09.04.2013 Views

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

scaricalo in formato PDF - labogen srl

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INNOVATION WITHIN REACH<br />

InvivoGen’s primary objective is to comb<strong>in</strong>e cutt<strong>in</strong>g-edge research with our technical<br />

expertise to create tools for the bioresearch community. Our unparalleled skill <strong>in</strong><br />

microbial fermentation allows us to provide ultra-pure antibiotics made entirely without<br />

animal components, novel anti-mycoplasma treatments, and the largest collection of<br />

PRR agonists derived from a wide range of micro-organisms.<br />

Our collection of <strong>in</strong>novative Blue Reporter Cells is the result of the <strong>in</strong>tensive study of the<br />

<strong>in</strong>nate immune system matched with our vector design capabilities and cell culture<br />

experience. We are expand<strong>in</strong>g the popular HEK-Blue family of cells to <strong>in</strong>clude<br />

mur<strong>in</strong>e TLRs and NODs. Also new this year is an expanded collection of<br />

pNiFty plasmids for monitor<strong>in</strong>g a variety of signal<strong>in</strong>g pathways.<br />

The 2011 Catalog has a new chapter devoted to Antibodies and Vacc<strong>in</strong>ation. In this section<br />

you will f<strong>in</strong>d our novel pFUSE plasmids for antibody generation utiliz<strong>in</strong>g recomb<strong>in</strong>ant DNA<br />

technology. Harness<strong>in</strong>g this technology allows us to provide monoclonal isotype collections<br />

of therapeutically relevant antibodies. We also offer a unique set of vacc<strong>in</strong>e adjuvants<br />

<strong>in</strong>clud<strong>in</strong>g our precl<strong>in</strong>ical VacciGrade PRR Ligands.<br />

InvivoGen rema<strong>in</strong>s the only company devoted to market<strong>in</strong>g CpG-free plasmid DNA.<br />

We’ve added two new pCpGfree plasmid backbones to facilitate a better understand<strong>in</strong>g of<br />

how CpGs affect gene expression, which we believe is important to<br />

the future of gene therapy.<br />

Please browse through this catalog and visit our website to learn about all the tools<br />

we provide. If there is someth<strong>in</strong>g you are look<strong>in</strong>g for that you cannot f<strong>in</strong>d <strong>in</strong> this catalog or<br />

on our website please let us know. We are always look<strong>in</strong>g for new ways to<br />

br<strong>in</strong>g <strong>in</strong>novation with<strong>in</strong> reach.


ORDERING INFORMATION<br />

Order by Telephone<br />

Toll-Free US: 888 457 5873<br />

(+1) 858 457 5873<br />

9:00 AM to 5:00 PM PST<br />

Order by Fax (24 hours)<br />

(+1) 858 457 5843<br />

Order by E-mail (24 hours)<br />

sales@<strong>in</strong>vivogen.com<br />

To Place an Order<br />

Include the follow<strong>in</strong>g <strong>in</strong>formation:<br />

1. Institution or customer account number<br />

2. Shipp<strong>in</strong>g address<br />

3. Bill<strong>in</strong>g address<br />

4. Purchase order number<br />

5. Name and telephone number of end user<br />

6. Name and telephone number of purchas<strong>in</strong>g agent<br />

7. Quantity, catalog code, and the description of the product(s)<br />

8. For Visa, MasterCard or American Express orders, please provide card number,<br />

expiration date, verification number and name on the card.<br />

*If you are plac<strong>in</strong>g an order from a country with<strong>in</strong> the European Community please<br />

<strong>in</strong>clude your VAT registration number so the proper VAT treatment can be applied.<br />

Shipp<strong>in</strong>g Information<br />

All products are shipped via 2-3 day express air, unless specified otherwise.<br />

Shipments can be expedited to overnight service for an additional fee. Orders for<br />

temperature sensitive products are packaged with 8 lbs of dry ice and are shipped<br />

overnight express. Shipp<strong>in</strong>g and handl<strong>in</strong>g charges are pre-paid by InvivoGen and<br />

added to the <strong>in</strong>voice. Charges will vary by package weight and dest<strong>in</strong>ation. Orders<br />

received after 2:00 p.m. Pacific Time will be processed the next bus<strong>in</strong>ess day. All<br />

domestic shipments are shipped via InvivoGen’s designated carrier. If another carrier<br />

is specified, a customer carrier account number must be provided and InvivoGen<br />

cannot guarantee delivery time. All orders shipped via alternate carrier are subject<br />

to a handl<strong>in</strong>g fee to be added to the <strong>in</strong>voice. Shipp<strong>in</strong>g days are Monday through<br />

Friday except for items that must ship on dry ice. Items shipp<strong>in</strong>g on dry ice are<br />

shipped Monday through Wednesday.<br />

To reduce shipp<strong>in</strong>g costs and delivery delays, all European orders are shipped from<br />

our affiliate <strong>in</strong> France, Cayla. European orders must be accompanied by the<br />

<strong>in</strong>stitution’s VAT registration number.<br />

Onl<strong>in</strong>e Order<strong>in</strong>g<br />

Orders may be placed onl<strong>in</strong>e at <strong>in</strong>vivogen.com. Simply register onl<strong>in</strong>e to set up an<br />

account and add the products you wish to purchase to your cart (<strong>in</strong>ternational<br />

customers may need to order through a local distributor). If you already know the<br />

catalog codes for the products you wish to order you may enter them directly<br />

us<strong>in</strong>g our Quick Order option at http://www.<strong>in</strong>vivogen.com/quickorder.php. Orders<br />

can also be placed via e-mail to sales@<strong>in</strong>vivogen.com for orders <strong>in</strong> the US and<br />

sales@<strong>in</strong>vivogen.fr for orders <strong>in</strong> Europe. All orders onl<strong>in</strong>e will receive e-mail<br />

confirmation when orders are shipped.


CONTENTS AT A GLANCE<br />

1 CELL CULTURE & TRANSFECTION<br />

2 MAMMALIAN EXPRESSION VECTORS<br />

3 INNATE IMMUNITY<br />

4 CYTOKINE SIGNALING<br />

5 ANTIBODIES & VACCINATION<br />

6 CpG-FREE DNA<br />

7 RNA INTERFERENCE<br />

8 INHIBITORS<br />

9 CUSTOM SERVICES


TABLE of CONTENTS<br />

1 CELL CULTURE & TRANSFECTION<br />

Mycoplasma Detection & Elim<strong>in</strong>ation<br />

PlasmoTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Plasmoc<strong>in</strong> - Plasmocure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

Primoc<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Normoc<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Fung<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Reporter Detection Kits<br />

LacZ Detection Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

SEAP Reporter Assay Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

QUANTI-Blue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

HEK-Blue Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Selective Antibiotics<br />

Blasticid<strong>in</strong> S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

G418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Hygromyc<strong>in</strong> B - HygroGold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Phleomyc<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Puromyc<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Zeoc<strong>in</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Transfection Reagent<br />

LyoVec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Induced Pluripotent Stem Cells<br />

Reprogramm<strong>in</strong>g Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Reprogramm<strong>in</strong>g Enhancers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2 MAMMALIAN EXPRESSION VECTORS<br />

Lentiviral Vectors<br />

LENTI-Smart (INT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

LENTI-Smart NIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

LENTI-Smart OSKM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Clon<strong>in</strong>g Vectors<br />

Recomb<strong>in</strong>ant IgGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Fc Fusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

Rodent Transgenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

In vitro & <strong>in</strong> vivo Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

Tagged Prote<strong>in</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

Genes - Open Read<strong>in</strong>g Frames<br />

Gene A-List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

Cellular Promoters<br />

Prom A-List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

PromTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

Custom-made pDRIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

E. coli Growth & Selection<br />

E. coli Competent Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

E. coli Selection Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

3 INNATE IMMUNITY<br />

Pattern Recognition Receptors (PRRs)<br />

Toll-Like Receptors (TLRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

NOD-Like Receptors (NLRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

RIG-I-Like Receptors (RLRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

C-type Lect<strong>in</strong> Receptors (CLRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br />

TLR, NLR, RLR & Related Genes<br />

Native Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

HA-Tagged Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

TLR-GFP Fusion Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

Dom<strong>in</strong>ant Negative Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63<br />

Reporter Cell L<strong>in</strong>es<br />

293/TLR & 293/NOD Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

HEK-Blue TLR & HEK-Blue NOD Cells . . . . . . . . . . . . . . . . . . 66<br />

THP1-XBlue & THP1-XBlue -defMyD Cells . . . . . . . . . . . . . . . 68<br />

Ramos-Blue & Ramos-Blue -defMyD Cells . . . . . . . . . . . . . . . . 69<br />

RAW-Blue Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

C3H/TLR4mut & C3H/WT MEFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

C57/WT MEFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

Antibodies<br />

Antibodies for Neutralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

Antibodies for Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

PRR Signal<strong>in</strong>g<br />

pNiFty Reporter Plasmids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

Pathogen-Associated Molecular Patterns<br />

TLR Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

TLR Antagonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 80<br />

Labeled TLR Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

NOD Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

Labeled NOD Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

RLR & CDS Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

Dect<strong>in</strong>-1 Agonists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

TLR & NOD Agonist Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

NF-kB Activators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

PAMPs Detection<br />

HEK-Blue LPS Detection Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

TLR/NOD Ligand Screen<strong>in</strong>g Service . . . . . . . . . . . . . . . . . . . . . . . . . 91<br />

PRR Inhibition<br />

PRR & Related shRNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />

Signal Transduction Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

Inflammasomes<br />

Inflammasome Inducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

Inflammasome Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

IL-1b Sensor Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br />

Autophagy & TLRs<br />

Autophagy Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br />

Autopagy Inducers & Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . 102


4 CYTOKINE SIGNALING<br />

TABLE of CONTENTS<br />

Cytok<strong>in</strong>e Expression<br />

Cytok<strong>in</strong>e and Related Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br />

Cytok<strong>in</strong>e Detection<br />

Anti-Cytok<strong>in</strong>e Neutraliz<strong>in</strong>g IgA Antibodies . . . . . . . . . . . . . . . . . . . 104<br />

Blue Cytok<strong>in</strong>e Reporter Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

HEK-Blue Cytok<strong>in</strong>e Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

5 ANTIBODIES & VACCINATION<br />

Antibodies<br />

Antibody Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />

Antibody Isotype Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br />

IgA Antibody Purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

IgA Antibody Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123<br />

IgA Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br />

IgG Antibodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br />

Vacc<strong>in</strong>ation<br />

Vacc<strong>in</strong>e Adjuvants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br />

OVA Antigens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

DNA Vacc<strong>in</strong>ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130<br />

6 CpG-FREE DNA<br />

CpG-Free Plasmids<br />

pCpGfree Plasmids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

CpG-Free Genes<br />

Synthetic CpG-free Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />

Custom-Made CpG-free Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

7 RNA INTERFERENCE<br />

psiRNA System<br />

psiRNA Clon<strong>in</strong>g Plasmids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />

psiTEST System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

Interferon response: Off Target effect<br />

IFNr qRT-Primers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />

psiRNA Vectors<br />

Ready-made psiRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148<br />

Custom-made psiRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150<br />

8 INHIBITORS<br />

PRR Signal<strong>in</strong>g Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154<br />

Cytok<strong>in</strong>e Receptor Inhibitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Ion Channel Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

Nuclear Export Inhibitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

NF-kB Activation Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155<br />

8 INHIBITORS<br />

MAPK Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156<br />

Prote<strong>in</strong> K<strong>in</strong>ase Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Epigenetic Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br />

Heat Shock Prote<strong>in</strong> Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158<br />

DNA Synthesis Inhibitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br />

9 CUSTOM SERVICES<br />

TLR/NOD Ligand Screen<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

Custom-Made CpG-free Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br />

Custom Clon<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162<br />

Large Scale Plasmid DNA Production . . . . . . . . . . . . . . . . . . . . . . . . 163<br />

PRODUCT INFORMATION. . . . . . . . . . . . . . . . . . . . . 165<br />

INTERNATIONAL DISTRIBUTORS. . . . . . . . . . 176


1<br />

CELL CULTURE & TRANSFECTION<br />

Mycoplasma Detection and Elim<strong>in</strong>ation 7<br />

Reporter Detection Kits 12<br />

Selective Antibiotics 16<br />

Transfection Reagents 19<br />

Induced Pluripotent Stem Cells 20


Mycoplasma Detection &<br />

Elim<strong>in</strong>ation<br />

Mycoplasma contam<strong>in</strong>ation rema<strong>in</strong>s a significant problem to the culture of mammalian cells. Mycoplasmas can<br />

cause disastrous effects on eukaryotic cells as they can alter every cellular parameter from proliferation to virus<br />

susceptibility and production lead<strong>in</strong>g to unreliable experimental results and potentially unsafe biological products.<br />

Mycoplasmas are the smallest and simplest self-replicat<strong>in</strong>g organisms. They lack a rigid cell wall and grow mostly<br />

associated with the mammalian cell membranes. In most cases, there are no signs of mycoplasma contam<strong>in</strong>ation.<br />

They cannot be detected by visual <strong>in</strong>spection and do not cause consistent perceptible changes <strong>in</strong> a cell culture<br />

such as rapid pH change and medium turbidity. Thus, mycoplasmas can rema<strong>in</strong> undetected <strong>in</strong> the cell cultures for<br />

long periods.<br />

Mycoplasma Detection<br />

The only way to confirm mycoplasma contam<strong>in</strong>ation is by rout<strong>in</strong>e test<strong>in</strong>g us<strong>in</strong>g special techniques. InvivoGen has developed PlasmoTest , a<br />

breakthrough <strong>in</strong> mycoplasma detection for cell cultures. PlasmoTest is the first mycoplasma detection kit that uses eng<strong>in</strong>eered cells and<br />

therefore can be easily established as a rout<strong>in</strong>e procedure <strong>in</strong> the lab.<br />

Mycoplasma Elim<strong>in</strong>ation<br />

Once the mycoplasma contam<strong>in</strong>ation has been confirmed, it is usually recommended that the <strong>in</strong>fected cell culture be immediately autoclaved<br />

to prevent the <strong>in</strong>fection from spread<strong>in</strong>g and to use only mycoplasma-free cultures. However, some cell l<strong>in</strong>es are irreplaceable and require an<br />

effective eradication treatment. InvivoGen offers a choice of antimicrobial solutions designed to elim<strong>in</strong>ate and prevent mycoplasma<br />

contam<strong>in</strong>ations. Some are also active aga<strong>in</strong>st bacteria and/or fungi.<br />

• Plasmoc<strong>in</strong> - Elim<strong>in</strong>ation and Prevention of Mycoplasma<br />

• Plasmocure - Elim<strong>in</strong>ation of Mycoplasma<br />

• Normoc<strong>in</strong> - Prevention Aga<strong>in</strong>st Mycoplasma, Bacteria and Fungi<br />

• Primoc<strong>in</strong> - Prevention Aga<strong>in</strong>st Mycoplasma, Bacteria and Fungi for Primary Cells<br />

• Fung<strong>in</strong> - Prevention and Elim<strong>in</strong>ation of Fungi<br />

www.<strong>in</strong>vivogen.com/mycoplasma<br />

7<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

PlasmoTest - Mycoplasma Detection<br />

PlasmoTest provides a simple, rapid and reliable assay for the visual detection of mycoplasma contam<strong>in</strong>ation <strong>in</strong> cell cultures. This assay is the<br />

first to utilize cells to signal the presence of mycoplasma.<br />

- Simple - Requires only basic cell culture knowledge. No need for specific lab equipment. Results are easily determ<strong>in</strong>ed with the naked eye or<br />

quantified with a spectrophotometer.<br />

- Rapid - Hands-on time less than 1 hour. Gives results after overnight <strong>in</strong>cubation.<br />

- Versatile - Detects all Mycoplasma and Acholeplasma species known to <strong>in</strong>fect cell cultures, as well as other cell culture contam<strong>in</strong>ants such as bacteria.<br />

- Sensitive - Detects 5.10 2 -5.10 5 cfu/ml mycoplasmas. No false positive: a positive result <strong>in</strong>dicates the presence of a cell culture contam<strong>in</strong>ant.<br />

- Complete - Conta<strong>in</strong>s the Mycoplasma sensor cells and all the reagents needed to perform the assay, <strong>in</strong>clud<strong>in</strong>g positive and negative controls. Up<br />

to 500 samples can be tested with the kit. To perform further assays, only the reagents need to be reordered.<br />

Pr<strong>in</strong>ciple<br />

PlasmoTest features two major constituents: the Mycoplasma sensor cells<br />

and the HEK-Blue Detection medium. The Mycoplasma sensor cells detect<br />

the presence of mycoplasmas lead<strong>in</strong>g to a color change of the HEK-Blue <br />

Detection medium. The Mycoplasma sensor cells recognize mycoplasmas<br />

through Toll-Like Receptor 2 (TLR2), a pathogen recognition receptor. In<br />

the presence of mycoplasmas, TLR2 <strong>in</strong>itiates a signal<strong>in</strong>g cascade lead<strong>in</strong>g to<br />

the activation of NF-kB and other transcription factors. These transcription<br />

factors <strong>in</strong>duce the secretion of SEAP (secreted embryonic alkal<strong>in</strong>e<br />

phosphatase) <strong>in</strong> the supernatant which is readily detected by the<br />

purple/blue coloration of the HEK-Blue Detection medium.<br />

Key Features<br />

HEK-Blue -2 cells, the Mycoplasma sensor cells, are eng<strong>in</strong>eered HEK293<br />

cells. These cells stably express TLR2 and multiple genes from the TLR2<br />

pathway and coexpress an optimized SEAP reporter gene, placed under<br />

the control of a promoter <strong>in</strong>ducible by the transcription factors NF-kB and<br />

AP-1.<br />

HEK-Blue Selection is a solution that comb<strong>in</strong>es several selective<br />

antibiotics. These antibiotics guarantee the persistent expression of the<br />

various transgenes <strong>in</strong>troduced <strong>in</strong> HEK-Blue -2 cells. Furthermore,<br />

Normoc<strong>in</strong> is <strong>in</strong>cluded <strong>in</strong> the kit to protect HEK-Blue -2 cells from any<br />

potential microbial contam<strong>in</strong>ation, whether caused by mycoplasmas,<br />

bacteria or fungi.<br />

HEK-Blue Detection is a medium specifically designed for the detection<br />

of SEAP. It conta<strong>in</strong>s a color substrate that produces a purple/blue color<br />

follow<strong>in</strong>g its hydrolysis by SEAP (see page 15).<br />

8<br />

www.<strong>in</strong>vivogen.com/mycoplasma<br />

PlasmoTest Pr<strong>in</strong>ciple


PlasmoTest Contents<br />

- HEK-Blue -2 cells (3-5 x 10 6 cells)<br />

- HEK-Blue Selection (4 x 2 ml) - Antibiotic mix<br />

- Normoc<strong>in</strong> (200 mg - 4 x 1 ml)<br />

- HEK-Blue Detection (2 pouches of 50 ml each)<br />

- HEK-Blue water (2 x 60 ml)<br />

- Positive control<br />

- Negative control<br />

Buy the PlasmoTest kit once then reorder only the reagents to perform<br />

further assays. The reagents can be purchased <strong>in</strong>dividually or together as<br />

the PlasmoTest Reagent Kit which <strong>in</strong>cludes the follow<strong>in</strong>g:<br />

- HEK-Blue Selection (4 x 2 ml) - Antibiotic mix<br />

- Normoc<strong>in</strong> (4 x 1 ml)<br />

- HEK-Blue Detection (2 pouches)<br />

- HEK-Blue water (2 x 60 ml)<br />

- Positive control<br />

- Negative control<br />

www.<strong>in</strong>vivogen.com/mycoplasma<br />

PlasmoTest Procedure<br />

1- Collect 500 μl cell culture<br />

supernatant and transfer <strong>in</strong>to a<br />

microtube.<br />

2- Heat samples at 100°C for 15 m<strong>in</strong>s.<br />

3- Prepare HEK-Blue Detection by<br />

add<strong>in</strong>g 50 ml HEK-Blue water to the<br />

powder.<br />

4- Add 50 μl of each sample <strong>in</strong> a well of<br />

a 96-well plate.<br />

5- Add 50 μl of each control <strong>in</strong> a well of<br />

a 96-well plate.<br />

6- Prepare HEK-Blue -2 cell suspension<br />

us<strong>in</strong>g HEK-Blue Detection medium.<br />

7- Add 200 μl (~50,000 cells) of cell<br />

suspension to each well conta<strong>in</strong><strong>in</strong>g the<br />

samples or controls.<br />

8- Incubate the plate at 37°C <strong>in</strong> a CO2<br />

<strong>in</strong>cubator overnight (16-24h).<br />

9- Detect the presence of Mycoplasma<br />

with the naked eye or by read<strong>in</strong>g the<br />

OD at 620-655 nm.<br />

PRODUCT QUANTITY CAT. CODE<br />

PlasmoTest 1 kit rep-pt2<br />

HEK-Blue Detection 2 pouches hb-det1<br />

HEK-Blue Selection 5 x 2 ml hb-sel<br />

Normoc<strong>in</strong> 500 mg ant-nr-1<br />

PlasmoTest Controls 200 tests pt-ctr2<br />

PlasmoTest Reagent Kit 500 samples rep-ptrk<br />

9<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

Plasmoc<strong>in</strong> - The Mycoplasma Removal Agent<br />

Description<br />

Plasmoc<strong>in</strong> is a well-established antimycoplasma reagent. It conta<strong>in</strong>s two<br />

bactericidal components strongly active aga<strong>in</strong>st mycoplasmas that allow<br />

their elim<strong>in</strong>ation <strong>in</strong> only 2 weeks. The first component acts on the prote<strong>in</strong><br />

synthesis mach<strong>in</strong>ery while the second acts on the DNA replication. These<br />

two specific and separate targets are found only <strong>in</strong> mycoplasmas and<br />

many other bacteria and are completely absent <strong>in</strong> eukaryotic cells.<br />

In contrast to other anti-mycoplasma compounds, Plasmoc<strong>in</strong> is active<br />

on both free mycoplasmas and <strong>in</strong>tracellular forms. This advantage is<br />

conferred by one component of Plasmoc<strong>in</strong> which is actively transported<br />

<strong>in</strong>to mammalian cells. It ensures that follow<strong>in</strong>g treatment with Plasmoc<strong>in</strong> <br />

a cell culture is not re<strong>in</strong>fected by mycoplasmas released from <strong>in</strong>tracellular<br />

compartments of <strong>in</strong>fected cells.<br />

In all animal cell l<strong>in</strong>es tested to date, even at five times the work<strong>in</strong>g<br />

concentration, no apparent adverse effect on cellular metabolism is<br />

observed.<br />

No resistance <strong>in</strong> liquid cultures of mycoplasmas has ever been identified<br />

<strong>in</strong> repeated experiments attempt<strong>in</strong>g to measure the mutation rate.<br />

Therefore, development of resistant mycoplasma stra<strong>in</strong>s is virtually<br />

elim<strong>in</strong>ated.<br />

Plasmoc<strong>in</strong> is also active at low concentrations on a broad range of Gram<br />

positive and Gram negative bacteria that are otherwise resistant to the<br />

mixture of streptomyc<strong>in</strong> and penicill<strong>in</strong>, and exhibits no toxicity <strong>in</strong><br />

eukaryotic cells.<br />

Many cell l<strong>in</strong>es <strong>in</strong>fected by mycoplasmas have been successfully treated<br />

with Plasmoc<strong>in</strong> , <strong>in</strong>clud<strong>in</strong>g embryonic stem cells, hybridomas and<br />

retrovirus packag<strong>in</strong>g cells.<br />

10<br />

www.<strong>in</strong>vivogen.com/mycoplasma<br />

• Plasmoc<strong>in</strong> Treatment<br />

To elim<strong>in</strong>ate mycoplasmas use Plasmoc<strong>in</strong> (ant-mpt) at<br />

25 μg/ml for two weeks <strong>in</strong> the <strong>in</strong>fected culture.<br />

• Plasmoc<strong>in</strong> Prophylactic<br />

To prevent mycoplasma contam<strong>in</strong>ation, use Plasmoc<strong>in</strong> <br />

(ant-mpp) at 2.5 - 5 μg/ml on a regular basis <strong>in</strong> cell culture.<br />

Plasmocure - The Alternative Mycoplasma Removal Agent<br />

Description<br />

In very rare cases, mycoplasmas resistant to Plasmoc<strong>in</strong> have been<br />

reported. To eradicate these mycoplasmas, InvivoGen has developed a<br />

new antimycoplasma agent called Plasmocure . Plasmocure comb<strong>in</strong>es<br />

two antibiotics that act through different mechanisms of action than those<br />

<strong>in</strong> Plasmoc<strong>in</strong> . A two week treatment with Plasmocure was found<br />

sufficient to completely elim<strong>in</strong>ate the mycoplasmas. A moderate toxicity<br />

can be observed dur<strong>in</strong>g the course of the treatment but full recovery of<br />

the cell l<strong>in</strong>e is expected once mycoplasmas are elim<strong>in</strong>ated.<br />

Plasmocure is a sterile ready-to-use solution. Simply add to mycoplasma<br />

contam<strong>in</strong>ated cell cultures for 2 weeks at the recommended<br />

concentration of 50 μg/ml.<br />

Contents and Storage<br />

Plasmoc<strong>in</strong> is provided as a yellow solution either at a concentration of 25<br />

mg/ml (Plasmoc<strong>in</strong> Treatment) or 2.5 mg/ml (Plasmoc<strong>in</strong> Prophylactic). One<br />

ml Plasmoc<strong>in</strong> Treatment is enough to treat 1 L medium. Plasmoc<strong>in</strong> is<br />

shipped at room temperature. Store at -20°C. Plasmoc<strong>in</strong> is stable 6 months<br />

at 4°C and at least one year at -20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

Plasmoc<strong>in</strong> Treatment 50 mg (2 x 1 ml) ant-mpt<br />

Plasmoc<strong>in</strong> Prophylactic 25 mg (5 x 2 ml) ant-mpp<br />

Contents and Storage<br />

Plasmocure is provided as a colorless solution at a concentration of 100<br />

mg/ml. One ml Plasmocure is enough to treat 2 L medium. Plasmocure <br />

is shipped at room temperature. Store at -20°C. Plasmocure is stable<br />

one year at 4°C or -20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

Plasmocure 100 mg (1 x 1 ml) ant-pc


Primoc<strong>in</strong> - The Antimicrobial Shield for Primary Cells<br />

Description<br />

Primoc<strong>in</strong> is an antibiotic formulation specifically designed to protect<br />

primary cell l<strong>in</strong>es from cell culture contam<strong>in</strong>ations. Primoc<strong>in</strong> is active<br />

aga<strong>in</strong>st both Gram+ and Gram- bacteria, mycoplasmas and fungi.<br />

Primoc<strong>in</strong> is the first formulation to offer complete protection aga<strong>in</strong>st<br />

microbial contam<strong>in</strong>ants. There is no need to add Pen/Strep.<br />

Primoc<strong>in</strong> is non-toxic to primary cells. It acts on targets found only <strong>in</strong><br />

micro-organisms. Bacterial targets are the DNA gyrase and the<br />

prokaryotic ribosomal subunits, 30S and 50S. The fungal target is<br />

ergosterol, a molecule only found <strong>in</strong> the cell membrane of fungi and<br />

yeasts.<br />

Primoc<strong>in</strong> is a sterile water soluble solution that can be added directly<br />

to the cell culture medium. The solution is at 50 mg/ml and the<br />

recommended work<strong>in</strong>g concentration is 100 μg/ml.<br />

Contents and Storage<br />

Normoc<strong>in</strong> - The First L<strong>in</strong>e of Defense for Your Cells<br />

Description<br />

Normoc<strong>in</strong> is an <strong>in</strong>novative formulation of three antibiotics active aga<strong>in</strong>st<br />

mycoplasmas, bacteria and fungi. Normoc<strong>in</strong> conta<strong>in</strong>s two compounds<br />

that act on mycoplasmas and both Gram+ and Gram- bacteria by<br />

block<strong>in</strong>g DNA and prote<strong>in</strong> synthesis. The third compound eradicates<br />

yeasts and fungi by disrupt<strong>in</strong>g ionic exchange through the cell membrane.<br />

The active concentration of Normoc<strong>in</strong> (100 μg/ml) displays no<br />

toxicity to the cell l<strong>in</strong>e be<strong>in</strong>g treated. Normoc<strong>in</strong> is used <strong>in</strong> comb<strong>in</strong>ation<br />

with Pen / Strep solutions to broaden the anti-bacterial spectrum.<br />

Fung<strong>in</strong> - The Solution for Fungal Contam<strong>in</strong>ations<br />

Description<br />

Fung<strong>in</strong> is a new soluble form of Pimaric<strong>in</strong>, a polyene <strong>in</strong>troduced <strong>in</strong> the 1950’s<br />

as an anti-fungal agent. This antimycotic compound kills yeasts, molds and fungi<br />

by disrupt<strong>in</strong>g ionic exchange through the cell membrane.<br />

Fung<strong>in</strong> is cell culture tested, and may be added to media conta<strong>in</strong><strong>in</strong>g<br />

commonly used antibacterial agents.<br />

Fung<strong>in</strong> is a highly stable compound. It is shipped at room temperature<br />

and is still active after 6 days at 37°C. Fung<strong>in</strong> is water soluble unlike<br />

Amphoteric<strong>in</strong> B which needs to be dissolved <strong>in</strong> toxic deoxycholate.<br />

Fung<strong>in</strong> exhibits no cytotoxicity to cells be<strong>in</strong>g treated, and no deleterious<br />

effects on cell metabolism. The active concentration of Fung<strong>in</strong> can be<br />

stepped up from 10 μg/ml to 50 μg/ml if needed without display<strong>in</strong>g any<br />

negative effects.<br />

Primoc<strong>in</strong> is provided as a sterile light yellow solution at a concentration<br />

of 50 mg/ml. Primoc<strong>in</strong> is available <strong>in</strong> 1 ml vials or 20 ml bottles. One ml<br />

Primoc<strong>in</strong> is enough to treat 500 ml medium. Primoc<strong>in</strong> is shipped at<br />

room temperature and upon receipt should be stored at -20°C.<br />

Primoc<strong>in</strong> is stable one month at 4°C and 18 months at -20°C.<br />

Contents and Storage<br />

Normoc<strong>in</strong> is provided as a sterile red solution at a concentration of 50<br />

mg/ml. Normoc<strong>in</strong> is available <strong>in</strong> 1 ml vials or 20 ml bottles. One ml<br />

Normoc<strong>in</strong> is enough to treat 500 ml medium. Product is shipped at<br />

room temperature and should be stored at -20°C. Normoc<strong>in</strong> is stable<br />

three months at 4°C and 18 months at -20°C.<br />

Contents and Storage<br />

www.<strong>in</strong>vivogen.com/mycoplasma<br />

PRODUCT QUANTITY CAT. CODE<br />

Primoc<strong>in</strong> 500 mg (10 x 1 ml)<br />

1 g (1 x 20 ml)<br />

PRODUCT QUANTITY CAT. CODE<br />

Normoc<strong>in</strong> 500 mg (10 x 1 ml)<br />

1 g (1 x 20 ml)<br />

Fung<strong>in</strong> is provided as a pale yellow solution at a concentration of 10<br />

mg/ml. One 1.5 ml vial is able to treat 300 ml to 1.5 liters of medium<br />

depend<strong>in</strong>g on the severity of contam<strong>in</strong>ation. Fung<strong>in</strong> is shipped at room<br />

temperature, store at -20°C. Fung<strong>in</strong> is stable 18 months at 4°C or<br />

-20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

Fung<strong>in</strong> 75 mg (5 x 1.5 ml)<br />

200 mg (1 x 20 ml)<br />

ant-pm-1<br />

ant-pm-2<br />

ant-nr-1<br />

ant-nr-2<br />

ant-fn-1<br />

ant-fn-2<br />

11<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

Reporter Detection Kits<br />

Gene reporter systems are extensively used for the study of eukaryotic gene expression and regulation. Although<br />

they play a significant role <strong>in</strong> numerous applications, they most frequently serve as <strong>in</strong>dicators of transcriptional<br />

activity <strong>in</strong> cells. The reporter gene of choice is comb<strong>in</strong>ed to a promoter sequence and can be subsequently assayed<br />

<strong>in</strong> vitro or <strong>in</strong> vivo. An ideal reporter gene is not endogenously expressed by the target cells creat<strong>in</strong>g background<br />

signals and can be detected through assays that are easy, sensitive and reliable.<br />

InvivoGen provides two reporter gene systems that can be measured by histochemical sta<strong>in</strong><strong>in</strong>g of cells or tissues:<br />

• b-Galactosidase (LacZ) reporter gene system<br />

• Secreted embryonic alkal<strong>in</strong>e phosphatase (SEAP) reporter gene system<br />

Furthermore, InvivoGen has developed two specific media that allow fast and convenient detection of secreted<br />

AP, called QUANTI-Blue and HEK-Blue Detection (see pages 14-15).<br />

LacZ Reporter Gene System<br />

The E. coli lacZ gene encod<strong>in</strong>g b-galactosidase is the classical histochemical reporter gene. b-Galactosidase catalyzes the hydrolysis of X-Gal<br />

produc<strong>in</strong>g a blue precipitate that can be easily visualized under a microscope. The LacZ Sta<strong>in</strong><strong>in</strong>g Kits provide simple and convenient methods<br />

for the visual detection of LacZ expression with<strong>in</strong> cells or tissues.<br />

LacZ Reporter Gene<br />

InvivoGen provides the LacZDCpG gene, a humanized and CpG-free<br />

allele of the LacZ gene. This CpG-free gene is ten times more active than<br />

the wild-type gene <strong>in</strong> mammalian cells. It can be used for <strong>in</strong> vitro or <strong>in</strong><br />

vivo applications. The LacZDCpG gene is provided <strong>in</strong> the pSELECT-zeo-<br />

LacZ plasmid under the control of the EF-1a/HTLV composite promoter.<br />

The pSELECT-zeo-LacZ plasmid is selectable with Zeoc<strong>in</strong> <strong>in</strong> mammalian<br />

cells and <strong>in</strong> bacteria.<br />

Contents and Storage<br />

The LacZDCpG gene is provided as 20 μg of lyophilized DNA with 4<br />

pouches of E. coli Fast-Media ® Zeo (2 TB and 2 Agar, see p45). Plasmid is<br />

shipped at room temperature. Store at -20°C for up to one year.<br />

12<br />

LacZ Sta<strong>in</strong><strong>in</strong>g Kits<br />

www.<strong>in</strong>vivogen.com/reporter-detection<br />

InvivoGen provides two LacZ sta<strong>in</strong><strong>in</strong>g kits:<br />

- LacZ Cell Sta<strong>in</strong><strong>in</strong>g Kit allows you to determ<strong>in</strong>e the percentage of<br />

transfected cells express<strong>in</strong>g the lacZ gene. All reagents are provided to<br />

prepare the fixative, sta<strong>in</strong><strong>in</strong>g and r<strong>in</strong>se solutions. The assay can be<br />

completed <strong>in</strong> 30 m<strong>in</strong>utes, and the blue precipitate can take from 30<br />

m<strong>in</strong>utes to overnight to appear. The LacZ Cell Sta<strong>in</strong><strong>in</strong>g Kit conta<strong>in</strong>s<br />

sufficient reagent to sta<strong>in</strong> one hundred 35 mm plates.<br />

- LacZ Tissue Sta<strong>in</strong><strong>in</strong>g Kit allows the detection of transduced cells<br />

express<strong>in</strong>g the lacZ gene with<strong>in</strong> fresh or frozen tissues. All reagents are<br />

provided to prepare the buffer, fixative and sta<strong>in</strong><strong>in</strong>g solutions. The sta<strong>in</strong><strong>in</strong>g<br />

of the tissues can be observed <strong>in</strong> 5 to 24 hours. The LacZ Tissue Sta<strong>in</strong><strong>in</strong>g<br />

Kit conta<strong>in</strong>s sufficient reagent to prepare 100 ml solutions.<br />

Contents and Storage<br />

The LacZ Cell Sta<strong>in</strong><strong>in</strong>g Kit conta<strong>in</strong>s: 10X PBS, X-Gal, Potassium<br />

Ferrocyanide, Potassium Ferricyanide, MgCl2 and 10X Fixative Solution.<br />

The LacZ Tissue Sta<strong>in</strong><strong>in</strong>g Kit conta<strong>in</strong>s: 10X PBS, X-Gal, Potassium<br />

Ferrocyanide, Potassium Ferricyanide, MgCl2, Glutaraldehyde, Igepal and<br />

Na deoxycholate.<br />

Products are shipped at room teperature. Store at 4°C or -20°C<br />

accord<strong>in</strong>g to the product label. All reagents are stable for 6 months.<br />

PRODUCT QUANTITY CAT. CODE<br />

pSELECT-zeo-LacZ 20 μg psetz-lacz<br />

LacZ Cell Sta<strong>in</strong><strong>in</strong>g Kit 1 kit rep-lz-c<br />

LacZ Tissue Sta<strong>in</strong><strong>in</strong>g Kit 1 kit rep-lz-t


SEAP Reporter Gene System<br />

Secreted embryonic alkal<strong>in</strong>e phosphatase (SEAP) is a reporter widely used to study promoter activity or gene expression. It is a truncated<br />

form of human placental alkal<strong>in</strong>e phosphatase (PLAP) by deletion of the GPI anchor. Unlike endogenous alkal<strong>in</strong>e phosphatases, PLAP is extremely<br />

heat stable and resistant to the <strong>in</strong>hibitor L-homoarg<strong>in</strong><strong>in</strong>e. SEAP is secreted <strong>in</strong>to cell culture supernatant and therefore offers many advantages<br />

over <strong>in</strong>tracellular reporters. It allows to determ<strong>in</strong>e reporter activity without disturb<strong>in</strong>g the cells, does not require the preparation of cell<br />

lysates and can be used for k<strong>in</strong>etic studies.<br />

SEAP Reporter Gene<br />

InvivoGen provides the secreted embryonic alkal<strong>in</strong>e phosphatase (SEAP)<br />

gene <strong>in</strong> the pSELECT-zeo-SEAP plasmid. It can be used <strong>in</strong> vivo and <strong>in</strong> vitro<br />

to transfect mammalian cells stably or transiently. The SEAP gene<br />

expression is driven by the EF-1a/HTLV composite promoter that<br />

comb<strong>in</strong>es the elongation factor 1 alpha core promoter and the<br />

5’untranslated region of the Human T-cell Leukemia Virus. The pSELECTzeo-SEAP<br />

plasmid is selectable with Zeoc<strong>in</strong> <strong>in</strong> both mammalian cells<br />

and bacteria.<br />

Contents and Storage<br />

The SEAP gene is provided as 20 μg of lyophilized DNA. It is supplied<br />

with 4 pouches of E. coli Fast-Media ® Zeo (2 TB and 2 Agar, see p44-45).<br />

Plasmid is shipped at room temperature. Store at -20°C for up to one<br />

year.<br />

InvivoGen offers three different methods to determ<strong>in</strong>e SEAP activity:<br />

• SEAP Reporter Assay Kit - Detection kit for the quantification of SEAP<br />

• QUANTI-Blue - Detection medium for the detection and quantification of any AP<br />

• HEK-Blue Detection - Cell culture medium for real-time, one step detection of SEAP<br />

SEAP Reporter Assay Kit<br />

The SEAP Reporter Assay Kit provides a rapid and convenient method<br />

to determ<strong>in</strong>e the levels of SEAP <strong>in</strong> the culture medium of transfected<br />

cells express<strong>in</strong>g the seap gene. SEAP catalyzes the hydrolysis of<br />

p-Nitrophenyl phosphate produc<strong>in</strong>g a yellow end product that can be<br />

read spectrophotometrically at 405 nm.<br />

- Hands-on-time: less than 1 hour<br />

- Obtention of results: 10 to 40 m<strong>in</strong>utes<br />

- Sensitivity: as little as 10 -10 g/ml of SEAP<br />

- Concentration range: 1 ng - 1 μg/ml<br />

Contents and Storage<br />

www.<strong>in</strong>vivogen.com/reporter-detection<br />

PRODUCT QUANTITY CAT. CODE<br />

pSELECT-zeo-SEAP 20 μg psetz-seap<br />

These colorimetric assays are somewhat less sensitive than the chemilum<strong>in</strong>escent method but are much less expensive and can be performed<br />

us<strong>in</strong>g a conventional ELISA plate spectrophotometer.<br />

The SEAP Reporter Assay Kit conta<strong>in</strong>s all reagents necessary to measure<br />

SEAP activity <strong>in</strong> 150 samples: 50X Dilution Buffer, 5X Assay Buffer, 100<br />

mM L-Homoarg<strong>in</strong><strong>in</strong>e, tablets of SEAP substrate. Store 50X Dilution Buffer<br />

and 5X Assay Buffer at 4°C. Store all other components at -20°C. All<br />

reagents are stable for 6 months when properly stored.<br />

PRODUCT QUANTITY CAT. CODE<br />

SEAP Reporter Assay Kit 1 kit rep-sap<br />

13<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

QUANTI-Blue - Detection and Quantification of Alkal<strong>in</strong>e Phosphatase<br />

QUANTI-Blue is a detection medium developed to determ<strong>in</strong>e the activity of any alkal<strong>in</strong>e phosphatase (AP) present <strong>in</strong> a biological sample.<br />

QUANTI-Blue offers many advantages over the conventional SEAP Reporter Assay Kit based on the pNPP substrate:<br />

➥ Shorter hands-on-time: no longer than 10 m<strong>in</strong>utes<br />

➥ Simpler preparation: just add water<br />

➥ Allows high-throughput screen<strong>in</strong>g<br />

➥ Higher saturation threshold<br />

Key Features<br />

Requires small samples of cell supernatants<br />

Samples of 10 μl are sufficient.<br />

Determ<strong>in</strong>e SEAP activity without disturb<strong>in</strong>g cells<br />

The same cell cultures can be repeatedly sampled for k<strong>in</strong>etic studies or<br />

further experimentation.<br />

Assay can be completed <strong>in</strong> 30 m<strong>in</strong><br />

The enzymatic activity can be detected as early as 20 m<strong>in</strong> after <strong>in</strong>cubation<br />

of the samples <strong>in</strong> QUANTI-Blue .<br />

Highly sensitive for quantitative measurement<br />

The assay allows to detect low and high levels of SEAP. No need to<br />

perform multiple sample dilutions.<br />

Wide dynamic range for accurate measurement<br />

Higher saturation threshold than with pNPP result<strong>in</strong>g <strong>in</strong> more significant<br />

differences between non or low SEAP expression and high SEAP<br />

expression.<br />

Contents and Storage<br />

QUANTI-Blue is provided <strong>in</strong> a 5- or 10-pouch unit. Each pouch allows<br />

the preparation of 100 ml of detection medium. Store at room<br />

temperature. Pouches are stable 12 months at room temperature. After<br />

preparation, product is stable 2 weeks at 4°C and 2 months at -20°C.<br />

14<br />

PRODUCT QUANTITY CAT. CODE<br />

QUANTI-Blue 5 pouches (5 x 100 ml)<br />

10 pouches (10 x 100 ml)<br />

* Bulk quantities readily available<br />

rep-qb1<br />

rep-qb2<br />

www.<strong>in</strong>vivogen.com/reporter-detection<br />

QUANTI-Blue Procedure


HEK-Blue Detection - Real-Time Detection of SEAP<br />

HEK-Blue Detection is a cell culture medium that allows the detection of SEAP as the reporter prote<strong>in</strong> is secreted by the cells. HEK-Blue Detection conta<strong>in</strong>s all the nutrients necessary for cell growth and a specific SEAP color substrate. The hydrolysis of the substrate by SEAP<br />

produces a purple/blue color that can be easily detected with the naked eye or measured with a spectrophotometer.<br />

➥ One step procedure<br />

➥ Extremely simple to use<br />

➥ Designed for high-throughput screen<strong>in</strong>g<br />

Key Features<br />

No need to process samples<br />

Preparation of cell lysates or heat<strong>in</strong>g of samples are not required.<br />

Determ<strong>in</strong>e SEAP activity without disturb<strong>in</strong>g cells<br />

The same cell cultures can be repeatedly sampled for k<strong>in</strong>etic studies.<br />

Measure the time course of SEAP<br />

Detection of SEAP occurs as the reporter prote<strong>in</strong> is secreted by the cells<br />

grown <strong>in</strong> HEK-Blue Detection. Be<strong>in</strong>g a cell culture medium,<br />

<strong>in</strong> contrast to a simple detection medium such as QUANTI-Blue ,<br />

HEK-Blue Detection is about 10-fold less sensitive than the former.<br />

Virtually no hands-on time<br />

1- Resuspend HEK-Blue Detection by add<strong>in</strong>g water.<br />

2- Grow SEAP-express<strong>in</strong>g cells <strong>in</strong> HEK-Blue Detection.<br />

3- Detect SEAP expression with the naked eye or read at OD620-655.<br />

Contents and Storage<br />

HEK-Blue Detection is provided <strong>in</strong> a 2- or 5-pouch unit. Each pouch<br />

allows the preparation of 50 ml of detection medium. Store at room<br />

temperature. Pouches are stable 12 months at room temperature. After<br />

preparation, product is stable 2 weeks at 4°C and 2 months at -20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue Detection 2 pouches (2 x 50 ml)<br />

5 pouches (5 x 50 ml)<br />

* Bulk quantities readily available<br />

hb-det1<br />

hb-det2<br />

HEK-Blue Procedure<br />

www.<strong>in</strong>vivogen.com/reporter-detection<br />

15<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

Selective Antibiotics<br />

InvivoGen is a leader <strong>in</strong> the production of selective antibiotics. We manufacture the largest choice of antibiotics<br />

for selection. Our state-of-the-art facilities allow us to produce large quantities of high quality antibiotics with<br />

purity levels exceed<strong>in</strong>g 95%. As we manufacture our products, we are able to offer the best prices on the market.<br />

All our products are provided as cell-culture tested, sterile solutions that are ready-to-use.<br />

High Quality<br />

As all the products are manufactured by InvivoGen, our antibiotics<br />

meet rigorous standards and have passed str<strong>in</strong>gent quality control,<br />

which <strong>in</strong>cludes verification of potency, purity and stability us<strong>in</strong>g<br />

microbiological and chromatographic methods. This leads to<br />

consistently high quality.<br />

Purity and Stability<br />

All our antibiotics are ultra pure: more than 95% purity for most of<br />

them. Their excellent stability allows for exceptional selection and<br />

reproducible results.<br />

An Excellent Choice of Antibiotics for Selection<br />

<strong>in</strong> Both Mammalian Cells and E. coli<br />

Matches up to the antibiotic resistance genes carried by InvivoGen<br />

plasmids, built for selection <strong>in</strong> both mammalian and bacterial cells.<br />

Ready-to-use Cell Culture Tested Solutions<br />

No weigh<strong>in</strong>g needed - Our antibiotics are available <strong>in</strong> solution<br />

filtered to sterility for customer convenience and validated for cell<br />

culture usage.<br />

16<br />

www.<strong>in</strong>vivogen.com/selective-antibiotics<br />

Endotox<strong>in</strong>-free Guaranteed<br />

InvivoGen’s selective antibiotics conta<strong>in</strong> no detectable levels of<br />

endotox<strong>in</strong> (


Blasticid<strong>in</strong> S<br />

Description<br />

Blasticid<strong>in</strong> S is a peptidyl nucleoside antibiotic isolated from Streptomyces<br />

griseochromogenes. It specifically <strong>in</strong>hibits prote<strong>in</strong> synthesis <strong>in</strong> both<br />

prokaryotes and eukaryotes by <strong>in</strong>terfer<strong>in</strong>g with the peptide bound<br />

formation <strong>in</strong> the ribosomal mach<strong>in</strong>ery. Resistance to blasticid<strong>in</strong> is<br />

conferred by the blasticid<strong>in</strong> resistance gene from Bacillus cereus (bsr)<br />

which encodes a deam<strong>in</strong>ase. Typically, bacteria are sensitive to blasticid<strong>in</strong><br />

concentrations of 25-100 μg/ml, and mammalian cells to 1-10 μg/ml.<br />

Contents and Storage<br />

Blasticid<strong>in</strong> is provided as a colorless solution at 10 mg/ml. Blasticid<strong>in</strong> is<br />

shipped at room temperature and should be stored at -20°C. Blasticid<strong>in</strong><br />

is stable at least one year when stored at -20°C.<br />

G418 Sulfate<br />

Description<br />

G418 is an am<strong>in</strong>oglycoside antibiotic similar <strong>in</strong> structure to gentamic<strong>in</strong><br />

B1, produced by Micromonospora rhodorangea. G418 blocks polypeptide<br />

synthesis by <strong>in</strong>hibit<strong>in</strong>g the elongation step <strong>in</strong> both prokaryotic and<br />

eukaryotic cells. Resistance to G418 is conferred by the neo gene from<br />

Tn5 encod<strong>in</strong>g an am<strong>in</strong>oglycoside 3’-phosphotransferase, APH 3’ II.<br />

Selection <strong>in</strong> mammalian cells is usually achieved <strong>in</strong> three to seven days<br />

with concentrations rang<strong>in</strong>g from 400 to 1000 μg/ml. Cells that are<br />

divid<strong>in</strong>g are affected sooner than those that are not.<br />

Contents and Storage<br />

G418 is provided as a colorless solution at 100 mg/ml. G418 is shipped<br />

at room temperature and should be stored at -20°C. G418 is stable for<br />

at least one year when stored at -20°C.<br />

Puromyc<strong>in</strong><br />

Description<br />

Puromyc<strong>in</strong> is an am<strong>in</strong>onucleoside antibiotic produced by Streptomyces<br />

alboniger. It specifically <strong>in</strong>hibits peptidyl transfer on both prokaryotic and<br />

eukaryotic ribosomes. This antibiotic <strong>in</strong>hibits the growth of Gram positive<br />

bacteria and various animal and <strong>in</strong>sect cells. Puromyc<strong>in</strong> can also be used<br />

<strong>in</strong> some particular conditions for the selection of E. coli transformants.<br />

Resistance to puromyc<strong>in</strong> is conferred by the Pac gene encod<strong>in</strong>g a<br />

puromyc<strong>in</strong> N-acetyl-transferase (PAC) that was found <strong>in</strong> a Streptomyces<br />

producer stra<strong>in</strong>. Animal cells are generally sensitive to concentrations from<br />

1 to 10 μg/ml.<br />

Contents and Storage<br />

Puromyc<strong>in</strong> hydrochloride is provided as a colorless solution at 10 mg/ml.<br />

Puromyc<strong>in</strong> is shipped at room temperature and should be stored at -20°C.<br />

Puromyc<strong>in</strong> is stable at least one year when stored at -20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

Blasticid<strong>in</strong> (solution) 100 mg (5 x 2 ml)<br />

500 mg (25 x 2 ml)<br />

500 mg (1 x 50 ml)<br />

ant-bl-1<br />

ant-bl-5<br />

ant-bl-5b<br />

Blasticid<strong>in</strong> (powder) 1 g ant-bl-10p<br />

PRODUCT QUANTITY CAT. CODE<br />

G418 Sulfate 1 g (5 x 2 ml)<br />

5 g (1 x 50 ml)<br />

ant-gn-1<br />

ant-gn-5<br />

PRODUCT QUANTITY CAT. CODE<br />

Puromyc<strong>in</strong> 100 mg (5 x 2 ml)<br />

www.<strong>in</strong>vivogen.com/selective-antibiotics<br />

500 mg (25 x 2 ml)<br />

ant-pr-1<br />

ant-pr-5<br />

17<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

Hygromyc<strong>in</strong> B<br />

Description<br />

Hygromyc<strong>in</strong> B is an am<strong>in</strong>oglycoside antibiotic produced by Streptomyces<br />

hygroscopicus. It <strong>in</strong>hibits prote<strong>in</strong> synthesis by <strong>in</strong>terfer<strong>in</strong>g with translocation<br />

and caus<strong>in</strong>g mistranslation at the 70S ribosome. Hygromyc<strong>in</strong> B is effective<br />

on most bacteria, fungi and higher eukaryotes. Resistance to hygromyc<strong>in</strong> is<br />

conferred by the hph gene from E. coli. Hygromyc<strong>in</strong> B is normally used at<br />

a concentration of 50-200 μg/ml <strong>in</strong> mammalian cells and 100 μg/ml <strong>in</strong><br />

bacteria.<br />

Two grades of Hygromyc<strong>in</strong> B are available:<br />

• Hygromyc<strong>in</strong> B (purity >85%)<br />

• HygroGold (purity >98%)<br />

Phleomyc<strong>in</strong><br />

Description<br />

Phleomyc<strong>in</strong> is a glycopeptide antibiotic of the bleomyc<strong>in</strong> family, isolated<br />

from a mutant stra<strong>in</strong> of Streptomyces verticillus. It b<strong>in</strong>ds and <strong>in</strong>tercalates<br />

DNA thus destroy<strong>in</strong>g the <strong>in</strong>tegrity of the double helix. Phleomyc<strong>in</strong> is active<br />

aga<strong>in</strong>st most bacteria, filamentous fungi, yeast, plant and animal cells. Use<br />

of phleomyc<strong>in</strong> is recommended for cells poorly sensitive to Zeoc<strong>in</strong> , i.e.<br />

filamentous fungi and some yeasts. Phleomyc<strong>in</strong> resistance is conferred by<br />

the Sh ble gene from Streptoalloteichus h<strong>in</strong>dustanus which encodes a prote<strong>in</strong><br />

that b<strong>in</strong>ds to phleomyc<strong>in</strong>, <strong>in</strong>hibit<strong>in</strong>g its DNA cleavage activity. Typically,<br />

phleomyc<strong>in</strong> is used at a concentration of 10 μg/ml for yeasts and 25-150<br />

μg/ml for filamentous fungi.<br />

Zeoc<strong>in</strong> <br />

Description<br />

Zeoc<strong>in</strong> is a formulation of phleomyc<strong>in</strong> D1, a copper-chelated<br />

glycopeptide antibiotic produced by Streptomyces CL990. Zeoc<strong>in</strong> causes<br />

cell death by <strong>in</strong>tercalat<strong>in</strong>g <strong>in</strong>to DNA and cleav<strong>in</strong>g it. This antibiotic is<br />

effective on most aerobic cells and is therefore useful for selection <strong>in</strong> bacteria,<br />

eukaryotic microorganisms, plant and animal cells. Resistance to Zeoc<strong>in</strong> is<br />

conferred by the Sh ble gene product which <strong>in</strong>activates Zeoc<strong>in</strong> by b<strong>in</strong>d<strong>in</strong>g<br />

to the antibiotic. Zeoc<strong>in</strong> is used at a concentration of 50-300 μg/ml for<br />

selection <strong>in</strong> mammalian cells and 25 μg/ml for bacterial selection.<br />

Contents and Storage<br />

Hygromyc<strong>in</strong> B and HygroGold are provided as 100 mg/ml yellow<br />

solutions. HygroGold is also provided as a powder. Products are shipped<br />

at room temperature. Store at -20°C. Hygromyc<strong>in</strong> B solutions are stable<br />

for at least one year when stored at -20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

Hygromyc<strong>in</strong> B 1 g (5 x 2 ml)<br />

5 g (1 x 50 ml)<br />

HygroGold 1 g (5 x 2 ml)<br />

5 g (1 x 50 ml)<br />

10 g (powder)<br />

Contents and Storage<br />

Phleomyc<strong>in</strong> is provided as a blue solution at 20 mg/ml or as a powder.<br />

Phleomyc<strong>in</strong> is shipped at room temperature. Store the solution at -20°C<br />

and the powder at 4°C. Phleomyc<strong>in</strong> is stable for at least one year when<br />

properly stored.<br />

PRODUCT QUANTITY CAT. CODE<br />

Phleomyc<strong>in</strong> (solution) 100 mg (5 x 1 ml)<br />

500 mg (25 x 1 ml)<br />

Phleomyc<strong>in</strong> (powder) 250 mg<br />

500 mg<br />

1 g<br />

Contents and Storage<br />

ant-ph-1<br />

ant-ph-5<br />

ant-ph-2p<br />

ant-ph-5p<br />

ant-ph-10p<br />

Zeoc<strong>in</strong> is provided as a blue solution at 100 mg/ml. Zeoc<strong>in</strong> is shipped at<br />

room temperature and upon receipt should be stored at -20°C. Zeoc<strong>in</strong> <br />

is stable for at least one year at -20°C.<br />

PRODUCT QUANTITY CAT. CODE<br />

Zeoc<strong>in</strong> (solution) 1 g (5 x 2 ml)<br />

5 g (25 x 2 ml)<br />

5 g (1 x 50 ml)<br />

Zeoc<strong>in</strong> (powder) 1 g<br />

5 g<br />

18 www.<strong>in</strong>vivogen.com/selective-antibiotics<br />

ant-hm-1<br />

ant-hm-5<br />

ant-hg-1<br />

ant-hg-5<br />

ant-hg-10p<br />

ant-zn-1<br />

ant-zn-5<br />

ant-zn-5b<br />

ant-zn-1p<br />

ant-zn-5p


LyoVec New formulation<br />

LyoVec is the first lyophilized cationic lipid-based transfection reagent. The major constituent of LyoVec is the phosphonolipid DTCPTA, which<br />

is coupled with DiPPE, a neutral lipid that helps destabiliz<strong>in</strong>g membrane bilayers, therefore <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong> vitro transfection efficiency of LyoVec .<br />

Features and Benefits<br />

Rapid and Simple-to-use<br />

- Hands-on time: No more than 15 m<strong>in</strong><br />

- No preparation required the day prior transfection<br />

Optimized Procedure<br />

- Works similarly at various lipid/DNA ratios<br />

- No optimization of transfection conditions<br />

- Soluble <strong>in</strong> water up to 5X<br />

Maximum Transfection Efficiency<br />

- Transfects with high efficiencies a broad spectrum of mammalian cells,<br />

<strong>in</strong>clud<strong>in</strong>g primary cells and non-adherent cells<br />

- Effective for transient and stable transfections<br />

M<strong>in</strong>imal Cytotoxicity<br />

- Works <strong>in</strong> the presence of serum<br />

- No need to wash cells after transfection<br />

Increased Stability<br />

- Stable over one year when lyophilized<br />

- Stable up to six months when rehydrated<br />

Long shelf-life of pDNA/LyoVec Complexes<br />

In contrast with other cationic lipids, plasmid DNA (pDNA)/<br />

LyoVec complexes rema<strong>in</strong> fully active for transfection for at least two<br />

months at 4°C. Thus, preparation of large volumes of complexes can be<br />

made and reused repeatedly, sav<strong>in</strong>g you time.<br />

Structure<br />

DTCPTA<br />

Di-tetradecylphosphoryl-N,N,N-trimethylmethanam<strong>in</strong>ium chloride<br />

1. Floch et al. 1997. Cationic phosphonolipids as non viral vectors for DNA transfection<br />

<strong>in</strong> hematopoietic cell l<strong>in</strong>es and CD34+ cells. Blood Cells, Molec.& Diseases 23: 69-87.<br />

2. Guillaume-Gable et al. 1998. Cationic phosphonolipids as nonviral gene transfer<br />

agents <strong>in</strong> the lung of mice. Hum. Gene Ther. 9: 2309-2319<br />

Contents and Storage<br />

LyoVec is provided as a lyophilized powder, sterile and packaged <strong>in</strong> sealed<br />

2 ml glass vials (4 or 9 vials). After reconstitution, each vial yields 2 ml of<br />

transfection reagent allow<strong>in</strong>g 40 transfections of 1-4 x 10 5 cells/well <strong>in</strong> a 12well<br />

plate. Each order of LyoVec comes with 1 vial of control LyoVec /GFP-<br />

LacZ complex. LyoVec is shipped at room temperature. Upon receipt, store<br />

at 4°C. LyoVec is stable up to 1 year when properly stored.<br />

PRODUCT QUANTITY CAT. CODE<br />

LyoVec 8 ml (160 reactions)<br />

18 ml (360 reactions)<br />

lyec-12<br />

lyec-22<br />

Percentage of b-Gal-express<strong>in</strong>g cells<br />

Invivo<br />

LyoV<br />

LyoVec Procedure<br />

STEP 1 - LyoVec Reconstitution<br />

Reconstitute LyoVec with 2 ml sterile<br />

H2O or PBS<br />

Note: Reconstituted LyoVec can be stored<br />

at 4°C for 6 months.<br />

STEP 2 - Transfection of Adherent and<br />

Suspension Cells<br />

1-10 μl pDNA (1-3 μg) + 100 μl LyoVec <br />

-> 20’ at room temperature<br />

Note: Bulk quantities of pDNA/LyoVec <br />

complexes can be prepared for multiple<br />

wells.<br />

1 ml cell suspension (0.25-1.10 6 cells) +<br />

100 μl pDNA/LyoVec complexes -><br />

mix gently. Incubate at 37°C <strong>in</strong> 5% CO2<br />

for 24-72 hours before test<strong>in</strong>g transgene<br />

expression or apply<strong>in</strong>g antibiotic<br />

selection.<br />

DiPPE<br />

1,2-Diphytanoyl-sn-Glycero-3-Phosphoethanolam<strong>in</strong>e<br />

Transfection efficiencies of LyoVec : 2 to 8 x 10 5 cells per 6-well plates were<br />

transfected with 1 μg pVITRO2-GFP/LacZ complexed with 100 μl LyoVec <strong>in</strong> 2 ml<br />

of culture medium conta<strong>in</strong><strong>in</strong>g 10% FBS. LacZ expression was assessed 48h posttransfection.<br />

Note: Reagent X is one of the most utilized transfection reagents on<br />

the market. Transfection was performed accord<strong>in</strong>g to the manufacturer’s protocol.<br />

www.<strong>in</strong>vivogen.com/transfection-reagents 19<br />

CELL CULTURE & TRANSFECTION 1


CELL CULTURE & TRANSFECTION 1<br />

Induced Pluripotent Stem Cells<br />

Recently, pioneer<strong>in</strong>g work has revealed that term<strong>in</strong>ally differentiated somatic<br />

cells can be reprogrammed to generate <strong>in</strong>duced pluripotent stem (iPS) cells<br />

via overexpression of a def<strong>in</strong>ed set of transcription factors. These iPS cells<br />

are morphologically and phenotypically similar to embryonic stem (ES) cells<br />

and thus offer excit<strong>in</strong>g possibilities <strong>in</strong> stem cell research and regenerative<br />

medic<strong>in</strong>e. Moreover, iPS cells are useful tools for study<strong>in</strong>g the pathogenesis<br />

of human disease, for drug discovery and toxicity screen<strong>in</strong>g 1, 2 .<br />

The most widely used set of reprogramm<strong>in</strong>g factors, Oct4, Sox2, Klf4 and<br />

c-Myc, was identified <strong>in</strong>itially by screen<strong>in</strong>g 24 pre-selected factors <strong>in</strong> mouse<br />

embryonic fibroblasts (MEFs) by Takahashi and Yamanaka 3 . This cocktail of<br />

transcription factors, OSKM, was shown to work for different types of<br />

somatic cells and for different species, <strong>in</strong>clud<strong>in</strong>g rhesus monkey 4 and human<br />

cells 5 . Direct reprogramm<strong>in</strong>g was also achieved by another team who used<br />

a partially overlapp<strong>in</strong>g comb<strong>in</strong>ation, Oct4, Sox2, Nanog and L<strong>in</strong>28, suggest<strong>in</strong>g<br />

that Oct4 and Sox2 are <strong>in</strong>dispensable whereas Nanog, L<strong>in</strong>28, Klf4 and<br />

c-Myc are alternative support<strong>in</strong>g factors 6 . Subsequent studies have<br />

demonstrated that fewer factors are required; the c-Myc gene, an oncogene,<br />

is dispensable (although the efficiency of iPS cell formation is significantly<br />

lower) 7 and <strong>in</strong> some cases, such as neural stem cells, expression of only one<br />

factor (Oct4) is sufficient 8 .<br />

The generation of iPS cells is usually achieved by genetic transduction of the<br />

reprogramm<strong>in</strong>g genes us<strong>in</strong>g retroviral or lentiviral vectors. However, the use<br />

of <strong>in</strong>tegrat<strong>in</strong>g viral vectors represent an obstacle to the therapeutic<br />

translation of iPS cells as this technology can produce <strong>in</strong>sertional mutagenic<br />

lesions that are potentially tumorigenic. Two recent publications detail the<br />

use of polycistronic lentiviral vectors deliver<strong>in</strong>g the OSKM quartet to<br />

somatic cells <strong>in</strong> a s<strong>in</strong>gle lentiviral construct reduc<strong>in</strong>g the number of genomic<br />

<strong>in</strong>sertions 9, 10 . Alternative approaches to deliver the reprogramm<strong>in</strong>g factors<br />

with m<strong>in</strong>imal or total absence of genetic modifications have been developed.<br />

These approaches <strong>in</strong>clude the use of LoxP sites and Cre-<strong>in</strong>duced excision<br />

and piggyBac transposon excision of <strong>in</strong>tegrated reprogramm<strong>in</strong>g vector<br />

sequences 11, 12 , and the use of an oriP/EBNA1-based episomal vector 13 .<br />

Non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors may also represent a promis<strong>in</strong>g approach 14 .<br />

One possible strategy to entirely replace gene delivery is prote<strong>in</strong><br />

transduction. Previous studies have demonstrated that various prote<strong>in</strong>s can<br />

be delivered <strong>in</strong>to cells by conjugat<strong>in</strong>g them with a short peptide that<br />

mediates cell penetration, such as poly-arg<strong>in</strong><strong>in</strong>e 15 . Zhou et al. have designed<br />

and purified poly-arg<strong>in</strong><strong>in</strong>e tagged Oct4, Sox2, Klf4 and c-Myc prote<strong>in</strong>s that<br />

were found to readily enter cells and translocate <strong>in</strong>to the nucleus 16 . After<br />

several cycles of prote<strong>in</strong> supplementation, iPS cells were successfully<br />

generated from MEFs. Us<strong>in</strong>g a similar approach, Kim et al. obta<strong>in</strong>ed<br />

prote<strong>in</strong>-<strong>in</strong>duced pluripotent stem cells from human newborn fibroblasts<br />

20<br />

Induction of pluripotent<br />

stem cells<br />

Somatic cells are obta<strong>in</strong>ed from<br />

adult organism.<br />

The reprogramm<strong>in</strong>g factors are<br />

<strong>in</strong>troduced <strong>in</strong>to the cultured<br />

somatic cells.<br />

The cells are grown under ES cells<br />

conditions. After 2-3 weeks, iPS cells<br />

emerge.<br />

These <strong>in</strong>duced pluripotent stem<br />

cells may be differentiated <strong>in</strong>to<br />

various cell types for regenerative<br />

medic<strong>in</strong>e applications.<br />

www.<strong>in</strong>vivogen.com/ipsc<br />

after several rounds of treatment with cell extracts of HEK293 cell l<strong>in</strong>es<br />

express<strong>in</strong>g poly-arg<strong>in</strong><strong>in</strong>e tagged OSKM genes 17 .<br />

Recent studies have reported an emerg<strong>in</strong>g role for microRNAs (miRNAs)<br />

<strong>in</strong> the generation of iPS cells. It has been demonstrated that the<br />

reprogramm<strong>in</strong>g of iPS cells and subsequent differentiation to l<strong>in</strong>eage specific<br />

cells can be observed by monitor<strong>in</strong>g the differential expression of<br />

miRNAs, small non-cod<strong>in</strong>g RNAs that are critical regulators of gene<br />

expression 18 . Furthermore, the <strong>in</strong>hibition of tissue-specific miRNAs<br />

promotes the formation of iPS cells 19 .<br />

Direct reprogramm<strong>in</strong>g of somatic cells is currently a slow and <strong>in</strong>efficient<br />

process, <strong>in</strong> particular when the c-Myc oncogene is omitted <strong>in</strong> an effort to<br />

reduce tumorigenicity. Several chemicals have recently been reported to<br />

either enhance reprogramm<strong>in</strong>g efficiencies or substitute for specific<br />

reprogramm<strong>in</strong>g factors. Among the reported chemicals, some are known<br />

to affect chromat<strong>in</strong> modifications while others <strong>in</strong>fluence signal transduction<br />

pathways. Small molecules that modulate chromat<strong>in</strong> modifications <strong>in</strong>clude<br />

DNA methyltransferase <strong>in</strong>hibitors (RG108, 5-azacytid<strong>in</strong>e), histone<br />

deacetylase <strong>in</strong>hibitors (valproic acid, trichostat<strong>in</strong> A) and a G9a histone<br />

methyltransferase (Bix-01294) 20,21,22 . Small molecules reported to potentiate<br />

reprogramm<strong>in</strong>g by target<strong>in</strong>g signal<strong>in</strong>g pathways <strong>in</strong>clude the MEK <strong>in</strong>hibitor<br />

PD035901 and the TGF-beta receptor <strong>in</strong>hibitor SB431542 23 .<br />

Among the various reprogramm<strong>in</strong>g strategies, the chemical approach<br />

comb<strong>in</strong>ed to prote<strong>in</strong> transduction may represent the most promis<strong>in</strong>g.<br />

However, substantial research and development is still required before iPS<br />

cells are ready for therapeutic applications.<br />

1. Yokoo N. et al., 2009. The effects of cardiovactive drugs on cardiomyocytes derived from<br />

human <strong>in</strong>duced pluripotent stem cells. Biochem Biophys Res Commun. 387:482-8. 2. Lian<br />

Q. et al., 2010. Future perspective of <strong>in</strong>duced pluripotent stem cells for diagnosis, drug<br />

screen<strong>in</strong>g and treatment of human diseases. Thromb Haemost. 104(1):39-44. 3. Takahashi<br />

K. & Yamanaka S., 2006. Induction of pluripotent stem cells from mouse embryonic and<br />

adult fibroblast cultures by def<strong>in</strong>ed factors. Cell. 126(4):663-76. 4. Liu H. et al., 2008.<br />

Generation of <strong>in</strong>duced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell<br />

Stem Cell. 3(6):587-90. 5. Takahashi K. et al., 2007. Induction of pluripotent stem cells from<br />

adult human fibroblasts by def<strong>in</strong>ed factors. Cell. 131(5):861-72. 6. Yu J. et al., 2007. Induced<br />

pluripotent stem cell l<strong>in</strong>es derived from human somatic cells. Science. 318(5858):1917-20.<br />

7. Nakagawa M. et al., 2008. Generation of <strong>in</strong>duced pluripotent stem cells without Myc from<br />

mouse and human fibroblasts. Nat Biotechnol. 26(1):101-6. 8. Kim JB. et al., 2009. Oct4<strong>in</strong>duced<br />

pluripotency <strong>in</strong> adult neural stem cells. Cell. 136(3):411-9. 9. Sommer CA. et al.,<br />

2009. Induced pluripotent stem cell generation us<strong>in</strong>g a s<strong>in</strong>gle lentiviral stem cell cassette.<br />

Stem Cells. 27(3):543-9. 10. Chang CW. et al., 2009. Polycistronic lentiviral vector for "hit<br />

and run" reprogramm<strong>in</strong>g of adult sk<strong>in</strong> fibroblasts to <strong>in</strong>duced pluripotent stem cells. Stem<br />

Cells. 27(5):1042-9. 11. Soldner F. et al., 2009. Park<strong>in</strong>son's disease patient-derived <strong>in</strong>duced<br />

pluripotent stem cells free of viral reprogramm<strong>in</strong>g factors. Cell. 136(5):964-77. 12. Kaji K.<br />

et al., 2009. Virus-free <strong>in</strong>duction of pluripotency and subsequent excision of reprogramm<strong>in</strong>g<br />

factors. Nature. 458(7239):771-5. 13. Yu J. et al., 2009. Human <strong>in</strong>duced pluripotent stem<br />

cells free of vector and transgene sequences. Science. 324(5928):797-801.14. Sarkis C. et<br />

al., 2008. Non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors. Curr Gene Ther. 8(6):430-7. Review. 15. Ogawa<br />

T. et al., 2007. Novel Prote<strong>in</strong> Transduction Method by Us<strong>in</strong>g 11R: An Effective New Drug<br />

Delivery System for the Treatment of Cerebrovascular Diseases. Stroke, 38: 1354 - 1361.<br />

16. Zhou H. et al., 2009. Generation of <strong>in</strong>duced pluripotent stem cells us<strong>in</strong>g recomb<strong>in</strong>ant<br />

prote<strong>in</strong>s. Cell Stem Cell. 4(5):381-4. 17. Kim D. et al., 2009. Generation of human <strong>in</strong>duced<br />

pluripotent stem cells by direct delivery of reprogramm<strong>in</strong>g prote<strong>in</strong>s. Cell Stem Cell. 4(6):472-<br />

6. 18. Kamata M. et al. 2010. Live cell monitor<strong>in</strong>g of hiPSC generation and differentiation<br />

us<strong>in</strong>g differential expression of endogenous microRNAs. PLoS One. 5(7):e11834.<br />

19. Mallanna SK. & Rizz<strong>in</strong>o A., 2010. Emerg<strong>in</strong>g roles of microRNAs <strong>in</strong> the control of<br />

embryonic stem cells and the generation of <strong>in</strong>duced pluripotent stem cells. Dev Biol. 344:16-<br />

25. 20. Shi Y et al., 2008b. Induction of pluripotent stem cells from mouse embryonic<br />

fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell. 2008 Nov<br />

6;3(5):568-74. 21. Huangfu D. et al., 2008. Induction of pluripotent stem cells by def<strong>in</strong>ed<br />

factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008<br />

Jul;26(7):795-7. 22. Durcova-Hills G. et al., 2008. Reprogramm<strong>in</strong>g primordial germ cells <strong>in</strong>to<br />

pluripotent stem cells. PLoS One. 3(10):e3531. 23. L<strong>in</strong> T. et al., 2009. A chemical platform<br />

for improved <strong>in</strong>duction of human iPSCs. Nat Methods. 6(11):805-8.


Poly-Arg<strong>in</strong><strong>in</strong>e-HA Tagged Reprogramm<strong>in</strong>g Factors<br />

Description<br />

Poly-arg<strong>in</strong><strong>in</strong>e-HA tagged reprogramm<strong>in</strong>g factors allow the production of<br />

recomb<strong>in</strong>ant cell-penetrat<strong>in</strong>g reprogramm<strong>in</strong>g factors. They correspond to<br />

the four transcription factors, Oct4, Sox2, Klf4, and c-Myc (OSKM), fused at<br />

their C term<strong>in</strong>us to a poly-arg<strong>in</strong><strong>in</strong>e (i.e. 11R) peptide <strong>in</strong> tandem with 3 motifs<br />

of the hemaglut<strong>in</strong><strong>in</strong>e (HA) tag. The poly-arg<strong>in</strong><strong>in</strong>e peptide enables the<br />

recomb<strong>in</strong>ant prote<strong>in</strong>s to readily enter the cells and have been shown to<br />

allow their translocation <strong>in</strong>to the nucleus 1, 2 . The HA tag is useful for their<br />

detection by Western blot or their purification by aff<strong>in</strong>ity chromatography.<br />

Poly-arg<strong>in</strong><strong>in</strong>e-HA tagged reprogramm<strong>in</strong>g factors are cloned <strong>in</strong> the pUNO1<br />

plasmid with<strong>in</strong> a mammalian expression cassette compris<strong>in</strong>g the EF-1a/HTLV<br />

composite promoter and the SV40 poly adenylation sequence. pUNO1<br />

plasmids are selectable <strong>in</strong> E. coli and mammalian cells with blasticid<strong>in</strong>.<br />

Application<br />

Poly-arg<strong>in</strong><strong>in</strong>e-HA tagged reprogramm<strong>in</strong>g factors are designed for the<br />

generation of prote<strong>in</strong>-<strong>in</strong>duced pluripotent cells. Follow<strong>in</strong>g their<br />

transfection <strong>in</strong>to mammalian cell l<strong>in</strong>es, such as HEK293, the cell extracts<br />

can be used crude to treat the target cells or processed to purifiy the<br />

poly-arg<strong>in</strong><strong>in</strong>e-HA-tagged prote<strong>in</strong>s on an anti-HA aff<strong>in</strong>ity column.<br />

Contents and Storage<br />

Each pUNO1 plasmid is provided as a lyophilized transformed E. coli stra<strong>in</strong><br />

on a paper disk. Transformed stra<strong>in</strong>s are shipped at room temperature and<br />

should be stored at -20°C. Each pUNO1 is provided with 4 pouches of<br />

E. coli Fast-Media ® Blas (2 TB and 2 Agar). For more <strong>in</strong>formation about<br />

Fast-Media ® , see pages 44-45.<br />

Reprogramm<strong>in</strong>g Enhancers<br />

1. Zhou H. et al., 2009. Generation of <strong>in</strong>duced pluripotent stem cells us<strong>in</strong>g recomb<strong>in</strong>ant<br />

prote<strong>in</strong>s. Cell Stem Cell. 4(5):381-4. 2. Kim D. et al., 2009. Generation of human <strong>in</strong>duced<br />

pluripotent stem cells by direct delivery of reprogramm<strong>in</strong>g prote<strong>in</strong>s. Cell Stem Cell.<br />

4(6):472-6.<br />

PRODUCT<br />

CAT. CODE<br />

(HUMAN)<br />

CAT. CODE<br />

(MOUSE)<br />

pUNO1-OCT4-11RHA puno1rha-hoct4 puno1rha-moct4<br />

pUNO1-SOX2-11RHA puno1rha-hsox2 puno1rha-msox2<br />

pUNO1-KLF4-11RHA puno1rha-hklf4 puno1rha-mklf4<br />

pUNO1-cMYC-11RHA puno1rha-hmycb puno1rha-mmycb<br />

InvivoGen offers a selection of small molecules that have recently been reported to either enhance reprogramm<strong>in</strong>g efficiencies or substitute for specific<br />

reprogramm<strong>in</strong>g factors. Among these molecules, some are known to affect chromat<strong>in</strong> modifications while others <strong>in</strong>fluence signal transduction pathways.<br />

PRODUCT DESCRIPTION<br />

WORKING<br />

CONCENTRATION<br />

QUANTITY<br />

CATALOG<br />

CODE<br />

REF. INFO<br />

5-Aza-cytid<strong>in</strong>e DNA methyltransferase <strong>in</strong>hibitor 2 μM 100 mg <strong>in</strong>h-aza 1, 2 p 157<br />

Bix-01294 G9a histone methyltransferase <strong>in</strong>hibitor 1 μM 2 mg <strong>in</strong>h-bix 3, 4 p 157<br />

PD0325901 MEK <strong>in</strong>hibitor 0.5 μM 2 mg <strong>in</strong>h-pd32 5, 6 p 156<br />

SB431542 TGF-b receptor <strong>in</strong>hibitor 2 μM 5 mg <strong>in</strong>h-sb43 6, 7 p 155<br />

Valproic Acid HDAC <strong>in</strong>hibitor 2 mM 5 g <strong>in</strong>h-vpa 2, 8 p 157<br />

1. Mikkelsen TS. et al., 2008. Dissect<strong>in</strong>g direct reprogramm<strong>in</strong>g through <strong>in</strong>tegrative genomic<br />

analysis. Nature. 454(7200):49-55. 2. Huangfu D. et al., 2008a. Induction of pluripotent stem<br />

cells by def<strong>in</strong>ed factors is greatly improved by small-molecule compounds. Nat Biotechnol.<br />

26(7):795-7. 3. Epsztejn-Litman S. et al., 2008. De novo DNA methylation promoted by<br />

G9a prevents reprogramm<strong>in</strong>g of embryonically silenced genes. Nat Struct Mol Biol.<br />

15(11):1176-83. 4. Shi Y et al., 2008. A comb<strong>in</strong>ed chemical and genetic approach for the<br />

generation of <strong>in</strong>duced pluripotent stem cells. Cell Stem Cell. 2(6):525-8. 5. Y<strong>in</strong>g QL. et al.,<br />

2008. The ground state of embryonic stem cell self-renewal. Nature. 453(7194):519-23.<br />

6. L<strong>in</strong> T. et al., 2009. A chemical platform for improved <strong>in</strong>duction of human iPSCs. Nat<br />

Methods. 6(11):805-8. 7. IInman GJ. et al., 2002. SB-431542 is a potent and specific <strong>in</strong>hibitor<br />

of transform<strong>in</strong>g growth factor-beta superfamily type I activ<strong>in</strong> receptor-like k<strong>in</strong>ase (ALK)<br />

receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002 Jul;62(1):65-74. 8 . Huangfu D. et al.,<br />

2008b. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4<br />

and Sox2. Nat Biotechnol. 26(11):1269-75.<br />

Contents and Storage<br />

www.<strong>in</strong>vivogen.com/ipsc<br />

3xHA<br />

11R<br />

Each product is provided as a solid and shipped at room temperature. Store<br />

at room temperature, 4°C or -20°C accord<strong>in</strong>g to the product label.<br />

21<br />

CELL CULTURE & TRANSFECTION 1


2<br />

MAMMALIAN EXPRESSION VECTORS<br />

Lentiviral Vectors 23<br />

Clon<strong>in</strong>g Vectors 26<br />

Genes - Open Read<strong>in</strong>g Frames 36<br />

Cellular Promoters 38<br />

E. coli Growth & Selection 42


LENTI-Smart - Lentiviral Vector Production Kits<br />

Lentiviral vectors derived from the human immunodeficiency virus (HIV-1) have become major tools for gene delivery <strong>in</strong> mammalian cells. The<br />

advantageous feature of lentivirus vectors is the ability to mediate potent transduction and stable expression <strong>in</strong>to divid<strong>in</strong>g and non-divid<strong>in</strong>g cells<br />

both <strong>in</strong> vitro and <strong>in</strong> vivo. Currently, production of high titers of lentiviral vectors is a time consum<strong>in</strong>g, multi-step procedure with low reproducibility.<br />

LENTI-Smart has been designed to solve these problems, by creat<strong>in</strong>g a lyophilizate of optimized packag<strong>in</strong>g plasmids comb<strong>in</strong>ed with a DNA<br />

transfection reagent. Upon rehydration, this lyophilizate serves as a “carrier” for your favorite lentiviral expression plasmid. Depend<strong>in</strong>g on your<br />

preference, LENTI-Smart kits are available for the production of either <strong>in</strong>tegrat<strong>in</strong>g or non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral (NIL) vectors.<br />

- Consistent high titers - 1-5 x 106 transduc<strong>in</strong>g units (TU) per ml (unconcentrated) are commonly achieved.<br />

- Fast - Lentiviral production time reduced and no need to produce the packag<strong>in</strong>g and pseudotyp<strong>in</strong>g plasmids<br />

- Simple - Everyth<strong>in</strong>g is ready for your experiment, just add your favorite lentiviral expression plasmid.<br />

- Versatile - Can be used with most commercially available lentiviral expression plasmids.<br />

- Reproducible - Fluctuat<strong>in</strong>g parameters are kept to a m<strong>in</strong>imum.<br />

Description<br />

LENTI-Smart is a ready-to-use product that allows for rapid and reliable<br />

production of high titers of second generation lentiviral particles <strong>in</strong> HEK<br />

293T cells. LENTI-Smart comb<strong>in</strong>es a mix of optimized packag<strong>in</strong>g<br />

plasmids precomplexed to a transfection reagent, LyoVec , selected for<br />

its high transfection efficiency and low cell toxicity. This lyophilized complex<br />

is provided with a control lentiviral expression plasmid.<br />

Packag<strong>in</strong>g Plasmids<br />

The two packag<strong>in</strong>g plasmids form<strong>in</strong>g the LENTI-Smart lyophilizate<br />

provide the structural and replication prote<strong>in</strong>s <strong>in</strong> trans that are required<br />

for the production of the lentiviral particles (see page 25).<br />

• pLV-iVSV-G expresses the G glycoprote<strong>in</strong> gene from Vesicular Stomatitis<br />

Virus (VSV-G) to allow production of a pseudotyped lentiviral vector with<br />

a broad host range.<br />

• pLV-HELP conta<strong>in</strong>s the viral gag, pol, rev and tat genes and the revresponsive<br />

element (RRE).<br />

- gag encodes the membrane associated and capsid prote<strong>in</strong>s.<br />

- pol encodes viral enzymes, <strong>in</strong>clud<strong>in</strong>g the reverse transcriptase and<br />

<strong>in</strong>tegrase, required for replication and <strong>in</strong>tegration.<br />

- tat encodes the virus transactivator prote<strong>in</strong>.<br />

- rev encodes the Rev prote<strong>in</strong> which <strong>in</strong>teracts with the RRE to <strong>in</strong>duce<br />

expression of the gag and pol genes.<br />

- RRE permits Rev-dependent expression of the gag and pol genes.<br />

Control Lentiviral Expression Plasmid<br />

The LENTI-Smart kit <strong>in</strong>cludes a control lentiviral expression plasmid<br />

designed to optimize virus production and cell transduction.<br />

• pLV-Green expresses a green fluorescent prote<strong>in</strong> (GFP) gene and<br />

conta<strong>in</strong>s key viral elements for lentivirus production and safety:<br />

- psi encodes the packag<strong>in</strong>g signal.<br />

- Long term<strong>in</strong>al repeats conta<strong>in</strong><strong>in</strong>g a deletion <strong>in</strong> the U3 region to ensure<br />

self-<strong>in</strong>activation of the lentiviral vector.<br />

- rev and RRE (see above).<br />

Maps and sequences of the plasmids are available<br />

on our website:<br />

www.<strong>in</strong>vivogen.com/lentismart-maps<br />

Lentiviral expression<br />

plasmid<br />

LENTI-Smart <br />

HEK 293T<br />

Lentiviral particles<br />

www.<strong>in</strong>vivogen.com/lentiviral-vectors<br />

Lentiviral Vector Production<br />

us<strong>in</strong>g LENTI-Smart <br />

Invivo<br />

LENT<br />

1. Add lentiviral expression plasmid to<br />

LENTI-Smart to generate complexes.<br />

2. Add complexes to HEK 293T cells.<br />

3. Harvest viral supernatants 36-48 hours<br />

post-transfection.<br />

The unique formulation of LENTI-Smart allows to prepare lentiviral expression<br />

plasmid / packag<strong>in</strong>g plasmids complexes by simply rehydrat<strong>in</strong>g the lyophilizate with<br />

the lentiviral expression plasmid solution. There is no need for a transfection reagent<br />

as it is <strong>in</strong>cluded <strong>in</strong> the LENTI-Smart lyophilizate. Transfection of HEK 293T cells is<br />

readily performed by add<strong>in</strong>g the complexes to the cells. Lentiviral particles can be<br />

collected 2 days after transfection.<br />

23<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

Biosafety Features<br />

The LENTI-Smart kit has been designed to elim<strong>in</strong>ate the risk of<br />

replication recomb<strong>in</strong>ation through:<br />

- the use of multiple plasmids<br />

- the absence of HIV accessory genes and non-cod<strong>in</strong>g sequences<br />

- the use of self-<strong>in</strong>activ<strong>in</strong>g lentiviral expression plasmids.<br />

To further <strong>in</strong>crease the biosafety of LENTI-Smart derived lentiviral vectors,<br />

InvivoGen provides the LENTI-Smart NIL kit for the production of non<strong>in</strong>tegrat<strong>in</strong>g<br />

lentiviral vectors reduc<strong>in</strong>g the risk of <strong>in</strong>sertional mutagenesis.<br />

Contents and Storage<br />

Two LENTI-Smart kits are available:<br />

• LENTI-Smart (INT) for the generation of <strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors<br />

• LENTI-Smart Starter Kit for the generation of <strong>in</strong>tegrat<strong>in</strong>g and non<strong>in</strong>tegrat<strong>in</strong>g<br />

lentiviral vectors.<br />

LENTI-Smart (INT) is available <strong>in</strong> 2 sizes, either 5 vials or 10 vials. Each<br />

vial allows the transfection of HEK 293T cells with a lentiviral expression<br />

plasmid <strong>in</strong> a 10-cm culture plate or a 75 cm 2 flask.. The LENTI-Smart <br />

Starter Kit conta<strong>in</strong>s 5 vials of LENTI-Smart (INT) and 5 vials of LENTI-<br />

Smart NIL (see below).<br />

All LENTI-Smart kits are provided with a vial of the control lentiviral<br />

expression plasmid. The LENTI-Smart vials are provided lyophilized, the<br />

control plasmid is provided as a liquid. Products are shipped at room<br />

temperature and should be stored at -20°C.<br />

24<br />

www.<strong>in</strong>vivogen.com/lentiviral-vectors<br />

Viral titers obta<strong>in</strong>ed us<strong>in</strong>g LENTI-Smart and other transfection reagents with<br />

different commercially available lentiviral expression plasmids.<br />

PRODUCT QTY CAT. CODE<br />

LENTI-Smart (INT)<br />

5 vials<br />

10 vials<br />

LENTI-Smart NIL - Generation of Non-Integrat<strong>in</strong>g Lentiviruses<br />

lts<strong>in</strong>t-5<br />

lts<strong>in</strong>t-10<br />

LENTI-Smart Starter Kit 10 vials lts-str<br />

Integration of a transgene <strong>in</strong>to the host genome poses safety concerns due to the potential risk of <strong>in</strong>sertional mutagenesis. To overcome this<br />

problem, non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors have been designed that comb<strong>in</strong>e the advantageous features of lentiviral vectors with episomal<br />

replication alleviat<strong>in</strong>g the risk of <strong>in</strong>sertional mutagenesis. InvivoGen provides LENTI-Smart NIL, the first kit designed for the generation of<br />

non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors.<br />

Description<br />

LENTI-Smart NIL comb<strong>in</strong>es the pLV-iVSV-G plasmid (see page 23) and<br />

the pLV-HELP-NIL D64 plasmid, precomplexed to the transfection reagent,<br />

LyoVec . pLV-HELP-NIL D64 expresses a mutant <strong>in</strong>tegrase (D64V) result<strong>in</strong>g<br />

<strong>in</strong> the generation of lentiviral vectors that are <strong>in</strong>tegration defective 1,2 .<br />

Non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors allow transient transgene expression <strong>in</strong><br />

divid<strong>in</strong>g cells and long-term expression <strong>in</strong> non-divid<strong>in</strong>g cells, such as neurons.<br />

LENTI-Smart NIL is provided with the control lentiviral plasmid,<br />

pLV-Green, that expresses a GFP gene.<br />

1. Leavitt AD. et al., 1996. Human immunodeficiency virus type 1 <strong>in</strong>tegrase mutants<br />

reta<strong>in</strong> <strong>in</strong> vitro <strong>in</strong>tegrase activity yet fail to <strong>in</strong>tegrate viral DNA efficiently dur<strong>in</strong>g<br />

<strong>in</strong>fection. J Virol. 70(2):721-8. 2. Night<strong>in</strong>gale SJ. et al., 2006.Transient gene expression<br />

by non<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors. Mol Ther. 13(6):1121-32.<br />

Contents and Storage<br />

LENTI-Smart NIL is available <strong>in</strong> 2 sizes, either 5 vials or 10 vials. Each vial<br />

allows the transfection of HEK 293T cells with a lentiviral expression plasmid<br />

<strong>in</strong> a 10-cm culture plate or a 75 cm 2 flask.<br />

LENTI-Smart NIL is provided with a vial of the control lentiviral<br />

expression plasmid. The LENTI-Smart NIL vials are provided lyophilized,<br />

the control plasmid is provided as a liquid. Products are shipped at room<br />

temperature and should be stored at -20°C.<br />

Duration of GFP expression us<strong>in</strong>g <strong>in</strong>tegrat<strong>in</strong>g or non-<strong>in</strong>tegrat<strong>in</strong>g (NIL) lentiviral<br />

vectors. Percentage of GFP positive HCT116 cells was assessed by FACS analysis,<br />

follow<strong>in</strong>g transduction with LENTI-Smart (INT)- or LENTI-Smart NIL-derived<br />

lentiviral vectors.<br />

PRODUCT QTY CAT. CODE<br />

LENTI-Smart NIL Kit*<br />

5 vials<br />

10 vials<br />

ltsnil-5<br />

ltsnil-10<br />

* LENTI-Smart NIL featur<strong>in</strong>g the mutated <strong>in</strong>tegrase D116N is also available<br />

upon request.


Lentiviral Vector Production<br />

and Cell Transduction<br />

Lentiviral vectors are typically produced <strong>in</strong><br />

HEK 293T cells. Essential lentiviral (HIV-1)<br />

genes must be expressed <strong>in</strong> these cells to<br />

allow the generation of lentiviral particles.<br />

These genes are usually expressed by several<br />

plasmids: (i) a lentiviral expression plasmid,<br />

such as pLV-Green, conta<strong>in</strong><strong>in</strong>g the psi (Y)<br />

packag<strong>in</strong>g sequence and the transgene gene<br />

<strong>in</strong>serted between the lentiviral LTRs for<br />

target cell <strong>in</strong>tegration, (ii) a packag<strong>in</strong>g<br />

plasmid, such as pLV-HELP, encod<strong>in</strong>g the pol,<br />

gag, rev and tat viral genes and conta<strong>in</strong><strong>in</strong>g the<br />

rev-response element (RRE); and (iii) a<br />

pseudotyp<strong>in</strong>g plasmid, such as pLV-iVSV-G,<br />

encod<strong>in</strong>g the G prote<strong>in</strong> of the Vesicular<br />

Stomatitis Virus (VSV-G) envelope gene.<br />

Unlike the HIV envelope, the VSV-G<br />

envelope has a broad cell host range<br />

extend<strong>in</strong>g the cell types that can be<br />

transduced by VSV-G-express<strong>in</strong>g lentiviruses.<br />

Two days after transfection of HEK 293T cells, the cell supernatant conta<strong>in</strong>s recomb<strong>in</strong>ant lentiviral vectors, which can be used to transduce the target cells. Once <strong>in</strong> the<br />

target cells, the viral RNA is reverse-transcribed, imported <strong>in</strong>to the nucleus and stably <strong>in</strong>tegrated <strong>in</strong>to the host genome. One or two days after the <strong>in</strong>tegration of the viral<br />

RNA, the expression of the recomb<strong>in</strong>ant prote<strong>in</strong> can be detected.<br />

LENTI-Smart OSKM - For the Generation of iPS Cells<br />

Induced pluripotent stem (iPS) cells are generated from differentiated somatic cells overexpress<strong>in</strong>g a set of specific transcription factors called<br />

reprogramm<strong>in</strong>g factors. Typically four reprogramm<strong>in</strong>g factors are chosen, Oct4, Sox2, Klf4 and c-Myc (OSKM), which are <strong>in</strong>troduced <strong>in</strong>to the<br />

target cells through genetic transduction us<strong>in</strong>g retroviral or lentiviral vectors. iPS cells offer excit<strong>in</strong>g possibilities <strong>in</strong> stem cell research and<br />

regenerative medic<strong>in</strong>e. To facilitate the generation of iPS cells, InvivoGen has developed LENTI-Smart OSKM for the production of lentiviral<br />

vectors express<strong>in</strong>g the human or mur<strong>in</strong>e OSKM reprogramm<strong>in</strong>g genes.<br />

Description<br />

LENTI-Smart OSKM comprises the complex<strong>in</strong>g lyophilizate, formed by<br />

the packag<strong>in</strong>g plasmids and the transfection reagent, and the lentiviral<br />

plasmid express<strong>in</strong>g the OSKM genes of human or mouse orig<strong>in</strong>.<br />

S<strong>in</strong>gle Reprogramm<strong>in</strong>g Expression Cassette<br />

The four reprogramm<strong>in</strong>g genes are expressed from a s<strong>in</strong>gle multicistronic<br />

transcript 1 . This reprogramm<strong>in</strong>g cassette conta<strong>in</strong>s the cod<strong>in</strong>g sequences of<br />

Oct4, Sox2, Klf4 and c-Myc separated by three different “self-cleav<strong>in</strong>g” 2A<br />

peptides (E2A, P2A, and T2A, respectively) 2 (figure).<br />

Integrat<strong>in</strong>g or Non-Integrat<strong>in</strong>g Lentiviral Vectors<br />

Two LENTI-Smart OSKM kits are available allow<strong>in</strong>g the generation of<br />

<strong>in</strong>tegrat<strong>in</strong>g or non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors:<br />

• LENTI-Smart (INT) OSKM features pLV-HELP which expresses the<br />

wild-type <strong>in</strong>tegrase for the production of <strong>in</strong>tegrat<strong>in</strong>g lentiviral vectors<br />

• LENTI-Smart NIL OSKM features pLV-HELP-NIL which expresses a<br />

mutant <strong>in</strong>tegrase for the production of non-<strong>in</strong>tegrat<strong>in</strong>g lentiviral (NIL)<br />

vectors, designed for transient transgene expression.<br />

1. Carey BW. et al., 2009. Reprogramm<strong>in</strong>g of mur<strong>in</strong>e and human somatic cells us<strong>in</strong>g<br />

a s<strong>in</strong>gle polycistronic vector. PNAS 106(1):157-62. 2. Donnelly ML. et al., 2001. The<br />

'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and<br />

naturally occurr<strong>in</strong>g '2A-like' sequences. J Gen Virol. 82(Pt 5):1027-41.<br />

Contents and Storage<br />

PRODUCT QTY<br />

LENTI-Smart (INT) OSKM<br />

LENTI-Smart NIL OSKM<br />

www.<strong>in</strong>vivogen.com/lentiviral-vectors<br />

Schematic representation of the “reprogramm<strong>in</strong>g cassette”<br />

LENTI-Smart (INT) OSKM and LENTI-Smart NIL OSKM are available<br />

<strong>in</strong> 2 sizes, either 5 vials or 10 vials. Each vial allows the transfection of HEK<br />

293T cells with the lentiviral OSKM expression plasmid <strong>in</strong> a 10-cm culture<br />

plate or a 75 cm 2 flask.The LENTI-Smart vials are provided lyophilized,<br />

the OSKM plasmid is provided as a liquid. Products are shipped at room<br />

temperature and should be stored at -20°C.<br />

5 vials<br />

10 vials<br />

5 vials<br />

10 vials<br />

CAT. CODE<br />

(HUMAN)<br />

lts<strong>in</strong>t-hoskm-5<br />

lts<strong>in</strong>t-hoskm-10<br />

ltsnil-hoskm-5<br />

ltsnil-hoskm-10<br />

CAT. CODE<br />

(MOUSE)<br />

lts<strong>in</strong>t-moskm-5<br />

lts<strong>in</strong>t-moskm-10<br />

ltsnil-moskm-5<br />

ltsnil-moskm-10<br />

25<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

pFUSE-CLIg and pFUSE-CHIg - Antibody Generation<br />

pFUSE-CLIg and pFUSE-CHIg plasmids are designed to change a monoclonal antibody from one isotype to another IgG isotype therefore<br />

enabl<strong>in</strong>g the generation of antibodies with the same antigen aff<strong>in</strong>ity but with different effector functions (<strong>in</strong>creased or reduced ADCC and<br />

CDC). Furthermore, they can be used to produce entire IgG antibodies from fragment antigen-b<strong>in</strong>d<strong>in</strong>g (Fab) or s<strong>in</strong>gle-cha<strong>in</strong> variable fragment<br />

(scFv) fragments that are either chimeric, humanized or fully human depend<strong>in</strong>g on the nature of the variable region.<br />

➥ Isotype switch to generate IgG antibodies with different effector functions<br />

➥ Generation of entire IgG antibodies, chimeric, humanized or fully human<br />

26<br />

Background<br />

Immunoglobul<strong>in</strong> G (IgG) antibodies are large molecules composed of two<br />

heavy cha<strong>in</strong>s g and two light cha<strong>in</strong>s, either k or l. They can be separated<br />

<strong>in</strong> two regions: the Fab (fragment-antigen b<strong>in</strong>d<strong>in</strong>g) that conta<strong>in</strong>s the<br />

variable doma<strong>in</strong> responsible for the antibody specificity, and the Fc<br />

(fragment crystall<strong>in</strong>e) that b<strong>in</strong>ds specific prote<strong>in</strong>s to <strong>in</strong>duce immune<br />

responses such as opsonization and cell lysis.<br />

The IgG class is divided <strong>in</strong> four isotypes: IgG1, IgG2, IgG3 and IgG4 <strong>in</strong> humans,<br />

and IgG1, IgG2a, IgG2b and IgG3 <strong>in</strong> mice. They share more than 95%<br />

homology <strong>in</strong> the am<strong>in</strong>o acid sequences of the Fc regions but show major<br />

differences <strong>in</strong> the am<strong>in</strong>o acid composition and structure of the h<strong>in</strong>ge region.<br />

The Fc region mediates effector functions, such as antibody-dependent cellular<br />

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In<br />

ADCC, the Fc region of an antibody b<strong>in</strong>ds to Fc receptors (FcgRs) on the<br />

surface of immune effector cells such as natural killers and macrophages,<br />

lead<strong>in</strong>g to the phagocytosis or lysis of the targeted cells. In CDC, the<br />

antibodies kill the targeted cells by trigger<strong>in</strong>g the complement cascade at the<br />

cell surface. IgG isoforms exert different levels of effector functions <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong> the order of IgG4


Antibody generation us<strong>in</strong>g pFUSE-CHIg & pFUSE-CLIg<br />

1- Obta<strong>in</strong><strong>in</strong>g VH and VL sequences<br />

To obta<strong>in</strong> the cDNA sequence of the VH and VL regions from an antibody<br />

produc<strong>in</strong>g hybridoma, total RNA or mRNA is extracted and reverse<br />

transcribed to cDNA. PCR is performed with 5’ degenerate primers to anneal<br />

to the unknown VH and VL regions and the 3’ primers designed to anneal to<br />

the “known“ CH and CL regions. Alternatively 5’ RACE can be used. The<br />

result<strong>in</strong>g amplicons are sequenced.<br />

Contents and Storage<br />

pFUSE-CLIg and pFUSE-CHIg plasmids are provided as 20 μg of lyophilized<br />

DNA. Product is shipped at room temperature and should be stored at<br />

-20°C. Each plasmid is provided with 4 pouches of E. coli Fast-Media ®<br />

Zeo (2 TB and 2 Agar, see pages 44-45).<br />

2- Clon<strong>in</strong>g <strong>in</strong>to pFUSE-CHIg and pFUSE-CLIg<br />

Once the VH and VL sequence are known, <strong>in</strong>serts for clon<strong>in</strong>g <strong>in</strong>to the plasmids<br />

can be generated. When generat<strong>in</strong>g the <strong>in</strong>sert for VH, a Nhe I site must be<br />

<strong>in</strong>troduced at the 3’ end to ma<strong>in</strong>ta<strong>in</strong> the <strong>in</strong>tegrity of the constant region.<br />

Similarly, when generat<strong>in</strong>g the <strong>in</strong>sert for VL, a Bsi WI (human VL) or Bst API<br />

(mouse VL) site must be <strong>in</strong>troduced at the 3’ end. There is a choice of<br />

restriction sites at the 5’ end.<br />

PRODUCT<br />

pFUSE2-CLIg<br />

ISOTYPE QUANTITY<br />

CAT. CODE<br />

(No IL2ss)<br />

CAT. CODE<br />

(With IL2ss)<br />

pFUSE2-CLIg-hk Human kappa 20 μg pfuse2-hclk pfuse2ss-hclk<br />

pFUSE2-CLIg-hl2 Human lambda 2 20 μg pfuse2-hcll2 pfuse2ss-hcll2<br />

pFUSE2-CLIg-mk Mouse kappa 20 μg pfuse2-mclk pfuse2ss-mclk<br />

pFUSE2-CLIg-ml1 NEW Mouse lambda 1 20 μg pfuse2-mcll1 pfuse2ss-mcll1<br />

pFUSE2-CLIg-ml2 NEW Mouse lambda 2 20 μg pfuse2-mcll2 pfuse2ss-mcll2<br />

pFUSE2-CLIg-rk1 NEW Rabbit kappa 1 20 μg pfuse2-rclk1 pfuse2ss-rclk1<br />

pFUSE2-CLIg-rk2<br />

pFUSE-CHIg<br />

NEW Rabbit kappa 2 20 μg pfuse2-rclk2 pfuse2ss-rcl2<br />

pFUSE-CHIg-hG1 Human IgG1 20 μg pfuse-hchg1 pfusess-hchg1<br />

pFUSE-CHIg-hG2 Human IgG2 20 μg pfuse-hchg2 pfusess-hchg2<br />

pFUSE-CHIg-hG3 Human IgG3 20 μg pfuse-hchg3 pfusess-hchg3<br />

pFUSE-CHIg-hG4 Human IgG4 20 μg pfuse-hchg4 pfusess-hchg4<br />

pFUSE-CHIg-mG1 Mouse IgG1 20 μg pfuse-mchg1 pfusess-mchg1<br />

pFUSE-CHIg-mG2a Mouse IgG2a 20 μg pfuse-mchg2a pfusess-mchg2a<br />

pFUSE-CHIg-mG2b Mouse IgG2b 20 μg pfuse-mchg2b pfusess-mchg2b<br />

pFUSE-CHIg-mG3 Mouse IgG3 20 μg pfuse-mchg3 pfusess-mchg3<br />

pFUSE-CHIg-rG NEW Rabbit IgG 20 μg pfuse-rchg pfusess-rchg<br />

www.<strong>in</strong>vivogen.com/antibody-generation<br />

NEW<br />

27<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

pFUSE-Fc - Fc-Fusion Prote<strong>in</strong>s<br />

pFUSE-Fc is a family of plasmids developed to facilitate the construction of Fc-Fusion prote<strong>in</strong>s by fus<strong>in</strong>g a sequence encod<strong>in</strong>g a given prote<strong>in</strong><br />

to the Fc region of an immunoglobul<strong>in</strong>. The Fc-fusion prote<strong>in</strong>s are called immunoadhes<strong>in</strong>s when the Fc region is comb<strong>in</strong>ed with the functional<br />

doma<strong>in</strong> of a b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>, such as a receptor, ligand or cell-adhesion molecule. The Fc region comprises the CH2 and CH3 doma<strong>in</strong>s of the<br />

IgG heavy cha<strong>in</strong> and the h<strong>in</strong>ge region. The h<strong>in</strong>ge serves as a flexible spacer between the two parts of the Fc-Fusion prote<strong>in</strong>, allow<strong>in</strong>g each part<br />

of the molecule to function <strong>in</strong>dependently.<br />

➥ Large choice of Fc regions from different species: human, mouse, rat and rabbit<br />

➥ Fc regions without <strong>in</strong>tron (pFUSE-Fc) or with <strong>in</strong>trons (pINFUSE-Fc)<br />

➥ Native Fc regions or eng<strong>in</strong>eered Fc regions with altered effector functions MCS<br />

Description<br />

pFUSE-Fc<br />

pFUSE-Fc plasmids are designed for the generation of Fc-fusion prote<strong>in</strong>s. They feature<br />

a large choice of Fc regions from different species, with or without <strong>in</strong>trons, native or<br />

eng<strong>in</strong>eered. The gene encod<strong>in</strong>g the Fc region is cloned under the control of a strong<br />

and ubiquitous promoter. A multiple clon<strong>in</strong>g site (MCS) located upstream of the Fc<br />

region facilitates the clon<strong>in</strong>g of the functional doma<strong>in</strong> of a given prote<strong>in</strong>.<br />

pINFUSE-Fc<br />

pINFUSE-Fc is a new family of pFUSE-Fc plasmids featur<strong>in</strong>g genomic Fc regions. The<br />

presence of <strong>in</strong>trons is known to enhance the level of gene expression as splic<strong>in</strong>g is<br />

known to promote rapid and efficient mRNA export.<br />

pFUSE-SEAP-Fc<br />

pFUSE-SEAP-Fc plasmids are control plasmids that express the secreted embryonic<br />

alkal<strong>in</strong>e phosphatase (SEAP) reporter gene fused to each Fc region provided by<br />

InvivoGen.<br />

pFUSE-Fc, pINFUSE-Fc and pFUSE-SEAP-Fc plasmids are selectable with Zeoc<strong>in</strong> <strong>in</strong><br />

E. coli and mammalian cells. They can be used for transient or stable transfection.<br />

Features<br />

Secretion of Fc-Fusion Prote<strong>in</strong>s<br />

Two versions of pFUSE-Fc and pINFUSE-Fc exist to allow secretion of the Fc fusion:<br />

• No IL2ss: without the IL2 signal sequence (IL2ss) for the secretion of an Fc-fusion<br />

prote<strong>in</strong> conta<strong>in</strong><strong>in</strong>g the functional doma<strong>in</strong> of a prote<strong>in</strong> that is naturally secreted and<br />

thus conta<strong>in</strong>s a native signal sequence.<br />

• With IL2ss conta<strong>in</strong>s the IL2 signal sequence (IL2ss) for the generation of Fc-Fusion<br />

prote<strong>in</strong>s derived from prote<strong>in</strong>s that are not naturally secreted.<br />

Ease of Detection<br />

Fc-Fusion prote<strong>in</strong>s can be easily detected <strong>in</strong> the supernatant of pFUSE-Fc-transfected cells<br />

by SDS-PAGE. Their functional doma<strong>in</strong>s can be identified by immunoblott<strong>in</strong>g and ligand<br />

blott<strong>in</strong>g.<br />

Ease of Purification<br />

Fc-Fusion prote<strong>in</strong>s can be easily purified by s<strong>in</strong>gle-step prote<strong>in</strong> A or prote<strong>in</strong> G aff<strong>in</strong>ity<br />

chromatography.<br />

Contents and Storage<br />

All pFUSE-Fc, pINFUSE-Fc and pFUSE-SEAP-Fc plasmids are provided as 20 μg of lyophilized<br />

DNA. Product is shipped at room temperature and should be stored at -20°C. Plasmid is<br />

stable up to one year when properly stored. Each plasmid is provided with 4 pouches of<br />

E. coli Fast-Media ® Zeo (2 TB and 2 Agar, see pages 44-45).<br />

28<br />

www.<strong>in</strong>vivogen.com/fc-fusions<br />

MCS<br />

H<strong>in</strong>ge


Eng<strong>in</strong>eer<strong>in</strong>g Fc regions for altered properties<br />

The Fc region of an antibody mediates its serum half-life and effector functions,<br />

such as complement-dependent cytotoxicity (CDC), antibody-dependent cellular<br />

phagocytosis (ADCC) and antibody-dependent cell phagocytosis (ADCP).<br />

Eng<strong>in</strong>eer<strong>in</strong>g the Fc region of a therapeutic monoclonal antibody or Fc fusion<br />

prote<strong>in</strong> allows the generation of molecules that are better suited to the<br />

pharmacology activity required of them 1 .<br />

Eng<strong>in</strong>eered Fc regions for <strong>in</strong>creased half-life<br />

One approach to improve the efficacy of a therapeutic antibody is to <strong>in</strong>crease<br />

its serum persistence, thereby allow<strong>in</strong>g higher circulat<strong>in</strong>g levels, less frequent<br />

adm<strong>in</strong>istration and reduced doses. The half-life of an IgG depends on its pHdependent<br />

b<strong>in</strong>d<strong>in</strong>g to the neonatal receptor FcRn. FcRn, which is expressed on<br />

the surface of endothelial cells, b<strong>in</strong>ds the IgG <strong>in</strong> a pH-dependent manner and<br />

protects it from degradation. Some antibodies that selectively b<strong>in</strong>d the FcRn at<br />

pH 6.0, but not pH 7.4, exhibit a higher half-life <strong>in</strong> a variety of animal models.<br />

Several mutations located at the <strong>in</strong>terface between the CH2 and CH3 doma<strong>in</strong>s,<br />

such as T250Q/M428L 2 and M252Y/S254T/T256E + H433K/N434F 3 , have been<br />

shown to <strong>in</strong>crease the b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ity to FcRn and the half-life of IgG1 <strong>in</strong> vivo.<br />

However, there is not always a direct relationship between <strong>in</strong>creased FcRn<br />

b<strong>in</strong>d<strong>in</strong>g and improved half-life 4 .<br />

Eng<strong>in</strong>eered Fc regions for altered effector function<br />

Depend<strong>in</strong>g on the therapeutic antibody or Fc fusion prote<strong>in</strong> application, it may<br />

be desired to either reduce or <strong>in</strong>crease the effector function. For antibodies that<br />

target cell-surface molecules, especially those on immune cells, abrogat<strong>in</strong>g effector<br />

functions is required. Conversely, for antibodies <strong>in</strong>tended for oncology use,<br />

<strong>in</strong>creas<strong>in</strong>g effector functions may improve the therapeutic activity.<br />

The four human IgG isotypes b<strong>in</strong>d the activat<strong>in</strong>g Fcg receptors (FcgRI, FcgRIIa,<br />

FcgRIIIa), the <strong>in</strong>hibitory FcgRIIb receptor, and the first component of complement<br />

(C1q) with different aff<strong>in</strong>ities, yield<strong>in</strong>g very different effector functions 5 . B<strong>in</strong>d<strong>in</strong>g of<br />

IgG to the FcgRs or C1q depends on residues located <strong>in</strong> the h<strong>in</strong>ge region and the<br />

CH2 doma<strong>in</strong>. Two regions of the CH2 doma<strong>in</strong> are critical for FcgRs and C1q<br />

b<strong>in</strong>d<strong>in</strong>g, and have unique sequences <strong>in</strong> IgG2 and IgG4. Substitutions <strong>in</strong>to human<br />

IgG1 of IgG2 residues at positions 233-236 and IgG4 residues at positions 327,<br />

330 and 331 were shown to greatly reduce ADCC and CDC 6, 7 . Furthermore,<br />

Idusogie et al. demonstrated that alan<strong>in</strong>e substitution at different positions, <strong>in</strong>clud<strong>in</strong>g<br />

K322, significantly reduced complement activation 8 . Similarly, mutations <strong>in</strong> the CH2<br />

doma<strong>in</strong> of mur<strong>in</strong>e IgG2A were shown to reduce the b<strong>in</strong>d<strong>in</strong>g to FcgRI, and C1q 9 .<br />

Numerous mutations have been made <strong>in</strong> the CH2 doma<strong>in</strong> of human IgG1 and<br />

their effect on ADCC and CDC tested <strong>in</strong> vitro 7-10 . Notably, alan<strong>in</strong>e substitution<br />

at position 333 was reported to <strong>in</strong>crease both ADCC and CDC 7, 9 . Lazar et al.<br />

described a triple mutant (S239D/I332E/A330L) with a higher aff<strong>in</strong>ity for FcgRIIIa<br />

and a lower aff<strong>in</strong>ity for FcgRIIb result<strong>in</strong>g <strong>in</strong> enhanced ADCC 11 . The same<br />

mutations were used to generate an antibody with <strong>in</strong>creased ADCC 12 . Richards<br />

et al. studied a slightly different triple mutant (S239D/I332E/G236A) with<br />

Features of Eng<strong>in</strong>eered Fc<br />

Eng<strong>in</strong>eered Fc Isotype Mutations FcR/C1q B<strong>in</strong>d<strong>in</strong>g Effector Function Ref.<br />

hIgG1e1-Fc Human IgG1 T250Q/M428L Increased b<strong>in</strong>d<strong>in</strong>g to FcRn Increased half-life 2<br />

hIgG1e2-Fc Human IgG1 M252Y/S254T/T256E + H433K/N434F Increased b<strong>in</strong>d<strong>in</strong>g to FcRn Increased half-life 3<br />

hIgG1e3-Fc Human IgG1 E233P/L234V/L235A/DG236 + A327G/A330S/P331S Reduced b<strong>in</strong>d<strong>in</strong>g to FcγRI Reduced ADCC and CDC 6, 7<br />

hIgG1e4-Fc Human IgG1 E333A Increased b<strong>in</strong>d<strong>in</strong>g to FcγRIIIa Increased ADCC and CDC 8, 10<br />

hIgG1e5-Fc Human IgG1 S239D/I332E/A330L Increased b<strong>in</strong>d<strong>in</strong>g to FcγRIIIa Increased ADCC 11, 12<br />

hIgG1e6-Fc Human IgG1 P257I/Q311I Increased b<strong>in</strong>d<strong>in</strong>g to FcRn Unchanged half-life 4<br />

hIgG1e7-Fc Human IgG1 K326W/E333S Increased b<strong>in</strong>d<strong>in</strong>g to C1q Increased CDC 9<br />

hIgG1e9-Fc Human IgG1 S239D/I332E/G236A Increased FcγRIIa/FcγRIIb ratio Increased macrophage phagocytosis 13<br />

hIgG2e1-Fc Human IgG2 K322A Reduced b<strong>in</strong>d<strong>in</strong>g to C1q Reduced CDC 8<br />

hIgG4e1-Fc Human IgG4 S228P - Reduced Fab-arm exchange 14<br />

mIgG2ae1-Fc Mouse IgG2a L235E + E318A/K320A/K322A Reduced b<strong>in</strong>d<strong>in</strong>g to FcγRI and C1q Reduced ADCC and CDC 9<br />

www.<strong>in</strong>vivogen.com/fc-fusions<br />

improved FcgRIIIa aff<strong>in</strong>ity and FcgRIIa/FcgRIIb ratio that mediates enhanced<br />

phagocytosis of target cells by macrophages 13 .<br />

Due to their lack of effector functions, IgG4 antibodies represent the preferred<br />

