P179, P181, P185, P197,<br />

Scientific Exhibits SE23, SE24, SE26, SE29<br />

Anatomy and Basic Science ...Papers 040, 044, 466, 539, 706, 707,<br />

710, 720, Posters P010, P017, P031,<br />

P036, P037, P038, P044, P050, P052,<br />

P064, P066, P067, P072, P079, P090,<br />

P099, Scientific Exhibits SE08<br />

Ankle Instability ........Papers 092, 096, 505, Posters P212, P218<br />

Arthritis ..............................Scientific Exhibits SE32<br />

Arthroplasty. ..........................Scientific Exhibits SE30<br />

Arthroplasty / Primary / Revison and Arthrodesis ......Papers 076,<br />

077, 078, 079, 080, 081, 082, 083, 084,<br />

085, 086, 087, 088, 089, 165, 361, 362,<br />

363, 364, 365, 366, 367, 368, 369, 370,<br />

371, 372, 602, 606, 607, 610, 685,<br />

Posters P286, P287, P288, P294, P296, P300,<br />

P302, P309, P311, P314, P317, P325, P337,<br />

P339, P344, P345, Scientific Exhibits SE49<br />

Articular Cartilage ...........Papers 196, 197, 198, 199, 200, 201,<br />

202, 203, 204, 205, 206, 207, 208, 209,<br />

210, 327, 576, 631, 636, 640, 651, 655,<br />

656, Posters P408, P410, P437, P441,<br />

P444, P451, P451,<br />

Scientific Exhibits SE60, SE61, SE67<br />

Avascular Necrosis. ............... Papers 037, 472, Posters P051<br />

Back Pain / Other ...........Papers 258, 264, 265, 266, 269, 441,<br />

664, 667, 672, 673, 674, 736, 743, 744,<br />

747, 748, 750, Posters P352, P365, P367,<br />

P368, P375, P378, P379, P381, P383,<br />

P385, P393, P401, P403, P404<br />

935<br />

Basic Science .......... Papers 027, 124, 126, 131, 136, 137, 138,<br />

140, 141, 142, 143, 145, 146, 147, 148,<br />

148, 149, 149, 150, 260, 273, 288, 289,<br />

292, 296, 306, 378, 379, 443, 448, 556,<br />

557, 558, 565, 566, 662, 663, 664, 669,<br />

673, 674, 675, 691, 694, 700, 701, 703,<br />

721, 724, 727, 729, 733, 734, 739, 740,<br />

742, Posters P115, P138, P154, P171,<br />

P174, P177, P185, P187, P188, P194,<br />

P197, P227, P237, P239, P346, P352,<br />

P364, P367, P376, P390, P393, P404,<br />

P462, P476, P478, P481, P483, P484,<br />

P485, P486, P501, P506, P507, P510, P517,<br />

P520, Scientific Exhibits SE75, SE79<br />

Basic Science / Tumor / Infection ......Papers 174, 393, 405, 429,<br />

430, 431, 432, 433, 434, 541, 542, 543,<br />

550, Posters P243, P249, P256,<br />

Scientific Exhibits SE39<br />

Bearing Surfaces ............Papers 031, 033, 034, 035, 036, 038,<br />

044, 061, 062, 063, 065, 066, 067, 069,<br />

071, 072, 073, 074, 075, 189, 191, 350,<br />

470, 526, 527, 528, 529, 531, 532, 533,<br />

Posters P006, P008, P012, P019, P024,<br />

P029, P032, P041, P045, P053, P057,<br />

P071, P073, P074, P086, P091, P091,<br />

P094, P103, Scientific Exhibits SE01,<br />

SE03, SE05, SE06, SE07<br />

Benign ........................Papers 229, 230, 237, 238, 522,<br />

Posters P530, P541, P542,<br />

Scientific Exhibits SE81<br />

Biceps. ............... Papers 609, 677, 683, Posters P318, P320,<br />

P328, P329, P341, Scientific Exhibits SE53<br />

Bilateral Procedures ..............Papers 290, Posters P117, P191<br />

Biomechanics .........................Scientific Exhibits SE31<br />

Biomechanics / Anatomy .....Papers 017, 022, 029, 443, 444, 669,<br />

670, 738, Posters P347, P369, P376,<br />

P377, P379, P387, P393, P399,<br />

Scientific Exhibits SE58<br />

Blood Loss .........................Papers 357, 359, 536, 539,<br />

Posters P027, P037<br />

Bone. ................................Scientific Exhibits SE32<br />

Bone Graft / Fusion. .........Papers 018, 260, 661, 662, 663, 673,<br />

674, 675, 745, Posters P353, P359,<br />

P360, P374, P381, P402<br />

Carpal Tunnel .......... Papers 274, 557, 561, 563, Posters P230,<br />

P234, Scientific Exhibits SE36<br />

Carpus / Metacarpal / Phalanges ...Papers 271, 277, 278, 280, 282,<br />

284, 337, 338, 339, 340, 341, 342, 558,<br />

559, 561, 568, 569, Posters P227, P229,<br />

P236, P238, P240, Scientific Exhibits SE36<br />

Cartilage. .............................Scientific Exhibits SE32<br />

Cartilage Transplantation. ........Papers 196, 197, 198, 199, 200,<br />

