09.04.2013 Views

Recent developments in derivative ultraviolet/visible absorption ...

Recent developments in derivative ultraviolet/visible absorption ...

Recent developments in derivative ultraviolet/visible absorption ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract<br />

Review<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>derivative</strong> <strong>ultraviolet</strong>/<strong>visible</strong><br />

<strong>absorption</strong> spectrophotometry<br />

C. Bosch Ojeda, F. Sanchez Rojas ∗<br />

Department of Analytical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spa<strong>in</strong><br />

Received 19 February 2004; received <strong>in</strong> revised form 18 May 2004; accepted 18 May 2004<br />

Derivative spectrophotometry is an analytical technique of great utility for extract<strong>in</strong>g both qualitative and quantitative <strong>in</strong>formation from<br />

spectra composed of unresolved bands, and for elim<strong>in</strong>at<strong>in</strong>g the effect of basel<strong>in</strong>e shifts and basel<strong>in</strong>e tilts. It consists of calculat<strong>in</strong>g and plott<strong>in</strong>g<br />

one of the mathematical <strong>derivative</strong>s of a spectral curve. Thus, the <strong>in</strong>formation content of a spectrum is presented <strong>in</strong> a potentially more useful<br />

form, offer<strong>in</strong>g a convenient solution to a number of analytical problems, such as resolution of multi-component systems, removal of sample<br />

turbidity, matrix background and enhancement of spectral details. Derivative spectrophotometry is now a reasonably priced standard feature<br />

of modern micro-computerized UV/Vis spectrophotometry.<br />

The <strong>in</strong>strumental development and analytical applications of <strong>derivative</strong> UV/Vis regions <strong>absorption</strong> spectrophotometry produced <strong>in</strong> the last<br />

10 years (s<strong>in</strong>ce 1994) are reviewed.<br />

© 2004 Elsevier B.V. All rights reserved.<br />

Keywords: Derivative UV/Vis; Multi-component analysis; Partial least-square regression analysis; Multiple l<strong>in</strong>ear regression<br />

1. Introduction<br />

Derivative spectrophotometry, which consists <strong>in</strong> the differentiation<br />

of a normal spectrum, offers a useful means for<br />

improv<strong>in</strong>g the resolution of mixtures, because it enhances<br />

the detectability of m<strong>in</strong>or spectral features. Derivative spectrophotometry<br />

is an analytical technique of great utility for<br />

extract<strong>in</strong>g both qualitative and quantitative <strong>in</strong>formation from<br />

spectra composed of unresolved bands by us<strong>in</strong>g the first or<br />

higher <strong>derivative</strong>s of absorbance with respect to wavelength.<br />

It tends to emphasize subtle spectral features by present<strong>in</strong>g<br />

them <strong>in</strong> a new and visually more accessible way, allow<strong>in</strong>g<br />

the resolution of multi-component elements, and reduc<strong>in</strong>g<br />

the effect of spectral background <strong>in</strong>terferences.<br />

This technique offers an alternative approach to the enhancement<br />

of sensitivity and specificity <strong>in</strong> mixture analysis.<br />

It consists of calculat<strong>in</strong>g and plott<strong>in</strong>g one of the mathematical<br />

<strong>derivative</strong>s of a spectral curve. The <strong>derivative</strong> transformation<br />

does not <strong>in</strong>crease the <strong>in</strong>formation content of a<br />

spectrum, but it permits discrim<strong>in</strong>ation aga<strong>in</strong>st broad band<br />

∗ Correspond<strong>in</strong>g author. Tel.: +34-952131925; fax: +34-952132000.<br />

E-mail address: fsanchezr@uma.es (F. Sanchez Rojas).<br />

0003-2670/$ – see front matter © 2004 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.aca.2004.05.036<br />

<strong>in</strong>terferences, aris<strong>in</strong>g from turbidity or non-specific matrix<br />

<strong>absorption</strong>.<br />

The <strong>derivative</strong> spectra are always more complex than the<br />

zero-order spectrum. The first <strong>derivative</strong> is the rate of change<br />

of absorbance aga<strong>in</strong>st wavelength. It starts and f<strong>in</strong>ished at<br />

zero, passes through zero at the same wavelength as λmax of<br />

the absorbance band with first a positive and then a negative<br />

band, with the maximum and m<strong>in</strong>imum at the same wavelengths<br />

as the <strong>in</strong>flection po<strong>in</strong>ts <strong>in</strong> the absorbance band. This<br />

bipolar function is characteristic of all the odd-order <strong>derivative</strong>s.<br />

The most characteristic feature of the second-order<br />

<strong>derivative</strong> is a negative band with the m<strong>in</strong>imum at the same<br />

wavelength as the maximum on the zero-order band. It also<br />

shows two additional positive satellite bands on either side of<br />

the ma<strong>in</strong> band. The fourth <strong>derivative</strong> shows a positive band.<br />

The presence of a strong negative or positive band, with<br />

the m<strong>in</strong>imum or maximum at the same wavelength as λmax<br />

of the absorbance band, is characteristic of the even-order<br />

<strong>derivative</strong>s. Note that the number of bands observed is equal<br />

to the <strong>derivative</strong> order plus one.<br />

In two reviews published some years ago [1,2], weexposed<br />

the different aspects of <strong>derivative</strong> <strong>ultraviolet</strong>/<strong>visible</strong><br />

spectrophotometry (DS): theoretical, <strong>in</strong>strumental devices


2 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

and analytical applications, the first until 1986 and the second<br />

until 1993.<br />

The purpose of this paper is to review the articles on<br />

the anterior cited aspects published s<strong>in</strong>ce 1994, <strong>in</strong> order to<br />

complete the revision s<strong>in</strong>ce the publication of our last review.<br />

2. Theoretical and <strong>in</strong>strumental aspects<br />

Derivative spectra can be obta<strong>in</strong>ed by optical, electronic<br />

or mathematical methods. Optical and electronic techniques<br />

were used on early UV/Vis spectrophotometers but have<br />

largely superseded by mathematical techniques. The advantages<br />

of the mathematical techniques are that <strong>derivative</strong> spectra<br />

may easily be calculated and recalculated with different<br />

parameters, and smooth<strong>in</strong>g techniques may be used to improve<br />

signal-to-noise ratio.<br />

The ma<strong>in</strong> optical technique is wavelength modulation,<br />

where the wavelength to the <strong>in</strong>cident light is rapidly modulated<br />

over a narrow wavelength range by an electrochemical<br />

device, the first and second <strong>derivative</strong>s may be generated us<strong>in</strong>g<br />

this technique. First <strong>derivative</strong> spectra may also be generated<br />

by dual-wavelength spectrophotometer, the <strong>derivative</strong><br />

spectrum is generated by scann<strong>in</strong>g with each monochromator<br />

separated by a small constant wavelength difference.<br />

First- and higher-order <strong>derivative</strong>s can be generated us<strong>in</strong>g<br />

analogue resistance–capacitance devices. These generate<br />

the <strong>derivative</strong> as a function of time while the spectrum<br />

is scanned at constant speed. The electronic method suffers<br />

from the disadvantage that the amplitude and wavelength<br />

shifts of the <strong>derivative</strong>s vary with scan speed, slit width and<br />

resistance–capacitance ga<strong>in</strong> factor.<br />

To use mathematical techniques, the spectrum is first digitalized<br />

with a sampl<strong>in</strong>g <strong>in</strong>terval of λ, the size of λ will<br />

be dependent upon the natural bandwidth of the bands be<strong>in</strong>g<br />

processed and of the <strong>in</strong>strumental bandwidth of the <strong>in</strong>strument<br />

used to generate the data [3].<br />

Instrumental requirements for <strong>derivative</strong> spectroscopy<br />

are, <strong>in</strong> general, similar to those for conventional absorbance<br />

spectroscopy, but wavelength reproducibility and<br />

signal-to-noise ratio is of <strong>in</strong>creased importance. The <strong>in</strong>creased<br />

resolution of <strong>derivative</strong> spectra puts greater demands<br />

on the wavelength reproducibility of the spectrophotometer.<br />

Small wavelength errors can result <strong>in</strong> much larger signal<br />

errors <strong>in</strong> the <strong>derivative</strong> mode than <strong>in</strong> the absorbance mode.<br />

The negative effect of derivatization on signal-to-noise also<br />

places <strong>in</strong>creased demands on low-noise characteristics of<br />

the spectrophotometer. It is advantageous <strong>in</strong> this case if the<br />

spectrophotometer can scan and average multiple spectra<br />

to further improve the signal-to-noise ratio before derivatization.<br />

For the derivatization process, it is important to be<br />

able to control the degree of smooth<strong>in</strong>g that is applied <strong>in</strong><br />

order to adapt to differ<strong>in</strong>g analytical problems. In the case<br />

of the Savitzky-Golay method this means be<strong>in</strong>g able to vary<br />

the order of the polynomial and the number of data po<strong>in</strong>ts<br />

used.<br />

One k<strong>in</strong>d of mathematical method, fractional calculus,<br />

is useful for analyz<strong>in</strong>g optical spectra. A new fractional<br />

<strong>derivative</strong> spectroscopy is proposed [4]. In other paper, titled<br />

“UV-<strong>visible</strong> <strong>absorption</strong> spectroscopy. Dual and second<br />

<strong>derivative</strong>. Comparative study”, the techniques were compared<br />

on the example of Almidon and Rhodam<strong>in</strong>e B [5].<br />

The possibility of reduc<strong>in</strong>g the noise <strong>in</strong> second <strong>derivative</strong><br />

without loss of spectral <strong>in</strong>formation is <strong>in</strong>vestigated. The classical<br />

procedures for noise elim<strong>in</strong>ation curve smooth<strong>in</strong>g or<br />

<strong>in</strong>creas<strong>in</strong>g the differentiation step lead to partial loss of spectral<br />

<strong>in</strong>formation. A simple method for noise reduction called<br />

“step by step” filter (SBSF) is proposed [6,7]. A microcomputer<br />

program, based on SBSF, was developed for calculation<br />

of <strong>derivative</strong> curves directly from spectra recorded<br />

as a function of wavelength. This program avoids the long<br />

wavelength attenuation featured at conventional method for<br />

<strong>derivative</strong> curves calculation, and <strong>in</strong> this extent could be<br />

helpful for daily spectroscopy practice. The features of the<br />

SBSF program <strong>in</strong>clude: easy treatment of data through a<br />

w<strong>in</strong>dowed environment, calculat<strong>in</strong>g both conventional and<br />

step by step filter <strong>derivative</strong>s, possibilities for selection of the<br />

mathematical conditions for smooth<strong>in</strong>g and differentiation<br />

simultaneous plott<strong>in</strong>g of the orig<strong>in</strong>al curve and its <strong>derivative</strong>,<br />

and a mouse po<strong>in</strong>ter. Several examples from different<br />

branches of the molecular spectroscopy are provided and<br />

discussed <strong>in</strong> terms of advantages of SBSF [8].<br />

A mathematical program <strong>in</strong> Turbo Pascal 6.00, which<br />

is enable to generate spectra and to obta<strong>in</strong> first and second<br />

<strong>derivative</strong>s is proposed. The second <strong>derivative</strong> of salicylic<br />

acid showed a trough at 292 nm and a satellite peak at<br />

316 nm. When large amounts of aspir<strong>in</strong> coexisted, the trough<br />

disappeared, but the height of satellite peak was not altered<br />

even at an aspir<strong>in</strong> concentration which was 2000 times more<br />

than that of salicylic acid (correspond<strong>in</strong>g to salicylic acid<br />

content of 0.05%). The results were compared with those<br />

obta<strong>in</strong>ed by us<strong>in</strong>g a spectrophotometer for record<strong>in</strong>g the<br />

second-order <strong>derivative</strong> spectrum of aspir<strong>in</strong> [9].<br />

The complicated electronic <strong>absorption</strong> spectra of several<br />

picramide autocomplexes were <strong>in</strong>terpreted by the second<br />

<strong>derivative</strong> method. A l<strong>in</strong>ear correlation was established between<br />

the values of the <strong>in</strong>tramolecular charge-transfer energy<br />

and the ionization potential of a donor fragment of<br />

molecules. The ionization potentials of several compounds<br />

were determ<strong>in</strong>ed [10].<br />

The second <strong>derivative</strong> transformation of the <strong>absorption</strong><br />

spectrum of trimethylam<strong>in</strong>e is extremely effective <strong>in</strong> enhanc<strong>in</strong>g<br />

the <strong>in</strong>formation about the vibrational characteristics of<br />

the excited state of the molecule, ly<strong>in</strong>g obscure <strong>in</strong> the raw<br />

<strong>absorption</strong> data [11].<br />

A <strong>derivative</strong> method comb<strong>in</strong>ed with Fourier least-square<br />

fitt<strong>in</strong>g was designed to process noised overlapped peaks. After<br />

be<strong>in</strong>g fitted with least-square method, data were treated<br />

with fractional <strong>derivative</strong> to amplify peaks. A formula was<br />

used to rectify the shift of peak position <strong>in</strong> <strong>derivative</strong> spectrum.<br />

Simulated and true UV spectral signal were processed<br />

and the results were satisfied [12].


The new method “dynamic <strong>derivative</strong> spectroscopy”<br />

(DDS) is presented for contam<strong>in</strong>ation detection and monitor<strong>in</strong>g<br />

<strong>in</strong> water. As a first application, the selective measurement<br />

of aromatic solvents is <strong>in</strong>vestigated. The feasibility of<br />

the new technique to measure such substances selectively<br />

at competitive measurement speed is demonstrated. In conventional<br />

transmission spectroscopy, the light transmitted<br />

through the sample is attenuated <strong>in</strong> a specific manner by<br />

the conta<strong>in</strong>ed absorbers. In trace measurements, this attenuation<br />

is very weak and overlaid by huge offsets due to<br />

the emission spectrum of that radiation source. This leads<br />

to problems due to the limited dynamic range of the electronics.<br />

Additionally, <strong>in</strong> the UV region many <strong>absorption</strong><br />

features are broad, sometimes rather similar and overlapp<strong>in</strong>g.<br />

This makes discrim<strong>in</strong>ation of different substances<br />

difficult. The DDS technique makes use of a wavelength<br />

modulation that generates optically an approximation of the<br />

first and second <strong>derivative</strong>s with respect to the wavelength<br />

of the transmission spectra. These <strong>derivative</strong>s are used for<br />

evaluation <strong>in</strong> addition to the conventional transmission signal<br />

<strong>in</strong> order to enhance spectral features for discrim<strong>in</strong>ation<br />

of the compounds conta<strong>in</strong>ed <strong>in</strong> the samples [13].<br />

Several reviews have been published, <strong>in</strong> the last years,<br />

on the pr<strong>in</strong>ciple and application of UV-<strong>visible</strong> spectrometry<br />

[14–17].<br />

2.1. Multi-component analysis<br />

Multi-component analysis has become one of the most<br />

appeal<strong>in</strong>g topics for analytical chemists <strong>in</strong> the last few years.<br />

In this context, simultaneous determ<strong>in</strong>ations have proved<br />

rather useful for resolv<strong>in</strong>g mixtures of analytes of <strong>in</strong>terest<br />

<strong>in</strong> such diverse fields as cl<strong>in</strong>ical chemistry, drug analysis,<br />

pollution control, etc. The accuracy of the results obta<strong>in</strong>ed<br />

<strong>in</strong> multi-component analyses by application of multivariate<br />

calibration to the absorbance signals depends on the particular<br />

method and the analytical signal used.<br />

A method is described for the determ<strong>in</strong>ation of the prote<strong>in</strong><br />

mixtures us<strong>in</strong>g fourth <strong>derivative</strong>, the methodology was<br />

demonstrated by quantify<strong>in</strong>g mixtures of the three ma<strong>in</strong><br />

bov<strong>in</strong>e case<strong>in</strong>s, the 244–296 nm spectra region was used for<br />

the development of prediction models us<strong>in</strong>g the multivariate<br />

method of partial least-square (PLS) regression analysis<br />

[18].<br />

A multivariate calibration method, PLS (types 1 and 2),<br />

was applied to the simultaneous determ<strong>in</strong>ation of naptalam<br />

[N-(1-naphthyl)phthalamic acid] and its metabolites<br />

N-(1-naphthyl)phthalimide and 1-naphthylam<strong>in</strong>e <strong>in</strong> mixtures<br />

by UV–vis <strong>absorption</strong> spectrophotometry. The <strong>absorption</strong><br />

and first <strong>derivative</strong> <strong>absorption</strong> spectra of mixtures were<br />

used to perform the optimization of the calibration matrices<br />

by the PLS method. Two different experimental designs for<br />

the three-component mixtures are assayed and the results<br />

are discussed. The proposed method with the <strong>derivative</strong><br />

spectra was applied to the determ<strong>in</strong>ation of these analytes<br />

<strong>in</strong> river water at the gl −1 level [19].<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 3<br />

The performance of two multivariate calibration methods,<br />

multiple l<strong>in</strong>ear regression (MULTI3) and PLS-2 to<br />

absorbance and <strong>derivative</strong> spectrophotometric signals, for<br />

the resolution of the ternary mixtures of acetylsalicylic<br />

acid–caffe<strong>in</strong>e–code<strong>in</strong>e and acetam<strong>in</strong>ophen–caffe<strong>in</strong>e–code<strong>in</strong>e<br />

is compared and the proposed method was successfully<br />

demonstrated for pharmaceutical tablets [20].<br />

Least-square methods, classical least-squares (CLS),<br />

Kalman filter<strong>in</strong>g and PLS were compared for the analysis<br />

of normal and <strong>derivative</strong> <strong>absorption</strong> spectra of some veter<strong>in</strong>ary<br />

sulfa drugs with two different calibration designs<br />

and <strong>in</strong> two sets of wavelength range. Significant advantages<br />

were found by the application of the <strong>derivative</strong> technique<br />

coupled with the PLS method [21].<br />

Four chemometric techniques, CLS, <strong>in</strong>verse least-squares<br />

(ILS), pr<strong>in</strong>cipal component regression (PCR) and PLS were<br />

applied to the <strong>absorption</strong> and first <strong>derivative</strong> spectrophotometric<br />

determ<strong>in</strong>ations of amiloride and hydrochlorothiazide<br />

<strong>in</strong> pharmaceutical preparation [22].<br />

Brown et al. [23] were <strong>in</strong>vestigated the <strong>derivative</strong> preprocess<strong>in</strong>g<br />

as a method of drift noise reduction <strong>in</strong> multivariate<br />

spectral data. This exam<strong>in</strong>ation was carried out from the<br />

perspective that basel<strong>in</strong>e drift can be characterized as correlated<br />

measurement errors, and that <strong>derivative</strong> filter<strong>in</strong>g alleviates<br />

some drift noise by reduc<strong>in</strong>g the covariance terms <strong>in</strong><br />

the error covariance matrices. While this approach is often<br />

successful to some degree, <strong>derivative</strong> filters cannot be considered<br />

optimal, s<strong>in</strong>ce the error covariance matrix can rarely<br />

be diagonalized by their operation. In addition, the use of<br />

<strong>derivative</strong> filters modifies the composition of the chemical<br />

signals <strong>in</strong> a fashion that is very difficult to predict a priori,<br />

mak<strong>in</strong>g the effects on figures of merit <strong>in</strong> multivariate calibration<br />

largely unpredictable.<br />

Derivative filters operate bl<strong>in</strong>dly <strong>in</strong> reduc<strong>in</strong>g drift noise<br />

and, therefore, must be chosen on a trial-and-error basis,<br />

but maximum likelihood PCA uses error covariance <strong>in</strong>formation<br />

obta<strong>in</strong>ed from replicate measurements to achieve the<br />

simultaneous drift correction and the maximum likelihood<br />

projection of the spectral data <strong>in</strong>to a pr<strong>in</strong>cipal component<br />

space. It was shown that MLPCA is the optimal filter from a<br />

drift reduction perspective, s<strong>in</strong>ce MLPCA uses error covariance<br />

<strong>in</strong>formation to diagonalize the error covariance matrix<br />

and thus elim<strong>in</strong>ate drift noise. The regression counterpart to<br />

MLPCA, MLPCR, is consequently an optimal calibration<br />

method to use when drift noise plagues the acquired data.<br />

Basel<strong>in</strong>e drift poses a significant threat to the precision<br />

and accuracy of many calibration methods. Derivative preprocess<strong>in</strong>g<br />

has been widely employed to combat this problem<br />

<strong>in</strong> the past, but s<strong>in</strong>ce it is suboptimal <strong>in</strong> terms of drift<br />

correction, its application requires time-consum<strong>in</strong>g searches<br />

for the best filter characteristics for a given application. Unfortunately,<br />

the spectral <strong>in</strong>terpretability also suffers upon differentiation.<br />

In this study, MLPCR was consistently found<br />

to perform as well as or better than <strong>derivative</strong> PCR when<br />

reasonable estimates of the error covariance structure were<br />

available. It is therefore recommended that, provided that


4 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

error covariance <strong>in</strong>formation obta<strong>in</strong>able, MLPCR is used as<br />

a calibration method for data corrupted by basel<strong>in</strong>e drift.<br />

2.2. Comb<strong>in</strong>ation of DS with flow <strong>in</strong>jection (FIA), liquid<br />

chromatography and k<strong>in</strong>etic analysis<br />

In liquid chromatography with photodiode array detection,<br />

a number of approaches have been developed <strong>in</strong><br />

chemometrics to determ<strong>in</strong>e an analyte of <strong>in</strong>terest <strong>in</strong> the<br />

presence of one or more unknown compounds; so far,<br />

these techniques have required time-consum<strong>in</strong>g data analysis<br />

programs, and are not suitable for rout<strong>in</strong>e analysis.<br />

A “<strong>derivative</strong> spectrum chromatogram” is proposed as a<br />

new approach for resolv<strong>in</strong>g overlapped peaks <strong>in</strong> real time.<br />

This procedure is based on the follow<strong>in</strong>g assumptions: (i)<br />

an <strong>absorption</strong> spectrum of an analyte with rounded humps<br />

changes to steep peaks by high-order derivatization and (ii)<br />

the pr<strong>in</strong>ciple of superposition is valid assessed with real data<br />

for the separation of pesticides by liquid chromatography<br />

[24]. Other paper reports the possibilities of HPLC on-l<strong>in</strong>e<br />

with photodiode array detection for identification of bov<strong>in</strong>e<br />

milk prote<strong>in</strong>s, us<strong>in</strong>g second and fourth <strong>derivative</strong>s [25].<br />

Application of SDS-polyacrylamide gel electrophoresis<br />

and reversed-phase high-performance liquid chromatography<br />

on-l<strong>in</strong>e with the second and fourth <strong>derivative</strong>s UV<br />

spectroscopy <strong>in</strong> identification of -case<strong>in</strong> and its peptide<br />

fractions was reported [26].<br />

A flow <strong>in</strong>jection procedure was developed for the simultaneous<br />

determ<strong>in</strong>ation of two UV filters (oxybenzone and<br />

2-ethylhexyl-4-methoxyc<strong>in</strong>namate) <strong>in</strong> sunscreen formulations,<br />

based on the isodifferential approach, us<strong>in</strong>g second<br />

<strong>derivative</strong> [27].<br />

Simultaneous dissolution profiles of two drugs (sulfametoxazole<br />

and trimethoprim) <strong>in</strong> pharmaceutical formulations<br />

by an FIA manifold are proposed. The official procedure is<br />

adapted to the cont<strong>in</strong>uous flow methodology; the dissolution<br />

vessel is connected to an FIA manifold, the simultaneous<br />

determ<strong>in</strong>ation of both profiles is based on the first <strong>derivative</strong><br />

and the zero-cross<strong>in</strong>g mathematical procedure [28].<br />

The possibility has been <strong>in</strong>vestigated by apply<strong>in</strong>g <strong>derivative</strong><br />

analysis to a classical enzymatic-spectrophotometric<br />

method for lecith<strong>in</strong> determ<strong>in</strong>ation for the purpose of develop<strong>in</strong>g<br />

an analytical direct method that does not require long<br />

pretreatment of the test sample even <strong>in</strong> the case of turbid<br />

samples [29].<br />

A review shows the potentiality (but also the limits)<br />

of the UV <strong>derivative</strong> spectroscopy specially adapted to<br />

high-pressure expositions [30].<br />

3. Applications<br />

3.1. Inorganic analysis<br />

DS <strong>in</strong>volves calculat<strong>in</strong>g and plott<strong>in</strong>g one of the mathematical<br />

