24.04.2013 Views

Author(s) Phelps, Pharo A. Title Properties of some energy levels in ...

Author(s) Phelps, Pharo A. Title Properties of some energy levels in ...

Author(s) Phelps, Pharo A. Title Properties of some energy levels in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Author</strong>(s) <strong>Phelps</strong>, <strong>Pharo</strong> A.<br />

<strong>Title</strong> <strong>Properties</strong> <strong>of</strong> <strong>some</strong> <strong>energy</strong> <strong>levels</strong> <strong>in</strong> phosphorus-30.<br />

Publisher Monterey, California: U.S. Naval Postgraduate School<br />

Issue Date 1963<br />

URL http://hdl.handle.net/10945/12908<br />

This document was downloaded on April 24, 2013 at 07:43:08


LIBRARY<br />

IAVAI POSTGRADUATE SCI<br />

CALIFORNIA


PROPERTIES OF SOME<br />

ENERGY LEVELS IN PHOSPHORUS -30<br />

*****<br />

<strong>Pharo</strong> A. <strong>Phelps</strong>


PROPERTIES OF SOME<br />

ENERGY LEVELS IN PHOSPHORUS -30<br />

by<br />

<strong>Pharo</strong> A. <strong>Phelps</strong><br />

//<br />

Lieutenant Commander, Civil Eng<strong>in</strong>eer Corps<br />

United States Navy<br />

Submitted <strong>in</strong> partial fulfillment <strong>of</strong><br />

the requirements for the degree <strong>of</strong><br />

DOCTOR OF PHILOSOPHY<br />

IN<br />

PHYSICS<br />

United States Naval Postgraduate School<br />

Monterey, California<br />

1963


fV\ P S ,P.


PROPERTIES OF SOME<br />

ENERGY LEVELS IN PHOSPHORUS -30<br />

by<br />

<strong>Pharo</strong> A. <strong>Phelps</strong><br />

This work is accepted as fulfill<strong>in</strong>g<br />

the dissertation requirements for the degree <strong>of</strong><br />

DOCTOR OF PHILOSOPHY<br />

IN<br />

PHYSICS<br />

from the<br />

United States Naval Postgraduate School<br />

LIBRARY<br />

U.S. NAVAI P UATE SCHOOL


ABSTRACT<br />

29 30<br />

The excitation function for the Si (p, ft)P reaction has been<br />

experimentally determ<strong>in</strong>ed <strong>in</strong> the proton <strong>energy</strong> range from 1420 kev<br />

through 2160 kev. Unreported resonances <strong>in</strong> this reaction have been<br />

identified at 1975, 2033, 2075, and 2117 kev with estimated errors<br />

<strong>of</strong> + 4 kev. Gamma spectra at these resonances are obscured by<br />

contam<strong>in</strong>ant radiation but suggest complex decay schemes. Double<br />

angular correlation measurements have been made at the 1470-kev re-<br />

sonance <strong>in</strong>dicat<strong>in</strong>g a resonance level sp<strong>in</strong> <strong>of</strong> 2+, or less probably,<br />

2~. The level at 4.50 Mev is shown to probably have a sp<strong>in</strong> <strong>of</strong> 2+,<br />

or less probably, 3+ rather than 0+ as has been predicted.<br />

li


TABLE OF CONTENTS<br />

I INTRODUCTION 1<br />

II DESCRIPTION OF EQUIPMENT 5<br />

1. Experimental Layout 5<br />

2. Accelerator 5<br />

3. Target Assemblies 5<br />

Page<br />

4. Shield<strong>in</strong>g 10<br />

5. Correlation Table 12<br />

6. Gamma-ray Detectors 12<br />

7. Electronics 12<br />

III EXPERIMENTAL PROCEDURE 18<br />

1. Target Preparation 18<br />

2. Excitation Function Measurements 19<br />

3. Measurement <strong>of</strong> Saturation Activity 20<br />

4. Gamma-ray Spectra 21<br />

5. Measurements at 1470 kev 23<br />

IV EXPERIMENTAL RESULTS 26<br />

1. Excitation Function 26<br />

2. Gamma-ray Spectra at 1975, 2033, 2075 and 32<br />

2117 kev Resonances<br />

3. 1470-kev Resonance Decay and Intensities 36<br />

4. Angular Correlations at the 1470-kev Resonance 39<br />

5. Summary <strong>of</strong> Results 49<br />

V ACKNOWLEDGEMENTS 62<br />

VI APPENDICIES 63<br />

1. Theoretical Description <strong>of</strong> Double 63<br />

Angular Correlations<br />

2. Computer Programs and Analysis 73<br />

VII REFERENCES 116<br />

iii


LIST OF ILLUSTRATIONS<br />

Figure Page<br />

30<br />

1. The Lower Energy Levels <strong>in</strong> P 3<br />

2. Experimental Layout 6<br />

3. Photograph <strong>of</strong> Target Area 7<br />

4. Target Assembly Details 8<br />

5. Photograph <strong>of</strong> Cold Trap Area 11<br />

6. Photograph <strong>of</strong> Correlation Table 13<br />

7. Block Diagram <strong>of</strong> Electronics 14<br />

8. Gamma-ray Yield Curve 27<br />

9. Gamma-gamma Co<strong>in</strong>cidence Yield Curve 28<br />

10. Gamma-ray Spectrum at 1470 kev 37<br />

11. Decay Scheme at 1470-kev Resonance 38<br />

12. Spectrum and Fit for Correlation Run number 40<br />

3-5 at 90°<br />

13. Distribution Coefficients for the 4.50-Mev 42<br />

Gamma Ray<br />

14. Fits <strong>of</strong> Comb<strong>in</strong>ed Experimental Data to Theoretical 43<br />

Curves for 4


LIST OF TABLES<br />

Table Page<br />

1 Spectrometer Calibration Gamma rays 24<br />

29 30<br />

2 Resonances Observed <strong>in</strong> the Si (p,)f)P ^9<br />

Reaction<br />

30<br />

3 Half Life <strong>of</strong> Postbombardment Decay <strong>of</strong> P 30<br />

4 Intensity <strong>of</strong> Postbombardment Annihilation 31<br />

Radiation<br />

5 Gamma-ray Intensities at Resonance Energies 33<br />

<strong>of</strong> 1975, 2033, 2075, and 2117 kev<br />

6 Relative Gamma-ray Intensities at the 1470-kev 34<br />

Resonance<br />

7 Double Angular Correlation Coefficients at 35<br />

1470-kev Resonance<br />

8 Relative Penetration Factors for 1470-kev 72<br />

Protons<br />

9 Coulomb Phase Factors for 1470-kev Protons 72


I. INTRODUCTION<br />

As a result <strong>of</strong> successive ref<strong>in</strong>ements and extensions <strong>of</strong> the collec-<br />

tive model <strong>of</strong> nuclear structure, it has been possible to extend its ap-<br />

plicability <strong>in</strong>to the region <strong>of</strong> <strong>in</strong>termediate mass nuclei (20^A-440)„ By<br />

consider<strong>in</strong>g the outer nucleons to be strongly coupled to the nuclear core,<br />

25 25 28 29<br />

excited states <strong>in</strong> Al , Mg , Al , and Si have been <strong>in</strong>terpreted as col-<br />

1-4<br />

lective rotational excited states with considerable success. More re-<br />

31 30<br />

cently states <strong>in</strong> P and Si have been identified with collective vi-<br />

brational states <strong>of</strong> a weakly coupled collective model. ' The experimental<br />

collection <strong>of</strong> <strong>in</strong>formation on the states <strong>of</strong> <strong>in</strong>termediate mass nuclei serves<br />

to verify the theoretical models, to determ<strong>in</strong>e the parameters which enter<br />

<strong>in</strong>to descriptions <strong>of</strong> the models, and to permit the extensions and ref<strong>in</strong>e-<br />

ments to theory necessary for a more adequate description <strong>of</strong> nuclei. Of<br />

particular relevance to the present <strong>in</strong>vestigation is the prediction based<br />

on the weakly coupled collective model applied to A ~ 30 nuclei that the<br />

30 6<br />

4.50-Mev level <strong>of</strong> P has a sp<strong>in</strong>-parity <strong>of</strong> 0+. In the present work the<br />

experimental determ<strong>in</strong>ation <strong>of</strong> this value has been the object <strong>of</strong> double<br />

angular correlation measurements performed on the gamma rays observed at<br />

29 30<br />

the 1470-kev resonance <strong>in</strong> the Si (p,2f)P reaction.<br />

29 30<br />

Determ<strong>in</strong>ations <strong>of</strong> resonance energies <strong>in</strong> the Si (p 3 ft)P reaction<br />

have been carried out by numerous <strong>in</strong>vestigators s<strong>in</strong>ce 1941. The pro-<br />

ton energies which have been employed <strong>in</strong> these <strong>in</strong>vestigations extend over<br />

the range 300 to 1950 kev.<br />

In addition to detect<strong>in</strong>g resonances and measur<strong>in</strong>g the energies at<br />

which they occur, the allied problem <strong>of</strong> analyz<strong>in</strong>g the associated gamma-ray<br />

spectra has been the object <strong>of</strong> an <strong>in</strong>creas<strong>in</strong>gly large amount <strong>of</strong> research<br />

commensurate with improvements <strong>in</strong> gamma-ray spectroscopy techniques and<br />

<strong>in</strong>strumentation.<br />

Investigations <strong>of</strong> the gamma rays which arise from deexcitation <strong>of</strong><br />

30<br />

the excited states <strong>of</strong> P were begun <strong>in</strong> 1954 by Endt, Kluyver, and Van<br />

-i /* Q on<br />

der Leun. They studied the Si (p,tf)P reaction at resonances oc-<br />

curr<strong>in</strong>g at proton energies <strong>of</strong> 414 kev and 326 kev and assigned sp<strong>in</strong>,<br />

parity, and isotopic sp<strong>in</strong> to the ground state and the first excited state<br />

<strong>of</strong><br />

30<br />

P premised on gamma- transition probabilities, shell model considerations<br />

and the isotopic sp<strong>in</strong> multiplet formalism. In 1956 Broude et<br />

17<br />

al.


confirmed the assignments to the first excited level by measur<strong>in</strong>g the<br />

angular distribution <strong>of</strong> the gamma-rays at the 414-kev resonance. They<br />

30<br />

also detected five new states <strong>in</strong> P by exam<strong>in</strong><strong>in</strong>g gamma radiation<br />

aris<strong>in</strong>g from the same reaction at resonances occurr<strong>in</strong>g at proton ener~<br />

gies <strong>of</strong> 696 kev and 737 kev.<br />

Investigations by Lee and Moor<strong>in</strong>g '<br />

1 18<br />

and by Endt and Paris , who<br />

32 30<br />

studied the S (d,a)P reaction^ showed the first excited state to be<br />

<strong>in</strong> reality a close doublet. The latter <strong>in</strong>vestigators were able to accu-<br />

30<br />

rately determ<strong>in</strong>e the energies <strong>of</strong> 30 excited <strong>levels</strong> <strong>of</strong> P up to excitation<br />

energies <strong>of</strong> 5.8 Mev by magnetic analysis <strong>of</strong> the alpha-particle groups from<br />

this reaction<br />

19<br />

In 1958 Van der Leun and Endt re<strong>in</strong>vestigated the four aforemen-<br />

tioned resonances, study<strong>in</strong>g the decay schemes by analysis <strong>of</strong> gamma-ray<br />

spectra, co<strong>in</strong>cidence measurements , and angular distribution measurements.<br />

From this work came decay schemes, branch<strong>in</strong>g ratios s and assignment <strong>of</strong><br />

sp<strong>in</strong>-parities and isotopic sp<strong>in</strong>s to the four resonance <strong>levels</strong> and to five<br />

30<br />

other excited <strong>levels</strong> <strong>of</strong> P s <strong>in</strong>clud<strong>in</strong>g the two states <strong>of</strong> the above men-<br />

tioned doublet. Dur<strong>in</strong>g 1962 the gamma-ray spectra associated with the<br />

20<br />

proton resonances at 1330 kev and the resonances at 1375 kev and 1505<br />

21<br />

kev were <strong>in</strong>vestigated „ Proposed decay schemes were advanced for these<br />

30<br />

resonances and sp<strong>in</strong>-parity assignments made to three <strong>levels</strong> <strong>of</strong> P . One<br />

29 30<br />

<strong>of</strong> the more comprehensive <strong>in</strong>vestigations <strong>of</strong> the Si (Ps/OP reaction<br />

22<br />

is that <strong>of</strong> Baart et al. , who studied six resonances and proposed decay<br />

schemes for them. Firm sp<strong>in</strong>-parities were assigned to six low- ly<strong>in</strong>g<br />

<strong>levels</strong> and tentative assignments were made to four more <strong>levels</strong>. The<br />

23<br />

most recent <strong>in</strong>vestigation <strong>of</strong> the reaction is that by Moore. As a re-<br />

sult <strong>of</strong> this work decay schemes were proposed for resonances at 1302,<br />

1470, 1505, 1640, 1686 3 1748,, and 1772 kev, and sp<strong>in</strong>-parities were de-<br />

term<strong>in</strong>ed for three resonance <strong>levels</strong> and two <strong>in</strong>termediate <strong>levels</strong>. The<br />

30<br />

present knowledge <strong>of</strong> the quantum states <strong>of</strong> the lower P <strong>levels</strong> re-<br />

sult<strong>in</strong>g from the above <strong>in</strong>vestigations is summarized <strong>in</strong> Fig. 1. Two com-<br />

pilations which summarize important experimental results <strong>of</strong> the above<br />

24<br />

mentioned <strong>in</strong>vestigations are the Nuclear Data Sheets and the compi-<br />

lation <strong>of</strong> <strong>in</strong>formation on the <strong>energy</strong> <strong>levels</strong> <strong>of</strong> nuclei with Z = 11 to<br />

Z = 20 by Endt and Van der Leun. 5


Energies <strong>in</strong> MEV, T values are isotopic sp<strong>in</strong>s,<br />

sp<strong>in</strong>-parities <strong>in</strong> parentheses are less likely alternates.<br />

4.50 19 T =<br />

442 18<br />

4.30.425.<br />

=iln<br />

4.I8^| ig»4<br />

3.93 ;<br />

3.84<br />

3.73<br />

s<br />

'2<br />

3.02 9 l<br />

30<br />

THE LOWER ENERGY LEVELS OF P<br />

FIGURE I.<br />

1<br />

10<br />

2* (2-) T><br />

2.94 8 2* T-<br />

2.84 7<br />

2.72 6 2 f (T)<br />

2.54 5 3*<br />

1 .97 4 3+<br />

L45 3 2}<br />

i*<br />

.683^5 i, ,<br />

+<br />

T


The purpose <strong>of</strong> the present work has been to <strong>in</strong>vestigate resonances<br />

29 30<br />

<strong>in</strong> the Si (p,1f)¥ reaction <strong>in</strong> the proton <strong>energy</strong> range from 1950 kev<br />

to 2150 kev which has not previously been reported on, and to <strong>in</strong>vestigate<br />

the ganuna-ray spectrum associated with the known resonance occurr<strong>in</strong>g at<br />

1470 kev. In particular, the angular distributions <strong>of</strong> gamma rays at the<br />

latter resonance have been measured <strong>in</strong> a double angular correlation ex-<br />

30<br />

periment to obta<strong>in</strong> <strong>in</strong>formation on the 4.50-Mev level <strong>in</strong> P . Additionally,<br />

<strong>some</strong> <strong>in</strong>formation has been obta<strong>in</strong>ed from exam<strong>in</strong>ation <strong>of</strong> spectra taken at the<br />

19<br />

higher resonances although contam<strong>in</strong>ation by F hampered this work. The<br />

follow<strong>in</strong>g sections <strong>of</strong> this paper describe the experimental equipment, pro-<br />

cedure, and data analysis employed, and the results which have been ob=<br />

ta<strong>in</strong>ed from the <strong>in</strong>vestigation.


1. Experimental Layout<br />

II. DESCRIPTION OF EQUIPMENT<br />

Fig. 2 <strong>in</strong>dicates the general arrangement <strong>of</strong> equipment used <strong>in</strong> this<br />

experiment. Fig. 3 is a photograph <strong>of</strong> the target area show<strong>in</strong>g the cor-<br />

relation table tilted <strong>in</strong>to a vertical plane.<br />

2. Accelerator<br />

The 2-Mev Van de Graaff horizontal electrostatic accelerator <strong>of</strong> the<br />

U.S. Naval Postgraduate School, manufactered by the High Voltage Engi-<br />

neer<strong>in</strong>g Corporation, was used <strong>in</strong> this work as a source <strong>of</strong> protons. The<br />

9 ft<br />

radio frequency ion source is <strong>of</strong> the type described by Moak. A proton<br />

sp<strong>in</strong>-resonance fluxmeter for accurately measur<strong>in</strong>g the analyz<strong>in</strong>g magnet's<br />

field was <strong>in</strong>stalled fur<strong>in</strong>g the course <strong>of</strong> the work. An error signal from<br />

the fluxmeter was used <strong>in</strong> a feed back loop to the power supply <strong>of</strong> the<br />

beam analyz<strong>in</strong>g magnet to hold the field strength automatically at a set<br />

value. This feature simplified the ma<strong>in</strong>tenance <strong>of</strong> a given resonance<br />

<strong>energy</strong> for long bombardment times without "slipp<strong>in</strong>g <strong>of</strong>f",<br />

A current <strong>in</strong>tegrator <strong>of</strong> the vacuum tube electrometer type was used<br />

to measure beam current. High stability plastic <strong>in</strong>sulated capacitors<br />

were used to collect the charge. The voltage across the capacitor <strong>in</strong><br />

use was applied to the grid <strong>of</strong> a 954 acorn tube., whose output fired a<br />

Schmidt trigger circuit at a preselected voltage level. The trigger<br />

output actuated other circuitry to discharge the capacitor and advance<br />

a Veeder-Root cycle counter after each cycle.<br />

3. Target Assemblies<br />

Two types <strong>of</strong> targets and target mounts were developed and used <strong>in</strong><br />

this experiment o These are shown <strong>in</strong> Fig. 4. For resonance and co<strong>in</strong>ci-<br />

dence measurements , which were made <strong>in</strong> the plane perpendicular to the<br />

beam, the target back<strong>in</strong>g consisted <strong>of</strong> a one-half -<strong>in</strong> -diameter flanged<br />

copper hemisphere held aga<strong>in</strong>st a flat copper boss on the mount by a<br />

threaded reta<strong>in</strong><strong>in</strong>g r<strong>in</strong>g. This assembly was designed with the beam di-<br />

rection as a symmetry axis so that it can be used for triple correlation<br />

experiments <strong>in</strong> the perpendicular plane with no perturbations from target<br />

geometry. For the double correlations s measured <strong>in</strong> the horizontal plane<br />

conta<strong>in</strong><strong>in</strong>g the beam,, target back<strong>in</strong>gs were 0.046 cm thick copper strips<br />

clamped <strong>in</strong> a copper mount. Both types <strong>of</strong> back<strong>in</strong>gs and mounts were vacuum<br />

5


310SNOO<br />

U0±VU3~I300V<br />

^<br />

\\\\\ \ \ \ \ \<br />

S0INOU10313<br />

7~"**-<br />

<<br />

<<br />

Z<br />

UJ<br />


CO<br />

-J<br />

UJ<br />

Q<br />

m<br />

2<br />

UJ<br />

CO<br />

CO<br />

<<br />

I-<br />

CD<br />

q:<br />

<<br />

UJ<br />

a:<br />

3 CD<br />

U.


plated with a layer <strong>of</strong> gold thick enough to stop <strong>in</strong>cident protons. For<br />

both geometries the target mount was fitted <strong>in</strong>side one end <strong>of</strong> a one~<strong>in</strong>.<br />

diameter tubular chamber,, the axis <strong>of</strong> which co<strong>in</strong>cided with the beam path.<br />

Both target assemblies were designed so as to keep mass <strong>in</strong> the target<br />

vic<strong>in</strong>ity to a m<strong>in</strong>imum. Compet<strong>in</strong>g with this requirement was the need to<br />

cool the target <strong>in</strong> order to prevent any appreciable target material eva-<br />

poration. Maximum possible beam <strong>in</strong>tensities were desired so as to take<br />

advantage <strong>of</strong> the better count<strong>in</strong>g statistics which accompany high yields.<br />

Still another requirement <strong>of</strong> angular correlation measurements is a small<br />

target spot to approximate a po<strong>in</strong>t source <strong>of</strong> gamma rays. A beam colli-<br />

mator consist<strong>in</strong>g <strong>of</strong> two five-mil tantalum discs separated by 0.4 <strong>in</strong>. was<br />

mounted <strong>in</strong> a brass holder 38 <strong>in</strong>. from the target. A 0.096-<strong>in</strong>. diameter<br />

collimat<strong>in</strong>g aperture was followed by a 0.098-<strong>in</strong>. hole <strong>in</strong> the second disc<br />

for the purpose <strong>of</strong> stopp<strong>in</strong>g protons scattered from the edge <strong>of</strong> the col-<br />

limat<strong>in</strong>g disc. A cyl<strong>in</strong>drical lead shield surrounded the collimator <strong>in</strong><br />

order to attenuate any gamma rays produced hare.<br />

As is described <strong>in</strong> Chapter ill;, target material was evaporated di-<br />

rectly onto the gold-plated copper back<strong>in</strong>gs to permit good heat conduction,<br />

Initially, a hollow copper target back<strong>in</strong>g through which coolant could be<br />

circulated was tried, but was abandoned for a simpler solid copper back-<br />

<strong>in</strong>g cooled by conduction through a f<strong>in</strong>ned copper extension lead<strong>in</strong>g to an<br />

external Dewar flask. Liquid air <strong>in</strong> the Dewar proved to be convenient<br />

as a coolant at high beam powers and 3 below about ten watts, target power<br />

dissipation by forced air cool<strong>in</strong>g <strong>of</strong> the target extension f<strong>in</strong>s proved<br />

adequate.<br />

After unsuccessful trials <strong>of</strong> Lucite and glass target tubes, alum<strong>in</strong>um<br />

was f<strong>in</strong>ally adopted for this purpose. An auxiliary target assembly with<br />

a quartz w<strong>in</strong>dow target was used to accurately center the proton beam spot.<br />

The target chamber tube, which was <strong>in</strong>sulated from ground at both ends.,<br />

was ma<strong>in</strong>ta<strong>in</strong>ed at a negative potential <strong>of</strong> 300 volts relative to ground <strong>in</strong><br />

order to suppress secondary electrons from the target. In order to pre-<br />

vent recoil protons from excit<strong>in</strong>g alum<strong>in</strong>um resonances, the target tube<br />

was l<strong>in</strong>ed with one-mil gold foil.<br />

The hemispherical copper target back<strong>in</strong>gs for measurements <strong>in</strong> the<br />

plane perpendicular to the beam were needed <strong>in</strong> <strong>some</strong> quantity, so were<br />

"mass produced" <strong>in</strong> a small hand forge made for this purpose. A surface<br />

which needed only m<strong>in</strong>or polish<strong>in</strong>g and clean<strong>in</strong>g before gold plat<strong>in</strong>g was<br />

obta<strong>in</strong>ed <strong>in</strong> this manner<br />

„<br />

9


A frequently trouble<strong>some</strong> feature <strong>of</strong> (p, # ) <strong>in</strong>vestigations is the<br />

gradual accumulation <strong>of</strong> carbon on the target, as a result <strong>of</strong> crack<strong>in</strong>g<br />

<strong>of</strong> pump oil vapor by particle bombardment. To reduce this difficulty,<br />

advantage was taken <strong>of</strong> an 8"<strong>in</strong>. glass cross which was mounted between<br />

the target diffusion pump and the target chamber as shown <strong>in</strong> Fig. 5.<br />

A special liquid air cold trap was constructed and <strong>in</strong>stalled <strong>in</strong> this<br />

cross to serve a dual purpose. First., it functioned as an ord<strong>in</strong>ary<br />

cold trap with a large surface <strong>of</strong> copper vanes suspended from the<br />

coolant reservoir to provide an optically dense path from the dif-<br />

fusion pump thus permitt<strong>in</strong>g the vacuum to be rout<strong>in</strong>ely ma<strong>in</strong>ta<strong>in</strong>ed close<br />

to 10 '<br />

Torr.<br />

The second feature <strong>of</strong> the trap was a 1-<strong>in</strong>. diameter<br />

copper pipe pierc<strong>in</strong>g the vanes which the proton beam traversed. At<br />

high vacuum the proton beam functions effectively as a pump, trans-<br />

port<strong>in</strong>g gases and vapor encountered <strong>in</strong> its path. When the beam passes<br />

through the restricted cold pipe for 6 <strong>in</strong>. before enter<strong>in</strong>g the target<br />

chamber, it was reasoned that its drift<strong>in</strong>g ret<strong>in</strong>ue <strong>of</strong> condensable vapor<br />

contam<strong>in</strong>ants would be largely trapped by the cold <strong>in</strong>ner wall. The re-<br />

sults from use <strong>of</strong> the trap support this idea s<strong>in</strong>ce only m<strong>in</strong>or discolor-<br />

ration was observed on targets compared with that vnich occurred when<br />

the trap was not used, and no <strong>in</strong>crease <strong>in</strong> bombardment <strong>energy</strong> was found<br />

necessary as targets aged.<br />

4. Shield<strong>in</strong>g<br />

To reduce the radiation level at the target result<strong>in</strong>g from brems-<br />

strahlung and X-rays caused by electrons accelerated toward the high<br />

voltage accelerator term<strong>in</strong>al 5 a considerable amount <strong>of</strong> lead shield<strong>in</strong>g<br />

was erected. A 2-<strong>in</strong>. -thick lead wall 3 5 ft. high and 4 ft. wide^ was<br />

placed between the <strong>energy</strong> control slits and the beam collimator. In<br />

addition, two lead screens 1/4-<strong>in</strong>. thick and each 5 ft. by 4 ft. were<br />

bolted onto a caster supported steel framework constructed for this<br />

purpose. The mobility <strong>of</strong> the screens permitted their placement to<br />

m<strong>in</strong>imize the radiation level at the target and also allowed easy re-<br />

moval for access to the target area. Although the above-described<br />

shield<strong>in</strong>g <strong>of</strong>fered <strong>some</strong> reduction <strong>in</strong> natural background radiation,<br />