202, 206, 207, 208, Posters P444, P451,<br />

Scientific Exhibits SE60, SE61, SE67, SE71<br />

Cemented ..................... Papers 709, Posters P090, P095<br />

Cemented Total Hip Arthroplasty ......Papers 035, 181, 350, 358,<br />

531, 709, Posters P042, P080, P081<br />

Cervical ...............Papers 016, 017, 018, 019, 020, 021, 022,<br />

023, 024, 025, 026, 027, 028, 029, 030,<br />

444, 663, 737, 738, 740, 741, 748, 750,<br />

Posters P347, P350, P354, P355, P356,<br />

P357, P374, P395, P396, P400<br />

Clavicle Fractures ................Papers 085, 604, Posters P335<br />

Keyword IndEx


KEYWORD AAOS EVENT KEYWORD AAOS EVENT<br />

Compartment Syndrome/Limb Salvage ..... Papers 312, 389, 729,<br />

734, 735, Posters P462, P481, P498,<br />

P502, P510, Scientific Exhibits SE74, SE75<br />

Complications. .........Papers 018, 019, 024, 026, 028, 030, 031,<br />

035, 036, 038, 039, 042, 061, 064, 065,<br />

066, 069, 073, 074, 075, 182, 183, 187,<br />

188, 190, 192, 256, 263, 270, 346, 357,<br />

437, 438, 439, 440, 442, 467, 468, 469,<br />

470, 471, 475, 478, 479, 480, 529, 536,<br />

537, 539, 540, 666, 667, 670, 715, 718,<br />

739, 745, Posters P002, P004, P006,<br />

P014, P018, P023, P030, P034, P039, P040,<br />

P047, P048, P057, P060, P062, P069, P071,<br />

P086, P097, P098, P101, P104, P105, P107,<br />

P348, P349, P352, P354, P356, P357, P359,<br />

P361, P362, P368, P370, P371, P374, P380,<br />

P381, P392, P394, P397, P400, P401, P402,<br />

P405, Scientific Exhibits SE01, SE02, SE04,<br />

SE05, SE06, SE08, SE09, SE10, SE11<br />

Computer / Technology ..............Papers 120, 456, 457, 459,<br />

Posters P262, P264, P273, P274<br />

DRUJ / TFCC ...................Papers 285, 333, 343, 345, 570,<br />

Posters P228, Scientific Exhibits SE36<br />

Deformities ............Papers 171, 391, 392, 393, 394, 399, 400,<br />

421, 423, 426, 427, 428, 433, 434, 546,<br />

551, 553, 555, Posters P241, P242, P243,<br />

P244, P245, P251, P255, P258, P260,<br />

Scientific Exhibits SE39<br />

Degenerative Disc Pain / Disease. ......Papers 016, 256, 259, 263,<br />

264, 265, 269, 270, 664, 736, 739, 743,<br />

748, 749, Posters P346, P349, P352,<br />

P363, P363, P367, P373, P375, P376,<br />

P379, P386, P390, P400, P403<br />

Diagnostic Imaging. ...Papers 086, 369, Posters P288, P302, P313,<br />

P315, P323, P327, P331, P333, P339<br />

Disc Herniation. ....... Papers 022, 267, 268, 269, 270, 737, 741,<br />

Posters P346, P352, P366, P367, P390,<br />

P393, P403<br />

Dislocations. ...........................Papers 182, 349, 479,<br />

Posters P044, P048, P061, P075, P087, P109,<br />

Scientific Exhibits SE07<br />

Distal Radius .......... Papers 276, 284, 285, 331, 332, 333, 334,<br />

335, 336, 344, Posters P226, P228, P233<br />

Distal Radius/Forearm/Elbow .........Papers 694, 695, 696, 697,<br />

698, 699, Posters P467, P469, P477, P482,<br />

P504, P507, P515, Scientific Exhibits SE54<br />

Economic / Cost Analysis. ......Papers 106, 107, 110, 111, 112, 114,<br />

115, 116, 118, 119, 120, 451, 452, 453, 463,<br />

Posters P263, P265, P266, P269, P271,<br />

P272, P273, P274, Scientific Exhibits SE42,<br />

SE43, SE44, SE48<br />

Education .................Papers 107, 108, 452, 453, 455, 456,<br />

457, 458, 459, 460, 461, 463, 464, 465,<br />

Posters P262, P264, P270, P271, P275,<br />

Scientific Exhibits SE41, SE45, SE46, SE48<br />

Elbow / Hand ............ Papers 652, Posters P431, P434, P446,<br />

Scientific Exhibits SE66, SE68<br />

Elbow / Tendon Injuries / Contracture / ......................<br />

Radial Tunnel Syndrome Papers 677, 678, 681, 684, 686,<br />

Posters P298, P303, P305, P306, P316,<br />

P318, Scientific Exhibits SE50<br />

936<br />

Elbow Basic Science / Biomechanics .... Posters P293, P303, P304,<br />

P306, P316, P318, P321, P324, P334,<br />

P338, P340<br />

Endoscopic Spinal Surgery .........Papers 267, 268, Posters P372<br />

Epidemiology/Procedural/Outcomes ....Papers 139, 211, 212, 220,<br />

223, 301, 302, 303, 304, 309, 310, 377,<br />

