10.04.2013 Views

fundamentals of centrifugal pumps - Master Pumps and Power

fundamentals of centrifugal pumps - Master Pumps and Power

fundamentals of centrifugal pumps - Master Pumps and Power

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PRODUCT TRAINING<br />

FUNDAMENTALS OF<br />

CENTRIFUGAL PUMPS<br />

1


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

A <strong>centrifugal</strong> pump is a mechanical device that<br />

converts energy to hydraulic work<br />

Energy is supplied by a driver such as an electric<br />

motor, turbine, or engine<br />

Hydraulic work is the movement <strong>of</strong> a liquid mass<br />

through a distance<br />

This presentation is limited to <strong>centrifugal</strong> pump<br />

types only<br />

Sundyne <strong>pumps</strong> are a special design that will not be<br />

covered in this presentation<br />

2


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Just Say NO!!!!!<br />

3


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

The work takes place at an impeller which<br />

accelerates the liquid by whirling it through<br />

the impeller thus adding <strong>centrifugal</strong> force<br />

<strong>and</strong> hence acceleration<br />

4


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

When an object is<br />

spun around in a<br />

circle it is accelerated<br />

outward by<br />

<strong>centrifugal</strong> force<br />

5


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

When liquid is spun<br />

around in a circle, it<br />

accelerates outward<br />

from the center <strong>of</strong> the<br />

circle due to<br />

<strong>centrifugal</strong> force<br />

6


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

An impeller has vanes<br />

which are blades that<br />

push the liquid through<br />

the impeller. The center<br />

<strong>of</strong> the impeller where the<br />

liquid enters the impeller<br />

is called the eye<br />

Vanes<br />

Eye<br />

7


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

To obtain useful<br />

work, the impeller is<br />

contained in a casing<br />

which directs the<br />

accelerated fluid<br />

along a desired path<br />

Discharge<br />

8


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Pump Impeller <strong>and</strong> Shaft<br />

9


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Pump Impeller <strong>and</strong> Shaft<br />

with Pressure Casing<br />

10


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Pump Impeller<br />

<strong>and</strong> Shaft with<br />

Pressure Casing<br />

<strong>and</strong> Cover<br />

11


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong><br />

Process<br />

Fluid<br />

Adjustment<br />

Packing<br />

Stuffingbox<br />

Cover<br />

12


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Impeller Design<br />

The impeller is the most important part <strong>of</strong> the<br />

pump since it is where the work is taking<br />

place. Furthermore, the impeller plays an<br />

important role in the design <strong>of</strong> other pump<br />

components. It has a direct effect on the seal<br />

cavity pressure for example<br />

13


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Many different types <strong>of</strong><br />

impeller styles are used.<br />

Most, but not all, have vanes<br />

that curve away from the<br />

flow path so that the liquid<br />

is in contact with the<br />

impeller longer. These are<br />

referred to as “reverse reverse<br />

curve” curve vane impellers<br />

Vanes<br />

Eye<br />

14


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Impeller vanes may be<br />

enclosed by “shrouds shrouds”. .<br />

In general impellers with<br />

shrouds are slightly less<br />

efficient due to the drag<br />

<strong>of</strong> the liquid on the<br />

shroud<br />

15


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Therefore many<br />

impellers have no<br />

shrouds. They are called<br />

“open open” impellers. Note<br />

that the bottom impeller<br />

is “partially partially shrouded” shrouded<br />

due to a shroud area<br />

around the impeller eye<br />

16


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Some impeller designs<br />

may also have a shroud<br />

only on one side <strong>of</strong> the<br />

impeller. They are also<br />

said to be partially<br />

shrouded or semi-open semi open<br />

or semi-closed semi closed<br />

17


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Shrouds are generally used on larger impellers to<br />