40<br />

(notably the 1.46-Mev K gamma ray) it was not feasible to screen<br />

specifically aga<strong>in</strong>st background without either Increas<strong>in</strong>g scattered<br />

target radiation at the detectors or utiliz<strong>in</strong>g an excessive amount <strong>of</strong><br />

lead.<br />

10


5. Correlation table<br />

A correlation table shown <strong>in</strong> Fig. 6 was built for this experiment<br />

to support the gamma-ray detectors and to permit their accurate position<strong>in</strong>g<br />

with respect to the target. A steel base plate mounted on casters supported<br />

a hollow magnesium column upon which the table was mounted. Screw jacks <strong>in</strong><br />

the base plate were extended when the apparatus was <strong>in</strong> place to hold the<br />

table <strong>in</strong> position and to allow accurate vertical adjustment. The table it-<br />

self consisted <strong>of</strong> a movable graduated alum<strong>in</strong>ium disc which was mounted con-<br />

centrically on a fixed alum<strong>in</strong>um support plate. Slides mounted on the disc<br />

and on the support plate held mounts for the two gamma-ray detection as-<br />

semblies. The mounts were positioned <strong>in</strong> the slides by threaded rods which<br />

allowed the detectors to be set accurately at distances from 1/2 <strong>in</strong>. to<br />

6 <strong>in</strong>. from the target position. The detection assembly mounted on the disc<br />

could be positioned <strong>in</strong> angle with respect to the fixed detector <strong>in</strong> 12 m<strong>in</strong>. <strong>in</strong>-<br />

crements <strong>of</strong> arc by means <strong>of</strong> an adjust<strong>in</strong>g gear mesh<strong>in</strong>g with gear teeth on<br />

the periphery <strong>of</strong> the disc. The entire table assembly was attached to the<br />

magnesium support column by a h<strong>in</strong>ge so that it could be tilted <strong>in</strong>to either<br />

a horizontal or vertical plane s permitt<strong>in</strong>g measurements to be taken <strong>in</strong><br />

either the horizontal plane conta<strong>in</strong><strong>in</strong>g the proton beam or <strong>in</strong> the plane per-<br />

pendicular to the beam. The first named arrangement is designated here<strong>in</strong><br />

as geometry A and the latter as geometry B.<br />

6. Gamma-ray detectors<br />

The gamma-ray detection assemblies were supported with their center-<br />

l<strong>in</strong>es 8 3/4 <strong>in</strong>. above the table. They each consisted <strong>of</strong> a 3 <strong>in</strong>. x 3 <strong>in</strong>.<br />

cyl<strong>in</strong>drical sodium iodide (thallium activated) crystal <strong>in</strong>tegrally mounted<br />

with a Dumont 6363 photomultiplier tube supplied by the Harshaw Chemical<br />

Company. In the earlier phases <strong>of</strong> this work, similar 2 <strong>in</strong>. x 2 <strong>in</strong>. crystals<br />

mounted with Dumont 6292 tubes were used. The resolution <strong>of</strong> the 3-<strong>in</strong>. cry-<br />

stals, measured after the signal had traversed a 12-microsecond delay l<strong>in</strong>e<br />

137<br />

<strong>in</strong>put to the pulse height analyzer, was 9% for the 0.662-Mev Cs gamma ray.<br />

A 6AK5 cathode follower was constructed <strong>in</strong>to each detector mount to serve<br />

as a preamplifier.<br />

7. Electronics<br />

The electronic equipment and circuitry for process<strong>in</strong>g signals from<br />

the detectors were planned so as to permit considerable flexibility <strong>in</strong> ex=<br />

perimental applications. A block diagram <strong>of</strong> the basic layout is shown <strong>in</strong><br />

Fig. 7.<br />

12


o<br />

org<br />

5 <strong>in</strong><br />

< a<br />

cc cc<br />

uj o<br />

o m<br />

T<br />

>iNva a3Momod<br />

i<br />

3Q0H1V0<br />

14<br />

^£&M&>*<br />

n<br />

I- o i<br />

z o cc<br />

cc hi t-<br />

cc<br />

u<br />

iz<br />

< o o<br />

CO<br />

o<br />

z<br />

o<br />

cc<br />

\o<br />

u<br />

-J<br />

UJ<br />

2<br />

<<br />

a:<br />

o <<br />

2*:<br />

o<br />

CD<br />

UJ<br />

or


The system is composed <strong>of</strong> an RCL 128~channel pulse height analyzer<br />

to record pulse height spectra, a slow-fast-sum co<strong>in</strong>cidence analyzer, and<br />

scalers for record<strong>in</strong>g various outputs.<br />

It was found that requirements for the detector output signal by<br />

several components , <strong>in</strong>clud<strong>in</strong>g a monitor oscilliscope, tended to overload<br />

the preamplifiers and to permit, unacceptable <strong>in</strong>teraction <strong>of</strong> subsequent<br />

stages with each other through the coupl<strong>in</strong>g <strong>of</strong> their <strong>in</strong>puts. To avoid this<br />

problem a bank <strong>of</strong> six cathode followers was constructed. A buss<strong>in</strong>g arrange-<br />

ment made it possible to feed the grids <strong>of</strong> the followers from either one <strong>of</strong><br />

two busses or from an <strong>in</strong>dividual <strong>in</strong>put, so that up to six pieces <strong>of</strong> equip-<br />

ment could be driven bv the same <strong>in</strong>put pulse with no <strong>in</strong>teraction and with<br />

practically no signal loss. Each follower was provided with an <strong>in</strong>dividual<br />

output ga<strong>in</strong> control.<br />

The output <strong>of</strong> either detector as desired was also fed directly <strong>in</strong>to<br />

the pulse height analyzer through a simple resistance isolation network.<br />

From the resistance network the signal passed through a term<strong>in</strong>ated 1350-ohm<br />

delay l<strong>in</strong>e to allow time for formation <strong>of</strong> gat<strong>in</strong>g pulses needed for co<strong>in</strong>ci-<br />

dence spectra. Several methods <strong>of</strong> <strong>in</strong>ject<strong>in</strong>g a signal <strong>in</strong>to the analyzer<br />

were tried <strong>in</strong>asmuch as this equipment was designed to accept an <strong>in</strong>put only<br />

from a photomultiplier tube connected directly <strong>in</strong>to the preamplifier as-<br />

sembly provided. This was not an acceptable practice because there existed<br />

no convenient means <strong>of</strong> signal extraction for other purposes, and because<br />

the preamplifier utiJ Lzed a high-voltage supply which required runn<strong>in</strong>g the<br />

photomultiplier cathode at a high negative potential with respect to the<br />

tube shield with the attendant probability <strong>of</strong> tube damage. The procedure<br />

adopted as most successful was to apply the signal from the delay l<strong>in</strong>e to<br />

the anode p<strong>in</strong> <strong>of</strong> a 14-p<strong>in</strong> tube base which was connected directly <strong>in</strong>to the<br />

analyzer preamplifier. tf was also necessary to <strong>in</strong>corporate a gate pulse-<br />

form<strong>in</strong>g network <strong>in</strong>to the analyzer <strong>in</strong> order to meet the gat<strong>in</strong>g pulse speci-<br />

fications required by this equipment.<br />

Gamma-ray spectra were obta<strong>in</strong>ed by gat<strong>in</strong>g the analyzer with the dis-<br />

crim<strong>in</strong>ator output pulses from the l<strong>in</strong>ear amplifier fed by the same de-<br />

tector. This procedure excluded a weak precursor pulse which was trans-<br />

mitted by the delay L<strong>in</strong>< aput s by not gat<strong>in</strong>g the analyzer on until a few<br />

microseconds before arrival <strong>of</strong> the delayed pulse. No significant loss <strong>in</strong><br />

detector resolution resulted from leav<strong>in</strong>g the delay l<strong>in</strong>e <strong>in</strong> the <strong>in</strong>put for<br />

15


ord<strong>in</strong>ary gamma-ray spectra, and it was found quite convenient to be able<br />

to switch from these s<strong>in</strong>gles spectra to co<strong>in</strong>cidence spectra without change<br />

<strong>in</strong> analyzer calibration.<br />

For the observation <strong>of</strong> co<strong>in</strong>cidence spectra, the analyzer was gated by<br />

the slow-fast co<strong>in</strong>cidence output* The basic slow-fast co<strong>in</strong>cidence system<br />

27<br />

assembled for this experiment has been described elsewhere. In this<br />

system the output from an Atomic Instrument Company slow co<strong>in</strong>cidence unit<br />

accept<strong>in</strong>g up to four <strong>in</strong>puts was comb<strong>in</strong>ed <strong>in</strong> a diode mixer with the fast<br />

co<strong>in</strong>cidence unit output to obta<strong>in</strong> the slow-fast co<strong>in</strong>cidence output signal.<br />

28<br />

The fast unit, based on the circuit <strong>of</strong> Draper and Fleischer, detects co=<br />

<strong>in</strong>cidences between amplified pulses from the sc<strong>in</strong>tillation detectors with<br />

a resolution time as low as ten ns. For pulses spann<strong>in</strong>g a large amplitude<br />

range, however, more dependable operation was obta<strong>in</strong>ed when the resolv<strong>in</strong>g<br />

time was <strong>in</strong>creased to about 80 ns . This was due to an observed amplitude<br />

dependence <strong>of</strong> the shape <strong>of</strong> the lead<strong>in</strong>g edge <strong>of</strong> the amplified pulse, to<br />

which the fast unit is sensitive.<br />

Several modifications have been made to the co<strong>in</strong>cidence system which<br />

do not appear <strong>in</strong> the previous description. The diode mixer unit for com=<br />

b<strong>in</strong><strong>in</strong>g the slow and fast co<strong>in</strong>cidence outputs has been modified by <strong>in</strong>sert<strong>in</strong>g<br />

a Schmidt trigger between the add<strong>in</strong>g stage and the output stage <strong>in</strong> order to<br />

clip the sum pulse and improve output-pulse characteristics. The fast unit<br />

has been modified by provid<strong>in</strong>g a variable delay l<strong>in</strong>e <strong>in</strong> the <strong>in</strong>put <strong>in</strong> order<br />

to permit accurate compensation for differences <strong>in</strong> time delays between the<br />

detectors and the co<strong>in</strong>cidence unit. F<strong>in</strong>ally, there has been added to the<br />

system a provision for obta<strong>in</strong><strong>in</strong>g sum-co<strong>in</strong>cidence spectra as first described<br />

29<br />

by Hoogenboom. In this system the pulses from the two detectors are<br />

carefully matched <strong>in</strong> amplitude calibration, then summed <strong>in</strong> a pulse add<strong>in</strong>g<br />

circuit. These summed pulses are analyzed <strong>in</strong> a differential discrim<strong>in</strong>ator<br />

set to accept pulses correspond<strong>in</strong>g to the excitation <strong>energy</strong> <strong>of</strong> a resonance<br />

level. This output is then used as a third <strong>in</strong>put to the slow co<strong>in</strong>cidence<br />

unit so that its output represents co<strong>in</strong>cidence between two completely ab~<br />

sorbed gamma rays compris<strong>in</strong>g a double cascade from the resonance level.<br />

This signal is then used to trigger the pulse height analyzer gate. The<br />

spectrum obta<strong>in</strong>ed from pulse height analysis <strong>of</strong> one detector output thus<br />

consists only <strong>of</strong> full <strong>energy</strong> peaks due to radiations which are members <strong>of</strong><br />

a double cascade. The pulse height adder which has been constructed for<br />

this purpose employs the circuit used by Kantele and F<strong>in</strong>k <strong>in</strong> a <strong>some</strong>what<br />

30<br />

different type <strong>of</strong> spectrometer. The adder output was analyzed by a con-<br />

ventional l<strong>in</strong>ear amplifier and discrim<strong>in</strong>ator.<br />

16


The scalers used to record s<strong>in</strong>gle channel counts had dead times <strong>of</strong> one<br />

microsecond and those record<strong>in</strong>g co<strong>in</strong>cidences had dead times <strong>of</strong> approximately<br />

eight microseconds. Separate cathode-f ollower outputs to drive scalers were<br />

constructed for all co<strong>in</strong>cidence stages so the relatively low scaler <strong>in</strong>put<br />

impedances would not degrade co<strong>in</strong>cidence pulses. The number <strong>of</strong> scalers pro-<br />

vided, which exceeded the requirements for the present experimental measure-<br />

ments, permitted a cont<strong>in</strong>uous check on the performance <strong>of</strong> the co<strong>in</strong>cidence<br />

system.<br />

A double pulser with associated pulse shap<strong>in</strong>g networks and an os=<br />

cilloscope formed an <strong>in</strong>tegral part <strong>of</strong> the equipment and were used for<br />

all rout<strong>in</strong>e checks and adjustments. An additional slow co<strong>in</strong>cidence unit<br />

31<br />

<strong>of</strong> variable resolv<strong>in</strong>g time , which was constructed as part <strong>of</strong> the system,<br />

was used to check on the operation <strong>of</strong> the Atomic Instrument Company unit.<br />

Control circuit relays were provided so that the pulse height analyzer<br />

and all scalers could be started and stopped simultaneously by the current<br />

<strong>in</strong>tegrator on-<strong>of</strong>f switch.<br />

17


1. Target preparation<br />

III. EXPERIMENTAL PROCEDURE<br />

The target material used <strong>in</strong> this experiment was isotopically enriched<br />

silicon <strong>in</strong> the dioxide form purchased from the Stable Isotopes Division <strong>of</strong><br />

Oak Ridge National Laboratory. Relative percentages <strong>of</strong> the three stable<br />

29 28 ^f)<br />

silicon isotopes were 91.85 Si , 7.85 Si , and 0.30 Si . This material<br />

was evaporated onto prepared target back<strong>in</strong>gs <strong>in</strong> a vacuum evaporation ap=<br />

paratus under a chamber pressure <strong>of</strong> 10" to 10 Torr<br />

Beam power <strong>of</strong> as much as 20 watts was delivered to a target spot area<br />

<strong>of</strong> about 6 square millimeters dur<strong>in</strong>g bombardment . Dissipation <strong>of</strong> this heat<br />

by 5-mil tantalum target back<strong>in</strong>gs, which had been used <strong>in</strong> previous work at<br />

this laboratory, was found <strong>in</strong>sufficient to prevent local overheat<strong>in</strong>g <strong>of</strong> the<br />

target with an accompany<strong>in</strong>g rapid loss <strong>of</strong> target material. This fact, and<br />

the fluor<strong>in</strong>e contam<strong>in</strong>ation <strong>of</strong> the surface <strong>of</strong> all sheet tantalum exam<strong>in</strong>ed,<br />

led to employment <strong>of</strong> the heavier target back<strong>in</strong>gs <strong>of</strong> copper described <strong>in</strong><br />

Chapter II. While vacuum plat<strong>in</strong>g these copper back<strong>in</strong>gs with 60,000 £ or<br />

more <strong>of</strong> gold (99.999 percent purity) to completely stop 2-Mev protons, it<br />

was found that the plat<strong>in</strong>g tended to crack and spall <strong>of</strong>f when the copper<br />

back<strong>in</strong>gs were ma<strong>in</strong>ta<strong>in</strong>ed at ambient temperature dur<strong>in</strong>g evaporation. This<br />

effect was caused chiefly by tensile stresses which have been found to be<br />

as much as 850 Kg/cm <strong>in</strong> 2000 £ gold films deposited on copper. 32<br />

This<br />

trouble was overcome by hold<strong>in</strong>g the copper back<strong>in</strong>gs at 400°C dur<strong>in</strong>g eva-<br />

poration by means <strong>of</strong> a resistance heater which was constructed for this<br />

purpose. The heater was made <strong>in</strong> the form <strong>of</strong> a 4=<strong>in</strong>. cyl<strong>in</strong>drical section,<br />

to which the target back<strong>in</strong>gs were clamped. The cyl<strong>in</strong>drical heater section<br />

was suspended <strong>in</strong> the vacuum coat<strong>in</strong>g chamber so that its axis co<strong>in</strong>cided<br />

with the evaporant source. Heat<strong>in</strong>g the back<strong>in</strong>gs <strong>in</strong> this manner prior to<br />

evaporat<strong>in</strong>g both gold and Si0 2 also served to remove any residual volatile<br />

contam<strong>in</strong>ants leav<strong>in</strong>g a clean surface to receive the coat<strong>in</strong>g.<br />

Evaporat<strong>in</strong>g boats were fabricated from 5-mil tungsten ribbon and, when<br />

cleaned by preheat<strong>in</strong>g before use, proved to be satisfactory for the eva-<br />

poration <strong>of</strong> both gold and Si0 2> Temperature <strong>of</strong> the Si0 ? evaporant was<br />

monitored with an optical pyrometer to ma<strong>in</strong>ta<strong>in</strong> an <strong>in</strong>dicated evaporat<strong>in</strong>g<br />

temperature <strong>of</strong> 2130 C; at this temperature 4.0 mg <strong>of</strong> SiO,, evaporated <strong>in</strong><br />

18<br />

.


about two m<strong>in</strong>utes. The temperature is not corrected for departure <strong>of</strong><br />

the evaporant from an ideal black body <strong>in</strong>asmuch as reproducibility and<br />

temperature control were desired rather than an accurate measurement <strong>of</strong><br />

true surface temperature. Dur<strong>in</strong>g the first five to ten seconds <strong>of</strong> all<br />

evaporations the evaporant was <strong>in</strong>tercepted by a shutter, s<strong>in</strong>ce the first<br />

part <strong>of</strong> an evaporant to boil <strong>of</strong>f is known to carry a higher percentage<br />

<strong>of</strong> any contam<strong>in</strong>ants present . Follow<strong>in</strong>g evaporation, cool<strong>in</strong>g <strong>of</strong> the<br />

heater and targets was accelerated by admitt<strong>in</strong>g pure helium to the chamber<br />

through a liquid air trap,,<br />

In practice, 2 gm or more <strong>of</strong> gold were evaporated at a distance <strong>of</strong><br />

5 cm from the target back<strong>in</strong>gs and exposed parts <strong>of</strong> target assemblies to<br />

produce the desired plat<strong>in</strong>g thickness. 4.1 mg <strong>of</strong> SiO~ were evaporated at<br />

the same distance to give targets approximately 5=kev thick to 2-Mev pro-<br />

tons for use <strong>in</strong> the excitation function runs. For the targets used to<br />

obta<strong>in</strong> gamma-ray spectra^ and for angular correlation runs at 1470 kev,<br />

5.2 mg <strong>of</strong> SiO. were evaporated to obta<strong>in</strong> targets 8-kev thick to 1470-kev<br />

protons.<br />

Considerable care was used <strong>in</strong> an attempt to reduce the contam<strong>in</strong>ation<br />

19 o<br />

by F . Evaporation boats were preheated to 2200 C before use, targets<br />

were stored <strong>in</strong> a vacuum (until this was found not to be <strong>of</strong> value), target<br />

chamber pressure was ma<strong>in</strong>ta<strong>in</strong>ed at 10 '<br />

Torr<br />

dur<strong>in</strong>g runs, and possible<br />

sources <strong>of</strong> contam<strong>in</strong>ation <strong>in</strong> the vacuum systems such as Teflon were a-<br />

19<br />

voided. In prelim<strong>in</strong>ary bombardments at the F resonance <strong>energy</strong> <strong>of</strong> 1373 kev,<br />

the gold-plated copper target back<strong>in</strong>gs, which were washed <strong>in</strong> either pure<br />

ethanol or menthanol and r<strong>in</strong>sed <strong>in</strong> distilled water just prior to use, were<br />

19<br />

found to be freer from F than back<strong>in</strong>gs <strong>of</strong> either Ta or W which had been<br />

cleaned by various methods* In spite <strong>of</strong> these precautions all targets<br />

19<br />

which were prepared proved to be contam<strong>in</strong>ated to <strong>some</strong> degree by F<br />

2. Excitation function measurements<br />

The excitation function <strong>of</strong> the<br />

29 30<br />

Si (p, K)P reaction has been<br />

measured by record<strong>in</strong>g s<strong>in</strong>gle gamma-ray yield and gamma-gamma co<strong>in</strong>cidence<br />

yield at accelerator <strong>energy</strong> sett<strong>in</strong>gs over a range <strong>of</strong> proton energies from<br />

1420 kev to 2170 kev. The 2 <strong>in</strong>. x 2 <strong>in</strong>. Nal(Tl) sc<strong>in</strong>tillation detectors<br />

were used for this purpose. The output <strong>of</strong> one <strong>of</strong> the detectors was counted<br />

to obta<strong>in</strong> the gamma-ray yield at each proton <strong>energy</strong>, and the number <strong>of</strong><br />

events <strong>in</strong> which gamma rays were detected simultaneously <strong>in</strong> each crystal was<br />

recorded by the use <strong>of</strong> the slow-fast co<strong>in</strong>cidence system adjusted to a re-<br />

solv<strong>in</strong>g time <strong>of</strong> 25 ns<br />

.<br />

19


The two detectors were positioned <strong>in</strong> geometry B at angles <strong>of</strong> and<br />

180 relative to the vertical direction and at a distance <strong>of</strong> 0.6 <strong>in</strong>. from<br />

the beam spot. Integral discrim<strong>in</strong>ators <strong>in</strong> both channels were set so that<br />

counts would be recorded for gamma rays with energies exceed<strong>in</strong>g 0.65 Mev,<br />

a sett<strong>in</strong>g chosen to exclude the 0.51-Mev annihilation radiation aris<strong>in</strong>g<br />

30<br />

from the positron decay <strong>of</strong> P , while accept<strong>in</strong>g the full <strong>energy</strong> peaks <strong>of</strong><br />

the 0.68 and 0.71 Mev radiations which deexcite the first two excited<br />

30<br />

states <strong>in</strong> P . The 7-microampere proton beam was collected by the cur-<br />

rent <strong>in</strong>tegrator which closed a beam shutter and stopped counters after<br />

collection <strong>of</strong> 84 microcoulombs at each <strong>energy</strong> step <strong>of</strong> approximately 3 kev,<br />

Background counts were made every 50 kev with the beam <strong>in</strong>tercepted by a<br />

shutter <strong>in</strong> the beam tube outside <strong>of</strong> the shielded target area.<br />

An auxiliary experiment was conducted to determ<strong>in</strong>e the <strong>energy</strong> cali-<br />

bration for the excitation curves. In this experiment the frequency <strong>of</strong><br />

"ft<br />

the NMR signal was measured to with<strong>in</strong> one part <strong>in</strong> 10 as the 992-kev<br />

33<br />

alum<strong>in</strong>um resonance was traversed us<strong>in</strong>g a freshly prepared target about<br />

10 kev <strong>in</strong> thickness. Runs with mass 2 beams were also made to check this<br />

calibration at a generator <strong>energy</strong> <strong>of</strong> 1984 kev. Immediately after cali-<br />

29'<br />

bration, the Si resonance<br />

energies above 1970 kev and the <strong>energy</strong> <strong>of</strong><br />

the resonance at 1506 kev were carefully measured <strong>in</strong> a similar manner.<br />

Us<strong>in</strong>g these po<strong>in</strong>ts as references it was then possible to calibrate the<br />

entire excitation curve <strong>in</strong> terms <strong>of</strong> magnet current, which was determ<strong>in</strong>ed<br />

to a precision <strong>of</strong> one part <strong>in</strong> 10 at each <strong>energy</strong> step. This procedure<br />

gave a better calibration than that obta<strong>in</strong>ed us<strong>in</strong>g the fluxmeter logg<strong>in</strong>g<br />

dial read<strong>in</strong>gs, s<strong>in</strong>ce calibration curves for convert<strong>in</strong>g these read<strong>in</strong>gs to<br />

magnetic field could not be read with adequate precision.<br />

3. Measurement <strong>of</strong> saturation activity<br />

In order to def<strong>in</strong>itely identify resonances due to the<br />

29 30<br />

Si (p,tf)P<br />

reaction, measurements were made at the resonances above 1970 kev to<br />

determ<strong>in</strong>e the half life <strong>of</strong> decay radiation follow<strong>in</strong>g bombardment. In<br />

29<br />

these measurements Si ' targets were bombarded for ten m<strong>in</strong>utes, then re-<br />

moved to a small cave <strong>of</strong> 2-<strong>in</strong>. lead brick where count<strong>in</strong>g was started<br />

with<strong>in</strong> 60 sec after cessation <strong>of</strong> bombardment. The positron annihilation<br />

30<br />

radiation follow<strong>in</strong>g beta decay <strong>of</strong> P was detected by a 3 <strong>in</strong>. x 3 <strong>in</strong>.<br />

crystal. Total counts above the noise threshold were recorded by the<br />

pulse height analyzer operated <strong>in</strong> a gross count<strong>in</strong>g mode. In this mode<br />

the channel <strong>in</strong> which all counts are recorded is automatically shifted<br />

20


ahead after a preset count<strong>in</strong>g time. After count<strong>in</strong>g for 3.1 sec per<br />

channel for a 6.46-m<strong>in</strong>ute total count<strong>in</strong>g time, the target was removed<br />

from the cave and a background run made with the analyzer <strong>in</strong> the sub-<br />

tract mode.<br />

Difficulty which was experienced <strong>in</strong> obta<strong>in</strong><strong>in</strong>g gamma-ray spectra<br />

29<br />

recognizably due to Si at the upper resonances as a result <strong>of</strong> mask<strong>in</strong>g*<br />

radiation from the F (p,CC "*T)0 reaction caused <strong>some</strong> concern that the<br />

peaks observed <strong>in</strong> the excitation curve might have been due to other con~<br />

30<br />

tam<strong>in</strong>ants. Observance <strong>of</strong> the 2.5-m<strong>in</strong> half life <strong>of</strong> P follow<strong>in</strong>g bombard-<br />

ment could not entirely exclude this possibility s<strong>in</strong>ce it is conceivable<br />

30<br />

for P to be formed <strong>in</strong> a nonresonant direct capture process. For this<br />

reason it was desirable to compare the activity <strong>of</strong> the target observed<br />

after bombardment at energies correspond<strong>in</strong>g to the peaks <strong>in</strong> the yield<br />

curves to the activity observed after bombardment at <strong>of</strong>f-peak energies.<br />

In an experiment to do this> a proton bombardment time <strong>of</strong> ten m<strong>in</strong>utes to<br />

obta<strong>in</strong> 94 percent <strong>of</strong> saturation activity was followed by a ten-m<strong>in</strong>ute<br />

count<strong>in</strong>g period dur<strong>in</strong>g which the pulse height spectrum was obta<strong>in</strong>ed.<br />

