10.04.2013 Views

Root Cause Analysis on a Multistage Centrifugal Pump ... - TurboLab

Root Cause Analysis on a Multistage Centrifugal Pump ... - TurboLab

Root Cause Analysis on a Multistage Centrifugal Pump ... - TurboLab

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

241<br />

<str<strong>on</strong>g>Root</str<strong>on</strong>g> <str<strong>on</strong>g>Cause</str<strong>on</strong>g> <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <strong>on</strong> a<br />

<strong>Multistage</strong> <strong>Centrifugal</strong> <strong>Pump</strong> in a<br />

Power Plant due to Shaft Crack<br />

Based <strong>on</strong> ODS and FEA<br />

27 th Internati<strong>on</strong>al <strong>Pump</strong> Users Symposium<br />

George R. Brown C<strong>on</strong>venti<strong>on</strong> Center<br />

Houst<strong>on</strong>, TX<br />

September 12 - 15, 2011<br />

By:<br />

Maki Onari<br />

Mechanical Soluti<strong>on</strong>s, Inc.<br />

Whippany, NJ 07981 USA<br />

Tel: (973) 326-9920<br />

www.mechsol.com


242<br />

Introducti<strong>on</strong><br />

• Two multistage barrel type pumps for each 1200 MW Unit<br />

were installed in 1986 in a large power plant.<br />

• The 11 stage centrifugal pumps were designated as<br />

<strong>Pump</strong>(s) 1A/B and <strong>Pump</strong>(s) 2A/B. All impellers were<br />

designed with 6 vanes and 8 diffuser vanes.<br />

• The pumps are driven by 600 HP four-pole inducti<strong>on</strong><br />

motors (1,770 rpm or 29.5 Hz) through a gear increaser<br />

(output speed of 4,860 rpm or 81 Hz).<br />

• Rated capacity: 350 GPM and 2,516 ft of TDH<br />

• Normal capacity: 150 GPM (43% BEP).


243<br />

Introducti<strong>on</strong><br />

Barrel Type - 11 stage <strong>Pump</strong><br />

Outline Drawing


244<br />

Introducti<strong>on</strong><br />

Barrel Type - 11 stage <strong>Pump</strong>


245<br />

Background History<br />

• Three pump shaft failures (cracks) have been detected<br />

since <strong>Pump</strong> 1B installati<strong>on</strong> (MTBF=7.7 years).<br />

• In 1989, the first failure took place, but the failure<br />

analysis was not properly documented and the failed<br />

shaft was not saved.<br />

• In 1999, a crack was found at the rear end of the 9 th<br />

stage hub.<br />

• In December 2007, the last failure was discovered<br />

under the 11 th stage impeller hub with evidence of<br />

fretting. A circumferential crack was found at the<br />

keyway with 132 degrees arc. The vibrati<strong>on</strong> level of the<br />

pump had been always c<strong>on</strong>sidered low and adequate.


246<br />

Background History<br />

2007 Failure after<br />

8 years of operati<strong>on</strong>.<br />

Crack detected<br />

under 11 th stage<br />

impeller hub.


247<br />

Background History<br />

2007 Failure after 8 years<br />

of operati<strong>on</strong>.<br />

Crack detected under 11 th<br />

stage impeller hub with the<br />

origin away from the<br />

keyway.


248<br />

Specialized Testing<br />

Experimental Modal <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> (EMA) test to<br />

determine the natural frequencies of the impeller,<br />

pump structure, and the rotor system with their<br />

mode shapes.<br />

M<strong>on</strong>itoring test during transient and steady<br />

operati<strong>on</strong> to m<strong>on</strong>itor the vibrati<strong>on</strong> amplitude and<br />

natural frequencies.<br />

Dynamic pressure transducer data from sucti<strong>on</strong>,<br />

discharge, and balance line.<br />

Operating Deflecti<strong>on</strong> Shape (ODS) testing during<br />

steady operati<strong>on</strong>.


249<br />

11 th Stage Impeller<br />

EMA Testing


250<br />

Vibrati<strong>on</strong> EMA Test<br />

11 th Stage Impeller Modal Impact Test


251<br />

Impeller Model<br />

Vibrati<strong>on</strong> EMA Test<br />

11 th Stage Impeller Modal Impact Test<br />

FRF Wet


252<br />

Vibrati<strong>on</strong> EMA Test<br />

11 th Stage Impeller Modal Impact Test<br />

2 Nodal Diameter / 0 Nodal Circle at 2620 Hz


253<br />

Frequency (Hz)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Vibrati<strong>on</strong> EMA Test<br />

