24.04.2013 Views

ML Estimator for TDOA/FDOA

ML Estimator for TDOA/FDOA

ML Estimator for TDOA/FDOA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>ML</strong>E <strong>for</strong><br />

<strong>TDOA</strong>/<strong>FDOA</strong> Location<br />

•Overview<br />

• Estimating <strong>TDOA</strong>/<strong>FDOA</strong><br />

• Estimating Geo-Location<br />

1


MULTIPLE-PLATFORM LOCATION<br />

s(<br />

t − t1)<br />

e<br />

jω<br />

s(t)<br />

1<br />

t<br />

Data Link<br />

Emitter to be located<br />

s(<br />

t − t2)<br />

e<br />

jω<br />

s(<br />

t − t3)<br />

e<br />

2<br />

t<br />

Data<br />

Link<br />

jω<br />

3<br />

t<br />

2


ν 21 = ω 2 – ω 1<br />

= constant<br />

<strong>FDOA</strong><br />

Frequency-<br />

Difference-<br />

Of-<br />

Arrival<br />

<strong>TDOA</strong>/<strong>FDOA</strong> LOCATION<br />

<strong>TDOA</strong><br />

Time-<br />

Difference-<br />

Of-<br />

Arrival<br />

ν 23 = ω 2 – ω 3<br />

= constant<br />

s(<br />

t − t1)<br />

e<br />

jω<br />

s(t)<br />

1<br />

t<br />

Data Link<br />

τ 21 = t 2 – t 1<br />

= constant<br />

s(<br />

t − t2)<br />

e<br />

jω<br />

s(<br />

t − t3)<br />

e<br />

2<br />

t<br />

Data<br />

Link<br />

jω<br />

3<br />

t<br />

τ 23 = t 2 –t 3<br />

= constant<br />

3


Estimating <strong>TDOA</strong>/<strong>FDOA</strong><br />

4


SIGNAL MODEL<br />

Will Process Equivalent Lowpass signal, BW = B Hz<br />

– Representing RF signal with RF BW = B Hz<br />

Sampled at Fs > B complex samples/sec<br />

Collection Time T sec<br />

At each receiver:<br />

BPF ADC<br />

cos(ω 1 t)<br />

Make<br />

LPE<br />

Signal<br />

Equalize<br />

-B/2<br />

X RF (f)<br />

X(f)<br />

X f LPE(f)<br />

B/2<br />

f<br />

f<br />

f<br />

5


DOPPLER & DELAY MODEL<br />

s(t) sr (t) = s(t – τ(t))<br />

Tx Rx<br />

R(t)<br />

Propagation Time: τ(t) = R(t)/c<br />

R o<br />

( t)<br />

= R + vt + ( a / 2)<br />

t<br />

2<br />

+ !<br />

Use linear approximation – assumes small<br />

change in velocity over observation interval<br />

For Real BP Signals:<br />

sr o<br />

o<br />

( t)<br />

= s(<br />

t −[<br />

R + vt]<br />

/ c)<br />

= s([<br />

1−<br />

v / c]<br />

t − R / c)<br />

Time<br />

Scaling<br />

Time Delay: τ d<br />

6


~ s<br />

r<br />

DOPPLER & DELAY MODEL (continued)<br />

( t)<br />

=<br />

=<br />

~ s ([ 1<br />

Analytic Signals Model<br />

~ j[ ωct<br />

+ φ(<br />

t)]<br />

s ( t)<br />

=<br />

− v/<br />

c]<br />

t<br />

E(<br />

t)<br />

e<br />

−<br />

E([<br />

1−<br />

v/<br />

c]<br />

t −<br />

τ<br />

τ<br />

Now what? Notice that v


~ s<br />

r<br />

DOPPLER & DELAY MODEL (continued)<br />

( t)<br />

=<br />

=<br />

E(<br />

t<br />

e<br />

Narrowband Analytic Signal Model<br />

− jω<br />

−<br />

c<br />

τ<br />

d<br />

τ<br />

Constant<br />

Phase<br />

Term<br />

α= –ω cτ d<br />

e<br />

d<br />

) e<br />

− jω<br />

c<br />

j{<br />

ω<br />

c<br />

t −ω<br />

( v / c)<br />

t<br />

Doppler<br />

Shift<br />

Term<br />

ω d= ω cv/c<br />

e<br />

c<br />

( v / c)<br />

t −ω<br />

jω<br />

c<br />

t<br />

Carrier<br />

Term<br />

E(<br />

t<br />

c<br />

τ<br />

−<br />

d<br />

+ φ(<br />

t −τ<br />

τ<br />

d<br />

) e<br />

d<br />

)}<br />

jφ(<br />

t −τ<br />

Transmitted Signal’s<br />

LPE Signal<br />

Time-Shifted by τ d<br />

Narrowband Lowpass Equivalent Signal Model<br />

jα<br />

sˆ ( t)<br />

= e e d sˆ<br />

( t − τd<br />

r<br />

− jω<br />

This is the signal that actually gets processed digitally<br />

t<br />

)<br />

d<br />

)<br />

8


CRLB <strong>for</strong> <strong>TDOA</strong><br />

We already showed that the CRLB <strong>for</strong> the active sensor case is:<br />

1<br />

C(<br />

<strong>TDOA</strong>)<br />

=<br />

2<br />

8π<br />

N × SNR × B<br />

But here we need to estimate the delay between two noisy<br />

signals rather than between a noisy one and a clean one.<br />

The only difference in the result is: replace SNR by an<br />

effective SNR given by<br />

SNR eff<br />

=<br />

1<br />

SNR<br />

1<br />

1<br />

1 1<br />

+ +<br />

SNR SNR SNR<br />

2<br />

2<br />

rms<br />

where B rms is an effective bandwidth<br />

of the signal computed from the<br />

DFT values S[k].<br />

1<br />

2<br />

B<br />

2<br />

rms<br />

=<br />

1<br />

N<br />

N / 2−1<br />

≈ min{ SNR , SNR<br />

1<br />

∑<br />

k = −N<br />

/ 2<br />

N / 2−1<br />

∑<br />

k<br />

k=<br />

−N<br />

/ 2<br />

2<br />

2<br />

S[<br />

n]<br />

}<br />

S[<br />

k]<br />

2<br />

2<br />

9


CRLB <strong>for</strong> <strong>TDOA</strong> (cont.)<br />

A more familiar <strong>for</strong>m <strong>for</strong> this is in terms of the C-T version of<br />