The target was then allowed to decay for an additional ten m<strong>in</strong>utes before<br />

bombardment was resumed at the next <strong>energy</strong>. The number <strong>of</strong> counts observed<br />

<strong>in</strong> the 0.51-Mev annihilation radiation peak then served as a measure <strong>of</strong><br />

30<br />

the amount <strong>of</strong> P formed at each <strong>energy</strong>.<br />

4. Gamma-ray spectra<br />

All gamma-ray spectra were obta<strong>in</strong>ed us<strong>in</strong>g 3 <strong>in</strong>. x 3 <strong>in</strong>. Nal(Tl)<br />

crystals with no special shield<strong>in</strong>g nor collimation. For most spectra<br />

the pulse height analyzer usable range extended from about channel 7<br />

to channel 127 correspond<strong>in</strong>g to gamma-ray energies from 0.7 to 7.7 Mev.<br />

For observation <strong>of</strong> annihilation radiation a higher ga<strong>in</strong> was used so that<br />

these channels corresponded to energies from 0.18 to 1.92 Mev. The<br />

analysis <strong>of</strong> spectra for <strong>in</strong>tensities was performed with a digital computer<br />

as described <strong>in</strong> Appendix 2. The particular method f<strong>in</strong>ally used to sub-<br />

tract background radiation from spectra varied accord<strong>in</strong>g to the resonance<br />

be<strong>in</strong>g considered. When possible, backgrounds taken slightly above or be-<br />

low resonances were subtracted from spectra. This was not very successful<br />

19<br />

for the resonances above 1950 kev where F contam<strong>in</strong>ation gave rise to the<br />

F (p,ajf)0 reaction. This reaction is strongly resonant at 2030 kev<br />

34<br />

with a width at half maximum <strong>of</strong> 120 kev which effectively blankets the<br />

higher proton <strong>energy</strong> range considered <strong>in</strong> the present work. The 6-7 Mev<br />

21


gamma rays occurr<strong>in</strong>g <strong>in</strong> this reaction are present <strong>in</strong> relative proportions<br />

which vary considerably with bombard<strong>in</strong>g <strong>energy</strong> so that <strong>of</strong> f -resonance back-<br />

ground subtraction is not accurate. Bombardment <strong>of</strong> blank targets which<br />

had been processed identically to SiO. targets but us<strong>in</strong>g an empty eva-<br />

poration boat gave a background measurement which was also rather unre-<br />

liable because <strong>of</strong> <strong>in</strong>dividual variations among targets. A method <strong>of</strong> sub=<br />

tract<strong>in</strong>g the background measured with the accelerator <strong>of</strong>f was also used,<br />

<strong>in</strong> which case background radiation <strong>of</strong> specific energies due to contam<strong>in</strong>ants<br />

was subtracted out <strong>in</strong> the spectrum analysis.<br />

In order to circumvent radiation due to target contam<strong>in</strong>ants efforts<br />

were exerted to obta<strong>in</strong> sun-co<strong>in</strong>cidence spectra <strong>in</strong> the <strong>energy</strong> region above<br />

1950 kev as a means <strong>of</strong> gett<strong>in</strong>g at decay schemes. The sum-co<strong>in</strong>cidence<br />

spectra were, <strong>in</strong> general, measured with the slow-fast co<strong>in</strong>cidence require-<br />

ment also imposed, and with a co<strong>in</strong>cidence resolv<strong>in</strong>g time <strong>of</strong> 110 ns. These<br />

runs were usually made <strong>in</strong> geometry B with counters positioned 1.6 <strong>in</strong>. from<br />

the beam spot at a 90 angle relative to each other. A 5/16-<strong>in</strong>. lead sheet<br />

between the counters served to m<strong>in</strong>imize co<strong>in</strong>cidences due to scatter<strong>in</strong>g or<br />

pair production <strong>in</strong> one crystal with the lost radiation be<strong>in</strong>g captured <strong>in</strong> the<br />

other crystal. The differential discrim<strong>in</strong>ator follow<strong>in</strong>g the pulse adder was<br />

set with its lower level at the resonance <strong>energy</strong> and was adjusted to pass<br />

pulses <strong>in</strong> a band about 0.6 Mev <strong>in</strong> width. Sett<strong>in</strong>gs were made by adjust<strong>in</strong>g<br />

the discrim<strong>in</strong>ator so that the observed count rate <strong>of</strong> accepted pulses was<br />

equal to half the repetition rate <strong>of</strong> a test pulse. The proper test pulse<br />

amplitude was obta<strong>in</strong>ed by sett<strong>in</strong>g the pulser ga<strong>in</strong> so that counts fell <strong>in</strong>to<br />

the pulse height analyzer channel correspond<strong>in</strong>g to the desired <strong>energy</strong>.<br />

Sett<strong>in</strong>gs <strong>of</strong> <strong>in</strong>tegral discrim<strong>in</strong>ators <strong>in</strong> the two s<strong>in</strong>gles channels were adjusted<br />

to 0.62 Mev <strong>in</strong> a similiar manner. The pulse height analyzer was calibrated<br />

with Cs and Co sources and with the 5.31-Mev gamma ray which dom<strong>in</strong>ates<br />

29 30<br />

the Si (p, }f)P spectrum at the 414-kev resonance. It was found that the<br />

Dumont 6363 photomultiplier tubes experienced marked ga<strong>in</strong> shifts as a function<br />

<strong>of</strong> count rate amount<strong>in</strong>g to several percent, an effect which has been attri-<br />

35<br />

buted to changes <strong>in</strong> the dynode surfaces . Attempts to allow this shift<br />

to stabilize before commenc<strong>in</strong>g counts were only partially effective. The<br />

overall result <strong>of</strong> this phenomenon was to vitiate the results <strong>of</strong> a large<br />

number <strong>of</strong> sum-co<strong>in</strong>cidence spectra.<br />

22


5. Measurements at 1470 kev<br />

S<strong>in</strong>ce the 4.50-Mev level <strong>in</strong><br />

30<br />

P has been shown to be most strongly<br />

excited at the 1470-kev resonance, this proton <strong>energy</strong> was a logical choice<br />

for angular correlation measurements which could lead to determ<strong>in</strong>ation <strong>of</strong><br />

the sp<strong>in</strong>-parity for the level. The resonance is rather weak so it was de-<br />

cided to take five sets <strong>of</strong> data to improve the count<strong>in</strong>g statistics and to<br />

permit a check <strong>of</strong> the consistency <strong>of</strong> results. Each set <strong>of</strong> data consisted<br />

<strong>of</strong> five spectra taken with the movable detector set to angles <strong>of</strong> , 30 ,<br />

45 , 60 , and 90 relative to the proton beam. In geometry A with the<br />

3 <strong>in</strong>. x 3 <strong>in</strong>. movable detector positioned with its face 4.125 <strong>in</strong>. from<br />

the target, runs were made us<strong>in</strong>g a 7 -microampere beam for count<strong>in</strong>g times<br />

<strong>of</strong> approximately one hour at each angular sett<strong>in</strong>g. The same target was<br />

used for each set <strong>of</strong> runs and the order <strong>of</strong> the angular sett<strong>in</strong>gs was varied<br />

<strong>in</strong> different sets so as to m<strong>in</strong>imize differences <strong>in</strong> the gamma-ray spectra<br />

due to any contam<strong>in</strong>ant buildup or target erosion. The fixed 3 <strong>in</strong>. x 3 <strong>in</strong>.<br />

detector was positioned at 270 relative to the beam and 4.125 <strong>in</strong>. from<br />

the target for use as a monitor counter. Each run was term<strong>in</strong>ated when<br />

30,000 monitor counts had been recorded. A 2 <strong>in</strong>. x 2 <strong>in</strong>. detector was<br />

also used as a secondary monitor counter. The <strong>in</strong>tegral discrim<strong>in</strong>ator <strong>in</strong><br />

each monitor channel was adjusted to a valley <strong>in</strong> the gamma-ray spectrum<br />

at 4.75 Mev so that the effect <strong>of</strong> ga<strong>in</strong> shifts <strong>in</strong> these channels would be<br />

m<strong>in</strong>imized. Before and after each run the discrim<strong>in</strong>ator <strong>levels</strong> were checked<br />

and adjusted with the aid <strong>of</strong> a Co source which was precisely and repro-<br />

ducibly located relative to the counters. For this check the ga<strong>in</strong> <strong>in</strong> the<br />

monitor channels was <strong>in</strong>creased by a factor <strong>of</strong> 4 by means <strong>of</strong> the ga<strong>in</strong> mul-<br />

tiplier switch so that the discrim<strong>in</strong>ator sett<strong>in</strong>g was equivalent to 1.14 Mev.<br />

At this sett<strong>in</strong>g, near the 1.17-Mev peak <strong>in</strong> Co , the count rate observed<br />

with the Co source was quite sensitive to the discrim<strong>in</strong>ator sett<strong>in</strong>g so<br />

that accurate adjustment was possible.<br />

The unfold<strong>in</strong>g <strong>of</strong> gamma-ray spectra and the determ<strong>in</strong>ation <strong>of</strong> angular<br />

distribution coefficients was programed and analyzed on a CDC-1604 computer<br />

as described <strong>in</strong> Appendix 2. The radiations which have been used as spectro-<br />

meter calibration curves <strong>in</strong> this analysis are listed <strong>in</strong> Table 1. These<br />

spectra were measured <strong>in</strong> experimental geometry A s backgrounds were sub-<br />

tracted, and any rema<strong>in</strong><strong>in</strong>g contam<strong>in</strong>at<strong>in</strong>g gamma rays were subtracted <strong>of</strong>f.<br />

Each <strong>of</strong> these monoenergetic spectrograms was plotted, hand smoothed, and<br />

redivided <strong>in</strong>to 525 channels to reduce any <strong>in</strong>terpolation errors <strong>in</strong> the<br />

23


TABLE 1<br />

Gamma Rays Used for Spectrometer Calibration<br />

E v (Mev) Radiation Source E (kev)<br />

t P<br />

0.662<br />

1.63<br />

2.37<br />

2.75<br />

3.51<br />

4.43<br />

5.31<br />

6.135<br />

8.06<br />

Cs 137<br />

„ 23, r .„ 20<br />

Na (p,a 0)Ne 1252<br />

12 13<br />

« 24<br />

Na<br />

-<br />

460<br />

_12, -.v„13<br />

c (p, dh 1698<br />

1 1 12<br />

Si 29 (p 5(T)P 3()<br />

-<br />

675<br />

414<br />

^19, ^^16<br />

F (p s a(T)0 1374<br />

13 14<br />

c (p, *r)N 554<br />

24


subsequent analysis. Energy calibration <strong>of</strong> each spectrum was made by<br />

equat<strong>in</strong>g distance <strong>in</strong> channels between the pair peak and the photopeak<br />

to 1.022 Mev. For the three lowest <strong>energy</strong> calibration curves, for which<br />

pair peaks are non-existent or poorly def<strong>in</strong>ed, an equivalent calibration<br />

was computed based on the pulse height analyzer calibration as determ<strong>in</strong>ed<br />

<strong>in</strong> an auxiliary experiment<br />

All spectra were read out <strong>of</strong> the pulse height analyzer memory photo-<br />

graphically. These data were then transcribed to punched cards and pr<strong>in</strong>ted<br />

list<strong>in</strong>gs <strong>of</strong> the cards were carefully pro<strong>of</strong>read aga<strong>in</strong>st the photographs.<br />

Ga<strong>in</strong> drifts did not prove trouble<strong>some</strong> at the lower count rates ob-<br />

served dur<strong>in</strong>g correlation runs at 1470 kev. To compensate for differences<br />

<strong>in</strong> calibration <strong>of</strong> the pulse height analyzer between successive runs, which<br />

were <strong>of</strong> the order <strong>of</strong> one percent, each spectrum was self -calibrated by the<br />

peaks at 7o00 Mev and at 1.45 Mev.<br />

25


IV EXPERIMENTAL RESULTS<br />

1. Excitation Function<br />

The excitation function for<br />

29 30<br />

Si (p,}f)P as measured by gamma-ray<br />

yield is shown <strong>in</strong> Fig. 8, and as measured by gamma-gamma co<strong>in</strong>cidence<br />

yield <strong>in</strong> Fig. 9. The energies at which resonances are observed are listed<br />

<strong>in</strong> Table 2, together with <strong>some</strong> <strong>of</strong> the results which have been obta<strong>in</strong>ed at<br />

proton energies below 1900 kev by other <strong>in</strong>vestigators.<br />

In arriv<strong>in</strong>g at the uncerta<strong>in</strong>ty <strong>of</strong> 0.207o kev for the resonance energies,<br />

consideration has been given to errors aris<strong>in</strong>g from <strong>in</strong>stability and <strong>in</strong>homo-<br />

geneity <strong>of</strong> the field <strong>of</strong> the analyz<strong>in</strong>g magnet, the proton beam spread, pos-<br />

sible surface contam<strong>in</strong>ants, calibration drift, and the 0.5-kev estimated<br />

33<br />

error for the 992-kev alum<strong>in</strong>um calibration po<strong>in</strong>t.<br />

Particular attention was given to the resonances above 1900 kev which<br />

have not previously been reported. The results <strong>of</strong> determ<strong>in</strong>ations <strong>of</strong> the<br />

half life <strong>of</strong> the post -bombardment activity <strong>of</strong> the targets at these energies<br />

are given <strong>in</strong> Table 3. The measurements are seen to agree with values for<br />

30<br />

the half life <strong>of</strong> P reported <strong>in</strong> the literature, which range from 2.51 +<br />

24 29'<br />

.02 m<strong>in</strong> to 2.62 + .02 m<strong>in</strong>, so that radiative capture by Si is<br />

demonstrated. Table 4 shows the <strong>in</strong>tensity <strong>of</strong> positron annihilation<br />

clearly<br />

radiation observed after saturation at selected bombardment energies.<br />

These <strong>in</strong>tensity values show dist<strong>in</strong>ct maxima at 1975, 2033, 2075, and 2117<br />

30<br />

kev and show that P is formed <strong>in</strong> a resonant reaction rather than by a<br />

non-resonant process. The peaks <strong>in</strong> the gamma-ray yield curves at these<br />

energies can therefore be positively ascribed to resonant proton reaction<br />

29<br />

with Si .<br />

The yield <strong>of</strong> 0. 511-Mev radiation after bombardment at energies between<br />

resonances is probably due to a comb<strong>in</strong>ation <strong>of</strong> <strong>of</strong>f-resonant reaction with<br />

29 17<br />

Si and to the 66-sec positron activity <strong>of</strong> F follow<strong>in</strong>g the non-resonant<br />

(p, If )F reaction. This hypothesis is supported by half life measure-<br />

ments <strong>of</strong> post-bombardment activity <strong>of</strong> the targets at two <strong>in</strong>ter-resonance<br />

po<strong>in</strong>ts at 1955 and 2007 kev» At those energies "half -lives" <strong>of</strong> the order<br />

<strong>of</strong> 1.6 + .5 m<strong>in</strong> are observed with the count rate 2 m<strong>in</strong> after bombardment<br />

at 1955 kev a factor <strong>of</strong> ten lower than the count rate 2 m<strong>in</strong> after bombard-<br />

ment at 1975 kev.<br />

26


o<br />

10<br />

Q.<br />

><br />

2<br />

,_» m<br />

>o


awo<strong>in</strong>oooyoiiM U3d siNnoo<br />

28<br />

UJ<br />

>-<br />

UJ<br />

o<br />

z<br />

UJ<br />

o<br />

O O<br />

0><br />

oc


TABLE 2<br />

Resonances Observed <strong>in</strong> the<br />

29<br />

Si (p,<br />

30<br />

if)? Reaction<br />

E from 1450 to 2170. Values <strong>in</strong> kev.<br />

P<br />

This work Green Seagondollar Tsytko Wild Remarks<br />

1470 1479 1479 1470<br />

1506 1515 1512 1505<br />

1637 1648 1643 1635 1638<br />

(1646)<br />

1667 1671<br />

(1653) (1647)<br />

1663<br />

(165<br />

(1665<br />

(1670<br />

1688 1692 1693 1680 1685<br />

(1726)<br />

1752 1752 1752 1749<br />

1775 1777 1775 1772<br />

(1803) 1811 1808<br />

1860 1857 1852<br />

(1933)<br />

1975<br />

(2007)<br />

2033<br />

2075<br />

2117<br />

(2159)<br />

Si 28<br />

weak<br />

weak<br />

Si 30<br />

+0 . 20% +2 +2 +3 Errors<br />

29<br />

not identified


TABLE 3<br />

30<br />

Half Life <strong>of</strong> Post -bombardment Decay <strong>of</strong> P<br />

Bombardment Energy (kev) Half life (m<strong>in</strong>)<br />

1975 2.42 + .09<br />

2033 2.45 + .18<br />

2075 2.51 + .06<br />

2117 2.47 + .15<br />

30


TABLE 4<br />

Intensity <strong>of</strong> Post-bombardment Annihilation Radiation<br />

Bombard<strong>in</strong>g<br />

Energy (kev)<br />

1506 7.04<br />

1950<br />

1975 7.49<br />

1990<br />

2033 7.55<br />

2060<br />

2075 7.59<br />

2100<br />

2117 7.63<br />

2140<br />

Excitation «_<br />

Energy <strong>in</strong> P (Mev)<br />

* Based on Q = 5.582, reference 24.<br />

-<br />

=<br />

-<br />

-<br />

_<br />

31<br />

Relative<br />

Intensity<br />

19,3<br />

1.0<br />

4.1<br />

1.0<br />

7.9<br />

1.8<br />

12.4<br />

1.3<br />

8.1<br />

2.3


2. Gamma-ray Spectra at 1975, 2033, 2075 and 2117 ksv Resonances<br />

Gamma-ray spectra were obta<strong>in</strong>ed at the four resonances at proton<br />

energies <strong>of</strong> 1975, 2033, 2075 and 2117 kev. Mask<strong>in</strong>g radiation from the<br />

19<br />

resonant reaction with the contam<strong>in</strong>ant F dom<strong>in</strong>ates the upper <strong>energy</strong><br />

region <strong>of</strong> these spectra so that a detailed analysis <strong>of</strong> the relatively<br />

29 30<br />

weaker radiation from the Si (p, ft )P reaction was not possible.<br />

However, the gamma-ray energies and <strong>in</strong>tensities which could be deter-<br />

m<strong>in</strong>ed with reasonable certa<strong>in</strong>ty from stripp<strong>in</strong>g and least squares analysis<br />

19<br />

for <strong>in</strong>tensities are given <strong>in</strong> Table 5. The 6=7 Mev gamma rays due to F ,<br />

which are omitted <strong>in</strong> Table 5, were accounted for by <strong>in</strong>clusion <strong>in</strong> the<br />

least squares <strong>in</strong>tensity analysis, s<strong>in</strong>ce other background subtraction<br />

techniques did not work well at these energies as has been discussed<br />

<strong>in</strong> Chapter III. Also <strong>in</strong>cluded <strong>in</strong> Table 5 are energies <strong>of</strong> sum-co<strong>in</strong>ci-<br />

dence spectral peaks which were close to energies observed <strong>in</strong> the<br />

s<strong>in</strong>gles spectra. The good spectral resolution and discrim<strong>in</strong>ation<br />

aga<strong>in</strong>st background radiation which are obta<strong>in</strong>able with the sum-co<strong>in</strong>ci-<br />

dence method proved to be <strong>of</strong> only nom<strong>in</strong>al assistance <strong>in</strong> analyz<strong>in</strong>g the<br />

gamma-ray spectra. This was due <strong>in</strong> part to the relative weakness <strong>of</strong><br />

radiative decay <strong>of</strong> these resonance <strong>levels</strong> <strong>in</strong> comparison with <strong>in</strong>elastic<br />

scatter<strong>in</strong>g, and <strong>in</strong> part due to photomultiplier ga<strong>in</strong> drifts which blurred<br />

peaks <strong>in</strong> the sum-co<strong>in</strong>cidence spectra. However, it is apparent from the<br />

large number <strong>of</strong> low <strong>in</strong>tensity peaks observed <strong>in</strong> the sum-co<strong>in</strong>cidence<br />

spectra at the higher-<strong>energy</strong> resonances that decay schemes from these<br />

<strong>levels</strong> are considerably more complex than decay from the 1752-kev re-<br />

23<br />

sonance level, where sum-co<strong>in</strong>cidence spectra were recorded for the<br />

purpose <strong>of</strong> comparison.<br />

The strong 1.28-Mev gamma ray observed at 1975, 2033, and 2075 kev<br />

is <strong>in</strong>terpreted as deexcitation <strong>of</strong> the<br />

30<br />

P compound nucleus by proton<br />

29<br />

at 1.277<br />

25<br />

Mev. The high<br />

reemission to the first excited state <strong>of</strong> Si '<br />

<strong>in</strong>tensity <strong>of</strong> this gamma ray is conv<strong>in</strong>c<strong>in</strong>g evidence that this <strong>in</strong>elastic<br />

scatter<strong>in</strong>g process predom<strong>in</strong>ates over radiative capture and that the<br />

128-Mev radiation is primarily responsible for the upper-<strong>energy</strong> peaks<br />

<strong>in</strong> the gamma-ray yield curve. Rather curiously, however, this gamma<br />

ray does not appear <strong>in</strong> the spectrum at the 2117-kev resonance.<br />

The resonance at 2075 kev lies near the Si (Pj^P '<br />

reported at 2090 kev which has a half width <strong>of</strong> 16<br />

25<br />

kev. The<br />

resonance<br />

gamma-ray<br />

32


E (kev)<br />

P<br />

TABLE 5<br />

Gamma-ray Intensities at Resonance<br />

Energies <strong>of</strong> 1975, 2033, 2075, and 2117 kev<br />

S<strong>in</strong>gles Spectra<br />

E „ (Mev)<br />

Sum-Co<strong>in</strong>cidence<br />

E y (Mev)<br />

1975 4.52 4.58<br />

4.19 4.07<br />

3.48<br />

3.33<br />

3.40<br />

3.00 2.99<br />

2.44 2.50<br />

1.28<br />

2033 5.10 -<br />

1.28<br />

2075 7.59 -<br />

4.70 4.85<br />

2.98 2.95<br />

2.26 2.23<br />

1.36<br />

1.28<br />

2117 5.10 -<br />

2.55<br />

Error <strong>in</strong> s<strong>in</strong>gles spectra E^ estimated to be 1%<br />

Error <strong>in</strong> sum-co<strong>in</strong>cidence E* estimated to be 2%<br />

Error <strong>in</strong> <strong>in</strong>tensities estimated to be 30%<br />

33<br />

-<br />

-<br />

-<br />

-<br />

=<br />

Intensity (quanta/A- C)<br />

5<br />

2<br />

2<br />

2<br />

3<br />

3<br />

117<br />

8.6<br />

187.3<br />

14<br />

60<br />

55<br />

55<br />

303<br />

1360<br />

2<br />

3


TABLE 6<br />

Relative Gamma-ray Intensities at the 1470-kev Resonance<br />

E v» (Mev) Transition Observed Decay Scheme Ref 23<br />

Intensity Intensity<br />

7.00 R->0 25.4 25.4 39.6<br />

6.29 R-^> 2 9.6 9.6 6.3<br />

4.50 19-^0 14.6 14.3 13.2<br />

4.14 13-*0 10.7 10.7 11.1<br />

3.98 R-»-9 10.5 10.8 7.3<br />

3.45 not accounted for 2.0 = 4.0<br />

3.17 R-=»ll 1.5 2.0<br />

3.17 ll-*.l 1.5 2.0<br />

3.07 R-^.12 17.6 11.7<br />

3.02 9-*0 1.2 1.6<br />

2.86 R-»-13 13.7 13.7 13.0<br />

2.69 13-*-3 2.8 2.8<br />

2.50 R-p-19 QO 21.6 20.0<br />

JO . o<br />

2.50 12-*- 17.6 11.7<br />

2.34 9-»-l 17.2 16.9 13.4<br />

1.45 19-** 9 not analyzed" 1 "<br />

_<br />

7.3 6.8<br />

1.45 3-*-0 " 20.3 11.7<br />

.71 2->0<br />

.68 l->0<br />

21.8<br />

An <strong>in</strong>tensity <strong>of</strong> approximately 34 is <strong>in</strong>dicated for the 1.45 Mev radiation<br />

by observations at 90° with .6" crystal face to target distance.<br />

Relative <strong>in</strong>tensities shown are also approximate absolute <strong>in</strong>tensities<br />

<strong>in</strong> quanta per microcoulomb.<br />

34


3<br />

CD<br />

o<br />

CO<br />

o en<br />

<br />

CD<br />

J»5<br />

O<br />

CO<br />

u<br />

14-1<br />

CD<br />

O<br />

o<br />

g<br />

o<br />

t4<br />

4J<br />

CO<br />

.-1<br />

CD<br />

U<br />

uo<br />

t-l<br />

CO<br />

1-1<br />

3<br />

60<br />

d<br />

<<br />

3<br />

O<br />

CO<br />

CD<br />

X! 60<br />

4-1<br />

CO<br />

CD<br />

XI 00<br />

•l-l<br />

CN<br />

CO<br />

CN<br />

co<br />

lO<br />

o<br />

o on<br />

o m o<br />

O<br />

O<br />

CN<br />

o<br />

<strong>in</strong><br />

o<br />

CO<br />

o o CN<br />

o o o o<br />

CO 00<br />

o CO<br />

CM<br />

O m o CN<br />

o o m o CN<br />

CM<br />

CM r^ ON ON m co Ov


spectrum at this resonance is characterized by a 4.76-Mev radiation<br />

to the ground state <strong>of</strong> P It seems probable, therefore, that<br />

the 4.70-Mev gamma ray seen <strong>in</strong> the spectrum at 2075 kev is due to the<br />

28<br />

Si reaction. The observed <strong>in</strong>tensity is <strong>in</strong> agreement with this ex-<br />

planation. Although the presence <strong>of</strong> 2.94-Mev and 2.24-Mev gamma rays<br />

30<br />

<strong>in</strong> this spectrum suggest a cascade through level 8 at 2.94-Mev <strong>in</strong> P ,<br />