381, 384, 388, 389, 390, 693, 696, 697,<br />

721, 723, 726, 727, 728, 731, 734,<br />

Posters P458, P465, P466, P467, P469,<br />

P470, P476, P479, P482, P488, P489, P490,<br />

P498, P499, P502, P504, P508, P509, P510,<br />

P511, P512, P513, P515, P515, P517, P518,<br />

Scientific Exhibits SE75, SE76, SE77<br />

Extensor Mechanism. ....................Papers 297, 587, 590,<br />

Posters P136, P172, P203<br />

Femoral ...................Papers 187, 193, 194, 351, 352, 360,<br />

709, Posters P001, P006, P038, P052,<br />

P055, P059, P068, P080, P090,<br />

Scientific Exhibits SE02, SE12<br />

Femur/Patella ..............Papers 137, 144, 145, 150, 304, 305,<br />

308, 309, 310, 311, 312, 313, 314, 377,<br />

386, 704, Posters P459, P459, P461,<br />

P464, P471, P473, P480, P502, P509,<br />

P513, P519, Scientific Exhibits SE76<br />

Foot / Ankle. ...............Papers 167, 385, 388, 390, 421, 422,<br />

423, 424, 425, 428, 646, 651, 724,<br />

Posters P244, P250, P259, P431, P445,<br />

Scientific Exhibits SE66, SE78<br />

Forefoot ...................Papers 050, 499, 505, 505, 506, 507,<br />

508, 509, Posters P220, P222, P223<br />

Fracture Healing ........... Papers 137, 138, 139, 140, 142, 144,<br />

147, 150, 301, 309, 310, 376, 379, 380,<br />

385, 386, 387, 389, 691, 693, 701, 702,<br />

Posters P456, P457, P458, P459, P463,<br />

P464, P471, P472, P477, P478, P480, P482,<br />

P484, P485, P494, P501, P503, P506, P509,<br />

P513, P519, Scientific Exhibits SE54<br />

Fractures. ..................Papers 046, 047, 049, 050, 091, 504,<br />

Posters P206, P213, P214, P218, P224<br />

Frozen Shoulder / Shoulder Contractures. ... Papers 371, 373, 374,<br />

603, 605, 608,<br />

Posters P301, P308, P333<br />

Giant Cell ..............Papers 229, 237, 238, 512, Posters P526<br />

Hallux Valgus. ......... Papers 506, 510, Posters P207, P207, P216<br />

Hemiarthroplasty ...... Papers 078, 080, 165, 364, 366, 367, 602,<br />

607, Posters P290, P294, P296, P337, P344<br />

Hindfoot / Ankle. ...........Papers 046, 048, 053, 054, 055, 056,<br />

057, 058, 059, 060, 091, 093, 094, 095,<br />

096, 097, 098, 099, 101, 102, 103, 104,<br />

105, 497, 501, 502, 504, Posters P208,<br />

P208, P210, P211, P215, P217, P218,<br />

P219, P220, P222, P223, P224,<br />

Scientific Exhibits SE34, SE35<br />

Hip ...................... Papers 633, 634, 635, 636, 637, 638,<br />

639, 640, 641, 642, 643, 644, 645,<br />

Posters P409, P411, P412, P419, P437,<br />

P440, P441, P453, P454<br />

Hip / Ddh Rehab. ...... Papers 541, 542, 543, 544, 545, 546, 547,<br />

551, 552, Posters P241, P251, P252, P253,<br />

Scientific Exhibits SE39<br />

Hip Dysplasia ......... Papers 041, 043, 706, Posters P007, P046,<br />

P049, P054, P058, P059, P062,<br />

Scientific Exhibits SE12, SE14, SE15<br />

Keyword IndEx


KEYWORD AAOS EVENT KEYWORD AAOS EVENT<br />

Hip Fractrure ...........Papers 217, 301, 302, 303, 306, 307, 308,<br />

309, 722, Posters P456, P457, P460, P466,<br />

P471, P475, P476, P479, P488, P489, P490,<br />

P492, P496, P497, P500, P507, P512,<br />

Scientific Exhibits SE76, SE77<br />

Humerus .............. Papers 691, 692, 693, 695, Posters P465,<br />

P477, P518, Scientific Exhibits SE54<br />

Iliac Crest Bone Graft ............................. Papers 661<br />

Imaging ...................Papers 230, 231, 234, 237, 519, 522,<br />

Posters P521, P540, P544,<br />

Scientific Exhibits SE81, SE83<br />

Impingement. .............. Papers 160, 373, 374, Posters P333,<br />

Scientific Exhibits SE51<br />

Infected Total Hip Arthroplasty ........Papers 354, 466, 467, 468,<br />

469, 470, 471, 480, 538, 715,<br />

Posters P004, P015, P034, P060, P084,<br />

P098, P101, Scientific Exhibits SE08<br />

Infection / Metabolic Disease / Tumor ......Papers 030, 262, 436,<br />

437, 438, 665, 745, 747, Posters P351,<br />

P378, P399, Scientific Exhibits SE57<br />

Infectious. .....................Papers 521, Posters P532, P538<br />

Injuries. ...................Papers 206, 325, 484, 571, 577, 582,<br />

632, 633, 641, 642, 643, 646, 648, 650,<br />

