07.04.2013 Views

I laboratori di fisiologia vegetale (settore bio/4

I laboratori di fisiologia vegetale (settore bio/4

I laboratori di fisiologia vegetale (settore bio/4

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

I Laboratori <strong>di</strong> Fisiologia Vegetale<br />

(<strong>settore</strong> BIO/4)<br />

Felice Cervone Giulia De Lorenzo Daniela Bellincampi<br />

Benedetta Mattei Simone Ferrari<br />

Gianni Salvi Daniela Pontiggia<br />

Isabel Santori<br />

Francesca Sicilia, Roberta Galletti, Vincenzo Lionetti, Francesco Spinelli, Fedra<br />

Francocci, Lorenzo Mariotti<br />

Manuel Benedetti, Daniel Savatin, Vanessa Modesti, Elisa Bastianelli


Laboratori <strong>di</strong> Biologia Molecolare e Biochimica<br />

HPLC Dionex ICS3000<br />

Fon<strong>di</strong> ERC<br />

Fluorimetro/Luminometro<br />

Fon<strong>di</strong> ERC<br />

HPLC AKTA Purifier<br />

Fon<strong>di</strong> Armenise-Harvard<br />

Real Time PCR Biorad<br />

Fon<strong>di</strong> ERC


Attrezzature per colture <strong>di</strong> cellule vegetali e piante<br />

transgeniche<br />

Serra<br />

Fon<strong>di</strong> Armenise-Harvard<br />

Camera <strong>di</strong> crescita


Piattaforma tecnologica per proteomica, metabolomica<br />

e analisi <strong>di</strong> polisaccari<strong>di</strong> complessi<br />

BiacoreX<br />

MALDI-TOF-MS<br />

Contributo Armenise-Harvard<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

25500<br />

25000<br />

24500<br />

24000<br />

Response RU<br />

23500<br />

File # 4 = C:\UNIPRG\DATA\V36654CS.MS Collected: 18-08-98 14:22Sample: 47<br />

6000<br />

Counts<br />

500 550 600 650 700<br />

Laser : 1400<br />

Mass (m/z)<br />

Comment: Saq elu HIV-p 980818, <strong>di</strong>rect elu 45% HCCA<br />

23000<br />

0 50 100 150 200 250 300 350 400 450 500<br />

Time s<br />

671.4<br />

Orbitrap nanoESI-LC-MS<br />

Fon<strong>di</strong> ERC.<br />

2D- DIGE


Progetti finanziati<br />

PRIN<br />

2005052297, 2007-2009 65.950 euro<br />

2007K7KY8Y 2007-2009 38.890<br />

2007-2009 27.000<br />

2006-2007 37.500<br />

2005-2007 27.000<br />

Ateneo 2006-2008 104.000<br />

Institute Pasteur- Cenci Bolognetti 2005-2007 66.400<br />

Institute Pasteur- Cenci Bolognetti 2008-2010 60.000<br />

Unione Europea Wallnet MRTN-CT-2004-512265 2005-2008 180.000<br />

C.R.A - Ministero Agricoltura, Proteostress 2006-2009 385.000<br />

C.R.A - Ministero Agricoltura, Fitolisi 2010-2012 237.000<br />

C.R.A - Ministero Agricoltura, Alisal 2010-2012 35.000<br />

FIRB 2005-2010 491.000<br />

FIRB-EU, ERA-PG 2007-2010 258.000<br />

Europ Res Council (ERC) Advanced Grant 2009-2013 n. 233083 2.100.000


Federici et al., (2001) PNAS 98, 13425-13430.<br />

De Lorenzo et al., (2001) Annual Review of Phytopathology. 39, 313-335.<br />

De Lorenzo, S. Ferrari (2002) Current Opinion in Plant Biology 5, 295-299.<br />

Ferrari et al. (2003) Plant Journal 35, 193-205 – 218<br />

Di Matteo et al. (2003) PNAS 100, 10124-10128.<br />

Ferrari et al.(2003) Plant Cell 15, 93-106.<br />

Capo<strong>di</strong>casa et al.(2004) Plant Physiology 135: 1294-1304.<br />

D’Ovi<strong>di</strong>o et al.(2004) Plant Physiology 135, 2424-35.<br />

Guyon et al. (2004) Plant Journal 39, 643-54.<br />

Di Matteo et al. (2005) Plant Cell 17: 849-858.<br />

Sicilia et al. (2005) Plant Physiology 139,1380-1388.<br />

Federici et al.(2006)Trends in Plant Science 11: 65-70.<br />

Spadoni et al.(2006)Plant Physiology 141, 557-564.<br />

Lionetti et al. (2007) Plant Physiology. 143, pp. 1871-80.<br />

Nar<strong>di</strong>ni et al. (2007) Plant Physiology 143, pp. 1975-1981.<br />

