25.04.2013 Views

End-Coupled, Half-Wavelength Resonator Filters - Design theory

End-Coupled, Half-Wavelength Resonator Filters - Design theory

End-Coupled, Half-Wavelength Resonator Filters - Design theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Microwave Filter <strong>Design</strong><br />

Chp. 5 Bandpass Filter<br />

Prof. Tzong-Lin Wu<br />

Department of Electrical Engineering<br />

National Taiwan University<br />

<strong>End</strong>-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

Each open-end microstrip resonator is approximately a half guided wavelength long at the<br />

midband frequency f 0 of the bandpass filter.<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


<strong>End</strong>-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

- Equivalent model<br />

What kind of resonator ? Why?<br />

<strong>End</strong>-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

- <strong>Design</strong> <strong>theory</strong><br />

1. Find J-inverter values (half-wavelength resonator)<br />

Z in<br />

Z L<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


<strong>End</strong>-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

- <strong>Design</strong> <strong>theory</strong><br />

Zin ZL ⎛ ω ⎞<br />

ZL + jZ0<br />

tan ⎜π ⎟<br />

ω0<br />

1 1<br />

Zin = Z<br />

⎝ ⎠<br />

0<br />

= =<br />

⎛ ω ⎞<br />

ω ( )<br />

Z0 Z tan<br />

jY0<br />

tan( )<br />

jB ω<br />

+ j<br />

π<br />

L ⎜π ⎟<br />

⎝ ω ω<br />

0 ⎠<br />

0 ZL<br />

= ∞<br />

ω near ω0<br />

Susceptance slope parameters<br />

ω dB 0 ( ω)<br />

ω0 1 π<br />

0π 0<br />

ω ω<br />

Y0b1FBW Y0FBW π π FBW<br />

bi = = Y = Y<br />

J01 = = Y0 = Y0<br />

2 2 2<br />

Ω g g Ω g g 2 2 g g<br />

d ω= ω0<br />

2. Find the susceptance of series gap capacitance<br />

0<br />

c 0 1 c 0 1 Ω 1<br />

0 1<br />

c =<br />

FBW b b π FBW<br />

J = = Y<br />

i i+<br />

1<br />

i, i+<br />

1<br />

Ωc<br />

gig i+ 1 i, i+<br />

1<br />

0<br />

2 gig i+<br />

1<br />

Y b FBW Y FBW π π FBW<br />

J = = Y = Y<br />

0 n<br />

0<br />

n, n+<br />

1<br />

Ωcg ng n+ 1 Ωcg<br />

ng n+ 1<br />

0<br />

2<br />

Ω c = 1<br />

0<br />

2 gng n+<br />

1<br />

<strong>End</strong>-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

- <strong>Design</strong> <strong>theory</strong><br />

The physical lengths of resonators<br />

The second term on the righthand side of the 2nd equation indicates the absorption of the<br />

negative electrical lengths of the J-inverters associated with the jth half-wavelength resonator.<br />

1<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Example<br />

a microstrip end-coupled bandpass filter is designed to have a fractional bandwidth FBW =<br />

0.028 or 2.8% at the midband frequency f 0 = 6 GHz. A three-pole (n = 3) Chebyshev lowpass<br />

prototype with 0.1 dB passband ripple is chosen.<br />

1.<br />

2.<br />

Example<br />

3. Microstrip implementation<br />

How to determine the physical dimension of the coupling gap?<br />

• Use the closed-form expressions for microstrip gap given in Chapter 4.<br />

However, the dimensions of the coupling gaps for the filter seem to be outside<br />

the parameter range available for these closed-form expressions. This will be<br />

the case very often when we design this type of microstrip filter.<br />

• Utilize the EM simulation<br />

Arrows indicate the reference planes for deembedding<br />

to obtain the two-port parameters of the microstrip gap.<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Example<br />

by interpolation<br />

Example<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Parallel-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong><br />

<strong>Filters</strong><br />

They are positioned so that adjacent resonators are parallel to each other along half of their<br />

length.<br />

This parallel arrangement gives relatively large coupling for a given spacing between resonators,<br />

and thus, this filter structure is particularly convenient for constructing filters having a wider<br />

bandwidth as compared to the structure for the endcoupled microstrip filters described in the<br />