652, 654, Posters P406, P408, P417, P421,<br />

P422, P431, P434, P437, P439, P443,<br />

P445, P452, Scientific Exhibits SE62,<br />

SE63, SE64, SE65, SE68, SE73<br />

Instrument / Pedicle Screw. .......Papers 256, 257, 259, 261, 263,<br />

264, 440, 661, 668, 669, 670,<br />

Posters P349, P354, P359, P360, P364,<br />

P380, P399, P402, Scientific Exhibits SE57<br />

Instrumentation ............Papers 018, 027, 029, 259, 260, 441,<br />

442, 443, 444, 667, 668, 738, 739, 745,<br />

747, Posters P347, P348, P354, P359,<br />

P363, P365, P370, P377, P387, P402,<br />

P405, Scientific Exhibits SE59<br />

Internal/External Fixation .... Papers 211, 212, 218, 220, 222, 223,<br />

301, 306, 311, 376, 383, 386, 389, 691,<br />

693, 694, 699, 700, 701, 702, 728, 734,<br />

Posters P456, P457, P459, P462, P469,<br />

P471, P472, P473, P480, P480, P483,<br />

P490, P492, P494, P496, P518, P520,<br />

Scientific Exhibits SE77<br />

Knee ..............................Papers 426, 427, 550, 554,<br />

Posters P248, P254, Scientific Exhibits SE39<br />

Knee / Hip / Osteoarthritis / Total Hip Arthroplasty ....Papers 616,<br />

617, 618, 619, 620, 621, 622, 625,<br />

Posters P277, P278, P279, P280,<br />

P281, P282, P285<br />

Knee Arthroscopy .......Papers 198, 199, 203, 209, 210, 317, 318,<br />

319, 320, 325, 326, 482, 483, 484, 486,<br />

487, 488, 491, 493, 647, 652, 653, 654,<br />

655, 656, 657, 658, 659, 660,<br />

Posters P406, P407, P413, P414, P422,<br />

P423, P425, P428, P430, P433, P438,<br />

P447, P451, Scientific Exhibits SE60, SE61,<br />

SE64, SE65, SE66, SE69, SE70, SE71, SE72<br />

Lumbar Fusion .............Papers 256, 257, 259, 260, 261, 263,<br />

264, 662, 673, 674, 675, 747,<br />

Posters P359, P361, P363, P368, P369,<br />

P377, P381, P386, P387, P389, P398,<br />

P402, P403, P405, Scientific Exhibits SE59<br />

937<br />

MRI / Imaging ..............Papers 203, 204, 483, 486, 487, 490,<br />

491, 493, 573, 632, 634, 636, 637, 638,<br />

639, 655, 657, Posters P410, P412, P414,<br />

P447, Scientific Exhibits SE55, SE72<br />

Meniscal Repair / Transplants .....Papers 491, 492, 494, 495, 655,<br />

Posters P414, P433, P449,<br />

Scientific Exhibits SE67, SE71<br />

Meniscus ..................Papers 327, 482, 491, 493, 494, 495,<br />

653, 655, 656, 657, Posters P408, P410,<br />

P433, P449, Scientific Exhibits SE67<br />

Metastatic. .................Papers 230, 233, 234, 235, 239, 512,<br />

518, 523, 525, Posters P521, P526,<br />

P535, P536, P545<br />

Miscellaneous ..........Papers 013, 015, 035, 037, 042, 048, 051,<br />

052, 059, 072, 075, 100, 103, 124, 125,<br />

126, 142, 148, 182, 219, 229, 230, 233,<br />

236, 239, 253, 272, 281, 293, 299, 353,<br />

355, 377, 378, 468, 472, 498, 500, 501,<br />

504, 505, 507, 514, 515, 522, 525, 557,<br />

560, 562, 565, 570, 586, 586, 594, 616,<br />

618, 620, 621, 623, 624, 626, 627, 627,<br />

627, 627, 628, 630, 703, 705, 710, 714,<br />

717, 718, 724, 726, 727, Posters P008,<br />

P013, P023, P031, P038, P050, P052, P062,<br />

P070, P079, P106, P107, P108, P111, P116,<br />

P134, P140, P147, P158, P160, P165, P166,<br />

P170, P175, P184, P185, P186, P195, P209,<br />

P210, P211, P216, P220, P221, P225, P227,<br />

P231, P232, P235, P238, P276, P276, P276,<br />

P278, P279, P283, P284, P285, P457, P473,<br />

P474, P477, P487, P498, P501, P511, P517,<br />

P523, P523, P523, P523, P527, P530,<br />

P531, P532, P535, P539, P542, P544,<br />

Scientific Exhibits SE05, SE10, SE14,<br />

SE15, SE19, SE22, SE34, SE37, SE84<br />

Muscle ...............................Scientific Exhibits SE31<br />

Nerve ................................Scientific Exhibits SE31<br />

Neuromuscular .................Papers 547, 548, 549, 549, 550,<br />

Posters P241, P242<br />

New Technique / Device. .....Papers 017, 027, 438, 439, 449, 662,<br />

667, 670, 736, 737, 738, 740, 741,<br />

Posters P364, P365, P368, P372, P373,<br />

P375, P377, P379, P386, P387, P396, P398<br />

Nonunion/Malunion ....Papers 138, 140, 142, 144, 150, 305, 310,<br />

376, 380, 381, 384, 389, 691, 702, 732,<br />

