25.04.2013 Views

Breeding and Seed Pe, duction of Chinese Cabbage in the Tropics ...

Breeding and Seed Pe, duction of Chinese Cabbage in the Tropics ...

Breeding and Seed Pe, duction of Chinese Cabbage in the Tropics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> <strong>Pe</strong>, <strong>duction</strong><br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Tropics</strong> <strong>and</strong> Subtropics<br />

R.T. Opena, C.G. Kuo <strong>and</strong> J.Y. Voon<br />

t<br />

Em rgence[ Emergence<br />

/ Transplant<strong>in</strong>g :Z./ Dry<strong>in</strong>g Vernalizationt.<br />

( ~<strong>Seed</strong> 4'<br />

matiurity j<br />

'P~adig<br />

ead<strong>in</strong>g<br />

<strong>and</strong><br />

harvest<br />

, P<br />

Bolt<strong>in</strong>g<br />

Technical Bullet<strong>in</strong> No. 17<br />

Head maturity . ,,<br />

/f. Flower<strong>in</strong>g <strong>and</strong>-.,<br />

. poll<strong>in</strong>ation<br />

\Vernaization A<br />

Asian Vegetable Research <strong>and</strong> Development Center<br />

Tropical Vegetable Information Service


<strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong> <strong>of</strong> C'Inese<br />

<strong>Cabbage</strong> <strong>in</strong> <strong>the</strong> <strong>Tropics</strong> <strong>and</strong> Subtropics<br />

R.T. Operia, C. G. Kuo <strong>and</strong> J. Y. Yoon<br />

-pM<br />

1971<br />

May 1988<br />

Asian Vegetable Research <strong>and</strong> Development Center (AVRDC)<br />

P.O. Box 4;, Shanhua, Ta<strong>in</strong>an 74199, Taiwan, R.OC.


Suggested citation: Opefia, R.T., C.G. Kuo <strong>and</strong> J.Y. Yoon. 1988. <strong>Breed<strong>in</strong>g</strong><br />

<strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong> <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>in</strong> <strong>the</strong> <strong>Tropics</strong> <strong>and</strong> Subtropics.<br />

Technical Bullet<strong>in</strong> No. 17. AVRDC, Shanhua, Tairan. p. 92.<br />

AVRDC Publicatlnn No. 88-294<br />

ISBN 92-9058-032-1


Contents<br />

Acknow ledgm enn........................................................................................... iv<br />

Preface ........................................................................... ,............................ v<br />

Introd uctio n .................................................................................................. 1<br />

Importance <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> ....................................................................... I<br />

Orig<strong>in</strong> <strong>and</strong> Distribution <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> ....................................................... 1<br />

Biosystematic Relationship among <strong>the</strong> Brassica Species ..................................... 2<br />

Evolution <strong>and</strong> Variation <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> ....................................................... 5<br />

General Botany <strong>and</strong> Reproductive Biology ........................................................ 7<br />

Development <strong>and</strong> Growth Stagecs ................................................................... 7<br />

M orphological Features ................................................................................. 8<br />

Growth <strong>and</strong> Patterns <strong>of</strong> elead ...................................................................... 10<br />

Environmental Conditions lor Vegetative Growth <strong>and</strong> Head<strong>in</strong>g ............................... 11<br />

Physiolagy <strong>of</strong> Flow el<strong>in</strong>g ........................................................................... 12<br />

Silique <strong>and</strong> <strong>Seed</strong> Developncnt .................................................................... 16<br />

<strong>Seed</strong> Dorrmiancy <strong>and</strong> Germ<strong>in</strong>ation ............................................................... 17<br />

<strong>Breed<strong>in</strong>g</strong> Systll <strong>and</strong> Na ural Mechan;isms for Hyblridity ......................................... 18<br />

Population Structure .................... ............................................................ 18<br />

Self-<strong>in</strong>com patibility .......................................................... . . .................. 18<br />

M ale Sterility ..................................................................................... . . .. 32<br />

<strong>Breed<strong>in</strong>g</strong> ............................................................... 35<br />

Goals <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> Improvement ....................................................... 35<br />

Advances <strong>in</strong> Tropical <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> Research ................................................ 36<br />

Po ll<strong>in</strong>ation T echniques ................................................................................. 40<br />

Breed <strong>in</strong>g Metho ds ....................................................................................... 44<br />

H ybrid <strong>Breed<strong>in</strong>g</strong> ..................................................................................... 50<br />

<strong>Seed</strong> P rod uctio n ........................................................................................... 55<br />

Environm ent .......................................................................................... 55<br />

Pro<strong>duction</strong> Procedures ................................................................................. 56<br />

Hybrid <strong>Seed</strong> Pro<strong>duction</strong> ........................................................................... 61<br />

Open-poll<strong>in</strong>ated <strong>Seed</strong> Pro<strong>duction</strong> ................................................................. 68<br />

Literature C ited .......................................................................................... 7 1<br />

G lo ssary ..................................................................................................... 8 1<br />

Ap p end ix .................................................................................................... 87<br />

Index ......................................................................................................... 9 1


Technical Assistance<br />

Acknowledgment<br />

Much <strong>of</strong> <strong>the</strong> <strong>in</strong>rIlation Ihis technical bullet<strong>in</strong> that was derived froln rescarch conducted<br />

at AVRDC has come fron <strong>the</strong> efforts <strong>of</strong> numerous scientists, both previous <strong>and</strong> present. Our<br />

gratitude to <strong>the</strong>m, without due mention <strong>of</strong> <strong>the</strong>ir nm.nes, will hopefuClly sulffice.<br />

A speciat, well-deserved rccognilion !or <strong>the</strong>ir competent tcChnical help is duC to Mr. Lienchung<br />

Chang <strong>and</strong> Mr. San-ho n., tile current <strong>and</strong> previous research Sulpprt sta.ll respectively,<br />

il pla<strong>in</strong>t breedi .<br />

Ol<strong>the</strong>r research support pr.,oirnel to wiholr we owe a lot <strong>in</strong> prCpar<strong>in</strong>g this Itcliical bullet<strong>in</strong><br />

are as follows.<br />

Plant Pathology: lLo-jan I.<strong>in</strong>. Ycii-ien Kuo<br />

Plant PilysiologyV: luVi--rci ('ihen, I-k<strong>in</strong>-Chu ('hen<br />

Plant BrCed<strong>in</strong>t: Sung-jung 'Chuang<br />

Special Thanks<br />

Our special thanks are due to I),,. N.S.Talekar <strong>and</strong> George C.J. Fern<strong>and</strong>ez fOr <strong>the</strong>ir valuable<br />

comnuucs <strong>and</strong> suggestions to improve <strong>the</strong> manuscript, to tire AVRI)C library staff for mnak<strong>in</strong>g<br />

available tile CquestCd rfCCrences, <strong>and</strong> to <strong>the</strong> ()f,ce <strong>of</strong>' In'ortmation Services staff for turn<strong>in</strong>g<br />

<strong>the</strong> ma nLISCript <strong>in</strong>to this pubislished vtiInnue. The encourag ement frtoi Drs. Paul C. Ma, Yoshiaki<br />

Ishizuka. George A. Marlowe, Jr., <strong>and</strong> Paul M.H. Sun have pro'vided <strong>the</strong> essential impetus<br />

fOr <strong>the</strong> completion <strong>of</strong>' this technical bullet<strong>in</strong>.<br />

]he pr<strong>in</strong>t ilyrg <strong>of</strong> ihis publication was suppor ted, <strong>in</strong> part , by <strong>the</strong> Tropical Vegetable Intfornation<br />

Service, a project fu<strong>in</strong>ded by tlie International Develolpment Researh Ceure (IDRC) o 'Canada.<br />

Pro<strong>duction</strong><br />

Manuscript Typ<strong>in</strong>g: Kitty Hong


"<br />

,V<br />

Preface<br />

Head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage (Brassica ctaimInstris subsp. Ik<strong>in</strong>ensis) is traditionally a crop<br />

<strong>of</strong> tie tcrnperate zones where it grows well under cool, dry climate. It is most x)pular <strong>in</strong> temperate<br />

East Asia where it ranks as one <strong>of</strong> <strong>the</strong> most <strong>in</strong>portant vegetables. In,<strong>the</strong> tropics <strong>the</strong> pro<strong>duction</strong><br />

<strong>of</strong> head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage is con f<strong>in</strong>led ma<strong>in</strong>ly to <strong>the</strong> highl<strong>and</strong> :treas. When giw,'i <strong>in</strong> <strong>the</strong> lowl<strong>and</strong><br />

tropics, this \-Lietable fails to form nrrarketabl': heads <strong>and</strong> easily succumbs to st-veral debilitat<strong>in</strong>g<br />

diseases.<br />

The successful gr wirg <strong>of</strong> head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage iii ll tile hot, Iihunid trop i, was r1ot feasible<br />

until <strong>the</strong> advent <strong>of</strong> <strong>the</strong> heat-tolerant, tropicallN -adaptcd cultivars. These improved varieties resulted<br />

from <strong>the</strong> pa<strong>in</strong>stak<strong>in</strong>g crop <strong>in</strong>nmprovemrnlt research which commlii enced <strong>in</strong> 1972 at <strong>the</strong> Asian Vegetable<br />

Research -. nd D~evelopnent Center (AVRI)C. Inr1980<br />

AVRI)C cosponsored <strong>the</strong> First Interna­<br />

tional Symnposillr on <strong>Ch<strong>in</strong>ese</strong> C;ibhagc ill 'TsurkUlk, Japan, <strong>in</strong> part to herald <strong>the</strong> new horizon<br />

lor this vegetable <strong>in</strong> <strong>the</strong> tropics. At that time <strong>the</strong> issue <strong>of</strong> geicticalllxdapt<strong>in</strong>ig <strong>the</strong> head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong><br />

cabbage to high tenlpcratt!rc conditions was no longer tnoot -AVRD" resCarch had established<br />

this unequivocally.<br />

Fur<strong>the</strong>r developmient <strong>of</strong>t <strong>in</strong>lproved tcCll(tonoexy bcyond <strong>the</strong> laboratolies <strong>and</strong> exper<strong>in</strong><strong>in</strong>tal fields<br />

<strong>of</strong> AVRDC has hccn, <strong>and</strong> still is, tire legit<strong>in</strong>liatc concern <strong>of</strong> tie national progralils. The test<strong>in</strong>g<br />

<strong>and</strong> adoption <strong>of</strong>dAVRI)'s new '<strong>Ch<strong>in</strong>ese</strong> cabh;algc cultivars specitically bred for <strong>the</strong> tropics was<br />

no exception. II order to help <strong>the</strong> rla:ional progrnIs to achieve this, AVRI)C <strong>in</strong>tensified <strong>the</strong><br />

distribution <strong>of</strong> ;ample seeds <strong>of</strong> its improved cultivars <strong>in</strong> <strong>the</strong> years f'ollhwihg <strong>the</strong> Tsukuba<br />

symposium. Fxhaustive tests hy national programr scientists <strong>and</strong> b o<strong>the</strong>r <strong>in</strong>terested parties amiplv<br />

dcnoistra;.ed <strong>the</strong> leasibility f grow,,<strong>in</strong>g hcadirie <strong>Ch<strong>in</strong>ese</strong> cabbae <strong>in</strong> <strong>the</strong> hot, huniid tropics. Some<br />

national pro.nriis <strong>in</strong>l <strong>the</strong> tropical region have <strong>of</strong>ficially released <strong>the</strong> <strong>in</strong>proved genctic materials<br />

to <strong>the</strong>ir veCetahle farrncrs: <strong>in</strong>i o<strong>the</strong>rs, perfo rmancce <strong>of</strong> <strong>the</strong> new cultivars warranted <strong>the</strong>ir comuercial<br />

release if rot for tire prhlei <strong>of</strong> <strong>in</strong>adequate seed SUplylY that nnV national progral authorities<br />

anticipatted aId VXCe corctlx, apprehensive about.<br />

The seed prtolictioni dilCnia ill <strong>the</strong> tropics is nor ne witholu a technological solution,<br />

howevcr. While <strong>Ch<strong>in</strong>ese</strong> cabbagec is lrgely "tcnilperate Innits raL-quirerr<strong>in</strong>nts for lower<strong>in</strong>g <strong>and</strong><br />

seed pro<strong>duction</strong>, <strong>the</strong> tropically adapted cultivars do riot require very low tenmperatures for<br />

flower<strong>in</strong>g <strong>in</strong><strong>duction</strong>. Successful seed protduct<strong>in</strong>i <strong>of</strong> <strong>the</strong>se cuhlivars has been demonstrated <strong>in</strong> <strong>the</strong><br />

highl<strong>and</strong>s olth ePhilipp<strong>in</strong>es anid Indonesia. Indeed, it is not far fe tclied to expect that o<strong>the</strong>r tropical<br />

countries <strong>in</strong>terested <strong>in</strong> develop<strong>in</strong>g <strong>the</strong>ir own seed pro<strong>duction</strong> programi for [ihe tropical cultivafs<br />

could vcry easily d1:) so given <strong>the</strong> follow<strong>in</strong>g: availability <strong>of</strong> relatively cool, dry highl<strong>and</strong> climate;<br />

tra<strong>in</strong>ed <strong>and</strong> skilled cadre <strong>of</strong> s.:cd pro<strong>duction</strong> !pcCialists: <strong>and</strong>, appropriate technology for seed<br />

pro<strong>duction</strong>.<br />

AVRDC has been actively assist<strong>in</strong>g some <strong>in</strong>terested national programs <strong>in</strong> develop<strong>in</strong>g <strong>the</strong>ir<br />

own <strong>Ch<strong>in</strong>ese</strong> cahagc seed pro<strong>duction</strong> capabilities. Already, a few specialists from <strong>the</strong>se national<br />

prograrns have colpleted <strong>the</strong> rcsea,'Ii <strong>in</strong>ternship tra<strong>in</strong><strong>in</strong>g at AVRDC on <strong>Ch<strong>in</strong>ese</strong> ciabbage seed<br />

pro<strong>duction</strong>, with special emphasis nl tile nu tiFlicatiOn <strong>of</strong> Hybrid No. 62. <strong>the</strong> most widely adapted<br />

<strong>of</strong> <strong>the</strong> new cultivars.<br />

The present bullet<strong>in</strong> was prepared as part <strong>of</strong> AVRDC's cont<strong>in</strong>u<strong>in</strong>g corn<strong>in</strong>itruent to technology<br />

transfer to <strong>the</strong> national programs. It is <strong>in</strong>tended ma<strong>in</strong>ly to provide <strong>the</strong> seed pro<strong>duction</strong> speciali.;ts<br />

<strong>in</strong> <strong>the</strong> national prograis with <strong>the</strong> fundamental guidel<strong>in</strong>cs for produc<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage seeds<br />

<strong>in</strong> <strong>the</strong> tropics. We feel strongly that a good work<strong>in</strong>g knowledge <strong>of</strong> plant breed<strong>in</strong>g i: essential<br />

for a better underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> general seed pro<strong>duction</strong> pr<strong>in</strong>ciples <strong>and</strong> oractices for any crop.<br />

In this bullet<strong>in</strong>, <strong>the</strong>refore, we have also a<strong>in</strong>ed at i'ipart<strong>in</strong>g <strong>the</strong> basic pr<strong>in</strong>ciples which underlie


The hreedig 4t a c" oNlIiiii c lop Ky(I mIc b I I IML'usli~iitI\ I ItsI Illph) \ ujflcJi<br />

rkIIillon"11 ()tIhIa \I ol(<br />

HS'IICMIhol~ll%<br />

,111Clciltl( tild ha o IBCl dy1I)AI)~'j d ld aI 1C trgmicio -iI<br />

RcI~~c~c',(it ~h.oth -I p ( l- 1,1 ch cop11;d I<strong>in</strong>prIsluCht I fll' 11ciram 111" 'i


Imortance <strong>of</strong>Ciee abg<br />

iHead<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> :cabbageis one <strong>of</strong> <strong>the</strong> moist import,,nt,yegetablos '• <strong>in</strong>eastern Asia. In Ch<strong>in</strong>ia ":<br />

it h e s m o s w d ey gro wn am ng 100 or so co n m mon ly i v a e vegetable s .In (Ie no th r n ' :<br />

aresa i couts ormore than one-fourth <strong>of</strong>,<strong>the</strong> total annual vegetable consumption. InJapan .. .<br />

it is also very popuilar;,rank<strong>in</strong>g third after rqdish <strong>and</strong> cabbage <strong>in</strong> annual pro<strong>duction</strong>. Farmers " i<br />

<strong>in</strong> almost every• prefecture cultivate <strong>the</strong> crp, <strong>and</strong> it is grown on a total <strong>of</strong> at least 35,000 ha.' ;* ':<br />

In Koreit i':sundoubtedly <strong>the</strong> mrostl <strong>in</strong>mportant vegetable both <strong>in</strong> termis <strong>of</strong> pro<strong>duction</strong>'~areaad~h: -:'<br />

• per capita conslahmption. More than 90% <strong>of</strong> <strong>the</strong> <strong>Ch<strong>in</strong>ese</strong>: cabbage har-Vested <strong>in</strong> Korea is used ":<br />

f o a i n k n c h i ' a e m n e i e d s en a ll yea r ro u nd•b y virtu ally' e v e r y fa nvly In ". .<br />

!i:i , j.-<br />

Taiwan <strong>Ch<strong>in</strong>ese</strong> cabbage is very pO')Llar; an annual pro<strong>duction</strong> ar~ea <strong>of</strong> 9000 ha is econd only<br />

to common cabbae.[<br />

i 'Ch<strong>in</strong>~ese Vegertale cabbage <strong>of</strong>C(mg)Cbag<br />

is favored b}small fan'ers <strong>in</strong> easternAsia because <strong>of</strong> its short cropp<strong>in</strong>g :/<br />

Sduratioi~. It is ant efficient food pr'oducer, a good cash crop, a:<strong>in</strong>appetiz<strong>in</strong>g food itemn, <strong>and</strong> a valuable•<br />

:::,, : : isourc:e <strong>of</strong> calcium, crude fiber, <strong>and</strong> vitanl<strong>in</strong>'C <strong>in</strong> <strong>the</strong> hluman diiet (Tab)le 1). In <strong>the</strong> tropic~s<strong>and</strong><br />

::- ... , sutropis, <strong>the</strong>re has been a considerable <strong>in</strong>crease <strong>in</strong>pro<strong>duction</strong> <strong>in</strong><strong>the</strong> past decade because <strong>of</strong><br />

:-- ::. ":.<strong>the</strong> avaiabilty <strong>of</strong> new, tro~pcally adapted varieties. However, <strong>the</strong> ulk <strong>of</strong> tie <strong>Ch<strong>in</strong>ese</strong> cabbage.<br />

,*:.* seeds <strong>in</strong> <strong>the</strong> tropics<strong>and</strong> subtropcs are stll tmrport(-',;Wtth <strong>the</strong> much needed boost <strong>in</strong> <strong>the</strong><br />

!/:: : ' develpment <strong>of</strong> seed pro<strong>duction</strong> technology <strong>in</strong> :<strong>the</strong> -tipics <strong>and</strong> 'Aiubtropics .<strong>in</strong> recent years, "<br />

• • ")- t ': pro<strong>duction</strong> <strong>of</strong> this crop is expeced •to exp<strong>and</strong> significntly <strong>in</strong> <strong>the</strong> tropical lowl<strong>and</strong> areas .<br />

e',:<br />

!::::: : =[ Table . Nutrient composition <strong>of</strong> some Brassica vegetabes (n 10 g o f'edbe porton).'<br />

' : : *<br />

i [ : ) : ,M oisture Prote<strong>in</strong> Fiber , Calcium Iron '.Vitam<strong>in</strong> A Vitam<strong>in</strong> C<br />

(1/0 W! W (mg (mgVgea), (jig carotene eq) {a)'. •<br />

94.2 th 2es6 te n A305I 53<br />

c e.ampestrig subsp ch<strong>in</strong>ensis 1.7 most7i02n<br />

2045 n 60r h n<br />

p orach<strong>in</strong>ensis 93 17 2 r 0c8 109 rii3.It<br />

ti",B orpestris subspw<br />

95t0 afte4 06 L 49 07. <strong>in</strong>890<br />

38<br />

Bcampestovs subsp, pekuensis<br />

n it isar 55 w on 0 .8 a0to<br />

a f280 a s a46<br />

<strong>in</strong> al er c rya r fc t ure culi e c<br />

l4 <strong>in</strong>sop u 7area1 <strong>and</strong><br />

"Bnoler ca iargedmifer y 85t2 i.p63s t40 v<br />

/ :: : ' B, oleracea var, talca 89 .1 ,,4 ' 0 8 86 . 4 685 111<br />

i :, : B oleracea var, botrytis 90 5 2.8 0 9 30 10 55 " 72 :<br />

. . ... B juncea " 9 1B, " 2 4 1.0 160 2 7 1825 " 73<br />

.ia 1972. Food <strong>and</strong> Agriculture Organizat<strong>in</strong>g Unted Nations <strong>and</strong> US Dept. <strong>of</strong> Healthd<br />

erdcao p sit<strong>in</strong> Table for Use io East,<br />

te<br />

Orig<strong>in</strong> <strong>and</strong><br />

Distribution <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong><strong>Cabbage</strong><br />

"Head<strong>in</strong>gC h<strong>in</strong>ese cabbage is<strong>the</strong> sm l genus <strong>in</strong> e Brly astern Asiaa ea us a nntirs ot s or t cron .<br />

B~~~~~~~~~~~ 9, sup . . 9 07803 ,aneti Ieiess <strong>the</strong> Mediterranean areaI<strong>and</strong><br />

Itsprogentor form, B. campestrs, s beiived to have evolved i<br />

blater been<strong>in</strong>trodced to nor<strong>the</strong>rnEurpe hnreaitws iproved as an oil seed cop (Nish 1980).<br />

BVlicivr oiaa9,0.16 08 .5 ihtdiffeientiated<strong>in</strong>to 08204 varios s<strong>in</strong>uspe tes<br />

After <strong>in</strong>t gmmifea fpodutioion ~erc~a thn2,000 3. years 16 ag, II B vr. 852 . 40 14507<br />

(reio n92 Both B campesrssubsp erapa (turnip)<strong>and</strong> B jhunevp(musiard)wereaecorded<br />

i ti f se h gentury.AD B cam<strong>Pe</strong>strissubSp fap<br />

<strong>in</strong> <strong>the</strong> fifth cntrent<br />

cmta~s<br />

growq ,nly, <strong>in</strong> nrth Chiri. On <strong>the</strong> <strong>the</strong>nh<strong>and</strong>, B,campestrissubsp. c<strong>in</strong>ensis(nonhead<strong>in</strong>


2 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

<strong>Ch<strong>in</strong>ese</strong> cabbage) was cultivated only <strong>in</strong> south Ch<strong>in</strong>a, at least for 1,600 years. The loose-le:aved<br />

head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage (B. can<strong>Pe</strong>stris subsp. pek<strong>in</strong>ensis) was first illustrated <strong>in</strong> te 10th century<br />

A.D., <strong>and</strong> a clear illustration <strong>of</strong> <strong>the</strong> head<strong>in</strong>g shape <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage with wrapp<strong>in</strong>g leaves<br />

was first recorded <strong>in</strong> 133() (Jiang 1981, Li 1981). Much <strong>of</strong> <strong>the</strong> evolution <strong>of</strong> head<strong>in</strong>g Chi:,esc<br />

cabbage took place <strong>in</strong> Ch<strong>in</strong>a from about 600 years ago. l;i(1981) suggested thai B. campestris<br />

subsp. pek<strong>in</strong>ensis might have orig<strong>in</strong>ated <strong>in</strong> central Ch<strong>in</strong>a where subsp. t'ap <strong>and</strong> subsp. ch<strong>in</strong>ensis<br />

were commonly grown toge<strong>the</strong>r <strong>and</strong> had ample opportunity to <strong>in</strong>terbreed.<br />

The first record <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage <strong>in</strong> Korea dates back to tile13th century. Howevcr,<br />

head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbag,- did not bccome one <strong>of</strong> Korca's most important vegctablCs Untii tile<br />

19th century (11yo 1981). B. catnlestrissubsp. p'k<strong>in</strong>en'n.sis was first <strong>in</strong>troduced <strong>in</strong>to Jpanpa from<br />

Ch<strong>in</strong>a <strong>in</strong> 1866. It was not until 19)20 that <strong>the</strong> stace \sas set fo0r cultivar developtment <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong><br />

cabbage <strong>in</strong> Japan (Wata<strong>in</strong>alk I981).<br />

Nonhead<strong>in</strong>g B. 'amnpstrissulbsp. '.ilnc.si. wls <strong>in</strong>troduced to tihe Stra i N'alacca ill <strong>the</strong><br />

15th century. Recently, it has becomre piprular illMalaysia, Idoi. ; ia, <strong>and</strong> western India. On<br />

<strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, haClditir B. mpe.tri.s subsp. pAmken.sis is a late <strong>in</strong>tro<strong>duction</strong> to So<strong>the</strong>ast Asia.<br />

It is grown nrostly dl'<strong>in</strong>lg tIl , dry easn ill<strong>the</strong> tLbltF0pical hwlns. ,<br />

t thirough1out <strong>the</strong><br />

year <strong>in</strong> <strong>the</strong> tiropical high1l<strong>and</strong>tl aLeAs. \With tile IcCcit dCv.elo)lllcll <strong>of</strong> heat-i ,ler;<strong>in</strong>t varieties.<br />

pro<strong>duction</strong> .) this crop has bcoit, Ilasible <strong>in</strong>l tile !rrOiaicl lwladllrlleas.<br />

The cultivatil ianild p)eculi:arilics Of B. caolW.m-i.x subsp. Icor)(AiI.i. wcrc dcsc ribed <strong>in</strong> [raice<br />

islong ag as 1,8)10 by pi. wehon said thal, 'while Ih,plant had beeii koi % n t t)iicai, b u<br />

gardens i'or20 years, it was br ulit to noltice as a cilill s ectlthle ()iilv thre-e years before'<br />

(Bailey i928). It was first <strong>in</strong>lrodiuced to I'aliglilld ill 1< 7. ll lt w ISA it bec'ill to attlracl attention<br />

alout 1883. iid a fillst crYo\nl by I. 11. Blail:v ill I893 lisili- a seed flotiKew. [iigl<strong>and</strong>.<br />

litrecc-nyt ears B. coroe.\li.s ,ubsp. 1wkiri, a id stibsp. c/rlrr,eo have sprlcad widely<br />

outside Asia. iililv tllrotill orielntal iltl i o_i llm t eri iiorus. ( 'h<strong>in</strong>ese cabbaue is e:ill<strong>in</strong>g<br />

More iX)l)ularil. ;11110on' ,i lron oricntail people cpeciallN illNorllh Alm il: i<strong>in</strong>d \kcsteril Elulrope.<br />

It is now ccorrlli<strong>in</strong>l lirll," estu;blisied ais a e1c1mibl- cop iil ary part t tileteiipertC region.<br />

Biosystematic RelationsWp among <strong>the</strong> Brassica Species<br />

The gCuiS B,-1vi.Co 1 i. coruptisCi ( t)' .c ilcor'Oulllicall\ I ortilw t t 'c'ieswhich yield<br />

edible rOrts. stelir, lcavts. bUds. I]k\sr.' ai1d seedls: soni1c are ul~tsed l l.nar il seed chrljs.<br />

The taxmurlliVii ti t1c / i 11i is c lpli ttcd. 'iis cellus is coumruprised (1'i\ spccies three<br />

are cmm.iclctr b lsic sp:cie, ilnd tieIc t arc illiplhidiploid tfo[ils Fi. I).lhre three eleri nir<br />

species. <strong>the</strong>ir cllliouiilc Inirribes, ;arid ,cm<strong>in</strong>icr rrorrrIereitn1re,s arc: B. <strong>in</strong>iignu Koch (black<br />

mnrustard, ii 8. ec- 'oiel 1c3!e i; B. B.ror ,,en, c , I.. L. ((.(olrlie I ( : aid ll B B. calli;esirtis<br />

I.. (turnip arid ('hiris c'bg gih oit' ri. i1 I1). ge'ili rll- A). Tlhe alirphidiploids are: B. e'oiurlata<br />

Braun (Ethiopia: mustard, ii . 17. !,1i10rieC I(. B, untq.r I . s wes. ripeLC,rutalbigas,. 1)<br />

19, geno<strong>in</strong>r e AC). i:id B. . rriom(I .i(','r . bim <strong>in</strong>rllutaodl. ii X,.cilollie All). lvidently.<br />

<strong>the</strong>y orig<strong>in</strong>ated <strong>in</strong> llture lirolli ciss, tscccli tire e.'lelrilCrtaN speics. Alioig those with 9.<br />

10 <strong>and</strong> 18 chror:osollies. <strong>the</strong>re are alllly',) v s cis. bttiiiea:il varleties Orcoups (Tahle 2),<br />

Those with 1) Or 18 clriloillosorie. ailUl with a


Taxonomy <strong>and</strong> Relationship among <strong>the</strong> Brassica Species 3<br />

Table 2. Common vegetables <strong>and</strong> some related varietal or subspecific taxa <strong>of</strong> <strong>the</strong> genus Brassica.<br />

Brassica sp. (n) Subsp. or var. Common name<br />

campestris (10) subsp. ch<strong>in</strong>ensis pak choi<br />

subsp. nar<strong>in</strong>osa broad beaked mustard<br />

subsp. nippos<strong>in</strong>ica<br />

subsp. oleifera turnip rape<br />

subsp. parach<strong>in</strong>cnsis choy sum<br />

subsp. pek<strong>in</strong>ensis Ch<strong>in</strong>e!_- cabbage<br />

subsp. perviridis mustard sp<strong>in</strong>ach, tendergreen<br />

subsp. rapifero or ropa turnip<br />

subsp trilocularis sarson<br />

subsp. utilis<br />

juncea (18) var. copitata head mustard<br />

var. crispifolia cut leaf mustard<br />

var. fociliftoru broccoli mustard<br />

var. lapitato large petiole mustard<br />

var. multiceps multishoot mustard<br />

var. oleifera oii seed mustard<br />

var. rapifera root mustard<br />

var. rugosa leaf mustard<br />

var. spicea mustard<br />

var. tsa-tsai big sten', mustard<br />

oleracea (9) var. acephala kales<br />

var. alboglabra <strong>Ch<strong>in</strong>ese</strong> k.-,L,<br />

var. botrytis cauliflower, head<strong>in</strong>g broccoli<br />

var capitoto cabbage<br />

var. costata Portuguese cabbage<br />

var. gemmifero brussel sprouts<br />

var. gongylodes kohl rabi<br />

Sources: Anonymous 1985; Terrell et al 1986<br />

var. italica broccoli, calabrese<br />

var. medulloso marrow stern kale<br />

var. palmifolia kale, Jersey kale<br />

var. ramosa thous<strong>and</strong>-head kale<br />

var. sabauna savoy cabbage<br />

var. sabellica collards<br />

var. selensia borecole<br />

edible. This subspecies is not far evolved frmn <strong>the</strong> oil seed rapes <strong>of</strong> Ch<strong>in</strong>a which are supposed<br />

to be <strong>the</strong> co<strong>in</strong>ion pr ,genilor <strong>of</strong>all (he leafy vegetables <strong>of</strong> B. campe'.stris (except subsp. japonica<br />

which uray have b:1(1 aIhistory <strong>of</strong> <strong>in</strong>tgtires,;ion fron <strong>in</strong>ustard -- B.,jc'a). In India . camplestris<br />

<strong>and</strong> its derivative (commonly called 'sarson') are grown as an oil seed crop.<br />

Brassica campestr.s subsp. ch<strong>in</strong>ensi5. This subspecies is commonly re"Crred to also as<br />

<strong>Ch<strong>in</strong>ese</strong> cabbage. This group is made up ma<strong>in</strong>ly <strong>of</strong> nonhead<strong>in</strong>g types. Where head<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong><br />

cabbage cannot be gro wn ow<strong>in</strong>g to u suitable envi ronLment for heamd l'Ornation, <strong>the</strong> nonihead<strong>in</strong>g<br />

types :are <strong>of</strong>ten popular. There aie several recognized types: narrow petioles with round cross<br />

section vs. wide petioles wilL flat cro!,s section, white vs. green petioles, variation <strong>in</strong>size, fbiiage<br />

color, etc. Varietal differentiation <strong>in</strong> this subspecies has been remarkably <strong>in</strong>ore pronoun..-d tha::<br />

<strong>in</strong> any o<strong>the</strong>r leafy vegetables <strong>of</strong> tiLe genus Brassica.<br />

Brassica campestris subsp. japonica. This subspecies is one <strong>of</strong> <strong>the</strong> unique vegetables <strong>of</strong><br />

Japan. This subspecies is typically characterized by an excess <strong>of</strong> basal branches <strong>and</strong> leaves.


4 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

6.juncec B. competris B. nopus<br />

Figure I.<br />

Genomic relationship <strong>of</strong> Brassica<br />

BC_ taxa based on chromosome numbers.<br />

(Species with s<strong>in</strong>gle circles<br />

are monogenomic, while those<br />

B. car<strong>in</strong>yo with double circles are amphidiploids).<br />

Two types are dist<strong>in</strong>guished: "Mizuna', with deeply dissected, bip<strong>in</strong>nate leaves <strong>and</strong> 'Mibuaa',<br />

with slender entir,.' leaves. The forn *ion <strong>of</strong> subsp. japonica is thought to have <strong>in</strong>volved sonic<br />

<strong>in</strong>trogression from <strong>the</strong> niistard group. I. juwca iMaitsuniura 1954). This vegetable resembles<br />

B. junr'ca <strong>in</strong> petiode <strong>and</strong> sililqUc ctflrniat i ,, <strong>and</strong> sed siie <strong>the</strong> l1mver slalks <strong>of</strong> both are not<br />

eflLlosed by leave.<br />

Brassica camnpestris ssp. nar<strong>in</strong>osa. This sutp.c.::cs is commonly known as <strong>Ch<strong>in</strong>ese</strong> flat<br />

cabbage. The plant is generally low, con pact <strong>and</strong> sctcit, prod,,c<strong>in</strong>,, clusters <strong>of</strong>tnick, oten wr<strong>in</strong>kled<br />

leaves with broad, white petioles. This subspecies is well kmwn fur its cold tolerance. The<br />

crisp leaves <strong>and</strong> thick petioles are excellent for preparation as -t boiled vegetable.<br />

Brassica camnpestis subsp. oleitera. This subspecies is an oil-yield<strong>in</strong>g crop. The plants<br />

hove many branches, with exceed<strong>in</strong>!ly well-devc1oped si litns <strong>and</strong> seed.<br />

Brassca cimpestris subsp. paract<strong>in</strong>e<strong>in</strong>sis. This suhspecies is referred to as flower<strong>in</strong>g<br />

<strong>Ch<strong>in</strong>ese</strong> cabbage ard cois ide red a derivative <strong>of</strong>subhsp. ch<strong>in</strong>uleis because <strong>of</strong> similarities <strong>in</strong> petiole<br />

morphology. However, subsp. parach<strong>in</strong>mensims'readily bolts <strong>and</strong> branches pr<strong>of</strong>usely from <strong>the</strong> leaf<br />

axils. The flower<strong>in</strong>g stalks constitute <strong>the</strong> ma<strong>in</strong> edible Oortion.<br />

Brassica campestris subsp. pek<strong>in</strong>ensis. This subspecies comprises ma<strong>in</strong>ly head<strong>in</strong>g types<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage. Ileads arc marketable parts: <strong>the</strong>y vary <strong>in</strong> degree <strong>of</strong> _'ompactness <strong>and</strong> may b;<br />

divided <strong>in</strong>to loose, semihead<strong>in</strong>g. <strong>and</strong> completely head<strong>in</strong>g types. Fur<strong>the</strong>r variation <strong>in</strong> head shape<br />

can be noted, e.g. long, short, tapered, round or iat top, wrapped-over or.jo<strong>in</strong>Lted-uip leaves, etc.<br />

Brassica campestrs subsp. rapa or rapifera. Ihis subspecies is commonly called turnip.<br />

This group is cultivated ei<strong>the</strong>r as a vegetable or fodder. They grow best <strong>in</strong> a cool climate <strong>and</strong><br />

many diverse ecotypes occur, especially <strong>in</strong> Japan which is considered one <strong>of</strong> <strong>the</strong> major r'enters<br />

<strong>of</strong> varietal developmernt (Nishi 1980). S<strong>in</strong>ce <strong>the</strong> cultivation <strong>and</strong> utilization <strong>of</strong> turnips <strong>of</strong>ten overlap<br />

with radishes, <strong>the</strong> greater productivity <strong>of</strong> <strong>the</strong> latter reduces <strong>the</strong> relative importance <strong>of</strong> turnips.<br />

Classification <strong>of</strong> world turnips <strong>in</strong>to different types have been proposed by several workers (Nishi<br />

1980, S<strong>in</strong>skaja 1928, Vaughan 1977). Generally, Asian types can be dist<strong>in</strong>guished from European


Evolution <strong>and</strong> Variation <strong>in</strong><strong>Ch<strong>in</strong>ese</strong> _'ahbage 5<br />

types because leaves <strong>of</strong> <strong>the</strong> former tend to be entire <strong>and</strong> glabrous. The well-developed tap root,<br />

<strong>the</strong> edible part <strong>of</strong> Asian cultivars, <strong>in</strong>dicates <strong>the</strong> great improvencnt, made dur<strong>in</strong>g its history <strong>of</strong><br />

cultivation.<br />

Evolution <strong>and</strong> Variation <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> Cibbage<br />

Although B. ufarSrInarig <strong>in</strong>atCd ill <strong>the</strong> NICditerra ncan area <strong>and</strong> was only <strong>in</strong>troduced to<br />

Asia through nor<strong>the</strong>rn |uropc, <strong>the</strong> most significant changes illform, structure, <strong>and</strong> productivity<br />

<strong>in</strong> this species have OCCtrred illcastern Aski through artificial albeit perhaps unconscious, selection<br />

by growers. As roted eir licr, {hcre arC tIWO ma<strong>in</strong> grVUlps <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage: head<strong>in</strong>g group<br />

or <strong>Pe</strong>-tsai (B. COuM'AaIIi. !,xublhv. /,'kii'nsi. , arid tie rioniheatl<strong>in</strong>g group or Pak-choi or Bok­<br />

chov (B. 'rtil)rI sni>p. rhill .', iS). The riarures PC-tsai <strong>and</strong> Pak-choi MIok-choy) bolh rlean<br />

'white vegetable' if' ('h<strong>in</strong>ese laurgnaucs, Pc-lsai is lie Bcij<strong>in</strong>g (<strong>Pe</strong>k<strong>in</strong>g) or M<strong>and</strong>iarir- dialect, while<br />

Pak-choi (Bok-chrey) is <strong>the</strong> ('aCitoriesC dialct. ('h0i-sittiI, Which iiea<strong>in</strong>s 'vegetable heart" <strong>in</strong> tlre<br />

Cantonese dialect, is a l11we rrig (h<strong>in</strong>cse c'ahibage M1. cumrl 'stri. sribsp, parewchilrt si.o- M0anty<br />

<strong>the</strong>r synonyrirs <strong>and</strong> spelliila'2 exist 1or Ihese 'rnpa <strong>of</strong> (J :'we cabbage <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> languages<br />

(Table 3). For formial duffrentiatirr. Chirv:,c cabbhaic i,rclCrred to W-. R. (,'Mu/i/Ntris sni1sp.<br />

p'k<strong>in</strong>cnsi.s fii this bull t<strong>in</strong> .<br />

Table 3. Various vernacular naimes <strong>and</strong> stelngs <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbages <strong>in</strong> two <strong>Ch<strong>in</strong>ese</strong> dialects.<br />

Srrh-,pe ..ies. ('hltr llt'ht'<br />

­<br />

[P<strong>in</strong>s' <strong>in</strong>1 WVrdt-(;ilts<br />

srhap, k ti , lit kj, pIl1 - \i bar1.,r Islail %,11c pc (w p r;!l Isai (wlile vcg.),<br />

ch<strong>in</strong>iensis tsol. paak-tsoi, or baak- veg I, bal-cal (whirl: veg ), islao (or 6 pe-tsari (small<br />

Cho. (white vey ,,irq,-cm (giecu vel' white v,'<br />

subsp. chor-sUrM or tson-sour vwg caXixn (veg heart , cai- tsai-hs<strong>in</strong> (or s<strong>in</strong>) (veg. heart),<br />

porachmensis heart - paI), [so si til (vep, bra',s ci), cal-puan tsai-tal (ve)' brassica)<br />

(wlite ,el heart) vig ti1)<br />

subsp. won,-nga-pak iye:llow da-bai-Cai (big white veg, I chieh-chiu-pe-t,,a (head<strong>in</strong>g<br />

pek<strong>in</strong>ensis sprouted white), dlrr-t,¢o, i.-<strong>in</strong> bar-Ca (had<strong>in</strong>g white white veg., pau-hs<strong>in</strong> (or s<strong>in</strong>)<br />

(tihev , ) worlw-bolk vu.' ) -pa-tr (wrapped heart<br />

(yellow white) white ve ) ta-pe (or pai)tsai<br />

(big ,white veg.)<br />

'The Beirlm or Pi-lir ,r dil t 1, I nj it I rfiil lit Ch<strong>in</strong>a anid" alwan. Piiyi<strong>in</strong> r oli l/atiCIn , a',w d if) Ch<strong>in</strong>a <strong>and</strong> W ide­<br />

Gilesromaiuzatio n i . r c%,.i tIVl/<br />

leadirre ( 'h)ie1sC iahtadc is hClieved l to lirC, as its priilitis C frir,:r rt irise-leaved lOf<br />

nliticadiri) t\ rnl un shii pri rissuvivdy Cuipact IC;i lIV)c furthC e,'osied. I i (19)81)<br />

hvpnrtihCsiiZCdl tIht lI: c lerCillrar cultiv;tCd I'hrrr1. a It ri.'s-h"iIctt c riCta wihici he cailed Var.<br />

di..sola, -was rpnohah\ pn<strong>in</strong>duced tIrr h tire natural irhridi/atiur hetween l'ak- hoi UB.<br />

hrr'atnlt'.ri. suisp. rhiir'naa.s+alld all<strong>the</strong>l siisi)eeies <strong>of</strong> l. t-<strong>of</strong>'+ ura.- tBIe trirrp (Bi. '(i'nl)tl'sri.<br />

sihsp. rapjriz-1r). This hvhrud cV'tivCti .sncesusi\ClN <strong>in</strong>t al .'llitdir2 variclv, <strong>the</strong>n to a fluffytopped<br />

hacad<strong>in</strong>g cariety <strong>and</strong> fitnally <strong>in</strong>to tire ,orirpilCl\ hUIedmiilI tp'eW. Illai tih'cIrpletelv<br />

licad<strong>in</strong>re sorts has<br />

(Watariahe 198 I<br />

lhtr<strong>the</strong>r ditfCrenitiated <strong>in</strong>tr; varitis typles irairrh' thrar1,gir hrriciS' irtCrv'ntimnn<br />

Accurlirie to <strong>the</strong> shape. sie, ard oirgari/atior <strong>of</strong> <strong>the</strong> icad, <strong>the</strong>re arc three pr<strong>in</strong>cipal patterns<br />

belong<strong>in</strong>g to litrCc sarictic, s descr:hcd helw eTsen <strong>and</strong> Lee l142. lce 1984, Li 1981).<br />

Numerotus varieties have herr funlier developed frotm <strong>the</strong>se three varicties (Wig. 2).


6 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

D, D<br />

The evolution <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage<br />

X ~ ~ (Brassico corm pestris subsp. pekirrensis): (a.)<br />

va,. dissoluto; (b.) var. <strong>in</strong>forcto: It.) vat.<br />

CDI CD 3 loxa; (d.) var. cepholato, Dt f. ovata,<br />

I D 2. f.depressa, D 3 . f. cyl<strong>in</strong>drica, CDj.<br />

IAV" ! var. laxa xf. ovato, CD 3. vat. laxa xf.<br />

,K .cyl<strong>in</strong>d,'ica, D!D 2. f. ovata xf. depresso,<br />

D, 2 D,D3 [),D DiD3. ovata xf. cyl<strong>in</strong>drico, D 2D 3. f.<br />

depressa xf. cyl<strong>in</strong>d,-ica (from Li 1981).<br />

Brassica campestris var. cephalata. This variety is <strong>the</strong> most common pattern <strong>of</strong> head<strong>in</strong>g<br />

<strong>Ch<strong>in</strong>ese</strong> cabbage. The large compact heads may be ovate or ohovate <strong>in</strong> shape. The head leaves<br />

curve <strong>in</strong>ward <strong>and</strong> overlap at lie top. Head shape can he classified <strong>in</strong>to rorund, ovoid, anrd flattened<br />

types.<br />

Brassica campestris var. cyl<strong>in</strong>drica. Tlis variety ruirms a compact head which is elect<br />

<strong>and</strong> clongaled <strong>in</strong> shape, <strong>and</strong> with or with(out head<strong>in</strong>g leaves over <strong>the</strong> top. The heads are more<br />

or less po<strong>in</strong>ted at <strong>the</strong> top <strong>and</strong> spirally wrapped.<br />

Brassica campestris var. laxa. This variety forms a loose, open head, known as 'flowery<br />

hearted type'. The tip <strong>and</strong> <strong>the</strong> upper marg<strong>in</strong>s <strong>of</strong> <strong>the</strong> head head leaves n ay he erect or curled<br />

outward, <strong>and</strong> are yellow or yellow-white <strong>in</strong> color.<br />

In addition to <strong>the</strong> variation <strong>in</strong> head type, <strong>the</strong> suhsp. jwkihwnris shows tremendous differences<br />

<strong>in</strong> o<strong>the</strong>r important traits such as maturity, head weight, head compactness, leaf flurnher, <strong>and</strong><br />

leaf color (Lee 1984, Watanabe 1981). The period from sow<strong>in</strong>g to head maturity <strong>of</strong> head<strong>in</strong>g<br />

<strong>Ch<strong>in</strong>ese</strong> cabbage can range from 55 to over 110 days under favorable conditions depend<strong>in</strong>g upon<br />

<strong>the</strong> genotype; with<strong>in</strong> this range varieties can he divided <strong>in</strong>to different riraturi ty groups. Plant<br />

weight, exclud<strong>in</strong>g <strong>the</strong> root part, can be as light as a few hundred grants <strong>in</strong> sonic varieties, <strong>and</strong><br />

as heavy as 10 !,:g or over at <strong>the</strong> o<strong>the</strong>r extreme. Leaf number may be as few as 20 <strong>and</strong> as numerous<br />

as 150. A considerable variation with respect to bolt<strong>in</strong>g <strong>and</strong> head formation has also been<br />

recognized <strong>in</strong> resxnse to temperatdre. The available variations <strong>in</strong> <strong>the</strong> above attributes are essential<br />

to <strong>the</strong> genetic improvement <strong>of</strong> head<strong>in</strong>g Cit<strong>in</strong>ese cabbage.


General Botany <strong>and</strong> Reproductive Biology<br />

Development <strong>and</strong> Growth Stages<br />

Ch<strong>in</strong>c,,c ca:ibhac plnts pa6s doHti'l, \ari3nS growth, hases or stages <strong>in</strong> <strong>the</strong>ir development.<br />

The growth stage., are aimotel <strong>the</strong> t005t illifportillt varialhles <strong>in</strong> a:,sess<strong>in</strong>g varietal characteristics,<br />

nIiaturityV, yield potcnitiAl, <strong>the</strong> impact 0t disCeasc Or <strong>in</strong>sect dImII.C, sced-pro<strong>duction</strong> potential, etc.<br />

In dCsign<strong>in</strong>ig Isefil growth Stages. <strong>the</strong> dcscription (t, <strong>the</strong> variolls phases nust corresplond to clearly<br />

rccognizahle fcatures <strong>of</strong> die species ( Fi,'. 1). The f ltowilg srages, a11hough not formally<br />

rCettgniitL. arc Iro(1lcIotl, usedt 143dICric thc ,various Vrowth phase" <strong>of</strong> Chilnese cahhac. The<br />

actual tille it take- toICvch01 hto lOp. OFICUC ,Mot<strong>in</strong>cr depends on variety, wca<strong>the</strong>r, <strong>and</strong><br />

nianiage<strong>in</strong>ent practices.<br />

-... '?'.,- ,,.\, . ./I<br />

4 ­<br />

.:t + ,,--.-, +,,<br />

.:--.3..)"; 3;]" i<br />

6N<br />

z + +y ><br />

Sa '( ... "," : a '5:' . '<br />

',- u "<br />

-"1ifi©"<br />

Figure 3. Growth starges <strong>of</strong> Chuie'se cabbage for crop a<strong>in</strong>d seed pro<strong>duction</strong> purposes:<br />

()emtergenCe stage; ')) seedl<strong>in</strong>ig stage; (3) head<strong>in</strong>g stage: (4) harvest<strong>in</strong>g<br />

stage; (5) flowiur<strong>in</strong> g ;Je; <strong>and</strong> (6) IIr,~ i slod seed stage.<br />

Emergence stage. (;ctnrilli3tm scecqires vc5t,5te. g2n. <strong>and</strong> Suitable tlillperatul'. .<br />

Once <strong>Ch<strong>in</strong>ese</strong> cabbac seed, al,,orh water Up to 'a4)"' to351 Iltoisture colitelit, <strong>the</strong>y erCllillate<br />

rapidly. '[le radicle sit liIer_iCes out Of <strong>the</strong> S',.d. usualy ahout 24 hoturs atter <strong>the</strong> seed has


8 <strong>Ch<strong>in</strong>ese</strong> Ca.bage <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

tatken <strong>in</strong> water under optimuM temperatures. After <strong>the</strong> young root has grown 2-3 cm <strong>in</strong>to <strong>the</strong><br />

soil, <strong>the</strong> seedl<strong>in</strong>g beg<strong>in</strong>s to grow upward. The hypocotyi emerges .irst at <strong>the</strong> soil surface, <strong>and</strong><br />

<strong>the</strong> two cotyledons 1 unoId at <strong>the</strong> top ,f <strong>the</strong> hypoqity l, <strong>and</strong> <strong>the</strong>n part ald extend. II o)ptlnulnn<br />

envirometrt., <strong>Ch<strong>in</strong>ese</strong> cabbage seedi<strong>in</strong>gs take Three to toe r days. to emerge above tie soil.<br />

<strong>Seed</strong>l<strong>in</strong>g stage. The first Iwo true leaves develop hCI\hcen <strong>the</strong> Iully eXtenrded cotyledons,<br />

<strong>and</strong> <strong>the</strong> plant beg<strong>in</strong>s to carry otlt photosyntlesls. Later, nIny' c;rves are lortti.d at <strong>the</strong> grow<strong>in</strong>g<br />

po<strong>in</strong>t without Much <strong>in</strong>crementI <strong>in</strong> lei!ht. l'hre are nlirnillylfive leaves <strong>in</strong> twvo whorls 'uong<br />

early-nirtur<strong>in</strong>g va-icties, <strong>and</strong> eiht leave <strong>in</strong> three whorl', .aong late-natur<strong>in</strong>g ones. 'rIrnsplants<br />

are usudly set out to <strong>the</strong> field ;at this ,agae.<br />

Rosette stage. The t\,O Milst ort , Vorls, l tM]heI lIlaves are rItlly expamded <strong>in</strong>to rosctle,<br />

nonhead<strong>in</strong>g leaves <strong>in</strong>Imore or icss hIli/ontal position <strong>and</strong> close to rhesoi! sirface. New leaves<br />

are ont<strong>in</strong>lliallllo HrCd at tie ,wl;hiwipult. 'he <strong>in</strong>er st;I'to tav'e aI ro molr uiprieht, usually<br />

tiLdeI shaded Colldititls,. aIltel n.C\ V11o1' , <strong>of</strong> lc;eIt2S ha\Ve 1.arowll.<br />

Head<strong>in</strong>g stage. TiRe c)1 assnr.'Si> 1rr,!I kctahl sh]ape it tlis sIrge. ILcadhIrL begi;is at about<br />

tile 12th to I3tir leaf 1Oec arls -raittu <strong>in</strong>, \',,rrctiks iorIrc 24th to 25th leaf statee for laterIlatllill'<br />

OlC-, whCIr tile Wou tl " . lr rt11110,I leax , s rlr 10 <strong>in</strong>ctirve anld touch it <strong>the</strong>ir tips. As<br />

ICW lCaves r'rlli ;lld eL-palld afotnird ti12 \tictAl central asis ol' thre p1lan:1t. tIih r argirIs becorlne<br />

tcnpln riily CntrapeLd ;eilit <strong>the</strong> uprigll Ila\c . Ill tirL' cartly sta!CS ot rc;,d ftolIllatiOl, <strong>the</strong>se<br />

:CllIioratil'v + crtrapped fir (.1;ves unfldI 101d, icCOriC rpright. arid roll out\ard to develp <strong>in</strong>to<br />

<strong>the</strong> oat .'r head leaves. ,. ,,oic leaxoe, are produccd <strong>in</strong>-re I ntcr. tlncv briccori c <strong>in</strong>creas<strong>in</strong>gly<br />

CeItraptlpCL until tI ey rcuriajir fldCd iln <strong>the</strong> e'Crter It l'u1rr I conlpact iratLrC head. There is<br />

a l<strong>in</strong>ited <strong>in</strong>lCiasC <strong>in</strong> iciglt il Ihis stage.,<br />

The yourng hrcnrd CrMs Lst ,rid h1<br />

ttite plat aStiles its charactetistic head<strong>in</strong>g shiape.<br />

ill ,i/ tIlltil <strong>the</strong> iriaxirirurrir size aid f'irirniess have<br />

bCC rcachCd, alild it is ready ltr IrnIt'rsts<br />

Flower<strong>in</strong>g stage. Flo er <strong>in</strong>itiaiioir tiolk.lplacc ei<strong>the</strong>r belore or af'ter head<strong>in</strong>g depend<strong>in</strong>g upon<br />

<strong>the</strong> terper'ature Mid or il)lotopcrid dur<strong>in</strong>g <strong>the</strong> gromth period. The ste<strong>in</strong> normally elongates<br />

(bolts) as <strong>the</strong> flower buds <strong>in</strong>itiate <strong>and</strong> develop.<br />

Silique <strong>and</strong> seed stage. Aftcr he rtilization, tihe endtosperi <strong>and</strong> <strong>the</strong> siliques conta<strong>in</strong><strong>in</strong>g 10-25<br />

seeds develop rapidly <strong>and</strong> reach thcir full length <strong>and</strong> diameter with<strong>in</strong> three to f'our weeks. The<br />

fuilly developed siliiUles reqLlui re about two weeks to mature.<br />

Morphological Features<br />

F,,ot. <strong>Ch<strong>in</strong>ese</strong> cabbage is characterized byv a very extensive, fibrous, f<strong>in</strong>ely branched root<br />

system. As <strong>the</strong> true leaves cOrut<strong>in</strong>te to grow, <strong>the</strong> taproot grows deep <strong>in</strong>to <strong>the</strong> soil <strong>and</strong> <strong>the</strong> first<br />

lateral roots forni. The primary taproot is usually no more prom<strong>in</strong>ent <strong>in</strong> <strong>the</strong> early stage than<br />

tie o<strong>the</strong>r major laterals which arise <strong>in</strong> great numbers from <strong>the</strong> base <strong>of</strong> <strong>the</strong> enlarged underground<br />

part. At first, nearly <strong>the</strong> entire root system consists <strong>of</strong> widely spread<strong>in</strong>g branches <strong>in</strong> tie surface<br />

soil. These run obliquely downward, with <strong>the</strong> vertically descend<strong>in</strong>g laterals thoroughly occupy<strong>in</strong>g<br />

tire deeper soil zone. The root system is extremely f<strong>in</strong>e <strong>and</strong> fragile; most roots atta<strong>in</strong> a thickness<br />

<strong>of</strong> no more than 0.5 rum. Dur<strong>in</strong>g early growth stages, direct-seeded plants have a longer taproot<br />

<strong>and</strong> are better anchured than transplapts, whose root growth is mostly lateral because <strong>the</strong> taproot<br />

ends are <strong>of</strong>ten damaged dur<strong>in</strong>g transplant<strong>in</strong>g. Mature vegetative plants have a work<strong>in</strong>g level<br />

<strong>of</strong> 35 cm, to which depth <strong>the</strong> soil is well ramified with a pr<strong>of</strong>use network <strong>of</strong> active rootlets.<br />

More than 90% <strong>of</strong> <strong>the</strong> root system <strong>of</strong> a mature vege.atl ve plant are with<strong>in</strong> a 35-cra-depth <strong>and</strong><br />

40-:m-diameter soil zone. When <strong>Ch<strong>in</strong>ese</strong> cabbabe plants are uprooted <strong>and</strong> set out aga<strong>in</strong>, new<br />

roots beg<strong>in</strong> to grow. The root system dur<strong>in</strong>g th( reproductive stage is much more developed<br />

than <strong>in</strong> <strong>the</strong> vegetative stage.