last section.<br />

Parallel coupled line filters<br />

− j<br />

Z11 = Z22 = Z33 = Z44 = ( Zoe + Zoo<br />

) cotθ<br />

2<br />

− j<br />

Z12 = Z21 = Z34 = Z43 = ( Zoe − Zoo<br />

) cotθ<br />

2<br />

− j<br />

Z13 = Z21 = Z24 = Z42 = ( Zoe + Zoo<br />

) cscθ<br />

2<br />

− j<br />

Z14 = Z41 = Z23 = Z32 = ( Zoe − Zoo<br />

) cscθ<br />

2<br />

Apply boundary<br />

⎡V1 ⎤ ⎡Z11 Z14 ⎤ ⎡ I1<br />

⎤<br />

=<br />

condition (open-end)<br />

⎢<br />

V<br />

⎥ ⎢<br />

4 Z41 Z<br />

⎥ ⎢<br />

44 I<br />

⎥<br />

⎣ ⎦ ⎣ ⎦ ⎣ 4 ⎦<br />

Z Z<br />

⎡ − j − j<br />

⎤<br />

⎢ ( Z + Z ) cotθ ( Z − Z ) cscθ<br />

⎥<br />

oe oo oe oo<br />

⎡ 11 14 ⎤ 2 2<br />

⎢ ⎥ = ⎢ ⎥<br />

⎣Z 41 Z44 ⎦ ⎢ − j − j<br />

( Z − ) csc ( + ) cot ⎥<br />

oe Zoo θ Zoe Zoo<br />

θ<br />

⎢⎣ 2 2<br />

⎥⎦<br />

2 2 2 2<br />

( oe oo ) cot βl ( oe oo ) csc θ<br />

2 ( ) cscθ<br />

⎡ Z Z ⎤ ⎡<br />

11 Z + − − ⎤<br />

oe + Z Z Z Z Z<br />

oo<br />

⎢ ⎥ ⎢ cosθ<br />

⎥<br />

⎡ A B⎤ ⎢<br />

Z41 Z41 ⎥ ⎢ Zoe − Zoo j Zoe − Zoo<br />

= =<br />

⎥<br />

⎢ ⎥<br />

⎣C D⎦ ⎢ 1 Z ⎥ ⎢ j Z + Z<br />

⎥<br />

2 sinθ cosθ<br />

44<br />

oe oo<br />

⎢ ⎥ ⎢ ⎥<br />

⎣ Z41 Z41 ⎦ ⎢⎣ Zoe − Zoo Zoe − Zoo<br />

⎥⎦<br />

1<br />

2<br />

1<br />

θ<br />

Z oe, Z oo<br />

θ<br />

Z oe, Z oo<br />

Prof. T. L. Wu<br />

3<br />

4<br />

4<br />

Prof. T. L. Wu


Parallel coupled line filters<br />

1<br />

Left<br />

Right<br />

θ<br />

Z oe, Z oo<br />

4<br />

≈<br />

θ<br />

1 4<br />

Z o<br />

2 2 2 2<br />

( Zoe − Zoo ) csc θ − ( Zoe + Zoo<br />

) cot θ<br />

2( ) cscθ<br />

⎡ Z ⎤<br />

oe + Zoo<br />

⎢ cosθ<br />

j<br />

⎥<br />

⎡ A B⎤ ⎢ Zoe − Zoo Zoe − Zoo<br />

=<br />

⎥<br />

⎢ ⎥<br />

⎣C D⎦ ⎢ j Z +<br />

⎥<br />

oe Zoo<br />

⎢2 sinθ cosθ<br />

⎥<br />

⎢⎣ Zoe − Zoo Zoe − Zoo<br />

⎥⎦<br />

⎡ cosθ jZo sinθ ⎤ ⎡ 1 ⎤ ⎡ cosθ jZo<br />

sinθ<br />

⎤<br />

⎡ A B⎤ ⎢ 0 −<br />

= 1<br />

⎥ ⎢<br />

j<br />

⎥ ⎢<br />

1<br />

⎥<br />

⎢ ⎥ J<br />

⎣C D⎦<br />

⎢ j sinθ cosθ ⎥ ⎢ ⎥ ⎢ j sinθ cosθ<br />

⎥<br />

⎢⎣ Z ⎥⎦ ⎣− jJ 0<br />

o ⎦ ⎢⎣ Zo<br />

⎥⎦<br />

θ ≈ π/2 =><br />

2<br />

⎡ ⎛ 1 ⎞ ⎛ 2 2 cos θ ⎞⎤<br />

⎢ ⎜ JZo + ⎟cosθ sinθ j ⎜ JZo<br />

sin θ − ⎟⎥<br />

JZo J<br />

⎝ ⎠<br />

⎝ ⎠<br />

=<br />

⎢ ⎥<br />

⎢ ⎛ 1 2 2 ⎞ ⎛ 1 ⎞ ⎥<br />

⎢ j ⎜ sin θ − J cos θ + cos sin ⎥<br />

2<br />

⎟ ⎜ JZo<br />

⎟ θ θ<br />

⎣⎢ ⎝ JZo ⎠ ⎝ JZo<br />

⎠ ⎦⎥<br />

⎧ Zoe + Zoo<br />

1<br />

⎪<br />

= JZo<br />

+<br />

⎪ Z − Z JZ<br />

⎨<br />

⎪ Zoe − Zoo<br />

2<br />

= JZo<br />

⎪⎩ 2<br />

oe oo o<br />

=><br />

J<br />

( )<br />

⎧ ⎪Z<br />

+ Z = 2J Z + 2Z = 2Z 1+<br />

J Z<br />

⎨<br />

2<br />

⎪⎩ Zoe − Zoo = 2 JZo<br />

2 3 2 2<br />

oe oo o o o o<br />

=><br />

θ<br />

Z o<br />

( 1<br />

2 2 )<br />

( 1<br />

2 2 )<br />

⎧<br />

⎪Z<br />

= Z + JZ + J Z<br />

⎨<br />

⎪⎩<br />

Z = Z − JZ + J Z<br />

oe o o o<br />

oo o o o<br />

Prof. T. L. Wu<br />

Parallel-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

-Theory<br />

Prof. T. L. Wu


Parallel-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

-Example<br />

Step 1:<br />

Let us consider a design of five-pole (n = 5) microstrip bandpass filter that has a fractional<br />

bandwidth FBW = 0.15 at a midband frequency f0 = 10 GHz. Suppose a Chebyshev prototype<br />

with a 0.1-dB ripple is to be used in the design.<br />

Prof. T. L. Wu<br />

Parallel-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

-Example<br />

Step 2:<br />

Find the dimensions of coupled microstrip lines that exhibit the desired even- and odd-mode<br />

impedances.<br />

Assume that the microstrip filter is constructed on a substrate with a relative dielectric<br />

constant of 10.2 and thickness of 0.635 mm.<br />

Prof. T. L. Wu


Parallel-<strong>Coupled</strong>, <strong>Half</strong>-<strong>Wavelength</strong> <strong>Resonator</strong> <strong>Filters</strong><br />

-Example<br />

Hairpin-Line Bandpass <strong>Filters</strong><br />

They may conceptually be obtained by folding the resonators of parallel-coupled, half-wavelength<br />

resonator filters.<br />

This type of “U” shape resonator is the so-called hairpin resonator.<br />

The same design equations for the parallel-coupled, half-wavelength resonator filters may be used.<br />

However, to fold the resonators, it is necessary to take into account the reduction of the coupled-line<br />

lengths, which reduces the coupling between resonators.<br />

If the two arms of each hairpin resonator are closely spaced, they function as a pair of coupled line<br />

themselves, which can have an effect on the coupling as well.<br />

To design this type of filter more accurately, a design approach employing full-wave EM simulation will<br />

be described.<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Hairpin-Line Bandpass <strong>Filters</strong><br />

- Example<br />

A microstrip hairpin bandpass filter is designed to have a fractional bandwidth of 20% or FBW<br />

= 0.2 at a midband frequency f0 = 2 GHz. A five-pole (n = 5) Chebyshev lowpass prototype with<br />

a passband ripple of 0.1 dB is chosen.<br />

We use a commercial substrate (RT/D 6006) with a relative dielectric constant of 6.15 and a<br />

thickness of 1.27 mm for microstrip realization.<br />

Hairpin-Line Bandpass <strong>Filters</strong><br />

- Example<br />

Using a parameter-extraction technique described in Chapter 8, we then carry out full-wave<br />

EM simulations to extract the external Q and coupling coefficient M against the physical<br />

dimensions.<br />

Prof. T. L. Wu<br />

The hairpin resonators used have a line width of 1 mm and a separation of 2 mm between the<br />

two arms.<br />

Dimension of the resonator as indicated by L is about λ g0/4 long and in this case, L =<br />

