24.04.2013 Views

Biophysics - GSI

Biophysics - GSI

Biophysics - GSI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>GSI</strong> Summer School 7/8/2008<br />

<strong>Biophysics</strong><br />

Prof. Dr. Marco Durante


Table of contents<br />

1. Radioactivity<br />

2. Interaction of radiation with matter<br />

3. Radiobiology<br />

Acute (deterministic) effects<br />

Late (stochastic) effects<br />

Cancer<br />

Noncancer<br />

4. Heavy ions<br />

Space radiation<br />

5. Radiotherapy<br />

Conventional X-ray therapy<br />

Hadrontherapy


November 1895: Roentgen discovers x rays


February 1896: Becquerel discovers radioactivity<br />

1 Bq= 1 disintegration/second


α, β, γ-rays


Interaction of x or γ rays<br />

(photons) with matter: Ionization


Interaction of electrons or ions with<br />

matter:<br />

Ionization (Coulomb interaction)<br />

electron


Radiation Dose<br />

• Radiation effects depends on DOSE= Energy Deposited<br />

by Radiation per Unit Target Mass<br />

• Dose is measured in Gray (Gy) (=1 joule / kg)<br />

• ..but different radiations have different effectiveness (Q)<br />

• Equivalent dose= QxD is measured in Sievert (Sv)<br />

• For X-, γ-rays and electrons: 1 Gy = 1 Sv<br />

• But, for example: 1 mGy α-particles= 20 mSv (Q=20)<br />

• Mammography= 0.01 mSv<br />

• Average background radiation dose on Earth= 3 mSv/year<br />

• Average background radiation dose in space= 1 mSv/day<br />

• Whole-body CT scan=10 mSv<br />

• Occupational limit= 50 mSv/year<br />

• Lethal dose= 4.5 Sv<br />

• Radiotherapy= 60 Gy (to the tumor)


Dose Ranges<br />

(mSievert)<br />

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

0 10 20 30 40<br />

Typical annual dose for commercial airline flight crews<br />

50 60 70 80 90 100<br />

0 1 2 Natural 3 background 4 5 6 7 8 9 10<br />

NRC Dose Limit for Public<br />

0 0.1 0. 2 0.3 0. 4 0. 5 0.6 0.7 0.8 0. 9 1<br />

EPA Clean-up Standards NRC Clean-up Standards<br />

ICRP Negligible Dose<br />

Typical mission dose on ISS<br />

Thyroid (I-123)<br />

Total Body Therapy Total Tumor Dose<br />

A-bomb survivors<br />

Human LD50<br />

Significant cancer risk at > 200 mSv<br />

(UNSCEAR)<br />

Bone (Tc-99m)<br />

Site Decommissioning/License Termination<br />

Occupational Limit NRC, EPA<br />

0 0.01 0.02 0.03 0.04 0.05 0.0 6 0.0 7 0.08 0.0 9 0.1<br />

3-Mile Island Ave Ind<br />

Cancer Radiotherapy<br />

Experimental Radiobiology<br />

Cancer Epidemiology<br />

Low Dose studies<br />

Dental X-ray<br />

Medical Diagnostics<br />

Chest X-ray<br />

Regulatory Standards


How does radiation injure people?<br />

• High energy radiation breaks chemical<br />

bonds.<br />

• This creates free radicals, like those produced<br />

by other insults as well as by normal cellular<br />

processes in the body.<br />

• The free radicals can change chemicals in the body.<br />

-<br />

+


How does ionizing radiation damage DNA?