<strong>derivative</strong>s of the spectral curve offers and alternative<br />

approach to metal analysis, while at the same time show<strong>in</strong>g<br />

good sensitivity and specifity. In the <strong>derivative</strong> spectrum, the<br />

ability to detect and to measure m<strong>in</strong>or spectral features is<br />

considerably enhanced.<br />

Derivative UV <strong>absorption</strong> spectroscopy is a powerful<br />

spectroscopic technique for multi-component gas analysis,<br />

particularly <strong>in</strong> combustion and process controll<strong>in</strong>g application<br />

[31].<br />

The analysis of anions has hardly been <strong>in</strong>vestigated by<br />

means of <strong>derivative</strong> spectroscopy; a third <strong>derivative</strong> procedure<br />

is proposed for the determ<strong>in</strong>ation of traces of phosphate,<br />

based on the formation of a ternary ion-association<br />

complex by reaction of phosphate with rhodam<strong>in</strong>e 6G <strong>in</strong> the<br />

presence of molybdate [32]; second <strong>derivative</strong> was applied<br />

to simultaneous determ<strong>in</strong>ation of nitrate and nitrite ions <strong>in</strong><br />

bath solutions for alkal<strong>in</strong>e black-oxidation of steel [33]. A<br />

direct and simultaneous UV second <strong>derivative</strong> was proposed<br />

for the determ<strong>in</strong>ation of nitrite and nitrate <strong>in</strong> preparations<br />

of peroxynitrite [34], the determ<strong>in</strong>ation of nitrate nitrogen<br />

<strong>in</strong> groundwater by first-order <strong>derivative</strong> has been described<br />

[35] and the evaluation of second <strong>derivative</strong> for nitrate and<br />

total nitrogen analysis of wastewater samples is also reported<br />

[36]. The second <strong>derivative</strong> UV absorbance method used by<br />

Crumpton et al. (1992) for analyz<strong>in</strong>g NO3 − <strong>in</strong> fresh water<br />

was explored as a simple, quick and reliable method for<br />

measur<strong>in</strong>g NO3 − depletion <strong>in</strong> the MPN culture medium. In<br />

a complex matrix such as a culture medium, the <strong>in</strong>dividual<br />

components are often <strong>in</strong>dist<strong>in</strong>ct <strong>in</strong> UV absorbance spectra<br />

because of the large widths of component bands relative to<br />

the separations between adjacent bands. In some cases, the<br />

remedy is to calculate and plot first, second and possibly<br />

higher <strong>derivative</strong>s of the absorbance spectrum with respect to<br />

wavelength. A second <strong>derivative</strong> method proved to be a fast<br />

and reliable means for measur<strong>in</strong>g nitrate depletion <strong>in</strong> MPN<br />

media used for enumerat<strong>in</strong>g autotrophic and heterotrophic<br />

nitrate-reduc<strong>in</strong>g bacteria, without <strong>in</strong>terferences from Cl − or<br />

the organic components <strong>in</strong> the latter medium [37].<br />

The simultaneous determ<strong>in</strong>ation of phosphate and silicate<br />

<strong>in</strong> material samples utiliz<strong>in</strong>g a simple, rapid and <strong>in</strong>expensive<br />

method is difficult, due to the mutual <strong>in</strong>terference between<br />

the two anions. A first <strong>derivative</strong> spectrophotometric<br />

method utiliz<strong>in</strong>g the zero-cross<strong>in</strong>g measurement technique<br />

was developed for the simultaneous determ<strong>in</strong>ation of<br />

phosphate and silicate <strong>in</strong> synthetic detergents and water,<br />

based on the formation of phospho- and silicomolybdenum<br />

blue complexes <strong>in</strong> the presence of metol or ascorbic acid<br />

[38].<br />

Also, an approach for quantitative spectrophotometric<br />

analysis of b<strong>in</strong>ary mixtures based on the <strong>derivative</strong><br />

spectra has been developed. The proposed method is<br />

used for <strong>in</strong>vestigation of the complex formation of some<br />

aza-15-crown-5-conta<strong>in</strong><strong>in</strong>g chromoionophores with Sr 2+<br />

where the stability constant is low and the <strong>absorption</strong> spectra<br />

of the complex cannot be obta<strong>in</strong>ed directly [39].<br />

The different determ<strong>in</strong>ations achieved are described <strong>in</strong><br />

Table 1.


C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 5<br />

Table 1<br />

Determ<strong>in</strong>ation of metal ions<br />

Elements Reagents Remarks Reference<br />

Ag 2-Nitroso-1-naphthol-4-sulfonic acid<br />

(nitroso-S) and<br />

tetradecyldimethylbenzylammonium<br />

chloride (TDBA)<br />

Fourth <strong>derivative</strong>, preconcentration on<br />

microcrystall<strong>in</strong>e naphthalene or column method,<br />

0.2–30 g ml −1 , <strong>in</strong> various complex samples<br />

Ag, Au Rhodam<strong>in</strong>e <strong>derivative</strong> First and second <strong>derivative</strong>s us<strong>in</strong>g zero-cross<strong>in</strong>g<br />

technique, micellar medium, <strong>in</strong> silicate rocks<br />

[41]<br />

Al Hydroxynaphthol blue First <strong>derivative</strong>, 11.8–320.0 ng ml−1 [42]<br />

Al Ox<strong>in</strong>e-5-sulfonic acid In stomach medic<strong>in</strong>e [43]<br />

Al Chromazur<strong>in</strong>e S Second <strong>derivative</strong> at 543 nm, sensitivity<br />

enhancement of oil/water microemulsion<br />

[44]<br />

Al CAS Sensitiz<strong>in</strong>g effect of nonionic microemulsion on<br />

the <strong>derivative</strong><br />

[45]<br />

Al Alum<strong>in</strong>on pH 3.62 Clark-Lubs buffer, λ 362 nm, Al is<br />

determ<strong>in</strong>ed <strong>in</strong> water<br />

[46]<br />

Al, Fe Hematoxil<strong>in</strong> First and second <strong>derivative</strong>s zero-cross<strong>in</strong>g method,<br />

<strong>in</strong> the presence of surfactant, <strong>in</strong> glasses, phosphate<br />

rocks, cement and magnesite alloy<br />

[47]<br />

Am – Second <strong>derivative</strong> at 503.5 nm, <strong>in</strong> a nitric acid<br />

medium, 1–11 g ml−1 [48]<br />

Au, Pd 3-Hydroxy-2-methyl-1-phenyl-4-pyridone Third <strong>derivative</strong>, 1–13.0 and 0.28–8.0 g ml−1 ,<br />

respectively<br />

[49]<br />

Bi 2-(5-Bromo-2-pyridylazo)-5-<br />

Third <strong>derivative</strong>, separation and preconcentration<br />

[50]<br />

diethylam<strong>in</strong>ophenol (5-Br-PADAP)<br />

with ammonium tetraphenylborate on<br />

microcrystall<strong>in</strong>e naphthalene or by column<br />

method, <strong>in</strong> alloys and synthetic samples<br />

Bi, Sb Iodide First <strong>derivative</strong>, <strong>in</strong> synthetic samples [51]<br />

Ca, Mg CAS and CTMAB Ratio spectrum and <strong>derivative</strong>, <strong>in</strong> synthetic and<br />

real water samples<br />

[52]<br />

Cd, Co, Cu Meso-tetrakis[4-<br />

Third <strong>derivative</strong> at 412, 434 and 438 nm for Cu,<br />

[53]<br />

trimethylammonium)phenyl]porph<strong>in</strong>e<br />

Co and Cd, respectively, <strong>in</strong> synthetic mixtures<br />

Co 5-Br-PADAP In several nickel matrices [54]<br />

Co 1-Nitroso-2-naphthol Neutral micellar medium, selective determ<strong>in</strong>ation<br />

of Co <strong>in</strong> the presence of Cu(II) or Fe(III), Co is<br />

determ<strong>in</strong>ed <strong>in</strong> drugs and alloys<br />

[55]<br />

Co Disodium<br />

Third <strong>derivative</strong>, on microcrystall<strong>in</strong>e naphthalene,<br />

1-nitroso-2-naphthol-3,6-disulfonate and<br />

tetradecyldimethylbenzylammonium<br />

chloride<br />

0.1–11 g ml−1 [56]<br />

, <strong>in</strong> alloys and biological samples<br />

Co, Cu Pyridoxal-4-phenylthiosemicarbazone First <strong>derivative</strong>, use of a flow-through sensor, <strong>in</strong><br />

several steel samples<br />

[57]<br />

Co, Fe Meso-tetrakis(4-sulfophenyl)porphyr<strong>in</strong> First <strong>derivative</strong>, 0–0.24 and 0–0.18 mg ml−1 ,<br />

respectively, <strong>in</strong> tobacco<br />

[58]<br />

Co, Ni 4-(2-Pyridylazo)resorc<strong>in</strong>ol Second <strong>derivative</strong>, 0.25–1.50 and 0.20–1.25 ppm,<br />

respectively<br />

[59]<br />

Co, Ni Dithiazone First <strong>derivative</strong> at 620 and 740 nm, 5.0 ×<br />

10−6−1.0 × 10−4 and 2.0 × 10−5−2.0 × 10−4 M,<br />

respectively, applied to a Ni/Cr-based dental alloy<br />

[60]<br />

Co, Mn, Zn 5-Br-PADAP L<strong>in</strong>ear regression multiwavelength <strong>derivative</strong>, <strong>in</strong><br />

rice and wheat flour<br />

[61]<br />

Cr Eriochrome Cyan<strong>in</strong>e-R Fourth <strong>derivative</strong> at 545 nm, 20–80 ng ml−1 , <strong>in</strong> steel [62]<br />

Cr, Zr 2-(2-Pyridylmethyleneam<strong>in</strong>o)phenol First <strong>derivative</strong>, <strong>in</strong> Zr/Cr bronzes [63]<br />

Cu 3-(4-Phenyl-2-pyrid<strong>in</strong>yl)-5-phenyl-1,2,4-<br />

First <strong>derivative</strong>, solvent extraction <strong>in</strong><br />

triaz<strong>in</strong>e and picrate(2,4,6-tr<strong>in</strong>itrophenol)<br />

1,2-dichloroethane, 7.5-350 ng ml−1 [64]<br />

, <strong>in</strong> several<br />

k<strong>in</strong>ds of water<br />

Cu 1-(2-Pyridylazo)-2-naphthol (PAN) In non-ionic micellar medium, Cu content <strong>in</strong><br />

beverages, biological and alloy samples<br />

[65]<br />

Cu 2-Nitroso-1-naphthol-4-sulfonic acid<br />

Second <strong>derivative</strong>, with<br />

[66]<br />

(nitroso-S)<br />

tetradecyldimethylbenzylammonium chloride on<br />

microcrystall<strong>in</strong>e naphthalene, <strong>in</strong> standard alloys<br />

and biological samples<br />

Cu, Fe 5-Phenyl-3-(4-phenyl-2-pyrid<strong>in</strong>yl)-1,2,4-<br />

First <strong>derivative</strong> us<strong>in</strong>g the zero-cross<strong>in</strong>g approach,<br />

triaz<strong>in</strong>e (PPT)<br />

solvent-extraction <strong>in</strong> dichloroethane, 50–2500 and<br />

2–120 ng ml−1 [67]<br />

, respectively, <strong>in</strong> well water<br />

[40]


6 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 1 (Cont<strong>in</strong>ued )<br />

Elements Reagents Remarks Reference<br />

Cu, Fe Picrate Second <strong>derivative</strong> zero-cross<strong>in</strong>g approach for Cu<br />

and graphic method for Fe, extraction <strong>in</strong> DCE<br />

with PPT for Fe and bathocupro<strong>in</strong>e for Cu, <strong>in</strong><br />

river and tap water<br />

Cu, Fe 2-Hydroxy-1naphthaldehydebenzoylhydrazone<br />

(OHNABH)<br />

First <strong>derivative</strong>, 0.16–4.80 g ml−1 at 443 nm and<br />

0.14–4.20 g ml−1 at 540 nm, respectively, <strong>in</strong> plant<br />

samples<br />

Cu, Hg, Pb Dithizone First <strong>derivative</strong>, extraction <strong>in</strong> chloroform, <strong>in</strong><br />

mar<strong>in</strong>e sediments samples<br />

[70]<br />

Cu, Ni Diacetylmonoxime benzoylhydrazone First <strong>derivative</strong>, <strong>in</strong> alloys [71]<br />

Cu, Ni Diacetylmonoxime isonicot<strong>in</strong>oyl hydrazone Second <strong>derivative</strong> use of peak-to-base l<strong>in</strong>e<br />

measurement techniques<br />

[72]<br />

Cu, V OHNABH First <strong>derivative</strong> at 443 and 465 nm, 0–4.5 and<br />

0–7.5: g ml−1 , Cu <strong>in</strong> food materials, V <strong>in</strong> alloy<br />

steels, and both V and Cu <strong>in</strong> Cr–V steel<br />

[73]<br />

Cu, Zn Meso-tetrakis(4-methoxyphenyl)porph<strong>in</strong>e In human hair and serum samples [74]<br />

Er, Nd 2-(Diphenylacetyl) <strong>in</strong>dan-1,3-dione and<br />

Third <strong>derivative</strong>, <strong>in</strong> mixed rare-earths and<br />

[75]<br />

dodecyl benzenesulfonic acid sodium-salt<br />

lanthanide-based samples<br />

Er, Ho, Nd Norfloxac<strong>in</strong> Second <strong>derivative</strong>, 5.0 × 10−5 to 2.5 × 10−4 Mof<br />

Nd, Ho and Er, <strong>in</strong> mixtures of rare earth elements<br />

[76]<br />

Er, Ho, Nd 1-Ethyl-6,8-difluoro-7-(3-methyl-1-<br />

Second <strong>derivative</strong>, 5.0 × 10<br />

piperaz<strong>in</strong>yl)-4-oxo-1,4-dihydro-3-qu<strong>in</strong>ol<strong>in</strong>e<br />

carboxylic acid<br />

−5 to 2.5 × 10−4 M<br />

[77]<br />

of Nd, Ho and Er, determ<strong>in</strong>ation of Nd, Ho and<br />

Er <strong>in</strong> rare earth mixtures<br />

Fe PAN Third <strong>derivative</strong>, preconcentration on a membrane<br />

filter <strong>in</strong> the presence of capriquat<br />

[78]<br />

Fe Sulfosalicyl acid Third <strong>derivative</strong>, <strong>in</strong> some chemical reagents [79]<br />

Fe Sulfosalicyl acid Sensitiz<strong>in</strong>g effect of nonionic microemulsion [80]<br />

Fe Phenanthrol<strong>in</strong>e Second <strong>derivative</strong>, <strong>in</strong> foods [81]<br />

Fe 2,4,6-Tripyridyl-1,3,5-triaz<strong>in</strong>e Second <strong>derivative</strong> at 660 nm, on solid phase, <strong>in</strong><br />

water<br />

[82]<br />

Fe 1,2-Dihydroxybenzene-3,5-disulfonic acid<br />

Eighth <strong>derivative</strong>, separation and preconcentration<br />

[83]<br />

(Tiron)<br />

on an adsorbent<br />

tetradecyldimethylbenzylammonium chloride on<br />

naphthalene as a slurry or packed <strong>in</strong> a column, <strong>in</strong><br />

standard alloys and biological samples<br />

Fe, Mo Mor<strong>in</strong> First <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g method, <strong>in</strong> the<br />

presence of a cationic surfactant, 0.9–1.5 and<br />

0.3–4.2 mg ml−1 , respectively, <strong>in</strong> Co/Cr and Ni/Cr<br />

alloys<br />

[84]<br />

Fe, Mo, Fe, V Cyclic hydroxamic acid Extraction with MIBK, comparison of <strong>derivative</strong><br />

and PLS(1 and 2) methods<br />

[85]<br />

Fe, Ni Xylenol orange and CTMAB First <strong>derivative</strong>, <strong>in</strong> Fe/Ni alloy plat<strong>in</strong>g layer [86]<br />

Fe, Ni 4-(2’-Benzothiazolylazo)salicylic acid<br />

First <strong>derivative</strong>, 2.1–8.4 and 0.59–7.08 g ml<br />

(BTAS)<br />

−1 ,<br />

[87]<br />

respectively, <strong>in</strong> steel alloys and alum<strong>in</strong>um alloys<br />

Fe, Ru 4,7-Diphenyl-1,10-phenanthrol<strong>in</strong>e Zero-cross<strong>in</strong>g approach, 9.6–450 and<br />

16.3–280 g l−1 , respectively, determ<strong>in</strong>ation of Fe<br />

and Ru <strong>in</strong> synthetic mixtures<br />

[88]<br />

Fe, V 2-Hydroxy-1-naphthaldehyde<br />

First <strong>derivative</strong> at 540 and 465 nm, 0.14–4.20 and<br />

benzoylhydrazone<br />

0.12–2.50 g ml−1 [89]<br />

, respectively, <strong>in</strong> natural samples,<br />

food and biological materials<br />

Ga, In PAN First <strong>derivative</strong> us<strong>in</strong>g the isodifferential po<strong>in</strong>ts at<br />

550 and 542 nm, 0.28–3.63 and 0.46–9.20 g ml−1 ,<br />

respectively<br />

[90]<br />

Ga, In 5-Br-PADAPl In cationic micellar medium, 0.023–0.700 and<br />

0.076–1.52 mg ml−1 , respectively, <strong>in</strong> synthetic<br />

b<strong>in</strong>ary mixtures, standard reference materials and<br />

environmental samples<br />

[91]<br />

Ge Phenylfluorone-cetylpyrid<strong>in</strong>ium chloride Second <strong>derivative</strong> peak area, 0–15 g ml−1 ,<strong>in</strong><br />

Ch<strong>in</strong>ese herbs<br />

[93]<br />

Hg, Pd 5-(3,4-Methoxyhydroxyphenylmethylene)-<br />

First <strong>derivative</strong> zero-cross<strong>in</strong>g technique, 0.4–1.4<br />

2-thioxo-1,3-thiazolid<strong>in</strong>e and<br />

cetyltrimethylammonium bromide<br />

and 0.08–1.8 mg ml−1 [94]<br />

, respectively<br />

Ge 2,6,7-Trihydroxysalicylflourone Fourth <strong>derivative</strong> by compress<strong>in</strong>g X-factor,<br />

0.0008–0.0040 g ml−1 , <strong>in</strong> geochemical samples<br />

[92]<br />

[68]<br />

[69]


Table 1 (Cont<strong>in</strong>ued )<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 7<br />

Elements Reagents Remarks Reference<br />

Ho 2-(Diphenylacetyl)<strong>in</strong>dan-1,3-dione and octylphenyl<br />

poly(ethyleneglycol)ether<br />

Second <strong>derivative</strong>, <strong>in</strong> rare earth mixtures [95]<br />

Ir 1-(2-Pyridylazo)-2-naphthol First <strong>derivative</strong>, preconcentration on<br />

microcrystall<strong>in</strong>e naphthalene, <strong>in</strong> synthetic samples<br />

correspond<strong>in</strong>g to various standard alloys and<br />

environmental samples<br />

[96]<br />

Ir 2-(2-Thiazolyazo)-5-dimethylam<strong>in</strong>ophenol (TAM) First <strong>derivative</strong>, Ir–TAM complex is reta<strong>in</strong>ed on the<br />

tetraphenylborate-naphthalene adsorbent packed <strong>in</strong><br />

a column, <strong>in</strong> synthetic samples and standard alloys<br />

[97]<br />

Ir, Rh 2-(5-Bromo-2-pyridylazo)-5-diethylam<strong>in</strong>ophenol<br />

Zero-cross<strong>in</strong>g approach, preconcentration onto<br />

[98]<br />

and tetraphenylborate<br />

microcrystall<strong>in</strong>e naphthalene, Rh and Ir are<br />

determ<strong>in</strong>ed <strong>in</strong> synthetic samples<br />

Mn 5-Br-PADAP Second <strong>derivative</strong> at 554 nm, <strong>in</strong> alum<strong>in</strong>um and its<br />

alloy<br />

[99]<br />

Mn 5-Br-PADAP-ammonium tetraphenylborate (TPB) Third <strong>derivative</strong>, separation and preconcentration<br />

with microcrystall<strong>in</strong>e naphthalene or by a column<br />

method<br />

[100]<br />

Mo Hydrogen peroxide At 376 nm, <strong>in</strong> U–Mo alloy [101]<br />

Mo, Zr Alizar<strong>in</strong> Red S First <strong>derivative</strong> at the zero-cross<strong>in</strong>g wavelengths at<br />

446.0 and 490.5 nm, 0.5–13.0 and 0.5–20.0 g ml−1 ,<br />

respectively<br />

[102]<br />

Nb, Ti Hydrogen peroxide and 5-Br-PADAP Fifth <strong>derivative</strong>, <strong>in</strong> standard steel and Buffalo<br />

River Sediment<br />

[103]<br />

Nd Bromopyrogallol red Fourth <strong>derivative</strong>, <strong>in</strong> the presence of TX-100, <strong>in</strong><br />

mixed rare earths<br />

[104]<br />

Nd Methyl Thymol Blue and cetylpyrid<strong>in</strong>ium chloride Fourth <strong>derivative</strong>, <strong>in</strong> mixed rare earths,<br />

0–3.5 g ml−1 [105]<br />

Nd Enoxac<strong>in</strong> and cetyltrimethylammonium bromide<br />

Second <strong>derivative</strong>, 1.2 × 10<br />

(CTMAB)<br />

−5 to 2.7 × 10−4 M,<br />

[106]<br />

<strong>in</strong> mixed rare earth oxides<br />

Ni Hydroxynaphthol blue First <strong>derivative</strong>, 21–800 ng ml−1 , <strong>in</strong> standard<br />

brasses<br />

[107]<br />

Ni 5-Br-PADAP First <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g method, <strong>in</strong> the<br />

presence of Triton X-100, <strong>in</strong> steels standards<br />

[108]<br />

Ni 2-(5-Bromo-2-pyridylazo)-5-phenol In alum<strong>in</strong>um and alum<strong>in</strong>um alloys [109]<br />

Ni, Pd 2-(2-Thiazolyazo)-5-dimethylam<strong>in</strong>obenzoic acid First <strong>derivative</strong>, 0.07–1.60 and 0.12–1.75 g ml−1 ,<br />

respectively<br />

[110]<br />

Ni, Zn 2-(2-Pyridylmethyleneam<strong>in</strong>o)phenol First <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g technique,<br />

0.3–3.0 and 1.0–6.0 g ml−1 , respectively, <strong>in</strong> a real<br />

bronze sample<br />

[111]<br />

Os Thiourea Second <strong>derivative</strong> at 605 nm, <strong>in</strong> standard plasma<br />

(ICP and MIP) solutions of noble metals<br />

[112]<br />

Os, Ru – Third <strong>derivative</strong>, <strong>in</strong> hydrochloric acid [113]<br />

Pb Meso-tetra-(3,5-dibromo-4-hydroxyphenyl)porphyr<strong>in</strong><br />

Second <strong>derivative</strong>, <strong>in</strong> cl<strong>in</strong>ical samples [114]<br />

Pd Pyridopyridaz<strong>in</strong>e dithione (PPD) Fourth <strong>derivative</strong>, <strong>in</strong> the presence of non-ionic<br />

surfactant, <strong>in</strong> activated charcoal<br />

[115]<br />

Pd 1-(2-Pyridylazo)-2-naphthol support on naphthalene First <strong>derivative</strong>, column preconcentration, Pd is<br />

determ<strong>in</strong>ed <strong>in</strong> alloys and biological materials<br />

[116]<br />

Pd Disodium-1-nitroso-2-naphthol-3,6-disulfonate and Third <strong>derivative</strong>, on microcrystall<strong>in</strong>e naphthalene,<br />

tetradecyldimethylbenzylammonium chloride<br />

0.4–37 g ml−1 [117]<br />

Pd, Rh 5-(3,4-Methoxyhydroxybenzylidene)rhodam<strong>in</strong>e Fourth <strong>derivative</strong>, cationic surfactants, <strong>in</strong> synthetic<br />

mixtures<br />

[118]<br />

Pd, Rh 5-(2,4-Dihydroxybenzylidene)rhodam<strong>in</strong>e First <strong>derivative</strong>, Pd and Rh <strong>in</strong> silicate rocks and<br />