IgG subclass for receptor block<strong>in</strong>g without cell depletion. IgG4 molecules can<br />

exchange half-molecules <strong>in</strong> a dynamic process termed Fab-arm exchange. This<br />

phenomenon can occur between therapeutic antibodies and endogenous IgG4.<br />

The S228P mutation has been shown to prevent this recomb<strong>in</strong>ation process<br />

allow<strong>in</strong>g the design of less unpredictable therapeutic IgG4 antibodies 14 .<br />

1. Strohl WR., 2009. Optimization of Fc-mediated effector functions of monoclonal antibodies.<br />

Curr Op<strong>in</strong> Biotechnol. 20(6):685-91. Review. 2. H<strong>in</strong>ton PR. et al., 2004. Eng<strong>in</strong>eered human<br />

IgG antibodies with longer serum half-lives <strong>in</strong> primates. J Biol Chem. 279(8):6213-6. 3. Vaccaro<br />

C. et al., 2005. Eng<strong>in</strong>eer<strong>in</strong>g the Fc region of immunoglobul<strong>in</strong> G to modulate <strong>in</strong> vivo antibody<br />

levels. Nat Biotechnol. 23(10):1283-8. 4. Datta-Mannan A. et al., 2007. Humanized IgG1 Variants<br />

with Differential B<strong>in</strong>d<strong>in</strong>g Properties to the Neonatal Fc Receptor: Relationship to<br />

Pharmacok<strong>in</strong>etics <strong>in</strong> Mice and Primates. Drug Metab. Dispos. 35: 86 - 94. 5. Bruhns P. et al.,<br />

2009. Specificity and aff<strong>in</strong>ity of human Fcgamma receptors and their polymorphic variants for<br />

human IgG subclasses. Blood. 113(16):3716-25. 6. Armour KL. et al., 1999. Recomb<strong>in</strong>ant human<br />

IgG molecules lack<strong>in</strong>g Fcgamma receptor I b<strong>in</strong>d<strong>in</strong>g and monocyte trigger<strong>in</strong>g activities. Eur J<br />

Immunol. 29(8):2613-24. 7. Shields RL. et al., 2001. High resolution mapp<strong>in</strong>g of the b<strong>in</strong>d<strong>in</strong>g<br />

site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of<br />

IgG1 variants with improved b<strong>in</strong>d<strong>in</strong>g to the Fc gamma R. J Biol Chem. 276(9):6591-604.<br />

8. Idusogie EE. et al., 2000. Mapp<strong>in</strong>g of the C1q b<strong>in</strong>d<strong>in</strong>g site on rituxan, a chimeric antibody<br />

with a human IgG1 Fc. J Immunol. 164(8):4178-84. 9. Steurer W. et al., 1995. Ex vivo coat<strong>in</strong>g<br />

of islet cell allografts with mur<strong>in</strong>e CTLA4/Fc promotes graft tolerance. J Immunol. 155(3):1165-<br />

74. 10. Idusogie EE. et al., 2001. Eng<strong>in</strong>eered antibodies with <strong>in</strong>creased activity to recruit<br />

complement. J Immunol. 166(4):2571-5. 11. Lazar GA. et al., 2006. Eng<strong>in</strong>eered antibody Fc<br />

variants with enhanced effector function. PNAS 103(11): 4005–4010. 12. Ryan MC. et al.,<br />

2007. Antibody target<strong>in</strong>g of B-cell maturation antigen on malignant plasma cells. Mol. Cancer<br />

Ther., 6: 3009 - 3018. 13. Richards JO,. et al., 2008. Optimization of antibody b<strong>in</strong>d<strong>in</strong>g to<br />

FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther. 7(8):2517-<br />

27. 14. Labrijn AF. et al., 2009. Therapeutic IgG4 antibodies engage <strong>in</strong> Fab-arm exchange with<br />

endogenous human IgG4 <strong>in</strong> vivo. Nat Biotechnol. 27(8):767-71.<br />

29<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

30<br />

Choose a pFUSE-Fc plasmid accord<strong>in</strong>gly to your application:<br />

• Prote<strong>in</strong> purification - All pFUSE-Fc can be used for Prote<strong>in</strong> A or Prote<strong>in</strong> G aff<strong>in</strong>ity chromatography (see table below).<br />

• Long term expression <strong>in</strong> vivo - Choose a pFUSE-Fc with an Fc eng<strong>in</strong>eered to display an <strong>in</strong>creased half-life<br />

• Therapeutic use with cell depletion activity - Choose a pFUSE-Fc with an Fc eng<strong>in</strong>eered to display <strong>in</strong>creased ADCC and CDC<br />

• Therapeutic use without cell depletion activity - Choose a pFUSE-Fc with an Fc eng<strong>in</strong>eered to display reduced ADCC and CDC<br />

PRODUCT ISOTYPE QUANTITY CAT. CODE (No IL2ss) CAT. CODE (With IL2ss)<br />

pFUSE-Fc - Native Fc Regions<br />

pFUSE-hIgG1-Fc Human IgG1 20 μg pfuse-hg1fc1 pfuse-hg1fc2<br />

pFUSE-hIgG2-Fc Human IgG2 20 μg pfuse-hfc1 pfuse-hfc2<br />

pFUSE-hIgG3-Fc Human IgG3 20 μg pfuse-hg3fc1 pfuse-hg3fc2<br />

pFUSE-hIgG4-Fc Human IgG4 20 μg pfuse-hg4fc1 pfuse-hg4fc2<br />

pFUSE-mIgG1-Fc* Mouse IgG1 20 μg pfuse-mg1fc1 pfuse-mg1fc2<br />

pFUSE-mIgG2a-Fc Mouse IgG2a 20 μg pfuse-mg2afc1 pfuse-mg2afc2<br />

pFUSE-mIgG2b-Fc Mouse IgG2b 20 μg pfuse-mg2bfc1 pfuse-mg2bfc2<br />

pFUSE-mIgG3-Fc Mouse IgG3 20 μg pfuse-mg3fc1 pfuse-mg3fc2<br />

pFUSE-rIgG-Fc Rabbit IgG 20 μg pfuse-rfc1 pfuse-rfc2<br />

pFUSE-rtIgG2b-Fc Rat IgG2b 20 μg pfuse-rtg2bfc1 pfuse-rtg2bfc2<br />

pINFUSE - Native Fc Regions with <strong>in</strong>trons<br />

pINFUSE-hIgG1-Fc Human IgG1 20 μg pfc1-hg<strong>in</strong>1 pfc2-hg<strong>in</strong>1<br />

pINFUSE-hIgG2-Fc Human IgG2 20 μg pfc1-hg<strong>in</strong>2 pfc2-hg<strong>in</strong>2<br />

pINFUSE-hIgG3-Fc Human IgG3 20 μg pfc1-hg<strong>in</strong>3 pfc2-hg<strong>in</strong>3<br />

pINFUSE-hIgG4-Fc Human IgG4 20 μg pfc1-hg<strong>in</strong>4 pfc2-hg<strong>in</strong>4<br />

pINFUSE-mIgG2b-Fc Mouse IgG2b 20 μg pfc1-mg<strong>in</strong>2 pfc2-mg<strong>in</strong>2<br />

pFUSE-Fc - Eng<strong>in</strong>eered Fc Regions (see description page 33)<br />

pFUSE-hIgG1e1-Fc Human IgG1 20 μg pfc1-hg1e1 pfc2-hg1e1<br />

pFUSE-hIgG1e2-Fc Human IgG1 20 μg pfc1-hg1e2 pfc2-hg1e2<br />

pFUSE-hIgG1e3-Fc** Human IgG1 20 μg pfc1-hg1e3 pfc2-hg1e3<br />

pFUSE-hIgG1e4-Fc Human IgG1 20 μg pfc1-hg1e4 pfc2-hg1e4<br />

pFUSE-hIgG1e5-Fc Human IgG1 20 μg pfc1-hg1e5 pfc2-hg1e5<br />

pFUSE-hIgG1e6-Fc Human IgG1 20 μg pfc1-hg1e6 pfc2-hg1e6<br />

pFUSE-hIgG1e7-Fc Human IgG1 20 μg pfc1-hg1e7 pfc2-hg1e7<br />

pFUSE-hIgG1e9-Fc Human IgG1 20 μg pfc1-hg1e9 pfc2-hg1e9<br />

pFUSE-hIgG2e1-Fc Human IgG2 20 μg pfc1-hg2e1 pfc2-hg2e1<br />

pFUSE-hIgG4e1-Fc Human IgG4 20 μg pfc1-hg4e1 pfc2-hg4e1<br />

pFUSE-mIgG2ae1-Fc Mouse IgG2a 20 μg pfc1-mg2ae1 pfc2-mg2ae1<br />

pFUSE-SEAP-Fc - Control Plasmids<br />

pFUSE-SEAP-hG1Fc Human IgG1 20 μg pfuse-hg1sp -<br />

pFUSE-SEAP-hG2Fc Human IgG2 20 μg pfuse-hsp -<br />

pFUSE-SEAP-hG3Fc Human IgG3 20 μg pfuse-hg3sp -<br />

pFUSE-SEAP-hG4Fc Human IgG4 20 μg pfuse-hg4sp -<br />

pFUSE-SEAP-mG2aFc Mouse IgG2a 20 μg pfuse-mg2asp -<br />

pFUSE-SEAP-mG2bFc Mouse IgG2b 20 μg pfuse-mg2bsp -<br />

pFUSE-SEAP-mG3Fc Mouse IgG3 20 μg pfuse-mg3sp -<br />

pFUSE-SEAP-rFc Rabbit IgG 20 μg pfuse-rsp -<br />

pFUSE-SEAP-rtFc Rat IgG2b 20 μg pfuse-rtsp -<br />

* The Fc region of mouse IgG1 appears to have a very low aff<strong>in</strong>ity for Prote<strong>in</strong> G unlike the entire IgG1 molecule. Therefore, prote<strong>in</strong> G may not be suitable for the<br />

purification of mIgG1-Fc-fusion prote<strong>in</strong>s. Prote<strong>in</strong> A may be used after optimization of the purification conditions. High salt concentration and alkal<strong>in</strong>e pH are expected<br />

to <strong>in</strong>crease aff<strong>in</strong>ity (Nagaoka T. et al, 2003 Prote<strong>in</strong> Eng. 16(4):243:245).<br />

** pFUSE-hIgG1e3 plasmids featur<strong>in</strong>g the IgG1e3 eng<strong>in</strong>eered Fc are sold by InvivoGen under a limited license from Cambridge Enterprise Limited (International<br />

Publication Number WO 99/58572).<br />

www.<strong>in</strong>vivogen.com/fc-fusions


pBROAD & pWHERE - Optimized Vector for Rodent Transgenesis<br />

• pBROAD plasmids were designed for the expression of your favorite gene <strong>in</strong> virtually all tissues of new transgenic mice and rats. pBROAD<br />

plasmids feature the ubiquitous ROSA26 promoter.<br />

• pWHERE plasmid was specifically designed for the determ<strong>in</strong>ation of temporal expression and tissue distribution of your promoter of<br />

<strong>in</strong>terest, cloned with<strong>in</strong> an <strong>in</strong>sulated LacZ cassette, <strong>in</strong> transgenic mice and rats.<br />

Features and Benefits<br />

pBROAD<br />

pBROAD plasmids feature the ROSA26 promoter, a high CpG content<br />

and TATA-less promoter. It directs <strong>in</strong> vivo expression of the transgene <strong>in</strong><br />

most tissue types <strong>in</strong>clud<strong>in</strong>g cells of the develop<strong>in</strong>g germ l<strong>in</strong>e and<br />

hematopoietic l<strong>in</strong>eage 1, 2 . It is also very effective <strong>in</strong> vitro <strong>in</strong> a very broad<br />

range of mammalian cell l<strong>in</strong>es.<br />

• pBROAD2 features the human ROSA26 promoter.<br />

• pBROAD3 features the mouse ROSA26 promoter.<br />

pBROAD plasmids are available with a multiple clon<strong>in</strong>g site (MCS)<br />

conta<strong>in</strong><strong>in</strong>g several commonly used restriction sites, for convenient clon<strong>in</strong>g<br />

of your gene of <strong>in</strong>terest. pBROAD plasmids are also available with the<br />

synthetic lacZDCpGnls gene, a CpG-free allele of the LacZ gene with a<br />

nuclear localization signal.<br />

The E. coli region can be easily removed by us<strong>in</strong>g the Pac I restriction<br />

enzyme.<br />

pWHERE<br />

pWHERE plasmid features two mur<strong>in</strong>e H19 <strong>in</strong>sulators 3, 4 , that flank on<br />

each side the LacZ transcription unit. These <strong>in</strong>sulators are expected to<br />

protect the <strong>in</strong>tegrated transcriptional LacZ unit from negative as well as<br />

positive <strong>in</strong>fluences from neighbor<strong>in</strong>g sequences. Thus pWHERE provides<br />

an optimized environment to study the temporal and tissue distribution<br />

of a promoter of <strong>in</strong>terest <strong>in</strong> mice and rats.<br />

pWHERE conta<strong>in</strong>s the lacZDCpGnls gene, a CpG-free allele to elim<strong>in</strong>ate<br />

<strong>in</strong>terference of CpG methylation on expression (see page 138). A multiple<br />

clon<strong>in</strong>g site with many restriction sites is located upstream of the<br />

lacZDCpGnls gene for convenient clon<strong>in</strong>g of your own promoter or a<br />

promoter chosen from InvivoGen’s list (see pages 40-41).<br />

The E. coli region is flanked on either side by Pac I restriction sites to<br />

facilitate its excision.<br />

1. Kisseberth WC. et al. 1999. Ubiquitous expression of marker transgenes <strong>in</strong> mice and<br />

rats. Dev Biol.214:128-38. 2. Farley FW. et al. 2000. Widespread recomb<strong>in</strong>ase expression<br />

us<strong>in</strong>g FLPeR (flipper) mice. Genesis. 28:106-10. 3. Kaffer CR. et al. 2000. A transcriptional<br />

<strong>in</strong>sulator at the impr<strong>in</strong>ted H19/Igf2 locus. Genes Dev. 14:1908-19. 4 Bell AC. & Felsenfeld<br />

G. 2000. Methylation of a CTCF-dependent boundary controls impr<strong>in</strong>ted expression of<br />

the Igf2 gene. Nature. 405:482-485.<br />

Contents and Storage<br />

pBROAD and pWHERE plasmids are provided as 20 μg of lyophilized<br />

DNA. Plasmids are shipped at room temperature. Store at -20°C.<br />

pBROAD and pWHERE plasmids are also available <strong>in</strong> a kit that conta<strong>in</strong>s:<br />

- pBROAD kit: 20 μg pBROAD-mcs plasmid, 20 μg pBROAD-LacZ<br />

conta<strong>in</strong><strong>in</strong>g the lacZDCpGnls gene, 4 pouches of E. coli Fast-Media ® Amp<br />

- pWHERE kit: - 20 μg pWHERE plasmid, 10 μg pWHERE-rEF1 conta<strong>in</strong><strong>in</strong>g<br />

the rat EF-1a promoter, 4 pouches of E. coli Fast-Media ® Amp (2 TB and<br />

2 Agar, see pages 44-45)<br />

Pac I<br />

Pac I<br />

www.<strong>in</strong>vivogen.com/rodent-transgenesis<br />

Pac I<br />

MCS<br />

or<br />

LacZnls<br />

Pac I<br />

MCS<br />

PRODUCT QTY CAT. CODE<br />

pBROAD2-mcs 20 μg pbroad2<br />

pBROAD2-LacZnls 20 μg pbroad2-lacz<br />

pBROAD2 Kit 1 kit kbroad2<br />

pBROAD3-mcs 20 μg pbroad3<br />

pBROAD3-LacZnls 20 μg pbroad3-lacz<br />

pBROAD3 Kit 1 kit kbroad3<br />

pWHERE 20 μg pwhere<br />

pWHERE Kit 1 kit k-where<br />

31<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

pMONO & pSELECT - Expression of One Gene of Interest<br />

pMONO & pSELECT plasmids are specifically designed for strong and constitutive expression of a gene of <strong>in</strong>terest <strong>in</strong> a wide variety of mammalian<br />

cell l<strong>in</strong>es. They allow the selection of stable transfectants and offer a choice of selectable markers for both E. coli and mammalian cells.<br />

• pMONO plasmids conta<strong>in</strong> a unique transcription unit that drives the expression of the gene of <strong>in</strong>terest and the selectable marker through<br />

an <strong>in</strong>ternal ribosome entry site (IRES). This dual gene expression system ensures that stable clones express the gene of <strong>in</strong>terest.<br />

• pSELECT plasmids conta<strong>in</strong> two transcription units, the first drives the expression of the gene of <strong>in</strong>terest and the second drives the<br />

expression of the resistance gene.<br />

Features and Benefits<br />

Strong and Ubiquitous Expression of the Transgene<br />

- pMONO plasmids feature the SV40/FerH/mEF-1a promoter composed<br />

of the ferrit<strong>in</strong> heavy cha<strong>in</strong> (FerH) core promoter fused at its 5’ end to<br />

the SV40 enhancer, and at its 3’ end to the <strong>in</strong>tron-conta<strong>in</strong><strong>in</strong>g 5’UTR of<br />

the mouse elongation factor 1 alpha gene.<br />

- pSELECT plasmids feature the strong EF-1a/HTLV composite promoter<br />

that comb<strong>in</strong>es the elongation factor 1 alpha core promoter and the<br />

5’untranslated region of the Human T-cell Leukemia Virus.<br />

Variety of Selection Options<br />

- pMONO plasmids are selectable with blasticid<strong>in</strong>, hygromyc<strong>in</strong>,<br />

kanamyc<strong>in</strong>/G418 and Zeoc<strong>in</strong> . All resistance genes are cloned<br />

downstream of the IRES from the Foot and Mouth Disease Virus (FMDV),<br />

elim<strong>in</strong>at<strong>in</strong>g the need of a second mammalian promoter. The FMDV IRES<br />

is <strong>in</strong> tandem with the constitutive bacterial EM7 promoter conferr<strong>in</strong>g<br />

resistance both <strong>in</strong> E. coli and mammalian cells.<br />

- pSELECT plasmids are selectable with blasticid<strong>in</strong>, hygromyc<strong>in</strong>,<br />

kanamyc<strong>in</strong>/G418, puromyc<strong>in</strong> and Zeoc<strong>in</strong> . These selectable markers are<br />

driven by the CMV promoter <strong>in</strong> tandem with the bacterial EM7 promoter<br />

for selection <strong>in</strong> both E. coli and mammalian cells. pSELECT is also available<br />

with the GFPzeo fusion gene that comb<strong>in</strong>es the GFP reporter gene and<br />

the Zeoc<strong>in</strong> resistance gene.<br />

Multiple Clon<strong>in</strong>g Site or Reporter Gene<br />

- pMONO plasmids carry a multiple clon<strong>in</strong>g site (MCS) downstream of<br />

the SV40/FerH/mEF-1a promoter for convenient clon<strong>in</strong>g of a gene of<br />

<strong>in</strong>terest. pMONO plasmids are also available with a GFP allele and can<br />

be used as control vectors.<br />

- pSELECT plasmids conta<strong>in</strong> an MCS downstream of the EF-1a/HTLV<br />

promoter or the LacZ reporter gene as a control.<br />

Contents and Storage<br />

pMONO and pSELECT plasmids are provided as 20 μg of lyophilized DNA.<br />

Product is shipped at room temperature and should be stored at -20°C.<br />

Plasmid is stable up to one year when properly stored.<br />

pMONO and pSELECT plasmids are provided with 4 pouches of E. coli Fast-<br />

Media ® conta<strong>in</strong><strong>in</strong>g the appropriate selective antibiotic (2 TB and 2 Agar).<br />

32<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17 HygroGold , see page 18<br />

Puromyc<strong>in</strong>, page 17 Zeoc<strong>in</strong> , page 18<br />

Fast-Media ® , pages 44-45<br />

PRODUCT QTY<br />

www.<strong>in</strong>vivogen.com/gene-expression<br />

CAT. CODE<br />

(MCS)<br />

MCS<br />

or<br />

GFP<br />

CAT. CODE<br />

(GFP)<br />

pMONO-blasti-mcs 20 μg pmonob-mcs pmonob-gfp<br />

pMONO-hygro-mcs 20 μg pmonoh-mcs pmonoh-gfp<br />

pMONO-neo-mcs 20 μg pmonon-mcs pmonon-gfp<br />

pMONO-zeo-mcs 20 μg pmonoz-mcs pmonoz-gfp<br />

PRODUCT QTY<br />

CAT. CODE<br />

(MCS)<br />

MCS<br />

or<br />

LacZ<br />

CAT. CODE<br />

(LacZ)<br />

pSELECT-blasti 20 μg psetb-mcs psetb-lacz<br />

pSELECT-hygro 20 μg pseth-mcs pseth-lacz<br />

pSELECT-neo 20 μg psetn-mcs psetn-lacz<br />

pSELECT-puro 20 μg psetp-mcs psetp-lacz<br />

pSELECT-zeo 20 μg psetz-mcs psetz-lacz<br />

pSELECT-GFPzeo 20 μg psetgz-mcs psetgz-lacz


pSELECT-Tag - Expression of a GFP-, HA- or His-Tagged Gene<br />

pSELECT-Tag is a new family of expression plasmids designed to generate tagged prote<strong>in</strong>s <strong>in</strong> order to facilitate their detection and/or purification.<br />

pSELECT-Tag features three well-known tags: the green fluorescent prote<strong>in</strong> (GFP) gene, the human <strong>in</strong>fluenza hemagglut<strong>in</strong><strong>in</strong> (HA) epitope and<br />

the polyhistid<strong>in</strong>e (His) tag. pSELECT-Tag plasmids allow to add the tag either at the N or C term<strong>in</strong>us of the prote<strong>in</strong> of <strong>in</strong>terest.<br />

Features and Benefits<br />

Three Commonly-Used Tags<br />

• GFP-Tag<br />

• HA-Tag<br />

• His-Tag<br />

N-Tagged or C-Tagged Prote<strong>in</strong><br />

- N-term<strong>in</strong>al tag: the tag encompasses the Start Codon and is followed<br />

by a multiple clon<strong>in</strong>g site (MCS).<br />

- C-term<strong>in</strong>al tag: the tag is cloned downstream of a multiple clon<strong>in</strong>g site<br />

and followed by a Stop codon.<br />

Many Selectable Markers Available<br />

pSELECT plasmids come with a variety of selectable markers that confer<br />

antibiotic resistance <strong>in</strong> both E. coli and mammalian cells.<br />

Applications<br />

• GFP-Tag:- Visualization of the spatial and temporal localization of the<br />

tagged prote<strong>in</strong> by fluorescence microscopy<br />

• HA-Tag: - Detection of the tagged prote<strong>in</strong> by immunocytochemistry,<br />

immunoprecipitation or Western blott<strong>in</strong>g<br />

- Purification of the tagged prote<strong>in</strong> by aff<strong>in</strong>ity chromatography<br />

• His-Tag: - Purification of the tagged prote<strong>in</strong> us<strong>in</strong>g an NI-NTA column<br />

Contents and Storage<br />

pSELECT-Tag plasmids are provided as 20 μg of lyophilized DNA. Product<br />

is shipped at room temperature and should be stored at -20°C. Plasmid is<br />

stable up to one year when properly stored.<br />

pSELECT-Tag plasmids are provided with 4 pouches of E. coli Fast-Media ®<br />

conta<strong>in</strong><strong>in</strong>g the appropriate selective antibiotic (2 TB and 2 Agar).<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17 Anti-HA Tag Antibody, page 73<br />

Zeoc<strong>in</strong> , page 18 Fast-Media ® , pages 44-45<br />

www.<strong>in</strong>vivogen.com/gene-expression<br />

EM7 Antibio<br />

R pAn pAn<br />

PRODUCT<br />

GFP Tag<br />

QTY<br />

CAT. CODE<br />

(N-Tag)<br />

CAT. CODE<br />

(C-Tag)<br />

pSELECT-GFP-blasti 20 μg psetb-ngfp psetb-cgfp<br />

pSELECT-GFP-zeo<br />

HA Tag<br />

20 μg psetz-ngfp psetz-cgfp<br />

pSELECT-HA-blasti 20 μg psetb-nha psetb-cha<br />

pSELECT-HA-zeo<br />

His Tag<br />

20 μg psetz-nha psetz-cha<br />

pSELECT-His-blasti 20 μg psetb-nhis psetb-chis<br />

pSELECT-His-zeo 20 μg psetz-nhis psetz-chis<br />

33<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

pVITRO - Expression of Two Genes of Interest <strong>in</strong> vitro<br />

pVITRO is a family of plasmids developed ma<strong>in</strong>ly for <strong>in</strong> vitro studies. They allow the ubiquitous and constitutive co-expression of two genes of<br />

<strong>in</strong>terest. pVITRO plasmids can be stably transfected <strong>in</strong> mammalian cells and the genes of <strong>in</strong>terest are expressed at high levels. Each pVITRO<br />

plasmid is available with either two multiple clon<strong>in</strong>g sites or two reporter genes.<br />

Features and Benefits<br />

Gene Comb<strong>in</strong>ations <strong>in</strong> a S<strong>in</strong>gle Plasmid<br />

Co-expression of two or more genes from a s<strong>in</strong>gle vector is more efficient<br />

and convenient than us<strong>in</strong>g two separate vectors. pVITRO are multigenic<br />

plasmids that conta<strong>in</strong> two dist<strong>in</strong>ct transcription units (TU).<br />

Strong and Constitutive Expression of Two Transgenes<br />

Each pVITRO plasmid features two constitutive promoters that drive high<br />

levels of expression from two separate TU <strong>in</strong> a large number of<br />

mammalian cell l<strong>in</strong>es. Transcriptional <strong>in</strong>terference is m<strong>in</strong>imized by us<strong>in</strong>g<br />

promoters of different orig<strong>in</strong>s or promoters that are coord<strong>in</strong>ately<br />

activated (i.e. ferrit<strong>in</strong> promoters), and strong polyadenylation signals<br />

(polyA).<br />

• pVITRO1 plasmids carry two elongation factor 1 alpha (EF-1a)<br />

promoters, from rat and mouse orig<strong>in</strong>s comb<strong>in</strong>ed to the CMV and SV40<br />

enhancers respectively.<br />

• pVITRO2 plasmids conta<strong>in</strong> two human ferrit<strong>in</strong> composite promoters,<br />

FerH (heavy cha<strong>in</strong>) and FerL (light cha<strong>in</strong>), comb<strong>in</strong>ed to the SV40 and<br />

CMV enhancers respectively. To elim<strong>in</strong>ate the iron regulation, their 5’UTRs<br />

have been replaced by the 5’UTR of the mouse and chimpanzee EF-1a<br />

genes.<br />

S<strong>in</strong>gle Selection Marker for E. coli and Mammalian Cells<br />

pVITRO plasmids are available with different selectable markers that are<br />

active both <strong>in</strong> E. coli and mammalian cells: bsr (blasticid<strong>in</strong> resistance), hph<br />

(hygromyc<strong>in</strong> resistance), neo (kanamyc<strong>in</strong>/G418 resistance). In bacteria, the<br />

resistance gene is expressed from the E. coli EM7 promoter. In mammalian<br />

cells, it is transcribed from the promoter located 3’ of the Ori, as a<br />

polycistronic mRNA and translated through the IRES of the Foot and<br />

Mouth Disease Virus.<br />

Available with Two MCS or Two Reporter Genes<br />

pVITRO-mcs plasmids conta<strong>in</strong> two multiple clon<strong>in</strong>g sites (MCS) for the<br />

convenient clon<strong>in</strong>g of cDNAs.<br />

pVITRO-GFP/LacZ express the GFP and LacZ reporter genes, and can<br />

be used as controls. As the reporter genes are flanked by unique<br />

restriction sites, they can be used for the clon<strong>in</strong>g of open read<strong>in</strong>g frames<br />

that can be chosen from InvivoGen’s Gene A-List (see page 36 or visit<br />

our website www.<strong>in</strong>vivogen.com/orfs).<br />

Contents and Storage<br />

Each pVITRO plasmid is provided as 20 μg of lyophilized DNA. Product<br />

is shipped at room temperature and should be stored at -20°C. Plasmid<br />

is stable up to one year when properly stored.<br />

Each pVITRO is provided with 4 pouches of the appropriate E. coli Fast-<br />

Media ® (2 TB and 2 Agar).<br />

34<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17 G418, page 17<br />

HygroGold , see page 18 Puromyc<strong>in</strong>, page 17<br />

Zeoc<strong>in</strong> , page 18 E. coli Fast-Media ® , pages 44-45<br />

MCS1<br />

or<br />

GFP<br />

MCS1<br />

or<br />

GFP<br />

www.<strong>in</strong>vivogen.com/gene-expression<br />

MCS 1 5’- Bsp EI, Bst 1107I, Bam HI, Bsi WI, Avr II -3’<br />

MCS 2 5’- Age I, Eco RV, Bgl II, Bsr GI, Nhe I -3’<br />

MCS2<br />

or<br />

LacZ<br />

MCS2<br />

or<br />

LacZ<br />

MCS 1 5’- Age I, Eco RV, Bam HI, Mlu I, Cla I, Sal I, Avr II -3’<br />

MCS 2 5’- Sgr AI, Fsp I, Bgl II, Eco RI, Bst BI, Xho I, Nhe I-3’<br />

PRODUCT QTY CAT. CODE<br />

pVITRO1-blasti-mcs 20 μg pvitro1-bmcs<br />

pVITRO1-blasti-GFP/LacZ 20 μg pvitro1-bgfplacz<br />

pVITRO1-hygro-mcs 20 μg pvitro1-mcs<br />

pVITRO1-hygro-GFP/LacZ 20 μg pvitro1-gfplacz<br />

pVITRO1-neo-mcs 20 μg pvitro1-nmcs<br />

pVITRO1-neo-GFP/LacZ 20 μg pvitro1-ngfplacz<br />

pVITRO2-blasti-mcs 20 μg pvitro2-bmcs<br />

pVITRO2-blasti-GFP/LacZ 20 μg pvitro2-bgfplacz<br />

pVITRO2-hygro-mcs 20 μg pvitro2-mcs<br />

pVITRO2-hygro-GFP/LacZ 20 μg pvitro2-gfplacz<br />

pVITRO2-neo-mcs 20 μg pvitro2-nmcs<br />

pVITRO2-neo-GFP/LacZ 20 μg pvitro2-ngfplacz


pVIVO - Expression of Two Genes of Interest <strong>in</strong> vivo<br />

pVIVO is a family of plasmids specifically designed for <strong>in</strong> vivo experiments. They allow strong and susta<strong>in</strong>ed co-expression of two genes of<br />

<strong>in</strong>terest <strong>in</strong> many tissues and organs. Each pVIVO is available with a pair of multiple clon<strong>in</strong>g sites or a pair of reporter genes.<br />

Features and Benefits<br />

Concomitant Expression of Two Genes of Interest<br />

pVIVO plasmids conta<strong>in</strong> two separate transcription units (TU), each<br />

consist<strong>in</strong>g of a strong promoter and an efficient polyadenylation signal. Both<br />

promoters <strong>in</strong> each pVIVO plasmid were chosen for their ability to work<br />

simultaneously, elim<strong>in</strong>at<strong>in</strong>g the potential risk of transcriptional <strong>in</strong>terferences<br />

between the two TUs.<br />

• pVIVO1 plasmids conta<strong>in</strong> two glucose regulated prote<strong>in</strong> (GRP)<br />

promoters coupled with either the SV40 or CMV enhancer. The human<br />

GRP94 and hamster GRP78 promoters drive high levels of expression <strong>in</strong><br />

normal conditions and are <strong>in</strong>duced <strong>in</strong> stress conditions prevail<strong>in</strong>g <strong>in</strong>side<br />

tumors, such as glucose deprivation and hypoxia.<br />

• pVIVO2 plasmids conta<strong>in</strong> two human ferrit<strong>in</strong> composite promoters,<br />

FerH (heavy cha<strong>in</strong>) and FerL (light cha<strong>in</strong>), comb<strong>in</strong>ed to the SV40 and<br />

CMV enhancers respectively. To elim<strong>in</strong>ate the iron regulation, their 5’UTRs<br />

have been replaced by the 5’UTR of the mouse and chimpanzee EF-1a<br />

genes.<br />

pVIVO plasmids carry the hygromyc<strong>in</strong> resistance gene for selection and<br />

amplification <strong>in</strong> E. coli. pVIVO plasmids do not conta<strong>in</strong> a selectable marker<br />

for mammalian cells.<br />

Susta<strong>in</strong>ed Expression of the Transgenes<br />

Both promoters <strong>in</strong> pVIVO plasmids are of mammalian orig<strong>in</strong> and can yield<br />

longer last<strong>in</strong>g expression of the transgenes <strong>in</strong> vivo compared to viral<br />

promoters. Indeed, viral DNA sequences are recognized by the host<br />

immune system lead<strong>in</strong>g to their <strong>in</strong>activation usually through methylation.<br />

To further <strong>in</strong>crease the duration of expression, immunostimulatory<br />

sequences known as CpG motifs, which are present <strong>in</strong> high numbers <strong>in</strong><br />

bacterial DNA, were removed from the plasmid backbone. These specific<br />

motifs, found <strong>in</strong> E. coli hygromyc<strong>in</strong> resistance (hph) and b-galactosidase<br />

(lacZ) genes, were elim<strong>in</strong>ated by chemically synthesiz<strong>in</strong>g a new allele of<br />

these genes without alter<strong>in</strong>g the prote<strong>in</strong> sequence (see page 138).<br />

Available with Two MCS or Two Reporter Genes<br />

pVIVO-mcs plasmids conta<strong>in</strong> two multiple clon<strong>in</strong>g sites (MCS) for the<br />

convenient clon<strong>in</strong>g of cDNAs.<br />

pVIVO-GFP/LacZ express the GFP and LacZ reporter genes, and can be<br />

used as controls or for the clon<strong>in</strong>g of open read<strong>in</strong>g frames.<br />

Contents and Storage<br />

Each pVIVO plasmid is provided as 20 μg of lyophilized DNA. Product<br />

is shipped at room temperature and should be stored at -20°C.<br />

Plasmid is stable up to one year when properly stored.<br />

Each pVIVO is provided with 4 pouches of E. coli Fast-Media ® Hygro<br />

(2 TB and 2 Agar).<br />

Related Products<br />

Hygromyc<strong>in</strong> B, see page 18 E. coli Fast-Media ® , pages 44-45<br />

MCS1<br />

or<br />

GFP<br />

MCS 1 5’- Age I, Bsp HI, Xba I, H<strong>in</strong>d III, Bst 1107I, Avr II -3’<br />

MCS 2 5’- Ngo MI, Nco I, Bgl II, Eco RI, Nhe I-3’<br />

MCS1<br />

or<br />

GFP<br />

www.<strong>in</strong>vivogen.com/gene-expression<br />

SV40 hph-∆CpG Ori pAn<br />

MCS 1 5’- Bsp HI, Xba I, Bsr GI, Bst 1107I, Avr II -3’<br />

MCS 2 5’- Nco I, Bam HI, Eco RI, Eco RV, Nhe I-3’<br />

MCS2<br />

or<br />

LacZ<br />

MCS2<br />

or<br />

LacZ<br />

PRODUCT QTY CAT. CODE<br />

pVIVO1-mcs 20 μg pvivo1-mcs<br />

pVIVO1-GFP/LacZ 20 μg pvivo1-gfplacz<br />

pVIVO2-mcs 20 μg pvivo2-mcs<br />

pVIVO2-GFP/LacZ 20 μg pvivo2-gfplacz<br />

35<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

Gene A-List - Human and Mur<strong>in</strong>e ORFs<br />

Gene A-List is a collection of high quality, full-length sequenced human and mouse open read<strong>in</strong>g frames (ORFs) available <strong>in</strong> an expression<br />

vector ready-to-use for prote<strong>in</strong> expression. All ORFs are cloned downstream of a strong and ubiquitous mammalian promoter which makes<br />

these clones suitable for expression and functional studies <strong>in</strong> various mammalian cell l<strong>in</strong>es.<br />

Features and Benefits<br />

Full-length Sequenced Open Read<strong>in</strong>g Frames<br />

InvivoGen provides a large collection of human and mur<strong>in</strong>e genes, fully sequenced. These genes are provided as open read<strong>in</strong>g frames (ORFs) from the ATG<br />

to the Stop codon, exclud<strong>in</strong>g <strong>in</strong>trons and untranslated regions. As the ORFs are amplified from cDNA banks, a variant form is sometimes obta<strong>in</strong>ed. Most<br />

of the variations have been reported <strong>in</strong> Genbank. Furthermore for clon<strong>in</strong>g convenience, a neutral am<strong>in</strong>o acid is sometimes added immediately after the<br />

Start codon <strong>in</strong> order to create a suitable clon<strong>in</strong>g site.<br />

Among the Gene A-List , some genes encode prote<strong>in</strong>s that are naturally secreted. Their sequence <strong>in</strong>clude their native signal sequence which is generally<br />

located at the 5' end of the cod<strong>in</strong>g sequence. Other genes that code for eng<strong>in</strong>eered prote<strong>in</strong>s, such as particular fragments of longer prote<strong>in</strong>s (i.e. angiostatic<br />

prote<strong>in</strong>s) may <strong>in</strong>clude the signal sequence of the human IL-2 gene between the ATG and the second codon to allow their secretion.<br />

Suitable for Expression <strong>in</strong> Mammalian Cells<br />

Each ORF is cloned <strong>in</strong> a mammalian expression cassette consist<strong>in</strong>g of a potent and ubiquitous composite promoter and the strong SV40 polyadenylation<br />

signal. Each ORF is flanked by a unique restriction site at the 5’ end and 3’ end to facilitate its subclon<strong>in</strong>g <strong>in</strong>to another vector.<br />

The ORFs are supplied <strong>in</strong> two different plasmid backbones:<br />

• pORF, a plasmid selectable only <strong>in</strong> E. coli with ampicill<strong>in</strong><br />

• pBLAST/pUNO, a plasmid selectable <strong>in</strong> mammalian cells and <strong>in</strong> E. coli with blasticid<strong>in</strong>.<br />

Search onl<strong>in</strong>e the Gene A-List <br />

You can easily f<strong>in</strong>d your ORF of <strong>in</strong>terest <strong>in</strong> the Gene A-List at www.<strong>in</strong>vivogen.com/ORF.php. You can browse the entire list based on HUGO-approved<br />

gene symbol (and alias) and function. All sequences are available onl<strong>in</strong>e or can be emailed upon request.<br />

36<br />

MAJOR GENE FAMILIES EXAMPLES<br />

Adaptor Genes MyD88, TIRAP, TRAM, TRIF/TICAM1<br />

Angiogenic & Angiostatic Genes ANGPT-1, NRP1, ANGIO, ENDO, FLK1, FLT1<br />

Apoptotic & Anti-Apoptotic Genes BAD, Bcl-XS, BIK, Bcl-XL, Bcl-2, Surviv<strong>in</strong><br />

Autophagy Genes Atg5, Becl<strong>in</strong>-1, LC3b<br />

Cellular Matrix Genes Caveol<strong>in</strong>-1, Decor<strong>in</strong><br />

Chemok<strong>in</strong>e & Chemok<strong>in</strong>e Receptor Genes IP-10, LIX, MIG, MIP-1, PF4, SDF1, CCR4, CCR5, CXCR3<br />

Chromat<strong>in</strong>-Remodel<strong>in</strong>g Genes DNMT1, HDAC1, KAISO, SUV39H1<br />

Connex<strong>in</strong> Genes Cx26, Cx32, Cx43<br />

Co-Receptor Genes CD14, LBP, MD1, MD2<br />

Co-Stimulatory / CD Genes 4-1BB, B7.1, B7.2, OX40L, CD4, CD8, CD40, CD70<br />

Cytok<strong>in</strong>e & Cytok<strong>in</strong>e Suppressor Genes GM-CSF, IL-2, IL-10, IL-12, LIF, TNF-a, SOCS-1, SOCS-2<br />

Cytolytic Genes Granulys<strong>in</strong>, Granzyme, Perfor<strong>in</strong><br />

Cytotoxic / Suicide Genes CD, UPRT, HSV1-TK<br />

DAMP & DAMP Receptor Genes HMGB1, S100A8, S100A9, SAA1, M<strong>in</strong>cle, RAGE, TREM-1<br />

Growth Factors EGF, FGF, HGF, IGF, TGF-b, VEGF<br />

Hematopoietic Genes EPO, HOXB4, TPO<br />

Immune Receptors FcgR, IL-1R, IL-6R, IL-10R, TNFRSF<br />

Inhibitors of Differentiation Id1, Id2, Id3, Id4<br />

Interferon & Interferon Signal<strong>in</strong>g Genes IFN-a, IFN-b, IFN-g, IRF1, IRF3, IRF5, IRF7<br />

Pattern Recognition Receptors TLR1-13, NOD1, NOD2, NLRP3, MDA-5, RIG-I, Dect<strong>in</strong>-1<br />

Reprogramm<strong>in</strong>g Factors (IPSC) Klf4, L<strong>in</strong>28, c-Myc, Nanog, Oct4, Sox2<br />

Signal<strong>in</strong>g Genes AKT, FADD, IPS-1, IRAK, RIP1, STAT, TAK1, TBK1, TRAF6<br />

Signal<strong>in</strong>g Inhibitors A20, Bcl-3, IRAK-M, SIGGIR, SIKE, Tollip<br />

Transcription Factors c-REL, IRF, NF-kB, SMAD, STAT<br />

Tumor Antigens MAGE<br />

Tumor Suppressors HRAS, KRAS, p21, p53, PTEN<br />

www.<strong>in</strong>vivogen.com/orfs


pORF<br />

Description<br />

pORF plasmids feature a large collection of native and fusion genes as<br />

open read<strong>in</strong>g frames (ORF). The expression of each ORF is under the<br />

control of a strong and ubiquitous mammalian promoter. This promoter<br />

consists of the elongation factor 1 alpha (EF-1a) core promoter comb<strong>in</strong>ed<br />

to the 5’UTR of either the human T cell leukemia virus (HTLV) type 1<br />

long term<strong>in</strong>al repeat or the human eukaryotic <strong>in</strong>itiation factor 4g (eIF-4g).<br />

These two composite promoters yield similar expression levels.<br />

pORF plasmids are selectable <strong>in</strong> bacteria with ampicill<strong>in</strong>. The bacterial<br />

selection cassette can be replaced upon request with a selection cassette<br />

that functions both <strong>in</strong> bacteria and mammalian cells. This cassette subcloned<br />

from the pSELECT can express the resistance gene of your choice.<br />

pORF plasmids conta<strong>in</strong><strong>in</strong>g a multiple clon<strong>in</strong>g site (MCS) <strong>in</strong> place of an ORF<br />

were designed to serve as controls and/or clon<strong>in</strong>g vectors. The MCS features<br />

commonly used restriction sites to allow convenient <strong>in</strong>sertion of an ORF.<br />

Contents and Storage<br />

Each pORF plasmid is provided as a lyophilized transformed E. coli stra<strong>in</strong><br />

on a paper disk. Transformed stra<strong>in</strong>s are shipped at room temperature and<br />

should be stored at -20°C. Lyophilized E. coli cells are stable for at least one<br />

year when properly stored.<br />

Each pORF is provided with 4 pouches of E. coli Fast-Media ® Amp (2 TB<br />

and 2 Agar).<br />

pBLAST & pUNO<br />

Description<br />

pBLAST/pUNO plasmids feature a wide choice of native and fusion<br />

genes, ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> <strong>in</strong>nate immunity. The gene of <strong>in</strong>terest is under<br />

the control of the same promoter as the pORF plasmids, that is EF-<br />

1a/HTLV or EF-1a/eIF-4g, allow<strong>in</strong>g for strong expression <strong>in</strong> mammalian<br />

cells.<br />

pBLAST/pUNO plasmids conta<strong>in</strong> the blasticid<strong>in</strong> resistance gene (bsr)<br />

under the control of a mammalian promoter <strong>in</strong> tandem with a<br />

bacterial promoter. This allows the amplification of the plasmid <strong>in</strong> E.<br />

coli and the selection of stable clones <strong>in</strong> mammalian cells. Blasticid<strong>in</strong> is<br />

a potent antibiotic that permits the selection of transfectants <strong>in</strong> only<br />

a few days.<br />

pBLAST-mcs and pUNO-mcs plamids were designed to serve as control<br />

and/or clon<strong>in</strong>g vectors. They carry a multiple clon<strong>in</strong>g site (MCS) that<br />

features commonly used restriction sites to allow convenient <strong>in</strong>sertion of<br />

an open read<strong>in</strong>g frame.<br />

Contents and Storage<br />

pBLAST plasmids are provided as 20 μg of lyophilized DNA. pUNO<br />

plasmids are provided as lyophilized transformed E. coli stra<strong>in</strong>s on a<br />

paper disk. Products are shipped at room temperature. Store at -20°C.<br />

Plasmids and lyophilized E. coli cells are stable up to one year when<br />

properly stored.<br />

Each pBLAST and pUNO is provided with 4 pouches of E. coli<br />

Fast-Media ® Blas (2 TB and 2 Agar).<br />

www.<strong>in</strong>vivogen.com/orfs<br />

Related Products<br />

Fast-Media ® Amp, page 45<br />

pSELECT, page 32<br />

PRODUCT QTY CAT. CODE<br />

pORF- E. coli disk porf-<br />

pORF-mcs E. coli disk porf-mcs<br />

* Visit www.<strong>in</strong>vivogen.com/ORF.php for complete order<strong>in</strong>g <strong>in</strong>formation<br />

Related Products<br />

Fast-Media ® Blas, page 45<br />

Blasticid<strong>in</strong>, page 17<br />

PRODUCT QTY CAT. CODE<br />

pBLAST- 20 μg pbla-<br />

pBLAST-mcs 20 μg pbla-mcs<br />

pUNO- E. coli disk puno-<br />

pUNO-mcs E. coli disk puno-mcs<br />

* Visit www.<strong>in</strong>vivogen.com/ORF.php for complete order<strong>in</strong>g <strong>in</strong>formation<br />

37<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

PromTest - Ten Promoters to Choose From<br />

Promoters regulate differently gene expression depend<strong>in</strong>g on the cellular context. To help you determ<strong>in</strong>e easily and rapidly the best promoter<br />

for your cell l<strong>in</strong>e, InvivoGen offers PromTest , a collection of ten ubiquitous promoters driv<strong>in</strong>g the GFP reporter gene.<br />

➥ Ten ready-to-use promoters with different levels of expression<br />

➥ Drive GFP expression for convenient monitor<strong>in</strong>g of promoter strength<br />

➥ Cost-effective<br />

Description<br />

PromTest is a collection of ten ubiquitous composite promoters provided <strong>in</strong> the pDRIVE5-GFP<br />

plasmid. These composite promoters were generated by assembl<strong>in</strong>g enhancers, core promoters<br />

and 5’UTRs of different orig<strong>in</strong>s. The activity of each comb<strong>in</strong>ation depends on the cellular context<br />

(see graphs).<br />

pDRIVE5-GFP features a GFP reporter gene for convenient monitor<strong>in</strong>g of promoter activity. The<br />

strength of each promoter can be assessed qualitatively by fluorescence microscopy and<br />

quantitatively us<strong>in</strong>g a fluorometer or flow cytometry.<br />

pDRIVE5-GFP plasmids are selectable <strong>in</strong> E. coli with Zeoc<strong>in</strong> .<br />

PromTest conta<strong>in</strong>s 5 μg of each plasmid, enough for multiple transfections us<strong>in</strong>g your favorite<br />

reagent or technique. pDRIVE5-GFP plasmids can be amplified <strong>in</strong> any common E. coli laboratory<br />

stra<strong>in</strong>s. They are also available <strong>in</strong>dividually as 20 μg high-quality endotox<strong>in</strong>-free DNA.<br />

Once you have determ<strong>in</strong>ed the best promoter for your cell l<strong>in</strong>e and application, you can either<br />

replace the GFP gene with your gene of <strong>in</strong>terest, or subclone the promoter <strong>in</strong>to another plasmid<br />

with mammalian selection, such as InvivoGen’s pSELECT.<br />

Evaluation of PromTest <strong>in</strong> different cell l<strong>in</strong>es: HeLa (human cervical cancer) and CHO (ch<strong>in</strong>ese hamster ovary) cells were transiently transfected with each of the 10 pDRIVE5-<br />

GFP plasmids of PromTest us<strong>in</strong>g LyoVec (cat. code: lyec-12). The strength of the various promoters was analyzed by flow-cytometry 48h after transfection.<br />

Abbreviations: chEF1, chimpanzee elongation factor 1 alpha; hAlda, human aldolase A; hCMV, human cytomegalovirus; hEF1, human elongation factor 1 alpha; hFerL, human ferrit<strong>in</strong><br />

light cha<strong>in</strong>; HTLV, human T lymphocyte virus; mCMV, mouse cytomegalovirus; mTyr, mouse tyros<strong>in</strong>ase; SV40, simian virus 40.<br />

Contents and Storage<br />

PromTest conta<strong>in</strong>s 10 plasmids, each provided as 5 μg lyophilized DNA<br />

Plasmids can also be purchased <strong>in</strong>dividually as 20 μg high-quality<br />

endotox<strong>in</strong>-free DNA. Plasmids are shipped at room temperature.<br />

Store at -20°C. Plasmids are stable up to one year when properly stored.<br />

38<br />

Plasmid Enhancer Core<br />

Promoter<br />

pDRIVE5-GFP-1<br />

pDRIVE5-GFP-2<br />

pDRIVE5-GFP-3<br />

pDRIVE5-GFP-4<br />

pDRIVE5-GFP-5<br />

pDRIVE5-GFP-6<br />

pDRIVE5-GFP-7<br />

pDRIVE5-GFP-8<br />

pDRIVE5-GFP-9<br />

pDRIVE5-GFP-1 0<br />

hCMV<br />

mCMV<br />

SV40<br />

mTyr<br />

hCMV<br />

SV40<br />

hCMV<br />

mCMV<br />

SV40<br />

hAldA<br />

hEF1<br />

hEF1<br />

hEF1<br />

hEF1<br />

hCMV<br />

hCMV<br />

hFerL<br />

hFerL<br />

hFerL<br />

hFerL<br />

5’ UTR<br />

HTLV<br />

HTLV<br />

HTLV<br />

HTLV<br />

HTLV<br />

HTLV<br />

chEF1<br />

chEF1<br />

chEF1<br />

chEF1<br />

www.<strong>in</strong>vivogen.com/promoters<br />

PRODUCT QTY CAT. CODE<br />

PromTest 10 x 5 μg prom-test<br />

pDRIVE5-GFP-n 20 μg pdv5-gfp


Prom A-List - Human and Rodent Promoters<br />

Prom A-List is an expand<strong>in</strong>g collection of native and composite promoters provided <strong>in</strong> the pDRIVE plasmid. Promoters are valuable tools to<br />

study the expression of a given gene both <strong>in</strong> vitro and <strong>in</strong> vivo. Now with pDRIVE, you can choose to express your gene of <strong>in</strong>terest at high or<br />

low levels, ubiquitously or specifically, and <strong>in</strong> a constitutive or <strong>in</strong>ducible manner.<br />

Features and Benefits<br />

An Expand<strong>in</strong>g Collection of Promoters<br />

Each promoter is fully sequenced and its expression tested <strong>in</strong> different<br />

cell l<strong>in</strong>es.<br />

Native or Composite Promoters<br />

• Native promoters, also called m<strong>in</strong>imal promoters, consist of a s<strong>in</strong>gle<br />

fragment from the 5’ region of a given gene. Each of them comprises a<br />

core promoter and its natural 5’UTR. In some cases, the 5’UTR conta<strong>in</strong>s<br />

an <strong>in</strong>tron.<br />

• Composite promoters comb<strong>in</strong>e promoter elements of different orig<strong>in</strong>s<br />

(e.g. SV40 enhancer/AFP promoter) or were generated by assembl<strong>in</strong>g a<br />

distal enhancer with a m<strong>in</strong>imal promoter of the same orig<strong>in</strong> (e.g. CEA<br />

enhancer/promoter).<br />

Various Expression Patterns<br />

• Ubiquitous Promoters, strongly active <strong>in</strong> a wide range of cells, tissues<br />

and cell cycles.<br />

• Tissue Specific Promoters, active <strong>in</strong> a specific type of cells or tissues.<br />

• Tumor Specific Promoters, active specifically <strong>in</strong> tumor cells.<br />

Easy Subclon<strong>in</strong>g of the Promoters<br />

In every pDRIVE, several unique restriction sites flank the promoter (a<br />

multiple clon<strong>in</strong>g site at the 5’ end and Nco I or Bsp HI at the 3’ end) <strong>in</strong><br />

order to excise the promoter easily. These restriction sites are compatible<br />

with many other enzymes, thus facilitat<strong>in</strong>g clon<strong>in</strong>g. Other restriction sites<br />

may be <strong>in</strong>troduced by perform<strong>in</strong>g PCR us<strong>in</strong>g primers conta<strong>in</strong><strong>in</strong>g the<br />

restriction sites of <strong>in</strong>terest.<br />

Two Backbones with Different Reporter Genes<br />

In each pDRIVE, the promoter drives the expression of a reporter gene<br />

to facilitate the evaluation of its activity. Two different reporter genes are<br />

available <strong>in</strong> two different backbones:<br />

• LacZ <strong>in</strong> pDRIVE: pDRIVE plasmids conta<strong>in</strong> the LacZ reporter gene<br />

which expression can be determ<strong>in</strong>ed us<strong>in</strong>g chromogenic (see page 12),<br />

lum<strong>in</strong>escent or histochemical detection. They carry the Sh ble gene<br />

conferr<strong>in</strong>g resistance to Zeoc<strong>in</strong> downstream of the EM7 bacterial<br />

promoter.<br />

• SEAP <strong>in</strong> pDRIVE5-SEAP: pDRIVE5-SEAP plasmids feature an eng<strong>in</strong>eered<br />

secreted embryonic alkal<strong>in</strong>e phosphatase (SEAP) reporter gene. SEAP<br />

expression levels can be assayed with chromogenic (see pages 13-15) or<br />

lum<strong>in</strong>escent methods.<br />

Transient Expression <strong>in</strong> vitro<br />

pDRIVE plasmids are selectable with the antibiotic Zeoc<strong>in</strong> <strong>in</strong> E. coli.They<br />

can be used for transient transfection experiments <strong>in</strong> mammalian cells <strong>in</strong><br />

vitro or for expression studies <strong>in</strong> vivo.<br />

Related Products<br />

Custom-pDRIVE, page 162 Fast-Media ® Zeo, page 45<br />

Contents and Storage<br />

www.<strong>in</strong>vivogen.com/promoters<br />

Each pDRIVE plasmid is provided as lyophilized transformed E. coli stra<strong>in</strong>.<br />

Transformed bacteria are shipped at room temperature. Store at -20°C.<br />

Transformed bacteria are stable for at least 1 year when properly stored.<br />

Each pDRIVE is provided with 4 pouches of E. coli Fast-Media ® Zeo (2 TB<br />

and 2 Agar).<br />

PRODUCT QTY CAT. CODE*<br />

pDRIVE-LacZ E. coli disk pdrive-<br />

pDRIVE-LacZ E. coli disk pdrive-<br />

pDRIVE5-SEAP E. coli disk pdrive5s-<br />

pDRIVE5-SEAP<br />

* See tables pages 40-41<br />

E. coli disk pdrive5s-<br />

39<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

b-Act Beta-Act<strong>in</strong> Ubiquitous Human 2387 bp pdrive-hbact pdrive5s-hbact<br />

EF-1a Elongation Factor 1 alpha Ubiquitous Chimpanzee 1365 bp pdrive-chef1 pdrive5s-chef1<br />

Mouse 1315 bp pdrive-mef1 pdrive5s-mef1<br />

Rat<br />

1314 bp pdrive-ref1 pdrive5s-ref1<br />

EGR1 Early Growth Response 1 Ubiquitous, <strong>in</strong>ducible by radiation Human 1062 bp pdrive-hegr1 pdrive5s-hegr1<br />

eIF4A1 Eukaryotic Initiation Factor 4A1 Ubiquitous Human 523 bp pdrive-heif4a1 pdrive5s-heif4a1<br />

Mouse 482 bp pdrive-meif4a1 pdrive5s-meif4a1<br />

FerH Ferrit<strong>in</strong> Heavy Cha<strong>in</strong> Ubiquitous Human 370 bp pdrive-hferh pdrive5s-hferh<br />

FerL Ferrit<strong>in</strong> Light Cha<strong>in</strong> Ubiquitous Human 429 bp pdrive-hferl pdrive5s-hferl<br />

GAPDH Glyceraldehyde 3-phosphate Dehydrogenase Ubiquitous Human 794 bp pdrive-hgapdh pdrive5s-hgapdh<br />

GRP78 Glucose-Regulated Prote<strong>in</strong> 78 Ubiquitous, <strong>in</strong>ducible by stress Human 531 bp pdrive-hgrp78 pdrive5s-hgrp78<br />

Mouse 545 bp pdrive-mgrp78 pdrive5s-mgrp78<br />

Rat<br />

679 bp pdrive-rgrp78 pdrive5s-rgrp78<br />

GRP94 Glucose-Regulated Prote<strong>in</strong> 94 Ubiquitous, <strong>in</strong>ducible by stress Human 701 bp pdrive-hgrp94 pdrive5s-hgrp94<br />

Mouse 696 bp pdrive-mgrp94 pdrive5s-mgrp94<br />

Rat<br />

731 bp pdrive-rgrp94 pdrive5s-rgrp94<br />

HSP70 Heat Shock Prote<strong>in</strong> 70 Ubiquitous, <strong>in</strong>ducible by heat Human 464 bp pdrive-hhsp70 pdrive5s-hhsp70<br />

Mouse 1041 bp pdrive-mhsp70 pdrive5s-mhsp70<br />

b-K<strong>in</strong> Beta-K<strong>in</strong>es<strong>in</strong> Ubiquitous Human 539 bp pdrive-hbk<strong>in</strong> pdrive5s-hbk<strong>in</strong><br />

PGK1 Phosphoglycerate K<strong>in</strong>ase 1 Ubiquitous Mouse 1428 bp pdrive-mpgk pdrive5s-mpgk<br />

ROSA Rosa Ubiquitous Human 2815 bp pdrive-hrosa pdrive5s-hrosa<br />

Mouse 1926 bp pdrive-mrosa pdrive5s-mrosa<br />

Ubi B Ubiquit<strong>in</strong> B Ubiquitous Human 1092 bp pdrive-hubiquit<strong>in</strong>b pdrive5s-hubiquit<strong>in</strong>b<br />

Ubiquitous Composite Promoters<br />

b-Act/RU5’ Beta-Act<strong>in</strong> prom / HTLV 5’UTR Ubiquitous Human 1785 bp pdrive-hbactru5 pdrive-hbactru5<br />

EF-1a/RU5’ Elongation Factor 1 prom / HTLV 5’UTR Ubiquitous Chimpanzee 672 bp pdrive-chef1ru5 pdrive5s-chef1ru5<br />

Rat<br />

630 bp pdrive-ref1ru5 pdrive5s-ref1ru5<br />

FerH/RU5’ Ferrit<strong>in</strong> H prom / HTLV 5’UTR Ubiquitous Human 457 bp pdrive-hferhru5 pdrive5s-hferhru5<br />

SV40/FerH SV40 enh / Ferrit<strong>in</strong> H prom / EF-1a 5’UTR Ubiquitous Human / mouse 1423 bp pdrive-sv40ferhef1 pdrive5s-sv40ferhef1<br />

FerL/RU5’ Ferrit<strong>in</strong> L prom / HTLV 5’UTR Ubiquitous Human 537 bp pdrive-hferlru5 pdrive5s-hferlru5<br />

CMV/FerL CMV enh / Ferrit<strong>in</strong> L prom / EF-1a 5’UTR Ubiquitous Human / chimp. 1666 bp pdrive-cmvferlef1 pdrive5s-cmvferlef1<br />

Tissue-Specific Native Promoters<br />

B29 Immunoglobul<strong>in</strong> Beta B cells Human 1219 bp pdrive-hb29 pdrive5s-hb29<br />

Mouse 1235 bp pdrive-mb29 pdrive5s-mb29<br />

CD14 Monocyte Receptor for Bacterial LPS Monocytic cells Human 612 bp pdrive-hcd14 pdrive5s-hcd14<br />

CD43 Leukosial<strong>in</strong>, Sialophor<strong>in</strong> Leukocytes and platelets Human 775 bp pdrive-hcd43 pdrive5s-hcd43<br />

CD45 Leukocyte Common Antigen (LCA) Hematopoietic cells Human 856 bp pdrive-hcd45 pdrive5s-hcd45<br />

CD68 Human Homolog of Macrosial<strong>in</strong> Macrophages Human 658 bp pdrive-hcd68 pdrive5s-hcd68<br />

Mouse 811 bp pdrive-mcd68 pdrive5s-mcd68<br />

Desm<strong>in</strong> Desm<strong>in</strong> Muscle Mouse 983 bp pdrive-mdesm<strong>in</strong> pdrive5s-mdesm<strong>in</strong><br />

Elastase Elastase1 Pancreatic ac<strong>in</strong>ar cells Rat 264 bp pdrive-relastase pdrive5s-relastase<br />

Endogl<strong>in</strong> Endogl<strong>in</strong> Endothelial cells Human 886 bp pdrive-hendogl<strong>in</strong> pdrive5s-hendogl<strong>in</strong><br />

FN Fibronect<strong>in</strong> Differentiat<strong>in</strong>g cells, heal<strong>in</strong>g tissues Human 1037 bp pdrive-hfibronect<strong>in</strong> pdrive5s-hfibronect<strong>in</strong><br />

Flt-1 VEGF Receptor 1 Endothelial cells Human 786 bp pdrive-hflt1 pdrive5s-hflt1<br />

GFAP Glial Fibrillary Acidic Prote<strong>in</strong> Astrocytes Human 1675 bp pdrive-hgfap pdrive5s-hgfap<br />

Mouse 1679 bp pdrive-mgfap pdrive5s-mgfap<br />

Rat<br />

1588 bp pdrive-rgfap pdrive5s-rgfap<br />

40<br />

PROMOTER GENE TISSUE DISTRIBUTION SPECIES SIZE<br />

Ubiquitous Native Promoters<br />

www.<strong>in</strong>vivogen.com/promoters<br />

CAT. CODE<br />

(LacZ)<br />

CAT. CODE<br />

(SEAP)


PROMOTER GENE TISSUE DISTRIBUTION SPECIES SIZE<br />

Tissue-Specific Native Promoters<br />

CAT. CODE<br />

(LacZ)<br />

CAT. CODE<br />

(SEAP)<br />

GPIIb Integr<strong>in</strong> alpha IIb Megakaryocytes Human 928 bp pdrive-hgp2b pdrive5s-hgp2b<br />

ICAM-2 Intercellular Adhesion Molecule 2 Endothelial cells Human 397 bp pdrive-hicam2 pdrive5s-hicam2<br />

IFN-b Interferon beta Hematopoietic cells Mouse 214 bp pdrive-mifnb pdrive5s-mifnb<br />

Mb Myoglob<strong>in</strong> Muscle Human 450 bp pdrive-hmb pdrive5s-hmb<br />

Mouse 404 bp pdrive-mmb pdrive5s-mmb<br />

NphsI Nephr<strong>in</strong> Podocytes Human 1233 bp pdrive-hnphs pdrive5s-hnphs<br />

OG-2 Osteocalc<strong>in</strong> 2 Osteoblasts Mouse 225 bp pdrive-mog2 pdrive5s-mog2<br />

SP-B Surfactant Prote<strong>in</strong> B Lung Human 633 bp pdrive-hspb pdrive5s-hspb<br />

Synaps<strong>in</strong> Synaps<strong>in</strong> Neurons Human 556 bp pdrive-hsynaps<strong>in</strong> pdrive5s-hsynaps<strong>in</strong><br />

WASP Wiskott-Aldrich Syndrome Prote<strong>in</strong> Hematopoietic cells Human 506 bp pdrive-hwasp pdrive5s-hwasp<br />

Tissue-Specific Composite Promoters<br />

SV40/Alb SV40 enh / Album<strong>in</strong> prom Liver Bov<strong>in</strong>e 443 bp pdrive-sv40balb pdrive5s-sv40balb<br />

Human 449 bp pdrive-sv40halb pdrive5s-sv40halb<br />

SV40/CD43 SV40 enh / Leukosial<strong>in</strong> prom Leukocytes and platelets Human 1014 bp pdrive-sv40hcd43 pdrive5s-sv40hcd43<br />

SV40/CD45 SV40 enh / Leukocyte Common Antigen prom Hematopoietic cells Human 1096 bp pdrive-sv40hcd45 pdrive5s-sv40hcd45<br />

NSE-RU5’ Neuron-Specific Enolase prom / HTLV 5’UTR Mature neurons Rat 2043 bp pdrive-rnseru5 pdrive5s-rnseru5<br />

Tumor-Specific Native Promoters<br />

AFP Alpha-Fetoprote<strong>in</strong> Hepatocellular carc<strong>in</strong>oma Human 274 bp pdrive-hafp pdrive5s-hafp<br />

CCKAR Cholecystok<strong>in</strong><strong>in</strong> type A Receptor Pancreatic cancer Human 724 bp pdrive-hcckar pdrive5s-hcckar<br />

CEA Carc<strong>in</strong>oembryonic Antigen Epithelial cancers Human 428 bp pdrive-hcea pdrive5s-hcea<br />

c-erbB2 C-erbB2/neu Oncogen Breast and pancreas cancer Human 891 bp pdrive-herbb2 pdrive5s-herbb2<br />

COX-2 Cyclo-oxygenase 2 Tumor<br />

Human<br />

Mouse<br />

1568 bp<br />

1104 bp<br />

pdrive-hcox2<br />

pdrive-mcox2<br />

pdrive5s-hcox2<br />

pdrive5s-mcox2<br />

CXCR4 Receptor for Chemok<strong>in</strong>e SDF1 Tumor Human 278 bp pdrive-hcxcr4 pdrive5s-hcxcr4<br />

E2F-1 E2F Transcription Factor 1 Tumor Human 399 bp pdrive-he2f1 pdrive5s-he2f1<br />

HE4 Human Epididymis Prote<strong>in</strong> 4 Tumor Human 652 bp pdrive-hhe4 pdrive5s-hhe4<br />

LP L-Plast<strong>in</strong> Tumor Human 2393 bp pdrive-hlp pdrive5s-hlp<br />

MUC1 Muc<strong>in</strong>-like Glycoprote<strong>in</strong> Carc<strong>in</strong>oma cells Human 757 bp pdrive-hmuc1 pdrive5s-hmuc1<br />

PSA Prostate Specific Antigen Prostate and prostate cancers Human 670 bp pdrive-hpsa pdrive5s-hpsa<br />

Surviv<strong>in</strong> Surviv<strong>in</strong> Tumor Human 266 bp pdrive-hsurviv<strong>in</strong> pdrive5s-hsurviv<strong>in</strong><br />

TRP Tyros<strong>in</strong>ase Related Prote<strong>in</strong> Melanocytes and melanoma Mouse 1201 bp pdrive-mtrp pdrive5s-mtrp<br />

Tyr Tyros<strong>in</strong>ase Melanocytes and melanoma Mouse 335 bp pdrive-mtyr pdrive5s-mtyr<br />

Tumor-Specific Composite Promoters<br />

AFP/AFP Alpha-Fetoprote<strong>in</strong> enh-prom Hepatocellular carc<strong>in</strong>oma Human 2144 bp pdrive-afphafp pdrive5s-afphafp<br />

SV40/AFP SV40 enh /Alpha-Fetoprote<strong>in</strong> prom Hepatocellular carc<strong>in</strong>oma Human 514 bp pdrive-sv40hafp pdrive5s-sv40hafp<br />

CEA/CEA Carc<strong>in</strong>oembryonic Antigen enh-prom Epithelial cancers Human 1861 bp pdrive-ceahcea pdrive5s-ceahcea<br />

PSA/PSA Prostate Specific Antigen enh-prom Prostate and prostate cancers Human 2261 bp pdrive-psahpsa pdrive5s-psahpsa<br />

SV40/Tyr SV40 enh / Tyros<strong>in</strong>ase prom Melanocytes and melanoma Mouse 576 bp pdrive-sv40mtyr pdrive5s-sv40mtyr<br />

Tyr/Tyr Tyros<strong>in</strong>ase enh-prom Melanocytes and melanoma Mouse 540 bp pdrive-tyrmtyr pdrive5s-tyrmtyr<br />

www.<strong>in</strong>vivogen.com/promoters<br />

41<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

E. coli Competent Cells<br />

InvivoGen’s competent E. coli stra<strong>in</strong>s have been designed to <strong>in</strong>clude genotypes that make them efficient and<br />

convenient. These isogenic stra<strong>in</strong>s conta<strong>in</strong> genetic modifications which are <strong>in</strong>troduced us<strong>in</strong>g an elaborate<br />

technique of homologous recomb<strong>in</strong>ation. This technique allows the generation of targeted deletions or <strong>in</strong>sertions<br />

<strong>in</strong> the E. coli genome. The result<strong>in</strong>g stra<strong>in</strong>s are made chemically competent by an optimized procedure followed<br />

by transformation efficiency verification and provided frozen (ChemiComp) or lyophilized (LyoComp).<br />

Different Stra<strong>in</strong>s for Different Applications<br />

InvivoGen provides two different E. coli competent stra<strong>in</strong>s that offer dist<strong>in</strong>ct<br />

characteristics suitable for a particular application. These stra<strong>in</strong>s derive from<br />

a common parental stra<strong>in</strong> that features many useful genetic markers<br />

mak<strong>in</strong>g them also versatile stra<strong>in</strong>s.<br />

• GT115 Ddcm, uidA::pir-116, DsbcC-sbcD mutant stra<strong>in</strong><br />

F - mcrA D(mrr-hsdRMS-mcrBC) Φ80lacZDM15 DlacX74 recA1 rspL (StrA)<br />

endA1 Ddcm uidA(DMluI)::pir-116 DsbcC-sbcD<br />

• GT116 Ddcm, DsbcC-sbcD mutant stra<strong>in</strong><br />

F - mcrA D(mrr-hsdRMS-mcrBC) Φ80lacZDM15 DlacX74 recA1 rspL (StrA)<br />

endA1 Ddcm DsbcC-sbcD<br />

The dcm gene encodes a DNA methylase that methylates the <strong>in</strong>ternal cytos<strong>in</strong>e residues <strong>in</strong> the recognition sequence 5´-C*CAGG-3´ or 5´-C*CTGG-3´.This<br />

methylation which is not found <strong>in</strong> vertebrates confers a bacterial signature to DNA prepared <strong>in</strong> E. coli mak<strong>in</strong>g it prone to recognition as foreign DNA by<br />

the host immune system. Mutation of dcm gene dim<strong>in</strong>ishes the immunostimulatory effects of plasmid DNAs.<br />

The pir gene encodes the R6K specific <strong>in</strong>itiator prote<strong>in</strong> π which is required for the replication of plasmids harbor<strong>in</strong>g the R6K gamma orig<strong>in</strong> of replication,<br />

such as the pCpG plasmid family. The uidA::pir-116 mutant is the result of the <strong>in</strong>tegration of a mutant pir gene <strong>in</strong> the uidA locus. This mutant gene <strong>in</strong>creases<br />

plasmid copy number several fold.<br />

The sbcC and sbcD genes encode a dimeric prote<strong>in</strong> called SbcCD that recognizes and cleaves hairp<strong>in</strong>s render<strong>in</strong>g plasmids with hairp<strong>in</strong> structures particularly<br />

unstable <strong>in</strong> E. coli. Deletion of the sbcCD operon significantly improves the number of recomb<strong>in</strong>ant clones <strong>in</strong> plasmids conta<strong>in</strong><strong>in</strong>g hairp<strong>in</strong> structures.<br />

Significant Genetic Markers<br />

Marker Description<br />

Significance<br />

dcm<br />

endA1<br />

hsdR<br />

lacZ∆M15<br />

mcrA, mcrBC<br />

mrr<br />

recA<br />

uidA::pir-116<br />

sbcC-sbcD<br />

Deletion elim<strong>in</strong>at<strong>in</strong>g Dcm methylase activity<br />

Mutation <strong>in</strong>activat<strong>in</strong>g endonuclease 1, a potent and non-specific enzyme<br />

Restriction endonuclease mutation abolish<strong>in</strong>g restriction and modification<br />

(r-, m-)<br />

Defective Φ80 prophage carry<strong>in</strong>g a partial deletion of LacZ that allows<br />

a-complementation<br />

Mutation abolish<strong>in</strong>g degradation of DNA with methylated cytos<strong>in</strong>e<br />

Mutation elim<strong>in</strong>at<strong>in</strong>g restriction of DNA conta<strong>in</strong><strong>in</strong>g 6-methyladen<strong>in</strong>e or<br />

6-methylcytos<strong>in</strong>e<br />

Homologous recomb<strong>in</strong>ation deficiency<br />

pir gene <strong>in</strong>tegrated <strong>in</strong> the uidA sequence<br />

Deletion elim<strong>in</strong>at<strong>in</strong>g the recognition and cleavage of hairp<strong>in</strong> structures<br />

GT100<br />

F- mcrA D(mrr-hsdRMS-mcrBC)<br />

Φ80lacZDM15 DlacX74 recA1 rspL (StrA) endA1<br />

Ddcm<br />

uidA::pir-116 DsbcC-sbcD<br />

DsbcC-sbcD<br />

42 www.<strong>in</strong>vivogen.com/competent-cells<br />

GT115 GT116<br />

Allows for the production of high quality plasmid DNA<br />

Improves the quality of purified plasmid DNA<br />

Permits <strong>in</strong>troduction of DNA com<strong>in</strong>g from non-E. coli sources such as PCR<br />

amplified DNA<br />

Allows for blue/white color selection of clones when supplemented with<br />

X-Gal<br />

Allows more efficient clon<strong>in</strong>g of 5-methylcytos<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g DNA<br />

Allows more efficient clon<strong>in</strong>g of DNA conta<strong>in</strong><strong>in</strong>g methyladen<strong>in</strong>e residues<br />

Transformed DNA will not recomb<strong>in</strong>e with host DNA ensur<strong>in</strong>g the stability<br />

of <strong>in</strong>serts<br />

Allows for high copy number of plasmids conta<strong>in</strong><strong>in</strong>g the R6Kg orig<strong>in</strong> of<br />

replication<br />

Increases the stability of hairp<strong>in</strong> structures and improves the number of<br />

recomb<strong>in</strong>ant clones


ChemiComp E. coli<br />

ChemiComp E. coli are chemically competent bacteria provided frozen. Their high transformation efficiency makes them ideal for clon<strong>in</strong>g and<br />

plasmid propagation. ChemiComp E. coli are shipped on dry ice.<br />

ChemiComp GT115<br />

(Ddcm, uidA::pir-116, sbcCD)<br />

ChemiComp GT115 cells are high efficiency chemically competent cells<br />

specifically designed for clon<strong>in</strong>g and propagation of plasmids conta<strong>in</strong><strong>in</strong>g<br />

hairp<strong>in</strong> structures and the R6K gamma orig<strong>in</strong> of replication, such as pCpGsiRNA<br />

plasmids.<br />

Transformation efficiency: 0.1-1 x 10 9 cfu/μg<br />

ChemiComp GT116<br />

(Ddcm, sbcCD)<br />

ChemiComp GT116 cells are high efficiency chemically competent cells<br />

specifically designed for clon<strong>in</strong>g and propagation of shRNA-express<strong>in</strong>g<br />

plasmids which conta<strong>in</strong> hairp<strong>in</strong> structures, such as psiRNA plasmids.<br />

Transformation efficiency: 0.1-1 x 10 9 cfu/μg<br />

LyoComp E. coli<br />

LyoComp E. coli are chemically competent bacteria that have been lyophilized us<strong>in</strong>g a proprietary method. LyoComp E. coli are easy to handle<br />

and more stable than standard competent cells. They are shipped at room temperature elim<strong>in</strong>at<strong>in</strong>g the need of costly dry ice shipp<strong>in</strong>g. Their<br />

competency is sufficient for clon<strong>in</strong>g and propagation of siRNA-express<strong>in</strong>g plasmids.<br />

LyoComp GT115<br />

(Ddcm, uidA::pir-116, sbcCD)<br />

LyoComp GT115 cells are recommended for clon<strong>in</strong>g and propagation<br />

of plasmids conta<strong>in</strong><strong>in</strong>g hairp<strong>in</strong> structures and the R6K gamma orig<strong>in</strong> of<br />

replication, such as pCpG-siRNA plasmids.<br />

Transformation efficiency: 1 x 10 6 cfu/μg<br />

LyoComp GT116<br />

(Ddcm, sbcCD)<br />

LyoComp GT116 cells are recommended for clon<strong>in</strong>g and propagation<br />

of plasmids conta<strong>in</strong><strong>in</strong>g hairp<strong>in</strong> structures, such as psiRNA plasmids.<br />

Transformation efficiency: 1 x 10 6 cfu/μg<br />

Contents and Storage<br />

ChemiComp E. coli cells are provided as 100 μl or 200 μl aliquots.<br />

ChemiComp cells are shipped on dry ice. Upon receipt, store<br />

ChemiComp cells at -80°C. ChemiComp cells are stable for at least 6<br />

months when properly stored.<br />

PRODUCT QUANTITY CAT. CODE<br />

ChemiComp GT115<br />

ChemiComp GT116<br />

Contents and Storage<br />

5 x 0.1 ml (5-10 transf.)<br />

5 x 0.2 ml (10-20 transf.)<br />

5 x 0.1 ml (5-10 transf.)<br />

5 x 0.2 ml (10-20 transf.)<br />

gt115-11<br />

gt115-21<br />

gt116-11<br />

gt116-21<br />

LyoComp E. coli are provided as 4 or 5 vials, each conta<strong>in</strong><strong>in</strong>g the<br />

equivalent of 0.1 or 0.2 ml competent cells for GT115 and 0.5 ml or 1<br />

ml competent cells for GT116. Cells are shipped at room temperature.<br />

Upon receipt, store LyoComp E. coli at -20°C. Cells are stable for at least<br />

6 months when properly stored.<br />

PRODUCT QUANTITY CAT. CODE<br />

LyoComp GT115<br />

LyoComp GT116<br />

5 x 0.1 ml (5-10 transf.)<br />

5 x 0.2 ml (10-20 transf.)<br />

4 x 0.5 ml (5-10 transf.)<br />

4 x 1 ml (10-20 transf.)<br />

lyo-115-11<br />

lyo-115-21<br />

lyo-116-11<br />

lyo-116-21<br />

www.<strong>in</strong>vivogen.com/competent-cells 43<br />

MAMMALIAN EXPRESSION VECTORS 2


MAMMALIAN EXPRESSION VECTORS 2<br />

Fast-Media ® - The Hassle-free Way to Prepare E. coli Selection Media<br />

All you need to make liquid or solid selective E. coli medium are five m<strong>in</strong>utes, a microwave and Fast-Media ® . This time-sav<strong>in</strong>g product, developed<br />

by InvivoGen, comes <strong>in</strong> <strong>in</strong>dividually sealed pouches, each with enough reagents to prepare 200 ml of sterile liquid or agar medium at the<br />

appropriate antibiotic concentration. Fast-Media ® is extensively tested to guarantee sterility, antibiotic activity and E. coli growth. We subject<br />

every ready-to-use Fast-Media ® pouch to rigorous quality control to ensure consistent results.<br />

➥ 5-m<strong>in</strong>ute prep time<br />

➥ Performance with control<br />

➥ Large antibiotic selection<br />

Features and Benefits<br />

Fast-Media ® Elim<strong>in</strong>ates Time Consum<strong>in</strong>g Medium Preparation<br />

- Rapid preparation: only 5 m<strong>in</strong>utes<br />

- Ready-made: no weigh<strong>in</strong>g or mix<strong>in</strong>g of media components<br />

- Presterilized: no autoclav<strong>in</strong>g - just microwave<br />

- Already conta<strong>in</strong>s the antibiotic of choice<br />

Fast-Media ® is also available with no selective antibiotics.<br />

Fast-Media ® is Ready-to-Use<br />

Fast-Media ® is provided <strong>in</strong> <strong>in</strong>dividual sealed pouches. Each pouch conta<strong>in</strong>s<br />

sufficient reagents to prepare 200 ml of sterile liquid or agar medium <strong>in</strong> just 5<br />

m<strong>in</strong>utes by us<strong>in</strong>g a microwave.<br />

As Easy as 1, 2, 3<br />

1- Empty pouch <strong>in</strong>to a glass bottle<br />

2- Mix pouch contents with 200 ml water<br />

3- Microwave for 3 m<strong>in</strong>utes<br />

Performance and Control<br />

Quality Control<br />

To ensure constant quality and great reproducibility, each new batch of<br />

Fast-Media ® is rigorously controlled accord<strong>in</strong>g to approved procedures.<br />

Each Fast-Media ® lot is tested with widely used E. coli K12 stra<strong>in</strong>s. Adequate<br />

plasmids conferr<strong>in</strong>g appropriate resistance to E. coli stra<strong>in</strong>s are used as positive<br />

controls.<br />

Stability and Storage<br />

After preparation, Fast-Media ® keeps all its <strong>in</strong>tr<strong>in</strong>sic properties 48 hours at<br />

37°C or 4 weeks at 4°C.<br />

Sterility is guaranteed when Fast-Media ® is properly prepared and stored.<br />

Contents and Storage<br />

Each type of E. coli Fast-Media ® is provided <strong>in</strong> a 20- or 30-pouch unit. Each pouch<br />

enables the preparation of 200 ml liquid medium or 8-10 agar plates. Store at<br />

room temperature. Pouches are stable 12 months at room temperature. After<br />

preparation, poured plates or reconstituted media are stable 4 weeks when<br />

stored at 4°C.<br />

44 www.<strong>in</strong>vivogen.com/fast-media<br />

Available <strong>in</strong> a wide variety<br />

of antibiotics<br />

Ampicill<strong>in</strong><br />

Blasticid<strong>in</strong> S<br />

Hygromyc<strong>in</strong> B<br />

Kanamyc<strong>in</strong><br />

Puromyc<strong>in</strong><br />

Zeoc<strong>in</strong>


Fast-Media ® Preparation<br />

1. Empty pouch contents <strong>in</strong>to a clean<br />

borosilicate glass bottle. Mix Fast-Media ®<br />

with 200 ml of distilled water.<br />

2. Heat <strong>in</strong> microwave oven on medium<br />

power (400 watts) for 3 m<strong>in</strong>utes, mix and<br />

reheat for 30 seconds*.<br />

* InvivoGen has developed a process that guarantees the antibiotic activity after microwave heat<strong>in</strong>g.<br />

3. Let cool and pour 8-10 plates.<br />

PRODUCT ANTIBIOTIC QUANTITY CAT. CODE<br />

Preparation of Liquid Medium<br />

Fast-Media ® Base TB None 30 pouches<br />

500 pouches<br />

fas-l500<br />

Fast-Media ® Amp TB Ampicill<strong>in</strong> 30 pouches<br />

fas-am-l<br />

500 pouches<br />

fas-am-l500<br />

Fast-Media ® Blas TB Blasticid<strong>in</strong> S 20 pouches fas-bl-l<br />

Fast-Media ® Hygro TB Hygromyc<strong>in</strong> B 20 pouches fas-hg-l<br />

Fast-Media ® Kan TB Kanamyc<strong>in</strong> 30 pouches<br />

fas-kn-l<br />

500 pouches<br />

fas-kn-l500<br />

Fast-Media ® Puro TB Puromyc<strong>in</strong> 20 pouches fas-pr-l<br />

Fast-Media ® Zeo TB Zeoc<strong>in</strong> 20 pouches fas-zn-l<br />

Fast-Media ® Base Agar None 30 pouches<br />

fas-s<br />

500 pouches<br />

fas-s500<br />

Fast-Media ® Amp Agar Ampicill<strong>in</strong> 30 pouches<br />

fas-am-s<br />

500 pouches<br />

fas-am-s500<br />

Fast-Media ® Blas Agar Blasticid<strong>in</strong> S 20 pouches fas-bl-s<br />

Fast-Media ® Hygro Agar Hygromyc<strong>in</strong> B 20 pouches fas-hg-s<br />

Fast-Media ® Kan Agar Kanamyc<strong>in</strong> 30 pouches<br />

fas-kn-s<br />

500 pouches<br />

fas-kn-s500<br />

Fast-Media ® Puro Agar Puromyc<strong>in</strong> 20 pouches fas-pr-s<br />

Fast-Media ® Zeo Agar Zeoc<strong>in</strong> 20 pouches fas-zn-s<br />

Fast-Media ® Amp Agar X-Gal Ampicill<strong>in</strong> 20 pouches fas-am-x<br />

Fast-Media ® Blas Agar X-Gal Blasticid<strong>in</strong> S 20 pouches fas-bl-x<br />

Fast-Media ® Hygro Agar X-Gal Hygromyc<strong>in</strong> B 20 pouches fas-hg-x<br />

Fast-Media ® Kan Agar X-Gal Kanamyc<strong>in</strong> 20 pouches fas-kan-x<br />

Fast-Media ® Zeo Agar X-Gal Zeoc<strong>in</strong> 20 pouches fas-zn-x<br />

Fast-Media ® Zeo Agar X-Gluc Zeoc<strong>in</strong> Preparation of Agar Plates<br />

Preparation of Agar Plates with X-Gal (+IPTG)<br />

Preparation of Agar Plates with X-Gluc<br />

10 pouches fas-zn-g<br />

www.<strong>in</strong>vivogen.com/fast-media 45<br />

fas-l<br />

MAMMALIAN EXPRESSION VECTORS 2


3<br />

INNATE IMMUNITY<br />

Toll-like Receptors 49<br />

TLR & TLR-Related Genes 56-63<br />

TLR-Express<strong>in</strong>g Cell L<strong>in</strong>es 64-71<br />

TLR Antibodies 72<br />

Reporter Plasmids 74<br />

TLR Agonists & Antagonists 76-79<br />

TLR Agonist Kits 81<br />

LPS Detection Kit 90<br />

TLR Ligand Screen<strong>in</strong>g 91<br />

TLR shRNAs 92<br />

Inhibitors of TLR Signal<strong>in</strong>g 93<br />

NOD-like Receptors 52<br />

NLR & NLR-Related Genes 56-60<br />

NLR-Express<strong>in</strong>g Cell L<strong>in</strong>es 65-67<br />

Reporter Plasmids 74<br />

NLR Agonists 80<br />

NOD Ligand Screen<strong>in</strong>g 91<br />

NLR shRNAs 92


RIG-I-like Receptors 54<br />

RLR & RLR-Related Genes 56-60<br />

RLR-Express<strong>in</strong>g Cell L<strong>in</strong>es 64, 71<br />

RLR Agonist 80<br />

RLR shRNAs 92<br />

C-Type Lect<strong>in</strong> Receptors 55<br />

CLR & CLR-Related Genes 56-60<br />

Dect<strong>in</strong>-1-Express<strong>in</strong>g Cell L<strong>in</strong>e 70<br />

Dect<strong>in</strong>-1 Agonists 81<br />

CLR shRNAs 92<br />

Inflammasomes 96<br />

Inflammasome Inducers & Inhibitors 98<br />

IL-1b Sensor Cells 100<br />

Autophagy and TLRs 101<br />

Autophagy Genes 101<br />

Autophagy Inducers & Inhibitors 102


INNATE IMMUNITY 3<br />

PATTERN RECOGNITION<br />

RECEPTORS<br />

The <strong>in</strong>nate immune system is an evolutionally conserved mechanism that provides an early and effective response<br />

aga<strong>in</strong>st <strong>in</strong>vad<strong>in</strong>g microbial pathogens. It relies on a limited set of pattern recognition receptors (PRRs) that<br />

recognize specific pathogen-associated molecular patterns (PAMPs) commonly present <strong>in</strong> microbes but not <strong>in</strong><br />

host. Upon detection of PAMPs, the PRRs trigger an <strong>in</strong>flammatory response that recruits phagocytic cells, <strong>in</strong>duce<br />

antimicrobial peptides and cytok<strong>in</strong>e/chemok<strong>in</strong>e secretion, lead<strong>in</strong>g to efficient destruction of the <strong>in</strong>vad<strong>in</strong>g<br />

pathogens. Three ma<strong>in</strong> families of PRRs have been shown to <strong>in</strong>itiate pro<strong>in</strong>flammatory signal<strong>in</strong>g pathways: the<br />

Toll-Like receptors (TLRs), the NOD-Like receptors (NLRs) and RIG-I-Like receptors (RLRs).<br />

Toll-Like Receptors (TLRs)<br />

TLRs are the first identified and best characterized receptors among the signal<strong>in</strong>g PRRs. They <strong>in</strong>itiate key <strong>in</strong>flammatory responses and also shape adaptative<br />

immunity. All TLRs (10 <strong>in</strong> humans and 11 <strong>in</strong> mice) are type I transmembrane prote<strong>in</strong>s characterized by an extracellular leuc<strong>in</strong>e-rich doma<strong>in</strong> and a cytoplasmic<br />

tail that conta<strong>in</strong>s a conserved region called the Toll/IL-1 receptor (TIR) doma<strong>in</strong>. They recognize a variety of PAMPs from bacteria, fungi, parasites, and viruses,<br />

<strong>in</strong>clud<strong>in</strong>g lipid-based bacterial cell wall components such as lipopolysaccharide (LPS) and lipopeptides, microbial prote<strong>in</strong> components such as flagell<strong>in</strong>, and<br />

nucleic acids such as s<strong>in</strong>gle-stranded or double-stranded RNA and CpG DNA. TLRs <strong>in</strong>itiate shared and dist<strong>in</strong>ct signal<strong>in</strong>g pathways by recruit<strong>in</strong>g different<br />

comb<strong>in</strong>ations of four TIR-doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g adaptor molecules: MyD88, TIRAP (MAL), TRIF (TICAM1) and TRAM (TICAM2). These signal<strong>in</strong>g pathways<br />

activate the transcription factors NF-kB and AP-1 lead<strong>in</strong>g to the production of <strong>in</strong>flammatory cytok<strong>in</strong>es and chemok<strong>in</strong>es. They also activate <strong>in</strong>terferon<br />

regulatory factors (IRFs) lead<strong>in</strong>g to the production of type I <strong>in</strong>terferons.<br />

Nod-Like Receptors (NLRs)<br />

NOD-Like Receptors (NLRs, also known as CATERPILLERs) constitute a recently identified family of <strong>in</strong>tracellular pattern recognition receptors (PRRs),<br />

which conta<strong>in</strong>s more than 20 members <strong>in</strong> mammals. Although the ligands and functions of many of these receptors are not known, their primary role is to<br />

recognize cytoplasmic pathogen-associated molecular patterns (PAMPs) and/or endogenous danger signal, <strong>in</strong>duc<strong>in</strong>g immune responses. NLRs are<br />

characterized by a tripartite-doma<strong>in</strong> organization with a conserved nucleotide b<strong>in</strong>d<strong>in</strong>g oligomerization doma<strong>in</strong> (NOD) and leuc<strong>in</strong>e-rich repeats (LRRs). The<br />

general doma<strong>in</strong> structure consists of C-term<strong>in</strong>al LRRs <strong>in</strong>volved <strong>in</strong> microbial sens<strong>in</strong>g, a centrally located NOD doma<strong>in</strong> and an N-term<strong>in</strong>al effector region<br />

compris<strong>in</strong>g a prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction doma<strong>in</strong> such as the CARD, Pyr<strong>in</strong> or BIR doma<strong>in</strong>. NLRs have been grouped <strong>in</strong>to several subfamilies on the basis of<br />

their effector doma<strong>in</strong>s: NODs, NALPs, CIITA, IPAF, and NAIPs. NODs and IPAF conta<strong>in</strong> CARD effector doma<strong>in</strong>s, whereas NALPs and NAIPs conta<strong>in</strong> pyr<strong>in</strong><br />

(PYD) effector doma<strong>in</strong>s and three BIR doma<strong>in</strong>s, respectively.<br />

RIG-I-Like Receptors (RLRs)<br />

RIG-I-like receptors (RLRs) constitute a family of cytoplasmic RNA helicases that are critical for host antiviral responses. RIG-I (ret<strong>in</strong>oic-acid-<strong>in</strong>ducible<br />

prote<strong>in</strong> 1, also known as Ddx58) and MDA-5 (melanoma-differentiation-associated gene 5, also known as Ifih1 or Helicard) sense double-stranded RNA<br />

(dsRNA), a replication <strong>in</strong>termediate for RNA viruses, lead<strong>in</strong>g to production of type I <strong>in</strong>terferons (IFNs) <strong>in</strong> <strong>in</strong>fected cells. A third RLR has been described:<br />

laboratory of genetics and physiology 2 (LGP2). LGP2 conta<strong>in</strong>s a RNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> but lacks the CARD doma<strong>in</strong>s and thus acts as a negative feedback<br />

regulator of RIG-I and MDA-5.<br />

C-Type Lect<strong>in</strong> Receptors (CLRs) and Other Pathogen Sensors<br />

Besides TLRs, NLRs and RLRs, other receptors can also recognize molecules present on pathogenic organisms. Those receptors <strong>in</strong>clude members of the<br />

PGRP (peptidoglycan recognition prote<strong>in</strong>s) and C-type lect<strong>in</strong> families. C-type lect<strong>in</strong>s, also called C-type lect<strong>in</strong> receptors (CLRs), encompass a large family of<br />

prote<strong>in</strong>s that act as phagocytic receptors that b<strong>in</strong>d carbohydrate moieties of various pathogens. This family comprises MBL (mannose b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong>),<br />

Dect<strong>in</strong>-1, DC-SIGN (dendritic cell-specific <strong>in</strong>tercellular adhesion molecule-grabb<strong>in</strong>g non<strong>in</strong>tegr<strong>in</strong>) and the structurally related receptors SIGNRs.<br />

48 www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity


Toll-Like Receptors<br />

Toll-Like Receptors (TLRs) play a critical role <strong>in</strong> the early <strong>in</strong>nate immune<br />

response to <strong>in</strong>vad<strong>in</strong>g pathogens by sens<strong>in</strong>g microorganisms. These<br />

evolutionarily conserved receptors, homologues of the Drosophila Toll gene,<br />

recognize highly conserved structural motifs only expressed by microbial<br />

pathogens, called pathogen-associated microbial patterns (PAMPs). PAMPs<br />

<strong>in</strong>clude various bacterial cell wall components such as lipopolysaccharide<br />

(LPS), peptidoglycan (PGN) and lipopeptides, as well as flagell<strong>in</strong>, bacterial<br />

DNA and viral double-stranded RNA. Stimulation of TLRs by PAMPs<br />

<strong>in</strong>itiates signal<strong>in</strong>g cascades that <strong>in</strong>volves a number of prote<strong>in</strong>s, such as<br />

MyD88, TRIF and IRAK 1 . These signal<strong>in</strong>g cascades lead to the activation of<br />

transcription factors, such as AP-1, NF-kB and IRFs <strong>in</strong>duc<strong>in</strong>g the secretion<br />

of pro-<strong>in</strong>flammatory cytok<strong>in</strong>es and effector cytok<strong>in</strong>es that direct the<br />

adaptive immune response.<br />

The TLR Family<br />

TLRs are type I transmembrane prote<strong>in</strong>s characterized by an extracellular<br />

doma<strong>in</strong> conta<strong>in</strong><strong>in</strong>g leuc<strong>in</strong>e-rich repeats (LRRs) and a cytoplasmic tail that<br />

conta<strong>in</strong>s a conserved region called the Toll/IL-1 receptor (TIR) doma<strong>in</strong>. The<br />

structure of the extracellular doma<strong>in</strong> of TLR3 was recently revealed by<br />

crystallography studies as a large horseshoe-shape 2 . TLRs are predom<strong>in</strong>antly<br />

expressed <strong>in</strong> tissues <strong>in</strong>volved <strong>in</strong> immune function, such as spleen and<br />

peripheral blood leukocytes, as well as those exposed to the external<br />

environment such as lung and the gastro<strong>in</strong>test<strong>in</strong>al tract. Their expression<br />

profiles vary among tissues and cell types. TLRs are located on the plasma<br />

membrane with the exception of TLR3, TLR7, TLR9 which are localized<br />

<strong>in</strong>tracellularly 3 .<br />

Ten human and twelve mur<strong>in</strong>e TLRs have<br />

been characterized, TLR1 to TLR10 <strong>in</strong> humans,<br />

and TLR1 to TLR9, TLR11, TLR12 and TLR13<br />

<strong>in</strong> mice, the homolog of TLR10 be<strong>in</strong>g a<br />

pseudogene. TLR2 is essential for the<br />

recognition of a variety of PAMPs from Grampositive<br />

bacteria, <strong>in</strong>clud<strong>in</strong>g bacterial<br />

lipoprote<strong>in</strong>s, lipomannans and lipoteichoic<br />

acids. TLR3 is implicated <strong>in</strong> virus-derived<br />

double-stranded RNA. TLR4 is predom<strong>in</strong>antly<br />

activated by lipopolysaccharide. TLR5 detects<br />

bacterial flagell<strong>in</strong> and TLR9 is required for<br />

response to unmethylated CpG DNA. F<strong>in</strong>ally,<br />

TLR7 and TLR8 recognize small synthetic antiviral molecules 4 , and recently<br />

s<strong>in</strong>gle-stranded RNA was reported to be their natural ligand 5 . TLR11(12)<br />

has been reported to recognize uropathogenic E. coli 6 and a profil<strong>in</strong>-like<br />

prote<strong>in</strong> from Toxoplasma gondii 7 .<br />

The repertoire of specificities of the TLRs is apparently extended by the<br />

ability of TLRs to heterodimerize with one another. For example, dimers of<br />

TLR2 and TLR6 are required for responses to diacylated lipoprote<strong>in</strong>s while<br />

TLR2 and TLR1 <strong>in</strong>teract to recognize triacylated lipoprote<strong>in</strong>s 8 . Specificities<br />

of the TLRs are also <strong>in</strong>fluenced by various adapter and accessory molecules,<br />

such as MD-2 and CD14 that form a complex with TLR4 <strong>in</strong> response to<br />

LPS 9 .<br />

TLR Signal<strong>in</strong>g (see pathway next page)<br />

TLR signal<strong>in</strong>g consists of at least two dist<strong>in</strong>ct pathways: a MyD88-dependent<br />

pathway that leads to the production of <strong>in</strong>flammatory cytok<strong>in</strong>es, and a<br />

MyD88-<strong>in</strong>dependent pathway associated with the stimulation of IFN-b and<br />

the maturation of dendritic cells. The MyD88-dependent pathway is<br />

common to all TLRs, except TLR3 10 . Upon activation by microbial antigens,<br />

TLRs <strong>in</strong>duce the recruitment of MyD88 via its TIR doma<strong>in</strong> which <strong>in</strong> turn<br />

recruits IRAK1 and IRAK4. IRAK4 then activates IRAK-1 by phosphorylation.<br />

Both IRAK-1 and IRAK4 leave the MyD88-TLR complex and associate<br />

temporarily with TRAF6 lead<strong>in</strong>g to its ubiquit<strong>in</strong>ation. Bcl10 and MALT1 form<br />

oligomers that b<strong>in</strong>d to TRAF6 promot<strong>in</strong>g TRAF6 self-ubiquit<strong>in</strong>ation 11 .<br />

Recently, IRAK-2 was shown to play a central role <strong>in</strong> TRAF6 ubiquit<strong>in</strong>ation 12 .<br />

Follow<strong>in</strong>g ubiquit<strong>in</strong>ation, TRAF6 forms a complex with TAB2/TAB3/TAK1<br />

<strong>in</strong>duc<strong>in</strong>g TAK1 activation 13 . TAK1 then couples to the IKK complex, which<br />

<strong>in</strong>cludes the scaffold prote<strong>in</strong> NEMO, lead<strong>in</strong>g to the phosphorylation of IkB<br />

and the subsequent nuclear localization of NF-kB. Activation of NF-kB<br />

triggers the the production of pro-<strong>in</strong>flammatory cytok<strong>in</strong>es such as TNF-a,<br />

IL-1 and IL-12.<br />

Differences between signal<strong>in</strong>g pathways <strong>in</strong>duced by <strong>in</strong>dividual TLRs are<br />

emerg<strong>in</strong>g. TLR4 and TLR2 signal<strong>in</strong>g requires the adaptor TIRAP/Mal, which<br />

is <strong>in</strong>volved <strong>in</strong> the MyD88-dependent pathway 14 . TLR3 triggers the<br />

production of IFN-b <strong>in</strong> response to double-stranded RNA, <strong>in</strong> a MyD88<strong>in</strong>dependent<br />

manner, through the adaptor TRIF/TICAM-1 15 . TRAM/TICAM-<br />

2 is another adaptor molecule <strong>in</strong>volved <strong>in</strong> the MyD88-<strong>in</strong>dependent<br />

pathway 5 which function is restricted to the TLR4 pathway 16 .<br />

TLR3, TLR7, TLR8 and TLR9 recognize viral nucleic acids and <strong>in</strong>duce type I<br />

IFNs. The signal<strong>in</strong>g mechanisms lead<strong>in</strong>g to the <strong>in</strong>duction of type I IFNs differ<br />

depend<strong>in</strong>g on the TLR activated (see Chapter “Cytok<strong>in</strong>e Signal<strong>in</strong>g”). They<br />

<strong>in</strong>volve the <strong>in</strong>terferon regulatory factors (IRFs), a grow<strong>in</strong>g family of<br />

transcription factors known to play a critical role <strong>in</strong> antiviral defense, cell<br />

growth and immune regulation. Three IRFs (IRF3, IRF5 and IRF7) function<br />

as direct transducers of virus-mediated TLR signal<strong>in</strong>g. TLR3 and TLR4 activate<br />

IRF3 and IRF7 17 , while TLR7 and TLR8 activate IRF5 and IRF7 18 . Furthermore,<br />

type I IFN production stimulated by TLR9 ligand CpG-A has been shown<br />

to be mediated by PI(3)K and mTOR 19 .<br />

Current knowledge of the TLRs <strong>in</strong>dicates that these receptors are essential<br />

elements <strong>in</strong> host defense aga<strong>in</strong>st pathogens by activat<strong>in</strong>g the <strong>in</strong>nate<br />

immunity, a prerequisite to <strong>in</strong>duction of adaptive immunity. The grow<strong>in</strong>g<br />

<strong>in</strong>terest <strong>in</strong> TLRs should br<strong>in</strong>g a more complete understand<strong>in</strong>g of the role of<br />

TLR-mediated responses and <strong>in</strong>crease our range of weapons to treat<br />

<strong>in</strong>fectious and immune diseases.<br />

1. Medzhitov R. et al., 1997. A human homologue of the Drosophila Toll prote<strong>in</strong> signals<br />

activation of adaptive immunity. Nature, 388(6640):394-7. 2. Choe J. et al., 2005. Crystal<br />

structure of human Toll-like receptor 3 (TLR3) ectodoma<strong>in</strong>. Science 309; 581-585. 3. Nishiya<br />

T. & DeFranco AL., 2004. Ligand-regulated chimeric receptor approach reveals dist<strong>in</strong>ctive<br />

subcellular localization and signal<strong>in</strong>g properties of the Toll-like receptors. J Biol Chem.<br />

279(18):19008-17. 4. Jurk M. et al., 2002. Human TLR7 or TLR8 <strong>in</strong>dependently confer<br />

responsiveness to the antiviral compound R-848. Nat Immunol, 3(6):499. 5. Heil F. et al., 2004.<br />

Species-specific recognition of s<strong>in</strong>gle-stranded RNA via toll-like receptor 7 and 8. Science.<br />

303(5663):1526-9. 6. Zhang D. et al., 2004. A toll-like receptor that prevents <strong>in</strong>fection by<br />

uropathogenic bacteria. Science. 303:1522-1526. 7. Lauw FN. et al., 2005. Of mice and man:<br />

TLR11 (f<strong>in</strong>ally) f<strong>in</strong>ds profil<strong>in</strong>. Trends Immunol. 26(10):509-11. 8. Oz<strong>in</strong>sky A. et al., 2000. The<br />

repertoire for pattern recognition of pathogens by the <strong>in</strong>nate immune system is def<strong>in</strong>ed by<br />

cooperation between toll-like receptors. PNAS USA, 97(25):13766-71. 9. Miyake K., 2003.<br />

Innate recognition of lipopolysaccharide by CD14 and toll-like receptor 4-MD-2: unique roles<br />

for MD-2. Int Immunopharmacol. 3(1):119-28. 10. Adachi O. et al., 1998.Targeted disruption<br />

of the MyD88 gene results <strong>in</strong> loss of IL-1- and IL-18-mediated function. Immunity. 9(1):143-<br />

50. 11. Sun L. et al., 2004. The TRAF6 ubiquit<strong>in</strong> ligase and TAK1 k<strong>in</strong>ase mediate IKK activation<br />

by BCL10 and MALT1 <strong>in</strong> T lymphocytes. Mol Cell. 12. Keat<strong>in</strong>g SE. et al., 2007. IRAK-2<br />

participates <strong>in</strong> multiple Toll-like receptor signal<strong>in</strong>g pathways to NFkB via activation of TRAF6<br />

ubiquit<strong>in</strong>ation. J Biol Chem. 282: 33435-33443. 13. Kanayama A. et al., 2004. TAB2 and TAB3<br />

activate the NF-kappaB pathway through b<strong>in</strong>d<strong>in</strong>g to polyubiquit<strong>in</strong> cha<strong>in</strong>s. Mol Cell. 15(4):535-<br />

48. 14. Horng T. et al., 2002. The adaptor molecule TIRAP provides signall<strong>in</strong>g specificity for<br />

Toll-like receptors. Nature. 420(6913):329-33. 15. Yamamoto M. et al., 2002. Cutt<strong>in</strong>g edge: a<br />

novel Toll/IL-1 receptor doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g adaptor that preferentially activates the IFN-beta<br />

promoter <strong>in</strong> the Toll-like receptor signal<strong>in</strong>g. J Immunol. 169(12):6668-72. 16. Yamamoto M. et<br />

al., 2003. TRAM is specifically <strong>in</strong>volved <strong>in</strong> the Toll-like receptor 4-mediated MyD88-<strong>in</strong>dependent<br />

signal<strong>in</strong>g pathway. Nat Immunol. 4(11):1144-50. 17. Doyle S. et al., 2002. IRF3 mediates a<br />

TLR3/TLR4-specific antiviral gene program. Immunity. 17(3):251-63. 18. Schoenemeyer A. et<br />

al., 2005. The <strong>in</strong>terferon regulatory factor, IRF5, is a central mediator of toll-like receptor 7<br />

signal<strong>in</strong>g. J Biol Chem. 280(17):17005-12. 19. Costa-Mattioli M. & Sonenberg N. 2008. RAPp<strong>in</strong>g<br />

production of type I <strong>in</strong>terferon <strong>in</strong> pDCs through mTOR. Nature Immunol. 9: 1097-1099.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity 49<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

50 www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity


www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity 51<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

Nod-Like Receptors<br />

NOD-Like Receptors (NLRs, also known as CATERPILLERs) constitute a<br />

recently identified family of <strong>in</strong>tracellular pattern recognition receptors<br />

(PRRs), which conta<strong>in</strong>s more than 20 members <strong>in</strong> mammals. Although the<br />

ligands and functions of many of these receptors are not known, their<br />

primary role is to recognize cytoplasmic pathogen-associated molecular<br />

patterns (PAMPs) and/or endogenous danger signals also called damageassociated<br />

molecular patterns (DAMPs), <strong>in</strong>duc<strong>in</strong>g immune responses. NLRs<br />

are characterized by a tripartite-doma<strong>in</strong> organization with a conserved<br />

nucleotide b<strong>in</strong>d<strong>in</strong>g oligomerization doma<strong>in</strong> (NOD) and leuc<strong>in</strong>e-rich repeats<br />

(LRRs). The general doma<strong>in</strong> structure consists of C-term<strong>in</strong>al LRRs <strong>in</strong>volved<br />

<strong>in</strong> microbial sens<strong>in</strong>g, a centrally located NOD doma<strong>in</strong> and an N-term<strong>in</strong>al<br />

effector region compris<strong>in</strong>g a prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction doma<strong>in</strong> such as the<br />

CARD, Pyr<strong>in</strong> or BIR doma<strong>in</strong>. NLRs have been grouped <strong>in</strong>to several<br />

subfamilies on the basis of their effector doma<strong>in</strong>s: NODs, NALPs, CIITA,<br />

IPAF, and NAIPs. NODs and IPAF conta<strong>in</strong> CARD effector doma<strong>in</strong>s, whereas<br />

NALPs and NAIPs conta<strong>in</strong> pyr<strong>in</strong> (PYD) effector doma<strong>in</strong>s and three BIR<br />

doma<strong>in</strong>s, respectively.<br />

NOD1 and NOD2<br />

The first mammalian NLRs reported to sense <strong>in</strong>tracellular microbial PAMPs<br />

are NOD1 (CARD4) and NOD2 (CARD15), which conta<strong>in</strong> one and two<br />

N-term<strong>in</strong>al CARD doma<strong>in</strong>s, respectively. They recognize peptidoglycan<br />

(PGN), an essential constituent of the bacterial cell wall. NOD1 and NOD2<br />

detect specific motifs with<strong>in</strong> the PGN. NOD1 senses the D-g-glutamyl-meso-<br />

DAP dipeptide (iE-DAP) which is found <strong>in</strong> PGN of all Gram-negative and<br />

certa<strong>in</strong> Gram-positive bacteria 1,2 whereas NOD2 recognizes the muramyl<br />

dipeptide (MDP) structure found <strong>in</strong> almost all bacteria 3 . Thus NOD2 acts as<br />

a general sensor of PGN and NOD1 is <strong>in</strong>volved <strong>in</strong> the recognition of a specific<br />

subset of bacteria. Both iE-DAP and MDP must be delivered <strong>in</strong>tracellularly<br />

either by bacteria that <strong>in</strong>vade the cell or through other cellular uptake<br />

mechanisms to be detected by NOD1 and NOD2 respectively. NOD1 and<br />

NOD2 signal via the ser<strong>in</strong>e/threon<strong>in</strong>e RIP2 (RICK,CARDIAK) k<strong>in</strong>ase through<br />

CARD-CARD homophilic <strong>in</strong>teractions 4 . Once activated, RIP2 mediates<br />

ubiquit<strong>in</strong>ation of NEMO/IKKg lead<strong>in</strong>g to the activation of NF-kB and the<br />

production of <strong>in</strong>flammatory cytok<strong>in</strong>es such as TNF-a and IL-6 5 . In addition to<br />

the NF-kB pathway, NOD1 and NOD2 stimulation <strong>in</strong>duces the activation of<br />

MAPKs 6 . Recent work has implicated CARD9 <strong>in</strong> the selective control of<br />

NOD2-dependent p38 and JNK signal<strong>in</strong>g 7 . The physiological importance of<br />

NOD1 and NOD2 <strong>in</strong> immune responses is evident from the l<strong>in</strong>kage of their<br />

mutations with <strong>in</strong>flammatory diseases <strong>in</strong> humans. Genetic variation <strong>in</strong> NOD2<br />

is associated with Crohn’s disease, one of the major forms of <strong>in</strong>flammatory<br />

bowel diseases 8 . Several NOD1 polymorphisms are l<strong>in</strong>ked to the<br />

development of atopic eczema and asthma 9 .<br />

Schematic structure of Lys-PGN (found <strong>in</strong> Gram-positive bacteria) and DAP-PGN<br />

(found <strong>in</strong> Gram-negative bacteria)<br />

52 www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

NALPs<br />

The NALP subfamily consists of 14 members that are characterized by the<br />

presence of PYD effector doma<strong>in</strong>s. Although the functions of many of the<br />

NALPs are largely unknown, several NALPs play a key role <strong>in</strong> the regulation<br />

of caspase-1 by form<strong>in</strong>g a mutiprote<strong>in</strong> complex known as the<br />

‘<strong>in</strong>flammasome’. Caspase-1 participates <strong>in</strong> the process<strong>in</strong>g and subsequent<br />

release of pro<strong>in</strong>flammatory cytok<strong>in</strong>es, such as IL-1b and IL-18. At least two<br />

types of NALP <strong>in</strong>flammasomes have been identified: the NALP1<br />

<strong>in</strong>flammasome compris<strong>in</strong>g NALP1 (NLRP1, CARD7), ASC, Caspase-1 and<br />

Caspase-5, and the NALP3 <strong>in</strong>flammasome conta<strong>in</strong><strong>in</strong>g NALP3 (NLRP3,<br />

cryopyr<strong>in</strong>, CIAS1), ASC, Card<strong>in</strong>al and Caspase-1 10 . NALP1 and NALP3<br />

recruit through their PYD doma<strong>in</strong> the adaptor prote<strong>in</strong> ASC which <strong>in</strong> turn<br />

<strong>in</strong>teracts with Caspase-1 via a CARD-CARD <strong>in</strong>teraction. NALP1 also<br />

recruits Caspase-5 via its additional CARD effector doma<strong>in</strong> at the C<br />

term<strong>in</strong>us, whereas NALP3, lack<strong>in</strong>g such a CARD, <strong>in</strong>teracts with the CARDconta<strong>in</strong><strong>in</strong>g<br />

adaptor Card<strong>in</strong>al to recruit additional Caspase-1.<br />

Two molecules have been recently described to activate NALP1: MDP and<br />

the anthrax tox<strong>in</strong>. In vitro reconstitution experiments revealed that NALP1<br />

oligomerization is a two step mechanism requir<strong>in</strong>g MDP and ATP 11 . In vivo<br />

studies with NALP1 knock-out mice are necessary to confirm that MDP is<br />

a true NALP1 ligand. A mur<strong>in</strong>e variant of NALP1 (NALP1b) was shown to<br />

respond to the anthrax tox<strong>in</strong> suggest<strong>in</strong>g an engagement of the NALP1<br />

<strong>in</strong>flammasome <strong>in</strong> the immune response to Bacillus anthracis <strong>in</strong>fection 12 .<br />

NALP3 mediates caspase-1 activation <strong>in</strong> response to a wide variety of<br />

stimuli: whole bacteria (Listeria monocytogenes, Staphylococcus aureus),<br />

bacterial RNA, synthetic pur<strong>in</strong>e-like compounds (R848, R837), uric acid<br />

crystals, extracellular ATP and pore-form<strong>in</strong>g tox<strong>in</strong>s (nigeric<strong>in</strong>, maitotox<strong>in</strong>) 13-<br />

15 . Activation of Caspase-1 <strong>in</strong>duced by NALP3 appears to be TLR<strong>in</strong>dependent,<br />

whereas secretion of mature IL-1b seems to require two<br />

stimuli <strong>in</strong>volv<strong>in</strong>g the TLRs and NALP3. The first stimulus, a TLR ligand such<br />

as LPS, triggers the generation of pro-IL-1b, while the second, a stimulus<br />

such as ATP, <strong>in</strong>duces oligomerization and <strong>in</strong>flammasome assembly 16-17 . In<br />

addition, studies suggest that NALP3 does not sense ATP directly but rather<br />

<strong>in</strong>tracellular potassium depletion result<strong>in</strong>g from ATP signal<strong>in</strong>g. Bacterial<br />

tox<strong>in</strong>s, such as nigeric<strong>in</strong> and maitotox<strong>in</strong> that cause a change <strong>in</strong> <strong>in</strong>tracellular<br />

ion composition activate the NALP3 <strong>in</strong>flammasome. Thus, NALP3 appears<br />

to serve as an activator of the <strong>in</strong>flammasome <strong>in</strong> response to specific tox<strong>in</strong>s,<br />

endogenous danger signals released by damaged cells or tissues (uric acid<br />

crystal, elevated ATP), or microbial pathogens. Mutations <strong>in</strong> NALP3 are the<br />

cause for several human diseases such as familial cold auto<strong>in</strong>flammatory<br />

syndrome and Muckle-Wells syndrome 18 .