help support the vanes <strong>and</strong> maintain the<br />

impeller shape under extreme pressure <strong>and</strong><br />

temperature conditions. They also have the<br />

disadvantage <strong>of</strong> limiting the particle size that can<br />

pass through the impeller<br />

18


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

There are two different impeller<br />

types used in the process industry.<br />

They differ by the type <strong>of</strong> flow<br />

through the impeller. The most<br />

common type is a “radial radial flow” flow<br />

impeller where the liquid makes a<br />

90 o turn as it passes through the<br />

impeller<br />

19


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

In a turbine type impeller, the liquid<br />

also makes a turn as it passes through<br />

the pump, but less than 90 o . These are<br />

most <strong>of</strong>ten found in “diffuser diffuser” type<br />

<strong>pumps</strong> which relates to the casing<br />

design <strong>and</strong> will be discussed later.<br />

Since the liquid makes less <strong>of</strong> a turn, a<br />

turbine style impeller may be slightly<br />

more efficient than a similar “radial radial<br />

flow” flow impeller<br />

20


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

The impeller has a direct relationship to<br />

pump performance. The design <strong>of</strong> the<br />

impeller is the single most important factor<br />

in determining the flow rate <strong>and</strong> liquid<br />

pressure that a pump can generate<br />

21


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

The <strong>Master</strong> <strong>Pumps</strong> & <strong>Power</strong> catalog is an<br />

excellent reference resource for most<br />

pump application problems. It should be a<br />

part <strong>of</strong> every engineers library. It is free to<br />

all <strong>of</strong> our customers<br />

22


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Flow through an impeller is determined<br />

primarily by three factors<br />

Vane width<br />

Number <strong>of</strong> vanes<br />

Impeller speed<br />

23


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

A wide vane impeller<br />

will move more liquid<br />

per unit time than a<br />

narrow vane impeller.<br />

The flow is directly<br />

proportional to the<br />

vane width<br />

24


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Flow (Q) through an<br />

impeller is also<br />

directly related to the<br />

impeller speed. The<br />

more times an<br />

impeller rotates per<br />

unit time the more<br />

fluid is will move<br />

25


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Finally the flow<br />

through a pump is<br />

somewhat related to<br />

the number <strong>of</strong> vanes<br />

although it is not<br />

directly proportional.<br />

More vanes will move<br />

more fluid<br />

26


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

An impeller creates<br />

“head head” by<br />

accelerating the fluid<br />

to a given velocity.<br />

As it spins, the fluid is<br />

accelerated outward<br />

by <strong>centrifugal</strong> force<br />

27


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

The fluid exits the<br />

impeller at a given<br />

velocity. Therefore it<br />

will rise to a given height<br />

in a column based on the<br />

exit speed regardless <strong>of</strong><br />

the weight <strong>of</strong> the fluid<br />

28


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

Therefore a <strong>centrifugal</strong> pump is said to be a<br />

“constant constant head” head device. At a given speed it will<br />

accelerate a liquid to a given velocity regardless<br />

<strong>of</strong> the weight <strong>of</strong> the liquid.<br />

A heavier liquid would require more<br />

horsepower <strong>and</strong> the discharge pressure would<br />

be higher, but it would rise in a column no<br />

higher than a light liquid<br />

29


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

This phenomenon is based on simple laws <strong>of</strong><br />

physics<br />

(V 2 = 2 AS) where V is the velocity, A is the<br />

acceleration <strong>of</strong> gravity, <strong>and</strong> S is the height<br />

Note that this formula makes no<br />

consideration <strong>of</strong> weight<br />

30


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

If fluids are pushed up a<br />

column to the same<br />

height, the pressure at<br />

the bottom <strong>of</strong> the<br />

column would be<br />

different for fluids <strong>of</strong><br />

different weight.<br />

The formulae for this<br />

relationship are as follows<br />

hd. hd.<br />

ft. =<br />

(psi psi X 2.31) / sp. gr.<br />

psi =<br />

(hd hd ft. / 2.31) x sp. gr.<br />

31


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impellers<br />

<strong>Pumps</strong> <strong>Pumps</strong>-Impellers Impellers<br />

To illustrate, a pressure gauge<br />

at the bottom <strong>of</strong> a 231 ft. high<br />

column filled with water<br />

would read 100 psi. psi.<br />

If the<br />

column was filled with butane<br />

having a specific gravity <strong>of</strong><br />

only .5, the gauge would read<br />

50 psi<br />

231 ft.<br />

32


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

In order for the pump to move fluid, the system<br />

must be able to push fluid into the pump as fast<br />

as the pump can push it out.<br />

Therefore there must be a certain minimum<br />

required suction pressure for each pump based on<br />

the pump flow<br />

This pressure is expressed in head feet <strong>and</strong> is<br />

referred to as NPSH -net net positive suction head<br />

33


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSH is expressed in two ways<br />