Pd <strong>in</strong> a Pd-activated charcoal<br />

[119]<br />

Pd, Pt 3-(2’-Thiazolyazo)-2,6-diam<strong>in</strong>opyrid<strong>in</strong>e-(2,6-<br />

Second <strong>derivative</strong>, the zero-cross<strong>in</strong>g and the<br />

TADAP)<br />

graphic methods were used for Pt and Pd,<br />

respectively, 8.9 × 10−7 to 3.1 × 10−5 M for Pt<br />

and 4.6 × 10−7 to 6.8 × 10−5 [120]<br />

M for Pd<br />

Pd, Pt Iodide First and second <strong>derivative</strong> spectra for Pd and Pt,<br />

respectively, <strong>in</strong> a silver alloy<br />

[121]


8 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 1 (Cont<strong>in</strong>ued )<br />

Elements Reagents Remarks Reference<br />

Pd, Rh, Pt T<strong>in</strong>(II) chloride In aqueous solutions or after extraction <strong>in</strong>to<br />

1,2-dichloroethane <strong>in</strong> the form of the ion-associates<br />

Rh(Pd, Pt)–SnCl3–diantipirylmethane (DAM)<br />

[122]<br />

Pd, Zn PAR As a tool for determ<strong>in</strong>ation of stability constants<br />

of Zn–PAR and Pd–PAR complexes<br />

[123]<br />

Pr Norfloxac<strong>in</strong> Second <strong>derivative</strong>, determ<strong>in</strong>ation of Pr <strong>in</strong> mixed<br />

rare earths<br />

[124]<br />

Pr Lomefloxac<strong>in</strong> Second <strong>derivative</strong>, 3.5–65 g ml−1 , <strong>in</strong> mixed rare<br />

earths<br />

[125]<br />

Pr Ciprofloxac<strong>in</strong> Third <strong>derivative</strong>, <strong>in</strong> mixtures of rare earths [126]<br />

Pt Iodide Fourth <strong>derivative</strong>, <strong>in</strong> Pt–Ru/C catalyst [127]<br />

Pt, Ru SnCl3-ligands(t<strong>in</strong>(II) chloride <strong>in</strong> HCl) First <strong>derivative</strong> at 377 nm (zero-cross<strong>in</strong>g po<strong>in</strong>t of<br />

Ru) and second <strong>derivative</strong> at 495 nm (zero<br />

cross<strong>in</strong>g po<strong>in</strong>t of Pt), Pt and Ru are determ<strong>in</strong>ed <strong>in</strong><br />

Pt–Ru/C catalyst<br />

[128]<br />

Pu, U – First <strong>derivative</strong> of the ratios of their direct<br />

<strong>absorption</strong> spectra at 473.8 and 411.2 nm, 0.5–2 and<br />

10–25 mg g−1 , respectively, <strong>in</strong> 1 M HNO3 medium<br />

[129]<br />

Pu, U – First <strong>derivative</strong> of the ratios of spectra at 473.8<br />

and 411.2 nm, respectively<br />

[130]<br />

Pu, U Arsenazo III First <strong>derivative</strong> at 632 nm for U and at 606.5 nm<br />

for Pu, U and Pu are measured <strong>in</strong> the same<br />

aliquot <strong>in</strong> fairly high burn-up fuels<br />

[131]<br />

Rh PAN First <strong>derivative</strong>, preconcentration of its complex<br />

on microcrystall<strong>in</strong>e naphthalene, determ<strong>in</strong>ation of<br />

Rh <strong>in</strong> synthetic samples<br />

[132]<br />

Rh 5-Br-PADAP and tetraphenylborate Third <strong>derivative</strong>, preconcentration on<br />

microcrystall<strong>in</strong>e naphthalene, determ<strong>in</strong>ation of Rh<br />

<strong>in</strong> synthetic samples and alloys<br />

[133]<br />

Rh 2-(2-Thiazolyazo)-5-dimethylam<strong>in</strong>obenzoic<br />

Third <strong>derivative</strong>, Triton X-100 as surfactant,<br />

acid (TAMB)<br />

0.03–0.4 g ml−1 [134]<br />

Rh, Ru Octadecyldithiocarbamate First <strong>derivative</strong>, 1.0–10.0 and 0.5–6.0 g ml−1 ,<br />

respectively<br />

[135]<br />

Sc 1-(2-Thiazolyazo)-2-naphthol Second <strong>derivative</strong>, column preconcentration onto<br />

tetraphenylborate–naphthalene adsorbent,<br />

0.08–2.8 g ml−1 , <strong>in</strong> standard biological and<br />

synthetic samples<br />

[136]<br />

Sm Arsenazo III Second <strong>derivative</strong> at 655 and 677 nm, <strong>in</strong> Ni/Fe<br />

alloy electroplat<strong>in</strong>g<br />

[137]<br />

Th 2,4-Dihydroxybenzaldehyde isonocot<strong>in</strong>oyl<br />

hydrazone (2,4-DHBINH)<br />

First <strong>derivative</strong>, 0.30–7.00 g ml−1 [138]<br />

Ti 2,4-Dihydroxybenzaldehyde isonicot<strong>in</strong>oyl<br />

hydrazone<br />

First <strong>derivative</strong>, <strong>in</strong> several alloy and steel samples [139]<br />

U – Second <strong>derivative</strong> at 408.2 nm, <strong>in</strong> magnesium<br />

diuranate (Yellow Cake)<br />

[140]<br />

U 1,4-Dihydroxy-9,10-anthracenedione Second <strong>derivative</strong>, <strong>in</strong> a cationic micellar medium [141]<br />

U, V PAR First <strong>derivative</strong> at 563 and 600 nm, 0.4–4.0 and<br />

4.0–16 g ml−1 , respectively, <strong>in</strong> the presence of<br />

cetylpyrid<strong>in</strong>ium chloride and EDTA, <strong>in</strong> synthetic<br />

matrices, river and sal<strong>in</strong>e water samples<br />

[142]<br />

V 5-Br-PADAP Second <strong>derivative</strong>, adsorptive extraction onto<br />

microcrystall<strong>in</strong>e benzophenone, <strong>in</strong> alloys and<br />

environmental samples<br />

[143]<br />

V 5-Br-PADAP and ammonium<br />

Third <strong>derivative</strong>, preconcentration with<br />

[144]<br />

tetraphenylborate<br />

microcrystall<strong>in</strong>e naphthalene or by column method<br />

W Thiocyanate Second <strong>derivative</strong>, determ<strong>in</strong>ation of W <strong>in</strong><br />

niobate-tantalates, t<strong>in</strong> slag samples, ores,<br />

concentrates and vanadium and molybdenum<br />

bear<strong>in</strong>g geological materials<br />

[145]<br />

Zn Meso-tetrakis(4-am<strong>in</strong>ophenyl)porphyr<strong>in</strong> Second <strong>derivative</strong>, <strong>in</strong> water [146]<br />

Zn Meso-tetra-(3,5-dibromo-4hydroxyphenyl)porphyr<strong>in</strong><br />

Second <strong>derivative</strong>, <strong>in</strong> serum [147]<br />

Zr 2,4-DHBINH First <strong>derivative</strong> [148]


3.2. Organic compounds<br />

Spectrophotometric methods of analysis have experienced<br />

a high evolution <strong>in</strong> the last 25 years and widely used as a tool<br />

for quantitative analysis, characterization and quality control<br />

<strong>in</strong> agricultural, pharmaceutical and biomedical fields.<br />

Derivative UV spectroscopy which is based on mathematical<br />

transformation of spectral curve <strong>in</strong>to <strong>derivative</strong> spectra<br />

elim<strong>in</strong>ates the <strong>in</strong>fluence of background or matrix and usually<br />

provides much better f<strong>in</strong>gerpr<strong>in</strong>ts than the traditional<br />

absorbency spectra. The focal po<strong>in</strong>t of applications <strong>in</strong> organics<br />

lies <strong>in</strong> aromatic am<strong>in</strong>o acids, prote<strong>in</strong>s such as enzymes,<br />

pharmaceuticals <strong>in</strong> various forms, and natural and synthetic<br />

pigments and dyestuffs.<br />

B<strong>in</strong>ary and ternary mixtures of organic compounds have<br />

been widely analyzed us<strong>in</strong>g DS. Although pharmaceutical<br />

formulations are the mixtures most frequently assayed, and<br />

are especially considered <strong>in</strong> the next section, other diverse<br />

mixtures as aromatic hydrocarbons, antioxidants, phenols,<br />

herbicides, etc., have been determ<strong>in</strong>ed with good results.<br />

For example, spectra of diverse <strong>derivative</strong>s of phenol overlap<br />

strongly <strong>in</strong> the whole analytical region and the direct<br />

application of spectrophotometry is impossible. DS allows<br />

separat<strong>in</strong>g these spectra and determ<strong>in</strong><strong>in</strong>g selected groups of<br />

phenols.<br />

A second <strong>derivative</strong> UV-Vis <strong>absorption</strong> method to follow<br />

k<strong>in</strong>etics of organic reactions, when two bands are strongly<br />

overlapped <strong>in</strong> the fundamental spectra, is described [149].<br />

Table 2 shows the diverse procedures described s<strong>in</strong>ce<br />

1994.<br />

3.3. Pharmaceutical analysis<br />

Compared with conventional spectrophotometric determ<strong>in</strong>ations,<br />

<strong>derivative</strong> spectrophometry has proved to be a great<br />

value <strong>in</strong> elim<strong>in</strong>at<strong>in</strong>g the <strong>in</strong>terference from excipients and coformulated<br />

drugs. The <strong>derivative</strong> spectrophotometry represents<br />

an elegant approach to the problem of resolv<strong>in</strong>g spectral<br />

overlap <strong>in</strong> pharmaceutical analysis. DS permits the simple,<br />

rapid, sensitive and direct determ<strong>in</strong>ation of mixtures of<br />

drugs hav<strong>in</strong>g closely overlapp<strong>in</strong>g spectra.<br />

In pharmaceutical application, <strong>derivative</strong> spectrophotometry<br />

has led to significant <strong>developments</strong> <strong>in</strong> the analysis of<br />

drugs <strong>in</strong> the presence of their degradation products or <strong>in</strong><br />

multi-component mixtures.<br />

The application of DS <strong>in</strong> pharmaceutical analysis has very<br />

important.<br />

The reaction of benzylpenicill<strong>in</strong> (I) with CrCl3 was studied<br />

by IR, DS and elemental analysis of the products. Elemental<br />

analysis at I/Cr 3+ ratios of 2:1, 3:1 and 3:2, <strong>in</strong>dicated<br />

3:2, or a multiple thereof, as the most likely <strong>in</strong>teraction ratio,<br />

spectroscopy <strong>in</strong>dicated that the product is likely a dimer,<br />

<strong>in</strong> which Cr 3+ has a pseudo-octahedral geometry [173].<br />

Second <strong>derivative</strong> was used for determ<strong>in</strong>ation of partition<br />

coefficients of chlorpromaz<strong>in</strong>e and promaz<strong>in</strong>e between<br />

lecith<strong>in</strong> bilayer vesicles and water [174], phenothiaz<strong>in</strong>e<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 9<br />

<strong>derivative</strong>s (chlorpromaz<strong>in</strong>e, triflupromaz<strong>in</strong>e, promaz<strong>in</strong>e,<br />

promethaz<strong>in</strong>e, trifluoperaz<strong>in</strong>e and prochlorperaz<strong>in</strong>e) between<br />

human erythrocyte ghost membranes and water<br />

[175], diazepam and flurazepam between phosphatidylchol<strong>in</strong>e<br />

bilayer vesicles and water [176], two nonsteroidal<br />

anti-<strong>in</strong>flammatory drugs (<strong>in</strong>domethac<strong>in</strong> and acemetac<strong>in</strong>)<br />

between Egg yolk phosphatidylchol<strong>in</strong>e multilamellar<br />

vesicles and water [177], chlordiazepoxide (benzodiazep<strong>in</strong>e),<br />

isoniazid and rifampic<strong>in</strong> (tuberculostatic drugs)<br />

and diuca<strong>in</strong>e (local anesthetic) between lipid bilayers of<br />

dimyristoyl-l-alpha-phosphatidylglycerol unilamellar liposomes<br />

and water [178] and phenothiaz<strong>in</strong>e drugs (trifluoperaz<strong>in</strong>e,<br />

triflupromaz<strong>in</strong>e, chlorpromaz<strong>in</strong>e and promaz<strong>in</strong>e)<br />

between phosphatidylchol<strong>in</strong>e small unilamellar vesicles and<br />

water [179].<br />

Second <strong>derivative</strong> spectrophotometric study on the <strong>in</strong>teractions<br />

of chlorpromaz<strong>in</strong>e and triflupromaz<strong>in</strong>e with bov<strong>in</strong>e<br />

serum album<strong>in</strong> was proposed [180].<br />

First <strong>derivative</strong> was used for the determ<strong>in</strong>ation of the degree<br />

of deacetylation of chitosan [181].<br />

K<strong>in</strong>etic study on the degradation of prazepam <strong>in</strong> acidic<br />

aqueous solutions by high-performance liquid chromatography<br />

and fourth <strong>derivative</strong> UV spectrophotometry was proposed<br />

and evaluated [182], and the study of the photochemical<br />

degradation of nisoldip<strong>in</strong>e was performed under daylight<br />

exposure by means of UV <strong>derivative</strong> [183].<br />

The isomer distribution of camptothec<strong>in</strong> was studied by<br />

first <strong>derivative</strong> ratio spectrum of UV–vis <strong>absorption</strong> and fluorescence<br />

spectrometry <strong>in</strong> different pH aqueous buffer solutions.<br />

It was found that camptothec<strong>in</strong> exists ma<strong>in</strong>ly <strong>in</strong> the<br />

opened-r<strong>in</strong>g form <strong>in</strong> physiological pH [184].<br />

A first <strong>derivative</strong> method was developed for the determ<strong>in</strong>ation<br />

of nifedip<strong>in</strong>e <strong>in</strong> oil/water/oil multiple microemulsions<br />

dur<strong>in</strong>g stability studies [185] and the stability study of<br />

a naphthoqu<strong>in</strong>one <strong>in</strong> cyclodextr<strong>in</strong> complexes by a validated<br />

second <strong>derivative</strong> method was developed and evaluated for<br />

the k<strong>in</strong>etic <strong>in</strong>vestigations [186].<br />

Because of a rapid development of microcomputer technology,<br />

DS became a practical analytical method <strong>in</strong> the<br />

general laboratory. The great <strong>in</strong>terest for this technique is<br />

due to the <strong>in</strong>creased resolution of the spectral bands, elim<strong>in</strong>ation<br />

of <strong>in</strong>terferences orig<strong>in</strong>at<strong>in</strong>g from sample turbidity<br />

and matrix background and the enhancement of spectral<br />

details. These characteristics led to wide DS application<br />

<strong>in</strong> biochemical, pharmaceutical, food and environmental<br />

analyses. However, less attention has been paid to the application<br />

of this method <strong>in</strong> the studies of chemical equilibria.<br />

Equilibrium transformations, especially acid–base ones,<br />

sometimes <strong>in</strong>volve m<strong>in</strong>or changes <strong>in</strong> their electronic spectra<br />

which makes it impossible to employ classical spectrophotometry<br />

for determ<strong>in</strong>ation of acidity constants. DS seems<br />

to be suitable for solv<strong>in</strong>g this problem. A general <strong>derivative</strong><br />

spectrophotometric method for determ<strong>in</strong>ation of acidity<br />

constants is developed. The method appears suitable <strong>in</strong><br />

cases when classical spectrophotometry cannot be employed<br />

due to little differences <strong>in</strong> the <strong>absorption</strong> spectra of conju-


10 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 2<br />

Determ<strong>in</strong>ation of organic compounds<br />

Compounds Remarks Reference<br />

Alkylphenol polyoxyethylene ether Second <strong>derivative</strong>, 25–700 g ml−1 , <strong>in</strong> DTY f<strong>in</strong>ish<strong>in</strong>g oil [150]<br />

Aromatic components: alkylbenzenes,<br />

Second <strong>derivative</strong>, the role of <strong>derivative</strong> spectroscopy <strong>in</strong> the analysis of aromatics [151]<br />

<strong>in</strong>dans, tetral<strong>in</strong>s and alkylnaphthalenes present <strong>in</strong> straight-run Kerosenes/ATF or reformed kerosenes is assessed<br />

Aromatic hydrocarbons Second <strong>derivative</strong>, <strong>in</strong> gas oils [152]<br />

Aromatic hydrocarbons BTEX <strong>in</strong> water [153]<br />

Aromatic hydrocarbons First and second <strong>derivative</strong> of transmission spectra, comb<strong>in</strong>ed with chemometric<br />

algorithms like PCR or PLS, <strong>in</strong> water<br />

[154,155]<br />

Natural hydrocarbon Calibration with fourth <strong>derivative</strong>, 4.4–230.4 g ml−1 , <strong>in</strong> CHCl3 [156]<br />

Barium benzene sulfonate Second <strong>derivative</strong>, <strong>in</strong> the presence of trace benzene <strong>in</strong> aqueous media [157]<br />

Fungicide ferbam<br />

Fourth <strong>derivative</strong> us<strong>in</strong>g 2,2<br />

[iron(III)dimethyldithiocarbamate]<br />

′ -bipyridyl complex <strong>in</strong> Triton X-100, 0.5–20 g ml−1 ,<strong>in</strong> [158]<br />

a commercial sample and <strong>in</strong> mixtures with various dithiocarbamates (ziram,<br />

z<strong>in</strong>eb, maneb, etc.) And from wheat gra<strong>in</strong>s<br />

Polynuclear aromatic hydrocarbons (PNA) Second <strong>derivative</strong>, several typical PNA, <strong>in</strong> diesel fuels, which are known<br />

precursors of carc<strong>in</strong>ogenic PNA <strong>in</strong> emissions<br />

[159]<br />

2-Mercaptobenzimidazole Second <strong>derivative</strong> at 304 nm and third <strong>derivative</strong> at 308 nm, <strong>in</strong> synthetic mixtures<br />

of polymer additives and <strong>in</strong> rubber samples<br />

[160]<br />

2-Mercaptobenzimidazole Second <strong>derivative</strong>, <strong>in</strong> ternary synthetic mixtures of rubber additives and <strong>in</strong> rubber<br />

samples<br />

[161]<br />

Novolac layers Th<strong>in</strong> solid layers of halophenol and cresol novolacs were <strong>in</strong>vestigated by UV<br />

<strong>derivative</strong><br />

[162]<br />

Parathion and p-nitrophenol First <strong>derivative</strong> at 253.0 and 273.1 nm, <strong>in</strong> vegetable tissues [163]<br />

Permethr<strong>in</strong> Second <strong>derivative</strong> at 279 nm, <strong>in</strong> shampoo [164]<br />

Phenols In water with back extraction—fourth <strong>derivative</strong>, 0–12 g ml−1 [165]<br />

Methyl- and chlorophenols After solid-phase extraction preconcentration [166]<br />

Phenols and herbicides Methyl- and chlorophenols (3-methylphenol, 2,3- and 3,4-dimethylphenol, 2,5-,<br />

2,6- and 3,4-dichlorophenol and 2,4,5-trichlorophenol) and triaz<strong>in</strong>e, uracil and<br />

urea herbicides (simaz<strong>in</strong>e, propaz<strong>in</strong>e, hexaz<strong>in</strong>one, bromacil and metoxuron) were<br />

exam<strong>in</strong>ed<br />

[167]<br />

Phenyl-beta-naphthylam<strong>in</strong>e Second and third <strong>derivative</strong>s, <strong>in</strong> rubber samples [168]<br />

-Diketones Normal or <strong>derivative</strong>, zero-cross<strong>in</strong>g po<strong>in</strong>t method, with 2,3-diam<strong>in</strong>onaphthalene<br />

as reagent of derivatization<br />

[169]<br />

Rubber antioxidant<br />

Third <strong>derivative</strong> for the elim<strong>in</strong>ation of the mutual <strong>in</strong>terferences of some additives [170]<br />

(phenyl-beta-naphthylam<strong>in</strong>e, PBN)<br />

<strong>in</strong> the PBN estimation<br />

Triaz<strong>in</strong>yl-2-pyrazol<strong>in</strong>es The effects of the substituents of the s-triaz<strong>in</strong>e cycle upon UV <strong>absorption</strong> [171]<br />

Undetonated explosives Characterization of some common undetonated explosives [172]<br />

gated acid–base pairs. Based on theoretical considerations,<br />

seven variants of the method have been established and<br />

their validity was checked, determ<strong>in</strong><strong>in</strong>g acidity constants of<br />

lorazepam and flurazepam as model compounds [187].<br />

Applications of <strong>derivative</strong> UV spectroscopy to the analysis<br />

of a representative set of drugs (baclofen, cimetid<strong>in</strong>e,<br />

cycloser<strong>in</strong>e, diethyltoluamide, clobetasol propionate, clobetasone<br />

butyrate and beclomethasone dipropionate) are<br />

described, the <strong>derivative</strong> technique presents significant advantages<br />

over the conventional <strong>absorption</strong> method [188].<br />

Specific procedures are summarized <strong>in</strong> Table 3.<br />

3.4. Analysis of biological compounds<br />

A dual-wavelength differential first <strong>derivative</strong> method was<br />

developed for identification and determ<strong>in</strong>ation of carbon<br />

monoxide generated from microsomal metabolism of xenobiotics<br />

<strong>in</strong> vitro. Four trihaloanil<strong>in</strong>es and one trihalobenzene<br />

were tested us<strong>in</strong>g this method, the results showed that only<br />

2,4,5-trifluoroanil<strong>in</strong>e could be converted to CO by the <strong>in</strong>cubation<br />

with rat hepatic microsomes, NADPH and oxygen.<br />

The ability of phenobarbital or dexamethasone to <strong>in</strong>duce rat<br />

hepatic microsomes to catalyze CO formation was 3–8 times<br />

higher than that of the control [382]. Procedures described<br />

s<strong>in</strong>ce 1994 are shown <strong>in</strong> Table 4.<br />

3.5. Food analysis<br />

Quality control of extra virg<strong>in</strong> olive oils: UV spectrophotometric<br />

analysis with first <strong>derivative</strong> absorbance spectra between<br />

230 and 280 nm of extra virg<strong>in</strong> olive oils was used to<br />

graphically present the oil residual shelf-life and conservation<br />

status [419] and alum<strong>in</strong>a cleanup: oxidized and ref<strong>in</strong>ed<br />

components [420].<br />

The effect of dietary oregano oil and alpha-tocopheryl<br />

acetate supplementation on iron-<strong>in</strong>duced lipid oxidation<br />

of turkey breast, thigh, liver and heart tissues and on the<br />

<strong>in</strong>hibition of lipid oxidation <strong>in</strong> long-term frozen stored<br />

chicken meat was exam<strong>in</strong>ed by third <strong>derivative</strong> spectrophotometry<br />

[421,422]. Procedures <strong>in</strong>volv<strong>in</strong>g the application<br />

of UV–vis <strong>derivative</strong> to food analysis are summarized <strong>in</strong><br />

Table 5.


