10.04.2013 Views

Land Reclam. 37.indb - Annals of Warsaw University of Life ...

Land Reclam. 37.indb - Annals of Warsaw University of Life ...

Land Reclam. 37.indb - Annals of Warsaw University of Life ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Contents<br />

ROMANOWICZ R.J. Data Based Mechanistic<br />

rainfall-fl ow models for climate change<br />

simulations 3<br />

RAVAZZANI G., MANCINI M., MERONI<br />

C. Design hydrological event and routing<br />

scheme for fl ood mapping in urban area 15<br />

BANASIK K., BYCZKOWSKI A. Estimation<br />

<strong>of</strong> T-year fl ood discharge for a small<br />

lowland river using statistical method 27<br />

WOODWARD D.E., SCHEER C.C.,<br />

HAWKINS R.H. Curve number update used<br />

for Run<strong>of</strong>f Calculation 33<br />

<strong>Annals</strong><br />

<strong>of</strong> <strong>Warsaw</strong><br />

Agricultural<br />

<strong>University</strong><br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37<br />

<strong>Warsaw</strong> 2006<br />

DYSARZ T., WICHER-DYSARZ J. Assessment<br />

<strong>of</strong> hydrologic regime changes induced<br />

by the Jeziorsko dam performance and morphodynamic<br />

processes in the Warta river<br />

43<br />

MAJEWSKI G., PRZEWOŹNICZUK W.<br />

Characteristics <strong>of</strong> the particulate matter<br />

PM10 concentration fi eld and an attempt to<br />

determine the sources <strong>of</strong> air pollution in the<br />

living district <strong>of</strong> Ursynów 55<br />

BARYŁA A. Run<strong>of</strong>f volume and slope gradient<br />

relationship – laboratory investigations<br />

69


PAŃKA D., ROLBIECKI R., RZE-<br />

KANOWSKI CZ. Infl uence <strong>of</strong> sprinkling<br />

irrigation and nitrogen fertilization on health<br />

status <strong>of</strong> potato grown on a sandy soil 75<br />

MUSIAŁ E., , BUBNOWSKA J., GĄSIOREK<br />

E., ŁABĘDZKI L. Heat balance and climatic<br />

water balance in vegetation period <strong>of</strong> spring<br />

wheat 83<br />

KASPERSKA-WOŁOWICZ W., ŁABĘDZKI<br />

L. Climatic and agricultural water balance<br />

for grasslands in Poland using the penman-<br />

-monteith method 93<br />

Series Editorial Board<br />

Elżbieta Biernacka, <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong>, Chair<br />

Wojciech Bartnik, Cracow Agricultural<br />

<strong>University</strong><br />

Marian Granops, <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong>,<br />

Waldemar Mioduszewski, Institute for<br />

<strong>Land</strong> <strong>Reclam</strong>ation and Grassland Farming,<br />

Poland<br />

Marek Lechowicz, <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong>,<br />

Józef Mosiej, <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong><br />

Gunno Renman, Royal Institute <strong>of</strong> Technology,<br />

Stockholm, Sweden<br />

Michael Hirschi, <strong>University</strong> <strong>of</strong> Illinois at<br />

Urbana-Champaign, USA<br />

Lubos Jurik, Slovak Agriculture <strong>University</strong>,<br />

Nitra, Slovakia<br />

SERIES EDITORS<br />

Józef Mosiej – Chairman<br />

Gunno Renman<br />

Janusz Kubrak<br />

EDITORIAL STAFF<br />

Jadwiga Rydzewska<br />

Krystyna Piotrowska<br />

MUSIAŁ E., BUBNOWSKA J., GĄSIOREK<br />

E. Variation <strong>of</strong> climatic water balance and<br />

heat balance for various ecosystems in<br />

Wrocław in the years 1964–2000 101<br />

VABOLIENÉ G. Investigation for biological<br />

nitrogen removal from wastewater using simultaneous<br />

nitrifi cation/denitrifi cation technology<br />

111<br />

LITWIN U., JANUS J., ZYGMUNT M.<br />

Development <strong>of</strong> technologies used in agricultural<br />

engineering work on an example <strong>of</strong><br />

selected stages <strong>of</strong> land consolidation process<br />

123<br />

WARSAW AGRICULTURAL UNIVERSITY PRESS<br />

e-mail: wydawnictwo@sggw.pl<br />

ISSN 0208-5771<br />

Edition 500 copies<br />

PRINT: Agencja Reklamowo-Wydawnicza A. Grzegorczyk


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 3–13<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Data Based Mechanistic rainfall-fl ow models for climate change<br />

simulations<br />

RENATA J. ROMANOWICZ<br />

Lancaster <strong>University</strong>, United Kingdom.<br />

Abstract: Data Based Mechanistic rainfall-<br />

-fl ow models for climate change simulations.<br />

Analysis <strong>of</strong> climate change indicates an increased<br />

probability <strong>of</strong> high rainfalls and related fl ooding.<br />

Climate change may also lead to an increase in<br />

rainfall variability and the probability <strong>of</strong> extreme<br />

events. This forces researchers to focus on both<br />

high and low fl ow models. This paper presents the<br />

application <strong>of</strong> a Data Based Mechanistic (DBM)<br />

approach and Stochastic Transfer Function (STF)<br />

methods to rainfall-fl ow modelling, with special<br />

emphasis on low fl ows. We present two different<br />

models, one with nonlinearity applied to the input,<br />

and the second with nonlinearity on the output. In<br />

both cases, the application <strong>of</strong> stochastic methods <strong>of</strong><br />

identifi cation and estimation <strong>of</strong> model parameters<br />

allows for the evaluation <strong>of</strong> predictive uncertainty<br />

<strong>of</strong> the estimated fl ow. The fi rst model introduces<br />

input nonlinearity in the form <strong>of</strong> effective rainfall.<br />

The second model applies the STF approach to<br />

log – transformed fl ow acting as a surrogate <strong>of</strong><br />

water storage in the catchment. Each <strong>of</strong> the<br />

models has two modules: a groundwater storage<br />

module and a surface water module. Logarithmic<br />

transformation <strong>of</strong> the output introduces a bias<br />

towards low fl ows. In order to model also high<br />

fl ows, the fast fl ow component is transformed<br />

using the linear STF model. Both models are<br />

applied to a karstic catchment, the River Thet in<br />

the United Kingdom.<br />

Key words: DBM and STF models, low fl ow,<br />

karstic catchment.<br />

INTRODUCTION<br />

The increased variability <strong>of</strong> rainfall<br />

magnitude and the resulting increased<br />

variability <strong>of</strong> river fl ows observed in<br />

the past two decades may have been<br />

caused by climate changes related to<br />

NAO intensifi cation, NSO cycles and/<br />

or global warming. This time period is<br />

not long enough to provide the statistical<br />

evidence supporting any particular thesis<br />

(Robson et al. 1998, 2002). However,<br />

globalisation <strong>of</strong> the world economy<br />

requires global thinking about the<br />

possible water crisis in order to avoid<br />

global disaster. Ongoing developments<br />

in modelling future climate and its<br />

infl uence on water resources requires<br />

incorporating models able to simulate<br />

rainfall-fl ow processes under changing<br />

climatic conditions. From the point <strong>of</strong><br />

view <strong>of</strong> water resources management<br />

and planning the prediction <strong>of</strong> extreme<br />

(both high and low) fl ows is the most<br />

critical.<br />

Low-fl ow hydrology deals with river<br />

fl ows during the annual dry season. River<br />

fl ow is a result <strong>of</strong> complex processes <strong>of</strong><br />

rainfall-water transport operating on<br />

a catchment scale. Usually we distinguish<br />

fast and slow components <strong>of</strong> river fl ow.<br />

The slow component, with a large time<br />

constant, is attributed to base fl ow,<br />

because the majority <strong>of</strong> the streamfl ow<br />

during the low fl ow period originates<br />

from groundwater storage. Groundwater<br />

storage may be related to the drainage<br />

<strong>of</strong> the saturated top soil zone or<br />

a groundwater aquifer. Another source <strong>of</strong>


4 R.J. Romanowicz<br />

low fl ow may be relatively slow moving<br />

groundwater drainage in fracture zones<br />

with signifi cant lateral components. Yet<br />

another source may be permanently<br />

wetted channel bank soils, the bottoms<br />

<strong>of</strong> alluvial valleys or wetlands. The<br />

existence <strong>of</strong> these different sources<br />

<strong>of</strong> low water depends on catchment<br />

geology. Smakhtin (2001) lists several<br />

different processes which he attributes<br />

to low fl ows, such as karst formations,<br />

lakes and glaciers. Additionally there<br />

are also anthropogenic impacts on low<br />

fl ows, among others, deforestation,<br />

afforestation, industrial and agricultural<br />

direct water abstraction, irrigation, return<br />

fl ows and dams and river regulation.<br />

The fi rst statistical approach towards<br />

the separation <strong>of</strong> quick and slow fl ow<br />

components was introduced by Young and<br />

Beven (1994), who developed a bilinear<br />

model for the rainfall-run<strong>of</strong>f process<br />

with input nonlinearity representing the<br />

effective rainfall. The main underlying<br />

concept was the development <strong>of</strong> a Data<br />

Based Mechanistic (DBM) approach to<br />

modelling, combining the data-based<br />

model with a mechanistic interpretation<br />

<strong>of</strong> its components (Young 1998). This<br />

approach applies Stochastic Transfer<br />

Function (STF) methods and uses fl ow<br />

as a surrogate <strong>of</strong> information on the soil<br />

water content in the catchment. Young<br />

(2003) extended this methodology to<br />

model rainfall-run<strong>of</strong>f processes “<strong>of</strong>fline”,<br />

i.e. in a simulation mode applying<br />

a simple fi rst order linear model to<br />

describe the soil moisture storage in<br />

the catchment used for the nonlinear<br />

transformation <strong>of</strong> rainfall. In this paper<br />

we propose an extension <strong>of</strong> this approach,<br />

consisting <strong>of</strong> using a Transfer Function<br />

model representing the fl ow which is<br />

subsequently used as a surrogate <strong>of</strong><br />

the catchment soil moisture storage.<br />

We then compare this model to a novel<br />

methodology for modelling low fl ows. It<br />

applies the STF approach to a logarithm<br />

<strong>of</strong> fl ow, representing water storage in<br />

the catchment (Romanowicz 2006). The<br />

logarithmic transformation enhances<br />

the model performance for low fl ow<br />

values. It introduces a bias to the model<br />

solution, as the mean <strong>of</strong> the logarithm<br />

is not equal to the logarithm <strong>of</strong> its mean<br />

value. We apply a separation <strong>of</strong> the fast<br />

and slow components <strong>of</strong> the estimated<br />

STF model and attribute the base-fl ow<br />

to the slow component only. The fast<br />

component, representing catchment<br />

quick response related to surface or<br />

near surface waters, may be modelled<br />

using the ordinary STF model without<br />

a logarithmic transformation <strong>of</strong> fl ow. The<br />

model structure has to vary depending on<br />

the fl ow values. We introduce potential<br />

evaporation as additional information on<br />

fl ow levels in the catchment to distinguish<br />

between high and low fl ow periods. It<br />

is clear that the base-fl ow module may<br />

be calibrated on information-rich data,<br />

i.e. in the catchment with a noticeable<br />

base fl ow component in the catchment<br />

outfl ow. The model is suitable for climate<br />

change simulations as it uses rainfall and<br />

evaporation as input variables, without<br />

the necessity <strong>of</strong> explicit modelling <strong>of</strong><br />

soil moisture content in the catchment.<br />

Moreover, the application <strong>of</strong> stochastic<br />

methods <strong>of</strong> identifi cation and estimation<br />

<strong>of</strong> model parameters allows for the<br />

evaluation <strong>of</strong> predictive uncertainty<br />

<strong>of</strong> the estimated fl ow. It is interesting<br />

to note that water resource engineers<br />

use the logarithm <strong>of</strong> fl ow to test model<br />

performance for low fl ow, but this


Data Based Mechanistic rainfall-fl ow models for climate change simulations 5<br />

transformation has never been explicitly<br />

applied in a rainfall-run<strong>of</strong>f model with<br />

the aim <strong>of</strong> low fl ow modelling.<br />

Section 2 presents the structure <strong>of</strong><br />

both DBM STF models. In section 3<br />

we present the application <strong>of</strong> a standard<br />

DBM rainfall-fl ow model developed for<br />

climate scenario simulations to the River<br />

Thet in south-east England. In section 4<br />

we describe the application <strong>of</strong> the logtransformed<br />

low fl ow model to the same<br />

catchment. Section 5 is a discussion <strong>of</strong><br />

the results.<br />

DATA BASED MECHANISTIC<br />

(DBM) RAINFALL-FLOW<br />

MODEL<br />

In this section we present two DBM STF<br />

based models developed for the purpose<br />

<strong>of</strong> climate change simulations. The<br />

fi rst model follows the DBM approach<br />

to rainfall-fl ow modelling introduced<br />

by Young (1998, 2003) and Young<br />

and Beven (1994). This model applies<br />

the nonlinear transformation <strong>of</strong> the<br />

rainfall. The second model, described in<br />

Romanowicz (2006), applies a nonlinear<br />

transformation <strong>of</strong> the fl ow. Thus the fi rst<br />

model has an input nonlinearity, while the<br />

second uses the output nonlinearity. This<br />

nonlinear transformation is introduced<br />

in order to represent process nonlinear<br />

behaviour <strong>of</strong> the process thus assuming<br />

that its dynamics is linear.<br />

DBM model with nonlinear<br />

transformation <strong>of</strong> the rainfall<br />

The methodology follows the<br />

approach described in detail by Young<br />

(2003) with the difference <strong>of</strong> applying<br />

a Multiple Input Single Output (MISO)<br />

Stochastic Transfer Function (STF)<br />

model to obtain an estimate <strong>of</strong> the fl ow<br />

variable, which issubsequently used as a<br />

surrogate <strong>of</strong> soil moisture content in the<br />

catchment. It is assumed that the model<br />

structure has the fi rst order:<br />

b<br />

s 1<br />

t = r<br />

1 t−δ<br />

+<br />

− 1<br />

1−<br />

az 1<br />

b<br />

+ 2 ev<br />

1 t−δ +ζ<br />

(1)<br />

− 2 t<br />

1−<br />

az 2<br />

where:<br />

s t – is the observed fl ow used as a<br />

surrogate for soil moisture at the end <strong>of</strong><br />

sample time t;<br />

r t, ev t – denote, respectively, rainfall and<br />

evaporation at the same sample time t;<br />

δ 1, δ 2 – denote any pure, ‘advective’ time<br />

delay for each input;<br />

ζ t – represents the noise (which in some<br />

cases can be considered as zero mean,<br />

serially uncorrelated Gaussian white<br />

noise);<br />

a 1, a 2, b 1, b 2 – model parameters and<br />

the operator denotes a backward shift in<br />

time, i.e. z –1 u t = u t–1<br />

The parameters are estimated using<br />

the Simplifi ed Refi ned Instrumental<br />

Variable (SRIV) algorithm in the<br />

CAPTAIN Matlab toolbox (e.g. Young<br />

1989, 2000, Young et al. 1999).<br />

Later on, the rainfall-run<strong>of</strong>f process is<br />

described by a second order model, which<br />

is decomposed into the fast and slow<br />

components (Young and Beven, 1994).<br />

Looking for a physical interpretation,<br />

the slow model component represents<br />

ground water storage and the fast<br />

component is related to quick response <strong>of</strong><br />

the catchment. In the case <strong>of</strong> daily time<br />

periods the third component, representing


6 R.J. Romanowicz<br />

direct run<strong>of</strong>f, may also appear. The model<br />

has the following form:<br />

Fast component:<br />

β1,1<br />

Z1, t = ueff<br />

−1<br />

t−δ<br />

1+α1z<br />

Slow component:<br />

β<br />

Z 2<br />

2, t = ueff<br />

−1<br />

t−δ<br />

1+α2z<br />

Direct component:<br />

Z3, t =β3uefft<br />

p<br />

uefft = rt ⋅st<br />

yt = Z1, t + Z2, t + Z3,<br />

t +ξt<br />

where:<br />

α 1, α 2, β 1, β 2 – parameters derived from<br />

the identifi ed second order STF model;<br />

ueff t – denotes the effective rainfall<br />

obtained from the rainfall multiplied by<br />

a nonlinear gain expressed by the power<br />

<strong>of</strong> the fl ow estimate obtained from (1).<br />

All the parameters <strong>of</strong> both equations<br />

and the power p are estimated<br />

simultaneously using optimisation<br />

methods from MATLAB® optimisation<br />

toolbox. Due to the application <strong>of</strong><br />

stochastic methods <strong>of</strong> estimation, this<br />

methodology gives estimates <strong>of</strong> the<br />

variance <strong>of</strong> the predictions, as well as the<br />

variance and the correlation structure <strong>of</strong><br />

the model parameters.<br />

DBM model with logarithmic<br />

transformation <strong>of</strong> fl ow<br />

In a second approach we apply STF<br />

method to the logarithm <strong>of</strong> fl ow. The<br />

physical explanation <strong>of</strong> this procedure<br />

is described in detail in Romanowicz<br />

(2006). In brief, we look at the rate <strong>of</strong><br />

change <strong>of</strong> the fl ow rather than the water<br />

balance in the catchment. As mentioned<br />

in the introduction, the resulting fl ow<br />

estimates are based towards low fl ows.<br />

The model structure is similar to that<br />

shown in equation (2) with second order<br />

model dynamics, thus allowing for the<br />

decomposition <strong>of</strong> the model into fast and<br />

slow components:<br />

Fast component:<br />

β1,1<br />

Z1, t = r<br />

1 t−δ<br />

+<br />

− 1<br />

1+α1z<br />

β1,2<br />

+ ev<br />

−1<br />

t−δ2<br />

1+α1z<br />

Slow component:<br />

β<br />

Z 2<br />

2, t = r<br />

1 t−δ<br />

+<br />

− 1<br />

1+α2z<br />

β2,2<br />

+ ev<br />

−1<br />

t−δ2<br />

(3)<br />

1+α2z<br />

yt = exp(Z1,t + Z2,t + ηt) where: α1, α2, β1,1, β1,2, β2,1, β2,2 –<br />

parameters derived from the identifi ed<br />

second order STF model.<br />

Due to the introduced logarithmic<br />

transformation <strong>of</strong> fl ow, the variance <strong>of</strong><br />

model predictions is heteroscedastic and<br />

has the form:<br />

μ f<br />

2<br />

= exp[(2 μ s +σs)<br />

/ 2]<br />

2<br />

σ f<br />

2 2<br />

= exp(2μ s + 2 σs) −exp(2 μ s +σs)<br />

(4)


Data Based Mechanistic rainfall-fl ow models for climate change simulations 7<br />

where: μs – denotes the mean value <strong>of</strong><br />

the state variable Zt = Z1,t + Z<br />

2<br />

2,t,<br />

σ s – denotes the estimate <strong>of</strong> its prediction<br />

variance.<br />

In order to model also high fl ows we<br />

should include a high fl ow module in our<br />

model. The high fl ow module may consist<br />

<strong>of</strong> a linear STF model based on either the<br />

errors between the low fl ow component<br />

and the observed fl ow or directly on<br />

the observations (without logarithmic<br />

transformation) for the periods with<br />

high fl ows. Yet another option is a<br />

nonlinear transformation <strong>of</strong> a fast fl ow<br />

component. This module would require<br />

the use <strong>of</strong> additional information on the<br />

conditions in the catchment provided by<br />

temperature or potential evaporation.<br />

The low fl ow module can have the form<br />

<strong>of</strong> an STF model for log transformed<br />

fl ows or we can use the slow component<br />

as a representation <strong>of</strong> a base fl ow in the<br />

catchment. In other words, the difference<br />

lies in the way we construct the base fl ow<br />

module, either as a full module obtained<br />

from log-transformed fl ows or its slow<br />

component only. The choice will depend<br />

on the catchment characteristics. For dry<br />

catchments, dominated by base fl ow, the<br />

fi rst approach may be suitable. However,<br />

for catchments with predominantly high<br />

fl ows, the second approach will be more<br />

suitable.<br />

APPLICATION TO RAINFALL-<br />

-FLOW PROCESS IN THE RIVER<br />

THET, UK: DBM MODEL WITH<br />

EFFECTIVE RAINFALL<br />

The Thet catchment, situated in<br />

the SE <strong>of</strong> England, is characterised by<br />

predominant base fl ows, due to its chalk-<br />

based geology. The catchment has an area<br />

about 307 km 2 with mainly arable land and<br />

very mixed geology. There are reservoirs<br />

in the catchment affecting run<strong>of</strong>f as well<br />

as industrial and agricultural abstractions<br />

and effl uent returns. Additionally, run<strong>of</strong>f<br />

is affected by groundwater abstraction<br />

and recharge.<br />

In this section we apply the nonlinear<br />

rainfall-fl ow model (1–2) for climate<br />

change simulations with the nonlinearity<br />

on the input to the Thet catchment. In<br />

order to represent the nonlinear relation<br />

between fl ow and rainfall we apply<br />

a State Dependent Parameter (SDP)<br />

approach (Young 2000) to the daily<br />

rainfall and fl ow data. Figure 1 shows the<br />

resulting nonlinear gain for the rainfall<br />

as a function <strong>of</strong> fl ow. This nonlinearity<br />

is subsequently approximated using the<br />

power law, as shown in eq. 2. However,<br />

instead <strong>of</strong> the observed fl ow we use the<br />

estimate <strong>of</strong> fl ow obtained from the fi rst<br />

order MISO model (1) identifi ed from<br />

the data.<br />

FIGURE 1. SDP identifi ed nonparametric gain for<br />

Thet<br />

The fi rst order model for soil moisture<br />

has the form:


8 R.J. Romanowicz<br />

0.0278<br />

st= rt+<br />

−1<br />

1− 0.9844z<br />

0.0131<br />

− ev<br />

−1<br />

t−1+ξt (5)<br />

1− 0.9844z<br />

The second order rainfall-fl ow model<br />

with nonlinearly transformed rainfall has<br />

the form:<br />

Fast component:<br />

0.0532<br />

Z1, t = ueff<br />

−1<br />

t−δ<br />

1+ 0.7953z<br />

Slow component:<br />

0.0107<br />

Z2, t = ueff<br />

−1<br />

t−δ<br />

1+ 0.979z<br />

Direct component:<br />

Z3,t = 0.0017 ueft 0.21<br />

uefft = rt ⋅st<br />

yt = Z1, t + Z2, t + Z3,<br />

t +ξt<br />

(6)<br />

This model has an additional direct<br />

component representing catchment<br />

response shorter than a day. The years<br />

1970–1972 were used for the calibration<br />

and the model explained 88% <strong>of</strong> the<br />

observed fl ow variance. Validation was<br />

performed on the years 1990–1993<br />

and only 55% <strong>of</strong> the fl ow variance was<br />

explained (Figure 2).<br />

DBM MODEL WITH LOG-<br />

-TRANSFORMED FLOW<br />

In this section we present an application<br />

<strong>of</strong> the DBM model with log-transformed<br />

fl ow to the Thet catchment. For the<br />

FIGURE 2. DBM model with effective rainfall,<br />

validation, Thet; 55% <strong>of</strong> data variation explained<br />

purpose <strong>of</strong> comparison with the DBM<br />

model with effective rainfall presented<br />

in the previous section, we use the same<br />

as before datasets for calibration and<br />

validation stages.<br />

Low fl ow model<br />

The best identifi ed MISO STF model has<br />

a structure described by [2 2 2 1 2 0],<br />

which can be decomposed into the fast<br />

and slow components for both rainfall<br />

and evaporation. The model has the<br />

following form:<br />

0.011r<br />

log( Q<br />

1<br />

1) = t−<br />

+<br />

−1<br />

1− 0.9931z<br />

0.027rt 1 0.0061ev<br />

+ − + t−2<br />

+<br />

−1 −1<br />

1−0.7350z 1−0.9931z 0.0078ev<br />

− t−2<br />

+ξ<br />

−1<br />

t<br />

1− 0.7350z<br />

(7)<br />

where r t denotes rainfall and ev t denotes<br />

evaporation.


Data Based Mechanistic rainfall-fl ow models for climate change simulations 9<br />

The variance <strong>of</strong> the transformed model<br />

estimates (one step-ahead prediction) is<br />

0.038. The results <strong>of</strong> the calibration give<br />

a 92% explanation <strong>of</strong> the data variation<br />

for water storage and 89% <strong>of</strong> fl ow after<br />

back transformation. The decrease <strong>of</strong><br />

effi ciency is related to the bias towards<br />

lower fl ows, which is introduced by the<br />

logarithmic transformation.<br />

The decomposition <strong>of</strong> the model<br />

into slow and fast component is shown<br />

in Figure 3. The slow component has a<br />

time constant <strong>of</strong> 144 days and describes<br />

the base fl ow in the catchment, while<br />

the fast component has a time constant<br />

<strong>of</strong> about 3 days. Due to the logarithmic<br />

transformation <strong>of</strong> fl ow, after back<br />

transformation both components are<br />

multiplied by each other.<br />

2<br />

The effi ciency ( RT ) <strong>of</strong> the model<br />

during the validation period (all 27 years)<br />

is 77.6%. The results <strong>of</strong> the validation on<br />

the years 1990–1993 are shown in Figure<br />

4. These three years were characterised<br />

by a very low fl ow, and the model gives<br />

worst fi t to the observations out <strong>of</strong> the<br />

whole validation period.<br />

Full DBM model with<br />

log-transformed fl ow<br />

For high fl ows the DBM low fl ow<br />

model output has to be augmented by the<br />

surface fl ow from saturated areas in the<br />

catchment. We use evaporation levels<br />

to distinguish between the low and high<br />

fl ow periods. For evaporation higher<br />

than a certain level, the model output is<br />

equal to the exponent <strong>of</strong> groundwater<br />

storage in the catchment. When the<br />

evaporation is lower than this threshold<br />

value, the fl ow is increased by the value<br />

obtained from the STF model identifi ed<br />

from the errors between the base fl ow<br />

and observed fl ow. The threshold value<br />

<strong>of</strong> evaporation is optimised together<br />

with the parameters <strong>of</strong> the linear in fl ow<br />

FIGURE 3. Decomposition <strong>of</strong> the model into fast (lower panel) and slow component (upper panel); the<br />

observations are shown by a dotted line; calibration stage, years 1970–1973


10 R.J. Romanowicz<br />

FIGURE 4. The DBM log-fl ow model: validation<br />

stage, years 1990–1993; 57.6% <strong>of</strong> the data variation<br />

explained; observed daily fl ows are shown by<br />

dots, continuous line denotes model simulations,<br />

shaded area represent 95% confi dence bands<br />

model. This model gives nonzero output<br />

only for the evaporation smaller than a<br />

threshold value. The form <strong>of</strong> the STF<br />

model, identifi ed using Captain toolbox<br />

IV (instrumental variable) methods is<br />

[1 1 1 2 5], it is a fi rst order model as<br />

follows:<br />

⎧ ⎫<br />

⎪ 0.08 0.1233<br />

⎪<br />

Q − Q = ⎨ r −<br />

ev ev < 0.4⎬<br />

⎪ ⎪<br />

⎩ > 0.4⎭<br />

tsim , tobs , −1 t−2 −1<br />

t−5 t<br />

1−0.6886z 1−0.6886z 0<br />

evt<br />

where Q t,sim denotes the fl ow<br />

estimated using (7) and Q t,obs denotes<br />

observations.<br />

The full DBM rainfall-fl ow model<br />

is the sum <strong>of</strong> (7) and (8). The threshold<br />

value for the evaporation was estimated<br />

as 0.4, using an optimisation routine<br />

with simultaneous estimation <strong>of</strong> the<br />

model parameters. This model gave<br />

a 93% explanation <strong>of</strong> the fl ow variation<br />

for the calibration period (years 1970–<br />

–1972). The validation was performed<br />

on the years (1990–1993) and is shown<br />

together with 95% confi dence bands in<br />

Figure 5.<br />

FIGURE 5. Full DBM model – validation on the<br />

years 1990–1993, 65.1% <strong>of</strong> data variation explained;<br />

observed daily fl ows are presented by<br />

dots, continuous line denotes model simulations,<br />

shaded area represent 95% confi dence bands<br />

(8)<br />

Figure 6 shows the log-log plot <strong>of</strong><br />

the full DBM model for all the available<br />

years 1970–1997. As might be expected,<br />

it differs from the groundwater storage<br />

model only for high fl ows. Compared to<br />

that model, the gain is 2% over the whole<br />

validation period and it considerably<br />

improves the high fl ow predictions.<br />

Further work should be done on the<br />

use two different time constants for<br />

evaporation and rainfall and on the use


FIGURE 6. Log-log results for the<br />

full DBM model, River Thet, validation<br />

on all the data from the years<br />

1970–1997.<br />

Data Based Mechanistic rainfall-fl ow models for climate change simulations 11<br />

<strong>of</strong> temperature as a threshold value. In<br />

the model presented here the choice<br />

<strong>of</strong> the threshold, although based on<br />

data, is site specifi c. It is related to the<br />

seasonal temperature variation through<br />

evaporation and thus explains high fl ows<br />

which usually occur in winter in the<br />

UK. It might not be general enough for<br />

other countries with different climatic<br />

conditions.<br />

CONCLUSIONS<br />

We have presented two DBM models<br />

suitable for <strong>of</strong>f-line climate change<br />

simulations. The fi rst rainfall-fl ow<br />

model applies nonlinearity on the input,<br />

following the methodology <strong>of</strong> Young<br />

(2003). The second DBM model for low<br />

fl ows applies log-transformed fl ows in<br />

order to obtain better estimates <strong>of</strong> the<br />

base fl ow. The model uses evaporation as<br />

additional information on soil moisture<br />

conditions in the catchment.<br />

The full DBM model consists <strong>of</strong> basefl<br />

ow and high-fl ow components. Basefl<br />

ow is determined by the separation <strong>of</strong><br />

a low fl ow module into slow and quick<br />

catchment responses. The logarithm <strong>of</strong><br />

fl ow is treated here as a substitute for<br />

groundwater storage in the catchment.<br />

In hydrology the assumption <strong>of</strong> lognormal<br />

distribution for the fl ow is well<br />

justifi ed (Yevjevich 1972). In the result<br />

<strong>of</strong> logarithmic transformation <strong>of</strong> fl ow<br />

variable, the variance <strong>of</strong> the predictions<br />

<strong>of</strong> fl ow is heteroscedastic, depending<br />

on the predicted estimates <strong>of</strong> fl ow. The<br />

models have been tested on the River<br />

Thet catchment, UK. The low fl ow model<br />

performs better for this karstic catchment<br />

than the model with effective rainfall. In<br />

this application the simulated base fl ow<br />

matches well the observed low fl ow, thus<br />

showing that the approach developed<br />

is suitable for the climate change<br />

simulations and low fl ow predictions.<br />

Further research is underway on<br />

generalising the low fl ow model for<br />

catchments with larger differences<br />

between high and low fl ows. Experience<br />

gained so far points towards the<br />

transformation <strong>of</strong> the quick fl ow<br />

component <strong>of</strong> the low fl ow model


12 R.J. Romanowicz<br />

rather than to building a model based<br />

on the error between the observed fl ow<br />

and simulated base-fl ow. The simple<br />

structure <strong>of</strong> a surface store module may<br />

be extended by including a representation<br />

<strong>of</strong> <strong>of</strong>f-line effective rainfall, as in the fi rst<br />

model, or can be made more general by<br />

introducing a complex expression for<br />

surface run<strong>of</strong>f. The important difference<br />

from all previous approaches lies in the<br />

way in which we condition our model<br />

using the available observations. Namely,<br />

we use the logarithmic transformation<br />

<strong>of</strong> fl ow to enhance information on low<br />

fl ows in order to better identify the base<br />

fl ow and we divide the dataset into<br />

periods characterised by high fl ows in<br />

order to identify the run<strong>of</strong>f component<br />

<strong>of</strong> the model.<br />

REFERENCES<br />

ROBSON A.J., JONES T.K., REED D.W.,<br />

BAYLISS A.C. 1988: A study <strong>of</strong> national<br />

trend and variation in UK fl oods,<br />

“International Journal <strong>of</strong> Climatology”,<br />

165–182, 18.<br />

ROBSON A.J. 2002: Evidence for trends in<br />

UK fl ooding, “Philosphical Transactions<br />

<strong>of</strong> the Royal Society London A”, 1327–<br />

–1343, 360.<br />

ROMANOWICZ R.J., 2006: Data Based<br />

Mechanistic model for low fl ows:<br />

implications for the effects <strong>of</strong> climate<br />

change, submitted to Journal <strong>of</strong><br />

Hydrology.<br />

SMAKHTIN V.U.: 2001 Low fl ow hydrology:<br />

A review, “J. Hydrol.” 147–186, 240.<br />

YEVJEVICH V.M. 1972 Stochastic<br />

Processes in Hydrology, Water Resources<br />

Publications, Fort Collins, Colorado.<br />

YOUNG P.C. 1989: Recursive estimation,<br />

forecasting and adaptive control, In:<br />

Leondes C. T. (Ed.), Control and Dynamic<br />

Systems: Advances in Algorithms and<br />

Computation Techniques in Dynamic<br />

Systems Control, 30, Academic Press,<br />

San Diego pp. 119–166.<br />

YOUNG P.C. 2000: Stochastic, dynamic<br />

modelling and signal processing: Time<br />

variable and state dependent parameter<br />

estimation. In: W. J. Fitzgerald, A.<br />

Walden, R. Smith, & P.C. Young (eds.),<br />

Nonstationary and Nonlinear Signal<br />

Processing, Cambridge <strong>University</strong> Press:<br />

Cambridge, 74 –114.<br />

YOUNG P.C. 1998: Data-based mechanistic<br />

modelling <strong>of</strong> environmental, ecological,<br />

economic and engineering systems,<br />

“Environmental Modelling and<br />

S<strong>of</strong>tware”, 105–122, 13.<br />

YOUNG P.C. 1999: Data-based mechanistic<br />

modelling, generalised sensitivity and<br />

dominant mode analysis, “Computer<br />

Phys. Communications”, 113–129, 117.<br />

YOUNG P.C. 2003: Top-down and data-<br />

-based mechanistic modelling <strong>of</strong> rainfallfl<br />

ow dynamics at the catchment scale,<br />

“Hydrological Processes”, 2195–2217, 17.<br />

YOUNG P.C., BEVEN K.J. 1994: Data-<br />

-based mechanistic modelling <strong>of</strong> rainfallfl<br />

ow nonlinearity, “Environmetrics”,<br />

335–363, 5.<br />

YOUNG, P.C., PEDREGAL D., TYCH W.<br />

1999: Dynamic harmonic regression, “J.<br />

Forecasting”, 369–394, 18.<br />

Streszczenie: Modelowanie niskich przepływów<br />

do analizy wpływu zmian klimatu na zasoby wodne.<br />

Racjonalna gospodarka zasobami wodnymi,<br />

jak również symulacja scenariuszy zmian klimatu<br />

nie są możliwe bez lepszego zrozumienia bilansu<br />

wody w zlewni, jak również lepszych metod do<br />

modelowania niżówek. Niniejszy artykuł przedstawia<br />

zastosowanie Mechanistycznego Bazującego<br />

na Danych (DBM) podejścia do modelowania<br />

procesu opad-odpływ. Przedstawione są dwa<br />

modele, pierwszy stosuje nieliniową transformację<br />

wejść (opadu), drugi, stosuje logarytmiczną<br />

transformację wyjść (przepływu). Obydwa modele<br />

wykorzystują liniową Stochastyczną Funkcję<br />

Przejścia (STF) do opisu dynamiki procesu.<br />

Wyprowadzone modele są zdekomponowane na<br />

dwa moduły: jeden reprezentujący szybką dyna-


Data Based Mechanistic rainfall-fl ow models for climate change simulations 13<br />

mikę przepływu (wody powierzchniowe) i drugi,<br />

reprezentujący wolną dynamikę zwiazaną z wodami<br />

gruntowymi. Zastosowanie stochastycznych<br />

metod identyfi kacji i estymacji parametrów modeli<br />

pozwala na ocenę niepewności predykcji.<br />

W związku z logarytmiczną transformacją wyjścia,<br />

uzyskana wariancja predykcji modelu z<br />

nieliniowością na wyjściu jest zmienna w czasie.<br />

W artykule przedstawiamy zastosowanie obydwu<br />

modeli do modelowania zlewni o podłożu karstycznym<br />

w Wielkiej Brytanii (rzeka Thet).<br />

MS. received November 2006<br />

Author’s address<br />

Renata J. Romanowicz<br />

Environmental Centre<br />

Lancaster <strong>University</strong><br />

Lancaster, LA1 4YQ<br />

United Kingdom


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 15–26<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Design hydrological event and routing scheme for fl ood mapping<br />

in urban area<br />

GIOVANNI RAVAZZANI1 , MARCO MANCINI1 and CLAUDIO MERONI2 1Politecnico di Milano,<br />

2MMI s.r.l., Milan (Italy)<br />

Abstract: Design hydrological event and<br />

routing scheme for fl ood mapping in urban area.<br />

Defi nition <strong>of</strong> fl ood risk maps is a task to which<br />

modern surface hydrology addresses a substantial<br />

research effort. Their impact on the government <strong>of</strong><br />

the fl ood prone areas have increased the need for<br />

better investigation <strong>of</strong> the inundation dynamics<br />

[Fema 2002]. This identifi es open research<br />

problems such as: the defi nition <strong>of</strong> the design<br />

hydrograph, the identifi cation <strong>of</strong> the surface<br />

boundary conditions for the fl ood routing over<br />

the inundation plan, the choice <strong>of</strong> the hydraulic<br />

model that is the most close to the physical<br />

behaviour <strong>of</strong> the fl ood routing in the specifi c<br />

environment, such as urban areas or river valley.<br />

Most <strong>of</strong> academic and commercial mathematical<br />

models resolving the De Saint Venant equations<br />

in mono or bidimensional approach, fail on<br />

complex topography. Steep slopes, geometric<br />

discontinuities, mixed fl ow regimes, initially dry<br />

areas are just the main problems an hydraulic<br />

model should solve. In this study, we address two<br />

points: the defi nition <strong>of</strong> the critical event for an<br />

inundation area and a fl ood routing modelling<br />

technique for a highly urbanized fl at area. For this<br />

latter we show that, in urban areas, a modelling<br />

scheme <strong>of</strong> a network <strong>of</strong> connected channels<br />

and storages, gives a better representation <strong>of</strong><br />

surface boundary conditions such as aggregation<br />

<strong>of</strong> buildings and road network and suffi cient<br />

accuracy for fl ood risk mapping purpose respect<br />

to a real 2-D hydraulic routing model.<br />

Key words: design hydrograph, distributed model,<br />

fl ood hazard maps, quasi-2D model, urban fl ood.<br />

INTRODUCTION<br />

Flooding is one <strong>of</strong> the most common<br />

environmental hazard, due to the<br />

widespread geographical distribution <strong>of</strong><br />

river valleys and the attraction <strong>of</strong> human<br />

settlements to these areas.<br />

Floods can be generally considered<br />

in two categories [Castelli. 1994]: fl ash<br />

fl oods, the product <strong>of</strong> heavy localized<br />

precipitation in a short time period over<br />

a given location, and general fl oods,<br />

caused by precipitation over a longer<br />

time period and over a given river basin.<br />

Although fl ash fl ooding occurs<br />

<strong>of</strong>ten along mountain streams, it is also<br />

common in urban areas where much <strong>of</strong><br />

the ground is covered by impervious<br />

surfaces. Fixed drainage channels in<br />

urban areas may be unable to contain<br />

the run<strong>of</strong>f that is generated by relatively<br />

small, but intense, rainfall events.<br />

Many modelling approaches exist to<br />

simulate fl oods [Leopardi et al. 2002].<br />

The choice <strong>of</strong> the simulation approach<br />

depends on the questions to be answered<br />

[Horrit and Bates 2001, Ferrante et<br />

al. 2000]. In this work we focus on<br />

determination <strong>of</strong> fl ood hazard map for


16 G. Ravazzani, M. Mancini, C. Meroni<br />

an urban area located in the Liguria<br />

province in Italy. Traditional approach<br />

is based on determination <strong>of</strong> fl ood extent<br />

for a given frequency event, using steady<br />

fl ow 1-dimensional model. A new rule<br />

has been recently introduced for highly<br />

urbanized area; it identifi es the hazard<br />

according to both fl ow depth and fl ow<br />

velocity, claiming the necessity to use<br />

more accurate unsteady fl ow numerical<br />

models.<br />

The aim <strong>of</strong> the work is to assess the<br />

accuracy <strong>of</strong> a quasi-2D model versus<br />

pure 2D models for fl ood prediction in<br />

urban area.<br />

THE CASE STUDY<br />

The study area is located in the western<br />

Italy, in the province <strong>of</strong> Liguria (Fig.<br />

1). The area approaches the sea and<br />

has an extension <strong>of</strong> about 1.8 km 2 in<br />

which 6 rivers are encountered: Gorleri,<br />

Varcavello, S. Pietro, Pineta, Rodine and<br />

Madonna. The drainage basin ranges<br />

from 0.32 km 2 <strong>of</strong> the river Rodine to<br />

18.05 km 2 <strong>of</strong> the river S. Pietro. The<br />

maximum elevation is reached in the<br />

Evigno Peak at 988.5 m. a.s.l.<br />

The morphology is characterized by<br />

steep slopes in the upper part <strong>of</strong> the basins,<br />

decreasing while approaching the sea.<br />

The restricted coastal plain has attracted<br />

tourism activity with the effect <strong>of</strong> an<br />

exponential growth <strong>of</strong> urban density. As<br />

a consequence the rivers <strong>of</strong>ten have been<br />

channelized into artifi cial drainage. In<br />

this situation, we can frequently observe,<br />

during storm event, water overtopping<br />

the levees and fl owing into main roads<br />

and districts, dragging people and cars.<br />

The target area is crossed by a railway<br />

that divides it in two parts: the upper<br />

with a slope <strong>of</strong> about 1.5% and the lower<br />

with an average slope <strong>of</strong> about 0.8%.<br />

THE DIRECTIVES FOR BASIN<br />

PLANNING<br />

For the purpose <strong>of</strong> land use planning<br />

and management, fl ood risk maps are<br />

required. The Italian legislation leave<br />

the task <strong>of</strong> the assessment <strong>of</strong> fl ood risk<br />

maps to the River Basin Authority with<br />

FIGURE 1. Aerial photo <strong>of</strong> the study area. The six rivers and the railway are visible


the Basin Plan study. The traditional<br />

approach simulates the inundation<br />

processes with a steady 1-dimensional<br />

model. The analysis is iterated for 50 and<br />

200 year return period peak discharge.<br />

The 50 year fl ood extent is classifi ed as<br />

class-A hazard and 200 year fl ood extent<br />

is classifi ed as class-B hazard (Fig.<br />

2a). Class-A areas are subject to more<br />

restrictive rules than class-B areas.<br />

A new scheme recently proposes<br />

[FEMA, 2002; Rosso 2003] to determine<br />

the hazard map on the basis <strong>of</strong> both<br />

hydraulic depth and fl ow velocity.<br />

According to this scheme, if an area is<br />

frequently fl ooded but with low depth<br />

and low velocity, the level <strong>of</strong> hazard<br />

is reduced (Fig. 2b). Moreover a new<br />

hazard class is introduced: according to<br />

the new scheme, an area can be classifi ed<br />

as class-A, class-B and class-B0 hazard.<br />

The class-B0 area is the less restrictive<br />

one.<br />

The necessity to employ fl ow<br />

velocity data, requires the use <strong>of</strong> more<br />

sophisticated hydraulic model, with<br />

a b<br />

Design hydrological event and routing scheme for fl ood mapping... 17<br />

the ability to simulate unsteady fl ow in<br />

complex urban terrain.<br />

THE DESIGN STORM<br />

HYDROGRAPHS FOR<br />

INUDATION MAPS<br />

There are many types <strong>of</strong> design<br />

hydrographs that have been developed<br />

over the years [Maidment 1993; Chow et<br />

al. 1988], and the debate is open on the<br />

frequencies <strong>of</strong> the fl ood map due to the<br />

difference between the frequencies <strong>of</strong><br />

the peak discharge and the hydrograph<br />

volume [De Michele et. al. 2005;<br />

Salvadori and De Michele 2004].<br />

Moreover, if a rainfall run<strong>of</strong>f model is<br />

used for hydrograph computation, the<br />

hypothesis <strong>of</strong> the equivalence among the<br />

return period <strong>of</strong> the peak discharge and<br />

the rainfall is false too.<br />

Inundation maps are generally<br />

computed using peak discharge for<br />

given return period as input variable and<br />

simple steady 1-dimensional analysis<br />

FIGURE 2. Evaluation <strong>of</strong> hazard maps according to the actual rule (a) based on the fl ooding extent for<br />

given return period events and according to the new rule (b) which considers both hydraulic depth and<br />

fl ow velocity


18 G. Ravazzani, M. Mancini, C. Meroni<br />

for the river channel, that means that the<br />

hydrograph volume and the routing on<br />

the inundated areas are not considered.<br />

As well known, especially for plain<br />

urban area, the storaging volume can<br />

signifi cantly affects the routing and the<br />

extension <strong>of</strong> the inundated areas.<br />

According to this we think that it<br />

is more correct, in the assessing <strong>of</strong><br />

inundation map, to take into account the<br />

inundation volume and its statistics as the<br />

key variable for map characterization.<br />

For ungaged basin, when the<br />

hydrograph is determined from rainfallrun<strong>of</strong>f<br />

transformation, we propose<br />

a methodology for the inundation volume<br />

defi nition based on research <strong>of</strong> the<br />

critical rainfall event for an inundation<br />

area. This is defi ned as the one that<br />

gives the maximum value <strong>of</strong> inundation<br />

volume for a given return period <strong>of</strong><br />

the rainfall in the hypothesis that the<br />

intensity duration frequency (IDF) curve<br />

represents the rainfall behaviour. The<br />

maximum inundation volume is defi ned<br />

as the maximum value <strong>of</strong> the integral<br />

<strong>of</strong> the difference between the incoming<br />

hydrograph and the bankfull discharge.<br />

For this purpose, rainfall run<strong>of</strong>f<br />

distributed model, FEST [Mancini 1990;<br />

Montaldo et al. 2002; Rulli and Rosso<br />

2002; Montaldo et al. 2003; Montaldo<br />

et al. 2004; Salandin et al. 2004],<br />

was employed. FEST is a distributed<br />

hydrologic model especially developed<br />

at the Politecnico di Milano focusing<br />

on fl ash fl ood event simulation. As<br />

a distributed model, FEST can manage<br />

heterogeneity in hillslope and drainage<br />

network morphology (slope, roughness,<br />

etc..) and land use [Rosso 1994].<br />

From a family <strong>of</strong> IDF curves it is<br />

possible to obtain an hydrograph for<br />

any duration at a given frequency and so<br />

a series <strong>of</strong> hydrographs for every return<br />

period (Fig. 3). Given the bankfull<br />

discharge for the examined river<br />

branch, the hydrograph that presents the<br />

maximum inundation volume identifi es<br />

the critical rainfall event (Fig. 4) for the<br />

FIGURE 3. Procedure for the search <strong>of</strong> the critical event defi ned as that event which is characterized by<br />

the maximum potential inundation volume. The results refer to river Varcavello for the 50 years return<br />

period


inundation map. In the end, according<br />

to retention pool analysis [Artina et<br />

al.1997], the critical event for a fl ood<br />

mapping is different from the critical<br />

event for the maximum peak discharge<br />

(Fig. 3) and the correlated hydrograph<br />

peak presents different return period for<br />

a given rainfall frequency (Tab. 1) .<br />

DESCRIPTION OF THE<br />

HYDRAULIC MODEL<br />

Urban areas are usually characterized by<br />

streets and aggregation <strong>of</strong> buildings (in<br />

the following termed blocks), that can<br />

be schematized, from a fl ood routing<br />

point <strong>of</strong> view, as network <strong>of</strong> channels<br />

where the fl ow velocity is greater than<br />

zero, and storages where the velocity is<br />

about zero. This latter hypothesis derives<br />

from the consideration on the friction<br />

induced by the macro roughness <strong>of</strong> the<br />

manmade obstacles present in a block.<br />

So that the implemented network model<br />

presents three main unit: the main rivers,<br />

the channels along the main streets<br />

Design hydrological event and routing scheme for fl ood mapping... 19<br />

FIGURE 4. Series <strong>of</strong> potential inundation volume for different return period. The design hydrograph for<br />

a given return period is the one characterized by the maximum value <strong>of</strong> the potential fl ooding volume<br />

and the storages for the aggregation <strong>of</strong><br />

buildings.<br />

De Saint Venant equations are then<br />

integrated along the river branches and<br />

street channels using the Preissman<br />

implicit numerical scheme [Wallingford<br />

S<strong>of</strong>tware 2005]. Energy and continuity<br />

equation is verifi ed at nodes given by the<br />

channel intersection. Water discharge<br />

can fl ow in every direction in the channel<br />

network according to the hydraulic<br />

gradient. Reservoir equation is used to<br />

model diffusion in the blocks.<br />

The connection between storages and<br />

channels are discretized in the specifi c<br />

nodes and the weir equation controls<br />

the water fl ux to and from the reservoir<br />

according to the difference <strong>of</strong> water<br />

level.<br />

The river branches feed the channel<br />

network where the cross sections are<br />

insuffi cient respect to the fl ood discharge.<br />

When the riverbanks are overtopped,<br />

water enters the street channels.<br />

The channel network model is<br />

a very good representation <strong>of</strong> urban<br />

fl ood routing when the hydraulic depth


20 G. Ravazzani, M. Mancini, C. Meroni<br />

TABLE 1. Comparison between maximum peak discharge and peak discharge <strong>of</strong> the hydrograph with<br />

the maximum inundation volume computed for a given rainfall frequency. In the last column the return<br />

period <strong>of</strong> the peak discharge <strong>of</strong> the hydrograph with the maximum inundation volume is reported<br />

