25.04.2013 Views

Types of Androecium in the Fabaceae of SW ... - Annals of Botany

Types of Androecium in the Fabaceae of SW ... - Annals of Botany

Types of Androecium in the Fabaceae of SW ... - Annals of Botany

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Annals</strong> <strong>of</strong> <strong>Botany</strong> 83: 109–116, 1999<br />

Article No. anbo.1998.0808, available onl<strong>in</strong>e at http:www.idealibrary.com on<br />

<strong>Types</strong> <strong>of</strong> <strong>Androecium</strong> <strong>in</strong> <strong>the</strong> <strong>Fabaceae</strong> <strong>of</strong> <strong>SW</strong> Europe<br />

T. RODRI GUEZ-RIAN O, A. ORTEGA-OLIVENCIA* and J. A. DEVESA<br />

Departamento de Biologıa y Produccio n Vegetal, Facultad de Ciencias, Uniersidad de Extremadura,<br />

06071-Badajoz, Spa<strong>in</strong><br />

Received: 28 April 1998 Returned for revision: 29 July 1998 Accepted: 3 October 1998<br />

We studied <strong>the</strong> morphology <strong>of</strong> <strong>the</strong> androecium <strong>in</strong> 168 species and subspecies <strong>of</strong> <strong>Fabaceae</strong> from <strong>SW</strong> Europe and its<br />

relationship with nectar production. Six androecium types were recognized: monadelphous; pseudomonadelphous<br />

without basal fenestration; pseudomonadelphous with basal fenestration; diadelphous; reduced diadelphous; and<br />

androecium with free stamens. The monadelphous androecium appears <strong>in</strong> <strong>the</strong> tribe Genisteae, <strong>in</strong> Ononis, and <strong>in</strong><br />

Galega <strong>of</strong>fic<strong>in</strong>alis, and <strong>the</strong> pseudomonadelphous without basal fenestration only <strong>in</strong> <strong>the</strong> genus Coronilla, with both<br />

types hav<strong>in</strong>g <strong>the</strong> same functionality—<strong>the</strong>y are l<strong>in</strong>ked to <strong>the</strong> absence <strong>of</strong> nectar from an <strong>in</strong>trastam<strong>in</strong>al nectary, <strong>the</strong>ir taxa<br />

be<strong>in</strong>g mostly poll<strong>in</strong>iferous. The pseudomonadelphous androecium with basal fenestration appears <strong>in</strong> around 38% <strong>of</strong><br />

<strong>the</strong> taxa studied and has <strong>the</strong> same functionality as <strong>the</strong> diadelphous androecium: <strong>the</strong>re is nectar secretion from an<br />

<strong>in</strong>trastam<strong>in</strong>al nectary <strong>in</strong> both. The reduced diadelphous androecium only appears <strong>in</strong> three species (Biserrula pelec<strong>in</strong>us,<br />

Vicia pubescens and Astragalus epiglottis), and its functionality could be related to <strong>the</strong> syndrome accompany<strong>in</strong>g<br />

autogamy <strong>in</strong> Angiosperms. The free stamen androecium may imply a greater nectar production than o<strong>the</strong>r types.<br />

1999 <strong>Annals</strong> <strong>of</strong> <strong>Botany</strong> Company<br />

Key words: <strong>Fabaceae</strong>, Legum<strong>in</strong>osae, androecium, nectar, floral biology.<br />

INTRODUCTION<br />

monocarpellate (multicarpellate flowers are frequent <strong>in</strong><br />

Swartzia; Tucker, 1987), and it matures <strong>in</strong>to a legume<br />

The family <strong>Fabaceae</strong> s. str. <strong>in</strong>cludes some 440 genera and whose morphological variability is <strong>of</strong> great taxonomic<br />

approx. 12000 species. It has centres <strong>of</strong> diversification <strong>in</strong> importance.<br />

Central Brazil, Mexico, East Africa, Madagascar and <strong>the</strong> There is a frequent tendency <strong>in</strong> <strong>the</strong> flowers <strong>of</strong> this family<br />

Indomalaysian region, and it has a notable representation <strong>in</strong> towards <strong>the</strong> fusion <strong>of</strong> organs, especially <strong>in</strong> <strong>the</strong> androecium,<br />

<strong>the</strong> Mediterranean region, <strong>the</strong> Cape region <strong>of</strong> South Africa whose stamens are free <strong>in</strong> <strong>the</strong>ir early stages. Thus, while <strong>in</strong><br />

and Australia (Polhill, 1981). In Europe this family presents tribes such as Swartzieae, Sophoreae and Thermopsideae<br />

some 980 species and subspecies (see Heywood and Ball, <strong>the</strong> stamens are free at <strong>the</strong> end <strong>of</strong> <strong>the</strong>ir development,<br />

1968) and approx. 2000 <strong>in</strong> <strong>the</strong> Mediterranean region (see normally <strong>the</strong> filaments jo<strong>in</strong> form<strong>in</strong>g a tube <strong>of</strong> ten stamens<br />

Greuter, Burdet and Long, 1989). Legume species have a (monadelphy) or a boat-shaped structure <strong>of</strong> n<strong>in</strong>e stamens<br />

great economic importance s<strong>in</strong>ce many <strong>of</strong> <strong>the</strong>m are nitrogen with <strong>the</strong> tenth free (diadelphy). This fusion takes place by<br />

fixers, act <strong>in</strong> soil conservation, are used for <strong>the</strong> production way <strong>of</strong> a zonal or <strong>in</strong>tercalary growth underneath <strong>the</strong> bases<br />

<strong>of</strong> timber, fuel, pesticides, forage, gums, colorants, carbo- <strong>of</strong> <strong>the</strong> n<strong>in</strong>e or ten stamens (Tucker, 1987; 1989). However,<br />

hydrates, prote<strong>in</strong>s and oils (Polhill, Raven and Stirton, pseudomonadelphy is also known and <strong>in</strong> this case <strong>the</strong><br />

1981), and <strong>the</strong>re are also many with ornamental andor androecium is diadelphous almost to <strong>the</strong> end <strong>of</strong> deve-<br />

apicultural importance.<br />

lopment, at which time <strong>the</strong> tenth filament attaches itself to<br />

The flowers <strong>of</strong> <strong>Fabaceae</strong> are hermaphrodite, moderately <strong>the</strong> adjacent filaments generally by surface fusion at <strong>the</strong><br />

or markedly zygomorphic and pentamerous, with each marg<strong>in</strong>s, while leav<strong>in</strong>g a pair <strong>of</strong> orifices or w<strong>in</strong>dows <strong>in</strong> <strong>the</strong><br />

floral whorl alternat<strong>in</strong>g radially with those <strong>of</strong> <strong>the</strong> adjacent base (Tucker, 1989).<br />

whorls (Tucker, 1987). The calyx is mostly gamosepalous, Pseudomonadelphy was found by Tucker (1989) <strong>in</strong> 54<br />

with a clear tendency towards zygomorphy, a character genera <strong>of</strong> n<strong>in</strong>e tribes (e.g. Rob<strong>in</strong>ia, Psoralea, Onobrychis,<br />

which is regarded as be<strong>in</strong>g specialized (Tucker, 1987). The Lathyrus, Pisum, Vicia, Trifolium, Trigonella). She regarded<br />

corolla is dialypetalous and mostly zygomorphic (papi- it as deriv<strong>in</strong>g from diadelphy, and she thought it had arisen<br />

lionoid corolla), and consists <strong>of</strong> a median petal or standard, <strong>in</strong> parallel <strong>in</strong> <strong>the</strong> n<strong>in</strong>e tribes. In most genera all species are<br />

two w<strong>in</strong>gs or lateral petals, and two basal pieces form<strong>in</strong>g <strong>the</strong> monadelphous or pseudomonadelphus except <strong>in</strong> Aeschy-<br />

keel. The androecium consists <strong>of</strong> two whorls with alternat<strong>in</strong>g nomene, Desmodium and Erythr<strong>in</strong>a, where <strong>the</strong>re is also<br />

stamens, although <strong>the</strong>re may at times be a greater number diadelphy. On <strong>the</strong> o<strong>the</strong>r hand, diadelphy and pseudo-<br />