IPAF and NAIP5<br />

IPAF (NLRC4, CLAN/CARD12) and NAIP5 constitute another set of NLRs.<br />

IPAF belongs to the CARD subfamily whereas NAIP5 is a member of the<br />

BIR subfamily. Both NLRs have been shown to respond to flagell<strong>in</strong>, the ma<strong>in</strong><br />

component of the bacterial flagellum, restrict<strong>in</strong>g the proliferation of<br />

<strong>in</strong>tracellular bacteria such as Salmonella typhimurium, Shigella flexneri and<br />

Legionella pneumophila. IPAF senses flagell<strong>in</strong> from S. typhimurium and S. flexneri<br />

secreted by the bacterial type III secretion system (TTSS). SipB <strong>in</strong> S.<br />

typhimurium and IpaB <strong>in</strong> S. flexneri are part of a TTSS and are required for<br />

Caspase-1 activation. These prote<strong>in</strong>s participate <strong>in</strong> the translocation of<br />

flagell<strong>in</strong> <strong>in</strong> the cytosol by form<strong>in</strong>g a pore <strong>in</strong> the host-cell membrane.<br />

Caspase-1 activation <strong>in</strong>duced by cytosolic flagell<strong>in</strong> has been shown to be<br />

IPAF-dependent, but TLR5-<strong>in</strong>dependent 19 . Thus TLR5 and IPAF appear to<br />

be two different sensors that respond to extracellular and cytosolic flagell<strong>in</strong>,<br />

respectively 20 .The adaptor ASC seems to be <strong>in</strong>volved <strong>in</strong> Caspase-1 activation<br />

<strong>in</strong> response to <strong>in</strong>fection with S. typhimurium and S. flexneri 21 . Sens<strong>in</strong>g of L.<br />

pneumophila flagell<strong>in</strong> which is secreted by the bacterial type IV secretion<br />

system is mediated by NAIP5. Mutations affect<strong>in</strong>g the NAIP5 locus (also<br />

known as Birc1e) have been implicated <strong>in</strong> <strong>in</strong>creased susceptibility of A/J<br />

macrophages to <strong>in</strong>fection with L. pneumophila. NAIP5 appears to form an<br />

<strong>in</strong>flammasome complex conta<strong>in</strong><strong>in</strong>g IPAF (but not ASC) and Caspase-1 22 .<br />

NAIP5-mediated signal<strong>in</strong>g pathway and IPAF-mediated Caspase-1 activation<br />

may act <strong>in</strong> concert to restrict L. pneumophila growth <strong>in</strong> macrophages 23,24 .<br />

1. Chamaillard M. et al., 2003. An essential role for NOD1 <strong>in</strong> host recognition of bacterial<br />

peptidoglycan conta<strong>in</strong><strong>in</strong>g diam<strong>in</strong>opimelic acid. Nat. Immunol. 4: 702-707. 2. Girard<strong>in</strong> SE. et al.,<br />

2003. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science<br />

300: 1584-1587. 3. McDonald C., N. Inohara, G. Nunez. 2005. Peptidoglycan signal<strong>in</strong>g <strong>in</strong> <strong>in</strong>nate<br />

immunity and <strong>in</strong>flammatory disease. J. Biol. Chem. 280: 20177-20180. 4. Kobayash, K. et al., 2002.<br />

RICK/Rip2/CARDIAK mediates signall<strong>in</strong>g for receptors of the <strong>in</strong>nate and adaptive immune<br />

systems. Nature 416: 194-199. 5. Inohara N. et al., 2000. An <strong>in</strong>duced proximity model for NF-<br />

B activation <strong>in</strong> the Nod1/RICK and RIP signal<strong>in</strong>g pathways. J. Biol. Chem. 275: 27823-27831.<br />

6. Kobayashi KS. et al., 2005. Nod2-dependent regulation of <strong>in</strong>nate and adaptive immunity <strong>in</strong><br />

the <strong>in</strong>test<strong>in</strong>al tract. Science 307: 731-734. 7. Hsu YM. et al., 2007. The adaptor prote<strong>in</strong> CARD9<br />

is required for <strong>in</strong>nate immune responses to <strong>in</strong>tracellular pathogens. Nat Immunol. 8(2):198-205.<br />

8. Ogura Y. et al., 2001. A frameshift mutation <strong>in</strong> NOD2 associated with susceptibility to Crohn’s<br />

disease. Nature 411: 603-606. 9. Hysi P. et al., 2005. NOD1 variation, immunoglobul<strong>in</strong> E and<br />

asthma. Hum. Mol. Genet. 14: 935-941. 10. Mart<strong>in</strong>on F. & Tschopp J., 2004. Inflammatory<br />

caspases: l<strong>in</strong>k<strong>in</strong>g an <strong>in</strong>tracellular <strong>in</strong>nate immune system to auto<strong>in</strong>flammatory diseases. Cell.<br />

117(5):561-74. 11. Faust<strong>in</strong> B, et al., 2006. In Vitro Reconstitution of the NALP1 Inflammasome<br />

Reveals Requirements for Caspase Activation. Blood (ASH Annual Meet<strong>in</strong>g Abstracts), 108:<br />

3658. 12. Boyden ED. & Dietrich WF., 2006. Nalp1b controls mouse macrophage susceptibility<br />

to anthrax lethal tox<strong>in</strong>. Nat Genet. 38(2):240-4. 13. Mart<strong>in</strong>on F. et al., 2006. Gout-associated<br />

uric acid crystals activate the NALP3 <strong>in</strong>flammasome. Nature 440(7081)237-241. 14. Kanneganti<br />

TD. et al., 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through<br />

cryopyr<strong>in</strong>/Nalp3. Nature 440(7081):233-236. 15. Mariathasan S. et al., 2006. Cryopyr<strong>in</strong> activates<br />

the <strong>in</strong>flammasome <strong>in</strong> response to tox<strong>in</strong>s and ATP. Nature. 440(7081):228-32. 16. Sutterwala FS.<br />

et al., 2006. Critical role for NALP3/CIAS1/Cryopyr<strong>in</strong> <strong>in</strong> <strong>in</strong>nate and adaptive immunity through<br />

its regulation of caspase-1. Immunity. 24(3):317-27. 17. Kanneganti TD. et al., 2007. Pannex<strong>in</strong>-1mediated<br />

recognition of bacterial molecules activates the cryopyr<strong>in</strong> <strong>in</strong>flammasome <strong>in</strong>dependent<br />

of Toll-like receptor signal<strong>in</strong>g. Immunity. 26(4):433-43. 18. T<strong>in</strong>g JP. et al., 2006. CATERPILLERs,<br />

pyr<strong>in</strong> and hereditary immunological disorders. Nat. Rev. Immunol. 6: 183-195. 19. Miao EA. et<br />

al., 2008. Pseudomonas aerug<strong>in</strong>osa activates caspase 1 through Ipaf. PNAS.105:2562-2567. 20.<br />

Yu HB.& F<strong>in</strong>lay BB. 2008. The Caspase-1 <strong>in</strong>flammasome: a pilot of <strong>in</strong>nate immune responses.<br />

Cell Host Microbe. 4:198-207. 21. Mariathasan S & Monack DM., 2007. Inflammasome adaptors<br />

and sensors: <strong>in</strong>tracellular regulators of <strong>in</strong>fection and <strong>in</strong>flammation. Nat Rev Immunol. 7(1):31-<br />

40. 22. Zamboni DS. et al., 2006. The Birc1e cytosolic pattern-recognition receptor contributes<br />

to the detection and control of Legionella pneumophila <strong>in</strong>fection. Nat Immunol. 7(3):318-25.<br />

23. Lamkanfi M. et al., 2007. The Nod-like receptor family member Naip5/Birc1e restricts<br />

Legionella pneumophila growth <strong>in</strong>dependently of caspase-1 axctivation. J Immunol. 178:8022-<br />

8027. 24. V<strong>in</strong>z<strong>in</strong>g M. et al. 2008. NAIP and IPAF control legionella pneumophila replication <strong>in</strong><br />

human cells. J Immunol. 180:6808-15.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity 53<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

RIG-I-Like Receptors<br />

RIG-I-like receptors (RLRs), also known as RIG-I-like helicases (RLHs)<br />

constitute a family of cytoplasmic RNA helicases that are critical for host<br />

antiviral responses. RIG-I (ret<strong>in</strong>oic-acid-<strong>in</strong>ducible prote<strong>in</strong> 1, also known as<br />

Ddx58) and MDA-5 (melanoma-differentiation-associated gene 5, also<br />

known as Ifih1 or Helicard) sense double-stranded RNA (dsRNA), a<br />

replication <strong>in</strong>termediate for RNA viruses, lead<strong>in</strong>g to production of type I<br />

<strong>in</strong>terferons (IFNs) <strong>in</strong> <strong>in</strong>fected cells 1 . Viral dsRNA is also recognized by Toll-<br />

Like receptor 3 (TLR3) which is expressed on the cell surface membrane<br />

or endosomes. Recognition of dsRNA by RIG-I/MDA-5 or TLR3 is cell-type<br />

dependent. Studies of RIG-I- and MDA-5-deficient mice have revealed that<br />

conventional dendritic cells (DCs), macrophages and fibroblasts isolated<br />

from these mice have impaired IFN <strong>in</strong>duction after RNA virus <strong>in</strong>fection,<br />

while production of IFN is still observed <strong>in</strong> plasmacytoid DCs (pDCs) 2 . Thus<br />

<strong>in</strong> cDCs, macrophages and fibroblasts, RLRs are the major sensors for viral<br />

<strong>in</strong>fection, while <strong>in</strong> pDCs, TLRs play a more important role.<br />

RIG-I and MDA-5 conta<strong>in</strong> a DExD/H box RNA helicase and two caspase<br />

recruit<strong>in</strong>g doma<strong>in</strong> (CARD)-like doma<strong>in</strong>s. The helicase doma<strong>in</strong> <strong>in</strong>teracts with<br />

dsRNA, whereas the CARD doma<strong>in</strong>s are required to relay the signal.<br />

Despite the overall structural similarity between these two sensors, they<br />

detect dist<strong>in</strong>ct viral species. RIG-I participates <strong>in</strong> the recognition of<br />

Paramyxoviruses (Newcastle disease virus (NDV), Sendai virus (SeV)),<br />

Rhabdoviruses (vesicular stomatitis virus (VSV)), Flaviviruses (hepatitis C<br />

(HCV)) and Orthomyxoviruses (Influenza), whereas MDA-5 is essential for<br />

the recognition of Picornaviruses (encephalo-myocarditis virus (EMCV))<br />

and poly(I:C), a synthetic analog of viral dsRNA 3 . Notably, RIG-I b<strong>in</strong>ds<br />

specifically to s<strong>in</strong>gle stranded RNA conta<strong>in</strong><strong>in</strong>g 5’-triphosphate such as viral<br />

RNA and <strong>in</strong> vitro-transcribed long dsRNA 4 . Mammalian RNA is either<br />

capped or conta<strong>in</strong>s base modifications suggest<strong>in</strong>g that RIG-I is able to<br />

discrim<strong>in</strong>ate between self and non-self RNA. Recently Kato et al., showed<br />

by us<strong>in</strong>g poly(I:C) treated with RNase III that RIG-I b<strong>in</strong>ds preferentially to<br />

54<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

short dsRNA while MDA-5 recognizes preferentially long dsRNA 5 .<br />

Although RIG-I and MDA-5 recognize different ligands, they share common<br />

signal<strong>in</strong>g features. Upon recognition of dsRNA, they are recruited by the<br />

adaptor IPS-1 (also known as MAVS, CARDIF or VISA) to the outer<br />

membrane of the mitochondria lead<strong>in</strong>g to the activation of several<br />

transcription factors <strong>in</strong>clud<strong>in</strong>g IRF3, IRF7 and NF-kB 6 . IRF3 and IRF7 control<br />

the expression of type I IFNs, while NF-kB regulates the production of<br />

<strong>in</strong>flammatory cytok<strong>in</strong>es. IRF3 and IRF7 activation <strong>in</strong>volves TNF (tumor<br />

necrosis factor) receptor-associated factor 3 (TRAF3), NAK-associated<br />

prote<strong>in</strong> 1 (NAP1), TANK and the prote<strong>in</strong> k<strong>in</strong>ase TANK-b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>ase 1<br />

(TBK1) or IkB k<strong>in</strong>ase epsilon (IKKε) 6-8 . Recently, DDX3, a DEAD box<br />

helicase, was shown to <strong>in</strong>teract with TBK1/IKKε 9 . IPS-1 <strong>in</strong>teracts also with<br />

Fas-associated-death-doma<strong>in</strong> (FADD) and receptor <strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> 1<br />

(RIP1) which <strong>in</strong>duces the activation of the NF-kB pathway 6-8, 10 .<br />

Because the production of cytok<strong>in</strong>es is closely controlled, the RIG-I/<br />

MDA-5 pathway is also strictly regulated. A third RLR has been described:<br />

laboratory of genetics and physiology 2 (LGP2). LGP2 conta<strong>in</strong>s a RNA<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> but lacks the CARD doma<strong>in</strong>s and thus acts as a negative<br />

feedback regulator of RIG-I and MDA-5. LGP2 appears to exert this activity<br />

at multiple levels by i) competitively sequester<strong>in</strong>g dsRNA, ii) form<strong>in</strong>g a<br />

prote<strong>in</strong> complex with IPS-1, and/or iii) b<strong>in</strong>d<strong>in</strong>g directly to RIG-I through a<br />

repressor doma<strong>in</strong> 11-13 . Many other molecules seem to be <strong>in</strong>volved <strong>in</strong> the<br />

negative control of RIG-I/MDA-5-<strong>in</strong>duced IFN production. Dihydroxyacetone<br />

k<strong>in</strong>ase (DAK), A20, r<strong>in</strong>g-f<strong>in</strong>ger prote<strong>in</strong> 125 (RNF125), suppressor<br />

of IKKε (SIKE), and peptidyl-propyl isomerase 1 (P<strong>in</strong>1), have been recently<br />

described as physiological suppressors of the RIG-I/MDA-5 signal<strong>in</strong>g<br />

pathway. Furthermore, some viral proteases have been identified, such as<br />

NS3/NS4A of the hepatitis C virus, that <strong>in</strong>activate RIG-I/MDA-5 signal<strong>in</strong>g<br />

by target<strong>in</strong>g IPS-1 as effective means to evade <strong>in</strong>nate immunity.<br />

1. Yoneyama M. & Fujita T., 2007. Function of RIG-I-like Receptors <strong>in</strong> Antiviral Innate<br />

Immunity. J. Biol. Chem. 282: 15315-15318. 2. Kato H. et al., 2005. Cell type-specific<br />

<strong>in</strong>volvement of RIG-I <strong>in</strong> antiviral response. Immunity. 23(1):19-28. 3. Kawai T. & Akira S.,<br />

2007. Antiviral signal<strong>in</strong>g through pattern recognition receptors. J Biochem. 141(2):137-45.<br />

4. Pichlmair A. et al., 2006. RIG-I-mediated antiviral responses to s<strong>in</strong>gle-stranded RNA<br />

bear<strong>in</strong>g 5'-phosphates. Science 314:997-1001. 5. Kato H. et al., 2008. Length-dependent<br />

recognition of double-stranded ribonucleic acids by ret<strong>in</strong>oic acid-<strong>in</strong>ducible gene-I and<br />

melanoma differentiation-associated gene 5. J Exp Med. 205(7):1601-10. 6. Kawai T. et al.,<br />

2005. IPS-1, an adaptor trigger<strong>in</strong>g RIG-I- and Mda5-mediated type I <strong>in</strong>terferon <strong>in</strong>duction.<br />

Nat Immunol. 6(10):981-988 7. Saha SK. et al., 2006. Regulation of antiviral responses by a<br />

direct and specific <strong>in</strong>teraction between TRAF3 and Cardif. Embo J. 25:3257-3263. 8. Sasai<br />

M. et al., 2006. NAK-associated prote<strong>in</strong> 1 participates <strong>in</strong> both the TLR3 and the cytoplasmic<br />

pathways <strong>in</strong> type I IFN <strong>in</strong>duction. J Immunol. 177:8676-8683. 9. Schröder M, et al, 2008. Viral<br />

target<strong>in</strong>g of DEAD box prote<strong>in</strong> 3 reveals its role <strong>in</strong> TBK1/IKKepsilon-mediated IRF activation.<br />

EMBO J. 27(15):2147-57. 10. Takahashi K. et al., 2006. Roles of caspase-8 and caspase-10 <strong>in</strong><br />

<strong>in</strong>nate immune responses to double-stranded RNA. J Immunol. 176:4520-4524. 11.<br />

Yoneyama M. et al., 2005. Shared and unique functions of the DExD/H-box helicases RIG-<br />

I, MDA5, and LGP2 <strong>in</strong> antiviral <strong>in</strong>nate immunity. J Immunol. 175:2851-58. 12. Komuro A. &<br />

Horvath CM., 2006. RNA- and virus-<strong>in</strong>dependent <strong>in</strong>hibition of antiviral signal<strong>in</strong>g by RNA<br />

helicase LGP2. J Virol. 80(24): 12332-12342. 13. Saito T. et al., 2007. Regulation of <strong>in</strong>nate<br />

antiviral defenses through a shared repressor doma<strong>in</strong> <strong>in</strong> RIG-I and LGP2. PNAS. 104(2):582-<br />

587.


C-Type Lect<strong>in</strong> Receptors<br />

C-type lect<strong>in</strong> receptors (CLRs) comprise a large family of receptors that<br />

b<strong>in</strong>d to carbohydrates <strong>in</strong> a calcium-dependent manner. The lect<strong>in</strong> activity of<br />

these receptors is mediated by conserved carbohydrate-recognition<br />

doma<strong>in</strong>s (CRDs). CLRs <strong>in</strong>clude Dect<strong>in</strong>-1, macrophage-<strong>in</strong>ducible C-type<br />

lect<strong>in</strong> (M<strong>in</strong>cle), the dendritic cell-specific ICAM3-grabb<strong>in</strong>g non<strong>in</strong>tegr<strong>in</strong> (DC-<br />

SIGN), DC-SIGN related (DC-SIGNR) and the circulat<strong>in</strong>g mannose b<strong>in</strong>d<strong>in</strong>g<br />

lect<strong>in</strong> (MBL). These CLRs share one or more CRD that were orig<strong>in</strong>ally found<br />

<strong>in</strong> the mannose-b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> and are evolutionarily conserved. These<br />

receptors are <strong>in</strong>volved <strong>in</strong> fungal recognition and the modulation of the<br />

<strong>in</strong>nate immune response. CLRs are expressed by most cell types <strong>in</strong>clud<strong>in</strong>g<br />

macrophages and dendritic cells (DCs), which <strong>in</strong>ternalize various<br />

glycoprote<strong>in</strong>s and microbes for the purposes of clearance and antigen<br />

presentation to T lymphocytes.<br />

Dect<strong>in</strong>-1 plays an important role <strong>in</strong> antifungal <strong>in</strong>nate immunity. Dect<strong>in</strong>-1,<br />

which is expressed on phagocytes, is a specific receptor for b-glucans 1 . b-<br />

Glucans are glucose polymers found <strong>in</strong> the cell walls of fungi, <strong>in</strong>clud<strong>in</strong>g the<br />

yeasts Saccharomyces cerevisiae and Candida albicans. Dect<strong>in</strong>-1 is a type II<br />

transmembrane prote<strong>in</strong> with a CRD connected by a stalk to the<br />

transmembrane region, followed by a cytoplasmic tail conta<strong>in</strong><strong>in</strong>g an ITAMlike<br />

motif. Upon b<strong>in</strong>d<strong>in</strong>g to its ligand, Dect<strong>in</strong>-1 triggers phagocytosis and<br />

activation of Src and Syk k<strong>in</strong>ases, through its ITAM-like motif. Syk, <strong>in</strong> turn,<br />

<strong>in</strong>duces the CARD9-Bcl10-Malt1 complex lead<strong>in</strong>g to the production of<br />

reactive oxygen species (ROS), activation of NF-kB and subsequent<br />

secretion of pro<strong>in</strong>flammatory cytok<strong>in</strong>es 2, 3 . Dect<strong>in</strong>-1 signal<strong>in</strong>g has been<br />

shown to collaborate with TLR2 signal<strong>in</strong>g to enhance the responses<br />

triggered by each receptor 3, 4 . Furthermore, Dect<strong>in</strong>-1 can modulate cytok<strong>in</strong>e<br />

expression by <strong>in</strong>duc<strong>in</strong>g NFAT through the Ca 2+ -calc<strong>in</strong>eur<strong>in</strong>-NFAT pathway 5 .<br />

M<strong>in</strong>cle is another CLR expressed <strong>in</strong> phagocytes which signal<strong>in</strong>g leads to<br />

ITAM-dependent activation of NF-kB and NFAT. M<strong>in</strong>cle recognizes a variety<br />

of endogenous and exogenous stimuli, such as necrotic cells, mycobacteria<br />

and certa<strong>in</strong> fungi, <strong>in</strong>clud<strong>in</strong>g C. albicans and Malassezia species 6 . M<strong>in</strong>cle senses<br />

damaged cells by recogniz<strong>in</strong>g spliceosome-associated prote<strong>in</strong> 130 (SAP130),<br />

a soluble factor released by necrotic cells 7 . M<strong>in</strong>cle recognizes also fungal<br />

a-mannose, and the mycobacterial glycolipid, trehalose-6’6’-dimycolate<br />

(TDM, also known as cord factor), the most studied immunostimulatory<br />

component of Mycobacterium tuberculosis 8 . M<strong>in</strong>cle <strong>in</strong>teracts with the Fc<br />

receptor common g-cha<strong>in</strong> (FcRg), which triggers <strong>in</strong>tracellular signal<strong>in</strong>g<br />

through Syk lead<strong>in</strong>g to CARD9-dependent NF-kB activation. Syk <strong>in</strong>duces<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

also the mobilization of <strong>in</strong>tracellular calcium (Ca 2+ ) and the activation of the<br />

calc<strong>in</strong>eur<strong>in</strong>-NFAT pathway.<br />

Human DC-SIGN is of special <strong>in</strong>terest because it is <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>teraction<br />

of certa<strong>in</strong> DCs with several viruses (HIV-1, HCV, dengue virus, CMV, ebola<br />

virus) and other microbes, Leishmania and Candida species. This type II<br />

transmembrance prote<strong>in</strong> has a s<strong>in</strong>gle C-type lect<strong>in</strong> doma<strong>in</strong> and is expressed<br />

on immature monocyte-derived DCs. Five mouse DC-SIGN homologues<br />

exist. Only one of these named mDC-SIGN is expressed <strong>in</strong> a restricted<br />

fashion <strong>in</strong> DCs, while the others have a different tissue distribution and are<br />

termed SIGNR1, SIGNR2, SIGNR3 and SIGNR4 for SIGN-related prote<strong>in</strong>s 9 .<br />

Despite similarities <strong>in</strong> the carbohydrate recognition doma<strong>in</strong>s (CRDs) of the<br />

mouse homologues to the hDC-SIGN, the membrane proximal neck<br />

doma<strong>in</strong>s were much shorter.<br />

A molecular signal<strong>in</strong>g pathway <strong>in</strong>duced by the C-type lect<strong>in</strong> DC-SIGN that<br />

modulates TLR signal<strong>in</strong>g at the level of the transcription factor NF-kB has been<br />

identified. It has been demonstrated that pathogens trigger DC-SIGN on<br />

human DCs to activate the ser<strong>in</strong>e and threon<strong>in</strong>e k<strong>in</strong>ase Raf-1, which<br />

subsequently leads to acetylation of the NF-kB subunit p65, but only after TLR<strong>in</strong>duced<br />

activation of NF-kB. Acetylation of p65 both prolonged and <strong>in</strong>creased<br />

IL-10 transcription to enhance anti-<strong>in</strong>flammatory cytok<strong>in</strong>e response. It has been<br />

demonstrated that different pathogens such as Mycobacterium tuberculosis, M.<br />

leprae, Candida albicans, measles virus, and HIV-1 <strong>in</strong>teracted with DC-SIGN to<br />

activate the Raf-1-acetylation-dependent signal<strong>in</strong>g pathway to modulate<br />

signal<strong>in</strong>g by different TLRs 10 . Thus, this pathway is <strong>in</strong>volved <strong>in</strong> regulation of<br />

adaptive immunity by DCs to bacterial, fungal, and viral pathogens.<br />

MBL, a soluble C-type lect<strong>in</strong>, is an effector molecule of the <strong>in</strong>nate immune<br />

system. MBL plays a crucial role <strong>in</strong> <strong>in</strong>nate immunity aga<strong>in</strong>st yeast by enhanced<br />

complement activation and enhanced uptake of polymorphonuclear cells 11 .<br />

MBL b<strong>in</strong>ds to repetitive mannose and/or N-acetylglucosam<strong>in</strong>e residues on<br />

microorganisms, lead<strong>in</strong>g to opsonization and activation of the lect<strong>in</strong><br />

complement pathway. MBL also <strong>in</strong>teracts with carbohydrates on the<br />

glycoprote<strong>in</strong> (gp)120 of HIV-1. MBL may <strong>in</strong>hibit DC-SIGN-mediated uptake<br />

and spread of HIV 12 . Differences exist <strong>in</strong> polysaccharide recognition, endocytic<br />

capacities and microbe capture among CLRs. Furthermore, the ligands and<br />

physiological functions of many of the CLRs are still unknown. M<strong>in</strong>cle is one<br />

such orphan receptor. M<strong>in</strong>cle is the first example of a CLR that recognizes an<br />

endogenous nuclear ligand and necrotic cells 13 .<br />

1.Brown GD. et al. , 2003. Dect<strong>in</strong>-1 mediates the biological effects of beta glucans. J Exp<br />

Med. 197: 1119- 24. 2. Gross O. et al., 2006. Card9 controls a non-TLR signal<strong>in</strong>g pathway<br />

for <strong>in</strong>nate anti-fungal immunity. Nature. 442:651- 6. 3 Dennehy KM. & Brown GD., 2007.<br />

The role of the beta-glucan receptor Dect<strong>in</strong>-1 <strong>in</strong> control of fungal <strong>in</strong>fection . J Leukoc<br />

Biol.;82(2):253-8. 4. Gantner BN. et al., 2003. Collaborative <strong>in</strong>duction of <strong>in</strong>flammatory<br />

responses by dect<strong>in</strong>-1 and Toll- like receptor 2. J Exp Med. 197: 1107-17. 5. Goodridge HS.<br />

et al., 2007. Dect<strong>in</strong>-1 stimulation by Candida albicans yeast or zymosan triggers NFAT<br />

activation <strong>in</strong> macrophages and dendritic cells. J Immunol. 178(5):3107-15. 6. Yamasaki S. et<br />

al., 2009. C-type lect<strong>in</strong> M<strong>in</strong>cle is an activat<strong>in</strong>g receptor for pathogenic fungus, Malassezia.<br />

PNAS 106(6): 1897–1902. 7. Yamasaki S. et al., 2008. M<strong>in</strong>cle is an ITAM-coupled activat<strong>in</strong>g<br />

receptor that senses damaged cells. Nat Immunol. 9(10):1179-88. 8. Ishikawa E. et al., 2009.<br />

Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lect<strong>in</strong><br />

M<strong>in</strong>cle. J Exp Med. 206(13):2879-88. 9. Takahara K et al., 2004. Functional comparison of<br />

the mouse DC-SIGN, SIGNR1, SIGNR3 and Langer<strong>in</strong> C-type lect<strong>in</strong>s. Int Immunol. 16:819-829.<br />

10. den Dunnen J. et al., 2008. Innate signal<strong>in</strong>g by C-type lect<strong>in</strong> DC-SIGN dictates immune<br />

responses. Cancer Immunol Immunother. 26:605-610. 11. Van Asbeck et al., 2008. Mannose<br />

b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> plays a crucila role <strong>in</strong> <strong>in</strong>nate immunity aga<strong>in</strong>st yeast by enhanced comploment<br />

activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol. 8:229. 12. Ji X.<br />

et al., 2005. Mannose-b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> b<strong>in</strong>ds to Ebola and Marburg envelope glycoprote<strong>in</strong>s,<br />

result<strong>in</strong>g <strong>in</strong> block<strong>in</strong>g of virus <strong>in</strong>teraction with DC-SIGN and complement-mediated virus<br />

neutralization. J Gen Virol. 86; 2535-2542. 13. Brown GD. 2008. Sens<strong>in</strong>g necrosis with M<strong>in</strong>cle.<br />

Nature Immunol. 9:1099-1100.<br />

55<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

TLR, NLR, RLR & Related Genes<br />

TLR, NLR, RLR & Related Genes is an expand<strong>in</strong>g collection of genes encod<strong>in</strong>g Toll-like receptors (TLRs), NOD-<br />

like receptors (NLRs) and RIG-I-like receptors (RLRs) as well as prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> their signal<strong>in</strong>g pathways.<br />

These genes are either native or modified by addition of a tag and/or deletion to generate dom<strong>in</strong>ant negative<br />

(DN) variants. They are provided as full-length, entirely sequenced open read<strong>in</strong>g frames (ORFs) cloned <strong>in</strong>to<br />

plasmidic expression vectors.<br />

Native Genes (pUNO)<br />

• Toll-Like receptor (TLR) & TLR co-receptor genes • Adaptor genes<br />

• NOD-Like receptor (NLR) genes • Signal<strong>in</strong>g genes<br />

• RIG-I-Like receptor (RLR) genes • Signal<strong>in</strong>g <strong>in</strong>hibitors<br />

• Other pathogen sensor genes • Transcription factors<br />

pUNO plasmids express native genes under the control of the strong and ubiquitous EF1a/HTLV composite promoter, comprised of the elongation<br />

factor 1 alpha (EF-1a) core promoter and the R-U5’ of the human T cell leukemia virus (HTLV). pUNO plasmids are selectable with blasticid<strong>in</strong> allow<strong>in</strong>g the<br />

selection of stable mammalian clones <strong>in</strong> only a few days.<br />

HA-Tagged Genes (pUNO-HA)<br />

56<br />

• TLR genes • Interferon regulatory factor (IRF) genes<br />

pUNO-HA plasmids, which possess the same backbone as the pUNO plasmids, feature genes fused at their 3’ end to the <strong>in</strong>fluenza hemaglut<strong>in</strong><strong>in</strong>e (HA) tag.<br />

This tag provides a simple and convenient method to detect genes by Western blot us<strong>in</strong>g the HA-tag antibody (see page 73).<br />

Gene Associations (pDUO)<br />

• TLR/TLR genes • Co-receptor/co-receptor genes<br />

• TLR/co-receptor genes<br />

pDUO plasmids conta<strong>in</strong> two transcription units allow<strong>in</strong>g the co-expression of two TLR or TLR-related genes. They feature two strong composite promoters<br />

derived from the ferrit<strong>in</strong> light cha<strong>in</strong> (FerL) and heavy cha<strong>in</strong> (FerH) core promoters. Most pDUO plasmids are selectable with blasticid<strong>in</strong> <strong>in</strong> both E. coli and<br />

mammalian cells. Some are selectable with hygromyc<strong>in</strong> (pDUO2).<br />

Dom<strong>in</strong>ant Negative Variants (pZERO-TLR & pDeNy)<br />

• TLR, NLR, RLR genes • Adaptor and signal<strong>in</strong>g genes<br />

pZERO-TLR and pDeNy plasmids express dom<strong>in</strong>ant negative variants created by <strong>in</strong>sertion of a mutation and/or deletion of a key region such as the TIR<br />

doma<strong>in</strong> of the TLR genes. The variants are cloned under the control of the EF1a/HTLV composite promoter. pZERO-TLR and pDeNy are selectable with<br />

puromyc<strong>in</strong> and Zeoc<strong>in</strong> , respectively.<br />

HA-Tagged Dom<strong>in</strong>ant Negative Variants (pZERO-TLR-HA)<br />

• TLR genes<br />

pZERO-TLR-HA plasmids express HA-tagged TIR-deleted TLR genes that act as dom<strong>in</strong>ant negative variants. They can be detected by Western blot us<strong>in</strong>g<br />

the HA-tag antibody (see page 73).<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity


pUNO<br />

pUNO-HA<br />

Toll-Like Receptors (TLRs)<br />

pDUO<br />

pZERO/pDeNy<br />

TLR1 h, m, p h, m h, m h, m h, m<br />

TLR2 h, m, p, b h, m h, m h, m h, m<br />

TLR3 h, m h, m - h, m h, m<br />

TLR4 h, m h, m h, m h, m h, m<br />

TLR5 h, m, p, b h, m - h, m h, m<br />

TLR6 h, m, p, b h, m h, m h, m h, m<br />

TLR7 h, m, p, b h, m - h, m h, m<br />

TLR8 h, m h, m - h, m h, m<br />

TLR9 h, m, p, b h, m - h, m h, m<br />

TLR10 h, p h - h h<br />

TLR11 m - - - -<br />

TLR11/12 m m - - -<br />

TLR13 m - - - -<br />

NOD-Like Receptors (NLRs)<br />

IPAF / CARD12 h - - - -<br />

NAIP5 / BIRC1E m - - - -<br />

NALP1 h - - - -<br />

NALP2 h - - - -<br />

NALP3 / NLRP3 h - - - -<br />

NALP12 / Monarch-1 h - - - -<br />

NOD1 / CARD4 h, m - - h -<br />

NOD2 / CARD15 h, m - - h -<br />

NOD9 / NLRX1 h, m - - -<br />

RIG-I-Like Receptors (RLRs)<br />

LGP2 h, m - - - -<br />

MDA-5 h - - - -<br />

RIG-I / DDX58 h, m - - h -<br />

Other Pathogen Sensors<br />

AIM2 / IFI210 h, m - - - -<br />

CLEC9A h - - - -<br />

DAI / ZBP h, m - - - -<br />

DC-SIGN / CD209 h, m - - - -<br />

Dect<strong>in</strong>-1 h, m - - - -<br />

IFI16 h, m - - - -<br />

L-SIGN h - - - -<br />

MBL1, 2 h, m - - - -<br />

M<strong>in</strong>cle / CLEC4E h, m - - - -<br />

PGRP-L, -S, -Ia h, m - - - -<br />

SIGNR1, 2, 3, 4<br />

Adaptors<br />

m - - - -<br />

ASC / PYCARD / CARD5 h, m - - - -<br />

Card<strong>in</strong>al / CARD8 h - - - -<br />

IPS1 / MAVS / VISA h, m - - - -<br />

MyD88 h, m - - h, m -<br />

RAC1 m - - - -<br />

SARM1 h, m - - - -<br />

TIRAP / Mal h, m - - h -<br />

TRAM / TICAM2 h, m - - h -<br />

TRIF / TICAM1<br />

Co-receptors<br />

h, m - - h -<br />

CD14 h, m - h, m - -<br />

sCD14 (soluble) h - - - -<br />

CD36 h, m - - - -<br />

LBP h, m - - - -<br />

MD2 / Ly96 h, m - h, m - -<br />

PRAT4A, 4B h, m - - - -<br />

pZERO-TLR-HA<br />

Signal<strong>in</strong>g Effectors<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

pUNO<br />

pUNO-HA<br />

pDUO<br />

pZERO/pDeNy<br />

BCL10 / CLAP h, m - - - -<br />

CARD9 h, m - - - -<br />

DDX3 m - - - -<br />

FADD / MORT1 h, m - - - -<br />

IKKa, b h, m - - - -<br />

IKKε h, m - - - -<br />

IRAK-1, -4 h, m - - - -<br />

ITCH h, m - - - -<br />

MAPK1 h - - - -<br />

MAPK2 h, m - - - -<br />

NAP1 / AZI2 h, m - - - -<br />

NEMO / IKKg h, m - - - -<br />

Pell<strong>in</strong>o1, 2, 3 h, m - - - -<br />

PRKD1 h - - - -<br />

PKR h, m - - h -<br />

PRKRA / PACT h, m - - - -<br />

RIP1 / RIPK1 h, m - - - -<br />

RIP2 / RIPK2 h, m - - - -<br />

RIP3 / RIPK3 h, m - - - -<br />

STING h, m - - - -<br />

SUGT1 h, m - - - -<br />

Syk h, m - - - -<br />

TAB1, 2, 3 h - - - -<br />

TAK1 / MAP3K7 h, m - - - -<br />

TANK h, m - - - -<br />

TBK1 h, m - - - -<br />

TIFA h, m - - - -<br />

TRADD h, m - - - -<br />

TRAF3 h, m - - - -<br />

TRAF6 h, m - - - -<br />

UNC93B1 h, m - - - -<br />

Signal<strong>in</strong>g Inhibitors<br />

ABIN1, 2, 3 h, m - - - -<br />

ATF3 h, m - - - -<br />

AXL / UFO h, m - - - -<br />

Bcl-3 h, m - - - -<br />

DAK h, m - - - -<br />

DUBA / OTUD5 m - - - -<br />

FLII / Fliih h, m - - - -<br />

IRAK-M h, m - - - -<br />

MD-1 h, m - h, m - -<br />

MFN2 h, m - - - -<br />

MULAN / Dubl<strong>in</strong> h, m - - - -<br />

PIN1 / DOB h, m - - - -<br />

PPP3CA, CB h, m - - - -<br />

PPP3R1 h, m<br />

RNF125 / TRAC-1 h, m - - - -<br />

RP105 h, m - h, m - -<br />

SHP-1 / PTPN6 h, m - - - -<br />

SIGIRR / TIR8 h, m - - - -<br />

SIKE h, m - - - -<br />

T1 / ST2 / IL1RL1 h - - - -<br />

TNFAIP3 / A20 h, m - - - -<br />

Tollip / IL-1RAcPIP h, m - - - -<br />

TRAFD1 / FLN29 h, m - - - -<br />

TRIAD3A h, m - - - -<br />

Tyro3 / BYK h, m - - - -<br />

pZERO-TLR-HA<br />

57<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

pUNO - Native Genes<br />

Features and Benefits<br />

Numerous genes encod<strong>in</strong>g pattern recognition receptors (PRRs), co-receptors, adaptors,<br />

signal<strong>in</strong>g effectors and signal<strong>in</strong>g <strong>in</strong>hibitors are available <strong>in</strong> the pUNO plasmid. The genes are<br />

cloned from the ATG to the Stop codon, exclud<strong>in</strong>g <strong>in</strong>trons and untranslated regions. All<br />

genes are fully sequenced, the sequences are available onl<strong>in</strong>e at www.<strong>in</strong>vivogen.com or can<br />

be emailed upon request.<br />

PRR and related genes are cloned under the control of the strong and ubiquitous mammalian<br />

promoter, EF1a/HTLV. This composite promoter is comprised of the elongation factor 1<br />

alpha (EF-1a) core promoter and the R-U5’ of the human T cell leukemia virus (HTLV).<br />

pUNO plasmids can be used directly for <strong>in</strong> vitro or <strong>in</strong> vivo transfection experiments. They are<br />

selectable with blasticid<strong>in</strong> <strong>in</strong> both E. coli and mammalian cells. To facilitate the excision and<br />

subclon<strong>in</strong>g of the gene of <strong>in</strong>terest <strong>in</strong>to another vector, each gene is flanked by unique<br />

restriction sites that are compatible with many others.<br />

Some genes are provided <strong>in</strong> the pUNO2 (Zeoc<strong>in</strong> -resistant) or pUNO3 (hygromyc<strong>in</strong>resistant)<br />

backbone<br />

Contents and Storage<br />

Each pUNO plasmid is provided as a lyophilized transformed E. coli stra<strong>in</strong> on a paper disk.<br />

Transformed stra<strong>in</strong>s are shipped at room temperature and should be stored at -20ºC.<br />

Lyophilized E. coli cells are stable for at least 1 year when properly stored. Each plasmid is<br />

provided with 4 pouches of E. coli Fast-Media ® Blas (2 TB and 2 Agar).<br />

58<br />

Toll-Like Receptors (TLRs)<br />

TLR genes from different species are available:<br />

- human<br />

- mouse<br />

- pig<br />

- bov<strong>in</strong>e<br />

Human TLR genes are available <strong>in</strong> two different plasmid backbones:<br />

- pUNO/pUNO1 selectable with blasticid<strong>in</strong><br />

- pUNO3, selectable with hygromyc<strong>in</strong><br />

GENE NAME DESCRIPTION<br />

TOLL-Like Receptors (TLRs)<br />

CAT. CODE<br />

(human)<br />

CAT. CODE<br />

(human, hygro)<br />

CAT. CODE<br />

(mouse)<br />

TLR1 Toll-like Receptor 1 puno-htlr1 puno3-htlr1 puno-mtlr1 puno1-ptlr1 NEW -<br />

TLR2 Toll-like Receptor 2 puno-htlr2 puno3-htlr2 puno-mtlr2 puno1-ptlr2 NEW puno1-btlr2 NEW<br />

TLR3 Toll-like Receptor 3 puno-htlr3 puno3-htlr3 puno-mtlr3 -<br />

TLR4 Toll-like Receptor 4 puno1-htlr4a puno3-htlr4a puno-mtlr4 -<br />

TLR5 Toll-like Receptor 5 puno-htlr5 puno3-htlr5 puno-mtlr5 puno1-ptlr5 NEW puno1-btlr5 NEW<br />

TLR6 Toll-like Receptor 6 puno-htlr6 puno3-htlr6 puno-mtlr6 puno1-ptlr6 NEW puno1-btlr6 NEW<br />

TLR7 Toll-like Receptor 7 puno-htlr7 puno3-htlr7 puno-mtlr7 puno1-ptlr7 NEW puno1-btlr7 NEW<br />

TLR8 Toll-like Receptor 8 puno1-htlr8b puno3-htlr8b puno-mtlr8 -<br />

TLR9 Toll-like Receptor 9 puno1-htlr9a puno3-htlr9a puno-mtlr9 puno1-ptlr9 NEW puno1-btlr9 NEW<br />

TLR10 Toll-like Receptor 10 puno-htlr10 puno3-htlr10 - puno1-ptlr10 NEW<br />

TLR11 Toll-like Receptor 11 - - puno-mtlr11t -<br />

TLR11/12 Toll-like Receptor 11/12 - - puno-mtlr11z -<br />

TLR13 Toll-like Receptor 13 - - puno-mtlr13 -<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-puno<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17<br />

Hygromyc<strong>in</strong> B, HygroGold , page 18<br />

Fast-Media ® Blas, page 45<br />

Fast-Media ® Hygro, page 45<br />

CAT. CODE<br />

(pig)<br />

CAT. CODE<br />

(bov<strong>in</strong>e)


GENE NAME/ALIASES DESCRIPTION CAT. CODE (HUMAN) CAT. CODE (MOUSE)<br />

NOD-Like Receptors (NLRs)<br />

IPAF / CARD12 Flagell<strong>in</strong> receptor - Caspase-1-activat<strong>in</strong>g prote<strong>in</strong> puno-hcard12 -<br />

NAIP5 / BIRC1E Flagell<strong>in</strong> receptor - Caspase-1-activat<strong>in</strong>g prote<strong>in</strong> - puno1-mnaip5<br />

NALP1 / CARD7 Anthrax tox<strong>in</strong> receptor - Caspase-1-activat<strong>in</strong>g prote<strong>in</strong> puno-hnalp1a -<br />

NALP2 Caspase-1-activat<strong>in</strong>g prote<strong>in</strong> puno-hnalp2 -<br />

NALP3 / NLRP3 Receptor of various ligands - Caspase-1-activat<strong>in</strong>g prote<strong>in</strong> puno-hnalp3a -<br />

NALP12 / Monarch-1 Negative regulator of <strong>in</strong>flammation puno-hnalp12 -<br />

NOD1 / CARD4 PGN receptor puno-hnod1 puno-mnod1<br />

NOD2 / CARD15 PGN receptor puno-hnod2a puno-mnod2a<br />

NOD9 / NLRX1 Mitochondrial PRR modulator puno1-hnod9a puno1-mnod9<br />

RIG-I-Like-Receptors (RLRs)<br />

LGP2 Negative regulator of RIG-I and MDA-5 puno1-hlgp2 puno1-mlgp2<br />

MDA5 / IFIH1 dsRNA receptor puno1-hmda5 puno1-mmda5<br />

RIG-I / DDX58 dsRNA receptor puno-hrigi puno-mrigi<br />

Other Pathogen Sensors<br />

AIM2 / IFI210 Cytoplasmic DNA receptor - Caspase-1-activat<strong>in</strong>g prote<strong>in</strong> puno1-haim2 puno1-maim2<br />

CLEC9A C-type lect<strong>in</strong>-like receptor - Ligand unknown puno1-hclec9a puno1-mclec9a<br />

DAI / ZBP1 B-DNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> puno1-hzbp1 puno1-mzbp1a<br />

DC-SIGN / CD209 Mannose-b<strong>in</strong>d<strong>in</strong>g C-type lect<strong>in</strong> puno-hdcsign1a puno-mdcsign<br />

Dect<strong>in</strong>-1 Beta-glucan receptor puno-hdect<strong>in</strong>1b puno-mdect<strong>in</strong>1<br />

IFI16 NEW Cytosolic DNA sensor puno1-hifi16 puno1-mifi16<br />

L-SIGN Mannose-b<strong>in</strong>d<strong>in</strong>g C-type lect<strong>in</strong> puno-hdcsign2a -<br />

MBL1, 2 Mannose b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong>s - puno-mmbl1/2<br />

M<strong>in</strong>cle / CLEC4E Macrophage-<strong>in</strong>ducible C-type lect<strong>in</strong> puno1-hm<strong>in</strong>cle puno1-mm<strong>in</strong>cle<br />

PGPR-L, -S Peptidoglycan recognition prote<strong>in</strong>, long or short puno-hpgrps puno-mpgrpl/s<br />

PGPR-1A Peptidoglycan Recognition prote<strong>in</strong> 1 a puno-hpgrp1a -<br />

SIGNR1, 2, 3, 4 DC-SIGN related prote<strong>in</strong>s 1, 2, 3, 4 - puno-msignr1/2/3/4<br />

Adaptors<br />

ASC / PYCARD / CARD5 NLR adaptor prote<strong>in</strong> puno-hasca puno1-masc<br />

Card<strong>in</strong>al / CARD8 NALP3 adaptor prote<strong>in</strong> porf-hcard8 -<br />

IPS1 / MAVS / VISA RLR adaptor prote<strong>in</strong> puno-hips1 puno-mips1<br />

MyD88 TLR/IL-1R adaptor prote<strong>in</strong> puno-hmyd88 puno-mmyd88<br />

RAC1 Regulator of TLR2 and TLR4 signal<strong>in</strong>g - puno-mrac1<br />

SARM1 Specific <strong>in</strong>hibitor of TRIF-dependent TLR signal<strong>in</strong>g puno-hsarm1a puno-msarm1b<br />

TIRAP / Mal Adaptor prote<strong>in</strong> of MyD88-dependent TLR signal<strong>in</strong>g puno-htirap puno-mtirap<br />

TRAM / TICAM2 Adaptor prote<strong>in</strong> of MyD88-<strong>in</strong>dependent TLR4 signal<strong>in</strong>g puno-htram puno-mtram<br />

TRIF / TICAM1 Adaptor prote<strong>in</strong> of MyD88-<strong>in</strong>dependent TLR3/4 signal<strong>in</strong>g puno2-htrif puno-mtrif<br />

Co-receptors<br />

CD14 Membrane-associated co-receptor of TLR4 puno-hcd14 puno-mcd14<br />

CD36 Scavenger receptor <strong>in</strong>teract<strong>in</strong>g with TLR2 puno3-hcd36 puno3-hcd36<br />

LBP LPS B<strong>in</strong>d<strong>in</strong>g Prote<strong>in</strong> puno-hlbp puno-mlbp<br />

MD2 / Ly96 Accessory molecule for LPS-<strong>in</strong>duced TLR4 signal<strong>in</strong>g puno-hmd2 puno-mmd2<br />

PRAT4A, 4B Regulators of cell surface expression of TLR4 puno1-hprat4a/4b puno1-mprat4a/4b<br />

Signal<strong>in</strong>g Effectors<br />

BCL10 / CLAP NF-kB activator puno1-hbcl10 puno1-mbcl10<br />

CARD9 Mediator of NOD2 & Dect<strong>in</strong>-1 signal<strong>in</strong>g puno-hcard9 puno-mcard9<br />

DDX3 / DDX3X Mediator of TBK1/IKKε signal<strong>in</strong>g - puno-mddx3x<br />

FADD / MORT1 Effector of Fas-mediated apoptosis puno-hfadd puno-mfadd<br />

IKKa / IKBKA Subunit alpha of IkappaB K<strong>in</strong>ase puno-hikka puno-mikka<br />

IKKb / IKBKB Subunit beta of IkappaB K<strong>in</strong>ase puno-hikkb puno-mikkb<br />

IKKε / IKBKE Effector of RIG-I/MDA-5-<strong>in</strong>duced activation of IRF puno-hikke puno-mikke<br />

IRAK-1 Signal transduction mediator for TLR signal<strong>in</strong>g puno-hirak1 puno-mirak1<br />

IRAK-4 Signal transduction mediator for TLR signal<strong>in</strong>g puno-hirak4 puno-mirak4<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-puno<br />

59<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

60<br />

GENE NAME/ALIASES DESCRIPTION CAT. CODE (HUMAN) CAT. CODE (MOUSE)<br />

Signal<strong>in</strong>g Effectors<br />

ITCH NEW p38 and JNK activator and NF-kB <strong>in</strong>hibitor puno1-hitch puno1-mitch<br />

MAPK1 NEW p38 and JNK activator puno1-hmapk1 -<br />

MAPK2 NEW p38 and JNK activator puno1-hmapk2 puno1-mmapk2<br />

NAP1 / AZI2 Regulatory subunit of TBK1/IKKε puno-hnap1 puno-mnap1<br />

NEMO / IKKg Regulatory subunit of IKK complex puno-hnemo puno-mnemo<br />

Pell<strong>in</strong>o1 Co-factor of IL-1-mediated signal<strong>in</strong>g puno-hpeli1 puno-mpeli1<br />

Pell<strong>in</strong>o2 Modulator of IL-1 and LPS signal<strong>in</strong>g puno-hpeli2 puno-mpeli2<br />

Pell<strong>in</strong>o3 Promoter of c-Jun and Elk-1 activation puno-hpeli3a -<br />

PKD1 / PKRD Prote<strong>in</strong> k<strong>in</strong>ase D1 puno1-hprkd1 -<br />

PKR Mediator <strong>in</strong> dsRNA-<strong>in</strong>duced TLR3 and LPS-<strong>in</strong>duced TLR4 signal<strong>in</strong>g puno-hpkr puno-mpkr<br />

PRKRA / PACT Modulator of PKR activity puno-hprkra puno-mprkra<br />

RIP1 / RIPK1 Mediator of TLR3-<strong>in</strong>duced NF-kB activation puno-hripk1 puno-mripk1<br />

RIP2 / RIPK2 Signal transducer for TLRs and NODs puno-hrick puno-mrick<br />

RIP3 / RIPK3 Modulator of NF-kB activation puno-hripk3 puno-mripk3<br />

STING NEW Stimulator of <strong>in</strong>terferon genes puno1-hst<strong>in</strong>g puno1-mst<strong>in</strong>g<br />

SUGT1 NEW Regulator of NOD1 activation puno1-hsugt1b puno1-msugt1<br />

Syk Mitochondrial PRR modulator puno1-hsyk puno1-msyk<br />

TAB1, 2, 3 TAK1 b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s 1, 2 ,3 - Mediators of NF-kB activation puno-htab1/2a/3 -<br />

TAK1 / MAP3K7 Modulator of TLR3/TLR4-mediated NF-kB and AP-1 activation puno-hmap3k7b puno-mmap3k7b<br />

TANK Mediator of RLR- and TLR-<strong>in</strong>duced IFN production puno1-htank puno1-mtank<br />

TBK1 Mediator of RLR- and TLR-<strong>in</strong>duced IFN production puno-htbk1 puno-mtbk1<br />

TIFA Mediator of TRAF6/IRAK1 complexes puno-htifa puno-mtifa<br />

TRADD TNF-R1-Associated via Death Doma<strong>in</strong> puno1-htradd puno1-mtradd<br />

TRAF3 Mediator of TBK1 signal<strong>in</strong>g puno-htraf3 puno-mtraf3<br />

TRAF6 Key signal transducer of TLR pathways puno-htraf6 puno-mtraf6<br />

UNC93B1 Multitransmembrane endoplasmic reticulum prote<strong>in</strong> puno1-hunc93b1 puno1-munc93b1<br />

Signal<strong>in</strong>g Inhibitors<br />

ABIN1, 2, 3 A20-associat<strong>in</strong>g prote<strong>in</strong> <strong>in</strong>hibitor of NF-kB puno1-htnip1a/2a/3 puno1-mtnip1a/2/3<br />

ATF3 Negative regulator of TLR signal<strong>in</strong>g puno-hatf3 puno-matf3<br />

AXL / UFO Negative regulator of TLR signal<strong>in</strong>g puno1-haxl puno1-maxl<br />

BCL3 Inhibitor of NF-kB p50 ubiquit<strong>in</strong>ation puno1-hbcl3 puno1-mbcl3<br />

DAK Negative regulator of MDA-5 puno1-hdak puno1-mdak<br />

DUBA / OTUD5 TRAF3 <strong>in</strong>hibitor - puno1-motud5<br />

FLII / Fliih TLR4/MyD88 signal<strong>in</strong>g complex <strong>in</strong>hibitor puno-hflii puno-mflii<br />

IRAK-M Inhibitor of IRAK-1/TRAF6 complexes puno-hirakm puno-mirakm<br />

MD1 RP105 co-receptor and <strong>in</strong>hibitor TLR4/MD2 complex puno-h md1 puno-m md1<br />

MFN2 NEW IPS-1 <strong>in</strong>hibitor puno1-hmfn2 puno1-mmfn2<br />

MULAN/ Dubl<strong>in</strong> Inhibitor of RIG-I/MDA-5 signal<strong>in</strong>g puno1-hmul1 puno1-mmul1<br />

PIN1 / DOB IRF3 <strong>in</strong>hibitor puno-hp<strong>in</strong>1 puno-mp<strong>in</strong>1<br />

PPP3CA NEW MyD88 and TRIF <strong>in</strong>hibitor - Calc<strong>in</strong>eur<strong>in</strong> A (NFAT pathway) puno1-hppp3cab puno1-mppp3ca<br />

PPP3CB NEW MyD88 and TRIF <strong>in</strong>hibitor - Calc<strong>in</strong>eur<strong>in</strong> B (NFAT pathway) puno1-hppp3cb puno1-mppp3cb<br />

PPP3R1 NEW MyD88 and TRIF <strong>in</strong>hibitor puno1-hppp3r1 puno1-mppp3r1<br />

RNF125 / TRAC-1 Inhibitor of RIG-I signal<strong>in</strong>g puno1-hrnf125 puno1-mrnf125<br />

RP105 Inhibitor TLR4/MD2 complex puno-hrp105 puno-mrp105<br />

SHP-1 / PTPN6 Negative regulator of TLR signal<strong>in</strong>g puno1-hptpn6 puno1-mptpn6<br />

SIGIRR / TIR8 Negative regulator of TLR/IL-1R signal<strong>in</strong>g puno-hsigirr puno-msigirr<br />

SIKE Physiological repressor of IKKε and TBK1 puno1-hsike puno1-msike<br />

T1 / ST2 / IL1RL1 Negative regulator of IL-1R and TLR2, 4, 9 signal<strong>in</strong>g puno-hil1rl1b -<br />

TNFAIP3 / A20 Inhibitor of TLR and RLR-<strong>in</strong>duced NF-kB activation puno-htnfaip3 puno-mtnfaip3<br />

Tollip / IL-1RAcPIP Inhibitor of NF-kB activation <strong>in</strong>duced by IL-1R, TLR2 and TLR4 puno-htollip puno-mtollip<br />

TRAFD1 / FLN29 Inhibitor of LPS-<strong>in</strong>duced TRAF6 function puno-htrafd1 puno1-mtrafd1<br />

TRIAD3A Negative regulator of TIRAP, TRIF and RIP1 puno-htriad3a puno-mtriad3a<br />

Tyro3 / BYK Negative regulator of TLR signal<strong>in</strong>g puno1-htyro3 puno1-mtyro3<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-puno


pDUO - Gene Associations<br />

Features and Benefits<br />

TLR Associations <strong>in</strong> a S<strong>in</strong>gle Plasmid<br />

pDUO is an expression vector conta<strong>in</strong><strong>in</strong>g two transcription units allow<strong>in</strong>g<br />

the co-expression of two TLR or TLR-related genes.<br />

Strong & Similar Levels of Expression of Both Genes<br />

pDUO plasmids feature two strong composite promoters derived from<br />

the ferrit<strong>in</strong> light cha<strong>in</strong> (FerL) and heavy cha<strong>in</strong> (FerH) core promoters.<br />

Both promoters work concomitantly to express Ferrit<strong>in</strong>, an ubiquitous<br />

prote<strong>in</strong>, therefore elim<strong>in</strong>at<strong>in</strong>g potential transcriptional <strong>in</strong>terferences.<br />

Rapid Selection of Stable Transfectants<br />

Each pDUO can be used for transient or stable transfection experiments.<br />

Most pDUO plasmids are selectable with blasticid<strong>in</strong> <strong>in</strong> both E. coli and<br />

mammalian cells. Some are selectable with hygromyc<strong>in</strong> (pDUO2).<br />

Contents and Storage<br />

Each pDUO plasmid is provided as a lyophilized transformed E. coli stra<strong>in</strong><br />

on a paper disk. Transformed stra<strong>in</strong>s are shipped at room temperature and<br />

should be stored at -20ºC. Lyophilized E. coli cells are stable for at least 1<br />

year when properly stored.<br />

Each pDUO plasmid is provided with 4 pouches of the appropriate E.coli<br />

Fast-Media ® (2 TB and 2 Agar).<br />

PRODUCT QTY CAT. CODE*<br />

pDUO- (Blasti) E. coli disk pduo-<br />

pDUO2- (Hygro)<br />

*See table<br />

E. coli disk pduo2-<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17 Hygromyc<strong>in</strong> B, page 18<br />

Fast-Media ® Blas, page 45 Fast-Media ® Hygro, page 45<br />

TLR Associations Available <strong>in</strong> pDUO<br />

Plasmids<br />

TLR/TLR Associations<br />

- TLR1/TLR2<br />

- TLR6/TLR2<br />

TLR/Co-receptor Associations<br />

- CD14/TLR2<br />

- CD14/TLR4<br />

- MD2/TLR4<br />

Co-receptor/Co-receptor Associations<br />

- MD2/CD14 (available <strong>in</strong> pDUO2)<br />

- RP105/MD1<br />

GENES PLASMID DESCRIPTION CAT. CODE (human) CAT. CODE (mouse)<br />

CD14/TLR2 pDUO-CD14-TLR2 CD14 with Toll-like receptor 2 pduo-hcd14tlr2 pduo2-mcd14tlr2<br />

CD14/TLR4 pDUO-CD14-TLR4 CD14 with Toll-like receptor 4 pduo-hcd14tlr4 pduo-mcd14tlr4<br />

MD2/CD14 pDUO2-MD2-CD14 (hygro) MD2 with CD14 pduo2-hmd2cd14 pduo2-mmd2cd14<br />

MD2/TLR4 pDUO-MD2-TLR4 MD2 with Toll-like receptor 4 pduo-hmd2tlr4 pduo-mmd2tlr4<br />

RP105/MD1 pDUO-RP105/MD1 RP105 (CD180) with MD1 pduo-h rp105md1 pduo-mrp105md1<br />

TLR1/TLR2 pDUO-TLR1/TLR2 Toll-like receptors 1 and 2 pduo-htlr12 pduo-mtlr12<br />

TLR6/TLR2 pDUO-TLR6/TLR2 Toll-like receptors 6 and 2 pduo-htlr62 pduo-mtlr62<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pduo<br />

61<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

pUNO-HA - TLR-HA Genes<br />

Features and Benefits<br />

pUNO-HA is a family of expression vectors featur<strong>in</strong>g HA-tagged TLR and IRF (Interferon<br />

Regulatory Factor) genes. The genes have been fused at the 3’end to the <strong>in</strong>fluenza<br />

hemaglut<strong>in</strong><strong>in</strong>e (HA) tag. This short sequence (YPYDVPDYA) encodes a peptide which is the<br />

epitope of a very efficient and specific monoclonal antibody. The use of HA-tagged TLR genes<br />

provides a simple and convenient method to detect the expression of the TLR genes by<br />

Western blot. All TLR genes can be detected us<strong>in</strong>g the same primary antibody, the HA tag<br />

monoclonal antibody (see page 73).<br />

pUNO-HA plasmids are selectable with blasticid<strong>in</strong> <strong>in</strong> both E. coli and mammalian cells.<br />

pUNO-TLR-GFP - TLR-GFP Fusion Genes<br />

TLR-GFP fusion prote<strong>in</strong>s can be used to study the localization of the TLRs. Transfected<br />

cells can be analyzed for GFP expression by flow cytometry and by Western-blott<strong>in</strong>g<br />

us<strong>in</strong>g GFP antibodies.<br />

Features and Benefits<br />

TLR-GFP fusion genes were generated by fus<strong>in</strong>g the GFP gene to the C term<strong>in</strong>us of various<br />

human TLR genes (TLR1 to TLR6). The TLR-GFP fusion genes are cloned <strong>in</strong> the pUNO<br />

plasmid under the control of the strong and ubiquitous mammalian promoter EF1a/HTLV.<br />

The pUNO plasmid is selectable with blasticid<strong>in</strong> <strong>in</strong> both E. coli and mammalian cells.<br />

All TLR::GFP fusion genes have been fully sequenced, their fluorescence confirmed and their<br />

function tested <strong>in</strong> HEK293 cells coexpress<strong>in</strong>g an NF-kB reporter plasmid and stimulated with<br />

the appropriate ligand.<br />

Contents and Storage<br />

62<br />

GENE PLASMID QTY<br />

CAT. CODE<br />

(human)<br />

CAT. CODE<br />

(mouse)<br />

TLR1-HA pUNO-TLR1-HA E. coli disk punoha-htlr1 punoha-mtlr1<br />

TLR2-HA pUNO-TLR2-HA E. coli disk punoha-htlr2 punoha-mtlr2<br />

TLR3-HA pUNO-TLR3-HA E. coli disk punoha-htlr3 punoha-mtlr3<br />

TLR4-HA pUNO-TLR4-HA E. coli disk punoha-htlr4a punoha-mtlr4<br />

TLR5-HA pUNO-TLR5-HA E. coli disk punoha-htlr5 punoha-mtlr5<br />

TLR6-HA pUNO-TLR6-HA E. coli disk punoha-htlr6 punoha-mtlr6<br />

TLR7-HA pUNO-TLR7-HA E. coli disk punoha-htlr7 punoha-mtlr7<br />

TLR8-HA pUNO-TLR8-HA E. coli disk punoha-htlr8a punoha-mtlr8<br />

TLR9-HA pUNO-TLR8-HA E. coli disk punoha-htlr9a punoha-mtlr9<br />

TLR10-HA pUNO-TLR10-HA E. coli disk punoha-htlr10 -<br />

TLR11-HA pUNO-TLR11-HA E. coli disk - punoha-mtlr11<br />

Each pUNO-TLR-GFP plasmid is provided as a lyophilized transformed<br />

E. coli stra<strong>in</strong> on a paper disk. Transformed stra<strong>in</strong>s are shipped at room<br />

temperature and should be stored at -20ºC. Lyophilized E. coli cells are<br />

stable for at least 1 year when properly stored.<br />

Each plasmid is provided with 4 pouches of E. coli Fast-Media ® Blas (2 TB<br />

and 2 Agar, see pages 44-45).<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

Contents and Storage<br />

Each pUNO-HA plasmid is provided as a lyophilized<br />

transformed E. coli stra<strong>in</strong> on a paper disk. Transformed<br />

stra<strong>in</strong>s are shipped at room temperature and should<br />

be stored at -20ºC. Lyophilized E. coli cells are stable<br />

for at least 1 year when properly stored.<br />

Each plasmid is provided with 4 pouches of E.coli<br />

Fast-Media ® Blas (2 TB and 2 Agar). For more<br />

<strong>in</strong>formation about Fast-Media ® , see pages 44-45.<br />

GENE PLASMID QTY CAT. CODE<br />

hTLR1-GFP pUNO-hTLR1-GFP E. coli disk phtlr1-gfp<br />

hTLR2-GFP pUNO-hTLR2-GFP E. coli disk phtlr2-gfp<br />

hTLR3-GFP pUNO-hTLR3-GFP E. coli disk phtlr3-gfp<br />

hTLR4-GFP pUNO-hTLR4-GFP E. coli disk phtlr4-gfp<br />

hTLR5-GFP pUNO-hTLR5-GFP E. coli disk phtlr5-gfp<br />

hTLR6-GFP pUNO-hTLR6-GFP E. coli disk phtlr6-gfp


pZERO-TLR & pDeNy - Dom<strong>in</strong>ant Negative TLR & TLR Signal<strong>in</strong>g Genes<br />

Features and Benefits<br />

DN TLR Genes<br />

Dom<strong>in</strong>ant negative (DN) TLR genes were generated by delet<strong>in</strong>g a<br />

fragment of approximately 500 bp located at the 3’ end of each TLR gene<br />

correspond<strong>in</strong>g to the TIR doma<strong>in</strong> (TLR-DTIR genes). These truncated<br />

genes are still able to recognize their ligands but are unable to <strong>in</strong>duce the<br />

signal<strong>in</strong>g cascade.<br />

DN TLR genes are provided <strong>in</strong> the pZERO plasmid. pZERO-TLR plasmids<br />

are selectable with puromyc<strong>in</strong>.<br />

HA-Tagged DN TLR Genes<br />

DN TLR genes are available with the <strong>in</strong>fluenza hemaglut<strong>in</strong><strong>in</strong>e (HA) tag<br />

fused at their 3’ end to facilitate their detection by Western blot. The HAtagged<br />

DN TLR prote<strong>in</strong>s can be detected us<strong>in</strong>g the anti-HAtag antibody<br />

(see page 73).<br />

HA-tagged DN TLR genes are also provided <strong>in</strong> the pZERO plasmid.<br />

pZERO-TLR-HA plasmids are selectable with puromyc<strong>in</strong>.<br />

DN TLR Signal<strong>in</strong>g Genes<br />

DN forms of TLR signal<strong>in</strong>g genes were created by <strong>in</strong>sert<strong>in</strong>g a mutation<br />

with<strong>in</strong> the gene and/or delet<strong>in</strong>g a region of the gene. These modifications<br />

have been described elsewhere (see table) and shown to block the wildtype<br />

form of these genes.<br />

DN TLR signal<strong>in</strong>g genes are provided <strong>in</strong> the pDeNy plasmid which is<br />

selectable with Zeoc<strong>in</strong> .<br />

pZERO or pDeNy plasmids can be cotransfected with a pUNO plasmid<br />

(see page 58). Selection of stable clones express<strong>in</strong>g both plasmids,<br />

pZERO/pUNO or pDeNy/pUNO, is achieved with addition of puromyc<strong>in</strong><br />

and blasticid<strong>in</strong> or Zeoc<strong>in</strong> and blasticid<strong>in</strong>, respectively.<br />

Contents and Storage<br />

pZERO-TLR, pZERO-TLR-HA and pDeNy plasmids are provided as<br />

lyophilized transformed E. coli stra<strong>in</strong>s on paper disk. Transformed stra<strong>in</strong>s<br />

are shipped at room temperature and should be stored at -20ºC.<br />

Lyophilized E. coli cells are stable for at least 1 year when properly stored.<br />

pZERO-TLR and pZERO-TLR-HA plasmids are provided with 4 pouches<br />

of E. coli Fast-Media ® Puro, while pDeNy plasmids are provided with 4<br />

pouches of E.coli Fast-Media ® Zeo (2 TB and 2 Agar).<br />

Related Products<br />

Puromyc<strong>in</strong>, page 17 Zeoc<strong>in</strong> , page 18<br />

Anti-HAtag antibody, page 73 Fast-Media ® , page 45<br />

PLASMID QTY<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity<br />

CAT. CODE<br />

(human)<br />

CAT. CODE<br />

(mouse)<br />

DN TLR Genes<br />

pZERO-TLR1 E. coli disk pzero-htlr1 pzero-mtlr1<br />

pZERO-TLR2 E. coli disk pzero-htlr2 pzero-mtlr2<br />

pZERO-TLR3 E. coli disk pzero-htlr3 pzero-mtlr3<br />

pZERO-TLR4 E. coli disk pzero-htlr4 pzero-mtlr4<br />

pZERO-TLR5 E. coli disk pzero-htlr5 pzero-mtlr5<br />

pZERO-TLR6 E. coli disk pzero-htlr6 pzero-mtlr6<br />

pZERO-TLR7 E. coli disk pzero-htlr7 pzero-mtlr7<br />

pZERO-TLR8 E. coli disk pzero-htlr8 pzero-mtlr8<br />

pZERO-TLR9 E. coli disk pzero-htlr9 pzero-mtlr9<br />

pZERO-TLR10 E. coli disk pzero-htlr10 -<br />

HA-Tagged DN TLR Genes<br />

pZERO-TLR1-HA E. coli disk pzero-htlr1-ha pzero-mtlr1-ha<br />

pZERO-TLR2-HA E. coli disk pzero-htlr2-ha pzero-mtlr2-ha<br />

pZERO-TLR3-HA E. coli disk pzero-htlr3-ha pzero-mtlr3-ha<br />

pZERO-TLR4-HA E. coli disk pzero-htlr4-ha pzero-mtlr4-ha<br />

pZERO-TLR5-HA E. coli disk pzero-htlr5-ha pzero-mtlr5-ha<br />

pZERO-TLR6-HA E. coli disk pzero-htlr6-ha pzero-mtlr6-ha<br />

pZERO-TLR7-HA E. coli disk pzero-htlr7-ha pzero-mtlr7-ha<br />

pZERO-TLR8-HA E. coli disk pzero-htlr8-ha pzero-mtlr8-ha<br />

pZERO-TLR9-HA E. coli disk pzero-htlr9-ha pzero-mtlr9-ha<br />

pZERO-TLR10-HA E. coli disk pzero-htlr10-ha -<br />

PLASMID SPECIES<br />

MUTATION/<br />

DELETION<br />

CAT. CODE<br />

DN TLR Signal<strong>in</strong>g Genes<br />

pDeNy-hIRAK human aa1-211 pdn-hirak<br />

pDeNy-hMyD88 human aa161-296 pdn-hmyd88<br />

pDeNy-mMyD88 mouse aa161-296 pdn-mmyd88<br />

pDeNy-hNOD1 human aa127-518 pdn-hnod1<br />

pDeNy-hNOD2 human L145P pdn-hnod2<br />

pDeNy-hPKR human aa361-366 pdn-hpkr<br />

pDeNy-hRIG-I human aa1-217 pdn-hrigi<br />

pDeNy-hTIRAP human P125H pdn-htirap<br />

pDeNy-hTRAM human C117H pdn-htram<br />

pDeNy-hTRAF6 human aa289-522 pdn-traf6<br />

pDeNy-hTRIF human aa387-566<br />

+ P434H<br />

pdn-htrif<br />

63<br />

INNATE IMMUNITY 3


Reporter Cell L<strong>in</strong>es<br />

Eng<strong>in</strong>eered HEK293 Cells<br />

Cells that constitutively express a given functional TLR gene are valuable tools for many applications, such as the study of the mechanisms<br />

<strong>in</strong>volved <strong>in</strong> TLR recognition or signal<strong>in</strong>g, and the development of new potential therapeutic drugs. InvivoGen provides HEK293 cells stably<br />

express<strong>in</strong>g human or mur<strong>in</strong>e TLR or NOD genes.<br />

• 293/TLR & 293/NOD Clones<br />

• HEK-Blue TLR and HEK-Blue NOD Cells<br />

Immune Reporter Cells<br />

InvivoGen provides THP1-XBlue , Ramos-Blue and RAW-Blue Cells, derived from a human monocytic cell l<strong>in</strong>e, a human B lymphocyte and<br />

mur<strong>in</strong>e macrophages, respectively. They naturally express a large repertoire of different classes of pattern recognition receptors (PRRs), such<br />

as the TLRs, NLRs and RLRs and stably express an NF-kB-<strong>in</strong>ducible SEAP reporter gene to facilitate the study of these PRRs.<br />

• THP1-XBlue <br />

Cells<br />

• Ramos-Blue Cells<br />

• RAW-Blue <br />

Cells<br />

MEF Reporter Cell L<strong>in</strong>es<br />

InvivoGen provides mur<strong>in</strong>e embryonic fibroblasts (MEFs) isolated from various mouse stra<strong>in</strong>s and immortalized with the SV40 large antigen.<br />

They express a large repertoire of pattern recognition receptors. InvivoGen’s MEFs express an NF-kB-<strong>in</strong>ducible reporter (SEAP) system<br />

allow<strong>in</strong>g the convenient monitor<strong>in</strong>g of NF-kB activation follow<strong>in</strong>g TLR or RLR stimulation.<br />

• C3H/TLR4mut & C3H/WT MEFs<br />

• C57/WT MEFs<br />

Expression of TLR, NOD1/2 and RIG-I/MDA-5 mRNAs and their activity <strong>in</strong> InvivoGen’s Reporter Cell L<strong>in</strong>es*<br />

INNATE IMMUNITY 3+/- - +/- - +/- +/- - - - - +/- - - -<br />

64<br />

REPORTER CELL LINES TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9 TLR10 NOD1 NOD2 RIG-I MDA-5<br />

HEK293-Null cells<br />

THP1-XBlue Cells<br />

Ramos-Blue Cells<br />

RAW-Blue Cells<br />

C3H MEFs<br />

C57 MEFs<br />

+ - + - + + - - - - + - - -<br />

+ + +/- + + + + + + + + + + +<br />

+ + - + + + - + - ND + ? ND ND<br />

+ + + + + + + + + + + - + +<br />

+/- +/- + - - +/- + - + + + - ND ND<br />

+ + + + +/- + + + + - +/- + + +<br />

+ + +/- + - + + ND + - - + ND ND<br />

+ + + + - + - - - - + + + +<br />

+ + + + - + - - - - ND ND ND ND<br />

+ + + + - + + + + - + + + +<br />

ND ND ND ND - ND ND ND ND - ND ND + +<br />

Rows with no background correspond to mRNA expression,rows with a grey background correspond to the activity<br />

B16-Blue IFN-a/b Cells<br />

InvivoGen provides B16-Blue IFN-a/b, a cell l<strong>in</strong>e that <strong>in</strong> addition to detect bioactive mur<strong>in</strong>e type I IFNs can also be used to study<br />

RIG-I/MDA-5 agonists, such as transfected poly(I:C) or 5’ppp-dsRNA (see page 106).<br />

www.<strong>in</strong>vivogen.com/reporter-cells


293/TLR & 293/NOD Clones<br />

293/TLR Clones<br />

293/TLR clones are HEK293 cells stably transfected with a pUNO-TLR or<br />

pDUO-TLR plasmid. They can be used to determ<strong>in</strong>e TLR activation upon ligand<br />

stimulation by assess<strong>in</strong>g IL-8 production or NF-kB activation. The latter can be<br />

evaluated by transfect<strong>in</strong>g transiently or stably 293/TLR clones with pNiFty, a<br />

family of NF-kB <strong>in</strong>ducible reporter plasmids express<strong>in</strong>g either the secreted<br />

alkal<strong>in</strong>e phosphatase or luciferase reporter gene (see page 74).<br />

293/TLR-HA Clones<br />

293/hTLR-HA clones were obta<strong>in</strong>ed by stably transfect<strong>in</strong>g HEK293 cells with a<br />

pUNO-TLR-HA plasmid. pUNO-TLR-HA plasmids express TLR genes that have<br />

been fused at the 3’end to the <strong>in</strong>fluenza hemaglut<strong>in</strong><strong>in</strong>e (HA) tag. Addition of this<br />

tag has no deleterious effect on the expression and function of the TLR genes.<br />

The HA tag is the epitope of a very efficient and specific monoclonal antibody<br />

(see page 73).<br />

293/NOD Clones<br />

293/NOD clones are transfected HEK293 cells that express stably the NOD1<br />

or NOD2 genes. These clones can be used to study NOD1 and NOD2<br />

activation pathways follow<strong>in</strong>g stimulation with their cognate ligand by assess<strong>in</strong>g<br />

IL-8 production or NF-kB activation. NF-kB activation can be assessed us<strong>in</strong>g<br />

an NF-kB-<strong>in</strong>ducible reporter system such as pNiFty.<br />

293/Control Clones<br />

293/Control clones were generated by stably transfect<strong>in</strong>g HEK293 cells with a<br />

pUNO control plasmid express<strong>in</strong>g either the lacZ reporter gene (293/LacZ)<br />

or a multiple clon<strong>in</strong>g site (293/null).<br />

Pam3CSK4 (100 ng/ml)<br />

Poly(I:C) (100 ng/ml)<br />

LPS-EB (100 ng/ml)<br />

Flagell<strong>in</strong> (10 ng/ml)<br />

Imiquimod (10 μg/ml)<br />

ssRNA40 (5 μg/ml)<br />

ODN 2006 (10 μg/ml)<br />

iEDAP (100 ng/ml)<br />

MDP (100 ng/ml)<br />

TNF-a (50 ng/ml)<br />

NI<br />

293/null<br />

293/hNOD1<br />

293/hNOD2<br />

293/hTLR2<br />

293/hTLR3<br />

293/hTLR4-MD2-CD14<br />

293/hTLR5<br />

293XL/null<br />

293XL/hTLR7<br />

293XL/hTLR8<br />

293XL/hTLR9<br />

TLR and NOD <strong>in</strong>duction profile of 293 clones : 293/TLR, NOD and control clones were<br />

transfected transiently with pNiFty-SEAP and stimulated with TLR and NOD ligands. After<br />

16 hour stimulation, NF-kB-<strong>in</strong>duced SEAP activity was assessed us<strong>in</strong>g QUANTI-Blue , a<br />

SEAP-detection medium.<br />

Note: 293 clones and <strong>in</strong> particular 293XL clones express endogenous levels of TLR3 and<br />

TLR5, as well as TLR1, TLR6 and NOD1.<br />

CELL LINE<br />

293/TLR Clones<br />

CAT. CODE<br />

(HUMAN)<br />

CAT. CODE<br />

(MOUSE)<br />

293/MD2-CD14 293-hmd2cd14 -<br />

293/TLR1 - 293-mtlr1<br />

293/TLR1/2 - 293-mtlr1/2<br />

293/TLR2 293-htlr2 293-mtlr2<br />

293/TLR2-CD14 293-htlr2cd14 -<br />

293/TLR2/6 293-htlr2/6 293-mtlr2/6<br />

293/TLR3 293-htlr3 293-mtlr3<br />

293/TLR4 293-htlr4a 293-mtlr4<br />

293/TLR4-MD2-CD14 293-htlr4md2cd14 293-mtlr4md2cd14<br />

293/TLR5 293-htlr5 293-mtlr5<br />

293/TLR5-CD14 293-htlr5cd14 -<br />

293/TLR6 - 293-mtlr6<br />

293XL/TLR7* 293xl-htlr7 293xl-mtlr7<br />

293XL/TLR8A* 293xl-htlr8 -<br />

293/TLR9 - 293-mtlr9<br />

293XL/TLR9A* 293xl-htlr9 -<br />

293/hTLR-HA Clones<br />

293/hTLR1-HA 293-htlr1ha -<br />

293/hTLR2-HA 293-htlr2ha -<br />

293/hTLR3-HA 293-htlr3ha -<br />

293/hTLR4-HA 293-htlr4ha -<br />

293/hTLR5-HA 293-htlr5ha -<br />

293/hTLR6-HA 293-htlr6ha -<br />

293XL/hTLR7-HA* 293xl-htlr7ha -<br />

293XL/hTLR8-HA* 293xl-htlr8ha -<br />

293XL/hTLR9-HA* 293xl-htlr9ha -<br />

293/hTLR10-HA<br />

293/NOD Clones<br />

293-htlr10ha -<br />

293/NOD1 293-hnod1 293-mnod1<br />

293/NOD2 293-hnod2 293-mnod2<br />

293/Control Clones<br />

293/LacZ 293-lacz -<br />

293/null 293-null -<br />

293XL/null* 293xl-null -<br />

*293XL clones express the human anti-apoptotic Bcl-XL gene.<br />

Contents<br />

All 293 clones are grown <strong>in</strong> standard DMEM medium with 10% FBS,<br />

2mM L-glutam<strong>in</strong>e supplemented with blasticid<strong>in</strong> (10 μg/ml). Cells are<br />

provided frozen <strong>in</strong> a cryotube conta<strong>in</strong><strong>in</strong>g 5-7 x 10 6<br />

cells and supplied<br />

with 100 μl of blasticid<strong>in</strong> at 10 mg/ml. Cells are shipped on dry ice.<br />

The cells are guaranteed mycoplasma-free.<br />

Related Products<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

Blasticid<strong>in</strong>, page 17 TLR Ligands, pages 77-80<br />

pNiFty, see page 74 NOD Ligands, see page 80<br />

65<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

HEK-Blue TLR & HEK-Blue NOD Cells<br />

InvivoGen <strong>in</strong>troduces HEK-Blue TLR and HEK-Blue NOD cells, a collection of eng<strong>in</strong>eered cell l<strong>in</strong>es designed to provide a rapid, sensitive and reliable method<br />

to screen and validate TLR and NOD agonists or antagonists. They express an NF-kB-<strong>in</strong>ducible secreted embryonic alkal<strong>in</strong>e phosphatase (SEAP) reporter gene<br />

that can be conveniently monitored us<strong>in</strong>g the SEAP detection media QUANTI-Blue or HEK-Blue Detection.<br />

HEK-Blue TLR cells<br />

HEK-Blue TLR cells are eng<strong>in</strong>eered HEK293 cells that stably co-express a<br />

human or mur<strong>in</strong>e TLR gene and an NF-kB-<strong>in</strong>ducible SEAP (secreted<br />

embryonic alkal<strong>in</strong>e phosphatase) reporter gene. To <strong>in</strong>crease the sensitivity<br />

to their cognate agonists, HEK-Blue TLR2 and HEK-Blue TLR4 cells were<br />

further transfected with the co-receptors CD14 and MD2/CD14,<br />

respectively.<br />

HEK-Blue TLR cells are resistant to the selective antibiotics blasticid<strong>in</strong><br />

and Zeoc<strong>in</strong> . HEK-Blue TLR2 and HEK-Blue TLR4 cells are additionally<br />

resistant to hygromyc<strong>in</strong>.<br />

HEK-Blue NOD cells<br />

HEK-Blue NOD cells are eng<strong>in</strong>eered HEK293 cells that stably co-express<br />

the human and mur<strong>in</strong>e NOD1 or NOD2 gene and an NF-kB-<strong>in</strong>ducible SEAP<br />

reporter gene.<br />

HEK-Blue NOD cells are resistant to blasticid<strong>in</strong> and Zeoc<strong>in</strong> .<br />

HEK-Blue Null cells<br />

HEK-Blue Null cells are the parental cell l<strong>in</strong>es used to generate<br />

HEK-Blue TLR and HEK-Blue NOD cells.<br />

• HEK-Blue Null1 cells express the SEAP reporter gene under the<br />

control of the IFN-b m<strong>in</strong>imal promoter fused to five NF-kB b<strong>in</strong>d<strong>in</strong>g<br />

sites.This cell l<strong>in</strong>e is the parental cell l<strong>in</strong>e of HEK-Blue hTLR2, hTLR3,<br />

hTLR5, hTLR8, h/mTLR9 and h/mNOD1 cells.<br />

• HEK-Blue Null1-k cells express the same reporter system than HEK-<br />

Blue Null1 cells but are slightly different genotypically. This cell l<strong>in</strong>e is the<br />

parental cell l<strong>in</strong>e of HEK-Blue mTLR3 and hTLR7 cells.<br />

• HEK-Blue Null1-v cells express the same reporter system than HEK-<br />

Blue Null1 cells but are slightly different genotypically. This cell l<strong>in</strong>e is the<br />

parental cell l<strong>in</strong>e of HEK-Blue mTLR4 and mTLR8 cells.<br />

• HEK-Blue Null2 cells express the SEAP reporter gene under the<br />

control of the IL-12 p40 m<strong>in</strong>imal promoter fused to five NF-kB b<strong>in</strong>d<strong>in</strong>g<br />

sites.This cell l<strong>in</strong>e is the parental cell l<strong>in</strong>e of HEK-Blue mTLR2, hTLR4<br />

and h/mNOD2 cells.<br />

• HEK-Blue Null2-k cells express the same reporter system than HEK-<br />

Blue Null2 cells but are slightly different genotypically. This cell l<strong>in</strong>e is the<br />

parental cell l<strong>in</strong>e of HEK-Blue mTLR5 and mTLR7 cells.<br />

HEK-Blue Null cells are resistant to Zeoc<strong>in</strong> .<br />

Pr<strong>in</strong>ciple<br />

Recognition of a TLR or NOD agonist by its cognate receptor triggers a<br />

signal<strong>in</strong>g cascade lead<strong>in</strong>g to the activation of NF-kB and the production<br />

of SEAP (figure 1). SEAP levels can be determ<strong>in</strong>ed spectrophotometrically<br />

us<strong>in</strong>g HEK-Blue Detection or QUANTI-Blue , both are SEAP detection<br />

media that turn purple/blue <strong>in</strong> the presence of alkal<strong>in</strong>e phosphatase.<br />

Quality Control<br />

Expression of exogenous TLRs, NOD,1/2, CD14 and/or MD2 was<br />

confirmed by RT-PCR. The functionality of each cell l<strong>in</strong>e is validated through<br />

stimulation assays performed with a selection of TLR and NOD agonists.<br />

Note: HEK-Blue TLR, HEK-Blue NOD and HEK-Blue Null cells<br />

express endogenous levels of TLR3, TLR5 and NOD1.<br />

66<br />

PRODUCT<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

TLR- and NOD-<strong>in</strong>duced NF-kB signal<strong>in</strong>g pathway<br />

CAT. CODE<br />

(human)<br />

CAT. CODE<br />

(mouse)<br />

HEK-Blue MD2-CD14 Cells hkb-hmdcd NEW -<br />

HEK-Blue TLR2 Cells hkb-htlr2 hkb-mtlr2 NEW<br />

HEK-Blue TLR3 Cells hkb-htlr3 hkb-mtlr3 NEW<br />

HEK-Blue TLR4 Cells hkb-htlr4 hkb-mtlr4 NEW<br />

HEK-Blue TLR5 Cells hkb-htlr5 hkb-mtlr5 NEW<br />

HEK-Blue TLR7 Cells hkb-htlr7 hkb-mtlr7 NEW<br />

HEK-Blue TLR8 Cells hkb-htlr8 hkb-mtlr8 NEW<br />

HEK-Blue TLR9 Cells hkb-htlr9 hkb-mtlr9 NEW<br />

HEK-Blue Null1 Cells hkb-nul11 -<br />

HEK-Blue Null1-k Cells hkb-nul11k -<br />

HEK-Blue Null1-v Cells hkb-nul11v -<br />

HEK-Blue Null2 Cells hkb-nul12 -<br />

HEK-Blue HEK-Blue<br />

Null2-k Cells hkb-nul12k -<br />

NOD1 Cells hkb-hnodl hkb-mnodl NEW<br />

HEK-Blue HEK-Blue<br />

NOD2 Cells hkb-hnod2 hkb-mnod2 NEW<br />

TLR Cells<br />

HEK-Blue NOD Cells<br />

HEK-Blue Null Cells<br />

Contents and Storage<br />

HEK-Blue TLR, HEK-Blue NOD and HEK-Blue Null cells are grown <strong>in</strong><br />

DMEM medium, 2mM L-glutam<strong>in</strong>e, 10% FBS and supplemented with<br />

100 μg/ml Zeoc<strong>in</strong> , 30 μg/ml blasticid<strong>in</strong> and/or 200 μg/ml HygroGold <br />

(ultra-pure hygromyc<strong>in</strong>) depend<strong>in</strong>g on the cell l<strong>in</strong>e. Cells are provided frozen<br />

<strong>in</strong> a cryotube conta<strong>in</strong><strong>in</strong>g 5-7 x 10 6 cells and supplied with the correspond<strong>in</strong>g<br />

selective antibiotic(s), 1 ml Normoc<strong>in</strong> (50 mg/ml) and 1 pouch of<br />

QUANTI-Blue . Cells are shipped on dry ice.


Response of HEK-Blue hTLR2 cells to TLR2 agonists.<br />

Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection medium<br />

and stimulated with 0.1 ng/ml FSL-1 (TLR2/6), 0.1 ng/ml<br />

Pam3CSK4(TLR1/2), 10 7 cells/ml HKLM, 1 μg/ml LTA-<br />

SA, 1 ng/ml LPS-PG or 1 μg/ml PGN-BS. After 24h<br />

<strong>in</strong>cubation, the levels of NF-kB-<strong>in</strong>duced SEAP were<br />

determ<strong>in</strong>ed by read<strong>in</strong>g the OD at 655 nm.<br />

Response of HEK-Blue hTLR5 cells to TLR5 agonists.<br />

Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection medium<br />

and stimulated with 100 ng/ml FLA-BS, 10 ng/ml<br />

FLA-ST ultrapure or 10 ng/ml recFLA-ST. After 24h<br />

<strong>in</strong>cubation, the levels of NF-kB-<strong>in</strong>duced SEAP were<br />

determ<strong>in</strong>ed by read<strong>in</strong>g the OD at 655 nm.<br />

Response of HEK-Blue hTLR9 cells to TLR9 agonists.<br />

Cells were stimulated with 1 μg/ml ODN2006 (type B),<br />

1 μg/ml ODN2216 (type A) or 5 μg/ml E. coli ssDNA.<br />

After 24h <strong>in</strong>cubation, the levels of NF-kB-<strong>in</strong>duced SEAP<br />

were determ<strong>in</strong>ed us<strong>in</strong>g QUANTI-Blue by read<strong>in</strong>g the<br />

OD at 655 nm.<br />

Response of HEK-Blue hTLR3 cells to TLR3 agonists.<br />

Cells were stimulated with 100 ng/ml poly(I:C)<br />

(HMW), 100 ng/ml poly(I:C)-LMW or 1 μg/ml<br />

poly(A:U). After 24h <strong>in</strong>cubation, the levels of NF-kB<strong>in</strong>duced<br />

SEAP were determ<strong>in</strong>ed us<strong>in</strong>g QUANTI-Blue <br />

by read<strong>in</strong>g the OD at 655 nm.<br />

Response of HEK-Blue hTLR7 cells to TLR7/8<br />

agonists. Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection<br />

medium and stimulated with 100 ng/ml CL264, 5 μg/ml<br />

imiquimod, 1 μg/ml gardiquimod or 100 ng/ml R848.<br />

After 24h <strong>in</strong>cubation, the levels of NF-kB-<strong>in</strong>duced SEAP<br />

were determ<strong>in</strong>ed by read<strong>in</strong>g the OD at 655 nm.<br />

Response of HEK-Blue hNOD1 cells to NOD1/2<br />

agonists. Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection<br />

medium and stimulated with 1 μg/ml iE-DAP, 100 ng/ml<br />

C12-iE-DAP, 1 μg/ml TRI-DAP or 1 μg/ml M-TriDAP.<br />

After 24h <strong>in</strong>cubation, the levels of NF-kB-<strong>in</strong>duced SEAP<br />

were determ<strong>in</strong>ed by read<strong>in</strong>g the OD at 655 nm.<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

Response of HEK-Blue hTLR4 cells to TLR4 agonists.<br />

Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection medium<br />

and stimulated with 10 ng/ml LPS-EB ultrapure, 10<br />

ng/ml LPS-EK ultrapure, 100 ng/ml MPLA or 100 ng/ml<br />

MPLAs. After 24h <strong>in</strong>cubation, the levels of NF-kB<strong>in</strong>duced<br />

SEAP were determ<strong>in</strong>ed by read<strong>in</strong>g the OD at<br />

655 nm.<br />

Response of HEK-Blue hTLR8 cells to TLR7/8<br />

agonists. Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection<br />

medium and stimulated with 5 μg/ml ssRNA40, 1 μg/ml<br />

CL075 or1 μg/ml R848. After 24h <strong>in</strong>cubation, the levels<br />

of NF-kB-<strong>in</strong>duced SEAP were determ<strong>in</strong>ed by read<strong>in</strong>g<br />

the OD at 655 nm.<br />

Response of HEK-Blue hNOD2 cells to NOD1/2<br />

agonists. Cells were <strong>in</strong>cubated <strong>in</strong> HEK-Blue Detection<br />

medium and stimulated with 100 ng/ml MDP, 10 ng/ml<br />

L18-MDP 100 ng/ml murabutide or 100 ng/ml M-TriDAP.<br />

After 24h <strong>in</strong>cubation, the levels of NF-kB-<strong>in</strong>duced SEAP<br />

were determ<strong>in</strong>ed by read<strong>in</strong>g the OD at 655 nm.<br />

67<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

THP1-XBlue Cells - NF-kB/AP-1 Reporter Monocytes<br />

THP1-XBlue are derived from THP-1, a human immune cell l<strong>in</strong>e that naturally expresses most TLRs. They stably express an NF-κB/AP-1-<strong>in</strong>ducible reporter<br />

(SEAP) system to facilitate the monitor<strong>in</strong>g of TLR-<strong>in</strong>duced NF-kB/AP-1 activation. Three cell l<strong>in</strong>es are available: THP1-XBlue , THP1-XBlue -CD14, which<br />

overexpresses the cell surface prote<strong>in</strong> CD14 for enhanced sensitivity, and THP1-XBlue -defMyD characterized by a deficient MyD88 activity.<br />

THP1-XBlue <br />

THP1-XBlue cells were obta<strong>in</strong>ed by stable transfection of THP-1 cells<br />

with a reporter construct express<strong>in</strong>g a secreted embryonic alkal<strong>in</strong>e<br />

phosphatase (SEAP) gene under the control of a promoter <strong>in</strong>ducible by<br />

the transcription factors NF-kB and AP-1. Upon TLR stimulation,<br />

THP1-XBlue cells <strong>in</strong>duce the activation of NF-kB and AP-1 and<br />

subsequently the secretion of SEAP. The reporter prote<strong>in</strong> is easily<br />

detectable and measurable when us<strong>in</strong>g QUANTI-Blue , a medium that<br />

turns purple/blue <strong>in</strong> the presence of SEAP (see page 14). THP1-XBlue <br />

cells are resistant to the selectable marker Zeoc<strong>in</strong> .<br />

THP1-XBlue -MD2-CD14 NEW<br />

THP1-XBlue -MD2-CD14 cells derive from the THP1-XBlue cell l<strong>in</strong>e by<br />

cotranfection of the MD2 and CD14 genes. MD2 is an accessory molecule<br />

essential for LPS-<strong>in</strong>duced TLR4 response. CD14 <strong>in</strong>teracts with several TLRs,<br />

<strong>in</strong>clud<strong>in</strong>g TLR4 and TLR2. Its overexpression was found to <strong>in</strong>crease the<br />

reponse to the majority of TLR ligands (Figure 1). THP1-XBlue -CD14 cells<br />

are resistant to the antibiotics Zeoc<strong>in</strong> and G418.<br />

THP1-XBlue -defMyD<br />

THP1-XBlue -defMyD cells are THP1-XBlue cells deficient <strong>in</strong> MyD88<br />

activity. They are unable to respond to the activation of receptors which<br />

signal<strong>in</strong>g is dependent on MyD88, such as TLR2, TLR4 and IL-1Rs. They<br />

rema<strong>in</strong> responsive to MyD88-<strong>in</strong>dependent receptors, such as NOD1 and<br />

TNFR (Figure 2).<br />

Quality Control<br />

Expression of the TLR (TLR1 to TLR10), MD2 and CD14 genes was<br />

determ<strong>in</strong>ed by RT-PCR <strong>in</strong> THP1-XBlue , THP1-XBlue-MD2-CD14 and<br />

THP1-XBlue-defMyD cells. All TLR mRNAs were detected but the cells<br />

do not respond to all TLR agonists (Figure 1). Consider<strong>in</strong>g the<br />

concentration of ligands used to stimulate these cells, TLR2, TLR2/1and<br />

TLR2/6 responses are considered to be very strong. TLR4, TLR5, TLR8,<br />

NOD1 and NOD2 responses are robust. TLR7 response is weak (a very<br />

high concentration of its cognate ligands is needed to detect a response).<br />

TLR3 and TLR9 responses are not detectable even when high<br />

concentrations of the ligands are used.<br />

MyD88 deficiency <strong>in</strong> THP1-XBlue-defMyD cells was confirmed by<br />

qRT-PCR.<br />

Contents<br />

THP1-XBlue , THP1-XBlue-MD2-CD14 and THP1-XBlue-defMyD cells are grown <strong>in</strong> RPMI medium, 2mM L-glutam<strong>in</strong>e, 10% FBS<br />

supplemented with the appropriate selective antibiotic(s): 200 μg/ml<br />

Zeoc<strong>in</strong> for THP1-XBlue ; 200 μg/ml Zeoc<strong>in</strong> and 250 μg/ml G418 for<br />

THP1-XBlue-MD2-CD14; 200 μg/ml Zeoc<strong>in</strong> and 100 μg/ml<br />

HygroGold for THP1-XBlue-defMyD. Cells are provided <strong>in</strong> a vial<br />

conta<strong>in</strong><strong>in</strong>g 5-7 x 10 6<br />

cells and is supplied with 10 mg Zeoc<strong>in</strong> (and 10<br />

mg G418 or 10 mg HygroGold ) and 1 pouch of QUANTI-Blue . Cells<br />

are shipped on dry ice. The cells are guaranteed mycoplasma-free.<br />

68<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

Figure 1: TLR and NOD stimulation profile <strong>in</strong> THP1-XBlue and THP1-XBlue -<br />

MD2-CD14. Cells were <strong>in</strong>cubated with 1 ng/ml Pam3CSK4(TLR1/2), 10 ng/ml FSL-<br />

1 (TLR2/6), 10 7 cells/ml HKLM (TLR2), 10 μg/ml poly(I:C) (TLR3), 10 ng/ml LPS-EK<br />

(TLR4), 10 ng/ml RecFLA-ST (TLR5), 5 μg/ml imiquimod (TLR7), 5 μg/ml CL075<br />

(TLR8), 10 μg/ml ODN2006 (TLR9), 100 ng/ml C12-iEDAP (NOD1) or 10 μg/ml<br />

MDP (NOD2). After 24h <strong>in</strong>cubation, TLR/NOD stimulation was assessed by<br />

measur<strong>in</strong>g the levels of SEAP <strong>in</strong> the supernatant by us<strong>in</strong>g QUANTI-Blue .<br />

Figure 2: MyD88-dependent and -<strong>in</strong>dependent responses <strong>in</strong> THP1-XBlue and<br />

THP1-XBlue -defMyD. Cells were <strong>in</strong>cubated with 1 μg/ml FSL-1 (TLR2/6), 1 μg/ml<br />

LPS-EK (TLR4), 5 μg/ml CL075 (TLR8), 10 μg/mlTri-DAP (NOD1) and 50 ng/ml<br />

TNF-a. After 24h <strong>in</strong>cubation, NF-kB activation was determ<strong>in</strong>ed us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

THP1-XBlue Cells 5-7 x 10 6<br />

cells thpx-sp<br />

THP1-XBlue -MD2-CD14 Cells 5-7 x 10 6<br />

cells thpx-mdcdsp<br />

THP1-XBlue -defMyD 5-7 x 10 6<br />

cells thpx-dmyd


Ramos-Blue Cells - NF-kB/AP-1 Reporter B lymphocytes<br />

B lymphocytes are key players <strong>in</strong> the adaptative immune system but are also prom<strong>in</strong>ent <strong>in</strong> the <strong>in</strong>nate immune response. Consistent with their dual role, they<br />

express Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) that allow them to discrim<strong>in</strong>ate among a wide spectrum of pathogen-associated<br />

molecules (PAMPs). Upon PRR stimulation by PAMPs, various signal<strong>in</strong>g pathways are <strong>in</strong>duced lead<strong>in</strong>g to the activation of transcription factors, such as NF-kB<br />

and AP-1, and the subsequent production of <strong>in</strong>flammatory cytok<strong>in</strong>es.<br />

Ramos-Blue Cells<br />

Ramos-Blue is a B lymphocyte cell l<strong>in</strong>e that stably expresses an NF-kB/<br />

AP-1-<strong>in</strong>ducible SEAP (secreted embryonic alkal<strong>in</strong>e phosphatase) reporter<br />

gene. Ramos-Blue cells derive from a human Burkitt’s lymphoma which<br />

is negative for Epste<strong>in</strong> Barr virus. They have the characteristics of B<br />

lymphocytes and are rout<strong>in</strong>ely used as a model of B lymphocytes and for<br />

apoptosis studies. The Ramos-Blue cell l<strong>in</strong>e was isolated for its ability to<br />

respond to CpG ODNs (TLR9 ligands).<br />

Ramos-Blue cells are responsive to NF-kB <strong>in</strong>ducers, such as TNF-a and<br />

TLR agonists. When stimulated, they produce SEAP <strong>in</strong> the supernatant<br />

that can be readily monitored us<strong>in</strong>g QUANTI-Blue . QUANTI-Blue is<br />

a SEAP detection medium that turns blue <strong>in</strong> the presence of SEAP (see<br />

page 14). Levels of SEAP can be determ<strong>in</strong>ed qualitatively with the naked<br />

eye or quantitatively us<strong>in</strong>g a spectrophotometer at 620-655 nm.<br />

Ramos-Blue cells are resistant to Zeoc<strong>in</strong> .<br />

Ramos-Blue -defMyD<br />

Ramos-Blue -defMyD are MyD88-deficient cells. Due to their deficiency<br />

<strong>in</strong> MyD88 activity, these cells are unable to respond to the activation of<br />

receptors which signal<strong>in</strong>g is dependent on MyD88, such as TLR7 and<br />

TLR9. However, they are still responsive to TLR3 which signals through<br />

TRIF <strong>in</strong>dependently of MyD88 (Figure 2).<br />

Quality Control<br />

Ramos-Blue cells express all TLRs and NOD1 mRNAs as detected by<br />

RT-PCR. However, activation of NF-kB/AP-1 was only observed follow<strong>in</strong>g<br />

stimulation with TLR2, TLR3, TLR7, TLR9 and NOD1 agonists (Figure 1).<br />

Consider<strong>in</strong>g the concentration of agonists used to stimulate these cells,<br />

TLR3, TLR7, TLR9 and NOD1 responses are considered to be strong.<br />

TLR2 response is detectable only at high concentrations of the ligands.<br />

Responses to TLR4, TLR5 and NOD2 agonists are not detectable.<br />

MyD88 deficiency <strong>in</strong> Ramos-Blue -defMyD cells was confirmed by<br />

qRT-PCR.<br />

Contents<br />

Ramos-Blue cells are grown <strong>in</strong> IMDM medium, 2 mM L-glutam<strong>in</strong>e, 10%<br />

FBS supplemented with 100 μg/ml Zeoc<strong>in</strong> . Each vial conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied with 10 mg Zeoc<strong>in</strong> . Cells are shipped on dry ice.<br />

The cells are guaranteed mycoplasma-free.<br />

Related Products<br />

Zeoc<strong>in</strong> , page 18 TLR Ligands , pages 77-80<br />

QUANTI-Blue page 14 NOD Ligands, page 80<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

Figure 1: NF-kB/AP-1 activation <strong>in</strong> Ramos-Blue cells <strong>in</strong>duced by various activators.<br />

Cells were <strong>in</strong>cubated with 10 μg/ml each of Pam3CSK4 (TLR1/2), FSL-1 (TLR2/6), HKLM<br />

(TLR2, 1.10 9 cells/ml), poly(I:C) (TLR3), LPS-EK (TLR4), recFLA-ST (TLR5), imiquimod<br />

and CL264 (TLR7), CL075 (TLR8), R848 (TLR7/8), ODN2006 and ODN2216 (TLR9),<br />

TriDAP (NOD1), MDP (NOD2) and TNF-a.After 24h <strong>in</strong>cubation, NF-kB/AP-1 activation<br />

was assessed by measur<strong>in</strong>g the levels of SEAP <strong>in</strong> the supernatant us<strong>in</strong>g QUANTI-Blue .<br />

Figure 2: MyD88-dependent and -<strong>in</strong>dependent responses <strong>in</strong> Ramos-Blue and<br />

Ramos-Blue -defMyD. Cells were <strong>in</strong>cubated with 1 μg/ml poly(I:C) (TLR3), 10 μg/ml<br />

CL264 (TLR7), 2 μg/ml ODN2006 (TLR9) and 100 ng/ml TNF-a. After 24h <strong>in</strong>cubation,<br />

NF-kB activation was determ<strong>in</strong>ed us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

Ramos-Blue Cells 5-7 x 10 6<br />

cells rms-sp<br />

Ramos-Blue-defMyD 5-7 x 10 6<br />

cells rms-dmyd<br />

69<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

RAW-Blue Cells<br />

RAW-Blue Cells<br />

TLR & NOD Reporter Macrophages<br />

RAW-Blue Cells are derived from RAW 264.7 macrophages with<br />

chromosomal <strong>in</strong>tegration of a secreted embryonic alkal<strong>in</strong>e phosphatase<br />

(SEAP) reporter construct <strong>in</strong>ducible by NF-kB and AP-1. RAW-Blue <br />

Cells are resistant to the selectable marker Zeoc<strong>in</strong> .<br />

RAW-Blue Cells express all TLRs (with the exception of TLR5) as well<br />

as RIG-I, MDA-5, NOD1 and NOD2; expression of TLR3 and NOD1<br />

be<strong>in</strong>g very low. The presence of specific agonists of these PRRs <strong>in</strong>duces<br />

signal<strong>in</strong>g pathways lead<strong>in</strong>g to the activation of NF-kB and AP-1 and<br />

subsequently to the secretion of SEAP, which can be easily monitored<br />

us<strong>in</strong>g QUANTI-Blue .<br />

Dect<strong>in</strong>-1 Reporter Macrophages<br />

RAW 264.7 express low endogenous levels of Dect<strong>in</strong>-1 1 , while<br />

RAW-Blue cells express high levels of endogenous Dect<strong>in</strong>-1. Therefore<br />

RAW-Blue cells can be used as a Dect<strong>in</strong>-1 reporter cell l<strong>in</strong>e <strong>in</strong> particular<br />

when comb<strong>in</strong>ed with a neutraliz<strong>in</strong>g anti-Dect<strong>in</strong>-1 antibody. Stimulation of<br />

RAW-Blue cells with zymosan or heat-killed preparations of yeast<br />

<strong>in</strong>duces the activation of NF-kB <strong>in</strong> a Dect<strong>in</strong>-1-dependent manner (see<br />

graph).<br />

1. Brown GD. et al., 2003, Dect<strong>in</strong>-1 Mediates the Biological Effects of ß-Glucans. J. Exp.<br />

Med., 197: 1119.<br />

Quality Control<br />

Expression of TLRs (TLR1 to TLR9), RLRs (RIG-I and MDA-5), NODs<br />

(NOD1 and NOD2) was determ<strong>in</strong>ed by RT-PCR (see figure 1). Dect<strong>in</strong>-1<br />

expression was also confirmed by RT-PCR. RT-PCR on TLR and mRNAs<br />

were performed us<strong>in</strong>g InvivoGen’s Mouse TLR RT-Primer Set and RLR RT-<br />

Primers.<br />

The cells are guaranteed mycoplasma-free.<br />

Contents<br />

RAW-Blue Cells are grown <strong>in</strong> DMEM medium, 2mM L-glutam<strong>in</strong>e, 10%<br />

FBS supplemented with 200 μg/ml Zeoc<strong>in</strong> . Each vial conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied with 10 mg Zeoc<strong>in</strong> . Cells are shipped on dry ice.<br />

70<br />

PRODUCT QUANTITY CAT. CODE<br />

RAW-Blue Cells 5-7 x 10 6<br />

cells raw-sp<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17<br />

TLR Ligands, page 77-80<br />

NOD Ligands, see page 80<br />

Dect<strong>in</strong> Ligands, see page 81<br />

MAb mDect<strong>in</strong>-1, see page 72<br />

QUANTI-Blue , see page 14<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

TLR1<br />

TLR2<br />

TLR3<br />

TLR4<br />

TLR5<br />

TLR6<br />

TLR7<br />

TLR8<br />

TLR9<br />

RIG-I<br />

MDA-5<br />

NOD-1<br />

NOD-2<br />

Figure 1: Expression of TLR, RLR and NOD mRNAs <strong>in</strong> RAW-Blue cells<br />

determ<strong>in</strong>ed by RT-PCR. RT-PCRs were performed us<strong>in</strong>g InvivoGen’s Mouse TLR<br />

RT-PCR Primer Set, NOD and RLR RT-Primer Pairs.<br />

TLR and NOD stimulation profile <strong>in</strong> RAW-Blue Cells. RAW-Blue Cells were<br />

<strong>in</strong>cubated with TLR or NOD agonists: TLR2 (HKLM, 1.10 8 cells/ml), TLR1/2<br />

(Pam3CSK4, 100 ng/ml), TLR2/6 (FSL-1, 100 ng/ml), TLR3 (poly(I:C), 10 μg/ml), TLR4<br />

(LPS-EK, 1 μg/ml), TLR5 (RecFLA-ST, 1 μg/ml), TLR7 (CL075, 300 ng/ml), TLR9<br />

(ODN1826, 10 μg/ml), NOD1 (Tri-DAP, 10 μg/ml), NOD2 (MDP, 10 μg/ml). After<br />

24h <strong>in</strong>cubation, TLR and NOD stimulation was assessed by measur<strong>in</strong>g the levels of<br />

SEAP us<strong>in</strong>g QUANTI-Blue .<br />

Response of RAW-Blue cells to Dect<strong>in</strong>-1 and TLR2 agonists. RAW-Blue cells<br />

were stimulated with FSL-1 (10 ng/ml), zymosan (10 μg/ml), depleted zymosan (100<br />

μg/ml), HKSC (10 8 cells/ml) or HKCA (10 8 cells/ml) <strong>in</strong> the presence or absence of<br />

10 μg/ml of an anti-mTLR2 (clone T2.5) or anti-mDect<strong>in</strong>-1 monoclonal antibody.<br />

After 24h <strong>in</strong>cubation, NF-kB activation was assessed by measur<strong>in</strong>g the levels of SEAP<br />

<strong>in</strong> the supernatant by us<strong>in</strong>g QUANTI-Blue .


