25.04.2013 Views

Faraday rotation

Faraday rotation

Faraday rotation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Energetic particles &<br />

magnetic fields in the<br />

large-scale structure<br />

Torsten Enßlin<br />

Max-Planck-Institut für Astrophysik<br />

collaborators:<br />

Christoph Pfrommer, Volker Springel, Martin Jubelgas, Corina Vogt,<br />

Gopal Krishna, Marcus Brüggen, Tracy Clarke, Phil Kronberg


Energetic particles &<br />

magnetic fields in the<br />

large-scale structure<br />

Torsten Enßlin<br />

Max-Planck-Institut für Astrophysik<br />

collaborators:<br />

Christoph Pfrommer, Volker Springel, Martin Jubelgas, Corina Vogt,<br />

Gopal Krishna, Marcus Brüggen, Tracy Clarke, Phil Kronberg


giant radio halo<br />

Coma cluster<br />

X-ray 1.4 GHz


giant radio halo


Energetic particles &<br />

magnetic fields in the<br />

large-scale structure<br />

Torsten Enßlin<br />

Max-Planck-Institut für Astrophysik<br />

collaborators:<br />

Christoph Pfrommer, Volker Springel, Martin Jubelgas, Corina Vogt,<br />

Gopal Krishna, Marcus Brüggen, Tracy Clarke


Mach numbers of dissipated energy<br />

Pfrommer, Springel, Enßlin, Jubelgas (2006)


Mach number statistics<br />

with reionisation without reionisation<br />

Pfrommer, Springel, Enßlin, Jubelgas (2006)


acceleration processes<br />

particles are accelerated via:<br />

● adiabatic compression<br />

● diffusive shock acceleration (Fermi I)<br />

● stochastic acceleration by plasma waves (Fermi II)<br />

● particle reactions (pp → π → ν μ → ν ν e)<br />

particles are de-accelerated via:<br />

● adiabatic expansion<br />

● radiative cooling (synchrotron, IC, bremsstrahlung,<br />

hadronic interactions)<br />

● non-radiative cooling (Coulomb losses)


acceleration processes<br />

particles are accelerated via:<br />

● adiabatic compression<br />

● diffusive shock acceleration (Fermi I)<br />

● stochastic acceleration by plasma waves (Fermi II)<br />

● particle reactions (pp → π → ν μ → ν ν e)<br />

particles are de-accelerated via:<br />

● adiabatic expansion<br />

● radiative cooling (synchrotron, IC, bremsstrahlung,<br />

hadronic interactions)<br />

● non-radiative cooling (Coulomb losses)


Electron spectrum<br />

adiabatic compression<br />

MeV GeV<br />

radio<br />

window<br />

2<br />

GHz=1 B G E 10 GeV


Electron spectrum<br />

adiabatic compression<br />

MeV GeV<br />

radio<br />

window<br />

2<br />

GHz=1 B G E 10 GeV


Electron spectrum<br />

adiabatic compression<br />

MeV GeV<br />

radio<br />

window<br />

2<br />

GHz=1 B G E 10 GeV


adiabatic compression<br />

reviving of radio emission works best if<br />

● strong shock wave available<br />

● not too old fossil relativistic electron population is present<br />

● plasma is highly compressible<br />

→ radio ghosts (fossil radio cocoons) in structure formation shock<br />

waves are ideal (Enßlin & Krishna 2001) since<br />

● fossil relativistic electron population is present<br />

● relativistic plasma has soft equation of state<br />

● relativistic plasma is so hot that shock compression is adiabatic


adiabatic compression<br />

A85: Lima Neto et al. Bagchi et al.


adiabatic compression<br />

A85: Enßlin & Krishna Bagchi et al.