Table 3<br />

Analysis of compounds <strong>in</strong> pharmaceutical formulations<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 11<br />

Compounds Remarks Reference<br />

Acebutolol HCl First <strong>derivative</strong> at 266.6 nm, <strong>in</strong> the presence of its acid-<strong>in</strong>duced<br />

degradation product, to <strong>in</strong>vestigate the k<strong>in</strong>etics of the acid<br />

degradation process at different temperatures<br />

[189]<br />

Acetylsalicylic acid Second <strong>derivative</strong> at 297 nm, 100–450 mg ml−1 , <strong>in</strong> effervescent<br />

tablets<br />

[190]<br />

Acyclovir diloxanide furoate Second and third <strong>derivative</strong>s, acyclovir <strong>in</strong> the presence of<br />

guan<strong>in</strong>e (its ma<strong>in</strong> impurity) and diloxanide furoate <strong>in</strong> the<br />

presence of diloxanide (its degradation product)<br />

[191]<br />

Alkaloids First <strong>derivative</strong>, <strong>in</strong> preparations of aconitum carmichaelii and<br />

aconitum kusnezoffii<br />

[192]<br />

Amphoteric<strong>in</strong> B Third <strong>derivative</strong>, <strong>in</strong> serum and ur<strong>in</strong>e [193]<br />

Anafranil Difference and difference first and second <strong>derivative</strong>s [194]<br />

Angiotens<strong>in</strong>-convert<strong>in</strong>g enzyme (ACE) <strong>in</strong>hibitors Ramipril (third), benazepril (second), enalapril maleate (second),<br />

lis<strong>in</strong>opril (first and second) and qu<strong>in</strong>april (first), <strong>in</strong><br />

pharmaceutical dosage forms<br />

[195]<br />

Anti-<strong>in</strong>flammatory drugs First <strong>derivative</strong> [196]<br />

Atorvastat<strong>in</strong> First <strong>derivative</strong> at 217.8 nm, 4.2–69.0 g ml−1 [197]<br />

Baical<strong>in</strong> Second <strong>derivative</strong> at 296 nm, <strong>in</strong> the Lang<strong>in</strong> oral liquid [198]<br />

Benzalkonium bromide Second <strong>derivative</strong> <strong>in</strong> dis<strong>in</strong>fection solutions, the peak to peak<br />

amplitude at 265 and 267 nm was taken for quantitative<br />

determ<strong>in</strong>ation<br />

[199]<br />

Benzenoid UV-absorb<strong>in</strong>g drugs Second, third and fourth <strong>derivative</strong>s, identification and<br />

differentiation between benzenoid UV-absorb<strong>in</strong>g drugs<br />

[200]<br />

Benzophenones Us<strong>in</strong>g the isodifferential approach [201]<br />

Bifonazole Second <strong>derivative</strong>, <strong>in</strong> the presence of methyl and<br />

propyl-hydroxybenzoate<br />

[202]<br />

Bucliz<strong>in</strong>e hydrochloride In bulk and tablets form [203]<br />

Butamyrate citrate First <strong>derivative</strong> at 253.6 nm, <strong>in</strong> cough syrups [204]<br />

Carb<strong>in</strong>oxam<strong>in</strong>e maleate Second <strong>derivative</strong> at 269 nm <strong>in</strong> the presence of pseudoephedr<strong>in</strong>e<br />

HCl <strong>in</strong> rh<strong>in</strong>ostop oral drops<br />

[205]<br />

Cefotaxime (triethylammonium salt) In a reaction mixture <strong>in</strong> the presence of the related compounds<br />

from synthesis, 0.005–0.080 mg ml−1 at 276.8 nm<br />

[206]<br />

Cephalex<strong>in</strong> First <strong>derivative</strong> at 254 nm, <strong>in</strong> oral suspensions conta<strong>in</strong><strong>in</strong>g<br />

potassium sorbate, 5–100 mg ml−1 [207]<br />

Cephalospor<strong>in</strong>es: cefadroxil (I), cephrad<strong>in</strong>e (II)<br />

and cefaclor (III)<br />

At 345 nm for I and II and at 334 nm for III us<strong>in</strong>g zero-order<br />

<strong>absorption</strong> curve, at 334 nm us<strong>in</strong>g first <strong>derivative</strong> spectrum for<br />

III, <strong>in</strong> the presence of degradation products<br />

Cetiriz<strong>in</strong>e dihydrochloride First and second <strong>derivative</strong> amplitudes at 239 (peak) and<br />

243–233 nm (peak-to-trough), respectively, <strong>in</strong> bulk and tablet<br />

form<br />

[209]<br />

Chlorpromaz<strong>in</strong>e hydrochloride Second <strong>derivative</strong>, use of <strong>in</strong>ternal standard method<br />

(1,10-phenanthrol<strong>in</strong>e), Savitzky-Golay algorithm was used for<br />

separation signals<br />

[210]<br />

C<strong>in</strong>choca<strong>in</strong>e hydrochloride First <strong>derivative</strong>, <strong>in</strong> the presence of its acid-<strong>in</strong>duced degradation<br />

product<br />

[211]<br />

Ciprofloxac<strong>in</strong> Direct estimation <strong>in</strong> liposomes [212]<br />

Cisapride First <strong>derivative</strong> at 264, 300 nm and second <strong>derivative</strong> at 276,<br />

290 and 276–290 nm<br />

[213]<br />

Clobut<strong>in</strong>ol First and second <strong>derivative</strong>s at 277 and 275 nm [214]<br />

Clozap<strong>in</strong>e First <strong>derivative</strong>, 5–50 g ml−1 [215]<br />

Cyclofenil Second <strong>derivative</strong>, <strong>in</strong> the presence of its acid-<strong>in</strong>duced<br />

degradation product<br />

[216]<br />

Diclofenac sodium (degradation products) Second <strong>derivative</strong> at 260 and 265 nm for ox<strong>in</strong>dol, <strong>in</strong> gel-o<strong>in</strong>tment [217]<br />

Droperidol First <strong>derivative</strong> at 255.2 nm, <strong>in</strong> the presence of parabens [218]<br />

Fleroxac<strong>in</strong> First, second, third and fourth <strong>derivative</strong>s us<strong>in</strong>g peak–zero and<br />

peak–peak methods<br />

[219]<br />

Fluconazole Second <strong>derivative</strong> at 274 nm [220]<br />

Fluconazole First <strong>derivative</strong> at 271.6 nm, 126–462 g ml−1 , <strong>in</strong> syrups [221]<br />

Fluoxet<strong>in</strong>e First <strong>derivative</strong>, 5–30 g ml−1 , for quality control of Prozac<br />

capsules<br />

[222]<br />

Folic acid First and second <strong>derivative</strong>s [223]<br />

Gentamyc<strong>in</strong> 78–313 g ml−1 [224]<br />

[208]


12 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 3 (Cont<strong>in</strong>ued )<br />

Compounds Remarks Reference<br />

Guanoxan sulfate First and second <strong>derivative</strong>s, <strong>in</strong> tablets, ur<strong>in</strong>e and serum [225]<br />

Houttuyn<strong>in</strong> sodium bisulfite First <strong>derivative</strong>, <strong>in</strong> compound cloprenal<strong>in</strong>e hydrochloride [226]<br />

Imidazole antimycotics Miconazole, clotrimazole, bifonazole and econazole were<br />

analyzed<br />

[227]<br />

Indapamide First and second <strong>derivative</strong>s at 252.8 and 260.4 nm [228]<br />

Ipratropium bromide First <strong>derivative</strong> at 254–268 nm [229]<br />

Irbesartan First <strong>derivative</strong> at 263 nm, alone and <strong>in</strong> the presence of<br />

hydrochlorothiazide<br />

[230]<br />

Isradip<strong>in</strong>e First <strong>derivative</strong> at 248 nm, <strong>in</strong> the presence of its degradation<br />

products, 5-35 mg ml−1 [231]<br />

Lansoprazole Second <strong>derivative</strong>, 0.5–25.0 g ml−1 [232]<br />

L<strong>in</strong>ezolid Two methods: (1) first <strong>derivative</strong> with zero-cross<strong>in</strong>g po<strong>in</strong>t and<br />

peak to base measurement at 251.4 nm, (2) first <strong>derivative</strong> of the<br />

ratio spectra at 263.6 nm<br />

[233]<br />

Loperamide hydrochloride Second <strong>derivative</strong>, <strong>in</strong> pharmaceutical formulations [234]<br />

Loperamide hydrochloride Second <strong>derivative</strong>, <strong>in</strong> pharmaceutical formulations [235]<br />

Losartan potassium First <strong>derivative</strong> at 234 nm, 4.00–6.00 g ml−1 [236]<br />

Melaton<strong>in</strong>e First <strong>derivative</strong>, 1.5–4.5 mg dl−1 [237]<br />

Metomidate Third <strong>derivative</strong>, <strong>in</strong> the zero-cross<strong>in</strong>g po<strong>in</strong>t [238]<br />

Midazolam Second <strong>derivative</strong> at 222 nm, <strong>in</strong> the presence of maleic acid [239]<br />

Mirtazap<strong>in</strong>e First and second <strong>derivative</strong>s, 2–100 and 1–120 g ml−1 ,<br />

respectively<br />

[240]<br />

Naproxen Second <strong>derivative</strong>, <strong>in</strong> the presence of its metabolite <strong>in</strong> human<br />

plasma<br />

[241]<br />

Nimesulide Partition and location <strong>in</strong> egg phosphatidylchol<strong>in</strong>e liposomes as<br />

cell membrane models<br />

[242]<br />

Nimodip<strong>in</strong>e and its photodegradation product Third <strong>derivative</strong>, evaluation of the photodegradation rate of the<br />

nimodip<strong>in</strong>e commercial specialties<br />

[243]<br />

Nitrofurans: nitrofuranto<strong>in</strong>, furazolidone or<br />

furaltadone<br />

First and second <strong>derivative</strong>s, <strong>in</strong> formulations and pig feed [244]<br />

Olanzap<strong>in</strong>e First <strong>derivative</strong> at 298 nm [245]<br />

Olanzap<strong>in</strong>e First <strong>derivative</strong> at 290.7 nm, 2.56 × 10−5 to 1.24 × 10−3 mol l−1 [246]<br />

Omeprazole Second <strong>derivative</strong>, 0.2–40.0 g ml−1 [247]<br />

Omeprazole First <strong>derivative</strong> at 313 nm, <strong>in</strong> aqueous solutions dur<strong>in</strong>g stability<br />

studies, 10–30 mg ml−1 [248]<br />

Paracetamol First <strong>derivative</strong>, <strong>in</strong> human blood serum [249]<br />

Pefloxac<strong>in</strong> Second <strong>derivative</strong>, <strong>in</strong> serum and pharmaceutical forms (tablets<br />

and ampoules)<br />

[250]<br />

Piroxicam First <strong>derivative</strong> at 261.4 nm, 2.4–20.0 g ml−1 ,<strong>in</strong>anew<br />

formulation (piroxicam-cyclodextr<strong>in</strong>)<br />

[251]<br />

Progesterone First <strong>derivative</strong>, <strong>in</strong> commercial formulations without estradiol [252]<br />

Pyridox<strong>in</strong>e hydrochloride First <strong>derivative</strong>, at the zero-cross<strong>in</strong>g wavelength at 306 nm for<br />

the oral solution and at 308 nm for <strong>in</strong>jection and capsules<br />

[253]<br />

4-Qu<strong>in</strong>olone antibacterials Third <strong>derivative</strong>, norfloxac<strong>in</strong>, ciprofloxac<strong>in</strong> and sparfloxac<strong>in</strong>, the<br />

method depends on the complexation of Cu(II), <strong>in</strong> formulations<br />

and spiked human plasma and ur<strong>in</strong>e<br />

[254]<br />

Reboxet<strong>in</strong>e First <strong>derivative</strong> at 285.1 nm, 8.0–40.0 g ml−1 [255]<br />

Resorc<strong>in</strong>ol Different <strong>derivative</strong> orders, <strong>in</strong> several types of pharmaceutical<br />

preparations<br />

[256]<br />

Romener Third <strong>derivative</strong>, k<strong>in</strong>etic <strong>in</strong>vestigation of Romener <strong>in</strong> solution [257]<br />

Sacchar<strong>in</strong> Second and fourth <strong>derivative</strong>s, us<strong>in</strong>g zero-peak and peak-peak<br />

methods<br />

[258]<br />

Salbutamol sulfate Second <strong>derivative</strong>, <strong>in</strong> the presence of sk<strong>in</strong> <strong>in</strong>terfer<strong>in</strong>g components [259]<br />

Salicylic acid Second <strong>derivative</strong>, <strong>in</strong> aspir<strong>in</strong> or antipyretic composites [260]<br />

Secnidazole First <strong>derivative</strong> at 296 nm, <strong>in</strong> the presence of its degradation<br />

products, 4–30 g ml−1 [261]<br />

Simvastat<strong>in</strong> Second <strong>derivative</strong> zero-cross<strong>in</strong>g technique at 243 nm [262]<br />

Sumatriptan succ<strong>in</strong>ate Three methods: first and second <strong>derivative</strong>s at 234 and 238 nm,<br />

respectively, and first <strong>derivative</strong> of the ratio spectra at 235 nm<br />

[263]<br />

Sunscreens First <strong>derivative</strong>, <strong>in</strong> cosmetic formulations [264]<br />

Sunscreens First <strong>derivative</strong>, <strong>in</strong> emulsions for beach [265]<br />

Thiazide diuretics First <strong>derivative</strong>, us<strong>in</strong>g the zero-cross<strong>in</strong>g technique, <strong>in</strong> the<br />

presence of their photodecomposition products<br />

[266]


Table 3 (Cont<strong>in</strong>ued )<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 13<br />

Compounds Remarks Reference<br />

Thonzylam<strong>in</strong>e hydrochloride First <strong>derivative</strong> at 494 nm, 8–20 g ml−1 , <strong>in</strong> tablets and nasal drops [267]<br />

Timolol maleate First <strong>derivative</strong>, <strong>in</strong> ophthalmic solutions [268]<br />

Triamc<strong>in</strong>olone acetonide First <strong>derivative</strong> at 274 nm, <strong>in</strong> o<strong>in</strong>tment [269]<br />

Trifluoperaz<strong>in</strong>e hydrochloride First and second <strong>derivative</strong> amplitudes at the zero-cross<strong>in</strong>g po<strong>in</strong>t<br />

of its sulfoxide <strong>derivative</strong>, ma<strong>in</strong> degradation product<br />

[270]<br />

Trimebut<strong>in</strong>e maleate First <strong>derivative</strong> by measurement of the amplitude at 252.2 nm or<br />

first <strong>derivative</strong> of the ratio spectrophotometry by measurement<br />

of the amplitude at 282.4 nm, <strong>in</strong> the presence of its degradation<br />

products<br />

[271]<br />

Valsartan Second <strong>derivative</strong>, peak-to-peak amplitudes at 221.6 and 231.2 nm [272]<br />

Vitam<strong>in</strong> C Second and third <strong>derivative</strong>s, <strong>in</strong> microemulsions [273]<br />

Vitam<strong>in</strong> E First <strong>derivative</strong>, 3.75–37.50 mg ml−1 , <strong>in</strong> Theragran formulations [274]<br />

Yohimb<strong>in</strong>e HCl First and second <strong>derivative</strong>s [275]<br />

Acebutolol hydrochloride-nifedip<strong>in</strong>e First <strong>derivative</strong>, with peak-to-base and zero-cross<strong>in</strong>g<br />

measurements methods, at 352 and 400 nm, 44–132 and<br />

4–12 g ml−1 , respectively<br />

[276]<br />

Acetam<strong>in</strong>ophen-ascorbic acid-aspir<strong>in</strong> First <strong>derivative</strong>, <strong>in</strong> commercial tablets [277]<br />

Acetam<strong>in</strong>ophen-caffe<strong>in</strong>e-propylphenazone Fourth <strong>derivative</strong> at zero-cross<strong>in</strong>g wavelengths of 256.6, 263.2<br />

and 230.0 nm, respectively<br />

[278]<br />

Acetam<strong>in</strong>ophen-mephenoxalone First method: first <strong>derivative</strong>—differential at 252.6 and<br />

289.6 nm; second method: first <strong>derivative</strong> of the ratio spectra at<br />

288.9 and 233.5 nm<br />

[279]<br />

Acetam<strong>in</strong>ophen-phenprobamate Based on the compensation technique [280]<br />

Acetylsalicylic-ascorbic acid First <strong>derivative</strong> us<strong>in</strong>g the zero-cross<strong>in</strong>g method at 245 and<br />

256 nm, 6.6 × 10−6 to 1.5 × 10−4 and 3.4 × 10−6 to 2.0 ×<br />

10−4 mol l−1 , respectively<br />

[281]<br />

Acetylsalicylic acid; ascorbic acid; butylated<br />

hydroxyanisole; caffe<strong>in</strong>e; paracetamol;<br />

phenobarbital; promethaz<strong>in</strong>e, salicylamide;<br />

secobarbital<br />

Fourth <strong>derivative</strong>, zero-cross<strong>in</strong>g technique [282]<br />

Acetylsalicylic acid-dipyridamol; acetylsalicylic<br />

acid-glyc<strong>in</strong>e; betamethasone-salicylic acid;<br />

c<strong>in</strong>nariz<strong>in</strong>e-piracetam;<br />

hydrochlorothiazide-ramipril; mebever<strong>in</strong>e-sufiride<br />

First, second, third and fourth <strong>derivative</strong>s apply<strong>in</strong>g the<br />

zero-cross<strong>in</strong>g technique<br />

Acetylsalicylic-salicylic acid Second <strong>derivative</strong>, <strong>in</strong> aspir<strong>in</strong> delayed-release tablet formulations [284]<br />

Amiloride hydrochloride-hydrochlorothiazide First <strong>derivative</strong> of the ratio spectra at 302.5 and 285.7 nm,<br />

respectively<br />

[285]<br />

Amiloride hydrochloride(I)–methylclothiazide(II) Second <strong>derivative</strong>, for I the zero-cross<strong>in</strong>g technique was applied,<br />

but for II the peak amplitude had to be corrected<br />

[286]<br />

2-Am<strong>in</strong>opyrid<strong>in</strong>e-tenoxicam Second <strong>derivative</strong>, for confirm<strong>in</strong>g the purity of tenoxicam <strong>in</strong><br />

bulk and tablets<br />

[287]<br />

Amlodip<strong>in</strong>e—its pyrid<strong>in</strong>e photodegradation product Third <strong>derivative</strong>, the method could usefully be applied to rout<strong>in</strong>e<br />

quality control of pharmaceutical formulations conta<strong>in</strong><strong>in</strong>g<br />

amlodip<strong>in</strong>e<br />

[288]<br />

Amoxycill<strong>in</strong>-bromhex<strong>in</strong>e hydrochloride First <strong>derivative</strong> to elim<strong>in</strong>ate the spectral <strong>in</strong>terference from one<br />

of the two drugs, at 278.8 and 326.2 nm<br />

[289]<br />

Amoxycill<strong>in</strong>-clavulanic acid First at 257.9 and 280.3 nm and second <strong>derivative</strong> at 273 and<br />

285 nm, respectively<br />

[290]<br />

Analgetic mixtures Second <strong>derivative</strong>, paracetamol, propylphenazone and caffe<strong>in</strong>e <strong>in</strong><br />

Dalivon®<br />

[291]<br />

Antazol<strong>in</strong>e sulfate-naphazol<strong>in</strong>e nitrate First <strong>derivative</strong> us<strong>in</strong>g the zero-cross<strong>in</strong>g technique, l<strong>in</strong>ear up to<br />

34gml−1 at 247.5 nm and up to 22 g ml−1 at 276.5 nm,<br />

respectively<br />

[292]<br />

Antihypertensive drugs:<br />

Use of <strong>derivative</strong> and <strong>derivative</strong> compensation techniques to<br />

[293]<br />

alprenolol-hydrochlorothiazide;<br />

determ<strong>in</strong>e of a weakly absorb<strong>in</strong>g m<strong>in</strong>or component <strong>in</strong> the<br />

hydrochlorothiazide-ramipril;<br />

metoprolol-nifedip<strong>in</strong>e<br />

presence of a strongly absorb<strong>in</strong>g major component.<br />

Anti-<strong>in</strong>flammatory drugs:<br />

acemethac<strong>in</strong>–<strong>in</strong>domethac<strong>in</strong>–piroxicam–tenoxicam<br />

Second <strong>derivative</strong> and PLS model [294]<br />

Antispasmodic drugs: mebever<strong>in</strong>e<br />

hydrochloride-sulfiride; isopropamide<br />

iodide-trifluoperaz<strong>in</strong>e hydrochloride<br />

First and second <strong>derivative</strong>s, <strong>in</strong> commercial tablets [295]<br />

[283]


14 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 3 (Cont<strong>in</strong>ued )<br />

Compounds Remarks Reference<br />

Ascorbic acid-rut<strong>in</strong> First <strong>derivative</strong> at 258.8 and 337.4 nm, respectively [296]<br />

Ascorbic acid-sodium salicylate-thiam<strong>in</strong>e HCl First and second <strong>derivative</strong>s, zero-cross<strong>in</strong>g technique, <strong>in</strong><br />

visalicyl tablets<br />

[297]<br />

Aspir<strong>in</strong>-caffe<strong>in</strong>e-phenacet<strong>in</strong> Ratio spectrum <strong>derivative</strong>, <strong>in</strong> compound ACP tablet [298]<br />

Aspir<strong>in</strong>-caffe<strong>in</strong>e-phenacet<strong>in</strong> First <strong>derivative</strong> of ratio spectra and measurements of<br />

zero-cross<strong>in</strong>g method<br />

[299]<br />

Astemizole Astemizole-pseudoephedr<strong>in</strong>e<br />

Second <strong>derivative</strong>, 4.6–45.8 g ml<br />

hydrochloride<br />

−1 of astemizole; two methods:<br />

[300]<br />

first <strong>derivative</strong> <strong>in</strong> zero-cross<strong>in</strong>g po<strong>in</strong>ts and first <strong>derivative</strong> spectra<br />

of their ratio spectra<br />

Atenolol-nifedip<strong>in</strong>e First <strong>derivative</strong>, at 282 and 390 nm, 25–75, 10–30 g ml−1 ,<br />

respectively<br />

[301]<br />

Atenolol-amlodip<strong>in</strong>e; haloperidol-trihexyphenidyl Zero-cross<strong>in</strong>g po<strong>in</strong>t technique, <strong>in</strong> comb<strong>in</strong>ed tablet preparations [302]<br />

Benazepril hydrochloride-hydrochlorothiazide Second <strong>derivative</strong> at 253.6 and 282.6 nm, 14.80–33.80 and<br />

18.50–42.20 g ml−1 , respectively<br />

[303]<br />

Benox<strong>in</strong>ate hydrochloride-its degradation products First <strong>derivative</strong> amplitude at 268.4 and 272.4 nm for benox<strong>in</strong>ate<br />

<strong>in</strong> the presence of its alkali- and acid-<strong>in</strong>duced degradation<br />

products (first <strong>derivative</strong> amplitude at 307.5 nm), respectively,<br />

the methods were used to <strong>in</strong>vestigate the k<strong>in</strong>etics of the acidic<br />

and alkal<strong>in</strong>e degradation processes at different temperatures<br />

[304]<br />

Benzoca<strong>in</strong>e(I)–cetylpirid<strong>in</strong>ium chloride(II) First <strong>derivative</strong> at 231.40 and 310.00 nm for (I) and at<br />

220.70 nm for (II) us<strong>in</strong>g the zero-cross<strong>in</strong>g method, 10–25 and<br />

4–20 g ml−1 , respectively<br />

[305]<br />

Benzyl alcohol-diclofenac First and second <strong>derivative</strong>s, respectively, <strong>in</strong> <strong>in</strong>jectable<br />

formulations<br />

[306]<br />

Caffe<strong>in</strong>e-paracetamol First and second <strong>derivative</strong>s with a Turbo-Pascal computer<br />

program and Specord M-42, respectively, us<strong>in</strong>g the<br />

zero-cross<strong>in</strong>g technique<br />

[307]<br />

Carb<strong>in</strong>oxam<strong>in</strong>e maleate-phenylpropanolam<strong>in</strong>e<br />

First <strong>derivative</strong>, applied to the study of the k<strong>in</strong>etic dissolution of<br />

[308]<br />

hydrochloride<br />

pellets conta<strong>in</strong><strong>in</strong>g these compounds<br />

Cefradoxil-cefotaxime Ratio-spectra first and second <strong>derivative</strong>s and zero-cross<strong>in</strong>g<br />

second <strong>derivative</strong><br />

[309]<br />

Cefadroxil-cefuroxime First <strong>derivative</strong> at 267.3 and 292.5 nm, respectively, <strong>in</strong><br />