20.4 mm.<br />

Prof. T. L. Wu


Hairpin-Line Bandpass <strong>Filters</strong><br />

- Example<br />

The filter is quite compact, with a substrate size of 31.2mm by 30 mm.<br />

The input and output resonators are slightly shortened to compensate for the effect of the<br />

tapping line and the adjacent coupled resonator.<br />

Hairpin-Line Bandpass <strong>Filters</strong><br />

- Example<br />

A design equation is proposed for estimating the tapping point t as<br />

Derivation on external Q e<br />

t<br />

=<br />

4<br />

g<br />

L λλλλ<br />

equivalent<br />

External quality factor for parallel L/C resonator:<br />

ω ∂B<br />

ω ⎛ 1 ⎞ ω<br />

b = = C + = ( C + C) = ω0C<br />

2 2 2<br />

Q<br />

0 0 0<br />

⎜ 2 ⎟<br />

∂ω ω= ω ω<br />

0 ⎝ 0 L ⎠<br />

ω C b<br />

G G<br />

0 = =<br />

Prof. T. L. Wu<br />

1 ⎛ 1 ⎞<br />

Yin = jωω ωω C + = j ⎜ωω ωω<br />

C − ⎟ = jB<br />

jωω ωω L ⎝ ωω<br />

ωω<br />

L ⎠<br />

Prof. T. L. Wu


Hairpin-Line Bandpass <strong>Filters</strong><br />

- Example<br />

External quality factor for hairpin line: t<br />

the hairpin line is 1.0 mm wide, which results in Z r = 68.3 ohm<br />

on the substrate used. Recall that L = 20.4 mm, Z 0 = 50 ohm,<br />

and the required Q e = 5.734. Substituting them into the eq.<br />

yields a t = 6.03 mm, which is close to the t of 7.625 mm found<br />

from the EM simulation above.<br />

Yin<br />

=<br />

4<br />

g<br />

L λλλλ<br />

{ } ( )<br />

( ) ( ) ( ) ( )<br />

Yin = jYr tan ⎡⎣ β L − t ⎤⎦ + jYr tan ⎡⎣ β L + t ⎤⎦ = jYr tan ⎡⎣ β L − t ⎤⎦ + tan ⎡⎣ β L + t ⎤⎦<br />

= jB ω<br />

ω ∂B ω ∂B ∂β<br />

ω Y<br />

2 ∂ω 2 ∂β ∂ω<br />

2 u<br />

ω= ω0 β = β0<br />

2 2<br />

{ ( ) sec ⎡β0 ( ) ⎤ ( ) sec ⎡β 0 ( ) ⎤}<br />

0 0 0 r<br />

b = = = L − t L − t + L + t L + t<br />

p<br />

⎣ ⎦ ⎣ ⎦<br />

0L<br />

=<br />

2<br />

π<br />

condition:<br />

β<br />

ω0 Yr 2 2 ω0L 1 π Yr π Yr<br />

= ⎡( L t) csc ( 0t) ( L t) csc ( 0t) Yr<br />

2<br />

2 u ⎣<br />

− β + + β ⎤<br />

⎦<br />

= = =<br />

p up sin ( β0t ) 2 ⎛ 2 2π ⎞ 2 2 ⎛ πt<br />

⎞<br />

sin ⎜ t sin ⎜ ⎟<br />

π Y<br />

⎜ ⎟ 2<br />

r<br />

λ ⎟ ⎝ L ⎠<br />

⎝ g ⎠<br />

2 2 ⎛ πt<br />

⎞<br />

sin<br />

b<br />

⎜ ⎟<br />

2L<br />

π Z0<br />

Q<br />

⎝ ⎠<br />

2L −1<br />

π Z0 Zr<br />

e = = =<br />

t = sin<br />

G 1<br />

2 ⎛ πt<br />

⎞<br />

π 2 Qe<br />

2Z r sin<br />

Z<br />

⎜ ⎟<br />

0<br />

⎝ 2L<br />

⎠<br />

Example:<br />

Interdigital Filter<br />

- Concept<br />

Prof. T. L. Wu<br />

The filter configuration, as shown, consists of an array of n TEM-mode or quasi-TEM-mode<br />

transmission line resonators, each of which has an electrical length of 90° at the midband frequency<br />

and is short-circuited at one end and open-circuited at the other end with alternative orientation.<br />

Parallel coupled-line BPF<br />

Folding λ/2<br />

resonator<br />

Interdigital line filter with tapped line<br />

Y1 = Yn denotes the single microstrip characteristic<br />

impedance of the input/output resonator. Prof. T. L. Wu


Interdigital Filter<br />

- Concept<br />

BPF with short-circuited stubs<br />

Interdigital Filter<br />

- <strong>Design</strong> Equations<br />

−Yu<br />

θ<br />

θ<br />

Yu J<br />

−Yu<br />

θ<br />

Yoe<br />

θ<br />

θ<br />

Y oe, Y oo<br />

θ<br />

Yoo − Yoe<br />

2<br />

j sinθ j sinθ<br />

1 0 j sinθ ⎡ ⎤ ⎡ ⎤<br />

⎡ ⎤ ⎡ ⎤ 1 0 cosθ 1 0 0<br />

cosθ ⎡ ⎤ ⎢ j<br />

Y ⎥ ⎡ ⎤ ⎢ 0<br />

u Y ⎥ ⎡ ⎤<br />

⎢ u<br />

jY<br />

⎥ ⎢ Y ⎥ ⎢<br />

u<br />

u jY<br />

⎥ = ⎢ ⎥ ⎢ J<br />

u jY<br />

⎥ = ⎢ ⎥ = ⎢ ⎥<br />

⎢ u<br />

1⎥ ⎢ ⎥ ⎢ 1⎥ jY 1<br />

u jYu<br />

tanθ jY sin cos tan 0 tan<br />

0 jJ 0<br />

u θ θ<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎣ ⎦ ⎢⎣ ⎥⎦<br />

⎣ θ ⎦ ⎢ ⎣ θ ⎦ ⎣ ⎦<br />

⎣sinθ ⎥⎦ ⎢⎣ sinθ<br />

⎥⎦<br />

Yoe<br />

θ<br />

Prof. T. L. Wu<br />

Yu<br />

J =<br />

sinθ<br />

Prof. T. L. Wu


Interdigital Filter<br />

- <strong>Design</strong> Equations<br />

Transform the lowpass prototype filter to the highpass prototype filter<br />

Highpass<br />

Transformation<br />

J<br />

0,1<br />

=<br />

Y0<br />

L g g<br />

p1<br />

0 1<br />

J<br />

i, i+<br />

1<br />

=<br />

1<br />

LpiL ( 1)<br />

gig p i+<br />

i+<br />

1<br />

i= 1 to n=<br />

1<br />

J<br />

n, n+<br />

1<br />

=<br />

Yn+<br />

1<br />

L g g<br />

pn n n+<br />

1<br />

BPF Response<br />

Richard’s Transformation to decide the inductor value at edge frequency<br />

of passband<br />

θ<br />

ω1 ω2 1<br />

Y =<br />

Lpi<br />

pLpi<br />

p = jω<br />

1 Y1<br />

Y = =<br />

jω1L pi j tanθ<br />

Y1<br />

Y =<br />

t Y1<br />

t = j tanθ<br />

1 Y1<br />

=<br />

L pi tanθ<br />

FBW ω1 ω0<br />

⎛ FBW ⎞<br />

ω1= ω0 − ω0 => θ = l = l⎜1<br />

− ⎟<br />

2 up up<br />

⎝ 2 ⎠<br />

π ⎛ FBW ⎞<br />

= ⎜1 −<br />

2 Prof. 2 T. ⎟<br />

⎝ ⎠L.<br />

Wu<br />

Interdigital Filter<br />

- <strong>Design</strong> Equations<br />

J-inverter value for the BPF<br />

J<br />

1<br />

Y Y<br />

1<br />

i, i+<br />

1 = = =<br />

LpiL ( 1) gig i 1 tanθ<br />

gig p i i 1 g<br />

1 1 ig + + + i 1<br />

i 1 to n 1<br />

i to n +<br />

= =<br />

= = i= 1 to n=<br />

1<br />

From Richard’s transformation and previous derivations on interdigital filter<br />