MEF Cells<br />

C3H/TLR4mut & C3H/WT MEFs<br />

TLR4 Reporter Mur<strong>in</strong>e Embryonic Fibroblasts<br />

C3H/TLR4mut and C3H/WT MEF cell l<strong>in</strong>es were isolated from C3H/HeJ<br />

(TLR4-deficient) and C3H/HeN (wild-type) mouse embryos respectively.<br />

They stably express an NF-kB-<strong>in</strong>ducible SEAP reporter construct that<br />

allows to monitor <strong>in</strong> a simple and convenient manner the activation of<br />

NF-kB.<br />

C3H/WT MEFs express high levels of TLR2 and TLR4 and low levels of<br />

TLR3 and TLR5. The presence of TLR2, TLR3, TLR4, or TLR5 agonists<br />

triggers a signal<strong>in</strong>g cascade <strong>in</strong> C3H/WT MEFs lead<strong>in</strong>g to the activation of<br />

NF-kB and the subsequent <strong>in</strong>duction of SEAP. The amount of SEAP<br />

secreted <strong>in</strong> the supernatant can be readily detected when us<strong>in</strong>g<br />

QUANTI-Blue , a SEAP detection medium. In C3H/TLR4mut MEFs, TLR4<br />

agonists do not <strong>in</strong>duce the activation of NF-kB and the production of<br />

SEAP <strong>in</strong> contrast to TLR2, TLR3 and TLR5 ligands. Thus these two cell l<strong>in</strong>es<br />

provide a useful tool to determ<strong>in</strong>e whether a given compound is a specific<br />

TLR4 agonist. They can be used to assess the purity of a given LPS by<br />

detect<strong>in</strong>g the presence of contam<strong>in</strong>ants that stimulate TLR2 (see graph,<br />

LPS-EB standard versus LPS-EB ultrapure).<br />

Contents<br />

C3H/TLR4mut and C3H/WT MEF cell l<strong>in</strong>es are grown <strong>in</strong> DMEM medium<br />

with 2mM L-glutam<strong>in</strong>e, 10% FBS supplemented with 10 μg/ml blasticid<strong>in</strong>.<br />

Each vial conta<strong>in</strong>s 5-7 x 10 6 cells and is supplied with 1 mg blasticid<strong>in</strong>.<br />

Cells are shipped on dry ice. The cells are guaranteed mycoplasma-free.<br />

C57/WT MEFs<br />

RLR Reporter Mur<strong>in</strong>e Embryonic Fibroblasts<br />

MEFs produce IFN-b <strong>in</strong> response to viral <strong>in</strong>fection <strong>in</strong> a RLR-dependent<br />

manner1 . Thus, these cells are commonly used to study the RLR pathway.<br />

C57/WT MEFs were isolated from embryos under C57BL/6 background<br />

and immortalized with the SV40 large antigen. They stably express a SEAP<br />

reporter gene <strong>in</strong>ducible by NF-kB and IRF3/7 provid<strong>in</strong>g a convenient<br />

method to monitor the activation of these transcription factors upon<br />

stimulation with a RIG-I/MDA-5 ligand.<br />

C57/WT MEFs express both RIG-I and MDA-5. Stimulation of C57/WT<br />

cells with poly(I:C)/LyoVec complexes <strong>in</strong>duces the secretion of SEAP <strong>in</strong><br />

a dose-dependent manner (see figure). In contrast, stimulation with naked<br />

poly(I:C) has no effect on SEAP secretion although the cells express also<br />

TLR3. These data confirm that C57/WT MEFs respond to viral dsRNA<br />

primarily through the RLR pathway1 . Both RIG-I and MDA-5 appear to<br />

respond to transfected poly(I:C) <strong>in</strong> MEFs2 .<br />

1. Kato H. et al., 2005. Cell type-specific <strong>in</strong>volvement of RIG-I <strong>in</strong> antiviral response.<br />

Immunity 23:19-28. 2. Venkataraman T. et al., 2007. Loss of DExD/H box RNA helicase<br />

LGP2 manifests disparate antiviral responses. J Immunol. 178:6444-6455.<br />

Contents<br />

C57/WT MEFs are grown <strong>in</strong> DMEM medium with 10% FBS, 2 mM<br />

L-glutam<strong>in</strong>e and supplemented with 100 μg/ml Zeoc<strong>in</strong> and 3 μg/ml<br />

blasticid<strong>in</strong>. Each vial conta<strong>in</strong>s 5-7 x 10 6 cells and is supplied with 10 mg<br />

Zeoc<strong>in</strong> and 1 mg blasticid<strong>in</strong>. Cells are shipped on dry ice. The cells are<br />

guaranteed mycoplasma-free.<br />

www.<strong>in</strong>vivogen.com/reporter-cells<br />

TLR stimulation profile of C3H/TLR4mut and C3H/WTMEF cells. Cells were<br />

<strong>in</strong>cubated with TLR agonists: Pam3CSK4, 100 ng/ml (TLR2), poly(I:C), 10 μg/ml<br />

(TLR3), MPLAs, 10 μg/ml (TLR4), LPS-EB standard, 10 μg/ml (TLR4, TLR2), LPS-EB<br />

ultrapure, 10 μg/ml (TLR4), LPS-RS, 10 μg/ml (TLR2), flagell<strong>in</strong>, 1 μg/ml (TLR5). After<br />

24h <strong>in</strong>cubation, TLR stimulation was assessed by measur<strong>in</strong>g the levels of SEAP <strong>in</strong><br />

the supernatant by us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

C3H/TLR4mut MEFs 5-7 x 10 6<br />

cells mef-c3h4m<br />

C3H/WT MEFs 5-7 x 10 6<br />

cells mef-c3hwt<br />

RLR stimulation <strong>in</strong> C57/WT MEFs. C57/MEFs were <strong>in</strong>cubated with <strong>in</strong>creas<strong>in</strong>g<br />

concentrations of poly(I:C) or poly(I:C)/LyoVec complexes prepared<br />

extemporaneously at a 1:12 ratio. After 24h <strong>in</strong>cubation, RLR stimulation was assessed<br />

by measur<strong>in</strong>g the levels of SEAP secreted <strong>in</strong> the supernatant by us<strong>in</strong>g QUANTI-<br />

Blue , a SEAP detection medium.<br />

PRODUCT QUANTITY CAT. CODE<br />

C57/WT MEFs 5-7 x 10 6<br />

cells mef-c57wt<br />

71<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

Antibodies<br />

InvivoGen provides a collection of monoclonal and polyclonal antibodies target<strong>in</strong>g human and mur<strong>in</strong>e TLRs. Most of them have been<br />

developed <strong>in</strong> house. They are listed below and classified accord<strong>in</strong>g to their application(s):<br />

➥ Antibodies for neutralization. Some of them can be used also for flow cytometry<br />

➥ Antibodies for detection. The applications <strong>in</strong>clude Western blott<strong>in</strong>g, immunoprecipitation, immunohistochemistry and flow<br />

cytometry.<br />

• Anti-TLR-IgA antibodies are recomb<strong>in</strong>ant monoclonal IgA2 antibodies aga<strong>in</strong>st TLRs. They have been developed by InvivoGen us<strong>in</strong>g proprietary techniques.<br />

They have been selected for their ability to efficiently block the biological activity of these TLRs. They can also be used for flow cytometry (FC).<br />

• Anti-TLR IgG antibodies are mouse monoclonal antibodies aga<strong>in</strong>st TLRs. They have been generated by InvivoGen us<strong>in</strong>g DNA vacc<strong>in</strong>ation and screened<br />

for their ability to neutralize TLR activity.<br />

• MAb-TLR and Mab-Dect<strong>in</strong>-1 antibodies are monoclonal mouse IgG antibodies. They can be used for various applications but have been tested <strong>in</strong><br />

our laboratories only for neutralization and flow cytometry. MAb-TLR antibodies are also available conjugated with FITC.<br />

• PAb-TLR antibodies are polyclonal antibodies aga<strong>in</strong>st human extracellular TLRs, developed by InvivoGen. These antibodies have been generated by DNA<br />

vacc<strong>in</strong>ation <strong>in</strong> rats. They were obta<strong>in</strong>ed by purification of the IgG fraction from the sera by Prote<strong>in</strong> G aff<strong>in</strong>ity chromatography.<br />

Antibodies for Neutralization<br />

72<br />

ANTIBODY DESCRIPTION SPECIFICITY APPLICATIONS QTY CAT. CODE<br />

Anti-CD14<br />

Anti-hCD14-IgA Monoclonal human IgA2 Human CD14 Neutralization (TLR2, TLR4), FC 100 μg maba-hcd14<br />

Anti-Dect<strong>in</strong>-1<br />

MAb-mDect<strong>in</strong>-1 Monoclonal mouse IgG2b (clone 2A11) Mouse Dect<strong>in</strong>-1 Neutralization, FC 100 μg mab-mdect<br />

Anti-TLR1<br />

Anti-hTLR1-IgG Monoclonal mouse IgG1 (H2G2) Human TLR1 Neutralization 100 μg mabg-htlr1<br />

PAb-hTLR1 Polyclonal rat IgG Human TLR1 Neutralization 200 μg pab-hstlr1<br />

Anti-TLR2<br />

Anti-hTLR2-IgA Monoclonal human IgA2 Human TLR2 Neutralization, FC 100 μg maba2-htlr2<br />

Anti-mTLR2-IgG Monoclonal mouse IgG2a (C9A12) Mouse TLR2 Neutralization 100 μg mabg-mtlr2<br />

MAb-mTLR2 Monoclonal mouse IgG1 (T2.5) Human/mouse TLR2 Neutralization , FC, IHC 100 μg mab-mtlr2<br />

PAb-hTLR2 Polyclonal rat IgG Human TLR2 Neutralization 200 μg pab-hstlr2<br />

Anti-TLR4<br />

Anti-hTLR4-IgA Monoclonal human IgA2 Human TLR4 Neutralization 100 μg maba2-htlr4<br />

PAb-hTLR4 Polyclonal rat IgG Human TLR4 Neutralization 200 μg pab-hstlr4<br />

Anti-TLR5<br />

Anti-hTLR5-IgA Monoclonal human IgA2 Human TLR5 Neutralization, FC 100 μg maba2-htlr5<br />

Anti-mTLR5-IgG Monoclonal rat IgG2a (Q23D11) Mouse TLR5 Neutralization 100 μg mabg-mtlr5<br />

PAb-hTLR5 Polyclonal rat IgG Human TLR5 Neutralization 200 μg pab-hstlr5<br />

Anti-TLR6<br />

Anti-hTLR6-IgG Monoclonal mouse IgG1 (C5C8) Human TLR6 Neutralization 100 μg mabg-htlr6<br />

PAb-hTLR6 Polyclonal rat IgG Human TLR6 Neutralization 200 μg pab-hstlr6<br />

* FC: flowcytometry; IHC: immunohistochemistry; WB: Western blot<br />

www.<strong>in</strong>vivogen.com/antibodies


Antibodies for Detection<br />

ANTIBODY DESCRIPTION SPECIFICITY APPLICATIONS* QTY CAT. CODE<br />

Anti-Flagell<strong>in</strong><br />

Anti-Flagell<strong>in</strong> FliC Monoclonal mouse IgG1 S. typhimurium flagell<strong>in</strong> WB 100 μg mabg-flic<br />

Anti-TLR1<br />

MAb-hTLR1 Monoclonal mouse IgG1 (GD2.F4) Human TLR1 FC 100 μg mab-htlr1<br />

MAb-hTLR1-FITC Monoclonal mouse IgG1 (GD2.F4), FITC Human TLR1 FC 100 μg mab-htlr1f<br />

Anti-TLR2<br />

MAb-hTLR2 Monoclonal mouse IgG2a (TL2.1) Human TLR2 FC, IHC, WB 100 μg mab-htlr2<br />

MAb-hTLR2-FITC Monoclonal mouse IgG2a (TL2.1), FITC Human TLR2 FC, IHC 100 μg mab-htlr2f<br />

MAb-mTLR2-FITC Monoclonal mouse IgG1 (T2.5), FITC Human/mouse TLR2 FC 100 μg mab-mtlr2f<br />

Anti-TLR3<br />

Anti-hTLR3-IgA Monoclonal human IgA2 Human TLR3 FC 100 μg maba-htlr3<br />

MAb-hTLR3 Monoclonal mouse IgG1 (TLR3.7) Human TLR3 FC, WB 100 μg mab-htlr3<br />

MAb-hTLR3-FITC Monoclonal mouse IgG1 (TLR3.7), FITC Human TLR3 FC, WB 100 μg mab-htlr3f<br />

Anti-TLR4<br />

MAb-hTLR4 Monoclonal mouse IgG2a (HTA125) Human/monkey TLR4 FC, IHC 100 μg mab-htlr4<br />

MAb-hTLR4-FITC Monoclonal mouse IgG2a (HTA125), FITC Human/monkey TLR4 FC 100 μg mab-htlr4f<br />

MAb-mTLR4/MD2 Monoclonal rat IgG2a (MTS510) Mouse TLR4/MD2 FC, IHC 100 μg mab-mtlr4md2<br />

MAb-mTLR4/MD2-FITC Monoclonal rat IgG2a (MTS510), FITC Mouse TLR4/MD2 FC 100 μg mab-mtlr4md2f<br />

Anti-TLR9<br />

MAb-mTLR9 Monoclonal mouse IgG2a (5G5) Human/mouse TLR9 FC, IHC, WB 100 μg mab-mtlr9<br />

MAb-mTLR9-FITC Monoclonal mouse IgG2a (5G5), FITC Human/mouse TLR9 FC 100 μg mab-mtlr9f<br />

* FC: flowcytometry; IHC: immunohistochemistry; WB: Western blot<br />

Contents and Storage<br />

MAb-TLR-IgA and MAb-TLR-IgG antibodies are provided lyophilized from a 0.2 μm filtered solution <strong>in</strong> PBS.<br />

MAb-TLR antibodies are purified and provided as 100 μg lyophilized powder.<br />

PAb-TLR antibodies are provided as 200 μg lyophilized sera. PAb-TLRs are sterile, azide-free (conta<strong>in</strong> Pen/Strep), endotox<strong>in</strong>-tested (


INNATE IMMUNITY 3<br />

pNiFty - PRR Signal<strong>in</strong>g Reporter Plasmids<br />

PRR activation triggers a complex signal<strong>in</strong>g cascade that leads to the activation of different transcription factors, each play<strong>in</strong>g an important role <strong>in</strong> the<br />

subsequent immune response. To monitor the <strong>in</strong>duction of PRR signal<strong>in</strong>g <strong>in</strong> response to ligand stimulation <strong>in</strong> a simple and efficient manner, InvivoGen<br />

has designed pNiFty, a family of reporter plasmids express<strong>in</strong>g a reporter gene under the control of a m<strong>in</strong>imal promoter <strong>in</strong>ducible by these different<br />

transcription factors, either <strong>in</strong>dividually or <strong>in</strong> comb<strong>in</strong>ation. Most pNiFty plasmids are selectable with Zeoc<strong>in</strong> <strong>in</strong> both E. coli and mammalian cells, and<br />

can be used to generate stable clones<br />

74<br />

PLASMID NAME<br />

Description<br />

TRANSCRIPTION FACTOR<br />

BINDING SITES<br />

pNiFty plasmids are composed of three key elements: a proximal<br />

promoter, repeated transcription factor b<strong>in</strong>d<strong>in</strong>g sites (TFBS) and a<br />

reporter gene. The proximal promoters are shorter than 500 bp and<br />

conta<strong>in</strong> transcription factor b<strong>in</strong>d<strong>in</strong>g sites. Upon stimulation <strong>in</strong> 293 cells,<br />

their expression level rema<strong>in</strong>s undetectable. With the addition of repeated<br />

TFBS, the proximal promoters become <strong>in</strong>ducible by the appropriate<br />

stimulus and drive the expression of the reporter gene.<br />

M<strong>in</strong>imal promoters<br />

- ELAM promoter: the proximal promoter of the endothelial cellleukocyte<br />

adhesion molecule (ELAM-1; E-select<strong>in</strong>) gene conta<strong>in</strong>s three<br />

NF-kB sites and is truly NF-kB specific, as it lacks an AP1/CREB site found<br />

<strong>in</strong> the full-length promoter 1, 2 .<br />

- IFN-b promoter: the mouse IFN-b m<strong>in</strong>imal promoter comprises several<br />

positive regulatory doma<strong>in</strong>s that b<strong>in</strong>d different cooperat<strong>in</strong>g transcription<br />

factors such as NF-kB, IRF3 and IRF7 3 .<br />

- ISG-56K promoter: the m<strong>in</strong>imal promoter of the human <strong>in</strong>terferonstimulated<br />

gene ISG-56K conta<strong>in</strong>s two <strong>in</strong>terferon-stimulated regulatory<br />

element (ISRE) sites and is fully <strong>in</strong>ducible by type I IFNs and <strong>in</strong>terferon<br />

regulatory factors (IRFs) 4, 5 .<br />

Transcription factor b<strong>in</strong>d<strong>in</strong>g sites (TFBS)<br />

- AP-1 b<strong>in</strong>d<strong>in</strong>g site: Activator prote<strong>in</strong> 1 (AP-1) is a transcription factor<br />

activated by most PRRs. AP-1 is a heterodimeric complex composed of<br />

members of Fos, Jun and, ATF prote<strong>in</strong> families. AP-1 b<strong>in</strong>ds to the TPA<br />

responsive element (TRE: ; TGAG/CTCA) 6 . AP-1 activation <strong>in</strong> TLR signal<strong>in</strong>g<br />

is mostly mediated by MAP k<strong>in</strong>ases such as c-Jun N-term<strong>in</strong>al k<strong>in</strong>ase (JNK),<br />

p38 and extracellular signal regulated k<strong>in</strong>ase (ERK).<br />

MINIMAL<br />

PROMOTER<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pnifty<br />

SELECTION REPORTER<br />

CATALOG<br />

CODE<br />

pNiFty-SEAP NF-kB (x5) ELAM Ampicill<strong>in</strong> SEAP pnifty-seap<br />

pNiFty-Luc NF-kB (x5) ELAM Ampicill<strong>in</strong> Luciferase pnifty-luc<br />

pNiFty2-SEAP NF-kB (x5) ELAM Zeoc<strong>in</strong> SEAP pnifty2-seap<br />

pNiFty2-Luc NF-kB (x5) ELAM Zeoc<strong>in</strong> Luciferase pnifty2-luc<br />

pNiFty2-56K None ISG56 Zeoc<strong>in</strong> SEAP pnf2-56sp<br />

pNiFty3-SEAP NEW None IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp1<br />

pNiFty3-N-SEAP NEW NF-kB (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp2<br />

pNiFty3-A-SEAP NEW AP-1 (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp3<br />

pNiFty3-I-SEAP NEW ISRE (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp4<br />

pNiFty3-T-SEAP NEW NFAT (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp5<br />

pNiFty3-AN-SEAP NEW AP-1 (x5) NF-kB (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp6<br />

pNiFty3-IAN-SEAP NEW ISRE (x5) AP-1 (x5) NF-kB (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp7<br />

pNiFty3-TAN-SEAP NEW NFAT (x5) AP-1 (x5) NF-kB (x5) IFN-b Zeoc<strong>in</strong> SEAP pnf3-sp8<br />

SEAP<br />

or<br />

Luciferase<br />

SEAP<br />

or<br />

Luciferase


- NF-kB b<strong>in</strong>d<strong>in</strong>g site: Nuclear factor (NF)-kB is a “rapid-act<strong>in</strong>g” primary<br />

transcription factor activated by a wide variety of PRRs. NF-kB is a prote<strong>in</strong><br />

complex that belongs to the Rel-homology doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong><br />

family. The prototypical NF-kB is composed of the p65(RelA) and p50<br />

subunits 7 . NF-kB b<strong>in</strong>ds specific decameric DNA sequences<br />

(GGGRNNYYCC, R-pur<strong>in</strong>e Y=pyrimid<strong>in</strong>e) and activates genes <strong>in</strong>volved<br />

<strong>in</strong> the regulation of the <strong>in</strong>nate and adaptative immune response.<br />

- ISRE b<strong>in</strong>d<strong>in</strong>g site: PRRs <strong>in</strong>volved <strong>in</strong> the antiviral response <strong>in</strong>duce the<br />

activation of <strong>in</strong>terferon regulatory factors (IRFs) and the production of type<br />

I <strong>in</strong>terferons (IFNs). IFNs trigger the formation of the ISGF3 complex which<br />

conta<strong>in</strong>s signal transducer and activator of transcription (STAT) 1, STAT2<br />

and IRF9. ISGF3 and IRFs b<strong>in</strong>d to specific nucleotide sequences called<br />

<strong>in</strong>terferon-stimulated response elements (ISREs; AGTTTCNNTTTCC) <strong>in</strong><br />

the promoter of IFN-stimulated genes (ISGs) lead<strong>in</strong>g to their activation 8 .<br />

- NFAT b<strong>in</strong>d<strong>in</strong>g site: Nuclear factor of activated T-cell (NFAT) is a family<br />

of transcription factors expressed <strong>in</strong> T cells, but also <strong>in</strong> other classes of<br />

immune and non-immune cells 9 . NFAT is activated by stimulation of<br />

receptors coupled to calcium mobilization, such as the PRRs Dect<strong>in</strong>-1<br />

and M<strong>in</strong>cle 10, 11 . Calcium mobilization <strong>in</strong>duces the calmodul<strong>in</strong>-dependent<br />

phosphatase calc<strong>in</strong>eur<strong>in</strong> lead<strong>in</strong>g to NFAT activation. NFAT b<strong>in</strong>ds to a 9<br />

bp element, with the consensus sequence (A/T)GGAAA(A/N)(A/T/C)N.<br />

Reporter Genes<br />

- SEAP reporter gene: Secreted alkal<strong>in</strong>e phosphatase (SEAP) is a<br />

reporter widely used to study promoter activity or gene expression.<br />

SEAP expression can be rapidly and readily measured <strong>in</strong> supernatants of<br />

transfected cells. SEAP levels can be evaluated qualitatively with the naked<br />

eye and quantitatively us<strong>in</strong>g SEAP detection media, such as HEK-Blue <br />

Detection, or the SEAP Reporter Assay Kit (see “Related Products”).<br />

- Luc reporter gene: The firefly luciferase gene is a highly sensitive<br />

reporter gene and thus is ideal for detect<strong>in</strong>g low-level gene expression.<br />

Luc activity can be quantified <strong>in</strong> cell extracts by us<strong>in</strong>g kits commercially<br />

available from other companies.<br />

1. Sch<strong>in</strong>dler U., Baichwal VR., 1994. Three NF-kappa B b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> the human<br />

E-select<strong>in</strong> gene required for maximal tumor necrosis factor alpha-<strong>in</strong>duced<br />

expression. Mol Cell Biol. 14(9):5820-31. 2. Jensen LE. & Whitehead AS., 2003.<br />

ELAM-1/E-select<strong>in</strong> promoter conta<strong>in</strong>s an <strong>in</strong>ducible AP-1/CREB site and is not NFkB-specific.<br />

Biotechniques 35:54-58. 3. Vodjdani G. et al., 1988. Structure and<br />

characterization of a mur<strong>in</strong>e chromosomal fragment conta<strong>in</strong><strong>in</strong>g the <strong>in</strong>terferon beta<br />

gene. J Mol Biol. 204(2):221-31. 4. Wathelet MG. et al., 1987. New <strong>in</strong>ducers revealed<br />

by the promoter sequence analysis of two <strong>in</strong>terferon-activated human genes. Eur J<br />

Biochem. 1987 Dec 1;169(2):313-21. 5. Grandvaux N, et al., 2002. Transcriptional<br />

profil<strong>in</strong>g of <strong>in</strong>terferon regulatory factor 3 target genes: direct <strong>in</strong>volvement <strong>in</strong> the<br />

regulation of <strong>in</strong>terferon-stimulated genes. J Virol. 2002 Jun;76(11):5532-9. 6. Hess J,<br />

et al., 2004. AP-1 subunits: quarrel and harmony among sibl<strong>in</strong>gs. J Cell Sci. 117(Pt<br />

25):5965-73. 7. Kawai T. & Akira S., 2007. Signal<strong>in</strong>g to NF-kappaB by Toll-like<br />

receptors. Trends Mol Med. 13(11):460-9. 8. Wesoly J. et al., 2007. STAT activation<br />

and differential complex formation dictate selectivity of <strong>in</strong>terferon responses. Acta<br />

Biochim Pol. 54(1):27-38. 9. Rao A. et al., 1997. Transcription factors of the NFAT<br />

family: regulation and function. Annu Rev Immunol. 15:707-47. 10. Goodridge HS.<br />

et al., 2007. Dect<strong>in</strong>-1 stimulation by Candida albicans yeast or zymosan triggers<br />

NFAT activation <strong>in</strong> macrophages and dendritic cells. J Immunol. 178(5):3107-15.<br />

11. Yamasaki S. et al., 2009. C-type lect<strong>in</strong> M<strong>in</strong>cle is an activat<strong>in</strong>g receptor for<br />

pathogenic fungus, Malassezia. PNAS. 106(6):1897-902.<br />

Contents and Storage<br />

pNiFty plasmids are provided as lyophilized transformed E. coli stra<strong>in</strong>s on<br />

paper disk with 4 pouches of Fast-Media ® (2 TB and 2 Agar), conta<strong>in</strong><strong>in</strong>g<br />

the appropriate antibiotic: ampicill<strong>in</strong> for pNiFty plasmids, or Zeoc<strong>in</strong> for<br />

pNiFty2 and pNiFty3 plasmids. Products are shipped at room<br />

temperature and should be stored at -20ºC.<br />

Related Products<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pnifty<br />

HEK-Blue Detection, page 15<br />

QUANTI-Blue , page 14<br />

SEAP Reporter Assay Kit, page 13<br />

Fast-Media ® , page 45<br />

Zeoc<strong>in</strong> , page 18<br />

AP-1<br />

NF-kB<br />

ISRE<br />

NFAT<br />

<strong>in</strong>dividually<br />

or<br />

comb<strong>in</strong>ed<br />

75<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

Pathogen-Associated Molecular Patterns<br />

TLRs, NODs, RLRs and Dect<strong>in</strong>-1 are pattern recognition receptors (PRRs) that recognize a wide variety of<br />

microbial molecules, called pathogen-associated molecular patterns (PAMPs), discrim<strong>in</strong>at<strong>in</strong>g Gram-positive and<br />

Gram-negative bacteria from fungi and other pathogens. InvivoGen offers a comprehensive choice of high quality<br />

PAMPs know to activate these PRRs.<br />

All PAMPs are tested for TLR stimulation us<strong>in</strong>g Blue reporter cells. The endotox<strong>in</strong> levels are determ<strong>in</strong>ed us<strong>in</strong>g<br />

a k<strong>in</strong>etic chromogenic LAL assay. EndoFit agonists conta<strong>in</strong> less than 0.001 EU/μg.<br />

TLR2 Agonists<br />

TLR2 is <strong>in</strong>volved <strong>in</strong> the recognition of a wide array of microbial molecules<br />

represent<strong>in</strong>g broad groups of species such as Gram- and Gram+ bacteria,<br />

as well as mycoplasma and yeast.<br />

TLR3 Agonists<br />

TLR3 recognizes double-stranded RNA (dsRNA), a molecular pattern<br />

associated with viral <strong>in</strong>fection. Poly<strong>in</strong>os<strong>in</strong>e-polycytidylic acid (poly(I:C)), a<br />

synthetic analog of dsRNA, is the ligand of choice for TLR3.<br />

TLR4 Agonists<br />

TLR4 is the receptor for Gram-negative lipopolysaccharide (LPS) and lipid<br />

A, its toxic moiety. InvivoGen offers LPS from various bacteria and<br />

monophosphoryl lipid A.<br />

TLR5 Agonists<br />

TLR5 recognizes flagell<strong>in</strong>, the major component of the bacterial flagellar<br />

filament, from both Gram+ and Gram- bacteria. InvivoGen provides flagell<strong>in</strong><br />

purified from B. subtilis (Gram+) and S. typhimurium (Gram-) bacteria and a<br />

recomb<strong>in</strong>ant form.<br />

TLR7/8 Agonists<br />

TLR7 and TLR8 are <strong>in</strong>volved <strong>in</strong> the response to viral <strong>in</strong>fection. They recognize<br />

GU-rich short s<strong>in</strong>gle-stranded RNA as well as small synthetic molecules<br />

such as imidazoqu<strong>in</strong>ol<strong>in</strong>es and nucleoside analogues.<br />

TLR9 Agonists<br />

TLR9 recognizes specific unmethylated CpG-ODN sequences that<br />

dist<strong>in</strong>guish microbial DNA from mammalian DNA. Three types of<br />

stimulatory ODNs have been described: type A, B and C. InvivoGen also<br />

provides control ODNs and <strong>in</strong>hibitory ODNs. Larger quantities are<br />

available upon request.<br />

NOD1/2 Agonists<br />

NOD1 and NOD2 are <strong>in</strong>tracellular pathogen-recognition molecules that<br />

sense bacterial peptidoglycan (PGN). InvivoGen provides <strong>in</strong>soluble and<br />

soluble PGNs from Gram- and Gram + bacteria and bioactive fragments of<br />

PGN such as iE-DAP and MDP.<br />

RIG-I/MDA-5 Agonist<br />

RIG-I and MDA-5 are cytoplasmic RNA helicases that recognize <strong>in</strong>tracellular<br />

double-stranded RNA (dsRNA), a molecular pattern associated with viral<br />

<strong>in</strong>fection. InvivoGen provides poly(I:C)/LyoVec, a ligand that mimics viral<br />

dsRNA, as well as 5’ppp-dsRNA.<br />

76<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

Cytosolic DNA Sensor (CDS) Agonists<br />

Double-stranded DNA (dsDNA) is a potent <strong>in</strong>ducer of type I <strong>in</strong>terferons.<br />

Several sensors of cytosolic dsDNA have been identified, <strong>in</strong>clud<strong>in</strong>g DAI,<br />

RIG-I and LRRFIP1. These sensors recognize AT-rich B-form dsDNA and<br />

GC-rich Z-form dsDNA.<br />

Dect<strong>in</strong>-1 Agonists<br />

Dect<strong>in</strong>-1 is a specific receptor of b-glucans, which are glucose polymers<br />

found <strong>in</strong> the cell walls of fungi, <strong>in</strong>clud<strong>in</strong>g the yeasts Saccharomyces cerevisiae<br />

and Candida albicans.<br />

NF-kB Activators<br />

InvivoGen provides two TLR-<strong>in</strong>dependent activators of the transcription<br />

factor NF-kB: Tumor Necrosis Factor alpha (TNF-a) and Phorbol Myristate<br />

Acetate (PMA).<br />

Contents and Storage<br />

Most products are provided as a powder form and are supplied with<br />

endotox<strong>in</strong>-free water for their reconstitution.<br />

Products are shipped at room temperature and should be stored at 4°C<br />

or -20°C as mentioned <strong>in</strong> the technical datasheet.


PRODUCT ORIGIN/DESCRIPTION<br />

TLR2 Agonists<br />

ENDOTOXIN<br />

LEVELS*<br />

FSL-1 Synthetic diacylated lipoprote<strong>in</strong> - TLR2/6 EndoFit 1 - 100 ng/ml 100 μg tlrl-fsl p 82<br />

HKAL Heat Killed Acholeplasma laidlawii EndoFit 10 6 - 10 8 cells/ml 10 9 cells tlrl-hkal p 82<br />

HKEB NEW Heat Killed Escherichia coli 0111:B4 >1 EU/10 9 cells 10 5 - 10 7 cells/ml 10 10 cells tlrl-hkeb p 82<br />

HKHP Heat Killed Helicobacter pylori EndoFit 10 6 - 10 8 cells/ml 10 9 cells tlrl-hkhp p 82<br />

HKLM Heat Killed Listeria monocytogenes EndoFit 10 7 - 10 8 cells/ml 10 10 cells tlrl-hklm p 82<br />

HKLP Heat Killed Legionella pneumophila EndoFit 10 7 - 10 8 cells/ml 10 9 cells tlrl-hklp p 82<br />

HKLR Heat Killed Lactobacillus rhamnosus >1 EU/10 9 cells 10 8 - 10 9 cells/ml 10 10 cells tlrl-hklr p 82<br />

HKMF NEW Heat Killed Mycoplasma fermentans EndoFit 10 6 - 10 8 cells/ml 10 9 cells tlrl-hkmf p 82<br />

HKPA Heat Killed Pseudomonas aerug<strong>in</strong>osa >1 EU/10 8 cells 10 5 - 10 7 cells/ml 10 10 cells tlrl-hkpa p 82<br />

HKPG Heat Killed Porphyromonas g<strong>in</strong>givalis EndoFit 10 6 - 10 8 cells/ml 10 10 cells tlrl-hkpg p 82<br />

HKSA Heat Killed Staphylococcus aureus >1 EU/10 9 cells 10 6 - 10 8 cells/ml 10 10 cells tlrl-hksa p 82<br />

HKSP Heat Killed Streptococcus pneumoniae EndoFit 10 7 - 10 9 cells/ml 10 10 cells tlrl-hksp p 82<br />

LAM-MS Lipoarab<strong>in</strong>omannan from M. smegmatis EndoFit 100 ng - 10 μg/ml 500 μg tlrl-lams p 82<br />

LM-MS Lipomannan from Mycobacterium smegmatis >5 EU/mg 1 - 10 ng/ml 250 μg tlrl-lmms2 p 82<br />

LPS-PG Ultrapure Ultrapure LPS from P. g<strong>in</strong>givalis >10 4 EU/mg 10 ng - 10 μg/ml 1 mg tlrl-pglps p 83<br />

LTA-BS Lipoteichoic acid from Bacillus subtilis 10 EU/mg 100 ng - 1 μg/ml 5 mg tlrl-lta p 83<br />

LTA-SA Lipoteichoic acid from S. aureus 10 EU/mg 100 ng - 1 μg/ml 5 mg tlrl-slta p 83<br />

LTA-SA Purified Purified lipoteichoic acid from S. aureus EndoFit 1 ng - 1 μg/ml 5 mg tlrl-pslta p 83<br />

Pam2CSK4 Synthetic diacylated lipoprote<strong>in</strong> - TLR2(6) EndoFit 1 - 100 ng/ml 100 μg<br />

1 mg<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

WORKING<br />

CONCENTRATION QTY<br />

CATALOG<br />

CODE<br />

tlrl-pam2<br />

tlrl-pam2-1<br />

Pam2CSK4 Biot<strong>in</strong> Biot<strong>in</strong>ylated Pam2CSK4 EndoFit 1 - 100 ng/ml 50 μg tlrl-bpam2 p 83<br />

Pam2CSK4 Rhodam<strong>in</strong>e Rhodam<strong>in</strong>e-labeled Pam2CSK4 EndoFit 1 - 100 ng/ml 50 μg tlrl-rpam2 p 83<br />

Pam3CSK4 Synthetic triacylated lipoprote<strong>in</strong> - TLR1/2 EndoFit 1 - 300 ng/ml 1 mg tlrl-pms p 83<br />

Pam3CSK4 Biot<strong>in</strong> Biot<strong>in</strong>ylated Pam3CSK4 EndoFit 1 - 100 ng/ml 50 μg tlrl-bpms p 83<br />

Pam3CSK4 Rhodam<strong>in</strong>e Rhodam<strong>in</strong>e-labeled Pam3CSK4 EndoFit 1 - 300 ng/ml 50 μg tlrl-rpms p 83<br />

PGN-BS Peptidoglycan from B. subtilis EndoFit 1 - 10 μg/ml 5 mg tlrl-pgnbs p 83<br />

PGN-EB Peptidoglycan from E. coli 0111:B4 10 2 - 10 3 EU/mg 1 - 10 μg/ml 1 mg tlrl-pgnec p 83<br />

PGN-EK Peptidoglycan from E. coli K12 10 2 - 10 3 EU/mg 1 - 10 μg/ml 1 mg tlrl-pgnek p 83<br />

PGN-SA Peptidoglycan from S. aureus 1 EU/mg 1 - 10 μg/ml 5 mg tlrl-pgnsa p 83<br />

Zymosan Cell wall preparation of S. cerevisiae EndoFit TLR3 Agonists<br />

10 μg/ml 100 mg tlrl-zyn p 83<br />

Poly(A:U) Polyadenylic–polyuridylic acid


INNATE IMMUNITY 3<br />

PRODUCT ORIGIN/DESCRIPTION<br />

ENDOTOXIN<br />

LEVELS*<br />

WORKING<br />

CONCENTRATION QTY<br />

CATALOG<br />

CODE<br />

LPS-RS Lipopolysaccharide from Rhodobacter sphaeroides 1 x 106 TLR4 Antagonist<br />

TLR5 Agonists<br />

EU/mg 10 ng - 10 μg/ml 5 mg tlrl-rslps p 84<br />

FLA-BS Standard flagell<strong>in</strong> from B. subtilis 95% pure


PRODUCT ORIGIN/DESCRIPTION<br />

TLR9 Agonists<br />

ODN 1668 FITC FITC-labeled CpG ODN - mouse specific, type B EndoFit 10 ng - 10 μg/ml 50 μg tlrl-1668f p 86<br />

ODN 1826 Stimulatory CpG ODN<br />

Type B<br />

Mouse specific<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 1826 control Negative control for ODN 1826 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

tlrl-1826<br />

tlrl-1826-1<br />

tlrl-1826-5<br />

tlrl-1826c<br />

tlrl-1826c-1<br />

tlrl-1826c-5<br />

ODN 1826 Biot<strong>in</strong> Biot<strong>in</strong>ylated CpG ODN - mouse specific, type B EndoFit 10 ng - 10 μg/ml 50 μg tlrl-1826b p 86<br />

ODN 1826 FITC FITC-labeled CpG ODN - mouse specific, type B EndoFit 10 ng - 10 μg/ml 50 μg tlrl-1826f p 86<br />

ODN 2006 Stimulatory CpG ODN<br />

Type B<br />

Human specific<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 2006 control Negative control for ODN 2006 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

tlrl-2006<br />

tlrl-2006-1<br />

tlrl-2006-5<br />

tlrl-2006c<br />

tlrl-2006c-1<br />

tlrl-2006c-5<br />

ODN 2006 Biot<strong>in</strong> Biot<strong>in</strong>ylated CpG ODN - human specific, type B EndoFit 10 ng - 10 μg/ml 50 μg tlrl-2006b p 86<br />

ODN 2006 FITC FITC-labeled CpG ODN - human specific, type B EndoFit 10 ng - 10 μg/ml 50 μg tlrl-2006f p 86<br />

ODN 2006-G5 Stimulatory CpG ODN<br />

Type B<br />

Human specific<br />

ODN 2007 Stimulatory CpG ODN<br />

Type B<br />

Bov<strong>in</strong>e / porc<strong>in</strong>e<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 2007 control Negative control for ODN 2007 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 2216 Stimulatory CpG ODN<br />

Type A<br />

Human specific<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 2216 control Negative control for ODN 2216 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

tlrl-2006g5<br />

tlrl-2006g5-1<br />

tlrl-2006g5-5<br />

tlrl-2007<br />

tlrl-2007-1<br />

tlrl-2007-5<br />

tlrl-2007c<br />

tlrl-2007c-1<br />

tlrl-2007c-5<br />

tlrl-2216<br />

tlrl-2216-1<br />

tlrl-2216-5<br />

tlrl-2216c<br />

tlrl-2216c-1<br />

tlrl-2216c-5<br />

ODN 2216 Biot<strong>in</strong> Biot<strong>in</strong>ylated CpG ODN - human specific, type A EndoFit 10 ng - 10 μg/ml 50 μg tlrl-2216b p 86<br />

ODN 2216 FITC FITC-labeled CpG ODN - human specific, type A EndoFit 10 ng - 10 μg/ml 50 μg tlrl-2216f p 86<br />

ODN 2336 Stimulatory CpG ODN<br />

Type A<br />

Human specific<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 2336 control Negative control for ODN 2336 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

tlrl-2336<br />

tlrl-2336-1<br />

tlrl-2336-5<br />

tlrl-2336c<br />

tlrl-2336c-1<br />

tlrl-2336c-5<br />

ODN 2336 FITC FITC-labeled CpG ODN - human specific, type A EndoFit 10 ng - 10 μg/ml 50 μg tlrl-2336f p 86<br />

ODN 2395 Stimulatory CpG ODN<br />

Type C<br />

Human / mouse<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN 2395 control Negative control for ODN 2395 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

tlrl-2395<br />

tlrl-2395-1<br />

tlrl-2395-5<br />

tlrl-2395c<br />

tlrl-2395c-1<br />

tlrl-2395c-5<br />

ODN 2395 FITC FITC-labeled CpG ODN - human specific, type C EndoFit 10 ng - 10 μg/ml 50 μg tlrl-2395f p 86<br />

ODN M362 Stimulatory CpG ODN<br />

Type C<br />

Human / mouse<br />

ENDOTOXIN<br />

LEVELS<br />

WORKING<br />

CONCENTRATION QTY<br />

EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

ODN M362 control Negative control for ODN M362 EndoFit 5 μM (10 μg/ml) 200 μg<br />

1 mg<br />

5 mg<br />

CATALOG<br />

CODE<br />

tlrl-m362<br />

tlrl-m362-1<br />

tlrl-m362-5<br />

tlrl-m362c<br />

tlrl-m362c-1<br />

tlrl-m362c-5<br />

ODN M362 FITC FITC-labeled CpG ODN - human specific, type C EndoFit 10 ng - 10 μg/ml 50 μg tlrl-m362f p 86<br />

INFO<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

p 86<br />

79<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

ODN 2088 Inhibitory ODN, mouse preferred EndoFit 50 nM - 1 μM 200 μg<br />

1 mg<br />

ODN 2088 control Negative control for ODN 2088 EndoFit 50 nM - 1 μM 200 μg<br />

1 mg<br />

tlrl-2088<br />

tlrl-2088-1<br />

tlrl-2088c<br />

tlrl-2088c-1<br />

ODN 4084-F NEW Class B <strong>in</strong>hibitory ODN EndoFit 50 nM - 1 μM 200 μg tlrl-4084 p 87<br />

ODN INH-1 NEW Class R <strong>in</strong>hibitory ODN EndoFit 50 nM - 1 μM 200 μg tlrl-<strong>in</strong>h1 p 87<br />

ODN INH-47 NEW Negative control for ODN INH-1 EndoFit 50 nM - 1 μM 200 μg tlrl-<strong>in</strong>h47 p 87<br />

ODN TTAGGG Inhibitory ODN, human preferred EndoFit 50 nM - 1 μM 200 μg tlrl-ttag p 87<br />

1 mg tlrl-ttag-1<br />

80<br />

PRODUCT ORIGIN/DESCRIPTION<br />

TLR9 Agonists<br />

ENDOTOXIN<br />

LEVELS<br />

ODN TTAGGG control Negative control for ODN TTAGGG EndoFit 50 nM - 1 μM 200 μg<br />

1 mg<br />

tlrl-ttagc<br />

tlrl-ttagc-1<br />

G-ODN Inhibitory guanos<strong>in</strong>e-rich ODN EndoFit 50 nM - 1 μM 200 μg tlrl-godn p 87<br />

MDP Muramyldipeptide (L-D isoform, active) EndoFit 10 ng - 10 μg/ml 5 mg tlrl-mdp p 87<br />

MDP control Muramyldipeptide (D-D isoform, <strong>in</strong>active) EndoFit 10 ng - 10 μg/ml 5 mg tlrl-mdpc p 88<br />

MDP Biot<strong>in</strong> Biot<strong>in</strong>ylated Muramyldipeptide EndoFit 100 ng - 10 μg/ml 500 μg tlrl-bmdp p 88<br />

MDP FITC FITC-labeled Muramyldipeptide EndoFit 10 ng - 10 μg/ml 500 μg tlrl-fmdp p 88<br />

MDP Rhodam<strong>in</strong>e Rhodam<strong>in</strong>e-labeled Muramyldipeptide EndoFit 100 ng - 10 μg/ml 500 μg tlrl-rmdp p 88<br />

L18-MDP Muramyldipeptide with a C18 fatty acid cha<strong>in</strong> EndoFit 1 - 100 ng/ml 1 mg tlrl-lmdp p 88<br />

N-Glycolyl-MDP N-glycolylated muramyldipeptide EndoFit 100 ng - 10 μg/ml 5 mg tlrl-gmdp p 88<br />

Murabutide Synthetic derivative of muramyldipeptide EndoFit 10 ng - 1 μg/ml 5 mg tlrl-mbt p 88<br />

Murabutide control Murabutide analog (D isoform, <strong>in</strong>active) EndoFit C12-iE-DAP Acylated derivative of iE-DAP EndoFit<br />

10 ng - 1 μg/ml 5 mg tlrl-mbtc p 88<br />

1 ng - 1 μg/ml 1 mg tlrl-c12dap p 87<br />

iE-DAP D-g-Glu-mDAP EndoFit 1 - 100 μg/ml 5 mg tlrl-dap p 87<br />

iE-Lys iE-DAP negative control EndoFit 1 - 100 μg/ml 5 mg tlrl-lys p 87<br />

Tri-DAP L-Ala-g-D-Glu-mDAP EndoFit 100 ng - 10 μg/ml 1 mg tlrl-tdap p 88<br />

Tri-Lys Tri-DAP negative control EndoFit NOD1 Agonists<br />

NOD2 Agonists<br />

100 ng - 10 μg/ml 1 mg tlrl-tlys p 88<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

WORKING<br />

CONCENTRATION QTY<br />

CATALOG<br />

CODE<br />

pCpG Giant CpG-free dcm - giant plasmid EndoFit 5 - 10 μg/ml 1 mg tlrl-cpgg p 86<br />

Salmon sperm DNA TLR9 negative control EndoFit TLR9 Antagonists<br />

5 - 100 μg/ml 50 mg tlrl-sdef p 86<br />

NOD1/2 Agonists<br />

M-TriDAP MurNAc-L-Ala-g-D-Glu-mDAP EndoFit 1 - 100 μg/ml 1 mg tlrl-mtd p 88<br />

PGN-ECndi ultrapure Insoluble peptidoglycan from E. coli K12 EndoFit 1 - 5 μg/ml 5 mg tlrl-kipgn p 88<br />

PGN-ECndss ultrapure Soluble sonicated peptidoglycan from E. coli K12 EndoFit 1 - 5 μg/ml 1 mg tlrl-ksspgn p 88<br />

PGN-SAndi ultrapure Insoluble peptidoglycan from S. aureus EndoFit 1 - 5 μg/ml 5 mg tlrl-sipgn p 88<br />

RIG-I/MDA-5 and CDS Agonists<br />

5’ppp-dsRNA NEW 5’triphosphate blunt-end double-stranded RNA EndoFit 300 ng - 1 μg/ml 25 μg<br />

100 μg<br />

5’ppp-dsRNA Control NEW 5’triphosphate blunt-end double-stranded RNA EndoFit 300 ng - 1 μg/ml 25 μg<br />

100 μg<br />

Poly(dA:dT) Naked NEW Poly(dA-dT)•poly(dT-dA) EndoFit 1 - 5 μg/ml 200 μg<br />

1 mg<br />

tlrl-3prna<br />

tlrl-3prna-100<br />

tlrl-3prnac<br />

tlrl-3prnac-100<br />

tlrl-patn<br />

tlrl-patn-1<br />

Poly(dA:dT)/LyoVec Poly(dA-dT)•poly(dT-dA)/LyoVec complexes EndoFit 1 - 5 μg/ml 100 μg tlrl-patc p 88<br />

Poly(dG:dC) Naked NEW Poly(dG-dC)•poly(dG-dC) EndoFit 1 - 5 μg/ml 200 μg tlrl-pgcn p 88<br />

Poly(dG:dC)/LyoVec NEW Poly(dG-dC)•poly(dG-dC)/LyoVec complexes EndoFit 1 - 5 μg/ml 100 μg tlrl-pgcc p 88<br />

Poly(I:C) (HMW)/LyoVec Poly(I:C) (HMW)/LyoVec complexes EndoFit 100 ng - 1 μg/ml 100 μg tlrl-piclv p 88<br />

1 mg tlrl-piclv-10<br />

Poly(I:C) (LMW)/LyoVec Poly(I:C) (LMW)/LyoVec complexes EndoFit 100 ng - 1 μg/ml 100 μg tlrl-picwlv p 88<br />

1 mg tlrl-picwlv-10<br />

INFO<br />

p 87<br />

p 87<br />

p 87<br />

p 88<br />

p 88<br />

p 88


PRODUCT ORIGIN/DESCRIPTION<br />

Dect<strong>in</strong>-1 Agonists<br />

Curdlan NEW Beta-1,3-glucan from Alcaligenes faecalis


INNATE IMMUNITY 3<br />

TLR2 Agonists<br />

FSL-1 - TLR2/6 Agonist<br />

FSL-1 (Pam2CGDPKHPKSF) is a synthetic lipoprote<strong>in</strong> derived from Mycoplasma salivarium similar to MALP-2, a M. fermentans derived lipopeptide (LP) 1,2 .<br />

Mycoplasmal LPs, such as FSL-1, conta<strong>in</strong> a diacylated cyste<strong>in</strong>e residue, whereas bacterial LP conta<strong>in</strong> a triacylated one. FSL-1 is recognized by TLR2 and TLR6,<br />

whereas bacterial LPs are recognized by TLR2 and TLR1 3 .<br />

HKAL (Acholeplasma laidlawii)<br />

Acholeplasma laidlawii, a member of the mycoplasma family, is a cell wall-less bacteria. Heat killed mycoplasma such as HKAL <strong>in</strong>duce higher stimulation of<br />

macrophage than lipoprote<strong>in</strong>s from Gram- bacteria, even at low concentrations 4 . This response is mediated by TLR2 and MyD88.<br />

HKEB (Escherichia coli) NEW<br />

HKEB is a heat killed preparation of the gram negative bacterium, E.coli O111:B4. Cell wall components from this bacterium, such as peptidoglycan (PGN)<br />

and lipopolysaccharide (LPS), are recognized by TLR2 and TLR4 5 . It has been demonstrated that HKEB can stimulate TLR2 and <strong>in</strong>duce the production of<br />

NF-kB and pro-<strong>in</strong>flammatory cytok<strong>in</strong>es, such as IL-8 6 . HKEB is a potent stimulator of TLR2, and has a weak stimulatory effect on TLR4.<br />

HKHP (Helicobacter pylori)<br />

Helicobacter pylori, a Gram negative bacterium, is an important human pathogen that causes gastritis and is strongly associated with peptic ulcer, gastric<br />

adenocarc<strong>in</strong>oma, and mucosa-associated lymphoid tissue lymphoma. Heat-killed Helicobacter pylori (HKHP) <strong>in</strong>duces the production of IL-8 through the<br />

activation of the ERK and p38 MAPK pathway. TLR2 was shown to be the sensor <strong>in</strong>volved <strong>in</strong> HKHP-mediated secretion of IL-8 <strong>in</strong> monocytes 7 .<br />

HKLM (Listeria monocytogenes)<br />

HKLM is a freeze-dried heat-killed preparation of Listeria monocytogenes (LM), a facultative <strong>in</strong>tracellular Gram-positive bacterium. Infection with LM <strong>in</strong>duces<br />

the secretion of <strong>in</strong>flammatory cytok<strong>in</strong>es, such as TNF, IL-12, and several chemok<strong>in</strong>es, allow<strong>in</strong>g the recruitment and activation of immune cells. This response<br />

is mediated ma<strong>in</strong>ly by the <strong>in</strong>teraction between MyD88 and TLR2 8, 9 .<br />

HKLP (Legionella pneumophila)<br />

Legionella pneumophila, a Gram negative bacterium, is the causative agent of legionnaires’ disease which is characterized by severe pneumonia. Although<br />

TLR4 is <strong>in</strong>volved <strong>in</strong> host defense aga<strong>in</strong>st gram negative bacteria <strong>in</strong>fection, it is not activated or is activated only to a limited extent by L. pneumophila 10 .<br />

L. pneumophila requires TLR2 rather than TLR4 to <strong>in</strong>duce the production of cytok<strong>in</strong>es 11 .<br />

HKLR (Lactobacillus rhamnosus)<br />

Lactobacillus rhamnosus is a nonpathogenic gram-positive <strong>in</strong>habitant of the human microflora. It is used as a natural preservative <strong>in</strong> yogurt and other dairy products<br />

to extend the shelf life. L. rhamnosus is known to have health beneficial effects, such as the nonspecific enhancement of the immune system. Indeed, heat-killed<br />

L.. rhamnosus (HKLR) has been shown to be a potent <strong>in</strong>ducer of TNF-a from mouse mononuclear cells. This immune response is dependent on TLR2 and CD14 12 .<br />

HKMF (Mycoplasma fermentans) NEW<br />

Mycoplasma fermentans, a member of the mycoplasma family, is a cell wall-less bacterium. It conta<strong>in</strong>s lipopeptides, <strong>in</strong> particular 2-kDa macrophage-activat<strong>in</strong>g<br />

lipopetide (MALP-2), a potent stimulator of macrophages through TLR2 and TLR6 3 . Stimulation with heat killed M. fermentans (HKMF) <strong>in</strong>duces rapid activation<br />

of NF-kB and the production of pro-<strong>in</strong>flammatory cytok<strong>in</strong>es.<br />

HKPA (Pseudomonas aerug<strong>in</strong>osa)<br />

Pseudomonas aerug<strong>in</strong>osa is a virulent gram-negative pathogen that <strong>in</strong>fects patients through the respiratory tract, <strong>in</strong> particular patients with cystic fibrosis.<br />

Heat-killed Pseudomonas aerug<strong>in</strong>osa (HKPA) <strong>in</strong>itiates host <strong>in</strong>flammatory responses through TLR2 and TLR5 but not TLR4 13, 14 . The TLR5-mediated response<br />

was shown to be <strong>in</strong>duced by flagell<strong>in</strong> while LPS appears to play an important role <strong>in</strong> the TLR2-mediated response.<br />

HKPG (Porphyromonas g<strong>in</strong>givalis)<br />

HKPG is a freeze-dried heat-killed preparation of the periodontopathic Gram negative bacteria Porphyromonas g<strong>in</strong>givalis. In CHO cells express<strong>in</strong>g TLR2 and<br />

CD14, exposure to HKPG <strong>in</strong>duces the activation of NF-kB through TLR2. Expression of TLR4 fails to enhance the response to HKPG suggest<strong>in</strong>g that either<br />

the whole bacterial components of P. g<strong>in</strong>givalis are not recognized by TLR4 or some components of these bacteria <strong>in</strong>hibit TLR4-mediated activation 15 .<br />

HKSA (Staphylococcus aureus)<br />

HKSA is a lyophilized heat-killed preparation of Staphyloccocus aureus, a Gram-positive extra-cellular grow<strong>in</strong>g bacterium. HKSA is recognized ma<strong>in</strong>ly by<br />

TLR2 16 . HKSA <strong>in</strong>duces tolerance to a secondary HKSA stimulation but causes prim<strong>in</strong>g to LPS, suggest<strong>in</strong>g a differential regulation of cytok<strong>in</strong>es and chemok<strong>in</strong>es<br />

<strong>in</strong> gram-positive- and gram-negative-<strong>in</strong>duced <strong>in</strong>flammatory events 17 .<br />

HKSP (Streptococcus pneumoniae)<br />

Streptococcus pneumoniae, a Gram positive bacterium, is the pr<strong>in</strong>cipal etiologic agent of bacterial men<strong>in</strong>gitis <strong>in</strong> adults. Heat-killed Streptococcus pneumoniae<br />

(HKSP) <strong>in</strong>duce activation of NF-kB <strong>in</strong> a TLR2- and CD14-dependent manner 18 . TLR2 has been shown to play an important role <strong>in</strong> the prote<strong>in</strong>- and<br />

polysaccharide-specific type 1 IgG isotype response follow<strong>in</strong>g immunization with HKSP 19 .<br />

LM-MS & LAM-MS (Mycobacterium smegmatis)<br />

Lipoarab<strong>in</strong>omannans (LAM) and lipomannans (LM) are lipoglycans found <strong>in</strong> mycobacterial cell wall. LM and LAM from the non-pathogenic Mycobacterium<br />

smegmatis are pro<strong>in</strong>flammatory molecules 20 . Both LM-MS and LAM-MS activate macrophages <strong>in</strong> a TLR2-dependent manner 21 .<br />

82<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps


LPS-PG (Porphyromonas g<strong>in</strong>givalis)<br />

Recognition of lipopolysaccharide from Porphyromonas g<strong>in</strong>givalis (LPS-PG), a Gram-negative bacterium, is mediated by TLR2 and CD14, and unlike enteric<br />

LPS, is able to <strong>in</strong>duce a septic shock <strong>in</strong> C3H/HeJ mice which are deficient for TLR4 and hyporesponsive to E. coli LPS. This property is attributed ma<strong>in</strong>ly to<br />

the unique lipid A motif of PG-LPS 22 .<br />

LTA-BS & LTA-SA (B. subtilis and S. aureus)<br />

Lipoteichoic acid (LTA) is a major immunostimulatory component of Gram-positive bacteria. Like LPS, LTA is an amphiphile formed by a hydrophilic<br />

polyphosphate polymer l<strong>in</strong>ked to a neutral glycolipid. LTA stimulates immune cells through TLR2 to produce TNF-a and other <strong>in</strong>flammatory cytok<strong>in</strong>es 23 .<br />

Recognition of LTA <strong>in</strong>volves also LPS-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (LBP) and CD14 24 .<br />

InvivoGen provides LTA from B. subtilis (LTA-BS) and S. aureus (LTA-SA) and a purified form of LTA-SA, which is EndoFit (


INNATE IMMUNITY 3<br />

TLR3 Agonists<br />

Poly(I:C) & Poly(I:C)-LMW<br />

Poly<strong>in</strong>os<strong>in</strong>e-polycytidylic acid (poly(I:C)) is a synthetic analog of double-stranded RNA (dsRNA), a molecular pattern associated with viral <strong>in</strong>fection. Poly(I:C)<br />

is recognized by TLR3 <strong>in</strong>duc<strong>in</strong>g the activation of NF-kB and the production of cytok<strong>in</strong>es through dist<strong>in</strong>ct mechanisms that are MyD88-dependent or MyD88<strong>in</strong>dependent<br />

1,2 . InvivoGen provides poly(I:C) with a high molecular weight (HMW) or a low molecular weight (LMW) that might activate the immune system<br />

differently:<br />

• Poly(I:C) (HMW) has an average size of 1.5-8 kb.<br />

• Poly(I:C)-LMW has an average size of 0.2-1 kb.<br />

Poly(A:U)<br />

Polyadenylic–polyuridylic acid (poly(A:U)) is a synthetic double stranded RNA molecule that signals only through TLR3. Recognition of poly(A:U) by TLR3<br />

<strong>in</strong>duces the activation of dendritic cells and T lymphocytes. When comb<strong>in</strong>ed with an antigen <strong>in</strong> mice, poly(A:U) has been shown to promote antigen-specific<br />

Th1-immune responses and boost antibody production 3 . The potent adjuvant activity of poly(A:U) has been exploited <strong>in</strong> the treatment of breast cancers<br />

that express TLR3 4 .<br />

1. Yamamoto M. et al., 2003. Role of adaptor TRIF <strong>in</strong> the MyD88-<strong>in</strong>dependent toll-like receptor signal<strong>in</strong>g pathway. Science, 301(5633):640-3. 2. Alexopoulou L. et al., 2001. Recognition of<br />

double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413(6857):732-8. 3. Wang L. et al., 2002. Noncod<strong>in</strong>g RNA danger motifs bridge <strong>in</strong>nate and adaptive<br />

immunity and are potent adjuvants for vacc<strong>in</strong>ation. J Cl<strong>in</strong> Invest 110:1175–84. 4. Conforti R. et al., 2010. Oppos<strong>in</strong>g effects of toll-like receptor (TLR3) signal<strong>in</strong>g <strong>in</strong> tumors can be therapeutically<br />

uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res. 70(2):490-500.<br />

TLR4 Agonists<br />

Bacterial lipopolysaccharide (LPS) is the major structural component of the outer wall of all Gram-negative bacteria and a potent activator of the immune<br />

system. LPS is recognized by Toll-like receptor 4 (TLR4) which <strong>in</strong>teracts with three different extracellular prote<strong>in</strong>s: LPS b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (LBP), CD14 and,<br />

myeloid differentiation prote<strong>in</strong> 2 (MD-2), to <strong>in</strong>duce a signal<strong>in</strong>g cascade lead<strong>in</strong>g to the activation of NF-kB and the production of pro<strong>in</strong>flammatory cytok<strong>in</strong>es.<br />

LPS consists of a polysaccharide region that is anchored <strong>in</strong> the outer bacterial membrane by a specific carbohydrate lipid moiety termed lipid A. Lipid A, also<br />

known as endotox<strong>in</strong>, is responsible for the immunostimulatory activity of LPS. The most active form of lipid A conta<strong>in</strong>s six fatty acyl groups and is found <strong>in</strong><br />

pathogenic bacteria such as Escherichia coli and Salmonella species 1 . Underacylated lipid A structures, conta<strong>in</strong><strong>in</strong>g four or five fatty acids, <strong>in</strong>duce markedly less<br />

host defense responses and can <strong>in</strong>hibit <strong>in</strong> a dose-dependent manner the strong endotoxic response triggered by hexa-acylated LPS 2 .<br />

LPS-EB & LPS-EK standard (E. coli 0111:B4) - TLR4 (TLR2) Agonists<br />

LPS-EB and LPS-EK are standard preparations of lipopolysaccharide. They are extracted by a phenol-water mixture. LPS-EB and LPS-EK conta<strong>in</strong> other<br />

bacterial components, such as lipopeptides, and therefore stimulate both TLR4 and TLR2.<br />

LPS-EB, LPS-EK & LPS-SM Ultrapure (E. coli 0111:B4, E. coli K12 and S. m<strong>in</strong>nesota)<br />

Ultrapure LPS-EB (E. coli 0111:B4), LPS-EK (E. coli K12) and LPS-SM (S. m<strong>in</strong>nesota Re type) are extracted by successive enzymatic hydrolysis steps and purified<br />

by the phenol-TEA-DOC extraction protocol described by Hirschfeld M. et al. 3<br />

LPS-RS (Rhodobacter sphaeroides) - TLR4 Antagonist<br />

LPS from the photosynthetic bacterium Rhodobacter sphaeroides (LPS-RS) is a potent antagonist of LPS from pathogenic bacteria 1 . Complete competitive<br />

<strong>in</strong>hibition of LPS activity is possible at a 100 fold excess of the antagonist. LPS-RS does not <strong>in</strong>duce TLR4 signal<strong>in</strong>g but is detected by the LAL assay, the<br />

standard endotox<strong>in</strong> detection assay.<br />

MPLA & MPLAs (synthetic)<br />

MPLA (monophosphoryl lipid A) is a derivative of lipid A from Salmonella m<strong>in</strong>nesota R595 lipopolysaccharide (LPS or endotox<strong>in</strong>). While LPS is a complex<br />

heterogeneous molecule, its lipid A portion is relatively similar across a wide variety of pathogenic stra<strong>in</strong>s of bacteria 4 . MPLA, used extensively as a vacc<strong>in</strong>e<br />

adjuvant, has been shown to activate TLR4.<br />

MPLAs is a synthetic monophosphoryl lipid A from E. coli with 6 fatty acyl groups. It is structurally very similar to natural MPLA except that natural MPLA<br />

conta<strong>in</strong>s a mixture of 5, 6, and 7 acyl Lipid A. This E. coli synthetic MPLA activates TLR4 but does not activate TLR2 even at high concentrations reflect<strong>in</strong>g its<br />

high purity.<br />

1. Coats SR. et al., 2005. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signal<strong>in</strong>g complex.<br />

J Immunol.;175(7):4490-8. 2. Teghanemt A. et al., 2005. Molecular basis of reduced potency of underacylated endotox<strong>in</strong>s. J Immunol. 175(7):4669-76. 3. Hirschfeld M. et al., 2000. Cutt<strong>in</strong>g edge:<br />

repurification of lipopolysaccharide elim<strong>in</strong>ates signal<strong>in</strong>g through both human and mur<strong>in</strong>e toll-like receptor 2. J Immunol. ;165(2):618-22. 4. Mart<strong>in</strong> M. et al., 2003. Role of <strong>in</strong>nate immune<br />

factors <strong>in</strong> the adjuvant activity of monophosphoryl lipid A. Infect Immun. 71(5):2498-507.<br />

TLR5 Agonists<br />

FLA-BS, FLA-ST, FLA-ST Ultrapure & RecFLA-ST (B. subtilis and S. typhimurium)<br />

Flagell<strong>in</strong> is the major component of the bacterial flagellar filament, which confers motility on a wide range of bacterial species. Flagell<strong>in</strong> is recognized by TLR5 1<br />

and <strong>in</strong>duces the activation of NF-kB and the production of cytok<strong>in</strong>es and nitric oxide depend<strong>in</strong>g on the nature of the TLR5 signal<strong>in</strong>g complex 2 .<br />

• FLA-BS and FLA-ST are flagell<strong>in</strong>s isolated from the Gram-positive bacteria B. subtilis and from the Gram-negative bacteria S. typhimurium, respectively. They<br />

are purified by acid hydrolysis, heat<strong>in</strong>g and ultrafiltration accord<strong>in</strong>g to Ibrahim GF. et al. 3 . The purity of FLA-ST is estimated at 10%.<br />

84<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps


• FLA-ST ultrapure was purified by monoclonal anti-FliC aff<strong>in</strong>ity chromatography. The purity of FLA-ST ultrapure is >95%.<br />

• RecFLA-ST is a recomb<strong>in</strong>ant flagell<strong>in</strong> purified from mammalian cells transfected with the FliC gene which encodes flagell<strong>in</strong> <strong>in</strong> S. typhimurium. RecFLA-ST is<br />

endotox<strong>in</strong>-free accord<strong>in</strong>g to the gel clot LAL Assay. It activates TLR5 but does not activate TLR2 nor TLR4.<br />

1. Hayashi F. et al., 2001.The <strong>in</strong>nate immune response to bacterial flagell<strong>in</strong> is mediated by Toll-like receptor 5. Nature. 410(6832):1099-103. 2. Mizel SB. et al., 2003. Induction of macrophage<br />

nitric oxide production by Gram-negative flagell<strong>in</strong> <strong>in</strong>volves signal<strong>in</strong>g via heteromeric Toll-like receptor 5/Toll-like receptor 4 complexes. J Immunol. 170(12):6217-23. 3. Ibrahim GF. et al., 1985.<br />

Method for the isolation of highly purified Salmonella flagell<strong>in</strong>s. J. Cl<strong>in</strong>. Microbiol. 22(6):1040-1044.<br />

TLR7/8 Agonists<br />

CL075 - TLR7/8 Agonist<br />

CL075 (3M002) is a thiazoloqu<strong>in</strong>olone derivative that stimulates TLR8 <strong>in</strong> human PBMC. It activates NF-kB and triggers preferentially the production of<br />

TNF-a and IL-12 1 . CL075 seems also to <strong>in</strong>duce the secretion of IFN-a through TLR7 but to a lesser extent. It <strong>in</strong>duces the activation of NF-kB at 0.4 μM (0.1<br />

μg/ml) <strong>in</strong> TLR8-transfected HEK293 cells, and ~ 10 times more CL075 is required to activate NF-kB <strong>in</strong> TLR7-transfected HEK293 cells.<br />

CL097 - TLR7/8 Agonist<br />

CL097 is a highly water-soluble derivative of the imidazoqu<strong>in</strong>ol<strong>in</strong>e compound R848 (>= 20 mg/ml). Similarly to R848, CL097 is a TLR7 and TLR8 ligand 2, 3 .<br />

It <strong>in</strong>duces the activation of NF-kB at 0.4 μM (0.1 μg/ml) <strong>in</strong> TLR7-transfected HEK293 cells and at 4 μM (1 μg/ml) <strong>in</strong> TLR8-transfected HEK293 cells.<br />

CL264 - TLR7 Agonist<br />

CL264 is a novel 9-substituted-8 hydroxyaden<strong>in</strong>e derivative. Similarly to SM360320, CL264 <strong>in</strong>duces the activation of NF-kB and the secretion of IFN-a <strong>in</strong><br />

TLR7-express<strong>in</strong>g cells 4 . CL264 is a TLR7-specific ligand, it does not stimulate TLR8 even at high concentrations (> 10 μg/ml). In TLR7-transfected HEK293<br />

cells, CL264 triggers NF-kB activation at a concentration of 0.1 μM which is 5-10 times less than imiquimod.<br />

Gardiquimod - TLR7 Agonist<br />

Gardiquimod is a new imidazoqu<strong>in</strong>ol<strong>in</strong>e compound developed and manufactured by InvivoGen. Similarly to Imiquimod, Gardiquimod <strong>in</strong>duces the activation<br />

of NF-kB <strong>in</strong> HEK293 cells express<strong>in</strong>g human or mouse TLR7. However Gardiquimod is 10 times more active as a concentration of 0.1 μg/ml is sufficient to<br />

detect NF-kB activation whereas Imiquimod requires a concentration of 1 μg/ml. Gardiquimod shares the same actions as R848 7 .<br />

Imiquimod - TLR7 Agonist<br />

Imiquimod (R837), an imidazoqu<strong>in</strong>ol<strong>in</strong>e am<strong>in</strong>e analogue to guanos<strong>in</strong>e, is an immune response modifier with potent <strong>in</strong>direct antiviral activity. This low molecular<br />

weight synthetic molecule <strong>in</strong>duces the production of cytok<strong>in</strong>es such as IFN-a through the activation of TLR7 8 . This activation is MyD88-dependent and leads<br />

to the <strong>in</strong>duction of the transcription factor NF-kB 9 .<br />

Loxorib<strong>in</strong>e - TLR7 Agonist<br />

Loxorib<strong>in</strong>e is a guanos<strong>in</strong>e analog derivatized at position N7 and C8. This L-nucleoside is a strong stimulator of the immune system 10 . It signals through TLR7<br />

lead<strong>in</strong>g to the activation of NF-kB 8, 11 . Similarly to the imidazoqu<strong>in</strong>ol<strong>in</strong>e compound imiquimod, loxorib<strong>in</strong>e recognition is restricted to TLR7.<br />

Poly(dT) - TLR7/8 Modulator<br />

Poly(dT), a thymid<strong>in</strong>e homopolymer phosphorothioate ODN, is a modulator of human TLR7 and TLR8. In comb<strong>in</strong>ation with an imidazoqu<strong>in</strong>ol<strong>in</strong>e, such as<br />

R848 and CL075, it <strong>in</strong>creases TLR8-mediated signal<strong>in</strong>g but abolishes TLR7-mediated signal<strong>in</strong>g 12, 13 . Alone poly(dT) has no significant effect on either of these<br />

TLRs. Furthermore, co-<strong>in</strong>cubation of poly(dT) and an imidazoqu<strong>in</strong>ol<strong>in</strong>e was shown to <strong>in</strong>duce NF-kB activation <strong>in</strong> HEK293 cells transfected with mur<strong>in</strong>e<br />

TLR8- and primary TLR8-express<strong>in</strong>g mouse cells, demonstrat<strong>in</strong>g that mur<strong>in</strong>e TLR8 is functional 14 .<br />

R848 - TLR7/8 agonist<br />

R848 is an imidazoqu<strong>in</strong>ol<strong>in</strong>e compound with potent anti-viral activity. This low molecular weight synthetic molecule activates immune cells via the TLR7/TLR8<br />

MyD88-dependent signal<strong>in</strong>g pathway 9, 12 . Recently, R848 was shown to trigger NF-kB activation <strong>in</strong> cells express<strong>in</strong>g mur<strong>in</strong>e TLR8 when comb<strong>in</strong>ed with<br />

poly(dT) 14 . Unlike other commercially available R848 preparations, InvivoGen’s R848 is water soluble (~5 mg/ml).<br />

S<strong>in</strong>gle-stranded RNAs: ssPolyU, ssRNA40, ssRNA-DR & ORN02/06 - TLR8 agonists<br />

S<strong>in</strong>gle-stranded RNA (ssRNA) has been identified as the natural ligand of TLR7 and TLR8 15, 16 . ssRNA derived from HIV-1 or the <strong>in</strong>fluenza virus were shown<br />

to <strong>in</strong>duce the production of pro<strong>in</strong>flammatory cytok<strong>in</strong>es <strong>in</strong> pDC. This <strong>in</strong>duction was reproduced us<strong>in</strong>g polyU or GU-rich (ssRNA40) ODNs complexed with<br />

cationic lipids to protect them from degradation. Upon stimulation with ssRNA, mur<strong>in</strong>e TLR7 and human TLR8 <strong>in</strong>duced the activation of NF-kB, whereas<br />

human TLR7 and mur<strong>in</strong>e TLR8 failed, imply<strong>in</strong>g a species specificity difference <strong>in</strong> ssRNA recognition.<br />

• ssPolyU & ssRNA40: ssPolyU is a s<strong>in</strong>gle-stranded poly-urid<strong>in</strong>e (polyU) oligonucleotide while ssRNA40 is a 20-mer phosphorothioate protected s<strong>in</strong>glestranded<br />

RNA oligonucleotide conta<strong>in</strong><strong>in</strong>g a GU-rich sequence. Both s<strong>in</strong>gle-stranded RNAs are complexed with the cationic lipid LyoVec , to protect them<br />

from degradation and facilitate their uptake. They are provided as lyophilized powder.<br />

• ssRNA41 is a 20-mer phosphorothioate protected s<strong>in</strong>gle-stranded RNA oligonucleotide. It derives from ssRNA40 by replacement of all U nucleotides with<br />

adenos<strong>in</strong>e 2 . ssRNA41 is complexed with the cationic lipid LyoVec , to protect it from degradation and facilitate its uptake, and lyophilized to generate<br />

ssRNA41/LyoVec. Unlike ssRNA40, ssRNA41 is unable to <strong>in</strong>duce the production of type IFNs, and therefore can be used as a negative control for ssRNA40 16, 17 .<br />

• ssRNA-DR is a short s<strong>in</strong>gle stranded RNA (


INNATE IMMUNITY 3<br />

1. Gorden KB. et al., 2005. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. 174(3):1259-68. 2. Salio M. et al., 2007. Modulation of human<br />

natural killer T cell ligands on TLR-mediated antigen-present<strong>in</strong>g cell activation. PNAS 104: 20490 - 20495. 3. Butchi NJ. et al., 2008., Analysis of the Neuro<strong>in</strong>flammatory Response to TLR7<br />

Stimulation <strong>in</strong> the Bra<strong>in</strong>: Comparison of Multiple TLR7 and/or TLR8 Agonists. J Immunol 180: 7604-7612. 4. Lee J. et al., 2006. Activation of anti-hepatitis C virus responses via Toll-like receptor<br />

7. Proc Natl Acad Sci U S A. 103(6):1828-33. 5 Koski GK. et al., 2004. Cutt<strong>in</strong>g edge: <strong>in</strong>nate immune system discrim<strong>in</strong>ates between RNA conta<strong>in</strong><strong>in</strong>g bacterial versus eukaryotic structural features<br />

that prime for high-level IL-12 secretion by dendritic cells.J Immunol. 172(7):3989-93. 6. Kariko K. et al., 2005. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside<br />

modification and the evolutionary orig<strong>in</strong> of RNA. Immunity. 23(2):165-75. 7. Morris GE., et al., 2006. Cooperative molecular and cellular networks regulate Toll-like receptor-dependent<br />

<strong>in</strong>flammatory responses. FASEB J. 20: 2153 - 2155. 8. Lee J et al., 2003. Molecular basis for the immunostimulatory activity of guan<strong>in</strong>e nucleoside analogs: Activation of Toll-like receptor 7.<br />

Proc Natl Acad Sci U S A. 100(11):6646-6651. 9. Hemmi H. et al. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signal<strong>in</strong>g pathway. Nat Immunol,<br />

3(2):196-200. 10. Pope BL. et al., 1995. The immunostimulatory compound 7-Allyl-8-oxoguanos<strong>in</strong>e (Loxorib<strong>in</strong>e) <strong>in</strong>duces a dist<strong>in</strong>ct subset of mur<strong>in</strong>e cytok<strong>in</strong>es. Cell Immunol, 162:333-339.<br />

11. Heil F. et al., 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxorib<strong>in</strong>e uncovers a strong relationship with<strong>in</strong> the TLR7, 8 and 9 subfamily. Eur J Immunol. 33(11):2987-97. 12. Jurk<br />

M. et al. 2002. Human TLR7 or TLR8 <strong>in</strong>dependently confer responsiveness to the antiviral compound R848. Nat Immunol, 3(6):499. 13. Gorden KKB. et al., 2006. Oligodeoxynucleotides<br />

Differentially Modulate Activation of TLR7 and TLR8 by Imidazoqu<strong>in</strong>ol<strong>in</strong>es. J. Immunol. 177: 8164 - 8170. 14. Gorden KKB. et al., 2006. Cutt<strong>in</strong>g Edge: Activation of Mur<strong>in</strong>e TLR8 by a Comb<strong>in</strong>ation<br />

of Imidazoqu<strong>in</strong>ol<strong>in</strong>e Immune Response Modifiers and PolyT OligodeoxynucleotidesJ. Immunol., 177: 6584 - 6587. 15. Diebold SS. et al., 2004. Innate antiviral responses by means of TLR7mediated<br />

recognition of s<strong>in</strong>gle-stranded RNA. Science. 5;303(5663):1529-31 16. Heil F. et al., 2004. Species-specific recognition of s<strong>in</strong>gle-stranded RNA via toll-like receptor 7 and 8. Science.<br />

5;303(5663):1526-9. 17. Alter G. et al., 2007. S<strong>in</strong>gle-Stranded RNA Derived from HIV-1 Serves as a Potent Activator of NK Cells. J Immunol. 178:7658-7666. 18. Hornung V. et al., 2005. Sequencespecific<br />

potent <strong>in</strong>duction of IFN-alpha by short <strong>in</strong>terfer<strong>in</strong>g RNA <strong>in</strong> plasmacytoid dendritic cells through TLR7.Nat Med. 11(3):263-70. 19. Forsbach A. et al., 2008. Identification of RNA Sequence<br />

Motifs Stimulat<strong>in</strong>g Sequence-Specific TLR8-Dependent Immune Responses. J. Immunol., 180: 3729-38.<br />

TLR9 Agonists<br />

E. coli DNA ef (endotox<strong>in</strong>-free)<br />

Bacterial DNA conta<strong>in</strong>s 20-fold more unmethylated CpG motifs than mammalian DNA and thus activates TLR9 1 . E. coli DNA ef is an ultrapure, endotox<strong>in</strong>free<br />

(ef) preparation of bacterial double-stranded DNA devoid of TLR2 and TLR4 activities.<br />

E. coli ssDNA<br />

E. coli ssDNA is an ultrapure, endotox<strong>in</strong>-free preparation of bacterial s<strong>in</strong>gle-stranded DNA (ssDNA). It is a better TLR9 ligand than E. coli DNA ef (dsDNA<br />

endotox<strong>in</strong>-free) as TLR9 b<strong>in</strong>ds directly and sequence-specifically to s<strong>in</strong>gle-stranded unmethylated CpG-DNA 2 . E. coli ssDNA is complexed with the cationic<br />

lipid LyoVec to allow a better <strong>in</strong>ternalization of the immunostimulatory DNA to the acidic compartment where TLR9 is expressed.<br />

Stimulatory CpG ODNs & Control CpG ODNs<br />

Toll-Like Receptor 9 (TLR9) detects unmethylated CpG d<strong>in</strong>ucleotides <strong>in</strong> bacterial or viral DNA <strong>in</strong>duc<strong>in</strong>g strong immunostimulatory effects. TLR9 activation<br />

can be mimicked by synthetic phosphorothioate-stabilized oligodeoxynucleotides (ODN) conta<strong>in</strong><strong>in</strong>g immune stimulatory “CpG motifs”. Three types of<br />

stimulatory CpG ODNs have been identified, types A (or D), B (or K) and C, which differ <strong>in</strong> their immune-stimulatory activities:<br />

- Type A CpG ODNs are characterized by a phosphodiester central CpG-conta<strong>in</strong><strong>in</strong>g pal<strong>in</strong>dromic motif and a phosphorothioate 3’ poly-G str<strong>in</strong>g. They <strong>in</strong>duce<br />

high IFN-a production from plasmacytoid dendritic cells (pDC) but are weak stimulators of TLR9-dependent NF-kB signal<strong>in</strong>g.<br />

- Type B CpG ODNs conta<strong>in</strong> a full phosphorothioate backbone with one or more CpG d<strong>in</strong>ucleotides. They strongly activate B cells but weakly stimulate<br />

IFN-a secretion.<br />

- Type C CpG ODNs comb<strong>in</strong>e features of both types A and B. They conta<strong>in</strong> a complete phosphorothioate backbone and a CpG-conta<strong>in</strong><strong>in</strong>g pal<strong>in</strong>dromic<br />

motif. Type C CpG ODNs <strong>in</strong>duce strong IFN-a production from pDC and B cell stimulation.<br />

These stimulatory CpG ODNs <strong>in</strong>duce differentially the stimulation of human and mur<strong>in</strong>e immune cells <strong>in</strong> vitro. This species-specificity is also observed with<br />

nonresponsive cells such as HEK293 cells transfected with human or mouse TLR9. InvivoGen offers a comprehensive collection of stimulatory CpG ODNs<br />

and control CpG ODNs that provide useful tools for study<strong>in</strong>g TLR9-mediated activation. InvivoGen’s CpG ODNs are endotox<strong>in</strong>-free and tested for activity<br />

<strong>in</strong> various cell l<strong>in</strong>es express<strong>in</strong>g human or mouse TLR9.<br />

Control CpG ODNs that do not stimulate TLR9 have been designed for each stimulatory CpG ODN. They feature the same sequence as their stimulatory<br />

counterparts but conta<strong>in</strong> GpC d<strong>in</strong>ucleotides <strong>in</strong> place of CpG d<strong>in</strong>ucleotides.<br />

ODN 1585 3 (Type A, mouse specific) 5’-ggGGTCAACGTTGAgggggg-3’ ODN 1585 control 5’-ggGGTCAAGCTTGAgggggg-3’<br />

ODN 1668 4 (Type B, mouse specific) 5’-tccatgacgttcctgatgct-3’ ODN 1668 control 5’-tccatgagcttcctgatgct-3’<br />

ODN 1826 5 (Type B, mouse specific) 5’-tccatgacgttcctgacgtt-3’ ODN 1826 control 5’-tccatgagcttcctgagctt-3’<br />

ODN 2006 6, 10 (Type B, human specific) 5’-tcgtcgttttgtcgttttgtcgtt-3’ ODN 2006 control 5’-tgctgcttttgtgcttttgtgctt-3’<br />

ODN 2007 7, 8 (Type B, bov<strong>in</strong>e/porc<strong>in</strong>e) 5’-tcgtcgttgtcgttttgtcgtt-3’ ODN 2007 control 5’-tgctgcttgtgcttttgtgctt-3’<br />

ODN 2216 9 (Type A, human specific) 5’-ggGGGACGA:TCGTCgggggg-3’ ODN 2216 control 5’-ggGGGAGCA:TGCTGgggggc-3’<br />

ODN 2336 10 (Type A, human specific) 5’-gggGACGAC:GTCGTGgggggg-3’ ODN 2336 control 5’-gggGAGCAG:CTGCTGgggggg-3’<br />

ODN 2395 6, 10 (Type C, human/mouse) 5’-tcgtcgttttcggcgc:gcgccg-3’ ODN 2395 control 5'-tgctgcttttggggggcccccc-3'<br />

ODN D19 11, 12 (Type A, human/porc<strong>in</strong>e) 5’-ggTGCATC:GATGCAGggggg-3’ ODN D19 control 5’-ggTGCATG:CATGCAGggggg-3’<br />

ODN M362 13 (Type C, human/mouse) 5’-tcgtcgtcgttc:gaacgacgttgat-3’ ODN M362 control 5’-tgctgctgcttg:caagcagcttgat-3’<br />

Bases <strong>in</strong> capital letters are phosphodiester, bases <strong>in</strong> lower case are phosphorothioate. Pal<strong>in</strong>drome is underl<strong>in</strong>ed.<br />

pCpG Giant - TLR9 Control<br />

pCpG giant is a high molecular weight plasmid entirely devoid of CpG d<strong>in</strong>ucleotides. This DNA also features no detectable amounts of endotox<strong>in</strong>, as determ<strong>in</strong>ed<br />

us<strong>in</strong>g a k<strong>in</strong>etic chromogenic LAL assay and the HEK -Blue -4 cell l<strong>in</strong>e-based assay (LPS Detection Kit, see page 90) and no detectable TLR2 activity. In addition,<br />

this plasmid DNA displays no Dcm methylation and a reduced level of Dam methylation. pCpG Giant can be used as a control <strong>in</strong> studies on CpG methylations.<br />

Salmon Sperm DNA - TLR9 Control<br />

Salmon sperm DNA does not activate any TLR and can be used as a negative control for TLR <strong>in</strong>duction experiments <strong>in</strong> particular <strong>in</strong> TLR9 studies. Salmon<br />

sperm DNA has been tested for endotox<strong>in</strong> and has been found to be EndoFit (


1. Zhao H. et al., 2004. Contribution of toll-like receptor 9 signal<strong>in</strong>g to the acute <strong>in</strong>flammatory response to nonviral vectors. Mol. Ther. 9(2)241-248. 2. Rutz M. et al., 2004. Toll-like receptor<br />

9 b<strong>in</strong>ds s<strong>in</strong>gle-stranded CpG-DNA <strong>in</strong> a sequence- and pH-dependent manner. Eur. J. Immunol. 34:1-10. 3. Ballas ZK. et al., 2001. Divergent therapeutic and immunologic effects of<br />

oligodeoxynucleotides with dist<strong>in</strong>ct CpG motifs. J Immunol. 167(9):4878-86. 4. Heit A. et al., 2004. CpG-DNA aided cross-prim<strong>in</strong>g by cross-present<strong>in</strong>g B cells. J Immunol. 172(3):1501-7.<br />

5. Li J. et al., 2007. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either <strong>in</strong> the host or <strong>in</strong> the tumor itself. J Immunol. 179: 2493-2500. 6. Moseman EA. et al.,<br />

2004. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides <strong>in</strong>duce the generation of CD4+CD25+ regulatory T cells. J Immunol. 173(7):4433-42. 7. Mena A. et al.,<br />

2003. Bov<strong>in</strong>e and ov<strong>in</strong>e blood mononuclear leukocytes differ markedly <strong>in</strong> <strong>in</strong>nate immune responses <strong>in</strong>duced by Class A and Class B CpG-oligodeoxynucleotide. Oligonucleotides.<br />

2003;13(4):245-59. 8. Kr<strong>in</strong>gel H. et al., 2004. CpG-oligodeoxynucleotides enhance porc<strong>in</strong>e immunity to Toxoplasma gondii. Vet Parasitol. 123(1-2):55-66. 9. Tomescu C. et al., 2007. NK cell<br />

lysis of HIV-1-<strong>in</strong>fected autologous CD4 primary T cells: requirement for IFN-mediated NK activation by plasmacytoid dendritic cells. J Immunol. 179(4):2097-104. 10. Roda JM. et al., 2005.<br />

CpG-conta<strong>in</strong><strong>in</strong>g oligodeoxynucleotides act through TLR9 to enhance the NK cell cytok<strong>in</strong>e response to antibody-coated tumor cells. J Immunol. 175(3):1619-27. 11. Verthelyi D. et al., 2001.<br />

Human peripheral blood cells differentially recognize and respond to two dist<strong>in</strong>ct CPG motifs. J Immunol. 166(4):2372-7. 12. Guzylack-Piriou L. et al., 2004. Type-A CpG oligonucleotides<br />

activate exclusively porc<strong>in</strong>e natural <strong>in</strong>terferon-produc<strong>in</strong>g cells to secrete <strong>in</strong>terferon-alpha, tumour necrosis factor-alpha and <strong>in</strong>terleuk<strong>in</strong>-12. Immunology. 112(1):28-37. 13. Marshall JD. et al.,<br />

2005. Superior activity of the type C class of ISS <strong>in</strong> vitro and <strong>in</strong> vivo across multiple species. DNA Cell Biol. 24(2):63-72.<br />

TLR9 Antagonists<br />

Inhibitory ODNs<br />

• ODN 2088, ODN TTAGGG and G-ODN<br />

Recent studies suggest the existence of DNA sequences that can neutralize the stimulatory effect of CpG ODNs. The most potent <strong>in</strong>hibitory sequences<br />

are (TTAGGG)4 found <strong>in</strong> mammalian telomeres 1 and ODN 2088 which derives from a mur<strong>in</strong>e stimulatory CpG ODN by replacement of 3 bases 2 . Recently,<br />

another <strong>in</strong>hibitory guanos<strong>in</strong>e-rich ODN, named G-ODN, was described 3 . G-ODN was suppressive <strong>in</strong> mur<strong>in</strong>e DC and macrophages as well as <strong>in</strong> human<br />

plasmacytoid DC. Inhibitory ODNs seem to act by disrupt<strong>in</strong>g the colocalization of CpG ODNs with TLR9 <strong>in</strong> endosomal vesicles without affect<strong>in</strong>g cellular<br />

b<strong>in</strong>d<strong>in</strong>g and uptake. Inhibitory ODNs are often utilized to demonstrate a TLR9 dependence <strong>in</strong> mur<strong>in</strong>e systems.<br />

ODN 2088 1 (Mouse preferred) 5’-tcctggcggggaagt-3’ ODN 2088 control 5’-tcctgagcttgaagt-3’<br />

ODN TTAGGG 2 (Human preferred) 5’-tttagggttagggttagggttaggg-3’ ODN TTAGGG control 5’-gctagatgttagcgt-3’<br />

G-ODN 5’-ctcctattgggggtttcctat-3’<br />

Bases are phosphorothioate.<br />

• ODN 4084-F and ODN INH-1<br />

ODN 4084-F and ODN INH-1 belong to a new class of <strong>in</strong>hibitory ODNs 4 . They conta<strong>in</strong> an <strong>in</strong>hibitory DNA motif consist<strong>in</strong>g of two nucleotide triplets, a<br />

proximal CCT and a more distal GGG, spaced from each other by four nucleotides. ODN 4084-F is the shortest active <strong>in</strong>hibitory ODN. ODN INH-1<br />

derives from ODN 4084-F by addition of a complementary strand of nucleotides form<strong>in</strong>g a complete pal<strong>in</strong>drome. ODN INH-47 is a pal<strong>in</strong>dromic variant<br />

of ODN INH-1 <strong>in</strong> which the CCT and GGG have been replaced by random nucleotide triplets. ODN 4084-F is l<strong>in</strong>ear and a class B (‘broadly-active)<br />

<strong>in</strong>hibitory ODN, while ODN INH-1 is pal<strong>in</strong>dromic and a class R (‘restricted’) <strong>in</strong>hibitory ODN. ODN 4084-F and ODN INH-1 are potent <strong>in</strong>hibitors of<br />

TLR9-<strong>in</strong>duced B cells and macrophages, whereas ODN INH-47 has no effect 5 .<br />

ODN 4084-F NEW 5’-cctggatgggaa-3’’<br />

ODN INH-1 NEW 5’-cctggatgggaa:ttcccatccagg-3’<br />

ODN INH-47 (control) NEW 5’-tatggattttaa:ttaaaatccata-3’<br />

Bases are phosphorothioate.<br />

1. Stunz LL. et al., 2002. Inhibitory oligonucleotides specifically block effects of stimulatory CpG oligonucleotides <strong>in</strong> B cells. Eur J Immunol. 32(5):1212-22. 2. Gursel L. et al., 2003. Repetitive<br />

elements <strong>in</strong> mammalian telomeres suppress bacterial DNA-<strong>in</strong>duced immune activation. J Immunol. 171(3):1393-400. 3. Peter M. et al., 2008. Characterization of suppressive<br />

oligodeoxynucleotides that <strong>in</strong>hibit Toll-like receptor-9-mediated activation of <strong>in</strong>nate immunity. Immunology. 123(1):118-28. 4. Lenert P, et al., 2003. Structural characterization of the <strong>in</strong>hibitory<br />

DNA motif for the type A (D)-CpG-<strong>in</strong>duced cytok<strong>in</strong>e secretion and NK-cell lytic activity <strong>in</strong> mouse spleen cells. DNA Cell Biol. 22(10):621-31 .5. Lenert P, et al., 2009. DNA-like class R<br />

<strong>in</strong>hibitory oligonucleotides (INH-ODNs) preferentially block autoantigen-<strong>in</strong>duced B-cell and dendritic cell activation <strong>in</strong> vitro and autoantibody production <strong>in</strong> lupus-prone MRL-Fas(lpr/lpr)<br />

mice <strong>in</strong> vivo. Arthritis Res Ther. 11(3):R79.<br />

NOD1/2 Agonists<br />

iE-DAP & iE-Lys - NOD1 Agonists<br />

• iE-DAP (D-g-Glu-mDAP) is a dipeptide present <strong>in</strong> the PGN of a subset of bacteria that <strong>in</strong>clude Gram-negative bacilli and particular Gram-positive bacteria<br />

such as Bacillus subtilis and Listeria monocytogenes 1 . iE-DAP is the m<strong>in</strong>imal motif recognized by NOD1.<br />

• iE-Lys is a peptide found <strong>in</strong> the PGN of Gram-positive bacteria. It is not recognized by NOD1 and thus can be used as negative control for iE-DAP.<br />

C12-iE-DAP - NOD1 Agonist<br />

C12-iE-DAP is an acylated derivative of iE-DAP. It was generated by addition of a lauroyl (C12) group to the glutamic residue of iE-DAP. C12-iE-DAP<br />

stimulates specifically NOD1 at concentrations 100- to 1000-fold lower than the orig<strong>in</strong>al iE-DAP.<br />

MDP, MDP control, L18-MDP & N-glycolyl-MDP - NOD2 Agonists<br />

• MDP (MurNAc-L-Ala-D-isoGln, also known as muramyl dipeptide), is the m<strong>in</strong>imal bioactive peptidoglycan motif common to all bacteria and the essential<br />

structure required for adjuvant activity <strong>in</strong> vacc<strong>in</strong>es. MDP has been shown to be recognized by NOD2, but not TLR2, nor TLR2/1 or TLR2/6 associations 2, 3 .<br />

This recognition is highly stereospecific of the L-D isomer, exclud<strong>in</strong>g any reaction to the D-D or L-L analogs 3, 4 . NOD2 mutants associated with susceptibility<br />

to Crohn‘s disease have been found to be deficient <strong>in</strong> their recognition of MDP 2, 3 . The potent adjuvant activity of MDP may also be l<strong>in</strong>ked to an activation<br />

of the CIAS1/NALP3/Cryopyr<strong>in</strong> <strong>in</strong>flammasome 5 .<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

87<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

• MDP control (MurNAc-D-Ala-D-isoGln), the D-D isomer of muramyl dipeptide, is unable to <strong>in</strong>duce NOD2 signal<strong>in</strong>g.<br />

• L18-MDP, a synthetic derivative of MDP, has been shown to display a higher adjuvant activity than MDP 6 .<br />

• N-glycolyl-MDP - The cell wall of mycobacteria is known to be extremely immunogenic. This potent activity is attributed to their MDP which is Nglycolylated<br />

<strong>in</strong> contrast to the MDP of most bacteria which is N-acetylated. N-glycolyl-MDP has been reported to display a stronger NOD2-mediated<br />

activity than N-acetyl-MDP and thus to be a more potent vacc<strong>in</strong>e adjuvant than N-acetyl-MDP 7 .<br />

Murabutide & Murabutide control - NOD2 Ligands<br />

Murabutide (MurNAc-L-Ala-D-GlnOBu) is a safe synthetic immunomodulator derived from muramyl dipeptide (MDP). In contrast to MDP, murabutide is<br />

devoid of pyrogenic activity 8 and lacks somnogenic activity 9 . Murabutide is recognized by the <strong>in</strong>tracellular receptor NOD2 <strong>in</strong>duc<strong>in</strong>g the activation of NF-kB.<br />

Murabutide control conta<strong>in</strong>s D-alan<strong>in</strong>e <strong>in</strong>stead of L-alan<strong>in</strong>e and is <strong>in</strong>active on NOD2.<br />

M-Tri DAP - NOD1/ NOD2 Agonist<br />

MurNAc-L-Ala-D-g-Glu-mDAP (M-TriDAP), also called DAP-conta<strong>in</strong><strong>in</strong>g muramyl tripeptide is a peptidoglycan (PGN) degradation product found mostly <strong>in</strong><br />

Gram-negative bacteria. M-TriDAP is recognized by NOD1 and to a lesser extent NOD2. M-TriDAP <strong>in</strong>duces the activation of NF-kB at similar levels to Tri-<br />

DAP 10 .<br />

PGN-Ecndi & PGN-SAndi <strong>in</strong>soluble, ultrapure (E. coli and S. aureus) - NOD1/2 Agonists<br />

PGN-ECndi from E. coli K12 and PGN-SAndi from S. aureus are <strong>in</strong>soluble preparations of PGNs purified by detergent lysis and hydrolysis under basic<br />

conditions to elim<strong>in</strong>ate lipophilic constituents. These PGN preparations have lost their ability to activate TLR2-transfected HEK293 cells but still activate<br />

NOD2-transfected cells. PGN-ECndi activates also NOD1-transfected cells.<br />

PGN-Ecndss soluble, sonicated, ultrapure (E. coli) - NOD1/2 Agonists<br />

PGN-ECndss from E. coli K12 is obta<strong>in</strong>ed after sonication of <strong>in</strong>soluble PGNs. At the work<strong>in</strong>g concentrations, it activates HEK293 cells transfected with either<br />

NOD1 or NOD2 but not cells transfected with TLR2 or TLR4.<br />

Tri-DAP & Tri-Lys - NOD1 Agonists<br />

Tri-DAP (L-Ala-g-D-Glu-mDAP) comprises the iE-DAP dipeptide and an L-Ala residue. Similarly to iE-DAP, this tripeptide is specifically recognized by Nod1<br />

but exhibits a ~3-fold higher ability to activate NF-kB than iE-DAP 10 .<br />

Tri-Lys is a peptide found <strong>in</strong> the PGN of Gram-positive bacteria. It is not recognized by NOD1 and thus can be used as negative control for Tri-DAP.<br />

1. Chamaillard M. et al., 2003. An essential role for NOD1 <strong>in</strong> host recognition of bacterial peptidoglycan conta<strong>in</strong><strong>in</strong>g diam<strong>in</strong>opimelic acid. Nat. Immunol.4(7):702-7. 2. Girard<strong>in</strong> SE. et al., 2003.<br />

Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 278(11):8869-72. 3. Inohara N. et al., 2003. Host recognition of bacterial muramyl<br />

dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem. 278(8):5509-12. 4. Traub S. et al., 2004. Structural requirements of synthetic muropeptides to synergize<br />

with lipopolysaccharide <strong>in</strong> cytok<strong>in</strong>e <strong>in</strong>duction. J Biol Chem. 279(10):8694-700. 5. Mart<strong>in</strong>on F. et al., 2004. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyr<strong>in</strong><br />

<strong>in</strong>flammasome. Curr Biol. 14(21):1929-34. 6. Ishihara C. et al. 1985. Effect of muramyl dipeptide and its stearoyl derivatives on resistance to Sendai virus <strong>in</strong>fection <strong>in</strong> mice. Vacc<strong>in</strong>e. 3(5):370-4.<br />

7. Coulombe F,. et al., 2009. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med. 206(8):1709-16. 8. Chedid LA. et al., 1982. Biological activity of a new<br />

synthetic muramyl peptide adjuvant devoid of pyrogenicity. Infect Immun. 35(2):417-24. 9. Krueger JM. et al., 1984. Muramyl peptides. Variation of somnogenic activity with structure. J Exp<br />

Med. 159(1):68-76. 10. Girard<strong>in</strong> SE. et al., 2003. Peptidoglycan molecular requirements allow<strong>in</strong>g detection by Nod1 and Nod2. J Biol Chem. 278(43):41702-8.<br />

RIG-I/MDA5 and CDS Agonists<br />

5’ppp-dsRNA - RIG-I Agonist NEW<br />

5’ppp-dsRNA is a short (19 mer) blunt-end double-stranded RNA with a 5’ triphosphate. Transfected 5’ppp-dsRNA is a ligand for RIG-I 1 . This dsRNA sensor<br />

is specifically activated by the uncapped 5’ triphosphate moiety on viral RNA. This triphosphate occurs dur<strong>in</strong>g viral replication and is absent from most<br />

cytosolic self-RNA. A synthetic approach to the exact structure requirement to RIG-I recognition demonstrated that a short blunt double-stranded<br />

conformation conta<strong>in</strong><strong>in</strong>g a triphosphate at the 5’ end is required 2 . 5’ppp-dsRNA Control is a 19 mer blunt-end dsRNA without a 5’triphosphate.<br />

5’ppp-dsRNA 5’- pppGCAUGCGACCUCUGUUUGA -3’ 5’ppp-dsRNA Control 5’- pppGCAUGCGACCUCUGUUUGA -3’<br />

3’- CGUACGCUGGAGACAAACU -5’ 3’- CGUACGCUGGAGACAAACU -5’<br />

Poly(dA:dT) - CDS Agonist NEW<br />

Poly(dA:dT) is a repetitive synthetic double-stranded DNA sequence of poly(dA-dT)•poly(dT-dA) and a synthetic analog of B-DNA. Poly(dA:dT) is<br />

recognized by several sensors, <strong>in</strong>clud<strong>in</strong>g DAI, LRRFIP1 and AIM2 3-5 . It has also been shown to be transcribed by RNA polymerase III <strong>in</strong>to dsRNA with a 5’triphosphate<br />

moiety which is a ligand for RIG-I 6 . Poly(dA:dT) is available naked or complexed with the cationic lipid LyoVec to facilitate their uptake.<br />

Poly(dG:dC) - CDS Agonist NEW<br />

Poly(dG:dC) is a repetitive synthetic double-stranded DNA sequence of poly(dG-dC)•poly(dC-dG). Poly(dG:dC) is a synthetic analog of the Z-DNA form.<br />

It has been reported to be recognized by LRRFIP1 4 . Poly(dG:dC) is available naked or complexed with the cationic lipid LyoVec to facilitate their uptake.<br />

Poly(I:C)/LyoVec & Poly(I:C)-LMW/LyoVec Complexes<br />

Unlike naked poly(I:C) which is recognized by TLR3, transfected poly(I:C) is sensed by RIG-I/MDA-5 <strong>in</strong> a cell-type-specific manner 7, 8 . Poly(I:C)/LyoVec and<br />

poly(I:C)-LMW/LyoVec are preformed complexes between poly(I:C) or poly(I:C)-LMW and the transfection reagent LyoVec . These complexes <strong>in</strong>duce the<br />

activation of the RIG-I/MDA-5 signal<strong>in</strong>g pathway at concentrations rang<strong>in</strong>g from 100 ng to 1 μg/ml <strong>in</strong> C57/WT mur<strong>in</strong>e embryonic fibroblasts (MEFs),<br />

InvivoGen’s RLR reporter cell l<strong>in</strong>e.<br />

88<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps


1. Hornung V. et al., 2006. 5'-Triphosphate RNA is the ligand for RIG-I. Science. 314(5801):994-7. 2. Schlee m. et al., 2009. Recognition of 5' triphosphate by RIG-I helicase requires short blunt<br />

double-stranded RNA as conta<strong>in</strong>ed <strong>in</strong> panhandle of negative-strand virus. Immunity. 17;31(1):25-34. 3. Takaoka A. et al., 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator<br />

of <strong>in</strong>nate immune response. Nature. 448(7152):501-5. 4. Yang P. et al., 2010. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I <strong>in</strong>terferon via a beta-caten<strong>in</strong>dependent<br />

pathway. Nat Immunol. 11(6):487-94. 5. Jones JW. et al., 2010. Absent <strong>in</strong> melanoma 2 is required for <strong>in</strong>nate immune recognition of Francisella tularensis. PNAS, 107(21):9771-6.<br />

6. Ablasser A. et al., 2009. RIG-I-dependent sens<strong>in</strong>g of poly(dA:dT) through the <strong>in</strong>duction of an RNA polymerase III-transcribed RNA <strong>in</strong>termediate. Nat Immunol. 10(10):1065-72. 7. Gitl<strong>in</strong><br />

L. et al., 2006. Essential role of mda-5 <strong>in</strong> type I IFN responses to polyribo<strong>in</strong>os<strong>in</strong>ic:polyribocytidylic acid and encephelamyocarditis picornavirus. PNAS 103(22):8459-8464. 8. Kato H. et al.,<br />

2005. Cell type-specific <strong>in</strong>volvement of RIG-I <strong>in</strong> antiviral response. Immunity. 23(1):19-28.<br />

Dect<strong>in</strong>-1 Agonists<br />

Curdlan NEW<br />

Curdlan is a high molecular weight l<strong>in</strong>ear polymer consist<strong>in</strong>g of ß-(1 -> 3)-l<strong>in</strong>ked glucose residues. Curdlan is produced as a water-<strong>in</strong>soluble polysaccharide<br />

by the soil bacterium, Alcaligenes faecalis. Curdlan is recognized by the membrane bound Dect<strong>in</strong>-1 receptor lead<strong>in</strong>g to the CARD9-dependent activation of<br />

NF-kB and MAP k<strong>in</strong>ases 1 . Furthermore, Dect<strong>in</strong>-1 signal<strong>in</strong>g activates the NFAT transcription factor. Recent data suggest that Curdlan is also recognized by<br />

the cytosolic NLRP3 <strong>in</strong>flammasome complex which cooperates with Dect<strong>in</strong>-1 result<strong>in</strong>g <strong>in</strong> <strong>in</strong> robust activation of IL-1b–mediated <strong>in</strong>flammatory response 2 .<br />

HKCA (Candida albicans)<br />

HKCA is a heat-killed preparation of Candida albicans. C. albicans is an opportunistic yeast that causes serious <strong>in</strong>fections <strong>in</strong> immunocompromised patients.<br />

Beta-glucans represent 40% of the cell wall of C. albicans. Heat kill<strong>in</strong>g of this yeast result <strong>in</strong> the exposure of the beta-glucans on the surface of the cell wall<br />

and their subsequent recognition by the beta-glucan receptor, dect<strong>in</strong>-1 3 . HKCA derives from the stra<strong>in</strong> ATCC 10231.<br />

HKSC (Saccharomyces cerevisiae)<br />

HKSC is a heat-killed preparation of the yeast Saccharomyces cerevisiae. The cell wall of S. cerevisiae consists ma<strong>in</strong>ly of equal amounts of a-mannans and<br />

b-glucans 4 . Early studies have suggested that the phagocytosis of unopsonized HKSC is mediated by both mannose and b-glucans receptors. However, recent<br />

data show that the b-glucan receptor, dect<strong>in</strong>-1, is the predom<strong>in</strong>ant receptor <strong>in</strong>volved <strong>in</strong> this process 5 .<br />

Zymosan - TLR2 & Dect<strong>in</strong>-1 Agonist<br />

Zymosan, an <strong>in</strong>soluble preparation of yeast cell, activates macrophages via TLR2. TLR2 cooperates with TLR6 and CD14 <strong>in</strong> response to zymosan 6 . Zymosan<br />

is also recognized by Dect<strong>in</strong>-1, a phagocytic receptor expressed on macrophages and dendritic cells, which collaborates with TLR2 and TLR6 enhanc<strong>in</strong>g the<br />

immune responses triggered by the recognition of Zymosan by each receptor 7 .<br />

Zymosan Depleted<br />

Zymosan depleted is a S. cerevisiae cell wall preparation treated with hot alkali to remove all its TLR-stimulat<strong>in</strong>g properties 8 . Zymosan depleted activates<br />

Dect<strong>in</strong>-1 but not TLR2.<br />

1. Goodridge HS, et al., 2009. Beta-glucan recognition by the <strong>in</strong>nate immune system. Immunol Rev. 230(1):38-50. 2. Kankkunen P., 2010. (1,3)-beta-glucans activate both dect<strong>in</strong>-1 and NLRP3<br />

<strong>in</strong>flammasome <strong>in</strong> human macrophages. J Immunol. 184(11):6335-42. 3. Gow NA. et al., 2007. Immune recognition of Candida albicans beta-glucan by dect<strong>in</strong>-1.J Infect Dis. 196(10):1565-71.<br />

4. Giaimis J. et al., 1993. Both mannose and b-glucan receptors are <strong>in</strong>volved <strong>in</strong> phagocytosis of unopsonized, heat-killed Saccharomyces cerevisiae by mur<strong>in</strong>e macrophages. J. Leukoc. Biol., 54:<br />

564-571. 5. Brown GD. et al., 2002. Dect<strong>in</strong>-1 Is A Major ß-Glucan Receptor On Macrophages. J. Exp. Med., 196: 407-412. 6. Oz<strong>in</strong>sky A. et al., 2000. The repertoire for pattern recognition<br />

of pathogens by the <strong>in</strong>nate immune system is def<strong>in</strong>ed by cooperation between toll-like receptors. PNAS. 97(25):13766-71. 7. Gantner BN. et al., 2003. Collaborative <strong>in</strong>duction of <strong>in</strong>flammatory<br />

responses by dect<strong>in</strong>-1 and Toll-like receptor 2. J Exp Med. 197(9):1107-17. 8. Gantner BN. et al., 2003. Collaborative <strong>in</strong>duction of <strong>in</strong>flammatory responses by dect<strong>in</strong>-1 and Toll-like receptor<br />

2. J Exp Med. 197(9):1107-17.<br />

NF-kB Activators<br />

PMA<br />

Phorbol 12-myristate 13-acetate (PMA), also known as 12-O-tetradecanoylphorbol 13-acetate (TPA) is a specific activator of Prote<strong>in</strong> K<strong>in</strong>ase C (PKC) and<br />

hence of NF-kB. PMA is the most commonly used phorbol ester. It is active at nM concentrations. PMA causes an extremely wide range of effects <strong>in</strong> cells<br />

and tissues, and is a very potent mouse sk<strong>in</strong> tumor promoter 1 .<br />

TNF-a<br />

Tumor necrosis factor-alpha (TNF-a) is a cytok<strong>in</strong>e that plays a role <strong>in</strong> a variety of biological processes <strong>in</strong>clud<strong>in</strong>g cell proliferation, differentiation and apoptosis 2 .<br />

It acts by activat<strong>in</strong>g transcription factors such as NF-kB and AP-1. InvivoGen provides a recomb<strong>in</strong>ant human TNF-a produced <strong>in</strong> CHO cells and purified by<br />

aff<strong>in</strong>ity chromatography.<br />

1. Chang MS. et al., 2005. Phorbol 12-myristate 13-acetate upregulates cyclooxygenase-2 expression <strong>in</strong> human pulmonary epithelial cells via Ras, Raf-1, ERK, and NF-kappaB, but not p38<br />

MAPK, pathways. Cell Signal. 17(3):299-310. 2. Leong KG & Karsan A. 2000. Signal<strong>in</strong>g pathways mediated by tumor necrosis factor alpha. Histol Histopathol. 15(4):1303-25. Review.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

89<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

90<br />

HEK-Blue LPS Detection Kit<br />

Lipopolysaccharide (LPS), also known as endotox<strong>in</strong>, the major cell wall component of Gram-negative bacteria, <strong>in</strong>duces the activation of NF-kB<br />

and the production of pro<strong>in</strong>flammatory cytok<strong>in</strong>es. In vivo, this response can cause fever, septic shock and eventually death of the animal. In vitro,<br />

it can <strong>in</strong>troduce a bias <strong>in</strong> experiments <strong>in</strong>volv<strong>in</strong>g cells sensitive to low levels of LPS such as monocytes. In addition, repeated passages of cell<br />

l<strong>in</strong>es <strong>in</strong> a medium conta<strong>in</strong><strong>in</strong>g LPS might render these cells unresponsive to further stimulation by LPS. This desensitization, termed LPS tolerance,<br />

does not only affect <strong>in</strong>flammatory responses but also other essential functions <strong>in</strong>clud<strong>in</strong>g antigen presentation by monocytes. Thus, monitor<strong>in</strong>g<br />

the presence of LPS <strong>in</strong> biological reagents is crucial. InvivoGen provides the HEK-Blue LPS Detection Kit, a simple, rapid and reliable system<br />

to detect the presence of endotox<strong>in</strong>s <strong>in</strong> your samples.<br />

➥ Detection range: 1.5 EU/ml <strong>in</strong> the sample<br />

Description<br />

The HEK-Blue LPS Detection Kit is based on the ability of TLR4 to<br />

recognize structurally different LPS from gram-negative bacteria and <strong>in</strong><br />

particular lipid A, their toxic moiety. Proprietary cells eng<strong>in</strong>eered to<br />

become extremely sensitive to LPS, called HEK-Blue -4 cells, are the ma<strong>in</strong><br />

feature of this endotox<strong>in</strong> detection kit. The presence of very low<br />

concentrations of LPS, start<strong>in</strong>g as low as 0.03 ng/ml, are detected by the<br />

HEK-Blue -4 cells lead<strong>in</strong>g to the activation of NF-kB. Us<strong>in</strong>g HEK-Blue <br />

Detection, a specific detection medium, NF-kB activation can be observed<br />

with the naked eye or quantified by read<strong>in</strong>g the OD at 650 nm.<br />

Key Features<br />

HEK-Blue -4 cells, the endotox<strong>in</strong> sensor cells, are eng<strong>in</strong>eered HEK293<br />

cells. These cells stably express TLR4, MD2, CD14 and multiple genes from<br />

the TLR4 pathway. They coexpress an optimized SEAP reporter gene,<br />

placed under the control of a promoter <strong>in</strong>ducible by the transcription<br />

factors NF-kB and AP-1.<br />

HEK-Blue Selection is a solution that comb<strong>in</strong>es several selective<br />

antibiotics. These antibiotics guarantee the persistent expression of the<br />

various transgenes <strong>in</strong>troduced <strong>in</strong> HEK-Blue -4 cells. Furthermore,<br />

Normoc<strong>in</strong> is <strong>in</strong>cluded <strong>in</strong> the kit to protect HEK-Blue -4 cells from any<br />

potential microbial contam<strong>in</strong>ation, whether caused by mycoplasmas,<br />

bacteria or fungi (see page 11).<br />

HEK-Blue Detection is a medium specifically designed for the detection<br />

of SEAP. It conta<strong>in</strong>s a color substrate that produces a purple/blue color<br />

follow<strong>in</strong>g its hydrolysis by SEAP (see page 15).<br />

Contents and Storage<br />

The HEK-Blue LPS Detection Kit is composed of the follow<strong>in</strong>g<br />

components:<br />

- 1 vial of HEK-Blue -4 cells (3-5x 10 6 cells)<br />

- 4 tubes of 250X HEK-Blue Selection (2 ml)<br />

- 4 tubes of 500X Normoc<strong>in</strong> (1 ml)<br />

- 2 pouches of HEK-Blue Detection (50 ml each)<br />

- 1 tube of E. coli K12 LPS, LPS-EK, (100 μg) as a positive control<br />

- 1 tube of endotox<strong>in</strong>-free water (1.5 ml) as a negative control<br />

Buy the HEK-Blue LPS Detection Kit once then reorder only the<br />

reagents to perform further assays.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

HEK-Blue LPS Detection Kit Procedure<br />

PRODUCT QTY CAT. CODE<br />

HEK-Blue LPS Detection Kit 1 kit rep-lps<br />

HEK-Blue Selection 5 x 2 ml hb-sel<br />

Normoc<strong>in</strong> 10 x 1 ml ant-nr-1<br />

HEK-Blue Detection 2 pouches hb-det1<br />

LPS-EK (control) 5 mg tlrl-eklps


TLR/NOD Ligand Screen<strong>in</strong>g<br />

InvivoGen has developed a high-throughput method to determ<strong>in</strong>e whether a compound is recognized by Toll-Like Receptors or NOD1/NOD2<br />

and acts either as an agonist or antagonist. This method is based on TLR- or NOD-<strong>in</strong>duced activation of various transcription factors <strong>in</strong>clud<strong>in</strong>g<br />

NF-kB, AP1 and IRF7 <strong>in</strong> HEK293 clones.<br />

Key Service Features<br />

Short turnaround time - Screen<strong>in</strong>g turnaround: ONLY 2 weeks<br />

Screen<strong>in</strong>g flexibility - Screen<strong>in</strong>g parameters can be selected and/or modified<br />

based on customer requirements. Level 1 and level 2 can be carried out on<br />

additional TLRs, <strong>in</strong>clud<strong>in</strong>g mouse TLRs. More compound concentrations can be<br />

tested.<br />

Cost effective - A set-up charge applies for the first compound. Subsequent<br />

compounds are heavily discounted.<br />

Description<br />

TLR Ligand Screen<strong>in</strong>g<br />

Two choices of services are offered, level 1 and level 2, that can be performed<br />

sequentially or <strong>in</strong>dividually.<br />

Level 1: S<strong>in</strong>gle dose test<strong>in</strong>g on a panel of human TLRs<br />

Test<strong>in</strong>g is carried out on seven TLRs.<br />

- TLR2: wide array of microbial molecules<br />

- TLR3: dsRNA<br />

- TLR4: Gram-negative lipopolysaccharide<br />

- TLR5: flagell<strong>in</strong><br />

- TLR7: s<strong>in</strong>gle-stranded RNA and small antiviral molecules<br />

- TLR8: s<strong>in</strong>gle-stranded RNA and small antiviral molecules<br />

- TLR9: specific unmethylated CpG oligonucleotide sequences<br />

Screen<strong>in</strong>g is performed at a s<strong>in</strong>gle concentration, typically a 1/10 dilution of the<br />

orig<strong>in</strong>al compound solution provided, or customer specified. Duplicate tests (plus<br />

controls, see list).<br />

Level 2: Dose response on one or two TLRs<br />

Three concentrations of the compound(s), typically 1/10, 1/100 and 1/1000<br />

dilutions of the orig<strong>in</strong>al compound solution, are tested on the TLR(s) recogniz<strong>in</strong>g<br />

the compound(s) as determ<strong>in</strong>ed <strong>in</strong> level 1 or specified by the customer. Triplicate<br />

tests (plus controls).<br />

TLR ligands are typically recognized by a s<strong>in</strong>gle TLR, potentially two (TLR7 and<br />

TLR8). Recognition by TLR4 usually reflects the presence of endotox<strong>in</strong>s <strong>in</strong> the<br />

sample.<br />

NOD Ligand Screen<strong>in</strong>g<br />

Two cytoplasmic prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> pathogen recognition, NOD1 and<br />

NOD2, can be added to this screen<strong>in</strong>g service. Their activation by a given<br />

compound is detected us<strong>in</strong>g the same method as the one described above.<br />

Compounds can be supplied as stock solutions or as solid materials for watersoluble<br />

compounds.<br />

A detailed report will be prepared and provided to the customer electronically<br />

and <strong>in</strong> hard copy. All procedures are performed accord<strong>in</strong>gly to strict guidel<strong>in</strong>es.<br />

Confidentiality is guaranteed.<br />

TLR Ligand Concentration<br />

TLR2<br />

TLR3<br />

TLR4<br />

TLR5<br />

TLR7<br />

TLR8<br />

TLR9<br />

NOD1<br />

NOD2<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>nate-immunity-pamps<br />

HKLM<br />

Poly(I:C)<br />

E. coli K12 LPS<br />

S. typhimurium flagell<strong>in</strong><br />

Imiquimod<br />

ssPolyU/LyoVec<br />

CpG ODN 2006<br />

Tri-DAP<br />

Muramyl dipeptide<br />

108 cells/ml<br />

1 μg/ml<br />

100 ng/ml<br />

100 ng/ml<br />

3 μg/ml<br />

10 μg/ml<br />

10 μg/ml<br />

1 μg/ml<br />

100 ng/ml<br />

PRODUCT CAT. CODE<br />

TLR / NOD Ligand Screen<strong>in</strong>g tlrl-test<br />

Contact us for more <strong>in</strong>formation.<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.com<br />

91<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

Ready-Made psiRNA - shRNAs target<strong>in</strong>g PRR & Related Genes<br />

RNA <strong>in</strong>terference us<strong>in</strong>g small <strong>in</strong>terfer<strong>in</strong>g RNA (siRNA) or short-hairp<strong>in</strong> RNA (shRNA) has become a common technique for gene silenc<strong>in</strong>g studies.<br />

InvivoGen provides an extensive list of plasmid-based shRNAs that target genes <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>nate immunity. These plasmid-based shRNAs, called<br />

ready-made psiRNA, are useful to study the role of these target genes <strong>in</strong> <strong>in</strong>nate immunity.<br />

Description<br />

Ready-made psiRNAs are psiRNA-h7SKGFPzeo-derived plasmids that express high amounts<br />

of shRNAs through the human 7SK RNA Pol III promoter. They feature a GFP::Zeo fusion<br />

gene which confers both reporter and antibiotic resistance activities allow<strong>in</strong>g simple<br />

monitor<strong>in</strong>g of transfection efficiency and selection <strong>in</strong> both E. coli and mammalian cells.<br />

Contents and Storage<br />

Ready-made psiRNA plasmids are available alone or <strong>in</strong> a kit.<br />

Each ready-made psiRNA plasmids is provided as 20 μg of lyophilized DNA.<br />

Each ready-made psiRNA kit conta<strong>in</strong>s the follow<strong>in</strong>g components:<br />

- 20 μg of the ready-made psiRNA plasmid of your choice<br />

- 20 μg of a control psiRNA plasmid target<strong>in</strong>g Luciferase GL3<br />

- 1 vial of LyoComp GT116<br />

- 4 pouches of Fast-Media ® Zeo<br />

Products are shipped at room temperature. Store at -20°C.<br />

GENE NAME SPECIES CAT.<br />

CODE<br />

Toll-Like Receptors (TLRs)<br />

92<br />

TLR1 h, m p 149<br />

TLR2 h, m p 149<br />

TLR3 h, m p 149<br />

TLR4 h, m p 149<br />

TLR5 h, m p 149<br />

TLR6 h, m p 149<br />

TLR7 h, m p 149<br />

TLR8 h, m p 149<br />

TLR9 h, m p 149<br />

TLR10 h p 149<br />

NOD-Like Receptors (NLRs)<br />

IPAF / CARD12 h p 149<br />

NAIP5 / BIRC1E m p 149<br />

NALP1 / CARD7 h p 149<br />

NALP2 h p 149<br />

NALP3 / NLRP3 h, m p 149<br />

NALP12 / Monarch1 h p 149<br />

NOD1 / CARD4 h, m p 149<br />

NOD2 / CARD15 h, m p 149<br />

NOD9 / NLRX1 h, m p 149<br />

RIG-I-Like Receptors (RLRs)<br />

LGP2 / DHX58 h, m p 149<br />

MDA5 / IFIH1 h, m p 149<br />

RIG-I / DDX58 h, m p 149<br />

Other Pathogen Sensors<br />

AIM2 / IFI210 h, m p 148<br />

CLEC9A h, m p 148<br />

DAI / ZBP1 h p 148<br />

DC-SIGN / CD209 h, m p 148<br />

Dect<strong>in</strong>-1 h, m p 148<br />

IFI16 NEW h, m p 148<br />

GENE NAME SPECIES<br />

Other Pathogen Sensors<br />

MBL2 h p 149<br />

SIGNR1 m p 149<br />

SIGNR2 m p 149<br />

SIGNR3 m p 149<br />

CD14 h, m p 148<br />

CD36 h, m p 148<br />

MD2 NEW h p 149<br />

BCL10 / CLAP h, m p 148<br />

CARD9 h, m p 148<br />

CD44 h, m p 148<br />

DDX3 / DDX3X h p 148<br />

FADD / MORT1 h, m p 148<br />

IKKε / IKBKE / IKK-i h, m p 149<br />

IRAK-1 h, m p 149<br />

IRAK-4 h, m p 149<br />

LRRFIP2 h p 149<br />

NAP1 / AZI2 h, m p 149<br />

Pell<strong>in</strong>o1 / PELI1 h p 149<br />

Pell<strong>in</strong>o2 / PELI2 h p 149<br />

CAT.<br />

CODE<br />

Adaptors<br />

ASC / CARD5 h, m p 148<br />

Card<strong>in</strong>al / CARD8 h p 148<br />

IPS-1 / MAVS / VISA h, m p 149<br />

MyD88 h, m p 149<br />

RAC1 h, m p 149<br />

SARM1 h p 149<br />

TICAM1 / TRIF h, m p 149<br />

TICAM2 / TRAM h, m p 149<br />

TIRAP / Mal<br />

Co-receptors<br />

h, m p 149<br />

Signal<strong>in</strong>g Effectors<br />

www.<strong>in</strong>vivogen.com/readymade-psirna<br />

GENE NAME<br />

Signal<strong>in</strong>g Effectors<br />

SPECIES<br />

Pell<strong>in</strong>o3 / PELI3 h, p 149<br />

PKD1 / PKRD1 h p 149<br />

PKR / EIF2AK2 h, m p 149<br />

PRKRA / PACT h, m p 149<br />

RIP1 / RIPK1 h, m p 149<br />

RIP2 / RIPK2 h, m p 149<br />

STING NEW h, m p 149<br />

SUGT1 NEW h p 149<br />

TAK1 / MAP3K7 h, m p 149<br />

TANK h, m p 149<br />

TBK1 / NAK h, m p 149<br />

TRADD h, m p 149<br />

TRAF3 / CAP-1 h, m p 149<br />

TRAF6 / RNF85<br />

Signal<strong>in</strong>g Inhibitors<br />

h, m p 149<br />

A20 / TNFAIP3 h, m p 148<br />

ATF3 h p 148<br />

Bcl-3 h, m p 148<br />

DAK h, m p 148<br />

DUBA m p 148<br />

FLII / Fliih h p 148<br />

IRAK-M h p 149<br />

MULAN / Dubl<strong>in</strong> h, m p 149<br />

PIN1 / DOB h, m p 149<br />

RNF125 / TRAC-1 h, m p 149<br />

RP105 / CD180 h p 149<br />

SIGIRR / TIR8 m p 149<br />

SIKE h, m p 149<br />

ST2 / IL1RL1 / T1 h p 149<br />

Tollip / IL-1RAcPIP h p 149<br />

TRAFD1 / FLN29 h p 149<br />

Triad3A h p 149<br />

CAT.<br />

CODE


Signal Transduction Inhibitors<br />

InvivoGen offers a selection of known <strong>in</strong>hibitors of the signal<strong>in</strong>g pathways <strong>in</strong>itiated by PRRs. These <strong>in</strong>hibitory molecules <strong>in</strong>tervene <strong>in</strong> the different<br />

steps of PRR activation and signal<strong>in</strong>g cascade, <strong>in</strong>clud<strong>in</strong>g ligand b<strong>in</strong>d<strong>in</strong>g, <strong>in</strong>teraction with adapters and activation of MAP k<strong>in</strong>ases and NF-kB.<br />

