10.04.2013 Views

Design of Experiments - US Army Conference on Applied Statistics

Design of Experiments - US Army Conference on Applied Statistics

Design of Experiments - US Army Conference on Applied Statistics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Design</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Experiments</str<strong>on</strong>g>:<br />

New Methods and How to Use Them<br />

Douglas C. M<strong>on</strong>tgomery<br />

Ariz<strong>on</strong>a State University<br />

Bradley J<strong>on</strong>es<br />

SAS Institute


DOE Course – Module 1<br />

Introducti<strong>on</strong>, Definiti<strong>on</strong>s and an Example<br />

Goals<br />

1. Introduce fundamental c<strong>on</strong>cepts<br />

2. <str<strong>on</strong>g>Design</str<strong>on</strong>g> & analyze an experiment<br />

3. Introduce linear statistical models<br />

4. Explain factor coding c<strong>on</strong>venti<strong>on</strong>s<br />

5. Show the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> a model to a design<br />

6. Introduce criteria for evaluating the goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

design


What Is a <str<strong>on</strong>g>Design</str<strong>on</strong>g>ed Experiment?<br />

a structured set <str<strong>on</strong>g>of</str<strong>on</strong>g> tests <str<strong>on</strong>g>of</str<strong>on</strong>g> a system or process


Integral to a designed experiment are…<br />

1. Resp<strong>on</strong>se(s)<br />

2. Factor(s)<br />

3. Model


What Is a Resp<strong>on</strong>se?<br />

A resp<strong>on</strong>se is a measurable result.<br />

– yield <str<strong>on</strong>g>of</str<strong>on</strong>g> a chemical reacti<strong>on</strong> (chemical process)<br />

– depositi<strong>on</strong> rate (semic<strong>on</strong>ductor)<br />

– gas mileage (automotive)<br />

Resp<strong>on</strong>se


What Is a Factor?<br />

A factor is any variable that you think may affect a resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest. We begin by c<strong>on</strong>sidering two types <str<strong>on</strong>g>of</str<strong>on</strong>g> factors –<br />

c<strong>on</strong>tinuous and categorical<br />

c<strong>on</strong>tinuous factors take any value <strong>on</strong> an interval<br />

e.g. octane rating [89 93]<br />

categorical factors have a discrete number <str<strong>on</strong>g>of</str<strong>on</strong>g> levels<br />

e.g. brand [BP, Shell, Exx<strong>on</strong>]


What is a model?<br />

a simplified mathematical surrogate for the process<br />

Factor(s) Model Resp<strong>on</strong>se(s)


Example Experiment #1<br />

You want to know 2 things:<br />

1.Does higher octane rating improve gas mileage?<br />

2.Which brand (BP, Shell or Exx<strong>on</strong>) is best for gas<br />

mileage?


Important Points from the Fathers <str<strong>on</strong>g>of</str<strong>on</strong>g> DOE<br />

DOE – Problem solving methodology for efficiently<br />

identifying cause-and-effect relati<strong>on</strong>ships.<br />

Fisher’s Four Fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> DOE<br />

1. Factorial principle<br />

2. Randomizati<strong>on</strong><br />

3. Blocking<br />

4. Replicati<strong>on</strong><br />

“To discover what happens to a process when a factor<br />

is changed, you must actually change it!”<br />

R.A. Fisher<br />

George Box


Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> Models<br />

Comparing three brands <str<strong>on</strong>g>of</str<strong>on</strong>g> gasoline using an ANOVA model:<br />

Finding the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> octane rating using a regressi<strong>on</strong> model:<br />

Y (the resp<strong>on</strong>se) is the mileage <str<strong>on</strong>g>of</str<strong>on</strong>g> a car in miles per gall<strong>on</strong>.


ANOVA Model for Mileage Study<br />

Note that we have 4 unknown parameters and <strong>on</strong>ly 3 brands <str<strong>on</strong>g>of</str<strong>on</strong>g> gasoline.<br />

Our model is overspecified –<br />

if we know any three parameters, we can compute the 4 th .<br />

We say there are 2 degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom (df) for alpha.


Categorical Factor Coding – 3 levels<br />

Names<br />

Numeric<br />

Label<br />

Orthog<strong>on</strong>al<br />

Coding<br />

X 1 X 2<br />

Effects<br />

Coding<br />

Orthog<strong>on</strong>al Coding:<br />

There are two “dummy” columns – 2 degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares <str<strong>on</strong>g>of</str<strong>on</strong>g> both columns is 3.<br />

The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the element wise products is zero<br />

(i.e. the dot product is zero)<br />

or<br />

X 1 X 2


Orthog<strong>on</strong>al Coding and Orthog<strong>on</strong>al <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

1. Dummy columns for categorical factors are orthog<strong>on</strong>ally coded if their<br />

dot product is zero.<br />

a) The column means are zero.<br />

b) The pairwise column correlati<strong>on</strong>s are zero.<br />

2. For the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this course we say that a design is orthog<strong>on</strong>al if:<br />

a) The means <str<strong>on</strong>g>of</str<strong>on</strong>g> the columns <str<strong>on</strong>g>of</str<strong>on</strong>g> the design matrix are all zero.<br />

b) The pairwise correlati<strong>on</strong> for all column pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> the design matrix are zero.<br />

c) So, whether a design is orthog<strong>on</strong>al can depend <strong>on</strong> the model you fit.


ANOVA and regressi<strong>on</strong> models are equivalent…<br />

Replace with 0 and 1 and 2 with 1 and 2 .


ANOVA/Regressi<strong>on</strong> Model – Matrix Notati<strong>on</strong>


Categorical Factor Coding – 4 levels<br />

There are three columns – 3 degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> squares <str<strong>on</strong>g>of</str<strong>on</strong>g> all columns is 4.<br />

The sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the element wise products are zero<br />

(i.e. all dot products <str<strong>on</strong>g>of</str<strong>on</strong>g> column pairs are zero)


Categorical Factor Coding – 2 levels<br />

Orthog<strong>on</strong>al<br />

&<br />

Effects<br />

Coding


JMP Scripting Language (JSL) Functi<strong>on</strong> for Orthog<strong>on</strong>al Dummy Variable<br />

Coding<br />

level2dummy = functi<strong>on</strong>({nl,val},<br />

dummy = j(1,nl-1,0);<br />

c1 = sqrt(nl*val/(val+1));<br />

for (i=1,ival)|(val==nl),l2=1,l2=0);<br />

dummy[1,i]=c1*l1-c2*l2;<br />

);<br />

dummy;<br />

);<br />

nl is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> levels<br />

val is the numeric label for the level you want to<br />

code


C<strong>on</strong>tinuous Factor Coding<br />

MR – midrange<br />

HR – half range<br />

Hi – high value<br />

Lo – low value


C<strong>on</strong>tinuous Factor Coding Example<br />

Suppose X is 92, what is the scaled value <str<strong>on</strong>g>of</str<strong>on</strong>g> X?<br />

If Hi is 93<br />

& Lo is 89,<br />

then MR is 91<br />

& HR is 2<br />

If X is 93, then the scaled value is 1.<br />

If X is 89, then the scaled value is -1.<br />

If X is 91, then the scale value is 0.


The Model/<str<strong>on</strong>g>Design</str<strong>on</strong>g> Relati<strong>on</strong>ship –<br />

Parameter Estimates<br />

The matrix, X, is called the design matrix. The<br />

least-squares estimator <str<strong>on</strong>g>of</str<strong>on</strong>g> is:<br />

The variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the least-squares estimator <str<strong>on</strong>g>of</str<strong>on</strong>g> is:<br />

is inherent to the system but we choose the design matrix, X.


The Model/<str<strong>on</strong>g>Design</str<strong>on</strong>g> Relati<strong>on</strong>ship –<br />

Predicted Resp<strong>on</strong>ses<br />

The predicted values <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se are c<strong>on</strong>tained in the vector:<br />

Where the so-called, “hat” matrix, H, is:<br />

The variance matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> the predicted resp<strong>on</strong>ses is:<br />

Again, is inherent to the system, but we choose the design, X.


The Model/<str<strong>on</strong>g>Design</str<strong>on</strong>g> Relati<strong>on</strong>ship – Aliasing<br />

Suppose the best polynomial approximating model is:<br />

But we estimate <strong>on</strong>ly 1 using least-squares:<br />

Now the elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the least-squares estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> 1<br />

are biased by 2 , that is:<br />

where the alias matrix, A, is:


What makes a design good?<br />

1. Low variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficients.<br />

2. Low variance <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted resp<strong>on</strong>ses.<br />

3. Minimal aliasing <str<strong>on</strong>g>of</str<strong>on</strong>g> terms in the model from likely effects<br />

that are not in the model (0.5 or less).<br />

4. Correlati<strong>on</strong>s between likely effects that are not in the<br />

model are small (0.5 or less).<br />

The first two deal with variance – the last two with bias.<br />

Reducing variance and bias are fundamental goals.


<str<strong>on</strong>g>Design</str<strong>on</strong>g> Optimality Criteria<br />

D-optimality<br />

I-optimality<br />

Alias optimality


Why isn’t orthog<strong>on</strong>ality a design criteri<strong>on</strong>?<br />

1. Not all orthog<strong>on</strong>al designs are good.<br />

a) It is inappropriate to change the requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> a problem to use<br />

an orthog<strong>on</strong>al design as a “soluti<strong>on</strong>”.<br />

b) As we will see, in many practical situati<strong>on</strong>s no orthog<strong>on</strong>al design<br />

exists.<br />

2. Not all good designs are orthog<strong>on</strong>al.<br />

Sometimes it may be useful to sacrifice orthog<strong>on</strong>ality for some other<br />

desirable design feature.<br />

3. In standard two-level screening design orthog<strong>on</strong>al designs<br />

minimize the variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the coefficient estimates, so<br />

focusing <strong>on</strong> variance results in orthog<strong>on</strong>al designs, if they<br />

are possible.


Simple experiment for<br />

three factors and four<br />

runs to illustrate<br />

design diagnostics.<br />

Example Experiment #2


Module 1 – C<strong>on</strong>clusi<strong>on</strong>s<br />

1. Remember Fisher’s Four Principles<br />

1. Factorial Principle<br />

2. Randomizati<strong>on</strong><br />

3. Blocking<br />

4. Replicati<strong>on</strong><br />

2. ANOVA models can be c<strong>on</strong>verted to regressi<strong>on</strong> models.<br />

3. Factor coding for c<strong>on</strong>tinuous and categorical factors is a<br />

technical detail important for this c<strong>on</strong>versi<strong>on</strong>.<br />

4. Variance and bias are fundamental criteria for evaluating<br />

designs.


Standard designs using an optimal design tool.<br />

Goals<br />

DOE Course – Module 2<br />

1. Give many examples <str<strong>on</strong>g>of</str<strong>on</strong>g> familiar designs created using an<br />

optimal design algorithm


Full Factorial designs are D-optimal for the models they support.<br />

Example:<br />

Optimal Full Factorial<br />

2 k designs are optimal for main effects plus interacti<strong>on</strong>s up to any<br />

order less than or equal to k.


INPUTS<br />

(Factors)<br />

Airspeed<br />

Turn Rate<br />

Set Clearance Plane<br />

Ride Mode<br />

Flight Test<br />

Gross Weight<br />

Radar Measurement<br />

PROCESS:<br />

TF / TA Radar<br />

Performance<br />

OUTPUT<br />

(Resp<strong>on</strong>se)<br />

SCP Deviati<strong>on</strong><br />

Noise<br />

P1 - 31


Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> this design<br />

• Orthog<strong>on</strong>al<br />

• Makes interpretati<strong>on</strong> easy<br />

• Minimizes the variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the model coefficients<br />

• Minimizes the average predicti<strong>on</strong> variance<br />

• Minimizes the maximum predicti<strong>on</strong> variance<br />

• You can’t do any better than this (for three factors in eight runs)!