Input part:<br />

Internal part:<br />

Output part:<br />

Y = Y + Y<br />

1 a1<br />

12<br />

Y = Y + Y + Y<br />

1 ai i− 1, i i, i+<br />

1<br />

Y = Y + Y −<br />

1 an n 1, n<br />

Y = Y -Y<br />

a1<br />

1 12<br />

Y = Y -Y -Y<br />

ai 1 i− 1, i i, i+<br />

1<br />

Y = Y -Y<br />

−<br />

an 1 n 1, n<br />

Y 1 denotes the characteristic<br />

impedance of the short-circuited stubs.<br />

Y ai denotes the characteristic<br />

impedance you have to find<br />

from the interdigital filter .<br />

Prof. T. L. Wu


Interdigital Filter<br />

- <strong>Design</strong> Equations<br />

Self- and mutual capacitances per unit length are used to find the corresponding physical dimensions<br />

Y = Y -Y<br />

a1<br />

1 12<br />

Y = Y -Y -Y<br />

ai 1 i− 1, i i, i+<br />

1<br />

Y = Y -Y<br />

−<br />

an 1 n 1, n<br />

Connecting line Y i,i+1<br />

C C Y -Y<br />

Y = × = u C = Y -Y<br />

=> C =<br />

1 1 1 12<br />

a1 L1 C1 p 1 1 12 1<br />

up<br />

Y -Y -Y<br />

Yai = Y1-Yi − 1, i-Yi , i+ 1 => Ci<br />

=<br />

up<br />

Y1-Yn −1,<br />

n<br />

Yan = Y1-Y n−1, n => Cn<br />

=<br />

up<br />

Yi,<br />

i+<br />

1<br />

Ci,<br />

i+<br />

1<br />

u<br />

= for i=1 to n-1<br />

p<br />

1 i− 1, i i, i+<br />

1<br />

Approximate design approach to find a pair of parallel-coupled lines<br />

Interdigital Filter<br />

- <strong>Design</strong> <strong>theory</strong><br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Interdigital Filter<br />

- <strong>Design</strong> <strong>theory</strong><br />

Full-wave electromagnetic (EM) simulation technique can be employed to extract such even- and odd-mode<br />

impedances for the filter design,<br />

Some commercial EM simulators such as em can automatically extract ε re and Z c.<br />

For the even-mode excitation, the average<br />

even-mode impedance is then found by<br />

the average odd-mode impedance is<br />

determined by<br />

Interdigital Filter<br />

- <strong>Design</strong> Example<br />

Prof. T. L. Wu<br />

the design is worked out using an n = 5 Chebyshev lowpass prototype with a passband ripple 0.1 dB. The bandpass<br />

filter is designed for a fractional bandwidth FBW = 0.5 centered at the midband frequency f0 = 2.0 GHz.<br />

The prototype parameters are<br />

using the design equations above given the table 5.7<br />

A commercial dielectric substrate (RT/D 6006) with a relative dielectric constant of 6.15 and a thickness of<br />

1.27 mm is chosen for the filter design, and table 5.8 is obtained.<br />

Prof. T. L. Wu


<strong>Design</strong> Example with asymmetric coupled lines<br />

Next, we need to decide the lengths of microstrip interdigital resonators.<br />

unequal effective dielectric constants for the both modes<br />

there is a capacitance C t that needs to be loaded to the input and output resonators<br />

capacitive loading may be achieved by an open-circuit stub, namely, an extension in length of the<br />

resonators.<br />

<strong>Design</strong> Example with asymmetric coupled lines<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Combline <strong>Filters</strong><br />

The combline bandpass filter is comprised of an array of coupled resonators.<br />

The resonators consist of line elements 1 to n, which are short-circuited at one end, with a<br />

lumped capacitance C Li loaded between the other end of each resonator line element and<br />