PRODUCT DESCRIPTION<br />

ENDOTOXIN<br />

LEVELS<br />

WORKING<br />

CONCENTRATION<br />

QUANTITY CATALOG<br />

CODE<br />

2-Am<strong>in</strong>opur<strong>in</strong>e PKR <strong>in</strong>hibitor


INNATE IMMUNITY 3<br />

AG490 - JAK2 Inhibitor<br />

AG490 is a specific and potent <strong>in</strong>hibitor of the Janus k<strong>in</strong>ase 2 prote<strong>in</strong> (JAK2) 1 . JAK2 regulates the phosphorylation of JNK, primarily through PI3K. It has been<br />

established that JAK2 plays an important role <strong>in</strong> TLR-mediated biological responses, block<strong>in</strong>g TLR4-mediated responses to LPS 2 and TLR5-mediated responses<br />

to flagell<strong>in</strong> 3 .<br />

2-Am<strong>in</strong>opur<strong>in</strong>e - PKR Inhibitor<br />

2-am<strong>in</strong>opur<strong>in</strong>e (2-AP) is a potent <strong>in</strong>hibitor of double-stranded RNA (dsRNA)-activated prote<strong>in</strong> k<strong>in</strong>ase (PKR), a critical mediator of apoptosis. PKR is<br />

phosphorylated and activated by dsRNA and poly(I:C) and contributes to the <strong>in</strong>duction of type I <strong>in</strong>terferons, such as IFN-b, which can further <strong>in</strong>crease its<br />

expression 4 . PKR plays also a role <strong>in</strong> TLR-<strong>in</strong>duced antiviral activities as an <strong>in</strong>termediary <strong>in</strong> TLR3, TLR4 and TLR9 signal<strong>in</strong>g 5 . .<br />

Bay 11-7082 - IkB-a Inhibitor<br />

Bay 11-7082 is an irreversible <strong>in</strong>hibitor of TNF-a-<strong>in</strong>duced IkB-a phosphorylation result<strong>in</strong>g <strong>in</strong> the <strong>in</strong>activation of NF-kB 6 . TNF-a-dependent effects of NF-kB<br />

are important for TLR expression and cytok<strong>in</strong>e production 7 .<br />

BX795 - TBK/IKKε Inhibitor<br />

BX795, an am<strong>in</strong>opyrimid<strong>in</strong>e compound, was developed as an <strong>in</strong>hibitor of 3-phospho<strong>in</strong>ositide-dependent k<strong>in</strong>ase 1 (PDK1) 8 . It was recently shown to be a<br />

potent <strong>in</strong>hibitor of the IKK-related k<strong>in</strong>ases, TANK-b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>ase 1 (TBK1) and IKKε, and hence of IRF3 activation and IFN-β production 9 . BX795 <strong>in</strong>hibits the<br />

catalytic activity of TBK1/IKKε by block<strong>in</strong>g their phosphorylation.<br />

Celastrol - NF-kB Inhibitor<br />

Celastrol is a triterpenoid compound isolated from the medic<strong>in</strong>al plant Tripterygium wilfordii known for its anti-<strong>in</strong>flammatory properties. Its mode of action<br />

and spectrum of cellular targets are still poorly understood. Celastrol was recently shown to act as an effective <strong>in</strong>hibitor of the transcription factor NF-kB<br />

result<strong>in</strong>g <strong>in</strong> the attenuation of nitric oxide and pro<strong>in</strong>flammatory cytok<strong>in</strong>e production 10 .<br />

Chloroqu<strong>in</strong>e - Inhibitor of Endosomal Acidification<br />

Chloroqu<strong>in</strong>e is a lysosomotropic agent that prevents endosomal acidification 11 . It accumulates <strong>in</strong>side the acidic parts of the cell, <strong>in</strong>clud<strong>in</strong>g endosomes and<br />

lysosomes. This accumulation leads to <strong>in</strong>hibition of lysosomal enzymes that require an acidic pH, and prevents fusion of endosomes and lysosomes. Chloroqu<strong>in</strong>e<br />

is commonly used to study the role of endosomal acidification <strong>in</strong> cellular processes, such as the signal<strong>in</strong>g of <strong>in</strong>tracellular TLRs 12 .<br />

CLI095 - TLR4 Signal<strong>in</strong>g Inhibitor<br />

CLI095, also known as TAK-242, is a novel cyclohexene derivative that suppresses specifically TLR4 signal<strong>in</strong>g, <strong>in</strong>hibit<strong>in</strong>g the production of NO and<br />

pro-<strong>in</strong>flammatory cytok<strong>in</strong>es 13 . It acts by block<strong>in</strong>g the signal<strong>in</strong>g mediated by the <strong>in</strong>tracellular doma<strong>in</strong> of TLR4, but not the extracellular doma<strong>in</strong>. It potently<br />

suppresses both ligand-dependent and -<strong>in</strong>dependent signal<strong>in</strong>g of TLR4 14 .<br />

Cyclospor<strong>in</strong> A - Calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong>hibitor NEW<br />

Cyclopspor<strong>in</strong> A, a calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong>hibitor, exerts its immunosuppressive effects through the down-regulation of NFAT (nuclear factor of activated T cells),<br />

thus prevent<strong>in</strong>g the transcription of T cell effector cytok<strong>in</strong>es. NFAT has been implicated <strong>in</strong> the downstream signal<strong>in</strong>g of Dect<strong>in</strong>-1 15 . Conversely, it has been<br />

demonstrated that the <strong>in</strong>hibition of calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong> macrophages can trigger TLR signal<strong>in</strong>g and enhance NF-κB activation 16 .<br />

Gefit<strong>in</strong>ib - RIP2 Tyros<strong>in</strong>e K<strong>in</strong>ase <strong>in</strong>hibitor NEW<br />

Gefit<strong>in</strong>ib (also known as IRESSA) is a selective <strong>in</strong>hibitor of epidermal growth factor (EGFR), a growth factor that plays a pivotal role <strong>in</strong> the control of cell growth,<br />

apoptosis, and angiogenesis. Recent studies demonstrated that Gefit<strong>in</strong>ib can <strong>in</strong>hibit NOD2-<strong>in</strong>duced cytok<strong>in</strong>e release and NF-kB activation by <strong>in</strong>hibit<strong>in</strong>g RIP2<br />

(receptor-<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> 2) tyros<strong>in</strong>e phosphylation which is critical for activation of NOD2 downsream signal<strong>in</strong>g pathways 17 .<br />

H-89 - PKA Inhibitor<br />

H-89 is a selective, potent cell permeable <strong>in</strong>hibitor of cAMP-dependent prote<strong>in</strong> k<strong>in</strong>ase (PKA) 18 . It can be used to determ<strong>in</strong>e the role of PKA <strong>in</strong> TLR and<br />

other PRR mediated signal<strong>in</strong>g. PKA has be shown to participate <strong>in</strong> the TLR-mediated TREM-1 expression on macrophages follow<strong>in</strong>g LPS stimulation 19 .<br />

Leptomyc<strong>in</strong> B - Nuclear export <strong>in</strong>hibitor NEW<br />

Leptomyc<strong>in</strong> B, an <strong>in</strong>hibitor of nuclear export, can be used to study nucleo-cytoplasmic translocation. It has been demonstrated that Leptomyc<strong>in</strong> B can provoke the<br />

nuclear accumulation of prote<strong>in</strong>s that shuttle between the cytosol and nucleus such as MAPK, MAPKAP k<strong>in</strong>ase 2, IRAK-1 and NLRC5 20 . The cellular target of<br />

Leptomyc<strong>in</strong> B has been identified as CRM1 (export<strong>in</strong> 1), an evolutionarily conserved receptor for the nuclear export signal of prote<strong>in</strong>s.<br />

LY294002 - PI3K Inhibitor<br />

LY294002 is a potent, cell permeable <strong>in</strong>hibitor of phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase (PI3K) that acts on the ATP b<strong>in</strong>d<strong>in</strong>g site of the enzyme 21 . The PI3K pathway<br />

is extensively studied for its property <strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g apoptosis. PI3K is also known to regulate TLR-mediated <strong>in</strong>flammatory responses 22 .<br />

OxPAPC - TLR2 and TLR4 Inhibitor<br />

OxPAPC (1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylchol<strong>in</strong>e), is an oxidized phospholipid that has been shown to <strong>in</strong>hibit the signal<strong>in</strong>g <strong>in</strong>duced by<br />

bacterial lipopeptide and lipopolysaccharide (LPS). It acts by compet<strong>in</strong>g with CD14, LBP and MD2, the accessory prote<strong>in</strong>s that <strong>in</strong>teract with bacterial lipids,<br />

thus block<strong>in</strong>g the signal<strong>in</strong>g of TLR2 and TLR4 23 .<br />

PD98059 - MAP K<strong>in</strong>ase K<strong>in</strong>ase Inhibitor<br />

PD98059 is a potent and selective <strong>in</strong>hibitor of MAP k<strong>in</strong>ase k<strong>in</strong>ase (also known as MAPK/ERK k<strong>in</strong>ase or MEK k<strong>in</strong>ase). It mediates its <strong>in</strong>hibitory properties by<br />

b<strong>in</strong>d<strong>in</strong>g to the ERK-specific MAP k<strong>in</strong>ase MEK, therefore prevent<strong>in</strong>g phosphorylation of ERK1/2 (p44/p42 MAPK) by MEK1/2. MAPK ERK1/2 is <strong>in</strong>volved <strong>in</strong><br />

TLR-<strong>in</strong>duced production of cytok<strong>in</strong>es 24 .<br />

94<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors


Pep<strong>in</strong>h-MYD - MyD88 <strong>in</strong>hibitory peptide<br />

Pep<strong>in</strong>h-MYD is a 26 aa peptide that blocks MyD88 signal<strong>in</strong>g by <strong>in</strong>hibit<strong>in</strong>g its homodimerization through b<strong>in</strong>d<strong>in</strong>g. Pep<strong>in</strong>h-MYD conta<strong>in</strong>s a sequence from the<br />

MyD88 TIR homodimerization doma<strong>in</strong> (RDVLPGT) 25 preceeded by a prote<strong>in</strong> transduction sequence (RQIKIWFQNRMKWKK) derived from antennapedia<br />

which enables the peptide to translocate through the cell membrane 26 . Pep<strong>in</strong>h-MYD is provided with a control peptide.<br />

Pep<strong>in</strong>h-TRIF - TRIF <strong>in</strong>hibitory peptide<br />

Pep<strong>in</strong>h-TRIF is a 30 aa peptide that blocks TRIF signal<strong>in</strong>g by <strong>in</strong>terfer<strong>in</strong>g with TLR-TRIF <strong>in</strong>teraction. Pep<strong>in</strong>h-TRIF conta<strong>in</strong>s the 14 aa that correspond to the<br />

sequence of the BB loop of TRIF (FCEEFQVPGRGELH) 27 l<strong>in</strong>ked to the cell-penetrat<strong>in</strong>g segment of the antennapedia homoedoma<strong>in</strong><br />

(RQIKIWFQNRMKWKK) 26 . Pep<strong>in</strong>h-TRIF is provided with a control peptide.<br />

Polymyx<strong>in</strong> B - Inhibitor of LPS-<strong>in</strong>duced TLR4 activation<br />

Polymyx<strong>in</strong> B (PMB) is a cyclic cationic polypeptide antibiotic produced by the soil bacterium Paenibacillus polymixa. PMB blocks the biological effects of Gram<br />

negative LPS (endotox<strong>in</strong>) through b<strong>in</strong>d<strong>in</strong>g to lipid A, the toxic component of LPS, which is negatively charged. The neutraliz<strong>in</strong>g effect of PMB on LPS is doserelated<br />

and specific for LPS 28 . PMB is widely used to elim<strong>in</strong>ate the effects of endotox<strong>in</strong> contam<strong>in</strong>ation, both <strong>in</strong> vitro and <strong>in</strong> vivo.<br />

Rapamyc<strong>in</strong> - mTOR Inhibitor<br />

Rapamyc<strong>in</strong> is an <strong>in</strong>hibitor of the Ser/Thr prote<strong>in</strong> k<strong>in</strong>ase named "mammalian target of rapamyc<strong>in</strong>" (mTOR) that regulates cell growth and metabolism <strong>in</strong><br />

response to environmental cues. mTOR is a downstream target of PI3K, an important actor <strong>in</strong> TLR signal<strong>in</strong>g. Rapamyc<strong>in</strong> was shown to block TLR2- and<br />

TLR4-mediated expression of TNF-a and IL-6 <strong>in</strong> neutrophils stimulated with Pam3CSK4 or LPS 29 .<br />

SB203580 - p38/RK MAP K<strong>in</strong>ase Inhibitor<br />

SB203580 is a pyrid<strong>in</strong>yl imidazole <strong>in</strong>hibitor widely used to elucidate the roles of p38 mitogen-activated prote<strong>in</strong> (MAP) k<strong>in</strong>ase 30 . SB203580 <strong>in</strong>hibits also the phosphorylation<br />

and activation of prote<strong>in</strong> k<strong>in</strong>ase B (PKB, also known as Akt) 31 . Both k<strong>in</strong>ases are <strong>in</strong>volved <strong>in</strong> a wide array of signal<strong>in</strong>g pathways, <strong>in</strong>clud<strong>in</strong>g the TLR signal<strong>in</strong>g pathway.<br />

SP600125 - JNK Inhibitor<br />

SP600125 is a potent, cell-permeable, selective and reversible <strong>in</strong>hibitor of c-Jun N-term<strong>in</strong>al k<strong>in</strong>ase (JNK) 32 . It <strong>in</strong>hibits <strong>in</strong> a dose-dependent manner the phosphorylation<br />

of JNK. JNK is a member of the mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase (MAPK) family and plays an essential role <strong>in</strong> TLR-mediated <strong>in</strong>flammatory responses.<br />

U0126 - MEK1 and MEK2 Inhibitor<br />

U0126 is a selective <strong>in</strong>hibitor of the MAP k<strong>in</strong>ase k<strong>in</strong>ases, MEK1 and MEK2. It acts by <strong>in</strong>hibit<strong>in</strong>g the k<strong>in</strong>ase activity of MEK1/2 thus prevent<strong>in</strong>g the activation of<br />

MAP k<strong>in</strong>ases p42 and p44 which are encoded by the erk2 and erk1 genes respectively 33 . MAPK p42/p44 are <strong>in</strong>volved <strong>in</strong> the signal<strong>in</strong>g cascade triggered by<br />

LPS and other ligands through stimulation of the TLRs.<br />

Wortmann<strong>in</strong> - PI3K Inhibitor<br />

Wortmann<strong>in</strong> is a cell-permeable, fungal metabolite that acts as a potent, selective and irrevesible <strong>in</strong>hibitor of phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase (PI3K). There is<br />

<strong>in</strong>creas<strong>in</strong>g evidence of the <strong>in</strong>volvement of PI3K <strong>in</strong> TLR signal<strong>in</strong>g. Inhibition of PI3K by wortmann<strong>in</strong> was shown to greatly enhance TLR-mediated <strong>in</strong>ducible<br />

nitric-oxide synthase (iNOS) expression and cytok<strong>in</strong>e production <strong>in</strong> the mouse macrophage cell l<strong>in</strong>e RAW264.7. The effect of wortmann<strong>in</strong> was common<br />

to TLR2, -3, -4, and -9 and was accompanied by activation of NF-kB and up-regulation of cytok<strong>in</strong>e mRNA production 34 .<br />

1. Levitzki A., 1990. Tyrphost<strong>in</strong>s- potential antiprolierative agents and novel molecular tools.<br />

Biochem. Pharmacol. 40:913-918. 2. Kimura A et al., 2005. Suppressor of cytok<strong>in</strong>e signal<strong>in</strong>g-1<br />

selectively <strong>in</strong>hibits LPS-<strong>in</strong>duced IL-6 production by regulat<strong>in</strong>g JAK–STAT. PNAS 102:17089-<br />

17094. 3. Ha H et al., 2008. Stimulation by TLR5 Modulates Osteoclast Differentiation through<br />

STAT1/IFN-b1. J. Immuno. 180:1382-1389.4. Samuel CE., 2001. Antiviral actions of <strong>in</strong>terferons.<br />

Cl<strong>in</strong> Microbiol Rev. 14(4):778-809. 5. García MA. et al., 2006. Impact of Prote<strong>in</strong> K<strong>in</strong>ase PKR <strong>in</strong><br />

Cell Biology: from Antiviral to Antiproliferative Action. Microbiol. Mol. Biol. Rev. 70: 1032-1060.<br />

6. Pierce JW. et al., 1997. Novel Inhibitors of Cytok<strong>in</strong>e-<strong>in</strong>duced Ikappa Balpha Phosphorylation<br />

and Endothelial Cell Adhesion Molecule Expression Show Anti-<strong>in</strong>flammatory Effects <strong>in</strong> Vivo. J.<br />

Biol. Chem. 272: 21096. 7. Phulwani NK. et al., 2008.TLR2 Expression <strong>in</strong> Astrocytes Is Induced<br />

by TNF-{alpha}- and NF-{kappa}B-Dependent Pathways. J. Immunol. 181: 3841-3849.<br />

8. Feldman RI. et al., 2005. Novel Small Molecule Inhibitors of 3-Phospho<strong>in</strong>ositide-dependent<br />

K<strong>in</strong>ase-1. J. Biol. Chem. 280: 19867-19874. 9. Clark K. et al., 2009. Use of the Pharmacological<br />

Inhibitor BX795 to Study the Regulation and Physiological Roles of TBK1 and I{kappa}B K<strong>in</strong>ase<br />

{epsilon}: a dist<strong>in</strong>ct upstream k<strong>in</strong>ase mediates Ser-172 phosphorylation and activation. J. Biol.<br />

Chem. 284: 14136-14146. 10. Sethi G. et al., 2007. Celastrol, a novel triterpene, potentiates<br />

TNF-<strong>in</strong>duced apoptosis and suppresses <strong>in</strong>vasion of tumor cells by <strong>in</strong>hibit<strong>in</strong>g NF-kB–regulated<br />

gene products and TAK1-mediated NF-kB activation. Blood 109: 2727-2735. 11. Ste<strong>in</strong>man RM.<br />

et al., 1983. Endocytosis and the recycl<strong>in</strong>g of plasma membrane. J. Cell. Biol. 96:1-27. 12. Hart<br />

OM. et al., 2005. TLR7/8-Mediated Activation of Human NK Cells Results <strong>in</strong> Accessory Cell-<br />

Dependent IFN-{gamma} Production. J. Immunol. 175: 1636-1642. 13. Li M. et al., 2006. A<br />

Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl] cyclohex-<br />

1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytok<strong>in</strong>e<br />

Production through Suppression of Intracellular Signal<strong>in</strong>g. Mol. Pharmacol. 69: 1288-1295.<br />

14. Kawamoto T. et al., 2008. TAK-242 selectively suppresses Toll-like receptor 4-signal<strong>in</strong>g<br />

mediated by the <strong>in</strong>tracellular doma<strong>in</strong>. Eur J Pharmacol. 584(1):40-8. 15. Goodridge et al. 2007.<br />

Dect<strong>in</strong>-1stimulation by Candida albicans yeast or zymosan triggers NFAT activation <strong>in</strong><br />

macrophages and dendritic cells. J Immunol. 178( 5): 3107-15. 16. Kang Y. et al., 2007. Calc<strong>in</strong>eur<strong>in</strong><br />

negatively regulates TLR-mediated activation pathways. J Immunol 179(7):4598–607.<br />

17. Tigno-Aranjuez J. et al., 2010. Inhibition of RIP2’s tyros<strong>in</strong>e k<strong>in</strong>ase activity limits NOD2-driven<br />

cytok<strong>in</strong>e responses. Genes Dev. 24(23):2666-77. 18. Chijiwa, T., et al.,1990. Inhibition of<br />

forskol<strong>in</strong>-<strong>in</strong>duced neurite outgrowth and prote<strong>in</strong> phosphorylation by a newly synthesized<br />

selective <strong>in</strong>hibitor of cyclic AMP-dependent prote<strong>in</strong> k<strong>in</strong>ase, N-[2-(p-bromoc<strong>in</strong>namylam<strong>in</strong>o)<br />

ethyl]-5-isoqu<strong>in</strong>ol<strong>in</strong>esulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors<br />

265: 5267-5272. 19. Murakami Y. et al., 2007. Lipopolysaccharide-Induced Up-Regulation of<br />

Trigger<strong>in</strong>g Receptor Expressed on Myeloid Cells-1 Expression on Macrophages Is Regulated<br />

by Endogenous Prostagland<strong>in</strong> E2. J. Immunol. 178: 44. 20. Benko S. et al., 2010. NLRC5 limits<br />

the activation of <strong>in</strong>flammatory pathways. J Immunol. 185(3):1681-91. 21. Vlahos CJ. et al., 1994.<br />

A specific <strong>in</strong>hibitor of phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase, 2-(4-morphol<strong>in</strong>yl)-8-phenyl-4H-1benzopyran-4-one<br />

(LY294002). J. Biol. Chem 69(7):5241-8.. 22. Guiducci C. et al., 2008. PI3K<br />

is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid<br />

predendritic cells <strong>in</strong> response to TLR activation. J. Exp. Med. 205: 315-322. 23. Erridge C. et al.,<br />

2008. Oxidized Phospholipid Inhibition of Toll-like Receptor (TLR) Signal<strong>in</strong>g Is Restricted to<br />

TLR2 and TLR4: roles for CD14, LPS-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>, and MD2 as targets for specificity of<br />

<strong>in</strong>hibition. J. Biol. Chem. 283: 24748-24759. 24. Banerjee A. et al., 2006. Diverse Toll-like<br />

receptors utilize Tpl2 to activate extracellular signal-regulated k<strong>in</strong>ase (ERK) <strong>in</strong> hemopoietic cells.<br />

PNAS. 103: 3274-3279. 25. Loiarro M. et al., 2005. Peptide-mediated Interference of TIR<br />

Doma<strong>in</strong> Dimerization <strong>in</strong> MyD88 Inhibits Interleuk<strong>in</strong>-1-dependent Activation of NF-{kappa}B. J.<br />

Biol. Chem. 280: 15809-14. 26. Derossi D. et al., 1994. The third helix of the Antennapedia<br />

homeodoma<strong>in</strong> translocates through biological membranes. J. Biol. Chem., 269: 10444-50.<br />

27. Toshchakov VU. et al., 2005. Differential Involvement of BB Loops of Toll-IL-1 Resistance<br />

(TIR) Doma<strong>in</strong>-Conta<strong>in</strong><strong>in</strong>g Adapter Prote<strong>in</strong>s <strong>in</strong> TLR4- versus TLR2-Mediated Signal Transduction.<br />

J. Immunol. 175: 494 - 500. 28. Duff GW. & Atk<strong>in</strong>s E. 1982. The <strong>in</strong>hibitory effect of polymyx<strong>in</strong><br />

B on endotox<strong>in</strong>-<strong>in</strong>duced endogenous pyrogen production. J Immunol Methods. 52(3):333-40.<br />

29. Lorne E. et al., 2009. Participation of Mammalian Target of Rapamyc<strong>in</strong> Complex 1 <strong>in</strong> Toll-<br />

Like Receptor 2– and 4–Induced Neutrophil Activation and Acute Lung Injury. Am. J. Respir.<br />

Cell Mol. Biol. 41: 237 - 245. 30. Cuenda A. et al., 1995. SB203580 is a specific <strong>in</strong>hibitor of a<br />

MAP k<strong>in</strong>ase homologue which is stimulated by cellular stresses and <strong>in</strong>terleuk<strong>in</strong>-1. FEBS Lett.<br />

364:229-233. 31. Lali FV. et al., 2000. The pyrid<strong>in</strong>yl imidazole <strong>in</strong>hibitor SB203580 blocks<br />

phospho<strong>in</strong>ositide-dependent prote<strong>in</strong> k<strong>in</strong>ase activity, prote<strong>in</strong> k<strong>in</strong>ase B phosphorylation, and<br />

ret<strong>in</strong>oblastoma hyperphosphorylation <strong>in</strong> <strong>in</strong>terleuk<strong>in</strong>-2- stimulated T cells <strong>in</strong>dependently of p38<br />

mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase. J Biol Chem. 275(10):7395-402. 32. Bennett BL. et al., 2001.<br />

SP600125, an anthrapyrazolone <strong>in</strong>hibitor of Jun N-term<strong>in</strong>al k<strong>in</strong>ase. PNAS. 98:13681-13686.<br />

33. Favata MF. et al., 1998. Identification of a novel <strong>in</strong>hibitor of mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase.J.<br />

Biol. Chem. 273(29):18623-32. 34. Hazeki K. et al, 2006. Opposite Effects of Wortmann<strong>in</strong> and<br />

2-(4-Morphol<strong>in</strong>yl)-8-phenyl-1(4H)-benzopyran-4-one Hydrochloride on Toll-Like Receptor-<br />

Mediated Nitric Oxide Production: Negative Regulation of Nuclear Factor-{kappa}B by<br />

Phospho<strong>in</strong>ositide 3-K<strong>in</strong>ase. Mol. Pharmacol. 69: 1717 - 1724.<br />

95<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

Inflammasomes<br />

The nucleotide-b<strong>in</strong>d<strong>in</strong>g oligomerization doma<strong>in</strong>-like receptor (NLR) family<br />

of prote<strong>in</strong>s is <strong>in</strong>volved <strong>in</strong> the regulation of <strong>in</strong>nate immunity responses.<br />

Certa<strong>in</strong> members of the NLR family sense pathogen-associated molecular<br />

patterns (PAMPs) <strong>in</strong> the cytosol and <strong>in</strong>duce the assembly of large<br />

caspase-1-activat<strong>in</strong>g complexes called <strong>in</strong>flammasomes 1 . Activation of<br />

caspase-1 through autoproteolytic maturation leads to the process<strong>in</strong>g and<br />

secretion of the pro-<strong>in</strong>flammatory cytok<strong>in</strong>es <strong>in</strong>terleuk<strong>in</strong>-1b (IL-1b) and<br />

IL-18. Several <strong>in</strong>flammasomes have been identified and def<strong>in</strong>ed by the NLR<br />

prote<strong>in</strong> that they conta<strong>in</strong>. IPAF (ICE protease-activat<strong>in</strong>g factor)<br />

<strong>in</strong>flammasome is triggered by bacterial flagell<strong>in</strong> 2 , whereas NALP1b (NACHT<br />

doma<strong>in</strong>-, leuc<strong>in</strong>e-rich repeat-, and PYD-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong> 1b)<br />

<strong>in</strong>flammasome is <strong>in</strong>duced by anthrax lethal tox<strong>in</strong> 3 . NALP3/cryopyr<strong>in</strong>/NLRP3<br />

<strong>in</strong>flammasome assembles <strong>in</strong> response to a variety of PAMPs and ‘danger’<br />

signals, such as uric acid crystals. A new <strong>in</strong>flammasome has just been<br />

identified composed of AIM2 (absent <strong>in</strong> melanoma 2) which recognizes<br />

cytoplasmic double-stranded DNA.<br />

IL-1b and IL-18 are related cytok<strong>in</strong>es that cause a wide variety of biological<br />

efffects associated with <strong>in</strong>fection, <strong>in</strong>flammation and autoimmune processes.<br />

IL-1b participates <strong>in</strong> the generation of systemic and local responses to<br />

<strong>in</strong>fection and <strong>in</strong>jury by generat<strong>in</strong>g fever, activat<strong>in</strong>g lymphocytes and by<br />

promot<strong>in</strong>g leukocyte <strong>in</strong>filtration at sites of <strong>in</strong>fection or <strong>in</strong>jury. IL-1b signal<strong>in</strong>g<br />

<strong>in</strong>itiates signal<strong>in</strong>g cascades lead<strong>in</strong>g to the activation of NF-kB and MAP<br />

k<strong>in</strong>ases which trigger the secretion of <strong>in</strong>flammatory cytok<strong>in</strong>es. IL-18 <strong>in</strong>duces<br />

IFN-g production and contributes to T-helper 1 (Th1) cell polarization.<br />

IL-18 signal<strong>in</strong>g pathways are similar to those <strong>in</strong>itiated by IL-1b. Both<br />

cytok<strong>in</strong>es share a common maturation mechanism that requires<br />

caspase-1. Caspase-1 itself is synthesized as an <strong>in</strong>active 45 kDa zymogen<br />

(pro-caspase-1) that undergoes autocatalytic process<strong>in</strong>g follow<strong>in</strong>g an<br />

appropriate stimulus. The active form of the enzyme comprises the subunits<br />

p20 and p10 which assemble <strong>in</strong>to a heterotetramer 4 . Caspase-1 is activated<br />

with<strong>in</strong> the <strong>in</strong>flammasome through <strong>in</strong>teraction with ASC (apoptosisassociated<br />

speck-like prote<strong>in</strong> conta<strong>in</strong><strong>in</strong>g a carboxy-term<strong>in</strong>al CARD), a<br />

bipartite adapter prote<strong>in</strong> that bridges NLRs and caspase-1 5 .<br />

It is now generally accepted that activation and release of IL-1b requires<br />

two dist<strong>in</strong>ct signals. The nature of these signals <strong>in</strong> vivo dur<strong>in</strong>g <strong>in</strong>fection or<br />

<strong>in</strong>flammation is not completely def<strong>in</strong>ed. However, <strong>in</strong> vitro studies <strong>in</strong>dicate<br />

that the first signal can be triggered by various PAMPs follow<strong>in</strong>g Toll-like<br />

receptor (TLR) activation which <strong>in</strong>duces the synthesis of pro-IL-1b. The<br />

second signal is provided by the activation of the <strong>in</strong>flammasome and<br />

caspase-1 lead<strong>in</strong>g to IL-1b process<strong>in</strong>g. The requirement for a second signal<br />

for IL-1b maturation might constitute a fail-safe mechanism to ensure that<br />

<strong>in</strong>duction of potent <strong>in</strong>flammatory responses occurs only <strong>in</strong> the presence<br />

of a bona fide stimulus, such as pathogen <strong>in</strong>fection and/or tissue <strong>in</strong>jury.<br />

NALP3 Inflammasome<br />

Among the <strong>in</strong>flammasomes, NALP3 <strong>in</strong>flammasome is the most studied. Its<br />

activation <strong>in</strong> macrophages can be achieved with PAMPs, such as LPS,<br />

peptidoglycan, and bacterial nucleic acids, provided the cells are exposed<br />

to ATP. Indeed, <strong>in</strong> the absence of ATP, macrophages stimulated with LPS<br />

produce large quantities of pro-IL-1b, but release little mature cytok<strong>in</strong>e to<br />

the medium. ATP and certa<strong>in</strong> bacterial tox<strong>in</strong>s, such as nigeric<strong>in</strong> and<br />

maitotox<strong>in</strong>, cause a change <strong>in</strong> the <strong>in</strong>tracellular ion composition lead<strong>in</strong>g to<br />

the activation of the NALP3 <strong>in</strong>flammasome. The effect of ATP is mediated<br />

by the pur<strong>in</strong>ergic P2X7 receptor, which causes a rapid potassium efflux<br />

from the cytosol upon activation. ATP <strong>in</strong>duces rapid open<strong>in</strong>g of the nonselective<br />

cation channel of P2X7, followed by the gradual open<strong>in</strong>g of a larger<br />

96<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>flammasome<br />

pore. The larger pore is mediated by the hemichannel pannex<strong>in</strong>-1 which is<br />

recruited upon activation of the P2X7 receptor. Recent studies have<br />

demonstrated that pannex<strong>in</strong> is required for caspase-1 activation <strong>in</strong> response<br />

to ATP, nigeric<strong>in</strong> and maitotox<strong>in</strong> 6 . However, the trigger between pannex<strong>in</strong>-1<br />

and the NALP3 <strong>in</strong>flammasome rema<strong>in</strong>s unclear. Potassium (K+) efflux is<br />

thought to be an essential trigger of NALP3-<strong>in</strong>duced caspase-1 activation.<br />

Macrophages derived from mice lack<strong>in</strong>g the P2X7 receptor failed to activate<br />

caspase-1 7 . However, K+ efflux is not sufficient for activation of the NALP3<br />

<strong>in</strong>flammasome, s<strong>in</strong>ce activation of the P2X7 receptor does not <strong>in</strong>duce<br />

caspase-1 maturation <strong>in</strong> macrophages that have not been exposed to LPS.<br />

It has been suggested that pannex<strong>in</strong>-1 may mediate the delivery of PAMPs<br />

<strong>in</strong>to the cytosol which might expla<strong>in</strong> the lack of requirement for TLR signal<strong>in</strong>g<br />

<strong>in</strong> caspase-1 activation <strong>in</strong>duced via the pannex<strong>in</strong>-1/NALP3 pathway 8 .<br />

A recent study demonstrated that monosodium urate (MSU) and calcium<br />

phosphate dihydrate (CPPD) crystals activate caspase-1 <strong>in</strong> a NALP3dependent<br />

manner 9 . Deposition of MSU and CPPD crystals <strong>in</strong> jo<strong>in</strong>ts is<br />

responsible for the <strong>in</strong>flammatory conditions gout and pseudogout,<br />

respectively. Thus, the NALP3 <strong>in</strong>flammasome was suggested to participate<br />

<strong>in</strong> the etiology of these auto-<strong>in</strong>flammatory diseases. In addition to its role<br />

<strong>in</strong> gout, uric acid is a major component released <strong>in</strong>to the extracellular milieu<br />

by necrotic cells, suggest<strong>in</strong>g an important role of NALP3 <strong>in</strong> the detection<br />

of endogenous ‘danger’ signal. Crystall<strong>in</strong>e silica and asbestos were shown<br />

to <strong>in</strong>duce the activation of the NALP3 <strong>in</strong>flammasome, suggest<strong>in</strong>g that the<br />

NALP3 <strong>in</strong>flammasome participates <strong>in</strong> the pathogenesis of silicosis and<br />

asbestosis 10-12 . Alum<strong>in</strong>ium salt (alum) crystals also activate the<br />

<strong>in</strong>flammasome formed by NALP3 and seem to require the presence of<br />

PAMPs. Indeed, several groups have reported that alum activates the<br />

NALP3 <strong>in</strong>flammasome only if the cells are pretreated with LPS 12-14 . NALP3<br />

activation by crystals has been shown to require phagocytosis, caus<strong>in</strong>g<br />

lysosomal swell<strong>in</strong>g and damage, and to <strong>in</strong>volve catheps<strong>in</strong> B, a lysosomal<br />

cyste<strong>in</strong>e protease. As crystal-<strong>in</strong>dependent lysosomal damage was sufficient<br />

to <strong>in</strong>duce NALP activation, it was suggested that rather than the crystal<br />

structure itself, the NALP3 <strong>in</strong>flammasome senses lysosomal pertubation as<br />

a ‘danger’ signal 12 .<br />

AIM2 Inflammasome<br />

Recently, several groups have identified AIM2 (absent <strong>in</strong> melanoma 2) as a<br />

new receptor for cytoplasmic DNA, which forms an <strong>in</strong>flammasome with<br />

the ligand and ASC to activate caspase-1 15-17 . AIM2 is an <strong>in</strong>terferon-<strong>in</strong>ducible<br />

HIN-200 family member that conta<strong>in</strong>s an am<strong>in</strong>o-term<strong>in</strong>al pyr<strong>in</strong> doma<strong>in</strong> and<br />

a carboxy-term<strong>in</strong>al oligonucleotide/oligosaccharide-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. AIM2<br />

senses cytoplasmic double-stranded DNA through its oligonucleotide/<br />

oligosaccharide-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> and <strong>in</strong>teracts with ASC via its pyr<strong>in</strong> doma<strong>in</strong><br />

to activate caspase-1. The <strong>in</strong>teraction of AIM2 with ASC also leads to the<br />

formation of the ASC pyroptosome, which <strong>in</strong>duces pyroptotic cell death<br />

<strong>in</strong> cells conta<strong>in</strong><strong>in</strong>g caspase-1. Knockdown of AIM2 expression by RNAmediated<br />

<strong>in</strong>terference was shown to reduce DNA-<strong>in</strong>duced maturation of<br />

IL-1b <strong>in</strong> macrophages whereas stable expression of AIM2 <strong>in</strong> the human<br />

embryonic kidney 293T cell l<strong>in</strong>e conferred responsiveness to cytoplasmic<br />

DNA. These data suggest that AIM2 is both required and sufficient for<br />

<strong>in</strong>flammasome activation <strong>in</strong> reponse to cytoplasmic DNA.<br />

Clearly, <strong>in</strong>flammasomes fulfill a central role <strong>in</strong> <strong>in</strong>nate immunity. They detect<br />

and respond to bacterial components, ‘danger signals’ and potentially<br />

dangerous cytoplasmic DNA. Further understand<strong>in</strong>g on how they are<br />

activated should provide new <strong>in</strong>sights <strong>in</strong>to the mechanism of host defense<br />

and the pathogenesis of autoimmune diseases.


1. Mart<strong>in</strong>on F,. et al., 2002. The <strong>in</strong>flammasome: a molecular platform trigger<strong>in</strong>g activation of<br />

<strong>in</strong>flammatory caspases and process<strong>in</strong>g of proIL-beta. Mol Cell. 2002 10(2):417-26. 2. Miao<br />

EA. et al., 2006. Cytoplasmic flagell<strong>in</strong> activates caspase-1 and secretion of <strong>in</strong>terleuk<strong>in</strong> 1beta<br />

via Ipaf. Nat Immunol. 7(6):569-75. 3. Boyden ED & Dietrich WF., 2006. Nalp1b controls<br />

mouse macrophage susceptibility to anthrax lethal tox<strong>in</strong>. Nat Genet. 38(2):240-4. 4.<br />

Mariathasan S & Monack DM., 2007. Inflammasome adaptors and sensors: <strong>in</strong>tracellular<br />

regulators of <strong>in</strong>fection and <strong>in</strong>flammation. Nat Rev Immunol. 7(1):31-40. 5. Mart<strong>in</strong>on F, &<br />

Tschopp J., 2004. Inflammatory caspases: l<strong>in</strong>k<strong>in</strong>g an <strong>in</strong>tracellular <strong>in</strong>nate immune system to<br />

auto<strong>in</strong>flammatory diseases. Cell. 117(5):561-74. 6. Pelegr<strong>in</strong> P, & Surprenant A., 2007.<br />

Pannex<strong>in</strong>-1 couples to maitotox<strong>in</strong>- and nigeric<strong>in</strong>-<strong>in</strong>duced <strong>in</strong>terleuk<strong>in</strong>-1beta release through<br />

a dye uptake-<strong>in</strong>dependent pathway. J Biol Chem. 282(4):2386-94. 7. Solle M. et al., 2001.<br />

Altered cytok<strong>in</strong>e production <strong>in</strong> mice lack<strong>in</strong>g P2X(7) receptors. J Biol Chem. 276(1):125-32.<br />

8. Kanneganti TD, et al., 2007. Pannex<strong>in</strong>-1-mediated recognition of bacterial molecules<br />

activates the cryopyr<strong>in</strong> <strong>in</strong>flammasome <strong>in</strong>dependent of Toll-like receptor signal<strong>in</strong>g. Immunity.<br />

26(4):433-43. 9. Mart<strong>in</strong>on F. et al., 2006. Gout-associated uric acid crystals activate the<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>flammasome<br />

NALP3 <strong>in</strong>flammasome. Nature. 440(7081):237-41. 10. Dostert C. et al., 2008. Innate<br />

immune activation through Nalp3 <strong>in</strong>flammasome sens<strong>in</strong>g of asbestos and silica. Science.<br />

320(5876):674-7. 11. Cassel SL. et al., 2008. The Nalp3 <strong>in</strong>flammasome is essential for the<br />

development of silicosis. Proc Natl Acad Sci U S A. 105(26):9035-40. 12. Hornung V. et al.,<br />

2008. Silica crystals and alum<strong>in</strong>um salts activate the NALP3 <strong>in</strong>flammasome through<br />

phagosomal destabilization. Nat Immunol. 9(8):847-56. 13. Eisenbarth SC. et al., 2008. Crucial<br />

role for the Nalp3 <strong>in</strong>flammasome <strong>in</strong> the immunostimulatory properties of alum<strong>in</strong>ium<br />

adjuvants. Nature. 453(7198):1122-6. 14. Li H. et al., 2008. Cutt<strong>in</strong>g edge: <strong>in</strong>flammasome<br />

activation by alum and alum's adjuvant effect are mediated by NLRP3. J Immunol. 181(1):17-<br />

21. 15. Hornung V. et al., 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1activat<strong>in</strong>g<br />

<strong>in</strong>flammasome with ASC. Nature. 458(7237):514-8. 16. Fernandes-Alnemri T. et<br />

al., 2009. AIM2 activates the <strong>in</strong>flammasome and cell death <strong>in</strong> response to cytoplasmic DNA.<br />

Nature. 458(7237):509-13. 17. Bürckstümmer T. et al., 2009. An orthogonal proteomicgenomic<br />

screen identifies AIM2 as a cytoplasmic DNA sensor for the <strong>in</strong>flammasome. Nat<br />

Immunol. 10(3):266-72.<br />

97<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

Inflammasome Inducers & Inhibitors<br />

The <strong>in</strong>flammasome is a multi-prote<strong>in</strong> complex <strong>in</strong>volved <strong>in</strong> the production of mature IL-1b. It is activated by a large variety of microbial molecules,<br />

danger signals and crystall<strong>in</strong>e substances. InvivoGen provides a selection of these molecules known to <strong>in</strong>duce the assembly of the NLRP3 or<br />

AIM2 <strong>in</strong>flammasomes. We also offer some <strong>in</strong>hibitors to confirm the ability of a given molecule to activate the <strong>in</strong>flammasome or to test the<br />

importance of phagocytosis or potassium efflux <strong>in</strong> this process. These <strong>in</strong>flammasome <strong>in</strong>ducers and <strong>in</strong>hibitors have been validated us<strong>in</strong>g the<br />

THP-1/HEK-Blue -IL-1b Assay (see page 100).<br />

98<br />

PRODUCT DESCRIPTION<br />

Inflammasome Inducers<br />

Alum Crystals Alum<strong>in</strong>ium potassium sulfate 10 - 200 μg/ml 1 g tlrl-alk<br />

ATP Adenos<strong>in</strong>e 5′-triphosphate disodium salt 5 mM 1 g tlrl-atp<br />

CPPD Crystals Calcium pyrophosphate dihydrate 50 - 200 μg/ml 5 mg tlrl-cppd<br />

Hemozo<strong>in</strong> NEW Synthetic heme crystal 50 - 400 μg/ml 5 mg tlrl-hz<br />

MSU Crystals Monosodium urate (uric acid) 50 - 200 μg/ml 5 mg tlrl-msu<br />

Nigeric<strong>in</strong> Nigeric<strong>in</strong>, sodium salt 1 μM 10 mg tlrl-nig<br />

Poly(dA:dT), double-stranded B DNA Poly(dA-dT)•poly(dT-dA)/LyoVec complex 1 - 5 μg/ml 100 μg tlrl-pat<br />

Inflammasome Inhibitors<br />

Inflammasome Inducers<br />

Alum Crystals - NLRP3 Inflammasome Inducer<br />

Alum<strong>in</strong>um hydroxide and potassium salts (alum) are commonly used vacc<strong>in</strong>e adjuvants. Adjuvants are vacc<strong>in</strong>e additives that stimulate the immune system<br />

without hav<strong>in</strong>g any specific antigenic effect. Alum has been demonstrated to activate caspase-1 and triggers IL-1b and IL-18 secretion 1 . All alum preparations<br />

conta<strong>in</strong> crystals. The alum-<strong>in</strong>duced release of IL-1b <strong>in</strong> macrophages is dependent on NLRP3 and ASC, <strong>in</strong>dicat<strong>in</strong>g that alum triggers <strong>in</strong>flammation through<br />

activation of the NLRP3 <strong>in</strong>flammasome 2 . Alum has been shown to trigger NLRP3 activation through lysosomal destabilization 2 .<br />

ATP - NLRP3 Inflammasome Inducer<br />

Adenos<strong>in</strong>e triphosphate (ATP), a potassium efflux agent, can trigger the activation of NLRP3 <strong>in</strong>flammasome <strong>in</strong> response to PAMPs, such as LPS and<br />

peptidoglycan. It stimulates the caspase-1-dependent cleavage and secretion of IL-1b from LPS-stimulated cells 3 . ATP triggers the open<strong>in</strong>g of the nonselective<br />

cation channel of the pur<strong>in</strong>ergic P2X7 receptor, followed by the gradual open<strong>in</strong>g of a larger pore. The larger pore is attributed to pannex<strong>in</strong>-1, which<br />

is recruited upon P2X7 receptor activation 4 . Activation of the P2X7 receptor results <strong>in</strong> potassium efflux which is necessary for activation of the posttranslational<br />

maturation of IL-1b 5 .<br />

Hemozo<strong>in</strong> - NLRP3 Inflammasome Inducer NEW<br />

Hemozo<strong>in</strong> is a dark-brown heme crystal produced by the <strong>in</strong>traerythrocytic parasite Plasmodium, the causative agent of malaria. Hemozo<strong>in</strong> is taken up by<br />

macrophages <strong>in</strong>itiat<strong>in</strong>g signals that lead to the production of IL-1b. Hemozo<strong>in</strong>-<strong>in</strong>duced IL-1b production is dependent on the activation of the NLRP3<br />

<strong>in</strong>flammasome 6, 7 . Synthetic hemozo<strong>in</strong> has been shown to possess adjuvant properties that differ depend<strong>in</strong>g on the method of synthesis 8 . InvivoGen provides<br />

a chemically synthesized hemozo<strong>in</strong> us<strong>in</strong>g an acidic method.<br />

MSU & CPPD Crystals - NLRP3 Inflammasome Inducers<br />

Crystals of monosodium urate (MSU) and calcium pyrophosphate dihydrate (CPPD) are the aetiological agents of the <strong>in</strong>flammatory jo<strong>in</strong>t diseases gout<br />

and pseudo-gout, respectively. Both pathogenic crystals have been recently shown to be potent activators of caspase-1 through the NLRP3 <strong>in</strong>flammasome 9 .<br />

Involvement of the <strong>in</strong>flammasome is suggested by the f<strong>in</strong>d<strong>in</strong>g that macrophages from mice deficient <strong>in</strong> various components of the <strong>in</strong>flammasome are<br />

defective <strong>in</strong> crystal-<strong>in</strong>duced IL-1b <strong>in</strong>duction. NLRP3 activation requires the phagocytosis of crystals that leads to lysosomal damage which appears to be<br />

the signal recognized by the <strong>in</strong>flammasome result<strong>in</strong>g <strong>in</strong> its activation 2 .<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>flammasome<br />

WORKING<br />

CONCENTRATION<br />

QUANTITY CATALOG<br />

CODE<br />

Glybenclamide Proton pump <strong>in</strong>hibitor 25 μg/ml 1 g tlrl-gly<br />

Z-VAD-FMK Pan-caspase Inhibitor 10 μg/ml (20 μM) 1 mg tlrl-vad


Nigeric<strong>in</strong> - NLRP3 Inflammasome Inducer<br />

Nigeric<strong>in</strong> is a microbial tox<strong>in</strong> derived from Streptomyces hygroscopicus. Nigeric<strong>in</strong> acts as a potassium ionophore. The release of IL-1b <strong>in</strong> response to nigeric<strong>in</strong><br />

has been demonstrated to be NLRP3-dependent 3 . Similar to ATP, nigeric<strong>in</strong> <strong>in</strong>duces a net decrease <strong>in</strong> <strong>in</strong>tracellular levels of potassium which is crucial for the<br />

activation of caspase-1 5 . Nigeric<strong>in</strong> requires signal<strong>in</strong>g through pannex<strong>in</strong>-1 to <strong>in</strong>duce caspase-1 maturation and IL-1b process<strong>in</strong>g and release 10 .<br />

Poly(dA:dT) - AIM2 Inflammasome Inducer<br />

Poly(dA:dT) is a repetitive synthetic double-stranded DNA sequence of poly(dA-dT)•poly(dT-dA). Poly(dA:dT) is complexed with the cationic lipid<br />

LyoVec to facilitate its uptake. Transfection of macrophages with poly(dA:dT) leads to the production of IL-1b 11 . This response to transfected poly(dA:dT)<br />

is ASC-dependent, but NLRP3 <strong>in</strong>dependent. AIM2 was recently shown to sense poly(dA:dT), form an <strong>in</strong>flammasome with ASC and trigger caspase-1<br />

activation 12-14 . Poly(dA:dT) b<strong>in</strong>ds to AIM2 and <strong>in</strong>duces its oligomerization, which is the first demonstration of an <strong>in</strong>flammasome bound to its ligand 12 .<br />

Inflammasome Inhibitors<br />

Glybenclamide (glyburide) - Proton Pump Inhibitor<br />

Glybenclamide, also known as glyburide, blocks the maturation of caspase-1 and pro-IL-1b by <strong>in</strong>hibit<strong>in</strong>g the K+ efflux 15 . Glybenclamide was shown to potently<br />

block the activation of the NLRP3 <strong>in</strong>flammasome <strong>in</strong>duced by PAMPs, DAMPs and crystall<strong>in</strong>e substances 16, 17 . Recent data suggest that glybenclamide works<br />

downstream of the P2X 7 receptor but upstream of NLRP3 16 .<br />

Z-VAD-FMK - Caspase Inhibitor<br />

Z-VAD-FMK is a cell-permeable pan-caspase <strong>in</strong>hibitor that irreversibly b<strong>in</strong>ds to the catalytic site of caspase proteases 18 . The peptide is O-methylated <strong>in</strong> the<br />

P1 position on aspartic acid, provid<strong>in</strong>g enhanced stability and <strong>in</strong>creased cell permeability. Z-VAD-FMK is used <strong>in</strong> apoptosis studies and also <strong>in</strong> <strong>in</strong>flammasome<br />

studies. It is a potent <strong>in</strong>hibitor of caspase-1 activation <strong>in</strong> NLRP3-<strong>in</strong>duced cells 17 .<br />

1. Li H. et al., 2008. Cutt<strong>in</strong>g Edge: Inflammasome activation by Alum and Alum’s adjuvant effect are mediated by NLRP3. J Immunol. 181:17-21. 2. Hornung V. et al., 2008. Silica crystals and<br />

alum<strong>in</strong>ium salts activate the NALP3 <strong>in</strong>flammasome through phagosomal destabilization. Nature Immunol. 9:847-856. 3. Mariathasan S. et al., 2006. Cryopyr<strong>in</strong> activates the <strong>in</strong>flammasome and<br />

ATP. Nature 440;228-32. 4. Locovei S. et al., 2007. Pannex<strong>in</strong>1 is part of the pore form<strong>in</strong>g unit of the P2X(7) receptor death complex. FEBS Lett. 581(3):483-8. 5. Perregaux D. & Gabel CA.,<br />

1994. Interleuk<strong>in</strong>-1b maturation and release <strong>in</strong> response to ATP and nigeric<strong>in</strong>. J Biol. Chem. 269:15195-15203. 6. Shio MT. et al., 2009. Malarial hemozo<strong>in</strong> activates the NLRP3 <strong>in</strong>flammasome<br />

through Lyn and Syk k<strong>in</strong>ases. PLoS Pathog. 5(8):e1000559. 7. Dostert C. et al., 2009. Malarial hemozo<strong>in</strong> is a Nalp3 <strong>in</strong>flammasome activat<strong>in</strong>g danger signal. PLoS One. 4(8):e6510. 8. Coban<br />

C. et al., 2010. The malarial metabolite hemozo<strong>in</strong> and its potential use as a vacc<strong>in</strong>e adjuvant. Allergol Int. 59(2):115-24. 9. Mart<strong>in</strong>on F. et al., 2006. Gout-associated uric acid crystals activate<br />

the NALP3 <strong>in</strong>flammasome. Nature.440(7081):237-41. 10. Pelegr<strong>in</strong> P, & Surprenant A., 2007. Pannex<strong>in</strong>-1 couples to maitotox<strong>in</strong>- and nigeric<strong>in</strong>-<strong>in</strong>duced <strong>in</strong>terleuk<strong>in</strong>-1beta release through a dye<br />

uptake-<strong>in</strong>dependent pathway. J Biol Chem. 282(4):2386-94. 11. Muruve DA. et al., 2008. The <strong>in</strong>flammasome recognizes cytosolic microbial and host DNA and triggers an <strong>in</strong>nate immune<br />

response. Nature. 452(7183):103-7. 12. Hornung V. et al., 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activat<strong>in</strong>g <strong>in</strong>flammasome with ASC. Nature. 458(7237):514-8.<br />

13. Fernandes-Alnemri T. et al., 2009. AIM2 activates the <strong>in</strong>flammasome and cell death <strong>in</strong> response to cytoplasmic DNA. Nature. 458(7237):509-13. 14. Bürckstümmer T. et al., 2008. An<br />

orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the <strong>in</strong>flammasome. Nat Immunol. 10(3):266-72. 15. Laliberte RE. et al., 1999. ATP treatment of<br />

human monocytes promotes caspase-1 maturation and externalization. J Biol Chem. 274(52):36944-51. 16. Lamkanfi M. et al., 2009. Glyburide <strong>in</strong>hibits the Cryopyr<strong>in</strong>/Nalp3 <strong>in</strong>flammasome.<br />

J. Cell Biol., 187: 61 - 70. 17. Dostert C. et al., 2009. Malarial hemozo<strong>in</strong> is a Nalp3 <strong>in</strong>flammasome activat<strong>in</strong>g danger signal. PLoS One. 4(8):e6510. 18. Slee EA. et al., 1996. Benzyloxycarbonyl-<br />

Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) <strong>in</strong>hibits apoptosis by block<strong>in</strong>g the process<strong>in</strong>g of CPP32. Biochem J. 315 ( Pt 1):21-4.<br />

Contents and Storage<br />

Each product is provided as a solid and shipped at room temperature. Store at room temperature, 4°C or -20°C accord<strong>in</strong>g to the product label.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>flammasome<br />

99<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

HEK-Blue IL-1b Cells - IL-1b Sensor Cells for Inflammasome Studies<br />

Many studies on the <strong>in</strong>flammasome use the human monocytic THP-1 cell l<strong>in</strong>e and Western blot or ELISA for the detection of mature IL-1b. InvivoGen<br />

has developed a new method to detect bioactive IL-1b that is simple, rapid and cost-effective. This method is based on HEK293 cells specifically eng<strong>in</strong>eered to<br />

selectively respond to IL-1b, named HEK-Blue IL-1b.<br />

Description<br />

HEK-Blue IL-1b cells provide a convenient read-out to determ<strong>in</strong>e the<br />

amount of IL-1b secreted by THP-1 cells follow<strong>in</strong>g stimulation by NLRP3<br />

<strong>in</strong>flammasome <strong>in</strong>ducers.<br />

HEK-Blue IL-1b cells feature the SEAP (secreted embryonic alkal<strong>in</strong>e<br />

phosphotase) reporter gene under the control of an NF-kB-<strong>in</strong>ducible<br />

promoter. They naturally express the IL-1b receptor (IL-1R), and all the prote<strong>in</strong>s<br />

<strong>in</strong>volved <strong>in</strong> the MyD88-dependent IL-1R signal<strong>in</strong>g pathway that leads to<br />

NF-kB activation. Thus upon IL-1b b<strong>in</strong>d<strong>in</strong>g to IL-1R, a signal<strong>in</strong>g cascade is<br />

<strong>in</strong>itiated trigger<strong>in</strong>g NF-kB activation and the subsequent production of SEAP.<br />

Detection of SEAP <strong>in</strong> the supernatant of HEK-Blue IL-1b cells can be readily<br />

assessed us<strong>in</strong>g QUANTI-Blue , a SEAP detection medium. QUANTI-Blue <br />

turns blue <strong>in</strong> the presence of SEAP which can be easily quantified us<strong>in</strong>g a<br />

spectrophotometer.<br />

The specificity of the HEK-Blue IL-1b cells for the detection of IL-1b can be<br />

confirmed us<strong>in</strong>g a neutraliz<strong>in</strong>g antibody aga<strong>in</strong>st IL-1b, such as anti-hIL-1b-IgA.<br />

HEK-Blue IL-1b cells are resistant to the selective antibiotics Zeoc<strong>in</strong> and<br />

hygromyc<strong>in</strong> B.<br />

Contents and Storage<br />

HEK-Blue IL-1b cells are grown <strong>in</strong> DMEM medium with 10% FBS, 2mM<br />

L-glutam<strong>in</strong>e, 100 μg/ml Zeoc<strong>in</strong> and 200 μg/ml HygroGold (ultrapure<br />

Hygromyc<strong>in</strong>). Each vial conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied with 10 mg<br />

Zeoc<strong>in</strong> , 10 mg HygroGold and 1 pouch of QUANTI-Blue Cells are<br />

shipped on dry ice.<br />

THP1 cells pretreated with PMA and primed with LPS (1 μg/ml) were stimulated with<br />

ATP (5 mM), nigeric<strong>in</strong> (1 μM), alum (200 μg/ml), MSU (200 μg/ml) or CPPD (200 μg/ml).<br />

After 24h <strong>in</strong>cubation, THP-1 supernatants or recomb<strong>in</strong>ant IL-1b (0.1 ng/ml) were added<br />

to HEK-Blue IL-1b cells. IL-1b-<strong>in</strong>duced NF-kB activation was assessed by measur<strong>in</strong>g the<br />

levels of SEAP <strong>in</strong> the supernatant of HEK-Blue IL-1b cells us<strong>in</strong>g the QUANTI-Blue assay.<br />

100<br />

Related Products<br />

Zeoc<strong>in</strong> , page 18 QUANTI-Blue , see page 14<br />

Anti-hIL-1b-IgA, page 104<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>flammasome<br />

THP-1/HEK-Blue IL-1b Assay<br />

1- Production of IL-1b by THP-1 cells: Typically, THP-1 cells are pretreated with<br />

phorbol 12-myristate acetate (PMA) to become more susceptible to<br />

<strong>in</strong>flammasome activators, then are primed with lipopolysaccharide (LPS). These<br />

treatments <strong>in</strong>duce the production of pro-IL-1b, the immature form of IL-1b.<br />

Subsequent stimulation with <strong>in</strong>flammasome <strong>in</strong>ducers, such as crystals or ATP, leads<br />

to NRLP3 and caspase-1 activation result<strong>in</strong>g <strong>in</strong> IL-1b maturation and secretion.<br />

2- Detection of IL-1b by HEK-Blue IL-1b cells: IL-1b-conta<strong>in</strong><strong>in</strong>g THP-1<br />

supernatants are added to HEK-Blue IL-1b cells lead<strong>in</strong>g to NF-kB activation and<br />

the subsequent production of SEAP. The presence of SEAP <strong>in</strong> HEK-Blue IL-1b<br />

supernatants is assessed us<strong>in</strong>g QUANTI-Blue , a SEAP detection medium.<br />

➥ Detection range for human IL-1b: 100 pg - 100 ng/ml<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IL-1b cells 5-7 x 10 6 cells hkb-il1b


Autophagy is a pathway by which cytoplasmic constituents, <strong>in</strong>clud<strong>in</strong>g<br />

organelles and <strong>in</strong>tracellular pathogens, are sequestred <strong>in</strong> a doublemembrane-bound<br />

autophagosome and delivered to the lysosome for<br />

degradation. The role of autophagy is to elim<strong>in</strong>ate unwanted constituents<br />

from the cell and recycle cytoplasmic material allow<strong>in</strong>g the cell to ma<strong>in</strong>ta<strong>in</strong><br />

macromolecular synthesis and energy homeostatis dur<strong>in</strong>g starvation and<br />

other stressful conditions. The autophagy pathway proceeds through a<br />

series of stages. It starts with the nucleation of the autophagic vesicle<br />

followed by the elongation and closure of the autophagosome membrane<br />

to envelop cytoplasmic constituents. Then the autophagosome docks with<br />

the lysosome lead<strong>in</strong>g to the breakdown of the <strong>in</strong>ner membrane and the<br />

subsequent exposure of the sequestred cytoplasmic material to lysosomal<br />

hydrolases1, 2.<br />

The autophagy pathway requires the concerted action of evolutionarily<br />

conserved genes. Vesicle nucleation depends on a class III<br />

phosphatidyl<strong>in</strong>ositol-3-OH k<strong>in</strong>ase (PI(3)K) complex formed by Becl<strong>in</strong> 1,<br />

Vps34 and other prote<strong>in</strong>s. Atg7 participates <strong>in</strong> two ubiquit<strong>in</strong>-like conjugation<br />

pathways, conjugation of Atg5 to Atg12 and conversion of LC3 to its<br />

phosphatidylethanolam<strong>in</strong>e (PE)-conjugated LC3-II form. The Atg5-Atg12<br />

conjugate forms a large complex with Atg16L1. Both conjugation systems<br />

are required for the generation of the autophagosome.<br />

Autophagy plays a key role <strong>in</strong> the prevention of ag<strong>in</strong>g, cancer and<br />

neurodegeneration but also <strong>in</strong> the <strong>in</strong>nate immune system aga<strong>in</strong>st <strong>in</strong>tracellular<br />

Autophagy Genes<br />

Description<br />

Autophagy genes are provided as open read<strong>in</strong>g frames (cod<strong>in</strong>g sequences)<br />

from the Start codon to the Stop codon. They are cloned <strong>in</strong> the pUNO<br />

plasmid (see page 58) downstream of the EF-1a/HTLV promoter. pUNO<br />

plasmids are selectable <strong>in</strong> E. coli and mammalian cells with blasticid<strong>in</strong>.<br />

Contents and Storage<br />

Each pUNO plasmid is provided as a lyophilized transformed E. coli stra<strong>in</strong><br />

on a paper disk. Transformed stra<strong>in</strong>s are shipped at room temperature and<br />

should be stored at -20°C. They are provided with 4 pouches of E. coli<br />

Fast-Media ® Blas (2 TB and 2 Agar). For more <strong>in</strong>formation about<br />

Fast-Media ® , see pages 44-45.<br />

Autophagy and TLRs<br />

pathogens. Autophagy has been shown to <strong>in</strong>teract with pattern recognition<br />

receptors (PRRs), such as the Toll-like receptors (TLRs). It was recently<br />

reported that the autophagic mach<strong>in</strong>ery can deliver pathogen-associated<br />

molecular patterns (PAMPs) to endosomal TLRs 3 , suggest<strong>in</strong>g that autophagy<br />

enhances TLR recognition of PAMPs. Conversely, TLRs have been shown to<br />

promote autophagy. Several groups have reported the <strong>in</strong>duction of<br />

autophagy by signal<strong>in</strong>g through TLR4, TLR7, TLR3, TLR2 and TLR5 4-6 . TLR<strong>in</strong>duced<br />

autophagy appears to depend on MyD88 and TRIF. Both adapters<br />

trigger autophagy through a direct <strong>in</strong>teraction with Becl<strong>in</strong> 1 (Shi). Autophagy<br />

seems also to participate <strong>in</strong> the regulation of <strong>in</strong>flammation. Macrophages<br />

from mice deficient for Atg16L1 produce more of the pro<strong>in</strong>flammatory<br />

cytok<strong>in</strong>es IL-1b and IL-18 after endotox<strong>in</strong> stimulation of TLR4 7 . These data<br />

demonstrate that <strong>in</strong>duction of autophagy and TLR signal<strong>in</strong>g are connected.<br />

1. Lev<strong>in</strong>e B. & Kroemer G., 2008. Autophagy <strong>in</strong> the pathogenesis of disease. Cell.<br />

132(1):27-42. Review. 2. Mizushima N. et al., 2008. Autophagy fights disease through<br />

cellular self-digestion. Nature. 451(7182):1069-75. Review. 3. Lee HK. et al., 2007.<br />

Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science.<br />

315(5817):1398-401. 4. Xu Y. et al., 2007. Toll-like receptor 4 is a sensor for autophagy<br />

associated with <strong>in</strong>nate immunity. Immunity. 27(1):135-44. 5. Delgado MA,. et al., 2008.<br />

Toll-like receptors control autophagy. EMBO J. 27(7):1110-21. 6. Shi CS. &Kehrl JH.,<br />

2008. MyD88 and Trif target Becl<strong>in</strong> 1 to trigger autophagy <strong>in</strong> macrophages. J Biol Chem.<br />

283(48):33175-82. 7. Saitoh T. et al., 2008. Loss of the autophagy prote<strong>in</strong> Atg16L1<br />

enhances endotox<strong>in</strong>-<strong>in</strong>duced IL-1beta production. Nature. 2456(7219):264-8.<br />

PRODUCT QTY<br />

www.<strong>in</strong>vivogen.com/autophagy<br />

CAT. CODE<br />

(Human)<br />

CAT. CODE<br />

(Mouse)<br />

pUNO1-ATG3 E. coli disk puno1-hatg3 puno1-matg3<br />

pUNO1-ATG4A E. coli disk puno1-hatg4a puno1-matg4a<br />

pUNO1-ATG4B E. coli disk puno1-hatg4b puno1-matg4b<br />

pUNO1-ATG5 E. coli disk puno1-hatg5 puno1-matg5<br />

pUNO1-ATG7 E. coli disk puno1-hatg7 puno1-matg7<br />

pUNO1-ATG10 E. coli disk puno1-hatg10 puno1-matg10<br />

pUNO1-ATG16L1 E. coli disk puno1-hatg16l1 puno1-matg16l1<br />

pUNO1-BECLIN1 E. coli disk puno1-hbecn1 puno1-mbecn1<br />

pUNO1-LC3A E. coli disk puno1-hlc3a puno1-mlc3a<br />

pUNO1-LC3B E. coli disk puno1-hlc3b puno1-mlc3b<br />

101<br />

INNATE IMMUNITY 3


INNATE IMMUNITY 3<br />

pSELECT-GFP-LC3 - GFP-LC3 Expression Plasmid<br />

Description<br />

pSELECT-GFP-LC3 is a mammalian expression vector conta<strong>in</strong><strong>in</strong>g the<br />

human LC3B gene fused at its 5’ end to the green fluorescent prote<strong>in</strong><br />

(GFP) gene. The same plasmid is available with the GFP gene alone as a<br />

control. This control plasmid is called pSELECT-NGFP-zeo. Both plasmids<br />

are selectable <strong>in</strong> bacteria and mammalian cells with Zeoc<strong>in</strong> .<br />

Application<br />

Expression of the GFP-LC3 fusion gene allows to visualize autophagosome<br />

formation <strong>in</strong> real time <strong>in</strong> live cells. Dur<strong>in</strong>g autophagosome formation, GFP-<br />

LC3 is processed and recruited to the autophagosome membrane, where<br />

it can be imaged as cytoplasmic puncta by fluorescence microscopy (see<br />

picture). The percentage of GFP-LC3 positive cells can be determ<strong>in</strong>ed and<br />

is <strong>in</strong>dicative of autophagosome formation.<br />

Contents and Storage<br />

pSELECT-GFP-LC3 and pSELECT-NGFP-zeo are provided as 20 μg of<br />

lyophilized DNA. The plasmids can be purchased <strong>in</strong>dividually or together.<br />

They are shipped at room temperature and should be stored at -20°C.<br />

Both plasmids are provided with 4 pouches of E. coli Fast-Media ® Zeo (2<br />

TB and 2 Agar). For more <strong>in</strong>formation about Fast-Media ® , see pages 44-45.<br />

Autophagy Inducers & Inhibitors<br />

Green puncta represent<strong>in</strong>g<br />

autophagosome formation <strong>in</strong> cells<br />

express<strong>in</strong>g a GFP-LC3 fusion.<br />

PRODUCT QUANTITY CAT. CODE<br />

pSELECT-GFP-LC3 20 μg psetz-gfplc3<br />

pSELECT-NGFP-zeo 20 μg psetz-ngfp<br />

Autophagy is regulated at different levels. Two connected signal<strong>in</strong>g pathways encompass<strong>in</strong>g class III phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase (PI3K) and<br />

mammalian target of rapamyc<strong>in</strong> (mTOR) play a central role <strong>in</strong> this regulation. Autophagy requires PI3K autophagy but is negatively regulated<br />

by mTOR. Thus <strong>in</strong>hibitors of PI3K act as autophagy <strong>in</strong>hibitors while <strong>in</strong>hibitors of mTOR act as autophagy <strong>in</strong>ducers.<br />

PRODUCT DESCRIPTION<br />

Autophagy Inducers<br />

Rapamyc<strong>in</strong> (mTOR <strong>in</strong>hibitor)<br />

Tamoxifen<br />

Autophagy Inhibitors<br />

mimics cellular starvation by block<strong>in</strong>g signals required for<br />

cell growth and proliferation<br />

stimulates autophagy by <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong>tracellular level<br />

of ceramide and abolish<strong>in</strong>g the <strong>in</strong>hibitory effect of PI3K<br />

1. Jung CH. et al., 2010. mTOR regulation of autophagy. FEBS Lett. 584(7):1287-95.<br />

2. Scarlatti F. et al., 2004. Ceramide-mediated macroautophagy <strong>in</strong>volves <strong>in</strong>hibition of<br />

prote<strong>in</strong> k<strong>in</strong>ase B and up-regulation of becl<strong>in</strong> 1. J Biol Chem. 279(18):18384-91. 3.<br />

Blommaart EF. et al., 1997.The phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase <strong>in</strong>hibitors wortmann<strong>in</strong><br />

and LY294002 <strong>in</strong>hibit autophagy <strong>in</strong> isolated rat hepatocytes. Eur. J. Biochem. 243: 240–<br />

246. 4. Yamamoto A. et al., 1998. Bafilomyc<strong>in</strong> A1 prevents maturation of autophagic<br />

vacuoles by <strong>in</strong>hibit<strong>in</strong>g fusion between autophagosomes and lysosomes <strong>in</strong> rat<br />

hepatoma cell l<strong>in</strong>e, H-4-II-E cells. Cell Struct Funct. 23(1):33-42.<br />

WORKING<br />

CONCENTRATION QTY<br />

CATALOG<br />

CODE<br />

10 - 500 nM 5 mg tlrl-rap 1<br />

10 - 100 μM 200 mg tlrl-txf 2<br />

3-Methyladen<strong>in</strong>e (3-MA, PI3K <strong>in</strong>hibitor) <strong>in</strong>hibits the formation of autophagosome 5 mM 50 mg tlrl-3ma 3<br />

Bafilomyc<strong>in</strong> A1 (V-ATPase <strong>in</strong>hibitor) prevents maturation of autophagic vacuoles 0.1 - 1 μM 10 μg tlrl-baf 4<br />

LY294002 (PI3K <strong>in</strong>hibitor) <strong>in</strong>hibits the formation of autophagosome 10 - 100 μM 5 mg tlrl-ly29 3<br />

Wortmann<strong>in</strong> (PI3K <strong>in</strong>hibitor) <strong>in</strong>hibits the formation of autophagosome 0.1 - 10 μM 5 mg tlrl-wtm 3<br />

Contents and Storage<br />

102 www.<strong>in</strong>vivogen.com/autophagy<br />

REF.<br />

Each product is provided as a solid and shipped at room temperature.<br />

Store at room temperature, 4°C or -20°C accord<strong>in</strong>g to the product label.


4<br />

CYTOKINE SIGNALING<br />

Cytok<strong>in</strong>e Genes 104<br />

Cytok<strong>in</strong>e Antibodies 104<br />

Cytok<strong>in</strong>e Reporter Cells 105-116


CYTOKINE SIGNALING 4<br />

Cytok<strong>in</strong>e and Related Genes<br />

Cytok<strong>in</strong>es are key modulators of the immune system. They are produced ma<strong>in</strong>ly by T lymphocytes <strong>in</strong> response to <strong>in</strong>fectious agents. Some<br />

cytok<strong>in</strong>es <strong>in</strong>duce the <strong>in</strong>flammatory response or stimulate B cells to produce antibodies while others act to offset these effects by<br />

downregulation. InvivoGen offers a comprehensive list of cytok<strong>in</strong>e genes classified <strong>in</strong> different families <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>terleuk<strong>in</strong>s and chemok<strong>in</strong>es.<br />

Description<br />

Cytok<strong>in</strong>e and related genes are provided either <strong>in</strong> a pORF or a pUNO<br />

plasmid (see page 37), both conta<strong>in</strong><strong>in</strong>g the complete cod<strong>in</strong>g sequence from<br />

the ATG to the Stop codon. Each gene is fully sequenced.<br />

Gene families <strong>in</strong> pORF plasmids:<br />

- Chemok<strong>in</strong>e genes - Immune receptor genes<br />

- Chemok<strong>in</strong>e receptor genes - Interferon genes<br />

- Cytok<strong>in</strong>e genes - Interleuk<strong>in</strong> genes<br />

- Cytok<strong>in</strong>e suppressor genes - Interleuk<strong>in</strong> receptor genes<br />

Gene family <strong>in</strong> pUNO plasmids:<br />

- Interferon signal<strong>in</strong>g genes<br />

Contents and Storage<br />

Each pORF and pUNO plasmid is provided as a lyophilized transformed<br />

E. coli stra<strong>in</strong> on a paper disk. Transformed stra<strong>in</strong>s are shipped at room<br />

temperature and should be stored at -20°C.<br />

Each pORF is provided with 4 pouches of E. coli Fast-Media ® Amp (2 TB<br />

and 2 Agar) and each pUNO plasmid with 4 pouches of E. coli<br />

Fast-Media ® Blas (see pages 44-45).<br />

PRODUCT QUANTITY CAT. CODE*<br />

pORF- E. coli disk porf-<br />

pUNO- E. coli disk puno-<br />

* Catalog codes are available on our website<br />

Anti-Cytok<strong>in</strong>e Neutraliz<strong>in</strong>g IgA Antibodies<br />

Description<br />

Neutraliz<strong>in</strong>g IgA antibodies are chimeric monoclonal antibodies <strong>in</strong> which<br />

the constant doma<strong>in</strong>s of the human IgA molecule were comb<strong>in</strong>ed with<br />

mur<strong>in</strong>e variable regions. They have been selected for their ability to<br />

efficiently neutralize the biological activity of selected cytok<strong>in</strong>es. The<br />

neutraliz<strong>in</strong>g activity of these IgA antibodies was determ<strong>in</strong>ed us<strong>in</strong>g<br />

InvivoGen’s HEK-Blue Cytok<strong>in</strong>e Cells.<br />

Contents and Storage<br />

Each neutraliz<strong>in</strong>g IgA antibody is provided lyophilized from a 0.2 μm<br />

filtered solution <strong>in</strong> PBS. Product should be reconstituted <strong>in</strong> sterile water.<br />

Lyophilized antibodies are stable greater than six months when stored<br />

at -20ºC. Reconstituted IgAs are stable 1 month when stored at 4ºC and<br />

6 months when aliquoted and stored at -20ºC.<br />

PRODUCT ANTIGEN REACTIVITY QUANTITY<br />

CATALOG<br />

CODE<br />

Anti-hCD40L-IgA2 Human CD40 ligand Human 100 μg maba-h40l<br />

Anti-hIFNa-IgA2 Human Interferon a Human 100 μg maba-hifna<br />

Anti-hIFNg-IgA2 Human Interferon g Human 100 μg maba-hifng<br />

Anti-hIL-1b-IgA2 Human Interleuk<strong>in</strong> 1b Human 100 μg maba-hil1b<br />

Anti-hIL-4-IgA2 Human Interleuk<strong>in</strong> 4 Human 100 μg maba-hil4<br />

Anti-hIL-6-IgA2 Human Interleuk<strong>in</strong> 6 Human 100 μg maba-hil6<br />

Anti-hIL-13-IgA2 Human Interleuk<strong>in</strong> 13 Human 100 μg maba-hil13<br />

Anti-hIL-18-IgA2 Human Interleuk<strong>in</strong> 18 Human 100 μg maba-hil18<br />

Anti-hTGFb-IgA2 Human Tumor Growth Factor b Human 100 μg maba-htgfb<br />

Anti-hTNFa-IgA2 Human Tumor Necrosis Factor a Human 100 μg htnfa-mab7<br />

104 www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-signal<strong>in</strong>g


Blue Cytok<strong>in</strong>e Reporter Cells<br />

Blue Cytok<strong>in</strong>e Reporter Cells is an expand<strong>in</strong>g family of eng<strong>in</strong>eered cell l<strong>in</strong>es designed to provide a simple, rapid<br />

and reliable method to monitor the activation of signal<strong>in</strong>g pathways <strong>in</strong>duced by key cytok<strong>in</strong>es. They allow to detect<br />

these biologically active cytok<strong>in</strong>es and can also be used to screen for compounds exhibit<strong>in</strong>g agonist and antagonist<br />

activities. Blue Cytok<strong>in</strong>e Reporter Cells <strong>in</strong>clude B16-Blue and HEK-Blue Cells. B16-Blue and HEK-Blue Cells<br />

are eng<strong>in</strong>eered mur<strong>in</strong>e melanoma and HEK293 cells, respectively. They express an <strong>in</strong>ducible secreted embryonic<br />

alkal<strong>in</strong>e phosphatase (SEAP) reporter gene that can be quantitatively detected us<strong>in</strong>g QUANTI-Blue , a SEAP<br />

colorimetric detection medium. Blue Cytok<strong>in</strong>e Reporter Cells express this SEAP reporter gene under the control<br />

of specific promoters that are selectively activated by the cytok<strong>in</strong>es or other immune modulators known to <strong>in</strong>duce<br />

the pathway of <strong>in</strong>terest. Therefore, <strong>in</strong> the presence of the cytok<strong>in</strong>e, agonist or antagonist compound, the pathway<br />

is activated or <strong>in</strong>hibited modulat<strong>in</strong>g the SEAP activity. The amount of SEAP secreted <strong>in</strong> the cell supernatant can<br />

be measured spectrophotometrically with QUANTI-Blue .<br />

JAK/STAT Pathway Smad Pathway<br />

• B16-Blue IFN-a/b Cells • HEK-Blue TGF-b Cells<br />

• HEK-Blue IFN-a/b Cells<br />

• HEK-Blue IL-4/IL-13 Cells<br />

• HEK-Blue IL-6 Cells<br />

NF-kB Pathway CD40 Pathway<br />

• HEK-Blue TNF-a/IL-1b Cells • HEK-Blue CD40L Cells<br />

• HEK-Blue IL-1b Cells<br />

• HEK-Blue IL-18/IL-1b Cells<br />

• HEK-Blue IL-33/IL-1b Cells NEW<br />

CYTOKINE SENSOR CELLS IFNa IFNb IFNg IL-1b IL-4 IL-6 IL-13 IL-18 IL-33 TGF-b TNF-a CD40L INFO<br />

B16-Blue IFN-a/b cells +++ +++ - - - - - - - - - - p 106<br />

HEK-Blue CD40L cells - - - +++ - - - - - - +++ ++++ p 115<br />

HEK-Blue IFN-a/b cells +++ +++ - - - - - - - - - - p 107<br />

HEK-Blue IL-1b cells - - - ++++ - - - - - - - - p 111<br />

HEK-Blue IL-4/IL-13 cells +/- - - - ++ - ++ - - - - - p 108<br />

HEK-Blue IL-6 cells - - - - - ++ - - - - - - p 109<br />

HEK-Blue IL-18/IL-1b cells - - - +++ - - - ++++ - - - - p 112<br />

HEK-Blue IL-33/IL-1b cells - - - +++ - - - - ++++ - - - p 113<br />

HEK-Blue TGF-b cells - - - - - - - - - +++ - - p 114<br />

HEK-Blue TNF-a/IL-1b cells - - - +++ - - - - - - ++++ - p 110<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells 105<br />

CYTOKINE SIGNALING 4


CYTOKINE SIGNALING 4<br />

B16-Blue IFN-a/b - Mur<strong>in</strong>e Type I IFNs Reporter Cells<br />

➥ Monitor the JAK/STAT pathway<br />

➥ Monitor the RIG-I/MDA-5 pathway<br />

➥ Detection of mur<strong>in</strong>e IFN-a and IFN-b<br />

Background<br />

Interferon-alpha (IFN-a) and <strong>in</strong>terferon beta (IFN-b), play an important<br />

role <strong>in</strong> viral <strong>in</strong>fections. They b<strong>in</strong>d to an IFN receptor complex consist<strong>in</strong>g of<br />

two alpha cha<strong>in</strong>s (IFNAR1 and IFNAR2) and recruit JAK1 and TyK2. These<br />

k<strong>in</strong>ases phosphorylate STAT1 and STAT2 lead<strong>in</strong>g to the formation of the<br />

ISGF3 complex. ISGF3 b<strong>in</strong>ds to IFN-stimulated response elements (ISRE)<br />

<strong>in</strong> the promoters of IFN-stimulated genes (ISG) to regulate their<br />

expression (figure 1). IFN-a and IFN-b are produced <strong>in</strong> response to viral<br />

pathogen associated molecular patterns (PAMPs), such as viral RNA and<br />

DNA. These PAMPs are recognized by cytoplasmic pattern recognition<br />

receptors <strong>in</strong>clud<strong>in</strong>g the RNA helicases RIG-I or MDA5. Stimulation of<br />

B16-Blue IFN-a/b cells with RIG-I/MDA-5 agonists, such as transfected<br />

poly(I:C), triggers the secretion of IFN-a and IFN-b.<br />

Description<br />

B16-Blue IFN-a/b cells allow the detection of bioactive mur<strong>in</strong>e type I IFNs<br />

by monitor<strong>in</strong>g the activation of the JAK/STAT/ISGF3 pathway. They derive<br />

from the mur<strong>in</strong>e B16 melanoma cell l<strong>in</strong>e of C57B1/6 orig<strong>in</strong> after stable<br />

transfection with a SEAP reporter gene under the control of the IFN-a/b<strong>in</strong>ducible<br />

ISG54 promoter.<br />

Stimulation of B16-Blue IFN-a/b cells with mur<strong>in</strong>e IFN-a or IFN-b, or<br />

type I IFN <strong>in</strong>ducers, such as tranfected poly(I:C) or poly(dA:dT), activates<br />

the JAK/STAT/ISGF3 pathway and triggers the subsequent production of<br />

SEAP (figures 2&3). Levels of SEAP <strong>in</strong> the supernatant can be easily<br />

determ<strong>in</strong>ed with QUANTI-Blue , a medium that turns purple/blue <strong>in</strong> the<br />

presence of SEAP and by read<strong>in</strong>g the OD at 655 nm.<br />

• Detection range for mIFN-a: 10 2 - 10 4 IU/ml<br />

• Detection range for mIFN-b: 10 2 - 10 4 IU/ml<br />

B16-Blue IFN-a/b cells are resistant to Zeoc<strong>in</strong> <br />

Contents and Storage<br />

B16-Blue IFN-a/b cells are grown <strong>in</strong> RPMI medium, 2 mM L-glutam<strong>in</strong>e,<br />

10% FBS supplemented with 100 μg/ml Zeoc<strong>in</strong> . Each vial conta<strong>in</strong>s<br />

5-7x 10 6<br />

cells and is supplied with 10 mg Zeoc<strong>in</strong> , 50 mg Normoc<strong>in</strong> and<br />

1 pouch of QUANTI-Blue . Cells are shipped on dry ice.<br />

PRODUCT QUANTITY CAT. CODE<br />

B16-Blue IFN-a/b cells 5-7 x 10 6 cells bb-ifnab<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17 Anti-hIFN-a-IgA , page 104<br />

Zeoc<strong>in</strong> , page 18 QUANTI-Blue page 14<br />

Poly(I:C) (HMW), page 77 Poly(I:C) (HMW)/LyoVec , page 80<br />

Poly(dA:dT) Naked, page 80 Poly(dA:dT)/LyoVec, page 80<br />

106 www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: JAK/STAT and RIG-I/MDA-5 signal<strong>in</strong>g pathways<br />

Figure 2: Stimulation of B16-Blue IFN-a/b cells by recomb<strong>in</strong>ant human and<br />

mur<strong>in</strong>e IFN-a and IFN-b was assessed by measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g<br />

QUANTI-Blue .<br />

Figure 3: Response of B16-Blue IFN-a/b cells follow<strong>in</strong>g their stimulation with<br />

naked poly(I:C) or poly(:C)/LyoVec. Induction of type I IFNs was assessed by<br />

determ<strong>in</strong><strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .


HEK-Blue IFN-a/b Cells - Human Type I IFN Reporter Cells<br />

➥ Monitor the JAK/STAT/ISGF3 pathway<br />

➥ Detection of human IFN-a and IFN-b<br />

Background<br />

Type I <strong>in</strong>terferons, <strong>in</strong> particular <strong>in</strong>terferon alpha (IFN-a) and <strong>in</strong>terferon beta<br />

(IFN-b), play a vital role <strong>in</strong> host resistance to viral <strong>in</strong>fections. They signal<br />

ma<strong>in</strong>ly through the JAK-STAT pathway. Follow<strong>in</strong>g their production, IFN-a<br />

and IFN-b b<strong>in</strong>d to a common receptor (IFNAR) and recruit the Janus<br />

k<strong>in</strong>ases (JAK1 and TyK2). JAKs phosphorylate STAT1 and STAT2, which<br />

then dimerize and <strong>in</strong>teract with IFN regulatory factor 9 (IRF9), form<strong>in</strong>g a<br />

complex named ISGF3. ISGF3 b<strong>in</strong>ds to IFN-stimulated response elements<br />

(ISRE) <strong>in</strong> the promoters of IFN-stimulated genes (ISG) to regulate their<br />

expression (figure 1).<br />

Description<br />

HEK-Blue IFN-a/b cells allow the detection of bioactive human type I<br />

IFNs by monitor<strong>in</strong>g the activation of the ISGF3 pathway. These cells were<br />

generated by stable transfection of HEK293 cells with the human STAT2<br />

and IRF9 genes to obta<strong>in</strong> a fully active type I IFN signal<strong>in</strong>g pathway. The<br />

other genes of the pathway (IFNAR1, IFNAR2, JAK1, TyK2 and STAT1) are<br />

naturally expressed <strong>in</strong> sufficient amounts. The cells were further transfected<br />

with a SEAP reporter gene under the control of the IFN-a/b-<strong>in</strong>ducible<br />

ISG54 promoter.<br />

Stimulation of HEK-Blue IFN-a/b cells with human IFN-a or IFN-b<br />

activates the JAK/STAT/ISGF3 pathway and subsequently <strong>in</strong>duces the<br />

production of SEAP. Levels of SEAP <strong>in</strong> the supernatant can be easily<br />

determ<strong>in</strong>ed with QUANTI-Blue , a medium that turns purple/blue <strong>in</strong> the<br />

presence of SEAP and by read<strong>in</strong>g the OD at 655 nm (figure 2).<br />

Stimulation of HEK-Blue IFN-a/b cells with recomb<strong>in</strong>ant human IFN-a<br />

can be blocked by anti-hIFN-a-IgA, a neutraliz<strong>in</strong>g monoclonal antibody of<br />

the IgA isotype (see page 104).<br />

• Detection range for hIFN-a: 5 - 10 4 IU/ml<br />

• Detection range for hIFN-b: 20 - 10 4 IU/ml<br />

HEK-Blue IFN-a/b cells are resistant to blasticid<strong>in</strong> and Zeoc<strong>in</strong> .<br />

Contents and Storage<br />

HEK-Blue IFN-a/b cells are grown <strong>in</strong> standard DMEM medium, 2mM<br />

L-glutam<strong>in</strong>e,10% FBS supplemented with blasticid<strong>in</strong> (30 μg/ml) and<br />

Zeoc<strong>in</strong> (100 μg/ml). Cells are provided frozen <strong>in</strong> a cryotube conta<strong>in</strong><strong>in</strong>g<br />

5-7 x 10 6 cells and supplied with 100 μl of blasticid<strong>in</strong> at 10 mg/ml, 100 μl<br />

of Zeoc<strong>in</strong> at 100 mg/ml, 1 ml Normoc<strong>in</strong> at 50 mg/ml, and 1 pouch of<br />

QUANTI-Blue . Cells are shipped on dry ice.<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IFN-a/b cells 5-7x 10 6 cells hkb-ifnab<br />

Figure 1: JAK-STAT pathway <strong>in</strong>duced by type I IFNs.<br />

Figure 2: Stimulation of HEK-Blue IFN-a/b cells by human IFN-a2b, IFN-b1a and<br />

IFN-g was assessed by measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

Related Products<br />

Blasticid<strong>in</strong>, page 17 Anti-hIFN-a-IgA , page 104<br />

Zeoc<strong>in</strong> , page 18 QUANTI-Blue page 14<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells 107<br />

CYTOKINE SIGNALING 4


CYTOKINE SIGNALING 4<br />

108<br />

HEK-Blue IL-4/IL-13 Cells - IL-4 and IL-13 Reporter Cells<br />

➥ Monitor the JAK/STAT-6 pathway<br />

➥ Detection of human IL-4 and human/mur<strong>in</strong>e IL-13<br />

Background<br />

The transcription factor STAT6 is activated primarily by two cytok<strong>in</strong>es<br />

with overlapp<strong>in</strong>g biologic functions, IL-4 and IL-13. It can also be activated<br />

by IFN-a <strong>in</strong> a cell-specific manner. In non-hematopoietic cells, IL-4 and<br />

IL-13 b<strong>in</strong>d a receptor complex composed of the IL-4Ralpha and<br />

IL-13Ralpha1. Upon ligand b<strong>in</strong>d<strong>in</strong>g, the receptor complex activates the<br />

receptor-associated Janus k<strong>in</strong>ases (JAK1 and Tyk2) lead<strong>in</strong>g to the<br />

recruitment of STAT6 and its phosphorylation. Activated STAT6 forms<br />

homodimers that translocate to the nucleus where they b<strong>in</strong>d the<br />

promoter of responsive genes <strong>in</strong>duc<strong>in</strong>g gene transcription.<br />

Description<br />

HEK-Blue IL-4/IL-13 cells allow the detection of bioactive IL-4 and<br />

IL-13 by monitor<strong>in</strong>g the activation of the STAT-6 pathway. These cells<br />

were generated by stable transfection of HEK293 cells with the human<br />

STAT6 gene to obta<strong>in</strong> a fully active STAT6 pathway. The other genes of<br />

the pathway are naturally expressed <strong>in</strong> sufficient amounts. The cells were<br />

further transfected with a SEAP reporter gene under the control of the<br />

IFNb m<strong>in</strong>imal promoter fused to four STAT6 b<strong>in</strong>d<strong>in</strong>g sites. HEK-Blue <br />

IL-4/IL-13 cells produce SEAP <strong>in</strong> response to IL-4 or IL-13 stimulation<br />

and to a lower extent IFN-a. The levels of SEAP secreted <strong>in</strong> the<br />

supernatant can be easily determ<strong>in</strong>ed with QUANTI-Blue , a SEAP<br />

detection medium (Figure 2).<br />

Stimulation of HEK-Blue IL-4/IL-13 cells with IL-4 or IL-13 can be blocked<br />

by the neutraliz<strong>in</strong>g monoclonal anti-hIL-4-IgA and anti-hIL-13-IgA<br />

antibodies, respectively (see page 104).<br />

• Detection range for IL-4: 0.5 - 100 ng/ml<br />

• Detection range for IL-13: 5 - 1000 ng/ml<br />

HEK-Blue IL-4/IL-13 cells are resistant to blasticid<strong>in</strong> and Zeoc<strong>in</strong> .<br />

Contents and Storage<br />

HEK-Blue IL-4/IL-13 cells are grown <strong>in</strong> standard DMEM medium, 2 mM<br />

L-glutam<strong>in</strong>e with 10% FBS supplemented with blasticid<strong>in</strong> (10 μg/ml) and<br />

Zeoc<strong>in</strong> (100 μg/ml). Each vial conta<strong>in</strong>s 5-7 x 10 6 cells and is supplied<br />

with 100 μl of blasticid<strong>in</strong> at 10 mg/ml, 100 μl of Zeoc<strong>in</strong> at 100 mg/ml,<br />

1 ml Normoc<strong>in</strong> at 50 mg/ml and 1 pouch of QUANTI-Blue . Cells are<br />

shipped on dry ice.<br />

HEK-Blue IL-4/IL-13 cells are also available <strong>in</strong> a kit. See below:<br />

HEK-Blue IL-4/IL-13 Kit<br />

• HEK-Blue IL-4/IL-13 Cells 5-7 x 10 6 cells<br />

• Anti-hIL-4-IgA antibody 100 μg<br />

• Anti-hIL-13-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• Blasticid<strong>in</strong> 100 μl (10 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: JAK/STAT6 signal<strong>in</strong>g pathway <strong>in</strong>duced by IL-4 and<br />

IL-13.<br />

Figure 2: Stimulation of HEK-Blue IL-4/IL-13 cells by recomb<strong>in</strong>ant human IL-4 and<br />

IL-13 was assessed by measur<strong>in</strong>g the levels of SEAP secreted <strong>in</strong> the supernatant us<strong>in</strong>g<br />

QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IL-4/IL-13 Cells 5-7 x 10 6 cells hkb-stat6<br />

HEK-Blue IL-4/IL-13 Kit 1 kit hkb-stat6-kit


HEK-Blue IL-6 Cells - IL6 Reporter Cells<br />

➥ Monitor the JAK/STAT-3 pathway<br />

➥ Detection of human IL-6<br />

Background<br />

The pro<strong>in</strong>flammatory cytok<strong>in</strong>e IL-6 is one of the most important<br />

mediators of fever and of the acute phase response. IL-6 exerts its<br />

action by first b<strong>in</strong>d<strong>in</strong>g to the IL-6R. The complex of IL-6 and IL-6R<br />

associates with the signal-transduc<strong>in</strong>g membrane prote<strong>in</strong> gp130, thereby<br />

<strong>in</strong>duc<strong>in</strong>g its dimerization. This leads to the activation by phosphorylation<br />

of the tyros<strong>in</strong>e k<strong>in</strong>ases of the Janus family (JAK1, JAK2, and Tyk2).<br />

Activated JAKs <strong>in</strong>duce the dimerization and translocation to the nucleus<br />

of STAT3 where it b<strong>in</strong>ds enhancer elements of IL-6-<strong>in</strong>ducible genes.<br />

Description<br />

HEK-Blue IL-6 cells allow the detection of bioactive IL-6 by<br />

monitor<strong>in</strong>g the activation of the STAT-3 pathway. These cells were<br />

generated by stable transfection of HEK293 cells with the human<br />

IL-6R gene. They were further transfected with a SEAP reporter gene<br />

under the control of the IFN-b m<strong>in</strong>imal promoter fused to four STAT3<br />

b<strong>in</strong>d<strong>in</strong>g sites. Upon IL-6 stimulation, HEK-Blue IL-6 cells trigger the<br />

activation of STAT3 and the subsequent secretion of SEAP. SEAP can<br />

be readily monitored when us<strong>in</strong>g the SEAP detection medium<br />

QUANTI-Blue .<br />

Stimulation of HEK-Blue IL-6 cells with recomb<strong>in</strong>ant human IL-6 can be<br />

blocked by anti-hIL-6-IgA, a neutraliz<strong>in</strong>g monoclonal antibody of the IgA<br />

isotype (see page 104).<br />

• Detection range for IL-6: 0.5 - 50 ng/ml<br />

HEK-Blue /IL-6 cells are resistant to both hygromyc<strong>in</strong> and Zeoc<strong>in</strong> .<br />

Contents and Storage<br />

HEK-Blue IL-6 cells are grown <strong>in</strong> standard DMEM medium, 2 mM<br />

L-glutam<strong>in</strong>e, 10% FBS supplemented with 200 µg/ml HygroGold<br />

(ultrapure hygromyc<strong>in</strong>) and 100 µg/ml Zeoc<strong>in</strong> . Cells are provided frozen<br />

<strong>in</strong> a cryotube conta<strong>in</strong><strong>in</strong>g 5-7 x 10 6 cells and supplied with 100 µl of<br />

HygroGold at 100 mg/ml, 100 µl of Zeoc<strong>in</strong> at 100 mg/ml, 1 ml<br />

Normoc<strong>in</strong> at 50 mg/ml and 1 pouch of QUANTI-Blue . Cells are<br />

shipped on dry ice.<br />

HEK-Blue IL-6 cells are also available <strong>in</strong> a kit. See below:<br />

HEK-Blue IL-6 Kit<br />

• HEK-Blue IL-6 Cells 5-7 x 10 6 cells<br />

• Anti-hIL-6-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• HygroGold 100 μl (100 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: JAK/STAT3 signal<strong>in</strong>g pathway.<br />

Figure 2: Stimulation of HEK-Blue IL-6 cells by recomb<strong>in</strong>ant human IL-6 was assessed<br />

by measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IL-6 Cells 5-7 x 106 cells hkb-il6<br />

HEK-Blue IL-6 Kit 1 kit hkb-il6-kit<br />

109<br />

CYTOKINE SIGNALING 4


CYTOKINE SIGNALING 4<br />

HEK-Blue TNF-a/IL-1b Cells - TNF-a and IL-1b Reporter Cells<br />

➥ Monitor the TNF-a- and IL-1b-<strong>in</strong>duced NF-kB and AP-1 pathways<br />

➥ Detection of human and mur<strong>in</strong>e TNF-a and IL-1b(a)<br />

Background<br />

Tumor necrosis factor alpha (TNF-a) and <strong>in</strong>terleuk<strong>in</strong> 1 beta (IL-1b) are<br />

pro<strong>in</strong>flammatory cytok<strong>in</strong>es produced <strong>in</strong> response to microbial <strong>in</strong>fection.<br />

The common <strong>in</strong>flammatory responses of TNF-a and IL-1b are mediated<br />

by <strong>in</strong>teractions of these cytok<strong>in</strong>es with dist<strong>in</strong>ct receptors: TNF-a b<strong>in</strong>ds<br />

TNFR1 and TNFR2, IL-1b b<strong>in</strong>ds IL-1RI. B<strong>in</strong>d<strong>in</strong>g of these cytok<strong>in</strong>es to their<br />

receptors <strong>in</strong>duces <strong>in</strong>tracellular signal<strong>in</strong>g. TNF-a signal<strong>in</strong>g <strong>in</strong>volves TRADD,<br />

TRAF2 and RIP, while IL-1b signal<strong>in</strong>g is mediated by MyD88, IRAK-1,<br />

TRAF-6, and Rac1. Both signal<strong>in</strong>gs lead to the activation of the<br />

transcription factors NF-kB and AP-1 (figure 1).<br />

Description<br />

HEK-Blue TNF-a/IL-1b cells are designed to detect bioactive TNF-a and<br />

IL-1b (and IL-1a) by monitor<strong>in</strong>g the activation of the NF-kB pathway.<br />

HEK-Blue TNF-a/IL-1b cells derive from HEK293 cells. They<br />

endogenously express the receptors for TNF-a and IL-1b and stably<br />

express a SEAP reporter gene under the control of the IFN-b m<strong>in</strong>imal<br />

promoter fused to five NF-kB and five AP-1 b<strong>in</strong>d<strong>in</strong>g sites.<br />

HEK-Blue TNF-a/IL-1b cells secrete SEAP upon stimulation by human<br />

TNF-a and IL-1b (figure 2). SEAP production is also detected <strong>in</strong> the<br />

presence of mur<strong>in</strong>e TNF-a and IL-1b, and human or mur<strong>in</strong>e IL-1a. SEAP<br />

levels can be readily determ<strong>in</strong>ed us<strong>in</strong>g a SEAP detection medium, such<br />

as QUANTI-Blue or HEK-Blue Detection medium.<br />

Stimulation of HEK-Blue TNF-a/IL-1b cells with recomb<strong>in</strong>ant human<br />

TNF-a or IL-1b can be blocked by the neutraliz<strong>in</strong>g monoclonal antihTNF-a-IgA<br />

or anti-hIL-1b-IgA antibody, respectively (see page 104).<br />

• Detection range for TNF-a: 0.5 ng - 1 μg/ml<br />

• Detection range for IL-1b: 0.2 - 100 ng/ml<br />

HEK-Blue TNF-a/IL-1b cells are resistant to Zeoc<strong>in</strong> .<br />

Contents and Storage<br />

HEK-Blue TNF-a/IL-1b cells are grown <strong>in</strong> DMEM medium, 2 mM<br />

L-glutam<strong>in</strong>e, 10% FBS supplemented with Zeoc<strong>in</strong> (100 μg/ml). Each vial<br />

conta<strong>in</strong>s 5-7 x 10 6 cells and supplied with 100 μl of Zeoc<strong>in</strong> at 100<br />

mg/ml, 1 ml Normoc<strong>in</strong> at 50 mg/ml and 1 pouch of QUANTI-Blue .<br />

Cells are shipped on dry ice.<br />

HEK-Blue TNF-a/IL-1b cells are also available <strong>in</strong> a kit. See below:<br />

110<br />

HEK-Blue TNF-a/IL-1b Kit<br />

• HEK-Blue TNF-a/IL-1b Cells 5-7 x 10 6 cells<br />

• Anti-hTNF-a-IgA antibody 100 μg<br />

• Anti-hIL-1b-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: NF-kB/AP-1 signal<strong>in</strong>g pathways <strong>in</strong>duced by TNF-a<br />

and IL-1b.<br />

Figure 2: Stimulation of HEK-Blue TNF-a/IL-1b cells by recomb<strong>in</strong>ant human<br />

TNF-a and IL-1b was assessed by measur<strong>in</strong>g the levels of SEAP secreted <strong>in</strong> the<br />

supernatant us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue TNFa/IL-1b Cells 5-7 x 10 6 cells hkb-tnfil1<br />

HEK-Blue TNF-a/IL-1b Kit 1 kit hkb-tnfil1-kit


HEK-Blue IL-1b Cells - IL-1b Reporter Cells<br />

➥ Monitor the IL-1b-<strong>in</strong>duced NF-kB and AP-1 pathways<br />

➥ Detection of human and mur<strong>in</strong>e IL-1b(a)<br />

Background<br />

Interleuk<strong>in</strong>-1b (IL-1b) is an important mediator of the <strong>in</strong>flammatory response<br />

to <strong>in</strong>fection and <strong>in</strong>jury. IL-1b b<strong>in</strong>ds to the type 1 IL-1 receptor (IL-1R) which<br />

requires the IL-1 receptor accessory prote<strong>in</strong> (IL-1RAcP) to transduce a<br />

signal. IL-1b signal<strong>in</strong>g is mediated by MyD88, IRAK-1/2 and TRAF-6 lead<strong>in</strong>g<br />

to the activation of NF-kB and AP-1 (figure 1).<br />

Description<br />

HEK-Blue IL-1b cells allow to detect bioactive IL-1b by monitor<strong>in</strong>g the<br />

activation of the NF-kB and AP-1 pathways. They derive from HEK-Blue <br />

TNF-a/IL-1b cells <strong>in</strong> which the TNF-a response has been blocked.<br />

Therefore, HEK-Blue IL-1b cells respond specifically to IL-1b. They express<br />

a SEAP reporter gene under the control of the IFN-b m<strong>in</strong>imal promoter<br />

fused to five NF-kB and five AP-1 b<strong>in</strong>d<strong>in</strong>g sites.<br />

B<strong>in</strong>d<strong>in</strong>g of IL-1b to its receptor on the surface of HEK-Blue IL-1b cells<br />

triggers the IL1-R signal<strong>in</strong>g pathway lead<strong>in</strong>g to the activation of NF-kB/<br />

AP-1 and the subsequent production of SEAP. The levels of SEAP <strong>in</strong> the<br />

supernatant can be easily monitored us<strong>in</strong>g QUANTI-Blue .<br />

HEK-Blue IL-1b cells respond to IL-1b and also IL-1a (data not shown)<br />

but do not respond to TNF-a (figure 2).<br />

Stimulation of HEK-Blue IL-1b cells with recomb<strong>in</strong>ant human IL-1b can<br />

be blocked by the neutraliz<strong>in</strong>g monoclonal anti-hIL-1b-IgA antibody (see<br />

page 104),<br />

• Detection range for human IL-1b: 100 pg - 100 ng/ml<br />

• Detection range for mur<strong>in</strong>e IL-1b: 10 ng - 1 μg/ml<br />

HEK-Blue IL-1b cells are resistant to Zeoc<strong>in</strong> and hygromyc<strong>in</strong> B.<br />

Contents and Storage<br />

HEK-Blue IL-1b cells are grown <strong>in</strong> DMEM medium, 2 mM L-glutam<strong>in</strong>e, 10%<br />

FBS supplemented with 100 μg/ml Zeoc<strong>in</strong> and 200 μg/ml HygroGold (ultrapure Hygromyc<strong>in</strong>). Each vial conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied<br />

with 10 mg Zeoc<strong>in</strong> , 10 mg HygroGold , 50 mg Normoc<strong>in</strong> and 1 pouch<br />

of QUANTI-Blue Cells are shipped on dry ice.<br />

HEK-Blue IL-1b cells are also available <strong>in</strong> a kit. See below:<br />

HEK-Blue IL-1b Kit<br />

• HEK-Blue IL-1b Cells 5-7 x 10 6 cells<br />

• Anti-hIL-1b-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• HygroGold 100 μl (100 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: IL-1b-<strong>in</strong>duced NF-kB signal<strong>in</strong>g pathway.<br />

Figure 2: Stimulation of HEK-Blue IL-1b cells by human and mur<strong>in</strong>e IL-1b and<br />

human TNF-a was assessed by measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IL-1b Cells 5-7 x 10 6 cells hkb-il1b<br />

HEK-Blue IL-1b Kit 1 kit hkb-il1b-kit<br />

111<br />

CYTOKINE SIGNALING 4


CYTOKINE SIGNALING 4<br />

HEK-Blue IL-18/IL-1b Cells - IL-18/IL-1b Reporter Cells<br />

➥ Monitor the IL-18/IL-1b-<strong>in</strong>duced NF-kB and AP-1 pathways<br />

➥ Detection of IL-18 and IL-1b(a)<br />

Background<br />

Interleuk<strong>in</strong>-1b (IL-1b) and IL-18 are related pro-<strong>in</strong>flammatory cytok<strong>in</strong>es<br />

that cause a wide variety of biological efffects associated with <strong>in</strong>fection,<br />

<strong>in</strong>flammation and autoimmune processes. IL-1b b<strong>in</strong>ds to the type 1 IL-1<br />

receptor which requires the IL-1 receptor accessory prote<strong>in</strong> (IL-1RAcP)<br />

to transduce a signal. IL-18 b<strong>in</strong>ds to an heterodimeric receptor consist<strong>in</strong>g<br />

of IL-18R and IL-18 receptor accessory prote<strong>in</strong> (IL18RAP). IL-1b and IL-<br />

18 share common signal<strong>in</strong>g pathways that <strong>in</strong>volve MyD88, and TRAF-6<br />

lead<strong>in</strong>g to the activation of NF-kB and AP-1 (figure 1).<br />

Description<br />

HEK-Blue IL-18/IL-1b cells are designed to detect bioactive IL-18 and<br />

IL-1b (and IL-1a) by monitor<strong>in</strong>g the activation of the NF-kB and AP-1<br />

pathways. They were generated by stable transfection of HEK-Blue <br />

IL-1b cells with the gene encod<strong>in</strong>g IL-18RAP. They express a SEAP<br />

reporter gene under the control of the IFN-b m<strong>in</strong>imal promoter fused<br />

to five NF-kB and five AP-1 b<strong>in</strong>d<strong>in</strong>g sites.<br />

Stimulation of HEK-Blue IL-18/IL-1b cells with human IL-18 or IL-1b,<br />

but not with human TNF-a, activates the NF-kB and AP-1 pathways<br />

trigger<strong>in</strong>g the production of SEAP (figure 2). Levels of SEAP <strong>in</strong> the<br />

supernatant can be easily determ<strong>in</strong>ed with QUANTI-Blue .<br />

Stimulation of HEK-Blue IL-18/IL-1b cells with recomb<strong>in</strong>ant human<br />

IL-18 or IL-1b can be blocked by the neutraliz<strong>in</strong>g antibodies<br />

anti-hIL-18-IgA and anti-hIL-1b-IgA, respectively (see page 104).<br />

• Detection range for human IL-18: 0.5 - 100 ng/ml<br />

• Detection range for human IL-1b: 0.5 - 100 ng/ml<br />

HEK-Blue IL-18/IL-1b cells are resistant to blasticid<strong>in</strong>, Zeoc<strong>in</strong> and<br />

hygromyc<strong>in</strong> B.<br />

Contents and Storage<br />

HEK-Blue IL-18/IL-1b cells are grown <strong>in</strong> DMEM medium, 2mM<br />

L-glutam<strong>in</strong>e, 10% FBS supplemented with 30 μg/ml blasticid<strong>in</strong>, 100 μg/ml<br />

Zeoc<strong>in</strong> and 200 μg/ml HygroGold (ultrapure Hygromyc<strong>in</strong>). Each vial<br />

conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied with 1 mg blasticid<strong>in</strong>, 10 mg Zeoc<strong>in</strong> ,<br />

10 mg HygroGold , 50 mg Normoc<strong>in</strong> and 1 pouch of QUANTI-Blue Cells are shipped on dry ice.<br />

HEK-Blue IL-18/IL-1b cells are also available <strong>in</strong> a kit, see below:<br />

HEK-Blue IL-18/IL-1b Kit<br />

• HEK-Blue IL-18/IL-1b Cells 5-7 x 10 6 cells<br />

• Anti-hIL-18-IgA antibody 100 μg<br />

• Anti-hIL-1b-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• Blasticid<strong>in</strong> 100 μl (10 mg/ml)<br />

• HygroGold 100 μl (100 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

112 www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: IL-18- and IL-1b--<strong>in</strong>duced signal<strong>in</strong>g pathways.<br />

Figure 2: Stimulation of HEK-Blue IL-18/IL-1b cells by human IL-18, IL-1b and<br />

TNF-a was assessed by measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IL-18/IL-1b Cells 5-7 x 10 6 cells hkb-il18<br />

HEK-Blue IL-18/IL-1b Kit 1 kit hkb-il18-kit


HEK-Blue IL-33/IL-1b Cells - IL-33/IL-1b Reporter Cells NEW<br />

➥ Monitor the IL-33/IL-1b-<strong>in</strong>duced NF-kB and AP-1 pathways<br />

➥ Detection of IL-33 and IL-1b(a)<br />

Background<br />

Interleuk<strong>in</strong>-33 (IL-33) is a member of the IL-1 family, a group of cytok<strong>in</strong>es<br />

that play important roles <strong>in</strong> host defense, immune regulation and<br />

<strong>in</strong>flammation. IL-33 mediates its biological effects through ST2 (also known<br />

as IL1RL1), a receptor expressed on Th2 and mast cells. IL-33 and ST2 form<br />

a complex with IL-1R accessory prote<strong>in</strong> (IL-1RAcP), a signal<strong>in</strong>g receptor<br />

subunit that is also a member of the IL-1R complex. IL-33 signal<strong>in</strong>g leads to<br />

the activation of NF-kB and MAP k<strong>in</strong>ases, and the production of Th2associated<br />

cytok<strong>in</strong>es.<br />

Description<br />

HEK-Blue IL-33/IL-1b cells are designed to detect bioactive IL-33 and<br />

IL-1b (and IL-1a) by monitor<strong>in</strong>g the activation of the NF-kB and AP-1<br />

pathways. They were generated by stable transfection of HEK-Blue <br />

IL-1b cells with the IL1RL1 gene. They express a SEAP reporter gene<br />

under the control of the IFN-b m<strong>in</strong>imal promoter fused to five NF-kB<br />

and five AP-1 b<strong>in</strong>d<strong>in</strong>g sites.<br />

Stimulation of HEK-Blue IL-33/IL-1b cells with human IL-33 or IL-1b,<br />

but not with IL-18 nor TNF-a, activates the NF-kB and AP-1 pathways<br />

trigger<strong>in</strong>g the production of SEAP (figure 2). Levels of SEAP <strong>in</strong> the<br />

supernatant can be easily determ<strong>in</strong>ed with QUANTI-Blue .<br />

Stimulation of HEK-Blue IL-33/IL-1b cells with recomb<strong>in</strong>ant human<br />

IL-1b can be blocked by us<strong>in</strong>g the neutraliz<strong>in</strong>g antibody anti-hIL-1b-IgA.<br />

• Detection range for human IL-33: 0.5 - 100 ng/ml<br />

• Detection range for human IL-1b: 0.5 - 100 ng/ml<br />

HEK-Blue IL-33/IL-1b cells are resistant to blasticid<strong>in</strong>, Zeoc<strong>in</strong> and<br />

hygromyc<strong>in</strong> B.<br />

Contents and Storage<br />

HEK-Blue IL-33/IL-1b cells are grown <strong>in</strong> DMEM medium, 2mM<br />

L-glutam<strong>in</strong>e, 10% FBS supplemented with 30 μg/ml blasticid<strong>in</strong>, 100 μg/ml<br />

Zeoc<strong>in</strong> and 200 μg/ml HygroGold (ultrapure Hygromyc<strong>in</strong>). Each vial<br />

conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied with 1 mg blasticid<strong>in</strong>, 10 mg Zeoc<strong>in</strong> ,<br />

10 mg HygroGold , 50 mg Normoc<strong>in</strong> and 1 pouch of QUANTI-Blue Cells are shipped on dry ice.<br />

Related Products<br />

Figure 1: IL-33- and IL-1b--<strong>in</strong>duced signal<strong>in</strong>g pathways.<br />

Figure 2: Stimulation of HEK-Blue IL-33/IL-1b cells by human IL-33, IL-1b, IL-18<br />

and TNF-a was assessed by measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

Anti-hIL-1b-IgA , page 104 Blasticid<strong>in</strong>, page 17<br />

Normoc<strong>in</strong> , page 11 HygroGold , page 18<br />

QUANTI-Blue , page 14 Zeoc<strong>in</strong> , page 18 PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue IL-33/IL-1b Cells 5-7 x 10 6 cells hkb-il33<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells 113<br />

CYTOKINE SIGNALING 4


CYTOKINE SIGNALING 4<br />

HEK-Blue TGF-b Cells - TGF-b Reporter Cells<br />

➥ Monitor the TGF-b/Smad pathway<br />

➥ Detection of human TGF-b<br />

Background<br />

Tumor growth factor-beta (TGF-b) belongs to a family of structurally<br />

related cytok<strong>in</strong>es that regulate a plethora of cellular functions, such as<br />

proliferation, apoptosis, differentiation and migration. TGF-b b<strong>in</strong>ds to a<br />

type II receptor which recruits and activates a type I receptor. The type I<br />

receptor then phosphorylates receptor-regulated Smads (R-Smads), such<br />

as Smad2 and Smad3, which associate with Smad4. R-Smad/Smad4<br />

complexes accumulate <strong>in</strong> the nucleus where they regulate the<br />

transcription of target genes.<br />

Description<br />

HEK-Blue TGF-b cells allow the detection of bioactive TGF-b by<br />

monitor<strong>in</strong>g the activation of the TGF-b/Smad pathway. They were<br />

generated by stable transfection of HEK293 cells with the human TGFBRI,<br />

Smad3 and Smad4 genes. They further express a SEAP reporter gene<br />

under the control of the b-glob<strong>in</strong> m<strong>in</strong>imal promoter fused to three<br />

Smad3/4-b<strong>in</strong>d<strong>in</strong>g elements (SBE).<br />

Stimulation of HEK-Blue TGF-b cells with TGF-b <strong>in</strong>duces the activation<br />

of the TGF-b/Smad signal<strong>in</strong>g pathway lead<strong>in</strong>g to the formation of a<br />

Smad3/Smad4 complex. The heterocomplex enters the nucleus and b<strong>in</strong>ds<br />

SBE sites <strong>in</strong>duc<strong>in</strong>g the production of SEAP (figure 1). The quantity of SEAP<br />

secreted <strong>in</strong> the supernatant can be easily assessed us<strong>in</strong>g QUANTI-Blue <br />

(figure 2). TGF-b-mediated SEAP production can be blocked us<strong>in</strong>g a<br />

neutraliz<strong>in</strong>g antibody, such as anti-hTGF-b-IgA (see page 104).<br />

• Detection range for TGF-b: 0.1 - 10 ng/ml<br />

HEK-Blue TGF-b cells are resistant to blasticid<strong>in</strong>, hygromyc<strong>in</strong> and<br />

Zeoc<strong>in</strong> .<br />

Contents and Storage<br />

HEK-Blue TGF-b cells are grown <strong>in</strong> DMEM medium, 2 mM L-glutam<strong>in</strong>e,<br />

10% FBS supplemented with 30 μg/ml blasticid<strong>in</strong>, 200 µg/ml HygroGold <br />

(ultrapure hygromyc<strong>in</strong>) and 100 µg/ml Zeoc<strong>in</strong> . Cells are provided frozen<br />

<strong>in</strong> a cryotube conta<strong>in</strong><strong>in</strong>g 5-7 x 10 6 cells and supplied with 100 µl of<br />

blasticid<strong>in</strong> at 10 mg/ml, 100 µl of HygroGold at 100 mg/ml, 100 µl of<br />

Zeoc<strong>in</strong> at 100 mg/ml and 1 pouch of QUANTI-Blue . Cells are shipped<br />

on dry ice.<br />

HEK-Blue TGF-b cells are also available <strong>in</strong> a kit, see below:<br />

HEK-Blue CD40L Kit<br />

• HEK-Blue TGF-b Cells 5-7 x 10 6 cells<br />

• Anti-hTGF-b-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• Blasticid<strong>in</strong> 100 μl (10 mg/ml)<br />

• HygroGold 100 μl (100 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

114 www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

Figure 1: TGF-b-<strong>in</strong>duced Smad signal<strong>in</strong>g pathway<br />

Figure 2: Stimulation of HEK-Blue TGF-b cells by human TGF-b was assessed by<br />

measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue TGF-b Cells 5-7 x 10 6 cells hkb-tgfb<br />

HEK-Blue TGF-b Kit 1 kit hkb-tgfb-kit


HEK-Blue CD40L Cells - CD40L Reporter Cells<br />

➥ Study CD40L-CD40 <strong>in</strong>teractions<br />

➥ Screen for molecules that <strong>in</strong>terfere with CD40L-CD40 cross-talk<br />

Background<br />

CD40 ligand (CD40L) is a member of the tumor necrosis factor (TNF)<br />

family of cell surface <strong>in</strong>teraction molecules. It is ma<strong>in</strong>ly expressed <strong>in</strong><br />

CD4+-T cells and <strong>in</strong>teracts with CD40 on antigen-present<strong>in</strong>g cells to<br />

regulate both humoral and cellular immune responses. CD40L-CD40<br />

<strong>in</strong>teractions are thought to play an important role <strong>in</strong> the pathogenesis of<br />

certa<strong>in</strong> diseases, <strong>in</strong>clud<strong>in</strong>g AIDS, Alzheimer’s disease and rheumatoid<br />

arthritis.<br />

Description<br />

HEK-Blue CD40L cells can serve to measure the bioactivity of CD40L<br />

through the secretion of embryonic alkal<strong>in</strong>e phosphatase (SEAP) upon<br />

NF-kB activation. These cells were generated by stable transfection of<br />

HEK293 cells with the human CD40 gene and an NF-kB-<strong>in</strong>ducible SEAP<br />

construct. The SEAP construct consists of the SEAP reporter gene under<br />

the control of the IFN-b m<strong>in</strong>imal promoter fused to five NF-kB b<strong>in</strong>d<strong>in</strong>g<br />

sites. B<strong>in</strong>d<strong>in</strong>g of CD40L to its receptor CD40 triggers a signal<strong>in</strong>g cascade<br />

lead<strong>in</strong>g to the activation of NF-kB and the subsequent production of<br />

SEAP (figure 1). CD40L-CD40 <strong>in</strong>teraction can be monitored by assess<strong>in</strong>g<br />

the levels of SEAP us<strong>in</strong>g a SEAP detection assay, such as QUANTI-Blue <br />

(figure 2). HEK293 cells express endogenously the receptors for the<br />

cytok<strong>in</strong>es IL-1b and TNF-a which share a common signal<strong>in</strong>g pathway with<br />

CD40L. Consequently, HEK-Blue CD40L cells also respond to IL-1b and<br />

TNF-a. IL-1b- and TNF-a-mediated SEAP production can be blocked<br />

us<strong>in</strong>g neutraliz<strong>in</strong>g antibodies, such as anti-hIL-1b-IgA and anti-hTNF-a-IgA<br />

antibodies respectively (see page 104).<br />

• Detection range for CD40L: 5 ng - 1 μg/ml<br />

HEK-Blue CD40L cells are resistant to the selective antibiotics blasticid<strong>in</strong><br />

and Zeoc<strong>in</strong> .<br />

Contents and Storage<br />

HEK-Blue CD40L cells are grown <strong>in</strong> DMEM medium, 2mM L-glutam<strong>in</strong>e,<br />

10% FBS supplemented with 100 μg/ml Zeoc<strong>in</strong> and 30 μg/ml blasticid<strong>in</strong>.<br />

Each vial conta<strong>in</strong>s 5-7 x 10 6<br />

cells and is supplied with 10 mg Zeoc<strong>in</strong> ,<br />

1 mg blasticid<strong>in</strong>, 50 mg Normoc<strong>in</strong> and 1 pouch of QUANTI-Blue . Cells<br />

are shipped on dry ice.<br />

HEK-Blue CD40L cells are also available <strong>in</strong> a kit, see below: Figure 2: Stimulation of HEK-Blue CD40L cells by human CD40L was assessed by<br />

measur<strong>in</strong>g the levels of SEAP us<strong>in</strong>g QUANTI-Blue .<br />

HEK-Blue CD40L Kit<br />

• HEK-Blue CD40L Cells 5-7 x 10 6 cells<br />

• Anti-hCD40L-IgA antibody 100 μg<br />

• QUANTI-Blue 1 pouch (100 ml)<br />

• Normoc<strong>in</strong> 1 ml (50 mg/ml)<br />

• Blasticid<strong>in</strong> 100 μl (10 mg/ml)<br />

• Zeoc<strong>in</strong> 100 μl (100 mg/ml)<br />

Figure 1: CD40L-<strong>in</strong>duced NF-kB signal<strong>in</strong>g pathway.<br />

PRODUCT QUANTITY CAT. CODE<br />

HEK-Blue CD40L Cells 5-7 x 10 6 cells hkb-cd40<br />

HEK-Blue CD40L Kit 1 kit hkb-cd40-kit<br />

www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells 115<br />

CYTOKINE SIGNALING 4


CYTOKINE SIGNALING 4<br />

HEK-Blue Cytok<strong>in</strong>e Kits<br />

PRODUCT CONTENTS CAT. CODE<br />

HEK-Blue IL-4/IL-13 Kit • HEK-Blue IL-4/IL-13 Cells (5-7 x 10 6 cells) • Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

• Anti-hIL-4-IgA neutraliz<strong>in</strong>g antibody (100 μg) • Blasticid<strong>in</strong> (100 μl @ 10 mg/ml)<br />

• Anti-hIL-13-IgA neutraliz<strong>in</strong>g antibody (100 μg) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

• QUANTI-Blue (1 pouch, 100 ml)<br />

HEK-Blue IL-6 Kit • HEK-Blue IL-6 Cells (5-7 x 10 6 cells) • Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

• Anti-hIL-6-IgA neutraliz<strong>in</strong>g antibody (100 μg) • HygroGold (100 μl @ 100 mg/ml)<br />

• QUANTI-Blue (1 pouch, 100 ml) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

HEK-Blue TNF-a/IL-1b Kit • HEK-Blue TNF-a/IL-1b Cells (5-7 x 10 6 cells) • QUANTI-Blue (1 pouch, 100 ml)<br />

• Anti-hTNF-a-IgA neutraliz<strong>in</strong>g antibody (100 μg) • Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

• Anti-hIL-1b-IgA neutraliz<strong>in</strong>g antibody (100 μg) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

HEK-Blue IL-1b Kit • HEK-Blue IL-1b Cells (5-7 x 10 6 cells) • Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

• Anti-hIL-1b-IgA neutraliz<strong>in</strong>g antibody (100 μg) • HygroGold (100 μl @ 100 mg/ml)<br />

• QUANTI-Blue (1 pouch, 100 ml) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

HEK-Blue IL-18/IL-1b Kit • HEK-Blue IL-18/IL-1b Cells (5-7 x 10 6 cells) • Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

• Anti-hIL-18-IgA neutraliz<strong>in</strong>g antibody (100 μg) • Blasticid<strong>in</strong> (100 μl @ 10 mg/ml)<br />

• Anti-hIL-1b-IgA neutraliz<strong>in</strong>g antibody (100 μg) • HygroGold (100 μl @ 100 mg/ml)<br />

• QUANTI-Blue (1 pouch, 100 ml) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

HEK-Blue TGF-b Kit • HEK-Blue TGF-b Cells (5-7 x 10 6 cells) • Blasticid<strong>in</strong> (100 μl @ 10 mg/ml)<br />

• Anti-hTGF-b-IgA neutraliz<strong>in</strong>g antibody (100 μg) • HygroGold (100 μl @ 100 mg/ml)<br />

• QUANTI-Blue (1 pouch, 100 ml) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

• Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

HEK-Blue CD40L Kit • HEK-Blue CD40L Cells (5-7 x 10 6 cells) • Normoc<strong>in</strong> (1 ml @ 50 mg/ml)<br />

• Anti-hCD40L-IgA neutraliz<strong>in</strong>g antibody (100 μg) • Blasticid<strong>in</strong> (100 μl @ 10 mg/ml)<br />

• QUANTI-Blue (1 pouch, 100 ml) • Zeoc<strong>in</strong> (100 μl @ 100 mg/ml)<br />

Contents and Storage<br />

116 www.<strong>in</strong>vivogen.com/cytok<strong>in</strong>e-sensor-cells<br />

hkb-stat6-kit<br />

hkb-il6-kit<br />

hkb-tnfil1-kit<br />

hkb-il1b-kit<br />

hkb-il18-kit<br />

hkb-tgfb-kit<br />

hkb-cd40-kit<br />

HEK-Blue Cytok<strong>in</strong>e cells are shipped on dry ice. Thaw immediately or store <strong>in</strong> liquid nitrogen. Other products are shipped at room temperature and should<br />

be stored at -20°C.