Rainfall return<br />

period (years)<br />

Maximum peak<br />

discharge (m 3 /s)<br />

and energy is lower than the height <strong>of</strong><br />

the surrounding buildings which act as<br />

impervious boundary elements.<br />

The described channel network<br />

model was implemented (Fig. 5) in the<br />

Infoworks-CS s<strong>of</strong>tware [Wallingford<br />

S<strong>of</strong>tware 2005]. Rivers and main roads<br />

are represented by conduits. Manholes<br />

allow the exchange <strong>of</strong> water between<br />

river and roads and are used to represent<br />

Peak discharge <strong>of</strong> the<br />

hydrograph with the maximum<br />

inundation volume (m 3 /s)<br />

Return period <strong>of</strong> the peak<br />

discharge <strong>of</strong> the hydrograph<br />

with the maximum inundation<br />

volume (years)<br />

50 94.04 79.82 25.5<br />

100 111.75 86.37 38<br />

200 132.82 95.61 54<br />

500 161.24 99.7 64.5<br />

crossroads. Conduits are linked with<br />

storages through weirs.<br />

The main model parameters are the<br />

roughness coeffi cient which controls<br />

fl ow velocity in the channels and the<br />

weir discharge coeffi cient which controls<br />

the amount <strong>of</strong> water exchanged between<br />

channels and storages. The adopted set<br />

<strong>of</strong> values are reported in Table 2.<br />

FIGURE 5. Network quasi-2D hydraulic model representing urban area: detail <strong>of</strong> the river Varcavello


THESIS VERIFICATION USING<br />

2-DIMENSIONAL MODEL<br />

The basic assumption <strong>of</strong> the network<br />

model is that velocity <strong>of</strong> fl ood fl ow<br />

over the urban area is greater than zero<br />

in the main streets while, in the blocks,<br />

velocity can be neglected. To verify<br />

this assumption, we analysed fl ood<br />

dynamic in the blocks, by means <strong>of</strong><br />

a high resolution 2-D model. A subset<br />

<strong>of</strong> urban land in proximity to river<br />

Varcavello, has been extracted from the<br />

main domain. It is composed by two<br />

main blocks: one upstream the railway<br />

and the other downstream. The upper<br />

one is characterized by an average slope<br />

<strong>of</strong> about 1.5%, the lower by a slope <strong>of</strong><br />

about 0.8%. These subsets are considered<br />

to be representative <strong>of</strong> the whole study<br />

area. A full 2-D model was implemented<br />

using the SMS s<strong>of</strong>tware [www.bossintl.<br />

com] (Fig. 6). A steady analysis has been<br />

performed. Hydraulic depths deriving<br />

from channel network simulation have<br />

been taken as boundary condition <strong>of</strong> the<br />

blocks.<br />

Design hydrological event and routing scheme for fl ood mapping... 21<br />

TABLE 2. Parameters describing components <strong>of</strong> the network quasi-2D model<br />

Parameter Value<br />

Natural river channel Strickler roughness 30 m1/3 s –1<br />

Concrete river channel Strickler roughness 50 m 1/3 s –1<br />

Not asphalted street Strickler roughness 30 m 1/3 s –1<br />

Asphalted street Strickler roughness 50 m 1/3 s –1<br />

Weir discharge coeffi cient for districts upstream the railway (a)<br />

0.1<br />

Weir discharge coeffi cient for districts downstream the railway (a)<br />

0.28<br />

Weir length for districts upstream the railway (a)<br />

50 m<br />

Weir length districts downstream the railway (a)<br />

20 m<br />

(a)<br />

Weir formula adopted for discharge computation in the model: Q = CdBDu g( Du −Dd)<br />

,<br />

where Q is the discharge [m 3 /s], Cd is the discharge coeffi cient, B is the width <strong>of</strong> the weir [m], Du is<br />

the upstream depth with respect to the crest [m], Dd is the downstream depth with respect to the crest<br />

[m] and g is the acceleration due to gravity [m/s 2 ].<br />

Buildings have been modelled in<br />

two different ways: as impervious area<br />

(buildings are excluded from the model<br />

domain) and as a high roughness surface<br />

(Strickler coeffi cient equal to 0.01 m 1/3 s –1 ).<br />

The latter way means that water is free<br />

to move in the whole domain, but the<br />

fl ow through buildings is made diffi cult<br />

because <strong>of</strong> an high value <strong>of</strong> roughness<br />

parameter. Two cases for the Strickler<br />

coeffi cient for gardens surrounding<br />

buildings were considered: in the fi rst<br />

case its value was fi xed to 5 m 1/3 s –1 and<br />

in the second case to 10 m 1/3 s –1 .<br />

Velocity fi eld deriving from<br />

simulations has been mapped to a regular<br />

grid and the cumulative frequency <strong>of</strong> the<br />

velocity values has been evaluated (Fig.<br />

7). In the upstream block (Fig. 7a), we<br />

can note that most <strong>of</strong> the cells (67%)<br />

has a value <strong>of</strong> velocity less than 0.6 m/<br />

s even for the simulation with Strickler<br />

coeffi cient for gardens equal to 10 m 1/3 s –1<br />

and impervious buildings.<br />

In the other simulations, the<br />

percentage <strong>of</strong> cells with velocity under<br />

0.6 m/s increases nearly to 100%. Both


22 G. Ravazzani, M. Mancini, C. Meroni<br />

a b<br />

FIGURE 6. Subset <strong>of</strong> the study area (a) near river Varcavello upstream the railway and (b) representation<br />

in the 2-D model<br />

a b<br />

FIGURE 7. Cumulative frequency <strong>of</strong> velocity magnitude simulated by means <strong>of</strong> full 2D model in (a)<br />

upstream district and (b) downstream district; ks_g and ks_b denote, respectively, the Strickler roughness<br />

coeffi cient for gardens and buildings<br />

considering buildings impervious or as<br />

high roughness surface, the peak fl ow<br />

velocity reaches, anyway, a maximum<br />

value <strong>of</strong> 1.3 m/s in just a few cells.<br />

The observations are valid for the<br />

downstream block (Fig. 7b) too. As a<br />

consequence <strong>of</strong> a milder slope, fl ow<br />

velocity is lower indeed.<br />

We can conclude that motion <strong>of</strong><br />

water in the aggregation <strong>of</strong> buildings is<br />

characterized by low values <strong>of</strong> velocity.<br />

The assumption to simulate blocks as<br />

storages in the channel network model<br />

seems reasonable.


THE FLOOD HAZARD MAPS<br />

Flow velocity and hydraulic depth values,<br />

computed respectively in the channels<br />

and in the nodes <strong>of</strong> the network model,<br />

have been interpolated over the entire<br />

study area to obtain a continuous map.<br />

For this purpose the borders <strong>of</strong> districts<br />

have been considered as barriers. The<br />

overlay <strong>of</strong> the velocity with the depth<br />

map, produced the hazard map (Fig. 8),<br />

according to the new directive <strong>of</strong> the<br />

River Basin Authority (§ 3).<br />

A comparison is made with the<br />

previous study performed by Basin<br />

Authority [Regione Liguria] which<br />

made use <strong>of</strong> steady fl ow computation<br />

model for delimitation <strong>of</strong> fl ood extent,<br />

not regarding fl ow velocity.<br />

Total amount <strong>of</strong> fl ooded area has<br />

increased in this new study (Fig. 9) from<br />

0.97 to 1.27 km 2 . The class-A areas and<br />

class-B areas have decreased, respectively<br />

from 0.56 to 0.24 km 2 and from 0.42 to<br />

0.16 km 2 . The complementary area is<br />

included in the class-B0 area which was<br />

not defi ned in the previous analysis.<br />

The differences in the framework <strong>of</strong><br />

the present study respect to the previous<br />

Design hydrological event and routing scheme for fl ood mapping... 23<br />

one, have counterpart in the resulting<br />

fl ooding map (Fig. 8). In the network<br />

quasi-2D model, overtopping water is<br />

routed along main roads as far as distant<br />

blocks. This is good explanation for those<br />

areas that, in the previous study, are not<br />

even water logged by 200 year fl ood<br />

event: the pure 1D steady model can’t<br />

predict fl ood processes in urban area.<br />

The new framework can also predict<br />

water logging due to manmade obstacles<br />

orthogonal to the fl ow direction. The<br />

railway divides the city on north-south<br />

direction and behaves as an impervious<br />

levee to water fl ow. This does not seem<br />

to be completely represented by the 1D<br />

model.<br />

CONCLUSIONS<br />

A procedure is presented for estimation<br />

<strong>of</strong> design hydrographs. It is based on<br />

the search for the critical event which<br />

maximizes the potential fl ooding<br />

volume. The iterative process makes<br />

use <strong>of</strong> the FEST model for the rainfallrun<strong>of</strong>f<br />

transformation. The distributed<br />

model permits to well represent<br />

basins characterized by heterogeneous<br />

FIGURE 8. (a) Flood hazard map resulting in this study, compared to (b) actual hazard maps published<br />

by Basin Authority


24 G. Ravazzani, M. Mancini, C. Meroni<br />

FIGURE 9. Extension <strong>of</strong> class-hazard area as resulting from this study, compared to previous study<br />

performed by Basin Authority<br />

morphology and land use, as the ones in<br />

this work. The critical event guarantees<br />

that the hydrograph with the maximum<br />

effect on territory is assumed, even<br />

if peak discharge is lower than the<br />

maximum peak discharge for the given<br />

rainfall frequency.<br />

Classical one dimensional models<br />

are poor tools for fl ood analysis in urban<br />

area. They can be used as long as the main<br />

stream is not overtopped, as they fail to<br />

simulate fl ow component other than along<br />

river direction. Two dimensional models,<br />

on the other hand, are time consuming<br />

and, for unsteady fl ow simulations on<br />

complex topography, they fail on steep<br />

slopes, geometric discontinuities, mixed<br />

fl ow and initially dry areas.<br />

This work proposes an hybrid<br />

approach. The urban and drainage<br />

system is modelled by means <strong>of</strong> a<br />

network in which both rivers and roads<br />

are modelled as channels linked by<br />

nodes. The basic assumption is that high<br />

density urban blocks can be modelled as<br />

storages in which fl ow velocity is null.<br />

The assumption is verifi ed by a 2D model<br />

results which confi rm that fl ow velocity<br />

in the blocks is negligible.<br />

The channel network model seems<br />

to well represents fl ood routing in urban<br />

area, it is not computationally expensive<br />

as 2D model and, above all, is much more<br />

stable on complex topography. On the<br />

other hand it requires a deep knowledge<br />

<strong>of</strong> the territory and a good skills <strong>of</strong> the<br />

modeller to set up the hydraulic sketch.<br />

REFERENCES<br />

ARTINA S., CALENDA G., CALOMINO<br />

F., LA LOGGIA, G., MODICA C.,<br />

PAOLETTI A., PAPIRI S., RASULO G.,<br />

VELTRI P. 1997: Sistemi di Fognatura.<br />

Manuale di Progettazione. Hoepli, chap.<br />

X,XVIII, Milan. (In Italian).<br />

Boss International. http://www.bossintl.com<br />

CASTELLI F. 1994: Spatial scales <strong>of</strong> frontal<br />

precipitation. In Advances in Distributed<br />

Hydrology, R. Rosso, A. Peano, I. Becchi<br />

and G. A. Bemporad Editors, Water<br />

Resources Publications, 87–114.<br />

CHOW V.T., MAIDMENT D.R., MAYS<br />

L.V. 1988: Applied Hydrology. McGraw-<br />

Hill.


De MICHELE C., SALVATORI G.,<br />

CANOSSI M., SETACCIA A., ROSSO<br />

R. 2005: Bivariate statistical approach to<br />

check adequacy <strong>of</strong> dam spillway. Journal<br />

<strong>of</strong> Hydrologic Engineering, 10 (1): 50–57.<br />

FEMA, Federal Emergency Management<br />

Agency, 2002: Guidelines and<br />

specifi cations for fl ood hazard mapping<br />

partners. FEMA Publications.<br />

FERRANTE M., NAPOLETANO F.,<br />

UMBERTINI L. 2000: Optimization <strong>of</strong><br />

transportation networks during urban<br />

fl ooding. Journal <strong>of</strong> the American Water<br />

Resources Association, 36 (5): 1115–<br />

–1120.<br />

HORRIT M.S., BATES P.D. 2001:<br />

Predicting fl oodplain inundation: raster-<br />

-based modelling versus the fi nite element<br />

approach. Hydrological Processes, 15,<br />

825–842.<br />

LEOPARDI A., OLIVERI E., GRECO M.<br />

2002: Two-dimensional modelling <strong>of</strong><br />

fl oods to map risk-prone areas. Journal<br />

<strong>of</strong> Water Resources Planning and<br />

Management, 128(3),168–178.<br />

MAIDMENT D.R. 1993: Handbook <strong>of</strong><br />

hydrology. McGraw-Hill.<br />

MANCINI M. 1990: La modellazione<br />

distribuita della risposta idrologica:<br />

effetti della variabilitŕ spaziale e della<br />

scala di rappresentazione del fenomeno<br />

dell’assorbimento. PhD thesis, Politecnico<br />

di Milano. (In Italian).<br />

MONTALDO N., MANCINI M., ROSSO<br />

R. 2004: Flood hydrograph attenuation<br />

induced by a reservoir system: analysis<br />

with a distributed rainfall-run<strong>of</strong>f model.<br />

Hydrological Processes, 18(3), 545–563.<br />

MONTALDO N., RAVAZZANI G.,<br />

MANCINI M. 2003: The role <strong>of</strong> the<br />

antecedent soil moisture condition on the<br />

distributed hydrologic modelling <strong>of</strong> the<br />

Toce alpine basin fl oods. International<br />

Conference on Alpine Meteorology and<br />

MAP-Meeting 2003, http://www.map2.<br />

ethz.ch/icam2003/ICAM-MAP2003.htm<br />

MONTALDO N., TONINELLI V., MANCINI<br />

M., ROSSO R. 2002: Coupling Limited<br />

Area Models with Distributed Hydrologic<br />

Design hydrological event and routing scheme for fl ood mapping... 25<br />

Models for Flood Forecasting: the Toce<br />

Basin Study Case. IAHS, 274, 229–236.<br />

Regione Liguria, Autoritŕ di Bacino di<br />

regionale. Piano di bacino stralcio per<br />

la difesa idraulica ed idrogeologica,<br />

(Ambito di Bacino no 7 – DIANESE).<br />

(In Italian).<br />

ROSSO R. 1994: An introduction to spatially<br />

distributed modelling <strong>of</strong> basin response.<br />

In Advances in Distributed Hydrology,<br />

R. Rosso, A. Peano, I. Becchi and G.A.<br />

Bemporad Editors, Water Resources<br />

Publications, 3–30.<br />

ROSSO R. 2003: Consulenza tecnico<br />

scientifi ca per la defi nizione degli ambiti<br />

normativi relativi alle fasce di inondabilitŕ<br />

in funzione di tiranti idrici e velocitŕ di<br />

scorrimento. Abstract on http://www.<br />

regione.liguria.it (In Italian).<br />

RULLI M.C., ROSSO R. 2002: An integrated<br />

simulation method for fl ash-fl ood risk<br />

assessment: 1. Frequency predictions<br />

in the Bisagno River by combining<br />

stochastic and deterministic methods.<br />

Hydrology and Earth system Sciences,<br />

6(2), 267–283.<br />

SALANDIN A., RABUFFETTI D.,<br />

BARBERO S., CORDOLA M.,<br />

VOLONTČ G., MANCINI M. 2004:<br />

Monitoraggio e simulazione numerica<br />

del fenomeno fi nalizzata alla previsione<br />

e gestione dell’emergenza. Neve e<br />

Valanghe, 51. (In Italian).<br />

SALVADORI G., De MICHELE C. 2004:<br />

Analytical calculation <strong>of</strong> storm volume<br />

statistics involving Pareto-like intensityduration<br />

marginals. Geophysical<br />

Research Letters, 31 (4).<br />

Wallingford S<strong>of</strong>tware. http://www.<br />

wallingfords<strong>of</strong>tware.com/products/<br />

infoworks_cs/. Site visited on 2005-07-08.<br />

Streszczenie: Konstruowanie hydrogramów<br />

i schematów obliczeniowych do odwzorowania<br />

obszarów zagrożonych powodziami na terenach<br />

zurbanizowanych. Wyznaczanie map ryzyka powodziowego<br />

jest jednym z ważniejszych zagadnień<br />

we współczesnej hydrologii. Ich wpływ na<br />

zarządzanie terenami zalewowymi zyskał duże


26 G. Ravazzani, M. Mancini, C. Meroni<br />

znaczenie, co spowodowało potrzebę badań nad<br />

dynamiką powodzi. Było to również przyczyną<br />

intensyfi kacji badań nad następującymi zagadnieniami:<br />

zdefi niowanie hydrogramu projektowego,<br />

identyfi kacja powierzchniowych warunków brzegowych<br />

do obliczeń zasięgu powodzi, wybór modeli<br />

jak najlepiej opisujących zasięg powodzi w<br />

specyfi cznym środowisku, jakim jest obszar zurbanizowany<br />

lub doliny rzeczne. Większość modeli<br />

matematycznych zarówno szkoleniowych,<br />

jak i komercyjnych, rozwiązuje równania De<br />

Sait Venant’a w jednym lub dwu wymiarach, nie<br />

sprawdza się jednak dla skomplikowanych topografi<br />

cznie powierzchni. Duże spadki, nieciągłości<br />

geometryczne, różne zmieniające się reżimy przepływu,<br />

początkowo suche obszary są głównymi<br />

problemami, które powinny być rozwiązywane<br />

przez modele hydrauliczne. W tych badaniach skupiono<br />

się na dwóch zagadnieniach: zdefi niowane<br />

zdarzenia krytycznego dla terenów zalewowych<br />

i technice modelowania terenów zalewowych<br />

dla silnie zurbanizowanej płaskiej powierzchni.<br />

W tym przypadku schemat połączonych kanałów<br />

i zbiorników retencyjnych dał lepsze odwzorowanie<br />

powierzchniowych warunków brzegowych,<br />

takich jak kompleksy budynków, sieć ulic i wystarczająca<br />

dokładność w określaniu obszarów<br />

zagrożonych powodziami w porównaniu do dwuwymiarowego<br />

modelu hydraulicznego.<br />

MS received November 2006<br />

Authors’ addresses:<br />

Giovanni Ravazzani<br />

Marco Mancini<br />

Politecnico di Milano<br />

Plazza L. da Vinci 32, 20133 Milano<br />

Italy<br />

Claudio Meroni<br />

MMI s.r.l,<br />

Via Aselli 24, 20133 Milano<br />

Italy<br />

Corresponding author:<br />

e-mail: giovanni.ravazzani@polimi.it<br />

Fax +39 02 2399 6207


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 27–31<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Estimation <strong>of</strong> T-year fl ood discharge for a small lowland river using<br />

statistical method<br />

KAZIMIERZ BANASIK, ANDRZEJ BYCZKOWSKI<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW,<br />

Department <strong>of</strong> Water Engineering and Environmental Restoration<br />

Abstract: Estimation <strong>of</strong> T-year fl ood discharge<br />

for a small lowland river using statistical method.<br />

The 34-year series <strong>of</strong> daily discharges from<br />

a small agricultural river basin <strong>of</strong> the Zagożdżonka<br />

river at the gauging station <strong>of</strong> Płachty Stare (A =<br />

= 82.4 km 2 ), located in the center <strong>of</strong> Poland,<br />

were used in the investigation. The Pearson<br />

type 3 (i.e. 3-parameter gamma) distribution<br />

and the log-normal distribution were considered<br />

to fi nd the best fi t with the empirical data. The<br />

IMGW (Institute <strong>of</strong> Meteorology and Water<br />

Management) computer program, which applies<br />

the method <strong>of</strong> maximum likelihood, was used to<br />

estimate the parameters <strong>of</strong> the above distributions.<br />

Also commonly applied in engineering practice,<br />

the Pearson type 3 distribution with the method <strong>of</strong><br />

quantile for estimating the distribution parameters<br />

was additionally used. Log-normal distribution<br />

gives better fi t with the measured annual fl ood<br />

fl ows, applying Akaike criterion, and the best fi t<br />

applying subjective visual criterion.<br />

Key words: fl ood fl ow, small river basin, peak<br />

fl ow, frequency curve.<br />

INTRODUCTION<br />

Estimation <strong>of</strong> fl ood discharges are<br />

needed in designing <strong>of</strong> hydraulic or road<br />

structures, as well as in fl ood protection<br />

activity. It is <strong>of</strong>ten assumed that in case<br />

<strong>of</strong> existence <strong>of</strong> long term hydrometric<br />

records, the procedure for estimating<br />

T-year fl ood discharge could be carried<br />

out without larger diffi culties, which<br />

however does not always take place, as<br />

selection <strong>of</strong> various probability function<br />

may produce signifi cant differences in<br />

the results (Maidment 1993, Pilgrim and<br />

Doran 1993). In case <strong>of</strong> the studied river<br />

basin, which is research river basin <strong>of</strong><br />

Department <strong>of</strong> Water Engineering and<br />

Environmental Restoration <strong>of</strong> <strong>Warsaw</strong><br />

Agricultural <strong>University</strong>, the results are<br />

also important as reference values for<br />

application and verifi cation <strong>of</strong> indirect<br />

methods for the T-year fl ood discharge<br />

estimation, as well as for rainfall-run<strong>of</strong>f<br />

model verifi cation. In the paper there has<br />

been analysis carried out for examining<br />

the following statistical distributions:<br />

a) the Pearson type 3 – P3 (i.e. 3-<br />

-parameter gamma) distribution and, b)<br />

the log-normal distribution – LN. For<br />

the statistical calculation the IMGW<br />

(2005; Institute <strong>of</strong> Meteorology and<br />

Water Management) computer program,<br />

which applies the method <strong>of</strong> maximum<br />

likelihood – MML, was used to estimate<br />

the parameters <strong>of</strong> the above distributions.<br />

Also commonly applied in engineering<br />

practice in Poland, the Pearson type 3<br />

distribution with the method <strong>of</strong> quantile<br />

– MQ, for estimating the distribution<br />

parameters was additionally used. Data<br />

<strong>of</strong> 34-year daily discharges (1969–2002)<br />

<strong>of</strong> small river basin <strong>of</strong> Zagożdżonka<br />

were used for the analyze.


28 K. Banasik, A. Byczkowski<br />

DATA USED<br />

Data <strong>of</strong> discharge <strong>of</strong> the Zagożdżonka<br />

river in the gauge <strong>of</strong> Plachty Stare,<br />

where area <strong>of</strong> the basin is 82.4 km 2 ,<br />

has been colleted by the Department <strong>of</strong><br />

Water Engineering and Environmental<br />

Restoration (former Department <strong>of</strong><br />

Hydraulic Structures) <strong>of</strong> the <strong>Warsaw</strong><br />

Agricultural <strong>University</strong> – SGGW since<br />

1962. Until 1980 water stages had been<br />

measured by observer three times a day,<br />

when additionally water stage recorder<br />

was installed. Location <strong>of</strong> the river basin<br />

is shown in the Figure 1. The mean annual<br />

precipitation and run<strong>of</strong>f are estimated at<br />

610 mm and 109 mm respectively. The<br />

Zagożdżonka watershed is <strong>of</strong> lowland<br />

type. The absolute relief is 37 m. The<br />

mean slops <strong>of</strong> the main streams are from<br />

2.5 to 3.5‰. The land use is dominated<br />

by arable land (small grain and potatoes).<br />

Sandy soils are the dominant soil types in<br />

the watershed (Byczkowski et al. 2001).<br />

Hydrometric discharge measurements,<br />

carried out at the Płachty Stare<br />

FIGURE 1. Map <strong>of</strong> the upper part <strong>of</strong> the Zagożdżonka River basin<br />

gauge up to ten times a year, have<br />

been basis for rating curve estimation<br />

and continue its verifi cation. Annual<br />

maximum fl ood fl ows from the period<br />

1969–2002 were used for the statistical<br />

analysis. This period has been accepted,<br />

as the whole 40-year, i.e. 1963–2002<br />

(Banasik et al. 2003) period <strong>of</strong> records did<br />

not fulfi ll the postulate <strong>of</strong> homogeneity<br />

according to Kraskal-Wallis (IMGW,<br />

2005).<br />

RESULTS OF WQ p%<br />

(T-YEAR FLOOD DISCHARGE)<br />

ESTIMATION AND<br />

CONCLUDING REMARKS<br />

Using the IMGW computer program<br />

(Ozga-Zielińska et al. 1999; IMGW,<br />

2005), which apply the method <strong>of</strong><br />

maximum likelihood (MML) for<br />

parameter estimation, two distribution<br />

function were selected from four for<br />

further analyze, based on the Akaike<br />

criterion. The selected distributions have<br />

been as follow:


•<br />

the Pearson type 3 (P3; i.e. 3parameter<br />

gamma) distribution, and<br />

• the log-normal (LN) distribution.<br />

Very close values <strong>of</strong> the Akaike<br />

criterion for the both distribution (i.e.<br />

167,04 and 166,03 for the Pearson<br />

type 3 and the log-normal distributions<br />

respectively) infl uence the decision<br />

to include both <strong>of</strong> the functions in the<br />

analyze.<br />

The statistical series <strong>of</strong> the 34-year<br />

period have been also approximated<br />

using the most frequently used in Poland<br />

probability distribution according to<br />

the Pearson type 3, with the method <strong>of</strong><br />

quantiles (MQ; Kaczmarek, Trykozko<br />

1964). The calculations <strong>of</strong> the T-year<br />

discharges (or discharges with p%<br />

probability <strong>of</strong> exceedance) are based on<br />

quantiles <strong>of</strong> the following range: 10%,<br />

50%, 90% and 100%.<br />

The maximal discharges are estimated<br />

from the equation (Byczkowski 1999):<br />

WQp = WQ50%[1 + cvФ(p; s)] (1)<br />

where:<br />

WQp – maximal annual discharge with<br />

the probability <strong>of</strong> exceedance p%,<br />

Estimation <strong>of</strong> T-year fl ood discharge for a small lowland river... 29<br />

WQ 50% – maximal discharge with the<br />

probability <strong>of</strong> exceedance p = 50%,<br />

c v – coeffi cient <strong>of</strong> variation <strong>of</strong> the series<br />

<strong>of</strong> maximal discharges,<br />

Ф(p; s) – probability function for a given<br />

type <strong>of</strong> distribution.<br />

The results <strong>of</strong> the calculations for the<br />

three distributions are shown on the fi g.<br />

2 and given in the Table 1.<br />

Results presented on the Figure<br />

2 and in the Table 1 show relative<br />

signifi cant differences in the fl ood<br />

discharges <strong>of</strong> small probability <strong>of</strong><br />

exceedance, estimated according the two<br />

different statistical distributions, i.e. the<br />

lognormal distribution and Pearson type<br />

3 distribution. As the difference <strong>of</strong> the<br />

Akaike criterion for the above statistical<br />

distribution was relatively small (i.e.<br />

166.03 for the lognormal and 167.04<br />

for the Pearson type 3 distribution),<br />

one may consider to select also other<br />

criterion at choosing the propel statistical<br />

distribution. Visual assessment <strong>of</strong><br />

agreement <strong>of</strong> the theoretical distributions<br />

with the empirical data, shown on<br />

the Figure 2, indicates also that the<br />

TABLE 1. Flood fl ows according various distributions and methods <strong>of</strong> parameter estimation for the<br />

Zagożdżonka River at Płachty Stare gauge station<br />

Return period<br />

T (year)<br />

Probability p<br />

(%)<br />

(1-CDF)<br />

Flood fl ows (m 3 /s) according to distribution and method <strong>of</strong><br />

parameter estimation<br />

Lognormal -LN Pearson type 3 - P3 Pearson type 3 – P3<br />

method <strong>of</strong> maximum likelihood – MML<br />

method <strong>of</strong> quantiles<br />

- MQ<br />

1000 0.1 71.4 33.3 34.3<br />

100 1.0 31.1 21.8 22.1<br />

20 5.0 14.9 13.9 13.8<br />

10 10 10.2 10.5 10.3<br />

2 50 2.79 3.20 2.80<br />

1.11 90 0.98 0.94 0.75<br />

1.01 99 0.59 0.63 0.59


30 K. Banasik, A. Byczkowski<br />

Q [m3/s]<br />

1 2 5 10 20 50 100 200 500 1000<br />

60<br />

T<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

100 99 90 80 70 60 50 40 30 20 10 5 2 1 0.5 0.2 p [%] 0.1<br />

lognormal distribution fi t better with the<br />

measurement results.<br />

The similar results <strong>of</strong> fl ood discharges<br />

<strong>of</strong> various probabilities, estimation<br />

according to Pearson type 3 distribution,<br />

with the use <strong>of</strong> the two various method<br />

<strong>of</strong> parameter estimation (i.e. method<br />

<strong>of</strong> maximum likelihood and method <strong>of</strong><br />

quantiles) indicate that the method has<br />

had small infl uence on the results <strong>of</strong><br />

computation.<br />

As the fi ve largest fl ood fl ows, shown<br />

on the Figure 2, indicated heterogeneity<br />

with the remaining data, an analyze in<br />

which a division <strong>of</strong> the fl oods caused<br />

by rainfall events and snowmelt events,<br />

as various genesis for the river basin<br />

responses, seems to be needed.<br />

Acknowledgment. The study described<br />

in this paper has been carried out within<br />

research project Nr 1010/P01/2006/30,<br />

founded by Ministry <strong>of</strong> Science and<br />

Higher Education. The fi nancial support<br />

provided by this organization is gratefully<br />

acknowledged. The assistance <strong>of</strong> Mr J.<br />

Gładecki in the process <strong>of</strong> preparing the<br />

material for the analyses is also gratefully<br />

acknowledged.<br />

REFERENCES<br />

LN-MML<br />

P3-MML<br />

P3-Mq<br />

FIGURE 2. Annual peak discharges frequency curve for the Zagożdżonka River at Płachty Stare gauge<br />

for the period <strong>of</strong> 1969–2002<br />

BANASIK K., BYCZKOWSKI A.,<br />

GŁADECKI J. 2003: Prediction <strong>of</strong><br />

T-year fl ood discharge for a small river<br />

basin using direct and indirect methods.<br />

Ann. <strong>Warsaw</strong> Agricult. <strong>University</strong> –<br />

SGGW, <strong>Land</strong> <strong>Reclam</strong>. No 23, p. 3–8.


BYCZKOWSKI A. 1999: Hydrologia t. 2.<br />

Wyd. SGGW, Warszawa.<br />

BYCZKOWSKI A., BANASIK K., HEJ-<br />

DUK L., MANDES B. 2001: Wieloletnie<br />

tendencje zmian procesu opadu<br />

i odpływu w małych zlewniach nizinnych<br />

- na przykładzie rzeki Zagożdżonki<br />

(Long-term tendency in changes <strong>of</strong> precipitation<br />

and run<strong>of</strong>f in a small lowland river<br />

basin <strong>of</strong> Zagożdżonka). Instytut Meteorologii<br />

i Gospodarki Wodnej. Atlasy<br />

i monografi e. Warszawa, p. 43–52.<br />

IMGW, 2005: Zasady obliczania największych<br />

przepływów rocznych o określonym<br />

prawdopodobieństwie przewyższenia<br />

– Długie ciągi pomiarowe przepływów<br />

(Guidelines for computation <strong>of</strong><br />

annual fl ood discharges with small probability<br />

<strong>of</strong> exceedance – long data sets).<br />

Instytut Meteorologii i Gospodarki Wodnej,<br />

Warszawa.<br />

KACZMAREK Z., TRYKOZKO E. 1964:<br />

Application <strong>of</strong> the method <strong>of</strong> quantiles<br />

to estimation <strong>of</strong> the Pearson distribution.<br />

Acta Geoph. Polon. T. 12, z. 1.<br />

MAIDMENT D.R. (ed.) 1993: Handbook<br />

<strong>of</strong> hydrology. McGraw-Hill, Inc. New<br />

York.<br />

OZGA-ZIELIŃSKA M., BRZEZIŃSKI J.,<br />

OZGA-ZIELIŃSKI B. 1999: Zasady obliczania<br />

największych przepływów rocznych<br />

o określonym prawdopodobieństwie<br />

przewyższenia – przy projektowaniu<br />

obiektów budownictwa hydrotechnicznego.<br />

(Guidelines for computation<br />

<strong>of</strong> annual fl ood discharges with small<br />

probability <strong>of</strong> exceedance – for designe<br />

<strong>of</strong> hydrotechnical structures). Materiały<br />

Badawcze, Seria: Hydrologia i Oceanologia.<br />

IMGW, Warszawa.<br />

PILGRIM D.H., DORAN D.G. 1993:<br />

Practical criteria for the choice <strong>of</strong><br />

method for estimating extreme design<br />

fl oods. Extreme Hydrological Events:<br />

Precipitation, Floods and Droughts<br />

(Proceedings <strong>of</strong> the Yokohama<br />

Symposium, July 1993). IAHS Publ. no<br />

213, p. 227–235.<br />

Estimation <strong>of</strong> T-year fl ood discharge for a small lowland river... 31<br />

Streszczenie. Wyznaczenie przepływów maksymalnych<br />

prawdopodobnych w małej zlewni<br />

nizinnej przy zastosowaniu metody statystycznej.<br />

Codzienne przepływy rzeki Zagożdżonki w<br />

Płachtach Starych (A = 82,4 km 2 ), położonej na<br />

Równinie Radomskiej z okresu 34 lat były podstawą<br />

wyboru wartości maksymalnych rocznych,<br />

wykorzystanych do wyznaczenia przepływów<br />

maksymalnych o małym prawdopodobieństwie<br />

przekroczenia. Rozkłady prawdopodobieństwa<br />

– gamma i logarytmiczno-normalny, wybrano<br />

do opisu własności losowych ciągu maksymalnych<br />

przepływów rocznych. Przeprowadzone<br />

obliczenia za pomocą programu komputerowego<br />

IMGW, wykorzystujacego metodę największej<br />

wiarygodności do wyznaczania parametrów, wykazały<br />

lepszą zgodność rozkładu lograytmiczno-<br />

-normalnego z danymi empirycznymi niż rozkładu<br />

gamma (Pearsona typu 3), zarówno przy zastosowaniu<br />

kryterium Akaike, jak również według<br />

oceny wizualnej (subiektywnej). Przy rozkładzie<br />

tym (logarytmiczno-normalnym) uzyskano znacznie<br />

wyższe wartości przepływów maksymalnych<br />

o niskim prawdopodobieństwie przekroczenia<br />

(1% i 0,1%). Wyznaczając przepływy maksymalne<br />

prawdopodobne metodą dotychczas powszechnie<br />

stosowaną w praktyce inżynierskiej tj.<br />

przyjmując rozkład Pearsona typu 3, z parametrami<br />

wyznaczonymi metodą kwantyli, wykazano<br />

znikomy wpływ metody szacowania parametrów<br />

na postać rozkładu prawdopodobieństwa.<br />

MS. received November 2006<br />

Authors’ address:<br />

Kazimierz Banasik, Andrzej Byczkowski<br />

Wydział Inżynierii i Kształtowania Środowiska<br />

SGGW<br />

02-787 Warszawa, ul. Nowoursynowska 166<br />

Poland<br />

e-mail: kazimierz_banasik@sggw.pl<br />

andrzej_byczkowski@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 33–42<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Curve Number update used for run<strong>of</strong>f calculation<br />

DONALD E. WOODWARD*, CLAUDIA C. SCHEER*<br />

RICHARD H. HAWKINS**<br />

*Natural Resources Conservation Service, USA<br />

**<strong>University</strong> <strong>of</strong> Arizona, USA<br />

Abstract: Curve Number update used for run<strong>of</strong>f<br />

calculation. The Natural Resources Conservation<br />

Service (NRCS), formerly the Soil Conservation<br />

Service (SCS), developed the run<strong>of</strong>f curve<br />

number procedure for estimating direct run<strong>of</strong>f<br />

from rainfall on ungaged agricultural watersheds<br />

in the late 1950s. This procedure is being used<br />

world wide to estimate direct run<strong>of</strong>f from<br />

rainfall events and, more recently, applied to<br />

continuous simulation models. In 1990 a work<br />

group <strong>of</strong> hydraulic engineers from NRCS and<br />

the Agricultural Research Service (ARS) began<br />

an effort to update the procedure for estimating<br />

direct run<strong>of</strong>f. The results <strong>of</strong> this joint effort will<br />

be explained in this paper.<br />

Key words: NRCS run<strong>of</strong>f curve, event analysis,<br />

model fi tting.<br />

INTRODUCTION<br />

The NRCS run<strong>of</strong>f curve number<br />

procedure was developed in the late<br />

1950s to estimate the run<strong>of</strong>f volumes.<br />

It was developed as a simple procedure<br />

for estimating direct run<strong>of</strong>f for use in the<br />

design <strong>of</strong> conservation practices. Curve<br />

numbers represent the run<strong>of</strong>f potential<br />

<strong>of</strong> various soil-cover combinations.<br />

Originally, curve numbers were<br />

developed by utilizing the maximum<br />

annual daily run<strong>of</strong>f and associated rainfall<br />

data from ARS watersheds located across<br />

the United States. The original curve<br />

numbers encompassed a wide variety <strong>of</strong><br />

hydrologic soil groups, agricultural land<br />

uses and hydrologic conditions. Curve<br />

number values are found in the NRCS<br />

(NEH-630 1985).<br />

Over the years, additional curve<br />

numbers have been developed for new<br />

land uses, tillage practices and cover<br />

conditions. Since adequate rainfall-run<strong>of</strong>f<br />

data was not always available for these<br />

new situations, alternative methods <strong>of</strong><br />

developing curve numbers were utilized.<br />

Many <strong>of</strong> the newer curve numbers were<br />

developed by comparison <strong>of</strong> values<br />

for similar land uses, or by weighting<br />

current land use curve numbers, a method<br />

particularly favored in the development<br />

<strong>of</strong> urban curve numbers.<br />

In the 1980s, NRCS recognized that<br />

an in-depth review <strong>of</strong> the run<strong>of</strong>f curve<br />

number procedure was needed in order<br />

to adequately address concerns with<br />

curve number usage. These concerns<br />

included the development <strong>of</strong> curve<br />

numbers for additional land use and<br />

cover conditions from limited data, the<br />

need <strong>of</strong> curve numbers for new land uses<br />

and cultivation practices, regional and<br />

seasonal variation <strong>of</strong> curve numbers.<br />

At the 1989 ARS/NRCS Hydraulic<br />

Engineers Workshop, the principle<br />

subjects discussed were the use and abuse


34 D.E. Woodward et al.<br />

<strong>of</strong> curve numbers, the application <strong>of</strong><br />

curve numbers in continuous hydrologic<br />

models, and the future <strong>of</strong> the run<strong>of</strong>f curve<br />

number procedure. Meeting participants<br />

recommended that an ARS/NRCS Work<br />

Group be established to further the study<br />

<strong>of</strong> curve numbers and investigate the<br />

potential need to develop curve numbers<br />

for major regional land areas.<br />

At the 1992 meeting, the Curve<br />

Number Work Group decided that the<br />

procedures used to determine the fi rst<br />

curve numbers needed to be revised and<br />

updated. A limited test indicated that<br />

plotting the ordered values rather than the<br />

paired or natural values provided realistic<br />

results. In the initial and subsequent<br />

analyses, annual maximum daily rainfall<br />

and run<strong>of</strong>f values were used. It was noted<br />

that while paired values matched nature,<br />

ordered values better matched design<br />

and evaluation watershed studies.<br />

The Work Group concluded that they<br />

did not have the resources to analyze all<br />

<strong>of</strong> the data available for small watersheds<br />

in an orderly and timely manner. Hawkins<br />

(1998) had the most complete, organized<br />

set <strong>of</strong> ARS data from small agricultural<br />

watersheds and spent considerable time<br />

and effort to remove errors from this<br />

data and was interested in dedicating the<br />

time needed to complete the required<br />

analysis.<br />

About this same time period, the<br />

American Society <strong>of</strong> Civil Engineers<br />

(ASCE) established a task group whose<br />

purpose it was to review the NRCS<br />

rainfall-run<strong>of</strong>f estimation procedure<br />

known as the curve number system.<br />

The Curve Number Work Group<br />

revised eight chapters <strong>of</strong> National<br />

Engineering Handbook (NEH-630)<br />

Revised version l <strong>of</strong> NEH-630 may be<br />

found at: http://www.wcc.nrcs.usda.<br />

gov/water/quality/common/neh630/<br />

4content.html .<br />

During the revision <strong>of</strong> the NEH-<br />

630 chapters incorrect or misleading<br />

statements were corrected and, in some<br />

cases, certain points were reemphasized<br />

for clarity. The most important changes<br />

were:<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

The reference to Antecedent Moisture<br />

Conditions (AMC) was removed<br />

and the terminology was changed to<br />

Antecedent Run<strong>of</strong>f Condition (ARC).<br />

It was recognized that ARC II<br />

represents the average watershed<br />

condition <strong>of</strong> the watershed when<br />

fl ooding occurs. This means the<br />

average watershed conditions could<br />

be different for different geographical<br />

areas when fl ooding occurs. In other<br />

words, a particular run<strong>of</strong>f curve<br />

number for ARC II in Arizona<br />

represents a different condition than<br />

the same curve number for ARC II in<br />

Oregon.<br />

Explicit expression <strong>of</strong> the Run<strong>of</strong>f Curve<br />

Number Equation as a transformation<br />

<strong>of</strong> the rainfall frequency distribution<br />

to run<strong>of</strong>f frequency distribution was<br />

reemphasized.<br />

ARC I and ARC III were expressed<br />

as measures <strong>of</strong> dispersion about the<br />

central tendency (ARC II). This is<br />

a corollary to treating curve number<br />

as a random variable.<br />

Mathematical pro<strong>of</strong> and demonstration<br />

that S does not include Ia was<br />

documented.<br />

The desirability <strong>of</strong> locally determined<br />

curve numbers was reiterated.<br />

Although this was part <strong>of</strong> the original<br />

documentation in NEH-630, local<br />

calibration has been seldom pursued.