the problem:<br />

σ<br />

<strong>TDOA</strong><br />

≥<br />

2π<br />

2<br />

B<br />

rms<br />

1<br />

BT × SNR<br />

eff<br />

“seconds”<br />

2<br />

Brms =<br />

∫ f<br />

∫<br />

2<br />

S(<br />

f )<br />

S(<br />

f )<br />

BT = Time-Bandwidth Product (≈ N, number of samples in DT)<br />

B = Noise Bandwidth of Receiver (Hz)<br />

T = Collection Time (sec)<br />

BT is called “Coherent Processing Gain”<br />

(Same effect as the DFT Processing Gain on a sinusoid)<br />

For a signal with rectangular spectrum of RF width of Bs , then the<br />

bound becomes:<br />

0.<br />

55<br />

σ<br />

<strong>TDOA</strong><br />

≥ 2<br />

B<br />

s<br />

BT × SNR<br />

S. Stein, “Algorithms <strong>for</strong> Ambiguity Function Processing,”<br />

IEEE Trans. on ASSP, June 1981<br />

eff<br />

2<br />

2<br />

df<br />

df<br />

10


CRLB <strong>for</strong> <strong>FDOA</strong><br />

Here we take advantage of the time-frequency duality if the FT:<br />

1<br />

C(<br />

<strong>FDOA</strong>)<br />

=<br />

2<br />

8π<br />

N × SNR<br />

2<br />

eff × Trms<br />

where T rms is an effective duration<br />

of the signal computed from the<br />

signal samples s[k].<br />

Again… we use the same effective SNR:<br />

SNR eff<br />

=<br />

1<br />

SNR<br />

1<br />

1<br />

1 1<br />

+ +<br />

SNR SNR SNR<br />

2<br />

1<br />

2<br />

T<br />

2<br />

rms<br />

=<br />

1<br />

N<br />

N<br />

/ 2−1<br />

∑<br />

n=<br />

−N<br />

/ 2<br />

N / 2−1<br />

∑<br />

k<br />

n=<br />

−N<br />

/ 2<br />

≈ min{ SNR , SNR<br />

1<br />

2<br />

s[<br />

n]<br />

s[<br />

n]<br />

2<br />

}<br />

2<br />

2<br />

11


CRLB <strong>for</strong> <strong>FDOA</strong> (cont.)<br />

A more familiar <strong>for</strong>m <strong>for</strong> this is in terms of the C-T version of<br />

the problem:<br />

σ<br />

<strong>FDOA</strong><br />

≥<br />

2π<br />

2<br />

T<br />

rms<br />

1<br />

BT × SNR<br />

eff<br />

“Hz”<br />

2<br />

Trms For a signal with constant envelope of duration T s , then the bound<br />

becomes:<br />

σ<br />

<strong>FDOA</strong><br />

≥ 2<br />

T<br />

s<br />

0.<br />

55<br />

BT × SNR<br />

S. Stein, “Algorithms <strong>for</strong> Ambiguity<br />

Function Processing,” IEEE Trans. on<br />

ASSP, June 1981<br />

eff<br />

=<br />

∫ t<br />

∫<br />

2<br />

s(<br />

t)<br />

s(<br />

t)<br />

2<br />

2<br />

dt<br />

dt<br />

12


Interpreting CRLBs <strong>for</strong> <strong>TDOA</strong>/<strong>FDOA</strong><br />

A more familiar <strong>for</strong>m <strong>for</strong> this is in terms of the C-T version of<br />

the problem:<br />

σ<br />

<strong>TDOA</strong><br />

≥<br />

2π<br />

2<br />

B<br />

rms<br />

1<br />

BT × SNR<br />

eff<br />

σ<br />

<strong>FDOA</strong><br />

≥<br />

2π<br />

• BT pulls the signal up out of the noise<br />

•Large B rms improves <strong>TDOA</strong> accuracy<br />

•Large T rms improves <strong>FDOA</strong> accuracy<br />

Two Examples of Accuracy Bounds:<br />

SNR 1 SNR 2 T = T s B = B s σ <strong>TDOA</strong> σ <strong>FDOA</strong><br />

3 dB 30 dB 1 ms 1 MHz 17.4 ns 17.4 Hz<br />

3 dB 30 dB 100 ms 10 kHz 1.7 µs 0.17 Hz<br />

2<br />

T<br />

rms<br />

1<br />

BT × SNR<br />

eff<br />

13


<strong>ML</strong>E <strong>for</strong> <strong>TDOA</strong>/<strong>FDOA</strong><br />

S. Stein, “Differential Delay/Doppler <strong>ML</strong><br />

Estimation with Unknown Signals,” IEEE<br />

Trans. on SP, August 1993<br />

We already showed that the <strong>ML</strong> Estimate of delay <strong>for</strong> the<br />

active sensor case is the Cross-Correlation of the time signals.<br />

T<br />

∫<br />

C(<br />

τ ) = s ( t)<br />

s ( t + τ )<br />

0<br />

1<br />

2<br />

By the time-frequency duality the <strong>ML</strong> estimate <strong>for</strong> doppler<br />

shift should be Cross-Correlation of the FT, which is<br />

mathematically equivalent to<br />

C(<br />

ω)<br />

=<br />

A(<br />

ω,<br />

τ ) =<br />

T<br />

∫<br />

0<br />

T<br />

∫<br />

0<br />

s<br />

s<br />

1<br />

1<br />

( t)<br />

s<br />

( t)<br />

s<br />

2<br />

2<br />

( t)<br />

e<br />

− jωt<br />

( t + τ ) e<br />

dt<br />

dt<br />

− jωt<br />

dt<br />

Find Peak of |C(τ)|<br />

Find Peak of |C(ω)|<br />

The <strong>ML</strong> estimate of the <strong>TDOA</strong>/<strong>FDOA</strong> has been shown to be:<br />

