17.04.2013 Views

Frank K. Wilhelm Saarland University, Saarbrücken ... - ITP at UCSB

Frank K. Wilhelm Saarland University, Saarbrücken ... - ITP at UCSB

Frank K. Wilhelm Saarland University, Saarbrücken ... - ITP at UCSB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Tuesday, February 26, 2013<br />

Making optimal control<br />

work for<br />

superconducting qubits<br />

<strong>Frank</strong> K. <strong>Wilhelm</strong><br />

<strong>Saarland</strong> <strong>University</strong>, <strong>Saarbrücken</strong>, Germany<br />

1


Tuesday, February 26, 2013<br />

Topics<br />

• Superconducting qubits for control<br />

theorists<br />

• Control tools<br />

• Control tasks<br />

• Applic<strong>at</strong>ion: Controlled-Z g<strong>at</strong>es<br />

• Closing the loop - control and tuneup<br />

2


Tuesday, February 26, 2013<br />

Superconducting qubits<br />

for control theorists<br />

3


Tuesday, February 26, 2013<br />

Superconducting artificial <strong>at</strong>oms<br />

Linear LC-oscill<strong>at</strong>or<br />

Josephson junction:<br />

nonlinear inductor<br />

J. Clarke, FKW, N<strong>at</strong>ure 2008<br />

4


Tuesday, February 26, 2013<br />

Superconducting artificial <strong>at</strong>oms<br />

Linear LC-oscill<strong>at</strong>or<br />

Phase qubit, e.g.<br />

Josephson junction:<br />

nonlinear inductor<br />

Anharmonic<br />

energy levels<br />

J. Clarke, FKW, N<strong>at</strong>ure 2008<br />

4


Bus, memory ...<br />

A. Blais et al., PRA 2004<br />

Schoelkopf and Girvin, N<strong>at</strong>ure 2008<br />

Tuesday, February 26, 2013<br />

Circuit QED<br />

E. Lucero, <strong>UCSB</strong><br />

Key element:<br />

Superconducting<br />

reson<strong>at</strong>or <strong>at</strong><br />

microwave<br />

frequencies<br />

5


•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Tuesday, February 26, 2013<br />

Control implic<strong>at</strong>ions<br />

Not a spin - higher levels<br />

Human made ... parameter<br />

uncertainty<br />

Cryogenic, heavily filtered setup<br />

Oper<strong>at</strong>ed <strong>at</strong> microwave<br />

frequencies<br />

Strong inter-element coupling<br />

Aiming <strong>at</strong> unitary g<strong>at</strong>es<br />

6


Tuesday, February 26, 2013<br />

Control tools<br />

8


Challenge<br />

Change performance index J in the end in response to uj<br />

Avoid numerical gradients<br />

Back-propag<strong>at</strong>ion: In step j optimize Ûback = Û † (tj,T) Ûg<strong>at</strong>e<br />