Fracti<strong>on</strong>al Factorial designs are D-optimal for the models they support.<br />

Example:<br />

Optimal Fracti<strong>on</strong>al Factorial<br />

2 k-p designs are optimal for main effects plus interacti<strong>on</strong>s an order<br />

dependent <strong>on</strong> the resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the design.


Resoluti<strong>on</strong> V<br />

• Models for main effects + all two-factor interacti<strong>on</strong>s<br />

• C<strong>on</strong>sider five factors in a photolithography process<br />

– A = aperture setting<br />

– B = exposure time<br />

– C = develop time<br />

– D = mask dimensi<strong>on</strong><br />

– E = etch time


C<strong>on</strong>sider the 2 5-1 – Again Created<br />

Using an Optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Tool


• Aliases:<br />

The 2 5-1<br />

– All main effects are clear <str<strong>on</strong>g>of</str<strong>on</strong>g> the two-factor interacti<strong>on</strong>s<br />

– All two-factor interacti<strong>on</strong>s are clear <str<strong>on</strong>g>of</str<strong>on</strong>g> each other<br />

• Orthog<strong>on</strong>al<br />

• Makes interpretati<strong>on</strong> easy<br />

• Minimizes the variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the model coefficients<br />

• Minimizes the average predicti<strong>on</strong> variance<br />

• Minimizes the maximum predicti<strong>on</strong> variance<br />

• Once again, you can’t do any better than this!


JMP Demo<br />

Relative Variance <str<strong>on</strong>g>of</str<strong>on</strong>g> Coefficients<br />

Significance Level 0.050<br />

Signal to Noise Ratio 1.000<br />

Effect<br />

Intercept<br />

A<br />

B<br />

C<br />

D<br />

E<br />

A*B<br />

A*C<br />

A*D<br />

A*E<br />

B*C<br />

B*D<br />

B*E<br />

C*D<br />

C*E<br />

D*E<br />

Variance<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

0.063<br />

Power<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246<br />

0.246


<str<strong>on</strong>g>Design</str<strong>on</strong>g>s are optimal for main effects models<br />

Certain two-factor interacti<strong>on</strong>s are also estimable with full precisi<strong>on</strong><br />

but may be fully aliased with other two-factor interacti<strong>on</strong>s.<br />

Example: 2 (4-1)<br />

Resoluti<strong>on</strong> IV


INPUTS<br />

(Factors)<br />

40<br />

SPEAR AGM Tests<br />

Cloud cover<br />

Sun orientati<strong>on</strong><br />

PROCESS:<br />

OUTPUTS<br />

(Resp<strong>on</strong>ses)<br />

Missile Variant Miss Distance (ft)<br />

Ground Range Impact Angle Error (deg)<br />

SPEAR AGM<br />

Launch Altitude<br />

Attack Airspeed<br />

Noise


• Aliases:<br />

The 2 4-1<br />

– All main effects are clear <str<strong>on</strong>g>of</str<strong>on</strong>g> the two-factor interacti<strong>on</strong>s<br />

– two-factor interacti<strong>on</strong>s may be c<strong>on</strong>founded with each other<br />

• Orthog<strong>on</strong>al<br />

• Makes interpretati<strong>on</strong> easy – if there are no active interacti<strong>on</strong>s<br />

• Minimizes the variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the model coefficients<br />

• Minimizes the average predicti<strong>on</strong> variance<br />

• Minimizes the maximum predicti<strong>on</strong> variance<br />

• Once again, you can’t do any better than this!


Suppose that we want to focus <strong>on</strong> main effects.<br />

• Six factors [eye focus time experiment from M<strong>on</strong>tgomery (2009)]<br />

– A = visual acuity<br />

– B = distance to target<br />

– C = target shape<br />

– D = illuminati<strong>on</strong> level<br />

– E = target size<br />

– F = target density<br />

• What are reas<strong>on</strong>able design choices?


This is a 2 6-3 fracti<strong>on</strong>al factorial, resoluti<strong>on</strong> III The defining relati<strong>on</strong> is<br />

Let’s work out the aliases<br />

We can create this design using an optimal design tool. It is<br />

useful to see the alias structure.


Alias Matrix<br />

Effect<br />

Intercept<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

A*F<br />

1 2<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

1 3<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

1 4<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1 5<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

1 6<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

JMP Demo<br />

2 3<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

2 4<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2 5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

2 6<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

3 4<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

3 5<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

3 6<br />

0<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

4 5<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

1<br />

4 6<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

5 6<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0


• Aliases:<br />

The 2 6-3<br />

– All main effects are c<strong>on</strong>founded with two-factor interacti<strong>on</strong>s<br />

• Orthog<strong>on</strong>al<br />

• Makes interpretati<strong>on</strong> easy – if there are no active interacti<strong>on</strong>s<br />

• Minimizes the variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the model coefficients<br />

• Minimizes the average predicti<strong>on</strong> variance<br />

• Minimizes the maximum predicti<strong>on</strong> variance


Module 2 - Summary<br />

1. Main message is that standard designs are optimal designs.<br />

2. Optimal design generators can reproduce standard designs for<br />

routine problems.


Module 3 – Modern Screening Methods<br />

There is substantial new research in both design and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

screening experiments in the last 15 years.<br />

Much <str<strong>on</strong>g>of</str<strong>on</strong>g> this new research calls into questi<strong>on</strong> the c<strong>on</strong>venti<strong>on</strong>al<br />

strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard use <str<strong>on</strong>g>of</str<strong>on</strong>g> regular fracti<strong>on</strong>al factorial designs<br />

for screening.<br />

We will introduce some <str<strong>on</strong>g>of</str<strong>on</strong>g> these new methods in this secti<strong>on</strong>.<br />

Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the new designs are orthog<strong>on</strong>al but have more desirable<br />

aliasing properties than the regular fracti<strong>on</strong>al factorial designs<br />

previously shown.


Regular <str<strong>on</strong>g>Design</str<strong>on</strong>g>s may not Always be the Best Choice<br />

for Screening<br />

• In regular designs the alias matrix c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> either 0, +1 or -1<br />

entries<br />

• That means that effects are completely c<strong>on</strong>founded<br />

• Unless the experimenter has some “process knowledge”, effects<br />

cannot be separated without c<strong>on</strong>ducting additi<strong>on</strong>al experiments<br />

– Fold-over<br />

– Partial fold-over<br />

– Optimal augmentati<strong>on</strong><br />

48


Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Orthog<strong>on</strong>al <str<strong>on</strong>g>Design</str<strong>on</strong>g>s versus<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Factors<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Factors Number <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>isomorphic <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

6 27<br />

7 55<br />

8 80<br />

9 87<br />

10 78<br />

11 58<br />

12 36<br />

13 18<br />

14 10<br />

15 5 49


Define N<strong>on</strong>isomorphic<br />

Two designs are n<strong>on</strong>isomorphic if you cannot get <strong>on</strong>e<br />

from the other by:<br />

–Permuting rows<br />

–Permuting columns<br />

–Relabeling the level names<br />

50


A Six-Factor Example<br />

• Based <strong>on</strong> Example 8.4, DCM (2009)<br />

• A = mold temperature, B = screw speed, C = holding time, D<br />

=cycle time, E = gate size, F = holding pressure<br />

• Resp<strong>on</strong>se = shrinkage<br />

• The regular design is a 2 6-2 fracti<strong>on</strong> – this design is the<br />

maximum resoluti<strong>on</strong> (IV) and minimum aberrati<strong>on</strong> fracti<strong>on</strong><br />

51


Screening for Shrinkage<br />

C<strong>on</strong>trasts<br />

Term<br />

B<br />

A<br />

D<br />

C<br />

E<br />

F<br />

B*A<br />

B*D<br />

A*D<br />

B*C<br />

A*C<br />

D*C<br />

D*E<br />

B*A*D<br />

A*D*C<br />

C<strong>on</strong>trast<br />

17.8125<br />

6.9375<br />

0.6875<br />

-0.4375<br />

0.1875<br />

0.1875<br />

5.9375<br />

-0.0625<br />

-2.6875<br />

-0.9375<br />

-0.8125<br />

-0.0625<br />

0.3125<br />

0.0625<br />

-2.4375<br />

Half Normal Plot<br />

Absolute C<strong>on</strong>trast<br />

20<br />

15<br />

10<br />

5<br />

0<br />

A*D*C A*D<br />

A*C B*C<br />

A<br />

B*A<br />

B<br />

Lenth<br />

t-Ratio<br />

38.00<br />

14.80<br />

1.47<br />

-0.93<br />

0.40<br />

0.40<br />

12.67<br />

-0.13<br />

-5.73<br />

-2.00<br />

-1.73<br />

-0.13<br />

0.67<br />

0.13<br />

-5.20<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Half Normal Quantile<br />

Lenth PSE=0.46875<br />

P-Values derived from a sim ulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 10000 Lenth t ratios.<br />

Individual<br />

p-Value<br />


The No-C<strong>on</strong>founding <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

54


Where Did the Data in this Experiment<br />

• Simulated data<br />

Come From?<br />

• We chose the significant main effects A and B, al<strong>on</strong>g with<br />

the two interacti<strong>on</strong>s AB and AD.<br />

• We selected the random comp<strong>on</strong>ent to have the same<br />

standard deviati<strong>on</strong> as the original data<br />

• The result is data that represents closely the original<br />

experiment if the no-c<strong>on</strong>founding design had been run<br />

55


Color Plot for the No-C<strong>on</strong>founding <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