Find Peak of |A(ω,τ)|<br />

14


LPE Rx<br />

Signals<br />

At Two<br />

Receivers<br />

<strong>ML</strong> <strong>Estimator</strong> <strong>for</strong> <strong>TDOA</strong>/<strong>FDOA</strong> (cont.)<br />

jα<br />

1( ) t s<br />

2( ) t s<br />

jω<br />

t<br />

= e e d s ( t −τ<br />

1 d<br />

Delay<br />

τ<br />

Called:<br />

• Ambiguity Function<br />

• Complex Ambiguity Function (CAF)<br />

• Cross-Correlation Surface<br />

)<br />

Doppler<br />

ω<br />

ω<br />

ωd “Compare”<br />

Signals<br />

For all<br />

Delays &<br />

Dopplers<br />

Ambiguity Function<br />

τ<br />

Find<br />

Peak<br />

of<br />

|A(ω,τ)|<br />

τ d<br />

15


<strong>ML</strong> <strong>Estimator</strong> <strong>for</strong> <strong>TDOA</strong>/<strong>FDOA</strong> (cont.)<br />

How well do we expect the Cross-Correlation Processing to<br />

per<strong>for</strong>m?<br />

Well… it is the <strong>ML</strong> estimator so it is not necessarily optimum.<br />