1 '- ' ,O,.,"'+--0<br />

Moph'',bia Features 9<br />

Stem. Dur<strong>in</strong>g <strong>the</strong> vegetative stag, <strong>the</strong> unbranched stem <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage generally rema<strong>in</strong>s<br />

less than 20 cm long ow<strong>in</strong>g to a restricted <strong>and</strong> lengthwise grow0i at <strong>the</strong> early stage, At this<br />

time, however <strong>the</strong> stem cont<strong>in</strong>ue s to thicken. The dia<strong>in</strong>eteiCnc stem base may reach 4 to<br />

7.cm <strong>and</strong>-<strong>the</strong> stem has a ~well-developed.pith .-As.<strong>the</strong> plant reaches.<strong>the</strong>.re i stage,.<strong>the</strong>.<br />

grow<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong> stem forns <strong>the</strong> floral primordia; its lower part starts to e .longate <strong>and</strong> reaches<br />

60 to 100cm <strong>in</strong> length, There are primary,secoidary, <strong>and</strong> tertiary branches; <strong>the</strong> lower branches<br />

are usually longerthan <strong>the</strong> top brancf 's.<br />

Leaf. The leaf shape <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage changes with <strong>the</strong> growth stages, <strong>and</strong> various types<br />

can be dist<strong>in</strong>guished as <strong>in</strong>dicated below.<br />

Cotyledon: Two notched, kidney-shaped cotyledons are stalked <strong>and</strong> opposite each o<strong>the</strong>r.<br />

The food stored <strong>in</strong> <strong>the</strong> cotyledons is used dur<strong>in</strong>g <strong>the</strong> early development.<strong>of</strong> <strong>the</strong> seedl<strong>in</strong>g; th ,<br />

cotyledons eventually decrease <strong>in</strong> size, wi<strong>the</strong>r <strong>and</strong> fall <strong>of</strong>f.<br />

.."Basal leaf- :Two true leaves orig<strong>in</strong>ate opposite one ano<strong>the</strong>r at <strong>the</strong> same height, but<br />

perpendicular to <strong>the</strong> piane <strong>of</strong> <strong>the</strong>cotyledons, thus, form<strong>in</strong>g a cross shape. Basal leaves are oblong,<br />

stalked, <strong>and</strong> 8 to 15 cm <strong>in</strong>length. The basal tie leaves also drop <strong>of</strong>f after a few weeks <strong>of</strong> growth.<br />

Nonhead<strong>in</strong>g leaf: Leaves arise alternately on <strong>the</strong> axis <strong>of</strong> <strong>the</strong> enlarged, but compressed,<br />

stem. A spiral path <strong>of</strong> leaves may have five leaves <strong>in</strong> two whorls or eight leaves <strong>in</strong> three whorls,<br />

Leaves are mostly sessile. The leaf blade extends to <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> midrib to form a w<strong>in</strong>g<br />

shape. The leaf marg<strong>in</strong> is wavy, but notched at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> leaf blade. The leaves <strong>of</strong> <strong>the</strong><br />

first spiral path are small; <strong>the</strong>y contribute to <strong>the</strong> growth <strong>of</strong> larger nonhead<strong>in</strong>g leaves, The rosetteshaped<br />

nonhead<strong>in</strong>g later whorls <strong>of</strong> leaves exp<strong>and</strong> rapidly one after ano<strong>the</strong>r, <strong>and</strong> are essential<br />

for head formation <strong>and</strong> differentiation <strong>of</strong> <strong>the</strong> <strong>in</strong>ner leaves. These nonhead<strong>in</strong>g leaves aid head<br />

formation by supply<strong>in</strong>g photosynthates to <strong>the</strong> <strong>in</strong>ner leaves, <strong>and</strong> by establish<strong>in</strong>g a posture for<br />

head formation, as well as provid<strong>in</strong>g shade. to <strong>the</strong> head.<br />

Headleaf: Head leaves also form on <strong>the</strong> top <strong>of</strong> <strong>the</strong> enlarged, but compressed, stem with<br />

a similar phyllotaxis as <strong>the</strong> rosette leaves. The outer head leaves on <strong>the</strong> periphery <strong>of</strong> <strong>the</strong> head<br />

are narrow <strong>and</strong> oval with long petioles, whereas <strong>the</strong> <strong>in</strong>ner, entrapped leaves are broad <strong>and</strong> round<br />

with <strong>the</strong> ratio <strong>of</strong> leaf length to breadth approach<strong>in</strong>g unity. The details <strong>of</strong> <strong>the</strong>se changes are<br />

discussed later (see Growth <strong>and</strong> Patterns <strong>of</strong> Hea- p.10). . "<br />

,Stern leaf: Leaves arise alternately on <strong>the</strong> 0,. wer<strong>in</strong>g stem or branch. The petiole isbroad<br />

.::<strong>and</strong> compressed, <strong>and</strong> wraps <strong>the</strong> flower<strong>in</strong>g stem <strong>and</strong> branches. Leaves are lanceolate, much smaller<br />

than <strong>the</strong> nonhead<strong>in</strong>g anid head leaves, <strong>and</strong> Often' noticeably smooth.<br />

Inflorescence. Asimple, elongated, <strong>in</strong>determ<strong>in</strong>ate <strong>in</strong>florescence bears stalked or pedicelled<br />

flowers <strong>in</strong>term<strong>in</strong>al racemes cli <strong>the</strong> ma<strong>in</strong> stem <strong>and</strong> its branches. Individual flowers are supported<br />

bypedicels attaclhed to <strong>the</strong> ma<strong>in</strong> axis <strong>of</strong> <strong>the</strong> <strong>in</strong>florescence. The ir.florescence may atta<strong>in</strong> a length<br />

<strong>of</strong> ca m but <strong>the</strong> slender pedicels are only about 1-1.5 cm long.<br />

Flower. Flowers are bisexual <strong>and</strong> perfect Dur<strong>in</strong>g differentiation four sepals, six stamens,<br />

two carpels, <strong>and</strong> four petals successively develop (Fig. 4). The carpels form a superior ovary<br />

with a 'false' septum <strong>and</strong> two rows <strong>of</strong> campylotropous ovules. The <strong>and</strong>roecium is tetradynamous,<br />

ie i<strong>the</strong>re are four long <strong>and</strong> two short stamens. The bright yellow petals are arranged <strong>in</strong> <strong>the</strong><br />

'".form <strong>of</strong> a cross, thus <strong>the</strong> family name Cruciferae. The four sepals are more or less erect. The<br />

buds open under <strong>the</strong> pressure <strong>of</strong> <strong>the</strong> rapidly grow<strong>in</strong>g petals. The open<strong>in</strong>g process beg<strong>in</strong>s <strong>in</strong> <strong>the</strong><br />

afternoon <strong>and</strong> usually tie-flowers are fully exp<strong>and</strong>ed by <strong>the</strong> follow<strong>in</strong>g morn<strong>in</strong>g. The an<strong>the</strong>rs<br />

open a fe, hours later than <strong>the</strong> flowers <strong>the</strong> latter be<strong>in</strong>g slightly protogynous. The nectar, which<br />

attracts poll<strong>in</strong>ators -particularly bees is secreted by <strong>the</strong> two nectaries situated between <strong>the</strong>


10 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

e "-<strong>Pe</strong>tal<br />

An<strong>the</strong>r<br />

Style k<br />

,v Sepal jNectary<br />

Flower Longitud<strong>in</strong>al section<br />

/-:., ,') Pistil<br />

<strong>of</strong> flower<br />

.nemecerReplum Valve <strong>Pe</strong>dicel<br />

If 'NN e9<br />

0 i/ V<br />

Inner nectaryI<br />

Outer nectary<br />

.,_. , Sepal -. .. - Figure 4.<br />

Beck Parts <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cab-<br />

Florl daqrrn Sliqe j bage flower <strong>and</strong> siliqueS.<br />

bascs <strong>of</strong> <strong>the</strong> short Still,:, ;flld Oh o)vllv. I\,o o<strong>the</strong>r <strong>in</strong>a VClve nct.'atries. are situaled outside <strong>the</strong><br />

bases <strong>of</strong> <strong>the</strong> pairs <strong>of</strong> lo<strong>in</strong>i St:,tieiHs.<br />

Silique. The fruit Of ('h<strong>in</strong>C., cabl-bagC ik a1glahrouIs si!iItluC, <strong>of</strong>ten calh.ed itpod. It is about<br />

3-5 mm wide <strong>and</strong> soict<strong>in</strong>ics o)er 7 cil honowith tss o ro\\s )f scl.h, INill tlong <strong>the</strong> edges <strong>of</strong><br />

Ohe th<strong>in</strong> repluni (falSe sCptut.1 <strong>in</strong>,; tg11,,lhi <strong>of</strong> <strong>the</strong> pllaelnt,) svhie W h a)tt.Cio;tl, ii lattil ouLiroVth<br />

(Fig. 4). A silique <strong>in</strong>ay cotta<strong>in</strong> ioifll0to 2" seed . eetul<strong>in</strong>g up)n <strong>the</strong> Varicy. About three<br />

tO l'out \wcck, iftt <strong>the</strong> Iflowe'r OpIn;., <strong>the</strong> siliq.L realt.S its niaximt<strong>in</strong> lenth. When fully ripe<br />

<strong>and</strong> dry. dcIClnC takes place thtri(uch <strong>the</strong> two vl\ves hre;k<strong>in</strong>g ia\a)tMot I' lo\V upwa.Irds.<br />

l 'av'<strong>in</strong>, <strong>the</strong> seeds altaehed to <strong>the</strong> pltcetta.<br />

<strong>Seed</strong>. S.eds iru uswiall', flobular to sfihtl' o'al <strong>in</strong> shapu. about 1-2 1i1 <strong>in</strong> diatIteter, light<br />

brown at first,. but hc,'o<strong>in</strong><strong>in</strong>g eravish lack to red-brown later. Iotaitiellv. Itlhe secd is atmllature<br />

fertilized ovule. After fcrtilizatioi <strong>the</strong> CndospCr<strong>in</strong> de\ciops <strong>in</strong>tu.ediately, altig q.11 <strong>the</strong> ,utbilyo<br />

does not stait gr<strong>of</strong>ls thfor Sotti Ia S. Th c b is ?ettaily Still stlall eve nafte: + ohr\(I<br />

two weeks,<br />

but soon aitr it fills iost oI'<strong>the</strong> <strong>Seed</strong> as thc tidoSpetitr beotnecs ahltiost contlelpcCly absorbed.<br />

The tc-:er\v old is stored i<strong>in</strong><strong>the</strong> cotl ti v,hi, l are folded loetlhcr with thc radiele ly<strong>in</strong>g<br />

bsthwen. <strong>the</strong>n (Coiiduplieate). The se.d eoat etisists <strong>of</strong> <strong>the</strong> detrivatives <strong>of</strong> twit ititetimetis. Ittt<br />

outside t)<strong>the</strong> <strong>in</strong>tcrior, <strong>the</strong> follow<strong>in</strong>g parts ean he dist<strong>in</strong>cuished: tth<strong>in</strong>-walled <strong>and</strong> e'nipressed<br />

epidcrmiis. atlayCr t' cotllapsed subepidernal tissue, at Sippotl<strong>in</strong>g avaer <strong>of</strong>" radially Clongated<br />

.clls with thickened, browni-cohired sidewalls, <strong>and</strong> an irreular aiver <strong>of</strong>' pi m<strong>in</strong>ted cells. The<br />

;ced c)at is fetC:uree,VCss alth()ugh stct<strong>in</strong>tICs <strong>the</strong> radicle position is <strong>in</strong>dicated by a lowov ridge.<br />

Growth <strong>and</strong> Patterns <strong>of</strong> Head<br />

The number <strong>of</strong>' leaves <strong>of</strong>' a ftilly<br />

grown <strong>Ch<strong>in</strong>ese</strong> cabage plant ranue from 20() ur more <strong>in</strong><br />

<strong>the</strong> early-i:, tur<strong>in</strong>g variety to 100 or more <strong>in</strong> <strong>the</strong> latc-niatur<strong>in</strong>g one. The dif,.'rentiation ol lcaves<br />

is very rapid froi <strong>the</strong> emergence stage o <strong>the</strong> <strong>in</strong>itial he:ad<strong>in</strong>g stage (Fig. 5), <strong>and</strong> <strong>the</strong> <strong>in</strong>ner leat<br />

differentiation usually overlaps wilh <strong>the</strong> head development I-I eald cvelolm net is strongly related<br />

with <strong>the</strong> leafI" area <strong>of</strong>' nonhead<strong>in</strong>g leaves (Kato 1991 ):<strong>the</strong> larger <strong>the</strong> nonilead<strong>in</strong>g leaf' ar,", <strong>the</strong><br />

bigger <strong>and</strong> more compact <strong>the</strong> head <strong>in</strong> <strong>the</strong> same genotype. The growth <strong>of</strong> head leaves, <strong>in</strong> terms<br />

<strong>of</strong> fresh weight, is very rapid after formation <strong>of</strong> head posture. The area <strong>of</strong>l<strong>in</strong>dividual nonhcad<strong>in</strong>g


Head posturv<br />

Head fill<strong>in</strong>g<br />

Leaf erection whole<br />

plant wt.<br />

<strong>Seed</strong>l<strong>in</strong>g growth<br />

Outer leaves formation<br />

~z<br />

0 Leaf no 0<br />

a) Non-head<strong>in</strong>g<br />

leaf weight<br />

0 20 40 60 80<br />

Days after Sow<strong>in</strong>g<br />

6<br />

Figure 5,<br />

Changes <strong>in</strong>leaf number <strong>and</strong> fresh<br />

weight dur<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage<br />

.';lC ieir' ,<br />

,Ink, la I\ ,Ii1I1)e te l tL'l. \ I C <strong>in</strong> , ' I':I ti l ( 1 itiii\ ildittll Iieail I';l L lee a'C l N<br />

If )1 11e oitelll rt t Iidl\eC<strong>in</strong> ni t u I1 ,1t Iet%1 ll",. I C \en dlt ,I)( )i %CI k L\ M L .tiL -dl \%fill<br />

T tiu' h iIlici (I le \ , ( iIC I C11ltut It ItIt l i uL' t ;11L'\i.d tie £iM III <strong>of</strong> CAi\ L i alt r<br />

IIIlII I;i IIal l i' I. L, I ) c (I Il Ic t "l%'l (I cI IC !: II II.1C',1 . I II o f 11Ihc Ii' L'ro I tI IIC r :1 i i ' \Ilco.i 1 %% il h'<br />

1 I 1{l Xhql l l 1 hie atu iltl \;ilii'l ei hie ;i i ,


12 <strong>Ch<strong>in</strong>ese</strong> Cbage reedii<strong>in</strong>g aiid Sced t'ro)tlctim<br />

calcium deficiency (Kto ct ill. 1981 1), ilcrease respilatory loss <strong>of</strong> photosvyihates <strong>and</strong> trall".pirlioi<br />

rate. icst<strong>in</strong>tiig ill loor lead mrotth. <strong>and</strong> favor li tisease develop IIt ILe .1984).<br />

Light iritensity aso alfcts leaf growth <strong>and</strong> healilIg. High light <strong>in</strong>tensitv pioiitOs t tile<br />

developllcilt <strong>of</strong>l broad Iea.<br />

<strong>of</strong> I1WI'iRCLIUC\ . Rct'i,-<br />

:1a11dhl<strong>in</strong>g, wheCeas low lirtht ilItCHesity elICohiajS <strong>the</strong> growdlh<br />

iys s a:dowivi'ard limovecllit (if<strong>the</strong> oler headf<strong>in</strong>g<br />

leaves. 'lhe hecad icI ttecrlesc' \t ith tile light <strong>in</strong>tensity h<br />

length tocs iot aflct. litat I f41llatitll t but tliayl reduce (lite ci<br />

cu-I thaii 210 cali. iiU'/v\. )ay<br />

late <strong>and</strong>11 \\,eeiht t<strong>of</strong> le. e s (Kato<br />

1981, ()otake h079 .<br />

Ch<strong>in</strong>lcso calmuc il i\ C'S\vcl ill alI'clrtile. CLI , Ita,111 ,01 Clill]'t'i I Itiit C(' Iiles CS coi ,,iderC Ible<br />

.lllltlult o flmlll iilitsl W Sustai I lpaid I\Itill Ia ,h 111tllle. t A l1 1 t 'l '2liltfiit _g21l IS ei iUired<br />

1,01. <strong>the</strong> cil'\, tl <strong>the</strong> tilt.'r llmlllieatdii leae uM iiid i lt' diftcl ltiiitlill Of IIIIILiI iu'Cd Ila\,S. Tlie<br />

critical Ilirt lt l 0ctl l[t bthI\\ liuhI dci 1 icu CI +\ \ S Itl I-lt) I kl)thy hl),.I h' )t I IlitII4nII 1<br />

el<br />

coIIItiIIl <strong>of</strong> " t, o '. is w ISid rcld ict.'c ssaI\ I<br />

IClA differu iltil l' fll i I C lr't ni'IC IIll flr cilcitmI<br />

ll e I il l l l Itlo hicpilicI It<br />

ISt larble to that fill litlroicui.<br />

I ll t il .IIII<br />

I lie lilectioli<br />

<strong>of</strong> e:l<strong>in</strong>iIl 1, I tlliculal i<strong>in</strong>lp ill l <strong>in</strong> tilt' h a l tis eohI)+lIclil beckuse li cail lt';d ca \ +s.%% hiih<br />

clllluatt'<br />

'he At'!<br />

1;11 I +I till i hc b smt'liI isl\ alfet d It' hN clilil dluciciL . (I ll P


'li',iolole <strong>of</strong> hFlo%%ci<strong>in</strong>p 13<br />

environmental \ariahles chanie with season, a prIgratnt<strong>in</strong>g ol <strong>the</strong> reprductie e,atisilics ot<br />

a seasonal ,asis (" Climatic Conditions <strong>in</strong> atspecifi hcation is possihh tor ( 'h<strong>in</strong>ese cahbage<br />

(M aistir el il. '98I).<br />

"<br />

TliI. 1i Cleltitc t 1 C ,t tlue ltliic (it[liti<strong>in</strong>shi hetwee n head toillith llaidl oh al bu1d<br />

thillet trtrtioln. Flhtl hitk ,rI ld ditltelntiat ter or hlete <strong>the</strong> onst <strong>of</strong> hcaciir, &iT. 0). This<br />

plih ,llcH lc i(m cul"- iI\ reqietmll' Vtn (hite s,cb<br />

-<br />

bthhage is cross n a s anl atuncltrllll <strong>the</strong>1tCpn eilrate<br />

IceL'ic l.I tlcui;i lhold dlifferentiate prior to liez-d<strong>in</strong>g, loo e <strong>and</strong> itlimrkeaiblc he;ls :1ie ho iied.<br />

.*'+. ,,,. . __ + '<br />

-- S<br />

+'+.. ' " ' .. ", +I,'<br />

4'1<br />

•~~...,, , .. i,<br />

: "+<br />

crc ....<br />

pold lc dl w" I .\t'11 iliplo "lil- p.cc 1<br />

C 1W m 1 . , W B+<br />

-A;<br />

1Q81 ,+, o-i~ 19 1,Sh ......<br />

riguCH Ve, al.6.Oloe<strong>in</strong>gd z . NL (11nt "14111- 111. Ci I/ateoo rl' a WT t e C<strong>in</strong>g st Ill bB. d',I w t It' . ight)c~ I lie<br />

teilciBl. n Icleer : U. cld tiii'id Wi it Clif. 11'n.!~.. ir. limlc<strong>in</strong>ilp /ee"ith . arc<br />

5'eriiii tiitc11M I e l c lciiiiiiiWh P'esil stlict ic e .Il t al. ci,87 ln/cc i (] Ksi l ot<br />

1<br />

iTa he C tim<strong>the</strong>. 's. lIp tHiiI . l tcl rV tile sC ir L' u I\ IICS! (d nit Vire1 .' 1/io IrK MiUCIssi e)o<br />

ant civeii-pliii sco.ci,,tit\es.refccelti\ c if ()re! Calissitiil 5oaristeel \ eriaii/alioii<br />

[Frietnd 198)i5. 11ke longer ie lni;eiieii ef ehihliriefilie Laster is <strong>the</strong> fliiwer developmnent. Th~e<br />

temperatUte fivorable for chirh<strong>in</strong>e ler bioth If11,wp '~j atid B. jum ia is not iicerx' losw (Lee


14 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

<strong>and</strong> Sheo 1957). There arc no appreciable dilferences <strong>in</strong> flower<strong>in</strong>g <strong>of</strong> <strong>the</strong>se two species when<br />

vernalized at <strong>the</strong> te1perature rallge <strong>of</strong> )" to I()(,. Some <strong>Ch<strong>in</strong>ese</strong> cabbage vorieties may evet<br />

produce lolwers a 13"" Or higher ((uttormsen <strong>and</strong> Nhc 195a <strong>and</strong> b). In o<strong>the</strong>r specics,c.g.<br />

B. oh'racca, <strong>the</strong> elfcctive vcrnali ation tcIIpCratlurs arc slharply contf<strong>in</strong>ed to <strong>the</strong> )" to 5' rance.<br />

llw tr ' , illduct<strong>in</strong> <strong>in</strong> i lte ol IB. o,'ra'u is 'iflt anM ilc ai<br />

ithsp 'ies trctlllt'lv ctl d rt'j r Plt<br />

vetllaliaittilll peLrod. At lcast si\ scsck <strong>of</strong> vert lizlitioni at 3''(' <strong>of</strong> plants \s ith iat5l I. grecn<br />

leaves ariea to brtilL about ortital f'los cr<strong>in</strong>lt <strong>of</strong> different sil"pCcics otl . /(io'le'l,'t/i'<br />

NMarrcijk 1970, S(okc' aid V'erkcik 1951, 'hoi as 9t)0). Ilowevcr, somi ttnopical tpc, <strong>of</strong>'<br />

Ch<strong>in</strong>esc kle Ih ,a 'a subsp. i/hi'th ) liiaiav lomdute lloh\Cse', without Cxposulc to los<br />

cmitpcraturs l.ce <strong>and</strong> Shc, 1957, Slitolmiaa l It)).)<br />

Aller criiali/ationi, 5 atm lilplettilels caii hise dlprCssitg efft_'C <strong>the</strong> Carl<strong>in</strong>Css <strong>of</strong><br />

Ilos et_'ritig. 'ltiip rmltlic, to c 20 t (' (t tCeki iMllito rCtllrd tlower dec loptllclt or lt've'. _<br />

<strong>the</strong> Crillailatii ftcl toi .i o'A .ri.A S j p 'k<strong>in</strong>''m. atntd B. j<strong>in</strong>cc (Hesis ;ll] W ibo I084b,<br />

l.ec a<strong>in</strong>d Shleo )7, Slh<strong>in</strong> etl al 1987<br />

-0<br />

CL<br />

(0 a)<br />

0<br />

0<br />

ciS<br />

c 50+<br />

0<br />

Imbibed Germ<strong>in</strong>asped<br />

fiip<br />

Vegetative Growth<br />

Figure 7. Relatioship between <strong>the</strong> growth stage <strong>and</strong> <strong>the</strong> sensitivity <strong>of</strong> A, AC, <strong>and</strong><br />

C genome types <strong>of</strong> Brcissico to vernalization.<br />

The seCnsiti%it\ <strong>of</strong> (i'itthiee cblac ti \ ci naliatiot siarts at gcrtn<strong>in</strong>ation ('lers <strong>and</strong> Wiebe<br />

1984a, (uttorscti <strong>and</strong> MotNI'It1;I, ,Ka,_mi;a 17. a<strong>in</strong> <strong>in</strong>creascs with <strong>in</strong>creas<strong>in</strong>g piiant age<br />

(Fig. 7) 1I'ler, a<strong>in</strong>d Wiebe I 9 84. ct a. 1903). I)tlritig <strong>the</strong>ir developt t on nio<strong>the</strong>r<br />

pllit.l seelds0doit rilond to0 CI-ri;llt!ation el{i rs <strong>and</strong> Wicbe 1984a). Valietal differences also<br />

play at ll p rrli role ((l M utt lt ttlltiiC ld Mole" Il8. a, ]howi a I 95I ). Ileat-tolerait varieties tend<br />

to be ittore Scisitive to scrilli.iatiiii M(iultormttilcit <strong>and</strong> Moc 1985al: tlis pr<strong>in</strong>ciple tias bcen<br />

exploitCd as' <strong>the</strong> s'rCleiilltiitiug oltlecnil ltaiill.aill <strong>in</strong> segrcgat<strong>in</strong>e, propula ion (AVRDC 1975).<br />

[~lower <strong>in</strong>duCtioi <strong>of</strong> Ch<strong>in</strong>eso caibbaiec is h siclikd as ie temiperatiure is lowered (Lorenz 1946);<br />

temilperature" above IVC are rCqilitCd to aivoid )r'tilaturC boltl<strong>in</strong>g ((4ttorisen <strong>and</strong> We, 1985h).<br />

The critical temnperature fr veriliatiotn lies below 13C (Yatttasaki 1956). with <strong>the</strong> optimum<br />

between 5" Io 1 9 8"C' (Elrs <strong>and</strong> \Vicb 8X4ai. The rnuibCr ol<br />

days fItni seed<strong>in</strong>g to flower<strong>in</strong>g<br />

o


Phiysioloigy iiq 1 i~ r 15<br />

<strong>of</strong>' C'h<strong>in</strong>ese cahhagc decreases with <strong>in</strong>creas<strong>in</strong>ig duration <strong>of</strong>' vernializationu (I xe~ a<strong>in</strong>d Shco IQ57).<br />

I-or slight veriliatioi chtects. 11111weck is 'iiffficict; I"Or comle~te \' tialiiatiioi. .lhout thiree<br />

weeks Or Mo11 r Meclc OCF7CI ICI-s JIdi\ViCli 1984a, Lee antd Slieo 1)57). Tjo :iCIc\ c fit,. sifiic<br />

tt'IIIperthIiC (ICIts Aii iti\tCh 19)84a. INIt,1i 1')8! . 1-*poStIICs to ttiiipcvaiic ;Ihi~c 10<br />

itt tS) I iliici flit dI\l l iii Ib id'l jtld ( i pii tI s iiOI ii.d flt- kiiiI~I\ C 11<br />

C hIlilk! ~t \\~iiL cchlll 1). illt tu is<br />

f i 'th l iii!CiIII~ liL ( ;1iliill<br />

hctl~ l di19821 I l-l tt i i i 11111 I i I )I, it i \CitlLt Is ()Ii 1 t ,1 % 1i0i ti 11ttCt liiseed<br />

<strong>the</strong><br />

Bh~ilxs(~l~t~ II 69<br />

lhciluu2k.;hhw ( /o,-cs<br />

19 -)i ld l(1'1111<br />

819w ) 1\ Siil il B. hi liolsli 1,1) POI (h t~ihii ll~S<br />

l uihd It Iit1s 1 11"10 1A W Cdl 0 I!'C(<br />

-0 C jiiL 1 h nt i ii 1111C1' iltC 1'11 ii th I S H tIII 011 Il I<br />

litm<br />

V I<br />

ta i<br />

1lwrii ,1%lcl.III<br />

tt ati 118)


16 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Prt<strong>duction</strong><br />

flowcr B. oleracea <strong>and</strong> B. napus (Ai <strong>and</strong> Machado 1982, van Marrewijk 1976). It was suggested<br />

that. seed pro<strong>duction</strong> <strong>and</strong> breed<strong>in</strong>g programs on Brassica may be enhanced by a comb<strong>in</strong>ation<br />

<strong>of</strong> vernalization <strong>and</strong> GA, <strong>the</strong>reby, sav<strong>in</strong>g substantial time <strong>and</strong> energy (Ali <strong>and</strong> Machado 1982).<br />

The comb<strong>in</strong>ation <strong>of</strong> vernalization <strong>and</strong> GA applicatifn is appeal<strong>in</strong>g for <strong>the</strong> practical purpose <strong>of</strong><br />

_seed. pro<strong>duction</strong>: however,. <strong>the</strong> effectiveness <strong>of</strong>-<strong>the</strong> method depends on <strong>the</strong>crop-variety;-Mos<strong>the</strong>at-tolerant<br />

Chijiese cabbage varieties tend to flower easily (AVRDC 1975); <strong>the</strong>refore, <strong>the</strong> above<br />

method may be applicable.<br />

Flower<strong>in</strong>g. The optimum temperatures for flower<strong>in</strong>g range from 180 to 25"C. Temperatures<br />

above 320C usually, result <strong>in</strong> abnormal floral development with enlarged sepal but defective<br />

an<strong>the</strong>rs (Jiang 1981), <strong>and</strong> poor pollen pro<strong>duction</strong> <strong>and</strong> viability (Kuo et al. 1981a), result<strong>in</strong>g <strong>in</strong>.<br />

* poor or no silique sett<strong>in</strong>g. The optimum relative humidity (RH) for an<strong>the</strong>sis is 60-70%; RH<br />

above 90% is not favorable for <strong>the</strong> flower<strong>in</strong>g <strong>and</strong> poll<strong>in</strong>ation process.<br />

Silique <strong>and</strong> <strong>Seed</strong> Development<br />

With <strong>the</strong> successful fertilization <strong>of</strong> <strong>the</strong> flower, a burst <strong>of</strong> growih <strong>of</strong> <strong>the</strong> erstwhile ovary <strong>and</strong><br />

ovule occurs, <strong>and</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> silique <strong>and</strong> seed beg<strong>in</strong>s, usually with a simultaneous<br />

wilt<strong>in</strong>g <strong>and</strong> abscission <strong>of</strong> <strong>the</strong> petals <strong>and</strong> <strong>of</strong> <strong>the</strong> stamens. Investigations <strong>in</strong>to <strong>the</strong>. silique <strong>and</strong> seed<br />

development <strong>of</strong> Brassica vegetables have been scarce.<br />

The seed <strong>and</strong> silique development <strong>of</strong> B. napus may be divided <strong>in</strong>to three stages (Norton<br />

<strong>and</strong> Harris 1975). In<strong>the</strong> first stage, while <strong>the</strong> plants are still flower<strong>in</strong>g, siliqueiwall development<br />

is rapid but seed growth is slow. In <strong>the</strong> second stage, silique wall growth cont<strong>in</strong>ues to be rapid<br />

but this period marks <strong>the</strong> onset <strong>of</strong> embryo development <strong>and</strong> <strong>the</strong> deposition <strong>of</strong> seed storage<br />

materials. Dur<strong>in</strong>g this phase <strong>the</strong>re is a rapid <strong>in</strong>crease <strong>in</strong> seed dry weight <strong>and</strong> marked changes<br />

<strong>in</strong> composition. In <strong>the</strong>:third stage, seed weight more than doubles while <strong>the</strong> gross chemical<br />

composition rema<strong>in</strong>s almost <strong>in</strong> constant proportion. <strong>Seed</strong> development <strong>in</strong> B. napus appe.rs to<br />

be complete <strong>in</strong> about five weeks with only dehydration occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g two -aeks.<br />

In this period <strong>the</strong> silique wall exports considerable dry matter to <strong>the</strong> develop<strong>in</strong>g seed before<br />

it mature . <strong>Seed</strong>s <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage mature faster than seeds <strong>of</strong> B. juncea. Under favorable<br />

conditions it takes only five to six weeks from flower<strong>in</strong>g to full seed maturity <strong>in</strong> most <strong>Ch<strong>in</strong>ese</strong><br />

cabbages.<br />

The number <strong>of</strong> siliques that develop <strong>in</strong> <strong>the</strong> Brassica genus usually rema<strong>in</strong>s constant regardless<br />

<strong>of</strong> environmental conditions (Kuo et al. 198 1a, Norton <strong>and</strong> Harris 1975), <strong>in</strong>dicat<strong>in</strong>g that losses<br />

due to abscission are m<strong>in</strong>imal. However, <strong>the</strong> seed number with<strong>in</strong> a silique Usually decreases<br />

dur<strong>in</strong>g <strong>the</strong> silique development even under favorable conditions (Norton <strong>and</strong> Harris 19'/5). The<br />

decrease is due to <strong>the</strong> rapid failure <strong>of</strong> embryo development, followed by a gradual decl<strong>in</strong>e <strong>in</strong><br />

seed development, <strong>and</strong> f<strong>in</strong>ally <strong>the</strong> exclusion <strong>of</strong> poorly developed or damaged seeds at maturity.<br />

The reason for this decl<strong>in</strong>e is obscure, but competition' for assimilates may be responsible <strong>and</strong><br />

.. bear a close relationship to environmental conditions.<br />

Both pre- <strong>and</strong> posulower<strong>in</strong>g growth have great <strong>in</strong>fluence on <strong>the</strong> seed yield <strong>of</strong> Brassica species<br />

(Brar <strong>and</strong> Thies 1977, Thurl<strong>in</strong>g 1974). <strong>Seed</strong> yields decrease with a reduced period <strong>of</strong> vegetative<br />

development: <strong>the</strong>y <strong>in</strong>crease with an <strong>in</strong>creased dry matter accumulation <strong>in</strong> <strong>the</strong> period between<br />

an<strong>the</strong>sis <strong>and</strong> f<strong>in</strong>al harvest (Thbirl<strong>in</strong>g 1974, Thurl<strong>in</strong>g <strong>and</strong> Das 1980).. It was estimated that <strong>the</strong><br />

contribution to <strong>the</strong> dry matter accumulation <strong>in</strong> <strong>the</strong> seeds was 37%from <strong>the</strong> leaves, 32% from<br />

<strong>the</strong> silique walls, <strong>and</strong> 31% from <strong>the</strong> stem. Nearly 75% <strong>of</strong> <strong>the</strong> assimilates from <strong>the</strong> topmost leaf<br />

were translocated to <strong>the</strong> grow<strong>in</strong>g siliques (Brar <strong>and</strong> Thies 1977). The siliques have a photosyn<strong>the</strong>tic<br />

function <strong>and</strong> provide a considerable amount <strong>of</strong> photosynthates to <strong>the</strong> develop<strong>in</strong>g seed (Hozyo<br />

et al. 1972).<br />

The optimal temperature for seed sett<strong>in</strong>g <strong>and</strong> development is around 17'C; exposure <strong>of</strong><br />

develop<strong>in</strong>g siliques to 32.C usually leads to empty siliques <strong>in</strong> B, campestris subsp. pek<strong>in</strong>ensis<br />

(Inomata 1976). The re<strong>duction</strong> <strong>of</strong> seed number by high temperature may be possible because<br />

it affects ,oth male <strong>and</strong> female gametogenesis (Kuo et al. 1981a), Fur<strong>the</strong>rmore, <strong>in</strong> vitro pollen


<strong>Seed</strong> Dormiancy <strong>and</strong> Germ<strong>in</strong>ation 17<br />

viability tests <strong>in</strong>dicate that <strong>the</strong> optimum temperature for germ<strong>in</strong>ation <strong>and</strong> growth <strong>of</strong> pollen <strong>in</strong><br />

B;cansetr subsp. pek<strong>in</strong>ensis is around 20'C (Kuo et al. 1981a) The seed-sett<strong>in</strong>g ability <strong>of</strong><br />

bud-poll<strong>in</strong>ated <strong>Ch<strong>in</strong>ese</strong> cabbage flowers is also closely related to atmospheri temperatures (Tao<br />

et a]. 1982), Thus, high temperature isamajor fact6r himit<strong>in</strong>g good seed pro<strong>duction</strong> <strong>of</strong> Chiiiese<br />

'-cabbage <strong>in</strong> <strong>the</strong> tropics because i-tnot only-retards flower<strong>in</strong>g but,also seed sett<strong>in</strong>g <strong>and</strong> development. --- -<br />

The optimal RH for seed sett<strong>in</strong>g <strong>and</strong> development is from 50% to 60%; RH higher than<br />

80% reduces photosyn<strong>the</strong>sis, thus seed development.<br />

<strong>Seed</strong> Dormancy-<strong>and</strong> Germiiation .<br />

<strong>Seed</strong>s <strong>of</strong> Brassica vegetables exhibit dormancy for a certa<strong>in</strong> period after harvest. The<br />

dormancy period varies with species <strong>and</strong> cultivars, normally rang<strong>in</strong>g from 0 to 140 days<br />

(Watanabe 1953). For B. cmnpe'siris subsp. pek<strong>in</strong>ensis <strong>and</strong> subsp. rapa, dormancy disappears<br />

rapidly <strong>and</strong> <strong>the</strong> period is usually short; for B. olteracea, dormancy ranges from short to long;<br />

aid for B. naptis <strong>and</strong> B. ju,cea, dormancy is usually long. <strong>Seed</strong>s <strong>of</strong> B. napus <strong>and</strong> B. cerma<br />

show a prolonged dormancy period <strong>of</strong> two years or more when <strong>the</strong>y are prescryd <strong>in</strong> <strong>the</strong> harvested<br />

siliques (Tokumasu 1975). The removal <strong>of</strong> dormancy is usually delayed wen Bra,'sica seeds<br />

are stored under extremely dry or humid conditions. The optimal RH range for <strong>the</strong> removal<br />

<strong>of</strong> seed dormancy <strong>in</strong>Brassica species is from 10% to 70%, depend<strong>in</strong>g upon species <strong>and</strong> varieties<br />

(Tokumasu et al. 1975 <strong>and</strong> 1981 a <strong>and</strong> b). Dormancy <strong>of</strong> most Brassica vegetables can be broken<br />

by germ<strong>in</strong>at<strong>in</strong>g <strong>the</strong> seeds on a filter paper impregnated with 100 ppm gibberell<strong>in</strong> A3 (Watanabe<br />

1959).<br />

The mean germ<strong>in</strong>ation period is shortest <strong>and</strong> <strong>the</strong> percentage <strong>of</strong> germilation highest from<br />

25' to 35°C for <strong>Ch<strong>in</strong>ese</strong> cabbage <strong>and</strong> o<strong>the</strong>r Brassica vegetables (Tokumasu et al. 1985). However,<br />

<strong>the</strong> response <strong>of</strong> dormant -ceds is different from nondormant seeds; <strong>the</strong> optimum temperatures<br />

are usually low (15' to 25"C) for dormant seeds. There are also varietal differences <strong>in</strong> <strong>the</strong><br />

germ<strong>in</strong>ation response to temperature (Kondra et al. 1983).


1<br />

1- j<br />

<strong>Breed<strong>in</strong>g</strong> System <strong>and</strong> Natural Mechanisms<br />

for Hybridity<br />

Population Structure<br />

op1cri1p)IiiII4'I (ilut.:s i t till,. k-1141' tIlLI , 1"tik ' .5I"\412'4 illatde 111) o i l 2.'. Y !te'ihreediC li4.<br />

st III oll [ , 1. Jl I')!,III[ ',[ lc't ic, I i t ual In <strong>in</strong>l openi I411tn) IIII ;I (I 1II I et \i ( I clse<br />

4<br />

Cal ~ Il l I.e !4llI'.k4.i I. I IIkI14 .1l I. k itI I A I i4I' k4nt' k' 411 It ,I tIi ( 6tI'4'4f', Iitl'I. k:15 C ! wo h I<br />

liio eti1112 4141) 2 ' 1111 11(iikIO I H 11k! h l l' [!((o .a, n [tc as<br />

5tcX~*.'1iC 1ht ll l' 1 I c'-ttl o5. ()(W I'.4 \ I J ItS I itit 1,1 IC tdjltk IH il is 11l5 tile lli il. i011)<br />

toCIii'1 1 Ci1It 4.4' l5 n lll i l lll i stse' I , 1 014 oi5 ht'ili c tlc2 i,42l untlil tilel ili'<br />

to e80<strong>in</strong> ,ilI I lt lhi\ ;ilt I ,(140Ill ;I 11.111112o%,,:I l.' llIlt '. ick l CX'It ei l tWit'C Ite)I ;I 1 1 1'e) cail 111<br />

N)1 (4410,ILI11i Il lisN ictI oIl4'''ttI4s wt<br />

ohlilill" 111411512 ileepst.11<br />

li %, i Il t C1 4l lhlJ kt il.<br />

\.iil reeieial<br />

\Ion Fi 55t ill et'\72 . sItilt' eo r~ce<strong>of</strong><br />

clliirllletI <strong>and</strong> i xii t ee le icS<br />

is carried "i i il )ihi1i 1ii it' j is <strong>the</strong> i'ceu1o lal to iIk .111 t flh 'll ciC'41 glns<br />

L'<strong>in</strong>ahI 'fIC<br />

<strong>the</strong> IllOtICos e<br />

len ~hil! pllitll se11val<br />

ill,-g )jLI;ts -ielopTI OH ~ la'rItI<br />

lltl]IICh aherC ;C i~I\kfp~hia I C ide' is-t i'i oi nllngi­<br />

I53) 1<strong>and</strong>; iln he clasto ie<strong>in</strong>itoI tIit I~p ough <strong>the</strong>ilisr<br />

i s cani n ti: o alnijlt r i)1 <strong>the</strong> J)Ille 111 e d lls~~. tile . hoito 11c. tp ile) (ig.l 5):<br />

C-C11il-C0 Co eol-itehCpaiiiy OWie ,cvcr kleimil jtea j llt eeete ,li'Is lhvetnroIed1 l<br />

i~llil stth "eIlnIll lcit piOllel gitllaidl di plo i4.lm getll <strong>and</strong> ~ e itl ise<br />

The hiS\rac'Ail p~le i e rothH is t<strong>in</strong>-<strong>the</strong>I.0 s ixe Ceneticl ,a s<strong>in</strong>lloen wOIJIIit 11ny<br />

lsis C~li~Il.S itI I01 5'e4l.o l litgra l) is tileral filiancleate. Jkllk


20 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

<strong>in</strong><strong>the</strong>dlajrriis <strong>of</strong> slolop ltic SI slstenm O<br />

Uomtr! , rIr ri o ,1,,,f/ - 's, ..... b__h_ "<br />

I<br />

()i<br />

-<br />

f -d i frhrrrrtt t errnt 1 ,Yttfll~ 'rlI<br />

"'IT<br />

)~~S , S.<br />

/ !I (AUeI/! -<br />

,r, Polleni cxrlr -ht, st(<br />

iXt t~I,<br />

W! (!-)[ohIir ?!rr "rrtI(, l<br />

A. Ganietophyfic sell Incomplatiblility<br />

fit)llptleo) u cu(fiSw.I ,<br />

Bt.spiiro tl ic<br />

r r,,Ir<br />

setf<strong>in</strong>compahlliltiv<br />

r<br />

vr' 1r1o1i 1,Ar ((i,r9t ' drt.<br />

commtr, to' .rcrrrr tIIi.<br />

lipi)7f ge,ll, li e 'Jifl l tW, ,*I;IA,(", ,hj,,<br />

l~ ~ f oi II ~ moJtl, h !< I ! P1 , f<br />

t<br />

trbe 1 , lr<strong>of</strong>lr rr) rr t .l I, vrr'.<br />

Figure 8. Comparison carbetophyc between Ultiallelic<br />

<strong>in</strong>compatibity <strong>and</strong>tcsporoprr <strong>in</strong>com­<br />

patibility.<br />

2. Sporophytic sell <strong>in</strong>contpatihili\',. The <strong>in</strong>ter:lcliOf o <strong>the</strong> pollen <strong>in</strong>d o 11tC is determ<strong>in</strong>ed<br />

by tihe gentl l O1te Iit,Jiploid SOfltittiC tiStl,' (ill <strong>the</strong> sport<strong>of</strong>pthytt) <strong>in</strong> which <strong>the</strong> pollen <strong>and</strong><br />

<strong>the</strong> ovule lreCevhlped. In this Systmll h<strong>in</strong>tdrance to pollen geri<strong>in</strong>ltiollolpollen tube<br />

g'rowth ik l(iclized <strong>in</strong> tile urfice id, tile stienltia. ticltic Coltrol o1 this systet)n isalso<br />

Sa st<strong>in</strong>g.le focu s with ltatlv allele:, cxlilhit<strong>in</strong>e .thieli' <strong>in</strong>icr':iclon. Pollen gra<strong>in</strong> is generally<br />

tr<strong>in</strong>ucleatc . 'hi t syitcl: Ps t)sicit! all ll crucifcus.<br />

Atnatloniicailiy, <strong>the</strong> ',tiia ifcrucilfrifts plants \\ ithi spllr(fll\'tic S1 systemn is coverel with<br />

a laver <strong>of</strong> papilli cll,, on its ,), f 11ce atd heltnt to tihe so-called "drv stignia'. The cell wall<br />

<strong>of</strong>' papilla cells is composed <strong>of</strong> anl <strong>in</strong>ner p',ctii-cclllo:,ie iyer i!ild aIntouter cuticle, otn which<br />

waixes areclelaitc~ l Krolh 1I94i. ('otilptible poll<strong>in</strong>ition allows tilepollen tubes to pierce tie<br />

cuticle aver :111d ijIA, hromugh <strong>the</strong> peCtio-cCl, loSC lliVr loward tile cotndulteiiig tissues, dissolv<strong>in</strong>g<br />

tile pec<strong>in</strong>i <strong>in</strong> <strong>the</strong> process (Kroh 1964). In <strong>in</strong>compatible poll<strong>in</strong>ations penetration <strong>in</strong>to tIe cuticle<br />

ltyer o'c'tls io a certaih (legr:c but picttrat<strong>in</strong>g tubes Ct<strong>in</strong>nt grow throiu-hiu,1 tihe pect<strong>in</strong>-cellu1lose<br />

layer (i)iCkillsiti JnttdLcwis 1973, Kaitimto <strong>and</strong> H<strong>in</strong>ata 1969). Selt'-<strong>in</strong>iconmipatibility <strong>in</strong> crlcifers<br />

ts beliced to hl, tlie result oif <strong>in</strong>icrac'cionS betweCn StignlatiC ppillh cellM <strong>and</strong>i illcoir pollcn<br />

tub.s sihtce self-poll<strong>in</strong>ation atler stigim 'nutilatioti can yield oclfcd sceds (Tatebe 1939)<br />

Stages <strong>of</strong> pollen germ<strong>in</strong>ation <strong>and</strong> tube development: A stigma is capable <strong>of</strong><br />

rcciv<strong>in</strong>g both sell <strong>and</strong>t<strong>in</strong>onsell pillens, <strong>and</strong> ,,ulIcs are potentially fertile. However, Various<br />

possible <strong>in</strong>teractions take place Iro<strong>in</strong> ploll<strong>in</strong>tlion to lertilization <strong>in</strong> an effic<strong>in</strong>lt SI syste<strong>in</strong>. Ferrari<br />

et al. (1981) idcti<strong>the</strong>d live listictl stages for /fressica pollen geru<strong>in</strong>atiol <strong>and</strong> pollen tube<br />

development (Fig. 0). The firs.t ltur stages are autotrophic <strong>and</strong> are programuned with<strong>in</strong> <strong>the</strong> nmatutre<br />

polle gra<strong>in</strong> to iwctlr lienti, <strong>the</strong> pollen tube pelctrates <strong>in</strong>to ihe female tissues. Except lot- selfrecognition,<br />

<strong>the</strong>se stages do not rcquire speciflc ileSSages f'101o1 <strong>the</strong> f'emale (issues. Pollen tubc<br />

Ievelopnet lcan le artrested at tlie. c sliges, dependtdi<strong>in</strong>g oil tvironime ntal condidions o <strong>the</strong>r tha)<br />

pollen-pistil <strong>in</strong>teraction. These stap,.s ;ire listed as follows:


Pollen gra<strong>in</strong> Gra<strong>in</strong> swell<strong>in</strong>g<br />

POLLINATION HYDRATION<br />

Papilae :clt<br />

BINDING ,Cross - - sell<br />

FERI ILIZATION<br />

Occur; only<br />

between <strong>in</strong>teact<strong>in</strong>g<br />

Recognltion<br />

glyColp;tet<strong>in</strong><br />

Con/tact[.-l;m<br />

gitldance<br />

cell,; vt<br />

i otIdeflr aiIitlle)gra<strong>in</strong><br />

prevernts<br />

b<strong>in</strong>l<strong>in</strong>g<br />

through ;1yh<br />

towcIld ovule, eR<br />

LM<br />

TUDE EMIR<br />

<strong>of</strong> sI ylior 1NIBTO<br />

eaitilu.htier K<br />

STAGE<br />

II<br />

TUB3E ATTACHMENT<br />

Self-<strong>in</strong>compatibility 21<br />

SELF<br />

TUBE INCOMPATIBILITY<br />

ELONGATION iFigure 9.<br />

Stages <strong>of</strong> pollen germ<strong>in</strong>ation <strong>and</strong><br />

pollen tube development <strong>in</strong> Brassica<br />

(from Ferrari et al. l9el).<br />

1. Primary b<strong>in</strong>d<strong>in</strong>g stag e.h first postpoll<strong>in</strong>ation stage <strong>of</strong>)podlen dcclopticnt is a pr<strong>in</strong>iary<br />

b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> <strong>the</strong> gra<strong>in</strong> to <strong>the</strong> stigila p)apeilh e, 1 !iBliiI is Ctter for c55'-poll<strong>in</strong>ttalion tian<br />

self-pliil<strong>in</strong>ation. 'I is pri I h ifiig i, Itick% a loose. HCsioII I, <strong>of</strong>I tIe pol ItI to tile pap illae,<br />

derived front <strong>the</strong> prote<strong>in</strong>acco-w, cottponrtts <strong>of</strong> 1tC -t e Illichi <strong>and</strong> polcn vil .<br />

2. Hydration stage. The sceond sitae <strong>in</strong>tvole, watl uptake, lhiehCh_)C<strong>in</strong>s attRI high" thaill<br />

50%. F(ollo,,vitt hydlration, cell rrtir , aitlt;et i l I',t I P,Csentlial fIu grni, tibe ohulation.<br />

A hydrophilie tClor Of iV tIolcular weili iltlc <strong>the</strong>ti,.ita is res.l)0IsihllC for reCdliC<strong>in</strong>g<br />

'hydraulit. IessitaUIneCt" it] pais (;Ilc .1',I"ter pahtilwa', Ical<strong>in</strong>e frotn thLe stigtna cells to <strong>the</strong><br />

pollen gra<strong>in</strong>, <strong>and</strong> it.,e:is-<strong>in</strong>2 lic Rt at tite -tijltna s-irjaec b.y ltlract<strong>in</strong>e waler Vapr.<br />

3. Probe tubc stage. A "otlI i)prohe :Iihc crillr.Cs front Illost pollen gra<strong>in</strong>s. iltt<strong>in</strong>ig a tillaXtil)tiltt<br />

length (fabout olne gil dililcter otnisuhstiatutl.<br />

a All li)C tUhCS ori<strong>in</strong>ate at attd develop<br />

ioward <strong>the</strong> stL!hlaIiLui <strong>in</strong>lCrfarc.<br />

4. Probe lutIe altachitet stage. The pollcn tituh atAclIitirlt deveCops if <strong>the</strong> iOhc tube strikes<br />

a copltatible 'tiiti. When altichnilt docs not ietr tubeul elottlil CeasCs at thr )robC<br />

stage <strong>and</strong> callos deposition fills <strong>the</strong> lii)l tith <strong>in</strong><strong>the</strong> l tilth u,.c,:,,f ,t.'hlnclt. tile<br />

transfer if nutritive piccun,)ls frnt <strong>the</strong> f] all.llt' -tlsue te plcc., peiInitirI' <strong>the</strong> onitiuttuig<br />

growth <strong>of</strong>'[he pollen lubc.<br />

5. Pollen tube clngation. The pelncttat<strong>in</strong> <strong>of</strong> pirlleti tuc, lich lc icuntl,, :ita<strong>in</strong>s a lengtl<br />

)fmore thn 100 gra<strong>in</strong> diimwtetr, <strong>in</strong>t(, tht_ ,r)nipatiblc stiguta anid tile[) tite stvlar tissues,<br />

isactivated by <strong>the</strong> sty htr tissue.<br />

Self-recognition <strong>and</strong> control <strong>of</strong> <strong>in</strong>compatibility response: Pollen tub develop<strong>in</strong>ci<br />

beyond <strong>the</strong> prolrw tilhe stage is prevented b;\<strong>the</strong> cotiselquctuc <strong>of</strong> sClf-rcCgBi~<strong>in</strong>i. The selfrecognition<br />

event <strong>in</strong>volves a gctoiypC specific <strong>in</strong>leraction <strong>of</strong> i itlobile <strong>in</strong> ratirnal nolecule<br />

on <strong>the</strong> stigma papillac, with a reccpior molecule pcritanently located ii ,r rot thc pollett gra<strong>in</strong>.<br />

This recognition reaction is a prerecquisite to thle manifestation <strong>of</strong>' self-<strong>in</strong>ucompatibility.