11 th Stage Impeller Modal Impact Test (Wet)<br />

Interference Diagram<br />

11th Stage of 2 1/2 RLIJ Pacific <strong>Pump</strong> (Wet Impeller)<br />

6 Rotating Vanes and 8 Diffuser Vanes<br />

0<br />

0 1 2 3 4 5 6<br />

Nodal Diameter<br />

Interference Diagram<br />

1x VPF<br />

1x Diff VPF<br />

2x Diff VPF<br />

1x V_Dir_Exc<br />

1x V_Dif_Exc<br />

2x V_Dir_Exc<br />

0NC


254<br />

Specialized Field Testing


255<br />

Vibrati<strong>on</strong> M<strong>on</strong>itoring<br />

<strong>Pump</strong> 1B Typical Spectrum OBB in the<br />

Vertical Directi<strong>on</strong><br />

[g]<br />

Autospectrum(Signal 5) - Mark 1 (Magnitude)<br />

Working : ODS2 : Input : FFT Analyzer<br />

1<br />

300m<br />

0.15 in/s peak @ 1x rpm<br />

0.16 in/s peak @ 4x motor rpm<br />

100m<br />

30m<br />

10m<br />

3m<br />

1m<br />

300u<br />

100u<br />

0 100 200 300 400<br />

[Hz]<br />

500 600 700 800<br />

<strong>Pump</strong> Operating at 145 GPM<br />

<strong>Pump</strong> 2B Typical Spectrum OBB in the<br />

Vertical Directi<strong>on</strong><br />

[g]<br />

Autospectrum(Signal 1) - Mark 1 (Magnitude)<br />

Working : 2B Linear Average : Input : FFT Analyzer<br />

1<br />

300m<br />

100m<br />

30m<br />

10m<br />

3m<br />

1m<br />

300u<br />

100u<br />

0.06 in/s peak @ 1x rpm<br />

0.06 in/s peak @ 4x motor rpm<br />

0 100 200 300 400<br />

[Hz]<br />

500 600 700 800<br />

<strong>Pump</strong> Operating at 160 GPM


256<br />

[mil]<br />

Autospectrum(Signal 12) - Mark 1 (Magnitude)<br />

Working : 1B Linear Ave at 100 GPM : Input : FFT Analyzer<br />

1<br />

100m<br />

10m<br />

1m<br />

100u<br />

10u<br />

0.46 mils pk-pk @ ~30 Hz<br />

Vibrati<strong>on</strong> M<strong>on</strong>itoring<br />

<strong>Pump</strong> 1B Axial Proximity Probe FFT<br />

at OBB<br />

0 100 200 300 400<br />

[Hz]<br />

500 600 700 800<br />

<strong>Pump</strong> 1B Axial Proximity Probe Time<br />

Signature at OBB<br />

[mil]<br />

Time(Signal 12) - Mark 1<br />

Working : 1B Linear Ave at 100 GPM : Input : FFT Analyzer<br />

600m<br />

400m<br />

200m<br />

0<br />

- 200m<br />

- 400m<br />

- 600m<br />

29.5 28.3 Hz Hz<br />

0 100m 200m 300m 400m 500m<br />

[s]<br />

600m 700m 800m 900m


257<br />

[mil]<br />

[mil] Autospectrum(Signal 12) - Mark 1 (Magnitude)<br />

Working : 2B Linear Average : Input : FFT Analyzer<br />

300m<br />

100m<br />

30m<br />

10m<br />

3m<br />

1m<br />

300u<br />

100u<br />

0.4 mils pk-pk @ 81 Hz<br />

Vibrati<strong>on</strong> M<strong>on</strong>itoring<br />

<strong>Pump</strong> 2B Axial Proximity Probe FFT<br />

at OBB<br />

0.04 mils pk-pk @ ~30 Hz<br />

0 100 200 300 400<br />

[Hz]<br />

[Hz]<br />

500 600 700 800<br />

<strong>Pump</strong> 2B Axial Proximity Probe<br />

Time Signature at OBB<br />

[mil]<br />

[mil] Time(Signal 12) - Input<br />

Working : Input : Input : FFT Analyzer<br />

600m<br />

400m<br />

200m<br />

0<br />

- 200m<br />

- 400m<br />

- 600m<br />

81 Hz<br />

0 40m 80m 120m 160m 200m 240m 280m 320m 360m 400m 440m 480m<br />

[s]<br />

[s]


258<br />

<strong>Pump</strong> Rotor Modal Impact<br />

Testing During Operati<strong>on</strong>


259<br />

Experimental Modal <str<strong>on</strong>g>Analysis</str<strong>on</strong>g><br />

“Bump” Test<br />

<strong>Pump</strong> 1B Axial Proximity Probe FRF<br />

[mil/lbf]<br />

[mil/lbf] Frequency Resp<strong>on</strong>se(Signal 12,Signal 17) - Mark 1 (Magnitude)<br />

Working : Axial Hits Channel 12 Axial Prox Probe 100 GPM : Input : Enhanced<br />