5<br />

ANTIBODIES & VACCINATION<br />

Antibodies<br />

Vacc<strong>in</strong>ation<br />

Antibody Generation 118<br />

Antibody Isotype Collections 120<br />

IgA Antibodies 121-124<br />

IgG Antibodies 125<br />

Vacc<strong>in</strong>e Adjuvants 126-129<br />

OVA Antigens 129<br />

DNA Vacc<strong>in</strong>ation 130-131


ANTIBODIES & VACCINATION 5<br />

pFUSE-CLIg and pFUSE-CHIg - Antibody Generation<br />

pFUSE-CLIg and pFUSE-CHIg plasmids are designed to change a monoclonal antibody from one isotype to another human or mur<strong>in</strong>e IgG<br />

isotype therefore enabl<strong>in</strong>g the generation of antibodies with the same antigen aff<strong>in</strong>ity but with different effector functions (<strong>in</strong>creased or reduced<br />

ADCC and CDC). Furthermore, they can be used to produce entire IgG antibodies from fragment antigen-b<strong>in</strong>d<strong>in</strong>g (Fab) or s<strong>in</strong>gle-cha<strong>in</strong> variable<br />

fragment (scFv) fragments that are either chimeric, humanized or fully human depend<strong>in</strong>g on the nature of the variable region.<br />

➥ Isotype switch to generate IgG antibodies with different effector functions<br />

➥ Generation of entire IgG antibodies, chimeric, humanized or fully human<br />

Background<br />

Immunoglobul<strong>in</strong> G (IgG) antibodies are large molecules composed of two<br />

heavy cha<strong>in</strong>s g and two light cha<strong>in</strong>s, either k or l. They can be separated<br />

<strong>in</strong> two regions: the Fab (fragment-antigen b<strong>in</strong>d<strong>in</strong>g) that conta<strong>in</strong>s the<br />

variable doma<strong>in</strong> responsible for the antibody specificity, and the Fc<br />

(fragment crystall<strong>in</strong>e) that b<strong>in</strong>ds specific prote<strong>in</strong>s to <strong>in</strong>duce immune<br />

responses such as opsonization and cell lysis.<br />

The IgG class is divided <strong>in</strong> four isotypes: IgG1, IgG2, IgG3 and IgG4 <strong>in</strong> humans,<br />

and IgG1, IgG2a, IgG2b and IgG3 <strong>in</strong> mice. They share more than 95%<br />

homology <strong>in</strong> the am<strong>in</strong>o acid sequences of the Fc regions but show major<br />

differences <strong>in</strong> the am<strong>in</strong>o acid composition and structure of the h<strong>in</strong>ge region.<br />

The Fc region mediates effector functions, such as antibody-dependent cellular<br />

cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In<br />

ADCC, the Fc region of an antibody b<strong>in</strong>ds to Fc receptors (FcgRs) on the<br />

surface of immune effector cells such as natural killers and macrophages,<br />

lead<strong>in</strong>g to the phagocytosis or lysis of the targeted cells. In CDC, the<br />

antibodies kill the targeted cells by trigger<strong>in</strong>g the complement cascade at the<br />

cell surface. IgG isoforms exert different levels of effector functions <strong>in</strong>creas<strong>in</strong>g<br />

<strong>in</strong> the order of IgG4


Antibody generation us<strong>in</strong>g pFUSE-CHIg & pFUSE-CLIg<br />

1- Obta<strong>in</strong><strong>in</strong>g VH and VL sequences<br />

To obta<strong>in</strong> the cDNA sequence of the VH and VL regions from an antibody<br />

produc<strong>in</strong>g hybridoma, total RNA or mRNA is extracted and reverse<br />

transcribed to cDNA. PCR is performed with 5’ degenerate primers to anneal<br />

to the unknown VH and VL regions and the 3’ primers designed to anneal to<br />

the “known“ CH and CL regions. Alternatively 5’ RACE can be used. The<br />

result<strong>in</strong>g amplicons are sequenced.<br />

Contents and Storage<br />

pFUSE-CLIg and pFUSE-CHIg plasmids are provided as 20 μg of lyophilized<br />

DNA. Product is shipped at room temperature and should be stored<br />

at -20°C. Each plasmid is provided with 4 pouches of E. coli Fast-Media ®<br />

Zeo (2 TB and 2 Agar, see pages 44-45).<br />

2- Clon<strong>in</strong>g <strong>in</strong>to pFUSE-CHIg and pFUSE-CLIg<br />

Once the VH and VL sequence are known, <strong>in</strong>serts for clon<strong>in</strong>g <strong>in</strong>to the plasmids<br />

can be generated. When generat<strong>in</strong>g the <strong>in</strong>sert for VH, a Nhe I site must be<br />

<strong>in</strong>troduced at the 3’ end to ma<strong>in</strong>ta<strong>in</strong> the <strong>in</strong>tegrity of the constant region.<br />

Similarly, when generat<strong>in</strong>g the <strong>in</strong>sert for VL, a Bsi WI (human VL) or Bst API<br />

(mouse VL) site must be <strong>in</strong>troduced at the 3’ end. There is a choice of<br />

restriction sites at the 5’ end.<br />

PRODUCT<br />

pFUSE-CLIg<br />

ISOTYPE QUANTITY<br />

CAT. CODE<br />

(No IL2ss)<br />

CAT. CODE NEW<br />

(With IL2ss)<br />

pFUSE2-CLIg-hk Human kappa 20 μg pfuse2-hclk pfuse2ss-hclk<br />

pFUSE2-CLIg-hl2 Human lambda 2 20 μg pfuse2-hcll2 pfuse2ss-hcll2<br />

pFUSE2-CLIg-mk Mouse kappa 20 μg pfuse2-mclk pfuse2ss-mclk<br />

pFUSE2-CLIg-ml1 NEW Mouse lambda 1 20 μg pfuse2-mcll1 pfuse2ss-mcll1<br />

pFUSE2-CLIg-ml2 NEW Mouse lambda 2 20 μg pfuse2-mcll2 pfuse2ss-mcll2<br />

pFUSE2-CLIg-rk1 NEW Rabbit kappa 1 20 μg pfuse2-rclk1 pfuse2ss-rclk1<br />

pFUSE2-CLIg-rk2<br />

pFUSE-CHIg<br />

NEW Rabbit kappa 2 20 μg pfuse2-rclk2 pfuse2ss-rclk2<br />

pFUSE-CHIg-hG1 Human IgG1 20 μg pfuse-hchg1 pfusess-hchg1<br />

pFUSE-CHIg-hG2 Human IgG2 20 μg pfuse-hchg2 pfusess-hchg2<br />

pFUSE-CHIg-hG3 Human IgG3 20 μg pfuse-hchg3 pfusess-hchg3<br />

pFUSE-CHIg-hG4 Human IgG4 20 μg pfuse-hchg4 pfusess-hchg4<br />

pFUSE-CHIg-mG1 Mouse IgG1 20 μg pfuse-mchg1 pfusess-mchg1<br />

pFUSE-CHIg-mG2a Mouse IgG2a 20 μg pfuse-mchg2a pfusess-mchg2a<br />

pFUSE-CHIg-mG2b Mouse IgG2b 20 μg pfuse-mchg2b pfusess-mchg2b<br />

pFUSE-CHIg-mG3 Mouse IgG3 20 μg pfuse-mchg3 pfusess-mchg3<br />

pFUSE-CHIg-rG NEW Rabbit IgG 20 μg pfuse-rchg pfusess-rchg<br />

www.<strong>in</strong>vivogen.com/antibody-generation 119<br />

ANTIBODIES & VACCINATION 5


ANTIBODIES & VACCINATION 5<br />

Antibody Isotype Collections NEW<br />

Immunoglobul<strong>in</strong>s (Ig) are divided <strong>in</strong> isotypes: n<strong>in</strong>e <strong>in</strong> humans (IgG1, IgG2, IgG3, IgG4, IgM, IgA1, IgA2, IgD, IgE) and eight <strong>in</strong> mice (IgG1, IgG2a,<br />

IgG2b, IgG3, IgM, IgA, IgD, IgE). Each isotype displays dist<strong>in</strong>ct structural and effector properties. These properties are key features <strong>in</strong> choos<strong>in</strong>g<br />

the backbone for a therapeutic antibody. To help you decide which Ig isotype is the most suitable for your application, InvivoGen provides two<br />

well-known monoclonal antibodies, anti-hCD20 (rituximab) and anti-hTNF-a (adalimumab), available <strong>in</strong> the most common human and mur<strong>in</strong>e<br />

isotypes. These antibody isotype collections will help you study the effector functions between different isotypes or between the same isotype<br />

of two different species.<br />

Description<br />

The anti-hCD20 and anti-hTNF-a isotype collections consist of<br />

monoclonal antibodies compris<strong>in</strong>g the same variable region, that targets<br />

the human CD20 antigen or human TNF-a cytok<strong>in</strong>e respectively, and the<br />

constant region of different isotypes.<br />

Variable Region<br />

• The Anti-hCD20 isotype collection features the variable region of<br />

rituximab. Rituximab is a mouse/human chimeric monoclonal antibody<br />

that targets the CD20 antigen found on the surface of malignant and<br />

normal B lymphocytes. B<strong>in</strong>d<strong>in</strong>g of rituximab to CD20 results <strong>in</strong> cell<br />

destruction through different mechanisms <strong>in</strong>clud<strong>in</strong>g direct signal<strong>in</strong>g of<br />

apoptosis, complement activation and cell-mediated cytotoxicity.<br />

Rituximab has been approved by the FDA for the treatment of various<br />

lymphoid malignancies, <strong>in</strong>clud<strong>in</strong>g B-cell non-Hodgk<strong>in</strong>'s lymphoma and<br />

B-cell chronic lymphocytic leukaemia.<br />

• The Anti-hTNF-a isotype collection features the variable region of<br />

adalimumab. Adalimumab is a fully human monoclonal antibody aga<strong>in</strong>st<br />

the pro-<strong>in</strong>flammatory cytok<strong>in</strong>e TNF-a. Adalimumab b<strong>in</strong>ds to TNF-a and<br />

blocks its <strong>in</strong>teraction with TNF receptors thereby downregulat<strong>in</strong>g the<br />

<strong>in</strong>flammatory reactions associated with autoimmune diseases.<br />

Adalimumab has been approved by the FDA for the treatment of various<br />

<strong>in</strong>flammatory diseases, such as rheumatoid arthritis and Crohn’s disease.<br />

Constant Region<br />

The constant region consists of the human or mur<strong>in</strong>e kappa light cha<strong>in</strong><br />

and the heavy cha<strong>in</strong> of different isotypes. Eight human and three mur<strong>in</strong>e<br />

isotypes are available:<br />

• human isotypes<br />

- IgG1, IgG2, IgG3, IgG4<br />

- IgM<br />

- IgA1, IgA2<br />

- IgE<br />

• mur<strong>in</strong>e isotypes<br />

- IgG1, IgG2a<br />

- IgA<br />

The anti-hCD20 and anti-hTNF-a isotype collections have been<br />

generated by recomb<strong>in</strong>ant DNA technology. They have been produced<br />

<strong>in</strong> CHO cells and purified by different types of aff<strong>in</strong>ity chormatography:<br />

prote<strong>in</strong> G for IgG isotypes, prote<strong>in</strong> L for IgE and IgM, and peptide M for<br />

IgA isotypes.<br />

Contents and Storage<br />

Each anti-hCD20 and anti-hTNF-a antibody is provided lyophilized from a 0.2<br />

μm filtered buffered solution with stabilizers. Product should be reconstituted<br />

<strong>in</strong> sterile water. Lyophilized antibodies are stable greater than six months when<br />

stored at -20ºC. Reconstituted antibodies are stable 1 month when stored at<br />

4ºC and 6 months when aliquoted and stored at -20ºC.<br />

Name Types Description<br />

IgG 4<br />

IgM 1<br />

IgA 2<br />

IgE 1<br />

120 www.<strong>in</strong>vivogen.com/antibody-isotypes<br />

Major Ig <strong>in</strong> serum, placental transfer<br />

CDC (hIgG3>hIgG1>hIgG2>hIgG4; mIgG2a>mIgG1)<br />

ADCC (hIgG1≥hIgG3>hIgG2≥IgG4; mIgG2a>mIgG1)<br />

Third most common serum Ig, first Ig to be made<br />

Good CDC, some ADCC<br />

Major class <strong>in</strong> secretions, second most common serum Ig<br />

monomer <strong>in</strong> serum, dimer <strong>in</strong> secretions<br />

No CDC, some ADCC<br />

Least common serum Ig, <strong>in</strong>volved <strong>in</strong> allergic reaction<br />

Strong b<strong>in</strong>d<strong>in</strong>g to Fc receptors on basophils, no CDC<br />

PRODUCT ISOTYPE QTY CAT. CODE<br />

Anti-hCD20 isotype collection<br />

Anti-hCD20-hIgG1 Human IgG1 100 μg hcd20-mab1<br />

Anti-hCD20-hIgG2 Human IgG2 100 μg hcd20-mab2<br />

Anti-hCD20-hIgG3 Human IgG3 100 μg hcd20-mab3<br />

Anti-hCD20-hIgG4 Human IgG4 100 μg hcd20-mab4<br />

Anti-hCD20-hIgM Human IgM 100 μg hcd20-mab5<br />

Anti-hCD20-hIgA1 Human IgA1 100 μg hcd20-mab6<br />

Anti-hCD20-hIgA2 Human IgA2 100 μg hcd20-mab7<br />

Anti-hCD20-hIgE Human IgE 100 μg hcd20-mab8<br />

Anti-hCD20-mIgG1 Mouse IgG1 100 μg hcd20-mab9<br />

Anti-hCD20-mIgG2a Mouse IgG2a 100 μg hcd20-mab10<br />

Anti-hCD20-mIgA Mouse IgA 100 μg hcd20-mab11<br />

Anti-hTNF-a isotype collection<br />

Anti-hTNF-a-hIgG1 Human IgG1 100 μg htnfa-mab1<br />

Anti-hTNF-a-hIgG2 Human IgG2 100 μg htnfa-mab2<br />

Anti-hTNF-a-hIgG3 Human IgG3 100 μg htnfa-mab3<br />

Anti-hTNF-a-hIgG4 Human IgG4 100 μg htnfa-mab4<br />

Anti-hTNF-a-hIgM Human IgM 100 μg htnfa-mab5<br />

Anti-hTNF-a-hIgA1 Human IgA1 100 μg htnfa-mab6<br />

Anti-hTNF-a-hIgA2 Human IgA2 100 μg htnfa-mab7<br />

Anti-hTNF-a-hIgE Human IgE 100 μg htnfa-mab8<br />

Anti-hTNF-a-mIgG1 Mouse IgG1 100 μg htnfa-mab9<br />

Anti-hTNF-a-mIgG2a Mouse IgG2a 100 μg htnfa-mab10<br />

Anti-hTNF-a-mIgA Mouse IgA 100 μg htnfa-mab11


Immunoglobul<strong>in</strong> A<br />

The mucosal surfaces represent the largest area of exposure of the body<br />

to external pathogens. Immunoglobul<strong>in</strong> A (IgA), <strong>in</strong> its secretory form, is the<br />

ma<strong>in</strong> effector of the mucosal immune system and provides an important<br />

first l<strong>in</strong>e of defense aga<strong>in</strong>st most pathogens that <strong>in</strong>vade the body at a<br />

mucosal surface 1 . Secretory IgA (SIgA) represents the most abundant<br />

immunoglobul<strong>in</strong> of body secretions such as saliva, tears, colostrum and<br />

gastro<strong>in</strong>test<strong>in</strong>al secretions. The molecular stability and effector immune<br />

functions make SIgA particularly well suited to provide mucosal protection<br />

aga<strong>in</strong>st pathogens.<br />

Light cha<strong>in</strong><br />

Heavy cha<strong>in</strong><br />

J cha<strong>in</strong><br />

Secretory<br />

component<br />

SIgA is produced by plasma cells predom<strong>in</strong>antly as polymeric IgA (pIgA)<br />

consist<strong>in</strong>g of two or more monomers l<strong>in</strong>ked by the J (jo<strong>in</strong><strong>in</strong>g) cha<strong>in</strong>. pIgA<br />

is actively transported by the epithelial polymeric Ig receptor (pIgR) and<br />

released <strong>in</strong>to mucosal secretions with a bound secretory component (the<br />

extracellular doma<strong>in</strong> of the pIgR) that protects the molecule from<br />

proteolytic enzymes. IgA mediates a variety of protective functions 2, 3 .<br />

Lum<strong>in</strong>al SIgA is believed to <strong>in</strong>terfere with pathogen adherence to mucosal<br />

epithelial cells, a process called immune exclusion. In addition, IgA appears<br />

to have two other defense functions: <strong>in</strong>tracellular neutralization, and virus<br />

excretion. In response to cont<strong>in</strong>uous stimulation by microbes, the IgA<br />

repertoire is spontaneously diversified by somatic hypermutation (SHM).<br />

IgA that has undergone defective SHM can neither regulate <strong>in</strong>test<strong>in</strong>al<br />

microbial homeostasis nor effectively protect the host from pathogens<br />

emphasiz<strong>in</strong>g the importance of IgA <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>in</strong>test<strong>in</strong>al homeostasis<br />

and efficient mucosal defense 4 . IgA is also found as a monomer <strong>in</strong> the serum<br />

where it may function as a second l<strong>in</strong>e of defence by elim<strong>in</strong>at<strong>in</strong>g pathogens<br />

that have breached the mucosal surface. Serum IgA <strong>in</strong>teracts with an Fc<br />

receptor called FcaR1 trigger<strong>in</strong>g antibody-dependent-cell-mediated<br />

cytotoxicity (ADCC).<br />

Due to their specific effector functions, IgA present an <strong>in</strong>terest<strong>in</strong>g therapeutic<br />

potential for mucosal protection aga<strong>in</strong>st virus and bacteria. Indeed,<br />

monoclonal IgA antibodies have been shown to be efficient <strong>in</strong> protect<strong>in</strong>g<br />

aga<strong>in</strong>st <strong>in</strong>fection by various bacteria 5 and viruses, <strong>in</strong>clud<strong>in</strong>g HIV-1 6-7 .<br />

Despite this great potential and <strong>in</strong> contrast to monoclonal antibodies<br />

(MAbs) of the IgG isotype, their development as research tools or human<br />

therapeutics has been scarce. This is mostly due to the difficulties<br />

encountered <strong>in</strong> produc<strong>in</strong>g and purify<strong>in</strong>g biologically active IgA. IgA MAbs<br />

can hardly be obta<strong>in</strong>ed through the classical hybridoma technique that<br />

<strong>in</strong>volves the fusion between mur<strong>in</strong>e splenocytes and myeloma cells 8 . Studies<br />

of IgA would be much facilitated by the availability of a simple method to<br />

isolate and detect IgA.<br />

www.<strong>in</strong>vivogen.com/iga<br />

As a specialist of the Toll-like receptors (TLRs) and <strong>in</strong>nate immunity,<br />

InvivoGen believes that IgA is a new hot topic <strong>in</strong> this field and therefore is<br />

<strong>in</strong>itiat<strong>in</strong>g a vast IgA program. In this regard, we are us<strong>in</strong>g two <strong>in</strong>novative<br />

methods to generate IgA MAbs. The first relies on the use of a transgenic<br />

mouse, named Ca, obta<strong>in</strong>ed through <strong>in</strong>sertion of the human a1 gene <strong>in</strong><br />

place of the switch sequence Sμ 8 , that allows the isolation of primarily<br />

chimeric IgA MAbs via the classical hybridoma technique. The second<br />

comb<strong>in</strong>es hybridoma and recomb<strong>in</strong>ant DNA technologies and <strong>in</strong>volves an<br />

IgG-IgA class-switch. In both methods, mice are DNA immunized with a<br />

plasmid express<strong>in</strong>g the antigen, and IgA- or IgG-produc<strong>in</strong>g hybridomas are<br />

screened us<strong>in</strong>g a neutraliz<strong>in</strong>g assay based on eng<strong>in</strong>eered cell l<strong>in</strong>es<br />

(HEK-Blue Cells). IgA antibodies are purified by Prote<strong>in</strong> L aff<strong>in</strong>ity<br />

chromatography. Prote<strong>in</strong> L is a bacterial prote<strong>in</strong> that b<strong>in</strong>ds antibodies<br />

through k light cha<strong>in</strong> <strong>in</strong>teractions. These techniques have been utilized to<br />

generate a first series of IgA MAbs that target the extra-cellular TLRs and<br />

key cytok<strong>in</strong>es of the <strong>in</strong>nate immune system. These IgA MAbs display potent<br />

neutraliz<strong>in</strong>g activities and can be used for flow cytometry, and thus<br />

represent useful research tools. Many more IgA MAbs are <strong>in</strong> the pipel<strong>in</strong>e,<br />

some with potential therapeutic applications.<br />

1. Cerutti A. et al., 2010. Immunoglobul<strong>in</strong> Responses at the Mucosal Interfaces. Annu Rev<br />

Immunol. [Epub ahead of pr<strong>in</strong>t]. 2. Woof JM. & Kerr MA., 2007. The function of<br />

immunoglobul<strong>in</strong> A <strong>in</strong> immunity. J Pathol. 208(2):270-82. Review. 3. Fagarasan et al., 2010.<br />

Adaptive immune regulation <strong>in</strong> the gut: T cell-dependent and T cell-<strong>in</strong>dependent IgA<br />

synthesis. Annu. Rev. Immnuol. 28: 740-273. 4. Wei M. et al., 2011. Mice carry<strong>in</strong>g a knock<strong>in</strong><br />

mutation of Aicda result<strong>in</strong>g <strong>in</strong> a defect <strong>in</strong> somatic hypermutation have impaired gut<br />

homeostasis and compromised mucosal defense. Nat Immunol. [Epub ahead of pr<strong>in</strong>t]. 5.<br />

Tokuhara D. et al, 2010. Secretory IgA-mediated protection aga<strong>in</strong>st V. cholerae and heatlabile<br />

enterotox<strong>in</strong>-produc<strong>in</strong>g enterotoxigenic Escherichia coli by rice-based vacc<strong>in</strong>e. PNAS<br />

107(19):8794-9. 6. Planque S. et al., 2010. Neutralization of genetically diverse HIV-1 stra<strong>in</strong>s<br />

by IgA antibodies to the gp120-CD4-b<strong>in</strong>d<strong>in</strong>g site from long-term survivors of HIV <strong>in</strong>fection.<br />

AIDS 24(6): 875-84. 7. Mantis NJ. et al., 2007. Inhibition of HIV-1 Infectivity and Epithelial<br />

Cell Transfer by Human Monoclonal IgG and IgA Antibodies Carry<strong>in</strong>g the b12 V Region. J.<br />

Immunol. 179: 3144 - 3152. 8. Cogne M. et al., 2007. Non-Human Transgenic Mammal for<br />

the Constant Region of the Class a Human Immunoglobul<strong>in</strong> Heavy Cha<strong>in</strong> and Applications<br />

Thereof. US2007248601.<br />

IgA Product L<strong>in</strong>e<br />

IgA Antibodies<br />

• Anti-Cytok<strong>in</strong>e IgAs<br />

• Anti-TLR IgAs<br />

• Control IgA<br />

IgA Purification<br />

• Peptide M / Agarose<br />

• SSL7 / Agarose<br />

• Jacal<strong>in</strong> / Agarose<br />

• Prote<strong>in</strong> L / Agarose<br />

IgA Detection & Quantification<br />

• Kappa Light Cha<strong>in</strong><br />

• IgA Heavy Cha<strong>in</strong><br />

• J Cha<strong>in</strong> Antiserum<br />

Page<br />

124<br />

124<br />

124<br />

122<br />

122<br />

122<br />

122<br />

123<br />

123<br />

123<br />

121<br />

ANTIBODIES & VACCINATION 5


ANTIBODIES & VACCINATION 5<br />

IgA Antibody Purification<br />

Prote<strong>in</strong> G and Prote<strong>in</strong> A are currently used to purify IgG antibodies, but these supports are not appropriate for IgA antibody purification. For<br />

fast and efficient purification of IgA antibodies from biological samples, InvivoGen provides now four different methods, Peptide M, SSL7, Jacal<strong>in</strong>,<br />

and Prote<strong>in</strong> L. The correct choice of purification method depends upon the IgA subclass of the antibody, the species <strong>in</strong> which it was raised and<br />

the <strong>in</strong>tended use of the antibodies. Antibodies from tissue culture supernatant, serum or ascites can be purified us<strong>in</strong>g one or more of the<br />

follow<strong>in</strong>g antibody b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s offered by InvivoGen.<br />

Peptide M / Agarose - IgA1 and IgA2 purification<br />

Peptide M is a 50 aa synthetic peptide derived from a streptococcal M prote<strong>in</strong> conta<strong>in</strong><strong>in</strong>g an additional C-term<strong>in</strong>al cyste<strong>in</strong>e residue. Peptide M b<strong>in</strong>ds<br />

monomeric and dimeric human IgA of both subclasses (IgA1 and IgA2) with high specificity and aff<strong>in</strong>ity. It also b<strong>in</strong>ds bov<strong>in</strong>e IgA but not mur<strong>in</strong>e IgA. Peptide<br />

M b<strong>in</strong>d<strong>in</strong>g occurs at a site <strong>in</strong> IgA-Fc conserved <strong>in</strong> human IgA1 and IgA2 and bov<strong>in</strong>e IgA but not <strong>in</strong> mouse IgA. Peptide M can be used for s<strong>in</strong>gle-step aff<strong>in</strong>ity<br />

purification of IgA and for specific detection of antigen-bound IgA 1 .<br />

B<strong>in</strong>d<strong>in</strong>g capacity: 6 mg human IgA per ml of gel<br />

SSL7 / Agarose - IgA1 and IgA2 purification<br />

SSL7 (Staphylococcus aureus superantigen-like prote<strong>in</strong> 7; formally known as SET1), is a staphylococcus tox<strong>in</strong> isolated from Staphylococcus aureus. SSL7 b<strong>in</strong>ds<br />

with a high aff<strong>in</strong>ity to the monomeric form of human IgA1 and IgA2. SSL7 has no aff<strong>in</strong>ity for human IgG, therefore, it can be used to purify human IgA from<br />

human sera, milk and other biological samples 2,3 . SSL7 also b<strong>in</strong>ds the secretory form of IgA found <strong>in</strong> milk from humans, cows, and sheep. SSL7 will b<strong>in</strong>d<br />

bov<strong>in</strong>e IgA antibodies present <strong>in</strong> milk, but not bov<strong>in</strong>e IgA present <strong>in</strong> serum. SSL7 does not b<strong>in</strong>d mouse, rabbit, sheep or goat IgA present <strong>in</strong> serum 2 .<br />

B<strong>in</strong>d<strong>in</strong>g capacity: 1 mg human IgA per ml of gel<br />

Jacal<strong>in</strong> / Agarose - IgA1 purification<br />

Jacal<strong>in</strong> is an a D-galactose b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> extracted from jack-fruit seeds (Artocarpus <strong>in</strong>tegrifolia). Jacal<strong>in</strong> immobilized on supports such as agarose is useful for the<br />

purification of human serum or secretory IgA1 4,5 . IgA can be separated from human IgG and IgM <strong>in</strong> human serum or colostrums us<strong>in</strong>g Immobilized Jacal<strong>in</strong>. This<br />

support is also useful for remov<strong>in</strong>g contam<strong>in</strong>at<strong>in</strong>g IgA from IgG samples. Additionally, Jacal<strong>in</strong> b<strong>in</strong>ds IgD 4 . Jacal<strong>in</strong> can also be used to separate IgA1 subclass from IgA2 5 .<br />

B<strong>in</strong>d<strong>in</strong>g capacity: 1-3 mg human IgA per ml of gel<br />

Prote<strong>in</strong> L / Agarose - k light cha<strong>in</strong> specific<br />

Prote<strong>in</strong> L is an immunoglobul<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> expressed by the anaerobic bacterial species Peptostreptococcus magnus 6 . Prote<strong>in</strong> L b<strong>in</strong>ds specifically to the variable<br />

doma<strong>in</strong> of Ig k light cha<strong>in</strong>, as a consequence Prote<strong>in</strong> L has the capacity to purifiy k light conta<strong>in</strong><strong>in</strong>g IgA antibodies 7 . It b<strong>in</strong>ds strongly to human k light cha<strong>in</strong> subclasses<br />

I, III and IV, and also to most k light cha<strong>in</strong>s of other species such as rat and mouse. As it recognizes k light cha<strong>in</strong>s, prote<strong>in</strong> L can b<strong>in</strong>d to all classes of Ig, <strong>in</strong> contrast to<br />

Prote<strong>in</strong> A and Prote<strong>in</strong> G which <strong>in</strong>teract with the Fc region and b<strong>in</strong>d exclusively to IgG heavy cha<strong>in</strong>s. Prote<strong>in</strong> L does not b<strong>in</strong>d bov<strong>in</strong>e immunoglobul<strong>in</strong>s which are<br />

present <strong>in</strong> the fetal bov<strong>in</strong>e serum (FBS) and thus provides a convenient way to purify k light cha<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g monoclonal antibodies from culture supernatant.<br />

B<strong>in</strong>d<strong>in</strong>g capacity >5 mg of human IgA/IgG per ml of gel<br />

PRODUCT<br />

Human k<br />

light cha<strong>in</strong><br />

Human l<br />

light cha<strong>in</strong><br />

Human<br />

IgA1<br />

Human<br />

IgA2<br />

Human<br />

IgG<br />

Human<br />

IgM<br />

Human<br />

IgE<br />

Human<br />

IgD<br />

Mouse<br />

IgA<br />

Rat IgA Bov<strong>in</strong>e<br />

IgA<br />

Peptide M - - ++++ ++++ - - n/a n/a - n/a +<br />

SSL7 - - ++++ ++++ - - n/a - - ++++<br />

Jacal<strong>in</strong> - - ++++ -/+ - n/a n/a +++ - - -<br />

Prote<strong>in</strong> L ++++ - ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ -<br />

1. Sand<strong>in</strong> C. et al., 2002. Isolation and detection of human IgA us<strong>in</strong>g a streptococcal IgAb<strong>in</strong>d<strong>in</strong>g<br />

peptide. J Immunol. 169(3):1357-64. 2. Langley et al., 2005. The staphylococcal<br />

superantigen-like prote<strong>in</strong> 7 b<strong>in</strong>ds IgA and complement C5 and <strong>in</strong>hibits IgA-Fc alpha RI<br />

b<strong>in</strong>d<strong>in</strong>g and serum kill<strong>in</strong>g of bacteria. J Immunol 174 :2926-2933. 3. Ramsland PA. et al.,<br />

2007. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed <strong>in</strong><br />

the complex of SSL7 with Fc of human IgA1. PNAS 104:15051-15056. 4. Aucouturier P.<br />

et al., 1998. Jacal<strong>in</strong>, the human IgA1 and IgD precipitat<strong>in</strong>g lect<strong>in</strong>, also b<strong>in</strong>ds IgA2 of both<br />

allotypes. J Immnuol Methods 113:185-191. 5. Gregory RL. et al., 1987. Separation of<br />

human IgA1 and IgA2 us<strong>in</strong>g jacal<strong>in</strong>-agarose chromatography. J Immunol Meth 99:101-106.<br />

6. Björck L., 1988. Prote<strong>in</strong> L. A novel bacterial cell wall prote<strong>in</strong> with aff<strong>in</strong>ity for Ig L cha<strong>in</strong>s.<br />

J Immunol. 1988 Feb 15;140(4): 1194-7. 7. Nilson BH. et al., 1993. Purification of antibodies<br />

us<strong>in</strong>g prote<strong>in</strong> L-b<strong>in</strong>d<strong>in</strong>g framework structures <strong>in</strong> the light cha<strong>in</strong> variable doma<strong>in</strong>. J Immunol<br />

Methods. 164(1):33-40.<br />

- (serum)<br />

+ (milk)<br />

PRODUCT QUANTITY CAT. CODE<br />

Peptide M / Agarose<br />

SSL7 / Agarose<br />

Jacal<strong>in</strong> / Agarose<br />

Prote<strong>in</strong> L / Agarose<br />

122 www.<strong>in</strong>vivogen.com/iga-purification<br />

2 ml<br />

5 ml<br />

2 ml<br />

10 ml<br />

2 ml<br />

5 ml<br />

2 ml<br />

10 ml<br />

gel-pdm-2<br />

gel-pdm-5<br />

gel-ssl-2<br />

gel-ssl-10<br />

gel-jac-2<br />

gel-jac-5<br />

gel-protl-2<br />

gel-protl-10


IgA Detection and Quantification<br />

InvivoGen provides all the reagents necessary to detect and quantify the light and heavy cha<strong>in</strong>s of IgA antibodies by sandwich ELISA: capture<br />

antibodies, revelation antibodies and IgA standards. InvivoGen offers also a polyclonal rabbit antiserum to human J cha<strong>in</strong> for the detection of<br />

dimeric IgA.<br />

IgA k Light Cha<strong>in</strong> for Sandwich ELISA<br />

Goat F(ab’)2 anti-human kappa - Capture antibody<br />

Goat F(ab’)2 anti-human kappa was generated from antibodies isolated<br />

from antisera of goats hyperimmunized with human myeloma prote<strong>in</strong>s<br />

conta<strong>in</strong><strong>in</strong>g k light cha<strong>in</strong>s. Antibodies were purified by aff<strong>in</strong>ity<br />

chromatography and digested by peps<strong>in</strong> to remove the Fc portion, to<br />

avoid non-specific b<strong>in</strong>d<strong>in</strong>g through Fc receptors.<br />

Goat F(ab’)2 anti-human kappa allows the capture of k light cha<strong>in</strong>conta<strong>in</strong><strong>in</strong>g<br />

human IgA antibodies.<br />

Goat anti-human kappa - HRP - Revelation antibody<br />

Goat anti-human kappa-HRP is conjugated with horseradish peroxidase<br />

to allow the detection of human IgA kappa light cha<strong>in</strong> by ELISA.<br />

Human IgA kappa - IgA light cha<strong>in</strong> standard<br />

Human IgA kappa is a human IgAk isotype control purified from human<br />

myeloma serum.<br />

IgA Heavy Cha<strong>in</strong> for Sandwich ELISA<br />

Goat F(ab’)2 anti-human IgA - Capture antibody<br />

Goat F(ab’)2 anti-human IgA was generated from antibodies isolated from<br />

antisera of goats hyperimmunized with human IgA paraprote<strong>in</strong>s. Antibodies<br />

were purified by aff<strong>in</strong>ity chromatography and digested by peps<strong>in</strong> to remove<br />

the Fc portion, to avoid non-specific b<strong>in</strong>d<strong>in</strong>g through Fc receptors.<br />

Goat F(ab’)2 anti-human IgA allows the capture of the heavy cha<strong>in</strong> of<br />

human IgA antibodies.<br />

Goat anti-human IgA - HRP - Revelation antibody<br />

Goat anti-human IgA-HRP is conjugated with horseradish peroxidase to<br />

allow the detection of human IgA heavy cha<strong>in</strong> by ELISA.<br />

Human IgA from colostrum - IgA standard<br />

Human IgA is isolated from pooled normal human colostrum by<br />

fractionation and ion-exchange chromatography.<br />

J Cha<strong>in</strong> Antiserum<br />

J cha<strong>in</strong> antiserum was prepared by <strong>in</strong>jection of purified human J cha<strong>in</strong><br />

<strong>in</strong> rabbits. Human J cha<strong>in</strong> is dist<strong>in</strong>ct from all other cha<strong>in</strong> components<br />

of polymeric IgA. J cha<strong>in</strong> antiserum can be used for the detection of<br />

dimeric IgA by Western blott<strong>in</strong>g (work<strong>in</strong>g dilution 1:1,000).<br />

Contents and Storage<br />

J cha<strong>in</strong> antiserum is provided as 100 μg lyophilized antiserum. J cha<strong>in</strong><br />

antiserum is sterile and azide-free. Product is shipped at room<br />

temperature and should be stored at -20°C or 4°C once resuspended.<br />

Contents and Storage<br />

Goat F(ab’)2 anti-human kappa is provided as 0.5 mg of purified<br />

immunoglobul<strong>in</strong> <strong>in</strong> 1.0 ml of 100 mM borate buffered sal<strong>in</strong>e, pH 8.0.<br />

Goat anti-human kappa-HRP is supplied as 1.0 ml of stock solution <strong>in</strong><br />

50% glycerol/50% PBS, pH 7.4.<br />

Human IgA kappa is provided filtered sterile at a concentration of 0.5<br />

mg/ml <strong>in</strong> 1.0 ml of 100 mM borate buffered sal<strong>in</strong>e, pH 8.0.<br />

Products are shipped at room temperature and should be stored at 4°C.<br />

PRODUCT QTY CAT. CODE<br />

Goat F(ab’)2 anti-human kappa 0.5 mg fab-igak<br />

Goat anti-human kappa - HRP 1 ml hrp-igak<br />

Human IgA kappa 0.5 mg ctrl-igak<br />

Contents and Storage<br />

Goat F(ab’)2 anti-human IgA is provided as 0.5 mg of purified<br />

immunoglobul<strong>in</strong> <strong>in</strong> 1.0 ml of 100 mM borate buffered sal<strong>in</strong>e, pH 8.0.<br />

Goat anti-human IgA-HRP is supplied as 1.0 ml of stock solution <strong>in</strong> 50%<br />

glycerol/50% PBS, pH 7.4.<br />

Human IgA is supplied as an essentially salt-free, lyophilized powder.<br />

Products are shipped at room temperature and should be stored at 4°C.<br />

PRODUCT QTY CAT. CODE<br />

Goat F(ab’)2 anti-human IgA 0.5 mg fab-iga<br />

Goat anti-human IgA - HRP 1 ml hrp-iga<br />

Human IgA 0.5 mg ctrl-iga<br />

PRODUCT QTY CAT. CODE<br />

J Cha<strong>in</strong> Antiserum 100 μg pab-jc<br />

www.<strong>in</strong>vivogen.com/iga-detection 123<br />

ANTIBODIES & VACCINATION 5


ANTIBODIES & VACCINATION 5<br />

124<br />

IgA Antibodies<br />

InvivoGen provides human IgA antibodies that have been generated by recomb<strong>in</strong>ant DNA technology. These IgA antibodies are chimeric monoclonal<br />

antibodies composed of the constant doma<strong>in</strong>s of the human IgA2 molecule and variable regions of different orig<strong>in</strong>s. They have been selected for<br />

their ability to efficiently neutralize the biological activity of selected cytok<strong>in</strong>es and Toll-Like Receptors. The neutraliz<strong>in</strong>g activity of these IgA<br />

antibodies was determ<strong>in</strong>ed us<strong>in</strong>g InvivoGen’s HEK-Blue reporter cells. Some of these IgA antibodies can also be used for flow cytometry.<br />

ANTIBODY REACTIVITY APPLICATIONS QUANTITY CATALOG CODE<br />

Anti-Cytok<strong>in</strong>e IgAs<br />

Anti-hCD40L-hIgA2 Human CD40L Neutralization 100 μg maba-hcd40l<br />

Anti-hIFNa-hIgA2 Human IFN-a Neutralization, FC 100 μg maba-hifna<br />

Anti-hIFNg-hIgA2 Human IFN-g Neutralization 100 μg maba-hifng<br />

Anti-hIL-1b-hIgA2 Human IL-1b Neutralization 100 μg maba-hil1b<br />

Anti-hIL-4-hIgA2 Human IL-4 Neutralization 100 μg maba-hil4<br />

Anti-hIL-6-hIgA2 Human IL-6 Neutralization, FC 100 μg maba-hil6<br />

Anti-hIL-10-hIgA2 Human IL-10 Neutralization 100 μg maba-hil10<br />

Anti-hIL-13-hIgA2 Human IL-13 Neutralization, FC 100 μg maba-hil13<br />

Anti-hIL-18-hIgA2 Human IL-18 Neutralization 100 μg maba-hil18<br />

Anti-hTGFb-hIgA2 Human TGF-b Neutralization 100 μg maba-htgfb<br />

Anti-hTNFa-hIgA2 Human TNF-a Neutralization, FC 100 μg htnfa-mab7<br />

Anti-TLR IgAs<br />

Anti-hCD14-hIgA2 Human CD14 Neutralization of TLR2 and TLR4 , FC 100 μg maba-hcd14<br />

Anti-hTLR2-hIgA2 Human TLR2 Neutralization, FC 100 μg maba2-htlr2<br />

Anti-hTLR3-hIgA2 Human TLR3 FC 100 μg maba-htlr3<br />

Anti-hTLR4-hIgA2 Human TLR4 Neutralization, FC 100 μg maba-htlr4<br />

Anti-hTLR5-hIgA2 Human TLR5 Neutralization, FC 100 μg maba2-htlr5<br />

Control IgA<br />

IgA2 Isotype Control Human IgA2 Control 100 μg maba2-ctrl<br />

Contents and Storage<br />

Each IgA antibody is provided lyophilized from a 0.2 μm filtered solution <strong>in</strong> PBS. Product should be reconstituted <strong>in</strong> sterile water. Lyophilized antibodies are<br />

stable at least six months when stored at -20ºC. Reconstituted IgAs are stable 1 month when stored at 4ºC and 6 months when aliquoted and stored at -<br />

20ºC.<br />

Anti-Human IgA Secondary Antibodies<br />

InvivoGen provides F(ab’)2 fragment secondary antibodies, to avoid<br />

non-specific b<strong>in</strong>d<strong>in</strong>g through Fc receptors, that react with human IgA.<br />

These goat antibodies are conjugated with fluoresce<strong>in</strong> (FITC) or biot<strong>in</strong><br />

for immunodetection or cell sort<strong>in</strong>g applications.<br />

Secondary anti-human IgA antibodies are supplied <strong>in</strong> 1 ml PBS/NaN3.<br />

Store at 4ºC.<br />

www.<strong>in</strong>vivogen.com/iga-antibody<br />

PRODUCT QTY CAT. CODE<br />

Goat F(ab’)2 Anti-Human IgA - Biot<strong>in</strong> 500 μg chiga-biot<br />

Goat F(ab’)2 Anti-Human IgA - FITC 500 μg chiga-fitc<br />

Goat F(ab’)2 IgG Isotype Control - FITC 100 tests cgig-fitc


IgG Antibodies<br />

InvivoGen offers a selection of monoclonal and polyclonal IgG antibodies. Most of them target pattern recognition receptors. These antibodies<br />

have been generated by immunization of mice or rats with DNA or recomb<strong>in</strong>ant prote<strong>in</strong>s or peptides. These antibodies can be used for different<br />

applications. They have been tested <strong>in</strong> our laboratories for neutralization and/or flow cytometry, and for some of them for Western blot.<br />

MAb-TLR antibodies are also available conjugated with FITC.<br />

ANTIBODY DESCRIPTION REACTIVITY APPLICATIONS* QUANTITY CATALOG CODE<br />

Anti-Dect<strong>in</strong>-1 IgG<br />

MAb-mDect<strong>in</strong>-1 Mouse IgG2b (clone 2A11) Mouse Dect<strong>in</strong>-1 Neutralization, FC 100 μg mab-mdect<br />

Anti-Flagell<strong>in</strong> IgG<br />

Anti-Flagell<strong>in</strong> FliC Mouse IgG1 S. typhimurium flagell<strong>in</strong> WB 100 μg mabg-flic<br />

Anti-HA Tag IgG<br />

Anti-HA Tag Mouse IgG1 Influenza HA epitope WB, IP 250 μl ab-hatag<br />

Anti-TLR IgGs<br />

Anti-hTLR1-IgG Mouse IgG1 (H2G2) Human TLR1 Neutralization 100 μg mabg-htlr1<br />

MAb-hTLR1 Mouse IgG1 (GD2.F4) Human TLR1 FC 100 μg mab-htlr1<br />

MAb-hTLR1-FITC Mouse IgG1 (GD2.F4), FITC Human TLR1 FC 100 μg mab-htlr1f<br />

PAb hTLR1 Polyclonal rat IgG Human TLR1 Neutralization 200 μg pab-hstlr1<br />

Anti-mTLR2-IgG Mouse IgG2a (C9A12) Mouse TLR2 Neutralization 100 μg mabg-mtlr2<br />

MAb-hTLR2 Mouse IgG2a (TL2.1) Human TLR2 FC, IHC, WB 100 μg mab-htlr2<br />

MAb-hTLR2-FITC Mouse IgG2a (TL2.1), FITC Human TLR2 FC, IHC 100 μg mab-htlr2f<br />

PAb hTLR2 Polyclonal rat IgG Human TLR2 Neutralization 200 μg pab-hstlr2<br />

MAb-mTLR2 Mouse IgG1 (T2.5) Human/mouse TLR2 Neutralization , FC, IHC 100 μg mab-mtlr2<br />

MAb-mTLR2-FITC Mouse IgG1 (T2.5), FITC Human/mouse TLR2 FC 100 μg mab-mtlr2f<br />

MAb-hTLR3 Mouse IgG1 (TLR3.7) Human TLR3 FC, WB 100 μg mab-htlr3<br />

MAb-hTLR3-FITC Mouse IgG1 (TLR3.7), FITC Human TLR3 FC 100 μg mab-htlr3f<br />

MAb-hTLR4 Mouse IgG2a (HTA125) Human/monkey TLR4 FC, IHC 100 μg mab-htlr4<br />

MAb-hTLR4-FITC Mouse IgG2a (HTA125), FITC Human/monkey TLR4 FC 100 μg mab-htlr4f<br />

PAb hTLR4 Polyclonal rat IgG Human TLR4 Neutralization 200 μg pab-hstlr4<br />

MAb-mTLR4/MD2 Rat IgG2a (MTS510) Mouse TLR4/MD2 FC, IHC 100 μg mab-mtlr4md2<br />

MAb-mTLR4/MD2-FITC Rat IgG2a (MTS510), FITC Mouse TLR4/MD2 FC 100 μg mab-mtlr4md2f<br />

PAb hTLR5 Polyclonal rat IgG Human TLR5 Neutralization 200 μg pab-hstlr5<br />

Anti-mTLR5-IgG Rat IgG2a (Q23D11) Mouse TLR5 Neutralization 100 μg mabg-mtlr5<br />

Anti-hTLR6-IgG Mouse IgG1 (C5C8) Human TLR6 Neutralization 100 μg mabg-htlr6<br />

PAb hTLR6 Polyclonal rat IgG Human TLR6 Neutralization 200 μg pab-hstlr6<br />

MAb-mTLR9 Mouse IgG2a (5G5) Human/mouse TLR9 FC, IHC, WB 100 μg mab-mtlr9<br />

MAb-mTLR9-FITC Mouse IgG2a (5G5), FITC Human/mouse TLR9 FC 100 μg mab-mtlr9f<br />

* FC, flow cytometry; IHC, immunohistochemistry; IP, immunoprecipitation; WB, Western blot<br />

Contents and Storage<br />

All IgG antibodies are provided lyophilized. They are shipped at room temperature. Store at -20°C.<br />

www.<strong>in</strong>vivogen.com/igg-antibody<br />

125<br />

ANTIBODIES & VACCINATION 5


ANTIBODIES & VACCINATION 5<br />

Vacc<strong>in</strong>e Adjuvants<br />

Adjuvants are essential for enhanc<strong>in</strong>g and direct<strong>in</strong>g the adaptative immune<br />

response to vacc<strong>in</strong>e antigens. This response is mediated by two ma<strong>in</strong> types<br />

of lymphocytes, B and T cells. Upon activation by cytok<strong>in</strong>es, B cells<br />

differentiate <strong>in</strong>to memory B cells (long-lived antigen-specific B cells) or<br />

plasma cells (effector B cells that secrete large quantities of antibodies).<br />

Most antigens activate B cells us<strong>in</strong>g activated T helper (Th) cells, primarily<br />

Th1 and Th2 cells. Th1 cells secrete IFN-g, which activates macrophages<br />

and <strong>in</strong>duces the production of opsoniz<strong>in</strong>g antibodies by B cells. The Th1<br />

response leads ma<strong>in</strong>ly to a cell-mediated immunity (cellular response),<br />

which protects aga<strong>in</strong>st <strong>in</strong>tracellular pathogens (<strong>in</strong>vasive bacteria, protozoa<br />

and viruses). The Th1 response activates cytotoxic T lymphocytes (CTL), a<br />

sub-group of T cells, which <strong>in</strong>duce death of cells <strong>in</strong>fected with viruses and<br />

other <strong>in</strong>tracellular pathogens. Natural killer (NK) cells are also activated by<br />

the Th1 response, these cells play a major role <strong>in</strong> the <strong>in</strong>duction of apoptosis<br />

<strong>in</strong> tumors and cells <strong>in</strong>fected by viruses. Th2 cells secrete cytok<strong>in</strong>es, <strong>in</strong>clud<strong>in</strong>g<br />

IL-4, which <strong>in</strong>duces B cells to make neutraliz<strong>in</strong>g antibodies. Th2 cells<br />

generally <strong>in</strong>duce a humoral (antibody) response critical <strong>in</strong> the defense<br />

aga<strong>in</strong>st extracellular pathogens (helm<strong>in</strong>thes, extracellular microbes and<br />

tox<strong>in</strong>s). The magnitude and type of Th response to a vacc<strong>in</strong>e can be greatly<br />

modulated through the use of adjuvants. For almost 80 years, alum<strong>in</strong>ium<br />

salts (referred to as ‘alum’) have been the only adjuvant <strong>in</strong> use <strong>in</strong> human<br />

vacc<strong>in</strong>es. Only <strong>in</strong> the last two decades, have novel adjuvants (MF59, AS04)<br />

been <strong>in</strong>troduced <strong>in</strong> the formulation of new licensed vacc<strong>in</strong>es. As our<br />

understand<strong>in</strong>g of the mechanisms of ‘immunogenicity’ and ‘adjuvancy’<br />

<strong>in</strong>creases, new adjuvants and adjuvant formulations are be<strong>in</strong>g developed.<br />

Mechanisms of adjuvants<br />

Adjuvants may exert their effects through different mechanisms. Some<br />

adjuvants, such as alum and emulsions (e.g. MF59), function as delivery<br />

systems by generat<strong>in</strong>g depots that trap antigens at the <strong>in</strong>jection site,<br />

provid<strong>in</strong>g slow release <strong>in</strong> order to cont<strong>in</strong>ue the stimulation of the immune<br />

system. These adjuvants enhance the antigen persistence at the <strong>in</strong>jection<br />

site and <strong>in</strong>crease recruitment and activation of antigen present<strong>in</strong>g cells<br />

(APCs). Particulate adjuvants (e.g. alum) have the capability to b<strong>in</strong>d antigens<br />

to form multi-molecular aggregates which will encourage uptake by APCs 1 .<br />

Some adjuvants are also capable of direct<strong>in</strong>g antigen presentation by the<br />

major histocompatibility complexes (MHC) 1 . Other adjuvants, essentially<br />

ligands for pattern recognition receptors (PRR), act by <strong>in</strong>duc<strong>in</strong>g the <strong>in</strong>nate<br />

immunity, predom<strong>in</strong>antly target<strong>in</strong>g the APCs and consequently <strong>in</strong>fluenc<strong>in</strong>g<br />

the adaptative immune response. Members of nearly all of the PRR families<br />

are potential targets for adjuvants. These <strong>in</strong>clude Toll-like receptors (TLRs),<br />

NOD-like receptors (NLRs), RIG-I-like receptors (RLRs) and C-type lect<strong>in</strong><br />

receptors (CLRs). They signal through pathways that <strong>in</strong>volve dist<strong>in</strong>ct adaptor<br />

molecules lead<strong>in</strong>g to the activation of different transcription factors. These<br />

transcription factors (NF-kB, IRF3) <strong>in</strong>duce the production of cytok<strong>in</strong>es and<br />

chemok<strong>in</strong>es that play a key role <strong>in</strong> the prim<strong>in</strong>g, expansion and polarization<br />

of the immune responses. Activation of some members of the NLR family,<br />

such as NLRP3 and NLRC4, triggers the formation of a prote<strong>in</strong> complex,<br />

called <strong>in</strong>flammasome, implicated <strong>in</strong> the <strong>in</strong>duction of the pro-<strong>in</strong>flammatory<br />

cytok<strong>in</strong>es IL-1b 2 and IL-18. The NLRP3 and NLRC4 <strong>in</strong>flammasomes have<br />

been <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>nate immunity <strong>in</strong>duced by certa<strong>in</strong> adjuvants but their<br />

mechanism of action rema<strong>in</strong>s unclear.<br />

Alum & emulsions<br />

Alum is the most commonly used adjuvant <strong>in</strong> human vacc<strong>in</strong>ation. It is found<br />

<strong>in</strong> numerous vacc<strong>in</strong>es, <strong>in</strong>clud<strong>in</strong>g diphtheria-tetanus-pertussis, human<br />

papillomavirus and hepatitis vacc<strong>in</strong>es 3 . Alum provokes a strong Th2<br />

response, but is rather <strong>in</strong>effective aga<strong>in</strong>st pathogens that require Th1–cellmediated<br />

immunity. Alum <strong>in</strong>duces the immune response by a depot effect<br />

and activation of APCs. Recently, the NLRP3 <strong>in</strong>flammasome has been l<strong>in</strong>ked<br />

to the immunostimulatory properties of alum 2 although its role <strong>in</strong> adjuvant<strong>in</strong>duced<br />

antibody responses rema<strong>in</strong>s controversial.<br />

126 www.<strong>in</strong>vivogen.com/vacc<strong>in</strong>e-adjuvants<br />

Emulsions (either oil-<strong>in</strong>-water or water-<strong>in</strong>-oil), such as Freund’s Incomplete<br />

Adjuvant (IFA) and MF59, can trigger depot generation and <strong>in</strong>duction of<br />

MHC responses IFA <strong>in</strong>duces a predom<strong>in</strong>antly Th2 biased response with<br />

some Th1 cellular response. MF59 is a potent stimulator of both cellular<br />

(Th1) and humoral (Th2) immune responses 4 . However, the precise mode<br />

of action of emulsion-based adjuvants is still unclear. A complication with<br />

emulsion-based adjuvants is their potential to <strong>in</strong>duce autoimmunity.<br />

PRR Ligands<br />

As classical adjuvants <strong>in</strong>duce strong Th2 response with little or no Th1<br />

response, the current challenge is to develop adjuvants which <strong>in</strong>duce a<br />

strong Th1 bias important for vacc<strong>in</strong>es aga<strong>in</strong>st hepatitis, flu, malaria, and HIV.<br />

New adjuvants are be<strong>in</strong>g developed that are natural ligands or synthetic<br />

agonists for PRRs, either alone or with various formulations. PRR activation<br />

stimulates the production of pro-<strong>in</strong>flammatory cytok<strong>in</strong>es/chemok<strong>in</strong>es and<br />

type I IFNs that <strong>in</strong>crease the host’s ability to elim<strong>in</strong>ate the pathogen. Thus,<br />

the <strong>in</strong>corporation of pathogens associated molecular patterns (PAMPs) <strong>in</strong><br />

vacc<strong>in</strong>e formulations can improve and accelerate the <strong>in</strong>duction of vacc<strong>in</strong>especific<br />

responses. A number of these agonists are now <strong>in</strong> cl<strong>in</strong>ical or late<br />

precl<strong>in</strong>ical stages of development for hepatitis and human papillomavirus<br />

vacc<strong>in</strong>es 5, 6 . When used <strong>in</strong> comb<strong>in</strong>ation with alum or classical emulsion<br />

adjuvants, the immune response can be biased towards a Th1 response 7 .<br />

TLR3 and RLR Ligands: Double-stranded RNA (dsRNA), which is<br />

produced dur<strong>in</strong>g the replication of most viruses, is a potent <strong>in</strong>ducer of<br />

<strong>in</strong>nate immunity. Synthetic analogs of dsRNA, such as poly(I:C), have been<br />

tested as adjuvants. They act through TLR3 and RIG-I/MDA-5, <strong>in</strong>duc<strong>in</strong>g<br />

IL-12 and type I IFNs production, facilitat<strong>in</strong>g antigen cross-presentation to<br />

MHC class II molecules, and improv<strong>in</strong>g generation of cytotoxic T cells 8 .<br />

TLR4 Ligands: Bacterial lipopolysaccharides (LPS), which are ligands for<br />

TLR4, have long been recognized as potent adjuvants, but their pyrogenic<br />

activity have prevented their cl<strong>in</strong>ical use. The development of less toxic<br />

derivatives led to the production of MPLA (monophosphoryl lipid A),<br />

which formulated with alum (AS04) triggers a polarized Th1 response and<br />

is approved for cl<strong>in</strong>ical use <strong>in</strong> Europe 8 .<br />

TLR5 Ligands:The TLR5 ligand, bacterial flagell<strong>in</strong>, is a potent T-cell antigen<br />

and has potential as a vacc<strong>in</strong>e adjuvant. Unlike other TLR agonists, flagell<strong>in</strong><br />

tends to produce mixed Th1 and Th2 responses rather than strongly Th1<br />

responses. Flagell<strong>in</strong> can be used as an adjuvant mixed with the antigen but<br />

it is more frequently fused to a recomb<strong>in</strong>ant vacc<strong>in</strong>e antigen 9, 10 .<br />

TLR7/8 Ligands:The TLR7/8 pathway, specialized <strong>in</strong> the recognition of s<strong>in</strong>gle<br />

stranded viral RNA, has demonstrated promis<strong>in</strong>g pre-cl<strong>in</strong>ical results as a<br />

target for potential vacc<strong>in</strong>e adjuvants. Imidazoqu<strong>in</strong>ol<strong>in</strong>es (i.e. imiquimod and<br />

R848) are synthetic componds that activate TLR7/8 <strong>in</strong> multiple subsets of<br />

dendritic cells lead<strong>in</strong>g to the production of IFN-a and IL-12 thus promot<strong>in</strong>g<br />

a Th1 response 5 .<br />

TLR9 Ligands: Oligodeoxynucleotides conta<strong>in</strong><strong>in</strong>g specific CpG motifs (CpG<br />

ODNs) are recognized by TLR9. They enhance antibody production and<br />

strongly polarize Th cell responses to Th1 and away from Th2 responses 11,12 .<br />

NOD2 Ligands: Fragments of bacterial cell walls, such as muramyl<br />

dipeptide (MDP), have long been recognized as adjuvants. More recently,<br />

it was discovered that MDP triggers the activation of NOD2 and the<br />

NLRP3 <strong>in</strong>flammasome 13 .<br />

Adjuvants may be comb<strong>in</strong>ed to achieve a stronger effect or a more potent<br />

skew<strong>in</strong>g of immune responses. Currently, much effort is devoted to<br />

comb<strong>in</strong><strong>in</strong>g alum with TLR9 ago<strong>in</strong>sts 14 . In experimental models,<br />

adm<strong>in</strong>istration of other comb<strong>in</strong>ations such as CpG ODNs with MDP or<br />

MPLA has proven very effective 15 . Adjuvants currently <strong>in</strong> cl<strong>in</strong>ical use<br />

enhance humoral responses but new adjuvants <strong>in</strong> cl<strong>in</strong>ical and precl<strong>in</strong>ical<br />

trials are focused on generat<strong>in</strong>g multifaceted immune responses. The PRR<br />

pathways are an attractive source of novel adjuvants for vacc<strong>in</strong>es due to<br />

their ability to <strong>in</strong>duce strong cell-mediated immunity.


Mediators?<br />

1. Leroux-Roels G., 2010. Unmet needs <strong>in</strong> modern vacc<strong>in</strong>ology adjuvants to imporve the immune response. Vacc<strong>in</strong>e. 28S(3):C25-3. 2. Li H. et al., 2008. Cutt<strong>in</strong>g edge:<br />

Inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J Immunol. 181(1):17-21. 3. Marrack P. et al., 2009. Towards an understand<strong>in</strong>g of<br />

the adjuvant action of alum<strong>in</strong>ium. Nat Rev Immunol. 9(4):287-93. 4. Ott G. et al., 1995. MF59. Design and evaluation of a safe and potent adjuvant for human vacc<strong>in</strong>es.<br />

Pharm Biotechnol 6: 277-96. 5. Ste<strong>in</strong>hagen F. et al., 2010. TLR-based immune adjuvants. Vacc<strong>in</strong>e [Epub ahead of pr<strong>in</strong>t]. 6. Mbow ML. et al., 2010. New adjuvants for<br />

human vacc<strong>in</strong>es. Curr Op<strong>in</strong> Immunol. 22(3):411-6. 7. Didierlaurent A. ,et al., 2009. AS04, an alum<strong>in</strong>um salt- and TLR4 agonist-based adjuvant system, <strong>in</strong>duces a transient<br />

localized <strong>in</strong>nate immune response lead<strong>in</strong>g to enhanced adaptive immunity. J Immunol 183(10): 6186-97. 8. Coffman R. et al., 2010. Vacc<strong>in</strong>e adjuvants: Putt<strong>in</strong>g <strong>in</strong>nate<br />

immunity to work. Immunity 33(4):492-503. 9. Huleatt J. et al., 2007.Vacc<strong>in</strong>ation with recomb<strong>in</strong>ant fusion prote<strong>in</strong>s <strong>in</strong>corporat<strong>in</strong>g Toll-like receptor ligands <strong>in</strong>duces rapid<br />

cellular and humoral immunity. Vacc<strong>in</strong>e 25(4): 763-75. 10. Mizel S. & Bates JT., 2010. Flagell<strong>in</strong> as an adjuvant: Cellular mechanisms and potential. J Immunol. 175(10):5677-<br />

82. 11. Kobayashi H. et al., 1999. Immunostimulatory DNA pre-prim<strong>in</strong>g: a novel approach for prolonged Th1-biased immunity. Cell Immunol 198(1): 69-75. 12. Tighe H.<br />

et al., 2000. Conjugation of immunostimulatory DNA to the short ragweed allergen amb a 1 enhances its immunogenicity and reduces its allergenicity. J Allergy Cl<strong>in</strong><br />

Immunol 106: 124-34. 13. Girard<strong>in</strong> S. et al., 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 278(11):8869-<br />

72. 14. Siegrist C. et al., 2004. Co-adm<strong>in</strong>istration of CpG oligonucleotides enhances the late aff<strong>in</strong>ity maturation process of human anti-hepatitis B vacc<strong>in</strong>e response.<br />

Vacc<strong>in</strong>e 23(5): 615-22. 15. Kim S. et al., 2000. Effect of immunological adjuvant comb<strong>in</strong>ations on the antibody and T-cell response to vacc<strong>in</strong>ation with MUC1-KLH and<br />

GD3-KLH conjugates. Vacc<strong>in</strong>e 19: 530-7.<br />

www.<strong>in</strong>vivogen.com/vacc<strong>in</strong>e-adjuvants 127<br />

ANTIBODIES & VACCINATION 5


ANTIBODIES & VACCINATION 5<br />

Vacc<strong>in</strong>e Adjuvants NEW<br />

InvivoGen provides different classes of vacc<strong>in</strong>e adjuvants that are either already approved for use <strong>in</strong> human vacc<strong>in</strong>ation, such as alum, or under<br />

<strong>in</strong>vestigation such as the TLR agonists gardiquimod and CpG oligonucleotides. InvivoGen adjuvants are VacciGrade (precl<strong>in</strong>ical grade). They<br />

are prepared under strict aseptic conditions and tested for the presence of endotox<strong>in</strong>s. They are sterile and their endotox<strong>in</strong> level is


Poly(I:C)<br />

Synthetic double-stranded RNA, namely poly(I:C), can activate the immune response through two dist<strong>in</strong>ct PRRs 2 . Endosomal poly(I:C) activates TLR3 while<br />

cytosolic poly(I:C) activates RIG-I/MDA-5. Trigger<strong>in</strong>g the TLR3 pathway <strong>in</strong>duces IL-12 and type I IFNs production, and improves MHC class II expression and<br />

cross-presentation of antigen 2 . Stimulation of MDA-5 enhances the production of type I IFNs that play a critical role <strong>in</strong> enhanc<strong>in</strong>g T and B cell immunity 2 .<br />

Poly(I:C) promotes Th1 biased immunity through its <strong>in</strong>duction of IL-12 and type I IFNs 2 . Promis<strong>in</strong>g results have been obta<strong>in</strong>ed us<strong>in</strong>g poly(I:C) as an adjuvant<br />

<strong>in</strong> flu vacc<strong>in</strong>e delivered <strong>in</strong>tranasally 9 .<br />

MPLA<br />

The TLR4 agonist, MPLA (monophosphoryl lipid A) is a derivative of lipid A from Salmonella m<strong>in</strong>nesota R595 lipopolysaccharide (LPS or endotox<strong>in</strong>). MPLA<br />

is considerably less toxic than LPS whilst ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the immunostimulatory activity 10 . When tested <strong>in</strong> animals models as a vacc<strong>in</strong>e adjuvant, MPLA <strong>in</strong>duces<br />

a strong Th1 response 11 . The adjuvant, AS04, currently approved for use <strong>in</strong> vacc<strong>in</strong>es aga<strong>in</strong>st human papilloma virus and hepatitis B, conta<strong>in</strong>s MPL (a modified<br />

MPLA) comb<strong>in</strong>ed with alum<strong>in</strong>um salt 12 .<br />

N-glycolyl-MDP<br />

MDP (muramyl dipeptide), is the m<strong>in</strong>imal bioactive peptidoglycan motif common to all bacteria and the essential structure required for adjuvant activity <strong>in</strong><br />

vacc<strong>in</strong>es. MDP has been shown to be recognized by NOD2, but not TLR2, nor TLR2/1 or TLR2/6 associations 13 . The cell wall of mycobacteria is known to<br />

be extremely immunogenic. This potent activity is attributed to their MDP which is N-glycolylated <strong>in</strong> contrast to the MDP of most bacteria which is<br />

N-acetylated. N-glycolyl-MDP has been reported to display a stronger NOD2-mediated activity than N-acetyl-MDP and thus to be a more potent vacc<strong>in</strong>e<br />

adjuvant than N-acetyl-MDP 14 . Furthermore MDP leads to the activation of the NLRP3 <strong>in</strong>flammasome 15 .<br />

ODN 1826 and ODN 2006<br />

Synthetic oligodeoxynucleotides conta<strong>in</strong><strong>in</strong>g unmethylated CpG motifs (CpG ODNs), such as ODN 2006 (also known as ODN 7909), have been extensively<br />

studied as adjuvants. CpG ODNs are recognized by TLR9, which is expressed exclusively on human B cells and plasmacytoid dendritic cells (pDCs), thereby<br />

<strong>in</strong>duc<strong>in</strong>g Th1-dom<strong>in</strong>ated immune responses. Pre-cl<strong>in</strong>ical studies conducted <strong>in</strong> rodents and non-human primates and human cl<strong>in</strong>ical trials have demonstrated that<br />

CpG ODNs can significantly improve vacc<strong>in</strong>e-specific antibody responses 9 . Among the three classes of CpG ODNs identified (see page 86), type B CpG ODNs<br />

are the most studied.<br />

1. Mbow ML. et al., 2010. New adjuvants for human vacc<strong>in</strong>es. Curr Op<strong>in</strong> Immunol. 22(3):411-6. 2. Coffman RL. et al., 2010. Vacc<strong>in</strong>e adjuvants: Putt<strong>in</strong>g <strong>in</strong>nate immunity to work. Immunity<br />

33(4):492-503. 3. Marrack P. et al., 2009. Towards an understand<strong>in</strong>g of adjuvant action of alum<strong>in</strong>ium. Nat Rev Immunol. 9(4): 287-93. 4. Petrovsky N. & Aguilar JC., 2004. Vacc<strong>in</strong>e adjuvants:<br />

Current state and future trends. Immunol Cell Biol. 82(5): 488-96. 5. Moreira L0. et al., 2008. Modulation of adaptive immunity by different adjuvant-antigen comb<strong>in</strong>ations <strong>in</strong> mice lack<strong>in</strong>g<br />

Nod2. Vacc<strong>in</strong>e 26(46): 5808-13. 6. Huleatt J. et al., 2007. Vacc<strong>in</strong>ation with recomb<strong>in</strong>ant fusion prote<strong>in</strong>s <strong>in</strong>corporat<strong>in</strong>g Toll-like receptor ligands <strong>in</strong>duces rapid cellular and humoral immunity.<br />

Vacc<strong>in</strong>e 25(4): 763-75. 7. Skountzou I. et al., 2010. Salmonella flagell<strong>in</strong>s are potent adjuvants for <strong>in</strong>tranasally adm<strong>in</strong>istered whole <strong>in</strong>activated <strong>in</strong>fluenza vacc<strong>in</strong>e. Vacc<strong>in</strong>e 28(4): 4103-12. 8. Miao<br />

EA. & Warren SE., 2010. Innate immune detection of bacterial virulence factors via the NLRC4 <strong>in</strong>flammasome. J Cl<strong>in</strong> Immunol. 30(4): 502-6. 9. Ste<strong>in</strong>hagen F. et al., 2010. TLR-based immune<br />

adjuvants. Vacc<strong>in</strong>e [Epub ahead of pr<strong>in</strong>t]. 10. Casella CR. et al., 2008. Putt<strong>in</strong>g endotox<strong>in</strong> to work for us: monophosphoryl lipid A as a safe and effective vacc<strong>in</strong>e adjuvant. Cell Mol Life Sci. 65(20):3231-<br />

40. 11. Fransen F. et al., 2007. Agonists of Toll-like receptors 3, 4, 7, and 9 are candidates for use as adjuvants <strong>in</strong> an outer membrane vacc<strong>in</strong>e aga<strong>in</strong>st Neisseria men<strong>in</strong>gitidis serogroup . Infect Immun.<br />

75(12) :5939-46. 12. Didierlaurent A. et al., 2009. AS04, an alum<strong>in</strong>um salt- and TLR4 agonist-based adjuvant system, <strong>in</strong>duces a transient localized <strong>in</strong>nate immune response lead<strong>in</strong>g to enhanced<br />

adaptive immunity. J Immunol 183(10): 6186-97. 13. Girard<strong>in</strong> S. et al., 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 278(11):8869-<br />

72. 14. Coulombe F. et al., 2009. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med. 206(8):1709-16. 15. Mart<strong>in</strong>on F. et al., 2004. Identification of bacterial<br />

muramyl dipeptide as activator of the NALP3/cryopyr<strong>in</strong> <strong>in</strong>flammasome. Curr Biol 14 (21): 1929-34.<br />

OVA Antigens NEW<br />

Ovalbum<strong>in</strong> (OVA) is a key reference prote<strong>in</strong> for immunization and biochemical studies (Western blots, ELISA). Commercially available ovalbum<strong>in</strong><br />

is often contam<strong>in</strong>ated with endotox<strong>in</strong>s alter<strong>in</strong>g the results <strong>in</strong> vivo. InvivoGen provides two grades of ovalbum<strong>in</strong> and two standard OVA peptides.<br />

• EndoFit Ovalbum<strong>in</strong>: Endotox<strong>in</strong> level < 1 EU/mg, for <strong>in</strong> vivo use,<br />

m<strong>in</strong>imum 98% prote<strong>in</strong><br />

• Ovalbum<strong>in</strong>: for detection use (Western blot, ELISA), m<strong>in</strong>imum 98%<br />

prote<strong>in</strong><br />

• OVA 257-264: an H-2Kb-restricted OVA class I epitope, for<br />

detection use (ELISPOT) - Sequence : SIINFEKL (MW 963.2)<br />

• OVA 323-339: an H-2b-restricted OVA class II epitope, for detection<br />

use (ELISPOT) - Sequence : ISQAVHAAHAEINEAGR (MW 1773.9)<br />

Contents and Storage<br />

Products are provided lyophilized and shipped at room temperature.<br />

Store at 4°C or -20°C accord<strong>in</strong>g to the product label.<br />

PRODUCT QTY CAT. CODE<br />

EndoFit Ovalbum<strong>in</strong> 10 mg vac-efova<br />

Ovalbum<strong>in</strong> 1 g vac-ova<br />

OVA 257-264 1 mg vac-s<strong>in</strong><br />

OVA 323-339 1 mg vac-isq<br />

www.<strong>in</strong>vivogen.com/vacc<strong>in</strong>e-adjuvants 129<br />

ANTIBODIES & VACCINATION 5


ANTIBODIES & VACCINATION 5<br />

pBOOST - DNA Vacc<strong>in</strong>e Adjuvants<br />

pBOOST plasmids were developed as genetic adjuvants for DNA vacc<strong>in</strong>es to potentiate the immune response to a specific antigen. The method<br />

of plasmid DNA vacc<strong>in</strong>e delivery is known to bias the immune response to a specific antigen towards aTh1 or Th2 response. These biases can<br />

be further enhanced by the codelivery of <strong>in</strong>terferon regulatory factors (IRFs) orTANK-b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>ase 1 (TBK1) to <strong>in</strong>crease the efficacy of the<br />

vacc<strong>in</strong>ation.<br />

Description<br />

pBOOST2-mIRF - Th1 or Th2 polarization<br />

IRF-1, IRF-3 and IRF-7 have been shown to be able to bias T cells towards<br />

type 1 or type 2 immune responses, lead<strong>in</strong>g to the activation of cytotoxic<br />

T cells and/or the production of antibodies.<br />

pBOOST2-mIRF plasmids carry the mur<strong>in</strong>e IRF-1, IRF-3 or IRF-7 genes.<br />

These genes are either wild-type or mutant.<br />

• Wild-type IRF-1: IRF-1 primarily <strong>in</strong>creases Th2 antibody responses 1 .<br />

Follow<strong>in</strong>g <strong>in</strong>tramuscular or gene gun <strong>in</strong>jections of DNA vacc<strong>in</strong>es, IRF-1 can<br />

<strong>in</strong>crease the titers of antibodies up to 10-fold.<br />

• Mutant IRF-3: IRF-3 primarily <strong>in</strong>creases Th1 T-cell responses 1 . A<br />

constitutively active form of IRF-3 was generated by creat<strong>in</strong>g a s<strong>in</strong>gle po<strong>in</strong>t<br />

mutation of Ser 396 to Asp. This super-activated IRF-3 presents a >10-fold<br />

enhanced transactivat<strong>in</strong>g potential over the wild-type IRF-3 for the IFN-a<br />

and IFN-b promoters 2 .<br />

• Chimeric IRF7/3: IRF-3 and IRF-7 <strong>in</strong>crease both Th1 and Th2 responses<br />

by transactivat<strong>in</strong>g different target promoters 1 . To exploit the biological<br />

features of both IRFs, a chimeric form of IRF-7 and IRF-3 was generated<br />

by comb<strong>in</strong><strong>in</strong>g the DNA b<strong>in</strong>d<strong>in</strong>g specificity of IRF-7 with the strong<br />

transactivation capacity of super-activated IRF-3. IRF-7/3 chimera provides<br />

>10-fold greater <strong>in</strong>duction of IFN-a and IFN-b promoters than superactivated<br />

IRF-3 alone 3 .<br />

pBOOST2-mIRF plasmids express the transgene under the control of the<br />

strong and ubiquitous EF-1a/HTLV composite promoter and are selectable<br />

<strong>in</strong> E. coli with Zeoc<strong>in</strong> .<br />

pBOOST3-mTBK1 - Enhancement of DNA vacc<strong>in</strong>e immunogenicity<br />

pBOOST3-mTBK1 plasmid expresses the mouse TBK1 gene. TANKb<strong>in</strong>d<strong>in</strong>g<br />

k<strong>in</strong>ase 1 (TBK1), a non-canonical IkB k<strong>in</strong>ase, was recently shown<br />

to mediate the adjuvant effect of DNA vacc<strong>in</strong>es 4 . Adm<strong>in</strong>istration of DNA<br />

vacc<strong>in</strong>es <strong>in</strong>duces the production of type I <strong>in</strong>terferons and <strong>in</strong>flammatory<br />

cytok<strong>in</strong>es <strong>in</strong> a CpG-<strong>in</strong>dependent manner but <strong>in</strong> a TBK1-dependent manner.<br />

Therefore, co-adm<strong>in</strong>istration of a TBK1-express<strong>in</strong>g plasmid is expected to<br />

further boost DNA vacc<strong>in</strong>e-<strong>in</strong>duced immunogenicity.<br />

pBOOST3-mTBK1 conta<strong>in</strong>s the EF-1a/HTLV composite promoter<br />

coupled to the SV40 enhancer and is selectable <strong>in</strong> E. coli with Zeoc<strong>in</strong> .<br />

1. Sasaki S. et al., 2002. Regulation of DNA-raised immune responses by cotransfected<br />

<strong>in</strong>terferon regulatory factors. J Virol.76(13):6652-9. 2. Servant MJ. et al., 2003.<br />

Identification of the m<strong>in</strong>imal phosphoacceptor site required for <strong>in</strong> vivo activation of<br />

<strong>in</strong>terferon regulatory factor 3 <strong>in</strong> response to virus and double-stranded RNA. J Biol<br />

Chem. 278(11):9441-7. 3. Bramson JL. et al., 2003. Super-activated <strong>in</strong>terferon-regulatory<br />

factors can enhance plasmid immunization. Vacc<strong>in</strong>e. 21(13-14):1363-70. 4. Ishii KJ. et al.,<br />

2008. TANK-b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>ase-1 del<strong>in</strong>eates <strong>in</strong>nate and adaptive immune responses to DNA<br />

vacc<strong>in</strong>es. Nature 451: 725-729<br />

Contents and Storage<br />

130 www.<strong>in</strong>vivogen.com/dna-vacc<strong>in</strong>ation<br />

Each pBOOST plasmid is provided as 20 μg of lyophilized DNA. Product<br />

is shipped at room temperature. Store at -20°C. Plasmids are stable up to<br />

one year when properly stored. pBOOST plasmids come with 4 pouches<br />

of E. coli Fast-Media ® Zeo (2 TB and 2 Agar, see pages 44-45).<br />

PRODUCT QTY CAT. CODE<br />

pBOOST2-wtmIRF1 20 μg pbst2-wtmirf1<br />

pBOOST2-samIRF3 20 μg pbst2-samirf3<br />

pBOOST2-samIRF7/3 20 μg pbst2-samirf73<br />

pBOOST2-mcs (control) 20 μg pbst2-mcs<br />

pBOOST3-mTBK1 20 μg pbst3-mtbk1<br />

pBOOST3-mcs (control) 20 μg pbst3-mcs


pVAC - Induction of Neutraliz<strong>in</strong>g Antibodies<br />

pVAC is a DNA vacc<strong>in</strong>e plasmid family specifically designed to stimulate a humoral immune response by <strong>in</strong>tramuscular <strong>in</strong>jection. Antigenic prote<strong>in</strong>s<br />

are targeted and anchored to the cell surface by clon<strong>in</strong>g the gene of <strong>in</strong>terest <strong>in</strong> frame between the IL2 signal sequence and the C-term<strong>in</strong>al<br />

transmembrane anchor<strong>in</strong>g doma<strong>in</strong> of human placental alkal<strong>in</strong>e phosphatase. The antigenic peptide produced on the surface of muscle cells is thought<br />

to be taken up by antigen present<strong>in</strong>g cells (APCs) and processed through the major histocompatibility complex (MHC) class II pathway1, 2, 3 .<br />

Description<br />

Cell Surface Expression of the Antigenic Prote<strong>in</strong><br />

Two pVAC backbones are available:<br />

• pVAC1-mcs is designed for the clon<strong>in</strong>g of an antigenic gene that is not<br />

naturally secreted. The MCS is flanked by the 5’ IL2 signal sequence and<br />

the 3’ glycosylphosphatidyl<strong>in</strong>ositol (GPI) anchor<strong>in</strong>g doma<strong>in</strong> of placental<br />

alkal<strong>in</strong>e phosphatase (PLAP).<br />

• pVAC2-mcs is designed for the clon<strong>in</strong>g of an antigenic gene that already<br />

possesses a signal sequence. The MCS is located upstream of the GPI<br />

anchor<strong>in</strong>g doma<strong>in</strong> of PLAP.<br />

High-level Expression of the Antigenic Gene<br />

pVAC plasmids utilize the promoter region of the rhesus monkey EF1a<br />

gene to achieve high levels of expression <strong>in</strong> skeletal muscle cells and antigen<br />

present<strong>in</strong>g cells. Expression levels are further <strong>in</strong>creased by the addition of<br />

the SV40 enhancer that heightens the ability of the plasmid to be<br />

transported <strong>in</strong>to the nucleus, especially <strong>in</strong> non-divid<strong>in</strong>g cells.<br />

Susta<strong>in</strong>ed Expression of the Antigenic Gene<br />

The bacterial region required for replication and selection of pVAC <strong>in</strong><br />

E. coli conta<strong>in</strong>s a reduced number of immunogenic CpG motifs by featur<strong>in</strong>g<br />

a m<strong>in</strong>imized orig<strong>in</strong> of replication (Ori) and a CpG-free Zeoc<strong>in</strong> -resistance<br />

gene (Sh-DCpG).<br />

Convenient Clon<strong>in</strong>g of the Antigenic Gene<br />

pVAC conta<strong>in</strong>s a multiple clon<strong>in</strong>g site (MCS) with several commonly used<br />

restriction sites.<br />

1. Corr M. et al. 1999. In vivo prim<strong>in</strong>g by DNA <strong>in</strong>jection occurs predom<strong>in</strong>antly by antigen<br />

transfer. J Immunol. 163(9):4721-7. 2. Forns X. et al. 1999. DNA immunization of mice and<br />

macaques with plasmids encod<strong>in</strong>g hepatitis C virus envelope E2 prote<strong>in</strong> expressed<br />

<strong>in</strong>tracellularly and on the cell surface. Vacc<strong>in</strong>e 17:1992-2002. 3. McCluskie MJ et al. 1999.<br />

Route and method of delivery of DNA vacc<strong>in</strong>e <strong>in</strong>fluence immune responses <strong>in</strong> mice and<br />

non-human primates. Mol Med 5:287-300.<br />

Contents and Storage<br />

Each pVAC plasmid is provided as 20 μg of lyophilized DNA. Product is<br />

shipped at room temperature and should be stored at -20°C. Plasmid is<br />

stable up to one year when properly stored.<br />

Each pVAC is provided with 4 pouches of E. coli Fast-Media ® Zeo (2 TB<br />

and 2 Agar, see pages 44-45).<br />

Ori<br />

Ori<br />

www.<strong>in</strong>vivogen.com/dna-vacc<strong>in</strong>ation<br />

EM7 Sh∆CpG<br />

EF1 pAn<br />

EM7 Sh∆CpG<br />

SV40<br />

SV40<br />

IL2 ss<br />

rh EF1α<br />

Intron<br />

5’- Bam HI, Eco RV, Bgl II, Eco RI -3’<br />

rh EF1α<br />

5’- Bam HI, Eco RV, Bgl II, Eco RI -3’<br />

PRODUCT QTY CAT. CODE<br />

pVAC1-mcs 20 μg pvac1<br />

pVAC2-mcs 20 μg pvac2<br />

131<br />

ANTIBODIES & VACCINATION 5


6<br />

CpG-FREE DNA<br />

CpG-Free Plasmids 134-137<br />

CpG-Free Genes 138-139


CpG-Free DNA<br />

CpGs and the Immune Response<br />

Bacterial DNA is rich <strong>in</strong> unmethylated 2’-deoxyribo (cytid<strong>in</strong>e-phosphateguanos<strong>in</strong>e)<br />

(CpG) d<strong>in</strong>ucleotides, <strong>in</strong> contrast to mammalian DNA which<br />

conta<strong>in</strong>s a low frequency of CpG d<strong>in</strong>ucleotides that are mostly<br />

methylated. Unmethylated CpGs <strong>in</strong> specific sequence contexts activate<br />

the vertebrate immune system via Toll-Like Receptor (TLR) 9. TLR9<br />

recognizes CpG DNA and <strong>in</strong>itiates a signal<strong>in</strong>g cascade lead<strong>in</strong>g to the<br />

production of pro<strong>in</strong>flammatory cytok<strong>in</strong>es such as IL-6 and IL-12 1 .<br />

Plasmids used for <strong>in</strong> vivo experiments are produced <strong>in</strong> E. coli and therefore<br />

their CpGs are unmethylated and <strong>in</strong>duce immune responses through this<br />

host defense mechanism, which represents a limitation for the cl<strong>in</strong>ical<br />

development of DNA vacc<strong>in</strong>es and gene therapy vectors.<br />

CpGs and Gene Silenc<strong>in</strong>g<br />

A major limitation of gene delivery vectors for gene therapy applications is<br />

the rapid decl<strong>in</strong>e of transgene expression <strong>in</strong> vivo. Methylation of CpG<br />

d<strong>in</strong>ucleotides with<strong>in</strong> the promoter is a major factor limit<strong>in</strong>g long-last<strong>in</strong>g gene<br />

expression. Indeed, the transcriptional activity of the widely used and CpGrich<br />

cytomegalovirus immediate early gene promoter (CMV) is highly robust<br />

but prone to <strong>in</strong>activation with<strong>in</strong> a few weeks 2 . Replacement of the CMV<br />

promoter with a cellular promoter comb<strong>in</strong>ed with the use of a CpG-reduced<br />

backbone was shown by our team (figures 1 & 2) and other labs to <strong>in</strong>crease<br />

the duration of expression and lower the <strong>in</strong>flammatory response 3, 4 . Recently,<br />

CpGs <strong>in</strong> plasmid DNA (pDNA) were found to enhance the clearance of<br />

PEG-coated pDNA-lipoplexes, a phenomenon that could be reduced by the<br />

use of CpG-free pDNA allow<strong>in</strong>g repeated dos<strong>in</strong>g 5 .<br />

Construction of CpG-free Plasmids<br />

InvivoGen has developed a new family of plasmids that are completely<br />

devoid of CpG d<strong>in</strong>ucleotides, named pCpGfree. pCpGfree plasmids<br />

conta<strong>in</strong> elements that either naturally lack CpG d<strong>in</strong>ucleotides, were<br />

modified to remove all CpGs, or entirely synthesized such as genes<br />

encod<strong>in</strong>g selectable markers or reporters. These plasmids yield high levels<br />

of transgene expression both <strong>in</strong> vitro and <strong>in</strong> vivo, and <strong>in</strong> contrast to CMVbased<br />

plasmids allow susta<strong>in</strong>ed expression <strong>in</strong> vivo (figure 1) 6 .<br />

Applications of CpG-free Plasmids<br />

A major application of CpG-free plasmids is the treatment of <strong>in</strong>herited<br />

diseases cause by a s<strong>in</strong>gle gene defect, such as cystic fibrosis and hemophilia,<br />

through gene therapy. Hyde et al. have reported promis<strong>in</strong>g results for the<br />

treatment of cystic fibrosis us<strong>in</strong>g a pCpGfree-derived plasmid 4 . They show<br />

that a CpG-free pDNA can achieve susta<strong>in</strong>ed lung transgene expression <strong>in</strong><br />

contrast to a pDNA conta<strong>in</strong><strong>in</strong>g even a s<strong>in</strong>gle CpG. These results have led<br />

to a cl<strong>in</strong>ical trial that has started <strong>in</strong> February 2009.<br />

pCpGfree plamids represent valuable tools to study the effects of CpGs on<br />

gene expression us<strong>in</strong>g cell l<strong>in</strong>es express<strong>in</strong>g TLR9 7 , as well as their effects on<br />

the <strong>in</strong>nate and acquired immune systems. Furthermore, pCpGfree plasmids<br />

are also useful when analyz<strong>in</strong>g promoter methylation 8, 9 .<br />

1. Bauer S. et al., 2001. Human TLR9 confers responsiveness to bacterial DNA via speciesspecific<br />

CpG motif recognition. PNAS USA. 98(16):9237-42. 2. Scharfmann R. et al., 1991.<br />

Long-term <strong>in</strong> vivo expression of retrovirus-mediated gene transfer <strong>in</strong> mouse fibroblast implants.<br />

PNAS U S A. 88(11):4626-30. 3. Yew NS. et al., 2001. High and susta<strong>in</strong>ed transgene expression<br />

<strong>in</strong> vivo from plasmid vectors conta<strong>in</strong><strong>in</strong>g a hybrid ubiquit<strong>in</strong> promoter. Mol Ther. 4(1):75-82.<br />

4. Hyde SC. et al., 2008. CpG-free plasmids confer reduced <strong>in</strong>flammation and susta<strong>in</strong>ed<br />

pulmonary gene expression. Nat Biotechnol. 26(5):549-51. 5. Tagami T. et al., 2010. CpG motifs<br />

<strong>in</strong> pDNA-sequences <strong>in</strong>crease anti-PEG IgM production <strong>in</strong>duced by PEG-coated pDNAlipoplexes.<br />

J Control Release. 142(2):160-6 6. Hattori K. et al., 2010. Susta<strong>in</strong>ed Exogenous<br />

Expression of Therapeutic Levels of IFN-{gamma} Ameliorates Atopic Dermatitis <strong>in</strong> NC/Nga<br />

Mice via Th1 Polarization. J Immunol. 184(5):2729-35. 7.Yasuda K. et al., 2009. Requirement for<br />

DNA CpG content <strong>in</strong> TLR9-dependent dendritic cell activation <strong>in</strong>duced by DNA-conta<strong>in</strong><strong>in</strong>g<br />

immune complexes. J Immunol. 183(5):3109-17. 8. Klug M & Rehli M., 2006. Functional analysis<br />

of promoter CpG methylation us<strong>in</strong>g a CpG-free luciferase reporter vector. Epigenetics. 1(3):127-<br />

30. 9. van Straten EM. et al., 2009. The Liver X-Receptor (LXR) gene promoter is<br />

hypermethylated <strong>in</strong> a mouse model of prenatal prote<strong>in</strong> restriction. Am J Physiol Regul Integr<br />

Comp Physiol. 282(2):R275-82.<br />

Luciferase (μg/ml)<br />

Figure 1. Time course of luciferase expression. Plasmids (30 μg) express<strong>in</strong>g a CpGfree<br />

luciferase (ssLuc) gene and conta<strong>in</strong><strong>in</strong>g different amounts of CpGs <strong>in</strong> their<br />

backbone were hydrodynamically <strong>in</strong>jected <strong>in</strong> Swiss mice. Luciferase expression was<br />

evaluated at different time po<strong>in</strong>ts. Expression of ssLuc from pcDNA3-CMV (CpGrich<br />

plasmid with CMV promoter) peaked at day 1 after <strong>in</strong>jection but had drastically<br />

fallen at day 4 to reach background levels by day 8. In contrast, ssLuc expression<br />

from pCpGfree-SLS (CpG-free plasmid with a CpG-free eng<strong>in</strong>eered album<strong>in</strong><br />

promoter) was high and persisted to day 47. Rapid reduction of luciferase<br />

expression was also observed with pCpGfree-CMV (CpG-free plasmid with CMV<br />

promoter) and pcDNA3-SLS (CpG-rich plasmid with CpG-free promoter).<br />

Figure 2. DNA-<strong>in</strong>duced immune response. Mice were <strong>in</strong>jected i.p. with 500 μg<br />

CpG-rich or CpG-free DNA and the levels of serum TNF-a assessed 4h post<strong>in</strong>jection.<br />

As expected CpG-free DNA (pCpGfree-mcs and genomic calf DNA)<br />

<strong>in</strong>duced negligeable amounts of TNF-a whereas CpG-rich DNA (pDNA-CMV, CpG<br />

ODN1826 and E. coli DNA) <strong>in</strong>duced significant amounts of TNF-a. All DNAs<br />

<strong>in</strong>jected were endotox<strong>in</strong>-free.<br />

A B<br />

Figure 3. LacZ expression us<strong>in</strong>g a pCpGfree plasmid. C57Bl6 mice were <strong>in</strong>jected<br />

with 30 μg pCpGfree-mcs (A) or pCpGfree-LacZ (B) plasmids us<strong>in</strong>g hydrodynamic<br />

delivery. The livers were harvested 4 days post-<strong>in</strong>oculation and sta<strong>in</strong>ed to determ<strong>in</strong>e<br />

the expression of the CpG-free LacZ gene.<br />

www.<strong>in</strong>vivogen.com/cpgfree-dna 133<br />

CpG-FREE DNA 6


CpG-FREE DNA 6<br />

pCpGfree - CpG-free Plasmids<br />

Description<br />

CpG-free Plasmid Backbone<br />

pCpGfree is a family of plasmids completely devoid of CpG d<strong>in</strong>ucleotides.<br />

Typically, the elements required for replication and selection of the plasmid<br />

<strong>in</strong> E. coli and gene expression <strong>in</strong> mammalian cells are rich <strong>in</strong> CpG. In the<br />

pCpGfree plasmids these elements are either naturally CpG-free, were<br />

modified to remove all CpGs, or entirely synthesized.<br />

- Orig<strong>in</strong> of replication: The E. coli R6K gamma ori has been modified<br />

to remove all CpGs. This orig<strong>in</strong> is activated by the R6K specific <strong>in</strong>itiator<br />

prote<strong>in</strong> π, encoded by the pir gene 1 .<br />

- Bacterial promoter: EM2K is a CpG-free version of the bacterial EM7<br />

promoter.<br />

- Mammalian promoter: The CpG-free promoter comb<strong>in</strong>es the mouse<br />

CMV enhancer, the human elongation factor 1 alpha core promoter and<br />

5’UTR conta<strong>in</strong><strong>in</strong>g a synthetic <strong>in</strong>tron.<br />

- Polyadenylation signal: The polyadenylation signal is a CpG-free form<br />

of the late SV40 polyadenylation signal.<br />

- MAR: Matrix attached regions (MARs) are sequences typically AT-rich<br />

that are able to form barriers between <strong>in</strong>dependently regulated doma<strong>in</strong>s 2 .<br />

pCpG plasmids conta<strong>in</strong> two MARs, from the 5’ region of the human IFNb<br />

gene or b-glob<strong>in</strong> gene that were chosen because they are naturally CpGfree.<br />

The MARs are placed between the bacterial and mammalian<br />

transcription units.<br />

- Selectable marker: The Zeoc<strong>in</strong> resistance gene is a small gene (


pCpGfree-basic & pCpGfree-promoter NEW<br />

Promoter CpG Methylation Study<br />

Methylation of CpG d<strong>in</strong>ucleotides with<strong>in</strong> the promoter region of genes is often associated with transcriptional<br />

silenc<strong>in</strong>g. This epigenetic event plays an important role <strong>in</strong> the regulation of gene activity <strong>in</strong> normal and cancer<br />

cells. InvivoGen provides pCpGfree-basic and pCpGfree-promoter, two SEAP reporter plasmids completely devoid<br />

of CpG d<strong>in</strong>ucleotides, that allow to study the effect of promoter CpG methylation <strong>in</strong> transfection assays. The lack<br />

of CpGs with<strong>in</strong> the plasmid backbone limits <strong>in</strong> vitro CpG methylation to the CpG d<strong>in</strong>ucleotides present <strong>in</strong> the<br />

<strong>in</strong>serted promoter fragment. Thus, the pCpGfree-basic and pCpGfree-promoter plasmids represent useful tools<br />

to analyze the effect of DNA methylation on CpG-conta<strong>in</strong><strong>in</strong>g promoters.<br />

Description<br />

The pCpGfree-basic and pCpGfree-promoter plasmids derive from the<br />

pCpGfree-mSEAP plasmid by deletion of the enhancer/promoter region<br />

or the enhancer sequence alone, respectively.<br />

pCpGfree-basic<br />

The pCpGfree-basic plasmid lacks the entire promoter region (i. e. mur<strong>in</strong>e<br />

CMV enhancer and human EF-1a promoter). It conta<strong>in</strong>s a multiple clon<strong>in</strong>g<br />

site upstream of the mur<strong>in</strong>e secreted embryonic alkal<strong>in</strong>e phosphatase<br />

(mSEAP) reporter gene. Expression of mSEAP <strong>in</strong> cells transfected with<br />

this plasmid depends on the <strong>in</strong>sertion of a functional promoter or<br />

enhancer/promoter cassette upstream from the mSEAP gene. Thus,<br />

pCpGfree-basic allows to study the effect of CpG methylation on a<br />

promoter, alone or comb<strong>in</strong>ed with enhancer elements.<br />

pCpGfree-promoter<br />

The pCpGfree-promoter plasmid conta<strong>in</strong>s the human EF-1a promoter<br />

and a multiple clon<strong>in</strong>g site <strong>in</strong> place of the mur<strong>in</strong>e CMV enhancer. It is<br />

specifically designed to analyze the effect of methylation on CpG residues<br />

present <strong>in</strong> enhancer elements.<br />

Procedure<br />

1- Insert promoter and/or enhancer fragment <strong>in</strong>to<br />

pCpGfree-basic or pCpGfree-promoter.<br />

2- Treat recomb<strong>in</strong>ant plasmid with CpG methylase (Sss I) or<br />

site specific-methylase (Hha I, Hpa II).<br />

3- Transiently transfect cells with methylase-treated or<br />

untreated plasmid.<br />

4- Analyze promoter CpG methylation by determ<strong>in</strong><strong>in</strong>g<br />

mSEAP expression us<strong>in</strong>g QUANTI-Blue , a SEAP detection<br />

medium.<br />

Contents and Storage<br />

pCpGfree-basic and pCpGfree-promoter plasmids are provided as 20 μg<br />

of lyophilized DNA with a paper disk of lyophilized E. coli GT115 stra<strong>in</strong>.<br />

Products are shipped at room temperature and should be stored at -20°C.<br />

Zeo R MAR EF1 prom<br />

Ori EM2K MCS SI126<br />

pCpGfree-promoter<br />

MAR pAn mSEAP<br />

PRODUCT QUANTITY CAT. CODE<br />

pCpGfree-basic NEW 20 μg pcpgf-bas<br />

pCpGfree-promoter NEW 20 μg pcpgf-prom<br />

SdaI<br />

Bsp120I<br />

AvrII<br />

NsiI<br />

Ppu10I<br />

ScaI<br />

BamHI<br />

SpeI<br />

H<strong>in</strong>dIII<br />

BsrGI<br />

AflIII<br />

BbsI<br />

SdaI<br />

Bsp120I<br />

AvrII<br />

NsiI<br />

Ppu10I<br />

ScaI<br />

BamHI<br />

SpeI<br />

H<strong>in</strong>dIII<br />

BsrGI<br />

AflIII<br />

BbsI<br />

Important Licens<strong>in</strong>g Information: These products are covered by a Limited Use License (See Terms and Conditions on page 164). By use of these products you<br />

accept the terms and conditions of all applicable Limited Use Label Licenses.<br />

www.<strong>in</strong>vivogen.com/cpgfree-plasmid 135<br />

CpG-FREE DNA 6


CpG-FREE DNA 6<br />

pCpGfree-vitro - Selectable CpG-free Plasmids<br />

Description<br />

CpG-free Plasmid Backbone<br />

pCpGfree-vitro is a family of expression vectors completely devoid of<br />

CpG d<strong>in</strong>ucleotides that are selectable <strong>in</strong> mammalian cells. Similarly to<br />

the other pCpGfree plasmids, all the elements required for replication<br />

and selection of the plasmids <strong>in</strong> bacteria, and gene expression <strong>in</strong><br />

mammalian cells have been modified to remove all CpG d<strong>in</strong>ucleotides.<br />

A Choice of Different Backbones<br />

To better suit your needs, the pCpGfree-vitro plasmid comes with a<br />

choice of selection: blasticid<strong>in</strong>, hygromyc<strong>in</strong> or kanamyc<strong>in</strong>/G418.<br />

Each pCpGfree-vitro is available with a CpG-free allele of the LacZ gene<br />

or a multiple clon<strong>in</strong>g site (MCS). This MCS conta<strong>in</strong>s several commonly<br />

used restriction sites, for convenient clon<strong>in</strong>g of a CpG-free gene, such as<br />

the genes provided <strong>in</strong> the pSELECT plasmid (see page 138) or any open<br />

read<strong>in</strong>g frame or cDNA.<br />

Applications<br />

Study the immunostimulatory effect of CpG motifs<br />

pCpGfree-vitro plasmids represent <strong>in</strong>novative tools to study the effects<br />

of CpG d<strong>in</strong>ucleotides <strong>in</strong> a number of applications. DNA vacc<strong>in</strong>ation<br />

exploits the immunostimulatory character of certa<strong>in</strong> CpG motifs to prime<br />

and boost the immune response. However, these immunostimulatory<br />

CpG motifs are antagonized by CpG d<strong>in</strong>ucleotides <strong>in</strong> certa<strong>in</strong> dist<strong>in</strong>ct base<br />

contexts, termed neutraliz<strong>in</strong>g CpG motifs. Both types of CpG motifs are<br />

usually present <strong>in</strong> plasmidic DNA, and therefore may lead to an<br />

unfavorable immune response. pCpGfree-vitro is the ideal tool to<br />

overcome this problem, and may be used to study the effects of these<br />

two types of CpG motifs by add<strong>in</strong>g them <strong>in</strong> different configurations to<br />

the pCpGfree-vitro backbone.<br />

Study CpG methylation<br />

CpG d<strong>in</strong>ucleotides are key elements <strong>in</strong> a number of cellular functions<br />

associated with chromat<strong>in</strong>. Several large multisubunit complexes,<br />

consist<strong>in</strong>g of methyl-CpG b<strong>in</strong>d<strong>in</strong>g (MBD) prote<strong>in</strong>s and histone<br />

deacetylases, have been implicated <strong>in</strong> the regulation of chromat<strong>in</strong><br />

dynamics. These complexes are recruited to methylated CpG<br />

d<strong>in</strong>ucleotides by DNA methyl transferases (DNMTs) and <strong>in</strong>duce<br />

chromat<strong>in</strong> remodel<strong>in</strong>g. However the specific roles of these complexes<br />

are still to be explored. Due to the absence of CpG d<strong>in</strong>ucleotides with<strong>in</strong><br />

its backbone, pCpGfree-vitro is not the target of DNMTs and thus MBD<br />

prote<strong>in</strong>s. Therefore, it provides a useful model to study the other prote<strong>in</strong>s<br />

<strong>in</strong>volved <strong>in</strong> these complexes, <strong>in</strong> particular the histone deacetylases. It can<br />

also be used to analyze the effects of CpG methylation on the regulation<br />

and duration of gene expression.<br />

Contents and Storage<br />

Each pCpGfree-vitro plasmid is provided as 20 μg of lyophilized DNA<br />

with a paper disk of lyophilized E. coli GT115 stra<strong>in</strong>. Products are shipped<br />

at room temperature and should be stored at -20°C.<br />

Selections Available <strong>in</strong> pCpGfree-vitro Plasmids<br />

- Blasticid<strong>in</strong><br />

- Hygromyc<strong>in</strong><br />

- Neomyc<strong>in</strong> (G418)<br />

PRODUCT QUANTITY CAT. CODE<br />

pCpGfree-vitroBmcs 20 μg pcpgvtb-mcsg2<br />

pCpGfree-vitroBLacZ 20 μg pcpgvtb-lz<br />

pCpGfree-vitroHmcs 20 μg pcpgvth-mcsg2<br />

pCpGfree-vitroHLacZ 20 μg pcpgvth-lz<br />

pCpGfree-vitroNmcs 20 μg pcpgvtn-mcsg2<br />

pCpGfree-vitroNLacZ 20 μg pcpgvtn-lz<br />

Related Products<br />

Important Licens<strong>in</strong>g Information: These products are covered by a Limited Use License (See Terms and Conditions on page 164). By use of these products you<br />

accept the terms and conditions of all applicable Limited Use Label Licenses.<br />

136 www.<strong>in</strong>vivogen.com/cpgfree-plasmid<br />

Blasticid<strong>in</strong>, page 17 Hygromyc<strong>in</strong> B, page 18<br />

G418 Sulfate, page 17 LyoComp GT115, page 43<br />

MCS<br />

BsrGI<br />

ScaI<br />

BglII<br />

ApaLI<br />

Bsp120I<br />

NcoI<br />

NheI<br />

MscI


pCpGfree-siRNA & pCpGfree-siRNADUO<br />

Description<br />

pCpGfree-siRNA and pCpGfree-siRNADUO are CpG-free plasmids that<br />

allow the expression of one or two shRNAs, respectively. The absence of<br />

CpG d<strong>in</strong>ucleotides <strong>in</strong> their backbone makes these plasmids less<br />

immunogenic and <strong>in</strong>sensitive to CpG methylation thus ideal for long<br />

last<strong>in</strong>g expression of shRNA(s) <strong>in</strong> vivo .<br />

pCpGfree-siRNA<br />

The pCpGfree-siRNA plasmid comb<strong>in</strong>es the backbone of the pCpGfree<br />

plasmid with the shRNA expression cassette of the psiRNA plasmid.<br />

pCpGfree-siRNA features the human 7SK promoter, <strong>in</strong> which all CpG<br />

d<strong>in</strong>ucleotides have been removed. The activity of this RNA Pol III<br />

promoter is augmented by the addition of the enhancer of the mur<strong>in</strong>e<br />

CMV immediate-early promoter, a Pol II enhancer 1 . The enhancer has<br />

been modified to remove all CpGs.<br />

The pCpGfree-siRNA plasmid uses Bbs I, an unusual restriction enzyme<br />

that generates asymmetric cohesive overhangs that are not compatible<br />

with each other to elim<strong>in</strong>ate the risk of self-ligation of the vector.<br />