22 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> Beed<strong>in</strong>g und <strong>Seed</strong> P'idu,:-ion<br />

In <strong>in</strong>conpatible poll<strong>in</strong>ation, probe tube growth ceases aftcr about three hour., on an<br />

<strong>in</strong>compatible stigmna, whereupon <strong>the</strong> primary probe tube becires occl ded with calhose. It has<br />

been suggested that an endogenous, probe tube-localized <strong>in</strong>hibitory mechanism cotirtwnittcat,<br />

with <strong>the</strong> fxpllen gra<strong>in</strong> soi that b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> Mabc attachicill cannot Occur, thus block<strong>in</strong>g tc corl<strong>in</strong>ned<br />

tube icvlopl lia itt ill-if oi<br />

cAliose produtic;ii.<br />

The pollen gra<strong>in</strong>: It is iloA, klrt:wn that celienical Irictuns carricil <strong>in</strong> <strong>the</strong> pill,_n v-all<br />

do play a pait il <strong>in</strong>cowi'patibility Ire.ponse. Accord<strong>in</strong>g to I leslop -larrison (I1975 iid 1)83), Sgene<br />

products (proiC<strong>in</strong>aceous sttbstan,.-es) acctuItlat<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong>lTrei-1ist layer <strong>of</strong> <strong>the</strong> pollen sac<br />

wall arc transferred, upon dissolution) 01 <strong>the</strong> tisuc, to <strong>the</strong> outcr w;ll o tlie tatirc pollen gra<strong>in</strong><br />

dur<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al stages O1f1)illen maturitiii aboul 0-70 1r10u1s beirc Iillhth.L'lliscnce <strong>in</strong><br />

crucifers. Soon al1tcr l<strong>and</strong><strong>in</strong>g on <strong>the</strong> striar1a, <strong>the</strong> pollen rcleascs thCse. ploitC<strong>in</strong>aUcon il)ultcCs<br />

with<strong>in</strong> <strong>in</strong><strong>in</strong>utcs. When <strong>the</strong>se :,t<br />

<strong>the</strong>y CauSe <strong>in</strong>ucdiatC cilIloSc (<br />

iiiesconic ill contact with <strong>the</strong> <strong>in</strong>clitp-rtthle stt<strong>in</strong>m papilla,<br />

I ,.-luuI pol'udction Onf tilt' stigMa plilli ) [be perictrati(i:<br />

<strong>of</strong> tile papiwillr Wallih 111h pllen 1 LOW. a11sseCntial 1First step <strong>in</strong> its siccei.;slIul proerss <strong>in</strong>to <strong>the</strong><br />

,<br />

tyle is <strong>the</strong><strong>in</strong> piccnith. [his i eiti l -irlncd callorc prt<strong>duction</strong> docs not o Vcu Whln <strong>the</strong> hllel<br />

source is com itptioe witl \' thc .,lili;1<br />

Ire v ihen--,ll i,'ll ctio is ;etIaill Acl to,-cell 1i OIciii ktI c llosc i itiohl is ies/iicted<br />

to 111 scry antlnc pipiilac whieh "lr nc i'net)i;itact siihtlie iiicoirM ihleIC pillci r lI'.li '. .<br />

ittrllipl t dctcc, difcrenes? <strong>in</strong> !h- let Ilkrtei it wAll diftiwrs:ts Or whole' p[olC<strong>in</strong> Cxlr:!cl<br />

ill sporophylic Boomi,,al-<strong>in</strong>eonnptille spcies Iv iliiiiimn1 cletrolhoresis hiv-, cT unuccess<br />

ti, l ll t-iii :l I. 1)81. li,.simp tIuri i,i)i Il)"0 1.<br />

Tihe sltmmi i: Ihisl tlj el\ siu<strong>in</strong>ihilicsilit ,u ) l it iLcifci s Iluitsl t. l cciuliatrly<br />

coveled \with ui lydklrtihd a cilurvcr kt ,i )rtaoltiiutc cliO, l),liCl' Off <strong>the</strong> snirluice Ot ihe pmapillC i cuticle,<br />

is responsibl tt l ohiiian 'd <strong>the</strong> pullct sti<strong>in</strong>.. <strong>in</strong>titretitu. ThIe slilir;tsurrrc p1mWIl<br />

ill tills way torisit rsel)loi ei It" i1ii ic svihm'lit: pillhti ssall l ulli' .<br />

It tie CrLirSC <strong>of</strong> l)istrl iliatutit n te pulpillufcells <strong>in</strong> sell <strong>in</strong>coepalibc stailll stop clonlgati!ig<br />

two Or threc days bclrc itlmcsis. I his rctirudation kit papilla giow!l scents ti coitucide with<br />

Ote (cdluisitialt <strong>of</strong> <strong>the</strong>ir diset<strong>in</strong>iruriiti!iv ahility l(iolnai id l l<strong>in</strong>ta I 1971), <strong>and</strong> halS been) -ijece1ksted<br />

to aCrvate lit prolc<strong>in</strong>s reC'l)untsiblC Iur 11te reoenition rci.tion (tIl<strong>in</strong>ta aid Nishio 1Q,8().<br />

SclomlnAINlly deticetable <strong>in</strong>macroiolccuic"i from sIivrnas hvc h'ei ci trlatcA with S-allcles<br />

(l<strong>in</strong>alalt al . IN 2). Very low qi;<strong>in</strong>ties,, tIl ill', <strong>in</strong> clctuile.' uitc_ ,,ii (Mit s igiriis td irrr<strong>in</strong>iulu C<br />

flover uds, where sell--pOlliultimn tunctioiis ialldl'. The quantily <strong>in</strong>creascs as buds dc-velhup<br />

<strong>in</strong>to Inatil liowci-r "i-, IsWiti ,ccMunIl)iuniCd by <strong>in</strong>ereursed ex(lress )I <strong>in</strong>cmttpatibility. This<br />

m11olecule was naiekd tile S-spc('ic p1rote<strong>in</strong> or -glyiCiiteto'<strong>in</strong> ImcasC tire priote<strong>in</strong>t ciita<strong>in</strong>s<br />

caruohydrat:s. I i conttrast with <strong>the</strong> results IrO<strong>in</strong> pollen, strik<strong>in</strong>gl, diffcrenccs <strong>in</strong> <strong>the</strong> IMttcrris Of<br />

stigma aniigens (S-glycoprote<strong>in</strong>st related to <strong>in</strong>c urliatibility genitype cxisl ill Bravsica speci s:<br />

<strong>the</strong>se anitign i heritable ard iirte \\ \r ill S-alleles seerctatiori II l t ;I I981)"he I. relative<br />

mobility <strong>of</strong> stigmatic S-glycoriit,eir bMnls Onitile iruitiurtoeletrcctlrolsl s< has been used as a<br />

source <strong>of</strong> iil'tOrirFlalion to peclict <strong>the</strong> idrrti:,y <strong>of</strong>' S-alleles iNishio <strong>and</strong> H<strong>in</strong>ata 1981)). Thus fir,<br />

eight S-glycaprillis have Kelr idenififecd \ili <strong>the</strong>ir rcspcctivs S-alleles ii B. oleura-'oa, <strong>and</strong><br />

four <strong>in</strong>i B. E1\0idenc Fium]rpsri..iigcsts tIhUrt lttlIiuif tire S-genc-specilcf utitcens, arc present<br />

ir considerable aitout'ill, iil l stigt iatic tissue, <strong>the</strong>y are til present ill <strong>the</strong> stylar Iol an<strong>the</strong>r<br />

tissue <strong>of</strong> <strong>the</strong> flower, <strong>and</strong> thiat <strong>the</strong> .- gellc-rclatcd I'rtaction are ouit <strong>of</strong> very Iear <strong>the</strong> surfaces <strong>of</strong>'<br />

<strong>the</strong> stigma papillac (Nasrallah aid Naisallah 1984). The porssibility is obvious that <strong>the</strong>y are Species<br />

<strong>of</strong>' prole<strong>in</strong>s present <strong>in</strong> <strong>the</strong> plclihc, <strong>and</strong> arc respons.itlI 1for <strong>the</strong> recognition reaction.<br />

Lur<strong>the</strong>rnrore, hlw iilccilar weight Ce<strong>in</strong>nipountl.s, which are responsible- Fir <strong>the</strong> subIsCqIL.tnt<br />

<strong>in</strong>hibit'on <strong>of</strong> pollen germi<strong>in</strong>atiion <strong>and</strong> pAllCn ttilme /urowth, IhavC been detected ilr tile tigmia <strong>of</strong><br />

iruaishica orac'a(Hodgk<strong>in</strong> :Irid Lyont 1984). Soic <strong>of</strong> <strong>the</strong>se <strong>in</strong>hibitors, as cxanm<strong>in</strong>ed by th<strong>in</strong>layered<br />

chrniatographic bioassay, are dcieccted <strong>in</strong>ly <strong>in</strong> stigna cxlrixais Iml-owrung sefI-iernpalibl<br />

sc If-polli<strong>in</strong>ations.<br />

two<br />

Inhihitors<br />

hours after<br />

fron<br />

poll<strong>in</strong>ation,<br />

.self-poll<strong>in</strong>ated<br />

<strong>in</strong>dicat<strong>in</strong>g<br />

stiglmas are al thcir ihihest<br />

<strong>the</strong>re is a rapid accumulation<br />

concelitratio<br />

oi'<br />

niabout<br />

<strong>the</strong> <strong>in</strong>hiilors (Hodgk<strong>in</strong>


Self-<strong>in</strong>compatibility 23<br />

<strong>and</strong> Lyon 1986). These <strong>in</strong>hibitors may play a part <strong>in</strong> prevent<strong>in</strong>g <strong>the</strong> germ<strong>in</strong>ation <strong>and</strong> growth<br />

<strong>of</strong> Brassica pollen <strong>in</strong> <strong>in</strong>compatible poll<strong>in</strong>ations.<br />

Modifications <strong>of</strong> self-Incompatibility expression. Modifications <strong>of</strong> <strong>the</strong> breed<strong>in</strong>g behavior<br />

<strong>of</strong> sf-<strong>in</strong>compatible plants may result, spontaneously or after experimental manipulation, from<br />

ei<strong>the</strong>r physiological or genetical changes. These changes <strong>in</strong>terfere, at oile or several stages <strong>of</strong><br />

<strong>the</strong> rejection process, to alter <strong>the</strong> cha<strong>in</strong> <strong>of</strong> evets lead<strong>in</strong>g to <strong>the</strong> failure <strong>of</strong> fertilization process<br />

aflte self-poll<strong>in</strong>ation. The physiological chi.nges are always temporary <strong>and</strong> cannot be transm itted<br />

to <strong>the</strong> next generation. Their effccts, when <strong>the</strong>y contribue to th2 promotion <strong>of</strong> ii h reedihg or<br />

to variation <strong>in</strong> nmat<strong>in</strong>g relationships, may have important implicat ions for <strong>the</strong> generict str',ctere<br />

<strong>and</strong> <strong>the</strong> fitness <strong>of</strong> <strong>the</strong> population <strong>in</strong> which <strong>the</strong>y occur.<br />

Genetical changes, on <strong>the</strong> o<strong>the</strong>r h1d, nay he Ie'rmancnt <strong>and</strong> cover a variety <strong>of</strong>' different<br />

effects rang<strong>in</strong>g fron <strong>the</strong> breakdown <strong>of</strong>' <strong>the</strong> <strong>in</strong>compatibility character to In<strong>in</strong>crease <strong>in</strong> <strong>the</strong> size<br />

<strong>of</strong> S-allclc series, or to <strong>the</strong> energence f i new relationship betweenipollen <strong>and</strong> pistil. For example,<br />

self-<strong>in</strong>coimpatibility il Ch<strong>in</strong>Cse ca hba ,cne.eds at least thrce or itmore genterations to be genetically<br />

stabilized <strong>and</strong> <strong>the</strong> stabhility differs with different varietics (Anonylllius 1976, Tao et al. 1982).<br />

This section sumIt1itaizcs <strong>the</strong> iost imuportant enviroitIttental n] physiological fictors affect<strong>in</strong>g<br />

self- <strong>in</strong>comlpatihi lity .<br />

Stage <strong>of</strong> pistil development: <strong>Seed</strong> set <strong>in</strong> self-' <strong>and</strong> cross-poll<strong>in</strong>atiots changes dur<strong>in</strong>g<br />

<strong>the</strong> course <strong>of</strong>' pistil growth. Very young pitiIs are too <strong>in</strong>l<strong>in</strong>atu,+C to set seeds. As buds grow,<br />

both self- :nd cross-poll<strong>in</strong>ations vwith mature pollen yield good seed set. This is known as 'bud<br />

poll<strong>in</strong>ation', <strong>and</strong> <strong>the</strong> bed pistils do not discrim<strong>in</strong>ate between <strong>the</strong> genotypes <strong>of</strong>' self' <strong>and</strong> nonself.<br />

Usually seed set from self<strong>in</strong>g is poor around five days beforc <strong>and</strong> after <strong>the</strong> open<strong>in</strong>g <strong>of</strong> flowers,<br />

while seed set from cmoss-poll<strong>in</strong>ation rema<strong>in</strong>s good (Fig. 10). The difference <strong>in</strong> seed set between<br />

compatible (cross) a<strong>in</strong>d <strong>in</strong>compatible (sellf) poll<strong>in</strong>ations is a, its highest from <strong>the</strong> day before to<br />

<strong>the</strong> day after flower open<strong>in</strong>g.<br />

U')<br />

i Cross<br />

~Figure 10O.<br />

Schematic presentation <strong>of</strong> <strong>the</strong> changes <strong>of</strong> seed<br />

Self set percentage <strong>in</strong> self- <strong>and</strong> cross-poll<strong>in</strong>ation <strong>in</strong><br />

_ _ _ _ _-..__- __ <strong>the</strong> course <strong>of</strong> pistil growth.<br />

Bud Stoge Flower Open<strong>in</strong>g<br />

Pistil Growth<br />

The difference <strong>of</strong> compatible/i<strong>in</strong>compatible reactions <strong>in</strong> pistil development can be readily<br />

dist<strong>in</strong>guished by <strong>the</strong> <strong>in</strong>creased size <strong>and</strong> <strong>the</strong> appearance <strong>of</strong> yellow pigments <strong>in</strong> <strong>the</strong> self-<strong>in</strong>compatible<br />

buds.<br />

The success <strong>of</strong> bt',poll<strong>in</strong>ation is ittributable to bud pistils not hav<strong>in</strong>g <strong>the</strong> self- <strong>and</strong> nonselfrecognition<br />

ability present among bloom<strong>in</strong>g flowers (lizuka 1957). Apparently, <strong>the</strong> bud has not<br />

yet received <strong>the</strong> necessary <strong>in</strong>formation for <strong>in</strong>hibit<strong>in</strong>g self-pollen (harvested from mature flowers)..<br />

The <strong>in</strong>creas<strong>in</strong>g expression <strong>of</strong> self-<strong>in</strong>compatibility with t.ie advanced pistil growth is closely<br />

associated with <strong>the</strong> growth retardation <strong>of</strong> papilla cells near an<strong>the</strong>sis (Gonai 1970, Gonai <strong>and</strong><br />

H<strong>in</strong>ata 1971). Mature papilla cells disturb <strong>the</strong> penetration <strong>of</strong> pollen tubes but not bud papilla<br />

cells <strong>in</strong> self-<strong>in</strong>conmpatible Brassicas species (Ockendon 1972). Fur<strong>the</strong>rmore, S-prote<strong>in</strong>s detected


24 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

by <strong>the</strong> <strong>in</strong>mil<strong>in</strong>ological method (Nasrallah 1974) <strong>and</strong> S-glycoprote<strong>in</strong>s detected by isoelectric<br />

focus<strong>in</strong>g (H<strong>in</strong>act et al. 1982, Nishio <strong>and</strong> Hi<strong>in</strong>ata 1977) <strong>in</strong>crease with <strong>the</strong> course <strong>of</strong> stigma<br />

maturation, which is correlated with <strong>the</strong> onset <strong>of</strong> <strong>the</strong> <strong>in</strong>compatibility response (Nasrallah <strong>and</strong><br />

Nasraliah 1984, Shivanna et al. 1978). 'ihc pr otc<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> ihe recognition <strong>of</strong> self<strong>in</strong>compatibility<br />

:ire not secreted <strong>in</strong> tile papilla cells at tile bud stage. i'to occeptahle hypo<strong>the</strong>sis,<br />

<strong>the</strong>refore, is thai S-alleles <strong>in</strong> papilla cells are activated .1nd that <strong>the</strong> s.<br />

nonself-recognition arc produced dur<strong>in</strong>g papilla gromkth relardaio,.<br />

i es <strong>in</strong>volved ii self- /<br />

Young pistils virtually doi 1ot diffl <strong>in</strong> <strong>the</strong>ir ability to) set seeds upoll seiiy <strong>and</strong> cross<strong>in</strong>g.<br />

This 'juvenile coipatihilit,," upon selfiiig has been noticcd as early as 193( by IKaki-tki, <strong>and</strong><br />

self<strong>in</strong>g by 'bud poll<strong>in</strong>ation' was subsequently dcsCiped is a rout<strong>in</strong>e technique to Obta<strong>in</strong> selfed<br />

seeds. The <strong>in</strong>iplication <strong>of</strong> this phenomienon <strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenaucc oil S-allele lio<strong>in</strong>izygotis <strong>in</strong>bred<br />

l<strong>in</strong>es for Fi hybrid pro<strong>duction</strong> is discussed later (see ltvbrid Scud Plo<strong>duction</strong>, p. 61).<br />

Aged pistils, those that rema<strong>in</strong> mpiiolliiled a fcw &!,s alter flo\ ci opetl<strong>in</strong>cg. caii still produce<br />

a substantial amontl <strong>of</strong> cross seeds ald sOliCIllLC , la\ set ' a t', s cds, piisOll S,_f-poll<strong>in</strong>ation<br />

with nornial <strong>in</strong>comnpatible pollens. lhe abilit' Of a 'cd flowers 10 set sel fed seeds, known as<br />

'senile comjpatibility'. i,,asiciatcd with a l'rCessi\C loss <strong>of</strong> <strong>the</strong> capa)acity to produce or store<br />

active iiconlipatibilitv subst <strong>of</strong> i <strong>the</strong> collais<strong>in</strong>e <strong>of</strong> papilla cell', latbe 1)77i.<br />

Temperature: t-Ii-hier atc Of 'elfed-sell prodluctiom occur, ai hih temnperaturcs (25'<br />

to 30 0 than itlow tcnlpcraluics (15 to 2W (') <strong>in</strong> B. oiciracc (iuiai <strong>and</strong> ll<strong>in</strong>ata 1971, Johnson<br />

1971, Nast ailah <strong>and</strong> Wallacc 19 8,()ckcdon I973, \'isse" 19)77), iulB. tojl. trio (Ko et al.<br />

1974, 1975, l1070, Richards <strong>and</strong> l'hurl<strong>in</strong>e. 1i731, <strong>and</strong> <strong>in</strong> R. ma i' . IiiiMiahaa 1957, Tatebe<br />

1977). Thermal trcatnucii (70 it)8("() \rihm a small s ler<strong>in</strong> iii applie-d to)<strong>the</strong> stigntatlic<br />

papil!ae also narkedlit <strong>in</strong>crease.d fCrtili<br />

1976).<br />

illsel- iicmIlpatilic ku.iilfcsIs .iitzen <strong>and</strong> vam Dijk<br />

A higher proportit <strong>of</strong> collap,,<strong>in</strong>g papilla cells took placc under high (3(( ) than low (20"C)<br />

IeniperaturcS <strong>and</strong> was o nsidered as <strong>the</strong> mIa<strong>in</strong> 'ause <strong>of</strong> <strong>the</strong> high sell<strong>in</strong>g rate at high temperatures<br />

(Ko et al. 1970, 'latebe 1977). ()thir puustilatCd reasons for <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> high temperature<br />

on degree if sell-<strong>in</strong>cotpatibilit. arc: changes <strong>in</strong> tie rate <strong>of</strong> syn<strong>the</strong>sis or quality <strong>of</strong> syn<strong>the</strong>sized<br />

<strong>in</strong>cornpatibility sLibStances INasrallal <strong>and</strong> Wallac,: 19(8); <strong>and</strong> shorten<strong>in</strong>g <strong>of</strong> <strong>the</strong> papilla growth<br />

retardation at high temperature, thus disturb<strong>in</strong>g <strong>the</strong> full expression <strong>of</strong> sell-<strong>in</strong>compatibility (Gonai<br />

<strong>and</strong> li<strong>in</strong>ata 1971).<br />

The effect oiili ihte'rmtperatire onl sClf-<strong>in</strong>cmmpatibility haus alsi been bserved to vary anmng<br />

different genotvpes <strong>and</strong> different S-alleles. For example. <strong>the</strong> expression <strong>of</strong> self-<strong>in</strong>compatibility<br />

among <strong>the</strong> progenies <strong>of</strong> self-<strong>in</strong>co<strong>in</strong>patible lilies <strong>in</strong> B. canmpj'si'is i,: primarily determ<strong>in</strong>ed by <strong>the</strong><br />

<strong>in</strong>teraction betweenr S-genotypes <strong>and</strong> different comhi natilus <strong>of</strong>'polygenic modifiers. which are<br />

terllperature-sensitive <strong>and</strong> probably differ from one ano<strong>the</strong>r <strong>in</strong> <strong>the</strong>ir temperature requirements<br />

(Richards <strong>and</strong> Thurl<strong>in</strong>g 1973). Although ra<strong>the</strong>r difficult, it is possible, <strong>the</strong>refore, to f<strong>in</strong>d S-alleles<br />

which are stable Ulnder high ten pera<strong>in</strong>res.<br />

Relative humidity: I-igh air hunmidity has been found to <strong>in</strong>crease poller. germ<strong>in</strong>ation<br />

<strong>in</strong> Brassica <strong>and</strong> Riip/anu.i MOelke 1957, Robbelen 1960, Tatebe 1964), <strong>and</strong> 'accelerate pollen<br />

tube growth <strong>in</strong> both self- <strong>and</strong> cross-poll<strong>in</strong>ations <strong>in</strong> B. ol'ra 'a(Kanno 1973). At <strong>the</strong> same relative<br />

humidity, <strong>the</strong> rate <strong>of</strong> pollen germ<strong>in</strong>ation was less <strong>in</strong> self'- than <strong>in</strong> cross-poll<strong>in</strong>ation. With strong<br />

self-<strong>in</strong>corupatibility such -As <strong>in</strong> B. ohracwea, humidity did not improve self-fertility (van Marrewiik<br />

<strong>and</strong> Visser 1978). In contrast pollen tube penetration could be observed <strong>in</strong> weakly self<strong>in</strong>col<br />

Ipatible l<strong>in</strong>es undcr high humidity.<br />

Gas environment: A high concentration <strong>of</strong> C0 2 , e.g. 3 % to 5% can cause a breakdown<br />

<strong>of</strong> self-<strong>in</strong>compatibility <strong>in</strong> newly opened flowers <strong>of</strong> crucifers (Nakanishi et al. 1969, Nakanishi<br />

<strong>and</strong> H<strong>in</strong>ata 1973, 1975). The effectiveness <strong>of</strong> CO 2 is limited to <strong>the</strong> pollcn germ<strong>in</strong>ation period<br />

<strong>and</strong> <strong>the</strong> effect is considered to <strong>in</strong>volve pollen tube penctration disturbances ra<strong>the</strong>r than <strong>the</strong><br />

recognition phase. The reactions concerned <strong>and</strong> <strong>the</strong> exact nature <strong>of</strong> <strong>the</strong> CO 2 effect on pollen


Self-<strong>in</strong>compatibility 25<br />

tube penetration are not known, but it certa<strong>in</strong>ly appears that <strong>the</strong> processes <strong>in</strong>volvcd <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>compatibility reactionare more sensitive to external agents than thosu normally govern<strong>in</strong>g<br />

pollen germ<strong>in</strong>:. '-,,pollet tube growth, <strong>and</strong> fertilization.<br />

Lower eth.,,ie cci centrat ions appeared to be slightly antagonistic to enhanced pollen tube<br />

penetration caused by a high CO, concentration. Oxygen, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, did not have any<br />

effect <strong>in</strong> break<strong>in</strong>g self-<strong>in</strong>cornpatibility although it is necessary for rictaholism <strong>in</strong>Ipollen germ<strong>in</strong>ation<br />

<strong>and</strong> pollen tube penerktion (Nakanishi 1972).<br />

Chemical treatment: Consider;rle success <strong>in</strong> overcon<strong>in</strong>g self'-<strong>in</strong>'ompatibilitv <strong>of</strong><br />

Brassicawas obta<strong>in</strong>ed with cut<strong>in</strong>:rse (l<strong>in</strong>skcns 1961). e<strong>the</strong>l, or IOk,) KO I I olution (latebe l)(,8).<br />

sonic organic solvents (ilonai <strong>and</strong> Ht<strong>in</strong>ala 1969), IcC6os or sugars, ( ljij <strong>and</strong> Sfrivanna 1986),<br />

<strong>and</strong> salt solution (Tao <strong>and</strong> Yang IWP6). Self crtiliiv o <strong>in</strong>bred l<strong>in</strong>es <strong>in</strong> 13.oi'racc with relatively<br />

weak self-<strong>in</strong>compatibility can also he imiec,ved by wash<strong>in</strong>g pollen wil 1.()'; to 50,4 acetone<br />

or by apply<strong>in</strong>g an e<strong>the</strong>r extract 1or11 <strong>the</strong> poller (,frape to <strong>the</strong> stigma (Rogg<strong>in</strong> 1974, 1975).<br />

The tr,.atment ol <strong>the</strong> pistil or <strong>of</strong> <strong>the</strong> pIfllcn with chemicals seems to block recognition nolecules<br />

<strong>and</strong> thus overcome S, f-iicompatibility.<br />

Mutilation: Mutilation ol<strong>the</strong> stigma preced<strong>in</strong>g sell'-poll<strong>in</strong>ation irr <strong>in</strong>compatible broccoli<br />

(Sears 1937) <strong>and</strong> radii (Tabebe 1939) led to hiigli seed set. Roggei <strong>and</strong> \:i l)ijk (1972) proposed<br />

<strong>the</strong> use <strong>of</strong>' steel 'wir: 1o Atir1a muttilation to obta<strong>in</strong> hih-sel<strong>in</strong>g rate.<br />

Irradiation: A siernificat <strong>in</strong>crease <strong>in</strong>sclf-fertilitv \kas also othla<strong>in</strong>ed <strong>in</strong> sClf -<strong>in</strong>coriipatible<br />

cabbage by gamira irradiation applied 0-14 hours after ill<strong>in</strong>ation ) oioda ct ai.1)71), The<br />

effect is lkely die to an <strong>in</strong>crease il tilecapacity <strong>of</strong> tile <strong>in</strong>cOril,atihlc pllonrII IDto10 bypass tihe<br />

<strong>in</strong>compatibility barrier <strong>and</strong> accoriplish fertili/ation.<br />

Electric-aided poll<strong>in</strong>ation: HIectric-aided poll<strong>in</strong>a'ioli( fl\vcs apply ig a direct electric<br />

,<br />

potential difference <strong>of</strong> 1(X) V bt(ween pollen <strong>and</strong> :,tirriwocould palrtiall break scif'-irico<strong>in</strong>patibility<br />

<strong>in</strong> B. oleracea <strong>and</strong> <strong>in</strong>crease sell<strong>in</strong>g rate <strong>in</strong>btid l~!l<strong>in</strong>atiii ( , ggen ad a<strong>in</strong> l)ijk 1973). The<br />

effect was found to be <strong>of</strong> tie sar<strong>in</strong>e order <strong>of</strong>' macirtrrle as that obta<strong>in</strong>ed by removal <strong>of</strong> <strong>the</strong> stigima,<br />

pollen transplantation, cheriical treatment. teripCraturc trcatient, <strong>and</strong> NO<br />

rn;re efective than CO treatenutf (Ito I98I ).<br />

p<strong>of</strong>l<strong>in</strong>ation, <strong>and</strong> was<br />

Genetical control <strong>of</strong> self-<strong>in</strong>compatibility. Kakiaki (1922) reported Ihefirst casO ef selliricompaiihility<br />

<strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage, aId postulatcd that sClf-irlrCor)paiilltv ill cabbage can be<br />

expla<strong>in</strong>ed b', <strong>the</strong> garnetoplivtic action f' two allelic series IKakii ai. i 1930). This <strong>the</strong>ory was<br />

later disproVed )i<strong>the</strong>ovctical grounds by Batemran i l952, 19)54, 1955) xslho proprosed that self'<strong>in</strong>conijpatibility<br />

iii cr!cilers is governed by <strong>the</strong> sporophytic action f one S-allclic series.<br />

Thereatcr, <strong>the</strong> spor phytic S-allele systelii was f Mmd <strong>in</strong>P. olcr''ea, B. canpc.tris, Raphanus<br />

vativus, <strong>and</strong> R.ru/ap<strong>in</strong>isliruni(11-1aru1a 1962, Sampson 1957, 1964, 'atebe 1962 , h'oimp1son 1957,<br />

Zuberi et al.1981 ). <strong>in</strong> Cruciferac, <strong>of</strong> 182 spcc:es exam<strong>in</strong>ed. 80lwere ,el'-<strong>in</strong>compatible (Bateman<br />

1955). In <strong>the</strong> subtribe Brassic<strong>in</strong>ac which is connnprised <strong>of</strong>' Ba.%ic crops <strong>and</strong> its closest wild<br />

allies, 50 out <strong>of</strong> 59 taxa exam<strong>in</strong>ed \ crc sclf-<strong>in</strong>coiipalible (lakaliata <strong>and</strong> Il<strong>in</strong>ata 1980). Self'<strong>in</strong>compatibility<br />

ma,' nave played an important role ill <strong>the</strong> divcrs;ficalion <strong>of</strong> species <strong>in</strong> Crucif'erae,<br />

especially <strong>in</strong> thc subtribe Brassiciriac (ll<strong>in</strong>al; <strong>and</strong> Nishio 1)80).<br />

The genetic comb<strong>in</strong>ations <strong>of</strong> S-alleles are iitnrle)rol.,N itIrd coil lex a mr<strong>in</strong>g crucifcrs wiltl lie<br />

sporophytic SI systei. For example, 25 to 34 different S-all els have been .stimated <strong>in</strong> a<br />

population <strong>of</strong> R. t'aphanistrun(Sampson 1967); 41 have been ident'ified <strong>in</strong> cultivated B. oleracCa<br />

(Ockendon 1974, 1975b), <strong>and</strong> 10 <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage (.ee <strong>and</strong> 'oon 1981).<br />

Evidence <strong>in</strong>dicates that <strong>the</strong> cultivated forms <strong>of</strong> 'Brassi'apossess weaker self-<strong>in</strong>conpatibility<br />

than (1o wild types (Ockendon 1974, Olsson 1960a <strong>and</strong> b, Thon pson <strong>and</strong> Taylor 1966) <strong>and</strong> that<br />

<strong>the</strong> cultivated taxa have lost <strong>the</strong> dom<strong>in</strong>ant alleles to a certa<strong>in</strong> extent. I could be considered that


26 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

certa<strong>in</strong> factors, such as cultivation, have disturbed <strong>the</strong> genetic balance for self-<strong>in</strong>compatibility<br />

<strong>and</strong> made <strong>the</strong>m self-compatible (H<strong>in</strong>ata <strong>and</strong> Nishio 1980). Interest<strong>in</strong>gly, strong <strong>and</strong> stable self<strong>in</strong>compatibility<br />

was <strong>in</strong>frequently observed among AVRDC's tropical <strong>Ch<strong>in</strong>ese</strong> cabbage germplasm.<br />

In asimplified nomenclature for <strong>the</strong> sporophytic SI system, determ<strong>in</strong>ed by a series <strong>of</strong> multiple<br />

alleles, <strong>the</strong> genetical constitution <strong>of</strong> <strong>in</strong>dividuals may be represented as 51S2, SiS3, SIS. . SS3. ....<br />

S2S., <strong>and</strong> so on. Assum<strong>in</strong>g that <strong>the</strong> two S-alleles <strong>of</strong> a plant act <strong>in</strong>dependently <strong>of</strong> each o<strong>the</strong>r,<br />

<strong>the</strong> pollen <strong>of</strong> a plant deposited on <strong>the</strong> stignra <strong>of</strong> <strong>the</strong> same plan, (self<strong>in</strong>g), or <strong>of</strong> ano<strong>the</strong>r plant<br />

possess<strong>in</strong>g one or both S-factors <strong>in</strong> comnmon, e.g. S.S2 > SIS or SIS X SIS3, will produce<br />

very few seeds if any. Compatible crosse,. would only be those <strong>in</strong> which <strong>the</strong> pareit plants possess<br />

no correspond<strong>in</strong>g S-faclors, e.g. SIS2 x ,S'.ror SISt X .%'S.4. The plienrenon <strong>of</strong> cross<strong>in</strong>compatibility<br />

is attributable to <strong>the</strong> same cause is selt-<strong>in</strong>cotirpatioility.<br />

'[le above supposition that <strong>the</strong> two S-allCles act <strong>in</strong>depCdently fIf each o<strong>the</strong>r occurs rarely<br />

<strong>in</strong> real situations, s<strong>in</strong>cc dom<strong>in</strong>ance <strong>and</strong> codoirrilrance ariong S-alleles are a characteristic feature<br />

<strong>of</strong> tie sporophytic Sl system. As arl example,i ita plant has an StS genlotyie <strong>and</strong> Si is dom<strong>in</strong>ant<br />

to S: <strong>in</strong> pollen. <strong>the</strong>e all <strong>of</strong> <strong>the</strong> pollen froll tile plait will fiiction as if it were Sl , ald <strong>the</strong> pollen<br />

with ei<strong>the</strong>r SI or S: alleles will bc ilcomlpatible i an St,' stylc, but will be Compatible to an S2,iS<br />

style. In ano<strong>the</strong>r <strong>in</strong>stance, if SA i>,domi<strong>in</strong>ant to S, <strong>in</strong> poElci, <strong>the</strong> ctoss .SIS. (felliale) X SISI<br />

(male), which is <strong>in</strong>contipatible on <strong>the</strong> assum1ption Of ildepcndent S-allele action, wouid nmw be<br />

compatible.<br />

Codotr<strong>in</strong>ance ar'ong S-alleles is a relatively <strong>in</strong>otre cotiimr gen ic hlnorienon than<br />

dom<strong>in</strong>ance. Moreover, <strong>the</strong> relationship between S-alleles <strong>in</strong> <strong>the</strong> ptllet is riot alvay,, <strong>the</strong> sante<br />

as <strong>in</strong> tie stigma. By <strong>the</strong>se condititns, as well as <strong>the</strong> fact that a large numiber tt,'-factors exist<br />

<strong>in</strong> a population, tbe number <strong>of</strong> compatible cotob<strong>in</strong>atitn <strong>in</strong>crcases atn cross-<strong>in</strong>compatibility is<br />

ra<strong>the</strong>r <strong>in</strong>frequeCit <strong>in</strong> natural openr-poll<strong>in</strong>ated populations but not <strong>in</strong> gcnetic irraterials that are<br />

composed <strong>of</strong> closely related <strong>in</strong>dividuals such its anl ibrcd fanmily. The possibility <strong>of</strong> obta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>dividuals that are litnozygouIs for <strong>the</strong> ­ fac tIrs is ra<strong>the</strong>r obviUs fr-oit <strong>the</strong> att ribute <strong>of</strong> dom<strong>in</strong>tance<br />

or o<strong>the</strong>r pert<strong>in</strong>ent comb<strong>in</strong>ations. Thus, <strong>in</strong> contrast to tile garictophytic <strong>in</strong>compatibility system,<br />

hoiiozygotes are also a normal part <strong>of</strong> <strong>the</strong> sporophytic <strong>in</strong>compatibility :y.,tcni (Lewis 1954).<br />

Tis fcaturc has been utili/ed <strong>in</strong> <strong>the</strong> deriv'ation <strong>of</strong> <strong>in</strong>bred l<strong>in</strong>es that are honizygous for S-alleles,<br />

<strong>and</strong> has a vcry important implication <strong>in</strong> hybrid breed<strong>in</strong>g.<br />

Although S-alleles cart he broadly classified <strong>in</strong>to doi<strong>in</strong>ant <strong>and</strong> recessive S-allcles,<br />

comtplications generally arise because Ofi<strong>the</strong>ir differential bchavior <strong>in</strong> tire pollen <strong>and</strong> stigma.<br />

l)mi<strong>in</strong>ance relations are <strong>of</strong>ternr nonl<strong>in</strong>,,ar (l.ec <strong>and</strong> Yoon 1981. Ockendon 1975a, Richards <strong>and</strong><br />

Thurl<strong>in</strong>g 1973, Thrtirripsom aid Tavlor 1966). Ihe degree <strong>of</strong> doitnance can also change ow<strong>in</strong>g<br />

to genetic backgrounds, <strong>and</strong> physiological or environmental conditions (Murakami 1965,<br />

Ockendon 1975a). Con<strong>in</strong>etitive <strong>in</strong>teractions can also <strong>in</strong>duce recessive hetcr, zygotes to change<br />

to self-comipatibility (L.awson <strong>and</strong> Williams 1 9 76a <strong>and</strong> hi.<br />

Seif-comipatiblc pilits have been found occasionally ill self-<strong>in</strong>corirpatible populations<br />

(Nicuwh<strong>of</strong>' 1968a) seceds may set (rlui polleni carry<strong>in</strong>g <strong>the</strong> saire allele that is present <strong>in</strong> tire<br />

stylar tissue. This condition is referred to as pscudo-sCef-conipatibility. The arirouit <strong>of</strong> pseudoself-coltibility<br />

may be <strong>in</strong>odified by enr vironmental factors as described above, or perhaps<br />

by modify<strong>in</strong>g genes. Ill addition it is assuied to have been due to tle presence <strong>of</strong>' an ,Sfgene<br />

<strong>of</strong> S-allelonrorphs which renders <strong>in</strong>ieffective <strong>the</strong> alleles for <strong>in</strong>compatibility (Hateman 1954,<br />

Nasrallah 1974, Thompson <strong>and</strong> Taylor 1971). The ,S/fallIe is a part <strong>of</strong> tIre S-allele series <strong>and</strong><br />

may arise by uutttitr horn11 an S-allele. Tlre existence <strong>of</strong> polygere systems which rirodify Ire<br />

expression <strong>of</strong> sclf-<strong>in</strong>conrpatibility has been po<strong>in</strong>teI iurt (Haruta 1962, Nasrallah <strong>and</strong> Waltlace<br />

1968, Richards itld 'Thurl<strong>in</strong>g 1973). Thus, althOtigh <strong>in</strong>compatibility <strong>in</strong> crucifers is pr<strong>in</strong>rcipally<br />

controlled by a mirajtr gene with urultiple allele:; an actual pnpulatiotr may be made up <strong>of</strong> many<br />

<strong>in</strong>dividuals with different manifestations <strong>of</strong> <strong>in</strong>compatibility brought about by <strong>the</strong> <strong>in</strong>terplay <strong>of</strong>'<br />

genetic <strong>and</strong> enviroimental factors.<br />

Detection <strong>of</strong> self-Mncompatibility. Ina breed<strong>in</strong>g prograt to exploit hybrid vigor <strong>in</strong> crucifers,<br />

<strong>the</strong> identification <strong>of</strong> self-<strong>in</strong>compatibility among selected plants <strong>and</strong> <strong>the</strong>ir subsequent progenies<br />

is <strong>of</strong> prime importance for <strong>the</strong> breeder. The traditional method <strong>of</strong> detect<strong>in</strong>g sel f-<strong>in</strong>compatibility


Sc f-<strong>in</strong>conipatihility 27<br />

is through seed set analysis. S<strong>in</strong>ce, however, it takes more than a <strong>in</strong>oth iroln poll<strong>in</strong>ation to<br />

harvest, that <strong>in</strong>adverten't contan<strong>in</strong>atiris <strong>in</strong> poll<strong>in</strong>ation <strong>and</strong> seed mix<strong>in</strong>g, at liar, est arc hard to<br />

elim<strong>in</strong>ate completely, <strong>and</strong> that o<strong>the</strong>r environmental fictors may set <strong>in</strong> to <strong>in</strong>luencC tile sell<strong>in</strong>compatibility<br />

reaction, several worker., developed possible allrnatives to <strong>the</strong> seed set tiethod.<br />

Thompson <strong>and</strong> Howard (1959) su'gestcd a techniquc <strong>of</strong> ohserv <strong>in</strong>g darkened sigIna surface<br />

two days after poll<strong>in</strong>ation. This <strong>in</strong>ethod is not readily applicable tu ('h<strong>in</strong>ese cabbage wIicli lacks<br />

conspicuous differences <strong>in</strong> its stigrn; surface color. Saunps.on (1964, 1967) developed a technique<br />

<strong>of</strong> count<strong>in</strong>g enipty pollen gra<strong>in</strong> .mi ie radish stigtna 24 hours after poll<strong>in</strong>ation which was<br />

subsequently applied to <strong>Ch<strong>in</strong>ese</strong> cabbage (Lee <strong>and</strong> )ot)ii 198Ii. The iibility <strong>of</strong> <strong>the</strong> fluorescent<br />

nicroscope 0-M) to readily di'plt. tie pollen uLbCs that have ljcn,.tatcd <strong>the</strong> style provides a<br />

direct <strong>and</strong> immediate feasure <strong>of</strong> <strong>in</strong>coiiipatihility IFig. I I). FN i.. coimmonly employed <strong>in</strong> B:a .ica<br />

brecd<strong>in</strong> (Wallace 1979). a<strong>in</strong>d has beCC comtb<strong>in</strong>Cd with <strong>the</strong> <strong>in</strong> Vitro poll<strong>in</strong>ation technique (Lee<br />

,<br />

et ill. 1982). Details <strong>of</strong> <strong>the</strong> FM <strong>in</strong>ciwdhIld its Leoiib<strong>in</strong>ation with Ili rilo poll<strong>in</strong>ation are as follows:<br />

1. The nevly opened flocls with pCl'Cls 'ire detached <strong>and</strong> riitl. placed <strong>in</strong> a labeled petri<br />

dish with cover. Excised Ilo', Crc i <strong>the</strong>nirllnIld <strong>in</strong> ri,. Inad\veteCt et hll<strong>in</strong>ations should<br />

b avoided. Poll<strong>in</strong>.ated fIh.0Y, csreCc('t ill a chalhcr at Rh 98i <strong>and</strong> 2' C IM 24 hours.<br />

The humidity is ialiita l V\ h<br />

(K2Cr2O 7) solution with<strong>in</strong>.<br />

eali\ <strong>the</strong> chamberf s;itLft.ed with itassiiI dichaorlnate<br />

2. Pistils are removed <strong>and</strong> placcd <strong>in</strong> I N Nnt( )i 1at 60 ( lor ahott 15 an<strong>in</strong>!o soitern <strong>the</strong> tissues,<br />

<strong>and</strong> <strong>the</strong>n stai ned over nih !-l \ ith 2' ;im lie blue conta<strong>in</strong>i i i, 2 ( potssiulr phosphate<br />

(K3P).0).<br />

3. The stignia <strong>and</strong> st, Ic arc rniM iCOrt<strong>and</strong> :1 <strong>the</strong>n squashi I mi i aH I li I,:s opc slide. 'lIe aniliie<br />

w<br />

blue sta<strong>in</strong> accilirtulatcs iII<strong>the</strong> pol e1,Ctubes <strong>and</strong> 'lloresce- .h<strong>in</strong> irradiatld with ultra violet<br />

light at 3() to 41)(' micrimctcr \\a\elcngthi.Jndcr all FM iiicrs0epC v ith appropriate<br />

light fillters, die tie -arc visible. iCrca. <strong>the</strong> bhackgrultnd <strong>of</strong>st''lfr ti,sucs is !argely unseen.<br />

<strong>Pe</strong>netratiti <strong>of</strong> <strong>the</strong> t.s ic by none o! few tubes <strong>in</strong>dicatCs iico<strong>in</strong>rrtibilitV: p1nt1ratim by<br />

manyL tUbeS <strong>in</strong>dlicate(' ctripatibility : arid p rrt'itt<strong>in</strong>ll hy iItClniCdtate ri<strong>in</strong>ri/bCrs <strong>in</strong>dicates<br />

<strong>in</strong>termediate t-ength <strong>of</strong> iro<strong>in</strong>patihility expression (Fig. II).<br />

Figure II. Fluorescence microscopic view <strong>of</strong> pollen tube elongation <strong>in</strong>to <strong>the</strong> style <strong>of</strong> <strong>the</strong> compatible<br />

poll<strong>in</strong>ation (left), <strong>and</strong> <strong>of</strong> pollen gra<strong>in</strong>s with very shc't pollen tubes <strong>and</strong> strong<br />

fluorescence (callose formation) <strong>in</strong>dicatrig <strong>in</strong>compatibility (right).<br />

4. With <strong>in</strong>t vivo poll<strong>in</strong>ation, pistils are excised 24 hours alter poll<strong>in</strong>ation. Before s<strong>of</strong>ten<strong>in</strong>g<br />

<strong>and</strong> sta<strong>in</strong><strong>in</strong>g <strong>the</strong>y can be storcd hy fir<strong>in</strong>g <strong>in</strong> FAA (13 part. fortiral<strong>in</strong>, 5 parts glacial acetic<br />

acid, <strong>and</strong> 20 parts 50% ethanol), <strong>and</strong> <strong>the</strong>n transferr<strong>in</strong>g to 70% ethanol.<br />

When alternative systems fail, breeders generally fall back on <strong>the</strong> seed set method for<br />

detect<strong>in</strong>g self-<strong>in</strong>compatibility (Fig. 12). Thc procedures used at AVRDC are as follows:


28 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

Figure 12.<br />

Silique set <strong>in</strong> <strong>the</strong> raceme <strong>of</strong> a sei-<strong>in</strong>corpa-iblc<br />

l<strong>in</strong>e. Open flower poll<strong>in</strong>atior~s near <strong>the</strong> bottom<br />

result <strong>in</strong> smalll SIIKties With few or no seeds,<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>in</strong>compatibility;' bud-p<strong>of</strong>l<strong>in</strong>ations at<br />

<strong>the</strong> top pr-odu!c(2 1norril silqueS. Indicat<strong>in</strong>g<br />

jUvenml( Compatibility<br />

N/lMore than three flowser siaks Of <strong>the</strong> plan11 art se'CIled a1,,d baiiTd toI he tested fl <strong>in</strong>eornlpatihility.<br />

At anr appropriate time. hour open iose, escept sesOld lowerl' MsIili 1rv<br />

p<strong>in</strong>1Ched oIl', <strong>and</strong> VOurw _ budS. eCeept lIre set' 111111;1at1r 01CS ons1r1l-C oln~re<br />

number<br />

The<br />

<strong>of</strong>'sell-polliruted open liuss ens <strong>and</strong> huds <strong>in</strong> each stalk ax recordeti <strong>in</strong> <strong>the</strong> poll<strong>in</strong>at<strong>in</strong><br />

tag, along with <strong>the</strong> pediieree code Of thie plant anjd dare <strong>of</strong> poll<strong>in</strong>ation.<br />

2. At .i.atLlri', <strong>the</strong> <strong>of</strong> seeds _lun<strong>the</strong>r opeir-lioss _fotn relfitw, lii each fioser stalk arecounted.<br />

The a\,eragc seed set per silicque (totai see sttoa los r pollirnied ) It~ierr detetriited.<br />

3. Sell'-pollitratiorts averag<strong>in</strong>g Ito moure than one seed pet siliquec <strong>in</strong>l open i slirer<br />

considered w, good <strong>in</strong>dIication1s (If sel -irrconrrpai)tihlilitv . '[r t<strong>and</strong>arid is. ho. ever. arbitrarv<br />

a-u may' differ ICpediri2 upon tre cirerUrStares. I iStatte, if) situations \\ here sorie<br />

egree <strong>of</strong>I ibirrill i rrcon I'erial seed lot 1sSaccptLIae. thre s<strong>and</strong>ard oUld sei he alittle<br />

higher. However. hrcders 1citalvHiOss <strong>the</strong> stirdar-d Of onle seed<br />

(Iper<br />

siliklUe<br />

"<br />

Or<br />

wi<strong>in</strong>o<br />

less<br />

to r<strong>in</strong>ni/i _ pribleirrs i Oflower (iritre tie ponretior Of conenrebitial<br />

hybrid sed(.<br />

4. Th~e average seed set urn birud Selfii ISAlSO octritritrd <strong>in</strong>r t Iralt <strong>the</strong> pklnts seClected<br />

for strong i eorlatihility earl also he eail <strong>in</strong>aiatied.In litis t;2aRd t Stict st<strong>and</strong>ard<br />

is not tillowed. but airy ap prccialei deviatthun hotore trorial l'errilc pc llirratiorts are noted<br />

<strong>and</strong> l<strong>in</strong>es, With riherrairt hUdl fertility are elimnated.<br />

Isolation <strong>of</strong> S-allele homozygotes. lDevelopirt <strong>in</strong>hre.. <strong>in</strong>es that carrN all po.,sible desirable<br />

(raits, <strong>the</strong> honnozygosity fit S-all"ies with stroll" <strong>and</strong> stable sel iiconrrpalibilil~y, aud at <strong>the</strong> same<br />

time., with good burd selhcrulir , tre itrpnirrairt p<strong>the</strong>etoisipes i hobrid breed<strong>in</strong>g.<br />

Most self-<strong>in</strong>corpauibe hour a freely 'eleeriuns <strong>in</strong>terbreed<strong>in</strong>g population will likely carry<br />

<strong>the</strong>ir S-alleles <strong>in</strong> heierozvgotrs formnt The fi rst sel ted getnerat ion r<strong>of</strong>' <strong>the</strong>se<br />

segregate<br />

select lom<br />

for<br />

will,<br />

S-alleles.<br />

thus,<br />

Il'stch alleles are syibulized by affixirng ltters alter gene S. a situation<br />

might be visualized i which a sidled heterozygote, St, lor example. is <strong>the</strong>oretically segregat<strong>in</strong>g<br />

<strong>in</strong>to: I SS,- 2 S j : I S ln .,. Breeders t t differemt need r iatc<strong>the</strong>se geur r:,es <strong>and</strong> carry o<strong>in</strong>fur<strong>the</strong>r<br />

<strong>in</strong>breed<strong>in</strong>g only on S-allele hoozygictes f S ,Si, o- both). S<strong>in</strong>ee al <strong>of</strong>' <strong>the</strong>se genotypes are<br />

self-<strong>in</strong>compatible, <strong>the</strong> identihication procedure AUSIt<strong>in</strong>volve testlross<strong>in</strong>g. A diallel-cross<strong>in</strong>g<br />

method has been used at AVRDC; its <strong>the</strong>oretlical bases <strong>and</strong> guidel<strong>in</strong>es olir practical application<br />

are described belowv.


Interaction types <strong>and</strong> diallel cross-fertility patterns: I here arc hasically four Sallele<br />

<strong>in</strong>teraction types <strong>in</strong> a sporophvric SI system (Fig. 13). l)mpid<strong>in</strong>e oil ftitype, it is po'Sible<br />

to identify hollioZigols hfor -allele, through a diallel-niat<strong>in</strong>g y1t1t1. Ihes hoti0, ygotes should<br />

b, identil'ied as Carl a po,,oshible i th,.' jlurediill process <strong>of</strong>nplants dIim,, ,d i- eoiih<strong>in</strong>ilg<br />

ahility <strong>and</strong> <strong>the</strong> lil', shoIuld bh' p iputteild <strong>the</strong>racterfic lheS-odMVle hlii,\,Cote,,,<br />

TYPE 1 I] U1 IV<br />

(A, , ,A'B A B I, '_ B\<br />

\SaSa \SbSL + S.,Sa, ,<br />

\Sb SaSa kSbSb (SaS, "Sb-Sb<br />

C" C C<br />

(SaSb"<br />

DOMINANCE RELATIONS BETWEEN ALLELES<br />

S a S<br />

POL.LENS,,. Sb So. Sb So' :b Sa" Sb<br />

STIGMAS, Sb Sa Sb So Sb Sa Sb<br />

Figure 13 -[ypes <strong>of</strong> <strong>in</strong>co<strong>in</strong>patibility relationships <strong>of</strong> S-alleles <strong>in</strong> pollen <strong>and</strong> stigna<br />

if crucifer vegetables - -.,cross ircompatible,- - cross COrnlpatible<br />

Arroev <strong>in</strong>dicates direction <strong>of</strong> poll<strong>in</strong>ation. S,, St = St<br />

donl<strong>in</strong>art over SL.S 5, aid Sici':eende !r<br />

'T'he lr<strong>in</strong> Ilil (d '1l1s h liei h ,'i lulaijit'_) ,hli )I iliiiiiialu or idealy icio <strong>in</strong> a hybrid<br />

s'ed hulI. 'Ihis tretieii n illdepend l:1r'e1 lisr lie itr i id .- allelesathl <strong>the</strong>ir stability<br />

ItnI'Poll ' lto t ilIl lntlcw ,c-iallk l'.iillel,1tlt' 10r ',Td iodiictiC, ii. S lc..,tion 1or strotil<br />

Salle:l Cr.1 ,W l; t ,lia,',tl 1 hl e ldcitilicaitlon ot S AMCllele htoiii. cties.<br />

lh ,t i .+ S ."; ll k'lllt'la ,<br />

tii i ;ild hleir crWs-1--cO pltibility pattern,, are rveln<br />

eh,.,,. ,,+",hh u,,h it apl'e';ii "extie i, n iple o d:ir1k.i , .it r1.,11ir cau.12 l <strong>and</strong> thorouii ;uil,,lysi,<br />

tO MIl il L' ht 1k 0 t11 Ili tr ltur iII I)at lt )IIC It'it, Fe IIICiibeI" tliti<strong>the</strong> cOiMl)ositiOil <strong>of</strong>,<br />

111'.,21, pi(d iw +sOfl t a lhtt,.tt/\ ate iill\ i.it 11,ihl;l 1:2:1 ratio. "helre Could bC<br />

more ihia; 4<strong>in</strong>c s)e1mc1t ; m,or .V,7,. iresaiile. kearrantiemcnts <strong>of</strong> <strong>the</strong> dialle tahle <strong>of</strong><br />

poll<strong>in</strong>laioml data i,. ltee,,h1rL+ i'ilpiuil to make itI)t+rii clcar. [or explmatitl <strong>of</strong> <strong>the</strong> various<br />

sylmbols uId leee i,_ thle !"t,. beh)i..<br />

I.I.l€)c i:S.,< 'ii r'iII: .,,S. , if] pollhn<br />

Genotype 11)1hcot1Cie) tCen ity pe (14phelotYpC)<br />

" ,Cted iml-cut <strong>of</strong> pollen parent<br />

S,,IS", S.,Sl StS&<br />

(S5".) 0,;'0, (,IO<br />

SaSdl (S.) I C C<br />

S,,S'h (S)<br />

C I I<br />

ShSh (S) C I I


30 <strong>Ch<strong>in</strong>ese</strong> Cahbage <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Protductio<br />

Features:<br />

t.There are lorc ciolpatih.c crss than ill otiher types, aIut eLqual. ill nlulber oilelch side<br />

<strong>of</strong> <strong>the</strong> dialil. table.<br />

b. The sibs can be kidii'd <strong>in</strong>to M()i, ,,ib- ilcoiMpatilh ,-ouip,which ave cullip:itih.c to each o<strong>the</strong>r.<br />

c. he roup .0111 cThepiC 01' l \\, 1,11 tOfle, Ilk,.,co tsi to lie eiio lces,,i\c lli ,'o ,(N ,.<br />

The Li !,10111/ .',,upiIikel, ,, a <strong>in</strong>sit e Ot,,)d I ik ici _'\.,o, es", , ) <strong>and</strong> om<strong>in</strong>atit<br />

, i ii,, i lillk li+ll tO \hIsIIt n irrklll tN !',C IVLn, I',t\ \t, i t rc\tCI ,s<br />

c l, allh:t il r,:t p ) m f Ill,Ap\ plrg y mt' (C+,1 10 ,-, ".111h At1u \,.it ],,m (dc t I)ior,, ws<br />

"CHl T'iit i . It I0 i r ' , n'.'tc ','A',. ,11\ until 11'.I tho dtlest'l lt. l , ,,St , <strong>in</strong>ld<br />

,.';i, -ccni~i 't, ' . , ' . i\\ ,Ili~c )',+ Inl i' L:, . ('Ljitse calIh ;HC. <strong>the</strong> t ,I0.,s.<br />

2. ' l\,, I .L, I i I <strong>in</strong> i I .C., , i 1 ollII i<br />

Features:<br />

S.,S (., aund S') l I<br />

.Sbi."', I,Sn, C I I<br />

a. (olpatibC croLes ; reC evenly distributed t<strong>in</strong>ii0n2 colmns. thanl 1 amL1ng rows.<br />

b. The !roup I p'nt's that ar co<strong>in</strong>ipatible isa fteitic v, ith tile rIt <strong>of</strong> <strong>the</strong> 'bs hut not reciprocally<br />

(as oale) i,honti,.2niotC ,,<br />

,.. The Ill)luts. thit arc rcp:ii:,+II'allN ci(umlitiblc \ itlh .S, rluillitiiii/\eii fl tie oppoisite allele,<br />

3. Type Ill S.,S, <strong>in</strong> i, spole;n: ., S;<strong>in</strong> pilion<br />

Features:<br />

(enoltype cyhcll'ypeC<br />

otfseed , arent<br />

.,S, (S)<br />

.',Nn, (Sb)<br />

SIS, (S)<br />

(enotype (plhenotype)<br />

oIi Poillen plarent<br />

SIS. s.st, S S<br />

S. (S.,<strong>and</strong> S) IS)<br />

a. Compatible crosscs are more evenly distributed an1m rows than among columns.<br />

b. The group <strong>of</strong> plants thit are ciir'mpatible as male with <strong>the</strong> rest <strong>of</strong>l<strong>the</strong> sibs but not reciprocally<br />

(as femnaltc)arc himoizygntc SS.,.<br />

C. The plants that are reciprocally compatiblc with S,S, are homllioy.ous fbr tileopposite allele,<br />

NI'S..<br />

I<br />

C<br />

C<br />

I<br />

I<br />

1<br />

C<br />

I<br />

1


4. Type IV: S,, = Sb <strong>in</strong> stigma; S,= St, <strong>in</strong> pollen<br />

Features:<br />

Genotype (phenotype) Genotype (phenotype)<br />

<strong>of</strong> seed parent<br />

<strong>of</strong> pollen parent<br />

Si,5<br />

(S,)<br />

S4,Sh (S,<strong>and</strong> Sb)<br />

ShSb<br />

(Sb)<br />

S.,S; (S")<br />

I I C<br />

SiSb (S,, <strong>and</strong> S) I I I<br />

ShSt, (S) C I I<br />

a. There are generally few compalible crosses ti ei<strong>the</strong>r side <strong>of</strong> <strong>the</strong> diallel table.<br />

b. The plants that show reciprocal compatibility with each o<strong>the</strong>r are homozygous tor each <strong>of</strong><br />

<strong>the</strong> alleles, i.e ',,S, <strong>and</strong> SiS<br />

Notes:<br />

a. The symbol <strong>in</strong> paren<strong>the</strong>sis <strong>of</strong> each diallel table, follow<strong>in</strong>g or under each genotype, is <strong>the</strong><br />

g<strong>in</strong>ete <strong>and</strong>/or ganet ic hehaivior.<br />

h.C = compatible: I = <strong>in</strong>compatible.<br />

C..,.,


32 Chi<strong>in</strong>ese (%ihhzutg i .I'LLIsedI rh)uct (lil<br />

6.<br />

I.t I IlIw/ gosrt', Im mli S~ peil I,, II~flilii\oc;II\ confifllIICd by <strong>the</strong> abselile 1)1fltile or. Coll)jIib11i<br />

crFOSses ;IIIILLtie it', selfe Ic( 'ei wtien lterecrossed if (]ittle] (wai1 leciprl.1<br />

fashion. Afteridail'n (lie c1LIL/\L onfillune Ifo Illollitor <strong>the</strong>ir selled Jirogeiries<br />

h-I cxplolmiaLLI siill'.1 A<strong>in</strong>d >eCllii. iXe iieOIIl)iete di1:iI1cl. Pl'eIIetilte OILelir1e wnlk Irori<br />

<strong>the</strong> imost sel Cif ia<strong>the</strong> l helI[ldi ',If ferlile poe ItsIIlt l<strong>in</strong>eL I" (.11iestiLLINCb~ bit<br />

S-allele hIolllwLI/\ iLlt levllli lie IL toL isklc ite <strong>the</strong>n Illilo/, gote".()Iisi.<br />

disLcard l<strong>in</strong>e,, iiristaIc I l I-ificol~illmjli\ c\k1 ii Ihci ullflis wll IILoLII()/ i iase<br />

beenI idCenniI-ie. MoLst likels. <strong>the</strong>re AreIiiLljilili(T,11U-IIeieii<br />

1( ieIespress-L\,,iH 111' AMhl<br />

A lIn thIl'J(io .SeLOIlIilA', [eLilLIl i( tLCi);ii1li i.e. M,' eC mipatle ILLSeS ii IlieO<br />

d"dale Itable. k<br />

iN ,till UINL 1l l<br />

hi eiaN mliLL/\(LI a<br />

ILIC O ilit I-iILIjI 101NO 2<br />

n<br />

0d 1'( I<br />

SIINIL\ AM( m\alee11IL'i~itil id 11.1W.<br />

1 011 Cii~L INhi 11 lith<br />

SUeI ti jllc<br />

Male Sterility<br />

Thie snrhL 'S1 syssil isilieiyiilar ileulialismi <strong>in</strong>i MICH&KeI h, lllahitijn lieteroi mor<br />

;111l [ICesels L I e ;ltrLI.eCLHi iLiILill ,Ivll ijilc. Fronti a (1111 ililIL \eilienlt \iewj)oilit.<br />

1h1k lTIl <strong>in</strong>iisiL kis (ii)Ll;I a "i1:1a lol 11k LsJIL ibl li <strong>of</strong> LL HJIld 5wo leo<strong>in</strong> elicilels, I n)ItI<br />

ilkk\, IsI~h! Id I tItNIC Ill Iit 1iiiiibei I( l -li L L s e l!"Adlk. LLLiliic wLI), )LlLLLIILct uiisiI Onii<br />

AII i!I kLI~L LIiI, l. J.i I I 1111 CML"11 lifp h~~l"I ok ­<br />

i lit lili ul IMill) 1 I,is- 110111sitiiiI\iiI~ xi5 ll , L i li fill I~eisIiLi<br />

'n) il 1) 64, I(Jeis:\ .h:~n IthsLILI PlIN fil i~ llk 1111 .LL esc L 'c\Si<br />

Pl~l t l)ittClI IlSit . iLICiImcL IJLLi 'I'LiIS LI Is Il l HII IIII' !:htC!L.;IIkCL ](IILL' if IliIl I<br />

beenI fLil hLLIll0 sil ILI I, I' LL pel a IL I:I. Ii le Lmullip ILI oil jL IILI S 1)is lies<br />

p. 6 1.<br />

Th li lphi"I, w)LesjpklkIili l )iplli 1<br />

<strong>in</strong>coLllliiillit Iit o'c-ld IIILIII)CLIIIIII Ill W(CII I<br />

"k, LL11111 IN noI~ LL'5lIhcliwc~V<br />

ts (icILi iIdlt -.teiil ' iis 10 LC<br />

I('LC<br />

eierIC 'ieh<br />

Ill1( CI(A l L1 AkL tl ICI LLIICt UtItiL' 1(11tI 11 lt ll l l h C I111/- M O IIIC-il<br />

erifid c d lrsto uiity Ili ( Ill 511111~LIS I ;"I s' hiiih h IL~l eisn~'il'<br />

tilL' maiile WAR, (!fIILL OIi itlmt' ILdLq nLL~~ wnli i 111Olise I tie: ail 5Lil'.llLik-21<br />

with<strong>in</strong>i h siL N Thl tle lsn -1 di:11,11C stel elle t\l ILL Ilie',HI ie d %l I lI IeI J)CeCeet;IBte<br />

g.!lie lii> lk iell icfI i. . L,' ill t i ' 'sI! 11W I)s In> \1:11)Le liL1IiIOf LLVI 'tiC li I ~ t~i<br />

h14ms" i is I , 1t l iles h;Is hc l fLLICiL k,~ 5,,Iiitk- i)(lC 110i I ( I III 'il~ 01i~l . [11Ch<br />

0~)iil L Il11C ILL% l' : Imth,1iI iliIi 'ri ~ II LII'Lillit 0 il I!L' ILUIILC l L!'mLI"l<br />

'if IL L5LICs'.iL()i LIfli 11k 1aILS A m)o VII v. 11 ili Ii CMS I IIIIICIi I ;I IIJL ii WH-IC i<br />

<strong>in</strong> lhee ailn] ;ill Isc55 LI) Il ',I IhIL \%IC ll C 0I\ILLI11N i ld i<br />

IC l ii! l' It ' L! I I iIli_ Iclli. 5k,11SfpiLIL wkiLI a ;Iiiesicw iiidi ljl (R. ' sif-)li 1 IYik<strong>in</strong>~imsu<br />

1195v II. [is 'enije ii;:I WHeOi i% L!L CIICL it1 (> I CLL55\Ll_ VIVIot; <strong>the</strong> dhruIililnt<br />

allele'.l tALS111 mi Alwn) ecS1ili Ill pnodulliill olI IlilltiL Ilnhtlel ;nlt 1<br />

SLle<strong>in</strong>ce <strong>the</strong>n, several<br />

ealses <strong>of</strong>IIgenie Ilode~ s)teilits 1Ill te beezi 10IlUII i Il Cruel leJisCF: I)IO'eeLHi ;Hlstvaid N1oore<br />

19541: coli<strong>in</strong><strong>in</strong>i 1 ii(eIKotoaij il '<strong>and</strong> ;tIi 1958, Nish i nd I IirankaU 1957, IRndfelihr 1960);<br />

Brussels ,prlout (.o<strong>in</strong>isii 1958, Nijuiolf 1961 ); CMnlilhlWer ~~i~ 1966, Nienwh<strong>of</strong>' 1961,<br />

Runidflkt 1960): BI (Y111pe'ris var. brownl salrson <strong>and</strong>t( ehlLks sarsL) iiI host dury <strong>and</strong> !)as 1966.<br />

ILS aInd Panidev 196 1); B. wpopn (IlIevr 1973, Jakai 1971); aad( <strong>Ch<strong>in</strong>ese</strong> ea bbagc (A nonymnouls<br />

1978).