NPSHA is the net positive suction head available<br />

from the system<br />

NPSHR is the net positive suction head required by<br />

the pump at a particular flow<br />

NPSHA must always be greater than NPSHR or<br />

damage to the pump will occur due to cavitation<br />

34


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Cavitation is the flashing <strong>of</strong> the liquid at the<br />

pump impeller eye caused by the pump<br />

lowering the pressure in the eye area as it<br />

accelerates fluid across the impeller<br />

The damage occurs when the flashed gas is<br />

compressed back to a liquid as it gains<br />

pressure while traveling through the impeller<br />

35


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Cavitation causes pump problems in two areas<br />

Severe cavitation can erode the pump<br />

impeller resulting in decrease performance<br />

<strong>and</strong> vibration due to imbalance<br />

Cavitation normally results in substantially<br />

higher vibration in the entire pump<br />

36


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSH is the total suction head in feet<br />

<strong>of</strong> liquid (absolute at the pump<br />

centerline or impeller eye) less the<br />

absolute vapor pressure (in feet ) <strong>of</strong><br />

the liquid being pumped<br />

37


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSHA is the NPSH available at the pump suction nozzle <strong>and</strong><br />

depends on the suction system design. It must always be equal<br />

to or greater than the NPSHR<br />

NPSHR is the NPSH required by the pump for stable operation.<br />

It is determined by the pump manufacturer <strong>and</strong> is dependent on<br />

many factors including the type <strong>of</strong> impeller inlet, impeller design, design,<br />

pump flow, rotational speed, nature <strong>of</strong> the liquid, etc. It is<br />

usually plotted on the characteristic pump performance curved<br />

supplied by the pump manufacturer<br />

38


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

NPSHA is a difficult calculation. It will require<br />

the help <strong>of</strong> a process engineer from the plant<br />

NPSHA can be determined by direct field<br />

measurement if the vapor pressure is known. A<br />

method for this calculation is presented later<br />

39


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

*Assume vapor pressure<br />

<strong>of</strong> water @ 80 F = .5psia<br />

or 1.2 feet = hvpa *Assume atmospheric<br />

pressure @ sea level<br />

or 34.0 feet = ha Height = hst *Assume pipe losses = 15 feet<br />

3.5 feet = hfs *NPSHA = ha - hvpa - hst - hfs *NPSHA = 34 - 1.2 - 15 - 3.5 =<br />

14.3 feet<br />

NPSHA Example for Suction Lift<br />

Atmospheric<br />

Pressure = h a<br />

40


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Atmospheric Pressure = h a<br />

Height = h st<br />

15 feet<br />

*Assume vapor pressure<br />

<strong>of</strong> water @ 80 F = .5psia<br />

or 1.2 feet = h vpa<br />

*Assume atmospheric<br />

pressure @ sea level<br />

or 34.0 feet = h a<br />

*Assume pipe losses =<br />

3.5 feet = h fs<br />

*NPSHA = h a - h vpa + h st - h fs<br />

*NPSHA = 34 - 1.2 + 15 - 3.5 =<br />

44.3 feet<br />

NPSHA Example<br />

for Flooded Suction<br />

41


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-NPSH<br />

<strong>Pumps</strong> <strong>Pumps</strong>-NPSH NPSH<br />

Simple Method to Determine NPSHA<br />

NPSHA is the total suction head in feet <strong>of</strong> liquid (absolute at<br />

the pump centerline or impeller eye) less the absolute vapor<br />

pressure (in feet) <strong>of</strong> the liquid being pumped<br />

Measure the suction pressure <strong>and</strong> convert to feet <strong>of</strong> head<br />

(must be absolute not atmospheric)<br />

Determine the vapor pressure <strong>of</strong> the liquid <strong>and</strong> convert to<br />

feet <strong>of</strong> head<br />

Subtract the vapor pressure from the suction pressure<br />

42


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

A pump manufacturer will supply a curve for<br />

every pump purchased which graphically<br />

represents the expected pump performance<br />

For most applications, a copy <strong>of</strong> the pump curve<br />

is required information for properly selecting a<br />

sealing system <strong>and</strong> flush plan<br />

43


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Head<br />

BHP<br />

Flow, GPM<br />

NPSHR<br />

Efficiency<br />

44


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Contents<br />

What pump curves represent<br />

How to read pump curves<br />

45


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Head<br />

BHP<br />

A Pump Curve<br />

Flow, GPM<br />

NPSHR<br />

Efficiency<br />

46


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Summary <strong>of</strong> Pump Curve Info<br />