(e.g. Cyathostegia). Some taxa have dimorphic stamens monadelphy do appear <strong>in</strong> <strong>the</strong> same genus (Tucker, 1989). In<br />

(e.g. Genista, Ononis, Psoraleae), with <strong>the</strong> two whorls <strong>the</strong> case <strong>of</strong> Psoralea p<strong>in</strong>nata, a type <strong>of</strong> pseudomonadelphy<br />

differ<strong>in</strong>g <strong>in</strong> size, form, union <strong>of</strong> <strong>the</strong>ir filaments, dilatation appears which comes from an <strong>in</strong>itially diadelphous an-<br />

and period <strong>of</strong> dehiscence. The gynoecium is mostly droecium that develops a zonal growth underneath <strong>the</strong> ten<br />

stamens, and is recognized by <strong>the</strong> lack <strong>of</strong> basal orifices<br />

* For correspondence. Fax 34 924 289423, e-mail aortegaunex.es (Tucker, 1987: 223).<br />

0305-73649902010908 $30.000 1999 <strong>Annals</strong> <strong>of</strong> <strong>Botany</strong> Company


110 Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong><br />

Table 1. <strong>Types</strong> <strong>of</strong> androecium and presence () or absence () <strong>of</strong> nectar <strong>in</strong> <strong>the</strong> <strong>Fabaceae</strong> taxa studied<br />

Taxa Nectar <strong>Androecium</strong> Taxa Nectar <strong>Androecium</strong><br />

Tribe Vicieae<br />

Vicia L.<br />

V. benghalensis L. Pm()S<br />

V. cracca subsp. tenuifolia (Roth) Pm()S<br />

Gaud<strong>in</strong><br />

V. disperma DC. Pm()S<br />

V. hirsuta (L.) S. F. Gray Pm()S<br />

V. lutea L. subsp. lutea Pm()S<br />

V. lutea subsp. estita (Boiss.) Rouy Pm()S<br />

V. pariflora Cav. Pm()S<br />

V. peregr<strong>in</strong>a L. Pm()S<br />

V. pubescens (DC.) L<strong>in</strong>k* Dr<br />

V. satia subsp. nigra (L.) Ehrh Pm()S<br />

V. satia L. subsp. satia Pm()S<br />

V. icioides (Desf.) Cout<strong>in</strong>ho<br />

V. illosa subsp. eriocarpa (Hausskn.)<br />

P. W. Ball<br />

Pm()S<br />

V. illosa subsp. aria (Host) Corb.<br />

Lathyrus L.<br />

Pm()S<br />

L. angulatus L. Pm()S<br />

L. annuus L. Pm()S<br />

L. aphaca L. Pm()S<br />

L. cicera L. Pm()S<br />

L. clymenum L. Pm()S<br />

L. hirsutus L. Pm()S<br />

L. latifolius L. Pm()S<br />

L. l<strong>in</strong>ifolius (Reichard) Ba sler Pm()S<br />

L. niger (L.) Bernh Pm()S<br />

L. sphaericus L.* Pm()S<br />

L. t<strong>in</strong>gitanus L.<br />

Pisum L.<br />

Pm()S<br />

P. satium subsp. elatius (Bieb.)<br />

Ascherlon Graebner<br />

Tribe Loteae<br />

Lotus L.<br />

Pm()S<br />

L. angustissimus L. D<br />

L. conimbricensis Brot. D<br />

L. corniculatus L. D<br />

L. glareosus Boiss. & Reuter D<br />

L. pedunculatus Cav. D<br />

L. subbiflorus subsp. castellanus<br />

(Boiss. & Reuter) P. W. Ball<br />

D<br />

L. subbiflorus Lag. subsp. subbiflorus D<br />

L. ulig<strong>in</strong>osus Schkuhr<br />

Dorycnium Miller<br />

D<br />

D. pentaphyllum Scop. D<br />

D. rectum (L.) Ser.<br />

Anthyllis L.<br />

D-Pm()S<br />

A. cytisoides L. Pm()S<br />

A. ulneraria subsp. maura (Beck.) Maire<br />

Dorycnopsis Boiss.<br />

Pm()S<br />

D. gerardii (L.) Boiss.*<br />

Hymenocarpos Savi<br />

Pm()S<br />

H. cornic<strong>in</strong>a (L.) Lassen* Pm()S<br />

H. hamosus (Desf.) Lassen Pm()S<br />

H. hispanicus Lassen<br />

Tripodion Medik.<br />

Pm()S<br />

T. tetraphyllum (L.) Fourr.<br />

Tribe Hedysareae<br />

Hedysarum L.<br />

D<br />

H. coronarium L.<br />

Onobrychis Miller<br />

D<br />

O. humilis (Loefl.) G. Lo pez D<br />

O. iciifolia Scop.<br />

Ornithopus L.<br />

D<br />

O. compressus L. D<br />

O. perspusillus L.* D<br />

O. p<strong>in</strong>natus (Miller) Druce D<br />

O. satius L.<br />

Coronilla L.<br />

D<br />

C. juncea L. Pm()<br />

C. repanda subsp. dura (Cav.) Cout<strong>in</strong>ho Pm()<br />

C. scorpioides (L.) Koch Pm()<br />

C. alent<strong>in</strong>a subsp. glauca (L.) Batt.<br />

Hippocrepis L.<br />

Pm()<br />

H. ciliata Willd. D<br />

H. scabra DC.<br />

Scorpiurus L.<br />

D<br />

S. muricatus L. D<br />

S. ermiculatus L.<br />

Tribe Trifolieae<br />

Trifolium L.<br />

D<br />

T. angustifolium L. Pm()F<br />

T. arense L. D<br />

T. bocconei Savi wd Pm()F<br />

T. campestre Schreber* Pm()F<br />

T. cernuum Brot. D<br />

T. cherleri L. D<br />

T. dubium Sibth. Pm()F<br />

T. fragiferum L.* Pm()F<br />

T. gemellum Pourr. ex Willd. D<br />

T. glomeratum L. D<br />

T. isthmocarpum Brot. D<br />

T. lappaceum L.* Pm()F<br />

T. ligusticum L. wd Pm()F<br />

T. mutabile Portensch.* Pm()F<br />

T. ochroleucon Hudson Pm()F<br />

T. pratense L. Pm()F<br />

T. repens L. D<br />

T. resup<strong>in</strong>atum L. D<br />

T. scabrum L. Pm()F<br />

T. spumosum L. D<br />

T. squamosum L.* D<br />

T. stellatum L. Pm()F<br />

T. striatum L.* D<br />

T. strictum L. wd Pm()F<br />

T. subterraneum subsp. brachycalyc<strong>in</strong>um<br />

Katznelson & Morley<br />

Pm()F<br />

T. suffocatum L.* D<br />

T. tomentosum L.*<br />

Medicago L.<br />

D<br />

M. arabica (L.) Hudson* Pm()F<br />

M. coronata (L.) Bartal.* Pm()F<br />

M. doliata Carm<strong>in</strong>g. subsp. doliata Pm()F<br />

M. doliata subsp. muricata<br />

(Bentham) Heyn<br />

Pm()F<br />

M. littoralis Loisel. Pm()F<br />

M. lupul<strong>in</strong>a L.* Pm()F<br />

M. m<strong>in</strong>ima var. recta (Desf.) Burnat Pm()F<br />

M. orbicularis (L.) Bartal. Pm()F<br />

M. polymorpha L. Pm()F<br />

M. rigidula (L.) All. Pm()F<br />

M. satia L. Pm()F<br />

M. tornata (L.) Miller Pm()F<br />

M. truncatula Gaertner<br />

Trigonella L.<br />

Pm()F<br />

T. monspeliaca L. D<br />

T. polyceratia L.*<br />

Melilotus Miller<br />

D<br />

M. albus Medik. D<br />

M. elegans Salzm. ex Ser. D<br />

M. <strong>in</strong>dicus (L.) All. D<br />

M. sulcatus Desf.* D


Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong> 111<br />

Table 1. (cont.)<br />

Taxa Nectar <strong>Androecium</strong> Taxa Nectar <strong>Androecium</strong><br />