adiabatic compression<br />

Enßlin & Brüggen 2002


adiabatic compression<br />

Enßlin & Brüggen 2002


A85:<br />

adiabatic compression


adiabatic compression<br />

Enßlin & Brüggen 2002


ingredients:<br />

diffusive shock acceleration<br />

● a collisionless shock wave<br />

● magnetic fields to confine energetic particles<br />

● plasma waves to scatter energetic particles → particle diffusion<br />

● supra-thermal particles<br />

recipe:<br />

● supra-thermal particles diffuse upstream across shock wave<br />

● each shock crossing energise particles (see adiabatic compr.)<br />

● momentum increases exponential with # of shock crossings<br />

● number of particles decreases exponential with # of crossings<br />

→ power law in momentum


diffusive shock acceleration<br />

thermal particles


diffusive shock acceleration<br />

thermal particles<br />

spectral index depends on Mach number<br />

weak shock<br />

strong shock


diffusive shock acceleration<br />

thermal particles<br />

spectral index depends on Mach number<br />

weak shock<br />

strong shock


diffusive shock acceleration<br />

thermal particles<br />

spectral index depends on Mach number<br />

weak shock<br />

relativistic regime<br />

strong shock


diffusive shock acceleration<br />

kinetic energy per log-momentum for thermal & power-law spectra<br />

of identical pressure


Mach numbers of dissipated energy<br />

total dissipation CR dissipation<br />

Pfrommer, Springel, Enßlin, Jubelgas (2006)


cosmic web<br />

gas density Pfrommer in prep.


cosmic web<br />

energy dissipation & Mach number Pfrommer in prep.


adio web<br />

1.4 GHz Pfrommer in prep.


adio web<br />

150 MHz Pfrommer in prep.


adio web<br />

15 MHz Pfrommer in prep.


slower magnetic decline<br />

radio web<br />

15 MHz Pfrommer in prep.


giant radio relics<br />

diffusive shock acceleration explains giant radio relics well<br />

Enßlin et al. (1998)<br />

Röttgering et al. (1998)<br />

A 3667 simulation<br />

Röttinger et al. (1999)


giant radio relics<br />

Clarke & Enßlin (2006)<br />

A 2256


giant radio relics<br />

Clarke & Enßlin (2006)<br />

A 2256


giant radio relics<br />

Clarke & Enßlin (2006)<br />

A 2256


giant radio relics<br />

Clarke & Enßlin (2006)<br />

A 2256


ingredients:<br />

stochastic acceleration<br />

● super-thermal or better relativistic particles<br />

● magnetic fields to confine them<br />

● high level of plasma waves to scatter them via gyro-resonances<br />

recipe:<br />

● head on wave-particle collision energises particle<br />

● tail on wave-particle collision de-energise particle<br />

● statistically more head-on than tail-on collisions<br />

→ net energy gain due to diffusion in momentum space<br />

advantage: plasma waves are everywhere


kinetic energy<br />

stochastic acceleration<br />

shock waves<br />

thermal particles<br />

turbulent<br />

cascade<br />

plasma<br />

waves<br />

cosmic<br />

rays<br />

wave-particle<br />

interaction


problems:<br />

stochastic acceleration<br />

● low efficiency (2 nd order in ratio of wave to particle velocity)<br />

● waves like to cascade to small scales<br />

● small-scale waves dissipate into the thermal pool<br />

● wave energy budget is usually tight<br />

● at locations with high wave density (e.g. shocks), more efficient<br />

acceleration mechanism may be in operation (e.g. DSA)<br />

nevertheless:<br />

cluster radio halos may be due to stochastic re-acceleration of<br />

0.2 MeV electrons (e.g. Brunetti et al.)


particle reactions<br />

relativistic proton populations can often be expected, since<br />

● acceleration mechanisms work for protons<br />

a) as efficient as for electrons (adiabatic compression) or<br />

b) more efficient than for electrons (DSA, stochastic acc.)<br />

● galactic CR protons are observed to have 100 times higher<br />

energy density than electrons<br />

● CR protons are very inert against radiative losses and therefore<br />

long-lived (~ Hubble time in galaxy clusters, longer outside)<br />

→ an energetic CR proton population should exist in clusters


particle reactions<br />

gadget-2 code<br />

Enßlin, Pfrommer, Springel, Jubelgas (2006)<br />

Jubelgas, Springel, Enßlin, Pfrommer (2006)


gadget-2 code


gadget-2 code<br />

Enßlin, Pfrommer, Springel, Jubelgas (2006)<br />

Jubelgas, Springel, Enßlin, Pfrommer (2006)<br />

Pfrommer, Springel, Enßlin, Jubelgas (2006)


particle reactions


hadronic radio halo<br />

150 MHz Pfrommer in prep.


hadronic radio halo<br />

X-ray Pfrommer in prep.