Graphical representation <strong>of</strong> performance<br />

Head Head<br />

BHP BHP<br />

Efficiency Efficiency<br />

NPSHR NPSHR<br />

47


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Summary <strong>of</strong> Pump Curve Info<br />

Graphical representation <strong>of</strong> performance<br />

Contains more than performance data<br />

speed<br />

stages<br />

may have info about liquid<br />

impeller, case patterns<br />

wear ring clearances<br />

48


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Actual Sample Curve<br />

Pricebook Curve<br />

49


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Actual Sample Curve -Job Curve<br />

50


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

P1<br />

How Pump Curves are Made<br />

Pump<br />

P2<br />

Flow Meter<br />

51


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Test Data<br />

Flow P2 - P1 BHP<br />

0 311 20<br />

400 291 117<br />

800 234 156<br />

960 195 163<br />

Pressure in PSIG<br />

52


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Convert Pressure to Feet <strong>of</strong> Head<br />

Head = 2.31 (P -P 2 1) ) / S.G.<br />

Head is in Feet!<br />

53


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Compute Efficiency<br />

Efficiency = Theoretical Horsepower<br />

divided by Actual Horsepower<br />

Convert to Percent<br />

54


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Test Data<br />

Flow Head BHP Efficiency<br />

0 718 20 ***<br />

400 672 117 58%<br />

800 540 156 70%<br />

960 450 163 67%<br />

Now in feet<br />

55


TDH Head Portion <strong>of</strong> Pump Curve<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

56


BHP<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

BHP Portion <strong>of</strong> Pump Curve<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

57


Eff<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Efficiency Portion <strong>of</strong> Pump Curve<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

58


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSH<br />

Net Positive Suction Head<br />

NPSHR: Required<br />

NPSHA: Available<br />

59


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSH<br />

Net Positive Suction Head<br />

NPSHR: Required<br />

NPSHA: Available<br />

NPSH = Actual Pressure - Vapor<br />

Pressure, then convert to feet <strong>of</strong> head<br />

60


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSH Required<br />

Determined during pump test<br />

Throttling Throttling suction to pump<br />

Hot Hot water<br />

Based on 3% head loss-reduce loss reduce NPSHA<br />

until 3% loss in produced head is observed<br />

Based on water<br />

61


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Test Data<br />

Flow Full Head 3% Loss<br />

0 718 - 22 = 696<br />

400 672 - 20 = 652<br />

800 540 - 16 = 524<br />

960 450 - 14 = 436<br />

62


NPSHR<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

NPSHR Portion <strong>of</strong> Pump Curve<br />

0 200 400 600 800 1000 1200<br />

Flow, GPM<br />

63


NPSHR<br />

NPSH<br />

TDH<br />

TDH<br />

EFF<br />

Eff<br />

BHP<br />

BHP<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

FLOW IN GPM<br />

Flow, GPM<br />

64


Head<br />

BHP<br />

Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

A Pump Curve<br />

Operating Point<br />

BEP<br />

Flow, GPM<br />

NPSHR<br />

Efficiency<br />

65


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

The pump manufacturer will normally show the<br />

point on the curve where the pump is expected<br />

to operate<br />

BEP is the best efficiency point taken at the<br />

highest point <strong>of</strong> the efficiency curve<br />

At BEP the pump normally operates the most stably<br />

Operation below BEP can result in mechanical <strong>and</strong><br />

hydraulic problems<br />

66


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Performance <strong>Pumps</strong> <strong>Pumps</strong>-Performance Performance Curves<br />

Summary <strong>of</strong> Pump Curve Information<br />

Graphical representation <strong>of</strong><br />

performance<br />

Contains more than performance data<br />

67


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Balance Holes<br />

68


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Effect <strong>of</strong> back wear rings<br />

<strong>and</strong> balance holes<br />

Pressure at O.D. <strong>of</strong><br />

impeller breaks down<br />

across back wear ring<br />

Balance holes bleed<br />

pressure back to suction<br />

Seal chamber at same<br />

pressure as balance holes<br />

69


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Impeller with PumpoutVanes<br />