2–10 g ml−1 for each drug, determ<strong>in</strong>ation of dissolution rate for<br />

tablets and capsules conta<strong>in</strong><strong>in</strong>g each drug, the ur<strong>in</strong>ary excretion<br />

patterns as the cumulative excreted have been calculated for<br />

each drug<br />

[310]<br />

Cefoperazone-sulbactam First and second <strong>derivative</strong>s, <strong>in</strong> <strong>in</strong>jectable formulations [311]<br />

Cefsulod<strong>in</strong>-clavulanic acid First <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g technique, <strong>in</strong> physiological<br />

solutions used to prepare <strong>in</strong>travenous <strong>in</strong>fusions of these antibiotics<br />

[312]<br />

Cephalex<strong>in</strong>-probenecid In two component solid dosage form [313]<br />

Cephaloth<strong>in</strong>-clavulanic acid First <strong>derivative</strong> with a zero-cross<strong>in</strong>g technique [314]<br />

Cetrimonium bromide(I)–lidoca<strong>in</strong>e(II) Second <strong>derivative</strong>, II at 250 nm us<strong>in</strong>g the zero-cross<strong>in</strong>g<br />

technique, I by correction of the peak amplitude at 215 nm<br />

[315]<br />

Chlorpheniram<strong>in</strong>e maleate-phenylephr<strong>in</strong>e<br />

Differential-<strong>derivative</strong>, zero-cross<strong>in</strong>g first <strong>derivative</strong> and<br />

[316]<br />

hydrochloride<br />

absorbance ratio, <strong>in</strong> nasal drops<br />

Cilastat<strong>in</strong> sodium-imipenem First <strong>derivative</strong>, <strong>in</strong> Primax<strong>in</strong> [317]<br />

C<strong>in</strong>oxac<strong>in</strong>-oxol<strong>in</strong>ic acid First, second, third and fourth <strong>derivative</strong>s us<strong>in</strong>g peak-zero and<br />

peak-peak methods<br />

[318]<br />

C<strong>in</strong>nariz<strong>in</strong>e-domperidone 5–25 and 2.5–30 g ml−1 , respectively [319]<br />

Ciprofloxac<strong>in</strong>amide-N,N’-bishydroxymethylciprofloxac<strong>in</strong>amide<br />

Fourth <strong>derivative</strong>, <strong>in</strong> presence of ciprofloxac<strong>in</strong> [320]<br />

Clopamide-p<strong>in</strong>dolol First <strong>derivative</strong> with a zero-cross<strong>in</strong>g technique [321]<br />

Code<strong>in</strong>e-paracetamol First <strong>derivative</strong>, 4.3 × 10−5 to 1.0 × 10−3 , 6.1 × 10−5 to 1.6 ×<br />

10−3 mol l−1 , respectively<br />

[322]<br />

Cyproterone acetate-estradiol valerate First <strong>derivative</strong> of the ratio spectra [323]<br />

Chlordiazepoxide-cl<strong>in</strong>idium bromide First <strong>derivative</strong>, graphical method at 283.6 nm and zero-cross<strong>in</strong>g<br />

method at 220.8 nm, 0.740–12.0 and 0.983–21.62 mg l−1 ,<br />

respectively<br />

[324]<br />

Chlordiazepoxide-cl<strong>in</strong>idium bromide or<br />

pipenzolate bromide<br />

First <strong>derivative</strong>, <strong>in</strong> capsule and sugar-coated tablet [325]<br />

Chlorzoxazone-paracetamol Second <strong>derivative</strong> <strong>in</strong> s<strong>in</strong>gle, bulk mixtures and comb<strong>in</strong>ed dosage<br />

forms<br />

[326]<br />

Dapsone-pyrimetham<strong>in</strong>e First <strong>derivative</strong> by zero-cross<strong>in</strong>g method at 249.4 and 231.4 nm [327]


Table 3 (Cont<strong>in</strong>ued )<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 15<br />

Compounds Remarks Reference<br />

Dextropropoxyphene hydrochloride-ibuprofen First <strong>derivative</strong> at 222 and 232 nm, respectively, 0–20 mg ml−1 for both drugs<br />

[328]<br />

Diazepam-imipram<strong>in</strong>e hydrochloride Second <strong>derivative</strong>, 2–8 and 10–70: g ml−1 , respectively, applied<br />

to pure drug mixtures and commercial preparations<br />

[329]<br />

Diloxanide furoate-furazolidone-t<strong>in</strong>idazole Second <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g and ratio-compensation<br />

techniques, 7.5–15, 2.5–10, 5–20: g ml−1 , respectively<br />

[330]<br />

Diosm<strong>in</strong>-hesperid<strong>in</strong> Zero-order and first <strong>derivative</strong> for hesperid<strong>in</strong> at 290 nm, H-po<strong>in</strong>t<br />

standard addition method from 5 to 40 g ml−1 for hesperid<strong>in</strong> and<br />

diosm<strong>in</strong> <strong>in</strong> bulk powder mixture, Daflon 500 and Dioven tablets<br />

[331]<br />

Dipyrone-paracetamol First <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g technique, <strong>in</strong> commercial<br />

tablets<br />

[332]<br />

Dipyrone-pitophenone hydrochloride Zero-cross<strong>in</strong>g second and third <strong>derivative</strong>s and by ratio-spectra<br />

first and second <strong>derivative</strong>s<br />

[333]<br />

Dithiocarbamate and thiuram disulfide fungicides Second <strong>derivative</strong> [334]<br />

Enoxac<strong>in</strong>-nalidixic acid First, second, third and fourth <strong>derivative</strong>s us<strong>in</strong>g peak-zero and<br />

peak-peak, 2–12 g ml−1 [335]<br />

Erytros<strong>in</strong>e-sunset yellow First <strong>derivative</strong>, <strong>in</strong> a pharmaceutical syrup [336]<br />

Etofyll<strong>in</strong>e-salbutamol Third <strong>derivative</strong>, zero-cross<strong>in</strong>g technique at 303 and 233.8 nm,<br />

respectively<br />

[337]<br />

Flavonoids: Chrys<strong>in</strong>-quercet<strong>in</strong> First and second <strong>derivative</strong>s, 2-20 mg ml−1 for both drug [338]<br />

Fluvoxam<strong>in</strong>e maleate-paroxet<strong>in</strong>e hydrochloride First, second and third <strong>derivative</strong>s us<strong>in</strong>g “peak–peak” and<br />

“peak–zero” measurements<br />

[339]<br />

Fos<strong>in</strong>opril-hydrochlorothiazide Fourth <strong>derivative</strong> at zero-cross<strong>in</strong>g wavelengths of 217.7 and<br />

227.9 nm, respectively<br />

[340]<br />

Fos<strong>in</strong>opril-hydrochlorothiazide Three methods: (1) <strong>derivative</strong>—differential <strong>in</strong> first <strong>derivative</strong>, (2)<br />

first <strong>derivative</strong> of the ratio spectra and (3) absorbance ratio <strong>in</strong><br />

the zero-order spectra<br />

[341]<br />

Frusemide-spironolactone First <strong>derivative</strong>, <strong>in</strong> comb<strong>in</strong>ation drug formulations [342]<br />

Furazolidone-t<strong>in</strong>idazole First and second <strong>derivative</strong>s, <strong>in</strong> comb<strong>in</strong>ed tablet preparations [343]<br />

Guaiphenes<strong>in</strong>-terbutal<strong>in</strong>e sulfate Second <strong>derivative</strong> by us<strong>in</strong>g zero-cross<strong>in</strong>g [344]<br />

Hydrocortisone-Zn-bacitrac<strong>in</strong> In synthetic mixtures of these compounds <strong>in</strong> different ratios [345]<br />

Hydrochlorothiazide-irbesartan Three methods: (1) compensation technique us<strong>in</strong>g ratios of the<br />

<strong>derivative</strong> maxima or the <strong>derivative</strong> m<strong>in</strong>imum, (2) first <strong>derivative</strong><br />

of the ratio spectra and (3) the absorbance ratio method <strong>in</strong> the<br />

zero-order spectra<br />

[346]<br />

Hydrochlorothiazide-irbesartan Second <strong>derivative</strong> at the zero-cross<strong>in</strong>g wavelengths at 232.7 and<br />

230.1 nm, 1.2–2.8 and 14.4–33.6 g ml−1 , respectively<br />

[347]<br />

Hydrochlorothiazide-losartan potassium Two methods: (1) the amplitudes <strong>in</strong> the first <strong>derivative</strong> of the<br />

ratio spectra at 230.423 and 238.360 nm, respectively and(2)<br />

based on compensation technique<br />

[348]<br />

Hydrochlorothiazide-losartan Fourth <strong>derivative</strong> [349]<br />

Hydrochlorothiazide-metoprolol or propranolol First and second <strong>derivative</strong>s, <strong>in</strong> comb<strong>in</strong>ed formulations [350]<br />

Hydrochlorothiazide-moexipril hydrochloride Second <strong>derivative</strong> with zero-cross<strong>in</strong>g measurements at 234 and<br />

215 nm, respectively<br />

[351]<br />

Hydrochlorothiazide-ramipril or spironolactone Vierordt’s method and ratio-spectra zero-cross<strong>in</strong>g <strong>derivative</strong> [352]<br />

Hydrochlorothiazide-triamterene Fourth and first <strong>derivative</strong>s, at 227 and 241 nm, respectively, <strong>in</strong><br />

comb<strong>in</strong>ed tablets<br />

[353]<br />

Hydrochlorothiazide-valsartan Two methods: (1) based on compensation technique and (2)<br />

differential first <strong>derivative</strong><br />

[354]<br />

Hyosc<strong>in</strong>e butylbromide-medazepam Second <strong>derivative</strong>, zero-cross<strong>in</strong>g amplitude at 212.5 and<br />

peak–trough amplitudes at 252.6 and 264.8 nm, respectively<br />

[355]<br />

Ibuprofen-pseudoephedr<strong>in</strong>e hydrochloride First <strong>derivative</strong> at 265 and 257 nm [356]<br />

Ibuprofen-loratad<strong>in</strong>e-pseudoephedr<strong>in</strong>e Second <strong>derivative</strong> zero-cross<strong>in</strong>g technique [357]<br />

Isoniazid-pyridox<strong>in</strong>e hydrochloride Derivative ratio (first <strong>derivative</strong> at 250.7 and 305.8 nm,<br />

respectively) and differential <strong>derivative</strong> methods<br />

[358]<br />

Isoniazid-rifampic<strong>in</strong> First <strong>derivative</strong> UV for isoniazid and Vis spectrophotometry for<br />

rifampic<strong>in</strong><br />

[359]<br />

Lamivud<strong>in</strong>e-zidovud<strong>in</strong>e First <strong>derivative</strong> and first <strong>derivative</strong> of the ratio-spectra [360]<br />

Leucovor<strong>in</strong>-methotrexate First <strong>derivative</strong>, <strong>in</strong> biological fluids [361]<br />

Loratid<strong>in</strong>e-montelukast Second <strong>derivative</strong> zero-cross<strong>in</strong>g technique at 276.1 nm for<br />

loratid<strong>in</strong>e and for montelukast peak amplitude at 359.7 nm<br />

[362]<br />

Mefenamic acid-paracetamol First <strong>derivative</strong>, 1.8 × 10−6 to 1.6 × 10−4 , 4.1 × 10−6 to 1.4 ×<br />

10−4 mol l−1 , respectively<br />

[363]


16 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 3 (Cont<strong>in</strong>ued )<br />

Compounds Remarks Reference<br />

Melaton<strong>in</strong>-pyridox<strong>in</strong>e Third and second <strong>derivative</strong> zero-cross<strong>in</strong>g technique over<br />

200–300 nm, respectively<br />

[364]<br />

Melaton<strong>in</strong>-pyridox<strong>in</strong>e First <strong>derivative</strong> of the ratio spectra method [365]<br />

Metronidazole-norfloxac<strong>in</strong> Fourth <strong>derivative</strong> at 294.6 and 313.2 nm, 0–40 and<br />

0–14 mg ml−1 , respectively<br />

[366]<br />

Naphazol<strong>in</strong>e nitrate-tetramethylthion<strong>in</strong>e base First <strong>derivative</strong> by zero-cross<strong>in</strong>g measurements at 257.2 and<br />

247.5 nm, respectively, <strong>in</strong> eye drops<br />

[367]<br />

Nicardip<strong>in</strong>e-its pyrid<strong>in</strong>e photodegradation products Fourth <strong>derivative</strong>, <strong>in</strong> bulk and <strong>in</strong> pharmaceutics, suitable for<br />

uniformity content anal. In pharmaceutical preparations and<br />

stability tests <strong>in</strong> rout<strong>in</strong>e control<br />

[368]<br />

Norfloxac<strong>in</strong>-t<strong>in</strong>idazole NF at 264.2 nm which is the zero-cross<strong>in</strong>g po<strong>in</strong>t on first<br />

<strong>derivative</strong> of TZ, TZ at 306.2 nm which is the zero-cross<strong>in</strong>g<br />

po<strong>in</strong>t of NF, 0–24 and 0–36 mg ml−1 , respectively<br />

[369]<br />

Omeprazole-pantoprazole First <strong>derivative</strong> apply<strong>in</strong>g zero-cross<strong>in</strong>g method for omeprazole,<br />

omeprazole sulfone, pantoprazole sodium salt and<br />

N-methylpantoprazole<br />

[370]<br />

Paracetamol-propacetamol First <strong>derivative</strong> zero-cross<strong>in</strong>g wavelength at 239 and 242 nm,<br />

respectively<br />

[371]<br />

Phenobarbitone-phenyto<strong>in</strong> sodium Second <strong>derivative</strong> at 244.8 and 252.8 nm, respectively,<br />

7.5–25 g ml−1 for both compounds, <strong>in</strong> comb<strong>in</strong>ed tablet<br />

preparations<br />

[372]<br />

Phenobarbitone with: Oxyphenonium bromide and<br />

meprobamate Paracetamol Acetylsalicylic acid<br />

First and second <strong>derivative</strong>s apply<strong>in</strong>g zero-cross<strong>in</strong>g technique [373]<br />

Piroxicam-major metabolite 5-hydroxypiroxicam First <strong>derivative</strong> zero-cross<strong>in</strong>g, at 343.5 and 332.5 nm, respectively,<br />

0.5–12.0 g ml−1 for both compounds, <strong>in</strong> human plasma<br />

[374]<br />

Piroxicam-major metabolite 5-hydroxypiroxicam First <strong>derivative</strong> at 337.0 and 327.0 nm (zero-cross<strong>in</strong>g wavelength),<br />

l<strong>in</strong>ear up to 10.0 and 8.0 g ml−1 , respectively, <strong>in</strong> human plasma<br />

[375]<br />

Proca<strong>in</strong>e hydrochloride-pyridox<strong>in</strong>e hydrochloride First and second <strong>derivative</strong>s, from sugar-coated tablets [376]<br />

Proca<strong>in</strong>e hydrochloride with: 4-Am<strong>in</strong>obenzoic<br />

acid Benzoic acid Pyridox<strong>in</strong>e hydrochloride<br />

Zero-cross<strong>in</strong>g technique [377]<br />

Pseudoephedr<strong>in</strong>e(I)-some histam<strong>in</strong>e H-1-receptor<br />

First <strong>derivative</strong> of the ratio spectrum, I-fexofenad<strong>in</strong>e, I-cetiriz<strong>in</strong>e<br />

[378]<br />

antagonist<br />

and I-loratad<strong>in</strong>e<br />

Salbutamol-related impurities First and second <strong>derivative</strong>s for salbutamol aldehyde,<br />

5-formylsaligen<strong>in</strong> and salbutamol ketone<br />

[379]<br />

Sulfadiaz<strong>in</strong>e-sulfamethoxazole-trimethoprim In multi-component sulfonamide reagent [380]<br />

Sulfamethoxazole-trimethoprim Second <strong>derivative</strong>, <strong>in</strong> the presence of<br />

hydroxypropyl-beta-cyclodextr<strong>in</strong><br />

[381]<br />

Table 4<br />

Biological analysis<br />

Compounds Remarks Reference<br />

Amniotic fluid First and second <strong>derivative</strong>s, evaluation of bilirub<strong>in</strong>, album<strong>in</strong> and oxyhb [383]<br />

Aromatic am<strong>in</strong>o acids Second <strong>derivative</strong>, the solvent accessibility of tyros<strong>in</strong>e and tryptophan<br />

residues <strong>in</strong> prote<strong>in</strong>s<br />

[384]<br />

Aromatic am<strong>in</strong>o acids First or second <strong>derivative</strong>s, of the ratios of the three aromatic am<strong>in</strong>o<br />

acid residues <strong>in</strong> peptides for a simple characterization of peptides<br />

[385]<br />

Aromatic am<strong>in</strong>o acids At prote<strong>in</strong> surface by size exclusion HPLC coupled with second <strong>derivative</strong> [386]<br />

Barbiturates In blood, liver and ur<strong>in</strong>e by solid-phase extraction and UV differential<br />

second <strong>derivative</strong><br />

[387]<br />

Carboplat<strong>in</strong> First <strong>derivative</strong>, the upper detection limit was 150 g ml−1 [388]<br />

Cerebrosp<strong>in</strong>al fluid ferrit<strong>in</strong> concentration First <strong>derivative</strong>, def<strong>in</strong>itive angiographic detection of subarachnoid<br />

hemorrhage compared with laboratory assessment of <strong>in</strong>tra-cranial bleed<br />

<strong>in</strong> computed tomography-negative patients<br />

[389]<br />

Conjugated dienes Second <strong>derivative</strong>, <strong>in</strong> lipid mixtures [390]<br />

Conjugated dienes Second <strong>derivative</strong>, <strong>in</strong> biological samples, e.g. cod-liver oil [391]<br />

Coumatetralyl and warfar<strong>in</strong> In blood samples by solid-phase extraction and subsequent UV-second<br />

<strong>derivative</strong><br />

[392]<br />

Coumatetralyl and warfar<strong>in</strong> In liver tissues by solid-phase extraction and subsequent UV-second<br />

<strong>derivative</strong><br />

[393]


Table 4 (Cont<strong>in</strong>ued )<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 17<br />

Compounds Remarks Reference<br />

Cyclomaltoheptaose (beta-cyclodextr<strong>in</strong>) and<br />

hydroxyethyl-substituted beta-cyclodextr<strong>in</strong><br />

Inclusion complex-formation with chlorogenic acid, first <strong>derivative</strong> [394]<br />

DDE (dichlorodiphenyldichloroethylene) Partition coefficients of DDE were determ<strong>in</strong>ed <strong>in</strong> synthetic and native<br />

membranes, as a function of temperature, lipid cha<strong>in</strong> length, cholesterol<br />

content and DDE concentration, by second <strong>derivative</strong><br />

[395]<br />

Enolase Second <strong>derivative</strong>, at high hydrostatic pressure: an approach to the study<br />

of macromolecular <strong>in</strong>teractions<br />

[396]<br />

Glutathione(l-gamma-glutamyl-l-cyste<strong>in</strong>ylglyc<strong>in</strong>e, Assay with GSH-400 method (Oxis International SA), second <strong>derivative</strong>, [397]<br />

GSH)<br />

<strong>in</strong> biological samples<br />

Hemorph<strong>in</strong>s Second <strong>derivative</strong>, from bov<strong>in</strong>e hemoglob<strong>in</strong> hydrolyzate [398]<br />

Human blood Optical properties of human blood as suspension of cells <strong>in</strong> aqueous<br />

solutions of electrolytes and non-electrolytes<br />

[399]<br />

Indendione rodenticides In liver by solid-phase extraction and second <strong>derivative</strong> UV [400]<br />

Indendione anticoagulant rodenticides In blood by solid-phase extraction on hydrophilic material and UV<br />

second <strong>derivative</strong><br />

[401]<br />

Lipid Second <strong>derivative</strong>, for direct measurement of lipid peroxidation <strong>in</strong><br />

oil-<strong>in</strong>-water emulsions us<strong>in</strong>g a multivariate calibration method (PLS)<br />

[402]<br />

Lipid Evaluation of lipid UV <strong>absorption</strong> as a parameter to measure lipid<br />

oxidation <strong>in</strong> dark chicken meat<br />

[403]<br />

Milk prote<strong>in</strong> Fourth <strong>derivative</strong>, milk prote<strong>in</strong> <strong>in</strong> general and case<strong>in</strong> content <strong>in</strong> particular [404]<br />

Peptides By am<strong>in</strong>o acids composition [405]<br />

Phenothiaz<strong>in</strong>e <strong>derivative</strong>s Second <strong>derivative</strong>, determ<strong>in</strong>ation of partition coefficients between human<br />

erythrocyte ghost membranes and water<br />

[406]<br />

Prote<strong>in</strong>s Second <strong>derivative</strong>, estimation of structure and conformational stability [407]<br />

Prote<strong>in</strong>s Second <strong>derivative</strong>, simultaneous determ<strong>in</strong>ation of fibr<strong>in</strong>ogen, human<br />

serum album<strong>in</strong> and gamma globul<strong>in</strong> <strong>in</strong> plasma<br />

[408]<br />

Prote<strong>in</strong>s Fourth <strong>derivative</strong>, under high pressure, I. Factors affect<strong>in</strong>g the fourth<br />

<strong>derivative</strong> Spectrum of the aromatic am<strong>in</strong>o acids<br />

[409]<br />

Prote<strong>in</strong>s Fourth <strong>derivative</strong>, under high pressure, II; application to reversible<br />

structural changes, adrenodox<strong>in</strong>, rnase A and methanol dehydrogenase<br />

[410]<br />

Prote<strong>in</strong>s Pressure <strong>in</strong>duced prote<strong>in</strong> structural changes as sensed by fourth <strong>derivative</strong> [411]<br />

Prote<strong>in</strong>s Derivative near-UV <strong>absorption</strong> techniques for <strong>in</strong>vestigat<strong>in</strong>g prote<strong>in</strong><br />

structure, a review with 31 refs.<br />

[412]<br />

Tryptophan and tyros<strong>in</strong>e Fourth <strong>derivative</strong>, <strong>in</strong> a variety of well-characterized prote<strong>in</strong>s and <strong>in</strong><br />

prote<strong>in</strong>s oxidized by N-bromosucc<strong>in</strong>imide<br />

[413]<br />

Tryptophan and tyros<strong>in</strong>e In soybean water soluble prote<strong>in</strong> by fourth <strong>derivative</strong> [414]<br />

Tryptophan, tyros<strong>in</strong>e and phenylalan<strong>in</strong>e Second <strong>derivative</strong> [415]<br />

Tyros<strong>in</strong>e Second <strong>derivative</strong>, 284.2 nm, study of ionization of tyros<strong>in</strong>e residues <strong>in</strong><br />

prote<strong>in</strong>s<br />

[416]<br />

Tyros<strong>in</strong>e Second <strong>derivative</strong>, for the determ<strong>in</strong>ation of the percentage of tyros<strong>in</strong>e<br />

residues that are exposed to solvent <strong>in</strong> rabbit MM-creat<strong>in</strong>e k<strong>in</strong>ase<br />

[417]<br />

Warfar<strong>in</strong> Second <strong>derivative</strong>, <strong>in</strong> human ur<strong>in</strong>e and plasma [418]<br />

3.6. Environmental analysis<br />

The applications of <strong>derivative</strong> UV/Vis spectroscopy <strong>in</strong> water<br />

analysis are summarized <strong>in</strong> a review with 23 references<br />

[444].<br />

Derivative spectrophotometry has been used for estimat<strong>in</strong>g<br />

the contents of polycyclic hydrocarbons <strong>in</strong> suspended<br />

solids and sediments of waters [445].<br />

The significant contribution of various pesticides to<br />

environmental pollution is of great concern. One of<br />

the most important analytical tasks is the determ<strong>in</strong>ation<br />

of these compounds, their residues and metabolites<br />

<strong>in</strong> environmental and cl<strong>in</strong>ical samples. The use of an<br />

<strong>in</strong>ternal standard is proposed for first <strong>derivative</strong> determ<strong>in</strong>ation<br />

of az<strong>in</strong>phos-methyl <strong>in</strong> commercial formulations<br />

[446].<br />

The rapid estimation method of available nitrogen <strong>in</strong><br />

paddy soil was exam<strong>in</strong>ed us<strong>in</strong>g the second <strong>derivative</strong> of the<br />

above spectra [447].<br />

UV <strong>derivative</strong> spectroscopy is <strong>in</strong>vestigated for its potential<br />

<strong>in</strong> on-l<strong>in</strong>e control of various processes. One typical application<br />

is emission monitor<strong>in</strong>g of several pollutants such<br />

SO2, NO, NO2, NH3 and aromatic hydrocarbons. The proposed<br />

method ga<strong>in</strong>s selectivity and sensitivity by us<strong>in</strong>g the<br />

first and second <strong>derivative</strong>s of the transmission spectrum<br />

with respect to wavelength. These <strong>derivative</strong>s are generated<br />

<strong>in</strong> an optical manner and are compared empirically for the<br />

first time with the known numerical DS and conventional<br />

transmission spectroscopy [448,449].<br />

F<strong>in</strong>ally, sodium dodecylbenzene sulfonate <strong>in</strong> environmental<br />

water can be determ<strong>in</strong>ated by <strong>derivative</strong> spectrophotometric<br />

method [450].