The design is orthog<strong>on</strong>al<br />

No two-factor interacti<strong>on</strong>s are aliased with each other<br />

There is no complete c<strong>on</strong>founding<br />

56


Stepwise Fit<br />

Resp<strong>on</strong>se: Shrinkage<br />

Stepwise Regressi<strong>on</strong> C<strong>on</strong>trol<br />

Prob to Enter<br />

Prob to Leave<br />

Directi<strong>on</strong>:Forward<br />

0.250<br />

0.100<br />

Rules: Combine<br />

Current Estimates<br />

SSE<br />

6659.4375<br />

DFE<br />

15<br />

LockEntered Parameter<br />

Intercept<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

A*B<br />

A*C<br />

A*D<br />

A*E<br />

A*F<br />

B*C<br />

B*D<br />

B*E<br />

B*F<br />

C*D<br />

C*E<br />

C*F<br />

D*E<br />

D*F<br />

E*F<br />

Step History<br />

MSE<br />

443.9625<br />

Estimate<br />

27.3125<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

RSquare<br />

0.0000<br />

nDF<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

RSquare Adj<br />

0.0000<br />

SS<br />

0<br />

770.0625<br />

5076.563<br />

3.16e-30<br />

3.16e-30<br />

28.89063<br />

28.89063<br />

6410.688<br />

781.4608<br />

885.625<br />

819.0536<br />

809.2569<br />

5076.563<br />

5087.961<br />

5115.757<br />

5125.554<br />

13.78835<br />

2577.449<br />

690.0164<br />

345.2905<br />

2382.766<br />

60.24101<br />

"F Ratio"<br />

0.000<br />

1.831<br />

44.900<br />

0.000<br />

0.000<br />

0.061<br />

0.061<br />

103.086<br />

0.532<br />

0.614<br />

0.561<br />

0.553<br />

12.829<br />

12.951<br />

13.256<br />

13.366<br />

0.008<br />

2.526<br />

0.462<br />

0.219<br />

2.229<br />

0.037<br />

Cp<br />

.<br />

AIC<br />

98.49923<br />

"Prob>F"<br />

1.0000<br />

0.1975<br />

0.0000<br />

1.0000<br />

1.0000<br />

0.8085<br />

0.8085<br />

0.0000<br />

0.6691<br />

0.6192<br />

0.6509<br />

0.6556<br />

0.0005<br />

0.0005<br />

0.0004<br />

0.0004<br />

0.9989<br />

0.1068<br />

0.7138<br />

0.8815<br />

0.1374<br />

0.9902<br />

Step Parameter Acti<strong>on</strong> "Sig Prob" Seq SS RSquare Cp p<br />

We can use<br />

stepwise<br />

regressi<strong>on</strong> model<br />

fitting<br />

All main effects<br />

and two-factor<br />

interacti<strong>on</strong>s are<br />

candidate<br />

variables for the<br />

model<br />

Because there is<br />

no complete<br />

c<strong>on</strong>founding, all<br />

interacti<strong>on</strong>s are<br />

potential<br />

candidates 57


Stepwise Fit<br />

Resp<strong>on</strong>se: Shrinkage<br />

Stepwise Regressi<strong>on</strong> C<strong>on</strong>trol<br />

Prob to Enter<br />

Prob to Leave<br />

Directi<strong>on</strong>:Forward<br />

0.250<br />

0.100<br />

Rules: Combine<br />

Current Estimates<br />

SSE<br />

133.18753<br />

DFE<br />

10<br />

LockEntered Parameter<br />

Intercept<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

A*B<br />

A*C<br />

A*D<br />

A*E<br />

A*F<br />

B*C<br />

B*D<br />

B*E<br />

B*F<br />

C*D<br />

C*E<br />

C*F<br />

D*E<br />

D*F<br />

E*F<br />

Step History<br />

Step<br />

1<br />

2<br />

Parameter<br />

A*B<br />

A*D<br />

MSE<br />

13.318753<br />

Acti<strong>on</strong><br />

Entered<br />

Entered<br />

RSquare<br />

0.9800<br />

Estimate<br />

27.3125<br />

6.9375<br />

17.8125<br />

0<br />

-4.441e-16<br />

0<br />

0<br />

5.9375<br />

0<br />

-2.6875<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

nDF<br />

1<br />

3<br />

2<br />

1<br />

2<br />

1<br />

1<br />

1<br />

2<br />

1<br />

2<br />

2<br />

2<br />

1<br />

2<br />

2<br />

2<br />

3<br />

3<br />

2<br />

2<br />

3<br />

"Sig Prob"<br />

0.0000<br />

0.0440<br />

RSquare Adj<br />

0.9700<br />

SS<br />

0<br />

1449.688<br />

5640.625<br />

3.16e-30<br />

115.5625<br />

4.21e-30<br />

4.21e-30<br />

564.0625<br />

11.39834<br />

115.5625<br />

26.80068<br />

13.7383<br />

1.58e-29<br />

11.39834<br />

13.7383<br />

26.80068<br />

13.78835<br />

1.933557<br />

31.4007<br />

31.4007<br />

1.933557<br />

2.459758<br />

Seq SS<br />

6410.688<br />

115.5625<br />

"F Ratio"<br />

0.000<br />

36.282<br />

211.755<br />

0.000<br />

4.338<br />

0.000<br />

0.000<br />

42.351<br />

0.374<br />

8.677<br />

1.008<br />

0.460<br />

0.000<br />

0.842<br />

0.460<br />

1.008<br />

0.462<br />

0.034<br />

0.720<br />

1.234<br />

0.059<br />

0.044<br />

RSquare<br />

0.9626<br />

0.9800<br />

Cp<br />

.<br />

AIC<br />

45.90671<br />

"Prob>F"<br />

1.0000<br />

0.0000<br />

0.0000<br />

1.0000<br />

0.0440<br />

1.0000<br />

1.0000<br />

0.0001<br />

0.6992<br />

0.0146<br />

0.4071<br />

0.6470<br />

1.0000<br />

0.3827<br />

0.6470<br />

0.4071<br />

0.6459<br />

0.9907<br />

0.5711<br />

0.3411<br />

0.9432<br />

0.9867<br />

Cp<br />

.<br />

.<br />

p<br />

4<br />

6<br />

Stepwise regressi<strong>on</strong><br />

selects the main<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> A and B,<br />

al<strong>on</strong>g with the AB and<br />

AD interacti<strong>on</strong>s<br />

The main effect <str<strong>on</strong>g>of</str<strong>on</strong>g> D is<br />

added to preserve the<br />

hierarchy in the model<br />

The no-c<strong>on</strong>founding<br />

design correctly<br />

identifies the model<br />

without any ambiguity<br />

and no need for<br />

additi<strong>on</strong>al runs<br />

58


No-C<strong>on</strong>founding <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

• The 16-run minimum aberrati<strong>on</strong> resoluti<strong>on</strong> IV designs (6, 7,<br />

and 8 factors) are am<strong>on</strong>g the most widely used designs in<br />

practice<br />

• It is possible to find no-c<strong>on</strong>founding designs that are<br />

superior to the standard minimum aberrati<strong>on</strong> resoluti<strong>on</strong> IV<br />

designs in the sense that they <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a better chance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

detecting significant two-factor interacti<strong>on</strong>s<br />

• These designs are c<strong>on</strong>structed from the Hall matrices<br />

59


Hall I 15 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1<br />

2 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

3 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

9 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1<br />

10 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

12 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1<br />

14 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

15 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

60


Hall II 15 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1<br />

61


Hall III 15 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1<br />

62


Hall IV 15 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1<br />

63


Hall V 15 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1<br />

8 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1<br />

9 -1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 1<br />

10 -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1<br />

64


C<strong>on</strong>structing the Recommended 6 Factor<br />

<str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1<br />

Hall II – Columns D, E, H, K, M, Q<br />

65


Recommended N<strong>on</strong>regular 6 Factor<br />

<str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F<br />

1 1 1 1 1 1 1<br />

2 1 1 -1 -1 -1 -1<br />

3 -1 -1 1 1 -1 -1<br />

4 -1 -1 -1 -1 1 1<br />

5 1 1 1 -1 1 -1<br />

6 1 1 -1 1 -1 1<br />

7 -1 -1 1 -1 -1 1<br />

8 -1 -1 -1 1 1 -1<br />

9 1 -1 1 1 1 -1<br />

10 1 -1 -1 -1 -1 1<br />

11 -1 1 1 1 -1 1<br />

12 -1 1 -1 -1 1 -1<br />

13 1 -1 1 -1 -1 -1<br />

14 1 -1 -1 1 1 1<br />

15 -1 1 1 -1 1 1<br />

16 -1 1 -1 1 -1 -1<br />

66


Color Plot for the Standard Minimum<br />

Aberrati<strong>on</strong> Resoluti<strong>on</strong> IV 7-Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

67


C<strong>on</strong>structing the Recommended 7 Factor<br />

<str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1<br />

Hall III – Columns A, B, D, H, J, M, Q<br />

68


Recommended N<strong>on</strong>regular 7 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G<br />

1 1 1 1 1 1 1 1<br />

2 1 1 1 -1 -1 -1 -1<br />

3 1 1 -1 1 1 -1 -1<br />

4 1 1 -1 -1 -1 1 1<br />

5 1 -1 1 1 -1 1 -1<br />

6 1 -1 1 -1 1 -1 1<br />

7 1 -1 -1 1 -1 -1 1<br />

8 1 -1 -1 -1 1 1 -1<br />

9 -1 1 1 1 1 1 -1<br />

10 -1 1 1 -1 -1 -1 1<br />

11 -1 1 -1 1 -1 1 1<br />

12 -1 1 -1 -1 1 -1 -1<br />

13 -1 -1 1 1 -1 -1 -1<br />

14 -1 -1 1 -1 1 1 1<br />

15 -1 -1 -1 1 1 -1 1<br />

16 -1 -1 -1 -1 -1 1 -1<br />

69


Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Color Plots for the Standard<br />

and No-c<strong>on</strong>founding <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

The recommended design is orthog<strong>on</strong>al and does<br />

not have any complete c<strong>on</strong>founding <str<strong>on</strong>g>of</str<strong>on</strong>g> effects<br />

70


Color Plot for the Standard Minimum<br />

Aberrati<strong>on</strong> Resoluti<strong>on</strong> IV 8-Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

71


C<strong>on</strong>structing the Recommended 8 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P Q<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1<br />

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1<br />

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1<br />

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1<br />

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1<br />

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1<br />

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1<br />

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1<br />

10 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1<br />

11 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1<br />

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1<br />

13 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1<br />

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1<br />

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1<br />

16 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1<br />

Hall IV – Columns A, B, D, F, H, J, M, P<br />

72


Recommended N<strong>on</strong>regular 8 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H<br />

1 1 1 1 1 1 1 1 1<br />

2 1 1 1 1 -1 -1 -1 -1<br />

3 1 1 -1 -1 1 1 -1 -1<br />

4 1 1 -1 -1 -1 -1 1 1<br />

5 1 -1 1 -1 1 -1 1 -1<br />

6 1 -1 1 -1 -1 1 -1 1<br />

7 1 -1 -1 1 1 -1 -1 1<br />

8 1 -1 -1 1 -1 1 1 -1<br />

9 -1 1 1 1 1 1 1 1<br />

10 -1 1 1 -1 1 -1 -1 -1<br />

11 -1 1 -1 1 -1 -1 1 -1<br />

12 -1 1 -1 -1 -1 1 -1 1<br />

13 -1 -1 1 1 -1 -1 -1 1<br />

14 -1 -1 1 -1 -1 1 1 -1<br />

15 -1 -1 -1 1 1 1 -1 -1<br />

16 -1 -1 -1 -1 1 -1 1 1<br />

73


Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Color Plots for the Standard<br />

and No-c<strong>on</strong>founding <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

The recommended design is orthog<strong>on</strong>al and does<br />

not have any complete c<strong>on</strong>founding <str<strong>on</strong>g>of</str<strong>on</strong>g> effects<br />

74


Alternatives to Resoluti<strong>on</strong> III <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

The regular resoluti<strong>on</strong> III designs with from 9 to 15 factors in 16 runs are<br />

used frequently in practice<br />

These designs completely c<strong>on</strong>found some interacti<strong>on</strong>s with main effects<br />

For example, in the minimum aberrati<strong>on</strong> nine factor case, 12 two-factor<br />

interacti<strong>on</strong>s are aliased with main effects and 24 two-factor interacti<strong>on</strong>s<br />

are c<strong>on</strong>founded in groups with other two-factor interacti<strong>on</strong>s<br />

Follow-up experiments are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten necessary, and the best augmentati<strong>on</strong><br />

approach may not be obvious.<br />

N<strong>on</strong>regular designs with no pure c<strong>on</strong>founding <str<strong>on</strong>g>of</str<strong>on</strong>g> main effects and tw<str<strong>on</strong>g>of</str<strong>on</strong>g>actor<br />

interacti<strong>on</strong>s are useful alternatives.<br />

We provide a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these designs.<br />

75


Recommended 9 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J<br />

1 -1 -1 -1 -1 -1 -1 1 -1 1<br />

2 -1 -1 -1 1 -1 1 -1 1 -1<br />

3 -1 -1 1 -1 1 1 1 1 -1<br />

4 -1 -1 1 1 1 -1 -1 -1 1<br />

5 -1 1 -1 -1 1 1 -1 1 1<br />

6 -1 1 -1 1 1 -1 1 -1 -1<br />

7 -1 1 1 -1 -1 -1 -1 1 -1<br />

8 -1 1 1 1 -1 1 1 -1 1<br />

9 1 -1 -1 -1 1 -1 -1 -1 -1<br />

10 1 -1 -1 1 1 1 1 1 1<br />

11 1 -1 1 -1 -1 1 -1 -1 1<br />

12 1 -1 1 1 -1 -1 1 1 -1<br />

13 1 1 -1 -1 -1 1 1 -1 -1<br />

14 1 1 -1 1 -1 -1 -1 1 1<br />

15 1 1 1 -1 1 -1 1 1 1<br />

16 1 1 1 1 1 1 -1 -1 -1<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Effects and Two-Factor<br />