But… we know that an <strong>ML</strong> estimate is asymptotically<br />

• Unbiased & Efficient (that means it achieves the CRLB)<br />

• Gaussian<br />

ˆ<br />

−1<br />

θ<strong>ML</strong><br />

~ N ( θ,<br />

I ( θ))<br />

Those are some VERY nice properties that we can make use of<br />

in our location accuracy analysis!!!<br />

16


Properties of the CAF<br />

• Consider when τ = τ T<br />

d [ ] 2<br />

∫<br />

jω<br />

t<br />

A(<br />

ω,<br />

τd<br />

) = s(<br />

t)<br />

e<br />

|A(ω,τ d )|<br />

ω d<br />

width ∼ 1/T<br />

• Consider when ω = ω d<br />

|A(ω d ,τ)|<br />

τ d<br />

width ∼ 1/BW<br />

ω<br />

τ<br />

A(<br />

ω<br />

d<br />

0<br />

d<br />

e<br />

− jωt<br />

dt<br />

like windowed FT of sinusoid<br />

where window is |s(t)| 2<br />

, τ)<br />

=<br />

T<br />

∫<br />

0<br />

s(<br />

t)<br />

s(<br />

t<br />

−<br />

τ<br />

d<br />

correlation<br />

+ τ)<br />

dt<br />

17


<strong>TDOA</strong> ACCURACY REVISITED<br />

<strong>TDOA</strong> Accuracy depends on:<br />

» Effective SNR: SNR eff<br />

» RMS Widths: B rms = RMS Bandwidth<br />

XCorr<br />

Function<br />

XCorr<br />

Function<br />

~1/B rms<br />

Narrow B rms Case<br />

Poor Accuracy<br />

<strong>TDOA</strong><br />

Wide B rms Case<br />

Good Accuracy<br />

<strong>TDOA</strong><br />

2<br />

Brms =<br />

∫<br />

f<br />

∫<br />

2<br />

S(<br />

f )<br />

S(<br />

f )<br />

2<br />

2<br />

df<br />

df<br />

Low Effective SNR<br />

Causes Spurious Peaks<br />

On Xcorr Function<br />

Narrow Xcorr Function<br />

Less Susceptible to<br />

Spurious Peaks<br />

18


<strong>FDOA</strong> ACCURACY REVISITED<br />

<strong>FDOA</strong> Accuracy depends on:<br />

» Effective SNR: SNR eff<br />

» RMS Widths: D rms = RMS Duration<br />

XCorr<br />

Function<br />

XCorr<br />

Function<br />

~1/D rms<br />

Narrow D rms Case<br />

Poor Accuracy<br />

<strong>FDOA</strong><br />

Wide D rms Case<br />

Good Accuracy<br />

<strong>FDOA</strong><br />

2<br />

Brms =<br />

∫<br />

f<br />

∫<br />

2<br />

S(<br />

f )<br />

S(<br />

f )<br />

2<br />

2<br />

df<br />

df<br />

Low Effective SNR<br />

Causes Spurious Peaks<br />

On Xcorr Function<br />

Narrow Xcorr Function<br />

Less Susceptible to<br />

Spurious Peaks<br />

19


COMPUTING THE AMBIGUITY FUNCTION<br />

Direct computation based on the equation <strong>for</strong> the ambiguity<br />

function leads to computationally inefficient methods.<br />

In EECE 521 notes we showed how to use decimation to<br />

efficiently compute the ambiguity function<br />