Ferrari et al. (2007) Plant Physiology 144, 367-379.<br />

Casasoli et al., (2008) Proteomics 8, 1042-1054.<br />

Ferrari et al., (2008) Plant Physiology 146, 669-681.<br />

Denoux et al., (2008) Molecular Plant 1, 423-445.<br />

Galletti et al.(2008) Plant Physiology 148, 1695-1706. -<br />

Casasoli et al.(2009)PNAS 106, 7666-7672<br />

Lionetti et al (2009) PNAS (in corso <strong>di</strong> stampa)


• Brevetto n. RM2003A000346 “Inibitore della pectina metilesterasi nella<br />

preparazione dei succhi <strong>di</strong> frutta e derivati” .<br />

• Brevetto n. PD2007A000065 “Uso <strong>di</strong> un inibitore proteico della pectinmetilesterasi<br />

per la riduzione della formazione <strong>di</strong> metanolo in mosti <strong>di</strong> uva e vinacce e<br />

processo per la stessa”<br />

– Estensione europea del brevetto n. PD2007A000065 “ Use of protein inhibitor of<br />

pectin methylesterase for reducing methanol formation in grape must and<br />

marc, and process therefor” International application n. PCT/EP2008/052347<br />

• Brevetto n. RM2008A000696 “Uso <strong>di</strong> piante con un ridotti livelli <strong>di</strong><br />

omogalatturonano de-esterificato nella parete cellulare o parti <strong>di</strong> esse per<br />

migliorare la saccarificazione <strong>di</strong> <strong>bio</strong>masse vegetali”<br />

– Approvazione <strong>di</strong> procedura <strong>di</strong> estensione europea del brevetto n.<br />

RM2008A000696<br />

• Brevetto n. RM2009A000279 “Costrutti esprimenti recettori chimerici e loro uso<br />

per l’attivazione controllata delle risposte <strong>di</strong> <strong>di</strong>fesa a microrganismi patogeni in<br />

pianta”


PLANT CELL WALL<br />

in<br />

Plant Innate Immunity<br />

Recognition Transduction Response<br />

Plant growth and development<br />

Biotechnological application<br />

Resistance to pathogens Food processing Biofuel


How <strong>di</strong>d flowers evolve?<br />

Darwin called this question an "abominable mystery." Flowers arose in the cycads and conifers, but<br />

the details of their evolution remain obscure.<br />

How do plants make cell walls?<br />

Cellulose and pectin walls surround cells, keeping water in and supporting tall trees. The<br />

<strong>bio</strong>chemistry holds the secrets to turning its <strong>bio</strong>mass into fuel.<br />

How is plant growth controlled?<br />

Redwoods grow to be hundreds of meters tall, Arctic willows barely 10 centimeters. Understan<strong>di</strong>ng<br />

the <strong>di</strong>fference could lead to higher-yiel<strong>di</strong>ng crops.<br />

Why aren't all plants immune to all <strong>di</strong>seases?<br />

Plants can mount a general immune response, but they also maintain molecular snipers that take<br />

out specific pathogens. Plant pathologists are asking why <strong>di</strong>fferent species, even closely related<br />

ones, have <strong>di</strong>fferent sets of defenders. The answer could result in har<strong>di</strong>er crops.<br />

What is the basis of variation in stress tolerance in plants?<br />

We need crops that better withstand drought, cold, and other stresses. But there are so many<br />

genes involved, in complex interactions, that no one has yet figured out which ones work how.