Interacti<strong>on</strong>s


Recommended 10 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K<br />

1 -1 -1 -1 -1 1 -1 -1 1 -1 1<br />

2 -1 -1 -1 1 1 1 -1 -1 1 1<br />

3 -1 -1 1 -1 -1 1 1 1 1 1<br />

4 -1 -1 1 -1 1 -1 1 -1 1 -1<br />

5 -1 1 -1 1 -1 1 1 1 -1 1<br />

6 -1 1 -1 1 1 -1 1 -1 -1 -1<br />

7 -1 1 1 -1 -1 -1 -1 1 -1 -1<br />

8 -1 1 1 1 -1 1 -1 -1 1 -1<br />

9 1 -1 -1 -1 -1 1 1 -1 -1 -1<br />

10 1 -1 -1 1 -1 -1 -1 1 1 -1<br />

11 1 -1 1 1 -1 -1 1 -1 -1 1<br />

12 1 -1 1 1 1 1 -1 1 -1 -1<br />

13 1 1 -1 -1 -1 -1 -1 -1 1 1<br />

14 1 1 -1 -1 1 1 1 1 1 -1<br />

15 1 1 1 -1 1 1 -1 -1 -1 1<br />

16 1 1 1 1 1 -1 1 1 1 1<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Effects and Two-Factor<br />

Interacti<strong>on</strong>s<br />

77


Recommended 11 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L<br />

1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1<br />

2 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1<br />

3 -1 -1 1 -1 1 1 -1 1 -1 -1 -1<br />

4 -1 -1 1 1 -1 1 1 1 -1 1 1<br />

5 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1<br />

6 -1 1 -1 1 -1 1 1 -1 -1 -1 -1<br />

7 -1 1 -1 1 1 1 -1 1 1 1 -1<br />

8 -1 1 1 -1 1 -1 1 1 1 1 1<br />

9 1 -1 -1 -1 -1 1 -1 1 1 -1 1<br />

10 1 -1 -1 -1 1 1 1 -1 -1 1 1<br />

11 1 -1 -1 1 -1 -1 1 1 1 1 -1<br />

12 1 -1 1 1 1 -1 -1 -1 -1 1 -1<br />

13 1 1 -1 -1 1 -1 1 1 -1 -1 -1<br />

14 1 1 1 -1 -1 1 -1 -1 1 1 -1<br />

15 1 1 1 1 -1 -1 -1 1 -1 -1 1<br />

16 1 1 1 1 1 1 1 -1 1 -1 1<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Effects and Two-Factor<br />

Interacti<strong>on</strong>s<br />

78


Recommended 12 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M<br />

1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1<br />

2 -1 -1 -1 1 -1 1 1 1 -1 -1 1 -1<br />

3 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1<br />

4 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1<br />

5 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1<br />

6 -1 1 -1 1 1 1 1 -1 1 1 1 1<br />

7 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1<br />

8 -1 1 1 -1 1 -1 1 1 -1 1 1 -1<br />

9 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1<br />

10 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1<br />

11 1 -1 1 1 -1 -1 -1 1 -1 1 1 1<br />

12 1 -1 1 1 1 1 1 1 1 -1 -1 1<br />

13 1 1 -1 -1 -1 1 1 1 -1 1 -1 1<br />

14 1 1 -1 1 1 -1 -1 1 1 1 -1 -1<br />

15 1 1 1 -1 1 1 -1 -1 -1 -1 1 1<br />

16 1 1 1 1 -1 -1 1 -1 1 -1 1 -1<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Effects and Two-Factor<br />

Interacti<strong>on</strong>s<br />

79


Recommended 13 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N<br />

1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1<br />

2 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1<br />

3 -1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1<br />

4 -1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1<br />

5 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1<br />

6 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1<br />

7 -1 1 -1 1 -1 -1 1 1 1 -1 1 1 1<br />

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1<br />

9 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 -1<br />

10 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1<br />

11 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1<br />

12 1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1<br />

13 1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1<br />

14 1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1<br />

15 1 1 1 -1 1 1 -1 1 1 1 1 1 1<br />

16 1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Effects and Two-Factor<br />

Interacti<strong>on</strong>s<br />

80


Recommended 14 Factor <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

Run A B C D E F G H J K L M N P<br />

1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1<br />

2 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1<br />

3 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1<br />

4 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1 -1<br />

5 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1<br />

6 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1<br />

7 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1<br />

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1<br />

9 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1<br />

10 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1<br />

11 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1<br />

12 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1<br />

13 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1<br />

14 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1<br />

15 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1<br />

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Main Effects and Two-Factor<br />

Interacti<strong>on</strong>s<br />

81


Nine Factor Example from a C<strong>on</strong>sumer Products<br />

Company<br />

Factor names and levels have been changed to protect c<strong>on</strong>fidentiality.


Note that both main<br />

effects and two-factor<br />

interacti<strong>on</strong>s are<br />

c<strong>on</strong>founded. Many<br />

models are c<strong>on</strong>founded<br />

leading to ambiguity<br />

and the need for followup<br />

experimentati<strong>on</strong>.<br />

Screening Results<br />

83


N<strong>on</strong>regular Alternative<br />

Data was c<strong>on</strong>structed similarly to the earlier six factor example.<br />

84


Main effects are not aliased.<br />

One two-factor<br />

interacti<strong>on</strong> is<br />

c<strong>on</strong>founded with others.<br />

Much less ambiguity<br />

and an easy prospect<br />

for augmentati<strong>on</strong>.<br />

Screening Analysis<br />

85


Plackett-Burman <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

• These are a relatively familiar class <str<strong>on</strong>g>of</str<strong>on</strong>g> resoluti<strong>on</strong> III design<br />

• The number <str<strong>on</strong>g>of</str<strong>on</strong>g> runs, N, need <strong>on</strong>ly be a multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

• N = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, …<br />

• The designs where N = 12, 20, 24, etc. are called<br />

n<strong>on</strong>geometric PB designs<br />

• The n<strong>on</strong>geometric deigns are n<strong>on</strong>regular designs<br />

86


Plackett-Burman <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

87


The Alias Matrix for the 12-run Plackett-<br />

Burman <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

88


A 12-Factor Example<br />

1 1 1 1 1 1 1 1 1 1 1 1 221.5032<br />

-1 1 -1 -1 1 1 1 1 -1 1 -1 1 213.8037<br />

-1 -1 1 -1 -1 1 1 1 1 -1 1 -1 167.5424<br />

1 -1 -1 1 -1 -1 1 1 1 1 -1 1 232.2071<br />

1 1 -1 -1 1 -1 -1 1 1 1 1 -1 186.3883<br />

-1 1 1 -1 -1 1 -1 -1 1 1 1 1 210.6819<br />

-1 -1 1 1 -1 -1 1 -1 -1 1 1 1 168.4163<br />

-1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 180.9365<br />

-1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 172.5698<br />

1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 181.8605<br />

-1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 202.4022<br />

1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 186.0079<br />

-1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 216.4375<br />

1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 192.4121<br />

1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 224.4362<br />

1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 190.3312<br />

1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 228.3411<br />

-1 1 1 1 1 -1 1 -1 1 -1 -1 -1 223.6747<br />

-1 -1 1 1 1 1 -1 1 -1 1 -1 -1 163.5351<br />

1 -1 -1 1 1 1 1 -1 1 -1 1 -1 236.5124<br />

This is a 20-run Plackett-Burman design.<br />

It is a n<strong>on</strong>regular design<br />

89


Stepwise Regressi<strong>on</strong> Analysis<br />

91


The data for the example came from a simulati<strong>on</strong> model:<br />

y = + 8x 1 + 10x 2 + 12x 4 - 12x 1 x 2 + 9x 1 x 4 +<br />

All model terms were correctly identified.<br />

Estimated parameters are very close to<br />

the actual values<br />

One n<strong>on</strong>-significant factor (X 5 ) was<br />

identified – a type I error<br />

Type I errors in screening experiments<br />

are less <str<strong>on</strong>g>of</str<strong>on</strong>g> a problem than Type II errors.<br />

92


Alias Optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

One criticism <str<strong>on</strong>g>of</str<strong>on</strong>g> variance optimal designs (D, I and G) is that they<br />

focus all the effort <strong>on</strong> precise estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e model.<br />

In particular, there is no attenti<strong>on</strong> to possible aliasing <str<strong>on</strong>g>of</str<strong>on</strong>g> terms in<br />

this model by likely higher order terms.<br />

Example:<br />

In screening designs we want to get good estimates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

main effects but we do not want these estimates biased by<br />

two-factor interacti<strong>on</strong>s.


Embarrassing Problem Case<br />

Suppose we have 4 factors and want to generate an 8 run<br />

experiment.<br />

The classical design every<strong>on</strong>e would use is the resoluti<strong>on</strong> IV<br />

design that c<strong>on</strong>founds factor 4 with the 123 interacti<strong>on</strong>.<br />

Yet, any orthog<strong>on</strong>al 2-level design is optimal for the main effect<br />

model.<br />

Dem<strong>on</strong>strati<strong>on</strong> in JMP


A New Optimality Criteri<strong>on</strong><br />

Recently J<strong>on</strong>es and Nachtsheim proposed a new criteri<strong>on</strong> that<br />

addresses this c<strong>on</strong>cern.<br />

Their designs minimize the squared norm <str<strong>on</strong>g>of</str<strong>on</strong>g> the alias matrix<br />

subject to a lower bound c<strong>on</strong>straint <strong>on</strong> the D-efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

design.<br />

Their results are impressive and provide a safer approach to<br />

screening design for novice investigators.


Reactor Case Study<br />

Box, Hunter and Hunter (2005) p. 260 present the results <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

reactor study that was a full factorial design with 5 factors at 2<br />

levels each.<br />

Suppose that they had run a 12 run screening experiment instead.<br />

The D-optimal design is the orthog<strong>on</strong>al 12 run design that is<br />

isomorphic to the Plackett-Burman design.<br />

We will compare the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> this design with the alias<br />

optimal design.


Robust Screening <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

Engineers <str<strong>on</strong>g>of</str<strong>on</strong>g>ten prefer designs for quantitative factors to have three<br />

levels. Yet the most familiar screening designs are two-level designs.<br />

Robust screening designs are three-level designs for quantitative<br />

factors with some very nice properties.


Robust Screening <str<strong>on</strong>g>Design</str<strong>on</strong>g> Properties<br />

1. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> required runs is <strong>on</strong>ly <strong>on</strong>e more than twice the number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors.<br />

2. Unlike resoluti<strong>on</strong> III designs, main effects are completely independent <str<strong>on</strong>g>of</str<strong>on</strong>g> two-factor<br />

interacti<strong>on</strong>s. As a result, estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> main effects are not biased by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

active two-factor interacti<strong>on</strong>s, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> whether the interacti<strong>on</strong>s are included in the<br />

model.<br />

3. Unlike resoluti<strong>on</strong> IV designs, two-factor interacti<strong>on</strong>s are not completely c<strong>on</strong>founded with<br />

other two-factor interacti<strong>on</strong>s, although they may be correlated.<br />

4. Unlike resoluti<strong>on</strong> III, IV and V designs with added center points, all quadratic effects are<br />

estimable in models comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> any number <str<strong>on</strong>g>of</str<strong>on</strong>g> linear and quadratic main effects terms.<br />

5. Quadratic effects are orthog<strong>on</strong>al to main effects and not completely c<strong>on</strong>founded (though<br />

correlated) with interacti<strong>on</strong> effects.<br />

6. With six or more factors, the designs are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating all possible full quadratic<br />

models involving three or fewer factors.


Robust Screening <str<strong>on</strong>g>Design</str<strong>on</strong>g> Structure


Robust Screening <str<strong>on</strong>g>Design</str<strong>on</strong>g> JMP Example


The Case for N<strong>on</strong>-orthog<strong>on</strong>al <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

• Sometimes insisting <strong>on</strong> an orthog<strong>on</strong>al design is problematic<br />

• Suppose that we have five factors:<br />

– A is categorical at 5 levels<br />

– B is categorical at 4 levels<br />

– C is categorical at 3 levels<br />

– D & E are c<strong>on</strong>tinuous with 2 levels<br />

• A full factorial has 240 runs and is orthog<strong>on</strong>al<br />

• But would you really seriously c<strong>on</strong>sider running this<br />

experiment?