ORDERED PAIRS AND<br />

ASYMPTOTES<br />

One <strong>of</strong> the goals <strong>of</strong> the Work Group was to<br />

standardize the procedure for calculating<br />

curve numbers from rainfall-run<strong>of</strong>f data.<br />

The accepted handbook method was to<br />

plot the annual series <strong>of</strong> rainfall-run<strong>of</strong>f<br />

on a scatter diagram and select the curve<br />

number that best fi t the data. However,<br />

this method ignored the many storms<br />

that were not the largest annual events.<br />

The run<strong>of</strong>f curve number equation<br />

is <strong>of</strong>ten used to transform a rainfall<br />

frequency distribution into a run<strong>of</strong>f<br />

frequency distribution. For example, the<br />

100-year rainfall is used to determine<br />

the 100-year run<strong>of</strong>f, etc. This practice,<br />

called frequency matching, led to the<br />

idea <strong>of</strong> ordered pairs (Hjelmfelt 1980).<br />

Hawkins (1993) followed this idea by<br />

sorting the rainfall and run<strong>of</strong>f depths<br />

separately and re-aligning them on a rank<br />

order basis, creating new sets <strong>of</strong> rainfallrun<strong>of</strong>f<br />

pairs. These rainfall-run<strong>of</strong>f pairs<br />

can be thought <strong>of</strong> as having equal return<br />

periods with the individual run<strong>of</strong>fs not<br />

necessarily associated with the original<br />

causative rainfall.<br />

Using all the storms in the data set,<br />

Hawkins calculated a curve number for<br />

each <strong>of</strong> the ordered pairs and plotted them<br />

against the rainfall. The curve number<br />

was found to vary with storm depth, but<br />

for most cases approached a constant<br />

value at higher rainfalls. The resulting<br />

curves were fi tted with asymptotic<br />

equations to approach this constant<br />

curve number value. The limiting<br />

curve number, approached as rainfall<br />

approaches infi nity, is taken as the best<br />

fi t curve number for the watershed.<br />

Curve Number update user for run<strong>of</strong>f calculation 35<br />

This method <strong>of</strong> determining a<br />

watershed curve number has the<br />

advantage <strong>of</strong> being mathematical and<br />

therefore programmable. Results are<br />

mostly infl uenced by the largest event,<br />

which is in keeping with the usual intended<br />

applications <strong>of</strong> the curve number. . This<br />

method appears to give results consistent<br />

with the present procedures and curve<br />

number tables in NEH-630. The curve<br />

number Work Group has adopted this<br />

procedure for future determination <strong>of</strong><br />

curve numbers from local data.<br />

MODES OF APPLICATION OF<br />

THE CURVE NUMBER METHOD<br />

The Work Group recognized three<br />

distinctly different modes <strong>of</strong> application<br />

for curve numbers:<br />

1. Determination <strong>of</strong> run<strong>of</strong>f volume for a<br />

given return period, given total event<br />

rainfall for that return period.<br />

2. Determination <strong>of</strong> direct run<strong>of</strong>f for<br />

individual events. This acknowledges<br />

the variation between events and is<br />

the basis for the initial development.<br />

3.<br />

Process models, an inferred<br />

application as an infi ltration model,<br />

or a soil moisture-curve number<br />

relationship, or as a source area<br />

distribution.<br />

The fi rst application is the most<br />

widely used in engineering and uses the<br />

curve number to transform the rainfall<br />

frequency distribution into a run<strong>of</strong>f<br />

frequency distribution. The run<strong>of</strong>f volume<br />

that is computed is <strong>of</strong>ten overlooked<br />

and the peak discharge, which is more<br />

frequently the desired value, is calculated<br />

using a unit hydrograph model.


36 D.E. Woodward et al.<br />

The second application, run<strong>of</strong>f from<br />

individual rainfall events, is the basis<br />

for the original development, as the<br />

rainfall versus run<strong>of</strong>f plots led to the<br />

curve number concept. There is a wide<br />

variation <strong>of</strong> run<strong>of</strong>f from rainfalls <strong>of</strong><br />

the same magnitude which forces us to<br />

acknowledge that curve number varies<br />

among storms for a wide range <strong>of</strong> reasons.<br />

The original handbook, developed in<br />

large part for conditions in the humid<br />

east, south, and mid-west, designated<br />

Antecedent Moisture Condition, or<br />

AMC, as the most signifi cant variable<br />

in explaining this. Average moisture<br />

condition was called AMC II and<br />

applied to the curve number when<br />

fl ooding occurs. Dry conditions (AMC<br />

I) applied to the low curve number, and<br />

wet conditions (AMC III) applied to the<br />

high curve number. This condition is<br />

most <strong>of</strong>ten determined by prior rainfall<br />

since soil moisture conditions are not<br />

frequently monitored.<br />

The Work Group studied the effect<br />

<strong>of</strong> soil moisture on curve numbers by<br />

looking at infi ltrometer studies (Van<br />

Mullem 1992). Four studies with 162 data<br />

pairs on 86 different soils from across<br />

the United States were used. Although<br />

average curve number increased from<br />

9% to 40% between the studies from the<br />

initial test (dry to average condition) to<br />

the wet condition test (average to wet<br />

condition), no signifi cant relationship<br />

was found between soil moisture and<br />

curve number. The study indicated that<br />

the difference in curve number that<br />

might be related to soil moisture is much<br />

less than the variation between ARC I<br />

and ARC III. Similarly, Hawkins and<br />

Cate (1998) showed that 5-day prior<br />

rainfall was the only consistent factor in<br />

explaining deviations from the central<br />

trend <strong>of</strong> run<strong>of</strong>f in 11 <strong>of</strong> 25 agricultural<br />

watersheds which were studied, and at<br />

levels far below handbook expectations.<br />

Because prior rainfall explains only<br />

part <strong>of</strong> the variation <strong>of</strong> curve number,<br />

the terminology has been changed to<br />

Antecedent Run<strong>of</strong>f Condition, or ARC.<br />

More importantly, the ARC I and ARC<br />

III conditions have been shown to be<br />

the bounds on the distribution <strong>of</strong> curve<br />

number. Figure 1 shows the ARC I, II, and<br />

III curve numbers plotted on a rainfallrun<strong>of</strong>f<br />

scatter diagram. Upon review <strong>of</strong><br />

this by Hjelmfelt (1980) indicated that<br />

there appears to be a correlation between<br />

exceedance limits and ARC. Figure 2<br />

shows that ARC I represents the 10%<br />

exceedance limit and ARC III represents<br />

the 90% exceedance limit for a number<br />

<strong>of</strong> agricultural watersheds (Hjelmfelt et<br />

al. 1982).<br />

It might be inferred that the curve<br />

number model is an infi ltration model<br />

because in its application it is used to<br />

determine run<strong>of</strong>f incrementally over<br />

the duration <strong>of</strong> the storm for input into<br />

a unit hydrograph model. With this use<br />

it becomes a surrogate for an infi ltration<br />

model. This has created much confusion.<br />

The model doesn’t behave like most<br />

infi ltration models/equations because<br />

the curve number losses don’t always<br />

decline with time or with prior rainfall<br />

and may actually increase when rainfall<br />

intensity increases (Hawkins 1980). The<br />

curve number model behavior in this<br />

regard is the same as from a partial area<br />

saturation model. Additionally, with the<br />

curve number model, the ultimate steady<br />

state rate is zero. It does not approach<br />

a steady-state non-zero infi ltration rate<br />

with time, as do the Horton or Green-


Q(in)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Ampt Equations. There doesn’t seem to<br />

be any consensus as to whether this is the<br />

way watershed losses occur.<br />

It should be emphasized that the curve<br />

number model is not a point infi ltration<br />

model and the difference between<br />

Curve Number update user for run<strong>of</strong>f calculation 37<br />

Hastings, Nebraska WS44028 (1941–1954)<br />

0<br />

0 1 2 3 4 5<br />

FIGURE 1. Rainfall-Run<strong>of</strong>f scatter diagram showing ARC I, II, and III curve numbers<br />

P(in)<br />

CN(III) = 94<br />

CN(II) = 85<br />

CN(I) = 70<br />

FIGURE 2. The 10% and 90% exceedance values compared to the AMC I and AMC III curve numbers<br />

rainfall and run<strong>of</strong>f is better defi ned as<br />

watershed “losses.” Watershed indices,<br />

such as the curve number, are lumped<br />

expressions <strong>of</strong> net basin performance.<br />

In this regard, the run<strong>of</strong>f curve number<br />

model performs well as an integrator <strong>of</strong>


38 D.E. Woodward et al.<br />

all the losses from all the processes over<br />

the watershed, which was the original<br />

intention.<br />

It is also sometimes inferred that the<br />

parameter S, defi ned as the potential<br />

maximum retention, is a physical<br />

property <strong>of</strong> the site like a soil moisture<br />

storage parameter, and the water in it can<br />

be accounted for. This is has not been<br />

shown with any certainty. The parameter<br />

S (or curve number) is a model variable<br />

and is only constant for a particular storm.<br />

Although it is related to soil and cover<br />

characteristics, it is not an identifi able<br />

physical property.<br />

VARIATION OF CURVE NUMBER<br />

WITH SEASON AND LAND USE<br />

Curve numbers were derived from<br />

rainfall-run<strong>of</strong>f data for 15 distinct land<br />

uses on 177 small watersheds in the<br />

United States (Rietz and Hawkins 2000).<br />

Curve numbers for each land use on<br />

each watershed were calculated using<br />

the asymptotic method and evaluated<br />

at the local, regional and national scale.<br />

Signifi cant differences at the 5% level<br />

were found between the curve numbers<br />

<strong>of</strong> almost all <strong>of</strong> the different land uses<br />

tested. Signifi cant differences in curve<br />

number were also found on grazed and<br />

ungrazed paired watersheds, and on<br />

watersheds that had undergone land use<br />

conversions.<br />

The general magnitudes and rank<br />

order <strong>of</strong> the average land use curve<br />

numbers were in general agreement with<br />

expected handbook values. Meadows<br />

almost always produced the lowest<br />

curve number at both the local and<br />

regional level. Forestland produced the<br />

lowest overall average curve number<br />

at the national level, but also displayed<br />

the largest variability. No signifi cant<br />

differences could be determined between<br />

curve numbers for pasture and rangeland<br />

at the regional scale or between row<br />

crops and small grain at any scale. Where<br />

comparable, pastures usually had higher<br />

curve numbers than meadows. None <strong>of</strong><br />

these comparisons considered hydrologic<br />

soil group or any other soil parameter.<br />

Seasonal variation <strong>of</strong> curve number<br />

has also been noted. This is seen more<br />

readily in the more humid settings, and<br />

is rare in arid and semi-arid watersheds.<br />

Where evident it follows a pattern with<br />

higher curve numbers in the dormant<br />

season when the ground has less cover<br />

and is likely to be wetter; and lower<br />

curve numbers during the summer when<br />

the ground is dryer and vegetation is<br />

in a high growth stage. Also, seasonal<br />

variation in forest curve numbers may<br />

be associated with leafi ng stages (Price,<br />

1998).<br />

THE INITIAL ABSTRACTION<br />

RATIO (IA/S RATIO)<br />

The Initial Abstraction Ratio (Ia/S or λ)<br />

was assigned a value <strong>of</strong> 0.2 in the original<br />

development <strong>of</strong> run<strong>of</strong>f curve numbers.<br />

Data from NEH-630 (1985) has been<br />

used to support the value <strong>of</strong> 0.2. As part<br />

<strong>of</strong> the effort to develop the required<br />

documentation for the curve number<br />

study, it became apparent that additional<br />

review <strong>of</strong> λ would be appropriate. Data<br />

analysis from NEH-630 (1985) indicated<br />

the statistical average (mean) <strong>of</strong> the<br />

plotted values was about 0.05.


Two techniques, Event Analysis and<br />

Model Fitting, were used for determining<br />

Ia/S from fi eld data sets.<br />

Event Analysis. Event analysis<br />

requires concurrent synchronized breakpoint<br />

records <strong>of</strong> both rainfall and run<strong>of</strong>f<br />

depth. The event rainfall depth recorded<br />

when the direct run<strong>of</strong>f hydrograph<br />

begins is taken as Ia. Knowing the total<br />

event rainfall P and the direct run<strong>of</strong>f Q,<br />

equation 1a is solved for S, and the ratio<br />

simply taken Ia/S = λ. Each event gives<br />

a separate value for λ, and the median for<br />

a large number <strong>of</strong> events is taken as the<br />

representative watershed value.<br />

General Model Fitting: Here the<br />

value <strong>of</strong> λ is simply determined by<br />

iterative least squares procedure fi tting<br />

for both λ and S <strong>of</strong> the general equation.<br />

Q = (P – λS) 2 /(P + (1 – λ)S)<br />

for P ≥ λS<br />

Direct Run<strong>of</strong>f Q (inch)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Curve Number update user for run<strong>of</strong>f calculation 39<br />

ARS WS26030 Coshocton, Ohio<br />

Q = 0 for P ≤ λS<br />

The objective <strong>of</strong> the fi tting is to fi nd<br />

the values <strong>of</strong> λ and S such that<br />

Σ{Q – [(P – λS) 2 /(P + (1 – λ)S)]} 2<br />

for P > λS<br />

is a minimum. Here each P:Q data set<br />

gives only one value <strong>of</strong> λ. An illustration<br />

<strong>of</strong> such fi tting is given in Figure 3.<br />

In each <strong>of</strong> the above two methods, only<br />

larger storms were used. This was done to<br />

avoid the biasing effects <strong>of</strong> small storms<br />

towards high curve numbers. With Event<br />

Analysis, only events with Pe = P – λS<br />

≥ 1 inch were used. With Model Fitting,<br />

only events with P ≥ 1 inch were used. As<br />

shall be seen, resulting values <strong>of</strong> Ia were<br />

<strong>of</strong>ten quite small, so that this difference<br />

between the two techniques was slight.<br />

For statistical analysis, only watersheds<br />

Q = P<br />

Ordered<br />

Natural<br />

0 1 2 3 4 5 6<br />

Rainfall P (inch)<br />

FIGURE 3. Model Fitting by least squares for WS26030 located at Coshocton, OH with a drainage area<br />

<strong>of</strong> 303 acres. For the natural data (squares): S = 4.0974 inches, CN = 70.8, λ = 0.0179, R 2 = 50.50%,<br />

and SE = 0.32 inch. For the ordered data (triangles): S = 2.0943 inches, CN = 82.6, λ = 0.1364, R 2 =<br />

= 99.17%, and SE = 0.0372 inches


40 D.E. Woodward et al.<br />

with more than 20 events with P ≥ 1 inch<br />

or Pe ≥ 1 inch were used.<br />

In addition, for the model fi tting<br />

determinations, both “natural” and<br />

“ordered” data sets were used. Natural<br />

data pairs the P and Q as they naturally<br />

occurred in time, and thus displays<br />

considerable variety in run<strong>of</strong>f with<br />

rainfall. Ordered data matches (usually)<br />

rank-ordered P and Q values, so that<br />

each has approximately the same<br />

return period. This is in keeping with<br />

a major application <strong>of</strong> the method,<br />

which in design work at least - matches<br />

the frequency <strong>of</strong> the rainfall with the<br />

frequency <strong>of</strong> the run<strong>of</strong>f. For example, the<br />

100-year rainfall is assumed to produce<br />

the 100-year run<strong>of</strong>f.<br />

Rainfall-run<strong>of</strong>f data from 307<br />

watersheds or plots were used,<br />

originating from USDA-Agricultural<br />

Research Service, US Forest Service,<br />

US Geological Survey, and New Mexico<br />

State <strong>University</strong>. The data sets covered<br />

23 states, mainly in the east, Midwest,<br />

and south <strong>of</strong> the United States. There<br />

was no data from the northwestern 1/3 <strong>of</strong><br />

the country, from roughly California to<br />

Minnesota. A total <strong>of</strong> 28,301 events were<br />

available that met the rainfall depth (P<br />

and Pe) criteria. For event analysis, only<br />

ARS data was applicable, ins<strong>of</strong>ar as it<br />

alone contained the needed detailed in-<br />

storm break-point information. All others<br />

were only rainfall and run<strong>of</strong>f depths P<br />

and Q. This is summarized in Table 1.<br />

These 307 watersheds all had 20 or<br />

more events which met the storm size<br />

criteria. The ARS data is available from<br />

Web site ftp://hydrolab.arsusda.gov/<br />

pub/arswater/. The “USLE” plot data<br />

had been used in the development <strong>of</strong> the<br />

Universal Soil Loss Equation, and was<br />

downloaded from the web site: http://<br />

topsoil.nserl.purdue.edu/usle/. Forest<br />

Service data was in large part supplied in<br />

reduced form to Hawkins (1980, 1993)<br />

by Hewlett (1977, 1984), who used it<br />

in earlier papers (Hewlett, et al., 1977;<br />

Hewlett and Fortson, 1984). The Jornada<br />

plot data, from a site north <strong>of</strong> Las Cruces<br />

NM, was supplied by Ward and described<br />

in Hawkins and Ward (1998). The USGS<br />

data was supplied from local sources<br />

for a number <strong>of</strong> urban and urbanizing<br />

watersheds in the Tucson area.<br />

In general, the results showed that λ<br />

is not a constant from storm to storm,<br />

or watershed to watershed, and that the<br />

assumption <strong>of</strong> λ = 0.20 is unusually<br />

high.<br />

In 202 out <strong>of</strong> the 307 watersheds<br />

studied, Ia/S = 0.05 had a lower standard<br />

error in predicted Q that Ia/S = 0.2. ( Jiang<br />

2001)<br />

TABLE 1. Data sets and sources<br />

Data source # Watersheds (w) or plots (p) Method used<br />

ARS<br />

134 (w)<br />

Event Analysis, Model Fitting<br />

USLE (ARS)<br />

137 (p)<br />

Model Fitting<br />

USFS<br />

26 (w)<br />

Model Fitting<br />

Jornada (NMSU)<br />

6 (p)<br />

Model Fitting<br />

USGS<br />

4 (w)<br />

Model Fitting


CONCLUSIONS<br />

1.<br />

2.<br />

Additional work is needed to develop<br />

a revised set <strong>of</strong> curve numbers.. An<br />

up-to-date soils maps needs to be<br />

prepared for each <strong>of</strong> the experimental<br />

watersheds used in the study. NRCS<br />

is reviewing the impacts <strong>of</strong> changing<br />

the Ia/S ratio.<br />

The use <strong>of</strong> curve numbers as a<br />

moisture counting technique needs<br />

additional study. While it appears<br />

to work, additional documentation<br />

needs to be developed.<br />

REFERENCES<br />

Agricultural Research Service Water Data<br />

Center, 1995: ARS Water Data: ARS/<br />

Access CD. USDA-ARS Hydrology<br />

Lab, Beltsville, Maryland. Agricultural<br />

Research Service Water Data Center,<br />

http://www.hydrolab.arsusda.gov/<br />

arswater.html.<br />

HAWKINS R.H. 1980: Infi ltration and<br />

Curve Numbers: Some Pragmatic and<br />

Theoretic Relationships”, Proceedings <strong>of</strong><br />

Symposium on Watershed Management<br />

1980, ASCE, 925–37.<br />

HAWKINS R.H. 1993: “Asymptotic<br />

determination <strong>of</strong> run<strong>of</strong>f curve numbers<br />

from data”. Journal <strong>of</strong> Irrigation and<br />

Drainage Engineering. Amer Soc Civ<br />

Eng. 119(2): 334–345.<br />

HAWKINS R.H., WARD T.J. 1998: “Site<br />

and cover effects on event run<strong>of</strong>f,<br />

Jornada Experimental Range, New<br />

Mexico”. Proceedings from American<br />

Water Resource Association Conference<br />

on Rangeland Management and Water<br />

Resources. Reno, NV, 361–370.<br />

HAWKINS R.H., CATE A. 1998: “Secondary<br />

Infl uences in Curve Number Rainfall<br />

Run<strong>of</strong>f”, Proceeding <strong>of</strong> the International<br />

Water Resources Engineering Conference<br />

ASCE.<br />

Curve Number update user for run<strong>of</strong>f calculation 41<br />

HEWLETT J.D., CUNNINGHAM. G.B.,<br />

TROENDLE C.A. 1977: “Predicting<br />

Storm Flow and Peak Flow from small<br />

basins in humid areas by the R-index<br />

method”. Water Resources Bulletin.<br />

13(2): 231–253.<br />

HEWLETT J.D., FORTSON J.C. 1984:<br />

“Additional tests on the effect <strong>of</strong> rainfall<br />

intensity on storm fl ow and peak fl ow<br />

from wild-land basins”. Water Resources<br />

Research. 20(7): 985–989.<br />

HJELMFELT A.T. 1980: “Empirical<br />

investigation <strong>of</strong> curve number technique”.<br />

Journal <strong>of</strong> the Hydraulics Division.<br />

American Society Civil Eng 106 (HY9):<br />

1471–1476.<br />

HJELMFELT A.T., KRAMER L.A.,<br />

BURWELL R.E. 1982: “Curve Numbers<br />

as Random Variables, Rainfall-Run<strong>of</strong>f<br />

Relationship´ Resources Publications,<br />

Littleton, CO., 365–370.<br />

HJELMFELT A.T., WOODWARD D.A.,<br />

CONAWAY G., QUAN Q.D., Van<br />

MULLEM J., HAWKINS R.H. 2001:<br />

“Curve Numbers, Recent Developments”.<br />

XXIX IAHR Congress Proceedings,<br />

Beijing, China.<br />

JIANG R. 2001: Investigation <strong>of</strong> Run<strong>of</strong>f<br />

Curve Number Initial Abstraction Ratio.<br />

MS thesis, Watershed Management,<br />

<strong>University</strong> <strong>of</strong> Arizona, 120 pp.<br />

PRICE M. 1998: “Seasonal Variation in<br />

Run<strong>of</strong>f Curve Numbers”. MS Thesis,<br />

Watershed Management, <strong>University</strong> <strong>of</strong><br />

Arizona. 189 pp.<br />

RIETZ P.D., HAWKINS R.H. 2000: “Effects<br />

<strong>of</strong> land use on run<strong>of</strong>f curve numbers”.<br />

Watershed Management 2000, American.<br />

Society. Civil Engineers. Proceedings<br />

Watershed Management Symposium,<br />

Fort Collins CO. (CD ROM)<br />

Soil Conservation Service 1985: National<br />

Engineering Handbook, Section 4,<br />

Hydrology (NEH-630).<br />

USDA/USLE data web site: http://topsoil.<br />

nserl.purdue.edu/usle/.<br />

USDA, Agricultural Research Service: ftp://<br />

hydrolab.arsusda.gov/pub/arswater/.


42 D.E. Woodward et al.<br />

Van MULLEM J.A. (1992). “ Soil Moisture<br />

and Run<strong>of</strong>f–Another Look”. ASCE Water<br />

Forum ‘92, Proceedings <strong>of</strong> the Irrigation<br />

and Drainage Session, Baltimore, MD.<br />

Streszczenie: Aktualizacja parametru CN metody<br />

obliczania opadu efektywnego. W drugiej<br />

połowie lat 50. Służba Ochrony Gleb (ang. Soil<br />

Conservenation Sernice ) w USA (obecnie Służba<br />

Ochrony Zasobów Naturalnymi ang. Natural<br />

Resources Conservation Service – NRCS)<br />

opracowała procedurę nazywaną metodą Curve<br />

Number do wyznaczania opadu efektywnego dla<br />

zlewni nieobserwowanych. Procedura ta jest sto-<br />

sowana na całym świecie do wyznaczania opadu<br />

efektywnego ze zdarzeń opadowych oraz częściej<br />

w modelach do symulacji ciągłych. W 1990 roku<br />

zespół z NRCS i Służby Badań Rolniczych (ang.<br />

Agricultural Research Service) rozpoczął działania<br />

nad aktualizacją procedury określania opadu<br />

efektywnego. W artykule przedstawiono wyniki<br />

przeprowadzonych prac.<br />

MS received July 2006<br />

Authors address:<br />

Donald E. Woodward<br />

Natural Resources Conservation Service, USA<br />

e-mail: dew7718@comcast.net


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 43–54<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Assessment <strong>of</strong> hydrologic regime changes induced by the Jeziorsko<br />

dam performance and morphodynamic processes in the Warta river<br />

TOMASZ DYSARZ, JOANNA WICHER-DYSARZ<br />

Department <strong>of</strong> Hydraulic Engineering, Agricultural <strong>University</strong> <strong>of</strong> Poznań, Poland<br />

Abstract: Assessment <strong>of</strong> hydrologic regime<br />

changes induced by the Jeziorsko dam<br />

performance and morphodynamic processes<br />

in the Warta river. In the paper the overview <strong>of</strong><br />

morphological processes occurring in the selected<br />

Warta river reach is given. The processes were<br />

induced by the performance <strong>of</strong> the Jeziorsko dam,<br />

which was built in 1986. The main purpose <strong>of</strong><br />

the presented research is the assessment <strong>of</strong> these<br />

processes impact on the hydrologic conditions in<br />

the river system. First time the Jeziorsko reservoir<br />

it was fi lled up to the maximum water level in<br />

1991. In 1995 the hydropower plant was put into<br />

operation. The sediment particles transported<br />

with fl owing water were accumulated in the inlet<br />

part <strong>of</strong> the reservoir. In this area very convenient<br />

conditions for wild life, especially for water plants<br />

and birds, appeared as the result <strong>of</strong> water stages<br />

increase. However, the risk related to seasonal<br />

fl oods and dike break possibility have threaten<br />

the local societies until now. The historical data<br />

and hydrodynamic simulation model are used<br />

for the assessment <strong>of</strong> the hydrologic changes.<br />

The data consists <strong>of</strong> fi eld measurements <strong>of</strong> the<br />

river morphology and hydrologic data from the<br />

selected river gages. The hydrodynamic model<br />

was used to reconstruct the fl ow conditions in<br />

particular states <strong>of</strong> the river system evolution. The<br />

statistical analysis <strong>of</strong> the obtained results enabled<br />

the assessment <strong>of</strong> the hydrologic characteristics<br />

transformation in the selected Warta river reach.<br />

Key words: hydrodynamic, simulation model,<br />

river morphology, river hydrology.<br />

INTRODUCTION<br />

In the paper the overview <strong>of</strong><br />

morphological processes occurring<br />

in the selected Warta river reach is<br />

given. The processes were directly or<br />

indirectly induced by the performance<br />

<strong>of</strong> the Jeziorsko dam, which was built<br />

in 1986. The main purpose <strong>of</strong> the<br />

presented research is the assessment <strong>of</strong><br />

these processes impact on the hydrologic<br />

conditions in the river system. Since the<br />

dam was built the velocity characteristics<br />

in the analyzed Warta river reach were<br />

changed what induced the deposition<br />

<strong>of</strong> the transported sediment in the inlet<br />

part <strong>of</strong> the reservoir. Next the sediment<br />

accumulation in the river channel induced<br />

one more process affecting hydrologic<br />

regime. Due to the increase <strong>of</strong> fl oodplain<br />

inundation frequency, the luxuriant<br />

vegetation start to grow there. These<br />

two processes, sediment accumulation<br />

and vegetation growth, cause additional<br />

increase <strong>of</strong> fl oodplain inundation. The<br />

processes induced by the dam built and<br />

its performance seems to be self-driven<br />

cycle causing irreversible alterations <strong>of</strong><br />

hydrologic regime.<br />

The problem under consideration<br />

draws attention <strong>of</strong> many researchers<br />

and engineers today. The relationships<br />

between hydrologic regime conditions<br />

and the riparian vegetation are crucially<br />

important for the robust river management.<br />

The examples <strong>of</strong> such studies were given<br />

by Keeland et al. (1997), Surtevant<br />

(1998), Stromberg (2001), Nilsson and


44 T. Dysarz, J. Wicher-Dysarz<br />

Svedmark (2002) and many others.<br />

Amongst many anthropogenic actions in<br />

the water environment the damming <strong>of</strong><br />

rivers plays special role due to complexity<br />

<strong>of</strong> induced ecological responses. One<br />

<strong>of</strong> the most interesting aspects <strong>of</strong> these<br />

responses is the dam impact on the<br />

upstream hydraulic conditions and<br />

related changes <strong>of</strong> hydrologic regime.<br />

The example <strong>of</strong> studies on this aspect<br />

was given by Mumba and Thompson<br />

(2005). They analyzed the changes in<br />

the fl oodplains located along the Kafue<br />

river (Zambia) reach between two dams,<br />

Itezhi-tezhi (upstream) and Kafue Gorge<br />

(downstream). The Authors proved that<br />

dams totally changed the hydrological<br />

and ecological conditions in the region.<br />

Almost permanent inundation <strong>of</strong> the area<br />

located between the dams was the direct<br />

reason. Such conditions were imposed<br />

by parallel infl uences <strong>of</strong> releases from<br />

upper dam and high water levels in the<br />

lower reservoir.<br />

The methodology used for assessment<br />

<strong>of</strong> hydrologic regime changes ranges<br />

from simple approach based on equal<br />

discharge studies (Pinter and Heine<br />

2005) to complex analysis including<br />

studies <strong>of</strong> discharges and water table<br />

frequency (e.g. King et al. 1998, Maingi<br />

and Marsh 2002, Magilligan and Nislow<br />

2005, Wellmeyer et al. 2005). This<br />

is also quite common to simulate the<br />

behavior <strong>of</strong> the water system by means<br />

<strong>of</strong> mathematical model (e.g. Kite 2001,<br />

Maingi and Marsh 2002). In each case<br />

the methodology applied should match<br />

the specifi c features <strong>of</strong> the system,<br />

processes occurring there as well as data<br />

availability.<br />

The main purpose <strong>of</strong> the presented<br />

paper is to present the hydrological<br />

regime changes in the Warta river<br />

reach located upstream <strong>of</strong> the Jeziorsko<br />

reservoir. According to the performed<br />

observations the hydrologic conditions<br />

are caused by three factors. The primary<br />

reason is water management in the<br />

reservoir. Two next elements are (1)<br />

sediment accumulation in the river<br />

and (2) vegetation growth. The fi eld<br />

measurement data and hydrodynamic<br />

model are used for our studies. Steady<br />

and unsteady fl ow simulation were run<br />

to reconstruct the fl ow conditions in the<br />

system before and after the analyzed<br />

changes. The fi nal results are presented in<br />

two way. First method consists <strong>of</strong> water<br />

stages in the selected river cross-section<br />

related to some fl ows determined for the<br />

infl ow gauge station. The chosen fl ows<br />

are related to the specifi c probabilities <strong>of</strong><br />

excedance, e.g. 1%, 10%, or maximum<br />

observed discharge in the system is used.<br />

The second method is the statistical<br />

analysis <strong>of</strong> unsteady fl ow simulations<br />

presented as relative and cumulative<br />

frequency functions related to the<br />

particular stages <strong>of</strong> river evolution.<br />

The paper includes into six main<br />

parts, acknowledgments, references and<br />

two appendixes. In the fi rst part brief<br />

introduction to the investigated problem<br />

is given. In the second part the study<br />

area and processes occurring there are<br />

described. The data collected are briefl y<br />

presented in third part. Then the basic<br />

elements <strong>of</strong> the applied methodology<br />

are presented in fourth sections. In fi fth<br />

part the obtained results are presented<br />

and discusses. Finally the conclusions<br />

are formulated in the sixth part. The<br />

attached appendixes includes the details<br />

<strong>of</strong> applied methodology.


CASE STUDY SYSTEM<br />

Jeziorsko reservoir was built in 1986<br />

in central part <strong>of</strong> Poland. It is located<br />

in the Warta river, between the Sieradz<br />

(upstream) and Uniejów (downstream)<br />

gauge stations. The reservoir inlet with<br />

Warta river reach are shown in the attached<br />

photo map (Fig. 1). The Jeziorsko<br />

reservoir is relatively new object. First<br />

time it was fi lled up to the admissible<br />

maximum water level (121.50 m a.s.l.)<br />

in 1991. The hydropower plant was put<br />

into operation in 1995.<br />

The Warta catchment area in the<br />

inlet <strong>of</strong> the reservoir is 8450 km 2 . The<br />

Assessment <strong>of</strong> hydrologic regime changes induced by the Jeziorsko... 45<br />

km 499<br />

km 500<br />

km 501<br />

km 502<br />

km 503<br />

km 504<br />

average discharge in the nearest Sieradz<br />

gauge station is about 45 m 3 /s, but the<br />

discharges variability ranges from 10 m 3 /s<br />

to 440 m 3 /s (observed in 1997). The wet<br />

season during the year is January – May.<br />

The lowest discharges are observed<br />

during the summer and autumn time,<br />

from September to December.<br />

The Jeziorsko reservoir is<br />

multipurpose reservoir performing in<br />

the annual working scheme. During the<br />

months from September to December the<br />

water stages are kept on the minimum<br />

level <strong>of</strong> 116 m a.s.l. In spring months<br />

the reservoir is fi lled with water. The<br />

maximum water level 121.5 m a.s.l. is<br />

km 505<br />

km 506<br />

FIGURE 1. Photo-map <strong>of</strong> Jeziorsko reservoir inlet part and Warta river


46 T. Dysarz, J. Wicher-Dysarz<br />

hold during April – June period. In the<br />

period from July to August the water<br />

stored at the reservoir is used and the<br />

reservoir water stages gradually come<br />

back to the minimum level. The main<br />

purpose <strong>of</strong> the reservoir performance is<br />

the fl ood protection during wet season.<br />

The reservoir is also the source <strong>of</strong><br />

water for the big cities in Great-Poland<br />

province: Poznań, Koło, Śrem and<br />

Konin. The water stored is also used for<br />

irrigation<br />

purposes and to preserve biological<br />

life below the dam. The Pątnów-Konin<br />

and Adamów power plants used the<br />

water from the reservoir for cooling.<br />

Other goal <strong>of</strong> the Jeziorsko performance<br />

is production <strong>of</strong> hydro-power, though,<br />

this is not signifi cant due to the small<br />

difference between upper and lower<br />

water levels in the dam (about 10 m).<br />

The reservoir is also used for recreation<br />

and inland fi shery.<br />

Since the very beginning <strong>of</strong> the<br />

reservoir performance the changes <strong>of</strong><br />

the Warta river bed and fl oodplains are<br />

observed in the inlet part <strong>of</strong> the Jeziorsko.<br />

Due to decrease <strong>of</strong> fl ow velocities there<br />

the capacity <strong>of</strong> sediment transport is<br />

lower and material is deposited. The<br />

most important processes occur in the<br />

river reach below the bridge in Warta<br />

town, between km 503 and km 500 (see<br />

Fig. 1).<br />

The annual scheme <strong>of</strong> reservoir<br />

performance foster the vegetation<br />

growth in this area. It enabled to<br />

establish a nature reserve for birds in<br />

the upper part <strong>of</strong> the reservoir in 1998.<br />

Since this time the important reservoir<br />

performance purpose is conservation <strong>of</strong><br />

water conditions suffi cient for biological<br />

life in this area. Due to the existence <strong>of</strong><br />

the nature reserve and Environmental<br />

Protection Ministry act valid since 1998,<br />

the river engineering actions are not<br />

allowed in the reservoir. The purpose<br />

<strong>of</strong> this regulation was the protection <strong>of</strong><br />

birds habitats and biological life in the<br />

upper part <strong>of</strong> the considered object.<br />

The regulation causes also some<br />

problems indicated in previous papers,<br />

e.g. Wicher (2004), Wicher-Dysarz and<br />

Przedwojski (2005). The water levels<br />

in the backwater part are gradually<br />

increasing. Long-term results <strong>of</strong> these<br />

processes may cause degradation <strong>of</strong> the<br />

river in the inlet part <strong>of</strong> the reservoir as<br />

well as the reservoir capacity decreasing.<br />

Second risk is related to destruction <strong>of</strong><br />

fl ood protecting and backwater dikes<br />

by overtopping. The losses occurring in<br />

such case are diffi cult to overestimate<br />

but the probability <strong>of</strong> this danger seems<br />

to increase.<br />

However, the Ministry act enabled the<br />

presented research in some sense. In other<br />

conditions the authorities responsible<br />

for the reservoir effectiveness and safe<br />

use should take steps preventing from<br />

these processes. Now, it is possible to<br />

observe the hydrologic regime evolution<br />

in the pure form. The only infl uences<br />

are reservoir performance, sediment<br />

accumulation and vegetation growth.<br />

Hence, the chosen study area properly<br />

fi ts the research purposes.<br />

COLLECTED DATA<br />

The set <strong>of</strong> available data consists <strong>of</strong> (a)<br />

system geometry, (b) discharges and<br />

water stages in the system, (c) state <strong>of</strong><br />

the vegetation cover.


The channel and fl oodplain elevations<br />

are observed for long period <strong>of</strong> time in the<br />

area under consideration. The most basic<br />

set <strong>of</strong> data consists <strong>of</strong> the river regulation<br />

design prepared in 1975 (Matan 1975).<br />

The regulated river seemed to be stable<br />

and was not subject to any changes until<br />

the reservoir started to perform in 1991.<br />

Hence, this set <strong>of</strong> data may be considered<br />

as the original terrain and river bottom<br />

without any signifi cant infl uence <strong>of</strong> the<br />

analyzed processes. The another sets <strong>of</strong><br />

applied data consists <strong>of</strong> measurements<br />

done in 1997 and 2004. After a few years<br />

<strong>of</strong> reservoirs performance the Warta river<br />

changes were checked and assessed by<br />

the team from Department <strong>of</strong> Hydraulic<br />

Engineering, Agricultural <strong>University</strong> <strong>of</strong><br />

Poznań. The measurements results were<br />

described by Wicher (2004) and Wicher-<br />

-Dysarz and Przedwojski (2005). Hence,<br />

the system geometry data consists <strong>of</strong><br />

three sets <strong>of</strong> river bottom and fl oodplain<br />

measurements in 37 cross-sections<br />

covering the river reach from Sieradz<br />

gauge station (km 520+850) to Jeziorsko<br />

dam (km 486+500). These data were<br />

used to describe three stages <strong>of</strong> the river<br />

bottom and fl oodplain evolution.<br />

Other data used in our analyses are<br />

discharges and water stages observed<br />

in Sieradz gauge station as well as<br />

water levels measured at the Jeziorsko<br />

dam headwater. The set <strong>of</strong> data from<br />

Sieradz gauge station consists <strong>of</strong> daily<br />

measurements done in periods 1963–<br />

–1970, 1973–1983, 1993–1995 and<br />

1997–2001. These are 27 years <strong>of</strong><br />

hydrological data. Some <strong>of</strong> the data were<br />

measured and published by Institute <strong>of</strong><br />

Meteorology and Water Management<br />

(1963–1970, 1973–1983). Others were<br />

collected by Regional Board for Water<br />

Assessment <strong>of</strong> hydrologic regime changes induced by the Jeziorsko... 47<br />

Management in Poznań. The later data are<br />

made available under the circumstances<br />

<strong>of</strong> cooperation between Department <strong>of</strong><br />

Hydraulic Engineering and Regional<br />

Board for Water Management. The data<br />

collected from Sieradz gauge station<br />

are used to describe the hydrologic<br />

condition in the inlet <strong>of</strong> the analyzed<br />

river reach which are not affected<br />

by reservoir performance. The water<br />

stages at Jeziorsko headwater were<br />

observed during the period <strong>of</strong> reservoir<br />

performance, from 1992 to 2001. This set<br />

<strong>of</strong> data was collected by Regional Board<br />

for Water Management. The data were<br />

used to design the average scenario <strong>of</strong><br />

reservoir performance during the year.<br />

The impact <strong>of</strong> vegetation on the<br />

roughness coeffi cients was assessed on<br />

the basis <strong>of</strong> measurements including<br />

plants localization and vegetation<br />

cover density. The stalk thickness was<br />

estimated in the same way. The necessary<br />

measurements were done by researchers<br />

from Department <strong>of</strong> Hydraulic<br />

Engineering during 2004–2005.<br />

On the basis <strong>of</strong> collected data hydromorphological<br />

stages <strong>of</strong> the system<br />

evolution is classifi ed as four stages <strong>of</strong><br />

river bottom. The stages <strong>of</strong> river bottom<br />

enable the design <strong>of</strong> fi ve stages <strong>of</strong><br />

hydraulic conditions in the water system.<br />

First analyzed state <strong>of</strong> the system is the<br />

primary bottom described in Matan<br />

(1975). This geometry was considered<br />

as pre-dam conditions. The second<br />

geometry was prepared on the basis <strong>of</strong><br />

measurements done in 1997 (Wicher<br />

2004). This stage <strong>of</strong> the system correspond<br />

to the system state a few years after the<br />

beginning <strong>of</strong> reservoir performance.<br />

The roughness in the particular crosssections<br />

is the same as in the 1975. It


48 T. Dysarz, J. Wicher-Dysarz<br />

does not describe the slight changes <strong>of</strong><br />

vegetation cover in this period. Hence,<br />

the impact <strong>of</strong> pure sediment deposition<br />

may be assessed. The third and fourth<br />

geometry <strong>of</strong> the system was prepared on<br />

the basis <strong>of</strong> measurements done in 2004<br />

and corresponds to current conditions.<br />

However, the third scheme does not<br />

refl ex to the roughness changes due to<br />

the vegetation growth. This element is<br />

included in the fourth system geometry.<br />

Hence, the current state <strong>of</strong> the system<br />

may be assessed in two ways: with and<br />

without vegetation growth. The prepared<br />

stages <strong>of</strong> river bottom and hydraulic<br />

conditions are as follows:<br />

1) initial bottom refl ecting pre-dam<br />

conditions (1975) with free outfl ow<br />

in the outlet;<br />

2) initial bottom refl ecting pre-dam<br />

conditions (1975) with outfl ow<br />

corresponding to the average annual<br />

scheme <strong>of</strong> reservoir performance;<br />

3) bottom measured in 1997 with the<br />

initial roughness and outfl ow as<br />

above;<br />

4) bottom measured in 2004 with the<br />

initial roughness and outfl ow as<br />

above;<br />

5) bottom measured in 2004 with<br />

roughness refl ecting current state <strong>of</strong><br />

vegetation and its seasonal variation,<br />

outfl ow corresponding to the<br />

average annual scheme <strong>of</strong> reservoir<br />

performance.<br />

In the fi fth stage the concept <strong>of</strong><br />

roughness changes due to the vegetation<br />

growth is applied. The riparian vegetation<br />

impact on the fl ow conditions may be<br />

modeled as the changes <strong>of</strong> Manning<br />

roughness coeffi cients. Following<br />

Klopstra et al. (1997) concept <strong>of</strong> velocity<br />

changes due to the presence <strong>of</strong> non-<br />

submerged vegetation the roughness<br />

coeffi cient may be expressed as<br />

2<br />

3 md<br />

n= h Cw<br />

2g<br />

(1)<br />

where:<br />

g – acceleration <strong>of</strong> gravity,<br />

h – the depth,<br />

C w, m and d – the parameters describe the<br />

characteristics <strong>of</strong> riparian vegetation,<br />

C w – the coeffi cient refl ecting seasonal<br />

changes <strong>of</strong> leaves cover.<br />

Its values were taken as Cw = 1.05<br />

for winter period and Cw = 1.40 for<br />

summer (Armanini et al. 2005). m is<br />

average number <strong>of</strong> plants in one square<br />

meter and d is average diameter <strong>of</strong><br />

bushes stalks. The presented approach<br />

was used to describe the changes <strong>of</strong><br />

roughness in the fl oodplain. Parameters<br />

m and d were determined on the basis <strong>of</strong><br />

measurements done in 2004 and 2005.<br />

The listed stages <strong>of</strong> river system were<br />

used for the simulation <strong>of</strong> steady and<br />

unsteady fl ow conditions along the reach<br />

under consideration.<br />

APPLIED METHODOLOGY<br />

The main basis for the assessment<br />

presented here is the set <strong>of</strong> collected<br />

data described in previous part <strong>of</strong> the<br />

paper. To estimate the hydrologic regime<br />

characteristics related to fi ve stages <strong>of</strong><br />

river system several deterministic and<br />

stochastic techniques are used. The<br />

methodology applied consists <strong>of</strong> three<br />

main elements. These are (1) maximum<br />

fl ows probability <strong>of</strong> excedence, (2)<br />

hydrodynamic model simulations for


steady and unsteady conditions, (3)<br />

analysis <strong>of</strong> relative and cumulative<br />

frequencies <strong>of</strong> water stages in selected<br />

river cross-sections. The above elements<br />

are described shortly in the following<br />

parts <strong>of</strong> the paper.<br />

In the fi rst part <strong>of</strong> the analysis the<br />

maximum fl ows probability <strong>of</strong> excedence<br />

is elaborated. The curve is determined<br />

for the Sieradz gauge station located<br />

in the inlet <strong>of</strong> the system. The curve is<br />

shown in Figure 2. Crosses represent<br />

the annual maximum fl ows observed<br />

and probabilities <strong>of</strong> excedance assigned<br />

to them according to Weibull formula.<br />

The continuous line is the Pearson<br />

type III curve estimated by means <strong>of</strong><br />

quintile method (Ozga-Zielińska and<br />

Brzeziński 1994). The estimated curve<br />

is used to determine the characteristic<br />

fl ows occurring in the system with some<br />

specifi ed probability <strong>of</strong> excedance. The<br />

chosen fl ows are commonly used for the<br />

assessment and design purposes. They<br />

are presented in Table 1.<br />

probability [%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<br />

Assessment <strong>of</strong> hydrologic regime changes induced by the Jeziorsko... 49<br />

observations<br />

Pearson III curve<br />

0 100 200 300 400 500<br />

maximum discharge [m 3 /s]<br />

FIGURE 2. Maximum fl ows probability <strong>of</strong> excedance<br />

for Sieradz gauge station<br />

TABLE 1. Selected fl ows with specifi c<br />

probabilities <strong>of</strong> excedance determined for the<br />

Sieradz gauge station<br />

Probability<br />

<strong>of</strong> excedance Denotation Value [m3 /s]<br />

10 % Q10 % 245.40<br />

5 % Q5 % 263.28<br />

1 % Q1 % 294.34<br />

0.5 % Q0.5 % 304.89<br />

Observed<br />

maximum<br />

Max Q 440.00<br />

The determined probable fl ows<br />

together with minimum and maximum<br />

water stages in the reservoir are used<br />

to simulate the steady fl ow conditions<br />

in the analyzed Warta river reach. The<br />

computations are done for each <strong>of</strong> fi ve<br />

river bottom stages listed in previous part<br />

<strong>of</strong> the paper. The hydrodynamic model<br />

is used in this purpose. The routines<br />

included in steady fl ow module <strong>of</strong> the<br />

classic HEC-RAS package are applied.<br />

The main basis <strong>of</strong> the used methodology<br />

is energy balance equation written for<br />

the compound channel. The complete<br />

description <strong>of</strong> HEC-RAS package may<br />

be found in Brunner (2002).<br />

The results <strong>of</strong> the simulations are<br />

changes <strong>of</strong> water levels in selected river<br />

cross-sections related to the maximum<br />

fl ows and stages <strong>of</strong> river bottom. They<br />

are presented and discussed in the next<br />

part <strong>of</strong> the paper.<br />

The second part <strong>of</strong> the performed<br />

analyses consists <strong>of</strong> infl ow scenarios,<br />

unsteady fl ow simulations and frequency<br />

analysis. The used infl ow scenarios are<br />

the observed discharges in the Sieradz<br />

gauge station. They are combined with<br />

the average annual scheme <strong>of</strong> water<br />

management in the Jeziorsko reservoir.<br />

The unsteady fl ow module included in


50 T. Dysarz, J. Wicher-Dysarz<br />

HEC-RAS package is used to simulate<br />

the behavior <strong>of</strong> the system related<br />

to fi ve stages <strong>of</strong> the river. Then the<br />

obtained results are analyzed by means<br />

<strong>of</strong> water stage relative and cumulative<br />

frequencies determined in several river<br />

cross-sections. The basic defi nitions<br />

<strong>of</strong> frequency curves are used. More<br />

information may be found in Chow et al.<br />

(1988).<br />

The selected cross-sections are<br />

located between km 503 and km 500,<br />

where the most intensive morphological<br />

and vegetation changes are observed.<br />

The results are presented and discussed<br />

in the next part <strong>of</strong> the paper.<br />

ANALYSIS OF SIMULATION<br />

RESULTS<br />

The described analyses are done for the all<br />

cross-sections in the river reach between<br />

the bridge in Warta town (Fig. 1) and the<br />

Jeziorsko reservoir. These are sections<br />

located at km 503+560, 503+380,<br />

503+140, 502+800, 502+300, 501+270,<br />

500+970, 500+510 and 499+890. The<br />

examples <strong>of</strong> obtained results are shown<br />

in Figures 3–10. Figures 3–6 presents the<br />

results related to the fi rst part <strong>of</strong> analyses<br />

done with the help <strong>of</strong> steady fl ow module.<br />

The rest <strong>of</strong> mentioned fi gures consists <strong>of</strong><br />

relative and cumulative frequency curves<br />

elaborated on the basis <strong>of</strong> unsteady fl ow<br />

simulations.<br />

The Figures 3 and 4 present the water<br />

stages related to analyzed fl ows Q 1% and<br />

Max Q. The water stages are estimated<br />

for the pre-dam conditions (denoted as<br />

‘in 1975’) and current conditions (‘in<br />

2004’). These stages are drawn on the<br />

original cross-sections contours. The<br />

124<br />

123<br />

122<br />

121<br />

120<br />

119<br />

elevation<br />

[m a.s.l.]<br />

Q1% in 2004<br />

Q1% in 1975<br />

cross-section<br />

Max Q in 2004<br />

Max Q in 1975<br />

distance<br />

[m]<br />

0 100 200 300 400 500 600<br />

FIGURE 3. Cross-section shape and characteristic<br />

water stages in km 503+560<br />

124<br />

123<br />

122<br />

121<br />

120<br />

elevation<br />

[m a.s.l.]<br />

Max Q in 2004<br />

Q1% in 1975<br />

Q1% in 2004<br />

Max Q in 1975<br />

119 cross-section<br />

distance<br />

[m]<br />

118<br />

0 100 200 300 400 500 600 700<br />

FIGURE 4. Cross-section shape and characteristic<br />

water stages in km 503+140<br />

given examples present the results for<br />

the cross-sections located in km 503+560<br />

and km 503+140. It is clearly visible<br />

that the morphological and vegetation<br />

changes in the river system caused crucial<br />

increase <strong>of</strong> water stages in the system.<br />

The maximum observed fl ows should are<br />

close to the maximum dikes elevations<br />

in the system. It is important to indicate<br />

that further changes in this area may<br />

cause the dike break by overtopping.