PGIPs: leucine-rich repeat extracellular proteins for<br />

recognition of non-self polygalacturonases<br />

MAMMALS PLANTS<br />

PG<br />

PGIP<br />

Pto


Three-<strong>di</strong>mensional structure of PG from<br />

Fusarium moniliforme<br />

Federici et al. 2001, PNAS<br />

Parallel β-helix fold


MSSSLSIILVILVSLRTAHS<br />

ELCNPQDKQALLQIKKDLGNPTTLSSWLPTTDCC CCNRTWL<br />

NNLDLSG.LNLPKPYPIPSSLANL.PYL lrr1<br />

NFLYIGGINNLV..GPIPPAIAKL.TQL lrr2<br />

HYLYITH.TNVS..GAIPDFLSQI.KTL lrr3<br />

VTLDFSY.NALS..GTLPPSISSL.PNL lrr4<br />

VGITFDG.NRIS..GAIPDSYGSFSKLF lrr5<br />

TSMTISR.NRLT..GKIPPTFANL..NL lrr6<br />

AFVDLSR.NMLE..GDASVLFGSD.KNT lrr7<br />

QKIHLAK.NSLA..FDLGKVGLS..KNL lrr8<br />

NGLDLRN.NRIY..GTLPQGLTQL.KFL lrr9<br />

HSLNVSF.NNLC..GEIPQG.GN lrr10<br />

YANNKCLCGSPLPACT<br />

B1-sheet B2-sheet<br />

3 10 -helix<br />

xxLxLxx.NxLx..GxIPxxLxxL.xxL<br />

\<br />

xxLDLSS.NNLx..GxIPSxLxxL.xxL Cf-9<br />

xxLDLSS.NNLx..GxIPxxLxxL.xxL Xa21<br />

xxLxLSx.NxLS..GEIPxxLxxL.xxL RLK5<br />

xxLxLSx.NxaS..GxIPxxaxxx.xxL BRK1<br />

xxLxLxx.NxLx..GxIPxxaxxx.xxL CLAVATA<br />

QxLxLxx.NNLS..GxaPxxLxxL.xxL TMK1<br />

310-helices<br />

B2-sheet<br />

PvPGIP2<br />

C-ter<br />

N-ter<br />

Di Matteo et al, PNAS, 2003<br />

B1-sheet


LePME1 AcPMEI<br />

(Di Matteo et al., Plant Cell 2005)<br />

• Four Helix Bundle” of the<br />

inhibitor<br />

• 2 <strong>di</strong>sulphide bridges necessary<br />

to maintain fold<br />

• 1:1 stoichiometry<br />

• Inibitors bind active site of<br />

PME preventing substrate<br />

bin<strong>di</strong>ng


PG plants have dwarf phenotype<br />

Tabacco<br />

Arabidopsis<br />

#1<br />

wt #5 #7 #16 PG#16 x<br />

PvPGIP2<br />

#5<br />

Col-0<br />

PG201<br />

#4<br />

PvPGIP2<br />

#1 Ws-0<br />

-PG plants have a reduced content of HGA


AtPMEI overexpression enhances <strong>bio</strong>mass production<br />

Dry weight (mg)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

WT AtPMEI<br />

*<br />

***<br />

WT 1.5 2.9<br />

Fresh weight (mg)<br />

220<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

H2O content (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

*<br />

***<br />

WT 1.5 2.9<br />

WT 1.5 2.9


Cellulose Hemicellulose Pectin<br />

xyloglucan<br />

galactomannan<br />

arabinoxylan<br />

Homogalacturonan<br />

Ca2+-crosslinked<br />

non-methylesterified<br />

methylesterified<br />

RG I<br />

(galactan) (arabinan)<br />

Pectin<br />

Rhamnogalacturonan<br />

RG II<br />

(boron-<strong>di</strong>ester)


Cellulose Hemicellulose<br />

The Plant Cell Wall<br />

xyloglucan<br />

galactomannan<br />

arabinoxylan


Cellulose<br />

The Plant Cell Wall


Plants <strong>di</strong>gested with cellulase<br />

WT Transformed plants


Plants: a significant proportion of<br />

the <strong>bio</strong>mass on Earth<br />

Cre<strong>di</strong>t: Don Deering, NASA/LBA Project


PLANT CELL WALL<br />

in<br />

Plant Innate Immunity<br />

Recognition Transduction Response<br />

Plant growth and development<br />

Biotechnological application<br />

Resistance to pathogens Food processing Biofuel


- <strong>bio</strong>logy<br />

The PGIP – PG interaction<br />

- structure-function relationships<br />

- co-evolution at the molecular level<br />

of LRR proteins and their ligands


PGIP confers resistance to fungi<br />

Overexpression of PGIP in transgenic plants limits fungal colonization<br />

tomato/Botrytis cinerea : Powell et al. MPMI, 2001<br />

Arabidopsis/Botrytis cinerea : Ferrari et al, Plant Cell, 2003<br />

tobacco/B. cinerea: Manfre<strong>di</strong>ni et al. Physiol. Mol Plant Pathol 2006.<br />