Ononis L.<br />

O. biflora Desf. M<br />

O. broterana DC. M<br />

O. c<strong>in</strong>trana Brot. M<br />

O. diffusa Ten. M<br />

O. laxiflora Desf. M<br />

O. natrix L.<br />

O. pendula subsp. boissieri (S irj.) Devesa<br />

<br />

<br />

M<br />

M<br />

O. p<strong>in</strong>nata Brot. M<br />

O. pubescens L. M<br />

O. recl<strong>in</strong>ata subsp. mollis (Savi) Be gu<strong>in</strong>ot M<br />

O. recl<strong>in</strong>ata L. subsp. recl<strong>in</strong>ata M<br />

O. sp<strong>in</strong>osa subsp. australis<br />

(S irj.) Greauter & Burdet<br />

M<br />

O. iscosa subsp. brachycarpa (DC.) M<br />

Batt.<br />

O. iscosa subsp. crotalarioides<br />

(Cosson) S irj.<br />

Tribe Genisteae<br />

Genista L.<br />

M<br />

G. anglica L. M<br />

G. c<strong>in</strong>erascens Lange M<br />

G. falcata Brot. M<br />

G. florida L. M<br />

G. hirsuta Vahl M<br />

G. polyanthos subsp. hystrix (Lange) M<br />

Franco<br />

G. tournefortii Spach M<br />

G. triacanthos Brot. M<br />

G. tridentata L. M<br />

G. umbellata (L’He r.) Poiret<br />

Retama Raf<strong>in</strong>.<br />

M<br />

R. monosperma (L.) Boiss. wd M<br />

R. sphaerocarpa (L.) Boiss.<br />

Spartium L.<br />

M<br />

S. junceum L.<br />

Ech<strong>in</strong>ospartum (Spach) Rothm.<br />

M<br />

E. barnadesii subsp. dorsisericeum M<br />

G. Lo pez<br />

Ulex L.<br />

U. eriocladus C. Vicioso M<br />

U. m<strong>in</strong>or Roth<br />

Cytisus L.<br />

M<br />

C. arboreus subsp. baeticus (Webb) M<br />

Maire<br />

C. balansae subsp. europaeus M<br />

(G. Lo pez & Jarvis) Mun oz Garmendia<br />

C. grandiflorus (Brot.) DC. M<br />

C. multiflorus (L’He r) Sweet M<br />

C. scoparius (L.) L<strong>in</strong>k M<br />

C. striatus (Hill) Rothm. M<br />

M, Monadelphous androecium; Pm(), pseudomonadelphous without basal fenestration; Pm() S, pseudomonadelphous with basal<br />

fenestration (stamen A1 superposed); Pm()F, pseudomonadelphous with basal fenestration (stamen A1 fused); D, diadelphous; Dr, reduced<br />

diadelphous; F, free.<br />

* Potentially nectariferous taxa; wd, without data.<br />

Whatever <strong>the</strong> type <strong>of</strong> androecium, <strong>the</strong> fusion <strong>of</strong> <strong>the</strong><br />

stamens <strong>in</strong> this family confers an important adaptive<br />

advantage (Polhill et al., 1981) by form<strong>in</strong>g <strong>the</strong> stam<strong>in</strong>al<br />

column and limit<strong>in</strong>g <strong>the</strong> range <strong>of</strong> poll<strong>in</strong>ators that can work<br />

<strong>the</strong> flower. Many <strong>in</strong>stances <strong>of</strong> fusion are specifically<br />

associated with poll<strong>in</strong>ation mechanisms, probably as <strong>the</strong><br />

result <strong>of</strong> coevolution, although it is not known whe<strong>the</strong>r <strong>the</strong>y<br />

are correlated (Tucker, 1987).<br />

Adenocarpus DC.<br />

A. complicatus subsp. anisochilus<br />

(Boiss.) Franco<br />

M<br />

A. complicatus (L.) Gay subsp.<br />

M<br />

complicatus<br />

A. hispanicus subsp. argyrophyllus<br />

Rivas Goday<br />

M<br />

A. hispanicus subsp. gredensis<br />

Rivas Martınez & Belmonte<br />

M<br />

A. telonensis Loisel.<br />

Argyrolobium Ecklon & Zeyher<br />

M<br />

A. zanonii (Turra) P. W. Ball<br />

Lup<strong>in</strong>us L.<br />

M<br />

L. albus L. M<br />

L. angustifolius L. M<br />

L. hispanicus subsp. bicolor Mer<strong>in</strong>o M<br />

L. hispanicus Boiss. & Reuter<br />

subsp. hispanicus<br />

M<br />

L. luteus L. M<br />

L. micranthus Guss.<br />

Tribe Galegeae<br />

Galega L.<br />

M<br />

G. <strong>of</strong>fic<strong>in</strong>alis L.<br />

Biserrula L.<br />

M<br />

B. pelec<strong>in</strong>us L.*<br />

Colutea L.<br />

Dr<br />

C. atlantica Browicz<br />

Astragalus L.<br />

D<br />

A. cymbicarpos Brot. D<br />

A. ech<strong>in</strong>atus Murray D<br />

A. epiglottis L. subsp. epiglottis* Dr<br />

A. glaux L. D<br />

A. glyciphyllos L. D<br />

A. hamosus L.* D<br />

A. lusitanicus Lam. D<br />

A. nitidiflorus Jime nez & Pau D<br />

A. stella Gouan*<br />

Tribe Psoraleae<br />

Cullen Medik.<br />

D<br />

C. americanum (L.) Rydb.<br />

Bitum<strong>in</strong>aria Fabr.<br />

Pm()F<br />

B. bitum<strong>in</strong>osa (L.) Stirton<br />

Tribe Thermopsideae<br />

Anagyris L.<br />

Pm()F<br />

A. foetida L.<br />

Tribe Rob<strong>in</strong>ieae<br />

Rob<strong>in</strong>ia L.<br />

F<br />

R. pseudacacia L. Pm()F<br />

Also <strong>of</strong> <strong>in</strong>terest <strong>in</strong> flower biology is <strong>the</strong> type <strong>of</strong> reward<br />

<strong>of</strong>fered to pollen vectors. Many members <strong>of</strong> this family <strong>of</strong>fer<br />

nectar which is secreted <strong>in</strong> <strong>the</strong> <strong>in</strong>nermost parts <strong>of</strong> <strong>the</strong> base <strong>of</strong><br />

<strong>the</strong> stam<strong>in</strong>al filaments and accumulates <strong>in</strong> <strong>the</strong> space created<br />

between <strong>the</strong> stamens and <strong>the</strong> pistil (Bonnier, 1879; Mu ller,<br />

1883). Access to <strong>the</strong> nectar is by way <strong>of</strong> <strong>the</strong> space created by<br />

one <strong>of</strong> <strong>the</strong> ten stamens which orig<strong>in</strong>ates two entrances at its<br />

base, so that <strong>in</strong> pr<strong>in</strong>ciple one might th<strong>in</strong>k that only species


112 Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong><br />

A2<br />

B3<br />

B1<br />

A4<br />

A1<br />

B5<br />

Fig. 1. Floral diagram <strong>of</strong> a diadelphous androecium. The large ovals<br />

represent <strong>the</strong> outer whorl (stamens B1-B5) and <strong>the</strong> small ovals <strong>the</strong> <strong>in</strong>ner<br />

whorl (A1-A5). A1, Vexillary stamen.<br />

with a diadelphous androecium would be nectariferous. But<br />

this is not always so. Although <strong>the</strong>re are not many studies<br />

<strong>of</strong> <strong>the</strong> <strong>Fabaceae</strong> nectaries, those analysed to date are<br />

discoidal ( annular), appear<strong>in</strong>g around <strong>the</strong> base <strong>of</strong> <strong>the</strong><br />

carpel, usually associated with <strong>the</strong> stam<strong>in</strong>al tube, <strong>in</strong> most<br />

cases possess<strong>in</strong>g stomata and <strong>in</strong>terpreted as an excrescence<br />

<strong>of</strong> <strong>the</strong> receptacle ra<strong>the</strong>r than as a reduced additional<br />

stam<strong>in</strong>al whorl (Bonnier, 1879; Waddle and Lersten, 1973;<br />

Teuber et al., 1980). In content, <strong>the</strong> nectar <strong>of</strong> most legumes<br />

is sucrose-rich (Furgala, Gochnauer and Holdaway, 1958;<br />

Southwick, Loper and Sadwick, 1981) and <strong>the</strong>refore very<br />

much appreciated by honeybees and bumblebees. These<br />

are <strong>the</strong> commonest poll<strong>in</strong>ators, which also visit nonnectariferous<br />

species, attracted by <strong>the</strong> high prote<strong>in</strong> quality<br />