The increase <strong>of</strong> water stages related to<br />

specifi c maximum fl ows is also presented<br />

in Figures 5 and 6. In this graphs the<br />

estimated changes <strong>of</strong> water stages related<br />

to the fl ows Q 10%, Q 1% and Max Q are<br />

plotted. The squares, circles and triangles<br />

represent values estimated for particular<br />

hydraulic conditions. Horizontal axis<br />

describes the time. The dotted lines<br />

and empty fi gures refl ects the changes<br />

<strong>of</strong> water stages without increase <strong>of</strong><br />

vegetation cover. It is clearly visible that<br />

water stages are raising. The vegetation<br />

impact causes dramatic intensifi cation <strong>of</strong><br />

these processes.<br />

123.5<br />

123.2<br />

122.9<br />

122.6<br />

122.3<br />

water stage<br />

[m a.s.l.]<br />

Max Q<br />

Q10%<br />

year<br />

122.0<br />

1975 1980 1985 1990 1995 2000 2005<br />

In the Figures presenting relative<br />

frequency functions (Figs. 7 and 9) the<br />

estimated initial stage <strong>of</strong> hydrologic<br />

regime is compared with the estimated<br />

current conditions. The initial stage<br />

is represented by Pearson type III<br />

probability density function fi tted to the<br />

results <strong>of</strong> simulation. In these fi gures<br />

the minimum fl oodplain elevations are<br />

denoted as dashed line. The Figures 8<br />

and 10 shows the gradual changes<br />

<strong>of</strong> cumulative frequency functions<br />

Assessment <strong>of</strong> hydrologic regime changes induced by the Jeziorsko... 51<br />

Q1%<br />

FIGURE 5. Changes <strong>of</strong> the water stages related to<br />

characteristic fl ows in cross-section km 503+560<br />

123.0<br />

122.7<br />

122.4<br />

122.1<br />

water stage<br />

[m a.s.l.]<br />

Max Q<br />

Q10%<br />

Q1%<br />

121.8<br />

year<br />

1975 1980 1985 1990 1995 2000 2005<br />

FIGURE 6. Changes <strong>of</strong> the water stages related to<br />

characteristic fl ows in cross-section km 503+140<br />

124<br />

123<br />

122<br />

121<br />

120<br />

water surface<br />

elevation<br />

[m a.s.l.]<br />

free outflow,<br />

bottom 1975<br />

effect <strong>of</strong> impacts,<br />

bottom 2004<br />

floodplain<br />

minimum<br />

relative<br />

frequency<br />

0.00 0.02 0.04 0.06 0.08 0.10<br />

FIGURE 7. The relative frequency function corresponding<br />

to the initial and current state <strong>of</strong> the<br />

hydrologi-cal regime in cross section located at<br />

km 503+560<br />

related to analyzed stages <strong>of</strong> the hydromorphological<br />

conditions in the river.<br />

Presented results shows two common<br />

trends in cross-sections located between<br />

km 503 and 501. The most frequent<br />

stages become higher and their relative<br />

frequency is greater. This means greater<br />

frequency <strong>of</strong> fl oodplain inundation, what<br />

favors the riparian vegetation growth.


52 T. Dysarz, J. Wicher-Dysarz<br />

124<br />

123<br />

122<br />

121<br />

water surface<br />

elevation<br />

[m a.s.l.]<br />

bottom 2004<br />

bottom 1997<br />

bottom 1975<br />

cumulative<br />

frequency<br />

120<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

FIGURE 8. The cumulative frequency function<br />

corresponding to the analyzed states <strong>of</strong> the hydrological<br />

regime in cross section located at km<br />

503+560<br />

123<br />

122<br />

water surface<br />

elevation<br />

[m a.s.l.]<br />

CONCLUSIONS<br />

bottom 2004<br />

+vegetation<br />

free outflow, bottom 1975<br />

effect <strong>of</strong> impacts,<br />

bottom 2004<br />

121<br />

floodplain<br />

minimum<br />

free outflow,<br />

bottom 1975 relative<br />

frequency<br />

120<br />

0.00 0.04 0.08 0.12<br />

FIGURE 9. The relative frequency function corresponding<br />

to the initial and current state <strong>of</strong> the<br />

hydrologi-cal regime in cross section located at<br />

km 503+14<br />

The obtained results shows that potential<br />

hydrologic regime in the analyzed area<br />

is signifi cantly changed. The impact<br />

<strong>of</strong> each single process as well as the<br />

cumulated impact <strong>of</strong> all processes have<br />

123<br />

122<br />

121<br />

water surface<br />

elevation<br />

[m a.s.l.]<br />

bottom 2004<br />

bottom 1997<br />

bottom 2004<br />

+vegetation<br />

free outflow, bottom 1975<br />

bottom 1975<br />

cumulative<br />

frequency<br />

120<br />

0.00 0.20 0.40 0.60 0.80 1.00<br />

FIGURE 10. The cumulative frequency function<br />

corresponding to the analyzed states <strong>of</strong> the hydrological<br />

regime in cross section located at km<br />

503+140<br />

one common trend. The higher water<br />

stages become more frequent and their<br />

frequency is greater. This is well visible<br />

in Figures 7–10. The changes are crucial<br />

even in the cross-section located in<br />

the longest distance from reservoir<br />

(km 503+560). The areas located along<br />

river reach were not fl ooded frequently<br />

there (Fig. 7). Now, the inundation is<br />

almost permanent.<br />

The risk related to the dike break by<br />

overtopping is raising, too. This aspect<br />

<strong>of</strong> the hydrologic regime changes is<br />

clearly visible in Figures 3–6. The<br />

channel capacity was huge enough to<br />

pass fl ows as Q 1% and Max Q in the past.<br />

Now, the changes <strong>of</strong> channel geometry<br />

and roughness cause huge resistance and<br />

increase <strong>of</strong> water stages. It is quite easy<br />

to predict, that further changes will result<br />

in natural catastrophe and damages.<br />

The presented results shows that the<br />

probability <strong>of</strong> such an event dramatically<br />

increases.


ACKNOWLEDGEMENT<br />

This work was supported by Polish<br />

Committee for Scientifi c Research under<br />

grant “Analysis <strong>of</strong> morphodynamic and<br />

vegetation impacts on the hydraulic<br />

conditions in backwater part <strong>of</strong> lowland<br />

reservoirs”, project no. 2 P06S 034 30.<br />

REFERENCES<br />

ABBOTT M.B. 1979: Computational<br />

Hydraulics, Elements <strong>of</strong> the Theory <strong>of</strong><br />

Free Surface Flows. London: Pitman.<br />

ARMANINI A., RIGHETI M. & GRISENTI<br />

P. 2005: Direct measurement <strong>of</strong> vegetation<br />

resistance in prototype scale. Journal <strong>of</strong><br />

Hydraulic Engineering, 43 (5): 481–487.<br />

BARKAU R.L. 1982. Simulation <strong>of</strong> the<br />

July 1981 fl ood along Salt River, Report<br />

for CE695BV, Special Problems in<br />

Hydraulics. Fort Collins, CO.: Department<br />

<strong>of</strong> Civil Engineering, Colorado State<br />

<strong>University</strong>.<br />

BRUNNER G.W. 2002: HEC-RAS,<br />

River Analysis System hydraulic<br />

reference manual, computer program<br />

documentation. Davis, CA.: US Army<br />

Corps <strong>of</strong> Engineers, Hydrologic<br />

Engineering Center.<br />

CHOW V.T., Maidment D.R. & Mays L.W.<br />

1988: Applied Hydrology. McGraw-Hill<br />

International Editions, Civil Engineering<br />

Series, McGraw-Hill Book Company.<br />

CUNGE J.A., HOLLY F.M.Jr & VERVEJ A.<br />

1980: Practical aspects <strong>of</strong> computational<br />

river hydraulics, Pitman Advanced<br />

Publishing Program.<br />

KEELAND B.D., CONNER W.H. &<br />

SHARITZ R.R. 1997: A comparison<br />

<strong>of</strong> wetland tree growth response to<br />

hydrologic regime in Louisiana and<br />

South Carolina. Forest Ecology and<br />

Management, 90: 237–250.<br />

KING S.L., ALLEN J.A. & McCOY J.W.<br />

1998: Long-term effects <strong>of</strong> a lock and<br />

dam and greentree reservoir management<br />

Assessment <strong>of</strong> hydrologic regime changes induced by the Jeziorsko... 53<br />

on a bottomland hardwood forest. Forest<br />

Ecology and Management, 112: 213–226.<br />

KITE G. 2001: Modelling the Mekong:<br />

hydrological simulation for environmental<br />

impact studies. Journal <strong>of</strong> Hydrology,<br />

253: 1–13.<br />

KLOPSTRA D., BARNEVELD H.J.,<br />

NOORTWIJK J.M. von & VELZEN E.H.<br />

von 1997: Analytical model for hydraulic<br />

roughness <strong>of</strong> submerged vegetation.<br />

The 27 th Congress <strong>of</strong> the International<br />

Association for Hydraulic Research,<br />

Proceedings <strong>of</strong> Theme A, Managing<br />

Water: Coping with Scarcity and<br />

Abundance, San Francisco, California.<br />

LIGGETT M.B. & CUNGE J.A. 1975:<br />

Numerical methods <strong>of</strong> solution <strong>of</strong> the<br />

unsteady fl ow equations, in Mahmood<br />

and Yevjevich (1975).<br />

MAGILLIGAN F.J. & NISLOW K.H. 2005:<br />

Changes in hydrologic regime by dams.<br />

Geomorphology, 71: 61–78.<br />

MAHMOOD K. & YEVJEVICH V. (eds.)<br />

1975: Unsteady fl ow in open channels.<br />

Fort Collins, Colorado: Water Resources<br />

Publications.<br />

MAINGI J.K. & MARSH S.E. 2002:<br />

Quantifying hydrologic impacts following<br />

dam construction along the Tana River.<br />

Kenya. Journal <strong>of</strong> Arid Environments,<br />

50: 53–79.<br />

MATAN J. 1975: Jeziorsko reservoir in the<br />

Warta river, Hydro-engineering and land<br />

improvements structures in the reservoir<br />

backwater. Poznań: Hydroprojekt (in<br />

Polish).<br />

MUMBA M. & THOMPSON J.R. 2005:<br />

Hydrological and ecological impacts<br />

<strong>of</strong> dams on the Kafue Flats fl oodplain<br />

system, southern Zambia. Physics and<br />

Chemistry <strong>of</strong> the Earth, 30: 442–447.<br />

NILSSON C. & SVEDMARK M. 2002: Basic<br />

principles and ecological consequences<br />

<strong>of</strong> changing water regimes: riparian<br />

plant communities. Environmental<br />

Management, 30 (4): 468–480.<br />

OZGA-ZIELIŃSKA M., BRZEZIŃSKI<br />

J. 1994: Applied hydrology. Scientifi c<br />

Publishing PWN, <strong>Warsaw</strong> (in Polish).


54 T. Dysarz, J. Wicher-Dysarz<br />

PINTER N. & HEINE R.A. 2005:<br />

Hydrodynamic and morphodynamic<br />

response to river engineering<br />

documented by fi xed-discharge analysis,<br />

Lower Missouri River, USA. Journal <strong>of</strong><br />

Hydrology, 302: 70–91.<br />

STROMBERG J.C. 2001: Restoration <strong>of</strong><br />

riparian vegetation in the south-western<br />

United States: importance <strong>of</strong> fl ow<br />

regimes and fl uvial dynamism. Journal <strong>of</strong><br />

Arid Environments, 49: 17–34.<br />

SURTEVANT B.R. 1998: A model <strong>of</strong> wetland<br />

vegetation dynamics in simulated beaver<br />

impoundments, Ecological Modeling,<br />

112: 195–225.<br />

WELLMEYER J.L., SLATTERY M.C.<br />

& PHILLIPS J.D. 2005: Quantifying<br />

downstream impacts <strong>of</strong> impoundment on<br />

fl ow regime and channel planform, lower<br />

Trinity River, Texas. Geomorphology,<br />

69: 1–13.<br />

WICHER J. 2004: Sediment accumulation<br />

in lowland reservoirs. Ph.D. thesis in the<br />

Agricultural <strong>University</strong> <strong>of</strong> Poznan (in<br />

Polish).<br />

WICHER-DYSARZ J., PRZEDWOJSKI B.<br />

2005: Modeling <strong>of</strong> sediment accumulation<br />

in the inlet part <strong>of</strong> Jeziorsko reservoir,<br />

Annual Reviews <strong>of</strong> Agricultural<br />

<strong>University</strong> <strong>of</strong> Poznan, 26: 483–493.<br />

Streszczenie: Ocena zmian warunków hydrologicznych<br />

wywołanych działaniem zapory Jeziorsko<br />

oraz procesami morfodynamicznymi<br />

w rzece Warcie. W artykule zostały opisane procesy<br />

morfodynamiczne zachodzące na wybranym<br />

odcinku rzeki Warty. Zjawiska te zostały wywołane<br />

działaniem zapory Jeziorsko wybudowanej<br />

w 1986 roku. Głównym celem badań jest oszacowanie<br />

wpływu tych procesów na aktualne warunki<br />

hydrologiczne panujące w rzece. Pierwsze<br />

napełnienie zbiornika do poziomu maksymalnego<br />

piętrzenia odbyło się w 1991 roku. W 1995 roku<br />

została uruchomiona elektrownia wodna „Jeziorsko”.<br />

W wyniku przerwania ciągłości transportu<br />

rumowiska, w górnej części zbiornika Jeziorsko<br />

nastąpiło akumulacja transportowanych przez<br />

rzekę cząstek rumowiska. W efekcie osadzania<br />

się rumowiska w górnej części zbiornika, zaczęła<br />

intensywnie rozwijać się roślinność oraz ptactwo<br />

wodne, które znalazło idealne warunki do rozwoju.<br />

Czynniki te spowodowały spiętrzenie wody<br />

w tej części zbiornika. Dane historyczne oraz model<br />

hydrodynamiczny zostały wykorzystane, aby<br />

oszacować zmiany warunków hydrologicznych.<br />

Zestaw wykorzystanych danych zawiera: dane<br />

z pomiarów terenowych geometrii i morfologii<br />

koryta oraz pomiary stanów i przepływów z wybranych<br />

wodowskazów. Model hydrodynamiczny<br />

został wykorzystany do odtworzenia warunków<br />

przepływu w wybranych fazach zmian systemu<br />

wodnego. Analiza statystyczna wyników symulacji<br />

umożliwiła ocenę zmian charakterystyk hydrologicznych<br />

na wybranym odcinku rzeki Warty.<br />

MS. received November 2006<br />

Authors’ address:<br />

Tomasz Dysarz, Joanna Wicher-Dysarz<br />

e-mail: dysarz@au.poznan.pl<br />

Akademia Rolnicza w Poznaniu<br />

ul. Wojska Polskiego 73a<br />

60-625 Poznań


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 55–67<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Characteristics <strong>of</strong> the particulate matter PM10 concentration fi eld<br />

and an attempt to determine the sources <strong>of</strong> air pollution in the living<br />

district <strong>of</strong> Ursynów<br />

GRZEGORZ MAJEWSKI, WIESŁAWA PRZEWOŹNICZUK<br />

<strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

Department <strong>of</strong> Water Engineering and Environmental Restoration<br />

Abstract: Characteristics <strong>of</strong> the particulate<br />

matter PM10 concentration fi eld and an attempt<br />

to determine the sources <strong>of</strong> air pollution in the<br />

living district <strong>of</strong> Ursynów. The paper presents<br />

characteristics <strong>of</strong> the imission fi eld <strong>of</strong> PM10<br />

particulate matter with the use <strong>of</strong> basic statistical<br />

data such as mean values, variability ranges,<br />

numbers <strong>of</strong> exceedences <strong>of</strong> the allowable<br />

concentration, frequency distributions <strong>of</strong><br />

concentration occurrence in individual periods,<br />

and time courses. Mean values <strong>of</strong> basic<br />

meteorological elements were calculated, circular<br />

graphs for percentiles <strong>of</strong> dust concentration were<br />

prepared, and percentiles <strong>of</strong> pollution plume rates<br />

were made in order to analyse meteorological<br />

conditions <strong>of</strong> dispersal and spreading out <strong>of</strong> air<br />

pollution. A synthetic WZ indicator <strong>of</strong> pollution<br />

has also been calculated that encompasses the<br />

joint impact <strong>of</strong> various meteorological elements<br />

on pollution concentration levels.<br />

Key words: particulate matter PM10, pollution<br />

plume rate, meteorological conditions.<br />

INTRODUCTION<br />

First, identifi cation <strong>of</strong> areas where<br />

allowable standards <strong>of</strong> pollution<br />

concentration are exceeded, and second,<br />

identifi cation <strong>of</strong> pollution sources<br />

being the threat to the environment<br />

are basic tasks for the atmospheric<br />

air quality monitoring system. The<br />

knowledge on the concentration fi eld<br />

and emission sources is a basis for<br />

setting correction programmes necessary<br />

for the improvement <strong>of</strong> environmental<br />

conditions.<br />

The order by Minister <strong>of</strong> Environment<br />

as <strong>of</strong> 5 July 2002 (DzU, No 115, pos.<br />

1003) settles in detail requirements<br />

which the air protection programs should<br />

answer to. It is said inside that act,<br />

among others, that apart <strong>of</strong> assessing the<br />

imission stated on a given area, the infl ow<br />

<strong>of</strong> pollution on that area should also be<br />

estimated. Discrimination between the<br />

emission infl uence and the impact <strong>of</strong><br />

meteorological conditions on the rate<br />

<strong>of</strong> pollution concentration registered<br />

(Walczewski et al. 2000) is extremely<br />

important for proper execution <strong>of</strong> all<br />

tasks <strong>of</strong> environment protection services,<br />

because the increase or the decrease <strong>of</strong><br />

pollution concentration values depend on<br />

both emission and dispersion conditions.<br />

The meteorological characteristics <strong>of</strong> the<br />

measurement period makes possible to<br />

evaluate properly the imission situation.<br />

Therefore, basic meteorological data<br />

should be taken into account at the<br />

interpretation <strong>of</strong> imission measurement<br />

results, and a detailed analysis <strong>of</strong> the<br />

wind rose from the measurement period<br />

would allow conclude on whether the<br />

measured concentrations came either<br />

from local emission sources or are rather


56 G. Majewski, W. Przewoźniczuk<br />

caused by an infl ow <strong>of</strong> pollution from<br />

outside the measuring network.<br />

The living quarter <strong>of</strong> Ursynow is<br />

one <strong>of</strong> the three districts <strong>of</strong> <strong>Warsaw</strong>,<br />

the Polish capital, for which the air<br />

protection correctional programs were<br />

made. That program was prepared<br />

because the allowable level <strong>of</strong> PM10<br />

particulate matter had been exceeded<br />

(Order No 62).<br />

The particulate matter is a commonly<br />

occurring pollution matter, the<br />

concentrations <strong>of</strong> which maintain in<br />

urban agglomerations at a rather high<br />

level exceeding frequently allowable<br />

values. Miniparticles dispersed in the<br />

air are considered to be one <strong>of</strong> more<br />

essential potential threats to human<br />

health as related to air pollution (i.a.<br />

Juda & Chróściel 1974, Stern 1994,<br />

Dockery 1996, Quarg 1996, Niecko<br />

et al. 1998, Warych 1999, Jabłońska<br />

2003). It is assessed that about one third<br />

<strong>of</strong> the population in Poland exposed to<br />

inhalation <strong>of</strong> dust pollution is bound to<br />

chronic diseases <strong>of</strong> the breathing system,<br />

that leads to circulatory system and<br />

cancer diseases (Warych 1999).<br />

Ursynów is a district <strong>of</strong> <strong>Warsaw</strong>,<br />

capital <strong>of</strong> Poland, situated almost entirely<br />

on the <strong>Warsaw</strong> Lowland, elevated 20–30<br />

m up <strong>of</strong> the level <strong>of</strong> water in the Vistula<br />

River, and it encompasses the southern<br />

regions <strong>of</strong> the <strong>Warsaw</strong> city. It covers the<br />

area <strong>of</strong> 44.6 km 2 constituting 8.6% <strong>of</strong><br />

the <strong>Warsaw</strong> city total area, being at the<br />

third place as for the size within the city.<br />

Three nature reserves occur within the<br />

quarter mentioned; they are: the Natolin<br />

Wood, the Ursynów Slope – being the<br />

main topographic element shaping the<br />

local climate <strong>of</strong> the region mentioned,<br />

and the Kabaty Wood called the Stefan<br />

Starzyński Wood – a forest tract over<br />

900 ha in size lying within the <strong>Warsaw</strong><br />

region; the latter wood is the most<br />

essential natural element <strong>of</strong> the southern<br />

aeration system for the capital.<br />

The industrial plants and structures<br />

equipped in their own boiler-rooms<br />

infl uencing the air quality on the area<br />

<strong>of</strong> the Ursynów quarter are as follows:<br />

Oncology Centre, <strong>Warsaw</strong> Plant <strong>of</strong><br />

Aggregate Exploitation, Midas Polska<br />

Ltd, Volvo Auto Polska, Underground<br />

Standstill Station, PBM Południe Co,<br />

Radio Ceramics Plant, Stolbud Ltd,<br />

Geant Hypermarket, Unikon-Beton,<br />

Tesco Hypermarket, and others. The<br />

streets with the greatest intensity <strong>of</strong> car<br />

traffi c in this quarter are: Pulawska,<br />

KEN Avenue, Rodowicza Anody,<br />

Rosoła, Płaskowickiej, Ciszewskiego,<br />

Roentgena, and Poleczki street. The areas<br />

with the occurrence <strong>of</strong> low communalliving<br />

emission are as follows: ‘Green<br />

Ursynów’ along the Puławska Avenue,<br />

borders <strong>of</strong> the Kabacki Wood from the<br />

Zolna street up to the city boundary,<br />

the western side <strong>of</strong> the Puławska<br />

Avenue, the area encompassing the<br />

streets <strong>of</strong> Krasnopolska, Baletowa,<br />

Karczunkowska, Sarabandy, Farbiarska<br />

and Gawota, the area along the Ursynów<br />

Slope, and fi nally the area along the<br />

Prawdziwka street.<br />

MATERIAL AND METHODS<br />

An attempt has been undertaken<br />

in this paper to assess the imission<br />

situation in the Ursynow quarter, in the<br />

MzWarszUrsynow station area, as well as<br />

an attempt to point out the reasons for the<br />

existing state. The data for calculations


were taken from the automatic station<br />

<strong>of</strong> atmospheric air monitoring called<br />

the MzWarszUrsynow station (φN =<br />

= 52 o 09’39’’, λE=21 o 02’03’’, 102 m a.s.l.)<br />

working within the regional network <strong>of</strong><br />

the Masovia Province (WIOS database).<br />

Measurements <strong>of</strong> SO 2, NO, NO 2, NO x,<br />

CO, and PM10 concentrations were made<br />

at that station, as well as measurements<br />

<strong>of</strong> basic meteorological elements.<br />

The calculations made from<br />

measurement data as averages in onehour<br />

intervals concerned the period<br />

Oct. 2003 – Sept. 2005 that was divided<br />

into winter half-years (the period from<br />

October to March, covering heating<br />

FIGURE 1. The Air Pollution Monitoring Stations in Ursynów<br />

Characteristics <strong>of</strong> the particulate matter PM10 concentration... 57<br />

seasons) and summer half-years (the<br />

period from April to September) .<br />

The MzWarszUrsynów measuring<br />

station under discussion is representative<br />

for the general urban ambience and it<br />

characterises well imission <strong>of</strong> pollution<br />

dust in the area <strong>of</strong> living quarters exposed<br />

to the impact <strong>of</strong> traffi c and communal<br />

and industrial emissions. Figure 1<br />

illustrates the location <strong>of</strong> the station.<br />

The concentration <strong>of</strong> PM10 particulate<br />

matter is measured there in continuously<br />

with MLU TEOM1400 analyser using<br />

the oscillation microweight method. The<br />

principle <strong>of</strong> the TEOM function consists<br />

in measuring the frequency <strong>of</strong> vibration


58 G. Majewski, W. Przewoźniczuk<br />

<strong>of</strong> a conical element on which the fi lter<br />

is fi xed. The increase <strong>of</strong> the fi lter mass<br />

due to deposition <strong>of</strong> dust particles on it<br />

causes the change in the frequency <strong>of</strong><br />

measured vibration. This method ensures<br />

the detectability threshold below 0.06<br />

[μg·m –3 ] for mean one-hour values at<br />

the throughfl ow 3 [l⋅min –1 ]. The device<br />

has got the certifi cate <strong>of</strong> conformity with<br />

the PM10 measurement relay method<br />

according to the European standard<br />

(EN12341).<br />

The following calculations were the<br />

basis for characterising the concentration<br />

fi eld <strong>of</strong> PM10 particulate matter:<br />

1) mean concentration <strong>of</strong> dust in<br />

calculation periods,<br />

2) number <strong>of</strong> exceedences <strong>of</strong> the<br />

allowable concentration,<br />

3) variability ranges <strong>of</strong> concentration<br />

values in individual calculation<br />

periods,<br />

4) concentration histograms based<br />

on the Air Quality Scale rates<br />

recommended by WIOS,<br />

5) percentiles 25, 50, 70, and 98 <strong>of</strong><br />

concentration values,<br />

6) mean annual 24-hour courses <strong>of</strong> dust<br />

concentration values.<br />

The data registered at<br />

MzWarszUrsynów and MzWarszSGGW<br />

stations were used for evaluation <strong>of</strong><br />

meteorological conditions <strong>of</strong> pollution<br />

dispersal. Both those stations laid 800<br />

m apart from each other (correlation<br />

coeffi cient between temperatures<br />

measured on both stations is 0,99)<br />

are equipped in the automatic outfi t<br />

registering basic meteorological elements<br />

in 10-minute periods. Measurements<br />

<strong>of</strong> air temperature, wind speed, and air<br />

humidity at several levels are made at<br />

the MzWarszSGGW station. The air<br />

temperature values from heights 5 cm and<br />

22 m were used to calculate gradients.<br />

The analysis <strong>of</strong> meteorological<br />

conditions <strong>of</strong> pollution dispersal and<br />

spreading out covered the following<br />

points:<br />

1. Setting mean monthly values <strong>of</strong> basic<br />

meteorological elements (Table 1),<br />

2. Comparing the course <strong>of</strong> air<br />

temperature in calculation periods<br />

with the mean long term course,<br />

3. Making circular graphs for<br />

percentiles <strong>of</strong> particulate matter<br />

concentration as related to air infl ow<br />

directions,<br />

4. Making circular graphs for<br />

percentiles <strong>of</strong> pollution plume rate in<br />

order to get additional information<br />

on location <strong>of</strong> emission sources,<br />

5.<br />

Calculating synthetic WZ<br />

indicator <strong>of</strong> pollution for assessing<br />

meteorological conditions <strong>of</strong><br />

pollution dispersal.<br />

The vicinity <strong>of</strong> the station was divided<br />

into equal sectors with the central α<br />

angle constituting 1/16 part <strong>of</strong> the full<br />

angle in order to prepare circular graphs<br />

for percentiles <strong>of</strong> particulate matter<br />

concentration. The percentiles <strong>of</strong> the<br />

order p = 25, 50, 70, 98 were calculated<br />

basing on the sets <strong>of</strong> dust concentration<br />

values occurring at the air infl ow from<br />

the direction related to the given sector<br />

α. Circular graphs were made for<br />

percentiles calculated for all sectors<br />

<strong>of</strong> wind directions; they are graphical<br />

presentations <strong>of</strong> concentration value<br />

distributions at various wind directions.<br />

Pollution fl ows were analysed for to<br />

get more information on directions <strong>of</strong><br />

dust infl ows over the area under study<br />

(Klis, Matejczyk 2002). The pollution<br />

fl ow is a vector. The scalar size <strong>of</strong> this


TABLE 1. The selected statistical characteristics <strong>of</strong> PM10 concentration and meteorological elements from October 2003 to September 2005, station<br />

MzWarszUrsynów<br />

The 98th percentile [μg·m -3 ]<br />

The 75th percentile [μg·m -3 ]<br />

The 50th percentile [μg·m -3 ]<br />

The 25th percentile [μg·m -3 ]<br />

The 98th percentile [μg·m -3 ]<br />

The 75th percentile [μg·m -3 ]<br />

The 50th percentile [μg·m -3 ]<br />

The 25th percentile [μg·m -3 ]<br />

Standard deviation [μg·m -3 ]<br />

Mean concentration PM10 [μg·m -3 ]<br />

Date <strong>of</strong> max.<br />

Max. S 24 [μg·m -3 ]<br />

Min. S 24 [μg·m -3 ]<br />

Precipitation [mm]<br />

Mean air humidity [%]<br />

Mean wind speed [m·s -1 ]<br />

Mean air temperature [ 0 C]<br />

Mean monthly cocentration <strong>of</strong><br />

PM10 [μg·m -3 ]<br />

Month<br />

Calendar year<br />

Percentile <strong>of</strong> 1-hour<br />

Percentile <strong>of</strong> 24-hour<br />

The number <strong>of</strong> exceedance <strong>of</strong> D 24<br />

The number <strong>of</strong> concentrationS 24<br />

Winter, summer half-year period<br />

18,2 32,5 52,0 114,8<br />

19,5 29,1 42,4 93,9<br />

X 34,7 5,5 1,5 84,3 67,2 6<br />

XI 41,9 5,1 1,4 90,5 20,7 7<br />

XII 37,1 1,0 1,9 88,1 41,7 7<br />

181 46 5,2 156,4 29.01 38,3 22,7 21,2 35,6 50,5 97,7<br />

I 42,5 -4,9 1,7 88,5 30,9 10<br />

II 33,3 0,0 1,8 83,4 34,6 7<br />

III 40,5 3,7 1,6 78,4 40,9 9<br />

IV 42,0 8,9 1,2 63,7 52,2 10<br />

V 27,5 12,2 1,1 69,8 54,9 -<br />

VI 28,7 16,0 1,0 66,2 42,3 -<br />

182 18 9,9 75,2 16.04 33,3 12,3 24,0 31,2 41,7 62,0<br />

VII 28,5 18,1 1,1 70,3 61,3 1<br />

VIII 34,9 19,5 1,2 67,6 53,7 -<br />

IX 38,7 14,0 1,3 71,0 20,1 7<br />

X 38,4 10,2 1,5 81,5 39,7 7<br />

XI 29,1 3,4 1,7 89,1 62,1 2<br />

XII 41,2 1,7 1,6 90,5 11 7<br />

181 33 7,7 119,2 11.12 36,3 20,7 21,8 31,5 46,5 100,5<br />

I 29,7 0,8 1,9 84,5 33,1 4<br />

II 43,5 -3,1 1,7 84,8 27,2 7<br />

III 36,3 0,2 1,6 76,4 40 6<br />

IV 46,7 9,5 1,3 59,5 18,8 12<br />

V 28,1 14,0 1,2 66,6 56 4<br />

VI 28,5 16,4 1,1 64,6 45,3 -<br />

180 35 9,0<br />

98,0 03.04 35,7 17,2 23,3 30,6 44,5 79,9<br />

VII 29,0 20,8 1,0 58,8 4,7 -<br />

VIII 34,6 18,2 1,0 62,9 38,8 5<br />

IX 47,3 16,2 0,8 62,9 33,6 14<br />

winter half-year<br />

period<br />

2003<br />

summer half-year<br />

period<br />

2004<br />

18,9 29,8 46,7 116,2<br />

winter half-year<br />

period<br />

19,0 29,5 46,4 102,5<br />

summer half-year<br />

period<br />

2005


60 G. Majewski, W. Przewoźniczuk<br />

vector is equal to the amount <strong>of</strong> pollution<br />

fl owing in a time unit through the area<br />

unit perpendicular to the fl ow direction.<br />

This is the fl ow intensity [μg ·m –2 ·s –1 ],<br />

being the measure <strong>of</strong> the infl ow or outfl ow<br />

<strong>of</strong> a substance over an area unit situated<br />

within a territory (Stull 1995). Circular<br />

graphs were made for percentiles <strong>of</strong> the<br />

order p = 25, 50, 70, 98 after calculating<br />

the pollution fl ow intensities.<br />

A synthetic WZ indicator <strong>of</strong> pollution<br />

was calculated for discriminating<br />

between the impact <strong>of</strong> the emission and<br />

the infl uence <strong>of</strong> atmospheric conditions<br />

on the size <strong>of</strong> the imission registered.<br />

This indicator encompasses all impacts<br />

<strong>of</strong> various meteorological elements<br />

infl uencing the increase or decrease <strong>of</strong><br />

air pollution during winter (Walczewski<br />

1997). It is expressed in the formula:<br />

WZ = [A(T) + B(v) + C(IN) + D(d)] · E(p)<br />

where:<br />

A(T) – component describing the<br />

temperature impact,<br />

B(v) – component describing the wind<br />

speed impact,<br />

C(IN) – component describing the<br />

inversion layer impact,<br />

D(d) – component describing the<br />

precipitation impact,<br />

E(p) – coeffi cient taking into account the<br />

atmospheric air pressure.<br />

The individual articles for the WZ<br />

indicator as adopted in the paper were<br />

defi ned in the following way:<br />

A(T) = 0 for T > 0 [°C], 1 for –5 < T ≤<br />

[0°C], 2 for –10 < T ≤ –5 [°C], 3 for –15<br />

< T ≤ –10 [°C], 4 for T < –15 [°C], where<br />

T is the mean 24-hour temperature <strong>of</strong> air,<br />

B(v) = 0 for v > 2[m·s –1 ], 2 for 1< v ≤2<br />

[m·s –1 ], 3 for 0 < v ≤1 0[m·s –1 ], where<br />

v is the wind speed at the height <strong>of</strong> 22<br />

m above the ground level at the time 12<br />

UTC (10-minute mean), C(IN) = 0 when<br />

there is a lack <strong>of</strong> lower inversion layer at<br />

12 UTC, and 2 when the layer is present.<br />

The data necessary for verifying the<br />

existence <strong>of</strong> the inversion layer were got<br />

from measurements <strong>of</strong> air temperature<br />

at two levels on the mast installed in the<br />

MzWarszSGGW station.<br />

D(d) = 0 for d ≥ 4 [mm], 1 for 0.8 < d ≤4<br />

[mm], 2 for 0 < d ≤ 0.8[mm],<br />

E(p) = 1.5 when there is the anticyclone<br />

on a given day, and 1 in the rest <strong>of</strong><br />

cases.<br />

The minimum WZ value may amount<br />

to 0, and the maximum is 16.5. The WZ<br />

index was used with success for the fi rst<br />

time by Walczewski (1997) in Kraków<br />

for identifi cation <strong>of</strong> the changes in the<br />

level <strong>of</strong> air pollution with SO 2.<br />

RESULTS<br />

The series <strong>of</strong> 1-hour concentration<br />

measurements <strong>of</strong> PM10 particulate matter<br />

gained in the period under study, i.e.<br />

1.09.2003–30.10.2005 contained 94%<br />

<strong>of</strong> correct results with variability range<br />

from 0.8 to 241.8 [μg·m –3 ]. One can<br />

notice the occurrence <strong>of</strong> a clear cycle <strong>of</strong><br />

daily dust concentration variability, with<br />

two local peaks in morning and evening<br />

time – around 9h00 and after21h00, and<br />

the hours <strong>of</strong> their occurrence vary during<br />

the year, on the fi gure 2 presenting the<br />

mean hourly concentrations <strong>of</strong> PM10<br />

particulate within 24 hours. In the winter<br />

season the concentration maximums<br />

occur later in the morning and earlier<br />

in the evening as related to the summer<br />

season. A clear drop <strong>of</strong> PM10 particulate<br />

matter concentration is observed during


[μg•m -³ ]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

00:00<br />

01:00<br />

02:00<br />

the day around 13 h 00 and in the night<br />

around 5 h 00. The occurrence <strong>of</strong> these<br />

relationships results from not only the<br />

daily course <strong>of</strong> pollution emission to the<br />

atmosphere (e.g. traffi c peaks) but also<br />

24 hour cycle <strong>of</strong> changes in the height<br />

<strong>of</strong> mixing layer and further on from<br />

the development and disappearing <strong>of</strong><br />

convection processes, and general and<br />

local circulation.<br />

Daily concentrations <strong>of</strong> PM10<br />

particulate matter in the period under<br />

study (Tab. 1) acquired the values from<br />

the interval 5.2 – 156.4 [μg·m –3 ], that<br />

is from 10.4 to 312.8% respectively<br />

<strong>of</strong> mean daily allowable value (D 24<br />

= 50 [μg·m –3 ]) (Order by Minister <strong>of</strong><br />

Environment <strong>of</strong> 6 June 2002). This value<br />

has been exceeded in 132 cases within<br />

the all measuring period, including 60%<br />

exceedences in heating seasons.<br />

The mean daily concentrations <strong>of</strong><br />

dust acquired most frequently the values<br />

from 25 to 50 [μg·m –3 ] as it is shown<br />

in the frequency histogram <strong>of</strong> daily<br />

concentration occurrence (Fig. 3), based<br />

on intervals <strong>of</strong> the Air Quality Scale<br />

(WIOS) in both winter and summer<br />

seasons. The highest concentration<br />

03:00<br />

04:00<br />

Characteristics <strong>of</strong> the particulate matter PM10 concentration... 61<br />

w arm season cold season<br />

05:00<br />

06:00<br />

07:00<br />

08:00<br />

09:00<br />

10:00<br />

11:00<br />

FIGURE 2. Mean 1-hour concentrations <strong>of</strong> PM10 in the sequence <strong>of</strong> 24-hours in the station Mz-<br />

WarszUrsynów, 2004<br />

12:00<br />

13:00<br />

14:00<br />

15:00<br />

16:00<br />

17:00<br />

18:00<br />

19:00<br />

20:00<br />

values, exceeding D 24, occurred most<br />

frequently in winter months, this being<br />

probably linked with the dropping air<br />

temperature and with more intensive work<br />

<strong>of</strong> heating facilities. In summer seasons,<br />

the values from the intervals 50–75 and<br />

75–100 [μg·m –3 ] appeared as well, but the<br />

frequency <strong>of</strong> their occurrence was lesser<br />

than in winter seasons, but the values<br />

over 100 [μg·m –3 ] did not appear at all.<br />

In the warm season <strong>of</strong> year, exceedences<br />

<strong>of</strong> mean daily allowable value occurred<br />

most frequently in April and September<br />

(Tab. 1), but in the months V–VIII they<br />

appeared only sporadically. No one case<br />

<strong>of</strong> exceedence <strong>of</strong> the allowable standard<br />

occurred in the periods: V, VI, VIII <strong>of</strong><br />

2004, and VII–VIII <strong>of</strong> 2005.<br />

The phenomenon <strong>of</strong> the occurrence<br />

<strong>of</strong> a considerable number <strong>of</strong> exceedences<br />

in April and September requires a deeper<br />

analysis. In the years under study, the<br />

reasons <strong>of</strong> such a state can be seen in low<br />

mean speed <strong>of</strong> wind, low mean humidity<br />

<strong>of</strong> air, low sums <strong>of</strong> precipitation, and<br />

low diversity in the infl ows <strong>of</strong> air masses<br />

(source: Daily Synoptic Bulletin <strong>of</strong> the<br />

IMGW 2003–2005).<br />

21:00<br />

22:00<br />

23:00


62 G. Majewski, W. Przewoźniczuk<br />

results [%]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

35,1<br />

29,3%<br />

56,1%<br />

43,1%<br />

The mean monthly values <strong>of</strong> PM10<br />

concentration were from 27.5 [μg·m –3 ]<br />

(in May 2004) to 47.4 [μg·m –3 ] (in<br />

September 2005), while the values<br />

averaged for winter and summer year<br />

halves differed only very slightly from<br />

each other, and they were 38.3 [μg·m –3 ]<br />

and 36.3 [μg·m –3 ] in winter year halves<br />

and a bit less – 33.3 [μg·m –3 ] and<br />

35.7 [μg·m –3 ] in summer year halves<br />

respectively.<br />

Circular graphs <strong>of</strong> concentration<br />

percentiles related to individual sectors<br />

<strong>of</strong> wind rose were made and analysed<br />

in order to identify the directions <strong>of</strong><br />

infl ows <strong>of</strong> particulate matter (Fig. 4a).<br />

This fi gure shows the difference in the<br />

distribution <strong>of</strong> percentiles in summer<br />

and winter seasons over individual<br />

sectors. They were more even in summer<br />

seasons, and this fact could evidence the<br />

impact <strong>of</strong> pollution sources located at<br />

various directions around the measuring<br />

point. The emission from traffi c sources<br />

prevailed in those periods because a<br />

thick network <strong>of</strong> streets with a high<br />

warm half-year cold half-year<br />

13,0%<br />

16,6%<br />

0–25 25–50 50–75 75–100 >100<br />

[μg•m<br />

–3 ]<br />

FIGURE 3. Frequency distributions in percents <strong>of</strong> 24-hours particulate matter concentration at Mz-<br />