How does this damage from ionizing<br />

radiation effect our bodies?<br />

Sufficient Cell Killing<br />

Radiation Sickness<br />

Sufficient Genetic<br />

Alterations<br />

Cancer


RADIATION SICKNESS<br />

System effected/ Syndrome Symptoms Dose<br />

Nervous system<br />

CNS or Cerebrovascular<br />

Syndrome<br />

G.I. system<br />

Gastrointestinal Syndrome<br />

Blood cells / bone marrow<br />

Hematopoietic Syndrome<br />

Skin<br />

Erethema<br />

Ovaries/<br />

Testes<br />

Shock, severe<br />

nausea,<br />

disorientation,<br />

seizures, coma<br />

Nausea, vomiting,<br />

diarrhea,<br />

dehydration<br />

Chills, fatigue,<br />

hemorrhage,<br />

ulceration,<br />

infections, anemia<br />

100 Gy<br />

10 Gy<br />

3-8 Gy<br />

Burning/ infection, 10 Gy<br />

sloughing of skin,<br />

hair loss<br />

Sterility 0.6-0.8 Gy<br />

2-6 Gy


Radiation sickness is possible during radiotherapy, in nuclear<br />

accidents, or from nuclear terrorism<br />

Radioactive<br />

Dispersal Device<br />

(RDD)<br />

Alexander Litvinenko was<br />

poisoned in 2006 with the αradioactive<br />

210 Po<br />

(166 TBq/g and 0.5 µSv/Bq by<br />

ingestion 50 ng are enough<br />

to give a lethal dose of 4.5 Sv!)<br />

Time fuse<br />

Radioactive<br />

material<br />

Detonator<br />

Conventional<br />

explosive<br />

(e.g. fertilizer,<br />

semtex)<br />

Argun, Chechnya, 1999 – A<br />

container filled with<br />

radioactive materials<br />

found attached to an<br />

explosive mine hidden<br />

near a railway line. It<br />

is safely defused.<br />

The location is Argun,<br />

near the Chechen capital<br />

of Grozny, where a<br />

Chechen group, led by<br />

Shamil Basayev, operated<br />

an explosives workshop.


Stochastic late effects


Radiation and Cancer:<br />

A-bomb survivors<br />

87,000 survivors followed<br />

7,800 cancer deaths observed<br />

7,400 expected<br />

Therefore: 400 excess cancers


Extrapolating radiation risks<br />

from high to low doses


Lifetime cancer mortality risk<br />

as a function of age at exposure


Non-Cancer Risks- Acute Gamma Rays<br />

ISS<br />

Mars<br />

Preston et al. Rad. Res. (2003)


Radiation-induced Radiation induced cataracts: Severe<br />

atomic bomb-induced bomb induced cataract<br />

Image from woman who was 21 yrs old at time of the blast, exposed on<br />

the street 805 meters from the hypocenter with acute symptoms.<br />

Photo courtesy of Dr. Tsugihiko Tokunaga


Hereditary Effects<br />

Children of the survivors of the A-bomb attacks have<br />

been studied for:<br />

Untoward pregnancy outcomes<br />

Death of live-born children<br />

Sex chromosome abnormalities<br />

Electrophoretic variants of blood proteins<br />

But no statistically significant effects have been<br />

observed


High-energy<br />

High energy heavy ions<br />

50 um<br />

electrons


(1)<br />

(2)<br />

All radiation tracks are highly structured on the scale of DNA<br />

Heavy ions<br />

electron<br />

DNA<br />

Delta-ray electron<br />

©DTG<br />

21.8.03


An Analogy for Structured Energy Deposition and its Consequences<br />

Low LET radiation produces isotropic damage to organized targets.<br />

High LET radiation produces correlated damage to organized targets.<br />

LET: Linear Energy Transfer<br />

1 Dose Unit<br />

Low LET radiation deposits<br />

energy in a uniform pattern<br />

1 Dose Unit<br />

High LET radiation deposits<br />

energy in a non-uniform pattern


Why are we interested in energetic<br />

heavy ions? ions<br />

Heavy ion radiation is not present naturally on<br />

Earth


The Space Radiation Environment<br />

Solar particle events (SPE) (generally associated with Coronal Mass Ejections<br />

from the Sun):<br />

medium to high energy protons<br />

largest doses occur during maximum solar activity<br />

not currently predictable<br />

MAIN PROBLEM: develop realistic forecasting and warning strategies<br />

Trapped Radiation:<br />

medium energy protons and electrons<br />

effectively mitigated by shielding<br />

mainly relevant to ISS<br />

MAIN PROBLEM: develop accurate dynamic model<br />

Galactic Cosmic Rays (GCR)<br />

high energy protons<br />

highly charged, energetic atomic nuclei (HZE particles)<br />

not effectively shielded (break up into lighter, more penetrating pieces)<br />

abundances and energies quite well known<br />

MAIN PROBLEM: biological effects poorly understood but known to be most<br />

significant space radiation hazard


Trapped radiation belts – measurements<br />

on MIR 18


Relative contribution<br />

1,E+00<br />

1,E-01<br />

1,E-02<br />

1,E-03<br />

1,E-04<br />

1,E-05<br />

1,E-06<br />

1,E-07<br />

Relative contribution of different ions to<br />

flux, flux,<br />

dose, and dose equivalent from<br />

galactic cosmic radiation<br />

Flux Dose Dose equivalent<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28<br />

Atomic number (Z)