22<br />

the 1.45-Mev gamma ray known to occur <strong>in</strong> this cascade is not seen<br />

and sum-co<strong>in</strong>cidence work has not been able to confirm this possibility.<br />

29<br />

It is possible, however, that the gamma rays due to Si reactions could<br />

be responsible for the anisotropy <strong>of</strong> the radiation from the 4.76-Mev<br />

29 37<br />

level <strong>in</strong> P which has been observed by Newton, s<strong>in</strong>ce anisotropy is<br />

not expected to result from the sp<strong>in</strong> assignment to this level <strong>of</strong> 1/2+<br />

tJ 38<br />

based on proton scatter<strong>in</strong>g experiments.<br />

The rema<strong>in</strong><strong>in</strong>g weaker radiations seen at the four higher resonances<br />

29<br />

are most probably due to radiative capture by Si , but the rather large<br />

errors, due chiefly to mask<strong>in</strong>g contam<strong>in</strong>ant radiation, do not permit more<br />

than tentative postulation <strong>of</strong> decay modes. Gamma rays observed at the<br />

1975-kev resonance suggest cascades through level 19 at 4.50 Mev and<br />

through level 14 at 4.18 Mev. No conclusions can be drawn for the<br />

2033-kev resonance. At the 2075-kev resonance the 7.59-Mev radiation<br />

is readily recognized as a ground state transition but the other gamma<br />

rays are not identified. F<strong>in</strong>ally, at the 2117-kev resonance, the two<br />

radiations observed nicely fit a decay through level 5 at 2.54 Mev which<br />

22<br />

is known to decay 95% to the ground state.<br />

3. 1470-kev Resonance Decay and Intensities<br />

The gamma-ray spectrum observed at the 1470-kev resonance with a<br />

crystal face to target distance <strong>of</strong> 0.6 <strong>in</strong>. and at an observation angle<br />

<strong>of</strong> 90 is shown <strong>in</strong> Fig. 10. This spectrum has been least squares fitted<br />

by gamma rays with energies required by the decay scheme proposed <strong>in</strong> ref-<br />

erence 23. Reanalyses with alternate <strong>energy</strong> choices <strong>in</strong> each <strong>in</strong>stance gave<br />

a poorer fit <strong>in</strong> reassurance <strong>of</strong> the correctness <strong>of</strong> the decay modes proposed,<br />

This decay scheme, with <strong>in</strong>tensities as found <strong>in</strong> the present analysis, is<br />

shown <strong>in</strong> Fig. 11. (Heavy dots <strong>in</strong>dicate cascades confirmed <strong>in</strong> reference 23<br />

by co<strong>in</strong>cidence spectroscopy.) The branch<strong>in</strong>g ratio shown for the 4.50-Mev<br />

level is that given <strong>in</strong> reference 22. The assumed correctness <strong>of</strong> this<br />

ratio then requires branch<strong>in</strong>g ratios <strong>of</strong> 93:7 for level 9 and 80:20 for<br />

level 13 <strong>in</strong> order to fit the <strong>in</strong>tensities <strong>of</strong> gamma rays which have been<br />

36


Q<br />

Ul<br />

> Q<br />

<br />

UJ<br />

O<br />

<<br />

3<br />

\o<br />

LU<br />

> Q_<br />

ui CO<br />

>-<br />

<<br />

or<br />

i<br />

<<br />

<<br />

C9<br />

LU<br />

CD


Ev(MEV)<br />

7.00<br />

4.50<br />

4.14<br />

3.93<br />

3.84<br />

3.02<br />

1.45<br />

.705<br />

.683<br />

DECAY SCHEME AT 1470 KEV RESONANCE<br />

7.00 629<br />

25 I<br />

—m— 3.98 2.50 2.86 3.17 3.07<br />

I I 22 14<br />

7 93<br />

*#<br />

* ± v k<br />

34 66 20 80<br />

i<br />

FIGURE II.<br />

38<br />

y r t<br />

17<br />

2L.I<br />

3<br />

2<br />

I I<br />

9 1+<br />

*-3 2-<br />

2 1<br />

I<br />

+


observed. These ratios are <strong>in</strong> reasonably good agreement with ratios <strong>of</strong><br />

22 23<br />

89:11 reported for level 9 and 88:12 reported for level 13<br />

Intensities <strong>of</strong> gamma rays observed <strong>in</strong> the angular correlation runs<br />

are shown <strong>in</strong> Table 6 along with <strong>in</strong>tensities observed <strong>in</strong> reference 23 at<br />

55 . The <strong>in</strong>tensities found <strong>in</strong> the correlation runs have been averaged<br />

over 4jt steradians by weight<strong>in</strong>g the mean values for each observation angle<br />

by the s<strong>in</strong>e <strong>of</strong> that angle . Because the 1.46-Mev background radiation due<br />

40<br />

to K was found to be quite strong relative to the 1.45-Mev<br />

gamma ray observed <strong>in</strong> the correlation runs, no attempt was made to analyze<br />

the gamma radiation <strong>of</strong> this or lower <strong>energy</strong>. Although the background<br />

radiation subtracts out, the statistics <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g counts do not<br />

allow extraction <strong>of</strong> significant <strong>in</strong>formation. The observed <strong>in</strong>tensities<br />

are seen to agree reasonably well with those <strong>of</strong> reference 23 except for<br />

the 7.00=-Mev radiation which is found to be considerably weaker <strong>in</strong> the<br />

present work. S<strong>in</strong>ce the experimental <strong>in</strong>tensities are based upon reported<br />

values <strong>of</strong> <strong>in</strong>tr<strong>in</strong>sic peak efficiencies rather than an absolute spectro-<br />

meter calibration, this discrepancy is not considered significant.<br />

4. Angular Correlations at the 1470-kev Resonance<br />

A. General<br />

The correlation function coefficients which have been found <strong>in</strong> this<br />

experiment are given <strong>in</strong> Table 7. The values given are weighted means <strong>of</strong><br />

the values found <strong>in</strong> each <strong>of</strong> the five sets <strong>of</strong> data taken. The chi-square<br />

values for each correlation coefficient have been calculated and show the<br />

different sets to be consistent, under the acceptance requirement that the<br />

cumulative chi-square probability be equal to or less than 0.9. Comb<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>tensities from each data set, then analyz<strong>in</strong>g for the coefficients gives<br />

values practically identical to the mean values quoted. This agreement<br />

to <strong>some</strong> degree serves as a check that computational errors have not crept<br />

<strong>in</strong>. Each experimentally observed spectrum has also been plotted together<br />

with the correspond<strong>in</strong>g fitted spectrum, then visually exam<strong>in</strong>ed to determ<strong>in</strong>e<br />

that a reasonable fit was obta<strong>in</strong>ed <strong>in</strong> each case. Fig. 12 shows a typical<br />

example <strong>of</strong> the fit obta<strong>in</strong>ed for the correlation runs.<br />

The <strong>in</strong>tensity analysis was performed both subtract<strong>in</strong>g background<br />

radiation analytically and subtract<strong>in</strong>g <strong>of</strong> f -resonance background, with<br />

essentially the same results be<strong>in</strong>g obta<strong>in</strong>ed <strong>in</strong> each case. The standard<br />

39


2-01 X SlNflOD<br />

40<br />

-I s-<br />

QC<br />

o o<br />

u_ O<br />

0><br />

2 h-<br />

3 <<br />

or<br />

H m<br />

i u<br />

UJ<br />

a. z > V)<br />

UJ 3<br />

5 or 2 >-<br />

< z q: o<br />

< H<br />

2 <<br />

2 _J<br />

< UJ<br />

CD oc<br />

QC<br />

. O<br />

CVJ O<br />

UJ<br />

a:<br />

3<br />

O


deviations <strong>in</strong> the mean coefficient values have been calculated from<br />

i=l<br />

and have been compared with the values given by<br />

which agree closely,<br />

1 " n «<br />

n(n-l) Z C x. - x)<br />

The most obvious feature <strong>of</strong> the data is the anisotropy <strong>of</strong> the<br />

4.50~Mev gamma ray which is <strong>in</strong>compatible with a sp<strong>in</strong> <strong>of</strong> zero for this<br />

level. It is also noteworthy that the 4.50-Mev gamma ray is the only<br />

radiation to show a statistically significant P. (cos 9) term (notation<br />

is def<strong>in</strong>ed <strong>in</strong> Appendix 1) . Fig. 13 shows the correlation coefficient<br />

values for this gamma ray obta<strong>in</strong>ed from each set <strong>of</strong> data. In this<br />

figure M denotes mean values and C denotes values obta<strong>in</strong>ed by com=<br />

b<strong>in</strong><strong>in</strong>g <strong>in</strong>tensities from each data set before comput<strong>in</strong>g coefficients.<br />

Fig. 14 shows the fit to the Legendre series both with and without P,<br />

terms. Although the existence <strong>of</strong> the P term is not <strong>in</strong>controvertible<br />

it permits a markedly better fit to the data and gives a smaller value<br />

<strong>of</strong> the parameter £ which serves as a guide to the appropriate number <strong>of</strong><br />

41<br />

terms which should appear <strong>in</strong> the Legendre series.<br />

In order to deduce sp<strong>in</strong>-parity values it is necessary to exam<strong>in</strong>e<br />

the possible particle and radiation mix<strong>in</strong>g ratios for this reaction.<br />

The notation used here<strong>in</strong> to refer to these mix<strong>in</strong>g ratios is as follows:<br />

3-, - Proton-partial-wave mix<strong>in</strong>g parameter<br />

g_ = The multipole mix<strong>in</strong>g ratio <strong>of</strong> an <strong>in</strong>termediate<br />

unobserved gamma ray<br />

r_ = The multipole mix<strong>in</strong>g ratio <strong>of</strong> an observed<br />

gamma ray<br />

t, = Channel-sp<strong>in</strong> mix<strong>in</strong>g parameter<br />

Appendix 1 def<strong>in</strong>es these parameters more fully and describes how they<br />

enter <strong>in</strong>to the expression for the theoretical correlation function. For<br />

29 30 29 30<br />

the Si (p 5 tf)P and Si (p,x(f)P (<strong>in</strong>termediate unobserved) reactions,<br />

41


.20<br />

.10<br />

6<br />

A 2 /Aq<br />

9 -r-<br />

h -.10<br />

-.20<br />

T<br />

T<br />

A 4 /A<br />

j<br />

( )<br />

IT<br />

6 L 1 I<br />

P4 HIGHEST TERM 6 = .74<br />

RUN 12 3 4 5 M C<br />

2 3 4 5 M C<br />

RUN<br />

.20<br />

.10<br />

2 3 4 5 M C<br />

A 2 /A<br />

6 H<br />

P z HIGHEST TERM € = 1.30<br />

FIGURE 13. DISTRIBUTION COEFFICIENTS FOR THE<br />

4.50 MEV GAMMA RAY<br />

42<br />

6


1.20 * I +<br />

1.10<br />

z<br />

£ 1.00 -<br />

1.20 "<br />

1.10<br />

g 1.00 -<br />

UJ<br />

€ * 0.74<br />

6 1.30<br />

o o o<br />

30 45 60<br />

e<br />

30° 45<br />

e<br />

I +<br />

.09P 2 (COS 9) - .05P 4 (COS 6)<br />

.09P 2 (COS 90°)- .05P 4 (COS 90°)<br />

USI +<br />

90"<br />

I + .07P 2 (COS0)<br />

.07 P 2 (COS 90)<br />

\<br />

60' 90<br />

FIGURE 14. FITS OF COMBINED EXPERIMENTAL DATA TO<br />

LEGENDRE SERIES - 4.50-MEV GAMMA RAY<br />

(UNCORRECTED FOR FINITE SOLtD ANGLE)<br />

43


the correlation coefficients A /A~ and A. /A„ are describable as functions<br />

^ 4<br />

<strong>of</strong> a maximum <strong>of</strong> three mix<strong>in</strong>g ratios. Level curves, or contours, <strong>of</strong> con-<br />

stant A./A n values may be plotted aga<strong>in</strong>st any two <strong>of</strong> the mix<strong>in</strong>g ratios.<br />

Actually the arctangents <strong>of</strong> the mix<strong>in</strong>g ratios are used as variables for<br />

convenience s<strong>in</strong>ce they rema<strong>in</strong> f<strong>in</strong>ite. If a third mix<strong>in</strong>g ratio appears,<br />

chang<strong>in</strong>g its value changes these contour plots only to the extent <strong>of</strong><br />

chang<strong>in</strong>g the A./A values for all contours by a multiplicative constant.<br />

Contour plots for this analysis have been programmed and plotted as<br />

described <strong>in</strong> Appendix 2.<br />

In the follow<strong>in</strong>g discussion it will be assumed that only El radiation<br />

or E2/M1 mixtures are likely to be observed for transitions from <strong>levels</strong><br />

<strong>of</strong> several Mev. This simplify<strong>in</strong>g assumption is based upon transition<br />

42<br />

probabilities estimated from the <strong>in</strong>dependent particle model and is com-<br />

monly made <strong>in</strong> analysis <strong>of</strong> gamma radiation follow<strong>in</strong>g proton capture <strong>in</strong><br />

light and <strong>in</strong>termediate nuclei.. Although suppression or <strong>in</strong>hibition <strong>of</strong> di-<br />

pole radiation is possible because <strong>of</strong> the isotopic sp<strong>in</strong> selection rule,<br />

a & T = + 1 for self<br />

43<br />

conjugate nuclei, there are an adequate number <strong>of</strong><br />

lower <strong>levels</strong> <strong>of</strong> both T = and T = 1 <strong>in</strong><br />

30<br />

P so that the resonance level<br />

can decay by either El or E2/M1 radiation without violat<strong>in</strong>g this rule.<br />

In analyz<strong>in</strong>g the experimental correlation coefficient values, tables<br />

from reference 23 have been quite helpful. This reference tabulates the<br />

maximum and m<strong>in</strong>imum values which may be assumed by A~/A n and A, /A n for a<br />

variety <strong>of</strong> postulated sp<strong>in</strong> sequences.<br />

B. Resonance level sp<strong>in</strong>-parity<br />

The observed A /A n terms <strong>of</strong> about -0.40 for the 7.00, 6.29, and<br />

3.98 Mev gamma rays, which all proceed to known 1+ <strong>levels</strong>, are found to<br />

be most useful <strong>in</strong> determ<strong>in</strong><strong>in</strong>g the sp<strong>in</strong>-parity <strong>of</strong> the resonance level.<br />

Among possible values through 4 for this level, it is found that only<br />

1+, 2+, and 2- can lead to the A~/A n coefficient measured for the 7.00-Mev<br />

ground state transition. The same conclusion is supported by the A~/A n<br />

values observed for the 6.29 and 3.98 Mev radiations.<br />

If one <strong>in</strong>spects the contour plot, Fig. 15, for the 1+ — > 1+ transition<br />

it is seen that a d-s proton-angular -momentum mix<strong>in</strong>g ratio <strong>of</strong> over 0.90<br />

is required to produce the observed A„/A n value for the 7.00-Mev gamma<br />

ray. S<strong>in</strong>ce the relative penetrability <strong>of</strong> d waves to s waves is about<br />

-2<br />

3 x 10 , such a mixture is not a likely choice. The A,/A n term observed<br />

44


for the 4„50-Mev radiation supports this conculsion s<strong>in</strong>ce A . /A„ terms<br />

do not result from resonance sp<strong>in</strong>s smaller than 2. F<strong>in</strong>ally, the value<br />

<strong>of</strong> A_/A n observed for the 2.34-Mev radiation will be shown to be <strong>in</strong>com-<br />

patible with a 1+ resonance level sp<strong>in</strong>. This radiation proceeds to the<br />

known 0+ level 1, at 0.68 Mev, from the known 1+ level 9, at 3.02 Mev.<br />

Level 9 is fed more than 507o from the resonance level and, secondarily,<br />

by the <strong>in</strong>termediate 1.48-Mev radiation from level 19. The A„/A n value<br />

observed for this primary 3.98-Mev feeder restricts the ranges <strong>of</strong> ^<br />

and S 9 for the R—*9—* 1 transition. When these ranges are del<strong>in</strong>eated<br />

on a contour plot for a 1+ -^-1+ -*0+ transition, it is found that A 9 /A n<br />

for the second radiation is restricted to a range between -0.01 and<br />

48<br />

+0.24. By an extension <strong>of</strong> the formalism for <strong>in</strong>termediate unobserved<br />

cascades given <strong>in</strong> Appendix 1 it is possible to calculate the angular<br />

distribution coefficients for the 9 -* 1 radiation which result from the<br />

R -> 19 -> 9 — 1 cascade . It is found that, for a 1+ resonance level,<br />

the m<strong>in</strong>imum possible value <strong>of</strong> A„/A n occurs for an assumed sp<strong>in</strong> <strong>of</strong> 2 for<br />

level 19. This m<strong>in</strong>imum value has been calculated to be -0.175. Thus<br />

a 1+ resonance level leads to a m<strong>in</strong>imum possible value for A_/A n <strong>of</strong><br />

about -0.093. Compar<strong>in</strong>g this with the observed value <strong>of</strong> -0.24 + .03 for<br />

the 2.34-Mev gamma ray s 1+ can be ruled out as a possible sp<strong>in</strong>-parity<br />

<strong>of</strong> the resonance level.<br />

Hav<strong>in</strong>g narrowed the possible resonance sp<strong>in</strong> values to 2+ or 2-,<br />

the contour plots may be exam<strong>in</strong>ed for the 2+ ->» 1+ and 2--^l+ transitions,<br />

applicable to the 7.00-Mev radiation to the ground state. In the first<br />

case, channel-sp<strong>in</strong> mix<strong>in</strong>g may occur while <strong>in</strong> the second case proton-<br />

partial-wave mix<strong>in</strong>g is permitted. For the 2+-^l+ case Fig. 16a shows<br />

the contour plot with the experimental value <strong>of</strong> A /A„ for the 7.00-Mev<br />

gamma ray del<strong>in</strong>eated thereon by cross-hatch<strong>in</strong>g. Fig. 16b is a similar<br />

plot for A,/A n . The darker shad<strong>in</strong>g <strong>in</strong> Fig. 16b <strong>in</strong>dicates the superposi-<br />

tion <strong>of</strong> cross-hatch<strong>in</strong>g on both plots and def<strong>in</strong>es the ranges and combi-<br />

nations <strong>of</strong> mix<strong>in</strong>g parameters which can give rise to the observed coeffi-<br />

cient values. For £„ £ssO (i.e. Ml radiation), £, is constra<strong>in</strong>ed to be<br />

less than ^2 tan 50 . This must not be taken too seriously, however,<br />

s<strong>in</strong>ce the A, /A ft<br />

contours are widely spaced at the top and bottom boundaries<br />

<strong>of</strong> the permitted region, so that a very slight <strong>in</strong>crease <strong>in</strong> the error for<br />

the experimental A,/A„ value would allow S , to range up to 90 . The small<br />

region at £„ ~tan(~67 ) and £, ^5 tan 49 also fits the observed corre-<br />

45


lation. The plots for the 2 +!+ case, shown <strong>in</strong> Figs. 17a and 17b, are<br />

quite similar to the 2+->, l+ case and show that there is no restriction<br />

on f-p proton-wave mix<strong>in</strong>g for & £>S (El radiation). The two small per-<br />

mitted regions at £ p^tan 67 may be ruled out s<strong>in</strong>ce they require an<br />

M2/E1 mixture. It is seen that an unlikely but small M2/E1 mixture with<br />

£ ^iiO.026 or greater is required for this transition for the case <strong>of</strong><br />

resonance formation by pure p waves. As will be shown, the 2- resonance<br />

level assignment is also less probable than 2+ based on mix<strong>in</strong>g ratios<br />

which are required by experimentally observed coefficients for the 4.50-<br />

Mev radiation.<br />

As a result <strong>of</strong> the above considerations, a sp<strong>in</strong>-parity <strong>of</strong> 2+ is pro=<br />

posed for the resonance level with 2- as a less likely possibility.<br />

C. R->13->0 cascade<br />

There are only two cascades which allow cross check<strong>in</strong>g <strong>of</strong> mix<strong>in</strong>g<br />

parameters as a method <strong>of</strong> elim<strong>in</strong>at<strong>in</strong>g possible sp<strong>in</strong> sequences. These<br />

are the cascade through level 19 and that through level 13 both <strong>of</strong> which<br />

<strong>levels</strong> have undeterm<strong>in</strong>ed sp<strong>in</strong>s. The latter cascade will be considered<br />

first. The existence <strong>of</strong> an A. /A~ term which has been observed <strong>in</strong> the dis-<br />

40 23<br />

tribution <strong>of</strong> the 4.14-Mev radiation from level 13 at the 1686-kev resonance<br />

is evidence that level 13 must have a sp<strong>in</strong> greater than or equal to 2. Of<br />

the likely possible sp<strong>in</strong>s for this level, 2+ s 3+, and 4-, only 2+ and 2-<br />

can result <strong>in</strong> the negative value <strong>of</strong> A~/A n observed for the 4.14-Mev gamma<br />

ray. An exam<strong>in</strong>ation <strong>of</strong> the contour plots for the four sequences 2+-^2+->l+<br />

for the R ->13-^0 cascade shows compatibility <strong>in</strong> all cases with the ob-<br />

served coefficients for the 2.86-Mev gamma ray and the 4.14-Mev gamma ray.<br />

For the sequence 2+-^2--^l+ the parameter £ is constra<strong>in</strong>ed to be larger<br />

than tan 70 but the other possible sequences are compatible with a full<br />

range <strong>of</strong> values for either £ 1 or £. as the case may be. The only f<strong>in</strong>d<strong>in</strong>g<br />

is that, for all cases, the R->13 transition must be relatively pure di-<br />

pole radiation. The observed coefficient values for the weak 2.69-Mev gamma<br />

ray, which also is believed to deexcite level 13, are also compatible with<br />

all four possible sp<strong>in</strong> sequences with reasonable choices for o\ •<br />

D. R->19->0 cascade<br />

S<strong>in</strong>ce no requirements on parameters applicable to this cascade are<br />

imposed by transitions already considered it becomes necessary to consider<br />

46


the R ->19 ->0 sequence with no prior restrictions on the deltas <strong>in</strong>volved,<br />

We f<strong>in</strong>d, furthermore, that no <strong>in</strong>formation is forthcom<strong>in</strong>g from the R—>-19,<br />

2.50-Mev gamma-ray correlation coefficient s<strong>in</strong>ce this radiation is <strong>in</strong>dis-<br />

t<strong>in</strong>guishable from the 12-^3, 2.48-Mev gamma ray.<br />

A survey <strong>of</strong> maxima and m<strong>in</strong>ima <strong>of</strong> A 9 /A n coefficients shows, if we<br />

allow 2- as a possible resonance level sp<strong>in</strong>, that the follow<strong>in</strong>g sequences<br />

for the R-^19-^0 transition are consistent with the experimental co-<br />

efficients for the 4.50-Mev radiation:<br />

2+ 1+ 1+ 2+ 1- 1+<br />

2- 1+ 1+ 2- 1- 1+<br />

2+ 2+ 1+ 2- 2- 1+<br />

2- 2+ 1+ 2- 3- 1+<br />

2+ 3+ 1+ 2+ 3- 1+<br />

It has been found <strong>in</strong> the analysis that a better fit (see Fig. 14)<br />

to the data is given by the series <strong>in</strong>clud<strong>in</strong>g a P, term. Then, provided<br />

this term is not spurious, which is not to be excluded as a possibility,<br />

the list can be reduced by elim<strong>in</strong>at<strong>in</strong>g sequences not giv<strong>in</strong>g rise to<br />

A. /A_ terms.<br />

4<br />

The follow<strong>in</strong>g possibilities then rema<strong>in</strong>.<br />

2+ 2+ 1+<br />

2= 2+ 1+<br />

2+ 3+ 1+<br />

2+ 3- 1+<br />

2- 3- 1+<br />

The last two transitions shown require E3/M2 radiation so, adher<strong>in</strong>g to<br />

the hypothesized El and E2/M1 radiative transitions as practical candi-<br />

dates, the sp<strong>in</strong> <strong>of</strong> the 4.50-Mev level is limited to either 2+ or 3+. Of<br />

the three rema<strong>in</strong><strong>in</strong>g possibilities, the 2- -^2+-Vl+ sequence is perhaps<br />

least likely. Figs. 19a and 19b show that this sequence for R-^19-^0<br />

requires an f to p wave mix<strong>in</strong>g parameter <strong>of</strong> over 0.10 with a large E2/M1<br />

mix<strong>in</strong>g ratio <strong>of</strong> nearly 12.0. For a 2+-^3+->l+ sequence, Figs. 20a and<br />

20b show that an E2/M1 ratio <strong>of</strong> over 1.7 is required for the 4.50-Mev<br />

47


adiation <strong>in</strong> order to fit the data. Because large E2/M1 mix<strong>in</strong>g para-<br />

meters are not commonly seen <strong>in</strong> the lighter nuclei, this sequence, though<br />

more likely than 2- -* 2+ -?»1+, does not appear as probable as a 2+ •^•2+ -^-1+<br />

sequence, as will be seen. For the 2+-^2+-^l+ sequence Figs. 18a and<br />

18b show that for an assumed channel-sp<strong>in</strong> mix<strong>in</strong>g ratio <strong>of</strong> zero, an E2/M1<br />

mix<strong>in</strong>g ratio <strong>of</strong> 0.27 will fit the observed coefficients for the 4.50-Mev<br />

gamma ray with a considerable latitude permitted for Q . . Alternate<br />

choices for £, will also permit acceptable choices <strong>of</strong> mix<strong>in</strong>g parameters<br />

for this sequence though <strong>in</strong> general & and Q- will be required to be<br />

larger.<br />

Summariz<strong>in</strong>g, level 19 is found to have a sp<strong>in</strong> <strong>of</strong> 2+ or 3+ under the<br />

assumptions which have been made, with 2+ be<strong>in</strong>g more probable.<br />

E. Comparison with other results<br />

Concurrently with the present work, an <strong>in</strong>vestigation <strong>of</strong> triple<br />

angular correlations at the 1470-kev resonance has been undertaken at<br />

40<br />

Wright-Patterson Aeronautical Laboratories. The angular distribution<br />

<strong>of</strong> the 7.00-Mev gamma ray was also exam<strong>in</strong>ed <strong>in</strong> this experiment. An A_/A„<br />

value <strong>of</strong> -0.38+.02 was observed for this gamma ray <strong>in</strong> good agreement with<br />

the value shown <strong>in</strong> Table 7. Prelim<strong>in</strong>ary results <strong>of</strong> this experiment have<br />