NMle Sterility 33<br />

Fmiale<br />

Male<br />

Sterile Fertlie .i ih pare'At peIre1 F1 Stroeltutk: lhelh i rlltl<br />

I til /FteriIh W e tik: Sterile<br />

Figure 14 Mode <strong>of</strong> <strong>in</strong>heritance <strong>of</strong> ,cnic male sterility (left) <strong>and</strong> cytoplasmic male sterility (right).<br />

Letters <strong>in</strong> <strong>the</strong> l<strong>in</strong>er circles represent genetic factors; letters ill <strong>the</strong> cuter circles show<br />

cytoplasmic factor!; S - male setiile, F = male fertile, <strong>and</strong> gene F be<strong>in</strong>g dom<strong>in</strong>ant<br />

over gene S. Tihe c I oplasniic facto,, a1 tr;itns<strong>in</strong>ltt ed only Il'rough <strong>the</strong> female parent<br />

(modified ftoni Alhird 1960)<br />

lF1 b hyhrid ( iiii . c htil i ' he l:1', lv .ii ruurdtlccd iI (']iimtt isit<strong>in</strong>L 1,11Iil %c , ctite lille<br />

steriles (Attn <strong>in</strong>\ lw, N 78. N ii lt ill I ) 'I)ll, S-\ teili h1;IS iiiit\ ;ildvit e ,c: stock <strong>Seed</strong><br />

iropaoali i stil ;(tiL-olip]islic h ilh it ittim, 11- il itits ss li tik planls <strong>of</strong> tie sati<br />

lite; tlte qualitiI o hi\hli id ed- is e llsulrd: autd <strong>the</strong>ir pilr ts, ,re Itrul \ i20olrn!S ( Niu cA l. 198)()).<br />

Furtlhettrtore. itiale-steui: i : uCottp e~<strong>in</strong> ,l.nallL li t irml a lertile olsers it a lo, tkmtcperatture<br />

(Nietiv l I ' lhh) 1 o' eser. It lit ,e d prtductiII, throw, .t l IiL ItIe ,tIrilit.si s a is ,llictit<br />

systell )C ltiast. It p llc piiiltml, lluiti itt I Miu lle s ilt ' )I iill CSterile i ll l ."iit tC t' ht l h;til-l-r2liuh<br />

otr hete -t%,,. t , lt;ilfle'-l til l' l]nl' het'<br />

, mI II IuniIC <strong>in</strong>.C'> IS tCLItti lt'tI l)itiI 1t <strong>the</strong> oli-t i c<br />

poll<strong>in</strong>talitit Even<br />

'<br />

s ,ii:+tnit i l L tInt t i elec'tise S'S,teni ht sCil,'l<strong>in</strong>ie tnut fertile l I101t' leiI ule<br />

l<strong>in</strong>es talr lie loiitd. S'e sCdl1Ie 2ui kti iItket crso e ] lii!- l t) tt!icilLes ilct ,clio. lh, ,\ Steiti<br />

doies lttl Jlti'I,!. lit ; i cl tl'l:tiscA seed 1)todulitiiti oldec it] hA I tie' tl;c ppulaiti<strong>in</strong><br />

lpartici[pttc itt rudic<strong>in</strong> ]l\ ' d ,c ',e Il i c s li\ II l.u tILel., i , I ll iuc tf 2UlC"italc i<br />

stcrility lot hlY id gti)du tit)u IS l<strong>in</strong>iitcd.<br />

Cytoplasm ic male sterility. ( ,, ltt1i11, i ll: t4CI,lit u, (0tt lcl.d h Iic c\ thItlJuSII hilt<br />

Illitl he ill]UcIteuc I h\ ti tu) l ni ", lie. l-I-i Ll. InAt C 'iitCrilit%. it results ill <strong>the</strong><br />

rt)silutdiut il l]it ts,,r \ iii itlti l c i tit tillici',, l , ,ici+ i.. , 1 ). Csttil' STh L'totu ilistl tltet<br />

rcstlhs l""t1 tIl'<br />

e'vtopit s i l l[<br />

01o1)l ihr t1u1<br />

iiiti liit I ii iil lticlut l clii ik.i<br />

fI t'l rl tnk 0101 :11C ! ,+.+"it ' . '.'\Wo[LIHl<br />

t iil he r thu r, li lit.<br />

,<br />

:i ltotei l ' rlcti lll. %;+i.i tlme<br />

1,'--u 1C lCt ,. IIt\ (('\IS) IS.tl'.mISuI tcd<br />

() hira (1968) ,epti;twe die tit ciSc tt \ li il.l~lic IlI l' stelilit, ill Jihtlp C.C id lish. Tilis<br />

ttalLe sttlihit\' wss.u, I)iiiiliicui I',, iet iiil ttLl tiill Kiss\ celi t~lc es tuilhl;isiii m<strong>in</strong>itIt hlhtuu\,' it it.elU'eutr<br />

ge<br />

,<br />

neu Silh' c uietttlelt\ <strong>the</strong>tl il<br />

',<br />

it (NN lioi k:heclt luitllt: Ill B? . u/u tl'ul Irlct l B. niol<br />

x I tIur utl (Bl'.aritt It 721; it 1. c(IIlli'III. A hi'u /.li/t 1, lniiti 1 I)i p/)1,1,1t 1 tulis .<br />

13.uw ilp '.)iri. L (Il iitt i 'Ind ] lntltti 197(). <strong>in</strong>l B. c'uupip .mi . suhsp. ;alilicru (l)hka\%i 19 5); itl<br />

B. ,mipts(Shig atd t aha 1973, Thtmps,on I7t ; ,itttd ill I. junc'ui ( rBrar et ul. 190t) . Ill sttt-'<br />

cases fertility-restIr<strong>in</strong>tg laetorPS have hen iutuld \tile ill o<strong>the</strong>rs tiy were absent t()hkawa <strong>and</strong><br />

Shiga 198i , Shiti 198 Il). ttl <strong>the</strong> plr'IIenct e it ai d ititi l lcrtill\ -restirifi allele. <strong>the</strong> sterile<br />

cyloplasln becnto eS itt(ipera ',."tis aid <strong>the</strong> aitit C ltr c 1dtees ituitit1a1 pollen<br />

wlhile itt ite prc.',ic


34 Ch<strong>in</strong>es'e <strong>Cabbage</strong> Breed<strong>in</strong>E allot ScudP',Iic i<br />

<strong>of</strong> <strong>the</strong> contrast<strong>in</strong>g rccessi\ cicVIesnille steri I tY is eClpressed. Foo(vetione <strong>the</strong> lack <strong>of</strong> an etficient<br />

ieei:rstoration~ <strong>of</strong>' (NIS. tIre IINe <strong>of</strong>' CIihre apl)IiedI at 200-3000 ppmn h~chwe <strong>the</strong> emergence<br />

<strong>of</strong>, thle first flow,:riiie slokits ill B. puntnrl, has been sUl gested IHanoi <strong>and</strong> Lathana 198-).<br />

The j)o sihdlit. (it Ii10)c1d "Lzci r'i)dlueioii tisilie ( MS ill 11. com1UlMiA wasw eisvl<br />

ies'iewcif (Ohlkaova aiiih Siliea 19 ,Olai I Flie1tiIi/tlouli hc<br />

(d ;Ic\ t)illme hIIJI steil<br />

l<strong>in</strong>e <strong>of</strong>, I1. flIf)1(A ill 5III CI s11io.,: I),ickci rw, toLBi. cililpe/)t.% to lc\oe1 p ail ' steilc '<strong>in</strong>i. <strong>in</strong><br />

thle little[ Iiihi lo Ijees ( ha auol Ie) IIl ). AV B. ,u( 'wII~I)Cearn l\%(it<br />

1, ietht-eoiit LCenI Ar!l B. u'iii *Ai1plaa x 1L I pc;iecd hiii.k( o-s<strong>in</strong>e -Iai heial<br />

facilitated. Il ill C\ ell but:l case(. )h i Sui llpi I5 I (Ioo' :he l', olaIII l iiiilab'tle<br />

I i~lc-siiie It In tilliInlp Ih' . f )CN\ S l f/ilop 0') ill 11'11"lo ('iiiI B. 11ii'i c. tojibisill<br />

In at recpealedk hiiekkc s Ilnor' <strong>in</strong> 11 trr (Ic . th : ii 'I;IL Ic C a! tI [furC isrei Of B.<br />

11111i-ihc' ii 11L l hr ii, i /, 1:1C 'A Mi I !IS 1 'I )il ic II(d~itili 0 i i , lik e lilik\1 hIll;/Si ilk<br />

.Itrtl.\t... ... , i ll htu\',ek cawt i wsiill Ic itkcit In olr it)Ii Iaeuhnalitcfltit, s!lid<br />

that <strong>the</strong>(--ciplil it lie itc loId k IC c> oIlisii l lNit, m~i c i I Iii ( NI", gra<br />

s4Haold iti Il Il iii t'il IIltliuil ilId iilid Its ilIL': Iil itWi id! [lk tl~.Itiiuiii!\'<br />

VIe)'C. I;t ii ,rilli t iiuil ii iicih sti c 11 li roh\t Iilo ' (1 i,; i'W' seIk abUli 0I<br />

ittRicl subihtutionlI)lkill'Altt oi Ili "'W.tomp/'i\I oIWI\ l <strong>in</strong>I M l ik )l \\;itis W1,11 lii I I 111 )98<br />

Ilis 1)litil l ioi o tici 11L.B. v/i 'il usiiie i l ele l ick" s ' net\ :I I) %HIiiiciTi Ct all.<br />

poilliloiun iil ptun ccl set I nw .oc c ii il t il, , 19,.N I iepiitld liiii l!" se- ldiol <strong>of</strong> lilies<br />

%siilh Iaiialis :11,1 icdu i;iis i'.' i lit Ill csujltsti 1tioiIc steile icB.(iuiti/uAIli.% "uspiij.<br />

/)tk<strong>in</strong>ce'Iiui, .111I /tii(/\t i 5 ii >;litt ilI~sit M'Qale ~ieB. (urAl~ is<br />

ClS'irliiiteitl\il " ~i Iii 1'.IIl ilt\ ( 1 11jce \5 Ith Ic"is illi , iio diseasesC1 ',IChu is l l, 10 tiU l. tur ip<br />

iliiis;iie Stills j1ul do\is is\ iilildes'. 55CI Ll ' ,i IIuill I eseo I Cnt, anid %Vi IIiiisIh 1983).<br />

A f(~Si. lhlic Ihu ,le t iIle ( '1liiiose tifIhI&e Iiil v',tl Il tirc~ lit i:iiicr Ii ct~Il <strong>and</strong> have<br />

lien fou<strong>in</strong>d -ceilk ii AVIMl( '.I hiss set \ClAal ' i I ,e i:lI III:Il li;11 th Is:i tile tlliel­<br />

fertile iceonI ilt ;II Cot NliiMCMis 1il "CliCIte A~ llIis 11:1 M I e[ Kej hA11 giliso cii<br />

Aite llif re ,Wckari .B/1ii hois !ls Ilie c ',ui I\ll) Irtil Ceiers<br />

02111-a ('NIS beetiisu It eijiisItiiiii leiu\ Ilieiless Il-<br />

T'Iis, esec ei Ij\ s Ilie IHIl'-( I uleitIC I IW 's h Ii~lc I B pm 'iiu cl<br />

lliis diiid iiiLut sI1 igor.<br />

tilo sltI S l l 1e ;I Muore sUitable<br />

alti oar is is still <strong>in</strong> pil -o'<br />

Figure 15.<br />

Male sterile (both side) flowers<br />

'~ <strong>in</strong> comparison with male fertile<br />

'I<br />

~-,i /rated<br />

1<br />

-f ~<strong>the</strong>y<br />

flower (center). Only degenevestigial<br />

stamens are seen<br />

<strong>in</strong> male sterile flowers, while<br />

ire normal <strong>in</strong> male rfertile<br />

iJ flower. Note also Lhe suppressed<br />

~ V ,..<br />

~nectar gl<strong>and</strong> development <strong>in</strong> <strong>the</strong>C<br />

- ~. s~I ~ ~male<br />

sterile flowers.


<strong>Breed<strong>in</strong>g</strong><br />

Goals <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> Improvement<br />

Varici:,) ilIj)1voAclIII ol'iliIII('l! cc a h its been most ircmarikable <strong>in</strong> Japani <strong>and</strong><br />

Kowca, wlwICC it 1al,11d0,ML m101 I1101C Most~a veab.ProgrcsslIvc rchncmcnielts <strong>of</strong><br />

bi-ccd<strong>in</strong>eL mlctlunls. CspLoiillk Utiill~oolO 1Cl1lIIL'0IlIpatiIbil% dur<strong>in</strong>gi <strong>the</strong> pasct 20) years. have<br />

slillst~iiti:, ll~.uipis'-d tluc Nildl <strong>of</strong>Clicst. c;hh;I,_,C III <strong>and</strong> tl Korea. Ini 1981 o~er 300)<br />

C'0!llC'a1I CtlIII,\t V d' Cl)I)Ld 11IM0i21 i I110115 01 I))tCil( )IriVateWCctors. wvi ccoi thle<br />

haS aiksi<br />

111 (T'hi &II~IY'<br />

0ne"cJCTscd en ids kfr ll <strong>in</strong>cilK pm V 1t I-<br />

']n; ClWcc:i iln~k'XIL hi 1\ 0IiiI'i l 11<br />

'vo 1981 ). III Chula' %aliOWhislpc<br />

m IsMl' Of jI)L'( ICLLill.0 IllsI:Iuilionls<br />

(<strong>in</strong>ew 1981 ). MuIchI! 'dcl ''l Wuldli1111)0 IlIWL IiiIlI ilL&W 11 .Vii ihi liheul 61ihIiCCi h_% COHishlIliCIl<br />

[)i-cI.Cr.CIILcL. C1,ulli l! kClIIIlIti1s. CIL)) Iii iLls Ip I I)ilit<br />

1<br />

1 lll I'<br />

N0V Is 1.5\Cirs iW(, \UflU )( sialId H, It'ca;lelhme W1111)0W. I C Ill', 1iLI~liIlih)II<br />

ocdmca Ci 'c hi l i 'll'1II01M .illA, il1.01,\ielld Ijmt\ms lsil LIII CII'<br />

CLololSIlial llismd~esmilwksi -L)I hilI5iA IW C5ivi) I C4I!.OS SLlI lis 1ilhmilIIIILi<br />

so IIlI( ulcl icIL Ii lilIlll lehl\jimillulmi mill lmill iuhI. Jlmi lCmd hcLIL)<br />

High yield, Uniformity <strong>and</strong> earl<strong>in</strong>ess- ICSmi lire Moil imold 11ILeICI hUGH!"iiI'm ll all<br />

OeclcilIsI 11001M I M IKA) 01 IheLiIIljIpoms~lI ll nIC.se thjieIi\Ccs is hcclI Co~IIi'C\'~iiCs'Cu<br />

Ihrolilh tilic dc\Cloi)Iiciii ()I I I,,\ dk h[ he JPmI*IIMIeWd 1iri Sik mrI;iillcdl ) [11)011 clh)55Isil<br />

t\o Ihmllm/vYdO1Is iilhi-cd lilIes, IllilliL s i)iSAIlC di!AlnItIlcIlt ol hiucli prnoductuiiy ilid ill ccrtalil<br />

Cases' also 1110)105 cd clirlilless. 8111 tiSIlei~ih~lliliiiC iploocllic, hcwecli 155 1loitgoils<br />

lilies aire v'illlv ilik, dhliellid 111 IicilotI'')i~illk . Tus1111C I 1iL Ilvkd UMCc iilll'Si5)IiN<br />

cx('IIlln Imill llil. Ii l)l iIiiiIsL' I h S JLIIlilturic. aiiiu sil~alils . It Is, eslznlatcd 11111 tile<br />

Yield l Iil Cc ilbbl2~ic Ill .IJ ili 1,' a (101,ibICLI si11ce i00 il1 s .I rImst 1 !bIecedilid i o lld sItibuItioll<br />

<strong>of</strong>, eccllcIt I1 hs'hrl mIlli ir' disca ImcncINliatsuflilnia<br />

tolec 1981 ).<br />

'Il<strong>in</strong> AM)": I lmpica' ( hiicsc kLlIliu-c J<strong>in</strong>ograiw also phirltics <strong>the</strong> ablove Uloa1ls i gh yield<br />

is alw:lvi ll) ilirliihtsl I1" h ws iill~d [IllilOIll ll;~ul ISarc- ilp lil tiisth tlc<br />

tolcriwnl CIli\al iffL'IWI dkil112 tilc lit)l lit<strong>in</strong>nijul >12:1011 1111151 pLwssc~s ill odtlc 1o redcde tlhe risk<br />

<strong>of</strong> erlp Ils.' diimi- Wnalds Lir ' \ViIIImCOiolloS<br />

sCalc I( )pefC~it aid 1,I 108).<br />

Resistance to major diseases. ( lhIllcsc ci mI ;IMAeCLl h\ ,)Cvrlil iSisCas notably:<br />

s<strong>of</strong>loz(klWilhl Mollloa),downy,iiiildcssWrlopt ao,.M1),l! ii ilC~ro<br />

(P1IlSooulio)/z u bla'S'jiim .w.\lItCI!I;4ria1cal sid ;1(I I'cs o<strong>the</strong>ir illomr dliscaIscs'01 polatIfies<br />

13<strong>and</strong> C. p).43ii ad p) 40.,epmlscy.Ii illptl)(lMCC Of Oice, diSCIsc:; Varlics dIcpendI<strong>in</strong>ng<br />

oa thle Clviloillicill . <strong>in</strong>l tcllipcialc coul<strong>in</strong>nhe hiccdcrs, las mi,Iuliuitoni\' vworkcd oil resistance<br />

to s<strong>of</strong>irotI down'nily d.Illip 1.-Hl II0uali 'irIP, <strong>and</strong> CIlhbl . \V1111 tilc Cccp)-on 0 n<strong>of</strong>m ll't thnese<br />

diseases 111,Y he LOnIikllenhd as.'010I-SCisuh disc::iscs, Ill tile tropics tile firlt ililcc ar-Clc Ihe1105<br />

<strong>in</strong>flpIII1-:1lt. Ill snnIc ![illtlldlIroplcal mias leriaiai Ical Spol is atSc-iOl., IrIclII dillriIIg tilc<br />

ra<strong>in</strong>iy niontlls. Morcovcr, eliurool hals hccomc vndul-cilncd ill lcClIl , cans <strong>in</strong>l sollic <strong>of</strong>' <strong>the</strong>cse<br />

locationls, cspeCcially <strong>in</strong>l tilic highiaids (jenetic rcsislitices to Y'lIl <strong>of</strong>1thcsc discases arc available<br />

a<strong>in</strong>d hreoders havc, <strong>in</strong>l ccrti<strong>in</strong> <strong>in</strong>istanlces, Successfully niorpoiatd 11lilcl 11110comm<strong>in</strong>ercial cultivars.


36 U<strong>in</strong> ec u'it:s -!, siiwil [Utli .hsc piscs Ib,~iit I/iiiiii. 'IiiW iii 1ii~i~iSi<br />

h;IVC k-lKtIPiCfit SLIkit ill lie' Iliiiii (C1r 1iiij tiii fiilod tiiii ;11(;S WvItR-17StitTeSSINT (liCSC<br />

se ith iidiiii. clpll, s I iiiiil '~il~ilt I<br />

se ho. XiL m 'Ill'.A I it is ;dso tottiiiieri<br />

bc litw i i lclt 5ir" ss ie ii II hI II<br />

:1Ceii::iaiv '~ i lilli Cibillkig iiiiiIf<br />

pta iiii i l l ILL tiL [I i l It lk I L i )l (;, ' N t, (/ / tL4II) tIl t r hIc l ilil<br />

Tcdola c tolltlnir nmk hu'rIlll Ltk( I11f '4rlss fed u'. lie 'lI. t n Illi lbei't 0 le u l<br />

IncIIICuiii d ilf llt :pmi i ;!e tois i iheX Ihlucl I riiu lIIIIL, c ieit til 1111)jiitl<br />

L ii. il s illi I 11"1V I 1ho lileil i Iupi, w. it li etil I t i,,.i.- i t .if ip : it 11lS.liI\ketwre.<br />

tfIilc (li A itP I ilii i I iuiiteiii aid' ; liiim,'toiul eIdo- l l ;11!(] i Milicti 1) 10 T ikM<br />

!i , \'i1Id M lii ,1 lI LI Ilk ILI k ', iltsliiktiiul (l 11u11tS ' is sIhilkwc ili clic<br />

iLliiI lji i -im l oIm I tLLw fli ili pht ill it Cu1 ,iL! 11)1i)le i 111 11 I Iii I <strong>of</strong>I II t II iN<br />

(tI1l , I uI Lt,(1, willsmulL , 'Ius kt0sil1ki1 i iL iiiuI/le cIilctil ukL c an (hlii s( imi ol <strong>of</strong>'i<br />

111mt )iIlti B lti i iifkiii hkiidilc 1' m IiilH Iil(I ,(1 il i- ili il<br />

I11i10tIO ii t '1hILL !iiiItI Ik;WlI LIIL iliith(0i , Lpi ",iF h ii s itfIitIli(di tiifliii lic milfe ii<br />

lItkCII ijtl iso !il it (Li AV Iiliii i ift<br />

iii11) 1 V~el<strong>in</strong>en ' 1IitCiVit ti l Iti LId mii cmL k il ihil i ll L il(L 'Il I ilL ixiiimii ii illt uIII,-I(,,IIf I1.<br />

Qenalica <strong>and</strong> reeeng trats <strong>of</strong> heat (MJolerace. hie i illn iiieanl tep,klotue(1 range<br />

luuhdK iirii~98ui ) ilt tifllittii.I( l<strong>in</strong>is tubi e is hunCN 21).:C\ In<strong>the</strong> Cf serltde<br />

OHI 1 a1t 'Lropi',iI<br />

sIl ii e eiic slllls 1'Cu i -il t, lti ln~figlif<strong>and</strong>sk Cke~o nd Liailil 1979).i,1


Advances <strong>in</strong> Tropical <strong>Ch<strong>in</strong>ese</strong> Cabage Research 37<br />

The criterion for heat tolerance <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage has bccji def<strong>in</strong>ed <strong>in</strong>lterms <strong>of</strong> compact<br />

head formation under high temperatures (Opefia <strong>and</strong> Lo 1979). Screen<strong>in</strong>g for this special trait<br />

at AVRDC <strong>in</strong>volves field evaluatien dur<strong>in</strong>g <strong>the</strong> hot. wet season, iromr May to September, durn',,<br />

which m<strong>in</strong>imum temperatures are normally ahove 2 1oC. Fvaluation <strong>of</strong> <strong>the</strong> AVRI)C <strong>Ch<strong>in</strong>ese</strong><br />

cabbage gernplasm for heat tolerance (Fig. 16) <strong>and</strong> o<strong>the</strong>r maj'for traits required lot-<strong>the</strong> hot, humid<br />

areas has enabled <strong>the</strong> selection <strong>of</strong> elite genetic stocks for breed<strong>in</strong>g (Opefia <strong>and</strong> Lo 1979. Opefia<br />

1985).<br />

Figure 16.<br />

lll~" S Cross section <strong>of</strong> heat-tolerant<br />

(ef) ndh at-sensitive (right)<br />

.<strong>Ch<strong>in</strong>ese</strong> cabb;. 6 plants grown<br />

under high-temperature conditions.<br />

Head formation fails <strong>in</strong><br />

<strong>the</strong> heat-r, sitive onC.<br />

Heat tolerance <strong>in</strong> iead<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbace is <strong>in</strong>herited <strong>in</strong> a rllativelh simplc lashion (Ophifa<br />

<strong>and</strong> Lo 1979. ()peia <strong>and</strong> Lo 1981. ()pefia 1985. Yo<strong>in</strong> et al. 1982), <strong>the</strong>reby render<strong>in</strong>g a<br />

straiehtfOrward genctic tralsfcr. lowcvcr. otiler important characters like head yield <strong>and</strong> disease<br />

resistance need to he comb<strong>in</strong>ed with it <strong>in</strong> <strong>the</strong> hiced<strong>in</strong>e progratio.<br />

The hrecd<strong>in</strong>e philosophy to derive high-%ild<strong>in</strong>e. heat-tolerant varieties <strong>of</strong> (ih<strong>in</strong>ese cahbage<br />

has been extCsivel; discussedI (()pcfih <strong>and</strong> ILo I9 , o'on I 987). Fudarntitalv, <strong>the</strong> key to<br />

achiev<strong>in</strong>g high yield depends greatly on brotlderiite <strong>the</strong> cenetic hase for heat tolcrancc to cnhanlce<br />

heterosis. The L,.,. -Aic diversity atons <strong>the</strong> Iropical. hcit-tolcrarit IcnC pool was found to he<br />

narrow <strong>and</strong> itoenrich' such genetic hase thcv were, <strong>the</strong>rel'Orc. crossed With unClalCd Cullivars<br />

carry<strong>in</strong>g o<strong>the</strong>r imlrportart traits, such as disC,, rcsistancc. Iopilltilons developed throughitass<br />

selection ftrort <strong>the</strong>se <strong>in</strong>terctllivtia clossCs SLvd ia soulrces <strong>of</strong>, new he+.ar-tolcrant <strong>in</strong>bred l<strong>in</strong>es<br />

for uievelopten <strong>of</strong> F: hybrids anild/or ope<strong>in</strong>-poll<strong>in</strong>atted pptiltlitois. lyhrid vigor fOr head<br />

weight, <strong>the</strong> pr<strong>in</strong>cipal component <strong>of</strong>' yield. allvu crossCs <strong>of</strong> <strong>the</strong>se ies\ ihrcds was substantial<br />

(Opefia <strong>and</strong> Lo 1981). l-Iigh-yicLdirto opctn-pll<strong>in</strong>Cd poptilat ions were also svntl<strong>the</strong>sized front<br />

<strong>in</strong>tercrosses aiong <strong>the</strong> new <strong>in</strong>bred l<strong>in</strong>es.<br />

Yield irnprovenlent ilt <strong>the</strong> Inew\ trolical ('htirtc, cabbi'gLc cultivars duheloped it A'v'RDC<br />

has been appreciable. Whereas old local cUltiv,rs, prCvioLtslV growt hV farrner.s dor<strong>in</strong>g tie<br />

summer season <strong>in</strong> Taiwan, normally yield about 8- 10 r/ha. 32-35 days after traispllt<strong>in</strong>g, <strong>the</strong><br />

new hybrids arnd open-poll<strong>in</strong>ated 'arieies carn yield three times as nuch <strong>in</strong><strong>the</strong> same growth<br />

period (Opefi <strong>and</strong>i .o t979).<br />

Some hybrids aid open-poll<strong>in</strong>ated varictics from AVRI)C haivc been <strong>of</strong>ficially releatsed <strong>in</strong><br />

Taiwan, <strong>the</strong> Philipp<strong>in</strong>es. Japan, <strong>and</strong> Ch<strong>in</strong>a. In countries like Korea, <strong>the</strong> national programs have<br />

utilized AVR DC's <strong>in</strong>bred l<strong>in</strong>es <strong>in</strong> develop<strong>in</strong>g locally adapted hyb rids. The performance <strong>of</strong> <strong>the</strong><br />

improved heat-tolerant <strong>Ch<strong>in</strong>ese</strong> tabbage has also been outst<strong>and</strong><strong>in</strong>g <strong>in</strong>o<strong>the</strong>r tropical countries,<br />

although <strong>the</strong> problem <strong>of</strong> seed so pply has been a persistent dilemrrtna prevent<strong>in</strong>g <strong>the</strong>ir outright<br />

release.<br />

Physiological bases <strong>of</strong> heat tolerance. The head<strong>in</strong>g process <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage plays<br />

a major role <strong>in</strong>decid<strong>in</strong>g yield under high temperatures (Kuo <strong>and</strong> Tsay 1981 , KuIo et al. 1988).


38 (htie, C'ahbha_,i r+cclill r ildi l 'ro cittti<br />

1cCif trrgidrt. . prretJtrrusiitc fr leaf ercCtion, hook<strong>in</strong>g, an ivenltial head ftrrnimit<strong>in</strong>r (Itato<br />

1981, Kilto <strong>and</strong> Ti,[l lt I ). fC:1t-tlOlrrNt crilirsns nitr<strong>in</strong>ta<strong>in</strong> eati tturgidrtI nderiityriirh le'1 eraturcs<br />

(KnO arid Tsr, IQI ):hlld forrnitairi lI tif)ratirc e.rh1! relies 11, re Onl <strong>the</strong> FI, art'S Walr balance<br />

ra<strong>the</strong>r tit a on it,+hott,nti, ,otul c (KIo Ct al.]988). eat-tuierrIIt s<strong>in</strong>eli S,ittilizu rMrore<br />

w"ter than hat-.,eIrsiti\s oil, ,it t ate-ction ani hook<strong>in</strong>g stg.+. Taig,, diflererrcc is(i to <strong>the</strong><br />

rapid root rowmth aid stensis eroot '.stern <strong>of</strong> hiat-to LC:ant Ii IIItpes. fact, ll heait-tol.rant<br />

varieties had lwcr ,hoolt root atios than hcat-scnsitive varietics (Kilo ari("saV I981). The<br />

Cxte .ive root giol \tli lni h ai-t uraIe l a;.ueti, may lHIcilit;tlC oI'eateCr si atr uptake. [fheir <strong>in</strong>itially<br />

high vater upt:',, imay Cunchsabhl be rhe ired to ernrii h<strong>in</strong>h totrl rtor ill tile S that headirt<br />

Cai procecd nutually at 'Irli telirpefIICrate.<br />

Ftur<strong>the</strong>rrnore. available hrta; support tie irip-orlace <strong>of</strong> thick leaves for head Iorrmation <strong>of</strong>'<br />

heat-tolerant varietie., (,uo arid ,a 19 .K t :1. I The hr hS. ,herce.+ <strong>of</strong> ad.(ate dronght<br />

avOiidance, <strong>in</strong>tireCfiorrr I '.urface.' irl riurf ow watr I)CIilhifit, diu to hil I-torirtal nirirher<br />

<strong>in</strong> <strong>the</strong> leaves <strong>of</strong> Iet-,CI'itieC CLIhiv'ar,,, na\ cortrlhirte_ to0<strong>the</strong>irlaid dehv drrtiona nd <strong>in</strong>iahility<br />

to <strong>in</strong>a<strong>in</strong>itaJn ttiror at rich tuiperatr. Ir.c., MLsUl.. area per tonit "hoot \vCichl <strong>of</strong> tire tIrick­<br />

.<br />

I:tl<br />

lcaved varieties n1ay also (icras t IrlPir;rJtiOrI aid COIiCs(liCitl\ irIprosC tire \,s ;iter collolly<br />

fleat-tih..irrit ('lhites. Cibahl C glits ,,irtil iliore lt0ertol\ I,: lh h()ti ii, ed-s rules (KilrI<br />

et al.I988). \ ower u<strong>in</strong>ii'ie tdlt+nli it, iClo-. rC,,I)oInsiblh orI iiii ll i1i ttIruor ,hItl tie warter<br />

loss occurs tLI to tmi erlraIir. fTirts. hit h electrical co<strong>in</strong>dirCti, i\ tile to hili ctntcenltititon<br />

<strong>of</strong> electrildt, i tIcf ";q f)tI*it tolelrai ('thirrse cahimc pfmils. ,,hould lead to tire<br />

IrairtelitcnaIcC <strong>of</strong>I hikgh r tuiln \\ithl alplfiiififl water ipplr. I iri itt is \\ell ili ntiiiaiillcl. <strong>in</strong>ritirl<br />

head<strong>in</strong>g proces. StiLti is feat ctl+ .<strong>in</strong>(ll. io1nidh proceed liol'lllll\ . l ciih chhirt+ihllp uorirt'lit<br />

ill tire iitel leave s <strong>of</strong> liait-iolct l tlrn(+h f i I C;h'tl::ac llnts iia.\ also) ftciiliatC tue hIt -',s nilictic<br />

rate, <strong>the</strong>rch <strong>in</strong>IcIul<strong>in</strong> c,+arhot idrfl% cs+ IMt use ;isth suLucc <strong>of</strong> C.C-Ir l\iCs st u itCe 1r11i<br />

heah<strong>in</strong>g prirtss.<br />

The list ilnIpoltalit protective+: ict'iclllslis that ('h it.INt. L lh i l;ti 111t1'd\p1; for<br />

head frirrltii0(l under high nCrriratnlCs arc ,lurtfit.ii III I . 17. SHicn,<br />

iriecrat.i'h<br />

tes<br />

le t'g.<br />

protective<br />

<strong>in</strong>crease,,d leaf;it res'istaicvlit.t wich rtiuuhces,.', pihotros, iit+i,: ,.lcrascu Ot)lllit<br />

•<br />

pirtrntial which reduces ialili iit'v 0f f)htltSyihtrIt: Mi iIcreasl it irpiaeC ,hich reduces<br />

energy asrilabilityt are irtOria.'hll ao Liferilliretial ::) highll 'ttict'ti\ it\ . ilt. a\erice he.'ad<br />

s-ic appears sirraller tilnder high l CIriatl. Ilrtan under lt)\\, hlt -itur_, Colitlitiols.<br />

Iti,rcasilnailh toisuiliri itehat teat tolerance ill<strong>Ch<strong>in</strong>ese</strong> Cahae is Irrts associated<br />

with tire water relations <strong>of</strong> <strong>the</strong> plant. C ' Cntisrl li p's, clrorICtr,, to lllCit Lti. tire viltr status<br />

alld VitterpotCntial i riot sui;lIc r ('hirnCie calbbge. ho\e er. SO an <strong>in</strong>tirct iMliod like<br />

character associat<strong>in</strong> mi-igt <strong>of</strong>ler a vi:hle alternative to ,elect for treat tolrlance. The rlIaIrt<br />

morpholgical traits it)air f r illelct<strong>in</strong>.ei- for hC:r tolcra<strong>in</strong>ce arc: (I)thick ai;d dark leave,.<br />

arid (2) Vicororis 'u)n lrtii. 'lise irc essential <strong>in</strong> sIrsistlriwriccit cr.ctiol for tread ftnflation<br />

uder hiii tcimprrture. ()tlrcr "ails S1hm<strong>in</strong>sig association ss1 heat to!Crance nuariot be _encrally<br />

<strong>in</strong>ferred as such becausC tire lrat-totelrr, trnatcrials ill <strong>the</strong> e sittlies \C ir allist cxCltisivClv ulionl<br />

Taiwan whi Ichhad beer: presior i S ,il'cted [01 tire ocafl\ pfeCfCrred morph<strong>of</strong>ogy.<br />

Resistance to major tropical diseases. Varictal diflcrrCo. illrc~tciou to artificial siftrot<br />

irifection have bcir ohserved; Iirv'\'Cf, 1)0reliable StrCC 0o rcsi.stancC Irs hcc successfully<br />

ex)loitCd thus fir at AVRI)C. Ai accCtable altCIriatiVe to Sftrot rCsistancc svas aciCiCeI by<br />

develop<strong>in</strong>g Carly-rratuiriirg cultivars which are able ticseapc <strong>the</strong> disease. Marny AVRI)C hybrids,<br />

snich as lr'hnids 58. 62, 82-156. end ,82-157are early iMILtriarg arrd heat tohertirt. cirabl<strong>in</strong>gi- <strong>the</strong>ir<br />

it) escape s<strong>of</strong>trot <strong>in</strong>fection :fird to perlornwvel dur<strong>in</strong>g tire hot, hiiirid season.<br />

The develihip iC<strong>in</strong>t Tf uN V-rNu1ASL reist ant grty pes haldCpendCd pisi us ly Off cOlii le <strong>in</strong>feCti(,nr<br />

until a specific stra<strong>in</strong> con.cept was establisired. ivc distirict stra<strong>in</strong>s <strong>of</strong> TuMNIV have Kerr recogized<br />

so far, <strong>and</strong> resiStancC ti0 TuM V straiis C-I, (7-2, ard ('-3 atnorn <strong>Ch<strong>in</strong>ese</strong> cablage gertliplasni<br />

has bccn identified (AVRDC 1981). Oil <strong>the</strong> otler harnd. resistance to stra<strong>in</strong>s (-4 arid C-5 <strong>in</strong><br />

<strong>Ch<strong>in</strong>ese</strong> cabbage is rare, hav<strong>in</strong>g been observed oilfy <strong>in</strong>B 730 (AVRDC 1981, AVRDC 1985).


.\lvanc's <strong>in</strong>Tropical <strong>Ch<strong>in</strong>ese</strong> Cabhage Researci 39<br />

Waret Relationships t Energy Balaiice<br />

F",<br />

t_ clo o hyl' i.<br />

phtyn,<br />

to L rltl<br />

d (>4 (AVRI) 1<br />

Incre;isd<br />

Fgr1.PrrIvemcaim gis t ersrs du r eadisae o<br />

I()t :r '(tww Dect eI led,<br />

<strong>Ch<strong>in</strong>ese</strong>ncabbaee<br />

A csirbfel l itived ea n I oi a<br />

vl<strong>in</strong>r COetirti i p'pi) ?<br />

i e<br />

1h:1(-1"e(! le' lt lttrgldlty totr<br />

"ihc,ld f()/l ) lti,der[lli w<br />

t<br />

Figure 17. Protective mechanisms aga<strong>in</strong>st heat stress dur<strong>in</strong>g head<strong>in</strong>g stage <strong>of</strong><br />

<strong>Ch<strong>in</strong>ese</strong> cabbage.<br />

Ano<strong>the</strong>r to useful ac tolssion,(PI B 7 a 41 um57). carmls mls nto straills C- <strong>and</strong> ir-3 <strong>and</strong><br />

resistance to C-2 <strong>and</strong> moC-4 (AVRi(t 1985).<br />

A considrable Iecl <strong>of</strong>'rcn.rli72is ea:chieved h reu). 3 luraly .xpo<strong>in</strong>, accessions, breed<strong>in</strong>g<br />

l<strong>in</strong>es <strong>and</strong> segrB.wit<strong>in</strong>,,,,,i oIx Mn ildew (D h M) pilahytttics, eci<strong>the</strong>r under field<br />

conditions, <strong>in</strong>vitro <strong>in</strong>oculation, pbotl. An <strong>in</strong> itr technique uspr n t ]ora i;pro<strong>duction</strong>e tol1<br />

dtattched c'oty ledd tm s 11ro ln th C StCC(llhlg ', 6,.ag iit ct eda311nd <strong>in</strong> lltlbittCd 1'01 12 ho tursat W4C .<br />

pronises to be t1R,1, tool to sc.cen e 1i-c9 ncr6o'tsllmps underonoll<strong>in</strong>ed envir mt<br />

(AVRDCN 5). Th Mit 1)1-3111,1cr-1 SO irCeels <strong>of</strong> resistance td d.i AVR)" nidew Koen<br />

<strong>in</strong>troiut<strong>in</strong>ce;<br />

b etw e e ni BJ .<br />

isrlnicl. 1 742 ( A VRtt ."19m1os ). B 63 ( 1AV I[198uI r In om, c.it heidylids<br />

lsp. Sam I p-ti, < k <strong>in</strong> ci. sivs ua n d .B . o/cr ,ac e , a i' , a l s' o sh o w, n e wx c lle n t DI) r e ist a ncec,<br />

ant d has b een th e iimplo rtant do(n o r - p a; ren t <strong>in</strong>a h aickc r os, p r v' mto~~ i h tr~ o l c r 1t: r -C i sl anc e to<br />

B. ('1Mpt-sti.i suh'sp, lpek<strong>in</strong>cnsvi. (,,\VRI)(' 1985).<br />

Co


40 <strong>Ch<strong>in</strong>ese</strong> Cabbarge B3reedig R <strong>Seed</strong> PrOdUtiionl<br />

Poll<strong>in</strong>ation Techniques<br />

In <strong>Ch<strong>in</strong>ese</strong> eabbaneg hbriedirig.-' it is necessary lo) 11tificiadly\ cnn! rl pifll<strong>in</strong>ation <strong>in</strong> ordoer I(o<br />

iehiese fihe decsired ty pe )Iiiti lIre o -11 ()f<br />

i piulllniatuuri Conitrol iilrle erIaISerlationi 111d<br />

net cilges. Ill all irstle tui1wi1lliiju is, U) asoiui puulcllr couitan<strong>in</strong>iiiiafuii s() that OrrN file dlesiredl<br />

t~pe oFl rut <strong>in</strong>g takes, Jpliicv<br />

Preparations for pl<strong>in</strong>ation. INi 1<br />

phiit iliotti ii Inkiumd, iim~ I ollliiiiiuil liri tire<br />

righit ternfJirune Impk:1li \tr11c ii 1IkI'wdi Ihtlo\\.<br />

P~I3ut rmat(raL: hIN \ 0 \iS INMI 111iW >kt1Il all APiul I ;I iiI~h 1110I:IL (1I iI lMiskrIce:S<br />

(Ifle"uuii ttI siu \ c cSlll.jlll~~~l<br />

i uts utircl it) tio11k3II~ t l( tll l l ti)' MfIut I e;11Citertlliiilici<br />

ill.<br />

i\ i iislk t 'I ic iisn' l i i 'tl Pjut sici ijic, its71 cliil )I bhtiwwt thc i i irc Jet iludk<br />

ly\iIn art 11181 lltc PC&CCiiS wIl It 11 \cs1', nc t C icd1W i\ ullIi sit l t 11nlturiri\ ii a'<br />

geC a~ul hesi ,Cci o l, re t i (M t1CHICI Stltti I WI Chl Ilkt/i'i" iih "k (0' 1 ;. ,ii ' I()bi<strong>in</strong><br />

rmil ill. hilieni cii , I"e sitilc i\ihil ttl lic itlc tic,,mcdii iii hhial i ihiitcc to ci k ,Iijtile.<br />

Poiiens<strong>in</strong>rtlem IIo npii M wit i .~ th enh aiiri iluci t <strong>in</strong> Ird Pl leI i~ ep<br />

tirlue ri tnu. l i ti tl 1 ,7 k OA L( scs IH Ilhiuir Ir L nl . [len II ll it ICi r ithIk l \1) <strong>in</strong> iln-l\20 nC<br />

is tsst n I I I s1lls II,' Ii , O M11ii L (I AH I. W j: . ( LiIoI i l, IIc \ (1:1<br />

trits.dl ailii<strong>in</strong>~mnsb Nalleles. llnj' i, hir<strong>in</strong>ic' ernie illsitcp<strong>in</strong>ishe huh-~ib1)I' olliderij oi<br />

testni%\il ;lituolatlifii\ljs hi t hleec tiii ii'hn1sit iiJiiS Illl'umi l licteth kliis.<br />

[he re i sei nrreliil si italsti he se l iiir ic eil lerl al leiiuii <strong>in</strong> old 1)i1s .1 iiion tr leadyi~<br />

hale been cirn(daiirte I- ItIII/ irour pln lesial ul I* fk~los eni wlnt ie ut kept ie<br />

than t~<strong>in</strong>epuirpirse l ,olilc.<br />

Wiot conidraio <strong>of</strong>11I-. 'lf-seM c<strong>in</strong>crompblity u Ii el bri is iuir sill ti) prurd<br />

upelis o<strong>the</strong> yo ici i hi s co mc iseteig rl 1;irafrrnt i p i rail i <strong>in</strong>.pl if l siarp-u 1c 1( ir mmd bee s.


Poll<strong>in</strong>ation Techniques 41<br />

Figure 18.<br />

Tools commonly used <strong>in</strong> emascuiat<strong>in</strong>g<br />

<strong>and</strong> poll<strong>in</strong>at<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbages.<br />

From top left to bottcm<br />

right are: (I) alcohol bottle; (2)<br />

paraff<strong>in</strong>e bags; (31 petri dish conta<strong>in</strong><strong>in</strong>g<br />

coton ball impregnated<br />

wits alcohol; (4) clips; [5)<br />

toothpick with bce thorax: (6)<br />

glass ball (7) labels <strong>of</strong> different<br />

___._ color l<strong>and</strong> shape 8) forceps (9)<br />

!!! i! !. ' : pencil <strong>and</strong> (1e) brush.<br />

fIc'illahIts t10 Op)Cn<strong>in</strong>re <strong>of</strong> buds. It a cleai, ' ourc <strong>of</strong> pollen <strong>of</strong>I lie vritnc plant is alrcad, av',ailahle<br />

(ei<strong>the</strong>r frout Stor;(+C or fresh 11+0111 o iC l'lant), <strong>the</strong> n , l,. ipCne..d huds niia he polliated right<br />

awav by usilg a s<strong>of</strong>t hrlh dipped <strong>in</strong> trC: polliure-S or brushcd aga<strong>in</strong>, t fres,.h flmcrs w\itl,<br />

dehisced an<strong>the</strong>rs. Altermativel, one l,i\ cOIllCC a dehisced anlhCr with forceps <strong>and</strong> rub it lightl.<br />

aga<strong>in</strong>st Ith: stigma,. hC poll<strong>in</strong>ated ,talks are <strong>the</strong>n ciivered s,,ith a axed paper bal (Or elassirie<br />

,ag), secured bv a clip a .nd laheled aS ti its idClntits, d ale <strong>of</strong> poll<strong>in</strong>ation. type <strong>of</strong><br />

Pl+,l<strong>in</strong>atio~n e,'Th hag's Ilay hc Icl ..d onIce lhe Sili(u ,_sC ',unfficientl, devehrped. after<br />

which no ,hviotls. 1frili/ialiol Of (Ile CXI)OSud stil1las iu"l OCLtl.<br />

VCe-N' sohill IUdS haC pI)OOr ,Cd '.el ptOIuntial mid should not he fi'ced open. 'To asold<br />

confusion, <strong>the</strong> tip o'fic l~vctstalk hen<strong>in</strong>p (lie InIllnMature hI ,,[illt need ntot Ibepoll<strong>in</strong>ratCd<br />

Should<br />

he p<strong>in</strong>IcheL <strong>of</strong>f With fl'cupsN.<br />

With consideration <strong>of</strong> self-<strong>in</strong>compatibility: Ifcslf<strong>in</strong>e ik <strong>in</strong>tended to prodUCC sClfed<br />

prleis <strong>and</strong> at <strong>the</strong> saut ime to cxalnhl,: tie self-<strong>in</strong>coitipalihilit\ hhavior <strong>of</strong> a pla<strong>in</strong>. <strong>the</strong> hagged<br />

flower stalks should he alliMcnd to develop for several days so that tire fresh, open flo\\ers<br />

are available. Self-<strong>in</strong>coniipatihtlits is strongest Oil IowCIS that are froiii aday ol to0a dav away<br />

frOll Ol~l<strong>in</strong>g but this age ran, c earl he <strong>in</strong>fluenced wvtCmperatiure <strong>and</strong> lhuniiiiditv (see NIodilicat ions<br />

<strong>of</strong>self-<strong>in</strong>compatihility expression. p. 23). The general proccdures <strong>of</strong> sClf<strong>in</strong>e arc similar as ahove<br />

except that open flowels are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> poll<strong>in</strong>ation. Freshly opened flowers are generally<br />

used also aS 'I pollen source. Ver, oIL flowers <strong>and</strong> exceed<strong>in</strong>gly ,otng Nls bud are f)<strong>in</strong>ched Off<br />

front tire <strong>in</strong>florescencc. Aga<strong>in</strong>. hag <strong>the</strong> selfed stalks. In <strong>the</strong> poll<strong>in</strong>ation tag. additional <strong>in</strong>formation<br />

on nunmer <strong>of</strong> selfed open flowers <strong>and</strong> nriher <strong>of</strong>' sClfed yong huds is <strong>in</strong>cluded. The seed yield<br />

data onl open flower pill<strong>in</strong>ation <strong>and</strong> hud pOll<strong>in</strong>at<strong>in</strong>l <strong>in</strong>dicate tile plant's level r"f' sclf-<strong>in</strong>c m1patihility<br />

<strong>and</strong> relative htrd fertility, respectively (ee l)etectii <strong>of</strong> sclf-irncnipatihility, <strong>and</strong> Isolations <strong>of</strong><br />

S-allele hornrozy otes. p. 26 <strong>and</strong> p. 28. respectively).<br />

Cross<strong>in</strong>g. Flower stalks <strong>in</strong> tIhe two parents designated for hy'hridi,'ationl are bagged to avoid<br />

contam<strong>in</strong>ation hy foreign pollen. This is especially ad,.:sahle if' flowcr<strong>in</strong>g plants are not kept<br />

<strong>in</strong> isolation rosirns. Aga<strong>in</strong>. open flowers <strong>of</strong>' both parents ire p<strong>in</strong>ched <strong>of</strong>f prior to bagg<strong>in</strong>g. In<br />

<strong>the</strong> <strong>in</strong>tended female, unopened buds are crnascUrlateJ by pull<strong>in</strong>g <strong>of</strong>f <strong>the</strong> six an<strong>the</strong>rs with <strong>the</strong> aid<br />

<strong>of</strong> forceps. Inmmature buds are also p<strong>in</strong>ched <strong>of</strong>f. Likewise, huds that are about to open are avoided.<br />

If 'clean' pollen gra<strong>in</strong>s from tire <strong>in</strong>tended male are already available. poll<strong>in</strong>ation may be done<br />

soon after cIMasculatiOi. O<strong>the</strong>rwise, <strong>the</strong> emasculated flower stalks may be bagged <strong>and</strong> poll<strong>in</strong>ated<br />

<strong>the</strong> next day when pollen gra<strong>in</strong>s front <strong>the</strong> male parent become availlable: alternatively, one may<br />

forego with emasculation <strong>and</strong> poll<strong>in</strong>ation until appropriate flowers are available from both parents.<br />

Aga<strong>in</strong>, <strong>the</strong> lanel should reflect <strong>the</strong> identity <strong>of</strong> <strong>the</strong> cross, date <strong>of</strong> poll<strong>in</strong>ation, etc. Bagg<strong>in</strong>g after<br />

poll<strong>in</strong>ation is necessary, even <strong>in</strong> isolation rooms, to avoid accidental contan<strong>in</strong>ation.


,2 4liil<br />

IIT<br />

idp. f hm lip,) i, w i od ip r 0p, II 1 ( tI ); ) eiCe<br />

) I f m il ldl 11,I d ' i 1tt m ~ t It)tY~ ( 1 p c1


Ift)<br />

i ,t i<br />

Color plate B: Important fungal <strong>and</strong> bacteril- se, s f<strong>of</strong> (CIh ,ebih b I 1. ,-, r :,als<strong>of</strong>'rot<br />

(b)clubroot, (c) downy mildew, (d Alter [i a if..if s<br />

(e)head <strong>and</strong> (f) flower<strong>in</strong>g stern<br />

it ,d 5un rrcimia rot on<br />

v9,<br />

43


44 <strong>Ch<strong>in</strong>ese</strong> C:bbage Breet<strong>in</strong>g anid <strong>Seed</strong> Produclion<br />

Although fte-<strong>in</strong>ale parcntS used ill hvbridization may carry strong self-<strong>in</strong>compatbi.lity, it is<br />

still advisable to enasculate <strong>the</strong>m unless tie purpose <strong>of</strong> cross<strong>in</strong>g is to produce a small amount<br />

<strong>of</strong> Flr-hxbrid progcnies for comih<strong>in</strong><strong>in</strong>g ability tests.<br />

Isolation methods. Chlll, ebbac is <strong>in</strong>Scct pOllila te'd ill, hefrehire, seed prod(lt i<strong>in</strong> plots<br />

<strong>of</strong> diffecrnit varieties itrtist he spaced at1Iclast 1.0)0) 1i apart. This spatial isolation requirellient<br />

is a Itlaor h<strong>in</strong>dillice .\ien illill diflerciti Stocks are be<strong>in</strong>g irullilplied such ia,; <strong>in</strong> i breed<strong>in</strong>g<br />

priogranm.<br />

To avoil coitaiiiiliaiou platsk >for rliitiie selfirre or clossirie ria be kep: <strong>in</strong>arn <strong>in</strong>sect-pro<strong>of</strong><br />

glasshoLusi or FiCtiusC. !A1t.,1ilt o polliated i slilks Clllt fur<strong>the</strong>r redurce <strong>the</strong> charce <strong>of</strong><br />

ot ailtilatittil. %,tltvoL iiiScLt p[00it CaCs ' Canll lilt hte constructed lif'Nllo nets ilt<strong>and</strong><strong>the</strong>se caln<br />

be u,,cd rCpetiCdlV for siir:idl-Cilt' sc1fili, crOS1sirrte, Or cVeii pit drictiori <strong>of</strong>lrhrid seed <strong>in</strong> smiall<br />

lits. For rClativcly farce-.cle [i hs hrid Need prIdic tiul imolv<strong>in</strong>g scv-ral collih<strong>in</strong>alio ls, a<br />

stciiperliatieiiti ii periiitii iilethouse will suitable patiiions is tisChul The irCethousc nr1aPalso<br />

be used for ilier t cs itt poll<strong>in</strong>iation. A partititcd 1ltsili;tuS srvCes ir iilar piriise. hltese<br />

subdividd 'rucltlrc caln ilso he iiCsd for far e call r <strong>of</strong>' severial illried litres us<strong>in</strong>g<br />

build jnli:rairllll. I1f ihis is atided h1\ e,:ls Icatilcitcli ish('0)." it prtiilied glassliutise is tllist<br />

appr ifiact.<br />

Ill collilrc'i li1 f1 sieed pr mirl<strong>in</strong>: sptilil irpeun ficld isolilitil iise(! to produce large<br />

scd allrtilits at1hu\%cost. O( )tneu S eed 111rftIpfII Wit 01is (ittlle(' ott a CririliLUrit basis where<br />

secds producetd \vithii t focilit arc oll <strong>the</strong> li e ,ciiltivar ( )lfhcr teclitiqC's <strong>of</strong> isolation <strong>in</strong>lav<br />

be ippliCd deCpeCd<strong>in</strong> iipii11 <strong>the</strong> cirCrUrllirallt_'es.<br />

<strong>Breed<strong>in</strong>g</strong> Methods<br />

(t.neic iiilplot\'erullcrt ill crlcilrs takes uticli <strong>the</strong> ;atile I'drit ais <strong>in</strong> o<strong>the</strong>r (iLtcriss<strong>in</strong>gspecies<br />

b\ virlue tithcir sirnililritics iii popiilaiirn strutlure aid oiganizationrt l'genetic variability; The<br />

pr<strong>in</strong>cipal tlielhiids by which iucs\ varilics <strong>of</strong>, crrss-poll<strong>in</strong>ated crops orig<strong>in</strong>ate may be classified<br />

iMitri our broad sturces: (I I itroductl<strong>in</strong> (2) sclectiitn (3) hybridizatiorir: <strong>and</strong> (4) developiment<br />

<strong>of</strong> Sy nlt tc varieties.<br />

Base lirarcrials ftr ilrip o\ciiill io\ be ipern-pollittat-d Cultivars cimr<strong>in</strong>g frilri iitrot<strong>duction</strong>s.<br />

pOpulailtions dCri\d flhroutc IlVbridi/tioii, S\ ithtic varieties. o,; o<strong>the</strong>r citicallNy broald-b.sed<br />

stocks. The nruot h<strong>in</strong>dairit,il r-quierricirt is that <strong>the</strong>se brcedirgr irrateriall arc -enctically variable<br />

il pl)iss ss irC liiipIIrtlalll chiralucies thil brcetders ait' tit fix ill tire illprovCd culliVars. Once<br />

<strong>the</strong>se preconlditiois arc illet, <strong>the</strong> rest depends entirely oil <strong>the</strong> breeders. This is where <strong>the</strong> breeder's<br />

skill iii visualiirie <strong>the</strong> ideal type e<strong>in</strong> <strong>the</strong> presence <strong>of</strong>i;111efetive slect iii rCg ile,) adll <strong>in</strong><br />

apply<strong>in</strong> <strong>the</strong> illost appropl-iatt sctc ion iretlhoids usually Coclll_ it r tile ire.<br />

'hIe sCleccionl Hit'ittlids C<strong>in</strong>li1r1l1 tppliCd to cruCif'crs arc., as iilli <strong>the</strong>r crs'-l-p-)1illite crops,<br />

ala\iys based on aippIlitiiil ctlict'pl. IlIIcross pitlillaicd crops. ildivlidual plants are seldo<strong>in</strong>l<br />

used to establish a \ iriiy becsrirse ,cse'iir'ioaitl cros-plliat ion iirake it <strong>in</strong>ipossiblc to riaitha<strong>in</strong><br />

:adist<strong>in</strong>ct typc ir U1rirver. a svider raiec <strong>of</strong> ,ecetic diversity thllillill iti a s<strong>in</strong>gle plaVit is<br />

Ucererally needed to rnailitaiia ig irororus ppiolation. Wilh tire possible exception <strong>of</strong> early<br />

caulilower virictics, crurcilcrs etraii:il, stilytr fro1t ilibrecdilig dCprCssioll: <strong>the</strong>i te.'lC, techniquies<br />

such as pure litre brctdirig to deve!tp culitivars for outriefh release is never ur:derlaken except<br />

is i n<strong>in</strong>cars <strong>of</strong>' obtai<strong>in</strong>gi re.priiducibflc h\'brids. T'l esscntial features <strong>of</strong>' each <strong>of</strong>' tie selection<br />

imethods arc described bli w.<br />

Mass selection. The ira<strong>in</strong>i purposc <strong>of</strong>'itrss selection is totobta<strong>in</strong> z.high frequIercey <strong>of</strong>'superior<br />

genotypes with<strong>in</strong> ile popuilationu. It is i selection priocedure ill which <strong>in</strong>dividual plants with<br />

desirable traits arc chosen froni <strong>the</strong> base population, <strong>and</strong> tllowed to flower <strong>and</strong> <strong>in</strong>terbreed toge<strong>the</strong>r<br />

without control olIpoll<strong>in</strong>ation IFig. 19). <strong>Seed</strong>s troni <strong>the</strong>se plants are <strong>the</strong>n harvested <strong>in</strong> bulk without<br />

<strong>the</strong> benefit <strong>of</strong> ii progeny test to constitute a new base population for selection. Mass selection


Source<br />

population<br />

Phenotypic<br />

selection<br />

Flwr<strong>in</strong><strong>duction</strong>1<br />

Interbreed<strong>in</strong>g<br />

(oper; poll<strong>in</strong>ation)<br />

4<br />

Bulk harvest<strong>in</strong>g<br />

New base population<br />

for r;ext selection cycle<br />

Evaluation <strong>and</strong> phenotypic<br />

selecdon<br />

<strong>Breed<strong>in</strong>g</strong> Methods 45<br />

Interbreed<strong>in</strong>g <strong>and</strong><br />

bL)!; harvest<strong>in</strong>g Figure 19.<br />

Schematic diagram for procedures <strong>of</strong> mass selection.<br />

may he carried out repeatedly (cyclical' mass selection) until <strong>the</strong> breeder deems it no longer<br />

worthwhile to carry on fur<strong>the</strong>r selection, ei<strong>the</strong>r because selectable variability has already been<br />

exhausted or, <strong>the</strong> achievable response to additional selection is no longer conmensurate to <strong>the</strong><br />

efforts. The seeds <strong>of</strong> a number <strong>of</strong> superior plants are <strong>the</strong>n conposited, planted <strong>in</strong> an isolated<br />

plot to mate at r<strong>and</strong>om. .nd <strong>the</strong>n harvested <strong>in</strong> bulk to con:,titute <strong>the</strong> foundation seed <strong>of</strong> a new<br />

variety or new base population for fur<strong>the</strong>r mass selection.<br />