Posters P461, P463, P477, P485, P491,<br />

P492, P493, P509, P513, P519<br />

Novel Techniques/Imaging .......Papers 145, 146, 220, 224, 225,<br />

304, 305, 311, 376, 379, 692, 698, 733,<br />

734, Posters P462, P468, P471, P473,<br />

P481, P482, P492, P493, P494, P506,<br />

Scientific Exhibits SE54, SE79<br />

Osteochondral Transplantation. ...........Papers 197, 198, 202,<br />

Scientific Exhibits SE60, SE61<br />

Osteolysis .................Papers 063, 181, 191, 467, 529, 532,<br />

Posters P014, P019, P046, P053, P066,<br />

P088, P100, Scientific Exhibits SE05, SE30<br />

Osteolysis acetabular .......Papers 181, Posters P014, P069, P092,<br />

P100, Scientific Exhibits SE07<br />

Osteoporosis ...................Papers 226, 227, 667, 670, 672,<br />

Posters P365, P373, P378, P399, P522,<br />

P527, P529, P531, P534, P543,<br />

Scientific Exhibits SE56, SE82<br />

Keyword IndEx


KEYWORD AAOS EVENT KEYWORD AAOS EVENT<br />

Osteosarcoma ..............Papers 232, 235, 236, 240, 511, 512,<br />

514, 515, 517, 518, 525, Posters P524,<br />

P525, P526, P528, P532, P536,<br />

P537, P539, P540, P541,<br />

Scientific Exhibits SE83<br />

Osteotomy. ............Papers 009, 010, 041, 043, 044, 242, 414,<br />

Posters P049, P054, P058, P111, P132,<br />

P133, Scientific Exhibits SE15, SE21, SE25<br />

Outcomes .............Papers 018, 020, 022, 023, 024, 026, 028,<br />

031, 035, 038, 039, 041, 042, 043, 044,<br />

045, 061, 071, 074, 075, 107, 109, 110, 113,<br />

115, 183, 184, 188, 189, 190, 193, 257,<br />

261, 263, 264, 265, 266, 268, 269, 270,<br />

346, 349, 351, 353, 356, 358, 441, 442,<br />

446, 449, 454, 457, 458, 461, 462, 471,<br />

473, 478, 479, 480, 526, 528, 530, 532,<br />

536, 540, 661, 665, 668, 672, 707, 712,<br />

715, 718, 737, 738, 743, 744, 745, 748,<br />

749, 750, Posters P001, P006, P007, P008,<br />

P009, P011, P015, P021, P022, P023, P025,<br />

P027, P030, P031, P033, P035, P036, P041,<br />

P043, P047, P051, P054, P055, P056, P057,<br />

P058, P062, P064, P065, P073, P075, P078,<br />

P082, P083, P086, P091, P092, P093,<br />

P094, P098, P100, P101, P102, P104, P105,<br />

P261, P263, P271, P346, P348, P361, P362,<br />

P365, P366, P369, P372, P374, P378, P380,<br />

P381, P383, P385, P386, P397, P400, P401,<br />

Scientific Exhibits SE02, SE09, SE10,<br />

SE13, SE14, SE43, SE45, SE46,<br />

SE47, SE48, SE56, SE57, SE59<br />

PCL Reconstruction ..... Papers 488, 489, Scientific Exhibits SE64<br />

Patello-femoral .........................Papers 204, 484, 654,<br />

Scientific Exhibits SE60, SE70<br />

Pediatric. ..................Papers 142, 314, Posters P480, P482<br />

Pediatric Spine. ........Papers 025, 437, 438, 440, 442, 445, 446,<br />

448, 449, 450, 671, 746, Posters P348, P358,<br />

P364, P371, P380, P383, P384, P388<br />

Pelvis and Acetabulum ....Papers 211, 212, 213, 214, 215, 216, 217,<br />

218, 219, 220, 221, 222, 223, 224, 225,<br />

722, Posters P456, P457, P468, P470,<br />

P499, P507, P508, P514, P516, P520<br />

Perioperative Complications .......... Papers 212, 220, 301, 303,<br />

378, 388, 695, 696, 705, 722, 725, 726,<br />

727, 732, 733, 735, Posters P456, P462,<br />

P485, P490, P495, P502, P505, P507,<br />

P518, P519, Scientific Exhibits SE77<br />

Periprosthetic Fractures ....................Posters P464, P496<br />

Plantar Fasciitis .................................Posters P207<br />

Polyethelene ...............Papers 181, 470, 530, 531, 532, 533,<br />

Posters P019, P025, P035, P046, P053,<br />

P088, P089, Scientific Exhibits SE04, SE07<br />

Primary Total Hip Arthroplasty Cementless ...Papers 061, 181, 182,<br />

194, 347, 348, 350, 352, 353, 356, 358,<br />

360, 474, 529, 532, 707, 710, 711, 718,<br />

Posters P001, P003, P007, P029, P033,<br />

P036, P037, P042, P048, P052, P053,<br />

P055, P068, P075, P078, P080, P081, P086,<br />

P091, P093, P104, P105, P107, P109,<br />

Scientific Exhibits SE02, SE07, SE10,<br />

SE13, SE14, SE16<br />

938<br />

Prosthetic/Allograft Combo/Reconstructions. .........Papers 520,<br />

Posters P532, P540,<br />