<strong>in</strong>dicated restriction <strong>of</strong> the resonance level sp<strong>in</strong> to a value <strong>of</strong> 1 or 2<br />

and show that a zero sp<strong>in</strong> for the 4.50-Mev level is not compatible with<br />

such a restriction. The prelim<strong>in</strong>ary analysis <strong>of</strong> the triple-correlation<br />

experiment is seen to be <strong>in</strong> agreement with the present work. It is to be<br />

hoped that the complete analysis <strong>of</strong> this work which is now <strong>in</strong> progress,<br />

will lead to a firmer <strong>in</strong>dication <strong>of</strong> the sp<strong>in</strong>-parity <strong>of</strong> the 4.50-Mev level<br />

s<strong>in</strong>ce the 2+ (3+) value proposed here<strong>in</strong> depends upon the <strong>some</strong>what debatable<br />

A,/A n term observed and upon the hypothesis that only El or E2/M1 radiation<br />

is present.<br />

F. T = 1 character <strong>of</strong> level 19<br />

The prediction <strong>of</strong> 0+ for the sp<strong>in</strong>-parity <strong>of</strong> level 19 is based on the<br />

30<br />

premise that this level is the T = 1 analog <strong>of</strong> the 3.80-Mev level <strong>of</strong> Si<br />

42<br />

<strong>in</strong> the isotopic sp<strong>in</strong> multiplet formalism. A sp<strong>in</strong> <strong>of</strong> has been suggested<br />

30<br />

for the 3.80-Mev level <strong>in</strong> Si based on observations <strong>of</strong> cascade gamma rays<br />

follow<strong>in</strong>g the Si (p,p")Si reaction. A sp<strong>in</strong> <strong>of</strong> 0+ results also from<br />

48


calculations made by Thankappen and Pandya <strong>of</strong> collective vibrational states<br />

<strong>in</strong> a weakly-coupled collective model <strong>of</strong> the nucleus. The sp<strong>in</strong>-parity <strong>of</strong><br />

30<br />

level 19 <strong>in</strong> P is thus expected both on experimental and theoretical grounds.<br />

The f<strong>in</strong>d<strong>in</strong>g <strong>of</strong> non 0+ sp<strong>in</strong>-parity for this level then appears to be good evi-<br />

dence that either the level is complex (e.g. a doublet) or that it is not the<br />

30<br />

isotopic sp<strong>in</strong> multiplet analog <strong>of</strong> the 4.80-Mev state <strong>in</strong> Si as has been ac-<br />

30<br />

cepted. Some evidence has been reported that the 3,80-Mev level <strong>in</strong> Si is<br />

a doublet, based upon observations <strong>of</strong> protons from the reactions<br />

.28, .„.30 .<br />

, N „.30 59,44 _ . ... t , , .<br />

„.30,<br />

Si (t,p)Si and Si (P,P )Si . It is possible, therefore, that<br />

30<br />

the analogous 4.50-Mev level <strong>in</strong> P is a doublet, although no other evi-<br />

dence so suggests. The other possible explanation is that a nearby level<br />

30<br />

<strong>in</strong> P , such as that at 4.42 Mev, may be the T = 1 level rather that the<br />

4.50 Mev level. This does not appear unlikely, s<strong>in</strong>ce the T = 1 character<br />

attributed to the 4.50-Mev level is a probable rather than a firm assignment<br />

32 30<br />

which was deduced from the <strong>in</strong>vestigation <strong>of</strong> the S (d,a)P reaction by Endt<br />

18 30<br />

and Paris. It is based upon a correction <strong>of</strong> the 3.80-Mev level <strong>in</strong> Si<br />

for the Coulomb <strong>energy</strong> and neutron-proton mass difference which yields a pre-<br />

30<br />

dieted <strong>energy</strong> <strong>of</strong> 4.47 Mev for the excitation <strong>energy</strong> <strong>in</strong> the P nuclide. The<br />

assignment is strengthened by the fact that the alpha-particle group from<br />

32 30 30<br />

S (d,CC)P correspond<strong>in</strong>g to a residual excitation <strong>in</strong> P <strong>of</strong> 4.501+ .010 Mev<br />

has only about half the <strong>in</strong>tensity <strong>of</strong> neighbor<strong>in</strong>g groups. This has been <strong>in</strong>ter=<br />

preted as be<strong>in</strong>g due to operation <strong>of</strong> the selection rule conserv<strong>in</strong>g isotopic<br />

sp<strong>in</strong> <strong>in</strong> this reaction.<br />

30<br />

On the basis <strong>of</strong> the <strong>energy</strong> predicted for the T = 1 level <strong>in</strong> P the<br />

4.42-Mev level is seen to be nearly as likely a candidate as the 4.50-Mev<br />

level, particularly s<strong>in</strong>ce the <strong>energy</strong> prediction is not expected to be exact.<br />

Similarly <strong>in</strong> the T conservation argument, the observed lower <strong>in</strong>tensity <strong>of</strong><br />

the alpha group for the 4.50-Mev level can hardly be considered conclusive<br />

evidence <strong>of</strong> the T = 1 character <strong>of</strong> the level, s<strong>in</strong>ce <strong>some</strong> T = <strong>levels</strong> are<br />

associated with alpha-particle groups <strong>of</strong> even lower <strong>in</strong>tensity (e.g. the<br />

30<br />

3.84-Mev level). Unfortunately, the 4.42-Mev level <strong>in</strong> P is not known to<br />

be excited <strong>in</strong> radiative capture, so that sp<strong>in</strong>-parity <strong>of</strong> this level will pro-<br />

bable have to be determ<strong>in</strong>ed from a different reaction.<br />

5. Summary <strong>of</strong> Results<br />

Excitation curves for the Si (p, 5 )P reaction have been obta<strong>in</strong>ed over<br />

the proton <strong>energy</strong> region from 1420 through 2160 kev. Four previously unreported<br />

49


esonances have been detected and confirmed at proton energies <strong>of</strong> 1975,<br />

2033, 2075, and 2117 kev with experimental uncerta<strong>in</strong>ties <strong>of</strong> +4 kev.<br />

Gamma-ray spectra at these resonances show that <strong>in</strong>elastic scatter<strong>in</strong>g pre-<br />

dom<strong>in</strong>ates over radiative capture, except at 2117 kev where no <strong>in</strong>elastic<br />

scatter<strong>in</strong>g is evident. Some <strong>in</strong>formation concern<strong>in</strong>g the radiative decay<br />

schemes at the 1975, 2075, and 2117 kev resonances was obta<strong>in</strong>ed by spectral<br />

analysis with the assistance <strong>of</strong> sum-co<strong>in</strong>cidence spectra.<br />

The gamma-ray spectrum at the 1470-kev resonance has been analyzed<br />

23<br />

and found to be <strong>in</strong> agreement with the decay scheme proposed by Moore.<br />

The angular distributions <strong>of</strong> gamma rays observed at this resonance have<br />

been measured <strong>in</strong> a series <strong>of</strong> five experimental observations, each con-<br />

sist<strong>in</strong>g <strong>of</strong> gamma-ray spectra obta<strong>in</strong>ed at five angles relative to the pro-<br />

ton beam. Analysis <strong>of</strong> this data, under the assumption that El and E2/M1<br />

30<br />

radiation deexcite P <strong>energy</strong> <strong>levels</strong> <strong>of</strong> several Mev, has shown that the<br />

1470-kev resonance level has a sp<strong>in</strong>-parity <strong>of</strong> 2+ or, less probably, 2-.<br />

The sp<strong>in</strong>-parity <strong>of</strong> level 13 at 4.14 Mev has also been found to be limited<br />

to 2+ or 2-. Level 19 at 4.50 Mev was found not to have a sp<strong>in</strong>-parity <strong>of</strong><br />

0+ which had been predicted. Under the above-mentioned assumption, an<br />

apparent A./A-. term observed <strong>in</strong> the angular distribution <strong>of</strong> this radiation<br />

leads to the conclusion that the sp<strong>in</strong>-parity for level 19 is 2+ or, less<br />

probably, 3+.<br />

50


+ 90°<br />

1<br />

tan 8<br />

-90<br />

-90 tan'<br />

3<br />

1+1+ A 2 /A<br />

FIGURE 15<br />

51<br />

+ 90 c


+ 90<br />

taiiS<br />

-90°<br />

1<br />

tan 8 3<br />

2+1+ A 2 /A<br />

FIGURE 16a<br />

52<br />

+90*


+ 90'<br />

-90<br />

-90 tan'S 3<br />

2 + I<br />

+ A4/A0<br />

FIGURE 16b<br />

53<br />

+ 90 e


+ 90<br />

-90° tan'S,<br />

2-l+A 2 /Ao<br />

FIGURE 17a<br />

54<br />

+ 90*


+ 90<br />

-90 -90 tan'8 3<br />

2-H-A4/A0<br />

FIGURE 17b<br />

55<br />

+90 c


+90<br />

tan 8<br />

2-t-2+l+-A 2 /Ao<br />

CASE SHOWN FOR S 4 =<br />

CONTOUR MULTIPLIER = .75-h25s<strong>in</strong>(2tan'8 4 +90°)<br />

FIGURE 18a<br />

56<br />

+ 90*


+90<br />

ton's<br />

-90° tan'S 3<br />

2+2+I + A4/A0<br />

CASE SHOWN FOR 84 =<br />

CONTOUR MULTIPLIER= -.127 +.635sm<br />

,<br />

(2tan S -90°)<br />

4<br />

FIGURE 18b<br />

57<br />

+ 90 c


+ 90<br />

tan" 8<br />

-90<br />

-90° tan 8,<br />

2-2 + l+A 2 /Ao<br />

FIGURE 19a<br />

58<br />

+90 c


+ 90<br />

tan 8<br />

-90< tanS 3<br />

2-2 + H-A4 /Ao<br />

FIGURE 19b<br />

59<br />

4-90*


+90<br />

tan 84<br />

-90<br />

-9CP tan 8 2<br />

2+3+1+ 4 /Ao<br />

FIGURE 20a<br />

60<br />

+ 90*


+ 90<br />

tan'84<br />

-90<br />

-90 tari'o 2<br />

2+3+1+ A 2 /Ao<br />

FIGURE 20b<br />

61<br />

OO 1


V ACKNOWLEDGEMENTS<br />

I wish to thank my advisors, Pr<strong>of</strong>essor H.E. Handler and Pr<strong>of</strong>essor<br />

E.A. Milne for their encouragement, guidance, and advice <strong>of</strong>fered dur<strong>in</strong>g<br />

the course <strong>of</strong> this work, I also am most grateful to Dr. L.W. Seagondollar<br />

and Dr. R.A. Moore <strong>of</strong> the University <strong>of</strong> Kansas for po<strong>in</strong>t<strong>in</strong>g out the signi-<br />

ficance <strong>of</strong> the 4.50-Mev level sp<strong>in</strong> determ<strong>in</strong>ation and to Dr. Moore for fur-<br />

nish<strong>in</strong>g results <strong>of</strong> his experimental work. Among the many other people who<br />

have helped make this experiment possible, I wish to thank Mr. R.C. Moeller,<br />

Mr. M.A. Brillhart, and Mr. R.A. Garcia for their <strong>in</strong>dispensible contributions<br />

to the experimental equipment.<br />

I also wish to acknowledge the help and understand<strong>in</strong>g <strong>of</strong> my wife Lois<br />

dur<strong>in</strong>g the years consumed by this undertak<strong>in</strong>g. I wish s f<strong>in</strong>ally, to express<br />

my appreciation <strong>of</strong> the cooperation and confidence <strong>of</strong> the Civil Eng<strong>in</strong>eer<br />

Corps <strong>of</strong> the U.S. Navy which have made possible my absence from more normal<br />

duties <strong>in</strong> order to complete this work.<br />

62


VI APPENDICES<br />

Appendix 1 - Theoretical Description <strong>of</strong> Double Angular Correlations<br />

A . General<br />

There has been abundant literature coverage <strong>of</strong> the theory <strong>of</strong> angular<br />

correlations <strong>of</strong> successive nuclear radiations s<strong>in</strong>ce Hamilton first pre-<br />

dicted the effect and developed theoretical expressions for successive<br />

emission <strong>of</strong> quanta, ^ A comprehensive review <strong>of</strong> the subject has been<br />

published by Biedenharn and Rose ^ and recent articles useful <strong>in</strong> exper-<br />

imental applications have been published by Gove ^' and by Biedenharn* ^°<br />

The follow<strong>in</strong>g notation is essentially that <strong>of</strong> Biedenharn. In all cases a<br />

primed symbol represents a larger value than the same symbol without a<br />

prime.<br />

In the case <strong>of</strong> a (p,^*) reaction <strong>in</strong> which the direction <strong>of</strong> a primary<br />

gamma ray deexcit<strong>in</strong>g a resonance level is observed relative to the direc-<br />

tion <strong>of</strong> an <strong>in</strong>cident proton beam^ the angular correlation is referred to<br />

as a double correlation. The function describ<strong>in</strong>g the relative probability<br />

<strong>of</strong> the gamma decay as a function <strong>of</strong> the s<strong>in</strong>gle between the beam direction<br />

and the emitted gamma ray can be written as an expression <strong>in</strong> the even<br />

Legendre polynomials %<br />

Z^max<br />

W(e) s 2 Ajl)A (2)P^(cose) , even (1)<br />

u r<br />

where A„(i) Z ajL^Fjh^^J) + 26^^^)?^!^^)<br />

+ 6h a *<br />

63


and Fj.CLL'jiJ) I (-l)^"" 1"1 [(2L+1) (2L+l)(2J+l)J<br />

(LL 8<br />

1 -1|V0)W(JJLL !<br />

;Z/J )<br />

i<br />

The <strong>in</strong>dex h is related to the <strong>in</strong>dex i by:<br />

h r i 2 - i + 1<br />

(LL 1 -l|Z/0) and W( JJLL J V ^)<br />

are respectively the<br />

Clebsch-Gordon coefficients and the Racah coefficients which are commonly<br />

used to describe systems <strong>in</strong>volv<strong>in</strong>g coupl<strong>in</strong>g <strong>of</strong> angular momenta. The F<br />

functions, for which an extensive tabulation is available, are def<strong>in</strong>ed<br />

<strong>in</strong> terms <strong>of</strong> a Clebsch-Gordon and a Racah coefficient by Biedenharn and<br />

Rose. ^ Arguments <strong>of</strong> the coefficients are angular momenta <strong>of</strong> the se-<br />

quence:<br />

j 1<br />

2}<br />

1<br />

'< 2 .<br />

= channel sp<strong>in</strong> s proton sp<strong>in</strong>© target sp<strong>in</strong><br />

L^ ,1*! = <strong>in</strong>terfer<strong>in</strong>g proton orbital angular momenta<br />

j = sp<strong>in</strong> <strong>of</strong> resonance level<br />

L L 1 = <strong>in</strong>terfer<strong>in</strong>g gamma ray mult ipolarities<br />

2* 2<br />

jp<br />

= sp<strong>in</strong> <strong>of</strong> f<strong>in</strong>al state (not necessarily a ground state)<br />

L - mix<strong>in</strong>g parameter represent<strong>in</strong>g the ratio <strong>of</strong> the reduced<br />

£<br />

matrix element for the transition <strong>in</strong>volv<strong>in</strong>g LJ proton<br />

waves to that for L^ waves<br />

= mix<strong>in</strong>g parameter represent<strong>in</strong>g the ratio <strong>of</strong> the amplitude<br />

i<br />

<strong>of</strong> gamma rays <strong>of</strong> raultipolarity L2 to those <strong>of</strong> multipo-<br />

larity L 2<br />

64<br />

(2)


a(LL') = co4 L -| L .) - 2[l(L+1)l'(lViJJ*<br />

is a particle parameter <strong>in</strong> which c, and & T tare the phases at the nuclear<br />

surface <strong>of</strong> the particle partial wave functions <strong>of</strong> multipolarity L and L .<br />

The coherent <strong>in</strong>terference between partial waves is expressed by the<br />

cos(£t "^l') term. The factor « <strong>in</strong>cludes the coulomb phase shift due to<br />

electrostatic potential for charged particles and the phase shift occur-<br />

r<strong>in</strong>g <strong>in</strong> "hard sphere" scatter<strong>in</strong>g. The si-CL^o) terms for photons as<br />

opposed to particles are equal to unity. In the case where mix<strong>in</strong>g <strong>of</strong><br />

i<br />

channel sp<strong>in</strong>s j^ and j^ occur, W(6) may be expressed as an <strong>in</strong>coherent<br />

mixture<br />

w(e) = w (e)+ $2 w^(9) (4)<br />

j;L<br />

r 2<br />

where q, is a mix<strong>in</strong>g parameter express<strong>in</strong>g the ratio <strong>of</strong> probability <strong>of</strong><br />

channel sp<strong>in</strong> jn, enter<strong>in</strong>g the reaction to that <strong>of</strong> channel sp<strong>in</strong> Ji,(Jt j-j).<br />

The maximum order <strong>of</strong> Legendre polynomials appear<strong>in</strong>g <strong>in</strong> (l), ZJ , is<br />

max<br />

determ<strong>in</strong>ed by conditions imposed on the W (abed; ef) coefficients by con-<br />

servation <strong>of</strong> angular momentum which may be expressed by the so-called<br />

triad relationships. These require each <strong>of</strong> the triads <strong>of</strong> values (acf),<br />

(bdf), (abe), and (cde) to form a possible triangle. Restriction to the<br />

case <strong>of</strong> <strong>in</strong>termediate states <strong>of</strong> well def<strong>in</strong>ed parity (i.e. no <strong>in</strong>terferr<strong>in</strong>g<br />

<strong>in</strong>termediate states <strong>of</strong> opposite parities) leads to the further simplifi-<br />

cation that U may take on only even values.<br />

In the case <strong>of</strong> the reaction (p,x^), <strong>in</strong> which x represents an unob-<br />

served <strong>in</strong>termediate gamma ray, the correlation is expressed as an <strong>in</strong>coher-<br />

ent mixture <strong>of</strong> multipoles occurr<strong>in</strong>g <strong>in</strong> the unobserved transition, i.e. <strong>in</strong><br />

65<br />

(3)


the sequence:<br />

r 2<br />

W(e) ctn b3 expressed? W(0) Z \,(9) +• O 2 Wti (6) (6)<br />

where:<br />

j Q a channel sp<strong>in</strong><br />

Iq,Lq - <strong>in</strong>terfer<strong>in</strong>g proton orbital angular momenta<br />

J,<br />

a sp<strong>in</strong> <strong>of</strong> resonance level<br />

LpL^ a <strong>in</strong>terfer<strong>in</strong>g gamma ray multipolarities <strong>of</strong> unobserved<br />

J<br />

Lp,L 2<br />

radiation<br />

a sp<strong>in</strong> <strong>of</strong> <strong>in</strong>termediate level<br />

- <strong>in</strong>terfer<strong>in</strong>g gamma ray multipolarities <strong>of</strong> observed radiation<br />

j = sp<strong>in</strong> <strong>of</strong> f<strong>in</strong>al state<br />

2<br />


In the present <strong>in</strong>vestigation the Si^9 target nucleus has a ground-<br />

state sp<strong>in</strong> <strong>of</strong> l/2 +, with the simplify<strong>in</strong>g result that channel-sp<strong>in</strong><br />

mix<strong>in</strong>g and proton-partial-wave mix<strong>in</strong>g may not occur simultanously The<br />

number <strong>of</strong> 6 's is thus limited to a maximum <strong>of</strong> three. Explicitly ^ for<br />

resonance <strong>levels</strong> <strong>of</strong> 1+- ,2-, 3\» U-> etc orbital angular momentum mix<strong>in</strong>g<br />

<strong>of</strong> two partial waves may occur but channel-sp<strong>in</strong> mix<strong>in</strong>g is prohibited,,<br />

For the resonance level sp<strong>in</strong>s <strong>of</strong> opposite parities from those listed<br />

only channel-sp<strong>in</strong> mix<strong>in</strong>g is permitted.<br />

When three mix<strong>in</strong>g parameters occur <strong>in</strong> the general case <strong>of</strong> <strong>in</strong>ter-<br />

mediate unobserved radiation (p,xtf ) with a sp<strong>in</strong> sequence<br />

or JnlNll kl 2<br />

|J2 (8)<br />

io<br />

\ l<br />

the normalized correlation function can be expressed as<br />

w(e) = i/AqZ A^(cose) (9)<br />

where each A /A is a product <strong>of</strong> the forms<br />

A xA> = TT^(^) (105<br />

and g z<br />

withy = 1,2,3 or 2,3,4<br />

(It is to be noted that the coefficient A v appear<strong>in</strong>g <strong>in</strong> (9) is a conven=<br />

tional representation <strong>of</strong> the more complete forms shown <strong>in</strong> (1) and (?).<br />

A dist<strong>in</strong>ction must also be made, <strong>of</strong> course, between the correlation func=<br />

tion W(0) and the Racah coefficient W(abcd; ef).<br />

67


protcn<br />

wave<br />

mix<strong>in</strong>g<br />

unobs<br />

gamma ^<br />

mix<strong>in</strong>g<br />

gamma<br />

mix<strong>in</strong>g<br />

chan,<br />

The coefficients a, b, and c can te expressed as follows:<br />

/ a<br />

*1<br />

U<br />

^1<br />

\/2<br />

°*2<br />

c «/2<br />

a o<br />

< b ~3<br />

c *3<br />

s<br />

sp<strong>in</strong> \ ^4 "<br />

mix<strong>in</strong>g<br />

2Lo(L + 1) -2>^+l)<br />

4[Lo(LQ 4 1)1^ ± 1)1 FjLqL^)<br />

Lo(lo +1)+ L£(l£ + 1) - *>(*> +<br />

2L6(Lq j; 1)<br />

2Lo(Lq-»- 1) - M^+D F »»( I ioJo J i^<br />

(-if[(2J!* 1)(2J 2 + I)}* W(«W2 3 JjJg)<br />

(-1) X/<br />

[(2J 1 + 1)(2J 2 + 1)]* WCJj^LJJ^Jj<br />

F ^( L 2^2 J 2)<br />

2FjL 2 L 2j 2 J 2 )<br />

F„a 2J2J 2)<br />

f a,4 - 2^0. + i:<br />

2Lo(L + 1) - *(*> +<br />

*"*<br />

t2 = 1\ " *"?4 - :<br />

F *,(%Vl^<br />

2Lo(Ln + 1)<br />

° 0J<br />

2L (Lo+ 1) -v(vU)<br />

68<br />

:u:


proton<br />

wave<br />

mix<strong>in</strong>g<br />

unobs.<br />

gamma<br />

mix<strong>in</strong>g<br />

gamma<br />

mix<strong>in</strong>g<br />

chan.<br />

sp<strong>in</strong><br />

mix<strong>in</strong>g<br />

For the (p, 8" ) case the only changes required are: & iid~ ~ 9 \2 S ®»<br />

c^2 = ° and J i = J 2 = J °<br />

The angular correlation function, as an alternative s may be ex-<br />

pressed <strong>in</strong> terms <strong>of</strong> the coefficients Z and Z^ 9<br />

ficients*<br />

c<br />

<strong>in</strong>stead <strong>of</strong> the F coef-<br />

b^ = 2(-l) J °Z(l J 1 I^J 1 , Jo") (12)'<br />

,30 » . - «<br />

c*i = (-1 ) «WiVi» v><br />

a<br />

u2 = (-1)° X W(J^gJ^g; Iq. 2/)<br />

D *2<br />

^ c «,2<br />

a<br />

r<br />

v c^ 3 s<br />

/<br />

ai<br />

(-i)° L i wC^J^Jgj l[i>)<br />

(-l)^ 2 Z 1 (L 2 J 2 L 2 J 2 , j 2 i/)<br />

2(-l) J 2 Z^J^ j 2 v)<br />

(-1)^2 ^(L^J^Jgi j 2 v)<br />

Jo<br />

w4 = (-1) U ZCLqJ-lLqJ-l, j 2^)<br />

^4<br />

= (-l) Ji ZCLqJ^o^i JqV)<br />

69


For (p, 2f) reactions J. - J p<br />

J, a^ 2 * (2J+1)~ , b^g s<br />

S c^ s °<br />

* ( The two formalisms (11) and (12) are to <strong>some</strong> extent <strong>in</strong>compatible<br />

. 50 51<br />

Not only may the coherent mix<strong>in</strong>g parameter phases differ by II ' *'<br />

but also for L = the parameter S, doesn't represent the same matrix<br />

element ratio <strong>in</strong> both notations. The notation above, (12), has been used<br />

for most calculations <strong>in</strong> the present work. These expressions are <strong>in</strong><br />

agreement with Sharp -* except that the sign <strong>of</strong> b v o , for the (p,xfl)<br />

case only, has been changed to agree with the part <strong>of</strong> Huby's correction<br />

apply<strong>in</strong>g to the observed ganima ray.'* *' For the "unnatural" radiation<br />

mixtures (ML/E2, 23/^2* etc.) the sign <strong>of</strong> fcuj should be reversed.<br />

This sign convention penaits the use <strong>of</strong> Moore's tabulated values 2-*<br />

where the sane convention is used.)<br />

The Z and Z, coefficients and Racah and Clebsch-Gordon coefficients<br />

52<br />

°^<br />

have been tabulated by Sharp et al. Us<strong>in</strong>g this tabulation Moore *'-'<br />

has prepared a convenient table <strong>of</strong> the a, b, and c coefficients applica-<br />

29<br />

ble to radiative proton capture by Si .<br />

In order to fit experimental data on angular correlation coeffi-<br />

cients to theory, it is desirable to first elim<strong>in</strong>ate as m?ny sp<strong>in</strong> se=<br />

quences as possible on the basis <strong>of</strong> any evidence which may be available.<br />

In cases where only two mix<strong>in</strong>g parameters enter, contour plots<br />

<strong>in</strong>g contours <strong>of</strong> constant theoretical values <strong>of</strong> the coefficients A 2 /Aq<br />

can be plotted aga<strong>in</strong>st the <strong>in</strong>verse tangents <strong>of</strong> the two mix<strong>in</strong>g parameters<br />

for all possible sp<strong>in</strong> sequences » If three mix<strong>in</strong>g parameters enter $ one<br />