S<strong>in</strong>ce <strong>the</strong> merits <strong>of</strong> plants selected to contribute to <strong>the</strong> next generation is based solely on<br />

phenotypic appearance, mass selection is mostly effective <strong>in</strong> improv<strong>in</strong>g populations for highly<br />

heritabl" characters. If iass selection is to be effective, it is necessary that genetic variability<br />

exists with<strong>in</strong> <strong>the</strong> mi,.,l population. This technique is <strong>in</strong>effective, however, to change populations<br />

for traits that are controlled by many genes, <strong>in</strong> which each exercises a small effect on <strong>the</strong><br />

phenotype, <strong>and</strong> which are highly <strong>in</strong>fluenced by environment. Nowadays, mass selection is used<br />

largely to ma<strong>in</strong>ta<strong>in</strong> cultivars.<br />

The <strong>in</strong>effectiveness <strong>of</strong> mass selection to improve traits with !ow heritability results from<br />

three ma<strong>in</strong> causes (Allard 1960): (1)<strong>in</strong>ability to identify superior genotypcs from <strong>the</strong> phenotypic<br />

appearance <strong>of</strong> s<strong>in</strong>gle plants; (2) lack <strong>of</strong> poll<strong>in</strong>ation control so that selected plants are poI'<strong>in</strong>ated<br />

by both superior <strong>and</strong> <strong>in</strong>iferior pollen; <strong>and</strong> (3) strict selection lead<strong>in</strong>g to reduced popuiation size<br />

is tantamount to <strong>in</strong>breed<strong>in</strong>g depression. The secod limitation abave is not critical <strong>in</strong> crucifers<br />

because selection for <strong>the</strong> superior phenotypes may be done prior to flower<strong>in</strong>g, <strong>and</strong>, <strong>the</strong>refore,<br />

<strong>in</strong>termat<strong>in</strong>g may be restricted among only <strong>the</strong> selected plants.<br />

Mass selection is <strong>the</strong> simplest <strong>and</strong> perhaps. one <strong>of</strong> <strong>the</strong> oldest <strong>of</strong> <strong>the</strong> selection techniques.<br />

It is relatively simple for <strong>the</strong> breeders to select <strong>and</strong> composite seed from what appear to be<br />

phenotypically superior plants. Also, new varieties can be developed ra<strong>the</strong>r quickly. S<strong>in</strong>ce <strong>the</strong><br />

improved stra<strong>in</strong> will not differ greatly from <strong>the</strong> parent variety <strong>in</strong> <strong>the</strong> range <strong>of</strong> adaptation, less<br />

time is required for test<strong>in</strong>g than with new breed<strong>in</strong>g materials. Many varieties <strong>of</strong> cabbages <strong>and</strong><br />

allied crops have resulted from mass selection.


v C olor t~ C A Vi! W,~(li S f!St (I o oidi<br />

• i+ + . ,<br />

Color Plate D. Son(. phy ,olovci d,l ord r-,<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage (,,) bor-on d(fic<strong>in</strong>cy, I)<br />

tip btirn I 111ti lou r'ot Mnd C I irIt (21-.iI r I(<br />

%' A t I It I ( I( I I I "<br />

+<br />

* /<br />

,.- ,-. : . ,<br />

' ~ I'. , i


<strong>Breed<strong>in</strong>g</strong> Methods 47<br />

Family selection. As <strong>in</strong> mass selection, <strong>the</strong> selected plants arc allowed to flower <strong>and</strong> <strong>in</strong>terbreed<br />

toge<strong>the</strong>r without control <strong>of</strong> poll<strong>in</strong>ation. In family selection, however, th, open-pollimated seeds<br />

front each selection are harvested separately to constitute a 'fan i!v'. ThcrAfler, tile fa<strong>in</strong>ilies<br />

;ire planted side by side fhr comparison <strong>of</strong> <strong>the</strong>ir performance <strong>and</strong> orkl, <strong>the</strong> bti tamiIics are used<br />

<strong>in</strong> fur<strong>the</strong>r selection. Plants selected from <strong>the</strong> best tamilics ac piopapated toge<strong>the</strong>r. especially<br />

if <strong>the</strong>y resemble one ano<strong>the</strong>r. A model for tile faily selection pclure I ,<br />

i\C <strong>in</strong> Fig 20.<br />

Source<br />

population<br />

Phenotypically<br />

superior plants<br />

selected<br />

Fiov/er <strong>in</strong>ducti <strong>and</strong> ri __<br />

<strong>in</strong>terbr(.i n /uj<br />

<strong>Seed</strong> hrveted somruarittly<br />

from , : e I<br />

tO COWistlttite frirhr<br />

( rrmily erviflhatit lrl)<br />

. 0 * * * e best families<br />

AA AI~ /d I A,,I/ .L,^.IA II I'l', tUAItIAl A sotoctortpl<strong>in</strong>t<br />

A NAIKIlIAI /flt1 .IAIAI -, AIA f<br />

AIAA I AI'i/IA'qI AA[ ' ;AI/A"IA A unselected plant<br />

A 1 A A X ALA _A t 1iJI1<br />

IAIAII A , A A A.AA _I A A AIAIAI<br />

IAIAIAIAA. A AIA AJAJA lAjIAI<br />

IA IA/ A A A AC/ A AIA AI/ nA AJIjA<br />

Figure 20.<br />

Best plan r,ct Od Schematic diagram for pr<strong>of</strong>rot<br />

jest littis .. . . cedures <strong>of</strong> family selection.<br />

S<strong>in</strong>ce furthcr selection is cont<strong>in</strong>ued only aitiloll <strong>the</strong> progenies <strong>of</strong> gentitically superior plants,<br />

fanlily selection is <strong>in</strong>ore efficient than iiss seleclion. If care is taken th:t sufficient nlnbers<br />

enter <strong>in</strong>to every ncw, generatlti. a<strong>in</strong>d tha eist<strong>in</strong>g <strong>of</strong> progenies sfficiCntly negalteS tile <strong>in</strong>fluelice<br />

<strong>of</strong> environmental ihctors. falilv sClecelon cituld ,dqtalCV aldrCss lost Of <strong>the</strong> l<strong>in</strong>itations <strong>of</strong><br />

niass selection.<br />

Famlily selectiont is as sitple as i;ass seheii anId rCquirei little special equipment. Applied<br />

to cole crops, it can give very gitd resilts. 11 can also be used to mtta<strong>in</strong>ta<strong>in</strong> varieties. For <strong>the</strong><br />

commercial seed )roduclio<strong>in</strong> <strong>of</strong> an open-poll<strong>in</strong>atcd variety. it is ai attractive nethod.<br />

Maternal l<strong>in</strong>e selection. llelnolpictakll' superi(ui platIts arC sclctCLed frt <strong>the</strong> orig<strong>in</strong>al<br />

population a<strong>in</strong>d aItllowed to breed <strong>in</strong>wl .w is itl llltss selection. At this stage, tle best <strong>of</strong> <strong>the</strong> superior<br />

plants are planted <strong>in</strong> <strong>the</strong> center <strong>of</strong> <strong>the</strong> seed productio<strong>in</strong> 1i. <strong>Seed</strong>s ItarvestLd frotn each <strong>of</strong> <strong>the</strong>se<br />

best plants constitute a<strong>in</strong>aternal l<strong>in</strong>e <strong>in</strong> thi ntext selection cycle. Maternal l<strong>in</strong>es are evaiuated<br />

for <strong>the</strong>ir perfornance ;lnd <strong>in</strong>dividual plal. arel selected onlV froilt tle superior lilies: <strong>the</strong> best<br />

planits front tile superior <strong>in</strong>aternal l<strong>in</strong>es are aga<strong>in</strong> placed <strong>in</strong> tie iliddle <strong>of</strong> <strong>the</strong> seed-pro<strong>duction</strong><br />

plot where natural open poll<strong>in</strong>ation is allowed aiong <strong>the</strong> selected <strong>in</strong>diviuuals. This method is,<br />

<strong>the</strong>refOre, like mass selectioi <strong>in</strong> <strong>the</strong> pillen-parenlt selection phase. while somewhat similar to


48 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> 3reed<strong>in</strong>g <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

family selection it <strong>the</strong> maternal-parent selection. A model for maternal-l<strong>in</strong>e selection procedure<br />

is illustrated <strong>in</strong> Fig. 21.<br />

Maternal-l<strong>in</strong>e selection is elffctive lor highiy heritable traits <strong>and</strong> recommended <strong>in</strong> improv<strong>in</strong>g<br />

heterogeneous open-poll<strong>in</strong>ated cull ivars: considerable improvements <strong>in</strong> uniformity <strong>and</strong> early<br />

maturity <strong>of</strong> open-poll<strong>in</strong>tiated <strong>Ch<strong>in</strong>ese</strong> cabbage., have been miade with five to six cycles <strong>of</strong> this<br />

procedure (Sh<strong>in</strong>ohara <strong>and</strong> Sirgano 1958).<br />

Recurrent selection. Iti fartiily selection, <strong>the</strong> superiority <strong>of</strong> selected <strong>in</strong>dividuals is judged<br />

front tie perlorlniane. <strong>of</strong> <strong>the</strong>ir open-poll<strong>in</strong>ated progenies. it is generally agreed that a progeny<br />

test such as thiS prsovides a motC aectirate nmIasurc <strong>of</strong> <strong>the</strong> breed<strong>in</strong>g value <strong>of</strong> an <strong>in</strong>dividual, ra<strong>the</strong>r<br />

than <strong>the</strong> phenotype <strong>of</strong> an <strong>in</strong>dividual itself.<br />

The progenies lor test<strong>in</strong>g may be protteedI throt-ih diftl'rent <strong>in</strong>at<strong>in</strong>g desigr s. They can be<br />

opeltpll<strong>in</strong>ated sCCls <strong>of</strong>* selected plants (as <strong>in</strong> family selecion), selfed seeds <strong>of</strong> selected plants,<br />

or established throtuh o<strong>the</strong>r foills ol test crosses, e.g. topcross, polycrss, diallel cross, paired<br />

cross, eh.t<br />

Many <strong>of</strong> tle abvC tcClhiljIti,> ire, v'er\' 1: 'oriolts<strong>and</strong> generally app lied to cruci fcrs only<br />

<strong>in</strong> limited circunlsllIces: thterfteC. til\ Nt' Pot discussed <strong>in</strong> this bullet<strong>in</strong>. llowever, <strong>the</strong> use<br />

<strong>of</strong> recurrent selection with topcr"ss as a plo!tiicty-test<strong>in</strong>g netliod is described here.<br />

Recurrent sClection, as its niattIC iltiplies, it,'les ,epe'ttcd sclection on itterven<strong>in</strong>g<br />

p,,pitlaionV derived frito <strong>in</strong>terbreeditln <strong>of</strong> selected <strong>in</strong>dividuals <strong>in</strong> ordcr to accutmlat <strong>the</strong> desirable<br />

genes flr a particular qualititativ'e character withtt tiarkcd loss <strong>of</strong> ;,ctictic variability. 'I hc general<br />

procedure is to select ott a gCnetically variable population <strong>the</strong> <strong>in</strong>dividuals that are "Ulperior<br />

for tie char;acter tier ClIsidcrlitot. The selcted plants-, lrc sClfci ald tCstvcossed<br />

sitMultanettslv eli 22).<br />

Sclectitts to be ilterbrcd ilt order to constitllt <strong>the</strong> tnext cycle are decided on <strong>the</strong> basis <strong>of</strong>'<br />

<strong>the</strong> testcross perfotnattce. If a <strong>of</strong>etctic:ll broad-hased testr (e.g. opeli-pollimated varieties)<br />

is IseI, tcttrCttt selectitCtL is for tie g'lral pelftri nce f a stra<strong>in</strong> <strong>in</strong>t series ot crosses or<br />

"general combiritte ability'. With a itarrow-iNised tester teg. ]lioitZy ols <strong>in</strong>bied l<strong>in</strong>te), recurrent<br />

selection is for <strong>the</strong> perforl<strong>in</strong>ia ce <strong>of</strong>, ,t strait itt a specific cross oi "specific colit <strong>in</strong><strong>in</strong>g ability'.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, reciprlical recCtrrez<strong>in</strong> slecititi etnplItvs two brodl-b-ased populations as<br />

cotnpletentary testcrs arid provides fo0r s.)election tiE both geieral <strong>and</strong> specific comnb<strong>in</strong><strong>in</strong>g ability.<br />

The recurrent selectoi iMethod ;adptl)ted at AV RI)C tt improve <strong>the</strong> tro pical <strong>Ch<strong>in</strong>ese</strong> cabbage<br />

open-p)Ollittated cultivars <strong>in</strong>volved phentypic selection for lar.'e head si/.e dur<strong>in</strong>g <strong>the</strong> hot, humid<br />

season. Approx<strong>in</strong>ately 1(t' <strong>of</strong>each orig<strong>in</strong>al population was selected. All selections were brought<br />

to flower ill <strong>the</strong> greeiholnse d<strong>in</strong>r<strong>in</strong>g tile cool season, selfed <strong>and</strong> at <strong>the</strong> sante ttle, each was crossed<br />

to all open-polliiated tester. The progenies l'cit <strong>the</strong>se test crosses were <strong>the</strong>n evaluated for general<br />

p erfortiMance (especially head weight <strong>and</strong> yield), <strong>in</strong> replk'ited plots. Based otn topcross performiance,<br />

only <strong>the</strong> best 20',(' <strong>of</strong> <strong>the</strong> <strong>in</strong>itial selections wcrc chosen to contribute to <strong>the</strong> next<br />

generation, giv<strong>in</strong>g art overall selection <strong>in</strong>tensity <strong>of</strong> 2', . To <strong>in</strong>terbreed tie superior selections<br />

whose Merits were ju dged frioiit <strong>the</strong> general c0m11ith<strong>in</strong>g -bility test, al equI tl umber <strong>of</strong>' selfed<br />

seeds per selection were mixed tlorounghl, planted, brotight to flower toge<strong>the</strong>r, <strong>and</strong> allowed<br />

to <strong>in</strong>terbreed. Bulked seeds froni this isolated plot wcrc <strong>the</strong>nt harve ted en1 mas.w to constitute<br />

<strong>the</strong> next cycle seeds. The procedures were repeated for <strong>the</strong> next recurrent selection cycle.<br />

Recurrent selection for general coib<strong>in</strong><strong>in</strong>g a t ,ility was effective <strong>in</strong> <strong>in</strong>ceas<strong>in</strong>g <strong>the</strong> head weight<br />

<strong>of</strong> tropical <strong>Ch<strong>in</strong>ese</strong> cabbage although response was dependent on variety (Opefia <strong>and</strong> Lo 1981,<br />

Yoon <strong>and</strong> Opefia 1977). Some local varieties responded significantly to selection while o<strong>the</strong>rs<br />

did not. Tropical <strong>Ch<strong>in</strong>ese</strong> cabbage cultivars, especially those collected <strong>in</strong> Taiwan, have undergone<br />

some formi <strong>of</strong> selection by <strong>the</strong> fharriers <strong>the</strong>niselves, <strong>of</strong>ten <strong>in</strong> a ra<strong>the</strong>r reduced poptlation size.<br />

"tierefore, <strong>the</strong> variability necessary for fur<strong>the</strong>r selection may have already been reduced, if not<br />

entirely exhausted, <strong>in</strong> sotie cultivars.<br />

Backcross method. In some <strong>in</strong>stances a well-known variety may lack a certa<strong>in</strong> character<br />

to make it an outst<strong>and</strong><strong>in</strong>g cultivar. Breeders may cross this variety with a known source <strong>of</strong> <strong>the</strong>


Brced<strong>in</strong>-g ictliot 49<br />

Figure 21. (left)<br />

Source Schematic diagram for procedures <strong>of</strong> maternalpop<br />

ltation j l<strong>in</strong>e selection.<br />

Phenotypic ! fleetion<br />

3es't'<br />

200-500<br />

plaits O<strong>the</strong>r<br />

y0 plants<br />

10-40 elite<br />

plants<br />

Flower Flower<br />

<strong>in</strong><strong>duction</strong> <strong>in</strong>ductior Source<br />

I ppiullatioll<br />

Planfede<br />

at conk.tr<br />

|I n{(tltern iat --- - Si-IS-Ilot%<br />

Se lection<br />

ir aust cressed<br />

S ( d ,fd lest cross<br />

<strong>Seed</strong>s hlivestdaer m ,t I eval antio<br />

eirch li1te plant<br />

to I)e, ai marternal liriu<br />

4<br />

L<strong>in</strong>e<br />

'?,t parents<br />

cel<br />

Sselected<br />

200-500- ev aet<br />

plants O<strong>the</strong>r<br />

plaInts<br />

Pitts from selted seeds<br />

<strong>of</strong> selections <strong>in</strong>tercrossed<br />

1 -, !lite I<br />

Flower<br />

<strong>in</strong>idti iiI<br />

I<br />

tlower<br />

<strong>in</strong><strong>duction</strong><br />

Bulk halvest<br />

New,lase pOpt IlatiollI<br />

lt rlwxt selectm i cyclU<br />

d .*<br />

Plan e at<br />

I ,<br />

, r{),,<br />

110', r 5 i '<br />

,hlr,(,'- ,*,hiy, n'<br />

ceter I.<br />

1- - - . . . . .<br />

Ir i ;<strong>in</strong>It' <strong>in</strong>t Figure 22, (above)<br />

Schematic diagram for procedures <strong>of</strong> recurrent<br />

selection.<br />

desired character to deC\'clp ,an; ,l'utivarpos",sesan <strong>in</strong>t trait. <strong>Breed<strong>in</strong>g</strong> techniques such as<br />

mass selection, faritily selection, (oo<strong>the</strong>r nllodllhs u<strong>in</strong> elabora.tc )ncy tCsIs uray be aplfliCd.<br />

as <strong>the</strong> case ruaV be, to obla<strong>in</strong>l <strong>the</strong> improved typc carry<strong>in</strong>g hc desired trailt illfixed form <strong>and</strong><br />

<strong>in</strong> comb<strong>in</strong>ation with o<strong>the</strong>r good hOrliCiurallatrilnteCs. If <strong>the</strong> breed<strong>in</strong>g program has a broad<br />

range ol objectives <strong>and</strong> <strong>the</strong> vaiey itnquestion already carries most <strong>of</strong> <strong>the</strong> desirable characters,<br />

<strong>the</strong> use <strong>of</strong> <strong>the</strong> backcross breed<strong>in</strong>g method would he <strong>the</strong> most appropriate <strong>and</strong> effective.<br />

In <strong>the</strong> backcross method, <strong>the</strong> F, gneration <strong>of</strong> <strong>the</strong> cross between <strong>the</strong> variet) lack<strong>in</strong>g tihe<br />

desired character <strong>and</strong> tlie sorte or donor parent is crossed back to lhe irmer (referred to as


50 ('1i1c1NLC U(I'hiL ,' l I.TlillII i I Cd S 'i lIh iuMi<br />

CCtI', iC:C I f ILLC CI '. If L ClC ItC[IN N' Ill CiCLC IICI IICI ;iC' Chtl ItnldICLI it \uiI'",li<br />

C Cl lioi ;,. lIN,. Cl 'lIC I 'lh l III tCl L M11IC't IC111 C l 'Id CII'llIht ll' 1', H<strong>of</strong> IiIC I .<br />

Thu' l iLI , ., lll'tL iI IliC. ,irlilCi I thu i';C C il lI', C1lII CIIIIi ll i ,iiC (tl nilI ICiI 111nW .<br />

hIL ;I<br />

ho. U mil<br />

C II t II I<br />

-dt' 111llt lcu h<br />

Illm<br />

; l il. l h ,i'<br />

I ,l<br />

rI,'<br />

Cl .\LI IIIN<br />

' t i h<br />

"I- It',L'i l I III<br />

1i!. li ) !1111 , 1i.111i\ l!It" H ri,'<br />

'<br />

Itk LC,11l.I<br />

I I [lhi' '<br />

iC'C<br />

irM '<br />

(1 10 1,, m 1 .1 I't ' I I, I ,I .t CC.Cli ' 1 1IC I 1''ICCI,'I I I C I I I. It .ICICL. I CCtlI I<br />

.lit I'ilIh I I C CCIC[I;CCI C :\II'td CI' i I C1t1IiC'.t:C , , m,, IC I It'll CI Ci 1 I iC I t'I. iLI u lillik'N.<br />

A\It illittl II\I T 'I t C IL :ICh ! N l , -l I k , L CI i I " ' C, iC I IClILC I 'pI IC IIIi lLi 'I ; Li.c w ',.<br />

IC! lI lII !CNOCCCIICif1CC;1(t - ICI ; I I" I1 -I I 1II111II(.1 I CICII CI; I It- li111tIN 11C<br />

III111I LII Il'tI III III CII )' I I otI I IoLk( IiCC I Ii f ,1 I chll . I 'Ic I1 I -~h - C N 1 II CI "11C vc I,ll IIlpl k LC-1 IdII(l m I I 1"111( II CICC 1 IL: II I I t)I I !CCI C i0 C\C'l lL ;l 1 C'~I , C C Il<br />

II'CC NICC I II NLLL CIIIl I I.\C . ut: I I I ICiIC 11:IC I II IC lil C I hIWl t'I I) jI c II I I It l I . C h'CCC111(C11i 1INt IhCI k I\.1 I I) i III I ti11 f it IC hc.i 'I 1, d t], C !i II ckV<br />

1<br />

l hI it ti IIlI l t 1 ill It ,.I rI I ,11 1 hC , I)l l Ih('Ill CCIC I III ll Ic' 'H(t ilC C -ILC tict. Ill[\ .o!<br />

I II I I II ) ([IIc I i lh Ni, clCC Iwk ICI 0 'L- 1h( I I Ik 0 IC IY ,(1;1 I 'C i CICCMi ht- T h IIiI: l<br />

.<br />

\It. III Itill O "C' C IaIl. N1CCk I tI IC iIt', I C IIIth r IC uIIC I liI \ lloklu IIIII Ck ct\ III I l<br />

I<br />

C t l ,<br />

INIl I ' NLIlII t 1<br />

C IiII.A<br />

C lit *ll~At't ICtI(I<br />

II'll tq hIICt.Ii I li<br />

)I II'I 1 111 th<br />

C t V, 11l ''lIth<br />

\ I<br />

l1 II 'i<br />

C1LI l\ !C1<br />

CA I ~ Cc11 1.- 1) 111<br />

CC.C CILIIC I I 11CI 1ICCii III)IIh.<br />

C<br />

I \ I ~I : I I ()I(II't[)<br />

II', l C I\"I IWI;CL t L Ih I I(C',1'k1 C I(I L,,ItIL I Iu \(1I I It", I 1thCi n IC I I l l Ilt) l ilJ CI II C n.<br />

IN I I I i l , \t.ci iicIIt l Il-, I l IIItICIIIIIrl it tI II I It-' I ki IIIC I(",il'- CI C I ILCIhltl (.\()i ll",\ Ihh 1111,01011 I ' (,,', ,. k"it ' Cut] ",,I I lIt II 111Cd ,,, tI CICC I hC llot I l I CIClh,.ill I \ ll c t I I[L<br />

h( I ll .c' I\ I' ihi II uItI II lt , ll l 1 t'd it.. tli cd 1..ti++1 (Il'n I II),Lit ;1111 lb l; lt hC ~ th1;1<br />

"<br />

"tkil iiClt , Ic ,li IlCi a", IhC Itl Il h itI, i , 'l . I'II ' i WuI LICt lI , I \i C L t L iit IIrI. a '.,i1<br />

Ilk'th i I I iIhuuIll ' l1(' I 111CCillc Ili t \\ ul() ilt.' lc,'lI" ltl I\ co'lt % iNF lu thc IliI, lit,it . C,,,c " ll+li\ il t.,<br />

Hybrid Bredo.il,<br />

\ IC II l " N, uill' , iC 1 CICCI10I1 litI ttk -,lib1 li/C it liX i t& Nic'C hCIillC CIIll 1h1C i[+ UIitIiC)II<br />

,ulIIiCit' I, ILItI1 httCtCCIcl LI'hl iIIh I I)CItIL lt\ LICt ill iCltId.. ,<br />

ItI-iqflfl CilIlilit ' h ,J1 , LIIdii<br />

+,<br />

IClI'llIC)d h\ ICI I IIIliC ,CICLt iI li itc ,.IitC I\u. i c'I au-,t" /NI 1 iiC Crl ), IrtCtI'titlI ',(I u.<br />

1 I ,11t1 kilNc't , iIHC,<br />

LlI1 Ill L I \'khtILC N IICL I II I " lli.\ ht \ C!ic ,CllI\Cl. it ll-', l .<br />

,cl IIC <strong>in</strong>i I C.\ l CkCClv, ilu t )I it to I ck., I!lli/c Icl /'k.,, CL", ciIl IL mg Citill ' ilhc I CL NN",,I C Cli )I .<br />

lIC hCIUIdCIr LiCICIIC':I h lit CL tik I \,)II,C LC C<br />

pJqC(If ltiCiC Im -itc'IIICI. \pai I llt lll It ' I' C.I<br />

I C C I til ilCI JICt<br />

,',.CItCI f) 'i '<br />

'11C t.,WI 'IC 1111(cC;I ILI\\<br />

.llCI. ',1( ItIiC hI' it'.<br />

CI l I i'I l iCtic llliC<br />

II 1 C (I1 iCC' Ill'<br />

6111CL. Ilvhrid \%i lCI'ii<br />

IllCC IICC)IIll [il ' dc\L 'h ICGlC II l ICCII CIC'C! Illic' lilic" loo llhrik I lCC hlt.titII.<br />

iIlilill i iIC l Lt l 1LII II ,tCII CCLI'it , lI fCCL !uC L',I llliC alic<br />

' ,<br />

, Ill Clitlo-111.U hil\C ',c\t++' ill ti al ii ia ,LCI c - ! 'IC ,il c tIV i tll II It,, ', A l l 1;11 lt<br />

t t'C'l,I ct c l ( ] i ",t<br />

ruld I li itI III !<br />

t (1 1t t q 'l,.<br />

i I C; r C,,I ,)CI<br />

pi-i llili cd \'ti ctic,.. , Ill 1121Ill', (d C' i I l.11 ,, H i<br />

CC, I tl1C.C, Ci I I CCLL' I I CLuI C I ICCL I I<br />

ll 11 11,. diit<br />

IIII CjCICCI I<br />

illti I h L I Cl IC ill II ICil Ii ClC'- C I L d iLI' Ch ilChlil Ill C, C ICC TCII',cl CL<br />

ICI)C L II I il IlltI Will)h CILCI C C I C CC lrCIII I LICClkLC ht LLCCI' (\ CC I CCIICllL<br />

Important considerations <strong>in</strong> a hybrid progran. Ic Mc 1ICLICC C ICtC".ll C ,+CCL ii IIl<br />

,iC ItIc'l CII niCCu I Cr, I LI CC I I L I', k-, ICci , 111i hhrl CI ICtL iCtlC.. III, \,I . hC tI.lr,<br />

iCCCCN t CIi Iitck II ilic CII I. CCCCCCN II L hilL ir,iI\ '' -C iCn! 'LM C ,CtClC l',i to C LIt\Ch~l Ilii ,<br />

IIC'+,tI I i<br />

IC'CL]CCLt<br />

l<br />

IC) h I<br />

ttI.iI l \ il "I , I<br />

(IhlL CCC 'LL ClICI<br />

lll I 11 ll i k ICChIIII<br />

IICIC'\:C!C CCI '<br />

Cit(C oC 'tiCL ,,<br />

C,it ."I \<br />

.cNC L I I<br />

'.<br />

'"l t Li C"r itllll<br />

Utiizatioa n <strong>of</strong> hybrid 'igor: ThC thCCi;iiC Cii( tlICCCtt Il hC' j)CII'CCC )IIl, C itll<br />

h brid , C01, C ()I I Lt 11101iCCtCl(i I, illilltlC h ICt liC tll('<br />

CCiCItI ill t t t )I lr llyl rid


Hybrid <strong>Breed<strong>in</strong>g</strong> 51<br />

j Figure 23.<br />

Comparison <strong>of</strong> head size <strong>of</strong> an<br />

(D Fl hybrid (center) with that <strong>of</strong><br />

_ _two parental l<strong>in</strong>es.<br />

development. In many crop species, hvlhrids OflCt tell hiser y ies,<strong>in</strong>lproed earl<strong>in</strong>ess. <strong>and</strong><br />

unifortnly hller quality <strong>and</strong> (lisease resistance than ist<strong>and</strong>ard cultivars. TherC are <strong>in</strong>stances,<br />

however, when hybrids have been produced even without <strong>the</strong> abhove advantages as lung as a<br />

high prenniuni for o<strong>the</strong>r aspects 0f COnlSlnler acceptability exists. .n <strong>of</strong>tC-cited example is <strong>the</strong><br />

devhlop<strong>in</strong>lent <strong>of</strong> sweet corn hybrids it <strong>the</strong> United Staites where consutners are known to have<br />

a high recard for uniolrniitv <strong>in</strong> si/M alld ,ccicral aplranca . ol marketed ears.<br />

The <strong>in</strong>terest on hbrid developulen <strong>of</strong>l ('h<strong>in</strong>csc cabhagc al AVRI)C wIs dicLalted], ill !aige<br />

part, hv <strong>the</strong> needotoIsllstantiallv <strong>in</strong>crease <strong>the</strong> yield <strong>of</strong> haCt-tolerant cultivars. I'lVht'id vigor <strong>in</strong><br />

<strong>Ch<strong>in</strong>ese</strong> cablba'ge, abtout 20 to 5(0":' better than parelits. is o)lo'LlSe wCll-knvown. Although heterosis<br />

was Ii<strong>in</strong>imal illllng tropical varieties to warrallt its <strong>in</strong>lijiediale exploitation, appropriate genetic<br />

nmnipulations enabled its ,lax<strong>in</strong>i/.ation <strong>and</strong> drall ilticallv il<strong>in</strong>proved <strong>the</strong> pertounlncc <strong>of</strong>" h attolerant<br />

<strong>Ch<strong>in</strong>ese</strong> cahage hybrid,, (Opefla <strong>and</strong> Lo 1,179, 198 1).<br />

Availability <strong>of</strong> mechanism for hybridity: A good p(Ortiun <strong>of</strong>'t<strong>the</strong> cost <strong>of</strong> hybrid seeds<br />

results foni tile cost <strong>of</strong>l seed pro)ltlCtiotn <strong>and</strong>i ma<strong>in</strong>tenance Of parental <strong>in</strong>lb-cd sttocks. Breeders<br />

mLust, <strong>the</strong>refore, l:kc <strong>in</strong>to aceount <strong>the</strong> presence <strong>of</strong> a suitable unechmis<strong>in</strong> [Or hybridity so that<br />

hybrid seeds <strong>in</strong>ay be produced cCOn0lnicdlll: <strong>and</strong> released to growers at a reasonuable price.<br />

1-lyhrid ity uiieChaui,',us may coll1e <strong>in</strong> tile I'0u1 <strong>of</strong> sClf-illColptibility, cytoplasmtic male<br />

sterility, genie male sterility, dioccy <strong>of</strong>r o<strong>the</strong>r systems (see Self-<strong>in</strong>compatibility. <strong>and</strong> Male Sterility,<br />

p. 19 <strong>and</strong> p. 32, respectively). If a suitble Mechanisut is absent or undCvelped, tle decision<br />

to <strong>in</strong>itiate a hybrid pmogria Il Must be Weighed very Ceireful ly . () ft en. prmlificacy <strong>in</strong> seed P r<strong>in</strong>dnCtiO<strong>in</strong><br />

becomes alt itportant consideratiol as <strong>the</strong> hybril seeds will hasc to be secured through manual<br />

IncsllS. Good examples <strong>of</strong> this case are ahundant amuongL <strong>the</strong> h'lyrid seed prograls <strong>in</strong> self-pollirtated<br />

crops like tonlato. pepper, cegplant. etc. Il sume <strong>in</strong>slaces CeniC naLe sterility among <strong>the</strong>se<br />

crops uuay be utiliZCd to dispense with <strong>the</strong> need for enlasculatiio.<br />

Anioun crucilrs. self-<strong>in</strong>collipltibfility is widespread <strong>and</strong> <strong>the</strong> qlestionl <strong>of</strong>" a suitable scheme<br />

is hardly a ltlo<strong>in</strong>t issue. Never<strong>the</strong>less, tile strength <strong>of</strong>, recoverable S-alleles, <strong>in</strong> relation to <strong>the</strong><br />

best available envirtlummelit for seed fprtductilI, slioull be considered.<br />

<strong>Pe</strong>.A<strong>in</strong>ess <strong>of</strong> <strong>the</strong> market for hybrid seeds: Sometimes, thlw advantages <strong>of</strong> hybrids<br />

o,,er st<strong>and</strong>ard Culti,,ars are not sufficient guarantees for <strong>the</strong> acceptance ol hybrid seeds. This<br />

situation is <strong>of</strong>ten uliet <strong>in</strong> <strong>the</strong> iarg<strong>in</strong>al areas <strong>of</strong> prodluction where reliability, ra<strong>the</strong>r than maxiunum<br />

perfornullice <strong>of</strong> varicties, is a virtue. Farmers ill <strong>the</strong>se areas generally save <strong>the</strong>ir own seeds from<br />

year to year. Open-tpoll<strong>in</strong>ated varieties, or o<strong>the</strong>r genetically va riable populatmitOIs such as syn<strong>the</strong>tic<br />

varieties, are comparatively niore successful here than hybrid varieties.<br />

Even <strong>in</strong> onlmarg.<strong>in</strong>al areas, <strong>the</strong> capability <strong>and</strong> will<strong>in</strong>gness olgrowers to allocate extra <strong>in</strong>put<br />

to meet <strong>the</strong> cost <strong>of</strong>' seeds must be considered. If 'arnicrs usual ly save <strong>the</strong>ir own seeds for <strong>the</strong>


52 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> Brcediv 3 <strong>and</strong> <strong>Seed</strong> PoIii( ti.a<br />

next season's pro<strong>duction</strong>, it mIust be clearlv demonstrated that tIle use <strong>of</strong> hybrid seeds can easily<br />

<strong>of</strong>fset <strong>the</strong> additional Costs <strong>of</strong> purchas<strong>in</strong>g tIeI time after time.<br />

In <strong>the</strong> case <strong>of</strong> troi ,cal Clh<strong>in</strong>cse cahhage <strong>in</strong>Taiwan, <strong>the</strong> overwhelm<strong>in</strong>g dem<strong>and</strong> for hybrids<br />

was largely attribitl:,tblf to <strong>the</strong> atteCndalit risks otgrow<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage dur<strong>in</strong>g <strong>the</strong> hit, typhoonplagued,<br />

monsoon .Casln. lBy virtue <strong>of</strong> <strong>the</strong>ir uknift m tiamuriiy <strong>and</strong> carl<strong>in</strong>css. hlbrid <strong>Ch<strong>in</strong>ese</strong><br />

cabbage can liegrm<strong>in</strong> quickly <strong>and</strong> harvested collectivel., tnus, m<strong>in</strong><strong>in</strong>mtitig crop loss due to<br />

heavy ra<strong>in</strong>s <strong>and</strong> stronle witid's.<br />

The acceptability <strong>of</strong> hybrid t .pieal (!l'lese cabbage ilt o<strong>the</strong>r Iropical Couentries is <strong>of</strong>ten<br />

questioned ma<strong>in</strong>ly becausc le technhology <strong>and</strong> ilfrastruclure ftr hylbrid seed [,ttidction :re it<br />

well-developed <strong>and</strong> that, even assim<strong>in</strong>g acceptability, larmers nay not be able toItaffird tile<br />

extra cost otfhybrid scds. IloweCvcr. it calt bc arngLed that teehtitly is transfcrable <strong>and</strong> that<br />

<strong>the</strong> additional seed ctst na\ iot be alltoo prohilbitivC bcCaLSe Ch<strong>in</strong>esC cabbaCe iS stiall-seeded<br />

(Ig consists <strong>of</strong> approximatelv 1(0 -eds) <strong>and</strong> is usually gros i tuly o a simall scale.<br />

Basic procedures <strong>in</strong> develop<strong>in</strong>g F, hybrids. Firl<strong>in</strong>g tile best F, hyrlit cullivars is not<br />

purely a matter <strong>of</strong> chance. There are .e stmatie steps iivstlved irt hybrid devclopriIenr arid <strong>the</strong>se<br />

are discussed below. Acaii <strong>the</strong> AV l(<br />

,s referred to somtiles i<br />

yht-id hibreedig programI fOr tropical Ch<strong>in</strong>cse cabbage<br />

, imilllit rati. Kn\vleLl'gC <strong>of</strong>' <strong>the</strong> genetic bases Ibr roost, if rtot all,<br />

oiiportarnt charactcr, desired il a 11', bril i s ' ential id. lor simplicity, it is assutIed that this<br />

<strong>in</strong>fbrmation is geC rally ;t\,v; + h.l t tlh ilet,.C Lr.<br />

Sources <strong>of</strong> <strong>in</strong>bred l<strong>in</strong>es: lnre"d lilnii be deris etloln diff'erent otuces. such as<br />

(ipern-l;<strong>of</strong>l<strong>in</strong>ated varietie,. sy rtliii \arCties,. I:tSs-seleCted pItpulatitrs, recur re<strong>in</strong>tly selected<br />

pupufations, pipitlatitrs orieiriatite lrom <strong>in</strong>tcrs arical crosses, etc. The choice <strong>of</strong> possible strInces<br />

is wide; y;.'.'.'heli <strong>the</strong> breed<strong>in</strong>g ojbpj'ti,. cs are taken <strong>in</strong>to account, <strong>the</strong>re may be orly a few viable<br />

alternative.;. Often, <strong>the</strong>se are locally adapted. opci,-pollirtated etnltivars <strong>of</strong>' prtoern worlh which<br />

carry a ntIiher. if riot all, Of <strong>the</strong> itri)Ortait charMJt s <strong>of</strong> <strong>in</strong>tretst tt ite breeder. lhis is colntnion,<br />

especially at tilebegirn<strong>in</strong>g <strong>of</strong> a hivhrid wiJr,IrI',l.<br />

In rnlore cevhcLoedl prograrmis. <strong>in</strong>bred l<strong>in</strong>es ir olen so-Lht fron genetically ittniroved<br />

poputlatitls such as those a;risirig froml Mass sClction arid rccurrct Selection. Individual plants<br />

arc selled thiougi successive generationsi until loniotu/\goit\ is reached, <strong>and</strong> <strong>the</strong> <strong>in</strong>breds are<br />

stable lf0r roorplitt,-oical anrd physiological chairacteristics. For example, <strong>the</strong> <strong>in</strong>bred l<strong>in</strong>es used<br />

<strong>in</strong>l tie development otItropical Clhiiese eabla,1C i',hrids at AVRDC orig<strong>in</strong>ated fromt genetically<br />

variable poputlations that weure irmiprved throlnhnts+ selection lir heat tolerance <strong>and</strong> disease<br />

resistance after <strong>the</strong>\' were <strong>in</strong>itially derivcd from <strong>in</strong>tervarietal crosses (see Genetical <strong>and</strong> breed<strong>in</strong>g<br />

aspects <strong>of</strong> heat tolerance p)6. r.<br />

Selection for comb<strong>in</strong><strong>in</strong>g ability <strong>and</strong> o<strong>the</strong>r horticultural traits: Not all genotypes<br />

derived from a sturce p upulation ,.ill possess <strong>the</strong> desired tickilg" ability tir pret-potency to prodUce<br />

superior <strong>of</strong>l'spr<strong>in</strong>gs <strong>in</strong> corri<strong>in</strong>atiot with o<strong>the</strong>r Uenotypes. It is, <strong>the</strong>refore, essential to identify<br />

<strong>the</strong> l<strong>in</strong>es with good coriib<strong>in</strong>irg abilitv. This could bc dtue early <strong>in</strong> <strong>the</strong> <strong>in</strong>lbreed<strong>in</strong>g process, thuts,<br />

allov<strong>in</strong>g effiorts to be concentrated on tie ' l<strong>in</strong>es, with siperior comb<strong>in</strong><strong>in</strong>g ability. Alternatively,<br />

tilebreeder may attemp, first to stabilize <strong>the</strong> l<strong>in</strong>es f'or certa<strong>in</strong> imptrtant traits, <strong>in</strong>clud<strong>in</strong>g selection<br />

for strong sellf-<strong>in</strong>compatibility, before <strong>the</strong>y arc tested IOr comb<strong>in</strong><strong>in</strong>g ability.<br />

Each <strong>of</strong> <strong>the</strong> abtve-mientitr..d methods has its own merits <strong>and</strong> limitations. lFarly gener;tion<br />

test<strong>in</strong>g olcolibiri<strong>in</strong>g ability ntay save tirte <strong>and</strong> Iesorltces isfur<strong>the</strong>r <strong>in</strong>breed<strong>in</strong>g is restricted only<br />

tr tile siper<strong>in</strong>r cii mbi n<strong>in</strong>g l<strong>in</strong>es. 1-Iowceer, til e tIil)l,:s under test are still highly heterozygon s<br />

<strong>and</strong> this ften necessitates <strong>the</strong> Use otlarge progeny salmples it, ol]er tto derive reasonably accurate<br />

<strong>in</strong>ferences about <strong>the</strong>ir comb<strong>in</strong><strong>in</strong>g ability. ()<strong>the</strong>rwise. <strong>the</strong> comb<strong>in</strong><strong>in</strong>g ability <strong>in</strong> <strong>the</strong> later generation<br />

may deviate greatly from earlier est<strong>in</strong>iations. With genetically stable l<strong>in</strong>es, this problem is<br />

subtantially simtplified but <strong>the</strong> time <strong>and</strong> resources spent <strong>in</strong> tile <strong>in</strong>breed<strong>in</strong>g <strong>of</strong> l<strong>in</strong>es, with o<strong>the</strong>rwise<br />

<strong>in</strong>ferior prepotency, may he prohibitive.<br />

A: su<strong>in</strong><strong>in</strong>g that <strong>the</strong> early generation test<strong>in</strong>g scheme is adopted. tie l<strong>in</strong>es o'utmld be first tested<br />

for genral comb<strong>in</strong><strong>in</strong>g ability (GCA). The tester stock <strong>in</strong> this case would be a genetically variable


librid Bleed<strong>in</strong>c 53<br />

population (e.g. open-pOll<strong>in</strong>ated vatiety)<strong>and</strong> tile type <strong>of</strong> test is callcd tiletoper-, ilaethod. The<br />

topcross progenies are <strong>the</strong>n evaluated, prelferahly ii replicated lashion, to dcterti+C :lie superior<br />

comb<strong>in</strong><strong>in</strong>g selections. Qnly <strong>the</strong> best colb<strong>in</strong><strong>in</strong>g l<strong>in</strong>es are pro1pagatcd lurthcr by selfit<strong>in</strong>. Ilicse<br />

f'ev remai<strong>in</strong>irt l<strong>in</strong>es are <strong>the</strong>n testcd <strong>in</strong>I specific conihbnalttios, cilter by croi-ne itmIto a mmton1111101<br />

<strong>in</strong>bred tester ,tock or-aioln1:- each O<strong>the</strong>r, CSpCcially if tilenunher if all po++;sihle ,:onihmations<br />

is taiagcable. This specific conih<strong>in</strong> allitl fStA)attempts to identif, <strong>the</strong> hcst spcilic<br />

comb<strong>in</strong>ations lHie SCA test nay be applied to all ipos,ibl- , croNsses, amu F (he <strong>the</strong>slectCd ((*'A<br />

l<strong>in</strong>es accomnpanyil <strong>the</strong> ,ubsequent Iixat oi pit'or'cc(Itl, ir t\10 otouIir gnctrati olol t9 It)54),<br />

S<strong>in</strong>ce <strong>the</strong> reliiiic iiilitlance oI (O(.'\ ;ild ( 'A wI[\ \;If\ J11iio12 Charaltel r it is More<br />

efficient to tunlphlasiie tle trait, ho \ licl (;('\ 1iIa , tlilt ill tle carl.\ Fen'+'ratiom <strong>and</strong> <strong>the</strong>n<br />

pay attetotion latter to tlit-'c traits 55here S('\ hasio 11 le lati'' iiiOIrtanIct'. ((UA is iiiillit<br />

ItI- chara,'cters such as le'af i1ber ;I id atllilrllV hill not flr mlllit leaf '<strong>and</strong> imirit) characters (Yotll<br />

et al. 1r)2). Almon midrib ci;iik,!te ,, iiuio -s,ense' liCritability s, a1fo,Id i to b he11li i f<br />

atid area <strong>and</strong> hlIIO \\f idthianI 11 thlickns, il tdiallel sttudy ailcmw telipcrat ltes.<br />

If p+ro) n\tsts c itbCe ppliedll i'r th letaatio todcirallC hliticidw;il tr;it <strong>and</strong><br />

­In<br />

elf­<br />

<strong>in</strong>collpatibility, a patscict'tioia for colliaabad -'irui ailits., iiias be c d ot <strong>in</strong>italls (t redtuc<br />

tlie nulmber <strong>of</strong> l<strong>in</strong>e', io ai:() a Iaeblc It' l \ i .ill.\ acs ss l ho . ,elc -p ,scd 1t ia gcucticall+,<br />

variable ,tek tf losv , Mi lt ih.tie t 'l , i elal ., %soilllhC ,'ed I' il l rtIp atet fsliii<strong>in</strong><br />

to select tlie , IlouCi'il iall" liacs .. \ pO', iht. %;ailli)ii t I lo ls', miLdit he to illo, all<br />

<strong>in</strong>hred lilies tO lL ait Al'IdlolI ill ate d ls. )peil -poll<strong>in</strong>tcd sCd' id 1,i l<strong>in</strong>e mua. tliet;<br />

he liarisSted eparacl, n C\,111,1,i lid 0e'l i;e a 0ibi<strong>in</strong>c aiillt,, iitmuW.'l ,h ltpOk C oss tCt.<br />

The, s-,uperio0r calt-ai t te ( ('Ai te.t r't' lieu es abhateUMd 1t0 speeift t.ai.labi ilum abilil\<br />

h\ il <strong>the</strong>m ill ;i !l ilh L')I lhlll tahial - M \\'i, ileuu 1or 11a I i l lt',tcr, lhe b'st slcilie<br />

COiib<strong>in</strong>itiil, f01ith+iraits desircd ii l1s 11d" a ct' ,ciMiliikel l<strong>in</strong> rela[se to ,rs,0 ers Ater<br />

SmificiCit pC lMtIoaiaee <strong>and</strong> eed IrOduaciLii trials.<br />

The iaa'lihod o, ( A t ,.iLrs <strong>in</strong>. lhlh- e Is\ lie ('.,eSt, iIll All IO,'dhIc co abiatioiis<br />

it C011lIMM;II. ill[ L '.'l .e ti l l\t+. I) O It,dtr' C I to Ithj +!,I Ii<br />

, WI l M I1C'I l"tl (Ito 195 1) Ol it11)(1dit ltit60n<br />

tf i ili 'hich t s , ia i\ t '+sL,' ;t1ilal;liC<br />

as l ,iu itil' l ii)aumm liLt', it tlit' lile t',st 'Lt'tihmu't)it.<br />

Iliasstal is flii t ( '..\ tt\l alilauus li)ie tui aitiiis iiiiuiic i, selectte.d fiia', tI hIritta 1957) ire<br />

-ctnunaaaiiln2 lalbu . P;ark <strong>and</strong> II\ii I ,illlifid tCetCtOss <strong>in</strong><br />

\\hich staIl pirlith l<strong>in</strong>es art' _IitlCd b\ siate prcdtt'rnlititd s iSal criteria <strong>and</strong> tile cotniti<strong>in</strong>g<br />

abilits is carried Out oi an, lie\, <strong>in</strong>bred hllouh iiac to a rOuL) h\ cros0,si<strong>in</strong> it svitli a IiXCd tester<br />

Of anoi<strong>the</strong>r l'mp iald \it' rsa Alhomh this, sChliCI is 111Ie tilie- ald re.iir ,'-efficietnt,<br />

it hias tile po ssibit limilation thatile ,otile Of" l<strong>in</strong>e L s , l+ut~li tt anitd u ,,i ( 19 t)S-l01uiPastcl<br />

icctlod<strong>in</strong>o to0 sotie I 'ruttrRniited criteria<br />

<strong>in</strong>la acceleratc <strong>the</strong> aiatmoss, <strong>in</strong>c m <strong>of</strong> cItit'"disrt,ioll brt('ediii hlus. Such i diuiliUtiol <strong>of</strong><br />

et_'tlic \irialbilia\ mal\ ac to <strong>the</strong> l sI f it"tiicr di ate l<strong>in</strong>t's carr.\ ilrig iallpp -taiit Iecics.<br />

Pro<strong>duction</strong> <strong>of</strong> hybrid seeds: A hyhrid cirmabtimtioi svith goo.l ptentill filr cotllrnleciial<br />

rC'le' il, ,h af lit'he aldt'tfaalt'l\ tC',tc'd for it, petfratr ',teI riot otily ill plrtduittii fields but also<br />

itt ,c'td 1-,daUClioia lts . lor tll-, poll ist parcnit iues, iic plaited alter llati l (her t ;Cheleies tmas<br />

hc' utl, (lCtidili [IL lipOali' eCitltaiiiat'cs,) ill isOiated plats to roduce lie hybriaf seeds for<br />

such ttial. It is prcst' mcd tha s ( la I ae. Oilll o-t, iirp 'tt l<strong>in</strong>e, that lae prmead to le sull'icietttl\<br />

LIiilmtarlell (s',cd. The las lrid ,ceds Illll this h1i atrC <strong>the</strong>it e, atieCd forl<strong>the</strong>ituporiatnt chartcters<br />

that ll\, Cultuvi\ariit :I 'C At tht siiie 6iiii. tihe Itsrid seetl lts ar'C ICted IrO .,bb<strong>in</strong>tc,<br />

riale. Sibhir- ra'tes al t' <strong>the</strong> coittmcrciiIIy acccpt:ble. staildtrd rdutce tlt' pteitill v:ue Of<br />

ltith brids. I Iosvevcr. decisions to discard or itot tltt <strong>the</strong> hybrids tiNlIt be hsCd Oil at tluroul<br />

ataly.sisotOl't !cnc'tc<strong>and</strong> envirttlniltal factors that mt ImiC itlfihntted <strong>the</strong> <strong>Seed</strong> Irt)idLietiutr.<br />

Multiplication <strong>of</strong> parental l<strong>in</strong>es: The parent littes Of' htyrids that shiw good potenttial<br />

for comtercial release itt <strong>the</strong> early rages 01' <strong>the</strong> CValuatioti Itials should he tmultiplied <strong>in</strong><br />

prpritn fior large-seato hybrid seed prk,d ucti(t. This Will ittlVe eithbet' tMassive btd P llition<br />

or o<strong>the</strong>r alternatie schemes to overcotte sclf'-<strong>in</strong>comlpatibility (scc Ma<strong>in</strong>tenaice <strong>and</strong> miltiplication


54 Ch<strong>in</strong>rlc (?ah:l., BI3jccd<strong>in</strong>L <strong>and</strong> S .. cd P'rodu,:ctji<br />

<strong>of</strong>'SI parents, p. 61 ).In sclh ;I rulliplication, biological dislL banlces aris<strong>in</strong>g 1rom bud poll<strong>in</strong>ation<br />

<strong>and</strong> <strong>in</strong>breed<strong>in</strong>g, e.g. htcroploid+ <strong>and</strong> o<strong>the</strong>r ahbornalities (lizuka I90), shonld be noted. The<br />

eventual use <strong>of</strong> <strong>the</strong>se ,eeds <strong>in</strong> lv bid seed o'ne)dtio uisllt tiaCCOInIei 0 ,<br />

beIc Ib careul rogu<strong>in</strong>g<br />

'A' <strong>of</strong> t-tYles <strong>in</strong> seed beds <strong>and</strong> <strong>in</strong>l <strong>the</strong> scdl pro<strong>duction</strong> field to <strong>in</strong>sure that <strong>the</strong> hlybrid secd lot is<br />

ntt contam<strong>in</strong>ated.


Environment<br />

<strong>Seed</strong> Pro<strong>duction</strong><br />

Frivirornental hictors arc hirp-tant <strong>in</strong> thc pro<strong>duction</strong> <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage seed. The same<br />

chlntatic factors lvhi ltl <strong>in</strong>ltcice lie cultisatim t0 <strong>Ch<strong>in</strong>ese</strong> cabbagc a a mtarket vectahie also<br />

act t sed ptductiol. The fivotwr<strong>the</strong> Ictors are is lollows: low :itIo,,pheric lhu<strong>in</strong>idily: m<strong>in</strong>imal<br />

raifall: gaition: owd oiptimu:n temcpefratellr. Furermore. ,uitable daylerthlr. good<br />

Soil, adequl:ate_ t li,tliom , :udl t ll at 'IM I5 iI to plant<strong>in</strong>gl ttile are essential. The tole <strong>of</strong> bees<br />

<strong>in</strong> poll<strong>in</strong>ation is also irportani A' Arc.ptnsc huolo.',al elicited 1w <strong>the</strong>se fIctors will <strong>in</strong>lariaihlv<br />

affect seedl pr'dtlittttllait c1r1cter, It'. as dt\ s t0 ]os"cr<strong>in</strong>g days to sccd ripenirre . nuniber<br />

<strong>of</strong> hraiiclic. Iarit heiiht. mace<strong>in</strong>e length. siliqoc 1ul<strong>in</strong>bCr. sced rItIrilbCr. atnd s,_ed ';itld aie<br />

<strong>in</strong>filuenced h en iron<strong>in</strong>enral cit tlionldd sulch i<br />

,.;pact+<strong>in</strong>g, [)]',tilt t.!l_',it\, . ilid tL:ll[L:cr',tltll C.<br />

altit de+.,p amtml ,tilte. urigtitrl-i ollion ti tiliiers.<br />

To produce disusc- fre.e<br />

t dry 'lnliVite (I at lt.,isl it<br />

<strong>and</strong> harsestimi sta els. A rel<br />

illidhI-tluia1lit\ ('lnic'c ,:uahkt-u s+a-l. it 1s ad' ialc to elect<br />

heseaso,\t asiir hkiulniiditV. especial u ill'- <strong>the</strong> scuCd-rpl)ptiiL<br />

,<br />

<strong>in</strong>nate di-,,tuL trise,,asc d(eetipul :nt : la owd cd .lIrv<strong>in</strong>e.<br />

W hen hurnidity i, hiieh, as, <strong>in</strong> athlnnili tropical Chitiu.l i.<br />

for artificial urv<strong>in</strong>e <strong>and</strong> seet.d storac.<br />

,l't ' ,ltirran i nelits, ha\e It be tirade<br />

Dor<strong>in</strong>e- <strong>the</strong> Ciultivali, M peliod 101 'sCdlIpl ftdL'titmi, <strong>the</strong> COlltrl (1itpes.ts itd d+listsC, has to<br />

he given cal'il itteltion. The Co1ntrol (d both (I' <strong>the</strong>se taettt' ,<br />

iII le hlirid trt1ipics" iraikes <strong>the</strong><br />

prodnction (<strong>of</strong>o qirlit\ scuds ra<strong>the</strong>r tl. pensise.<br />

The soil qUnality ha, alsmo played a,pirt ill <strong>the</strong> 1lCveOpI+Cr <strong>of</strong>s'Ced prOItIctio0ti areas: generally<br />

only those hlaii soil, sswith pi1 6.1.it) 7.5 <strong>and</strong> alrelatively high s'ater-hold<strong>in</strong>g capacity are most<br />

suited. Soil conditioms are especi:ll' irnportant when <strong>Ch<strong>in</strong>ese</strong> cabhage plants are liked after<br />

sclection <strong>and</strong> replateld or +\Hlit, are transplanted <strong>in</strong>to <strong>the</strong>ir fInatl ' el<strong>in</strong>mg quarters. I'he<br />

nutrient statLS Ot oil c;ii be niiodif*icd h applicat (d <strong>of</strong> ap ropriate ltlaclo- <strong>and</strong> Illicr'onltri.ric t!;.<br />

[ut those "oil" with a satisa,,.'tor' tIitr n'It ",tatLis Mid a satitfcto<br />

are 1 st Lusefl.<br />

ct selmaige c;pacily<br />

The davleneth reiction i,, iss,\ iltpirrarInt 1,r seedk_priidtrctil <strong>of</strong> ('li<strong>in</strong>ese cabha e. ('h<strong>in</strong>ese<br />

cabbage is a lomlii-dLy platit <strong>and</strong> loes 1it ntnInlly floss Cr ill <strong>the</strong> loss lald tropics because tile<br />

clanige ill photopcriod <strong>in</strong> tle tropics is r<strong>in</strong>iriliral (Fig. 2-1). losscvcr, it has been prov'le that<br />

low tertperaiuire car replace <strong>the</strong> photoperiodic reqirirciliunt <strong>of</strong> ('lhiiicse cahbaee to sorire extent:<br />

thus, it can bolt <strong>and</strong> set sCCd svhcI Culti\vated at high ,.elesati)ns fl' <strong>the</strong> tropics. where <strong>the</strong><br />

temperature is cool.<br />

l'emperate <strong>Ch<strong>in</strong>ese</strong> ciblbge rrortIally requires u cold period, from it lesw days (t several<br />

weeks, below 5' to 12"'C. for Ilower <strong>in</strong><strong>duction</strong>r <strong>and</strong> devehoprent. The secd-to-seed or head-toseed<br />

method <strong>of</strong>' temperate <strong>Ch<strong>in</strong>ese</strong> cabbage seed pro<strong>duction</strong>, us<strong>in</strong>g iratiral cold periods, is riot<br />

feasible <strong>in</strong> le tropics, even at altitudes between 01 <strong>and</strong> 12(0 rli(Fig. 25). <strong>Ch<strong>in</strong>ese</strong> cahbage<br />

must be ei<strong>the</strong>r vernalized at tile seedl<strong>in</strong>g stage or <strong>the</strong>ir Mature pliits uprooted for'vernaliZatiOn<br />

<strong>in</strong> a cold storage, ill order to <strong>in</strong>dice flowerimre.<br />

Tropical <strong>Ch<strong>in</strong>ese</strong> cabbage varicties, ott tihe oter hanmd1nit prioduce seeds wVit hout requtt ir<strong>in</strong>g<br />

very low temperatures. The vernalizittion requirement <strong>of</strong>' <strong>the</strong>se tropical types can he f'utlfilled<br />

it ra<strong>the</strong>r high temiperatures, i.e. near or below 20'C for a period <strong>of</strong> titme, suppleniented with<br />

artificially extended phiotoperiod, cart he cffective: <strong>the</strong> teriiperattires at higher altitudes <strong>in</strong> <strong>the</strong><br />

tropics can usually satisly this requireriient (Fig. 25). The establishniert <strong>of</strong> precise temperature<br />

<strong>and</strong> photopcriod requirenicnts for each tropical variety at a specific location usually requires study.