18 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

Table 5<br />

Food analysis<br />

Substances Type of sample Remarks Reference<br />

Amprolium<br />

Veter<strong>in</strong>ary premixes Second <strong>derivative</strong> at 279 nm for I and first [423]<br />

hydrochloride(I)–ethopabate(II)<br />

<strong>derivative</strong> at 315 nm for II<br />

Ascorbic acid Fruits and vegetables Third <strong>derivative</strong> peak–peak amplitude [424]<br />

Ascorbic acid Fruits, vegetables and fruit juices Second <strong>derivative</strong>, peak–basel<strong>in</strong>e amplitude<br />

at 267.5 nm<br />

[425]<br />

Azomic<strong>in</strong>e-ornidazole Eggs and poultry food First <strong>derivative</strong> zero-cross<strong>in</strong>g method [426]<br />

Caffe<strong>in</strong>e Some beverages Second <strong>derivative</strong> for cola, third <strong>derivative</strong><br />

for coffee and tea<br />

[427]<br />

Colorants Commercial food products First <strong>derivative</strong> us<strong>in</strong>g zero-cross<strong>in</strong>g and<br />

ratio spectra, Ponceau 4R-Carmois<strong>in</strong>e and<br />

Ponceau 4R-Amaranth<br />

[428]<br />

Colorants Commercial food products Tartraz<strong>in</strong>e, Amaranth and curcum<strong>in</strong> <strong>in</strong> a<br />

micellar medium<br />

[429]<br />

Colorants Various food samples Ponceau 4R and tartraz<strong>in</strong>e [430]<br />

Colorants Sugar candy samples First <strong>derivative</strong>, tartraz<strong>in</strong>e <strong>in</strong> the presence<br />

of amaranth or carmois<strong>in</strong>e<br />

[431]<br />

Colorants Sugar confectionery products First <strong>derivative</strong>, Ponceau 4R-Sunset Yellow<br />

and tartraz<strong>in</strong>e- Sunset Yellow<br />

[432]<br />

Colorants Gelat<strong>in</strong> flavor p<strong>in</strong>eapple; gelat<strong>in</strong> First <strong>derivative</strong> of the ratio spectra with<br />

[433]<br />

flavour tropical; creamy dessert measurements at zero-cross<strong>in</strong>g wavelengths,<br />

of vanilla<br />

Tartraz<strong>in</strong>e-Sunset Yellow-Ponceau 4R<br />

Colorants Gelat<strong>in</strong> desserts First <strong>derivative</strong>, Patent Blue V-Carmois<strong>in</strong>e [434]<br />

Colorants Instant fruit tea First <strong>derivative</strong>, Carmois<strong>in</strong>e-Ponceau 4R or<br />

Sunset Yellow<br />

[435]<br />

Colorants In pure form and tablets First <strong>derivative</strong>, Sunset Yellow-erythros<strong>in</strong>e [436]<br />

Colorants Various food samples Vierordt’s method and ratio spectra first<br />

<strong>derivative</strong>, Tartraz<strong>in</strong>e-Ponceau 4R<br />

[437]<br />

Colorants Food samples Vierordt’s method, ratio spectra first<br />

<strong>derivative</strong> and first <strong>derivative</strong>,<br />

Indigot<strong>in</strong>-Ponceau 4R<br />

[438]<br />

Dithiocarbamate Tomatoes Second <strong>derivative</strong>, dithiocarbamate<br />

fungicide residues as methyl xanthate,<br />

thiram on tomatoes<br />

[439]<br />

Dithiocarbamate Apple and lamb’s lettuce Second <strong>derivative</strong> dithiocarbamate<br />

fungicide residues as methyl xanthate,<br />

thiram on apple and lamb’s lettuce<br />

[440]<br />

Furfural and 5-(hydroxymethyl)-2- Locust bean extract First <strong>derivative</strong>, this compounds are useful [441]<br />

furaldehyde<br />

<strong>in</strong>dicators of accurate storage temperature<br />

of food samples<br />

Sacchar<strong>in</strong> Artificial sweeteners Second and fourth <strong>derivative</strong>s, <strong>in</strong> the<br />

presence of excipients and active <strong>in</strong>gredients<br />

[442]<br />

Whey prote<strong>in</strong> fraction mixed with<br />

Milk Assessment of heat treatment of milk: A<br />

[443]<br />

case<strong>in</strong><br />

proposal for a new <strong>in</strong>dex us<strong>in</strong>g UV<br />

<strong>derivative</strong><br />

4. Conclusions<br />

The range of application of <strong>derivative</strong> spectrophotmetry<br />

<strong>in</strong>creases regularly <strong>in</strong> the field of analysis. DS is a relatively<br />

modern technique which has proved to be very advantageous<br />

<strong>in</strong> solv<strong>in</strong>g particular analytical problems which normal<br />

spectroscopy is not able to solve. The advantages of the<br />

<strong>derivative</strong> UV-Vis spectroscopy <strong>in</strong> the quantitative analysis<br />

and the <strong>in</strong>terpretation of overlapp<strong>in</strong>g bands are well known.<br />

Both low noise level and relatively simplicity of the orig<strong>in</strong><br />

UV-Vis spectra lead to a popularity of their <strong>derivative</strong>s <strong>in</strong><br />

spite of the signal/noise level decrease. Practically, it is not<br />

a problem to obta<strong>in</strong> <strong>derivative</strong> spectra of any modern spectrophotometer.<br />

The development of chemometric methods and their application<br />

<strong>in</strong> analytical chemistry have significantly amplified<br />

the potential power of various spectral techniques. Thus, the<br />

precise and accurate quantification of two or more components<br />

whose <strong>absorption</strong> bands are partly overlapped is no<br />

longer a problem <strong>in</strong> modern spectrophotometry. Successful<br />

resolution of b<strong>in</strong>ary (or more than two components) mixtures<br />

has been obta<strong>in</strong>ed us<strong>in</strong>g full-spectrum chemometric algorithms<br />

based on factor analysis (PCR, PLS). These methods<br />

have been applied both to zero-order and <strong>derivative</strong> spectra,<br />

depend<strong>in</strong>g on the spectral properties of the components<br />

to be analyzed and on the type of <strong>in</strong>terferences occurr<strong>in</strong>g<br />

<strong>in</strong> the sample. If the components do not <strong>in</strong>teract chemically<br />

and their <strong>absorption</strong> spectra are not totally overlapped, satis-


factory resolution of the mixture can be obta<strong>in</strong>ed us<strong>in</strong>g first<br />

<strong>derivative</strong> spectra without resort<strong>in</strong>g to factor analysis.<br />

References<br />

[1] F. Sánchez Rojas, C. Bosch Ojeda, J.M. Cano Pavón, Talanta 35<br />

(1988) 753.<br />

[2] C. Bosch Ojeda, F. Sánchez Rojas, J.M. Cano Pavón, Talanta 42<br />

(1995) 1195.<br />

[3] A. Owen, <strong>in</strong>: A. Townsend (Ed.), Derivative Spectroscopy <strong>in</strong> Encyclopedia<br />

of Analytical Science, Academic Press, San Diego, CA,<br />

1995, pp. 5315–5321.<br />

[4] D. Mo, X.F. He, Y.Y. L<strong>in</strong>, Z.X. Yu, X. Zhang, G.Z. Zhou, Proc.<br />

Asia-Pacific Phys. Conf. 2 (1994) 2828.<br />

[5] E. Corton, G.A. Locascio, Bol. Soc. Quim. Peru 60 (1994) 210.<br />

[6] L. Antonov, S. Stoyanov, Spectrosc. Lett. 29 (1996) 231.<br />

[7] L. Antonov, S. Stoyanov, Anal. Chim. Acta 324 (1996) 77.<br />

[8] V. Petrov, L. Antonov, H. Ehara, N. Harada, Comput. Chem. 24<br />

(2000) 561.<br />

[9] V. Dumitrescu, M. Surmeian, C. Doneanu, S. Stanescu, Anal. Chim.<br />

Acta 333 (1996) 181.<br />

[10] I.G. Il<strong>in</strong>a, E.V. Ivanova, L.D. Ashk<strong>in</strong>adze, S.V. Zabaznova, K.P.<br />

But<strong>in</strong>, Russ. Chem. Bull. 45 (1996) 1128.<br />

[11] B.R. Ramachandran, A.M. Halpern, J. Chem. Educ. 75 (1998) 234.<br />

[12] X. Lu, H. Liu, M. Zhang, X. Wang, Z. Xue, J. Kang, Fenxi Huaxue<br />

31 (2003) 143.<br />

[13] F. Vogt, M. Tacke, Proc. SPIE Int. Soc. Opt. Eng. 3534 (1998) 243.<br />

[14] I. Panteri, M. Parissi-Poulou, Pharmakeutike 7 (1994) 158.<br />

[15] K. Kitamura, Bunseki 12 (1994) 991.<br />

[16] S. Kus, Z. Marczenko, N. Obarski, Chemia Analityczna 41 (1996)<br />

899.<br />

[17] L. Antonov, Anal. Chim. Acta 349 (1997) 295.<br />

[18] G.E. Arteaga, Y. Horimoto, E. Li-Chan, S. Nakai, J. Agric. Food<br />

Chem. 42 (1994) 1938.<br />

[19] T.G. Diaz, M.I.A. Valenzuela, F. Sal<strong>in</strong>as, Fresenius J. Anal. Chem.<br />

350 (1994) 692.<br />

[20] R.D. Bautista, A.I. Jiménez, F. Jiménez, J.J. Arias, Fresenius J.<br />

Anal. Chem. 357 (1997) 449.<br />

[21] M.E.M. Hassouna, Egypt. J. Chem. 42 (1999) 375.<br />

[22] E. D<strong>in</strong>c, O. Ustundag, J. Pharmaceut. Biomed. Anal. 29 (2002) 371.<br />

[23] C. Brown, L. Vega-Montoto, P. Wentzell, Appl. Spectrosc. 54 (2000)<br />

1055.<br />

[24] A. Yamamoto, A. Matsunaga, M. Ohto, E. Mizukami, K. Hayakawa,<br />

M. Miyazaki, Analyst 120 (1995) 377.<br />

[25] J. Dziuba, D. Nalecz, P. M<strong>in</strong>kiewicz, Anal. Chim. Acta 449 (2001)<br />

243.<br />

[26] J. Dziuba, M. Darewicz, P. M<strong>in</strong>kiewicz, T. Panfil, Milchwissenschaft<br />

57 (2002) 497.<br />

[27] A. Chisvert, A. Salvador, M.C. Pascual-Marti, Anal. Chim. Acta<br />

428 (2001) 183.<br />

[28] A.M. Galvez, J.V.G.G. Mateo, J. M: Calatayud, J. Pharmaceut.<br />

Biomed. Anal. 27 (2002) 1027.<br />

[29] L. Campanella, A.L. Magri, A. Sorbo, M. Tomassetti, J. Pharmaceut.<br />

Biomed. Anal. 29 (2002) 1135.<br />

[30] R. Lange, C. Balny, Biochim. Biophys. Acta 1595 (2002) 80.<br />

[31] K. Sassenscheid, U. Klocke, M. Tacke, H. Riedel, C. Marb,<br />

Gefahrstoffe-Re<strong>in</strong>haltung der Luft 58 (1998) 361.<br />

[32] S. Kartikeyan, T.P. Rao, C.S.P. Iyer, A.D. Damodaran, Mikrochim.<br />

Acta 113 (1994) 71.<br />

[33] E. Bobrowska-Grzesik, A. Grossman, Fresenius J. Anal. Chem. 357<br />

(1997) 1000.<br />

[34] R.M. Bolzan, R. Cueto, G.L. Squadrito, R.M. Uppu, W.A. Pryor,<br />

Meth. Enzymol. 301 (1999) 178.<br />

[35] J. Luo, P. Zhang, C. Guo, Z. Pan, Henan Huagong 4 (2000) 35.<br />

[36] M.A. Ferree, R.D. Shannon, Water Res. 35 (2001) 327.<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 19<br />

[37] R.E. Eckford, P.M. Fedorak, J. Microbiol. Meth. 50 (2002) 141.<br />

[38] A.Y. El-Sayed, Y.Z. Husse<strong>in</strong>, M.A. Mohammed, Analyst 126 (2001)<br />

1810.<br />

[39] N. Mateeva, L. Antonov, M. Miteva, S. Miteva, Talanta 43 (1996)<br />

275.<br />

[40] M.A. Taher, B.K. Puri, A.K. Malik, Croatica Chemica Acta 75<br />

(2002) 25.<br />

[41] A.A.Y. Elsayed, Bull. Chem. Soc. Jpn. 67 (1994) 3216.<br />

[42] S.L.C. Ferreira, N.O. Leite, A.F. Dantas, J.B. Deandrade, A.C.S.<br />

Costa, Talanta 41 (1994) 1631.<br />

[43] Z. Zhang, W. Liang, Shandong Daxue Xuebao Ziran Kexueban 31<br />

(1996) 202.<br />

[44] X. Zhu, R. Guo, Fenxi Huaxue 24 (1996) 1469.<br />

[45] X. Zhu, R. Guo, Guangpu Shiyanshi 14 (1997) 40.<br />

[46] L. Wang, Lihua Jianyan, Huaxue Fence 34 (1998) 353.<br />

[47] A.Y. Elsayed, Fresenius J. Anal. Chem. 355 (1996) 29.<br />

[48] T. Hiyama, S. Sugaya, T. Kageyama, K. Kamimura, Anal. Sci. 12<br />

(1996) 427.<br />

[49] V. Vojkovic, V. Druskovic, Croatica Chemica Acta 76 (2003) 87.<br />

[50] M.A. Taher, Quim. Anal. 20 (2001) 139.<br />

[51] A. Afkhami, A.R. Zarei, Anal. Sci. 19 (2003) 917.<br />

[52] X. Ma, Guagpu Shiyanshi 14 (1997) 90.<br />

[53] X. Xiao, R. Liu, S. Zhang, H. Shen, J. Yang, Y<strong>in</strong>gyong Huaxue<br />

12 (1995) 50.<br />

[54] S.L.C. Ferreira, D.S. Jesus, J. Braz. Chem. Soc. 7 (1996) 109.<br />

[55] H.B. S<strong>in</strong>gh, N.K. Agnihotri, V.K. S<strong>in</strong>gh, Talanta 48 (1999) 623.<br />

[56] M.A. Taher, Anal. Sci. 16 (2000) 501.<br />

[57] E. Vereda, A. Rios, M. Valcarcel, Analyst 122 (1997) 85.<br />

[58] Y. Zhang, Y. Liu, Q. Ni, Z. Song, Fenxi Ceshi Xuebao 15 (1996)<br />

60.<br />

[59] W.H. Ho, C.I. Chen, H.R. Chen, J. Ch<strong>in</strong>ese Chem. Soc. 42 (1995)<br />

51.<br />

[60] D.B. Ozturk, H. Filik, E. Tutem, R. Apak, Talanta 53 (2000) 263.<br />

[61] M. Y<strong>in</strong>g, X. Zhang, Ch. Jia, W. Xu, Huaxue Fence 34 (1998) 14.<br />

[62] A.Y. Elsayed, M Abdelmottaleb, Anal. Lett. 27 (1994) 1727.<br />

[63] Z. Grabaric, Z. Lazarevic, N. Koprivanac, Talanta 41 (1994) 2153.<br />

[64] M.I. Toral, P. Richter, B. Muñoz, Environ. Monit. Assess. 38 (1995)<br />

1.<br />

[65] N.K. Agnihotri, V.K. S<strong>in</strong>gh, H.B. S<strong>in</strong>gh, Talanta 45 (1997) 331.<br />

[66] M.A. Taher, J. Anal. Chem. 56 (2001) 149.<br />

[67] M.I. Toral, P. Richter, Anal. Lett. 28 (1995) 1083.<br />

[68] M.I. Toral, P. Richter, C. Rodriguez, Talanta 45 (1997) 147.<br />

[69] V.K. Reddy, S.M. Reddy, P.R. Reddy, T.S. Reddy, Chemia Analityczna<br />

46 (2001) 687.<br />

[70] L. Mathew, T.P. Rao, C.S.P. Iyer, A.D. Damodaran, Mikrochim.<br />

Acta 118 (1995) 249.<br />

[71] K.H. Reddy, K.B. Chandrasekhar, Indian J. Chem. 40 (2001) 727.<br />

[72] K.B. Chandrasekhar, K.H. Reddy, Indian J. Chem. 41 (2002) 1643.<br />

[73] V.K. Reddy, S.M. Reddy, P.R. Reddy, T.S. Reddy, J. Indian Chem.<br />

Soc. 79 (2002) 71.<br />

[74] Y. D<strong>in</strong>g, Q. Wu, Q. Ni, Zhongguo Kexue Jishu Daxue Xuebao 27<br />

(1997) 121.<br />

[75] N.X. Wang, J.H. Yang, H. Siu, P. Qi, Analyst 120 (1995) 2413.<br />

[76] N.X. Wang, L. Wang, W. Jiang, Y.Z. Ren, Z.K. Si, X.X. Qiu, G.Y.<br />

Du, P. Qi, Fresenius J. Anal. Chem. 361 (1998) 821.<br />

[77] N. Wang, L. Wang, X. Ren, W. Jiang, Z. Si, H. Zhou, M. Zhang,<br />

Y. Wang, Mikrochim. Acta 132 (1999) 17.<br />

[78] I. Mori, M. Toyoda, Y. Fujita, T. Matsuo, K. Taguchi, Talanta 41<br />

(1994) 251.<br />

[79] W. Liang, Z. Zhang, S. Zou, Fenxi Kexue Xuebao 13 (1997) 145.<br />

[80] X. Zhu, X. Zhang, R. Guo, Guangpuxue Yu Guangpu Fenxi 19<br />

(1999) 747.<br />

[81] G. Jiang, X. Wang, J. Yu, Y. Lu, Guangpu Shiyanshi 15 (1998) 32.<br />

[82] M.I. Toral, N. Lara, J. Gomez, P. Richter, Bol. Soc. Chilena Quim.<br />

46 (2001) 51.<br />

[83] M.A. Taher, Iranian J. Chem. 21 (2002) 28.<br />

[84] A.Y. Elsayed, M.M.H. Khalil, Talanta 43 (1996) 583.


20 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

[85] F. Sal<strong>in</strong>as, A. Esp<strong>in</strong>osa, P.L.L. DeAlba, Analusis 22 (1994) 188.<br />

[86] Z. Wang, X. Chen, Fenxi Huaxue 25 (1997) 740.<br />

[87] E.Y. Hashem, M.S. Abu-Bakr, S.M. Hussa<strong>in</strong>, Spectrochim. Acta A<br />

59 (2003) 761.<br />

[88] M.I. Toral, P. Richter, A.E. Tapia, J. Hernandez, Talanta 50 (1999)<br />

183.<br />

[89] V.K. Reddy, S.M. Reddy, A. Chennaiah, P.R. Reddy, T.S. Reddy,<br />

J. Anal. Chem. 58 (2003) 442.<br />

[90] V.K. S<strong>in</strong>g, N.K. Agnihotri, H.B. S<strong>in</strong>gh, R.L. Sharma, Talanta 55<br />

(2001) 799.<br />

[91] N.K. Agnihotri, S. Ratnani, V.K. S<strong>in</strong>gh, H.B. S<strong>in</strong>gh, Anal. Sci. 19<br />

(2003) 1297.<br />

[92] Q. Wu, Y. D<strong>in</strong>g, R. Qu, L. Cheng, Q. Ni, Fenxi Huaxue 23 (1995)<br />

1337.<br />

[93] H.M. Li, L.J. Lu, H. X<strong>in</strong>, Ch<strong>in</strong>ese J. Anal. Chem. 30 (2002) 1504.<br />

[94] A.Y. El-Sayed, Anal. Lett. 31 (1998) 1905.<br />

[95] N.X. Wang, W. Jiang, Z.K. Si, J.H. Yang, W.A. Liang, Mikrochim.<br />

Acta 126 (1997) 251.<br />

[96] M.A. Taher, S. Puri, R.K. Bansal, B.K. Puri, Talanta 45 (1997) 411.<br />

[97] A. Bhalotra, B.K. Puri, Annalii di Chimica 90 (2000) 265.<br />

[98] J.P. Pancras, B.K. Puri, Anal. Sci. 15 (1999) 575.<br />

[99] Y. Guo, S. Wang, P. Lu, Yej<strong>in</strong> Fenxi 20 (2000) 12.<br />

[100] M.A. Taher, Asian J. Chem. 14 (2002) 107.<br />

[101] M.K.T. Bassan, K.V. Iyer, M. Sudersanan, Indian J. Chem. Technol.<br />

10 (2003) 291.<br />

[102] A. Abbaspour, L. Baramakeh, Anal. Sci. 18 (2002) 1127.<br />

[103] M. Jarosz, S. Oszwaldowski, S. Kus, Analusis 22 (1994) 141.<br />

[104] N.X. Wang, L. Lan, Fresenius J. Anal. Chem. 350 (1994) 365.<br />

[105] N.X. Wang, P. Qi, K.Z. Jiang, Mikrochim. Acta 116 (1994) 191.<br />

[106] F. Yu, J. Wei, N.X. Wang, W.Y. Zhao, Ch<strong>in</strong>ese J. Anal. Chem. 31<br />

(2003) 31.<br />

[107] S.L.C. Ferreira, B.F. Santos, J.B. Andrade, A.C.S. Costa,<br />

Mikrochim. Acta 122 (1996) 109.<br />

[108] S.L.C. Ferreira, A.C. Sp<strong>in</strong>ola Costa, D.S. De Jesus, Talanta 43<br />

(1996) 1649.<br />

[109] P. Lu, L. Jianyan, Huaxue Fence 34 (1998) 22.<br />

[110] A. Bhalotra, B.K. Puri, Mikrochim. Acta 134 (2000) 139.<br />

[111] Z. Grabaric, Z. Lazarevic, N. Koprivanac, Analyst 119 (1994) 1099.<br />

[112] M. Balcerzak, E. Swiecicka, Chem. Anal. 43 (1998) 409.<br />

[113] M. Balcerzak, E. Swiecicka, Talanta 43 (1996) 471.<br />

[114] Z. Li, Z. Zhu, J. Tang, J. Pan, Analyst 124 (1999) 1227.<br />

[115] A.Y. El-Sayed, F.A. Abu-Shanab, Mikrochim. Acta 129 (1998) 225.<br />

[116] M.A. Taher, S. Puri, M.K. Gupta, B.K. Puri, Indian J. Chem.<br />

Technol. 5 (1998) 321.<br />

[117] M.A. Taher, Quim. Anal. 19 (2000) 143.<br />

[118] A.Y. E-lsayed, Mikrochim. Acta 117 (1995) 161.<br />

[119] A.Y. El-Sayed, Spectrosc. Lett. 35 (2002) 821.<br />

[120] M.I. Toral, P. Richter, N. Lara, M.T. Escudero, C. Soto, Anal. Lett.<br />

33 (2000) 93.<br />

[121] M. Balcerzak, K. Pergol, Chemia Analityczna 48 (2003) 87.<br />

[122] M. Balcerzak, D. Bystronska, E. Swiecicka, Chemia Analityczna<br />

46 (2001) 547.<br />

[123] J. Karp<strong>in</strong>ska, E. Hryniewicka, J. Trace Microprobe Techniques 21<br />