<strong>of</strong> them may be held constant for the purpose <strong>of</strong> plott<strong>in</strong>g the correlation<br />

coefficient contours aga<strong>in</strong>st the <strong>in</strong>verse tangents <strong>of</strong> the other two param-<br />

eters It is seen from (10) that the contour values for different<br />

values <strong>of</strong> the fixed parameter differ only by a multiplicative constant.<br />

70<br />

47


When experimental values <strong>of</strong> correlation coefficients are del<strong>in</strong>eated on<br />

the contour plot, <strong>some</strong> sp<strong>in</strong> sequences can be elim<strong>in</strong>ated and the possible<br />

comb<strong>in</strong>ations <strong>of</strong> mix<strong>in</strong>g parameters are restricted for other sequences.<br />

The observed values <strong>of</strong> several correlation coefficients <strong>in</strong> one decay<br />

scheme may then fix or highly restrict values <strong>of</strong> the sp<strong>in</strong>-parities <strong>of</strong><br />

resonance and <strong>in</strong>termediate <strong>levels</strong>, and determ<strong>in</strong>e the values <strong>of</strong> the mix-<br />

<strong>in</strong>g parameters.<br />

B. Application to 1470-kev resonance<br />

For the resonance occurr<strong>in</strong>g at a laboratory proton <strong>energy</strong> <strong>of</strong> 1470<br />

kev, the phase factor cos'£- -| t( ) has been calculated us<strong>in</strong>g the<br />

expression^ = ,<br />

^l+ ^l, wnere


TABLE 8<br />

Relative Penetration Factors for 1470-Kev Protons<br />

d/s f/P g/d<br />

3.1 x 10 -2<br />

5o0 x 10 1.3 x 10<br />

TABLE 9<br />

Coulomb Phase Factors for 1470-Kev Protons<br />

*,-*.<br />

104<br />

3 Si<br />

73*<br />

72<br />

4 T2<br />

56


Appendix 2 - Computer Programs and Analysis<br />

Ao General<br />

In order to analyze experimental data <strong>in</strong> the form <strong>of</strong> gamma-ray<br />

spectra recorded by the 128-channel analyzer, two computer programs<br />

were developed. The first and more extensive program entitled program<br />

SPECFIT computes experimental correlation coef f icients s while program<br />

CONTOUR is designed to utilize a California Computer Products Model<br />

565 graph plotter as an output medium to automatically plot contours<br />

<strong>of</strong> constant angular correlation coefficient values aga<strong>in</strong>st the <strong>in</strong>verse<br />

tangents <strong>of</strong> two mix<strong>in</strong>g parameters . Both programs are written <strong>in</strong> fortran<br />

language and were run on a CDC-1604 digital computer.<br />

B. Program SPECFIT<br />

The output pulses <strong>of</strong> a photomultiplier tube view<strong>in</strong>g a sc<strong>in</strong>tillation<br />

crystal upon which monoenergetic photons imp<strong>in</strong>ge do not all have the same<br />

voltage. Instead, the three fundamental processes <strong>of</strong> photoelectric ab-<br />

sorption, Compton scatter<strong>in</strong>g and pair production, which occur <strong>in</strong> the<br />

crystal with probabilities dependent upon gamma-ray <strong>energy</strong>, lead to a<br />

response pulse-spectrum which is characteristic <strong>of</strong> each particular gamma-<br />

ray <strong>energy</strong>. Experimental geometry, crystal size, shield<strong>in</strong>g, various l<strong>in</strong>e-<br />

broaden<strong>in</strong>g effects, and characteristics <strong>of</strong> <strong>in</strong>dividual crystal-photomulti-<br />

plier tube comb<strong>in</strong>ations <strong>in</strong>fluence the response also, so that response<br />

functions are <strong>in</strong> general unique for each spectrometer <strong>in</strong> a given experi-<br />

mental arrangement.<br />

An experimentally observed spectrum is, <strong>of</strong> course, usually composed<br />

<strong>of</strong> a number <strong>of</strong>. gamma rays, the spectrum be<strong>in</strong>g the sum <strong>of</strong> the constituent<br />

radiations each multiplied by its <strong>in</strong>tensity. The problem <strong>of</strong> decipher<strong>in</strong>g<br />

such an observed spectrum to obta<strong>in</strong> the energies and <strong>in</strong>tensities <strong>of</strong> com-<br />

ponent gamma rays is <strong>of</strong> fundamental importance <strong>in</strong> gamma ray spectroscopy<br />

and has not yet been satisfactorily solved <strong>in</strong> complete generality.<br />

Us<strong>in</strong>g notation, which is appropriate for the discrete pulse height<br />

<strong>in</strong>tervals <strong>in</strong>to which multi-channel analyzers sort pulses, and also ap-<br />

propriate for the discrete number <strong>of</strong> gamma ray energies compos<strong>in</strong>g re-<br />

sonance deexcitation spectra, one can write;<br />

S_.<br />

= "<br />

m<br />

J = l<br />

73


where S. = observed number <strong>of</strong> counts <strong>in</strong> channel i<br />

1<br />

R. . = probability that a photon <strong>of</strong> <strong>energy</strong> E.<br />

orig<strong>in</strong>at<strong>in</strong>g at a particular source<br />

will produce, a pulse fall<strong>in</strong>g <strong>in</strong> pulseheight<br />

channel i (usually referred to<br />

as the response matrix)<br />

I. = the number <strong>of</strong> photons <strong>of</strong> <strong>energy</strong> E.<br />

** orig<strong>in</strong>at<strong>in</strong>g at the source<br />

m = the number <strong>of</strong> gamma ray energies which<br />

occur <strong>in</strong> the spectrum under consideration<br />

A rather fundamental and obvious approach to this problem is to<br />

assume no knowledge <strong>of</strong> gamma-ray energies is available, divide the gamma<br />

ray <strong>energy</strong> range <strong>in</strong>to a number <strong>of</strong> discrete <strong>in</strong>tervals equal to the number<br />

<strong>of</strong> channels, then solve for:<br />

i '<br />

^-r 1 4-» ik Kj j £+ ik k<br />

In fact, the first attempt to unfold experimental spectra <strong>in</strong> the<br />

54<br />

present work utilized a modification <strong>of</strong> a program which employed an<br />

iterative technique developed by Sch<strong>of</strong>ield to solve the above equation.<br />

This attempt failed for two reasons which are rather <strong>in</strong>structive. First 3<br />

the analytical expression used to approximate the response matrix did not<br />

adequately represent the true spectrometer response, and second, the<br />

technique proved <strong>in</strong>adequate, with experimental count<strong>in</strong>g statistics atta<strong>in</strong>-<br />

able to handle the analysis <strong>of</strong> approximately 100 channels.<br />

In order to avoid the first problem resort was had to the technique<br />

<strong>of</strong> <strong>in</strong>terpolat<strong>in</strong>g between experimentally-determ<strong>in</strong>ed monoenergetic cali-<br />

bration curves <strong>in</strong> order to obta<strong>in</strong> the response matrix. In order to over-<br />

come the second objection it was decided to use <strong>in</strong>formation on the gamma<br />

ray energies available from prelim<strong>in</strong>ary "stripp<strong>in</strong>g" <strong>of</strong> spectra and from<br />

other sources. Hav<strong>in</strong>g thus reduced the number <strong>of</strong> gamma rays to be con-<br />

sidered, a l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> the selected response matrix elements<br />

was then fitted to the observed spectrum by a least squares process.<br />

This procedure was followed by another least squares analysis to obta<strong>in</strong><br />

74


correlation function coefficients from the gamma ray <strong>in</strong>tensities cal-<br />

culated for a series <strong>of</strong> runs at different experimental angles. The<br />

steps <strong>in</strong> the computation procedure <strong>in</strong> program SPECFIT as f<strong>in</strong>ally de-<br />

veloped are as follows:<br />

L Load data. (See section D <strong>of</strong> this Appendix)<br />

2. Subtract any constant background from calibration spectra. This<br />

background represents the Compton "tails" <strong>of</strong> higher <strong>energy</strong> gamma rays<br />

contam<strong>in</strong>at<strong>in</strong>g certa<strong>in</strong> <strong>of</strong> the calibration gamma rays.<br />

3. Normalize each calibration spectrum to a photopeak height <strong>of</strong> one<br />

unit<br />

4. Include a straight l<strong>in</strong>e <strong>in</strong> the response matrix if this option is<br />

selected. This step is essentially a ref<strong>in</strong>ement <strong>of</strong> step 2.<br />

5. Correct the <strong>in</strong>put and background spectra for dead time <strong>of</strong> the pulse<br />

height analyzer. For this purpose the dead time given by the manufacturer<br />

is 38 + 0.5i microseconds where i is the pulse height channel number.<br />

This leads to an expression for corrected counts;<br />

N.<br />

N'. = - -L<br />

j<br />

127<br />

1 - 1/T 2T N -( 38 + 0.5i)»10" 6<br />

L<br />

1^2<br />

where N. = the number <strong>of</strong> counts observed <strong>in</strong> channel i<br />

l<br />

T = count<strong>in</strong>g time <strong>in</strong> seconds<br />

6. Calculate energies <strong>in</strong> Mev correspond<strong>in</strong>g to each channel number <strong>of</strong><br />

the <strong>in</strong>put spectrum.<br />

7. Adjust <strong>energy</strong> scale and number <strong>of</strong> channels <strong>of</strong> background spectrum<br />

to match the <strong>in</strong>put spectrum. Multiply by ratio <strong>of</strong> run times to get the<br />

proper background to be subtracted from the <strong>in</strong>put spectrum and perform<br />

the subtraction.<br />

8. Us<strong>in</strong>g the monoenergetic calibration spectra, calculate a matrix <strong>of</strong><br />

response curves for the gamma rays which the spectrum is to be decomposed<br />

<strong>in</strong>to. This calculation is performed <strong>in</strong> a subrout<strong>in</strong>e entitled RESPONS as<br />

follows<br />

a. F<strong>in</strong>d the two calibration curves bracket<strong>in</strong>g a gamma ray <strong>energy</strong><br />

desired as a response matrix element.<br />

75


o Shift the lower-<strong>energy</strong> calibration curve found <strong>in</strong> a. so that<br />

its photopeak falls <strong>in</strong> the same channel as the higher <strong>energy</strong><br />

photopeak. Fill <strong>in</strong> bottom <strong>of</strong> shifted curve as determ<strong>in</strong>ed by<br />

the slope between the bottom two unshifted channels. Match<br />

<strong>energy</strong> calibration <strong>of</strong> the lower-<strong>energy</strong> curve to the upper.<br />

(For this step, and elsewhere where <strong>in</strong>terpolation is necessary s<br />

cubic <strong>in</strong>terpolation is performed us<strong>in</strong>g the four nearest po<strong>in</strong>ts<br />

to the desired value,)<br />

Co Interpolate l<strong>in</strong>early between each pair <strong>of</strong> po<strong>in</strong>ts <strong>of</strong> the<br />

bracket<strong>in</strong>g calibration curves to obta<strong>in</strong> a response curve for<br />

the desired gamma-ray <strong>energy</strong>. (A "curve" <strong>in</strong> this description<br />

is meant to imply the vector consist<strong>in</strong>g <strong>of</strong> a 1 X n array <strong>of</strong><br />

values, n be<strong>in</strong>g the number <strong>of</strong> channels used <strong>in</strong> the description).<br />

d. Us<strong>in</strong>g the <strong>in</strong>put spectrum channel energies calculated <strong>in</strong> 6. s<br />

<strong>in</strong>terpolate to get a response curve with channels and channel<br />

energies correspond<strong>in</strong>g to those <strong>of</strong> the <strong>in</strong>put data.<br />

e. Normalize the response curve for the given gamma-ray <strong>energy</strong> so<br />

that the ord<strong>in</strong>ate correspond<strong>in</strong>g to each channel represents the<br />

probability that one photon leav<strong>in</strong>g the source will produce a<br />

count <strong>in</strong> that channel. For this calculation the experimentally-<br />

determ<strong>in</strong>ed <strong>in</strong>tr<strong>in</strong>sic peak efficiency data <strong>of</strong> Lazer h«ve been<br />

used to derive the follow<strong>in</strong>g approximate expression for <strong>in</strong>tr<strong>in</strong>sic<br />

peak efficiency as a function <strong>of</strong> source distance:<br />

€ = AE" X<br />

where A = . 165 + .0067h<br />

x =» .9699 - .00918h<br />

h = source to crystal distance <strong>in</strong> centimeters<br />

E = gamma ray <strong>energy</strong> <strong>in</strong> Mev<br />

Assum<strong>in</strong>g an accurately gaussian photopeak, and that the crystal<br />

resolution is approximately <strong>in</strong>versely proportional to the square<br />

root <strong>of</strong> gamma ray <strong>energy</strong>, (an assumption which was experimentally<br />

verified) the ratio <strong>of</strong> photopeak height to area can be expressed:<br />

" «662*E<br />

^r _ WR „ bbZjtE<br />

f<br />

76<br />

866wr j_


where R is the usual resolution def<strong>in</strong>ition <strong>of</strong> peak width at<br />

137<br />

one half maximum amplitude divided by <strong>energy</strong> for the Cs<br />

gamma ray, and W is the spectrometer calibration <strong>in</strong> pulse<br />

height channels per Mev. When OC is multiplied by the appro-<br />

priate solid angle fraction and attenuation coefficient,, the<br />

value obta<strong>in</strong>ed represents the probability <strong>of</strong> record<strong>in</strong>g one<br />

count <strong>in</strong> the photopeak channel when one photon orig<strong>in</strong>ates at<br />

the source.<br />

f . Return to ma<strong>in</strong> rout<strong>in</strong>e.<br />

9o Fit the experimental spectrum with a l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> the selected<br />

monoenergetic response curves, the coefficients represent<strong>in</strong>g absolute <strong>in</strong>-<br />

tensities because <strong>of</strong> the method <strong>of</strong> normaliz<strong>in</strong>g the response matrix. The<br />

weighted sum <strong>of</strong> the squares <strong>of</strong> the differnces between observed channel<br />

counts and fitted counts is m<strong>in</strong>imized <strong>in</strong> order to arrive at this fit.<br />

The normal equations result<strong>in</strong>g from the m<strong>in</strong>imization are:<br />

2S.R M w. = V R..R..I.W. = i< j<br />

j<br />

ij<br />

where S. = Observed counts <strong>in</strong> channel i<br />

J<br />

R - Response matrix element giv<strong>in</strong>g<br />

J probability <strong>of</strong> a count <strong>in</strong> channel<br />

j due to one photon <strong>of</strong> <strong>energy</strong> E,<br />

orig<strong>in</strong>at<strong>in</strong>g at the source<br />

w. = Weight assigned to the squared<br />

J error <strong>in</strong> channel j<br />

I. = Number <strong>of</strong> photons <strong>of</strong> <strong>energy</strong> E.<br />

which leave the source dur<strong>in</strong>g<br />

the count<strong>in</strong>g period<br />

j summations are over the channels for<br />

which a fit is desired<br />

i summation is over the number <strong>of</strong> gamma<br />

ray energies E. used to fit the observed<br />

spectrum<br />

For calculation the I. are expressed; I. = J> A, . B,<br />

x l *-f ki k<br />

k<br />

with A. . = J. R..R M w. and B, - y°[ S.R..W.<br />

ki ^ Ji jk J k 4^ j jk j<br />

77


A standard subrout<strong>in</strong>e (GAUSS3) is used to <strong>in</strong>vert A, Mention should be<br />

made <strong>of</strong> the weights w. which have been used. Normally , for a Poisson<br />

distribution the weight is taken as l/£ where the number <strong>of</strong> observed<br />

counts <strong>in</strong> a channel are used as an estimate <strong>of</strong> the variance & .<br />

Ferguson, who has po<strong>in</strong>ted out that this procedure overweights statist!-<br />

cally low counts, identifies the Poisson distribution variance, which<br />

rightly is the mean number <strong>of</strong> counts, with the fitted number <strong>of</strong> counts<br />

for each channel. This procedure is adopted here with a modification to<br />

account for statistical error aris<strong>in</strong>g from the subtraction <strong>of</strong> background<br />

counts. We have 111 S! = S. = b., where S.<br />

1<br />

are observed channel counts corrected<br />

for dead time and b. are background counts to be subtracted. Then,,<br />

2 2<br />


(This is an arbitrary calculation used only for check<strong>in</strong>g results obta<strong>in</strong>ed<br />

<strong>in</strong> manual unfold<strong>in</strong>g) . The fractional error assigned to these counts is<br />

set equal to the fractional error <strong>in</strong> the correspond<strong>in</strong>g <strong>in</strong>tensity . The<br />

statistical variance estimators <strong>of</strong> the <strong>in</strong>tensities have been taken to be<br />

41<br />

the diagonal elements <strong>of</strong> the <strong>in</strong>verse <strong>of</strong> the matrix A <strong>in</strong> 9. In addition<br />

to statistical <strong>in</strong>tensity errors there is an error due to ga<strong>in</strong> and discrimi-<br />

nator drifts <strong>in</strong> the monitor counts channel which must be accounted for as<br />

well as error due to eccentricity <strong>of</strong> the beam spot on the target. These<br />

fractional errors have been estimated to be 3.3 per cent and 1.2 per cent<br />

respectively <strong>in</strong> the present experiment. The three errors are comb<strong>in</strong>ed<br />

accord<strong>in</strong>g to;<br />

3<br />

Two other possible sources <strong>of</strong> error should be noted here. First, the<br />

errors <strong>in</strong> the experimentally determ<strong>in</strong>ed response matrix, which can con-<br />

siderably complicate the error calculations for the <strong>in</strong>tensities, are kept<br />

to a m<strong>in</strong>imum by obta<strong>in</strong><strong>in</strong>g good count<strong>in</strong>g statistics <strong>in</strong> the calibration<br />

spectra. The other source <strong>of</strong> error is ga<strong>in</strong> drift which tends to smear<br />

spectral peaks. Fortunately, the ma<strong>in</strong> effect <strong>of</strong> such drift seems to be<br />

an <strong>in</strong>crease <strong>in</strong> the mean squared errors <strong>in</strong> the curve fitt<strong>in</strong>g process and<br />

<strong>in</strong>tensity determ<strong>in</strong>ations are apparently not too sensitive to the effect.<br />

12. The <strong>in</strong>tensities and their errors calculated <strong>in</strong> 11 are read out and<br />

stored for use <strong>in</strong> the subsequent determ<strong>in</strong>ation <strong>of</strong> correlation coefficients<br />

and mean values.<br />

13. The absolute values <strong>of</strong> differences between observed and fitted counts<br />

are summed over fitted channels and divided by total <strong>in</strong>put spectrum counts<br />

over the same range to give a measure <strong>of</strong> the fit which has been achieved<br />

<strong>in</strong> the analysis. This measure is then read out.<br />

14. The <strong>in</strong>put and fitted spectra are plotted <strong>in</strong> a graph output.<br />

15. The above process is repeated for each run <strong>in</strong> the data set until the<br />

data for all the experimental angles has been processed.<br />

16. When the preced<strong>in</strong>g analysis is completed for a set <strong>of</strong> data a sub-<br />

rout<strong>in</strong>e entitled LEASTSQ may be called, if appropriate, to compute the<br />

correlation coefficients. For each gamma ray <strong>in</strong> the spectrum a least<br />

squares fit <strong>of</strong> the counts computed at the experimental angles is made to<br />

the usual series-.<br />

1<br />

W(6) = 2 A. P. (cos 0), i even<br />

i<br />

79


where P. are the even Legendre polynomials. The fit is first made to<br />

A n + A_P„ + A. P. then A~ + A„P„. (Provision has been made for fitt<strong>in</strong>g<br />

22 4 4 22<br />

to the series term<strong>in</strong>at<strong>in</strong>g with P, by simply chang<strong>in</strong>g the <strong>in</strong>itial value<br />

<strong>of</strong> NP to 4; however, see reference 61 concern<strong>in</strong>g accuracy <strong>of</strong> P terms).<br />

41<br />

The computation, which follows the procedure given by Rose , proceeds<br />

as follows:<br />

58<br />

a. Table gamma ray absorption coefficients <strong>in</strong> copper and cor-<br />

respond<strong>in</strong>g energies <strong>in</strong> Mev. Correct <strong>in</strong>tensities and sigmas<br />

for attenuation <strong>in</strong> copper target back<strong>in</strong>g.<br />

bo Set up matrix P. . <strong>of</strong> Legendre polynomials for experimental<br />

angles.<br />

c. Do least squares calculation to f<strong>in</strong>d coefficients us<strong>in</strong>g the<br />

reciprocal <strong>of</strong> the estimated <strong>in</strong>tensity variances from 11 as<br />

weights.<br />

d. Normalize coefficients and correct for the effect <strong>of</strong> the<br />

f<strong>in</strong>ite solid angle subtended by the sc<strong>in</strong>tillation crystal.<br />

These latter corrections are precomputed <strong>in</strong> an auxiliary<br />

41<br />

program us<strong>in</strong>g the expressions given by Rose. Estimated<br />

variances <strong>of</strong> the coefficient ratios., A»/A n , etc. s are com-<br />

puted from the expression given by Reich et al. (After<br />

2<br />

computation variances were <strong>in</strong>creased by a factor 1/^ <strong>in</strong><br />

2<br />

all cases where the computed value <strong>of</strong> C was less than unity. )<br />

e. Calculate anisotropy.<br />

2<br />

f. Compute the criterion £ . This quantity s def<strong>in</strong>ed by Rose's<br />

analysis, is a measure <strong>of</strong> non-statistical errors <strong>in</strong> the data.<br />

2<br />

If such errors are elim<strong>in</strong>ated the value <strong>of</strong> C serves to <strong>in</strong>-<br />

dicate whether the appropriate number <strong>of</strong> polynomials has been<br />

used <strong>in</strong> the correlation function expression., with values <strong>of</strong><br />

2<br />

C greater than unity <strong>in</strong>dicat<strong>in</strong>g an <strong>in</strong>appropriate choice.<br />

It is pert<strong>in</strong>ent here that non-statistical errors have already<br />

been <strong>in</strong>troduced <strong>in</strong>to the problem <strong>in</strong> 11 above so that this<br />

criterion is valid only to the extent that an accurate esti-<br />

mate <strong>of</strong> the true variance <strong>of</strong> the counts has been achieved.<br />

2<br />

The computed values <strong>of</strong> £ <strong>in</strong> general are near unity and seem<br />

to verify that the estimated variances can be considered to<br />

be reasonably good.<br />

80


Selected values <strong>of</strong> the normalized calculated correlation<br />

function, and values <strong>of</strong> a comparison theoretical function<br />

if desired, are read out, and similarly normalized experi-<br />

mental po<strong>in</strong>ts are read out. (Experimental values are un-<br />

corrected for solid angle, the correction be<strong>in</strong>g applied to<br />

the theoretical function for comparison with experimental<br />

results .<br />

Iterate for each gamma-ray <strong>energy</strong>.<br />

Reduce number <strong>of</strong> polynomials if orders higher than P have<br />

been used and iterate solution,, (The program also calculates<br />

coefficients for the cos<strong>in</strong>e series;<br />

m _<br />

W(9) = 1/A<br />

Q 2 A 2n [ COS 2n<br />

(0)<br />

]<br />

jo Return to ma<strong>in</strong> rout<strong>in</strong>e<br />

16 Repeat entire analysis for as many sets <strong>of</strong> data as <strong>in</strong>dicated.<br />

17. Comb<strong>in</strong>e coefficients to get weighted mean values and Chi square<br />

values if more than one set <strong>of</strong> data is analyzed. Read out these values<br />

18. Comb<strong>in</strong>e <strong>in</strong>tensities at each angle from all sets <strong>of</strong> data and re-<br />

analyze for coefficients us<strong>in</strong>g this comb<strong>in</strong>ed data set.<br />

C. Glossary <strong>of</strong> names <strong>of</strong> selected variables and constants appear<strong>in</strong>g<br />

<strong>in</strong> program SPECFIT. An asterisk <strong>in</strong>dicates an <strong>in</strong>put quantity.<br />

A(I,J)<br />

AINV(I,J)<br />

ANISO(I)<br />

ARGP(I)<br />

*B(I)<br />

*BACK(I)<br />

BACKGND(I)<br />

*BCHAN<br />

The matric product <strong>of</strong> the response matrix with its<br />

transpose, weighted with the WT values.<br />

The <strong>in</strong>verse <strong>of</strong> A(I,J).<br />

Anisotropy for Legendre series solution (I = 1) s<br />

and for cos<strong>in</strong>e series solution (I - 2)<br />

Vector conta<strong>in</strong><strong>in</strong>g cos<strong>in</strong>es <strong>of</strong> the angles B3(I).<br />

A vector represent<strong>in</strong>g the product <strong>of</strong> the <strong>in</strong>verse<br />

<strong>of</strong> the response matrix and the observed spectrum.<br />

A number represent<strong>in</strong>g background counts to be<br />

subtracted from calibration curve I.<br />

The calculated background spectrum to be subtracted<br />

from an <strong>in</strong>put spectrum.<br />

The lower <strong>of</strong> the channel pair described under TCHAN<br />

81<br />

)


FIN(I,J,K)<br />

FMU(I)<br />

*HCM<br />

HOLD (I)<br />

LPKS<br />

*MAXCHAN<br />

*MESH<br />

*MINT<br />

*MINTB<br />

MPKS<br />

MPKS2<br />

*NBAOPT<br />

*NCUT<br />

NERFL<br />

*NHIEST<br />

*NLOWEST<br />

*NOCALB<br />

*NPHOTO<br />

Storage for FINTENS(I), data set J 3 run K.<br />

Mass absorption coefficient <strong>in</strong> copper for EMU(I)<br />

Mev gamma ray Units <strong>in</strong> cm^/gm.<br />

Distance from source to crystal face <strong>in</strong> centimeters.<br />

A temporary storage vector.<br />

Same as NPKS but not <strong>in</strong>clud<strong>in</strong>g any straight l<strong>in</strong>e<br />

component. (See NBAOPT)<br />

An upper channel limit <strong>in</strong> load<strong>in</strong>g CALB data. Between<br />

MAXCHAN and MINT, CALB(I) values are filled <strong>in</strong> with<br />

the value <strong>of</strong> CALB (MAXCHAN)<br />

The number <strong>of</strong> channels <strong>in</strong> <strong>in</strong>put spectrum.<br />