20


Estimating Geo-Location<br />

21


<strong>TDOA</strong>/<strong>FDOA</strong> LOCATION<br />

Data Link<br />

Data<br />

Link<br />

Centralized Network of P<br />

•“P-Choose-2” Pairs<br />

“P-Choose-2” <strong>TDOA</strong> Measurements<br />

“P-Choose-2” <strong>FDOA</strong> Measurements<br />

• Warning: Watch out <strong>for</strong> Correlation<br />

Effect Due to Signal-Data-In-Common<br />

Data<br />

Link<br />

22


<strong>TDOA</strong>/<strong>FDOA</strong> LOCATION<br />

Pair-Wise Network of P<br />

• P/2 Pairs<br />

P/2 <strong>TDOA</strong> Measurements<br />

P/2 <strong>FDOA</strong> Measurements<br />

• Many ways to select P/2 pairs<br />

• Warning: Not all pairings are equally<br />

good!!! The Dashed Pairs are Better<br />

23


<strong>TDOA</strong>/<strong>FDOA</strong> Measurement Model<br />

Given N <strong>TDOA</strong>/<strong>FDOA</strong> measurements with corresponding 2×2 Cov. Matrices<br />

( ˆ τ1, ˆ ν1),<br />

( ˆ τ 2,<br />

ˆ ν 2 ), … , ( ˆ τ N , ˆ ν N ) Assume pair-wise network, so…<br />

C C , … , C<br />

<strong>TDOA</strong>/<strong>FDOA</strong> pairs are uncorrelated<br />

For notational purposes… define the 2N measurements r(n) n = 1, 2, …, 2N<br />

r<br />

2n−1<br />

r<br />

2n<br />

= ˆ τ<br />

= ˆ ν<br />

n<br />

n<br />

,<br />

,<br />

1,<br />

2<br />

n<br />

n<br />

=<br />

=<br />

1,<br />

2,<br />

1,<br />

2,<br />

…,<br />

…,<br />

N<br />

N<br />

N<br />

r<br />

=<br />

[ 1 r2<br />

! r2<br />

N<br />

r ]<br />

Data Vector<br />

Now, those are the <strong>TDOA</strong>/<strong>FDOA</strong> estimates… so the true values are notated as:<br />

s<br />

2n−1<br />

s<br />

2n<br />

= τ<br />

= ν<br />

n<br />

n<br />

,<br />

,<br />

n<br />

n<br />

( τ1, ν1),<br />

( τ 2,<br />

ν 2 ), … , ( τ N , ν N<br />

=<br />

=<br />

1,<br />

2,<br />

1,<br />

2,<br />

…,<br />

…,<br />

N<br />

N<br />

)<br />

s<br />

=<br />

[ 1 s2<br />

! s2N<br />

s ]<br />

“Signal” Vector<br />

T<br />

T<br />

24


<strong>TDOA</strong>/<strong>FDOA</strong> Measurement Model (cont.)<br />

Each of these measurements r(n) has an error ε(n) associated with it, so…<br />

r = s +<br />

Because these measurements were estimated using an <strong>ML</strong> estimator (with<br />

sufficiently large number of signal samples) we know that error vector ε is a<br />

zero-mean Gaussian vector with cov. matrix C given by:<br />

⎡C1<br />

0 0 ⎤<br />

⎢<br />

⎥<br />

C = diag{ C1<br />

, C2,<br />

… , CN<br />

} = ⎢ 0 # 0 ⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎣ 0 0 CN<br />