WarszUrsynów, X 2003–IX 2005<br />

1,7%<br />

3,3%<br />

1,9%<br />

intensity <strong>of</strong> car traffi c occurred around<br />

the measuring point.<br />

In the summer 2004, when no<br />

overstandard values were observed, no<br />

dominant direction <strong>of</strong> pollution infl ow<br />

was seen. It results from the analysis<br />

<strong>of</strong> pollution plumes that the sources <strong>of</strong><br />

emission intensities being the greatest in<br />

the period mentioned existed from the<br />

measuring station toward the South in<br />

the sectors 67–270 o N (Fig. 4b).<br />

A bit otherwise was in the summer<br />

2005. It is seen on Fig. 4a that the<br />

highest concentrations occurred at the air<br />

infl ow from NE direction (the value <strong>of</strong><br />

percentile <strong>of</strong> 98% level in the NE sector<br />

was by 20% higher than in the remaining<br />

sectors), and this can suppose an impact<br />

<strong>of</strong> a large point source <strong>of</strong> emission. The<br />

analysis <strong>of</strong> pollution plumes has shown<br />

that the intensity <strong>of</strong> the emission was<br />

the greatest in the sectors 110–180 o N,<br />

and moreover in the sectors NE, N,<br />

WNW, where the following industrial<br />

plants were located: EC Siekierki<br />

Heating plant, Urban Construction


a)<br />

WNW<br />

W<br />

WSW<br />

WNW<br />

W<br />

WSW<br />

WNW<br />

W<br />

WSW<br />

WNW<br />

W<br />

WSW<br />

N<br />

NNW<br />

200<br />

NNE<br />

[μg•m<br />

NW<br />

150<br />

NE<br />

-3 Perecentiles concentrations <strong>of</strong> PM10 - 2003/2004<br />

]<br />

SW<br />

SSW<br />

100<br />

50<br />

0<br />

98%<br />

100<br />

50%<br />

70%<br />

50<br />

S<br />

0<br />

50%<br />

70%<br />

Characteristics <strong>of</strong> the particulate matter PM10 concentration... 63<br />

SSE<br />

SE<br />

ENE<br />

E<br />

ESE<br />

N<br />

NNW<br />

200<br />

[μg•m<br />

NNE<br />

NW<br />

150<br />

NE<br />

-3 Perecentiles concentrations <strong>of</strong> PM10 - 2004/2005<br />

]<br />

SW<br />

SSW<br />

98%<br />

S<br />

SSE<br />

SE<br />

Perecentiles concentrations <strong>of</strong> PM10 - 2004<br />

NW<br />

SW<br />

NNW<br />

SSW<br />

N<br />

200<br />

150<br />

100<br />

50<br />

0<br />

50%<br />

70%<br />

98%<br />

S<br />

[μg•m -3 ]<br />

NNE<br />

SSE<br />

NE<br />

SE<br />

Perecentiles concentrations <strong>of</strong> PM10 - 2005<br />

NW<br />

SW<br />

NNW<br />

SSW<br />

N<br />

200<br />

150<br />

100<br />

50<br />

0<br />

50%<br />

70%<br />

98%<br />

S<br />

[μg•m -3 ]<br />

NNE<br />

SSE<br />

NE<br />

SE<br />

ENE<br />

E<br />

ESE<br />

ENE<br />

E<br />

ESE<br />

ENE<br />

E<br />

ESE<br />

b)<br />

WNW<br />

W<br />

WSW<br />

N<br />

NNW<br />

250<br />

200<br />

NNE<br />

[μg•m<br />

NW<br />

NE<br />

-2 •s -1 Percentiles <strong>of</strong> PM10 pollution plume rate - 2003/2004<br />

]<br />

SW<br />

SSW<br />

150<br />

100<br />

50<br />

150<br />

100<br />

0<br />

50%<br />

70%<br />

50<br />

0<br />

98%<br />

S<br />

SSE<br />

SE<br />

N<br />

250<br />

NNW<br />

NNE<br />

[μg•m<br />

200<br />

NW<br />

NE<br />

-2 •s -1 Percentiles <strong>of</strong> PM10 pollution plume rate - 2004/2005<br />

]<br />

WNW<br />

W<br />

WSW<br />

WNW<br />

W<br />

WSW<br />

WNW<br />

W<br />

WSW<br />

SW<br />

SSW<br />

150<br />

100<br />

50<br />

0<br />

50%<br />

70%<br />

98%<br />

S<br />

SSE<br />

SE<br />

N<br />

250<br />

NNW<br />

NNE<br />

[μg•m<br />

200<br />

NW<br />

NE<br />

-2 •s -1 Percentiles <strong>of</strong> PM10 pollution plume rate - 2004<br />

]<br />

SW<br />

98%<br />

50%<br />

70%<br />

SE<br />

SSW<br />

SSE<br />

S<br />

Percentiles <strong>of</strong> PM10 pollution plume rate - 2005<br />

FIGURE 4. Circular graphs <strong>of</strong> percentiles concentrations <strong>of</strong> PM10 (a) and percentiles <strong>of</strong> PM10 pollution<br />

plume rate (b) in the cold and warm half-years from October 2003 to September 2005 at Mz-<br />

WarszUrsynów station<br />

NW<br />

SW<br />

NNW<br />

SSW<br />

N<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

50%<br />

70%<br />

98%<br />

S<br />

[μg•m -2 •s -1 ]<br />

NNE<br />

SSE<br />

NE<br />

SE<br />

ENE<br />

E<br />

ESE<br />

ENE<br />

E<br />

ESE<br />

ENE<br />

E<br />

ESE<br />

ENE<br />

E<br />

ESE


64 G. Majewski, W. Przewoźniczuk<br />

Enterprise, Radio Ceramics Plant, and<br />

the Construction Woodworking Plant. A<br />

part <strong>of</strong> the pollution could also fl ow from<br />

the city centre.<br />

In the winter season 2003–2004<br />

the distribution <strong>of</strong> concentrations in<br />

individual sectors <strong>of</strong> the wind rose was<br />

almost evenly, with a slight overweight<br />

(under 10%) <strong>of</strong> concentration values<br />

occurring in the sectors 180–203 o N and<br />

338–360 o N. This shows an impact <strong>of</strong><br />

some sources on the imission fi eld, the<br />

sources that were dispersed in various<br />

directions around the measuring station.<br />

It results from the analysis <strong>of</strong> pollution<br />

plumes that the greatest intensity <strong>of</strong><br />

emissions came from the sources located<br />

in the sector 67–160 o N and in the sector<br />

315–360 o N where point emission<br />

sources existed as it was mentioned in<br />

the preceding paragraph.<br />

In the season 2004–2005 the highest<br />

concentrations occurred at the air infl ow<br />

from northern direction (Fig. 4a). The<br />

analysis <strong>of</strong> the plumes, similarly as<br />

for the preceding season, revealed the<br />

most intensive emission from the sector<br />

67–180 o N with local heating facilities<br />

and areas with low communal and<br />

living emissions (Fig. 1). Moreover, in<br />

that season one could note an infl ow <strong>of</strong><br />

greater amounts <strong>of</strong> dust from the sector<br />

248–290 o N. The diagram <strong>of</strong> plumes<br />

showed the existence <strong>of</strong> sources with<br />

great concentrations <strong>of</strong> emission from<br />

that direction where pollution sources<br />

worked intensively.<br />

The calculation <strong>of</strong> the WZ pollution<br />

index described in the preceding section<br />

was the next stage <strong>of</strong> the analysis <strong>of</strong><br />

meteorological conditions important<br />

for pollution dispersal. The calculations<br />

were made for both heating seasons<br />

mentioned. However, only the results<br />

from January 2004 and 2005 were put<br />

down in the paper due to its limited size.<br />

It is seen on Figure 5 presenting<br />

the monthly courses <strong>of</strong> mean daily<br />

PM10 concentrations compared to the<br />

analogous course <strong>of</strong> the WZ index that<br />

the maximums <strong>of</strong> concentration values<br />

cover the maximums <strong>of</strong> the index values.<br />

Sometimes a slight retardation <strong>of</strong> the<br />

concentration maximum as compared to<br />

the highest index value can be noted, this<br />

fact being well grounded because the<br />

concentration resulted from unfavourable<br />

meteorological conditions.<br />

In January 2004 meteorological<br />

conditions were less favourable for<br />

pollution spreading out than in January<br />

2005, because the mean WZ I.2004<br />

index amounts to 5.3 (max = 12), and<br />

WZ I.2005 is 3.5 (max 8.2), and the mean<br />

concentrations were: 42.5 [μg·m –3 ]<br />

and 29,7 [μg·m –3 ] respectively. A more<br />

detailed analysis <strong>of</strong> those winter months<br />

has shown that high air pressure areas<br />

shaped the weather in January 2004.<br />

Either frosty and dry polar continental air<br />

fl ew from NE and E or arctic air from the<br />

north. At that time an increased emission<br />

<strong>of</strong> pollution from heating sources could<br />

occur at very low air temperatures. Not<br />

only the pressure pattern but also a small<br />

amount <strong>of</strong> precipitation (7 days with<br />

precipitation over 0.8 mm) favoured<br />

increased concentrations <strong>of</strong> pollution.<br />

However in January 2005 the mean<br />

monthly air temperature was higher than<br />

in 2004 and that pattern could cause a<br />

bit lesser emission from heating sources.<br />

The following impacts: occurrence <strong>of</strong><br />

low air pressure patterns and the fronts<br />

accompanying them, the infl ow <strong>of</strong> polar<br />

marine air, the increase <strong>of</strong> wind speed,


PM10 [μg·m -3 ]<br />

PM10 [μg·m -3 ]<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

and the frequency <strong>of</strong> precipitation<br />

had contributed to better pollution<br />

spreading out and they could cause a<br />

drop in registered values <strong>of</strong> pollution<br />

concentration.<br />

Characteristics <strong>of</strong> the particulate matter PM10 concentration... 65<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31<br />

January 2004 D24 PM10 WZ<br />

- 24-hour permissible concentration<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

D24<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31<br />

January 2005<br />

PM10 WZ<br />

FIGURE 5. Comparison <strong>of</strong> monthly variabilities <strong>of</strong> air pollution WZ indicator and PM10 concentration<br />

(24-hours) at MzWarszUrsynów station<br />

D24<br />

STATEMENTS AND<br />

CONCLUSIONS<br />

The high values <strong>of</strong> PM10 particulate<br />

concentrations occurring in the<br />

Ursynow living quarter were caused, at<br />

a considerable rate, by a low emission<br />

coming from main communication<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

WZ indicator<br />

WZ indicator


66 G. Majewski, W. Przewoźniczuk<br />

avenues and from dispersed sources<br />

(local heating facilities, individual<br />

domestic fi re places) occurring in the<br />

sectors 67–180 o N and 245–360 o N. Low<br />

sources were <strong>of</strong> local importance but<br />

their impact decided on the scale <strong>of</strong> the<br />

threat from pollution. This threat results<br />

just from the fact that the low sources are<br />

located near human living areas; therefore<br />

dust aerosol breathed in is a ‘fresh’ one<br />

with a high share <strong>of</strong> miniparticles, and<br />

at the same time it is very dangerous<br />

for human health. This threat has been<br />

confi rmed by introductory results <strong>of</strong> the<br />

quality analysis <strong>of</strong> PM10 found at the<br />

MzWarszSGGW station that showed<br />

the presence <strong>of</strong> heavy metals in the dust,<br />

such as Ni, Pb, Cr, Zn, Fe, Cu (archival<br />

data <strong>of</strong> the Meteorology and Climatology<br />

Department <strong>of</strong> the <strong>Warsaw</strong> Agricultural<br />

<strong>University</strong>).<br />

Since the year 2003, i.e. from<br />

starting the measurements <strong>of</strong> PM10<br />

particulate matter concentration at the<br />

MzWarszUrsynow station, a decreasing<br />

tendency <strong>of</strong> this pollution is observed,<br />

although the number <strong>of</strong> allowable<br />

exceedences <strong>of</strong> mean daily values<br />

maintains still at a high level (mean daily<br />

allowable value <strong>of</strong> the particulate matter<br />

concentration was exceeded in 132 cases<br />

in the whole measuring period).<br />

The differences in seasonal<br />

concentrations were caused by<br />

emissions <strong>of</strong> particulate matter from<br />

burning out fuels in low sources being<br />

greater in winter seasons at relatively<br />

worse conditions <strong>of</strong> aeration and air<br />

self-cleaning that occur in the cold<br />

season. Meteorological conditions were<br />

the factor deciding on the imission<br />

registered in all winter months under<br />

study. It was impossible to found for the<br />

study period that a pollution emission<br />

decrease caused by implementation <strong>of</strong><br />

the air quality improvement program<br />

had been the reason for the betterment <strong>of</strong><br />

the imission situation in the area under<br />

analysis. According to the opinion <strong>of</strong><br />

the authors, the decrease <strong>of</strong> particulate<br />

matter amount registered in the period<br />

2003–2005 was caused by the betterment<br />

<strong>of</strong> meteorological conditions.<br />

REFERENCES<br />

DOCKERY D.W., CUNNINGHAM J.,<br />

DAMOKOSH A.I., NEAS L.M.,<br />

SPENGLER J.D., KOUTRAKIS P.,<br />

WARE J.H., RAIZENNE M, SPEIZER<br />

F.E. 1996: Health effects <strong>of</strong> acid aerosols<br />

on North American children: respiratory<br />

symptoms. Environ. Health Perspect.<br />

104, 500–505.<br />

EN12341 – Determination <strong>of</strong> the PM10<br />

fraction <strong>of</strong> suspended particulate matter –<br />

Reference method and fi eld test procedure<br />

to demonstrate reference equivalence <strong>of</strong><br />

measurement methods. November 1998.<br />

JABŁOŃSKA M. 2003: Skład fazowy pyłów<br />

atmosferycznych w wybranych miejscowościach<br />

Górnośląskiego Okręgu Przemysłowego.<br />

Wydawnictwo Uniwersytetu<br />

Śląskiego. Katowice. Juda J., Chróściel<br />

S. 1974: Ochrona powietrza atmosferycznego.<br />

NIEĆKO J., NIEĆKO M., NIEĆKO U. 1998:<br />

Charakterystyka pyłu zawieszonego<br />

i jego wpływ na organizm ludzki. Air<br />

protection in theory and application.<br />

Section I, s. 29-49.<br />

KLIŚ CZ., MATEJCZYK M. 2002: Ocena<br />

wpływu źródeł na jakość powietrza<br />

w świetle ustawy „Prawo ochrony<br />

środowiska”. Ochrona Powietrza i Problemy<br />

Odpadów, vol. 36, nr 3: 95–98.<br />

Rozporządzenie Nr 62 Wojewody Mazowieckiego<br />

z dnia 8 grudnia 2003.


Rozporządzenie Ministra Środowiska z dnia<br />

6 czerwca 2002 r. w sprawie dopuszczalnych<br />

poziomów niektórych substancji<br />

w powietrzu oraz marginesów Tolerancji<br />

dla dopuszczalnych poziomów niektórych<br />

substancji (DzU z 2002r. nr 87 poz.<br />

798).<br />

STERN A.C. et al. 1994: Fundamentals <strong>of</strong> air<br />

pollution. Academic Press, San Diego.<br />

STULL R.B. 1995: Meteorology Today For<br />

Scientists and Engineers, West Publishing<br />

Comp. New York.<br />

Quarg, 1996: Airborne Particulate Matter in<br />

the United Kingdom. Third Report <strong>of</strong> the<br />

Quality.<br />

WALCZEWSKI J. et al. 2000: Wykorzystanie<br />

danych meteorologicznych w monitoringu<br />

jakości powietrza. Biblioteka<br />

Monitoringu Środowiska, Warszawa.<br />

Walczewski J. 1997: Wskaźnik meteorologiczny<br />

określający prawdopodobieństwo<br />

wzrostu zanieczyszczenia powietrza<br />

w okresie zimowym. Wiad. IMiGW, t.<br />

XX (XLI).<br />

WARYCH J. 1999: Zanieczyszczenie powietrza<br />

cząstkami aerozolowymi i wynikające<br />

stąd problemy. Ochrona powietrza<br />

i Problemy Odpadów. Vol. 33, nr 3, majczerwiec.<br />

Characteristics <strong>of</strong> the particulate matter PM10 concentration... 67<br />

Streszczenie: Charakterystyka pola imisji oraz<br />

próba określenia źródeł zanieczyszczenia powietrza<br />

pyłem zawieszonym PM10 na obszarze<br />

dzielnicy mieszkaniowej Ursynów na podstawie<br />

danych pomiarowych z automatycznej stacji<br />

monitoringu atmosfery. W pracy przedstawiono<br />

charakterystykę pola imisji pyłu zawieszonego<br />

PM10 za pomocą podstawowych statystyk, takich<br />

jak wartości średnie, zakresy zmienności, liczby<br />

przekroczeń dopuszczalnego stężenia, rozkłady<br />

częstości występowania stężeń w poszczególnych<br />

przedziałach, przebiegi czasowe. W celu przeanalizowania<br />

warunków meteorologicznych dyspersji<br />

i rozprzestrzeniania się zanieczyszczeń, obliczono<br />

średnie wartości podstawowych elementów<br />

meteorologicznych, sporządzono wykresy kołowe<br />

percentyli stężenia pyłu, oraz percentyli natężenia<br />

strumieni zanieczyszczenia. Obliczono również<br />

syntetyczny wskaźnik zanieczyszczenia WZ, ujmujący<br />

łączne oddziaływanie różnych elementów<br />

meteorologicznych na poziom stężeń.<br />

MS. received July 2006<br />

Authors’ address:<br />

Wydział Inżynierii i Kształtowania Środowiska,<br />

SGGW,<br />

02-787 Warszawa, ul. Nowoursynowska 159


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 69–74<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Run<strong>of</strong>f volume and slope gradient relationship – laboratory<br />

investigations<br />

ANNA BARYŁA<br />

Department <strong>of</strong> Environmental Improvement, <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

Abstract: Run<strong>of</strong>f volume and slope gradient<br />

relationship – laboratory investigations. The<br />

objective <strong>of</strong> the research was to analyze infl uence<br />

<strong>of</strong> the slope gradient on the volume <strong>of</strong> surface<br />

run<strong>of</strong>f. Run<strong>of</strong>f is the primary driving variable in<br />

the water – induced erosion process. The overland<br />

fl ow process is strongly affected by the slopes<br />

because <strong>of</strong> the effective rainfall rate at the surface.<br />

The laboratory physical model diameters were<br />

120 cm long, 15 cm wide and 120 cm deep. The<br />

experiment the measurements <strong>of</strong> water erosion<br />

was done for different slopes: 5%, 10%, and<br />

15%. The rainfall was artifi cial simulated and his<br />

intensity for experimental separate sets. Based on<br />

performed research it can be concluded that the<br />

volume <strong>of</strong> the run<strong>of</strong>f depends on the gradient <strong>of</strong><br />

the slope. As the gradient increase the volume <strong>of</strong><br />

the run<strong>of</strong>f also increase.<br />

Key words: rainfall simulation, physical model,<br />

experiment.<br />

INTRODUCTION<br />

The run<strong>of</strong>f <strong>of</strong> rainfall water on the slope<br />

depends on several factors such as:<br />

decline, form, length and plant cover<br />

<strong>of</strong> the slope, amount ant intensity <strong>of</strong> the<br />

rainfall as well as the water properties <strong>of</strong><br />

the soil (Carson and Kirbky 1972, Słupik<br />

1981, Morgan 1986, Józefaciuk 1996,<br />

Kinnell 1997).<br />

Among physical soil properties it is<br />

the soil infi ltration ability that infl uences<br />

the run<strong>of</strong>f the most. The impact <strong>of</strong><br />

infi ltration on the possibility <strong>of</strong> surface<br />

run<strong>of</strong>f occurrence is revealed particularly<br />

when the surface lay is hardly permeable.<br />

The structure and the porosity <strong>of</strong> the soil<br />

have a decisive impact on the amount <strong>of</strong><br />

infi ltration (Józefaciuk A. and Józefaciuk<br />

C. 1996). Basic causes <strong>of</strong> variation<br />

<strong>of</strong> infi ltration speed are changes <strong>of</strong><br />

retentive capacity in the ground, the type<br />

<strong>of</strong> the gradient and the primary capacity<br />

value, treated as moisture in a time given<br />

(Słupik 1981, Schmidt 1997).<br />

Theoretical base <strong>of</strong> infi ltration was<br />

formed by Horton (1993); according to<br />

him the surface run<strong>of</strong>f forms on a slope<br />

when the intensity <strong>of</strong> rainfall exceeds the<br />

infi ltration capacity <strong>of</strong> the soil. In view<br />

<strong>of</strong> gradual fi lling <strong>of</strong> the soil pores with<br />

the water, the infi ltration capacity <strong>of</strong> the<br />

soil diminishes as the rainfall lasts. When<br />

the intensity <strong>of</strong> the rainfall exceeds the<br />

infi ltration process, a so called superinfi<br />

ltration run<strong>of</strong>f occurs. However,<br />

when the surface ground lay is totally<br />

saturated with the water, a so called<br />

saturated zone run<strong>of</strong>f is formed (Słupik<br />

1981, Kinnell 1997, Józefaciuk A. and<br />

Józefaciuk C. 1996, Rejman and Usowicz<br />

1999). A particular type <strong>of</strong> it is a run<strong>of</strong>f<br />

in the initial phase <strong>of</strong> intense rainfall<br />

formed thanks to a dried-<strong>of</strong>f and hardly<br />

permeable shell or a blockage laying<br />

on the surface against the infi ltrating<br />

water which is created by the air bound<br />

in the soil. This type <strong>of</strong> run<strong>of</strong>f is called<br />

a pre-infi ltration run<strong>of</strong>f (Schmidt 1997,


70 A. Baryła<br />

Kinnell 1997). In this case the surface<br />

run<strong>of</strong>f lasts until the soil is s<strong>of</strong>tened<br />

and the soil moisture is complemented.<br />

This type <strong>of</strong> run<strong>of</strong>f occurs the most <strong>of</strong>ten<br />

on heavy soils, thus short and <strong>of</strong> little<br />

intensity rainfalls very <strong>of</strong>ten can entirely<br />

constitute the run<strong>of</strong>f (Kinnell 1997). The<br />

process <strong>of</strong> forming the surface run<strong>of</strong>f<br />

depends in a big measure on, among<br />

others, the degree <strong>of</strong> covering <strong>of</strong> the soil<br />

surface. The practice has shown that it is<br />

more intense on open soils.<br />

FIGURE 1. Schema <strong>of</strong> laboratory experiment<br />

In natural conditions because <strong>of</strong><br />

their big differentiation, it is extremely<br />

diffi cult to estimate precisely the impact<br />

<strong>of</strong> each <strong>of</strong> the factors mentioned above on<br />

the course <strong>of</strong> the run<strong>of</strong>f and its amount.<br />

The aim <strong>of</strong> the research was to determine<br />

the impact <strong>of</strong> the initial soil moisture, the<br />

decrease and the intensity <strong>of</strong> the rainfall<br />

on the value <strong>of</strong> surface run<strong>of</strong>f. The results<br />

<strong>of</strong> laboratory experiments are presented<br />

in the paper.


MATERIALS AND METHODS<br />

The research was carried out on a ground<br />

model with the following diameters: 136<br />

cm <strong>of</strong> length, 120 cm <strong>of</strong> altitude, 15<br />

cm <strong>of</strong> width (Fig. 1). The inside oh the<br />

model was fi lled with clay sand fi rmly<br />

poured layer by layer and alternately<br />

compacted.<br />

In order to enable the observation<br />

<strong>of</strong> water fl ow in the soil the front wall<br />

<strong>of</strong> the model was made <strong>of</strong> a transparent<br />

polymethacrylate board. Inside the model<br />

16 probes TDR were installed in order<br />

to measure the soil moisture. 0.8 mm<br />

<strong>of</strong> diameter each <strong>of</strong> them, the distance<br />

between them was 5 mm. They were<br />

connected to the TDR (Malicki 1996)<br />

set ant to the computer. All the time<br />

during the experiment (in ten-minutes<br />

intervals) changes <strong>of</strong> soil moisture were<br />

registered. The rainfall was simulated by<br />

microsprinklers; the intensity <strong>of</strong> outfl ow<br />

depended on the water pressure, which<br />

enabled modeling <strong>of</strong> rainfalls <strong>of</strong> different<br />

intensity.<br />

The surface run<strong>of</strong>f water was collected<br />

at the end <strong>of</strong> the model by a trough<br />

having an outlet directly connected to<br />

the measuring vessel. The measurements<br />

<strong>of</strong> outfl ow and moisture were made in<br />

the same intervals. 12 experiments were<br />

carried out on the model with three slopes<br />

<strong>of</strong> the terrain surface – 5, 10 and 15%,<br />

TABLE 1. Physical properties <strong>of</strong> the soil used in<br />

experiment<br />

Depth [m] Density<br />

[g·cm –3 ]<br />

Porous<br />

[%]<br />

Filtration<br />

coeffi cient<br />

[cm·s –1 ]<br />

0.00–0.15 1.68 34.1 15.2*10–4<br />

0.15–0.45 1.62 35.6 7.84*10–4<br />

0.45–0.80 1.58 36.8 4.2*10–4<br />

Run<strong>of</strong>f volume and slope gradient relationship... 71<br />

and different rainfall intensity: 41 mm<br />

h –1 , 46 mm h –1 , 52 mm h –1 and 54 mm<br />

h –1 . The duration <strong>of</strong> every experiment<br />

was 1 hour.<br />

Surface run<strong>of</strong>f in the time from the<br />

physical model was collected at the end by<br />

trough, from <strong>of</strong> which one accompanied<br />

to dishes measuring. Physical properties<br />

<strong>of</strong> the soil are set together in the Table 1.<br />

Lesser and lesser values <strong>of</strong> fi ltration<br />

coeffi cient in subsequent layers may<br />

evidence about more compacted lower<br />

parts <strong>of</strong> the ground in the model.<br />

RESULTS AND DISCUSSION<br />

Knowledge and proper determination<br />

<strong>of</strong> interdependencies between surface<br />

run<strong>of</strong>fs and factors determining their<br />

value, intensity and frequency <strong>of</strong><br />

occurrence is indispensable in the<br />

modeling <strong>of</strong> the value <strong>of</strong> surface run<strong>of</strong>f<br />

on a slope. On the Figure 2a are shown<br />

the results <strong>of</strong> surface run<strong>of</strong>f for the<br />

slope <strong>of</strong> 5%. The analyze <strong>of</strong> the results<br />

obtained can lead to the conclusion that<br />

at the rainfall intensity <strong>of</strong> 41 mm h –1 and<br />

a slope <strong>of</strong> 5% the summary run<strong>of</strong>f was<br />

0.8 mm h –1 , instead at a slope <strong>of</strong> 15% the<br />

summary run<strong>of</strong>f was 5.6 mm h –1 . When<br />

the rainfall intensity was increased by 5<br />

mm h –1 (46 mm h –1 ) at a slope 5% the<br />

summary surface run<strong>of</strong>f amounted to 1.2<br />

mm h –1 at 15 mm h –1 – 11.8 mm h –1 .<br />

The time <strong>of</strong> starting-up the surface<br />

run<strong>of</strong>f at the intensity <strong>of</strong> 41 mm h –1 was<br />

22 minutes and was the longest time <strong>of</strong><br />

starting-up the surface run<strong>of</strong>f at a slope<br />

10%. The shortest time was observed at<br />

the intensity <strong>of</strong> rainfall <strong>of</strong> 54 mm h –1 and<br />

then the run<strong>of</strong>f started 10 minutes after<br />

the experiment had started.


72 A. Baryła<br />

Surface run<strong>of</strong>f [mm]<br />

Surface run<strong>of</strong>f [mm]<br />

Surface run<strong>of</strong>f [mm]<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

a)<br />

41 mm/h<br />

46 mm/h<br />

52 mm/h<br />

54 mm/h<br />

0 10 20 30 40 50 60<br />

b)<br />

0 10 20 30 40 50 60<br />

c)<br />

5%<br />

10%<br />

15%<br />

0 10 20 30 40 50 60<br />

Time [min]<br />

FIGURE 2. Dynamics <strong>of</strong> run<strong>of</strong>f surface with rain<br />

intensity and different slope (a – 5%, b – 10%,<br />

c – 15%).<br />

As at the 5 and 10% slopes, the highest<br />

value <strong>of</strong> surface run<strong>of</strong>f during 1 hour was<br />

obtained at the rainfall intensity <strong>of</strong> 54<br />

mm and equaled to 10.86 mm; this value<br />

was twice higher than surface run<strong>of</strong>f<br />

obtained at the intensity <strong>of</strong> 41 mm (3.68<br />

mm). At the intensity <strong>of</strong> rainfall equal 41<br />

mm h –1 the surface run<strong>of</strong>f increased after<br />

10 minutes, and at the intensity <strong>of</strong> 54 mm<br />

h –1 – 2 minutes. The research also proved<br />

that in the initial rainfall phase there is an<br />

intensifi ed run<strong>of</strong>f volume until a balance<br />

is obtained between the amount and the<br />

energy <strong>of</strong> run<strong>of</strong>f. The surface run<strong>of</strong>f<br />

speed stabilisation depends mainly on<br />

the rainfall intensity, which makes a very<br />

thin layer on the soil surface. For that<br />

reason the run<strong>of</strong>f value remains at the<br />

similar level, although the surface layer<br />

is almost fully saturated.<br />

The performed research confi rmed<br />

that there is an important impact <strong>of</strong> the<br />

land slopes on the course and value <strong>of</strong><br />

surface run<strong>of</strong>fs (Fig. 3). At a slope <strong>of</strong><br />

5% surface run<strong>of</strong>fs’ value was more<br />

than fi ve times less than at a slope <strong>of</strong><br />

15% at the same rainfall intensity. The<br />

research performed by Szafrański and<br />

others (1998) revealed that on grounds<br />

at a slope 3–6% surface run<strong>of</strong>f value is<br />

low and therefore the erosion danger<br />

is very slight. A severe water erosion<br />

danger may occur only on the lands at<br />

a slope <strong>of</strong> more than 10%. None the less<br />

during violent summer high-intensity<br />

thunderstorms the phenomenon <strong>of</strong> linear<br />

erosion can occur even at slopes <strong>of</strong> less<br />

than 6% (Rejman 1999).<br />

Coefficients <strong>of</strong> run<strong>of</strong>f C [%]<br />

30<br />

20<br />

10<br />

0<br />

slope 5%<br />

slope 10%<br />

slope 15%<br />

C=0,36466*P; C=0,36466*P; R=99 R=99<br />

C=0,230434*P; C=0,230434*P; R=96 R=96<br />

C=0,0669003*P; C=0,0669003*P; R=91 R=91<br />

0 10 20 30 40 50 60<br />

Rainfall P [mm]<br />

FIGURE 3. Relationship between rainfall intensity<br />

and coeffi cients <strong>of</strong> run<strong>of</strong>f


The Figure 3 presents a relationship<br />

between rainfall intensity and coeffi cients<br />

<strong>of</strong> run<strong>of</strong>f for the results <strong>of</strong> the research.<br />

The determination coeffi cient amounted<br />

to respectively: for a slope 5%–99,<br />

for a slope 10%–96 and for 15% –91. The<br />

research performed revealed that when<br />

the rainfall intensity volume increases,<br />

surface run<strong>of</strong>f increases too.<br />

CONCLUSIONS<br />

1.<br />

2.<br />

The research performed on a ground<br />

model confi rmed an important role<br />

<strong>of</strong> land slopes played in a course<br />

and value <strong>of</strong> surface run<strong>of</strong>fs. At a<br />

slope equal 5% the run<strong>of</strong>fs’ value<br />

was almost fi ve times less than at<br />

slopes equal 15%. It was ascertained<br />

that there is a rectilinear dependency<br />

between surface run<strong>of</strong>fs volume and<br />

land slopes.<br />

Surface run<strong>of</strong>fs volume described<br />

by the run<strong>of</strong>f coeffi cient was 0,02 to<br />

0,05 at a land slope 5% and 0,13 to<br />

0,21 at a land slope equal 15%.<br />

REFERENCES<br />

CARSON M.A., KIRBKY M.J. 1972:<br />

Hillslope form and process. <strong>University</strong><br />

Press, Cambridge.<br />

JÓZEFACIUK A., JÓZEFACIUK C. 1996:<br />

Mechanizm i wskazówki metodyczne<br />

badania procesów erozji. Biblioteka<br />

Monitoringu Środowiska w Warszawie.<br />

KINNELL P.I.A. 1997: Run<strong>of</strong>f ratio as<br />

a factor in the empirical modeling <strong>of</strong><br />

soil erosion by individual rainstorms.<br />

Australian Journal <strong>of</strong> Soil Research No<br />

25, p 1–6.<br />

MALICKI M.A., PLAGGE R., ROTH<br />

C.H. 1996: Improving the calibration <strong>of</strong><br />

dielectric TDR soil moisture determination<br />

Run<strong>of</strong>f volume and slope gradient relationship... 73<br />

taking into account the solid soil. European<br />

J. Soil Sci. 47, 57–366.<br />

MORGAN R.P.C. 1986: Soil erosion and<br />

conservation. Longman Scientifi c &<br />

Technical, Essex, UK.<br />

REJMAN J., USOWICZ B. 1999: Quantitative<br />

description <strong>of</strong> water ad soil transport in<br />

process <strong>of</strong> water erosion. Acta Agrophysica,<br />

no 23, p. 143–148 (in Polish).<br />

SCHMID B. 1997: Critical rainfall for overland<br />

fl ow from an infi ltrating plane surface.<br />

Journal <strong>of</strong> Hydrology 193, 45–60.<br />

SŁUPIK J. 1981: Rola stoku w kształtowaniu<br />

odpływu w Karpatach Fliszowych. Prace<br />

Geografi czne, 142, 1–94.<br />

SZAFRAŃSKI C., FIEDLER M., STASIK<br />

R. 1998: Rola zabiegów melioracyjnych<br />

w ochronie przeciwerozyjnej gleb<br />

terenów bogato urzeźbionych Bibliotheca<br />

Fragmenta Agronomica tom 4B/98.<br />

WISCHMEIER W.H., SMITH D.D. 1978:<br />

Predicting rainfall erosion losses. USDA<br />

Agric. Handb. 537. U.S. Gov. Print.<br />

Offi ce, Washington DC, p. 1–58.<br />

VAN DIJK A.I.J.M., BRIJNZEEL L.A.<br />

Modeling run<strong>of</strong>f and soil loss from bench<br />

terraced hillslopes in the volcanic uplands<br />

<strong>of</strong> West Java, Indonesia.<br />

YU B., SOMBATPANIT S., ROSE C.W.,<br />

CIESIOLKA, C.A.A. and COUGHLAN<br />

K.J. 2000: Characteristics and modeling<br />

<strong>of</strong> Run<strong>of</strong>f Hydrographs for Different<br />

Tillage Treatments. Soil Science Society <strong>of</strong><br />

American Journal No 64, p. 1763–1770.<br />

Streszczenie: Zależność pomiędzy spływem powierzchniowym<br />

a spadkiem terenu – doświadczenie<br />

laboratoryjne. Spływ powierzchniowy jest<br />

procesem złożonym, a czynniki od których zależy<br />

są zmienne zarówno w czasie, jak i w przestrzeni.<br />

Poznanie i właściwe określenie zależności pomiędzy<br />

spływami powierzchniowymi a czynnikami<br />

wpływającymi na ich wielkość, natężenie i częstotliwość<br />

występowania jest niezbędne m.in. dla<br />

oceny istniejących modeli spływu powierzchniowego.<br />

Badania laboratoryjne wykonano na modelu<br />

gruntowym o wymiarach: długość 136 cm, wysokość<br />

120 cm, szerokość 15 cm. Wnętrze modelu<br />

wypełnione zostało piaskiem gliniastym mocnym


74 A. Baryła<br />

zagęszczanym warstwowo. Badania dowiodły, że<br />

w początkowej fazie opadu następuje zwiększenie<br />

wielkości spływu do momentu ustalenia się stanu<br />

równowagi pomiędzy intensywnością i energią<br />

opadu a wielkością i energią spływu. Prędkość<br />

ustabilizowania się spływu powierzchniowego<br />

zależy głównie od intensywności opadu, który<br />

powoduje tworzenie się na powierzchni gleby<br />

cienkiej warstewki. Wartość odpływu utrzymuje<br />

się przez to na zbliżonym poziomie, mimo że<br />

wierzchnia warstwa osiągnęła prawie pełny poziom<br />

nasycenia.<br />

MS. received November 2006<br />

Author’s address:<br />

Katedra Kształtowania Środowiska – SGGW<br />

ul. Nowoursynowska 166<br />

02-787 Warszawa<br />

e-mail: anna_baryla@sggw.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 75–81<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Infl uence <strong>of</strong> sprinkling irrigation and nitrogen fertilization on health<br />

status <strong>of</strong> potato grown on a sandy soil<br />

DARIUSZ PAŃKA1 , ROMAN ROLBIECKI2 , CZESŁAW RZEKANOWSKI2 1Department <strong>of</strong> Phytopathology, <strong>University</strong> <strong>of</strong> Technology and Agriculture, Bydgoszcz, Poland<br />

2Department <strong>of</strong> <strong>Land</strong> <strong>Reclam</strong>ation and Agrometeorology, <strong>University</strong> <strong>of</strong> Technology and Agriculture,<br />

Bydgoszcz, Poland<br />

Abstract: Infl uence <strong>of</strong> sprinkling irrigation and<br />

nitrogen fertilization on health status <strong>of</strong> potato<br />

grown on a sandy soil. The fi eld experiment was<br />

carried out in the years 2001–2003 at Kruszyn<br />

Krajeński near Bydgoszcz on a sandy soil<br />

(Typic Hapludolls). The fi eld experiment was<br />

done using the split-plot method, in a dependent<br />

system with two variable factors (sprinkler<br />

irrigation and nitrogen fertilization) and three<br />

replications. ‘Drop’ early potato cultivar was<br />

taken into consideration. It is the most frequent<br />

cultivated cultivar in Kujawy-Pomerania region.<br />

The following levels <strong>of</strong> experimental factors were<br />

used: water: O – without sprinkler irrigation and<br />

W – sprinkler irrigation according to tensiometer,<br />

nitrogen fertilization: N1 – 75 and N2 – 125 kg<br />

N ha –1 , respectively. Potato tubers were analyzed<br />

at once after harvest from the point <strong>of</strong> view <strong>of</strong><br />

occurrence <strong>of</strong> common scab, black scurf, potatotuber<br />

dry-rot and potato-tuber s<strong>of</strong>t-rot symptoms.<br />

Estimation <strong>of</strong> degree <strong>of</strong> infestation was carried<br />

out on 50 tubers taken at random from the each<br />

plot. Nine-degree scale was used (0–8°), where:<br />

0° means lack <strong>of</strong> infestation symptoms (sound<br />

tubers) and 8° means over 50% <strong>of</strong> a tuber surface<br />

with symptoms <strong>of</strong> common scab or black scurf.<br />

In case <strong>of</strong> other diseases a percentage <strong>of</strong> tubers<br />

with symptoms <strong>of</strong> infestation was estimated. On<br />

the basis <strong>of</strong> the investigation results it was found<br />

that sprinkler irrigation had a signifi cant infl uence<br />

on the occurrence <strong>of</strong> common scab symptoms.<br />

Stronger infestation was noted on irrigated<br />

treatments. A strong infl uence <strong>of</strong> the rainfall<br />

course in the vegetation period <strong>of</strong> the potato on<br />

the infestation <strong>of</strong> tubers by Streptomyces sp. was<br />

observed. An infl uence <strong>of</strong> nitrogen fertilization on<br />

the occurrence <strong>of</strong> common scab and black scurf<br />

symptoms was not found. The cultivar tested was<br />

characterized by a higher resistance to infestation<br />

by Rhizoctonia solani than Streptomyces sp.<br />

Key words: potato, sprinkling irrigation, fertilization,<br />

nitrogen, Streptomyces sp., Rhizoctonia solani,<br />

common scab, black scurf, sandy soil.<br />

INTRODUCTION<br />

High quality yield is at present the main<br />

aim <strong>of</strong> the table potato production.<br />

The quality <strong>of</strong> potato is affected most<br />

strongly by such the factors like cultivar,<br />

course <strong>of</strong> weather conditions during the<br />

vegetation period, mineral fertilization,<br />

soil cultivation and plant protection<br />

against agrophages [3], [7], [9], [16].<br />

Good quality yield can be produced when<br />

optimal conditions for the potato growth<br />

and development are created. In such the<br />

conditions the pressure <strong>of</strong> agrophages is<br />

limited to minimum.<br />

Pathogens developing on tubers are<br />

included to the most dangerous pathogens.<br />

They <strong>of</strong>ten decreased the suitability <strong>of</strong><br />

potato for food processing. In addition<br />

these pathogens decreased the quality<br />

<strong>of</strong> seed-potatoes and they can cause<br />

considerable storage losses [1], [6], [15].<br />

Common scab, rhizoctoniose, tuber dryrot<br />

and tuber s<strong>of</strong>t rot are included to the<br />

most dangerous diseases in cultivation<br />

<strong>of</strong> potato. They occur commonly. Their


76 D. Pańka, R. Rolbiecki, Cz. Rzekanowski<br />

development are infl uenced by a number<br />

<strong>of</strong> such the factors like for example<br />

moisture, temperature or mineral<br />

fertilization [8], [10], [11], [14]. In<br />

Poland cultivation <strong>of</strong> potato is conducted<br />

mostly on light soils characterized by a<br />

low fertility and limited water-holding<br />

capacity. Because <strong>of</strong> this, higher doses<br />

<strong>of</strong> mineral fertilization and irrigation<br />

<strong>of</strong> potato plantations should be used,<br />

especially in the regions characterized<br />

by periodical rainfall defi cits. All <strong>of</strong><br />

this with connection <strong>of</strong> other factors<br />

can infl uence the development <strong>of</strong> potato<br />

pathogens.<br />

The aim <strong>of</strong> the study was to determine<br />

the infl uence <strong>of</strong> nitrogen fertilization and<br />

sprinkler irrigation on the potato tuber<br />

health <strong>of</strong> ‘Drop’ cultivar, grown on the<br />

light soil.<br />

MATERIAL AND METHODS<br />

The fi eld experiment was carried out<br />

in the years 2001–2003 at Kruszyn<br />

Krajeński near Bydgoszcz on a sandy soil<br />

(Typic Hapludolls). The water reserve to<br />

1 m depth <strong>of</strong> soil at fi eld capacity was<br />

87 mm and the available water 67 mm.<br />

The fi eld experiment was done using the<br />

split-plot method, in a dependent system<br />

with two variable factors (sprinkler<br />

irrigation and nitrogen fertilization) and<br />

three replications. ‘Drop’ early potato<br />

cultivar was taken into consideration. It is<br />

the most frequent cultivated in Kujawy-<br />

-Pomerania region.<br />

The following levels <strong>of</strong> experimental<br />

factors were used:<br />

– water: O – without sprinkler<br />

irrigation and W – sprinkler irrigation<br />

according to tensiometer,<br />

nitrogen fertilization: N1 – 75 and<br />

N2 – 125 kg N ha –1 , respectively.<br />

The plot area for harvest was 15 m 2 .<br />

The mineral fertilization was applied<br />

at following doses: 80 kg P2O5 ha –1<br />

(superphosphate) and 140 kg K2O ha –1<br />

–<br />

(potash salt). Fertilization was used presowing<br />

in early spring.<br />

Chemical protection against potato<br />

late blight, colorado potato beetle was<br />

conducted in particular years <strong>of</strong> the<br />

study. Potato tubers were analyzed at<br />

once after harvest from the point <strong>of</strong> view<br />

<strong>of</strong> occurrence <strong>of</strong> common scab, black<br />

scurf, potato late blight, potato-tuber dryrot<br />

and potato-tuber s<strong>of</strong>t-rot symptoms.<br />

Estimation <strong>of</strong> degree <strong>of</strong> infestation was<br />

carried out on 50 tubers taken at random<br />

from the each plot. 9-degree scale was<br />

used (0–8°), where: 0° means lack <strong>of</strong><br />

infestation symptoms (sound tubers) and<br />

8° means over 50% <strong>of</strong> a tuber surface<br />

with symptoms <strong>of</strong> common scab or<br />

black scurf. In case <strong>of</strong> other diseases<br />

a percentage <strong>of</strong> tubers with symptoms<br />

<strong>of</strong> infestation was estimated. Infection<br />

degrees were transformed into infection<br />

indexes (II) according to Townsend and<br />

Heuberger formula [17]. Obtained data<br />

were statistically analyzed using analysis<br />

<strong>of</strong> variance. Mean values were verifi ed<br />

with Tukey’s test.<br />

RESULTS AND DISCUSSION<br />

In all <strong>of</strong> the study years, symptoms<br />

<strong>of</strong> infestation by Streptomyces sp. and<br />

Rhizoctonia solani, occurred on potato<br />

tubers most <strong>of</strong>ten. Other pathogens were<br />

noted sporadically and they amounted<br />

less than 1% tubers with disease<br />

symptoms.