Number <strong>of</strong> channels <strong>in</strong> calibration spectra.<br />

Number <strong>of</strong> background channels.<br />

Initial value <strong>of</strong> NPKS for restor<strong>in</strong>g the value.<br />

Initial value <strong>of</strong> LPKS for restor<strong>in</strong>g the value.<br />

Background option selector.<br />

NBAOPT - No background read <strong>in</strong> nor subtracted<br />

from SPEC<br />

NBAOPT = 1 Background spectrum is read <strong>in</strong> and<br />

SPEC is corrected for this background<br />

NBAOPT = 2 Same as NBAOPT = 1 and <strong>in</strong> addition a<br />

straight, l<strong>in</strong>e is <strong>in</strong>cluded <strong>in</strong> the<br />

response matrix.<br />

A channel number below which the graph output<br />

values are divided by a scale factor SCALE.<br />

An output <strong>of</strong> matrix <strong>in</strong>version subrout<strong>in</strong>e. A value<br />

<strong>of</strong> 1 <strong>in</strong>dicates matrix is non s<strong>in</strong>gular, and 2 <strong>in</strong>dicates<br />

a s<strong>in</strong>gular matrix.<br />

The upper channel <strong>of</strong> the range over which a fit is<br />

made <strong>in</strong> SPECFIT.<br />

The lower channel <strong>of</strong> the range over which a fit is<br />

made <strong>in</strong> SPECFIT.<br />

Number <strong>of</strong> calibration spectra.<br />

The photograph number <strong>of</strong> the observed spectrum; for<br />

identification only.<br />

83


*NPKS<br />

*NRUNS<br />

NP<br />

*NPRINT<br />

*NSETS<br />

OMEGA(I s J)<br />

*PKSEP(I)<br />

*PHOT(I)<br />

*PKEN(I)<br />

POLY (I. J)<br />

R(I,J)<br />

RED<br />

*RES<br />

SAN (I)<br />

SAVE (I, J)<br />

The number <strong>of</strong> spectral components with which the<br />

observed spectrum is to fitted. Program will <strong>in</strong>crease<br />

this value by one if option is chosen to Include a<br />

straight l<strong>in</strong>e <strong>in</strong> R (See NBAOPT)<br />

Number <strong>of</strong> runs <strong>in</strong> a set <strong>of</strong> data.<br />

Number <strong>of</strong> Legendre polynomials to be fitted <strong>in</strong> first<br />

pass through LEASTSQ.<br />

Pr<strong>in</strong>t suppression <strong>in</strong>dex<br />

NPRINT =0 All pr<strong>in</strong>touts and graphs are made<br />

NPRINT = 1 Suppress pr<strong>in</strong>touts <strong>of</strong> spectrum values and<br />

cos<strong>in</strong>e series coefficients<br />

NPRINT = 2 Same as 1 and also suppress graph outputs<br />

NPRINT = 3 Same as 2 with briefer more compact arrange'<br />

ment <strong>of</strong> correlation coefficients<br />

NPRINT = 4 Same as 3 but graphs plotted<br />

Number <strong>of</strong> sets <strong>of</strong> data.<br />

Used for temporary storage <strong>in</strong> SPECFIT and diagonal<br />

elements used for weights <strong>in</strong> LEASTSQ.<br />

The number <strong>of</strong> channels correspond<strong>in</strong>g to 1.022 Mev<br />

for <strong>energy</strong> calibration <strong>of</strong> CALB curves. Taken as<br />

channel distance from photo peak to pair peak for<br />

higher <strong>energy</strong> calibration gammas.<br />

The channel <strong>of</strong> calibration curve I <strong>in</strong> which the<br />

photopeak occurs. (May be an <strong>in</strong>terpolation between<br />

two <strong>in</strong>tegral channels numbers)<br />

Energy <strong>in</strong> Mev <strong>of</strong> a spectral component.<br />

The matrix <strong>of</strong> Legendre polynomials <strong>of</strong> order 2(J-1)<br />

evaluated at angle B3(I).<br />

The response matrix.<br />

A normaliz<strong>in</strong>g factor for 3" x 3" unshielded Nal(Tl)<br />

crystal represent<strong>in</strong>g the probability that one photon<br />

at the source will produce one count <strong>in</strong> the photopeak<br />

channel.<br />

The proton <strong>energy</strong> <strong>in</strong> kev at the, resonance be<strong>in</strong>g<br />

<strong>in</strong>vestigated (for identification only).<br />

Estimate <strong>of</strong> standard deviation <strong>of</strong> ANISO(I)<br />

An auxiliary matrix.<br />

84


SBB(I)<br />

*SCALE<br />

SCOEFT(I)<br />

SIGCTS(I)<br />

SIGTENS(I)<br />

SIN(I,J,K,)<br />

*SPEC(I)<br />

STC(I 3 J S K)<br />

STORE (I, J)<br />

STSC(I 9 J,K)<br />

STW(I S J)<br />

STSW(I,J)<br />

SUM7(I)<br />

*TBACK<br />

TC(I)<br />

*TCHAN<br />

TEMP (I)<br />

*TOPEN<br />

TS(I)<br />

*TX60SEC<br />

WT(I)<br />

XI(I)<br />

Coefficient for renormaliz<strong>in</strong>g <strong>in</strong>put spectrum with<br />

counts from an auxiliary monitor (optional; if not<br />

entered values are unity)<br />

A scale factor for graph output. See NCUT.<br />

The standard deviation <strong>in</strong> COEFT(I).<br />

The calculated error <strong>in</strong> COUNTS(I).<br />

The error for calculated spectral <strong>in</strong>tensity<br />

INTENS(I).<br />

Storage for errors <strong>in</strong> FIN(I S J,K)<br />

The vector represent<strong>in</strong>g the counts <strong>in</strong> the observed<br />

spectrum<br />

Storage for accumulat<strong>in</strong>g calculated correlation<br />

coefficients <strong>of</strong> order I, for gamma ray J and<br />

data set K.<br />

A temporary storage matrix for A while it is be<strong>in</strong>g<br />

<strong>in</strong>verted<br />

Standard deviation <strong>of</strong> STC(I,J,K)°<br />

Temporary storage<br />

Temporary storage<br />

Temporary storage.<br />

Duration <strong>of</strong> background run <strong>in</strong> units <strong>of</strong> seconds x 60<br />

The weighted mean value <strong>of</strong> correlation coefficient<br />

<strong>of</strong> order I.<br />

The upper <strong>of</strong> a pair <strong>of</strong> <strong>in</strong>put spectrum channels to be<br />

used for sens<strong>in</strong>g <strong>energy</strong> calibration <strong>of</strong> the <strong>in</strong>put spectrum,<br />

Temporary storage.<br />

Energy <strong>of</strong> TCHAN <strong>in</strong> Mev.<br />

Standard deviation <strong>of</strong> TC(I)<br />

Duration <strong>of</strong> a run <strong>in</strong> units <strong>of</strong> seconds x 60<br />

The weight assigned to channel I <strong>in</strong> least squares<br />

solution for <strong>in</strong>tensities.<br />

The matric product <strong>of</strong> POLY and Bl weighted with the<br />

diagonal elements <strong>of</strong> OMEGA.<br />

85


XS(I) A vector represent<strong>in</strong>g the <strong>energy</strong> <strong>in</strong> Mev <strong>of</strong> each<br />

channel <strong>of</strong> the <strong>in</strong>put spectrum.<br />

Z(I) A temporary storage vector<br />

*ZERO The number which if any diagonal element <strong>of</strong> matrix<br />

A is smaller than, A will be considered s<strong>in</strong>gular<br />

86


D, DATA INPUT SEQUENCE FOR PROGRAM SPECFIT<br />

Input<br />

Number<br />

<strong>of</strong> sets<br />

Number <strong>of</strong><br />

cards <strong>in</strong> set Input name Remarks<br />

1 1 1 NSETS, NPRINT 4<br />

2 1 1 EL, ECC, HCM<br />

NOCALB<br />

MAXCHAN/7<br />

NOCALB, MINT<br />

BACK(J) 5 PHOT(J) 3 ENCALB(J),<br />

MAXCHAN, PKSEP(J)<br />

CALB(I S J)<br />

NPKS, NBAOPT<br />

6 1 NPKS PKEN(I)<br />

7 1 1 BSL S BEN S BPHOT, MINTB,<br />

TBACK<br />

8 1 MINTB/7 BTGT(I)<br />

9 1 1 NRUNS a CTSNORA, NLOWEST,<br />

NHIEST, NCUT S SCALE, ZERO 2<br />

10 1 1 RES, NPHOTO 3<br />

11 1 1 MESH, TCHAN 9 TOPEN, BCHAN,<br />

BOTEN, B3(NRUNDEX), T60XSEC<br />

12 1 1 CTSNORB<br />

13 1 MESH/ SPEC(I)<br />

14 1 4 Graph data cards 5<br />

REMARKS:<br />

1.) Read <strong>in</strong> only for NBAOPT greater than 1„<br />

2o) Input resumes here for each successive data set.<br />

3.) Input resumes here for each successive run with<strong>in</strong> a data set.<br />

4.) All load<strong>in</strong>g formats are multiples <strong>of</strong> F10»3 and 110 except that ZERO<br />

is ElOol and TBACK is F20.3o<br />

5o) Blank cards may be loaded if graph option not used.<br />

87<br />

1


E. Description <strong>of</strong> program CONTOUR<br />

As described <strong>in</strong> appendix 1 the correlation function coefficients for<br />

(p,


Fix the coefficient at an <strong>in</strong>itial value with<strong>in</strong> its range.<br />

Assign values to one <strong>of</strong> the Y's <strong>in</strong> equal <strong>in</strong>crements through-<br />

out the range =90 to +90 and solve for the correspond<strong>in</strong>g<br />

values <strong>of</strong> the rema<strong>in</strong><strong>in</strong>g Y, which <strong>in</strong> general will be double<br />

valued over the region selected.<br />

Read out pairs <strong>of</strong> Y values for the selected coefficient<br />

value both to the pr<strong>in</strong>t medium and to the graph plotter.<br />

Repeat steps three and four for successively larger values<br />

<strong>of</strong> the coefficient until a specified number <strong>of</strong> contours has<br />

been plotted.<br />

Repeat steps two through five until contour plots for co-<br />

efficients <strong>of</strong> all orders permitted by the given sp<strong>in</strong> sequence<br />

have been produced<br />

F. Input variables for CONTOUR<br />

NSETS Number <strong>of</strong> sp<strong>in</strong> sequences for which plots are to be<br />

made<br />

JFIND<br />

JSTEP<br />

JFIX<br />

IMAX<br />

JMAX<br />

NCONTS<br />

NPTS<br />

Index <strong>of</strong> the mix<strong>in</strong>g parameter to be solved for. (Y<br />

values on graph)<br />

1 = proton partial wave mix<strong>in</strong>g<br />

2 = unobserved gamma multipolarity mix<strong>in</strong>g<br />

3 = observed gamma multipolarity mix<strong>in</strong>g<br />

4 = channel sp<strong>in</strong> mix<strong>in</strong>g<br />

Index <strong>of</strong> mix<strong>in</strong>g parameter assigned successive values<br />

(x values on graph) See JFIND<br />

Index <strong>of</strong> mix<strong>in</strong>g parameter to be held constant when<br />

three parameters occur simultaneously. (Set to five<br />

for (p, $ ) reaction where only two parameters occur.)<br />

Index specify<strong>in</strong>g the highest order coefficient occurr<strong>in</strong>g<br />

<strong>in</strong> the sp<strong>in</strong> sequence. (Order = 2»IMAX)<br />

Largest value which the <strong>in</strong>dex <strong>of</strong> mix<strong>in</strong>g ratio assumes<br />

for use <strong>in</strong> read<strong>in</strong>g <strong>in</strong>put data. (Usually set at four.)<br />

Number <strong>of</strong> contours to be plotted on each graph.<br />

Number <strong>of</strong> pairs <strong>of</strong> po<strong>in</strong>ts to be computed for each branch<br />

<strong>of</strong> one contour.<br />

DELTA (JFIX) Fixed value assigned to the third mix<strong>in</strong>g parameter dur<strong>in</strong>g<br />

a calculation.<br />

89


RHO Energy dependent Coulomb phase factor to be multiplied<br />

<strong>in</strong>to the b coefficients for proton-partial-wave<br />

mix<strong>in</strong>g.<br />

A(I,J) The a, b, and c factors occurr<strong>in</strong>g <strong>in</strong> the expression for<br />

B(I,J) go I denotes the coefficient order (order - 21) and<br />

C(I 9 J) J the mix<strong>in</strong>g parameter <strong>in</strong>dex. See FIND,,<br />

90


s<br />

u<br />

+><br />

u<br />

CJ<br />

00Oi<<br />

~»H-0 •<br />

0>0h- —<br />

03 »o»— «~pn<br />

2cg f-a.roo<br />

ZO i<br />

UJ»— a>3: »C0H- •><br />

-• COO<br />

«LU(NJ •.J' •» C\»<br />

*^5^«— •-» »—. a» •—<br />

-JH- »— • 01 on<br />

o zcm—cnjo^t * 00 *ooa — »- m<br />

«» •."!— >^.csi«»'ir X"-*> UJ -> 00 P-<br />

K-—»(/) 2 X X<br />

—••-• • *»C\JH-Oo0 UJ »CDZ UJ ) t- »»o •» — II V—1 -><br />

z -»m——o o<br />

3 o—OOCN) •»*—<br />

or KnocgcM'—«*«•'—•—<br />

xa — a<br />

w>h-»-iUJ— » a. co»—


i<br />

r<br />

a:<br />

UJ<br />

><br />

— O<br />

Q.<br />

i-i <<br />

— CD<br />

«/> z<br />

Z<br />

ID'-'<br />

T V<br />

o. a.<br />

UJO II II<br />

< CO<br />

ft-— CD<br />

•Hcd^:<br />

o I<br />

a.<br />

CO-<br />

ZCQ«-*<br />

CM.* OCO — *:<br />

il/)C0O—<br />

-JZoOoOza<br />

o> *ao<br />

* < -o— :£:* UJZ ft*<br />

o -<br />

CO<br />

UJ<br />

Q. OiO<br />

0><br />

z<br />

•— « •<br />

CM >o 00<br />

cu<br />

OCO 0>Q.<br />

ft- • 0>Z<br />

eg OOf- •<br />

oo UJO<br />

>co*<br />

COClQ.<br />

*z<<br />

Q. r- —'uo **:<br />

_f • zz i o-a<br />

—H UJO zz<br />

H 3<br />

II ft*Q-<br />

•<br />

<<br />

UJ<br />

o o<br />

X z o ••<br />

oo K-Z<br />

+ X o<<br />

XX<br />

o— oo<br />

CLO<br />

ZH<br />

coo OUJ 00<br />

m< oooo Z •X<br />

h- CO<br />

—CO z O<br />

00 00<br />

r-oo<br />

r- UJUJ<br />

I<br />

Q-CO<br />

*ro z<br />

CCSL<br />

a<br />

on OCMr-<br />

< »<br />

CO —Oca troo *<br />

CD CO -O GO<br />

ft* | r—00»- CM ono<br />

ZJ"<br />

—ujz— st Of-<br />

CM CU co — I-OmS • ft 00<br />

CO CO<br />

OOC<br />

o •ac—pono<br />

ooo • ft O<br />

»—o •-* ft<br />

fO •LLCM CM •<br />

CO— — UJUJ CM<br />

CMCVJ<br />

OS *--o coo • •H-ClO. on<br />

UJ Ouj UJr-O U0 CM *t—0o UJ<br />

ro O<br />

coco z<br />

ro O<br />

•cocoa:<br />

cor- arz<br />

enro »oocor-zca<br />

Z rnooco<br />

OO «.COr-00<br />

r-r- o<br />

oro ft>^ •<br />

cor—


X<br />

00<br />

UJ<br />

—c_<br />

.— ID<br />

«-r>J<br />

U><br />

UJ_I<br />

Q.<<br />

OOZ<br />

w< CO 00<br />

JZ UJZ •• —X H CO<br />

tu< **q m — 00 ^<br />

zx zz *a> -? uj o w<br />

ZtJ uU — Q.Q UJ<br />

»Z O CO<br />

s:z 1 omcoomoono<br />

o<br />

I<br />

• h- * m<br />

3uu 00 r^-h-oor*->-*j- — 1 en en<br />

r-<br />

OCH- XCO00 KD CO CO 001- CO CM<br />

m a. 2: 2:<br />

h-o uj ro «o * —<strong>in</strong><br />

2:ujuj<br />

uod o » m •» * » -cc -c m X • UJH-Huj<br />

zmroaoromroroco »co-. — » ro— X—<br />

a 1 uj •—onh-'—xooo m co oco<br />

I I —<br />

CO wUJUJ—UJUJUJUJ_JCOZ*-COXfM<br />

ZfO I<br />

z aa a.a.c_a.


m -j<br />

UJ<br />

o *<br />

ro<br />

O<br />

CM<br />

_l<br />

UJ<br />

o **cm<br />

a*<br />

.urn<br />

UJ<br />

Q »<br />

*o<br />

r-CT><br />

OPO<br />

—<br />

~.o<br />

h" •<br />

o<br />

I<br />

»•<<br />

— I<br />

CNJ<br />

_l<br />

uu<br />

a<br />

I<br />

CM<br />

_J<br />

f-LU<br />

-JO<br />

at<br />

a I<br />

I<br />

—<br />

o<br />

cc<br />

o<br />

a.<br />

O<br />


a.<br />

oo<br />

o<br />

-r ---"---'" —=—<br />

uu <strong>in</strong><br />

H-<br />

=3<br />

-0<br />

CM X<br />

Q. » 3<br />

5! m <br />

O CM<br />

2!<br />

CO<br />

O ac CM<br />

CM<br />

•><br />

a: 3 * LU<br />

ll. 00 -~ «<br />

•J<br />

00 1 *• -«» O<br />

H •^ •»• »-• 00<br />

2 •-» l-« —O •w* LU<br />

*-. t— «— —Z 00 cc<br />

«->X «_. —O z<br />

—1- u. z •-xt LU a<br />

mi—• •—I —0 h- z <strong>in</strong> CM<br />

•x * Q< Z < CM ro<br />

m ZCO M CM CM<br />

¥-*\U + < u. 00<br />

wO CD x: * V O cc OLU •a •»<br />

>z «•» w~ ••>• OCMUJ LTll— <strong>in</strong> ' <strong>in</strong><br />

ZUJ —> * < ^ CMO>- OH- COCM CM<br />

wU «-» ' COLL t>4 ^••—1 r— •— OCM CM<br />

LU 001- 00 2l z C^0> * OLU •.0 CM Ol<br />

OOZ h- LU UJr> + LU CM CM <strong>in</strong> "-I- J- 10 fO z<br />

CQO . Z M 300 U. H- ••0 CMZ CMCM CM LU<br />

»—<br />

^ 11 11 oc Z»-LUX • •— > • CO •->-< XI 1 •-X Q.w OO^^^-t-5^^ *-«<br />

1<br />

11 -1 wJZOIIQ- 2: Zoo -icaa<br />

-0<br />

«az+"<br />

O LO w ID O II 00 -• 0.0: z z -•0..J 11 11 a: LU »—<br />

HM(/)M II -5 II • •— ** moo • w|| iCoC 1 -__!< LU«—0—Z 11 11 :»£oo<br />

*— o»-«a >%nr- UJO"*- LU 3


eg<br />

*<br />

o<br />

o UJ<br />

f<br />

-»*: mo<br />

1- 1 Q oo ii uj— uu 3 II UJ —< t- 0. O0LOO0<br />

Z H-h-Z •1 z OoOQ II II »— •— — O 00»-« 00< -it Ii z<br />

o >-h-33< UJ hZh 333 o X— 1 x«-< II — II II UJ<br />

uozta o H-i~»UJUJUJ-"— aao. Si II oo «— — -<br />

CNJ •—•—— LU • -•Z (/)!— 00«-4i-« — t— h- LU x — H-UJ<br />

LUH-O—hhS< •— — II — >->- h-l-l- o»-u 1-4 W Z^OH<br />

XUJ<br />

UJI— «QI- O<br />

OOXZ3 -<br />

>-o >- zoooci:<br />

•'<br />

z*- , i Lu


OO<br />

<<br />

00<br />

<<br />

UJ<br />

UJ<br />

2:<br />

r-<br />

M<br />

u.<br />

2:<br />

f<br />

•—<br />

U.<br />

+ a.<br />

01— cro<br />

z<br />

UJ<br />

a.<br />

2:<br />

UJ<br />

_J<br />

UJ<br />

Dlrt<br />

.*O0<br />

—«<br />

UJ<br />

mo<br />

Qh<br />

fOO<br />

UJ<br />

CM<br />

a-><br />

•-><br />

UJO<br />

X I<br />

000 a<br />

UJUJI— t—<br />

UJ<br />

• O o— o »s: h-<br />

Ol- rOPO—— • •— s<br />

O COCO O OCT CM<br />

r— •> UJ m • 0— f C* **<br />

O -J O^Jt •• » s OOO •> —f<br />

CM • »"• m •-•<br />

«rOHOJfOIOUJi-< u. mc 0* w 1<br />

h- Oo0< CLQZ —• CO— CM Z<br />

O *0*^0 •» *00 00 + Q OO UJ— —X<br />

H-mz—OO-^O » »UJ » f UJCM — !/)!«:»« 00 00CM<br />

3:0,00 *v »—>»•——00002: 00 »oooo o» ^azcr i^UJO<br />

uolu w-foroxx —x c\0*S c> a ujc* 0.2:0<br />

_J U.00 s OO<br />

o 00—<br />

•«— O* Z— CM<br />

I— OO— UJUJ — UJ ii—— 11 1<br />

002:2;<br />

II 1-1 II UJU. II ff II ZZOOi-i II Q.CMO f C/> OO 11 *:<br />

o a.<br />

i-z—<br />

z-om<<br />

Z f f<br />

U_ II I— — o*<br />

Z>U-00<br />

a.u.1-<br />

I— UJO0<br />

»OOUJ<br />

-0— u_io<br />

*>H-f -J<br />

«sou<br />

Jo


00<br />

X<br />

a.<br />

z CM<br />

00<br />

X<br />

xo.<br />

UJZ<br />

Q •<br />

Z—<br />

3 11<br />

C£>-4<br />

Z CM<br />

• <strong>in</strong><br />

•-. o<br />

X~i -<br />

uj ••<br />

o»-* »<br />

-— CM<br />

uj< m<br />

oo— o<br />

z— —<br />

N— rormtn<br />

<strong>in</strong><br />

oo o<br />

— .- —<br />

mm<br />

UJUJ<br />

Q.O.<br />

-<br />

ZUJ<br />

CO<br />

i z<br />

X<br />

UJ ||<br />

OO<br />

z<br />

UJ<br />

o<br />

z<br />

o<br />

m»-<br />

03<br />

— CD<br />

-a:<br />

OoO<br />

Oh-*-»<br />

I— OOrOuux X CO LULU<br />

I C0 CM *C0O<br />

CO »— 2IOOO<br />

h- »00 DOO *CX »•* •«<br />

roDmrozrot * m<br />

O >oooo O<br />

C? uj<br />

CO h-<br />

2Ita^»—<br />

mQh<br />

on cro» ;<br />

<br />

O O<br />

o


•"<br />

_j o<br />

z =><br />

z l >-<br />

2: NlO<br />

UJ u.»-Oa!<br />

a. :*:cj-rouj2:uja:uj<br />

• xrjorx 1<br />

»» • «UJ OO H- SS:2:O00 II.-CNJ V.F- Mtta-lr- h-t- r-OhOHOUUlOI-<br />

DOH O • • ~3 OI5X • coco5:5:z) -—domsdd eo«~3oo3'-oox O<br />

•— X* • -*oo "J -5 a. oo oo oo o* — :docl~ coujq. « » 3aan<br />

ii O O •.(— H — OOOOH- H-O O0h- H- h' 00 h- ro •— •— CO a* CM<br />

2:—<br />

Zoo<br />

00<br />

— Q.H-CLU.XX XXI<br />

11 rxa r<strong>of</strong>o<strong>in</strong> CM<br />

: II II •- •M3r— *"*« II =) o O 3D 11<br />

O UUJU1 CM II II f-wO— II II II 11 •» OtO II II f"0 OOO OUJO'— •w«— »— •»-*<br />

>£cm -*0 HO oz — 5C M II II •—11 <strong>in</strong> _J 1~H-K-H-rOhr—<br />

^*^^ ^^ *» r-t-iUJO Hi^"».-» UJ»- UJ r— UJUJ»——^UJ UJ


1<br />

1<br />

1<br />

1<br />

1<br />

I<br />

1<br />

[ 0*<br />

) I<br />

<<br />

a<br />

•|i-i<br />

•co<br />

i<br />

h<br />

5<br />

oo<br />

z<br />

)UJ<br />

:»—<br />

iz<br />

<strong>in</strong><br />

•<br />

•<br />

• X—<br />

1 o> X X, *V<br />

u. PO «» *S.<br />

<br />

-<br />

•a<br />

UJ<br />

cc<br />

a<br />

—-z<br />

a: O<br />

NLU X<br />

o<br />

-rijj<br />

^f<br />

a •<br />

UJ o<br />

H- U.<br />

2U<br />

3UJ it<br />

u_ oo oc cc » Z3 CL0D>- «-i *0 X<br />

— Z Q.2TO O J3-U. X<br />

u. a z a *-"^>oc »h •* o*<br />

UJ j»— 3D z oczlu u. 00<br />

r- • CO- 3 I- Z U. H- *<br />

--»—.»_- — h- O O OOLULU — LU z Jros^.-.'**.<br />

-~ u. ix oc> sow •<br />

• u, x. a. o ujoi o *~ «o*»<br />

»-CM *- jr * OJ3 KO «~U.S<br />

r-1-1 • 3 O O — Z UJ>-h V.<br />

u.x ro 11 o a: < o x > o oou.<br />

m CO)— •* •"" >-> CD l-O *»UJ •-• U» II J*<br />

r- 11 «-z »-uj ouj z s: h- r-r».o r— c\j rot<br />

«ooO(M o»—^-t—^-«— cMcgr<strong>of</strong>OfOj-if JS-J3 , o«or-p-cococoo*o o>oooooo 00 Ol<br />