56 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

10.1<br />

e28 0 N 280<br />

140 140<br />

C 14 . 140<br />

*28 0 S 280<br />

14 .1 _ .. . . t<br />

June Sept. 22 Dec. 22 Mor. 22 June<br />

Figure 24. (abovel<br />

Daylength variation at differen 36<br />

latitudes.<br />

C<br />

SY-2326-00058x,---..<br />

Figure 25.<br />

Relationships between altitude <strong>and</strong><br />

1<br />

temperatures <strong>in</strong> <strong>the</strong> tropics. 121..<br />

0 500<br />

,ltitude(m)<br />

1000 1500<br />

Based on <strong>the</strong> above criteria <strong>of</strong> climate, oil. <strong>and</strong> o lier ecological paraliiCtIrs, sced pro<strong>duction</strong><br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cahagize ill <strong>the</strong> tropics would appear to he dillicult. Ilo cw'cr, <strong>the</strong>re are already areas<br />

<strong>in</strong> <strong>the</strong> tropics whcre ('h<strong>in</strong>cse cabla1CscCdl pro<strong>duction</strong> 11;1sbeen pro\ cn lcasihlt thr ough appropriate<br />

practices like proper sitc selection <strong>and</strong> O<strong>the</strong>r ipqIrovdC tclCniqtut.M, notablc cxamples <strong>in</strong>clude<br />

<strong>the</strong> Philipp<strong>in</strong>es, Taiwan. <strong>and</strong> Thail<strong>and</strong>. This type <strong>of</strong>*devcloieCnt l lci. imndatct h\ he aval,'ilnt'Cllwnt<br />

<strong>of</strong> tcclhnologv gencratd hw ,,V,)('.<br />

prospects for private secd ,Ompalics.<br />

, well a, o, <strong>the</strong> tiatronal proeramln, <strong>and</strong> <strong>the</strong> economic<br />

Pro<strong>duction</strong> Procedures<br />

Head-to-seed method. This method is usually Cmphloyd i<strong>the</strong> breed<strong>in</strong>g process to develop<br />

parental l<strong>in</strong>es <strong>and</strong> exam<strong>in</strong>e <strong>the</strong> best hybrid comb<strong>in</strong>ations, or for breeder <strong>and</strong> foundation seed<br />

pro<strong>duction</strong> <strong>of</strong> opei-poll<strong>in</strong>alcd varieties (Fig. 26). The plmnts for seed pro<strong>duction</strong> are grown until<br />

head formation under <strong>the</strong> sanme cultivation method as commercial culture <strong>in</strong> order to select <strong>the</strong><br />

N


<strong>Seed</strong><br />

, 3-4t daysi 3-4days ,<br />

/" ' megece [rmer ence<br />

5-30 /<br />

days 5-7,'days<br />

. Traspan rg \ Dry<strong>in</strong>g<br />

Vernolizaion<br />

!5- 40 days<br />

/ I5-30dy ','5-30 days<br />

I <strong>Seed</strong> '<br />

maturity '<br />

<strong>and</strong><br />

Head<strong>in</strong>g harvest IN<br />

A<br />

Pro<strong>duction</strong> Proccdurcs 57<br />

Bolt<strong>in</strong>g .<br />

5-35-50doys ,~ 7<br />

day<br />

35b- 50 days dy<br />

Head maturity<br />

"I° Verralizoion ­<br />

4<br />

t-20aays i- 'er<strong>in</strong>g <strong>in</strong>d<br />

30.i~y, Holt<strong>in</strong>g<br />

pelnction<br />

Figure 26. Diagram <strong>of</strong> two different generntron cycles (heatd-to-seed vs. seedto-seed)<br />

<strong>in</strong> relaion to breed<strong>in</strong>g <strong>and</strong> secd prodIctc:on <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong><br />

cabbage<br />

best planlts "Ihll rILrthot is no[ Uscd tt produ latree aillotts iot <strong>Seed</strong> because <strong>the</strong> <strong>Seed</strong> plant<br />

hecoIeS ac.I, rt i, it re y J)l prxeticeI tot tire rRlcdC , 'ed producitn t <strong>in</strong>bred parental<br />

l<strong>in</strong>es hecauIS <strong>the</strong> are N"-e,ie rl. -Cnetict, lk pure.<br />

Plant prod;ction: So\\. idLtes dIeLnd O<strong>in</strong> Ite lotwal euvilent custoill, <strong>and</strong><br />

experien c v ilh speti c ,,;rrietij,,. ,Stiwiiie shoiuld be tned so thiat <strong>the</strong>" aridy~ receives, sufticient<br />

verrtalization. <strong>and</strong> that <strong>the</strong> plants lhtmcr <strong>and</strong> <strong>Seed</strong> under suitablehliiatic conditions. Sow,'<strong>in</strong>g<br />

<strong>in</strong> tie lat at 5.5 cm -A) Cmpaeiru. <strong>and</strong> teo to thlree seds p sj is, , re.ctnnMended. In<br />

<strong>the</strong> case <strong>of</strong> simple mass selcction. 2()-S0 times <strong>the</strong> number t needetI plants ate usually grown<br />

to secutre <strong>the</strong> idealized numibet <strong>of</strong>" selected tmro<strong>the</strong>r plants.<br />

Yout g pl-iris twll <strong>the</strong> seed flats are transplantcd when <strong>the</strong>y have r:achcd <strong>the</strong> sixth to eighth<br />

leaf stage. Obvious <strong>of</strong>f-types <strong>in</strong> foliage characters, hl<strong>in</strong>d lalants, <strong>and</strong> plants show<strong>in</strong>g signs <strong>of</strong><br />

serious discasus are rogued otut at this stmae.<br />

The spac<strong>in</strong>g at transplatttnt, deptends otn <strong>the</strong> vigor t)l <strong>the</strong> variety. The distance between furrows<br />

bound<strong>in</strong>g each bed is ustally abot 1.5 Ii. Each bed consists <strong>of</strong> two rows with plants with<strong>in</strong><br />

<strong>and</strong> between <strong>the</strong> rows spaced 50 cm apart, respectively. A furrow depth <strong>of</strong> 20 cm dur<strong>in</strong>g tile<br />

dry season or 30 cm dur<strong>in</strong>g <strong>the</strong> wet season is etuphlod.<br />

<strong>in</strong> case <strong>of</strong> parental l<strong>in</strong>e selection, <strong>the</strong> mature head is checked for characters suci as shape,<br />

relative size, Iirnu.ess, <strong>and</strong> maturity accord<strong>in</strong>g to <strong>the</strong> st<strong>and</strong>ard characteristics <strong>of</strong> <strong>the</strong> variety.


I-eat' characters\ suh Ii CLII c~o ilki.'. Jild lIIIhCLCLJICC dre ilso eililidt. The (IcsiICL plilnts<br />

are <strong>the</strong>ii sciLLiLLI ilLc raiL (1 \LLIli~i ii IL hi ii 2'' toI5"( (d tile ppiai ii.<br />

H<strong>and</strong>l<strong>in</strong>g <strong>of</strong> selected miothor pla<strong>in</strong>tS. InI 1C;Iu fi pIMrCrII hIIN, 'CL1M],LIn iltWlICict<br />

[)tlan[' ;IC CaIILlll dlUt' il IL) ILIILL\ ~llirI m hniL hi %khiljL kcpic, i, miuclit Ill wl t<br />

h\ sIcll iiti Il t, p I lllc I flit pLtiii" lL' ici \IiPILLLI 11 01L I 1(-%%L\ L'I JIrld 1-11.1 1 ILSL C a ,<br />

I r;wL ]L III jlttI, I I:1%kIIIpti',I IILLI 'liltI IlkLLL IIILIl :Il IIiIIcII cd il\ LII k h<br />

\p iii mf Ill OIli d I diIhil I[ it i I/ l'Iil!i lt lm 1 LI iIl IllI II Ilid ILJIILlli ild~ 1 II~i tIt<br />

IL Iild 1 .L1 'I11 l IiIl~ il I 1<br />

l-I I LI! I .Ii 1 IL\LIL 1 I H )iL I 011I- II WIl IL I\L kILt l IlhLIc<br />

11) iili I IIIC I t I 1 W1IAIA,' 1 1 I tli lI11 1111 \c l m I~ ~ -<br />

<strong>Seed</strong>- tseed nietod. LIl CIitC lkiI I I. cr ul lii I I II\ IiLLLit]lit hcLLtt, iL ciiildll ittLd<br />

LIII ~ ~ IlL ~ ILLl 111(I!. ILL jilLj dul l ill N LI11 CII 11i u h % ti(11 ) 11~i\ LI1L' I slr<br />

di i ILII l t'IIIt'- I1 0L(Ilk'iI 1\, l ilt' 1' IL1LMI 1<br />

I L IL 11CI ckI l.,Il Ii II C I Itilit III Ili i l( C<br />

SLhi W I.:i i itIC 1111 I l(C IIiIL 11 IIILIIILLI IIIL l i llkLL IlLC~ hL)iILLIiiLkl L'LLI l ILLL01M iiM~illLiI<br />

Slriut O L! I<br />

Osl hon IL~s111i<br />

11,1 i<br />

l 'Id<br />

IILIL<br />

hl Sf<br />

26)t TLIII i<br />

ii2w L;1~~I<br />

IIS \lLtil -TiLlLL ill', LIIICIILS Lfii CII'LI l uLld211(iliil411 cur<br />

IIiiL SI11(111cr'C(( p<br />

IIIdi Liil ! i iI iauL III111%C I 11hl


Pro<strong>duction</strong> Procedures 59<br />

useful criterion is to ensure that plant density is as high as possible while allow<strong>in</strong>g sufficient<br />

space for <strong>in</strong>spectors to exam<strong>in</strong>e <strong>the</strong> crop or for easy <strong>in</strong>tercultivation.<br />

<strong>Seed</strong>s are sown <strong>in</strong> both methodslat a time when a sufficiently low temperature isstill available<br />

for vernalization. However, germ<strong>in</strong>at<strong>in</strong>g 3 appie at seeds pm tw <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> wee a cabbage te transan <strong>in</strong> <strong>the</strong> transplant<strong>in</strong>g ant n method mwethold<br />

can 'be- vi'i'lied7.GA __i d20f _f -- - hi ' -1<br />

seedl<strong>in</strong>gs compensated for <strong>the</strong> <strong>in</strong>adequate vernalization <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage, <strong>and</strong> <strong>in</strong>creased seed<br />

yield <strong>in</strong> <strong>the</strong> tropics (Piluek 1985), Careful practices <strong>in</strong> seed pro<strong>duction</strong> must be followed to<br />

overcome <strong>the</strong> low survival rate under hot, lumid conditions <strong>of</strong> <strong>the</strong> tropics, <strong>and</strong> <strong>the</strong> poor vegetative<br />

growth <strong>of</strong> plants due to early flower<strong>in</strong>g.<br />

Field management <strong>and</strong> fertilization. The AVRDC International Cooperator's Guide (Yoon<br />

et al. 1987) provides general guidel<strong>in</strong>es o<strong>the</strong> recommended cultural practices <strong>in</strong><br />

cabbage<br />

grow<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong><br />

cabbage<br />

for head yield. This<br />

plants<br />

guide mahy be roughly<br />

for<br />

lfoiowed<br />

seed<br />

<strong>in</strong> tile management<br />

pro<strong>duction</strong>.<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong><br />

Selection <strong>of</strong> sites with sunny conditions, fertile soil with good dra<strong>in</strong>age, <strong>and</strong> easy access<br />

to water supply are suggested. The faster <strong>the</strong> effect <strong>of</strong> nitrogen fertilizer <strong>in</strong> <strong>the</strong> soil dissipates,<br />

<strong>the</strong> earlier will be <strong>the</strong> time <strong>of</strong> flower<strong>in</strong>g <strong>and</strong> <strong>of</strong> seed harvests, <strong>and</strong> <strong>the</strong> lesser will be <strong>the</strong> amount<br />

<strong>of</strong> seed produced. If nitrcgen is supplied for too long a period, harvest time becomes late, thc.<br />

plant falls over, <strong>and</strong> damage by diseases p<strong>in</strong>d <strong>in</strong>sects is <strong>in</strong>creased. S<strong>in</strong>ce supply<strong>in</strong>g a sufficient<br />

amount <strong>of</strong> nitrogen at <strong>the</strong> <strong>in</strong>itial stage <strong>of</strong> flower<strong>in</strong>g is most effective to <strong>in</strong>crease seed yield, sidedress<strong>in</strong>g<br />

at this period is recommendable. Adquvte potassium has to be supplied also at <strong>the</strong><br />

early stage <strong>of</strong> flower<strong>in</strong>g. Fur<strong>the</strong>rmore, <strong>the</strong> boron deficiency symptom, which sometimes occurs,<br />

tends to cause a decrease <strong>in</strong> seed pro<strong>duction</strong>.<br />

Split application <strong>of</strong> 150 kg nitrogen, one-half applied prior to plant<strong>in</strong>g (basal) <strong>and</strong> <strong>the</strong> o<strong>the</strong>r<br />

half side-dressed at two weeks after plant<strong>in</strong>g, is recommended for <strong>the</strong> seed pro<strong>duction</strong> <strong>of</strong> artificially<br />

vernalized <strong>Ch<strong>in</strong>ese</strong> cabbage plants (Hou 1981). In addition to <strong>the</strong> recommended fertilization<br />

rate, additional side-dress<strong>in</strong>gs <strong>of</strong> N, P20 5 <strong>and</strong> K 20 at <strong>the</strong> rate <strong>of</strong> 30, 30 <strong>and</strong> 20'kg/ha,<br />

respectively, at bolt<strong>in</strong>g time, <strong>and</strong> 15, 0 <strong>and</strong> 10 kg/ha, respectively, at mid-flower<strong>in</strong>g stage, are<br />

suggested. Borax at approximately 10 kg/ha isapplied beforeh<strong>and</strong> to <strong>the</strong> seed pro<strong>duction</strong> field<br />

where boron deficiency symptoms may occur.<br />

If <strong>Ch<strong>in</strong>ese</strong> cabbage seed pro<strong>duction</strong> is conducted <strong>in</strong> a region where precipitation is low,<br />

additional water supplied through irrigation may be highly desirable, Drought stress frequently<br />

occurs under tropical or arid conditions <strong>and</strong> cat <strong>in</strong>crease <strong>the</strong> difficulty <strong>of</strong>confirm<strong>in</strong>g some foliage<br />

<strong>and</strong> head characters dur<strong>in</strong>g rogu<strong>in</strong>g. Timely irrigation from head<strong>in</strong>g to midfiower<strong>in</strong>g stages,<br />

or at <strong>the</strong> time <strong>of</strong> side-dress<strong>in</strong>gs are essential for <strong>Ch<strong>in</strong>ese</strong> cabbage seed pro<strong>duction</strong>. However,<br />

irrigation should be given from <strong>the</strong> seed stage to <strong>the</strong> harvest<strong>in</strong>g stage <strong>in</strong> order to avoid excessive<br />

vegetative growth.<br />

Decapitation <strong>of</strong> newly bolted plants stimulates <strong>the</strong> development <strong>of</strong> axillary buds which later<br />

can develop <strong>in</strong>to side branches for <strong>in</strong>creased seed yield (Thomas 1983). Theideal number <strong>of</strong><br />

branches ranges from 10 to 20 for tropical or early-matur<strong>in</strong>g varieties. Occasionally <strong>the</strong> term<strong>in</strong>al<br />

tips <strong>of</strong> <strong>the</strong> secondary <strong>and</strong> tertiary flower<strong>in</strong>g branches are pruned to avoid fur<strong>the</strong>r branch<strong>in</strong>g <strong>and</strong><br />

to improve seed yield <strong>and</strong> quality.<br />

Disease <strong>and</strong> pest control. Mosaic virus, bacterial s<strong>of</strong>trot, downy niildew, <strong>and</strong> Sclerot<strong>in</strong>ia<br />

rot are important diseases which affect seed pro<strong>duction</strong>.<br />

Aphids transmit mosaic virus to <strong>Ch<strong>in</strong>ese</strong> cabbage plants. Throughout <strong>the</strong> growth stages, .'<br />

<strong>the</strong> overlapp<strong>in</strong>g leaves provide an excellent shelter for aphids. Thus, <strong>the</strong>ir control is necessary<br />

from <strong>the</strong> seedl<strong>in</strong>g stage <strong>in</strong> order to m<strong>in</strong>imize <strong>the</strong> damage by viruses.<br />

Insecticidal treatment should be <strong>in</strong>itiated as soon as more than I%to 2% <strong>of</strong> <strong>the</strong> plants <strong>in</strong><br />

<strong>the</strong> field are <strong>in</strong>fested with aphids. Prothiophos (0.5 kg a.i./ha) or pirimicarb (0.5 kg ).i./ha)<br />

provide effective coverage when sprayed on <strong>the</strong> undersides <strong>of</strong>' leaves. Viruses cannot survive<br />

<strong>in</strong> <strong>the</strong> absence <strong>of</strong> a liv<strong>in</strong>g host; <strong>the</strong>y depend for survival on perennial <strong>and</strong> annual plants. Thus,


60 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pr <strong>duction</strong><br />

plant<strong>in</strong>g next to an old virus-<strong>in</strong>fected crucifer field should be avoided, <strong>and</strong> weeds such as wild<br />

mustard should be controlled.<br />

No chemical is effective for <strong>the</strong> control <strong>of</strong>' bacterial s<strong>of</strong>trot. Fields with good dra<strong>in</strong>age or<br />

low water table may prevent disease <strong>in</strong>cidence. The use <strong>of</strong> high beds, sparse population density,<br />

s1raw mulch, <strong>and</strong> <strong>the</strong> re<strong>duction</strong> <strong>of</strong> <strong>in</strong>sect <strong>and</strong> mechanical <strong>in</strong>jury can aiso m<strong>in</strong>t<strong>in</strong>ize disease <strong>in</strong>cidence<br />

(AVRDC 1985, Fritz <strong>and</strong> Hon<strong>in</strong>a i 1987). S<strong>of</strong>trot- <strong>and</strong> virus-<strong>in</strong>f'ectCd Jialars must be destroyed.<br />

Fungicide treatment is needed when downy mildew occurs !arly <strong>in</strong> crop development.<br />

Spray<strong>in</strong>g with Dithane M-45 33/," (5X) X ) or Ridtomil MIZ 58 ',' (4(X)<br />

<strong>the</strong> grow<strong>in</strong>g period until early flower<strong>in</strong>g is recommended.<br />

X )once a week throughout<br />

To reduce <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> Sclerot<strong>in</strong>ia rot, feep plw<strong>in</strong>g, keep<strong>in</strong>g bed !, rtccs dry with<br />

careful irrigation, <strong>and</strong> remov<strong>in</strong>g weeds <strong>and</strong> <strong>in</strong>fceCLd crop residues from <strong>the</strong> feld n!ay be helpful.<br />

Spray<strong>in</strong>g a lfow times \\ ith Rotilhan (2X) X ) at onc- eck <strong>in</strong>tcivals also provide, a good control<br />

<strong>of</strong> Sclerot<strong>in</strong>ia rot. Fungicidal "prays tr down',n milde_.<br />

signific,mit harmiful effect oil honeybtces.<br />

<strong>and</strong> Sclerot<strong>in</strong>ia rot do lot hal\ve aln<br />

Beside aphids, diamondback miotl lI Ioh . l). i/o is an tIhcr ,Criolus pest problem that<br />

deserves careful attention. Allcr ,mtwreimo'bo s. l1r\ae 14f,!:mllnIh;ick mntth fced mostly<br />

On <strong>the</strong> underside <strong>of</strong> outer lea%es. chc .'ne ut smll holes or at <strong>the</strong> 1rOWimg poilts l youlner<br />

plants. Comrol <strong>of</strong> this pest, hetlCiO.C, '-huuld be: hasCd On <strong>the</strong> munuber <strong>of</strong> larac. IIsCctiCidC<br />

spra ys to control aplhids <strong>and</strong> diallili-back Illotlh arc hatu'nll to4)holeybecs. Therefore, it is<br />

rItumcndeI t WSecure adICquatC ctllt11] <strong>of</strong> tIe:;C pests 1troill ln carlk slae Of Lro.\ th <strong>and</strong> cease<br />

spray<strong>in</strong>p 7-10 days -,cl'rc<strong>the</strong> hes ;ile relasenJ. licrOhial <strong>in</strong>secticide Bacillus thtlritigi'nsis<br />

is cffectivc <strong>in</strong> controll<strong>in</strong>g diamlllldback <strong>in</strong> th witho'ut considCraIhlC to hIoriem by s, <strong>and</strong> Imay<br />

be used CxtMnSiveiv ater tire <strong>in</strong>tr hut.-tOdU oL h0oneyvbe_,e. In <strong>the</strong> scefl<strong>in</strong>ig stage. spray tefl] tublizuLron)<br />

at <strong>the</strong> rate <strong>of</strong> 37.5 ia.i,ih. This thiatt" tt will reduce pest population huildup. Inc<strong>and</strong>escent<br />

lights kept lit at night, ard pa ctlls <strong>in</strong><strong>in</strong>g s'.tr wiIh ;1rC placed tLtIrlteath <strong>the</strong> lights <strong>in</strong> <strong>the</strong><br />

cagce are CTective ill trapp<strong>in</strong>g <strong>the</strong> adult <strong>in</strong>Sctls aict be used &, ;i supplcncitrai control <strong>in</strong>iisrc.<br />

Harvea. <strong>in</strong>g <strong>and</strong> storage. [lie ('hii nesc ;icbh'e siIiqUes ri pell Il litmor Or less <strong>the</strong> saute<br />

sequence <strong>in</strong> 'vhiiC <strong>the</strong> flowers open. A, A<strong>the</strong> sCds ripent, <strong>the</strong>C -ililues stati to dry out. I)ry <strong>Ch<strong>in</strong>ese</strong><br />

cabbage siliqu.s have a stroig, tendencv to shaltter. The Ihss <strong>of</strong> sccd frotlll atreCd silIuCs doe<br />

to ittipact between siliques alld ()thler plat its,arid lCh<strong>in</strong><strong>in</strong>.r, w<strong>in</strong>d,. <strong>and</strong> <strong>in</strong>ternal stresses brought<br />

about by <strong>the</strong>rmal effects <strong>and</strong> by drh<strong>in</strong>g can b e tnjol Io)llCet il sCCl prdul'Ctiott. This loss<br />

may occur belfbre or (lur<strong>in</strong>g <strong>the</strong> halrv'st process t 1:i. 28). ( )ne tnctld tlusCd to reduce (ie loss<br />

is by w<strong>in</strong>drow<strong>in</strong>g f tl<strong>the</strong> crop -just prior to ripen<strong>in</strong>g. ShattCr<strong>in</strong>g resistanc aissocialte!d with lower<br />

levels <strong>of</strong>, lignilfriationt Of tihe siliquc structure hats bent., b1)u1ld ill IBos.c sp., anard has been<br />

recoimmended for ircorporation <strong>in</strong> <strong>the</strong> breel<strong>in</strong>g protgraun (Kadkol el il. I984).<br />

When a ioticeable proportion <strong>of</strong>' <strong>the</strong> silique have turned orangc-brow\n, at which t<strong>in</strong>e <strong>the</strong><br />

seeds will not crush or split when rubbed betWeMI Ire h'Ftds. <strong>the</strong> seed crop should be at art<br />

,", Mature seeds<br />

G<br />

Z" I'Optim-um '<br />

C,<br />

(, period<br />

CI) oo ! ! \Figure 28.<br />

Time<br />

',<br />

/<strong>Seed</strong><br />

from<br />

lost Schematic representation <strong>of</strong> <strong>the</strong> <strong>in</strong>h<strong>of</strong>fer<strong>in</strong>g<br />

teraction <strong>of</strong> seed maturity, potential<br />

yield <strong>in</strong>d loss from shatter<strong>in</strong>g.


Pro<strong>duction</strong> Procedures 61<br />

appropriate stage for harvest<strong>in</strong>g. Many seed producers prefer to cut <strong>the</strong> ripen<strong>in</strong>g stalks <strong>and</strong><br />

cont<strong>in</strong>ue to dry <strong>the</strong>m <strong>in</strong> a sunny place. When 807 <strong>of</strong> <strong>the</strong> siliques have turned orange-brown.<br />

<strong>the</strong> plants call be severed at <strong>the</strong> bottom. Several plants may be grouped ill bundles <strong>and</strong> <strong>the</strong>n<br />

hanged on a pole for several days under <strong>the</strong> still for after-ripen<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g.<br />

About one wcck later, when all <strong>of</strong>'<strong>the</strong> siliques are completely dried, <strong>the</strong> s iliques are <strong>the</strong>n<br />

threshed ol top <strong>of</strong> plastic sheets placed on level ground. The <strong>in</strong>imnature .seeds, which cannot<br />

be dislodged fro<strong>in</strong> tilesiliIqucs <strong>and</strong> bra nch1 pieces, ale cleaned out by st<strong>and</strong>ard <strong>in</strong>esh .,ic\'s or<br />

w<strong>in</strong>nower. Settuential si-v<strong>in</strong>gs xith 3.0 r1n1 <strong>and</strong> 1.3 n<strong>in</strong> opcn<strong>in</strong>g's enable <strong>the</strong> re<strong>in</strong>ovl <strong>of</strong> rmost<br />

chaff particles. The seed,, are <strong>the</strong>n dried aga<strong>in</strong> on <strong>the</strong> plastic sheet under <strong>the</strong> sui.<br />

Ilic iioisture content <strong>of</strong> fIllsy dried sceds is about 121,, . S<strong>in</strong>ce <strong>the</strong> specific density <strong>of</strong> seeds<br />

is higher than water, tilehcalthy seeds should s<strong>in</strong>k <strong>in</strong> <strong>the</strong> water. h'lieaverage 1000--seed weight<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> Cahhac is frt<strong>in</strong> 2.5 to 3.5 In wll0wcvCr. aVCra;.Ce seCCd size <strong>and</strong> weight usuit11v decrease<br />

with tile<strong>in</strong>creas<strong>in</strong>i ordcr <strong>of</strong> i'owcr<strong>in</strong>r branch (',ane 1981 .<br />

Properly dried ald col-slorCd seeds Call rClaill good vidhilii\ for three to otir years s<strong>in</strong>ce<br />

seed ag<strong>in</strong>g, under <strong>the</strong>se condutiolis, advlnccs ver.,, :jowlV. Tile ma<strong>in</strong> requirtntl I rtl <strong>Seed</strong> storage.<br />

<strong>in</strong> :i hot, hunid cliiate is to pierc_t tleh well-dried scd fron rec!a<strong>in</strong><strong>in</strong>g nis'nsilC fron <strong>the</strong><br />

atmosphere. l3a,2-cdseed <strong>in</strong> hCereiriecrationi unit should be adetluate to counteract <strong>the</strong> storage<br />

proble<strong>in</strong>is.<br />

Hybrid <strong>Seed</strong> Pro<strong>duction</strong><br />

Ma<strong>in</strong>ten~ance <strong>and</strong> multiplication <strong>of</strong> SI parents. In<strong>the</strong> Case hybrhl sccid lp<strong>duction</strong>,<br />

bothlparental l<strong>in</strong>es shliil he selI-<strong>in</strong>ctllipatiblc hut cross coitmpatible (Fig. 29). The rcIproduicibilily<br />

hyhbrids depends aOhituc, (1 on <strong>the</strong> presece <strong>of</strong> parental <strong>in</strong>bred l<strong>in</strong>es that cani h nulitiplied<br />

easily <strong>and</strong> ecllotlicallV. As <strong>the</strong> parental <strong>in</strong>hrCd l<strong>in</strong>es iac Clf-<strong>in</strong>collipatible. <strong>the</strong>ir la<strong>in</strong>ltenance<br />

is achieved lia<strong>in</strong>lv throtigli <strong>the</strong> efplitatiotil <strong>the</strong> phelite<strong>in</strong>llt <strong>of</strong> juVCilc compatibility'<br />

IKakizaki 1930). 'he .eclf-<strong>in</strong>coilpaiiiitN titechanis<strong>in</strong>l is not: operative i tile bud stage <strong>and</strong> tihus,<br />

sel ed seeds Callb prt ducCd f po ll<strong>in</strong>atied two to three days beftore bloorl<strong>in</strong>g. Bud poll<strong>in</strong>ation<br />

has been used is a Ilouliie techiuiclte it nailuta<strong>in</strong>i self-<strong>in</strong>cotlpatiible <strong>in</strong>beds. Mulliplicatitir <strong>of</strong><br />

parental stocks can he d<strong>in</strong>_ h :rtiflcil! hud p0!li:Iliion <strong>in</strong>tilenetlhouse.Bud pol<strong>in</strong>ation, however,<br />

is alwas labtorio uits a<strong>in</strong>d c\ptisive. ['or this reason, <strong>the</strong>rc have been atleipts to f<strong>in</strong>d commercially<br />

feasible s l,,'soscrcolc<br />

to "cll-<strong>in</strong>ico<strong>in</strong>patibilitv. Alitorg Alternati'e nicaitS, salit Mid C0 2<br />

trealments seeittiti to ile hlost pronmis<strong>in</strong>g.<br />

<strong>Ch<strong>in</strong>ese</strong> cabbage is prcdo<strong>in</strong>hantly croiss-pl <strong>in</strong>ated ihhot.gIl ()lite sel'f-ptOll<strong>in</strong>atiOt carn occur.<br />

Caution is necessary to prevent possible conla<strong>in</strong><strong>in</strong>alion. Most aulhoritiCs agree that an isolation<br />

. Figure 29.<br />

<strong>Seed</strong> pro<strong>duction</strong> field <strong>of</strong> Ft hybrid<br />

<strong>Ch<strong>in</strong>ese</strong> cabbage show<strong>in</strong>g two pa­<br />

- .. .,,.. rental l<strong>in</strong>es with dist<strong>in</strong>ct plant<br />

.o' types. These parent l<strong>in</strong>es are self­<br />

. , <strong>in</strong>compatible but cross-compatible<br />

, with each o<strong>the</strong>r.


.x 62 ~IeeCabbagtt <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

distance <strong>of</strong> atleast 1000 m between different subspecies <strong>of</strong> A campestris or varieties <strong>of</strong> B.<br />

campestris subsp.' pek<strong>in</strong>ensis, or at least 200 m between different genomes <strong>of</strong> Brassica is<br />

necessary. ":" .' '<br />

Pollen may be bulked froma large number <strong>of</strong> plants <strong>of</strong> a parental <strong>in</strong>bred l<strong>in</strong>e to poll<strong>in</strong>ate<br />

-all plants-with<strong>in</strong>-that l<strong>in</strong>e.!n-ths-manner-drastic-<strong>in</strong>breed<strong>in</strong>g-depression-such,as, would-happen -<br />

with <strong>in</strong>dividual plant self<strong>in</strong>g may be easily avoided;.<br />

It is generally recommended that a sufficient quantity <strong>of</strong> parental stock seeds be produced<br />

to meet <strong>the</strong> requirements for succeed<strong>in</strong>g years, Inthis manner yearly regeneration <strong>of</strong> stock seeds<br />

may be avoided, This cost-sav<strong>in</strong>g-practice also serves to slow down <strong>in</strong>breed<strong>in</strong>g depression<br />

provided <strong>the</strong> seeds are stored under proper conditions.<br />

Intensive rogu<strong>in</strong>g must be exercised <strong>in</strong> <strong>the</strong> seedl<strong>in</strong>g nursery to remove all <strong>of</strong>f-types for any )<br />

horticultural or reproductive trait <strong>in</strong> <strong>the</strong> parental l<strong>in</strong>es. This serves to <strong>in</strong>sure <strong>the</strong> <strong>in</strong>tegrity <strong>of</strong><br />

<strong>the</strong> hybrid.<br />

Surmount<strong>in</strong>g <strong>the</strong> Incompatibility barrier. Numerous environmental <strong>and</strong> physiological<br />

factors affect<strong>in</strong>g self-<strong>in</strong>compatibility have been applied successfully to overcome <strong>the</strong> <strong>in</strong>compatibility<br />

barrier (see Modifications <strong>of</strong> self-<strong>in</strong>compatibility expression, p. 23) <strong>and</strong> enable <strong>the</strong><br />

pro<strong>duction</strong> <strong>of</strong> seeds from self-<strong>in</strong>compatible poll<strong>in</strong>ations. Most <strong>of</strong> <strong>the</strong> important <strong>and</strong> practical<br />

methods are discussed here.<br />

Bud poll<strong>in</strong>ation:'%' This is by far <strong>the</strong> most commonly used method to overcome <strong>in</strong>compatibility.<br />

It is usually performed by apply<strong>in</strong>g mature pollen from <strong>the</strong> same plant or bulked pollen<br />

<strong>of</strong> <strong>the</strong> same l<strong>in</strong>e to pistils a few days, usually two to four days, before an<strong>the</strong>sis. The follow<strong>in</strong>g<br />

procedures are generally observed:<br />

1.Flower<strong>in</strong>g plants <strong>of</strong> <strong>the</strong> self-<strong>in</strong>compatible <strong>in</strong>breds are usually kept <strong>in</strong> isolation cages or<br />

nethouses to avoid contam<strong>in</strong>ation. Flowers that may have been possibly contam<strong>in</strong>ated before<br />

isolat<strong>in</strong>g <strong>the</strong> plants should be removed,<br />

2. Bud polliuation <strong>in</strong>volves open<strong>in</strong>g <strong>of</strong> <strong>the</strong> young bud, usually <strong>the</strong> eighth to tenth bud from<br />

<strong>the</strong> very bottom <strong>of</strong> <strong>the</strong> raceme, to expose th&., tigma for poll<strong>in</strong>ation. Bud poll<strong>in</strong>ation is<br />

- usually carried out between 7 a.m. to .iIa.m. Precautions should be taken 'to avoid<br />

damag<strong>in</strong>g floral buds or pedicels while conduct<strong>in</strong>g poll<strong>in</strong>ation, S<strong>in</strong>ce open flowers generally<br />

will not set upon self<strong>in</strong>g, <strong>the</strong>y are used ma<strong>in</strong>ly as a pollen source. Very immature buds <strong>in</strong><br />

<strong>the</strong> branch are not poll<strong>in</strong>ated, <strong>in</strong>stead <strong>the</strong>y are left for future poll<strong>in</strong>ation once <strong>the</strong>y reach<br />

<strong>the</strong> appropriate age.<br />

3. Bud poll<strong>in</strong>ation is carried out <strong>in</strong> succession until <strong>the</strong> sed set potential <strong>of</strong> <strong>the</strong> plants beg<strong>in</strong>s<br />

to decrease. At this time fur<strong>the</strong>r bud poll<strong>in</strong>ation, evun <strong>of</strong> <strong>the</strong> newly emerg<strong>in</strong>g branches,<br />

isconsidered no longer worth <strong>the</strong> effort. Many young buds will beg<strong>in</strong> to abort prematurely.<br />

This condition is reached sooner <strong>in</strong> potted plants than those planted directly on <strong>the</strong> soil<br />

r <strong>and</strong> must obviously relate to <strong>in</strong>adequate nutrition.<br />

4. If <strong>the</strong> isolation cage or iethouse is <strong>in</strong>sect-pro<strong>of</strong>, no'bagg<strong>in</strong>g is required.<br />

5. Inbred l<strong>in</strong>es that show drastic <strong>in</strong>breed<strong>in</strong>g depression should be sib-poll<strong>in</strong>atedra<strong>the</strong>r than<br />

cont<strong>in</strong>uously. selfed."Sibb<strong>in</strong>g is a milder form <strong>of</strong> <strong>in</strong>breed<strong>in</strong>g compared to self<strong>in</strong>g <strong>and</strong> can<br />

slow down fur<strong>the</strong>r deteritration <strong>in</strong> <strong>the</strong> vigor <strong>of</strong> such l<strong>in</strong>es. Bud poll<strong>in</strong>ation is also recom­<br />

* mended for sibb<strong>in</strong>g s<strong>in</strong>ce sibs may share common self-<strong>in</strong>compatibility allele(s), especially / ,<br />

. <strong>in</strong> an S-allele homozygous l<strong>in</strong>e. In practice, after obta<strong>in</strong><strong>in</strong>g a practical level <strong>of</strong> homogeneity<br />

<strong>in</strong> tie <strong>in</strong>bred l<strong>in</strong>es, fur<strong>the</strong>r depression has to be prevented through <strong>in</strong>termat<strong>in</strong>g <strong>of</strong> <strong>in</strong>dividuals<br />

with<strong>in</strong>, <strong>the</strong> same l<strong>in</strong>e..' ,<br />

6.Inorder toavoid <strong>in</strong>advertent contam<strong>in</strong>ation, spontaneous genetic changes, <strong>and</strong> rapid decl<strong>in</strong>e<br />

<strong>of</strong> vigor among <strong>in</strong>bred l<strong>in</strong>es, <strong>the</strong> frequency <strong>of</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g parental <strong>in</strong>bred l<strong>in</strong>es should ,,l<br />

be m<strong>in</strong>imized. In this case pro<strong>duction</strong> <strong>of</strong> large amounts <strong>of</strong> <strong>in</strong>bred seeds may be done dur<strong>in</strong>g<br />

- " '<strong>the</strong> early years <strong>of</strong> <strong>the</strong>ir <strong>in</strong>volvement <strong>in</strong> hybrid pro<strong>duction</strong> <strong>and</strong> <strong>the</strong> bulked seedsmotored under<br />

long-term storage conditions. The required amounts for hybrid seed 'pro<strong>duction</strong> may <strong>the</strong>n<br />

be withdrawn year after yeaiuntil exhaustion <strong>of</strong> <strong>the</strong> seed supply at which t<strong>in</strong>e ano<strong>the</strong>r<br />

round <strong>of</strong> large-scale bud poll<strong>in</strong>ation may be' arried out aga<strong>in</strong> if ne'cessar. .


A Lb St lM lltII -Ii',1! t t Of l t' I t e )St (11IN 111-itj SCCL(IS I:I' , 1) ;k 1 t Iii IC )" 01 111111l k 11,1:111L"<br />

paruntal <strong>in</strong>hr-c(I lhi',igh hud+. pl+>l latiotm F~or this ru';:+,l thi'uu hI ., h+,.c.', cim'..d,_ l i III..-Is<br />

ill f<strong>in</strong>ditiv t1d1l+r C-tim ltIcic alIN' l'C&JhIC \\,X,S 1 I V(M,+rLt lk- + W11'1il1-'HIM ~Ilq i i, ([It 19M )<br />

Carbon dioxide (CO2 ) treatment: Ililt .- rbmmi mim\ml lcitl1n,', .1 Ic'tiI.C ill<br />

mmlr <strong>in</strong>hI ,,lfIi ilk' ttiiil 1 I Il1, I. h. m/l,' i.M idI tl h I,.,S ll S j) -U m','-m'tumi. c l I t n l<strong>in</strong><br />

- paetll N ) P.t .sel Flo rela/o<br />

<strong>and</strong>lt Yam,[ 11),I(ll. lil 1), 11,11)11 I' lhmllp'-, n 0l17X), h1'ic;l ,,lt.'tk.-,"<br />

)7r l 1t. T;t<br />

thlu-I)I(rlu'l l+n .' ,tl (d ,- l .'<br />

t..cd, , a" ol ' y i l -dPI' ] h t )' l p-11 s l l I Ill ('11 llct-'+.<br />

,c:tIII l ~iItll%\I~lthII,Ilt\ i,,'cc l, IdlInatt(n, ka,I l't ti.'C. 11h,.O' . i<br />

L (+H [[ ct l' (J"l)). ('(), I1cil'IIILIc ill<br />

l l IM OtLu'+ICI It(, k.', lim ill~lha ll t<br />

hoi I~tM ld l \ I t tdI , , t. ;H tIll fir dt kIi<br />

IIttCl "di,. ']I l l<strong>in</strong> ll,1( ,,I ,+[pc i'[ 11 I i t . il ,t Ic ltthi ll l IIn111.+ +') (-., i,' ) I It .;11 llc.'1tt11.'11 ( i l"++.<br />

-I tllll >. .I.l '-,u \,.n, I 0', ll t1 . ) C il td C t \t,l 11101C '.C ll ll l :It l<br />

rm.. , i , < cll ]tI()Il[, t.+'t It) t Ccrd I t. I (M CI ith IIII, tHi li It I 01.<br />

111.i ii, ' h~IN. l,.k-IC ',l~ . (11() ' ,' I I tll il ,.+C;;Clid +lt~r " ', '<br />

"<br />

th_ W :) ',t~v, Lxt.+ Hh i ikl '' ,CI I\,l<br />

Ic '-, toII-, (. It ( ., It'.,i)n )I t I%( , , i I Cfi III J cIll IIAT II I It ,l '_Ili I t > I'. I I+i~<br />

Salt treatmenti: (lay'<br />

OIC~ ~ ~~ )[lm-al<br />

it mnd tgi 2' <strong>in</strong>nt),tt nsi<br />

~ ~ ~ t ~C'O2OpilI ~ ~ llti ~~~~o treatment.01dili<br />

T e A l l tilho th l li l nme th k (<strong>in</strong> x L-..1 +i ,.lc ,i an] ', ( l +', c it\,. ', llm! tu itte ,,<br />

aplilcation mily differ hulwNu,.ln phlts i<strong>and</strong> i:rmiv<strong>in</strong>g Conditions.


64 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> iici


tlybrid <strong>Seed</strong> Producti<strong>in</strong> 65<br />

Generally, <strong>the</strong> above <strong>in</strong>sects are highly sensitive to 1ot chemical <strong>in</strong>secticides. However,<br />

spra <strong>in</strong>g with a miCliibl <strong>in</strong> sectici de suC :t,tHo illus hur<strong>in</strong>gh'isis does not har<strong>in</strong> <strong>the</strong> holeybee<br />

<strong>and</strong> is still efttctive ill '<strong>in</strong>troll<strong>in</strong>c diamti iic,,,k mnothii<strong>and</strong> o<strong>the</strong>r lejlidiiptermii <strong>in</strong>sects. Insecticides<br />

such as Kelitlane. Nicot<strong>in</strong>e <strong>and</strong> Neotant ac known to he relativelv liittit\ic to honcvbecs. Nicot<strong>in</strong>e<br />

,<br />

fLuigatlion kill aphlilsi ilti t cat harmIlies, iii bhIt, l)e t<strong>in</strong>-t mS lllh ic I,applied . ill a waltcr<br />

solution Ollto thc -urltlc 'f th comlot <strong>in</strong> which <strong>the</strong> pl:alLts' arc cr1own, is; taken ipby <strong>the</strong> roots.<br />

,<br />

This will alsotilefft.ctivel\ kill aphid \\, itlout sCrioul htro h, Ih, llics (S<strong>in</strong>itlh <strong>and</strong> .twksmn 1t)70).<br />

A low level ,It <strong>in</strong>scot iLiiuatc ti \ hasc ito ho, :iccClted sicet l<strong>the</strong>rc .ci to be lii <strong>in</strong>sccticide<br />

that iscoltpletei C Nli it:l-s to<strong>the</strong> <strong>in</strong>sect pillitl;ttors. (ood <strong>in</strong>sect eiiritriol btotr <strong>the</strong> rclcase <strong>of</strong><br />

ilsect plilli:,tot l i,%ct\ tmlut aillNi <strong>in</strong>s,.c.tii"c shuiuli b.' ,,lla\cl lt a pciiiid Ifone \,cek<br />

ol hl 'elpritr wi lieri ,ic oi polhlltitiits: itt ris .is<strong>the</strong>. siifil tl0\isCit% (i1 Ie isecticides<br />

couldt "i+Lnilic:Ini !''l't,. <strong>the</strong>ct),1111n 1hol p~q)(1l:1hMI<br />

General procedures for commercial hybrid seed prodiuctioil. ('onitcr,.il Itl\ brid<br />

sCeds atc IttlIu LT HIi s lktti 'M tt i h1 c ,tutlultl 1ti,ltkCid titidUct<strong>in</strong> .Asitt plilicd<br />

WeIRc l,. i c +[ Cllo ll , I", i1ot' l li .I,, ,(: . -11w l I ,% ' I il k it k lt . " - d , ;Ic m l l<br />

1 i. S i cit~l111 Ii e ", (11 >CuiH . Wi 1 11',t I)I 1 p i.oH~ I111,C cpla.tt IL\e jlu filtl\ 110iS. tC.<br />

2. \\lt.tc tiut itIf ltei l u titti ' k'. s li , etil i h, \ 'rIti li,' <strong>the</strong> plit ts.se ds, te.<br />

il, It iil<br />

do. ), 11 Iullll fIn,."W LT I,- cWI ' ,,l kI:<br />

i ',i' i 110ii l ' tl,. u . l1',..iid - , ll iI . .'It.<br />

petl thils I il v iIiI1 ,ilwi i iu,ii>I ti, sticl d t li-ill,'l ,Iisli,_e., e,'term. lll'tti<br />

tici iheniil , Iit l l ("ilt l i,,1, .1 t li!\ til[ 1c 1iil/cl at 5 (" 1 I\ ttii\ , 1 lot ti ks.<br />

t\\ 11k.11+ Ili,_Io,'llf',<br />

(ll(. i,. 'v ll h 11tlthc l l l, ill ,, ll c 111i-,i~(11 lc c (11t ,,: cold<br />

iii l kkt, l th*!Ilk M A s )~I l~ilt it, . \ o.-Ilitt<br />

pT sillt . eilh , hlt'.tt itii ,t ttttt \llsiltdtit.t t t liis 5\ilil [iiltti lti lt rettttts<br />

itise11 i t1C li iti iltl lced ii 'i iliilatd tilu,.itci hthtw kite! s (,ec<br />

I h i ci,.1 i sC I ice ti h i :. th1 I,;I p i t . jII ittit ti[l I ,tui til l icI itCiplrtItl c Ittloi . th1IC<br />

ii ]utt , c'. (1, II " Iuh cp i tllil it'lit I ItciI ti s t sct pi lliii i ts ll tt i th<br />

­<br />

I'tt liiitris t l i


66 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

<strong>and</strong> good climate for optimurn expression <strong>of</strong> <strong>in</strong>compatibility, reduced pressure front diseases,<br />

<strong>and</strong> full development <strong>of</strong> seeds. Any deviation from <strong>the</strong> abovc scheme will altrist certa<strong>in</strong>ly lead<br />

to a high percentage <strong>of</strong> sibs (selfs) <strong>in</strong> <strong>the</strong> hybrid seed lot, far above <strong>the</strong> commercially accepted<br />

st<strong>and</strong>ard <strong>of</strong> hybridty <strong>and</strong> pro<strong>duction</strong> <strong>of</strong> 1por qua!ity Sceds. For this reason, sccd growers must<br />

pay close attention to a niumber <strong>of</strong> iriprrtant firclrs which <strong>in</strong>lhuiefie: sibb<strong>in</strong>g ratc :nd seed quality.<br />

Admixtures <strong>and</strong> <strong>of</strong>f-types <strong>of</strong> parental l<strong>in</strong>es: dei llv', <strong>the</strong> <strong>in</strong>bred pirlirtS shohuld be<br />

uniform, homozygous <strong>and</strong> pure. Ihbrccd<strong>in</strong>g allid bud polliontti1;.i can cause, however, certa<strong>in</strong><br />

biological disturbances such as hcteroploids 11nd o<strong>the</strong>r abndhormlitiCs (lizuka I)(9)) which<br />

eventually Impair <strong>the</strong> purity <strong>of</strong> <strong>in</strong>bred l<strong>in</strong>es <strong>and</strong> corntamiaite <strong>the</strong> hybrid seed lot. When <strong>in</strong>breds<br />

are multiplied oi a large scale for eventual use <strong>in</strong> hybrid iro)dtuction, iliiVerteit mixturCs,<br />

contanl<strong>in</strong>alion, <strong>in</strong>d occasional spollntanoCus gcnCtic chang uTay occur.<br />

In order that such aberrants do not eOntri t to <strong>the</strong> I Ihbrid -,cud 1l, seed gro,'ers must<br />

be adequately falmiliar With <strong>the</strong> cnCral chaacterislics <strong>of</strong> <strong>in</strong>bred l<strong>in</strong>ls s thaLt tiitS frorn normal<br />

mrorphology can be elim<strong>in</strong>ated as carly its <strong>the</strong> secdl<strong>in</strong>1g stage, or <strong>in</strong>l <strong>the</strong> seed prio<strong>duction</strong> field<br />

hctore <strong>the</strong>y flower <strong>and</strong> start to contribute poli- gra<strong>in</strong>s to o<strong>the</strong>r. l]ow'<strong>in</strong>. pli tts. The parental<br />

lics <strong>in</strong> <strong>the</strong> seed pro<strong>duction</strong> plots should be <strong>in</strong>spected sex eral t<strong>in</strong>cs io <strong>in</strong>sure that <strong>of</strong>l-types with<br />

delayed charactr exprCssionl aC ogUledtouto g bcforc flo\wcri! ensuces, anl Iruntil one is<br />

rciasonably sure that all <strong>of</strong>f-tvpes hiaMxc ben cilim<strong>in</strong>ated. Soime otI-typ-cs Ca be recoemrlized only<br />

dur<strong>in</strong>g extelCdd vegetative gr(owth. lo cffectivcly roguC )ul stuch <strong>of</strong>f-ty,,,tc it is nccessary to<br />

oibserve <strong>the</strong> whol head<strong>in</strong>g process <strong>of</strong>l iht l<strong>in</strong>cs. ()nlv p<strong>in</strong>ts that are !n' - t-t1ypC :Ire thli<br />

vernalized. Alt11ough an cxpCn sivC procdurC, this prrcwice is rccoilrrilnenlded to replenish <strong>the</strong><br />

foundartion stocks <strong>of</strong> <strong>the</strong> pa t al liles. A comirmon method to reduce lte ;rbove-mentionled<br />

problems is to r<strong>in</strong>iimize <strong>the</strong> fictLUC e cv 0 ibred ( 1rlrilnfiCe:riorr.<br />

seed :;toragc facifitics are available.<br />

lihi:, cnt le t0h: o1nly if gond<br />

Weak <strong>in</strong>comoatibility system: Idc,lly , bo th ifrhrd ,tocls should have strong selfiicolripatihility.<br />

None<strong>the</strong>less, sornie lybritts <strong>in</strong>i .whichonc r both pae ts have less thal <strong>the</strong> ideal<br />

<strong>in</strong>compatibility sirengih irmay be rirutlniplii. as long aS <strong>the</strong> good eotlriltmg ahility ot patents<br />

<strong>of</strong>fsets <strong>the</strong>se limitations.<br />

In <strong>the</strong> case where only ()e parent is strongly sclf-<strong>in</strong>coripatible, hybrid scds are harvested<br />

only frot that strongly sclt-i icoropatiblc patent. lowcver, this lcads to reduced productivity<br />

<strong>and</strong> ull<strong>in</strong>atel v, to a higher seed cost.<br />

The second sc,ci.e. nei<strong>the</strong>r i1lrets aIre str-tgtl sell-il iretNiatiblc, is difficult to overcoire<br />

a<strong>in</strong>d is rarely encountered s<strong>in</strong>ce breeders <strong>of</strong>ten select "or sirong <strong>in</strong>eonmpatibiliiy. This type <strong>of</strong><br />

comb<strong>in</strong>atiotn is rcncrally not purstcd excpt <strong>in</strong> spet.ial :irculstjlllcCs. 'O urilrit<strong>in</strong>izC tire sib (sell)<br />

prodUCtionl, extra efforts arid attention 1uti be givent to iisure 01At tile peak polliiation period<br />

(rccurs at al optitirunt temperturte anud hurttridity son tha tile Self-<strong>in</strong>ctompatibility expr, ;siumls <strong>of</strong><br />

both parents are ;,t (heir i1Juhest levels.<br />

Row ratios o lparent <strong>in</strong>breds ,rayIriso be Itodi fed to(:oulornt with tile trost ideal airraligefcnt<br />

1Fig. 32). Ifotih p rent l<strong>in</strong>es carrx strong sell-<strong>in</strong>rco miiatiblty arid cross-lentility, <strong>the</strong>y are normally<br />

planted alternatcly (1:1 ratiuf). lo0wevecr, parCnl litre; 11a) differ ill cross-fCrlility arid pseud<strong>of</strong>ertility<br />

(open iower sell<strong>in</strong>g or sibb<strong>in</strong>g). In tiis c i, e tire appropqriate tatio Will have to be carefully<br />

decided (ote<strong>in</strong> a responsibili t)f lehbreeder)iard seed growe rs should foillow tle prescribed ratio.<br />

As an example, a situMtion iay be vis;alized where<strong>in</strong> one l<strong>in</strong>e has a much stronger<br />

<strong>in</strong>coripatihility than lhe o<strong>the</strong>r l<strong>in</strong>e. A modified ratio (f twomrows <strong>of</strong> <strong>the</strong> strongly <strong>in</strong>compatible<br />

l<strong>in</strong>e to or e i-ow <strong>of</strong> <strong>the</strong> weakly <strong>in</strong>compat ible l<strong>in</strong>e itay hc po ;sible. In Such a<strong>in</strong>a rrangement, horeybc"<br />

forag<strong>in</strong>g among p!a s <strong>of</strong>' 'lieweakly <strong>in</strong>compaliblc litre w,,uld be m<strong>in</strong>imized vhilc at <strong>the</strong> same<br />

time enhanrc<strong>in</strong>g cross poll<strong>in</strong>ationi <strong>in</strong> its direction. Bee activity among sib plants <strong>of</strong> <strong>the</strong> strongly<br />

<strong>in</strong>compatible l<strong>in</strong>e Will, <strong>of</strong>' course, <strong>in</strong>crea se but <strong>the</strong> strength <strong>of</strong> <strong>in</strong>compatibility should m<strong>in</strong>imize<br />

<strong>the</strong> sibb<strong>in</strong>g percentage <strong>in</strong> <strong>the</strong> eventual hybrid seed lot.<br />

Asynchrony <strong>of</strong> flower<strong>in</strong>g: The parent <strong>in</strong>bred l<strong>in</strong>es must flower t't or about <strong>the</strong> same<br />

time to maximize <strong>the</strong> pollen exchange between <strong>the</strong>m. When <strong>the</strong> peak <strong>of</strong> flower<strong>in</strong>g <strong>of</strong> parent l<strong>in</strong>es


Of T T' T -T-T<br />

T T c; J~7~fj 7T T TV~ T ~T T 1<br />

2 3<br />

Figure 32. Plant<strong>in</strong>g methods <strong>of</strong> two parental l<strong>in</strong>es for hybrid seed<br />

pro<strong>duction</strong> <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage: (I) alternate l<strong>in</strong>e method<br />

with I:1 ratio; (2) alternate plant method with I:1 ratio;<br />

<strong>and</strong> (3)alternate l<strong>in</strong>e method with seed plant:pollen plant<br />

at 2:1 ratio.<br />

Hybrid <strong>Seed</strong> Pro<strong>duction</strong> 67<br />

occurs at different periods, fe sibb<strong>in</strong>g rate <strong>in</strong> <strong>the</strong> hybrid seed lot will tend to bc highi because<br />

<strong>of</strong> <strong>the</strong> more frequent bee visitation between plants <strong>of</strong> <strong>the</strong> same l<strong>in</strong>e. This is especiahy true if<br />

self-<strong>in</strong>conipatibility <strong>of</strong> parent l<strong>in</strong>es is not particul'arly strong.<br />

The selection <strong>of</strong> <strong>in</strong>bred l<strong>in</strong>es with similar bolt<strong>in</strong>g habits is essential <strong>in</strong> a hybrid program.<br />

However. this is sonctimcs difficult to achieve s<strong>in</strong>ce breeders are <strong>in</strong>terested also <strong>in</strong> o<strong>the</strong>r traits.<br />

If one l<strong>in</strong>e is more sensitive than <strong>the</strong> o<strong>the</strong>r, this l<strong>in</strong>c should be sown later or should be giver,<br />

a shorter period <strong>of</strong> atifi cial vcr alization. The diffcrences <strong>in</strong> sowiIng date <strong>and</strong> treatment period<br />

between <strong>the</strong> two parents should be established from repeatcd experiments as natural cold conditions<br />

do not rVnia<strong>in</strong> static; <strong>in</strong>stead <strong>the</strong>y fluctuate with<strong>in</strong> certa<strong>in</strong> limits. While adequate at times, this<br />

synchronization netieod is far from perfect.<br />

Several techniques which could aid <strong>the</strong> synchronization <strong>of</strong> flower<strong>in</strong>g between l<strong>in</strong>es have<br />

been s!udied <strong>in</strong> <strong>the</strong> past. These treatments, which could be applied if <strong>the</strong>re is any likelihood<br />

that parent l<strong>in</strong>es will flowter at different times, <strong>in</strong>clude GA 3 spray<strong>in</strong>g to hasten bolt<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

late flower<strong>in</strong>g stock, spry<strong>in</strong>g with growth retardant (e.g. B-995 or Alar) to delay bolt<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> fast-flower<strong>in</strong>g stock, application <strong>of</strong> high N level to enhance vegetative growth <strong>and</strong> to delay<br />

bolt<strong>in</strong>g <strong>in</strong><strong>the</strong> fast-tlowcr<strong>in</strong>g stock, <strong>and</strong> prun<strong>in</strong>g le "<strong>the</strong> fast-flower<strong>in</strong>g stock to delay bolt<strong>in</strong>g<br />

(Ali <strong>and</strong> Machado 1982, Hou 1981, Kahang ,Vaithaka 1981, Piluek 1985, Suge <strong>and</strong><br />

Takahashi 1982, Thomas 1983).<br />

While some <strong>of</strong> <strong>the</strong> above-mentioned treatments showed def<strong>in</strong>ite effects <strong>in</strong> small-scale<br />

expe iments, <strong>the</strong>ir conmnercial feasibility has not been tested. Moreover, <strong>the</strong> side effects <strong>of</strong> certa<strong>in</strong><br />

cheicals on o<strong>the</strong>r traits, particularly <strong>in</strong>compatibility, have not been fully explored. Ultimately,<br />

seed producers may resort to p<strong>in</strong>ch<strong>in</strong>g <strong>of</strong>f thc early-bloom<strong>in</strong>g flowers from <strong>the</strong> fast-flower<strong>in</strong>g<br />

l<strong>in</strong>e but this method is obviously labor-<strong>in</strong>tensive. In radish, spray<strong>in</strong>g with 150 ppm GA 3 or<br />

cont<strong>in</strong>uous illum<strong>in</strong>ation with <strong>in</strong>c<strong>and</strong>escent light at 250-500 lux is commercially applied <strong>in</strong> <strong>the</strong><br />

seedl<strong>in</strong>g nursory to promote flower stalk elongatiot '.Tslow-bclt<strong>in</strong>g parents. A similar effect<br />

is expected <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage but awaits confirmatien through research.<br />