<strong>of</strong> <strong>the</strong>ir pollen (Leppik, 1966; Day et al., 1990).<br />

The pr<strong>in</strong>cipal objectives <strong>of</strong> <strong>the</strong> present work were: (1) to<br />

study <strong>the</strong> degree <strong>of</strong> fusion <strong>of</strong> <strong>the</strong> stam<strong>in</strong>al filaments <strong>in</strong> <strong>the</strong><br />

<strong>Fabaceae</strong> <strong>of</strong> <strong>SW</strong> Europe; and (2) to <strong>in</strong>vestigate whe<strong>the</strong>r<br />

<strong>the</strong>re is a functional relationship between <strong>the</strong> type <strong>of</strong><br />

androecium and nectar production. The authority for each<br />

species or subspecies studied is listed <strong>in</strong> Table 1.<br />

MATERIALS AND METHODS<br />

A total <strong>of</strong> 168 taxa (158 species and ten subspecies) were<br />

collected <strong>in</strong> 428 natural populations, analys<strong>in</strong>g a m<strong>in</strong>imum<br />

<strong>of</strong> three populations per taxon (except <strong>in</strong> a few cases where<br />

only one or two populations were available) and some ten<br />

flowers per population. The study area is located <strong>in</strong> <strong>SW</strong><br />

Spa<strong>in</strong> (region <strong>of</strong> Extremadura), bounded by <strong>the</strong> Sistema<br />

A5<br />

B2<br />

A3<br />

B4<br />

Central to <strong>the</strong> north (maximum altitude 2401 m) and <strong>the</strong><br />

Sierra Morena (maximum altitude 1104 m) to <strong>the</strong> south,<br />

with a broad penepla<strong>in</strong> between <strong>the</strong>m with scattered ranges<br />

<strong>of</strong> hills. This extensive region is crossed by two <strong>of</strong> <strong>the</strong> most<br />

important rivers <strong>in</strong> Spa<strong>in</strong>, <strong>the</strong> Tagus and <strong>the</strong> Guadiana. The<br />

climate is Mediterranean, be<strong>in</strong>g markedly seasonal. The<br />

vegetation consists <strong>of</strong> woodland formations <strong>of</strong> holm oak<br />

(Quercus ilex subsp. ballota Q. rotundifolia), cork oak (Q.<br />

suber) and deciduous oak (Q. pyrenaica), and above all <strong>of</strong><br />

dehesas <strong>of</strong> <strong>the</strong>se same species—<strong>the</strong>se are graz<strong>in</strong>gcropland<br />

systems ma<strong>in</strong>ta<strong>in</strong>ed traditionally throughout <strong>the</strong> west <strong>of</strong> <strong>the</strong><br />

Iberian Pen<strong>in</strong>sula. There is an abundance <strong>of</strong> riparian<br />

woodland, and extensive scrublands with many species,<br />

foremost be<strong>in</strong>g <strong>the</strong> <strong>Fabaceae</strong> shrubs <strong>of</strong> <strong>the</strong> tribe Genisteae.<br />

There are also large areas <strong>of</strong> basophile or acidophile<br />

pastures, with a major component <strong>of</strong> <strong>the</strong>ir floristic composition<br />

be<strong>in</strong>g <strong>Fabaceae</strong> herbs (Devesa, 1995).<br />

The study was performed on flowers and flower buds<br />

preserved <strong>in</strong> 70% alcohol. For each population, flower buds<br />

<strong>of</strong> different ages and an<strong>the</strong>sic flowers were dissected under<br />

a stereomicroscope, and <strong>the</strong> perianth parts elim<strong>in</strong>ated. The<br />

morphology <strong>of</strong> <strong>the</strong> androecium was <strong>the</strong>n observed, not<strong>in</strong>g<br />

<strong>the</strong> type <strong>of</strong> fusion <strong>of</strong> <strong>the</strong> stam<strong>in</strong>al filaments and whe<strong>the</strong>r or<br />

not basal fenestration was present. It was also studied on<br />

dry material deposited <strong>in</strong> <strong>the</strong> UNEX herbarium, but <strong>in</strong> this<br />

case <strong>the</strong> pseudomonadelphous condition was more difficult<br />

to dist<strong>in</strong>guish, which might expla<strong>in</strong> its lack <strong>of</strong> recognition <strong>in</strong><br />

taxonomic descriptions. Throughout <strong>the</strong> rema<strong>in</strong>der <strong>of</strong> <strong>the</strong><br />

text, A1 will refer to <strong>the</strong> vexillary stamen (Fig. 1). In<br />

previous studies (Ortega-Olivencia et al., 1997; Lo pez et al.,<br />

1998; Rodrıguez-Rian o, Ortega-Olivencia and Devesa,<br />

1999) on <strong>the</strong>se same populations and species, nectar<br />

production was quantified; those results are considered here<br />

<strong>in</strong> relation to <strong>the</strong> type <strong>of</strong> androecium.<br />

The taxa sampled belong to eight native tribes <strong>in</strong> <strong>the</strong><br />

territory (n<strong>in</strong>e if Rob<strong>in</strong>ia pseudacacia is <strong>in</strong>cluded). This latter<br />

is a foreign element which is very frequent <strong>in</strong> urban and<br />

rural landscapes as it has acclimatized to <strong>the</strong> environmental<br />

conditions <strong>of</strong> this territory. Relative to <strong>the</strong> flora <strong>of</strong> Europe,<br />

our sample represents around 17% <strong>of</strong> <strong>the</strong> species (and<br />

subspecies) and 563% <strong>of</strong> <strong>the</strong> tribes. The taxonomic criterion<br />

followed at <strong>the</strong> tribe level is that <strong>of</strong> Domınguez (1987).<br />

Statistical analysis<br />

As it was not possible to normalize <strong>the</strong> data correspond<strong>in</strong>g<br />

to <strong>the</strong> production <strong>of</strong> nectar <strong>in</strong> groups with different types <strong>of</strong><br />

androecium, non-parametric tests were used (Sokal and<br />

Rohlf, 1979).<br />

RESULTS<br />

The follow<strong>in</strong>g types <strong>of</strong> androecium were dist<strong>in</strong>guished <strong>in</strong> <strong>the</strong><br />

study sample accord<strong>in</strong>g to <strong>the</strong> degree <strong>of</strong> fusion <strong>of</strong> <strong>the</strong><br />

filaments: (a) monadelphous (Fig. 2A). It is present <strong>in</strong> <strong>the</strong><br />

tribe Genisteae, <strong>the</strong> genus Ononis, and Galega <strong>of</strong>fic<strong>in</strong>alis;(b)<br />

pseudomonadelphous, without basal fenestration: with n<strong>in</strong>e<br />

fused stamens and one free stamen (A1) cover<strong>in</strong>g <strong>the</strong> gap<br />

left by <strong>the</strong> union <strong>of</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong> filaments, but with no


Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong> 113<br />

Fig. 2. <strong>Types</strong> <strong>of</strong> androecium: A, monadelphous (Cytisus grandiflorus); B, unfenestrated pseudomonadelphous (Coronilla alent<strong>in</strong>a subsp. glauca);<br />

C, basally fenestrated pseudomonadelphous (Vicia benghalensis); D, diadelphous (Astragalus lusitanicus); E, reduced diadelphous (Biserrula<br />

pelec<strong>in</strong>us); F, free (Anagyris foetida). Bars 1 mm except B and E where bar 05 mm.<br />

formation <strong>of</strong> fenestration at <strong>the</strong> base (Fig. 2B). This appears<br />

only <strong>in</strong> <strong>the</strong> genus Coronilla; (c) pseudomonadelphous, with<br />

basal fenestration: as <strong>the</strong> preced<strong>in</strong>g case, but with <strong>the</strong> free<br />

stamen (A1) present<strong>in</strong>g a curvature at its base permitt<strong>in</strong>g<br />

<strong>the</strong> formation <strong>of</strong> two basal orifices (Fig. 2C). The coupl<strong>in</strong>g<br />