/Phytophthora parasitica var. nicotianae<br />

/Rhizoctonia solani Borras Hidalgo et al. unpublished<br />

wheat/Bipolaris sorokiniana: D’Ovi<strong>di</strong>o et al. MPMI 2007<br />

wheat/Fusarium graminearum D’Ovi<strong>di</strong>o et al. unpublished<br />

Silencing of PGIP in Arabidopsis increases susceptibility to B. cinerea<br />

Ferrari et al, 2006 MPMI


Representation of PvPGIP2 surface with highlighted (A) positively selected sites (ω>1) with<br />

PP >0.95 (green) and with PP >0.80 (yellow), (B) residues showing ODA values lower than –<br />

6.0 kcal/mol (red) and (C) (merged figure) residues with both ODA 1 (PP<br />

>0.80) (cyan)<br />

Casasoli M. et.al. PNAS 2009;106:7666-7671<br />

©2009 by National Academy of Sciences<br />

PG/PGIP coevolution at the molecular level


Plant cell wall<br />

Cell wall integrity sensing in<br />

plants<br />

Pectin: much more than a glue<br />

Oligogalacturonides (OGs)<br />

Ca ++


Oligogalacturonides (OGs):<br />

Damage-Associated Molecular Patterns<br />

(or DAMPs)<br />

•OGs, fragments released from pectin in the plant cell wall, are able to activate<br />

the plant immune system<br />

•No receptor of OGs is known.<br />

Control OG<br />

Botrytis cinerea


OGs are analogous to the hyaluronan fragments released from the extracellular<br />

matrix and involved in the animal innate immunity


Identification of receptors for oligogalacturonides (OGs) using<br />

a chimeric receptor approach<br />

Because reverse genetic approaches for the characterization of the OG receptor are<br />

hampered by lethality and redundancy<br />

LRR extracellular domain (LRR)<br />

External juxta-membrane domain (eJM)<br />

Transmembrane domain (TM)<br />

Internal juxta-membrane domain<br />

(iJM)<br />

Kinase domain (KM)<br />

Proof-of-concept and development of technology<br />

two chimeric receptors based on<br />

FLS2 and EFR<br />

model receptors for PAMP recognition<br />

(flg22 and elf18, respectively)<br />

FLS2/flg22 EFR/elf18<br />

The FLS2-EFR chimeric receptors are functional in transient and stable<br />

expression systems in Arabidopsis and tobacco


(Anderson et al., 2001)<br />

Wall-Associated Kinases (WAKs)<br />

Cromosome 1<br />

Extracellular domains<br />

EGF-like domain<br />

Transmembrane domain<br />

Ser-Thr kinase domain


) Constitutive iRNA-me<strong>di</strong>ated silencing of the gene family<br />

Problem: LETHAL PHENOTYPE<br />

c) Inducible silencing of the gene family<br />

a) Using TDNA insertion germ lines (NASC seeds)<br />

Problem: GROWTH PHENOTYPE<br />

(Wagner et al., 2001 Plant cell)


Using EFR-based chimeras, we identified WAK1 as a<br />

receptor of OGs<br />

Alexandre Brutus<br />

Francesca Sicilia<br />

WAK1 is the first receptor demonstrated to sense the OG signal<br />

The chimeric receptor approach can be used to study the many plant orphan<br />

receptors


Plant cell wall alterations<br />

(cev1)<br />

C<br />

2<br />

H<br />

ETR1<br />

EIN2<br />

4 JA<br />

ERF1<br />

PDF1-2<br />

COI1<br />

Defence<br />

(E. carotovora, B.<br />

cinera)<br />

Thi2-1<br />

VSP<br />

AtPGIP2<br />

Defence<br />

(Phytium sp., A.<br />

brassicicola) and<br />

Wound response<br />

OG/auxin antagonism<br />

Biotic Stress<br />

(pathogens)<br />

SA<br />

NPR1<br />

PR1<br />

AXR1<br />

Defence<br />

(P. syringae, P. parasitica,<br />

Erisyphe sp., B. cinerea,<br />

X. campestris)<br />

Auxin<br />

TIR1, AFBP2,<br />

AFB3 (AFBP2)<br />

Developmental<br />

responses<br />

OG?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!