Scientific Exhibits SE84<br />

Quality Control. .........Papers 107, 108, 109, 112, 113, 116, 451,<br />

452, 453, 454, 457, 461, 462, Posters P266,<br />

P271, P272, P273, Scientific Exhibits SE42,<br />

SE43, SE44, SE46, SE47, SE48<br />

Radial Head Reconstruction. .Papers 685, Posters P293, P334, P338<br />

Radiographic Analysis. ...... Papers 032, 062, 064, 187, 193, 348,<br />

351, 352, 530, 531, 706, 707, 708,<br />

Posters P001, P014, P016, P017, P025,<br />

P026, P028, P036, P037, P038, P046,<br />

P048, P056, P059, P063, P064, P067,<br />

P068, P069, P077, P078, P079, P088,<br />

P093, P106, P107, Scientific Exhibits SE12<br />

Reconstruction/Limb Salvage Techniques. ....Papers 237, 511, 513,<br />

517, 520, 521, 523, 524,<br />

Posters P525, P526, P532, P538, P540, S<br />

Scientific Exhibits SE38, SE84, SE85<br />

Reconstructive ............. Papers 273, 275, 278, 279, 283, 284,<br />

285, 337, 343, 556, 558, 559,<br />

Posters P227, P229, P238, P239<br />

Rehabilitation ..........Papers 013, 291, 418, Posters P142, P153,<br />

P154, P160, Scientific Exhibits SE31<br />

Research / Basic ..........................Papers 108, 109, 459<br />

Research / Clinical .......Papers 109, 113, 114, 115, 116, 117, 118,<br />

451, 454, 454, 457, 458, 459, 461, 465,<br />

Posters P263, P267, P268, P273,<br />

Scientific Exhibits SE48<br />

Revision / Acetabular Component. ..... Papers 036, 066, 068, 071,<br />

074, 183, 184, 185, 189, 191, 192, 467,<br />

479, 534, Posters P008, P013, P061,<br />

P066, P069, P073, P092, P100,<br />

Scientific Exhibits SE04, SE08, SE09<br />

Revision / Femoral Component. ....... Papers 036, 068, 071, 183,<br />

184, 185, 187, 190, 193, 467, 479,<br />

Posters P066, Scientific Exhibits SE08, SE09<br />

Revision / Periprosthetic Fractures. ..Papers 188, Posters P030, P110<br />

Revision Total Knee Arthroplasty. ......Papers 122, 123, 124, 126,<br />

132, 133, 135, 241, 243, 244, 245, 246,<br />

247, 248, 249, 250, 251, 252, 254, 255,<br />

293, 294, 598, Posters P114, P117, P118,<br />

P119, P122, P126, P128, P129, P136,<br />

P137, P140, P144, P172, P199, P203,<br />

Scientific Exhibits SE17, SE26<br />

Rotator Cuff. ...............Papers 571, 572, 573, 574, 575, 576,<br />

577, 578, 578, 579, 580, 581,<br />

Posters P415, P424, P426, P429, P431,<br />

P448, P452, Scientific Exhibits SE55, SE66<br />

Rotator Cuff / Basic Science .......Papers 152, 156, 159, 161, 163,<br />

609, 682, Posters P295, P321, P322,<br />

P326, P336, P342<br />

Rotator Cuff / Clinical .......Papers 089, 151, 153, 154, 155, 157,<br />

158, 160, 162, 164, 165, 366, 373, 374,<br />

611, 682, Posters P288, P289, P307, P312,<br />

P313, P315, P319, P322, P325, P327,<br />

P331, P332, P333,<br />

Scientific Exhibits SE49, SE51<br />

Keyword IndEx


KEYWORD AAOS EVENT KEYWORD AAOS EVENT<br />

Scoliosis / Deformities .......Papers 259, 438, 440, 441, 442, 445,<br />

446, 447, 448, 449, 450, 661, 671, 746,<br />

749, Posters P348, P358, P364, P370,<br />

P371, P373, P380, P382, P383, P384,<br />

P386, P388, P392, P394, P397, P401,<br />

P404, Scientific Exhibits SE59<br />

Scoliosis / Spine ............Papers 391, 392, 393, 394, 395, 396,<br />

397, 398, 399, 400, 401, 402, 403, 404,<br />

Posters P255, P260<br />

Shoulder ............................Papers 692, Posters P518<br />

Shoulder / Instability ........Papers 209, 210, 571, 574, 575, 576,<br />

579, 580, 581, 583, 584, 585, 652,<br />

Posters P420, P426, P427, P435, P436,<br />

P442, P452, Scientific Exhibits SE66, SE71<br />

Shoulder Basic Science / Biomechanics. ..... Papers 086, 151, 152,<br />

159, 368, 374, 375, 603, 606, 609, 611,<br />

680, Posters P291, P299, P301, P307,<br />

P321, P322, P329, P333, P336, P337,<br />

Scientific Exhibits SE52<br />

Shoulder Instability / Clinical Applications ...... Papers 087, 090,<br />

363, 367, 601, 606, 609, 610, 611, 612,<br />

613, 615, 680, Posters P291, P292,<br />

P300, P308, P310, P328, P337, P341,<br />

Scientific Exhibits SE52<br />

S<strong>of</strong>t Tissue Sarcomas. ........Papers 230, 231, 233, 235, 512, 516,<br />