adio relics<br />

150 MHz Pfrommer in prep.


adio web: halos & relics<br />

150 MHz Pfrommer in prep.


adio web: halos & relics<br />

spectral index Pfrommer in prep.


summary: energetic particles<br />

particles are accelerated in the large-scale structure via:<br />

● adiabatic compression<br />

→ small radio relics from shock compressed radio ghosts<br />

● diffusive shock acceleration (Fermi I)<br />

→ giant radio relics from cluster merger shock waves<br />

● stochastic acceleration by plasma waves (Fermi II)<br />

→ radio halos from re-accelerated CR electrons ???<br />

● particle reactions (pp → π → ν μ → ν ν e)<br />

→ radio halos from hadronic interactions of CR protons ?


intergalactic magnetic fields<br />

magnetic fields<br />

● are an integral part of the ionized IGM<br />

● make the CR electrons visible via synchrotron radio emission<br />

● couple electrons, protons, CRs into a single fluid<br />

● participate in the hydrodynamical turbulent cascade<br />

● control transport processes of heat & CRs<br />

But how to measure magnetic field properties?


Hydra A cluster<br />

<strong>Faraday</strong> <strong>rotation</strong><br />

Taylor & Perley<br />

VLA/Chandra


<strong>Faraday</strong> <strong>rotation</strong>


<strong>Faraday</strong> <strong>rotation</strong>


<strong>Faraday</strong> <strong>rotation</strong><br />

Maximum likelihood power spectrum estimate using 3-d window,<br />

assuming statistical isotropy, div B = 0.<br />

Enßlin & Vogt (2003), Vogt & Enßlin (2005)


<strong>Faraday</strong> <strong>rotation</strong><br />

Maximum likelihood power spectrum estimate using 3-d window,<br />

assuming statistical isotropy, div B = 0.<br />

Enßlin & Vogt (2003), Vogt & Enßlin (2005)


<strong>Faraday</strong> <strong>rotation</strong><br />

Maximum likelihood power spectrum estimate using 3-d window,<br />

assuming statistical isotropy, div B = 0.<br />

Enßlin & Vogt (2003), Vogt & Enßlin (2005)


<strong>Faraday</strong> <strong>rotation</strong><br />

Hydrodynamical turbulence drives magnetic turbulence on smaller<br />

spatial scales, and with lower energy density.<br />

e.g. Subramanian (1999)


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong>


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong>


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong>


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong>


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong>


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong>


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong><br />

Hydro turbulence induced by buoyantly raising radio bubbles has<br />

the right strength & length-scale to drive observed magnetic<br />

turbulence (Enßlin & Vogt 2006)


cluster cool core<br />

<strong>Faraday</strong> <strong>rotation</strong><br />

Hydro turbulence induced by buoyantly raising radio bubbles has<br />

the right strength & length-scale to drive observed magnetic<br />

turbulence (Enßlin & Vogt 2006)


summary: magnetic fields<br />

intergalactic magnetic fields<br />

● are detectable via radio synchrotron emission of CRe<br />

● can be studied in detail via <strong>Faraday</strong> <strong>rotation</strong><br />

● exhibit Kolmogorov-like spectra (Hydra cluster)<br />

● are likely maintained by fluid turbulence


outlook<br />

the planned sensitive, high resolution, low frequency radio<br />

telescopes will widely open the window into the world of high<br />

energy particles and magnetic fields in the large scale structure<br />

● LOFAR: Low Frequency Array<br />

● LWA: Long Wavelength Array<br />

● eVLA: extended Very Large Array<br />

● SKA: Square Kilometer Array


thank you<br />

today, we visit the radio zoo,<br />

tomorrow, we explore the jungle!<br />

Clarke & Enßlin 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!