ground.<br />

Not resonator, but input and output of the filter<br />

through the coupled line elements.<br />

The input and output of the filter are<br />

through coupled-line elements 0 and n + 1, which are not resonators.<br />

The larger the loading capacitances C Li, the shorter<br />

the resonator lines, which results in a more compact<br />

filter structure with a wider stopband between the<br />

first passband (desired) and the second passband<br />

(unwanted).<br />

The minimum resonator line length could be limited<br />

by the decrease of the unloaded quality factor of<br />

resonator and a requirement for heavy capacitive<br />

loading.<br />

Combline <strong>Filters</strong><br />

- <strong>Design</strong> Concept<br />

resonators<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


1<br />

Y = υυυυ C<br />

a<br />

oe a<br />

Y − Y<br />

Y =<br />

2<br />

Constraint:<br />

Combline <strong>Filters</strong><br />

- <strong>Design</strong> Concept<br />

Combline <strong>Filters</strong><br />

- <strong>Design</strong> Concept<br />

a a<br />

oo oe<br />

Y<br />

L<br />

in1<br />

θθθθ<br />

a a<br />

Yoo −Yoe<br />

= υυυυ C<br />

2<br />

Y + Y<br />

2<br />

ab<br />

a a<br />

oo oe<br />

Y<br />

s<br />

in1<br />

b<br />

θθθθ Yoe = υυυυ Cb<br />

θθθθ<br />

= Y<br />

Y in1<br />

A<br />

( + )<br />

Y Y<br />

Y = G / / Y = +<br />

N j tanθ<br />

2 s<br />

Yin2<br />

in2 T<br />

s<br />

in2<br />

A<br />

2<br />

s<br />

Yin2 Y = υυυυ C<br />

a<br />

oe a<br />

θθθθ<br />

a a<br />

Yoo −Yoe<br />

= υυυυ C<br />

2<br />

ab<br />

b<br />

θθθθ Yoe = υυυυ Cb<br />

θθθθ<br />

Prof. T. L. Wu<br />

a<br />

L Yoe<br />

Yin1 = YA<br />

+<br />

j tanθ<br />

a a<br />

⎛ Y ⎞ ⎛ ⎞<br />

oe a Yoe<br />

⎜YA + + tan + + + tan<br />

tan<br />

⎟ jY θ ⎜Y Yoe tan<br />

⎟ jY θ<br />

L<br />

s Yin1 + jY tanθ<br />

⎝ j θ ⎠ ⎝ j θ<br />

Y<br />

⎠<br />

in1 = Y = Y = Y<br />

L a<br />

a<br />

Y + jYin1 tanθ ⎛ Y ⎞<br />

Y + Yoe + jYA<br />

tanθ<br />

oe<br />

Y + j ⎜YA + tan<br />

tan<br />

⎟ θ<br />

⎝ j θ ⎠<br />

a ⎛ 1 ⎞<br />

Y ( 1+ j tanθ ) + Yoe<br />

⎜1 +<br />

2<br />

tan<br />

⎟<br />

a<br />

=<br />

⎝ j θ ⎠ Y YYoe<br />

Y<br />

= +<br />

Y 1 j tanθ Y Y j tanθ<br />

A A A<br />

2 a b 2<br />

a<br />

Y YY 1 ⎛ ⎞<br />

oe Yoe Y YYoe<br />

b<br />

Yin1 = + + = + ⎜ + Yoe<br />

⎟<br />

YA YA j tanθ j tanθ YA j tanθ<br />

⎝ YA<br />

⎠<br />

Y = Y<br />

in1 in2<br />

YA 2YA<br />

N = =<br />

Y Y −Y<br />

a a<br />

oo oe<br />

a a<br />

YY ⎛ ⎞<br />

oe YYoe Y<br />

Y = + Y = + Y − Y + Y = Y ⎜1 + ⎟ − Y + Y<br />

YA YA ⎝ YA<br />

⎠<br />

b a a b a a b<br />

s oe oe oe oe oe oe oe<br />

2 2 2<br />

⎛ Y ⎞ ⎛ ⎞ A + Y YA −Y ⎛ N −1<br />

⎞<br />

= ( Y −Y ) ⎜ ⎟ − Y + Y = ⎜ ⎟ − Y + Y = Y ⎜ − +<br />

2 ⎟ Y Y<br />

⎝ YA ⎠ ⎝ YA ⎠<br />

⎝ NProf.<br />

⎠T.<br />

L. Wu<br />

a b a b a b<br />

A oe oe oe oe A oe oe


Combline <strong>Filters</strong><br />

- <strong>Design</strong> Concept<br />

Combline <strong>Filters</strong><br />

- Formulation<br />

<strong>Design</strong> formula for coupled-line:<br />

2<br />

⎛ N −1<br />

⎞ a b<br />

a1 = A − + +<br />

2 oe oe 12<br />

Y Y ⎜ ⎟ Y Y Y<br />

⎝ N ⎠<br />

2<br />

⎡ ⎛υC ⎞ ⎤<br />

01<br />

A ⎢1 ⎜ ⎟ ⎥<br />

YA<br />

( )<br />

= Y − + υ − C + C + C<br />

⎢⎣ ⎝ ⎠ ⎥⎦<br />

0 1 12<br />

( )<br />

Yaj = Y j + Y j− 1, j + Y j, j+ 1 = υ C j + C j− 1, j + Prof. C j, j+<br />

T. 1 L. Wu<br />

j= 2 to n−<br />

1<br />

A design procedure starts with choosing the resonator susceptance slope parameters bi<br />

a<br />

Y = υC<br />

oe a<br />

b<br />

Y = υC<br />

oe b<br />

( 2 )<br />

a<br />

Yoo = υ Ca + Cab<br />

N =<br />

υ C<br />

2YA<br />

+ 2C<br />

− C<br />

YA<br />

=<br />

υC<br />

( )<br />

ab<br />

B ( ω) = ωC −Y<br />

cotθ<br />

i Li ai<br />

0 0 Li ai 0<br />

0<br />

a<br />

b<br />

a ab a<br />

(Parallel LC)<br />

Q<br />

B( ω ) = ω C −Y cotθ ≡ 0<br />

∴ C = Y<br />

Li ai<br />

cotθ<br />

0<br />

ω<br />

Prof. T. L. Wu


Combline <strong>Filters</strong><br />

- Formulation<br />

<strong>Design</strong> Procedure (1/3)<br />

Find the g i (i = 1 to n) coefficients for the chosen prototype filter.<br />

Choose the admittance of each resonator, Y ai.<br />

Choose the midband electrical length of each resonator, θ 0.<br />

Obtain the susceptance slope parameter of each resonator using<br />

Obtain the required lumped capacitance using<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


<strong>Design</strong> Procedure (2/3)<br />

Obtain the J-inverter values using the formula<br />

Obtain the required self and mutual capacitance for n + 2 lines using<br />

<strong>Design</strong> Procedure (3/3)<br />

Prof. T. L. Wu<br />

Find the dimensions of the coupled lines, namely the width and<br />

spacing that gives the required self and mutual capacitance. (similar to<br />

the interdigital BPF)<br />

Prof. T. L. Wu


Combline filters<br />

- Another design approach<br />

Instead of working on the self- and mutual capacitances, an alternative design approach is to<br />

determine the dimensions in terms of another set of design parameters consisting of external<br />

quality factors and coupling coefficients.<br />

Combline filters<br />

- Another design approach<br />

As mentioned above, the combline resonators cannot be λ g0/4 long if they are realized with TEM<br />

transmission lines. However, this is not necessarily the case for a microstrip combline filter because the<br />

microstrip is not a pure TEM transmission line.<br />

The microstrip filter is designed on a commercial substrate (RT/D 6010) with a relative dielectric<br />

constant of 10.8 and a thickness of 1.27 mm.<br />

With the EM simulation we are able to work directly on the dimensions of the filters. Therefore, we<br />

first fix a line width W = 0.8 mm for the all line elements except for the terminating lines.<br />

The terminating lines are 1.1mm wide, which matches to 50 ohm terminating impedance.<br />

Prof. T. L. Wu<br />

For demonstration, we also let the microstrip resonators be λ g0/4 long and require no capacitive loading for<br />

this filter design.<br />

Prof. T. L. Wu


Combline filters<br />

Pseudocombline <strong>Filters</strong><br />

It is interesting to note that there is an attenuation pole near the high<br />

edge of the passband, resulting in a higher selectivity on that side.<br />

This attenuation pole is likely due to cross couplings between the<br />

nonadjacent resonators.<br />

Pseudocombline bandpass filter that is comprised of an array of coupled resonators. The resonators consist<br />

of line elements 1 to n, which are open-circuited at one end, with a lumped capacitance C Li loaded between<br />

the other end of each resonator line element and ground.<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Pseudocombline <strong>Filters</strong><br />

Similar to the combline filter, if the capacitors were not present, the resonator lines would be a full λ g0/2<br />

long at resonance.<br />

The filter structure would have no passband at all when it is realized in stripline, due to a total cancellation<br />

of electric and magnetic couplings. For microstrip realization, this would not be the case<br />