70


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Effect <strong>of</strong> pump out<br />

vanes<br />

Vane O.D. is the same as<br />

the impeller O.D. <strong>and</strong> is<br />

turning at the same speed<br />

Therefore vane puts up<br />

same head as impeller<br />

Therefore back <strong>of</strong><br />

impeller at shaft is at same<br />

pressure as front<br />

71


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Impeller with no back wear<br />

rings or pumpout vanes<br />

72


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Impeller <strong>Pumps</strong> <strong>Pumps</strong>-Impeller Impeller Effect<br />

Effect <strong>of</strong> no back wear<br />

rings or pump out vanes<br />

Pressure at impeller<br />

O.D. is present<br />

behind entire impeller<br />

Seal chamber at<br />

discharge pressure<br />

73


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

If a higher pressure<br />

differential is required<br />

across the pump the<br />

designer has several<br />

options. Two would<br />

be to:<br />

Increase the pump<br />

speed-the speed the flow would<br />

also increase<br />

Increase the impeller<br />

O.D.<br />

74


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

In most cases neither is practical<br />

There is a practical limit to the impeller diameter.<br />

Beyond that limit it would be difficult to control<br />

the tolerances to ensure proper fit <strong>and</strong> balance.<br />

The hardware would be prohibitively expensive<br />

There is also a practical limit to the shaft speed.<br />

Not only would balance be critical, but the<br />

bearing <strong>and</strong> lubrication system would be complex<br />

<strong>and</strong> expensive<br />

75


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

The third option is simpler. To achieve high<br />

differential head without the expense more than one<br />

stage or impeller are used. Multistage <strong>pumps</strong> come<br />

in many varieties<br />

Multistage volute<br />

Split case<br />

Double case<br />

Multistage diffuser<br />

Vertical<br />

Horizontal<br />

76


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

To underst<strong>and</strong> multistage pump design, it is first<br />

essential to know that there are in general two<br />

different ways that the pump case directs the<br />

flow from the impeller to the discharge nozzle<br />

Volute pattern<br />

Diffuser pattern<br />

77


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Volute Pump<br />

One or two passages in<br />

the pump case guide the<br />

fluid from the impeller to<br />

the pump discharge or the<br />

next stage<br />

Single volute <strong>pumps</strong> can<br />

result in excessive<br />

hydraulic load on the<br />

impeller <strong>and</strong> shaft<br />

78


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Single Volute Double Suction Pump<br />

79


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Diffuser Pump<br />

A multipassage “diffuser diffuser”<br />

or “bowl bowl assembly” assembly<br />

surrounds the entire<br />

impeller O.D. <strong>and</strong> guides<br />

the fluid to the discharge<br />

nozzle or next stage<br />

through multiple paths<br />

80


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Diffuser <strong>Pumps</strong><br />

Note that the Byron Jackson design incorporates a<br />

“mixed mixed flow” flow impeller<br />

The fluid does not make a full 90 o turn in the impeller.<br />

Since it is not a radial flow impeller, it is termed a mixed<br />

flow impeller<br />

Not all turbine <strong>pumps</strong> are mixed flow. Some are<br />

furnished with radial flow impellers such as the<br />

horizontal diffuser pump shown previously<br />

81


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Volute Split Case<br />

82


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Most multistage volute type <strong>pumps</strong> have front <strong>and</strong> back<br />

wear rings.<br />

Therefore the seal cavity pressures would be as<br />

follows:<br />

One end-suction end suction<br />

The other end-discharge end discharge pressure <strong>of</strong> one <strong>of</strong> the stages unless<br />

some measures are taken to reduce the pressure<br />

Most multistage volute <strong>pumps</strong> will have several taps<br />

on the pump case where various pressures are available<br />

for the flush source<br />

83


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Volute Double Case<br />

84


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Most multistage double case volute type <strong>pumps</strong> have<br />

front <strong>and</strong> back wear rings.<br />

Therefore the seal cavity pressures would be as<br />

follows:<br />

One end-suction end suction<br />

The other end-discharge end discharge pressure <strong>of</strong> one <strong>of</strong> the stages<br />

unless some measures are taken to reduce the pressure<br />

Only pump discharge pressure is available for a flush<br />

source<br />

85


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Many <strong>of</strong> these <strong>pumps</strong> as well as other multistage<br />