4-6 crew to lunar surface for extended-duration stay<br />

CEV:Earth-moon cruise – 4 days<br />

Low lunar orbit (LLO) operations- 1 day<br />

Untended lunar orbit operations – 4-14 days<br />

Low lunar orbit operations – 1 day<br />

Moon-Earth cruise – 4 days<br />

Lunar Lander: Lunar<br />

surface operations<br />

60-90 days<br />

2015-2020<br />

2014<br />

4-6 crew to Low Earth Orbit<br />

Crew Exploration Vehicle: Launch Environment<br />

LEO Environment<br />

Earth entry, water (or land) recovery<br />

2025+<br />

2020<br />

Crew TBD to Mars Vicinity<br />

Transit vehicle: Earth-Mars cruise – 6-9 months<br />

Mars vicinity operations – 30-90 days<br />

Mars-Earth cruise – 9-12 months<br />

4-6 crew to lunar surface for<br />

long-duration stay<br />

Lunar Habitat: Lunar surface<br />

operations 60-90 days<br />

Crew TBD to Mars surface<br />

Surface Habitat<br />

2030+<br />

NASA ESMD


Dose (mSv)<br />

10 4<br />

1000<br />

100<br />

10<br />

Radiation doses in different missions<br />

Apollo Skylab<br />

Past Future<br />

STS/Mir<br />

Shuttle<br />

1<br />

Population<br />

per year<br />

Gemini<br />

0.1<br />

1950 1970 1990 2010 2030 2050<br />

Year<br />

ISS<br />

Mars<br />

Moon<br />

Callisto<br />

Astronauts<br />

career<br />

RadWork<br />

per year


ROUGH GUIDES<br />

THE ROUGH GUIDE to<br />

The Moon<br />

& Mars<br />

Health in Deep<br />

Space<br />

1. Protection from space<br />

radiation (particularly very<br />

high energy heavy ions)<br />

2. Psychosocial and<br />

behavioural problems<br />

3. Physiological changes<br />

caused by microgravity<br />

Modified by Mike Lockwood


Biological effects of heavy ions<br />

No human epidemiological<br />

data<br />

γ-rays heavy ions


γ-rays<br />

silicon<br />

iron<br />

Tracks in cells<br />

Cucinotta and Durante, Lancet Oncol. 2006


Dose distribution in micrometer scale<br />

sparsely ionizing photons densely ionizing particles


Chromosomal aberrations induced by heavy ions<br />

3 Gy γ-rays 0.3 Gy Feions<br />

Durante et al., Radiation Research 2002


Cell killing by different radiation types


Definition of RBE


Relative Biological Effectiveness for Cell Inactivation by Ionizing Radiations<br />

© DTG 5.11.03


Tumor Prevalence (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Harderian gland tumors in mice<br />

Iron<br />

Neon<br />

10-3 10-2 10-1 100 101 102 103 0<br />

Fluence, µm 2<br />

Helium<br />

Proton<br />

γ-rays


The good side of radiation: radiation:<br />

radiotherapy


Radiotherapy<br />

Also called “Radiation Therapy”<br />

Part of multi-disciplinary approach to cancer care<br />

Useful for 50-60% of all cancer patients<br />

Can be given for cure or palliation<br />

Mainly used for loco-regional treatment<br />

Benefits and side-effects are usually limited to<br />

the area(s) being treated


Radiotherapy Treatment Goals<br />

maximize the therapeutic radio TR=<br />

probability of tumour control_(TCP)____<br />

probability of normal tissue toxicity (NTCP)<br />

For palliation (e.g. bone metastasis), it is<br />

possible to obtain symptom improvement<br />

without eradicating the tumour


Therapeutic window


Types of radiotherapy<br />

Radiosensitive<br />

Lymphomas<br />

Germ cell tumours<br />

Small cell carcinomas<br />

Radioresistant<br />

Melanoma<br />

Sarcomas<br />

Glioblastomas<br />

External beam (teletherapy)<br />

- Conformal therapy, IMRT (X-rays), hadrontherapy (protons or Cions)<br />

Brachytherapy<br />

– Intracavitary<br />

– Interstitial<br />

– Surface molds<br />

Systemic<br />

– Radioactive Iodine, Strontium, Radio-labeled antibodies


Treatment<br />

planning<br />

Generally, the<br />

total dose to the<br />

tumor is about 60<br />

Gy, given in daily<br />

fractions of 2 Gy<br />

to spare the<br />

normal tissue<br />

X-rays produced<br />

by LINACS (6-15<br />

MV) are normally<br />

used


April 11, 2001<br />

(just prior to 1000cGy/1fr/1day orthovoltage<br />

treatment using 300kvp photons)


Treated area close-up (1 year post radiation)