<strong>of</strong> this stamen to <strong>the</strong> stam<strong>in</strong>al tube varies from a simple<br />

superposition (e.g. Lathyrus) to a complete fusion along <strong>the</strong><br />

length <strong>of</strong> <strong>the</strong> tube (e.g. Medicago) except at <strong>the</strong> basal part. It<br />

is also represented <strong>in</strong> Vicia (except V. pubescens), Pisum,<br />

some species <strong>of</strong> Trifolium, Rob<strong>in</strong>ia, Dorycnopsis, Dorycnium<br />

rectum, Anthyllis, Hymenocarpos, Cullen and Bitum<strong>in</strong>aria;<br />

(d) diadelphous (Fig. 2D). It appears <strong>in</strong> some species <strong>of</strong><br />

Trifolium, Melilotus, Trigonella, Astragalus (except A.<br />

epiglottis subsp. epiglottis), Hedysarum, Hippocrepis, Onob-<br />

rychis (at times <strong>the</strong> free stamen is fused to <strong>the</strong> rest),<br />

Ornithopus, Scorpiurus, Lotus, Tripodion, Dorycnium pentaphyllum<br />

and one population <strong>of</strong> D. rectum, and Colutea<br />

atlantica; (e) reduced diadelphous: similar to <strong>the</strong> previous<br />

case but with <strong>the</strong> disappearance <strong>of</strong> all <strong>the</strong> an<strong>the</strong>rs <strong>of</strong> <strong>the</strong><br />

lower whorl with only vestiges persist<strong>in</strong>g <strong>in</strong> which it is at<br />

times possible to observe occasional pollen gra<strong>in</strong>s (Fig. 2E).<br />

This type is presented by Biserrula pelec<strong>in</strong>us, Vicia pubescens<br />

and Astragalus epiglottis; (f ) free: all <strong>the</strong> stamens rema<strong>in</strong><br />

free (Fig. 2F). It only appears <strong>in</strong> Anagyris foetida.<br />

The type <strong>of</strong> androecium <strong>of</strong> each taxon is listed <strong>in</strong> Table 1,<br />

toge<strong>the</strong>r with an <strong>in</strong>dication <strong>of</strong> whe<strong>the</strong>r it is nectariferous or<br />

not. The nectar is secreted by an annular nectary which is<br />

most <strong>of</strong>ten <strong>in</strong>trastam<strong>in</strong>al, i.e. situated between <strong>the</strong> andro-


114 Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong><br />

ecium and <strong>the</strong> gynoecium, and whose presence or absence <strong>in</strong><br />

this case is closely associated with <strong>the</strong> type <strong>of</strong> androecium<br />

possessed by <strong>the</strong> taxa.<br />

Taxa with a monadelphous or pseudomonadelphous type<br />

<strong>of</strong> androecium without basal fenestration do not produce<br />

nectar s<strong>in</strong>ce <strong>the</strong>y have no <strong>in</strong>trastam<strong>in</strong>al nectary, except for<br />

Retama sphaerocarpa <strong>in</strong> which nectar is produced by an<br />

extrastam<strong>in</strong>al nectary (Lo pez et al., 1998). The rema<strong>in</strong><strong>in</strong>g<br />

taxa with o<strong>the</strong>r types <strong>of</strong> androecium may be regarded as<br />

potentially nectariferous, even though it has not been<br />

possible to quantify <strong>the</strong> nectar <strong>in</strong> some populations ei<strong>the</strong>r<br />

because <strong>of</strong> <strong>the</strong> methodology (storage <strong>in</strong> bags for 24 h with<br />

possible evaporation or crystallization <strong>of</strong> nectar) or because<br />

it was too <strong>in</strong>conspicuous to be measured.<br />

The species that produced most nectar was Anagyris<br />

foetida (x 2612 µl). This production was significantly<br />

greater (Mann-Whitney U test 655, P 0001) than that<br />

<strong>of</strong> <strong>the</strong> species next <strong>in</strong> importance – Pisum satium (x <br />

9767 µl), Lathyrus latifolius (x 953 µl) and Colutea<br />

atlantica (x 8167 µl; Rodrıguez-Rian o et al., 1999).<br />

Moreover, Anagyris foetida is <strong>the</strong> only species <strong>of</strong> those<br />

studied with free stamens. No significant differences were<br />

found (Mann-Whitney U test 10990, P 005) between<br />

<strong>the</strong> nectar production <strong>of</strong> taxa with diadelphous androecia (x<br />

072 µl, n 39) and that <strong>of</strong> taxa with a basally fenestrated<br />

pseudomonadelphous type <strong>of</strong> androecium (x 091 µl,<br />

n 50).<br />

We now list androecium types and nectar production by<br />

tribe (see Table 1).<br />

Tribe Vicieae<br />

All <strong>the</strong> species studied possessed a basally fenestrated<br />

pseudomonadelphous type <strong>of</strong> androecium (Fig. 2C). The<br />

only exception to this type <strong>of</strong> androecium appeared <strong>in</strong> V.<br />

pubescens, which possessed <strong>the</strong> reduced diadelphous type.<br />

All <strong>the</strong> species studied produced nectar (mean value for <strong>the</strong><br />

tribe 0822 µl), and while <strong>the</strong> amount could not be<br />

quantified <strong>in</strong> Lathyrus sphaericus, <strong>in</strong>tuitively we felt this to<br />

be a potentially nectariferous taxon.<br />

Tribe Loteae<br />

Two types <strong>of</strong> androecium were observed: (1) basally<br />

fenestrated pseudomonadelphous (Hymenocarpos, Anthyllis,<br />

Dorycnopsis); and (2) diadelphous (Lotus, Tripodion and<br />

Dorycnium pentaphyllum). Dorycnium rectum, however, is <strong>in</strong><br />

an <strong>in</strong>termediate situation, s<strong>in</strong>ce one <strong>of</strong> <strong>the</strong> populations<br />

studied had a diadelphous androecium and <strong>the</strong> o<strong>the</strong>r<br />

pseudomonadelphous which even had no apparent basal<br />

fenestration. All <strong>the</strong> species <strong>of</strong> <strong>the</strong> tribe that were studied<br />

were potentially nectariferous. The mean value <strong>of</strong> nectar<br />

production for <strong>the</strong> tribe is 0306 µl, although <strong>in</strong> Dorycnopsis<br />

gerardii and Hymenocarpos cornic<strong>in</strong>a, which<br />

are potentially nectariferous, <strong>the</strong> amount could not be<br />

quantified.<br />

Tribe Hedysareae<br />

Two types <strong>of</strong> androecium were observed: (1) pseudomonadelphous<br />

without basal fenestration, with <strong>the</strong> A1<br />

stamen wholly occupy<strong>in</strong>g <strong>the</strong> gap left by <strong>the</strong> filament tube<br />

and very lightly fused to it, present only <strong>in</strong> Coronilla (Fig.<br />

2B); and (2) diadelphous (<strong>the</strong> rema<strong>in</strong><strong>in</strong>g taxa). In <strong>the</strong> case <strong>of</strong><br />

<strong>the</strong> genus Onobrychis, <strong>the</strong>re is a slight superposition <strong>of</strong> <strong>the</strong><br />

free stamen (which is somewhat flattened from <strong>the</strong> basal<br />

part, with <strong>the</strong> flatten<strong>in</strong>g disappear<strong>in</strong>g gradually towards <strong>the</strong><br />

apex). All <strong>the</strong> species are nectariferous or at least potentially<br />

so, with a mean value for <strong>the</strong> tribe <strong>of</strong> 0204 µl. In <strong>the</strong><br />

genus Coronilla, however, no nectar production was<br />

observed.<br />

Tribe Trifolieae<br />

The follow<strong>in</strong>g types <strong>of</strong> androecium were recognized: (1)<br />

monadelphous (Ononis); (2) basally fenestrated pseudomonadelphous<br />

with <strong>the</strong> A1 stamen practically fused along<br />

<strong>the</strong> entire length <strong>of</strong> <strong>the</strong> tube except at <strong>the</strong> basal zone<br />

(Medicago) or only at a small upper portion <strong>of</strong> <strong>the</strong><br />

androecium (some species <strong>of</strong> Trifolium); and (3) diadelphous<br />