⎥<br />

⎦<br />

The true <strong>TDOA</strong>/<strong>FDOA</strong> values depend on:<br />

Emitter Parms: (xe , ye , ze ) and transmit frequency fe xe = [ xe ye ze fe ] T<br />

Assumes that<br />

<strong>TDOA</strong>/<strong>FDOA</strong><br />

pairs are<br />

uncorrelated!!!<br />

Receivers’ Nav Data (positions & velocities): The totality of it called xr r = s(<br />

xe<br />

; xr<br />

) +<br />

ε<br />

ε<br />

• Deterministic “Signal” + Gaussian Noise<br />

• “Signal” is nonlinearly related to parms<br />

To complete the model… we need to know how s(x e;x r) depends on x e and x r.<br />

Thus we need to find <strong>TDOA</strong> & <strong>FDOA</strong> as functions of x e and x r<br />

25


<strong>TDOA</strong>/<strong>FDOA</strong> Measurement Model (cont.)<br />

Here we’ll simplify to the x-y plane… extension is straight-<strong>for</strong>ward.<br />

Two Receivers with: (x 1, y 1, Vx 1, Vy 1) and (x 2, y 2, Vx 2, Vy 2)<br />

Emitter with: (x e, y e)<br />

(Let R i be the range between Receiver i and the emitter; c is the speed of light.)<br />

The <strong>TDOA</strong> and <strong>FDOA</strong> are given by:<br />

s ( x , y ) = τ<br />

1<br />

e<br />

e<br />

=<br />

=<br />

s ( x , y , f ) = ν<br />

2<br />

e<br />

e<br />

e<br />

1<br />

c<br />

12<br />

f<br />

c<br />

e<br />

12<br />

⎛<br />

⎜<br />

⎝<br />

=<br />

⎡<br />

⎢<br />

⎢<br />

⎢⎣<br />

=<br />

R<br />

1<br />

− R<br />

c<br />

2<br />

2<br />

2<br />

2<br />

2<br />

( x1<br />

− xe<br />

) + ( y1<br />

− ye<br />

) − ( x2<br />

− xe<br />

) + ( y2<br />

− ye<br />

) ⎟<br />

⎠<br />

f<br />

c<br />

e<br />

d<br />

dt<br />

( R − R )<br />

( x1<br />

− xe<br />

) Vx1<br />

+ ( y1<br />

− ye<br />

)<br />

( x − x<br />

2 ) + ( y − y )<br />

1<br />

1<br />

e<br />

2<br />

1<br />

e<br />

Vy<br />

1<br />

2<br />

−<br />

( ) ( )<br />

( ) ( ) ⎥ ⎥⎥<br />

x2<br />

− xe<br />

Vx2<br />

+ y2<br />

− ye<br />

Vy2<br />

2<br />

2<br />

x − x + y − y<br />

2<br />

e<br />

2<br />

⎞<br />

e<br />

⎤<br />

⎦<br />

26


CRLB <strong>for</strong> Geo-Location via <strong>TDOA</strong>/<strong>FDOA</strong><br />