For <strong>the</strong> same reason as above, <strong>the</strong> optimum period for plant<strong>in</strong>g seed pro<strong>duction</strong> lots should<br />

be determ<strong>in</strong>ed for a particular locality. If: some areas cold conditions may not be long enough,<br />

while <strong>in</strong> oiers <strong>the</strong> optimum period for seed pro<strong>duction</strong> may be more than sufficient. Ideally,<br />

seed pro<strong>duction</strong> shou!d be done <strong>in</strong> <strong>the</strong> latter type <strong>of</strong> location. If seed pro<strong>duction</strong>, by force <strong>of</strong><br />

circumstance, has to occur <strong>in</strong> critically subpar areas, seed growers must have a clear idea <strong>of</strong><br />

<strong>the</strong> best sow<strong>in</strong>g time to m<strong>in</strong>imize <strong>the</strong> problems <strong>of</strong> asynchronous flower<strong>in</strong>g, breakdown <strong>of</strong><br />

<strong>in</strong>compatibility, etc. This <strong>in</strong>formation can only come from careful experimentation or, as so<br />

<strong>of</strong>ten happens, through pa<strong>in</strong>ful experience.<br />

High <strong>in</strong>cidence <strong>of</strong> s<strong>of</strong>trot: S<strong>of</strong>trot is particularly s<strong>in</strong>gled out among <strong>the</strong> maJor diseases<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage because it can be a severe problem for seed pro<strong>duction</strong> <strong>in</strong> thc tropical <strong>and</strong>


68 <strong>Ch<strong>in</strong>ese</strong> Ciahbrce liirccim ard ee ,il' 'cc uctitrr<br />

subtropical arieas. It krasairnn eto, assull till : IN' f ull1r,.p)IddiCti se<br />

o f ('h<strong>in</strong> s c bbie<br />

<strong>in</strong> tie tropics will IMVC to0 0<strong>in</strong>tCnd :,ith this diste.<br />

In l'aiwan <strong>the</strong> pihr, <strong>in</strong>(tendel.d lor o- ll- field seed IutI<strong>duction</strong> are planted dur<strong>in</strong>g part <strong>of</strong>* <strong>the</strong><br />

warmn season so thait by tile timre ol tiltre full unet i he CIlId period, <strong>the</strong>se pln:ts are just lhout<br />

at head<strong>in</strong>g sta2c <strong>and</strong> rIIIdLIto be p10he i0- f Luttl'n!a t .r,!i/atiun. It pltdcd too Ctrl,, <strong>the</strong> Cli)p<br />

could be faradvalced Iiits heacd<strong>in</strong>g pricess \h<strong>in</strong> Con.dit<strong>in</strong>s for Iittlilil \'llialiiIIat heCu'lC<br />

suitable. \hentis tiS hapunIs, tht hacilds Could be ,,plit upil ridItiip ttd<strong>of</strong> hcdt.d e It\Csto<br />

facilitate <strong>the</strong> elrienr'enct <strong>of</strong> <strong>the</strong> .,tl2l grs\ <strong>in</strong>c, p i ,it. In t<strong>in</strong>. situttion. ho\osset.c ,suflt att ack<br />

is utefr d,..hlli~ttig.+'The rticuh0od i, lulabo, o,. i 'lTo Iiui<strong>in</strong>i/C <strong>the</strong>se p'ioble Is,ili better to<br />

plant eIrly ill<strong>the</strong> Coo: 'er id etpose <strong>the</strong> dcti w-( t) procressiyIv hmcsr teilp'CIratrIIs.<br />

Depend<strong>in</strong>g tlpurr <strong>the</strong> Chld colldit it, <strong>the</strong>,'sC pliit ,ill \t.1 ete'll'ridly, Mipms <strong>the</strong> hiedilur st',rute ld<br />

go directly t)<strong>the</strong> lbwerm,riitl .ae t i ,01urC period <strong>of</strong>' eit. l /i tit artl <strong>and</strong> c ,ro wh. Allilt'tic ',CCd<br />

yield per plant is expctedl hmss en' tha<strong>in</strong> i illll, plait nrC ilriee,.Cd to e,,+e, d ,icl per<br />

unit area is hii hc cause ci <strong>of</strong> tir 1low sotllitl r(.i(it '.<br />

At AV RI )('. M ielre fivIruid sw d', ir-C i iiI M ldCiree ill !unIitCd pt;itiie . 'uIlllrll<strong>in</strong>l<br />

.se',rs On'y,oun scdlirics'I, (11iilr'<br />

t ireibr Il s i reeIli. .NI liiltiic ;di lli t11.euld elr;uithCI. lhe<br />

s0t1it1 lridC ,e ii Iris se,d prmdt.Ui i slCu h e 1,pi,. iII Iil. cpt.l i\ ears ,, herr <strong>the</strong> eCatlm<br />

is niLstIrIJly Wet. This lrChrid js also id\vMUWCOn, ;1 that col ittLriCtlt is,ilnur dtiritie<br />

than natural vcrrraiit,l alld cam c-ils! ; adjursi depenIdit upon tire I''sp)IIisC <strong>of</strong>1Ii'et'tll<br />

irtCd l<strong>in</strong>es. l e,'.C\Vr, tire dit10ur1t o1 <strong>in</strong>hrd s'ds rCtliiir'Cd is LcCriIall,, hich s<strong>in</strong>Ic tie CCds<br />

to coillpeisite i',0"tie hliii. cross.ithoil o'ultiii 5c 'liic/cd pl tnnis (C esp e i) lls i ti.re ourir-rattcd<br />

Via seed 'Crrualir imrlr)hr nillo1 hii -tit I lsit; juii tli,._s.' TIkh: plitlioi <strong>of</strong> s<strong>of</strong> edll<strong>in</strong> ,,erllaii/atir<br />

rrnCtod I fo seed pIoduer<strong>in</strong>Lir ill tire tropics, iI,be ti 'ti\e. si on I<strong>of</strong>lbi lr ill',t11<strong>in</strong>isi'l i Ci I L]<br />

treatment, at-\rernrrurr.s lsscr soifr'it arid o<strong>the</strong>r'l ;issocitll oliff'itlic'. iri:s be :[(isoil.<br />

A siiImple Irtir .,lild 'efuicet'rr iim he Ilodili.'d tr srrialiatioii pirlr o',ne<br />

i spite nil <strong>the</strong> marijor" po ih.lers associated s, itli r~tep lr. tic. s,strn (see plc\'ionls<br />

sections), it cart b eucessluily applicd for0corririru-.il h\-id sCCd productir iiil( hirues, cabbac<br />

t ldr roipical iti ic l conditio n,. The a\'ilhi ilit,' <strong>of</strong>i tnilort<strong>in</strong> id iricfh-yielitt h,,r'id<br />

varietis tii('hilCrC caa2c ' for' tie hot[. IhInidItropic.Is I't10 AV , RI)(' arid priat liwVancsC i<br />

seed eruIIlli s is esvideuce or this s,ctcss.<br />

Open-poll<strong>in</strong>ated <strong>Seed</strong> Pro<strong>duction</strong><br />

In tle scCd PI'iict<strong>in</strong> (1 iuf oiper i llimtCd tuivietics, care shliuld be ci ci to rititail two<br />

essential, but srirrrewhtll citradietn ry. fea;tn s:ICidentity aid i;t..Ctil hIt.r',r'ri tsit'i4 te iCty.<br />

li order to rir<strong>in</strong>tit<strong>in</strong> <strong>the</strong> idenitit, <strong>in</strong>f' a,'.. irt,, i ;tict s.lCtiir o' elite. trlc-tn-type plants it'<br />

employed itt breeder seed pl tictjot<strong>in</strong>j<strong>in</strong>, wrlle c i'tlil - nctlitl tidisc,.rd <strong>the</strong> oIT-typCs is practiced<br />

ill Contruercial seed pI'idit't<strong>in</strong>i. Il'tc r<strong>in</strong>rir'l oil s(lcted i ltis used is IpMeits. CspCCially if'<br />

breeder sed:cd. shiuild be irgcenugh <strong>in</strong> ctlri( arty tmidesirihC gent/uic drift. Fifty or rore<br />

pla<strong>in</strong>s .re georait.+illy bIeVeCLd to he strf'iicll. rrt lhli i <strong>the</strong>re is rt(idcf<strong>in</strong>ite <strong>in</strong>rformrititrn on <strong>the</strong><br />

critical nuriruber.<br />

Adetlutat isolation hi nt am, fireigll p ll. err sloitCCs iio'i<strong>the</strong>r,' citltivitrs :iid uetr lh'.ssi 'a<br />

sIpecirs shirnuld be r'vidd t<strong>in</strong> itairtairi tile ge et ic purit tire I ne I Cdl . Iitli ' 'stlrucli<strong>in</strong><br />

,ifany flowerirg hras.,i'a. with<strong>in</strong> 1010 Ilrot tire Field is recoiIretidcd for CoiriCiiiil sCd<br />

priidtct<strong>in</strong>rt. \whCrCs a turC strict ard rlCilert mearis, such itsatscrceilrurse, is,required for<br />

breeder seed pr)duttion. Vigiirtots bee atctivity iaside tire screetiholuse iorfieli ,scsseltial to<br />

aIssurc <strong>the</strong> helerozygous featturc <strong>of</strong> <strong>the</strong> variety ard tri ru;rirti/ tire se.,l yield.<br />

Opern-pillilated varieties are usually mre str<strong>in</strong>geit il ',Hernlit iiiui IC(luir'etnit than <strong>in</strong>bred<br />

parents <strong>of</strong> Frihybrid var'ietics. If'<strong>the</strong>y are not exposcd tor 'etali ation for a ulifficient period,<br />

<strong>the</strong>y will vary greatly <strong>in</strong> flower<strong>in</strong>g time siothat pamnrictic prillir)ition cannot occur armo<strong>in</strong>g <strong>the</strong><br />

plants. Usually a prolonged vernali'zatior atlopt<strong>in</strong>u<strong>in</strong> tcnrperatuire m<strong>in</strong>imizes such itprorhleml.<br />

In practice <strong>the</strong> specific vernalizatit requIreMnits <strong>of</strong> <strong>in</strong>dividual varieties have to he established.<br />

It is also <strong>of</strong>ten necessary to discard extreniell, early, as well as late, bolters <strong>in</strong> <strong>the</strong> field.


Open-prll<strong>in</strong>ated <strong>Seed</strong> Producliol 69<br />

Breeder seed pro<strong>duction</strong>. The mass select ion iiicthod is uIsualIly CeIItl0,'Cd il <strong>the</strong> prIurInLioi<br />

<strong>of</strong> breeder seeds <strong>of</strong> open-poll<strong>in</strong>ated varieties. <strong>Seed</strong>s are nitially grown <strong>in</strong> <strong>the</strong> field as <strong>in</strong> actual<br />

market pro<strong>duction</strong> <strong>of</strong> <strong>the</strong> variety. Flite planits selecte.,J <strong>the</strong>refrom on <strong>the</strong> basis <strong>of</strong> vegetative<br />

performance undergo <strong>the</strong> previously described head -to-sel producti n method. A selection rate<br />

<strong>of</strong> !1),to 20% by head<strong>in</strong>g stage is uttual practiced, although InrC selection <strong>of</strong>tCn has to be<br />

lllad, a <strong>the</strong> later reproductivC stage. Flower<strong>in</strong>g elite plants are tratispl,nted <strong>in</strong>to tscreculiouse<br />

where appropriate <strong>in</strong>sect poll<strong>in</strong>ators are ptrovided.<br />

Where mass selection anLd heil o-seed is riot prichLiblc or is tr,oexpensive, a ,imilar<br />

procedure caii be Cmtifoyed <strong>in</strong> alternate gnratluls but w'+ith lsiv iuore i\i,, e iw)ili.<br />

Commercial seed pro<strong>duction</strong>. Coi'muparcl to Il,' positive irid iliteillive election <strong>of</strong> elite<br />

plants <strong>in</strong> breceer se d pr<br />

seed prtldttion.<br />

ictirr. a passv.I alilt' ldd iItIlcIsIV\'. k.i' t iced ill ,.conmeItrCial<br />

lrc dcr seeds are ,,rsvii Allt vCriili/cd b\ ei<strong>the</strong>r lniltid; miir tificitll, lhow teliperature,<br />

depend<strong>in</strong>g upon telsitluatio[. In t1 ClqCperatc /o01e, direct sOWSMSig Or ttrlIsplafltit i is done1C when<br />

.<br />

<strong>the</strong> low tenleratttl pCtiod 1',till long Cntu'I to iilhicC a fu!l vCrnrhition o1 <strong>the</strong> particular<br />

variety. The silh, n',sVri telrtiaturcs <strong>and</strong> <strong>in</strong>eitxrsiiie davlnith ifltie s<strong>in</strong>) se,ilii provide<br />

ideal elnvirolliililt101 flrwe\r stalk Clmmaiill, ll0W.vCr<strong>in</strong>e aiid sCCd SC. A, iialth':rmati't.ive for<br />

<strong>the</strong> tropic:-.. Sieliiies could be \criiiliICd ithiih aititmdcs (li,. 25 ill thn brought down<br />

to <strong>the</strong> warmetr coilitiiriis o~ftie loer elevation, o1rfIwC'r<strong>in</strong> :ii1d sCd ordctioli0. This woulid<br />

remove mny pirrh'leiis <strong>of</strong> tie sced-veriliatioi l-Ctrtimultlliths low r'i\ a rate aliid foor<br />

plIlit vigor, <strong>and</strong> \womuld utiliiatelv <strong>in</strong>cicati<br />

rema<strong>in</strong>s to be sItidi.<br />

secd \ eild .ruilit mca. Iliwever, this pmssibility<br />

Ct116LI'tOU.S rOLItlillIP iNiS10 i, tori"d ,-t)l Tdi IM-x ,egetaive lilv an' reprduty'ie,<br />

traits. Planis with it.brrilil borhiiig Or lhoWCr<strong>in</strong>e lat, sIiShld be liscardcd It is advisahle to<br />

remove extremely Vieu'otis M'.wak pliits. Very Vi .rrris plants are Oftel-i l;rIltiLts O nrttruss<strong>in</strong>g. uc1<br />

Whenever pSSibleO.h rogu<strong>in</strong>g shiIOihr.I be Colll<strong>in</strong>ied \.ith thim<strong>in</strong>i prredures.<br />

At <strong>the</strong> bollitig tliag tri o flmrwCri<strong>in</strong>g 1 , aIthrroughi <strong>in</strong>spe.Cliol oi <strong>the</strong> ,ced pro,luction site<br />

is llecessary <strong>in</strong> order to rellirvc all possihle sources <strong>of</strong>r<br />

contan<strong>in</strong>tng pollen.


Literature Cited<br />

Ali, A. <strong>and</strong> V.S. Machado. 1982. Use <strong>of</strong> gibberellic acid to hasien flower<strong>in</strong>g <strong>in</strong> rutanaga. Can.<br />

J. Plant Sci. 62:823-826.<br />

Allard, R.W. 1960. Pr<strong>in</strong>cipls, <strong>of</strong> Plant <strong>Breed<strong>in</strong>g</strong>. 484 p. Wiley, New York.<br />

Amagasa, T., H. Takahashi, <strong>and</strong> 11. Sgee. 1987. 1'.fcts <strong>of</strong>tvrnalization <strong>and</strong> pliotoperiod on<br />

<strong>the</strong> flower<strong>in</strong>g <strong>of</strong> Brassica o/cnrca var. al'oglohra. B. olojwstris var. chilnl siA <strong>and</strong> <strong>the</strong>ir<br />

amphidiploid. Rpt. <strong>in</strong>s. AIr. Res., l'tohoku Univ. 30:9-19.<br />

Anonymolls. 1976. The s..lf-<strong>in</strong>c lIpalilility ,election <strong>and</strong> lietcrosis itili/toMi <strong>in</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage.<br />

Acta Genct. S<strong>in</strong>ica 3:313-318.<br />

Anonymous. 1978. The selection an1d utiliialioot C(h<strong>in</strong>ese cabbage (ln,.nhiu'a k<strong>in</strong>.'n.sis Rupr.)<br />

'127' <strong>of</strong> male sterile AlB l<strong>in</strong>e. Acta G eiie. S<strong>in</strong>ica 5: -5<br />

Ai;.<strong>in</strong>ymous. 1985. (enoriic l)esignatioas <strong>of</strong> Varictal or S,,bspecific 'laxa o:" Agriculturally<br />

Important Brassicas <strong>and</strong> Radish. Crucifcr (jcnct. Coop. U<strong>in</strong>iv. Wiscons<strong>in</strong>. Madison. lInfrnIlation<br />

Document NG 05-11 85 WII!PAI. (Nlimco.)<br />

Anstey, T.1-. <strong>and</strong> J.F. Moore. 1)54. Inheritance tf lsOss liwiaic <strong>and</strong> cream petals <strong>in</strong>I green<br />

sprout<strong>in</strong>g broccoli. J. Hcr. -15:39-41.<br />

AVRIDC. 1975. AVRI)C Progress .cpmrt 11)74. Asian \'Cct:blhc R(scarclI ald I)evehoni)elt<br />

Center, Shanhua, 'Ta<strong>in</strong>an.<br />

AVRDC. 1977. <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> Rcport 1970. Asian Vegetable Rcscarch <strong>and</strong> Development<br />

Center, Shanhia, Ta<strong>in</strong>an.<br />

AVRDC. 1981. AVRDC Progress Report 198(). Asian Ve.Let,iblc Rcscarch <strong>and</strong> )evclopment<br />

Center, Shanhna. Ta<strong>in</strong><strong>in</strong>.<br />

AVRDC. 1985. AVRDC Pr, ric,,s Repo rt I Q83. Asian Vegectable Research aIId I)evelopmnut<br />

Center, Shanhua, la<strong>in</strong>ai.<br />

AVRI)C. 1986. AVRI)C Progress Rep rt 1084. Asian Vegetable Research ald l.eselopment<br />

Center, Shanhu:I, ilt<strong>in</strong>n.i<br />

AVRDC. 1987a. A VRI)(,lPrc,,,Rcport 1985. Asian Vegetlable Research aid Development<br />

Center, Shanhua, 1T'<strong>in</strong> <strong>in</strong>.<br />

AVRI)C. 1987b. AVRD( lr s,Report 1986. Asian Vceetablc Research <strong>and</strong> l)vclopmelnt<br />

Center, Shanhiia, "ailmi. (In Press.)<br />

Bailey. l-. , 1928. Br ssica. 1) 541-544. The stalIdird cyclopeldia <strong>of</strong> horticultul:r . Vol. 1.<br />

MacMillan, New York.<br />

Ba.mj, M. <strong>and</strong> K.R. Shivanna. 1986. TreatmIIent <strong>of</strong> stigmma with leci<strong>in</strong>s <strong>and</strong> <strong>of</strong> pollcn with sugars<br />

overcomes self-<strong>in</strong>comnpatibility <strong>in</strong> Bto.xico conxtix. ('rcielacr: N\vI.11:73-74.<br />

Banga, S.S. <strong>and</strong> K.S. labana. 1984. Fthrel <strong>in</strong>duced niale sterility ill Indian mustard (Bra.sica<br />

juncea (L.) Coss. t. Z. Pflamicnziichl. 92:229 233.<br />

Bannerot, H. 1..LOulidIrd, Y. Caudero, <strong>and</strong> .I.Tempt'. 1974. Transfer ol'cyti ipla+:nic male<br />

sterility f'rom Raphau.tt .wivits to Bra..sica o/cra'ca, P.52-54. Proc. European A,,sn. Res.<br />

Plant <strong>Breed<strong>in</strong>g</strong> Crucifcr:ie Meet<strong>in</strong>g. Dundee, Scoll<strong>and</strong>.<br />

Bateman, A.J. 1952. 3tS-<strong>in</strong>comptibiliiy s temus <strong>in</strong> angiospcrms. I. Theory. 1-feredity 6:285-310.<br />

Bateman, A.J. 1954. Self-<strong>in</strong>comnpatibility systemis <strong>in</strong> ,tngiosper<strong>in</strong>s. 11.Iberi,%amarti. Heredity<br />

8:305-332.<br />

Bateman, A.J. 1955. Self-<strong>in</strong>compatibility systems <strong>in</strong> angiosperms. ll. C(ruciferac. H]eredity<br />

9:53-68.<br />

Borchers, E.A. 1966. Characteristics <strong>of</strong> a male-sterile mutant <strong>in</strong> purple cauliflower (Brassica<br />

ole'rawca L.). Proc. Amer. Soc. Hort Sci. 88:416-410.<br />

Brar, B.S., S. Sh<strong>in</strong>gh, K.S. Labana, <strong>and</strong> S. Chopra. 1980. Identification <strong>of</strong> male-sterile l<strong>in</strong>es


72 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

<strong>in</strong> Indian mustard ({irshsicajtun',a). Amer. Soc Agron. p. 5(0 (Absir.)<br />

Brar. G. <strong>and</strong> W. Thies. 1977. Contrihution <strong>of</strong> leaves, stei, sil iques .Lndseets to drI matter<br />

aCcunIulaItion <strong>in</strong> ripen<strong>in</strong>g seeds <strong>of</strong>' rapesced, lra.%.si,al S ,,k- Londonr<br />

IB. 1,3:21-2,,<br />

I)th ia,. C.. I.C . l)ipil; , (' . Si i il .l ' "Ttllict. 18.3 ill ltklCai; it eo10I:lncc ,,,Ii to<br />

cflr k'e l itti 'tu lii iii jtllei \ ibhilit , p 1 IS5. 2). Ill 1) I-.Mlltli'h1 iiil F. (ttaviano.<br />

cds. 1'iilcll hwh, miid mlpulitiui IM. 'rl, n bimhlYc<strong>in</strong>i'. li.st ci ltietlical. Ncs York.<br />

f'euchi I'.. T. NI:tii iiui . hnt I l~i liiit. 1)(9 .. lit' letet I h Issciltei;tii e il l ,\ t.r<br />

alld tl ti uuniihiiii l ill k ,ic)A,ll itis-i anti (;'licn thhali 2c. IPii. .\iiCl. Soc. I ilt. Sci.<br />

82: 322,,-3, 1 .<br />

Flers, 1.I lI I..r I \\Iet)e. lO -4.i, Hli r f tio j iu (ihllc ;Iublc I. Response to<br />

ver.i /alit/iutll<strong>and</strong> phtWlliidl. Sicuiti 0.31. l 22:21<br />

lh rs. B. <strong>and</strong> If.1J. Ch. lt)54b. Iflu r loruilati l <strong>of</strong> (t' ,:,e e:htiyti . 11. t ei-\ rniali/atillon<br />

<strong>and</strong> short-dit\ rcatlleiitl. Sicitri Ih Hl t 2",3 17-332.<br />

Fllis,, M.I)., (;.S..h:eksn. WIt. ,Skrdlt, <strong>and</strong> II.(*. Sluene-. 1ISf. tI,'w sfl hollne, hees for<br />

cOlltrOlled <strong>in</strong>terpioll<strong>in</strong>ation <strong>of</strong> pla;n1 .- rnIpIasnm 0,, toileetlis lhuit.Se<strong>in</strong>ceI I(;:4;-49l.<br />

1:1 MNLraNb;,a..NI. 11)57. lIlTc Of tCIn)etleMI o1n 0iconup:it i1ilits il M:idih . FluphyVliC:<br />

6:268-270.<br />

Faulknei, ('... 197!. [le IhlCii i OI lnuiit\-hC , (.1I1A on/i/i-Itni) ( lth ,,ser'i i isels' iprout.<br />

<strong>in</strong>breds <strong>in</strong> ie poitlucti lo F1 I 1lihid e. ,d. urtll.Re". 11:00 ,-2<br />

Ferrari. I.:.. S.S lcc. aid I0. 1. \VIl:icc. 1981 . Ilio-hemitr\ <strong>and</strong> pil\ ,iolo. <strong>of</strong> rcoenilion<br />

<strong>in</strong> polle -.ti ni <strong>in</strong>tracti<strong>in</strong>. Ph i hiiiii.\ 71:752- 755<br />

Friend. I).J.C. l9XS.BIa., . .),-1 7T Ini A.l. Ilall\\. Cd. ('( li:dhotok <strong>of</strong> Flovcr<strong>in</strong>e.<br />

(CRC"I B'_:,s ot.; l' itIhl th(i ',,.<br />

Fritz, V.:. <strong>and</strong> S. Itli , 1S.lh 7.<br />

dal un <strong>the</strong> it:icld,:icc <strong>of</strong> hv th_li',<br />

elfec ,HO rOuiset.l beds,. popiulaio densit ics <strong>and</strong> plant<strong>in</strong>g<br />

uitltit ill ('litwsc clhba c . .1. ANmer. Soc. Ilorl. Sci.<br />

112:4 -4-,<br />

Fujii, T. 1972. (h<strong>in</strong>ese -alihla-c. p. 21182 1 Yokendo, 'Iokto.<br />

3. In (A)cericulture <strong>of</strong> Particular (ounmodities.<br />

(ollai, II. 1970. Studies uon <strong>the</strong> sc'lf<strong>in</strong>cotlib0ilim <strong>in</strong> cruciferotu plants lPapilla ceil growth<br />

<strong>and</strong> <strong>the</strong> exprcssion <strong>of</strong> .CIf-<strong>in</strong>compuii il-iility. )Sc I)iss,., Tlhoku I1mv., 'I'ko.<br />

Gonai, 11. <strong>and</strong> K. l<strong>in</strong>aia. 191). StudieL , oIL elf-<strong>in</strong>cotupaibility <strong>in</strong> ras.hxic',. Influence <strong>of</strong>organic<br />

solvent oil eed Ifriility. Jim J.llreed<strong>in</strong>p, 19: 153-154. Abstr. )<br />

(joni, It.<strong>and</strong> 1K.Ililith. 1971. ( it,wlh <strong>of</strong> pistils <strong>in</strong> relation ti phlnol'pic expression <strong>of</strong>1self<strong>in</strong>cotipatibilitv<br />

<strong>in</strong> Irul.,sa . JPr. .1. lBrced<strong>in</strong>e 21:137-142.<br />

GuLttorlisen, G. antd R. Nlhe. 1 9 85a. Effect <strong>of</strong> plant age <strong>and</strong> leniperaltire on boltitg ill <strong>Ch<strong>in</strong>ese</strong><br />

cabbage. Scientialhort. 25:2 17-224.


l.ieratire (Cited 73<br />

Guttormsen, G. <strong>and</strong> R. Moc. 1985b. Effect <strong>of</strong> day <strong>and</strong> night ticmperatirc at differcnt stages<br />

<strong>of</strong> growth on bolt<strong>in</strong>g <strong>in</strong> Ch<strong>in</strong>esC ,.'abbace. Scicnutai Hlol, 25:2 25- 1 33<br />

Itara, T. 1982. NutritiN6al stUdiCs oi hcald dcclopii ill t <strong>of</strong> ab uc pniiis. 10t5 p. Iacull. Agr.<br />

Gifu Univ., Gifu.<br />

H-aruta. . 1957. Bre-dimn ot vcictblc, <strong>and</strong> hl,.ct-,. p 424 .12i5 lrccd<strong>in</strong> ,l \'cctmablcs<br />

<strong>and</strong> Floers.Scibumido Sh<strong>in</strong>koi,,hi:i, lok\,i.<br />

fatrua, T. I,)02. Slij.li.", ti elilteciltic, Of sell- i<strong>and</strong> . o\, llceoiipallb ll\ III crilcItrCti s<br />

vci!etiblOICs. I60 p. lakii Plwm 1icrlii - i pt i Sta., ke,. BOl 2. l (,,)i.<br />

I esloprI l ison. ,t .1. 1975 ,i i1 iiipiiII ti\ t<strong>in</strong>] <strong>the</strong> 111iiCia illei iliraij<strong>of</strong>.t\iiiii lmi lc,.. Plaiit<br />

Ph v,iol. 20:401325.<br />

lclop- Ilairisuii. J. l' s3. Scll 11lki l i li+liihilit : l'Ilie hioloo. , Aid ph Ss 'ro()C. Ro\ :Al<br />

Soc. . imiH I 218:'71 ). 39)5<br />

htes ,%. 1' )7.;H,'itr; e,/ iii llll ,H\iit.tiei ii1l dtl/i.'ltC ( :il t+CI i Miid /iMi (Tile 'lik clllicl<br />

clki : I,.:il liti Blua,iItn,, 102 ". 1)i'-,(, . ( :\tl" isL,u u t Iii\., (Waiui i Tig.<br />

Ih<strong>in</strong>ita, 1K,l ' I S fil itionipal tilb+i!it\,, phi .iol i,.il ,.et l or i1L hIeTe' i - ll(Of i itci ou s<br />

c, ,alil,..". p 321 -333 Ili N.S. lahkar ;imnkI .1). (;r -,.. e(k. (*hllnlct, (;ilihlac . Proc. li.,<br />

Intl..",\1t1l . .A\ \' 1,(' Shat<strong>in</strong>hlja. A<strong>in</strong>llll.<br />

f liuu~~i. 1K;:m N. Kot'ii. 11'/,,e C ,tiplamic iiiilc ,trih. iIi I "Viikiui;i 1l,"., (i lo/Wt.,i+<br />

I. ) prl ,,_ccdt h.\ litJd c','-, t, -. tittiti .m.. kIlrccd<strong>in</strong>iv 21,: 127 11N. (A,,\ ,r )<br />

Ililiiai, K. :iol F. Nis iu ')0, SCIe l ,i.clilplmibll6it\ il cruCilcr. p). 22.3 .34. /1 S. ] ill)LLda.<br />

K. ll<strong>in</strong>ait <strong>and</strong> ('. (Gim,/ ('a1lllo. c',I. Il(lovi , l(t ops d Wild Alli,". 11ti. Sci SOC. PIC .,,<br />

Tok vi.<br />

lfitata, K ., "T"N ihitl. ;mtt .1. Killllnim []. C(' lpllalm i\O- "11tldic . t l S !l.Mupr ltc'<strong>in</strong>l purified<br />

fr11ii liffei11t .",fI! ill +,Je,<strong>in</strong> ,,ell -iiicoi 1<br />

',pccilficitiC,. G(Jun1ctio 100l:(th€ 5.<br />

til h BIc vi.iti +,Lecie I. ttIiiiit<strong>in</strong> doi ic'al<br />

llo~d,_k<strong>in</strong>. l'. <strong>and</strong> (i.!). l\mi. 198-1. Pl lllh. ' crim<strong>in</strong>l ioll illhi~itlor,, ill L'xiIa'sIC d BnoIW +..%ic', o,, cl'r '<br />

I.. titia>. Ne\ l'ivtoll 1-:2)Y 21s).<br />

Ih 1lna. S. I),-I . CI'h1llenes i<strong>in</strong> I l i ni hr hilt tesi,,t1ti2uIe iInCiliti - c~ilmlige. p. 451-453.<br />

In N.S. lalckar tiil riI). (iri.s td . (hitie cL, h't!2,,- Proc. irsi Intl. Sy p. AVRI)C,<br />

Shiaiti.'ui aia al.<br />

tltosod.a, T.. 11.Nma ti. :<strong>in</strong>d I.Isuiuti . I971. 1:ff,ectst0)( !all a Iim oit slf-iiicm palibility<br />

Of Itho.vii ': 0/1abbage o/,'1iii I.. (iau<strong>in</strong>a Field Sytnp. 1(:1 - II.<br />

I-ou. I:W. 1981 Ftcc oInitrlcit level M iiidiiiiii l ilni0to bolt<strong>in</strong>gll sed .dyMild<br />

Of'ChiCse<br />

cabbage. J. C'him',L Soc. tort, Sci. 27:20-34.<br />

HIOzyo, Y., S. KatO. <strong>and</strong> II. Ko a\ ahi. 1972. achil i <strong>of</strong>hotosvitlitic<br />

i <strong>the</strong> pods <strong>of</strong> rape plants<br />

(trln.sisa nipus .. );<strong>in</strong>ld <strong>the</strong> contribution <strong>of</strong> <strong>the</strong> pods totie' riien<strong>in</strong>g tf rape-seeds. Proc.<br />

Crop Sci. Soc. Jpi. 41:420-425.<br />

lizuka, M. 1957. Studics on <strong>the</strong> f_'ertilit\ <strong>of</strong> artilicial polvploid plants. V. Dual poll<strong>in</strong>ation with<br />

sclf-<strong>in</strong>coiipatiic a.nld criss-citlnptilc piollc<strong>in</strong> i I ru.vi',. Biul. Res. list. IFood Sci. Kyoto<br />

Univ. 19:52-02.<br />

IiZuka, NI. 1960. Studies Onie biologicil ilisturlbaiCCs e_;isdtl h1 bud-poll<strong>in</strong>atiiiu <strong>and</strong> <strong>in</strong>breed<strong>in</strong>g<br />

<strong>in</strong> cruciferous vCgetablesN. JMHI. Rc.v lt-I. Iood Sci. Kyoto ( niv. 12:1 -128.<br />

Inoniata, N. It;76. CltlurC ilu Vlro Of CXciNCd o%,ar'cs ill lbra -xiC1 i'iol/'. i.r I.. I. l)ev.opiuent<br />

<strong>of</strong> excised ovarics ill thure llcudia. iciln)erlatli <strong>and</strong> lihit. Jpii..1. .h'rcedil 20:229-236.<br />

Inouyc, J. <strong>and</strong> C.G. Kuo. 1981 . Flower <strong>in</strong>itiation <strong>of</strong> BrA.ia specics t<strong>in</strong>der total darkicss.<br />

HortScience 16:192-193.<br />

Isser, I).1L. 1973. The effect <strong>of</strong> altCrlt<strong>in</strong>e tenilpCraturCs ol self-<strong>in</strong>counpatibi!itv <strong>in</strong> Brassica<br />

oera'ei L.. IncompItibility Nwsl. 2:44-45.<br />

Ito, 1I.<strong>and</strong> T. Kato. 1957. Studies on <strong>the</strong> head formatiot <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage. Histologica! <strong>and</strong><br />

physiological studies <strong>of</strong> head formation. J. Jpn. Soc. 1IHol. Sci. 26: 154-162.<br />

Ito, S. 1954. Oil a breed<strong>in</strong>g systei <strong>in</strong> crucilfe ions vci,\tables. Takii Plant <strong>Breed<strong>in</strong>g</strong> Expt. Sta.<br />

Res. Bul. 1:1-57.<br />

Ito, T. 1981. Feasible selfed sced pro<strong>duction</strong> methods <strong>in</strong> slf-<strong>in</strong>comipatible crucifer l<strong>in</strong>es. p.<br />

345-355. hi N.S. Talekar <strong>and</strong> T.I). Griggs, eds. <strong>Ch<strong>in</strong>ese</strong> Cabbaige. Proc. First Intl. Sytnp.,


74 <strong>Ch<strong>in</strong>ese</strong> Cahhaic1' reeohn <strong>and</strong> 51;1d lndiclill<br />

AVRIC, sha<strong>in</strong>hna, raihnn.<br />

.lia e, NI. C. 198I . C'hiiic,,c cuihl7 c cnlti\', ion. 200 1p. Ap-i. [PubliiiiiL ('o. I,cij<strong>in</strong>g.<br />

.hMS<strong>in</strong>s1..A\C;.<br />

. ll ,III ll" . \.( i.<br />

GIA. .lu ' IcIlil\ ill /hoitui 1 :. Natlue 182: 1523.<br />

I)Q7 ai c:%,::Ic,, ,ciiII li Icel L' ! ",Cll I )1O )IIliIlhili f) uu I1 Iliu1', I IlIrnss ls<br />

spl-ili,. lliphi\ Ia)11 2 i) $7<br />

Kadkl .(i. ..R..11. R . I,iciil I1. ii ,. d ( I.M .II:mlh rml. 1 8-.,I Italnatiti (olbl s.Ihw<br />

"ell()[\).',IhM IC'e1-I t;11liCC',hIlluCI . 1.I)e; )L! eh llle t dest. a l',1',IiItll",Immlih, tici 33:03-73.<br />

Kiia\m,, , A l-00. 9 Sttdi,.. oitIhC c ,.CCt odh . llt)-Iiiilct I i<br />

Ru,,. Ihl. l:;icu~lt, ..,r. ( ilun1 lii. 22:21) "l)<br />

Iui l iatlnit atuhIm (d('<strong>in</strong>c,, ,alIhkaee .<br />

K'ia\<br />

k '[h<br />

a.<br />

ll A. ]. il Fc lt\ Sulie<strong>in</strong> ul. 6 11[l . 1.!11 >.<br />

'<br />

19i71I. wilik ii lieuliulcc~I1m l<strong>in</strong>si ldlit. I1\il IOWIII1;'1\ iC IlIp Re'.<br />

Isahn.ili2, INI. ;+ilK. \\.ititk;i. !J),X h~lisscl<strong>in</strong>l'<br />


I<br />

I. iimc (Val 75<br />

i N pacI I i Nc" I(NI'At ' Ic, id ('( I,k i lid ,ci kii t'ill I I "C%C[; ',C1( 11') 11)III<br />

I i I'4) II ii~ til I ii I l tI il lhi kitt ).I 'k 11<br />

McI. SlIl\ N1)I C' 11)1.l K5 ~ii PItuct tlI iuui uiiiliflut lu<strong>in</strong>ucchitCI<br />

d<br />

JuIti lIi I pu lII tIS l u ic Ic 1:I4 I1;I (I I II ' ,Ik 1 11ICW d I 1L<br />

M~tuuI> mut N5l Il lck md8 I tIlii ; uI ikulittitL kuliji t,, Pw, <strong>in</strong>I~i lilt]. S.\Illp­<br />

Scicti1hu'lI.211)i' It<br />

[~to S.uui l . Sltli '1i I i %iIimnh 1ltUIt m p111ht'it I h-ljtIm ( Icsc lqL<br />

(lII a.'itIitumAil IurII'1j 3 l tl Inmc il il Isik tlfiiiiy 1 h 1 edn


76 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

15:25-36.<br />

Nal:anishi, T. 1972. ()vercomiig crucife'rois suff-<strong>in</strong>compa'ibility by Co 2 gas. )Sc Diss.,<br />

Tohoku Univ.. Sendali.<br />

Nakanishi, T., Y. IEsashi., atll K. Iiataa. IN"9. Control <strong>of</strong> sell-i ncoiiipatibility hy ') 2 gas <strong>in</strong><br />

Brassica. Plant Cell Physiol. 10:925-927.<br />

Nakanishi, 1. <strong>and</strong> K. l<strong>in</strong>ata. 1973. An elfective time for CO 2 gas treatment <strong>in</strong> mercom<strong>in</strong>g<br />

self-<strong>in</strong>compatibility <strong>in</strong> Brassiia. Plant ('ell Phvsiol. 14:873-879.<br />

Nakanishi, 'r. <strong>and</strong> K. Il<strong>in</strong>ata. 1975. Se'f-scecd productiomn b ( 2, trectment<br />

, <strong>in</strong> Sell<strong>in</strong>compatible<br />

cabb,,age. Fnphytica 2-1:117-120.<br />

Nasrallah, M.F. 1974. (;enctic control o[flulantitativt( variatito <strong>in</strong> sell-<strong>in</strong>comparihilitv prolte<strong>in</strong>s<br />

detected by <strong>in</strong>ii<strong>in</strong>odiffnsiti. (, tit, 7(0:-l5-5W.<br />

Nasrallah, J.13. d<strong>in</strong>d NI.F. Nasr:illai. 19)84. PIetroplormie hetero:cnCit CiI,.hibtCd b\ tlie .S'allele<br />

spccife 4lycoproW<strong>in</strong>,, 4ol BS.Ai,'1i. Fpclieuti i 410:2t9-28l.<br />

Nasrallah. M.F. <strong>and</strong> 1).11. WalIlacC 1908. 'lih' <strong>in</strong>lhi:eieCC 0f iodilic'r .M'Cs oi Ihe iltl.,ils <strong>and</strong><br />

stability (if Necll-<strong>in</strong> c ipitihilif, <strong>in</strong> cahlu:ILC. Lup"li,.ia 17:495-51)3.<br />

NasiIlali . T. 1far1ec.r. an I ) 1. W ,aIIlact . .) l f IiIcoiip tipilit, prcl<strong>in</strong> ill pla<strong>in</strong>ts:<br />

detection, LeCltIi:c'. ;i11id pu,'iIlc mtdcd actionli lredity 24:23-27.<br />

NicuwLI<strong>of</strong>', N . 196'. hlC sterilit' i - O.i o Cl t ,,op.Fuplth tica. 10:351 -35,.<br />

Nicuwhol. NI. I9(0", li sibiliti,, <strong>of</strong> iitolilplel, -ib- i oiiicxiijle itmiued liltc,, iilbrc&dI<strong>in</strong>e hvbrid<br />

varicties <strong>of</strong> cole tt clop", rs(.sic craci .. , lquph, tic',i 17:3, I0.<br />

NicIwIllcf. NI. 19 ,b. HI'fCCt <strong>of</strong> IeIrpcrftItI on oll hle p ,.i Iif, llilc lej erility i tuseWi, sprouts<br />

(Bmr,:x.\ii.,o od1c a 1.. v\ar. iilit/i/l !I '.. Lphlicjel !7:2o65 27.3.<br />

NiCeIIuhfl'. M.19Uu9). ('dC (ro'p. l3 p. l.cIIi,iid Iill, I ontdmi<br />

Nishi. S. 198(0. l)ilIciCilitiou if llh ioLA traps ill .\,li;I ,Iln th chbccdlii'(_ til Ilakti ill' a icwl<br />

synthcsi:'ct lea, veetTable, p. 133-150. hi S. l',i td;,. K. tl<strong>in</strong>iti ,iiitl ('. ( ,! ('iih l ,<br />

eds. Bra.A ica 4 ('tops ard Wild Allies. J.pn. Sc:. Soc. Pres,. likvo.<br />

Nishi. S. ant T. Iliriok . 1157 111sll 'it IN LitdiCs on llc e dc iiCe atis lUMi\ i ,,,,(I illle f,Icrilit\<br />

Ssolelc vecetablc crops. Bul. Nit. lst. \c,. Sci. Si. 11 :l -11.<br />

Nishio, T. antI K. liiiLLa. 19)77. Aii:l , ,t Si .- sef' p lei slii i ll i I 1f? Si,'a iii'e(Wi5'<br />

I. bv isoclctlric f0ctlsili . ItIcitdil 38:. I-) I I.<br />

Nishio, T. <strong>and</strong> K. I l<strong>in</strong>ata. 1980f. Rapid tltcCtiol, ''I S hl ,,li 0s.v i 1 ,'ll ii<strong>in</strong>iiip:utible cRiicilCrs<br />

us<strong>in</strong>g con-A reaction. liiliytjca 29:217-2211<br />

Niu, X.K., F.Y. \Vu, 11.11. /lomn. ,<strong>in</strong>d X.S. .i N. Il ic ,eCletioii <strong>and</strong> iltili/ilioni f (iitCiese<br />

cabbage (B. iw<strong>in</strong>on.tIV Rupr. I lf iiialC s'elIc .lAl<strong>in</strong>e. Acla Itfort. S<strong>in</strong>. 7:25-32.<br />

Norton, G. antd J.F. larris. I175. (onipo,itional chaiics ill dC clI t)iii. ratl)c sCCd (Brassica<br />

nlalflpt 1.). llianlai 123:163-174.<br />

Ockendn, l).J 19"72. PolUci tube _irowlh aid IC Jic <strong>of</strong>tlit' i Wli)lpafhilitv rcticion <strong>in</strong> Bra.ica<br />

oh''acca. Nes, Phytol. 71:51 9-522<br />

Ockcndon, ).J. 1973. Selection lor Ihich ,l'- i ,.¢iibility ill ilibif, lities <strong>of</strong> BrusSCls sprl is.<br />

Euphytica 22:513-509.<br />

Ockcnden, ).J. 1)74. l)istrihtit <strong>of</strong> self-<strong>in</strong>oitiparibilits allele , litd brccd<strong>in</strong>e 'Itructure ol'Olp<strong>in</strong>poll<strong>in</strong>ated<br />

il ars II (1 f usels 'spfii . l lcrcditi 33: 159- 171.<br />

Ockenden, D.., 1975a. IDoul<strong>in</strong>aatc irclaliliip, bCl\'Ltell -dlIle's i lie sili'laSli 01 <strong>of</strong> BRUssCls<br />

sprouts (lro. il/uf II'ai, e, \ir. l,''/tlllll/ri. 'iiphr tica 2-4: 105-172.<br />

Ockende., I).J. 19751. The S-illell collectioi <strong>of</strong> lrvi~a hv/,oca. ncompallibility Nwsl.<br />

5:82-84.<br />

Oelke, J. 1957. /lu Plisioli dier .-clbs- und KrCu/unesstCrliln<br />

hii RalieseCln (Raphanus<br />

,aivl.s L.). Zicliter 27:358-369<br />

Ogura., 1-. 1908. Stutdies on flit' nes, iialc sterility <strong>in</strong> Japau esc radish, with special ref'eelirce<br />

to (he utilizaliol <strong>of</strong> this sterilily t.msirds <strong>the</strong> practical rais<strong>in</strong>g ii1 hybritd seceds. Mc<strong>in</strong>. Faculty<br />

Agr. lKagish<strong>in</strong>ia Univ. 6:39-78.<br />

Ohkaw;i, Y. 1985. New cyloplas<strong>in</strong>ic iale sterility <strong>in</strong> Bra.sicel (u'fliISll'. Assp. rapiji'ra (Metz,)<br />

S<strong>in</strong>sk. <strong>and</strong> its relationship to <strong>the</strong> cytopiasmic iiale sterility <strong>in</strong> B. IiuIs L. Btll. Nat. Inst.<br />

Agr. Sci., Ser. 1 36:1-50.


Literature Cited 77<br />

Ohkawa, Y. <strong>and</strong> T. Shiga. 1981. Possibility <strong>of</strong> hybrid seed pro<strong>duction</strong> by use <strong>of</strong> cytolIiaslnic<br />

male sterility <strong>in</strong> Brassica campestris, p. 301-312. In N.S. Talekar <strong>and</strong> T.[). G(-iggs, eds.<br />

<strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong>. Proc. First Intl. Syrup., AVRDC, Shanhua., la<strong>in</strong>an.<br />

Olsson, (1. 1960a. Species crosses with<strong>in</strong> Ihc gentis Irassica.I. Artificial ihas.sirca./<br />

Hereditas 46:171-223.<br />

cra Coss.<br />

Olsson, G. 1960b. Species crosses with<strong>in</strong> tire genus Bra. ica. I1. Artificial Bra.v tica 1(il/nty L.<br />

l-ereditas 46:351-386.<br />

Ootake, Y. 1979. On <strong>the</strong> .juvenile Morphology <strong>and</strong> hiogencsis if ]eaves <strong>in</strong>)<strong>Ch<strong>in</strong>ese</strong> cabbage<br />

(Ifassca cam .stri.%L). J. Jpn. So'. Ilort. Sci. 48:45-54.<br />

Opefia, R.T. <strong>and</strong> S.. I.o. I979. (clicties <strong>of</strong> hct tolerance ill licadirie <strong>Ch<strong>in</strong>ese</strong> cabbage.<br />

HortScience 14:33-34.<br />

Opefia. R.T. arid S.11. ho. 198! . Irced<strong>in</strong>e hr1hCt lO!Cr:icc <strong>in</strong> head<strong>in</strong>g ('h<strong>in</strong>esc <strong>Cabbage</strong>, p.<br />

4.,1-442. 1I N.S. h Alekmr <strong>and</strong> 1.1). (;rl,.., cd. (<strong>Ch<strong>in</strong>ese</strong> (Cabbae,,c Prlc. First Inl Syrnip.<br />

AVRD(', Shanhui. Tkiairii<br />

OpeCfia, R.T. ]()5. I 'chI)pmne ot ttmliltto) id (hid elllc-cahae ltivi ,daplcd tI <strong>the</strong> hit,<br />

humid tropics,, tlh t. 13>121 -136.<br />

()rr + . A.R. 1978. Ilior,,crce tleveh pruceit <strong>in</strong> a r .;i Ln,.si I.. Airer.1..ot. 65:466-470.<br />

Panikiw, P. <strong>and</strong> I. len. 10. I9(7. he c(lilecnln period retiriICd to rid honey bces <strong>of</strong> fo0rcign<br />

swcctclovcr pollcn. (',,1. .1 Plit t Sci. -17:053-050.<br />

Park,. I lKad Y.I i:. 1)81...\ siimple bleed<strong>in</strong>g ssreIln lor develop<strong>in</strong>g ('h<strong>in</strong>ese clabbage<br />

hybrid Cullivar,, p. 35Y30-1. h N.S. lalckar aid 1'I).( s, ed,. CIirCSehCabalge. Pr-c.<br />

First InL. Ayrp A\VP1)('. Shanhuia. a<strong>in</strong>an.<br />

Park. K.\V. 01l. l1irlln,,e s(<strong>in</strong> lili .icit. N'irstol! lLbotl r<strong>in</strong>d I rl rC.lIlir11Il diC (O)nLlitlt<br />

des Rcttichs. Ph I)lihsi. lccI. lm .. Mullich.<br />

P:ark. K.\. aid M.Z Kim. 1985. lillIcce (t Ctlti\ii<br />

<strong>Ch<strong>in</strong>ese</strong> caic, J. iKorli Sc. Holt. Sci. (-':2<br />

li rc Ierid on tie (. quality 01i<br />

99 30l..<br />

<strong>Pe</strong>alrscil , ).1 1. l1(62. nrts1orpaliIiiiit\ ill Iriwcoli Intl ilurctiiU 0ll s ed udM I urges. Plroc. Ailier.<br />

Soc. lIri Sci. 29:4tX.471.<br />

<strong>Pe</strong>arsoni IT 1972. ('<br />

Iriori l1l slc.i"<br />

97:397-402.<br />

i,laililrcrall\ <strong>in</strong>h'lritecd iAilal sterilii\' char tes aidt lav'or CeiilrpfnCrrtS<br />

.\ ,l )I",' ,r/ (1-I I..I " Bl I PochlI C 1 l - J. A mr er. Soc. !lrt. Sci.<br />

Piluck, K. 1985. lilogical apect 1 ('h<strong>in</strong>cs cabaLc (BraItsiua Iwkbn.\i.%Rupr.) seed<br />

pruOductioui <strong>in</strong> Ihe tropics. Ph I) I)is,. - li: ,. Philipp<strong>in</strong>es 1 o- Hrnti- . ( lll r.,tu a.<br />

Piessiaii. F. aid I. Ncgi . 1981. Blollil alid iimowcr<strong>in</strong> (! vernalei/d Bra..icAio /wkifemlis<br />

ats Af ectcd ltt it lpmrllic. .1. i'xpl. Hot. 32:$21-825.<br />

Pvo. l.K. 19)81 . Historic; ob0erv1il<strong>in</strong>s ii <strong>the</strong> cultivarl dcvcloi<strong>in</strong>li (hiiCc cabb;iC <strong>in</strong><br />

Korea. p. 41-47. In N.,. lalckar arid 'I.). (irlc_. _ls. (luee cablbagC. Proc. First Intl.<br />

Syilp., AVII \' , hRII) lihi ,aT iil.<br />

Richards, R.A. a<strong>in</strong>d N. Thurl<strong>in</strong>. 1973 TIhe rtieCls" ',lC1 <strong>in</strong>cnrilptihlilit <strong>in</strong> Ih.soiC( CamIl',wris<br />

L. ssp. ,li/lv XMlerg. 1. ('hiracte istic., <strong>of</strong> 5-.locus contlrol o1sell- <strong>in</strong>kcoipatiitiy. Genctica<br />

-14:428--138.<br />

,obbelen, G. 1960. lhcr dic cKrIlccdsrtralelihkeit elrslhitmdar lA -Arlen e).i als Folge<br />

ciimes VAchueiirn oloMlcnrs'hlaucli,,iuuii,. /iCiltCr 10:30)0-312.<br />

Robcrts, IN. <strong>and</strong> 1.(G. I)ik<strong>in</strong>sorn. 198-1. lrlraspecilie irreoiliilibili <strong>the</strong> ti.a ot/hasiio.<br />

Phytoniorphology 3 1:165-17-1.<br />

Roggei, 1.1..PJr. 1974. Pi(left washlng illuecces imnconpatibility ill Bravsia (,/I/acea varieties.<br />

p. 273-278. In: I1. F. L<strong>in</strong>skens, ed. Fcrtilitrtion <strong>in</strong> Ililer Plants. North Holl<strong>and</strong>. A<strong>in</strong>sterdai.<br />

Roggeri, H.P. Jr. 1975. Stigr<strong>in</strong>a application o[ ail extract Ilrtlll rape pollen (Brs.,',ia wirpus L.)<br />

effects sclf-<strong>in</strong>lcoripalibility il.<br />

Inconmpatibility Nwsl. 6:80-8 ,<br />

s.st l p U lt (81'/.,i( a 0/1ca1,0 L. var. t ilmo /,ra DC.).<br />

Rogger, 11.1). Jr. mnd A.J. var' Dijk. 1972. Break<strong>in</strong>g <strong>in</strong>conpatibility hf iBros.icu olh'raeca L.<br />

by steclbrrsh poll<strong>in</strong>ation. Fluplhytica 21:424-425.<br />

Roggen. II.1P. Jr. <strong>and</strong> A.J. van Dijk. 1973. Electric aided poll<strong>in</strong>ration: which iethod to use<br />

fbOr self-seed pro<strong>duction</strong> <strong>in</strong> cole crops (lrassicaolent'ca L.) Euphytica 22:260-263.