100


1<br />

<<br />

X,<br />

o •-• ><br />

CO CD<br />

ec<br />

HI<br />

z<br />

eg lu «»<br />

H o *s.<br />

LU x<br />

00 -co<br />

— ^CM<br />

>.<br />

— V. „<br />

V oj-o— •<br />

O ZCM~-—cm—<br />

h— O O<br />

O—OOCM •> •—<br />

m ocm OCQOO<br />

00 •» »0l<br />

Z-.S-J<br />

aajxoo<br />

_JI— t- •"<br />

oo »ooa.<br />

x«-«> uj<br />

00Z »O0<br />

*: »LUH-C4.<br />

OCQLUOO<br />

< o •><br />

CO m »o0<br />

LU »OD*£<br />

a-ou-icoo:<br />

£HO Z<br />

LU00 •»<br />

h- »-0 »•<br />

•^-uooo<br />

Jh«ZZ<br />

cozeczo.<br />

a. *-.€/*•-LJ * -jzaco ooclz<br />

s ot- • !-• »-o OOU.00—-00 •»*-» xoo •oooo.ooos: •ooqujq.")<br />

LU00O U QQIhOO<br />

r-CMPO^uoor-co —cMroj-<strong>in</strong><br />

CM<br />

o<br />

1 Fi"i"> oT)<br />

o<br />

L01<br />

I<br />

o 1<br />

CM -><br />

O "><br />

m •-»<br />

O f~<br />

CM o<br />

•O X<br />

»• a<br />

o<br />

o<br />

'*<br />

^*LU<br />

•~ ->CL<br />

->CL<br />

-3 !<br />

— K-<br />

-o ooi<br />

^* XLUH-<br />

LU Q.QLL<br />

ZXt<br />

1<br />

*-» O00<br />

-5 Z\<br />

">•— cc<br />

Vltfi LU I I<br />

co-f <strong>in</strong> jch-<br />

-j


I<br />

«<br />

CL<br />

UJ<br />

«_ -~<br />

| CD UJ f a.<br />

~> -J •<br />

-> < • "5 I<br />

o Xa<br />

i<br />

x<br />

*<br />

a:<br />

O<br />

roroo<br />

•— i o»— »- •—<br />

w ( •J* O<br />

CO «~ X I<br />

! «i i— -5 •> a.<br />

ii< K--Joro «»«» -9<br />

1£U | U. O I «-CM -*:*:<br />

x •w-uj —ww wv;<br />

* -Ja^l/V- CL -7Q.Q. Cl.<br />

II ~5i«i2:— *< "^XXCMUJ •»<br />

•— " CO r- wujuj corn<br />

*« •• • I -J»- H-hh I id<br />

l|||_ + CMr- -Xr-coii —aid ii ii z<br />

oou-_j i na.i—t/>w _ H •-«<br />

O 3<br />

< coco<br />

• o<br />

LL<br />

CM • +<br />

O<br />

<strong>in</strong> •— i r- | cM*vro<br />

-•V— O<br />

«-*<br />

I<br />

I "OO—CM •<br />

J* CO<br />

a. •— •—< «o i i-o<br />

CM x -~ i + o:«- .-• z o<br />

O H-OO<br />

UJ i-(»-i^u. CM*- w I •<br />

IU<br />

>— 3:<br />

wr- (<br />

OUJ<br />

-JC0<br />

uj »D-D Oh<br />

»~ -c<br />

—Qh<br />

h^oi-<br />

-— _—t C^-J ——<br />

Or-l-t-CMrO II II II Or-rO O<br />

zjjj _jz _j<br />

OOOUJUJUJ'-CMfOaOOU.O<br />

IOUOQQDDDIOQ-I<br />

O w I<br />

w<br />

j- o-i-«a.<br />

o » Xws:<br />

ro UJQ.UJ<br />

•40 K-Xr-<br />

CMO.-» UJ<br />

cm roj- r- co O^cm ro<br />

o oo o o oo o<br />

102<br />

ro<br />

UJ<br />

a<br />

ro<br />

CM<br />

_J<br />

UJ<br />

o *<br />

CM<br />

o<br />

CM<br />

o<br />

CM<br />

ro<br />

LU<br />

a o<br />

# •—<br />

*- ro<br />

<strong>in</strong> o>o<br />

•— »-CM<br />

ro roro<br />

LU<br />

><br />

cd<br />

31<br />

Oi


-><br />

-><br />

**<br />

co<br />

X<br />

1<br />

—<br />

a.<br />

X<br />

1<br />

1<br />

1<br />

1<br />

CD eg UJ<br />

<<br />

O<br />

CO<br />

X *<br />

-J w 1<br />

!<br />

1<br />

!<br />

«-»<br />

^<br />

z *» * ><br />

LU * LU<br />

', t- ««. — •— *- 2:<br />

1 o — -> -J -J<br />

< — w LU LU X<br />

-cc — z O tn O<br />

-)U_ "* LU j -3-<br />

->LU — *: 1 LU » »<br />

•— * z 0. O<br />

CO— LU «*• CM • CM<br />

_j— *c -J m J CM<br />

CM CM CM "N.<br />

^H- - _l -I -J<br />

O < • r-LU UJ— «— LU<br />

#••«<br />

** 1 * JO Q0> JQ<br />

»— O^CM 2:* — LU *ro LU CM a:<br />

— 1 2: CO* O — O • CM O »• LU<br />

1<br />

3 • ^<br />

">1 I • F— UO X<br />

£0>-* * 2: _J O— "~ + ro — + 1- m<br />

-)-> OO* K -?<br />

.J— u O coo 0^^~ "«»"* — • x> <<br />

— X •-"CO. LUO •~ia.Q. h- Q.<br />

Z< 00 * 0* *: X •^-2:2: OOOO -rs: 00 ZNCTZHh CMCO'- 2TH»- CM**} accmcc z<br />

<br />

LU v>*v LU *a. *-<br />

—<br />

— OCLUCM ro<br />

1<br />

SE 1 + « 0—.3- u. M u. H- 1 1<br />

r~ H- • 00 +<br />

— «N >»«V 1 X •— | •»*» • •<br />

»— i—i — ocvj<strong>in</strong> *: — 1 — P- •— CM*- •—CM— •<br />

— -J— -1 •«oro Q.I.—•-> coro— +• +0 -O<br />

wQ,1 •— • T^O LOT-J PO »»*m>—"*- XX — 0£ M<br />

II — UJQ.O w •


p<br />

R to<br />

CM<br />

o<br />

—<br />

CM m «» *» i—<br />

f— m -3 -3 •»<br />

* O » •>


coct:<<br />

— t-oco »<br />

o»ot- «-»<br />

Os^cO *o><br />

-*<br />

CO »0»—— ro<br />

_i •—»(*)*—om ••<br />

OJO« ••<br />

O ZCM'-CMO-S'<br />

«— • t»i—i — !>——O O<br />

O—OOCsl m •*-<br />

POO CM CM———<br />

»— -J—— oc<br />

*h-H-OUJCDCLCsi »UJ_J »LU •<br />

•w-»ZO oco — CQ|— QCMNJO<br />

— cr**-CMCM UJ»— UJ<br />

-.^o—o— «—— - « •> »>oo2: ••<br />

(^0


O<br />

o Z<br />

< CO<br />

UJ »—<br />

O m<br />

a: cm<br />

< f-<br />

az o<br />

lu <strong>in</strong><br />

a >-ooo- h-cm<br />

f—<br />

mz<br />

cmlu<br />

«-£<br />

<<br />

.o<br />

<strong>in</strong><br />

j-<br />

I<br />

ooo


•o<br />

o><br />

a:<<br />

t*VO£<br />

.* Q<br />

JO *<br />

•o<br />

>CM •<br />

•—J-<br />

JU»w<br />

'1/7 U_<br />

IOO<br />

>* u<br />

•o<br />

»o • .<br />

I CM<br />

> + —<br />

j<br />

»*- +<br />

f<<br />

.ace—<br />

I* *vO<br />

OQ •<br />

• 4 O<br />

.3-oirx/)<br />

— • IX)<br />

!u.<br />

o o.<br />

CM<br />

O II<br />

OH<br />

CM *"•<br />

i m»~i<br />

i •'s.m :<br />

OCOI- O-J-J-JOCJ i<br />

wwi-uioq:ooorcmo.>>->-o><br />

w _j<br />

,->r-O.CMOCMCM«—CM*-UU<br />

OOLUwOOLUQ-fOPO<br />

n- r- a 3: r~ r- a: -j cm cs<br />

—1 — 1— -i_j jzj: uj lu lu> 000 o-J<br />

107<br />

O O<br />

CM ro<br />

O O


•o<br />

o<br />

oo<br />

—<br />

•-•z<br />

«~e><br />

«— »— r~<br />

CD 00 CO<br />

*<br />

— ae<br />

2:<br />

_?<br />

«—•—!<br />

»LU<br />

00<br />

•-X<br />

0- » < —<br />

-}.— OQ *<br />

••* LUZ —<br />

1—CM 3E< »-i<br />

*- OX<br />

jC » *00 *<br />

oo«— a. — h- —<br />

CM CM CM CMCM<br />

><br />

z •—<br />

UJ<br />

UJ<br />

u<br />

>«-<br />

1-4 U.<br />

000<br />

SCO<br />

>><br />

Z2<br />

H-ll-4<br />

LULU<br />

lulu<br />

o<br />

00<br />

UJ<br />

UJ<br />

><br />

CM<br />

*<br />

C\J<br />

o<br />

00<br />

a *<br />

LL *<br />

x.<br />

> 00-»~ — «-<br />

0> O ro a<br />

J* O 0><br />

CM CM o> er<br />

I<br />

UL<br />

o<br />

u *<br />

o<br />

CM<br />

UJ<br />

+<br />

—<br />

CM f-<br />

UU<br />

w<br />

—<br />

><br />

V Z<br />

CM UJ<br />

C7 UJ<br />

00 o<br />

UJ<br />

UJ *<br />

> 0l«~<br />

OOCM*- _J »LU »<br />

-.CM— •—uz Z~ CO<br />

11 r- p->»- >2:<br />

«- • O JUL • »Z-0<br />

O II • OU.»- «-»-"00<br />

— I U. O II • II UJ II<br />

! *-jro-> OOO<br />

t-iU.— II ""* II •-• ^ —<br />

wOC UJ || II >-<<br />

v>ojh-*o «o h-co r- —<br />

•—-- 2: CM "5CM "> a » M.h-co cm *<br />

— ' LLLLS CO «-«<br />

_ - lIj«-. v, CLiC<br />

— cca*-* oar0>C3'll II Or— HH U-w3<br />

CM U. CM UJUJ 0.000*00 00 CT»00 0000 UJ LUClQ.<br />

> uj oozlu lulu uj 00 < ujo>>o>ujujujoco co 00 »—o<br />

r-<br />

m<br />

O<br />

o<br />

.* J<br />

o<br />

•<br />

a. • «o<br />

«oo OOOO'-I<br />

II tCMOOLO'<br />

o w«^cm;<br />

11 11 11 *- LLLL<br />

«• o «~l— I-—<br />

IICMOOro;<br />

zz<br />

Z — >-* +<br />

I 0-3 I<br />

^» LLLL<br />

0>— 'H--* •-•Sii^^CL<br />

II LTII-U.W ~-o Zi<br />

CMLLUJOl a.w|| (I w><br />

ujoz: 2: O<br />

OlOOOUJ LULLOOU-<br />

><br />

o<br />


^ !<br />

1 mm<br />

• —<br />

«K|tf<br />

CM<br />

— LL '<br />

0.0 CT 1-<br />

Sroo s: o<br />

LUM4 3 z<br />

f-Z OO 3<br />

mm < u.<br />

CL •> • 3<br />

z ^» •» •M«»Nt<br />

•» "* —ar JtO—<br />

•" CL<br />

z r-OO<br />

WOO<br />

II •> a. a.<br />

00<br />

LU<br />

2CLU<br />

1— II LU 3 O<br />

w »0><br />

hOE<br />

> U.0^3<br />

LUOoO<br />

M *- » O o - •«<br />

CM A »• '"=t<br />

«-» • to •^r -J •.J-** M-<br />

<br />

»» *|- oo X m LU O •< »H-<br />

O -JUL LU »— a. ~IOU<br />

m- + wUJ<br />

H-<br />

X »«iaoz<br />

0B, zo u LU.-o— o. CM< o »o.-jz><br />

lUt— h- 1 ——p. mm H-r» ro UJ •TOO —._J— popopopo •TO •> rocsir-K-ro O -J^ro POrOPO<br />

LUO Qt- »->3: * „j* » » j- — 0> O »<<br />

Dh •4-UJ *-OPO O.O.O.Q.»— O.^ a oo. LL^-LLCMO. • OO.Q.<br />

LUOO OOZ ~au.300 *z cMro J CM •—•— r~<br />

109<br />

oo r«- o m<br />

o> c o »—<br />

CM CM "I PO PO


o<br />

o o<br />

o z<br />

3<br />

o<br />

Z<br />

eg<br />

00 J U.<br />

mm «—»—»*St w z i<br />

>— • j-o-» »- •> -v- 1<br />

u. w »o U. ^>« )<br />

HI i-o*- UJ<br />

a u.r-2. w ii<br />

o UJCsl3 O i<br />

O 00<br />

mm.<br />

•> O » • »<br />

*•* — J- 1- «» m i<br />

1<br />

ro »^» UJ w u.<br />

o U.O o o UJ<br />

o eg 00 o<br />

o<br />

CD o rooi-<br />

CO<br />

eg<br />

• < o ••< »o m < 2 «— 00<br />

'0m —IOZ mm < z<br />

CVJ •> mass eg • < •h<br />

•— —»«— _JCMU- w »— «» 00 *^<br />

£ CD C\JH< 3 1- co •-• >—<br />

u. < wU. . u. < Pm •* ••- *~<br />

LU 1— UJ •>* m ~t UJ mm mm 1- z<br />

o • U-OCM<br />

o mm ujo-5a.coa. 202 Q-3 Q.Q.>«-T-)a a. o. a o. z a o. olco clZ z~<br />

In* —hMh — »|-l/)OHhM _—.(— J-H-l— h-i—


: <<br />

OO<br />

-J<br />

<<br />

»<br />

to<br />

ac u. «« 00<br />

1-4<br />

a<br />

z— < z<br />

>N» 4P**M *•» 2: 00 »— cg- UJOO 00<br />

z 30 00: u. z -J 1 z 00<br />

UJ U.M 1 UJ »— X UJ 3 uu 4» 0.<br />

o 00 >-00 00 «— O ZOO - II Zo! "v >Q a: z OOZ OOO CL<br />

t»4 Z3UJ O O.Z UJ •—I MM o*~ » z<br />

u. LUU-Cl • o< a 00 000 z r— ro<br />

a: x ec X >x O0< • •<br />

UJ


lb<br />

o<br />

O<br />

U<br />

-P<br />

— u.<br />

-J ••UJ<br />

UJ-~_»<br />

>-J<br />

•sr-a-o<br />

JT -CO<br />

u —<br />

<br />

1<br />

CLO<br />

-J>-<br />

LUZ<br />

CM<br />

<<br />

•<br />

U. Hh-<br />

UJ<br />

o Zi/»<br />

WOO H-<br />

V.C0CJN »UJ<br />

- X<br />

2: <<br />

O £<br />

U "3<br />

Z •<br />

»»<br />

X<br />

<<br />

•» II<br />

-^<br />

s:<br />

•><br />

-3 «^<br />

•<br />

X<br />

•n<br />

w<br />

< w<br />

'JE w<br />

»m<br />

X —<br />

-I -><br />

u. o<br />

-> X »<br />

•• •»»<br />

—<br />

0l »CQ<br />

UJ<br />

-<br />

I/)<br />

X *<br />

•-a—<br />

o


o<br />

I<br />

LL<br />

OO<br />

CO<br />

<<br />

O<br />

', •<br />

CM<br />

1^ u<br />

I<br />

o CO—<br />

m O<br />

*-*-» •<br />

•* CM<br />

:«-» •-+<br />

: oo.<br />

mi *-<br />

i it<br />

<<br />

X<br />

— a.<br />

CM <<br />

*<br />

M U-<br />

**• ^<br />

|_)<br />

w<br />

> *<br />

I<br />

— o<br />

-» -J •<br />

— eg<br />

— * — z<br />

1-4 <<br />

CO<br />

— o<br />

— CM<br />

~~i *<br />

*<br />

X<br />

u.<br />

< C£<br />

O<br />

X<br />

•—<br />

u.<br />

at<br />

CD<br />

U.<br />

**><br />

x<<br />

~x<br />

U.Q.<br />

T>_|<br />

—<br />

<<br />

_/x<br />

UJ*-"<br />

OU.<br />


I<br />

XX<br />

•<br />

~ > 1<br />

>i<br />

Q. U_ U_<br />

UJ CO I/O<br />

t- • ••<br />

00<br />

-? u_ u.<br />

— CO 00<br />

> •-<br />

* O UJ UJ<br />

O -» fO _J -J<br />

• o m t- t-|<br />

- — fOO *<br />

'. 1-4 > mm ao*-i m mm uj uj<br />

iO —> w «-» 2- fO -J _J<br />

m '<br />

* O LL — -JH-cO » CU-* 03.<br />

2 Z o •u-z o> • h» >l<br />

-? •-• •»»— i t-_j »o coo •• o:»-« o do<br />

* » w •• ~»»-» m •— »0 I3h- Z 3|<br />

»-i < -* »h _j •— •> mocM uz: x o<br />

<strong>in</strong>< uj s.j3-C\J s: 00— u_> i>o o cm »o •> *i<br />

cq iu-»*~>- < -> -0— •» ro— • .-coz o co!<br />

1 h— •»< o < •»•.»•» coo —to m » » o •»<br />

* 00OO 0C OOOO CO »J I CMO U"> CM I<br />

co 00 ozm + 1 ro^mo om 00—— »o.z m o»;<br />

Z<br />

>-«-» *»-••- * cmcmcmcm z .—a.—, iro-uj — >i<br />

_J Q.O. XUL •— > •»»•.* — fO>— O •»— •> •»;<br />

ziu «-»->o> >• — mr<strong>of</strong>oro • — CMCMC0 m CNJ|<br />

-Jh- a. •m> w > f-o -» 1 a. o_


u.<br />

i/><br />

m<br />

X<br />

u_<br />

•k<br />

UJ<br />

-^ CO-<br />

ST -o<br />

•a *<br />

002:0<br />

• »o<br />

zm o-zm<br />

UJ .— >-UJ<br />

ccro csicom<br />

< +a.<<br />

o<br />

CO<br />

CM »<br />

ro<br />

-JLU X_JUJ UJ<br />

• »0_ » »CL Q_<br />

XOCMX <<br />

u-»-z-ju.»- tu.<br />


REFERENCES<br />

1. A.E. Litherland, et al., Can. J. Phys. 36, 378 (1958)<br />

2. R.K. Shel<strong>in</strong>e, Nuclear Phys. 2, 382 (1957)<br />

3. D.A. Bromley, et al., Can. J. Phys. 35, 1057 (1957)<br />

4. P.C. Broude, et al., Proc. Phys. Soc. (London) 72, 1097 (1958)<br />

5. V.K. Thankappan and S.P. Pandya, Nuclear Phys. 19, 303 (1960)<br />

6. V.K. Thankappan and S.P. Pandya, Nuclear Phys. 39, 394 (1963)<br />

7. N. Hole, et al., Zeitung fur Physik 181, 48 (1941)<br />

8. M.R. Seiler, Phys. Rev. 99, 340 (1955)<br />

9. S. Milani, et al., Phys. Rev. 99, 645 (1955)<br />

10. S.P. Tsytko and Iu.P. Antuf'ev, Soviet Phys. -JETP 3, 993 (1957)<br />

11. N.K. Green and R.F. Wiseman, M.S. Thesis, USNPGS (unpubl.) (1958)<br />

12. L.W. Seagondollar, et al., Phys. Rev. 120, 251 (1960)<br />

13. L.L. Lee and F.P. Moor<strong>in</strong>g, Phys. Rev. 104, 1342 (1956)<br />

14. H. Ohmura, et al., J. Phys. Soc. Japan 16, 593 (1961)<br />

15. U.P. Wild, M.S. Thesis, Univ. <strong>of</strong> Kansas (unpubl.) (1962)<br />

16. P.M. Endt, et al., Phys. Rev. _95j 580 (1954)<br />

17. P.C. Broude, et al., Phys. Rev. 101, 1052 (1956)<br />

18. P.R. Endt and C.H. Paris, Phys. Rev. 110, 89 (1958)<br />

19. C. Van der Leun and P.M. Endt, Phys. Rev. 110, 96 (1958)<br />

20. A.K. Val'ter, et al., Soviet Phys. -JETP 14, 1035 (1962)<br />

21. Y.P. Antuf'ev, et al., Soviet Phys. -JETP 15, 268 (1962)<br />

22. E.E. Baart, et al., Proc. Phys. Soc. 79, 237 (1962)<br />

23. R.A. Moore, Ph.D. Thesis, Univ. <strong>of</strong> Kansas (1963)<br />

24. Nuclear Data Sheets , National Research Council <strong>of</strong> the National<br />

Academy <strong>of</strong> Sciences, Wash., D.C.<br />

116


25. P.M. Endt and G. Van der Leun, Nuclear Phys. 34, 151 (1962)<br />

26. CD. Moak, et al., Nucleonics p. 18, Sept., 1951<br />

27. B- Kennedy, M.S. Thesis USNPGS (unpubl.) (1962)<br />

28. J.E. Draper and A.A. Fleischer, Rev. Sci. Instr. 3_1, 49 (1960)<br />

29. A.M. Hoogenboom, Nucl. Instr. and Meth. 3, 57 (1958)<br />

30. J. Kantele and R.W. F<strong>in</strong>k, Nucl. Instr and Meth. 15_, 69 (1962)<br />

31. J.B, Garg, Nucl. Instr. and Meth. 6, 72 (1960)<br />

32. H.P. Murbach and H. Wilman, Proc. Phys. Soc. (London) B 6_6,<br />

905 (1953)<br />

33. J.B. Marion, Revs. Modern Phys. 33, 139 (1961)<br />

34. S.E. Hunt and K. Firth, Phys. Rev. 99, 786 (1955)<br />

35. R.B. Murray, <strong>in</strong> Nuclear Instruments and Their Uses , ed. A.H Snell,<br />

(John Wiley & Son, New York, 1962), Vol. I, p. 82.<br />

36. K.J. Van Oostrum, et al., Nuclear Phys. 25, 409 (1961)<br />

37. J.O. Newton, Nuclear Phys. 21_, 529 (1960)<br />

38. J. Vorona, et al., Phys. Rev. 1_16, 1563 (1959)<br />

39. A.M. Romanov, Soviet Phys. -JETP 1_2 3 1072 (1961)<br />

40. L.W. Seagondollar , Private communication.<br />

41. M.E. Rose, Phys. Rev. 91, 610 (1953)<br />

42. J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics (John<br />

Wiley & Son, New York, 1953)<br />

43. D.H. Wilkenson, <strong>in</strong> Nuclear Spectroscopy, ed. Fay Ajzenberg-Selove,<br />

Part B (Academic Press, New York, 1960)<br />

44. R.E. White, Phys. Rev. 119, 767 (I960)<br />

45. D.R. Hamilton, Phys. Rev. 59, 122 (1940)<br />

46. L.C. Biedenhorn and M.E. Rose, Revs. Modern Phys. 25 3 729 (1953)<br />

47. H.E. Gove, <strong>in</strong> Nuclear Reactions ed. P.M. Endt, M. DeMeur, (North-<br />

Holland Pub. Co., Amsterdam, 1959) Vol. I.<br />

48. L.C. Biedenhorn, <strong>in</strong> Nuclear Spectroscopy , ed. Fay Ajzenberg-Selove,<br />

Part B (Academic Press, New York, 1960).<br />

117


49. M. Ferentz and N. Rosenzweig, Table <strong>of</strong> F Coefficients , ANL-5324,<br />

AEC 1955.<br />

50. R. Huby, Proc. Phys. Soc, B 67, 1103 (1954)<br />

51. R. Huby, Proc. Phys. Soc, A _7_2, 97 (1958)<br />

52. W.T. Sharp, et al., Tables <strong>of</strong> Coefficients for Angular Dist .<br />

Analysis (AECL Chalk River Project Research & Development, CRT-<br />

556, Dec. 1953).<br />

53. W.T. Sharp, et al., Graphs <strong>of</strong> Coulomb Functions (TPI - 70, AEC,<br />

Chalk River, 1953)<br />

54. J.F. Mollenauer, UCRL - 9748, Univ. Calif., Aug. 1961<br />

55. N.E. Sc<strong>of</strong>ield, U.S. Naval Rad. Def. Lab., TR-447, San Francisco (1960)<br />

56. N.H. Lazar, IRE Trans, on Nuclear Science NS-5, 138 Dec. 1958<br />

57. A.J. Ferguson, Atomic Energy <strong>of</strong> Canada Limited, CRP - 1055,<br />

(AECL-1398), Chalk River (1961)<br />

58. C. Davisson, <strong>in</strong> Beta and Gamma-Ray Spectroscopy , ed. K. Sigbahn,<br />

(Interscience Pub. Inc., New York, 1955)<br />

59. S. H<strong>in</strong>ds, et al., private communication reported by reference 25.<br />

60. D.D. Watson, et al., Nucl. Instr. and Meth., 23, 157 (1963)<br />

61. C.W. Reich, et al., Nucl. Instr. and Meth., 23, 36 (1963)<br />

62. G.I. Harris, R.A. Moore and D.D. Watson, private communications.<br />

63. C. Broude and H.E. Gove, Bull. Amer . Phys. Soc, 5, 248 (1960)<br />

118


Mi<br />

I <strong>in</strong> mm<br />

ill<br />

hHIP<br />

' HIHUtf<br />

\ ft<br />

":i1<br />

illll lllllilSiif<br />

illitimi i iiimiivii\mu;<br />

hBHHBHRl<br />

SIllSIl It I P iliilil<br />

HB U i«ill $ 111 fmElBHiiH<br />

i t t iw nli hi<br />

thesP463<br />

<strong>Properties</strong> <strong>of</strong> <strong>some</strong> <strong>energy</strong> <strong>levels</strong> <strong>in</strong> phos<br />

3 2768 001 97878 6<br />

DUDLEY KNOX LIBRARY

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!