The Case for N<strong>on</strong>-orthog<strong>on</strong>al <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

• What about a <strong>on</strong>e-half fracti<strong>on</strong>?<br />

– 120 runs<br />

– Not orthog<strong>on</strong>al, but very close<br />

• What about a <strong>on</strong>e-quarter fracti<strong>on</strong>?<br />

– 60 runs<br />

– Not orthog<strong>on</strong>al, but close<br />

• The 30 run design isn’t orthog<strong>on</strong>al, but it’s close<br />

• We <strong>on</strong>ly need 11 degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom to estimate the main<br />

effects?<br />

• What can we do with 15 runs?


JMP Demo


References<br />

Hall, M. Jr. (1961). Hadamard matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> order 16. Jet Propulsi<strong>on</strong> Laboratory Research Summary, 1, 21–26.<br />

Johns<strong>on</strong>, M.E. and J<strong>on</strong>es, B., (2010) “Classical <str<strong>on</strong>g>Design</str<strong>on</strong>g> Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Orthog<strong>on</strong>al <str<strong>on</strong>g>Design</str<strong>on</strong>g>s with Six to Eight<br />

Factors and Sixteen Runs” accepted by Quality and Reliability Engineering Internati<strong>on</strong>al.<br />

J<strong>on</strong>es, B. and M<strong>on</strong>tgomery, D., (2010) “Alternatives to Resoluti<strong>on</strong> IV Screening <str<strong>on</strong>g>Design</str<strong>on</strong>g>s in 16 Runs.”<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental <str<strong>on</strong>g>Design</str<strong>on</strong>g> and Process Optimizati<strong>on</strong>, 2010; Vol. 1 No. 4: 285-295.<br />

J<strong>on</strong>es, B. and Nachtsheim, C. J. (2011) “A Class <str<strong>on</strong>g>of</str<strong>on</strong>g> Three-Level <str<strong>on</strong>g>Design</str<strong>on</strong>g>s for Definitive Screening in the<br />

Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Sec<strong>on</strong>d-Order Effects” accepted by Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Quality Technology.<br />

J<strong>on</strong>es, B. and Nachtsheim, C. J. (2011) “Efficient <str<strong>on</strong>g>Design</str<strong>on</strong>g>s with Minimal Aliasing” accepted by Technometrics<br />

Plackett, R. L., and Burman, J. P. (1946), “The <str<strong>on</strong>g>Design</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Optimum Multifactor <str<strong>on</strong>g>Experiments</str<strong>on</strong>g>,” Biometrika, 33,<br />

305–325.<br />

M<strong>on</strong>tgomery, D.C. (2009) “<str<strong>on</strong>g>Design</str<strong>on</strong>g> and Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Experiments</str<strong>on</strong>g>” 7 th Editi<strong>on</strong>, Wiley Hoboken, New Jersey.<br />

Sun, D. X., Li, W., and Ye, K. Q. (2002), “An Algorithm for Sequentially C<strong>on</strong>structing N<strong>on</strong>-Isomorphic<br />

Orthog<strong>on</strong>al <str<strong>on</strong>g>Design</str<strong>on</strong>g>s and Its Applicati<strong>on</strong>s,” Technical Report SUNYSB-AMS-02-13, State University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

New York at St<strong>on</strong>y Brook, Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Applied</strong> Mathematics and <strong>Statistics</strong>.<br />

104


Module 3 - C<strong>on</strong>clusi<strong>on</strong>s<br />

• The traditi<strong>on</strong>al approach to screening is to use regular fracti<strong>on</strong>al<br />

factorial designs.<br />

• Recent research in design has found alternative designs that<br />

are str<strong>on</strong>g competitors to these designs.<br />

• In any case where two-factor interacti<strong>on</strong>s are likely and you<br />

cannot afford to run a resoluti<strong>on</strong> V design, these new designs<br />

are preferred.


Module 4 - Blocking<br />

• Many experiments involve factors that affect the resp<strong>on</strong>se, but the<br />

experimenter isn’t really interested in them for the purposes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

system or process c<strong>on</strong>trol.<br />

• Sometimes these are called nuisance variables<br />

• Examples include batches <str<strong>on</strong>g>of</str<strong>on</strong>g> raw material, operators, and time<br />

(shift, day <str<strong>on</strong>g>of</str<strong>on</strong>g> week, etc)<br />

• Blocking is a design technique to separate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a nuisance<br />

factor from the other sources <str<strong>on</strong>g>of</str<strong>on</strong>g> variability.


Tire Wear Study<br />

• We have 4 brands <str<strong>on</strong>g>of</str<strong>on</strong>g> Tires<br />

– Michelin, C<strong>on</strong>tinental, Goodyear and Firest<strong>on</strong>e<br />

• We want to evaluate each brand with respect to tread wear<br />

using a road test<br />

• How should we design this study?<br />

• Let’s c<strong>on</strong>sider some possibilities…<br />

– We will use JMP to explore various possible plans.


Blocking<br />

• Blocking is a technique for dealing with nuisance factors<br />

• A nuisance factor is a factor that probably has some effect <strong>on</strong> the<br />

resp<strong>on</strong>se, but it’s <str<strong>on</strong>g>of</str<strong>on</strong>g> no interest to the experimenter…however, the<br />

variability it transmits to the resp<strong>on</strong>se needs to be c<strong>on</strong>trolled or<br />

minimized<br />

• Typical nuisance factors include batches <str<strong>on</strong>g>of</str<strong>on</strong>g> raw material, operators,<br />

pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> test equipment, time (shifts, days, etc.), different<br />

experimental units<br />

• Many industrial experiments involve blocking (or should)<br />

• Failure to block is a comm<strong>on</strong> flaw in designing an experiment<br />

(c<strong>on</strong>sequences?)


• The tire mileage experiment<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> blocking<br />

• Four brands <str<strong>on</strong>g>of</str<strong>on</strong>g> tires (Firest<strong>on</strong>e, Goodyear, C<strong>on</strong>tinental,<br />

Michelin)<br />

• Do the tires differ with respect to mean mileage performance?<br />

• Suppose that we have four cars available for the experiment<br />

• Let’s c<strong>on</strong>sider some possible designs


The randomized complete block design (RCBD) –<br />

using an optimal design tool<br />

• Every block c<strong>on</strong>tains a complete replicate <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment (all<br />

treatment combinati<strong>on</strong>s)<br />

• Blocks are orthog<strong>on</strong>al to treatments<br />

• This design completely removes the block effects from the<br />

treatment comparis<strong>on</strong>s<br />

• What about our “bad assumpti<strong>on</strong>s” about the wheel positi<strong>on</strong>s?


Variance<br />

0.4375<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

JMP Demo<br />

Predicti<strong>on</strong> Variance Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

Goodyear<br />

Michelin<br />

Firest<strong>on</strong>e<br />

Firest<strong>on</strong>e<br />

Tires<br />

C<strong>on</strong>tinental<br />

1<br />

2<br />

2<br />

3<br />

Cars<br />

4


Cars<br />

The Latin Square <str<strong>on</strong>g>Design</str<strong>on</strong>g> – Using an<br />

Optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Tool<br />

Wheel Positi<strong>on</strong>s<br />

RF RR LF LR<br />

1 F G C M<br />

2 M F G C<br />

3 C M F G<br />

4 G C M F<br />

What to do if you think wheel positi<strong>on</strong> could also matter.


The Latin Square <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

• This is also an orthog<strong>on</strong>al design<br />

• The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> both nuisance factors are balanced out<br />

• The Latin square is actually a fracti<strong>on</strong>al factorial, a 4 3-1<br />

• But we can find this design with an optimal design tool.


JMP Demo


Another Example <str<strong>on</strong>g>of</str<strong>on</strong>g> a Latin Square<br />

• The Latin square design can be used with more<br />

complex treatment structures.<br />

• The radar experiment (DOX 7E, DCM, 2009)<br />

– Two different filters<br />

– Three different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> ground clutter<br />

– Resp<strong>on</strong>se variable – intensity level at detecti<strong>on</strong><br />

– Nuisance variable (1) operators<br />

– Nuisance variable (2) we can <strong>on</strong>ly run 6 tests per day


Another Example <str<strong>on</strong>g>of</str<strong>on</strong>g> a Latin Square<br />

• The treatment structure is a factorial; 2 levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

factor and 3 levels <str<strong>on</strong>g>of</str<strong>on</strong>g> another.<br />

• Each replicate requires 2 x 3 = 6 runs.<br />

• The Latin square design will require 6 operators<br />

(easy to do; there are lots <str<strong>on</strong>g>of</str<strong>on</strong>g> operators)<br />

• Six test days will be required


Treatments for the 6 x 6 Latin square:<br />

A = f1g1<br />

B = f1g2<br />

C = f1g3<br />

D = f2g1<br />

E = f2g2<br />

F = f2g3<br />

where fi = filter type i, g1 = ground clutter low, g2 =<br />

ground clutter medium and g3 = ground clutter high


In general, if there are p treatment combinati<strong>on</strong>s in the factorial<br />

design, a p x p Latin square will be required to handle the two<br />

nuisance factors


JMP Demo


Back to tire testing<br />

• Suppose that we have more tire brands, say seven brands<br />

• What do we do now?<br />

• Can we find cars with seven wheel positi<strong>on</strong>s?<br />

• Balanced incomplete block designs<br />

• Widely used in agricultural experiments


Predicti<strong>on</strong><br />

Variance<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

JMP Demo<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Design</str<strong>on</strong>g> Space Plot<br />

0.0<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Space


Module 4 – Summary<br />

• Most design problems have factors that are ripe for use as<br />

blocking variables.<br />

• Ignoring these variables can make it hard to detect the real<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trol factors due to the inflati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the error<br />

variance from the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the blocking factor.<br />

• Traditi<strong>on</strong>al blocking structures are also optimal.<br />

• These structures can be reproduced using optimal design<br />

algorithms.<br />

• However, these algorithms also work in situati<strong>on</strong>s where n<strong>on</strong>standard<br />

block and/or sample sizes are required.


DOE Course – Module 5<br />

<str<strong>on</strong>g>Design</str<strong>on</strong>g>ed Split-plot <str<strong>on</strong>g>Experiments</str<strong>on</strong>g><br />

Goals<br />

1. Introduce the idea behind split-plot experiments.<br />

2. Develop a model for the design <str<strong>on</strong>g>of</str<strong>on</strong>g> split-plot experiments.<br />

3. Compare random blocked to split-plot experiments.<br />

4. Provide an example <str<strong>on</strong>g>of</str<strong>on</strong>g> a split-plot experiment.


Split-plot Graphic Definiti<strong>on</strong>


Split-plot Definiti<strong>on</strong><br />

A split-plot experiment is a blocked experiment, where the<br />

blocks themselves serve as experimental units for a<br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> the factors.<br />

J<strong>on</strong>es, B. and Nachtsheim, C. (2009) “Split-plot <str<strong>on</strong>g>Design</str<strong>on</strong>g>s: What, Why and How”<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Quality Technology, Vol. 41 #4


Model for Split-plot <str<strong>on</strong>g>Experiments</str<strong>on</strong>g><br />

Estimator for


Split-plot versus Random Blocks<br />

1. Split-Plot <str<strong>on</strong>g>Design</str<strong>on</strong>g>s are a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> Random<br />

Block design.<br />

2. The difference is that in split-plot designs, certain<br />

factors (the “whole plot” factors) do not change<br />

within the blocks but <strong>on</strong>ly between blocks.<br />

3. In ordinary random block designs, all the factors<br />

may change within each block.