Side-effects Side effects of Radiotherapy<br />

Acute (1 month)<br />

Pneumonitis/fibrosis of lungs<br />

Hypothyroidism<br />

Xerostomia<br />

Enteritis<br />

Infertility/menopause<br />

Long-term (10-20 years)<br />

Increased risk of secondary cancers<br />

Increased heart disease if chest region treated


Charged particles for therapy


Depth dose distribution of various radiation modalities


Principle of raster scanning


Image of Albert Einstein<br />

produced with the <strong>GSI</strong><br />

rasterscan system using a<br />

430 MeV/u carbon beam of<br />

1,7 mm width (FWHM).<br />

The picture consists of<br />

105x120 pixel filled by<br />

1.5.10 10 particles given in<br />

80 spills (5 sec. each) of the<br />

SOS accelerator. Original<br />

size of the picture: 15 x 18<br />

cm


Slices of a tumor treated at <strong>GSI</strong>


Protontherapy<br />

Choroidal<br />

and iris<br />

melanoma<br />

(60 MeV)<br />

Deep<br />

tumors<br />

(250 MeV)


C-ions ions vs. X-ray ray therapy


Biological<br />

effective dose<br />

W. K. Weyrather, <strong>GSI</strong>


Tissue dependence of RBE


Bestrahlungsraum: Cave M<br />

Röntgenröhre<br />

Bildverstärker<br />

Patientenmaske<br />

Strahlaustrittsfenster<br />

Patientenmonitor<br />

Patient<br />

PET-Kamera<br />

Patiententisch


Adenocystic Carcinoma<br />

O.Jaeckl DKFZ<br />

C12<br />

boost


Adenocystic Carcinoma<br />

combined photons and C12-Boost<br />

C12 Boost<br />

Prior RT 6 weeks after RT


• Clivus Chondrosarcomas<br />

• Patient:23 years old<br />

• Diagnosis: Chondrosarcoma<br />

• Subtotal surgery<br />

• Postoperative radiationtherapy:60Gye<br />

• 3 fields with 20 fraction<br />

vor Bestrahlung<br />

6 Weeks after carbon<br />

tfeatment with a dose of 60 Gye<br />

D.Schulz-Ertner et al.


Adenoidcystic carcinomas:<br />

Photon-IMRT with and without carbon boost<br />

Überleben Tumorkontrolle<br />

survival tumorcontrol<br />

carbon<br />

without carbon<br />

[Schulz-Ertner, Cancer 2005]


Dose –Tumorcontrol curve for Chordomas<br />

Lokale Tumorkontrolle [%] 5J.<br />

Heavy ions, Castro, 1996<br />

Protons, Munzenrider, 1994<br />

Protons, Hug, 1999<br />

<strong>GSI</strong><br />

FSRT, Debus, 2000<br />

Konventionelle RT<br />

mittlere Dosis [Gy]


Future developments<br />

European projects<br />

Darmstadt since 1997<br />

Heidelberg: first RT 2007 ,<br />

Pavia : first RT 2008 ,<br />

Marburg , Wiener Neustadt , Lyon.<br />

Japanese projects<br />

Chiba 1994,<br />

Hyogo 2003 , Gunma


Particle Beam Therapy Facilities in Japan<br />

Cover Area<br />

Gunma Heavy Ion Science Center<br />

C-ion, ion, Micro beam radiotherapy<br />

Gunma Prf.<br />

Niigata Prf.<br />

Nagano Prf.<br />

Tochigi Prf<br />

Saitama Prf.<br />

Wakasa Bay Research<br />

Center(Suruga)<br />

Proton<br />

Hyougo Particle therapy<br />

Center<br />

Proton(2001~)<br />

C-ion(2001~)<br />

Sizuoka Cancer<br />

Center<br />

Proton<br />

Tsukuba University<br />

Proton (1983 〜)<br />

National Cancer<br />

Center Kashiwa<br />

Branch<br />

Proton (1999 〜)<br />

National Institute of<br />

Radiological Sciences<br />

Proton(1979 〜)<br />

C-ion (1996〜)<br />

Working<br />

Construction


Advantages of heavy ion therapy<br />

• Inverse dose profile: higher target dose<br />

lower dose to normal tissue<br />

• Millimeter-precision treatment<br />

• PET beam verification<br />

• High biological effectiveness in the target<br />

• Low biological effectiveness in the entrance channel<br />

• Biological based treatment planning<br />

• Little side effects<br />

• Good tumor control rates 80-90%<br />

Future<br />

• Heavy ion center at Heidelberg<br />

• Many projects over the world<br />

• Treatment of moving organs<br />

• Biologically optimized treatment


Thank you for attention! attention<br />

If you want to learn<br />

more…….<br />

Tuesday, August 12, 3 pm<br />

A primer on heavy ion<br />

physics<br />

Thursday, August 14, 3 pm<br />

A primer on heavy ion<br />

biology

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!