(2003) 443.<br />

[124] N.X. Wang, X.Z. Ren, C.B. Liu, Z.K. Si, W. Jiang, X.L. Liu, J.<br />

Indian Chem. Soc. 76 (1999) 465.<br />

[125] N.X. Wang, X.Z. Ren, Z.K. Si, W. Jiang, C.B. Liu, X.R. Liu,<br />

Talanta 51 (2000) 595.<br />

[126] W. Jiang, N.X. Wang, Q.J. Men, Z.K. Si, X.Q. Xu, F.X. Liu, B.<br />

Wu, Analyst 126 (2001) 1440.<br />

[127] M. Balcerzak, M. Kaczmarczyk, Anal. Sci. 17 (2001) 1321.<br />

[128] M. Balcerzak, E. Swiecicka, E. Balukiewicz, Talanta 48 (1999) 39.<br />

[129] G.R. Relan, A.N. Dubey, S. Vaidyanathan, J. Radioanal. Nucl.<br />

Chem. 204 (1996) 15.<br />

[130] G.R. Relan, A.N. Dubey, S. Vaidyanathan, Proc. Nucl. Radiochem.<br />

Symp. (1995) 355.<br />

[131] A.N. Dubey, G.R. Relan, S. Vaidyanathan, J. Radioanal. Nucl.<br />

Chem. 240 (1999) 741.<br />

[132] M.A. Taher, B.K. Puri, Ann. Chim. 89 (1999) 613.<br />

[133] M.A. Taher, Anal. Chim. Acta 382 (1999) 339.<br />

[134] A. Bhalotra, B.K. Puri, Quim. Anal. 19 (2000) 25.<br />

[135] K. Malathi, M. Subbaiyan, Talanta 42 (1995) 1487.<br />

[136] A. Bhalotra, B.K. Puri, Anal. Sci. 16 (2000) 507.<br />

[137] Y. Huang, Z. Wang, Xiamen Daxue Xuebao Ziran Kexueban 36<br />

(1997) 404.<br />

[138] S. Sivaramaiah, P.R. Reddy, V.K. Reddy, T.S. Reddy, J. Radioanal.<br />

Nucl. Chem. 245 (2000) 367.<br />

[139] O. Babaiah, C.K. Rao, T.S. Reddy, V.K. Reddy, Talanta 43 (1996)<br />

551.<br />

[140] G.R. Relan, A.N. Dubey, A.U. Bhanu, S. Vaidyanathan, J. Radioanal.<br />

Nucl. Chem. 182 (1994) 437.<br />

[141] N.K. Agnihotri, V.K. S<strong>in</strong>gh, H.B. S<strong>in</strong>gh, Analyst 120 (1995) 1809.<br />

[142] M.N. Abbas, A.M. Homoda, G.A.E. Mostafa, Anal. Chim. Acta<br />

436 (2001) 223.<br />

[143] J.P. Pancras, B.K. Puri, Indian J. Chem. 39 (2000) 672.<br />

[144] M.A. Taher, Ch<strong>in</strong>ese J. Chem. 20 (2002) 1584.<br />

[145] V. Padmasubash<strong>in</strong>i, M.K. Ganguly, K. Satyanarayana, R.K. Malhotra,<br />

Talanta 50 (1999) 669.<br />

[146] B. Liu, S. Zhao, Y. Song, Y. Hong, L. Bai, Fenxi Huaxue 26 (1998)<br />

1040.<br />

[147] J. Tang, Z. Li, L. Wang, W. Shen, J. Pan, Huaxue Fence 35 (1999)<br />

492.<br />

[148] S. Sivaramaiah, P.R. Reddy, V.K. Reddy, T.S. Reddy, Indian J.<br />

Chem. 42 (2003) 109.<br />

[149] M.I. Abasolo, D.G. Bekerman, G.A. Rodrigo, B.M. Fernandez,<br />

Anal. Asoc. Quim. Argent. 85 (1997) 9.<br />

[150] H. Li, W. Hu, Hecheng Xianwei Gongye 20 (1997) 56.<br />

[151] L. Dixit, S. Ram, Fuel 75 (1996) 466.<br />

[152] L. Dixit, R.B. Gupta, S. Ram, P. Kumar, Fuel Sci. Technol. Int. 12<br />

(1994) 171.<br />

[153] F. Vogt, M. Tacke, W. Bohmer, Spectrosc. Europe 11 (1999) 12.<br />

[154] F. Vogt, M. Tacke, M. Jakusch, B. Mizaikoff, Anal. Chim. Acta<br />

422 (2000) 187.<br />

[155] F. Vogt, M. Tacke, M. Jakusch, B. Mizaikoff, Anal. Chim. Acta<br />

431 (2001) 167.<br />

[156] J.V. Colan, E.O. Torres, M.L.C. Esparza, Bol. Soc. Quim. Peru 60<br />

(1994) 124.<br />

[157] K.S. Jauhri, K.G. Sharma, S. Ram, L. Dixit, Asian J. Spectrosc. 1<br />

(1997) 10.<br />

[158] A.K. Malik, S. Bansal, J.S. Aulakh, Anal. Bioanal. Chem. 375<br />

(2003) 1250.<br />

[159] S. Ram, I.D. S<strong>in</strong>gh, <strong>in</strong>: Proceed<strong>in</strong>gs of the International Symposium<br />

on Fuel and Lubricants, Second Symposium Papers, New Delhi,<br />

vol. 2, 2000, p. 671.<br />

[160] Z. Moldovan, L. Alexandrescu, Acta Chim. Slovenica 49 (2002)<br />

909.<br />

[161] Z. Moldovan, L. Alexandrescu, Revista de Chimie 53 (2002) 468.<br />

[162] M. Re<strong>in</strong>hardt, H.J. Lorkowski, Fresenius J. Anal. Chem. 349 (1994)<br />

254.<br />

[163] M.I. Toral, A. Beattie, C. Santibanez, P. Richter, Environ. Monit.<br />

Assess. 76 (2002) 263.<br />

[164] M. Kazemipour, E. Noroozian, M.S. Tehrani, M. Mahmoudian, J.<br />

Pharmaceut. Biomed. Anal. 30 (2002) 1379.<br />

[165] C. Yuan, G. Liu, C. Feng, L. Peng, Fenxi Huaxue 22 (1994) 1191.<br />

[166] I. Baranowska, C. Pieszko, Chem. Anal. 40 (1995) 649.<br />

[167] I. Baranowska, C. Pieszko, Analyst 125 (2000) 2335.<br />

[168] Z. Moldovan, L. Alexandrescu, Anal. Bioanal. Chem. 374 (2002)<br />

46.<br />

[169] M. Mariaud, M. Conti, P. Levilla<strong>in</strong>, Analusis 23 (1995) 87.<br />

[170] Z. Moldovan, L. Alexandrescu, Revue Rouma<strong>in</strong>e Chimie 48 (2003)<br />

279.<br />

[171] I. Prejmereanu, N. Carp, M. Vasilescu, L. Floru, I. Sebe, Revue<br />

Rouma<strong>in</strong>e Chimie 42 (1997) 461.


[172] M. Kaur, R. Kumar, R.M. Sharma, <strong>in</strong>: Proceed<strong>in</strong>gs of the 14th<br />

International Meet<strong>in</strong>g of Association of Forensic Science, vol. 4,<br />

1997, p. 228.<br />

[173] V. Aldea, V. Ulvarosi, N. Carp, S. Carp, Farmacia 47 (1999) 15.<br />

[174] K. Kitamura, N. Imayoshi, T. Goto, H. Shiro, T. Mano, Y. Nakai,<br />

Anal. Chim. Acta 304 (1995) 101.<br />

[175] K. Kitamura, T. Goto, T. Kitade, Talanta 46 (1998) 1433.<br />

[176] A.A. Omran, K. Kitamura, S. Takegami, A.A.Y. El-Sayed, A. Abdel-<br />

Mottaleb, J. Pharmaceut. Biomed. Anal. 25 (2001) 319.<br />

[177] B. Castro, P. Gameiro, J.L.F.C. Lima, C. Matos, S. Reis, Lipids 36<br />

(2001) 89.<br />

[178] C. Rodrigues, P. Gameiro, S. Reis, J.L.F.C. Lima, B. Castro, Biophys.<br />

Chem. 94 (2001) 97.<br />

[179] S. Takegami, K. Kitamura, T. Kitade, A. Kitagawa, K. Kawamura,<br />

Chem. Pharm. Bull. 51 (2003) 1056.<br />

[180] K. Kitamura, H. Mano, Y. Shimamoto, Y. Tadokoro, K. Tsuruta, S.<br />

Kitagawa, Fresenius J. Anal. Chem. 358 (1997) 509.<br />

[181] S.C. Tan, E. Khor, T.K. Tan, S.M. Wong, Talanta 45 (1998) 713.<br />

[182] H.A. Archontaki, I.E. Panderi, E.E. Gikas, M. Parissi-Poulou, J.<br />

Pharmaceut. Biomed. Anal. 17 (1998) 739.<br />

[183] V. Mar<strong>in</strong>kovic, D. Agbaba, K. Karljikovic-Rajic, J. Comor, D.<br />

Zivanov-Static, Farmaco 55 (2000) 128.<br />

[184] Y. Wei, H. Yan, X. Li, Xibei Daxue Xuebao Ziran Kexueban 30<br />

(2000) 307.<br />

[185] D. Castro, M.A. Moreno, J.L. Lastres, J. Pharmaceut. Biomed. Anal.<br />

26 (2001) 563.<br />

[186] M. L<strong>in</strong>ares, M.M. Bertorello, M. Longhi, STP Pharma Sci. 11<br />

(2001) 459.<br />

[187] G.V. Popovic, L.B. Pfendt, V.M. Moskovljevic, Talanta 55 (2001)<br />

363.<br />

[188] D. Bonazzi, R. Gotti, R. Gatti, V. Cavr<strong>in</strong>i, Farmaco 52 (1997) 193.<br />

[189] A. El-G<strong>in</strong>dy, A. Ashour, L. Abdel-Fattah, M.M. Shabana, J. Pharmaceut.<br />

Biomed. Anal. 24 (2001) 527.<br />

[190] E.R.M. Kedor-Hackmann, N.R.M. Vals, M.I.R.M. Santoro, Rev.<br />

Bras. Farm. 76 (1995) 100.<br />

[191] H.G. Daabees, Anal. Lett. 31 (1998) 1509.<br />

[192] P. Long, Y. Wang, Zhongcaoyao 27 (1996) 531.<br />

[193] N.A. Botsoglou, D.J. Fletouris, G.E. Papageorgiou, P. Florou-Paneri,<br />

A.J. Mantis, J. Pharm. Sci. 85 (1996) 402.<br />

[194] B. Morelli, Anal. Lett. 29 (1996) 1551.<br />

[195] D. Bonazzi, R. Gotti, V. Andrisano, V. Cavr<strong>in</strong>i, J. Pharmaceut.<br />

Biomed. Anal. 16 (1997) 431.<br />

[196] S.T. Hassib, N.M. Elsayed, F.A. Romeih, A.A. Elzaher, Anal. Lett.<br />

27 (1994) 887.<br />

[197] N. Erk, Anal. Lett. 36 (2003) 2699.<br />

[198] H. Lou, X. Cheng, H. Yuan, Y. Zao, M. Ji, Z. Li, J. Zhang,<br />

Zhongguo Zhongyao Zazhi 21 (1996) 97.<br />

[199] J. Sun, Y. Hua, Y. Yang, Zhongguo Yiyuan Yaoxue Zazhi 14 (1994)<br />

266.<br />

[200] I.I. Hewala, A.E.M. Wahbi, E.H. Hassan, Y.H. Husse<strong>in</strong>, Alexandria<br />

J. Pharmaceut. Sci. 10 (1996) 959.<br />

[201] A. Morales-Rubio, J.V. Julian-Ortiz, A. Salvador, M. De la Guardia,<br />

Microchem. J. 49 (1994) 12.<br />

[202] G. Popovic, M. Cakar, D. Agbaba, J. Pharmaceut. Biomed. Anal.<br />

33 (2003) 131.<br />

[203] A.F.M. Elwalily, A. Elg<strong>in</strong>dy, A.A.M. Wahbi, Spectrosc. Lett. 29<br />

(1996) 217.<br />

[204] E.T. Malliou, C.G. Antoniou, J.E. Koundourellis, Anal. Sci. 19<br />

(2003) 563.<br />

[205] F.M. Salama, O.I. Abd El-Sattar, N.M. El Abasawy, O.M. Abd<br />

Allah, Al-Azhar J. Pharmac. Sci. 24 (1999) 70.<br />

[206] L. Nuevas, L.R. Gonzalez, J.C. Rodriguez, J. Hoogmartens, J. Pharmaceut.<br />

Biomed. Anal. 18 (1998) 579.<br />

[207] S. Trajkovic-Jolevska, A. Dimitrovska, Anal. Lab. 7 (1998) 148.<br />

[208] L.I. Bebawy, K. Kelani, L.A. Fattah, Spectrosc. Lett. 30 (1997) 331.<br />

[209] A.F.M. Elwalily, M.A. Korany, A. Elg<strong>in</strong>dy, M.F. Bedair, J. Pharmaceut.<br />

Biomed. Anal. 17 (1998) 435.<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 21<br />

[210] J. Karp<strong>in</strong>ska, Anal. Lett. 33 (2000) 1555.<br />

[211] A. El-G<strong>in</strong>dy, M.A. Korany, M.F. Bedair, J. Pharmaceut. Biomed.<br />

Anal. 17 (1998) 1357.<br />

[212] A. Gursoy, B. Senyucel, J. Microencapsul. 14 (1997) 769.<br />

[213] E.M. Hassan, M.E.M. Hagga, H.I. Al Johar, J. Pharmaceut. Biomed.<br />

Anal. 24 (2001) 659.<br />

[214] E.T. Malliou, C.G. Antoniou, J.E. Koundourellis, Anal. Lett. 35<br />

(2002) 99.<br />

[215] M.A. Raggi, F. Bugamelli, G. Casamenti, G. Giovann<strong>in</strong>etti, V.<br />

Volterra, Pharmazie 53 (1998) 452.<br />

[216] E.M. Hassan, M.A. Elsayed, E.F. Khamis, STP Pharma Sci. 4<br />

(1994) 305.<br />

[217] I. Karamancheva, I. Dobrev, L. Brakalov, A. Andreeva, Anal. Lett.<br />

31 (1998) 117.<br />

[218] H. Trabelsi, F. Raouafi, M. Limam, K. Bouzouita, J. Pharmaceut.<br />

Biomed. Anal. 29 (2002) 239.<br />

[219] D. Kowalczuk, H. Hopkala, J. AOAC Int. 86 (2003) 229.<br />

[220] N.G. Goger, H.Y. Aboul-Ene<strong>in</strong>, Anal. Lett. 34 (2001) 2089.<br />

[221] H.Y. Aboul-Ene<strong>in</strong>, N.G. Goger, A. Turkalp, Anal. lett. 35 (2002)<br />

1193.<br />

[222] M.A. Raggi, F. Bugamelli, G. Casamenti, R. Mandrioli, D. De<br />

Ronchi, V. Volterra, J. Pharmaceut. Biomed. Anal. 18 (1998) 699.<br />

[223] V. Andrisano, M. Bartol<strong>in</strong>i, C. Bertucci, V. Cavr<strong>in</strong>i, B. Luppi, T.<br />

Cerchiara, J. Pharmaceut. Biomed. Anal. 32 (2003) 983.<br />

[224] X. He, Y. Zhao, D. Fu, Zhongguo Yiyuan Yaoxue Zashi 15 (1995)<br />

505.<br />

[225] A.A.K. Gazy, Spectrosc. Lett. 30 (1997) 1571.<br />

[226] J. Wang, K. Li, H. Dong, Zhongguo Yiyao Gongye Zazhi 26 (1995)<br />

402.<br />

[227] D. Bonazzi, V. Cavr<strong>in</strong>i, R. Gatti, E. Boselli, M. Caboni, J. Pharmaceut.<br />

Biomed. Anal. 18 (1998) 235.<br />

[228] I. Suslu, S. Alt<strong>in</strong>oz, J. Pharmaceut. Biomed. Anal. 30 (2002) 357.<br />

[229] E.M. Hassan, J. Pharmaceut. Biomed. Anal. 21 (2000) 1183.<br />

[230] I. Albero, V. Rodenas, S. Garcia, C. Sanchez-Pedreño, J. Pharmaceut.<br />

Biomed. Anal. 29 (2002) 299.<br />

[231] A.A. Moustafa, M.A. Elkawy, E.B. Elzeany, M.F.A. Elghany, Bull.<br />

Fac. Pharm. 37 (1999) 1.<br />

[232] N. Özaltín, J. Pharmaceut. Biomed. Anal. 20 (1999) 599.<br />

[233] L.I. Bebawy, Talanta 60 (2003) 945.<br />

[234] I.I. Hewala, J. Pharmaceut. Biomed. Anal. 13 (1995) 761.<br />

[235] I.I. Hewala, Pharmazie 50 (1995) 400.<br />

[236] O.C. Lastra, I.G. Lemus, H.J. Sanchez, R.F. Perez, J. Pharmaceut.<br />

Biomed. Anal. 33 (2003) 175.<br />

[237] R.F. Perez, I.G. Lemus, R.V. Bocic, M.V. Perez, R. Garcia-Madrid,<br />

J. AOAC Int. 84 (2001) 1352.<br />

[238] M. Surmeian, M. Lazarescu, G. Ciohodaru, V.V. Cosofret, Anal.<br />

Lett. 27 (1994) 2281.<br />

[239] L.B. Pfendt, G.V. Gordana, V.M. Stefanovic, M.B. Rajic, J. Servian<br />

Chem. Soc. 62 (1997) 687.<br />

[240] N. Karasen, S. Alt<strong>in</strong>oz, J. Pharmaceut. Biomed. Anal. 24 (2000) 11.<br />

[241] I. Panderi, M. Parissipoulou, Analyst 119 (1994) 697.<br />

[242] H. Ferreira, M. Lucio, B. De Castro, P. Gameiro, J.L.F.C. Lima, S.<br />

Reis, Anal. Bioanal. Chem. 377 (2003) 293.<br />

[243] G. Ragno, M. Veronico, C. Vetuschi, Int. J. Pharm. 119 (1995) 115.<br />

[244] T. Galeano Díaz, L. López Martínez, F. Sal<strong>in</strong>as, Analusis 22 (1994)<br />

202.<br />

[245] M.A. Raggi, G. Casamenti, R. Mandrioli, G. Izzo, E. Kenndler, J.<br />

Pharmaceut. Biomed. Anal. 23 (2000) 973.<br />

[246] I. Biryol, N. Erk, Anal. Lett. 36 (2003) 2497.<br />

[247] N. Ozalt<strong>in</strong>, A. Kocer, J. Pharmaceut. Biomed. Anal. 16 (1997) 337.<br />

[248] D. Castro, M.A. Moreno, S. Torrado, J.L. Lastres, J. Pharmaceut.<br />

Biomed. Anal. 21 (1999) 291.<br />

[249] P.C. Damiani, M.E. Ribone, A.C. Olivieri, Anal. Lett. 28 (1995)<br />

2219.<br />

[250] P. Djurdjevic, M. Jelilik-Stankov, Z. Milicevic, Mikrochim. Acta<br />

126 (1997) 203.


22 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

[251] H. Basan, N.G. Goger, N. Ertas, M.T. Orbey, J. Pharmaceut.<br />

Biomed. Anal. 26 (2001) 171.<br />

[252] V. Pucci, F. Bugamelli, R. Mandrioli, B. Luppi, M.A. Raggi, J.<br />

Pharmaceut. Biomed. Anal. 30 (2003) 1549.<br />

[253] V.O. Conssigliere, N.R.M. Vals, J.F. Magalhaes, Anal. Lett. 34<br />

(2001) 1875.<br />

[254] M. Rizzk, F. Belal, F. Ibrahim, S. Ahmed, Z.A. Sheribah, J. AOAC<br />

Int. 84 (2001) 368.<br />

[255] N. Erk, Anal. Lett. 36 (2003) 1183.<br />

[256] A. Salvador, G. Becerra, M. De la Guardia, M.A. Jaime, Ciencia<br />

3 (1995) 247.<br />

[257] M. Surmelan, G. Ciohodaru, S. Cilianu, World Meet<strong>in</strong>g on Pharmaceutics,<br />

Biopharmaceut. Pharmaceut. Technol. (1995) 945.<br />

[258] C.D. Vianna-Soares, J.L.S. Mart<strong>in</strong>s, Revista Brasileira de Ciencias<br />

Farmaceuticas 38 (2002) 471.<br />

[259] S.Y. L<strong>in</strong>, Y.Y. L<strong>in</strong>, Ch<strong>in</strong>ese Pharm. J. 50 (1998) 189.<br />

[260] M. Chen, P. Deng, Guangzhou Huagong 24 (1996) 26.<br />

[261] A.A. Moustafa, L.I. Bibawy, Spectrosc. Lett. 32 (1999) 1073.<br />

[262] L. Wang, M. Asgharnejad, J. Pharmaceut. Biomed. Anal. 21 (2000)<br />

1243.<br />

[263] L.I. Bebawy, A.A. Moustafa, N.F. Abo-Talib, J. Pharmaceut.<br />

Biomed. Anal. 32 (2003) 1123.<br />

[264] P. Michaud, P. Soto, T. Le Roy, F. Rodriguez, Int. J. Cosmetic Sci.<br />

16 (1994) 93.<br />

[265] D. Scurei, M. Oprea, Revista de Chimie 47 (1996) 564.<br />

[266] V. Ulvi, H. Keski-Hynnila, J. Pharmaceut. Biomed. Anal. 12 (1994)<br />

917.<br />

[267] S.M. Sabry, M.H. Abdel-Hay, M.H. Barary, T.S. Belal, J. Pharmaceut.<br />

Biomed. Anal. 22 (2000) 257.<br />

[268] M.I.R.M. Santoro, H.S. Cho, E.R.M. Kedor-Hackmann, Anal. Lett.<br />

29 (1996) 755.<br />

[269] E.R.M. Kedor-Hackmann, E.A.S. Gianotto, M.I.R.M. Santoro, Anal.<br />

Lett. 30 (1997) 1861.<br />

[270] A. El-G<strong>in</strong>dy, B. El-Zeany, T. Awad, M.M. Shabana, J. Pharmaceut.<br />

Biomed. Anal. 27 (2002) 9.<br />

[271] A. El-G<strong>in</strong>dy, S. Emara, G.M. Hadad, J. Pharmaceut. Biomed. Anal.<br />

33 (2003) 231.<br />

[272] S. Tatar, S. Saglik, J. Pharmaceut. Biomed. Anal. 30 (2002) 371.<br />

[273] Z. Zhang, B. Lu, X. Yang, Huaxi Yaoxue Zazhi 16 (2001) 46.<br />

[274] Y.W. Li, G.L. Chen, Zhongguo Yiyao Gongye Zazhi 31 (2000) 223.<br />

[275] N.S. El-Saer, Alexandria J. Pharm. Sci. 11 (1997) 5.<br />

[276] A.F.M. El Walily, J. Pharmaceut. Biomed. Anal. 16 (1997) 21.<br />

[277] H.N. Dogan, A. Duran, Pharmazie 53 (1998) 781.<br />

[278] M.U. Ozgur, G. Alpdogan, B. Asci, Monatshefte fur Chemie 133<br />

(2002) 219.<br />

[279] N. Erk, J. Pharmaceut. Biomed. Anal. 21 (1999) 429.<br />

[280] M.L. Altun, N. Erk, J. Pharmaceut. Biomed. Anal. 25 (2001) 85.<br />

[281] M.I. Toral, N. Lara, P. Richter, A. Tassara, A.E. Tapia, C. Rodriguez,<br />

