24.04.2013 Views

TRBnet for CBM - GSI

TRBnet for CBM - GSI

TRBnet for CBM - GSI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>TRBnet</strong><br />

<strong>for</strong> the <strong>CBM</strong> MVD-Prototype<br />

Borislav Milanović<br />

In cooperation with:<br />

J. Michel, M. Deveaux, S. Seddiki, M. Traxler,<br />

S. Youcef, C. Schrader, I. Fröhlich, C. Müntz


Overview 1/22<br />

Overview


<strong>TRBnet</strong>@HADES 2/22


<strong>TRBnet</strong>@HADES – Specifications 3/22<br />

HADES Specifications<br />

• 80 000 data channels<br />

• 520 PCBs / 550 FPGAs<br />

• 6 Detector Systems<br />

• Au Au:<br />

20 kHz trigger rate (10 5 collision rate)<br />

200 particles/event<br />

200 MByte/s


<strong>TRBnet</strong>@HADES – Explanation 4/22<br />

<strong>TRBnet</strong> ?<br />

• Protocol<br />

HADES and FAIR<br />

DAQ<br />

FPGA + Optical Links<br />

• Network<br />

Unified Bus<br />

Secure Transmission


<strong>TRBnet</strong>@HADES – Network 5/22<br />

372 x<br />

30 x<br />

6x<br />

9 x<br />

24 x<br />

4 x<br />

12 x<br />

3 x<br />

2 x<br />

2 x<br />

20 × 2 GBit/s<br />

- Jan Michel, „Status of the HADES Upgrade“ -


<strong>TRBnet</strong> Key Features 6/22


<strong>TRBnet</strong> Key Features – Architecture 7/22<br />

Architecture<br />

Detector 1<br />

Detector 2<br />

Slow Control<br />

...<br />

Detector n<br />

Optical Network<br />

Data<br />

Processing<br />

Trigger<br />

System


<strong>TRBnet</strong> Key Features – Dataflow 8/22<br />

Dataflow<br />

Detector 1<br />

Detector 2<br />

Slow Control<br />

...<br />

Detector n<br />

Optical Network<br />

Data<br />

Processing<br />

Trigger<br />

System<br />

Max. 3 µs latency


<strong>TRBnet</strong> Key Features – Specifications 9/22<br />

<strong>TRBnet</strong> Specifications<br />

• Layers<br />

• Unique IDs<br />

• CRC checksum<br />

CRC<br />

• Four prioritized virtual<br />

Channels<br />

addr1 addr2 addr3<br />

5x 16bit


<strong>TRBnet</strong> Key Features – Channels 10/22<br />

<strong>TRBnet</strong> Specifications<br />

• Channel switching after each data packet<br />

1 Optical Link


<strong>TRBnet</strong> Key Features – Facts 11/22<br />

<strong>TRBnet</strong> Facts<br />

• 80 bit/packet, 64 bit payload<br />

Overhead 16 bit!<br />

• Error detection<br />

No inconsistent data through transport<br />

• Secure Transfers<br />

All boards answer each transfer<br />

• Independent on underlying System/Data<br />

• <strong>TRBnet</strong> reduces net-bandwidth to 63%<br />

E.g. Optical Link 3 Gbit/s 2 Gbit/s


MVD Requirements 12/22


MVD Requirements – Geometry 13/22<br />

MVD<br />

MAPS


MVD Requirements – Station 1 simulation 14/22<br />

Station 1 Simulation<br />

• Au Au @ 25GeV<br />

• 5•10 5 collision rate<br />

• T int = 10 µs<br />

• approx. 7 GByte/s<br />

- Sélim Seddiki, „MVD DAQ Prototype“ -<br />

Data Rate per Sensor [MByte/s]<br />

1 prototype


MVD Requirements – Prototype 15/22<br />

MVD Prototype<br />

MimoSIS-1<br />

• M26 high-res. inspired<br />

• 3 cm 2<br />

× 5<br />

MVD Module:<br />

• 2-sided, 0,37 between sensors: 2 x 50 µm Si, 300 µm CVD-Diam., 2 x 35<br />

µm Glue → 350 µm Si equ , (0.37 % X0), Ø 359 µm Si equ , (0.383 % X0)<br />

• 5 sensors / module<br />

• 500 µm overlap of opposite sensors (pitch: ~ 20 µm)<br />

•9 cm 2<br />

=<br />

=<br />

× 4<br />

- Christian Müntz -


MVD Requirements – Datarate 16/22<br />

Comparison<br />

Trigger<br />

Particles<br />

Datarate<br />

• Main challenge:<br />

40 Gbit/s<br />

Self-Triggering<br />

HADES MVD<br />

20 kHz Nonstop<br />

200 1600<br />

200 MB/s 5GB/s (Prototype)


Evaluation and Future Actions 17/22


Evaluation and Future Actions – Readout 18/22<br />

Scheme<br />

40 Gbit/s<br />

FPG<br />

A<br />

...<br />

FPG<br />

A<br />

MVD-Prototype <strong>TRBnet</strong><br />

2 Gbit/s effective*<br />

... ...<br />

=> 25 optical links<br />

*Bandwidth depends on<br />

the FPGA frequency<br />

<strong>TRBnet</strong><br />

HUB


Evaluation and Future Actions – Readout 19/22<br />

Scheme<br />

8b10b + twisted pair copper<br />

MVD-Prototype<br />

40 Gbit/s<br />

FPG<br />

ROC A<br />

...<br />

FPG<br />

A<br />

<strong>TRBnet</strong><br />

2 Gbit/s effective*<br />

... ...<br />

=> 25 optical links<br />

*Bandwidth depends on<br />

the FPGA frequency<br />

<strong>TRBnet</strong><br />

HUB


Evaluation and Future Actions – First steps 20/22<br />

First Steps<br />

• MAPS Addon Board with PEXOR Card<br />

First <strong>TRBnet</strong> implementation <strong>for</strong> MAPS<br />

• <strong>TRBnet</strong> Hubs<br />

Datarate simulation<br />

1 MAPS PC<br />

data


Evaluation and Future Actions – Summary 21/22<br />

Summary<br />

• <strong>TRBnet</strong> is ideally suited <strong>for</strong> the first MVD<br />

prototype simulations<br />

▫ Already implemented<br />

▫ Highly modular (written in VHDL)<br />

▫ Various configurations<br />

▫ Low latency (3 µs), decent bandwidth (63 %)<br />

▫ Extensible - new designs, larger data buffers<br />

• Tested on XILINX and Lattice FPGAs @ HADES<br />

▫ up to 100 MHz, 16bit data <strong>for</strong>mat<br />

• First steps towards the ROC


References 22/22<br />

References<br />

• J. Michel, „Development of a Realtime Network Protocol <strong>for</strong> HADES<br />

and FAIR Experiments“<br />

• J. Michel, „Status of the HADES Upgrade“<br />

• I. Fröhlich, „The Readout of the <strong>CBM</strong> MVD“<br />

• M. Deveaux, „Status of the Micro Vertex Detector of the <strong>CBM</strong><br />

Experiment“<br />

• S. Seddiki, „MVD DAQ Prototype“

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!