Recall: For the General Gaussian Data case the CRLB depends on a FIM that<br />

has structure like this:<br />

[ J(<br />

θ)<br />

]<br />

nm<br />

T<br />

⎡∂µ<br />

x ( θ)<br />

⎤ −1<br />

⎡∂µ<br />

x ( θ)<br />

⎤<br />

= ⎢ ⎥ Cx<br />

( θ)<br />

⎢ ⎥<br />

⎣ ∂θn<br />

'$<br />

$ $ ⎦$<br />

$ &$<br />

$ ⎣ ∂θm<br />

$ $ $ % ⎦<br />

variability<br />

of mean w.r.t. parms<br />

+<br />

1 ⎡<br />

1 ( ) 1 ( ) ⎤<br />

− ∂Cx<br />

θ − ∂Cx<br />

θ<br />

tr⎢Cx<br />

( θ)<br />

Cx<br />

( θ)<br />

⎥<br />

2 ⎢<br />

⎥<br />

'$<br />

⎣<br />

∂θn<br />

∂θm<br />

$ $ $ $ $ &$<br />

$ $ $ $ $ $ % ⎦<br />

variability<br />

of cov. w.r.t. parms<br />

Here we have a deterministic “signal” plus Gaussian noise so we only have the<br />

1 st term… Using the notation introduced here gives…<br />

C<br />

CRLB<br />

( x<br />

e<br />

)<br />

⎡ T<br />

∂s<br />

( x<br />

= ⎢<br />

⎢⎣<br />

∂xe<br />

H T<br />

e<br />

)<br />

C<br />

−1<br />

∂s(<br />

x<br />

∂x<br />

e<br />

e<br />

) ⎤<br />

⎥<br />

⎥⎦<br />

−1<br />

Called the “Jacobian” … <strong>for</strong> the 3-D location with<br />

<strong>TDOA</strong>/<strong>FDOA</strong> will be a 2N × 4 matrix whose columns<br />

are derivatives of s w.r.t. each of the 4 parameters.<br />

H<br />

()<br />

27


CRLB <strong>for</strong> Geo-Loc. via <strong>TDOA</strong>/<strong>FDOA</strong> (cont.)<br />

<strong>TDOA</strong>/<strong>FDOA</strong> Jacobian:<br />

H<br />

= ∆<br />

∂s(<br />

x<br />

∂x<br />

e<br />

e<br />

)<br />

⎡ ∂s1(<br />

xe<br />

)<br />

⎢<br />

∂x<br />

⎢ e<br />

⎢ ∂s2<br />

( xe<br />

)<br />

= ⎢ ∂xe<br />

⎢<br />

(<br />

⎢<br />

⎢∂s2<br />

N ( xe<br />

)<br />

⎢<br />

⎣ ∂xe<br />

∂<br />

∂xe<br />

∂s1(<br />

xe<br />

)<br />

∂ye<br />

∂s2<br />

( xe<br />

)<br />

∂ye<br />

(<br />

∂s2N<br />

( xe<br />

)<br />

∂y<br />

e<br />

∂<br />

∂ye<br />

∂s1(<br />

xe<br />

)<br />

∂ze<br />

∂s2<br />

( xe<br />

)<br />

∂ze<br />

(<br />

∂s2N<br />

( xe<br />

)<br />

∂z<br />

e<br />

∂<br />

∂ze<br />

∂s1(<br />

xe<br />

) ⎤<br />

∂f<br />

⎥<br />

e ⎥<br />

∂s2<br />

( xe<br />

) ⎥<br />

∂f<br />

⎥<br />

e<br />

(<br />

⎥<br />

⎥<br />

∂s2N<br />

( xe<br />

) ⎥<br />

∂f<br />

⎥<br />

e ⎦<br />

Jacobian can be computed <strong>for</strong> any desired Rx-Emitter Scenario<br />

Then… plug it into () to compute the CRLB <strong>for</strong> that scenario:<br />

C<br />

CRLB<br />

( x<br />

e<br />

)<br />

[ ] 1<br />

T −1<br />

−<br />

H C<br />

= H<br />

∂<br />

∂fe<br />

28


CRLB Studies<br />

The Location CRLB can be used to study various aspects of the emitter location<br />

problem. It can be used to study the effect of<br />

• Rx-Emitter Geometry and/or Plat<strong>for</strong>m Velocity<br />

• <strong>TDOA</strong> accuracy vs. <strong>FDOA</strong> accuracy<br />

• Number of Plat<strong>for</strong>ms<br />

• Plat<strong>for</strong>m Pairings<br />

• Etc., Etc., Etc…<br />

Once you have computed the CRLB Covariance C CRLB you can use it to<br />

compute and plot error ellipsoids.<br />

Assumes Geo-Location Error<br />

is Gaussian…<br />

Usually reasonably valid<br />

Emitter<br />

Sensor 1<br />

k 1 σ <strong>TDOA</strong><br />

V V<br />

Faster than doing Monte<br />

Carlo Simulation Runs!!!<br />

Sensor 2<br />

k 2 σ <strong>FDOA</strong><br />

29


CRLB Studies (cont.)<br />

Error Ellipsoids: If our C CRLB is 4×4… how do we get 2-D ellipses to plot???<br />