General procedure<br />

Split-plot <str<strong>on</strong>g>Design</str<strong>on</strong>g> Set Up


Split-plot <str<strong>on</strong>g>Design</str<strong>on</strong>g> Objective Functi<strong>on</strong>s<br />

D-optimality<br />

Criteri<strong>on</strong><br />

I-optimality<br />

Criteri<strong>on</strong>


Scenario<br />

1. Four factors<br />

Split-Plot Example<br />

2. Two are hard-to-change and two are easy-to-change<br />

3. Hard-to-change factor design can <strong>on</strong>ly have 10 runs.<br />

4. Budget <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 runs for the full design.


Factor Table


Ad hoc <str<strong>on</strong>g>Design</str<strong>on</strong>g> #1


Ad hoc <str<strong>on</strong>g>Design</str<strong>on</strong>g> #2


I-optimal Split-Plot <str<strong>on</strong>g>Design</str<strong>on</strong>g>


Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Coefficient Variances<br />

Left column is for ad hoc design #2, right column is for I-optimal split-plot design.


OLS vs GLS Data Analysis<br />

OLS Analysis GLS Analysis


Module 5 – Summary<br />

1. Split-plot designs are comm<strong>on</strong> in industry.<br />

2. They are not comm<strong>on</strong>ly recognized as being split-plot designs.<br />

3. As a result, these designs are mistakenly analyzed using OLS.<br />

4. Explicitly, taking randomizati<strong>on</strong> restricti<strong>on</strong>s into account makes the<br />

design process more ec<strong>on</strong>omical, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten more statistically efficient<br />

and more likely to produce valid analytical results.


Module 6 – Introducti<strong>on</strong> to RSM<br />

• Define RSM<br />

• Introduce the standard RSM model<br />

• Illustrate coordinate exchange algorithm


The Resp<strong>on</strong>se Surface Framework for<br />

Industrial Experimentati<strong>on</strong><br />

• Resp<strong>on</strong>se Surface Methods (RSM) are a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical<br />

and statistical design/model building techniques useful for developing,<br />

improving, and optimizing systems<br />

• RSM employs a sequential strategy to explore the relati<strong>on</strong>ship between<br />

the resp<strong>on</strong>se variables <str<strong>on</strong>g>of</str<strong>on</strong>g> interest and the independent variables in the<br />

process<br />

• RSM dates from the late 1940s<br />

• Mechanistic Models versus Empirical Models<br />

• The resp<strong>on</strong>se surface and the associated c<strong>on</strong>tour plot - refer to Figure<br />

1.1, pg. 2 (RSM 2009, Myers, M<strong>on</strong>tgomery & Anders<strong>on</strong>-Cook)


E(y) = f( )<br />

The resp<strong>on</strong>se surface<br />

The c<strong>on</strong>tour plot


Resp<strong>on</strong>se Surface Methodology<br />

• The physical mechanism is almost always unknown and must<br />

be approximated, usually with a low-order polynomial<br />

• Polynomial approximati<strong>on</strong>:<br />

• first-order model<br />

• sec<strong>on</strong>d-order model<br />

y 0 1x1 2x2 2 2<br />

y 0 1x1 2x2 12x1 x2 11x1 22x2 • Once the approximating model is fit, optimum c<strong>on</strong>diti<strong>on</strong>s are<br />

determined


Resp<strong>on</strong>se Surface Methodology<br />

• Why do we use sec<strong>on</strong>d-order models in<br />

RSM?<br />

• They are flexible<br />

• It is easy to estimate the parameters<br />

• There is a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> empirical evidence that they work<br />

• Philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> using low-order<br />

polynomials is based <strong>on</strong> a Taylor series<br />

analogy


C<strong>on</strong>fidence Intervals (Page 36)<br />

CI <strong>on</strong> individual model parameter:<br />

b t se( b ) b t se( b )<br />

j / 2, n p j j j / 2, n p j<br />

Joint c<strong>on</strong>fidence regi<strong>on</strong> <strong>on</strong> model parameters:<br />

(b - β) X X(b - β)<br />

F<br />

Elliptically-shaped regi<strong>on</strong><br />

, p, n p<br />

pMS<br />

E<br />

Tricky to c<strong>on</strong>struct<br />

C<strong>on</strong>ceptually very useful


CI <strong>on</strong> the mean resp<strong>on</strong>se at a point <str<strong>on</strong>g>of</str<strong>on</strong>g> interest:<br />

x<br />

[1, x , x , , x ]<br />

0 01 02 0k<br />

yˆ(<br />

x ) x b<br />

0 0<br />

V[ yˆ(<br />

x )] x (X X) x<br />

2 1<br />

0 0 0<br />

The CI is:<br />

0<br />

Point <str<strong>on</strong>g>of</str<strong>on</strong>g> interest – not<br />

necessarily a design point<br />

Estimate (unbiased) <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean<br />

resp<strong>on</strong>se at the point <str<strong>on</strong>g>of</str<strong>on</strong>g> interest<br />

Variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the mean<br />

resp<strong>on</strong>se at the point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest<br />

yˆ ( x ) t ˆ x (X X) x yˆ ( x ) t ˆ x (X X) x<br />

2 1 2 1<br />

0 / 2, n p 0 0 y| x 0 / 2, n p 0 0<br />

Mean resp<strong>on</strong>se at the point <str<strong>on</strong>g>of</str<strong>on</strong>g> interest


The Sequential Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> RSM<br />

Phases <str<strong>on</strong>g>of</str<strong>on</strong>g> an RSM Study:<br />

– Factor screening (phase zero)<br />

– Seeking the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the optimum (phase 1)<br />

– Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimum c<strong>on</strong>diti<strong>on</strong>s (phase 2)


Three Typical Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> RSM<br />

• Mapping a resp<strong>on</strong>se surface over a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest<br />

• Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se<br />

• Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> operating c<strong>on</strong>diti<strong>on</strong>s to achieve<br />

specificati<strong>on</strong>s or customer requirements<br />

– May not corresp<strong>on</strong>d to a stati<strong>on</strong>ary point <strong>on</strong> the resp<strong>on</strong>se surface<br />

– This <str<strong>on</strong>g>of</str<strong>on</strong>g>ten involves multiple resp<strong>on</strong>ses


• “Classical” RSM problem<br />

RSM Applicati<strong>on</strong>s<br />

• Product formulati<strong>on</strong> or mixture problems<br />

• “Robust parameter design” or RPD problem<br />

– How to select the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> a system so as to make the<br />

resp<strong>on</strong>se insensitive to factors that are difficult to c<strong>on</strong>trol<br />

– Process robustness studies


Useful References <strong>on</strong> RSM<br />

• Box, G.E.P. and Wils<strong>on</strong>, K.B. (1951), “On the Experimental<br />

Attainment <str<strong>on</strong>g>of</str<strong>on</strong>g> Optimum C<strong>on</strong>diti<strong>on</strong>s”, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Statistical<br />

Society B, Vol. 13, pp. 1-45<br />

• Myers, R.H., M<strong>on</strong>tgomery, D.C. and Anders<strong>on</strong>-Cook (2009),<br />

Resp<strong>on</strong>se Surface Methodology, 3 rd editi<strong>on</strong>, Wiley, NY<br />

• M<strong>on</strong>tgomery, D. C. (2009), <str<strong>on</strong>g>Design</str<strong>on</strong>g> and Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Experiments</str<strong>on</strong>g>, 7 th<br />

editi<strong>on</strong>, Wiley, NY<br />

• Myers, R. H., M<strong>on</strong>tgomery, D. C., Vining, G. G., Borror, C. M., and<br />

Kowalski, S. M. (2004), “Resp<strong>on</strong>se Surface Methodology: A<br />

Retrospective and Literature Survey”, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Quality Technology,<br />

Vol. 36, No. 1, pp. 53-77.


<str<strong>on</strong>g>Design</str<strong>on</strong>g>s for the Sec<strong>on</strong>d-Order RS Model<br />

• The basic RSM sec<strong>on</strong>d-order designs<br />

– The central composite design (CCD)<br />

– The Box-Behnken design (BBD)<br />

• These designs are very useful in “standard” RSM settings<br />

– The regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest is either a cube or a sphere<br />

– No significant restricti<strong>on</strong>s <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> runs


Categorical and C<strong>on</strong>tinuous Variables in RSM<br />

• Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the work in RSM and RSM designs assume that all<br />

design factors are c<strong>on</strong>tinuous<br />

• There are situati<strong>on</strong>s where a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous and<br />

categorical are encountered<br />

• There are no standard designs for these situati<strong>on</strong>s<br />

• Optimal designs are very appropriate here


Module 6 - Summary<br />

• RSM is all about predicti<strong>on</strong> and optimizati<strong>on</strong>.<br />

• This naturally leads to minimizing the average variance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

predicti<strong>on</strong> as an appropriate design criteri<strong>on</strong> (I-optimality)<br />

• In many practical applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> RSM, the structure and<br />

c<strong>on</strong>straints <str<strong>on</strong>g>of</str<strong>on</strong>g> the problem make it impossible to use traditi<strong>on</strong>al<br />

RSM designs. In such cases, an optimal design approach is<br />

useful.


Goals<br />

Module 7 – RSM with Factor C<strong>on</strong>straints<br />

1. Explain the practical need for RSM designs when there are<br />

c<strong>on</strong>straints <strong>on</strong> the design factors<br />

2. Provide an example <str<strong>on</strong>g>of</str<strong>on</strong>g> inequality c<strong>on</strong>straints<br />

3. Give an example for avoiding infeasible factor<br />

combinati<strong>on</strong>s


Situati<strong>on</strong>s where Standard <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

may not be Appropriate<br />

• C<strong>on</strong>straints <strong>on</strong> the design regi<strong>on</strong><br />

• N<strong>on</strong>standard model<br />

• Unusual sample size or blocking requirements<br />

In these situati<strong>on</strong>s computer-generated<br />

or “optimal” designs are useful


A problem with a c<strong>on</strong>strained design regi<strong>on</strong> –<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesive and cure temperature<br />

Page 391 & 392


How would we design an experiment for this problem?<br />

• “Force” a standard design into the experimental regi<strong>on</strong><br />

– May lead to a case <str<strong>on</strong>g>of</str<strong>on</strong>g> the “square peg and the round hole”<br />

• Generate a unique design just for this particular situati<strong>on</strong><br />

– Need criteria for c<strong>on</strong>structing the design<br />

– Computer implementati<strong>on</strong> essential


JMP Default RSM <str<strong>on</strong>g>Design</str<strong>on</strong>g>


<str<strong>on</strong>g>Design</str<strong>on</strong>g> Comparis<strong>on</strong><br />

2 reps<br />

D-optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Points I-optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Points


<str<strong>on</strong>g>Design</str<strong>on</strong>g> Comparis<strong>on</strong> c<strong>on</strong>t.<br />

D-optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Variance Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles I-optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Variance Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile


Infeasible Factor Combinati<strong>on</strong>s<br />

Especially when there are categorical factors with multiple<br />

levels, it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten the case that certain factor combinati<strong>on</strong>s<br />

are either infeasible or even impossible to run.<br />

For example the Navy attack aircraft, A4, could not operate<br />

at night. The A6 was able to operate day or night. Suppose<br />

you want to run an experiment with both aircraft testing three<br />

different weap<strong>on</strong> systems under varying light c<strong>on</strong>diti<strong>on</strong>s.<br />

How can we accomplish this given the problem with the A4<br />

not being able to fly at night?