78 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

Roggen, H.P. Jr <strong>and</strong> AJ. van Dijk. 1976. Thermally aided poll<strong>in</strong>ation: A new method <strong>of</strong><br />

break<strong>in</strong>g self-<strong>in</strong>compatibi lity <strong>in</strong> Brasica ol,'racea L. Euphytica 25:643-646.<br />

Roggen, H.P. Jr.. A.J. van Dijk, <strong>and</strong> C. Dorsman. 1972. 'Electric-aided' poll<strong>in</strong>atil: a method<br />

<strong>of</strong> breed<strong>in</strong>g <strong>in</strong>compatibility <strong>in</strong> Brassica oleracea L. Euphytica 2 1:181 -184.<br />

Rundfcldt, H. 1960. Untersuchungen zur Zichtung des Kopfkohls (B. oleracca L. var.<br />

Z. Pflanzenz~icht. 44:30-02.<br />

apilata).<br />

Sampson, I).R.I 1957. '1he g<br />

Genetics 42:253-263.<br />

-enet ics <strong>of</strong> self- <strong>and</strong> cross-<strong>in</strong>compatibility <strong>in</strong> ihoasica oh'raca.<br />

Sampson, D.R. 1962.<br />

Cyt. 4:38-49.<br />

licrgcneric pollen-stiL l illcUrtpatihilitV i_,<strong>the</strong> CricitrIac. Can. J. Genlet.<br />

Sampson, I).R. 1964 A one-locuts slf-iiltcoth pability sytcus it) RattitttLs raphanistnum. Cap.<br />

J. Genct. Cyt. 6:435-445.<br />

Stmipson, D.R. 1967. l:reqtetLy <strong>and</strong> dis(rilnion <strong>of</strong> self-<strong>in</strong>coipatihility alleles Ihi Raphaims<br />

raphani.struttn. Genetic, 56:241-251.<br />

Sears, E.,. 1937. Cytologicul phclniot<strong>in</strong>:t<br />

Genetics 22: 131-181.<br />

Lca:nnctCd with self sterility In <strong>the</strong>ilhomeriti plants.<br />

Shiga, T. 1980. Male terilit, n4 c:At1<br />

H<strong>in</strong>ata, <strong>and</strong> C. Goimci.-Cait., t<br />

Tokyo.<br />

lam i' differentiation., ). 215 221. h1 S. 'slnoda, K.<br />

Inl iIaYSI (r, Mid tOpSWild<br />

Alies. Jill). Sci. Soc. Press,<br />

Shiga, T. <strong>and</strong> S. Balh . 1973. (vtpla L lll IISCterilit, e il oil ,,ccd rap', Bral.ssia napls L.<br />

<strong>and</strong> its utilization to breed<strong>in</strong>-g. pn. J Bhced<strong>in</strong>m. 23:1 ,7 197.<br />

Shimose, N. <strong>and</strong> K. Kurosaka. 19185<br />

J. Trop. Avr. 29:203-207.<br />

.th hIe.ratntec oif okra. ('h<strong>in</strong>Cs cabhaC a t.ltre. Jptt.<br />

Sh<strong>in</strong>, Y.A., S.S. lce, <strong>in</strong>d W.Ni. Yomon. 07. I-flet1 (f <strong>the</strong> hiigh tCnpellpbniW treaitm1ent ii o tile<br />

devernalization <strong>of</strong> radish ild ('h<strong>in</strong>eISL'<br />

(Abstr.)<br />

i Kt_Oean ,(,, . Hltr. Sci. Ilort. Abstr. 5:56-57.<br />

Sh<strong>in</strong>ohara, S. 1959. (enccl ical tdie, I R tilti )ht,,iC tlevelOp ltH <strong>of</strong> fIh V,'i1tt cetllicr<strong>in</strong>g<br />

on <strong>the</strong> crucilcros crops, Ctl),tciallY on thi ei <strong>of</strong> ve,di/ation \'no<br />

<strong>in</strong> ripen<strong>in</strong>g -,ecds. 166 P).<br />

Shizuoka Prelectural Agr. Ix pt. Sta. Tcch. Blnl. 6. Shizuoka.<br />

Sh<strong>in</strong>ohara, S. 1984. \VegetbllC seed pro<strong>duction</strong> tcchnology <strong>of</strong>'I.apla e!ueidtlcd with respective<br />

variety development histories,, partiCttlats. V(11.<br />

Consult<strong>in</strong>g Eng<strong>in</strong>eer (Office. 'l'Tokyo.<br />

1. p. 101 - 102. Shianlhara's Authorized Agr.<br />

Sh<strong>in</strong>ohara, S. i<strong>and</strong> M. Suyano. 1958. EIffect <strong>of</strong>' maternal l<strong>in</strong>e selection method ,)onimpr, vement<br />

<strong>of</strong> crucifertus crops. 1. On <strong>the</strong> case <strong>of</strong> Slotmai No. I <strong>Ch<strong>in</strong>ese</strong> cabbage. Shizuoka Prefectural<br />

Agr. Expi. Sta. Rpt. 3:85-93.<br />

Shivnna, K.R.. Y. leslop-l-larrison, <strong>and</strong> J. IlesOp-H1-larrisot. 1978. The pollen-stignta<br />

<strong>in</strong>teraction: Bud poll<strong>in</strong>ation <strong>in</strong> <strong>the</strong> Cruciferae. Acta Bot. Neerl. 27:107-119.<br />

S<strong>in</strong>skaja, E.N. 1928. The olei erous plants <strong>and</strong> rott crops <strong>of</strong> <strong>the</strong> family Crucif'ra,. Bul. Applied<br />

Bot. Plant <strong>Breed<strong>in</strong>g</strong> 19:1-48.<br />

Smith, I3.M <strong>and</strong> J.C. Jackson. 1976. The controlled poll<strong>in</strong>ation <strong>of</strong> seedilng vegetable crops by<br />

means <strong>of</strong> blowflics. FHort. Res. 16:53-55.<br />

Smith, B.M. <strong>and</strong> C. Mee. 1981. <strong>Seed</strong> mnltiplicatioln Of Brussels sprout <strong>in</strong>bred l<strong>in</strong>es. Z.<br />

Pflanzcrz.icht. 92:259-262.<br />

Stokes, P. arid K. Verkerk. 1951. Flower formation <strong>in</strong> Brussel sprouts. Meded.<br />

L<strong>and</strong>bouwhogesch. Wagen<strong>in</strong>gen 50:141-160.<br />

Suge, H. 1984. Re-exam<strong>in</strong>ation on <strong>the</strong> role <strong>of</strong> vernalization <strong>and</strong> photoperiod <strong>in</strong> <strong>the</strong> flower<strong>in</strong>g<br />

<strong>of</strong> Brassic.t'crops under controlled environment. Jpn. J. <strong>Breed<strong>in</strong>g</strong> 34:17 1-180.<br />

Suge, H. <strong>and</strong> 11. Takahashi. 1982. The role <strong>of</strong> gibberell<strong>in</strong>s <strong>in</strong> <strong>the</strong> stem elongation <strong>and</strong> flower<strong>in</strong>g<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage, Brass<strong>in</strong>a 'anpestrisvar. pek<strong>in</strong>ensis <strong>in</strong> <strong>the</strong>ir relation te vernalization<br />

<strong>and</strong> photoperiod. Rpt. Inst. Agr. Res. Tohoku Univ. 22:15-34.<br />

'Fakagi, Y. !970. Monogenic recessive male sterility <strong>in</strong> oil rape (Bre ssica MtplS L) <strong>in</strong>duced<br />

by gamma-irradiation. Z. Pflanzenzdicht. 64:242-247.<br />

Takahata, Y. <strong>and</strong> K. H<strong>in</strong>ata. 1980. A variation study <strong>of</strong>' subtribe Brassic<strong>in</strong>ae by pr<strong>in</strong>cipal<br />

component analysis, p. 33-49. hi S. Tsunoda, K. H<strong>in</strong>ata, <strong>and</strong> C. Gomcz-Campo, eds. Brassica


Literature Cited 79<br />

Crops <strong>and</strong> Wild Allies. Jpn. Sci. Soc. Press, Tokyo.<br />

Tao, G.H. <strong>and</strong> R. Yang. 1986. Use <strong>of</strong> CO 2 id salt solution to overcome sclf-<strong>in</strong>compatibility<br />

<strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage (B.cawpestris ssp. pek<strong>in</strong>ensis). Cruciferae Nwsl. 11:75-76.<br />

Tao, G.H., J.B. Xul, <strong>and</strong> Y.N. Li. 1982. A study on <strong>the</strong> genetic stability <strong>of</strong> sclf-<strong>in</strong>compatibility<br />

<strong>in</strong> Brassica campestris L. var. pek<strong>in</strong>ensis. Rupr. Sci. Agr. S<strong>in</strong>ica 2:30-37.<br />

Tatebe, T. 1939. The effect <strong>of</strong> <strong>the</strong> mutilation <strong>of</strong> stigma on self-Ifertility <strong>in</strong> <strong>the</strong> Japalnese radish.<br />

J.Jpn. Soc. Hort. Sci. 10:62-65.<br />

Tatebe, T. 1945. Studies onl <strong>the</strong> <strong>in</strong>hibitilng ubslancc that prcvents <strong>the</strong> sell-fcrtili/ation <strong>of</strong> <strong>the</strong><br />

Japanese radish. J. Jpn. Soc. Ilort. Sci. 16:106-124.<br />

Tatebc T. 1962. Studies on tie genetics <strong>of</strong> self- <strong>and</strong> crotss-<strong>in</strong>conpatibility <strong>in</strong> tile.Japiese radish.<br />

J. Jpn. Soc. Ilort. Sci. 31"185-192.<br />

iatebe, T. 1964. Studies on <strong>the</strong> physiohogical noclianisnl <strong>of</strong>' sclf-<strong>in</strong>coitnpatibility illJapanese<br />

radish. 1.Infuncc <strong>of</strong> air huiidity onll sell-fertility. .1. Jpn. Soc. Holt. Sci. 33:62-06.<br />

Tatebe, T. 1968. Studies On <strong>the</strong> pilogical HManism Of SCif-<strong>in</strong>eCnipatibilitV by chentical<br />

treatnents. J.Jipi. Soc. Itlort. Sci. 37:2--7-230.<br />

'latebe, T. l1977. Studics onl <strong>the</strong> plhysi ohi'icatl tnechani"mm <strong>of</strong>tself -<strong>in</strong>compatibility ill.apanese<br />

radish. IV. lffcct <strong>of</strong>' lhigh tCmpecratures on sell+-<strong>in</strong>compatibility. J. Jlim.<br />

46:48-51.<br />

Soc. Ilort. Sci.<br />

Terrell, E., S.R. lIfil, J.11. Wicrscma. <strong>and</strong> W.F . Rice. 1980. A checklist <strong>of</strong>' Names 'or 3,000<br />

Vascular Plants <strong>of</strong><br />

D.C. 244 P.<br />

licom<strong>in</strong>ilpoilmance. U.S. l)cpt. Agr, Au.r. I ldbk. No. 505, Wash<strong>in</strong>gtol.<br />

Tlhola,,, T.11. I98). Hlowcrilm <strong>of</strong>, Brhsscls spromuts illres ltisc to lo Clo'tMratre t'eatmillent<br />

at difil'rent stalcs <strong>of</strong>' rm tmh.Scicltia tlort. 12:221-221L<br />

Thomas, T.Ht. 1983. EfIfects <strong>of</strong> decapilation, dCloliation n. stem ,t11<strong>in</strong>irdlimn on axillary bud<br />

development ill lhusscls sproUtts. Scientia Ilort. 20:45-51.<br />

'l'ho llpson, K.F. 1957. Self-<strong>in</strong>compatibilitv <strong>in</strong>narrow ste<strong>in</strong> kale, Iao.%ict o raetm'ca ssfp. eyphahi.<br />

1.Demronstration <strong>of</strong> sporophyic systcn. .. G(nct. 55:45-(0.<br />

'Ihlolpson., K.F. 1972. ('ytoplasmic male stcrility oltt Oilsccd rape. lcredity 29:253-257.<br />

Thompson, K.F. 1978. Application OffrCCCssivc self-<strong>in</strong>compatibility to prodlction <strong>of</strong> hybrid<br />

rape seed. 51tIntl. RapeSd ('ot. 0:12-10. (Abstr.)<br />

Thompson, K+. <strong>and</strong> II.\W. I loward. 1959. Self-<strong>in</strong>compatibility illnairtw stelmckale. Brissica<br />

olcama var. mler/mli. I.IiMlhlods for <strong>the</strong> Icco'llitiol ill<strong>in</strong>bred l<strong>in</strong>es <strong>of</strong> plants homozygous<br />

for S-alleles. J. (;cnct..56:325-340.<br />

Thompson. K.F. <strong>and</strong> .. P. Tavlor. 1960. No<strong>in</strong>-l<strong>in</strong>ear + doh<strong>in</strong>mielrltionships belwccn S-alleles.<br />

leredity 21:345-302.<br />

Tho<strong>in</strong>pso<strong>in</strong>, K.F. <strong>and</strong> J.P. Taylor. 1071. Self-<strong>in</strong>ncompatibilt\ illka. lc lrcditv 27:159-471.<br />

Thurl<strong>in</strong>g, N. 1974. Morpholvsiolo.ical deCrll<strong>in</strong>alllS <strong>of</strong> Vield <strong>in</strong> rapeseCtt (lhBoiAc'a campestris<br />

<strong>and</strong> lBrassica mlmmp/us).<br />

25:697-710.<br />

I. (rowth <strong>and</strong> mIimoplholoical charactcrs. Austral .1. Agr. Res.<br />

Thurl<strong>in</strong>g, N. nd 1..I).V. V )as. 19810. The lclatiol',hil bt\, en rc-antlcsics development <strong>and</strong><br />

sced yield m<strong>in</strong>I spr<strong>in</strong>g rape (lBrassica ,mpo I.. .. u.strial.. Agr. Res. 31:25-36.<br />

Tokulnasu, S. 1951. Male sterility <strong>in</strong>lapallnesc ridish (RaphanoI. sativo I..). Sci. Bul. Faculty<br />

Agr. Kyushu Univ. 1,3:83 89.<br />

tokuilllasmi, S. 1975. Prolonged dormancy <strong>in</strong> <strong>the</strong> seeds preser\,ed <strong>in</strong> blar ested fruits <strong>of</strong>' Brassica<br />

vegetables. Scieitia I lort. 3:267-273.<br />

'Tklll Sti,S., F. IKakihara., <strong>and</strong> M. Kato. 198 la. The change <strong>of</strong> dormancy <strong>of</strong> seeds stored<br />

<strong>in</strong> desiccatols <strong>and</strong>/or harvcstCd fruits illCrucifCrons cI'rops. J. Jpn. SOC.<br />

208-214.<br />

Horl. Sci. 50:<br />

Toku<strong>in</strong>asu, S., S. Kmlna, <strong>and</strong> M. Kato. lt8 lb. 'Iffects <strong>of</strong> storage humidity <strong>and</strong> gecrm<strong>in</strong>ation<br />

temperature otilgerm<strong>in</strong>ation p)Ctrceltagt <strong>of</strong> IJras/,ica seeds. Jpn. J.<strong>Breed<strong>in</strong>g</strong> 31: 109-120.<br />

Tokumasu, S., 1.Kanada, <strong>and</strong> M. Kato. 1985. Germ<strong>in</strong>ation behaviour <strong>of</strong>' seeds as affected by<br />

differen , tenlperatures <strong>in</strong> soi species <strong>of</strong> Bras.,ica. J.Jpn. Soc. Ilort. Sci. 54:364-370.<br />

Tokuniasu, S., M. Kato, <strong>and</strong> F. Yano. 1975. The dormancy <strong>of</strong> secd as affected by different<br />

humidities dur<strong>in</strong>g storagfe <strong>in</strong> Brassica. .Ipii. J.<strong>Breed<strong>in</strong>g</strong> 25:197-202.


80 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Produnen<br />

Tsen, M . <strong>and</strong> SAL. Lee. 1942. A pi on na Ivm,dy oI <strong>Ch<strong>in</strong>ese</strong> culti vatedI Irassicas. 1lortus<br />

S<strong>in</strong>icus, NMid. Central Univ. Cl<strong>in</strong>ngk<strong>in</strong>(e 2:1-31.<br />

Visser, ). L. 1977. The elect ol' alternat <strong>in</strong>g~ teniperatur-es o<strong>in</strong> <strong>the</strong> seltf'<strong>in</strong>c:mnpat ih fit), '<br />

Cilones<br />

!o<strong>in</strong>e<br />

<strong>of</strong>, I rissckIsp loii ts tIhasxjtc o/l'lenca L var. g/11ira MIC .) Schliz ). I'Euphytica<br />

26:273-277.<br />

Vifflghan. .G. 19~77. A iilllidiscipiimry studv oI' <strong>the</strong> tawuililiv anld (riti1 <strong>of</strong>' lrerasica Crops.<br />

B3ioScience 27:3>-B).<br />

Wallace, 13.1-. 1979). Procedures, 101 idtlziIi' Ilioiiioiyi.0luS Mid Iitn!'o i S licC L!enotvpes<br />

ol' Brasjruc. [hemr Api f. ( eiict 5-1: " :19)2(4i.<br />

watanlahe. F:. 19~8 1. I )evc~illlit (I ilma~i l e caihac culit Ivaiis iii Jajxiii . 11I-28.<br />

N'S.<br />

In<br />

iaIckar ii nT 11). (ies elk. (ii<strong>in</strong>ese Cabii:,pC. PInle. uirst Id S'iip. . AVRDC,<br />

shallul . a<strong>in</strong>ai.<br />

Watalihlce S. 1953. n t'iltl (fite Itc lel Cro(il/ibonl \ee ul .1. .lpn. Soc. 11(111.<br />

sci. M1. htr<br />

\\atanabhe, S. 1951). HIL<br />

sceds.. f f-it. ,)1<br />

01t idii mlhiithi<strong>in</strong><strong>in</strong> ml\tlc ij Il tivAk<strong>in</strong>! (ItiIM10'ai 0i l'IN~.V(W<br />

WVilliam~ls. PAL 191M~8t. 11csick s ;<strong>in</strong> :iid i iiijmie citiciterac. fi rtScie:ncc 15:802-803.<br />

Williamls. 1'.H1. antIj I'. W I. I i I m 'Illd ule'. dmu llop1n(t cvtopIlcoiiic tuicl sterile<br />

<strong>Ch<strong>in</strong>ese</strong> calthnwc 1I. 10.)30hi \.S 'kdcI~kay anti .I.(ir. cds. <strong>Ch<strong>in</strong>ese</strong> Cabae. Proc.<br />

First Intd. sy ll.. AVId)(. Sit 11LIti<br />

BlUi1. 1lot-. I iN . lo<strong>in</strong>k i Kii iki A,-,. I~ t S,a I :I1 -1<br />

Yon. J. . I)87. lecppems, <strong>and</strong> ( tim.est e . ;ihbac ttaii to IIilt ( pes Spaii 30:01 60.<br />

'ilolli J.Y'. adi I. ()1eiu 1)7. RC.Sidjltu "ccik I;iiaiccs ol~l t\o ( Ilitese cathl;112 YoI~u. IL 1.K Pvo1. 8.S. Jc. amtil.( i. 01( )h1). (41LK icnci na'SeS (111heat tolerance. holt<strong>in</strong>g<br />

<strong>and</strong> ~ ieci~ittr~ ~ ~ l Chit i iiec; cabhaLCclha ,ssll/ ' j ~p .pekiiiew~j.si. k( ioc;,<br />

So~c. Iortv Sci. 2.):X.3 I.<br />

\'oon. JY. RAI. ( (pena ani i.C. Change. I()X7. (nitoild 1'lilticc, IoM (himiese C!abhate<br />

AVRI)(.<br />

ait<br />

flit. ('001. (;tlide (7o--7-1). AV I)C. shlahua. I;,iiianl. I p).<br />

Zee, S. V. 11)75. Studies, on ( <strong>in</strong>tes ilowciiiw2 c;iblbatg hAj~ hrlUlIxt<br />

pliltoperioluli<br />

1. Hfleets (I<br />

ecr\t lt 1 lics llet <strong>of</strong> t'iL Ilower-stalk. Ae.Ifoniot Komg 1:257-265.<br />

zuheri, MI.,S. /tibcri. anld 1). I ws 19)81. Tile genet ics o11ilcoiipatihil ity <strong>in</strong>l Brassica. 1.<br />

hilieritane )I slit-coiipaitibility <strong>in</strong>l lras.cn- Oliltipel'Iis L. varI. toria. HIe red ity 46:175-190.


Glossary<br />

Abscission: The process by which plant parts. such as leaves <strong>and</strong> flowers, are shed <strong>of</strong>f.<br />

Adaptation: The process by which <strong>in</strong>dividuals (ar parts <strong>of</strong> <strong>in</strong>dividuals), lopulations, or species<br />

change <strong>in</strong> form or function <strong>in</strong> such a way to be.r survive 111der given environmental<br />

cotiditions; also tile result <strong>of</strong> illis iocess.<br />

Allele or allelomorph: One <strong>of</strong> a pair or scrics o foriis <strong>of</strong>' a gene which are alternative <strong>in</strong><br />

<strong>in</strong>heritalce hecause .:hey are siltLed tl tlhc sale locus ill ho)l<strong>in</strong>olocouLs clrolriioSOlmes.<br />

Allogamy: Cross- crtiliziation.<br />

Amphidiploid A polyo)loid hosC C(ru()iosome cot ile<strong>in</strong>lent is made up <strong>of</strong>- tile entire solatic<br />

complements <strong>of</strong> it; two aircnti specics.<br />

Androecimun: *i..i: reproductive oraug<strong>in</strong>s <strong>of</strong> a planit: staiiens taken collectively.<br />

An<strong>the</strong>r: The poilei.-!ear<strong>in</strong>g po~rti( <strong>of</strong> <strong>the</strong> stalmen.<br />

An<strong>the</strong>sis: The pr.ce.,s <strong>of</strong> dehiscece <strong>of</strong> <strong>the</strong> alllier.:< <strong>the</strong> period <strong>of</strong> poIllen distribution: <strong>the</strong> period<br />

<strong>of</strong> flow fr( pe.l<strong>in</strong>g.<br />

Antigen: A forceig, substance. usually prote<strong>in</strong>o-p!lysacchride complex <strong>in</strong> nature,<br />

which elicit,, <strong>the</strong> formation <strong>of</strong> sp'cific antibodies with<strong>in</strong> an organism.<br />

Autotrophiu: Be<strong>in</strong>g self-nourish<strong>in</strong>g, MIanufaictur<strong>in</strong>g organic nutrients front <strong>in</strong>organic raw<br />

ruaterials.<br />

Baoillus thur<strong>in</strong>giensis: A hacter<strong>in</strong>i u thai causes disease <strong>in</strong> many <strong>in</strong>sects, espc :ially caterpillars:<br />

formulations <strong>of</strong> tie hacter:z, are used as irsCCticidCs.<br />

Backcross: In bieed<strong>in</strong>., a cross <strong>of</strong> a hybrid to ci<strong>the</strong>- <strong>of</strong> its parents. In genelics, a cross <strong>of</strong><br />

a heterozygote to a hol l(zgous recessive.<br />

Bolt: Pro<strong>duction</strong> <strong>and</strong> elongal<strong>in</strong> .! flower or seed stalks. to <strong>in</strong>itiate growth <strong>of</strong> flower structure.<br />

Breeder seed: <strong>Seed</strong> (or ,vegetative propagat<strong>in</strong>g material) <strong>in</strong>crca'sed hy tile orig<strong>in</strong>at<strong>in</strong>g, or<br />

sponsor<strong>in</strong>g plant breeder or <strong>in</strong>stitution, <strong>and</strong> used as <strong>the</strong> stock seed Ior produc<strong>in</strong>g foundation<br />

seed.<br />

Bud poll<strong>in</strong>ation: The ariificial poll<strong>in</strong>ation done hef ire <strong>the</strong> natural open<strong>in</strong>g <strong>of</strong> <strong>the</strong> f<strong>in</strong>ale flower.<br />

Usually pollcus taken from mturally opened flowers are manmally placed on tile sUrlaice <strong>of</strong><br />

stigmas <strong>of</strong> <strong>the</strong> forcibly opened flower buds.<br />

Callose: An amorphous polVs;icciharide which gives glucose oni hydrolysis, usually formed on<br />

sieve plates or pollen gra<strong>in</strong> walls. Calhose exhibits fluircscen:e after lIbell<strong>in</strong>g with fluorescent<br />

compounds, which usually characterizes pollen tubes fi,.ni neighbor<strong>in</strong>g tissues.<br />

Campy!otropous: (Of ovoule I cirved over so that funicle appears to be attached to tIle side,<br />

halfway between <strong>the</strong> chalaza md nicropyle.<br />

Character: The cxprcssiOl Of a ,ere as revealed <strong>in</strong> <strong>the</strong> phcnlotypc.<br />

Codom<strong>in</strong>ance: Two allelhs <strong>in</strong> a locus beC<strong>in</strong>g eqialy donil<strong>in</strong>an i) tal bolh alleles shio <strong>the</strong>ir<br />

effect.<br />

Comb<strong>in</strong><strong>in</strong>g ability: General, aver ic pcrforn<strong>in</strong>ce <strong>of</strong> a stra<strong>in</strong> <strong>in</strong> a series <strong>of</strong> crosses. Specific.<br />

deviation <strong>of</strong> perf(ormance <strong>of</strong> a given: cross ront that predicted oi <strong>the</strong> hasis <strong>of</strong>' <strong>the</strong> general<br />

comb<strong>in</strong><strong>in</strong>g ability.<br />

Composite: A mixture <strong>of</strong> genotypes front several soiurces, ia<strong>in</strong>ta<strong>in</strong>ed by open poll<strong>in</strong>ation.<br />

Conduplicate: ")late 0<strong>of</strong> Iwo cot)'!Cdoris be<strong>in</strong>g fold to Cimbrace llte radicle.<br />

Cotyledons: Leaves forned with<strong>in</strong> <strong>the</strong> .. '- <strong>and</strong> present on seedl<strong>in</strong>gs immediately afte,<br />

germ<strong>in</strong>ation; seed leaves.<br />

Crucifer: A plant i;,<strong>the</strong> family CrUciferac also called tie mustard family, which <strong>in</strong>cludes <strong>the</strong><br />

<strong>Ch<strong>in</strong>ese</strong> cabbage.<br />

81


82 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

Cuticle: A layer <strong>of</strong> waxy material, cut<strong>in</strong>. on tileouter wall <strong>of</strong> tire epidermis <strong>of</strong> epidermlal cell<br />

walls <strong>in</strong> plants, mak<strong>in</strong>g <strong>the</strong>n fauirly imperneable to water.<br />

Di a llel cross, complete: The cross<strong>in</strong>g iii all possible co<strong>in</strong>hrnations amnmg a series <strong>of</strong>.li ,otypes.<br />

Dioecy (dioecious): -lybridity mechanism illwhich stamit<strong>in</strong>ate <strong>and</strong> pislillate llowers occur<br />

exclusively on ldifferent <strong>in</strong>diViduals <strong>of</strong> tilesame species.<br />

Diploid: Hav<strong>in</strong>g two sets (genomes) olchronlosones; chrornoome numher <strong>of</strong>2n. as <strong>in</strong> a zygote.<br />

Somatic or body tissue is normally d!iploid <strong>in</strong> contrast to h/aploid gerni cells.<br />

Dom<strong>in</strong>ance: lntraallelic <strong>in</strong>teraction such that (oeillele manifests itself nlore <strong>of</strong>r less, when<br />

heterozygous, over- its allernativc allcle.<br />

uormancy: A stai <strong>of</strong> <strong>in</strong>activity or prolonged rest.<br />

Egg: The femalc itaniete or- germ cell.<br />

Emasculation: Phvsical removal <strong>of</strong> <strong>the</strong> ru<strong>the</strong>rs Irorn a bttl or flower before pollen is shted.<br />

It is a normal preliti<strong>in</strong>ar- step illcro s<strong>in</strong>g to prevc'it self-pol<strong>in</strong>ation.<br />

Embryo: TI,, rudimnctrarN plat illaf<strong>Seed</strong>: tire devehCloirl product <strong>of</strong> fertilization <strong>of</strong> aliegg<br />

(zygote).<br />

Endosperm: Tripflid tissue whiCh iisCs Irom th leHil 1SIon Of isperi nucleu, fitll two<br />

pOlr nuclei -flhe C<strong>in</strong>)i'\'(o sic. In sCeds <strong>of</strong>icertl<strong>in</strong> ,pc'iCs, rIte ClitlOsierM persists as a Stoage<br />

tissue <strong>and</strong> is tlsCd <strong>in</strong> tIe 2r(M.,lh Of <strong>the</strong> emlrl\o0 atild hV <strong>the</strong> seLhil dur<strong>in</strong>t grrplait.<br />

Epiphytotics: Of. pertia<strong>in</strong><strong>in</strong>g to, Or clrhAlcrri/i<strong>in</strong>1 N ,utLdl or itornrllv lcStIctive ou1ttbreak<br />

<strong>of</strong>' a plant disease, istnlv over at extended "Cooraphicail ;cti.<br />

Family: A grotp <strong>of</strong> <strong>in</strong>tdi\ idutls directlv related 1w desCcent Itrorn J 011i1i1mort i1icCstolr.<br />

Fertility restor<strong>in</strong>g genes: Nuclear genCS that aet to0resore Ic'tilits ill pl t Ihmalc-sterile<br />

cylophas<strong>in</strong>.<br />

Fertilization: Union im f'i can d a speniri (ga, ees) to for0,it a g.t. Ws<br />

Field capacity: 'lie litoisture lev\l itl soil ltrsallr'ltiOll llidrun<strong>of</strong>l.<br />

Foundation seed: Sccd stocks <strong>in</strong>creased Iro i breeder seed, ard so hlaricd let to closely<br />

rrt;r1taitl tile genetic itleritis Intld purity <strong>of</strong> a varietv. [oI Arilatiori sCCd is tile source f crtifIetl<br />

seed, ei<strong>the</strong>r directlv or through registeretL seed.<br />

Gamete: A mnature reproducti\C cell (e.g. pollen an11dceO Cell), ca)lhc <strong>of</strong>' I'ls<strong>in</strong>g with a cell<br />

<strong>of</strong>, sitnilir orig<strong>in</strong> bhitl<strong>of</strong> opposile sex to give a /ye.<br />

Gametogenesis: The forimationi <strong>of</strong>f irle <strong>and</strong> Iuilleici gittictcs. or wh:t arecCalletl 'sex cells'.<br />

Gametophytic self-<strong>in</strong>cornpatibility: Self-<strong>in</strong>cplltibility sv'seli ill which pliernotypic<br />

exprCsion <strong>of</strong> '-CrC is deterrltuied hV tileal lV <strong>of</strong> tihe 'er.\ pOllen or egg ill iuestio.<br />

Gene: The unit <strong>of</strong>1<strong>in</strong>heritamot which is locatedl I<strong>the</strong> chr<strong>in</strong>osole: 1w <strong>in</strong>rterattiolr with o<strong>the</strong>r<br />

genes, lie cytoplitsn. tnd <strong>the</strong> CnIvirtmircit, it iffTct,, or controls <strong>the</strong> th.\ clopitrett <strong>of</strong> a character.<br />

Genome: A set <strong>of</strong>' chlnr'otlliSOllCS Corr'csprtliti, to <strong>the</strong> llp)lOil Stl t I a spCCics.<br />

Genotype: The genetic i Actit iil' art organisn tile Stii totall <strong>of</strong> its gCnels, bth thlirartllt<br />

ard recessive: it group <strong>of</strong>' oiganisms with <strong>the</strong> saric genetic mA.ke-up.<br />

Gibberell<strong>in</strong>s: A !-r,up <strong>of</strong>' plait horutoties. Ihe most characteristic tlf'cc <strong>of</strong>' which is to <strong>in</strong>icias'<br />

tie collogation d stelis illt lit<strong>in</strong>her <strong>of</strong>' k<strong>in</strong>ls <strong>of</strong> hight'er p llls.<br />

Haploid: ltavi g t,iv g lc set (genuie) <strong>of</strong>' clirlooimli ill it CC[ (r an <strong>in</strong>dividual: <strong>the</strong> retltcci<br />

rnUr1ben' (11). is Illi g'illr e.<br />

Heritability: Citp:ihilits tle<strong>in</strong>g irlheri'tf; th f ) t li) uil' 0 he u1serC'vcd V ii icc ill pi [)'(gc ty<br />

thIlat is <strong>in</strong>heriteild.<br />

Henrtability, narrow sense: Il-ritibilit tstiimiet fron tileadditive pirlion <strong>of</strong>' tilegenetic<br />

Heteroploid: lerair<strong>in</strong>ig to chrluiuiiuir <strong>in</strong>1IbeIs deviatiiig fro<strong>in</strong> <strong>the</strong> rtautal litillhei' (<strong>of</strong> tile<br />

diplophasc <strong>of</strong>' a gies ccics.<br />

Heterosis (hybrid vigor): ltvhrid \igr'surl thitt11 i hybrid falls ot:,itle <strong>the</strong> range <strong>of</strong> <strong>the</strong><br />

parenis vith respcct to sorlirt chiacter or chllactels. Usually applietd to size, rate <strong>of</strong> growth,<br />

or general thrift<strong>in</strong>ess<br />

Heterozygo 's: Ilav<strong>in</strong>g unlike alltles at one or more gentic loci illhoiiiihogiuuts Cht'irt'uOSOtncS<br />

(opposite Olf ltonozygOtLS).<br />

Heteiotrophic: Of' an organisn or plant requir<strong>in</strong>g a supply <strong>of</strong>' foodfrom its environment.


(il, Ary 83<br />

Homomorphic: The condition <strong>of</strong>lhav<strong>in</strong> pe rfect tlmoxxcr <strong>of</strong> onkl <strong>in</strong>tp,<br />

Homozygous: Hav<strong>in</strong>g idenlical aIlllc at crrespontl)ii ocioion hio-iologois chroioso<strong>in</strong>es.<br />

A plant canl he hoiozygous it onc. se'vcral, or all loci. (opposite <strong>of</strong> hetero,'g,us).<br />

Hybrid: The proluct ol i cross between two Itilts dillci rlm<strong>in</strong>i lt Ic;ast one Mc<strong>in</strong>lcli ch.iracterl.<br />

Hybridization: (a) <strong>the</strong> cross<strong>in</strong>t <strong>of</strong>' <strong>in</strong>dixhidna ls <strong>of</strong> u<strong>in</strong>likc ,c'Iictic coIsltittltioll; (l iiicthttd <strong>of</strong><br />

hrecd<strong>in</strong>g new virietics which iitilii'cx crosil, to obtl<strong>in</strong>t wcticlilccoiitio<strong>in</strong>.<br />

Inbred l<strong>in</strong>e: A pure l<strong>in</strong>e usiuilly' Olriciitiii ! , I)<br />

sclection; <strong>the</strong> product Of ilbrCcdiIoc2.<br />

- polll<strong>in</strong>Itiiion o1ICxCliil gciicraiioiiS <strong>and</strong><br />

Inbreed<strong>in</strong>g: The niat<strong>in</strong>g <strong>of</strong>' <strong>in</strong>alivitltikl ilirc olswcl\ Iclacil tliii <strong>in</strong>diidl lliaill_, a1it r<strong>and</strong>oll.,<br />

usuLIlly Iye St- polliatiio<br />

Incom patibility: Illlridit l iitV cch iisi,ii ill\ x hicli IIic'k tiliic il lcitiliitiii ndlsed hIlrilrlitio<br />

afIc'r scll'-polliila tio iu;lIisn , l\ luc ii tiiiIIItc H l()IllttiiC tpcW I ctiitcI tlic tlI ii<strong>in</strong> . o1 to rcdhced<br />

iow ti th plol lcii t <strong>in</strong>i[iu tlic six Jar tisYic.<br />

Infection: 'Ilh cnitr\ l oi patlihcci ililt, a hiot, an<br />

<strong>in</strong> <strong>the</strong> lotl.<br />

ctIibi lichiiictll (f <strong>the</strong>C pailhtomcli as i pirisiti<br />

Inflorescence: \ IlMci *'llnstcr,. lhL ii<strong>in</strong>icii anIii i illc oktticl cuhictiltl (f ll flowers<br />

ol A floiral ixirs.<br />

Juvenile self-com atibility: /\lIilit\ (t1<br />

secds.<br />

uttil ili,s ill , Jlic ull 1iiiiutllhlc piauit i I)ItOiLcc ',elcd<br />

Larva: le' iilliattlic I ii i i it cct 'iticli a1,a : tcipi!lLi;. I i tlclic+ frtlii ill _ ;cInd<br />

ai.NSCS tliroUi;i I Juii- ',Xiic. hcLtol: , IcLuui


84 Ch<strong>in</strong>c,,w ('abtiac CC Ircdii.W i SCed +,II'rtliictii<strong>in</strong><br />

plaIl. ('ro s,-I,ifllilioi i,1,: tralisftr ol, ptllcl froili a nl iithcr o<strong>in</strong> one pilnt 1o a stigiia ill<br />

a flower oil ditllerelnlt r g()Cieically rLcioi_ plant.<br />

Polycross: ' pen poll<strong>in</strong>ation fidl .Nronp trf CnltVpCe, (:enerally seleV.SCtd <strong>in</strong> is6lation lon o<strong>the</strong>r<br />

c'ltlipllihlc L iotypes illsuch a wa' itst(o pro[tl1it 'aILdol lliiIg illlTr.,'.<br />

Polygeries: Many _Cgnes <strong>in</strong>lneicIne thIe development ot a s<strong>in</strong>gle trait; re.suligng i<strong>in</strong>col<strong>in</strong>til,<br />

vari ability.<br />

Polyphyllous: State <strong>of</strong> hv<strong>in</strong>g nri<strong>in</strong>Il aves.<br />

Population: A <strong>of</strong>up <strong>of</strong> ,clse\ related, <strong>in</strong>teILrhrCd<strong>in</strong>g plantS.<br />

Progeny test: A fitgeiyv, or rit ps il progenie,. erowv (Or [he purpo:,e o1" evaluat<strong>in</strong>g <strong>the</strong><br />

Cnot t'p t I i parent.<br />

Prot<strong>and</strong>ry: tlylhridit, tiCLhiIII:,rlI il -h tih :ithlr s riiat'c i eC pistils.<br />

Protogyny: INatuiratil Ool ui, ti e nIIlIer,.<br />

Pseudo-self-co ipatibility: ';ai iia1 *eel s_.oe,+ lltill h <strong>in</strong>. sel '11,liialiti ill<strong>in</strong> tlhirwi:,e sell-<br />

Pure l<strong>in</strong>e: \ sII; iIi t l iden ical ttl ,, 11(l<br />

tci.A littl l u is g.:iienralk ott ai<strong>in</strong> d h, "uci\s ue sclt terioli/;titt .<br />

Raceme: \ii <strong>in</strong>il tcscciwcn <strong>in</strong> \%hloCh <strong>the</strong> <strong>in</strong>l<strong>in</strong> a\i , ii hi 111ll IIeI 1 I I II.r ilolt)I(/,'gO ill iiI<br />

is ,'eltMnaeld hul <strong>the</strong> t]tC\r.sar.. bornc ton<br />

jtetliceiS thai arei ;lip rtt\i iet\IC <strong>of</strong> equlial I:',211t .<br />

Recessive: The it h r i1 aH,lllil ;rir ,f;Ill\t mcl i,, lwt C\press.d \1hliu <strong>the</strong> o<strong>the</strong>r ei tdtili o llt)<br />

IiCIeiu1f1" oehCi.,<strong>the</strong>C n li' iuitll u i [!wl iti t i<strong>of</strong>l c ti ll t +tiuos luic.<br />

Recom b<strong>in</strong>ation: Ftillioatiitt t)'ttL'xt (,ttt il '.,it:tti , .Lt1-'s as itI te' tilt 01 eC".. uatioiIll l.'crosses<br />

het\ven ,2oittic;llsx (lillerut - ;,r-ll 01..0+~t, ihe teAr lee!,l' i 01 l,lri gelneCs,, due to<br />

enrssi n-i evr.<br />

Recurrent selection. \ nui.lhthd <strong>of</strong> hrcctdim ttlesiLnd tt tolicutrllfal lie,t-ahlc va izn ue'.<br />

iiltMn112- a ii uriiiiCi (t, ildi\ri lt:ils h\ ,.le-'iie it) each 2Cniettitn lulI f ttohi lh e rtt.)I\ produuc d<br />

N Iniatto-s iiT A 0' 1thu ,elCtl <strong>in</strong>ldi% ilI;1s (lt'ir Ilieil selleod pitielV) 0tt tie'pfCViOS<br />

kltei litotll It'i I dilltrti'ti lMtplUilli n , u<strong>in</strong>uLCI sl ti' M at' m itt ill, u etd a's leIes fi tie<br />

oi<strong>the</strong>r ttpulititt <strong>in</strong> <strong>the</strong> pIroi It. test.tile ,steln is tallcd iC c.ilol, irC.ure.iit scle itn'.<br />

Replum :,,\N Iill titi-ue 1) i<strong>in</strong> rtimlht. Irttiii th lilceiiti irid diil;id ' :t rtilit ilw sections Ilt<br />

Registered seeu: Th p'iwr.tetf hitttrCder tt htIlitittiim ,ed arid M)rhil'ildl(I as, to closely<br />

<strong>in</strong>anitaiti <strong>the</strong> unetti , identit\ aitd I)IIIrlit (tt a % i t. RecTisi.rol1 seudi' <strong>the</strong>" Stiure ifcerlified<br />

.Wll.RC ~i,,lCtud ui sL<strong>the</strong> ,llI J aiid ii h\i \ 5n llti'ial scd certiicatioi ae'y.<br />

Rogue: \ \ariiitt<strong>in</strong>lltill <strong>the</strong> suitai.Jtl jieitta Of ,, it'. : i At<strong>in</strong>ite. ii riiivu l titutndlesirable<br />

<strong>in</strong>dividuals it ikritN ttu sitc,_L.<br />

Rosette: A Cluster tf iadiiiti<strong>in</strong>t ti t tr oit i <strong>the</strong> IlliillCt '-,u ti sh ti. overlapp<strong>in</strong>g stalks.<br />

S1, S 2 ... etc.: Sv'libts to sCialils.' dicrSIE 'l lt-<strong>in</strong>ciui.tile atlleles.<br />

<strong>Seed</strong>: A mailire teililizct\ ulc with its liotriial 'tcvc-<strong>in</strong>is. .\ seed llsi,oto <strong>the</strong> slieed coat.<br />

<strong>and</strong>, 1mr1.<strong>in</strong> Cel',taii plants, all]iidOsperM.<br />

S-gene: The c-.n cont'ir<strong>in</strong>i- <strong>the</strong> trait otllt-iicttipatibili'y.<br />

S-prote<strong>in</strong>s: Plant prlittli .-,i;ted Wihl SCl-unctilk tOllihilit atlivation.<br />

Selection: AnY pioiess, nattiral itraiitieial. N\ hich permitns Iln iterease illthc prloportion o1<br />

certa<strong>in</strong> geiittphcs ill* o1 ups ot penttiVpes ill SnCCeediu, i-cneruititons.<br />

Self-<strong>in</strong>coMpatibiity: (GCIuiiuall\ CtontrItleCd phvitrlonical h<strong>in</strong>dranllce to Comiiplete lhrtiliiation<br />

anud<strong>Seed</strong> dl.vClopiiicnlt alterl Cil-ittll<strong>in</strong>ation t a fu<strong>in</strong>cti<strong>in</strong>al herniiaptlrdit.<br />

Senile self-compatibility: Abilit, ill iacelI l0tweXrs <strong>of</strong> slfll <strong>in</strong>comailtile, plti itt produce selfed<br />

seeds.<br />

Septum: A separttill! ,<br />

liturlil<strong>in</strong> a, itt frlils.<br />

Shatter<strong>in</strong>g: The fitrtitous loss <strong>of</strong>t weed froii a plant he'0re harvest.<br />

Sibs, full: Progenies tl'<strong>the</strong> sa<strong>in</strong>ic nitlc <strong>and</strong> fellmale taents derive'd trnl diff,'rent ganctes: halt<br />

sibs, proge,ies with oneC paenlt <strong>in</strong>l (2t<strong>in</strong>tion.<br />

Sibb<strong>in</strong>g (Sib mat<strong>in</strong>g): The niat<strong>in</strong>g between siub .<br />

Side-dress<strong>in</strong>g: Fertilizer added to <strong>the</strong> soil aroon <strong>the</strong> base <strong>of</strong>' a grow<strong>in</strong>g crop.<br />

Silique: The fruit characteristic (f Crtciferae: two-celled, <strong>the</strong> valves splitt<strong>in</strong>g from <strong>the</strong> bottom


Glossary 85<br />

<strong>and</strong> leav<strong>in</strong>g t[ + placentae with !he false partition stretched between.<br />

Sporophytic self-<strong>in</strong>compatibility: A sell'-<strong>in</strong>conipatihility system <strong>in</strong> which tile phe:')typic<br />

expression <strong>of</strong> an S-vene is detern<strong>in</strong>ed hy <strong>the</strong><br />

or eggs are derived.<br />

enotype <strong>of</strong>)<strong>the</strong> plants lrom which tile polletis<br />

Stamen: 'I he pllenhec organ In <strong>the</strong> flower: comliposcd <strong>of</strong> an an<strong>the</strong>r <strong>and</strong> a lilamcnt.<br />

Stigma: The poition <strong>of</strong> tile pistil which reccivc tile pollen.<br />

Stra<strong>in</strong>: A gri- p 1 itidi\ iduals from a C,111n141)<br />

thlan a varivty.<br />

o: g<strong>in</strong>. (-trll v d IIl'1- IIIrI v def<strong>in</strong>eld roup<br />

Stylfe: '[le stalk connect<strong>in</strong>., <strong>the</strong> mari am' <strong>the</strong> stigila.<br />

Syrergism: The acton C 1 two or In)(eCbstanc). r


87<br />

Appendix<br />

Procedures for Small-scale Artificially Vernalized<br />

<strong>Seed</strong> Pro<strong>duction</strong> <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong><br />

Hybrid No. 62<br />

1. So\ iLg ot tile Lac lltm cllll i cjim ia II c B3IS<br />

(frnuliat 13 IS' ',TkIS() lIII n u>,tu d filt.r paper <strong>in</strong> )-cti I) petri dish at 50 seeds/'djsh.<br />

Keel) il iltitl tiIIIClIitiiC 101 ai)tMl 2 "4(,h!' 11". 11is recoliiended It) place petri dishes<br />

tpper cive.r <strong>of</strong>lmol Ili a Iantc, lIt,it ,iith a slope , ,,tat 15''. This rcucs <strong>the</strong> fIrequency<br />

<strong>of</strong> \'. aterU'iii alil p tile plhnit', dchCItp a IIe;l aitanet0IeIIt f -'rowillt!roolts.<br />

2. VeCnII liaI l tit I1 ,1<br />

1l d.is afer ,,lc , ilw, 0f 11 81,trallfer <strong>the</strong> Il._tri dishes to 5 to l( Cl.1d room wihh<br />

Co it<strong>in</strong> tlus artifici;l d l i i W C. ' irLehtlI\ Ut 6iih distille~d \'.UtL'.<br />

3. Soiw<strong>in</strong>ii.g <strong>of</strong> lie car. i-lIt. Cii ci<br />

t<br />

I cit il e<strong>in</strong>C. 11'-7<br />

Seven da, silcr m-i\,, i01, 1. 18. sowceds <strong>of</strong>i- fo7ltiv,ife <strong>the</strong> saIic manner as I'm<br />

B-18. Kee ) <strong>in</strong> rooIml WuInata o0 1)hbou 24-3( toLtirs.<br />

4. Vernali/ation Of [-7<br />

liiht day, ',tr si.c.i oi 1-IS, transfIer petri dishes wilh I-7 to 5'-I(0C cold rool<br />

with co tii iolu artilicial (til lihit.<br />

5. Pric'k<strong>in</strong>e<br />

li \s\ ,k, ,tlltr i Ofi\. <strong>of</strong> R+ 1-I, take petri dishes (13-I8 <strong>and</strong> [-7) out ol <strong>the</strong> cold roomi<br />

<strong>and</strong> kee l) thm <strong>in</strong> t lilitd loil at llrooii tcIInpeCratnre,: t)r 5-0 hoo1rs,. BeleOre prick<strong>in</strong>g watter<br />

'.11li sCed!iI i <strong>in</strong> filter f'l ++Iif rt th


88 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

desirable. At AVRDC we split tie application several times (mostly once every two weeks<br />

after transplant<strong>in</strong>g through tile time <strong>of</strong> bee release). Field arrangenent <strong>of</strong> two parents <strong>in</strong> a<br />

1:1 ratio is recommended.<br />

7. P<strong>in</strong>ch<strong>in</strong>g <strong>and</strong> enclos<strong>in</strong>g<br />

Three weeks after transplant<strong>in</strong>g, p<strong>in</strong>ch <strong>the</strong> term<strong>in</strong>al buds <strong>of</strong> <strong>the</strong> ma<strong>in</strong> flowcr stalks to<br />

encourage more <strong>and</strong> vigorous late'ral flower stalk formation. Enclose plots with <strong>in</strong>sect cages<br />

if plants have been grow<strong>in</strong>g <strong>in</strong> a nonisolated, open field.<br />

8. Bee poli<strong>in</strong>ation<br />

About ten days after p<strong>in</strong>ch<strong>in</strong>g <strong>and</strong> enclos<strong>in</strong>g, if holi parentail l<strong>in</strong>es flower synchronously<br />

<strong>and</strong> pr<strong>of</strong>usely for poll<strong>in</strong>ation, honey bees cani be released <strong>in</strong> <strong>the</strong> cage. Iln caged poll<strong>in</strong>ation<br />

<strong>the</strong> asynchronous 1Owerr<strong>in</strong>g p roblem nav h c ntrolled by delay<strong>in</strong>g <strong>the</strong> <strong>in</strong>trodution <strong>of</strong>I honcy<br />

bees <strong>and</strong>/or by eventual rerimoval <strong>of</strong> old flowcr.,/sett<strong>in</strong> , pods froni <strong>the</strong> early flower<strong>in</strong>g parent.<br />

Once flower<strong>in</strong>g t<strong>in</strong>ie <strong>of</strong> both parental l<strong>in</strong>es is prI.operly synchronized, <strong>the</strong> norral procedures<br />

listed above may he followed. Asvnchronous flower<strong>in</strong>g under open- feld conditions is iuch<br />

mire difficult to h<strong>and</strong>le <strong>and</strong> requires great I:bor Cyq)Cse. lius, it is es-,cnti.l that flower<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> two parents ill <strong>the</strong> Held is l)rwpCrlT riratChed. ('lose rilC bee box for oeli day arid two<br />

nights before f<strong>in</strong>iaily rceasi, <strong>the</strong>1,', to avoid ally possible pollen conlailliiiiltiolln. P<strong>in</strong>ch<br />

<strong>of</strong>f all old flowers arid sctt<strong>in</strong>g pols etlforc bee <strong>in</strong>tro<strong>duction</strong>. HAsurc thal flower<strong>in</strong>i branchcs<br />

do riot rest a a<strong>in</strong>st <strong>the</strong> wall <strong>of</strong> <strong>the</strong> c' 'cause hollv bees outside sorietiliics I. at2,e" suh<br />

flowers lead<strong>in</strong>e to contarriiation. At this stage cairefui attention shoald be paid to m<strong>in</strong>iiize<br />

cornlil<strong>in</strong>ratiorn. The cleariiei Of h<strong>and</strong>s aad clo<strong>the</strong>s <strong>of</strong> any I;,irson <strong>in</strong>g riitl<strong>the</strong><br />

cage is required.<br />

Under openi-field conditions, ieiovaI (if lm\'cr<strong>in</strong>z cruci 'Cs nearby is maidatory. Al)<br />

flower<strong>in</strong>g <strong>Ch<strong>in</strong>ese</strong> cabbage plant with<strong>in</strong> I .)0( it radius from <strong>the</strong> seed-pro<strong>duction</strong> field must<br />

be removed.<br />

). Bee renioval<br />

Three to four weeks after bee polliation, when flower<strong>in</strong>g is alnost over <strong>in</strong> one <strong>of</strong> two<br />

parental l<strong>in</strong>es, remove <strong>the</strong> bees froii <strong>the</strong> cage. Five days after <strong>the</strong> remrnoval <strong>of</strong> bees, rcnove<br />

all late-bloom<strong>in</strong>g flobers <strong>of</strong>"both i parental I<strong>in</strong> -s<br />

10. Harvest<strong>in</strong>g<br />

All flowers which had bloomed <strong>and</strong> had be en p'l<strong>in</strong>a te before bee removal will develor<br />

small siliques with<strong>in</strong> five days. When about 80%/, <strong>of</strong> <strong>the</strong> silique.4 hav': turned brown yellow,<br />

reap two parental l<strong>in</strong>es separately at lie hottoi .i. Dry <strong>the</strong> harvested plants about five days<br />

under <strong>the</strong> sun, <strong>the</strong>n thresh aid clean tie seed.,,. If data ciollection is needed oti seed pro<strong>duction</strong>,<br />

take 20 r<strong>and</strong>ori plants <strong>of</strong> each parental l<strong>in</strong>e. Co'ln1t <strong>the</strong> niber <strong>of</strong> sili'lue./plant, tile nunber<br />

<strong>of</strong> seeds/silique, <strong>the</strong> seed weightfplait, etc.<br />

11. Process<strong>in</strong>g<br />

Threshed seeds Must be dried aga<strong>in</strong> umiil <strong>the</strong> moisture content is leduced to about 7%.<br />

Sun-dry<strong>in</strong>g is better than forced-air dry<strong>in</strong>g. If <strong>the</strong> liter is used, air temperature should not<br />

be higher than 40°C. For !ong-term storage, it is recoummended that seeds conta<strong>in</strong> 6% or<br />

less moisture.<br />

12. Sibb<strong>in</strong>g rate test<br />

Take a r<strong>and</strong>om sample <strong>of</strong> 500 seeds harvest xd from each parental lire <strong>and</strong> sow <strong>in</strong> <strong>the</strong><br />

flats, at 2 seeds p,- hill, with a spac<strong>in</strong>g <strong>of</strong> 5 cmi [etween rows <strong>and</strong> hills. Count selfs or sibs<br />

based on <strong>the</strong> ger ' morphology <strong>of</strong> seedl<strong>in</strong>gs (or plants) aris<strong>in</strong>g fromn seeds harvested from<br />

E-7. This method requires a great deal <strong>of</strong> experience. In order to facilitate this test, it is


Appendix 89<br />

recommended that a few E-7 plants be availahle for comparison,,prelerably at a similar<br />

growthstage as seedl<strong>in</strong>gs or plallts amo <strong>the</strong> Iyrid seed lot. With seeds harvestcd frolml<br />

B-18, any hairless plant call be counted as sib- or selfed-planls. V-airimess is a s<strong>in</strong>gle dolm<strong>in</strong>lant<br />

gene. F-7 is a him ygots, hairy plant, whereas. Bi-18 is hairless. Sow<strong>in</strong>g paircntal l<strong>in</strong>es<br />

along with tile hybrid seed lot is reconmmoended tm Ifc colmpaiison ol gencral miolrpology.<br />

l1'sceds from bohiparental Iimc., prove to haive high purity (i)9.; to I(X)"; 'hybrid, blend<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> two sodJhots is possiblc s<strong>in</strong>ce, based on previoo, stodics at AVRI)C rey tne rc not Very<br />

different froim each o<strong>the</strong>r <strong>in</strong> most hurtlictmlttural traits.


Index<br />

Aniphidiploid 2, 13, 39 Comb<strong>in</strong><strong>in</strong>g abili!y<br />

General comb<strong>in</strong><strong>in</strong>g ability 48, 53<br />

Bacillus thur<strong>in</strong>giensis 60, 65 Specific comb<strong>in</strong><strong>in</strong>g ability 48, 52<br />

Bolt<strong>in</strong>g see also Flower & thlo.cr<strong>in</strong>g 12. 36, Cross-poll<strong>in</strong>ation (cross<strong>in</strong>g) 21. 23. 24, 41, 44<br />

65<br />

Brassica Diallel cross 28. 31<br />

B. campestris I, 2. 5. 12, 13, 15. 22, 24, Diseases<br />

32. 34, 62. 63 Alternaria spt 35<br />

subsp. campevstris 2,3 black rot 36<br />

ch<strong>in</strong>elnis 1-3. 5,34 clubroot 35<br />

japo t ica 3 downy mildew 35, 39. 59, 60<br />

tar<strong>in</strong>aoso 3. 4 mosaic virus (TuMV) 35. 36, 38. 59<br />

oviiera 3. 4 Sclcrot<strong>in</strong>ia rot 36. 59, 60<br />

parach<strong>in</strong>en.sis 1.3. 4, 5. 15 s<strong>of</strong>irot 35. 58. 59, 60, 67<br />

pek<strong>in</strong>ensis 1-5. 6, 13-15, 17, 34, I)aylength see Photoperiod<br />

39. 62. 03 l)Dormancy <strong>of</strong> seeds 17<br />

rapa (or rapi/ira) 1-5, 17, 34<br />

var. cepha!uIa 6 Emasctation 40. 44<br />

(Iissohila 5,6 Erii<strong>in</strong>ia carotov(,ra see Diseases; s<strong>of</strong>trot<br />

<strong>in</strong>fiarct: 6<br />

laxa 6 :1hybrids 35. 37, 44, 50, 52, 53, 61, 65. 68<br />

B. car<strong>in</strong>ata 2. 13 Flower <strong>and</strong> flo\%cr<strong>in</strong>g 12, 13, 16<br />

B. juncea 1-3, 13, 11, 34 <strong>in</strong>florescetice 9<br />

B. napus 2, 13. 16, 32, 34, 63 growth substances 15<br />

B. nigra 2, 13 Founrdation sced 56, 66<br />

B. olracea 1-4, 13. 14, 16, 17. 22 25,<br />

39 Gcnomic relationship 2. 4<br />

var. ahoglahra 14<br />

hottis I,3 Head-to-seed, method <strong>of</strong>' sced pro<strong>duction</strong><br />

capfitata 1,3 56. 69<br />

italica I,3 Heat tolerance<br />

Breeders seed 56. 57. 58. 68, 69 breed<strong>in</strong>g <strong>and</strong> selection 36, 37, 53<br />

<strong>Breed<strong>in</strong>g</strong> goals (objectives) def<strong>in</strong>ilion 37<br />

disease resistance (tolerance) 35, 38. 39. 50. genetics 36<br />

52 physiological bases 37<br />

high yield, ittihortuily an1d earl<strong>in</strong>ess 35 sensitivity to vertalization 14<br />

quality (preference traits) 35, 36 leterosis see lybrid vigor<br />

tolerance <strong>of</strong> etvirottnetal stresses see also Hybrid vigor 35, 37. 51<br />

Heat toleratce 35, 36, 37 Hybrid it y niechanisni 19, 51<br />

<strong>Breed<strong>in</strong>g</strong> bctIout.c,l ction tech<strong>in</strong>i 1 es)<br />

backcross iiutho, 48 Inbred l<strong>in</strong>es 50. 52. 61, 65<br />

fiamily selection .17 Inbreed<strong>in</strong>g antd <strong>in</strong>breed<strong>in</strong>g depression 19,<br />

hybrid breed<strong>in</strong>g 19, 50 23, 44, 45, 50. 52, 54. 62, 66<br />

l<strong>in</strong>e selection 50 Insect pests<br />

mass selection 37, 44, 52. 69 Aphids 59, 60, 65<br />

maternal l<strong>in</strong>e selection 47 Diamondback moth 60. 65<br />

phenotypic selection 48 Insect poll<strong>in</strong>ators 60, 64, 65. 68<br />

recurrent selection 48 Isolation, <strong>in</strong> seed pro<strong>duction</strong> 4(1, 44, 61, 65,<br />

Bud pollitation 23-25. 28, 53. 61-63, 66 68


92 <strong>Ch<strong>in</strong>ese</strong> <strong>Cabbage</strong> <strong>Breed<strong>in</strong>g</strong> <strong>and</strong> <strong>Seed</strong> Pro<strong>duction</strong><br />

Juvenile coi patibility 24, 61 effect <strong>of</strong> gas environment 24. 61, 63<br />

effect <strong>of</strong> temperat tire see f'liperalure<br />

Leaf 9 genetic coolrol 19. 2(1, 25<br />

codo<strong>in</strong><strong>in</strong>aict 26, 31<br />

Male sterility, cytoplasmic 33, 51 dom<strong>in</strong>ance 20, 31<br />

Male sterility, geic 32. 51 ganietophyltic ,yIcii1)19, 25<br />

sporophvtic system 20. 25<br />

OfT-types 57. 58, 62, 06<br />

Opcn-polliian:tt:d varieties 119,37, 44, 47, 48,<br />

isolation <strong>of</strong> S-allele hioii2oyuotes 28-32<br />

S-specific protc<strong>in</strong>l (S-glvcoprote<strong>in</strong>) 22-24<br />

52. 53, 56. 68, 69 sell-f.ttility 24, 25. 31. 32<br />

Outcross<strong>in</strong>g 19,-14. 69 self-recognitioii 10, 21, 2-4<br />

surmoult<strong>in</strong>g <strong>in</strong>coimpatihilit\ harrier 24, 25.<br />

<strong>Pe</strong>ronosporaparasihicasee Diseases: downy 61-63<br />

mildew Self-poll<strong>in</strong>ation 'selflig) 19,. 21-24, 28, 40,<br />

Photopcriod 12, 15. 55 41, .14, 5), 53, 02<br />

l:lysiolOgiCa disorders 36, 46. Senile compatibility 24<br />

Plasmodtioolora sic see DI),iascs Siliqtie 10, i6<br />

cluhroot Steil) )<br />

I'litll'l/a -\'lohl'll See hiieLt ic[,l, di;llioi - Stoiage, <strong>of</strong> seeds (0. 61<br />

hack mloth Synthlet ic valricti -, 44. 52<br />

Pollen storace -If)<br />

Poll<strong>in</strong>ators See liiet ll'51 ir s effect,, oil<br />

P:roge<strong>in</strong>y test<strong>in</strong>g (tcmcstos) 28, 14, 48, 50, 53 Ilower<strong>in</strong>g (holtii 12, li, 36<br />

PsCudo slft-coliipatihifit.\ -1-, 2(- 01, 014 head<strong>in</strong>g proc-,, (icad fborniation) I1, 36<br />

Radish see Ra'phona '.1 .till.<br />

Raphatus satih-u.% 1. 2, 24 . 25, 32<br />

Relative hiu iii idity, Cffct on repro<strong>duction</strong> <strong>and</strong><br />

developiment 1 . 17. 24, 58<br />

pollen gcr<strong>in</strong><strong>in</strong>ation nd growth<br />

I<br />

secd Pdormancy an gdrn<strong>in</strong>ation<br />

secl piodtct<strong>in</strong>c 17<br />

seedl<strong>in</strong>g emegence<br />

17<br />

17'<br />

Root 8<br />

self-ilicimpi tibility 2­<br />

vernali/atio 13- 15<br />

Salt solution, effect oii self'-<strong>in</strong>compatibility 25, ieiiperature, <strong>in</strong>teractiot with photoperiod 15<br />

61, 63, 64<br />

S-allele 22-26, 28. 31, 32, 40, 51 Vernalization see also FhOWLr & flowei<strong>in</strong>g<br />

Sclrot<strong>in</strong>lia s'clertitm see I)iscascs; Sclerot<strong>in</strong>i a <strong>and</strong> 'elmperaturc. effects on<br />

rot green plant vertalization 15, 58<br />

<strong>Seed</strong> 10, 16. 17 <strong>in</strong>teraction with pliotoperiod 15<br />

<strong>Seed</strong>-to-seed, iiethod <strong>of</strong> seed pro<strong>duction</strong> 58 promohtive eflect on flower<strong>in</strong>g 12, 13; 55<br />

Sibb<strong>in</strong>g (sibs) 28. 29, 53, 62, 66, 67 seedl<strong>in</strong>g (seed) vernalization 15, 59. 68, 69<br />

Selection rate (<strong>in</strong>tensity) 48, 58, 69 sensitivity <strong>of</strong> <strong>Ch<strong>in</strong>ese</strong> cabbage 14. 67<br />

Self-<strong>in</strong>crmpatibility temperaturt. (chill<strong>in</strong>g) requirements 13-15<br />

alleles see S-allele<br />

detection 26. 31 Xanthomonalts calpestrissee Diseases; black<br />

effect <strong>of</strong> chemical treatment 25, 61, 63 rot<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!