designs will have some provision for reducing the<br />

pressure in the seal chamber at the high pressure end<br />

Balance line<br />

Close clearance bushing<br />

86


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

A balance line will typically bleed the high pressure seal<br />

chamber to about suction plus 70% <strong>of</strong> one stage<br />

differential<br />

Depends on the bushing wear<br />

Also depends on the allowable flow in the<br />

balance line which represents pump<br />

inefficiency<br />

87


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Don’t Don t assume<br />

Check to see if the<br />

balance line exists<br />

Measure the seal<br />

cavity pressure<br />

The following slide<br />

illustrates a balance<br />

line-they line they are not<br />

always so visible<br />

Confucius say - “When you<br />

assume you make a donkey<br />

out <strong>of</strong> “u” <strong>and</strong> “me”<br />

88


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Volute<br />

with Balance Line<br />

89


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Diffuser Horizontal<br />

90


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Multistage Diffuser Horizontal<br />

Since all the impellers face <strong>and</strong> pump the same<br />

direction the seal cavity pressures are as follows<br />

One end-suction end suction<br />

The other end-full end full discharge unless some measure<br />

is taken<br />

91


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Multistage Diffuser Horizontal<br />

Measure taken to reduce seal cavity pressure on high<br />

pressure end<br />

Balance drum (piston)<br />

Balance disc<br />

Both are similar to balance lines <strong>and</strong> close clearance<br />

bushings<br />

92


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Multistage Diffuser Horizontal<br />

Balance drum (piston)<br />

Balance disc<br />

Both have additional function in that they are<br />

part <strong>of</strong> the mechanism to reduce the load on the<br />

pump thrust bearing<br />

Both are very complex <strong>and</strong> extremely precise<br />

mechanical devices<br />

93


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Diffuser Vertical<br />

Byron Jackson<br />

Sumpmaster<br />

94


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Multistage Diffuser Vertical<br />

Byron Jackson VLT<br />

(Very Large Turbine)<br />

Process Pump with Case<br />

95


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Vertical Turbine <strong>Pumps</strong><br />

Note that the sumpmaster is shown without a<br />

mechanical seal. This is typical for low pressures<br />

but many <strong>of</strong> these pump styles do have<br />

mechanical seals<br />

Since all the impellers are pumping in the same<br />

direction <strong>and</strong> the seal sits in the discharge head <strong>of</strong><br />

the pump, the seal cavity is at discharge pressure<br />

unless measures are taken<br />

96


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Vertical Turbine <strong>Pumps</strong><br />

Measures taken depend on the pump seal cavity<br />

construction<br />

Internal seal head-the head the seal actually sits in the pump<br />

discharge flow-it flow it can only be at pump discharge pressure<br />

External seal or packing head-a head a close clearance bushing<br />

<strong>and</strong> balance line arrangement are used to reduce the<br />

pressure to suction plus 70% <strong>of</strong> one stage. Again you<br />

must measure to be sure<br />

97


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Vertical Turbine <strong>Pumps</strong><br />

Measures taken depend on the pump seal cavity<br />

construction<br />

Internal packing head-the head the seal chamber is a<br />

separate piece but sits in the discharge flow-<br />

usually some provision is made to reduce the<br />

pressure in the packing or seal area<br />

98


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Internal<br />

Seal Head<br />

99


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

External<br />

Seal Head<br />

100


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Internal<br />

Packing<br />

Head<br />

101


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

There are three typical styles <strong>of</strong> pump<br />

construction<br />

Overhung: an example follows<br />

Double-ended: Double ended: several examples have been given<br />

similar to the previous slides <strong>and</strong> the slide<br />

following the overhung pump<br />

Vertical: many variations exist<br />

Turbine style-an style an example is the previous slide<br />

Process with <strong>and</strong> without a bearing bracket-examples<br />

bracket examples<br />

will follow<br />

102


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Typical end Suction<br />

(Overhung) Process Pump<br />

103


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Many <strong>pumps</strong> use a double suction impeller<br />

design which is a single impeller with two inlets<br />

High flow<br />

Low NPSHA<br />

Since a double suction impeller must be radial<br />

flow, they are all in volute type cases almost<br />

without exception<br />

104


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Double Suction <strong>Pumps</strong><br />

In a single stage double suction pump the seal or<br />

seals sit in the impeller eye<br />

The only pressure they can see is suction<br />

There are limited choices to dealing with<br />

inadequate vapor suppression margin for these<br />

<strong>pumps</strong><br />

Close clearance throat bushing with plan 11 or 32<br />

flush<br />

Cooling<br />

Cooling<br />

105


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Double Suction Radially Split<br />