(some species <strong>of</strong> Trifolium and Trigonella). All <strong>the</strong> genera<br />

are nectariferous or potentially nectariferous, except for<br />

Ononis which is poll<strong>in</strong>iferous. The mean value <strong>of</strong> <strong>the</strong> volume<br />

<strong>of</strong> nectar produced by <strong>the</strong> tribe is 00301 µl.<br />

Tribe Genisteae<br />

The androecium is always monadelphous (Fig. 2A),<br />

which means <strong>the</strong> absence <strong>of</strong> an <strong>in</strong>trastam<strong>in</strong>al nectary.<br />

Nectar is only secreted when <strong>the</strong> nectary is extrastam<strong>in</strong>al, as<br />

is <strong>the</strong> case <strong>in</strong> Retama sphaerocarpa <strong>in</strong> which <strong>the</strong> mean<br />

production per flower was observed to be 00901 µl.<br />

Tribe Galegeae<br />

Three types <strong>of</strong> androecium were observed: (1) monadelphous<br />

(Galega <strong>of</strong>fic<strong>in</strong>alis); (2) diadelphous (Colutea<br />

atlantica and Astragalus—except A. epiglottis; Fig. 2D);<br />

and (3) reduced diadelphous (Astragalus epiglottis and<br />

Biserrula pelec<strong>in</strong>us; Fig. 2E). All <strong>the</strong> species were found to<br />

be nectariferous except for Galega <strong>of</strong>fic<strong>in</strong>alis which is<br />

poll<strong>in</strong>iferous. However, <strong>in</strong> <strong>the</strong> taxa with reduced diadelphous<br />

androecia, which are potentially nectariferous, no<br />

nectar was observed to be present. It had evaporated or<br />

been reabsorbed, as seems to have occurred <strong>in</strong> many o<strong>the</strong>r<br />

taxa with small flowers. In this tribe <strong>the</strong> mean nectar<br />

production per flower was 2246 µl.<br />

Tribe Psoraleae<br />

The two species studied possessed a pseudomonadelphous<br />

androecium with basal fenestration. The mean production<br />

<strong>of</strong> nectar per flower <strong>in</strong> <strong>the</strong> tribe was 0705 µl.<br />

The o<strong>the</strong>r two tribes, Thermopsidaea and Rob<strong>in</strong>ieae are<br />

each represented by a s<strong>in</strong>gle species <strong>in</strong> Spa<strong>in</strong> (see Table 1).<br />

DISCUSSION<br />

The type <strong>of</strong> androecium is one <strong>of</strong> <strong>the</strong> most important floral<br />

characters <strong>of</strong> <strong>the</strong> family with regard to its systematics and<br />

reproductive biology. In this respect, <strong>in</strong> <strong>the</strong> modern as <strong>in</strong> <strong>the</strong>


older flora (e.g. Heywood and Ball, 1968; Davis, 1970;<br />

Pignatti, 1982; Gu<strong>in</strong>ochet and Vilmor<strong>in</strong>, 1984; Clapham,<br />

Tut<strong>in</strong> and Moore, 1987; Domınguez, 1987) only three types<br />

have been recognized <strong>in</strong> <strong>the</strong> family (free stamens, monadelphous<br />

and diadelphous). More recently, Tucker (1987,<br />

1989) described <strong>the</strong> existence <strong>of</strong> <strong>the</strong> pseudomonadelphous<br />

androecium. The present study documents <strong>the</strong> occurrence<br />

<strong>of</strong> <strong>the</strong>se androecial types <strong>in</strong> 165 Spanish species (and<br />

subspecies), as well as <strong>the</strong> reduced diadelphous androecium<br />

<strong>in</strong> ano<strong>the</strong>r three species.<br />

Accord<strong>in</strong>g to Tucker (1989), <strong>the</strong> androecium with free<br />

stamens has derived on <strong>the</strong> one hand to monadelphy and on<br />

<strong>the</strong> o<strong>the</strong>r to diadelphy. Diadelphy <strong>in</strong> its turn has given rise<br />

to pseudomonadelphy. Tucker describes both monadelphy<br />

and pseudomonadelphy as probable examples <strong>of</strong> convergent<br />

evolution and she poses <strong>the</strong> question as to whe<strong>the</strong>r <strong>the</strong> two<br />

conditions are functionally equivalent (Tucker, 1989:<br />

63–65). Orig<strong>in</strong>ally, Tucker (1987) recognized two subtypes<br />

with<strong>in</strong> pseudomonadelphy: (I) with and (II) without basal<br />

fenestrations. In <strong>the</strong> present study, subtype I appears <strong>in</strong><br />

around 38% <strong>of</strong> <strong>the</strong> taxa studied. Contrary to Tucker (1989),<br />

this subtype probably has <strong>the</strong> same functionality as <strong>the</strong><br />

diadelphous androecium s<strong>in</strong>ce <strong>the</strong>re is nectar secretion <strong>in</strong><br />

both, allow<strong>in</strong>g <strong>in</strong>sects access to <strong>the</strong> nectar secreted by an<br />

<strong>in</strong>trastam<strong>in</strong>al nectary. The second subtype, described <strong>in</strong>itially<br />

by Tucker (1987) <strong>in</strong> Psoralea p<strong>in</strong>nata (but not<br />

commented on <strong>in</strong> her 1989 review), was found <strong>in</strong> <strong>the</strong> present<br />

work <strong>in</strong> <strong>the</strong> genus Coronilla, where it functions practically as<br />

a monadelphous androecium. In this case, unless <strong>the</strong>re are<br />

extrastam<strong>in</strong>al nectaries (which did not appear <strong>in</strong> our<br />

sample), it is l<strong>in</strong>ked to <strong>the</strong> absence <strong>of</strong> nectar (see also<br />

Herrera, 1988).<br />

The idea that <strong>the</strong> pseudomonadelphous androecium with<br />

fenestration and <strong>the</strong> diadelphous androecium are functionally<br />

equivalent is re<strong>in</strong>forced by <strong>the</strong> fact that <strong>the</strong> volume<br />

<strong>of</strong> secreted nectar is equivalent <strong>in</strong> <strong>the</strong> two cases (<strong>the</strong> values<br />

were slightly higher <strong>in</strong> <strong>the</strong> first type, but <strong>the</strong> differences were<br />

not significant). It seems evident that this subtype <strong>of</strong><br />

pseudomonadelphy allows nectar to be available to a<br />

narrow range <strong>of</strong> poll<strong>in</strong>ators, but at <strong>the</strong> same time provides<br />

solid protection to both ovary and nectary.<br />

In <strong>the</strong> present work, nei<strong>the</strong>r species with a monadelphous<br />

androecium (Ononis, Galega <strong>of</strong>fic<strong>in</strong>alis and <strong>the</strong> tribe Genisteae)<br />

nor those show<strong>in</strong>g pseudomonadelphy without basal<br />

fenestration (Coronilla) possess an <strong>in</strong>trastam<strong>in</strong>al nectary,<br />

and have to be regarded as poll<strong>in</strong>iferous ra<strong>the</strong>r than<br />

nectariferous taxa. These taxa produce a great amount <strong>of</strong><br />

pollen—more than 20000 gra<strong>in</strong>s per flower except for<br />

Ononis, which has a mean <strong>of</strong> 10214 (Rodrıguez-Rian o et<br />

al., 1999), possibly because some species <strong>in</strong> this genus<br />

are cleistogamous. Accord<strong>in</strong>g to <strong>the</strong> literature we have<br />

consulted, <strong>the</strong> existence <strong>of</strong> nectaries is <strong>in</strong>frequent <strong>in</strong> <strong>the</strong>se<br />

taxa, and when <strong>the</strong>y do exist <strong>the</strong>y are usually extrastam<strong>in</strong>al<br />

(Chamaecytisus, Polhill, 1976; Polhill et al., 1981; Webb<br />

and Shand, 1985; Er<strong>in</strong>acea, Polhill, 1976; Laburnum,<br />

Bonnier, 1879; Mu ller, 1883; Petteria, Polhill, 1976; Retama<br />

sphaerocarpa,Lo pez et al., 1998). Also, nectar secretion has<br />

not been observed <strong>in</strong> Cytisus species with campanulate calyx<br />