Tuesday, February 26, 2013<br />

9


!"#$%"&'()*&+$,-.'/01<br />

Adapting to experiments<br />

Include linear filters using transfer m<strong>at</strong>rices<br />

2+).'-,%+#3'*,&4.'/#41<br />

Motzoi et al., PRA 2011<br />

Tuesday, February 26, 2013<br />

Filters, Wires,<br />

Antennae ...<br />

!"#$%"&'()*&+$,-.'/01<br />

2+).'-,%+#3'*,&4.'/#41<br />

12


!"#$%"&'()*&+$,-.'/01<br />

Adapting to experiments<br />

Include linear filters using transfer m<strong>at</strong>rices<br />

2+).'-,%+#3'*,&4.'/#41<br />

Motzoi et al., PRA 2011<br />

Tuesday, February 26, 2013<br />

Filters, Wires,<br />

Antennae ...<br />

!"#$%"&'()*&+$,-.'/01<br />

!"#$%"&'()*&+$,-.'/01<br />

2+).'-,%+#3'*,&4.'/#41<br />

2+).'-,%+#3'*,&4.'/#41<br />

12


!"#$%"&'()*&+$,-.'/01<br />

Adapting to experiments<br />

Include linear filters using transfer m<strong>at</strong>rices<br />

2+).'-,%+#3'*,&4.'/#41<br />

For linear systems:<br />

Include filter transfer m<strong>at</strong>rix<br />

into GRAPE<br />

Motzoi et al., PRA 2011<br />

Tuesday, February 26, 2013<br />

Filters, Wires,<br />

Antennae ...<br />

!"#$%"&'()*&+$,-.'/01<br />

!"#$%"&'()*&+$,-.'/01<br />

2+).'-,%+#3'*,&4.'/#41<br />

2+).'-,%+#3'*,&4.'/#41<br />

12


Tuesday, February 26, 2013<br />

Control tasks<br />

13


Transmon/Phase qubit<br />

Lucero et al., 2008;<br />

Chow et al., 2009<br />

Tuesday, February 26, 2013<br />

Leakage<br />

Motzoi et al., PRL 2009 15


Transmon/Phase qubit<br />

Lucero et al., 2008;<br />

Chow et al., 2009<br />

Tuesday, February 26, 2013<br />

Leakage<br />

Solution: Envelope shaping<br />

Deriv<strong>at</strong>ive Removal<br />

by Adiab<strong>at</strong>ic G<strong>at</strong>e<br />

Motzoi et al., PRL 2009 15


Transmon/Phase qubit<br />

Lucero et al., 2008;<br />

Chow et al., 2009<br />

Tuesday, February 26, 2013<br />

Leakage<br />

Spectral limit<strong>at</strong>ion:<br />

Dur<strong>at</strong>ion/bandwith uncertainty<br />

S<br />

ω<br />

12<br />

∆2<br />

Solution: Envelope shaping<br />

Deriv<strong>at</strong>ive Removal<br />

by Adiab<strong>at</strong>ic G<strong>at</strong>e<br />

ω<br />

01<br />

tg<br />

ω<br />

Motzoi et al., PRL 2009 15


Solution DRAG<br />

Theorists dream ... experimental reality<br />

Tuesday, February 26, 2013<br />

u1(t)cos ωt + u2(t) sin ωt<br />

u2 = ˙u1<br />

∆2<br />

Gambetta et al., 2011;<br />

Lucero et al., 2010;<br />

Chow et al., 2010<br />

16


Solution DRAG<br />

Theorists dream ... experimental reality<br />

Tuesday, February 26, 2013<br />

u1(t)cos ωt + u2(t) sin ωt<br />

u2 = ˙u1<br />

∆2<br />

•<br />

•<br />

•<br />

CAD of analytical<br />

scheme<br />

amenable to long<br />

pixels<br />

third control can<br />

be removed -<br />

family of DRAG<br />

solutions<br />

Gambetta et al., 2011;<br />

Lucero et al., 2010;<br />

Chow et al., 2010<br />

16


Solution DRAG<br />

Theorists dream ... experimental reality<br />

Tuesday, February 26, 2013<br />

u1(t)cos ωt + u2(t) sin ωt<br />

u2 = ˙u1<br />

∆2<br />

•<br />

•<br />

•<br />

CAD of analytical<br />

scheme<br />

amenable to long<br />

pixels<br />

third control can<br />

be removed -<br />

family of DRAG<br />

solutions<br />

Gambetta et al., 2011;<br />

Lucero et al., 2010;<br />

Chow et al., 2010<br />

16


Classical: Why deriv<strong>at</strong>ive?<br />

Excit<strong>at</strong>ion profile <strong>at</strong> weak drive: Fourier transform<br />

Drive envelope<br />

Simple integr<strong>at</strong>ion by parts:<br />

Motzoi et al., in prepar<strong>at</strong>ion<br />

Tuesday, February 26, 2013<br />

Detuning δ<br />

Ω(t) =Ω1(t)+iΩ2(t)<br />

17


Wah-wah pulses<br />

Sideband modul<strong>at</strong>ion, optimized with Magnus expansion<br />

Amplitude [GHz]<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

0 2 4 6 8 10 12 14 16<br />

Time [ns]<br />

Ω X<br />

ΩY<br />

Sideband modul<strong>at</strong>ion<br />

+ DRAG gets<br />

ˆX ⊗ exp(−iα ˆ -2.5<br />

Z) -3<br />

Tuesday, February 26, 2013<br />

Achieved Error<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

phase<br />

10 20 30 40 50 60 70 80<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

G<strong>at</strong>e Time [ns]<br />

Φ<br />

Φ |*,1><br />

Φ |*,0><br />

Φ avg<br />

10 20 30 40 50 60 70 80<br />

G<strong>at</strong>e Time [ns]<br />

α<br />

γ<br />

20


Control amplitude [Ghz]<br />

Numerical optimiz<strong>at</strong>ion<br />

Long pulse At the limit<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.02<br />

Tuesday, February 26, 2013<br />

0<br />

Ω x (t)<br />

Ω y (t)<br />

0 20 40 60 80 100 120<br />

Time [ns]<br />

= 3.60507e-05<br />

= 1.83674e-05<br />

Amplitude [GHz]<br />

No speed limit other than sufficient # of pixels<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