3m<br />

1m<br />

300u<br />

100u<br />

30u<br />

10u<br />

OBB natural<br />

frequency<br />

29.5 Hz (1x motor speed)<br />

121.2 Hz<br />

0 100 200 300 400 500 600 700 800<br />

[Hz]<br />

[Hz]<br />

[mil/lbf] [mil/lbf]<br />

Frequency Resp<strong>on</strong>se(Signal 12,Signal 17) - Input (Magnitude)<br />

Working : Input : Input : Enhanced<br />

10m<br />

300u<br />

100u<br />

<strong>Pump</strong> operating at 160 GPM<br />

3m<br />

1m<br />

30u<br />

10u<br />

<strong>Pump</strong> 2B Axial Proximity Probe FRF<br />

OBB natural<br />

frequency frequency<br />

81 Hz (1x pump speed)<br />

118.2 Hz (4x motor speed)<br />

0 100 200 300 400<br />

[Hz]<br />

[Hz]<br />

500 600 700 800


260<br />

Operating Deflecti<strong>on</strong> Shape<br />

(ODS)


261<br />

Operating Deflecti<strong>on</strong> Shape<br />

• Natural excitati<strong>on</strong><br />

signature of the pump<br />

train structure.<br />

• Over 700 vibrati<strong>on</strong><br />

measurements.<br />

• Data base of amplitude vs.<br />

frequency and phase<br />

angle.<br />

• 3-D CAD model assigning<br />

moti<strong>on</strong> to each individual<br />

vibrati<strong>on</strong> data point.<br />

• Create animati<strong>on</strong>s of the<br />

pump


262<br />

Operating Deflecti<strong>on</strong> Shape<br />

<strong>Pump</strong> 1B ODS @ 29.9 Hz


263<br />

Operating Deflecti<strong>on</strong> Shape<br />

<strong>Pump</strong> 1B ODS @ 81 Hz


264<br />

Operating Deflecti<strong>on</strong> Shape<br />

<strong>Pump</strong> 2B ODS @ 29.9 Hz


265<br />

Operating Deflecti<strong>on</strong> Shape<br />

<strong>Pump</strong> 2B ODS @ 81 Hz


266<br />

Finite Element <str<strong>on</strong>g>Analysis</str<strong>on</strong>g><br />

(FEA)


267<br />

Axi-symmetric Model<br />

and FEA Breakup


268<br />

[mil]<br />

Time(Signal 12) - Mark 1<br />

Working : 1B Linear Ave at 100 GPM : Input : FFT Analyzer<br />

600m<br />

400m<br />

200m<br />

0<br />

- 200m<br />

- 400m<br />

- 600m<br />

Axi-symmetric Model<br />

Impeller Loading<br />

Axial displacement in displacement (mils pk-pk) and accelerati<strong>on</strong> (g’s)<br />

28.3<br />

29.5<br />

Hz<br />

Hz<br />

0 100m 200m 300m 400m 500m<br />

[s]<br />

600m 700m 800m 900m


269<br />

Axi-symmetric Model<br />

Impeller Loading<br />

Load Step 1:<br />

• Initiate and complete the interference fit between the<br />

impeller and the shaft (2 mils diametral interference)<br />

• C<strong>on</strong>strain the outboard end of shaft at the thrust bearing<br />

Load Step 2:<br />

• Ramp up an axially applied pressure of 75 psi load to the<br />

inboard end over 0.0001sec (30 g’s peak accelerati<strong>on</strong>).<br />

Load Step 3:<br />

• Ramp pressure down to a 0 psi over an additi<strong>on</strong>al<br />

0.0001sec.<br />

Load Step 4:<br />

• Run for an additi<strong>on</strong>al 0.001 sec to m<strong>on</strong>itor the traveling of<br />

the acoustic waves and the impeller interface c<strong>on</strong>diti<strong>on</strong>s.


270<br />

Axi-symmetric Model<br />

FEA Results<br />

• Transient dynamic analysis revealed that acoustic wave<br />

propagati<strong>on</strong> past the impellers can result in micromoti<strong>on</strong><br />

at the press fit interfaces.<br />

• An idealized axi-symmetric model of the pump shaft and<br />

the last stage impeller predicted an impeller to shaft<br />

sliding c<strong>on</strong>diti<strong>on</strong>.<br />

• This sliding c<strong>on</strong>diti<strong>on</strong> led to fretting damage and the<br />

crack initiati<strong>on</strong>.