The type of filter in Figure 5.22 can be designed with a set of bandpass design parameters consisting of<br />

external quality factors and coupling coefficients.<br />

Pseudocombline <strong>Filters</strong><br />

- Example<br />

Prof. T. L. Wu<br />

<strong>Design</strong> on commercial substrate (RT/D 6010) with a relative dielectric<br />

constant of 10.8 and a thickness of 1.27 mm. Fix a line width W = 0.8 mm.<br />

The tapped lines are 1.1mm wide, which matches to 50 ohm terminating<br />

impedance.<br />

Using the parameter extraction technique described in Chapter 8, the design curves for external quality<br />

factor and coupling coefficient against spacing s can be obtained<br />

Prof. T. L. Wu


Pseudocombline <strong>Filters</strong><br />

- Example<br />

Similar to the combline filter discussed previously, there is an attenuation pole near the high edge of the<br />

passband, resulting in a higher selective on that side.<br />

This attenuation pole is likely to be due to cross couplings between the nonadjacent resonators.<br />

However, the second passband of the pseudocombline filter is centered at about 4 GHz, which is only<br />

twice the midband frequency. This is expected because the λ g0/2 resonators are used without any lumped<br />

capacitor loading.<br />

Bandpass <strong>Filters</strong> Using Quarter-Wave <strong>Coupled</strong><br />

Quarter-Wave <strong>Resonator</strong>s<br />

Since quarter-wave short-circuited transmission line stubs look like parallel resonant<br />

circuits, they can be used as the shunt parallel LC resonators for bandpass filters.<br />

Quarter wavelength connecting lines between the stubs will act as admittance<br />

inverters, effectively converting alternate shunt stubs to series resonators.<br />

Prof. T. L. Wu<br />

For a narrow passband bandwidth (small ∆), the response of such a filter using N<br />

stubs is essentially the same as that of a lumped element bandpass filter of order N.<br />

The circuit topology of this filter is convenient in that only shunt stubs are used, but a<br />

disadvantage in practice is that the required characteristic impedances of the stub lines<br />

are often unrealistically low. A similar design employing open-circuited stubs can be<br />

used for bandstop filters<br />

How to design Z 0n ?<br />

Prof. T. L. Wu


Bandpass <strong>Filters</strong> Using Quarter-Wave <strong>Coupled</strong><br />

Quarter-Wave <strong>Resonator</strong>s<br />

Note that a given LC resonator has two degrees of freedom: L and C, or equivalently, ω 0,<br />

and the slope of the admittance at resonance.<br />

For a stub resonator the corresponding degrees of freedom are the resonant length and<br />

characteristic impedance of the transmission line Z 0n .<br />

Bandpass <strong>Filters</strong> Using Quarter-Wave <strong>Coupled</strong><br />

Quarter-Wave <strong>Resonator</strong>s<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


These two results are exactly equivalent for all frequencies if the following conditions are satisfied:<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