(an exception is Cytisus illosus: Talavera, pers. comm.),<br />

and nei<strong>the</strong>r have <strong>the</strong>re been recent descriptions <strong>of</strong> it <strong>in</strong> any<br />

Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong> 115<br />

species <strong>of</strong> Adenocarpus, Calicotome, Ech<strong>in</strong>ospartum, Genista,<br />

Spartium, Stauracanthus or Ulex (Polhill, 1976; see also<br />

Herrera, 1985, 1987, 1988; Rodrıguez-Rian o et al., 1999).<br />

Bonnier (1879), however, cites <strong>the</strong> existence <strong>of</strong> m<strong>in</strong>ute<br />

drops <strong>of</strong> nectar on <strong>the</strong> outer face <strong>of</strong> <strong>the</strong> stamen-filament<br />

tube <strong>in</strong> Ulex europaeus, Genista sagittalis, G. anglica,<br />

Calicotome sp<strong>in</strong>osa, Cytisus scoparius and Spartium junceum.<br />

The advantages <strong>of</strong> <strong>the</strong> two subtypes <strong>of</strong> pseudomonadelphy<br />

over monadelphy or diadelphy are as yet<br />

unknown. With regard to <strong>the</strong> monadelphous androecium,<br />

Polhill (1976) <strong>in</strong>dicated that perhaps <strong>the</strong> ma<strong>in</strong> selective<br />

factor for this type <strong>of</strong> androecium might be <strong>in</strong>creased<br />

protection for ovules aga<strong>in</strong>st <strong>in</strong>sect attack. This same<br />

adaptive advantage would have to be attributed to both<br />

subtypes <strong>of</strong> pseudomonadelphous androecium, although <strong>in</strong><br />

<strong>the</strong> basally fenestrated case one would have to add to this<br />

advantage <strong>the</strong> protection <strong>of</strong> <strong>the</strong> <strong>in</strong>trastam<strong>in</strong>al nectary<br />

aga<strong>in</strong>st opportunist poll<strong>in</strong>ators and herbivores, as well as<br />

<strong>the</strong> prevention <strong>of</strong> desiccation or dilution <strong>of</strong> <strong>the</strong> nectar (by<br />

w<strong>in</strong>d, ra<strong>in</strong> or solar radiation; Schrire, 1989).<br />

Pseudomonadelphy with basal fenestration is more<br />

widespread than <strong>the</strong> type without fenestration, appear<strong>in</strong>g <strong>in</strong><br />

all <strong>the</strong> tribes except Genisteae, which is completely monadelphous.<br />

Also, as <strong>in</strong>dicated by Tucker (1989), it is not<br />

frequent for this type <strong>of</strong> androecium to coexist with<br />

monadelphy <strong>in</strong> any given genus, while it does so with<br />

diadelphy. This idea was corroborated <strong>in</strong> <strong>the</strong> present work<br />

at <strong>the</strong> genus and tribe levels, with <strong>the</strong> exception <strong>of</strong> <strong>the</strong><br />

Trifolieae, where three types appeared. It must be said that<br />

<strong>in</strong> some taxa <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> diadelphous androecium<br />

towards pseudomonadelphy is probably only <strong>in</strong> its first<br />

stages, s<strong>in</strong>ce both types may still be found <strong>in</strong> <strong>the</strong> same taxon<br />

(e.g. Dorycnium rectum).<br />

The androecium <strong>of</strong> ten free stamens, which is probably<br />

more primitive as it appears with a majority representation<br />

<strong>in</strong> tribes regarded as basal <strong>in</strong> <strong>the</strong> Papilionoideae (e.g.<br />

Swartziae, Sophoreae; Polhill et al., 1981), is represented<br />

only <strong>in</strong> one species <strong>of</strong> <strong>the</strong> material studied—Anagyris foetida<br />

(tribe Thermopsideae). This species was also <strong>the</strong> species that<br />

produced significantly more nectar than any <strong>of</strong> <strong>the</strong> rest <strong>of</strong><br />

<strong>the</strong> family. It is likely that, <strong>in</strong> <strong>the</strong> <strong>Fabaceae</strong>, <strong>the</strong> species that<br />

have an androecium with free stamens are also more<br />

nectariferous, but it has not been possible to check this<br />

hypo<strong>the</strong>sis s<strong>in</strong>ce this k<strong>in</strong>d <strong>of</strong> androecium is poorly represented<br />

<strong>in</strong> <strong>the</strong> <strong>Fabaceae</strong> <strong>of</strong> Europe (only 051% <strong>of</strong> <strong>the</strong> taxa;<br />

see Heywood and Ball, 1968).<br />

The reduced diadelphous type <strong>of</strong> androecium was only<br />

detected <strong>in</strong> three species: Biserrula pelec<strong>in</strong>us, Vicia pubescens<br />

and Astragalus epiglottis. This is probably, as yet, an<br />

<strong>in</strong>complete reduction <strong>of</strong> <strong>the</strong> androecium s<strong>in</strong>ce <strong>the</strong>re are still<br />

usually vestiges <strong>of</strong> <strong>the</strong> an<strong>the</strong>rs which are <strong>in</strong> <strong>the</strong> process <strong>of</strong><br />

be<strong>in</strong>g lost (lower whorl), and <strong>in</strong> some cases (e.g. B. pelec<strong>in</strong>us)<br />

even pollen gra<strong>in</strong>s (though few) on <strong>the</strong>se vestigial an<strong>the</strong>rs<br />

(Rodrıguez-Rian o, 1997). It is worth mention<strong>in</strong>g too that<br />

<strong>the</strong>se three species have small flowers ( 5 mm), low pollen<br />

production, little nectar production, and a low pollen:ovule<br />

ratio (Rodrıguez-Rian o et al., 1999)—characteristics typical<br />

<strong>of</strong> autogamous plants (Ornduff, 1969). The functionality <strong>of</strong><br />

this type <strong>of</strong> androecium is possibly related to <strong>the</strong> syndrome<br />

that characterizes autogamy <strong>in</strong> Angiosperms.


116 Rodrıguez-Rian o et al.—<strong>Androecium</strong> <strong>in</strong> <strong>Fabaceae</strong><br />

In conclusion, and relative to <strong>the</strong> fusion <strong>of</strong> <strong>the</strong> stam<strong>in</strong>al<br />

filaments, it is postulated that: (1) <strong>the</strong> monadelphous<br />

androecium does not seem to be l<strong>in</strong>ked to <strong>the</strong> presence <strong>of</strong> an<br />

<strong>in</strong>trastam<strong>in</strong>al nectary; it occurs above all <strong>in</strong> pollen-reward<br />

flowers, or if <strong>the</strong>re is nectar it is extrastam<strong>in</strong>al <strong>in</strong> orig<strong>in</strong>; (2)<br />

<strong>the</strong> diadelphous androecium is l<strong>in</strong>ked to <strong>the</strong> presence <strong>of</strong> an<br />

<strong>in</strong>trastam<strong>in</strong>al nectary; (3) a pseudomonadelphous androecium<br />

without fenestration has a functionality that is similar<br />

to that <strong>of</strong> monadelphy; (4) <strong>the</strong> fenestrated pseudomonadelphous<br />

androecium has <strong>the</strong> same functionality as<br />

<strong>the</strong> diadelphous androecium, and is <strong>the</strong>refore l<strong>in</strong>ked to<br />

nectar production; (5) <strong>the</strong> reduced diadelphous androecium<br />

is yet ano<strong>the</strong>r syndrome <strong>of</strong> those accompany<strong>in</strong>g <strong>the</strong><br />

acquisition <strong>of</strong> autogamy; and (6) <strong>the</strong> free-stamen androecium<br />

might be l<strong>in</strong>ked to a greater production <strong>of</strong> nectar,<br />

although as only one species was <strong>in</strong>volved this is a hypo<strong>the</strong>sis<br />

which is open for test<strong>in</strong>g with a greater sample size.<br />

ACKNOWLEDGEMENTS<br />

This research was supported by <strong>the</strong> Direccio n General de<br />

Investigacio n Cientıfica y Te cnica (DGICYT PB90-06070)<br />

<strong>of</strong> Spa<strong>in</strong> and <strong>the</strong> Consejerıa de Educacio n y Juventud (Junta<br />

de Extremadura)-Fondo Social Europeo (EIA94-13). A<br />

doctoral grant <strong>of</strong> <strong>the</strong> Spanish Government to TRR (FP92-<br />