Module 7 - Summary<br />

• C<strong>on</strong>straints <strong>on</strong> design factors, unusual blocking requirements,<br />

and n<strong>on</strong>-standard models are comm<strong>on</strong> in RSM<br />

• Optimal designs are a logical way to solve these problems.<br />

• Objective is to use a design that is customized to the specific<br />

problem


• Goals<br />

Module 8 – Robust <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

– Introduce the robust design problem<br />

– Illustrate c<strong>on</strong>trol factor and noise factors<br />

– Show how to model the variability transmitted from noise<br />

factors<br />

– Illustrate how to achieve robustness – trading <str<strong>on</strong>g>of</str<strong>on</strong>g>f mean<br />

performance and transmitted variance


Robust Parameter <str<strong>on</strong>g>Design</str<strong>on</strong>g> and Process<br />

Robustness Studies<br />

• Origins <str<strong>on</strong>g>of</str<strong>on</strong>g> the RPD problem<br />

• Taguchi and the American Supplier Institute<br />

• RPD – proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trollable factors to achieve<br />

robustness, or insensitivity to changes in unc<strong>on</strong>trollable<br />

noise variables<br />

– C<strong>on</strong>trol factors<br />

– Noise factors – these are factors that are unc<strong>on</strong>trollable in the<br />

system but c<strong>on</strong>trollable for purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> a test<br />

• An RPD problem in a manufacturing process is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called<br />

a process robustness study


Example <str<strong>on</strong>g>of</str<strong>on</strong>g> Noise Factors


The Resp<strong>on</strong>se Surface Approach<br />

Secti<strong>on</strong> 11.4, page 552<br />

Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>trol-by-noise<br />

factor interacti<strong>on</strong>s<br />

Both factors A<br />

and B have<br />

dispersi<strong>on</strong><br />

effects and<br />

locati<strong>on</strong> effects


A Modeling Approach that Includes both C<strong>on</strong>trol Variables and Noise<br />

Variables<br />

Temperature, z, is<br />

the noise variable<br />

Combined array<br />

design<br />

The x’s are the<br />

c<strong>on</strong>trol variables


Filtrati<strong>on</strong> Robust Processing Example


• Factors<br />

1. Filter Type<br />

2. Ground Clutter<br />

3. Operator<br />

Radar Experiment<br />

The last two factors are noise factors…


JMP Demo


Module 8 - Summary<br />

• By running an experiment that places both c<strong>on</strong>trol and noise<br />

factors in the same design matrix we can develop a model for<br />

both the mean resp<strong>on</strong>se and the transmitted variance<br />

• In many cases it is possible to find settings for the c<strong>on</strong>trol<br />

factors that reduce or even minimize the variability transmitted<br />

from the noise factors<br />

• Optimal designs are good choices for the robust design problem<br />

• Modern s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware makes this easy


• Goals<br />

Module 9 Mixture <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

– Introduce mixture experiments<br />

– <str<strong>on</strong>g>Design</str<strong>on</strong>g> regi<strong>on</strong> for mixtures<br />

– Mixture models<br />

– C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mixture designs<br />

– Applicati<strong>on</strong>s


<str<strong>on</strong>g>Experiments</str<strong>on</strong>g> with Mixtures<br />

• A mixture experiment is a special type <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se<br />

surface experiment where<br />

– The design factors are the comp<strong>on</strong>ents or ingredients <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

mixture<br />

– The resp<strong>on</strong>se depends <strong>on</strong> the proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the ingredients<br />

present<br />

• The basic mixture c<strong>on</strong>straint:<br />

x1 x2 ... xq<br />

1


Mixtures occur in lots <str<strong>on</strong>g>of</str<strong>on</strong>g> settings<br />

• Manufacturing – plasma etching in semic<strong>on</strong>ductor<br />

manufacturing<br />

• Product formulati<strong>on</strong><br />

– Paints, coatings, other industrial products<br />

– Pers<strong>on</strong>al care and commercial products<br />

– Pharmaceuticals<br />

– Food & beverages<br />

• Fruit juices, or finding the perfect Bordeaux blend


Mixture experiments involve a c<strong>on</strong>strained regi<strong>on</strong>


Simplex <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

Simplex <str<strong>on</strong>g>Design</str<strong>on</strong>g>s are Optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g>s


C<strong>on</strong>straints <strong>on</strong> the mixture comp<strong>on</strong>ents are comm<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten in the<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> lower and upper bounds <strong>on</strong> comp<strong>on</strong>ent proporti<strong>on</strong>s<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>straints is to alter the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the original<br />

simplex regi<strong>on</strong><br />

If there are <strong>on</strong>ly lower bounds, the simplex designs shown previously<br />

will still work<br />

If there are both lower and upper bounds, simplex designs will not work<br />

for these types <str<strong>on</strong>g>of</str<strong>on</strong>g> problems


An experiment involving<br />

shampoo formulati<strong>on</strong><br />

There are upper and<br />

lower bounds <strong>on</strong> each<br />

comp<strong>on</strong>ent proporti<strong>on</strong><br />

The resp<strong>on</strong>se variable is<br />

foam height<br />

The experiment involves a<br />

c<strong>on</strong>strained design regi<strong>on</strong><br />

An optimal design<br />

c<strong>on</strong>structed by computer is a<br />

good choice


An example: formulating the optimum threecomp<strong>on</strong>ent<br />

beverage<br />

The c<strong>on</strong>straints <strong>on</strong> the comp<strong>on</strong>ent proporti<strong>on</strong>s are:<br />

x<br />

1<br />

0.<br />

3<br />

0.<br />

1<br />

x<br />

2<br />

x<br />

x<br />

1<br />

2<br />

x<br />

3<br />

0.<br />

9<br />

0.<br />

7<br />

The resp<strong>on</strong>se variable is a rating, where the taster<br />

compares each blend to a “reference” blend and 0 - 4<br />

indicates a blend that is inferior to the reference while 6<br />

-10 indicates a blend that is superior<br />

1


Makeup <str<strong>on</strong>g>of</str<strong>on</strong>g> an Aircraft Carrier Air Wing<br />

• The air wing is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> at least 6 aircraft types<br />

– Attack aircraft (bombers, like F/A-18)<br />

– Fighters (CAP, RESCAP, etc, like F-35)<br />

– Helos (SH-60, SAR, plane guard, etc)<br />

– ASW (S-3)<br />

– Ship-to-shore (think the C-2)<br />

– Electr<strong>on</strong>ics (E-2C, EA-6B)<br />

• Space is limited – you can <strong>on</strong>ly have a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 85 aircraft <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all types<br />

• A computer simulati<strong>on</strong> model will be used to evaluate combat<br />

effectiveness for different air wing c<strong>on</strong>figurati<strong>on</strong>s


Mixture C<strong>on</strong>straints:<br />

X attack, X 25<br />

1 1<br />

X fighters, X 25<br />

2 2<br />

X helos, X 10<br />

3 3<br />

X ASW, 8 X 20<br />

4 4<br />

X ship-to-shore, 1 X 4<br />

5 5<br />

X electr<strong>on</strong>ics, 10 X 20<br />

6 6<br />

X X X X X X<br />

1 2 3 4 5 6<br />

85


Mixtures in JMP<br />

Ternary Plot<br />

.1<br />

X1<br />

.2<br />

.3<br />

.9<br />

.4<br />

.5<br />

.8<br />

.6<br />

.7<br />

.7<br />

.8<br />

.9<br />

X2<br />

.6<br />

.5<br />

.1<br />

.2<br />

.4<br />

.3<br />

.4<br />

.3<br />

.5<br />

.6<br />

.2<br />

.7<br />

.8<br />

.1<br />

.9<br />

X3<br />

1<br />

3<br />

5<br />

7<br />

9


Module 9 - Summary<br />

• Mixture experiments are just a special type <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se<br />

surface experiment<br />

• Mixture experiments involve a c<strong>on</strong>strained design regi<strong>on</strong><br />

which will always require a custom design<br />

• Mixture experiments occur in many settings – <strong>on</strong>ce you<br />

know about mixtures you will be surprised at how comm<strong>on</strong><br />

they are


• Goals<br />

Module 10 – Covering Arrays<br />

1. Introduce covering array c<strong>on</strong>cept<br />

2. Dem<strong>on</strong>strate their efficiency for detecting failure c<strong>on</strong>diti<strong>on</strong>s<br />

3. Provide examples <str<strong>on</strong>g>of</str<strong>on</strong>g> their use


Scenario<br />

Suppose we are testing a system with 10 comp<strong>on</strong>ents.<br />

For simplicity, let each comp<strong>on</strong>ent have two settings.<br />

(This c<strong>on</strong>straint can be relaxed)<br />

We want to make sure that each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents has all 4 possible<br />

combinati<strong>on</strong>s tested.<br />

We want to perform as few system tests as possible.<br />

(Guess the minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> necessary tests)<br />

Note: it is not necessary to fit a model – just dem<strong>on</strong>strate that pairwise<br />

combinati<strong>on</strong>s work


Covering Array Definiti<strong>on</strong><br />

A covering array CA(N; t, k, v) is an N<br />

k array such that the i-th column c<strong>on</strong>tains<br />

v distinct symbols. If a CA(N; t, k, v) has the property that for any t coordinate<br />

projecti<strong>on</strong>, all v t combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> symbols exist, then it is a t-covering array (or<br />

strength t covering array). A t-covering array is optimal if N is minimal for fixed t, k,<br />

and v.<br />

N is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> tests. (find minimum N)<br />

k is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors. (k=10)<br />

t is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors such that all t-factor combinati<strong>on</strong>s are tested. (t=2)<br />

v is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> each factor. (v=2)


Minimum Covering Array<br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> a covering array is the covering array number<br />

CAN(t, k, v),<br />

CAN(t, k, v) = min{N: ∃CA(N; t, k, v)}.<br />

The minimum covering array is the covering array<br />

with the fewest runs.<br />

For (t,k,v)=(2,10,2), N = 6!


Covering arrays<br />

1 1 1 1 1<br />

2 2 2 2 2<br />

2 2 2 1 1<br />

2 1 1 2 2<br />

1 2 1 2 1<br />

1 1 2 1 2<br />

CA(6:2,5,2)<br />

Do these have the fewest possible runs?<br />

1 1 1 1 1<br />

1 1 2 1 1<br />

1 2 1 1 2<br />

1 2 2 1 2<br />

2 1 1 2 1<br />

2 1 2 2 1<br />

2 2 1 2 2<br />

2 2 2 2 2<br />

1 1 1 2 2<br />

2 2 1 1 1<br />

2 1 2 1 2<br />

1 2 2 2 1<br />

CA(12:3,5,2)


Covering arrays and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware testing<br />

Let foo(m,n,p,q) denote a s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

system with four input parameters each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which has two possible values 1, 2.<br />

Thorough testing would require a test case<br />

for each point in the input space (i.e. 16 test<br />

cases).<br />

What if you can <strong>on</strong>ly afford 8 (or fewer) test<br />

cases?<br />

1 1 1 1<br />

1 1 1 2<br />

1 1 2 1<br />

1 1 2 2<br />

1 2 1 1<br />

1 2 1 2<br />

1 2 2 1<br />

1 2 2 2<br />

2 1 1 1<br />

2 1 1 2<br />

2 1 2 1<br />

2 1 2 2<br />

2 2 1 1<br />

2 2 1 2<br />

2 2 2 1<br />

2 2 2 2


Covering arrays and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware testing<br />

m n p q<br />

1 1 1 1<br />

1 1 1 2<br />

1 1 2 1<br />

1 1 2 2<br />

1 2 1 1<br />

1 2 1 2<br />

1 2 2 1<br />

1 2 2 2<br />

2 1 1 1<br />

2 1 1 2<br />

2 1 2 1<br />

2 1 2 2<br />

2 2 1 1<br />

2 2 1 2<br />

2 2 2 1<br />

2 2 2 2<br />

//Example 1<br />

if(m==2 //Example & 1 p==1 & q==2, 1 1 1 1<br />

if(m==2 //stuff & p==1 & q==2, 1 1 2 2<br />

write("n=",n),<br />

...<br />

1 2 1 2<br />

); //other stuff 1 2 2 1<br />

write("m=",m," n=",n," 2 1 p=",p," 1 2<br />

q=",q) //Example 2<br />

2 1 2 1<br />

); if(m==2 & p==1,<br />

2 2 1 1<br />

...<br />

2 2 2 2<br />

//Example )<br />

2<br />

if(m==2 & p==1,<br />

All 1, 2, 3-way plus 50% 4-way<br />

interacti<strong>on</strong>s.<br />

//stuff<br />

write("n=",n," q=",q),<br />

CA(8; 3, 4, 2),<br />

1 1 1 1<br />

//other stuff CAN(3, 4, 2) = 8<br />

1 2 2 2<br />

write("m=",m," n=",n," p=",p,"<br />

2 1 2 2<br />

q=",q)<br />

All 1, 2-way plus 63% 3-way, 31% 4-way<br />

2 2 1 2 interacti<strong>on</strong>s.<br />

)<br />

2 2 2 1 CA(5; 2, 4, 2), CAN(2, 4, 2) = 5


Example - Air to ground missile system<br />

C<strong>on</strong>sider a s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware system c<strong>on</strong>trolling the state <str<strong>on</strong>g>of</str<strong>on</strong>g> an air to ground<br />

missile (Dalal & Mallows). The inputs are:<br />

Altitude Roll<br />

Attack angle Yaw<br />

Bank angle Ambient Temperature<br />

Speed Pressure<br />

Pitch Wind Velocity<br />

Challenge: We are interested in deriving test cases to effectively<br />

assess “...resp<strong>on</strong>se during attack maneuvering.”