Prof. T. L. Wu<br />

Prof. T. L. Wu


Stub Bandpass <strong>Filters</strong><br />

Prof. T. L. Wu<br />

h is a dimensionless constant which may be assigned to<br />

another value so as to give a convenient admittance level in<br />

the interior of the filter.<br />

Prof. T. L. Wu


Derivation concept (1/6)<br />

Lowpass filter with only one kind of reactive element<br />

C ai is scaled by terminal<br />

impedance Y A!<br />

⎛ h ⎞<br />

C = ⎜ 1 − ⎟ g<br />

⎝ 2 ⎠<br />

'<br />

1 1<br />

C = g = C + C<br />

J<br />

C h<br />

C = = g<br />

2 2<br />

' "<br />

1 1 1 1<br />

12<br />

" a<br />

1 1<br />

=<br />

= Y<br />

C C<br />

g g<br />

A<br />

1 a<br />

1 2<br />

hg<br />

g<br />

2<br />

1<br />

J<br />

Ca = hg1<br />

k, k+ 1 2 to n−1 Derivation concept (2/6)<br />

For interior sections<br />

C h<br />

C = =<br />

g<br />

2 2<br />

" a<br />

1 1<br />

Y imag1<br />

Ca = hg1<br />

Y imag2<br />

=<br />

= Y<br />

Ca<br />

g g<br />

A<br />

Cai can be arbitrary chosen and the<br />

inverters J01 and Jn, n+1 are eliminated!<br />

k k+ 1<br />

hg1<br />

g g<br />

k k+ 1<br />

" Ca<br />

C1<br />

=<br />

2<br />

( / )<br />

' g g − h 2 g R<br />

Cn<br />

=<br />

Rn+<br />

1<br />

gn+<br />

1 ' "<br />

Cn = gn = Cn + Cn<br />

R<br />

J<br />

n−1, n<br />

n n+ 1 1 n+ 1<br />

=<br />

= Y<br />

n+ 1<br />

CaCn g g<br />

A<br />

" Ca<br />

C1<br />

=<br />

2<br />

n−1 n<br />

hg g<br />

g<br />

1 n+ 1<br />

n−1 Using image impedance<br />

Definition of image impedance<br />

Y<br />

Y<br />

imag1<br />

imag 2<br />

1 C D<br />

= =<br />

Z A B<br />

Prof. T. L. Wu<br />

1 1<br />

imag1<br />

1 1<br />

1 C D<br />

= =<br />

Z A B<br />

2 2<br />

imag 2 2 2<br />

Prof. T. L. Wu


Derivation concept (3/6)<br />

Derivations on the image parameters<br />

Y +<br />

s<br />

k, k 1<br />

1.<br />

2.<br />

Ca<br />

2<br />

Jk, k+1<br />

θθθθ<br />

Y k, k+<br />

1<br />

s<br />

θθθθ Y k, k+<br />

1 θθθθ<br />

=<br />

2<br />

π ω<br />

θ<br />

ω<br />

0<br />

Ca<br />

2<br />

A B<br />

⎡ 1 1 ⎤ ⎢ ⎥ k , k+ 1 k , k+<br />

1<br />

⎢ ⎥ ⎢ ⎥ ⎢ ⎥<br />

⎢ ⎥ = ωC J k , k+<br />

1 =<br />

2<br />

⎢ a<br />

1 1<br />

1 ⎢ ⎥ ωC<br />

⎥ ⎢ a<br />

⎣C D ⎦ j j 1⎥<br />

⎢ ( ωC ) − ⎥<br />

a ωC<br />

⎣ 2 ⎦ ⎣⎢ jJ , + 1 0 ⎦⎥<br />

a<br />

k k ⎣ 2 ⎦ ⎢ jJ k , k+<br />

1 − j ⎥<br />

J k , k+ 1 2J<br />

k , k+<br />

1<br />

C1D ⎛<br />

1<br />

ωC<br />

⎞<br />

a<br />

Yimag1 = = J k , k + 1 1−<br />

⎜ ⎟<br />

A1B 1 ⎝ 2J<br />

k, k + 1 ⎠<br />

Y<br />

⎡ −ωCa<br />

1 ⎤<br />

⎡ 1 0⎤ ⎡ 1 ⎤<br />

0<br />

⎡ 1 0⎤ ⎢<br />

j<br />

j<br />

2J<br />

J ⎥<br />

C D<br />

2 2<br />

imag 2 = =<br />

A2B 2<br />

Derivation concept (4/6)<br />

( ) 2<br />

s<br />

Y − Y + Y<br />

2 2<br />

k , k+ 1 k , k+ 1 k, k+<br />

1<br />

2<br />

sinθ<br />

cos θ<br />

⎢⎣ ⎥⎦<br />

⎡ j ⎤<br />

⎡ A2 B2<br />

⎤ ⎡ 1 0⎤ ⎢<br />

cosθ sinθ<br />

⎥ ⎡ 1 0⎤<br />

⎢ ⎥ = ⎢ , + 1<br />

2 2<br />

, + 1 cot 1<br />

⎥<br />

Y<br />

s k k<br />

⎢ ⎥ ⎢ s<br />

− − , + 1 cot 1<br />

⎥<br />

⎣C D ⎦ ⎣ jYk k θ ⎦ ⎢ , + 1 sin cos ⎥ ⎣ jYk<br />

k θ ⎦<br />

⎣ jYk<br />

k θ θ ⎦<br />

<strong>Design</strong> equations for interior sections<br />

Lowpass Bandpass<br />

' ( ω = 0)<br />

= ( ω = ω )<br />

Y Y<br />

imag1 imag 2 0<br />

' ' ( ω = ω ) = ( ω = ω )<br />

Y Y<br />

imag1 1 imag 2 1<br />

2<br />

=<br />

1<br />

J<br />

⎡ Y j ⎤<br />

s<br />

k , k+<br />

1<br />

⎢ cosθ + cosθ sinθ<br />

⎥<br />

⎢<br />

Yk , k+ 1 Yk<br />

, k+<br />

1 ⎥<br />

⎢ 2<br />

2 s<br />

2<br />

s ⎥<br />

⎢ s cos θ ( Yk , k+<br />

1 ) cos θ Yk<br />

, k + 1<br />

− 2 jYk , k + 1 + jYk , k+<br />

1 sinθ − j cosθ<br />

+ cosθ<br />

⎥<br />

⎢ sinθ Yk<br />

, k+<br />

1 sinθ<br />

Y ⎥<br />

k , k+<br />

1<br />

⎣ ⎦<br />

k, k+<br />

1<br />

⎝ k , k+<br />

1 ⎠<br />

1.<br />

2.<br />

( ) 2<br />

s<br />

Prof. T. L. Wu<br />

' ( ω = 0)<br />

= ( ω = ω )<br />

' ' ( ω = ω ) = ( ω = ω )<br />

Y Y<br />

2 2 2<br />

Yk , k + 1 − Yk , k+ 1 + Yk<br />

, k+<br />

1 cos<br />

⎛ ωC<br />

⎞<br />

a 1−<br />

⎜ ⎟ =<br />

2J sinθ<br />

( ) 2<br />

s<br />

Y Y<br />

imag1 imag2<br />

0<br />

imag1 1 imag 2 1<br />

k, k+<br />

1<br />

2<br />

' ⎛ ω1C<br />

⎞ a 1−<br />

⎜ ⎟ =<br />

⎝ 2J k , k+<br />

1 ⎠<br />

2<br />

Yk , k + 1 − Yk , k+ 1 + Yk<br />

, k+<br />

1<br />

sinθ1<br />

2<br />

cos θ1<br />

2<br />

⎡ '<br />

2 ⎛ ω1C<br />

⎞ ⎤<br />

a<br />

2<br />

J , 1 sin ⎢ 1 1 ⎥<br />

k k+ θ − ⎜ ⎟ = Yk , k+ 1 −<br />

⎢ 2J<br />

k, k+<br />

1 ⎥<br />

s<br />

2<br />

2<br />

Yk , k + 1 + Yk<br />

, k+<br />

1 cos θ1<br />

J<br />

( ) ( )<br />

⎣ ⎝ ⎠ ⎦<br />

'<br />

s 2 2 2 ⎛ ω1Ca sinθ1<br />

⎞<br />

+ = − + ⎜ ⎟<br />

⎝ 2 ⎠<br />

2<br />

( J k , k+ 1 Yk , k + 1) cos θ1 J k , k+<br />

1 ( 1 sin θ1)<br />

θ<br />

2<br />

J = Y<br />

k, k+ 1 k , k+<br />

1<br />

Prof. T. L. Wu


C h<br />

C = = g<br />

2 2<br />

Derivation concept (5/6)<br />

'<br />

s 2 2 2 ⎛ ω1Ca sinθ1<br />

⎞<br />

+ = − + ⎜ ⎟<br />

⎝ 2 ⎠<br />

' '<br />

2<br />

2. Yimag1 ( ω = ω1 ) = Yimag<br />

2 ( ω = ω1<br />

) ( J k , k+ 1 Yk , k + 1) cos θ1 J k , k+<br />

1 ( 1 sin θ1)<br />

" a<br />

1 1<br />

Ca = hg1<br />

'<br />

s<br />

2<br />

2 ⎛ ω1Ca tanθ1<br />

⎞<br />

J k , k+ 1 + Yk , k+ 1 = J k, k+<br />

1 + ⎜<br />

2<br />

⎟<br />

⎝ ⎠<br />

( )<br />

'<br />

2 2<br />

s 2 ⎛ ω1C tan ⎞ a θ1 2 ⎛ YAhg1 tanθ1<br />

⎞<br />

k , k+ 1 = k, k+ 1 + − k , k+ 1 = k, k+ 1 + − k , k+<br />

1<br />

Y J ⎜ ⎟ J J ⎜ ⎟ J<br />

⎝ 2 ⎠<br />

⎝ 2 ⎠<br />

2 2<br />

⎛ J k , k+<br />

1 ⎞ ⎛ hg1<br />

tanθ1<br />

⎞<br />

A ⎜ ⎟ ⎜ ⎟ k , k+ 1 A k , k+ 1 k, k+<br />

1<br />

YA<br />

⎝ 2 ⎠<br />

= Y + − J = Y N − J<br />

⎝ ⎠<br />

Required stub admittance<br />

Derivation concept (6/6)<br />

<strong>Design</strong> equations for end sections<br />

Y in1<br />

Take input end for example<br />

{ }<br />

{ }<br />

{ }<br />

{ }<br />

Im Y Im Y<br />

=<br />

Re Y Re Y<br />

in1 in2<br />

in1 in2<br />

Required stub admittance for Y 1<br />

0<br />

0 0<br />

2<br />

( ) ( )<br />

Y = Y + Y = Y N − J + Y N − J<br />

s s<br />

k k− 1, k k , k+ 1 A k -1, k k -1, k A k , k+ 1 k, k+<br />

1<br />

= Y<br />

⎛<br />

N + N<br />

J<br />

-<br />

J<br />

-<br />

⎞<br />

⎝ ⎠<br />

k -1, k k , k+<br />

1<br />

A ⎜ k -1, k k , k+<br />

1<br />

⎟<br />

YA YA<br />

Assume ω 1 ’ =1<br />

π ω1 π ( ω0 − ω0FBW<br />

/ 2)<br />

π ⎛ FBW ⎞<br />

Note: θ1<br />

= = = ⎜1 − ⎟<br />

2 ω 2 ω 2 ⎝ 2 ⎠<br />

Y in2<br />

for k = 2 to n −1<br />

' ' '<br />

ω1C1 Y1<br />

cotθ1<br />

' ' '<br />

h<br />

=<br />

Y1 = YAg 0ω1C1 tan θ1 = YAg 0g1(1 − ) tanθ<br />

1/ R Y<br />

2<br />

A<br />

2<br />

Prof. T. L. Wu<br />

' s<br />

h h ⎛ J ⎞ 12<br />

Y1 = Y1 + Y12 = YAg 0g1(1 − ) tan θ + YAN12 − J12 = YAg 0g1(1 − ) tanθ<br />

+ YA ⎜ N12<br />

− ⎟<br />

2 2 ⎝ YA<br />

⎠<br />

Since h can be assigned to be arbitrary number, the best way to simplify the calculation process is h = 2.<br />