A second clon<strong>in</strong>g strategy can be chosen by us<strong>in</strong>g Acc 65I and H<strong>in</strong>d III<br />

restriction sites.<br />

The pCpGfree-siRNA plasmid exploits the white/blue selection system<br />

to facilitate the screen<strong>in</strong>g of recomb<strong>in</strong>ant clones. It features an EM7-LacZ<br />

a-peptide cassette between the clon<strong>in</strong>g sites to allow the easy<br />

discrim<strong>in</strong>ation between blue parental and white recomb<strong>in</strong>ant clones.<br />

pCpGfree-siRNADUO<br />

The pCpGfree-siRNADUO plasmid conta<strong>in</strong>s two shRNA cassette driven<br />

by a CpG-free version of the human 7SK promoter. The mur<strong>in</strong>e CMV<br />

enhancer has been added to <strong>in</strong>crease the activity of both 7SK promoters.<br />

The first cassette features Acc65 I / H<strong>in</strong>d III clon<strong>in</strong>g sites and a LacZ apeptide<br />

bacterial expression cassette for white/blue selection <strong>in</strong> E. coli.<br />

The second cassette conta<strong>in</strong>s Bbs I / Bbs I clon<strong>in</strong>g sites and a GUS<br />

bacterial expression cassette, another system that allows white/blue<br />

selection <strong>in</strong> E. coli.<br />

pCpGfree-siRNA and pCpGfree-siRNA-DUO are provided with<br />

LyoComp GT115, a lyophilized competent E. coli mutant stra<strong>in</strong> permissive<br />

with the white and blue color selection from the LacZ and GUS systems.<br />

Contents and Storage<br />

The pCpGfree-siRNA and pCpGfree-siRNADUO plasmids are provided<br />

as 50 μg of lyophilized DNA <strong>in</strong> a kit that <strong>in</strong>cludes the follow<strong>in</strong>g<br />

components:<br />

- 20 μg control plasmid<br />

- 1 vial of LyoComp GT115<br />

- 10 μg of each sequenc<strong>in</strong>g primer<br />

- 4 pouches of Fast-Media ® Zeo X-Gal or,<br />

- 2 pouches of Fast-Media ® Zeo X-Gal and 2 pouches of Fast-Media ®<br />

Zeo X-Gluc<br />

Products are shipped at room temperature. Store Fast-Media ® pouches<br />

at room temperature. Store all other components at -20°C.<br />

Acc 65I<br />

Bbs I<br />

Important Licens<strong>in</strong>g Information: These products are covered by a Limited Use License (See Terms and Conditions on page 164). By use of these products you<br />

accept the terms and conditions of all applicable Limited Use Label Licenses.<br />

Bbs I<br />

H<strong>in</strong>d III<br />

Bbs I<br />

PRODUCT QUANTITY CAT. CODE<br />

pCpGfree-siRNA 1 kit kcpgf-sirna<br />

pCpGfree-siRNADUO 1 kit kcpgf-sirna2<br />

Related Products<br />

Acc 65I<br />

LyoComp GT115, page 43 Fast-Media ® Zeo-X-Gal, page 45<br />

Zeoc<strong>in</strong> , page 18 Fast-Media ® Zeo-X-Gluc, page 45<br />

www.<strong>in</strong>vivogen.com/cpgfree-plasmid 137<br />

Bbs I<br />

H<strong>in</strong>d III<br />

CpG-FREE DNA 6


CpG-FREE DNA 6<br />

CpG-Free Genes - Synthetic CpG-free Genes<br />

Many non-mammalian genes are widely used as reporter or suicide genes <strong>in</strong> molecular and cellular studies. However these genes are recognized<br />

as foreign DNA by the vertebrate host lead<strong>in</strong>g to a progressive decl<strong>in</strong>e of their expression. To circumvent this limitation, InvivoGen has<br />

synthesized new alleles of these genes completely devoid of CpG d<strong>in</strong>ucleotides. These synthetic CpG-free genes display higher activity and<br />

lower immunogenicity than their wild-type counterparts.<br />

Description<br />

The DNA sequence of the CpG-free genes was modified by optimiz<strong>in</strong>g<br />

the codon usage, elim<strong>in</strong>at<strong>in</strong>g the CpG nucleotides and avoid<strong>in</strong>g secondary<br />

DNA structures without chang<strong>in</strong>g the am<strong>in</strong>o acid sequence of the wild<br />

type prote<strong>in</strong>s.<br />

CpG-free genes were chemically synthesized by assembl<strong>in</strong>g large<br />

oligonucleotides. Sequence <strong>in</strong>tegrity was verified by double-stranded<br />

sequenc<strong>in</strong>g.<br />

CpG-free genes are provided <strong>in</strong> the pSELECT-zeo plasmid (see page 32).<br />

pSELECT-zeo is a mammalian expression plasmid selectable <strong>in</strong> E. coli and<br />

mammalian cells with Zeoc<strong>in</strong> . Each CpG-free gene is flanked by a unique<br />

restriction site at the 5’ and 3’ end to facilitate its subclon<strong>in</strong>g <strong>in</strong>to another<br />

vector.<br />

Contents and Storage<br />

Each pSELECT-zeo- plasmid is provided as 20 μg of<br />

lyophilized DNA. Product is shipped at room temperature and should<br />

be stored at -20°C. Plasmid is stable up to one year when properly stored.<br />

Each plasmid is supplied with 4 pouches of E. coli Fast-Media ® Zeo (2 TB<br />

and 2 Agar, see pages 44-45).<br />

GENE DESCRIPTION<br />

Suicide Genes<br />

Fcy::fur* S. cerevisiae cytos<strong>in</strong>e deam<strong>in</strong>ase-uracil phosphoribosyl transferase fusion 33 20 μg psetz-fcyfur<br />

HSV1-tk Herpes simplex virus 1 (HSV1) thymid<strong>in</strong>e k<strong>in</strong>ase 121 20 μg psetz-hsv1tk<br />

HSV1-tk::Sh* HSV1 thymid<strong>in</strong>e k<strong>in</strong>ase-Zeoc<strong>in</strong> resistance fusion 372 20 μg psetz-hsv1tksh<br />

Reporter Genes<br />

GFP::Sh* Green fluorescent prote<strong>in</strong>-Zeoc<strong>in</strong> resistance fusion 110 20 μg psetz-zgfpsh<br />

GFP::Bsr* NEW Green fluorescent prote<strong>in</strong>-Blasticid<strong>in</strong> resistance fusion 110 20 μg psetz-zgfpbsr<br />

LacZ b-Galactosidase 289 20 μg psetz-lacz<br />

LacZnls b-Galactosidase with SV40 nuclear localization signal 289 20 μg psetz-lacznls<br />

LacZ::Sh* b-Galactosidase-Zeoc<strong>in</strong> resistance fusion 341 20 μg psetz-laczsh<br />

Luc::Sh* Firefly luciferase-Zeoc<strong>in</strong> resistance fusion 151 20 μg psetz-lucsh<br />

SEAP Mouse secreted embryonic alkal<strong>in</strong>e phosphatase 65 20 μg psetz-mseap<br />

* Fusion gene<br />

138 www.<strong>in</strong>vivogen.com/cpgfree-genes<br />

Note: The pSELECT-zeo plasmid backbone conta<strong>in</strong>s CpG d<strong>in</strong>ucleotides.<br />

CpGs IN<br />

NATIVE GENE<br />

QUANTITY CAT. CODE


Custom-Made CpG-Free Genes<br />

InvivoGen is an expert <strong>in</strong> develop<strong>in</strong>g CpG-Free genes and now offers a CpG-Free gene custom service. Send us the sequence of your gene<br />

of <strong>in</strong>terest, and our specialists will design, synthesize and clone <strong>in</strong>to an expression vector a CpG-Free allele of this gene. We guarantee that<br />

the sequence of the synthetic gene will 100% match the designed sequence.<br />

➥ Free Sequence Design<br />

➥ Shor t Turnaround Time<br />

➥ Competitive Price<br />

➥ Confidentiality Guaranteed<br />

Description<br />

Sequence Design<br />

Our experts will design the sequence of a CpG-free allele of your gene<br />

of <strong>in</strong>terest us<strong>in</strong>g a proprietary software that will <strong>in</strong>clude the follow<strong>in</strong>g:<br />

- elim<strong>in</strong>ation of all CpG d<strong>in</strong>ucleotides<br />

- humanization of the sequence<br />

- elim<strong>in</strong>ation of secondary structures such as hairp<strong>in</strong>s and long direct<br />

repeated sequences <strong>in</strong> order to <strong>in</strong>crease the stability and expression of<br />

the mRNA<br />

- elim<strong>in</strong>ation/reduction of dam and dcm methylations to dim<strong>in</strong>ish E. coli<br />

signature<br />

Clon<strong>in</strong>g <strong>in</strong> an Expression Vector<br />

The Custom-made CpG-free Gene is cloned <strong>in</strong>to the pMA plasmid. We<br />

can clone it <strong>in</strong> the vector of your choice for an additional charge.<br />

Sequenc<strong>in</strong>g<br />

The Custom-made CpG-free Gene is 100% sequence verified, both strands<br />

are sequenced.<br />

Process<strong>in</strong>g<br />

Send us the nucleic (Genbank accession number) or proteic sequence<br />

of your gene of <strong>in</strong>terest. The synthesis of the CpG-free allele will start<br />

after you confirm its sequence.<br />

The turnaround time is 2-3 weeks for sequences shorter than 1 kb.<br />

We can process sequences up to 5 kb.<br />

Contents and Storage<br />

Custom-made CpG-free genes are provided as 20 μg of lyophilized DNA.<br />

Products are shipped at room temperature. Store at -20°C.<br />

PRODUCT QTY CAT. CODE<br />

Custom-made CpG-free Gene 20 μg p-custom<br />

Contact us for more <strong>in</strong>formation.<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.com<br />

www.<strong>in</strong>vivogen.com//cpgfree-genes 139<br />

CpG-FREE DNA 6


7<br />

RNA INTERFERENCE<br />

psiRNA System 142-145<br />

psiTEST System 146<br />

Interferon Response 147<br />

Ready-Made psiRNA 148<br />

Custom-Made psiRNA 150


RNA INTERFERENCE 7<br />

psiRNA System<br />

InvivoGen provides a plasmid-based system developed to knockdown efficiently the expression of a wide variety<br />

of mammalian genes. This system represents a simple and affordable method to generate short hairp<strong>in</strong> RNAs<br />

(shRNAs) by elim<strong>in</strong>at<strong>in</strong>g the need to synthesize RNA oligonucleotides.<br />

The psiRNA System is designed to assist you <strong>in</strong> all the steps necessary to obta<strong>in</strong> efficient silenc<strong>in</strong>g of a gene of<br />

<strong>in</strong>terest from the selection of an effective siRNA/shRNA to its prevalidation.<br />

• Selection of Candidate siRNA/shRNA and Design of Hairp<strong>in</strong> Insert:<br />

siRNA Wizard Software - www.sirnawizard.com<br />

The design of siRNAs and short hairp<strong>in</strong> RNAs (shRNAs) rema<strong>in</strong>s an empirical process s<strong>in</strong>ce the<br />

molecular mechanisms underly<strong>in</strong>g RNAi are not yet sufficiently understood to allow for their<br />

rational design. However, based on the research from various laboratories <strong>in</strong>clud<strong>in</strong>g our own,<br />

InvivoGen has been able to develop siRNA Wizard, a free software accessible onl<strong>in</strong>e from our<br />

homepage, that will help you do the follow<strong>in</strong>g:<br />

➥ Select Candidate siRNA/shRNAs<br />

The siRNA Wizard algorithm allows to select effective and specific siRNAs/shRNAs aga<strong>in</strong>st your<br />

gene of <strong>in</strong>terest based on thermodynamic and sequence-related criteria. Two search options are<br />

available:<br />

- Standard Search<br />

“Standard Search” uses default criteria described <strong>in</strong> the “siRNA/shRNA Design Guidel<strong>in</strong>es”<br />

paragraph to select several candidate siRNAs/shRNAs aga<strong>in</strong>st your gene of <strong>in</strong>terest.<br />

- Advanced Search<br />

“Advanced Search” lets you manually set the selection criteria.<br />

➥ Design Hairp<strong>in</strong> Insert<br />

Us<strong>in</strong>g your selected siRNA/shRNA sequence, this tool will design two complementary<br />

oligonucleotides necessary to create the hairp<strong>in</strong> <strong>in</strong>sert for psiRNA clon<strong>in</strong>g vectors and let you<br />

choose the sequence of the loop.<br />

➥ Generate siRNA/shRNA Scramble Sequence<br />

This tool will return a scramble sequence with no match with any mRNA of the selected species<br />

database. This scramble sequence that serves as a negative control conta<strong>in</strong>s the same nucleotide<br />

composition as the selected siRNA/shRNA sequence.<br />

• Clon<strong>in</strong>g of siRNA/shRNA Insert: psiRNA-h7SK Plasmids<br />

InvivoGen provides psiRNA-h7SK, a family of clon<strong>in</strong>g vectors featur<strong>in</strong>g the human 7SK RNA<br />

polymerase III promoter and a choice of selection markers (see page 144). psiRNA-h7SK plasmids<br />

exploit the white/blue selection system to facilitate the screen<strong>in</strong>g of recomb<strong>in</strong>ant bacterial clones.<br />

Furthermore, they feature a GFP::Zeo fusion gene that allows to evaluate transfection efficiency<br />

and normalize silenc<strong>in</strong>g experiments.<br />

psiRNA-h7SK plasmids are provided <strong>in</strong> a kit that conta<strong>in</strong>s, <strong>in</strong> addition to the clon<strong>in</strong>g vector, two<br />

control vectors, and a set of tools designed to facilitate the clon<strong>in</strong>g of shRNAs <strong>in</strong> the plasmid. The<br />

psiRNA-h7SK tools are the follow<strong>in</strong>g:<br />

- E. coli GT116 & GT115<br />

- Sequenc<strong>in</strong>g Primers<br />

- Fast-Media ® X-Gal & X-Gluc<br />

142 www.<strong>in</strong>vivogen.com/psirna-system<br />

“Standard Search” Selection Criteria<br />

Target gene trimm<strong>in</strong>g<br />

> > > > > > > > ><br />

Thermodynamic analysis<br />

GC content analysis<br />

Term<strong>in</strong>ation signal exclusion<br />

Secondary structure avoidance<br />

Immunostimulatory motif exclusion<br />

BLAST search<br />

3’ UTR/seed region analysis<br />

(optional)<br />

siRNAs/shRNAs fail<strong>in</strong>g the selection<br />

are rejected<br />

Effective and specific<br />

siRNAs/shRNAs


E. coli GT116 & GT115<br />

InvivoGen has eng<strong>in</strong>eered two specific E. coli stra<strong>in</strong>s, named GT116 and GT115,<br />

to facilitate the clon<strong>in</strong>g of shRNAs <strong>in</strong>to psiRNA plasmids. Hairp<strong>in</strong> structures are<br />

known to be unstable <strong>in</strong> E. coli due to their elim<strong>in</strong>ation by a prote<strong>in</strong> complex<br />

called SbcCD that recognizes and cleaves hairp<strong>in</strong>s. To <strong>in</strong>crease their stability <strong>in</strong><br />

E. coli, we developed GT116 and GT115 by delet<strong>in</strong>g the sbcC and sbcD genes.<br />

Both stra<strong>in</strong>s are more compatible with hairp<strong>in</strong> structures than commonly used<br />

E. coli stra<strong>in</strong>s <strong>in</strong>creas<strong>in</strong>g the probability of obta<strong>in</strong><strong>in</strong>g the correct clone <strong>in</strong> a<br />

m<strong>in</strong>imum number of steps. GT115 is further mutated <strong>in</strong> the uidA gene render<strong>in</strong>g<br />

this stra<strong>in</strong> deficient for b-glucuronidase (see page 42).<br />

Both stra<strong>in</strong>s are provided as lyophilized chemically competent cells, named<br />

LyoComp GT116 and LyoComp GT115 respectively, that can also be purchased<br />

separately (see page 43).<br />

GT116 Genotype: F¯ mcrA D(mrr-hsdRMS-mcrBC) Φ80lacZDM15 DlacX74 recA1<br />

rspL (StrA) endA1 ∆dcm ∆sbcC-sbcD<br />

GT115 Genotype: F¯ mcrA D(mrr-hsdRMS-mcrBC) Φ80lacZDM15 DlacX74 recA1<br />

rspL (StrA) endA1 ∆dcm uidA(∆MluI)::pir-116 ∆sbcC-sbcD<br />

Sequenc<strong>in</strong>g Primers<br />

Several sequenc<strong>in</strong>g primer pairs have been designed, one for each psiRNA<br />

plasmid backbone, that allow full read<strong>in</strong>g of the <strong>in</strong>sert sequence by us<strong>in</strong>g<br />

conventional sequenc<strong>in</strong>g methods.<br />

- OL559-OL408 pair, for all psiRNA-h7SK plasmids<br />

- OL178-OL408 and OL906-OL176 pairs for the a-peptide cassette and the<br />

GUS cassette of the psiRNA-DUO plasmid, respectively<br />

Fast-Media ® X-Gal & X-Gluc<br />

Fast-Media ® X-Gal and Fast-Media ® X-Gluc are ready-to-use microwaveable<br />

LB-based medium powder for E. coli selection. They already conta<strong>in</strong> the selective<br />

antibiotic and X-Gal (LacZ) or X-Gluc (Gus) at the appropriate co ncentration.<br />

These media allow to prepare high quality white/blue selection medium <strong>in</strong> less<br />

than 5 m<strong>in</strong>utes.<br />

Fast-Media ® X-Gal is available with four different selections: blasticid<strong>in</strong>,<br />

hygromyc<strong>in</strong>, kanamyc<strong>in</strong> and Zeoc<strong>in</strong> . Fast-Media ® X-Gluc is available with<br />

Zeoc<strong>in</strong> .<br />

Fast-Media ® can be purchased separately (see pages 44-45).<br />

• Prevalidation of siRNA/shRNA: psiTEST System<br />

The psiTEST System was developed to provide a rapid, simple, and convenient<br />

method to screen for functional siRNA and shRNA sequences (see pages 146-<br />

147). The silenc<strong>in</strong>g efficiency of a given siRNA or shRNA is evaluated by<br />

monitor<strong>in</strong>g the reduction of expression of a chimeric gene consist<strong>in</strong>g of a<br />

secreted alkal<strong>in</strong>e phosphatase (SEAP) reporter gene transcriptionally fused to<br />

the target gene. Transfection of effective siRNAs or shRNAs triggers the RNAi<br />

process result<strong>in</strong>g <strong>in</strong> the degradation of the chimeric mRNA and therefore the<br />

absence of SEAP activity.<br />

Strategy for psiRNA-mediated RNA<br />

<strong>in</strong>terference<br />

www.<strong>in</strong>vivogen.com/psirna-system 143<br />

RNA INTERFERENCE 7


RNA INTERFERENCE 7<br />

psiRNA-h7SK - 7SK-based expression of shRNAs<br />

Features and Benefits<br />

RNA Polymerase III Based Plasmid<br />

psiRNA-h7SK is a family of expression vectors designed to generate<br />

shRNA from the human 7SK RNA polymerase III (Pol III) promoter.<br />

7SK is an abundant and evolutionarily conserved small nuclear RNA<br />

transcribed by RNA polymerase III 1 . The human 7SK promoter is ideal<br />

for the production of shRNAs as it can generate high amounts of<br />

shRNAs 1, 2 . In a series of experiments aimed to compare the strength of<br />

the human 7SK, H1 and U6 promoters, we found that the best silenc<strong>in</strong>g<br />

efficiencies of various target genes was consistently obta<strong>in</strong>ed with the 7SK<br />

promoter. psiRNA-h7SK has been successfully used to achieve gene<br />

silenc<strong>in</strong>g <strong>in</strong> vitro and <strong>in</strong> vivo 3-5 . Furthermore, the 7SK promoter can be used<br />

<strong>in</strong> comb<strong>in</strong>ation with other RNA pol III promoters for multiple shRNA<br />

expression strategies 6 .<br />

Clon<strong>in</strong>g Options<br />

psiRNA-h7SK plasmids offer two clon<strong>in</strong>g strategies for the clon<strong>in</strong>g of an<br />

shRNA <strong>in</strong>sert, either Acc 65I / H<strong>in</strong>d III or Bbs I / BbsI. The two Bbs I sites<br />

are different although recognized by the same restriction enzyme thus<br />

prevent<strong>in</strong>g self-ligation of the plasmid.<br />

White and Blue Selection<br />

psiRNA-h7SK plasmids exploit the white/blue selection system to<br />

facilitate the screen<strong>in</strong>g of recomb<strong>in</strong>ant clones. The clon<strong>in</strong>g sites flank a<br />

bacterial LacZ a-peptide expression cassette allow<strong>in</strong>g the discrim<strong>in</strong>ation<br />

between blue parental clones and white recomb<strong>in</strong>ant clones. Although<br />

over 90% of the white clones have <strong>in</strong>tegrated a fragment, it is necessary<br />

to sequence the <strong>in</strong>sert to verify the <strong>in</strong>tegrity of the sequence s<strong>in</strong>ce only<br />

one base difference can lead to an <strong>in</strong>active shRNA.<br />

Variety of Selectable Markers<br />

psiRNA-h7SK plasmids are available with several selectable markers that<br />

function <strong>in</strong> E. coli and mammalian cells. They are driven by strong<br />

mammalian promoter <strong>in</strong> tandem with a constitutive bacterial promoter.<br />

Normalize Your Silenc<strong>in</strong>g Experiments with GFP::Zeo<br />

psiRNA-h7SKGFPzeo features a GFP::zeo fusion gene that comb<strong>in</strong>es the<br />

GFP reporter gene and the Zeoc<strong>in</strong> resistance gene. This fusion gene<br />

allows the evaluation of transfection efficiency by determ<strong>in</strong><strong>in</strong>g the<br />

percentage of transfected cells by assay<strong>in</strong>g the reporter activity. Therefore,<br />

psiRNA-h7SKGFPzeo use allows to normalize your silenc<strong>in</strong>g experiments.<br />

Easily Convertible <strong>in</strong>to an Adenovector<br />

The shRNA expression cassette is flanked by Spe I at the 5’ end and<br />

H<strong>in</strong>d III at the 3’ end. This cassette can be easily excised from any<br />

psiRNA-h7SK plasmid us<strong>in</strong>g these two restriction enzymes and<br />

subcloned <strong>in</strong>to one of the shuttle plasmids commercially available<br />

digested with Nhe I (compatible with Spe I) and H<strong>in</strong>d III.<br />

1. Czauderna F. et al., 2003. Inducible shRNA expression for application <strong>in</strong> a prostate<br />

cancer mouse model. Nucleic Acids Res. 31(21):e127. 2. Koper-Emde D. et al.,2004. RNA<br />

<strong>in</strong>terference by small hairp<strong>in</strong> RNAs synthesised under control of the human 7S K RNA<br />

promoter. Biol Chem. 385(9):791-4. 3. Triantafilou K. et al., 2005. Human cardiac<br />

<strong>in</strong>flammatory responses triggered by Coxsackie B viruses are ma<strong>in</strong>ly Toll-like receptor<br />

(TLR) 8-dependent. Cell Microbiol. 7(8):1117-26. 4. Tajedd<strong>in</strong>e N. et al., 2005. Tumorassociated<br />

antigen preferentially expressed antigen of melanoma (PRAME) <strong>in</strong>duces<br />

caspase-<strong>in</strong>dependent cell death <strong>in</strong> vitro and reduces tumorigenicity <strong>in</strong> vivo. Cancer<br />

Res.65(16):7348-55. 5. Mazzanti CM. et al., 2004. Early genetic mechanisms underly<strong>in</strong>g<br />

the <strong>in</strong>hibitory effects of endostat<strong>in</strong> and fumagill<strong>in</strong> on human endothelial cells. Genome<br />

Res. 14(8):1585-93. 6. ter Brake O. et al., 2008. Lentiviral Vector Design for Multiple<br />

shRNA Expression and Durable HIV-1 Inhibition. Mol Ther. 16(3):557-64.<br />

Bbs I<br />

Acc 65I<br />

Contents and Storage<br />

144 www.<strong>in</strong>vivogen.com/psirna-system<br />

Bbs I<br />

H<strong>in</strong>d III<br />

Choose your selectable marker<br />

Blasticid<strong>in</strong> S<br />

Hygromyc<strong>in</strong> B<br />

Kanamyc<strong>in</strong> / G418<br />

Zeoc<strong>in</strong> <br />

GFP::Zeo<br />

psiRNA-h7SK kits conta<strong>in</strong> the follow<strong>in</strong>g components:<br />

- 20 μg of the psiRNA-h7SK plasmid of your choice (see list)<br />

- 20 μg of the correspond<strong>in</strong>g control plasmid 1 (psiRNA-h7SKgfp for all<br />

selectable markers and psiRNA-h7SKlacZ for GFP::zeo)<br />

- 20 μg of the correspond<strong>in</strong>g control plasmid 2 (psiRNA-h7SKluc for all<br />

selectable markers)<br />

- 1 vial of LyoComp GT116<br />

- 2 x 10 μg of the correspond<strong>in</strong>g sequenc<strong>in</strong>g primer pair<br />

- 4 pouches of the appropriate Fast-Media ® X-Gal<br />

Products are shipped at room temperature. Store Fast-Media ® at room<br />

temperature. Store all other components at -20°C.<br />

PRODUCT QTY CAT. CODE<br />

psiRNA-h7SKblasti 1 kit ksirna3-b21<br />

psiRNA-h7SKhygro 1 kit ksirna3-h21<br />

psiRNA-h7SKneo 1 kit ksirna3-n21<br />

psiRNA-h7SKzeo 1 kit ksirna3-z21<br />

psiRNA-h7SKGFPzeo 1 kit ksirna4-gz21


psiRNA-DUO - Expression of Two shRNAs<br />

Description<br />

psiRNA-DUO generates two shRNAs from the same plasmid for the<br />

silenc<strong>in</strong>g of either a s<strong>in</strong>gle target gene (with/without polymorphisms) or<br />

two different target genes. psiRNA-DUO conta<strong>in</strong>s special features<br />

designed to make the clon<strong>in</strong>g of the shRNA <strong>in</strong>serts and selection of<br />

recomb<strong>in</strong>ant clones simple and rapid.<br />

The major features of the psiRNA-DUO plasmid are its two RNA Pol III<br />

cassettes and the GFP-Zeo fusion gene.<br />

7SK RNAi Cassettes<br />

The first cassette conta<strong>in</strong>s the follow<strong>in</strong>g elements:<br />

- Human 7SK promoter (see page 144)<br />

- Acc65 I / H<strong>in</strong>d III clon<strong>in</strong>g sites<br />

- LacZ a-peptide expression cassette for white and blue selection<br />

The second cassette conta<strong>in</strong>s the follow<strong>in</strong>g elements:<br />

- Human 7SK promoter<br />

- Bbs I / Bbs I clon<strong>in</strong>g sites<br />

- GUS expression cassette for white and blue selection<br />

b-Glucuronidase (GUS, uidA) is an E. coli enzyme capable of hydrolyz<strong>in</strong>g<br />

the chromogenic substrate X-Gluc to generate a blue pigment. Therefore,<br />

similarly to LacZ, the expression of GUS <strong>in</strong> permissive E. coli allows the<br />

discrim<strong>in</strong>ation between blue parental clones and white recomb<strong>in</strong>ant<br />

clones.<br />

psiRNA-DUO is provided with the E. coli GT115, a lacZ uidA mutant<br />

stra<strong>in</strong>, enabl<strong>in</strong>g the white and blue color selection from the LacZ and<br />

GUS systems.<br />

GFP-Zeo Fusion Gene<br />

The GFP-Zeo gene is a transcriptional fusion between the Green<br />

Fluorescent Prote<strong>in</strong> reporter gene and the Zeoc<strong>in</strong> resistance (Zeo R )<br />

gene. The two moieties are separated by a bacterial promoter (EC2K)<br />

located with<strong>in</strong> an <strong>in</strong>tron. In E. coli, Zeo R is expressed from the EC2K<br />

promoter that is spliced out <strong>in</strong> mammalian cells. A composite CMV<br />

promoter drives the expression of the GFP-Zeo fusion gene, allow<strong>in</strong>g the<br />

monitor<strong>in</strong>g of transfection efficiency and the selection of stable clones.<br />

Contents and Storage<br />

psiRNA-DUO is provided as a kit composed of follow<strong>in</strong>g:<br />

- 20 μg of psiRNA-DUO-GFPzeo<br />

- 20 μg of psiRNA-LucLac-GFPzeo (control plasmid)<br />

- 1 vial of LyoComp GT115<br />

- 2 sets of sequenc<strong>in</strong>g primers (2 x 10 μg each)<br />

- 2 pouches of Fast-Media ® Zeo X-Gal<br />

- 2 pouches of Fast-Media ® Zeo X-Gluc<br />

For more <strong>in</strong>formation on LyoComp GT115, sequenc<strong>in</strong>g primers and<br />

Fast-Media ® X-Gal and X-Gluc, see page 45.<br />

Products are shipped at room temperature. Store Fast-Media ® at room<br />

temperature. Store all other components at -20°C.<br />

Procedures<br />

Two Clon<strong>in</strong>g Step Procedure<br />

1- Clone first shRNA <strong>in</strong>sert <strong>in</strong> first 7SK RNAi cassette<br />

opened with Acc65 I and H<strong>in</strong>d III.<br />

2- Select white recomb<strong>in</strong>ant clones on X-Gal plates prepared<br />

with Fast-Media ® Zeo X-Gal.<br />

3- Clone second shRNA <strong>in</strong>sert <strong>in</strong> second 7SK RNAi cassette<br />

opened with Bbs I.<br />

4- Select white recomb<strong>in</strong>ant clones on X-Gluc plates prepared<br />

with Fast-Media ® Zeo X-Gluc.<br />

One Clon<strong>in</strong>g Step Procedure<br />

1- Digest psiRNA-DUO with Acc65 I, H<strong>in</strong>d III and Bbs I.<br />

2- Ligate both shRNA <strong>in</strong>serts with the two psiRNA-DUO<br />

fragments (H<strong>in</strong>d III/Bbs I and Bbs I/Acc65 I).<br />

3- Select sequentially white recomb<strong>in</strong>ant clones on X-Gal<br />

plates and X-Gluc plates.<br />

PRODUCT QTY CAT. CODE<br />

psiRNA-DUO 1 kit ksirna4-gz3<br />

www.<strong>in</strong>vivogen.com/psirna-system 145<br />

RNA INTERFERENCE 7


RNA INTERFERENCE 7<br />

psiTEST System - Prevalidation of siRNAs and shRNAs<br />

The psiTEST system enables you to screen for effective siRNAs and shRNAs without us<strong>in</strong>g time-consum<strong>in</strong>g and costly reagents that are specific<br />

to your target gene, such as antibodies. The psiTEST system can be used to evaluate RNAi on virtually any gene of any species for which the<br />

sequence is known. The silenc<strong>in</strong>g efficiency of a given siRNA or shRNA is evaluated by monitor<strong>in</strong>g the reduction of expression of a chimeric<br />

gene consist<strong>in</strong>g of a secreted alkal<strong>in</strong>e phosphatase (SEAP) reporter gene transcriptionally fused to the target gene. Transfection of effective<br />

siRNAs or shRNAs triggers the RNAi process result<strong>in</strong>g <strong>in</strong> the degradation of the chimeric mRNA and therefore the absence of SEAP activity.<br />

Description<br />

The psiTEST system is based on a transcriptional fusion between a<br />

reporter gene and your target gene. The reporter gene is an optimized<br />

alkal<strong>in</strong>e phosphatase gene eng<strong>in</strong>eered to be secreted (SEAP). The efficacy<br />

of an siRNA or shRNA to <strong>in</strong>duce RNAi on your target gene is<br />

determ<strong>in</strong>ed by measur<strong>in</strong>g the expression levels of the SEAP reporter<br />

gene (see figure). S<strong>in</strong>ce SEAP is a secreted prote<strong>in</strong>, the expression level<br />

can be evaluated from supernatants therefore allow<strong>in</strong>g to perform k<strong>in</strong>etics<br />

of the silenc<strong>in</strong>g process.<br />

Features and Benefits<br />

The psiTEST system conta<strong>in</strong>s two major components, the psiTEST plasmid<br />

and QUANTI-Blue .<br />

psiTEST plasmid<br />

The psiTEST plasmid features the SEAP gene fused at the 3’ end after its<br />

Stop codon to a multiple clon<strong>in</strong>g site (MCS). This MCS conta<strong>in</strong>s many<br />

common restriction sites compatible with many other restriction sites.<br />

psiTEST also features a GFP::zeo fusion gene: the zeo moiety allows to<br />

amplify the plasmid <strong>in</strong> E. coli and select stable mammalian clones while<br />

the GFP moiety enables the monitor<strong>in</strong>g of transfection efficiency.<br />

psiTEST can be used to clone fragments of genes or entire genes, the<br />

optimum size be<strong>in</strong>g 1.5 kb, although genes up to 3.5 kb can be targeted.<br />

QUANTI-Blue <br />

QUANTI-Blue is a SEAP detection medium that turns purple/blue <strong>in</strong><br />

the presence of phosphatase activity. Functional siRNAs or shRNAs will<br />

<strong>in</strong>duce the degradation of the SEAP mRNA result<strong>in</strong>g <strong>in</strong> the reduction or<br />

absence of SEAP activity.<br />

Silenc<strong>in</strong>g efficiencies of the siRNAs or shRNAs can be observed visually<br />

and unlike fluorescent reporters can also be easily quantified us<strong>in</strong>g a<br />

microplate reader or spectrophotometer.<br />

Contents and Storage<br />

The psiTEST system is provided with several control plasmids: psiTESThp53,<br />

psiRNA-hp53 and psiRNA-Luc. psiTEST-hp53 conta<strong>in</strong>s a fusion<br />

between the SEAP and human p53 genes. psiRNA-hp53 produces an<br />

shRNA that functionally silences the human p53 result<strong>in</strong>g <strong>in</strong> the absence<br />

of phosphatase activity. psiRNA-Luc expresses an shRNA <strong>in</strong>sert that<br />

targets luciferase GL3 and therefore will not affect the expression of the<br />

phosphatase reporter gene.<br />

The psiTEST system conta<strong>in</strong>s the follow<strong>in</strong>g components:<br />

- 20 μg of psiTEST and 20 μg of psiTEST-hp53 (control plasmid)<br />

- 20 μg of psiRNA-hp53 and 20 μg of psiRNA-Luc<br />

- 2 pouches of QUANTI-Blue (100 ml each)<br />

- 4 pouches of Fast-Media ® Zeo (2 TB, 2 Agar)<br />

Products are shipped at room temperature. Store Fast-Media ® at room<br />

temperature. Store all other components at -20°C.<br />

Procedure<br />

146 www.<strong>in</strong>vivogen.com/psitest-system<br />

1- Clone your target gene (or a fragment) <strong>in</strong>to the psiTEST<br />

plasmid.<br />

2- Cotransfect mammalian cells with recomb<strong>in</strong>ant psiTEST <br />

and siRNA or shRNA-produc<strong>in</strong>g plasmid, such as psiRNA .<br />

3- Incubate at 37°C with 5% CO2 for 72 hours.<br />

4- Collect supernatant and add to a QUANTI-Blue -<br />

conta<strong>in</strong><strong>in</strong>g well.<br />

5- Incubate at 37°C for 30 m<strong>in</strong> to 3 hours.<br />

6- Determ<strong>in</strong>e the functionality of your siRNA or shRNA by<br />

observ<strong>in</strong>g the coloration of QUANTI-Blue visually and/or<br />

with a spectrophotometer at 620-655 nm.<br />

PRODUCT QTY CAT. CODE<br />

psiTEST 1 kit ksitest<br />

QUANTI-Blue 5 pouches rep-qb1


IFNr qRT-Primers - Detection of the IFN Response<br />

Double strand RNA (dsRNA) is a molecular pattern associated with viral <strong>in</strong>fection. It is recognized by the <strong>in</strong>nate immune system lead<strong>in</strong>g to the<br />

production of type I <strong>in</strong>terferons and the subsequent <strong>in</strong>duction of a variety of antiviral genes. Recent reports <strong>in</strong>dicate that certa<strong>in</strong> siRNAs and<br />

shRNAs can activate the IFN pathway, potentially lead<strong>in</strong>g to severe side effects. To determ<strong>in</strong>e whether a given siRNA or shRNA is<br />

immunostimulatory, InvivoGen has developed a set of primers that detect the expression of human genes <strong>in</strong>volved <strong>in</strong> the IFN response by<br />

real-time quantitative PCR us<strong>in</strong>g the SYBR ® Green detection.<br />

➥ The IFNr qRT-Primers provide highly specific and sensitive results <strong>in</strong> real-time quantitative PCR.<br />

➥ Each IFNr qRT-Primer Pair is carefully designed and tested.<br />

➥ The size of the amplified fragments varies from 80 to 280 bp.<br />

➥ The IFNr qRT-Primers allow to perform 100 x 50 μl reactions (<strong>in</strong> a 96-well plate) or 250 x 20 μl reactions (<strong>in</strong> a 384-well plate).<br />

Description<br />

The IFNr qRT-Primers are a set of primer pairs designed to measure<br />

the mRNA expression of 5 genes <strong>in</strong>duced by IFNa:<br />

- IFNb<br />

- OAS1<br />

- MX1 (also known as MxA)<br />

- G1P2 (also known as ISG15)<br />

- IFIT1 (also known as CDKL2 or P56),<br />

and the housekeep<strong>in</strong>g gene GAPDH as a control.<br />

The IFNr qRT-Primers allow one-step or two-step qRT-PCR <strong>in</strong><br />

comb<strong>in</strong>ation with SYBR ® Green I dye.<br />

Interferon Response: An Off-Target Effect<br />

The RNAi reagents, siRNA and shRNA, can be potent <strong>in</strong>ducers of<br />

<strong>in</strong>terferons (IFNs) and <strong>in</strong>flammatory cytok<strong>in</strong>es both <strong>in</strong> vivo and <strong>in</strong> vitro 1-3<br />

due to their recognition by cellular receptors of foreign RNA and<br />

DNA. Much of the IFN response is caused by the activation of the<br />

dsRNA-dependent prote<strong>in</strong> k<strong>in</strong>ase R (PKR), that recognizes long<br />

double-stranded (ds)RNA, lead<strong>in</strong>g to a global <strong>in</strong>hibition of prote<strong>in</strong><br />

synthesis. siRNAs that are shorter than 30 bp can evade PKR<br />

activation, but are recognized by other receptors, such as the Toll-like<br />

receptors (TLRs). TLR3, which ligand is dsRNA, and TLR7 and TLR8,<br />

that sense s<strong>in</strong>gle-stranded RNA, have been implicated <strong>in</strong> the<br />

recognition of siRNAs 1-4 . Recognition by TLR7 and TLR8 appears to<br />

sequence-dependent as several immunostimulatory sequences have<br />

been identified. These sequences are characterized by a high content<br />

of guanos<strong>in</strong>e and urid<strong>in</strong>e residues 1, 5 . They have been <strong>in</strong>tegrated <strong>in</strong><br />

InvivoGen’s siRNA Wizard algorithm and are systematically excluded<br />

to limit the IFN response.<br />

The IFN response <strong>in</strong>duced by shRNAs results ma<strong>in</strong>ly from the DNA<br />

vector that conta<strong>in</strong>s non-methylated CpG sequences that are<br />

recognized by TLR9. InvivoGen has designed a CpG-free vector,<br />

pCpGfree-siRNA, to overcome this problem (see page 137).<br />

Contents and Storage<br />

The IFNr qRT-Primers conta<strong>in</strong> 10 μM of each primer. The 5’ sense primer<br />

and the 3’ antisense primer are provided <strong>in</strong> separate vials. Products are<br />

lyophilized and shipped at room temperature.<br />

PRODUCT QTY CAT. CODE<br />

IFNr qRT-Primers 1 kit rts-hifnr<br />

1. Hornung V. et al., 2005. Sequence-specific potent <strong>in</strong>duction of IFN-alpha by short <strong>in</strong>terfer<strong>in</strong>g<br />

RNA <strong>in</strong> plasmacytoid dendritic cells through TLR7. Nat Med. 11(3):263-70. 2. Sioud M.,<br />

2005. Induction of <strong>in</strong>flammatory cytok<strong>in</strong>es and <strong>in</strong>terferon responses by double-stranded and<br />

s<strong>in</strong>gle-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol<br />

Biol. 348(5):1079-90. 3. Agrawal S. & Kandimalla ER. 2004. Antisense and siRNA as agonists<br />

of Toll-like receptors. Nat. Biotechnol. 22: 1533-1537. 4. Kariko K. et al., 2004. Exogenous<br />

siRNA mediates sequence-<strong>in</strong>dependent gene suppression by signal<strong>in</strong>g through toll-like<br />

receptor 3. Cells Tissues Organs. 177(3):132-8. 5. Judge AD. et al., 2005. Sequencedependent<br />

stimulation of the mammalian <strong>in</strong>nate immune response by synthetic siRNA. Nat<br />

Biotechnol. 23(4):457-62.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>terferon-response 147<br />

RNA INTERFERENCE 7


RNA INTERFERENCE 7<br />

Ready-Made psiRNA - Plasmids Express<strong>in</strong>g Functional shRNAs<br />

Ready-made psiRNA is a new family of plasmids express<strong>in</strong>g a grow<strong>in</strong>g list of shRNAs which functionality has been described <strong>in</strong> the literature<br />

or validated <strong>in</strong> house. Ready-made psiRNA plasmids elim<strong>in</strong>ate the need to design and clone several siRNA sequences before identify<strong>in</strong>g an<br />

effective one. They express shRNAs that silence the expression of a target gene by >70%.<br />

Features and Benefits<br />

Ready-made psiRNAs are psiRNA-h7SKGFPzeo-derived plasmids. They<br />

feature the human 7SK RNA Pol III promoter that generates high amounts<br />

of short hairp<strong>in</strong> RNAs. They also feature the GFP::Zeo fusion gene which<br />

confers both reporter and antibiotic resistance activities mak<strong>in</strong>g these<br />

plasmids very useful for the follow<strong>in</strong>g applications:<br />

• Monitor transfection efficiency<br />

• Standardize gene silenc<strong>in</strong>g efficiency<br />

• Select clones that stably express a validated siRNA<br />

The silenc<strong>in</strong>g efficiency of each Ready-made psiRNA plasmid has been<br />

tested us<strong>in</strong>g the psiTEST system (see page 146). The genes or fragments<br />

of the genes targeted by the Ready-made psiRNA have been fused to<br />

the SEAP reporter gene with<strong>in</strong> the psiTEST plasmid. Silenc<strong>in</strong>g efficiencies<br />

have been confirmed by the absence of SEAP activity after cotransfect<strong>in</strong>g<br />

HEK293 cells with each recomb<strong>in</strong>ant psiTEST and correspond<strong>in</strong>g Readymade<br />

psiRNA.<br />

Contents and Storage<br />

Ready-made psiRNA plasmids are available alone or <strong>in</strong> a kit.<br />

Ready-made psiRNA plasmids are provided as 20 μg of lyophilized DNA.<br />

Each Ready-made psiRNA kit conta<strong>in</strong>s the follow<strong>in</strong>g components:<br />

- 20 μg of a Ready-made psiRNA plasmid<br />

- 20 μg of a control psiRNA plasmid (psiRNA-Luc)<br />

- 1 vial of LyoComp GT116<br />

- 4 pouches of Fast-Media ® Zeo<br />

Products are shipped at room temperature. Store at -20°C.<br />

PRODUCT QTY CAT. CODE*<br />

Ready-made psiRNA plasmid 20 μg psirna42-<br />

Ready-made psiRNA kit 1 kit ksirna42-<br />

*See tables<br />

148 www.<strong>in</strong>vivogen.com/readymade-psirna<br />

GENE NAME/ALIASES SPECIES<br />

CAT. CODE<br />

(Plasmid)**<br />

A20 / TNFAIP3 Human, mouse psirna42-(h/m)a20<br />

ASC / CARD5 Human, mouse psirna42-(h/m)asc<br />

AIM2 / IFI210 Human, mouse psirna42-(h/m)aim2<br />

ATF3 Human psirna42-hatf3<br />

ATG5 Human, mouse psirna42-(h/m)atg5<br />

BAF47 / SMARCB1 Human psirna42-hbaf47<br />

BP1 NEW Human psirna42-hbpi<br />

BCL2 Human psirna42-hbcl2<br />

BCL3 Human, mouse psirna42-(h/m)bcl3<br />

BCL10 / CLAP Human, mouse psirna42-(h/m)bcl10<br />

Becl<strong>in</strong>-1 Human, mouse psirna42-(h/m)becl<strong>in</strong><br />

CARD8 / Card<strong>in</strong>al Human psirna42-hcard8<br />

CARD9 Human, mouse psirna42-(h/m)card9<br />

Caspase 1 / ICE Human, mouse psirna42-(h/m)casp1<br />

Caspase 8 / FLICE Human, mouse psirna42-(h/m)casp8<br />

CD14 Human, mouse psirna42-(h/m)cd14<br />

CD36 Human, mouse psirna42-(h/m)cd36<br />

CD44 Human, mouse psirna42-(h/m)cd44<br />

CLEC9A Human, mouse psirna42-(h/m)clec9a<br />

CXCL16 NEW Human, mouse psirna42-(h/m)cxcl16<br />

CXCR4 / CD184 Human psirna42-hcxcr4<br />

CYLD Human psirna42-hcyld<br />

DAI / ZBP1 Human psirna42-hdai<br />

DAK Human, mouse psirna42-(h/m)dak<br />

DC-SIGN / CD209 Human, mouse psirna42-(h/m)dcsign<br />

DDX3 / DDX3X Human psirna42-hddx3x<br />

Dect<strong>in</strong>-1 Human, mouse psirna42-(h/m)dect<strong>in</strong>1<br />

DNMT1 Human psirna42-hdnmt1<br />

DNMT2 Human psirna42-hdnmt2<br />

DNMT3A Human psirna42-hdnmt3a<br />

DNMT3B Human psirna42-hdnmt3b<br />

DNMT3L Human psirna42-hdnmt3l<br />

DUBA / OTUD5 Mouse psirna42-mduba<br />

FADD / MORT1 Human, mouse psirna42-(h/m)fadd<br />

FLII / Fliih Human psirna42-hflii<br />

GM-CSF Human, mouse psirna42-(h/m)gmcsf<br />

HDAC1 Human psirna42-hhdac1<br />

HDAC2 Human psirna42- hhdac2<br />

HDAC3 Human psirna42-hhdac3<br />

HDAC6 Human psirna42-hhdac6<br />

HDAC8 Human psirna42-hhdac8<br />

HPRT Human psirna42-hhprt<br />

IFI16 / PYHIN2 NEW Human psirna42-hifi16<br />

IFNAR1 Human psirna42-hifnar1<br />

** For the kit catalog code, replace psirna42 by ksirna42


GENE NAME/ALIASES SPECIES<br />

CAT. CODE<br />

(plasmid)**<br />

IFNAR2 Human, mouse psirna42-(h/m)ifnar2<br />

IKKε / IKBKE / IKK-i Human, mouse psirna42-(h/m)ikke<br />

IL1R1 / IL1RA Human psirna42-hil1r1<br />

IPAF / CARD12 Human psirna42-hipaf<br />

IPS-1 / MAVS / VISA Human, mouse psirna42-(h/m)ips1<br />

IRAK-1 Human, mouse psirna42-(h/m)irak1<br />

IRAK-4 Human, mouse psirna42-(h/m)irak4<br />

IRAK-M Human psirna42-hirakm<br />

IRF1 Human, mouse psirna42-(h/m)irf1<br />

IRF3 Human, mouse psirna42-(h/m)irf3<br />

IRF5 Human, mouse psirna42-(h/m)irf5<br />

IRF7 Human, mouse psirna42-(h/m)irf7<br />

IRF9 Human, mouse psirna42-(h/m)irf9<br />

JAK1 / JAK1A Human, mouse psirna42-(h/m)jak1<br />

KAISO / ZBTB33 Human psirna42-hkaiso<br />

KRAS Human, mouse psirna42-(h/m)kras<br />

Lam<strong>in</strong> Human psirna42-hlam<strong>in</strong><br />

LGP2 / DHX58 Human, mouse psirna42-(h/m)lgp2<br />

LRRFIP2 Human psirna42-hlrrfip2<br />

MBL2 Human psirna42-hmbl2<br />

MBD1 / PCM1 Human psirna42-hmbd1<br />

MD2 NEW Human psirna42-hmd2<br />

MDA-5 / IFIH1 Human, mouse psirna42-(h/m)mda5<br />

MeCP2 Human psirna42-hmecp2<br />

MEKK3 / MAP3K Human, mouse psirna42-(h/m)mekk3<br />

M<strong>in</strong>cle / CLEC4E Human, mouse psirna42-(h/m)m<strong>in</strong>cle<br />

MNDA / PYHIN3 NEW Human psirna42-hmnda<br />

MSK1 NEW Human, mouse psirna42-(h/m)msk1<br />

MULAN / MUL1 Human, mouse psirna42-(h/m)mul1<br />

MyD88 Human, mouse psirna42-(h/m)myd88<br />

Naip5 / BIRC1E Mouse psirna42-mnaip5<br />

NALP1 / CARD7 Human psirna42-hnalp1<br />

NALP2 / PAN1 Human psirna42-hnalp2<br />

NALP3 / NLRP3 Human, mouse psirna42-(h/m)nalp3<br />

NALP11 / NLRP11 NEW Human psirna42-hnalp11<br />

NALP12 / Monarch1 Human psirna42-hnalp12<br />

NAP1 / AZI2 Human, mouse psirna42-(h/m)nap1<br />

NOD1 / CARD4 Human, mouse psirna42-(h/m)nod1<br />

NOD2 / CARD15 Human, mouse psirna42-(h/m)nod2<br />

NOD9 / NLRX1 Human, mouse psirna42-(h/m)nod9<br />

p53 Human, mouse psirna42-(h/m)p53<br />

PACT / PRKRA Human, mouse psirna42-(h/m)pact<br />

Pannex<strong>in</strong> 1 / PANX1 Human, mouse psirna42-(h/m)panx1<br />

Pell<strong>in</strong>o 1 / PELI1 Human, mouse psirna42-(h/m)pell<strong>in</strong>o1<br />

Pell<strong>in</strong>o 2 / PELI2 Human, mouse psirna42-(h/m)pell<strong>in</strong>o2<br />

Pell<strong>in</strong>o 3 / PELI3 Human psirna42-hpell<strong>in</strong>o3<br />

PIN1 / DOB Human, mouse psirna42-(h/m)p<strong>in</strong>1<br />

PKD1 / PRKD1 Human psirna42-hpkd1<br />

PKR / EIFAK2 Human, mouse psirna42-(h/m)pkr<br />

RAC1 Human, mouse psirna42-(h/m)rac1<br />

RAGE / AGER Human, mouse psirna42-(h/m)ager<br />

RIG-I / DDX58 Human, mouse psirna42-(h/m)rigi<br />

RIP1 / RIPK1 Human, mouse psirna42-(h/m)rip1<br />

RIP2 / RIPK2 Human, mouse psirna42-(h/m)rip2<br />

GENE NAME/ALIASES SPECIES<br />

CAT. CODE<br />

(plasmid)**<br />

RNF125 / TRAC-1 Human, mouse psirna42-(h/m)rnf125<br />

RP105 / CD180 Human psirna42-hrp105<br />

S100A8 Mouse psirna42-ms100a8<br />

S100A9 Mouse psirna42-ms100a9<br />

SARM1 Human psirna42-hsarm1<br />

SHIP NEW Human psirna42-hship<br />

SIGIRR / TIR8 Mouse psirna42-msigirr<br />

SIGNR1 Mouse psirna42-msignr1<br />

SIGNR2 Mouse psirna42-msignr2<br />

SIGNR3 Mouse psirna42-msignr3<br />

SIKE Human, mouse psirna42-(h/m)sike<br />

Smad3 Human psirna42-hsmad3<br />

Smad4 Human psirna42-hsmad4<br />

SOCS-1 Human, mouse psirna42-(h/m)socs1<br />

SOCS-3 Human psirna42-hsocs3<br />

ST2 / IL1RL1 / T2 Human psirna42-hst2<br />

STAT1 / STAT91 Human, mouse psirna42-(h/m)stat1<br />

STAT2 / STAT113 Human, mouse psirna42-(h/m)stat2<br />

STAT3 / APRF Human psirna42-hstat3<br />

STING NEW Human, mouse psirna42-(h/m)st<strong>in</strong>g<br />

SUGT1 / SGT1 NEW Human psirna42-hsugt1<br />

SUV39H1 / KMTIA Human psirna42-hsuv39h1<br />

TAK1 / MAP3K7 Human, mouse psirna42-(h/m)tak1<br />

TANK Human, mouse psirna42-(h/m)tank<br />

TBK1 Human, mouse psirna42-(h/m)tbk1<br />

TBKBP1 / SINTBAD NEW Human psirna42-htbkbp1<br />

TICAM1 / TRIF Human, mouse psirna42-(h/m)ticam1<br />

TICAM2 / TRAM Human, mouse psirna42-(h/m)ticam2<br />

TIFA Human, mouse psirna42-(h/m)tifa<br />

TIRAP / MAL Human, mouse psirna42-(h/m)tirap<br />

TLR1 / CD281 Human, mouse psirna42-(h/m)tlr1<br />

TLR2 / CD282 Human, mouse psirna42-(h/m)tlr2<br />

TLR3 / CD283 Human, mouse psirna42-(h/m)tlr3<br />

TLR4 / CD284 Human, mouse psirna42-(h/m)tlr4<br />

TLR5 Human, mouse psirna42-(h/m)tlr5<br />

TLR6 / CD286 Human, mouse psirna42-(h/m)tlr6<br />

TLR7 Human, mouse psirna42-(h/m)tlr7<br />

TLR8 / CD288 Human, mouse psirna42-(h/m)tlr8<br />

TLR9 / CD289 Human, mouse psirna42-(h/m)tlr9<br />

TLR10 / CD290 Human psirna42-htlr10<br />

TNFR1 / TNFRSF1A Human psirna42-htnfr1<br />

TNFR2 / TNFRSF1B Human, mouse psirna42-(h/m)tnfr2<br />

Tollip / IL-1RAcP1P Human psirna42-htollip<br />

TRADD Human, mouse psirna42-(h/m)tradd<br />

TRAF1 NEW Human psirna42-htraf1<br />

TRAF3 / CAP-1 Human, mouse psirna42-(h/m)traf3<br />

TRAF4 NEW Human, mouse psirna42-(h/m)traf4<br />

TRAF6 / RNF85 Human, mouse psirna42-(h/m)traf6<br />

TRAFD1 / FLN29 Human psirna42-htrafd1<br />

Triad3A Human psirna42-htriad3a<br />

Tyk2 / JTK1 Human, mouse psirna42-(h/m)tyk2<br />

UBP43 NEW Human, mouse psirna42-(h/m)ubp43<br />

UNC93B1 Human, mouse psirna42-(h/m)unc93<br />

VEGF Human, mouse psirna42-(h/m)vegf<br />

** For the kit catalog code, replace psirna42 by ksirna42<br />

www.<strong>in</strong>vivogen.com/readymade-psirna 149<br />

RNA INTERFERENCE 7


RNA INTERFERENCE 7<br />

Custom-Made psiRNA <br />

InvivoGen provides a complete siRNA service to help you speed-up your gene silenc<strong>in</strong>g experiments. Just give us the accession number of<br />

your gene of <strong>in</strong>terest and we will take care of all the steps, from help<strong>in</strong>g you choose the target sequence on your gene to sequenc<strong>in</strong>g the<br />

result<strong>in</strong>g siRNA <strong>in</strong>sert. InvivoGen provides a choice of plasmidic vectors to better suit your needs.<br />

➥ Full Custom Service<br />

➥ Your siRNA vector Ready-to-Use<br />

➥ Cost-effective<br />

➥ Rapid Process<strong>in</strong>g<br />

Features and Benefits<br />

Choose your siRNA sequence<br />

You can either send us your siRNA sequence or, us<strong>in</strong>g the siRNA Wizard<br />

software, InvivoGen will select the best candidate siRNA sequence for<br />

your target gene.<br />

Choose your psiRNA Plasmid<br />

- psiRNA-h7SK (see page 144)<br />

- psiRNA-DUO (see page 145)<br />

Choose your selectable marker<br />

psiRNA plasmids are available with various selectable markers that confer<br />

antibiotic resistance <strong>in</strong> both E. coli and mammalian cells:<br />

- Blasticid<strong>in</strong> - Zeoc<strong>in</strong> <br />

- Hygromyc<strong>in</strong> - GFP::Zeo<br />

- Kanamyc<strong>in</strong> / G418<br />

Description<br />

Construction of custom-made psiRNA plasmids <strong>in</strong>cludes the follow<strong>in</strong>g:<br />

- Selection of the siRNA sequence for the target gene<br />

- Synthesis of the siRNA <strong>in</strong>sert oligonucleotides<br />

- Clon<strong>in</strong>g of the annealed oligonucleotides <strong>in</strong> psiRNA<br />

- Sequenc<strong>in</strong>g of the siRNA <strong>in</strong>sert<br />

Contents and Storage<br />

Custom-made psiRNA are provided as 20 µg of lyophilized DNA. They<br />

can also be provided as a kit that conta<strong>in</strong>s <strong>in</strong> addition<br />

- 20 µg of psiRNA-EGFP or psiRNA-LucGL3 as a control<br />

- 1 vial of LyoComp GT116<br />

- 4 pouches of the correspond<strong>in</strong>g Fast-Media ®<br />

Products are shipped at room temperature. Store at -20°C.<br />

150 www.<strong>in</strong>vivogen.com/custom-clon<strong>in</strong>g<br />

Although the siRNA Wizard software can facilitate the selection<br />

of functional shRNAs, there is no guarantee that the result<strong>in</strong>g<br />

shRNA will be effective enough for your experiment. Thus it is<br />

usually recommended to select 3-5 candidate shRNAs.<br />

Furthermore, most journal article reviewers require that gene<br />

silenc<strong>in</strong>g results be confirmed with a second effective siRNA to a<br />

target before an article is accepted for publication.<br />

Orders of multiple psiRNA plasmids target<strong>in</strong>g the same gene will<br />

be eligible for a volume discount.<br />

PRODUCT QTY CAT. CODE<br />

Custom-made psiRNA 20 μg p-custom<br />

Custom-made psiRNA Kit 1 kit k-custom


8<br />

INHIBITORS<br />

Cytok<strong>in</strong>e Receptor Inhibitor 155<br />

DNA Synthesis Inhibitors 159<br />

Epigenetic Inhibitors 157<br />

Heat Shock Prote<strong>in</strong> Inhibitors 158<br />

Ion Channel Inhibitors 155<br />

Nuclear Export Inhibitor 155<br />

MAPK Inhibitors 156<br />

NF-kB Activation Inhibitors 155<br />

Prote<strong>in</strong> K<strong>in</strong>ase Inhibitors 157<br />

PRR Signal<strong>in</strong>g Inhibitors 154


INHIBITORS 8<br />

Inhibitors<br />

PRODUCT DESCRIPTION<br />

Pattern Recognition Receptor (PRR) Signal<strong>in</strong>g Inhibitors<br />

BX795 TBK1/IKKε and PDK1 <strong>in</strong>hibitor 10 nM - 1 μM 5 mg tlrl-bx7 p 154<br />

Chloroqu<strong>in</strong>e Endosomal acidification <strong>in</strong>hibitor 10 μM 250 mg tlrl-chq p 154<br />

CLI-095 TLR4 signal<strong>in</strong>g <strong>in</strong>hibitor 50 nM - 1 μM 1 mg tlrl-cli95 p 154<br />

Cyclospor<strong>in</strong> A NEW Calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong>hibitor 50 nM - 1.5 μM 100 mg tlrl-cyca p 154<br />

Gefit<strong>in</strong>ib (Iressa) NEW RIP2 tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitor 10 μM 10 mg tlrl-gef p 154<br />

OxPAPC TLR2 and TLR4 <strong>in</strong>hibitor 30 μg/ml 1 mg tlrl-oxp1 p 154<br />

Pep<strong>in</strong>h-MYD MyD88 <strong>in</strong>hibitory peptide 5 - 100 μM 2 mg tlrl-pimyd p 154<br />

Pep<strong>in</strong>h-TRIF TRIF <strong>in</strong>hibitory peptide 5 - 100 μM 2 mg tlrl-pitrif p 154<br />

Polymyx<strong>in</strong> B LPS-<strong>in</strong>duced TLR4 activation <strong>in</strong>hibitor 10 μg/ml 100 mg tlrl-pmb p 154<br />

Rapamyc<strong>in</strong> (Sirolimus) mTOR <strong>in</strong>hibitor 10-100 nM 5 mg tlrl-rap p 154<br />

Z-VAD-FMK Pan-caspase Inhibitor 10 μg/ml (20 μM) 1 mg tlrl-vad p 154<br />

Cytok<strong>in</strong>e Receptor Inhibitor<br />

SB431542 TGF-b receptor <strong>in</strong>hibitor 2 μM 5 mg <strong>in</strong>h-sb43 p 155<br />

Ion Channel Inhibitors<br />

Bafilomyc<strong>in</strong> A1 V-ATPase <strong>in</strong>hibitor 0.1 - 1 μM 10 μg tlrl-baf p 155<br />

Glybenclamide (glyburide) ATP-dependent K+ channel <strong>in</strong>hibitor 25 μg/ml 1 g tlrl-gly p 155<br />

Nuclear Export Inhibitor<br />

WORKING<br />

CONCENTRATION<br />

QUANTITY<br />

CATALOG<br />

CODE<br />

Leptomyc<strong>in</strong> B NEW Nuclear export <strong>in</strong>hibitor 50 - 200 nM 5 μg tlrl-lep p 155<br />

NF-kB Activation Inhibitors<br />

Bay11-7082 IkB-a <strong>in</strong>hibitor 1 - 10 μM 10 mg tlrl-b82 p 155<br />

Celastrol NF-kB <strong>in</strong>hibitor 2.5 - 10 μM 1 mg ant-cls p 155<br />

Triptolide NF-kB activation <strong>in</strong>hibitor 10 - 100 nM 1 mg ant-tpl p 156<br />

Mitogen-Activated Prote<strong>in</strong> (MAP) K<strong>in</strong>ase Inhibitors<br />

PD98059 MAP k<strong>in</strong>ase k<strong>in</strong>ase <strong>in</strong>hibitor 50 - 100 μM 10 mg tlrl-pd98 p 156<br />

PD0325901 MEK <strong>in</strong>hibitor 0.5 μM 2 mg <strong>in</strong>h-pd32 p 156<br />

SB203580 p38 MAP k<strong>in</strong>ase <strong>in</strong>hibitor 1 - 20 μM 5 mg tlrl-sb20 p 156<br />

SP600125 JNK <strong>in</strong>hibitor 10 - 500 μM 10 mg tlrl-sp60 p 156<br />

U0126 MEK1-MEK2 <strong>in</strong>hibitor 10 - 50 μM 5 mg tlrl-u0126 p 156<br />

Phosphatidyl<strong>in</strong>ositol 3-K<strong>in</strong>ase Inhibitors<br />

3-Methyladen<strong>in</strong>e PI3K <strong>in</strong>hibitor 5 mM 50 mg tlrl-3ma p 156<br />

LY294002 PI3K <strong>in</strong>hibitor 50 - 100 μM 5 mg tlrl-ly29 p 156<br />

Wortmann<strong>in</strong> PI3K <strong>in</strong>hibitor 0.1 - 2.5 μM 5 mg tlrl-wtm p 156<br />

152 www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors<br />

INFO


PRODUCT DESCRIPTION<br />

Prote<strong>in</strong> K<strong>in</strong>ase and Prote<strong>in</strong> Tyros<strong>in</strong>e K<strong>in</strong>ase Inhibitors<br />

WORKING<br />

CONCENTRATION<br />

QUANTITY<br />

CATALOG<br />

CODE<br />

2-Am<strong>in</strong>opur<strong>in</strong>e PKR <strong>in</strong>hibitor 1 - 10 mM 250 mg tlrl-apr p 157<br />

AG490 JAK family tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitor 1 -100 μM 10 mg tlrl-ag4 p 157<br />

H-89 PKA <strong>in</strong>hibitor 5 - 50 μM 5 mg tlrl-h89 p 157<br />

Epigenetic Inhibitors<br />

5-Aza-cytid<strong>in</strong>e DNA methyltransferase <strong>in</strong>hibitor 2 μM 100 mg <strong>in</strong>h-aza p 157<br />

5-Aza-2’-deoxycytid<strong>in</strong>e DNA methyltransferase <strong>in</strong>hibitor 0.1 - 10 μM 10 mg met-adc-1 p 157<br />

Bix-01294 G9a histone methyltransferase <strong>in</strong>hibitor 1 μM 2 mg <strong>in</strong>h-bix p 157<br />

Trichostat<strong>in</strong> A Histone deacetylase <strong>in</strong>hibitor 150 - 300 nM 1 mg met-tsa-1 p 157<br />

Valproic Acid Histone deacetylase <strong>in</strong>hibitor 2 mM 5 g <strong>in</strong>h-vpa p 157<br />

Heat Shock Prote<strong>in</strong> Inhibitors<br />

Geldanamyc<strong>in</strong> (GA) Hsp90 <strong>in</strong>hibitor 1 nM - 10 μM 5 mg ant-gl-5 p 158<br />

17-AAG GA analogue 1 nM - 10 μM 5 mg ant-agl-5 p 158<br />

17-DMAG GA analogue 1 nM - 10 μM 5 mg ant-dgl-5 p 158<br />

17-AEP-GA GA analogue 1 nM - 10 μM 1 mg ant-egl-1 p 158<br />

17-DMAP-GA GA analogue 1 nM - 10 μM 1 mg ant-mgl-1 p 158<br />

17-GMB-APA-GA GA analogue for conjugation to MAb 1 nM - 10 μM 1 mg gmbapa-ga p 158<br />

17-NHS-ALA-GA GA analogue 1 nM - 10 μM 1 mg ant-nhgl-1 p 158<br />

Biot<strong>in</strong>-GA Biot<strong>in</strong>-labeled GA analogue 1 nM - 10 μM 1 mg ant-bgl-1 p 159<br />

17-AAGH2 GA analogue 1 nM - 10 μM 1 mg ant-agh-1 p 159<br />

17-DMAGH2 GA analogue 1 nM - 10 μM 1 mg ant-dgh-1 p 159<br />

DNA Synthesis Inhibitors<br />

5-Fluorocytos<strong>in</strong>e DNA synthesis <strong>in</strong>hibitor 200 - 500 μg/ml 250 mg sud-5fc p 159<br />

5-Fluorouracil DNA synthesis <strong>in</strong>hibitor 1 - 300 μg/ml 250 mg sud-5fu p 159<br />

Ganciclovir DNA synthesis <strong>in</strong>hibitor 1 - 100 μg/ml 250 mg sud-gcv p 159<br />

Contents and Storage<br />

Products are provided as solids and shipped at room temperature. Store at room temperature, 4°C or -20°C accord<strong>in</strong>g to the product label. Geldanamyc<strong>in</strong><br />

and analogues, and triptolide should be kept <strong>in</strong> the dark. Products are stable at least 6 months.<br />

INFO<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors 153<br />

INHIBITORS 8


INHIBITORS 8<br />

Pattern Recognition Receptor (PRR) Signal<strong>in</strong>g Inhibitors<br />

BX795 - TBK/IKKε Inhibitor<br />

BX795, an am<strong>in</strong>opyrimid<strong>in</strong>e compound, was developed as an <strong>in</strong>hibitor of 3-phospho<strong>in</strong>ositide-dependent k<strong>in</strong>ase 1 (PDK1) 1 . It was recently shown to be a<br />

potent <strong>in</strong>hibitor of the IKK-related k<strong>in</strong>ases, TANK-b<strong>in</strong>d<strong>in</strong>g k<strong>in</strong>ase 1 (TBK1) and IKKε, and hence of IRF3 activation and IFN-β production 2 . BX795 <strong>in</strong>hibits the<br />

catalytic activity of TBK1/IKKε by block<strong>in</strong>g their phosphorylation.<br />

Chloroqu<strong>in</strong>e - Inhibitor of Endosomal Acidification<br />

Chloroqu<strong>in</strong>e is a lysosomotropic agent that prevents endosomal acidification 3 . It accumulates <strong>in</strong>side the acidic parts of the cell, <strong>in</strong>clud<strong>in</strong>g endosomes and<br />

lysosomes. This accumulation leads to <strong>in</strong>hibition of lysosomal enzymes that require an acidic pH, and prevents fusion of endosomes and lysosomes. Chloroqu<strong>in</strong>e<br />

is commonly used to study the role of endosomal acidification <strong>in</strong> cellular processes, such as the signal<strong>in</strong>g of <strong>in</strong>tracellular TLRs 4, 5 .<br />

CLI-095 - TLR4 Signal<strong>in</strong>g Inhibitor<br />

CLI095, also known as TAK-242, is a novel cyclohexene derivative that specifically suppresses TLR4 signal<strong>in</strong>g, <strong>in</strong>hibit<strong>in</strong>g the production of NO and pro<strong>in</strong>flammatory<br />

cytok<strong>in</strong>es 6 . It acts by block<strong>in</strong>g the signal<strong>in</strong>g mediated by the <strong>in</strong>tracellular doma<strong>in</strong> of TLR4, but not the extracellular doma<strong>in</strong>. It potently suppresses<br />

both ligand-dependent and -<strong>in</strong>dependent signal<strong>in</strong>g of TLR4 7 .<br />

Cyclospor<strong>in</strong> A - Calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong>hibitor NEW<br />

Cyclopspor<strong>in</strong> A is a calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong>hibitor that exerts its immunosuppressive effects through the down-regulation of NFAT (nuclear factor of activated T cells)<br />

transcription factor, thus prevent<strong>in</strong>g the transcription of T cell effector cytok<strong>in</strong>es 8 . Moreover, NFAT has been implicated <strong>in</strong> the downstream signal<strong>in</strong>g of<br />

Dect<strong>in</strong>-1 which is important <strong>in</strong> the <strong>in</strong>nate immune response aga<strong>in</strong>st fungal <strong>in</strong>fection 9 . Conversely, it has been demonstrated that <strong>in</strong>hibition of calc<strong>in</strong>eur<strong>in</strong> <strong>in</strong><br />

macrophages enhances NF-κB activation 10 and can trigger TLR signal<strong>in</strong>g by activat<strong>in</strong>g both the MyD88-dependent and the MyD88-<strong>in</strong>dependent pathways 11 .<br />

Gefit<strong>in</strong>ib - RIP2 Tyros<strong>in</strong>e K<strong>in</strong>ase <strong>in</strong>hibitor NEW<br />

Gefit<strong>in</strong>ib (also known as Iressa) is a selective <strong>in</strong>hibitor of epidermal growth factor, a growth factor that plays a pivotal role <strong>in</strong> the control of cell growth, apoptosis, and<br />

angiogenesis. Recent studies demonstrated that Gefit<strong>in</strong>ib can <strong>in</strong>hibit NOD2-<strong>in</strong>duced cytok<strong>in</strong>e release and NF-kB activation by <strong>in</strong>hibit<strong>in</strong>g RIP2 (receptor-<strong>in</strong>teract<strong>in</strong>g<br />

prote<strong>in</strong> 2) tyros<strong>in</strong>e phosphylation which is critical for activation of NOD2 downsream signal<strong>in</strong>g pathways 12 . Gefit<strong>in</strong>ib is used <strong>in</strong> the treatment of advanced nonsmall cell<br />

lung cancer 13 .<br />

OxPAPC - TLR2 and TLR4 Inhibitor<br />

OxPAPC (1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylchol<strong>in</strong>e), is an oxidized phospholipid that has been shown to <strong>in</strong>hibit the signal<strong>in</strong>g <strong>in</strong>duced by<br />

bacterial lipopeptide and lipopolysaccharide (LPS). It acts by compet<strong>in</strong>g with CD14, LBP and MD2, the accessory prote<strong>in</strong>s that <strong>in</strong>teract with bacterial lipids,<br />

thus block<strong>in</strong>g the signal<strong>in</strong>g of TLR2 and TLR4 14, 15 .<br />

Pep<strong>in</strong>h-MYD - MyD88 <strong>in</strong>hibitory peptide<br />

Pep<strong>in</strong>h-MYD is a 26 aa peptide that blocks MyD88 signal<strong>in</strong>g by <strong>in</strong>hibit<strong>in</strong>g its homodimerization through b<strong>in</strong>d<strong>in</strong>g. Pep<strong>in</strong>h-MYD conta<strong>in</strong>s a sequence from the<br />

MyD88 TIR homodimerization doma<strong>in</strong> (RDVLPGT) 16 preceeded by a prote<strong>in</strong> transduction sequence (RQIKIWFQNRMKWKK) derived from antennapedia<br />

which enables the peptide to translocate through the cell membrane 17 . Pep<strong>in</strong>h-MYD is provided with a control peptide.<br />

Pep<strong>in</strong>h-TRIF - TRIF <strong>in</strong>hibitory peptide<br />

Pep<strong>in</strong>h-TRIF is a 30 aa peptide that blocks TRIF signal<strong>in</strong>g by <strong>in</strong>terfer<strong>in</strong>g with TLR-TRIF <strong>in</strong>teraction. Pep<strong>in</strong>h-TRIF conta<strong>in</strong>s the 14 aa that correspond to the<br />

sequence of the BB loop of TRIF (FCEEFQVPGRGELH) 18 l<strong>in</strong>ked to the cell-penetrat<strong>in</strong>g segment of the antennapedia homoedoma<strong>in</strong><br />

(RQIKIWFQNRMKWKK) 17 . Pep<strong>in</strong>h-TRIF is provided with a control peptide.<br />

Polymyx<strong>in</strong> B - Inhibitor of LPS-<strong>in</strong>duced TLR4 activation<br />

Polymyx<strong>in</strong> B (PMB) is a cyclic cationic polypeptide antibiotic produced by the soil bacterium Paenibacillus polymixa. PMB blocks the biological effects of Gram<br />

negative LPS (endotox<strong>in</strong>) through b<strong>in</strong>d<strong>in</strong>g to lipid A, the toxic component of LPS, which is negatively charged 19, 20 . The neutraliz<strong>in</strong>g effect of PMB on LPS is<br />

dose-related and specific for LPS 21 . PMB is widely used to elim<strong>in</strong>ate the effects of endotox<strong>in</strong> contam<strong>in</strong>ation, both <strong>in</strong> vitro and <strong>in</strong> vivo.<br />

Rapamyc<strong>in</strong> - mTOR Inhibitor<br />

Rapamyc<strong>in</strong> is an <strong>in</strong>hibitor of the Ser/Thr prote<strong>in</strong> k<strong>in</strong>ase named "mammalian target of rapamyc<strong>in</strong>" (mTOR) that regulates cell growth and metabolism <strong>in</strong><br />

response to environmental cues. mTOR is a downstream target of PI3K, an important actor <strong>in</strong> TLR signal<strong>in</strong>g 22 . Rapamyc<strong>in</strong> was shown to block TLR2- and<br />

TLR4-mediated expression of TNF-a and IL-6 <strong>in</strong> neutrophils stimulated with Pam3CSK4 or LPS 23 .<br />

Z-VAD-FMK - Caspase Inhibitor<br />

Z-VAD-FMK is a cell-permeable pan-caspase <strong>in</strong>hibitor that irreversibly b<strong>in</strong>ds to the catalytic site of caspase proteases 24 . The peptide is O-methylated <strong>in</strong> the<br />

P1 position on aspartic acid, provid<strong>in</strong>g enhanced stability and <strong>in</strong>creased cell permeability. Z-VAD-FMK is used <strong>in</strong> apoptosis studies and also <strong>in</strong> <strong>in</strong>flammasome<br />

studies. It is a potent <strong>in</strong>hibitor of caspase-1 activation <strong>in</strong> NLRP3-<strong>in</strong>duced cells 25 .<br />

1. Feldman RI. et al., 2005. Novel Small Molecule Inhibitors of 3-Phospho<strong>in</strong>ositide-dependent K<strong>in</strong>ase-1. J. Biol. Chem., 280: 19867 - 19874. 2. Clark K. et al., 2009. Use of the Pharmacological<br />

Inhibitor BX795 to Study the Regulation and Physiological Roles of TBK1 and I{kappa}B K<strong>in</strong>ase {epsilon}: a dist<strong>in</strong>ct upstream k<strong>in</strong>ase mediates Ser-172 phosphorylation and activation. J. Biol.<br />

Chem. 284: 14136 - 14146. 3. Ste<strong>in</strong>man RM. et al., 1983. Endocytosis and the recycl<strong>in</strong>g of plasma membrane. J. Cell. Biol. 96:1-27. 4. Rutz, M. et al., 2004. Toll-like receptor 9 b<strong>in</strong>ds s<strong>in</strong>glestranded<br />

CpG-DNA <strong>in</strong> a sequence- and pH-dependent manner. Eur. J. Immunol. 34:2541-2550. 5. Hart OM. et al., 2005.TLR7/8-Mediated Activation of Human NK Cells Results <strong>in</strong> Accessory<br />

Cell-Dependent IFN-{gamma} Production. J. Immunol., 175: 1636 - 1642. 6. Li M. et al., 2006. A Novel Cyclohexene Derivative, Ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-<br />

1-ene-1-carboxylate (TAK-242), Selectively Inhibits Toll-Like Receptor 4-Mediated Cytok<strong>in</strong>e Production through Suppression of Intracellular Signal<strong>in</strong>g. Mol. Pharmacol., 69: 1288 - 1295.<br />

7. Kawamoto T. et al., 2008. TAK-242 selectively suppresses Toll-like receptor 4-signal<strong>in</strong>g mediated by the <strong>in</strong>tracellular doma<strong>in</strong>. Eur J Pharmacol. 584(1):40-8. 8. Chow CW. et al., 1999.<br />

Requirement for transcription factor NFAT <strong>in</strong> <strong>in</strong>terleuk<strong>in</strong>-2 expression. Mol Cell Biol. 19(3): 2300-07. 9. Goodridge et al. 2007. Dect<strong>in</strong>-1stimulation by Candida albicans yeast or zymosan<br />

154 www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors


triggers NFAT activation <strong>in</strong> macrophages and dendritic cells. J Immunol. 178( 5): 3107-15. 10. Asai T. et al., 2003. Activation of transcription factors AP-1 and NF-κB <strong>in</strong> chronic cyclospor<strong>in</strong>e<br />

A nephrotoxicity: role <strong>in</strong> beneficial effects of magnesium supplementation. Transplantation 75(7):1040–4. 11. Kang Y. et al., 2007. Calc<strong>in</strong>eur<strong>in</strong> negatively regulates TLR-mediated activation<br />

pathways. J Immunol 179(7):4598–607. 12. Tigno-Aranjuez J. et al., 2010. Inhibition of RIP2’s tyros<strong>in</strong>e k<strong>in</strong>ase activity limits NOD2-driven cytok<strong>in</strong>e responses. Genes Dev. 24(23):2666-77.<br />

13. Maemondo M et al. 2010. Gefit<strong>in</strong>ib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR N Engl J Med. 362(25):2380-8. 14. Erridge C. et al., 2008. Oxidized Phospholipid<br />

Inhibition of Toll-like Receptor (TLR) Signal<strong>in</strong>g Is Restricted to TLR2 and TLR4: roles for CD14, LPS-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>, and MD2 as targets for specificity of <strong>in</strong>hibition. J. Biol. Chem., 283: 24748 -<br />

24759. 15. von Schlieffen E. et al., 2009. Multi-Hit Inhibition of Circulat<strong>in</strong>g and Cell-Associated Components of the Toll-Like Receptor 4 Pathway by Oxidized Phospholipids. Arterioscler Thromb<br />

Vasc Biol, 29: 356 - 362. 16. Loiarro M. et al., 2005. Peptide-mediated Interference of TIR Doma<strong>in</strong> Dimerization <strong>in</strong> MyD88 Inhibits Interleuk<strong>in</strong>-1-dependent Activation of NF-{kappa}B. J. Biol.<br />

Chem., 280: 15809-14. 17. Derossi D. et al., 1994. The third helix of the Antennapedia homeodoma<strong>in</strong> translocates through biological membranes. J. Biol. Chem., 269: 10444-50. 18. Toshchakov<br />

VU. et al., 2005. Differential Involvement of BB Loops of Toll-IL-1 Resistance (TIR) Doma<strong>in</strong>-Conta<strong>in</strong><strong>in</strong>g Adapter Prote<strong>in</strong>s <strong>in</strong> TLR4- versus TLR2-Mediated Signal Transduction. J. Immunol., 175:<br />

494 - 500. 19. Palmer JD, Rifk<strong>in</strong>d D. 1974. Neutralization of the hemodynamic effects of endotox<strong>in</strong> by polymyx<strong>in</strong> B. Surg Gynecol Obstet. 138(5):755-9. 20. L<strong>in</strong>demann.RA 1988. Bacterial<br />

activation of human natural killer cells: role of cell surface lipopolysaccharide. Infect Immun. 56 (5): 1301–1308. 21. Duff GW, Atk<strong>in</strong>s E. 1982. The <strong>in</strong>hibitory effect of polymyx<strong>in</strong> B on endotox<strong>in</strong><strong>in</strong>duced<br />

endogenous pyrogen production. J Immunol Methods. 52(3):333-40. 22. Kuo CC. et al., 2006. Class I and III Phosphatidyl<strong>in</strong>ositol 3'-K<strong>in</strong>ase Play Dist<strong>in</strong>ct Roles <strong>in</strong> TLR Signal<strong>in</strong>g Pathway.<br />

J. Immunol., 176: 5943 - 5949. 23 Lorne E. et al., 2009. Participation of Mammalian Target of Rapamyc<strong>in</strong> Complex 1 <strong>in</strong> Toll-Like Receptor 2– and 4–Induced Neutrophil Activation and Acute<br />

Lung Injury. Am. J. Respir. Cell Mol. Biol., 41: 237 - 245. 24. Slee EA. et al., 1996. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) <strong>in</strong>hibits apoptosis by block<strong>in</strong>g the<br />

process<strong>in</strong>g of CPP32. Biochem J. 315 ( Pt 1):21-4. 25. Dostert C. et al., 2009. Malarial hemozo<strong>in</strong> is a Nalp3 <strong>in</strong>flammasome activat<strong>in</strong>g danger signal. PLoS One. 4(8):e6510.<br />

Cytok<strong>in</strong>e Receptor Inhibitor<br />

SB431542 - TGF-b Receptor Inhibitor<br />

SB431542 is a potent and selective <strong>in</strong>hibitor of transform<strong>in</strong>g growth factor-b (TGF-b) superfamily type I activ<strong>in</strong> receptor-like k<strong>in</strong>ase (ALK) receptors, specifically<br />

ALK4, ALK5 and ALK7 1 . Inhibition of TGF-b signal<strong>in</strong>g is known to <strong>in</strong>duce the de-repression of epithelial fate and thus was hypothesized to benefit the<br />

reprogramm<strong>in</strong>g process. Indeed, treatment of OSKM-transduced human primary fibroblasts with a comb<strong>in</strong>ation of SB431542 and PD0325901, a MEK<br />

<strong>in</strong>hibitor, was found to improve reprogramm<strong>in</strong>g efficiency of human cells 2 .<br />

1. IInman GJ. et al., 2002. SB-431542 is a potent and specific <strong>in</strong>hibitor of transform<strong>in</strong>g growth factor-beta superfamily type I activ<strong>in</strong> receptor-like k<strong>in</strong>ase (ALK) receptors ALK4,<br />

ALK5, and ALK7. Mol Pharmacol. 2002 Jul;62(1):65-74. 2. L<strong>in</strong> T. et al., 2009. A chemical platform for improved <strong>in</strong>duction of human iPSCs. Nat Methods. 6(11):805-8.<br />

Ion Channel Inhibitors<br />

Bafilomyc<strong>in</strong> A1 - Proton pump <strong>in</strong>hibitor<br />

Bafilomyc<strong>in</strong> A1 is a specific <strong>in</strong>hibitor of the lysosomal proton pump, thus it <strong>in</strong>directly <strong>in</strong>hibits lysosomal enzymes which have acidic pH optima. Bafilomyc<strong>in</strong><br />

treatment has been shown to <strong>in</strong>hibit fusion of autophagosomes with both endosomes and lysosomes 1, 2 .<br />

Glybenclamide (glyburide) - Potassium channel <strong>in</strong>hibitor<br />

Glybenclamide, also known as glyburide, blocks the maturation of caspase-1 and pro-IL-1b by <strong>in</strong>hibit<strong>in</strong>g the K+ efflux 3 . Glybenclamide was shown to potently<br />

block the activation of the NLRP3 <strong>in</strong>flammasome <strong>in</strong>duced by PAMPs, DAMPs and crystall<strong>in</strong>e substances 4 . Recent data suggest that glybenclamide works<br />

downstream of the P2X 7 receptor but upstream of NLRP3.<br />

1. Yamamoto A. et al., 1998. Bafilomyc<strong>in</strong> A1 prevents maturation of autophagic vacuoles by <strong>in</strong>hibit<strong>in</strong>g fusion between autophagosomes and lysosomes <strong>in</strong> rat hepatoma cell l<strong>in</strong>e, H-4-II-E cells.<br />

Cell Struct Funct. 23(1):33-42. 2. Mousavi SA. et al., 2001. Effects of <strong>in</strong>hibitors of the vacuolar proton pump on hepatic heterophagy and autophagy. Biochim Biophys Acta. 1510(1-2):243-57<br />

3. Laliberte RE. et al., 1999. ATP treatment of human monocytes promotes caspase-1 maturation and externalization. J Biol Chem. 274(52):36944-51. 4. Lamkanfi M. et al., 2009. Glyburide<br />

<strong>in</strong>hibits the Cryopyr<strong>in</strong>/Nalp3 <strong>in</strong>flammasome. J. Cell Biol., 187: 61 - 70. .<br />

Nuclear Export Inhibitor<br />

Leptomyc<strong>in</strong> B - Nuclear export <strong>in</strong>hibitor NEW<br />

Leptomyc<strong>in</strong> B, an <strong>in</strong>hibitor of nuclear export, can be used to study nucleo-cytoplasmic translocation. It has been demonstrated that Leptomyc<strong>in</strong> B can cause the nuclear<br />

accumulation of prote<strong>in</strong>s that shuttle between the cytosol and nucleus such as IRAK-1 and NLRC5 1, 2 . The cellular target of Leptomyc<strong>in</strong> B has been identified as<br />

CRM1 (export<strong>in</strong> 1), an evolutionarily conserved receptor for the nuclear export signal of prote<strong>in</strong>s 3 .<br />

1. Liu G. et al., 2008. Interleuk<strong>in</strong>-1 receptor-associated k<strong>in</strong>ase (IRAK)-1-mediated NF-kB activation requires cytosolic and nuclear activity. FASEB J 22(7): 2285-96. 2. Benko S. et al., 2010.<br />

NLRC5 limits the activation of <strong>in</strong>flammatory pathways. J Immunol. 185(3):1681-91. 3. Kudo N. et al., 1999. Leptomyc<strong>in</strong> B <strong>in</strong>activates CRM1/export<strong>in</strong> 1 by covalent modification at a cyste<strong>in</strong>e<br />

residue <strong>in</strong> the central conserved region. PNAS. 96(16):9112-7.<br />

NF-kB Activation Inhibitors<br />

Bay 11-7082 - IkB-a Inhibitor<br />

Bay 11-7082 is an irreversible <strong>in</strong>hibitor of TNF-a-<strong>in</strong>duced IkB-a phosphorylation result<strong>in</strong>g <strong>in</strong> the <strong>in</strong>activation of NF-kB 1 . TNF-a-dependent effects of NF-kB<br />

are important for TLR expression and cytok<strong>in</strong>e production 2, 3 .<br />

Celastrol - NF-kB Inhibitor<br />

Celastrol is a triterpenoid compound isolated from the medic<strong>in</strong>al plant Tripterygium wilfordii known for its anti-<strong>in</strong>flammatory properties. Its mode of action<br />

and spectrum of cellular targets are still poorly understood. Celastrol was recently shown to act as an effective <strong>in</strong>hibitor of the transcription factor NF-kB<br />

result<strong>in</strong>g <strong>in</strong> the attenuation of nitric oxide and pro<strong>in</strong>flammatory cytok<strong>in</strong>e production 4, 5 .<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors 155<br />

INHIBITORS 8


INHIBITORS 8<br />

Triptolide - NF-kB Inhibitor<br />

Triptolide, a diterpenoid isolated from the Ch<strong>in</strong>ese herb Tripterygium wilfordii hook F, has been used for centuries <strong>in</strong> traditional Ch<strong>in</strong>ese medic<strong>in</strong>e to treat<br />

immune-related disorders. Current knowledge regard<strong>in</strong>g its mechanism of action is still limited. So far, triptolide is known to block the activation of NF-kB 6,<br />

<strong>in</strong>hibit the heat shock response 7 and <strong>in</strong>duce caspase activation 8 .<br />

1. Pierce JW. et al., 1997. Novel Inhibitors of Cytok<strong>in</strong>e-<strong>in</strong>duced Ikappa Balpha Phosphorylation and Endothelial Cell Adhesion Molecule Expression Show Anti-<strong>in</strong>flammatory Effects <strong>in</strong> Vivo. J.<br />

Biol. Chem., 272: 21096. 2. Phulwani NK. et al., 2008. TLR2 Expression <strong>in</strong> Astrocytes Is Induced by TNF-{alpha}- and NF-{kappa}B-Dependent Pathways. J. Immunol., 181: 3841-3849.<br />

3. Méndez-Samperio P. et al., 2008. Mycobacterium bovis Bacillus Calmette-Guér<strong>in</strong> Induces CCL5 Secretion via the Toll-Like Receptor 2-NF-{kappa}B and -Jun N-Term<strong>in</strong>al K<strong>in</strong>ase Signal<strong>in</strong>g<br />

Pathways. Cl<strong>in</strong>. Vacc<strong>in</strong>e Immunol. 15: 277 - 283. 4 Sethi G. et al., 2007. Celastrol, a novel triterpene, potentiates TNF-<strong>in</strong>duced apoptosis and suppresses <strong>in</strong>vasion of tumor cells by <strong>in</strong>hibit<strong>in</strong>g<br />

NF-kB–regulated gene products and TAK1-mediated NF-B activation. Blood, 109: 2727 - 2735. 5. Jung HW. et al., 2007. Celastrol <strong>in</strong>hibits production of nitric oxide and pro<strong>in</strong>flammatory<br />

cytok<strong>in</strong>es through MAPK signal transduction and NF-kappaB <strong>in</strong> LPS-stimulated BV-2 microglial cells. Exp Mol Med. 39(6):715-21. 6. Lee KY. et al., 1999. PG490 (triptolide) cooperates with<br />

tumor necrosis factor-alpha to <strong>in</strong>duce apoptosis <strong>in</strong> tumor cells. J Biol Chem. 274: 13451-13455. 7. Westerheide SD. et al., 2006. Triptolide, an Inhibitor of the Human Heat Shock Response<br />

That Enhances Stress-<strong>in</strong>duced Cell Death. J. Biol. Chem., 281: 9616 - 9622. 8. Carter BZ. et al., 2006. Triptolide <strong>in</strong>duces caspase-dependent cell death mediated via the mitochondrial pathway<br />

<strong>in</strong> leukemic cells. Blood 108: 630 - 7.<br />

Mitogen-Activated Prote<strong>in</strong> (MAP) K<strong>in</strong>ase Inhibitors<br />

PD98059 - MAP K<strong>in</strong>ase K<strong>in</strong>ase Inhibitor<br />

PD98059 is a potent and selective <strong>in</strong>hibitor of MAP k<strong>in</strong>ase k<strong>in</strong>ase (also known as MAPK/ERK k<strong>in</strong>ase or MEK k<strong>in</strong>ase) 1 . It mediates its <strong>in</strong>hibitory properties by<br />

b<strong>in</strong>d<strong>in</strong>g to the ERK-specific MAP k<strong>in</strong>ase MEK, therefore prevent<strong>in</strong>g phosphorylation of ERK1/2 (p44/p42 MAPK) by MEK1/2.<br />

PD0325901 - MEK Inhibitor<br />

PD0325901 is a selective <strong>in</strong>hibitor of mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase k<strong>in</strong>ase (MEK), with potential ant<strong>in</strong>eoplastic activity 2 . MEK is a key component of the<br />

RAS/RAF/MEK/ERK signal<strong>in</strong>g pathway that is frequently activated <strong>in</strong> human tumors. This pathway plays also an important role <strong>in</strong> the self-renew<strong>in</strong>g state of<br />

embryonic stem cells. Treatment with PD0325901 has been shown to enhance reprogramm<strong>in</strong>g efficiencies of <strong>in</strong>duced pluripotent stem cells 3 .<br />

SB203580 - p38/RK MAP K<strong>in</strong>ase Inhibitor<br />

SB203580 is a pyrid<strong>in</strong>yl imidazole <strong>in</strong>hibitor widely used to elucidate the roles of p38 mitogen-activated prote<strong>in</strong> (MAP) k<strong>in</strong>ase 4 . SB203580 <strong>in</strong>hibits also the<br />

phosphorylation and activation of prote<strong>in</strong> k<strong>in</strong>ase B (PKB, also known as Akt) 5 .<br />

SP600125 - JNK Inhibitor<br />

SP600125 is a potent, cell-permeable, selective and reversible <strong>in</strong>hibitor of c-Jun N-term<strong>in</strong>al k<strong>in</strong>ase (JNK) 6 . It <strong>in</strong>hibits <strong>in</strong> a dose-dependent manner the phosphorylation<br />

of JNK. JNK is a member of the mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase (MAPK) family and plays an essential role <strong>in</strong> TLR-mediated <strong>in</strong>flammatory responses.<br />

U0126 - MEK1 and MEK2 Inhibitor<br />

U0126 is a selective <strong>in</strong>hibitor of the MAP k<strong>in</strong>ase k<strong>in</strong>ases, MEK1 and MEK2. It acts by <strong>in</strong>hibit<strong>in</strong>g the k<strong>in</strong>ase activity of MEK1/2 thus prevent<strong>in</strong>g the activation of<br />

MAP k<strong>in</strong>ases p42 and p44 which are encoded by the erk2 and erk1 genes respectively 7 .<br />

1. Alessi DR. et al., 1995. PD 098059 is a specific <strong>in</strong>hibitor of the activation of mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase k<strong>in</strong>ase <strong>in</strong> vitro and <strong>in</strong> vivo. J. Biol. Chem. 270, 27489-27494. 2. Kohno M. &<br />

Pouyssegur J. 2006. Target<strong>in</strong>g the ERK signal<strong>in</strong>g pathway <strong>in</strong> cancer therapy. Ann Med. 38(3):200-11. 3. L<strong>in</strong> T. et al., 2009. A chemical platform for improved <strong>in</strong>duction of human iPSCs.<br />

Nat Methods. 6(11):805-8. 4. Cuenda A. et al., 1995. SB 203580 is a specific <strong>in</strong>hibitor of a MAP k<strong>in</strong>ase homologue which is stimulated by cellular stresses and <strong>in</strong>terleuk<strong>in</strong>-1. FEBS Lett.<br />

364:229-233. 5. Lali FV. et al., 2000.The pyrid<strong>in</strong>yl imidazole <strong>in</strong>hibitor SB203580 blocks phospho<strong>in</strong>ositide-dependent prote<strong>in</strong> k<strong>in</strong>ase activity, prote<strong>in</strong> k<strong>in</strong>ase B phosphorylation, and ret<strong>in</strong>oblastoma<br />

hyperphosphorylation <strong>in</strong> <strong>in</strong>terleuk<strong>in</strong>-2-stimulated T cells <strong>in</strong>dependently of p38 mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase. J Biol Chem. 275(10):7395-402. 6. Bennett BL. et al., 2001. SP600125, an<br />

anthrapyrazolone <strong>in</strong>hibitor of Jun N-term<strong>in</strong>al k<strong>in</strong>ase. Proc. Natl. Acad. Sci. USA. 98:13681-13686. 7. Favata MF. et al., 1998. Identification of a novel <strong>in</strong>hibitor of mitogen-activated prote<strong>in</strong><br />

k<strong>in</strong>ase.J. Biol. Chem. 273(29):18623-32.<br />

Phosphatidyl<strong>in</strong>ositol 3-K<strong>in</strong>ase (PI3K) Inhibitors<br />

3-Methyladen<strong>in</strong>e - PI3K <strong>in</strong>hibitor<br />

3-Methyladen<strong>in</strong>e is commonly used as a specific <strong>in</strong>hibitor of autophagic sequestration 1 . It blocks autophagy by <strong>in</strong>hibition of phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase<br />

(PI3K) activity, an enzyme required for autophagy 2 .<br />

LY294002 - PI3K Inhibitor<br />

LY294002 is a potent, cell permeable <strong>in</strong>hibitor of PI3K that acts on the ATP b<strong>in</strong>d<strong>in</strong>g site of the enzyme 3 . LY294002 is often used to study the role of PI3K<br />

<strong>in</strong> apoptosis 4 and autophagy 2 .<br />

Wortmann<strong>in</strong> - PI3K Inhibitor<br />

Wortmann<strong>in</strong> is a cell-permeable, fungal metabolite that acts as a potent, selective and irrevesible <strong>in</strong>hibitor of PI3K 5 . Wortmann<strong>in</strong> has been used to determ<strong>in</strong>e<br />

the <strong>in</strong>volvement of PI3K <strong>in</strong> many cellular processes, such as apoptosis 4 , autophagy 2 and TLR signal<strong>in</strong>g 6 .<br />

1. Seglen PO. & Gordon PB., 1982. 3-Methyladen<strong>in</strong>e: specific <strong>in</strong>hibitor of autophagic/lysosomal prote<strong>in</strong> degradation <strong>in</strong> isolated rat hepatocytes. PNAS. 1982 Mar;79(6):1889-92.<br />

2. Blommaart EF. et al., 1997. The phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase <strong>in</strong>hibitors wortmann<strong>in</strong> and LY294002 <strong>in</strong>hibit autophagy <strong>in</strong> isolated rat hepatocytes. Eur. J. Biochem. 243: 240–246.<br />

3. Vlahos CJ. et al., 1994. A specific <strong>in</strong>hibitor of phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase, 2-(4-morphol<strong>in</strong>yl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem 69(7):5241-8. 4. Duronio V.,<br />

2008. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J. 415(3):333-44. 5. Arcaro A. and Wymann MP., 1993. Wortmann<strong>in</strong> is a potent phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase<br />

<strong>in</strong>hibitor: the role of phosphatidyl<strong>in</strong>ositol 3,4,5-trisphosphate <strong>in</strong> neutrophil responses. Biochem. J. 296:297-301. 6. Fukao T and Koyasu S., 2003. PI3K and negative regulation of TLR signal<strong>in</strong>g.<br />

Trends Immunol 24: 358-363.<br />

156<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors


Prote<strong>in</strong> K<strong>in</strong>ase and Prote<strong>in</strong> Tyros<strong>in</strong>e K<strong>in</strong>ase Inhibitors<br />

2-Am<strong>in</strong>opur<strong>in</strong>e - PKR Inhibitor<br />

2-am<strong>in</strong>opur<strong>in</strong>e (2-AP) is a potent <strong>in</strong>hibitor of double-stranded RNA (dsRNA)-activated prote<strong>in</strong> k<strong>in</strong>ase (PKR), a critical mediator of apoptosis. PKR is<br />

phosphorylated and activated by dsRNA and poly(I:C) 1 and contributes to the <strong>in</strong>duction of type I <strong>in</strong>terferons, such as IFN-b, which can further <strong>in</strong>crease its<br />

expression 2 . PKR plays also a role <strong>in</strong> TLR-<strong>in</strong>duced antiviral activities as an <strong>in</strong>termediary <strong>in</strong> TLR3, TLR4 and TLR9 signal<strong>in</strong>g 3 .<br />

AG490 - JAK2 Inhibitor<br />

AG490 is a specific and potent <strong>in</strong>hibitor of the Janus k<strong>in</strong>ase 2 prote<strong>in</strong> (JAK2) 4 AG490 is used to <strong>in</strong>hibit phosphorylation of the tyros<strong>in</strong>e k<strong>in</strong>ase receptor EGFR<br />

and signal transducer and activator of transcription 3 (STAT-3), and subsequently reduce <strong>in</strong>vasion and adhesion potential of malignant cells 5 .<br />

H-89 - PKA Inhibitor<br />

H-89 is a selective, potent cell permeable <strong>in</strong>hibitor of cAMP-dependent prote<strong>in</strong> k<strong>in</strong>ase (PKA) 6 . It can be used to determ<strong>in</strong>e the role of PKA <strong>in</strong> TLR and other<br />

PRR mediated signal<strong>in</strong>g. PKA has be shown to participate <strong>in</strong> the TLR-mediated TREM-1 expression on macrophages follow<strong>in</strong>g LPS stimulation ,7 .<br />

1. Kaufman RJ., 1999. Double-stranded RNA-activated prote<strong>in</strong> k<strong>in</strong>ase mediated virus-<strong>in</strong>duced apoptosis: a new role for an old actor. Proc. Natl. Acad. Sci. USA 96 (21):11693-5. 2. Samuel<br />

CE., 2001. Antiviral actions of <strong>in</strong>terferons. Cl<strong>in</strong> Microbiol Rev. 14(4):778-809. 3. García MA. et al., 2006. Impact of Prote<strong>in</strong> K<strong>in</strong>ase PKR <strong>in</strong> Cell Biology: from Antiviral to Antiproliferative<br />

Action,Microbiol. Mol. Biol. Rev., 70: 1032 - 1060. 4. Levitzki A., 1990. Tyrphost<strong>in</strong>s- potential antiprolierative agents and novel molecular tools. Biochem. Pharmacol. 40:913-918. 5. Caceres-<br />

Cortes JR., 2008. A potent anti-carc<strong>in</strong>oma and anti-acute myeloblastic leukemia agent, AG490. Anticancer Agents Med Chem. 8(7):717-22. 6. Chijiwa, T., et al.,1990. Inhibition of forskol<strong>in</strong><strong>in</strong>duced<br />

neurite outgrowth and prote<strong>in</strong> phosphorylation by a newly synthesized selective <strong>in</strong>hibitor of cyclic AMP-dependent prote<strong>in</strong> k<strong>in</strong>ase, N-[2-(p-bromoc<strong>in</strong>namylam<strong>in</strong>o)<br />

ethyl]-5-isoqu<strong>in</strong>ol<strong>in</strong>esulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 265: 5267-5272. 7. Murakami Y. et al., 2007. Lipopolysaccharide-Induced Up-Regulation of Trigger<strong>in</strong>g<br />

Receptor Expressed on Myeloid Cells-1 Expression on Macrophages Is Regulated by Endogenous Prostagland<strong>in</strong> E2. J. Immunol. 178: 44. 2<br />

Epigenetic Inhibitors<br />

5-Aza-cytid<strong>in</strong>e - DNA Methyltransferase Inhibitor<br />

5-aza-cytid<strong>in</strong>e (AZA) is a potent <strong>in</strong>hibitor of DNA methyltransferase 1 (DNMT1), known to <strong>in</strong>duce demethylation and reactivation of silenced genes. In a<br />

recent article, reactivation of hypermethylated pluripotency genes was suggested to be important for complete reprogramm<strong>in</strong>g. Consistent with this notion,<br />

AZA was shown to facilitate the transition to full pluripotency of partially reprogrammed cell l<strong>in</strong>e and to <strong>in</strong>crease the number of ES cell-like colonies 1 .<br />

Hangfu et al. confirmed that AZA treatment promotes reprogramm<strong>in</strong>g efficiency 2 .<br />

5-Aza-2’-deoxycytid<strong>in</strong>e - DNA Methyltransferase Inhibitor<br />

5-Aza-2’-deoxycytid<strong>in</strong>e (5-AzadCyD, 5-Aza-CdR, decitab<strong>in</strong>e) is a specific <strong>in</strong>hibitor of DNA methylation. It functions <strong>in</strong> a similar manner to aza-citid<strong>in</strong>e, although<br />

decitab<strong>in</strong>e can only be <strong>in</strong>corporated <strong>in</strong>to DNA strands while azacitid<strong>in</strong>e can be <strong>in</strong>corporated <strong>in</strong>to both DNA and RNA cha<strong>in</strong>s. 5-AzadCyD is a prodrug that<br />

requires activation via phosphorylation by deoxycytid<strong>in</strong>e k<strong>in</strong>ase. The nucleotide analog is <strong>in</strong>corporated <strong>in</strong>to DNA, where it produces an irreversible <strong>in</strong>activation<br />

of DNA methyltransferase. 5-AzadCyD was demonstrated to be a potent ant<strong>in</strong>eoplastic agent aga<strong>in</strong>st leukemia and tumors <strong>in</strong> animal models 3, 4 .<br />

Bix-01294 - G9a Histone Methyltransferase Inhibitor<br />

Bix-01294 is an <strong>in</strong>hibitor of the G9a histone methyltransferase, a key regulator of DNA methylation and transcriptional silenc<strong>in</strong>g <strong>in</strong> pluripotent cells 5 . Bix-<br />

01294 is believed to facilitate the reactivation of pluripotency genes and <strong>in</strong>duce passive demethylation, thus promot<strong>in</strong>g reprogramm<strong>in</strong>g. Indeed, Bix-01294<br />

was found to improve reprogramm<strong>in</strong>g efficiencies of Oct4-Klf4-(OK)-<strong>in</strong>fected neural progenitor cells by approximately 8 fold 6 .<br />

Trichostat<strong>in</strong> A - Histone deacetylase Inhibitor<br />

Trichostat<strong>in</strong> A (TSA) is a potent and specific <strong>in</strong>hibitor of histone deacetylase (HDAC). TSA suppresses the activity of HDAC lead<strong>in</strong>g to an <strong>in</strong>crease <strong>in</strong> histone<br />

acetylation. TSA has been shown to <strong>in</strong>duce apoptosis <strong>in</strong> many cancer cells at submicromolar concentrations with very low toxicity toward normal cells 7 .<br />

Furthermore, TSA is used to improve the genomic reprogramm<strong>in</strong>g of embryos generated by somatic cell nuclear transfer 8 .<br />

Valproic acid - Histone deacetylase Inhibitor<br />

Valproic acid (VPA) is a histone deacetylase <strong>in</strong>hibitor with potent antitumor activity 9 . VPA treatment promotes histone acetylation allow<strong>in</strong>g the chromat<strong>in</strong> to<br />

adopt a relaxed structure facilitat<strong>in</strong>g the b<strong>in</strong>d<strong>in</strong>g of ectopically expressed transcription factors or downstream secondary factors. VPA was found to significantly<br />

enhance reprogramm<strong>in</strong>g efficiencies of OSKM-, OSK- and OS-<strong>in</strong>fected fibroblasts, elim<strong>in</strong>at<strong>in</strong>g the need for the oncogenes c-Myc or Klf4 2, 10 . VPA is believed<br />

to <strong>in</strong>duce global transcriptional changes, <strong>in</strong> particular upregulat<strong>in</strong>g ES cell-specific genes while downregulat<strong>in</strong>g MEF-specific genes.<br />

1. Mikkelsen TS. et al., 2008. Dissect<strong>in</strong>g direct reprogramm<strong>in</strong>g through <strong>in</strong>tegrative genomic analysis. Nature. 454(7200):49-55. 2. Huangfu D. et al., 2008a. Induction of pluripotent<br />

stem cells by def<strong>in</strong>ed factors is greatly improved by small-molecule compounds. Nat Biotechnol. 26(7):795-7. 3. Christman JK., 2002. 5-Azacytid<strong>in</strong>e and 5-aza-20-deoxycytid<strong>in</strong>e<br />

as <strong>in</strong>hibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495. 4. Kulis M. & Esteller M., 2010. DNA methylation and<br />

cancer. Adv Genet. 2010;70:27-56. 5. Epsztejn-Litman S. et al., 2008. De novo DNA methylation promoted by G9a prevents reprogramm<strong>in</strong>g of embryonically silenced genes.<br />

Nat Struct Mol Biol. 15(11):1176-83. 6. Shi Y et al., 2008. A comb<strong>in</strong>ed chemical and genetic approach for the generation of <strong>in</strong>duced pluripotent stem cells. Cell Stem Cell.<br />

2(6):525-8. 7. David M. et al., 2001. Trichostat<strong>in</strong> A Is a Histone Deacetylase Inhibitor with Potent Antitumor Activity aga<strong>in</strong>st Breast Cancer <strong>in</strong> Vivo. Cl<strong>in</strong>. Cancer Res., Apr 2001;<br />

7: 971 - 976. 8. Bui H-T, et al., 2010. Effect of Trichostat<strong>in</strong> A on Chromat<strong>in</strong> Remodel<strong>in</strong>g, Histone Modifications, DNA Replication, and Transcriptional Activity <strong>in</strong> Cloned Mouse<br />

Embryos. Biol Reprod, 83: 454 - 463. 9. Duenas-Gonzalez A. et al., 2008. Valproic acid as epigenetic cancer drug: precl<strong>in</strong>ical, cl<strong>in</strong>ical and transcriptional effects on solid tumors.<br />

Cancer Treat Rev. 34(3):206-22. 10 . Huangfu D. et al., 2008b. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol.<br />

26(11):1269-75.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors<br />

157<br />

INHIBITORS 8


INHIBITORS 8<br />

Heat Shock Prote<strong>in</strong> Inhibitors<br />

Heat shock prote<strong>in</strong> 90 (Hsp90) is a ubiquitous molecular chaperone critical for the fold<strong>in</strong>g, assembly and activity of multiple mutated and overexpressed<br />

signal<strong>in</strong>g prote<strong>in</strong>s that promote the growth and/or survival of tumor cells. Hsp90 client prote<strong>in</strong>s <strong>in</strong>clude mutated p53, Raf-1, Akt, ErbB2 and hypoxia<strong>in</strong>ducible<br />

factor 1a (HIF-1a). Geldanamyc<strong>in</strong> (GA), a benzoqu<strong>in</strong>one ansamyc<strong>in</strong> antibiotic, selectively <strong>in</strong>hibits Hsp90 lead<strong>in</strong>g to the degradation of its client<br />

prote<strong>in</strong>s. GA <strong>in</strong>hibits the proliferation of cancer cells and shows anti-cancer activity <strong>in</strong> experimental animals. However due to poor aqueous solubility and<br />

liver toxicity, GA has not moved forward <strong>in</strong> cl<strong>in</strong>ical trials. To overcome these undesirable properties, numerous GA analogues have been synthesized which<br />

differ only <strong>in</strong> their 17-substituent.<br />

Geldanamyc<strong>in</strong> - HSP90 Inhibitor<br />

Geldanamyc<strong>in</strong> (GA) is a natural product produced by Streptomyces hygroscopicus.<br />

InvivoGen produces GA from a mutant stra<strong>in</strong> of S. hygroscopicus, <strong>in</strong>activated for the<br />

synthesis of nigeric<strong>in</strong>, a common contam<strong>in</strong>ant of GA. GA b<strong>in</strong>ds with high aff<strong>in</strong>ity <strong>in</strong>to the<br />

ATP b<strong>in</strong>d<strong>in</strong>g pocket of Hsp90. B<strong>in</strong>d<strong>in</strong>g of GA to Hsp90 causes the destabilization and<br />

degradation of its client prote<strong>in</strong>s 1 , thereby <strong>in</strong>hibit<strong>in</strong>g the oncogenic activity of these<br />

prote<strong>in</strong>s 2 .<br />

17-AAG - Less Toxic and More Stable GA Analogue<br />

17-Allylam<strong>in</strong>o-17-demethoxygeldanamyc<strong>in</strong> (17-AAG) is an analogue chemically derived<br />

from GA. 17-AAG is a less toxic and more stable analogue of geldanamyc<strong>in</strong> (GA) 3 . Even<br />

though 17-AAG b<strong>in</strong>d<strong>in</strong>g to Hsp90 is weaker than GA, 17-AAG displays similar antitumor<br />

effects as GA and a better toxicity profile. 17-AAG is currently <strong>in</strong> phase I cl<strong>in</strong>ical trial <strong>in</strong><br />

several centers worldwide. Prelim<strong>in</strong>ary data obta<strong>in</strong>ed from these trials demonstrate that<br />

antitumor activity is achieved at concentrations below the maximum tolerated dose 4 .<br />

17-DMAG - Water-soluble GA Analogue<br />

17-(Dimethylam<strong>in</strong>oethylam<strong>in</strong>o)-17-demethoxygeldanamyc<strong>in</strong> (17-DMAG, NSC 707545)<br />

is the first water-soluble analogue of 17-AAG. This Hsp90 <strong>in</strong>hibitor shows promise <strong>in</strong><br />

precl<strong>in</strong>ical models 5 . 17-DMAG has excellent bioavailability, is widely distributed to tissues,<br />

and is quantitatively metabolized much less than is 17-AAG 6 .<br />

The use of 17-DMAG is covered under US Patent 6,890,917 owned and licensed by the NIH to<br />

InvivoGen.<br />

17-AEP-GA - Water-soluble GA Analogue<br />

17-[2-(Pyrrolid<strong>in</strong>-1-yl)ethyl]am<strong>in</strong>o-17-demethoxygeldanamyc<strong>in</strong> (17-AEP-GA) is a new<br />

geldanamyc<strong>in</strong> (GA) analogue with an alkylam<strong>in</strong>o group <strong>in</strong> place of the methoxy moiety at<br />

C17. 17-AEP-GA is less cytotoxic than GA and rema<strong>in</strong>s biologically active 7 . 17-AEP-GA<br />

was shown to <strong>in</strong>duce similar tumor cell growth <strong>in</strong>hibition than 17-AAG and, unlike 17-<br />

AAG which is soluble <strong>in</strong> DMSO, to be water soluble.<br />

17-DMAP-GA - Water-soluble GA Analogue<br />

17-(Dimethylam<strong>in</strong>opropylam<strong>in</strong>o)-17-demethoxygeldanamyc<strong>in</strong> (17-DMAP-GA) belongs to<br />

a new set of geldanamyc<strong>in</strong> analogues that have been synthesized based on b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ity<br />

to Hsp90 and water solubility. 17-DMAP-GA was shown to greatly <strong>in</strong>hibit the growth of<br />

cancer cells (IC50 below 100 nM) 7 . Its b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ity to Hsp90 was not significantly affected<br />

while its water solubility was highly improved compared to 17-AAG.<br />

17-GMB-APA-GA - GA Analogue for Conjugation to a Monoclonal Antibody<br />

17-GMB-APA-GA is a maleimido derivative of geldanamyc<strong>in</strong> that enables the conjugation<br />

of GA to a monoclonal antibody (mAb) such as Hercept<strong>in</strong>, the first mAb approved for<br />

therapy of solid tumors. This geldanamyc<strong>in</strong> immunoconjugate <strong>in</strong>duces less systemic toxicity<br />

than GA by be<strong>in</strong>g selectively delivered <strong>in</strong>to malignant cells, a property conferr ed by the<br />

mAb that acts as the target<strong>in</strong>g vehicle. NCI has reported that Hercept<strong>in</strong>-GA conjugates<br />

deliver a more potent selective cytotoxic impact to Her2-overexpress<strong>in</strong>g tumors than<br />

Hercept<strong>in</strong> alone 8 . To prepare such conjugates, GA is modified to <strong>in</strong>troduce a latent primary<br />

am<strong>in</strong>e 9 . After deprotection, this primary am<strong>in</strong>e provides a site for <strong>in</strong>troduction of a<br />

maleimide group that enables l<strong>in</strong>kage to prote<strong>in</strong>s.<br />

17-NHS-ALA-GA - GA Analogue for Coupl<strong>in</strong>g of NH2-Conta<strong>in</strong><strong>in</strong>g Molecules<br />

17-NHS-ALA-GA is an NHS (N-hydroxysucc<strong>in</strong>imide) activated geldanamyc<strong>in</strong> analogue<br />

designed for easy coupl<strong>in</strong>g of NH2-conta<strong>in</strong><strong>in</strong>g molecules. NHS coupl<strong>in</strong>g forms a chemically<br />

stable amide bond with ligands conta<strong>in</strong><strong>in</strong>g primary am<strong>in</strong>o groups such as small prote<strong>in</strong>s<br />

and peptides. Thus, 17-NHS-ALA-GA can be used for conjugation of GA to a monoclonal<br />

antibody, similarly to 17-GMB-APA-GA. It can also be used to perform aff<strong>in</strong>ity<br />

chromatography to purify GA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s such as Hsp90.<br />

158<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors<br />

Geldanamyc<strong>in</strong><br />

C29H40N2O9<br />

MW: 560<br />

Purity: 99%<br />

17-AAG<br />

C31H43N3O8<br />

MW 586<br />

Purity: 99%<br />

17-DMAG<br />

C32H48N4O8, HCl<br />

MW: 617<br />

Purity: 99%<br />

17-AEP-GA<br />

C34H50N4O8<br />

MW: 643<br />

Purity: 99%<br />

17-DMAP-GA<br />

C33H50N4O8<br />

MW: 631<br />

Purity: 99%<br />

17-GMB-APA-GA<br />

C39H53N5O11<br />

MW: 768<br />

Purity: 99%<br />

17-NHS-ALA-GA<br />

C44H84N4O12<br />

MW: 841<br />

Purity: 99%<br />

17


Biot<strong>in</strong>-GA - Labeled GA Analogue<br />

Biot<strong>in</strong>-GA was generated by biot<strong>in</strong>ylation of geldanamyc<strong>in</strong> at the C17 position. This labeled<br />