519, 523, 524, 525, Posters P521,<br />

P523, P524, P525, P526, P540,<br />

Scientific Exhibits SE81, SE83<br />

Spinal Cord Trauma .........Papers 021, 024, 025, 028, 440, 666,<br />

742, Posters P350, P360, P362, P378,<br />

P391, P395, P404<br />

Spine ...............................Papers 721, Posters P490<br />

Spondylolisthesis / Spondylolysis ......Papers 256, 258, 261, 266,<br />

743, 747, 748, Posters P361, P366,<br />

Scientific Exhibits SE59<br />

Stability / Minimally Invasive Surgery. ...............Papers 353,<br />

Posters P001, P007, P013, P021,<br />

P027, P033, P033, P105<br />

Tendon. ..............................Scientific Exhibits SE31<br />

Tendon Disorders .......Papers 102, 104, 105, 496, 497, 498, 503,<br />

Posters P211, P215, P217, P222<br />

Tendons .................. Papers 272, 278, 279, 283, 556, 566,<br />

Posters P237, Scientific Exhibits SE36<br />

Thromboembolic ...............Papers 476, 477, 478, 535, 536,<br />

537, 539, 715, Posters P002<br />

Tibial Plateau. ..........................Papers 145, 388, 735,<br />

Posters P458, P472, P501, P505<br />

Tibial Shaft / Plafond ....... Papers 143, 143, 380, 382, 384, 385,<br />

386, 388, 390, 705, 729, 735,<br />

Posters P461, P463, P481, P498, P503,<br />

Scientific Exhibits SE79, SE80<br />

Total Elbow Arthroplasty / Elbow Reconstruction ......Papers 684,<br />

685, 687, 690, Posters P286, P290,<br />

P297, P306, P316, P338, P340<br />

939<br />

Total Hip Arthroplasty .......Papers 031, 033, 034, 037, 039, 045,<br />

062, 063, 064, 065, 068, 069, 070, 071,<br />

072, 073, 074, 075, 182, 184, 185, 186,<br />

187, 188, 193, 346, 347, 348, 349, 350,<br />

351, 353, 357, 358, 359, 360, 470, 472,<br />

473, 526, 527, 528, 530, 531, 536, 537,<br />

707, 708, 709, 711, 712, 713, 714, 716, 716,<br />

717, 718, 719, Posters P002, P003, P005,<br />

P014, P015, P016, P018, P019, P020, P021,<br />

P022, P023, P024, P025, P026, P027, P031,<br />

P032, P035, P039, P041, P042, P043, P045,<br />

P046, P047, P048, P050, P052, P053, P056,<br />

P057, P062, P064, P065, P066, P069, P070,<br />

P076, P081, P082, P083, P085, P087, P088,<br />

P090, P093, P096, P100, P102, P103, P105,<br />

P106, P108, P110, Scientific Exhibits SE01,<br />

SE02, SE04, SE05, SE09, SE11, SE13,<br />

SE14, SE16<br />

Total Knee Arthroplasty / Other Clinical Conditions. ...Papers 004,<br />

009, 013, 014, 015, 245, 292, 294, 300,<br />

406, 410, 412, 595, 597, Posters P115,<br />

P125, P128, P130, P149, P151, P153,<br />

P157, P160, P161, P162, P163, P167,<br />

P180, P183, P184, P185, P186, P190,<br />

P193, P195, P203, Scientific Exhibits SE19,<br />

SE20, SE23, SE25, SE29<br />

Total Knee Arthroplasty Blood Transfusions. ... Posters P125, P171<br />

Total Knee Arthroplasty Complications ..........Papers 121, 122,<br />

123, 125, 126, 127, 128, 129, 131, 132,<br />

133, 246, 253, 255, 287, 290, 294, 407,<br />

410, 586, 588, 590, 591, 593, 596, 597,<br />

598, 599, Posters P114, P119, P125, P128,<br />

P130, P131, P144, P146, P155, P157, P160,<br />

P166, P172, P173, P174, P175, P179, P180,<br />

P183, P186, P189, P199, P202, P203,<br />

Scientific Exhibits SE26<br />

Total Knee Arthroplasty Components... Papers 003, 004, 005, 011,<br />

131, 245, 247, 248, 250, 253, 293, 295,<br />

296, 300, 409, 416, 587, 588, 594,<br />

Posters P122, P123, P124, P128, P129,<br />