Signifi cant infl uence <strong>of</strong> sprinkler<br />

irrigation on the occurrence <strong>of</strong> common<br />

scab symptoms on tubers was observed<br />

(Tab. 1). Tubers from irrigated plots<br />

were signifi cantly higher infected<br />

by Streptomyces sp. every year. The<br />

strongest symptoms <strong>of</strong> infestation<br />

occurred in 2001, on plots fertilized with<br />

the higher nitrogen dose. The lowest<br />

infestation by this pathogen occurred in<br />

exceptional dry year 2003 (Tab. 2). In this<br />

year the infection index on irrigated plots<br />

was lower than 24,5%. Similar results<br />

obtained Sadowski et al. [10], [11].<br />

They observed a decrease <strong>of</strong> common<br />

scab symptoms occurrence on the very<br />

light soils, in years characterized by<br />

small amounts <strong>of</strong> rainfall. In such the<br />

Infl uence <strong>of</strong> sprinkling irrigation and nitrogen... 77<br />

conditions, irrigation was favourable<br />

to the development <strong>of</strong> Streptomyces sp.<br />

An infestation increase <strong>of</strong> tubers by this<br />

pathogen on irrigated plots, in years with<br />

lower rainfall, noted also Gładysiak and<br />

Czajka [5] as well as Borówczak and<br />

Gładysiak [2].<br />

In years with higher rainfall amounts<br />

they observed a decrease <strong>of</strong> the common<br />

scab occurrence. The fi rst two years<br />

<strong>of</strong> the study (2001 and 2002) were<br />

characterized by higher rainfall amounts,<br />

especially year 2001 (Tab. 2). In spite <strong>of</strong><br />

this, the infection increase <strong>of</strong> tubers by<br />

Streptomyces sp. on irrigated treatments<br />

was obtained. Reason <strong>of</strong> this phenomenon<br />

can be a low rainfall in June in these<br />

years. Amounts <strong>of</strong> rainfall in this month<br />

TABLE 1. Effect <strong>of</strong> nitrogen fertilization and irrigation on cv. ‘Drop’ tubers infection with Streptomyces<br />

sp. (Infection index in %). Kruszyn Krajeński 2001–2003<br />

Years Water variant<br />

Nitrogen fertilization<br />

75 kg·ha<br />

Mean<br />

–1 125 kg·ha –1<br />

Non irrigated<br />

18.7 a1<br />

a<br />

18.5 a<br />

a 18.6 a<br />

2001<br />

Sprinkler irrigation<br />

52.8 a<br />

b<br />

53.3 a<br />

b 53.1 b<br />

Mean 35.8 a 35.9 a<br />

Non irrigated<br />

15.7 a<br />

a<br />

8.7 a<br />

a 12.2 a<br />

2002<br />

Sprinkler irrigation<br />

43.4 a<br />

b<br />

50.1 a<br />

b 46.8 b<br />

Mean 29.6 a 29.4 a<br />

Non irrigated<br />

1.4 a<br />

a<br />

2.5 a<br />

a 1.9 a<br />

2003<br />

Sprinkler irrigation<br />

21.3 a<br />

b<br />

24.5 a<br />

b 22.9 b<br />

Mean 11.3 a 13.5 a<br />

Non irrigated<br />

11.9 a<br />

a<br />

9.9 a<br />

a 10.9 a<br />

2001–2003<br />

Sprinkler irrigation<br />

39.2 a<br />

b<br />

42.6 a<br />

b 40.9 b<br />

Mean 25.6 a 26.3 a<br />

1Mean values followed by the same letter in columns and rows are not signifi cantly different at α = 0.05,<br />

according to Tukey’s test.


78 D. Pańka, R. Rolbiecki, Cz. Rzekanowski<br />

TABLE 2. Rainfall conditions recorded over vegetation period<br />

Period<br />

April May<br />

Rainfall (mm)<br />

June July August Total<br />

1951–2000 26 40 56 70 48 240<br />

2001 45 30 49 106 27 257<br />

2002 13 50 44 108 41 256<br />

2003 18 18 30 106 18 190<br />

2001–2003 25 33 41 107 29 234<br />

were, like in 2003, lower than the manyyear<br />

average. According to Sawicka [13]<br />

potato is the most susceptible to infection<br />

in the period from the beginning <strong>of</strong> tuber<br />

formation to the stage when diameters <strong>of</strong><br />

tubers achieve 1,5–2 cm. Small amounts<br />

<strong>of</strong> rainfalls in this period are favourable to<br />

the development <strong>of</strong> common scab. ‘Drop’<br />

is the very early cultivar, characterized<br />

by a short vegetation period, and<br />

because <strong>of</strong> this its largest susceptibility<br />

to infection occurred in the years,<br />

exactly in the period with low rainfall.<br />

Sprinkler irrigation was then favourable<br />

to the pathogen development. According<br />

to Szutkowska [14], the occurrence <strong>of</strong><br />

common scab is mostly affected by the<br />

soil moisture and the soil temperature in<br />

the period <strong>of</strong> the early growth <strong>of</strong> tubers.<br />

The highest infection was observed when<br />

the soil temperature was about 21°C,<br />

and its moisture around 6%. Favourable<br />

arrangement <strong>of</strong> these factors in the years<br />

2001 and 2002 in the remaining months<br />

<strong>of</strong> vegetation was probably the reason<br />

<strong>of</strong> the stronger infection <strong>of</strong> tubers on<br />

irrigated treatments as compared to the<br />

year 2003.<br />

Signifi cant infl uence <strong>of</strong> the nitrogen<br />

fertilization dose on the common scab<br />

occurrence on tubers was not observed.<br />

Czajka et al. [4] observed an increase<br />

<strong>of</strong> common scab infection between<br />

treatments with doses 0 and 80 kg N ha –1 .<br />

Doses which were increased above 80 kg<br />

N ha –1 had no larger effect. In the own<br />

experiments the occurrence <strong>of</strong> common<br />

scab was also on a similar level in case<br />

<strong>of</strong> both the doses tested.<br />

Signifi cant infl uence <strong>of</strong> sprinkling<br />

irrigation on infection <strong>of</strong> tubers by<br />

Rhizoctonia solani was observed<br />

only in 2003 (Tab. 3). This year was<br />

characterized by the lowest amount <strong>of</strong><br />

rainfall during the vegetation period<br />

<strong>of</strong> potato. Sprinkler irrigation in<br />

such the condition was favourable to<br />

the development <strong>of</strong> the pathogen as<br />

compared to control treatments (without<br />

irrigation). According to Weber [16],<br />

the high moisture <strong>of</strong> soil is favourable<br />

to sclerotia formation on tubers. This<br />

dependence was observed also in our<br />

earlier investigations [8]. Similar results<br />

were obtained also by Sadowski et al.<br />

[12]. In the remaining years <strong>of</strong> the study,<br />

with higher rainfall during the period <strong>of</strong><br />

the potato growth, no differences in black<br />

scurf occurrence between irrigation and<br />

control treatments were observed.<br />

A signifi cant effect <strong>of</strong> the nitrogen<br />

fertilization dose on black scurf <strong>of</strong>


potatoes was not observed, too. In<br />

investigation <strong>of</strong> Czajka et al. [4] the<br />

signifi cantly highest level <strong>of</strong> black scurf<br />

was noted on treatment with 80 kg<br />

N ha –1 , and the signifi cantly lowest level<br />

<strong>of</strong> black scurf <strong>of</strong> potatoes – on treatments<br />

with 0 and 160 kg N ha –1 , in the years<br />

with average amount <strong>of</strong> rainfall. Higher<br />

nitrogen fertilization decreased the<br />

pathogen occurrence in warm and dry<br />

years.<br />

CONCLUSIONS<br />

On the basis <strong>of</strong> the investigation results<br />

it was found that sprinkler irrigation had<br />

a signifi cant infl uence on the occurrence<br />

<strong>of</strong> common scab symptoms. Stronger<br />

infestation was noted on irrigated<br />

treatments.<br />

Infl uence <strong>of</strong> sprinkling irrigation and nitrogen... 79<br />

TABLE 3. Effect <strong>of</strong> nitrogen fertilization and irrigation on cv. ‘Drop’ tubers infection with Rhizoctonia<br />

solani (Infection index in %). Kruszyn Krajeński 2001–2003<br />

Years Water variant<br />

2001<br />

2002<br />

2003<br />

2001–2003<br />

Nitrogen fertilization<br />

75 kg·ha –1<br />

125 kg·ha –1<br />

A strong infl uence <strong>of</strong> the rainfall<br />

course in the vegetation period <strong>of</strong> the<br />

potato on the infestation <strong>of</strong> tubers by<br />

Streptomyces sp. was observed. An<br />

infl uence <strong>of</strong> nitrogen fertilization on<br />

the occurrence <strong>of</strong> common scab and<br />

black scurf symptoms was not found.<br />

The cultivar tested was characterized<br />

by a higher resistance to infestation by<br />

Rhizoctonia solani than Streptomyces<br />

sp.<br />

REFERENCES<br />

Mean<br />

Non irrigated 21.81 24.2 23.0<br />

Sprinkler irrigation 20.1 20.8 20.5<br />

Mean 21.0 22.5<br />

Non irrigated 13.0 13.7 13.4<br />

Sprinkler irrigation 15.8 18.4 17.1<br />

Mean 14.4 16.1<br />

Non irrigated<br />

12.0 a<br />

a<br />

10.9 a<br />

a 11.5 a<br />

Sprinkler irrigation<br />

20.6 a<br />

b<br />

25.2 a<br />

b 22.9 b<br />

Mean 16.3 a 18.1 a<br />

Non irrigated 15.6 16.3 16.0<br />

Sprinkler irrigation 18.9 21.5 20.2<br />

Mean 17.2 18.9<br />

1 Mean values without letters or followed by the same letter in columns and rows are not signifi cantly<br />

different at α = 0.05, according to Tukey’s test.<br />

1. BOLIGŁOWA E., ŁABZA T., GLEŃ K.,<br />

PUŁA J. 1999: Infection <strong>of</strong> potato tubers<br />

by storage diseases depending on organic<br />

fertilization. Progres in Plant Protection,<br />

Vol. 39 (2): 898–901.<br />

2. BORÓWCZAK F., GŁADYSIAK S.<br />

1999: Disease infestation <strong>of</strong> potato tubers


80 D. Pańka, R. Rolbiecki, Cz. Rzekanowski<br />

depending on irrigation and cultivation<br />

system. Progress in Plant Protection/<br />

Postępy w Ochronie Roślin, Vol. 39 (2):<br />

786–788.<br />

3. CZAJKA W. 1988: Badania nad<br />

występowaniem ważniejszych<br />

bakteryjnych i grzybowych chorób<br />

ziemniaka na tle wybranych czynników<br />

agrotechnicznych oraz zabiegów<br />

chemicznych. Acta Acad. Agricult.,<br />

Tech. Olst. Agricultura Supplement, C<br />

44: 1–58.<br />

4. CZAJKA W., CWALINA B., CZAJKA<br />

M., FABISIEWICZ M. 1999: Porażenie<br />

bulw ziemniaka patogenami w zależności<br />

od nawożenia mineralnego. Progress in<br />

Plant Protection/ Postępy w Ochronie<br />

Roślin, 39 (2): 852–855.<br />

5. GŁADYSIAK S., CZAJKA M. 1996:<br />

Sprinkling infl uence on potato cultivars<br />

infestation by diseases. Nowe Kierunki<br />

w Fitopatologii, Materiały z Sympozjum,<br />

Kraków: 217–221.<br />

6. JABŁOŃSKI K., CZERKO Z. 1995: Zbiór<br />

i przechowywanie ziemniaków. Fundacja<br />

Rozwój SGGW, Warszawa: 62–69.<br />

7. MATKOWSKI K., PROŚBA-BIAŁCZYK<br />

U., PLĄSKOWSKA E. 2002: Infl uence<br />

<strong>of</strong> cultivar mixture <strong>of</strong> potato and chemical<br />

control against Phytophthora infestans<br />

(Mont.) De Bary on the health status <strong>of</strong><br />

tubers. Advances <strong>of</strong> Agricultural Sciences<br />

Problem Issues, 489: 261–268.<br />

8. PAŃKA D., PIŃSKA M. 2004: Infl uence<br />

<strong>of</strong> potassium fertilization on health status<br />

<strong>of</strong> Barycz and Triada potato cultivars.<br />

Prace Komisji Nauk Rolniczych i Biologicznych,<br />

BTN, 39, Seria B, 52: 261–269.<br />

9. RUDKIEWICZ F., SIKORSKI L.,<br />

ŚLĄZAK I. 1983: Wpływ rodzaju gleby,<br />

nawożenia i zwalczania Phytophthora<br />

infestans na rozwój niektórych chorób na<br />

roślinach i bulwach ziemniaka. Biul. Inst.<br />

Ziemn., 30: 157–170.<br />

10. SADOWSKI CZ., GRABARCZYK S.,<br />

RZEKANOWSKI CZ. 1988: Wpływ<br />

nawadniania na występowanie Streptomyces<br />

scabies (Taxter) i Rhizoctonia solani Kühn<br />

na bulwach ziemniaków uprawianych<br />

na glebie bardzo lekkiej. Acta Acad.<br />

Agricult. Techn. Olst., Agricultura 47:<br />

45–54.<br />

11. SADOWSKI CZ., PESZEK J.,<br />

RZEKANOWSKI CZ., SOBKOWIAK<br />

S. 1996: Effect <strong>of</strong> irrigation and<br />

different nitrogen fertilization rates on<br />

the occurrence <strong>of</strong> Streptomyces scabies<br />

(Taxter) on potato cultivated on very<br />

light soil. Plant Breed. and Seed Sci. 40,<br />

No. 1–2: 45–49.<br />

12. SADOWSKI CZ., KORPAL W., LENC<br />

L., KAWALEC A. 2003: Health status <strong>of</strong><br />

tubers <strong>of</strong> potato cultivated under organic<br />

and integrated conditions. In: Obieg<br />

Pierwiastków w Przyrodzie, Gworek, B.<br />

and Misiak, J. (eds). Monografi a tom II:<br />

682–686.<br />

13. SAWICKA B. 1995: The infl uence <strong>of</strong><br />

selected elements <strong>of</strong> meteorological<br />

conditions on potato tubers with common<br />

scab. Zesz. Probl. Post. Nauk Roln. 419:<br />

89–93.<br />

14. SZUTKOWSKA M. 1999: Czy można<br />

ograniczyć porażenie bulw parchem<br />

zwykłym. Ziemn. Pol. 3: 5–9.<br />

15. ŚNIEG L. 1992: Wpływ nawadniania<br />

i nawożenia azotem na występowanie<br />

niektórych chorób bulw ziemniaka i ich<br />

odporność na uszkodzenia mechaniczne.<br />

Fragmenta Agronomica, 3/92: 49–57.<br />

16. WEBER Z. 1976: Wpływ przedplonu<br />

i innych czynników na występowanie<br />

rizoktoniozy ziemniaka (Rhizoctonia<br />

solani Kuhn). Rocz. Nauk Roln., Ser. E,<br />

2: 45–65.<br />

17. WENZEL H. 1948: Zur Erfassung des<br />

Schadenausmasses in fl anzenschutzversuchen.<br />

Pfl anzenschutzberichte 15:<br />

81–84.<br />

Streszczenie: Wpływ deszczowania i nawożenia<br />

azotowego na zdrowotność ziemniaka uprawianego<br />

na glebie bardzo lekkiej. Ziemniak jest<br />

bardzo często atakowany przez liczne patogeny,<br />

mogące powodować znaczne straty plonu. Do<br />

najgroźniejszych chorób należą: Phytophthora<br />

infestans, Rhizoctonia solani, Streptomyces sp.,<br />

Erwinia carotovora subsp. carotovora i Fusarium


spp. Ich rozwój, a tym samym szkodliwość, zależy<br />

od wielu czynników. W największym stopniu<br />

na przebieg procesu chorobowego wpływają<br />

opady, temperatura, dostępność składników pokarmowych<br />

i stosowane zabiegi pielęgnacyjne.<br />

Celem przeprowadzonych badań było określenie<br />

wpływu nawadniania i zróżnicowanego nawożenia<br />

azotowego na porażenie bulw ziemniaka<br />

przez najgroźniejsze patogeny. Doświadczenie<br />

z uprawą ziemniaka odmiany ‘Drop’ wykonano<br />

w latach 2001–2003 jako dwuczynnikowe, na<br />

glebie lekkiej, należącej do kompleksu żytniego,<br />

w trzech powtórzeniach. Pierwszym czynnikiem<br />

było nawadnianie deszczowniane stosowane<br />

w zależności od potrzeb roślin oraz występujących<br />

niedostatków wody, a drugim nawożenie azotowe<br />

na poziomie 75 i 125 kg N ha –1 . Bezpośrednio po<br />

zbiorach analizowano bulwy pod kątem występowania<br />

objawów parcha zwykłego, rizoktoniozy,<br />

zarazy oraz suchej i mokrej zgnilizny.<br />

W doświadczeniu zaobserwowano w kolejnych<br />

latach trwania badań duże nasilenie występowania<br />

na bulwach parcha zwykłego i rizoktoniozy.<br />

Deszczowanie powodowało wzrost porażenia<br />

bulw przez S. scabies i spadek zanieczyszczenia<br />

bulw sklerotami R. solani. Stopień porażenia<br />

bulw różnicowało także nawożenie azotowe.<br />

Pozostałe choroby notowano sporadycznie, a ich<br />

nasilenie zależało od przebiegu warunków atmosferycznych<br />

w poszczególnych latach trwania<br />

eksperymentu.<br />

Infl uence <strong>of</strong> sprinkling irrigation and nitrogen... 81<br />

MS. received November 2006<br />

Authors’ addresses:<br />

Dariusz Pańka<br />

Department <strong>of</strong> Phytopathology,<br />

<strong>University</strong> <strong>of</strong> Technology and Agriculture,<br />

Bydgoszcz, Poland<br />

Kordeckiego 20, 85-225 Bydgoszcz, Poland<br />

e-mail: panka@atr.bydgoszcz.pl<br />

Roman Rolbiecki<br />

Department <strong>of</strong> <strong>Land</strong> <strong>Reclam</strong>ation<br />

and Agrometeorology,<br />

<strong>University</strong> <strong>of</strong> Technology and Agriculture,<br />

Bydgoszcz, Poland<br />

Bernardyńska 6, 85-029 Bydgoszcz, Poland<br />

e-mail: rolbr@atr.bydgoszcz.pl<br />

Czesław Rzekanowski<br />

Department <strong>of</strong> <strong>Land</strong> <strong>Reclam</strong>ation<br />

and Agrometeorology,<br />

<strong>University</strong> <strong>of</strong> Technology and Agriculture,<br />

Bydgoszcz, Poland<br />

Bernardyńska 6, 85-029 Bydgoszcz, Poland<br />

e-mail: rzekan@atr.bydgoszcz.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 83–92<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Heat balance and climatic water balance in vegetation period<br />

<strong>of</strong> spring wheat<br />

ELŻBIETA MUSIAŁ 1, JOANNA BUBNOWSKA 1 , EDWARD GĄSIOREK 1 ,<br />

LESZEK ŁABĘDZKI2 ,<br />

1<br />

Agricultural <strong>University</strong> <strong>of</strong> Wrocław, Departament <strong>of</strong> Mathematics<br />

2 IMUZ – Bydgoszcz<br />

Abstract: Heat balance and climatic water<br />

balance in vegetation period <strong>of</strong> spring wheat. This<br />

paper characterizes the changes <strong>of</strong> heat and climatic<br />

water balance structure during the growing season<br />

<strong>of</strong> spring wheat in four observatories: Wrocław-<br />

Swojec 1964–2000, Bydgoszcz 1946–2004,<br />

Gorzów Wielkopolski 1970–1995 and Łódź 1954–<br />

–1995. Study <strong>of</strong> changes and trends contains the<br />

following elements <strong>of</strong> heat balance: net radiation,<br />

latent heat fl ux,sensible heat fl ux, soil heat fl ux<br />

and their contribution in net radiation. Climatic<br />

water balance is defi ned as a difference between<br />

precipitation and potential evapotranspiration<br />

reckoned by the Penmann method.<br />

Key words: heat balance, spring wheat, sensible<br />

heat fl ux, latent heat fl ux, climatic water balance.<br />

INTRODUCTION<br />

Energy and water relations in different<br />

ecosystems are best described by water<br />

and heat balance structure. Heat and<br />

water balance are connected through<br />

a streamvapour, that transports a huge<br />

quantity <strong>of</strong> energy to the atmosphere.<br />

Because <strong>of</strong> it any change in water balance<br />

infl uences heat balance and vice versa.<br />

Climate changes with their<br />

consequences are connected with heat<br />

exchange between active surface and<br />

atmosphere. Therefore, searching for<br />

climate variability concentrates on<br />

studying heat and water balance <strong>of</strong><br />

different ecosystems. Different surfaces<br />

transform this energy in a particular way<br />

[Bubnowska, Gąsiorek, Łabędzki, Musiał<br />

2005], [Bubnowska, Gąsiorek, Łabędzki,<br />

Musiał, Rojek 2005], [Kędziora, Olejnik,<br />

Kapuściński 1989], [Kapuściński 2000],<br />

[Olejnik 1996]. The knowledge <strong>of</strong> heat<br />

balance for various kinds <strong>of</strong> surface<br />

allows characterizing changes in fl ux<br />

distribution.<br />

METHODS<br />

The calculation <strong>of</strong> components <strong>of</strong> active<br />

surface heat balance was carried aut by<br />

using the BMC model, worked out by<br />

Olejnik and Kędziora [1991, 1999]<br />

The heat balance <strong>of</strong> ecosystems is<br />

described by the following equation<br />

[Kapuściński 2000; Kędziora 1989]:<br />

Rn + LE + H + G = 0<br />

where:<br />

Rn – net radiation [Wm –2 ]<br />

G – soil heat fl ux [Wm –2 ]<br />

H – sensible heat fl ux [Wm –2 ]<br />

LE – latent heat fl ux [Wm –2 ]<br />

The exact description <strong>of</strong> applied<br />

calculation method could be found in<br />

a previous paper by the same authors<br />

[Musiał 2001; Bubnowska, Gąsiorek


84 E. Musiał et al.<br />

Łabędzki, Musiał, 2005] and in [Bowen<br />

1926], [Karliński, Kędziora 1968],<br />

[Shuttleworth, Wallace 1985].<br />

Water balance in this paper is defi ned<br />

as a difference between precipitation and<br />

potential evapotranspiration reckoned by<br />

Penmann method. Penman showed that<br />

the latent heat fl ux could be expressed as:<br />

Δ<br />

( Rn + G) + Ea<br />

γ<br />

LE =<br />

⎛ Δ ⎞<br />

⎜1+ γ<br />

⎟<br />

⎝ ⎠<br />

where:<br />

E a – ability <strong>of</strong> air evapotranspiration<br />

[Wm –s2 ],<br />

E a = 7,44(1 + 0,54v)d<br />

v – wind speed at 2 m height [ms –1 ],<br />

d – vapour pressure defi cit [hPa],<br />

γ – psychrometric constant<br />

γ = 0,655 [hPaK –1 ],<br />

∆ – mean rate <strong>of</strong> change <strong>of</strong> saturated vapour<br />

pressure with temperature [hPaK –1 ],<br />

LE, Rn, G – like above.<br />

A simple relationship exists between<br />

evapotranspiration ETP expressed in<br />

[mm] and latent heat fl ux LE expressed<br />

in [Wm –2 ]:<br />

LE<br />

ETP = n<br />

28,34<br />

Where n – number <strong>of</strong> days in decade, in<br />

month.<br />

RESULTS<br />

The study was carried out on data<br />

from the following meteorological<br />

observatories: Wrocław-Swojec (1964-<br />

–2000), Bydgoszcz (1946-2003), Łódź<br />

(1954-1995) and Gorzów Wielkopolski<br />

(1975–1995).<br />

The variability <strong>of</strong> heat and water<br />

balance components was analyzed in<br />

given perennials.<br />

HEAT BALANCE IN VEGETATION<br />

PERIOD OF SPRING WHEAT<br />

Mean values <strong>of</strong> net radiation calculated<br />

for vegetation period <strong>of</strong> a spring wheat<br />

(IV–VIII) in ssubsequent years in<br />

Gorzów Wielkopolski fl uctuated between<br />

94 and 112 Wm –2 . The lowest value<br />

was obtained in 1962 when the sum <strong>of</strong><br />

precipitation in vegetation period was<br />

also the lowest. Latent heat fl ux absorbed<br />

from 61 to 68% <strong>of</strong> net radiation, and<br />

sensible heat fl ux – from 24 to 61%. The<br />

soil heat fl ux accounted for around 8% <strong>of</strong><br />

net radiation.<br />

Values <strong>of</strong> heat balance components in<br />

other observatories had similar variability.<br />

Net radiation in Łódź changed from<br />

90W/m 2 in 1960, when the precipitation<br />

was the highest (476.7 mm), to 115 W/m 2<br />

in 1983, when the precipitation was the<br />

lowest (171.7 mm). In Wrocław and<br />

Bydgoszcz net radiation fl uctuated from<br />

89 to 112 [Wm –2 ] and from 89 to 109<br />

[Wm –2 ] respectively. Latent heat fl ux<br />

absorbed from 58% in Bydgoszcz to<br />

69% <strong>of</strong> net radiation in Łódź.<br />

The highest values <strong>of</strong> net radiation<br />

during the growing season were observed<br />

in Łódź and Gorzów Wielkopolski,<br />

whereas in Wrocław and Bydgoszcz the<br />

values <strong>of</strong> Rn were lower.<br />

Latent heat fl ux values were the<br />

highest in Łódź, where net radiation was<br />

the highest. This may be due to the fact<br />

that in Łódź more energy was supplied<br />

and therefore, more <strong>of</strong> it could be used<br />

for evapotranspiration.


Regarding the Figure 3, the following<br />

conclusion could be drawn: in Łódź and<br />

Gorzów Wielkopolski more energy was<br />

transferred to the atmosphere from the<br />

active surface <strong>of</strong> spring wheat than in<br />

Wrocław and Bydgoszcz. In 1982–1995<br />

perennial, common for all observatories,<br />

there was a distinct increasing tendency<br />

Heat balance and climatic water balance... 85<br />

TABLE.1. Components <strong>of</strong> heat balance during the growing season <strong>of</strong> spring wheat (IV–VIII) in<br />

Gorzów Wielkopolski (1970–1995)<br />

Rok Rn -LE -G -H -LE/Rn -H/Rn -G/Rn P<br />

1970 101 66 8 27 0,65 0,27 0,08 215,3<br />

1971 105 64 8 33 0,61 0,31 0,08 256,4<br />

1972 97 62 7 28 0,64 0,29 0,07 306,2<br />

1973 105 66 8 31 0,63 0,30 0,07 273,7<br />

1974 94 59 8 27 0,63 0,29 0,08 330,6<br />

1975 110 71 8 31 0,65 0,28 0,07 233,0<br />

1976 110 72 8 30 0,65 0,28 0,07 172,7<br />

1977 98 65 8 25 0,66 0,26 0,08 460,0<br />

1978 101 64 8 29 0,63 0,29 0,08 279,0<br />

1979 102 65 8 29 0,63 0,29 0,08 225,5<br />

1980 95 59 8 28 0,62 0,30 0,08 320,1<br />

1981 104 63 9 32 0,61 0,31 0,08 306,9<br />

1982 112 70 9 33 0,63 0,30 0,07 153,6<br />

1983 109 71 8 30 0,65 0,28 0,07 214,4<br />

1984 95 60 7 28 0,63 0,29 0,08 353,1<br />

1985 103 65 8 30 0,63 0,29 0,08 229,6<br />

1986 106 68 8 30 0,64 0,28 0,08 255,2<br />

1987 94 62 7 25 0,66 0,27 0,07 365,3<br />

1988 95 59 8 28 0,62 0,30 0,08 259,7<br />

1989 107 70 8 29 0,65 0,27 0,08 190,9<br />

1990 108 66 9 33 0,61 0,31 0,08 285,4<br />

1991 102 69 8 25 0,68 0,24 0,08 221,0<br />

1992 108 72 8 28 0,67 0,26 0,07 170,0<br />

1993 100 64 8 28 0,64 0,28 0,08 268,0<br />

1994 107 71 8 28 0,66 0,26 0,08 259,0<br />

1995 108 69 8 31 0,64 0,29 0,07 320,0<br />

Rn – net radiation [Wm –2 ] , LE – latent heat fl ux [Wm –2 ], G – soil heat fl ux [Wm –2 ], H – sensible heat<br />

fl ux [Wm –2 ], P – sum <strong>of</strong> precipitation in period IV–VIII [mm]<br />

for sensible heat fl ux. Thus, the amount<br />

<strong>of</strong> energy used for heating atmosphere is<br />

growing.<br />

Due to the fact that the values <strong>of</strong> heat<br />

balance components depend on the net<br />

radiation value, it is worthy looking into<br />

contribution <strong>of</strong> each component to net<br />

radiation (Rn).


86 E. Musiał et al.<br />

FIGURE 1. Variation <strong>of</strong> mean ten-days values <strong>of</strong> net radiation (Rn) during the growing season<br />

<strong>of</strong> spring wheat in Wrocław – Swojec, Bydgoszcz, Gorzów Wielkopolski and Łódź<br />

FIGURE 2. Variation <strong>of</strong> mean ten-days values <strong>of</strong> latent heat fl ux (LE) during the growing season<br />

<strong>of</strong> spring wheat in Wrocław – Swojec, Bydgoszcz, Gorzów Wielkopolski and Łódź<br />

FIGURE 3. Variation <strong>of</strong> mean ten-days values <strong>of</strong> sensible heat fl ux (H) during the growing season<br />

<strong>of</strong> spring wheat in Wrocław – Swojec, Bydgoszcz, Gorzów Wielkopolski and Łódź


Looking at the course <strong>of</strong> mean values<br />

<strong>of</strong> latent heat fl ux contribution in net<br />

radiation, distinct decreasing tendency<br />

for this contribution in the last 20 years<br />

is seen. Therefore, less and less energy<br />

is used for evapotranspiration, especially<br />

in Wrocław and Bydgoszcz.<br />

Increasing share <strong>of</strong> sensible heat fl ux<br />

in net radiation in all observatories stress<br />

that more and more energy in all regions<br />

is used for heating atmosphere.<br />

The above mentioned results are<br />

concordant with those by Musiał [Musiał,<br />

Gąsiorek, Rojek 2004], Trepińska[1997],<br />

Heat balance and climatic water balance... 87<br />

FIGURE 4. Variation <strong>of</strong> mean ratios <strong>of</strong> latent heat fl ux and net radiation (LE/Rn) during the growing<br />

season <strong>of</strong> spring wheat in Wrocław – Swojec, Bydgoszcz, Gorzów Wielkopolski and Łódź<br />

FIGURE 5. Variation <strong>of</strong> mean ratio values <strong>of</strong> sensible heat fl ux and net radiation (H/Rn) during the<br />

growing season <strong>of</strong> spring wheat in Wrocław – Swojec, Bydgoszcz, Gorzów Wielkopolski and Łódź<br />

[Ryszkowski Kędziora, 1995] and<br />

[Kożuchowski 2004].<br />

The temperature increase is a<br />

consequence <strong>of</strong> the growing contribution <strong>of</strong><br />

latent heat fl ux to net radiation. Regression<br />

equations in Table 2 confi rm this.<br />

CLIMATIC WATER BALANCE<br />

The net climatic water balance determines<br />

conditions <strong>of</strong> plant vegetation [Bac,<br />

Rojek, 1979, 1982]. This index may be<br />

the source <strong>of</strong> information on climate<br />

change effects.


88 E. Musiał et al.<br />

TABLE 2. Mean parennial air temperature values for periods IV–VIII and IV–IX with regression<br />

equations<br />

Obserwatory<br />

T weg<br />

[°C]<br />

T pc<br />

[°C]<br />

s sr<br />

[°C]<br />

Linear regression equation<br />

Tendency<br />

[°C/10 years]<br />

Bydgoszcz 15.22 15.0 0.92 y = 0.0176x + 14.7 0.18*<br />

Gorzów<br />

14.57 14.4 0.85 y = 0.0477x + 13.9 0.48*<br />

Wielkopolski<br />

Łódź 14.32 14.1 0.88 y = 0.0129x + 14.0 0.13**<br />

Wrocław 14.93 14.7 0.83 y = 0.0347x + 14.3 0.35*<br />

Tweg – mean seasonal yearly air temperature (IV–VIII),<br />

Tpc – mean seasonal, yearly air temperature (IV–IX),<br />

ssr – standard devation <strong>of</strong> temperature<br />

*) – statistically signifi cant for α = 0.05<br />

**) – statistically signifi cant for α = 0.3<br />

FIGURE 6. Variation <strong>of</strong> climatic water balance during the growing season <strong>of</strong> spring wheat (IV–VIII)<br />

in Bydgoszcz (1946–2003)<br />

FIGURE 7. Variation <strong>of</strong> precipitation (P) and climatic water balance (CWB) during the growing season<br />

<strong>of</strong> spring wheat (IV–VIII) in Wrocław (1964–2000)


In Bydgoszcz climatic water balance<br />

was positive in two years during the<br />

period 1946–2004. Those two years<br />

were chracterized by high sums <strong>of</strong><br />

precipitation: 599,1 mm in 1980 and<br />

506,6 mm in 1985.<br />

In years 1980 and 1985 the spring<br />

wheat vegetation period was characterized<br />

by rather low (390,56 and 419,35 mm,<br />

respectively) evapotranspiration values,<br />

whereas mean evapotranspiration value<br />

for years 1946–2004 was 456,5 mm.<br />

Heat balance and climatic water balance... 89<br />

In Wrocław climatic water balance<br />

was positive in 1980 (11,3 mm) and in<br />

1986 (9,2 mm).<br />

During the spring wheat vegetation<br />

period in 1980, the precipitation<br />

value was 438 mm and the potential<br />

evapotranspiration reached the level <strong>of</strong><br />

426,7 mm. The year 1997 is noteworthy<br />

due to the fl ood in Wrocław. During<br />

that spring wheat vegetation period<br />

the precipitation sum (494 mm) was<br />

52% higher than the mean value. In<br />

spite <strong>of</strong> such high precipitation value,<br />

FIGURE 8. Variation <strong>of</strong> precipitation (P) and climatic water balance (CWB) during the growing season<br />

<strong>of</strong> spring wheat (IV–VIII) in Łódź (1954–1995)<br />

FIGURE 9. Variation <strong>of</strong> precipitation (P) and climatic water balance (CWB) during the growing season<br />

<strong>of</strong> spring wheat (IV–VIII) in Gorzów Wielkopolski (1970–1995)


90 E. Musiał et al.<br />

TABLE 3. Evapotranspiration tendencies in 4 examined regions<br />

Obserwatory<br />

P<br />

[mm]<br />

ETP<br />

[mm]<br />

the net climatic water balance in the<br />

1997 growing season remained negative<br />

(–31 mm).<br />

In Łódź, during the 1954–1995<br />

perennial, there were 3 years with<br />

positive net climatic water balance: 1960<br />

(precipitation 477 mm, climatic water<br />

balance 20 mm), 1980 (458 mm and<br />

38,9 mm, respectively) and 1985 (464<br />

mm and 17 mm, respectively). Mean<br />

precipitation sum in the growing season<br />

for spring wheat in Łódź was 312 mm.<br />

In Gorzów Wielkopolski, the climatic<br />

water balance was positive only once and<br />

reached the value <strong>of</strong> 48,2 mm in 1977,<br />

when the precipitation sum in vegetation<br />

period was the highest (460 mm).<br />

All analyzed regions were<br />

characterized by continuous water<br />

shortage in vegetation period. During<br />

the period 1970–1995 the worst water<br />

conditions were observed in Gorzów<br />

Wielkopolski (the highest water shortage<br />

sum – 5474 mm), whereas the best terms<br />

were seen in Wrocław (water shortage<br />

sum <strong>of</strong> 4640 mm was 15% lower than<br />

that in Gorzów). During the wheat spring<br />

growing season the values <strong>of</strong> climatic<br />

water balance were positive only in years<br />

with the highest precipitation sums.<br />

Linear regression equation<br />

CONCLUSIONS<br />

The enlargement <strong>of</strong> negative net climatic<br />

water balance, along with increasing<br />

potential evapotranspiration, confi rms<br />

diminishing atmospheric precipitation.<br />

The increase <strong>of</strong> temperature during<br />

the spring wheat growing season in all<br />

discussed regions is a consequence <strong>of</strong><br />

enlarging sensible heat fl ux, used for<br />

heating atmosphere.<br />

The growing temperature values<br />

enlarge the saturation defi ciency, thus<br />

allowing more water to evapotranspirate<br />

(PET increase). Consequently, growing<br />

precipitation enlarge the negative net<br />

climatic water balance.<br />

The tendencies observed among heat<br />

balance components are concordant with<br />

changes seen among the components <strong>of</strong><br />

climatic water balance.<br />

The research supported by KBN grant<br />

in years 2004–2007.<br />

REFERENCES<br />

Tendency<br />

[°C/10 years]<br />

Bydgoszcz 281 457 y = 0.29x + 443.4 2,9<br />

Gorzów Wielkopolski 266 477 y = 4.91x + 466.7 49,1*<br />

Łódź 312 505 y = 2.0x + 470.6 20**<br />

Wrocław 326 500 y = 2.0x + 468.2 20*<br />

P – mean seasonal, yearly precipitation (IV–VIII)<br />

ETP – mean seasonal, yearly evapotranspiration (IV–VIII),<br />

*) – statistically signifi cant for α = 0.05<br />

**) - statistically signifi cant for α = 0.01<br />

BAC S., ROJEK M. 1979: Klimatyczny<br />

bilans wodny a odpływy w Polsce, Przegl.<br />

Ge<strong>of</strong>i z. 24(3) 293–297.


BAC S., ROJEK M. 1977: Metodyka oceny<br />

stosunków wodnych obszarów rolniczych<br />

na podstawie danych klimatycznych,<br />

Zesz. nauk ART Olszt. Nr 21, 13–24.<br />

BAC S., ROJEK M. 1982: Klimatyczne<br />

bilanse wodne w Polsce [w:] Bac S.<br />

(red.) Agrometeorologiczne podstawy<br />

melioracji wodnych w Polsce. PWRiL<br />

Warszawa.<br />

BOWEN I.S. 1926: The ratio <strong>of</strong> heat losses<br />

by conduction and by evaporation from<br />

any water surface. Phys. Rev., 27, p.<br />

779–787.<br />

BUBNOWSKA J., GĄSIOREK E.,<br />

ŁABĘDZKI L., MUSIAŁ E., ROJEK<br />

M. 2005: Bilans cieplny lasu iglastego<br />

w latach o ekstremalnych opadach i jego<br />

wieloletnie zmiany w rejonie Bydgoszczy<br />

i Wrocławia. Woda-Środowisko-Obszary<br />

Wiejskie t. 5, z. spec. (14) s. 69–82.<br />

BUBNOWSKA J., GĄSIOREK E., ŁA-<br />

BĘDZKI L., MUSIAŁ E. 2005: Struktura<br />

bilansu cieplnego łanów w ekstremalnych<br />

warunkach opadowych na tle<br />

wielolecia. Woda-Środowisko-Obszary<br />

Wiejskie, t. 5 z. 2(15) s. 31–52.<br />

ŁABĘDZKI L., BĄK B. 2004: Standaryzowany<br />

klimatyczny bilans wodny jako<br />

wskaźnik suszy. Acta Agrophys. Vol.<br />

3(1) s. 117–124.<br />

KAPUŚCIŃSKI J. 2000: Struktura bilansu<br />

cieplnego powierzchni czynnej na tle<br />

warunków klimatycznych środkowozachodniej<br />

Polski, Rocz. Nauk. AR Pozn.<br />

Rozpr. Nauk. AR Poznań, 303, s. 250.<br />

KARLIŃSKI M., KĘDZIORA A. 1968:<br />

Rozważania metodyczne przy układaniu<br />

kalendarza przyrody dla województwa<br />

szczecińskiego, Pr. Kom. Nauk Roln.<br />

Kom. Nauk Leśn. PTPN 24, s. 159–175.<br />

KĘDZIORA A. 1999: Podstawy<br />

agrometeorologii, Poznań, PWRiL.<br />

KĘDZIORA A., OLEJNIK J., KAPUŚCIŃ-<br />

SKI J. 1989: Impact <strong>of</strong> landscape structure<br />

on heat and water balance. Ecol.<br />

Intern. Bull. 17 ss. 1–17.<br />

KOŻUCHOWSKI K. 2004: Skala, uwarunkowania<br />

i perspektywy współczesnych<br />

Heat balance and climatic water balance... 91<br />

zmian klimatycznych w Polsce, Łódź,<br />

Biblioteka s. 170.<br />

MUSIAŁ E. 2001: Modelowanie procesu<br />

ewapotranspiracji rzeczywistej i prognozowanie<br />

jego tendencji. Zesz. Nauk. AR<br />

Wroc., nr 412, Rozpr. 182, ss. 116.<br />

MUSIAŁ. E. , GĄSIOREK E., ROJEK M.S.<br />

2004: Zmienność temperatury powietrza<br />

w obserwatorium Wrocław–Swojec w<br />

latach 1964-2001. Acta Agroph. nr 105<br />

Vol. 3(2) s. 333–342.<br />

OLEJNIK J., KĘDZIORA A. 1991: A model<br />

for heat and water balance estimation and<br />

its application to land use and climate<br />

variation., Earth Surface Processes<br />

<strong>Land</strong>forms Vol.16, ss. 601–617.<br />

OLEJNIK J. 1996: Modelowe badania<br />

struktury bilansu cieplnego i wodnego<br />

zlewni w obecnych i przyszłych<br />

warunkach klimatycznych, Rocz. Nauk.<br />

AR Poznań z. 268, ss. 125<br />

RYSZKOWSKI L., KĘDZIORA A. 1995:<br />

Modifi cation <strong>of</strong> the effects <strong>of</strong> global<br />

climate change by plant cover structure<br />

in an agricultural landscape. Geogr. Pol.<br />

Vol. 65, s. 5–34.<br />

RYSZKOWSKI L., KĘDZIORA A. 1993:<br />

Rolnictwo a efekt szklarniowy. Kosmos<br />

42 s. 123–149.<br />

SHUTTLEWORTH W.J., WALLACE J.S.<br />

1985: Evaporation from sparse crops-an<br />

energy combination theory, Quart. J. R.<br />

Met. Soc. 111, pp. 839–895.<br />

TREPIŃSKA J. 1997: Wahania klimatu<br />

w Krakowie (1792–1995). Kraków Inst.<br />

Geogr. UJ, s. 1–204.<br />

Streszczenie: Bilans cieplny i klimatyczny bilans<br />

wodny dla okresu wegetacji pszenicy jarej. Praca<br />

charakteryzuje zmiany struktury bilansu cieplnego<br />

i klimatycznego bilansu wodnego w czasie okresu<br />

wegetacji pszenicy jarej dla czterech stacji:<br />

Wrocław-Swojec 1964–2000, Bydgoszcz 1946–<br />

2004, Gorzów Wielkopolski 1970–1995 i Łódź<br />

1954–1995. W pracy przeanalizowano zmiany<br />

i trendy takich składowych bilansu cieplnego,<br />

jak: saldo promieniowania i strumienie ciepła<br />

jawnego, ciepła utajonego przeznaczonego na<br />

parowanie, ciepła wymienianego z podłożem oraz<br />

ich udział w saldzie promieniowania.


92 E. Musiał et al.<br />

MS. received November 2006<br />

Authors’ addresses:<br />

E. Musiał, J. Bubnowska, E. Gąsiorek<br />

Agricultural <strong>University</strong> <strong>of</strong> Wrocław<br />

Departament <strong>of</strong> Mathematics<br />

ul. Grunwaldzka 53<br />

50 357 Wrocław<br />

Poland (071)3205659<br />

Leszek Łabędzki<br />

ul. Glinki 60<br />

85 174 Bydgoszcz<br />

Poland<br />

musial@ozi.ar.wroc.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 93–100<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Climatic and agricultural water balance for grasslands in Poland<br />

using the Penman-Monteith method<br />

WIESŁAWA KASPERSKA-WOŁOWICZ, LESZEK ŁABĘDZKI<br />

Institute for <strong>Land</strong> <strong>Reclam</strong>ation and Grassland Farming,<br />

Regional Research Centre in Bydgoszcz<br />

Abstract: Climatic and agricultural water<br />

balance for grasslands in Poland using the<br />

Penman-Monteith method. The aim <strong>of</strong> the paper<br />

was to estimate the spatial variability <strong>of</strong> climatic<br />

and agricultural water balance for two-cut<br />

meadows (for two hay yield: 5 and 7 Mg ha-1)<br />

in different agro-climatic regions in Poland. It let<br />

to estimate meadow water needs under different<br />

meteorological conditions.<br />

The climatic water balance is a difference<br />

between precipitation and reference evapotranspiration<br />

calculated according to the Penman-<br />

Monteith formula. The agricultural water balance<br />

is a difference between precipitation and potential<br />

crop evapotranspiration. Potential grassland<br />

evapotranspiration is the result <strong>of</strong> multiplication<br />

crop coeffi cient and reference evapotranspiration<br />

according to the Penman-Monteith formula. The<br />

crop coeffi cient values were calculated on the<br />

basis <strong>of</strong> multiannual lysimeter experiments <strong>of</strong><br />

meadow evapotranspiration.<br />

The analysis was carried out in the growing season<br />

(from April to September) in the years 1970–1995<br />

for 17 meteorological stations located in different<br />

regions <strong>of</strong> Poland. The balances were done for<br />

ten-day periods, months and the whole growing<br />

season.<br />

The climatic water balance indicates the risk<br />

<strong>of</strong> agro-climatic drought. The agricultural water<br />

balance indicates water defi cit and irrigation water<br />

needs <strong>of</strong> two-cut meadows in different regions <strong>of</strong><br />

Poland. The negative values <strong>of</strong> this balance mean<br />

the scarcity <strong>of</strong> water for grasslands. The values<br />

<strong>of</strong> agricultural water balance are shown on the<br />

maps.<br />

Key words: climatic and agricultural water<br />

balance, two-cut meadow.<br />

INTRODUCTION<br />

The estimation <strong>of</strong> drought hazard and<br />

irrigation needs for plants can be estimated<br />

using crop coeffi cients method according<br />

to the Penman-Monteith formula.<br />

This method for calculation reference<br />

evapotranspiration ET o is commonly<br />

recommended and used in the word To<br />

estimate crop water requirements, one<br />

can relate potential evapotranspiration<br />

from the cropped soil with an optimum<br />

water supply under consideration to an<br />

estimated reference evapotranspiration<br />

by means <strong>of</strong> crop coeffi cient [1, 3].<br />

Evaluation <strong>of</strong> crop water demands,<br />

agricultural droughts and irrigation<br />

requirements can be made with the<br />

help <strong>of</strong> climatic water balance and<br />

agricultural water balance. The climatic<br />

water balance can be interpreted as the<br />

indicator <strong>of</strong> climate dryness [7]. The<br />

agricultural water balance indicates<br />

the values <strong>of</strong> irrigation water needs for<br />

plants. These two balances are needed to<br />

the preliminary estimation <strong>of</strong> irrigation<br />

needs.