271<br />

Axi-symmetric Model<br />

FEA Results


272<br />

FEA-Based Fracture<br />

Mechanics Approach<br />

• Assume that relative sliding velocity between the<br />

impeller and shaft is equal to the peak axial shaft velocity<br />

measured <strong>on</strong> the end of shaft near the thrust bearing.<br />

• Assume that fretting c<strong>on</strong>diti<strong>on</strong> and asperities <strong>on</strong> shaft<br />

surface cause the impeller to axially lock-up against the<br />

shaft.<br />

• Model the lock-up behavior as an axial impact between<br />

the shaft and impeller in the regi<strong>on</strong> of the assumed 5 mil<br />

crack.<br />

• Using transient dynamic FEA predict the stress<br />

distributi<strong>on</strong> near the crack and calculate the stress<br />

intensity factor.<br />

• Check whether crack propagati<strong>on</strong> can be expected.


273<br />

FEA-Based Fracture<br />

Mechanics Approach<br />

Impact Velocity 31 in/s pk<br />

(15 g’s pk at 29.9Hz)<br />

0.005 inch crack<br />

explicitly modeled


274<br />

FEA-Based Fracture<br />

Mechanics Approach<br />

Double Peak due to<br />

Impeller Flexing and<br />

Spring-back<br />

v<strong>on</strong> Mises<br />

Stress (psi) at<br />

<str<strong>on</strong>g>Root</str<strong>on</strong>g><br />

of Crack<br />

During Impact<br />

Event


275<br />

FEA-Based Fracture<br />

Mechanics Approach<br />

v<strong>on</strong> Mises Stress Distributi<strong>on</strong> (psi) Macro View


276<br />

FEA-Based Fracture<br />

Mechanics Approach<br />

v<strong>on</strong> Mises Stress Distributi<strong>on</strong> (psi) In Vicinity of Crack<br />

Impact Locati<strong>on</strong><br />

Crack <str<strong>on</strong>g>Root</str<strong>on</strong>g><br />

K = ∆ σ π Z<br />

a ( 1 . 1)<br />

ANSYS Calculated Stress Intensity Factor ∆KI = 16.3 ksi√in<br />


277<br />

FEA-Based Fracture<br />

Mechanics Approach<br />

ANSYS Ki Output<br />

Calculate mixed-mode stress intensity factors<br />

• Assume plane strain c<strong>on</strong>diti<strong>on</strong>s.<br />

• Assume a full-crack model (use 5 nodes)<br />

• Extrapolati<strong>on</strong> path is defined by nodes: 2044520,<br />

2044672, 2044683, 2047304, 2047315<br />

• With node 2044520 as the crack-tip node.<br />

• Use material properties for material number 1 with<br />

Ex = 0.29e+08 µxy = 0.30 at temp = 0.00.<br />

Ki = 16315. , Kii = 7826.4 , kiii = 0.0000


278<br />

Implemented Fixes<br />

• A new gear set was installed in the last outage in Fall 2009.<br />

• Both gear couplings were replaced.<br />

• New pump element installed.<br />

• M<strong>on</strong>itoring of pump shaft axial vibrati<strong>on</strong> and gear drive<br />

vibrati<strong>on</strong> adjusted to address imposed duty <strong>on</strong> pump shaft<br />

due to less than smooth mesh of gears.<br />

• Gear set removed mapped.


279<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

• The root cause of the repetitive cracking of the pump<br />

shaft is due to a fatigue process while the pump shaft is<br />

oscillating axially driven by the gear tooth circumferential<br />

run-out.<br />

• The axial mismatch of the helical gear set (apex) was the<br />

cause of the axial displacement of the pump shaft at the<br />

driver’s operating speed, generating an impulsive<br />

displacement load due to a geometric abnormality of the<br />

gear teeth of the input shaft gear (axial run-out).<br />

• The ODS test performed <strong>on</strong> <strong>Pump</strong> 1B at the running<br />

speed of the motor (30 Hz) indicated high axial moti<strong>on</strong> of<br />

the pump shaft driving the OBB with a vertical rocking<br />

moti<strong>on</strong>. The gearbox moved axially with some phase lag<br />

with respect to the pump shaft and the motor casing.


280<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

• The vibrati<strong>on</strong> test performed <strong>on</strong> <strong>Pump</strong> 2B did not indicate<br />

any abnormal axial moti<strong>on</strong> of the pump shaft at the<br />

running speed of the motor (0.04 mils pk-pk versus 0.5<br />

mils pk-pk measured <strong>on</strong> <strong>Pump</strong> 1B).<br />

• Traditi<strong>on</strong>al troubleshooting approaches probably would<br />

not have indicated a gear/pump inter-related problem,<br />

and would not have provided such clear visual evidence<br />

for decisi<strong>on</strong> makers.<br />

• ODS / EMA coupled with appropriate analysis is a<br />

powerful troubleshooting tool to facilitate and visually<br />

understand the most difficult vibrati<strong>on</strong> problems in<br />

turbomachinery and pumping systems.


281


282<br />

Thank you<br />

Any Questi<strong>on</strong>s…?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!