106


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Double Suction Axially Split<br />

107


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Double Suction Overhung<br />

108


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Vertical Process <strong>Pumps</strong><br />

In addition to those previously shown, there are a<br />

class <strong>of</strong> <strong>pumps</strong> that are process <strong>pumps</strong> mounted in a<br />

vertical configuration. They are almost always volute<br />

single stage <strong>pumps</strong>. There are two styles<br />

Rigid coupling-no coupling no bearing bracket<br />

Flexible coupling with bearing bracket<br />

109


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Vertical Inline<br />

Process Pump with<br />

Rigid coupling-<br />

No bearing bracket<br />

110


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Pump <strong>Pumps</strong> <strong>Pumps</strong>-Pump Pump Case Design<br />

Vertical Inline<br />

Process Pump with<br />

flexible coupling<br />

<strong>and</strong> bearing bracket<br />

111


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Seal <strong>Pumps</strong> <strong>Pumps</strong>-Seal Seal Cavity Pressure<br />

Since these <strong>pumps</strong> are process style <strong>pumps</strong>, the<br />

seal cavity pressure can be at anything between<br />

<strong>and</strong> including suction <strong>and</strong> discharge<br />

The normal rules apply. It is necessary to know<br />

the impeller <strong>and</strong> case construction to estimate<br />

the seal cavity pressure<br />

112


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Some pump designs have inherent mechanical<br />

problems because <strong>of</strong> their design <strong>and</strong> resultant<br />

impeller <strong>and</strong> shaft loads<br />

Vertical inline rigid coupling no bearing<br />

bracket<br />

Overhung double suction or two stage<br />

Single volute<br />

113


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Some pump designs have inherent mechanical<br />

problems because <strong>of</strong> their design <strong>and</strong> resultant<br />

impeller <strong>and</strong> shaft loads<br />

Shaft deflection <strong>and</strong> vibration are common to<br />

these designs<br />

Something must be done to address the<br />

mechanical situation<br />

114


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Cure or eliminate problem pump<br />

constructions<br />

L3 /D 4 < or = 40<br />

Vertical inline with rigid coupling<br />

Two stage or double suction overhung<br />

Internal sealed (gl<strong>and</strong>less) pump designs<br />

Something we haven’t haven t discussed<br />

No seal chamber or stuffingbox-similar stuffingbox similar to internal seal<br />

arrangementfor vertical turbine <strong>pumps</strong><br />

115


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

L3 /D 4 < or = 40<br />

L = distance in inches from center <strong>of</strong> radial<br />

bearing to center <strong>of</strong> impeller<br />

D = diameter <strong>of</strong> shaft in inches under the seal<br />

sleeve<br />

116


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

L3 /D 4 < or = 40 Solutions<br />

Replace bearing bracket <strong>and</strong> stuffingbox with<br />

7th edition upgrade<br />

Modify existing pump with heavier shaft <strong>and</strong><br />

more robust bearings<br />

Close clearance non galling wear rings <strong>and</strong><br />

throat bushing<br />

117


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Vertical inline with rigid coupling<br />

Fine for low horsepower (


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Vertical inline with rigid coupling (continued)<br />

Close clearance non galling wear rings <strong>and</strong> throat<br />

bushing<br />

Add external bearing assembly on top <strong>of</strong> seal flange<br />

May require more first obstruction-add obstruction add motor<br />

spacer ring <strong>and</strong> lengthen pump shaft<br />

May be oil mist or grease lubricated<br />

119


Fundamentals <strong>of</strong> Centrifugal<br />

<strong>Pumps</strong>-Problem <strong>Pumps</strong> <strong>Pumps</strong>-Problem Problem Constructions<br />

Two stage or double suction overhung, old API <strong>pumps</strong> with<br />

large calculated shaft deflection, single volute <strong>pumps</strong><br />

Same problem as L 3 /D 4 < or = 40<br />

Replace bearing bracket <strong>and</strong> stuffingbox with 7th<br />

edition upgrade<br />

Modify existing pump with heavier shaft <strong>and</strong> more<br />

robust bearings<br />

Close clearance non galling wear rings <strong>and</strong> throat<br />

bushing<br />

120

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!