94 W. Kasperska-Wołowicz, L. Łabędzki<br />

The aim <strong>of</strong> the paper was to estimate<br />

the spatial variability <strong>of</strong> climatic and<br />

agricultural water balance for grasslands<br />

in different agro-climatic regions in<br />

Poland and to show these values on<br />

the maps. These maps let to estimate<br />

water needs for 2-cut meadow with the<br />

different yield in the years with different<br />

meteorological conditions.<br />

METHODS AND MATERIAL<br />

The climatic water balance CWB is the<br />

difference between precipitation sum P<br />

and reference evapotranspiration ETo calculated according to the Penman-<br />

Monteith formula [1, 6]:<br />

CWB = P – ETo (1)<br />

TABLE 1. The crop coeffi cients k c for the Penman-<br />

Monteith equation for 2-cut meadow in Poland<br />

Month<br />

Ten-day<br />

period<br />

k c coeffi cient for hay<br />

yield:<br />

7 Mg⋅ha –1 5 Mg⋅ha –1<br />

IV 1 0.50 0.45<br />

2 0.75 0.70<br />

3 0.95 0.80<br />

V 1 1.00 0.90<br />

2 1.15 1.00<br />

3 1.20 1.10<br />

VI 1 1.30 1.20<br />

2 0.55 0.45<br />

3 0.65 0.55<br />

VII 1 0.80 0.70<br />

2 0.90 0.80<br />

3 1.10 1.00<br />

VIII 1 1.30 1.15<br />

2 1.20 1.10<br />

3 1.35 1.25<br />

IX 1 1.10 1.10<br />

2 1.10 1.10<br />

3 1.10 1.10<br />

The agricultural water balance AWB is<br />

the difference between precipitation sum<br />

P and potential crop evapotranspiration<br />

ETP: AWB = P – ETP (2)<br />

where:<br />

ETP – is evapotranspiration <strong>of</strong> wellwatered<br />

crop calculated from the<br />

formula:<br />

ETP = ETo⋅kc (3)<br />

where:<br />

kc – crop coeffi cient,<br />

ETo – reference evapotranspiration<br />

(mm).<br />

The kc coeffi cients values were<br />

calculated on the basis <strong>of</strong> multiannual<br />

lysimeter experiments and depended on<br />

the hay yield (Tab. 1) [4, 6, 8].<br />

The analysis was carried out in<br />

the growing season (from April to<br />

September) in the years 1970–1995<br />

for 17 meteorological stations. The<br />

chosen stations are situated in different<br />

agroclimatic regions <strong>of</strong> Poland (Tab. 2).<br />

According to Bac, Koźmiński, Rojek<br />

[2] taking into account water conditions<br />

one can distinguish regions: A – dry,<br />

B – moderately wet, C – wet. Taking<br />

into account thermal and solar energy<br />

conditions one can distinguish regions: 1<br />

– hot and sunny, 2 – hot and moderately<br />

sunny, 3 – hot and cloudy, 4 – moderately<br />

hot and sunny, 5 – moderately hot and<br />

moderately sunny, 6 – moderately hot<br />

and cloudy, 8 – cold and moderately<br />

sunny.<br />

The agricultural water balance AWB<br />

was calculated for 2-cut meadows with the<br />

hay yield <strong>of</strong>: 7 Mg⋅ha –1 and 5 Mg⋅ha –1 .<br />

The negative values (–) <strong>of</strong> climate<br />

and agricultural water balance showed


TABLE 2. Meteorological stations and agroclimatic<br />

regions according to Bac [2]<br />

Number <strong>of</strong> Name <strong>of</strong> the Agro-climatic<br />

the station station region<br />

1 Koszalin C8<br />

2 Bielnik B4<br />

3 Biebrza B8<br />

4 Chojnice B8<br />

5 Szczecin A6<br />

6 Frydrychowo A2<br />

7 Poznań A3<br />

8 Warszawa A2<br />

9 Zielona Góra A1<br />

10 Łódź A5<br />

11 Sosnowica A1<br />

12 Wrocław B2<br />

13 Opole B3<br />

14 Częstochowa B6<br />

15 Zamość B5<br />

16 Kraków C5<br />

17 Rzeszów C8<br />

the drought risk and water defi cit for<br />

grasslands irrigation, the positive values<br />

(+) – showed the excess <strong>of</strong> water.<br />

The calculation <strong>of</strong> the balances have<br />

been done for ten-day periods, months<br />

and the whole growing season (from<br />

April to September). The probability<br />

distributions <strong>of</strong> climatic water balance<br />

and agricultural water balance were<br />

determined. It was assumed that the<br />

examined period was classifi ed as wet<br />

at the probability <strong>of</strong> exceedence equal to<br />

25%, mean – 50% and dry – 75%.<br />

RESULTS<br />

Climatic water balance<br />

The climatic water balance CWB is<br />

different in Poland and depends on<br />

Climatic and agricultural water balance... 95<br />

agrometeorological conditions in the<br />

examined regions. The mean multiannual<br />

values <strong>of</strong> this balance (at the p = 50%)<br />

for growing season (April to September)<br />

were negative in all examined stations.<br />

In the north (stations 1–3) and south<br />

(stations 14, 16, 17) parts <strong>of</strong> the country<br />

the values <strong>of</strong> climatic water balance<br />

were negative but higher than –40 mm.<br />

The values <strong>of</strong> CWB less than –100 mm<br />

were in the central Poland, in the regions<br />

represented by the stations numbered<br />

5–10. The lowest values <strong>of</strong> the balance<br />

(less than –150 mm) were in the region<br />

between the Odra and left side <strong>of</strong> Wisła<br />

rivers, especially represented by the<br />

stations 5–7 and 9–10. The highest risk<br />

<strong>of</strong> agro-climatic drought in Poland was<br />

observed on the area from the north-west<br />

to the central part <strong>of</strong> Poland (Fig. 1).<br />

The lowest monthly values <strong>of</strong> CWB<br />

in central Poland were in May, June<br />

and July. It resulted from the monthly<br />

distribution <strong>of</strong> precipitation and reference<br />

evapotranspiration. For instance in<br />

Poznań countryside (station 7), the<br />

multiannual mean monthly sum <strong>of</strong> ET o<br />

reaches the highest values in July (about<br />

100 mm), a little less in June, May and<br />

August (about 80 mm) [5].<br />

The higher values <strong>of</strong> CWB in the<br />

average year were found in the south<br />

(stations 14, 16, 17) part <strong>of</strong> Poland,<br />

the region situated near the Karpaty<br />

mountains and in the north part <strong>of</strong> Poland<br />

– near Bałtyk sea (station 1) and in the<br />

Biebrza river valley (station 3) – in the<br />

north-east part <strong>of</strong> the country.<br />

Agricultural water balance<br />

In the wet growing season (at 25%<br />

probability) agricultural water defi cit<br />

did not occur in the north and south<br />

parts <strong>of</strong> Poland. The negative values <strong>of</strong>


96 W. Kasperska-Wołowicz, L. Łabędzki<br />

FIGURE 1. Mean multiannual precipitation (1) and the climatic water balance (2) in the growing season<br />

(IV–IX) in different regions <strong>of</strong> Poland<br />

agricultural water balance for low and<br />

high yield meadows were observed in<br />

the Warta river basin (stations 6, 7, 10),<br />

in the west part <strong>of</strong> Poland (stations 5,<br />

9) and in the Polesie Lubelskie region<br />

(station 11). It means that even in the wet<br />

year the big area <strong>of</strong> Poland is threaten by<br />

droughts. The highest water defi cit for<br />

meadow was in the Szczecin countryside<br />

(Fig. 2a).<br />

In the mean growing season (at 50%<br />

probability) the values <strong>of</strong> agricultural<br />

water balance were negative for 7<br />

Mg⋅ha –1 hay yield meadow in the whole<br />

area <strong>of</strong> Poland. The high water defi cits<br />

for grasslands (more than 100 mm) were<br />

observed on the area from the northwest<br />

to the central part <strong>of</strong> Poland. The<br />

highest scarcity <strong>of</strong> water (more then 150<br />

mm) was observed in Warta and middledown<br />

Odra river basins. In mean year, in<br />

all regions <strong>of</strong> Poland, water defi cit for 5<br />

Mg⋅ha –1 hay yield meadow was 40–47<br />

mm less than for 7 Mg⋅ha –1 hay yield<br />

meadow (Fig. 2b).<br />

In the dry growing season (at 75%<br />

probability) agricultural water defi cit was<br />

observed in the whole area <strong>of</strong> Poland.<br />

The highest values <strong>of</strong> water defi cit were<br />

in the area between Odra and the left side<br />

<strong>of</strong> Wisła and they exceeded 200 mm for<br />

7 Mg⋅ha –1 yield meadow and 160 mm for<br />

5 Mg⋅ha –1 yield meadow. Water defi cit<br />

for high yield meadow was less than<br />

100 mm only in south part <strong>of</strong> Poland in<br />

Kraków countryside (Fig. 2c).<br />

The values <strong>of</strong> climatic water balance<br />

(CWB) and agricultural water balance<br />

(AWB) for the 7 Mg⋅ha –1 hay yield<br />

meadow did not differ very much in the<br />

whole mean growing season (at 50%<br />

probability). These values differed in<br />

particular months. They depended on<br />

agrometeorological conditions and the<br />

time <strong>of</strong> fi rst and second cut <strong>of</strong> meadow.<br />

The monthly distribution <strong>of</strong> climatic


a<br />

FIGURE 2. Agricultural water balance for 2-cut<br />

meadow at the yield 7 Mg·ha –1 (upper number,<br />

mm) and 5 Mg·ha –1 (lower number, mm) in different<br />

agroclimatic regions <strong>of</strong> Poland in the growing<br />

season (IV–IX) a) wet, b) mean, c) dry<br />

• 01 – number <strong>of</strong> meteorological station, 01 – Koszalin<br />

and agricultural water balance is shown<br />

on the example <strong>of</strong> Wielkopolska region<br />

(dry and hot) – represented by Poznań<br />

agrometeorology station (7) and the<br />

Biebrza river valley (moderately wet and<br />

cold) – represented by station 3. (Fig. 3).<br />

The highest water defi cits for<br />

meadow were in May and September<br />

– the months <strong>of</strong> intensive grass growth.<br />

In Wielkopolska region, in these months,<br />

they exceed 50 mm and in Biebrza river<br />

catchment – 30 mm. In the other months<br />

the values <strong>of</strong> climatic water balance<br />

were higher than values <strong>of</strong> agricultural<br />

b<br />

c<br />

Climatic and agricultural water balance... 97<br />

water balance. In Biebrza region the<br />

values <strong>of</strong> climatic and agricultural water<br />

balance were positive in September. In<br />

every month they were higher than in<br />

Wielkopolska region.<br />

CONCLUSIONS<br />

1.<br />

The climatic water balance CWB is<br />

different in Poland and depends on<br />

agrometeorological conditions. The<br />

highest risk <strong>of</strong> agro-climatic drought<br />

in Poland was observed in the region


98 W. Kasperska-Wołowicz, L. Łabędzki<br />

a<br />

b<br />

FIGURE 3. Mean monthly multiannual climatic water balance (1) and agricultural water balance for<br />

7 Mg·ha –1 yield 2-cut meadow (2) in the growing season (IV–IX) in a) Poznań, b) Biebrza


2.<br />

3.<br />

4.<br />

5.<br />

between the Odra and left side <strong>of</strong><br />

Wisła rivers.<br />

In the wet year the big area <strong>of</strong> Poland<br />

is threaten by droughts. The negative<br />

values <strong>of</strong> agricultural water balance<br />

for low and high yield meadows<br />

were observed in the west, central<br />

and east part <strong>of</strong> Poland.<br />

In the mean year the values <strong>of</strong><br />

agricultural water balance were<br />

negative for 7 Mg⋅ha –1 hay yield<br />

meadow in the whole area <strong>of</strong> Poland.<br />

The highest scarcity <strong>of</strong> water (more<br />

than 150 mm) was observed in Warta<br />

and middle-down Odra river basins.<br />

Water defi cit for 5 Mg⋅ha -1 hay yield<br />

meadow was 40–47 mm less than for<br />

7 Mg⋅ha –1 hay yield meadow.<br />

In dry year meadow water defi cit was<br />

observed in the whole area <strong>of</strong> Poland.<br />

The highest water needs were in the<br />

area between Odra and left side <strong>of</strong><br />

Wisła and they exceeded 200 mm<br />

for 7 Mg⋅ha –1 yield meadow and 160<br />

mm for 5 Mg⋅ha –1 yield meadow.<br />

Water defi cits should be satisfi ed<br />

by effi ciently performing irrigation<br />

systems.<br />

REFERENCES<br />

1. ALLEN R.G., PEREIRA L.S., RAES D. &<br />

SMITH M. 1998: Crop evapotranspiration<br />

– Guidelines for computing crop water<br />

requirements. FAO Irrigation and<br />

drainage no 56, pp. 300.<br />

2. BAC S., KOŹMIŃSKI C., ROJEK M. 1993:<br />

Agrometeorologia. [Agrometeorology]<br />

Warszawa. PWN, pp. 250 (in Polish).<br />

3. FEDDES R.A., LENSELINK K.J. 1994:<br />

Evapotranspiration. ILRI Publication 16.<br />

Drainage Principles and Applications.<br />

Wageningen, p. 145–173.<br />

Climatic and agricultural water balance... 99<br />

4. KACA E., ŁABĘDZKI L., CHRZA-<br />

NOWSKI, S,. CZAPLAK I., KASPER-<br />

SKA-WOŁOWICZ W. 2003: Gospodarowanie<br />

zapasami wody użytecznej<br />

gleb torfowo-murszowych w warunkach<br />

regulowanego odpływu w różnych regionach<br />

agroklimatycznych Polski. Woda,<br />

Środowisko, Obszary Wiejskie. Rozprawy<br />

naukowe i mono-grafi e nr 9, ss.<br />

118. Falenty, Wydaw. IMUZ. [Managing<br />

useful water resources in peat-moorsh<br />

soils at a regulated outfl ow in different<br />

agro-climatic regions <strong>of</strong> Poland. Water-<br />

-Environment-Rural Areas, Treatises &<br />

Monographs 9. Falenty: IMUZ, Poland,<br />

pp 108] (in Polish, summary in English).<br />

5. KASPERSKA-WOŁOWICZ W., ŁA-<br />

BĘDZKI L. 2004: Porównanie ewapotranspiracji<br />

wskaźnikowej według Penmana<br />

i Penmana-Monteitha w różnych<br />

regionach Polski. Woda, Środowisko,<br />

Obszary Wiejskie t. 4 z. 2a (11) s. 123–<br />

–136. [A comparison <strong>of</strong> reference evapotranspiration<br />

according to Penman and<br />

Penman-Monteith in various regions <strong>of</strong><br />

Poland. Water-Environment-Rural Areas<br />

4(2a). Falenty: IMUZ, Poland, p. 123–<br />

136] (in Polish, summary in English).<br />

6. ŁABĘDZKI L. 1997: Potrzeby nawadniania<br />

użytków zielonych – uwarunkowania<br />

przyrodnicze i prognozowanie.<br />

Rozpr. Habil. Falenty: Wydaw. IMUZ ss.<br />

120. [Grasslands water requirements –<br />

nature conditions and forecasting. Falenty:<br />

IMUZ, Poland, pp. 120] (in Polish).<br />

7. ŁYKOWSKI B. 1986: Wskaźnik<br />

suchości klimatu P – E w nowym ujęciu.<br />

Problematyka melioracji w nauczaniu<br />

i badaniach naukowych. Warszawa:<br />

Wydaw. SGGW s. 59–68. [Indicator <strong>of</strong><br />

climate dryness P – E in a new approach.<br />

<strong>Reclam</strong>ation problems in teaching and<br />

research studies. Warszawa: SGGW, p.<br />

59–68] (in Polish, summary in English).<br />

8. ROGUSKI W., SARNACKA S., DRUPKA<br />

S. 1988: Instrukcja wyznaczania potrzeb<br />

i niedoborów wodnych roślin uprawnych<br />

i użytków zielonych. Mat. instruktażowe<br />

nr 66, Falenty: IMUZ ss. 90. [Guidelines


100 W. Kasperska-Wołowicz, L. Łabędzki<br />

for estimating water needs and water<br />

defi cits for cultivated plants and<br />

grasslands. Instruction Materials no 66,<br />

Falenty: IMUZ, pp. 90] (in Polish).<br />

Streszczenie: Klimatyczny i rolniczy bilans wodny<br />

dla użytków zielonych w Polsce z wykorzystaniem<br />

metody Penmana-Monteitha. Celem pracy<br />

była ocena przestrzennego zróżnicowania wodnych<br />

bilansów klimatycznego i rolniczego dla<br />

dwukośnych użytków zielonych (dla plonów 5<br />

i 7 Mg ha –1 ). Autorzy przeprowadzili analizę bilansów<br />

sporządzonych w okresie dekady, miesiąca<br />

oraz wegetacji dla 17 stacji meteorologicznych<br />

w różnych regionach Polski. W przeciętnym okresie<br />

wegetacji IV–IX wartość rolniczego bilansu<br />

wodnego jest ujemna dla plonów w wysokości<br />

7 Mg ha –1 w całym kraju. Największe niedobory<br />

(powyżej 150 mm) obserwuje się w dorzeczu<br />

Warty. Niedobór dla plonów wysokości 5 Mg ha –1<br />

jest o 40–47 mm mniejszy w porównaniu z plonami<br />

użytków zielonych w wysokości 7 Mg ha –1 .<br />

MS. received December 2006<br />

Authors’ address:<br />

Wiesława Kasperska-Wołowicz<br />

Leszek Łabędzki<br />

IMUZ<br />

Glinki 60, 85-174 Bydgoszcz<br />

Poland<br />

e-mail: imuzbyd@by.onet.pl


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 101–110<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Variation <strong>of</strong> climatic water balance and heat balance for various<br />

ecosystems in Wrocław in the years 1964–2000<br />

ELŻBIETA MUSIAŁ, JOANNA BUBNOWSKA, EDWARD GĄSIOREK<br />

Agricultural <strong>University</strong> <strong>of</strong> Wrocław, Department <strong>of</strong> Mathematics<br />

Abstract: Variation <strong>of</strong> climatic water balance and<br />

heat balance for various ecosystems in Wrocław<br />

in the years 1964–2000. The study contains a<br />

description <strong>of</strong> water relations, characterized by<br />

cumulative climatic water balance, in the region<br />

<strong>of</strong> Wrocław-Swojec. Heat relations during the<br />

vegetation period were described by heat balance<br />

<strong>of</strong> various active surfaces. The evaluation <strong>of</strong><br />

climatic water balance variation was based on<br />

monthly sums <strong>of</strong> precipitation and potential<br />

evapotranspiration. The latter was calculated<br />

according to the Penman’s model for the warm<br />

half <strong>of</strong> the year (IV–IX) and according to the<br />

Tichomirow’s and Iwanow’s model for the cold<br />

half <strong>of</strong> the year (X–IX). The values <strong>of</strong> climatic<br />

water balance were assessed for the period from<br />

X to IX in every year, as well as for all years<br />

in common during the period 1964–2000. The<br />

perennial 1964–2000 in Wrocław-Swojec was<br />

characterized by potential evapotranspiration<br />

increase and a decreasing trend in yearly sums <strong>of</strong><br />

atmospheric precipitation. The calculated values<br />

<strong>of</strong> cumulative climatic water balance proved the<br />

deepening water shortage in this area. Due to<br />

aggravating water defi cit in Wrocław latent heat<br />

fl ux decreases and sensible heat fl ux, used for<br />

heating the atmosphere, increases, thus causing<br />

the warming up in this region.<br />

Key words: potential climatic water balance,<br />

potential evapotranspiration, heat balance, latent<br />

heat fl ux, sensible heat fl ux, Bowen’s ratio.<br />

INTRODUCTION<br />

Investigations on variation <strong>of</strong> heat<br />

balance components for various<br />

ecosystems, performed in the Wrocław-<br />

Swojec region, made the authors think<br />

about changes <strong>of</strong> climatic water balance<br />

in this region. The importance <strong>of</strong> climatic<br />

water balance in meteorology is due to<br />

the fact that net climatic water balance<br />

defi nes conditions for plant vegetation,<br />

infl uences changes <strong>of</strong> outfl ow indexes<br />

in river cachments and retention.<br />

The investigation was performed<br />

in years 1964–2000. Every analyzed<br />

year started in October and ended in<br />

September. Creation <strong>of</strong> cumulative<br />

climatic water balance from October<br />

to September gave the possibility to<br />

evaluate water overfl ow or defi cit after<br />

autumn and winter, at the beginning<br />

<strong>of</strong> vegetation period and during this<br />

period until October. Due to the fact that<br />

climatic water balance is connected with<br />

heat balance through the stream vapour,<br />

the values <strong>of</strong> balance components were<br />

evaluated for coniferous forest, spring<br />

wheat and potatoes. The main aim <strong>of</strong><br />

the study was to describe variations <strong>of</strong><br />

water overfl ow and defi cit after autumn<br />

and winter in subsequent years and<br />

consequences <strong>of</strong> water defi cits in heat<br />

balance component values for examined<br />

ecosystems.<br />

METHODS<br />

The term <strong>of</strong> climatic water balance<br />

was fi rst used in Polish literature by<br />

Bac and Rojek in 1970 [Bac, Rojek


102 E. Musiał, J. Bubnowska, E. Gąsiorek<br />

1977, 1979, 1982]. The authors<br />

defi ned climatic water balance as a<br />

difference between precipitation and<br />

indicatory evapotranspiration [Rojek<br />

1994], [Rojek, Wiercioch 1994, 1995].<br />

The name climatic water balance is<br />

mainly connected with net balance<br />

assessed for the warm period (IV–IX).<br />

Contradictory to the above mentioned<br />

investigations, the authors <strong>of</strong> this study<br />

created a term <strong>of</strong> potential climatic water<br />

balance (PCWB). PCWB is defi ned as<br />

a difference between precipitation and<br />

potential evapotranspiration calculated by<br />

Penman, assessed in the warm half <strong>of</strong> the<br />

year (IV–IX). When the cold half <strong>of</strong> the<br />

year (X–III) is taken into account, PCWB<br />

is a difference between precipitation and<br />

potential evapotranspiration calculated<br />

by Iwanow and Tichomirow [Kędziora<br />

1999], [Olejnik, Kędziora 1991].<br />

Penman [Penman 1948, 1950, 1956,<br />

1963] assumed that the density <strong>of</strong> latent<br />

heat fl ux used for evapotranspiration can<br />

be calculated in the following way:<br />

⎡<br />

⎤<br />

LE = Rn G Ea<br />

+<br />

⎢ + + ⎥<br />

⎣<br />

⎦<br />

Rn G Ea<br />

=<br />

γ Δ<br />

( )<br />

Δ γ γ<br />

Δ<br />

( + ) +<br />

γ<br />

=<br />

⎡ Δ ⎤<br />

⎢1<br />

+ ⎥<br />

⎣ γ ⎦<br />

where :<br />

Rn – net radiation [Wm –2 ],<br />

G – soil heat fl ux [Wm –2 ],<br />

H – sensible heat fl ux [Wm –2 ],<br />

LE – latent heat fl ux [Wm –2 ],<br />

Ea – ability <strong>of</strong> air evapotranspiration<br />

[Wm –2 ],<br />

Ea = 7.44(1 + 0.54v)d,<br />

v – wind speed at 2 m height [ms –1 ],<br />

d – vapour pressure defi cit [hPa],<br />

∆ – mean rate <strong>of</strong> change <strong>of</strong> saturated<br />

vapour pressure with temperature<br />

[hPaK –1 ],<br />

γ – psychrometric constant γ = 0.655<br />

[hPaK –1 ].<br />

A simple relationship exists between<br />

potential evapotranspiration ETP<br />

expressed in [mm] and latent heat fl ux LE<br />

expressed in [Wm –2 ]: ETP = nLE/28.34,<br />

where n is a number <strong>of</strong> days in decade,<br />

in month.<br />

Climatic water balance, through<br />

the stream vapour transporting huge<br />

amount <strong>of</strong> energy to the atmosphere,<br />

is connected with active surface heat<br />

balance. The components <strong>of</strong> heat balance<br />

are not independent due to the rule <strong>of</strong><br />

evapotranspiration priority in nature.<br />

Therefore, both defi cit and excess in<br />

water, defi ned by cumulative potential<br />

climatic water balance at the beginning<br />

and during the vegetation period, decide<br />

on values <strong>of</strong> various heat balance streams.<br />

Thus, heat balance should be the next<br />

step <strong>of</strong> investigation. Heat balance <strong>of</strong><br />

any active surface may be expressed by<br />

the following equation:<br />

Rn + LE + H + G = 0<br />

where H – sensible heat fl ux [Wm –2 ],<br />

Rn, LE, G – like above.<br />

Heat balance components for various<br />

ecosystems were calculated according<br />

to the MBC [Kędziora 1999], [Olejnik,<br />

Kędziora 1991].<br />

RESULTS AND DISCUSSION<br />

Seasonality <strong>of</strong> precipitation and potential<br />

evapotranspiration in the perennial<br />

1964–2000 in Wrocław-Swojec is


shown in Figure 1 as sums <strong>of</strong> potential<br />

evapotranspiration and precipitation<br />

in the following months <strong>of</strong> the year. In<br />

our study we assume that one season<br />

is the period from October, when<br />

vegetation period ends, until September.<br />

Characteristics <strong>of</strong> precipitation and<br />

potential evapotranspiration seasonality<br />

is as follows: the highest sums <strong>of</strong><br />

atmospheric precipitation and potential<br />

evapotranspiration in Wrocław-Swojec<br />

during the period 1964–2000 were seen<br />

in June, July and August. Moreover, apart<br />

from January, February, October and<br />

November, atmospheric precipitation was<br />

Variation <strong>of</strong> climatic water balance... 103<br />

lower than potential evapotranspiration.<br />

The analysis <strong>of</strong> mean sums <strong>of</strong> potential<br />

climatic water balance in this perennial<br />

revealed that net PCWB was negative in<br />

March, April, May, June, July, August and<br />

September. This may be due to the fact<br />

that the vegetation period in the above<br />

mentioned perennial was characterized<br />

by continuous water defi cits.<br />

The description <strong>of</strong> 1964–2000<br />

perennial in Wrocław-Swojec by<br />

yearly precipitation and potential<br />

evapotranspiration sums show that the<br />

last two decades <strong>of</strong> the XXth century were<br />

characterized by increasing potential<br />

FIGURE 1. Sums <strong>of</strong> precipitation (P) and potential evapotranspiration (ETP) in Wrocław-Swojec<br />

(1964–2000)<br />

FIGURE 2. Mean monthly sums <strong>of</strong> potential climatic water balance (PCWB) in Wrocław-Swojec<br />

(1964–2000)


104 E. Musiał, J. Bubnowska, E. Gąsiorek<br />

evapotranspiration and diminishing<br />

atmospheric precipitation (Fig. 3).<br />

Precipitation decrease and potential<br />

evapotranspiration increase resulted in<br />

enlarging net potential climatic water<br />

balance during the years 1964–2000<br />

(Fig. 4).<br />

Tendencies <strong>of</strong> yearly changes<br />

in precipitation and potential<br />

evapotranspiration sums as well as<br />

basic statistical characteristics are<br />

shown in Table 1. In the 37-year period<br />

<strong>of</strong> observation in Wrocław-Swojec,<br />

potential evapotranspiration has shown<br />

a growing tendency both during the<br />

whole year and during the period from<br />

X–III. The last two decades <strong>of</strong> the XXth<br />

century revealed quicker increase <strong>of</strong><br />

potential evapotranspiration than in the<br />

earlier period. However, the potential<br />

evapotranspiration rise in the period<br />

X–III was less pronounced than in the<br />

preceding years. Decreasing trends <strong>of</strong><br />

yearly atmospheric precipitation sums<br />

and the sums in the period X–III, suggest,<br />

the aggravating atmospheric precipitation<br />

shortage in the last 20 years.<br />

The next step was the characteristics<br />

<strong>of</strong> the period 1964–2000 in Wrocław-<br />

Swojec, conducted in the perennial for<br />

every season from X to IX separately, by<br />

assessing cumulative potential climatic<br />

water balance. This characteristics<br />

looks as follows: in years 1964–1986<br />

net PCWB, depending on precipitation,<br />

was alternately positive and negative<br />

FIGURE 3. Yearly sums <strong>of</strong> potential evapotranspiration and precipitation in Wrocław-Swojec (1964–<br />

–2000)<br />

FIGURE 4. Yearly sums <strong>of</strong> potential climatic water balance in Wrocław-Swojec (1964–2000)


throughout the period X–IX. It was <strong>of</strong>ten<br />

seen that within the analyzed season net<br />

PCWB was positive until April, which<br />

means that precipitation covered the<br />

needs <strong>of</strong> potential evapotranspiration.<br />

Contrarily, since May net PCWB<br />

became negative, which was the sign<br />

<strong>of</strong> deepening water defi cit. The detailed<br />

analysis starts in the year 1964/1965.<br />

Net potential climatic water balance<br />

(PCWB) was positive for the whole<br />

period from X to IX (precipitation 661<br />

mm). Other seasons with positive net<br />

PCWB were as follows: 1967/1968<br />

(precipitation 706 mm), 1970/1971 with<br />

693.5 mm <strong>of</strong> precipitation and 1976/1977<br />

(precipitation 722.6 mm). In the above<br />

mentioned years precipitation was higher<br />

than the mean value in the perennial<br />

(571 mm). The following seasons had<br />

negative net potential climatic water<br />

balance 1969/1970 with 525.6 mm <strong>of</strong><br />

precipitation, 1972/1973 with 425 mm <strong>of</strong><br />

precipitation, 1973/1974 with 431.4 mm<br />

Variation <strong>of</strong> climatic water balance... 105<br />

TABLE 1. Basic statistical charateristics <strong>of</strong> evapotranspiration and precipitation in Wrocław-Swojec<br />

(1964–2000)<br />

Years<br />

1964–<br />

–2000<br />

1980–<br />

–2000<br />

season<br />

P<br />

(mm)<br />

σ p<br />

Linear regression<br />

equation for<br />

precipitation<br />

Tendency<br />

mm/<br />

/10 year<br />

ETP<br />

(mm)<br />

Linear regression<br />

equation for<br />

evapotranspiration<br />

Tendency<br />

mm/10 year<br />

X–IX 571 92 y = –1.8x+604 –18* 746 y = 4x+670 40** 69<br />

I–XII 570 95 y = –1.9x+606 –19* 745 y = 3,9x+672 39** 73<br />

X–III 200 55 y = –0,5x+210 –5 180 y = 2,8x+128 28** 45<br />

X–IX 550 83 y = –2.3x+580 –23* 777 y = 5,7x+670 57** 73<br />

I–XII 555 104 y = –3.6x+600 –36* 772 y = 6,9x+640 69** 79<br />

X–III 196 52 y = –0,7x+205 –7 204 y = 1,4x+190 14** 38<br />

P – mean precipitation, σ p – standard deviation for P, ETP-mean evapotranspiration<br />

σ ETP – standard deviation for ETP<br />

**) – statistically signifi cant for α = 0.01<br />

*) – statistically signifi cant for α = 0.2<br />

σ ETP<br />

<strong>of</strong> precipitation, 1977/1978 with 599.2<br />

mm <strong>of</strong> precipitation and 1983/1984<br />

with 544.3 mm <strong>of</strong> precipitation. In other<br />

seasons <strong>of</strong> the perennial 1964-1986<br />

potential climatic water balance was<br />

positive until April, whereas after that<br />

period became negative. Since 1986/1987,<br />

when net potential climatic water balance<br />

was positive, in every coming year water<br />

defi cit was growing. Even in 1997, the<br />

year <strong>of</strong> fl ood in Wrocław, precipitation in<br />

July did not manage the water shortage<br />

to vanish. Deepening water defi cits are<br />

clearly seen in the last two decades <strong>of</strong> the<br />

XXth century (Fig. 5a, b, c, d, e, f).<br />

Water defi cit or excess during<br />

vegetation period have signifi cant<br />

infl uence on the values <strong>of</strong> heat balance<br />

components. It follows from the rule<br />

<strong>of</strong> evapotranspiration priority, that if<br />

there is suffi cient amount <strong>of</strong> water in the<br />

substrate, the excess <strong>of</strong> energy is used<br />

for evapotranspiration prior to heating<br />

air and soil. Therefore, this rule connects


106 E. Musiał, J. Bubnowska, E. Gąsiorek<br />

a<br />

b<br />

c<br />

d<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

0<br />

-100<br />

-200<br />

-300<br />

-400<br />

-500<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

1986/1987<br />

X X-XI X-XII X-I X-II X-III X-IV X-V X-VI X-VII X-VIII X-IX<br />

1987/1988<br />

X X-XI X-XII X-I X-II X-III X-IV X-V X-VI X-VII X-VIII X-IX<br />

1988/1989<br />

X X-XI X-XII X-I X-II X-III X-IV X-V X-VI X-VII X-VIII X-IX<br />

1996/1997<br />

X X-XI X-XII X-I X-II X-III X-IV X-V X-VI X-VII X-VIII X-IX


e<br />

f<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

-250<br />

-300<br />

climatic water balance and heat balance.<br />

Thus, in the following investigations<br />

heat balance components and their<br />

contribution in net radiation were<br />

calculated for ecosystems <strong>of</strong> coniferous<br />

forest, potatoes and spring wheat (Fig.<br />

6, 7, 8). The consequences <strong>of</strong> deepening<br />

water defi cits in Wrocław-Swojec during<br />

the last 20 years are as follows :<br />

1. Decreasing latent heat fl ux used for<br />

evapotranspiration;<br />

2. Slow increase <strong>of</strong> sensible heat fl ux<br />

used for heating atmosphere.<br />

Increasing values <strong>of</strong> Bowen’s ratio<br />

(H/LE) [Bowen 1926] for coniferous<br />

forest, potatoes and spring wheat prove<br />

sensible heat fl ux enlargement in the last<br />

20 years (Fig. 9). The indicated above<br />

tendencies suggest the climate warming<br />

up in this area.<br />

1997/1998<br />

Variation <strong>of</strong> climatic water balance... 107<br />

X X-XI X-XII X-I X-II X-III X-IV X-V X-VI X-VII X-VIII X-IX<br />

1999/2000<br />

X X-XI X-XII X-I X-II X-III X-IV X-V X-VI X-VII X-VIII X-IX<br />

FIGURE 5. Changes <strong>of</strong> potential climatic water balance (PCWB) in Wrocław-Swojec for the period<br />

X–IX in years 1986–2000<br />

CONCLUSIONS<br />

1.<br />

2.<br />

3.<br />

The 1964–2000 perennial in Wrocław-<br />

-Swojec is characterized by increased<br />

yearly sums <strong>of</strong> potential<br />

evapotranspiration and decreasing<br />

trend in yearly precipitation sums.<br />

The analysis <strong>of</strong> a yearly course <strong>of</strong><br />

potential cumulative climatic water<br />

balance in the season from October<br />

to September revealed growing<br />

water defi cits in this region, more<br />

evident in the last decades <strong>of</strong> the<br />

XXth century.<br />

Growing water defi cits in this area<br />

are the cause <strong>of</strong> increasing sensible<br />

heat fl ux in the vegetation period<br />

for coniferous forest, spring wheat<br />

and potatoes, as well as decreasing<br />

tendency for latent heat fl ux.


108 E. Musiał, J. Bubnowska, E. Gąsiorek<br />

FIGURE 6. Variation <strong>of</strong> mean ten-days values <strong>of</strong> sensible heat fl ux (H) during the growing season four<br />

coniferous forest, potatoes and spring wheat in Wrocław-Swojec (1964–2000)<br />

FIGURE 7. Variation <strong>of</strong> mean values <strong>of</strong> sensible heat fl ux and net radiation ratio (H/Rn) during<br />

the growing season for coniferous forest, potatoes and spring wheat in Wrocław-Swojec (1964–2000)


Variation <strong>of</strong> climatic water balance... 109<br />

FIGURE 8. Variation <strong>of</strong> mean values <strong>of</strong> latent heat fl ux and net radiation ratio (LE/Rn) during the growing<br />

season for coniferous forest, potatoes and spring wheat in Wrocław-Swojec (1964–2000)<br />

FIGURE 9. Variation <strong>of</strong> mean ten-days values <strong>of</strong> the Bowen’s ratio (H/LE) during the growing season<br />

for coniferous forest, potatoes and spring wheat in Wrocław-Swojec (1964–2000)


110 E. Musiał, J. Bubnowska, E. Gąsiorek<br />

4.<br />

Due to increasing values <strong>of</strong> sensible<br />

heat fl ux used for heating the<br />

atmosphere, the air temperature in<br />

this region rose 0,03 o C per year,<br />

which means warming up in this<br />

area.<br />

REFERENCES<br />

BAC S., ROJEK M. 1977: Metodyka oceny<br />

stosunków wodnych obszarów rolniczych<br />

na podstawie danych klimatycznych,<br />

Zesz. nauk ART Olszt. Nr 21: 13–24.<br />

BAC S., ROJEK M. 1979: Klimatyczny<br />

bilans wodny a odpływy w Polsce, Przegl.<br />

Ge<strong>of</strong>i z. 24(3): 293–297.<br />

BAC S., ROJEK M. 1982: Klimatyczne<br />

bilanse wodne w Polsce. [w:] Bac S. (red.)<br />

Agroklimatyczne podstawy melioracji<br />

wodnych w Polsce. PWRiL, Warszawa.<br />

BOWEN I.S. 1926: The ratio <strong>of</strong> heat losses<br />

by conduction and by evaporation from<br />

any water surface. Phys. Rev., 27, p.<br />

779–787.<br />

KĘDZIORA A. 1999: Podstawy agrometeorologii,<br />

PWRiL, Poznań.<br />

OLEJNIK J., KĘDZIORA A. 1991: A model<br />

for heat and water balance estimation and<br />

its application to land use and climate<br />

variation., Earth Surface Processes<br />

<strong>Land</strong>forms vol. 16 ss. 601–617.<br />

PENMAN H.L. 1948: Natural evaporation<br />

from open water, bare soil and grass.<br />

London: Proc.Royal Soc. Vol. 193, 120–<br />

146.<br />

PENMAN H.L. 1950: Evaporationover the<br />

BritishIsles, Q.J. Roy. Met. Soc., 76<br />

372–83.<br />

PENMAN H.L. 1956: Evaporation: an<br />

introductory survey, Netherlands J. Agric.<br />

Sci. 4, –29.<br />

PENMAN H.L. 1963: Vegetation and<br />

Hydrology, Tech. Comm. Nr 53, Comm.<br />

Bur. <strong>of</strong> Soils, Harpenden.<br />

ROJEK M.M., WIERCIOCH T. 1995:<br />

Zmienność czasowa i przestrzenna<br />

parowania wskaźnikowego , ewapotranspiracji<br />

aktualnej i niedoborów opadowych<br />

w Polsce nizinnej w okresie 1951–<br />

–1990, ZNAR Nr 268, Monografi e VI.<br />

ROJEK M. 1994: Time variablity <strong>of</strong> climatic<br />

water balances in selected meteorological<br />

stations in Poland. Zesz. Probl. Post.<br />

Nauk Rol., 405, 147–153.<br />

ROJEK M., WIERCIOCH T. 1994: Indicatory<br />

evapotranspiration os summer half-year<br />

in various long-term periods. Zesz. Probl.<br />

Post. Nauk Rol., 405, 155–161.<br />

Streszczenie: Zmienność klimatycznego bilansu<br />

wodnego i bilansu cieplnego różnych ekosystemów<br />

dla Wrocławia w latach 1964–2000. Praca zawiera<br />

charakterystykę składowych bilansu klimatycznego<br />

bilansu wodnego we Wrocławiu w latach 1964–<br />

–2000. W analizowanym okresie obserwuje się<br />

trend wzrostu rocznych sum ewapotranspiracji<br />

potencjalnej oraz spadku rocznych sum opadów<br />

atmosferycznych. W związku ze wzrostem strumienia<br />

ciepła jawnego, ogrzewającego atmosferę<br />

obserwuje się wzrost średniej rocznej temperatury<br />

powietrza o 0,03°C. Ten wzrost temperatury<br />

związany jest ze wzrostem defi cytu wody dla lasu<br />

liściastego, pszenicy jarej i ziemniaków oraz rosnącym<br />

strumieniem ciepła jawnego przeznaczonego<br />

na ogrzanie atmosfery.<br />

MS received December 2006<br />

Authors address:<br />

Elżbieta Musiał, Joanna Bubnowska,<br />

Edward Gąsiorek<br />

Department <strong>of</strong> Mathematics<br />

Agricultural <strong>University</strong> <strong>of</strong> Wrocław<br />

ul. Grunwaldzka 53, PL-50357 Wrocław<br />

Polska<br />

The research supported by KBN grant in<br />

years 2004–2007.