J. AOAC Int. 84 (2001) 37.<br />

[282] D. Ivanovic, M. Medenica, E. Nivaudguernet, M. Guernet, Spectrosc.<br />

Lett. 28 (1995) 557.<br />

[283] H. Salem, Ch<strong>in</strong>. Pharm. J. 51 (1999) 123.<br />

[284] Z. Kokot, K. Burda, J. Pharmaceut. Biomed. Anal. 18 (1998) 871.<br />

[285] M. Kartal, N. Erk, J. Pharmaceut. Biomed. Anal. 19 (1999) 477.<br />

[286] D. Ivanovic, M. Medenica, S. Kojic-Mar<strong>in</strong>kovic, D. Radulovic, J.<br />

Pharmaceut. Biomed. Anal. 23 (2000) 965.<br />

[287] A.F.M. Elwalily, S.M. Blaih, M.H. Barary, M.A. Elsayed, H.H.<br />

Abd<strong>in</strong>e, A.M. Elkersh, J. Pharmaceut. Biomed. Anal. 15 (1997)<br />

1923.<br />

[288] G. Ragno, A. Garofalo, C. Vetuschi, J. Pharmaceut. Biomed. Anal.<br />

27 (2002) 19.<br />

[289] A.K. Gupta, S.G. Kaskhedikar, Asian J. Chem. 15 (2003) 977.<br />

[290] E. Bobrowska-Grzesik, Mikrochim. Acta 136 (2001) 31.<br />

[291] M. Medenica, D. Ivanovic, A. Malenovic, Spectrosc. Lett. 33 (2000)<br />

173.<br />

[292] I.F. Al-Momani, Oriental J. Chem. 17 (2001) 17.<br />

[293] H.H. Abd<strong>in</strong>e, F.A. El-Yazbi, R.A. Shaalan, S.M. Blaih, STP Pharm.<br />

Sci. 9 (1999) 587.<br />

[294] C. Reguera, M.C. Ortiz, J. Arcos, Quim. Anal. 18 (1999) 105.<br />

[295] S.T. Hassib, B.A. Moussa, H.A. Hashim, A.A. El-Zaher, Spectrosc.<br />

Lett. 35 (2002) 43.<br />

[296] M. Üstün Özgür, S. Sungur, J. Pharm. Univ. Mar. 10 (1994) 1.<br />

[297] H. Salem, M. El-Maamli, M. El-Sadek, A. Aboul Kheir, Zagazig<br />

J. Pharm. Sci. 4 (1995) 175.<br />

[298] Y. Wei, H. Yan, X. Li, T. Wang, Fenxi Huaxue 28 (2000) 1451.<br />

[299] Y. Wei, D. Wang, H. Yan, Guangpuxue Yu Guangpu Fenxi 21<br />

(2001) 534.<br />

[300] S. Gungor, F. Onur, J. Pharmaceut. Biomed. Anal. 25 (2001) 511.<br />

[301] A.F.M.K. El-Walili, Bull. Fac. Pharm. 34 (1996) 65.<br />

[302] C.V.N. Prasad, C. Parihar, T.R. Chowdhary, S. Purohit, P. Parimoo,<br />

Pharm. Pharmacol. Commun. 4 (1998) 325.<br />

[303] I.E. Panderi, J. Pharmaceut. Biomed. Anal. 21 (1999) 257.<br />

[304] A. El-G<strong>in</strong>dy, J. Pharmaceut. Biomed. Anal. 22 (2000) 215.<br />

[305] L.R. Paschoal, W.A. Ferreira, Farmaco 55 (2000) 687.<br />

[306] Y.C. De Micalizzi, N.B. Pappano, N.B. Debattista, Talanta 47 (1998)<br />

525.<br />

[307] M. Surmeian, D. Georgescu, V.V. Cosofret, Revista de Chimie 45<br />

(1994) 823.<br />

[308] D. Le Hazif, D. Lefort des Ylouses, P. Levilla<strong>in</strong>, P. Dubois, Analusis<br />

24 (1996) 156.<br />

[309] B. Morelli, J. Pharmaceut. Biomed. Anal. 32 (2003) 257.<br />

[310] A. El-G<strong>in</strong>dy, A.F.M. El Walily, M.F. Bedair, J. Pharmaceut. Biomed.<br />

Anal. 23 (2000) 341.<br />

[311] A. Parra, J. Garciavillanova, V. Rodenas, M.D. Gomez, J. Pharmaceut.<br />

Biomed. Anal. 12 (1994) 653.<br />

[312] J.A. Murillo, J.M. Lemus, L.F. García, J. Pharmaceut. Biomed.<br />

Anal. 13 (1995) 769.<br />

[313] D. Ja<strong>in</strong>, D.K. Ja<strong>in</strong>, P. Trivedi, Indian J. Pharm. Sci. 59 (1997) 324.<br />

[314] J.A. Murillo, J.M. Lemus, L.F. García, Fresenius J. Anal. Chem.<br />

349 (1994) 761.<br />

[315] M. Medenica, D. Ivanovic, A. Malenovic, J. Serbian Chem. Soc.<br />

65 (2000) 339.<br />

[316] N. Erk, J. Pharmaceut. Biomed. Anal. 23 (2000) 1023.<br />

[317] R.J. Forsyth, D.P. Ip, J. Pharmaceut. Biomed. Anal. 12 (1994) 1243.<br />

[318] D. Kowalczuk, H. Hopkala, Chemia Analyczna 48 (2003) 97.<br />

[319] M.Y. Salem, E.S. El-Zanfaly, M.F. El-Tarras, M.G. El-Bardicy, Anal.<br />

Bioanal. Chem. 375 (2003) 211.<br />

[320] B.B. Nayak, M.S. Bhatia, D.K. Ja<strong>in</strong>, P. Trivedi, Indian Pharm. Sci.<br />

59 (1997) 77.<br />

[321] I. Panderi, M. Parissi-Poulou, J. Pharmaceut. Biomed. Anal. 12<br />

(1994) 151.<br />

[322] M.I. Toral, P. Richter, O. Mart<strong>in</strong>ez, Bol. Soc. Chil. Quim. 41 (1996)<br />

283.<br />

[323] E. D<strong>in</strong>c, C. Yucesoy, I.M. Palabiyik, O. Ustundag, F. Onur, J.<br />

Pharmaceut. Biomed. Anal. 32 (2003) 539.<br />

[324] M.I. Toral, P. Richter, N. Lara, P. Jaque, C. Soto, M. Saavedra, Int.<br />

J. Pharm. 189 (1999) 67.<br />

[325] N. Erk, F. Onur, Scientia Pharm. 64 (1996) 57.<br />

[326] F.M. Salama, Al-Azhar J. Pharm. Sci. 22 (1998) 48.<br />

[327] M.I. Toral, A. Tassara, C. Soto, P. Richter, J. AOAC Int. 86 (2003)<br />

241.<br />

[328] A. Sachan, P. Trivedi, Indian Drugs 35 (1998) 762.<br />

[329] P. Umapathi, P. Parimoo, J. Pharmaceut. Biomed. Anal. 13 (1995)<br />

1003.<br />

[330] C.V.N. Prasad, V. Sripriya, R.N. Saha, P. Parimoo, J. Pharmaceut.<br />

Biomed. Anal. 21 (1999) 961.<br />

[331] A. El Bayoumi, Anal. Lett. 32 (1999) 383.<br />

[332] M. Üstün Özgür, S. Sungur, Chim. Acta Turcica 23 (1995) 119.<br />

[333] B. Morelli, J. Pharmaceut. Biomed. Anal. 33 (2003) 423.<br />

[334] W. Schwack, S. Nyanzi, Zeitschrift fuer Lebensmittel-Untersuchung<br />

und Forschung 198 (1994) 3.<br />

[335] H. Hopkala, D. Kowalczuk, Pharmazie 55 (2000) 432.


[336] J. Joseph-Charles, M.H. Langlois, M. Montagut, C. Boyer, J.P.<br />

Dubost, Anal. Lett. 33 (2000) 1567.<br />

[337] R. Garg, A.K. Sharma, Indian J. Pharm. Sci. 59 (1997) 295.<br />

[338] Z. Nikolovska-Coleska, L.J. Klisarova, L.J. Sutukova, K. Dorevski,<br />

Anal. Lett. 29 (1996) 97.<br />

[339] G. Misztal, R. Skib<strong>in</strong>ski, Acta Pol. Pharm. 56 (1999) 95.<br />

[340] S. Saglik, O. Sagirli, S. Atmaca, L. Ersoy, Anal. Chim. Acta 427<br />

(2001) 253.<br />

[341] N. Erk, J. Pharmaceut. Biomed. Anal. 27 (2002) 901.<br />

[342] R. Panchagnula, K. Kaur, A. Sood, I. S<strong>in</strong>gh, Pharm. Sci. 3 (1997)<br />

425.<br />

[343] C.V.N. Prasad, V. Bharadwaj, P. Parimoo, Pharm. Sci. 2 (1996) 255.<br />

[344] A. Gupta, R. Garg, A.K. Sharma, Indian J. Pharm. Sci. 61 (1999)<br />

407.<br />

[345] J.M.L. Gallego, J.P. Arroyo, Microchim. Acta 141 (2003) 133.<br />

[346] N. Erk, Pharmazie 58 (2003) 543.<br />

[347] J. Joseph-Charles, S. Brault, C. Boyer, M.H. Langlois, L. Cabreo,<br />

J.P. Dubost, Anal. Lett. 36 (2003) 2485.<br />

[348] N. Erk, J. Pharmaceut. Biomed. Anal. 24 (2001) 603.<br />

[349] C. Vetuschi, A. Giannandrea, Anal. Lett. 36 (2003) 1051.<br />

[350] C.V.N. Prasad, V. Bharadwaj, V. Narsimhan, R.T. Chowdhary, P.<br />

Parimoo, J. AOAC Int. 80 (1997) 325.<br />

[351] S. Erturk, S.M. Cet<strong>in</strong>, S. Atmaca, J. Pharmaceut. Biomed. Anal.<br />

33 (2003) 505.<br />

[352] N. Erk, Anal. Lett. 32 (1999) 1371.<br />

[353] V. Ulvi, Pharm. Pharmacol. Commun. 4 (1998) 193.<br />

[354] N. Erk, Anal. Lett. 35 (2002) 283.<br />

[355] N. Karali, S. Özkirimli, A. Gürsoy, Il Pharmaco 53 (1998) 62.<br />

[356] I. S<strong>in</strong>ghvi, S.C. Chaturvedi, Indian Drugs 35 (1998) 234.<br />

[357] D. Ivanovic, M. Medenica, S. Markovic, G. Mandic, Arzneimittel-<br />

Forschung-Drug Research 50 (2000) 1004.<br />

[358] N. Erk, Spectrosc. Lett. 34 (2001) 745.<br />

[359] S.A. Benetton, E.R.M. Kedor-Hackmann, M.I.R.M. Santoro, V.M.<br />

Borges, Talanta 47 (1998) 639.<br />

[360] B. Uslu, S.A. Ozkan, Anal. Chim. Acta 466 (2002) 175.<br />

[361] I. Duran Meras, A. Esp<strong>in</strong>osa Mansilla, F. Sal<strong>in</strong>as López, M.J.<br />

Rodriguez Gomez, Anal. Bioanal. Chem. 373 (2002) 251.<br />

[362] T. Radhakrishna, A. Narasaraju, M. Ramakrishna, A. Satyanarayana,<br />

J. Pharmaceut. Biomed. Anal. 31 (2003) 359.<br />

[363] M.I. Toral, P. Richter, E. Araya, S. Fuentes, Anal. Lett. 29 (1996)<br />

2679.<br />

[364] M. Surmeian, H.Y. Aboul-Ene<strong>in</strong>, Anal. Lett. 31 (1998) 1731.<br />

[365] B. Uslu, S.A. Ozkan, H.Y. Aboul-Ene<strong>in</strong>, Anal. Lett. 35 (2002) 2305.<br />

[366] I. S<strong>in</strong>ghvi, S.C. Chaturvedi, Eastern Pharmacist 41 (1998) 151.<br />

[367] J. Joseph-Charles, M. Bertucat, Anal. Lett. 32 (1999) 373.<br />

[368] G. Ragno, C. Vetuschi, Pharmazie 53 (1998) 628.<br />

[369] G.K.S. Reddy, D.K. Ja<strong>in</strong>, P. Trivedi, Indian J. Pharm. Sci. 61 (1999)<br />

16.<br />

[370] K. Karljikovic-Rajic, D. Novovic, V. Mar<strong>in</strong>kovic, D. Agbaba, J.<br />

Pharmaceut. Biomed. Anal. 32 (2003) 1019.<br />

[371] V. Rodenas, M.S. García, C. Sánchez-Pedreño, M.I. Albero, Talanta<br />

52 (2000) 517.<br />

[372] C.V.N. Prasad, A. Gautam, V. Bharadwaj, P. Parimoo, Talanta 44<br />

(1997) 917.<br />

[373] H. Salem, A. Aboul Kheir, Zagazig J. Pharm. Sci. 4 (1995) 117.<br />

[374] A. Koplas, I. Panderi, M. Parissi-Poulou, J. Pharmaceut. Biomed.<br />

Anal. 17 (1998) 515.<br />

[375] V. Ródenas, M.S. García, C. Sánchez-Pedreño, M. Albero, Analyst<br />

123 (1998) 1749.<br />

[376] M. Surmeian, Revue Rouma<strong>in</strong>e de Chimie 39 (1994) 497.<br />

[377] M. Surmeian, G. Ciohodaru, M.S. Ionescu, V.V. Cosofret, Revue<br />

Roumanie De Chimie 40 (1995) 111.<br />

[378] H. Mahgoub, A.A. Gazy, F.A. El-Yazbi, M. El-Sayed, R.M. Youssef,<br />

J. Pharmaceut. Biomed. Anal. 31 (2003) 801.<br />

[379] H.Y. Aboul-Ene<strong>in</strong>, M. Surmeian, Archiv der Pharmazie 333 (2000)<br />

75.<br />

[380] Y. Liu, D. Chen, B. Li, H. Huang, Huaxue Yanjiu 10 (1999) 45.<br />

C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24 23<br />

[381] G. Granero, C. Carnero, M. Longhi, J. Pharmaceut. Biomed. Anal.<br />

29 (2002) 51.<br />

[382] H. Xu, Z. Liu, J. Ch<strong>in</strong>. Pharm. Sci. 6 (1997) 105.<br />

[383] C. Vetuschi, G. Ragno, Anal. Lett. 28 (1995) 605.<br />

[384] A.A. Shevchenko, O.A. Kost, N.F. Kazanskaya, Biokhimiya 59<br />

(1994) 1707.<br />

[385] L. Miclo, E. Perr<strong>in</strong>, A. Driou, M. Mellet, Int. J. Pept. Prot. Res.<br />

46 (1995) 186.<br />

[386] Q. Zhao, C. Lecoeur, F. Sannier, I. Garreau, J.M. Piot, J. Liquid<br />

Chromatogr. Related Technologies 19 (1996) 1551.<br />

[387] Z.L. Jiang, J.Y. Jia, Y.H. Wu, Fenxi Shiyanshi 19 (2000) 60.<br />

[388] P. Wei, G. Mai, H. Sui, Fenxi Huaxue 23 (1995) 486.<br />

[389] D.M. O’Connell, I.D. Watson, Ann. Cl<strong>in</strong>. Biochem. 40 (2003) 269.<br />

[390] F.P. Corongiu, S. Banni, Meth. Enzymol. 233 (1994) 303.<br />

[391] F.P. Corongiu, S. Banni, B. Lombardi, Meth. Toxicol. 1B (1994)<br />

415.<br />

[392] J. Tan, Y. Wu, Z. Jiang, Fenxi Ceshi Xuebao 17 (1998) 53.<br />

[393] J. Tan, Z. Jang, Y. Wu, Fenxi Kexue Xuebao 15 (1999) 229.<br />

[394] P.L. Irw<strong>in</strong>, J.N. Brouillette, K.B. Hicks, Carbohyd. Res. 269 (1995)<br />

201.<br />

[395] R.A. Videira, M.C. Antunez-Madeira, J.B.A. Custodio, V.M.C.<br />

Madeira, Biochim. Biophys. Acta 1238 (1995) 22.<br />

[396] J.A. Kornblatt, M.J. Kornblatt, G.H.B. Hoa, Biochemistry 34 (1995)<br />

1218.<br />

[397] D. Boutolleau, G. Lefrvre, J. Etienne, Ann. Biol. Cl<strong>in</strong>. 55 (1997)<br />

592.<br />

[398] Q. Zhao, I. Garreau, F. Sannier, J.M. Piot, J. Liq. Chromatogr. 18<br />

(1995) 1077.<br />

[399] G. Vermiglio, V. Faraone, R. Livrieri, E. Ruello, M.G. Sagone,<br />

C. Sansotta, M.G. Tripepi, Nuovo Cimento della Societa Italiana<br />

di Fisica D-Condendes Matter Atomic Molecular and Chemical<br />

Physics Fluids Plasmas Biophysics 16 (1994) 1559.<br />

[400] J. Tan, Z. Jiang, Y. Wu, Fenxi Huaxue 26 (1998) 454.<br />

[401] D.X. Liu, G.P. Wu, D. L<strong>in</strong>, J.Y. Tan, Guangpu Shiyanshi 17 (2000)<br />

47.<br />

[402] C.P. Baron, R. Bro, L.H. Skibsted, H.J. Henrik, J. Agric. Food Sci.<br />

45 (1997) 1741.<br />

[403] A. Grau, F. Guardiola, J. Boatella, M.D. Baucells, R. Codony, J.<br />

Agric. Food Chem. 48 (2000) 4128.<br />

[404] Q.Q. Luethi-Peng, Z. Puhan, Milchwissenshaft 54 (1999) 74.<br />

[405] E. Perr<strong>in</strong>, L. Miclo, A. Driou, G. L<strong>in</strong>den, Anal. Commun. 33 (1996)<br />

143.<br />

[406] K. Kitamura, T. Goto, T. Kitade, Talanta 46 (1998) 1433.<br />

[407] A.A. Shevchenko, O.A. Kost, N.F. Kazanskaya, Bioorganicheskaya<br />

Khimiya 20 (1994) 263.<br />

[408] E.E. Remsen, J.J. Freeman, J.R. Schuh, J.B. Monahan, Spectroscopy<br />

11 (1996) 39.<br />

[409] R. Lange, J. Frank, J.L. Saldana, C. Balny, Eur. Biophys. J. 24<br />

(1996) 277.<br />

[410] R. Lange, N. Bec, V.V. Mozhaev, J. Frank, Eur. Biophys. J. 24<br />

(1996) 284.<br />

[411] R. Lange, N. Bec, J. Frank, C. Balny, Prog. Biotechnol. 13 (1996)<br />

135.<br />

[412] H.A. Havel, <strong>in</strong>: H.A. Havel (Ed.),Spectroscopic Methods for Determ<strong>in</strong><strong>in</strong>g<br />

Prote<strong>in</strong> Structure <strong>in</strong> Solution, 1996, VCH, New York, USA,<br />

pp. 62–68.<br />

[413] M.R. Bray, A.D. Carriere, A.J. Clarke, Anal. Biochem. 221 (1994)<br />

278.<br />

[414] S. Cheng, Zhongguo Liangyou Xuebao 17 (2002) 61.<br />

[415] H. Mach, C.R. Middaugh, Anal. Biochem. 222 (1994) 323.<br />

[416] L.P. Breydo, A.A. Shevchenko, O.A. Kost, Russ. Chem. Bull. 46<br />

(1997) 1339.<br />

[417] C. Leydier, E. Clottes, F. Cothon, O. Marcillat, C. Vial, Biochem.<br />

Mol. Biol. Int. 41 (1997) 777.<br />

[418] W. Ye, J. Liu, Y. Diao, Zhongguo Gonggong Weisheng 18 (2002)<br />

365.<br />

[419] F. Di Sipio, G. Trulli, Industrie Alimentari 40 (2001) 1014.


24 C. Bosch Ojeda, F. Sanchez Rojas / Analytica Chimica Acta 518 (2004) 1–24<br />

[420] F. Di Sipio, G. Trulli, Industrie Alimentari 41 (2002) 1328.<br />

[421] G. Papageorgiou, N. Botsoglou, A. Govaris, I. Giannenas, S. Iliadis,<br />

E. Botsoglou, J. Anim. Physiol. Anim. Nutr. 87 (2003) 324.<br />

[422] N.A. Botsoglou, D.J. Fletorius, P. Florou-Paneira, F. Christaki, A.B.<br />

Spais, Food Res. Int. 36 (2003) 207.<br />

[423] Z.A. El-Sherif, J. Drug Res. 17 (2000) 23.<br />

[424] M. Üstün Özgür, S. Sungur, Talanta 42 (1995) 1631.<br />

[425] L.B. Pfendt, V.L. Vukas<strong>in</strong>ovic, N.Z. Blagojevic, M.P. Radojevic,<br />

Eur. Food Res. Technol. 217 (2003) 269.<br />

[426] M.I. Toral, C. Soto, P. Jaque, A.E. Tapia, P. Richter, Bol. Soc. Chil.<br />

Quim. 43 (1998) 349.<br />

[427] G. Alpdogan, K. Karab<strong>in</strong>a, S. Sungur, Turk. J. Chem. 26 (2002)<br />

295.<br />

[428] J.J. Berzas Nevado, C. Guiberteau Cabanillas, A.M. Contento Salcedo,<br />

Analusis 22 (1994) 5.<br />

[429] C. Cruces Blanco, A.M. Garcia Campaña, F. Ales Barrero, Talanta<br />

43 (1996) 1019.<br />

[430] S. Sayar, Y. Ozdemir, Turk. J. Chem. 21 (1997) 182.<br />

[431] Y. Ozdemir, S. Sayar, A. Arzu Akkan, Chim. Acta Turc. 26 (1998)<br />

35.<br />

[432] S. Sayar, Y. Ozdemir, Food Chem. 61 (1998) 367.<br />

[433] J.J. Berzas Nevado, J. Rodriguez Flores, C. Guiberteau Cabanillas,<br />

M.J. Villaseñor Llerena, A. Contento Salcedo, Talanta 46 (1998)<br />

933.<br />

[434] Y. Ozdemir, A.A. Akkan, Turk. J. Chem. 23 (1999) 221.<br />

[435] F. Kiroglu, Y. Ozdemir, Adv. Food Sci. 22 (2000) 86.<br />

[436] M.U. Ozgur, G. Alpdogan, I. Koyuncu, Anal. Lett. 35 (2002)<br />

721.<br />

[437] S. Alt<strong>in</strong>oez, S. Toptan, J. Food Composition Anal. 15 (2002)<br />

667.<br />

[438] S. Alt<strong>in</strong>oz, S. Toptan, J. Food Composition Anal. 16 (2003) 517.<br />

[439] W. Schwack, S. Nyanzi, J. AOAC Int. 78 (1995) 458.<br />

[440] J.K. Dubey, H.J. Stan, J. Food Sci. Technol. 35 (1998) 482.<br />

[441] A.A. Akkan, Y. Ozdemir, H.L. Ekiz, Nahrung Food 45 (2001) 43.<br />

[442] C.D. Vianna-Soares, J.L.S. Mart<strong>in</strong>s, Analyst 120 (1995) 193.<br />

[443] W. Luf, Int. Dairy Federation S.I. 9602 (1996) 389.<br />

[444] H. Hellmann, Vom Wasser 82 (1994) 49.<br />

[445] H. Hellmann, Acta Hydrochimica et Hydrobiologica 22 (1994) 138.<br />

[446] K. Wrobel-Zasada, K. Wrobel-Kaczmarczyk, P.L. Lopez-de-Alba,<br />

L. Lopez-Mart<strong>in</strong>ez, M.A. Garcia-López, Talanta 43 (1996) 1055.<br />

[447] T. Sato, M. Uwasawa, Nippon Dojo Hiryogaku Zasshi 68 (1997)<br />

568.<br />

[448] F. Vogt, U. Klocke, K. Rebstock, G. Schmidtke, V. Wander, M.<br />

Tacke, Appl. Spectrosc. 53 (1999) 1352.<br />

[449] K. Sassenscheid, U. Klocke, C. Marb, H. Riedel, G. Schmidtke,<br />

M. Tacke, Proc. SPIE Int. Soc. Opt. Eng. 3535 (1999) 204.<br />

[450] Z.H. Zhang, H.X. Xu, L.C. Xie, Jiangsu Shiyou Huagong Xueyuan<br />

Xuebao 12 (2000) 24.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!