GA can be used to identify novel Hsp90 <strong>in</strong>hibitors through time-resolved fluorescence<br />

resonance energy transfer-based HTS that measures the b<strong>in</strong>d<strong>in</strong>g of biot<strong>in</strong>-GA to the Nterm<strong>in</strong>al<br />

ATP-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> of Hsp90 10 .<br />

17-AAGH2 & 17-DMAGH2 - Hydroqu<strong>in</strong>one GA Analogues<br />

The selective toxicity of benzoqu<strong>in</strong>one ansamyc<strong>in</strong>s <strong>in</strong> tumor cells can be expla<strong>in</strong>ed by<br />

their reduction to hydroqu<strong>in</strong>ones. Indeed, many human cancer cells express at high<br />

levels NAD(P)H:qu<strong>in</strong>one oxidoreductase 1 (NQO1), a flavoenzyme that catalyzes the<br />

direct reduction of qu<strong>in</strong>ones to hydroqu<strong>in</strong>ones. NQO1 has been shown to reduce<br />

17-AAG and to <strong>in</strong>crease the sensitivity to 17-AAG of cancer cell l<strong>in</strong>es 11 . Recent studies<br />

have demonstrated that the reduction product of 17-AAG, 17AAGH2, is a more<br />

potent <strong>in</strong>hibitor of Hsp90 than the 17-AAG itself 12 , as well as 17-DMAGH2 compared<br />

to 17-DMAG 13 .<br />

InvivoGen provides 17-AAGH2 and 17-DMAGH2 produced by reduction of 17-AAG<br />

and 17-DMAG respectively us<strong>in</strong>g a chemical reduc<strong>in</strong>g agent. Their purity is 99%.<br />

www.<strong>in</strong>vivogen.com/<strong>in</strong>hibitors<br />

Biot<strong>in</strong>-GA<br />

C56H88N8O12S<br />

MW: 1097<br />

Purity: 99%<br />

1. Whitesell L. et al., 1994. Inhibition of heat shock prote<strong>in</strong> HSP90-pp60v-src heteroprote<strong>in</strong> complex formation by benzoqu<strong>in</strong>one ansamyc<strong>in</strong>s: essential role for stress prote<strong>in</strong>s <strong>in</strong> oncogenic<br />

transformation. PNAS 91(18):8324-8. 2. Neckers L., 2002. Hsp90 <strong>in</strong>hibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8(4 Suppl):S55-61. 3. Schulte TW. & Neckers LM., 1998.<br />

The benzoqu<strong>in</strong>one ansamyc<strong>in</strong> 17-allylam<strong>in</strong>o-17-demethoxygeldanamyc<strong>in</strong> b<strong>in</strong>ds to HSP90 and shares important biologic activities with geldanamyc<strong>in</strong>. Cancer Chemother Pharmacol 42(4):273-9.<br />

4. Agnew EB. et al. 2001. Measurement of the novel antitumor agent 17-(allylam<strong>in</strong>o)-17-demethoxygeldanamyc<strong>in</strong> <strong>in</strong> human plasma by high-performance liquid chromatography. J Chromatogr B<br />

Biomed Sci Appl 755:237-43. 5. Workman P., 2003. Overview: translat<strong>in</strong>g Hsp90 biology <strong>in</strong>to Hsp90 drugs. Curr Cancer Drug Targets 3(5):297-300. 6. Egor<strong>in</strong> MJ, et al., 2002. Pharmacok<strong>in</strong>etics,<br />

tissue distribution, and metabolism of 17-(dimethylam<strong>in</strong>oethylam<strong>in</strong>o)-17-demethoxygeldanamyc<strong>in</strong> (NSC 707545) <strong>in</strong> CD2F1 mice and Fischer 344 rats. Cancer Chemother Pharmacol 49(1):7-<br />

19. 7. Tian ZQ. et al., 2004. Synthesis and biological activities of novel 17-am<strong>in</strong>ogeldanamyc<strong>in</strong> derivatives.Bioorg Med Chem. 12(20):5317-29. 8. Mandler R. et al., 2004. Hercept<strong>in</strong>-geldanamyc<strong>in</strong><br />

immunoconjugates: pharmacok<strong>in</strong>etics, biodistribution, and enhanced antitumor activity. Cancer Res. 64(4):1460-7. 9. Mandler R. et al., 2002. Modifications <strong>in</strong> synthesis strategy improve the<br />

yield and efficacy of geldanamyc<strong>in</strong>-hercept<strong>in</strong> immunoconjugates. Bioconjug Chem. 13(4):786-91. 10. Zhou V. et al., 2004. A time-resolved fluorescence resonance energy transfer-based HTS<br />

assay and a surface plasmon resonance-based b<strong>in</strong>d<strong>in</strong>g assay for heat shock prote<strong>in</strong> 90 <strong>in</strong>hibitors. Anal Biochem. 331(2):349-57. 11. Kelland LR et al., 1999. DT-Diaphorase expression and<br />

tumor cell sensitivity to17-allylam<strong>in</strong>o, 17-demethoxygeldanamyc<strong>in</strong>, an <strong>in</strong>hibitor of heat shock prote<strong>in</strong> 90. J Natl Cancer Inst. 91(22):1940-9. 12. Guo W et al., 2005. Formation of 17-allylam<strong>in</strong>odemethoxygeldanamyc<strong>in</strong><br />

(17-AAG) hydroqu<strong>in</strong>one by NAD(P)H:qu<strong>in</strong>one oxidoreductase 1: role of 17-AAG hydroqu<strong>in</strong>one <strong>in</strong> heat shock prote<strong>in</strong> 90 <strong>in</strong>hibition. Cancer Res. 65(21):10006-15. 13.<br />

Guo W et al., 2006. The bioreduction of a series of benzoqu<strong>in</strong>one ansamyc<strong>in</strong>s by NAD(P)H:qu<strong>in</strong>one oxidoreductase 1 to more potent heat shock prote<strong>in</strong> 90 <strong>in</strong>hibitors, the hydroqu<strong>in</strong>one<br />

ansamyc<strong>in</strong>s. Mol Pharmacol. 70(4):1194-203.<br />

DNA Synthesis Inhibitors<br />

5-Fluorocytos<strong>in</strong>e - DNA Synthesis Inhibitor<br />

5-Fluorocytos<strong>in</strong>e (5-FC) is a fluor<strong>in</strong>ated cytos<strong>in</strong>e analogue, cl<strong>in</strong>ically approved as an antifungal agent. 5-FC is nontoxic to mammalian cells due to their lack<br />

of the enzyme cytos<strong>in</strong>e deam<strong>in</strong>ase (CD). CD converts 5-FC <strong>in</strong>to 5-fluorouracil (5-FU), a highly cytotoxic compound rout<strong>in</strong>ely used <strong>in</strong> cancer chemotherapy.<br />

5-FC is used <strong>in</strong> comb<strong>in</strong>ation with the E. coli CD gene (codA) or S. cerevisiae CD gene (fcy) <strong>in</strong> suicide gene therapy protocols 1 .<br />

5-Fluorouracil - Thymidylate Synthase Inhibitor<br />

5-Fluorouracil (5-FU), a fluor<strong>in</strong>ated analogue of uracil, is approved for cancer chemotherapy as an ant<strong>in</strong>eoplastic, antimetabolic agent. The cytotoxic effects<br />

of 5-FU occur ma<strong>in</strong>ly follow<strong>in</strong>g its conversion to 5-fluoro-deoxyurid<strong>in</strong>e monophosphate (5-FdUMP), an irreversible <strong>in</strong>hibitor of thymidylate synthase. This<br />

leads to cell death by DNA synthesis <strong>in</strong>hibition through deoxythymid<strong>in</strong>e triphosphate deprivation.<br />

Ganciclovir - DNA Synthesis Inhibitor<br />

Ganciclovir (GCV) is a synthetic analogue of 2'-deoxy-guanos<strong>in</strong>e, cl<strong>in</strong>ically approved for the treatment of cytomegalovirus (CMV) <strong>in</strong>fections. GCV is used as<br />

a prodrug to obta<strong>in</strong> a suicide effect <strong>in</strong> cells transfected with the herpes virus thymid<strong>in</strong>e k<strong>in</strong>ase gene (HSV-tk) 1 . HSV-TK phosphorylates GCV to GCVmonophosphate<br />

which is further converted to GCV-diphosphate and GCV-triphosphate by host k<strong>in</strong>ases. GCV-triphosphate causes premature DNA cha<strong>in</strong><br />

term<strong>in</strong>ation and apoptosis. The HSV-tk gene and ganciclovir are used <strong>in</strong> molecular biology for negative selection 2 .<br />

1. Aghi M. et al., 2000. Prodrug activation enzymes <strong>in</strong> cancer gene therapy. J Gene Med. 2(3):148-64. 2. Karreman C., 1998. New positive/negative selectable markers for mammalian cells on<br />

the basis of Blasticid<strong>in</strong> deam<strong>in</strong>ase-thymid<strong>in</strong>e k<strong>in</strong>ase fusions. Nucleic Acids Res. 26(10):2508-10.<br />

159<br />

INHIBITORS 8


9<br />

CUSTOM SERVICES<br />

TLR/NOD Ligand Screen<strong>in</strong>g 161<br />

Custom-Made CpG-free Genes 161<br />

Custom Clon<strong>in</strong>g 162<br />

Custom-Made psiRNA 162<br />

Custom-Made pDRIVE 162<br />

Large Scale Plasmid DNA Production 163


TLR/NOD Ligand Screen<strong>in</strong>g<br />

InvivoGen has developed a high-throughput method to determ<strong>in</strong>e whether a compound is recognized by Toll-Like Receptors (TLRs) or<br />

NOD1/NOD2 and acts either as an agonist or antagonist. This method is based on TLR- or NOD-<strong>in</strong>duced activation of various transcription<br />

factors <strong>in</strong>clud<strong>in</strong>g NF-kB and AP1 <strong>in</strong> HEK293 clones.<br />

Description<br />

TLR Ligand Screen<strong>in</strong>g<br />

Two choices of services are offered, level 1 and level 2, that can be<br />

performed sequentially or <strong>in</strong>dividually.<br />

Level 1: S<strong>in</strong>gle dose test<strong>in</strong>g on a panel of human TLRs<br />

Test<strong>in</strong>g is carried out on seven TLRs: TLR2, TLR3, TLR4, TLR5, TLR7, TLR8<br />

and TLR9.<br />

Screen<strong>in</strong>g is performed at a s<strong>in</strong>gle concentration, typically a 1/10 dilution<br />

of the orig<strong>in</strong>al compound solution provided, or customer specified.<br />

Duplicate tests (plus controls, see list).<br />

Level 2: Dose response on one or two TLRs<br />

Three concentrations of the compound(s), typically 1/10, 1/100 and<br />

1/1000 dilutions of the orig<strong>in</strong>al compound solution, are tested on the<br />

TLR(s) recogniz<strong>in</strong>g the compound(s) as determ<strong>in</strong>ed <strong>in</strong> level 1 or specified<br />

by the customer. Triplicate tests (plus controls).<br />

NOD Ligand Screen<strong>in</strong>g<br />

Two cytoplasmic prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> pathogen recognition, NOD1 and<br />

NOD2, can be added to this screen<strong>in</strong>g service. Their activation by a given<br />

compound is detected us<strong>in</strong>g the same method as the one described above.<br />

A detailed report will be prepared and provided to the customer<br />

electronically and <strong>in</strong> hard copy. All procedures are performed accord<strong>in</strong>gly<br />

to strict guidel<strong>in</strong>es. Confidentiality is guaranteed.<br />

Custom-Made CpG-Free Genes<br />

www.<strong>in</strong>vivogen.com/custom-ser vices<br />

PRODUCT CAT. CODE<br />

TLR / NOD Ligand Screen<strong>in</strong>g tlrl-test<br />

For more <strong>in</strong>formation, see page 91<br />

InvivoGen is an expert <strong>in</strong> develop<strong>in</strong>g CpG-Free genes and now offers a CpG-Free gene custom service. Send us the sequence of your gene<br />

of <strong>in</strong>terest, and our specialists will design, synthesize and clone <strong>in</strong>to an expression vector a CpG-Free allele of this gene. We guarantee that<br />

the sequence of the synthetic gene will 100% match the designed sequence.<br />

Description<br />

Our experts will design the sequence of a CpG-free allele of your gene<br />

of <strong>in</strong>terest us<strong>in</strong>g a proprietary software that allows the elim<strong>in</strong>ation of all<br />

CpG d<strong>in</strong>ucleotides, the humanization of the sequence, the elim<strong>in</strong>ation of<br />

secondary structures, and the elim<strong>in</strong>ation/reduction of dam and dcm<br />

methylations to dim<strong>in</strong>ish E. coli signature<br />

The Custom-made CpG-free Gene is 100% sequence verified and<br />

provided <strong>in</strong>to the pMA plasmid (see map page 139).<br />

Contents and Storage<br />

Custom-made CpG-free genes are provided as 5 μg of lyophilized DNA.<br />

Products are shipped at room temperature. Store at -20°C.<br />

PRODUCT QTY CAT. CODE<br />

Custom-made CpG-free Gene 20 μg p-custom<br />

For more <strong>in</strong>formation, see page 139<br />

161<br />

CUSTOM SERVICES 9


CUSTOM SERVICES 9<br />

Custom Clon<strong>in</strong>g : Many Comb<strong>in</strong>ations Possible Accord<strong>in</strong>g to Your Aims<br />

At the lead<strong>in</strong>g edge of research and development <strong>in</strong> vector construction, gene delivery, and gene expression systems, our specialists are pleased<br />

to provide an extensive range of customized products. With more than 20 years of experience <strong>in</strong> clon<strong>in</strong>g, we offer custom clon<strong>in</strong>g services at<br />

very competitive rates and short turn-around time.<br />

➥ Wide Exper tise and Consultation Available<br />

➥ Customized Scientific Suppor t<br />

➥ Rapid Process<strong>in</strong>g<br />

➥ Your Product Ready-to-Use<br />

➥ Cost-Effective<br />

Services<br />

Custom-Made pSELECT<br />

pORF and pMOD plasmids are not selectable <strong>in</strong> mammalian cells. If you<br />

are plann<strong>in</strong>g on stably express<strong>in</strong>g an open read<strong>in</strong>g frame provided <strong>in</strong> a<br />

pORF or pMOD, our experts can subclone this open read<strong>in</strong>g frame <strong>in</strong>to<br />

a pSELECT plasmid carry<strong>in</strong>g the selectable marker of your choice:<br />

- pSELECT-blasti - pSELECT-puro<br />

- pSELECT-hygro - pSELECT-zeo<br />

- pSELECT-neo - pSELECT-gfpzeo<br />

Custom-Made pDRIVE<br />

You can create your own composite promoter by comb<strong>in</strong><strong>in</strong>g the enhancer,<br />

core promoter and 5’UTR of your choice. We will assemble this composite<br />

promoter <strong>in</strong> a pDRIVE plasmid harbor<strong>in</strong>g a reporter gene from the list<br />

below:<br />

- pDRIVE-LacZ<br />

- pDRIVE5-GFP<br />

- pDRIVE5-SEAP<br />

Custom-made pDRIVE carry the Zeoc<strong>in</strong> resistance gene for selection<br />

and amplification <strong>in</strong> E. coli. We can replace the bacterial selection cassette<br />

with a mammalian selection cassette of your choice derived from a<br />

pSELECT plasmid.<br />

Custom-Made psiRNA (see page 150)<br />

You can either send us your siRNA/shRNA sequence or we can select the<br />

best candidate siRNA sequence for your target gene us<strong>in</strong>g the siRNA<br />

Wizard software. The <strong>in</strong>sert encod<strong>in</strong>g the expected shRNA sequence will<br />

be cloned <strong>in</strong> the psiRNA-h7SK plasmid which is available with different<br />

selectable markers:<br />

- psiRNA-h7SKblasti - psiRNA-h7SKzeo<br />

- psiRNA-h7SKhygro - psiRNA-h7SKGFPzeo<br />

- psiRNA-h7SKneo<br />

Contents and Storage<br />

Custom-made plasmids (pSELECT, pDRIVE or psiRNA) are provided as<br />

20 μg of lyophilized DNA.<br />

Custom-made psiRNA plasmids are also available as a kit that conta<strong>in</strong>s<br />

20 μg of custom-made psiRNA, 20 µg of a control psiRNA, 1 vial of<br />

LyoComp GT116 (E. coli competent cells, page 43), and 4 pouches of<br />

the correspond<strong>in</strong>g Fast-Media ® (E. coli selection medium, pages 44-45).<br />

Products are shipped at room temperature. Store at -20°C.<br />

162<br />

www.<strong>in</strong>vivogen.com/custom-clon<strong>in</strong>g<br />

Save time and speed up your research by us<strong>in</strong>g our<br />

expertise and knowledge. Do not hesitate to <strong>in</strong>quire<br />

about our custom service department.<br />

PRODUCT QTY CAT. CODE<br />

Custom-made pSELECT 20 μg p-custom<br />

Custom-made pDRIVE 20 μg p-custom<br />

Custom-made psiRNA 20 μg p-custom<br />

Custom-made psiRNA Kit 1 kit k-custom<br />

Contact us for more <strong>in</strong>formation<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.com


Large Scale Plasmid DNA Production<br />

If you are conduct<strong>in</strong>g gene therapy research, DNA vacc<strong>in</strong>ation research, transfection or pre-cl<strong>in</strong>ical trials, we can provide you with large quantities<br />

of plasmid DNA. We offer a comprehensive custom service. In order to supply the most suitable and ready-to-use product, we manufacture<br />

plasmid DNA at standard research and pre-cl<strong>in</strong>ical grades.<br />

➥ Technological Exper tise<br />

➥ Personalized Technical Suppor t<br />

➥ High Quality Plasmid DNA<br />

➥ Cost-Effective<br />

➥ Shor t Turn-Around Time<br />

Two purification grades of plasmid DNA<br />

If you are conduct<strong>in</strong>g gene therapy research, DNA vacc<strong>in</strong>ation research,<br />

transfection or pre-cl<strong>in</strong>ical trials, we can provide you with large quantities<br />

of plasmid DNA. We offer a comprehensive custom-made service. In<br />

order to supply the most suitable and ready-to-use product, we<br />

manufacture plasmid DNA at standard research and pre-cl<strong>in</strong>ical grades.<br />

- Standard Research Grade<br />

The level of endotox<strong>in</strong> is reduced to less than 0.1 EU/μg plasmid DNA<br />

(FDA specifications).<br />

- Pre-Cl<strong>in</strong>ical Grade<br />

The purification is guaranteed with a prote<strong>in</strong> level less than 1% and with<br />

an absence of microorganisms (verified by Bioburden Assay).<br />

High Standard Quality Control<br />

Our process<strong>in</strong>g and our rigorous quality procedures allow us to provide<br />

certified plasmid DNA. Each batch of plasmid DNA is delivered with a<br />

certificate of analysis and meets the characteristics listed below.<br />

CRITERIA TESTED VALUE ASSAY METHOD<br />

Appearance <strong>in</strong> water solution Clear, colorless Visual <strong>in</strong>spection<br />

Plasmid identity Restriction pattern Agarose gel electrophoresis<br />

DNA homogeneity >95% supercoiled form Agarose gel electrophoresis<br />

Purity 1.7-2.0 A260/A280 Optical density measurements<br />

Presence of E. coli DNA


CUSTOM SERVICES 9<br />

Prices<br />

164<br />

TERMS AND CONDITIONS<br />

Written price quotes are firm for purchase orders received with<strong>in</strong> 30<br />

days. Prices are subject to change without notice.<br />

Payment Terms<br />

Payment terms are net 30 days from the <strong>in</strong>voice date. Pre-payments may<br />

be required for <strong>in</strong>itial orders with completion of credit application.<br />

InvivoGen does not require a m<strong>in</strong>imum order quantity.<br />

Shipp<strong>in</strong>g<br />

Product is shipped F.O.B. from InvivoGen, San Diego, CA. Domestic<br />

orders are shipped 2-3 day express by our designated carrier. Orders can<br />

be expedited to overnight service for an additional fee. European orders<br />

are shipped from our affiliate <strong>in</strong> France, Cayla. Please <strong>in</strong>clude Value Added<br />

Tax (VAT) registration number when plac<strong>in</strong>g the order. For non-U.S.<br />

orders, other charges such as import duties and value added taxes may<br />

apply. Shipp<strong>in</strong>g days are Monday through Friday.<br />

Warranty<br />

InvivoGen warrants that the products sold will meet our specifications at<br />

the time of delivery. InvivoGen’s sole liability shall be limited to, at our<br />

option, replacement of material(s) that does not meet our specification<br />

or refund of the purchase price. By acceptance of the product, Buyer<br />

<strong>in</strong>demnifies and holds InvivoGen harmless aga<strong>in</strong>st, and assumes all liability<br />

for any direct, <strong>in</strong>cidental, special or consequential loss, damage or expense<br />

directly or <strong>in</strong>directly aris<strong>in</strong>g from the use of the product, even if InvivoGen<br />

knew of the possibility of such loss, damage or expense.<br />

Purchaser Notification / Patents<br />

All InvivoGen products are <strong>in</strong>tended for research purpose only and not<br />

<strong>in</strong>tended for use <strong>in</strong> humans. They <strong>in</strong>clude technologies for which patents<br />

have been issued to us or other companies, or are pend<strong>in</strong>g. Not all<br />

components may be available for commercial license. It is <strong>in</strong>cumbent upon<br />

the <strong>in</strong>terested party to contact the appropriate patent assignees for<br />

specific <strong>in</strong>formation regard<strong>in</strong>g license issues. Purchase of InvivoGen<br />

products does not grant rights to reproduce, repackage or modify the<br />

products or any derivative thereof to third parties.<br />

Limited Use License<br />

pCpGfree plasmids & HEK-Blue Products: The purchase of these<br />

product conveys to the buyer the non-transferable right to use the<br />

purchased amount of the product and all replicates and derivatives for<br />

research purposes conducted by the buyer <strong>in</strong> his laboratory only<br />

(whether the buyer is an academic or for-profit entity). The buyer cannot<br />

sell or otherwise transfer (a) this product (b) its components or (c)<br />

materials made us<strong>in</strong>g this product or its components to a third party or<br />

otherwise use this product or its components or materials made us<strong>in</strong>g<br />

this product or its components for Commercial Purposes.<br />

The buyer agrees that any activity undertaken with the product and<br />

replicates or derivatives will be conducted <strong>in</strong> compliance with all<br />

applicable guidel<strong>in</strong>es, laws and regulations.<br />

www.<strong>in</strong>vivogen.com<br />

Commercial Purposes means any activity by a party for consideration<br />

and may <strong>in</strong>clude, but is not limited to: (1) use of the product or its<br />

components <strong>in</strong> manufactur<strong>in</strong>g; (2) use of the product or its components<br />

to provide a service, <strong>in</strong>formation, or data; (3) use of the product or its<br />

components for therapeutic, diagnostic or prophylactic purposes; or (4)<br />

resale of the product or its components, whether or not such product<br />

or its components are resold for use <strong>in</strong> research. "Replicate" means any<br />

biological or chemical material that represents a substantially unmodified<br />

copy of the Material such as, but not limited to, material produced by<br />

growth of cells. "Derivative" means material created from the Material<br />

that is substantially modified to have new properties such as, but not<br />

limited to, recomb<strong>in</strong>ant DNA modified clones.<br />

If the purchaser is not will<strong>in</strong>g to accept the limitations of this limited use<br />

statement, InvivoGen is will<strong>in</strong>g to accept return of the product with a full<br />

refund. For <strong>in</strong>formation on purchas<strong>in</strong>g a license to this product for purposes<br />

other than research, contact InvivoGen, 3950 Sorrento Valley Blvd. Suite A,<br />

San Diego California 92121. Tel:858-457-5873. Fax: 858-457-5843.<br />

Returns<br />

All product returns must have prior authorization and approval. Contact<br />

our customer service or technical service department for a return<br />

authorization number. Return authorization numbers are valid for 30 days<br />

from issuance. Items that are authorized for return must arrive at<br />

InvivoGen Corporation <strong>in</strong> resalable condition to be eligible for a product<br />

credit. A restock<strong>in</strong>g charge of 20% will be charged on returns that are<br />

through no error or fault of InvivoGen Corporation and shipp<strong>in</strong>g charges<br />

will not be credited. Products may not be returned for credit after 20<br />

days of receipt of material.<br />

Trademarks of InvivoGen<br />

EndoFit - Fast-Media ® - Fung<strong>in</strong> - Gene A-List - HEK-Blue -<br />

HygroGold - InvivoGen ® - LENTI-Smart - LipoGen - LyoVec -<br />

Normoc<strong>in</strong> - Plasmoc<strong>in</strong> - Plasmocure - PlasmoTest - Primoc<strong>in</strong> -<br />

Prom A-List - PromTest - psiRNA - QUANTI-Blue - VacciGrade <br />

- Zeoc<strong>in</strong>


PRODUCT INFORMATION


166<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

17-AAG (5 mg) ant-agl-5 158<br />

17-AAG (25 mg) ant-agl-25 158<br />

17-AAGH2 (1 mg) ant-agh-1 159<br />

17-AEP-GA (1 mg) ant-egl-1 158<br />

17-AEP-GA (5 mg) ant-egl-5 158<br />

17-DMAG (5 mg) ant-dgl-5 158<br />

17-DMAG (25 mg) ant-dgl-25 158<br />

17-DMAGH2 (1 mg) ant-dgh-1 159<br />

17-DMAP-GA (1 mg) ant-mgl-1 158<br />

17-DMAP-GA (5 mg) ant-mgl-5 158<br />

17-GMB-APA-GA (1 mg) gmbapa-ga 158<br />

17-NHS-ALA-GA (1 mg) ant-nhgl-1 158<br />

293/hMD2-CD14 (5-7 x 10 6 cells) 293-hmd2cd14 65<br />

293/hNOD1 (5-7 x 10 6 cells) 293-hnod1 65<br />

293/hNOD2 (5-7 x 10 6 cells) 293-hnod2 65<br />

293/hTLR1-HA (5-7 x 10 6 cells) 293-htlr1ha 65<br />

293/hTLR2 (5-7 x 10 6 cells) 293-htlr2 65<br />

293/hTLR2-HA (5-7 x 10 6 cells) 293-htlr2ha 65<br />

293/hTLR2/6 (5-7 x 10 6 cells) 293-htlr2/6 65<br />

293/hTLR2-CD14 (5-7 x 10 6 cells) 293-htlr2cd14 65<br />

293/hTLR3 (5-7 x 10 6 cells) 293-htlr3 65<br />

293/hTLR3-HA (5-7 x 10 6 cells) 293-htlr3ha 65<br />

293/hTLR4A (5-7 x 10 6 cells) 293-htlr4a 65<br />

293/hTLR4-HA (5-7 x 10 6 cells) 293-htlr4ha 65<br />

293/hTLR4A-MD2-CD14 (5-7 x 10 6 cells) 293-htlr4md2cd14 65<br />

293/hTLR5 (5-7 x 10 6 cells) 293-htlr5 65<br />

293/hTLR5-HA (5-7 x 10 6 cells) 293-htlr5ha 65<br />

293/hTLR5-CD14 (5-7 x 10 6 cells) 293-htlr5cd14 65<br />

293/hTLR6-HA (5-7 x 10 6 cells) 293-htlr6ha 65<br />

293/hTLR10-HA (5-7 x 10 6 cells) 293-htlr10ha 65<br />

293/LacZ (5-7 x 10 6 cells) 293-lacz 65<br />

293/mNOD1 (5-7 x 10 6 cells) 293-mnod1 65<br />

293/mNOD2 (5-7 x 10 6 cells) 293-mnod2 65<br />

293/mTLR1 (5-7 x 10 6 cells) 293-mtlr1 65<br />

293/mTLR1/2 (5-7 x 10 6 cells) 293-mtlr1/2 65<br />

293/mTLR2 (5-7 x 10 6 cells) 293-mtlr2 65<br />

293/mTLR2/6 (5-7 x 10 6 cells) 293-mtlr2/6 65<br />

293/mTLR3 (5-7 x 10 6 cells) 293-mtlr3 65<br />

293/mTLR4 (5-7 x 10 6 cells) 293-mtlr4 65<br />

293/mTLR4-MD2-CD14 (5-7 x 10 6 cells) 293-mtlr4md2cd14 65<br />

293/mTLR5 (5-7 x 10 6 cells) 293-mtlr5 65<br />

293/mTLR6 (5-7 x 10 6 cells) 293-mtlr6 65<br />

293/mTLR9 (5-7 x 10 6 cells) 293-mtlr9 65<br />

293/null (5-7 x 10 6 cells) 293-null 65<br />

293XL/hTLR7 (5-7 x 10 6 cells) 293xl-htlr7 65<br />

293XL/hTLR7-HA (5-7 x 10 6 cells) 293xl-htlr7ha 65<br />

293XL/hTLR8 (5-7 x 10 6 cells) 293xl-htlr8 65<br />

293XL/hTLR8-HA (5-7 x 10 6 cells) 293xl-htlr8ha 65<br />

293XL/hTLR9 (5-7 x 10 6 cells) 293xl-htlr9 65<br />

293XL/hTLR9-HA (5-7 x 10 6 cells) 293xl-htlr9ha 65<br />

293XL/mTLR7 (5-7 x 10 6 cells) 293xl-mtlr7 65<br />

293XL/null (5-7 x 10 6 cells) 293xl-null 65<br />

2-Am<strong>in</strong>opur<strong>in</strong>e (250 mg) tlrl-apr 93<br />

3-Methyladen<strong>in</strong>e (50 mg) tlrl-3ma 102<br />

5’ppp-dsRNA (25 μg) tlrl-3prna 80<br />

5’ppp-dsRNA (100 μg) tlrl-3prna-100 80<br />

5’ppp-dsRNA Control (25 μg) tlrl-3prnac 80<br />

5’ppp-dsRNA Control (100 μg) tlrl-3prnac-100 80<br />

PRODUCT INFORMATION<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

5-Aza-2’-deoxycytid<strong>in</strong>e (10 mg) met-adc-1 157<br />

5-Aza-2’-deoxycytid<strong>in</strong>e (50 mg) met-adc-5 157<br />

5-Aza-cytid<strong>in</strong>e (100 mg) <strong>in</strong>h-aza 21<br />

5-Fluorocytos<strong>in</strong>e (250 mg) sud-5fc 159<br />

5-Fluorouracil (250 mg) sud-5fu 159<br />

Adju59 (2 ml) vac-ad59-2 128<br />

Adju59 (5 x 2 ml) vac-ad59-10 128<br />

AG490 (10 mg) tlrl-ag4 93<br />

Alhydrogel 2% (50 ml) vac-alu-50 128<br />

Alhydrogel 2% (250 ml) vac-alu-250 128<br />

Alum Crystals (1 g) tlrl-alk 98<br />

Anti-Flagell<strong>in</strong> FliC (100 μg) mabg-flic 73<br />

Anti-HA Tag (250 μl) ab-hatag 73<br />

Anti-hCD14-IgA (100 μg) maba-hcd14 72<br />

Anti-hCD20-hIgA1 (100 μg) hcd20-mab6 120<br />

Anti-hCD20-hIgA2 (100 μg) hcd20-mab7 120<br />

Anti-hCD20-hIgE (100 μg) hcd20-mab8 120<br />

Anti-hCD20-hIgG1 (100 μg) hcd20-mab1 120<br />

Anti-hCD20-hIgG2 (100 μg) hcd20-mab2 120<br />

Anti-hCD20-hIgG3 (100 μg) hcd20-mab3 120<br />

Anti-hCD20-hIgG4 (100 μg) hcd20-mab4 120<br />

Anti-hCD20-hIgM (100 μg) hcd20-mab5 120<br />

Anti-hCD20-mIgG1 (100 μg) hcd20-mab9 120<br />

Anti-hCD20-mIgG2a (100 μg) hcd20-mab10 120<br />

Anti-hCD20-mIgA (100 μg) hcd20-mab11 120<br />

Anti-hCD40L-IgA2 (100 μg) maba-h40l 104<br />

Anti-hIFN-a-IgA2 (100 μg) maba-hifna 104<br />

Anti-hIFN-g-IgA2 (100 μg) maba-hifng 104<br />

Anti-hIL-1b-IgA2 (100 μg) maba-hil1b 104<br />

Anti-hIL-4-IgA2 (100 μg) maba-hil4 104<br />

Anti-hIL-6-IgA2 (100 μg) maba-hil6 104<br />

Anti-hIL-13-IgA2 (100 μg) maba-hil13 104<br />

Anti-hIL-18-IgA2 (100 μg) maba-hil18 104<br />

Anti-hTGFb-IgA2 (100 μg) maba-htgfb 104<br />

Anti-hTLR1-IgG (100 μg) mabg-htlr1 72<br />

Anti-hTLR2-IgA (100 μg) maba2-htlr2 72<br />

Anti-hTLR3-IgA (100 μg) maba-htlr3 73<br />

Anti-hTLR4-IgA (100 μg) maba2-htlr4 72<br />

Anti-hTLR5-IgA (100 μg) maba2-htlr5 72<br />

Anti-hTLR6-IgG (100 μg) mabg-htlr6 72<br />

Anti-hTNF-a-hIgA1 (100 μg) htnfa-mab6 120<br />

Anti-hTNF-a-hIgA2 (100 μg) htnfa-mab7 120<br />

Anti-hTNF-a-hIgE (100 μg) htnfa-mab8 120<br />

Anti-hTNF-a-hIgG1 (100 μg) htnfa-mab1 120<br />

Anti-hTNF-a-hIgG2 (100 μg) htnfa-mab2 120<br />

Anti-hTNF-a-hIgG3 (100 μg) htnfa-mab3 120<br />

Anti-hTNF-a-hIgG4 (100 μg) htnfa-mab4 120<br />

Anti-hTNF-a-hIgM (100 μg) htnfa-mab5 120<br />

Anti-hTNF-a-mIgG1 (100 μg) htnfa-mab9 120<br />

Anti-hTNF-a-mIgG2 (100 μg) htnfa-mab10 120<br />

Anti-hTNF-a-mIgA (100 μg) htnfa-mab11 120<br />

Anti-mTLR2-IgG (100 μg) mabg-mtlr2 72<br />

Anti-mTLR5-IgG (100 μg) mabg-mtlr5 72<br />

ATP (1 g) tlrl-atp 98<br />

B16-Blue IFNa/b Cells (5-7 x 10 6 cells) bb-ifnab 106<br />

Bafilomyc<strong>in</strong> A1 (10 μg) tlrl-baf 102<br />

Bay11-7082 (10 mg) tlrl-b82 93<br />

Biot<strong>in</strong>-GA (1 mg) ant-bgl-1 159


PRODUCT (QUANTITY) CAT. CODE PAGE<br />

Biot<strong>in</strong>-GA (5 mg) ant-bgl-5 159<br />

Bix-01294 (2 mg) <strong>in</strong>h-bix 21<br />

Blasticid<strong>in</strong> (100 mg) ant-bl-1 17<br />

Blasticid<strong>in</strong> (500 mg) ant-bl-5 17<br />

Blasticid<strong>in</strong> (500 mg, bottle) ant-bl-5b 17<br />

Blasticid<strong>in</strong> (1 g powder) ant-bl-10p 17<br />

BX795 (5 mg) tlrl-bx7 93<br />

C12-iE-DAP (1 mg) tlrl-c12dap 80<br />

C3H/TLR4mut MEFs (5-7 x 10 6 cells) mef-c3h4m 71<br />

C3H/WT MEFs (5-7 x 10 6 cells) mef-c3hwt 71<br />

C57/WT MEFs (5-7 x 10 6 cells) mef-c57wt 71<br />

Celastrol (1 mg) ant-cls 155<br />

ChemiComp GT115 (5 x 0.1 ml) gt115-11 43<br />

ChemiComp GT115 (5 x 0.2 ml) gt115-21 43<br />

ChemiComp GT116 (5 x 0.1 ml) gt116-11 43<br />

ChemiComp GT116 (5 x 0.2 ml) gt116-21 43<br />

Chloroqu<strong>in</strong>e (250 mg) tlrl-chq 93<br />

CL075 (500 μg) tlrl-c75 78<br />

CL075 (5 mg) tlrl-c75-5 78<br />

CL097 (500 μg) tlrl-c97 78<br />

CL097 (5 mg) tlrl-c97-5 78<br />

CL264 (500 μg) tlrl-c264s 78<br />

CL264 (5 mg) tlrl-c264-5 78<br />

CL264 Biot<strong>in</strong> (100 μg) tlrl-bc264 78<br />

CL264 FITC (100 μg) tlrl-fc264 78<br />

CL264 Rhodam<strong>in</strong>e (100 μg) tlrl-rc264 78<br />

CLI-095 (1 mg) tlrl-cli95 93<br />

CPPD crystals (5 mg) tlrl-cppd 98<br />

Curdlan (1 g) tlrl-curd 81<br />

Custom Clon<strong>in</strong>g (20 μg) p-custom 162<br />

Custom-made CpG-free Gene (20 μg) p-custom 139<br />

Custom-made psiRNA (20 μg) p-custom 150<br />

Custom-made psiRNA kit k-custom 150<br />

Cyclospor<strong>in</strong> A (100 mg) tlrl-cyca 93<br />

DNA Standard Research Grade p-custom 163<br />

DNA Pre-Cl<strong>in</strong>ical Grade p-custom 163<br />

E. coli DNA ef (1 mg) tlrl-ednaef 78<br />

E. coli ssDNA / LyoVec (200 μg) tlrl-ssec 78<br />

EndoFit Ovalbum<strong>in</strong> (10 mg) vac-efova 129<br />

Fast-Media ® Amp Agar (30 pouches) fas-am-s 45<br />

Fast-Media ® Amp Agar (500 pouches) fas-am-s500 45<br />

Fast-Media ® Amp TB (30 pouches) fas-am-l 45<br />

Fast-Media ® Amp TB (500 pouches) fas-am-l500 45<br />

Fast-Media ® Amp XGal (20 pouches) fas-am-x 45<br />

Fast-Media ® Base Agar (30 pouches) fas-s 45<br />

Fast-Media ® Base Agar (500 pouches) fas-s500 45<br />

Fast-Media ® Base TB (30 pouches) fas-l 45<br />

Fast-Media ® Base TB (500 pouches) fas-l500 45<br />

Fast-Media ® Blas Agar (20 pouches) fas-bl-s 45<br />

Fast-Media ® Blas TB (20 pouches) fas-bl-l 45<br />

Fast-Media ® Blas XGal (20 pouches) fas-bl-x 45<br />

Fast-Media ® Hygro Agar (20 pouches) fas-hg-s 45<br />

Fast-Media ® Hygro TB (20 pouches) fas-hg-l 45<br />

Fast-Media ® Hygro XGal (20 pouches) fas-hg-x 45<br />

Fast-Media ® Kan Agar (30 pouches) fas-kn-s 45<br />

Fast-Media ® Kan Agar (500 pouches) fas-kn-s500 45<br />

Fast-Media ® Kan TB (30 pouches) fas-kn-l 45<br />

Fast-Media ® Kan TB (500 pouches) fas-kn-l500 45<br />

PRODUCT INFORMATION<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

Fast-Media ® Kan XGal (20 pouches) fas-kn-x 45<br />

Fast-Media ® Puro Agar (20 pouches) fas-pr-s 45<br />

Fast-Media ® Puro TB (20 pouches) fas-pr-l 45<br />

Fast-Media ® Zeo Agar (20 pouches) fas-zn-s 45<br />

Fast-Media ® Zeo TB (20 pouches) fas-zn-l 45<br />

Fast-Media ® Zeo XGal (20 pouches) fas-zn-x 45<br />

Fast-Media ® Zeo X-Gluc (10 pouches) fas-zn-g 45<br />

FLA-BS (100 μg) tlrl-bsfla 78<br />

Flagell<strong>in</strong> FliC VacciGrade (50 μg) vac-fla 128<br />

FLA-ST (100 μg) tlrl-stfla 78<br />

FLA-ST Ultrapure (10 μg) tlrl-pstfla 78<br />

FLA-ST recomb<strong>in</strong>ant (1 μg) tlrl-flic 78<br />

FLA-ST recomb<strong>in</strong>ant (10 μg) tlrl-flic-10 78<br />

FSL-1 (100 μg) tlrl-fsl 77<br />

Fung<strong>in</strong> (75 mg) ant-fn-1 11<br />

Fung<strong>in</strong> (200 mg) ant-fn-2 11<br />

G418 (1 g) ant-gn-1 17<br />

G418 (5 g) ant-gn-5 17<br />

Ganciclovir (250 mg) sud-gcv 159<br />

Gardiquimod (500 μg) tlrl-gdqs 78<br />

Gardiquimod (5 mg) tlrl-gdq-5 78<br />

Gardiquimod VacciGrade (5 mg) vac-gdq 128<br />

Gefit<strong>in</strong>ib (10 mg) tlrl-gef 93<br />

Geldanamyc<strong>in</strong> (5 mg) ant-gl-5 158<br />

Geldanamyc<strong>in</strong> (25 mg) ant-gl-25 158<br />

Glybenclamide (1 g) tlrl-gly 98<br />

Goat anti-human IgA - HRP (1 ml) hrp-iga 123<br />

Goat anti-human kappa - HRP (1 ml) hrp-igak 123<br />

Goat F(ab’)2 anti-human IgA (0.5 mg) fab-iga 123<br />

Goat F(ab’)2 anti-human IgA - Biot<strong>in</strong> (0.5 mg) chiga-biot 73<br />

Goat F(ab’)2 anti-human IgA - FITC (0.5 mg) chiga-fitc 73<br />

Goat F(ab’)2 anti-human kappa (0.5 mg) fab-igak 123<br />

Goat F(ab’)2 IgG isotype control - FITC (100 tests) cgig-fitc 73<br />

G-ODN (200 μg) tlrl-godn 80<br />

H-89 (5 mg) tlrl-h89 93<br />

HEK-Blue CD40L Cells (5-7 x 10 6 cells) hkb-cd40 115<br />

HEK-Blue CD40L Kit hkb-cd40-kit 115<br />

HEK-Blue Detection (2 pouches) hb-det1 15<br />

HEK-Blue Detection (5 pouches) hb-det2 15<br />

HEK-Blue hMD2-CD14 Cells (5-7 x 10 6 cells) hkb-hmdcd 66<br />

HEK-Blue hNOD1 Cells (5-7 x 10 6 cells) hkb-hnod1 66<br />

HEK-Blue hNOD2 Cells (5-7 x 10 6 cells) hkb-hnod2 66<br />

HEK-Blue hTLR2 Cells (5-7 x 10 6 cells) hkb-htlr2 66<br />

HEK-Blue hTLR3 Cells (5-7 x 10 6 cells) hkb-htlr3 66<br />

HEK-Blue hTLR4 Cells (5-7 x 10 6 cells) hkb-htlr4 66<br />

HEK-Blue hTLR5 Cells (5-7 x 10 6 cells) hkb-htlr5 66<br />

HEK-Blue hTLR7 Cells (5-7 x 10 6 cells) hkb-htlr7 66<br />

HEK-Blue hTLR8 Cells (5-7 x 10 6 cells) hkb-htlr8 66<br />

HEK-Blue hTLR9 Cells (5-7 x 10 6 cells) hkb-htlr9 66<br />

HEK-Blue IFN-a/b Cells (5-7 x 10 6 cells) hkb-ifnab 107<br />

HEK-Blue IL-1b Cells (5-7 x 10 6 cells) hkb-il1b 100<br />

HEK-Blue IL-1b Kit hkb-il1b-kit 111<br />

HEK-Blue IL-4/IL-13 Cells (5-7 x 10 6 cells) hkb-stat6 108<br />

HEK-Blue IL-4/IL-13 Kit hkb-stat6-kit 108<br />

HEK-Blue IL-6 Cells (5-7 x 10 6 cells) hkb-il6 109<br />

HEK-Blue IL-6 Kit hkb-il6-kit 109<br />

HEK-Blue IL-18/IL-1b Cells (5-7 x 10 6 cells) hkb-il18 112<br />

HEK-Blue IL-18/IL-1b Kit hkb-il18-kit 112<br />

167


168<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

HEK-Blue IL-33/IL-1b Cells (5-7 x 10 6 cells) hkb-il33 113<br />

HEK-Blue mNOD1 Cells (5-7 x 10 6 cells) hkb-mnod1 66<br />

HEK-Blue mNOD2 Cells (5-7 x 10 6 cells) hkb-mnod2 66<br />

HEK-Blue mTLR2 Cells (5-7 x 10 6 cells) hkb-mtlr2 66<br />

HEK-Blue mTLR3 Cells (5-7 x 10 6 cells) hkb-mtlr3 66<br />

HEK-Blue mTLR4 Cells (5-7 x 10 6 cells) hkb-mtlr4 66<br />

HEK-Blue mTLR5 Cells (5-7 x 10 6 cells) hkb-mtlr5 66<br />

HEK-Blue mTLR7 Cells (5-7 x 10 6 cells) hkb-mtlr7 66<br />

HEK-Blue mTLR8 Cells (5-7 x 10 6 cells) hkb-mtlr8 66<br />

HEK-Blue mTLR9 Cells (5-7 x 10 6 cells) hkb-mtlr9 66<br />

HEK-Blue Null1 Cells (5-7 x 10 6 cells) hkb-null1 66<br />

HEK-Blue Null1-k Cells (5-7 x 10 6 cells) hkb-null1k 66<br />

HEK-Blue Null1-v Cells (5-7 x 10 6 cells) hkb-null1v 66<br />

HEK-Blue Null2 Cells (5-7 x 10 6 cells) hkb-null2 66<br />

HEK-Blue Null2-k Cells (5-7 x 10 6 cells) hkb-null2k 66<br />

HEK-Blue TNF-a/IL-1b Cells (5-7 x 10 6 cells) hkb-tnfil1 110<br />

HEK-Blue TNF-a/IL-1b Kit hkb-tnfil1-kit 110<br />

HEK-Blue TGF-b Cells (5-7 x 10 6 cells) hkb-tgfb 114<br />

HEK-Blue TGF-b Kit hkb-tgfb-kit 114<br />

HEK-Blue LPS Detection Kit rep-lps 90<br />

HEK-Blue Selection (5 x 2 ml) hb-sel 8<br />

Hemozo<strong>in</strong> (5 mg) tlrl-hz 98<br />

HKAL (10 9 cells) tlrl-hkal 77<br />

HKCA (10 9 cells) tlrl-hkca 81<br />

HKEB (10 10 cells) tlrl-hkeb 77<br />

HKHP (10 9 cells) tlrl-hkhp 77<br />

HKLM (10 10 cells) tlrl-hklm 77<br />

HKLP (10 9 cells) tlrl-hklp 77<br />

HKLR (10 10 cells) tlrl-hklr 77<br />

HKMF (10 9 cells) tlrl-hkmf 77<br />

HKPA (10 10 cells) tlrl-hkpa 77<br />

HKPG (10 10 cells) tlrl-hkpg 77<br />

HKSA (10 10 cells) tlrl-hksa 77<br />

HKSC (10 9 cells) tlrl-hksc 81<br />

HKSP (10 10 cells) tlrl-hksp 77<br />

Human IgA (0.5 mg) ctrl-iga 123<br />

Human IgA kappa (0.5 mg) ctrl-igak 123<br />

HygroGold (1 g) ant-hg-1 18<br />

HygroGold (5 g) ant-hg-5 18<br />

HygroGold (10 g powder) ant-hg-10p 18<br />

Hygromyc<strong>in</strong> B (1 g) ant-hm-1 18<br />

Hygromyc<strong>in</strong> B (5 g) ant-hm-5 18<br />

iE-DAP (5 mg) tlrl-dap 80<br />

iE-Lys (5 mg) tlrl-lys 80<br />

IFA (10 ml) vac-ifa-10 128<br />

IFA (6 x 10 ml) vac-ifa-60 128<br />

IFNr qRT-Primers (kit) rts-hifnr 147<br />

IgA2 Isotype Control (100 μg) maba2-ctrl 124<br />

Imiquimod (500 μg) tlrl-imqs 78<br />

Imiquimod (5 mg) tlrl-imq 78<br />

Imiquimod VacciGrade (5 mg) vac-imq 128<br />

Jacal<strong>in</strong> / Agarose (2 ml) gel-jac-2 122<br />

Jacal<strong>in</strong> / Agarose (5 ml) gel-jac-5 122<br />

J Cha<strong>in</strong> Antiserum (100 μg) pab-jc 123<br />

L18-MDP (1 mg) tlrl-lmdp 80<br />

LacZ Cell Sta<strong>in</strong><strong>in</strong>g Kit rep-lz-c 12<br />

LacZ Tissue Sta<strong>in</strong><strong>in</strong>g Kit rep-lz-t 12<br />

LAM-MS (500 μg) tlrl-lams 77<br />

PRODUCT INFORMATION<br />

www.<strong>in</strong>vivogen.com<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

LENTI-Smart (INT) (5 vials) lts<strong>in</strong>t-5 24<br />

LENTI-Smart (INT) (10 vials) lts<strong>in</strong>t-10 24<br />

LENTI-Smart (INT) (h/m)OSKM (5 vials) lts<strong>in</strong>t-oskm-5 25<br />

LENTI-Smart (INT) (h/m)OSKM (10 vials) lts<strong>in</strong>t-oskm-10 25<br />

LENTI-Smart NIL (5 vials) ltsnil-5 24<br />

LENTI-Smart NIL (10 vials) ltsnil-10 24<br />

LENTI-Smart NIL (h/m)OSKM (5 vials) ltsnil-oskm-5 25<br />

LENTI-Smart NIL (h/m)OSKM (10 vials) ltsnil-oskm-10 25<br />

LENTI-Smart Starter Kit (10 vials) lts-str 24<br />

Leptomyc<strong>in</strong> B (5 μg) tlrl-lep 93<br />

LM-MS (250 μg) tlrl-lmms2 77<br />

Loxorib<strong>in</strong>e (50 mg) tlrl-lox 78<br />

LPS-EB (5 mg) tlrl-eblps 77<br />

LPS-EB Biot<strong>in</strong> (500 μg) tlrl-bblps 77<br />

LPS-EB Ultrapure (5 mg) tlrl-pelps 77<br />

LPS-EK (5 mg) tlrl-eklps 77<br />

LPS-EK Ultrapure (1 mg) tlrl-peklps 77<br />

LPS-PG Ultrapure (1 mg) tlrl-pglps 77<br />

LPS-RS (5 mg) tlrl-rslps 78<br />

LPS-SM Ultrapure (5 mg) tlrl-smlps 77<br />

LTA-BS (5 mg) tlrl-lta 77<br />

LTA-SA (5 mg) tlrl-slta 77<br />

LTA-SA Purified (5 mg) tlrl-pslta 77<br />

LY294002 (5 mg) tlrl-ly29 93<br />

LyoComp GT115 (5 x 0.1 ml) lyo-115-11 43<br />

LyoComp GT115 (5 x 0.2 ml) lyo-115-21 43<br />

LyoComp GT116 (4 x 0.5 ml) lyo-116-11 43<br />

LyoComp GT116 (4 x 1 ml) lyo-116-21 43<br />

LyoVec (8 ml, 160 reactions) lyec-12 19<br />

LyoVec (18 ml, 360 reactions) lyec-22 19<br />

MAb-hTLR1 (100 μg) mab-htlr1 73<br />

MAb-hTLR1-FITC (100 μg) mab-htlr1f 73<br />

MAb-hTLR2 (100 μg) mab-htlr2 73<br />

MAb-hTLR2-FITC (100 μg) mab-htlr2f 73<br />

MAb-hTLR3 (100 μg) mab-htlr3 73<br />

MAb-hTLR3-FITC (100 μg) mab-htlr3f 73<br />

MAb-hTLR4 (100 μg) mab-htlr4 73<br />

MAb-hTLR4-FITC (100 μg) mab-htlr4f 73<br />

MAb-mDect<strong>in</strong>-1 (100 μg) mab-mdect 72<br />

MAb-mTLR2 (100 μg) mab-mtlr2 72<br />

MAb-mTLR2-FITC (100 μg) mab-mtlr2f 73<br />

MAb-mTLR4/MD2 (100 μg) mab-mtlr4md2 73<br />

MAb-mTLR4/MD2-FITC (100 μg) mab-mtlr4md2f 73<br />

MAb-mTLR9 (100 μg) mab-mtlr9 73<br />

MAb-mTLR9-FITC (100 μg) mab-mtlr9f 73<br />

MDP (5 mg) tlrl-mdp 80<br />

MDP Biot<strong>in</strong> (500 μg) tlrl-bmdp 80<br />

MDP control (5 mg) tlrl-mdpc 80<br />

MDP FITC (500 μg) tlrl-fmdp 80<br />

MDP Rhodam<strong>in</strong>e (500 μg) tlrl-rmdp 80<br />

MPLA (1 mg) tlrl-mpl 77<br />

MPLAs (500 μg) tlrl-mpls 77<br />

MPLA VacciGrade (1 mg) vac-mpl 128<br />

MSU Crystals (5 mg) tlrl-msu 98<br />

M-TriDAP (1 mg) tlrl-mtd 80<br />

Murabutide (5 mg) tlrl-mbt 80<br />

Murabutide control (5 mg) tlrl-mbtc 80<br />

N-Glycolyl-MDP (5 mg) tlrl-gmdp 80


PRODUCT (QUANTITY) CAT. CODE PAGE<br />

N-Glycolyl-MDP VacciGrade (5 mg) vac-gmdp 128<br />

Nigeric<strong>in</strong> (10 mg) tlrl-nig 98<br />

Nigeric<strong>in</strong> (50 mg) tlrl-nig-5 98<br />

NOD1/2 Agonist Kit (10 ligands) tlrl-nodkit 81<br />

Normoc<strong>in</strong> (500 mg) ant-nr-1 11<br />

Normoc<strong>in</strong> (1 g) ant-nr-2 11<br />

ODN 1585 (200 μg) tlrl-1585 78<br />

ODN 1585 (1 mg) tlrl-1585-1 78<br />

ODN 1585 (5 mg) tlrl-1585-5 78<br />

ODN 1585 control (200 μg) tlrl-1585c 78<br />

ODN 1585 control (1 mg) tlrl-1585c-1 78<br />

ODN 1585 control (5 mg) tlrl-1585c-5 78<br />

ODN 1585 FITC (50 μg) tlrl-1585f 78<br />

ODN 1668 (200 μg) tlrl-1668 78<br />

ODN 1668 (1 mg) tlrl-1668-1 78<br />

ODN 1668 (5 mg) tlrl-1668-5 78<br />

ODN 1668 control (200 μg) tlrl-1668c 78<br />

ODN 1668 control (1 mg) tlrl-1668c-1 78<br />

ODN 1668 control 5 mg) tlrl-1668c-5 78<br />

ODN 1668 FITC (50 μg) tlrl-1668f 79<br />

ODN 1826 (200 μg) tlrl-1826 79<br />

ODN 1826 (1 mg) tlrl-1826-1 79<br />

ODN 1826 (5 mg) tlrl-1826-5 79<br />

ODN 1826 Biot<strong>in</strong> (50 μg) tlrl-1826b 79<br />

ODN 1826 control (200 μg) tlrl-1826c 79<br />

ODN 1826 control (1 mg) tlrl-1826c-1 79<br />

ODN 1826 control (5 mg) tlrl-1826c-5 79<br />

ODN 1826 FITC (50 μg) tlrl-1826f 79<br />

ODN 1826 VacciGrade (1 mg) vac-1826 128<br />

ODN 2006 (200 μg) tlrl-2006 79<br />

ODN 2006 (1 mg) tlrl-2006-1 79<br />

ODN 2006 (5 mg) tlrl-2006-5 79<br />

ODN 2006 Biot<strong>in</strong> (50 μg) tlrl-2006b 79<br />

ODN 2006 control (200 μg) tlrl-2006c 79<br />

ODN 2006 control (1 mg) tlrl-2006c-1 79<br />

ODN 2006 control (5 mg) tlrl-2006c-5 79<br />

ODN 2006 FITC (50 μg) tlrl-2006f 79<br />

ODN 2006-G5 (200 μg) tlrl-2006g5 79<br />

ODN 2006-G5 (1 mg) tlrl-2006g5-1 79<br />

ODN 2006-G5 (5 mg) tlrl-2006g5-5 79<br />

ODN 2006 VacciGrade (1 mg) vac-2006 128<br />

ODN 2007 (200 μg) tlrl-2007 79<br />

ODN 2007 (1 mg) tlrl-2007-1 79<br />

ODN 2007 (5 mg) tlrl-2007-5 79<br />

ODN 2007 Control (200 μg) tlrl-2007c 79<br />

ODN 2007 Control (1 mg) tlrl-2007c-1 79<br />

ODN 2007 Control (5 mg) tlrl-2007c-5 79<br />

ODN 2088 (200 μg) tlrl-2088 80<br />

ODN 2088 (1 mg) tlrl-2088-1 80<br />

ODN 2088 control (200 μg) tlrl-2088c 80<br />

ODN 2088 control (1 mg) tlrl-2088c-1 80<br />

ODN 2216 (200 μg) tlrl-2216 79<br />

ODN 2216 (1 mg) tlrl-2216-1 79<br />

ODN 2216 (5 mg) tlrl-2216-5 79<br />

ODN 2216 Biot<strong>in</strong> (50 μg) tlrl-2216b 79<br />

ODN 2216 control (200 μg) tlrl-2216c 79<br />

ODN 2216 control (1 mg) tlrl-2216c-1 79<br />

ODN 2216 control (5 mg) tlrl-2216c-5 79<br />

PRODUCT INFORMATION<br />

www.<strong>in</strong>vivogen.com<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

ODN 2216 FITC (50 μg) tlrl-2216f 79<br />

ODN 2336 (200 μg) tlrl-2336 79<br />

ODN 2336 (1 mg) tlrl-2336-1 79<br />

ODN 2336 (5 mg) tlrl-2336-5 79<br />

ODN 2336 control (200 μg) tlrl-2336c 79<br />

ODN 2336 control (1 mg) tlrl-2336c-1 79<br />

ODN 2336 control (5 mg) tlrl-2336c-5 79<br />

ODN 2336 FITC (50 μg) tlrl-2336f 79<br />

ODN 2395 (200 μg) tlrl-2395 79<br />

ODN 2395 (1 mg) tlrl-2395-1 79<br />

ODN 2395 (5 mg) tlrl-2395-5 79<br />

ODN 2395 control (200 μg) tlrl-2395c 79<br />

ODN 2395 control (1 mg) tlrl-2395c-1 79<br />

ODN 2395 control (5 mg) tlrl-2395c-5 79<br />

ODN 2395 FITC (50 μg) tlrl-2395f 79<br />

ODN 4084-F (200 μg) tlrl-4084 80<br />

ODN INH-1 (200 μg) tlrl-<strong>in</strong>h1 80<br />

ODN INH-47 (200 μg) tlrl-<strong>in</strong>h47 80<br />

ODN M362 (200 μg) tlrl-m362 79<br />

ODN M362 (1 mg) tlrl-m362-1 79<br />

ODN M362 (5 mg) tlrl-m362-5 79<br />

ODN M362 control (200 μg) tlrl-m362c 79<br />

ODN M362 control (1 mg) tlrl-m362c-1 79<br />

ODN M362 control (5 mg) tlrl-m362c-5 79<br />

ODN M362 FITC (50 μg) tlrl-m362f 79<br />

ODN TTAGGG (200 μg) tlrl-ttag 80<br />

ODN TTAGGG (1 mg) tlrl-ttag-1 80<br />

ODN TTAGGG control (200 μg) tlrl-ttagc 80<br />

ODN TTAGGG control (1 mg) tlrl-ttagc-1 80<br />

ORN02 / LyoVec (4 x 25 μg) tlrl-orn2 78<br />

ORN06 / LyoVec (4 x 25 μg) tlrl-orn6 78<br />

OVA 257-264 (1 mg) vac-s<strong>in</strong> 129<br />

OVA 323-339 (1 mg) vac-isq 129<br />

Ovalbum<strong>in</strong> (1 g) vac-ova 129<br />

Ovalbum<strong>in</strong> EndoFit (10 mg) vac-efova 129<br />

OxPAPC (1 mg) tlrl-oxp1 93<br />

PAb-hTLR1 (200 μg) pab-hstlr1 72<br />

PAb-hTLR2 (200 μg) pab-hstlr2 72<br />

PAb-hTLR4 (200 μg) pab-hstlr4 72<br />

PAb-hTLR5 (200 μg) pab-hstlr5 72<br />

PAb-hTLR6 (200 μg) pab-hstlr6 72<br />

Pam2CSK4 (100 μg) tlrl-pam2 77<br />

Pam2CSK4 (1 mg) tlrl-pam2-1 77<br />

Pam2CSK4 Biot<strong>in</strong> (50 μg) tlrl-bpam2 77<br />

Pam2CSK4 Rhodam<strong>in</strong>e (50 μg) tlrl-rpam2 77<br />

Pam3CSK4 (1 mg) tlrl-pms 77<br />

Pam3CSK4 Biot<strong>in</strong> (50 μg) tlrl-bpms 77<br />

Pam3CSK4 Rhodam<strong>in</strong>e (50 μg) tlrl-rpms 77<br />

pBLAST- (20 μg) pblast- 37<br />

pBLAST-mcs (20 μg) pbla-mcs 37<br />

(if purchased with another pBLAST) pbla-mcs 37<br />

pBOOST2-mcs (20 μg) pbst2-mcs 130<br />

pBOOST2-msaIRF3 (20 μg) pbst2-samirf3 130<br />

pBOOST2-msaIRF7/3 (20 μg) pbst2-samirf73 130<br />

pBOOST2-wtmIRF1 (20 μg) pbst2-wtmirf1 130<br />

pBOOST3-mTBK1 (20 μg) pbst3-mtbk1 130<br />

pBOOST3-mcs (20 μg) pbst3-mcs 130<br />

pBROAD2 Kit kbroad2 31<br />

169


170<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

pBROAD2-LacZnls (20 μg) pbroad2-lacz 31<br />

pBROAD2-mcs (20μg) pbroad2 31<br />

pBROAD3 Kit kbroad3 31<br />

pBROAD3-LacZnls (20 μg) pbroad3-lacz 31<br />

pBROAD3-mcs (20μg) pbroad3 31<br />

pCpG-Giant (1 mg) tlrl-cpgg 80<br />

pCpGfree-basic (20 μg) pcpgf-bas 135<br />

pCpGfree-LacZ (20 μg) pcpgf-lacz 134<br />

pCpGfree-mcs (20 μg) pcpgf-mcs 134<br />

pCpGfree-mSEAP (20 μg) pcpgf-mseap 134<br />

pCpGfree-promoter (20 μg) pcpgf-pro 135<br />

pCpGfree-siRNA (kit) kcpgf-sirna 137<br />

pCpGfree-siRNADUO (kit) kcpg-sirna2 137<br />

pCpGfree-vitroBLacZ (20 μg) pcpgvtb-lz 136<br />

pCpGfree-vitroBmcs (20 μg) pcpgvtb-mcsg2 136<br />

pCpGfree-vitroHLacZ (20 μg) pcpgvth-lz 136<br />

pCpGfree-vitroHmcs (20 μg) pcpgvth-mcsg2 136<br />

pCpGfree-vitroNLacZ (20 μg) pcpgvtn-lz 136<br />

pCpGfree-vitro-Nmcs (20 μg) pcpgvtn-mcsg2 136<br />

pCpGrich-mcs (20 μg) pcpgr-mcs 134<br />

PD0325901 (2 mg) <strong>in</strong>h-pd32 21<br />

PD98059 (10 mg) tlrl-pd98 93<br />

pDeNy- (E.coli disk) pdn- 63<br />

pDRIVE--LacZ (E.coli disk) pdrive- 39<br />

pDRIVE--LacZ (E.coli disk) pdrive- 39<br />

pDRIVE-custom (20 μg) p-custom 162<br />

pDRIVE5-GFP-n (20 μg) pdv5-gfp-n 38<br />

pDRIVE5--SEAP (E.coli disk) pdrive5s- 39<br />

pDRIVE5--SEAP (E.coli disk) pdrive5s- 39<br />

pDUO- (E.coli disk) pduo- 61<br />

pDUO2- (E.coli disk) pduo2- 61<br />

Pep<strong>in</strong>h-Control (2 mg) tlrl-pictrl 93<br />

Pep<strong>in</strong>h-MYD (2 mg) tlrl-pimyd 93<br />

Pep<strong>in</strong>h-TRIF (2 mg) tlrl-pitrif 93<br />

Peptide M / Agarose (2 ml) gel-pdm-2 122<br />

Peptide M / Agarose (5 ml) gel-pdm-5 122<br />

pFUSE-CHIg (20 μg) see page 27 27<br />

pFUSEss-CHIg (20 μg) see page 27 27<br />

pFUSE2-CLIg (20 μg) see page 27 27<br />

pFUSE2ss-CLIg (20 μg) see page 27 27<br />

pFUSE-Fc1 native (20 μg) see page 30 28<br />

pFUSE-Fc2 native (20 μg) see page 30 28<br />

pFUSE-Fc1 eng<strong>in</strong>eered (20 μg) see page 30 28<br />

pFUSE-Fc2 eng<strong>in</strong>eered (20 μg) see page 30 28<br />

pFUSE-SEAP-Fc (20 μg) see page 30 28<br />

PGN-BS (5 mg) tlrl-pgnbs 77<br />

PGN-EB (1 mg) tlrl-pgnec 77<br />

PGN-ECndi ultrapure, <strong>in</strong>soluble (5 mg) tlrl-kipgn 80<br />

PGN-ECndss ultrapure, soluble (1 mg) tlrl-ksspgn 80<br />

PGN-EK (1 mg) tlrl-pgnek 77<br />

PGN-SA (5 mg) tlrl-pgnsa 77<br />

PGN-SAndi ultrapure, <strong>in</strong>soluble (5 mg) tlrl-sipgn 80<br />

Phleomyc<strong>in</strong> (100 mg) ant-ph-1 18<br />

Phleomyc<strong>in</strong> (500 mg) ant-ph-5 18<br />

Phleomyc<strong>in</strong> (250 mg powder) ant-ph-2p 18<br />

Phleomyc<strong>in</strong> (500 mg powder) ant-ph-5p 18<br />

Phleomyc<strong>in</strong> (1 g powder) ant-ph-10p 18<br />

pINFUSE-Fc1 (20 μg) see page 30 28<br />

pINFUSE-Fc2 (20 μg) see page 30 28<br />

PRODUCT INFORMATION<br />

www.<strong>in</strong>vivogen.com<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

Plasmoc<strong>in</strong> prophylactic (25 mg) ant-mpp 10<br />

Plasmoc<strong>in</strong> treatment (50 mg) ant-mpt 10<br />

Plasmocure (100 mg) ant-pc 10<br />

PlasmoTest (kit) rep-pt2 8<br />

PlasmoTest Controls (200 tests) pt-ctr2 9<br />

PlasmoTest Reagent Kit (500 samples) rep-ptrk 9<br />

PMA (5 mg) tlrl-pma 81<br />

pMONO-blasti/GFP (20 μg) pmonob-gfp 32<br />

pMONO-blasti/mcs (20 μg) pmonob-mcs 32<br />

pMONO-hygro/GFP (20 μg) pmonoh-gfp 32<br />

pMONO-hygro/mcs (20 μg) pmonoh-mcs 32<br />

pMONO-neo/GFP (20 μg) pmonon-gfp 32<br />

pMONO-neo/mcs (20 μg) pmonon-mcs 32<br />

pMONO-zeo/GFP (20 μg) pmonoz-gfp 32<br />

pMONO-zeo/mcs (20 μg) pmonoz-mcs 32<br />

pNiFty-Luc (E.coli disk) pnifty-luc 74<br />

pNiFty-SEAP (E.coli disk) pnifty-seap 74<br />

pNiFty2-56K-SEAP (E.coli disk) pnf2-56ksp 74<br />

pNiFty2-Luc (E.coli disk) pnifty2-luc 74<br />

pNiFty2-SEAP (E.coli disk) pnifty2-seap 74<br />

pNiFty3-SEAP (E.coli disk) pnf3-sp1 74<br />

pNiFty3-N-SEAP (E.coli disk) pnf3-sp2 74<br />

pNiFty3-A-SEAP (E.coli disk) pnf3-sp3 74<br />

pNiFty3-I-SEAP (E.coli disk) pnf3-sp4 74<br />

pNiFty3-T-SEAP (E.coli disk) pnf3-sp5 74<br />

pNiFty3-AN-SEAP (E.coli disk) pnf3-sp6 74<br />

pNiFty3-IAN-SEAP (E.coli disk) pnf3-sp7 74<br />

pNiFty3-TAN-SEAP (E.coli disk) pnf3-sp8 74<br />

Poly(A:U) (10 mg) tlrl-pau 77<br />

Poly(dA:dT) / LyoVec (100 μg) tlrl-patc 80<br />

Poly(dA:dT) Naked (200 μg) tlrl-patn 80<br />

Poly(dA:dT) Naked (1 mg) tlrl-patn-1 80<br />

Poly(dG:dC) / LyoVec (100 μg) tlrl-pgcc 80<br />

Poly(dG:dC) Naked (200 μg) tlrl-pgcn 80<br />

Poly(dT) (100 nmol) tlrl-pt17 78<br />

Poly(I:C) (HMW) (10 mg) tlrl-pic 77<br />

Poly(I:C) (HMW) (50 mg) tlrl-pic-5 77<br />

Poly(I:C) (HMW) / LyoVec (100 μg) tlrl-piclv 80<br />

Poly(I:C) (LMW) (25 mg) tlrl-picw 77<br />

Poly(I:C) (LMW) (250 mg) tlrl-picw-250 7<br />

Poly(I:C) (LMW) / LyoVec (100 μg) tlrl-picwlv 80<br />

Poly(I:C) Fluoresce<strong>in</strong> (10 μg) tlrl-picf 77<br />

Poly(I:C) Rhodam<strong>in</strong>e (10 μg) tlrl-picr 77<br />

Poly(I:C) VacciGrade (10 mg) vac-pic 128<br />

Polymyx<strong>in</strong> B (100 mg) tlrl-pmb 93<br />

pORF- (E.coli disk) porf- 37<br />

pORF-mcs (E.coli disk) porf-mcs 37<br />

(if purchased with another pORF) porf-mcs 73<br />

Primoc<strong>in</strong> (500 mg) ant-pm-1 11<br />

Primoc<strong>in</strong> (1 g) ant-pm-2 11<br />

PromTest (10 x 5 μg) prom-test 38<br />

Prote<strong>in</strong> L / Agarose (2 ml) gel-protl-2 122<br />

Prote<strong>in</strong> L / Agarose (10 ml) gel-protl-10 122<br />

pSELECT-blasti/LacZ (20 μg) psetb-lacz 32<br />

pSELECT-blasti/mcs (20 μg) psetb-mcs 32<br />

pSELECT-CGFP-blasti (20 μg) psetb-cgfp 33<br />

pSELECT-CGFP-zeo (20 μg) psetz-cgfp 33<br />

pSELECT-CHA-blasti (20 μg) psetb-cha 33<br />

pSELECT-CHA-zeo (20 μg) psetz-cha 33


PRODUCT (QUANTITY) CAT. CODE PAGE<br />

pSELECT-CHis-blasti (20 μg) psetb-chis 33<br />

pSELECT-CHis-zeo (20 μg) psetz-chis 33<br />

pSELECT-GFP-LC3 (20 μg) psetz-gfplc3 102<br />

pSELECT-GFPzeo-LacZ (20 μg) psetgz-lacz 32<br />

pSELECT-GFPzeo-mcs (20 μg) psetgz-mcs 32<br />

pSELECT-hygro-LacZ (20 μg) pseth-lacz 32<br />

pSELECT-hygro-mcs (20 μg) pseth-mcs 32<br />

pSELECT-neo-LacZ (20 μg) psetn-lacz 32<br />

pSELECT-neo-mcs (20 μg) psetn-mcs 32<br />

pSELECT-NGFP-blasti (20 μg) psetb-ngfp 33<br />

pSELECT-NGFP-zeo (20 μg) psetz-ngfp 33<br />

pSELECT-NHA-blasti (20 μg) psetb-nha 33<br />

pSELECT-NHA-zeo (20 μg) psetz-nha 33<br />

pSELECT-NHis-blasti (20 μg) psetb-nhis 33<br />

pSELECT-NHis-zeo (20 μg) psetz-nhis 33<br />

pSELECT-puro-LacZ (20 μg) psetp-lacz 32<br />

pSELECT-puro-mcs (20 μg) psetp-mcs 32<br />

pSELECT-zeo- (20 μg) psetz- 138<br />

pSELECT-zeo-LacZ (20 μg) psetz-lacz 12<br />

pSELECT-zeo-mcs (20 μg) psetz-mcs 32<br />

pSELECT-zeo-seap (20 μg) psetz-seap 13<br />

psiRNA-DUO Kit ksirna4-gz3 145<br />

psiRNA-h7SKblasti Kit ksirna3-b21 144<br />

psiRNA-h7SKGFPzeo Kit ksirna4-gz21 144<br />

psiRNA-h7SKhygro Kit ksirna3-h21 144<br />

psiRNA-h7SKneo Kit ksirna3-n21 144<br />

psiRNA-h7SKzeo Kit ksirna3-z21 144<br />

psiTEST Kit ksitest 146<br />

pUNO1- (E.coli disk) puno1- 58<br />

pUNO1--11RHA (E. coli disk) puno1rha- 21<br />

pUNO3- (E.coli disk) puno3- 58<br />

pUNO- (E.coli disk) puno- 58<br />

pUNO--HA (E.coli disk) punoha- 62<br />

pUNO-hTLR1-GFP (E.coli disk) phtlr1-gfp 62<br />

pUNO-hTLR2-GFP (E.coli disk) phtlr2-gfp 62<br />

pUNO-hTLR3-GFP (E.coli disk) phtlr3-gfp 62<br />

pUNO-hTLR4-GFP (E.coli disk) phtlr4-gfp 62<br />

pUNO-hTLR5-GFP (E.coli disk) phtlr5-gfp 62<br />

pUNO-hTLR6-GFP (E.coli disk) phtlr6-gfp 62<br />

pUNO-mcs (E.coli disk) puno-mcs 58<br />

(if purchased with another pUNO) puno-mcs 58<br />

Puromyc<strong>in</strong> (100 mg) ant-pr-1 17<br />

Puromyc<strong>in</strong> (500 mg) ant-pr-5 17<br />

pVAC1-mcs (20 μg) pvac1 131<br />

pVAC2-mcs (20 μg) pvac2 131<br />

pVITRO1-blasti-GFP/LacZ (20 μg) pvitro1-bgfplacz 34<br />

pVITRO1-blasti-mcs (20 μg) pvitro1-bmcs 34<br />

pVITRO1-hygro-GFP/LacZ (20 μg) pvitro1-gfplacz 34<br />

pVITRO1-hygro-mcs (20 μg) pvitro1-mcs 34<br />

pVITRO1-neo-GFP/LacZ (20 μg) pvitro1-ngfplacz 34<br />

pVITRO1-neo-mcs (20 μg) pvitro1-nmcs 34<br />

pVITRO2-blasti-GFP/LacZ (20 μg) pvitro2-bgfplacz 34<br />

pVITRO2-blasti-mcs (20 μg) pvitro2-bmcs 34<br />

pVITRO2-hygro-GFP/LacZ (20 μg) pvitro2-gfplacz 34<br />

pVITRO2-hygro-mcs (20 μg) pvitro2-mcs 34<br />

pVITRO2-neo-GFP/LacZ (20 μg) pvitro2-ngfplacz 34<br />

pVITRO2-neo-mcs (20 μg) pvitro2-nmcs 34<br />

pVIVO1-GFP/LacZ (20 μg) pvivo1-gfplacz 35<br />

pVIVO1-mcs (20 μg) pvivo1-mcs 35<br />

PRODUCT INFORMATION<br />

www.<strong>in</strong>vivogen.com<br />

PRODUCT (QUANTITY) CAT. CODE PAGE<br />

pVIVO2-GFP/LacZ (20 μg) pvivo2-gfplacz 35<br />

pVIVO2-mcs (20 μg) pvivo2-mcs 35<br />

pWHERE (20 μg) pwhere 31<br />

pWHERE Kit kwhere 31<br />

pZERO- (E.coli disk) pzero- 63<br />

pZERO--HA (E.coli disk) pzero--ha 63<br />

QUANTI-Blue (5 pouches) rep-qb1 14<br />

QUANTI-Blue (10 pouches) rep-qb2 14<br />

R848 (500 μg) tlrl-r848 78<br />

R848 (5 mg) tlrl-r848-5 78<br />

R848 VacciGrade (5 mg) vac-r848 128<br />

Ramos-Blue Cells (5-7 x 10 6 cells) rms-sp 69<br />

Ramos-Blue -defMyD Cells (5-7 x 10 6 cells) rms-dmyd 69<br />

Rapamyc<strong>in</strong> (5 mg) tlrl-rap 93<br />

RAW-Blue Cells (5-7 x 10 6 cells) raw-sp 70<br />

Ready-Made psiRNA plasmid (20 μg) psirna42- 148<br />

Ready-Made psiRNA kit ksirna42- 148<br />

RecFLA-ST (1 μg) tlrl-flic 78<br />

RecFLA-ST (10 μg) tlrl-flic-10 78<br />

Recomb<strong>in</strong>ant human TNF-a (20 μg) rhtnf-a 81<br />

Salmon sperm DNA (50 mg) tlrl-sdef 80<br />

SB203580 (5 mg) tlrl-sb20 93<br />

SB431542 (5 mg) <strong>in</strong>h-sb43 21<br />

SEAP Reporter Assay Kit rep-sap 13<br />

SP600125 (10 mg) tlrl-sp60 93<br />

SSL7 / Agarose (2 ml) gel-ssl-2 122<br />

SSL7 / Agarose (10 ml) gel-ssl-10 122<br />

ssPolyU / LyoVec (100 μg) tlrl-lpu 78<br />

ssPolyU Naked (10 mg) tlrl-sspu 78<br />

ssPolyU Naked (10 x 10 mg) tlrl-sspu-100 78<br />

ssRNA40 / LyoVec (100 μg) tlrl-lrna40 78<br />

ssRNA41 / LyoVec (100 μg) tlrl-lrna41 78<br />

ssRNA-DR / LyoVec (100 μg) tlrl-ssdr 78<br />

Tamoxifen (200 mg) tlrl-txf 102<br />

THP1-XBlue Cells (5-7 x 10 6 cells) thpx-sp 68<br />

THP1-XBlue -defMyD Cells (5-7 x 10 6 cells) thpx-dmyd 68<br />

THP1-XBlue -MD2-CD14 Cells (5-7 x 10 6 cells) thpx-mdcdsp 68<br />

TLR / NOD Ligand Screen<strong>in</strong>g tlrl-test 91<br />

TLR1-9 Agonist Kit-Human (10 ligands) tlrl-kit1hw 81<br />

TLR1-9 Agonist Kit-Mouse (9 ligands) tlrl-kit1mw 81<br />

TLR2 Agonist Kit (7 ligands) tlrl-kit2 81<br />

TLR3/7/8/9 Agonist Kit (14 ligands) tlrl-kit3hw2 81<br />

Trichostat<strong>in</strong> A (1 mg) met-tsa-1 153<br />

Trichostat<strong>in</strong> A (5 mg) met-tsa-5 153<br />

Tri-DAP (1 mg) tlrl-tdap 80<br />

Tri-Lys (1 mg) tlrl-tlys 80<br />

Triptolide (1 mg) ant-tpl 152<br />

U0126 (5 mg) tlrl-u0126 93<br />

Valproic Acid (5 g) <strong>in</strong>h-vpa 21<br />

Wortmann<strong>in</strong> (5 mg) tlrl-wtm 93<br />

Zeoc<strong>in</strong> (1 g) ant-zn-1 18<br />

Zeoc<strong>in</strong> (1 g powder) ant-zn-1p 18<br />

Zeoc<strong>in</strong> (5 g) ant-zn-5 18<br />

Zeoc<strong>in</strong> (5 g, bottle) ant-zn-5b 18<br />

Zeoc<strong>in</strong> (5 g powder) ant-zn-5p 18<br />

Z-VAD-FMK (1 mg) tlrl-vad 98<br />

Zymosan (100 mg) tlrl-zyn 77<br />

Zymosan Depleted (10 mg) tlrl-dzn 81<br />

171


A<br />

17-AAG<br />

17-AAGH2<br />

17-AEP-GA<br />

2-Am<strong>in</strong>opur<strong>in</strong>e<br />

Adju59<br />

Adjuvants<br />

AG490<br />

Alhydrogel<br />

Alkal<strong>in</strong>e Phosphatase Detection<br />

- HEK-Blue Detection<br />

- QUANTI-Blue <br />

- SEAP Reporter Assay Kit<br />

Alum crystals<br />

Angiogenic genes<br />

Angiostatic genes<br />

Antiapoptotic genes<br />

Antibodies<br />

- Anti-CD14 antibody<br />

- Anti-CD20 antibody<br />

- Anti-CD40L antibody<br />

- Anti-Dect<strong>in</strong>-1 antibody<br />

- Anti-Flagell<strong>in</strong> FliC antibody<br />

- Anti-HA Tag antibody<br />

- Anti-IFN-a antibody<br />

- Anti-IFN-g antibody<br />

- Anti-IL-1b antibody<br />

- Anti-IL-4 antibody<br />

- Anti-IL-6 antibody<br />

- Anti-IL-13 antibody<br />

- Anti-IL-18 antibody<br />

- Anti-TGF-b antibody<br />

- Anti-TLR1 antibody<br />

- Anti-TLR2 antibody<br />

- Anti-TLR3 antibody<br />

- Anti-TLR4 antibody<br />

- Anti-TLR5 antibody<br />

- Anti-TLR6 antibody<br />

- Anti-TLR9 antibody<br />

- Anti-TNF-a antibody<br />

Antibiotics, see Selective antibiotics<br />

Antimycoplasma agents<br />

Antimycotic agent<br />

Apoptotic genes<br />

ATP<br />

Autophagy<br />

5-aza-2’-deoxycytid<strong>in</strong>e<br />

5-Aza-cytid<strong>in</strong>e<br />

B<br />

B16-Blue IFNa/b Cells<br />

Bafilomyc<strong>in</strong> A1<br />

Bay11-7082<br />

Biot<strong>in</strong>-GA<br />

Bix-01294<br />

Blasticid<strong>in</strong> S<br />

BX795<br />

C<br />

C12-iE-DAP<br />

C3H/TLR4 mut MEFs<br />

172<br />

A<br />

B<br />

C<br />

158<br />

159<br />

158<br />

93, 157<br />

128<br />

126<br />

93, 157<br />

128<br />

13<br />

15<br />

14<br />

13<br />

98<br />

36<br />

36<br />

36<br />

72, 120, 124<br />

72<br />

120<br />

104, 124<br />

72<br />

73<br />

73<br />

104<br />

104<br />

104<br />

104<br />

104<br />

104<br />

104<br />

104<br />

72<br />

72<br />

72<br />

72<br />

72<br />

72<br />

72<br />

104, 120<br />

16<br />

10<br />

11<br />

36<br />

98<br />

101<br />

157<br />

21, 157<br />

106<br />

102<br />

93<br />

159<br />

21, 157<br />

17<br />

93, 154<br />

80<br />

71<br />

C3H/WT MEFs<br />

C57/WT MEFs<br />

CD genes<br />

Celastrol<br />

Cells<br />

- Cytok<strong>in</strong>e sensor cells<br />

- Dect<strong>in</strong> reporter cells<br />

- NOD reporter cells<br />

- RLR reporter cells<br />

- TLR reporter cells<br />

Cellular matrix genes<br />

Cellular promoters<br />

- Native promoters<br />

- Composite promoters<br />

- Custom-made promoters<br />

- PromTest <br />

ChemiComp E. coli<br />

Chemok<strong>in</strong>e genes<br />

Chemok<strong>in</strong>e receptor genes<br />

Chloroqu<strong>in</strong>e<br />

Chromat<strong>in</strong>-remodel<strong>in</strong>g genes<br />

CL075<br />

CL097<br />

CL264, CL264 Biot<strong>in</strong>/FITC/Rhodam<strong>in</strong>e<br />

CLI-095<br />

Connex<strong>in</strong> genes<br />

Co-stimulatory genes<br />

CPPD crystals<br />

Curdlan<br />

CpG oligonucleotides (ODNs<br />

CpG-free DNA<br />

CpG-free genes<br />

CpG-free plasmids<br />

- pCpGfree<br />

- pCpGfree-basic<br />

- pCpGfree-promoter<br />

- pCpGfree-siRNA<br />

- pCpGfree-siRNA-DUO<br />

- pCpGfree-vitro<br />

C-type Lect<strong>in</strong> Receptors (CLRs)<br />

- CLR genes<br />

- CLR shRNAs<br />

Custom services<br />

- Custom clon<strong>in</strong>g<br />

- Custom-made CpG-free genes<br />

- Custom-made psiRNA<br />

- Custom-made pDRIVE<br />

- Large scale plasmid DNA production<br />

- TLR ligand screen<strong>in</strong>g<br />

Cyclospor<strong>in</strong> A<br />

Cytok<strong>in</strong>e signal<strong>in</strong>g<br />

- Anti-cytok<strong>in</strong>e antibodies<br />

- Cytok<strong>in</strong>e and related genes<br />

- Cytok<strong>in</strong>e sensor cells<br />

Cytok<strong>in</strong>e suppressor genes<br />

Cytolytic genes<br />

D<br />

INDEX<br />

DNA production<br />

DNA vacc<strong>in</strong>ation<br />

17-DMAG<br />

17-DMAGH2<br />

17-DMAP-GA<br />

Dect<strong>in</strong>-1<br />

- Anti-Dect<strong>in</strong>-1 antibody<br />

- Dect<strong>in</strong>-1-express<strong>in</strong>g cell l<strong>in</strong>e<br />

- Dect<strong>in</strong>-1 gene<br />

D<br />

www.<strong>in</strong>vivogen.com<br />

71<br />

71<br />

37<br />

93, 155<br />

105<br />

70<br />

65,66<br />

71, 106<br />

65-71<br />

36<br />

39<br />

40-41<br />

40-41<br />

162<br />

38<br />

43<br />

36<br />

36<br />

93, 154<br />

36<br />

78<br />

78<br />

78<br />

93, 154<br />

36<br />

36<br />

98<br />

81<br />

78, 86<br />

133<br />

138<br />

134<br />

135<br />

135<br />

137<br />

137<br />

136<br />

55<br />

57<br />

92<br />

161-163<br />

162<br />

161<br />

162<br />

162<br />

163<br />

161<br />

93<br />

103<br />

104<br />

104<br />

105<br />

36<br />

36<br />

163<br />

130-131<br />

158<br />

159<br />

158<br />

55<br />

72<br />

70<br />

59<br />

- Dect<strong>in</strong>-1 shRNA<br />

Double stranded B DNA<br />

E<br />

E. coli competent cells<br />

- ChemiComp<br />

- LyoComp<br />

E. coli DNA endotox<strong>in</strong> free<br />

E. coli selection media<br />

E. coli ssDNA<br />

EndoFit - endotox<strong>in</strong> level<br />

Epigenetic <strong>in</strong>hibitors<br />

F<br />

5-Fluorocytos<strong>in</strong>e (5-FC)<br />

5-Fluorouracil (5-FU)<br />

Fast-Media ®<br />

Fc-fusions<br />

FITC TLR Agonist<br />

Flagell<strong>in</strong><br />

- FLA-BS (B. subtilis)<br />

- FLA-ST (S. typhimurium)<br />

- FLA-ST Ultrapure<br />

- Flagell<strong>in</strong> FliC VacciGrade <br />

- RecFLA-ST (recomb<strong>in</strong>ant)<br />

FSL-1<br />

Fung<strong>in</strong> <br />

G<br />

E<br />

G<br />

G418<br />

Ganciclovir (GCV)<br />

Gardiquimod<br />

Gardiquimod VacciGrade <br />

Gefit<strong>in</strong>ib<br />

Geldanamyc<strong>in</strong><br />

Geldanamyc<strong>in</strong> analogues<br />

- 17-AAG<br />

- 17-AAGH2<br />

- 17-DMAG<br />

- 17-DMAGH2<br />

- 17-DMAP-GA<br />

- 17-AEP-GA<br />

- 17-GMB-APA-GA<br />

- 17-NHS-ALA-GA<br />

- Biot<strong>in</strong>-GA<br />

Gene A-List<br />

Genes (pBLAST)<br />

- Angiogenic/angiostatic genes<br />

- Growth factor genes<br />

- Inhibitors of differentiation<br />

Genes (pORF)<br />

- Apoptotic and antiapoptotic genes<br />

- Autophagy genes<br />

- Cellular matrix genes<br />

- Chemok<strong>in</strong>e and chemok<strong>in</strong>e receptor genes<br />

- Chromat<strong>in</strong>-remodell<strong>in</strong>g genes<br />

- Connex<strong>in</strong> genes<br />

- Costimulatory / CD genes<br />

- Cytok<strong>in</strong>e genes<br />

- Cytok<strong>in</strong>e suppressor genes<br />

92<br />

98<br />

42<br />

43<br />

43<br />

78<br />

44-45<br />

78<br />

76<br />

157<br />

159<br />

159<br />

44-45<br />

28<br />

78-80<br />

84<br />

78, 84<br />

78, 84<br />

78, 84<br />

128<br />

78, 84<br />

77<br />

11<br />

17<br />

159<br />

78<br />

128<br />

93,154<br />

158<br />

158-159<br />

158<br />

159<br />

158<br />

159<br />

158<br />

158<br />

158<br />

158<br />

159<br />

36<br />

37<br />

36<br />

36<br />

36<br />

37<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36


- Cytolytic genes<br />

- Hematopoietic genes<br />

- Immune receptor genes<br />

- Interferon genes<br />

- Interferon signal<strong>in</strong>g genes<br />

- Reprogramm<strong>in</strong>g factors<br />

- Suicide genes<br />

- Tumor antigen genes<br />

- Tumor suppressor genes<br />

Genes (CpG-free)<br />

- Reporter genes<br />

- Suicide genes<br />

Genes (pUNO)<br />

- Toll-like receptor genes<br />

- NOD-like receptor genes<br />

- RIG-I-like receptor genes<br />

- Other pathogen sensor genes<br />

- Adaptor genes<br />

- Co-receptor genes<br />

- Signal<strong>in</strong>g effectors<br />

- Signal<strong>in</strong>g <strong>in</strong>hibitors<br />

Glybenclamide / Glyburide<br />

G-ODN<br />

Goat antibodies<br />

GT115 E. coli<br />

GT116 E. coli<br />

H<br />

H-89<br />

HEK-Blue cells<br />

- HEK-Blue CD40L Cells<br />

- HEK-Blue IFN-a/b Cells<br />

- HEK-Blue IL-1b Cells<br />

- HEK-Blue IL-4/IL-13 Cells<br />

- HEK-Blue IL-6 Cells<br />

- HEK-Blue IL-18/IL-1b Cells<br />

- HEK-Blue IL-33/IL-1b Cells<br />

- HEK-Blue MD2-CD14 Cells<br />

- HEK-Blue NOD Cells<br />

- HEK-Blue Null Cells<br />

- HEK-Blue TLR Cells<br />

- HEK-Blue TNF-a/IL-1b Cells<br />

- HEK-Blue TGF-b Cells<br />

HEK-Blue Detection<br />

HEK-Blue LPS Detection Kit<br />

HEK-Blue Selection<br />

Hematopoietic genes<br />

Hemozo<strong>in</strong><br />

Heat killed Acholeplasma laidlawii (HKAL)<br />

Heat killed Candida albicans (HKCA)<br />

Heat killed Escherichia coli (HKEB)<br />

Heat killed Helibacter pylori (HKHP)<br />

Heat killed Listeria monocytogenes (HKLM)<br />

Heat killed Legionella pneumophila (HKLP)<br />

Heat killed Lactobacillus rhamnos (HKLR)<br />

Heat killed Mycoplasma fermentans (HKMF)<br />

Heat killed Pseudomonas aerug<strong>in</strong>osa (HKPA)<br />

Heat killed Porphyromonas g<strong>in</strong>givalis (HKPG)<br />

Heat killed Staphylococcus aureus (HKSA)<br />

Heat killed Saccharomyces cerevisiae (HKSC)<br />

Heat killed Streptococcus pneumoniae (HKSP)<br />

Human IgA<br />

Human IgA kappa<br />

HygroGold <br />

Hygromyc<strong>in</strong> B<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

36<br />

138<br />

138<br />

138<br />

58<br />

58<br />

59<br />

59<br />

59<br />

59<br />

59<br />

59-60<br />

60<br />

98, 155<br />

80<br />

73, 123<br />

42<br />

42<br />

H 93, 157,<br />

66, 107-115<br />

115<br />

107<br />

100, 111<br />

108<br />

109<br />

112<br />

113<br />

66<br />

66<br />

66<br />

66<br />

110<br />

114<br />

15<br />

90<br />

8<br />

36<br />

98<br />

77<br />

81<br />

77<br />

77<br />

77<br />

77<br />

77<br />

77<br />

77<br />

77<br />

77<br />

81<br />

77<br />

123<br />

123<br />

18<br />

18<br />

I<br />

iE-DAP<br />

iE-Lys<br />

Incomplete Freund’s Adjuvant (IFA)<br />

IFNr qRT-Primers<br />

IgA2 isotype control<br />

Imiquimod<br />

Imiquimod VacciGrade <br />

Immune receptor genes<br />

Immunoglobul<strong>in</strong> A<br />

- IgA antibodies<br />

- IgA purification<br />

- IgA detection & quantification<br />

Inflammasomes<br />

Inhibitors<br />

Interferons (IFNs)<br />

- Anti-IFN antibodies<br />

- IFN genes<br />

- IFN reporter cells<br />

- Inducible promoter<br />

Interferon Response<br />

Interferon Regulatory Factors (IRFs)<br />

Interleuk<strong>in</strong> genes<br />

Internal Ribosome Entry Site (IRES)<br />

iPS (<strong>in</strong>duced pluripotent stem) cells<br />

J<br />

Jacal<strong>in</strong> / Agarose<br />

J cha<strong>in</strong> antiserum<br />

L<br />

INDEX<br />

I<br />

J<br />

L<br />

L18-MDP<br />

LacZ Cell Sta<strong>in</strong><strong>in</strong>g Kit<br />

LacZ Tissue Sta<strong>in</strong><strong>in</strong>g Kit<br />

LENTI-Smart , lentiviral vectors<br />

- LENTI-Smart (INT)<br />

- LENTI-Smart NIL<br />

- LENTI-Smart OSKM<br />

Leptomyc<strong>in</strong> B<br />

Lipoarab<strong>in</strong>omannan M. smegmatis (LAM-MS)<br />

Lipomannan M. smegmatis (LM-MS)<br />

Lipopolysaccharide (LPS)<br />

- Biot<strong>in</strong>-LPS<br />

- LPS EB (E. coli 0111:B4), standard<br />

- LPS EB (E. coli 0111:B4), ultrapure<br />

- LPS EK (E. coli K12), standard<br />

- LPS EK (E. coli K12), ultrapure<br />

- LPS-PG (P. g<strong>in</strong>givalis), ultrapure<br />

- LPS-RS (R. sphaeroides), ultrapure<br />

- LPS SM (S. m<strong>in</strong>nesota), ultrapure<br />

Lipopolysaccharide (LPS) Detection Kit<br />

Lipoteichoic acid (LTA)<br />

- LTA-BS (B. subtilis)<br />

- LTA-SA (S. aureus)<br />

- LTA-SA purified<br />

Loxorib<strong>in</strong>e<br />

Luciferase CpGfree gene<br />

LY294002<br />

LyoComp E. coli<br />

LyoVec <br />

www.<strong>in</strong>vivogen.com<br />

80<br />

80<br />

128<br />

147<br />

124<br />

78<br />

128<br />

36<br />

121<br />

124<br />

122<br />

123<br />

96<br />

152<br />

104<br />

104<br />

106-107<br />

74<br />

147<br />

130<br />

104<br />

32, 34<br />

20<br />

122<br />

123<br />

80<br />

12<br />

12<br />

23<br />

24<br />

24<br />

25<br />

93<br />

77<br />

77<br />

84<br />

77<br />

77<br />

77<br />

77<br />

77<br />

77<br />

78<br />

77<br />

90<br />

82<br />

77<br />

77<br />

77<br />

78<br />

138<br />

93, 156<br />

43<br />

19<br />

M<br />

MAb-mDect<strong>in</strong>-1<br />

MAb-TLR<br />

MDP - Muramyldipeptide<br />

- L18-MDP<br />

- N-Glycolyl-MDP<br />

- MDP control<br />

- MDP biot<strong>in</strong>, MDP FITC, MDP rhodam<strong>in</strong>e<br />

MEFs (mur<strong>in</strong>e embryonic fibroblast)<br />

- C3H MEFs<br />

- C57 MEFs<br />

3-Methyladen<strong>in</strong>e<br />

Monoclonal antibodies<br />

MPLA - Monophosphoryl lipid A<br />

MPLAs - Synthetic monophosphoryl lipid A<br />

MPLA VacciGrade <br />

MSU (monosodium urate) crystals<br />

M-TriDAP<br />

Murabutide<br />

Murabutide control<br />

Mycoplasma<br />

- Detection<br />

- Removal agents<br />

N<br />

NALP3/NLRP3 <strong>in</strong>flammasome <strong>in</strong>ducers<br />

NF-kB<br />

- Activators<br />

- Reporter plasmids<br />

- NF-kB reporter cells<br />

N-Glycolyl-MDP<br />

N-Glycolyl-MDP VacciGrade <br />

Nigeric<strong>in</strong><br />

NOD-like receptors (NLRs)<br />

- NLR genes<br />

- NOD agonist kit<br />

- NOD reporter cells<br />

- NOD ligands<br />

- NOD ligand screen<strong>in</strong>g<br />

Normoc<strong>in</strong> <br />

O<br />

M<br />

N<br />

O<br />

Oligonucleotides (ODNs) - TLR9 ligands<br />

- ODN1585, ODN1585 control<br />

- ODN1585 FITC<br />

- ODN1668, ODN1668 control<br />

- ODN1668 ,FITC<br />

- ODN1826, ODN1826 control<br />

- ODN1826 Biot<strong>in</strong>/FITC<br />

- ODN2006, ODN2006 control<br />

- ODN2006 Biot<strong>in</strong>/FITC<br />

- ODN2006-G5<br />

- ODN2007, ODN2007 control,<br />

- ODN2088, ODN2088 control<br />

- ODN2216, ODN2216 control<br />

- ODN2216 Biot<strong>in</strong>/FITC<br />

- ODN2336, ODN2336 control<br />

- ODN2336 FITC<br />

- ODN2395, ODN2395 control<br />

- ODN2395 FITC<br />

72<br />

73<br />

80<br />

80<br />

80<br />

80<br />

80<br />

71<br />

71<br />

71<br />

102<br />

72, 124<br />

77<br />

77<br />

128<br />

98<br />

80<br />

80<br />

80<br />

7<br />

8<br />

10<br />

98<br />

80<br />

74<br />

108<br />

80<br />

128<br />

98<br />

52<br />

57<br />

81<br />

65, 66<br />

80<br />

91<br />

11<br />

86<br />

78<br />

78<br />

78<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

80<br />

79<br />

79<br />

79<br />

79<br />

79<br />

79<br />

173


- ODN 4084-F<br />

- ODN INH-1<br />

- ODN INH-47<br />

- ODN M362, ODNM362 control<br />

- ODN M362 FITC<br />

- ODN TTAGGG, ODN TTAGGG control<br />

Open Read<strong>in</strong>g Frames<br />

ORN02, ORN06<br />

Ovalbum<strong>in</strong><br />

OVA peptides<br />

OxPAPC<br />

P<br />

174<br />

P<br />

Pam2CSK4, Pam2CSK4 Biot<strong>in</strong>/Rhodam<strong>in</strong>e<br />

Pam3CSK4, Pam3CSK4 Biot<strong>in</strong>/Rhodam<strong>in</strong>e<br />

Pathogen-associated molecular patterns (PAMPs)<br />

pCpG Giant<br />

PD0325901<br />

PD98059<br />

Pep<strong>in</strong>h-MYD, Pep<strong>in</strong>h-TRIF, Pep<strong>in</strong>h-Control<br />

Peptide M / Agarose<br />

Peptidoglycan (PGN)<br />

- PGN-BS (B. subtilis)<br />

- PGN-EB (E. coli 0111:B4)<br />

- PGN-ECndi (E. coli K12) <strong>in</strong>soluble, ultrapure<br />

- PGN-ECndss (E. coli K12) soluble, ultrapure<br />

- PGN-EK (E. coli K12)<br />

- PGN SA (S. aureus)<br />

- PGN-SAndi (S. aureus) <strong>in</strong>soluble, ultrapure<br />

Phleomyc<strong>in</strong><br />

Plasmids<br />

- pBLAST<br />

- pBOOST2 / pBOOST3<br />

- pBROAD<br />

- pCpGfree<br />

- pCpGfree-basic<br />

- pCpGfree-promoter<br />

- pCpGfree-siRNA<br />

- pCpGfree-siRNADUO<br />

- pCpGfree-vitro<br />

- pCpGrich<br />

- pDeNy<br />

- pDRIVE<br />

- pDRIVE-Custom<br />

- pDUO<br />

- pFUSE-CHIg<br />

- pFUSE2-CLIg<br />

- pFUSE-Fc<br />

- pINFUSE<br />

- pMONO<br />

- pNiFty<br />

- pORF<br />

- pSELECT<br />

- pSELECT-Tag<br />

- psiRNA-Custom<br />

- psiRNA-DUO<br />

- psiRNA-h7SK<br />

- psiTEST<br />

- pUNO / pUNO1<br />

- pUNO1-11RHA<br />

- pUNO-HA<br />

- pUNO-TLR-GFP<br />

- pVAC<br />

- pVITRO<br />

- pVIVO<br />

- pWHERE<br />

- pZERO-TLR<br />

- pZERO-TLR-HA<br />

80<br />

80<br />

80<br />

79<br />

79<br />

80<br />

36<br />

80<br />

129<br />

129<br />

93, 154<br />

77<br />

77<br />

76<br />

80<br />

21, 156<br />

93, 156<br />

93, 154<br />

122<br />

83<br />

77<br />

77<br />

80<br />

80<br />

77<br />

77<br />

80<br />

18<br />

37<br />

130<br />

31<br />

134<br />

135<br />

135<br />

137<br />

137<br />

136<br />

134<br />

63<br />

39<br />

162<br />

61<br />

26<br />

26<br />

27<br />

27<br />

32<br />

74<br />

37<br />

32<br />

33<br />

150<br />

145<br />

144<br />

146<br />

58<br />

21<br />

62<br />

62<br />

131<br />

34<br />

35<br />

31<br />

63<br />

63<br />

- Ready-made psiRNA<br />

Plasmoc<strong>in</strong> <br />

Plasmocure <br />

PlasmoTest <br />

PlasmoTest Reagent Kit<br />

PMA - Phorbol myristate acetate<br />

Poly(A:U)<br />

Poly(dA:dT)<br />

Poly(dG:dC),<br />

Poly(dT)<br />

Poly(I:C) HMW, poly(I:C) LMW<br />

Poly(I:C) Fluoresce<strong>in</strong>/Rhodam<strong>in</strong>e<br />

Poly(I:C)/LyoVec Complexes<br />

Poly(I:C) VacciGrade <br />

Polyclonal antibodies<br />

Polymyx<strong>in</strong> B<br />

Primers<br />

- IFNr qRT-Primers<br />

- Sequenc<strong>in</strong>g primers for psiRNA<br />

Primoc<strong>in</strong> <br />

Prodrugs<br />

Prom A-List <br />

Promoters<br />

- Ubiquitous promoters<br />

- Tissue-specific promoters<br />

- Tumor-specific promoters<br />

PromTest <br />

Prote<strong>in</strong> L / Agarose<br />

psiRNA system<br />

psiTEST system<br />

Puromyc<strong>in</strong><br />

Q<br />

QUANTI-Blue <br />

R<br />

R848<br />

R848 VacciGrade <br />

Ramos-Blue Cells<br />

Ramos-Blue -defMyD Cells<br />

Rapamyc<strong>in</strong><br />

RAW-Blue Cells<br />

Ready-made psiRNA <br />

Recomb<strong>in</strong>ant flagell<strong>in</strong><br />

Recomb<strong>in</strong>ant human TNF-a<br />

Reporter genes<br />

RLRs (RIG-I-like receptors)<br />

- Genes<br />

- Ligands<br />

- Reporter cells<br />

- shRNAs<br />

RNA <strong>in</strong>terference<br />

Rodent Transgenesis<br />

S<br />

INDEX<br />

Salmon sperm DNA<br />

SB203850<br />

SB431542<br />

Selective antibiotics<br />

- Blasticid<strong>in</strong> S<br />

- G418<br />

Q<br />

R<br />

S<br />

www.<strong>in</strong>vivogen.com<br />

148<br />

10<br />

10<br />

8<br />

9<br />

81<br />

77<br />

80<br />

80<br />

78<br />

77<br />

77<br />

80<br />

128<br />

72<br />

93, 154<br />

147<br />

143<br />

11<br />

159<br />

39<br />

40<br />

40<br />

40<br />

41<br />

38<br />

122<br />

142<br />

146<br />

17<br />

14<br />

78<br />

128<br />

69<br />

69<br />

93, 102, 154<br />

70<br />

148<br />

78<br />

81<br />

12-13, 138<br />

54<br />

57<br />

80<br />

71, 106<br />

148<br />

141<br />

31<br />

80<br />

93, 156<br />

21, 155<br />

16<br />

17<br />

17<br />

- Hygromyc<strong>in</strong> B / HygroGold <br />

- Phleomyc<strong>in</strong><br />

- Puromyc<strong>in</strong><br />

- Zeoc<strong>in</strong> <br />

Short hairp<strong>in</strong> RNA (shRNA)<br />

- Custom-made<br />

- Design<br />

- Evaluation<br />

- Plasmids<br />

- Ready-made<br />

- Tools<br />

siRNA Wizard<br />

Small <strong>in</strong>terfer<strong>in</strong>g RNA (siRNA)<br />

SP600125<br />

ssDNA (E. coli)<br />

SSL7 / Agarose<br />

ssPolyU<br />

ssRNA40, ssRNA41<br />

ssRNA-DR<br />

Sta<strong>in</strong><strong>in</strong>g kits<br />

Synthetic genes<br />

T<br />

Tamoxifen<br />

Terpenoids<br />

THP1-XBlue Cells<br />

THP1-XBlue -MD2-CD14 Cells<br />

THP1-XBlue -defMyD Cells<br />

Toll-like Receptors (TLRs)<br />

- Agonist kits<br />

- Antibodies<br />

- Genes<br />

- Inhibitors of TLR signal<strong>in</strong>g<br />

- Ligands<br />

- Reporter cell l<strong>in</strong>es<br />

- Reporter plasmids<br />

- shRNAs<br />

TLR-GFP fusions<br />

TLR ligand screen<strong>in</strong>g<br />

TLR-related genes<br />

Tumor necrosis factor alpha (TNF-a)<br />

- Anti-TNF-a antibody<br />

- TNF-a-related shRNAs<br />

- TNF-a reporter cells<br />

- Recomb<strong>in</strong>ant TNF-a<br />

Transfection reagents<br />

Transgenesis<br />

Trichostat<strong>in</strong> A<br />

Tri-DAP<br />

Tri-Lys<br />

Triptolide<br />

Tumor antigen genes<br />

Tumor suppressor genes<br />

U<br />

U0126<br />

V<br />

Vacc<strong>in</strong>ation<br />

Vacc<strong>in</strong>e adjuvants<br />

Valproic acid<br />

T<br />

18<br />

18<br />

17<br />

18<br />

141<br />

150<br />

142<br />

146<br />

137, 144-145<br />

148<br />

143<br />

142<br />

141<br />

93, 156<br />

78<br />

122<br />

78<br />

78<br />

78<br />

12<br />

138<br />

102<br />

155-156<br />

68<br />

68<br />

68<br />

49<br />

81<br />

72-73<br />

36<br />

93<br />

77-80<br />

65-71<br />

74<br />

148<br />

62<br />

91<br />

59<br />

104<br />

149<br />

110<br />

81<br />

19<br />

31<br />

157<br />

80<br />

80<br />

156<br />

36<br />

36<br />

U 93, 156<br />

V 126, 130<br />

126-129<br />

21, 157


Vectors, Clon<strong>in</strong>g/Expression<br />

W<br />

Wortmann<strong>in</strong><br />

Z<br />

Zeoc<strong>in</strong> <br />

Z-VAD-FMK<br />

Zymosan<br />

Zymosan depleted<br />

27-35<br />

W 93, 156<br />

W<br />

18<br />

98, 154<br />

77, 81<br />

81<br />

www.<strong>in</strong>vivogen.com<br />

175


ARGENTINA<br />

Genbiotech S.R.L.<br />

Tel: +54 11.4541.5544<br />

Fax: +54 11.4541.5544<br />

<strong>in</strong>fo@genbiotech.com.ar<br />

176<br />

INTERNATIONAL DISTRIBUTORS<br />

AUSTRALIA<br />

Integrated Sciences Pty. Ltd.<br />

Toll-free: 1800.252.204<br />

Tel: +61 2.9417.7866<br />

Fax: +61 2.9417.5066<br />

tech@<strong>in</strong>tegratedsci.com.au<br />

www.<strong>in</strong>tegratedsci.com.au<br />

AUSTRIA<br />

Eubio<br />

Tel: +43 1.895.0145<br />

Fax: +43 1.895.0145/14<br />

koeck@eubio.at<br />

www.eubio.at<br />

BELGIUM<br />

Cayla SAS<br />

Tel: +33 5.62.71.69.39<br />

Fax: +33 5.62.71.69.30<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.fr<br />

BRAZIL<br />

Biotika<br />

Tel: +55 11.3876.1004<br />

Fax: +55 11.3826.6996<br />

commercial@biotika.com.br<br />

www.biotika.com.br<br />

CANADA<br />

Cedarlane Laboratories Limited<br />

Toll-free: 800.268.5058<br />

Tel: (905) 878.8891<br />

Fax: (905) 878.7800<br />

<strong>in</strong>fo@cedarlanelabs.com<br />

www.cedarlanelabs.com<br />

CANADA<br />

Medicorp. Inc<br />

Toll free: 877.733.1900<br />

Tel: (514) 733.1900<br />

Fax: (514) 733.1212<br />

mktg@medicorp.com<br />

www.medicorp.com<br />

CHINA<br />

Ch<strong>in</strong>aGen, Inc<br />

Tel: +86 755.2601.4623<br />

Fax: +86 755.2601.4527<br />

ch<strong>in</strong>agen@ch<strong>in</strong>agen.com.cn<br />

Genetimes Technology Inc.<br />

Toll free: 800.820.5565<br />

Tel: +86 21.3367.6611<br />

Fax: +86 21.3367.6155<br />

order@genetimes.com.cn<br />

www.genetimes.com.cn<br />

M&C Gene Technology<br />

Tel: +86 010.8205.7786<br />

Fax: +86 010.8205.9875<br />

order@macgene.com<br />

NeoBioscience Technology<br />

Company<br />

Tel: +86 755.2675.5677<br />

Fax: +86 755.2675.5877<br />

<strong>in</strong>fo@neobioscience.com<br />

M<strong>in</strong>g Rui Biotech<br />

Tel: +86 021.6418.1584<br />

Fax: +86 021.5116.3850<br />

market<strong>in</strong>g@mrbiotech.com.cn<br />

T<strong>in</strong> Hang Tech<br />

Tel: +86 852.28172121<br />

Fax: +86 852.25807763<br />

www.t<strong>in</strong>hangtech.com<br />

DENMARK<br />

Sigma-Aldrich Denmark<br />

Tel: +45 43.565.900<br />

Fax: +45 43.565.905<br />

DENorder@eurnotes.sial.com<br />

www.<strong>in</strong>vivogen.com<br />

FINLAND<br />

YA-Kemia Oy<br />

Tel: +358 9.350.9250<br />

Fax: +358 9.350.92555<br />

FINorder@europe.sial.com<br />

FRANCE<br />

Cayla SAS<br />

Tel: +33 5.62.71.69.39<br />

Fax: +33 5.62.71.69.30<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.fr<br />

www.<strong>in</strong>vivogen.fr<br />

GERMANY<br />

Cayla SAS<br />

Tel: +33 5.62.71.69.39<br />

Fax: +33 5.62.71.69.30<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.fr<br />

INDIA<br />

Genetix Biotech Asia Pvt. Ltd.<br />

Tel: +91.11.5142.7031<br />

Fax: +91.11.2541.9631<br />

genetix@giasdl01.vsnl.net.<strong>in</strong><br />

ISRAEL<br />

Tamar Laboratories<br />

Supplies Ltd.<br />

Tel: +972 2.533.6070<br />

Fax: +972 2.579.9777<br />

mail@tamar.co.il<br />

www.tamar.co.il<br />

ITALY<br />

Labogen S.r.l.<br />

Tel: +39 02.9390.7515<br />

Fax: +39 02.9390.9417<br />

<strong>in</strong>fo@<strong>labogen</strong>-<strong>srl</strong>.it<br />

www.<strong>labogen</strong>-<strong>srl</strong>.it


JAPAN<br />

Nacalai Tesque, Inc.<br />

Tel: +81 75.211.2703<br />

Fax: +81 75.211.2673<br />

<strong>in</strong>fo-tech@nacalai.co.jp<br />

www.nacalai.co.jp<br />

KOREA<br />

Daeil Bio Co., Ltd<br />

Tel: +82 2.577.0123<br />

Fax: +82 2.578.1425<br />

<strong>in</strong>fo@daeilbio.co.kr<br />

www.daeilbio.com<br />

MALAYSIA<br />

Ace Technoscience Sdn Bhd<br />

Tel: +60 3.6273.1031<br />

Fax: +60 3.6274.5842<br />

acets@pd.jar<strong>in</strong>g.my<br />

MEXICO<br />

ConsuLAB-BQ SOS<br />

Tel: +52-665-521-2151<br />

Fax: +52-665-521-2151<br />

<strong>in</strong>fo@consulab-bqsos.com<br />

INTERNATIONAL DISTRIBUTORS<br />

THE NETHERLANDS<br />

Cayla SAS<br />

Tel: +33 5.62.71.69.39<br />

Fax: +33 5.62.71.69.30<br />

<strong>in</strong>fo@<strong>in</strong>vivogen.fr<br />

NORWAY<br />

Sigma-Aldrich Norway AS<br />

Tel: +47 23.17.60.60<br />

Fax: +47 23.17.60.10<br />

nororder@sial.com<br />

SINGAPORE<br />

TWC/BIO Pte Ltd<br />

Tel: +65 873.5997<br />

Fax: +65 873.5996<br />

twcbio@s<strong>in</strong>gnet.com.sg<br />

SPAIN<br />

Nucliber<br />

Tel: +34 915.062.940<br />

Fax: +34 915.394.330<br />

<strong>in</strong>fo@nucliber.com<br />

www.nucliber.com<br />

IBIAN Technologies<br />

Tel: +34 976 901 645<br />

Fax: 976 141 693<br />

<strong>in</strong>fo@ibiantech.com<br />

SWEDEN<br />

Labkemi<br />

Tel: +46 8.742.42.00<br />

Fax: +46 8.742.42.43<br />

sweorder@eurnotes.sial.com<br />

SWITZERLAND<br />

LabForce AG<br />

Tel: +41 61.795.96.20<br />

Fax: +41 61.795.96.21<br />

<strong>in</strong>fo@labforce.ch<br />

www.labforce.ch<br />

TAIWAN<br />

Hong J<strong>in</strong>g Co. Ltd.<br />

Tel: +886 2.3233.8585<br />

Fax: +886 2.3233.8686<br />

hongj<strong>in</strong>g@ms10.h<strong>in</strong>et.net<br />

Watson Biotechnology co., Ltd<br />

Tel: +886-2-89881951<br />

Fax: +886-2-89881953<br />

tensci.gene@msa.h<strong>in</strong>et.net<br />

TURKEY<br />

Tokra Medikal<br />

Tel: 0090 312 3956009<br />

Fax: 0090 312 3953961<br />

tokra@tokra.com.tr<br />

UNITED KINGDOM<br />

Autogen Bioclear UK Ltd.<br />

Tel: +44 1249.819008<br />

Freephone: 0.800.6526774<br />

Fax: +44 1249.817266<br />

<strong>in</strong>fo@autogenbioclear.com<br />

www.autogenbioclear.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!