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 111–121<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Investigation for biological nitrogen removal from wastewater using<br />

simultaneous nitrifi cation/denitrifi cation technology<br />

GIEDRÉ VABOLIENÉ<br />

Department <strong>of</strong> Water Supply and Management, Vilnius Gediminas Technical <strong>University</strong>, Lithuania<br />

Abstract: Investigation for biological nitrogen<br />

removal from wastewater using simultaneous<br />

nitrifi cation/denitrifi cation technology. Biological<br />

nitrogen removal from the wastewater is based on<br />

the nitrifi cation and denitrifi cation processes at<br />

the biological treatment plant with the activated<br />

sludge. Different technological schemes can<br />

be used for the above mentioned processes.<br />

“BioBalance” technology as the newest way<br />

<strong>of</strong> nitrogen and phosphorus removal has been<br />

applied at Utena Wastewater Treatment Plant.<br />

“BioBalance Symbio” technology for the nitrogen<br />

removal is based on the active sludge technology<br />

with simultaneous nitrifi cation/denitrifi cation.<br />

The aeration zone and the anoxic zone are in<br />

one tank. The nitrifi cation and denitrifi cation are<br />

carried out during the aeration switching on and<br />

<strong>of</strong>f. Nitrifi cation and denitrifi cation processes<br />

have been estimated during fi ve experiments in<br />

the aeration tanks, when durations <strong>of</strong> aeration<br />

and low aeration were from 120 to 180 min. The<br />

impact <strong>of</strong> aeration regime on biological nitrogen<br />

removal has been estimated during this scientifi c<br />

work.<br />

Key words: biological nitrogen removal,<br />

nitrifi cation, denitrifi cation, nitrate, ammonium<br />

nitrogen, biological active potential (BPA).<br />

INTRODUCTION<br />

Biological nitrogen removal from the<br />

wastewater is based on the nitrifi cation<br />

and denitrifi cation processes at the<br />

biological treatment plant with the<br />

activated sludge (Berţinskienë 1999).<br />

The nitrifi cation is carry out by the<br />

nitrifi cation bacteria, which are divided<br />

into two groups. The fi rst group<br />

bacteria (Nitrosomonas, Nitrosospira,<br />

Nitrosococcus, Nitrosolobus genera)<br />

oxidise the ammonium hydrate to nitrite.<br />

The second group bacteria (Nitrobacteria,<br />

Nitrospira, Nitrococcus genera) oxidise<br />

nitrite into nitrate (Bitton 1994). The<br />

energy is produced during both stages<br />

<strong>of</strong> the nitrifi cation. Nitrifi cation bacteria<br />

consume the energy for CO 2 assimilation.<br />

Thus nitrifi cation bacteria are autotrophic<br />

to the carbon. Nitrifi cation bacteria grow<br />

signifi cantly slower than other bacteria<br />

during the intensive nitrifi cation process<br />

(Droste 1997).<br />

The nitrogen cycle ends by its return<br />

back to the atmosphere in nature i.e. by<br />

denitrifi cation. Denitrifi cation is one <strong>of</strong><br />

anaerobic respiration variation (nitrate<br />

respiration), when NO 3 ions are being<br />

used as a fi nal electrons acceptor for<br />

the oxidation <strong>of</strong> organic substances.<br />

The denitrifi cation is oxygen split from<br />

the nitrate, after that – from nitrite by<br />

denitrifi cation bacteria. The denitifi cation<br />

is being carried out by heterotrophic<br />

bacteria: pseudomonas, spirillium,<br />

tiobacillus, alkaligenes, bacillus. They<br />

use organic pollution, existing in the<br />

wastewater as carbon source. There are<br />

two main stages in the denitrifi cation.<br />

None <strong>of</strong> the stages will take place till<br />

there will be any suffi cient amount <strong>of</strong> the<br />

dissolved oxygen. The fi rst is carrying out


112 G. Vaboliené<br />

nitrate reduction up to nitrite; the second<br />

is reducing nitrite up to nitrogen gas.<br />

During the second stage nitrites change<br />

nitrate as electrons acceptors, and the<br />

nitrogen gas changes nitrite as a product<br />

to fi nish the denitrifi cation reaction.<br />

Different technological schemes,<br />

following the source <strong>of</strong> carbon oxidation<br />

during denitrifi cation processes, can be<br />

used for the above mentioned processes<br />

(Henze et al. 1995). The 1st scheme,<br />

i.e. carbon source – carbon <strong>of</strong> raw<br />

wastewater. The scheme is composed <strong>of</strong><br />

the denitrifi cation tank, nitrifi cation tank,<br />

and secondary clarifi ers. The 2nd scheme,<br />

i.e. carbon sources – additionally added<br />

easily biodegradable organic substances<br />

(methanol, ethanol, etc.). The scheme<br />

is composed <strong>of</strong> the nitrifi cation tank,<br />

denitrifi cation tank, additional aeration<br />

tank, and secondary clarifi ers. The 3rd<br />

scheme, i.e. carbon source – carbon<br />

<strong>of</strong> raw wastewater. According to this<br />

scheme the aeration zone and the anoxic<br />

zone are in one tank. The nitrifi cation<br />

and the denitrifi cation is carry out<br />

during the aeration switching on and <strong>of</strong>f<br />

(Matuzevičius et al. 1998).<br />

Usually schemes <strong>of</strong> the nitrogen<br />

removal are combined with phosphorus<br />

removal schemes. Different new<br />

technologies are used to decrease<br />

phosphorus and nitrogen quantity in<br />

the wastewater. The mostly advanced is<br />

“BioBalance” technology, where nitrogen<br />

is removed following the 3rd nitrogen<br />

removal scheme, and the anaerobic<br />

zone is equipped before the nitrifi cation/<br />

denitrifi cation tank the phosphorus<br />

biological removal. The nitrogen removal<br />

according to “BioBalance Symbio”<br />

technology carried out in a simultaneous<br />

way <strong>of</strong> nitrifi cation and denitrifi cation;<br />

controlled the oxygen supply by NADH<br />

sensor according to sludge activity.<br />

Commonly, there exist co-<br />

-ferments that function as suppliers<br />

<strong>of</strong> hydrogen and electrons and are<br />

nicotinamideadeninedinucleotide NAD +<br />

and its phosphoresced compound<br />

derivative NADP + . Reduced NAD(P)H<br />

form, can be oxidised once more during<br />

the formation <strong>of</strong> ATP. During the<br />

processes <strong>of</strong> metabolism co-ferments<br />

NADH and NADPH are produced in<br />

all microorganisms. NAD(P)H quantity<br />

in the microorganisms produced<br />

depend on their activity. The abovementioned<br />

activity depends on existing<br />

sludge loads, supplied in the form <strong>of</strong><br />

nutritious matters. This means that,<br />

for example, NAD(P)H quantity will<br />

remain stable under the conditions <strong>of</strong><br />

constant quantity <strong>of</strong> nutritious matters<br />

supplied to the active sludge system,<br />

the constant load and sludge activity.<br />

The sludge activity and at the same time<br />

NAD(P)H production increase gradually<br />

at the same time with an increase <strong>of</strong> the<br />

sludge load because <strong>of</strong> a more intensive<br />

supply <strong>of</strong> nutritious matters. Differently,<br />

NAD(P)H production decreases during a<br />

decrease <strong>of</strong> the nutritious matter supply.<br />

During research this was determined<br />

by linear dependences (Norgard et<br />

al. 1996). “BioBalance” measuring<br />

equipment NADH fl uorescensor is<br />

based on the process mentioned above.<br />

The fl uorecsensor fi xes only NADH<br />

that gives information on how much<br />

energy the microorganisms possess. The<br />

information on the energy is defi ned as the<br />

biological active potential (BPA). NADH<br />

fl uorescensor controls denitrifi cation<br />

and nitrifi cation process according to<br />

the sludge activity in a single aeration


tank. Ammonia is oxidised to nitrates by<br />

nitrifying bacteria during the nitrifi cation<br />

phase. The nitrates are reduced to<br />

molecular ni trogen (N 2) by denitrifying<br />

bacteria during the denitrifi ca tion<br />

phase. These processes are carried out<br />

periodically. Organic matter is oxi dised<br />

bacterially during both the nitrifi cation<br />

and denitrifi cation phases, with oxygen<br />

and nitrates, respectively, as the oxidising<br />

agents and phosphorus is absorbable with<br />

special microorganisms.<br />

The aim <strong>of</strong> the work was to evaluate the<br />

impact <strong>of</strong> aeration regime on biological<br />

nitrogen removal from wastewater using<br />

simultaneous nitrifi cation/denitrifi cation<br />

technology.<br />

MATERIALS AND METHODS<br />

Researches have been carrying out<br />

during period (July–November, 2005)<br />

at Utena Wastewater Treatment Plant<br />

in Lithuania. Two aeration tanks have<br />

been used for the biological wastewater<br />

treatment in Utena wastewater treatment<br />

plant. The nitrogen removal according to<br />

“BioBalance Symbio” technology carried<br />

out in a simultaneous way <strong>of</strong> nitrifi cation<br />

and denitrifi cation; controlled the oxygen<br />

supply by NADH sensor according to<br />

sludge activity.<br />

Investigation for biological nitrogen removal... 113<br />

Two aeration tanks worked at the same<br />

time. Wastewater-fl ow after mechanical<br />

treatment was divided into both aeration<br />

tanks simultaneously. However, the<br />

regime <strong>of</strong> aeration in each aeration tank<br />

was different. Aeration can be carried<br />

out in one aeration tank, in the meantime<br />

low aeration can be carried out in the<br />

other aeration tank. The term <strong>of</strong> aeration<br />

and low aeration can be different in both<br />

aeration tanks. Because <strong>of</strong> the abovementioned<br />

reasons, this research’s<br />

results were analysed <strong>of</strong> both aeration<br />

tanks. Low oxygen concentration<br />

0.1–0.5 mg O 2 l –1 has been held until the<br />

denitrifi cation carries out and the higher<br />

oxygen concentration 0.5–1 mg O 2 l –1<br />

has been maintained for the nitrifi cation<br />

processes carry out periodically.<br />

Conditions for the nitrifi cation process<br />

were held from 120 to 180 min, and<br />

after that 120–180 min were spent for<br />

the denitrifi cation. The duration <strong>of</strong> the<br />

nitrifi cation and the denitrifi cation had<br />

been held in fi ve different regimes during<br />

experiments (Tab. 1). The researches<br />

from 2 to 9 occasions in each aeration<br />

tank have been carrying out during<br />

different aeration regime.<br />

The total nitrogen concentration<br />

in wastewater after the mechanical<br />

treatment, ammonium nitrogen and<br />

nitrate concentration in the beginning <strong>of</strong><br />

aeration and by the end <strong>of</strong> aeration rate<br />

TABLE 1. The duration <strong>of</strong> the nitrifi cation and the denitrifi cation during experiments<br />

Number <strong>of</strong> experiment The duration <strong>of</strong> aeration rate, min The duration <strong>of</strong> low aeration rate, min<br />

1 150 150<br />

2 180 150<br />

3<br />

180<br />

120<br />

120<br />

120<br />

4 120 180<br />

5 150 180


114 G. Vaboliené<br />

in the both aeration tanks, total nitrogen<br />

concentration in wastewater after<br />

biological treatment had been measured<br />

during all experiments. The active sludge<br />

concentration and the volatile suspended<br />

solids <strong>of</strong> active sludge in the aeration tank<br />

had been measured. The average fl ow in<br />

the aeration tank had been fi xed. The<br />

effi ciency <strong>of</strong> total nitrogen removal and<br />

the active sludge load in the aeration tank<br />

had been estimated. Total nitrogen had<br />

been estimated adding Kjeldahl nitrogen<br />

to nitrites and nitrates nitrogen. All<br />

analysis was carried out using standard<br />

methods (LST ISO 5815:1989).<br />

RESULTS<br />

The total nitrogen concentration in<br />

wastewater after the mechanical treatment<br />

fl uctuated from 37 to 52 mg/l, average 44<br />

mg/l during fi ve experiments (Fig. 1).<br />

The fi rst experiment carries out 21<br />

day during period (July 19 – August 8).<br />

Conditions for the nitrifi cation carried<br />

Total nitrogen, [mgN/l]<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

out were held 150 min, and 150 min – for<br />

the denitrifi cation. The researches were<br />

carrying out 9 times in the both aeration<br />

tanks. The gathered results proved that<br />

the effi ciency <strong>of</strong> total nitrogen removal<br />

fl uctuated from 87 to 91%, average 88%.<br />

At start <strong>of</strong> experiment, the concentration<br />

<strong>of</strong> ammonium nitrogen in the beginning<br />

<strong>of</strong> aeration rate fl uctuated from 0.84 to 1.4<br />

mg/l, by the end <strong>of</strong> aeration rate – from<br />

0.47 to 0.91 mg/l (Fig. 2). However, the<br />

concentration <strong>of</strong> ammonium nitrogen 1<br />

mg/l was estimated in one aeration tank<br />

by the end <strong>of</strong> aeration rate after 7 day <strong>of</strong><br />

experiment start.<br />

After that, aeration tanks worked at<br />

mentioned above aeration regime yet one<br />

week. Then it was estimated that partial<br />

nitrifi cation was carried out in the both<br />

aeration tanks by the end <strong>of</strong> aeration rate.<br />

The concentration <strong>of</strong> ammonium nitrogen<br />

by the end <strong>of</strong> aeration rate only increased<br />

from 1.4 to 2 mg/l till experiment was<br />

fi nished. Following experimental results<br />

can be seen, that the duration <strong>of</strong> aeration<br />

was not enough. The effi ciency <strong>of</strong> total<br />

1 2 3 4 5 6 7 8 9<br />

aeration and reduced aeration rate 150 min<br />

aeration rate 180 min, reduced aeration rate 150 min<br />

aeration rate 180, 120 min, reduced aeration rate 120 min<br />

aeration rate 120 min, reduced aeration rate 180 min<br />

aeration rate 150 min, reduced aeration rate 180 min<br />

FIGURE 1. Total nitrogen concentration in wastewater after the mechanical treatmen


a<br />

b<br />

N-NH4, N-NO3,[mg/l]<br />

N-NH4, N-NO3[mg/l]<br />

2,5<br />

1,5<br />

0,5<br />

nitrogen removal decreased from 91% at<br />

experiment start to 87% at the experiment<br />

fi nish. The concentration <strong>of</strong> nitrate was<br />

changing in small interval during fi rst<br />

experiment: in the beginning <strong>of</strong> aeration<br />

rate 0.1÷0.6 mg/l, by the end <strong>of</strong> aeration<br />

rate 0.45÷1.2 mg/l (Fig. 2). A low<br />

concentration <strong>of</strong> nitrate in the beginning<br />

<strong>of</strong> aeration rate provided that 150 min.<br />

reduced aeration rate was enough for<br />

complete denitrifi cation carry out.<br />

3<br />

2<br />

1<br />

0<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

Investigation for biological nitrogen removal... 115<br />

1 2 3 4 5 6 7 8 9 10<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

0<br />

1 2 3 4 5 6 7 8 9<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

FIGURE 2. The concentration <strong>of</strong> ammonium nitrogen and nitrate in the beginning and by the end <strong>of</strong><br />

aeration rate at fi rst (a) and second (b) aeration tank when aeration regime: aeration and reduced aeration<br />

rate – 150 min<br />

Consequently results <strong>of</strong> fi rst<br />

experiment indicated the condition<br />

<strong>of</strong> second experiment. The second<br />

experiment carries out 11 day during<br />

period (August 9–19). Conditions<br />

for the nitrifi cation carried out were<br />

held 180 min, and 150 min – for the<br />

denitrifi cation. It was extended duration<br />

<strong>of</strong> aeration for complete nitrifi cation.<br />

The researches were carrying out 8 times<br />

in the both aeration tanks. The obtained<br />

results proved that the effi ciency <strong>of</strong>


116 G. Vaboliené<br />

total nitrogen removal fl uctuated from<br />

83 to 89%, average 85%. During two<br />

days <strong>of</strong> the second experiment the<br />

concentration <strong>of</strong> ammonium nitrogen in<br />

the beginning <strong>of</strong> aeration rate decreased<br />

from 3,1 to 0.8 mg/l (Fig. 3). Process<br />

<strong>of</strong> nitrifi cation carries out completely.<br />

Duration <strong>of</strong> aeration was enough till the<br />

end <strong>of</strong> experiment. The concentration <strong>of</strong><br />

nitrate changed more than during fi rst<br />

experiment. The concentration <strong>of</strong> nitrate<br />

by the end <strong>of</strong> aeration rate exceeded 1<br />

mg/l several time. The effi ciency <strong>of</strong><br />

a<br />

b<br />

N-NH4, N-NO3, [mg/l]<br />

N-NH4, N-NO3, [mg/l]<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

total nitrogen removal decreased from<br />

89% at experiment start to 83% at the<br />

experiment fi nish.<br />

The third experiment carries out<br />

during 7 days period (August 22–28).<br />

Aeration tanks worked in follow aeration<br />

regime: aeration rate – 180 min, reduced<br />

aeration rate – 120 min fi rst 5 day <strong>of</strong><br />

experiment. Later aeration regime<br />

was changed: aeration rate – 120 min,<br />

reduced aeration rate – 120 min. The<br />

researches were carrying out 5 times in<br />

fi rst aeration regime and 2 times in second<br />

1 2 3 4 5 6 7 8<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

1 2 3 4 5 6 7 8<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

FIGURE 3. The concentration <strong>of</strong> ammonium nitrogen and nitrate in the beginning and by the end <strong>of</strong><br />

aeration rate at fi rst (a) and second (b) aeration tank, when aeration regime: aeration rate 180 min, reduced<br />

aeration rate – 150 min


aeration regime in the both aeration<br />

tanks. The gathered results proved that<br />

the effi ciency <strong>of</strong> total nitrogen removal<br />

fl uctuated from 73 to 80%, average 77%.<br />

Though the concentration <strong>of</strong> ammonium<br />

nitrogen in the beginning <strong>of</strong> aeration rate<br />

fl uctuated from 0.13 to 2.2 mg/l, but it<br />

already decreased and fl uctuated from<br />

0.01 to 0.96 mg/l by the end <strong>of</strong> aeration<br />

rate (Fig. 4). However nitrate increased<br />

signally by the end <strong>of</strong> aeration rate. The<br />

concentration <strong>of</strong> nitrate was estimated<br />

from 0.47 to 11 mg/l in the beginning<br />

<strong>of</strong> aeration rate and 1.2÷17 mg/l by<br />

a<br />

N-NH4, N-NO3 , [mg/l]<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Investigation for biological nitrogen removal... 117<br />

the end <strong>of</strong> aeration rate. The reduced<br />

aeration rate was preferred for complete<br />

denitrifi cation, so the effi ciency <strong>of</strong> total<br />

nitrogen removal decreased to 73%.<br />

Then the aeration regime was changed<br />

and aeration tanks worked in other<br />

regime (aeration rate – 120 min, reduced<br />

aeration rate – 120 min) last 2 day <strong>of</strong><br />

experiment for reduction <strong>of</strong> nitrate. Then<br />

aeration rate was changed from 180<br />

min to 120 min concentration <strong>of</strong> nitrate<br />

decreased to 0.75 mg/l in the beginning<br />

and by the end <strong>of</strong> aeration rate during 2<br />

1 2 3 4 5 6 7<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

b<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 2 3 4 5 6 7<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

FIGURE 4. The concentration <strong>of</strong> ammonium nitrogen and nitrate in the beginning and by the end <strong>of</strong><br />

aeration rate at fi rst (a) and second (b) aeration tank, when aeration regime: aeration rate 180, 120 min,<br />

reduced aeration rate – 120 min<br />

N-NH4, N-NO3, [mg/l]


118 G. Vaboliené<br />

day <strong>of</strong> experiment. The effi ciency <strong>of</strong> total<br />

nitrogen removal increased to 73%.<br />

Next experiment was carrying<br />

out interchanging aeration regime.<br />

Aeration rate reduced from 180 min.<br />

to 120 min., and reduced aeration rate<br />

prolonged from 120 min. to 180 min.<br />

for reduction <strong>of</strong> nitrate. The fourth<br />

experiment carries out 7 day during<br />

period (August 29–September 4). The<br />

researches were carrying out 7 times in<br />

the both aeration tanks. The gathered<br />

results proved that the effi ciency <strong>of</strong> total<br />

nitrogen removal fl uctuated from 73 to<br />

a<br />

b<br />

N-NH4, N-NO3, [mg/l]<br />

N-NH4, N-NO3, [mg/l]<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

88%, average 83%. The nitrifi cation<br />

carried out completely fi rst fi ve day<br />

<strong>of</strong> experiment. The concentration <strong>of</strong><br />

ammonium nitrogen fl uctuated from<br />

0.31 to 1.4 mg/l, 0.02–0.7 mg/l in the<br />

beginning and by the end <strong>of</strong> aeration rate<br />

respectively (Fig. 5). However later (two<br />

last day <strong>of</strong> experiment) the concentration<br />

<strong>of</strong> ammonium nitrogen increased in the<br />

beginning and by the end <strong>of</strong> aeration<br />

rate. Only partial nitrifi cation carried out.<br />

Consequently concentration <strong>of</strong> nitrate<br />

decreased progressively and decreased<br />

until 0.5, 0.31 mg/l in the beginning <strong>of</strong><br />

1 2 3 4 5 6 7<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

1 2 3 4 5 6 7<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

FIGURE 5. The concentration <strong>of</strong> ammonium nitrogen and nitrate in the beginning and by the end <strong>of</strong><br />

aeration rate at fi rst (a) and second (b) aeration tank, when aeration regime: aeration rate 120 min, reduced<br />

aeration rate – 180 min


aeration rate at the each aeration tanks<br />

respectively and 0.89 and 0.33 mg/l by the<br />

end <strong>of</strong> aeration rate at the each aeration<br />

tanks respectively during third day <strong>of</strong><br />

experiment. Enough duration <strong>of</strong> reduced<br />

aeration for completely denitrifi cation<br />

had positive impact on effi ciency <strong>of</strong> total<br />

nitrogen removal, which increased to<br />

88% later decreased to 82%.<br />

The fi fth experiment carries out<br />

74 day during period (September 5<br />

–November 18). Conditions for the<br />

nitrifi cation carried out were held 150<br />

a<br />

b<br />

N-NH4, N-NO3, [mg/l]<br />

N-NH4, N-NO3, [mg/l]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3,5<br />

3<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

Investigation for biological nitrogen removal... 119<br />

min, and 180 min – for the denitrifi cation.<br />

The researches were carrying out 7 times<br />

in the both aeration tanks. The gathered<br />

results proved that the effi ciency <strong>of</strong><br />

total nitrogen removal fl uctuated from<br />

80 to 89%, average 85%. Following<br />

concentration <strong>of</strong> ammonium nitrogen<br />

0.44–4.6 mg/l and 0.06÷0.65 mg/l in<br />

the beginning and by the end <strong>of</strong> aeration<br />

rate respectively, nitrifi cation process<br />

carry out completely (Fig. 6). However<br />

concentration <strong>of</strong> nitrates (3.8 mg/l by<br />

the end <strong>of</strong> aeration rate) showed partial<br />

1 2 3 4 5 6 7<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

1 2 3 4 5 6 7<br />

N-NH4 in the beginning <strong>of</strong> aeration rate<br />

N-NO3 in the beginning <strong>of</strong> aeration rate<br />

N-NH4 by the end <strong>of</strong> aeration rate<br />

N-NO3 by the end <strong>of</strong> aeration rate<br />

FIGURE 6. The concentration <strong>of</strong> ammonium nitrogen and nitrate in the beginning and by the end <strong>of</strong><br />

aeration rate at fi rst (a) and second (b) aeration tank, when aeration regime: aeration rate 150 min, reduced<br />

aeration rate – 180 min


120 G. Vaboliené<br />

denitrifi cation process. It is proved that<br />

the duration <strong>of</strong> reduced aeration was not<br />

enough for denitrifi cation. The effi ciency<br />

<strong>of</strong> total nitrogen removal decreased from<br />

89% at experiment start to 80% at the<br />

experiment fi nish.<br />

The effi ciency <strong>of</strong> total nitrogen<br />

removal fl uctuated from 73 to 91%<br />

during fi ve experiment when aeration<br />

tank worked in different aeration regime<br />

(Fig. 7). The total nitrogen concentration<br />

in wastewater after the biological<br />

treatment fl uctuated from 3.9 to 12 mgN/<br />

/l during fi ve experiments.<br />

CONCLUSIONS<br />

1.<br />

2.<br />

Using biological nitrogen removal<br />

technologies, when nitrifi cation<br />

and denitrifi cation are in process<br />

changing aeration intensiveness, it<br />

is very important properly evaluate<br />

aeration and low aeration duration.<br />

When total nitrogen concentrations<br />

<strong>of</strong> mechanically treated wastewater<br />

ranged from 37 till 52 mgN/l, it<br />

will be proper to use two aeration<br />

Efficiency <strong>of</strong> nitrogen removal,%<br />

95<br />

90<br />

85<br />

80<br />

75<br />

3.<br />

4.<br />

regimes: 150 minutes aeration and<br />

150 minutes low aeration rates,<br />

similarly 180 minutes aeration and<br />

150 minutes low aeration rates.<br />

During 120 minutes conditional<br />

short aeration rate and prolonged low<br />

aeration rate, presently ammonium<br />

nitrogen increase, following partial<br />

denitrifi cation outcome. Working in<br />

this regime it is possible to obtain<br />

completed nitrifi cation.<br />

During experimental research it was<br />

obtained, when aeration and low<br />

aeration rates are similar or slightly<br />

different approximately 30 minutes,<br />

nitrogen removal effectiveness is the<br />

biggest.<br />

ACKNOWLEDGEMENT<br />

This research study is dedicated to EC<br />

fi nanced FP6 project MAPO „Enhancing<br />

Research and Development Projects<br />

to fi nd Solutions to Struggle against<br />

various Marine Pollutions”. The author is<br />

involved into deliverable on innovation<br />

roadmap for technologies based on<br />

70<br />

1 2 3 4 5 6 7 8 9<br />

aeration and reduced aeration rate 150 min<br />

aeration rate 180 min, reduced aeration rate 150 min<br />

aeration rate 180, 120 min, reduced aeration rate 120 min<br />

aeration rate 120 min, reduced aeration rate 180 min<br />

aeration rate 150 min, reduced aeration rate 180 min<br />

FIGURE 7. The effi ciency <strong>of</strong> total nitrogen removal when aeration tank worked in different aeration<br />

regime


gaps within current state-<strong>of</strong>-the-art.<br />

I’m gratefully to all Small Medium<br />

Enterprises participated into MAPO<br />

project activities; more Small Medium<br />

Enterprises working into related to<br />

marine pollutions areas are welcome to<br />

join future activities.<br />

REFERENCES<br />

BERŢINSKIENË J. 1999: Water<br />

microbiology. Textbook Vilnius:<br />

Technika, p. 144.<br />

HENZE M., HARREMOES P., JANSEN C.,<br />

ARVIN E. 1995: Wasterwater Treatment.<br />

Biological and Chemical Processes.<br />

Springer-Verlag, p. 383.<br />

BITTON G. 1994: Wastewater microbiology.<br />

Wiley-Liss, New York, p. 456.<br />

DROSTE R. 1997: Theory and practice <strong>of</strong><br />

water and wastewater treatment, p. 954.<br />

MATUZEVIČIUS A., PAULAUSKIENË<br />

Z. 1998: Experimental researches <strong>of</strong><br />

phosphorus and nitrogen consumption<br />

and nitrogen removal from the<br />

wastewater in the biological treatment<br />

plant. 3rd International Conference.<br />

Cities Engineering and Environment,<br />

VGTU, “Technika”, p. 137–142.<br />

NORGARD P., HELMO K., SORENSER E.<br />

1996: Purifi cation process for nitrogen<br />

removal controlled by NADH. Vand og<br />

Jord, Danish, vol 3, p. 126–129.<br />

TSAI M.W., WENZEL M.C., EKAMA G.A.<br />

2003: The effect <strong>of</strong> residual ammonia<br />

concentration under aerobic conditions<br />

on the growth <strong>of</strong> Microthrix parvicella in<br />

biological nutrient removal plants. Water<br />

Research 37, p.p. 3009–3015.<br />

HATZICONTINOU G.J., ANDREADKIS A.<br />

2002: Differences in nitrifi cation potential<br />

between fully aerobic and nitrogen removal<br />

activated sludge systems. Water Science &<br />

Technology. Vol. 46, No 1/2, p. 297–189.<br />

JENICEK P., SVEHLA P., ZABRANSKA J.,<br />

DOHAYOS M. 2004: Factors affecting<br />

nitrogen removal by nitrifi cation/<br />

Investigation for biological nitrogen removal... 121<br />

/denitrifi cation. Water Science &<br />

Technology. Vol. 49, No 5/6, p. 73–79.<br />

Lithuanian Ministry <strong>of</strong> Environment Protection.<br />

1994: Unifi ed methods <strong>of</strong> the wastewater<br />

and surface water quality researches.<br />

Chemical analysis methods. Part I. 224 p.<br />

Lithuanian Ministry <strong>of</strong> Environment<br />

Protection, 2002: LAND 47-1:2002.<br />

(ISO 5815:1989), 17 p.<br />

Lithuanian Ministry <strong>of</strong> Environment<br />

Protection, 2000: LAND 32-2000.10 p.<br />

Lithuanian Ministry <strong>of</strong> Environment<br />

Protection, 2005: LAND 66-2005. 7 p.<br />

Lithuanian Ministry <strong>of</strong> Environment<br />

Protection, 2005: LAND 58:2003. 24 p.<br />

Streszczenie: Badania biologicznego usuwania<br />

azotu ze ścieków za pomocą technologii jednoczesnej<br />

nitryfi kacji i denitryfi kacji. Metoda biologicznego<br />

usuwania azotu ze ścieków oczyszczanych<br />

w komorach osadu czynnego opiera się na<br />

procesach nitryfi kacji i denitryfi kacji. Do wyżej<br />

wymienionych procesów można stosować różne<br />

ciągi technologiczne. Technologia „BioBalance”<br />

zaliczana do najnowszych metod usuwania azotu<br />

i fosforu została wdrożona w oczyszczalni ścieków<br />

w Utenie (Litwa). Technologia „BioBalance<br />

Symbio” do usuwania azotu wykorzystuje metodę<br />

osadu czynnego z jednoczesnym prowadzeniem<br />

procesów nitryfi kacji i denitryfi kacji. Strefy tlenowa<br />

i beztlenowa znajdują się w jednej komorze.<br />

Procesy nitryfi kacji i denitryfi kacji są prowadzone<br />

poprzez naprzemienne włączanie i wyłączanie<br />

napowietrzania komory. W pracy przedstawiono<br />

wyniki badań przebiegu procesów nitryfi kacji<br />

i denitryfi kacji podczas pięciu cykli badań w komorze<br />

napowietrzania w warunkach intensywnego<br />

i wolnego napowietrzania. W pracy oszacowano<br />

wpływ warunków napowietrzania na skuteczność<br />

usuwania biologicznego azotu.<br />

MS. received July 2006<br />

Author’s address:<br />

Giedré Vaboliené<br />

Vilnius Gediminas Technical <strong>University</strong>,<br />

Dept. <strong>of</strong> Water Supply and Management,<br />

Saulëtekio al. 11, AIF, LT-10228, Vilnius-40,<br />

Lithuania.<br />

e-mail: giedre.v@freemail.lt


<strong>Annals</strong> <strong>of</strong> <strong>Warsaw</strong> Agricultural <strong>University</strong> – SGGW<br />

<strong>Land</strong> <strong>Reclam</strong>ation No 37, 2006: 123–128<br />

(Ann. <strong>Warsaw</strong> Agricult. Univ. – SGGW, <strong>Land</strong> <strong>Reclam</strong>. 37, 2006)<br />

Development <strong>of</strong> technologies used in agricultural engineering work<br />

on an example <strong>of</strong> selected stages <strong>of</strong> land consolidation process<br />

URSZULA LITWIN*, JAROSŁAW JANUS*, MARIUSZ ZYGMUNT**<br />

*Department <strong>of</strong> the Geodesical Arrangement <strong>of</strong> Rural Settlements<br />

**Department <strong>of</strong> Geodesy, Agricultural <strong>University</strong> <strong>of</strong> Cracow<br />

Abstract: Development <strong>of</strong> technologies used in<br />

agricultural engineering work on an example <strong>of</strong><br />

selected stages <strong>of</strong> land consolidation process.<br />

The land consolidation process is one <strong>of</strong> the most<br />

time-consuming and complicated agricultural<br />

engineering tasks performed by geodesists. Their<br />

automation and computerisation is not as advanced<br />

as for other types <strong>of</strong> geodetic works. The reason<br />

for that is a limited number <strong>of</strong> works that have<br />

been performed in this range since the mid 1980s,<br />

i.e. during the period <strong>of</strong> intensive IT (Information<br />

Technology) implementation in geodesy. At<br />

present one can observe again the growth in<br />

interest in performance <strong>of</strong> land consolidations<br />

processes. The purpose <strong>of</strong> this elaboration is to<br />

introduce the latest solutions IT applied in land<br />

consolidation process on an example <strong>of</strong> the land<br />

consolidation in Wojków village.<br />

Three characteristic stages <strong>of</strong> the process are<br />

presented herein: creation <strong>of</strong> assessment register<br />

before consolidation, preliminary selection <strong>of</strong> plots<br />

for designed blocks and designing. Proposal for a<br />

method for automation <strong>of</strong> the above-mentioned<br />

activities using a digital map developed by means<br />

<strong>of</strong> Bentley MicroStation s<strong>of</strong>tware, retaining the<br />

requirements imposed by land consolidation<br />

instruction, was discussed.<br />

The above-mentioned stages are illustrated<br />

by examples from the land consolidation carried<br />

out in Wojków village in years 2001–2004. The<br />

work was performed on these premises using the<br />

technology presented herein. It allowed reduction<br />

<strong>of</strong> the time <strong>of</strong> land consolidation process by<br />

approx. 30%.<br />

Key words: spatial structure <strong>of</strong> village, land<br />

consolidation.<br />

INTRODUCTION<br />

The effi cient use <strong>of</strong> rural areas has<br />

become one <strong>of</strong> the key problems in<br />

the age <strong>of</strong> Poland’s membership <strong>of</strong> the<br />

European Union. To use the potential<br />

<strong>of</strong> rural areas effectively, among other<br />

things a signifi cant improvement in the<br />

structure <strong>of</strong> the areas is required. One <strong>of</strong><br />

the problems to be solved is an excessive<br />

dispersion and fragmentation <strong>of</strong> farms<br />

[Urban 1981, Hopfer and Urban 1984,<br />

Harasimowicz 1995]. The stagnation in<br />

performance <strong>of</strong> the land consolidation<br />

process that occurred in the 1980s<br />

has intensifi ed the problem. Only the<br />

increased interest in land consolidation<br />

process and related prospects for<br />

signifi cant growth in the number <strong>of</strong><br />

consolidations resulted in appearance<br />

<strong>of</strong> the fi rst IT tools to automate some <strong>of</strong><br />

the process’s stages [Janus and Zygmunt<br />

2005]. This project describes selected<br />

functionalities <strong>of</strong> the system supporting<br />

modern land consolidation process,<br />

which is the only system in Poland to<br />

treat this process in a comprehensive<br />

manner.


124 U. Litwin, J. Janus, M. Zygmunt<br />

CREATION OF DESIGNED<br />

BLOCKS<br />

The land consolidation process the new<br />

system was tested on was carried in<br />

Wojków village, Mielec district in years<br />

2001–2004. The area <strong>of</strong> the consolidated<br />

land was 670 ha and comprised <strong>of</strong> 1503<br />

plots. There was no digital map for the<br />

area, therefore the fi rst thing was to<br />

convert the contents <strong>of</strong> analogue map<br />

into the digital form. Bentley Systems<br />

s<strong>of</strong>tware was used for this purpose. The<br />

digital map was checked for correctness<br />

by the s<strong>of</strong>tware the purpose <strong>of</strong> which was<br />

to pick up any topological errors. Another<br />

stage <strong>of</strong> the check was to compare a set<br />

<strong>of</strong> plots on the map to the plots included<br />

in the land register survey. The checks<br />

ensured that register <strong>of</strong> lands before<br />

consolidation was created properly. To<br />

facilitate the work, the s<strong>of</strong>tware had the<br />

functionality <strong>of</strong> semi-automatic creation<br />

<strong>of</strong> maps with comparative assessment.<br />

The borderlines <strong>of</strong> assessment<br />

contours occurred as a result <strong>of</strong> automatic<br />

FIGURE 1. Division <strong>of</strong> object into 9 parts<br />

selection <strong>of</strong> appropriate borders <strong>of</strong> plots<br />

and facilities, such as: roads, rivers and<br />

railway lines. For a digital map prepared<br />

like that the s<strong>of</strong>tware automatically<br />

generates register <strong>of</strong> lands before<br />

consolidation. The register is prepared<br />

so that it can be printed in A3 format<br />

[Litwin and Zygmunt 2005].<br />

To enable multi-station operation<br />

the object was divided into 9 designed<br />

areas. The s<strong>of</strong>tware has functionalities<br />

allowing this operation to be performed<br />

automatically (Fig. 1).<br />

Each <strong>of</strong> the newly created designed<br />

areas was then divided into designed<br />

blocks (Fig. 2). Division into blocks may<br />

also be carried out automatically.<br />

Information on how the lines <strong>of</strong><br />

assessment contours run was used to defi ne<br />

boundaries <strong>of</strong> designed blocks. Relevant<br />

function <strong>of</strong> the s<strong>of</strong>tware defi nes a new<br />

boundary upon the assessment contour<br />

number is indicated. When designing<br />

the technology, complete latitude in<br />

defi nition <strong>of</strong> the boundaries <strong>of</strong> designed<br />

blocks was adopted. The only condition


to be met by the designed block’s<br />

boundary is topological correctness. The<br />

topological correctness is controlled at<br />

the operator’s request and any errors are<br />

immediately communicated with their<br />

precise location.<br />

PRELIMINARY SELECTION OF<br />

PLOTS FOR DESIGNED BLOCKS<br />

Another stage <strong>of</strong> a land consolidation<br />

process that has been automated in a<br />

comprehensive manner is the preliminary<br />

selection <strong>of</strong> plots for designed blocks.<br />

This procedure is one <strong>of</strong> more important<br />

stages <strong>of</strong> a land consolidation process. It<br />

is performed after the land assessment<br />

register is approved and before the stage<br />

<strong>of</strong> designing a new land arrangement is<br />

commenced. The purpose <strong>of</strong> the stage<br />

is to make the initial assignment <strong>of</strong><br />

lands in individual farms to dedicated<br />

designed blocks. The number and<br />

sizes <strong>of</strong> the blocks most <strong>of</strong>ten result<br />

from the run <strong>of</strong> boundaries <strong>of</strong> designed<br />

invariants, such as boundaries <strong>of</strong> roads,<br />

Development <strong>of</strong> technologies used in agricultural engineering... 125<br />

FIGURE 2. Division <strong>of</strong> designed blocks within area no 01-Wojków<br />

watercourses, administrative boundaries<br />

and boundaries <strong>of</strong> building sites. The<br />

essential problem that occurs during this<br />

operation is the necessity <strong>of</strong> considering<br />

all participants’ requests regarding the<br />

location <strong>of</strong> the newly divided lands. The<br />

appropriate performance <strong>of</strong> preliminary<br />

selection activities is impeded by the<br />

following factors:<br />

– large number <strong>of</strong> participants<br />

–<br />

in the process (in case <strong>of</strong> land<br />

consolidations carried out over large<br />

areas it may reach a few thousands),<br />

most <strong>of</strong>ten exceeding the number <strong>of</strong><br />

separated designed blocks by several<br />

dozen times;<br />

necessity <strong>of</strong> considering diversifi<br />

cation in designed blocks <strong>of</strong> classes<br />

and arable lands when collecting<br />

requests;<br />

– necessity <strong>of</strong> as even collection <strong>of</strong><br />

requests for individual blocks as<br />

possible so that further design <strong>of</strong> a<br />

new land arrangement in accordance<br />

with this selection would be<br />

feasible.


126 U. Litwin, J. Janus, M. Zygmunt<br />

To facilitate this operation the process<br />

participants submit their requests in<br />

more than one version to increase the<br />

likelihood <strong>of</strong> proposing such a land<br />

arrangement that the expectations <strong>of</strong><br />

most participants could be come up.<br />

In the time <strong>of</strong> domination <strong>of</strong> analogue<br />

technologies, this stage <strong>of</strong> the process<br />

was extremely time-consuming and<br />

any errors made during the stage were<br />

decisive for any other operations carried<br />

out during the whole land consolidation<br />

process. In particular, making changes<br />

to the already submitted requests and<br />

control <strong>of</strong> acquired data took a lot <strong>of</strong><br />

time.<br />

The purpose <strong>of</strong> the solutions designed<br />

is a comprehensive support for the initial<br />

selection stage, in particular:<br />

– supporting the negotiations with<br />

parties to the land consolidation<br />

process by visualisation <strong>of</strong> the<br />

farm’s lands against the demarcated<br />

boundaries <strong>of</strong> designed blocks;<br />

– ensuring that designed blocks are<br />

fi lled by value assignments as<br />

proposed by participants in the land<br />

consolidation process;<br />

– ensuring that the data being entered<br />

are verifi ed for conformity to<br />

requirements <strong>of</strong> the consolidation<br />

instruction and the land consolidation<br />

and exchange act;<br />

– immediate delivery <strong>of</strong> any<br />

information on the registration<br />

unit and designed blocks that may<br />

be useful on this stage <strong>of</strong> the land<br />

consolidation process, including<br />

–<br />

data from the assessment register<br />

before consolidation;<br />

preparation <strong>of</strong> fi nal summary <strong>of</strong><br />

equivalents to be designed for every<br />

farm and for every block.<br />

The following items are used as input<br />

data for designed solutions:<br />

– data from assessment register before<br />

consolidation;<br />

– geometrical data to defi ne the<br />

boundaries <strong>of</strong> separated designed<br />

blocks;<br />

– layer <strong>of</strong> former condition plots;<br />

– layer <strong>of</strong> classifi cation contours;<br />

– layer <strong>of</strong> designed blocks.<br />

From the user’s point <strong>of</strong> view, the main<br />

element <strong>of</strong> the system to support the<br />

initial selection for designed blocks is<br />

the specially designed form.<br />

The most important components <strong>of</strong><br />

this form are:<br />

– information panel containing, among<br />

other things, data on the unit, former<br />

condition plots included in it, data<br />

on area and value <strong>of</strong> the unit, and a<br />

lot <strong>of</strong> other information required by<br />

the consolidation instruction;<br />

– table containing information on<br />

collected requests for the unit;<br />

– fi gures and graphical information<br />

showing the current fi lling status <strong>of</strong><br />

individual designed blocks;<br />

– graphical window showing the<br />

arrangement <strong>of</strong> former condition<br />

plots, lands <strong>of</strong> active farm, boundaries<br />

<strong>of</strong> designed blocks and classifi cation<br />

contours.<br />

The following method for collecting<br />

requests for a single farm was proposed:<br />

– the fi rst step is to select the active<br />

registration unit, which results in<br />

fi lling relevant information fi elds<br />

with data to describe the unit;<br />

– the next step is to select the value<br />

for which a request in its basic and<br />

alternative version is submitted;<br />

–<br />

for every version the appropriate<br />

designed block is selected;


CONCLUSIONS<br />

The approach to the land consolidation<br />

process presented herein allows<br />

achievement <strong>of</strong> signifi cant economic<br />

advantages resulting from, among<br />

other things, reduction in duration <strong>of</strong><br />

individual operations. Choosing Bentley<br />

MicroStation s<strong>of</strong>tware as a system<br />

platform enabled using a rich set <strong>of</strong> CAD<br />

Development <strong>of</strong> technologies used in agricultural engineering... 127<br />

– the last step is confi rmation <strong>of</strong> any tools and allowed signifi cant acceleration<br />

decisions made.<br />

<strong>of</strong> work performance.<br />

It is possible to cancel each <strong>of</strong> the The functions allowing quick redesign<br />

decisions for any farm at any time, <strong>of</strong> the plot arrangement made it possible<br />

which makes the specifi c land value to transfer a lot <strong>of</strong> design variants to the<br />

return to the appropriate designed block. land consolidation process participants,<br />

The fi nal effect <strong>of</strong> this stage <strong>of</strong> a land which effected in lack <strong>of</strong> complaints,<br />

consolidation process is generating a and thus completing the process on<br />

number <strong>of</strong> summaries that are required time. Simultaneously with reduction in<br />

further in the design work carried out duration <strong>of</strong> individual stages, conditions<br />

in the digital map environment and the were achieved for improvement in<br />

purpose <strong>of</strong> which is to design the target quality <strong>of</strong> a land consolidation process as<br />

land arrangement.<br />

regards its adjustment to the participants’<br />

requests and through automatic detailed<br />

DESIGN FOR A PRESET VALUE<br />

verifi cation <strong>of</strong> the project for conformity<br />

to requirements <strong>of</strong> the consolidation<br />

instruction and the land consolidation<br />

Designing starts with block selection.<br />

and exchange act. The implementation<br />

It requires the number <strong>of</strong> block to<br />

<strong>of</strong> the discussed IT technologies for land<br />

be indicated by the mouse. Next the<br />

consolidation process in Wojków village<br />

designing direction is defi ned and score<br />

confi rmed the practical usefulness and<br />

and number <strong>of</strong> designed plot are entered.<br />

correctness <strong>of</strong> designed solutions. It also<br />

Data are entered using a special form.<br />

needs to be mentioned that individual<br />

Coordinates <strong>of</strong> the newly designed<br />

elements <strong>of</strong> the proposed method for<br />

plot are calculated then and boundaries<br />

carrying out this stage are subject to<br />

and number are inserted into the block.<br />

constant modifi cations as the described<br />

The designing direction may be altered<br />

technology is implemented in successive<br />

at any time. The designed boundaries<br />

land consolidation processes in Poland.<br />

may be deleted and the block that occurs<br />

after such a boundary is deleted may be<br />

subject to another division.<br />

REFERENCE<br />

HARASIMOWICZ S. 1995: Wpływ cech<br />

działki i gospodarstwa na wartość<br />

dochodową gruntów. (Infl uence <strong>of</strong> plot<br />

and farm features on revenue value <strong>of</strong><br />

lands). Zesz. Nauk. AR w Krakowie, ser.<br />

Geodezja No 16, 77–86 (in Polish).<br />

HOPFER A., URBAN M. 1984: Geodezyjne<br />

urządzanie terenów rolnych. PWN.<br />

Warszawa (Geodetic development <strong>of</strong><br />

agricultural areas) PWN, <strong>Warsaw</strong>a (in<br />

Polish)<br />

JANUS J., ZYGMUNT M. 2005: Technologia<br />

kompleksowej automatyzacji prac


128 U. Litwin, J. Janus, M. Zygmunt<br />

scaleniowych (Technology <strong>of</strong> comprehensive<br />

automation <strong>of</strong> land consolidation<br />

process). Materials from the 17th Scientifi<br />

c and Technical Session in the series<br />

“Current issues in geodesy and cartography”,<br />

Nowy Sącz (in Polish).<br />

LITWIN U., ZYGMUNT M. 2005: Nowa<br />

technologia generowania rejestru gruntów<br />

przed scaleniem (New technology<br />

for generation <strong>of</strong> land register before<br />

land consolidation). Zesz. Nauk. AR<br />

w Krakowie, ser. Geodezja No 21 (in<br />

Polish).<br />

URBAN M. 1981: Ekonomika i organizacja<br />

gospodarstw rolnych (Economics and<br />

organisation <strong>of</strong> agricutural farms), PWN,<br />

Warszawa (in Polish).<br />

Streszczenie: Rozwój technologii wykorzystywanych<br />

w pracach urządzeniowo-rolnych na przykładzie<br />

wybranych etapów scalenia gruntów. Prace<br />

scaleniowe należą do najbardziej czasochłonnych<br />

i skomplikowanych zabiegów urządzenioworolnych<br />

wykonywanych przez geodetów. Proces<br />

ich automatyzacji oraz informatyzacji nie jest tak<br />

zaawansowany jak w przypadku innych rodzajów<br />

prac geodezyjnych. Przyczyną takiego stanu<br />

jest ograniczenie ilości prac z tego asortymentu<br />

wykonywanych od połowy lat osiemdziesiątych,<br />

czyli w okresie intensywnego wdrażania technik<br />

informatycznych w geodezji. Obecnie można<br />

zaobserwować ponowny wzrost zainteresowania<br />

wykonywaniem scaleń gruntów. Celem autorów<br />

było przybliżenie najnowszych rozwiązań informatycznych<br />

stosowanych w procesie scalenia<br />

gruntów, na przykładzie obiektu scaleniowego<br />

Wojków.<br />

W pracy przedstawiono trzy charakterystyczne<br />

etapy procesu scalenia: tworzenie rejestru<br />

szacunkowego przed scaleniem, etap wstępnego<br />

naboru do kompleksów projektowych oraz<br />

projektowanie. Omówiono propozycję sposobu<br />

automatyzacji wymienionych czynności z wykorzystaniem<br />

mapy numerycznej opracowanej przy<br />

pomocy programu Bentley MicroStation, z zachowaniem<br />

wymogów narzucanych przez instrukcję<br />

scaleniową.<br />

Wymienione etapy zilustrowano przykładami<br />

pochodzącymi ze scalenia przeprowadzonego<br />

w latach 2001–2004 na gruntach wsi Wojków.<br />

Prace na tym obiekcie wykonano z zastosowanej<br />

przedstawionej technologii. Pozwoliło to skrócić<br />

czas scalenia o około 30%.<br />

MS. received November 2006<br />

Authors’ addresses:<br />

Urszula Litwin, Jarosław Janus,<br />

Katedra Geodezyjnego Urządzania Terenów<br />

Wiejskich<br />

Akademia Rolnicza w Krakowie<br />

30-059 Kraków<br />

Al. Mickiewicza 24/28<br />

jarek@cracow.pl<br />

Mariusz Zygmunt<br />

Katedra Geodezji<br />

Akademia Rolnicza<br />

30-059 Kraków<br />

A. Mickiewicza 24/28<br />

m.zygmunt@geodezy.com.pl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!