0 0.5 1 1.5 2 2.5<br />

Time [ns]<br />

Ω X<br />

ΩY<br />

Schutjens, Abu Dagga, Egger, FKW, in prepar<strong>at</strong>ion<br />

21


Robustness of optimal pulses<br />

Tuesday, February 26, 2013<br />

Spörl et al., 2007<br />

Montangero et al., 2007<br />

Khani et al., 2011<br />

22


Robustness of optimal pulses<br />

Timing jitter<br />

Slow noise<br />

Extremum - fl<strong>at</strong><br />

Tuesday, February 26, 2013<br />

Spörl et al., 2007<br />

Montangero et al., 2007<br />

Khani et al., 2011<br />

22


Tuesday, February 26, 2013<br />

Making a CZ work<br />

23


CPHASE is symmetric<br />

Tuesday, February 26, 2013<br />

Baseline<br />

26


CPHASE is symmetric<br />

Asymmetric sequence:<br />

Ginger<br />

Fred<br />

iSWAP - Strauch - iSWAP<br />

Tuesday, February 26, 2013<br />

Baseline<br />

26


CPHASE is symmetric<br />

Asymmetric sequence:<br />

iSWAP - Strauch - iSWAP<br />

Tuesday, February 26, 2013<br />

Ginger<br />

Fred<br />

Baseline<br />

•<br />

•<br />

•<br />

three sequential<br />

steps<br />

need to correct<br />

phases<br />

third-level errors<br />

26


CPHASE is symmetric<br />

Asymmetric sequence:<br />

iSWAP - Strauch - iSWAP<br />

Tuesday, February 26, 2013<br />

Ginger<br />

Fred<br />

Baseline<br />

Filtering extreme<br />

•<br />

•<br />

•<br />

1ns 4 ns<br />

three sequential<br />

steps<br />

need to correct<br />

phases<br />

third-level errors<br />

26


Tuesday, February 26, 2013<br />

GRAPE pulse, no filter<br />

Strauch+<br />

phase comp<br />

Ginger<br />

Fred<br />

(iSWAP)2+<br />

Stark-shift correction<br />

Palindromic!<br />

27


Tuesday, February 26, 2013<br />

The challenge: Tuneup<br />

•<br />

Transl<strong>at</strong>ion of<br />

control voltage<br />

into qubit<br />

frequency not<br />

known precisely<br />

• Enters<br />

everywhere: High<br />

sensitivity<br />

29


Tuesday, February 26, 2013<br />

Pulse debugging<br />

Phase / leakage level error landscape<br />

Experiment Theory<br />

• Map out error landscape and minimize by<br />

hand<br />

• seems to work<br />

30


Tuesday, February 26, 2013<br />

Lessons learned and<br />

potential solutions<br />

• GRAPE pulses can work in superconducting<br />

qubits, but don‘t right now<br />

• Precise system characteriz<strong>at</strong>ion is crucial,<br />

robust GRAPE does not suffice (yet)<br />

• Nonlinear transfer functions limiting factor<br />

So we work on these issues<br />

31


•<br />

•<br />

•<br />

•<br />

Tuesday, February 26, 2013<br />

Include the<br />

unmeasurable?<br />

Way out: Genetic<br />

algorithms<br />

Self-learning<br />

Challenge: Easy<br />

measurement of<br />

performance (possible in<br />

specific cases)<br />

Note: These are GAs for<br />

unitaries, seeded by<br />

pretty good guesses<br />

fs-chemistry:<br />

Rabitz, Gerber ...<br />

32


•<br />

•<br />

•<br />

•<br />

Based on Schirmer, Oi,<br />

Langbein, Wiseman, Ferrie ...<br />

Hamiltonian learning<br />

Example: Find reson<strong>at</strong>ors and<br />

couplings<br />

Input: SWAP-spectroscopy =<br />

nonlocal FID<br />

Previous: 10000 shots / point<br />

speedup by nonadaptive Bayesian<br />

upd<strong>at</strong>e<br />

Y.R. Sanders and FKW, in prepar<strong>at</strong>ion<br />

Tuesday, February 26, 2013<br />

33


Bayesian tomography<br />

• Measure chi-<br />

M<strong>at</strong>rix efficiently<br />

• diligent use of<br />

priors<br />

• adaptive<br />

measurement<br />

Tuesday, February 26, 2013<br />

<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0 2000 4000 6000 8000 10000<br />

M<br />

M. Stenberg and FKW, in prepar<strong>at</strong>ion<br />

34


Tuesday, February 26, 2013<br />

Conclusions<br />

• Superconducting qubits and optimal control<br />

mutually beneficial<br />

• Solved higher-level leakage issue<br />

• Ultrafast g<strong>at</strong>es in frequency-crowded 3Dtransmons<br />

• challenge in applic<strong>at</strong>ion: closing the controlcharacteriz<strong>at</strong>ion<br />

loop<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!