Example - Air to ground missile system<br />

Suppose we know the maximum and minimum values for each<br />

input. Thus, we could choose to have a set <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence classes,<br />

each corresp<strong>on</strong>ding to the range <str<strong>on</strong>g>of</str<strong>on</strong>g> an input.<br />

Note: This is equivalence partiti<strong>on</strong>ing.<br />

Select the maximum and minimum as two representative values for<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10 input parameters and denote these values by the<br />

symbols 1, 2 respectively.


Example - Air to ground missile system<br />

For complete coverage, we would need to do 2 10 = 1024 system<br />

tests. This is clearly not feasible.<br />

Can covering arrays help?<br />

Of course!<br />

JMP Demo <str<strong>on</strong>g>of</str<strong>on</strong>g> Air to Ground system test.


CA(N:2,k,2) Results<br />

k 2-3 4 5-10 11-15 16-35 36-56 57-126 ... 1717-2000<br />

N 4 5 6 7 8 9 10 ... 15


JMP Card Trick #1


References<br />

• R. Brownlie, J. Prowse, & M. S. Padke. Robust testing <str<strong>on</strong>g>of</str<strong>on</strong>g> AT&T PMX/StarMAIL using OATS. AT&T<br />

Technical Journal, 71(3), 1992, pp 41-47.<br />

• D. M. Cohen, S. R. Dalal, M. L. Fredman, & G. C. Patt<strong>on</strong>, “The AETG System: An approach to testing<br />

based <strong>on</strong> Combinatorial <str<strong>on</strong>g>Design</str<strong>on</strong>g>,” IEEE TSE, 23(7), 1997, pp 437-444.<br />

• D. M. Cohen, S. R. Dalal, J. Parelius, & G. C. Patt<strong>on</strong>, “The combinatorial design approach to<br />

automatic test generati<strong>on</strong>,” IEEE S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, 13(5), 1996, pp 83-88.<br />

• S. R. Dalal, A. J. Karunanithi, J. M. Leat<strong>on</strong>, G. C. Patt<strong>on</strong>, & B. M. Horowitz, “Model-based testing in<br />

practice,” Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 21 st ICSE, New York, 1999, pp 285-294.<br />

• S. R. Dalal & C. L. Mallows, “Factor-covering designs for testing s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware,” Technometrics, 40(3),<br />

1998, pp 234-243.<br />

• I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, & A. Iannino, “Applying design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiments to s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware testing,” Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 19 th ICSE, New York, 1997, pp 205-215.<br />

• M. Grindal, J. Offutt, & J. Mellin, “Handling C<strong>on</strong>straints in the Input Space when Using Combinati<strong>on</strong><br />

Strategies for S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Testing,” School <str<strong>on</strong>g>of</str<strong>on</strong>g> Humanities and Informatics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Skovde,<br />

Technical Report HS-IKI-TR-06-001, 2006.<br />

• B. Hailpern & P. Santhanam, “S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Debugging, Testing, and Verificati<strong>on</strong>,” IBM Systems Journal,<br />

41(1), 2002.


References<br />

• A. Hartman & L. Raskin, “Problems and algorithms for covering arrays,” Discrete Math, 284(1–3),<br />

2004, pp 149–156.<br />

• R. Mandl, “Orthog<strong>on</strong>al latin squares: an applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment design to compiler testing,”<br />

Communicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the ACM, 28(10), 1985, pp1054-1058.<br />

• J. A. Morgan, G. J. Knafl, & W. E. W<strong>on</strong>g, “Predicting Fault Detecti<strong>on</strong> Effectiveness,” Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 4 th ISSM, 1997, pp 82-90.<br />

• G. J. Myers, The Art <str<strong>on</strong>g>of</str<strong>on</strong>g> S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Testing, Wiley, 1979.<br />

• N. J. A. Sloane, “Covering Arrays and Intersecting Codes,” J. Combinatorial <str<strong>on</strong>g>Design</str<strong>on</strong>g>s, 1(1), 1993, pp<br />

51-63.<br />

• M. Utting, A. Pretschner, & B. Legeard, “A Tax<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> Model-Based Testing,” The University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Waikato, New Zealand, Technical Report 04/06, 2006.<br />

• A. L. Williams & R. L. Probert, “A practical strategy for testing pairwise coverage at network<br />

interfaces,” Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 7 th ISSRE, Los Alamitos, 1996.<br />

• W. E. W<strong>on</strong>g, J. R. Horgan, S. L<strong>on</strong>d<strong>on</strong>, & A. P. Mathur, “Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Test Set Size and Block Coverage <strong>on</strong><br />

the Fault Detecti<strong>on</strong> Effectiveness,” Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> the 5 th ISSRE, M<strong>on</strong>terey, 1994, pp 230-238.


Module 10 - Summary<br />

• Covering arrays are the most efficient way to test all possible<br />

pairwise combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> any number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors<br />

• Covering arrays are useful in s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware and system testing to<br />

assure that no pair <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s will lead to a failure.<br />

• Covering arrays can also be c<strong>on</strong>structed that protect against<br />

triples or higher order combinati<strong>on</strong>s but these require more<br />

runs.<br />

• JMP has state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art tools for creating covering arrays.


Goals<br />

Module 11 – Supersaturated <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

1. Introduce the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> supersaturated designs<br />

2. Show the theory for c<strong>on</strong>structing them.<br />

3. Give an example.


199<br />

What is a supersaturated design?<br />

Supersaturated designs have more factors than runs.<br />

This may seem laughable…


200


201<br />

A more general definiti<strong>on</strong>…<br />

Supersaturated designs have fewer runs than parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interest.


Supersaturated <str<strong>on</strong>g>Design</str<strong>on</strong>g> History<br />

• Satterthwaithe (1959) – random balance experimentati<strong>on</strong><br />

• Booth & Cox (1962) – computer search designs<br />

• Lin (1993) – created new interest in the topic


203<br />

Classical “supersaturated” designs<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> classical supersaturated design using the<br />

more general definiti<strong>on</strong>.<br />

1. Adding center points to 2-level factorial designs.<br />

2. Fracti<strong>on</strong>al factorial designs.


204<br />

Case 1 – Center points.<br />

2x2 factorial design with center points.<br />

Supersaturated with respect to model with both<br />

quadratic effects.


205<br />

Case 2 – Fracti<strong>on</strong>al Factorial <str<strong>on</strong>g>Design</str<strong>on</strong>g>s<br />

1. Resoluti<strong>on</strong> III<br />

Supersaturated with respect to the model c<strong>on</strong>taining all tw<str<strong>on</strong>g>of</str<strong>on</strong>g>actor<br />

interacti<strong>on</strong> effects.<br />

2. Resoluti<strong>on</strong> IV<br />

Supersaturated with respect to the model c<strong>on</strong>taining all tw<str<strong>on</strong>g>of</str<strong>on</strong>g>actor<br />

interacti<strong>on</strong> effects.<br />

3. Resoluti<strong>on</strong> V<br />

Supersaturated with respect to models c<strong>on</strong>taining any threefactor<br />

or higher order interacti<strong>on</strong>.


206<br />

D-Optimal <str<strong>on</strong>g>Design</str<strong>on</strong>g> Definiti<strong>on</strong><br />

Given the usual linear regressi<strong>on</strong> model<br />

y<br />

find a design matrix, X, to maximize<br />

X T<br />

X<br />

X


207<br />

Problem<br />

D-Optimal designs depend <strong>on</strong> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the a<br />

priori model, i.e. X


208<br />

Soluti<strong>on</strong>: Bayesian D-Optimality<br />

C<strong>on</strong>sider two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> effects:<br />

Primary effects are <strong>on</strong>es you are sure you want to estimate.<br />

There are p 1 <str<strong>on</strong>g>of</str<strong>on</strong>g> these.<br />

Potential effects are <strong>on</strong>es you are afraid to ignore. There are<br />

p 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> these.<br />

For sample size, n<br />

p 1 < n < p 1 + p 2


209<br />

Example<br />

2 6-2 Fracti<strong>on</strong>al Factorial Resoluti<strong>on</strong> IV design<br />

intercept and main effects are primary<br />

2-factor interacti<strong>on</strong>s are potential<br />

p 1 < n < p 1 + p 2<br />

p 1 = 7 p 2 = 15 n = 16 (7 < 16 < 22)


210<br />

K<br />

0<br />

0<br />

Defining the K matrix<br />

p<br />

p<br />

1<br />

2<br />

x<br />

x<br />

p<br />

p<br />

1<br />

1<br />

0<br />

I<br />

p<br />

p<br />

1<br />

2<br />

x<br />

x<br />

p<br />

p<br />

2<br />

2


211<br />

Bayesian D-Optimal designs<br />

Find a design matrix, X, to maximize<br />

D<br />

Bayes<br />

X<br />

T<br />

X<br />

where is a tuning parameter.<br />

K<br />

/


212<br />

Comparis<strong>on</strong><br />

Five Run D-Optimal Five Run Bayesian D-Optimal<br />

Repeat this point???<br />

Add center point!


213<br />

Questi<strong>on</strong><br />

Why should <strong>on</strong>ly higher order terms be potential?<br />

y 1 x ... x<br />

0 1 1 k k<br />

Inspirati<strong>on</strong>: Allow main effects to be potential.<br />

Result: Supersaturated designs using Bayesian D-Optimality.<br />

X


214<br />

Benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> Bayesian D-Optimal Supersaturated <str<strong>on</strong>g>Design</str<strong>on</strong>g><br />

1. Easy and fast to compute<br />

2. Flexible formulati<strong>on</strong> (sample size, factor type, etc.)<br />

References:<br />

DuMouchel and J<strong>on</strong>es, Technometrics (1994) vol.36 #1 pp. 37-47.<br />

J<strong>on</strong>es, B., Lin, D., and Nachtsheim, C. (2008) “Bayesian D-Optimal Supersaturated<br />

<str<strong>on</strong>g>Design</str<strong>on</strong>g>s.” Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistical Planning and Inference, 138, 86-92.


Card Trick in JMP


Module 11 - Summary<br />

Supersaturated designs are not laughable.<br />

It is time to start using them to solve real problems…


DOX Course – Final Thoughts<br />

1. Optimal design framework is general and powerful for handling<br />

all kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> DOX problems.<br />

2. Modern s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware makes it easy to generate optimal designs<br />

for virtually any problem incorporating c<strong>on</strong>straints <strong>on</strong><br />

1. Factor combinati<strong>on</strong>s<br />

2. Model requirements<br />

3. Restricti<strong>on</strong>s <strong>on</strong> sample size<br />

4. Restricti<strong>on</strong>s <strong>on</strong> randomizati<strong>on</strong><br />

3. It is time to break away from traditi<strong>on</strong>al methods<br />

4. Make the design fit the problem d<strong>on</strong>’t force your problem into<br />

the c<strong>on</strong>straints <str<strong>on</strong>g>of</str<strong>on</strong>g> a classical design.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!