Prof. T. L. Wu


Stub Bandpass <strong>Filters</strong><br />

- Example<br />

<strong>Design</strong> a stub bandpass filter using five-order chebyshev prototype with a passband ripple<br />

L Ar = 0.1 dB at f 0 = 2 GHz with a fractional bandwidth of 0.5. A 50 ohm terminal impedance<br />

is chosen.<br />

Using previous equations to find the required Y i and Y i, i+1<br />

Stub Bandpass <strong>Filters</strong><br />

- Example<br />

fabricated on a substrate with a relative dielectric constant of 10.2 and a<br />

thickness of 0.635 mm.<br />

f 0<br />

2f 0<br />

Prof. T. L. Wu<br />

3f 0<br />

Prof. T. L. Wu


Stub Bandpass <strong>Filters</strong> without shorting via<br />

Additional passbands in the vincity of f = 0<br />

and f = 2f 0<br />

Better passband response with transmission<br />

zeros<br />

If Y ia = Y ib<br />

at f 0/2 and 3f 0/2<br />

If Y ia ≠ Y ib<br />

transmission zeros are controlled<br />

<strong>Design</strong> equation:<br />

<strong>Design</strong> Equation<br />

Y in1<br />

Y<br />

in1<br />

Yi<br />

=<br />

j tanθ<br />

Equivalence of the two input admittance using assumption of Yib = αiYia Yin1 = Yin<br />

2<br />

Yi = Yia<br />

j tanθ jYib tanθ + jYia<br />

tanθ<br />

2<br />

Y −Y<br />

tan θ<br />

Transmission zero in the λ g/2 case<br />

Yin<br />

2<br />

= ∞<br />

where f zi is the assigned transmission zero at the lower edge of passband<br />

ia ib<br />

( i + )<br />

2<br />

Y j α 1 tanθ<br />

i = Yia<br />

j tanθ 1− α tan θ<br />

2<br />

2<br />

Yia − Yib tan θ = 0 Yia iYia i<br />

Y in2<br />

Y L<br />

Prof. T. L. Wu<br />

Y = jY tanθ<br />

L ib<br />

Y + jY tanθ jY tanθ + jY tanθ<br />

Y = Y = Y<br />

θ θ<br />

L ia ib ia<br />

in2 ia<br />

Yia + jYL tan<br />

ia<br />

2<br />

Yia − Yib<br />

tan<br />

Y jα Y tanθ + jY tanθ<br />

= Y<br />

j tanθ Y α Y tan θ<br />

Y<br />

i i ia ia<br />

ia<br />

ia − i ia<br />

2<br />

ia<br />

− α tan θ = 0<br />

Y<br />

=<br />

2 ( α tan θ −1)<br />

i i<br />

2<br />

1 αi tan θ<br />

( + )<br />

i<br />

⎛ 2 2 2π<br />

λ ⎞<br />

0<br />

2 ⎛ π f ⎞ z<br />

= cot = cot = cot<br />

⎜ ⎟ ⎜ ⎟<br />

4 ⎟<br />

⎝ λg<br />

⎠Prof.<br />

T. L. ⎝ 2Wu<br />

f0<br />

⎠<br />

α θ


Stub Bandpass <strong>Filters</strong> without shorting via<br />

- Example<br />

Specifications for the λ g/2 stubs are the same as the ones using λ g/4 stubs . Choose the f zi = 1<br />

GHz.<br />

Using previous equations to find the required Y ia, Y ib and Y i, i+1<br />

fabricated on a substrate with a relative dielectric constant of 10.2 and a<br />

thickness of 0.635 mm.<br />

Stub Bandpass <strong>Filters</strong> without shorting via<br />

- Example<br />

Open-end effect<br />

0<br />

f 0/2<br />

f 0<br />

2f 0<br />

3f 0/2<br />

Prof. T. L. Wu<br />

Prof. T. L. Wu


HW III<br />

Please design a BPF based on Chebyshev prototype with following specifications using endcoupled<br />

and parallel-coupled half-wavelength resonators:<br />

1. Passband ripple < 0.1 dB<br />

2. Center frequency : 5 GHz<br />

3. FBW : 0.1<br />

4. Insertion loss > 20 dB at 4 GHz and 6 GHz.<br />

The properties of the substrate is ε r = 4.4 and loss tangent of 0. The substrate thickness is 1.6 mm.<br />

a. Please decide the order of the BPF and calculate the J-inverter values.<br />

b. Find out the required series capacitances for end-coupled resonator case and the even- and<br />

odd-mode characteristic impedances of the coupled-line for parallel-coupled resonator case.<br />

c. Plot the return loss and insertion loss for the designed BPF using HFSS and ADS.<br />

d. Considering the discontinuities in the two cases, and using HFSS and ADS again to compare<br />

the results with those in (c). Please also discuss the reasons for the discrepancy between them.<br />

e. Discuss the sizes and frequency responses using the two methods.<br />

HW IV<br />

Prof. T. L. Wu<br />

1. According to the specification on HW III, design a interdigital filter. Let Y 1 = 1/49.74 mho.<br />

a. Calculate the per unit length self- and mutual-capacitances.<br />

b. Obtain the required even- and odd-mode impedance.<br />

c. Using EM solver to find corresponding dimensions based on problem (b).<br />

d. Considering the discontinuities and using EM solver to plot the return loss and insertion<br />

loss.<br />

e. Discuss the sizes and frequency responses for the three methods. (interdigital filter, endcoupled,<br />

and parallel-coupled resonator)<br />

2. Please derive the Ys and turns ratio N for the equivalence of the short-circuted parallel<br />

coupled-line and a transformer with short-circuited stub in combline filter.<br />

θθθθ<br />

Y = υυυυ C<br />

a<br />

oe a<br />

a a<br />

Yoo −Yoe<br />

= υυυυ C<br />

2<br />

ab<br />

b<br />

θθθθ Yoe = υυυυ Cb<br />

θθθθ<br />

Prof. T. L. Wu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!