Projections!<br />

z<br />

Projections of 3-D Ellipsoids onto 2-D Space<br />

y<br />

x<br />

2-D Projections Show<br />

Expected Variation<br />

in 2-D Space<br />

30


CRLB Studies (cont.)<br />

Another useful thing that can be computed from the CRLB is the CEP <strong>for</strong> the<br />

location problem. For the 2-D case:<br />

within 10%<br />

1<br />

2<br />

2<br />

1<br />

CEP ≈ 0.<br />

75 λ + λ = 0.<br />

75 σ + σ<br />

Eigen-Values of the<br />

2-D Cov. Matrix<br />

Down Range<br />

2<br />

2<br />

Diagonal elements of<br />

the 2-D Cov. Matrix<br />

CEP = 80<br />

CEP = 40<br />

CEP = 20<br />

CEP = 10<br />

Cross Range<br />

“Circular Error Probable”<br />

= radius of a circle that when<br />

centered at the estimate’s mean,<br />

contains 50% of the estimates<br />

CEP Contour Plots are<br />

Good Ways to Assess<br />

Location Per<strong>for</strong>mance<br />

31


CRLB Studies (cont.)<br />

Sensor<br />

Geometry and <strong>TDOA</strong> vs. <strong>FDOA</strong> Trade-Offs<br />

Both Important <strong>FDOA</strong> Important <strong>TDOA</strong> Important<br />

Target<br />

<strong>TDOA</strong> Only<br />

<strong>FDOA</strong> Only<br />

<strong>TDOA</strong>/<strong>FDOA</strong><br />

Target<br />

<strong>TDOA</strong> Only<br />

Target<br />

<strong>FDOA</strong><br />

Only<br />

25<br />

32


<strong>Estimator</strong> <strong>for</strong> Geo-Location via <strong>TDOA</strong>/<strong>FDOA</strong><br />

Because we have used the <strong>ML</strong> estimator to get the <strong>TDOA</strong>/<strong>FDOA</strong><br />

estimates the <strong>ML</strong>’s asymptotic properties tell us that we have<br />

Gaussian <strong>TDOA</strong>/<strong>FDOA</strong> measurements<br />

Because the <strong>TDOA</strong>/<strong>FDOA</strong> measurement model is nonlinear it is<br />

unlikely that we can find a truly optimal estimate… so we again<br />

resort to the <strong>ML</strong>. For the <strong>ML</strong> of a Nonlinear Signal in Gaussian we<br />

generally have to proceed numerically.<br />

One way to do Numerical <strong>ML</strong>E is <strong>ML</strong> Newton-Raphson (need vector<br />

version):<br />

θˆ<br />

k+<br />

1<br />

= θˆ<br />

k<br />

⎧<br />

⎪⎡∂<br />

− ⎨⎢<br />

⎪⎢<br />

⎩⎣<br />

2<br />

Hessian: p×p matrix<br />

ln p(<br />

x;<br />

θ)<br />

⎤<br />

T ⎥<br />

∂θ∂θ<br />

⎥⎦<br />

−1<br />

⎫<br />

∂ln<br />

p(<br />

x;<br />

θ)<br />

⎪<br />

⎬<br />

∂θ<br />

⎪<br />

⎭<br />

However, the “Hessian” requires a second derivative…<br />

This can add complexity in practice… Alternative:<br />

Gauss-Newton Nonlinear Least Squares based on linearizing the model.<br />

θ=<br />

θˆ<br />

k<br />

Gradient: p×1 vector<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!