79264179) is greatly appreciated. We thank two anonymous<br />

reviewers for helpful comments and constructive remarks<br />

on <strong>the</strong> manuscript.<br />

LITERATURE CITED<br />

Bonnier G. 1879. Les nectaires. E tude critique, anatomique et physiologique.<br />

Paris: G. Masson.<br />

Clapham AR, Tut<strong>in</strong> TG, Moore DM. 1987. Flora <strong>of</strong> <strong>the</strong> British Isles. 3rd<br />

edn. Cambridge: Cambridge University Press.<br />

Davis PH. 1970. Flora <strong>of</strong> Turkey. Part 3. Ed<strong>in</strong>burgh: Ed<strong>in</strong>burgh<br />

University Press.<br />

Day S, Beyer R, Mercer A, Ogden S. 1990. The nutrient composition<br />

<strong>of</strong> Honeybee-collected pollen <strong>in</strong> Otago. Journal <strong>of</strong> Apicultural<br />

Research 29: 138–146.<br />

Devesa JA. 1995. Vegetacio n y Flora de Extremadura. Badajoz:<br />

Universitas.<br />

Domınguez E. 1987. <strong>Fabaceae</strong> (Papilionaceae) In: Valde s B, Talavera<br />

S, Galiano EF, eds. Flora Vascular de Andalucıa Occidental.<br />

Barcelona: Ketres 2: 45–190.<br />

Furgala B, Gochnauer TA, Holdaway FG. 1958. Constituent sugars <strong>of</strong><br />

some nor<strong>the</strong>rn legume nectars. Bee World 39: 203–205.<br />

Greuter W, Burdet HM, Long G. 1989. Med-checklist. Dicotyledones<br />

(Lauraceae-Rhamnaceae). Gene ve: Conservatoire et Jard<strong>in</strong><br />

Botaniques, Ville de Gene ve—Secre tariat Med-Checklist Trust <strong>of</strong><br />

OPTIMA 4: 2–214.<br />

Gu<strong>in</strong>ochet M, De Vilmor<strong>in</strong> R. 1984. Flore de France. Paris: CNRS 5:<br />

1688–1787.<br />

Herrera J. 1985. Nectar secretion patterns <strong>in</strong> sou<strong>the</strong>rn Spanish<br />

mediterranean scrublands. Israel Journal <strong>of</strong> <strong>Botany</strong> 34: 47–58.<br />

Herrera J. 1987. Flower and fruit biology <strong>in</strong> Sou<strong>the</strong>rn Spanish<br />

Mediterranean shrublands. <strong>Annals</strong> <strong>of</strong> <strong>the</strong> Missouri Botanical<br />

Garden 74: 69–78.<br />

Herrera J. 1988. Datos sobre biologıa floral en la flora de Andalucıa<br />

Oriental. Lagascalia 15 (extra): 607–614.<br />

Heywood VH, Ball PW. 1968. Legum<strong>in</strong>osae. In: Tut<strong>in</strong> TG et al., eds.<br />

Flora Europaea. Cambridge: Cambridge University Press 2:<br />

80–191.<br />

Leppik EE. 1966. Floral evolution and poll<strong>in</strong>ation <strong>in</strong> <strong>the</strong> Legum<strong>in</strong>osae.<br />

Annales Botanici Fennici 3: 299–308.<br />

Lo pez J, Rodrıguez-Rian o T, Ortega-Olivencia A, Devesa JA, Ruiz T.<br />

1998. Poll<strong>in</strong>ation mechanisms and pollen-ovule ratios <strong>in</strong> some<br />

Genisteae (Fabacaea) from <strong>SW</strong> Europe. Plant Systematics and<br />

Eolution (<strong>in</strong> press).<br />

Mu ller H. 1883. The fertilisation <strong>of</strong> flowers. London: MacMillan and<br />

Co.<br />

Ornduff R. 1969. Reproductive biology <strong>in</strong> relation to systematic. Taxon<br />

18: 121–133.<br />

Ortega-Olivencia A, Ramos S, Rodrıguez T, Devesa JA. 1997. Floral<br />

biometry, floral rewards and pollen-ovule ratios <strong>in</strong> some Vicia<br />

from Extremadura, Spa<strong>in</strong>. Ed<strong>in</strong>burgh Journal <strong>of</strong> <strong>Botany</strong> 54: 39–53.<br />

Pignatti S. 1982. Flora d’Italia. Bologna: Edagricole 1: 619–766.<br />

Polhill RM. 1976. Genisteae (Adans.) Benth. and related tribes<br />

(Legum<strong>in</strong>osae). Botanical Systematics 1: 143–368.<br />

Polhill RM. 1981. Papilionoideae. In: Polhill RM, Raven PH, eds.<br />

Adances <strong>in</strong> legume systematics. Kew: Royal Botanical Garden 1:<br />

191–208.<br />

Polhill RM, Raven PH, Stirton CH. 1981. Evolution and systematics <strong>of</strong><br />

<strong>the</strong> Legum<strong>in</strong>osae. In: Polhill RM, Raven PH, eds. Adances <strong>in</strong><br />

legume systematics. Kew: Royal Botanical Garden 1: 1–26.<br />

Rodrıguez-Rian o T. 1997. Biologıa floral y reproductia en <strong>Fabaceae</strong> de<br />

Extremadura. PhD Thesis, University <strong>of</strong> Extremadura, Badajoz,<br />

Spa<strong>in</strong>.<br />

Rodrıguez-Rian o T, Ortega-Olivencia A, Devesa JA. 1999. Biologıa<br />

floral en <strong>Fabaceae</strong>. Ruizia (<strong>in</strong> press).<br />

Schrire BD. 1989. A multidiscipl<strong>in</strong>ary approach to poll<strong>in</strong>ation biology<br />

<strong>in</strong> <strong>the</strong> Legum<strong>in</strong>osae. In: Stirton CH, Zarucchi JL, eds. Adances <strong>in</strong><br />

legume biology. Monographs <strong>in</strong> Systematic <strong>Botany</strong> from <strong>the</strong><br />

Missouri Botanical Garden 29: 183–242.<br />

Sokal RR, Rohlf FJ. 1979. Biometrıa. Madrid: Blume H.<br />

Southwick EE, Loper GM, Sadwick SS. 1981. Nectar production,<br />

composition, energetics and poll<strong>in</strong>ator attractiveness <strong>in</strong> spr<strong>in</strong>g<br />

flowers <strong>of</strong> western New York. American Journal <strong>of</strong> <strong>Botany</strong> 68:<br />

994–1002.<br />

Teuber LR, Albertsen MC, Barnes DK, Heiche GH. 1980. Structure <strong>of</strong><br />

floral nectaries <strong>of</strong> alfalfa (Medicago satia L.) <strong>in</strong> relation to nectar<br />

production. American Journal <strong>of</strong> <strong>Botany</strong> 67: 433–439.<br />

Tucker SC. 1987. Floral <strong>in</strong>itiation and development <strong>in</strong> legumes. In:<br />

Stirton CH, ed. Adances <strong>in</strong> legume systematics. Kew: Royal<br />

Botanic Gardens 3: 183–239.<br />

Tucker SC. 1989. Evolutionary implications <strong>of</strong> floral ontogeny <strong>in</strong><br />

legumes. In: Stirton CH, Zarucchi JL, eds. Adances <strong>in</strong> legume<br />

biology. Monographs <strong>in</strong> Systematic <strong>Botany</strong> from <strong>the</strong> Missouri<br />

Botanical Garden 29: 59–75.<br />

Waddle RM, Lersten NR. 1973. Morphology <strong>of</strong> discoid floral nectaries<br />

<strong>in</strong> Legum<strong>in</strong>osae, especially tribe Phaseoleae (Papilionoideae).<br />

Phytomorphology 23: 152–161.<br />

Webb CJ, Shand JE. 1985. Reproductive biology <strong>of</strong> tree lucerne<br />

(Chamaecytisus palmensis, Legum<strong>in</strong>osae). New Zealand Journal <strong>of</strong><br />

<strong>Botany</strong> 23: 597–606.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!