P139, P141, P146, P148, P149, P150,<br />

P152, P162, P167, P178, P181, P182,<br />

P183, P187, P192, P196, P202, P205,<br />

Scientific Exhibits SE20, SE28<br />

Total Knee Arthroplasty General Outcome ....Papers 004, 005, 011,<br />

012, 013, 014, 128, 130, 248, 251, 252,<br />

286, 287, 288, 291, 294, 295, 296, 300,<br />

406, 407, 409, 413, 414, 417, 417, 417,<br />

417, 417, 586, 588, 589, 593, 599,<br />

Posters P114, P119, P123, P124, P126,<br />

P127, P142, P144, P148, P149, P151,<br />

P154, P154, P160, P161, P166, P167,<br />

P169, P173, P178, P180, P183, P187,<br />

P191, P200, P202, P203, P205,<br />

Scientific Exhibits SE22, SE28, SE29<br />

Total Knee Arthroplasty Infection ......Papers 121, 122, 123, 126,<br />

127, 128, 129, 135, 247, 287, 294, 593,<br />

Posters P118, P119, P131, P135, P137, P140,<br />

P155, P159, P172, P174, P180, P199,<br />

Scientific Exhibits SE17<br />

Keyword IndEx


KEYWORD AAOS EVENT KEYWORD AAOS EVENT<br />

Total Knee Arthroplasty Kinematics ........Papers 004, 005, 134,<br />

251, 292, 295, 408, 418, 420,<br />

Posters P141, P143, P152, P178, P197,<br />

Scientific Exhibits SE23, SE28, SE29<br />

Total Knee Arthroplasty Novel Techniques ...Papers 006, 133, 245,<br />

246, 248, 297, 298, 407,<br />

Posters P136, P140, P149, P193, P196,<br />

Scientific Exhibits SE20, SE28<br />

Total Knee Arthroplasty Patella ....Papers 006, 407, 418, 588, 599,<br />

Posters P122, P152, P187, P197<br />

Total Knee Arthroplasty Posterior Cruciate Ligament ...Papers 295,<br />

300, 411, 414, 594, Posters P178, P179,<br />

Scientific Exhibits SE20<br />

Total Knee Arthroplasty Results ........Papers 001, 002, 003, 004,<br />

005, 009, 011, 012, 013, 127, 128, 133,<br />

134, 241, 242, 247, 252, 253, 255, 288,<br />

291, 295, 298, 408, 409, 411, 414, 416,<br />

420, 586, 594, 596, 599, Posters P112,<br />

P122, P124, P127, P132, P140, P142,<br />

P143, P151, P154, P159, P163, P166, P167,<br />

P173, P178, P180, P181, P183, P187, P190,<br />

P191, P192, P195, P196, P198, P205,<br />

Scientific Exhibits SE17, SE21, SE22,<br />

SE28, SE29<br />

Total Knee Arthroplasty Technique .....Papers 134, 241, 245, 247,<br />

255, 298, 407, 408, 411, Posters P122,<br />

P150, P162, P163, P168, P191,<br />

Scientific Exhibits SE17, SE20, SE21,<br />

SE22, SE27<br />

Total joint ............................Scientific Exhibits SE30<br />

Trauma. ...................Papers 078, 085, 090, 364, 371, 372,<br />

602, 615, 676, 679, 687, Posters P287,<br />

P290, P296, P298, P303, P304, P306,<br />

P316, P328, P335, P341, P343<br />

Trauma / Fractures ..........Papers 166, 167, 168, 169, 170, 171,<br />

172, 173, 174, 175, 176, 177, 178, 179,<br />

180, 403, 404, 405, 426, 427, 429, 431,<br />

435, 543, Posters P245, P246, P247, P251,<br />

P257, P258, Scientific Exhibits SE39, SE40<br />

Unicompartment Arthroplasty ........Papers 006, 007, 008, 297,<br />

415, 419, 592, Posters P113, P114, P117,<br />

P120, P120, P121, P129, P138, P145,<br />

P145, P156, P164, P176, P182, P194,<br />

P201, P204, Scientific Exhibits SE18, SE25<br />

Upper Extremity .......Papers 172, 173, 174, 175, 176, 177, 179,<br />

Posters P242, P245, P247,<br />

Scientific Exhibits SE40<br />

Viscosupplement. ............Papers 624, 627, 629, Posters P279<br />

940<br />

Keyword IndEx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!